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Preface

This volume contains the papers presented at the 51st EATCS International Conference on
Automata, Languages and Programming (ICALP 2024), held in Tallinn, Estonia, during
July 8–12, 2024. ICALP is a series of annual conferences of the European Association for
Theoretical Computer Science (EATCS), which first took place in 1972. This year, ICALP
was co-located with the 39th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) and the 9th International Conference on Formal Structures for Computation and
Deduction (FSCD).

The ICALP 2024 program consisted of two tracks:
Track A: Algorithms, Complexity, and Games
Track B: Automata, Logic, Semantics, and Theory of Programming

In response to the call for papers, a total of 519 eligible, anonymous submissions were
received: 404 for Track A and 115 for Track B. The committees decided to accept 153 papers
for inclusion in the scientific program: 119 papers for Track A and 34 for Track B. The
selection was made by the program committees based on originality, quality, and relevance
to theoretical computer science. The quality of the submissions was very high, and many
deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the program committees. The best paper awards were given to
the following papers:
Track A: Yuda Feng and Shi Li. A Note on Approximating Weighted Nash Social Welfare

with Additive Valuations.
Track B: Dmitry Chistikov, Alessio Mansutti, and Mikhail Starchak. Integer Linear-

Exponential Programming in NP by Quantifier Elimination.
The best student paper awards, for papers that are solely authored by students, were
given to the following papers:
Track A: Ce Jin and Hongxun Wu. A Faster Algorithm for Pigeonhole Equal Sums.
Track A: Kingsley Yung. Limits of Sequential Local Algorithms on the Random k-XORSAT

Problem.
Track B: Roland Guttenberg. Flattability of Priority Vector Addition Systems.

ICALP 2024 included invited presentations by
Anuj Dawar, University of Cambridge,
Edith Elkind, University of Oxford (joint with LICS 2024),
Danupon Nanongkai, MPI Saarbrücken,
Merav Parter, Weizmann Institute,
Stephanie Weirich, University of Pennsylvania (joint with LICS 2024 and FSCD 2024).

This volume contains all the contributed papers presented at the conference, and an
abstract or paper accompanying some of the invited talks.

The program of ICALP 2024 also included presentations of
the Gödel Prize 2024 (joint with ACM SIGACT) awarded to Ryan Williams (MIT) for
the paper Non-Uniform ACC Circuit Lower Bounds: IEEE Conference on Computational
Complexity (CCC) 2011. Journal of the ACM 61(1):1–32 (2014).
the Alonzo Church Award 2024 (joint with LICS), awarded to Thomas Ehrhard (CNRS /
IRIF) and Laurent Regnier (Université d’Aix-Marseille).
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the EATCS Award 2024 to Samson Abramsky (Department of Computer Science, Oxford
University),
the Presburger Award 2024, awarded jointly to Justin Hsu (Cornell University) and
Pravesh Kothari (Princeton University).

The EATCS Distinguished Dissertation Award 2023 was awarded jointly to the following
PhD dissertations:

William Kuszmaul (MIT). Randomized Algorithms that Achieve the Unexpected.
Nathan Klein (University of Washington). Finding Structure in Entropy: Improved
Approximation Algorithms for TSP and other Graph Problems.
Ruiwen Dong (University of Oxford). Algorithmic Problems for Subsemigroups of Infinite
Groups.

There was also the announcement of the new EATCS Fellows for 2024, who are:
Yossi Azar (Blavatnik School of Computer Science, Tel-Aviv University),
Friedhelm Meyer auf der Heide (Heinz Nixdorf Institute and Department of Computer
Science, Paderborn University).

The following workshops were held as satellite events of ICALP 2024, LICS 2024, and
FSCD 2024 during July 6-9, 2024:

Algorithmic Aspects of Temporal Graphs VII (AATG 2024)
Geometric and Topological Methods in Computer Science (GETCO 2024)
Intersection Types and Related Systems (ITRS 2024)
International Workshop on Confluence (IWC 2024)
Learning and Automata (LearnAut 2024)
Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2024)
Logic Mentoring Workshop (LMW 2024)
Mathematically Structured Functional Programming (MSFP 2024)
Parameterized Approximation Algorithms Workshop (PAAW 2024)
Parameterized Algorithms and Constraint Satisfaction (PACS 2024)
Structure meets Power (SmP 2024)
Trends in Arithmetic Theories (TAT 2024)
Trends in Linear Logic and Applications (TLLA 2024)
Women in Logic 2024

We wish to thank all authors who submitted extended abstracts for consideration, the
program committees for their scholarly e�ort, and all the reviewers who assisted the program
committees in the evaluation process.

We are very grateful to the Conference General Chair, Pawel Sobocinski, his colleagues
from Tallinn University of Technology, and EATCS, for hosting ICALP 2024 in Tallinn.

Finally, we would like to thank Anca Muscholl, the Chair of the ICALP Steering Com-
mittee, for her continuous support, Artur Czumaj, the president of EATCS, for his generous
advice on the organization of the conference, as well as the editorial o�ce of LIPIcs for their
support in editing these proceedings.

July 2024
Karl Bringmann
Martin Grohe
Gabriele Puppis
Ola Svensson
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Abstract

I survey recent work on symmetric computation. A number of strands of work, from logic, circuit
complexity, combinatorial optimization and other areas have converged on similar notions of symmetry
in computation. This write-up of an invited talk gives a whirlwind tour through the results and
pointers to the relevant literature.

2012 ACM Subject Classification Theory of computation æ Complexity theory and logic; Theory
of computation æ Finite Model Theory; Theory of computation æ Complexity classes

Keywords and phrases Logic, Complexity Theory, Symmetric Computation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.1

Category Invited Talk

Funding Research funded by UK Research and Innovation (UKRI) under the UK government’s
Horizon Europe funding guarantee: grant number EP/X028259/1.

Introduction

In the 1980s, descriptive complexity was a new approach to the problems of complexity
theory. It carried the hope that methods from logic, particularly finite model theory, could
be deployed to settle the di�cult questions of complexity. It was one of many promising
approaches at the time but the hard problems of complexity proved resistant to all of them.
An amusing article from ACM Sigact News in 1996 [24] imagines the many possible titles of a
paper announcing a resolution of the P vs.NP question. One of them is through Immerman’s
approach to descriptive complexity which recasts the question of separting P from NP as
the question of separating the expressive power of fixed point logic FP from existential
second-order logic on ordered structures. This captures the essential gap between the promise
of descriptive complexity and its delivery. The methods from finite model theory that it
makes available for proving inexpressibility in logics such as FP work well on unordered
structures. But, the correspondence with complexity classes works well on ordered structures.

A more recent viewpoint on this is that the inexpressibility results from finite model
theory establish lower bounds for restricted, symmetric models of computation. This is
exemplified by the results of [2, 21], which show that the logic FPC (fixed-point logic with
counting) corresponds to a natural model of symmetric circuits. The logic FPC is a natural
and powerful logic within P for which unconditional lower bounds have been proved (see [11]
for an overview).

Understanding the inexpressibilty methods of descriptive complexity as lower bounds
for symmetric models of computation leads to a number of interesting further directions
of investigation, which I review in the present talk. In particular, I look at the following
directions.
1. We can extend the expressive power of FPC by considering more powerful operations

than counting, while remaining within P. These give rise to further notions of symmetric
computation, essentially weakening the symmetry restriction. Recently lower bounds
have been obtained for these as well.

2. We can investigate what e�cient algorithms can be implemented within these symmetric
models. It turns out that many natural algorithmic methods are symmetric and therefore
subject to the lower bound methods of descriptive complexity.
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1:2 Limits of Symmetric Computation

3. We can look at symmetry as it arises in other models of computation, and see to what
extent asymmetry is used as a resource. I illustrate this with two cases, that of linear
programs and of arithmetic circuits.

4. We relate the lower bounds to other classifications of problems according to their symmet-
ries. In particular, the very successful classification of constraint satisfaction problems
into tractable and intractable ones is based on a di�erent, but related notion of symmetry.

In the following, after a brief introduction of the relationship between FPC and symmetric
circuits, I give a summary of each of the above directions. The main aim is to provide
pointers to the relevant literature and to identify fertile directions for future work. Formal
definitions, statements of the results and proofs may be found in the cited literature.

FPC and symmetric circuits

The symmetry restriction we are considering is most clearly explained in a circuit model
of computation. Recall that any decision problem L ™ {0, 1}ú can be seen as a family of
Boolean functions (fn)nœÊ where fn : {0, 1}n æ {0, 1}. Moreover, each function fn can
be described by a circuit Cn: a directed acyclic graph with n inputs and gates labelled by
Boolean functions from some fixed basis, such as ·, ‚, ¬ or extensions with a majority gate
or threshold gates. The language L is decidable in polynomial time if, and only if, it has
such a family of circuits that is P-uniform. In other words, the circuit Cn can be constructed
in poly(n) time. One fact to note here is that when we consider what Boolean functions we
can use in the basis, we are restricted to symmetric functions. These are functions whose
value depends only on the number of 1s and 0s in the input and not on the order in which
the inputs appear. The functions ·, ‚, ¬, majority and threshold all have this property.
This is necessary in order for the circuit to be defined as a DAG with no further structure
on it, such as an order of the gates.

When we consider decision problems on structures such as graphs, we are typically
interested in deciding properties that are invariant under graph isomorphisms. A key
perspective of descriptive complexity is that we consider formalisms in which only such
properties can be expressed. In the context of circuit complexity, we can consider a property
P of (directed) graphs as being given by a family of Boolean functions (pn)nœÊ where
pn : {0, 1}n◊n æ {0, 1} takes the adjacency matrix of a graph and maps it to 1 just in case
the graph has property P . Such Boolean functions have natural symmetries in the sense
that for any permutation fi of [n], we have pn(x) = pn(xfi) where the string xfi is defined
to have xfi

ij = xfi(i)fi(j). We say that a circuit C computing pn is symmetric if this action
of permutations fi œ Sn on the inputs always extends to an automorphism of the circuit C
itself.

The key result from [2] is that a graph property is definable in FPC (for a formal definition
of FPC, I refer the reader to [11]) if, and only if, it is decidable by a P -uniform family of
symmetric circuits. The result there is stated for circuits with threshold gates (indeed, just
a majority gate would su�ce) but, as observed in [21], adding further symmetric Boolean
functions to the basis does not change it. Thus, we get quite a robust notion of symmetric
polynomial-time computation and it corresponds exactly to definability in FPC. Moreover,
while I have stated it here for graphs, it is proved more generally for finite relational structures.

The important aspect of the connection between FPC definability and decidability with
symmetric circuits is that we have methods for proving inexpressibility results in FPC and
these yield proofs of unconditional lower bounds for symmetric circuits. In particular, FPC
definable classes of graphs exhibit stronger invariance conditions than just being closed under



A. Dawar 1:3

isomorphism. This is made precise by considering the Weisfeiler-Leman (WL) equivalences.
For a precise definition of the k-dimensional Weisfeiler-Leman equivalence, see [17, Sec. 2].
Here we just note that this is, for any fixed k, a coarser relation than graph isomorphism.
The connection with FPC definability comes from the fact that for any property P of graphs
that is definable by a formula of FPC, there is a constant k such that P is invariant under
k-dimensional WL equivalence.

Cai et al. [10] first showed that there is no fixed value of k for which k-dimensional WL
equivalence is the same as isomorphism, and this leads to a construction of a class of graphs
in P which is not FPC definable. This fundamental construction has been at the heart
of many lower bounds since. That is, most results showing that some property P is not
definable in FPC and therefore not decidable by symmetric circuits proceed by showing that
P is not invariant under k-dimensional WL for any fixed k. Graph properties for which this
has been shown include Hamiltonicity and 3-colourability.

Symmetric algorithms

The fact that we can prove unconditional lower bounds for classes of symmetric circuits
would not be so interesting if these classes formed a very weak model of computation.
It turns out, however, that many natural algorithmic techniques are in fact symmetric.
First of all, it is worth recalling some of the original motivation for the interest of finite
model theory in computer science, which came from the study of database query languages
(see [31]). Languages for querying relational databases, based on first-order logic and its
extensions, naturally give rise to symmetric algorithms (in the precise sense of symmetric
circuits considered above) when automatically compiled (see, for instance, the connection
to circuits given in [23, 29]). In this sense, FPC provides a good formal model of database
query languages that extend the relational calculus with recursion and counting mechanisms.
When FPC was first introduced [27] it was proposed as a possible language in which all
polynomial-time decidable queries could be expressed. Even after Cai et al. showed that
this was not the case, it was often said that all natural polynomial-time decidable properties
are expressible in FPC. One way to understand this is that problems for which the obvious
algorithm is in polynomial time can usually be formulated in FPC. However, the power
of FPC, and hence of symmetric computation, is surprising and a number of problems for
which the polynomial-time algorithms are far from trivial have been shown nonetheless to
admit symmetric algorithms. A few are worth highlighting.

The most significant one is Grohe’s monumental work [26] showing that any polynomial-
time decidable property of graphs excluding some fixed minor is in FPC, and so invariant
under k-WL equivalence for some fixed k. In [3], my co-authors and I show that the ellipsoid
method for optimizing linear programs can be expressed in FPC, and so many natural
combinatorial optimization problems have bounded WL dimension. In particular this is true
of the problem of determining the size of a maximum matching in a graph. The result can
be further extended to hierarchies of semi-definite programs [19, 6]. This shows that some of
our most powerful techniques for constructing e�cient algorithms can be implemented in a
way that is symmetry preserving.

Linear-algebraic extensions

While many powerful algorithmic techniques can be implemented symmetrically, there are
some simple e�cient algorithms that just cannot be symmetrized without an exponential
blow-up. It has been observed that the construction of Cai et al. essentially shows that

ICALP 2024



1:4 Limits of Symmetric Computation

the problem of solving systems of linear equations over a a finite field cannot be expressed
in FPC [4]. It follows that the Gaussian elimination algorithm cannot be implemented
symmetrically. Indeed, since linear algebra, and more generally equation-solving, provides
a rich source of examples of problems that cannot be expressed in FPC [12], research in
descriptive complexity has investigated extensions of this logic with linear-algebraic operators.
The resultung logics are provably more expressive than FPC. Here I want to point to
connections of these with symmetric circuits, and with approximations of isomorphism
stronger than the WL equivalences.

The first proposed extension of FPC by means of linear-algebraic operators was fixed-point
logic with rank (FPR), which allows for operators that compute the rank of a matrix over a
finite field [14, 25]. The expressive power of this logic has been shown to be characterized
by symmetric circuits with rank gates [21]. To make this work, we need to modify the
definition of circuit. To be precise, the Boolean function computed by a rank gate is not
a fully symmetric function and so we can no longer think of a circuit as a DAG. It needs
to have additional structure to give a matrix structure to the inputs of a rank gate. This
relaxed notion of circuit gives a weaker requirement of symmetry which can be formalized
and used to give a circuit characterization of FPR.

In order to study the expressiveness of FPR, a strengthening of the family of WL
equivalences was defined in [16] which we call the invertible map (IM) equivalences. The
WL equivalences can be seen as giving, on a fixed graph G, a partition of the k-tuples of
vertices that approximates the partition into orbits of the automorphism group. The k-WL
partition is the coarsest partition of the k-tuples of G into classes P1, . . . , Pt satisfying a
natural stability condition. This condition says that two tuples u and v in the same class Pi

cannot be distinguished by counting the number of substitutions we can make in them to get
a tuple in class Pj . The k-IM equivalences (denoted ©k

IM
) are similarly defined but with a

di�erent stability condition. This essentially amounts to saying that the partition P1, . . . , Pt

cannot be further refined using linear algebraic operators over fields of characteristic p where
p is a prime from some fixed set �. Technical details of the definition and characterization in
terms of linear algebraic operators can be found in [13].

In a breakthrough result, Lichter [28] has shown that there is no constant k for which
©k

IM
is the same as isomorphism. The implications of this construction for the expressive

power of any extension of FPC with linear-algebraic operators are spelled out in [15].

Symmetry and asymmetry in other models

Once we recognize symmetry as a feature of algorithms, it makes sense to identify how it
appears in other models of computation, beyond logic and circuits. It is, of course, built in
as a natural feature in the logics we study in descriptive complexity. And we have identified
the corresponding notion in the context of circuits. One aim of identifying meaningful
restrictions by symmetry in various models of computation is to see how asymmetry (or
symmetry-breaking) is a resource and how it trades o� with other computational resources.
In this section, I aim to provide pointers to two specific models where we have obtained
interesting insights by analysing symmetric restrictions to natural known computational
paradigms.

The first is that of linear programming. I noted above that the ellipsoid method for
solving linear programs can be implemented symmetrically. Moreover, when combinatorial
problems are formualted as linear programs, the programs have natural symmetries inherited
from the problem. Symmetric linear programs in this sense were studied by Yannakakis [32].
The focus there was on linear programs, or extended formulations. For example, consider
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graphs over the vertex set [n]. We can consider these as functions G : X æ {0, 1} where
X = {xij | i, j œ [n]} is the set of potential edges. Equivalently, we can think of G as a 0-1
valued vector in the Euclidean space RX . A collection of graphs is then a set P ™ {0, 1}X and
various graph optimization problems can be expressed as optimizing a linear function over P .
If we can represent the convex hull conv(P ) as the projection of a polytope Q ™ RX◊Y using
additional variables Y , with a number of facets polynomial in n, we can solve these problems
in polynomial time. Yannakakis proved that the travelling salesman and matching polytopes
do not have such polynomial-size symmetric extended formulations. The notion of symmetry
is the natural one. Any permutation of [n] has a natural action on X and hence on RX . The
symmetry requirement says that for any such permutation fi œ Sn we can find a permutation
‡ of Y such that for xy œ RX◊Y , xy œ Q if, and only if, fi(x)‡(y) œ Q. While the lower
bound proof of Yannakakis relies heavily on the notion of symmetry, it turns out that this
is not essential to the result as Rothvoß [30] obtains exponential lower bounds without the
assumption.

We can consider another way of representing the set P ™ {0, 1}X as a linear program.
We say that a polytope P ™ RX recognizes P if P ™ P and {0, 1}X \ P is disjoint from P.
Now, a class of graphs that is decidable in polynomial time necessarily is recognized by
a polynomial-size family of extended formulations. But, what classes are recognized by
symmetric such families? It turns out that they are exactly the classes of bounded WL
dimension. In other words those that are recognized by (possibly non-uniform) families of
polynomial-size symmetric circuits with threshold gates [5].

Another computational model where the assumption of symmetry has revealed remarkable
structure is that of arithmetic circuits. Formally, an arithmetic circuit over a field K and
a set of variables X is a directed acyclic graph where every input (i.e. node of indegree
0) is labelled by an element of X or an element of K, and every internal node is labelled
either + (a sum gate) or ◊ (a product gate). A distinguished output gate can then be seen
as computing a polynomial in the ring K[X]. Two polynomials (strictly speaking they are
families of polynomials) that are much studied in the field are the determinant and the
permanent. They are both defined on a set of variables X representing the entries of an n◊n
matrix, so X = {xij | 1 Æ i, j Æ n}. It is known that there are polynomial-size circuits for
computing the determinant det(X) while it is conjectured that there are no polynomial-size
circuits for computing the permanent perm(X). Both det(X) and perm(X) are invariant
under permutations of the variables X which are induced by the natural action of Sn. So, it
makes sense to ask whether these polynomials can be computed by polynomial-size symmetric
circuits. It turns out [20] that this is the case for the determinant but provably not for the
permanent. Furthermore, these polynomials have symmetries that go beyond the action of
Sn simultaneously on rows and columns. For example, the permanent is invariant under any
permutation of the rows and columns of the matrix and the determinant under separate
permutations of the rows and columns that have the same sign. We are able to establish lower
bounds for arithmetic circuits assuming these more stringent symmetry requirements [22].
This provides an interesting case study in the tradeo� between symmetry and other resources,
in this case circuit size. The lower bounds are obtained by adapting proof methods from
finite model theory, even though the connection to logic is now remote.

Constraint satisfaction problems

One of the great breakthroughs in theoretical computer science in recent years was the
dichotomy theorem for constraint satisfaction problems (CSP) proved independently by
Bulatov [8] and Zhuk [33]. A specific CSP is given by a finite relational structure D: the
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domain D along with a collection of relations R1, . . . , Rm on it. An instance to be solved
is specified by a similar relational structure V: the set V of variables and for each relation
Ri, a set of tuples from V whose interpretation must be in the relation. A solution is just a
homomorphism from V to D. It turns out that the computational complexity of determining
whether a given instance is solvable is completely determined by the algebraic structure of
the so-called clone of polymorphisms of D [9]. Looking at the polymorphism clones of a
structure, rather than the automorphism groups is a di�erent notion of symmetry which is
more relevant when we are interested in the homomorphisms between structures. Nonetheless,
there is a potentially intriguing relationship between the two notions of symmetry.

While the Bulatov-Zhuk dichotomy theorem classifies all CSP into two classes: those
that are solvable in polynomial time and those that are NP-complete, for our purposes a
trifurcation of CSP is interesting. That is, we can further subdivide the polynomial-time
solvable problems into those that have bounded width and those that do not. The CSP of
bounded width can be solved by means of a simple algorithm, known as local consistency [7].
This is parameterized by a natural number k. Since, for fixed k, the k-local consistency check
is a polynomial-time algorithm, all bounded-width CSP admit a polynomial-time algorithm.
However, the converse is not true. A number of CSP are known which are e�ciently solvable,
but do not have bounded width. It turns out that a CSP has bounded width if, and only
if, the collection of satisfiable instances has bounded WL dimension (see [4, 7, 18]). Thus,
there is apparently a close relationship between the k-dimensional WL approximation of
isomorphism and the k-local consistency method for approximating homomorphism. This
relationship is made precise in the category theoretic framework we developed in [1].

It remains an open question whether we can similarly characterize all tractable CSP,
i.e. those with a near-unanimity polymorphism by some (perhaps tractable) approximation
of isomorphism. Indeed, it is conceivable that the invertible map equivalences serve this
purpose. Could it be that for every such CSP there is a k such that the collection of satisfiable
instances is invariant under ©k

IM
? Converesely, could it be that for every CSP that does not

admit such a polymorphism (i.e. those that we know to be NP-complete) is not invariant
under ©k

IM
for any k?

Conclusion

We have discovered that symmetry arises in many forms in the analysis of computation, and
is an important property of structured data, such as graphs and also of algorithms that work
on this data. Symmetry in algorithms arises naturally when algorithms are automatically
generated from high-level specifications. At the same time, symmetry-breaking can be an
important method to improve e�ciency of algorithmic procedures, and this is demonstrated
by the unconditional lower bounds we have for symmetric algorithms for some problems,
where e�cient symmetry-breaking algorithms are known. The emerging theory of upper
and lower bounds for symmetric computation pulls together a number of distinct strands
within theoretical computer science, and draws in diverse mathematical methods with many
promising directions to follow.
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Abstract

In multiwinner voting with approval ballots the agents are presented with a set of alternatives, each

agent indicates which of these alternatives they approve, and the goal is to select a fixed-size subset

of the alternatives, in a way that reflects the voters’ preferences. This framework captures a variety

of group decision-making scenarios, from choosing a list of speakers for an event to appointing a set

of validators in a proof-of-stake blockchain. An important concern in many of these scenarios is

group fairness: every su�ciently large group of agents with similar preferences should be represented

in the winning set of alternatives. In this talk, we discuss how to formalise this idea and whether the

resulting axioms can be satisfied by e�ciently computable voting rules. We also discuss extensions

of our framework to the more expressive setting of participatory budgeting, where the agents are

presented with a slate of projects (which may have di�erent costs) and the goal is to select a subset

of projects subject to a budget constraint.
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Abstract

A goal of the theory of graph algorithms is algorithmic techniques that enable computing devices

to process graph data with little resources (time, space, communication overhead, etc.). This led

to extensive studies of graph algorithms in various models of computation (sequential algorithms,

distributed algorithms, streaming algorithms, etc.) by many sub-communities. Cross-paradigm graph
algorithms is an e�ort to attack the same problem in many models of computation simultaneously,
with the goal to generate new insights that may not emerge from the isolated viewpoint of a single

model and to ultimately develop techniques that can be used to solve graph problems near-optimally

across many models of computation. In this talk, I will discuss some recent advances in graph

algorithmic techniques for basic graph problems (e.g. minimum cut, shortest path, and maximum

flow) in connection to this research program, especially some insights that led to cross-paradigm

algorithms and to answering notorious open questions. No background will be assumed from the

audience beyond familiarity with textbook graph algorithms.
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Graphs Shortcuts: New Bounds and Algorithms
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Abstract

For an n-vertex digraph G = (V,E), a shortcut set is a (small) subset of edges H taken from the
transitive closure of G that, when added to G guarantees that the diameter of G fi H is small.
Shortcut sets, introduced by Thorup in 1993, have a wide range of applications in algorithm design,
especially in the context of parallel, distributed and dynamic computation on directed graphs. A
folklore result in this context shows that every n-vertex digraph admits a shortcut set of linear size
(i.e., of O(n) edges) that reduces the diameter to ÂO(

Ô
n). Despite extensive research over the years,

the question of whether one can reduce the diameter to o(
Ô
n) with ÂO(n) shortcut edges has been

left open.
In this talk, I will present the first improved diameter-sparsity tradeo� for this problem, breaking

the
Ô
n diameter barrier. Specifically, we show an O(nÊ)-time randomized algorithm for computing

a linear shortcut set that reduces the diameter of the digraph to ÂO(n1/3). I also present time e�cient
algorithms for computing these shortcuts and explain the limitations of the current approaches.
Finally, I will draw some connections between shortcuts and several forms of graph sparsification
(e.g., reachability preservers, spanners). Based on a joint work with Shimon Kogan (SODA 2022,
ICALP 2022, FOCS 2022, SODA 2023).
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Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m

facilities in a metric space. A feasible solution consists of an assignment of each client to some
facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each
facility f to which we assign the subset of clients Sf , one has to pay the opening cost g(Sf ), where
g(·) is a monotone submodular function with g(ÿ) = 0.

SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem
(with uniform facility costs) as a special case. Svitkina and Tardos [35, SODA’06] gave the current-
best O(logn) approximation algorithm for SFL. The same authors pose the open problem whether
SFL admits a constant approximation and provide such an approximation for a very restricted
special case of the problem.

We make some progress towards the solution of the above open problem by presenting an
O(log logn) approximation. Our approach is rather flexible and can be easily extended to gener-
alizations and variants of SFL. In more detail, we achieve the same approximation factor for the
natural generalizations of SFL where the opening cost of each facility f is of the form pf + g(Sf ) or
wf · g(Sf ), where pf , wf Ø 0 are input values.

We also obtain an improved approximation algorithm for the related Universal Stochastic Facility
Location problem. In this problem one is given a classical (metric) facility location instance and
has to a priori assign each client to some facility. Then a subset of active clients is sampled from
some given distribution, and one has to pay (a posteriori) only the connection and opening costs
induced by the active clients. The expected opening cost of each facility f can be modelled with a
submodular function of the set of clients assigned to f .
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Acknowledgements We would like to thank the anonymous reviewers for their helpful comments, in
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would also like to thank Neil Olver for inspiring discussions about applications of their technique
in [5] to various covering problems over time.

1 Introduction

In the Submodular Facility Location problem (SFL), we are given a set C of n clients
and set F of m facilities, with metric distances d : (C fi F ) ◊ (C fi F ) æ RØ0. Furthermore,
we are given a monotone submodular1 (opening cost) function g : 2C æ RØ0 with g(ÿ) = 0.
Notice that g(·) is non-negative. A feasible solution consists of an assignment Ï : C æ F of
each client to some facility (we also say that Ï(c) serves c). The opening cost of f œ F in
this solution is g(Ï≠1(f)). The cost of the solution, that we wish to minimize, is the sum of
the distances from each client to the corresponding facility plus the total opening cost of the
facilities, in other words

cost(Ï) =
ÿ

cœC

d(c,Ï(c)) +
ÿ

fœF

g(Ï≠1(f)).

SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still
“tractable”) function of the set of served clients. For example, each client might have di�erent
types of needs, and satisfying such needs might have a submodular impact on the opening
cost (regardless of the facility location). As we will discuss, SFL is also closely related to
certain stochastic optimization problems which recently attracted a lot of attention (see,
e.g, [2, 17, 19, 22,24] and references therein). In particular, there are scenarios where one has
to pay (a posteriori) the connection and opening costs related only to a random subset of
activated clients, and this naturally induces objective functions with submodular opening
costs.

SFL is APX-hard since it includes the classical Facility Location problem (with
uniform facility costs) as a special case [21]. Hence the best we can hope for, in terms of
approximation algorithms, is a constant approximation. Finding such an approximation
algorithm is explicitly posed as an open problem, e.g., by Svitkina and Tardos [35, 36].
The same authors present an O(logn) approximation, based on a greedy approach, for a
generalization of SFL where each facility f has a distinct monotone submodular function gf (·)
(and this result is tight for this generalization due to a reduction from Set Cover by Shmoys,
Swamy and Levi [33]). Chekuri and Ene [10] obtain an alternative O(logn) approximation
for the same generalization of SFL based on rounding a convex relaxation exploiting Lovász
extensions (see also the related work on submodular partitioning problems [9,13]). Svitkina
and Tardos also present a constant approximation for a rather restrictive (still practically
motivated) special case of SFL where g(·) is induced by certain subtrees of a node-weighted
tree over the clients.

1.1 Our Results and Techniques
We make some progress towards the resolution of the mentioned open problem by presenting
an improved approximation algorithm for SFL.

1 We recall that g(·) is submodular i�, for every S, T ™ C, g(S) + g(T ) Ø g(S fl T ) + g(S fi T ). The
function is also monotone if g(T ) Æ g(S) for every T ™ S ™ C. As usual in this framework, we assume
to have an oracle access to g(·): given S ™ C, we can obtain the value of g(S) in polynomial time.
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I Theorem 1.1. There is a polynomial-time O(log logn)-approximation algorithm for SFL.

Our approach is surprisingly simple (modulo exploiting some non-trivial results in the
literature). By standard reductions (see Section 1.4) we can assume that N = n + m is
polynomial in n, hence it is su�cient to provide an O(log logN) approximation. Our starting
point is a natural (configuration) LP relaxation for the problem:

min
ÿ

fœF

ÿ

R™C

g(R) · xf

R
+

ÿ

cœC

ÿ

fœF

ÿ

R–c

d(c, f) · xf

R
(Conf-LP)

s.t.
ÿ

fœF

ÿ

R–c

x
f

R
= 1 ’c œ C;

ÿ

R™C

x
f

R
= 1 ’f œ F ;

x
f

R
Ø 0 ’R ™ C, ’f œ F.

In an integral solution, we interpret xf

R
= 1 as assigning exactly the set of clients R to the

facility f . Notice that we impose
q

R™C
x
f

R
= 1. This is w.l.o.g. since g(ÿ) = 0 (intuitively,

x
f

ÿ = 1 means that no client is assigned to f). We can solve the above LP in polynomial
time (see Appendix A for a proof).

I Lemma 1.2. In poly(N) time one can find an optimal solution to (Conf-LP) with poly(N)
non-zero entries.

Given an optimal solution ẋ = (ẋf

R
)fœF,R™C to (Conf-LP) of cost cost(ẋ) as in Lemma 1.2,

we proceed with two main stages. In the first stage (discussed in Section 2) we simply sample
partial assignments of clients to facilities with the distribution induced by ẋ for ln lnN many
times. This cost at most ln lnN times the optimal LP cost in expectation, and leads to a
partial solution that covers a random subset C1 ™ C of clients.

In the second stage (discussed in Section 3) we take care of the remaining uncovered
clients C2 = C \ C1. Let us consider the restriction ẍ of ẋ to C2. The opening cost of ẍ
might be as large as the opening cost of ẋ. However, in expectation, the connection cost of ẍ
is only a 1/ lnN fraction of the connection cost of ẋ (as we will show).

At this point, using the probabilistic tree embedding algorithm in [14], we embed the
original metric d into a (rooted) tree metric dT over a hierarchically well-separated tree (HST)
T (see Section 1.4 for the details). The opening cost of ẍ w.r.t. to the new tree instance
does not change, while its connection cost grows by a factor at most O(logN) in expectation.
Altogether we obtain a feasible fractional solution ẍ over the tree instance whose expected
cost is at most O(cost(ẋ)). Hence it is su�cient to develop an O(log logN)-approximate
LP-rounding algorithm for the considered tree instance.

The next step is at the heart of our approach. Using the properties of HSTs and losing a
constant factor in the approximation, we can further reduce our SFL tree instance to the
following Descendant-Leaf Assignment problem (DLA): the facilities are leaves of T and
the clients are arbitrary nodes of T . Each client c must be served by a facility contained in
the subtree Tc rooted at c. The opening cost of each facility is given by g(·), and there are no
connection costs at all. Bosman and Olver [5] describe a reduction of Submodular Joint

Replenishment and Inventory Routing problems to the Nice Subadditive Cover

Over Time problem. We critically observed that DLA has some similarities with the latter
problem (though this connection might not be obvious at first sight, see the discussion in
Section 1.3). In particular, we were able to adapt their approach to achieve the desired
O(log logN) approximation for our DLA problem.
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5:4 An O(log logn)-Approximation for Submodular Facility Location

We remark that we do not know how to get an O(1) approximation for SFL on trees
(even on HSTs). Though such approximation would not imply an O(1) approximation for
SFL with our approach (due to the first stage), finding it seems to be a natural intermediate
problem to address.

The first stage of our construction might be helpful in other related problems, in particular
to reduce the input problem to one on HSTs while introducing an additive O(log logn) term
in the approximation ratio.

1.2 Generalizations and Variants
Our basic approach is rather flexible, and it can be applied to generalizations and variants of
SFL. We next describe some other applications of our approach, and we expect to see a few
more ones in the future. For example, we can handle the case where the opening cost of the
facility f is gf (Sf ) = wf · g(Sf ), where wf Ø 0 is some input value: we call this the SFL
with Multiplicative Opening Costs problem (multSFL).

I Theorem 1.3. There is a polynomial-time O(log logn)-approximation algorithm for
multSFL.

Similarly, we can address the SFL with Additive Opening Costs problem (addSFL),
where gf (Sf ) = pf + g(Sf ) for Sf ”= ÿ, gf (ÿ) = 0, and pf Ø 0 is some input value.

I Theorem 1.4. There is a polynomial-time O(log logn)-approximation algorithm for
addSFL.

The above generalizations are discussed in Appendix B. We remark that we do not know how
to obtain an O(log logn)-approximation for the Affine SFL case, where the opening costs
are submodular functions of the form gf (Sf ) = pf + wf · g(Sf ). Notice that this generalizes
both addSFL and multSFL. This is left as an interesting open problem.

As mentioned earlier, SFL is closely related to stochastic variants of Facility Location.
In particular, our approach also extends to the following Universal Stochastic Facility

Location problem (univFL). Here we are given clients C and facilities F with metric
distances d like in SFL, plus an opening cost wf for each f œ F . Furthermore, we have
an oracle access to a probability distribution fi : 2C æ RØ0 specifying the probability fi(A)
that a given subset of clients A ™ C is activated. A feasible solution is an (universal)
mapping Ï : C æ F . The cost of Ï w.r.t. clients A ™ C is costA(Ï) =

q
cœA

d(c,Ï(c)) +q
fœF :Ï≠1(f)flA ”=ÿ wf . In words, this is the cost of connecting clients in A to the corresponding

facilities, plus the cost of opening the facilities that serve at least one client in A. Our goal
is to minimize EA≥fi[costA(Ï)]. The main motivation for universal problems of this type
is to allow a very quick (possibly distributed) reaction to requests that arrive over time.
Let opt : C æ F minimize EA≥fi[costA(opt)], in other words opt is an optimal (universal)
mapping. We say that an algorithm for univFL is –-approximate2 if it returns a universal
mapping Ï satisfying EA≥fi[costA(Ï)] Æ – · EA≥fi[costA(opt)].

Notice that the objective function of univFL can be rewritten as
ÿ

cœC

d(c,Ï(c)) · PA≥fi[{c} fl A ”= ÿ] +
ÿ

fœF

wf · PA≥fi[Ï≠1(f) fl A ”= ÿ].

2 In Section 1.3 we describe alternative ways to define the approximation ratio.
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Hence univFL is almost identical to SFL since g(R) = PA≥fi[R fl A ”= ÿ] is a monotone
submodular function of R which is 0 for R = ÿ. We can therefore adapt our techniques
to achieve the following result (see Section 4). Let fimin := mincœC{PA≥fi[c œ A]} be the
smallest probability of any client to be activated. W.l.o.g. we will assume fimin > 0.

I Theorem 1.5. There is a polynomial-time O(log log n

fimin
)-approximation algorithm for the

Universal Stochastic Facility Location problem.

For a comparison, Adamczyk, Grandoni, Leonardi and W≥odarczyk [2] obtain an O(logn)
approximation which also holds for non-metric distances. In the case of metric distances,
they obtain an O(1) approximation but only in the independent activation case, i.e., when the
sampled set A of active clients is obtained by independently sampling each client c according
to some input probability fi

Õ(c) for k times.

1.3 Related Work
As mentioned earlier, Bosman and Olver [5] consider the Nice Subadditive Cover Over

Time problem: roughly speaking, here we are given a set V of items and a time interval
{1, . . . , L}. Each item v œ V is associated with a time window Fv = {s, . . . , t}, 1 Æ s Æ t Æ L.
The time windows altogether have a special left-aligned structure whose definition we skip
here. A feasible solution consists of a subset St ™ V for each t œ {1, . . . , L}, such that, for
each v œ V , one has v œ Sr for some r œ Fv. The goal is to minimize

q
L

t=1
g(St), where

g(·) is a monotone submodular set function with g(ÿ) = 0. For this problem they give a
O(log logL) approximation, using a clever rounding algorithm for a convex optimization
problem involving the Lovász extension of g(·). Intuitively, in our DLA problem (defined in
Section 3.1) the time interval is replaced by the leaves (associated with some facility) of the
tree T̃ , and the time window of c œ C̃ by the set F̃c. Our time windows naturally induce a
laminar family, which is a special case of the left-aligned structure mentioned before. The
parameter logL in their construction is replaced by the depth D of T̃ in our case.

In the (Metric Uncapacitated) Facility Location problem (FL) we are given a set
of clients and a set of facilities in a metric space d, where each facility has an opening cost of .
One has to select a subset of facilities F Õ ™ F and assign each client c to the closest facility
F

Õ(c) in F
Õ so as to minimize

q
cœC

d(c, F Õ(c)) +
q

fœF Õ of . FL is a special case of both
addSFL and multSFL (and of SFL in the case of uniform opening costs). FL is among the
best-studied problems in the literature from the point of view of approximation algorithms
(see, e.g., [8, 30, 34]). It is known to be APX-hard [21] and the current best-known 1.488-
approximation algorithm [28] is a randomized combination of the greedy JMS algorithm [26]
with an LP-rounding algorithm from [6]. Lagrangian-multiplier preserving algorithms for FL
are at the heart of several approximation algorithms for fundamental clustering problems,
including k-Median [3, 7, 11,12,18,26,27,29] and k-Means [3, 11,20].

Various variants of FL were studied in the literature and for most of them (at least with
metric connection costs) a constant approximation was eventually discovered. A notable
example is the Capacitated Facility Location problem in which the number of clients
that can be served from a facility is restricted by a location-specific bound. A local-search-
based constant approximation for the latter problem is given in [37] (see also [4] for a more
recent LP-based result). SFL is one of the most natural generalizations of (metric) FL where
a constant approximation is still not known.

Grandoni, Gupta, Leonardi, Miettinen, Sankowski, and Singh [19], among other universal
stochastic problems, studied univFL in the independent activation case. However, they
compare the cost of their solution with EA≥fi[costA(opt(A))], where opt(A) is the optimal
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5:6 An O(log logn)-Approximation for Submodular Facility Location

facility location solution restricted to clients A (while we compare with EA≥fi[costA(opt)]).
For this setting they obtain a O(logn) approximation, which also holds for non-metric
connection costs.

Gupta, Pál, Ravi, and Sinha [22] consider a 2-stage stochastic version of FL. Here in a
first stage, one buys some facilities, then a subset of active clients is sampled from a given
distribution. Finally, one can buy some more facilities, however at an opening cost which
is increased by a multiplicative inflation factor ‡. For this setting they present a constant
approximation.

Universal stochastic problems have a natural online stochastic counterpart. For example,
in the Online Stochastic Facility Location problem clients are sampled one by one,
and when client c is sampled one has to connect c to an already open facility or open a
new facility f and connect c to f . Garg, Gupta, Leonardi and Sankowski [17] consider
this problem in the independent activation case, i.e. when the next client to be served is
sampled from a probability distribution fi : C æ RØ0. For this setting, they present an
O(1) approximation. Meyerson [31] studied a variant of the problem where an adversary
chooses the set of input clients, and then a random permutation of them is presented in
input (random order model).

We believe that it is plausible that SFL admits a constant approximation. In particular,
one might consider greedy algorithms. Gupta [23] considered a natural set-cover type
greedy algorithm for SFL. The same algorithm gives a 1.861-approximation when applied
to the classical Facility Location problem [26]. Gupta [23, Section 2.3] showed that
this algorithm produces an �(logn) approximate solutions for SFL. Hence our algorithm is
provably better than that one.

1.4 Preliminaries and Notation
We use log for the logarithm with base 2 and ln for the natural logarithm. Define X = C fiF ,
and N = |X| = |C fi F |. Given a metric d over X, we let dmin be the smallest non-zero
distance and dmax be the largest distance (that we assume to be positive w.l.o.g). We use
g(c) as a shortcut for g({c}).

We sometimes express a feasible solution to SFL in the form S = (Sf )fœF , where
S
f ™ C specifies the clients Ï

≠1(f) assigned to f . Notice that for each c œ C there is
precisely one f œ F with c œ S

f . We define a partial assignment as S = (Sf )fœF , where
S
f ™ C. We say that S covers the clients C

Õ = fifœFS
f ™ C. Notice that, for technical

reasons, in a partial assignment we allow S
f fl S

f
Õ ”= ÿ for two distinct f, f

Õ œ F (i.e. we
allow to simultaneously assign a client to more than one facility). The cost of a (partial)
assignment S of the above type is defined as cost(S) := conn(S)+open(S), where conn(S) :=q

fœF

q
cœSf d(c, f) is the connection cost of S and open(S) :=

q
fœF

g(Sf ) is the opening
cost of S. Given a (possibly infeasible) fractional solution x for (Conf-LP), we analogously
define cost(x) = conn(x) + open(x), where conn(x) =

q
cœC

q
fœF

q
R–c

d(c, f) · xf

R
, and

open(x) =
q

fœF

q
R™C

g(R) · xf

R
.

It is convenient to define the merge S = S1 + S2 of two partial assignments S1 and S2

naturally as follows: (1) for each facility f œ F , we initially set Sf := S
f

1
fiS

f

2
; (2) while there

exist two distinct facilities f and f
Õ with S

f fl S
f

Õ ”= ÿ, replace S
f

Õ with S
f

Õ \ Sf (intuitively
this second step guarantees that each client is assigned to no more than one facility). We
observe that merging two partial assignments cannot increase the total cost.

I Lemma 1.6. For any two partial assignments S1 and S2, cost(S1 + S2) Æ cost(S1) +
cost(S2).
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Proof. Let S = S1 + S2, and S
Õ be the intermediate value of S obtained by executing only

step (1) of the merge operation. One has conn(SÕ) = conn(S1) + conn(S2). Furthermore, by
the submodularity (hence subadditivity) of g(·), open(SÕ) Æ open(S1) + open(S2). Clearly
conn(S) Æ conn(SÕ), and the monotonicity of g(·) implies that open(S) Æ open(SÕ). The
claim follows. J

We will exploit the following fairly standard reductions (proofs in Appendix A), thanks
to which in the following it will be su�cient to obtain an O(log logN) approximation for
SFL. In order to distinguish between distinct instances J of the problem, we use costJ (Ï) to
denote the cost of Ï w.r.t. J and define similarly open

J
(Ï) etc.

I Lemma 1.7. There is a 3-approximate reduction from SFL to the special case where m = n.

I Lemma 1.8. For any constant Á > 0, There is a (1 + 4Á)-approximate reduction from SFL
to the special case where the metric d satisfies dmin = 2 and dmax Æ 2nN

Á
.

One of the key tools that we use is the notion of probabilistic tree embedding, which we
use to map the input metric into a metric on a hierarchically well-separated tree (HST) while
stretching the distances by a small enough factor. We recall that an HST is an edge weighted
rooted tree where all the leaves are at the same distance from the root r. Furthermore, on
every path from a leaf to r the edge weights are 1, 2, 4, . . . In particular, edges at the same
level have the same weight. We will use the following construction3 by Fakcharoenphol, Rao
and Talwar [14].

I Theorem 1.9 (FRT metric tree embedding [14]). For any finite metric space (M,d) with
dmin > 1, there exists a randomized polynomial-time algorithm returning an HST T such
that:
1. Every a œ M is mapped to some leaf map(a) of T (with elements at distance zero being

mapped to the same leaf);
2. Let dT (a, b) := d

T (map(a),map(b)) be the length of the path between the leaves map(a)
and map(b) of T . Then d

T (a, b) Ø d(a, b) and E
#
d
T (a, b)

$
Æ 8 log |M | · d(a, b);

3. T has depth O(log dmax).

For a given set C, let h : 2C æ R be a monotone submodular function with h(ÿ) = 0.
The Lovász extension ĥ : [0, 1]C æ R of h(·) is defined as

ĥ(y) := min
Ó ÿ

R™C

h(R)µR :
ÿ

R™C

ÿ

R–c

µR = yc ’c œ C,

ÿ

R™C

µR = 1, µ Ø 0
Ô
. (1)

The function ĥ(·) is convex. We remark that ĥ(y) can be alternatively defined as

ĥ(y) :=
n≠1ÿ

k=1

h ({c1, . . . , ck}) (yck ≠ yck+1) + h(C)ycn , (2)

where the components of y are sorted in decreasing order, i.e. yc1 Ø yc2 Ø · · · Ø ycn [16,
Section 6.3]. By the monotonicity of h(·), ĥ(·) is also non-decreasing in the sense that
ĥ(y) Ø ĥ(yÕ) if y Ø y

Õ.

3 We slightly and trivially extend their claim to consider nodes at distance 0.
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2 Reducing the Connection Cost

In this section, we show how to compute a random partial assignment S1 = (Sf

1
)fœF covering

a random subset of clients C1 := fifœFS
f

1
™ C with the following high-level properties: the

expected cost of S1 is “small enough” and (2) each client belongs to C1 with “large enough”
probability. In the next section, we will describe a di�erent partial assignment S2 = (Sf

2
)fœF ,

again of small enough cost, covering the remaining clients C2 := C \ C1. By merging these
two partial assignments we obtain a feasible solution for the input problem of small enough
total cost.

Let ẋ be an optimal solution to (Conf-LP) with at most poly(N) non-zero entries that
can be computed via Lemma 1.2. The basic idea behind the next lemma is fairly standard:
we sample partial assignments according to the distribution induced by ẋ for ln lnN times,
and merge them together.

I Lemma 2.1. In polynomial time one can compute a random partial assignment S1 covering
a random subset of clients C1 such that: (1) E [cost(S1)] Æ ln ln(N) · cost(ẋ) and (2) For
each c œ C, P[c œ C1] Ø 1 ≠ 1

lnN
.

Proof. For i œ {1, 2, . . . , ln lnN} and for every R ™ C, we define a partial assignment S(i, R)
by setting S

f (i, R) = R independently with probability ẋ
f

R
and S

f (i, R) = ÿ otherwise. Let
S1 =

q
ln lnN

i=1

q
R™C

S(i, R) be obtained by merging all these solutions, and let C1 = fifœFS
f

1
.

Observe that

P[c /œ C1] =
Ÿ

fœF

Ÿ

R–c

(1 ≠ ẋ
f

R
)ln lnN Æ e

≠ ln lnN

q
fœF

q
R–c

ẋ
f
R Æ e

≠ ln lnN = 1
lnN .

Furthermore, by Lemma 1.6, E[cost(S1)] is upper-bounded by
ln lnNÿ

i=1

ÿ

R™C

E[cost(S(i, R))] = ln lnN ·
ÿ

fœF,R™C

ẋ
f
R ·

3
g(R) +

ÿ

cœR

d(c, f)
4

= ln lnN · cost(ẋ). J

Consider the partial assignment S1 covering the random subset of clients C1 as in the previous
lemma. Let C2 := C \ C2 be the remaining (uncovered) clients. Let also ẍ be ẋ restricted to
C2, i.e. ẍf

R
=

q
RÕ™C1

ẋ
f

RfiRÕ for R ™ C2 and f œ F . The following lemma upper bounds the
expected opening and connection cost of ẍ.

I Lemma 2.2. One has open(ẍ) Æ open(ẋ) and E[conn(ẍ)] Æ 1

lnN
conn(ẋ).

Proof. We have open(ẍ) Æ open(ẋ) by the monotonicity of g(·). For the connection cost,
notice that the probability of a client c being in C2 is at most 1/ lnN , and only in that case
one has to pay the associated connection cost. Thus by linearity of expectation, the expected
connection cost of ẍ is at most conn(ẋ)/ lnN . The claim follows. J

Notice that ẍ is a feasible fractional solution for (Conf-LP) limited to C2. In the following
section, we show how to randomly round ẍ to a partial assignment S2 which covers C2 at
expected cost O(log logN) · cost(ẍ). It will then follow that S1+S2 is a feasible O(log logN)-
approximate solution to the input SFL instance.

3 Approximating SFL on an HST

Given an SFL instance and a tree embedding of (C fiF, d) into an HST T as in Theorem 1.9,
we say that (C fi F, d

T
, g(·),map(·)) is the corresponding HST-type instance. We remark

that we allow multiple clients C(v) and facilities F (v) to be colocated at each leaf v of T .
In this section we will describe an O(log logN)-approximate LP-rounding algorithm for the
considered instances w.r.t. (Conf-LP).
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I Lemma 3.1. Given a feasible fractional solution x to (Conf-LP) for an HST-type SFL
instance, in polynomial time one can compute a feasible (integral) solution for the same
instance with cost at most O(log logN) · cost(x).

Theorem 1.1 directly follows.

Proof of Theorem 1.1. By Lemma 1.7 it is su�cient to describe an O(log logN)-approxima-
tion. Furthermore by Lemma 1.8, we can assume that dmin = 2 and dmax Æ 2nN

Á
.

By applying the construction of Section 2 we compute a random partial assignment S1 =
(Sf

1
)fœF covering the clients C1 = fifœFS

f

1
with expected cost at most O(log logN) · cost(ẋ),

where ẋ is an optimal solution to (Conf-LP). Furthermore, by Lemma 2.2, we obtain a feasible
solution ẍ to (Conf-LP) restricted to clients C2 := C \ C1 which satisfies open(ẍ) Æ open(ẋ)
and E[conn(ẍ)] Æ 1

lnN
conn(ẋ). By applying the probabilistic tree embedding from Theorem

1.9 to the metric (C2 fi F, d), we obtain an HST-type SFL instance (C2 fi F, d
T
, g(·),map(·))

where the tree has depth D = O(log dmax) = O(logN). Observe that ẍ is a feasible fractional
solution for (Conf-LP) restricted to C2 on the HST-type instance. Furthermore, let connT (ẍ)
denote the connection cost of ẍ w.r.t. the HST-type instance, and define similarly open

T
(ẍ)

and costT (ẍ). Then one has

E[costT (ẍ)] = open(ẍ) + E[connT (ẍ)] Æ open(ẋ) +O(logN) · E[conn(ẍ)] Æ O(cost(ẋ)).

By applying the LP-rounding algorithm from Lemma 3.1 to ẍ one obtains a partial assignment
(Sf

2
)fœF covering the clients C2 of cost at most O(log logN) cost(ẋ). The same solution

has no larger cost in the original problem (on a non-tree metric). Altogether S1 + S2 is a
feasible solution to the input SFL problem of expected cost at most O(log logN) · cost(ẋ) Æ
O(log logN) · cost(opt). J

In the rest of this section, we prove Lemma 3.1. To this aim, we will first present a
reduction to a di�erent problem that we call the Descendent-Leaf Assignment problem
(DLA) (see Section 3.1). Then, we will present a good-enough approximation algorithm for
DLA (see Section 3.2).

3.1 A Reduction to DLA
In the Descendent-Leaf Assignment problem (DLA) we are given a rooted tree T̃ with
depth D, a set of facilities F̃ and a set of clients C̃. Each x œ F̃ fi C̃ is mapped to some node
v(x) of T̃ , with the restriction that facilities are mapped to leaves of T̃ . By F̃c we denote the
facilities which are mapped to nodes that are descendants of v(c) in T (v(c) included if it is a
leaf). A feasible solution consists of an assignment Ï̃ : C̃ æ F̃ of each c œ C̃ to some f œ F̃c.
The cost of this solution is

q
fœF̃

h(Ï̃≠1(f)), where h(·) is a monotone submodular function
over C̃ with h(ÿ) = 0. Similarly to SFL, we also express a feasible solution as S = (Sf )

fœF̃
,

where S
f = Ï̃

≠1(f), and let costDLA(S) =
q

fœF̃
h(Sf ) be the associated cost. We define a

convex-programming (CP) relaxation for DLA as follows:

min
ÿ

fœF̃

ĥ(zf ) (DLA-CP)

s.t.
ÿ

fœF̃c

z
f

c
= 1 ’c œ C̃;

z
f

c
Ø 0 ’c œ C̃, ’f œ F̃ .
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In a 0-1 integral solution we interpret z
f

c
= 1 as c being assigned to f . Recall that ĥ(·)

is convex, which makes (DLA-CP) a convex program. We also notice that each feasible
assignment S = (Sf )

fœF̃
corresponds to a feasible integral solution z = (zf )

fœF̃
to (DLA-CP)

with costDLA(S) = costDLA(z) :=
q

fœF̃
ĥ(zf ) and vice versa. Hence indeed (DLA-CP) is a

CP-relaxation of DLA.
The next lemma provides the claimed reduction from SFL on HST-type instances to

DLA.

I Lemma 3.2. Given a polynomial-time O(logD)-approximate CP-rounding algorithm for
DLA w.r.t. (DLA-CP), where D is the depth of the tree, there is polynomial-time O(log logN)-
approximate LP-rounding algorithm for SFL on HST-type instances with tree-depth O(logN)
w.r.t. (Conf-LP).

Proof. Let (C fi F, d
T
, g(·),map(·)) be the considered HST-type instance of SFL over an

HST T , and x be an input feasible fractional solution to (Conf-LP) for this instance.
We build an instance (C̃fiF̃ , T̃ , h(·), v(·)) of DLA as follows. First, let yf

c
:=

q
R™C:cœR

x
f

R
:

intuitively this is the fractional amount by which c is assigned to f in x. We set h(·) = g(·)
and T̃ = T . Notice that D = O(logN). We set F̃ = F and v(f) = map(f) for each f œ F̃ .
We associate to each c œ C a new client c̃ œ C̃. Let Tv be the subtree rooted at v (containing
v and all its descendants) and Fv be the facilities located in the leaves of Tv according to
map(·). We map c̃ into the lowest ancestor v(c̃) of map(c) such that

q
fœFv(c̃)

y
f

c
Ø 1/2.

Notice that v(c̃) = map(c) is possible (in which case there is at least one facility f colocated
with c in T ).

We next define a feasible fractional solution z for (DLA-CP) w.r.t this DLA instance as
follows. For each c̃ œ C̃ we set zf

c̃
= y

f

c
/(

q
f ÕœFv(c̃)

y
f

Õ

c
) if f œ Fv(c̃), and otherwise z

f

c̃
= 0.

Let Ï̃ be a solution to the DLA instance obtained with the CP-rounding algorithm in the
claim w.r.t. z. We obtain a feasible solution Ï for the input instance by simply setting
Ï(c) = Ï̃(c̃).

It remains to analyze the cost of Ï. Define z̄
f

c̃
= y

f

c
/(

q
f ÕœFv(c̃)

y
f

Õ

c
) for all f œ F .

Notice that z̄ Ø z. By the definition of ĥ(·) and its monotonicity, ĥ(zf ) Æ ĥ(z̄f ) =
ĥ(yf/(

q
f ÕœFv(c̃)

y
f

Õ

c
)) Æ 2ĥ(yf ) = 2ĝ(yf ). Notice that by plugging in x

f

R
for µR in the set in

(1) and by how y is defined w.r.t. x above, we get ĝ(yf ) Æ
q

R™C
g(R) · xf

R
and in particularq

fœF
ĝ(yf ) Æ open(x). Thus, we have costDLA(z) Æ 2 open(x) and

open(Ï) = costDLA(Ï̃) = O(logD) · costDLA(z) Æ O(log logN) · 2 open(x). (3)

Consider next the connection cost of a given c œ C. If v(c̃) = map(c), i.e v(c̃) has no
child, then d

T (c,Ï(c)) = 0 Æ
q

fœF
d
T (c, f)yf

c
. Otherwise, let w(c) be the child of v(c̃) along

the v(c̃)-map(c) path in T . Let � be the weight of the edge between v(c̃) and w(c). Observe
that the distance between v(c̃) and the leaves in Tv(c̃) is exactly 2� ≠ 1. Furthermore,
both c and Ï(c) are located in the leaves of Tv(c̃) in the HST mapping map(·). Hence
d
T (c,Ï(c)) Æ 2(2� ≠ 1).
By the definition of v(c̃), it must be the case that

q
fœFw(c)

y
f

c
<

1

2
, and consequently

q
fœF\Fw(c)

y
f

c
Ø 1

2
. For each f œ F \ Fw(c), the map(f)-map(c) path in T has length at

least 2(2� ≠ 1). Thus

ÿ

fœF

d
T (c, f)yf

c
Ø

ÿ

fœF\Fw(c)

d
T (c, f)yf

c
Ø 1

22(2� ≠ 1).
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Therefore, the connection cost of c in Ï is at most 2 times its connection cost in x. We
conclude that conn(Ï) Æ 2 conn(x). Altogether we have cost(Ï) Æ 2 conn(x) +O(log logN) ·
2 open(x) Æ O(log logN) · cost(x). J

3.2 An Approximation Algorithm for DLA
In this section, we present a CP-rounding algorithm for DLA. Lemma 3.1 follows by chaining
Lemmas 3.2 and 3.3.

I Lemma 3.3. Given a feasible fractional solution z to (DLA-CP) on an instance of DLA
with tree-depth D, in polynomial time one can compute a feasible (integral) solution to the
same instance of cost at most O(logD) · costDLA(z).

The CP-rounding algorithm from Lemma 3.3 is essentially the algorithm by Bosman and
Olver [5] with minor modifications that we introduced to simplify our correctness analysis.
Also, the analysis of its approximation ratio is essentially identical to [5], but we reproduce it
for the sake of completeness. In particular, we will exploit the following definitions and lemma
from [5]. Let h : 2C̃ æ RØ0 be a monotone submodular function with h(ÿ) = 0. For a given
f œ F̃ and a (possibly infeasible) solution z to (DLA-CP), let L◊(zf ) := {c œ C̃ : zf

c
Ø ◊} be

the set of clients that are served fractionally by at least some value ◊ by f . Let also z
f |◊

be obtained from z
f by rounding down to ◊ the values larger than ◊, i.e. zf |◊c := min{zf

c
, ◊}

for each c œ C̃. Given ◊ œ [0, 1] and z
f œ [0, 1]C̃ , we say that the set L◊(zf ) is –-supported

(w.r.t. h) if ĥ(zf ) ≠ ĥ(zf |◊) Ø –h(L◊(zf )).

I Lemma 3.4 (Lemma 5.2 from [5]). Given z
f œ [0, 1]C̃ and – œ (0, 1], at least one of the

following holds: (1) there exists ◊ œ [0, 1], which can be computed in polynomial time, such
that L◊(zf ) is –

32
-supported; (2) 21/–

h(L1(zf )) Æ ĥ(zf ).

Our algorithm is Algorithm 1 in the figure. Recall that T̃v is the subtree rooted at node v,
where T̃v includes v and all its descendants. Furthermore, F̃v is the set of facilities mapped
to the leaves of T̃v. As usual the level of a node is its hop-distance from the root.

Algorithm 1 An algorithm used to prove Lemma 3.3.

Input: Feasible solution z to (DLA-CP)
1: S

f Ω ÿ for all f œ F

2: for i = 0, . . . , D do
3: For every node v at level D ≠ i, choose an arbitrary fv œ F̃v and set z

fv Ω
q

f ÕœF̃v
z
f Õ

and
z
f Õ

Ω 0 for all f Õ œ F̃v \ {fv}
4: if there exists ◊ œ [0, 1] such that L◊(zfv ) is 1

32 log(D+1) -supported then
5: For an arbitrary such ◊, set Sfv Ω S

fv fi L◊(zfv ) and z
fv
c Ω 0 for all c œ L◊(zfv )

6: else
7: Set Sfv Ω S

fv fi L1(zfv ) and z
fv
c Ω 0 for all c œ L1(zfv )

8: For every c œ C̃ choose f œ F̃c such that c œ S
f and set Sf Õ

Ω S
f Õ

\ {c} for all f Õ œ F̃ \ {f}
9: return (Sf )fœF̃

Clearly Algorithm 1 runs in polynomial time. The next two lemmas analyze the correctness
and the approximation ratio of Algorithm 1, hence proving Lemma 3.3.

I Lemma 3.5. Algorithm 1 computes a feasible DLA solution.

Proof. Consider a given client c œ C̃ such that v(c) is at level D ≠ i in T̃ . Let us show that
the following invariant holds at the beginning of each iteration j Æ i: either

q
fœF̃c

z
f

c
= 1

or c œ S
f for some f œ F̃c. The invariant trivially holds for j = 0. Assume that it holds

ICALP 2024
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up to the beginning of iteration j < i, and consider what happens during that iteration.
Notice that for every node v at level D ≠ j > D ≠ i, we either have that every f œ F̃v is a
descendant of v(c) or every f œ F̃v is not in F̃c. Therefore, in Step (3) the value of

q
fœF̃c

z
f

c

does not change. In more detail, it remains 1 by inductive hypothesis. The same value can
decrease in Steps (5) or (7), however, this can only happen if c is added to S

fv for some
fv œ F̃c. Thus the invariant holds at the end of the j-th iteration, hence at the beginning of
the next iteration j + 1.

Due to the invariant, during the iteration i, when one considers the node v = v(c), one
has that either c already belongs to some S

f with f œ F̃c, or
q

fœF̃c
z
f

c
= 1. In the latter

case, after Step (3), zfv
c

= 1 where fv œ F̃c, so c belongs to every set L◊(zfv ) with ◊ œ [0, 1].
As a consequence, c is added to S

fv either in Step (5) or in Step (7).
It might happen that a client c is assigned also to a facility not in F̃c. Step (8) guarantees

that the final assignment of c is correct and unique. J

I Lemma 3.6. Algorithm 1 outputs a solution of cost at most O(logD) · costDLA(z).

Proof. Recall that costDLA(z) =
q

fœF̃
ĥ(zf ). We start by observing that the value of

costDLA(z) can not increase over time when z changes during the execution of the algorithm.
Indeed, Steps (5) and (7) can only decrease the entries of z, hence costDLA(z) by the
monotonicity of ĥ(·). The only other changes of z happen in Step (3). Let us interpret
this step as iteratively decreasing to zero z

f
Õ for each f

Õ œ F̃v \ {fv} and increasing z
fv by

the same amount. The decrease of the cost at each step is ĥ(zfv) + ĥ(zf Õ) ≠ ĥ(zfv + z
f

Õ).
By the alternative definition of ĥ(·) as in (2) and its convexity, one has ĥ(zfv + z

f
Õ) =

2ĥ
1

z
fv+z

fÕ

2

2
Æ 2

1
1

2
ĥ(zfv ) + 1

2
ĥ(zf Õ)

2
= ĥ(zfv) + ĥ(zf Õ). Hence the decrease of the cost is

non-negative as required.
For each facility f and level i, let �◊

i
(f) be the clients added to S

f in Step (5) during
iteration i (possibly �◊

i
(f) = ÿ). We define similarly �1

i
(f) w.r.t. Step (7). Notice that, by

the submodularity (hence subadditivity) of h(·), the increase of the cost of the solution due
to adding � to S

f is at most h(�). Therefore we can upper bound the cost of the final
solution S = (Sf )

fœF̃
by

costDLA(S) :=
ÿ

fœF̃

h(Sf ) Æ
Dÿ

i=0

ÿ

fœF̃

1
h(�◊

i
(f)) + h(�1

i
(f))

2
.

Let us upper bound the right-hand side of the above inequality. Let z(i) denote the value of
z at the beginning of iteration i. From the previous observation, we have ĥ(z(i)) Æ ĥ(z) for
every i. By Lemma 3.4 with – = 1

log(D+1)
, for any �1

i
(f) one has h(�1

i
(f)) Æ 1

D+1
ĥ(zf (i)).

Thus

Dÿ

i=0

ÿ

fœF̃

h
!
�1

i
(f)

"
Æ

Dÿ

i=0

ÿ

fœF̃

1
D + 1 ĥ

!
z
f (i)

"
Æ

Dÿ

i=0

1
D + 1 costDLA(z(i)) Æ costDLA(z). (4)

Let z(D + 1) be the value of z at the end of the D-th iteration, hence in particular
costDLA(z(D + 1)) Ø 0. Notice that z = z(0). We can lower bound costDLA(z) by

costDLA(z) Ø
Dÿ

i=0

1
costDLA(z(i)) ≠ costDLA(z(i+ 1))

2
.
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Let z1(i) be the value of z obtained from z(i) after applying Step (3) for all nodes of level
D ≠ i. Let also z2(i) be the value obtained from z1(i) if, for all the facilities F

Õ
i
where

Step (5) is applied during iteration i, instead of setting z
f

c
= 0 one sets z

f

c
= ◊ for the

corresponding value of ◊. For the facilities not in F
Õ
i
we simply let zf

2
(i) = z

f

1
(i). Observe

that z(i+ 1) Æ z2(i) Æ z1(i) Æ z(i). One has

costDLA(z(i)) ≠ costDLA(z(i+ 1)) Ø costDLA(z1(i)) ≠ costDLA(z(i+ 1))
Ø costDLA(z1(i)) ≠ costDLA(z2(i))

=
ÿ

fœF̃

ĥ

1
z
f
1 (i)

2
≠ ĥ

1
z
f
2 (i)

2
=

ÿ

fœF Õ
i

ĥ

1
z
f
1 (i)

2
≠ ĥ

1
z
f
2 (i)

2

Ø

q
fœF Õ

i
h
!
�◊

i (f)
"

32 log(D + 1) =
q

fœF̃
h
!
�◊

i (f)
"

32 log(D + 1) .

In the first two inequalities above we used the monotonicity of ĥ(·), while in the last inequality
the definition of –-supported. Altogether

Dÿ

i=0

ÿ

fœF̃

h

1
�◊

i
(f)

2
Æ 32 log(D + 1) ·

Dÿ

i=0

1
costDLA(z(i)) ≠ costDLA(z(i+ 1))

2

Æ O(logD) · costDLA(z). (5)

By the monotonicity of h(·), Step (8) cannot increase the cost of the solution, hence the
claim. J

4 Universal Stochastic Facility Location

In this section we sketch our approximation algorithm for univFL. We first present a weaker
approximation factor O(log logN + log log dmax

dmin
). Later we will show how to refine it.

Define g(R) := PA≥fi[R fl A ”= ÿ]. We observe that this function is monotone submodular
and g(ÿ) = 0. Recall that g(c) = g({c}) for every c œ C. W.l.o.g. we can assume g(c) > 0
since otherwise we can discard c. We can define the objective function of univFL for a given
assignment Ï : C æ F as

cost(Ï) = conn(Ï) + open(Ï) =
ÿ

cœC

d(c,Ï(c)) · g(c) +
ÿ

fœF

wf · g(Ï≠1(f)).

Notice that only the connection cost changes w.r.t. multSFL. In more detail, the connection
cost of each client c is scaled by the factor g(c).

We can similarly define a configuration LP for univFL, and solve it by the same arguments
as in Lemma 1.2. We next use an analogous notation as for SFL. Let ẋ be an optimal
solution to this LP with poly(N) many non-zero variables. We can apply the first stage of
our algorithm for SFL (described in Section 2) with essentially no changes. This will lead
to a partial assignment S1 of expected cost E[cost(S1)] Æ ln lnN · cost(ẋ) and serving the
clients C1, where P[c /œ C1] Æ 1

lnN
. Mapping the metric over an HST T and considering the

restriction ẍ of ẋ to C2 := C \ C1, we obtain that E[costHST (ẍ)] = O(cost(ẋ)). A reduction
similar to the one in Lemma 3.2 works also in this case (since the scaling of the fractional
solution is done on a per-client base). However in this case D = O(log dmax

dmin
) (since we did

not reduce the ratio dmax
dmin

in a preprocessing step). Hence we can apply the result from
Lemma 3.3 to obtain an assignment covering C2 of expected cost O(log log dmax

dmin
) · cost(ẋ).

This concludes the sketch of the O(log logN + log log dmax
dmin

) approximation.
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We next improve this bound via a preprocessing step. Recall that 0 < fimin :=
mincœC{g(c)}. We first scale the ratio dmax/dmin. Let us guess4 the largest distance
L = maxcœC{d(c, opt(c))} in some optimal (universal) solution opt. Notice that cost(opt) Ø
fiminL. We use essentially the same arguments as in Lemma 1.8, we can enforce that
dmax Æ NL and dmin Ø Á

n
fiminL. Hence we obtain dmax

dmin
Æ nN

Áfimin
.

Now let us reduce the number of facilities m to O(n+ log 1

fimin
) (hence N as well). Here

we use essentially the same argument as in the proof of Lemma B.1 (with pf = 0). In more
detail, we can assume that m Æ 2n. Indeed, otherwise we can reduce the input instance
to a Weighted Set Cover instance (that we can solve exactly in polynomial time) in
the same way as in the mentioned lemma, with the di�erence that now, for R ”= ÿ, we set
ŸR = minfœF {wf · g(R) +

q
cœR

d(c, f) · g(c)}. By the rest of the construction in the same
lemma, we can reduce (with a constant loss in the approximation factor) our instance to one
where there are O(log dmax

dmin
) = O(log n2

n

Áfimin
) = O(n+ log 1

fimin
) facilities per client. Altogether

we reduce N to N
Õ = O(n(n+ log 1

fimin
)). Now we can apply again the above scaling trick

over the distances (with N replaced by N
Õ) to obtain distances dÕ which satisfy:

d
Õ
max

dÕ
min

Æ nN
Õ

Áfimin

= O

3
n
3 + n

2 log 1

fimin

fimin

4
.

This leads to the approximation factor

O

3
log log d

Õ
max

dÕ
min

+ log logN Õ
4

= O

3
log log n

fimin

4
.
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cœC

–c +
ÿ

fœF

—f :
ÿ

cœR

–c + —f Æ g(R) +
ÿ

cœR

d(c, f), ’R ™ C, ’f œ F

Ô
.

(Conf-DLP)

Notice that for fixed – and —, the functions gf (R) := g(R) +
q

cœR
d(c, f) ≠

q
cœR

–c ≠ —f
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that |F Õ| = n. Finally we remove F and consider the metric d
Õ over C fi F

Õ induced by the
distances over the resulting graph. Let I Õ = (C,F Õ

, d
Õ
, g(·)) be the obtained instance of SFL.

Given a solution Ï
Õ for I

Õ, we obtain a solution Ï for I by simply assigning to f(c) each
client cÕ assigned to f

Õ(c) in Ï
Õ.

Let us analyze the approximation factor introduced by this reduction. We first observe
that costI(Ï) Æ costIÕ(ÏÕ). Indeed, open

I
(Ï) = open

IÕ(ÏÕ). Furthermore, for each each
client c

Õ assigned to f
Õ(c) by Ï

Õ, the associated connection cost w.r.t. I is d(cÕ
, f(c)) Æ

d(cÕ
, c) + d(c, f(c)) = d

Õ(cÕ
, f

Õ(c)). Hence connI(Ï) Æ connIÕ(ÏÕ).
Next consider an optimal solution opt for I. For each facility f with opt≠1(f) ”= ÿ, let

c œ opt≠1(f) be the client closest to f . We define a solution optÕ for I Õ by assigning all the
clients in opt≠1(f) to f

Õ(c). Again, open
I
(Ï) = open

IÕ(ÏÕ). For each client cÕ assigned to f

in opt, its connection cost in I
Õ is

d
Õ(cÕ

, f
Õ(c)) = d(c, cÕ) + d(c, f(c)) Æ d(cÕ

, f) + d(c, f) + d(c, f(c)) Æ d(cÕ
, f) + 2d(c, f) Æ 3d(cÕ

, f).

Hence connIÕ(optÕ) Æ 3 connI(opt). The claim follows. J

Proof of Lemma 1.8. Let us guess the value L = maxcœC d(c, opt(c)) for some optimal
solution opt. W.l.o.g. assume L > 0, otherwise the problem is trivial. Consider the complete
weighted graph on nodes C fi F with weights induced by d. Remove the edges of weight
larger than L. We next compute a feasible solution in each connected component of the
resulting graph separately. Notice that this part of the reduction is approximation preserving
since no client can be assigned to a facility in a di�erent connected component in opt.

Let C
Õ and F

Õ be the clients and facilities, resp., in one such connected component
G

Õ, X
Õ = C

Õ fi F
Õ, and d

Õ be the metric induced by the distances in G
Õ. Consider the

corresponding SFL instance I
Õ = (C Õ

, F
Õ
, d

Õ
, g(·)). Notice that in each such instance I

Õ one
has d

Õ
max

Æ NL. We next change the location of elements of X Õ as follows. We consider
the ball B(x) := {y œ X

Õ : dÕ(x, y) Æ Á

2n
L} of radius Á

2n
L around each x œ X

Õ. Let I
be a maximal (independent) set of such balls so that, if B(x), B(y) œ I for x ”= y, then
B(x)flB(y) = ÿ. For each y with B(y) /œ I, we consider any B(x) œ I with B(x)flB(y) ”= ÿ
(which must exist since I is maximal) and colocate y with x. Let I ÕÕ = (C Õ

, F
Õ
, d

ÕÕ
, g(·)) be

the resulting instance of SFL. Observe that dÕÕ
max

Æ NL and d
ÕÕ
min

Ø Á

n
L.

Let Ĩ be the union of all the instances I
ÕÕ, and d̃ be the associated distances (where

inter-component distances can be considered to be +Œ). Given a solution Ï for Ĩ (obtained
by the union of all the solutions obtained for each instance I

ÕÕ), we return exactly the same
solution Ï for I.

Let us analyze the approximation factor. Notice that open
I
(Ï) = open

Ĩ
(Ï). Furthermore,

for each client c, d(c,Ï(c)) Æ d̃(c,Ï(c)) + 2Á

n
L, where in the latter term we consider the fact

that each client and facility is moved at most at distance Á

n
L from the original location.

Hence connI(Ï) Æ conn
Ĩ
(Ï) + 2ÁL. Given an optimum solution opt for I, by a symmetric

argument one has cost
Ĩ
(opt) Æ costI(opt) + 2ÁL Æ (1 + 2Á) costI(opt), where we used the

fact that costI(opt) Ø L. Altogether an – Ø 1 approximation algorithm for each instance I
ÕÕ

implies an –(1 + 2Á) + 2Á Æ –(1 + 4Á) approximation for I.
Finally, we scale the distance d

ÕÕ and g(·) by the same factor 2n

ÁL
so that d

ÕÕ
min

= 2 and
d

ÕÕ
max

Æ 2nN

Á
. Clearly this final scaling is approximation preserving. J
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B Generalizations of SFL

In this section we discuss some generalizations of SFL.

B.1 Reduction of the Number of Facilities
In this section we consider the generalization of SFL, next called Affine SFL, where the
opening cost of each facility f with assigned clients R ”= ÿ is gf (R) := pf + wf · g(R),
where pf , wf Ø 0 are input values. Notice that this generalizes SFL with Additive

(resp., Multiplicative) Opening Costs. We also observe that each gf (·) is non-negative
monotone submodular.

We show how to reduce to the case where m = poly(n) (hence N = poly(n)) while loosing
a constant factor in the approximation. We will use this reduction in the following sections
to convert an O(log logN) approximation into an O(log logn) one.

I Lemma B.1. For any constant Á > 0, there is a (3 + 37Á)-approximate reduction from
Affine SFL to the special case where the number of facilities is OÁ(n3).

Proof. First of all, consider the case m Ø 2n. In this case we can solve the problem optimally
in polynomial time via the following reduction to the Weighted Set Cover problem.
For an instance I = (C,F, d, g(·)) of Affine SFL, consider the instance J = (U ,R,Ÿ) of
Weighted Set Cover with universe U = C, set collection R = 2C and weight function Ÿ

given as ŸR = 0 if R = ÿ and ŸR = minfœF (pf +wf · g(R) +
q

cœR
d(c, f)) for R œ 2C \ {ÿ}

(which can be computed in poly(N) time). Notice that 2|U| = 2n which is polynomially
bounded in the input size of I. The optimal solution to J induces a solution of exactly the
same cost to I and vice versa. There is a simple dynamic program which solves Weighted

Set Cover in time O(2|U | · |U | · |R|) [15, Lemma 2]. Applying this algorithm to J , one
obtains an optimal solution for the input instance I in time O(2n · poly(n,m)), which is
polynomial in m.

Hence it remains to consider the case m Æ 2n. We show how to reduce the number of
facilities to OÁ(n2 log(nN)) = OÁ(n3), while losing the approximation factor in the claim.
By exactly the same reduction as in Lemma 1.8, we can assume that in the input metric d

the maximum distance is 0 < dmax Æ NL and the minimum non-zero distance is dmin Ø Á

n
L

while loosing a factor (1 + 4Á) in the approximation. Here L is some value that lower bounds
the cost of a given optimum solution opt. Let us guess the largest value P of pf over the
facilities with at least one assigned client in opt. We discard all the facilities f with pf > P .
Now, assuming P > 0, we replace each pf with the value p

Õ
f
:= Ápf ·n

ÁP
Ë · ÁP

n
(pÕ

f
= pf for

P = 0). Notice that this can only increase the cost of a given solution Ï, however this
increase is upper bounded by n · ÁP

n
Æ Á · costI(opt), where I is the input instance of the

problem. Hence this reduction preserves the approximation guarantee up to a factor 1 + Á.
After this reduction, the set P Õ of di�erent possible values of pÕ

f
has cardinality at most n

Á
.

Let I = (C,F, d, pÕ
, w, g(·)) be the instance of Affine SFL obtained after the above two

reductions. Consider the complete edge-weighted graph on nodes CfiF , with weights induced
by d. We modify this graph as follows. For each client c and value p

Õ œ P Õ, we consider the
set of facilities FpÕ with p

Õ
f
= p

Õ. Let FpÕ(c, i), i Ø 0, be the facilities in FpÕ whose distances
from c are in the range [ Á

n
L · (1 + Á)i, Á

n
L · (1 + Á)i+1). We also define the set FpÕ(c,≠1)

of the facilities in FpÕ at distance 0 from c. Notice that there are at most 1 + Álog1+Á

nN

Á
Ë

sets FpÕ(c, i) which are non-empty. For each FpÕ(c, i) ”= ÿ, we choose a facility f = fpÕ(c, i)
with minimum value of wf . We create a dummy facility f

Õ = f
Õ
pÕ(c, i) with opening cost

g
Õ
f Õ(C Õ) = p

Õ +wf · g(C Õ) for C Õ ”= ÿ, and add a dummy edge {c, f Õ} of weight d(c, f). Let F Õ
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be the set of dummy facilities. Notice that, considering also the previous reduction, one has
|F Õ| Æ n · n

Á
· (1+ Álog1+Á

nN

Á
Ë) = O(n2 log(nN)). We remove the original facilities F , and let

d
Õ be the metric given by the distances in the resulting graph G

Õ on nodes C fi F
Õ. We solve

the problem on the resulting instance I
Õ = (C,F Õ

, d
Õ
, p

Õ
, w, g(·)). Given a solution Ï

Õ for I Õ,
we obtain a solution Ï for I naturally as follows: if Ï

Õ(cÕ) = f
Õ
pÕ(c, i), we assign c

Õ to fpÕ(c, i).
Let us analyze the approximation factor of this final reduction. The opening costs of

Ï and Ï
Õ are identical. Furthermore, for each client c

Õ assigned to f = fpÕ(c, i) in Ï, and
for f Õ = f

Õ
pÕ(c, i), one has d(cÕ

, f) Æ d(cÕ
, c) + d(c, f) = d

Õ(cÕ
, c) + d

Õ(c, f Õ) = d
Õ(cÕ

, f
Õ). Hence

costI(Ï) = costIÕ(ÏÕ).
Next consider an optimum solution opt for I. We construct a feasible solution optÕ for I Õ as

follows. Let Sf ”= ÿ be the clients assigned to some f œ F in opt. Recall that the opening cost
of f is gÕ

f
(Sf ) = p

Õ
f
+wf ·g(Sf ). Let c œ S

f be the client at minimum distance d(c, f) from f .
Define i as ≠1 if d(c, f) = 0, and otherwise, i such that d(c, f) œ [ Á

n
L · (1+Á)i, Á

n
L · (1+Á)i+1).

In optÕ we reassign all the clients in S
f to f

Õ = f
Õ
p

Õ
f
(c, i). The opening cost associated with

f
Õ in optÕ is no larger than the corresponding cost in opt since

p
Õ
f Õ + wf Õ · g(Sf

Õ
) = p

Õ
f
+ wf Õ · g(Sf ) Æ p

Õ
f
+ wf · g(Sf ).

In the last inequality above we used the fact that f œ Fp
Õ
f
(c, i) and fpÕ

f
(c, i) is the facility

in the latter set with minimum wf value. The connection cost of each c
Õ œ S

f w.r.t. optÕ

satisfies

d
Õ(cÕ

, f
Õ) = d

Õ(cÕ
, c) + d

Õ(c, f Õ) = d(c, cÕ) + d(c, fpÕ
f
(c, i))

Æ d(cÕ
, f) + d(c, f) + (1 + Á)d(c, f) Æ (3 + Á)d(cÕ

, f).

Altogether, costIÕ(optÕ) Æ (3 + Á) costI(opt). Considering also the first two reductions,
we obtain a global reduction which preserves the approximation guarantee up to a factor
(1 + 4Á)(1 + Á)(3 + Á) Æ 3 + 37Á. J

B.2 SFL with Multiplicative Opening Costs
In this section we sketch the proof of Theorem 1.3. By Lemma B.1, it is su�cient to provide
an O(log logN) approximation.

For f œ F and R ™ C let gf (R) := wf · g(R). Note that gf (·) is submodular, monotone
and has g(ÿ) = 0 for every f œ F . For any (partial) assignment S = (Sf ) and any vector
(xf

R
)fœF

R™C
let also openÕ(S) :=

q
fœF

gf (Sf ), resp. openÕ(x) :=
q

fœF

q
R™C

gf (R) · xf

R
and

costÕ(S) := openÕ(S) + conn(S) resp. costÕ(x) := openÕ(x) + conn(x).
By these definitions, the LP-relaxation of the multSFL is given by the constraints from

(Conf-LP) and the objective costÕ(·). In particular, the LP-relaxation of multSFL can be
solved with the approach from Lemma 1.2. We keep the merging rule defined in Section 1.4
and the sampling procedure from Section 2. It is easy to verify that the vector ẍ resulting
from this procedure fulfills Lemma 2.2 w.r.t. openÕ instead of open.

We reduce multSFL to a similar problem to DLA which we call DLAú which is the
same problem as DLA and with the same input variables as DLA, additional inputs w̃f Ø 0
for every f œ F̃ and cost costú

DLA
(Ï) =

q
fœF̃

hf (Ï≠1(f)) where hf (·) := w̃fh(·) for every
f œ F̃ . Its convex relaxation is given by the constraints in (DLA-CP) with the cost function
costú

DLA
(z) :=

q
fœF̃

ĥf (zf ) (where ĥf is the Lovász extension of hf ). The reduction described
in Lemma 3.2 can be reproduced to reduce multSFL to DLAú. We define the input values
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of DLAú w.r.t. multSFL in the same way we define the input values of DLA w.r.t. SFL,
with additionally w̃f = wf for every f œ F . Notice that hf (·) = w̃fh(·) = gf (·) = wfg(·).
Every reasoning made in the proof of Lemma 3.2 stays valid.

We now adjust Algorithm 1 for DLAú as follows: in Step 3, we select the facility fv œ F̃v

with minimum weight w̃fv . In the if-clause 4, we search and verify for supportedness w.r.t.
hfv instead of h (which is equivalent unless w̃fv = 0, in which case L◊(zfv) is supported
for every ◊). Since the new algorithm functions exactly like Algorithm 1, except for an
arbitrary selection step becoming determined (in particular, the new algorithm is a possible
implementation of Algorithm 1), its correctness is implied by the correctness of Algorithm 1.

Notice that since fv in Step 3 is now chosen to have minimal weight, we have for any
f

Õ œ F̃v \ {fv}

ĥfv

!
z
fv + z

f
Õ"

Æ ĥfv

!
z
fv

"
+ ĥfv

!
z
f

Õ"
Æ ĥfv

!
z
fv

"
+ ĥf Õ

!
z
f

Õ"
,

which means that the cost of z does not increase at any time by the arguments as before.
Also, notice that since hf is submodular, monotone and hf (ÿ) = 0 we can apply Lemma 3.4
with respect to hfv instead of h. Thus, the cost of the sets added at Step 5 and Step 7 is
still bounded as in (4) and (5).

B.3 SFL with Additive Opening Costs
In this section we sketch the proof of Theorem 1.4. As in the previous section, by Lemma
B.1, it is su�cient to provide an O(log logN) approximation.

Similarly to the previous section, we define the set function gf (·) as gf (R) = g(R) + pf

for R ”= ÿ and gf (ÿ) = 0. As argued in the previous section, we can find an optimum to the
LP relaxation of addSFL and reduce it to the problem DLAú as defined in the last section,
but with input weights p̃f instead of w̃f and hf (·) as hf (R) := h(R) + pf for R ”= ÿ, and
hf (ÿ) = 0.

We adapt Algorithm 1 like in the previous section: in Step 3, we select the facility fv œ F̃v

with minimum weight p̃fv . In the if-clause 4, we search and verify for supportedness w.r.t.
hfv instead of h. The correctness of the new algorithm here is given by the same argument
as in the previous section. Notice that by (2) we have ĥf (z) = ĥ(z) + pf ·max

cœC̃
zc, which

implies ĥfv (zfv + z
f

Õ) Æ ĥfv (zfv ) + ĥf Õ(zf Õ) with fv chosen as in Step 3 in Algorithm 1. The
cost of z does therefore not increase throughout the algorithm. Bounding the cost of sets
added to the solution at Step 5 and Step 7 can be done, like for multSFL, by applying
Lemma 3.4 to hfv .
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Abstract
We consider the well-studied Robust (k, z)-Clustering problem, which generalizes the classic
k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization
[Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi,
Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z Ø 1,
the input to Robust (k, z)-Clustering is a set P of n points in a metric space (M, ”), a weight
function w : P æ RØ0 and a positive integer k. Further, each point belongs to one (or more) of
the m many di�erent groups S1, S2, . . . , Sm ™ P . Our goal is to find a set X of k centers such that
maxiœ[m]

q
pœSi

w(p)”(p,X)z is minimized.
Complementing recent work on this problem, we give a comprehensive understanding of the

parameterized approximability of the problem in geometric spaces where the parameter is the
number k of centers. We prove the following results:
(i) For a universal constant ÷0 > 0.0006, we devise a 3z(1≠÷0)-factor FPT approximation algorithm

for Robust (k, z)-Clustering in discrete high-dimensional Euclidean spaces where the set of
potential centers is finite. This shows that the lower bound of 3z for general metrics [Goyal,
Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure.

(ii) We show that Robust (k, z)-Clustering in discrete Euclidean spaces is (


3/2≠o(1))-hard to
approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic
dimensions. This rules out a (1 + ‘)-approximation algorithm running in time f(k, ‘)poly(m,n)
(also called e�cient parameterized approximation scheme or EPAS), giving a striking contrast
with the recent EPAS for the continuous setting where centers can be placed anywhere in the
space [Abbasi et al., FOCS’23].

(iii) However, we obtain an EPAS for Robust (k, z)-Clustering in discrete Euclidean spaces
when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al.,
FOCS’23] provides an EPAS only in dimension o(log logn)). Our EPAS works also for metrics
of sub-logarithmic doubling dimension.
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1 Introduction

Clustering is a crucial method in the analysis of massive datasets and has widespread
applications in operations research and machine learning. As a consequence, optimization
problems related to clustering have received significant attention from the theoretical computer
science community over the years. Within the framework of center-based clustering, k-
Center, k-Means, and k-Median [25, 26, 10, 4, 27] are widely regarded as the most
fundamental problems.

A general notion that captures various classic clustering problems is referred to as (k, z)-
Clustering in the literature, where z Ø 1 is a constant. In this type of problem, the input
is a set P of data points (clients), a set F of centers (facilities), a metric ” on P fi F , and a
positive integer k. The goal is to find a set C ™ F of k facilities that minimizes the following
cost function:

cost(C) =
ÿ

pœP

cost(p, C)

where cost(p, C) = ”(p, C)z and ”(p, C) = mincœC ”(p, c). Note that (k, z)-Clustering
encapsulates the classical k-Median, and k-Means for z = 1 and z = 2, respectively .

Center-based clustering has cemented its place as an unsupervised learning method that
has proven e�ective in modeling a variety of real-world problem. In most of the practical
machine learning applications however, it is observed that the input data is rarely of high
quality.

To tackle this challenge, we study a robust version of (k, z)-Clustering in this paper
which can handle uncertainty in the input: Consider a situation where we do not have
complete knowledge about the clients that will be served. In order to perform well despite
this uncertainty, Anthony et al. [5] defined a concept of robustness for the k-Median problem,
in which each possible scenario is represented by a group of clients and the goal is to
find a solution that performs best possible even in the worst scenario. In this paper, we
address the following robust version of the (k, z)-Clustering problem (called Robust
(k, z)-Clustering):

Robust (k, z)-Clustering
Input: Instance (P, F, ”) with ” being a metric on P fi F , positive integer k, a weight
function w : P æ R+, and m groups S1, . . . , Sm such that Si ™ P, P = fiiœ[m]Si.
Output: A k-element subset X ™ F that minimizes maxiœ[m]

q
pœSi

w(p)”(p,X)z.

Let n = |P |. We remark that, in addition to generalizing k-Median and k-Means, the
Robust (k, z)-Clustering problem encapsulates k-Center, when each group contains a
distinct singleton. A similar objective has been studied in the context of fairness, in which
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we aim to create a solution that will be appropriate for each of the specified groups of people.
This problem is known in the literature as Socially Fair k-Median, recently introduced
independently by Abbasi et al. [3] and Ghadiri et al. [20]. Notice that Abbasi et al. [3]
introduce fair clustering with client weights being inversely proportional to the group size
as a normalization. On the other hand, Anthony et al. [5] introduce robust clustering with
unweighted clients. Since our definition allows arbitrary client weights, we capture both of
these settings.

While k-Means, k-Median, and k-Center admit constant-factor approximations, it
is not very surprising that Robust (k, z)-Clustering is harder due to its generality:
Makarychev and Vakilian [29] design a polynomial-time O (logm/ log logm)-approximation
algorithm, which is tight under a plausible complexity assumption [8]1. As this precludes the
existence of e�cient constant-factor approximation algorithms, recent works have focused
on designing constant factor parameterized (FPT) approximation algorithms2. Along these
lines, an FPT time (3z + ‘)-approximation algorithm has been proposed and shown to
be tight under the Gap Exponential-Time Hypothesis (Gap-ETH) [22]. When allowing
a parameterization on the number of groups m (instead of k), Ghadiri et al. designed a
(5 + 2

Ô
6 + ‘)z-approximation algorithm in nO(m2) time [21].

Motivated by the tight lower bounds for general discrete metrics, we focus on geometric

spaces. Geometric spaces have a particular importance in real-world applications because
data can often be represented via a (potentially large) collection of numerical attributes,
that is, by vectors in a (possibly high-dimensional) geometric space. For example, in the
bag-of-words model a document is represented by a vector where each coordinate specifies
the frequency of a given word in that document. Such representations naturally lead to very
high-dimensional data. A setting of particular interest is the high-dimensional Euclidean
space where the metric is simply the Euclidean metric ”(x, y) = ||x ≠ y||2.

The study of clustering problems in high-dimensional Euclidean space is an important
line of research that has received significant attention in the algorithms community. It may
seem intuitive to believe that it should generally (for almost any problem) be possible to
algorithmically leverage the geometric structure to separate high-dimensional Euclidean
from general metrics. For clustering, however, this turns out to be either false or highly
non-trivial in many cases. For example, it is a long-standing open question [19] whether
k-Center admits a polynomial time (2 ≠ ‘)-approximation algorithm even in R2, improving
the tight bound of 2 in general metrics. Interestingly enough, for the more general Euclidean
k-Supplier problem, Nagarajan et al. [30] obtain an improvement over the tight bound of 3 in
general metrics. The improved bounds for Euclidean k-Median and k-Means by Ahmadian
et al. [4], Grandoni et al. [23], and recently by Cohen-Addad et al. [11] were breakthroughs.
Concerning the more general Robust (k, z)-Clustering, the tight inapproximability bound
of �(logm/ log logm) in general metric continues to hold even in the line metric [8].

Similarly, the regime of FPT approximation algorithms for Euclidean clustering prob-
lems has received significant attention. Classic works design an E�cient Parameterized
Approximation Scheme (EPAS), that is, a (1 + ‘)-approximation in f(k, ‘)poly(n) time, for
k-Center [6] as well as for k-Median and k-Means [28]. Recent research focuses on the
design of so-called coresets [31, 16] whose existence implies an EPAS if their size only depends
on k and the error parameter ‘.

1 Note that they proved this factor for Robust k-Median, and the hardness result holds even in the line
metric, unless NP ™ fl”>0DTIME(2n

”

).
2 Throughout the paper, parameterization refers to the natural parameter k.
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In the real space Rd, it is important to distinguish between the discrete and the continuous
settings. In the discrete setting, both the point set P and the candidate center set F are
finite subsets of Rd while in the continuous setting, centers can be chosen anywhere in the
metric space, that is, F = Rd. A separate line of research has studied the contrast between
continuous and discrete versions. For example, while discrete clustering variants are clearly
polynomial-time solvable for constant k by trivial enumeration, the continuous versions of
k-Center and k-Median are known to be NP-hard even for k = 2 [18] in high-dimensional
Euclidean space. Also in terms of polynomial-time approximability, stronger lower bounds
were shown by Cohen-Addad et al. [14] for the continuous versions. Indeed, there have been
systematic research e�orts in understanding these geometric clustering problems [15, 13, 14].
A recent result [2] implies an EPAS for Robust (k, z)-Clustering in continuous Euclidean
spaces (of any dimension), as well as in discrete Euclidean spaces in “relatively low” dimension,
that is, dimension o(log logn).

The main goal of this paper is to develop comprehensive understanding for Robust
(k, z)-Clustering in high-dimensional discrete Euclidean spaces, in particular, when the
dimension is at least �(log logn).

1.1 Our contributions
First, motivated by a factor-(3z ≠ o(1)) hardness of FPT approximation for Robust (k, z)-
Clustering in general metrics [22], a natural question is whether the structures of Euclidean
spaces can be leveraged to obtain better results in high dimensions. While it is intuitive to
believe that such an improvement should generally (for almost any problem) be possible
in geometric spaces, we note that this is sometimes not the case: The polynomial time
inapproximability of Robust (k, z)-Clustering remains �(logm/ log logm) even in the
line metric [8].

Our first result gives an a�rmative answer to this question.

I Theorem 1.1 (High-Dimensional Euclidean Space). There exists a universal constant

÷0 > 0.0006 such that for any constant positive integer z, there is a factor 3z(1 ≠ ÷0) FPT
approximation algorithm for Robust (k, z)-Clustering in discrete Euclidean space Rd

that

runs in time 2O(k log k)
poly(m,n, d).

We remark that, first, our running time has only a polynomial dependency on d. Secondly,
the key take-home message for Theorem 1.1 is not about a concrete approximation factor,
but rather a “proof of concept” that the factor of 3z can be improved. Conceptually, this
result shows that geometric spaces are indeed easier for Robust (k, z)-Clustering than
general metric spaces in the FPT world, in contrast to the polynomial-time world, where
they seem to be equally hard [8]. The proof of this theorem relies on a new geometric insight
that leverages the properties of Euclidean spaces (that do not hold in general metric spaces).
The analysis of our algorithms “reduces” the global analysis of approximation factor to a
“local” geometric instance, in which it su�ces to merely analyze the behavior of three points
in the Euclidean spaces.

Next, we focus on obtaining a complete characterization of the existence of EPAS in
discrete Euclidean spaces. Recall that an EPAS exists in continuous Euclidean spaces of any
dimensions and in discrete Euclidean spaces of dimension o(log logn) [2], so to complete the
landscape, we need to understand the discrete Euclidean spaces of dimension �(log logn).

In the next theorem, we prove that even the special case of k-Center does not admit
an EPAS. This hardness holds for any ¸q metric and even in dimension O(k logn). More
formally, we prove the following theorem.
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I Theorem 1.2 (Hardness in Discrete Euclidean Space). For any constant positive integer q
and any positive constant ÷ > 0, there exists a function d(k, n) = O(k logn) such that there

is no factor-(3/2 ≠ ÷)1/q FPT approximation algorithm for the discrete k-Center problem

in Rd(k,n)
under the ¸q metric unless W[1]= FPT. Moreover, for the ¸2 metric this hardness

holds even for some dimension O(logn), that is, independently of k.

Our result therefore highlights the interesting contrast between the discrete and continuous
settings in high-dimensional Euclidean spaces, which has been systematically studied in
recent years [15, 13, 14]. As mentioned, the continuous setting admits an EPAS [2], so our
hardness result implies that the discrete setting is harder than the continuous counterpart.
This is contrast to the results Cohen-Addad et al. [14] mentioned earlier showing that
continuous variants of k-Median and k-Means in geometric spaces are apparently harder to
approximate (in polynomial time) than their discrete part as well as the di�erent complexity
status of continuous and discrete clustering in high-dimensional spaces even for k = 2 [18].
This shows a rather mysterious behavior of clustering problems in geometric spaces.

Our next theorem completes the FPT-approximability landscape by designing an EPAS for
the problem in doubling metrics of dimension d = ok(logn)3. We remark that the doubling
dimension of the d-dimensional discrete Euclidean metric is �(d), that is, we obtain an EPAS
for discrete Euclidean ok(logn)-dimensional spaces in particular.

I Theorem 1.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an

algorithm that computes (1 + ‘)-approximate solution, for every ‘ > 0, for Robust (k, z)-
Clustering in the metric of doubling dimension d in time f(k, d, ‘, z)poly(m,n), where

f(k, d, ‘, z) =
1!

2
z

‘

"d
k log k

2O(k)
.

Note that the above theorem yields an EPAS for Robust (k, z)-Clustering when
d = ok(logn). Together with Theorem 1.2, this theorem gives (almost) a dichotomy result
for the existence of EPAS: An EPAS exists for Robust (k, z)-Clustering in ok(logn)
dimension, while obtaining an EPAS is W[1]-hard in �k(logn) dimension. This leads to
an almost complete understanding on the existence of EPAS in continuous and discrete
Euclidean spaces.

2 Overview of Techniques

Improved FPT Approximation in High-Dimensional Discrete Euclidean Space

Our algorithm underlying Theorem 1.1 is a slight modification of the factor-(3z + ‘) FPT
approximation algorithm for general metrics by Goyal and Jaiswal [22]. Our main technical
contribution lies in the improved analysis. A key component of the analysis by Goyal and
Jaiswal is a simple projection property of metric spaces (see Lemma 2.1 below). We argue
that under minor additional assumptions, this property can be strengthened in Euclidean
space. The resulting assigment lemma (see Lemma 3.1) is at the heart of our analysis and
its proof relies on several new ideas and technically involved ingredients.

We briefly review the algorithm by Goyal and Jaiswal [22]. Their algorithm consists of
two main steps. First, they compute a (Ÿ,⁄)-bicriteria solution B ™ F , that is, the cost of B
is bounded by ŸOPT and the cardinality of B is bounded by ⁄k. Specifically, they obtain
guarantees Ÿ = 1 + ‘ and ⁄ = O

!
log2 n/‘2

"
for su�ciently small ‘ > 0. In the second step,

they extract a feasible solution from the (infeasible) bi-criteria solution B by enumerating all
k-subsets of B and outputting the one of minimum cost.

3 We use notation ok(·) to hide multiplicative factors depending only on k.
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Their analysis is based on proving the existence of a k-subset of B whose cost is at most
(3z≠1(Ÿ + 2))OPT, which can be bounded by (3z + ‘)OPT assuming z being constant. Since
the algorithm enumerates all k-subsets, this provides an upper bound on the cost of the
algorithm. The key component of their existential argument is the following simple property
of metric spaces, which we call projection lemma. It is convenient to think of O as an optimal
solution and B as a bicriteria solution with |B| > |O| but the lemma holds for any sets B,O.

I Lemma 2.1 (Projection Lemma). Let (Y, ”) be a metric space, and B ™ Y . Then for any

set O ™ Y , there exists an assignment ‡ : O æ B such that, for all o œ O and y œ Y , we

have

”(y,‡(o)) Æ 2”(y, o) + ”(y,B) . (1)

Intuitively, their lemma allows them to “project” the optimal solution O onto a k-subset
‡(O) ™ B of the bicriteria solution so that for any client y œ Y , the distance ”(y,‡(O)) can
be charged to ”(y,O) and ”(y,B). If fact, the number 3 in the approximation factor 3z + ‘
corresponds to the sum (2 + 1) of the coe�cients in front of ”(y, o) and ”(y,B).

In this paper, we study the setting where Y is a discrete Euclidean metric (P, F, ”), that
is, where P, F are finite subsets of Rd and ” is the Euclidean distance. A natural attempt to
improve the approximation factor in the Euclidean setting is to reduce the coe�cients in front
of the terms ”(y, o) and ”(y,B) in the projection lemma. Unfortunately, this straightforward
approach fails: The projection lemma is tight even on the line metric; see Figure 1.

b o p bÕ

Figure 1 This example shows that the projection lemma is tight even for the 1-dimensional
Euclidean space. Let o = 0 be the optimum facility located at the origin and serving client p = 1/2.
Let bÕ = 1 be the facility in B that serves p and let b = ‡(o) = ≠1 be the facility in B nearest to o. We
have OPT = 1/2, which also equals the cost of B. However ”(p,‡(o)) = 3/2 = 2◊”(p, o)+1◊”(p, bÕ).
Combining multiple such examples in orthogonal directions and sharing facility b shows that the
approximation ratio of the algorithm of Goyal and Jaiswal [22] approaches 3 in the discrete Euclidean
space.

It turns out that slightly enlarging the projection space is already su�cient to bypass
this obstacle. More specifically, we project onto the midpoint closure

cl(B) = B fi

;
fiF

3
b+ bÕ

2

4
: b, bÕ

œ B

<
, (2)

of the bicriteria solution where fiF (p) represents the closest facility in F to point p. This
step exploits that the metric space is embedded into Rd (so that the midpoints exist).

While on the algorithmic side a slight modification of the original algorithm is su�cient for
the improvement, the analysis requires several new ideas and technically involved ingredients.
To prove a strengthened version of the projection lemma (called assignment lemma) we set up
a factor-revealing geometric optimization problem in the plane; see (3) in Definition 3.2 below.
We call the optimum objective “— of this problem displacement ratio. Roughly speaking, this
ratio corresponds to the maximum ratio between the left-hand and the right-hand side of (1)
in Lemma 2.1. However, we project to cl(B) rather than B and impose some additional minor
restrictions. By a careful and technically involved analysis of this optimization problem we
can upper bound the displacement ratio in the Euclidean setting by 1≠ ‘0 for some universal
constant ‘0 > 0 as long as two obstructions are avoided. The first obstruction occurs in any
configuration similar to the one in Figure 1 above where the bi-criteria solution contains two
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facilities b, bÕ so that o is near to the mid-point of b and bÕ. However, in such a configuration
facility o certifies that bÕÕ = fiF ((b+ bÕ)/2) must be close to o allowing us to assign o to bÕÕ

contained in the mid-point closure. The second obstruction arises if p is —-near, that is,
within a small distance — from o (but there is no facility in B such as bÕ as in the first
obstruction). For — approaching 0, the displacement ratio of —-near points can approach
1 even if when projecting to the mid-point closure of B. To account for —-near points, we
therefore cannot resort to the assignment lemma. However, the overall contribution of —-near
points to the cost of the projected solution can be shown to be very small. More details of
the algorithm and its analysis are provided in Section 3.1. The full proof of the assignment
lemma is technically more involved and can be found in the full version [1].

Hardness of Discrete k-Center

Our proof constructs an instance of the discrete k-Center from an instance of Multi-
Colored Independent Set problem, which is known to be W [1]-hard. In Multi-Colored
Independent Set, we are given a k-partite graph G with a k-partition of the vertices
V1, . . . , Vk, and the goal is to determine if there is an independent set that contains precisely
one node from each set Vi, i œ [k]. The gadget in our construction is a set of nearly
equidistant binary code words. Such code words with relative Hamming distance roughly
1/2 and logarithmic length are known to exist (see Ta-Shma [32]). The high level idea is as
follows. We associate each vertex of G with a unique code word of suitable length t. Then,
we generate a data point in P for each vertex and edge of G by using code word(s) associated
with the corresponding vertices. The construction guarantees the following crucial properties:
(i) The Hamming distance between the data points of vertices is roughly t. (ii) The Hamming
distance between a data point of vertex v œ Vi and a data point of an edge e is roughly t if e
is incident on Vi \ {v} and is roughly 3t/2 otherwise. (iii) The Hamming distance between
the data points of edges is at least (close to) 3t/2. Thus, the construction forces us to pick
data points of vertices as centers in our solution and guarantees that the optimum cost of the
k-Center instance is roughly t if and only if there is an independent set in G. As a result,
approximating the cost of the k-Center instance better than a (roughly) (3/2)1/q factor
would imply W [1] = FPT. That is because the cost of a k-Center instance is the maximum
¸q distance between a data point and its closest selected center, and hence, approximating
this cost better than the mentioned factor allows us to distinguish between Yes and No
cases of an arbitrary instance of Multi-Colored Independent Set.

Approximation Scheme for Metrics of Sub-Logarithmic Doubling Dimension

Our algorithm comprises two main components, both based on standard techniques from the
literature: instance compression and decomposition of the doubling metric into smaller balls.
However, it becomes evident that a natural construction based on these standard techniques
for Robust (k, z)-Clustering faces serious information-theoretic limitations, as explained
below. One natural idea for compressing a Robust (k, z)-Clustering instance is to reduce
the number of groups, as each group can be further compressed using a (k, z)-Clustering
coreset (such coresets exist [16]). This reduction yields a significantly smaller instance. If we
could reduce the number of groups to mÕ

π m while approximately preserving the cost for
every solution, we could obtain an EPAS as follows. First, apply a (k, z)-Clustering coreset
to every group of the compressed instance to obtain another Robust (k, z)-Clustering
instance with mÕ groups, each containing g(k, ‘) points, where g is some function that
represents the size of (k, z)-Clustering coreset. It is essential to note that this compression
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is acceptable for obtaining an EPAS since the coreset of a group approximately preserves the
(k, z)-Clustering cost of the group. Next, enumerate all k-partitions of the points within
each group to find potential solutions. Finally, return the solution that has the minimum
Robust (k, z)-Clustering cost. Unfortunately, because Robust (k, z)-Clustering
captures k-Center (and consequently faces a coreset lower bound of 2�(d) in Euclidean
space of dimension d [9]), the number of new groups must satisfy mÕ

Ø 2�(d). Consequently,
the running time of this algorithm is k2�(d)poly(n,m), which is doubly exponential in d. It
is worth noting that this algorithm matches the running time of [2] and does not yield an
EPAS for sub-logarithmic dimension.

Furthermore, if we explore an alternative approach and utilize the coreset of k-Center,
it is not immediately clear how to extend the coreset of k-Center to reduce the number
of groups in an instance of Robust (k, z)-Clustering. This is because, firstly, we would
require a mapping between the old groups and the new groups, and secondly, this mapping
should ideally approximately preserve the Robust (k, z)-Clustering cost for every solution.

Another potential method for compressing the instance involves reducing the number of
points in set P , rather than altering the groups, with the hope of designing an EPAS that
can exploit the smaller P (without concern for the number of groups). However, for this
approach to succeed, it is essential to establish a bijection between the old and new groups.
Yet, it remains uncertain whether such a bijection exists. In typical coreset constructions,
each point in the coreset P Õ of P has a weight that is the sum of the weights of the points in
its local neighborhood in P which it is supposed to represent in P Õ. However, these points
in P could potentially belong to di�erent groups, making it challenging to establish the
mapping between groups.

The core idea of our approach is to work with an alternative and more general definition
of groups that permits a point to participate in di�erent groups with varying weights. In
this revised definition, instead of viewing groups as subsets of points, we treat each group
as a weight function that assigns non-negative real values to points. This flexibility allows
di�erent weights to be assigned to the same point by di�erent groups, which can, in fact, be
of practical interest. Utilizing this new definition, we can devise an approach for compressing
the points such that each point in the compressed instance can have a weight for group g
that represents the sum of the weights of nearby points in g that were filtered out during
compression. Essentially, this enables us to approximately preserve the group costs. With
this approach and additional technical work that leverages the standard ball decomposition
technique for doubling metrics, we derive a coreset for Robust (k, z)-Clustering that can
be employed to construct an EPAS for doubling metrics with sub-logarithmic dimension.
I Remark 2.2. Due to lack of space, we move some of the proofs to the full version [1]. The
proofs of the Theorems and Lemmas with corresponding (ı) marked are provided in the full
version [1].

3 High-Dimensional Discrete Euclidean Space

3.1 FPT Approximation Algorithm for Robust (k, z)-Clustering
In this section, we exploit non-trivial properties of the Euclidean metric to prove the following
result that breaches the barrier of 3z-approximation for Robust (k, z)-Clustering in general
metrics.

I Theorem 1.1 (High-Dimensional Euclidean Space). There exists a universal constant

÷0 > 0.0006 such that for any constant positive integer z, there is a factor 3z(1 ≠ ÷0) FPT
approximation algorithm for Robust (k, z)-Clustering in discrete Euclidean space Rd

that

runs in time 2O(k log k)
poly(m,n, d).
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Recall from Section 2 that our approach begins with computing a (Ÿ,⁄)-bicriteria solu-
tion B to the Robust (k, z)-Clustering instance employing the algorithm proposed by
Goyal-Jaiswal [22]. As we argued, it is su�cient to prove the existence of a k-subset of B
whose cost is within a constant factor of optimal. The result by Goyal and Jaiswal [22] is
based on the following simple projection lemma for general metrics whose proof we state
here for the sake of later reference.

I Lemma 2.1 (Projection Lemma). Let (Y, ”) be a metric space, and B ™ Y . Then for any

set O ™ Y , there exists an assignment ‡ : O æ B such that, for all o œ O and y œ Y , we

have

”(y,‡(o)) Æ 2”(y, o) + ”(y,B) . (1)

Proof. For each o œ O, define ‡(o) as fiB(o), the point in B closest in distance to o.
Notice that for any o œ O, y œ Y , we have ”(y,‡(o)) Æ ”(y, o) + ”(o,‡(o)) by triangle
inequality. The lemma follows by combining this with ”(o,‡(o)) = ”(o,B) Æ ”(o,fiB(y)) Æ

”(y, o) + ”(y,B). J

This lemma itself is tight even in 1-dimensional Euclidean space (as we showed in Figure 1).
In order to get around this issue, we make use of the property of our geometric space. Given
the instance (P, F, ”) embedded into the Euclidean space and the bicriteria solution B, we
project to the mid-point closure cl(B) as defined in (2).

Notice that |cl(B)| = O
!
|B|

2
"
. Let O be the optimal solution. For — > 0 we say that

client p œ P is —-far (from O w.r.t. B) if ”(p,O) Ø — · ”(p,B), and we say that client p is
—-near otherwise. The key of our analysis is the following strengthening of the projection
lemma for Euclidean space, which we call assignment lemma.

I Lemma 3.1 (Assignment Lemma) (ı). Let —0 = 0.05 and let B ™ Rd. Then, for any
O ™ Rd, there exists an assignment ‡ : O æ cl(B) such that, for all —0-far points p œ Rd, we
have ”(p,‡(O)) Æ (1 ≠ ‘0)(2”(p,O) + ”(p,B)) where ‘0 > 0.002.

Proof Sketch. We start with defining the assignment function ‡. Take any facility o œ O
and let b = fiB(o). We assume w.l.o.g. that the instance is rotated so that p, b, and o lie in
the plane spanned by the first two coordinates. For the sake of easier notation, we identify
p, b, o by points in R2. Further, by translation and scaling, we assume that o coincides with
the origin and that b = (≠1, 0). Let q = (0, 1) be the mirror image of b. Let – be a parameter
to be fixed (we later set it to 0.6). We define ‡(o) based on the position of o relative to an
–-ball. Specifically, ‡(o) = b if the –-ball centered at a point q contains no facility from B;
otherwise, ‡(o) is the projection ficl(B)(o) of o onto the mid-point closure of B.

Our goal is to analyze the displacement of a client p under the assignment rule ‡. Recall
from the proof of Lemma 2.1 that if ‡(o) is simply the projection onto B, then a client p,
when served by facilities o and bÕ in sets O and B respectively, incurs a cost of at most
2||p ≠ o||+ ||p ≠ bÕ

||. We wish to show that the assignment cost in our algorithm is strictly
smaller than this upper bound (under certain assumptions). We prove this by bounding the
ratio of these two quantities.

I Definition 3.2 (Displacement Ratio). For a given small constant — > 0, let the displacement
ratio be defined as

“— = max
pœRd

\ball(o,—),

bÕ
œRd

\ball(o,1)

;
||p ≠ ‡(o)||

2||p ≠ o||+ ||p ≠ bÕ||

<
. (3)
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Let S be the plane spanned by b, p, and o. After the appropriate rotations and translations
we mentioned earlier, S would coincide with the x-y plane. In what follows, we also restrict bÕ

to lie in R2 as well. We omit the argument why this assumption is without loss of generality
from this sketch, and defer it to [1].

To show the lemma, we demonstrate that “— can be upper-bounded by 1 ≠ f(–,—) for
some f(–,—) > 0, where f(·) is a function dependent on –, — and the geometry of O and B.
We distinguish two cases. First, suppose that B contains a facility bÕÕ lying inside the –-ball
around q. Recall that in this case ‡(o) = ficl(B)(o). Hence ‡(o) is no farther from o than
the facility fiF ((b+ bÕÕ)/2) nearest to the midpoint of b and bÕÕ. This allows us to bound the
displacement ratio “— by 1 ≠

1≠–
2

. See Figure 2 for an illustration. Notice that the optimal
center o certifies the existence of a point in F nearby the mid-point of b and bÕÕ.

o

bÕÕ

Æ
–
2

fiF ( b+bÕÕ

2 )

q

–
b

Figure 2 The midpoint of b and bÕÕ is shown by red dot, ||(b + bÕÕ)/2 ≠ o|| Æ –
2 and thus

||‡(o) ≠ o|| Æ –.

In the second case, where the –-ball does not contain a facility from B, we argue that
the points o, ‡(o) = b, and bÕ are far enough from a co-linear position. This allows us to
argue that the triangle inequality in the proof of Lemma 2.1 is not tight. Towards this, we
divide the space into four regions R1, R2, R3 and R4 that could contain client p, we assume
that p lies in the half plane above the x-axis (The case where p lies below the x-axis is
symmetric.). Let q1 be the intersection point of the surfaces of ball(o, 1) and ball(q,–) above
the x-axis. Let q3 be the midpoint of q and q1, the region H is defined as the area above the
lines passing through (q3, o) and (o, b), we define R1 = H\ball(o,—). Next, consider (1 ≠ Ê)
and (1 + Ê) balls around o, H Õ is defined as the area below the line passing through (o, q3)
and above the line passing through (o, q), we define R2 = (ball(o, 1 ≠ Ê)\ball(o,—)) fl H Õ,
R3 = (ball(o, 1+Ê)\ball(o, 1≠ Ê))flH Õ, and R4 = H Õ

\ball(o, 1+Ê), the regions are indicated
in Figure 3. Below, we provide full proof for one of these regions.

Assume that client p lies in region R1 (see Figure 4). Let bÕÕ be the closest point to p not
in the interior of ball(o, 1), and let pÕ be the point on the boundary of ball(o,—) that is closet
to p. Let pÕÕ be the point where the segment (o, q3) intersects the boundary of ball(o,—), that
is, pÕÕ = (— cos ◊,— sin ◊) where ◊ = \q3oq1. Notice that cos ◊ = 1 ≠

–2

4
. First, we assume p

is inside ball(o, 1 + 2—) in the region of R1.

I Observation 3.3. For any ‘1, ‘2, X, Y Ø 0 :

X ≠ ‘1 + Y

X + Y
Æ

X ≠ ‘1 + Y + ‘2
X + Y + ‘2

Consider assigning p via pÕ to b. We bound the displacement cost as follows:
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o

— q

q1

–b

q3q3

R1

R2
R4

R3

Figure 3 The dashed black circle depicts ball(o, 1), while the dashed gray circles represent
ball(o, 1 ≠ Ê) and ball(o, 1 + Ê). Regions R1, R2, R3, and R4 are outlined with green, yellow, purple,
and blue borders respectively.

o

q1

q2

—

pÕÕ
q

q3

–
b

p

Figure 4 The dashed circle depicts ball(o, 1), –-ball around q and —-ball around o are shown in
blue. The region R1 is specified by green borders. The red dashed area represents the potential
location of point pÕ.

“— = ||‡(o) ≠ p||

2||p ≠ o||+ ||p ≠ bÕ||
Æ

||b ≠ pÕ
||+ ||p ≠ pÕ

||

2||pÕ ≠ o||+ ||pÕ ≠ bÕÕ||+ ||p ≠ pÕ||

Æ
||b ≠ pÕÕ

||+ ||p ≠ pÕ
||

2— + 1 ≠ — + ||p ≠ pÕ||

Æ


(— cos(◊) + 1)2 + (— sin(◊))2 + ||p ≠ pÕ

||

1 + — + ||p ≠ pÕ||

=


—2 + 2— cos ◊ + 1 + ||p ≠ pÕ
||

1 + — + ||p ≠ pÕ||

=

Ò
(1 + —)2 ≠

—–2

2
+ ||p ≠ pÕ

||

1 + — + ||p ≠ pÕ||
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We assume ||p ≠ pÕ
|| Æ 1 + —, and by observation 3.3, we obtain:

“— Æ

(1 + —)(1 +
Ò
(1 ≠

—–2

2
)

2(1 + —) Æ
1
2 +

Ò
12 ≠

2—–2

4
+ —2–4

16

2 Æ
1
2 +

1 ≠
—–2

4

2

= 1 ≠
4 + —–2

8

Second, let’s assume that the client p is distant from o and positioned within region R1

outside ball(o, 1 + 2—), we can bound “— as follows:

“— Æ
1 + ||o ≠ p||

2||o ≠ p||
Æ

1 + 1 + 2—

2(1 + 2—) = 1 + —

1 + 2—
= 1 ≠

—

1 + 2—

Therefore, by examining the position of p in the regions, we establish that “— is upper-
bounded by 1≠f(–,—). Consequently, Lemma 3.1 is substantiated by showing the existence of
an –0 Æ 0.6 and a su�ciently small —0 Æ 0.05 such that “—0 Æ 1≠f(–0,—0) = 1≠‘0 Æ 0.9978.
The proofs for the other regions as well as the full details of the rest of the argument are
provided in the full version [1]. J

In the proof of Theorem 1.1, we show that this new assignment property is enough to
derive an improved FPT approximation for Robust (k, z)-Clustering in Euclidean space.
Since the assignment ‡ maps every facility in O uniquely to a facility in cl(B), this implies
that ‡(O) is a feasible solution of cost at most (3z · (1≠ ÷0))OPT. This certifies the existence
of a feasible solution being a subset of cl(B) with the desired approximation factor. Hence,
we can find such a solution in FPT time by enumeration. The complete proof of Theorem 1.1
is provided in the full version [1].

3.2 Hardness of Discrete k-Center
For this section, we use the following explicit construction of the so-called ÷-balanced error-

correcting codes from a recent result of Ta-Shma [32] which we rephrase for our purposes as
follows:

I Theorem 3.1. Let ÷ œ (0, 1/2) be a positive constant. Then there is an algorithm that

computes, for any given number s œ N, an s-element set B ™ {0, 1}t of binary vectors of

dimension t = O(log s/÷2+o(1)) such that for any b œ B, its Hamming weight ||b||1 and for

any bÕ
œ B\{b}, the Hamming distance ||b≠bÕ

||1 both lie in the interval [(1/2≠÷)t, (1/2+÷)t].
The running time of the algorithm is O(st).

Proof. Ta-Shma [32] gives an explicit construction of a t ◊ Álog2 sË binary matrix gen-
erating a linear, binary, error-correcting code of message length Álog2 sË, block length
t = O(log s/÷2+o(1)), and pairwise Hamming distance between (1/2 ≠ ÷)t and (1/2 + ÷)t.
Since the code is linear, it contains the zero code word. Hence each code word has Hamming
weight in [(1/2 ≠ ÷)t, (1/2 + ÷)t]. The time for constructing the matrix is polynomial in log s
and t. Using the generating matrix, at least s many non-zero code words can be enumerated
in time O(st), which dominates the time for computing the matrix. J

We leverage balanced error correcting codes as gadget in our hardness proof for discrete
k-Center. For any binary vector b œ {0, 1}t, we denote by b̄ the binary vector obtained by
flipping each coordinate in b.
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I Theorem 1.2 (Hardness in Discrete Euclidean Space). For any constant positive integer q
and any positive constant ÷ > 0, there exists a function d(k, n) = O(k logn) such that there

is no factor-(3/2 ≠ ÷)1/q FPT approximation algorithm for the discrete k-Center problem

in Rd(k,n)
under the ¸q metric unless W[1]= FPT. Moreover, for the ¸2 metric this hardness

holds even for some dimension O(logn), that is, independently of k.

Proof. We show a reduction from Multi-Colored Independent Set, which is known to
be W [1]-hard [17]. The input is a k-partite graph G = (V,E) with k-partition V1, . . . , Vk.
The question is if there is an independent set that is multi-colored, that is, it has precisely
one node from each set Vi, i œ [k]. W.l.o.g. we assume that each Vi contains at least one
node that is adjacent to all nodes V \ Vi. Adding such nodes, we can additionally assume
that |Vi| = n/k for each i œ [k] where n = |V |.

Fix some constant ÷ œ (0, 1/2). Using Theorem 3.1, we construct a set B ™ {0, 1}t of n
nearly equidistant code words of dimension t = O(logn/÷2+o(1)). We map each node u œ V
uniquely to some non-zero code word b(u) œ B. We construct a k-Center instance in Rk·t

as follows. We subdivide the coordinates of each point in Rk·t into k blocks each containing
t consecutive coordinates. In our set P of data points, we introduce for each node vi œ Vi,
i œ [k], the point p(vi) œ P in which the ith block equals b(vi) and all other coordinates
are zero. For each edge (vi, vj) œ E, vi œ Vi, vj œ Vj for distinct i, j œ [k] we create a point
p(vi, vj) œ P in which the ith block equals b(vi), the jth block equals b(vj), and all other
coordinates are zero. No further points are added to P . We set the number of centers to be
k completing the construction of the k-Center instance.

Let i œ [k] and vi, vÕ

i œ Vi be distinct vertices. We have that ||p(vi) ≠ p(vÕ

i)||qq Æ

||b(vi)≠ b(vÕ

i)||1 Æ (1/2 + ÷)t by Theorem 3.1. Let vj œ Vj , j œ [k] such that (vi, vj) œ E. By
Theorem 3.1, we have that

||p(vÕ

i) ≠ p(vi, vj)||qq Æ ||b(vÕ

i) ≠ b(vi)||1 + ||b(vj)||1
Æ (t ≠ ||b(vÕ

i) ≠ b(vi)||1) + (t ≠ (1/2 ≠ ÷)t)
Æ (t ≠ (1/2 ≠ ÷)t) + (1/2 + ÷)t
Æ (1 + 2÷)t .

Hence if there is a multi-colored independent set I for G then X = { p(u) | u œ I } is a
k-element set such that ”(p,X)q Æ (1 + 2÷)t for any p œ P under the ¸q metric, which gives
an upper bound of (1 + 2÷)t on the k-Center objective in the completeness case.

For analyzing the soundness case, assume that there is no multi-colored independent set
for G. Consider an arbitrary k-element set X ™ V . We say that x œ X covers p œ P if
”(p, x)q < (3/2 ≠ 3÷)t. We claim that there is some p œ P not covered by any center in X.
The correctness of this claim implies that any parameterized approximation algorithm with
approximation ratio strictly better than ((3/2 ≠ 3÷)/(1 + 2÷))1/q implies that W [1] = FPT
and thus the theorem.

In order to prove this claim, we assume for the sake of contradiction, that all p œ P are
covered by some center in X. First, we argue that w.l.o.g. X contains no point of the form
p(vi, vj) where (vi, vj) œ E. In fact, for any g /œ {i, j}, we have that

||p(vÕ

g) ≠ p(vi, vj)||qq Ø ||b(vÕ

g)||1 + ||b(vi)||1 + ||b(vj)||1
Ø (1/2 ≠ ÷)t+ 2(t ≠ (1/2 + ÷)t)
= (3/2 ≠ 3÷)t . (4)

Hence p(vi, vj) can cover p(vÕ
g) only if g = i or g = j. Similarly, p(vi, vj) can cover p(vÕ

g, v
Õ

h)
only if i = g and j = h. But then these points would be covered by p(vi) as well and hence
we could replace p(vi, vj) with p(vi). We therefore assume that X contains only points of
the form p(vi).
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We claim that X is multi-colored. Otherwise, there would be some Vi that contains no
point from X. By our initial assumption, Vi contains some point vi that is adjacent to all
points V \ Vi. Assuming k Ø 3 there exists at least one Vj , j ”= i that contains at most one
node from X. If Vj intersects X then let vj œ Vj fl X , and otherwise let vj be an arbitrary
node in Vj . By our assumption (vi, vj) œ E. If vj œ X then

||p(vj , vi) ≠ p(vj)||qq Ø ||b(vj) ≠ b(vj)||1 + ||b(vi)||1
Ø t+ (t ≠ (1/2 + ÷)t)
= (3/2 ≠ ÷)t (5)

as the jth block of p(vj) equals b(vj) and the ith block of p(vj , vi) equals b(vj). If vj /œ X then
for any itvh œ X we have h /œ {i, j}. Thus ||p(vi, vj) ≠ p(vh)||qq Ø (3/2 ≠ 3÷)t, which follows
as in (4). Hence p(vi, vj) would not be covered showing that X is multi-colored. Since X is
multi-colored it can not be an independent set. Hence there exists some edge (vi, vj) such
that vi, vj œ X but then ||p(vi) ≠ p(vi, vj)||qq Ø (3/2 ≠ ÷)t, ||p(vj) ≠ p(vi, vj)||qq Ø (3/2 ≠ ÷)t,
and ||p(vh) ≠ p(vi, vj)||qq Ø (3/2 ≠ 3÷)t for any vh œ X, h /œ {i, j}, which follows as in (5)
and (4), respectively. Hence ”(p(vi, vj), X) Ø (3/2≠3÷)t, implies that p(vi, vj) is not covered.

We complete the proof by noting that the dimension of the instance can be reduced to
O(logn) for Euclidean metrics by using the Johnson-Lindenstrauss transform with su�ciently
small (constant) error parameter. J

4 EPAS for Metrics of Sub-Logarithmic Doubling Dimension

In this section, we show an EPAS forRobust (k, z)-Clustering in metrics of sub-logarithmic
doubling dimension. This result complements the hardness result of Section 3 (Theorem 1.2).
Towards our goal, we prove the following result.

I Theorem 1.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an

algorithm that computes (1 + ‘)-approximate solution, for every ‘ > 0, for Robust (k, z)-
Clustering in the metric of doubling dimension d in time f(k, d, ‘, z)poly(m,n), where

f(k, d, ‘, z) =
1!

2
z

‘

"d
k log k

2O(k)
.

Note that the above algorithm runs in FPT time for d = o(logn). We also remark that
the above result can be extended to the continuous Rd. Throughout this section, we assume
that the weight aspect ratio maxpœP w(p)

minpÕœP w(pÕ) and the distance aspect ratio maxp,pÕœP ”(p,pÕ
)

minp”=pÕœP ”(p,pÕ) are
bounded by poly(n), some polynomial in n. For p œ P and any number r Ø 0, denote by
ball(p, r) to be the closed ball centered at p of radius r. We prove the theorem in two steps:
first, in Section 4.1 we show an algorithm to obtain a coreset for the problem, and then, in
Section 4.2 we show how to use this coreset to get the algorithm of Theorem 1.3.

4.1 Coreset for Robust (k, z)-Clustering
The key idea for constructing coresets for Robust (k, z)-Clustering crucially relies on
the following alternate but equivalent definition of the problem. In this definition, we are
given I = (F, P µ M,W), where either F = M or F ™ M, where M is doubling metric of
dimension d, defined by the metric function ”. A group is a weight vector w œ W such that
w : P æ RØ0. Given X ™ F , the distance vector ”P (X) is defined as ”P (X)[p] = ”(p,X)z,
for each p œ P . The cost of X for a group w œ W is defined as c(w, X) = w · ”P (X).
For a Robust (k, z)-Clustering instance I = (F, P,W), the cost of X is defined as
cost(I, X) = maxwœW cost(w, X). The cost of the instance I = (F, P,W) is
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OPT(I) = min
X™F,|X|=k

max
wœW

cost(w, X)

Whenever the instance I is clear from context, we will just write OPT. Notice that, in the
original Robust (k, z)-Clustering, a group is given by S ™ P , and this can be captured
by weight vector w[p] = 0 for p ”œ S and w(p) otherwise. We prove the following coreset
exists for Robust (k, z)-Clustering.

I Theorem 4.1 (Coreset for Robust (k, z)-Clustering) (ı). Given an instance I =
(F, P,W) of Robust (k, z)-Clustering in doubling metric of dimension d and 0 < ‘ Æ 1,
there is an algorithm that, in time

!
2
z

‘

"O(d) poly(n,m), computes another instance I
Õ =

(F, P Õ,W Õ) of Robust (k, z)-Clustering with P Õ
™ P : |P Õ

| =
!
2
z

‘

"O(d)
kz logn such that

for any X ™ F with |X| = k,

(1 ≠ ‘)cost(I, X) Æ cost(I Õ, X) Æ (1 + ‘)cost(I, X).

We remark that the above theorem yields a coreset of clients, and not of groups, and
hence, the total size of coreset is comparable to the original instance. However, we will
show later that such coreset is su�cient to get a parameterized approximation scheme with
parameters k and d. We would also like to point out that the exponential dependency on d
on the point set size of the coreset is inevitable since Robust (k, z)-Clustering captures
k-Center, for which such a lower bound is known [9, 7]. To see that our notion of coreset
for Robust (k, z)-Clustering coincides with the regular notion of coreset for k-Center,
note that in this setting each group contains a single distinct point.

In the next section, we describe the algorithm of Theorem 4.1. Due to space constraints,
we defer the analysis of our algorithm to the full version [1].

The Algorithm

Our algorithm is inspired by the grid construction approach of [24] that yields coresets for
k-Median and k-Means. Given an instance I = (F, P,W) of Robust (k, z)-Clustering,
the first step is to start with an (–,—)-bicriteria solution B = {bi}iœ[—k] that opens at most
—k facilities with the guarantee that cost(I, B) Æ – · OPT, for some constants –,— Ø 1.
Let R = z

Ò
cost(I,B)

–· , where · := maxwœW ||w||1. Let � = maxpœP,wœW w[p]
minpœP,wœW w[p] be the weight

aspect ratio of I. Then, for each bi œ B, consider the balls B
j
i := ball(bi, 2jR), for j œ

{0, · · · , Á2 log(–n�)Ë}. Note that, for w œ W and p œ P with w[p] > 0, it holds that
”(p,B) Æ R z

Ô
–n· , since ”(p,B) Æ

z

Ò
cost(I,B)

w[p] Æ z

Ò
–·
w[p]R Æ R z

Ô
–n�. Hence, we have that

every point p œ P is contained in some ball Bj
i . For bi œ B, let Q

j
i = B

j
i ≠ B

j≠1

i , for
j = {1, · · · , Á2 log(–�)Ë}, be the ring between B

j
i and B

j≠1

i , with Q
0

i = B
0

i . Decompose
every ball Bj

i into smaller balls each of radius ‘
40–R2j using the fact that the metric is a

doubling metric. These balls can intersect, so we assign every point p œ P to exactly one ball
(for example, by associating p to the smallest ball containing p, breaking ties arbitrarily).
For every ball Bj

i and every smaller ball t of Bj
i with |t fl Q

j
i | ”= ÿ, pick an arbitrary point

pÕ
œ t fl Q

j
i as the representative of (the points in) t fl Q

j
i , and add pÕ to the coreset P Õ

with group weight vectors as follows. Corresponding to every group vector w œ W, create a
new group vector wÕ

œ W
Õ. Then,wÕ[pÕ] :=

q
pœtflQj

i
w(p). Intuitively, wÕ[pÕ] captures the

total weight of points of w in t fl Q
j
i . This concludes the coreset construction. For detailed

pseudocode of the algorithm, please refer to the full version of the paper [1].
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The high-level idea above is to decompose each ball Bj
i into smaller balls and pick a

distinct point as the representative of points in the non-empty decomposed ball. Additionally,
such representative pÕ participates in the group w

Õ with weight which is sum of the weights
of points in w that are represented by pÕ. However, we want to decompose the ball Bj

i into
smaller balls in a way that the total number of balls remains the same, irrespective of the
radius of the ball. This is necessary as for higher values of j, this number would depend
on n, if we are not careful. While this does not seem to help much, as the radius of the
decomposed balls is much larger for higher values j, it actually does the trick: since the
points in these balls are far from bi, and hence their connection cost to bi is also large. This
allows us to represent the radii of larger balls in terms of the connection cost of its points to
B, thus bounding the error in terms of the cost of B, which in turn is bounded by –OPT,
which gives us the desired guarantee.

4.2 EPAS for Robust (k, z)-Clustering
In this section, we show how to use the coreset obtained from Theorem 4.1 to get a (1 + ‘)-
approximate solution to the Robust (k, z)-Clustering problem and provide an EPAS with
respect to k and d, when |P | is small. By scaling the distances in the instance of Robust
(k, z)-Clustering, we assume that the distances are between 1 and �Õ, for some number �Õ.
Our algorithm (see Algorithm 1) uses the leader guessing idea of [12]. In the leader guessing
approach, we guess the leader of every partition of a fixed optimal solution, where the leader
of a partition is a closest point (client) in P to the corresponding optimal center. However,
each point can participate in multiple groups, resulting in the total number of points being
dependent on the number of groups, |W|. In the full version [1], we show that guessing the
leaders from P without considering the groups in W is, in fact, su�cient. Further, to get a
(1 + ‘)-approximate solution, we use a standard ball decomposition lemma (for e.g., see the
full version [1]).

I Theorem 4.2. For any 0 < ‘ Æ 1, Algorithm 1, on input I = (F, P,W), computes X ™

F : |X| Æ k such that cost(I, X) Æ (1 + ‘)OPT(I) in time
!
( z‘ )

d logn
"O(k)

|P |
k
poly(n,m).

We conclude this section by proving the main claim of this section (Theorem 1.3) by
using the results of Theorem 4.1 and Theorem 4.2 as follows.

Proof of Theorem 1.3. Given an instance I = (F, P,W) of Robust (k, z)-Clustering,
and the accuracy parameter ‘ > 0, we invoke Theorem 4.1 on I with parameter ‘/10 to
obtain an coreset (P Õ,W Õ) such that P Õ

™ P : |P Õ
| =

!
2
z

‘

"O(d)
kz logn. Let I Õ = (F, P Õ,W Õ)

be the resulting instance. Then, we invoke Theorem 4.2 on I
Õ with parameter ‘/10 to obtain

X ™ F : |X| Æ k such that cost(I Õ, X) Æ (1 + ‘/10)OPT(I Õ).
First, we analyze the overall running time. With |P Õ

| =
!
2
z

‘

"O(d)
kz logn, Theorem 4.2

runs in time
1!

2
z

‘

"d
kz logn

2O(k)
poly(n,m), leading to

1!
2
z

‘

"d
zk log k

2O(k)
poly(n,m) as

the overall running time as desired. For correctness, consider

cost(I, X) Æ (1 + ‘/10)cost(I Õ, X) by the coreset property
Æ (1 + ‘/10)2OPT(I Õ) by Algorithm 1
Æ (1 + ‘/10)3OPT(I) by the coreset property
Æ (1 + ‘)OPT(I). J
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Algorithm 1 (1 + ‘)-approximation algorithm for Robust (k, z)-Clustering.
Data: Instance I = (F, P,W) of Robust (k, z)-Clustering
Result: (1 + ‘)-approximate solution X ™ F

1 Let X Ω ÿ;
2 forall k-tuples (¸1, · · · , ¸k) of P do
3 forall k-tuples (⁄1, · · · ,⁄k) radii of (¸1, · · · , ¸k) that are power of (1 + ‘/10z) do
4 for i œ [k] do
5 Bi Ω { ‘

20z -ball decomposition of ball(¸i,⁄i)};
6 end
7 Ti Ω {f œ F | f is an arbitrary facility in ball b œ Bi} a ;
8 forall k-tuples (t1, · · · , tk) of T1 ◊ · · · ◊ Tk do
9 if cost(I, {t1, · · · , tk}) < cost(I, X) then

10 X Ω {t1, · · · , tk}
11 end
12 end
13 end
14 end
15 return X

a If F = Rd then Ti Ω {xb œ F | xb is the center of ball b œ Bi}
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Abstract
We investigate the relation between ” and ‘ required for obtaining a (1 + ”)-approximation in time
N2≠‘ for closest pair problems under various distance metrics, and for other related problems in
fine-grained complexity.

Specifically, our main result shows that if it is impossible to (exactly) solve the (bichromatic)
inner product (IP) problem for vectors of dimension c logN in time N2≠‘, then there is no (1 + ”)-
approximation algorithm for (bichromatic) Euclidean Closest Pair running in time N2≠2‘, where
” ¥ (‘/c)2 (where ¥ hides polylog factors). This improves on the prior result due to Chen and
Williams (SODA 2019) which gave a smaller polynomial dependence of ” on ‘, on the order of
” ¥ (‘/c)6. Our result implies in turn that no (1 + ”)-approximation algorithm exists for Euclidean
closest pair for ” ¥ ‘4, unless an algorithmic improvement for IP is obtained. This in turn is very
close to the approximation guarantee of ” ¥ ‘3 for Euclidean closest pair, given by the best known
algorithm of Almam, Chan, and Williams (FOCS 2016). By known reductions, a similar result
follows for a host of other related problems in fine-grained hardness of approximation.

Our reduction combines the hardness of approximation framework of Chen and Williams, together
with an MA communication protocol for IP over a small alphabet, that is inspired by the MA
protocol of Chen (Theory of Computing, 2020).
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1 Introduction

Traditionally, the approach to determine whether a computational problem is tractable was
to find out whether it has a polynomial-time algorithm. Finding such an algorithm implies
that the problem is in P, and thus it was considered e�ciently computable. Otherwise, if
one is interested in proving that the problem is intractable, we usually lack the tools to
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7:2 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

prove lower bounds; instead one relies on hardness assumptions which allow us to prove
conditional lower-bounds. In the classical theory of NP-hardness, the hardness assumption is
that P ”= NP, which is known to imply that no polynomial-time algorithm exists for many
central computational problems.

In fine-grained complexity, one is interested in pinning down the precise complexity of
tractable computational problems. In particular, a central objective in fine-grained complexity
is to determine the exact exponent in the time complexity of problems already known to be in
P . More concretely, given a problem with input length n known to be solvable in t(n)-time,
is it possible to solve the problem in time t(n)1≠‘ for some ‘ > 0? This is motivated by
the fact that despite rigorous study of many central computational problems in P , we have
failed to improve on the running time of their best-known algorithms (see for example the
survey [21] for a list of such problems). This motivates the question of whether there is an
inherent di�culty in the problem that prevents us from finding faster algorithms.

Once more, we typically lack the tools to prove lower bounds, and we thus instead rely
on hardness assumptions to obtain conditional lower bounds for problems in P. One popular
such conjecture has been the Strong Exponential Time Hypothesis (SETH), which postulates
that for any ‘ > 0, there exists an integer k = k(‘) so that it is impossible to solve k-SAT on
n variables in time 2(1≠‘)n [13].

Another popular conjecture is the Orthogonal Vector Conjecture (OVC) which in the
low-dimensional regime posits that for any ‘ > 0, there exists a cov = cov(‘) such that given
a pair of sets A,B ™ {0, 1}d of cardinality N each and of dimension d = cov · logN , it is
impossible to determine whether there exists a pair (a, b) œ A ◊ B satisfying that Èa, bÍ = 0
in N

2≠‘ time [11]. It is known that SETH implies OVC [20], and so OVC is at least as
plausible as SETH. In terms of algorithms, it is known how to solve the OV problem in time
N

2≠‘ with c = exp(1/‘) [3, 7], which implies that cov Ø exp(1/‘).
A related assumption is the inner product (IP) assumption which postulates that for any

‘ > 0, there exists a cip = cip(‘) such that given a pair of sets A,B ™ {0, 1}d of cardinality
N each and of dimension d = cip · logN , and an integer ‡ œ {0, 1, . . . , d}, it is impossible to
determine whether there exists a pair (a, b) œ A ◊ B satisfying that Èa, bÍ = ‡ in N

2≠‘ time.
Once more, since the OV problem is a special case of the IP problem, the IP assumption is
at least as plausible as OVC1. Indeed, the best known algorithms for the IP problem are
only able to solve this problem in time N

2≠‘ with c ¥ 1/‘ [5], and this only imposes that
cip ' 1/‘.2

In recent years, there has been a flurry of work showing fine-grained lower bounds for many
central computational problems in P, based on the above assumptions. A main challenge
in showing such fine-grained lower bounds based on these assumptions is that one must
carefully design the reductions so that they run fast enough as not to supersede the lower
bound assumptions.

One fundamental problem for which such fine-grained reductions were shown is the Closest
Pair (CP) problem. In this problem, given a distance metric dist : {0, 1}d ◊ {0, 1}d æ R+,
and given a pair of sets A,B ™ {0, 1}d, the goal is to find a pair (a, b) œ A ◊ B which
minimizes dist(a, b). This problem was studied for various metrics such as Hamming, ¸p,
and edit distance, and it has many applications, for example in computational geometry,
geographic information systems [12], clustering [24, 6], and matching problems [23], to name
a few. For concreteness, in what follows we restrict our attention only to the Euclidean ¸2

metric, though many of the results we mention hold also for other metrics.

1 The IP assumption is at least as plausible as OVC if we allow an arbitrary dependence of cip on epsilon.
2 We use ¥, ', / to hide polylog factors.
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One can naïvely solve the (Euclidean) Closest Pair problem in O(N2
d) time. On the

other hand, algorithms have been developed which solve the problem in time ¥ N
O(c) in the

low-dimensional regime d = c logN , [16, 14]; Thus, a truly sub-quadratic algorithm is only
known for smaller values of c. On the other hand, in [5] it was shown that assuming OVC,
for any ‘ > 0 there exists c = c(‘) so that no algorithm can solve this problem in time N

2≠‘.

1.1 Fine-grained hardness of approximation

Given the above state of a�airs, it is natural to ask whether relaxing the requirements and
settling for an approximate “close-enough” answer can help in designing faster fine-grained
algorithms. For example, it is known that for the (Euclidean) CP problem, one can obtain a
(1 + ”)-approximation with running time N

2≠‘ for ” ¥ ‘
3 (for any dimension d Æ N

1≠‘) [4],
which is much faster than the best-known exact algorithm.

In terms of impossibility results, known fine-grained reductions can typically be adapted
to the approximate setting, based on appropriate gap assumptions, such as Gap-SETH.3 In
the theory of NP-hardness, it is often possible to base hardness of gap-problems on hardness
of exact problems using PCPs. However, a major barrier in applying this approach in the
fine-grained setting (for example for the purpose of reducing SETH to Gap-SETH) is the
large (super-constant) blow-up in the length of existing PCPs, which translates into a large
(super-constant) blow-up in the number of variables n in the reduction.

Nevertheless, in a recent breakthrough, Abboud, Rubinstein, and Williams [2] have shown
how to utilize PCP machinery (specifically, the sumcheck protocol) for showing fine-grained
hardness of approximation results based on non-gap assumptions. Since then, many works
have utilized this framework for showing fine-grained hardness of approximation results for
many central problems in P, based on non-gap assumptions such as SETH or OVC (see the
recent surveys [18, 10] for a description of this line of work).

In particular, for the CP problem, Rubinstein [17] has shown that assuming OVC, for
any ‘ > 0 there exists ” = ”(‘) such that there is no (1 + ”)-approximation algorithm for
(Euclidean) CP running in time N

2≠‘. This rules out truly sub-quadratic approximation
algorithms, running, say, in time f(”) ·N1.99. However, the obtained dependence of ” on ‘ is
far from optimal, specifically ” = exp(≠cov/‘), where cov = cov(‘) Ø exp(1/‘) is the constant
guaranteed by the OVC conjecture.

In a follow-up work, Chen and Williams [9] have shown an improved hardness of approxim-
ation result for CP in which ” only depends polynomially on ‘. Specifically, they showed that
if the IP assumption holds, then for any ‘ > 0 there is no (1 + ”)-approximation algorithm
for (Euclidean) CP running in time N

2≠‘, where ” = poly(‘/cip) and cip = cip(‘) ' 1/‘ is
the constant guaranteed by the IP assumption. However, the obtained dependence of ” on
‘ was still quite small, on the order of ” ¥ (‘/cip)6 / ‘

12. This is still quite far from the
dependence obtained by the best known approximation algorithm for CP which gives an
(1 + ”)-approximation in time N

2≠‘ for ” ¥ ‘
3.

In this work, we investigate the question of whether the dependence of ” on ‘ can even
be further improved, potentially to match the best known approximation algorithm.

3 The Gap-SETH assumption asserts that for any ‘ > 0, there are k and ” > 0, so that no 2(1≠‘)n-time
algorithm can, given a k-CNF on n variables, distinguish between the case that it is satisfiable, and the
case that any assignment satisfies at most an (1 ≠ ”)-fraction of its clauses.

ICALP 2024
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1.2 Our results
Recall that by the discussion above, the best known approximation algorithm for (Euclidean)
CP gives an (1+ ”)-approximation in time N2≠‘ for ” ¥ ‘

3, while the best-known hardness of
approximation result shows that if the IP assumption holds, then no (1 + ”)-approximation
algorithm running in time N

2≠‘ exists for ” ¥ (‘/cip)6 / ‘
12, where cip = cip(‘) ' 1/‘ is

the constant guaranteed by the IP assumption. Thus there remains a large polynomial gap
between the upper and lower bounds, and our main result narrows this gap.

I Theorem 1.1. Suppose that the IP assumption holds, i.e., for any ‘
Õ
> 0, there exists

a cip = cip(‘Õ) such that given a pair of sets A,B ™ {0, 1}d of cardinality N each and of
dimension d = cip(‘Õ) · logN , and an integer ‡ œ {0, 1, . . . , d}, it is impossible to find a pair
(a, b) œ A ◊ B satisfying that Èa, bÍ = ‡ in N

2≠‘
Õ time.

Then for any ‘ > 0, there is ” = �̃(( ‘

cip(‘/2)
)2), so that any algorithm running in time

N
2≠‘ cannot (1 + ”)-approximate Euclidean CP.

Recall that it is known how to solve the IP problem in time N2≠‘ for dimension d = c logN
with c ¥ 1/‘, and so it must hold that cip ' 1/‘. If we assume that cip ¥ 1/‘, then the above
theorem gives a dependence of ” on ‘ of the form ” ¥ ‘

4, which is very close to the dependence
of ” ¥ ‘

3 given by the best known algorithm. Moreover, improving the dependence in the
above theorem to ” ¥ ‘

cip
would imply an algorithmic improvement on the IP problem. We

leave the question of determining the exact dependence of ” on ‘ as an interesting open
problem for future research.

By known reductions, the above theorem gives a similar improvement for a host of other
problems in fine-grained hardness of approximation such as closest pair with respect to other
metrics such as Hamming, ¸p-norm for any constant p > 0, and edit distance, Furthest Pair
and approximate nearest neighbor in these metrics, and additive approximations to Max-IP
and Min-IP, see Appendix A for more details.

Finally, we remark that the above theorem also holds under OVC (or SETH), but is less
meaningful, since as discussed above, for the OV problem we have that cov Ø exp(1/‘).

1.3 Proof overview
Next we give an overview of our proof method, and how it improves on prior work. To
this end, we first describe the general framework presented in [2] for obtaining fine-grained
hardness of approximation results based on MA communication protocols. Then we discuss
the work of Rubinstein [17] who relied on this framework to give the first fine-grained hardness
of approximation result for CP, albeit with an exponential dependence of ” on ‘, and the
work of Chen and Williams [9] who improved this dependence to polynomial. Following this,
we turn to discuss our proof method that obtains a tighter polynomial relation.

Fine-grained hardness of approximation via MA communication [2]. In a Merlin-Arthur
(MA) communication protocol for a function f : {0, 1}d ◊ {0, 1}d æ {0, 1}, two players Alice
and Bob wish to compute f(a, b), where Alice is given as input only a œ {0, 1}d, and Bob is
given as input only b œ {0, 1}d. To this end, Alice and Bob engage in a randomized (public
coin) communication protocol, where their goal is to use as little communication as possible.
To aid them with this task, there is also a (potentially malicious) prover Merlin who sees
Alice’s and Bob’s inputs, and before any communication begins Merlin sends Alice a short
message m, which can be thought of as a “proof” or “advice”. The requirement is that if
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f(a, b) = 1, then there must exist some message m from Merlin on which Alice accepts with
probability 1. Otherwise, if f(a, b) = 0, then for any possible message m̃ from Merlin, Alice
accepts with probability at most 1

2
on m̃.4

In [2], it was shown that an e�cient MA communication protocol for set disjointness5
implies a fine-grained reduction from OV to an approximate version of Max-IP in which given
two sets A,B ™ {0, 1}d of cardinality N each, the goal is to output a number su�ciently
close to M := maxaœA,bœB Èa, bÍ.

To see how a reduction as above can be constructed, suppose that there exists an MA
communication protocol for set disjointness with Merlin’s message length L, communication
complexity cc between Alice and Bob, and randomness complexity R. Suppose furthermore
that we are given an instance A,B ™ {0, 1}d of OV, where |A| = |B| = N . Then for each
possible Merlin’s message m œ {0, 1}L, we construct an instance Am, Bm ™ {0, 1}2cc+R of
Max-IP, where |Am| = |Bm| = N .

Fix m œ {0, 1}L. Then the set Am is obtained from A by mapping each element a œ A

to a binary vector am that contains an entry for each possible transcript � œ {0, 1}cc and
randomness string r œ {0, 1}R (so am has length 2cc+R), and whose (�, r)-entry equals 1 if
and only if � is consistent with r and a, and Alice accepts on input a, randomness string r,
and transcript �. The set Bm is obtained analogously from B.

Then the main observation is that for some m œ {0, 1}L, we have that the (�, r)-entry
of both am and bm equals 1 if and only if Alice accepts on Merlin’s message m, inputs
a and b, and randomness string r. Consequently, if there exists (a, b) œ A ◊ B so that
Èa, bÍ = 0 (i.e., f(a, b) = 1), then there exists a Merlin’s message m on which Alice accepts
with probability 1 on inputs a and b, and consequently we have that the corresponding
vectors (am, bm) œ Am ◊ Bm satisfy that Èam, bmÍ = 2R. On the other hand, if Èa, bÍ ”= 0
(i.e., f(a, b) = 0) for any (a, b) œ A ◊ B, then for any Merlin’s message m̃, and on any inputs
(a, b) œ A◊B, Alice accepts with probability at most 1

2
, and so Èam̃, bm̃Í Æ 1

2
·2R for any pair

(am̃, bm̃) œ Am̃ ◊ Bm̃. This gives the desired gap, showing that OV reduces to 2L instances
of approximate Max-IP.

To obtain a fine-grained reduction, one must make sure that cc, R and L are not too
large, so that the total construction time of the reduction is at most N ‘. To achieve this, one
can use the MA communication protocol of Aaronson and Wigderson [1] for set disjointness
in which all these quantities are upper bounded by ¥

Ô
d.

For d = c logN , this gives that 2cc, 2R, and 2L are all upper bounded by 2Õ(

Ô
logN) π N

‘,
and so the reduction can be constructed in time N ‘. Next we describe the MA communication
protocol of [1], as hardness of approximation results for CP (including ours) crucially rely on
its properties.

MA communication protocol for set disjointness [1]. The MA communication protocol
for set disjointness of Aaronson and Wigderson [1] relies on the influential sumcheck protocol
of [15], and it proceeds as follows.

Let a œ {0, 1}d be Alice’s input. Slightly abusing notation, we view a as a
Ô
d◊

Ô
d binary

matrix in the natural way, and we let â denote the p◊
Ô
d matrix obtained by encoding each

column of a with a systematic Reed-Solomon code RSÔ
d,p

: F
Ô
d

p
æ Fp

p
of degree

Ô
d over a

prime field of size p ¥ 4
Ô
d.6 Let b̂ be defined analogously.

4 The accept probability can be increased by executing the communication phase between Alice and Bob
independently for multiple times and accepting if and only if all invocations accept.

5 Recall that set disjointness is the function disj : {0, 1}d◊{0, 1}d æ {0, 1} which satisfies that disj(a, b) = 1
if and only if the supports of a and b are disjoint, i.e., if Èa, bÍ = 0.

6 The systematic Reed-Solomon code RSd,p : Fd
p æ Fp

p of degree d over a prime field of size p > d is a linear
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7:6 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

In the protocol, Merlin first computes the pointwise product â ı b̂ œ Fp◊
Ô
d

p
, and then

sends Alice the sum m œ Fp
p
of the columns of â ı b̂ (where arithemtic is performed mod p).

Alice first checks that m is a codeword of RS
2

Ô
d,p

, and that the first
Ô
d entries of m are all

zero, otherwise she rejects and aborts. Then Alice and Bob jointly sample a random index
i œ [p], Bob sends Alice the i’th row of b̂, Alice computes its inner product with the i’th row
of â, and accepts if and only if this product equals m(i) (where once more, arithmetic is
performed mod p).

To see that the protocol is complete, note first that if a and b are disjoint, then a ı b is the
all-zero matrix. Consequently, by the systematic property of the Reed-Solomon encoding, the
first

Ô
d rows of â ı b̂ are also identically zero, which implies in turn that the first

Ô
d entries

of m are identically zero. Furthermore, since the product of two polynomials of degree at
most

Ô
d is a polynomial of degree at most 2

Ô
d, it follows that m is a codeword of RS

2
Ô
d,p

.
Thus, both Alice’s checks will clearly pass. It can also be verified that by construction, the
inner product of the i’th rows of â and b̂ equals m(i), and so Alice accepts with probability 1.

To show soundness, suppose that a and b intersect, and let m̃ denote Merlin’s message.
We may assume that m̃ is a codeword of RS

2
Ô
d,p

, and that the first
Ô
d entries of m̃ are all

zero, since otherwise Alice clearly rejects. But on the other hand, since a and b intersect,
then a ı b has a 1-entry, say in the j-th row, and since p >

Ô
d, the sum of entries in the j’th

row of a ı b is non-zero mod p, which implies in turn that m(j) ”= 0. Thus, we conclude that
m̃ and m are distinct codewords of RS

2
Ô
d,p

– a code of distance at least p

2
– and so they

must di�er by at least 1

2
of their entries. But this implies in turn that with probability at

least 1

2
over the choice of i, it holds that m̃(i) ”= m(i), in which case the inner product of the

i’th row of â and b̂ will be di�erent than m̃(i), which will cause Alice to reject.
Finally, it can also be verified that in this protocol, cc, R, and L are all upper bounded

by ¥
Ô
d.

Hardness of approximation for CP with exponential dependence [17]. In [17], Rubinstein
utilized the above framework to show fine-grained hardness of approximation for CP. The
starting point of [17] is a simple linear-time reduction from ”-additive approximation for
Max-IP7 to an (1+�(”))-approximation for (Euclidean) CP. Thus, to show that no algorithm
can find an (1 + �(”))-approximation for (Euclidean) CP in time N

2≠‘, it su�ces to show
that no algorithm can find a ”-additive approximation for Max-IP in time N

2≠‘.
The [2] framework discussed above generates instances of Max-IP of dimension 2cc+R and

additive gap of 1

2
· 2R, which gives ” := �(2≠cc). However, the MA protocol of [1] described

above only gives cc ¥
Ô
d which is super-constant for a super-constant dimension d, and

consequently only yields a sub-constant ”.
To deal with this, [17] first utilized the fact (previously utilized also in [2]) that the [1]

protocol described above works equally well on skewed matrices of dimensions d

T
◊ T , in

which case we have that L = d

T
· log p and cc = T · log p. Thus, assuming d = c logN , to

achieve 2L Æ N
‘, one can set T = c

‘
· log p, which gives in turn cc = c

‘
· log2 p.

map, defined as follows. To encode a message m = (m(0), . . . ,m(d ≠ 1)) œ Fd
p, one finds the (unique)

degree d ≠ 1 polynomial Pm(X) œ Fp[X] which satisfies that Pm(i) = m(i) for any i = 0, . . . , d ≠ 1, and
lets RSd,p(m) = (Pm(0), . . . , Pm(p ≠ 1)). The code is called systematic since the message is a prefix of
its encodings. The code has distance at least p≠d+1 since any pair of distinct degree d≠ 1 polynomials
can agree on at most d ≠ 1 points.

7 In a ”-additive approximation for Max-IP, given A,B ™ {0, 1}d of cardinality N each, the goal is to
output a number in [M ≠ ” · d,M ], where M := maxaœA,bœB Èa, bÍ.
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However, this is still not quite enough since the MA protocol of [1] requires setting
p >

Ô
d because of the use of Reed-Solomon codes that are only defined over a large alphabet,

and consequently the communication complexity is still super-constant. However, the main
observation in [1] is that the protocol can actually be executed using any error-correcting
code with a multiplication property8. Relying on this observation, Rubinstein replaced the
Reed-Solomon codes in the protocol of [1] with algebraic-geometric (AG) codes that satisfy
the multiplication property over a constant-size alphabet. This reduced the communication
complexity to ¥ c/‘, yielding in turn an approximation factor of ” = 2≠�̃(c/‘).

Polynomial dependence [9]. While [17] gave the first non-trivial hardness of approximation
result for CP, a downside of this result was that the approximation factor ” depended
exponentially on the running time parameter ‘. In the follow-up work [9], Chen and Williams
showed how to reduce this dependence to just polynomial.

The main observation of Chen and Williams was that instead of thinking of the output
of the MA protocol of [17] as being just accept or reject, one can view the output as being
short vectors a

Õ
, b

Õ œ FT
p
(namely, the i’th row of â, b̂, respectively), and ‡

Õ œ {0, 1, . . . , T · p2}
(namely, the i’th entry of Merlin’s message m), where a

Õ only depends on Alice’s input a and
the randomness string, bÕ only depends on Bob’s input b and the randomness string, and ‡

Õ

only depends on Merlin’s message and the randomness string. The requirement then is that
if Èa, bÍ = 0 for some (a, b) œ A ◊ B, then for some Merlin’s message m, ÈaÕ

, b
ÕÍ = ‡

Õ with
probability 1, while if Èa, bÍ ”= 0 for any (a, b) œ A ◊ B, then for any Merlin’s message m̃,
then ÈaÕ

, b
ÕÍ ”= ‡

Õ with probability at least 1

2
.

Chen and Williams then suggested to create an instance Am, Bm for any Merlin’s message
m, where the set Am is obtained from A by simply mapping each element a œ A to a
vector am œ FT◊2

R

p
that is the concatenation of all possible output vectors aÕ for all possible

randomness strings, and analogously for Bm. The advantage is that now the dimension of
the vectors in Am and Bm is much shorter than in [17]. However, a disadvantage is that now
the alphabet is not binary anymore, and an even more serious problem is that the soundness
guarantee is only that ÈaÕ

, b
ÕÍ ”= ‡

Õ, so the reduction does not seem to produce any gap.
To deal with these issues, Chen and Williams use an encoding lemma which gives

mappings g, h and a value �, where g, h, and � only depend on p and T , so that g(aÕ
,‡

Õ)
and h(bÕ

,‡
Õ) are binary vectors of length poly(p, T ) satisfying that if ÈaÕ

, b
ÕÍ = ‡

Õ then
Èg(aÕ

,‡
Õ), h(bÕ

,‡
Õ)Í = �, while if ÈaÕ

, b
ÕÍ ”= ‡

Õ then Èg(aÕ
,‡

Õ), h(bÕ
,‡

Õ)Í < � (see Lemma 4.2 for
a formal statement). This produces the desired additive gap, on the order of �(2R). Since
the encoding lemma increases the dimension of the vectors only by a factor of poly(p, T ),
this yields an approximation factor of ” = 1

poly(p,T )
= poly( ‘

c
).

We note that a delicate issue that should be dealt with in the reduction is that the
encoding lemma works over the integers, while the protocol works over finite fields, and in
particular, over non-prime fields, as AG codes are only known to exist over non-prime fields.
Additionally, Chen and Williams show that the reduction works equally well when using the
IP problem instead of OV as its starting point, and using an MA communication protocol
for IP similar to that of [1]. This can potentially allow for a smaller value of c as it is only
known how to solve (exact) IP in time N

2≠‘ up to a dimension of c logN for c ¥ 1/‘.

8 Informally, we say that a linear code C : Fk æ Fn has a multiplication property if the set span{C(m) ı
C(mÕ) | m,mÕ œ Fk} has su�ciently large distance.
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7:8 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

This work – tighter polynomial dependence. While [9] obtained a polynomial dependence
of ” on ‘, the dependence was quite small, on the order of ” ¥ ( ‘

c
)6, and in the current work

we show how to improve the dependence to ” ¥ ( ‘

c
)2.

To this end, we first observe that one reason for the small polynomial dependence obtained
in [9] was the large polynomial dependence of the dimension of the resulting vectors in the
encoding lemma on the alphabet size p. While in the protocol of [17] the field size p can
be made constant using AG codes, the field still needs to be of characteristic at least T ,
since otherwise the sum of entries in a non-zero row of a ı b may sum to zero over Fp, and
consequently the soundness analysis will not go through.

To reduce the alphabet size, we first design a new MA protocol in which the alphabet size
is only polylogarithmic in T (see Theorem 3.1). This protocol is inspired by the MA protocol
of [8] for IP which achieved communication complexity O(

Ô
d log d log log d), improving on

the communication complexity of O(
Ô
d log d) of [1]. In a nutshell, Chen’s idea was to execute

the original MA protocol of [1] multiple times over di�erent small prime fields, hoping that if
Èa, bÍ ”= 0, then Èa, bÍ is also non-zero modulo many of the primes, and so the protocol will
be executed correctly. Chen showed that this is indeed possible to achieve using O(log d)
distinct primes of cardinality at most polylog(d) each.

We observe that for skewed matrices of dimensions d

T
◊ T , it in fact su�ces to execute

the protocol with O(log T ) distinct primes of cardinality at most polylog(T ) each. While this
choice does not necessarily guarantee the property above that if Èa, bÍ ”= 0, then Èa, bÍ is also
non-zero modulo many of the primes, this turns out to still su�ce for a correct execution of
the protocol.

We then further observe that such a protocol can be used in the framework of [9] to
obtain an improved hardness of approximation result for Max-IP. Once more, a delicate issue
is how to use the encoding lemma in the presence of many di�erent non-prime fields.

To the best of our knowledge, this is the first use of the techniques underlying the
improved MA protocol of [8] for showing a fine-grained hardness of approximation result.9

Paper organization. The rest of the paper is organized as follows. We begin in Section 2
below with the required notation and terminology with respect to fine-grained complexity
problems and error-correcting codes. Then in Section 3 we present our improved MA protocol
over a small alphabet, while in Section 4 we show how to use this protocol for obtaining
an improved reduction from IP to approximate Max-IP. Finally, in Appendix A we show
implications of our latter result to showing hardness of approximation results for closest pair,
as well as other related problems in fine-grained complexity.

2 Preliminaries

We start by setting some general notation. For a positive integer d, we let [d] := {1, 2, . . . , d}.
For convenience, we often view a vector a œ �d as a function a : [d] æ �, and we let a(i)
denote the i-th entry of a. For a pair of vectors a, b œ Nd, we let Èa, bÍ :=

q
d

i=1
a(i) · b(i)

denote their inner product, and we let a ı b œ Nd denote their pointwise product, given by
(a ı b)(i) = a(i) · b(i) for i œ [d]. For a, b œ �d, we let �(a, b) := |{i œ [d] | a(i) ”= b(i)}| denote
their Hamming distance. For an n ◊ k matrix A and i œ [n] (j œ [k], respectively), we let
rowi(A) (colj(A), respectively) denote the i-th row (j-th column, respectively) of A.

9 The paper [8] contains various hardness of approximation results for Max-IP, as well as the improved
MA protocol for IP. To the best of our knowledge, the improved MA protocol presented in this paper
was not used in this paper or in any subsequent work as the basis for hardness of approximation results.
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2.1 Problems in fine-grained complexity
Below we list the main fine-grained problems that we will be concerned with in this paper.

I Definition 2.1 (Inner Product (IP)). In the inner product IPN,d problem, given two sets
A,B ™ {0, 1}d of cardinality N each, and an integer ‡ œ {0, 1, . . . , d}, the goal is to determine
whether there exists a pair (a, b) œ A ◊ B satisfying that Èa, bÍ = ‡.

I Definition 2.2 (Maximum Inner Product (Max-IP)). In the maximum inner product Max-
IPN,d problem, given two sets A,B ™ {0, 1}d of cardinality N each, the goal is to compute
M := maxaœA,bœB Èa, bÍ .

For the approximate version of Max-IP, defined next, we will consider the less standard
additive approximation version that will be useful for obtaining hardness of approximation
for the closest pair problem.

I Definition 2.3 (Approximate Maximum Inner Product (Apx-Max-IP)). Let ” > 0 be a
parameter. In the (additive) approximate maximum inner product ”-Apx-Max-IPN,d problem,
given two sets A,B ™ {0, 1}d of cardinality N each, the goal is to output a number in
[M ≠ ” · d,M ], where M := maxaœA,bœB Èa, bÍ.

I Definition 2.4 (Closest Pair (CP)). Let dist : {0, 1}d ◊{0, 1}d æ R+ be a distance function.
In the closest pair CPN,d,dist problem, given two sets A,B ™ {0, 1}d of cardinality N each,
the goal is to compute M := minaœA,bœB dist(a, b).

I Definition 2.5 (Approximate Closest Pair (Apx-CP)). Let dist : {0, 1}d ◊ {0, 1}d æ R+ be
a distance function, and let ” > 0 be a parameter. In the approximate closest pair ”-Apx-
CPN,d,dist problem, given two sets A,B ™ {0, 1}d of cardinality N each, the goal is to output
a number in [M, (1 + ”)M ], where M := minaœA,bœB dist(a, b).

2.2 Error-correcting codes
Our reduction will make use of error-correcting codes. In what follows, we first present some
general notation and terminology with respect to error-correcting codes, and then describe
the kind of codes we shall use for our reduction.

Let � be a finite alphabet, and k, n be positive integers (the message length and the
codeword length, respectively). An (error-correcting) code is an injective map C : �k æ �n.
The elements in the domain of C are called messages, and the elements in the image of C are
called codewords. We say that C is systematic if the message is a prefix of the corresponding
codeword, i.e., for every x œ �k there exists z œ �n≠k such that C(x) = (x, z). The rate of a
code C : �k æ �n is the ratio fl := k

n
. The relative distance dist(C) of C is the maximum

” > 0 such that for every pair of distinct messages x, y œ �k it holds that �(C(x), C(y)) Ø ”.
If � = F for some finite field F, and C is a linear map between the vector spaces Fk and

Fn then we say that C is linear. The generating matrix of a linear code C : Fk æ Fn is a
matrix G œ Fn◊k such that C(x) = G · x for any x œ Fk. We say that a linear code C is
explicit if G can be generated in time poly(n).

For our reduction, we shall require linear codes over a small (constant-size, independent
of the codeword length) alphabet, satisfying the multiplication property, which informally
says that all pointwise products of pairs of codewords span a code of large distance. Such
codes can be obtained from the AG codes of [19] (see also [17, Theorem 2.4]).

I Theorem 2.6 ([19]; [17], Theorem 2.4). There exists a constant integer p0 so that for any
prime p Ø p0, there exist two explicit code families C = {Ck}kœN and Cı = {(Cı)k}kœN so
that the following hold for any k œ N:
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7:10 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

Ck, (Cı)k are systematic linear codes over Fp2 of relative distance at least 0.1 and rate at
least 0.1.
Ck has message length k.
For any x, y œ (Fp2)k, Ck(x) ı Ck(y) is a codeword of (Cı)k.

3 MA protocol for IP over a small alphabet

In this section, we will provide an MA protocol for IP over a small alphabet. The protocol
will be later used in Section 4 below to show a reduction from IP to Apx-Max-IP.

I Theorem 3.1 (MA Protocol for IP over a small alphabet). For any su�ciently large integer
T , there is an integer q = O(log2 T ), so that for any integer d which is a multiple of T there
is an MA Protocol which satisfies the following:
1. Alice is given as input a vector a œ {0, 1}d and an integer ‡ œ {0, 1, . . . , d}, Bob is given

as input a vector b œ {0, 1}d, and Merlin is given as input a, b, and ‡.
2. Merlin sends Alice a message m of (bit) length L = O( d

T
· log2 T ). Alice reads Merlin’s

message, and based on this message and ‡, decides whether to reject and abort, or
continue.

3. Alice and Bob sample a joint random string r of (bit) length R = log( d

T
)+log log T +O(1).

4. Alice outputs a string a
Õ œ {0, 1, . . . , q}T and an integer ‡

Õ œ {0, 1, . . . , T · q2}, where
a

Õ only depends on Alice’s input a and the randomness string r, and ‡
Õ only depends

on Merlin’s message m and r, and Bob outputs a string b
Õ œ {0, 1, . . . , q}T , which only

depends on Bob’s input b and r, so that the following hold:
(Completeness) If Èa, bÍ = ‡, then on Merlin’s message m, Alice and Bob output aÕ

, b
Õ,

and ‡
Õ so that ÈaÕ

, b
ÕÍ = ‡

Õ with probability 1.
(Soundness) If Èa, bÍ ”= ‡, then for any Merlin’s message m̃, Alice and Bob output
a

Õ
, b

Õ
, and ‡

Õ so that ÈaÕ
, b

ÕÍ = ‡
Õ with probability at most 0.98.

Moreover, the running time of both Alice and Bob is poly(d).

The main di�erence between the above protocol and that of [9], is that instead of working
over a field of characteristic �(T ), we perform the protocol of [9] simultaneously over O(log T )
di�erent fields of size O(log2 T ) each.

To this end, we start by fixing some notation. Let t be an integer such that tt = T . By
Lemma 2.4 in [8], for a large enough integer t, there exist 10t distinct primes p1 < p2 <

· · · < p10t, where the value of each prime is bounded in the interval [t, t2]. Let q := t
2, and

note that t = O(log T ) and q = O(log2 T ). For each ¸ œ [10t], let C(¸)
, C

(¸)

ı be the systematic
linear codes over Fp2

¸
guaranteed by Theorem 2.6, where C

(¸) has message length d

T
and

codeword length n¸ := O( d

T
). Finally, recall that the elements of Fp2

¸
can be viewed as degree

1 polynomials over Fp¸ , where multiplication is performed modulo an irreducible polynomial
Q¸ of degree 2 over Fp¸ .

Let a œ {0, 1}d be Alice’s input. Slightly abusing notation, we view a as a d

T
◊ T binary

matrix in the natural way. For ¸ œ [10t], let a(¸) denote the n¸ ◊ T matrix over Fp2
¸
obtained

by encoding each column of a with the code C
(¸). View each entry of a(¸) as a degree 1

polynomial over Fp¸ , and let a(¸,0), a(¸,1) denote the n¸ ◊ T matrices over Fp¸ , obtained from
a
(¸) by keeping in each entry only the free coe�cient and linear coe�cient, respectively.

Let b, b
(¸)

, b
(¸,0)

, b
(¸,1) be defined analogously for ¸ œ [10t]. In what follows, all arithmetic

operations are performed over the reals, unless otherwise stated.
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The protocol. The protocol proceeds as follows:

1. a. Merlin sends

m0 :=
Tÿ

j=1

colj(a) ı colj(b) œ {0, 1, . . . , T}d/T .

b. For ¸ = 1, . . . , 10t and –,— œ {0, 1}, Merlin sends

m¸,–,— :=
Tÿ

j=1

colj(a(¸,–)) ı colj(b(¸,—)) œ {0, 1, . . . , T · q2}n¸ .

2. a. Alice checks that
q

d/T

i=1
m0(i) = ‡.

b. Alice checks that m¸,0,0(i) = m0(i) and m¸,0,1(i) = m¸,1,0(i) = m¸,1,1(i) = 0 for
¸ = 1, . . . , 10t and i = 1, . . . , d

T
.

c. For ¸ = 1, . . . , 10t, let m¸ œ (Fp2
¸
)n¸ given by

m¸ = m¸,0,0 + (m¸,0,1 +m¸,1,0) ·X +m¸,1,1 ·X2 (mod Q¸).

Alice checks that m¸ is a codeword of C(¸)

ı for ¸ = 1, . . . , 10t.
If any of the checks is unsatisfied, then Alice rejects and aborts.

3. Alice and Bob jointly sample ¸ú œ [10t], iú œ [n¸ú ], and –ú,—ú œ {0, 1}.
4. Alice outputs aÕ := rowiú(a(¸ú,–ú)) œ {0, 1, . . . , q}T and ‡

Õ := m¸ú,–ú,—ú(iú) œ {0, 1, . . . , T ·
q
2}, and Bob outputs bÕ := rowiú(b(¸ú,—ú)) œ {0, 1, . . . , q}T .

It can be verified that the protocol has the required structure, and that the running times
of Alice and Bob are as claimed. Next we show completeness and soundness.

Completeness. Suppose that Èa, bÍ = ‡, we shall show that in this case Alice and Bob
output aÕ, bÕ, and ‡

Õ so that ÈaÕ
, b

ÕÍ = ‡
Õ with probability 1.

We first show that in this case all of Alice’s checks on Step 2 always pass.
To this end, first note that by assumption that Èa, bÍ = ‡, we have that

d/Tÿ

i=1

m0(i) =
d/Tÿ

i=1

Tÿ

j=1

a(i, j) · b(i, j) = Èa, bÍ = ‡, (1)

so Alice’s check on Step 2a will pass.
We now show that Alice’s check on Step 2b passes. Fix ¸ œ [10t], and recall that a

(¸)

is obtained by encoding each column of the matrix a œ {0, 1} d
T ◊T with a systematic linear

code. Consequently, a is the restriction of a(¸) to the first d

T
rows, and similarly for b. This

implies in turn that for any i œ [ d
T
], we have that

m¸,0,0(i) =
e
rowi(a(¸,0)), rowi(b(¸,0))

f
= Èrowi(a), rowi(b)Í = m0(i), (2)

and

m¸,0,1(i) = m¸,1,0(i) = m¸,1,1(i) = 0. (3)

So Alice’s check on Step 2b will pass as well.
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7:12 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

Finally, we show that Alice’s check on Step 2c passes. Fix ¸ œ [10t], and note that

m¸ = m¸,0,0 + (m¸,0,1 +m¸,1,0) ·X +m¸,1,1 ·X2 (mod Q¸)

=
Tÿ

j=1

5
colj(a(¸,0)) ı colj(b(¸,0))

+
1
colj(a(¸,0)) ı colj(b(¸,1)) + colj(a(¸,1)) ı colj(b(¸,0))

2
·X

+colj(a(¸,1)) ı colj(b(¸,1)) ·X2

6
(mod Q¸)

=
Tÿ

j=1

(colj(a(¸,0)) + colj(a(¸,1)) ·X) ı (colj(b(¸,0)) + colj(b(¸,1)) ·X) (mod Q¸)

=
Tÿ

j=1

colj(a(¸)) ı colj(b(¸)) (mod Q¸). (4)

Now, since each column of a(¸) and b
(¸) is a codeword of C(¸), we have that colj(a(¸)) ı

colj(b(¸)) (mod Q¸) is a codeword of C(¸)

ı for any j œ [T ]. By linearity of C(¸)

ı , this implies
in turn that m¸ is a codeword of C(¸)

ı , and so Alice’s check on Step 2c will also pass.
Thus, we conclude that all of Alice’s checks on Step 2 pass. Furthermore, we clearly

have that

ÈaÕ
, b

ÕÍ =
e
rowiú(a(¸ú,–ú)), rowiú(b(¸ú,—ú))

f
= m¸ú,–ú,—ú(i) = ‡

Õ
.

We conclude that in the case that Èa, bÍ = ‡, we have that ÈaÕ
, b

ÕÍ = ‡
Õ with probability 1,

as required.

Soundness. Assume that Èa, bÍ ”= ‡, and let m̃0 and m̃¸,–,— for ¸ = 1, . . . , 10t and –,— œ
{0, 1} be Merlin’s messages on Step 1. We shall show that in this case Alice and Bob output
a

Õ, bÕ, and ‡
Õ so that ÈaÕ

, b
ÕÍ = ‡

Õ with probability at most 0.98.
To this end, first note that we may assume that

q
d/T

i=1
m̃0(i) = ‡, since otherwise Alice

clearly rejects on Step 2a. On the other hand, by (1) and by assumption that Èa, bÍ ”= ‡, we
have that

q
d/T

i=1
m0(i) = Èa, bÍ ”= ‡. Consequently, there exists i œ [ d

T
] so that m0(i) ”= m̃0(i).

Moreover, since m0(i), m̃0(i) œ {0, 1, . . . , T}, we have that |m0(i)≠ m̃0(i)| Æ T . Recalling
that t

t = T , and that p¸ Ø t for any ¸ œ [10t], we conclude that at most t of the p¸’s can
divide |m0(i) ≠ m̃0(i)|. Thus, with probability at least 0.9 over the choice of ¸ú, it holds
that p¸ú does not divide |m0(i) ”= m̃0(i)|, and so m0(i) ”= m̃0(i) (mod p¸ú). In what follows,
assume that this event holds.

Let m̃¸ú œ (Fp2
¸ú
)n¸ú be given by

m̃¸ú = m̃¸ú,0,0 + (m̃¸ú,0,1 + m̃¸ú,1,0) ·X + m̃¸ú,1,1 ·X2 (mod Q¸ú).

Next observe that we may assume that for any i œ [ d
T
],

m̃¸ú(i) = m̃¸ú,0,0(i)+(m̃¸ú,0,1(i)+ m̃¸ú,1,0(i)) ·X+ m̃¸ú,1,1(i) ·X2 (mod Q¸ú) = m̃0(i) (mod p¸ú),

since otherwise Alice clearly rejects on Step 2b. On the other hand, by (2) and (3) we have
that for any i œ [ d

T
],

m¸ú(i) = m¸ú,0,0(i)+(m¸ú,0,1(i)+m¸ú,1,0(i)) ·X+m¸ú,1,1(i) ·X2 (mod Q¸ú) = m0(i) (mod p¸ú).

Consequently, by assumption that m0(i) ”= m̃0(i) (mod p¸ú) for some i œ [ d
T
], we have that

m̃¸ú(i) ”= m¸ú(i).
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Finally, note that we may assume that m̃¸ú is a codeword of C(¸ú)
ı , since otherwise Alice

clearly rejects on Step 2c. Moreover, by (4) we also have that m¸ú is a codeword of C(¸ú)
ı .

Since C
(¸ú)
ı has relative distance at least 0.1, and by assumption that m̃¸ú ”= m¸ú , we have

that m̃¸ú and m¸ú di�er on at least a 0.1-fraction of their entries, and so with probability at
least 0.1 over the choice of iú it holds that m̃¸ú(iú) ”= m¸ú(iú). In what follows, assume that
this event holds as well.

By assumption that m̃¸ú(iú) ”= m¸ú(iú), there exist –,— œ {0, 1} so that m̃¸ú,–,—(iú) ”=
m¸ú,–,—(iú). Consequently, with probability at least 0.25 over the choice of –ú,—ú, it holds
that m̃¸ú,–ú,—ú(iú) ”= m¸ú,–ú,—ú(iú). But assuming that this latter event holds, we have that

ÈaÕ
, b

ÕÍ =
e
rowiú(a(¸ú,–ú)), rowiú(b(¸ú,—ú))

f
= m¸ú,–ú,—ú(iú) ”= m̃¸ú,–ú,—ú(iú) = ‡

Õ
.

We conclude that in the case that Èa, bÍ ”= ‡, for any Merlin’s message, we have that
Alice either rejects or ÈaÕ

, b
ÕÍ ”= ‡

Õ with probability at least 0.9 · 0.1 · 0.25 Ø 0.02 over the
choice of ¸ú, iú,–ú, and —ú. So ÈaÕ

, b
ÕÍ = ‡

Õ with probability at most 0.98 over the choice of
¸ú, iú,–ú, and —ú.

4 From IP to Apx-Max-IP

In this section we use Theorem 3.1 from the previous section which gives an MA protocol
for IP over a small alphabet to give a fine-grained reduction from IP to Apx-Max-IP with
a tighter polynomial dependence of the approximation parameter ” on the running time
parameter ‘.

I Lemma 4.1 (From IP to Apx-Max-IP). The following holds for any ‘ > 0 and integer
c Ø 1. Suppose that IPN,d cannot be solved in time N

2≠‘ for d = c logN . Then there exists
d

Õ such that ”-Apx-Max-IPN,dÕ cannot be solved in time N
2≠2‘ for ” = �̃(( ‘

c
)2).

To prove the above lemma, we shall use the following encoding lemma from [9], which
can be used to turn the (non-binary) vectors aÕ

, b
Õ from the protocol given in Theorem 3.1

into (binary) vectors, whose inner product exhibits a gap.

I Lemma 4.2 (Encoding Lemma, [9]). For any non-negative integers T and q, there exist
mappings g, h : {0, 1, . . . , q}T ◊{0, 1, . . . , T ·q2} æ {0, 1}O(T

2
q
4
) and an integer � Æ O(T 2 ·q4),

so that for any a, b œ {0, 1, . . . , q}T and ‡ œ {0, 1, . . . , T · q2}:
If Èa, bÍ = ‡ ∆ Èg(a,‡), h(b,‡)Í = �.
If Èa, bÍ ”= ‡ ∆ Èg(a,‡), h(b,‡)Í < �.

Moreover, g, h can be computed in time poly(T, q).

The reduction. We shall show a reduction from IP to many instances of Apx-Max-IP,
based on our MA protocol for IP over a small alphabet given in Theorem 3.1, and the above
encoding Lemma 4.2.

Let A,B ™ {0, 1}d and ‡ œ {0, 1, . . . , d} be an instance of IPN,d. Let T be a su�ciently
large integer, to be determined later on, and let fi be the protocol guaranteed by Theorem
3.1 for T , q = O(log2 T ), and d (without loss of generality assume that T divides d). Let
g, h, and � be the mappings and the integer guaranteed for T and q by Lemma 4.2.

Let Rej ™ {0, 1}L denote the subset of Merlin’s messages m œ {0, 1}L in fi on which Alice
rejects on input ‡. For b œ B and r œ {0, 1}R, let bÕ

r
denote the string output by Bob in the

protocol fi on input b and randomness string r. Similarly, for a œ A and r œ {0, 1}R, let aÕ
r

denote the string output by Alice in the protocol fi on input a and randomness string r. For
m œ {0, 1}L \ Rej and r œ {0, 1}R, let ‡

Õ
m,r

denote the integer output by Alice on Merlin’s
message m and randomness string r.
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For any m œ {0, 1}L \ Rej, we create an instance Am, Bm of Apx-Max-IPN,dÕ , given by

Am := {(g(aÕ
r
,‡

Õ
m,r

))rœ{0,1}R | a œ A},

and

Bm := {(h(bÕ
r
,‡

Õ
m,r

))rœ{0,1}R | b œ B},

where

d
Õ = O(2R · T 2 · q4).

Let ” := 0.01·2R
dÕ . Given an algorithm A for ”-Apx-Max-IPN,dÕ , we show an algorithm

AÕ for IPN,d: Given an instance A,B,‡ for IPN,d, the algorithm AÕ generates all instances
Am, Bm for m œ {0, 1}L \ Rej, and runs A on any of these instances. If on any of the
instances the algorithm A outputs a value at least 2R · (� ≠ 0.01) then the algorithm AÕ

accepts, otherwise it rejects.

Correctness. Correctness relies on the following claim.

B Claim.

If there exists (a, b) œ A ◊ B so that Èa, bÍ = ‡, then there exist m œ {0, 1}L \ Rej and
(aÕÕ

, b
ÕÕ) œ Am ◊ Bm so that ÈaÕÕ

, b
ÕÕÍ = 2R · �.

If Èa, bÍ ”= ‡ for any (a, b) œ A◊B, then ÈaÕÕ
, b

ÕÕÍ Æ 2R ·(�≠0.02) for any m œ {0, 1}L \Rej
and (aÕÕ

, b
ÕÕ) œ Am ◊ Bm.

Proof. For the first item, suppose that there exists (a, b) œ A ◊ B so that Èa, bÍ = ‡. Let
m be Merlin’s message in the protocol fi on inputs a, b, and ‡, and let (aÕÕ

, b
ÕÕ) œ Am ◊ Bm

be given by a
ÕÕ = (g(aÕ

r
,‡

Õ
m,r

))rœ{0,1}R and b
ÕÕ = (h(bÕ

r
,‡

Õ
m,r

))rœ{0,1}R . By the completeness
property of fi, we have that m /œ Rej, and ÈaÕ

r
, b

Õ
r
Í = ‡

Õ
m,r

for any r œ {0, 1}R. Consequently,
by Lemma 4.2,

+
g(aÕ

r
,‡

Õ
m,r

), h(bÕ
r
,‡

Õ
m,r

)
,
= � for any r œ {0, 1}R. But this implies in turn

that

ÈaÕÕ
, b

ÕÕÍ =
ÿ

rœ{0,1}R

+
g(aÕ

r
,‡

Õ
m,r

), h(bÕ
r
,‡

Õ
m,r

)
,
= 2R · �.

For the second item, suppose that Èa, bÍ ”= ‡ for any (a, b) œ A ◊ B. Fix m œ
{0, 1}L \ Rej and (aÕÕ

, b
ÕÕ) œ Am ◊ Bm. Then by construction, aÕÕ = (g(aÕ

r
,‡

Õ
m,r

))rœ{0,1}R

and b
ÕÕ = (h(bÕ

r
,‡

Õ
m,r

))rœ{0,1}R . By the soundness property of fi, for at least a 0.02-fraction
of the randomness strings r œ {0, 1}R, it holds that ÈaÕ

r
, b

Õ
r
Í ”= ‡

Õ
m,r

. Consequently, by
Lemma 4.2 for at least a 0.02-fraction of the randomness strings r œ {0, 1}R, it holds that+
g(aÕ

r
,‡

Õ
m,r

), h(bÕ
r
,‡

Õ
m,r

)
,

Æ � ≠ 1. But this implies in turn that

ÈaÕÕ
, b

ÕÕÍ =
ÿ

rœ{0,1}R

+
g(aÕ

r
,‡

Õ
m,r

), h(bÕ
r
,‡

Õ
m,r

)
,

Æ 0.98 ·2R ·�+0.02 ·2R ·(�≠1) = 2R ·(�≠0.02).C

Now, if there exists (a, b) œ A◊B so that Èa, bÍ = ‡, then by the above claim there exists
m œ {0, 1}L \Rej so that maxaÕÕœAm,bÕÕœBm ÈaÕÕ

, b
ÕÕÍ Ø 2R · �. Consequently, the algorithm A

will output a value greater than 2R · � ≠ ” · dÕ = 2R · (� ≠ 0.01) on the instance Am, Bm, and
so the algorithm AÕ will accept.

If on the other hand, Èa, bÍ ”= ‡ for any (a, b) œ A ◊ B, then by the above claim
maxaÕÕœAm,bÕÕœBm ÈaÕÕ

, b
ÕÕÍ Æ 2R · (� ≠ 0.02) for any m œ {0, 1}L \ Rej. Consequently, the

algorithm A will output a value at most 2R · (� ≠ 0.02) < 2R · (� ≠ 0.01) on any of the
instances, an so the algorithm AÕ will reject.
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Running time. Suppose that the algorithm A for ”-Apx-Max-IPN,dÕ runs in time N
2≠2‘,

we shall show that for an appropriate choice of T , the running time of the algorithm AÕ for
IPN,d is at most N2≠‘.

The algorithm AÕ enumerates over all possible Merlin’s messages m œ {0, 1}L, and for each
such message checks whether Alice rejects m in fi, which takes time poly(d), and if she does
not reject, it generates the instance Am, Bm which takes time N · 2R · poly(d) · poly(T, q) Æ
N · poly(d), and runs the algorithm A on Am, Bm which takes time N

2≠2‘.
Hence the total running time of the algorithm AÕ is at most

2L · (N · poly(d) +N
2≠2‘) Æ 2O(

d
T ·log2

T ) · (N · poly(d) +N
2≠2‘)

= 2O(
c logN

T ·log2
T ) · (N · poly(c logN) +N

2≠2‘).

Æ 2O(
c logN

T ·log2
T ) ·N2≠2‘

.

Finally, it can be verified that the latter expression is at most N2≠‘ for choice of T = �̃(c/‘)
which divides d.

Approximation parameter. By choice of ” = 0.01·2R
dÕ , dÕ = O(2R · T 2 · q4), T = �̃(c/‘), and

q = O(log2 T ), we have that

” = �
3

1
T 2q4

4
= �̃

31
‘

c

22
4
.
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A Applications

In this section we show a couple of consequences of Lemma 4.1 to obtaining tighter fine-grained
hardness of approximation results based on the IP assumption.

Closest pair in Hamming metric. The following reduction from Max-IP to CP in the
Hamming metric � is implicit in [17].

I Lemma A.1 (From Apx-Max-IP to Apx-CP�, [17]). Suppose that ”-Apx-Max-IPN,d cannot
be solved in time N

2≠‘. Then ”
Õ-Apx-CPN,dÕ,� cannot be solved in time N

2≠2‘ for ”
Õ = ”

2
.

The above lemma and Lemma 4.1 readily imply the following.

I Corollary A.2 (From IP to Apx-CP�). Suppose that IPN,d cannot be solved in time N
2≠‘

for d = c logN . Then ”-Apx-CPN,dÕ,� cannot be solved in time N
2≠2‘ for ” = �̃(( ‘

c
)2).

In contrast, it is known how to obtain an (1+ ”)-approximation for CP over the Hamming
metric in time N

2≠‘ for ” = �̃(‘3) [4].

Closest pair in ¸p metric. The following reduction from CP in the Hamming metric to CP
in the ¸p metric is also implicit in [17].

http://dl.acm.org/citation.cfm?id=3188745
https://doi.org/10.1109/18.945244
http://www.vldb.org/conf/2007/papers/research/p579-wong.pdf
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E. Abboud and N. Ron-Zewi 7:17

I Lemma A.3 (From Apx-CP� to Apx-CP¸p , [17]). Suppose that ”-Apx-CPN,d,� cannot be
solved in time N

2≠‘. Then for any p > 0, ”
Õ-Apx-CPN,d,¸p cannot be solved in time N

2≠2‘

for ”
Õ = �p(”).

The following corollary is a consequence of the above lemma and Corollary A.2, and
implies Theorem 1.1.

I Corollary A.4 (From IP to Apx-CP¸p). Suppose that IPN,d cannot be solved in time N
2≠‘

for d = c logN . Then for any p > 0, ”-Apx-CPN,dÕ,¸p cannot be solved in time N
2≠2‘ for

” = �̃p(( ‘

c
)2).

In contrast, it is known how to obtain an (1+ ”)-approximation for CP over the ¸p metric
in time N

2≠‘ for ” = Õ(‘3) and p œ {1, 2} [4].

Closest pair in edit distance metric. For a, b œ �d, we let ED(a, b) denote their edit

distance which is the minimum number of character deletion, insertion, and substitution
operations needed to transform a into b. The following Lemma is also implicit in [17].

I Lemma A.5 (From Apx-CP� to Apx-CPED, [17]). Suppose that ”-Apx-CPN,d,� cannot be
solved in time N

2≠‘. Then ”
Õ-Apx-CPN,dÕ,ED cannot be solved in time N

2≠2‘ for ”
Õ = �(”).

The above lemma and Corollary A.2 imply the following corollary.

I Corollary A.6 (From IP to Apx-CPED). Suppose that IPN,d cannot be solved in time N
2≠‘

for d = c logN . Then ”-Apx-CPN,dÕ,ED cannot be solved in time N
2≠2‘ for ”

Õ = �̃(( ‘

c
)2).

To the best of our knowledge, it is not known how to solve (1 + ”)-Apx-CPED in sub-
quadratic time.
I Remark (Apx-Min-IP and Furthest-Pair). It is not hard to show (see e.g., [9], Lemma 5.3)
that there is a simple linear-time reduction from ”-Apx-Max-IPN,d to ”-Apx-Min-IPN,d (and
vice versa), and so the same result as in Lemma 4.1 also holds for ”-Apx-Min-IPN,d (where
the goal is to output a number in [M,M + ” · d], where M := minaœA,bœB Èa, bÍ).

Using Apx-Min-IP as the starting point for the reductions cited above instead of Apx-
Max-IP implies the same results as in Corollaries A.2, A.4, and A.6 for Furthest Pair (where
the goal is to output a number in [(1 ≠ ”)M,M ], where M := maxaœA,bœB dist(a, b)).

Data structure setting. Our results extend to the data structure setting.

I Definition A.7 (Approximate Nearest Neighbor (Apx-NN)). Let dist : {0, 1}d◊{0, 1}d æ R+

be a distance function, and let ” > 0 be a parameter. In the Approximate Nearest Neighbor
”-Apx-NNN,d,dist problem, given a set A ™ {0, 1}d of cardinality N , the goal is to pre-process
the set, so that given a vector b œ {0, 1}d it is possible to quickly output a number in
[M, (1 + ”)M ], where M := minaœA dist(a, b).

It is known that Apx-CP can be reduced to Apx-NN [22] (see also proof of Corollary 1.4
in [2]).

I Lemma A.8 (From Apx-CP� to Apx-NN, [22]). Let dist : {0, 1}d ◊ {0, 1}d æ R+ be a
distance function. Suppose that ”-Apx-CPN,d,dist cannot be solved in N

2≠‘ time. Then for
any r > 0, ”-Apx-NNN,d,dist cannot be solved with N

r preprocessing time and N
1≠2r‘ time.

I Corollary A.9 (From IP to Apx-NN). Suppose that IPN,d cannot be solved in time N
2≠‘ for

d = c logN . Then for any distance function dist œ {�, ¸p,ED} and r > 0, ”-Apx-NNN,dÕ,dist

cannot be solved with N
r preprocessing time and N

1≠3r‘ query time for ” = �̃(( ‘

c
)2).
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Abstract
We study the geometric knapsack problem in which we are given a set of d-dimensional objects
(each with associated profits) and the goal is to find the maximum profit subset that can be packed
non-overlappingly into a given d-dimensional (unit hypercube) knapsack. Even if d = 2 and all input
objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper,
we give polynomial time (1 + Á)-approximation algorithms for the following types of input objects in
any constant dimension d:

disks and hyperspheres,
a class of fat convex polygons that generalizes regular k-gons for k Ø 5 (formally, polygons with
a constant number of edges, whose lengths are in a bounded range, and in which each angle is
strictly larger than fi/2),
arbitrary fat convex objects that are su�ciently small compared to the knapsack.

We remark that in our PTAS for disks and hyperspheres, we output the computed set of objects,
but for a OÁ(1) of them we determine their coordinates only up to an exponentially small error.
However, it is not clear whether there always exists a (1 + Á)-approximate solution that uses only
rational coordinates for the disks’ centers. We leave this as an open problem which is related to
well-studied geometric questions in the realm of circle packing.
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8:2 Approx. Schemes for Geom. Knapsack for Packing Spheres and Fat Objects

Figure 1 Left: The squares are stacked compactly inside the knapsack. Middle: The pentagons
cannot be stacked as tightly inside the knapsack as the squares. Right: The space in the corner
(striped area) cannot be covered by any large circle.

1 Introduction

One of the cornerstones of geometry is the problem of packing circles and spheres into a
container, e.g., a square or a hypercube. It dates back to the 17th century when Kepler
conjectured his famous bound on the average density of any packing of spheres in the
three-dimensional Euclidean space [27]. The problem has been investigated, for example, by
Lagrange [11] who solved it in the setting of two dimensions, by Hales and Ferguson [24]
who proved Kepler’s original conjecture, and by Viazovska [39] who studied the problem in
dimension 8 and was awarded the Fields medal in 2022 for her work.

A natural corresponding optimization question is the geometric knapsack problem, where
we are given a set of d-dimensional objects for some constant d œ N, e.g., circles or
(hyper-)spheres, but possibly also other shapes (like squares, pentagons, hexagons, etc.
for the case of d = 2) with each of them having a given profit. The goal is to find the
subset of maximum total profit that can be packed non-overlappingly into a given square
or (hyper-)cube. In this work, we consider the translations of the objects but do not allow
rotations.

Geometric knapsack is a natural mathematical problem and it is well-motivated by prac-
tical applications in several areas, including radio tower placement [38], origami design [30],
cylinder pallet assembly [8, 17], tree plantation [38], cutting industry [38], bundling tubes or
cables [40], layout of control panels [8], or design of digital modulation schemes [36].

The problem is known to be NP-hard, already for d = 2 and if all input objects are
axis-aligned squares or disks [14, 2]. This motivates designing approximation algorithms for it.
For hypercubes in any constant dimension d, there is a polynomial time (1+Á)-approximation
algorithm known for any constant Á > 0 [26], i.e., a polynomial time approximation scheme
(PTAS). Thus, this is the best possible approximation guarantee, unless P=NP.

However, for other classes of (fat) objects, the best known results either have approximation
ratios that are (far) from their respective lower bounds or they require resource augmentation,
i.e., increase in the size of the given knapsack. One intuitive reason for this is that axis-aligned
squares and cubes can be stacked nicely without wasting space and the resulting coordinates
are well-behaved, while for more general shapes this might not be the case, see Figure 1.
For circles, the best known result is a (3 + Á)-approximation [35] but the best known lower
bound is only NP-hardness. Still, the membership in NP is wide open for the following
question: given a set of n circles of O(1) number of di�erent sizes, decide whether they can
be packed into a unit square. It is also open whether packing circles into a square knapsack
is ÷R-complete or not [1]. Even for n unit circles. we do not know the exact value of the
smallest size squares that can pack them. See [37] for the current status of upper and lower
bounds for n Æ 1000.
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There is a PTAS in any constant dimension d for this case, but it requires resource
augmentation [9]. For triangles, there is a O(1)-approximation algorithm (assuming it is
allowed to rotate the triangles arbitrarily) whose precise approximation ratio is not explicitly
specified [33]. Also for this case, it is still possible that there is a PTAS. On the other hand,
there are settings of geometric knapsack that do not admit a PTAS, e.g., axis-parallel cuboids
in three dimensions [12].

Furthermore, in practical applications (e.g., loading cargo into a truck or cutting pieces
out of raw material like cloth or metal) the objects do not necessarily all have the same shape.
For example, Bennell and Oliveira [6] consider a mix of di�erent shapes of objects (their
primary objects are circles, rectangles, regular polygons, and convex polygons). However,
the previous papers in the theoretical literature for geometric knapsack mostly assume that
all input objects are of the same type, e.g., only squares, only circles, or only rectangles, etc.
Thus, from a theoretical point of view, it is interesting to see how the problem behaves when
the input objects might be of di�erent types.

This raises the following natural question that we study in this paper:

What are the best approximation ratios we can achieve for the geometric knapsack problem,
depending on the type of the input objects? For which type of objects does a PTAS exist?

1.1 Our contribution
In this paper, we present a polynomial time (1 + Á)-approximation algorithm for geometric
knapsack problem for packing d-dimensional spheres into d-dimensional hypercube knapsack,
for any constant dimension d Ø 2. For spheres, there is a complication that possibly any
(near-)optimal packing for a given instance require irrational coordinates. Therefore, our
output consists of a set of spheres that can be packed non-overlappingly inside the given
knapsack and whose profit is at least (1 + Á)≠1

w(OPT), where w(OPT) denotes the profit
of the optimal solution OPT. Moreover, for all but at most OÁ(1) spheres, our algorithm
outputs the precise (rational) coordinates of the packing. 1 For the other OÁ(1) spheres
it outputs them up to an exponentially small error in each dimension. We remark that
there are related packing problems for which it is known that irrational coordinates are
sometimes necessary and that computing them is ÷R-complete (and hence possibly even
harder than NP-hardness) [1]. On the other hand, if we knew that there always exists a
(1 + Á)-approximate solution in which all coordinates are rational with only a polynomial
number of bits, our algorithm would find such coordinates in polynomial time. We stress
that our returned set of spheres is always guaranteed to fit into the given knapsack with
appropriate (possibly irrational) coordinates but without resource augmentation.

Our second result is a polynomial time (1+ Á)-approximation algorithm for the geometric
knapsack problem for wide classes of convex geometric polygons. Our first result is a PTAS
for a class of fat convex polygons which generalizes pentagons, hexagons, and regular k-gons
for constant k > 4 (see Figure 2). Formally, we require for each polygon that the angle
between any two adjacent edges is at least fi/2 + ” for some constant ” > 0 and that each
polygon has a constant number of edges with similar lengths (up to a constant factor). Note
that in contrast to many prior results, we allow that each input object has a di�erent shape,
e.g., with a di�erent number of edges, di�erent angles formed by them, and a di�erent
orientation. Also, the polygons may di�er arbitrarily in size.

1 The notation OÁ(f(n)) means that the implicit constant hidden in big-O notation can depend on Á.

ICALP 2024
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Figure 2 Packing of fat convex polygons in a knapsack.

If each input object is su�ciently small compared to the knapsack, we obtain even a
polynomial time (1 + Á)-approximation for arbitrary fat convex objects in any constant
dimension d. We remark that for other packing problems like one-dimensional Knapsack or
Bin Packing, near-optimal solutions can easily be achieved via greedy algorithms if the
input objects are su�ciently small. Even for su�ciently small d-dimensional axis-aligned
hypercuboids, it is known that simple algorithms like NFDH [13, 4] has negligible wasted
space. However, for other geometric objects this is much harder since we might not be able
to place the input objects compactly without wasting space. For example, classical result by
Thue [11] showed that one can pack at most fi

2
Ô
3

¥ 0.9069 fraction of the total area, even in
the case of packing of unit circles. Furthermore, for circles and other similar convex objects,
irrational coordinates may arise in the packing and the optimal solution may use a very
complicated packing to minimize the wasted space.

1.2 Our techniques
We discuss now the techniques of our results, starting with our PTAS for spheres. To compute
our packing, we first enumerate all the large spheres in the optimal solution, i.e., the spheres
whose radius is at least a constant fraction of the side length of the knapsack. Also, we guess
their placement up to a polynomially small error, which yields a small range of possible
placements for each of them. Note that we cannot guess these coordinates precisely, since we
cannot even exclude that they are irrational. However, we guarantee that such coordinates
exist, by solving a system of polynomial equations exactly in polynomial time.

Next, we want to place small spheres into the remaining part of the knapsack. Unfortu-
nately, we do not know precisely which part of the knapsack is available for them since we
do not know the precise coordinates of the large spheres. Thus, there is some area of the
knapsack that is maybe used by the large spheres in our packing; however, potentially, the
optimal solution uses it for placing small spheres. Our key insight is that this area is small
compared to the area that is for sure not used by large spheres in the optimal solution. Using
the fact that objects are spheres, we show that some area in each corner of the knapsack
cannot be covered by any large sphere in any solution and whose size is at least a constant
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fraction of the knapsack (see the bottom-left empty corner in Figure 1). We use this area to
compensate the fact that we do not know the precise coordinates of our large spheres and we
waste space because of this.

When we select and pack the small spheres, we define a constant number of (small)
identical knapsacks that fit into the given knapsack together with the large spheres and into
which we place our small spheres. For the remaining task of placing the small spheres, we
argue that it is su�cient to have an algorithm that uses resource augmentation, i.e., that
increases the size of each knapsack by a factor of 1 + Á (in each dimension). Thus, on a high
level, we reduce the problem of packing arbitrary spheres into one knapsack to the problem
of packing small spheres into a constant number of knapsacks with resource augmentation.

This remaining problem can be solved via an algorithm in [9]; however, we present a
more general routine that works even for arbitrary convex fat objects. Also, it is arguably
simpler than the corresponding algorithm in [9]. On a high level, we prove that there is a
well-structured solution based on a hierarchical decomposition of the knapsacks into grid
cells. The grid cells are partitioned such that each placed object P is contained in a constant
number of grid cells whose size is comparable to P . Importantly, these grid cells are used
exclusively by P and not by any other placed object (not even partially). This allows us to
devise a dynamic program (DP) that computes the optimal structured packing of this type.
Our DP has a subproblem for each combination of a level (corresponding to a size range of
the input objects) and a number of available grid cells corresponding to this level. Given
such a subproblem, it su�ces to enumerate a polynomial number of possibilities for selecting
and placing objects of this level, which reduces the given subproblem to a subproblem
corresponding to the next level. This DP might have applications in other related packing
problems.

In our algorithm for fat convex polygons (with the properties described above), we extend
our algorithm for spheres as follows. For the guessed large polygons, we compute their
coordinates exactly in polynomial time. Here, we use the (known) fact that there exists
a placement for them that corresponds to an extreme point solution of a suitable linear
program, which has rational coordinates. Then, intuitively we use the condition for the
polygons’ angles to ensure that the large objects leave a certain area of the knapsack empty.
We use this empty area in a similar way as in the setting of circles. Again, we place the
small objects into a constant number of knapsacks under resource augmentation, using our
new subroutine described above.

If all input objects are su�ciently small compared to the size of the knapsack (formally,
we assume that each of them fits in a smaller knapsack with side length �(Á)) there are no
large objects and, hence, we can omit the step of enumerating them. In particular, we do
not need the conditions of the polygons’ edges anymore. Since the input objects are so small,
we can show that by losing a factor of 1 + Á in the approximation ratio, we may pretend
that we have resource augmentation available. Hence, we can directly call our subroutine for
small objects under resource augmentation.

We leave it as an open question to determine whether irrational coordinates are sometimes
necessary for optimal or (1 + Á)-approximate solutions for geometric knapsack for spheres.
If yes, it would be interesting to determine the best possible approximation ratio one can
achieve with rational coordinates only. Note that this question is related to the well-studied
problem of determining the size of the smallest knapsack needed to pack a given number
of unit circles. For that problem, it is known that for some number of unit circles the
smallest knapsack has irrational edge lengths [18]. On the other hand, recall that if rational
coordinates with a polynomial number of bits always su�ce, our algorithm for spheres can
compute the coordinates of all returned spheres of our (1 + Á)-approximation algorithm
exactly.
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1.3 Other related work
For geometric knapsack for axis-parallel rectangles (i.e., when d = 2), the best known
polynomial time algorithm has an approximation ratio of 17/9 + Á [19]. There is a pseudo-
polynomial time algorithm with a ratio of 4/3 + Á [20] and a pseudo-polynomial time
approximation scheme if we require guillotine-separable packing [28] . If it is allowed to
rotate the rectangles by 90 degrees, there is also a polynomial time (1.5 + Á)-approximation
algorithm known [19]. Moreover, the problem admits a QPTAS if the input data are quasi-
polynomially bounded integers [3]. For the setting of packing circles, there is a PTAS under
resource augmentation in one dimension, assuming that the profit of each circle equals its area,
due to Lintzmayer, Miyazawa, and Xavier [31]. This was improved to the above mentioned
PTAS under resource augmentation in one dimension for spheres with arbitrary profits in
any constant dimension d, due to Chagas, Dell’Arriva, and Miyazawa [9]. In addition, there
have been many attempts to develop heuristics and other optimization methods on circle
packing, see e.g., [38, 25, 32].

A related problem is the geometric bin packing problem in which we want to place a given
set of geometric objects into the smallest number of unit size bins. For the settings of squares
or (hyper-)cubes [4] or skewed rectangles [29], the problem admits an asymptotic PTAS. In
the case of general rectangles, the best known result is an asymptotic 1.405-approximation [5]
but an asymptotic PTAS cannot exist unless P = NP [12]. Maximum independent set in
geometric intersection graphs [10, 34, 21] is another well-studied related problem.

In a recent paper, Abrahamsen, Miltzow, and Seiferth [1] developed a framework to show
that for many combinations of allowed pieces, containers, and motions, the resulting packing
problem is ÷R-complete. For example, they showed that it is ÷R-complete problem to decide
if a set of convex polygons with at most seven corners each can be packed into a square if
arbitrary rotations are allowed. However, it is not known if the setting of packing circles into
a square knapsack is ÷R-complete.

There is also a large body of work on questions about the optimal packings of unit circles
into unit squares or equilateral triangles. We refer to [15, 16, 22, 25] for an overview.

1.4 Organization of this paper
In Section 2, we discuss the PTAS when the input items are su�ciently small fat convex
objects. In Section 3, we give our algorithm for spheres. In Section 4, we consider the case of
convex polygons. Finally, in Section 5 we end with conclusions. Due to space constraints,
many proofs have been omitted. The corresponding lemmas and theorems are marked
with (ı). Please see the full version of the paper for the complete proofs.

2 PTAS under Resource Augmentation

In this section we present a PTAS when the input items are fat convex objects, and we are
allowed to increase the size of the given knapsack by a factor of 1 + Á in each dimension.
Chagas et al. [9] presented a PTAS for circles with resource augmentation in one dimension.
Their result is based on a combination of multiple integer programs with variables for di�erent
configurations for packing parts of the given knapsack. Our result is arguably simpler and
purely based on dynamic programming.

Let Pi be a two-dimensional convex object and let rout
i

(Pi) and r
in

i
(Pi) be the radius of the

smallest circle containing Pi and the radius of the largest circle contained in Pi, respectively.
We will drop Pi when it is clear from the context. We say that Pi is f -fat if routi

/r
in

i
Æ f for

some value f Ø 1. In the remainder of this section, we prove the following theorem.
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Figure 3 Line � separates the two f -fat and convex objects P and P
Õ. We construct line � such

that it has intersects no common grid cells with line �. We proceed to shrink the two objects P, P Õ

by a factor of 1 + Á such that they cannot intersect the space between lines � and �.

I Theorem 1. Let f Ø 1, Á > 0, and d œ N be constants. Given a set of d-dimensional f -fat
convex input objects, there exists a polynomial time algorithm that can pack a subset of them
with a total profit of w(OPT) into a knapsack K

Õ := [0, 1 + Á]d, where w(OPT) is the optimal
profit that can be packed into a knapsack K := [0, 1]d.

For simplicity, we first describe our algorithm in the setting where d = 2. Given a packing
of a set of f -fat objects P = {P1, P2, . . . , Pn} in our knapsack K = [0, 1] ◊ [0, 1], we want to
show that there is also a structured packing of these objects into an augmented knapsack
K

Õ = [0, 1 + Á] ◊ [0, 1 + Á], defined via a discrete grid. Let ”cell > 0 be a constant to be
defined later such that 1/”cell œ N. We place a two-dimensional grid inside K

Õ such that
each grid cell has an edge length of ”cell. Let G denote the set of all resulting grid cells. We
assume first that each object Pi œ P is ”large-large, meaning that rin(Pi) Ø ”large for some
given constant ”large > 0. We say that our given packing for P is discretized if there is a
partition of G into sets {GP1 ,GP2 , . . . ,GPn

} such that for each Pi œ P, we have that Pi is
contained in the union of the cells in GPi

. Therefore, each object Pi œ P has “its own” set of
grid cells GPi

that contain Pi and that do not intersect with any other object Pj œ P \ {Pi}.
We show that for an appropriate choice of ”cell, there is a discretized packing for P in

K
Õ, i.e., if we can increase the size of our knapsack K by a factor of 1 + Á in each dimension.

I Lemma 2. For each f Ø 1, Á > 0, and ”large > 0, there is a value ”cell > 0 such
that for any set of ”large-large f-fat convex objects P that can be placed nonoverlappingly
inside a knapsack K = [0, 1] ◊ [0, 1], there is a discretized packing for P inside knapsack
K

Õ = [0, 1 + Á] ◊ [0, 1 + Á] based on a grid in which each edge of each grid cell has a length of
”cell.

Proof. Let P, P Õ œ P be two f -fat convex ”large-large objects packed inside the knapsack.
Then by separating hyperplane theorem for convex objects [7], we know that there is a line �
containing a point pv on the boundary of P , and � separates P from P

Õ (see Figure 3). Now,
intuitively, increasing the size of the knapsack by a factor of 1 + Á is equivalent to shrinking
the objects in P by a factor of 1 + Á. So, we want to find the right constraints such that
after shrinking P and P

Õ do not share any grid cell. Let the center of the incircle (of radius
r
in) contained in P be pc and the line joining pc and pv be �. Let the foot of the image of
the point pc on line � be the point pz. Now the length of line segment pcpz := |pcpz|Ø r

in

ICALP 2024
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P

pc

 

⌥

P 0

py

Figure 4 P, P
Õ are shrunk so that they cannot intersect the space between the lines � and �.

and |pcpv|Æ 2frin, due to fatness. Hence, the angle ◊ between � and � is at least sin≠1( 1

2f
).

Consider points px on � and py on � such that |pxpy|=
Ô
2”cell and the line � joining px, py

is parallel to the line joining pcpz. Then any point on � does not share a gridcell with any
point on �. Also, |pypv|Æ 2

Ô
2f”cell. Now we want to shrink P by (1 + Á) factor keeping pc

at the same position such that the shrunk version of P lies completely within one side of �
(see Figure 4). After shrinking, pcpv gets smaller by Á|pcpv|Ø Ár

in Ø Á”large. Now we choose
”cell such that ”cell Æ Á

2
Ô
2f

· ”large. Thus we satisfy Á|pcpv|Ø Á”large Ø 2
Ô
2f”cell Ø |pypv|

and this ensures that the shrunk down version of P and P
Õ do not share any grid cell. We

assign each polygon to the grid cells that it intersects with. Hence this process leads to a
discretization such that the no grid cell is intersected by two polygons. J

Next, we argue that there is also a structured packing for fat objects that are not
necessarily all (relatively) large. Let ”large, ”cell, ”small > 0 be constants to be defined later
(they will depend on Á which will denote the amount by which we increase the size of our
knapsack). We place now a hierarchical two-dimensional grid with multiple levels. We
define that the whole knapsack K is one grid cell of level 0 of side length ”c,0 := 1. For
each level ¸ Ø 1, we define grid cells whose edges all have a length of ”c,¸ := ”cell”c,(¸≠1).
Recursively, for each ¸ Ø 1 we partition each grid cell of level ¸ ≠ 1 into 1/”

2

cell
grid cells of

level ¸ with side length ”c,¸ each. Similarly as before, we want that there is a partition of
the grid cells such that for each object P œ P there is a set of grid cells GP that contain P

and that are disjoint from the grid cells GP Õ for each object P Õ œ P \ {P}. Also, we want
that all grid cells in GP are of the same level, that their size is comparable to the size of P ,
and that the number of grid cells in GP is bounded. To ensure this, we group the objects
P œ P according to their respective values rin(P ) which we use as a proxy for their sizes.
Formally, we define ”small,0 := 1 and for each level ¸ Ø 1 we define ”large,¸ := ”large”c,(¸≠1)

and ”small,¸ := ”small”c,(¸≠1). For each level ¸ we define
L¸ to be all objects P œ P with r

in(P ) œ (”large,¸, ”small,(¸≠1)]; intuitively, they are “large”
for level ¸,
M¸ to be all objects P œ P with r

in(P ) œ (”small,¸, ”large,¸].
Note that our grid and the sets L¸ and M¸ depend on the (initial) choice of ”large, ”small and
”cell. In the next lemma, we show via a shifting argument that there are choices for these
values such that the total area of the objects in

t
¸
M¸ is very small. This will allow us later

to pack them separately via a simple greedy algorithm. In particular, these choices are from
a set of OÁ(1) candidate values D, and thus we will be able to guess them later easily.
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I Lemma 3 (ı). Let f Ø 1. There is a global set D with |D|Æ OÁ(1) such that for any set
of f -fat convex objects P that can be packed in a knapsack K = [0, 1]◊ [0, 1], there are values
”large, ”small, ”cell > 0 that are all contained in D such that for the resulting hierarchical grid
and the corresponding sets {L¸,M¸}¸

we have that the total area of all objects in
t

¸
M¸ is

bounded by Á.

We generalize now our notion of discretized packings. Intuitively, like before, we require
that there is a partition of the grid cells such that for each object P œ P there is a set of
grid cells GP that contain P and that are disjoint from the grid cells GP Õ for each object
P

Õ œ P \ {P}. Formally, we define that our packing of P is discretized if
for each level ¸ and for each object P œ P flL¸ there is a set of O(1/”

2

cell
) grid cells GP of

level ¸ such that P is contained in GP , and there is a single grid cell of level ¸ ≠ 1 that
contains all grid cells in GP , and
for any two objects P, P

Õ œ P (not necessarily of the same level) and for any two grid
cells C œ GP and C

Õ œ GÕ
P

their relative interiors are disjoint.
We show that by increasing the size of our knapsack by a factor of 1+ Á, there is a discretized
packing for all objects in

t
¸
L¸. As mentioned above, we will pack the objects in

t
¸
M¸

separately later.

I Lemma 4. Let each f Ø 1 and Á > 0. There is a global set D with |D|Æ OÁ(1) such
that for any set of f-fat objects P that can be placed non-overlappingly inside a knapsack
K = [0, 1] ◊ [0, 1], there is a choice for the grid with parameters ”large, ”small, ”cell > 0 such
that all these values are contained in D and there is a discretized packing for P fl (

t
¸
L¸)

inside an (augmented) knapsack [0, 1 +O(Á)] ◊ [0, 1 +O(Á)].

Proof. We start with the given packing of P in K and do a sequence of refinements which
leads to our discretized packing for P fl

t
¸
L¸. First, we use the increased size of the knapsack

to ensure that for each level ¸ and any two objects P, P Õ œ L¸, the distance between P and
P

Õ is at least 2”c,¸. Intuitively, increasing the size of the knapsack by a factor of 1 + Á is
equivalent to shrinking the objects in P by a factor of 1 + Á. Therefore, we can achieve this
required minimum distance of 2”c,¸ by choosing ”cell appropriately according to the multiple
constraints given in the proof of Lemma 2.

Next, we would like that for each level ¸, each object in P fl L¸ is contained in a grid
cell of level ¸ ≠ 1. This might not be the case, however, via a shifting argument (giving
the grid a random shift) we can argue that this is the case for almost all objects in P.
The probability that an object in level ¸ intersects a grid line from level ¸ ≠ 1 is at most
8”small,¸≠1/”cell,¸≠1 = 8”small/”cell. Let this probability be smaller than Á

2
/2, leading to a

constraint ”small Æ Á
2
”cell/16 on the choice of ”cell, ”small. Then the total area of intersecting

objects must also be smaller than Á
2 as the area of all packed objects can be at most the

area of the augmented knapsack. Thus we can easily pack these intersected objects into
extra space that we gain via increasing the size of the knapsack (i.e., for a second time).

After this preparation, we process the objects P œ P level by level and define their
corresponding sets GP , starting with the highest level. Consider a level ¸. For each object
P œ P of level ¸ we define GP to be the set of all grid cells of level ¸ that intersect with P .
Due to our minimum distance between any two objects in P of level ¸, for any two di�erent
objects P, P Õ œ P of level ¸ we have that GP fl GP Õ = ÿ. Now it could be that a cell C œ GP

for some P œ P intersects not only with P , but also with another object P
Õ œ P of some

deeper level ¸
Õ
> ¸. We call such a cell C problematic; recall that we wanted the cells in GP

to be used exclusively by P . Therefore, we move all objects P Õ œ P of some level ¸
Õ
> ¸ that

intersect a problematic grid cell in GP . We pack them into extra space that we gain due to
resource augmentation. We do this operation for all levels ¸.
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In the process above, we move objects that intersect problematic grid cells. We need to
argue that the total area of these moved objects is small compared to the size of the knapsack
and that, therefore, we can pack them into additional space that we gain due to our resource
augmentation. In particular, we need to argue this globally, over all levels. The key insight is
that if we define a set GP for some object P œ P as above, then each problematic cell C œ GP

must intersect the boundary of P and, since P is fat, the number of problematic cells C œ GP

is very small compared to the number of cells CÕ œ GP that are contained in P and, thus, for
sure not problematic.

By the classical Barbier’s theorem, we know the perimeter of a convex set P of level ¸ is at
most fi · diameter(P ) Æ 2fir

out Æ 2fifr
in. A curve of length ”cell,¸ is bound to be contained

inside a circle of radius ”cell,¸. This implies that this curve can intersect at most 9 grid cells
as any circle of radius ”cell,¸ can be bounded in a 3 ◊ 3 grid square. Hence, the number of
grid cells (of level ¸) N1 that the perimeter can intersect is at most 18fifr

in
/”cell,¸. On the

other hand, P completely contains at least grid cells of area fi(rin ≠2”cell,¸)2, i.e., the number
of such gridcells N2 is at least fi(r

in≠2”cell,¸)
2

(”cell,¸)
2 . We need N1 Æ ÁN2. Equivalently, we want

to show, ”cell,¸ Æ Á

18f
· (r

in≠2”cell,¸)
2

rin
. For this we impose the condition that ”large Ø 72f

Á
”cell.

Then, Á

18f
· (r

in≠2”cell,¸)
2

rin
Ø Á

18f
· (r

in
/2)

2

rin
Ø Á

18f
· ”large,¸

4
Ø ”cell,¸.

Using this, we derive a global argumentation, stating that the total area of all problematic
grid cells over all objects of all levels is at most an Á-fraction of the area of the knapsack.
Also, if an object P Õ of some level ¸

Õ intersects a problematic grid cell C of some level ¸ < ¸
Õ,

then P
Õ is very small compared to C. Thus, the total area of these objects intersecting a

problematic grid cell C is essentially the same as the area of C. Thus, we can pack all these
objects into our additional space due to resource augmentation.

Finally, we can a�ord to increase the space of our knapsack such that this additional
space is even by a constant factor larger than the total area of the objects we need to pack
into it. Therefore, it is easy to find a discretized packing for them in this extra space. J

Algorithm. Now we describe our algorithm. First, we correctly guess (i.e., by brute-force
enumeration of all possible cases) the values ”large, ”small, ”cell > 0 from set D due to
Lemma 4. Note that we still do not know

t
¸
L¸ or

t
¸
M¸, i.e., which objects are there in the

optimal packing. So, for each level ¸ we define L̃¸ to be all input objects P with r
in(P ) œ

(”large,¸, ”small,(¸≠1)] and M̃¸ to be all input objects P with r
in(P ) œ (”small,¸, ”large,¸].

Then, we compute an optimal discretized packing via a dynamic program. Intuitively,
our DP computes an optimal subset of

t
¸
L̃¸ for which there is a discretized packing. We

introduce a DP-cell DP[¸,m] for each combination of a level ¸ and a value m œ {1, ..., n}.
This cell corresponds to the subproblem of packing a maximum profit subset of the objects in
L̃¸, L̃¸+1, L̃¸+2, . . . . via a discretized packing into at most m grid cells of level ¸ ≠ 1, i.e., with
side length ”c,(¸≠1) each. Recall that each object in L̃¸ is relatively large compared to the
grid cells of level ¸ ≠ 1. Therefore, we can pack only constantly many items from L̃¸ into each
of these m grid cells of level ¸ ≠ 1. Therefore, there are only constantly many options how
the set GP of an object P œ L̃¸ in the optimal solution to our subproblem can look like. We
say that a configuration is a partition of a grid cell of level ¸ ≠ 1 into sets of grid cells of level
¸. Each grid cell of level ¸ ≠ 1 contains O(1/”

2

cell
) many grid cells of level ¸. Hence, there are

only constantly many configurations. We assume two configurations to be equivalent if they
are identical up to translation by an integral multiple of ”c,(¸≠1), i.e., by an integral multiple
of the edge length of a grid cell of level ¸ ≠ 1. Denote by C the total number of resulting
equivalence classes. We guess in time m

O(C) Æ n
O(C) how many grid cells have each of the
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at most C configurations (up to equivalences). Then, we assign the items in L̃¸ into the grid
cells according to this guess. We can do this by weighted bipartite matching. For each object
P œ L̃¸, each possible configuration GÕ, and each set in the partition of GÕ, we can check
easily whether P fits into GÕ. In the bipartite graph, one side will contain the objects in L̃¸

and other side will contain the sets in the partition of GÕ. If P fits into set Q in the partition
of GÕ, then there is an edge with edge cost as w(P ). Our guess yields a certain number mÕ

of empty grid cells of level ¸ + 1 into which we need to pack items in L̃¸+1, L̃¸+2, . . . . We
assign these items according to the solution in the DP-cell DP[¸ + 1,min{mÕ

, n}]. Note that
there are at most n items and, hence, we never need more than n grid cells of level ¸ + 1.
Also, since our input data is polynomially bounded, the number of classes L̃i is bounded
by n

O(1). Thus, our DP runs in time n
O(C).

Additionally, we pack medium objects from the set
t

¸
M̃¸ separately in a strip of the

form [0, 1] ◊ [1, 1 +O(Á)]. We select the most profitable subset of
t

¸
M̃¸ (up to a factor of

1 + Á) whose total area is bounded by Á (see Lemma 3). We replace each of these objects by
the smallest square that contains it, which increases its area only by a constant factor. We
can pack these squares e�ciently into a (slightly larger) strip [0, 1] ◊ [1, 1 +O(Á)] using the
NFDH algorithm [13]. This yields the following lemma.

I Lemma 5. (ı) In polynomial time we can compute a set P Õ ™
t

¸
M̃¸ and a non-overlapping

placement of P Õ inside [0, 1]◊ [1, 1+O(Á)] such that w(P Õ) is at least the profit of any subset
of

t
¸
M̃¸ whose total area is at most Á.

One can easily extend our algorithm above to any constant dimension d. This completes
the proof of Theorem 1. A consequence is that we obtain a polynomial time (1 + Á)-
approximation without resource augmentation if all input objects are small, i.e., if rout(P ) Æ Á

for each given object P œ P. Using this property, we can argue that there is a (1 + Á)-
approximate solution in which only the area [0, 1 ≠ �(Á)] ◊ [0, 1 ≠ �(Á)] of the knapsack is
used. Thus, we can use the free space for the resource augmentation that is required by our
algorithm due to Theorem 1.

I Theorem 6. (ı) Let d œ N be a constant. There is a polynomial time (1 + O(Á))-
approximation for the geometric knapsack problem if the set of input objects P consists of
convex fat d-dimensional objects such that rout(P ) Æ Á for each P œ P.

3 Spheres

In this section we present our (1 + Á)-approximation algorithm for the case of d-dimensional
spheres. Let C = {C1, C2, . . . , Cn} be a set of n number of d-dimensional hyperspheres.
We denote the radius and profit of each hypersphere Ci œ C by ri and wi. For an object
Ci we denote its volume (or area in 2-dimension) to be a(Ci). For a collection of objects
A, we define its volume and profit to be a(A) :=

q
CiœA

a(Ci) and w(A) :=
q

CiœA
w(Ci),

respectively. We are given a unit knapsack K := [0, 1]d.
We first consider the case of circles, i.e., d = 2. Let OPT be an optimal solution and

COPT be the circles in OPT. Let Á œ (0, 1/2] be a constant and assume that 1/Á œ N. First,
we want to classify the input circles into small and large circles such that each large circle is
much larger than any small circle. Due to the following lemma, we can do this such that we
can ignore all circles that are neither large nor small by losing only a factor of 1 + Á. We will
use this standard shifting argument throughout the paper.

I Lemma 7 (ı). There is a set of global constants Á
(0)

, ..., Á
(1/Á) > 0 such that Á

(j) = (Á(j≠1))24
for each j œ {1, ..., 1/Á} and a value k œ {1, ..., 1/Á ≠ 1} with the following property: if we
define Álarge := Á

(k) and Ásmall := Á
(k+1), then sum of profits of all circles Ci in OPT with

radii Ásmall Æ ri Æ Álarge is at most Á · w(OPT).

ICALP 2024
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We guess the value k œ {0, ..., 1/Á ≠ 1} due to Lemma 7. We define that a circle Ci œ C is
large if ri > Álarge and small if ri 6 Ásmall. Also, note that Ásmall = Á

24

large
.

3.1 Guessing large circles
We observe that in OPT there can be only a constant number of large circles since each large
circle covers a constant fraction of the available area in the knapsack.

I Proposition 8 (ı). Any feasible solution can contain at most (1/Á)Ok(1) large circles.

We guess a feasible solution of the large circles in OPT that satisfy the packing constraints
in time n(1/Á)

Ok(1) , denote them by Cú
L
. In related problems, like the two-dimensional knapsack

problem with squares or rectangles, one can easily guess the correct placement of the guessed
large circles (assuming rational input data). For packing circles, it is not clear that if there
is a packing in which the centers of the circles are placed at rational coordinates. However,
in the following section, when we pack polygons, we can guarantee that there is an optimal
solution in which the corner of each polygon has a rational coordinate.

Therefore, instead we first guess for each circle Ci œ Cú
L
an estimate for its placement

in OPT. Denote by x̂
(1)

i
, x̂

(2)

i
œ [0, 1] the coordinates of the center of Ci in OPT. We guess

values x̃(1)

i
, x̃

(2)

i
œ {0, Á

n
,
2Á

n
, ..., 1} such that x̂(1)

i
œ [x̃(1)

i
, x̃

(1)

i
+ Á

n
) and x̂

(2)

i
œ [x̃(2)

i
, x̃

(2)

i
+ Á

n
).

Note that there are only O(n2
/Á

2) possibilities for each Ci œ Cú
L
, and hence only n

(1/Á)
Ok(1)

possibilities overall for all circles Ci œ Cú
L
.

Given these guessed values x̃(1)

i
, x̃

(2)

i
for each circle Ci œ Cú

L
, we verify that our guess was

correct or not, i.e., confirm that there exists, indeed a corresponding placement for each
circle Ci œ Cú

L
such that the circles in Cú

L
do not overlap. Therefore, we define a system of

quadratic inequalities that describes the problem of finding such a placement. We require
that this placement is consistent with our guesses x̃(1)

i
, x̃

(2)

i
for each Ci œ Cú

L
.

max{x̃(1)

i
, ri} 6 x

(1)

i
6 min

Ó
x̃
(1)

i
+ Á

n
, 1 ≠ ri

Ô
’Ci œ Cú

L

max{x̃(2)

i
, ri} 6 x

(2)

i
6 min

Ó
x̃
(2)

i
+ Á

n
, 1 ≠ ri

Ô
’Ci œ Cú

L
(1)

(x(1)

i
≠ x

(1)

j
)2 + (x(2)

i
≠ x

(2)

j
)2 > (ri + rj)2 ’Ci, Cj œ Cú

L

x
(1)

i
, x

(2)

i
> 0 ’Ci œ Cú

L

Let |Cú
L
|=: t. Then, the above system has 2t variables and k := O(t2) constraints. It is

not clear how to compute a solution to this system in polynomial time. It is not even clear
whether it has a solution in which each variable has a rational value. However, in polynomial
time, we can decide whether it has a solution (without computing the solution itself) using
an algorithm from [23].

Note that the set of solutions satisfying system (1) is a semi-algebraic set in the field of
real numbers. Thus, whether a given set of circles can be packed or not (the decision problem)
reduces to a decision problem of whether this semi-algebraic set is nonempty or not. Here,
each constraint i œ [k] in (1) can be written as a function fi(x(1)

1
, x

(2)

1
, . . . , x

(1)

t
, x

(2)

t
) > 0 where

each fi œ Q[x(1)

1
, x

(2)

1
, . . . , x

(1)

t
, x

(2)

t
] is a polynomial with rational coe�cients of degree at

most two. Thus deciding the circle packing problem is equivalent to deciding the truth of the
following formula: F := (÷x(1)

1
)(÷x(2)

1
) . . . (÷x(1)

t
)(÷x(2)

t
) ·k

i=0
fi(x(1)

1
, x

(2)

1
, . . . , x

(1)

t
, x

(2)

t
) > 0.

To solve this decision problem, we use the following result.
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I Theorem 9 ([23]). Let f1, f2, . . . , fk œ Q[x(1)

1
, x

(2)

1
, . . . , x

(1)

t
, x

(2)

t
] be polynomials with

absolute value of any coe�cient to be represented by M bits and maximum degree �. There
is an algorithm that decides whether the formula F := (÷x(1)

1
)(÷x(2)

1
) . . . (÷x(1)

t
)(÷x(2)

t
) ·k

i=0

fi(x1, y1, . . . , xn, yn) > 0 is true, with a running time of MO(1)(k�)O(t
2
).

If it is true, the algorithm also returns polynomials f, g1, h1, . . . , gt, ht œ Q[x] with coef-
ficients of bit size at most MO(1)(k�)O(t) and maximum degree k

O(t), such that for a root
x of f(x), the assignment x(1)

1
= g1(x), x(2)

1
= h1(x), . . . , x(1)

t
= gn(x), x(2)

t
= hn(x) satisfies

the formula F .
Moreover, for any rational – > 0, it returns values x̄

(1)

1
, x̄

(2)

1
. . . , x̄

(1)

t
, x̄

(2)

t
œ Q such that

|x̄(1)

i
≠x

(1)

i
|6 – and |x̄(2)

i
≠x

(2)

i
|6 –, for 1 6 i 6 t, in time at most (log(1/–)M)O(1)(k�)O(t

2
).

We crucially use here that our system has only constantly many variables and con-
straints, i.e., in (1), we have that �, k, t are constants and that M is polynomially bounded
in n. From Theorem 9, we see that in polynomial time we can decide whether (1) has a
solution.

If the system (1) does not have a solution, then we reject this guessed combination of
Cú
L
and values x̃

(1)

i
, x̃

(2)

i
for each circle Ci œ Cú

L
. We assume in the following that it has a

solution. Observe that the guessed values x̃(1)

i
, x̃

(2)

i
yield an estimate for x̂(1)

i
, x̂

(2)

i
up to a

(polynomially small) error of Á/n.

3.2 Placing small circles
We want to select small circles from C and place them inside the knapsack, so that they do not
overlap with each other or with the circles in Cú

L
. To this end, we define Ácell := Á

12

large
(i.e.,

Ásmall = Á
12

large
Ácell = Á

2

cell
) to subdivide the knapsack into a grid with 1/Á

2

cell
square grid cells

of side length Ácell . Our choice of parameters ensures that each small circle is small compared
to each grid cell and each large circle is big compared to each grid cell. Formally, for each ¸, ¸

Õ œ
{0, 1, . . . , 1

Ácell

≠1} we define a grid cell G¸,¸Õ := [¸ ·Ácell, (¸+1) ·Ácell)◊ [¸Õ ·Ácell, (¸Õ +1) ·Ácell).
We define the set of all grid cells by G := {G¸,¸Õ : ¸, ¸

Õ œ {0, 1, . . . , 1/Ácell ≠ 1}}.
We say that a placement of a circle Ci œ Cú

L
is legal if its center is placed at a point

(x(1)

i
, x

(2)

i
) such that max{x̃(s)

i
, ri} 6 x

(s)

i
6 min

Ó
x̃
(s)

i
+ Á

n
, 1 ≠ ri

Ô
for each s œ {1, 2}. We

show that there is a structured packing with near-optimal profit in which each small circle is
contained in a grid cell that does not intersect with any large circle in Cú

L
in any legal packing

of them. This will allow us to decouple the remaining problem for the small circles from the
large circles, even though we do not know the exact placement for the latter. Moreover, in
each grid cell the small circles use only a reduced area of size (1 ≠ Á)Ácell ◊ (1 ≠ Á)Ácell. Let
Cú
S
denote the small circles in OPT.

I Lemma 10. In polynomial time, we can compute a set of grid cells Gw such that no grid
cell in Gw intersects with any circle Ci œ Cú

L
for any legal placement of Ci. Moreover, there

is a set of small circles CS ™ Cú
S
such that w(CS) > (1≠ Á)w(Cú

S
) and the circles in CS can be

packed non-overlappingly inside |Gw| grid cells of size (1 ≠ Á)Ácell ◊ (1 ≠ Á)Ácell each.
We will prove Lemma 10 later in Section 3.3. Using it, we compute an approximation to the
set CS via Theorem 1.

We pack the computed circles into our grid cells Gw, denote them by CÕ
S
. In particular,

they do not intersect any of the large circles in Cú
L
in any legal placement of them. Our

solution (corresponding to the considered guesses) consists of Cú
L

fi CÕ
S
. Recall that we can

guarantee that these circles can be packed non-overlappingly inside the knapsack. Also, for
the circles in CÕ

S
we computed their placement exactly and for the circles in Cú

L
we computed

their placement up to our polynomially small error of Á/n. In Appendix A we show how to
reduce this error to an exponentially small error.
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STL
W STR

W

SBL
W SBR

W

Figure 5 Partitioning grid cells into white, black and gray cells. Later corner regions
S

BL
W , S

TL
W , S

BR
W , S

TR
W are used to to pack items in gray cells.

3.3 Structural packing for small circles
In this section, we prove Lemma 10. First, we show that intuitively almost every small circle
in Cú

S
is contained inside some grid cell. Formally, we show that the total area of all other

small circles in Cú
S
is small. For any set S of circles or grid cells, we define a(S) to be the

total area of the elements in S.

I Lemma 11 (ı). Let Ccut ™ Cú
S
be the set of all small circles in Cú

S
that intersect more than

one grid cell. We have that a(Ccut) 6 8Ásmall/Ácell 6 ÁÁ
2

large
/64.

We will repack the circles in Ccut later such that each of them is contained inside one
single grid cell. Thus, for each small circle Ci œ COPT \ Ccut there is a grid cell G¸,¸Õ for some
¸, ¸

Õ œ {0, 1, ..., 1/Ácell ≠ 1} such that Ci is contained in G¸,¸Õ in OPT. When we select and
place small circles, we must be careful that they do not intersect any large circles from Cú

L
.

One di�culty for this is that we do not know the precise coordinates of the large circles.
Therefore, we place small circles only into grid cells that do not overlap with any large circle
from Cú

L
in any legal placement of them. Formally, we partition the cells in G into three

types: white, gray, and black cells (see Figure 5).

I Definition 12. Let G¸,¸Õ œ G for some ¸, ¸
Õ œ {0, 1, ..., 1/Ácell ≠ 1}. The cell G¸,¸Õ is

white if G¸,¸Õ does not intersect with any circle Ci œ Cú
L
for any legal placement of Ci,

black if G¸,¸Õ is contained in some circle Ci œ Cú
L
for any legal placement of Ci,

gray if G¸,¸Õ is neither white nor black.

The gray cells are problematic for us since a gray cell might be (partially) covered by a large
circle in Cú

L
but we do not know by how much (and which part of the cell). Therefore, we

do not place any small circles into gray cells. However, OPT might place small circles into
these cells (and obtain the profit of these circles). On the other hand, we can show that
the number of gray cells is very small, only a small fraction of all grid cells can be gray. In
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order to do this, we use the fact that the values x̃(1)

i
, x̃

(2)

i
for each circle Ci œ Cú

L
estimate

the placement of each large circle relatively accurately, and that the grid cells are relatively
small. This allows us to prove that almost all cells are black or white. Also, we can compute
all gray cells e�ciently. Let Gg ™ G denote the set of all gray grid cells in G.

I Lemma 13 (ı). The total area of gray cells a(Gg) is at most ÁÁ
2

large
/5. We can compute

Gg in polynomial time.

Unfortunately, it is not su�cient for us that there are only few gray cells. It might be
that almost all cells are either gray or black and, hence, we need to place most of the selected
small circles into gray cells (in order to obtain an (1 + Á)-approximate solution).

However, we can show that this is not the case. We prove that the number of white cells
(which we can safely use for small circles) is at least by a factor 1/Á larger than the number
of gray cells. To show this, we exploit the geometry of the circles. In each corner of the
knapsack, there are cells that cannot intersect with any large circle, simply because the grid
cells are small compared to the large circles and because of the shape of the large circles (see
the corner regions in Figure 5). Hence, these grid cells are white. Let Gw ™ G denote the set
of all white grid cells in G.

I Lemma 14 (ı). The total area of white grid cells a(Gw) is at least Á
2

large
/4. We can

compute Gw in polynomial time.

Using Lemmas 11, 13, and 14, we show that there is a (1 + Á)-approximate solution in
which each small circle is contained in some white cell; in particular, no small circle is placed
inside a gray cell. To prove this, we delete all small circles in the O(Á|Gw|) white grid cells
with the smallest total profit among all white cells and place all circles from gray cells and
all circles from Ccut into those.

I Lemma 15 (ı). There is a set CÕ
S

™ Cú
S
of small circles with p(CÕ

S
) > (1 ≠ Á)p(Cú

S
) such

that there is a packing for CÕ
S
using the grid cells in Gw only.

We complete the proof of Lemma 10 by applying the following lemma to CS := CÕÕ
S
which

shows that we can sacrifice a factor of 1 + O(Á) to be able to use resource augmentation
when we pack the small circles.

I Lemma 16 (ı). There is a set of small circles CÕÕ
S

™ CÕ
S
such that w(CÕÕ

S
) Ø (1 ≠ Á)w(CÕ

S
)

and it is possible to place the circles in CÕÕ
sml

non-overlappingly inside |Gw| square knapsacks
of size (1 ≠ Á)Ácell ◊ (1 ≠ Á)Ácell each.

3.4 Higher dimensions
Our techniques from the previous section extend directly to the problem of packing hyper-
spheres in any (constant) dimension d which yields our main theorem for the setting of
packing (hyper-)spheres.

I Theorem 17 (ı). Let d œ N be a fixed constant. For the geometric knapsack problem
with d-dimensional hyperspheres, there is a polynomial time algorithm that computes a set
of hyperspheres C̃ with p(C̃) > (1 ≠ Á)OPT that can be placed non-overlappingly inside the
knapsack. For all but OÁ(1) hyperspheres in C̃ we compute the precise coordinate of the
corresponding packing; for the other OÁ(1) circles we compute an estimate of the packing
with an additive error of at most 1

2n/Á
in each dimension.

ICALP 2024
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4 Polygons

In this section, we adjust our techniques from the previous sections to obtain a PTAS for the
case that each input object is a fat and convex polygon with at most a constant number of
edges whose lengths di�er by at most a constant factor, and such that each angle between
adjacent edges is larger than fi/2. These objects generalize regular polygons with greater
than 4 sides.

Formally, we assume that we are given a set P = {P1, P2, . . . , Pn} of n polygons that are
(f,–, q, t)-well-behaved, i.e., for each polygon Pi œ P we assume that

Pi is fat, i.e., routi
/r

in

i
Æ f for some (global) constant f Ø 1, where r

out

i
and r

in

i
is the

radius of the smallest circle containing Pi and the radius of the largest circle contained in
P , respectively,
the angle between any two consecutive edges of Pi is at least fi/2 + –, for some (global)
constant – > 0,
Pi has at most q edges for some (global) constant q such that the lengths of any two of
its edges di�er at most by a factor of t.

For example, regular pentagons are (2,fi/10, 5, 1)-well-behaved. For each polygon Pi œ P
we denote by wi its profit, and for a set of polygons P Õ ™ P we denote by w(P Õ) :=

q
PiœPÕ wi

their total profit. For any object C we define its area to be a(C), and for any collection of
objects A we denote their total area by a(A) :=

q
PiœA

a(Pi). We want to pack a subset of
P non-overlappingly into the unit knapsack K := [0, 1]2. We do not allow rotations in our
packing.

Let Á > 0. We require that Á < g(f,–, q, t) for a function g to be defined later. In
contrast to the case with hyperspheres, we show that we can compute each coordinate of
our packing exactly. We classify each polygon Pi œ P as large or small according to the
respective value r

in

i
. For this, we define values Álarge and Ásmall. For technical reasons, we

need that Ásmall Æ h(Álarge) for some decreasing function h : R æ R to be defined later.

I Lemma 18. (ı) There is a set of global constants Á
(0)

, ..., Á
(1/Á) > 0 such that Á

(j) =
h(Á(j≠1)) for each j œ {0, ..., 1/Á ≠ 1} and a value k œ {0, ..., 1/Á ≠ 1} with the following
properties. If we define Álarge := Á

(k) and Ásmall := Á
(k+1), then by losing a factor of 1 + Á

in our approximation guarantee, we can assume that each polygon Pi œ P satisfies that
r
in

i
Æ Ásmall or r

in

i
> Álarge.

We guess the value k œ {0, ..., 1/Á ≠ 1} due to Lemma 18 and define that a polygon
P œ P is large if rin

i
Ø Á

(k≠1) = Álarge and small if rin
i

< Á
(k) = Ásmall. We discard all input

polygons that are neither large nor small. Similar to the case of hyperspheres, we guess the
large polygons in OPT. Since they are fat, there can be only constantly many of them.

I Proposition 19. Any feasible solution can contain at most (1/Á)O(1) large polygons.

We now calculate the placement of the large polygons using a linear program. Define Pú
L

to be the set of large polygons in OPT. Note that, since they are convex polygons instead of
circles or hyperspheres, we can compute an exact placement of the polygons with rational
coordinates. For this, we use the following approach, which was also noted by Abrahamsen et
al. in [1]. Consider the placement of the polygons Pú

L
in OPT. Each side e of each polygon

Pi œ Pú
L
is contained in a line {x : aex = be} for some vector ae and a scalar be. For each

corner vertex v of each polygon Pj œ Pú
L
, we have that aex Ø be or aex Æ be (or both); we

guess which of these cases applies. Let vi be a special vertex for each polygon Pi defined as
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a vertex with the least value of x(1)

i
. Then, the coordinates (x(1)

i
, x

(2)

i
) of the special vertex

vi of each polygon Pi œ Pú
L
satisfy a system of linear inequalities defined as follows. There

are three types of inequalities:
Positivity constraints: x(1)

i
, x

(2)

i
Ø 0,’Pi œ Pú

L

Packing constraints: ’Pi, Pj œ Pú
L
any vertex v in polygon Pj ”= Pi cannot lie inside Pi.

A vertex v lies inside polygon Pi if it satisfies the inequalities described above.
Container constraints: ’Pi œ Pú

L
, 0 Æ x

(1)

i
Æ ai and bi Æ x

(2)

i
Æ 1 ≠ ci, where ai, bi, and

ci can be calculated exactly in constant time for a given polygon. They represent the
maximum value of x(1)

i,v
≠ x

(1)

i
, maximum value of x(2)

i
≠ x

(2)

i,v
, and maximum value of

x
(2)

i,v
≠ x

(2)

i
, where x

(1)

i,v
, x

(2)

i,v
vary over all vertices v of polygon Pi.

From Proposition 19, we know that there can only be at most (1/Á)O(1) large polygons
in OPT. We take all possible subsets Pú

L
of this size and smaller from the set P, which is

polynomial in number. We compute a feasible solution of packing of these subsets P ú
L
to it

which is easy since it has only OÁ,k,f,–,t,q(1) variables and constraints for each subset for
polynomially many subsets, by using the ellipsoid method.

Now for each guessed large subset P ú
L
, we compute a near-optimal packing of the small

polygons P ú
S
. Our goal is to pack the small polygons in the bin with only a loss of Á-fraction

of profit, corresponding to the guessed P
ú
L
. We then return the solution P

ú
L

fi P
ú
S
which

has maximum weight over all guessed values of P ú
L
initially and claim that this packing is

near-optimal.
In order to pack small polygons, we need a corresponding version of Lemma 10. We

define grid cells again similarly such that Ácell is much smaller compared to Álarge and Ásmall

is much smaller compared to Ácell. Intuitively, since our input polygons are well-behaved,
we can prove that a certain amount of space is not used by the large polygons, similar to
Lemma 14. To ensure this, we require that Á is su�ciently small, which in particular also
yields a bound on Ácell. Using this, we show that there are many grid cells that are disjoint
from any large polygon (similarly as the white grid cells in Section 3).

I Lemma 20. (ı) There is a function g : R4

Ø0
æ RØ0 such that if all given polygons are

(f,–, q, t)-well-behaved and Á < g(f,–, q, t) then
in polynomial time we can compute a set of grid cells Gw such that no grid cell in Gw

intersects with any polygon Pi œ Pú
L
,

there is a set of small polygons PS ™ Pú
S
such that w(PS) Ø (1 ≠ O(Á))w(Pú

S
) for the

optimal packing of large polygons, and
the polygons in PS can be packed non-overlappingly inside |Gw| grid cells that have size
(1 ≠ Á)Ácell ◊ (1 ≠ Á)Ácell each.

We can prove Lemma 20 with similar techniques as we used in the proof of Lemma 10. In
order to select and place the small polygons, we use the algorithm due to Theorem 1.

Let P
ú
S
denote our computed solution for the small polygons. We return the solution

P̃ = P
ú
L

fi P
ú
S
which has maximum weight over all initially guessed combinations for the

polygons in P
ú
L
and their approximate coordinates.

I Theorem 21. For any constants f, q Ø 1 and t,– > 0 there is a PTAS for the geometric
knapsack problem for (f,–, q, t)-well-behaved polygons.

5 Conclusion

We almost settle the approximability of the geometric knapsack problem in the setting of
packing spheres into a hypercube knapsack. However, it remains an open problem whether
rational coordinates always su�ce in an optimal packing. If not, it would be an interesting

ICALP 2024
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question to determine the best approximation ratio one can obtain if we allow only rational
coordinates for the centers of the circles (while the optimal packing has no such restrictions).
It would be also interesting to obtain a PTAS for the case of d-dimensional fat convex
objects. Another interesting but di�cult open question is whether the case of convex but
not necessarily fat input objects in the plane admits a PTAS. The best known result for
this setting is only an O(1)-approximation in quasi-polynomial time (assuming polynomially
bounded integral input data [33]). Already for the special case of axis-parallel rectangles, it
is open whether a PTAS exists.
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A Improving the precision of the large spheres

Recall that for each large circle Ci œ Cú
L
we guessed its center in the optimal packing up to a

polynomial error of Á

n
. We improve this to only an exponential error of at most 1

2n/Á
. To do

this, we apply Theorem 9 with – := �( 1

2n/Á
). This yields more precise estimates x̄(1)

i
, x̄

(2)

i
for

each Ci œ Cú
L
. There is an important subtlety though: for our guessed coordinates x̃(1)

i
, x̃

(2)

i

we can assume that they di�er from the coordinates of OPT by at most our polynomial
error of Á

n
. For the new estimates x̄(1)

i
, x̄

(2)

i
we can not guarantee this: our subroutine from

Theorem 9 possibly returns a solution that is (close to) feasible for the large circles, but not
(close to) a solution that is feasible for the large and for the small circles. Because of this, we
guessed the estimates x̃(1)

i
, x̃

(2)

i
for each Ci œ Cú

L
, so that we can assume that these estimates

really correspond to OPT and not just to some arbitrary solution to (1).
If it were true that there is always a (1 + Á)-approximate solution in which the center

of each circle has rational coordinates that can be encoded with a polynomially bounded
number of bits, then we could choose – appropriately to compute it. More precisely, we
could compute a range for each coordinate that contains only one rational number with a
bounded number of bits, and we could compute this number afterward.
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Abstract

In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights)
on n nodes and m edges with specified source vertices s1, . . . , sk, and target vertices t1, . . . , tk, and
are tasked with determining if G contains vertex-disjoint (si, ti)-shortest paths. For any constant k,
it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic
graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps
between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain
faster algorithms for important cases of k-DSP, and present better conditional lower bounds for
k-DSP and its variants.

Previous work solved 2-DSP over weighted undirected graphs in O(n7) time, and weighted DAGs
in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for
solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic
however, and so only solve the detection rather than search version of 2-DSP (we show how to
solve the search version in O(mn) time, which is faster than the previous best runtime in weighted
undirected graphs, but only matches the previous best runtime for DAGs).

We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the
variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and
their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take �(mk) time.
We show that k-EDSP can be solved over DAGs in O(mn

k≠1) time, matching the fastest known
runtime for solving k-DSP over DAGs.

Previous work established conditional lower bounds for solving k-DSP and its variants via
reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to
2k-DSP in DAGs and undirected graphs with O((kn)2) nodes. We improve this reduction, by
showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)2) nodes
(halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint

Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work
reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k ≠ 1)/2. We improve this
by showing a reduction from k-Clique to p-DP, for p = k + Âk2

/4Ê.
Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional

lower bounds for k-DSP for all k Ø 4, and better conditional lower bounds for p-DP for all p Æ 4031.
Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP

in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only
known for k-DP and k-DSP on such graphs when k Ø 6.
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1 Introduction

Routing disjoint paths in graphs is a classical problem in computer science. For positive
integer k, in the k-Disjoint Paths (k-DP) problem, we are given a graph G with n vertices and
m edges, with specified source nodes s1, . . . , sk and target nodes t1, . . . , tk, and are tasked
with determining if G contains (si, ti)-paths which are internally vertex-disjoint. Beyond
being a natural graph theoretic problem to study, k-DP is important because of its deep
connections with various computational tasks from the Graph Minors project [22].

Following a long line of research, the polynomial-time complexity of k-DP has essentially
been settled: in directed graphs the 2-DP problem is NP-hard [18, Lemma 3], and so is
unlikely to admit a polynomial time algorithm, while in undirected graphs k-DP can be
solved in Õ(m+ n) time for k = 2 [24], and in O(n2) time or m1+o(1) time for any constant
k Ø 3 [19, 20].

In this work we study an optimization variant of k-DP, the k-Disjoint Shortest Paths
(k-DSP) problem. In k-DSP we are given the same input as in k-DP, but are now tasked
with determining if the input contains (si, ti)-shortest paths which are internally vertex-
disjoint. This problem is interesting both because it is a natural graph algorithms question
to investigate from the perspective of combinatorial optimization, and because understanding
the complexity of k-DSP could lead to a deeper understanding of the interaction between
shortest paths structures in graphs (analogous to how studying k-DP helped develop the rich
theory surrounding forbidden minors in graphs).

Compared to k-DP, not much is known about the exact time complexity of k-DSP.
In directed graphs, 2-DSP can be solved in polynomial time [6], but no polynomial-time
algorithm (or NP-hardness proof) is known for k-DSP for any constant k Ø 3. In undirected
graphs, it was recently shown that for any constant k, k-DSP can be solved in polynomial
time [21]. However, the current best algorithms for k-DSP in undirected graphs run in
n
O(k·k!) time, so in general this polynomial runtime is quite large for k Ø 3. For example,

the current fastest algorithm for 3-DSP in undirected graphs takes O(n292) time [4].
Significantly faster algorithms are known for detecting k = 2 disjoint shortest paths.

The paper which first introduced the k-DSP problem in 1998 also presented an O(n8) time
algorithm for solving 2-DSP in weighted1 undirected graphs [15]. The first improvement for
this problem came over twenty years later in [1], which presented an algorithm solving 2-DSP
in weighted undirected graphs in O(n7) time, and in unweighted undirected graphs in O(n6)

1 Throughout, we assume that weighted graphs have positive edge weights.
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time. Soon after, [4, Theorem 1] presented an even faster O(mn) time algorithm for solving
2-DSP in the special case of unweighted undirected graphs.2 The main result of our work is
an optimal algorithm for 2-DSP in weighted undirected graphs.

I Theorem 1. 2-DSP can be solved in weighted undirected graphs in O(m+ n) time.
This result pins down the true time complexity of 2-DSP in undirected graphs, and (up

to certain limitations of our algorithm, which we discuss later) closes the line of research for
this specific problem, initiated twenty-five years ago in [15].

As discussed previously, over directed graphs the 2-DP problem is NP-hard, and the
complexity of k-DSP is open even for k = 3. This lack of algorithmic progress in general
directed graphs has motivated researchers to characterize the complexity of disjoint path
problems in restricted classes of directed graphs. In this context, studying algorithms for
routing disjoint paths in directed acyclic graphs (DAGs) has proved to be particularly fruitful.
For example, the only known polynomial time algorithm for 2-DSP on general directed graphs
works by reducing to several instances of 2-DP on DAGs [6]. Similarly, the fastest known
algorithm for k-DSP on undirected graphs works by reducing to several instances of disjoint
paths on DAGs [4].

It is known that 2-DP in DAGs can be solved in linear time [25]. More generally, since
1980 it has been known that k-DP in DAGs can be solved in O(mn

k≠1) time, and this
remains the fastest known algorithm for these problems for all k Ø 3 [18, Theorem 3].

As observed in [6, Proposition 10], the algorithm of [18] for k-DP on DAGs can be
modified to solve k-DSP in weighted DAGs in the same O(mn

k≠1) runtime. This is the
fastest known runtime for k-DSP in DAGs. In particular, the fastest algorithm for 2-DSP
from previous work runs in O(mn) time.

The second result of our work is an optimal algorithm for 2-DSP in weighted DAGs.

I Theorem 2. 2-DSP can be solved in weighted DAGs in O(m+ n) time.
This settles the time complexity of 2-DSP in DAGs, and marks the first improvement over

the O(mn) time algorithm implied by [18] from over thirty years ago. The 2-DSP problem
in weighted DAGs generalizes the 2-DP problem in DAGs, and so Theorem 2 also o�ers
an alternate linear time algorithm for 2-DP in DAGs, which is arguably simpler than the
previous approaches leading up to [25], many of which involved tricky case analyses and
carefully constructed data structures.

Our algorithms for solving 2-DSP in undirected graphs and DAGs are algebraic, and work
by testing whether certain polynomials, whose terms encode pairs of disjoint shortest paths
in the input graph, are nonzero. As a consequence, the algorithms establishing Theorems 1
and 2 are randomized, and solve 2-DSP with high probability. Moreover, these algorithms
determine whether the input graph has a solution, but do not explicitly return solution paths.
So while our algorithms solve the decision problem 2-DSP, they do not solve the search
problem of returning two disjoint shortest paths if they exist. This is a common limitation
for algebraic graph algorithms.

The 2-DSP problem does admit a search to decision reduction – with O(m) calls to
an algorithm which detects whether a graph contains two disjoint shortest paths, we can
actually find two disjoint shortest paths if they exist. Thanks to the algebraic nature of our
algorithms, we can get a slightly better reduction, and find two disjoint shortest paths when
they exist with only O(n) calls to the algorithms from Theorems 1 and 2.

2 It seems plausible that the method of [4] could be adapted to handle weighted undirected graphs as
well, but such a generalization does not appear to currently be known.
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I Theorem 3. We can solve 2-DSP over weighted DAGs and undirected graphs, and find a
solution if it exists, in O(mn) time.

So we can find two disjoint shortest paths in weighted undirected graphs in O(mn)
time (which still beats the previous fastest O(n7) time algorithm for weighted undirected
graphs, and matches the previous fastest algorithm for unweighted undirected graphs), and in
weighted DAGs in O(mn) time (which only matches, rather than beats, the previous fastest
runtime for 2-DSP in DAGs).

Finally, one can also consider edge-disjoint versions of all the problems discussed thus far.
The k-Edge Disjoint Paths (k-EDP) and k-Edge Disjoint Shortest Paths (k-EDSP) problems
are the same as the respective k-DP and k-DSP problems, except the solutions paths merely
need to be edge-disjoint instead of internally vertex-disjoint.

For any constant k, there is a simple reduction from k-EDSP on n nodes and m edges
to k-DSP on O(m+ n) nodes and O(m) edges. Combining this reduction with Theorems 1
and 2, we get that we can solve 2-EDSP over weighted DAGs and undirected graphs in linear
time as well.

I Corollary 4. There is an algorithm solving 2-EDSP over weighted DAGs and undirected
graphs in O(m+ n) time.

More generally, for all k Ø 3 the fastest known algorithms for k-EDSP on DAGs in the
literature work by reducing this problem to k-DSP using the reduction mentioned in the
previous paragraph. Consequently, the current fastest algorithm for k-EDSP in DAGs runs
in O(mk) time, which in dense graphs is much slower than the O(mn

k≠1) time algorithm
known for k-DSP. For the same reason, the fastest known algorithm for k-EDP in DAGs for
k Ø 3 runs in O(mk) time.

Our final algorithmic result is that we can solve k-EDSP in weighted DAGs as quickly as
the fastest known algorithms for k-DSP.

I Theorem 5. The k-EDSP problem can be solved in weighted DAGs in O(mn
k≠1) time.

Since k-EDSP in weighted DAGs generalizes the k-EDP problem in DAGs, Theorem 5
also implies faster algorithms for this latter problem. Our algorithm is simple and employs
the same general approach used by previous routines [18, 6] for this problem.

Lower Bounds

For k Ø 3, the known O(mn
k≠1) algorithms for k-DP and k-DSP in DAGs have resisted

any improvements over the past three decades. Thus, it is natural to wonder whether there
is complexity theoretic evidence that solving these problems significantly faster would be
di�cult. Researchers have presented some evidence in this vein, in the form of reductions
from the conjectured hard problem of detecting cliques in graphs.

Let k = �(1) be a positive integer. A k-clique is a collection of k mutually adjacent
vertices in a graph. In the k-Clique problem,3 we are given a k-partite graph G with vertex
set V1 Û · · · Û Vk, where each part Vi has n vertices, and are tasked with determining if G
contains a k-clique.

3 This problem is sometimes referred to in the literature as k-Multicolored Clique. A folklore argument
reduces from detecting a k-clique in an arbitrary n-node graph to the k-Clique problem as defined here,
by making k copies of the input graph, and only including edges between di�erent copies, e.g. as in [11,
Proof of Theorem 13.7].
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We can of course solve k-Clique in O(nk) time, just by trying out all possible k-tuples of
vertices. Better algorithms for k-Clique are known, which employ fast matrix multiplication.
Let Ê denote the exponent of matrix multiplication (i.e., Ê is the smallest real such that
two n ◊ n matrices can be multiplied in n

Ê+o(1) time). Given positive reals a, b, c, we more
generally write Ê(a, b, c) to denote the smallest real such that we can compute the product
of an n

a ◊ n
b matrix and an n

b ◊ n
c matrix in n

Ê(a,b,c)+o(1) time. Then it is known that
k-Clique can be solved in

C(n, k) = �(nÊ(Âk/3Ê,Á(k≠1)/3Ë,Ák/3Ë))

time [16]. The current fastest matrix multiplication algorithms yield Ê < 2.37156 [28]. A
popular fine-grained hardness hypothesis posits (e.g., in [27, 13]) that current algorithms for
k-Clique are optimal.
I Hypothesis 1 (k-Clique Hypothesis). For any integer constant k Ø 3, solving k-Clique requires
at least C(n, k)1≠o(1) time.

In this context, previous work provided reductions from k-Clique to disjoint path problems.
For example, [4] presents a reduction from k-Clique to 2k-DSP on undirected graphs with
O((kn)2) vertices (and this reduction easily extends to DAGs). Our first conditional lower
bound improves this result for DAGs, by halving the number of paths needed in the reduction.

I Theorem 6. There is a reduction from k-Clique to k-DSP on unweighted DAGs with
O((kn)2) vertices, that runs in O((kn)2) time.

I Corollary 7. Assuming the k-Clique Hypothesis, k-DSP requires C(n1/2
, k)1≠o(1) time to

solve on unweighted DAGs.

The previous reduction of [4] yields a weaker bound of C(n1/2
, Âk/2Ê)1≠o(1) for the time

needed to solve k-DSP, assuming the k-Clique Hypothesis. If Ê > 2, this earlier result only
gives nontrivial (that is, superquadratic) lower bounds for k Ø 10, and if Ê = 2 is only
nontrivial for k Ø 14. In comparison, if Ê > 2, Corollary 7 is nontrivial for k Ø 5, and if
Ê = 2, Corollary 7 is still nontrivial for k Ø 7. See Table 1 for the concrete lower bounds we
achieve for small k.

As mentioned before, the k-DSP problem in weighted DAGs generalizes k-DP in DAGs.
However, the current fastest algorithms for k-DP have the same time complexity as the
current best algorithms for the more general k-DSP problem. To explain this behavior, it is
desirable to show conditional lower bounds for k-DP in DAGs, which are similar in quality
to the known lower bounds for k-DSP in DAGs.

Such lower bounds have been shown by [10]. In particular, [10] together with standard
reductions in parameterized complexity [11, Proofs of Theorems 14.28 and 14.30] implies
that there is a reduction from k-Clique to 8k-EDSP on graphs with O((kn)4) nodes. One
can easily modify this reduction, using the idea in the construction from [5, Section 6], to
instead reduce from k-Clique to 8k-DSP on graphs with O((kn)4) nodes.

This reduction implies that k-DSP requires C(n1/4
, Âk/8Ê)1≠o(1) time to solve on DAGs,

assuming the k-Clique Hypothesis. For large k, this is the current best conditional lower
bound for k-DP in DAGs. However, the blow-up in the graph size and parameter value in
this reduction makes this lower bound irrelevant for small k (in fact, the reduction only
yields nontrivial lower bounds under the k-Clique Hypothesis for k Ø 96).

For small values of k, better conditional lower bounds are known for k-DP. In particular,
[23] presents reductions from k-Clique to p-DP and p-DSP on DAGs with O(kn) vertices,
for parameter value p = k +

!
k

2

"
. For our final conditional lower bound, we improve this

reduction, by reducing the number of paths needed to k + Âk2/4Ê.
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I Theorem 8. Let k Ø 3 be a constant integer, and set p = k + Âk2/4Ê. There are O((kn)2)
time reductions from k-Clique to p-DP and p-DSP on unweighted DAGs with O(kn) vertices.

Table 1 A list of lower bounds implied by Corollary 7 for k-DSP when 5 Æ k Æ 9. Each row
corresponds to a value of k. An entry of – in the left column of the row for a given k value indicates
that solving k-DSP in O(n–≠”) time for any constant ” > 0 would require refuting the k-Clique

Hypothesis or designing faster matrix multiplication algorithms. An entry of — in the right column in
the row for a given k value indicates that assuming the k-Clique Hypothesis, k-DSP requires n—≠o(1)

time to solve. The previous reduction of [4] gave no nontrivial lower bound for k-DSP for
any value of k in this table, and the reduction of [23] matches our lower bound for k = 6, but is
worse everywhere else. Table entry values are based o� rectangular matrix multiplication exponents
from [28, Table 1].

k
k-DSP Exponent Lower Bound
(for current Ê) (if Ê = 2)

5 2.042 Trivial
6 2.371 Trivial
7 2.794 2.5
8 3.198 3
9 3.557 3

For each integer p Ø 5, we can find the largest integer k Ø 3 such that k + Âk2/4Ê Æ p,
and then apply Theorem 8 to obtain conditional lower bounds for p-DP and p-DSP on DAGs.

I Corollary 9. Assuming the k-Clique Hypothesis, the p-DSP and p-DP problems require

max (C(n, keven(p)), C(n, kodd(p)))1≠o(1)

time to solve on unweighted DAGs for all integers p Ø 5, where

keven(p) = 2Â

p+ 1Ê ≠ 2

and

kodd(p) = 2
7Ô

p+ 5 ≠ 1
2

8
≠ 1

are the largest even and odd integers k such that k + Âk2/4Ê Æ p respectively.

Assuming the k-Clique Hypothesis, Corollary 9 shows that 5-DSP requires at least nÊ≠o(1)

time and 8-DSP requires at least C(n, 4)1≠o(1) time to solve. For the current value of Ê,
these yield lower bounds of n2.371≠o(1) for 5-DSP and n

3.198≠o(1) for 8-DSP, which are better
than the lower bounds implied by Corollary 7 (see Table 1). If Ê = 2 however, Corollary 9
does not yield better lower bounds than Corollary 7 for k-DSP.

Previous reductions give nontrivial lower bounds for p-DP only when p Ø 6 if Ê > 2, and
p Ø 10 if Ê = 2. In comparison, Corollary 9 yields nontrivial lower bounds for p-DP under
the k-Clique Hypothesis for p Ø 5 if Ê > 2, and p Ø 8 if Ê = 2.

Previously, the reduction of [23] yielded the best lower bounds for p-DP for p Æ 2016, and
otherwise the reduction of [10] yielded better lower bounds. In comparison, Corollary 9 yields
lower bounds matching the reduction from [23] for p œ {6, 7, 10}, and otherwise, for Ê > 2,
yields strictly better lower bounds for p-DP for all p Ø 5. Moreover, for Ê = 2, Corollary 9
yields the best lower bounds for p-DP for all p Æ 4031 (with [10] yielding better lower bounds
only for larger p). To see quantitatively how Corollary 9 improves the best conditional lower
bounds for p-DP from previous work at various concrete values of p, see Table 2.
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Table 2 A list of lower bounds implied by Corollary 9 (and previous work) for p-DP at various
values of p. Rows correspond to values of p. For a given such row, the entries –,—, “ in the three
columns collected under the heading of “p-DP Exponent Lower Bound,” read from left to right,
indicate that Corollary 9, the reduction of [23], and the reduction of [10] imply that p-DP requires
n

–≠o(1), n—≠o(1), and n
“≠o(1) time to solve respectively, assuming the k-Clique Conecture.

p
p-DP Exponent Lower Bound (if Ê = 2)

From Corollary 9 Reduction of [23] Reduction of [10]
9 3 Trivial Trivial
24 6 4 Trivial
89 12 8 Trivial
239 20 14 5
929 40 28 19.5
2016 58 42 42
2969 72 51 62
4031 84 60 84

1.1 Comparison with Previous Algorithms

Previous algorithms for 2-DSP and 2-DP in DAGs are combinatorial in nature: they observe
certain structural properties of candidate solutions, and then leverage these observations
to build up pairs of disjoint paths. In the special case of unweighted undirected graphs, [8]
presented an algebraic algorithm for solving a generalization of 2-DSP, but all other prior
algorithms for 2-DSP and 2-DP in undirected graphs are combinatorial. Our work is the first
to employ algebraic methods to tackle the general weighted 2-DSP problem: our algorithms
for 2-DSP on undirected graphs and DAGs work by checking that a certain polynomial, whose
monomials correspond uniquely to pairs of disjoint shortest paths in the input graph, is
nonzero. To obtain the fast runtimes in Theorems 1 and 2, we evaluate this polynomial over
a field of characteristic two, and crucially exploit certain symmetries which make e�cient
evaluation possible when working modulo two.

Such “mod 2 vanishing” methods have appeared previously in the literature for algebraic
graph algorithms, but the symmetries we exploit in our algorithms for 2-DSP di�er in
interesting ways from those of previous approaches. For example, previous methods tend to
work exclusively in undirected graphs (relying on the ability to traverse cycles in both the
forwards and backwards directions to produce terms in polynomials which cancel modulo
2), while our approach is able to handle 2-DSP in both undirected graphs and DAGs. It
is also interesting that our algorithms solve 2-DSP in weighted graphs without any issue,
since the previous algebraic graph algorithms we are aware of are e�cient in unweighted
graphs, but in weighted graphs have a runtime which depends polynomially on the value of
the maximum edge weight.

Below, we compare our techniques to previous algebraic algorithms in the literature.

Two Disjoint Paths with Minimum Total Length

The most relevant examples of algebraic graph algorithms in the literature to our work are
previous algorithms for the MinSum 2-DP problem: in this problem, we are given a graph
G on n vertices, with specified sources s1, s2 and targets t1, t2, and are tasked with finding
internally vertex-disjoint paths Pi from si to ti, such that the sum of the lengths of P1 and
P2 is minimized, or reporting that no such paths exists.
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In unweighted undirected graphs, [7] showed thatMinSum 2-DP can be solved in polynomial
time, with [8, Section 6] providing a faster implementation of this approach running in Õ(n4+Ê)
time. Similar to our work, these algorithms check if a certain polynomial enumerating disjoint
pairs of paths in G is nonzero or not. These methods rely on G being undirected, and are
based o� computing determinants of n ◊ n matrices.

Our approach for 2-DSP di�ers from these arguments because we seek linear time
algorithms, and so avoid computing determinants (which would yield �(nÊ) runtimes).
We instead directly enumerate pairs of intersecting paths and subtract them out. This
alternate approach also allows us to obtain algorithms which apply to both undirected graphs
and DAGs, whereas the cycle-reversing arguments of [8] do not appear to extend to DAGs.

Paths and Linkages with Satisfying Length Conditions

Given sets S and T of p source and target vertices respectively, an (S, T )-linkage is a set of
p vertex-disjoint paths, beginning at di�erent nodes in S and ending at di�erent nodes in T .
The length of such a linkage is the sum of the lengths of the paths it contains. Recent work
has presented algorithms for the problem of finding (S, T )-linkages in undirected graphs of
length at least k, fixed-parameter tractable in k. In particular, [17, Section 4] presents an
algorithm solving this problem in 2k+p poly(n) time. Their algorithm enumerates collections
of p walks beginning at di�erent nodes in S and ending at di�erent nodes in T . They then
argue that all terms in this enumeration with intersecting walks cancel modulo 2, leaving
only the (S, T )-linkages. One idea used in the above cancellation argument is that if two
paths P and Q in a collection intersect at a vertex v, then we can pair this collection with a
new collection obtained by swapping the su�xes of P and Q after vertex v.

In the 2-DSP problem, solution paths must connect sources si to corresponding targets ti
instead of to arbitrary targets, and so we cannot use the above su�x-swapping argument
to get cancellation. So to enumerate disjoint shortest paths in our algorithms, we employ
somewhat trickier cancellation arguments than what was previously used.

More recently, [14, Section 6] presented an algorithm solving the linkage problem discussed
above in 2k poly(n) time (with runtime independent of p). Their approach uses determinants
to enumerate (S, T )-linkages. As mentioned previously, we explicitly avoid using determinants
so that we can obtain linear time algorithms.

Additional Related Work

There are many additional examples of algebraic graph algorithms in the literature. For
example, [9] presents an e�cient algorithm for finding shortest cycles through specified
subsets of vertices, [12] presents algorithms for finding shortest cycles and perfect matchings
in essentially matrix multiplication time, and [8] presents a polynomial time algorithm for
finding a shortest cycle of even length in a directed graph. Even more examples of algebraic
methods in parameterized algorithms are listed in [14, Table 1].

Bibliographic Remark

While the current paper was under submission, the work [3] of Bentert, Fomin, and Golovach
was posted online. The reduction they use to establish [3, Theorem 1] is essentially the same
as the reduction we use to prove Theorem 6, so this result was independently shown by [3].
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Organization

In Section 2 we introduce notation and recall useful facts about graphs and polynomials
used in our results. In Section 3 we provide some informal overviews for the proofs of our
results. Full proofs of the results claimed in this paper can be found in the full version of
this work [2]. We conclude in Section 4 by highlighting some open problems motivated by
this work.

2 Preliminaries

General Notation

Given a positive integer a, we let [a] = {1, . . . , a} denote the set of the first a positive integers.
Given positive integers a and b, we let [a, b] = {a, . . . , b} denote the set of consecutive integers
from a to b inclusive (if a > b, then [a, b] is the empty set).

Throughout, we let k denote a constant positive integer parameter.

Graph Notation and Assumptions

Throughout, we let G denote the input graph on n vertices and m edges. We let s1, . . . , sk
denote the source vertices of G, and t1, . . . , tk denote the target vertices of G. A terminal is
a source or target node. We assume without loss of generality that G is weakly connected
(we can do this because we only care about solving disjoint path problems on G, and if
terminals of G are in separate weakly connected components, we can solve smaller disjoint
path problems on each component separately).

Given an edge e = (u, v), we let ¸(u, v) denote the weight of e in G. We assume all edge
weights are positive. We let dist(u, v) denote the distance of a shortest path (i.e., the sum
of the weights of the edges used in a shortest path) from u to v. When we write “path P

traverses edge (u, v)” we mean that P first enters u, then immediately goes to v.
We represent paths P = Èv0, . . . , vrÍ as sequences of vertices. If the path P passes through

vertices u and v in that order, we let P [u, v] denote the subpath of P which begins at u

and ends at v. We let  �P denote the reverse path of P , which traverses the vertices of P in
reverse order. Given two paths P and Q such that the final vertex of P is the same as the
first vertex of Q, we let P ù Q denote the concatenation of P and Q.

Shortest Path DAGs

Given a graph G and specified vertex s, the s-shortest paths DAG of G is the graph with the
same vertex set as G, which includes edge (u, v) if and only if (u, v) is an edge traversed by
an (s, v)-shortest path in G. From this definition, it is easy to see that a sequence of vertices
is an (s, v)-shortest path of G if and only if it is an (s, v)-path in the s-shortest paths DAG
of G. Indeed, every edge of an (s, v)-shortest path in G is contained in the s-shortest paths
DAG by definition, and so forms a path in this graph. Conversely, if the sequence of vertices
P = Èv0, . . . , vrÍ is an (s, v)-path in the s-shortest paths DAG of G, then we can inductively
show that P [s, vi] is a shortest path in G for each index i.

We observe that shortest paths DAGs can be constructed in linear time.

I Proposition 10 (Shortest Path DAGs). Let G be a weighted DAG or undirected graph with
distinguished vertex s. Then we can construct the s-shortest paths DAG of G in linear time.

ICALP 2024



9:10 Detecting Disjoint Shortest Paths in Linear Time and More

Proof. By definition, an edge (u, v) is in the s-shortest paths DAG of G if and only if (u, v)
is the last edge of some (s, v)-shortest path in G. This is equivalent to the condition that
(u, v) is an edge in G, and

dist(s, v) = dist(s, u) + ¸(u, v). (1)

So, we can construct the s-shortest paths DAG of G by computing the values of dist(s, v) for
all vertices v, and then going through each edge (u, v) in G (if G is undirected, we try out
both ordered pairs (u, v) and (v, u) of an edge {u, v}) and checking if Equation (1) holds.

So to prove the claim, it su�ces to compute dist(s, v) for all vertices v in linear time.
When G is a weighted DAG, we can compute a topological order of G in linear time, and

then perform dynamic programming over the vertices in this order to compute dist(s, v) for
all vertices v in linear time (this procedure is just a modified breadth-first search routine).

When G is an undirected graph, we instead use Thorup’s linear-time algorithm for
single-source shortest paths in weighted undirected graphs [26] to compute dist(s, v) for all
vertices v. J

Finite Fields

Our algorithms for 2-DSP in undirected graphs and DAGs involve working over a finite field
F2q of characteristic two, where q = O(logn). We work in the Word-RAM model with words
of size O(logn), so that addition and multiplication over this field take constant time.

We make use of the following classical result, which shows that we can test if a polynomial
is nonzero by evaluating it at a random point of a su�ciently large finite field.

I Proposition 11 (Schwartz-Zippel Lemma). Let f be a nonzero polynomial of degree at
most d. Then a uniform random evaluation of f over F is nonzero with probability at least
1 ≠ d/|F|.

3 Technical Overview

3.1 2-DSP Algorithms

We first outline a linear time algorithm solving 2-DP in DAGs. We then discuss the changes
needed to solve the 2-DSP problem in weighted DAGs, and then the additional ideas used to
solve 2-DSP in weighted undirected graphs.

Let G be the input DAG. For each edge (u, v) in G, we introduce an indeterminate xuv.
We assign each pair of paths in G a certain monomial over the xuv variables, which records
the pairs of consecutive vertices traversed by the paths. These monomials are constructed so
that any pair of disjoint paths has a unique monomial.

Let F be the sum of monomials corresponding to all pairs of paths ÈP1, P2Í such that
Pi is an (si, ti)-path in G. Let Fdisj and Ffl be the sums of monomials corresponding to
all such pairs of paths which are disjoint and intersecting respectively. Since each disjoint
pair of paths produces a distinct monomial, we can solve 2-DP by testing whether Fdisj is a
nonzero polynomial. We can perform this test by evaluating Fdisj at a random point, by the
Schwartz-Zippel lemma (Proposition 11).

Since every pair of paths is either disjoint or intersecting, we have

F = Fdisj + Ffl
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Figure 1 To enumerate the family of disjoint pairs of paths on the left (the dashed borders
around the paths indicate that the paths do not intersect), it su�ces to enumerate all pairs of paths
and subtract out those pairs in the family which intersect at some point.

which implies that

Fdisj = F ≠ Ffl.

This relationship is pictured in Figure 1.
Thus, in order to evaluate Fdisj, it su�ces to evaluate F and Ffl. Since F enumerates

pairs of paths from the sources to their corresponding targets with no constraints, it turns
out that F is easy to evaluate. So solving 2-DP amounts to evaluating Ffl e�ciently.

To evaluate Ffl, we need a way of enumerating over all pairs of intersecting paths. Each
pair of intersecting paths overlaps at a unique earliest vertex v (with respect to the topological
order of G). Consequently, if we let Fv be the sum of monomials of pairs of intersecting
paths with first intersection at v, we have

Ffl =
ÿ

vœV

Fv (2)

as depicted in Figure 3.
We evaluate each Fv by relating it to a seemingly simpler polynomial. Let F̃v be the

polynomial enumerating pairs of paths ÈP1, P2Í where Pi is an (si, ti)-path in G such that
1. P1 and P2 intersect at vertex v, and
2. the vertices appearing immediately before v on P1 and P2 are distinct.

We can think of property 2 as a relaxation of the condition that P1 and P2 have v as
their earliest intersection point: instead of requiring that P1[s1, v] and P2[s2, v] never overlap
before v, we merely require that these subpaths do not overlap at the position immediately
before v. It turns out evaluating F̃v is easy, because we can enforce property 2 above by
enumerating over all pairs of paths which intersect at v, and then subtracting out all such
pairs which overlap at some edge ending at v. Simultaneously evaluating all F̃v can then be
done in O(m) time, roughly because we perform one subtraction for each possible edge the
paths could overlap at.

So far, we have explained how to compute all F̃v values in linear time. Now comes the
key idea behind our algorithm: over fields of characteristic two, the polynomials F̃v and Fv

are actually identical! Indeed, consider a pair of paths ÈP1, P2Í enumerated by F̃v, which
intersects before v. Let the first intersection point of these paths be some vertex u. Then by
condition 2 above, the subpaths P1[u, v] and P2[u, v] are distinct, because their penultimate
vertices are distinct. So if we define new paths

Q1 = P1[s1, u] ù P2[u, v] ù P1[v, t1] and Q2 = P2[s2, u] ù P1[u, v] ù P2[v, t2]

obtained by swapping the u to v subpaths in P1 and P2, we get a new pair of paths ÈQ1, Q2Í
satisfying conditions 1 and 2 from before, such that each Qi is an (si, ti)-path in G, which
produces the same monomial as ÈP1, P2Í. This subpath swapping operation is depicted in
Figure 2, for u = a and v = b. Then modulo two, the contributions of the pairs ÈP1, P2Í
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s1

s2

a b

t1

t2

s1

s2

a b

t1

t2

Figure 2 Given paths P1 and P2 which intersect at nodes a = –(P1, P2) and b = —(P1, P2), such
that a appears before b on both paths, if we swap the a to b subpaths of of P1 and P2 to produce
new paths Q1 and Q2 respectively, then these pairs f(P1, P2) = f(Q1, Q2) have the same monomials.
Moreover, swapping the a to b subpaths of Q1 and Q2 recovers P1 and P2.

and ÈQ1, Q2Í to F̃v will cancel out. It follows that all pairs of paths which intersect before v

have net zero contribution to F̃v, and so F̃v = Fv as claimed. This congruence is depicted in
Figure 4.

Given this observation, we can use our evaluations of F̃v in Equation (2) to evaluate Ffl
and thus, by the previous discussion, solve the 2-DP problem.

From Disjoint Paths to Disjoint Shortest Paths

To solve 2-DSP in weighted DAGS, we can modify the 2-DP algorithm sketched above as
follows. First, for i œ [2], we compute Gi, the si-shortest paths DAG of G. We then construct
polynomials as above, but with the additional constraint that they only enumerate pairs of
paths ÈP1, P2Í with the property that every edge in path Pi lies in Gi. This ensures that we
only enumerate pairs of paths which are shortest paths between their terminals.

With this change, the above algorithm for 2-DP generalizes to solving 2-DSP.
I Remark 12 (Enumeration Makes Generalization Easy). Previous near-linear time algorithms
for 2-DP in DAGs and undirected graphs do not easily generalize to solving 2-DSP. In
contrast, as outlined above, in our approach moving from 2-DP to 2-DSP is simple. Why is
this?

Intuitively, this happens because our algorithms take an enumerative perspective on
2-DSP, rather than the detection-based strategy of previous algorithms. Older algorithms
iteratively build up solutions to 2-DP or 2-DSP. Depending on the problem, this involves
enforcing di�erent sorts of constraints, since partial solutions to these problems may look quite
di�erent. In our approach, we just need to enumerate paths to solve 2-DP and enumerate
shortest paths to solve 2-DSP. Enumerating paths and shortest paths are both easy in DAGs
by dynamic programming. Hence algorithms for these two problems end up being essentially
the same in our framework.

From DAGs to Undirected Graphs

When solving 2-DSP in DAGs, we used the fact that DAGs have a topological order, so
that any pair of paths intersects at a unique earliest vertex v in this order. This simple
decomposition does not apply to solving 2-DSP in undirected graphs, since we cannot rely
on a fixed topological order.

Instead, we perform casework on the first vertex v in P1 lying in P1 fl P2. We observe
that in undirected graphs, there are two possibilities: v is either the first vertex in P2 lying
in P1 flP2, or it is the final vertex in P2 lying in P1 flP2. Intuitively, the paths either “agree”
and go in the same direction, or “disagree” and go in opposite directions.
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Figure 3 To enumerate the family of intersecting pairs of paths on the left, we can perform
casework on the earliest intersection point v for the paths (the dashed border on the subpaths on
the right indicates that the paths do not intersect before v).

We then argue that over a field of characteristic two, we can e�ciently enumerate over
pairs of paths in each of these cases. As with DAGs, we make this enumeration e�cient by
arguing that modulo 2 we can relax the (a priori di�cult to check) condition of v being the
first intersection point on P1 to some simpler “local” condition. When the paths agree, this
argument is similar to the reasoning used for solving 2-DSP in DAGs.

For the case where the paths disagree, this enumeration is more complicated, because
there is no consistent linear ordering of the vertices neighboring v on the two shortest
paths, but can still be implemented in linear time using a more sophisticated local condition.
Specifically, if we let ai and bi denote the nodes appearing immediately before and after v on
path Pi, then to enumerate the “disagreeing paths” modulo two, we prove that it su�ces
to enumerate paths P1 and P2 which intersect at v and have the properties that a1 ”= a2,
b1 ”= b2, and a1 ”= b2. Intuitively, using the subpath swapping idea depicted in Figure 4, the
conditions that a1 ”= a2 and a1 ”= b2 ensure that v is the first vertex of P1 lying in P1 fl P2,
and the condition that b1 ”= b2 ensures that the paths disagree. To implement this idea, we
need a slightly more complicated subpath swapping argument, which can also handle the
case where two paths P1 and P2 intersect at vertices u and v, with u appearing before v on
P1 but u appearing after v on P2 (this situation does not occur in DAGs, but can occur in
undirected graphs). We do this by combining the previous subpath swapping idea with the
observation that in undirected graphs we can also traverse subpaths in the reverse direction
(so it is possible to swap the subpaths P1[u, v] and P2[v, u] in P1 and P2, even though u and
v appear in di�erent orders on P1 and P2).

By combining the enumerations for both cases, we can evaluate Fdisj, and thus solve
2-DSP over undirected graphs.

3.2 k-EDSP Algorithm

The previous algorithm of [6, Proposition 10] for k-EDSP works by constructing a graph G
Õ

encoding information about k-tuples of edge-disjoint shortest paths in the original graph
G. This new graph G

Õ has special nodes s̨ and t̨, such that there is a path from s̨ to t̨ in
G

Õ if and only if G contains k edge-disjoint shortest paths connecting its terminals. The
nodes of the new graph G

Õ are k-tuples of edges (e1, . . . , ek) where each ei is an edge in G.
So constructing G

Õ already takes �(mk) time.
Our algorithm for k-EDSP uses the same general idea. We construct an alternate graph

G
Õ which still has the property that finding a single path between two specified vertices

of GÕ solves the k-EDSP problem in G. However, we design G
Õ to have nodes of the form

(v1, . . . , vk), where each vi is a vertex in G. Our construction produces a graph with n
k nodes

and O(mn
k≠1) edges, which yields the speed-up. We avoid the �(mk) bottleneck of the

previous algorithm by showing how to encode edge-disjointness information simply through
the k-tuples of vertices, rather than edges, that the k potential solution paths in G traverse.
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v
©

v
(mod 2)

Figure 4 If we work modulo two, then we can enumerate pairs of paths which have common first
intersection at node v by enumerating pairs of paths which intersect at v and have the property
that the vertices appearing immediately before v on each path are distinct.

3.3 Lower Bounds

Disjoint Shortest Paths

Our proof of Theorem 6 is based on the reduction of [5, Proposition 1] from k-Clique to
2k-DSP on undirected graphs, which also easily extends to DAGs. Our contribution is a
transformation that reduces the number of paths in their reduction from 2k to k by exploiting
the symmetry of the construction.

The reduction of [5] maps each vertex v in the k-Clique instance to a horizontal path Pv

and a vertical path Qv, each of length n. These paths are arranged so that for each pair of
vertices (v, w) in the input graph, the paths Pv and Qw intersect if and only if (v, w) is not
an edge in the input graph. To achieve this, the paths are placed along a grid, and at the
intersection point in the grid between paths Pv and Qw, these two paths are modified to
bypass each other to avoid intersection if (v, w) is an edge in the input graph.

The main idea of our transformation is the following. Since the known reduction is
symmetric along the diagonal of the grid, it contains some redundancy. We remove this
redundancy by only keeping the portion of the grid below the diagonal. To do this, we
only have one path Pv for each vertex v in the input graph, and each such path has both a
horizontal component and a vertical component. Each path turns from horizontal to vertical
when it hits the diagonal. As a result, each pair of paths (Pv, Pw) has exactly one intersection
point in the grid (which we bypass if (v, w) is an edge in the input graph). Since we produce
only a single path Pv for each vertex v, we obtain a reduction to k-DSP instead of 2k-DSP.

Disjoint Paths

The starting point for Theorem 8 is the work of [23], which reduces from k-Clique to p-EDP
in a DAG with O(kn) nodes, for p = k +

!
k

2

"
. The parameter blows up from k to p in this

way because the reduction uses k solution paths to pick k vertices in the original graph, and
then for each of the

!
k

2

"
pairs of vertices chosen, uses an additional solution path to verify

that the vertices in that pair are adjacent in the original graph.
We improve upon this by modifying the reduction graph to allow some solution paths to

check multiple edges simultaneously. This lets us avoid using
!
k

2

"
solution paths to separately

check for edges between each pair of nodes in a candidate k-clique. Instead, we employ just
Âk2/4Ê solution paths in the reduction, roughly halving the number of paths needed.

To do this, we need to precisely identify which paths can check for multiple edges without
compromising the correctness of the reduction. To this end, we examine the structure of the
reduction and define a notion of a covering family which characterizes which paths can safely
check for multiple edges at once. Formally, a k-covering family is a collection L of increasing
lists of positive integers, with the property that for all integers i, j with 1 Æ i < j Æ k, some
list in L contains i and j as consecutive members.
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We show that for any k, the smallest number of lists in a k-covering family is ⁄(k) = Âk2/4Ê
(note that merely obtaining asymptotically tight bounds would not su�ce for designing
interesting conditional lower bounds). We then insert this construction of a minimum size
covering family into the framework of the reduction and prove that the reduction remains
correct. Intuitively, given lists in a covering family, we can map each list L to a path which
checks edges between vertex parts Vi and Vj for each (i, j) pair appearing as consecutive
members of L.

The original reduction of [23] corresponds to implementing this strategy with the trivial
k-covering family using

!
k

2

"
lists, achieved by taking a single increasing list of two elements for

each unordered pair of integers from [k]. Our improved reduction comes from implementing
this framework with the optimal bound of Âk2/4Ê lists.

This yields reductions from k-Clique to p-DP and p-DSP for p = k + ⁄(k) = k + Âk2/4Ê.

4 Conclusion

In this work, we obtained linear time algorithms for 2-DSP in undirected graphs and DAGs.
These algorithms are based o� algebraic methods, and as a consequence are randomized and
only solve the decision, rather than search, version of 2-DSP. This motivates the following
questions:

I Open 1. Is there a deterministic linear time algorithm solving 2-DSP?

I Open 2. Given a DAG or undirected graph G with sources s1, s2 and targets t1, t2, is there
a linear time algorithm finding disjoint (si, ti)-shortest paths in G for i œ {1, 2}?

It is also an interesting research direction to see if algebraic methods can help design
faster algorithms for k-DSP in undirected graphs and DAGs when k Ø 3, or help tackle this
problem in the case of general directed graphs.

In this work, we also established tighter reductions from finding cliques to disjoint path
and shortest path problems. There still remain large gaps however, between the current best
conditional lower bounds and current fastest algorithms for these problems.

I Open 3. Is there a fixed integer k Ø 3 and constant ” > 0 such that k-DSP in DAGs can
be solved in O(nk+1≠”) time? Or does some popular hypothesis rule out such an algorithm?

Since k-Clique admits nontrivial algorithms by reduction to matrix multiplication, it is
possible that k-DSP can be solved faster using fast matrix multiplication algorithms. On the
other hand, if we want to rule out this possibility and obtain better conditional lower bounds
for k-DSP, we should design reductions from problems which are harder than k-Clique. In
this context, a natural strategy would be to reduce from Negative k-Clique and 3-Uniform
k-Hyperclique instead, since these problems are conjectured to require n

k≠o(k) time to solve
(and it is not known how to leverage matrix multiplication to solve these problems faster
than exhaustive search).

For all k Ø 3, the current fastest algorithm for k-DSP in undirected graphs takes nO(k·k!)

time, much slower than the O(mn
k≠1) time algorithm known for the problem in DAGs.

Despite this, every conditional lower bound that has been established for k-DSP in undirected
graphs so far also extends to showing the same lower bound for the problem in DAGs. This
is bizarre behavior, and suggests we should try establishing a lower bound which separates
the complexities of k-DSP in undirected graphs and DAGs. If designing such a lower bound
proves di�cult, that would o�er circumstantial evidence that far faster algorithms for k-DSP
in undirected graphs exist.

ICALP 2024



9:16 Detecting Disjoint Shortest Paths in Linear Time and More

I Open 4. Can we show a conditional lower bound for k-DSP in undirected graphs, which is
stronger than any conditional lower bound known for k-DSP in DAGs?

Finally, for large k, the best conditional time lower bounds we have for k-DP in DAGs are
far weaker than the analogous lower bounds we have for k-DSP in DAGs. This is despite the
fact that the fastest algorithms we have for both problems run in the same time. It would
nice to resolve this discrepancy, either by designing faster algorithms for the latter problem,
or showing better lower bounds for the former problem.

I Open 5. Is there a fixed integer k Ø 3 such that we can solve k-DP in DAGs faster than
we can solve k-DSP in weighted DAGs?

I Open 6. Can we show a conditional lower bound for k-DP in DAGs matching the best
known conditional lower bound for k-DSP in DAGs?
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Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic
expression whose input varies slightly from one iteration to the next. Although e�cient data
structures have been proposed for maintaining the solution of such algebraic expressions under
low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model
and finite fields) which may not accurately reflect the more limited complexity guarantees of real
computers. In this paper, we analyze the stability and bit complexity of such data structures for
expressions that involve the inversion, multiplication, addition, and subtraction of matrices under
the word-RAM model. We show that the bit complexity only increases linearly in the number of
matrix operations in the expression. In addition, we consider the bit complexity of maintaining
the determinant of a matrix expression. We show that the required bit complexity depends on the
logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally,
we discuss rank maintenance and its connections to determinant maintenance. Our results have
wide applications ranging from computational geometry (e.g., computing the volume of a polytope)
to optimization (e.g., solving linear programs using the simplex algorithm).
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1 Introduction

Computing algebraic expressions is a workhorse of many iterative algorithms in modern
optimization, computational geometry, and dynamic algorithms. Examples include but are
not limited to interior point methods for solving linear programs [30, 15, 29, 8, 10], iterative
refinement for solving p-norm regression problems [13, 1, 2, 3, 28], semi-definite programming
[26, 27], and many algorithmic graph theory problems [33, 11, 6, 14].

Such algebraic expressions are usually represented as matrix formulas involving matrices
and operations such as inversion, multiplication, and addition/subtraction. In many iterative
algorithms, the algebraic expression does not change over the course of the algorithm, and
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10:2 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

only low-rank updates occur to the corresponding matrices from one iteration to the next.
For example, for A,B œ Rn◊n, if we have AB from a previous iteration and one column of
B changes in the next iteration, we can update AB in O(n2) time which is much faster than
computing AB from scratch again. This has been exploited in many iterative algorithms to
reduce the amortized cost of iteration and, therefore, the total running time of the algorithms.

A main component of this approach is the Sherman-Morrison-Woodbury (SMW) identity
(see (1)), which informally states that the inverse of a rank-k perturbation of a matrix A
can be obtained by a rank-k perturbation of A≠1. Although this identity (also called inverse

maintenance) has been used from the early days of optimization and control theory [31, 32],
it was recently shown that any matrix formula involving only inversion, multiplication,
and addition/subtraction operations can be maintained under low-rank updates with the
Sherman-Morrison-Woodbury identity [9]. The main idea is to inductively construct a large
matrix whose inverse contains a block that is precisely the output of the formula.

The result of [9] is under the real-RAM model, which assumes each arithmetic operation
is carried over to infinite precision in constant time. Although this is a valid assumption
for finite fields, it does not hold over real numbers. For example, in modern computers,
floating-points are the number system of choice that only has a finite precision. Then, it
is unclear whether such inverse maintenance techniques are su�ciently stable so that the
downstream iterative algorithm outputs the correct solution (e.g., whether the iterative
optimization algorithm converges).

Very recently, [24] analyzed the SMW identity over fixed-point arithmetic and showed
that a bit complexity proportional to the logarithm of the condition number (ratio of the
largest singular value to the smallest singular value) of the corresponding matrix is su�cient
to guarantee the stability of the inverse maintenance over the word-RAM model in which the
running time of arithmetic operations is proportional to the number of bits of corresponding
numbers and only finite precision is guaranteed (and the precision itself depends on the
number of utilized bits).

This implies that in order to show that the techniques of [9] also hold over the word-RAM
model, we need to bound the condition number of the inductively constructed matrix for
arbitrary matrix formulas. Indeed, we a�rmatively show that the condition number of the
constructed matrix is Ÿ

O(s), where Ÿ is an upper bound for the condition numbers of the
input matrices and s is the number of input matrices. This implies that a bit complexity of
O(s log Ÿ) is su�cient to guarantee the stability of dynamically updating the matrix formulas.
We point out that a naive analysis would give a bound of O(2s log Ÿ) for the bit complexity,
and our bound on the condition number is asymptotically tight since one can easily see that
the product of s matrices each with condition number Ÿ results in a matrix with condition
number Ÿ

s, e.g., consider As.
In addition, we consider the stability and bit complexity of maintaining the determinant

and rank of matrix formulas with inversion, multiplication, and addition/subtraction. An
application of maintaining the determinant is in the faster computation of the volume
of a polytope [22], and an application of the rank maintenance is in dynamic maximum
matching [34].

To maintain the determinant of a matrix formula up to a multiplicative error of (1± ‘) for
0 < ‘ < 1, in addition to the inductively constructed matrix N of [9], we construct another
matrix ‚N and show that the determinant of the matrix formula is the ratio of det( ‚N) to
det(N). This then allows us to use the matrix determinant lemma (see (3)) to maintain
the determinant. Although one might expect that we would require log det(N) number of
bits for determinant maintenance, we show that O(s log(Ÿ/‘)) bits are su�cient. Note that
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log Ÿ is preferable to log det since, for random matrices, the condition number is polynomial
in the dimension of the matrix with high probability [19, 20] while the determinant is
exponential [35].

We also consider rank maintenance over finite fields. This is because, under fixed-point
arithmetic, we can multiply our matrices by a large number to obtain integer matrices and
then perform all operations modulo a su�ciently large prime number (poly(n) is su�cient).
Then the rank of such matrix formula over Zp is the same as the rank of the original matrix
formula with high probability.

We believe optimizers and algorithm designers can use our results as black boxes to
analyze their algorithms under the word-RAM model. The only additional part on their
side is to analyze what error bounds can be tolerated in the corresponding algorithm while
guaranteeing the returned outputs are correct. Then, our results provide the corresponding
running time and bit complexity bounds for the required errors.

Our algorithmic results are presented as dynamic data structures in the next Section 1.1.
They cover the most common update schemes occurring in iterative algorithms, such as
updating one entry of the matrix and querying one entry or updating a column and querying
a row.

Finally, to illustrate the e�ectiveness of our approach and results, we discuss two example
applications. The first one, discussed in the full version, considers finding a basic solution
of a set of linear constraints in the standard form Ax = b, x Ø 0 where A œ Rd◊n and
n Ø d. The operations involved in this algorithm are similar to the simplex algorithm. Beling
and Megiddo [5] presented two algorithms, a simple one with O(d2n) = O(n3) time, and a
more complicated one with O(d1.528n) = O(n2.528) time. Both these algorithms assumed
the real-RAM model (O(1) time per arithmetic operation with infinite precision). We show
that for n = O(d), by simply plugging our data structures into the simple algorithm, the
time complexity becomes ÂO(n2.528 log(Ÿ · max det)) in bit complexity (i.e., number of bit
operations). Here max det is the maximum determinant over each square d ◊ d submatrix,
and Ÿ is the maximum condition number over each d ◊ d submatrix. In particular, for
matrices with logmax det = poly log(n) (as is the case when modeling many combinatorial
problems as linear programs), our worst-case running time (i.e., number of bit operations) is
ÂO(n2.528 log Ÿ). Thus, not only does the simple algorithm become competitive with the more
complicated algorithm, but we also show that it can be e�ciently implemented without the
real-RAM assumptions.

The second example application is for dynamically maintaining the size of the maximum
matching of a graph that goes through edge deletion, edge insertion, turning vertices on
and o�, and merging vertices. We show in the full-version that our rank maintenance data
structure can be used for this purpose with a cost of O(n1.405) arithmetic operations per
update.

1.1 Our Results
Our first result is the following generic data structure that can maintain the value of any
matrix formula. Here a matrix formula is any expression that can be written using the basic
matrix operations of addition, subtraction, multiplication, and inversion.

I Theorem 1. Suppose we are given a matrix formula f(M1, . . . ,Ms) with respective input

matrices M1, . . .Ms, where ÎMiÎF Æ Ÿ for all i œ [s]. Let n denote the sum of the number

of rows and columns of all M1, . . . ,Ms. We further assume that the result of each inversion

within f also has Frobenius-norm bounded by Ÿ: in other words, we assume that every
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internal inversion-node of the computation tree has a bounded condition number. Then, for

‘ > 0,Ÿ > n, there exists data structures that are each initialized in time ÂO(nÊ
s log(Ÿ/‘))

and have the following operations.

The data structures have the following update and query operations (where each bullet is

a di�erent data structure)

Support entry updates and entry queries in ÂO(n1.405
s log(Ÿ/‘)) time.

Support entry updates in ÂO(n1.528
s log(Ÿ/‘)) time and entry queries in O(n0.528

s log(Ÿ/‘))
time.

Support column updates and row queries in ÂO(n1.528
s log(Ÿ/‘)) time.

Support rank-1 updates and returning all entries of f(M1, ...,Ms) in ÂO(n2
s log(Ÿ/‘))

time.

Support column updates and row queries in the o�ine model (the entire sequence of

column indices and row queries is given at the start) in ÂO(nÊ≠1
s log(Ÿ/‘)) update and

query time.

The outputs are all ‘-approximate, i.e. each entry is o� by at most an additive ‘. The stated

time complexities depend on current bounds on fast matrix multiplication [37]. The precise

dependencies are stated in Theorem 4.

A similar result was previously proven in [9] using data structures from [33, 12], assuming
O(1) time per arithmetic operation and infinite precision. We extend this to the word-RAM
model by analyzing the stability of this data structure under the fixed-point arithmetic.

In addition, we show that we can also maintain other properties of f(M1, ...,Ms) while
receiving updates to the input matrices. We can maintain the determinant and the rank of
f(M1, ...,Ms). The following Theorem 2 and Theorem 3 are proven in the full version.

I Theorem 2. Let M1 œ Rn1◊d1 , ...,Ms œ Rns◊ds and n =
q

s

i=1
ni + di. Then, there

exists a dynamic determinant data structure that initializes in ÂO(nÊ
s log(Ÿ/‘)) time on given

accuracy parameters ‘ > 0,Ÿ > 2n, matrix formula f(M1, ...,Ms), and respective input

matrices M1, . . . ,Ms.

The data structures support the maintenance of det(f(M1, ...,Ms)) up to a multiplicative

factor of 1 ± ‘. They have the following update operations (each bullet is a di�erent data

structure)

Support entry updates to any Mi in
ÂO(n1.405

s log(Ÿ/‘)) time.

Support column updates to any Mi in
ÂO(n1.528

s log(Ÿ/‘)) time.

Support rank-1 updates to any Mi in
ÂO(n2

s log(Ÿ/‘)) time.

We assume that throughout all updates, Îf(M1, ...,Ms)ÎF Æ Ÿ, Î(f(M1, ...,Ms))≠1ÎF Æ Ÿ,

and ÎMiÎF Æ Ÿ for all i, and the result of each inversion within f also has the Frobenius

norm bounded by Ÿ.

I Theorem 3. There exists a dynamic rank data structure that initializes in O(nÊ) arithmetic

operations on given matrix formula f(M1, ...,Ms), and respective input matrices. Here, n is

the sum of the number of rows and columns of all M1, ...,Ms. The data structure maintains

rank(f(M1, ...,Ms)) subject to entry updates to any Mi in O(n1.405) arithmetic operations

per update.

This implies, for example, maintaining the size of the maximum matching in a dynamic
graph undergoing edge insertions and deletions, turning vertices on/o�, and also merging of
vertices (see full version for details). Each such update to the graph takes O(n1.405) time.
This was previously achieved for edge insertions/deletions only [34, 12].
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Theorem 3 gives bounds for rank maintenance over finite fields. It is usually assumed
that operations over finite fields take O(1) time. However, a more realistic running time
is poly log(|F|) if an isomorphism to polynomials of degree less than d over Zp is given,
where |F| = p

d is the size of the field. One approach to go beyond the finite fields for
rank maintenance is to perform the operations modulo a random prime, which preserves
the rank with constant probability. This has been leveraged in communication complexity
literature [36, 23]. See Lemma 4.1 on [36].

1.2 Preliminaries
Notation. We denote matrices with bold uppercase letters and vectors with bold lowercase
letters. We denote the Frobenius norm and the operator norm by Î·Î

F
and Î·Î

2
, respectively.

We define the condition number of an invertible matrix M as Ÿ(M) := ÎMÎ
2
·
..M≠1

..
2
. For

simplicity of presentation, we use Ÿ as an upper bound for the Frobenius norm of matrices and
their inverses. However, since the condition number of matrices is scale-free, up to polynomial
factors such an upper bound is equal to the condition number. When the corresponding
matrix is clear from the context, we drop the argument and simply write Ÿ. We denote entry
(i, j) of M by Mi,j , row i of M by Mi: and column j of M by M:j . For sets I and J , we
write (A)I, to denote the rows with indices in I, (A),J to denote the column with indices
in J , and (A)I,J to denote the submatrix with rows with indices in I and columns with
indices in J . We denote the n ◊ n identity matrix by I(n), and use 0(i,j) to denote the i ◊ j

all-zeros matrix. We denote the transposition of matrix M by M€. We use ÂO notation to
omit polylogarithmic factors in n and polyloglog factors in Ÿ/‘ from the complexity, i.e., for
function f , ÂO(f) := O(f · (logn · log log Ÿ

‘
)c), where c is a constant. Further, we denote the

set {1, . . . , n} by [n]. We denote the number of operations for multiplying an n
a ◊ n

b matrix
with an n

b ◊ n
c matrix by O(nÊ(a,b,c)) and use O(nÊ) as shorthand for O(nÊ(1,1,1)). Finally,

for A œ Rm◊n and i œ [min(m,n)], let ‡i denote the i’th largest singular value of A.

Sherman-Morrison-Woodbury Identity [38]. Consider an invertible matrix M œ Rn◊n,
and matrices U œ Rn◊r

,D œ Rr◊r
,V œ Rr◊n. If D and (M+UDV)≠1 are invertible, then:

(M+UDV)≠1 = M≠1 ≠ M≠1U(D≠1 +VM≠1U)≠1VM≠1 (1)

Schur complement. Consider the block matrix M given by:

M =
5
A B
C D

6
,

whereA andD are square matrices. Then ifD is invertible, M/D := A≠BD≠1C is called the
Schur complement of block D of matrix M. Similarly, if A is invertible, M/A := D≠CA≠1B
is the Schur complement of block A of M. The Schur complement gives an inversion formula
for block matrices. Particularly, we have the following fact:

Fact. If A and M/A are invertible, then M is invertible and

M≠1 =
5
A≠1 +A≠1B(M/A)≠1CA≠1 ≠A≠1B(M/A)≠1

(M/A)≠1CA≠1 (M/A)≠1

6
.

This can be easily verified by multiplication with M.
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The Frobenius norm over R satisfies non-negativity, homogeneity, and the triangle
inequality. Specifically, we have that ÎAÎ

F
Ø 0, Î—AÎ

F
= |—| ÎAÎ

F
and ÎA+BÎ

F
Æ

ÎAÎ
F
+ ÎBÎ

F
. Finally, when the product AB is defined, the Frobenius norm obeys the

following sub-multiplicative property: ÎABÎ
F

Æ ÎAÎ
F

ÎBÎ
F
.

Our Computational Model. Our algorithms and analysis are under the fixed-point arith-
metic. We present all of our analysis under fixed-point arithmetic except for the result of
[17] for QR decomposition which is under floating-point arithmetic but we only use that
result in a black-box way. In fixed-point arithmetic, each number is represented with a
fixed number of bits before and after the decimal point, e.g., under fixed-point arithmetic
with 6 bits, we can only present integer numbers less than 64. Addition/subtraction and
multiplication of two numbers with n bits can be done in ÂO(n) time in this model by using
fast Fourier transform (FFT) – see [16, Chapter 30]. Division to an additive error of ‘ can
also be performed in ÂO(n+ log(1/‘)) time again with the help of FFT. In general, when we
mention running time, we mean the number of bit operations. Otherwise, we specify the
complexity is about the number of arithmetic operations.

Matrix Formula. Intuitively, a matrix formula is any formula involving matrices and the
basic matrix operations of adding, subtracting, multiplying, or inverting matrices. E.g.,
f(A,B,C,D) = (AB+C)≠1D is a matrix formula.

Formally, a matrix formula f(M1, ...,Ms) is a directed tree, where each input Mi is a leaf,
and each matrix operation (addition, subtraction, multiplication, inversion) is an internal node.
Nodes that represent addition, subtraction, or multiplication have two children, i.e. the two
terms that are being added, subtracted, or multiplied. Inversion has only one child, the term
being inverted. For example, for node v labeled “+”, the subtree rooted at the left child and
the subtree rooted at the right child represent formulas gleft(M1, ...,Mk), gright(Mk+1, ...,Ms),
and the tree rooted at v represents f(M1, ...,Ms) = gleft(M1, ...,Mk) + gright(Mk+1, ...,Ms).

Note that since a formula is a tree, and not a DAG, and because there is no point in
inverting something twice in succession, a formula (i.e., tree) with s input matrices (i.e.,
leaves) has at most O(s) operations (i.e., internal nodes). Further, note that by formulas
being trees, a leaf (input) can be used only once. For example, (A+B)A is a formula with
3 inputs.

2 Technical Overview

Here we outline how we obtain our three main results Theorems 1–3. [9] proved a variant of
Theorem 1 that assumed the “real-RAM model”, i.e., exact arithmetic in only O(1) time per
operation. Modern computers do not provide this guarantee unless one uses up to �(n) bit,
substantially slowing down each arithmetic operation and the overall algorithm. We show
that the techniques by [9] also work with bounded accuracy and much smaller bit complexity.
In particular, only ÂO(s log Ÿ) bits are enough, as stated in Theorem 1.

Before we can outline how to obtain these results, we need to give a brief recap of [9]. This
is done in Section 2.1. We outline in Section 2.2 how to prove that ÂO(s log Ÿ)-bit accuracy
su�ce, resulting in Theorem 1. At last, Section 2.3 outlines how to extend Theorem 1 to
maintain determinant and rank of a matrix formula, i.e., prove Theorems 2 and 3.
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𝑀1

𝑀𝑠

𝑀…

𝑁 = 𝑁−1 =

𝑓(𝑀1,… ,𝑀𝑠)

𝑀2

Figure 1 Maintaining N≠1 allows us to maintain f(M1, ...,Ms).

2.1 Setting the Stage: How to Maintain Dynamic Algebraic Formulas
Dynamic Matrix Formula is the following data structures task: We are given a formula
f(M1, ...,Ms) and respective input matrices M1, ...,Ms. The entries of these matrices change
over time, and the data structure must maintain f(M1, ...,Ms) (see Theorem 1). Dynamic

Matrix Inverse is the special case f(M) = M≠1, i.e., given a matrix that changes over time,
we must maintain information about its inverse. The latter problem has been studied in,
e.g., [33, 12] and there exist several data structures for this task (see Theorem 7).

Previously, [9] showed that the dynamic matrix formula for any formula can be reduced to
the special case of matrix inversion, i.e., dynamic matrix inverse. In particular, this means all
the previous data structures for dynamic matrix inverse [33, 12] or simple application of the
Sherman-Morrison-Woodbury identity (1), can also be used to maintain any general formula
f(M1, ...,Ms). [9] shows that for any formula f(M1, ...,Ms), there is a large block matrix
N, where M1, ...,Ms occur as subblocks. Further, N≠1 contains a block1 that is precisely
f(M1, ...,Ms). See Figure 1. When M1, ...,Ms change over time, matrix N changes over
time, and running a dynamic matrix inverse data structures on this N allows us to maintain
N≠1 and its subblock containing f(M1, ...Ms).

The issue of the reduction is that we do not know if N is well-conditioned. Under which
conditions to f and M1, ...,Ms can we guarantee that matrix N is well-conditioned? Once
we can guarantee that N is well-conditioned, we can give good error guarantees for the
dynamic matrix inverse data structures that maintain N≠1 via the result of [24] regarding
the numerical stability of SMW identity (see full version for details).

We will bound both ÎNÎF and ÎN≠1ÎF, which gives a bound on the condition number. In
particular, we show that under reasonable assumptions on formula f and input M1, ...,Ms,
both Frobenius-norms are bounded by Ÿ

O(s) (Lemma 6). With the dynamic matrix inverse
data structures’ complexities scaling in the log of these Frobenius norms (see Theorem 7),
this leads to the ÂO(s log Ÿ) factors in Theorem 1.

2.2 Bounding the Frobenius Norms
As outlined in the previous subsection, when given a matrix formula f(M1, ...,Ms), [9]
constructs a matrix N with the following properties. Matrix N contains M1, ...,Ms as
subblock, and the inverse N≠1 contains a subblock that is precisely f(M1, ...,Ms), see
Figure 1. Our task is to bound the Frobenius-norm of both N and N≠1, which then implies
a bound on the condition number of N. Further, data structures for maintaining N≠1 have
a runtime that scales in those norms (Theorem 7).

1 The proof is constructive. Given f,M1, ...,Ms, we know N and we know which submatrix of N≠1

contains f(M1, ...,Ms), i.e., we do not have to search for the subblock.
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Let us briefly recap how matrix N is constructed, so we can then analyze the Frobenius-
norms of N and N≠1.

Construction of N. The given formula f(M1, ...,Ms) can be represented as a tree (where
the operations like matrix product, sum, or inversion are nodes, the input matrices are
leaves, and the output is the root). The construction of N follows by induction over the
size of the tree: E.g., given some f(M1, ...,Ms) = g1(M1, ...,Mk) · g2(Mk+1, ...,Ms), by
induction hypothesis there are matrices N1,N2 where Ni contains the input matrices of
gi as blocks, and a block of N≠1

i
contains the evaluation of fi. These two matrices are

then combined into one larger matrix N (i.e., N contains N1,N2 as sub-blocks and thus N
contains M1, ...,Ms as sub-blocks) with the property that N≠1 contains a sub-block that is
precisely g1(M1, ...,Mk) · g2(Mk+1, ...Ms).

Here we will not go into the precise construction of N for the di�erent arithmetic
operations f(M1, ...,Ms) = g1(M1, ...,Mk) ¶ g2(Mk+1, ...,Ms). To follow the outline, it is
only important to know that we perform induction by splitting the formula f = g1 ¶ g2 at its
root into g1 and g2 to obtain two smaller matrices N1,N2. If the root is an inversion, i.e.,
f(M1, ...,Ms) = (g(M1, ...,Ms))≠1, then we only have one matrix NÕ where NÕ≠1 contains
a sub-block that is g(M1, ...,Ms).

Bounding the Frobenius Norm (Section 3.1). For each possible operation ¶ œ {+,≠, ·} at
the root: f(M1, ...,Ms) = g1(M1, ...,Mk)¶g2(Mk+1, ...,Ms) there is a di�erent construction
for how to combine N1,N2 into a single N, such that N≠1 contains f(M1, ...,Ms) as a
submatrix. We bound the Frobenius-norm of N and N≠1, with respect to the Frobenius-
norms of N1,N2. This then implies a bound by induction. Since the construction of N
di�ers depending on the operation ¶ œ {+,≠, ·}, we need slightly di�erent proof for each
operation. The proofs will all follow via simple applications of triangle inequalities. Since N
is constructed so that N1,N2 are submatrices of N, simple arguments via triangle inequality
su�ce. However, for the special case of f(M1, ...,Ms) = (g(M1, ...,Ms))≠1, a more careful
analysis is required, which we outline below.

For NÕ being the matrix constructed for formula g(M1, ...,Ms), we have sets I Õ
, J

Õ µ N
where (NÕ≠1)IÕ,JÕ = g(M1, ...,Ms) (i.e., this is the subblock that contains the evaluation of
g(M1, ...,Ms)). The reduction by [9] then constructs N as follows, and we state its inverse:

N =
C

NÕ ≠I(nNÕ )
,JÕ

I(nNÕ )
IÕ, 0(nw,nw)

D

N≠1 =
C
NÕ≠1 ≠ (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ, (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ

≠(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ, ((NÕ≠1)IÕ,JÕ)≠1

D

Note that the bottom right block of N≠1 is precisely g(M1, ...,Ms)≠1 since (NÕ≠1)IÕ,JÕ =
g(M1, ...,Ms). To bound the Frobenius-norm of N and N≠1, we apply the triangle inequality
to

ÎNÎ
F

Æ
....

5
NÕ 0
0 0

6....
F

+

.....

C
0 ≠I(nNÕ )

,JÕ

I(nNÕ )
IÕ, 0

D.....
F

Æ ÎNÕÎF +

|J Õ|+ |I Õ|

We will have an upper bound on ÎNÕÎF by the inductive hypothesis, so this yields an upper
bound on ÎNÎF as well.
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Using the triangle inequality similarly, we also can also bound ÎN≠1ÎF by

ÎN≠1ÎF Æ
...NÕ≠1 ≠ (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ,

...
F

+
...(NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ

...
F

+
...(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ,

...
F

+
...(NÕ≠1)≠1

IÕ,JÕ

...
F

(2)

We can split the sum by the triangle inequality, and products using ÎABÎF Æ ÎAÎFÎBÎF.
If we naively upper bound Î(NÕ≠1)IÕ,ÎF and Î(NÕ≠1),JÕÎF using Î(NÕ≠1)ÎF, we will get

ÎNÕ≠1 ≠ (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ,ÎF
Æ ÎNÕ≠1ÎF + Î(NÕ≠1),JÕÎFÎ(NÕ≠1)≠1

IÕ,JÕÎFÎ(NÕ≠1)IÕ,ÎF
Æ ÎNÕ≠1ÎF + Î(NÕ≠1)≠1

IÕ,JÕÎFÎ(NÕ≠1)Î2
F

and similarly for the other three terms of (2). This will yield an upper bound for ÎN≠1ÎF,
but it involves Î(NÕ≠1)Î2

F
. In particular, the upper bound gets squared for every nested

inverse gate, which will yield a bound that is in the order of Ÿ
2
s (with O(s) being a bound

on the number of gates).
To improve this, we bound Î(NÕ≠1)IÕ,ÎF and Î(NÕ≠1),JÕÎF inductively as well. This

removes the dependence on Î(NÕ≠1)Î2
F
, so the upper bound no longer gets squared in every

iteration, and becomes Ÿ
O(s) instead.

2.3 Dynamic Rank and Determinant of Matrix Formulas
So far, we outlined how to maintain f(M1, ...Ms) within finite precision. This is based on a
reduction by [9] from the dynamic matrix formula to the dynamic matrix inverse. We now
explain how to extend the reduction, allowing us to also maintain det(f(M1, ...,Ms)) and
rank(f(M1, ...,Ms)).

Maintaining the Determinant. First, note that given a block matrix, we can represent its
determinant as follows

For M =
5
A B
C€ D

6
we have det(M) = det(A) · det(D ≠ C€A≠1B).

This allows for the following observation: Given n ◊ n matrix N and sets I, J µ N with
(N≠1)I,J = f(M1, ...,Ms), we have (N≠1)I,J = I(n)

I,[n]
N≠1I(n)

[n],J
and thus

‚N =
C

N I(n)
[n],J

I(n)
I,[n]

0

D
with det(f(M1, ...,Ms)) = det(I(n)

I,[n]
N≠1I(n)

[n],J
) = det( ‚N)/det(N).

Thus, to maintain det(f(M1, ...,Ms)), we just need to maintain det( ‚N) and det(N). Main-
taining these determinants can be done via the determinant lemma, which states:

det(N+ uv€) = det(N)(1 + v€N≠1u). (3)

Here adding uv€ is a rank-1 update and can capture updates such as changing an entry
of N (when u,v have only 1 nonzero entry each) or changing a column of N (when v has
only 1 nonzero entry). In particular, the task of maintaining det(N) reduces to the task of
repeatedly computing v€N≠1u. This is a dynamic matrix formula (since u,v,N change
over time). For example, maintaining det(N) while N receives entry updates, requires us to
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maintain f(u,v,N) = v€N≠1u while u,v,N receive entry updates. Thus data structures
for maintaining det(f(M1, ...,Ms)) (Theorem 2) are implied by data structures for dynamic
matrix formula (Theorem 7), together with some additional error analysis performed in the
full-version. A key observation in the error analysis is that the determinant is the product
of the eigenvalues, and therefore, if we guarantee (with a su�cient number of bits) that
the eigenvalues are preserved up to a multiplicative error factor of 1 ± ‘

10n
, then we have

determinant computation up to a multiplicative error factor of 1± ‘. We formalize this idea
by bounding the determinant of a matrix perturbed by a small amount – see full version for
details.

Maintaining the Rank. Let us assume that M1, ...,Ms are integer matrices, so N is an
integer matrix as well. Note that w.h.p. rank(N) is the same over Z and Zp for prime p ≥ n

c

and large enough constant c. So for the rank, we do not need to worry about rounding errors
and can just focus on finite fields.

Sankowski [34] proved the following statement about matrix ranks. For any n ◊ n matrix
M, and random n ◊ n matrices X and Y (each entry is chosen uniformly at random from
Zp), and Ik being a partial identity (the first k diagonal entries are 1, the remaining diagonal
entries are 0), let

M =

S

U
M X 0
Y 0 In
0 In Ik

T

V

Then with high probability, det(M) ”= 0 ≈∆ rank(M) Ø n ≠ k. In [34], this was used to
maintain the rank of M. We now generalize this to maintaining the rank of f(M1, ...,Ms).

Given a formula f(M1, ...,Ms), let g(M1, ...,Ms,P,Q,Rk) = Pf(M1, ...,Ms)Q+Rk

where

P = Q =

S

U
I 0 0
0 0 0
0 0 0

T

V , Rk =

S

U
0 X 0
Y 0 I
0 I Ik

T

V ,

we have

g(M1, ...,Ms,P,Q,Rk) =

S

U
f(M1, ...,Ms) X 0

Y 0 In
0 In Ik

T

V

Thus, det(g(M1, ...,Ms,P,Q,Rk)) ”= 0 ≈∆ rank(f(M1, ...,Ms)) Ø n ≠ k. So we
can track the rank of f(M1, ...,Ms) by finding and maintaining the smallest k where
det(g(M1, ...,Ms,P,Q,Rk)) ”= 0. Note that with each changed entry to any Mi, the
rank can change by at most 1. So we can simply try increasing/decreasing k by perform-
ing a single entry update to Rk (and potentially reverting the update) to check if the
det(g(M1, ...,Ms,P,Q,Rk)) becomes 0. Note that the determinant lemma (3) breaks once
the matrix is no longer invertible.

Thus we must increase k whenever det(g(M1, ...,Ms,P,Q,Rk)) = 0. If an update causes
the determinant to become 0, we must revert that update by reverting any internal changes
of the data structure, then increase k, and then perform the reverted update again. This
way, we always guarantee det(g(M1, ...,Ms,P,Q,Rk)) ”= 0 and that (3) never breaks. By
always maintaining the largest k where det(g(M1, ...,Ms,P,Q,Rk)) ”= 0, we know n ≠ k is
the rank of f(M1, ...,Ms).
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3 Dynamic Matrix Formula

In this section, we prove the first main result: a generic data structure that can maintain
the evaluation of any matrix formula f(M1, ...,Ms) while supporting updates to the input
matrices.

I Theorem 4 (Detailed variant of Theorem 1). Suppose we are given a matrix formula

f(M1, . . . ,Ms) with respective input matrices M1, . . .Ms, where ÎMiÎF Æ Ÿ for all i œ [s].
Let n denote the sum of the number of rows and columns of all M1, . . . ,Ms. We further

assume that the result of each inversion within f also has Frobenius-norm bounded by Ÿ: in

other words, we assume that every internal inversion-node of the computation tree has a

bounded condition number. Then, for ‘ > 0,Ÿ > n and any 0 Æ ‹ Æ µ Æ 1, there exists data

structures that are each initialized in time ÂO(nÊ
s log(Ÿ/‘)) and have the following operations.

The data structures have the following update and query operations (where each bullet is

a di�erent data structure)

Support entry updates and entry queries in ÂO((nÊ(1,1,µ)≠µ+n
Ê(1,µ,‹)≠‹ +n

µ+‹)s log(Ÿ/‘))
time. This is ÂO(n1.405

s log(Ÿ/‘)) for ‹ ¥ 0.543, µ ¥ 0.8612.
Support entry updates in ÂO((nÊ(1,1,µ)≠µ + n

1+µ)s log(Ÿ/‘)) time and entry queries in

O(nµ
s log(Ÿ/‘)) time. This is ÂO(n1.528

s log(Ÿ/‘)) and O(n0.528
s log(Ÿ/‘)) for µ ¥ 0.528.

Support column updates and row queries in ÂO((nÊ(1,1,µ)≠µ + n
1+µ)s log(Ÿ/‘)) time. This

is ÂO(n1.528
s log(Ÿ/‘)) for µ ¥ 0.528.

Support rank-1 updates and returning all entries of f(M1, ...,Ms) in ÂO(n2
s log(Ÿ/‘))

time.

Support column updates and row queries in the o�ine model (the entire sequence of

column indices and row queries is given at the start) in ÂO(nÊ≠1
s log(Ÿ/‘)) update and

query time.

The outputs are all ‘-approximate, i.e. each entry is o� by at most an additive ‘.

The explicit upper bound exponents were obtained via the tool of [7] and use the upper
bounds on fast matrix multiplication by [37].

This result is obtained by reducing the task to the special case g(N) = N≠1, where the
structure of matrix N depends on the formula f and its inputs M1, ...,Ms.

We then run data structures (Theorem 7) that can maintain N≠1 while supporting
updates to N. The accuracy of these data structures depends on ÎNÎF and ÎN≠1ÎF , so
we must bound these Frobenius-norms. These bounds are given in Section 3.1. We then
combine the bounds with the previous reduction to obtain Theorem 1 in Section 3.2.

3.1 Norm Bounds on Construction
In this section, we bound the Frobenius norm of the matrix produced by the reduction of [8],
as well as its inverse. Formally, [8] has proven the following.

I Theorem 5 (Theorem 3.1 of [9]). Given a matrix formula f(A1, ...,Ap) over field F, define
n :=

q
iœV

ni +mi where ni ◊ mi is the dimension of Ai.

Then there exists a square matrix N of size at most O(n) ◊ O(n), where each Ai is a

block of N. Further, if f(A1, ...,Ap) does not attempt to invert a non-invertible matrix then

(N≠1)I,J = f(A1, . . . ,Ap). Constructing N and I, J takes O(n2) time.

In the following Lemma 6 we retread the construction of matrix N and bound the
Frobenius-norm.
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I Lemma 6. Let f(A1, . . . ,Ap) be a matrix formula over R using s gates. Suppose matrix N,

and index sets I, and J are constructed as in Theorem 5 so that (N≠1)I,J = f(A1, . . . ,Ap).
Let Ÿ Ø maxi ni +mi Ø 2, where ni ◊ mi are the dimensions of Ai.

Then, if ÎA1ÎF, . . . , ÎApÎF Æ Ÿ, and the Frobenius norms of outputs of intermediate

inverse gates are also bounded by Ÿ, we have

ÎNÎF Æ Ÿ
s

ÎN≠1ÎF Æ (10Ÿ)2s+1
.

Proof. We bound ÎNÎF and ÎN≠1ÎF by induction on the number of gates s. Note that the
given formula f can be represented as a tree, where the input matrices are leaves and each
operation is an internal node. For example f(M1...Mp) = g(M1, ...,Mq) + h(Mq+1, ...,Mp)
can be seen as a tree where the root node is a “+” with two subtrees for the formulas g and
h. Each node that represents an operation has 2 children (or 1 child in case of inversion). We
call the nodes also gates, e.g., inversion gate or addition gate, depending on what operation
they represent.

Theorem 5 ([8]) constructs the matrix N by induction over the number of gates, i.e.,
for each gate w some matrix Nw is constructed. This Nw is constructed as a block matrix
where some blocks are Nu,Nv where u, v are the child gates of w. We also say that “Nw is
returned by gate w”.

Suppose matrix N, and index sets I, and J are constructed as in Theorem 5 so that
(N≠1)I,J = f(A1, . . . ,Ap). We will show by induction on s Ø 1 (the number of gates in f)
that:

ÎNÎF Æ Ÿ
s

Î(N≠1)I,JÎF Æ 2sŸ
Î(N≠1)I,ÎF Æ (5Ÿ)s

Î(N≠1),JÎF Æ (5Ÿ)s

ÎN≠1ÎF Æ (10Ÿ)2s+1

We now prove bounds on the output of our gates by assuming the induction hypothesis
that their inputs have bounded norms. We start with the base case.

Input gate. The base case is when s = 1, in which case the formula f(Mv) = Mv consists
of a single input gate. The construction by [8] for Theorem 5 defines N as

N≠1 = N =
5

I(nv) Mv

0(mv,nv) ≠I(mv)

6

where Mv is the input matrix to the formula f and nv ◊ mv are its dimensions. Selecting
rows with indices in I = {1, ...,mv}, and columns with indices in J = {nv + 1, ..., nv +mv},
we get

(N≠1),J =
5

Mv

≠I(mv)

6
,

(N≠1)I, =
#
I(nv) Mv

$
,

(N≠1)I,J =
#
Mv

$
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Applying the triangle inequality to

N =
5

I(nv) 0(nv,mv)

0(mv,nv) ≠I(mv)

6
+

5
0(nv,nv) Mv

0(mv,nv) 0(mv,mv)

6

and using the fact that
Ô
nv +mv Æ Ÿ and ÎMvÎF Æ Ÿ, we get

ÎNÎF Æ
Ô
nv +mv + ÎMvÎF

Æ 2Ÿ

Similarly, we have that

Î(N≠1)I,JÎ Æ ÎMvÎF Æ Ÿ
1

Î(N≠1)I,Î Æ ÎMvÎF +
Ô
nv Æ 2Ÿ Æ (5Ÿ)1

Î(N≠1),JÎ Æ ÎMvÎF +
Ô
mv Æ 2Ÿ Æ (5Ÿ)1

ÎN≠1ÎF Æ
Ô
nv +mv + ÎMvÎF Æ 2Ÿ Æ (10Ÿ)3

We now consider the operation gates for the inductive step.

Inversion. Suppose the root gate is an inversion gate. Suppose NÕ is a nN Õ ◊ nN Õ matrix
and I

Õ
, J

Õ µ Z are sets, such that (NÕ≠1)IÕ,JÕ is the nw ◊ nw matrix that the child gate w

returns. The child gate is the root of a subtree with a = s ≠ 1 Ø 1 gates, which implies
bounds on the Frobenius-norm of NÕ. The construction of Theorem 5 defines

N =
C

NÕ ≠I(nNÕ )
,JÕ

I(nNÕ )
IÕ, 0(nw,nw)

D

By block matrix inversion (Section 1.2), we have

N≠1 =
C
NÕ≠1 ≠ (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ, (NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ

≠(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ, (NÕ≠1)≠1

IÕ,JÕ

D

Selecting the rows with indices in I, and columns with indices in J , we get

(N≠1)I, =
Ë
≠(NÕ≠1)≠1

IÕ,JÕ(NÕ≠1)IÕ, (NÕ≠1)≠1

IÕ,JÕ

È

(N≠1),J =
C
(NÕ≠1),JÕ(NÕ≠1)≠1

IÕ,JÕ

(NÕ≠1)≠1

IÕ,JÕ

D

(N≠1)I,J =
Ë
(NÕ≠1)≠1

IÕ,JÕ

È

By the triangle inequality and the assumption that Ÿ Ø nw Ø 1,

ÎNÎF Æ ÎNÕÎF +
Ô
2nw

Æ 2aŸ + 2Ÿ Æ 2sŸ

By the assumption that the output of each inversion gate has Frobenius norm at most Ÿ,

Î(N≠1)I,JÎF = Î(NÕ≠1)≠1

IÕ,JÕÎF Æ Ÿ Æ Ÿ
s
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For the remaining matrices, we can bound their Frobenius norms by the sum of Frobenius
norms of their blocks, use the triangle inequality to split sums, and ÎABÎF Æ ÎAÎFÎBÎF to
split products, and then bound the resulting terms by the inductive hypothesis:

Î(N≠1)I,ÎF Æ Î(NÕ≠1)≠1

IÕ,JÕÎF(1 + Î(NÕ≠1)IÕ,ÎF)

Æ Ÿ(1 + (5Ÿ)a) Æ Ÿ · 2(5Ÿ)a Æ (5Ÿ)a+1 = (5Ÿ)s

Î(N≠1),JÎF Æ Î(NÕ≠1)≠1

IÕ,JÕÎF(1 + Î(NÕ≠1),JÕÎF)

Æ Ÿ(1 + (5Ÿ)a) Æ Ÿ · 2(5Ÿ)a Æ (5Ÿ)a+1 = (5Ÿ)s

ÎN≠1ÎF Æ ÎNÕ≠1ÎF + Î(NÕ≠1)≠1

IÕ,JÕÎF(Î(NÕ≠1)IÕ,ÎF + 1)(Î(NÕ≠1),JÕÎF + 1)

Æ (10Ÿ)2a+1 + Ÿ((5Ÿ)a + 1)2 Æ (10Ÿ)2a+1 + Ÿ(10Ÿ)2a

Æ (10Ÿ)2a+3 = (10Ÿ)2s+1

Addition and Subtraction. Suppose the root gate w is an addition gate, adding two nw◊mw

matrices. Suppose the subtree of the left child has a Ø 1 gates and the subtree of the right
child has b Ø 1 gates, where s = a+ b+ 1. Let L be the nL ◊ nL matrix and R be the a
nR ◊ nR matrix returned by the child gates, where (L≠1)IL,JL and (R≠1)IR,JR are nw ◊mw

matrices. The matrix N for parent (addition) gate w is defined as

N =

S

WWWU

L 0 I(nL)

,JL
0

0 R I(nR)

,JR
0

I(nL)

IL,
I(nR)

IR,
0 I(nw)

0 0 I(mw) 0

T

XXXV

N≠1 =

S

WWU

L≠1 0 0 ≠(L≠1),JL

0 R≠1 0 ≠(R≠1),JR

0 0 0 I(mw)

≠(L≠1)IL, ≠(R≠1)IR, I(nw) (L≠1)IL,JL + (R≠1)IR,JR

T

XXV

Selecting the rows of N≠1 with indices in I and columns with indices in J , we get

(N≠1)I, =
#
≠(L≠1)IL, ≠(R≠1)IR, I(nw) (L≠1)IL,JL + (R≠1)IR,JR

$

(N≠1),J =

S

WWU

≠(L≠1),JL

≠(R≠1),JR

I(mw)

(L≠1)IL,JL + (R≠1)IR,JR

T

XXV

(N≠1)I,J =
#
(L≠1)IL,JL + (R≠1)IR,JR

$

We now bound the Frobenius norms of these matrices using the bounds on ÎLÎF, ÎL≠1ÎF,
Î(L≠1)IL,ÎF, Î(L≠1),JLÎF, Î(L≠1)IL,JLÎF, and similarly for R≠1, that we get from the
inductive hypothesis. Using the triangle inequality and the assumption that Ÿ Ø nw +mw,
and that ÎLÎF Æ 2aŸ and ÎRÎF Æ 2bŸ by the inductive hypothesis,

ÎNÎF Æ ÎLÎF + ÎRÎF +
Ô
3nw + 3mw

Æ 2aŸ + 2bŸ + 2Ÿ Æ 2(a+ b+ 1)Ÿ = 2sŸ
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Similarly, we get:

Î(N≠1)I,JÎF Æ Î(L≠1)IL,JLÎF + Î(R≠1)IR,JRÎF
Æ Ÿ

a + Ÿ
b Æ 2Ÿ

a+b Æ Ÿ
a+b+1 = Ÿ

s

Î(N≠1)I,ÎF Æ Î(L≠1)IL,ÎF + Î(R≠1)IR,ÎF + Î(L≠1)IL,JLÎF + Î(R≠1)IR,JRÎF +
Ô
nw

Æ (5Ÿ)a + (5Ÿ)b + Ÿ
a + Ÿ

b + Ÿ Æ 5(5Ÿ)a+b Æ (5Ÿ)a+b+1 = (5Ÿ)s

Î(N≠1),JÎF Æ Î(L≠1),JLÎF + Î(R≠1),JRÎF + Î(L≠1)IL,JLÎF + Î(R≠1)IR,JRÎF +
Ô
mw

Æ (5Ÿ)a + (5Ÿ)b + Ÿ
a + Ÿ

b + Ÿ Æ 5(5Ÿ)a+b Æ (5Ÿ)a+b+1 = (5Ÿ)s

ÎN≠1ÎF Æ ÎL≠1ÎF + ÎR≠1ÎF + Î(L≠1)IL,ÎF + Î(L≠1),JLÎF
+ Î(R≠1)IR,ÎF + Î(R≠1),JRÎF +

Ô
nw +mw

Æ (10Ÿ)2a+1 + (10Ÿ)2b+1 + 2(5Ÿ)a + 2(5Ÿ)b + Ÿ

Æ 7(10Ÿ)2a+2b+1 Æ (10Ÿ)2a+2b+3 = (10Ÿ)2s+1

Subtraction gates are the same as addition gates except that the I(nR)

,JR
in the second row,

third column of N is replaced by ≠I(nR)

,JR
. The norm-bounding computations are then the

same except for irrelevant sign changes.

Multiplication. Suppose the root gate is a multiplication gate. Suppose the left child has
a Ø 1 gates and the right child has b Ø 1 gates, where s = a+ b+ 1. Let L be the nL ◊ nL

matrix and R be the nR ◊nR matrix such that the outputs of the child gates are (L≠1)IL,JL

and (R≠1)IR,JR .

N =
C

L ≠I(nL)

[nL],JL
I(nR)

IR,[nR]

0(nR,nL) R

D

N≠1 =
5
L≠1 (L≠1),JL(R≠1)IR,

0 R≠1

6

Selecting the rows of N≠1 with indices in I is the same as taking the first row of blocks
and left-multiplying by I(nL)

IL,
. Selecting columns with indices in J is the same as taking the

second column of blocks and right-multiplying by I(nR)

,JR
. Hence,

(N≠1)I, =
#
(L≠1)IL, (L≠1)IL,JL(R≠1)IR,

$

(N≠1),J =
5
(L≠1),JL(R≠1)IR,JR

(R≠1),JR

6

(N≠1)I,J =
#
(L≠1)IL,JL(R≠1)IR,JR

$

We again bound the Frobenius norms of these matrices using the bounds on ÎLÎF,
ÎL≠1ÎF, Î(L≠1)IL,ÎF, Î(L≠1),JLÎF, Î(L≠1)IL,JLÎF, and similarly for R≠1, that we get from
the inductive hypothesis. The Frobenius norm of each block matrix is bounded by the sum of
the Frobenius norms of its blocks. Using this together with the fact that ÎABÎF Æ ÎAÎFÎBÎF,
we get
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ÎNÎF Æ ÎLÎF + ÎRÎF +

min(nL, nR)

Æ 5aŸ + 5bŸ + Ÿ Æ 5(a+ b+ 1)Ÿ = 5sŸ
Î(N≠1)I,JÎF Æ Î(L≠1)IL,JLÎFÎ(R≠1)IR,JRÎF

Æ Ÿ
a
Ÿ
b Æ Ÿ

a+b+1 = Ÿ
s

Î(N≠1)I,ÎF Æ Î(L≠1)IL,ÎF + Î(L≠1)IL,JLÎFÎ(R≠1)IR,ÎF
Æ (5Ÿ)a + Ÿ

a(5Ÿ)b Æ (5Ÿ)a+b + (5Ÿ)a+b Æ (5Ÿ)a+b+1 = (5Ÿ)s

Î(N≠1),JÎF Æ Î(R≠1),JRÎF + Î(R≠1)IR,JRÎFÎ(L≠1),JLÎF
Æ (5Ÿ)b + Ÿ

b(5Ÿ)a Æ (5Ÿ)a+b + (5Ÿ)a+b Æ (5Ÿ)a+b+1 = (5Ÿ)s

ÎN≠1ÎF Æ ÎL≠1ÎF + ÎR≠1ÎF + Î(L≠1),JLÎFÎ(R≠1)IR,ÎF
Æ (10Ÿ)2a+1 + (10Ÿ)2b+1 + (5Ÿ)a(5Ÿ)b

Æ 3(10Ÿ)2a+2b+1 Æ (10Ÿ)2a+2b+3 = (10Ÿ)2s+1

Then by the inductive hypothesis, the claim is proven. J

3.2 Proof of Theorem 1
To obtain Theorem 1, we will use the following data structures (Theorem 7) by Sankowski [33],
v.d.Brand, Nanongkai and Saranurak [12]. This previous work only considered finite fields
or the real-RAM model, i.e., infinite precision with O(1) time per arithmetic operation. In
the full version, we prove that these data structures also work with finite precision and
ÂO(log(Ÿ/‘))-bit fixed-point arithmetic, as stated in Theorem 7.

I Theorem 7. There exist several dynamic matrix inverse algorithms with the following

operations. For any update vs. query time trade-o� parameters 0 Æ ‹ Æ µ Æ 1, each data

structure initializes in O(nÊ log Ÿ/‘) time on given accuracy parameters ‘ > 0,Ÿ > n, and

dynamic matrix Z œ Rn◊n
that is promised to stay invertible throughout all updates with

ÎZÎF , ÎZ≠1ÎF Æ Ÿ.

The data structures have the following update/query operations

1. Support entry updates and entry queries in ÂO((nÊ(1,1,µ)≠µ+n
Ê(1,µ,‹)≠‹ +n

µ+‹)s log(Ÿ/‘))
time. This is ÂO(n1.405

s log(Ÿ/‘)) for ‹ ¥ 0.543, µ ¥ 0.8612.
2. Support entry updates in ÂO((nÊ(1,1,µ)≠µ + n

1+µ)s log(Ÿ/‘)) time and entry queries in

O(nµ
s log(Ÿ/‘)) time. This is ÂO(n1.528

s log(Ÿ/‘)) and O(n0.528
s log(Ÿ/‘)) for µ ¥ 0.528.

3. Support rank-1 updates and returning all entries of f(M1, ...,Ms) in ÂO(n2
s log(Ÿ/‘))

time.

4. Support column updates and row queries in the o�ine model (the entire sequence of

column indices and row queries is given at the start) in ÂO(nÊ≠1
s log(Ÿ/‘)) update and

query time.

The outputs are all ‘-approximate, i.e., each entry is o� by at most an additive ±‘.

By running the data structures of Theorem 7 on the matrix obtained from Theorem 5,
we obtain Theorem 1.

Proof of Theorem 4 (Theorem 1). Given the formula f(M1, ...,Ms) and its input matrices
M1, ...,Ms, where each Mi is of size ni ◊ mi, let n =

q
s
ni +mi.
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Initialization. By Theorem 5, we can construct in O(n2) time a square O(n)◊O(n) matrix,
where each Mi is a sub-block of N, and two sets I, J µ Z with (N≠1)I,J = f(M1, ...,Ms).

The assumption of Theorem 4 states that each ÎMiÎF Æ Ÿ and each result of an inversion
gate within f also has Frobenius norm bounded by Ÿ. Thus, by Lemma 6, we have log ÎNÎF
and log ÎN≠1ÎF bounded by O(s log Ÿ).

Depending on the type of update and query that we want (i.e., entry, column, row, etc),
we run the respective data structure from Theorem 7 on N.

In total, the initialization takes ÂO(nÊ
s log(Ÿ/‘)) time, dominated by the initialization of

the data structure from Theorem 7.

Updates and Queries. Since each Mi is a submatrix of N, entry, column, row, or rank-1
updates to any Mi can be modeled by an entry, column, row, or rank-1 update to N.

Likewise, querying an entry, a row, or column of f(M1, ...,Ms) can be performed by
querying an entry, or row, or column of N≠1, because submatrix (N≠1)I,J = f(M1, ...,Ms).
Further, the queries all have accuracy ‘ by Theorem 7.

Thus, the update and query complexity of Theorem 1 is exactly as stated in Theorem 7. J

4 Conclusion

We discussed the bit complexity and stability of maintaining arbitrary matrix formulas (with
inversion, multiplication, and addition/subtraction) and their determinants. In addition, we
provided data structures for maintaining the rank of matrices under finite fields and discussed
a few applications for these. We believe our data structures and analysis would provide
a useful and easy-to-use toolbox for designing iterative algorithms under the word-RAM
model. For example, to extend optimization algorithms to the word-RAM model, one is
only required to provide an analysis of what amount of errors in each step can be tolerated
without a�ecting the convergence. Some other applications are in computational geometry
and computer algebra problems.

A compelling future direction is to analyze the bit complexity of more complex algorithms
that use algebraic and matrix formulas and the required error bounds for these algorithms.
One interesting example is the Gram-Schmidt walk introduced for discrepancy minimiza-
tion [4] that has many applications including experimental design [25]. It is not clear how
many bits are required to guarantee such a random walk constructs a good distribution.

Another compelling direction is to investigate whether our bit complexity bounds can be
improved for certain problems. For example, in the basic solution application, we presented
bounds that depend on both the maximum determinant and maximum condition number over
all d-by-d submatrices. We know that the maximum determinant is small for combinatorial
problems and the maximum condition number is small for random matrices with high
probability. Therefore it would be interesting to investigate whether one of these terms
can be eliminated from the bit complexity bound. Another case of special problems is in
tensor Tucker decomposition, where linear regression problems with Kronecker structure are
solved [18, 21]. Although the matrices involved have a condition number exponential in the
order of the tensor, such matrices are usually not constructed explicitly.

Finally, our results hint that inverse maintenance approaches might not be as unstable
as previously assumed. It would be interesting to investigate their performance in practice.
This might require modifications to plain vanilla Sherman-Morrison-Woodbury identity.
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Abstract

We present two randomised approximate counting algorithms with ÂO(n2≠c
/Á

2) running time for
some constant c > 0 and accuracy Á:

1. for the hard-core model with fugacity ⁄ on graphs with maximum degree � when ⁄ = O(�≠1.5≠c1)
where c1 = c/(2 ≠ 2c);

2. for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such
as Z2.

For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time
when correlation decays faster than the neighbourhood growth, namely when ⁄ = o(�≠2). Our first
algorithm does not require this property and extends the range where sub-quadratic algorithms
exist.

Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM
threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs
with polynomial growth, such as Zd, but with a running time of the form ÂO

1
n
2
Á

≠2
/2c(logn)1/d

2

where d is the exponent of the polynomial growth and c > 0 is some constant.
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1 Introduction

The study of counting complexity was initiated by Valiant [33] with the introduction of
the complexity class #P. An intriguing phenomenon emerging in counting complexity is
that many #P-complete problems admit fully polynomial-time randomised approximation
schemes (FPRAS), which output an Á-approximation in time polynomial in n and 1/Á with
n being the input size. This is most commonly found for the so-called partition function of
spin systems, as demonstrated by the pioneering work of Jerrum and Sinclair [23, 24]. Spin
systems are physics models for nearest neighbour interactions, and the partition functions
are the normalizing factors for their Gibbs distributions. This quantity can express the count
of combinatorial objects such as the number of matchings, independent sets, or colourings in
a graph, and is much more expressible by allowing real parameters of the system.

In this paper we are most interested in the fine-grained aspects of the complexity of
estimating partition functions. While for most spin systems, exact counting is #P-hard [6],
many of them admit e�cient approximation schemes when strong spatial mixing (SSM) holds.
Roughly speaking, SSM states that correlation or influence between vertices decays quickly as
their distance increases (detailed definitions are given in Section 2 and Definition 7). When
SSM fails, the partition function is usually NP-hard to approximate [31, 19, 18].

E�cient approximate counting was first enabled by the work of Jerrum, Valiant, and
Vazirani [25] who gave self-reductions from approximate counting to sampling for a large
class of problems. The sampling task is then most commonly solved via Markov chains. The
e�ciency of a Markov chain is measured by its mixing time (i.e. how long it takes to get close
to the target distribution). For spin systems with SSM, in many situations, the standard
chain, namely the Glauber dynamics, mixes in O(n logn) time [10, 2, 8, 9].

Another later technique, simulated annealing, provides a more e�cient counting to
sampling reduction [32, 22, 27]. Together with the O(n logn) mixing time mentioned above,
this leads to ÂO((n/Á)2)1 approximate counting algorithms. These Markov chain Monte Carlo
(MCMC) algorithms are the fastest for estimating partition functions in general, but �(n2)
appears to be a natural barrier to this approach. This is because generating a sample would
take at least linear time (and there are �(n logn) lower bounds for the mixing time of Markov
chains [21] for many spin systems), and, restricted to the standard way of using the samples,
the number of samples required for simulated annealing is at least �(n/Á

2) [27, Theorem 10].
On the other hand, when we relax the parameters, �(n2) is no longer a barrier to

algorithms. Let us take the hard-core gas model as an example. Here the Gibbs distribution µ

is over the set I of independent sets of a graph G. For an independent set I, µ(I) := ⁄
|I|
/Z(G),

where ⁄ is a parameter of the system (so-called fugacity), and Z(G) :=
q

IœI ⁄
|I| is the

partition function. For graphs with degree bound �, SSM holds when ⁄ < ⁄c(�) :=
(�≠1)�≠1

(�≠2)� ¥ e

� . The aforementioned MCMC results [10, 8, 9] imply FPRASes running in
time ÂO((n/Á)2) as long as ⁄ < ⁄c(�). Yet much earlier, Weitz [34] gave the first fully
polynomial-time approximation scheme (FPTAS, the deterministic counterpart to FPRAS)
for the partition function of the hard-core model when ⁄ < ⁄c(�), which is not based on
Markov chains. While Weitz’s algorithm has a running time n

O(log �) in general, it has
an interesting feature that it gets faster as ⁄ decreases. Roughly speaking, for k > 0 and
⁄ = O((1/�)1+k), Weitz’s FPTAS runs in time O(n1+1/k

/Á
2). In particular, if ⁄ = o(�≠2),

Weitz’s algorithm passes the �(n2) barrier, whereas the aforementioned MCMC method still
takes �(n2) time. This leads to an intriguing question:

When can we achieve sub-quadratic running time for approximate counting? (1)

1 The notation ÂO(·) hides logarithmic factors.
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In this paper we make some progress towards this question. For hard-core models, Weitz’s
algorithm uses the self-reduction [25] to reduce approximate counting to estimating marginal
probabilities. We provide a quadratic speedup for the marginal estimation step for ⁄ well
below ⁄c(�), albeit with the introduction of randomness. The result is summarized as
follows.

I Theorem 1. Fix a constant k > 0. Let � Ø 2 be an integer and ⁄ <
1

�k(�≠1) . For graphs

with maximum degree �, there exists an FPRAS for the partition function of the hard-core

model with parameter ⁄ in time ÂO(n1+ 1
2k /Á

2), where n is the number of vertices.

I Remark 2 (Decay rate vs. neighbourhood growth). For a constant Á, the running time of
Theorem 1 is sub-quadratic if ⁄ = o(�≠1.5), and ÂO(n1.5) if ⁄ = O(�≠2). In contrast, to
achieve sub-quadratic running-time, Weitz’s algorithm requires ⁄ = o(�≠2), which is also
the threshold when correlation decays faster than the growth of the neighbourhood. This
threshold has algorithmic significance in other contexts [17, 1], but Theorem 1 implies that
it is not essential to achieve sub-quadratic approximate counting.

Figure 1 is a sketch comparing the running times of MCMC,2 Weitz’s algorithm, and
Theorem 1.3 For the limiting case of k = 0, our algorithm works when ⁄ <

1
�≠1 and still

presents a quadratic speedup comparing to Weitz’s algorithm. However in this case the
running time is

!
n

Á

"O(log �) and thus our speedup is hidden in the big-O notation and is less
significant. The parameter constraint 1

�≠1 is imposed by the running-time tail bound of a
subroutine we used, namely the recursive marginal sampler of Anand and Jerrum [1].

�≠1 �≠1.5 �≠2

O(n)

ÂO(n2)

⁄

R
un

ni
ng

tim
e

Theorem 1
Weitz
MCMC

Figure 1 Running time comparison among MCMC, Weitz’s algorithm, and Theorem 1.

The key to our method is to find a new estimator of the marginal probability that
simultaneously has low variance and can be evaluated very fast. Our technique combines
Weitz’s self-avoiding walk (SAW) tree construction and the ÂO(1) marginal sampler of Anand

2 The running time of MCMC usually also depends on the parameter ⁄, but changing ⁄ does not change
the exponent of n. The e�ect of ⁄ is usually a small polynomial factor hidden in the ÂO(·) notation, and
the sketch in Figure 1 ignores this e�ect.

3 Another notable FPTAS is via zeros of polynomials [3, 29]. It can achieve similar subquadratic running
time when ⁄ = o(�≠2), but it is apparently no faster than Weitz’s correlation decay algorithm.

ICALP 2024



11:4 Approximate Counting for Spin Systems in Sub-Quadratic Time

and Jerrum [1]. The marginal of the root of the SAW tree preserves the desired marginal
probability, and can be evaluated in time linear in the size of the tree via standard recursion.
We use the marginal sampler to draw a random boundary condition at a suitable depth on
the SAW tree, and compute the marginal of the root using recursion under this boundary
condition. Both steps can be computed in time near-linear in the size of the sub-tree. The
depth of our boundary condition is roughly half of where Weitz truncates the SAW tree, and
yet we show that our estimator has O(1/n) variance under SSM, which is essential to get an
FPRAS. This leads to our quadratic improvement on the marginal estimation over Weitz’s
algorithm. This method also extends to other anti-ferromagnetic 2-spin systems.

Our second contribution is about graphs with polynomial growth. In particular, for
planar graphs with quadratic growth, we provide ÂO(n2≠c

/Á
2) algorithms for some constant

c > 0. An informal statement is as follows. (The detailed statement is Theorem 13.)

I Theorem 3. Let G be a family of planar graphs with quadratic growth. For a spin system

exhibiting SSM on G, there exists an FPRAS for the partition function of G œ G with n

vertices. The run-time is ÂO(n2≠c
/Á

2) for some constant c > 0.

We note that one of the most important graph in statistical physics, the 2D integer grid Z2,
indeed has quadratic growth. More generally, any planar graph with a bounded radius circle
packing has quadratic growth. Thus Theorem 3 covers many important families of planar
graphs, including most lattices. (A non-example would be the Cayley tree.) Specialized to
the hard-core model, Theorem 3 works up to the critical threshold, which is at least ⁄c(�),4
when the graph satisfies the condition in the theorem and has maximum degree �.

The key to Theorem 3 is once again a suitable estimator for marginal probabilities. We
choose a distance ¸ boundary around a vertex v in G with a carefully chosen ¸, and our
estimator is the marginal under random boundary conditions. This boundary condition is
yet again sampled using the algorithm of Anand and Jerrum [1]. Our main observation is
that due to quadratic growth, the number of possible boundary conditions do not grow very
fast. It turns out to be more e�cient to create a look-up table by enumerating all boundary
conditions first, and instead of computing the marginal for each sample, we simply find it
in this table. Since planar graphs have linear local tree-width, the table can be created
e�ciently. This last step is inspired by the work of Yin and Zhang [35].

This method extends to any (not necessarily planar) graph families with polynomial
growth. Without planarity, we use brute-force enumeration instead to create the table. This
makes our gain on the running time smaller. Again an informal statement is as follows, with
the full version in Theorem 22.

I Theorem 4. Let G be a family of graphs with polynomial growth. For a spin system

exhibiting SSM on G, there exists an FPRAS for the partition function of G œ G with n

vertices. The run-time is ÂO
1

n
2

Á22c(logn)1/d

2
where c > 0 is some constant and d is the exponent

of the polynomial growth.

An example of such graphs would be the d-dimensional integer lattice Zd. Note that
Theorem 3 is better than Theorem 4 for d = 2 but requires the extra assumption of planarity.
The speedup factor 2c(logn)1/d in Theorem 4 is slower than any polynomial in n but faster
than any polynomial in logn.

We note an interesting related work by Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [11],
who give an approximate counting algorithm with running time ÂO(m1+o(1)+n

1.875+o(1)
/Á

1.75)
for spanning trees of graphs, where m is the number of edges and n is the number of vertices.

4 For a given graph family, such as subgraphs of Z2, the critical threshold may be well above ⁄c(�).
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Notice that the input size here is O(m) and m = �(n). Thus their running time is also
sub-quadratic. However, there are some key di�erences between this work and ours. Aside
from not being a spin system, spanning trees can be counted exactly in polynomial time,
thanks to Kirchho�’s matrix-tree theorem. This allows them to use various e�cient exact
counting subroutines, whereas the problems we consider are #P-hard in general and no such
subroutine is likely to exist.

Another more recent related result is the sub-quadratic all-terminal unreliability estimation
algorithm by Cen, He, Li, and Panigrahi [7], which runs in sub-quadratic time m

1+o(1)
Á

≠3 +
ÂO(n1.5

Á
≠2). This problem, while #P-hard, is not a spin system either. Their method features

a recursive Monte Carlo estimator that is very di�erent from ours, and not applicable to
spin systems.

A crucial ingredient of our algorithm is the recursive marginal sampler of Anand and
Jerrum [1]. This type of local / marginal samplers allows us partial access to a large random
object with substantially less information than traditional samplers. It has found applications
in local computation algorithms [4], and in derandomising Markov chains [16]. Our results
o�er yet another application, namely to accelerate computation of the global partition
function.

We hope that our results are just the first step towards answering the question (1). In
particular, it is not clear whether an O(n2≠c

/Á
2) algorithm exists for the hard-core model

when ⁄ = �(1/�) on graphs with maximum degree �, or if more e�cient algorithms exist
for graphs with polynomial or sub-exponential growth. We leave these questions as open
problems.

2 Preliminaries

We are interested in spin systems which exhibit strong spatial mixing.

I Definition 5. A q state spin system (or q-spin system for short) is given by a graph

G = (V,E), a q-by-q interaction matrix A, and a field b : [q] æ R. A configuration of G is an

assignment of states to vertices, ‡ : V æ [q]. The weight of a configuration ‡ is determined

by the assignments to the vertices and the interactions between them,

w(‡) :=
Ÿ

(u,v)œE

A‡(u),‡(v)
Ÿ

vœV

b‡(v).

The Gibbs distribution µ is one where the probability of each configuration is proportional

to its weight, namely, µ(‡) := w(‡)
Z(G) , where the partition function Z(G) =

q
‡
w(‡) is a

normalizing factor.

In this paper, we consider the following permissive spin system, which says any locally
feasible configuration can be extended to a globally feasible configuration.

I Definition 6. A q-spin system on G = (V,E) is permissive if for any � ™ V , any ‡ œ [q]�,
if b‡(v) > 0 for all v œ � and A‡(u),‡(v) > 0 for all u, v œ � satisfying (u, v) œ E, then ‡ can

be extended to a full configuration ‡
Õ œ [q]V such that w(‡Õ) > 0.

Many natural spin systems are permissive. Examples include the hard-core model, the graph
q-colouring with q Ø � + 1, where � is the maximum degree of the graph, and all spin
systems with soft constraints (e.g. the Ising model and the Potts model).

We call the problem of evaluating Z the counting problem for the q-spin system. The
standard algorithmic aim here is a fully-polynomial randomised approximation scheme

(FPRAS), where given the spin system and an accuracy Á > 0, the algorithm outputs ÂZ
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such that 1 ≠ Á Æ ÂZ
Z

Æ 1 + Á with probability at least 3/4, and runs in time polynomial in
the size of the system and 1/Á. To understand the requirement of an FPRAS, note that
the probability 3/4 can be boosted arbitrarily close to 1 via standard means. The accuracy
can also be boosted by taking many disjoint copies of the system. In fact, any polynomial
accuracy can be boosted to an arbitrarily small Á in polynomial-time.

Also note that if G is disconnected, then Z(G) =
r

i
Z(Gi) where G

Õ
i
s are the connected

components of G. Thus, we always consider connected graphs in the paper.
Similar to µ(‡) for the probability of a configuration, for an S ™ V and a partial

configuration ‡S on S, we use µ(‡S) for the marginal probability of ‡S under µ. We denote
the marginal distribution induced by µ on S by µS . When S = {v}, we also write µv. For
the distribution conditioned on a partial configuration ‡S , we use µ

‡S or µ‡S
v

.
Strong spatial mixing is a property of the spin system where a partial configuration of G

does not significantly influence the assignment of a distant vertex.

I Definition 7 (SSM). A q-spin system is said to have strong spatial mixing with decay rate

f(¸) for a family of graphs if for any G = (V,E) in the family, any v œ V, S µ V , and two

configurations ‡S , ·S,

dTV(µ‡S
v

, µ
·S
v
) Æ f(¸),

where dTV denotes the total variation distance, T ™ S is the subset where the configurations

are di�erent, and ¸ = dist(v, T ) is the minimum distance from v to a vertex in T .

Strong spatial mixing is a very strong form of correlation decay. When f(¸) = exp(≠�(¸))
we say we have strong spatial mixing with exponential decay.

2.1 Two-state spin systems
A spin system is symmetric if Aij = Aji for all i, j. When q = 2 and the system is symmetric,
we have states {0, 1} and can normalize A and b so that the interaction between 0 and 1 and

the contribution of 0 are 1, and A =
5
— 1
1 “

6
and b = (1,⁄) for —, “ Ø 0, and ⁄ > 0.

When — = “ the system is an Ising model, and for — = 1, “ = 0 the system is a hard-core
gas model. We call a system anti-ferromagnetic if disagreeing assignments of adjacent vertices
are more heavily weighted, namely —“ < 1.

For a tree T rooted at v and a partial configuration ‡S we define the marginal ratio

R
‡S
T

:= µ
‡S
v

(1)
µ

‡S
v (0) = µ

‡S
v

(1)
1 ≠ µ

‡S
v (1) ,

or R‡S
T

:= Œ if µ‡S
v

(1) = 1. These ratios satisfy a well-known recurrence relation:

R
‡S
T

= ⁄

dŸ

i=1

“R
‡S
Ti

+ 1
R

‡S
Ti

+ —
, (2)

where Ti is the ith subtree of T . Similarly, for a graph G we can define R
‡S
G,v

= µ
‡S
v

(1)/(1 ≠
µ

‡S
v

(1)). While R
‡S
G,v

does not exhibit a simple recursion, the self-avoiding walk (SAW) tree
of G at v as constructed by Weitz [34] can be used to compute it.

I Theorem 8 (Theorem 3.1 of [34]). For any G = (V,E), a configuration ‡S on S µ V , and

any v œ V , there exists a tree TSAW = TSAW(G, v) such that

R
‡S
G,v

= R
‡S
TSAW

.



K. Anand, W. Feng, G. Freifeld, H. Guo, and J. Wang 11:7

The SAW tree is rooted at v. Each node corresponds to a self-avoiding walk starting
from v. The length of the walk is the same as the distance between the node and the root
v. When a walk is closed, the node is set to unoccupied or occupied according to if the
penultimate vertex is before or after the starting vertex of the cycle in some pre-determined
local ordering at the last vertex. For details, see [34].

The SAW tree can have depth up to n, so may be exponential in size. Marginals on
the SAW tree are therefore di�cult to compute, but using the recursion in Equation (2)
we can approximate them by truncating the tree. This approximation is accurate when
strong spatial mixing holds, and the time to compute the marginal is linear in the size of the
truncated tree. To maintain a polynomial running time, Weitz [34] choose to truncate it at a
suitable logarithmic depth.

3 Fast SSM regime for 2-spin systems

In this section we give a quadratic speedup of Weitz’s Algorithm to estimate the marginal of
a single vertex in 2-spin systems, albeit being randomised instead of deterministic. We use
the hard-core model as our running example to illustrate the main ideas. The main result of
the section is Theorem 1.

Let the hard-core model be described by A =
5
1 1
1 0

6
and b = (1,⁄). The support of the

Gibbs distribution is the set of independent sets of G. Let vertices assigned 0 not be in the
independent set (unoccupied) and vertices assigned 1 be in the independent set (occupied).
Our algorithm uses self-reduction [25] as follows. Since unoccupied vertices contribute 1 to
the weight of a configuration, we can consider the all 0 configuration ‡0 where

1
Z(G) = µ(‡0) = µv1(0)µ

v1Ω0
V \{v1}(0) = µv1(0)

1
Z(G \ {v1})

= µG1,v1(0)µG2,v2(0) · · ·µGn,vn(0),
(3)

and where Gi = G \ {v1, . . . , vi≠1} for all i œ [n]. This reduces the problem of computing
Z(G) to computing µv1 and recursively Z(G \ {v1}). As the Gi’s are subgraphs of G, they
have the same degree bound and still exhibit SSM. The crux of our algorithm is to design a
random variable that estimates µv in time ÂO(n1/(2k)).

Another ingredient we need is the lazy single-site sampler by Anand and Jerrum [1],
which allows us to rapidly sample a partial configuration vertex by vertex. The original
setting of [1] requires sub-exponential neighbourhood growth in order to work up to the
strong spatial mixing threshold, but in our parameter regime no sub-exponential growth is
required. Moreover, only the expected running time is studied in [1], while we need a tail
bound. A similar analysis is done in [16, Appendix B]. For completeness, we provide a proof
specialised to our setting in Appendix A.

I Lemma 9. Let � Ø 2 be an integer and ⁄ <
1

�≠1 . Let G = (V,E) be a graph with

maximum degree �. There exists an algorithm that, for any v œ V , draws a sample from µv

and halts in time O(log 1
Á
) with probability at least 1 ≠ Á.

Our algorithm then combines the lazy sampler of Lemma 9 with the SAW tree of [34].
We expand the SAW tree, and then use Lemma 9 to sample a truncated boundary, from
which we use the recursion in (2) to get our estimate. The depth of the truncation controls
the variance of this estimator. In our algorithm, we only need to bound the variance from
above by 1/n. In contrast, Weitz’s algorithm requires the error of the marginal incurred
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11:8 Approximate Counting for Spin Systems in Sub-Quadratic Time

by the truncation to be bounded from above by O(1/n). As the variance of our estimator
decays twice as fast as the marginal errors, our truncation depth is roughly half of that in
Weitz’s algorithm. Consequently, we achieved a quadratic speedup for estimating each term
in (3).

I Lemma 10. For a graph G with maximum degree �, if the hard-core model on G has strong

spatial mixing with decay rate C�≠k¸
for some constant C > 0, there exists an algorithm

that generates a random sample Âpv and halts in time O(n1/(2k)(log n

”
)2) with probability at

least 1 ≠ ”

8 . Furthermore, E[Âpv] = µv(0) and Var (Âpv) Æ 1/n.

Proof. Let TSAW be the self-avoiding walk tree for G rooted at v as defined in Theorem 8,
and let S = {u œ V |dTSAW(v, u) = ¸} where ¸ is a parameter we will fix later. We have

µTSAW,v(0) =
ÿ

‡œ{0,1}S

µTSAW(‡)µ‡

TSAW,v
(0) = E‡≥µTSAW,S [µ‡

TSAW,v
(0)].

We use Lemma 9 to sample ‡. Fix an arbitrary order of S = {s1, s2, . . . , s|S|}. We sample
first the marginal of s1 with Á := ”

8|S| . Then, conditioned on the result on s1, we sample s2
with the same Á, and so on and so forth. Note that whatever the result on s1 is, it always
reduces to a hard-core instance of a smaller graph. Thus, the condition of Lemma 9 is always
satisfied until all of S are sampled. This gives a boundary condition ‡S in TSAW.

As the full SAW tree may be exponential in size, a little care is required to implement
the outline above. We first expand TSAW up to level ¸, denoted TSAW,¸. The algorithm in
Lemma 9 (Algorithm 1 in Appendix A) is essentially an exploration process. When we apply
it to sample the boundary condition ‡S , we expand the SAW tree below TSAW,¸ on the fly,
only creating vertices that are explored by the algorithm. Note that the construction of the
SAW tree imposes a boundary condition whenever a vertex in G is encountered again in a
self-avoiding walk. We implement this pinning by remembering a list of all ancestors of a
given node in the SAW tree and checking the next vertex to explore against this list. Since
Lemma 9 halts in O(log 1

Á
) time with probability at least 1 ≠ Á, this extra check incurs a

multiplicative slowdown factor O(¸ + log 1
Á
) = O(¸ + log |S|

”
) with probability at least 1 ≠ Á.

Given ‡S , we can compute µ‡S
v

(0) = Âpv with the standard dynamic programming approach.
By a union bound, the total running time of sampling the boundary is O(|S| log |S|

”
(¸+log |S|

”
))

with probability at least 1 ≠ ”

8 , and the dynamic programming step uses time O(|TSAW,¸|).
We choose ¸ :=

Ï
log(n)/2≠logC

k log(�)

Ì
so that C�≠k¸ Æ n

≠0.5 and �¸ Æ C
Õ
n
1/(2k) for some

constant C Õ
> 0. Note that |S| Æ (� ≠ 1)¸ and |TSAW,¸| Æ �¸. Then the total runtime to

draw a sample is O(n1/(2k)(log n

”
)2) with probability at least 1 ≠ ”

8 .
Finally, we analyze the variance. SSM implies that for any ‡S , |µ‡S

v
(0) ≠ µv(0)| Æ C�≠k¸,

so

Var (Âpv) = Var‡S (µ‡S
v

(0)) = E‡S≥µTSAW,S [|µ‡S
v

(0) ≠ µv(0)|2] Æ
!
C�≠k¸

"2 Æ n
≠1

, (4)

which is what we desire. J

I Lemma 11. For a graph G with maximum degree �, if ⁄ Æ 1
�k(�≠1) for some constant

k > 0, the hard-core model on G exhibits strong spatial mixing with decay rate C�≠k¸
.

Proof. It is well-known that if ⁄ < ⁄c(�) = (�≠1)�≠1

(�≠2)� ¥ e

� , strong spatial mixing holds
with exponential decay Cr

¸ for some constant C and r < 1 [34]. Moreover, the decay rate
r can be controlled by a quantity related to the recursion (2) [30]. For example, by [20,
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Lemma 7.20], r is bounded by r Æ |f Õ(‚x)|, where f(x) := ⁄

(1+x)�≠1 is the symmetric version
of the recursion in (2) and ‚x is the unique positive fixed point of f . (Note that when the
degree of G is at most �, all vertices but the root in TSAW have branching number � ≠ 1.)
Then we have

|f Õ(x)| =
----≠

f(x)(� ≠ 1)
1 + x

---- < (� ≠ 1)f(x).

As ‚x > 0 and ‚x is a fixed point, it holds that ‚x < ‚x(1 + ‚x)�≠1 = ⁄. Thus, as ⁄ Æ 1
�k(�≠1) ,

r Æ |f Õ(‚x)| < (� ≠ 1)f(‚x) = (� ≠ 1)‚x <
1

�k
. J

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will first give an algorithm whose running time has a tail bound.
To have a fixed running time upper bound, we then truncate this algorithm.

Set N := Á8e(1+⁄)2
/Á

2
0Ë where Á0 = Á/2. Let X :=

r
n

i=1 ÂpGi,vi where G1 = G and
Gi = Gi≠1 \ {vi≠1}. By Lemma 11, we can use Lemma 10 to draw N samples of X and
take its average, where we set ” = 1

nN
in Lemma 10. Each ÂpGi,vi can be computed in time

O(n1/(2k)(log n

”
)2) with probability at least 1 ≠ ”

8 , so computing one sample of X takes time
O(n1+1/(2k)(log n

”
)2) time with probability at least 1 ≠ n”

8 by a union bound. By a union
bound again, the overall running time of taking the average is O(Nn

1+1/(2k)(log n

”
)2) =

O

1
n
1+1/(2k)

Á2 (log n

Á
)2

2
with probability at least 1 ≠ ”

8 · nN = 7
8 .

Since {ÂpGi,vi} are mutually independent, by Lemma 10,

E[X] = E
C

nŸ

i=1
ÂpGi,vi

D
=

nŸ

i=1
µGi,vi(0) =

1
Z(G) .

We bound Var (X) as follows

Var (X)
(E[X])2 = E[X2]

(E[X])2 ≠ 1 =
r

n

i=1 E[Âp2Gi,vi
]

r
n

i=1 E[ÂpGi,vi ]2
≠ 1 =

nŸ

i=1

3
1 + Var (ÂpGi,vi)

(E[ÂpGi,vi ])2

4
≠ 1

Æ
1
1 + c

n

2n

≠ 1 < e
c
, (by Lemma 10)

where c = maxi(1/µGi,vi(0)2). Note that as µGi,vi(0) Ø 1
1+⁄

, c Æ (1 + ⁄)2 and is a constant.
Let ÂX be the average of N samples of X. Then Var

1
ÂX

2
= Var(X)

N
Æ e

c

N ·Z(G)2 . By
Chebyshev’s inequality,

Pr
5---- ÂX ≠ 1

Z(G)

---- Ø Á0
Z(G)

6
Æ

Var
1

ÂX
2

Á2
0

Z(G)2
Æ e

c

N · Z(G)2 · Z(G)2
Á20

Æ 1
8 .

Thus, with probability at least 7/8, we have that 1≠Á0
Z(G) Æ ÂX Æ 1+Á0

Z(G) . Finally, we out-
put ÂZ = 1/ ÂX. To make sure that the algorithm runs within the desired time bound
O

1
n
1+1/(2k)

Á2 (log n

Á
)2

2
, we truncate the algorithm if it runs overtime and output an arbitrary

value in that case. This truncated version can be coupled with the untruncated algorithm
with probability at least 7/8, and its output ÂZ satisfies 1≠ Á Æ ÂZ

Z(G) Æ 1+ Á with probability
at least 7/8 ≠ 1/8 = 3/4. J
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Note that, Weitz’s algorithm is faster if the correlation decay is faster, but in that case
so is our algorithm. In Appendix B, Lemma 26 shows that the correlation decay cannot be
much faster than the standard analysis in the parameter regimes of Theorem 1, and our
speed-up, comparing to Weitz’s algorithm, is always at least ÂO(n1/2k≠o(1/k2)).

We also remark that Theorem 1 generalises to antiferromagnetic 2-spin systems. This is
because all the key ingredients, namely correlation decay, Weitz’s SAW tree, and the marginal
sampler of Anand and Jerrum all generalise, except that the Anand-Jerrum algorithm would
require the neighbourhood growth rate smaller than the decay rate (see Theorem 25). This is
also the parameter regime where Weitz’s algorithm is faster than O(n2). Thus, our speedup
is still in the sub-quadratic regime. The self-reduction in (3) also generalises (as we will see
in (5) in the next section). One needs to redo the calculations in Lemma 11 to get a precise
statement, which we will omit here.

4 Speed-up on planar graphs

In this section we mainly consider (not necessarily two-state) spin systems on planar graphs.
We show that for any planar graph with quadratic neighbourhood growth, when SSM
holds with exponential decay, approximate counting can be done in sub-quadratic time.
For example, this includes all subgraphs of the 2D lattice Z2. The circle-packing theorem
asserts that any planar graph is the tangent graph of some circle packing. All planar graphs
with bounded-radius circle packings have quadratic neighbourhood growth. Thus this is
a substantial family of planar graphs. Moreover, in Section 4.2 we extend the result to
(not necessarily planar) graphs with polynomial growth, but the speed up factor there is
sub-polynomial yet faster than (logn)k for any k.

I Definition 12. A graph family G has quadratic growth, if there is a constant C0 such that

for any G = (V,E) œ G, v œ V , and any integer ¸ > 0, |Bv(¸)| Æ C0¸
2
.

Subgraphs of the 2D lattice Z2 satisfies Definition 12 with C0 = 5. Note that by taking
¸ = 1, Definition 12 implies that the maximum degree is no larger than C0.

I Theorem 13. Let G be a family of planar graphs with quadratic growth (assume the rate is

C0¸
2
). Let A and b specify a q-state spin system, which exhibits SSM with decay rate Cr

≠¸

on G. Then there is a constant c > 0 such that there exists an FPRAS for the partition

function of G œ G with n vertices with run-time ÂO(n2≠c
/Á

2). The constant c depends on C0,

q, and r.

Theorem 13 is the detailed version of Theorem 3.
Essentially the idea is still to find an estimator for the marginal of an arbitrary vertex

that can be evaluated very quickly. Let us first consider a
Ô
n-by-

Ô
n grid. For any vertex v,

we consider the sphere Sv(¸) of radius ¸ = O(logn) centered at v, and a random configuration
· on Sv(¸). Let Bv(¸) be the ball of radius ¸ centered at v. Since any planar graph has linear
local tree-width [12, 15], Bv(¸) has tree-width O(¸). Thus, given a configuration · on S, the
law of µ·

v
can be computed in time 2O(¸)poly(¸) for a fixed · (see, e.g. [35]5). This step can

be very e�cient with a carefully chosen ¸.
For a general bounded degree planar graph, |Sv(¸)| can be a polynomial in n, which

makes the number of possible · ’s exponential in n. However, for a
Ô
n-by-

Ô
n grid, |Sv(¸)| Æ

4¸ = O(logn), and the number of possible · ’s is much smaller and is a small polynomial in

5 The algorithm in [35] uses the separator decomposition. Another possibility is to first find a constant
approximation of the tree decomposition first [26], and then apply Courcelle’s theorem.
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n. Thus, it would be more e�cient to first create a table to list all possibilities of · , and
then, instead of computing µ

·
v
each time, simply look up the answer from this table. We

can do the same for any subgraph of Z2 by choosing a boundary based on distance in the
original grid.

For a general G œ G, we no longer have a linear bound on the size of the boundary. (In
Appendix C of the arXiv version of this paper, we construct a subgraph of Z2 where the
distance ¸ boundary has size �(¸2).) However, since G has quadratic growth, we know that
Bv(¸) Æ C0¸

2 for some constant C0 > 0. It implies that

¸ÿ

i=¸/2

|Sv(¸)| Æ |Bv(¸)| Æ C0¸
2
.

Thus, there must exist an ¸
Õ œ [¸/2, ¸] such that |Sv(¸Õ)| Æ 2C0¸. We will find this ¸

Õ and use
Sv(¸Õ) instead.

Once again, we use a self-reduction similar to (3). For q-spin systems, given a feasible
configuration ‡, we have the decomposition,

w(‡)
ZG

= µ(‡) = µv1(‡v1)µ
‡v1
v2 (‡v2)µ

‡v1 ,‡v2
v3 (‡v3) . . . µ

‡v1 ,...,‡vn≠1
vn (‡vn). (5)

When computing our table, we will have to condition on the already pinned vertices.

I Lemma 14. Let A, b, q and G be as in Theorem 13. For v œ V , a partial configuration ‡,

and an integer ¸, we can find an ¸
Õ
such that ¸

Õ œ [¸/2, ¸], and then construct a table of µ
‡,·
v

,

indexed by every boundary configuration · on unpinned vertices of Sv(¸Õ). The total run-time

is 2C1¸
, where C1 is a constant depending on C0 and q.

Proof. As discussed earlier, due to the quadratic growth of G, there must exist an ¸ such
that ¸

Õ œ [¸/2, ¸] and |Sv(¸Õ)| Æ 2C0¸. To find this ¸, we do a breadth-first-search to check
Sv(i) from i = ¸/2 to ¸. The running time is at most O(Bv(¸)) = O(¸2).

Once ¸
Õ is found, |S‡

v
(¸Õ)| Æ |Sv(¸Õ)| Æ 2C0¸, and there are at most q2C0¸ configurations ·

in our table. As G is a planar graph, the tree-width of the ball tw(Bv(¸Õ)) = O(¸Õ) = O(¸).
Thus, using for example the algorithm of [35], each entry of the table can be computed in
time 2O(¸)poly (¸). The total amount of time required is O(¸2) + q

2C0¸2O(¸)poly (¸) Æ 2C1¸,
for some su�ciently large constant C1. J

While we may construct this table very quickly, it is not clear how to compute or estimate
the marginals of the boundary condition · ’s rapidly. Instead, we sample a random one using
the marginal sampler [1] that terminates in almost linear time with high probability. See
Theorem 25.

I Lemma 15. Let A, b, q and G œ G be as in Theorem 13. Let ‡ be a partial configuration.

For any v œ V not pinned under ‡ and any k œ [q], there exists an algorithm that generates

a random variable ÂZ such that E[ ÂZ] = µ
‡
v
(k) and Var

1
ÂZ

2
Æ 1/n. Moreover, its running

time is ÂO(n1≠c) with high probability where c depends on C0, q, and r.

Proof. Let ¸ be a constant that we will choose later. Let ¸
Õ œ [¸/2, ¸] be as in Lemma 14, and

let · be a boundary condition on the unpinned vertices of Sv(¸Õ) under ‡. Let Zv(·) = µ
‡,·
v

(k)
so that E· [Zv(·)] = µ

‡
v
(k). Then, let

ÂZ := 1
m

mÿ

j=1
Zv(·j)

be the empirical mean over m random samples ·j , where we will choose m later.
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Since the spin system exhibits SSM with decay rate Cr
≠¸, similar to (4), we have

Var (Zv(·)) Æ C
2
r

≠2¸
Õ Æ C

2
r

≠¸. Then

Var
1

ÂZ
2
= Var

Q

a 1
m

mÿ

j=1
Zv(·j)

R

b Æ C
2

mr¸Õ .

Thus, we set m = ÁnC2
r

≠¸
ÕË samples so that Var

1
ÂZ

2
Æ 1/n.

For the running time, we first construct the table as in Lemma 14. Then we takem samples
of · , each of which can be generated in time almost linear in |Sv(¸Õ)| with high probability
using Theorem 25. As |Sv(¸Õ)| Æ 2C0¸, the runtime in total is at most O(2C1¸ + n¸r

≠¸
Õ logn)

with high probability. We choose ¸ = 1≠c

C1
logn for c = log r

log r+2C1
œ [0, 1], so that ¸

Õ Ø ¸/2 =
1≠c

2C1
logn and the total runtime is O(n1≠c + n

1≠(1≠c) log r/(2C1) log2 n) = ÂO(n1≠c). J

Now we are ready to prove Theorem 13.

Proof of Theorem 13. We are going to use (5) to do a self-reduction. First we construct
the target configuration ‡ adaptively. Given ‡ on v1, . . . , vi≠1, we want to choose ‡vi to be
k œ [q] with the largest marginal. In other words, ‡vi = argmaxkœ[q] µ

‡i
vi
(k) for each i, where

‡i is what has been constructed so far, namely ‡v1 , . . . ,‡vi≠1 . Of course, this step cannot
be done exactly. Instead, we may fix a constant t = t(C, r, q) such that Cr

≠t Æ 1
2q , fix an

arbitrary boundary configuration · on S
‡i
vi
(t) and then pick k œ [q] that maximises µ‡i,·

vi
(k).

SSM guarantees that µ‡i
vi
(‡vi) Ø 1/2q, where ‡vi = k. This step takes constant time as t is a

constant.
The rest of the proof is very similar to that of Theorem 1. Set N := Á10e4q2/Á

2
0Ë where

Á0 = Á/2. We compute X =
r

n

i=1
ÂZi where each ÂZi is from Lemma 15 plugging in vi and ‡i.

Due to the decomposition (5) we have

E[X] = E
C

nŸ

i=1

ÂZi

D
=

nŸ

i=1
E

Ë
ÂZi

È
=

nŸ

i=1
µ

‡i
vi
(‡vi) = µ(‡).

We also compute w(‡) which can be done in O(n) on a planar graph with quadratic growth.
By Lemma 15, the time to generate one X is O(n2≠cpolylog (n)) with high probability. We
bound Var (X) as follows

Var (X)
(E[X])2 = E[X2]

(E[X])2 ≠ 1 =
r

n

i=1 E[ ÂZ2
i
]

r
n

i=1 E[ ÂZi]2
≠ 1 =

nŸ

i=1

Q

a1 +
Var

1
ÂZi

2

(E[ ÂZi])2

R

b ≠ 1

Æ
3
1 + 4q2

n

4n

≠ 1 Æ e
4q2

,

where we use µ
‡i
vi
(‡vi) Ø 1/2q for any i œ [n]. Let ÂX be the average of N samples of X.

Then Var
1

ÂX
2
= Var(X)

N
Æ e

4q2

N ·Z(G)2 . By Chebyshev’s inequality,

Pr
5---- ÂX ≠ 1

Z(G)

---- Ø Á0
Z(G)

6
Æ

Var
1

ÂX
2

Á2
0

Z(G)2
Æ e

4q2

N · Z(G)2 · Z(G)2
Á20

Æ 1
10 .

Thus, with probability at least 9/10, we have that 1≠Á0
Z(G) Æ ÂX Æ 1+Á0

Z(G) . Finally, we output
ÂZ = w(‡)/ ÂX. Since Definition 12 implies a constant degree bound, the graph is sparse and
w(‡) can be computed in O(n) time. To make sure that the algorithm runs within the
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(a) (b) (c)

Figure 2 Circle packings of some lattices. (a): Z2 grid, R = 1. (b): Kisrhombille tiling,
R = 2 ≠

Ô
3. (c): degree-3 Bethe lattice, R = 0.

desired time bound O

1
n
2≠c

Á2

2
, we truncate the algorithm if it runs overtime and output an

arbitrary value in that case. This truncated version can be coupled with the untruncated
algorithm with probability at least 7/8, and its output ÂZ satisfies 1 ≠ Á Æ ÂZ

Z(G) Æ 1 + Á with
probability at least 3/4. J

4.1 Bounded-radius circle packing
Here we show that Theorem 13 applies to any planar graph with bounded-radius circle
packings. We begin with the definition of a circle packing.

I Definition 16. A circle packing is a collection C of interior-disjoint circles over the

2-dimensional plane. A tangency graph of a circle packing is a graph having a vertex for

each circle, and an edge between two vertices if and only if the two corresponding circles are

tangent.

The Koebe-Andreev-Thurston circle packing theorem states the following.

I Theorem 17. For every connected locally finite simple planar graph G, there exists a circle

packing whose tangency graph is (isomorphic to) G.

We are concerned with the radius of the circles used in the packing, especially the ratio
between the smallest and largest ones.

I Definition 18. A locally finite simple planar graph G is said to have an R-bounded-radius
circle packing (R-BRCP) for some constant R > 0, if there exists a circle packing C whose

tangency graph is (isomorphic to) G such that

inf
§œC

r§

sup
§œC

r§
Ø R

where r§ denotes the radius of a circle § in the packing.

Three examples are given in Figure 2. The Z2 grid can be naturally packed by unit disks,
leading to R = 1. Such a graph is called a “penny graph”. The 3, 6-kisrhombille tiling is a
tiling of the 2-dimensional plane by fi/6-fi/3-fi/2 triangles. This lattice can be packed by
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circles of radii 1, 2
Ô
3 ≠ 3, 2 ≠

Ô
3, so R = 2 ≠

Ô
3. The degree-3 Bethe lattice, also known

as the infinite 3-regular tree, can be drawn as a planar graph on the 2-dimensional plane.
However, the neighbourhood growth is so fast that R = 0.

Fix the underlying graph G and its R-BRCP C. Without loss of generality, we assume
the diameter of the largest circle in C is 1. Thus, the radius of an arbitrary circle in C is
between R/2 and 1/2. Let G be a finite subgraph of G. Here we need to distinguish the
graph distance in G and the geometric distance (the Euclidean distance Î·Î2 between the
center of their corresponding disks on the 2-dimensional plane). For two vertices u and v, we
use distG(u, v) to denote their graph distance, and use Îu ≠ vÎ2 to denote their geometric
distance. Note that distG(u, v) Ø Îu ≠ vÎ2 and distG(u, v) Ø distG(u, v).

For any vertex v and u in the ¸-ball Bv(¸) in G, Îu ≠ vÎ2 Æ distG(u, v) Æ ¸. The disk
§u corresponding to u must be contained completely in the circle centered at u with radius
¸ + 1/2. By considering the area they cover,

|Bv(¸)| Æ fi(¸ + 1/2)2
fi(R/2)2 = O(¸2/R2).

Thus, any family of subgraphs of G has quadratic growth, where the growth constant depends
on R. Together with Theorem 13, we have the following corollary.

I Corollary 19. Let G be a locally finite simple planar graph, together with an R-BRCP

where R > 0 is a constant. Let G be a family of subgraphs of G, and A, b specify a q-spin

system that exhibits SSM with exponential decay on G. Then there exists an FPRAS that

takes a graph G œ G as an input and estimates the partition function of the spin system on G

in time ÂO(n2≠c
/Á

2). Here, n = |V (G)|, and c > 0 is a constant depending on q, decay rate

of SSM, and R.

I Remark 20. The algorithm does not need to know the circle packing, as long as an R-BRCP
exists.

On a separate note, although a good approximation of the circle packing of a finite planar
graph can be found in near linear time [13], its output does not optimise the radius ratio. It
is not clear how to generate a circle packing with a constant approximation of the optimal
radius ratio. In the extreme, it is NP-hard to decide if a given graph G (without geometric
positions) is a penny graph, namely admitting a circle packing using unit circles [14], even if
G is restricted to be a tree [5].

4.2 Polynomial-growth graphs
Our method goes beyond planar graphs with quadratic growth rate. For any graph with a
polynomial growth rate, we have a speed-up that is faster than any polylog factors.

I Definition 21. A graph family G has polynomial growth, if there are constants C and d

such that for any G = (V,E) œ G, v œ V , and any integer ¸ > 0, |Bv(¸)| Æ C0¸
d
.

Examples of graphs with polynomial growth include finite subgraphs of the d-dimensional
integer lattice Zd. Again, by taking ¸ = 1, Definition 21 implies that the maximum degree is
no larger than C0.

I Theorem 22. Let G be a family of graphs with polynomial growth (assume the rate is

C0¸
d
). Let A and b specify a q-state spin system, which exhibits SSM with decay rate Cr

≠¸

on G. Then there is a constant c > 0 such that there exists an FPRAS for the partition

function of G œ G with n vertices with run-time ÂO
1

n
2

Á22c(logn)1/d

2
. The constant c depends

on C0, q, and r.
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Theorem 22 is the detailed version of Theorem 4.
In comparison to Theorem 13, the proof of Theorem 22 needs only a few small tweaks.

Let ¸ be a parameter we will choose later, and our estimator is still set by using a random
boundary condition on Sv(¸) to estimate the marginal at v. Note that we no longer need
to find ¸

Õ for a smaller boundary. The main di�erence is in Lemma 14, where we no longer
have linear local tree-width. Instead, we have to create the table by brute-force enumeration.
There are qC0¸

d possible boundary conditions, and the overall time cost for creating the table
is O(q2C0¸

d).
We use the same estimator as in Lemma 15. To reduce the variance of our estimator to

1/n, we need nC
2
r

≠2¸ samples, each of which can be looked up quickly using the table. Let
¸ = 0.99(logn)1/d

2C0 log q
. The overall time cost is

ÂO
1
n

Á2

1
q
2C¸

d

+ nr
≠2¸

22
= ÂO

3
n

Á2

3
n
0.99 + n

2c(logn)1/d

44
= ÂO

3
n
2

Á22c(logn)1/d

4
,

where c = 0.99 log r

C0 log q
. This shows Theorem 22. Note that the factor 2c(logn)1/d grows faster

than (logn)k for any k > 0.
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A Lazy marginal samplers

Lemma 9 is proved in this subsection. The single-site Anand-Jerrum algorithm adapts to
the hard-core model as in Algorithm 1.
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Algorithm 1 HardcoreSampler(G,⁄, (�,‡), v).

Input: a �-degree graph G, fugacity ⁄, a set of vertices � ™ V with a configuration
‡ œ ��, and vertex to sample v /œ �

Output: the partial configuration passed in with a spin at v: (�,‡) ü (v, i) for some
i œ {0, 1}.

1 Decrease the global timer T Ω T ≠ 1;
2 if there exists u œ � fl N(v) such that ‡(u) = 1 then

3 return ((�,‡) ü (v, 0));
4 Sample random X œ {‹, 0} with Pr[X = ‹] = ⁄/(1 + ⁄) and Pr[X = 0] = 1/(1 + ⁄);
5 if X = ‹ then

6 (�Õ
,‡

Õ) Ω (�,‡);
7 Y Ω 1;
8 forall u œ N(v)\� do

9 (�Õ
,‡

Õ) Ω HardcoreSampler(G,⁄, (�Õ
,‡

Õ), u);
10 if ‡

Õ(u) = 1 then Y Ω 0;
11 return ((�,‡) ü (v, Y ));
12 else

13 return ((�,‡) ü (v, 0));

The correctness of the algorithm is summarised by the following theorem, adapted to our
setting.

I Theorem 23 ([1, Theorem 5.3]). Suppose G is a graph with maximum degree bounded by �,

and ⁄ < ⁄c(�). If the untruncated algorithm HardcoreSampler+Œ(G,⁄, (�,‡), v) terminates

with probability 1, then it generates a spin of v according to the correct marginal distribution

upon termination, provided that the partial configuration (�,‡) is feasible.

We remark that the correctness does not rely on the graph’s neighbourhood growth being
sub-exponential. However, the algorithm given here is a special case of that in [1], where
they look at an ¸-distance neighbourhood. Fixing ¸ = 1 as we do here results in the regime
of fugacity ⁄ being worse than the critical ⁄c, as we will see very soon. The saving grace
of [1] is that other ¸’s might be chosen in order to get to the critical regime, but this is at
the cost of limiting the neighbourhood growth. Our main algorithm does not work up to the
critical ⁄c, so only the 1-hop neighbourhood is considered.

In [1], the expected running time is studied and turns out to be a constant depending on
the parameters of the model. However, we further need an exponential tail bound of the
algorithm. This is done by the same idea of [16, Section B.3], though we do not truncate
this algorithm as is done there. As soon as an exponential tail bound of running time is
established, the algorithm then terminates with probability 1 and hence is correct.

We treat the algorithm as a branching process. Each time the algorithm recurses into its
neighbourhood, it creates at most � ≠ 1 new copies of the routine HardcoreSampler. Such
branching happens with probability p := ⁄/(1 + ⁄). This leads us to study the following
Markovian process that stochastically dominates the actual branching process. Let (Xt)tœZØ0

be a discrete Markov chain where Xt œ ZØ0 with initial state X0 = 1. This chain has an
absorbing barrier at 0, and for any other Xt > 0, the transition probability is given by

Xt+1 Ω
I
Xt + � ≠ 1 with probability p;
Xt ≠ 1 with probability 1 ≠ p.

(6)
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In the general case, the tail bound of this process is proved in [16, Lemma B.12], and this
requires ⁄ Æ 1

2e�≠1 when specialised to the hard-core model. Here we provide a stronger
analysis to remove the constant.

I Lemma 24. Suppose ⁄ <
1

�≠1 . For any 0 < Á < 1, let T = 2�2

( ⁄
1+⁄ �≠1)2 log

1
Á
. Then with

probability at most Á, the process (Xt) defined by (6) does not terminate in T rounds.

Proof. Given {Xt}tœZØ0 , define an auxillary process {Yt}tœZØ0 in the following way. Let
Y0 = 1, and the transition probability is given by

Yt+1 Ω
I
Yt + 1

1+⁄
� with probability ⁄

1+⁄
;

Yt ≠ ⁄

1+⁄
� with probability 1

1+⁄
.

(7)

Then couple Xt with Yt perfectly that, if Xt increases then so does Yt, and vice versa, till
Xt reaches the absorbing barrier. After this point, Yt just performs the above transition
independently.

Clearly, {Yt} is a martingale, and if Xt > 0 is not absorbed then Yt = Xt+
1

⁄

1+⁄
� ≠ 1

2
t.

Also note that the regime on ⁄ ensures ⁄

1+⁄
�≠1 > 0. This allows us to bound the probability

of {Xt} not terminating after T rounds by by applying Azuma–Hoe�ding inequality:

Pr[XT > 0] = Pr[XT Ø X0] = Pr
5
YT ≠ Y0 Ø T

3
⁄

1 + ⁄
� ≠ 1

46

Æ exp

Y
_]

_[
≠
T

2
1

⁄

1+⁄
� ≠ 1

22

2�2T

Z
_̂

_\
= Á. J

Lemma 9 then follows by exactly the same argument as in [16, Proof of Lemma B.10],
by noticing that the branching process (Xt) stochastically dominates the number of “active”
instances of HardcoreSampler, and using Lemma 24.

If we want to cover the whole strong spatial mixing regime but only work on amenable
graphs, then we can invoke the original Anand-Jerrum algorithm, allowing us to do recursion
at farther vertices rather than one-hop neighbours. Its running time tail bound is shown in
[16, Lemma B.10].

I Theorem 25 ([16, Lemma B.10]). Suppose a q-spin system S = (G, [q], b,A) exhibits strong
spatial mixing with decay rate f(¸), and there is a function s(¸) such that the neighbourhood

growth of G satisfies |{u | distG(u, v) = ¸}| Æ s(¸) for all v. If there is some r œ ZØ1 such that

2eq(1+ s(r))f(r) Æ 1, then for any feasible boundary configuration (�,‡), the Anand-Jerrum

algorithm, on input (S, (�,‡), v, r), generates a sample of v subject to the correct marginal

distribution, and halts in time O(s(r) log 1
Á
) with probability at least 1 ≠ Á.

B A lower bound for Weitz’s algorithm

In this section, we prove a lower bound for the running time of the standard implementation
of Weitz’s algorithm. Consider the hard-core model on G = (V,E) with parameter ⁄.
Suppose we want to estimate the partition function Z within a constant approximation
error. Let V = {v1, . . . , vn} and Gi = G \ {v1, . . . , vi≠1}. Weitz’s algorithm solves this
task by estimating each µGi,vi(0) within an approximation error O( 1

n
). It first constructs

the SAW tree of Gi rooted at vi, then truncates the tree at level ¸ and applies dynamic
programming on the truncated tree to estimate µGi,vi(0). The standard implementation
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of Weitz’s algorithm [34, 28] ensures that for any tree with maximum degree �, any two
configurations ‡, · at level ¸, dTV(µ‡

v
, µ

·
v
) = O( 1

n
). Standard analysis bounds the total

running time from above by TWeitz = �(n�¸).
By the same correlation decay analysis as in Lemma 11, when the algorithm in Theorem 1

has running time ÂO(n1+1/2k), we need to choose ¸ so that TWeitz = O(n1+1/k). This analysis
only gives an upper bound on the correlation decay rate. If the decay rate is faster, then
Weitz’s algorithm is faster, and so is the algorithm in Theorem 1. The speedup will depend
on how much faster the decay rate becomes. Nevertheless, the next lemma shows that the
analysis in Lemma 11 is almost sharp in the worst case. The speedup in Theorem 1 is at
least Â�

1
n

1
2k ≠O( 1

k2 log � )
2
.

I Lemma 26. Let the real number k > 0 and the integer � Ø 2 be two constants satisfying

�k Ø 4. Let ⁄ = 2
(�≠1)�k . Let T be an infinite �-regular tree with root v. For any ¸ Ø 2, let

‡0 and ‡1 be all-0 and all-1 configurations at level ¸ of T respectively. The Gibbs distribution

µ of the hard-core model on T with parameter ⁄ satisfies

dTV(µ‡0
v
, µ

‡1
v
) Ø 1

2

3
1

�k

4¸

.

Let the parameters k, �, and ⁄ be as in Lemma 26. Consider a family of hard-core
instances where the graphs are indeed �-regular trees. In Weitz’s algorithm, in order to
ensure an O( 1

n
) truncation error, Lemma 26 implies that ¸ must satisfy 1

2
! 1

�k

"¸ = O( 1
n
),

namely,

�¸ = �(n 1
k ).

This makes the overall running time TWeitz = �(n1+ 1
k ). In comparison, for these parameters,

the algorithm in Theorem 1 has a running time upper bound ÂO
1
n
1+ 1

2k+O( 1
k2 log � )

2
, which is

faster by a factor of roughly Â�(n1/2k).

Proof of Lemma 26. Let w be an arbitrary vertex at level 0 Æ t Æ ¸. Let fi denote the
Gibbs distribution on the subtree rooted Tw at w. Recall that ‡0,‡1 are pinnings on T (¸),
where T (¸) is level ¸ of T . Let p0

t
(c) = fi

‡0
w
(c) and p

1
t
(c) = fi

‡1
w
(c) for c œ {0, 1}, where we

use ‡0 and ‡1 to denote all-0 and all-1 pinnings on Tw fl T (¸). By symmetry, p0
t
(·) and p

1
t
(·)

depend only on t but not on w. In particular, p00 = µ
‡0
v

and p
1
0 = µ

‡1
v

for the root v. For any
0 Æ t Æ ¸, define

R
0
t
:= p

0
t
(1)

p0
t
(0) , R

1
t
:= p

1
t
(1)

p1
t
(0) .

We next prove the following result holds for all 1 Æ t Æ ¸ ≠ 1:

--R0
t

≠ R
1
t

-- Ø 1
2

3
1

�k

4¸≠t≠1
. (8)

We need the following bound to prove (8). By considering the worst pinning on the
neighbourhood, we have the following bound on both ratios R0

s
and R

1
s

’0 Æ s Æ ¸ ≠ 1, R
0
s
, R

1
s

Æ ⁄ = 2
(� ≠ 1)�k

. (9)
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We prove (8) by induction on t from ¸ ≠ 1 to 1. The base case is t = ¸ ≠ 1. Note that �k Ø 4.
A straightforward calculation shows that

--R0
¸≠1 ≠ R

1
¸≠1

-- = |1 ≠ ⁄| = 1 ≠ 2
(� ≠ 1)�k

Ø 1
2 .

For the induction step, fix 1 Æ t Æ ¸ ≠ 2. The recursion function in (� ≠ 1)-ary tree is

f(x) = ⁄

3
1

1 + x

4�≠1
.

Note that R
0
t
= f(R0

t+1) and R
1
t
= f(R1

t+1). By the mean value theorem, there exists
min(R0

t+1, R
1
t+1) < ◊ < max(R0

t+1, R
1
t+1) such that

--R0
t

≠ R
1
t

-- = |f Õ(◊)| ·
--R0

t+1 ≠ R
1
t+1

-- .

By (9) and the fact �k Ø 4, we have

|f Õ(◊)| = ⁄(� ≠ 1)
3

1
1 + ◊

4�
Ø ⁄(� ≠ 1)

3
1

1 + ⁄

4�
Ø ⁄(� ≠ 1) exp(≠⁄�)

= 2
�k

exp
3

≠ 2�
(� ≠ 1)�k

4
Ø 2

�k
exp

3
≠ 4

�k

4
Ø 1

�k
.

By the induction hypothesis that
--R0

t+1 ≠ R
1
t+1

-- Ø 1
2 (

1
�k )¸≠t≠2, we can prove (8) for t. This

finishes the induction step for 1 Æ t Æ ¸ ≠ 3.
Finally, we use (8) to bound |R0

0 ≠R
1
0|. The proof is similar to the proof in the induction

step. The only di�erence is that the recursion for root v becomes g(x) = ⁄

1
1

1+x

2�
. By a

similar calculation, there exists min(R0
1, R

1
1) < ◊ < max(R0

1, R
1
1) such that

|R0
0 ≠ R

1
0| = |gÕ(◊)| ·

--R0
1 ≠ R

1
1
-- Ø �⁄

3
1

1 + ◊

4�+1
· 12

3
1

�k

4¸≠2

= �
(� ≠ 1)(1 + ◊) · ⁄(� ≠ 1)

3
1

1 + ◊

4�
· 12

3
1

�k

4¸≠2

Ø �
(� ≠ 1)(1 + ⁄) ·

1
2

3
1

�k

4¸≠1
Ø 1

3

3
1

�k

4¸≠1
.

By the definitions of R0
0 and R

1
0 and the fact �k Ø 4, we have

dTV(µ‡0
v
, µ

‡1
v
) = |µ‡0

v
(1) ≠ µ

‡1
v
(1)| = µ

‡0
v
(0)µ‡1

v
(0)|R0

0 ≠ R
1
0|

Ø
3

1
1 + ⁄

42
· 13

3
1

�k

4¸≠1
Ø 4

27

3
1

�k

4¸≠1
Ø 1

2

3
1

�k

4¸
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1 Introduction

At a high level, both circuit complexity and proof complexity can be thought of as an
approach towards the P versus NP question. The circuit complexity program, which met
with considerable success in the 1980s, tries to prove lower bounds against gradually larger
circuit classes, hoping to eventually show NP ”™ P/poly. Proof complexity, often identified
with the so-called Cook-Reckhow program, intends to show NP ”= coNP and, in turn,
P ”= NP, by proving lower bounds against gradually more powerful proof systems for
propositional logic.

While both enterprises share the motivation to study concrete computational models of
increasing power hoping to build up techniques to attack the long-sought separations, there
exist notable di�erences. Circuit complexity looks at deterministic models of computation,
while proof complexity deals with proof systems, which are inherently non-deterministic.
Furthermore, while circuit complexity has a clear end-goal (lower bounds against general
Boolean circuits), it remains wide open whether the Cook-Reckhow program can be realized
even in principle. It is not known whether lower bounds against strong systems like Extended
Frege can imply lower bounds for every other system and, as such, one could potentially keep
proving lower bounds for ever-stronger systems without ever settling whether NP ”= coNP.

The parallels between circuit complexity and proof complexity are made clearer by Frege
systems. For each circuit complexity class C, one can define the proof system C-Frege, in
which proof lines are restricted to be circuits from C. In this setting strong systems like
Frege and Extended Frege correspond to NC1-Frege and P/poly-Frege, respectively, and
thus the natural question arises: Can we turn explicit lower bounds for C circuits into lower
bounds for C-Frege systems, and vice versa?

While the question is essentially open, work on weaker systems and circuit classes has
proven successful. In one direction, the method of feasible interpolation [43, 65, 50] (see
[51, §17.9.1] for the history of the method) has been extensively applied to obtain proof
complexity lower bounds. The framework of feasible interpolation formalizes the idea of
extracting computational content from proofs: given short proofs in a given system, one can
extract a small Boolean circuit in some restricted classes for a related interpolant function.
Contrapositively, circuit lower bounds for such functions (often coming from unconditional
results such as lower bounds against monotone circuits [64, 4, 3]), turn into lower bounds for
proofs systems like Resolution [50] or Cutting Planes [61] (and conditionally for other systems,
such as Polynomial Calculus or Sum-of-Squares [32]). Unfortunately, this connection breaks
for stronger proof systems: already AC0-Frege and TC0-Frege are known to lack feasible
interpolation properties1 under standard cryptographic hardness assumptions [52, 13, 12],
and this holds even if we allow feasible interpolation by quantum circuits [6].

In the other direction (circuit complexity from proof complexity), the theory of lifting
has unveiled deep connections between proofs, circuits and communication protocols. Here,
so-called query-to-communication lifting theorems translate query complexity lower bounds
(corresponding to weak systems, like Resolution) into communication complexity lower bounds
(e.g. [63, 53]). The latter provide restricted circuit lower bounds, such as for monotone
circuits (see e.g. [27, 24, 25] and references therein). It is, however, not known how to derive
non-monotone lower bounds for unrestricted Boolean circuits by lifting proof complexity
lower bounds.

1 Some of these systems are known to admit some form of interpolation by stronger computational models,
see e.g. [62, 23], but we are interested in Boolean circuits.
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For proper Frege systems, the connection has worked mostly in one direction, from circuits
to proofs, particularly at the level of techniques. The method of random restrictions and
the celebrated switching lemmas used to show constant-depth circuit lower bounds in the
1980s [26, 1, 33] were successfully transferred into AC0-Frege lower bounds shortly after
[2, 10, 43, 8, 59, 49]. This suggests that understanding what makes proof lines large might
be necessary to understand why proofs are long. Intriguingly, understanding the proof lines
alone does not seem to su�ce: the AC0[p] lower bounds of Razborov and Smolensky [66, 68]
are yet to be successfuly translated to proof complexity, with lower bounds for AC0[2]-Frege
being one of the prominent frontier problems in the field.

The current situation seems to suggest that in order to make progress towards proof
complexity lower bounds, it is necessary (though seemingly not su�cient) to first obtain
strong enough circuit lower bounds. In particular, under this folklore belief, circuit lower
bounds against NC1 or P/poly, currently out or reach, would be a necessary step towards
proving strong proof complexity lower bounds for systems like Frege or Extended Frege.
However, the suspicion remains unproven, and no generic way of deriving explicit circuit lower
bounds for unrestricted Boolean circuits from proof complexity lower bounds for concrete
propositional proof systems has been discovered2.

The first result giving such a connection under relatively conventional assumptions which
are presumably weaker than the conclusion of the connection itself was presented recently by
Pich and Santhanam [58]. Specifically, they showed that any superpolynomial lower bound
on the length of tautologies in the Extended Frege system EF implies NP ”™ P/poly assuming
hypotheses (1) and (2) below:
(1) (Provable circuit lower bound.) EF proves e�ciently that a concrete Boolean function in

E is average-case hard for subexponential-size circuits.
(2) (Provable reduction of OWFs to P ”= NP.) EF proves e�ciently that a polynomial-time

function transforms circuits breaking one-way functions into circuits solving SAT.

We remark that Hypothesis (1) above presupposes E ”™ P/poly, which is however believed
to be a significantly weaker statement than NP ”™ P/poly. Alternatively, Hypotheses (1)
and (2) can be replaced by a single assumption on the feasible provability of the existence
of anticheckers in EF. These results remain valid even if we replace EF by an essentially
arbitrary proof system simulating EF.

Crucially, improving this and related results by dropping the hypotheses is surprisingly
daunting. As noted by Pich and Santhanam [58, Prop. 1], if one unconditionally establishes
the implication “if S is not polynomially bounded, then NP ”™ P/poly” for a concrete
proof system S, then the breakthrough separation NP ”™ SIZE[nk], for every fixed k (and
NEXP ”™ P/poly) follows!

In short, proving a formal connection between proof complexity and circuit complexity
provably requires breakthrough circuit lower bounds! Despite this setback, one can still
hope to get evidence that points at these connections, possibly by shifting some of the
components of the ingredients. Namely, one may try to (a) adopt some hardness assumption,
in the style of [58]; (b) conclude lower bounds weaker than NP ”™ P/poly; or (c) look at
non-Cook-Reckhow proof systems (such as MA proof systems or proof systems for languages
beyond coNP).

2 We note that the issue lies in establishing such a connection for a concrete system. Of course, the
statement “there is a proof system S such that if S is not polynomially bounded, then P ”= NP”
is true: if NP = coNP the implication is vacuously true by taking a polynomially bounded proof
system; if NP ”= coNP, then P ”= NP and thus the statement holds for any proof system. It would be
dramatically di�erent to obtain such a connection for a concrete system.

ICALP 2024
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In this style, Grochow and Pitassi [31] showed that the Ideal Proof System (IPS) does
satisfy such a connection, to algebraic circuit complexity. Indeed, any superpolynomial lower
bound in the length of proofs in IPSF implies VPF ”= VNPF. Grochow and Pitassi avoid
the Pich-Santhanam barrier by means of (b) and (c) above: first, IPS is not known to be
a Cook-Reckhow system, since proofs are verified by randomized machines via polynomial
identity testing; second, the lower bounds are algebraic and not Boolean. Recall that while
separating VP and VNP is a necessary step3 towards NP ”™ P/poly [14], the converse is not
known.

Another interesting connection has been established in the realm of quantified Boolean
formulas, where the connection can be made essentially optimal. Beyersdor�, Bonacina,
Chew, and Pich [11] showed that for every circuit class C, the quantified system C-Frege+
’red is not polynomially bounded if and only if either PSPACE ”™ C or C-Frege is not
polynomially bounded. Here, C-Frege + ’red stands for the natural quantified system
obtained by extending C-Frege with a universal reduction rule, which takes care of universal
quantifiers by instantiating concrete values for its variables in the hope of refuting the
formula. The reason this avoids the Pich-Santhanam barrier is the disjunct in the conclusion.
That is, in the context of QBF the conclusion of the Pich-Santhanam barrier becomes that
that either NEXP ”™ P/poly or C-Frege is not polynomially bounded. But this disjunction
is no breakthrough, since it follows directly by a diagonalization argument anyway: if a
propositional system is polynomially bounded, then NEXP is hard for P/poly [44].

Contributions
We prove a new conditional connection between proof complexity and circuit complexity,
giving further evidence that strong proof complexity lower bounds require circuit lower
bounds. This constitutes the first example of a natural proof system that is conditionally
Cook-Reckhow and whose lower bounds imply Boolean circuit lower bounds.

The system in question is (an extension of) the Implicit Extended Frege (iEF) proof system
of Krají�ek [45], capable of formalizing most of contemporary complexity theory. Our result
can be informally stated as follows, where iEF

tt(h) stands for the proof system extending iEF

by axioms ttavg
1/4

(hn, 2n/4) claiming there are no circuits of size 2n/4 approximating a concrete
function h on more than a (1/2 + 1/2n/4)-fraction of the inputs.4

I Theorem 1 (Main theorem, informal). Suppose there is a Boolean function h œ NE fl coNE
that is hard on average for subexponential-size circuits. If the Cook-Reckhow proof system

iEF
tt(h)

is not polynomially bounded, then #P ”™ FP/poly.

In the theorem above one could instead consider the system iEF
tt(h) for some uncondi-

tionally hard function family h that is guaranteed to exist. The only problem in this case
is that we might need non-uniform advice to verify the proofs, and so the system would
not be Cook-Reckhow (we refer to Cook and Krají�ek [19] for a systematic treatment of
non-uniform proof systems).

One can interpret our theorem as improving on the connection of Pich and Santhanam [58]
from proof complexity to circuit complexity. Our result improves that of Pich and Santhanam
by completely dropping their second assumption (the one about EF proving the existence of
one-way functions under P ”= NP). The price to pay for these changes is two-fold:

3 Unconditionally over finite fields, and assuming the Generalized Riemann Hypothesis for infinite fields.
4 For technical reasons, we define iEFtt(h) using a system which is polynomially equivalent to iEF instead

of iEF itself, see Definition 17.
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1. we need to replace EF by the seemingly stronger Implicit Extended Frege system (iEF).
Informally, iEF extends EF with an extra rule allowing us to derive a formula Ï after we
have derived that a truth table of a given circuit encodes an EF-proof of Ï. Such a circuit
is called an implicit proof;

2. we can conclude only #P ”™ FP/poly from iEF lower bounds, instead of NP ”™ P/poly.

One may also compare our result to that of Grochow and Pitassi [31], who showed
VP ”= VNP (and hence hardness of computing the permanent) would follow from IPS

lower bounds. Like our result, the IPS proof system is only conditionally Cook-Reckhow.
Indeed, IPS is a Merlin-Arthur proof system which can be derandomized5 under standard
assumptions, like E being hard to approximate by subexponential-size circuits. Our result is
in some sense stronger in that the lower bounds obtained are Boolean rather than algebraic.
However, we seem to be getting to lower bounds for the same problem as Grochow and
Pitassi, since computing the permanent is both VNP-complete and #P-complete.

We note that the requirement that h œ NE fl coNE is not strictly needed and, in
fact, one can phrase the result in a more general style (as we do in the technical part)
in which the connection holds for any extension of iEF by truth table formulas for any
hard function. Observe, however, that iEF is a very strong proof system, with its bounded
arithmetic counterpart being the theory V

1
2 (or S12 + 1-EXP, in the first-order setting), and

so it is plausible that iEF already proves such a circuit lower bound. For example, already
EF can prove e�ciently the PCP theorem [57], AC0, AC0[2] and monotone circuit lower
bounds [67, 55], or the hardness amplification producing average-case hard functions in E
from worst-case hard functions in E [36]. Furthermore, iEF proves e�ciently the correctness
of Zhuk’s algorithm from a CSP dichotomy [28, 29]. Hence, it is plausible to imagine that if
circuit lower bounds are at all provable, they may well be provable already in iEF. If that
turned out to be the case, then the concrete proof system in our main theorem becomes iEF
itself.

I Corollary 2 (Main theorem, restated). Assume that iEF proves e�ciently ttavg
1/4

(hn, 2n/4) for
some function family h and each su�ciently big n. Then, if iEF is not polynomially bounded,

#P ”™ FP/poly.

Let us note that one cannot make big improvements to this result without hitting the
Pich-Santhanam barrier that implies NEXP ”™ P/poly unconditionally: if we managed to
prove Theorem 1 for a Cook-Reckhow proof system, then NEXP ”™ P/poly would follow
unconditionally. On the other hand, if our final goal is to prove FP ”= #P, then the
assumption of Theorem 1 is given to us for free even for some hard h œ E, as otherwise, if E
can be computed by subexponential-size circuits, it is not hard to show that P ”= NP [44].

Consequences for self-provability of circuit upper bounds
Our result has consequences for the self-provability of circuit upper bounds. Suppose that
#P ™ FP/poly. Then, there is a sequence of polynomial-size circuits {Cn}nœN that on input
a formula Ï of size n, outputs a satisfying assignment if one exists. This means that the
propositional formula SATn(Ï,–) æ SATn(Ï, Cn(Ï)) claiming the correctness of Cn as a
SAT solver is tautological (where SATn is the satisfiability predicate, taking a formula Ï and

5 In fact, derandomizing IPS at all by simulating it by a Cook-Reckhow system implies a non-trivial
derandomization of polynomial identity testing to NP [30]; this, in turn, implies some circuit lower
bounds, as shown by Kabanets and Impagliazzo [38].
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an assignment – and evaluating the formula). But by Theorem 1, iEFtt is now polynomially
bounded, and so the proof system is able to e�ciently argue for the correctness of the circuits.
Namely, the mere validity of the upper bound #P ™ FP/poly would imply the e�cient
propositional provability of SAT œ P/poly.

Outline of the proof
Our main result follows from a derandomization of the known fact that coNP ”™ MA implies
#P ”™ FP/poly (see, for example, [5, Thm. 8.22]), together with a formalization of the
underlying MA system in a suitable theory of bounded arithmetic. The implication holds,
actually, for the MA system given by the sum-check protocol of Lund, Fortnow, Karlo�,
and Nisan [54] in which proofs consist of a circuit simulating the moves of the Prover in the
protocol, so that given such a circuit, the Verifier can simulate the entire protocol on their
own with the aid of randomness. If #P ™ FP/poly, then the #P-powerful Prover in the
sum-check protocol can be replaced by a polynomial-size circuit and thus the system is a
polynomially bounded Merlin-Arthur system. Clearly, lower bounds on the length of proofs
in this system are exactly circuit lower bounds against #P.

Since MA can be derandomized under standard hardness assumptions, assuming, for
example, that E is hard for subexponential-size circuits, the proof system R based on the
sum-check protocol above becomes a Cook-Reckhow system such that if R is not polynomially
bounded, then #P ”™ FP/poly. This is almost our goal. Our task now is to replace this
system by a di�erent more standard Cook-Reckhow system S. This can be achieved by
proving e�ciently the reflection principle of the system R in S, which essentially amounts to
proving the soundness of the sum-check protocol in S. Here, we employ a recent work of
Khaniki [40], in which the soundness of the sum-check protocol was formalized in S

1
2 + 1-EXP.

In order to translate the formalization inside S
1
2 + 1-EXP into propositional logic, we

need to express the soundness of the sum-check protocol by propositional formulas. This
is achieved using the machinery of approximate counting of Je�ábek [37], which exploits
Nisan-Wigderson generators based on a hard Boolean function.

Open problems
Improving our result seems to require significant conceptual work. Of course, simultaneously
dropping the circuit lower bound assumption as well as getting the stronger separation
NP ”™ P/poly would already imply NEXP ”™ P/poly, but one may hope to improve the
existing connection by improving on one of the two fronts only. Interestingly, this seems
to require progress in some of the central open questions in the theory of interactive proof
systems or in hardness magnification.

The power of the prover

Is it possible to strengthen the conclusion of the main theorem all the way down to NP ”™
P/poly? This would follow, for example, if we managed to design an interactive protocol for
Taut with a prover solving only NP problems and prove its correctness in iEF (unlike the
current situation, where the prover is required to compute a #P-complete function). The
general question of constructing a protocol for a language L where the prover’s power is
limited to PL is a well-known open problem in the theory of interactive proof systems (see,
for example, [5, §8.4]).
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Note, of course, that the existence of such a protocol does not su�ce, since its soundness
must be provable inside iEF. In fact, the reason why we require iEF (or S12 + 1-EXP) to carry
out the formalization of the existing sum-check protocol is that one cannot feasibly talk
about #SAT directly in EF or S12 (unless FP = #P).

Hardness magnification

Is it possible to replace iEF in the main theorem by Gentzen’s system G, or even by Extended
Frege? One option would be to carry out the existing formalization inside EF, as mentioned
above. The caveat would be, however, that we would then have to make the assumption
on truth table tautologies for EF. Whether EF can prove general circuit lower bounds at
all seems much less believable than for iEF, and so the plausibility of our hypotheses seems
a�ected.

Instead, one may choose to keep everything in iEF and obtain the connection indirectly for
EF via hardness magnification. Is there a natural class of formulas over which EF simulates
iEF (and which are believably hard for EF)? If so, assuming hardness of these formulas for
EF would imply iEF lower bounds. By our main theorem, #P ”™ P/poly would follow. To
the best of our knowledge, no such type of hardness magnification is known for strong proof
systems.

2 Preliminaries

We assume familiarity with the central concepts of computational complexity theory, pro-
positional proof complexity and mathematical logic. Below we review the central concepts
needed in this paper and fix some notation.

2.1 Proof complexity

Following Cook and Reckhow [22], a propositional proof system S for the language Taut of
propositional tautologies is a polynomial-time surjective function S : {0, 1}ú æ Taut taking
as input a proof fi œ {0, 1}ú and outputting S(fi) = Ï, the theorem that fi proves. Soundness
follows from the fact that the range is exactly Taut, and implicational completeness is
guaranteed by the fact that S is surjective. We sometimes drop the term proof in proof

system and use the term system alone to refer to a function S that is not guaranteed to
be a Cook-Reckhow proof system (perhaps because it is unsound, or not deterministically
computable).

We denote by sizeS(Ï) the size of the smallest S-proof of Ï plus the size of Ï. A proof
system S is polynomially-bounded if for every Ï œ Taut, sizeS(Ï) Æ |Ï|O(1). We say that a
proof system S polynomially simulates a system Q, written S Ø Q, if for every Ï œ Taut,
sizeS(Ï) Æ sizeQ(Ï)O(1). Note that the notion of size and the definition of simulation do not
exploit the soundness requirement of Cook-Reckhow systems. In particular, an unsound
system can be polynomially bounded and simulate every other system. In some cases
simulations hold only for some set T of tautologies, such as the set of tautologies written
as 3DNFs, and not for all formulas, and then we say that S polynomially simulates Q

over T . Given a family {Ïn}nœN of propositional tautologies, we write S „ Ïn whenever
sizeS(Ïn) Æ |Ïn|O(1).
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2.1.1 Frege systems
Proof complexity studies a wide variety of proof systems. The most important ones for us
are Frege systems. A Frege system is a finite set of axiom schemas and inference rules that
are sound and implicationally complete for the language of propositional tautologies built
from the Boolean connectives negation (¬), conjunction (·), and disjunction (‚). A Frege
proof is a sequence of formulas where each formula is obtained by either substitution of an
axiom schema or by application of an inference rule on previously derived formulas. The
specific choice of rules does not a�ect proof size up to polynomial factors, as long as there
are only finitely many rules and these are sound and implicationally complete. Indeed, Frege
systems polynomially simulate each other [51, Thm. 4.4.13]. Alternatively, one may choose
to think of Frege systems as some variant of Natural Deduction or the Sequent Calculus for
classical propositional logic.

Particularly important for us is the Extended Frege (EF) system, in which proof lines can
be Boolean circuits and not just formulas, which would allow in principle for more succinct
proofs. We shall often consider extensions of Extended Frege by sets of additional axioms.
For a set A ™ Taut of tautologies recognizable in polynomial time, the system EF+A refers
to Extended Frege extended with substitution instances of any formula in A. Note that if
A were to contain contingent formulas, then EF+ A would not be sound; in particular, it
would not be a Cook-Reckhow system, though it would be polynomially bounded.

A useful property of EF is the fact that EF+RefS Ø S for every propositional system
S [47]. Here RefS is the sequence of tautologies encoding the reflection principle for

S, which states that S is sound. Namely, RefS := {RefS,n,m}n,mœN where the formulas
RefS,n,m := PrfS,n,m(fi,Ï) æ Satn,m(Ï,–) encode the soundness of S, and Ï is a formula
of size n, fi is a purported S-proof of size m and – is an assignment to the variables in Ï,
which are all encoded by free variables. The formula PrfS,n,m encodes that fi is a correct
S-proof of Ï, and Satn,m(Ï,–) encodes the standard satisfaction relation for propositional
formulas. Alternatively, one may exploit the same relation with respect to the consistency

of S, ConS := {ConS,m}mœN, where ConS,m := ¬PrfS,1,m(fi,‹) and fi encodes a purported
proof of size m.

2.1.2 Quantified propositional systems
It is often convenient to operate on systems capable of reasoning with quantified Boolean
formulas, where the quantification ranges over {0, 1}. We denote by �q

i
(respectively, �q

i
)

the class of quantified Boolean formulas with i alternations between existential and universal
quantifiers, starting with an existential (respectively, universal) one.

We are particularly interested in Gentzen’s Sequent Calculus for quantified propositional
logic. The system extends the usual propositional Sequent Calculus by four new rules to
handle quantifiers (see [51, Def. 4.1.2] for a formal definition of the rules). We denote this
system by G, and by G

ú its tree-like counterpart. The system Gi, for i œ N, corresponds to G

where the quantified formulas appearing in the sequents can only be in the class �q

i
fi �q

i
.

The tree-like counterpart of Gi is naturally denoted G
ú
i
. It is useful to know that EF and G

ú
1

are polynomially equivalent with respect to �q

1
formulas [51, Thm. 4.1.3].

2.1.3 Implicit proof systems
Implicit proof systems constitute a systematic way of obtaining, for every proof system
S, a potentially stronger system S

Õ, and were introduced by Krají�ek [45]. The essential
idea is to encode a given proof in the system S as a multi-output Boolean circuit taking
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as input a number i in binary and outputting the i-th step of the proof. More formally,
given propositional proof systems S and Q, a proof of a tautology Ï in the implicit system

[S,Q] is a pair (fi, C) consisting of a proof and a circuit, such that the truth table of C
encodes a valid Q-proof of Ï (the implicit proof), while fi is an explicit S-proof of the formula
CorrectQ(Ï, C), which is the formula stating that the truth table of C is a correct Q-proof
of Ï. If S and Q are Cook-Reckhow proof systems, then so is [S,Q].

For a system S, the implicit system [S, S] is denoted by iS. In particular, we shall work
with the Implicit Extended Frege proof system, iEF := [EF,EF]. The system iEF is particularly
strong, and it can in fact simulate all of Gentzen’s G with respect to propositional tautologies
[45, Cor. 2.4].

2.2 Bounded arithmetic
Our proofs exploit the connections between propositional proof complexity and theories of
bounded arithmetic. Below we cover the essential preliminaries, which should be accessible
to any reader with basic knowledge of first-order logic.

2.2.1 The theories S1
2 and S1

2 + 1-EXP
Theories of bounded arithmetic capture various levels of feasible reasoning and act as a
uniform counterpart of propositional systems. Intuitively, feasibility is achieved by restricting
the complexity of formulas over which one can apply general reasoning schemes like induction.

The central theory for us is Buss’s S12, which we think of as corresponding to polynomial-
time reasoning. In this context, we work over the first-order language of bounded arithmetic,
LBA := {0, S,+, ·, <, |x|, Âx/2Ê, x#y}, which extends the language of Peano Arithmetic by
the symbols |x|, Âx/2Ê and x#y. The standard interpretation of Âx/2Ê is clear. The notation
|x| denotes the length of the binary encoding of the number x, Álog(x+ 1)Ë, while the smash

symbol x#y stands for 2|x|·|y|.
The definition of bounded formulas is analogous to the bounded quantification one

encounters in the polynomial hierarchy. For a quantifier Q œ {÷,’} and a term t in the
language of bounded arithmetic, a formula of the form Qx < t.Ï(x) stands for either
’x.(x < t æ Ï(x)) or ÷x.(x < t · Ï(x)). These are called bounded quantifiers. Whenever the
bounded quantifier is of the form Q < |s| for some term s, we talk about sharply bounded

quantifiers. The hierarchy of bounded formulas consists of the classes �b
n
and �b

n
, for n Ø 1,

which are defined by counting the alternations of bounded quantifiers ignoring the sharply
bounded ones, starting with an existential (respectively, universal) one. The class �b

n
consists

of all formulas that admit an equivalent definition in both �b
n
and �b

n
. In particular, the

class �b
0
stands for all formulas with sharply bounded quantifiers only.

The theory S
1
2 of Buss [15] extends Robinson’s arithmetic Q by some basic axioms for

the new function symbols and the polynomial induction scheme (PInd) for �b
1
-formulas: for

every Ï œ �b
1
, the theory contains the axiom

Ï(0) · ’x(Ï(Âx/2Ê) æ Ï(x)) æ ’xÏ(x). (PInd)

An alternative system intended to capture polynomial-time reasoning is Cook’s equational
theory PV [21]. In the formalism of PV one has some basic function symbols and introduces
new ones recursively by composition and limited recursion on notation, in the style of
Cobham’s functional definition of FP [17]. In this way, the function symbols obtained in PV

are precisely those of all polynomial-time functions over the naturals. The first-order version
of PV is PV1 [48, 16, 18]. Without loss of generality, we shall work in the theory S

1
2(PV),
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which is the theory S
1
2 in the language of bounded arithmetic extended by all PV function

symbols, meaning that we have a fresh symbol for each function in FP, and induction is now
available for all �b

1
(PV) formulas. We abuse notation and refer to this directly as S12.

While S
1
2 is able to formalize a significant amount of complexity theory and some

mathematics, it su�ers from the drawback of being unable to even state the existence of
exponentially large objects. For certain more elaborate arguments we shall work instead
inside S

1
2 + 1-EXP, which patches this issue. We follow here the definition of the theory given

by Krají�ek [45, Cor. 2.2]: we write S
1
2 + 1-EXP „ ’xÏ(x) for some arithmetic formula Ï if

there exists a term t such that

S
1
2 „ ’x’y(t(x) Æ |y| æ Ï(x)).

The definition is somewhat indirect and may be hard to grasp at first glance. Intuitively, it
allows one to derive properties about x under the assumption that y = 2x exists.

The theory S
1
2 corresponds to polynomial-time computations in the sense that the provably

total relations in S
1
2 are precisely the polynomial-time-computable ones. The same relation

holds for S12 + 1-EXP and the complexity class EXP.

2.2.2 Approximate counting
Many of the formalizations carried out in bounded arithmetic require the ability to count.
In some cases, small sets can be counted exactly, but one often requires more sophisticated
machinery for approximate counting, needed to formalize many probabilistic arguments.

For a œ N, a bounded definable set is a set of naturals X = {x < a | Ï(x)} ™ [0, a), where
Ï œ �b

Œ is some arithmetic formula. For X ™ a and Y ™ b, we define X ◊ Y := {bx+ y | x œ
X, y œ Y } ™ ab and X fi̇ Y := X fi {y + a | y œ Y } ™ a+ b. Rational numbers are assumed
to be represented by pairs of integers in the natural way. We also use the unfortunate but
standard Log-notation widespread in bounded arithmetic, by which n œ Log stands for the
formula ÷x(n = |x|) and n œ LogLog stands for ÷x(n = ||x||).

Intuitively, from the point of view of the theory, numbers in Log are “small” numbers.
For a circuit C : 2k æ 2, where we adopt the set-theoretic custom of identifying {0, 1} with
the number 2, we can consider the bounded definable set XC := {x < 2k | C(x) = 1}, and
ask about the task of counting the size of XC .

There exists a PV-function Count(C, y) = |XC fl |y||. This means that if 2k œ Log, then
one can do exact counting of |XC | e�ciently. We use the notation Prx<|y|[C(x) = 1] Æ z/w

for the PV-relation w · Count(C, y) Æ |y| · z.
If 2k ”œ Log, exact counting becomes problematic. To avoid this, Je�ábek [36, 37]

systematically developed the theory APC1 capturing probabilistic polynomial-time reasoning
by means of approximate counting. The theory APC1 is defined as PV1+dWPHP(PV) where
dWPHP(PV) stands for the dual (surjective) pigeonhole principle for all PV-functions. That
is, the set of all formulas

x > 0 æ ÷v < x(|y|+ 1).’u < x|y|. f(u) ”= v, (dWPHP)

where f is a PV-function which might involve other parameters not explicitly shown.
We write C : X ⇣ Y if C is a surjective mapping from X to Y . Let X,Y ™ 2n be

definable sets, and ‘ Æ 1. The size of X is approximately less than the size of Y with error ‘,
written as X ∞‘ Y , if there exists a circuit C, and v ”= 0 such that

C : v ◊ (Y fi̇ ‘2n) ⇣ v ◊ X.
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In this context, the notation X ¥‘ Y stands for X ∞‘ Y and Y ∞‘ X. As with exact
counting, the notation Prx<y[C(x) = 1] ¶‘ z/w stands for w · (XC fl y) ¶‘ y · z, for ¶ œ {∞,¥}.
Since a number s is identified with the interval [0, s), X ∞‘ s means that the size of X is at
most s with error ‘.

The definition of X ∞‘ Y is an unbounded ÷�b
2
formula even if X and Y are defined by

circuits, so it cannot be used freely in bounded induction. This problem can be solved by
working in sHARD

A, defined as the relativized theory S
1
2(–) extended with axioms postulating

that –(x) is a truth table of a function on ||x|| variables hard on average for circuits of size
2||x||/4. In sHARD

A there is a PV(–) function Size approximating the size of any set X ™ 2n
defined by a circuit C so that X ¥‘ Size(–, C, 2n, 2‘

≠1) for ‘
≠1 œ Log (by combination of [37,

Lemma 2.14] and [35, Cor. 3.6]).
The following key definition allows us to express that a function is indeed hard on average.

I Definition 3 (HardA
‘
(f), in PV1 [37]). Let f : 2k æ 2 be a truth table of a Boolean function

with k inputs (with f encoded as a string of 2k bits, and hence with k œ LogLog). We say

that f is average-case ‘-hard, written as HardA
‘
(f), if for every circuit C of size at most 2‘k

,

|{u < 2k | C(u) = f(u)}| < (1/2 + 2≠‘k)2k.

Note that HardA
‘
(f) is �b

1
-definable in PV1.

We write ttavg
‘

(fk, 2‘k) := ||HardA
‘
(f)||m for the propositional translation (see Section

2.2.3) of the formula HardA
‘
(f) above and an appropriately chosen parameter m depending

on k and ‘. We also consider the polynomial-time function CorrectFracTT”(s, n, C, f), that
checks whether f is a string of length 2n, C encodes a circuit of size at most s, and finally
verifies whether the fraction of accepted inputs is larger than (1/2 + 2≠”n)2n.

The theory APC1 is strong enough to show that hard-on-average functions do exist.

I Proposition 4 (Je�ábek [35]). For every rational constant ‘ < 1/3, there exists a constant

c such that APC1 proves that for every k œ LogLog such that k Ø c, there exist a function

f : 2k æ 2 that is average-case ‘-hard.

The theory S
1
2 can be relativized to S

1
2(–). This means, in particular, that the language

of S12(–), denoted also S
1
2(–), contains symbols for all polynomial-time machines with access

to the oracle –.

I Definition 5 (sHARD
A
[35]). The theory sHARD

A
is an extension of the theory S

1
2(–) by

the axioms stating

1. the number –(x) encodes the truth table of a Boolean function in ||x|| variables;
2. x Ø c æ HardA

1/4
(–(x)), where c is the constant from the previous proposition;

3. ||x|| = ||y|| æ –(x) = –(y).

The key technical tool from the framework of approximate counting is the following
theorem by Je�ábek.

I Theorem 6 (Je�ábek [37]). There is a PV(–)-function Size such that sHARD
A

proves that

if X ™ 2n is definable by a circuit C, then X ¥‘ Size(–, C, 2n, e), where ‘ = |e|≠1
.

For a circuit C : 2n æ 2, we introduce the notation

Pr
x<y

[C(x) = 1] ∞f

‘

z

w

to mean w · Size(f, C, 2n, e) Æ y · z, where ‘ = |e|≠1.
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2.2.3 Correspondences and propositional translations
While our formalizations are comfortably carried out in the first-order theories presented
above, we are able to transfer our results back to propositional logic thanks to the existence
of propositional translations. Following Krají�ek [51], we say that a theory T corresponds to
a propositional proof system S if (i) T can prove the soundness of S and (ii) every universal
consequence ’xÏ(x) of T , where Ï is quantifier-free, admits polynomial-size proofs in S when
grounded into a sequence of propositional formulas. Pudlák alternatively says that S is the
weak system of the theory T [62]. More formally, for such a universal formula Ï, we denote
by ||Ï||n the propositional translation for models of size n. Sometimes we abuse the notation
and write ||Ï|| dropping the subscript n. We refer the reader to standard texts like those of
Krají�ek [51] or Cook and Nguyen [20] for formal definitions of the translation.

The key fact for us is that universal theorems of S12 admit short propositional proofs in
Extended Frege. More importantly, S12 + 1-EXP corresponds to Implicit Extended Frege.

I Theorem 7 (Correspondence of S
1
2 + 1-EXP and iEF [45, Thm. 2.1]). The proof system iEF

corresponds to S
1
2 + 1-EXP. That is,

(i) the theory S
1
2 + 1-EXP proves the soundness of iEF;

(ii) whenever a ’�b
1
-sentence ’xÏ(x) is provable in S

1
2 + 1-EXP, there are polynomial-size

iEF-proofs of the sequence of tautologies {||Ï||n}nœN;
(iii) if S

1
2 + 1-EXP proves the soundness of some propositional system S, then iEF Ø S.

The translation also works for formulas beyond ’�b
1
as long as we translate into a

quantified propositional system. The definition of the translation is straightforward, and we
note that �b

1
-consequences of S12 translated as �q

1
formulas admit polynomial-size proofs in

G
ú
1 .

I Theorem 8 (Correspondence of S
1
2 and G

ú
1 [47]). Whenever a ’�b

1
-sentence ’x÷y Æ t.Ï(x, y)

is provable in S
1
2, there are polynomial-size proofs of the sequence of �q

1
-formulas obtained by

the translation, {||÷xÏ(x, y)||n}nœN, in G
ú
1.

2.3 Interactive proof systems and the sum-sheck protocol
While our focus is on propositional proof systems in the sense of Cook and Reckhow, our work
exploits relations to more lax notions of provability. Following Babai [7], an Merlin-Arthur

proof system or Merlin-Arthur protocol for a language L ™ {0, 1}ú is a polynomial-time
function S together with some constant c such that the two following properties are satisfied
for every x œ {0, 1}ú. Namely,
1. if x œ L, then there exists some fi œ {0, 1}ú such that Prrœ{0,1}(|x|+|fi|)c [S(x,fi, r) = 1] = 1;
2. if x ”œ L, then for every fi œ {0, 1}ú, Prrœ{0,1}(|x|+|fi|)c [S(x,fi, r) = 1] < 1/3.

The first condition formalizes completeness, while the second corresponds to soundness.
The complexity class MA contains all languages that admit a polynomially-bounded Merlin-
Arthur protocol, meaning that there exists a constant d such that the completeness guarantee
is strengthened to proofs fi œ {0, 1}|x|d . One should think of MA proof systems as Cook-
Reckhow systems where the verifier is randomized and may thus accept some incorrect proofs
with small probability.

We recall that, under the standard derandomization assumption that there exists a
Boolean function family in E that is wort-case hard for subexponential-size circuits, every
Merlin-Arthur system derandomizes into a Cook-Reckhow system and, in particular, MA =
NP [56, 34].
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Our proofs rely on a particular interactive protocol, the Sum-Check Protocol of Lund,
Fortnow, Karlo�, and Nisan [54] for the language of unsatisfiable 3CNFs. Unlike Merlin-
Arthur protocols, this is an interactive protocol running for multiple rounds between a Prover
and a Verifier, before the Verifier makes a decision. We now recall the details of the protocol.

The Sum-Check Protocol [54]

The protocol considers a 3CNF Ï(x1, . . . , xn) over m clauses, known to both the Verifier and
the Prover.
1. The Prover generates a prime number6 p œ (22n3

+n
, 2(2n3

+n)
cp ] together with a Pratt

certificate7 on the primality of p and sends them to the Verifier, who checks for correctness
of the certificate, and aborts if incorrect.

2. The Prover and the Verifier arithmetize Ï into a polynomial PÏ(x1, . . . , xn) of degree at
most 3m over Fp in the usual way: a clause like (x‚¬y‚z) is turned into 1≠(1≠x)y(1≠z),
and one then takes the product of all such arithmetized clauses. In this way, for all
x œ {0, 1}n, Ï(x) = 1 if and only if PÏ(x) = 1.

3. The Verifier sets (a1, . . . , an) := (0, . . . , 0), Q0(a0) := 0 and for i œ {1, . . . , n}, the
following interaction is carried out:
a. Leaving xi free, the Prover computes the coe�cients of the following univariate poly-

nomial over Fp, Qi(xi) :=
q

xi+1œ{0,1} · · ·
q

xnœ{0,1} PÏ(a1, . . . , ai≠1, xi, xi+1, . . . , xn)
and sends the O(m) coe�cients of Qi to the Verifier.

b. The Verifier checks whether Qi(0)+Qi(1) = Qi≠1(ai≠1). If the check fails, the Verifier
rejects. Otherwise, it samples a random ai œ Fp and sends it to the Prover.

c. In the final round, instead of sending an to the Prover, the Verifier checks whether
PÏ(a1, . . . , an) = Qn(an) and accepts or rejects based on this.

3 Main result

Our proof exploits the known fact that if #P ™ FP/poly, then coNP ™ MA. Indeed, if
#P has small circuits one can provide polynomial-size circuits that simulate the Prover’s
movements in the Sum-Check protocol for Unsat, since one can consider the MA proof
system in which Arthur receives from Merlin a circuit claiming to be the circuit that the
Prover used to carry out their strategy, and with the aid of randomness, Arthur can execute
this on his own and decide based on the outcome of this simulation.

Let us make this formal.

I Definition 9 (The SC proof system). Let V (p, u,Ï, C, r) be the polynomial-time function

carrying out the simulation of the Sum-Check protocol. Namely, p is intended to be a prime

in (22n3
+n

, 2(2n3
+n)

cp ], u a Pratt certificate for p, Ï a 3CNF over n variables, r a string of

random bits, and C a multi-output circuit providing the Prover’s responses in the interactions

with the Verifier in the Sum-Check protocol.

The Sum-Check Proof System, denoted by SC, is a Merlin-Arthur proof system for

proving 3DNF tautologies. An SC proof of Ï is a tuple Èp, u, CÍ such that p is indeed a

prime in the interval above, correctly certified by the Pratt certificate u, and such that

PrrœFn
p

#
V (p, u,¬Ï, C, r) = 1

$
= 1.

6 The constant cp in the exponent comes from the formalization of the soundness of the sum-check
protocol inside S1

2 + 1-EXP in a recent work of Khaniki [40]; while we do not need such details in our
proofs, we leave it here to be faithful to the formalization.

7 A Pratt certificate is a succinct witness for primality checkable in polynomial time [60]. The details are
not relevant for our results, but it is important that the Verifier can be convinced of p being a prime.
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The following is just a rephrasing of the fact that #P ™ FP/poly implies coNP ™ MA,
in terms of the Merlin-Arthur system SC. We omit the proof, which can be be found in
standard texts (see e.g. [5, Thm. 8.22]).

I Lemma 10. If #P ™ FP/poly, then SC is polynomially bounded over 3DNF tautologies.

Our goal is to extend the previous lemma from SC to the concrete and natural Cook-
Reckhow system Implicit Extended Frege. The idea again is that iEF (or rather its first-order
counterpart, S12 + 1-EXP) can prove the soundness of this system and thus simulate it. We
shall then derandomize the SC protocol inside iEF. Fortunately for us, the soundness of
the Sum-Check protocol was recently proven by Khaniki in the right theory of bounded
arithmetic.

I Theorem 11 (Soundness of the sum-check protocol [39, Thm. 15.3]). There are constants

c, k œ N such that S
1
2 proves the following sentence: for every n,Ï, a, p, u, C, if it holds that (i)

Ï is a 3CNF in n variables where n Ø c, and (ii) Ï(a) = 1 and, (iii) 22n3
+n

< p Æ 2(2n3
+n)

cp

and, (iv) n
k œ Log Log, then

Pr
rœFn

p

#
V (p, u,Ï, C, r) = 1

$
Æ

n
!
2n

3

"

p
.

We can now formalize the soundness of the SC proof system from Definition 9. The
arguments that follow are a concrete application of more sophisticated techniques employed
by Khaniki [40, 39], who has studied interactive protocols in the context of defining new
jump operators in proof complexity.

I Definition 12 (The Soundc(SC) formula). We denote by Soundc(SC) the following ’�b
1

sentence, claiming the soundness of SC: for all Ï, a, p, u, C, f , where |Ï| > c, there is a circuit

D of size Æ Á|f |1/4Ë such that if

¬
3

Pr
rœFn

p

[V (p, u,¬Ï, C, r) = 1] ∞f

‘

3
8

4

holds, then at least one of the following conditions holds:

(i) |f | ”= |C|ka + k
Õ
a
or,

(ii) CorrectFracTT1/4(Á|f |1/4Ë, ||f ||, D, f) = 1 or,

(iii) p ”œ (22n3
+n

, 2(2n3
+n)

cp ] or,
(iv) Ï(a) = 1,

where ka, k
Õ
a
are the constants from Theorem 6 making sure that Size function works

properly, ‘ = 1/16 and n is the number of variables of Ï. In the definition of the displayed

probability, we assume that y = p
n
and that the circuit defining the set of strings accepted by

V rejects all r Ø p
n
.

Note that even if V accepts with probability 1 on a given input, the approximating
probability from Definition 12 can be significantly smaller because of the di�erence between
p
n and the input-size of the circuit in the input of the Size function. Another relevant point

is that for each C, 2n, e, the function Size(–, C, 2n, e) calls – only once. In fact, it calls –(x)
on an input x which depends only on |C|, n, |e|. This is needed for the formula Soundc(SC)
to be well-defined.

It now su�ces to verify that the encoding of the soundness of SC is indeed provable in
S
1
2 + 1-EXP.
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I Proposition 13 (Soundness of SC inside S
1
2 + 1-EXP). There is a constant c œ N such that

S
1
2 + 1-EXP „ Soundc(SC).

Proof. Let c œ N be a big enough constant that can be computed from the rest of the
argument and

Soundc(SC) := ’Ï, a, p, u, C, f÷D�(Ï, a, p, u, C, f,D)

the soundness formula in Definition 12 above. Let Ï be a 3DNF in n variables such that
|Ï| > c, and consider a, p, u, C, f . Then the following cases can happen:

(a) If |f | ”= |C|ka + k
Õ
a
or p ”œ (22n3

+n
, 2(2n3

+n)
cp ], then �(Ï, a, p, u, C, f, 0) is trivially true.

(b) If there is a circuitD of size Æ Á|f |1/4Ë such that CorrectFracTT1/4(Á|f |1/4Ë, ||f ||, D, f) =
1, then �(Ï, a, p, u, C, f,D) is trivially true.

(c) If the previous cases do not happen and moreover

¬
3

Pr
rœFn

p

[V (p, u,¬Ï, C, r) = 1] ∞f

‘

3
8

4

holds, then we have that 8 ·Size(f, Cú
, 2m, e) > 3pn, where m is the smallest integer such

that 2m Ø p
n, ‘ := |e|≠1 and C

ú(r) := V (p, u,¬Ï, C, r). By the assumption HardA
1/4

(f)
holds and by the fact that we are over S12 and we can use f as a parameter in polynomial
induction for �b

1
formulas, we can do approximate counting using Theorem 6. Hence

there is a circuit G and some v Æ poly(m‘
≠1|Cú|) such that

G : v ◊ (XCú fi̇ ‘2m) ⇣ v ◊ Size(f, Cú
, 2m, e).

As we work in S
1
2 + 1-EXP and G is surjective, we can find a subset A ™ v ◊ (XCú fi̇ ‘2m)

such that G restricted to A is a one-to-one function from A to v ◊ Size(f, Cú
, 2m, e).

Now we can apply exact counting (as we have 1-EXP) and show that

Size(f, Cú
, 2m, e) Æ |XCú |+ ‘2m.

By the fact that 8 · Size(f, Cú
, 2m, e) > 3pn > 3 · 2m/2, we have 2m/8 < |XCú |. Now if

Ï(a) = 0, by Theorem 11 we get

Pr
rœFn

p

#
V (p, u,¬Ï,fi, r) = 1

$
Æ

n
!
2n

3

"

p
.

Note that |Ï| > c which implies that n is big enough and as p > 22n3
+n we get that

n
!
2n

3

"
/p Æ 1/8, which implies

Pr
rœFn

p

#
V (p, u,¬Ï,fi, r) = 1

$
Æ 1

8 .

As Cú rejects all r Ø p
n, this implies that |XCú | Æ 2m/8 which leads to a contradiction,

so Ï(a) = 1. J

The main technical issue now is that Soundc(SC) is a ’�b
1
sentence that does not translate

into a propositional formula that iEF can reason about. Instead, we shall work on a quantified
propositional system. For this to make sense we need to know the quantified propositional
proof system associated with S

1
2 + 1-EXP.

We invoke the following known TFNP characterization of the �b
1
consequences of S12 +

1-EXP, which identifies a “complete” �b
1
sentence � such that any other �b

1
consequence of

S
1
2 + 1-EXP reduces to it in G

ú
1 .
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I Theorem 14 ([42, 41, 46, 9]). There is a ’�b
1
sentence � := ’x÷yÂ(x, y) (the bound on y

is implicit in Â) such that the following statements are true:

(i) S
1
2 + 1-EXP „ ’x÷yÂ(x, y);

(ii) for any ’�b
1
sentence ’x÷y–(x, y) such that S

1
2 + 1-EXP „ ’x÷y–(x, y), there are PV

functions f and g such that S
1
2 „ ’x, y(Â(f(x), y) æ –(x, g(x, y))).

In what follows, we shall work with Gentzen’s system G extended with the propositional
translation of the sentence � in the theorem above. We denote this system by GEXP :=
G

ú
1 + ||�|| and use the following key properties about it. The full version of the paper contains

explicit proofs of each of these items, but we shall omit these here.

I Corollary 15. The following statements about GEXP hold:

(i) S
1
2 + 1-EXP „ �q

1
-Ref(GEXP), i.e. the reflection principle for GEXP and �q

1
formulas is

provable in S
1
2 + 1-EXP;

(ii) for every ’�b
1
-sentence ’x÷y–(x, y), if S

1
2 + 1-EXP „ ’x÷y–(x, y), then there are

polynomial-size GEXP-proofs of the sequence of �q

1
-tautologies {||÷y–(y)||n}nœN;

(iii) if S
1
2 + 1-EXP proves the soundness of a propositional proof system S, then GEXP Ø S.

Let us observe that GEXP is in fact equivalent to iEF.

I Lemma 16. The proof systems iEF,EF+Ref iEF and GEXP are polynomially equivalent over

propositional tautologies.

Proof. By item (iii) of Corollary 15 and item (iii) Theorem 7, iEF and GEXP polynomially
simulate each other. As mentioned in Section 2.1.1, EF+Ref iEF Ø iEF. It is also easy to see
that S12 + 1-EXP proves the soundness of EF+Ref iEF, which by item (iii) of Theorem 7 gives
us iEF Ø EF+Ref iEF. J

We are now ready to define the extension of iEF for which our main theorem holds. Recall
that the propositional formulas ttavg

1/4
(hn, 2n/4) were defined in Section 2.2.2 and state the

average-case hardness of a Boolean function hn represented as a truth table.

I Definition 17 (The systems iEF
tt
). Let h = {hn}nœN be some family of Boolean functions,

and let n0 œ N. We denote by iEF
tt(h,n0) := GEXP + {ttavg

1/4
(hn, 2n/4)}nØn0 the system that

extends GEXP by the axioms claiming the hardness of hn, for n Ø n0.

Note that iEFtt(h,n0) is a family of proof systems, parameterized by a Boolean function
family h and some threshold parameter n0. Observe that depending on the choice of h and
n0, the system iEF

tt(h,n0) may not be a Cook-Reckhow system: if h is not a hard function,
or n0 is not large enough, we will be adding axioms which are not tautologies; and even if h
is hard and n0 is large enough, the system may require advice to verify the proofs. As we
shall see, however, these degenerate instantiations of iEFtt(h,n0) are not a problem.

What is more important, the systems iEFtt(h,n0), regardless of their consistency, always
simulate SC.

I Lemma 18. Let h be family of Boolean functions and let n0 œ N. The system iEF
tt(h,n0)

polynomially simulates SC over 3DNF tautologies.

Proof. If the system iEF
tt(h,n0) is unsound because the added axioms are not tautologies,

then the system is polynomially bounded and simulates every other proof system. So suppose
the added axioms are indeed tautologies, meaning that the function h is indeed hard on
average.
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Let Ï1 be a 3DNF in n1 variables and Èp1, u1, C1Í be a SC-proof of Ï1. This means

22n
3
1+n1 < p1 Æ 2(2n

3
1+n1)

cp · Pr
rœFn1

p1

#
V (p1, u1,¬Ï1, C1, r) = 1

$
= 1.

Note that by Theorem 11 and Corollary 15, there are PV functions l, g such that

S
1
2 „ ’Ï, a, p, u, C, f (Â(l(Ï, a, p, u, C, f), y) æ �(Ï, a, p, u, C, f, g(Ï, a, p, u, C, f, y))) ,

where Soundc(SC) := ’Ï, a, p, u, C, f÷D�(Ï, a, p, u, C, f,D). Let s := | Èp, u, CÍ |. Then by
Theorem 8 there is a s

O(1)-size G
ú
1-proof of

||’Ï, a, p, u, C, f (Â(l(Ï, a, p, u, C, f), y) æ �(Ï, a, p, u, C, f, g(Ï, a, p, u, C, f, y))) ||sÕ ,

where s
Õ := poly(s). Let us rewrite the previous quantified propositional formula as ||�Õ|| æ

||�Õ|| with the right range of parameters such that p1, u1,Ï1, C1 are substituted in the formula
in their corresponding places. Now we take the substitution instance ttavg

1/4
(hnÕ , 2nÕ

/4) where
|hnÕ | := |C1|ka + k

Õ
a
and we substitute hnÕ to the variables corresponding to f and therefore

the disjunct which corresponds to CorrectFracTT disappears from ||�Õ|| when we apply the
rules of Gú

1 . Moreover, it is not hard to verify that after the substitutions every other disjunct
which corresponds to subformulas of Soundc(SC) from Definition 12 disappears except Ï1. So
what we have is Gú

1-proof of ||�ÕÕ||(x̄, ȳ) æ Ï1(x̄) (x̄ and ȳ are disjoint variables) where ||�ÕÕ||
is a substitution instance of ||�Õ||. Since we are working in GEXP, we have the substitution
instance ÷ȳ||�ÕÕ||(x̄, ȳ) and therefore using the rules of Gú

1 we get a short GEXP-proof of
Ï1(x̄). J

Our main theorem now easily follows.

I Theorem 19 (Main theorem). Let h be a family of Boolean functions and let n0 œ N. If

the system iEF
tt(h,n0) is not polynomially bounded, then #P ”™ FP/poly.

Proof. By Lemma 18 above, for every choice of h and n0, the system iEF
tt(h,n0) polynomially

simulates SC, so if iEFtt(h,n0) is not polynomially bounded, then SC is not either. Then, by
the contrapositive of Lemma 10, #P ”™ FP/poly. J

As discussed, depending on the choice of h and n0, the system iEF
tt(h,n0) may not be

sound and thus possibly not Cook-Reckhow. However, for any fixed choice of a uniform
candidate hard function, the system is concrete and exhibits the desired connection that
proof complexity lower bounds for it imply strong circuit lower bounds. In particular, if
there exist functions in NE fl coNE average-case hard for subexponential-size circuits, then
we recover the version of the theorem presented in the introduction (Theorem 1).

We note that there is the possibility that iEF, given its strength, already proves such
strong circuit lower bounds for some Boolean function. It is thus worth to mention the
following corollary.

I Corollary 20. Suppose there exists a sequence of Boolean functions {hn}nœN for which iEF

has polynomial-size proofs of the formula family {ttavg
1/4

(hn, 2n/4)}nØn0 for some su�ciently

large n0 œ N. If iEF is not polynomially bounded, then #P ”™ FP/poly.

Proof. If there is such a function h and threshold n0, then iEF
tt(h,n0) is polynomially

equivalent to iEF itself, so by Theorem 19 the corollary follows. J
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Abstract
We consider the problem of learning low-degree quantum objects up to Á-error in ¸2-distance. We
show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels
and unitaries can be learned using O(1/Ád) queries (which is independent of n), (ii) polynomials
p : {≠1, 1}n æ [≠1, 1] arising from d-query quantum algorithms can be learned from O((1/Á)d · logn)
many random examples (x, p(x)) (which implies learnability even for d = O(logn)), and (iii) degree-d
polynomials p : {≠1, 1}n æ [≠1, 1] can be learned through O(1/Ád) queries to a quantum unitary
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for quantum channels and completely bounded polynomials.
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1 Introduction

Computational learning theory refers to the mathematical framework for understanding
machine learning models and quantifying their complexity. The seminal result of Leslie
Valiant [54] (who introduced the Probably Approximately Correct (PAC) model) gives a
complexity-theoretic definition of what it means for a class of functions f : {0, 1}n æ {0, 1}
to be learnable information-theoretically and computationally.
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One of the foundational results in computational learning theory is the one of Linial,
Mansour and Nisan [39] who showed that AC0, or constant-depth n-bit classical circuits
consisting of AND, OR and NOT gates, can be learned in quasi-polynomial time. A
crucial aspect of their proof is the following structural theorem: if a Boolean function f

is computable by AC0 then f can be approximated by a low-degree polynomial. Using
this structural property, the learning algorithm approximates the coe�cients of all the
low-degree monomials of f in the PAC model and hence approximately learns the unknown
AC0 function. Since their work, the notion of Boolean functions being low-degree or being
well-approximated by low-degree polynomials has been a central technique [16] in obtaining
new learning algorithms. Furthermore, low-degree approximations have played a significant
role in theoretical computer science topics such as quantum computing, circuit complexity,
learning theory and cryptography.

In the last few years, there have been several works in quantum learning theory where
the goal has been to learn an unknown object on a quantum computer under various access
models. Motivated by classical learning theory, in this work our primary focus will be on
learning objects that have the additional structure of being low-degree. Since we consider
di�erent objects, when presenting our results we will make the definition of being low-degree
clear, but the main motivation of this work can be summarized by the following question:

Can we learn low-degree n-qubit quantum objects information-theoretically with

complexity that scales only polynomial (or better polylogarithmic) in n?

We give a positive answer to this question for low-degree channels, unitaries, quantum query
algorithms, polynomials, and states. The organization of the paper is as follows. In Section 2
we present our main technical contribution, then in Section 3 we describe our applications to
learning, in Section 4 we prove the result for channels, and in Section 5 we prove the result
for quantum query algorithms. Due to page restrictions, we defer the preliminaries of our
paper as well as the remaining proofs to the extended version [6].

2 Technical contribution: New Bohnenblust-Hille inequalities

In 1931, Bohnenblust and Hille [13] (generalizing the classic theorem of Littlewood [40])
gave a solution to the famous Bohr strip problem of Dirichlet series [14]. To do that, they
showed the following: let T : ([≠1, 1]n)d æ [≠1, 1] be a d-tensor specifed by the coe�cients
T = ( ‚Ti1,...,id)i1,...,idœ[n], then

1 nÿ

i1,...,id=1

| ‚Ti1,...,id |2d/(d+1)

2(d+1)/2d

Æ C(d), (1)

where C(d) is a universal constant independent of n.1 Their work marked the birth of
the Bohnenblust-Hille (BH) inequality, which has became a fundamental tool in functional
analysis. Despite being studied over a century, the best known upper bound on C(d) scales
polynomially with d, while the best lower bound is a constant. Closing this gap has been
an active area of research in mathematics. In 2011 Defant et. al [22] refined the BH

inequality and found a striking application of the BH inequality: they determined the precise
asymptotic behavior of the n-dimensional Bohr radius using the BH inequality. Since then,

1 We remark that the inequality above is a simplified version of the original Bohnenblust-Hille inequality
and we discuss this in more detail in the preliminaries.
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there has been renewed interest in the BH inequality and has found several applications
in theoretical computer science such as Fourier-Entropy influence conjecture [4], classical
learning theory [26], non-local games [42], and quantum computing [33, 57].

Of particular relevance to our work, the BH inequality recently captured the attention
of the computer science community when Eskenazis and Ivanisvili [26] used a version of
it to prove a major improvement in the problem of classical learning bounded low-degree
multilinear polynomials (which we discuss in detail below). The key insight of Eskenazis and
Ivanisvili is that BH inequalities imply that for bounded operators the small coe�cients have
a low total contribution, so one does not have to learn them. Multiple extensions of the BH

have been proved since then and applied to learning quantum objects [33, 50, 51, 57, 36]. In
this work, we extend the BH inequality in two ways:
1. We consider a variant of the BH inequality, that can be regarded as a hybrid between the

BH inequality and the celebrated Grothendieck inequality [30]. We show that degree-d
completely bounded tensors ‚T (which are known to be the the output of d-query quantum
algorithms [3]) satisfy

1 nÿ

i1,...,id=1

| ‚Ti1,...,id |2d/d+1

2(d+1)/2d

Æ 1.

In other words, we improve the BH constant for completely bounded tensors from poly(d)
to 1. See Theorem 15 for a precise statement.

2. More recently, the works of [33, 57] considered non-commutative variants of the BH

inequality. They showed that the Pauli coe�cients of n-qubit degree-d (i.e., d-local)
observables that are bounded in operator norm, can be bounded in a similar fashion to
Eq. (1), but with exp(d) instead of poly(d). Here, we prove another non-commutative ver-
sion of the BH inequality for quantum channels (we in fact prove a stronger BH inequality
for maps that are bounded in S1 æ S1 norm, and refer the reader to Theorem 11). In
particular, if � is a quantum channel defined as �(fl) :=

q
x,yœ{0,1,2,3}n

‚�(x, y)‡xfl‡y

(where ‡x = ¢i‡xi and ‡0 = I,‡1 = X,‡2 = Y,‡3 = Z are the usual single-qubit Pauli
operators) where ‚�(x, y) = 0 if |x|, |y|> d, then the Pauli coe�cients ‚�(x, y) satisfy

1 ÿ

x,y

|‚�(x, y)|2d/(d+1/2)

2(d+1/2)/2d

Æ exp(d). (2)

While exp(d) in Equation (2) might seem much higher than the factor poly(d) of Equa-
tion (1), this is not a fair comparison. Equation (1) corresponds to tensors, which are a
very structured class of polynomials, while Equation (2) is a non-commutative analogue
of the BH inequality for general polynomials, for which the best known upper bounds [23]
are superpolynomial in d.

These BH inequalities might be of independent interest both for mathematicians and quantum
computing; in this work we crucially use them for our learning algorithms.

3 Applications and main results

3.1 Result 1: Learning channels
Learning a quantum process is a fundamental task in quantum computing and this can be
modelled as learning an unknown quantum channel, also referred to as quantum process

tomography. On an experimental level, the dynamics of closed quantum systems can be
modeled as a unitary transformation from the initial state to the final state. However, in
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practice, quantum systems interact with the environment and must be treated as an open
quantum system. To learn the behavior of these open quantum systems, it is convenient to
model this map as a quantum channel [45]. Learning an n-qubit quantum channel is however
challenging and is known to require �(4n) queries to the channel [31]. This exponential
sample complexity can be drastically improved when prior information on the structure
of the channel is available. For example, a recent work of Bao and Yao [10] considered
k-junta quantum channels, i.e., n-qubit channels that act non-trivially only on at most k of
the n (unknown) qubits leaving rest of qubits unchanged. These channels were shown to
be learnable using Â�(4k) queries to the channel [10]. In [21], it was shown that quantum
channels that can be e�ciently generated, can be learned e�ciently, albeit in the PAC
learning model. In this work, we consider learning n-qubit quantum channels which have a
Pauli decomposition only involving low-degree Pauli operators.

General quantum channels. To describe our result, we first describe Pauli analysis for
quantum channels. An n-qubit to n qubit quantum channel � can be expressed as

�(fl) =
ÿ

x,yœ{0,1,2,3}n

‚�(x, y) · ‡xfl‡y, (3)

where ‡x = ¢iœ[n] ‡xi and ‡i for i œ {0, 1, 2, 3} are the Pauli matrices

‡0 =
3
1 0
0 1

4
, ‡1 =

3
0 1
1 0

4
, ‡2 =

3
0 ≠i

i 0

4
, ‡3 =

3
1 0
0 ≠1

4
;

and ‚�(x, y) are the Pauli coe�cients of the channel. Given x œ {0, 1, 2, 3}n, |x| is the
number of non-zero entries of x. The degree of a channel � is the minimum integer d such
that ‚�(x, y) = 0 if |x|> d or |y|> d. Our first result is an e�cient learning algorithm for
low-degree channels. The learning model we consider is the same as the recent work of Bao
and Yao [10]. Given a channel �, a learning algorithm is allowed to make queries to � as
follows: it can apply � to an arbitrary fl (or subsystem of fl) of its choice and measure the
resulting state in in any basis. From the measurement outcomes, the learner should output a
classical description of a superoperator Â� that is close to � in the ¸2-distance defined by the
usual inner product for superoperators, i.e., È�, Â�Í = Tr[J(�), J(Â�)]/4n, where J(�) is the
Choi-Jaminkowski (CJ) representation of �.2

I Theorem 1. Let � be a n-qubit degree-d quantum channel. There is an algorithm that

(Á, ”)-learns � (in ¸2-distance) using exp ( ÂO(d2 + d log(1/Á))) · log(1/”) queries to �.

We remark that the sample complexity of learning general quantum channels requires
�(4n) queries, but if we are promised the channel is low-degree, then our algorithm is much
faster than the general algorithm. Additionally, observe that the sample complexity of
our learning algorithm is independent of n, in contrast to the results [33, 57, 50, 51, 36]
on quantum learning observables (which also are based on the BH inequality) that have a
logarithmic dependence on n.

To prove the theorem, we first note the fact that the matrix ‚� (whose entries are given
by ‚�x,y = ‚�(x, y)) is the density matrix of a state that is unitarily equivalent to the CJ

state of the channel � [10, Lemma 8]. Hence, ‚� can be prepared by applying � to the first
n-qubits of n EPR pairs defined over 2n qubits, and {‚�(x, x)}x is a probability distribution.
The high-level idea behind the learning algorithm is the following.

2 In this paper we say an algorithm (Á, ”)-learns a quantum object if it succeeds with probability Ø 1 ≠ ”
and outputs an Á-approximation to the unknown quantum object in a metric that will be made clear.
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1. Prepare T few copies of ‚� and measure them in the computational basis, allowing the
learner to sample from the distribution {‚�(x, x)}x.

2. Using a well-known result in distribution learning theory, we observe that O(1/–
2) many

samples from {‚�(x, x)}x su�ces to obtain the xs such that �(x, x) is –-large.
3. Approximate all the large Pauli coe�cients in the step above using a SWAP test for

mixed states.
4. Output Â� with coe�cients that were estimated above and the remaining coe�cients

set to 0.
At this point, we use the BH inequality for quantum channels and show that, as long as
T ≥ exp(d2/Á

d), then the output Â� is Á-close to the target � in ¸2-distance.

Remark on learning Pauli channels. One can also consider a special case of quantum
channels called Pauli channels �, motivated by the fact that Pauli channels are often
the dominant noise on quantum devices and a practical noise model for analyzing fault-
tolerance [52]. For these channels, the only non-zero terms in the Fourier expansion (3) are
‚�(x, x) (i.e., ‚�(x, y) = 0 when x ”= y) and these coe�cients are often called error rates.
Since learning Pauli channels is an important task on near-term quantum devices for error
mitigation [55] and analyzing error correction, it is desirable to avoid using entangled copies of
a state and access to ancillary qubits as part of the learning algorithm. With this requirement,
it was shown that, in order to Á-learn (in diamond norm) an unknown n-qubit Pauli channels
using unentangled measurements, one needs to use the channel �(4n/Á

2) many times [28].
In this work, we show that the subclass of low-degree Pauli channels are e�ciently learnable.

Noise on current large-scale quantum devices is modeled as Pauli channels containing a
sparse set of local Paulis [55], which is a subclass of low-degree Pauli channels. Such models
are available from device physics and experiments used to characterize noise on quantum
hardware. When non-local interactions but only over few qubits are included in the Pauli
channel [53], the corresponding Paulis are still low-degree which fits into the class of Pauli
channels considered. Our learning result is as follows.

I Fact 2. Let � be an n-qubit degree-d Pauli channel. There is an algorithm that (Á, ”)-
learns � (under the diamond norm) using O

!
n
2d
/Á

2 · log(n/”)
"
queries to �. The learning

algorithm only requires preparation of product states and measurements in the Pauli basis.

We remark that the dependence on n in our sample complexity matches the algorithm
in [29] for learning low-degree Pauli channels under the diamond norm but our analysis
di�ers from theirs; our result is obtained using a Fourier-analytic approach in contrast to the
the result of [29] which uses ideas from population recovery.

3.2 Result 2: Learning unitaries
Apart from learning channels, in this paper we also consider the task of learning unknown n-
qubit unitaries. Similar to the case for channels, it is well-known that learning an unstructured
n-qubit unitary requires Â�(4n) applications of U [31]. This complexity can be significantly
improved if structural information is available. For example, it has been show e�cient learning
is possible if the unitary corresponds to Cli�ord circuits [41], corresponds to Cli�ord circuits
with few non-Cli�ord gates [38], or are the diagonal unitaries of the Cli�ord hierarchy [2].

In a recent work, Chen et al. [20] considered the task of learning unitaries U that are
k-juntas and showed that this class can be learned querying the unitary Â�(4k) many times. In
this work, we consider the scenario where the unitary is degree-d and show such an exponential
saving (in comparison to naive tomography) is possible. This structured class of low-degree
unitaries occur in many instances. For example, in nature, the dynamics of many physical
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13:6 Learning Low-Degree Quantum Objects

systems are governed by local Hamiltonians, whose unitary time evolution operators for short
time evolution are close to being low-degree unitaries. Moreover, through the application of
Lieb-Robinson bounds to structured many-body Hamiltonians, the corresponding unitary
evolution operator can be seen to only have support only on low-degree Paulis [19]. In
addition, the quantum unitaries corresponding to quantum circuits producing degree-d phase
states containing all commuting diagonal quantum gates [2], are low-degree. The learning
algorithm that we will present is thus applicable for learning and verifying such circuits.

Consider the Pauli decomposition of an n-qubit unitary as follows:

U =
ÿ

xœ{0,1,2,3}n

‚U(x)‡x,

where ‚U(x) are its Pauli coe�cients. The degree of U is the minimum integer d such that
|x|> d implies ‚U(x) = 0. Our learning model is the one by Chen et al. [20]. Given an unitary
U , a learning algorithm is allowed to make queries to U (and to control-U) as follows: it
can choose a state fl, apply U to the state to obtain UflU

ú, and measure UflU
ú in a chosen

basis. From the measurement outcomes, the learner should output a classical description of
an operator ÂU that is close to U in the ¸2-distance determined by the usual inner product
for operators defined as ÈU, V Í = Tr[Uú

V ]/2n.

I Theorem 3. Let U be a n-qubit degree-d unitary. There is an algorithm that (Á, ”)-learns U
(in ¸2-distance) using the unitary U exp ( ÂO(d2 + d log(1/Á))) · log(1/”) many times.

The proof of Theorem 3 follows the same structure as that of Theorem 1, but now we
learn the Pauli coe�cients via an extension of the algorithm of Montanaro and Osborne [43],
and the control on the contribution of the small coe�cients relies on the non-commutative
BH inequality of Volberg and Zhang [57].

The BH inequality of Volberg and Zhang [57] works for matrices with bounded operator
norm, of which unitaries are a very special case. As argued by Montanaro and Osborne [43],
matrices bounded on the operator norm are the quantum analogue of bounded functions
f : {≠1, 1}n æ [≠1, 1], while unitaries are the analogue of Boolean functions3 f : {≠1, 1}n æ
{≠1, 1}. These two families of classical functions di�er a lot with respect to the BH inequalities:
the best upper bound [23] for the BH constant for bounded functions is exp(d1/2), while for
Boolean functions of degree d one can even prove that the usually much bigger quantityq

s
| ‚f(s)| is at most 2d≠1 [46, Exercise 1.11]. An open question is if this fact can be generalized

to the quantum setting.

I Question 4. Is there a constant C(d) such that
q

xœ{0,1,2,3}n |‚U(x)|Æ C(d) for every

n-qubit degree-d unitary U?

If Question 4 was answered positively, then one could improve the Á dependence of Theorem 3
to (1/Á)2. Some evidence in favor of an a�rmative answer to Question 4 is that if a conjecture
of Montanaro and Osborne was true [43, Conjecture 4], then every degree-d hermitian unitary
would be a 2d-junta, which would imply an a�rmative answer to Question 4 for the hermitian
case.

Remark on learning low-degree quantum states. Learning quantum states has been an
active line of research given its fundamental importance and applications to quantum system
characterization, assessing quality of quantum gates, verification of quantum circuits and

3 To be precise, they argue that unitary Hermitian matrices are the analogue of Boolean functions.
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validating performance of quantum algorithms. Breakthrough results of Haah et al. [32]
and O’Donnell and Wright [47] showed that the sample complexity of learning an unknown
n-qubit state, up to trace distance Á is �(4n/Á

2). A natural consideration is the task of
learning low-degree quantum states. To describe this, we first write down the Pauli expansion
of an n-qubit state fl as

fl =
ÿ

xœ{0,1,2,3}n

‚fl(x)‡x.

Then, we say that fl has degree at most d if ‚fl(x) = 0 for all |x|> d. It is not too hard to
see that one can use the formalism of classical shadows [34] to obtain a learning (in trace
norm) algorithm that has a sample complexity of ÂO(nd

/Á
2 · log(n/”)). A similar result (with

a di�erent norm and with a bit more structure than just being low-degree) was noted in a
recent work of Nadimpalli et al. [44], where they used the result to give e�cient algorithms
to learn QAC0 circuits.

3.3 Result 3: Learning quantum query algorithms
Eskenazis and Ivanisvili [26] established a surprising connection between the BH inequality
and learning theory. They considered the following question: suppose f : {≠1, 1}n æ [≠1, 1]
is a bounded degree-d function, and a learner is given uniformly random x and f(x), then
how many (x, f(x)) su�ces to learn f up to error Á in ¸

2
2
error? The seminal low-degree

algorithm of Linial, Mansour and Nisan uses4 Od,Á(nd) many such samples [39]. This was
not improved until recently, when Iyer et al. [35] reduced this complexity to Od,Á(nd≠1). In
a surprising work, [26] showed that one can learn f in sample complexity Od,Á(logn). For
the particular case of bounded d-linear tensors T : ({≠1, 1}n)d æ [≠1, 1] they showed that it
su�ces to use

(1/Á)d ·
1 nÿ

i1,...,id=1

| ‚Ti1,...,id |2d/d+1

2(d+1)/2d

· logn (4)

samples (x, T (x)), where x is uniform from ({≠1, 1}n)d and ‚T is the tensor of coe�cients of
T , i.e., T (x) =

q
i1,...,id

‚Ti1,...,idx1(i1) . . . xd(id). Combining that with the upper bound of
the BH constant for multilinear tensors [11], it yields

(d/Á)O(d) ·O(logn) (5)

uniformly random samples are enough to learn T . Although this result is surprising since
the complexity only scales polylogarithmic with n, observe that if d = Ê(logn), then the
sample complexity is superpolynomial in n, motivating the natural question, are there classes
of polynomials that can be learned using poly(n) samples for any d = Ê(logn)? Below we
show that the class of polynomials that arise from quantum query algorithms answers this
question in the positive.

Quantum polynomials. The result of Equation (5) can be applied to learn the amplitudes
of quantum algorithms that query di�erent blocks of variables every time (see Figure 1), as
they are multilinear tensors bounded on the supremum norm [12]. To be precise, we consider
quantum query algorithms such that they prepare a state

|ÂxÍ = Ud(Oxd ¢ Idm)Ud≠1 . . . U1(Ox1 ¢ Idm)U0|uÍ,

4 Here and below, we use Od,Á to hide the factors that depend on d, 1/Á and independent of n.
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13:8 Learning Low-Degree Quantum Objects

where m is an integer, x stands for (x1, . . . , xd), Oy is the n-dimensional unitary that maps
|iÍ to yi|iÍ, U0, . . . , Ud are (n+m)-dimensional unitaries and |uÍ is a n+m-dimensional unit
vector. The algorithm succeeds according to a projective measurement that measures the
projection of the final state onto some fixed n+m dimensional unit vector |vÍ. Hence, the
amplitude of |vÍ is T (x) = Èv|�xÍ, so |T (x)|2 is the acceptance probability of the algorithm.
These quantum algorithms have been considered in the quantum computing literature. For

Figure 1 Quantum query algorithms considered in Theorem 5.

example, k-forrelation, that witnesses the biggest possible quantum-classical separation, has
this structure [1, 8]. Also, for these algorithms the Aaronson and Ambainis conjecture is
known to be true, so they can be classically and e�ciently simulated almost everywhere [9, 25].
In addition, Arunachalam et al. showed that those amplitudes are not only bounded, but
also completely bounded [3]. Our main contribution regarding these algorithms is showing
that for d-linear tensors T that are completely bounded, we can improve the BH inequality to

1 nÿ

i1,...,id=1

| ‚Ti1,...,id |2d/d+1

2(d+1)/2d

Æ 1.

Using this upper bound, we show the following.

I Theorem 5. For a quantum algorithm that makes d-queries as in Figure 1, its amplitudes

can be learned up to error Á in ¸
2
2
accuracy using O

!
(1/Á)d · logn

"
uniformly random samples.

This exponentially improves the complexity of [26], as stated in Eq. (5) for the natural
class of polynomials arising from quantum query algorithms. In particular, for d = Ê(logn)
and contant Á, one can learn this class of polynomials with sample complexity that is
polynomial in n.

3.4 Result 4: Quantum learning of classical polynomials
3.4.1 Boolean functions
Quantum learning not only concerns quantum objects, but also classical ones. For instance,
Boolean functions f : {≠1, 1}n æ {≠1, 1} can be accessed using a quantum example, given by

|Âf Í = 1Ô
2n

ÿ

xœ{≠1,1}n

|x, f(x)Í.

This data access model has been vastly studied in the literature, where several notable
quantum speedups have been proven [15, 7, 5]. Many of these speedups are analyzed trough
the Fourier transform, that allows to identify every function via f : {≠1, 1}n æ R with a
multilinear polynomial f =

q
sœ{0,1}n

‚f(s)‰s, where ‚f(s) œ R are the Fourier coe�cients
and ‰s are the character functions ‰s(x) =

r
iœ[n]

x
si
i
. The degree for these functions is the

minimum integer d such that if |s|> d then ‚f(s) = 0. It is a well-known fact that Boolean
functions f : {≠1, 1}n æ {≠1, 1} of degree d are 21≠d-granular, meaning that their Fourier
coe�cients lie in 21≠dZ. This has immediate consequences for both learning theory and BH

inequalities.
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I Fact 6. Let f : {≠1, 1}n æ {≠1, 1} be a degree-d function. There is a quantum algorithm

that (0, ”) learns f using O
!
4dd log (1/”)

"
quantum examples. However, a classical algorithm

can learn it using O
!
4dd log (n/”)

"
uniform examples and requires �(2d + logn) examples.

Despite the simplicity of the proof of Fact 6, we state it for completeness and because it
seems not to be well-known (see for instance [44, Corollary 34], which proposes a quantum
algorithm for the same problem that requires O(nd) samples, or [27, Corollary 4] that
proposes a classical algorthm that requires O(2d2 logn) samples). Furthermore, we observe a
BH-type inequality for Boolean functions.

I Fact 7. Let f : {≠1, 1}n æ {≠1, 1} of degree at most d. Then,

1 ÿ

sœ{0,1}n

| ‚f(s)|
2d

d+1
2 d+1

2d Æ 2
d≠1
d .

The equality it is witnessed by the address function.

Fact 7 might be of interest in functional analysis for two reasons: (i) it is conjectured
that the value of the BH constant for d-linear tensors is 2 d≠1

d [48], so this fact proves the
conjecture for particular case of d-linear Boolean tensors, (ii) the address function5, that
saturates the inequality, is a d-linear form that gives a lower bound for the BH constant for
multilinear tensors of 2

d
d≠1 , which matches the best lower bound known so far [24].

3.4.2 Real-valued polynomials
For bounded functions f : {≠1, 1}n æ [≠1, 1] the definition of quantum uniform examples |Âf Í
is unclear. Given that bounded polynomials have received attention in a few works [39, 35, 26],
we propose a way learning them quantumly by accessing these polynomials through a block
encoding [18], i.e., a learning algorithm has access to a block encoding of the 2n-dimensional
diagonal matrix whose diagonal entries all equal f . To this end, we prove the following theorem.

I Proposition 8. Let f : {≠1, 1}n æ [≠1, 1] be a degree-d polynomial. There is an algo-

rithm that (Á, ”)-learns f (in ¸2-distance) using exp( ÂO(
Ô
d3 + d log(1/Á)) log(1/”)) copies of

a block-encoding of f .

The proof of Proposition 8 is a combination of the ideas of Eskenazis and Ivanisvili [26]
with the Fourier sampling and block-encoding quantum primitives. We remind the reader
that the merit of Eskenazis and Ivanisvili [26] was to bring down the classical complexity of
the problem from Od,Á(nd) to Od,Á(logn). Proposition 8 shows that the quantum complexity
this could be even reduced to Od,Á(1). Proposition 8 also implies a quantum speedup (with
respect to n), as the lower bound of �(2d + logn) also holds for membership queries6, which
are the classical analogue of accessing a unitary block-encoding of f .

5 For d œ N, the address function f : ({≠1, 1}2)d≠1 ◊ {≠1, 1}2
d≠1

æ {≠1, 1} is defined as f(x, y) =q
aœ{≠1,1}d≠1 ga(x)y(a), where we identify {≠1, 1}d≠1 with [2d≠1] and ga(x) is 0 unless xi(1) = aixi(2)

for every i œ [n], in which case it takes the value
r

iœ[n] xi(1) .
6 Making a membership query to f consists on accessing one pair (x, f(x)) where x is chosen by the

learner, not necessarily uniformly at random. If f is a Boolean function and Uf is the unitary defined by
Uf |xÍ = f(x)|xÍ, then a membership query (x, f(x)) can be simulated by applying (H¢Idn)CUf (H¢Idn)
to |0Í|xÍ and measuring the first qubit in the computational basis. Note that Uf can be regarded as a
block-encoding of f .
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Remarkably, we highlight that although our results are about sample complexity, the
time complexity of our quantum algorithm of Proposition 8 scales as poly(n, exp(d1.5)), while
the current state-of-the-art classical algorithm [26] approximates the

!
n

d

"
Fourier coe�cients,

so it requires poly(nd) time. In particular, for d = (logn)2/3, constant Á, ”, our quantum
algorithm has a time complexity of poly(n) time, while the state-of-the-art classical algorithm
runs in time n

polylogn.

4 Learning algorithm for low-degree quantum channels

In this section we give our learning algorithm for quantum channels, i.e., prove Theorem 1.
To do that, we first need to prove a new BH inequality for quantum channels.

4.1 Bohnenblust-Hille inequality for quantum channels
In this section, we prove a Bohnenblust-Hille inequality for n-qubit quantum channels. In
fact, it is a result for superoperators which are bounded in the S1 to S1 norm (defined below),
of which quantum channels are a particular example. Hence, we will treat � as a linear map
from MN to MN , the space of N -dimensional matrices with N = 2n. In particular, we will
evaluate � on matrices that are not states. The S1 to S1 norm of superoperator is defined by

Î�Î
S1æS1

= sup
M ”=0

Î�(M)Î
S1

ÎMÎ
S1

,

where ÎMÎ
S1

is the Schatten 1-norm of M , i.e., the sum of the singular values of M .
To prove our theorem will reduce to the classical case of functions f : {≠1, 1}n æ R.

I Theorem 9 ([23]). Let p : {≠1, 1}n æ R of degree at most d. Then,

Î‚pÎ 2d
d+1

Æ C

Ô
d log d ÎpÎŒ ,

where C > 0 is a constant.

To achieve this reduction, for every superoperator � : MM æ MN , we assign it a function
f� : {≠1, 1}3n ◊ {≠1, 1}3n æ C defined as follows. For a = (a1, a2, a3), b = (b1, b2, b3) œ
{≠1, 1}n ◊ {≠1, 1}n ◊ {≠1, 1}n and s, t œ {1, 2, 3}n, define the following matrices (which are
not necessarily states)

|asÍÈbt|= ¢
iœ[n]

|‰s(i)

as(i)
ÍÈ‰t(i)

bt(i)
|,

where |‰s
±1

Í are the ±1 eigenstates of the single-qubit Pauli operators ‡s. The function
f� : {≠1, 1}3n ◊ {≠1, 1}3n æ C is then given by

f�(a, b) =
1
9n

ÿ

s,tœ{1,2,3}n

Tr[�
!
|asÍÈbt|

"
|btÍÈas|],

where f� has the following properties, allowing us to reduce to the classical BH inequality.

I Lemma 10. Let � be a degree-d superoperator. Then, |f�(a, b)|Æ Î�Î
S1æS1

for all a, b

and

...‚�
...
p

Æ 9d
... ‚f�

...
p

. The degree of f� as a multilinear polynomials is 2d.

Proof. We first show the bound on |f�|. Given that (|asÍÈbt|)(|asÍÈbt|)ú = |asÍÈas|, we
have that

..|asÍÈbt|
..
S1

=
..|asÍÈbt|

..
SŒ

= 1. (6)
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Thus, we have that f� is bounded:

|f�(a, b)| Æ 1
9n

ÿ

s,tœ{1,2,3}n

|Tr[�
!
|asÍÈbt|

"
|btÍÈas|]|

Æ 1
9n

ÿ

s,tœ{1,2,3}n

..�
!
|asÍÈbt|

"..
S1

..|btÍÈas|
..
SŒ

Æ 1
9n

ÿ

s,tœ{1,2,3}n

Î�Î
S1æS1

..|asÍÈbt|
..
S1

..|btÍÈas|
..
SŒ

Æ 1
9n

ÿ

s,tœ{1,2,3}n

Î�Î
S1æS1

= Î�Î
S1æS1

,

where in the first inequality we have used the triangle inequality, in the second inequality
Riesz theorem, in the third the definition of S1 æ S1 norm and in the fourth Equation (6).
We now prove that

...‚�
...
p

Æ 9≠d

... ‚f�

...
p

and that the degree of f� is 2d. It su�ces to show
that

f�(a, b) =
ÿ

x,yœ{0,1,2,3}n

‚�(x, y)
3|x|+|y|

Ÿ

iœsupp(x)

Ÿ

jœsupp(y)

a
x(i)

i
b
y(j)

j
, (7)

where supp(x) = {i œ [n] : xi ”= 0} and |x| is the size of supp(x). To prove Equation (7)
the key is observing that for every s, t œ {1, 2, 3}, x, y œ {0, 1, 2, 3} and a, b œ {≠1, 1} we
have that

Tr[‡x|‰s

a
ÍÈ‰t

b
|‡y|‰t

b
ÍÈ‰s

a
|] =

Y
____]

____[

0 if (s ”= x and x ”= 0) or (t ”= y and y ”= 0),
1 if x = 0 and y = 0,
a if s = x and y = 0,
b if x = 0 and t = y,

ab if s = x and y = t.

After taking tensor products, we observe that for every s, t œ {1, 2, 3}n, x, y œ {0, 1, 2, 3}n
and a = (a1, a2, a3), b = (b1, b2, b3) œ {≠1, 1}n ◊ {≠1, 1}n ◊ {≠1, 1}n, it holds that

Tr[‡x|asÍÈbt|‡y|btÍÈas|] =
Ÿ

iœsupp x

Ÿ

jœsupp y

a
x(i)

i
b
y(j)

j
”x(i),s(i)”y(j),t(j),

where ”x,y is the delta function taking value of 1 when x = y, and 0 otherwise. In particular,
from this follows that

f�x,y (a, b) =
1
9n

ÿ

s,tœ{1,2,3}n
Tr[‡x|asÍÈbt|‡y|btÍÈas|] = 1

9n
Ÿ

iœsupp x

Ÿ

jœsupp y

ax(i)
i by(j)j

ÿ

sœX ,tœY

1,

where X = {s œ {1, 2, 3}n : s(i) = x(i) ’ i œ supp(x)}. Hence, as |X |= 3n≠|x|, Equation (7)
follows for the case of �x,y. By linearity, Equation (7) follows for every superoperator. J

I Theorem 11 (Bohnenblust-Hille inequality for S1 æ S1 maps). Let � be a super-operator of

degree at most d. Then there exists a constant C such that

...‚�
...

2d
d+1/2

Æ C
d Î�Î

S1æS1
.

In particular, if � is a quantum channel, then there exists a constant C such that

...‚�
...

2d
d+1/2

Æ C
d
.
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Proof. Let Ÿf� : {≠1, 1}n æ R be defined as taking the real part of f� i.e., (Ÿf„)(x) =
Ÿ(f�(x)) and ⁄f� : {≠1, 1}n æ R as taking the imaginary part of f� i.e., (⁄f„)(x) =
⁄(f�(x)). Note that we have that ‚f„ = „Ÿf� + i„⁄f�. By Lemma 10, |(Ÿf„)(x)|, |(⁄f„)(x)|Æ
|f�(x)|Æ Î�Î

S1æS1
and that the degree of both the real and imaginary part is at most 2d.

Hence, by the triangle inequality and Theorem 9 we have
... ‚f�

...
4d

2d+1

Æ
... „Ÿf�

...
4d

2d+1

+
... „⁄f�

...
4d

2d+1

Æ C

Ô
d log d Î�Î

S1æS1
.

Thus, using that
...‚�

...
2d/(d+1)

Æ 9d
... ‚f�

...
2d/(d+1)

it follows that
...‚�

...
2d/(d+1)

Æ C
d Î�Î

S1æS1
.

This proves the first part of the statement.
For the second we just have to show that if � is a quantum channel, then Î�Î

S1æS1
is

bounded by a constant. Indeed, if M is self-adjoint, we can write it as M = M
+ ≠M

≠, with
M

+ and M
≠ being positive semidefinite, so

Î�(M)Î
S1

ÎMÎ
S1

Æ Tr[�(M+)] + Tr[�(M≠)]
Tr[M+] + Tr[M≠] = 1, (8)

where in the first equality we have used that � is positive and in the second that is
trace perserving. Finally, any matrix M can be written as M = ŸM + i⁄M , where
ŸM = (M +M

ú)/2 and ⁄M = (M ≠ M
ú)/2 are self-adjoint. Hence,

Î�(M)Î
S1

ÎMÎ
S1

Æ
Î�(ŸM)Î

S1
+ Î�(⁄M)Î

S1

ÎMÎ
S1

Æ
ÎŸMÎ

S1
+ Î⁄MÎ

S1

ÎMÎ
S1

Æ
ÎMÎ

S1
+ ÎMÎ

S1

ÎMÎ
S1

= 2,

where in the first inequality we have used the triangle inequality, in the second inequality we
have used Equation (8) and in the third inequality that ÎŸMÎ

S1
, Î⁄MÎ

S1
Æ ÎMÎ

S1
. J

4.2 Learning low-degree quantum channels
Before we prove the main theorem of the section, we show that for given x, y œ {0, 1, 2, 3}n,
the corresponding Fourier coe�cient ‚�(x, y) can be e�ciently learned. This is accomplished
through the combination of a few SWAP tests.

I Fact 12 (SWAP test for mixed states [37]). Let fl, fl
Õ
be two states. Then, one can estimate

Tr[flfl
Õ] up to error Á with probability 1 ≠ ” using O((1/Á)2 log(1/”)) copies of fl and fl

Õ
.

I Lemma 13 (Pauli coe�cient estimation for channels). Let x, y œ {0, 1, 2, 3}n. Then, ‚�(x, y)
can be estimated with error Á and probability 1 ≠ ” using O((1/Á)2 log(1/”)) queries to �.

Proof. If x = y, we just have to prepare ‚� (which can be done by preparing the Choi
state J(�) following by a unitary transformation) and apply Fact 12 to ‚� and the state
fl = |xÍÈx|. If x ”= y, one first learns ‚�(x, x) and ‚�(y, y) with error Á as before. One the
one hand, one can learn ‚�(x, x) + ‚�(x, x) + 2Ÿ‚�(x, y), with error Á by applying Fact 12
to ‚� and 1/2

q
z,tœ{x,y}|zÍÈt|. Hence, one learns Ÿ‚�(x, y) with error 3Á/2. On the other

hand, one can learn ‚�(x, x) + ‚�(y, y) + 2⁄‚�(x, y), with error Á by applying Fact 12 to ‚� and
1/2(|xÍÈx|+i|xÍÈy|≠i|yÍÈx|+|yÍÈy|), and thus one can learn ⁄‚�(x, y) with error 3Á/2. J

We will also need the following well-known result on learning discrete probability distributions.
See [17, Theorem 9] for a proof.

I Lemma 14. Let p = {p(x)}x be a probability distribution over some set X . Let p
Õ = (pÕ(x))x

the empirical probability distribution obtained after sampling T times from p. Then, for

T = O((1/Á)2 log(1/”)) with probability 1 ≠ ” we have that |p(x) ≠ p
Õ(x)|Æ Á for every x œ X .
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Now, we are ready to prove Theorem 1, which we restate for the convenience of the reader.

I Theorem 1. Let � be a n-qubit degree-d quantum channel. There is an algorithm that

(Á, ”)-learns � (in ¸2-distance) using exp ( ÂO(d2 + d log(1/Á))) · log(1/”) queries to �.

Proof. We first state the algorithm.

Algorithm 1 Learning low-degree channels via BH inequality.
Input: A quantum channel � of degree at most d, and error Á and a failure probability ”

1: Let c = Á
2d+1

C
≠d

2

2: Prepare T1 = O((1/c)2 log(1/”)) copies of ‚� to sample from (‚�(x, x))x. Let (‚�Õ(x, x))x
be the associated empirical distribution

3: for x, y œ Xc = {x : |‚�Õ(x, x)|Ø c} do

4: Prepare O((1/c)2(1/Á)2 log((1/c)2(1/”))) copies of ‚� and use them to approximate
‚�(x, y) with ‚�ÕÕ(x, y) using Lemma 13.

5: end for

Output:
q

x,yœXc
‚�ÕÕ(x, y)�x,y

Let c > 0 to be determined later. In the first part of the algorithm we prepare ‚� and
measure, i.e., we sample from (‚�(x, x))xœ{0,1,2,3}n . Let (‚�Õ(x, x))xœ{0,1,2,3}n be the empirical
distribution one obtains after T1 samples. E = {|‚�(x, x) ≠ ‚�Õ(x, x)|Æ c ’x œ {0, 1, 2, 3}n}.
By Lemma 14, taking T1 to be O((1/c)2 log(1/”)) ensures that

Pr[E ] Ø 1 ≠ ”.

Let Xc = {x : |‚�Õ(x, x)|Ø c}. Note that, as
q

xœXc
�(x, x) Æ 1,

|Xc|Æ c
≠1

, (9)

and in the event of E we have that

x /œ Xc =∆ |‚�(x, x)|Æ |‚�Õ(x, x)|+||‚�(x, x)|≠|‚�Õ(x, x)||Æ 2c. (10)

In particular, it follows that

x /œ Xc =∆ |‚�(x, y)|Æ
Ò
|‚�(x, x)||‚�(y, y)| Æ

Ô
2c ’ y œ {0, 1, 2, 3}n, (11)

where in the first inequality we have used that ‚� is positive semidefinite and in the second
inequality Equation (10) and that ‚�(y, y) Æ 1. We assume that the first part of the algorithm
succeeds, meaning that E happens. In the second part of the algorithm we approximate all
the Pauli coe�cients of Xc ◊ Xc with error cÁ and probability 1 ≠ ” querying � just

T2 = O((1/c)4(1/Á)2 log((1/c)2(1/”)))

times from Lemma 13. Note that T2 > T1, so this complexity dominates the one of the first
part of the algorithm. Let ‚�ÕÕ(x, y) be these approximations and let �c =

q
x,yœXc

‚�ÕÕ(x, y)‡x ·
‡y. Now, we have that
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Î� ≠ �cÎ22 =
ÿ

x,yœXc

|‚�(x, y) ≠ ‚�ÕÕ(x, y)|2+
ÿ

x‚y/œXc

|‚�(x, y)|2

Æ Á
2 +

ÿ

x‚y/œXc

|‚�(x, y)|
1

d+1/2 |‚�(x, y)|
2d

d+1/2

Æ Á
2 + (2c)

1/2
d+1/2

...‚�
...

2d
d+1/2

2d
d+1/2

Æ Á
2 + c

1/2
d+1/2C

d
,

where in the equality we have used Parseval’s identity; in the first inequality we used Equa-
tion (9), the learning guarantees of the second part of the algorithm and that 2 = 1/(d+
1/2) + 2d/(d+ 1/2) ; in the second inequality we have used Equation (11); and in the third
inequality we used the Bohnenblust-Hille inequality for channels (Theorem 11). Hence, by
choosing

c = Á
4d+2

C
≠d

2

we obtain the desired result. J

5 Learning quantum query algorithms

In this section, our goal will be to prove Theorem 5, restated below for the reader’s convenience.

I Theorem 5. For a quantum algorithm that makes d-queries as in Figure 1, its amplitudes

can be learned up to error Á in ¸
2
2
accuracy using O

!
(1/Á)d · logn

"
uniformly random samples.

Proof. Eskenazis and Ivanishvili [26] showed that a function f : {≠1, 1}n æ [≠1, 1] with
degree at most d and

... ‚f
...

2d
d+1

Æ C, can be learned with success probablity 1≠” and error Á in

¸
2
2
accuracy using O(Á≠(d+1)

C
2d log(n/”)) samples (x, f(x)), where x is drawn uniformly at

random from x œ {≠1, 1}n. Arunachalam et al. [3] showed that the amplitudes of quantum
algorithms that d queries as in Figure 1 are completely bounded d-tensors. Hence, using
Theorem 15 (which we prove below) we can let C = 1, and obtain the desired result. J

5.1 The constant of the completely bounded BH inequality is 1
In this section we determine that the exact value of the constant of the completely bounded
BH inequality is 1. Before that, we first define the completely bounded norm. For d-linear
tensors, the completely bounded norm is defined as

ÎTÎ
cb

= sup

......

ÿ

iœ[n]d

‚TiX1(i1) . . . Xt(it)

......
op

, (12)

where Xs(is) are matrices of size m ◊ m that have operator norm at most 1 and m œ N.

I Theorem 15. Let K œ {R,C}. Let T : (Kn)d æ K be a d-linear form. Then,

... ‚T
...

2d
d+1

Æ ÎTÎ
cb

,

and the inequality can be saturated.
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Theorem 15 establishes that the best constant for the completely bounded BH inequality is
exactly 1. This sharply contrasts with the current knowledge about the BH constants, where
only poly(d) upper bounds are known. We thus close one of the edges of comparison of the
three norms that appear in Grothendieck and Bohnenblust-Hille inequalities (see Figure 2).

ÎBÎŒ

ÎBÎ 2d
d+1 ÎBÎcb

Æ
Ô 2 G

R Ø

Æ 1

ÎTÎŒ

ÎTÎ 2d
d+1 ÎTÎcb

Æ
po
ly(
d
)

C(d) ”Ø

Æ 1

Figure 2 Triangles of norm comparisons. In the left triangle, we display the norm comparisons
implied by the Littlewood [40] and Grothendieck inequalities [30] and our Theorem 15 for real
bilinear maps. In the right triangle, we depict the best upper bound for the BH constant [11], the
no extension of the Grothendieck inequality [49], and our Theorem 15 for d-linear tensors.

The main ingredient of the proof of Theorem 15 is a general lower bound for the completely
bounded norm, Lemma 17. This technique is inspired by the idea of Varoupoulos to rule out a
generalization of von Neumann’s inequality [56] and was recently used by Escudero-Gutiérrez
to show a particular case of the famous Aaronson and Ambainis conjecture of quantum
query complexity [25]. Theorem 15 follows from combining Lemma 17 with Blei’s inequality
Lemma 16. See [11, Theorem 2.1] for a proof of Blei�s inequality.

I Lemma 16 (Blei’s inequality). Let K œ {R,C} and let ‚T œ (K)nd

. Then,

1 Ÿ

sœ[d]

ÿ

isœ[n]

Û ÿ

i1,...,is≠1,is+1,...,idœ[n]

| ‚Ti|2
2 1

d Ø
... ‚T

...
2d

d+1

.

I Lemma 17. Let K œ {R,C}, let T : (Kn)d æ K be a d-linear form, and let s œ [d]. Then,

ÎTÎ
cb

Ø
ÿ

isœ[n]

Û ÿ

i1,...,is≠1,is+1,...,idœ[n]

| ‚Ti|2.

Proof. The proof involves evaluating Equation (12) on an explicit set of contractions (matrices
with operator norm at most 1). Let m =

q
s≠1

r=0
n
r +

q
d≠r

r=0
n
r and let {ei, fj : i œ [n]r, r œ

{0} fi [d ≠ s], j œ [n]t, t œ {0} fi [s ≠ 1]} be an orthonormal basis of ¸
m
2
(K), where we identify

[n]0 with ÿ. We define m ◊ m matrices X(i) for i œ [n] by

X(i)ej = e(i,j), if j œ [n]r, r œ {0} fi [d ≠ s ≠ 1],

X(i)ej =
q

kœ[n]s≠1 ‚T ú
kijfkÒq

k1,...,ks≠1,ks+1,...,kdœ[n]
| ‚T |2

(k1,...,ks≠1,i,ks+1,...,kd)

, if j œ [n]d≠s
,

X(i)fj = ”i,jsf(i1,...,is≠1), if j œ [n]d≠s
, r œ {0} fi [d ≠ 1].

For some intuition of the behaviour of these matrices, one may interpret the first d ≠ s appli-
cations of the matrices X(i) as creation operators and the last s≠ 1 as destruction operators.
Assume for the moment that X(i) are contractions. Given that,

Èfÿ, X(i1) . . . X(id)eÿÍ =
‚TiúÒq

i1,...,is≠1,is+1,...,idœ[n]
| ‚Ti|2

,
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it would then follow that

ÎTÎ
cb

Ø

......

ÿ

iœ[n]d

‚TiX(i1) . . . X(id)

......
op

Ø
ÿ

iœ[n]d

‚Ti
‚T ú
iÒq

k1,...,ks≠1,ks+1,...,kdœ[n]
| ‚T |2

(k1,...,ks≠1,is,ks+1,...,kd)

=
ÿ

isœ[n]

Û ÿ

i1,...,is≠1,is+1,...,idœ[n]

| ‚Ti|2,

as desired. It then remains to prove that the matrices X(i) are contractions. Given that X(i)
maps {ei : i œ [n]r, r œ {0} fi [d ≠ s ≠ 1]}, {ei : i œ [n]d≠s} and {fi : i œ [n]r, r œ {0} fi [s]}
to orthogonal subspaces, it su�ces to show that the X(i) are contractions when restricted
to those subspaces. For the first and third sets, this is true because X(i) maps each basis
vector of these sets to a di�erent basis vector or to 0. For the second set, is also true because
for every ⁄ œ Kn

d≠s

......
X(i)

ÿ

jœ[n]d≠s

⁄jej

......
2

=

......

q
kœ[n]s≠1(

q
jœ[n]d≠s ⁄j ‚T ú

kij)fkÒq
k1,...,ks≠1,ks+1,...,kdœ[n]

| ‚T |2
(k1,...,ks≠1,i,ks+1,...,kd)

......
2

=

Òq
kœ[n]s≠1 |

q
jœ[n]d≠s ⁄j ‚T ú

kij|2Òq
k1,...,ks≠1,ks+1,...,kdœ[n]

| ‚T |2
(k1,...,ks≠1,i,ks+1,...,kd)

Æ

Òq
kœ[n]s≠1

q
jœ[n]d≠s | ‚T ú

kij|2
Òq

jœ[n]d≠s |⁄j|2
Òq

k1,...,ks≠1,ks+1,...,kdœ[n]
| ‚T |2

(k1,...,ks≠1,i,ks+1,...,kd)

= Î⁄Î
2
,

where in the inequality we have used Cauchy-Schwarz for the sum over j. J

Proof of Theorem 15. The inequality Î ‚TÎ 2d
d+1

Æ ÎTÎ
cb

follows from Lemmas 16 and 17. The
inequality is saturated by the form T (x1, . . . , xd) = x1(1). J
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Abstract
We study the noncommutative rank problem, ncRANK, of computing the rank of matrices with
linear entries in n noncommuting variables and the problem of noncommutative Rational Identity
Testing, RIT, which is to decide if a given rational formula in n noncommuting variables is zero on
its domain of definition.

Motivated by the question whether these problems have deterministic NC algorithms, we revisit
their interrelationship from a parallel complexity point of view. We show the following results:
1. Based on Cohn’s embedding theorem [14, 15] we show deterministic NC reductions from mul-

tivariate ncRANK to bivariate ncRANK and from multivariate RIT to bivariate RIT.
2. We obtain a deterministic NC-Turing reduction from bivariate RIT to bivariate ncRANK,

thereby proving that a deterministic NC algorithm for bivariate ncRANK would imply that both
multivariate RIT and multivariate ncRANK are in deterministic NC.
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1 Introduction

There are two main algorithmic problems of interest in this paper. These are the noncom-

mutative Rational Identity Testing problem (RIT) and the noncommutative rank (ncRANK)
problem for matrices with linear entries.

The RIT problem is a generalization of multivariate polynomial identity testing to identity
testing of multivariate rational expressions. When the variables are commuting, rational
identity testing and polynomial identity testing are equivalent problems. On the other hand,
if the variables are all noncommuting, the RIT problem needs di�erent algorithmic techniques
as rational expressions in noncommuting variables are more complicated. Mathematically,
rational expressions over noncommuting variables are quite well studied. They arise in the
construction of the so-called free skew fields [15]. Hrubes and Wigderson [21] initiated the
algorithmic study of RIT for rational formulas and gave a deterministic polynomial time
reduction from RIT to ncRANK. Subsequently, deterministic polynomial-time algorithms
were obtained independently by Ivanyos et al [23, 22] and by Garg et al [18, 19] for the RIT
problem, in fact they obtain deterministic polynomial time algorithms for ncRANK, and
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14:2 A Multivariate to Bivariate Reduction

using Hrubes-Wigderson reduction from RIT to ncRANK get a polynomial time algorithm
for RIT. The Ivanyos et al algorithm is algebraic and works for fields of all characteristics.
The Garg et al algorithm has an analytic flavor and is for the characteristic zero case.

The Edmonds’ Problem and ncRANK

The ncRANK problem is essentially the noncommutative version of the well-known Edmonds’
problem: determine the rank of a matrix M whose entries are linear forms in commuting
variables (see [23, 19, 7, 10] for more details). A special case of it is to determine if a square
matrix M with linear entries in commuting variables is singular. This is also known as
the symbolic determinant identity testing problem, SDIT. There is an easy randomized
NC algorithm for it, based on the Polynomial Identity Lemma [5, 28, 30, 16], by randomly
substituting scalar values for the variables from the field (or a suitable extension of it)
and evaluating the determinant using a standard NC algorithm. However, a deterministic
polynomial-time algorithm for SDIT is an outstanding open problem [7].

Recently, for the RIT problem the first deterministic quasi-NC algorithm has been
obtained [2]. Another recent development – building on the connection between the noncom-
mutative Edmonds’ problem and identity testing for noncommutative algebraic branching
programs [10] – is a generalization of the Edmond’s problem to a partially commutative
setting with application to the weighted k-tape automata equivalence problem [3].

1.1 This paper: overview of results and proofs
With this background, the natural algorithmic questions are whether RIT for noncommutative
rational formulas and ncRANK have deterministic NC algorithms. We revisit the problems
from this perspective and obtain the following new results.
1. We show that multivariate RIT for formulas is deterministic NC reducible to bivariate

RIT for formulas. More precisely, given a rational formula �(x1, x2, . . . , xn), computing
an element of the skew field F2X3, where X = {x1, x2, . . . , xn}, the deterministic NC
reduction replaces each xi by a formula �i(x, y) computing a polynomial in FÈx, yÍ. Then
the resulting rational formula

�(x, y) = �(�1(x, y),�2(x, y), . . . ,�n(x, y))

has the property that

�(x1, x2, . . . , xn) ”= 0 i� �(x, y) ”= 0.

2. We next show that multivariate ncRANK is deterministic NC reducible to bivariate
ncRANK. More precisely, given a d ◊ d linear matrix A = A0 +

qn
i=1

Aixi in noncom-
muting variables X = {x1, x2, . . . , xn}, where the Ai are matrices over the scalar field
F, we first give a deterministic NC reduction that transforms A to a d ◊ d matrix B

whose entries are bivariate polynomials in FÈx, yÍ, where x and y are two noncommuting
variables, where its entries B[i, j] are given by polynomial size noncommutative formulas,
with the property that ncrk(A) = ncrk(B). Then we examine the Higman linearization
process [21] that transforms B into a matrix B

Õ with linear entries in x and y such that the
noncommutative rank ncrk(B) of B can be easily recovered from ncrk(BÕ). We show that
this process can be implemented in deterministic NC (the earlier works [21, 22, 23, 19]
only consider its polynomial-time computability).
Additionally, we consider the more general problem ncRANKpoly of computing the
noncommutative rank of a matrix whose entries are noncommutative formulas computing
polynomials. We show using our parallel Higman linearization algorithm that ncRANKpoly

is also deterministic NC reducible to bivariate ncRANK.
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Both the multivariate to bivariate reductions, stated above, are crucially based on a
theorem of Cohn [14] (also see [15, Theorem 4.7.3]) which we will refer to as Cohn’s
embedding theorem and describe it later in the introduction.

3. Finally, obtaining a deterministic NC reduction from RIT to ncRANK turns out to be
quite subtle. From the work of Hrubes and Wigderson [21], who initiated this line of
research on RIT, we can only obtain a sequential deterministic polynomial-time reduction
from RIT to ncRANK. However, for our result we require an NC reduction. If the given
rational formula has logarithmic depth, then their result already implies an NC reduction.
Now, in the same paper [21], Hrubes and Wigderson have also shown a depth reduction

result for multivariate noncommutative rational formulas: every rational formulas of size
s is equivalent to a logarithmic depth rational formula of size poly(s). Their construction
is based on Brent’s depth reduction result for commutative arithmetic formulas. However,
due to noncommutativity and the presence of inversion gates, the formula constructed in
their proof needs to be di�erent based on whether certain rational subformulas, arising
in the construction procedure, are identically zero or not. To algorithmize such steps in
the construction we need to use RIT as a subroutine. As RIT has a polynomial-time
algorithm [23, 19], the depth-reduction in [21] also has a polynomial time algorithm.1

As the third result of this paper, building on the Hrubes-Wigderson depth-reduction
construction, we are able to show that, with oracle access to RIT, rational formula
depth reduction can be done in deterministic NC. Using this we are able to obtain a
deterministic NC-Turing reduction from RIT to ncRANK. Hence, if bivariate ncRANK
is in deterministic NC we will obtain a deterministic NC algorithm also for RIT. We
leave open the question whether depth reduction of noncommutative rational formulas is
unconditionally in NC.

2 Preliminaries

In this section we recall the essential basic definitions and fix the notation.
Let F be a (commutative) field2 and X = {x1, x2, . . . , xn} be n free noncommuting

variables. The free monoid X
ú is the set of all monomials in the variables X. A noncom-

mutative polynomial f(X) is a finite F-linear combination of monomials in X
ú, and the free

noncommutative ring FÈXÍ consists of all noncommutative polynomials.

Noncommutative Rational Formulas

An arithmetic circuit computing an element of FÈXÍ is a directed acyclic graph with each
indegree 0 node labeled by either an input variable xi œ X or some scalar c œ F. Each
internal node g has indegree 2 and is either a + gate or a ◊ gate: it computes the sum (resp.
left to right product) of its inputs. Thus, each gate of the circuit computes a polynomial in
FÈXÍ and the polynomial computed by the circuit is the polynomial computed at the output

gate. A formula is restricted to have fanout 1 or 0.

1 In the commutative case, Brent’s result is parallelizable to yield an NC algorithm. For noncommutative
formulas without inversion gates we can obtain the depth-reduced formula in NC, as we will observe
later in the paper.

2 In this paper, F will either be the field of rationals or a finite field.
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When we allow the formulas/circuits to have inversion gates we get rational formulas

and rational circuits.

The Free Skew Field

We now briefly explain the free skew field construction. The elements of the free skew field
are noncommutative rational functions which are more complicated than their commutative
counterparts. Rational formulas in the commutative setting can be canonically expressed as
ratios of two polynomials. There is no such canonical representation for noncommutative
rational formulas.

Following Hrubes-Wigderson [21], we use Amitsur’s approach [1] for formally defining
skew fields.3

It involves defining appropriate notion of equivalence of formulas (intuitively, two formulas
are equivalent if they agree on their domain of definition). The equivalence classes under this
equivalence relation are the elements of the free skew field. We give the formal definitions
below.

Let Mk(F) denote the ring of k◊k matrices with entries from field F. Note that a rational
formula � defines a partial function

�̂ : Mk(F)n ‘æ Mk(F)

that on input (a1, a2, . . . , an) œ Mk(F)n evaluates � by substituting xi Ω ai for i œ [n].
�̂(a1, . . . , an) is undefined if the input to some inversion gate in � is not invertible in Mk(F).

I Definition 1. Let � be a rational formula in variables X. For each k œ N, let Dk,� be the

set of all matrix tuples (a1, a2, . . . , an) œ Mk(F)n such that �̂(a1, a2, . . . , an) is defined. The

domain of definition of � is the union D� =
t

k Dk,�.

I Definition 2 ([21]).
A rational formula � is called correct if for every gate u of � the subformula �u has a

nonempty domain of definition.

Correct rational formulas �1,�2 are said to be equivalent (denoted �1 © �2) if the

intersection D�1 fl D�2 of their domains of definitions is nonempty and they agree on all

the points in the intersection.

We note that equivalent formulas need not have the same domain of definition. For
example, �1 = z1z2z3 and �2 = (z1z2z3 · (z2z3 ≠ z3z2)≠1) · (z2z3 ≠ z3z2) are equivalent.
However, the domain of definition of �1 includes all matrix tuples, whereas the domain of
definition of �2 contains only matrix tuples (Z1, Z2, Z3) such that det(Z2Z3 ≠ Z3Z2) ”= 0.

The relation © as defined above is an equivalence relation on rational formulas and the
equivalence classes, called rational functions, are the elements of the skew field F2X3 [21, 1].

Noncommutative Rank

We now recall the notion of rank for matrices over the noncommutative ring FÈXÍ.

I Definition 3 (inner rank). Let M be a matrix over FÈXÍ. Its inner rank is the least r

such that M can be written as a matrix product M = PQ where Q has r rows (and P has r

columns).

3 There are other ways to defining free skew fields [1, 6, 27, 11, 12, 13, 15].
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I Definition 4 (full matrices). An n ◊ n square matrix M over FÈXÍ is full if it cannot be
decomposed as a matrix product M = PQ where P is n ◊ r and Q is r ◊ n for r < n. In

other words, an n ◊ n matrix is called full precisely when its inner rank is n.

We can also define the rank of a matrix M to be the maximum r such that M contains an
r ◊ r full submatrix. For matrices over FÈXÍ these notions of noncommutative rank coincide
as summarized below.4

I Proposition 5 ([15]). Let M be an n ◊ n matrix over the ring FÈXÍ. Then

M is a full matrix (that is, M has inner rank n) i� it is invertible over the skew field

F2X3.
More generally, M has inner rank r i� the largest full submatrix of M is r ◊ r.

The Algorithmic Problems of Interest

At this point we formally define the problems of interest in this paper.
1. The multivariate RIT problem takes as input a rational formula �, computing a rational

function �̂ in F2X3, and the problem is to check if � is equivalent to 0? In the bivariate
RIT problem � computes a rational function in F2x, y3.

2. The multivariate ncRANK problem takes as input a matrix M with a�ne linear form
entries over X and the problem is to determine its noncommutative rank ncrk(M).
Bivariate ncRANK is similarly defined.

3. A more general version of ncRANK is ncRANKpoly in which the matrix entries are allowed
to be polynomials in FÈXÍ computed by noncommutative formulas. A closely related
problem is SINGULAR where the problem is to test if a square matrix M over FÈXÍ
with entries computed by formulas is singular or not.

The complexity class NC and NC reductions

The class NC consists of decision problems that can be solved in polylog(n) time with poly(n)
many processors.5 For two decision problems A and B we say A is many-one NC reducible
to B if there is a reduction from A to B that is NC computable. Similarly, A is NC-Turing
reducible to B if there is an oracle NC algorithm for A that has oracle access to B.

It turns out that SINGULAR and ncRANK are equivalent even under deterministic NC

reductions.6

Cohn’s Embedding Theorem

We now give an outline of Cohn’s embedding theorem and how it gives us the desired reduction
from multivariate to bivariate RIT and also from multivariate to bivariate ncRANK. However,
for multivariate to bivariate reduction for ncRANK we will require additional NC algorithms
for formula depth reduction and Higman linearization.

Let X = {x1, x2, . . . , xn} be a set of n noncommuting variables, and let x, y be a pair
of noncommuting variables. We first recall the following well-known fact, observed in the
early papers on noncommutative polynomial identity testing [8, 26]: for noncommutative

4 For a ring R in general, a full matrix R need not be invertible (see [21] for an example).
5 This model is widely accepted as the right theoretical notion for e�cient parallel algorithms.
6 As for M œ FÈXÍm◊n, ncrk(M) = r i� r is a size of a largest sized invertible minor of M , so to compute

ncrk(M), it su�ces to test singularity of matrix UMV , where U, V are generic r ◊ m,n ◊ r matrices
respectively with entries as fresh noncommuting variables for r Æ min(m,n). See e.g. [19, Lemma A.3]
for details.
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14:6 A Multivariate to Bivariate Reduction

polynomials in FÈXÍ, the problem of polynomial identity testing (PIT) is easily reducible to
PIT for bivariate noncommutative polynomials in FÈx, yÍ. Indeed, more formally, we have
the following easy to check fact.

I Proposition 6. The map

xi ‘æ x
i≠1

y, 1 Æ i Æ n

extends to an injective homomorphism (i.e. a homomorphic embedding) from the ring FÈXÍ
to the ring FÈx, yÍ.

However, in order to obtain our multivariate to bivariate reductions, we need a mapping
— : X æ FÈx, yÍ which has the following properties:

For each i, there is a small noncommutative arithmetic formula that computes —(xi).
— extends to an injective homomorphism7, not just from the ring FÈXÍ to FÈx, yÍ, but
also to an injective homomorphism from the skew field F2X3 to the skew field F2x, y3.
This will guarantee that for two rational formulas �1,�2 computing inequivalent rational
functions in F2X3 their images —(�1) and —(�2) also compute inequivalent rational
functions in FÈx, yÍ.
Furthermore, in order to get the multivariate to bivariate reduction for ncRANK, we
will additionally require of the map — that for any matrix M over FÈXÍ its image —(M),
which is a matrix over FÈx, yÍ obtained by applying — to each entry of M , has the same
rank as M . Such a homomorphic embedding is called an honest embedding [14]. Here we
note that, full matrices over FÈXÍ are invertible over F2X3 [15]. Consequently if one
can lift embedding — to one between the corresponding free skew fields, it enforces — to
be an honest embedding.

The mapping xi ‘æ x
i≠1

y actually does not extend to an honest embedding as observed

in [14]. Indeed, the rank 2 matrix
3

x1 x2

x3 x4

4
has image

3
y xy

x
2
y x

3
y

4
=

3
1
x
2

4 !
y xy

"

which is rank 1. In general, a homomorphic embedding from a ring R to a ring R
Õ is an

honest embedding if it maps full matrices over R to full matrices over R
Õ. We now state

Cohn’s embedding theorem.
For polynomials f, g œ FÈx, yÍ let [f, g] denotes the commutator polynomial fg ≠ gf .

Cohn’s embedding map — : FÈXÍ æ FÈx, yÍ is defined as follows.
Let —(x1) = y. For i Ø 2, define —(xi) = [—(xi≠1), x].
We can then naturally extend — to a homomorphism from FÈXÍ to FÈy, xÍ, and it is easy
to check that it is injective. In fact, we can even assume |X| to be countably infinite.

I Theorem 7 (Cohn’s embedding theorem [15, Theorem 7.5.19]). The embedding map — :
FÈXÍ æ FÈx, yÍ defined above extends to an embedding between the corresponding skew fields

— : F2Z3 æ F2x, y3 and hence is an honest embedding.

Cohn’s construction is based on skew polynomial rings, which explains the appearance of the
iterated commutators —(xi) = [—(xi≠1), x]. We briefly explain the underlying ideas in the
arxiv version [4]. For more details see [14, 15].

7 That is, a homomorphic embedding.
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3 The Reduction from multivariate RIT to bivariate RIT

The reduction follows quite easily from Theorem 7. However, we present some complexity
details in this section showing that it is actually a deterministic NC reduction. The following
lemma is useful to describe the reduction.

I Lemma 8. Recall the embedding map — defined above. —(z0) = y and —(zi+1) = [—(zi), x]
are polynomials in FÈx, yÍ for each i Ø 0. Then, for n Ø 1 we have

—(zn) =
nÿ

i=0

(≠1)i
3
n

i

4
x
i
yx

n≠i
.

As a consequence, there is a deterministic NC algorithm that constructs a poly(n)-sized
formula for —(zn).

Proof. We will use induction on n. The base case follows from the fact that —(z1) = yx≠xy.
Inductively assume the claim is true for all n. Now, —(zn+1) = [—(zn), x]

=
nÿ

i=0

(≠1)i
3
n

i

4
x
i
yx

n≠i+1 ≠
nÿ

j=0

(≠1)j
3
n

j

4
x
j+1

yx
n≠j by induction hypothesis

= yx
n+1 +

nÿ

i=1

(≠1)i
3
n

i

4
x
i
yx

n≠i+1 +
n+1ÿ

i=1

(≠1)i
3
n+ 1 ≠ 1
i ≠ 1

4
x
i
yx

n+1≠i

= yx
n+1 +

nÿ

i=1

(≠1)i
53

n+ 1 ≠ 1
i

4
+

3
n+ 1 ≠ 1
i ≠ 1

46
x
i
yx

n≠i+1 + (≠1)n+1
x
n+1

y

= yx
n+1 + (≠1)n+1

x
n+1

y +
nÿ

i=1

(≠1)i
3
n+ 1
i

4
x
i
yx

n+1≠i from Pascal’s identity

=
n+1ÿ

i=0

(≠1)i
3
n+ 1
i

4
x
i
yx

n+1≠i

This completes the inductive proof.
As the binomial coe�cients can be computed in NC using Pascal’s identity, the expression

for —(zn) obtained above immediately implies an NC algorithm for construction of a poly(n)
sized formula for —(zn). J

I Theorem 9. The multivariate RIT problem is deterministic NC (in fact, logspace) reducible

to bivariate RIT. More precisely, given as input a rational formula � computing an element of

F2X3, X = {x1, x2, . . . , xn} there is a deterministic NC algorithm that computes a rational

formula � computing an element of F2x, y3 such that � is nonzero in its domain of definition

i� � is nonzero in its domain of definition.

Proof. We can identify F2X3 with F2z0, z1, . . . , zn≠13. Let �i(x, y) be the poly(i) size
noncommutative formula computing the nested commutator —(zi) for each i. In the rational
formula �, for each i we replace the input zi to � by �i(x, y). The new formula we obtain is

�(x, y) = �(�1(x, y),�2(x, y), . . . ,�n≠1(x, y)).

By Theorem 7, �(x, y) ”= 0 on its domain of definition i� �(z0, z1, . . . , zn≠1) is nonzero on
its domain of definition. Furthermore, because — is an embedding, it is guaranteed that if �
has a nontrivial domain of definition then � also has a nontrivial domain of definition.

As computation of � from � involves only replacing the zi by �i, the reduction is clearly
logspace computable. J
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14:8 A Multivariate to Bivariate Reduction

4 Reduction from n-variate ncRANKpoly to 2-variate ncRANK

In this section we give a deterministic NC reduction from n-variate ncRANKpoly to bivariate
ncRANK. The basic idea of the reduction is as follows. Given a polynomial matrix8
M œ FÈXÍm◊m such that each entry of M is computed by formula of size at most s. We
will use Cohn’s embedding theorem 7 to get a matrix M1 with bivariate polynomial entries
such that each entry of M1 is computed by a poly(n, s) size noncommutative formula and
ncrk(M) = ncrk(M1). Notice that M1 is an instance of bivariate ncRANKpoly. Next, we
need to give an NC reduction transforming M1 to an instance of bivariate ncRANK (which
will be a matrix with linear entries in x and y).

In order to do this transformation in NC, we will first apply the depth-reduction algorithm
of Lemma 10 to get matrix M2 whose entries are poly(n, s) size log-depth formulas that
compute the same polynomials as the corresponding entries of M1. Then we apply Higman
Linearization to M2 to obtain a bivariate linear matrix M3. For this we will use our parallel
algorithm for Higman Linearization described in Theorem 13. From the properties of Higman
linearization we can easily recover ncrk(M2) from ncrk(M3). In what follows, first we give a
deterministic NC algorithm for the depth reduction of noncommutative formulas and Higman
linearization process. We conclude the section by giving an NC reduction from multivariate to
bivariate ncRANK using above NC algorithms combined with Cohn’s embedding theorem 7.

4.1 Depth reduction for noncommutative formulas without divisions
In the commutative setting Brent [9] obtained a deterministic NC algorithm to transform a
given rational formula (which may have division gates) to a log-depth rational formula. In
the noncommutative setting, Hrubes and Wigderson [21] proved the existence of log-depth
rational formula equivalent to any given rational formula. Their proof is based on [9]. However,
it is not directly algorithmic as explained in the introduction. We will discuss it in more
detail in Section 5. However, it turns out that, if the noncommutative formula doesn’t have
division gates then the depth reduction is quite easy and we obtain a simple deterministic NC
algorithm for it that computes a log-depth noncommutative formula equivalent to the given
noncommutative formula. The proof is based Brent’s commutative version. We highlight the
distinctive points arising in the noncommutative version.

We introducing some notation. Let � be a noncommutative arithmetic formula computing
a polynomial in FÈx1, x2, . . . , xnÍ. Let �̂ denote the polynomial computed by �. For a node
v œ �, let �v denote the subformula of � rooted at node v, so �̂v is the polynomial computed
by the subformula rooted at v. For a node v œ �, let �vΩz be a formula obtained from � by
replacing the sub-formula �v by single variable z. For a node v œ �, let wt(v) = |�v| denote
the number of nodes in the subformula rooted at v. By size of formula � we refer to number
of gates in �.

I Lemma 10. Given a formula � of size s computing a noncommutative polynomial f œ
FÈx1, x2, . . . , xnÍ there is an NC algorithm to obtain an equivalent formula �Õ

for f with

depth O(log s).

Proof. First we describe a recursive construction to compute a formula �Õ equivalent to �
and inductively prove that the depth of �Õ is c log2 s for an absolute constant c. Then we
analyze the parallel time complexity of the construction and prove that it can be implemented
in NC.

8 We can assume it is a square matrix without loss of generality.
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Let A� be s ◊ s matrix such that for gates u, v œ �, (u, v)th entry of A� is 1 if gate v is
a descendent of gate u. Using the well-known pointer doubling strategy (see e.g. [29, 25]) we
can compute matrix A� in NC. So by adding elements in each row of A�, we can compute
wt(u) (that is the number of descendants of gate u œ �) in NC. Let v be a gate in � such
that s

3
Æ wt(v) <

2s
3
. Such a gate always exists by a standard argument. Since we can

compute the number of descendants of a gate in NC, we can also find such a gate v in NC,
by simply having a processor associated to each gate to check the above inequalities. Now
we are ready to describe recursive construction of �Õ.
1. In NC find a gate v in � such that s

3
Æ wt(v) < 2s

3
.

2. Let r = v0 be the root of � and v1, v2, . . . , v¸≠1 be gates on r to v path in �. Let v = v¸.
For 1 Æ i Æ ¸, let ui denote a sibling of vi. Let S1 be collection of all indices j such that
1 Æ j Æ ¸, vj is a product gate and is a right child of its parent. Similarly let S2 be
collection of all indices j such that 1 Æ j Æ ¸, vj is a product gate and is a left child of
its parent. Define formula �1 =

r
jœS1

�uj . The product is computed using sequence of
multiplication gates, starting with �uj for the first uj (one with smallest index j œ S1)
each multiplication gate multiplies the product so far from right by �uj for the next gate
uj , j œ S1, along the root to v path. Similarly define formula �2 =

r
jœS2

�uj . Let �3

be a formula obtained from � by replacing subformula �v by zero.
3. Recursively in parallel compute log-depth formulas �Õ

1
,�Õ

2
,�Õ

3
,�Õ

v equivalent to �1, �2,
�3 and �v respectively.

4. Define formula �Õ as (�Õ
1
· �Õ

v) · �Õ
2
+ �3.

From the definitions of �1,�2 and �3 it is clear that the polynomial computed by � equals
(�̂1 · �̂v) · �̂2 + �̂3, where �̂1, �̂1, �̂1, �̂v are the polynomials computed by �1, �2, �3 and
�v respectively. Hence, �Õ, defined in Step 4, is equivalent to �.

Let d(s) denote the upper bound on the depth of the formula output by the above
procedure if size s formula is given to it as input. We use induction on the size s to
prove that d(s) Æ c log2 s. As �1,�2 are disjoint subformulas of �vΩz, clearly we have
|�1|+|�2| Æ |�vΩz|. Since |�v| Ø s

3
, it implies |�1|, |�2| Æ |�vΩz| Æ 2s

3
. From the definition

of �3, it is clear that |�3| Æ |�vΩz| Æ 2s
3
. So the size of each formula �1, �2, �3 and �v is

upper bounded by 2s
3
. Hence, inductively, for each of the formulas �Õ

1
,�Õ

2
,�Õ

3
,�Õ

v the depth is
upper bounded by c log2 2s

3
. As �Õ is obtained from �Õ

1
,�Õ

2
,�Õ

3
,�Õ

v using two multiplications
and an addition as in Step 4, it follows that the depth of �Õ = d(s) Æ c log2 2s

3
+ 3. Choosing

c Ø 3

(log2 3≠1)
we get d(s) Æ c log2 2s

3
+ 3 Æ c log2 s. This completes the induction, proving

that the depth of �Õ is at most c log2 s.
Let t(s) denotes parallel time complexity of the above procedure. Since Steps 1, 2, 4

can be implemented in NC they together take (log s)k parallel time for an absolute constant
k. As all the recursive calls in Step 3 are processed in parallel, we have the recurrence
t(s) Æ t(2s/3) + (log s)k. Hence, t(s) Æ (log s)(k+1). This shows that the above procedure
can be implemented in NC, completing the proof of the theorem. J

I Remark 11. In Lemma 10, we avoid using the depth-reduction approach for noncommutative
rational formulas that is used in [21]. This is because it can introduce inversion gates even if
the original formula has no inversion gates. Instead, we directly adapt ideas from Brent’s
construction for commutative formulas to obtain the NC algorithm. We note here that
Nisan’s seminal work [24] also briefly mentions noncommutative formula depth reduction
(but not its parallel complexity or even in an algorithmic context).

Higman linearization which is sometimes called Higman’s trick was first used by Higman
in [20]. Cohn extensively used Higman Linearization in his factorization theory of free ideal
rings. Given a matrix with noncommutative polynomials as its entries, Higman linearization
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14:10 A Multivariate to Bivariate Reduction

process transforms it into a matrix with linear entries. This transformation process has
several nice properties such as: it preserves fullness of the matrix (that is the input polynomial
matrix is full rank i� final linear matrix is full rank), it preserves irreducibility of the matrix,
etc.

We first describe a single step of the linearization process applied to a single noncom-
mutative polynomial, which easily generalizes to matrices with polynomial entries. Given an
m ◊ m matrix M over FÈXÍ such that M [m,m] = f + g ◊ h, apply the following:

Expand M to an (m+ 1) ◊ (m+ 1) matrix by adding a new last row and last column
with diagonal entry 1 and remaining new entries zero:

5
M 0
0 1

6
.

Then the bottom right 2 ◊ 2 submatrix is transformed as follows by elementary row and
column operations

3
f + gh 0

0 1

4
æ

3
f + gh g

0 1

4
æ

3
f g

≠h 1

4

Given a polynomial f œ FÈXÍ by repeated application of the above step we will finally
obtain a linear matrix L = A0 +

qn
i=1

Aixi, where each Ai, 0 Æ i Æ n is an ¸ ◊ ¸ over F, for
some ¸. The following theorem summarizes its properties.

I Theorem 12 (Higman Linearization [15]). Given a polynomial f œ FÈXÍ, there are matrices

P,Q œ FÈXÍ¸◊¸
and a linear matrix L œ FÈXÍ¸◊¸

such that

P

3
f 0
0 I¸≠1

4
Q = L (1)

with P upper triangular, Q lower triangular, and the diagonal entries of both P and Q are

all 1’s. (Hence, P and Q are both invertible over F2X3, moreover entries of P
≠1

and Q
≠1

are in FÈXÍ).

Instead of a single f , we can apply Higman linearization to a matrix of polynomials M œ
FÈXÍm◊m to obtain a linear matrix L such that P (M ü Ik)Q = L for invertible matrices
P,Q. Garg et al. [19] gave polynomial time algorithm to carry out Higman linearization for
polynomial matrix whose entries are given by noncommutative formulas. We will give an NC

algorithm to implement this transformation.

I Theorem 13. Let A œ FÈXÍn◊n
be a polynomial matrix such that each entry of A is

given by a noncommutative formula of size at most s. Then there is a deterministic NC

algorithm (with parallel time complexity poly(log s, logn)) to compute invertible upper and

lower triangular matrices P,Q œ FÈXÍ¸◊¸
with all diagonal entries 1 and a linear matrix

L œ FÈXÍ¸◊¸
such that P

3
A 0
0 Ik

4
Q = L, where ¸ = n+ k and k is O(n2 · s). All the

entries of P,Q are computable by algebraic branching programs of size poly(n, s). Moreover

ncrk(A) + k = ncrk(L), hence the rank of A is easily computable from the rank of L.

The proof of the above theorem can be found in the arXiv version [4].
Using Theorem 7, Lemma 10 and Theorem 13 we get a deterministic NC reduction from

multivariate ncRANK to bivariate ncRANK.

I Theorem 14. There is a deterministic NC reduction from the multivariate ncRANK

problem to the bivariate ncRANK problem.
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5 NC Reduction from RIT to bivariate ncRANK

In this section we give an NC-Turing reduction from RIT to bivariate ncRANK. That is, we
design an NC algorithm for RIT assuming we have an oracle for bivariate ncRANK. Hrubes
and Wigderson in [21] give a polynomial time reduction from RIT to ncRANK problem [21,
Theorem 2.6]. Also they show that for any given rational formula � there is a log-depth
rational formula that is equivalent to � [21, Proposition 4.1].

Our key contribution here is to use Cohn’s embedding theorem to transform RIT problem
to the bivariate case. Then we parallelize the Hrubes-Wigderson reduction from RIT to
ncRANK. In fact, if the input rational formula is already logarithmic depth then the Hrubes-
Wigderson reduction from RIT to ncRANK can be implemented in NC. In this section we
design an NC algorithm for depth reduction of rational formulas (possibly with division
gates) assuming NC oracle for bivariate ncRANK.9 Indeed, the construction of an equivalent
log-depth rational formula, as described in [21], does not appear to be directly parallelizable,
as its description crucially requires rational formula identity testing.10

We show that, indeed, the depth-reduction proof in [21] can be parallelized step by step.
However, there are some key points where our algorithmic proof is di�erent. Firstly, to solve
the RIT instance arising in the depth-reduction proof, we need to recursively depth-reduce the
corresponding subformula and then apply Hrubes-Wigderson reduction from RIT to ncRANK
on the constructed log-depth subformula. Secondly, we need to handle an important case
arising in the proof (namely, the case (2) in the description of the Normal-Form procedure in
the proof of the Lemma 17) which was not significant for the existential argument in [21].
In fact to handle this case, we require an argument based on Brent’s commutative formula
depth reduction [9].

In the detailed proof of Lemma 17, we first sketch our NC algorithm for depth reduction
of rational formula assuming oracle access to bivariate ncRANK. We highlight and elaborate
the key steps where our proof di�ers from [21]. We need to reproduce some parts of their
proof for completeness, for these parts we just sketch the argument and refer to [21] for the
details. Using this depth reduction algorithm we give an NC Turing reduction from RIT to
bivariate ncRANK, which is a main result of this section.

5.1 Depth reduction for noncommutative formulas with inversion gates
The following is a consequence of results in [21] and [17].

I Theorem 15 ([21, 17]). Let � be a rational formula of size s computing a non-zero rational

function in F2X3. If the field F is su�ciently large and k > 2s then, at a matrix tuple

(M1,M2, . . . ,Mn) chosen uniformly at random from Mk◊k(F)n, the matrix �̂(M1, . . . ,Mn)
is nonsingular with “high” probability.

If F is small then we can pick the random matrices over a suitable extension field, and by
“high” probability we mean, say, 1 ≠ 2≠�(s+n).

9 It is an interesting problem to devise an NC algorithm for rational formula depth reduction without
oracle access to singularity test.

10The overall proof in [21] is based on the Brent’s depth-reduction of commutative rational formulas [9].
In the commutative case addressed by Brent, it turns out that the construction procedure does not
require oracle access to identity testing and he obtains an NC algorithm for obtaining the depth-reduced
formula.
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Let �1 and �2 be correct rational formulas of size at most s computing rational functions
in F2X3. By Theorem 15 and a union bound argument, for a random matrix substitution
(M1,M2, . . . ,Mn) from Mk◊k(F)n, inputs to all the inversion gates in �1 and �2 simultan-
eously evaluate to non-singular matrices with “high” probability. Hence, for k su�ciently
large we have Dk,�1 fl Dk,�2 ”= ÿ. It follows that a random matrix tuple is in Dk,�1 fl Dk,�2

with high probability.
By Theorem 15 and the definition of correct rational formulas (Definition 2), it follows

that if �1 and �2 are size s correct formulas that are not equivalent then for a random
matrix substitution of dimension k > 2s both �1 and �2 are defined and they disagree with
high probability. As noted in Section 2, equivalent formulas need not have the same domain
of definition.

Lemma 17 is the main technical result of this section. It describes an NC algorithm for
depth-reduction of correct formulas assuming an oracle for bivariate ncRANK. The next
lemma is useful for establishing equivalences of formulas arising in the proof of Lemma 17.
Suppose � is a rational formula computing the rational function �̂. For a gate v in formula
�, �v denotes the subformula rooted at v. The formula �vΩz œ F2X fi {z}3 is obtained
from � by replacing subformula �v with fresh variable z.

I Lemma 16 (local surgery). Let � be a correct rational formula and v be a gate in �.

Suppose � is a correct rational formula equivalent to �v. Let �Õ = (A ·z+B) · (C ·z+D)≠1
is

a formula equivalent to �vΩz such that A,B,C,D are correct formulas which do not depend

upon z and Ĉ · �̂ + D̂ ”= 0 for any formula � such that �vΩ� is correct. Let �Õ
denote the

rational formula obtained by replacing z in �Õ
by �. Then �Õ

is correct and it is equivalent

to �.

Proof. From the definitions of �v and �vΩz it follows that � = �vΩ�v . As � is correct, from
the properties of formulas C,D as stated in the lemma it follows that Ĉ�̂v + D̂ ”= 0. Which
implies Ĉ�̂+ D̂ ”= 0 as � © �v. This shows that the formula �Õ = (A ·�+B) · (C ·�+D)≠1

is correct. Now let · = (M1, . . . ,Mn) is a matrix tuple in D� fl D�Õ , the intersection
of domains of definition of � and �Õ. This implies · œ D�v as D� ™ D�v , �v being
subformula of �. Similarly, · œ D� as D�Õ ™ D�, � being a subformula of �Õ. So
· œ D�v fl D�. As �v © �, it follows that �v(·) = �(·). As · œ D�. It implies that
(M1,M2, . . . ,Mn,�v(·)) = (·,�v(·)) œ D�vΩz . Similarly, as · œ D�Õ , it follows that
(·,�(·)) œ D�Õ . As �v(·) = �(·), it implies

(·,�v(·)) = (·,�(·)) œ D�vΩz fl D�Õ

As �vΩz © �Õ, this implies �vΩz(·,�v(·)) = �Õ(·,�(·)). But �vΩz(·,�v(·)) = �(·) and
�Õ(·,�(·)) = �Õ(·). So we get �(·) = �Õ(·) for any · œ D� flD�Õ . Thus proving � © �Õ. J

I Lemma 17. Given a correct formula � of size s computing a rational function f œ F2X3,
for su�ciently large s and absolute constants c, b

1. we give an NC algorithm, with oracle access to bivariate ncRANK, that outputs a correct

formula �Õ
of depth at most c log2 s which is equivalent to �.

2. If a variable z occurs in � at most once then we give an NC algorithm, with bivariate

ncRANK as oracle, that constructs correct rational formulas A,B,C,D which do not

depend on z with depth at most c log2 s+ b and the formula �Õ = (A · z+B) · (C · z+D)≠1

is equivalent to �. Moreover, the rational function Ĉ�̂ + D̂ ”= 0 for any formula � such

that �zΩ� is correct.
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Proof. We give a recursive construction for both the parts and prove the correctness by
induction on s, the size of the formula �.

Depth-reduce(�).
Input: A correct formula � of size s computing a rational function in F2X3.
Output: A correct formula �Õ of depth at most c log2 s such that � © �Õ.
1. Find a gate v œ � such that s

3
< wt(v) Æ 2s

3
.

2. In Parallel construct formulas �, � such that � = Depth-Reduce(�v) and � =
Normal-Form(�vΩz, z).

3. Obtain formula �Õ from � by replacing z in � by �.
4. Output �Õ.

Normal-Form(�, z).
Input: A correct formula � of size s computing a rational function in F2X3 and a variable
z œ � which appears at most once in �
Output: A correct formula �Õ which is of the form

�Õ = (Az +B)(Cz +D)≠1

where A,B,C and D are correct rational formulas which do not depend on z with depth at
most c log2 s+ b. Moreover, the rational function Ĉ�̂ + D̂ ”= 0 for any formula � such that
�zΩ� is correct.

Let v1, v2, . . . , v¸ = z be gates on the path from root r of � to the leaf gate z, such that
vj is not an inverse gate. So parent of each vj has two children, and let ui denote the sibling
of vi. Use pointer doubling based parallel algorithm (as mentioned in the proof of Lemma
10) to compute wt(ui) and wt(vi) for all i œ [¸]. We call gate vi for i œ [¸] as a balanced gate
if wt(�vi), wt(�viΩzÕ) Æ 5s

6
. Now we consider two cases.

1. There exist a balanced gate vi:
a. Let v = vi. In parallel compute formulas �1,�2 such that

�1 = (A1z
Õ +B1)(C1z

Õ +D1)≠1 = Normal-Form(�vΩzÕ , z
Õ)

�2 = (A2z +B2)(C2z +D2)≠1 = Normal-Form(�v, z)
b. Define formulas A,B,C,D as A1 ·A2 +B1 · C2, A1 ·B2 +B1 ·D2, C1 ·A2 +D1 · C2

and C1 ·B2 +D1 ·D2 respectively.
c. Let �Õ = (A · z +B) · (C · z +D)≠1

d. Output �Õ and halt
2. There does not exist a balanced gate:

In this case, we can prove that there is a unique i œ [¸] such that wt(ui) > s
6
.

a. Let v be parent of the gate vi.
b. In Parallel find formulae �1,�2,�3,�4 such that

�1 = (A1z
Õ +B1)(C1z

Õ +D1)≠1 = Normal-Form(�vΩzÕ , z
Õ)

�2 = (A2z +B2)(C2z +D2)≠1 = Normal-Form(�vi , z)
�3 = Depth-Reduce(�ui)
�4 = (Az +B)(Cz +D)≠1 = Normal-Form(�ÕÕ

, z)
where �ÕÕ is obtained by replacing sub-tree rooted at ui by 0 in �.

c. Using the algorithm of Theorem 19 check if �̂3 © 0 in NC with oracle access to bivariate
ncRANK. If �̂3 © 0 then output �4 and halt.
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d. If �̂3 ”© 0 then let �Õ = (A · z +B) · (C · z +D)≠1, where

A =

Y
__]

__[

A1A2 +B1C2 +A1�̂3C2 if vi is a +-gate
A1�̂3A2 +B1C2 if vi is a ◊-gate and is a right child of v
A1A2 +B1�̂3

≠1

C2 if vi is a ◊-gate and is a left child of v

B =

Y
__]

__[

A1B2 +B1D2 +A1�̂3D2 if vi is a +-gate
A1�̂3B2 +B1D2 if vi is a ◊-gate and is a right child of v
A1B2 +B1�̂3

≠1

D2 if vi is a ◊-gate and is a left child of v

C =

Y
__]

__[

C1A2 +D1C2 + C1�̂3C2 if vi is a +-gate
C1�̂3A2 +D1C2 if vi is a ◊-gate and is a right child of v
C1A2 +D1�̂3

≠1

C2 if vi is a ◊-gate and is a left child of v

D =

Y
__]

__[

C1B2 +D1D2 + C1�̂3D2 if vi is a +-gate
C1�̂3B2 +D1D2 if vi is a ◊-gate and is a right child of v
C1B2 +D1�̂3

≠1

D2 if vi is a ◊-gate and is a left child of v

e. Output �Õ and halt.

Case 2 above is not explicitly dealt with in [21] as their focus is on the existence of a
log-depth formula equivalent to �. In contrast to that, in our case we want to algorithmically

construct log-depth formula �Õ equivalent to �. This makes the details of Case 2 crucial
as the construction of �Õ in Case 2 depends on whether �̂ui © 0 or not. To solve this RIT
instance we need to recursively compute log-depth formula �3 equivalent to �ui and then
invoke algorithm of theorem 19 to carry out RIT test in NC with oracle access to bivariate
ncRANK, as in Step (c).

We first prove the correctness of both the algorithms described above using induction on
s, then we analyze the parallel complexity of both the algorithms. We will choose appropriate
constants c, b during the proof.

Correctness of the algorithm Depth-Reduce. We know that there exists a gate v œ � such
that s

3
< wt(v) Æ 2s

3
. As in proof of Lemma 10 we can find such a gate v as required by Step

1 of the Depth-Reduce algorithm. Clearly, the formulas �v and �vΩz are of size at most
2s/3. Using inductive assumption, we can construct a correct formula � such that depth
of � is at most c log2 2s

3
and � © �v. Again using inductive assumption we can construct

correct formulas A,B,C,D (which do not depend on z) of depth at most c log2 2s
3
+ b such

that the formula � = (A · z +B) · (C · z +D)≠1 is equivalent to �vΩz. Since � is equal to
the formula obtained from �vΩz by replacing z by �v and � is correct so from inductive
assumption it follows that Ĉ�̂v + D̂ ”= 0.

As � © �v, � © �vΩz and Ĉ�̂v + D̂ ”= 0 from Lemma 16 it follows that �Õ is correct
and �Õ © �. Since �Õ = (A · � + B) · (C · � + D)≠1 we get that depth of �Õ is at most
c log2 2s

3
+ b + 4. By choosing constant c Ø b+4

(log2 3≠1)
, we get that the depth of �Õ is at

most c log2 s. Completing the inductive argument for the correctness proof of the algorithm
Depth-Reduce.
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Correctness of the algorithm Normal-Form. In case (1) we know that there exists a
balanced gate v = vi. We have wt(�v), wt(�vΩzÕ) Æ 5s

6
. So by inductive assumption we

know that the formulas Aj , Bj , Cj , Dj for j œ {1, 2} are correct, and their depths are at
most c log2 5s

6
+ b. Now using compositionality of the z-normal forms as in Proposition 4.1

of [21] it follows that the formula �Õ = (A · z +B) · (C · z +D)≠1 is equivalent to � where
A,B,C,D are A1 ·A2 +B1 · C2, A1 ·B2 +B1 ·D2, C1 ·A2 +D1 · C2 and C1 ·B2 +D1 ·D2

respectively. Also, clearly the depth of A,B,C,D is at most c log2 5s
6
+ b+ 2. By choosing

c Ø 2

(log2 6≠log2 5)
it follows that the depths of formulas A,B,C,D are at most c log2 s+ b. To

complete the inductive proof we need to prove that Ĉfî + D̂ ”= 0 for any formula fi such that
�zΩfi is correct. Let fi be such that �zΩfi is correct. For simplicity lets denote formulas �v

and �vΩzÕ by – and — respectively. Since �zΩfi is correct, it implies –zΩfi is correct as – is
a subformula of �. So by inductive assumption Ĉ2fî+ D̂2 ”= 0. Since �zΩfi is correct, — being
a subformula of � it also implies —zÕΩ“ is correct where “ = (A2 · fi +B2) · (C2 · fi +D2)≠1.
By inductive assumption we get

Ĉ1“̂ +D1 ”= 0 which implies
Ĉ1[(Â2 · fî + B̂2) · (Ĉ2 · fî + D̂2)≠1] +D1 ”= 0 which implies

Ĉ1(Â2 · fî + B̂2) + D̂1(Ĉ2 · fî + D̂2) ”= 0 as Ĉ2fî + D̂2 ”= 0
So (Ĉ1Â2 + D̂1Ĉ2)fî + (Ĉ1B̂2 + D̂1D̂2) ”= 0 which implies

Ĉfî + D̂ ”= 0

This completes the proof for case 1.
Next we argue that case 1 and case 2 together cover all the possibilities. To see this, we

will argue that if there does not exist a unique ui with wt(ui) Ø s
6
then there must exist a

balanced gate. There are two possibilities: either for every gate ui, wt(ui) Æ s
6
or there are

two or more gates ui’s with wt(ui) > s
6
If for every i œ [¸], wt(ui) Æ s

6
, we find smallest j such

that
qj

i=1
wt(ui) > s

6
. Clearly

qj
i=1

wt(ui) Æ 2s
6
, which implies wt(�v), wt(�vΩzÕ) Æ 5s

6
for

v = vi+1. So v is balanced. If there are two or more ui’s such that wt(ui) > s
6
then v be

parent of gate ui such that i is a largest index with wt(ui) > s
6
. Clearly v is a balanced gate.

This proves that case 1, 2 together cover all possibilities.
Assume that there is a unique i œ [¸] such that wt(ui) > s

6
. We first apply Depth-Reduce

on formula �ui and get a log-depth formula �3 equivalent to �ui , we carry out this depth
reduction to e�ciently test if �ui © 0?. We will give details on this later when we figure
out the parallel time complexity of the algorithm. Now when �ui © �3 © 0, clearly formula
� © �ÕÕ where �ÕÕ is a formula obtained from � by replacing sub-formula rooted at ui

by 0. As wt(ui) >
s
6
, we have |�ÕÕ| Æ 5s

6
. So by inductive assumption, the correct sub-

formulas A,B,C,D of �4 obtained by recursive call Normal-Form(�ÕÕ
, z) have depth at most

c log2 5s
6
+ b Æ c log2 s + b and �4 © �ÕÕ © �. So it follows, �zΩfi © �ÕÕ

zΩfi. Consequently
�zΩfi is correct i� �ÕÕ

zΩfi is correct. So from inductive hypothesis it follows that Ĉfî + D̂ ”= 0
for any formula fi such that �zΩfi is correct. This proves the correctness of Normal-form
procedure when �ui © 0.

Now let �ui ”© 0. Let v be the parent of ui. Below we discuss the case when v is ◊-gate
and ui is a right child of v.

We have �2 © �vi © (A2 ·z+B2)·(C2 ·z+D2)≠1. Let h1 = A2 ·z+B2 and h2 = C2 ·z+D2).
So �vi © h1 · h≠1

2
. Now as v is ◊-gate and vi, ui are left and right children of v respectively.

So we get �v © h1h
≠1

2
�ui © h1h

≠1

2
�3. We have �1 © �vΩzÕ = (A1z

Õ +B1)(C1z
Õ +D1)≠1.

So we get
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� © ( A1 · (h1h
≠1

2
�3) +B1) · ( C1 · (h1h

≠1

2
�3) +D1)≠1

© (A1 · h1 +B1 · �≠1

3
h2) · h≠1

2
�3 · [ (C1 · h1 +D1 · �≠1

3
h2) · h≠1

2
�3 ]≠1

© (A1 · h1 +B1 · �≠1

3
h2) · h≠1

2
�3 · �≠1

3
h2 · (C1 · h1 +D1 · �≠1

3
h2)≠1

© (A1 · h1 +B1 · �≠1

3
h2) · (C1 · h1 +D1 · �≠1

3
h2)≠1

By substituting values of h1, h2 and simplifying we get that � © (A · z +B) · (C · z +D)≠1

where A,B,C,D are A1 ·A2 +B1 · �≠1

3
·C2, A1 ·B2 +B1 · �≠1

3
·D2, C1 ·A2 +D1 · �≠1

3
·C2

and C1 ·B2 +D1 · �≠1

3
·D2 respectively as defined in Step 2(d).

As wt(ui) > s
6
, clearly |�vi |, |�vΩzÕ | Æ 5s

6
. Since

�1 = (A1z
Õ +B1)(C1z

Õ +D1)≠1 = Normal-Form(�vΩzÕ , z
Õ)

�2 = (A2z +B2)(C2z +D2)≠1 = Normal-Form(�vi , z)

So by inductive assumptions the sub-formulas A1, B1, C1, D1 of �1 and the sub-
formulas A2, B2, C2, D2 of �2 are correct and have depths at most c log2 5s

6
+ b. As

�3 = Depth-Reduce(�ui) and |�ui | < s by inductive assumption we get that the depth of �3

is at most c log2 s. Clearly c log2 5s
6
+ b Æ c log2 s for c Ø b

log2 6≠log2 5)
. So from expressions

for A,B,C,D it follows that the depth of A,B,C,D is at most depth of �3 plus 4. Which
implies that the depth of A,B,C,D is at most c log2 s+4 Æ c log2 s+ b if the constant b Ø 4.
This gives us the desired bound on the depth of A,B,C,D. To summarize if we choose
constant b Ø 4 and choose constant c such that it satisfies all the lower bounds required in
di�erent steps of the above proof, we will get the desired bound on the depth of A,B,C,D.
We can show that Ĉfî + D̂ ”= 0 for any formula fi such that �zΩfi is correct. The proof
is similar to one for Case (1), we additionally need to take into account ◊-gate at v while
composing z-Normal forms �1 and �2. We skip the details.

When v is a v is a ◊-gate and ui is a left child of v, the composition of z-normal forms
is easy as we do not need an oracle access for RIT as in the case discussed above when ui

is the right child. In the commutative case we can by default assume that ui is the left
child. Precisely for this reason Brent’s construction [9] is independent of whether �ui © 0
or not. We skip the details of cases when v is a +-gate or v is ◊-gate and ui is the left
child which can be handled similar to case (1). This proves the correctness of the procedure
Normal-Form.

Next we analyze the parallel time complexity of both the procedures. Let t1(s), t2(s)
denote the parallel time complexities of the procedures Depth-Reduce and Normal-Form
respectively. The step (1) of the Depth reduce procedure can be implemented in NC so it
has parallel time complexity (log2 s)k for some absolute constant k. As both the formulas
�v and �vΩz have sizes at most 2s/3, the parallel time complexity of step (2) is at most
max(t1(2s/3), t2(2s/3)). So we get the following recurrence for t1(s).

t1(s) Æ (log2 s)a +max
3

t1

3
2s
3

4
, t2

3
2s
3

44

where a is an absolute constant. Now we obtain recurrence for t2(s). In Case (1) of
Normal-Form when there exist a balanced gate vi, we can find such a gate in NC. Both
the formulas �v and �vΩzÕ have the sizes at most 5s/6 so step 1(a) takes parallel time
max(t1(5s/6), t2(5s/6)). In case (2) the formulas �vΩzÕ , �vi and �ÕÕ all have sizes at most
5s/6 and formula �ui has size at most s ≠ 1. So collectively we get the following recurrence
for t2(s)
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t2(s) Æ (log2 s)b +max
3

t1

3
5s
6

4
, t2

3
5s
6

4
, t1(s ≠ 1)

4

Æ (log2 s)b +max
3

t2

3
5s
6

4
, t1(s)

4

for an absolute constant b. The upper bound t1(s), t2(s) Æ (log2 s)c for su�ciently large
constant c follows from an easy induction. Hence both the procedures can be implemented
in deterministic NC. J

Hrubes-Wigderson reduction from RIT to ncRANK

Now we recall the polynomial-time reduction from RIT to ncRANK from [21, Theorem 2.6].
Given a rational formula � their reduction outputs an invertible linear matrix M in the
variables X.11 Their reduction ensures that the top right entry of M≠1 is �̂, the rational
function computed by the formula �. It turns out that if � is already of logarithmic depth
then their reduction can be implemented in NC.

I Theorem 18 ([21]). Let � be a rational formula of size s and depth O(log s) computing

a rational expression in F2X3 there is an NC algorithm to construct an invertible linear

matrix M� such that the top right entry of M
≠1

�
is �̂.

Proof. We only briefly sketch the NC algorithm. Their reduction recursively constructs the
matrix M�, using the formula structure of �.

Given a formula � we can compute the sizes of all its subformulas in NC using a standard
pointer doubling algorithm. This allows us to estimate the dimensions of matrices M�v

for subformulas �v for each gate v of �. We can also compute in NC the precise location
for placement of the sub-matrices M�v inside the matrix M� following their construction.
Assuming that � is already of logarithmic depth, there are only O(log s) nested recursive
calls for this recursive procedure. This ensures that the overall process can be implemented
in NC. J

After constructing linear matrix M� such that the top right entry of M≠1

�
is �̂, define

matrix M
Õ as M Õ =

3
v
T

M�

0 ≠u

4

where u, v are 1 ◊ k vectors, such that u = (1, 0, . . . , 0) and v = (0, 0, . . . , 0, 1) where k is
the dimension of the matrix M�. It follows that �̂ ”= 0 i� M

Õ is invertible in the skew field
F2X3 (see e.g. [18, Proposition 3.29]). So we have the following theorem.

I Theorem 19 ([21]). Let � be a rational formula of size s and depth O(log s) computing a

rational expression in F2X3 then there is an NC algorithm to construct a linear matrix M

such that �̂ ”= 0 i� M is invertible in the skew field F2X3.

Now, from Lemma 17, Theorem 19, and Theorem 9, we obtain an NC Turing reduction from
multivariate RIT to bivariate ncRANK.

I Theorem 20. There is a deterministic NC Turing reduction from RIT problem to ncRANK

problem for bivariate linear matrices.

11Notice that the entries of M≠1 are elements of the skew field F2X3
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Concluding Remarks

Motivated by the question whether RIT and ncRANK have deterministic NC algorithms,
we show that multivariate RIT is NC-reducible to bivariate RIT and multivariate ncRANK
is NC-reducible to bivariate ncRANK. RIT is known to be polynomial-time reducible to
ncRANK, and indeed that is how the polynomial-time algorithm for RIT works, by reducing
to ncRANK and solving ncRANK. We show that RIT is deterministic NC-Turing reducible to
ncRANK. We prove this by showing that noncommutative rational formula depth reduction
is NC-Turing reducible to ncRANK. The main open problem is to obtain deterministic
NC algorithms for bivariate ncRANK and bivariate RIT. We also leave open finding an
unconditional NC algorithm for depth-reduction of noncommutative rational formulas.
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Abstract

We address the problem of List Update, which is considered one of the fundamental problems in
online algorithms and competitive analysis. In this context, we are presented with a list of elements
and receive requests for these elements over time. Our objective is to fulfill these requests, incurring
a cost proportional to their position in the list. Additionally, we can swap any two consecutive
elements at a cost of 1. The renowned “Move to Front” algorithm, introduced by Sleator and Tarjan,
immediately moves any requested element to the front of the list. They demonstrated that this
algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the
algorithm’s solution can be excessively high. For example, if we request the last half of the list, the
resulting solution cost becomes quadratic in the list’s length.

To address this issue, we consider a more generalized problem called List Update with Time
Windows. In this variant, each request arrives with a specific deadline by which it must be served,
rather than being served immediately. Moreover, we allow the algorithm to process multiple requests
simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case
is determined by the position of the furthest element accessed, leading to a significant reduction in
the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates
the development of new algorithms. For instance, Move-to-Front fails when handling the simple
scenario of requesting the last half of the list with overlapping time windows. In our work, we present
a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its
analysis is intricate, requiring the use of a novel potential function.

Additionally, we delve into a more general problem called List Update with Delays, where
the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not
only the access and swapping costs, but also penalties for the delays incurred until the requests
are served. This problem encompasses a special case known as the prize collecting version, where
a request may go unserved up to a given deadline, resulting in a specified penalty. For this more
comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the
delay version is more complex, and its analysis involves significantly more intricate considerations.
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1 Introduction

One of the fundamental problems in online algorithms is the List Update problem. In
this problem we are given an ordered list of elements and requests for these elements that
arrive over time. Upon the arrival of a request, the algorithm must serve it immediately by
accessing the required element. The cost of accessing an element is equal to its position in
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15:2 List Update with Delays or Time Windows

the list. Finally, any two consecutive elements in the list may be swapped at a cost of 1. The
goal in this problem is to devise an algorithm so as to minimize the total cost of accesses
and swaps. Note that it is an online algorithm and hence does not have any knowledge of
future requests and must decide what elements to swap only based on requests that have
already arrived.

Although the list update problem is a fundamental and simple problem, its solutions
may be costly. Consider the following example. Assume that we are given requests to each
of the elements in the farther half of the list. Serving these requests sequentially results in
quadratic cost (quadratic in the length of the list). However, in many scenarios, while the
requests arrive simultaneously, they do not have to be served immediately. Instead, they
arrive with some deadline such that they must be served some time in the (maybe near)
future. If this is the case, and the requests’ deadlines are further in the future than their
arrival, they may be jointly served; thereby incurring a linear (rather than quadratic) cost in
the former example. This example motivates the following definition of List Update with
Time Windows problem which may improve the algorithms’ costs significantly.

The List Update with Time Windows problem is an extension of the classical List
Update problem. Requests are once again defined as requests that arrive over time for elements
in the list. However, in this problem they arrive with future deadlines. Requests must be
served during their time window which is defined as the time between the corresponding
request’s arrival and deadline. This grants some flexibility, allowing an algorithm to serve
multiple requests jointly at a point in time which lies in the intersection of their time windows.
The cost of serving a set of requests is defined as the current position of the farthest of those
elements (i.e. serving a request for the i-th item in the list causes all the other active requests
for the first i elements in the list to be served as well in this access operation). In addition, as
in the classical problem, swaps between any two consecutive elements may be performed at a
cost of 1. Note that both accessing elements (or, serving requests) and swapping consecutive
elements is done instantaneously (i.e., time does not advance during these actions). The goal
is then to devise an online algorithm so as to minimize the total cost of serving requests
and swapping elements. Also note that this problem encapsulates the original List Update
problem. In particular, the List Update problem can be viewed as List Update with Time
Windows where each time window consist of a unique single point.

We also consider a generalization of the time-window version – List Update with
Delays. In this problem each request is associated with an arbitrary delay function, such
that an algorithm accumulates delay cost while the request remains pending (i.e., unserved).
The goal is to minimize the cost of serving the requests plus the total delay. This provides
an incentive for the algorithm to serve the requests early.

Another interesting and related variant is the prize collecting variant, which has been
heavily researched in other fields as well. The price collecting problem is a special case of
List Update with Delay and a generalization of List Update with Time Windows. In the
context of List Update, the prize collecting problem is defined such that a request must be
either served until some deadline or incur some penalty. Note that List Update with Delays
encapsulates this variant by defining a delay function that incurs 0 cost and thereafter (at the
deadline) immediately jumps to the penalty cost. The prize collecting problem encapsulates
List Update with Time Windows when the penalty is arbitrarily large.

While the flexibility introduced in the list update with time windows or delays problems
allow for lower cost solutions, it also introduces complexity in the considered algorithms.
In particular, the added lenience will force us to compare di�erent algorithms (our online
algorithm compared to an optimal algorithm, for instance) at di�erent time points in the
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input sequence. Since the problem definition allows for serving requests at di�erent time
points, this results in di�erent sets of unserved requests when comparing the algorithms –
this divergence will prove to be the crux of the problem and will result in significant added
complexity compared to the classical List Update problem.

Originally, the List Update problem was defined to allow for free swaps to the accessed
element: i.e., immediately after serving an element e, the algorithm may move e towards the
head of the list - free of charge. All other swaps between consecutive elements still incur a
cost of 1. In our work, it will be convenient for us to consider the version of the problem
where these free swaps are not allowed and all swaps between two consecutive elements incur
a cost of 1. We would like to stress that while these two settings may seem di�erent, this is
not the case. One may easily observe that the di�erence in costs between a given solution in
the two models is at most a multiplicative factor of 2. This can be seen to be true since the
cost of the free swaps may be attributed to the cost of accessing the corresponding element
(that was swapped) which is always at least as large. Thus, our results extend easily to the
model with free swaps to the accessed element (by losing a factor of 2 in the competitive
ratio). In particular, an algorithm which is constant competitive for one of the models is
also constant-competitive for the other.

Using the standard definitions an o�ine algorithm sees the entire sequence of requests
in advance and thus may leverage this knowledge for better solutions. Conversely, an online
algorithm only sees a request (i.e., its corresponding element and entire time window or a
delay function) upon its arrival and thus must make decisions based only on requests that
have already arrived1. To analyze the performance of our algorithms we use the classical
notion of competitive ratio. An online algorithm is said to be c-competitive (for c Ø 1) if
for every input, the cost of the online algorithm is at most c times the cost of the optimal
o�ine algorithm2.

1.1 Our Results

In this paper, we show the following results:
For the List Update with Time Windows problem we provide a 24-competitive algorithm.
For the List Update with Delays we provide a 336-competitive algorithm.

For the time windows version the algorithm is natural. Upon a deadline of a request
for an element, the algorithm serves all requests up to twice the element’s position and then
moves that element to the beginning of the list. Note that the algorithm does not use the
fact that the deadline is known when the request arrives. I.e. our result holds even if the
deadline is unknown until it is reached (as in non-clairvoyant models). Also note that while
the algorithm is deceptively straightforward - its resulting analysis is tremendously more
involved.

In the delay version the algorithm is more sophisticated. (See the full version [12]
for counter examples to some simpler algorithms). The algorithm maintains two types of
counters: request counters and element counters. For every request, its request counter
increases over time at a rate proportional to the delay cost the request incurred. The request

1 In principle the time when a request arrives (i.e., is revealed to the online algorithm) need not be the
same as the time when its time window or delay begins (i.e., when the algorithm may serve the request).
Note however that the change makes no di�erence with respect to the o�ine algorithms but only allows
for greater flexibility of the online algorithms. Therefore, any competitiveness results for our problem
will transcend to instances with this change.

2 We note that the lists of both the online algorithm and the optimum o�ine algorithm are identical at
the beginning.
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15:4 List Update with Delays or Time Windows

counter will be deleted at some point in time after the request has been served (it may not
happen immediately after the request is served, but rather further in the future). Unlike the
request counters, an element counter’s scope is the entire time horizon. The element counter
increases over time at a rate that is proportional to the sum of delay costs of unserved
requests to that element. Once the requests are served, the element counter ceases to increase.
There are two types of events that cause the algorithm to take action: prefix-request-counter
events and element-counter events. A prefix-request-counter event takes place when the
sum of the request counters of the first ¸ elements reaches a value of ¸. This event causes
the algorithm to access the first 2¸ elements in the list and delete the request counters for
requests to the first ¸ elements. The request counters of the elements in positions ¸ + 1 up
to 2¸ remain undeleted but cease to increase (Note that this will also result in the first 2¸

element counters to also cease to increase). An element-counter event takes place when an
element counter’s value reaches the element’s position. Let ¸ be that position. This event
causes the algorithm to access the first 2¸ elements in the list. Thereafter, the algorithm
deletes all request counters of requests to that element. Finally, the element’s counter is
zeroed and the algorithm moves the element to the front.

It is interesting to note that List Update with Delay in the clairvoyant case can be reduced
to the special case of prize collecting List Update (which is a generalization of List Update
with Time Windows) by creating multiple requests with appropriate penalties. However,
neither our algorithm for Delay nor our proof are getting simplified for this case, therefore
we present our algorithm and proof for the general case (i.e. for List Update with Delay).
Moreover, the reduction from List Update with Delay to prize collecting holds only for the
clairvoyant case while our algorithm works on the non-clairvoyant model as well. The full
version of this paper contains all the omitted proofs, figures and additional counter examples,
and appears in [12].

1.2 Previous Work

We begin by reviewing previous work relating to the classical List Update problem. Sleator
and Tarjan [27] began this line of work by introducing the deterministic online algorithm
Move to Front (i.e. MTF ). Upon a request for an element e, this algorithm accesses e and
then moves e to the beginning of the list. They proved that MTF is 2-competitive in a model
where free swaps to the accessed element are allowed. The proof uses a potential function
defined as the number of inversions between MTF ’s list and OPT ’s list. An inversion
between two lists is two elements such that their order in the first list is opposite to their
order in the second list. A simple lower bound of 2 for the competitive ratio of deterministic
online algorithms is achieved when the adversary always requests the last element in the
online algorithm’s list and OPT orders the elements in its list according to the number of
times they were requested in the sequence. Since the model with no free swaps di�ers in
the cost by at most a factor of 2 this immediately yields that MTF is 4-competitive for the
model with no free swaps. The simple 2 lower bound also holds for this model. Previous
work regarding randomized upper bounds for the competitive ratio have been done by many
others [25, 26, 2, 1, 5]. Currently, the best known competitiveness was given by Albers, Von
Stengel, and Werchner [3], who presented a random online algorithm and proved it is 1.6
competitive. Previous work regarding lower bounds for this problem have also been made
[28, 26, 5]. The highest of which was achieved by Ambühl, Gartner and Von Stengel [6], who
proved a lower bound of 1.50084 on the competitive ratio for the classical problem. With
regards to the o�ine classical problem: Ambühl proved this problem is NP-hard [4].
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Problems with time windows have been considered for various online problems. Gupta,
Kumar and Panigrahi [24] considered the problem of paging (caching) with time windows.
Bienkowski et al. [16] considered the problem of online multilevel aggregation. Here, the
problem is defined via a weighted rooted tree. Requests arrive on the tree’s leaves with
corresponding time windows. The requests must be served during their time window. Finally,
the cost of serving a set of requests is defined as the weight of the subtree spanning the
nodes that contain the requests. Bienkowski et al. [16] showed a O(D42D) competitive
algorithm where D denotes the depth of the tree. Buchbinder et al. [21] improved this to
O(D) competitiveness. Later, Azar and Touitou [14, 15] provided a framework for designing
and analyzing algorithms for these types of metric optimization problems.

In addition, set cover with deadline [9] was also considered as well as online service
in a metric space [20, 11]. To all these problems poly-logarithmic competitive algorithms
were designed. It is interesting to note that in contrast to all these problems we show
that for our list update problem constant competitive algorithms are achievable. We note
that problems with deadline can be also extended to problems with delay where there is a
monotone penalty function for each request that is increasing over time until the request
is served (and is added to the original cost). Many of the results mentioned above can be
extended to arbitrary penalty function. The main exception is matching with delays that can
be e�ciently solved (i.e. with poly-logarithmic competitive ratio) only for linear functions
[22, 8, 7] as well as for concave functions [13]. For other problems that tackle deadlines and
delays see: [17, 23, 10, 18, 19].

1.3 Our Techniques

While introducing delays or time windows introduces the option of serving multiple requests
simultaneously thereby drastically improving the solution costs, this lenience requires the
algorithms and their analyses to be much more intricate.

The “freedom” given to the algorithm compared with the classical List Update problem
requires more decisions to be made: for example, in the time windows version assume there
are currently two active requests: a request for an element e1 which just reached its deadline
and a request for a further element in the list, e2 but its deadline has not been reached yet.
Should the algorithm access only e1, pay its position in the list and leave the request for e2
to be served later or access both e1 and e2 together and pay the position of e2 in the list? If
no more requests arrive until the deadline of the second active request, the latter option is
better. However, requests that might arrive before the deadline of the second active request
might cause the former option to be better after all. In the delay version the decision is
more complicated since it may be the case that there are various requests for elements, each
request accumulated a small or medium delay but their total is large. Hence, we need to
decide at what stage and to what extend serving these requests. Moreover it is more tricky
to decide which element to move to the front of the list and at which point in time.

As for the analysis, we need to handle the fact that the online algorithm and the optimal
algorithm serve requests at di�erent times. Further, since both algorithms may serve di�erent
sets of requests at di�erent times, we may encounter situations wherein a given request at a
given time would have been served by the online algorithm and not the optimal algorithm
(and vice versa). This, combined with the fact that the algorithms’ lists may be ordered
di�erently at any given time, will prove to be the crux of our problem and its analysis.

To overcome these problems, we introduce new potential functions (one for the time
windows case and one for the delays case). We note that the original List Update problem
was also solved using a potential function [27], however, due to the aforementioned issues,
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15:6 List Update with Delays or Time Windows

the original function failed to capture the resulting intricacies and we had to introduce novel
(and more involved) functions. Ultimately, this resulted in constant competitiveness for both
settings.

List Update with Time Windows. Here, the potential function consists of three terms. The
first accounts for the di�erence (i.e., number of inversions) between the online and optimal
algorithms’ lists at any given time (similar to that of Sleator and Tarjan [27]). The second
term accounts for the di�erence in the set of served requests between the two algorithms.
Specifically, whenever the optimal algorithm serves a request not yet served by the online
algorithm, we add value to this term which will be subtracted once the online algorithm
serves the request. The third term accounts for the movement costs made by the online
algorithm incurred by requests that were already served by the optimal algorithm.

At any given time point, our proof considers separately elements that are positioned
(significantly) further in the list in the online algorithm compared to the optimal algorithm, as
opposed to all other elements (which we will refer to as “the closer” elements). To understand
the flavor of our proofs, e.g., the incurred costs of “the further” elements is charged to the
first term of the potential function. In contrast, the change in the first term is not be enough
to cover the incurred costs of “the closer” elements (the term may even increase). Fortunately,
the second term is indeed enough to cover both the incurred costs and the (possible) increase
in the first term. Specifically, the added value is of the same order of magnitude as the access
cost incurred by the optimal algorithm for serving the corresponding requests. This follows
from (a) only requests for elements in ALG which are located at a position which is of the
same order of magnitude as the location in OPT get “gifts” in the second term. (b) The
fact that the number of trigger elements and their positions in ALGs list is bounded because
upon a deadline of a trigger, ALG serves all the elements located up to twice the position
of the trigger in its list. The definition of the term “trigger” appears in the beginning of
Section 3.

Note however that the analysis above holds only as long as the optimal algorithm does
not move an element further in the list between the time it serves it and the time the online
algorithm serves it. In such a case, the third term will o�set the costs.

List Update with Delays. Here, the potential function consists of five terms. The first
term is similar to that of the time windows setting with the caveat that defining the distance
between the online and optimal algorithms’ lists should depend on the values of the element
counters as well. Consider the following example. Assume that the ordering of i, j is reversed
when comparing it between the online and optimal algorithms and assume it is ordered (i, j)
in the online algorithm. As we defined our algorithm, once the element counter of j is filled,
it is moved to the front and therefore the ordering will be reversed. Therefore, intuitively, if
j element counter is almost filled we consider the distance between this pair smaller than the
case where its element counter is completely empty. Therefore, we would like the contribution
to the potential function to be smaller in the former case.

Note that the contribution of the inversion (i, j) depends on the element counter of
j but not on the element counter of i (i.e. the contribution is asymmetric). Even if the
element counter of j is very close to its position in the online algorithm’s list, we still need a
big contribution of the pair (i, j) in order to pay for the next element counter event on j.
However, if the element counter of j is far from its position in the online algorithm’s list, we
will need even more contribution of the pair (i, j) to the potential function in order to also
cover future delay penalty which the algorithm may su�er on the element j that will not
cause an element counter event on j to occur in the short term.
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The second part of the potential function consists of the delay cost that both the online
and optimal algorithms incurred for requests which were active in both algorithms. This term
is used to cover the next element counter events for the elements required in these requests.
The third part of the potential function o�sets the requests which have been served by the
optimal algorithm but not by the online algorithm. This part is very similar to the gifts in
the second term of the potential function in time windows and the ideas behind it are similar.
Again, the gifts are only given to requests which are located by the online algorithm at a
position which is of the same order of magnitude as the location in the optimal algorithm.
The gift is of the same order of magnitude as the total delay the online algorithm pays for
the request (including the delay it will pay in the future). This is used in order to o�set the
next element counter event in the online algorithm on the element. However, this gift also
decreases as the online algorithm su�ers more delay for the request because we want this
term in the potential function to also cover the future delay penalty the online algorithm
will pay for the request.

The fourth and fifth terms in the potential function are very similar to the third term
in the potential function of time windows but each one of them has its own purposes: The
fourth term should cover the next element counter event on the element while the fifth term
should cover the scenario in which the optimal algorithm served a request and then moved
the element further in its list but the online algorithm will su�er more delay penalty for this
request in the future. The fifth term should cover this delay cost that the online algorithm
pays and thus it is proportional to the fraction between the future delay the online algorithm
pays for the request and the position of the element in the online algorithm’s list.

2 The Model for Time Windows and Delays

Given an input ‡ and algorithm ALG we denote by ALG(‡) the cost of its solution. Recall
that in the time windows setting ALG(‡) is defined as the sum of (1) the algorithm’s access
cost: the algorithm may serve multiple requests at a single time point and then the access
cost is defined as the position of the farthest element in this set of requests. ALG(‡) also
accounts for (2) the total number of element swaps performed by ALG. In total, ALG(‡) is
equal to the sum of access costs and swaps. In the delay setting ALG(‡) accounts (1) and
(2) as above in addition to (3) the sum of the delay incurred by all requests. The delay is
defined via a delay function that is associated with each request. The delay functions may
be di�erent per request and are each a monotone non-decreasing non-negative function. In
total, ALG(‡) is equal to the sum of access costs, swaps and delay costs. As is traditional
when analysing online algorithms, we denote by OPT (‡) the cost of the optimal solution
to input ‡. Furthermore, we say that ALG is c-competitive (for c Ø 1) if for every input ‡,
ALG(‡) Æ c ·OPT (‡). Throughout our work, when clear from context, we use ALG(‡) to
denote both the cost of the solution and the solution itself. Our algorithms work also in the
non-clairvoyant case: In the time windows version we only know the deadline of a request
upon its deadline (and not upon its arrival). In the delay version we know the various delay
functions of the requests only up to the current time. Next we introduce several notations
that will aid us in our proofs.

I Definition 1. Let E be the set of the elements.

Let n denote the number of elements in our list (|E| = n) and m the number of requests.

Let rk denote the kth request and ek the requested element by rk.

Let yk œ [n] denote the position of ek in OPT s list at the time OPT served rk. Let xk œ [n]
denote the position of ek in ALGs list at the time OPT (and not ALG) served rk

3
.

3 In the delay version, xk and yk are defined only in case OPT indeed served the request rk at some time.
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15:8 List Update with Delays or Time Windows

Throughout our work, given an element in the list, we oftentimes consider its neighboring
elements in the list. We therefore introduce the following conventions to avoid confusion.
Given an element in the list we refer to its previous element as its neighbor which is closer
to the head of the list and its next element as its neighbor which is further from the head of
the list.

3 The Algorithm for Time Windows

Prior to defining our algorithm, we need the following definitions.

I Definition 2. We define the triggering element, when a deadline of a request is reached,

as the farthest element in the list such that there exists an active request for it which just

reached its deadline. We define the triggering request as one of the active requests for the

triggering element that just reached its deadline - arbitrary.

When clear from context we will use the term “trigger” instead of “triggering request” or
“triggering element”. Next, we define the algorithm.

Algorithm 1 Algorithm for Time Windows (i.e. Deadlines).

1 Upon deadline of a request do:
2 i Ω triggering element’s position
3 Serve the set of requests in the first 2i ≠ 1 elements in the list
4 Move-to-front the triggering element

We prove the following theorem for the above algorithm in Appendix A.

I Theorem 3. For each sequence of requests ‡, we have that

ALG(‡) Æ 24 ·OPT (‡).

4 The Algorithm for Delays

Our algorithm maintains two types of counters in order to process the input: requests
counters and element counters. We begin by defining the request counters. The algorithm
maintains a separate request counter for every incoming request. For a given request rk we
denote its corresponding counter as RCk. The counter is initialized to 0 the moment the
request arrives and increases at the same rate that the request incurs delay. Once the request
is served, the counter ceases to increase. Finally, our algorithm deletes the request counters
- it will do so at some point in the future after the request is served (but not necessarily
immediately when the request is served).

Next we define the element counters. Unlike the request counters, element counters
exist throughout the entire input (i.e., they are initialized at the start of the input and do
not get deleted). We define an element counter ECe for every element e œ E. These counters
are initialized to 0 and increase at a rate equal to the total delay incurred by requests to the
specific element.

We define two types of events that cause the algorithm to act: prefix-request-counter
events and element-counter events. A prefix request counters event on ¸ for ¸ œ [n]
occurs when the sum of all the request counters of requests for the first ¸ elements in the
list reaches the value of ¸. When this type of event takes place, the algorithm performs the
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following two actions. First, it serves the requests of the first 2¸ elements. Second, it deletes
the request counters that belong to the first ¸ elements. Note that these are the request
elements that contributed to this event and are therefore deleted. Also note that the request
counters of the elements ¸ + 1 to 2¸ and the element counters of the first 2¸ elements cease
to increase since their requests have been served.

An element counter event on e for e œ E occurs when ECe reaches the value of ¸,
where ¸ œ [n] is the position of the element e in the list, currently. When this type of event
takes place, the algorithm performs the following three actions. First, it serves the requests
on the first 2¸ elements. Second, it deletes all request counters of requests to the element e.
Third, it sets ECe to 0 and perform move-to-front to e.

Note that the increase in an element counter equals to the sum of the increase of all the
request counters to this element. In particular, the value of the element counter is at least
the sum of the non-deleted request counters for the element (It may be larger since request
counters may be deleted in request counters events while the element counter maintains
its value). Hence when we zero an element counter, we also delete the request counters of
requests for this element in order to maintain this invariant.

Next, we present the algorithm.

Algorithm 2 Algorithm for Delay.

1 Initialization:
2 For each e œ E do:
3 ECe Ω 0
4 Upon arrival of a new request rk do:
5 RCk Ω 0
6 Upon prefix-request-counters event on ¸ œ [n] do:
7 Serve the set of requests in the first 2¸ elements in the list
8 Delete the request counters for the first ¸ elements in the list
9 Upon element-counter event on e (let ¸ denote e’s current position) do:

10 Serve the set of requests in the first 2¸ elements in the list
11 Delete all the request counters of requests for the element e
12 ECe Ω 0
13 Move-to-front the element e

We prove the following theorem for the above algorithm in the full version.

I Theorem 4. For each sequence of requests ‡, we have that

ALG(‡) Æ 336 ·OPT (‡).

5 Potential Functions for Time Windows and Delay

Our proofs use potential functions. In particular we prove for each possible event that

�ALG+ �� Æ c · �OPT

where � is the potential and c is the competitive ratio. In this section we describe the
potential functions. The detailed proofs that use these potential functions appear in the full
version.
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5.1 Time Windows

As mentioned earlier, our potential function used for the time windows setting consists of
three terms. We will define them separately. We begin with the first term that aims to
capture the di�erence between ALG and OPT ’s lists at any given moment.

I Definition 5. Let „(t) denote the number of inversions between ALG’s and OPT ’s lists

at time t. Specifically,

„(t) = |{(i, j) œ E2| At time t, i is before j in ALG’s list and after j in OPT ’s list}|.

The second term accounts for the di�erence in the set of served requests between the two
algorithms. Specifically, whenever the optimal algorithm serves a request not yet served by
the online algorithm, we add value to this term which will be subtracted once the online
algorithm serves the request. Before defining this term, we need the following definition.

I Definition 6. For each time t, let ⁄(t) ™ [m] be the set of all the request indices k such

that the request rk arrived and was served by OPT but was not served by ALG at time t.

Recall that for request rk we denote by yk the position of ek in OPT ’s list at the time
that OPT served rk. Furthermore, we denote by xk the position of ek in ALG’s list at the
time OPT (and not ALG) served rk. We are now ready to define the second term in our
potential function.

I Definition 7. For k œ ⁄(t) we define Â(xk, yk) Ø 0 as

Â(x, y) =

Y
__]

__[

7x if 1 Æ x Æ y

8y ≠ x if y Æ x Æ 8y
0 if 8y Æ x

Next, we define the third term of our potential function.

I Definition 8. We define µk(t) as the number of swaps OPT performed between ek and its

next element in the list from the time OPT served the request rk until time t.

Finally, we combine the terms and define our potential function.

I Definition 9. We define our potential function for Time Windows as

�(t) = 4 · „(t) +
ÿ

kœ⁄(t)

Â(xk, yk) + 4 ·
ÿ

kœ⁄(t)

µk(t).

5.2 Delay

In the delays setting, we define a di�erent potential function that is comprised of five terms.
We will define the terms separately first and thereafter use them to compose our potential
function. We begin with the first term.

As mentioned in Our Techniques, the first term also aim to capture the distance between
ALG’s and OPT ’s lists. In the time windows setting, we defined this term as the number of
element inversions. In the delays case this does not su�ce; we have to take into the account
the elements’ counters as well. To gain some intuition as to why this addition is needed,
consider the following example. Assume that elements i, j are ordered (i, j) in ALG and
reversed in OPT . Recall that ALG is defined such that when j’ element counter is filled,
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then we move it to the front (thereby changing the ALG’s ordering to (j, i)). Therefore,
if it is the case that j’s element counter is nearly filled, intuitively we may say that i, j’s
ordering in ALG and OPT are closer to each other than if j’s element counter would have
been empty. Therefore, we would like the contribution to the potential function to be smaller
in the former case.

Note that the contribution of the inversion (i, j) depends on the element counter of
j but not on the element counter of i (i.e. the contribution is asymmetric). Even if the
element counter of j is very close to its position in the online algorithm’s list, we still need a
big contribution of the pair (i, j) in order to pay for the next element counter event on j.
However, if the element counter of j is far from its position in the online algorithm’s list, we
need even more contribution of the pair (i, j) to the potential function in order to also cover
future delay penalty which the algorithm may su�er on the element j that does not cause an
element counter event on j to occur in the short term. Before formally defining this term,
we define the following.

I Definition 10. For a time t and an element e œ E we define:

EC
t
e
to be the value of the element counter ECe at time t.

x
t
e

œ [n] (yt
e

œ [n] resp) to be the position of e in ALGs (OPT s resp) list at time t.

I
t
e
= {i œ E|i is before e in ALGs list and after e in OPT s list at time t}.

I Definition 11. For element e œ E we define fle(t) = |It
e
| · (28 ≠ 8 · EC

t

e

xt
e

)

Observe that each i œ I
t
e
contributes 20 + 8 · (1 ≠ EC

t

e

xt
e

) to fle(t). The additive term of 20
is used in order to cover the next element counter event for e while the second term is used
to cover the delay penalty ALG will pay in the future for requests for e. Note that the term
1≠ EC

t

e

xt
e

is the fraction of ECe which is not “filled” yet. If this term is very low, ALG is very
close to have an element counter event on e, which causes the order of i and e in ALGs list
and OPT s list to be the same, thus it makes sense that the contribution of i to fle(t) is lower
compared with the case where 1 ≠ EC

t

e

xt
e

would be higher.
Next, we consider the second term. First, we denote the total incurred delay by a request

as dk(t). Formally, this is defined as follows.

I Definition 12. For a given request rk and time t let dk(t) denote the total delay incurred

by the request by ALG up to time t. (Note that it is defined as 0 before the request arrived

and remains unchanged after the request is served). Let dk = supt dk(t). Note that this is a

supremum and not maximum for the case that rk is never served. Note that dk Æ n because

ALG always serves rk before dk > n.

Our second term is a sum of incurred delay costs of specific elements.

I Definition 13. For each k œ [m], the request rk is considered:

active in ALG (resp. OPT ) from the time it arrives until it is served by ALG (resp.

OPT ).

frozen from the time it is served by ALG until ECek
is zeroed in an ek element counter

event.

I Definition 14. For time t we define ⁄(t) ™ [m] as the set of requests (request indices)

which are either active or frozen in ALG at time t. We define ⁄1(t) ™ ⁄(t) as the set of

requests that are also active in OPT at time t and ⁄2(t) ™ ⁄(t) as the set of requests that

are also not active in OPT at time t.

Finally, we define our second term.
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15:12 List Update with Delays or Time Windows

I Definition 15. We define the second term of the Delays potential function as
q

kœ⁄1(t)
dk(t).

The third term is defined as follows (we use xk and yk as previously defined).

I Definition 16. We define the third term as
q

kœ⁄2(t)
(42dk ≠ 6dk(t)) · 1[xk Æ 4yk].

Note that 42dk ≠ 6dk(t) = 36dk + 6 · (dk ≠ dk(t)). Therefore each request index k œ ⁄2(t)
contributes two terms to �: 36dk is used to cover the next element counter on ek while the
second term is 6 times the delay ALG will pay for rk in the future, which will be used to
cover this exact delay penalty that ALG will pay in the future for rk.

The fourth term is defined to cover the next element counter event on a given element as
follows.

I Definition 17. Let µe(t), for e œ E, be the number of swaps OPT performed between e

and its next element in its list ever since the last element counter event before time t on e by

ALG (or the beginning of the time horizon if there was not such an event).

Finally, we define the fifth term. The fifth term should cover the scenario in which the
optimal algorithm served a request and then moved the element further in its list but the
online algorithm will su�er more delay penalty for this request in the future. It will also cover
the delay cost that the online algorithm will pay and thus it is proportional to the fraction
between the future delay the online algorithm will pay for the request and the position of
the element in the online algorithm’s list.

I Definition 18. Let µk(t), for k œ ⁄2(t), be the number of swaps OPT performed between

ek and its next element in its list ever since OPT served the request rk (by accessing ek).

I Definition 19. We define the fifth term of the Delays potential function as

8 ·
ÿ

kœ⁄2(t)

dk ≠ dk(t)
xt
ek

· µk(t).

We are now ready to define our potential function.

I Definition 20. We define our potential function for the delays setting as

�(t) =
ÿ

eœE
fle(t) + 36 ·

ÿ

kœ⁄1(t)

dk(t) +
ÿ

kœ⁄2(t)

(42dk ≠ 6dk(t)) · 1[xk Æ 4yk]+

+ 48 ·
ÿ

eœE
µe(t) + 8 ·

ÿ

kœ⁄2(t)

dk ≠ dk(t)
xt
ek

· µk(t)

6 Conclusion and Open Problems

In this paper, we presented the List Update with Time Windows and Delay, which generalize
the classical List Update problem.

We presented a 24-competitive ratio algorithm for the List Update with Time Windows
problem.
We presented a 336-competitive ratio algorithm for the List Update with Delays problem.
Open problems: The main issue left unsolved is the gap between the upper and lower
bounds. Currently, the best lower bound for both problems considered is 2. Note that
this is the same lower bound given to the original List Update problem. An interesting
followup would be to improve upon this result and show a better lower bound. On the
other hand, one may improve the upper bound - our algorithms are non-clairvoyant in the
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sense that our proofs and algorithms hold even when the deadlines/delays are unknown.
It would be interesting to understand whether clairvoyance may improve the upper bound.
Another interesting direction would be to consider randomization as a way of improving
our bounds.
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As a first step towards proving Theorem 3 we prove in Lemma 22 that it is enough to consider
inputs that only contain triggering requests. The proof appears in the full version [12].

I Lemma 22. Let ‡ be a sequence of requests and let ‡
Õ
be ‡ after omitting all the non-

triggering requests (with respect to ALG). Then

ALG(‡)
OPT (‡) Æ ALG(‡Õ)

OPT (‡Õ) .

I Corollary 23. We may assume w.l.o.g. that the input ‡ only contains triggering requests

(with respect to ALG).

The following lemma is simple but will be very useful later. Recall that k refers to the index
of the k’th request in the input ‡ and that ek denotes its requested element.

I Lemma 24. For every k œ [m], the position of ek in ALG’s list remains unchanged

throughout the time interval [ak, qk). Hence xk denotes the location of ek in ALGs list during

the time interval [ak, qk).

Proof. During the time interval between ak and qk, ALG did not access the element ek

and did not access any element located after ek in its list, because otherwise it would be
a contradiction to our assumption that rk is a trigger request. Therefore, during the time
interval mentioned above, ALG only accessed (served) elements which were before ek in its
list and performed move-to-fronts on them. But these move-to-fronts did not change the
position of ek in ALG’s list. J

I Definition 25. Let zk denote the position of the farthest element OPT accesses at the

time it served rk.

Note that zk defines the cost OPT pays for serving the set of requests that contain rk.
Recall that ALG serves all requests separately (since all requests are triggering requests -

Corollary 23). OPT , on the other hand, may serve multiple requests simultaneously. Note
that at the time OPT serves the request rk, it pays access cost of zk (and it is guaranteed
that zk Ø yk). The strict inequality zk > yk occurs in case OPT serves a request for an
element located further than ek in its list and by accessing this far element, OPT also
accesses ek, thus serving rk.

I Lemma 26. The cost of ALG is bounded by

ALG(‡) Æ 3 ·
mÿ

k=1

xk

Proof. For each k œ [m], ek is located at position xk at the time when ALG serves rk. ALG

pays an access cost of at most 2xk ≠ 1 when it serves the request rk (Observe that ALG

may pay an access cost of less than 2xk ≠ 1 in case n < 2xk ≠ 1). ALG also pays a cost of
xk ≠ 1 for performing move-to-front on ek. Therefore, ALG su�ers a total cost of at most
(2xk ≠ 1) + (xk ≠ 1) Æ 3xk for serving this request. If we sum for all the requests, we get
that ALG(‡) Æ 3 ·

q
m

k=1
xk. J

I Lemma 27. Let t be a time when the active request indices in ALG are R = {k1, k2, ..., kd}
where 1 Æ xk1 < xk2 < ... < xkd

Æ n. We have:

1. For each ¸ œ [d≠ 1], we have qk¸
Æ qk¸+1 , i.e., ALG serves the request rk¸

before it serves

rk¸+1 .
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2. For each ¸ œ [d ≠ 1] we have that 2xk¸
Æ xk¸+1 .

3. d Æ logn+ 1, i.e., at any time, there are at most logn+ 1 active requests in ALG.

Proof. If ALG serves rk¸+1 before it serves rk¸
, it serves also rk¸

by passing through ek¸
when

it accesses ek¸+1 , contradicting our assumption that rk¸
is a trigger request (Observation 23).

If we have xk¸+1 Æ 2xk¸
≠ 1, then when ALG serves rk¸

, it will also access ek¸+1 , thus
serving rk¸+1 , contradicting our assumption that rk¸+1 is a trigger request (Observation 23).

Using what we have already proved, a simple induction can be used in order to prove that
for each ¸ œ [|ROPT

t
|], we have that 2¸≠1

xkt

1
Æ xkt

¸

. Therefore, we have that 2|ROPT

t
|≠1

xkt

1
Æ

xkt

|ROPT

t
|
. We also have that 1 Æ xkt

1
and xkt

|ROPT

t
|

Æ n. These three inequalities yield to

|ROPT
t

| Æ logn+ 1. J

Next we consider OPT ’s solution.

I Definition 28. Let TOPT be the set of times when OPT served requests. We then define:

For each time t œ TOPT , let R
OPT
t

= {kt
1
, k

t
2
, ..., k

t

|ROPT

t
|} be the non-empty set of request

indices that OPT served at time t where 1 Æ xkt

1
< xkt

2
< ... < xkt

|ROPT

t
|

Æ n.

Let J(t) = argmax
kœROPT

t

{yk}.

By definition for each t œ TOPT , we have

1 Æ yJ(t) = zkt

1
= zkt

2
= ... = zkt

|ROPT

t
|≠1

= zkt

|ROPT

t
|

Æ n

Observe that at time t œ TOPT , OPT serves the requests ROPT
t

together by accessing the
yJ(t)’s element in its list. Therefore, OPT pays an access cost of yJ(t) at time t.

I Observation 29. For any t œ TOPT , the total cost OPT pays for accessing elements at

time t is yJ(t).

I Lemma 30. Let t œ TOPT . We have:

1. For each ¸ œ [|ROPT
t

| ≠ 1] we have that 2xkt

¸

Æ xkt

¸+1
.

2. |ROPT
t

| Æ logn+ 1, i.e, OPT serves at most logn+ 1 triggers at the same time.

Proof. Since OPT served the requests ROPT
t

at time t, all these requests arrived at time t

or before it. Therefore, from Observation 32 we get that all the requests ROPT
t

were active
in ALG at time t. Therefore, we get that this lemma holds due to Lemma 27. Note that
there may be additional requests which were active in ALG at time t but OPT did not serve
at time t (meaning they were not in R

OPT
t

), but this does not contradict the conclusion. J

The following lemma allows us to consider from now on only algorithms such that if they
serve requests at time t, then at least one of these requests has a deadline at t. In particular,
we can assume that OPT has this property. Observe that ALG also has this property.

I Lemma 31. For every algorithm A, there exists an algorithm B such that for each sequence

of request ‡ we are guaranteed that:

1. B only serves requests upon some deadline.

2. B(‡) Æ A(‡).

For convenience, we assume that when both ALG and OPT are serving ‡, in case both
OPT and ALG perform access or swapping operations at the same time - we first let OPT

perform its operations and only then ALG will perform its operations.
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On the other hand, for elements which are not served at the same time by OPT and
ALG, by combining the fact that ALG serves requests at their deadline (see Corollary 23)
with the fact that OPT must serve requests before the deadline, we get that again OPT

serves the request before ALG. Combining the two cases yields Observation 32.

I Observation 32. For each k œ [m], OPT serves the request rk before ALG serves rk.

I Definition 33. We define the set of events P which contains the following 3 types of

events:

1. ALG serves the request rk at time qk.

2. OPT serves the requests R
OPT
t

at time t.

3. OPT swaps two elements.

Recall that the potential function � is defined in Section 5.1 as follows:

�(t) = 4 · „(t) +
ÿ

kœ⁄(t)

Â(xk, yk) + 4 ·
ÿ

kœ⁄(t)

µk(t)

where the terms „, ⁄, Â and µk are also defined in that section.

I Definition 34. For each event p œ P , we define:

ALG
p
(OPT

p
) to be the cost ALG (OPT ) pays during p.

For any parameter z, �z
p
to be the value of z after p minus the value of z before p.

Clearly, we have ALG(‡) =
q

pœP
ALG

p and OPT (‡) =
q

pœP
OPT

p. Observe that �
starts with 0 (since at the beginning, the lists of ALG and OPT are identical) and is always
non-negative. Therefore, if we prove that for each event p œ P , we have

ALG
p + ��p Æ 24 ·OPT

p

then, by summing it up for over all the events, we will be able to prove Theorem 3. Note that
we do not care about the actual value �(t) by itself, for any time t. We will only measure the
change of � as a result of each type of event in order to prove that the inequality mentioned
above indeed holds. The three types of events that we will discuss are:
1. The event where ALG serves the request rk at time qk (event type 1) is analyzed in

Lemma 35.
2. The event where OPT serves the requests ROPT

t
at time t (event type 2) is analyzed in

Lemma 39.
3. The event where OPT swaps two elements (event type 3) is analyzed in Lemma 40.
We begin by analyzing the event where ALG served a request.

I Lemma 35. Let p œ P be the event where ALG served the request rk (where k œ [m]) at

time qk. We have

ALG
p + ��p Æ 0 (= OPT

p)

In order to prove Lemma 35, we separate the movement of ALG versus the movement of
OPT . The final proof is the superposition of the two movements. Firstly we assume that
OPT did not increase the position of ek in its list ever since it served the request rk until
ALG served it, then we remove this assumption.

I Lemma 36. Let p œ P be the event where ALG served the request rk (where k œ [m]) at

time qk. Assume that ever since OPT served rk until ALG served rk, OPT did not increase

the position of ek in its list. We have that

3xk + 4 · �„
p ≠ Â(xk, yk) Æ 0
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Proof. The assumption means that at time qk, the position of ek in OPT ’s list is at most yk
(it may be even lower, due to movements which may be performed by OPT to ek towards
the beginning of its list, after OPT served rk). Recall that after ALG serves rk, the position
of ek in ALG’s list changes from xk to 1, as a result of the move-to-front ALG performs on
ek. In order to prove the required inequality, we consider the following cases, depending on
the value of yk:

The case 1 Æ xk Æ yk. We have Â(xk, yk) = 7xk.
Therefore, observe that it is su�cient to prove that �„

p Æ xk.
This is indeed the case, because moving ek from position xk to position 1 in ALG’s list
required ALG to perform xk ≠ 1 swaps, each one of those caused „ to either increase by 1
or decrease by 1. Therefore, all these xk ≠ 1 swaps cause „ to increase by at most xk ≠ 1.
The case yk Æ xk Æ n.
On one hand, there are at least xk ≠ yk elements which were before ek in ALG’s list
and after ek in OPT ’s list before the move-to-front ALG performed on ek, but they will
be after ek in ALG’s list after this move-to-front. This causes „ to decrease by at least
xk ≠ yk. On the other hand, there are at most yk ≠ 1 elements which were before ek in
both OPT ’s list and ALG’s list before the move-to-front ALG performed on ek, but they
will be after ek in ALG’s list after this move-to-front. This causes „ to increase by at
most yk ≠ 1. Therefore, we have that

�„
p Æ ≠(xk ≠ yk) + (yk ≠ 1) = 2yk ≠ xk ≠ 1

Hence,

3xk + 4 · �„
p Æ 3xk + 4 · (2yk ≠ xk ≠ 1) Æ 8yk ≠ xk

Now we distinguish between these two following cases, depending on the value of yk:
The case yk Æ xk Æ 8yk. We have that Â(xk, yk) = 8yk ≠ xk. Hence

3xk + 4 · �„
p ≠ Â(xk, yk) Æ 8yk ≠ xk ≠ Â(xk, yk) = 8yk ≠ xk ≠ (8yk ≠ xk) = 0

The case 8yk Æ xk Æ n. We have that Â(xk, yk) = 0. Hence

3xk + 4 · �„
p ≠ Â(xk, yk) Æ 8yk ≠ xk ≠ Â(xk, yk) = 8yk ≠ xk Æ 8yk ≠ 8yk = 0

J

Now we are ready to complete the proof of Lemma 35.

Proof of Lemma 35. Since OPT has already served this request, we have OPT
p = 0. As

explained in the proof of Lemma 26, we have ALG
p Æ 3xk. Therefore, we are left with the

task to prove that

3xk + ��p Æ 0

Observe that Â(xk, yk) and µk(t) are dropped (and thus are subtracted) from � as a result
of ALG serving rk. Therefore, we are left with the task to prove that

3xk + 4 · �„
p ≠ Â(xk, yk) ≠ 4 · µk(t) Æ 0

We first assume that ever since OPT served rk until ALG served rk, OPT did not increase
the position of ek in its list (later we remove this assumption). This assumption means that
µk(t) = 0. Therefore, due to Lemma 36, we have that the above inequality holds. We are
left with the task to prove that the above inequality continues to hold even without this
assumption.
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Assume that ever since OPT served rk until ALG served rk, OPT performed a swap
between ek and another element where ek’s position has been increased as a result of this
swap. We shall prove that the above inequality continues to hold nonetheless.

On one hand, this swap causes either an increase of 1 or a decrease of 1 to �„
p. Therefore,

the left term of the inequality will be increased by at most 4. On the other hand, the left
term of the inequality will certainty be decreased by 4 as a result of this swap, because µk

will certainty be increased by 1. To conclude, a decrease of at least 4 ≠ 4 = 0 will be applied
to the left term of the inequality, thus the inequality will continue to hold after this swap as
well.

By using the argument above for each swap of the type mentioned above, we get that the
above inequality continues to hold even without the assumption that OPT did not increase
the position of ek in its list since it served rk until ALG served rk, thus the lemma has been
proven. J

Now that we analyzed the event when ALG serves a request, the next target is to analyze
the event where OPT serves multiple request together. The following observation contains
useful properties of Â that will be used later on. The reader may prove them algebraically.

I Observation 37. For each x, x
Õ
, y, y

Õ œ [1,Œ) such that x Æ x
Õ
and y Æ y

Õ
, the function Â

satisfies the following claims:

1. 0 Æ Â(x, y) Æ 7x.
2. If y Æ x Æ x

Õ
then Â(xÕ

, y) Æ Â(x, y).
3. Â(x, y) Æ Â(x, yÕ).
The target now is to analyze the event when OPT serves the requests R

OPT
t

together at
time t. Recall that when OPT serves a request rk, the value Â(xk, yk) is added to �. The
following lemma will be needed in order to analyze this event.

I Lemma 38. Let a > 0 and let f : [0,Œ) æ [0,Œ) be the function defined as follows:

f(x) =

Y
__]

__[

7x if 0 Æ x Æ a

8a ≠ x if a Æ x Æ 8a
0 if 8a Æ x

Consider the optimization problem Q of choosing a (possibly infinite) subset U ™ (0, 8a) that

will maximize
q

xœU
f(x) with the requirement ’x, y œ U : x < y =∆ 2x Æ y. Then the

optimal value of Q is 24a.

Now we can use Lemma 38 in order to analyze the event when OPT serves multiple requests
together. The proofs of Lemmas 38 and 39 appear in the full version [12].

I Lemma 39. Let p œ P be the event where OPT served the requests R
OPT
t

at time t. We

have

ALG
p + ��p Æ 24 ·OPT

p

We analyzed the event where ALG serves a request and the event when OPT serves
multiple requests together. The only event which is left to be analyzed is the event when
OPT performs a swap. We analyze it in the lemma below. The proof is in the full version [12].

I Lemma 40. Let p œ P be the event where OPT performed a swap at time t. We have

ALG
p + ��p Æ 8 ·OPT

p
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We are now ready to prove Theorem 3.

Proof of Theorem 3. Due to Lemma 35, Lemma 39 and Lemma 40, we have for each event
p œ P that

ALG
p + ��p Æ 24 ·OPT

p

The theorem follows by summing it up for over all events and use the fact that � starts with
0 and is always non-negative. J
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Abstract
An s-sparse polynomial has at most s monomials with nonzero coe�cients. The Equivalence Testing
problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent
to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f œ F[x] and s œ N,
ETsparse asks to check if there exist A œ GL(|x|,F) and b œ F|x| such that f(Ax+ b) is s-sparse.
We show that ETsparse is NP-hard over any field F, if f is given in the sparse representation, i.e.,
as a list of nonzero coe�cients and exponent vectors. This answers a question posed by Gupta,
Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS
2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense
subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show
that approximating the smallest s0 such that a given s-sparse polynomial f is in the orbit of some
s0-sparse polynomial to within a factor of s 1

3 ≠‘ is NP-hard for any ‘ > 0; observe that s-factor
approximation is trivial as the input is s-sparse. Finally, we show that for any constant ‡ Ø 6,
checking if a polynomial (given in sparse representation) is in the orbit of some support-‡ polynomial
is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial
of f . These results are obtained via direct reductions from the 3-SAT problem.
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represent the same function up to a change of the coordinate system.1 The PE problem is
thus regarded as the algebraic analog of the graph isomorphism (GI) problem. PE is at least
as hard as GI [2, 36], but we do not know if it is much harder than GI. There is, in fact, a
cryptographic authentication scheme based on the presumed average-case hardness of PE
[46]. Is PE NP-hard? Over finite fields, PE is not NP-hard unless the polynomial hierarchy
collapses [51, 55]. In contrast, PE is not even known to be decidable over Q. With the aim of
gaining more insight into the complexity of testing polynomial equivalence, a natural variant
of PE has been studied in the literature. This variant is known as equivalence testing.

In the following discussion, whenever we write “circuit(s)” and “formula(s)”, we mean
arithmetic circuit(s) and arithmetic formula(s), respectively, unless mentioned otherwise.2

Equivalence testing. Equivalence testing (ET) comes in two flavors – ET for polynomial
families and ET for circuit classes. ET for a polynomial family F is defined as follows: given
a single polynomial f , check if it is equivalent to some g œ F . This variant of PE was
introduced in [37, 36], wherein randomized polynomial-time ET algorithms were provided
for the permanent, determinant, and elementary and power symmetric polynomial families.
Subsequently, e�cient ET algorithms were given for various other important polynomial
families, such as the iterated matrix multiplication (IMM) family [39] (see the Related Works
section in the full version). These algorithms are e�cient even if f is provided as a circuit or
a black-box.3 ET for a circuit class C (a.k.a testing equivalence to C) is defined similarly:
given a polynomial f , decide if it is equivalent to some polynomial g that is computable by a
circuit in C. Recently, e�cient ET algorithms have been given for read-once formulas [24]
and a special subclass of sparse polynomials, namely t-design polynomials for constant t [8].
Sparse polynomials are depth-2 circuits.4 It is natural to ask whether or not ET can be
solved e�ciently for general sparse polynomials. This question was posed in [24] and also,
more explicitly, in [8].

Before proceeding to discuss ET for sparse polynomials, we point out a subtle di�erence
between ET for polynomial families and that for circuit classes. The polynomial families for
which ET has been studied so far are such that if f is equivalent to some g in the family, then
g is unique and it can be readily identified from f . For example, if f is equivalent to some
determinant polynomial5, then we know which one simply from the number of variables of f .
Moreover, polynomials in most of these families admit well-known polynomial-size circuits.
So, a circuit for g can be derived once it is identified. Thus, if f is also given as a circuit,
then ET for such a family reduces to PE with the input polynomials given as circuits. Over
finite fields, this version of PE is in AM fl coAM and hence unlikely to be NP-hard. On the
other hand, in the case of ET for a circuit class, if f is equivalent to some circuit C in the
class, then C need not be unique, and further, C may not be easily deducible from f . This
leaves us with the prospect of proving that ET is hard for some natural circuit class. Do
sparse polynomials form such a class?

1 Over R, an invertible map x ‘æ Ax + b is simply a combination of rotation, reflection, scaling, and
translation.

2 An arithmetic circuit is like a Boolean circuit but with AND and OR replaced by ◊ and + gates, and
with edges labelled by F-elements. It computes a polynomial over F. A formula is a circuit whose
underlying graph is a tree.

3 Black-box access to f means oracle access to f , we get f(a) from a query point a in unit time. It is as
if f is given as a “hidden” circuit, and the only operation we are allowed is to evaluate the circuit at
chosen points.

4 We assume that a depth-2 circuit has a + gate on top and a bottom layer of ◊ gates. If the top gate is
a ◊ gate, then ET can be solved e�ciently using polynomial factorization algorithms [35].

5 The n
2-variate determinant polynomial is the determinant of the matrix (xi,j)i,jœ[n] of formal variables.
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ET for sparse polynomials. An n-variate, degree-d polynomial is s-sparse if it has at most
s monomials with nonzero coe�cients. An s-sparse polynomial is computable by a depth-2
circuit having top fan-in s. Sparse polynomials have been extensively studied in algebraic
complexity, particularly with regard to identity testing [41, 43], interpolation [10, 21, 41, 12],
and factorization [56, 11] (see the tutorial [49] and the references therein for more algorithms
involving sparse polynomials). ET provides yet another avenue to understand these “basic”
polynomials better. ET for sparse polynomials asks to check if a given polynomial is sparse
in some coordinate system. More formally, given a polynomial f as an arithmetic circuit
and an s œ N, decide if there is an s-sparse polynomial g such that f ≥ g. This problem was
studied in [20] over Q, wherein an exponential in n

4 time algorithm was provided. There has
not been any significant progress on this problem since that work. The lack of improvements
in the complexity for over three decades makes one wonder:

Is ET for sparse polynomials NP-hard?

In this work, we answer this question in the a�rmative over any field (see the first part
of Theorem 2) even if the input f is provided as a depth-2 circuit. The result answers the
question posed in [24, 8]. To our knowledge, the theorem gives the first example of a natural
circuit class for which ET is provably hard.

Although ET for sparse polynomials (ETsparse) is a fairly natural problem, there is a
deeper reason to study ETsparse originating from the expressive power of a�ne projections of
sparse polynomials and the Minimum Circuit Size Problem (MCSP) for depth-3 circuits. We
discuss this reason below to motivate ETsparse when the input is a homogeneous polynomial.

1.1 ETsparse and MCSP for depth-3 circuits
First, we need a few definitions: A polynomial g is an a�ne projection of f if g = f(Ax+ b)
for some A œ F|x|◊|x| and b œ F|x|. If b = 0, we say g is a linear projection of f ; additionally,
if A œ GL(|x|), we say g is in the orbit of f , denoted as orb(f). Depth-3 circuits form a
highly expressive class [23, 54]. A depth-3 (���) circuit is a circuit with a + gate on top, a
middle layer of ◊ gates, and a bottom layer of + gates. A depth-3 circuit with a top fan-in of
s is an a�ne projection of an s-sparse polynomial. Thus, the problem of deciding if a given
f is an a�ne projection of an s-sparse polynomial is closely related to MCSP for depth-3
circuits. We say “closely related to” instead of “the same as” because the size of a depth-3
circuit is determined by not only its top fan-in but also its formal degree.

MCSP. The complexity of MCSP for Boolean circuits has ba�ed researchers for over six
decades. MCSP for a Boolean circuit class C (C-MCSP) takes input the truth table of an
n-variate Boolean function f and a parameter s œ N and asks to check if f is computable by
a circuit in C of size at most s. There are intriguing connections between MCSP and several
other areas such as cryptography [34, 3], learning theory [14], average-case complexity [27],
and proof complexity [47]. Whether or not MCSP for general Boolean circuits is NP-hard is a
long-standing open question. It is known that MCSP is NP-hard for DNF [44, 4] and DNF ¶
XOR formulas [29]. But no NP-hardness result is known (under deterministic polynomial-time
reductions) for more general circuit models such as AC0 circuits.6 This is not too surprising

6 However, strong hardness results are known for several powerful circuit models under randomized or
quasi-polynomial time or subexponential time reductions [30, 32, 31, 28].
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as [34] showed that NP-hardness of C-MCSP under natural7 deterministic polynomial-time
reductions implies a 2�(n) lower bound for C, unless NP ™ SUBEXP. Unfortunately, such
strong lower bounds are not known even for depth-3 Boolean circuits. However, a 2�(n) lower
bound is known for XOR ¶ AND ¶ XOR formulas [48], which are depth-3 arithmetic circuits
over F2 and are like DNF ¶ XOR formulas but with the top OR gate replaced by an XOR
gate. In fact, a 2�(n) lower bound is known for depth-3 arithmetic circuits over any fixed
finite field [22]. This raises hope that we will be able to prove the hardness of MCSP for
depth-3 arithmetic circuits over finite fields. But how is the input given in the case of MCSP
for arithmetic circuits? And what about depth-3 circuits over fields of characteristic 0?

MCSP for arithmetic circuits: Input representation and model of computation. In
the Boolean setting of MCSP, one of the main reasons to assume the input to be a truth
table is that the assumption puts MCSP in NP. Analogously, in the algebraic setting, we
could assume that the polynomial is given in the dense representation as a list of

!
n+d

n

"

coe�cients. But observe that even if the input is given as an arithmetic circuit, MCSP
is in the complexity class MA over finite fields. This is because verifying if two circuits
compute the same polynomial is the polynomial identity testing problem, which admits
a randomized polynomial-time algorithm [16, 57, 52]. Furthermore, class MA equals NP,
assuming a widely believed circuit lower bound [33]. A succinct input representation also
opens up the possibility of proving NP-hardness of MCSP for models, such as depth-3 circuits
over fields of characteristic 0, for which strong exponential lower bounds are unknown (the
MCSP hardness to lower bound implication in [34] needs the input in the dense format). The
current best lower bound for depth-3 circuits over fields of characteristic 0 is quasi-polynomial
in n [42, 5].

It is, therefore, reasonable to assume that the input polynomial is given succinctly as a
circuit which should only facilitate our e�orts in proving NP-hardness of MCSP for arithmetic
circuit classes. For example, there is an instance in the Boolean setting wherein succinct
representation of the input helped prove NP-hardness of MCSP long before such a hardness
result was shown with respect to the dense representation – it is the case of the partial MCSP
problem [25, 28]. In this work, we assume that the input is given as a depth-2 circuit, i.e., as a
list of nonzero coe�cients, and exponent vectors in unary – this is the sparse representation.8

A few remarks are in order concerning the model of computation. Over finite fields, we
assume the Turing machine model. However, over arbitrary fields of characteristic 0, it is
natural to consider an arithmetic model of computation (similar to the Blum-Shub-Smale
machine model [13]) that allows us to store a field element in unit space and perform an
arithmetic operation in unit time. Over Q, it is not clear if MCSP for arithmetic circuits is
even decidable in the Turing machine model. But, if we confine our search to size-s circuits
whose field constants are s

O(1) bit rational numbers, then we can work with the Turing
machine model.

MCSP for homogeneous depth-3 circuits. The size of a ��� circuit is primarily determined
by its formal degree and its top fan-in, whereas the size of a homogeneous depth-3 (hom-���)
circuit is mainly decided by its top fan-in (the formal degree of a ��� circuit is the maximum

7 i.e., the size of the output of the reduction and the output parameter s depend only on the size of the
input instance. Almost all reductions that show NP-hardness of problems are natural.

8 Sparse representations of polynomials are also used in computer algebra systems wherein the exponent
vector is given in binary. As the degree is n

O(1) in this work (except on one occasion; see the remark
following Theorem 16), whether the exponent vector is given in unary or binary makes little di�erence.
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fan-in of the middle layer of ◊ gates). MCSP for ��� circuits can be defined as follows:
given f and D, s œ N, decide if there is a ��� circuit with formal degree bounded by D and
top fan-in bounded by s that computes f . Similarly, MCSP for hom-��� circuits is defined
as: given a homogeneous f and s œ N, check if there is a hom-��� circuit with top fan-in at
most s that computes f . In order to prove NP-hardness of ���-MCSP, it is necessary to
prove NP-hardness of hom-���-MCSP. The reason is: a polynomial f(x1, x2, . . . , xn) has
a ��� circuit with formal degree bounded by D and top fan-in bounded by s if and only
if the homogeneous polynomial zDf(x1z

≠1
, x2z

≠1
, . . . , xnz

≠1) has a hom-��� circuit with
top fan-in bounded by s. Moreover, if the reduction in a hypothetical proof of NP-hardness
of hom-���-MCSP has a certain simple feature, then it would imply NP-hardness of ���-
MCSP (see the second remark following Proposition 39). Hence, it is natural to study the
hardness of hom-���-MCSP first.

NP-hardness of MCSP is known for two interesting subclasses of hom-��� circuits,
namely depth-3 powering circuits [53] and set-multilinear ��� circuits [26]; the top fan-in’s
of circuits in these two classes correspond to Waring rank and tensor rank, respectively.
Perhaps an appealing evidence in favor of NP-hardness of hom-���-MCSP is a proof of
NP-hardness of MCSP for a “dense” subclass of hom-��� circuits. Intuitively, C is a dense

subclass of hom-��� circuits if every hom-��� circuit can be approximated “infinitesimally
closely” by circuits in C.9 Unfortunately, depth-3 powering circuits and set-multilinear ���
circuits are not dense inside hom-��� circuits.10 On the other hand, orbits of homogeneous

sparse polynomials form a dense subclass of hom-��� circuits.11 It is natural to ask:

Is MCSP for orbits of homogeneous sparse polynomials NP-hard?

MCSP for orbits of homogeneous sparse polynomials is exactly the ETsparse problem on
inputs that are homogeneous polynomials. The second part of Theorem 2 answers the
question positively over fields of characteristic 0.

Approximating the sparse-orbit complexity. Call the smallest s0 such that f is in the
orbit of an s0-sparse polynomial, the sparse-orbit complexity of f . Theorem 2 shows that
sparse-orbit complexity is hard to compute in the worst case.

Is sparse-orbit complexity easy to approximate?

In Theorem 8, we show that it is NP-hard to approximate the sparse-orbit complexity of a
given s-sparse polynomial (homogeneous or not) to within a s

1
3 ≠‘ factor for any ‘ œ (0, 1/3).

For s-sparse inputs, a within s factor approximation of the sparse-orbit complexity is trivial.

9 Formally, a subclass C of hom-��� circuits is dense if there are polynomial functions p, q : N æ N such
that the following holds: For n, d, s œ N, the coe�cient vector of every n-variate degree-d polynomial
computable by a size-s hom-��� circuit is in the Zariski closure of the set of coe�cient vectors of
p(nds)-variate degree-d polynomials computable by size-q(nds) circuits in C. Here, “size” means “top
fan-in”.

10Circuits of these two classes have small read-once algebraic branching programs (ROABPs), and the
class ROABP is closed under Zariski closure [18]. So, the closures of these two classes are also contained
inside ROABPs. But, there are explicit O(n) size hom-��� circuits that require 2�(n) size ROABPs
[50, 38].

11Every n-variate degree-d size-s hom-��� circuit is a linear projection of an s-sparse degree-d homogen-
eous polynomial in at most sd variables. It is well known that linear projections of f are contained in
the Zariski closure of the orbit of f over fields of characteristic 0 (see [50] for a proof of this fact).
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1.2 ET for constant-support polynomials
ET is e�ciently solvable for two special sparse polynomial families, namely the power
symmetric polynomial PSym := x

d
1
+ . . .+ x

d
n
[36] and the sum-product polynomial SP :=q

iœ[s]

r
jœ[d]

xi,j [45, 36]. What makes ET easy for these sparse polynomials? Explanations
were provided in [24, 8]: SP is a read-once formula; it is also a 1-design polynomial. PSym is
a 1-design polynomial, but it is also a support-1 polynomial.

Is ET easy for constant-support polynomials?

In Theorem 16, we show that checking if a given f is in the orbit of a support-6 polynomial
is NP-hard; this answers the question in the negative.

1.3 Our results
We now state our results formally. The ETsparse problem is defined as follows.

I Problem 1 (ETsparse). Given a polynomial f œ F[x] in its sparse representation and an

s œ Z, check if there exists an A œ GL(|x|,F) and a b œ F|x|
such that f(Ax+b) is s-sparse.

Our first result, Theorem 2, shows the NP-hardness of ETsparse over any field.

I Theorem 2 (ETsparse is NP-hard).
1. Let F be any field. There exists a deterministic polynomial-time many-one reduction from

3-SAT to ETsparse over F.
2. Let char(F) = 0. There exists a deterministic polynomial-time many-one reduction from

3-SAT to ETsparse over F where the input polynomial in ETsparse is homogeneous.

I Remark 3. The reduction is natural12 and has the feature that a satisfying assignment can
be mapped to a sparsifying invertible A œ {≠1, 0, 1}|x|◊|x| and vice versa. So, ETsparse is
NP-hard even when A is restricted to having only {≠1, 0, 1} entries.
I Remark 4. The authors of [15] showed the undecidability over Z of testing if a given f is
shift equivalent to some sparse polynomial (f is shift equivalent to a polynomial g, if there
exists a b œ F|x| s.t f = g(x+ b)). However, their result does not imply the intractability of
ETsparse as testing shift equivalence to a sparse polynomial is a special case of ETsparse
when A is the identity map.
I Remark 5. Depth-3 power circuits, set-multilinear depth-3 circuits, and shifted sparse
polynomials are all contained inside ROABPs. So, these models admit polynomial-time
(improper) learning algorithms [9, 40] and quasi-polynomial-time hitting sets [1, 19]. Orbits
of sparse polynomials require exponential size ROABPs [50]; we cannot expect to improperly
learn them via ROABPs. Theorem 2 suggests that proper learning orbits of sparse polynomials
is likely hard. Nonetheless, there is a quasi-polynomial time hitting set for orbits of sparse
polynomials [45, 50].
I Remark 6. We believe that with some more e�ort, the second part of Theorem 2 can be
proven over fields of finite characteristics as well. See the last remark in Section 3.4.
We prove Theorem 2 in Section 3. Next, we define the gap version of ETsparse.

I Problem 7 (–-gap-ETsparse). Let – > 1 be a parameter. Given a polynomial f œ F[x] in
its sparse representation and an integer s0, output:

YES, if there exist an A œ GL(|x|,F) and b œ F such that f(Ax+ b) is s0-sparse.

NO, if for all A œ GL(|x|,F) and b œ F, f(Ax+ b) has sparsity at least –s0.

12 unless char(F) = 2. See the full version for details.
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Our second result, Theorem 8, shows that –-gap-ETsparse is NP-hard for – = s
1
3 ≠‘, where s

is the sparsity of the input polynomial f and ‘ œ (0, 1

3
) is an arbitrary constant. Theorem 8

is proven in Section 4. From Theorem 8, we get Corollary 11 which states that s 1
3 ≠‘ factor

approximation of the sparse-orbit complexity of an s-sparse polynomial is NP-hard.
I Theorem 8 (s 1

3 -gap-ETsparse is NP-hard). Let ‘ œ (0, 1

3
) be an arbitrary constant.

1. Let F be any field. There exists a deterministic polynomial-time many-one reduction from

3-SAT to s
1
3 ≠‘

-gap-ETsparse over F where the input polynomial in s
1
3 ≠‘

-gap-ETsparse
is s-sparse.

2. Let char(F) = 0. There exists a deterministic polynomial-time many-one reduction from

3-SAT to s
1
3 ≠‘

-gap-ETsparse over F where the input polynomial in s
1
3 ≠‘

-gap-ETsparse
is homogeneous and s-sparse.

I Remark 9. With a more careful analysis, the constant 1

3
in s

1
3 ≠‘ may be improved.

I Remark 10. Interestingly, the above results are obtained without invoking the celebrated
PCP theorem [7, 6, 17].

I Corollary 11. Let 0 < ‘ <
1

3
be an arbitrary constant.

1. Let F be any field. It is NP-hard to compute s
1
3 ≠‘

factor approximation of the sparse-orbit

complexity when the input is an s-sparse polynomial over F.
2. Let char(F) = 0. It is NP-hard to compute s

1
3 ≠‘

factor approximation of the sparse-orbit

complexity when the input is an s-sparse homogeneous polynomial over F.
Now, we formally define the support of a polynomial.

I Definition 12 (Support of a polynomial). For a monomial x
–
, where – is the exponent

vector, the support of x
–
, Supp(x–), is the number of variables with non-zero exponent. The

support of a polynomial f , Supp(f), is the maximum support size over all the monomials

of f .

Thus, a polynomial has support ‡ if there exists a monomial with support ‡ and no other
monomial has support > ‡. The ET problem for constant-support polynomials and a stronger
version of it are defined next (henceforth, ‡ is assumed to be a constant).

I Problem 13 (ETsupport). Given a polynomial f œ F[x] in its sparse representation and

an integer ‡, check if there exists an A œ GL(|x|,F) such that Supp(f(Ax)) Æ ‡.

I Problem 14 ((‡ +1)-to-‡ ETsupport). Given a polynomial f œ F[x] with support ‡ +1 in

its sparse representation, check if there exists an A œ GL(|x|,F) such that Supp(f(Ax)) Æ ‡.

I Remark 15. Unlike ETsparse, checking if f is in the orbit of a constant-support polynomial
is the same as checking if f is equivalent to a constant-support polynomial. This follows
from the observation that Supp(f(x)) = Supp(f(x+ b)) for any b œ F|x|.
Our third and last result, Theorem 16, shows that ETsupport and (‡ + 1)-to-‡ ETsupport
are NP-hard. We prove Theorem 16 in Section 5.

I Theorem 16 (ETsupport is NP-hard). Let ‡ Ø 6 be a constant and F be a field with

char(F) = 0 or > ‡ + 1. There is a deterministic polynomial-time many-one reduction from

3-SAT to ETsupport over F. In particular, 3-SAT reduces to (‡ + 1)-to-‡ ETsupport in

deterministic polynomial time.

I Remark 17. Over fields of finite characteristic, it is assumed that the exponent vectors
corresponding to the monomials of the input polynomial are given in binary.
We prove Theorems 2, 8 and 16 by direct reductions from 3-SAT, and at the beginning of
Sections 3, 4 and 5, we give proof sketches of the respective reductions.
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2 Preliminaries

2.1 Definitions and notations
For n, a, b œ N, [n] denotes the set {1, 2 . . . , n} and [a, b] denotes the integers from a to b,
both inclusive. A polynomial is homogeneous if all its monomials have the same total degree.
The set of invertible linear transforms in n variables over a field F is denoted by GL(n,F).
For a polynomial f œ F[x], the action of a linear transform A œ F|x|◊|x| on its variables is
denoted by f(Ax) as well as by A(f). The sparsity of a polynomial f , denoted as S(f), is
the number of monomials in f with non-zero coe�cients. For a polynomial f , var(f) denotes
the set of variables that occur in at least one monomial of f . We have used the notation
f ≥ g earlier to denote f = g(Ax+ b). Henceforth, we will ignore the translation vector b
in the main body of the discussion for simplicity but mention the necessary changes in the
proofs or point to appropriate sections when translations are involved. Thus, for polynomials
f and g, f ≥ g will mean f(x) = g(Ax) where A œ GL(|x|,F).13 Similarly, the orbit of a
polynomial f will now denote the set {f(Ax), A œ GL(|x|,F)}.

I Definition 18 (Degree separated polynomials). Polynomials f and g are degree separated
if no monomial of f has the same degree as a monomial of g. Similarly, f and g are degree
separated with respect to a variable x if no monomial of f has the same x-degree as a

monomial of g.
14

2.2 Algebraic preliminaries
The proofs of the observations and claims in this section can be found in the full version.

I Observation 19. Let f and g be polynomials such that f ≥ g. Then, f and g have the

same set of degrees
15

for the monomials. Thus, if f and g are degree separated, then f ”≥ g.

I Observation 20. If f and g are degree separated (or degree separated with respect to some

variable), then S(f + g) = S(f) + S(g).

I Observation 21. If f and g are degree separated, f1 ≥ f and g1 ≥ g, then S(f1 + g1) =
S(f1) + S(g1).

Observation 22 analyzes the sparsity of powers of linear forms. Observation 23 is a special
case of Observation 22 and is stated separately because it is simpler and is invoked many
times. Observation 24 analyzes the sparsity of powers of a�ne forms.

I Observation 22. Let ¸ be a m-variate linear form
16

and d œ N. If char(F) = 0, S(¸d) =!
d+m≠1

m≠1

"
and if char(F) = p, S(¸d) =

r
k

i=0

!
ei+m≠1

m≠1

"
, where d =

q
k

i=0
eip

i
, ei œ [0, p ≠ 1].

I Observation 23. If char(F) = 0 and ¸ is a linear form in exactly two variables, then

S(¸d) = d+1. The result holds for char(F) = p fields if p > d or if d = p
k ≠1 for some k œ N.

Further, if ¸ is a linear form in at least two variables and d is as before, then S(¸d) Ø d+ 1.

13Note ≥ is an equivalence relation under this definition.
14The degree of a monomial means its total degree and the degree of a polynomial f is the maximum

degree amongst all monomials in f . The x-degree of a monomial is the degree of the variable x in the
monomial.

15The set of degrees is the set of distinct degrees of all the monomials in the polynomial. For example,
the set of degrees of f(x1, x2) = x

2
1 + x1x2 + 4x2 is {2, 1}.

16A linear form is a homogeneous degree one polynomial. An a�ne form is a degree one polynomial.
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I Observation 24. Let h = ¸ + c0, where ¸ is a linear form in at least one variable and

c0 œ F\{0}, then S(hd) Ø S(¸d) + 1. More precisely, S(hd) Ø d+ 1 holds if char(F) = 0 or

if char(F) = p and p > d or d = p
k ≠ 1 for some k œ N.

Claim 25 analyzes the sparsity of polynomials divisible by a power of some linear form in at
least two variables and is used to prove part two of Theorems 2 and 8. Claim 26 analyzes the
support of monomials under invertible linear transforms and is used to prove Theorem 16.

B Claim 25. Let char(F) = 0. If f œ F[x] is a non-zero polynomial divisible by ¸
d for some

linear form ¸ in at least two variables, then S(f) Ø d+ 1.

B Claim 26. Let ‡, d, n œ N, d Ø ‡, f = (x1 · · ·xn)d, and ¸1, . . . , ¸n be linearly independent
linear forms in x1, . . . , xn. If |fin

i=1
var(¸i)| Ø ‡ and g := f(¸1 · · · ¸n), then Supp(g) Ø ‡. The

claim holds if char(F) = 0, or char(F) = p with p > d, or p > ‡ and d = p
k ≠ 1 for some

k œ N.

3 NP-hardness of ETsparse

In this section, we prove Theorem 2 over char(F) = 0 fields without translations for easy
understanding.17 The full version contains the proofs of the lemmas and the observations in
this section, and the reduction over char(F) > 0 fields and also when translations are allowed.

Proof sketch. The reduction maps each variable and clause of a 3-CNF18
Â to distinct degree

separated polynomials which, summed together, give the polynomial f . As the summands
are degree separated, the sparsity of f under invertible transforms can be analyzed by doing
so for individual polynomials. The degrees are chosen such that f is equivalent to an s-sparse
polynomial (for a suitable sparsity parameter s) if and only if Â œ 3-SAT.

3.1 Constructing f and s

Let Â be a 3-CNF in variables x := {x1, x2 . . . xn} and m clauses:

Â = ·m

k=1
‚jœCk (xj ü ak,j),

where Ck denotes the set of indices of the variables in the k
th clause and ak,j œ {0, 1}. Let

y := {y1, y2 . . . yn}, x0 be a new variable and z := {x0} Û x Û y. For d1, d2, d3, d4 œ N,
consider the following polynomials:

Corresponding to variable xi, where i œ [n], define Qi(z) as:

Qi(z) := Qi,1(z) +Qi,2(z) +Qi,3(z), where

Qi,1(z) := x
(3i≠2)d1
0

x
d2
i
, Qi,2(z) := x

(3i≠1)d1
0

(yi + xi)d3 and Qi,3(z) := x
3id1
0

(yi ≠ xi)d3 .

For the k
th clause, k œ [m], define Rk(z) := x

(3n+k)d1
0

r
jœCk

(yj + (≠1)ak,jxj)d4 .

17Note that for f and g two homogeneous polynomials, f(x) = g(Ax+ b) implies f(x) = g(Ax), where
A œ GL(|x|,F) and b œ F|x|. Hence, it su�ces to prove part 2 of Theorem 2 without translations.

18We assume, without loss of generality, that each clause of a 3-CNF has 3 distinct variables. This can be
achieved by introducing extra variables for clauses with < 3 variables.
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Define s := 1 + n(3 + d3) +m(d4 + 1)2 and the polynomial f as:

f(z) := x
d1
0

+
nÿ

i=1

Qi(z) +
mÿ

k=1

Rk(z). (1)

The following conditions are imposed on the di’s:

d1 Ø max(s, d2 + 1), d2 Ø 2d3, d3 Ø m(d4 + 1)2 + 1, and d4 Ø m. (2)

Set d4 := m, d3 := m(m + 1)2 + 1 = O(m3), d2 = 2m(m + 1)2 + 2 = O(m3) and d1 =
1 + n(4 +m(m+ 1)2) +m(m+ 1)2 = O(nm3). Then s = O(nm3) and the di’s satisfy the
conditions of (2), under which the following observations hold.

I Observation 27. For i œ [n], k œ [m], the polynomials x
d1
0
, Qi,1(z), Qi,2(z), Qi,3(z) and

Rk(z) are degree separated from one another. Also, Qi(z) is degree separated from Qj(z), for
i, j œ [n] and i ”= j. Similarly, Rk(z) is degree separated from Rl(z) for k, l œ [m] and k ”= l.

I Observation 28. The degree of f is (3n+m)d1 + 3d4 = (mn)O(1)
, S(f(z)) = 1 + n(2d3 +

3) +m(d4 + 1)3 and Supp(f) = 7.

3.2 The forward direction
Proposition 29 shows how a satisfiable Â implies the existence of an invertible A, such that
S(f(Az)) Æ s by constructing A from a satisfying assignment u œ {0, 1}n of Â.

I Proposition 29. Let u œ {0, 1}n be such that Â(u) = 1. Then S(f(Az)) Æ s for A as:

A : x0 ‘æ x0, xi ‘æ xi, yi ‘æ yi + (≠1)uixi, ’i œ [n]. (3)

Proof. It follows from the definition of f in (1), Observations 27 and 21 that

S(f(Az)) = S(A(xd1
0
)) +

nÿ

i=1

S(Qi(Az)) +
mÿ

k=1

S(Rk(Az)).

Thus, it su�ces to analyze the sparsity of A(xd1
0
), Qi(Az)’s and Rk(Az)’s. Now, S(A(xd1

0
)) = 1

as A(xd1
0
) = x

d1
0
. We now analyze S(Qi(Az)) for i œ [n]. If ui = 0, then

Qi,1(Az) = x
(3i≠2)d1
0

x
d2
i
, Qi,2(Az) = x

(3i≠1)d1
0

(yi + 2xi)d3 and Qi,3(Az) = x
3id1
0

y
d3
i
.

If ui = 1, then

Qi,1(Az) = x
(3i≠2)d1
0

x
d2
i
, Qi,2(Az) = x

(3i≠1)d1
0

y
d3
i

and Qi,3(Az) = x
3id1
0

(yi ≠ 2xi)d3 .

By Observation 23 (for linear forms in two variables over char(F) = 0 fields), if ui = 0
then S(Qi,2(Az)) = d3 + 1 and S(Qi,3(Az)) = 1 and, if ui = 1 then S(Qi,2(Az)) = 1 and
S(Qi,3(Az)) = d3 + 1. In either case, by Observations 27 and 21,

S(Qi(Az)) = S(Qi,1(Az)) + S(Qi,2(Az)) + S(Qi,3(Az)) = d3 + 3.

For the k
th clause, k œ [m], the action of A on the corresponding polynomial Rk is:

Rk(Az) = x
(3n+k)d1
0

Ÿ

jœCk

(yj + ((≠1)ak,j + (≠1)uj )xj)d4 .
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As the multiplicands in Rk(Az) do not share any variables, S(Rk(Az)) is the product of the
sparsity of the multiplicands. Since Â(u) = 1, therefore in the k

th clause there exists j œ Ck

such that ak,j ”= uj . For that j, (yj + ((≠1)ak,j + (≠1)uj )xj)d4 = y
d4
j
. As at least one literal

is true in every clause under u, S(Rk(Az)) Æ (d4 + 1)2 using Observation 23. Thus,

S(f(Az)) = S(A(xd1
0
)) +

nÿ

i=1

S(Qi(Az)) +
mÿ

k=1

S(Rk(Az))

Æ 1 + n(d3 + 3) +m(d4 + 1)2 = s. J

3.3 The reverse direction

Now, we show that (f, s) œ ETsparse implies Â œ 3-SAT by showing that the permuted
and scaled versions of the transform of (3) form all the viable sparsifying invertible linear
transforms. This is where the constraints on the di’s are used. So, let A œ GL(|z|,F) be such
that S(f(Az)) Æ s. Lemma 30 shows that A(x0) is just a variable by leveraging d1 Ø s.

I Lemma 30. Without loss of generality, A(x0) = x0.

The proof of Lemma 31 uses d2 Ø 2d3 while that of Lemma 32 uses d3 Ø m(d4 + 1)2 + 1.

I Lemma 31. For any invertible A and i œ [n]:

S(Qi(Az)) = S(Qi,1(Az)) + S(Qi,2(Az)) + S(Qi,3(Az)) Ø d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in Section 3.1. Equality holds if and only if

A(xi) = Xi and A(yi) = Yi + (≠1)uiXi for some scaled variables Xi, Yi œ z and ui œ {0, 1}.
Further, if S(Qi(Az)) ”= d3 + 3, then S(Qi(Az)) Ø 2d3 + 3.

I Lemma 32. Under the given A, S(Qi(Az)) = d3 + 3 holds for all i œ [n].

Lemmas 30, 31 and 32 together show that A is a permuted scaled version of the transform of
(3). We can assume A to be as described in (3) without loss of generality as permutation
and non-zero scaling of variables do not a�ect the sparsity of a polynomial. Proposition 33
shows how a satisfying assignment can be formed from A using d4 Ø m.

I Proposition 33. For A as given in (3), u = (u1, . . . , un) is a satisfying assignment for Â.

Proof. Suppose not; then there exists k œ [m] such that the k
th clause, ‚jœCk(xj ü ak,j), in

Â is unsatisfied. Since this clause is unsatisfied, uj = ak,j for all j œ Ck. Thus, Rk(Az) =
x
(3n+k)d1
0

r
jœCk

(yj ± 2xj)d4 , where Rk is as defined in Section 3.1, and S(Rk(Az)) =
(d4 + 1)3 Ø (m+ 1)(d4 + 1)2 by Observation 23, the fact that Rk(Az) is a product of linear
forms not sharing variables, and the condition d4 Ø m. By the definition of f and s in
Section 3.1, Observations 27 and 21, it holds that

S(f(Az)) Ø S(A(x0)d1) +
nÿ

i=1

S(Qi(Az)) + S(Rk(Az))

Ø 1 + n(3 + d3) +m(d4 + 1)2 + (d4 + 1)2 = s+ (d4 + 1)2 > s,

a contradiction. Thus, u is a satisfying assignment for Â. J
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3.4 Homogeneous case: Proof of Part 2 of Theorem 2
We show a modification of the construction in Section 3.1 which, along with arguments
similar to those in Sections 3.2 and 3.3, can be used to prove Theorem 2 for homogeneous
polynomials over char(F) = 0 fields. Because the polynomials are homogeneous, we cannot
use degree separation like in the non-homogeneous case. Instead, we introduce a new variable
y0 and redefine Qi(z) and Rk(z) of Section 3.1 so that:
1. Each polynomial is homogeneous with the same degree and is divisible by x

d1
0

and y
d1
0
.

2. Each polynomial has distinct y0-degree and if P1 and P2 are polynomials where P1 has
a higher y0-degree than P2, then the y0-degree of P1 is greater than the degree of any
variable (except possibly x0) in P2.

The divisibility condition ensures that both x0 and y0 map to scaled variables (see Lemma 37
and its proof), and the second condition induces a degree separation of the polynomials with
respect to y0 (see Observation 34 and Lemma 38). Formally, let x0, x and y be as defined in
Section 3.1 and y0 be a new variable. Define z := x Û y Û {x0} Û {y0}. Let d1, d2, d3, d4 œ N.
Consider the following polynomials:
1. For each variable xi, i œ [n], let Qi(z) := Qi,1(z) +Qi,2(z) +Qi,3(z), where

Qi,1(z) := x
d1(3n≠3i+6)≠d2
0

y
d1(3i+m≠2)

0
x
d2
i
, Qi,2(z) := x

d1(3n≠3i+5)≠d3
0

y
d1(3i+m≠1)

0
(yi + xi)d3

Qi,3(z) := x
d1(3n≠3i+4)≠d3
0

y
d1(3i+m)

0
(yi ≠ xi)d3 .

2. For the kth clause, k œ [m], let Rk(z) := x
d1(3n+m+4≠k)≠3d4
0

y
d1k
0

r
jœCk

(yj+(≠1)ak,jxj)d4 .
Define s := 1+ n(d3 +3)+m(d4 +1)2 as before and impose the conditions of (2) on the di’s.
Using the conditions on the di’s, it is easy to verify that the individual degrees of x0 and y0

in every polynomial defined above is at least d1. Define f as:

f(z) := x
3d1
0

y
d1(3n+m+1)

0
+

nÿ

i=1

Qi(z) +
mÿ

k=1

Rk(z). (4)

Clearly, f is a homogeneous polynomial of degree (3n+m+ 4)d1 and is divisible by x
d1
0

and
y
d1
0
. Further, we have the following observations under the constraints of (2).

I Observation 34. For all i œ [n], k œ [m], the polynomials x
3d1
0

y
d1(3n+m+1)

0
, Qi,1(z),

Qi,2(z), Qi,3(z) and Rk(z) are degree separated with respect to y0 from one another. Also,

Qi(z) is degree separated with respect to y0 from other Qj(z)’s, for i, j œ [n] and i ”= j.

Similarly, Rk(z) is degree separated with respect to y0 from Rl(z) for k, l œ [m] and k ”= l.

I Observation 35. S(f(z)) = 1 + n(2d3 + 3) +m(d4 + 1)3 and Supp(f) = 8.

The forward direction. Let u œ {0, 1}n be such that Â(u) = 1 and f , as described in (4),
be the polynomial corresponding to Â. Proposition 36 shows how to construct a sparsifying
transform from u. The proof of Proposition 36 is very similar to that of Proposition 29.

I Proposition 36. S(f(Az)) Æ s where A œ GL(|z|,F) is as follows:

A : y0 ‘æ y0, x0 ‘æ x0, xi ‘æ xi, yi ‘æ yi + (≠1)uixi i œ [n]. (5)

The reverse direction. Let S(f(Az)) Æ s for some A œ GL(|z|,F). Lemma 37, the proof
of which requires Claim 25, shows that A(x0) and A(y0) have only one variable. With this,
Lemma 38 shows that the summands of f(Az) must be degree separated with respect to y0.
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I Lemma 37. Without loss of generality, A(x0) = x0 and A(y0) = y0.

I Lemma 38. For all i œ [n], k œ [m], the polynomials x
3d1
0

y
d1(3n+m+1)

0
, Qi,1(Az), Qi,2(Az),

Qi,3(Az) and Rk(Az) are degree separated from one another with respect to y0. Also, Qi(Az)
is degree separated with respect to y0 from other Qj(Az)’s, for i, j œ [n] and i ”= j. Similarly,

Rk(Az) is degree separated with respect to y0 from Rl(Az) for k, l œ [m] and k ”= l.

) S(f(Az)) = S(x3d1
0

y
d1(3n+m+1)

0
) +

nÿ

i=1

S(Qi(Az)) +
mÿ

k=1

S(Rk(Az)), by Lemma 38.

Lemmas 31 and 32 then hold with slight modification to their proofs, which, along with
Lemma 37, show that A is a permuted scaled version of the transform of (5). Proposition 39
then holds and can be proven similarly to Proposition 33.

I Proposition 39. For A as given in (5), u = (u1, . . . , un) is a satisfying assignment for Â.

I Remark 40. In the definition of f in Section 3.1 and this section, an extra summand is
present besides Qi’s and Rk’s. If char(F) = 0, we can drop the summand by using Claim 25
and suitably modifying f , the current parameters and arguments to make the reduction
work. We preserve the extra summand here for two reasons: One, for ease of understanding,
because the definition of f in (1) is similar to that in (4). Two, in the non-homogeneous case,
the extra summand proves useful in showing the reduction over finite characteristic fields,
where Claim 25 does not hold, and thus it may also prove useful in showing the reduction
for homogeneous polynomials over such fields.

I Remark 41. A feature of the reduction is that we can assume that the output polynomial is
of the form w

D
f(z), where w /œ z. This can be achieved by multiplying the output polynomial

f of the current reduction by w
D, where D is greater than the sparsity parameter s in the

reduction. If a proof of NP-hardness of hom-���-MCSP has this feature, then it would
imply NP-hardness of ���-MCSP (via a homogenization trick).

I Remark 42. We believe Claim 25 (used to prove Lemma 37) can be modified for finite
characteristic fields, using which the argument in this section can be extended to such fields.

4 NP-hardness of –-gap-ETsparse

In this section, we prove parts 1 and 2 of Theorem 8 over char(F) = 0 fields when no
translations are involved. The full version contains the proofs of the lemmas in this section
and that of the finite characteristic case with translations allowed for part 1 of Theorem 8.

Proof sketch. For a 3-CNF Â, we carefully analyze the sparsity of the corresponding
polynomial f , as defined in (1) with the constraints of (2) and (6), under all A œ GL(|z|,F).
For Â œ 3-SAT, Lemma 43 shows lower bounds on S(f(Az)) for any A œ GL(|z|,F). For
Â œ 3-SAT, by Proposition 29, there exists A œ GL(|z|,F) such that S(f(Az)) Æ s0 :=
1 + n(d3 + 3) + m(d4 + 1)2. Proposition 44 compares the sparsities for satisfiable and
unsatisfiable Â’s and shows –-gap-ETsparse is NP-hard using Lemma 43 and the conditions
in (6).

d1 = d2 + 1, d2 = d
2

3
+ 1, d3 = m(d4 + 1)2 + 1, d4 Ø 4mn. (6)
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I Lemma 43. Let Â œ 3-SAT, f be as defined in (1) corresponding to Â and A œ GL(|z|,F).
1. If A(x0) is a linear form in at least 2 variables, S(f(Az)) Ø d1 + 1.
2. If A is not as in item 1 and A(xj) is a linear form in at least 2 variables for some j œ [n],

then S(f(Az)) Ø d2 + 1.
3. If A is not as in items 1 and 2 and S(A(yj + xj)) Ø 3 or S(A(yj ≠ xj)) Ø 3 for some

j œ [n], then S(f(Az)) Ø d
2
3+3d3+2

2
.

4. If A is not of the form described in the previous three cases, then S(f(Az)) Ø (d4 + 1)3.

I Proposition 44. –-gap-ETsparse is NP-hard for s-sparse polynomial inputs over F and

– = s
1/3≠‘

, where ‘ œ (0, 1/3) is an arbitrary constant.

Proof. If Â œ 3-SAT, then S(f(Az)) Æ s0 where A is as described in (3). If Â œ 3-SAT,
then it follows from Lemma 43 that for any A œ GL(|z|,F):

S(f(Az)) Ø min
3
d1 + 1, d2 + 1, d

2
3
+ 3d3 + 2

2 , (d4 + 1)3
4
.

The constraints imposed in (6) ensure that (d4+1)3 is the minimum. As d3 = m(d4+1)2+1,
therefore s0 = 1 + n(d3 + 3) +m(d4 + 1)2 Æ 3nd3 = 3mn(d4 + 1)2 + 3n Æ 4mn(d4 + 1)2.
Thus, the gap in the sparsities of the YES instances and the NO instances is

(d4 + 1)3
s0

Ø (d4 + 1)3
4mn(d4 + 1)2 = d4 + 1

4mn
.

Also, as d4 Ø 4mn, S(f) = s Æ 2m(d4 + 1)3 =∆ d4 + 1 Ø ( s

2m
)1/3. Then, the gap is

(d4 + 1)3
s0

Ø d4 + 1
4mn

Ø s
1/3

21/34m4/3n
.

Let ‘ œ (0, 1/3) be an arbitrary constant. The parameter d4, which determines s, can be
chosen a su�ciently large polynomial function in m and n such that 21/34m4/3

n Æ s
‘. Hence,

the gap is at least s1/3≠‘. Thus, 3-SAT reduces to –-gap-ETsparse for – = s
1/3≠‘. J

Homogeneous polynomials over char(F) = 0 fields. We now consider the polynomial f
as defined in (4) for Â with the constraints of (6). For Â œ 3-SAT, S(f(Az)) Æ s0 where A

is as described in (5) and s0 is as defined earlier. For Â œ 3-SAT, Lemma 45, proved using
Claim 25, shows lower bounds on S(f(Az)), for all A œ GL(|z|,F). Proposition 46 proves
–-gap-ETsparse is NP-hard using Lemma 45 and has the same proof as Proposition 44.

I Lemma 45. Let Â œ 3-SAT, f be as defined in (4) corresponding to Â and A œ GL(|z|,F).
1. If A(x0) or A(y0) is a linear form in at least 2 variables, then S(f(Az)) Ø d1 + 1.
2. If A is not as in item 1 and if A(xj) is a linear form in at least 2 variables for some

j œ [n], then S(f(Az)) Ø d2 + 1.
3. If A is not as in items 1 and 2 and S(A(yj + xj)) Ø 3 or S(A(yj ≠ xj)) Ø 3 for some

j œ [n], then S(f(Az)) Ø d
2
3+3d3+2

2
.

4. If A is not of the form described in the previous three cases, then S(f(Az)) Ø (d4 + 1)3.

I Proposition 46. Let char(F) = 0. Then, –-gap-ETsparse is NP-hard for s-sparse homo-

geneous polynomial inputs over F and – = s
1
3 ≠‘

, where ‘ œ (0, 1

3
) is an arbitrary constant.

I Remark 47. The proof of Lemma 45 uses Claim 25, which works over char(F) = 0 fields.
We believe that Claim 25 can be modified for finite characteristic fields, using which the
argument in this section can be extended over such fields.
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5 NP-hardness of ETsupport

In this section, we prove Theorem 16 for characteristic 0 fields. The full version contains the
proofs of the lemmas and the reduction for the finite characteristic case.

Proof sketch. We map Â, a 3-CNF, to a polynomial f , which is the sum of degree separated
polynomials with at least one polynomial of support ‡+1 (‡ is a constant integer) and the rest
of support ‡. As the summands are degree separated, Supp(f) = ‡ +1 and for any invertible
linear transform A, Supp(A(f)) is the maximum support size over all the transformed
summands. Claim 26 is used to show Â œ 3-SAT i� there exists an invertible linear transform
A, such that Supp(A(f)) Æ ‡. Thus, the reduction also holds for (‡ + 1)-to-‡ ETsupport.

5.1 Construction of f and ‡

Let ‡ Ø 6 be an even integer constant and Â be as denoted in Section 3.1. Assume n Ø ‡ +4
and that in the first clause of Â all the variables are complemented.19 Let x := {x1, . . . , xn},
y := {y1, . . . , yn} and z := {z1, . . . , z‡≠5} and w := x Û y Û z. Consider the polynomials:

First, introduce
!
n+‡≠5

‡

"
many monomials defined by the set

P := {(wi1 · · ·wi‡ )ı | wi1 , . . . , wi‡ œ z Û x and are pairwise distinct}.

Then, introduce
!
n
‡
2

"
many monomials defined by the set

Q := {((xi1yi1) · · · (xi‡
2
yi‡

2
))ı | i1, . . . , i‡

2
œ [n] and are pairwise distinct}.

Let R := {Rk(w) | k œ [m]}, where Rk(w) is defined corresponding to the k
th clause as:

Rk(w) := (
Ÿ

jœCk

(yj ≠ ak,jxj))2(z1 · · · z‡≠5)ı
.

Define f(w) :=
q

gœP
g(w) +

q
hœQ

h(w) +
q

m

k=1
Rk(w). The degrees, denoted by ı, are

of form ‡ + i where i œ [N ] and N =
!
n+‡≠5

‡

"
+

!
n

‡/2

"
+ m to ensure all polynomials in

P Û Q Û R are degree separated with degrees Ø ‡ + 1. Based on this, Observation 48 holds.

I Observation 48. S(f(w)) = O(n‡ +m) and Supp(f(w)) = ‡ + 1.

5.2 The forward direction
Proposition 49 shows how a satisfying assignment for Â implies the existence of an invertible
A, such that Supp(f(Aw)) = ‡ by constructing A from the satisfying assignment.

I Proposition 49. Let Â œ 3-SAT with (u1, . . . , un) œ {0, 1}n a satisfying assignment. Then,

Supp(f(Aw)) = ‡, where the transform A is defined as

A : zj ‘æ zj , xi ‘æ xi, yi ‘æ yi + (1 ≠ ui)xi i œ [n], j œ [‡ ≠ 5]. (7)

19To achieve n Ø ‡ + 4, add fresh variables and clauses in these variables to Â. To ensure that the first
clause contains only complemented variables, every uncomplemented variable x in the first clause is
replaced by ¬x followed by complementing each occurrence of x in the remaining clauses of Â.

ICALP 2024



16:16 NP-Hardness of Testing Equivalence to Sparse Polynomials

Proof. As all polynomials in P Û Q Û R are degree separated, analysing the action of A on
individual polynomials su�ces. For g œ P , g(Aw) = g. On each monomial of Q, A acts as:

A : ((xi1yi1) · · · (xi s
2
yi‡

2
))ı ‘æ ((xi1)(yi1 + (1 ≠ ui1)xi1) · · · (xi‡

2
)(yi‡

2
+ (1 ≠ ui s

2
)xi‡

2
))ı

.

Under A, each monomial of Q has support ‡ by Claim 26. For k œ [m], A acts on Rk(w) as:

A : (
Ÿ

jœCk

(yj ≠ ak,jxj))2 · (z1 · · · z‡≠5)ı ‘æ (
Ÿ

jœCk

(yj + (1 ≠ ak,j ≠ uj)xj)2 · (z1 · · · z‡≠5)ı
.

If ak,j ”= uj , then ak,j = 1 ≠ uj . Since Â is satisfiable, therefore for all k œ [m], ak,j ”= uj for
some j œ Ck. Hence, Supp(Rk(Aw)) Æ (‡ ≠ 5) + 5 = ‡ for all k œ [m]. J

5.3 The reverse direction
Now, we show that if Supp(f(Aw)) Æ ‡ for A œ GL(|w|,F), then a satisfying assignment can
be obtained for Â. Lemmas 50 and 51, proved using Claim 26, together show that A is as:

A : zj ‘æ zj , xi ‘æ xi, yi ‘æ yi + cixi ci œ F, j œ [‡ ≠ 5], i œ [n]

without loss of generality.20 Proposition 52 constructs a satisfying assignment for Â from A.

I Lemma 50. If Supp(f(Aw)) Æ ‡, then ’w œ zÛx, A(w) = W , for scaled variable W œ w.

I Lemma 51. If Supp(f(Aw)) Æ ‡, then A(xi) = Xi and A(yi) = Yi + ciXi, for scaled

variables Yi, Xi œ w.

I Proposition 52. A satisfying assignment u for Â can be constructed from A.

Proof. The action of A on Rk, where k œ [m], is:

(
Ÿ

jœCk

(yj ≠ ak,jxj))2 · (z1 · · · z‡≠5)ı ‘æ (
Ÿ

jœCk

(yj + (cj ≠ ak,j)xj))2 · (z1 · · · z‡≠5)ı
.

Thus, Supp(Rk(Aw)) Æ ‡ i� for some j œ Ck, cj = ak,j . By assumption Supp(Rk(Aw)) Æ ‡

for all k œ [m]. Hence, for each Rk(w), there exists j œ Ck such that cj œ {0, 1}. Construct
u œ {0, 1}n by setting uj := 1≠cj , for appropriate j œ Ck and the remaining ui’s to arbitrary
values in {0, 1}. From the definition of u, it follows that for all k œ [m], there exists j œ Ck

such that uj ”= ak,j . As k is arbitrary, all clauses are satisfied. J

6 Conclusion

In this work, we show that ET for sparse polynomials is NP-hard. Particularly, we show
the NP-hardness of MCSP for orbits of homogeneous sparse polynomials (a dense subclass
of hom-��� circuits) over characteristic 0 fields. We also define a gap version of ET for
sparse polynomials and show it is NP-hard, which implies the NP-hardness of s 1

3 ≠‘-factor
approximation of the sparse-orbit complexity of s-sparse polynomials. Lastly, we show that
ET for constant-support polynomials is NP-hard. In all three cases, we reduce 3-SAT to the
respective problems. We end by listing some problems whose solutions we do not know:

20 as permutation and non-zero scaling of variables do not a�ect the support.
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1. Hardness of ETsparse for constant degree polynomials: In the reduction of
Theorem 2, can the degree of the output polynomial be made constant? Currently, the
degree is polynomial in the number of clauses and variables.

2. Improving the gap in Theorem 8: Can –-gap-ETsparse be shown NP-hard for
– = s

1≠‘, where the input polynomial has sparsity s and ‘ > 0 is an arbitrary constant?
3. Hardness of ETsupport for ‡ = 2: Is checking if a given polynomial is in the orbit of

a support-2 polynomial NP-hard? Theorem 16 shows ETsupport is NP-hard for ‡ Ø 6 .
4. Hardness of MCSP for hom-��� circuits: Is MCSP for hom-��� circuits NP-hard?
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Abstract

Let G be a directed weighted graph on n vertices and m edges with designated source and sink
vertices s and t. An edge in G is vital if its removal reduces the capacity of (s, t)-mincut. Since the
seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing
the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for
either undirected or unweighted graphs. We present the following result for directed weighted graphs

that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019].
1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most

vital edge of G using O(n) maximum (s, t)-flow computations.

Vital edges play a crucial role in the design of sensitivity oracle for (s, t)-mincut – a compact
data structure for reporting (s, t)-mincut after insertion/failure of any edge. For directed graphs,
the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS
1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows.

2. Sensitivity Oracles:

(a) There is an optimal O(n2) space data structure that can report an (s, t)-mincut C in O(|C|)
time after the failure/insertion of any edge.

(b) There is an O(n) space data structure that can report the capacity of (s, t)-mincut after
failure or insertion of any edge e in O(1) time if the capacity of edge e is known.

A mincut for a vital edge e is an (s, t)-cut of the least capacity in which edge e is outgoing. For
unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m)
space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges.
Conversely, there is a set containing at most n ≠ 1 (s, t)-cuts such that at least one mincut for
every vital edge belongs to the set. We generalize these results for directed weighted graphs as
follows.

3. Structural & Combinatorial Results:

(a) There is a set M containing at most n ≠ 1 (s, t)-cuts such that at least one mincut for every
vital edge belongs to the set. This bound is tight as well. We also show that set M can be
computed using O(n) maximum (s, t)-flow computations.

(b) We design two compact structures for storing and characterizing all mincuts for all vital
edges – (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete

characterization.

To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut

Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.
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1 Introduction

For any graph problem, there are edges whose removal a�ects the solution of the given
problem. These edges are called vital edges for the problem. There has been extensive
research on the vital edges for various fundamental problems – shortest paths/distance
[32, 34, 23, 28, 19], minimum spanning trees [15, 26, 33], strongly connected components
(SCC) [16]. The concept of vital edge for (s, t)-mincut has existed ever since the seminal
work of Ford and Fulkerson [14] on maximum (s, t)-flow. In this article, for directed weighted
graphs, we present the following two main results – (1) an e�cient algorithm for computing
all vital edges, and (2) optimal sensitivity oracles for (s, t)-mincut. The algorithm in (1)
is the first nontrivial algorithm for computing all vital edges in directed weighted graphs,
which also answers an open question in [3]. Our optimal sensitivity oracle in (2) is the first
sensitivity oracle for directed weighted graphs in the area of minimum cuts. In order to
arrive at these results, we present interesting structural & optimal combinatorial results on
mincuts for vital edges. These results provide a generalization of the classical work of Picard
and Queyranne [30] and the recent work of Baswana, Bhanja, and Pandey [4].

Let G = (V,E) be a directed graph on n = |V | vertices and m = |E| edges. Each edge
e œ E has a capacity, denoted by w(e), which is a positive real number. Let s be a designated
source vertex and t be a designated sink vertex in G.

A set C µ V is said to be a cut if C ”= ÿ. The outgoing edges from C are called
contributing edges of C. The capacity of cut C, denoted by c(C), is defined as the sum of
the capacities of all contributing edges of C. A cut C is said to be an (s, t)-cut if s œ C and
t œ C = V \ C. An (s, t)-cut C with the least capacity is called an (s, t)-mincut. We denote
the capacity of (s, t)-mincut by f

ú. The (s, t)-mincut of a graph is a fundamental concept in
graph theory and is used to design e�cient algorithms for numerous real-world problems [1].
Now we formally define the vital edges for (s, t)-micuts.

I Definition 1 (vital edge). An edge e œ E is said to be a vital edge if the removal of e
decreases the capacity of (s, t)-mincut in G. Evit denotes the set of all vital edges in G.

Observe that each edge that contributes to an (s, t)-mincut is definitely a vital edge. However,
a vital edge might not necessarily contribute to any (s, t)-mincut (e.g., edge (v1, v4) in
Figure 1)(i). An edge that is not vital is called a nonvital edge. At first glance, it may appear
that we may remove all nonvital edges from the graph without a�ecting the (s, t)-mincut.
But it is not true, as stated in the following note.

I Note 2. Although the removal of any single nonvital edge does not decrease the capacity
of (s, t)-mincut, the removal of a set of nonvital edges might lead to the reduction in the
capacity of (s, t)-mincut (e.g., edges (v2, v6) and (v3, v5) in Figure 1(i)).

The design of e�cient algorithms for various problems [31, 35, 27, 29] related to vital edges
started just a few years after the seminal work of Ford and Fulkerson [14]. The vitality of an
edge e is the reduction in the capacity of (s, t)-mincut after the removal of edge e. Observe
that one maximum (s, t)-flow computation is su�cient for computing the vitality of any
edge. So, for computing all vital edges and their vitality, there is a trivial algorithm that
requires O(m) maximum (s, t)-flow computations. An edge having the maximum vitality is
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Figure 1 (i) Each mincut for vital edge (v1, v4) contains a nonvital edge (shown in the same
color). (ii) A mincut cover fails to include mincut B for edges (a, t) and (s, b) if property P is not
ensured in the construction. An edge and the mincut for the edge are shown in the same color.

said to be the most vital edge. Aneja, Chandrasekaran, and Nair [2] designed an algorithm
that performs O(n) maximum (s, t)-flow computations to compute the most vital edge in an
undirected graph. Ausiello, Franciosa, Lari, and Ribichini [3] showed that O(n) maximum
(s, t)-flow computations are su�cient even for computing all vital edges and their vitality in
an undirected graph. Unfortunately, even after 60 years, the following question has remained
unanswered, which is also posed as an open problem in [3].

I Question 1. For directed weighted graph G, does there exist an algorithm that can compute
all vital edges along with their vitality using O(n) maximum (s, t)-flow computations?

We can generalize the notion of (s, t)-mincut to “mincut for an edge” as follows.

I Definition 3 (mincut for an edge). Let e be a contributing edge of an (s, t)-cut C. C

is a mincut for edge e if c(C) Æ c(C Õ) for each (s, t)-cut C Õ in which edge e appears as a
contributing edge.

Not only the study of mincuts for vital edges is important from a graph theoretic perspective
but it also plays a crucial role in designing sensitivity oracle for (s, t)-mincuts – a compact
data structure that e�ciently reports an (s, t)-mincut after the failure/insertion of any edge.

The minimum cuts in a graph can be quite large in number – �(n2) global mincuts [11],
�(2n) (s, t)-mincuts [30]. Interestingly, compact structures have been invented that compactly
store and characterize various types of minimum cuts and cuts of capacity near minimum
[13, 12, 30, 11, 4]. A compact structure G

Õ is said to characterize a set C of cuts using a
property P if the following holds. A cut C belongs to C if and only if cut C satisfies property
P in graph G

Õ. Specifically for (s, t)-mincuts in any directed weighted graph G, Picard and
Queyranne [30] showed that there exists a directed acyclic graph (DAG), denoted by DPQ(G),
occupying O(m) space that compactly stores all (s, t)-mincuts. In addition, it provides the
following characterization for each (s, t)-mincut.
An (s, t)-cut C is an (s, t)-mincut in G if and only if C is a 1-transversal cut in DPQ(G).
An (s, t)-cut is said to be 1-transversal if its edges intersect any simple path at most
once; e.g., cut A is 1-transversal but cut {s, v3} is not 1-transversal in Figure 1(i). The
1-transversality property also plays a crucial role in designing sensitivity oracles for (s, t)-
mincuts in unweighted graphs [30, 4]. Observe that DPQ(G) stores all mincuts for all
edges that contribute to (s, t)-mincuts. However, edges contributing to (s, t)-mincuts may
constitute a small subset of the set of all vital edges. Therefore, DPQ(G) may fail to preserve
all mincuts for all vital edges. This raises the following question.

I Question 2. Does there exist a compact graph structure that stores and characterizes all
mincuts for all vital edges in directed weighted graph G?

ICALP 2024
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Constructing the smallest set storing a minimum cut for every edge or every pair of vertices
has been addressed extensively [22, 11, 9, 18, 20, 21] since the remarkable work of Gomory
and Hu [18]. The smallest set of (s, t)-cuts that has at least one mincut for every edge is
called a mincut cover. For directed unweighted graphs, Baswana, Bhanja, and Pandey [4],
exploiting the DAG structure in [30], showed that there is a mincut cover of cardinality
at most n ≠ 1 for all vital edges. For undirected weighted graphs, it is shown in [3] that
there is a mincut cover of cardinality at most n ≠ 1 for all edges, and hence for all vital
edges. Unfortunately, for directed weighted graphs, we establish that it is not possible to
have a mincut cover of cardinality o(n2) for all edges (Theorem 37). Therefore, the following
question naturally arises.

I Question 3. Does there exist a mincut cover of cardinality o(n2) for all vital edges in
directed weighted graph G?

Design of sensitivity oracles have been studied quite extensively for various fundamental
problems in both unweighted and weighted graphs – shortest paths/distances [8, 19], reach-
ability [24, 10], strongly connected components [5, 16], all-pairs mincuts [6]. In weighted
graphs, the concept of failures/insertions of edges is, interestingly, more generic. Here, the
aim is to report the solution to the given problem given that the capacities of a small set of
edges are decreased/increased by an amount � > 0.

For (s, t)-mincuts in directed graphs, the existing sensitivity oracles are only for unweighted
graphs and completely based on DAG DPQ(G) [30], which dates back to 1982. Firstly, there
is an O(m) space sensitivity oracle given in [30]. After the failure/insertion of an edge,
the oracle takes O(1) time for reporting the capacity and O(m) time for reporting the
corresponding (s, t)-mincut. Assuming the edge of the query exists in the graph, an O(n)
space data structure can be designed [4]. This data structure can report the capacity of
(s, t)-mincut in O(1) time and an (s, t)-mincut C in O(|C|) time after the failure/insertion of
an edge. For various problems related to sensitivity analysis, it is also important to e�ciently
report a compact structure that stores and characterizes all (s, t)-mincuts after the failure
of any edge, as shown in [30]. For unweighted graphs, DAG DPQ for the resulting graph
can be reported in O(m) time [30]. All these results crucially exploit the property that, in
unweighted graphs, a mincut for a vital edge is also an (s, t)-mincut; hence, every contributing
edge is also vital. However, for weighted graphs, this property no longer holds. In fact,
nonvital edges may contribute to all mincuts for a vital edge (e.g., all mincuts {A,B,C,D}

for edge (v1, v4) in Figure 1(i)). So, the following question arises.

I Question 4. For directed weighted graph G, does there exist
1. an O(n) space data structure that can report the capacity of (s, t)-mincut in O(1) time,
2. a compact data structure that can report an (s, t)-mincut C in O(|C|) time, and
3. a compact data structure that can report DAG DPQ in O(m) time for the resulting graph
after increasing/decreasing the capacity of any given edge?

I Note 4. It is a simple exercise to design an O(n2) space data structure and an O(n) space
data structure that, after increasing the capacity of any edge, can report an (s, t)-mincut
C in O(|C|) time and its capacity in O(1) time, respectively. Henceforth, while addressing
sensitivity oracles, we focus only on handling the decrease in the capacity of an edge.

1.1 Our contribution and the organization of the results

We provide an a�rmative answer to all the four questions raised above. We present basic
notations and terminologies in the following section. Thereafter, we present a generalization
of maxflow-mincut Theorem by Ford and Fulkerson [14] in Section 3. This property, which
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might be of independent interest, plays a key role in establishing various results in this
article. Mincut cover for all vital edges and sensitivity oracles for (s, t)-mincut are presented
in Section 4 and 5 respectively. Algorithm for computing all vital edges is presented in
Section 6. Compact structures for storing and characterizing all mincuts for all vital edges
are described in Section 7. We present various lower bounds in Section 8.

2 Preliminaries

For any directed weighted graph H with a designated source vertex s and a designated sink
vertex t, we define the following notations to be used throughout the article.

H \ {e}: Graph after the failure of an edge e in H.
value(f,H): value of an (s, t)-flow f in graph H. We denote value(f,G) by f

ú.
f(e,H): value of (s, t)-flow f along edge e in H.
fin(C,H): For any (s, t)-flow f and an (s, t)-cut C in H, fin(C,H) is the sum of the flow
through all edges that leave C and enter C.
fout(C,H): For any (s, t)-flow f and an (s, t)-cut C in H, fout(C,H) is the sum of the
flow through all edges that leave C and enter C.

Without causing any ambiguity, we use fin(C) and fout(C) to denote fin(C,G) and fout(C,G)
respectively.

The following lemma can be proved easily using the conservation of an (s, t)-flow.

I Lemma 5. For any (s, t)-cut C in H, fout(C,H) ≠ fin(C,H) = value(f,H).

For a set U ™ V , Evit(U) denotes the set of vital edges whose both endpoints belong to U .
We now introduce a notation that quantitatively captures the vitality of an edge.

wmin(e): the reduction in the capacity of (s, t)-mincut in G after the failure of edge e.
The following observation is immediate from Definition 1.

I Observation 6. For any vital edge e, wmin(e) > 0.

I Definition 7 (A mincut cover for a set of edges). A set A consisting of (s, t)-cuts is said to
be a mincut cover for a set of edges E

Õ if, for each edge e œ E
Õ, at least one mincut for e is

present in A, and |A| is the smallest.

The following lemma provides a maximum (s, t)-flow based characterization for a vital edge.

I Lemma 8. An edge e is vital if and only if f(e) > 0 in every maximum (s, t)-flow f in G.

Lemma 8 can be proved easily using the strong duality between maximum (s, t)-flow and
(s, t)-mincut [14].

I Definition 9 (Edge-set of a cut). A cut C is said to separate a pair of vertices u, v œ V if
either u œ C and v œ C or v œ C and u œ C. The edge-set of C is the set of all those edges
whose endpoints are separated by C.

For an undirected graph, the set of contributing edges of a cut is the edge-set of the cut. In
a seminal work, Gomory and Hu [17] established the following two results for an undirected
graph. (1) There is a set of n ≠ 1 cuts such that the cut of the least capacity separating
each pair of vertices is present in this set. (2) Each of these n ≠ 1 cuts appears as a cut in a
spanning tree on the vertex set V . This tree is widely-known as Gomory-Hu tree.

The construction of Gomory-Hu tree crucially exploits that the capacity of each cut in
graph is defined as the sum of the capacities of all contributing edges of the cut. Suppose
capacity of each cut is defined by any arbitrary real-valued function F . Even for this generic
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setting, Cheng and Hu [9] showed that there exists a set consisting of n ≠ 1 cuts such
that a cut of the least capacity (F -value) separating any pair of vertices is present in the
set. Furthermore, Cheng and Hu [9] showed that all these cuts can be stored in a suitably
augmented rooted full binary tree, called ancestor tree as follows. Every vertex of the given
graph is mapped to a unique leaf node in the ancestor tree, and the cut of the least capacity
separating any pair of vertices is stored at their lowest common ancestor (lca) in the tree.
The ancestor tree occupies O(n2) space and, Cheng and Hu [9] also designed an e�cient
algorithm to construct the tree – It performs only O(n) calls to an algorithm that, given
any pair of vertices, can report a cut of the least capacity separating them.

Ausiello, Franciosa, Lari, and Ribichini [3] showed that the ancestor tree of Cheng and
Hu [9] can be constructed for (s, t)-cuts as well if function F is defined as follows.

For a set C µ V , F (C) =
I
c(C), if s œ C and t œ C

Œ, otherwise.
(1)

This insight played a crucial role in the computation of all vital edges in an undirected graph
using O(n) maximum (s, t)-flow computations [3].

3 A Generalization of FlowCut Property

Let Emin ™ E be the set of all edges contributing to any (s, t)-mincut. Ford and Fulkerson [14]
established a strong duality between (s, t)-mincut and maximum (s, t)-flow. Exploiting this,
the following property provides a maximum (s, t)-flow based characterization for mincut for
any edge e œ Emin.

FlowCut: Let C be an (s, t)-cut and e œ Emin is a contributing edge of C. C is a
mincut for edge e if and only if for any maximum (s, t)-flow, each contributing edge of C is
fully saturated and each incoming edge of C carries no flow.

For directed weighted graphs, we know that Emin maybe only a proper subset of the set
of all vital edges. We now present a generalization of FlowCut property that provides a
maximum (s, t)-flow based characterization for each mincut C(e), ’e œ Evit.

I Theorem 10 (GenFlowCut). Let C be an (s, t)-cut and a vital edge e = (u, v) contributes
to C in G. C is a mincut for e if and only if there is a maximum (s, t)-flow f such that
1. fin(C) = 0.
2. e carries exactly wmin(e) amount of (s, t)-flow and every other contributing edge e

Õ in C

is fully saturated, that is, f(eÕ) = w(eÕ).

Proof. Suppose C is a mincut for vital edge e in G. After the removal of edge e, the capacity
of (s, t)-cut C is related to f

ú as follows.

In graph G \ {e}, c(C) = f
ú

≠ wmin(e) (2)

Let G
Õ be the graph obtained from G after reducing the capacity of edge e from w(e) to

wmin(e). Therefore, using Equation 2, the capacity of C inG
Õ is (fú

≠wmin(e))+wmin(e) = f
ú.

Let Cu,v be the set of all (s, t)-cuts that keep u on the side of s and v on the side of t. The
capacity of each cut in Cu,v gets reduced by the same amount due to reduction in the
capacity of e. Therefore, C is a mincut for edge e in G

Õ as well. Hence the capacity of every
cut belonging to Cu,v in G

Õ is at least f
ú. Capacity of any (s, t)-cut in G

Õ, that does not
belong to Cu,v, is at least fú since it remains una�ected by the reduction in the capacity of
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edge e. These facts imply that f
ú is the capacity of (s, t)-mincut in G

Õ. Thus, using the
strong duality between maximum (s, t)-flow and (s, t)-mincut, it follows that there exists a
maximum (s, t)-flow f in G

Õ such that value(f,GÕ) = f
ú. Using Lemma 5 for C in G

Õ, we
get the following equality.

fout(C,GÕ) ≠ fin(C,GÕ) = f
ú (3)

It follows from the capacity constraint that fout(C,GÕ) Æ c(C). So, Equation 3 implies that
fin(C,GÕ) Æ c(C) ≠ f

ú. Since c(C) = f
ú in G

Õ as shown above, we arrive at the following.

fin(C,GÕ) = 0 and fout(C,GÕ) = f
ú (4)

This implies that, in G
Õ, each outgoing edge of C is fully saturated and each incoming edge

does not carry any amount of flow. f is also a valid maximum (s, t)-flow for graph G because
f

ú is the value of maximum (s, t)-flow in G and f((u, v)) Æ w((u, v)) in G. Therefore, it
follows from Equation 4 that in graph G, fin(C) = 0, each outgoing edge of C is fully
saturated, and edge e carries exactly wmin(e) amount of (s, t)-flow.

We now prove the converse part. Suppose there is a maximum (s, t)-flow in G such that
each outgoing edge of C, except e, is fully saturated and each incoming edge carries no
flow. Therefore, c(C) in G is f

ú
≠ wmin(e) + w(e). So, in graph G \ {e}, capacity of C is

f
ú

≠ wmin(e). Since e is a vital edge, it follows from definition that f
ú

≠ wmin(e) is the
capacity of (s, t)-mincut in G \ {e}. Therefore, C is an (s, t)-mincut in G \ {e}. Hence, each
(s, t)-cut in G that keeps u on the side of s and v on the side of t has a capacity at least
f

ú
≠ wmin(e) + w(e). This implies that C is a mincut for edge e. J

I Remark 11. Theorem 10 crucially exploits Equation 2 which holds for vital edges only.
Note that wmin(e) = 0 for a nonvital edge e. So, if C is a mincut for e, C might have capacity
> f

ú even after removing nonvital edge e from G.

4 A Mincut Cover for All Vital Edges

For any subset E of vital edges, let V (E) denote the smallest set of vertices such that for
each edge (u, v) œ E , both u and v belong to V (E). We establish an upper bound on the
cardinality of the mincut cover of E in terms of |V (E)|.

Let e be a vital edge, and let C be a mincut for e. In undirected graphs, recall that each
edge belonging to the edge-set of C is a contributing edge of C. However, in directed graphs,
there may exist edges incoming to C. Any such incoming edge, say e

Õ, is not a contributing
edge of C, and certainly, any mincut for edge e

Õ is di�erent from C. Can e
Õ be a vital edge?

The following lemma answers this question in negation. It crucially exploits the properties of
(s, t)-maxflow across C as stated in GenFlowCut Property (Theorem 10).

I Lemma 12. If C is a mincut for a vital edge, each incoming edge of C must be a nonvital
edge.

Proof. Let e
Õ be an incoming edge of C. It follows from Theorem 10(1) that there is a

maximum (s, t)-flow f such that fin(C) = 0. So e
Õ does not carry any flow in maximum

(s, t)-flow f . Hence, it follows from Lemma 8 that eÕ is not a vital edge in G. J

The following lemma, which can be seen as a corollary of Lemma 12, establishes that a
mincut for a vital edge partitions all the vital edges into three sets.
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I Lemma 13. Let G = (V,E) be a directed weighted graph with a designated source vertex
s and a designated sink vertex t. Let E be a subset of vital edges. For any edge e œ E, let
C be a mincut for e. C partitions the entire set E into three subsets – (i) EC : edges that
are contributing to C, (ii) EL: edges whose both endpoints belong to C, and (iii) ER: edges
whose both endpoints belong to C.

Let M(E) denote the mincut cover for a subset E of vital edges. Suppose Lemma 13
additionally guarantees the following property.

P : For each vital edge e
Õ
œ E that contributes to C, C is a mincut for e

Õ as well.
Property P ensures that C is a mincut for all vital edges that belong to EC . This implies

that M(EL) fi M(ER) fi {C} is a mincut cover for E as well. Therefore, the cardinality of
mincut cover for set E can be bounded as follows.

|M(E)| Æ |M(EL)|+ |M(ER)|+ 1 (5)

Let N (µ) denote the cardinality of a mincut cover for any set E of vital edges with µ = |V (E)|.
Note that E = ÿ implies µ = 0, and E ”= ÿ implies µ Ø 2. Equation 5, Lemma 13, and
Property P lead to the following recurrence for N (µ).

Base case: N (0) = 0.

For any µ Ø 2, N (µ) Æ 1 +N (µ1) +N (µ2), where µ1 = |V (EL)|, µ2 = |V (ER)| (6)

Note that µ1, µ2 < µ, and µ1 + µ2 Æ µ. Using induction on µ, it is a simple exercise to
show that N (µ) Æ µ ≠ 1 for all µ Ø 2.

Though property P is crucially used in establishing an upper bound on the mincut cover
of a set of vital edges, Lemma 13, in its current form, does not guarantee it. However, we
can enforce P easily as follows. In Lemma 13, the mincut for edge e is of the least capacity
among mincuts for all edges in E .

Using Recurrence 6 for the entire set of vital edges, we get an upper bound of n≠1 on the
cardinality of the mincut cover for all vital edges in G. This leads to the following theorem
that answers Question 3 in the a�rmative.

I Theorem 14 (Mincut Cover). For any directed weighted graph G on n vertices with a
designated source vertex s and a designated sink vertex t, there exists a set Cmin containing
at most n ≠ 1 (s, t)-cuts such that, for any vital edge e in G, at least one mincut for edge e

is present in set Cmin.

The following note emphasizes the need of property P in establishing the upper bound
derived above.

I Note 15. Selecting any arbitrary edge e œ E might skip some mincuts for vital edges. Refer
to Figure 1(ii) on Page 3. The set of vital edges, denoted by E , contains four vital edges
(s, a), (s, b), (a, t), and (b, t). Suppose we first select vital edge (s, a) and mincut A = {s} for
edge (s, a). It follows from Lemma 13 that E is partitioned into EL, ER and EA. Observe that
EL does not contain any vital edge, vital edges (a, t) and (b, t) belong to ER, and (s, b) belongs
to EA. We now recurse on set E = ER and select the vital edge (b, t). Mincut C = {s, a, b}

partitions E into EL, ER, and EC . Observe that both EL and ER do not contain any vital
edge, and vital edge (a, t) belongs to EC . The process terminates as V (EL) and V (ER) are
empty. We get a pair of (s, t)-cuts A and C as mincut cover for E . Unfortunately, it does
not contain mincut B = {s, a} for edges (a, t) and (s, b).
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5 Optimal Sensitivity Oracles for (s,t)-mincut

Let e = (u, v) be an edge in G, and we wish to determine the impact of the failure of e
on (s, t)-mincut. We begin with a brief overview of O(n) space sensitivity oracle [4] for
(s, t)-mincuts in unweighted graphs. By construction of DPQ(G) [30], there is a mapping
from the vertices of G to the nodes of DPQ(G) such that the following assertion holds – u and
v are mapped to the same node of DPQ(G) if and only if there is no (s, t)-mincut in G that
separates u and v. In DPQ(G), each 1-transversal cut is an (s, t)-mincut in G. Exploiting this
property, it is shown in [4] that there is an (s, t)-mincut to which edge (u, v) contributes if
and only if the node containing u succeeds the node containing v in any topological ordering
of DPQ(G). If u and v are mapped to the same node of DPQ(G), it follows that the mincut
for edge (u, v) has a capacity strictly larger than that of the (s, t)-mincut. Therefore, if G is
unweighted, the failure of edge (u, v) does not reduce the capacity of the (s, t)-mincut; so
(u, v) is not a vital edge. Thus, the mapping from V to the nodes of DPQ(G) along with its
topological ordering serves as an O(n) space sensitivity oracle in unweighted graphs.

If G is weighted, it is still possible that though u and v mapped to the same node of
DPQ(G), yet the failure of edge (u, v) reduces (s, t)-mincut. In other words, if G is weighted,
there may be many vital edges internal to the nodes of DPQ(G) (refer to Figure 2). Thus
DPQ(G) fails to serve as sensitivity oracle for a weighted graph G; hence we need to explore
the structure of cuts internal to a node of DPQ(G).

Figure 2 (i) A graph H and (ii) DPQ(H). Thick edges in (i) represent the vital edges of H that
are internal to the nodes of DPQ(H). A mincut for them is represented by dashed curves.

Let cap(e,�) denote the query for reporting the capacity of (s, t)-mincut after reducing
the capacity of e œ E by � such that 0 Æ � Æ w(e). We now address the design of a compact
data structure that can e�ciently answer query cap(e,�) for G.

Let us first consider only the set of vital edges. There may exist �(n2) vital edges in a
graph (refer to Figure 4(ii) on Page 17). Therefore, explicitly storing the capacity of a mincut
for each vital edge would occupy �(n2) space. To design an O(n) space data structure,
we use the following lemma for vital edges. This lemma follows from Lemma 13 and the
discussion we used for bounding the size of mincut cover for vital edges.

I Lemma 16. Let U ™ V and an edge e œ Evit(U). If mincut for e, say C, has the least
capacity among the mincuts for all vital edges from Evit(U), then, for any edge e

Õ
œ Evit(U),

either C is a mincut for e
Õ or both endpoints of eÕ belong to U fl C or U fl C.

Using Lemma 16, we design a divide and conquer based algorithm to build a data structure
that compactly stores the capacity of mincut for each vital edge as follows.
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Let eú be an edge in Evit(V ) such that the capacity of mincut for eú is less than or equal
to the capacity of mincut for each vital edge in G. Let C be a mincut for eú. C serves as
the mincut for each vital edge contributing to C. For the mincuts of the remaining vital
edges, we recursively process Evit(V fl C) and Evit(V fl C). Refer to Algorithm 1 for the
pseudocode of this recursive algorithm.

It can be observed that the data structure resulting from Algorithm 1 is a rooted binary
tree. We refer to it as Tvit(G) henceforth. Its leaves are associated with disjoint subsets of
the entire vertex set V – for each vertex v œ V , L(v) stores the pointer to the leaf to which
v is mapped. Each internal node ‹ in Tvit(G) has the following three fields.

‹.cap is the capacity of mincut for the vital edge selected during the recursive call in
which node ‹ is created.
‹.left is the left child of ‹ and ‹.right is the right child of ‹.

Algorithm 1 : TreeConstruction(V ) computes Tvit(G).

1: procedure TreeConstruction(U)
2: Create a node ‹;
3: if Evit(U) = ÿ then
4: for each x œ U do L(x) Ω ‹;
5: end for
6: else
7: Let C(e) denote a mincut for edge e;
8: Select an edge e

ú
œ Evit(U) such that c(C(eú)) Æ c(C(eÕ)) ’e

Õ
œ Evit(U);

9: Assign ‹.cap Ω c(C(eú));
10: ‹.left Ω TreeConstruction(U fl C(eú));
11: ‹.right Ω TreeConstruction(U fl C(eú));
12: end if
13: return ‹;
14: end procedure

The following observation is immediate from the construction of Tvit(G).

I Observation 17. Let ‹ be an internal node in Tvit(G) and C be the (s, t)-cut associated
with node ‹ (chosen in Step 8 of Algorithm 1). For a vertex u, L(u) belongs to the subtree
rooted at ‹.left if and only if u œ C.

Observe that Tvit(G) is a full binary tree with at most n leaves. So the number of internal
nodes is at most n ≠ 1. Moreover, every internal node of Tvit(G) stores O(1) information.
Hence, we can state the following theorem.

I Theorem 18. Let G = (V,E) be a directed weighted graph on n = |V | vertices with
designated source vertex s and designated sink vertex t. There is a rooted full binary tree
occupying O(n) space that stores the capacity of mincut for each vital edge.

Let e = (x, y) be a query edge. If e is a vital edge, it follows from the construction of tree
Tvit(G) in Theorem 18 that the lca of L(x) and L(y) stores the capacity of mincut for (x, y).
So, using the e�cient data structure for lca [7], it takes O(1) time to answer cap(e,�) for
any vital edge e. However, what if the query edge is a nonvital edge? Although there is no
impact on (s, t)-mincut capacity due to the reduction in the capacity of a nonvital edge, tree
Tvit(G) stores no information explicitly about nonvital edges. Therefore, in order to answer
cap(e,�) for any edge, it seems a classification of all edges as vital or nonvital is required.
Unfortunately, any such explicit classification would require �(m) space, which is also trivial
for answering query cap as discussed above.
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Interestingly, Tvit(G) can answer cap(e,�) for any edge e without any such classification.
This is because, as shown in the following lemma, it is already capable of classifying an edge
to be vital or nonvital.

I Lemma 19. Let e = (x, y) be any edge in G such that L(x) ”= L(y). Let ‹ be the lca of
L(x) and L(y) in Tvit(G), and let C be the (s, t)-cut associated with node ‹ in Tvit(G). Edge
(x, y) is a nonvital edge if and only if exactly one of the following two conditions is satisfied.
1. L(x) œ ‹.right and L(y) œ ‹.left.
2. L(x) œ ‹.left, L(y) œ ‹.right, and c(C) ≠ w(e) Ø f

ú.
Proof. Suppose edge (x, y) is a nonvital edge. Observe that L(x) and L(y) belong to the
subtree rooted at ‹ in Tvit(G) because ‹ is the lca of L(x) and L(y). It follows from
the construction of Tvit(G) (Algorithm 1) that edge (x, y) either contributes to C or is an
incoming edge to C. Suppose (x, y) is a contributing edge to C. So using Observation
17, L(x) œ ‹.left and L(y) œ ‹.right. If c(C) falls below f

ú upon removal of edge (x, y),
(x, y) would be a vital edge by Definition 1. Hence, c(C) ≠ w(e) Ø f

ú. So condition (2) is
satisfied. Suppose (x, y) is an incoming edge to C, that is, x /œ C and y œ C. It follows from
Observation 17 that L(x) must belong to the right subtree and L(y) must belong to the left
subtree of ‹. So condition (1) is satisfied.

We now prove the converse part. Suppose condition (1) is satisfied, that is, L(x) œ ‹.right

and L(y) œ ‹.left. Observation 17 implies that x œ C and y œ C. Hence, edge (x, y) is an
incoming edge of C. It follows from the construction of Tvit(G) that C is a mincut for some
vital edge. So, by Theorem 10(1), there exists a maximum (s, t)-flow f such that fin(C) = 0.
Hence f(x, y) = 0. So it follows from Lemma 8 that (x, y) is a nonvital edge. Suppose
condition (2) is satisfied. Hence (x, y) is an outgoing edge of C. Assume to the contrary that
e is a vital edge. It follows from the construction of Tvit(G) that C is a mincut for e. Since e

is a vital edge, by Definition 1, c(C) ≠ w(e) < f
ú, a contradiction. J

For any edge e œ E and 0 Æ � Æ w(e), Algorithm 2 verifies conditions of Lemma 19 to
answer query cap(e,�) in O(1) time using Tvit(G). So we can state the following Theorem.

Algorithm 2 Reporting the capacity of (s, t)-mincut after decreasing the capacity of an edge.

1: procedure cap((x, y),�)
2: if L(x)==L(y) then
3: return f

ú

4: else
5: ‹ Ω lca of L(x) and L(y) in Tvit(G).
6: end if
7: NewCapacity Ω ‹.cap ≠ �
8: if (L(x) œ ‹.left · L(y) œ ‹.right ) · NewCapacity < f

ú then
9: return NewCapacity.

10: else
11: return f

ú.
12: end if
13: end procedure

I Theorem 20 (Sensitivity Oracle for Reporting Capacity). Let G be a directed weighted graph
on n vertices with a designated source vertex s and a designated sink vertex t. There is an
O(n) space data structure that, given any edge e œ E and a value � satisfying 0 Æ � Æ w(e),
can report in O(1) time the capacity of (s, t)-mincut after reducing the capacity of e by �.
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Reporting an (s, t)-mincut. An internal node, say ‹, of Tvit(G) stores only the capacity of
the mincut for a vital edge. We augment ‹ with a mincut for the edge that was picked by
Algorithm 1 in Step 8. The size of the resulting data structure is O(n2). Observe that the
condition � Æ w(e) can be verified for any edge e in O(1) time if we store the capacity of
all edges of G. This will require only additional O(m) = O(n2) space. So we can state the
following theorem.

I Theorem 21 (Sensitivity Oracle). Let G be a directed weighted graph on n vertices with
a designated source vertex s and a designated sink vertex t. There is an O(n2) space data
structure that, given any edge e and any value � Ø 0, can report
1. the capacity of (s, t)-mincut in O(1) time, and
2. an (s, t)-mincut C in O(|C|) time for the resulting graph
3. the DAG DPQ occupying O(m) space in O(m) time (proof is in the full version)
after reducing the capacity of the edge e by �.

I Remark 22. It is a simple exercise to show that our data structure in Theorem 21(1) and (2)
can be extended to handle a vertex failure using the standard technique of vertex splitting.

Lower Bound. We complement the result in Theorem 21 by a matching lower bound, which
holds even for undirected graphs as follows (refer to Section 8 for the proof).

I Theorem 23. Any data structure for reporting the capacity of (s, t)-mincut after the failure
of an edge in an (un)directed graph on n vertices with positive edge capacities must require
�(n2 log n) bits of space in the worst case, irrespective of the query time.

I Remark 24. The O(n) space upper bound in Theorem 20 does not violate the �(n2) space
lower bound in Theorem 23. This is because Theorem 20 assumes that the query edge e

belongs to E and the reduction in capacity of e is at most w(e). However, this assumption
seems practically justified since, in real world, the capacity of an edge can decrease only if
the edge actually exists, and furthermore, it can decrease by an amount at most the capacity
of the edge.

Labeling Scheme. Let f be any function defined on the vertex/edge set of the graph. A
labeling scheme of f assigns small labels to each vertex/edge of the graph in such a way that,
for any given subset A of edges/vertices, f(A) can be computed only by using the labels of
vertices/edges in A. A labeling scheme of O(log2 n+ log n log W ) bits can be designed for
reporting capacity of (s, t)-mincut after decreasing capacity of any edge in G using Theorem
20 and a labeling scheme for lca query [25]. Here W is the maximum capacity of any edge
in G. The proof is in the full version.

6 An Algorithm for Computing All Vital Edges

The existing algorithms [2, 3] that compute the most vital edge or all vital edges in undirected
graphs take cut-based approaches as follows. For computing the most vital edge in an
undirected graph, Aneja, Chandrasekaran, and Nair [2] establish that there exists an (s, t)-
cut such that the most vital edge is the maximum capacity edge among all the edges that
contribute to the cut. Ausiello, Franciosa, Lari, and Ribichini [3] define function F on cuts
as in Equation 1 in order to use the ancestor tree of Cheng and Hu [9]. To compute all vital
edges e�ciently in a directed weighted graph, we take a flow-based approach that analyzes
flow along a set of edges in a maximum (s, t)-flow. We first classify all vital edges into two
types based on the maximum flow that an edge can carry in any maximum (s, t)-flow.



S. Baswana and K. Bhanja 17:13

A classification of vital edges. In graph G, there may exist multiple (s, t)-flows attaining
value f

ú. The flow along an edge may be di�erent in these multiple maximum (s, t)-flows.
A vital edge is a tight edge if it carries flow equal to its capacity in at least one maximum
(s, t)-flow; otherwise, it is a loose edge.

Our algorithm for computing all vital edges makes use of the classification of vital edges,
and employs two results that were derived for solving two seemingly unrelated problems.

To compute all the loose edges, we crucially exploit the following result on maximum
(s, t)-flow, which has been used for solving mincost maximum (s, t)-flow problem.

I Lemma 25 (Theorem 11.1 and Theorem 11.2 in [1]). For any directed weighted graph G,
there exists a maximum (s, t)-flow f

# such that the edges that carry nonzero flow but not
fully saturated are at most n ≠ 1.

For any maximum (s, t)-flow, by definition, the set of all loose edges is a subset of all edges
that carry nonzero flow but are not fully saturated. So, by Lemma 25, the number of loose
edges can be at most n ≠ 1. Moreover, there is an algorithm that, given any maximum
(s, t)-flow, can compute f

# of Lemma 25 in O(mn) time [1]. As a result, all the loose edges
of G can be computed using O(n) maximum (s, t)-flow computations.

Observe that the e�cient computation of the set of loose edges crucially exploits the fact
that there can be at most n ≠ 1 loose edges. However, there can be �(n2) tight edges in a
graph (refer to Figure 4(ii) on page 17). Hence, to compute all the vital edges, the main
challenge arises in computing all the tight edges of G. We now state a property of tight
edges that plays a crucial role in their e�cient computation.

A property satisfied by tight edges

Let Emin be the set of all edges that contribute to (s, t)-mincuts. Set Emin is a subset of
all the tight edges since all edges in Emin are fully saturated in every maximum (s, t)-flow.
Exploiting the strong duality between maximum (s, t)-flow & (s, t)-mincut and Lemma 5, it
can be observed that each edge (u, v) œ Emin satisfies the following property. If C is any
(s, t)-cut such that v œ C and u œ C, then c(C) is strictly greater than f

ú. The following
lemma shows that this property is satisfied by each tight edge as well.

I Lemma 26. Let e = (u, v) be a tight edge. Let C be a mincut for edge e and Cv,u be an
(s, t)-cut of the least capacity that keeps v on the side of s and u on the side of t. Then,
c(C) < c(Cv,u).

Proof. Edge (u, v) is a tight edge, so by definition, there is a maximum (s, t)-flow f such
that f(e) is equal to w(e). This would imply that fin(Cv,u) is at least w(e) since edge (u, v)
is an incoming edge for cut Cv,u. It follows from Lemma 5 that fout(Cv,u) ≠ fin(Cv,u) = f

ú.
Therefore, fout(Cv,u) ≠ w(e) Ø f

ú. Since the capacity of an (s, t)-cut is an upper bound on
the value of any outgoing flow of the (s, t)-cut, therefore, fout(Cv,u) Æ c(Cv,u). Hence we
arrive at the following inequality.

c(Cv,u) Ø f
ú + w(e) (7)

It follows from Theorem 10(2) that wmin(e) is the minimum amount of flow that must pass
through edge (u, v) to get a maximum flow of value f

ú. Let f Õ be the value of maximum
(s, t)-flow in graph G \ {e}. Thus we arrive at the following equality.

f
ú = f

Õ
+ wmin(e) (8)
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We now add (w(e) ≠ wmin(e)) on both sides of Equation 8 and get the following equation.

f
ú + w(e) ≠ wmin(e) = f

Õ
+ w(e) (9)

It follows from Theorem 10(2) that f
Õ is also equal to the sum of capacities of all edges

contributing to C except edge (u, v). Therefore, f Õ +w(e) is equal to the capacity of C in G.
So it follows from Equation 9 that fú + w(e) ≠ wmin(e) = c(C). Since (u, v) is a vital edge,
therefore, wmin(e) > 0 using Observation 6. Hence,

f
ú + w(e) > c(C) (10)

It follows from Inequality 7 and Inequality 10 that c(Cv,u) > c(C). J

For any tight edge (u, v), let C be an (s, t)-cut of the least capacity that separates vertex u

and vertex v. It follows from Lemma 26 that C is also a mincut for edge (u, v). So we can
state the following theorem.

I Theorem 27. Let G be a directed weighted graph with a designated source vertex s and a
designated sink vertex t. For any tight edge e = (u, v) in G, a mincut for edge e is identical
to an (s, t)-cut of the least capacity that separates vertex u and vertex v.

Algorithm for computing tight edges

For the given directed weighted graph G, we define function F as in Equation 1 and then
compute the Ancestor tree of Cheng and Hu [9] for (s, t)-cuts. For each pair of vertices, T(s,t)
stores an (s, t)-cut of the least capacity separating them at their lca. This tree, denoted
by T(s,t), can be built using O(n) maximum (s, t)-flow computations [9]. We augment T(s,t)
with a data structure for lca queries [7].

To compute all tight edges, we process T(s,t) and the edges of G as follows. Let (u, v) be
an edge in G. We perform lca query on T(s,t) for u and v to get the (s, t)-cut, say C, of the
least capacity that separates u and v. We determine whether C satisfies the following two
conditions.
1. Edge (u, v) contributes to C.
2. c(C) ≠ w((u, v)) < f

ú

If both conditions are satisfied, by Definition 1, (u, v) is a vital edge. Observe that there
may be vital edges that do not satisfy Condition (1); refer to Figure 3(i). However, it follows
from Theorem 27 that each tight edge does satisfy these two conditions. After processing all
edges of G, let S be the resulting set of vital edges that satisfy both these conditions. We
eliminate from S all the loose edges to get all the tight edges.

I Remark 28. In an undirected graph, observe that a mincut for an edge (u, v) is always an
(s, t)-cut of the least capacity that separates u and v. Therefore, computing all vital edges
in an undirected graph amounts to just verifying condition (2) for each edge as shown by
Ausiello, Lari, Franciosa, and Ribichini [3].

Thus we can state the following theorem.

I Theorem 29. For any directed weighted graph G on n vertices with a designated source
vertex s and a designated sink vertex t, there is an algorithm that computes all tight edges of
G using O(n) maximum (s, t)-flow computations.

Theorem 29 and the discussion on computing the loose edges lead to Theorem 30.
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Figure 3 (i) A is the (s, t)-cut of least capacity that separates a and b. Edge (a, b) is a vital edge,
and it is incoming to A. (ii) Dvit(G)=G. {s, a} is a 1-transversal cut, but not a mincut for any
vital edge. (iii) mincuts A and B for vital edges (c, t) and (d, t), respectively, are not closed under
union. Moreover, edge (b, a) (likewise edge (c, d)) contributes to A (likewise to B) and is incoming
to B (likewise to A).

I Theorem 30 (Computing All Vital Edges). For any directed weighted graph on n vertices
with a designated source vertex s and designated sink vertex t, there is an algorithm that
computes all vital edges and their vitality using O(n) maximum (s, t)-flow computations.

I Note 31. We present the following applications of our algorithm in Theorem 30 (refer to
the full version).
1. Observe that data structure T(s,t) also stores a mincut for every tight edge. Therefore, an

(s, t)-mincut in graph G\{e} for every tight edge e can be computed using O(n) maximum
(s, t)-flow computations. Moreover, since loose edges are at most n ≠ 1, therefore, using
O(n) maximum (s, t)-flow computations, we can compute an (s, t)-mincut in graph G\{e}

for every vital edge e of G.
2. Given a mincut for all vital edges, using Algorithm 1, the process of constructing Tvit(G)

and the data structure in Theorem 21(2) requires O(m log n+ n
2) time. As a byproduct,

data structure in Theorem 21(2) provides a mincut cover for all vital edges.
3. As stated in (2), we can construct Tvit(G) using O(n) maximum (s, t)-flow computations.

Given any k œ [m], using Tvit(G) and a maxheap data structure, the k most vital edges
can be reported in O(m+ k log k) time.

I Note 32. Given any edge e and its capacity w(e), the data structure in Theorem 20 can
be used to report the vitality of e in O(1) time by assigning � = w(e).

7 Compact Structures for all Mincuts for all Vital Edges

The set containing all (s, t)-mincuts satisfies two important properties – (i) closed under
both intersection and union and (ii) an edge contributing to an (s, t)-mincut can never be
an incoming edge to another (s, t)-mincut. These two properties are exploited crucially in
the design of DAG structures for compactly storing and characterizing all (s, t)-mincuts
[30, 4] using 1-transversal cuts. Unfortunately, none of these properties holds for the set of
all mincuts for all vital edges (refer to Figure 3(iii)). This makes the problem of designing
compact structures for mincuts for all vital edges challenging. We present two structures for
storing and characterizing all mincuts for all vital edges – one is a single DAG that provides
a partial characterization and the other consists of a set of O(n) DAGs that provides a
complete characterization.

(a) An O(m) Space DAG for Partial Characterization. We first show that the approaches
taken in [30, 4] are not su�cient for designing a compact structure for all mincuts for all
vital edges. In particular, the resulting graph Q

Õ(G), obtained from G after applying the
techniques from [30, 4], is still not acyclic. Moreover, a mincut for a vital edge can have
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unbounded transversality (refer to the full version) in Q
Õ(G). It turns out that the source

of this problem is the set of all edges that are contributing to a mincut for a vital edge as
well as incoming to a mincut for another vital edge. The set of such edges is denoted by
�-edges. Exploiting GenFlowCut property crucially, we show that all edges in �-edges are
nonvital. Thereafter, counter intuitive to Note 2, we show that the graph obtained after the
removal of all �-edges from G still preserves all (s, t)-mincuts of G, and provides a partial
characterization for all mincuts for all vital edges as follows.

I Theorem 33 (Partial Characterization). For a directed weighted graph G on m edges with a
designated source vertex s and a designated sink vertex t, there is an O(m) space directed
acyclic graph Dvit(G) that preserves the capacity of (s, t)-mincut, and for each vital edge e

in G, (1) Every mincut for edge e in G is a 1-transversal cut in Dvit(G) and (2) A mincut
C for e in G appears as a relevant cut in Dvit(G), that is, c(C) ≠ w(e) < f

ú in Dvit(G).

I Note 34. Existing DAG structures for (s, t)-mincuts [30, 4] turn out to be just a special
case of DAG Dvit(G) in Theorem 33. Moreover, Dvit(G) additionally guarantees the property
(2) in Theorem 33, which does not hold in the existing DAGs [30, 4] (refer to full version).

(b) An O(mn) Space Structure for Complete Characterization. Although each mincut
for every vital edge is a 1-transversal cut in Dvit(G), it is not necessary that each 1-transversal
cut in Dvit(G) is a mincut for a vital edge (refer to Figure 3(ii)). Hence, Dvit(G) could
provide only a partial characterization. Let e = (u, v) be any vital edge, and He denote the
graph obtained by adding two infinite weight edges, (s, u) and (v, t), in graph G. Observe
that all mincuts for (u, v) are compactly stored in the DAG for (s, t)-mincuts [30] built on
graph He. We denote this DAG by DPQ(He). It can be seen that keeping DPQ(He) for
each vital edge e serves as a compact structure for storing all mincuts for all vital edges and
characterizing them in terms of 1-transversal cuts. However, this structure may take O(m2)
space in the worst case. We present an O(mn) space structure Svit(G). This structure
consists of O(n) DAGs for storing and characterizing all mincuts for all vital edges in terms
of 1-transversal cuts. To build the structure Svit(G), the main challenge turns out to be
designing a compact structure for storing and characterizing all mincuts for all tight edges.
It follows from Theorem 27 that any tight edge e = (u, v) contributes to the (s, t)-cut of
the least capacity separating u and v. Therefore, a solution to the following problem would
su�ce to overcome the challenge.

I Problem 1. Given a directed weighted graph G with a designated source s and a designated
sink t, build a compact structure that, for each pair of vertices a and b in G, stores and
characterizes all the (s, t)-cuts of the least capacity that separate a and b in G.

To solve Problem 1, we address the problem of designing a compact structure for storing
and characterizing all Steiner (s, t)-mincuts for a given Steiner set, which is of independent
interest.

Compact Structure for all Steiner (s, t)-mincuts. Let S ™ V be a Steiner set. An
(s, t)-cut C is a Steiner (s, t)-cut if C fl S and C fl S are nonempty. A Steiner (s, t)-cut
with the least capacity is a Steiner (s, t)-mincut. The main hurdle in designing a compact
structure for Steiner (s, t)-mincuts is that, unlike (s, t)-mincuts, they are not closed under
intersection/union. We overcome this hurdle by generalizing the covering technique from [4]
to directed weighted graphs and obtain a structure occupying O(|S|m) space.

Finally, we design a hierarchy tree, which is a generalization of the hierarchy tree of [25],
and augment it with the structure for Steiner (s, t)-mincuts. It leads to the following result.
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Figure 4 (i) Graph G. The dashed curve represents the mincut for edge (u2, v2). (ii) Graph
G(M). Each edge (ui, vj), 1 Æ i, j Æ n, is a vital as well as tight edge.

I Theorem 35 (Complete Characterization). For any directed weighted graph G on n vertices
and m edges with a designated source vertex s and a designated sink vertex t, there is an
O(mn) space structure Svit(G) consisting of O(n) DAGs such that for any vital edge e,
1. There exists at most two DAGs, Ds(e) and D

t(e), that store all mincuts for edge e.
2. An (s, t)-cut C in G is a mincut for edge e if and only if C is a 1-transversal cut in either
D

s(e) or D
t(e) and e is a contributing edge of C.

I Note 36. Problem 1 is addressed in [4] for unweighted graphs and only for those pair
of vertices for which the capacity of (s, t)-cut of the least capacity separating them is
minimum+1. An O(mn) space structure is designed in [4] for this special case of Problem 1.
Hence, Theorem 35 provides a generalization of the result in [4] for weighted graphs while
matching the space bound. An important application of structure Svit(G) is Theorem 21(3)
(refer to the full version).

8 Lower Bounds

In this section, we first provide a lower bound on the worst case size of mincut cover for all
edges. Later, we give a lower bound on the space for any data structure that can report the
capacity of (s, t)-mincut after the failure of any edge in both undirected and directed graphs.

8.1 Mincut Cover for All Edges

In this section, we establish the following theorem.

I Theorem 37. There exists a directed weighted graph G = (V,E) on n = |V | vertices such
that the number of mincuts for all edges in G is �(n2).

In order to prove Theorem 37, we construct a graph G on 2n+ 2 vertices with a set of �(n2)
edges EÕ that has the following property. For each pair of edges e, eÕ

œ E
Õ, the capacity of

mincut for edge e is di�erent from the capacity of mincut for edge e
Õ (refer to Figure 4(i)).

Construction of G. The vertex set consists of two disjoint sets A = {u1, u2, . . . , un} and
B = {u1, u2, . . . , un} of n vertices each, along with a source vertex s and a sink vertex t. The
edges are defined as follows. There is an edge with unit capacity from vertex s to each vertex
in A. Likewise, there is a unit capacity edge from each vertex in B to sink t. For each u œ A

and v œ B, there is an edge (u, v). Let EÕ be the set of all edges from A to B. Each edge in
E

Õ is assigned a unique capacity from [n2
, 2n2]. It can be observed that w(e1) ”= w(e2) for

every pair of edges e1, e2 œ E
Õ.
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I Lemma 38. For every pair of edges e1 and e2 from E
Õ, the capacity of mincut for e1 is

di�erent from the capacity of mincut for e2.

Proof. Let e = (u, v) be an edge from E
Õ. Let us define an (s, t)-cut Ce in which edge e

contributes. Ce keeps each vertex x œ A \ {u} on the side of t. Similarly, Ce keeps each
vertex x œ B \{v} on the side of s. Therefore, the contributing edges of (s, t)-cut Ce are edge
e, the edges from s to each vertex x œ A \ {u}, and the edges from each vertex x œ B \ {v} to
t. Hence the capacity of Ce is w(e) + (n ≠ 1) + (n ≠ 1) = w(e) + 2n ≠ 2. Any other (s, t)-cut
in which edge e contributes must have at least one more contributing edge e

Õ from E
Õ. Since

w(eÕ) is at least n2, therefore, Ce is the mincut for edge e. For any other edge e
ÕÕ from E

Õ, in
a similar way, the capacity of the mincut for eÕÕ is w(eÕÕ) + 2n≠ 2, which is di�erent from the
capacity of Ce since w(e) ”= w(eÕÕ). This completes the proof. J

Since |E
Õ
| = �(n2), it follows from Lemma 38 that graph G has �(n2) di�erent capacities of

mincuts for edges in E
Õ. This completes the proof of Theorem 37.

8.2 Fault-tolerant (s,t)-mincut

In this section, we provide a lower bound on the space for any data structure that can report
the capacity of (s, t)-mincut after the failure of any edge. Let M be a n ◊ n matrix where
for any i, j œ [n], M [i, j] stores an integer in the range [1, nc] for some constant c > 0. Given
any instance of the matrix M , we construct the following undirected graph G(M) (refer to
Figure 4(ii)).

Description of G(M). The vertex set is defined as follows. There is a source vertex s and
a sink vertex t. For all the n rows of matrix M , there is a set R of n vertices {u1, u2, . . . , un}.
Similarly, For all the n columns of matrix M , there is a set C of n vertices {v1, v2, . . . , vn}.
For each i, j œ [n], there is an edge eij of capacity wi,j = M [i, j] between vertex ui and vj .
For each i œ [n], there is an edge of infinite capacity between source s and vertex ui and
there is an edge of infinite capacity between vertex vi and sink t. Let ⁄ be the capacity of
(s, t)-mincut in G(M).

We now establish a relation between the graph G(M) and matrix M in the following
lemma.

I Lemma 39. For any i, j œ [n], the capacity of (s, t)-mincut in G(M) after the failure of
edge (ui, vj) is ⁄ ≠ M [i, j].

Proof. In graph G(M), C = {s} fi R is the only (s, t)-cut of finite capacity. Therefore, C
is the (s, t)-mincut in graph G(M). Observe that only edges (ui, vj) for any 0 < i, j Æ n

contribute to C. Hence ⁄ =
q

i,jœ[n] w((ui, vj)). Therefore, upon failure of edge eij = (ui, vj),
the reduction in the capacity of (s, t)-mincut is the same as w(eij), which is M [i, j] as follows
from the construction of G(M) described above. J

Let F (G(M)) be any data structure that can report the (s, t)-mincut after the failure of
an edge in the graph G(M). We use the data structure F (G(M)) and Lemma 39 to report
M [i, j] for any 0 < i, j Æ n as follows.

return (⁄ ≠ ⁄
Õ) where ⁄

Õ is the value returned by F (G(M)) after failure of edge (ui, vj).
Note that there are 2n2c log n di�erent instances of the matrixM . It follows from Lemma 39

that for any pair of distinct instances of matrix M , the encoding of the corresponding data
structures must di�er. Therefore, there is an instance of matrix M for which the data
structure F (G(M)) must occupy �(n2 log n) bits of space.
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For directed graphs, a lower bound of �(n2 log n) bits of space can be achieved by
orienting each undirected edge of G(M) as follows. For each i, j œ [n], orient edge (ui, vj)
from vertex ui to vertex vj . For each i œ [n], orient edge (s, ui) from source s to vertex ui.
Similarly, for each j œ [n], orient edge (vj , t) from vertex vj to sink t. The rest of the proof
is the same as the case of undirected graphs. This completes the proof of Theorem 23.

By exploiting Theorem 37, the following data structure lower bound can also be established
along similar lines to the proof of Theorem 23.

I Theorem 40. Any data structure that, given a pair of vertices {u, v}, can report the
capacity of an (s, t)-cut C of the least capacity such that u œ C and v œ C in a directed
weighted graph on n vertices must occupy �(n2 log n) bits of space.
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Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied
method for hierarchical clustering. Recent applications to massive datasets have driven significant
interest in near-linear-time and e�cient parallel algorithms for average linkage HAC.

We provide hardness results that rule out such algorithms. On the sequential side, we establish
a runtime lower bound of n3/2≠‘ on n node graphs for sequential combinatorial algorithms under
standard fine-grained complexity assumptions. This essentially matches the best-known running
time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot
be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the
possibility side, we demonstrate that average linkage HAC can be e�ciently parallelized (i.e., it is in
NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy
is small.
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1 Introduction

Hierarchical clustering is a fundamental method for data analysis which organizes data points
into a hierarchical structure so that similar points appear closer in the hierarchy. Unlike other
common clustering methods, such as k-means, hierarchical clustering does not require the
the number of clusters to be fixed ahead of time. This allows it to capture structures that are
inherently hierarchical – such as phylogenies [18] and brain structure [11]. One of the most
widely used and studied methods for hierarchical clustering is Hierarchical Agglomerative
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18:2 It’s Hard to HAC Average Linkage!

Clustering (HAC) [22,24,37]. HAC produces a hierarchy by first placing each point in its
own cluster and then iteratively merging the two most similar clusters until all points are
aggregated into a single cluster. The similarity of two clusters is given by a linkage function.
HAC is included in many popular scientific computing libraries such as scikit-learn [35],
SciPy [40], ALGLIB [36], Julia, R, MATLAB, Mathematica and many more [33,34]. This
cluster hierarchy is often equivalently understood as a binary tree – a.k.a. dendrogram –
whose internal nodes correspond to cluster merges.

The proliferation of massive datasets with billions of points has driven the need for more
e�cient HAC algorithms that can overcome the inherent �(n2) complexity required to read
all pairwise distances [16,17,29]. Finer-grained running time bounds for HAC were recently
obtained by assuming that only m = o(n2) pairs of points have nonzero similarity, and
analyzing the running time as a function of both n and m. This is a natural assumption
in practice, as in large datasets of billions of datapoints, typically a small fraction of pairs
exhibit nonnegligible similarity. In this case, the input to HAC is an edge-weighted graph,
where each vertex represents an input point and each edge weight specifies the similarity
between its endpoints. This approach is convenient for large-scale applications since (1) very
large clustering instances can be compactly represented as sparse weighted graphs and (2)
the running time of HAC can be decoupled from the running time of nearest-neighbor search.

A particularly common linkage function for HAC is average linkage, which both optimizes
reasonable global objectives [31] and exhibits good empirical performance [5,12,20,23,27,
29,30,32,44]. Here, the similarity of two clusters is the average edge weight between them
(non-present edges are treated as having weight 0). In other words, average linkage HAC
repeatedly merges the two clusters with the highest average edge weight between them (see
Figure 1 for an example).
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Figure 1 An example of average linkage HAC run on an input graph G. Edges labeled with
weights. 1a gives G. 1b gives the cluster hierarchy output by HAC. 1c gives the corresponding
dendrogram with internal nodes labeled with the weight of their corresponding merge.

A natural algorithmic question then is how quickly can we solve average linkage HAC
on n node and m edge graphs? Recent work has provided a partial answer to this basic
question in sequential and parallel models of computation. In particular, [15] showed that
average linkage HAC can be solved in Õ(n

Ô
m) time, thus providing a sub-quadratic time

algorithm for su�ciently sparse graphs. A follow-up paper studied average linkage HAC in
the parallel setting and showed that the problem is P-complete and so likely does not admit
NC algorithms [16]. However, the P-completeness result of [16] holds for worst case graphs
whereas typical applications of HAC are on highly structured graphs – namely those which
are meant to capture relevant properties of an underlying metric – and so there is still hope
for parallelizing average linkage HAC on more structured instances.
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In fact, such structured instances of average linkage HAC are known to admit much
faster algorithms in the sequential setting: the sequential algorithm of [15] implies that if the
input graph is planar (or, more generally, minor-free) average linkage HAC can be solved in
time Õ(m). More generally, if each graph obtained by contracting all clusters at each step of
average linkage HAC has O(1) arboricity1, then it is possible to solve average linkage HAC
in time Õ(m); it follows that average linkage HAC can be solved in sequential time Õ(m) on
trees or planar graphs. In light of these improved sequential results for highly structured
graphs, it becomes natural to hope for e�cient parallel algorithms on structured graphs such
as low arboricity graphs or, even, just trees.

1.1 Our Contributions
In this work, we continue the line of work which studied the computational complexity
of di�erent variants of HAC [1, 15, 16, 19, 39] and perform a careful investigation into the
complexity of average linkage HAC. In particular, we study HAC on n node andm edge graphs
and investigate whether near-linear time algorithms, or more e�cient parallel algorithms are
possible, namely:
1. Near-Linear Time Algorithms: Can we improve over the best known Õ(n

Ô
m) upper

bound for average linkage HAC and obtain near-linear time sequential algorithms?
2. NC Algorithms: are there polylog(n) depth parallel algorithms for average linkage HAC

with poly(n) work for highly structured instances, e.g., trees, or minor-closed graphs?
We give both new lower bounds which (conditionally) rule out near-linear time and NC
algorithms, and provide conditions under which these impossibility results can be bypassed.

First, we demonstrate that near-linear time algorithms are impossible under standard
fine-grained complexity assumptions.

I Theorem 1. If average linkage HAC can be solved by a combinatorial algorithm in O(n3/2≠‘)
time for any ‘ > 0, then the Combinatorial Boolean Matrix Multiplication (Combinatorial
BMM) Conjecture is false.

Our reduction also implies a second (weaker) conditional lower bound that also holds
for non-combinatorial algorithms (e.g., algebraic algorithms) based on the running time of
matrix multiplication. In particular, for two n ◊ n binary matrices, it is well known that
matrix multiplication can be solved in time O(nÊ) where 2 Æ Ê < 2.3716 [43]. In this setting,
we obtain the following result:

I Theorem 2. If average linkage HAC can be solved by an algorithm in O(nÊ/2≠‘) time
for some ‘ > 0, then boolean matrix multiplication can be solved in O(nÊ≠‘Õ) time for some
‘

Õ
> 0.

Notably, Theorem 1 shows that the prior running time of Õ(n
Ô
m) of [15] is optimal up to

logarithmic factors under standard fine-grained complexity assumptions, at least for graphs
consisting of O(n) many edges. We obtain this conditional lower bound by showing that a
carefully constructed instance of HAC can be used to solve the triangle detection problem,
which is sub-cubically equivalent to Boolean Matrix Multiplication [42]. We obtain a bound
of (essentially) �(n3/2) since our reduction incurs a quadratic time and space blowup when
transforming an input triangle detection instance to an instance of average linkage HAC.

1 A graph has arboricity at most – if all of its edges can be covered by at most – trees.
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We next turn to the parallel setting. Here, we show that HAC – even on trees – is unlikely
to admit e�cient parallel algorithms. More formally, we show that average linkage HAC on
low diameter trees is as hard as any problem in the complexity class Comparator Circuit
(CC) [13, 38]. It is believed that CC is incomparable with NC and that CC-hardness is
evidence that a problem is not parallelizable [13,28].

I Theorem 3. Average linkage HAC is CC-hard, even on trees of diameter 4.

We note that it is known that CC ™ P and so the P-hardness of [16] already suggests the
impossibility of e�cient parallel algorithms on general graphs. However, our result suggests
the impossibility of e�cient parallel algorithms even on very simple graphs (trees of diameter
4). We obtain this result by reducing from the lexicographically first maximal matching
(LFM Matching) problem and an intermediate problem which we call Adaptive Minimum,
which captures some of what makes HAC intrinsically di�cult to parallelize.

On the positive side, we demonstrate that average linkage HAC on path graphs is in
NC, under the mild assumption that the aspect ratio is polynomial. While the class of path
graphs is restrictive, even on paths average linkage is highly non-trivial and naively running
HAC requires resolving chains of �(n) sequential dependencies. For example, consider a path
of vertices (v1, v2, . . . , vn) where the edge {vi, vi+1} has weight 1 + i · ‘ for some small ‘ > 0
and initially each vertex is in its own cluster. Initially, vn’s most similar neighbor is vn≠1
and so vn would like to merge with vn≠1 but vn≠1’s most similar neighbor is vn≠2 and so on.
Thus, whether or not vn gets to merge with vn≠1 depends on the merge behavior of �(n)
other clusters and so it is not at all clear that NC algorithms should be possible for this
setting. Nonetheless, we show the following.

I Theorem 4. Average linkage HAC on paths is in NC. In particular, there is an algorithm
for average linkage HAC that runs in O(log2 n log logn) depth with O(n logn log logn) work.

The above algorithm leverages the fact that in average linkage HAC the maximum edge
similarity monotonically decreases. In particular, it works in O(logn) phases where each
phase consists of merges of equal similarity up to constants. The goal then becomes to
e�ciently perform merges until every edge is no longer within a constant of the starting
maximum similarity of the phase. The starting point of the algorithm is to observe that �(n)
sequential dependencies of clusters of equal size can be resolved e�ciently in parallel in a
phase by noting that in this phase only the odd-indexed edges merge in the chain. Thus,
each edge can decide if it is odd-indexed in parallel by, e.g., using prefix-sum, which is well
known to be solvable in linear work in NC.

For chains with clusters of general weights, we decompose dependency chains into short
((O(logn)-length) subchains where resolving dependencies within the subchain must be
done sequentially but in the current phase each subchain’s merge behavior only depends on
whether or not its closest neighboring subchains merges into it or not. Thus, each subchain
can compute its merge behavior for these two cases and then, similar to the equal weights
setting, we propagate merge behavior across subchains e�ciently in parallel.

To complement our sequential lower bound with a positive result, we demonstrate that
it is possible to achieve near-linear running time, provided the dendrogram has low height.
Thus, if the output dendrogram is a relatively balanced tree, then near-linear time algorithms
are possible.

I Theorem 5. There is an implementation of the nearest-neighbor chain algorithm for
average linkage HAC that runs in O(m · h logn) time where h is the height of the output
dendrogram.
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The above result is in fact obtained by a relatively simple (but to the best of our knowledge,
new) analysis of existing classic HAC algorithms. In particular, we show that the nearest-
neighbor chain [7, 21] and heap-based algorithms [27] for HAC, which were developed over
40 years ago achieve this bound. Due to space constraints, we prove Theorem 5 in the full
version [6].

2 Preliminaries

The input to the HAC algorithm is an undirected weighted graph G = (V,E,w), where
w : V ◊ V æ R+ fi {0} is a function assigning nonnegative weights to the edges. For
convenience we assume w(x, y) = 0 when xy ”œ E. The vanilla version of average linkage
HAC is given as Algorithm 1. It starts by putting each vertex in a cluster of size 1 and then
repeats the following step. While there is a pair of clusters of positive similarity, find two
most similar clusters and merge them together, that is, replace them by their union. The
similarity between two clusters is the total edge weight between them divided by the product
of the cluster sizes. We refer to this version as the static graph version, since the graph is
not changed throughout the run of the algorithm.

Throughout the paper we usually work with a di�erent (equivalent) way of presenting
the same algorithm which is given as Algorithm 2. In this version we maintain a graph G

whose vertices are clusters. The size of the vertex is the size of the cluster it represents.
The normalized weight of an edge xy in G is w(x, y) divided by the product of the sizes of
x and y.

Whenever two clusters merge, their corresponding vertices are merged into one, i.e., the
edge between them is contracted and the size of the new vertex is the sum of the sizes of the
vertices that merged. In the following we sometimes say that a vertex x merges into vertex
y. In this case we simply assume that the name of the resulting vertex is y and the size of y
is increased by the size of x. See Figure 2.
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Figure 2 An example of average linkage HAC run on an input graph G where we imagine we
contract merged clusters. Intermediate vertices labeled with the vertices of G their corresponding
cluster contains. Edges labeled with their weight and next merged edge is dashed.

The output of HAC is a dendrogram – a rooted binary tree representing the cluster
merges performed by the algorithm. Every node of the dendrogram is a cluster built by the
algorithm. There are exactly |V | leaves corresponding to the single-element clusters that are
formed in the beginning of the algorithm. Whenever two clusters C1 and C2 are merged, we
add to the dendrogram a new node C1 fi C2 whose children are C1 and C2. See Figure 1c for
the dendrogram of Figure 2.

We use the classic multithreaded model [4, 9, 10] (formally, the MP-RAM [9]) to analyze
the parallel algorithms. We assume a set of threads that share the memory. Each thread acts
like a sequential RAM plus a fork instruction that forks two new child threads. When a
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Algorithm 1 Average linkage HAC – static graph version.

Input: G = (V,E,w)
1 Function Similarity(C1, C2, w):
2 return

q
xœC1,yœC2

w(x, y)/(|C1| · |C2|)
3 Function HAC(G):
4 C Ω clustering where each vertex of G is in a separate cluster
5 while ÷C1,C2œC s.t. C1 ”= C2 and Similarity(C1, C2, w) > 0 do
6 (C1, C2) = argmax(C1,C2)œC◊C Similarity(C1, C2, w)
7 C := (C \ {C1, C2}) fi {C1 fi C2}.

Algorithm 2 Average linkage HAC – graph contraction version.

Input: G = (V,E,w)
1 Function Similarity(x, y, w, S):
2 return w(x, y)/(S(x) · S(y))
3 Function HAC(G):
4 S := a function mapping each element of V to 1
5 while ÷xyœE s.t. Similarity(x, y, w, S) > 0 do
6 xy = argmaxxyœE Similarity(x, y, w, S)
7 Contract x with y in G creating a vertex z. The parallel edges that are

created are merged into a single edge whose weight is the sum of the merged
edge weights. Any resulting self-loops are removed.

8 Set S(z) := S(x) + S(y)

thread performs a fork, the two child threads can both start by running their next instructions,
and the original thread is suspended until both children terminate. A computation starts
with a single root thread and finishes when that root thread finishes. A parallel for-loop
can be viewed as executing forks for a logarithmic number of levels. A computation can
thus be viewed as a DAG (directed acyclic graph). We say the work is the total number of
operations in this DAG and span (depth) is equal to the longest path in the DAG. We note
that computations in this model can be cross-simulated in standard variants of the PRAM
model in the same work (asymptotically), and losing at most a single logarithmic factor in
the depth [9].

3 An �(n3/2≠‘
) Conditional Lower Bound for Average Linkage HAC

In this section, we show an �(n3/2≠‘) conditional lower bound on the time required to solve
average linkage HAC on general weighted graphs. Specifically, we show this lower bound
assuming the Combinatorial Boolean Matrix Multiplication (BMM) conjecture, a central
conjecture in fine-grained complexity about the time required to multiply two n ◊ n boolean
matrices [2, 42].

I Conjecture 6 (Combinatorial BMM). Combinatorial algorithms cannot solve Boolean Matrix
Multiplication in time O(n3≠‘) for ‘ > 0.

We refer to [2] for an in-depth discussion of the somewhat informal notion of “combinatorial”
algorithms and more on Conjecture 6 and its history.
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In this work we will make use of an equivalent characterization of the BMM conjecture
due to [42]. Specifically, [42] shows that the BMM problem is sub-cubically equivalent to
the Triangle Detection problem: the problem of deciding whether or not an input graph G

contains a triangle (i.e., cycle of 3 vertices). The following summarizes this result.

I Theorem 7 (Theorem 1.3 of [42]). Combinatorial algorithms cannot solve Triangle Detection
in time O(n3≠‘) for ‘ > 0 unless Conjecture 6 is false.

Thus, we give a reduction from Triangle Detection to average linkage HAC. Our reduction
will quadratically increase the number of vertices of the input Triangle Detection instance,
and therefore give an �(n3/2≠‘) lower bound for average linkage HAC. In the rest of this
section, we show the following quadratic-blowup reduction from Triangle Detection to average
linkage HAC.

I Theorem 8. Given a Triangle Detection instance on graph G with t vertices and m edges,
there is a reduction that runs in O(t2) time and constructs an instance of average linkage
HAC on graph G

Õ with t+ t
2 vertices and t

2 +m edges. Furthermore, given the sequence of
merges performed by average linkage HAC on G

Õ, we can solve Triangle Detection on G in
time O(t2).

As a corollary of this reduction and Theorem 7, we obtain the following conditional
lower-bound on the running time of HAC.

I Theorem 1. If average linkage HAC can be solved by a combinatorial algorithm in O(n3/2≠‘)
time for any ‘ > 0, then the Combinatorial Boolean Matrix Multiplication (Combinatorial
BMM) Conjecture is false.

As a second corollary, we obtain a conditional lower-bound in terms of the optimal running
time of matrix multiplication for two n ◊ n binary matrices. Matrix multiplication can be
solved in time O(nÊ) where 2 Æ Ê < 2.3716 [43]. An extensive line of research on matrix
multiplication over the past thirty years has only improved Ê from 2.376 to 2.3716, with the
current state-of-the-art being due to a very recent result of Williams et al. [43] (for a subset
of the historical advances in this area see, e.g., [3, 14,26,41]). The fastest known algorithm
for triangle detection works by simply reducing the problem to matrix multiplication and
therefore runs in O(nÊ) time. Surprisingly, despite triangle detection only returning a single
bit (whether a triangle exists or not in G), the problem can be used to give a sub-cubic
reduction for boolean matrix multiplication (where the output is n2 bits). In particular, an
algorithm for triangle detection running in time O(n3≠”) for some ” > 0 yields an algorithm
for matrix multiplication in time O(n3≠”/3) [42]. Using this fact, we can derive a conditional
lower bound based on the value of Ê.

I Theorem 2. If average linkage HAC can be solved by an algorithm in O(nÊ/2≠‘) time
for some ‘ > 0, then boolean matrix multiplication can be solved in O(nÊ≠‘Õ) time for some
‘

Õ
> 0.

An interesting open question is whether there are faster non-combinatorial algorithms
that can leverage fast matrix multiplication or Strassen-like techniques and improve over the
�(n3/2≠‘) barrier for combinatorial algorithms for average linkage HAC.

3.1 Reduction
We now prove Theorem 8 by giving a quadratic-time reduction from triangle detection to
average linkage HAC. The reduction is loosely inspired by a recent lower-bound result for
multidimensional range queries [25]. The input to the reduction is an unweighted graph G

ICALP 2024



18:8 It’s Hard to HAC Average Linkage!

on t vertices with m edges; the problem is to detect whether G has a triangle. To do this,
we will construct a HAC instance on an edge-weighted graph G

Õ with t + t
2 vertices and

t
2 +m edges. We will show that the specific way in which an exact HAC algorithm merges
the edges in this instance reveals whether or not G has a triangle.

Constructing GÕ

Let NG(v) denote the neighbors of a vertex v œ G (note that v /œ NG(v)). We define G
Õ as

follows. We start by adding all vertices and edges from G, that is the t vertices v1, . . . , vt
from G, including all of their incident edges NG(vi). We call these the core vertices. The
initail weight of the edges between any two core vertices is set to 1.

In addition to the core vertices, we add an additional t2 leaf vertices that we connect to
the core vertices with specific edge weights. We add the t

2 leaf vertices over a sequence of t
rounds where the i-th round connects one new leaf vertex to every core vertex. The weights
to the newly added leaves depend on the neighbors of the node vi in the original graph G,
and are set as follows:
(1) A core vertex vj is connected to its new leaf with an edge of weight (1/i)≠‘ if vj œ NG(vi).
(2) A core vertex vj is connected to its new leaf with an edge of weight (1/i)+‘ if vj /œ NG(vi).
See Figure 3 for an illustration of our reduction.
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Figure 3 Our triangle detection reduction where we compute GÕ from G by adding t = 5 nodes
over t rounds. 3f gives GÕ. Each node labeled according to its round and corresponding vertex in G.
Edges labelled with their weight in the round they are added (edges of G have weight 1). For the
ith round we highlight in red vi and the edges added with weight 1/i ≠ ‘.

Running HAC on GÕ

Having defined G
Õ, let us consider the merges that the exact HAC algorithm will make

on this instance. In this section, for succinctness we use weight to refer to the normalized
(i.e., average linkage) weight. HAC will begin by merging the maximum weight edges. The
maximum weight initially depends on the structure of NG(v1). First, all core vertices that
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are not in NG(v1) will merge with their round 1 leaves (since these edges have weight 1 + ‘)
increasing their cluster size to 2. This leaves all core vertices in NG(v1). Any edge in G

Õ

between two such core vertices will have weight 1, and will be merged next. Crucially, any
merge in this round with a weight of 1 indicates a triangle incident on v1 since the two core
vertex endpoints of the edge must be contained in NG(v1), hence connected by edges to v1.
If no edges of weight 1 merge, the remaining leaves that we added to core vertices in NG(v1)
merge into their neighboring core vertex.

Assuming we did not merge any weight 1 edges in the first round, at this point the cluster
size of each core vertex is 2, and so the weight of any edge originally in G (between two core
vertices) will be 1/4. The edge weights to leaves in round 2 will be ((1/2)±‘)/2 = 1/4±(‘/2),
which is larger than 1/4 for edges of Type 2. Therefore, the same argument for how edges
merge in round 1 can be inductively applied to the next round. The edge weights in round i

for edges between core vertices will be 1/i2, and by the same argument as before, the Type 2
(Type 1) edges will be larger (smaller) by ‘/i. As a result of how an exact average linkage
HAC will merge the edges of GÕ, we obtain the following lemma:

I Lemma 9. Consider the sequence of merges performed by the HAC algorithm on G
Õ. If the

merge sequence consists of t2 merges, which first merge all leaf vertices, and only then makes
merges between core vertices, then G does not contain any triangles. If the merge sequence
merges any edge between two core vertices in the first t2 merges, then G contains a triangle.

Completing the Reduction

We will now complete the proof of Theorem 8. Suppose we are given an instance of Triangle
Detection on n vertices. Conjecture 6 implies that this instance cannot be solved by
combinatorial algorithms in O(n3≠‘) time for any ‘ > 0.

Let the time complexity of HAC on a graph G with n vertices and m edges be THAC(n,m).
Suppose HAC can be solved combinatorially in O(n3/2≠‘) time. Given a Triangle Detec-
tion instance on n vertices we create a graph G

Õ with O(n2) vertices and O(n2) edges, and run
HAC on G

Õ. The running time of the reduction is O(n2), and the running time of HAC on G
Õ

is O((n2·(3/2≠‘)) = O(n3≠2‘), which will falsify Conjecture 6 by Theorem 7. Thus, conditional
on Conjecture 6, there is no algorithm for HAC running in time THAC(n,m) = O(n3/2≠‘) for
any constant ‘ > 0, completing the proof of Theorems 8 and 1. The same argument, under
the assumption that triangle detection cannot be solved in O(nÊ≠‘) time for any constant
‘ > 0 implies Theorem 2.

4 Average Linkage HAC is Hard to Parallelize Even on Trees

In this section we prove that average linkage HAC is likely hard to parallelize by showing it is
CC-hard even on low depth trees. We begin with some preliminaries. The formal definition
of CC-hardness we will use is as follows.

I Definition 10 (CC-Hard). A problem is CC-hard if all problems of CC are logspace-
reducible to it.

For our purposes we will not need to define the class CC. Rather, we only need the above
definition of CC-hardness and a single CC-hard problem, LFM Matching. Recall that a
matching of a graph G = (V,E) is a subset of edges M ™ E if each vertex is incident to at
most one edge of M . A matching is said to be maximal if each e = {u, v} ”œ M satisfies the
property that either u or v is incident to an edge of M . The greedy algorithm for maximal
matching initializes M as ÿ and then simply iterates over the edges of E in some order and
adds the current edge e to M if the result of doing so is a matching.
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I Problem 1 (LFM Matching). An instance of lexicographically first maximal matching
(LFM Matching) consists of a bipartite graph G = (V = L Û R,E) with vertices ordered
as L = (l0, l1, . . . , ln≠1) and R = (r0, r1, . . . , rn≠1). The lexicographically first maximal
matching is the matching obtained by running the greedy algorithm for maximal matching on
edges ordered first by their endpoint in L and then by their endpoint in R. That is, in this
ordering e = {li, rj} precedes e

Õ = {liÕ , rjÕ} i� (1) i < i
Õ or (2) i = i

Õ and j < j
Õ. Our goal is

to decide if a designated input edge is in the LFM Matching.

The following summarizes known hardness of LFM Matching.

I Theorem 11 ( [28,38]). LFM Matching is CC-hard.

Next, we introduce the search variant of the HAC problem whose CC-hardness we will
prove.

I Problem 2 (Average Linkage HAC). An instance of Average Linkage HAC consists an
undirected graph G = (V,E), along with edge weights w : E æ RØ0. Consider the sequence
(C1, C

Õ
1), (C2, C

Õ
2), . . . of cluster merges produced by the procedure HAC(G) from Algorithm 1.

Given any pair of vertices u, v œ G, the goal of the Average Linkage HAC problem is to output
the index i such that u, v first merge together at step i, namely u œ Ci and v œ C

Õ
i (or u œ C

Õ
i

and v œ Ci).

To prove the hardness of Average Linkage HAC, we will first prove the hardness of an
intermediate problem, called Adaptive Minimum. The construction of the Adaptive Minimum

problem will be more amenable to our reductions, and therefore simplify the following
exposition. See Figure 4 for an illustration of Adaptive Minimum.

I Problem 3 (Adaptive Minimum). An instance of Adaptive Minimum consists of a (0-based
indexed) n ◊ n matrix A where each row contains a permutation of {0, . . . , n ≠ 1} and some
index x œ [0, n). The goal is to simulate the following algorithm. Start with I = {0, . . . , n≠1}
and execute the following steps for i = 0, . . . , x:
1. Let ki = argminjœI A[i, j].
2. Set I := I \ {ki}.
Our goal is to compute kx.
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(f) Step 5.

Figure 4 Adaptive Minimum on matrix A. The row considered in each step is shown in blue. ki
for the i-th row written to the right of A in green with witnessing entry of A also in green. Indices
removed from I in relevant rows crossed out in red.

Observe that both problems 2 and 3 are defined as having an algorithm output an index
i œ {1, 2, . . . }. Thus, these can be considered search problems instead of decision problems.
We choose to work with the search versions of these problems for simplicity of our reductions,
however, our reduction naturally extends to the decision variants (e.g., where the algorithm
is given u, v œ V and an index i and asked if u, v merge on step i).

We first prove the CC-hardness of this intermediate problem. See Figure 5 for an
illustration of our reduction from LFM Matching to Adaptive Minimum.
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I Lemma 12. Adaptive Minimum is CC-hard.

Proof. By Theorem 11 and the definition of CC-hardness (Definition 10), it su�ces to argue
that LFM Matching (Problem 1) is logspace reducible to Adaptive Minimum (Problem 3).
We begin by describing our reduction and then observe that it only requires logarithmic
space. The basic idea of the reduction is to associate with each vertex on the left side of our
instance of LFM Matching a row of the matrix of Adaptive Minimum and each vertex on the
right side of LFM Matching a column of the matrix of Adaptive Minimum.

More formally, consider an instance of LFM Matching on graph G = (V = LÛR,E) where
our goal is to decide if a given edge e is in the LFM matching. We consider the following
instance of Adaptive Minimum to solve this on a 2n ◊ 2n size matrix A. We will refer to an
index i as a dummy index if i Ø n ≠ 1.

Consider a vertex li œ L connected to vertices Ri ™ R in G, for some i Æ n ≠ 1. We will
construct the ith row of A to correspond to a permutation fii that first gives the indices of
all neighbors of li in R sorted according to the ordering of R then gives all dummy indices
then gives the indices of non-neighbors of li in R. Specifically, the first |Ri| indices of fii will
be the indices of Ri (sorted by their order in R), the next n indices will be dummy indices
n, n+ 1, . . . 2n ≠ 1 and the remaining n ≠ |Ri| indices will be the indices of vertices in R \Ri

(sorted, say, by their order in R). For i Ø n we can construct our permutation arbitrarily.
Lastly, let x (the index for which we would like to compute kx in our instance of Adaptive
Minimum) be the index of the endpoint of e in L. Once Adaptive Minimum computes kx, we
verify whether or not it corresponds to the endpoint of e in R to determine the final output
of the LFM Matching instance. Again, see Figure 5.

We now argue correctness of the reduction. A straightforward proof by induction on i

demonstrates that at the beginning of the ith round of the Adaptive Minimum algorithm we
have that I consists of at least n ≠ i dummy indices and j < n is not in I only if rj is in the
LFM Matching and is matched to some liÕ for iÕ < i. It follows that e = (li, rj) is in the LFM

Matching i� ki = j, showing correctness of our reduction.
It remains to show that the above reduction can be done with logspace. In order to do

so, we must argue that A[i, j] can be computed with logspace for every i and j. Doing so is
trivial if i is a dummy index, so consider i < n.

If j Æ |Ri| then A[i, j] is just the index of the jth vertex of Ri (i.e., neighbor of li) in the
ordering given by R.
If j œ [|Ri|, |Ri|+ n] then A[i, j] just is j ≠ |Rj |+ n.
If j > |Ri| + n then A[i, j] is the index of the (j ≠ |Ri| ≠ n)th vertex in R \ Ri (i.e.,
non-neighbors of li) when vertices of R \Ri are sorted according to the ordering on R.

All three of the above quantities can easily be computed in logspace. J

Concluding, we use the CC-hardness of Adaptive Minimum to prove the CC-hardness of
Average Linkage HAC.

I Theorem 3. Average linkage HAC is CC-hard, even on trees of diameter 4.

Proof. Our reduction shows how to reduce an instance of Adaptive Minimum (Problem 3) of
size n to an instance of average linkage HAC on a tree. We build a rooted tree, in which
each root-to-leaf path has length 2 (i.e., the tree has depth 2). We call the neighbors of
the root internal nodes. Observe that each node is either the root, an internal node or a
leaf. The fact that the tree is rooted is only for the convenience of the description. In the
construction, we will begin by assigning each node an initial size (see the definition of size in
Section 2) which is possibly larger than 1 (but at most poly(n)). We will later show how to
remove these variable sizes, and reduce to the case where all nodes have initial size 1 (as in
the original definition of HAC).
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Figure 5 Reduction from LFM Matching to Adaptive Minimum. 5a gives the LFM Matching
instance and 5b its solution. 5c gives the Adaptive Minimum instance from the reduction and 5d its
solution.

The basic idea of our construction is as follows. Our HAC instance will consist of a rooted
tree where each child of the root corresponds to a column of A in our Adaptive Minimum

instance. HAC merges will then happen in phases where each phase corresponds to a row of
A. In a given phase, exactly one internal node will merge with the root which will correspond
to this internal node’s column being minimum for the corresponding row of A. In order to
guarantee this, each child of the root will have its own carefully selected children such that
merging with these children guarantees the desired behavior in every phase.

More formally, the tree is constructed as follows. The root r of the tree has initial size
n
8. It has n children, each of initial size n

4 – we denote them by v0, . . . , vn≠1. The root is
connected to its children using edges of weight 1, i.e., w(r, vi) = 1 for all i = 0, 1, . . . , n ≠ 1
(thus, the normalized weight of the edges {rvi}n≠1

i=0 are each 1
n12 at the start). Each internal

node has n(n+ 1) children (leaf nodes) grouped into n groups of n+ 1 leaves each. We write
Ci,j = {vi,j,0, vi,j,1, . . . , vi,j,n} to denote the j-th group of children of the i-th internal vertex.
All the leaves vi,j,k have initial size 1. Thus, the vertices in the full graph in our construction
consists of the root r, internal nodes {v0, v1, . . . , vn≠1} and leaves fin≠1

i=0 fin≠1
j=0 fin

k=0{vi,j,k}
Let ri = n

8 + i · n4 (for 0 Æ i < n). For each pair of an internal node and each of its
groups there are only two distinct edge weights for edges between the internal node and the
leaves in the group. Specifically, for an internal node vj and group Cj,i of its children we
have A[i, j] + 1 edges of weight 1

ri≠1 and n ≠ A[i, j] edges of weight 1
ri+i·n3 . Specifically, we

set

w(vj , vj,i,k) =
I

1
ri≠1 if 0 Æ k Æ A[i, j]

1
ri+i·n3 if A[i, j] < k Æ n

We call the two weights high-weight and low-weight edges, respectively. Note that their
normalized weights are 1

n4(ri≠1) and 1
n4(ri+i·n3) respectively. Observe that the setting of

high-weight and low-weight edges is independent of the internal node vj , although the number
of high versus low-weight edges depends on A[i, j]. Moreover, note that even low-weight
edges of any group Cj,i have higher weights than high-weight edges of group Cj,i+1:

1
n4(ri + i · n3) >

1
n4(ri+1 + (i+ 1) · n3) ≈∆

1
n8 + i · n4 + i · n3 >

1
n8 + (i+ 1)n4 ≠ 1 ≈∆

i · n3
< n

4 ≠ 1.
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which follows from the fact that i Æ n ≠ 1. We now demonstrate that the average linkage
HAC on this instance works in n phases numbered from 0 to n ≠ 1, where in each phase i,

n ≠ 1 internal nodes contract all of their incident group i edges, and
one internal node contracts all of its high-weight edges to group i, after which it merges
with the root.

Because of the internal node merging with the root, the root has incident leaves, but they
are connected with edges of (normalized) edge weights Æ 1

n15 and so they will be irrelevant
until all phases have been completed. We show that if we denote by ki the index of the
internal node which merges with the root in phase i, the sequence k0, . . . , kn≠1 is a correct
solution to the Adaptive Minimum problem.

In order to analyze the algorithm, we prove the following claim. For convenience, let us
define wi = n

4 + i · (n+ 1).

B Claim 13. In the beginning of phase i, the graph is as follows:
1. The size of the root node is ri + i

2 · �i for some �i œ [0, n+ 1].
2. Exactly i internal nodes have been merged with the root, and the corresponding values

k0, . . . , ki≠1 have been computed correctly.
3. The size of each of the n ≠ i remaining internal nodes is wi.
4. For all remaining internal nodes, all leaves in groups 0, . . . , i ≠ 1 have been merged into

their parents, and no leaves in groups i, . . . , n ≠ 1 have been merged.
5. The root may have incident leaves (resulting from internal nodes contracting into it)

connected to the root with edges of normalized weights Æ 1
n15 .

Proof. We prove the above claim using induction on i. The base case of i = 0 follows directly
from how the tree is constructed.

We now simulate a single phase. The edges between the root and the internal nodes have
(normalized) weights 1

wi(ri+i2·�i) >
1

n15 . Hence, the additional leaf nodes incident to the
root (see Item 5 of the Claim) are irrelevant. Thus, the highest weight edge in the graph is
surely incident to one of the internal nodes. Observe that the relative order of edge weights
between an internal node v and its children does not change as the leaves are merged into v.
Therefore, given that groups 0, . . . , i ≠ 1 do not exist anymore, among edges between the
internal nodes and leaves, the edges of group i have the highest weights. In the beginning
of a phase the high-weight edges in that group have normalized weights 1

wi(ri≠1) and the
low-weight edges have weight 1

wi(ri+i·n2) .
Hence, we have that if we sort the edges by their normalized weights, the top 3 classes of

edges are, starting from the highest weight:
1. High-weight edges between internal nodes and leaves of group i.
2. Edges between the root and the internal nodes.
3. Low-weight edges between internal nodes and leaves of group i.
We will show that the phase consists of the following sub-phases.
1. First, there is some number of subphases, where each of n≠ i internal nodes contract one

incident high-weight edge.
2. Then, there is exactly one subphase, where n≠i≠1 nodes contract an incident high-weight

edge and one internal node merges with the root.
3. Then, the remaining n ≠ i ≠ 1 internal nodes merge with all of their group i leaves (we

do not analyze the order in this subphase, as it is irrelevant).
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Assume that each internal node has at least one high-weight edge in group i. Then, the
algorithm will execute a Type 1 subphase: the first n ≠ i steps of the algorithm would merge
exactly one high-weight edge incident to each internal node. Note that when an edge incident
to an internal node v merges, the weight of v increases, and so the incident edge weights
decrease. This guarantees that in the considered n ≠ i steps exactly one merge per internal
node happens.

Type 1 subphases of n ≠ i steps continue as long as each each internal node has at least
one high-weight group i edge in the beginning of the subphase. Each Type 1 subphase also
causes the weight of each internal node to increase by 1. Clearly, since nodes are being
merged into internal nodes, the ordering of edge weights incident to any internal node does
not change.

At some point, in the beginning of a subphase there is an internal node that does not
have any incident high-weight edge in group i. Assume that this happened after p Type
1 subphases have completed. Thus, the size of each internal node is wi + p. Since by the
construction each internal node had a di�erent number of high-weight edges in group i, there
is exactly one node v with no high-weight incident edges and that node merges with the
root. This is when Type 2 subphase happens. First, n ≠ i ≠ 1 internal nodes contract with a
high-weight incident group i edge. At this point the edge weights are as follows. The weight
of an edge between v and the root is 1

(wi+p)(ri+i2·�i) and the weight of a high-weight edge in
group i is 1

(wi+p+1)(ri≠1) . We have that the former is larger since

(wi + p)(ri + i
2 · �i) < (wi + p+ 1)(ri ≠ 1) ≈∆

(wi + p) · i2 · �i < ri ≠ 1 ≈∆
(n4 + i · (n+ 1) + p) · i2 · �i < n

8 + i · n4 ≠ 1 ≈
(n4 + n · (n+ 1) + n) · n · n2

< n
8 + i · n3 ≠ 1.

Thus, the internal node with no incident high-weight edges in group i merges with the root.
Observe that this is exactly the internal node which had the lowest number of high-weight
edges in group i among all remaining internal nodes. This immediately implies that ki is
computed correctly, proving Item 2.

We now show that in the remaining part of the phase the n ≠ i ≠ 1 remaining internal
nodes contract their incident group i edges. First, observe that the new size of the root
node is

ri +wi + p+ i
2 ·�i =

!
n
8 + i · n4 + n

4"
+

!
i · (n+ 1) + i

2 · �i + p
"
= ri+1 +(i+1)2�i+1

for some �i+1 œ [0, n+ 1]. Note that we use the fact that both �i and p are upper bounded
by n+ 1, which implies i · (n+ 1) + i

2 · �i + p Æ (i+ 1)2(n+ 1). This proves Item 1. Thus
for an internal node of weight w, the weight of its edge to the root is

1
w · (ri+1 + (i+ 1)2�i+1)

Æ 1
w · ri+1

= 1
w · (n8 + (i+ 1) · n4) .

On the other hand, its low-weight edges to group i leaves have weight
1

w(n8 + i(n4 + n2)) .

As a result, in the remaining part of the current phase all internal nodes will contract all
their incident group i edges. This implies Item 4. Thus, the size of each internal node within
the phase increases to wi +(n+1) = n

4 + i · (n+1)+n+1 = n
4 +(i+1)(n+1), as required.

This proves Item 3 and completes the proof. C
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Finally, we now claim that, given an instance of Adaptive Minimum with input index
x œ [0, n) and an algorithm which can compute the solutions to Problem 2, we can compute
the solution kx to Problem 3 in logspace. To see this, note that it su�ces to determine the
value kx as defined above given an algorithm for Average Linkage HAC. To see this, note that
for any internal node i, we can query the Average Linkage HAC algorithm to determine which
time step ti it merged with the root. This does not directly tell us which phase i merged with
the root, but for a given i we can determine if it merged in phase x by comparing ti with tj

for all j œ {0, 1, . . . , n ≠ 1} \ {i}, and checking if there are exactly x ≠ 1 values of tj smaller
than ti. This clearly can be verified in log-space. Repeating for all i œ {0, 1, . . . , n ≠ 1}
allows us to correctly determine the identity of the internal node that merged with the root
in phase x, and therefore the value of kx, in logspace as required.

To complete the proof of the Lemma it remains to show how to drop the assumption on
the node sizes being initially not all equal to 1. In order to obtain a node of size w it su�ces
to create a node of weight 1 and initially connect it to w ≠ 1 auxiliary nodes using very high
weight edges. This will force the algorithm to merge all these auxiliary nodes and increase
the size of that node to w. Since the auxiliary leaves are connected only to the root and
internal nodes (the leaves in our construction have weight 1), the diameter of the tree does
not increase. J

5 Average Linkage HAC on Paths in NC

In this section, we present an Õ(n) work and O(polylog(n)) depth algorithm for solving average
linkage HAC on path graphs, provided that the aspect ratio of the input instance is bounded
by poly(n). The aspect ratio is defined as A = Wmax/Wmin, where Wmax = argmaxeœE w(e)
andWmin = argmineœE w(e) (note that this definition excludes all non-edges, which implicitly
have a weight of 0).

In average linkage HAC, the weight (i.e., similarity) of edges monotonically decreases
over time. Thus, our idea is to partition the edges into buckets where the edges in any
bucket have the same similarity, up to constant factors. Next, we process these buckets
in phases, from the highest similarity bucket to the lowest. In each phase, we perform a
modified version of the classic nearest-neighbor chain algorithm, wherein we compute the
nearest-neighbor chains for the graph induced on the edges in that bucket, and process each
chain independently. We note that when we use the terminology nearest neighbor of a vertex
in what follows, we refer to the neighbor along the highest weight edge incident to the vertex.

Initially, each cluster is a singleton, and we might end up with �(n) sequential dependencies
to resolve. However, we observe that in this special case when the size of every cluster is
equal, starting with the reciprocal pair, every alternate edge in this chain can be merged
independently, and the rest of the edges will be moved to a later bucket. We can compute
the edges that will be merged easily via a simple prefix-sum routine [8]. However, when
the cluster sizes are arbitrary, this observation no longer holds. Nonetheless, we show that
we can partition each chain further into O(logn)-sized subchains such that, even though
the dependencies within a subchain must be resolved sequentially, the dependencies across
subchains can be resolved in parallel using a similar application of prefix-sum.

We state the following theorems showing (1) that our parallel algorithm is highly e�cient
(it runs near-linear time in the number of nodes) and runs in poly-logarithmic depth and
(2) that our algorithm implies that the dendrogram height of a path input with polynomial
aspect ratio is always poly-logarithmic. Due to space constraints, we defer the proofs and
the details of the algorithm to the full version [6].
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I Theorem 4. Average linkage HAC on paths is in NC. In particular, there is an algorithm
for average linkage HAC that runs in O(log2 n log logn) depth with O(n logn log logn) work.

I Theorem 14. Average linkage HAC on path graphs with poly(n) aspect-ratio returns a
dendrogram with height at most O(log2 n).

6 Conclusion

In this paper, we studied the parallel and sequential complexity of hierarchical graph clustering.
We gave new classic and fine-grained reductions for Hierarchical Agglomerative Clustering
(HAC) under the average linkage measure that likely rule out e�cient algorithms for exact
average linkage, parallel or otherwise. We also showed that such impossibility results can be
circumvented if the output dendrogram has low height or is a path. An interesting question is
whether such structure can be leveraged for other variants of interest of average linkage HAC:
for example, can we can obtain dynamic algorithms for HAC that are also parameterized by
the height?
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Abstract

We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on
the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths
that include the maximum number of edges. We show that for any fixed Á > 0, there is an algorithm
that (1/2 ≠ Á)-approximates the maximum path cover size of an n-vertex graph in ÂO(n) time. This
improves upon a (3/8 ≠ Á)-approximate ÂO(n

Ô
n)-time algorithm of Chen, Kannan, and Khanna

[ICALP’20].
Equipped with our path cover algorithm, we give an ÂO(n) time algorithm that estimates the

cost of (1, 2)-TSP within a factor of (1.5 + Á) which is an improvement over a folklore (1.75 + Á)-
approximate ÂO(n)-time algorithm, as well as a (1.625 + Á)-approximate ÂO(n

Ô
n)-time algorithm

of [CHK ICALP’20]. For graphic TSP, we present an ÂO(n) algorithm that estimates the cost of
graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate ÂO(n) time
algorithm due to [CHK ICALP’20, Behnezhad FOCS’21]. We show that the approximation can be
further improved to 1.66 using n

2≠�(1) time.
All of our ÂO(n) time algorithms are information-theoretically time-optimal up to poly logn

factors. Additionally, we show that our approximation guarantees for path cover and (1, 2)-TSP hit
a natural barrier: We show better approximations require better sublinear time algorithms for the
well-studied maximum matching problem.
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1 Introduction

The traveling salesman problem (TSP) is a central problem in combinatorial optimization.
Given a set V of n vertices and their pairwise distances, it asks for a Hamiltonian cycle of
the minimum cost. In this paper, we study sublinear time algorithms for TSP. The algorithm
is given query access to the distance pairs, and the goal is to estimate the solution cost in
time sublinear in the input size (which is �(n2)).
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TSP is NP-hard to approximate within a polynomial factor for an arbitrary distance
function. As such, much of the work in the literature has been on more specific distance
functions. Some notable examples include graphic TSP [15, 22, 23, 25, 10] where the
distances are the shortest paths over an arbitrary unweighted undirected graph, (1, 2)-TSP
[1, 10, 7, 18, 21] where the distances are 1 or 2, and more generally metric TSP [17, 14, 12, 26]
where the distances satsify triangle inequality.

In 2003, Czumaj and Sohler [13, 14] showed that for any fixed Á > 0, a (1+Á)-approximation
of the cost of metric minimum spanning tree (MST) and thus a (2 + Á)-approximation of the
cost of metric TSP can be found in ÂO(n) time. Twenty years later, it still remains a major
open problem to either break two-approximation in n2≠�(1) time or prove a lower bound.1
However, better bounds are known for both graphic TSP and (1, 2)-TSP. In this paper, we
present improved algorithms for these two well-studied variants of TSP. Our main tool to
achieve this is an improved algorithm for the closely related maximum path cover problem
which might be of independent interest.

Maximum Path Cover. The maximum path cover in a graph is a collection of vertex disjoint
paths with the maximum number of edges in it. The (almost) 1/2-approximate maximum
matching size estimator of Behnezhad [2] immediately implies an (almost) 1/4-approximation
for the maximum path cover problem in ÂO(n) time.2 This can be improved to an (almost)
(3/8 = .375)-approximation using the matching-pair idea of Chen, Kannan, and Khanna [10]
in ÂO(n

Ô
n)-time.3 Our first main contribution is an improvement over both of these results:

I Result 1 (Formally as Theorem 17). For any Á > 0, there is a randomized algorithm that
w.h.p. (1/2 ≠ Á)-approximates the size of maximum path cover in ÂO(n · poly(1/Á)) time.

Besides quantitavely improving prior work both in the running time and the approximation
ratio, Result 1 reaches a qualitatively important milestone as well. First, the running time
of Result 1 is information-theoretically optimal up to poly logn factors (the lower bound
holds for any constant approximation – see the arXiv version of the paper). Second, its
approximation ratio hits a rather important barrier. We give a non-trivial reduction that
shows a (1/2 + �(1))-approximation in ÂO(n) time for maximum path cover would imply
the same bound for maximum matching in bipartite graphs. Such a result has remained
elusive for matching, which is one of the most extensively studied problems in the literature
of sublinear time algorithms. See the arXiv version of the paper for the lower bound details.

It is also worth noting that in bounding the running time of our algorithm in Result 1,
we use connections to parallel algorithms. Such a connection was previously only used for
matchings [2].

(1, 2)-TSP. The (1, 2)-TSP problem has been studied extensively in the classical setting.
In his landmark paper, Karp [18] showed that (1, 2)-TSP is NP-hard. Papadimitriou and
Yannakakis [24] then proved its APX-hardness. Since then there has been a significant amount
of work on (1, 2)-TSP in the classical setting. The current best known inapproximability
bound for (1, 2)-TSP is 535/534 [19]. After a series of works, the best known polynomial

1 See e.g. Open Problem 71 on sublinear.info [16].
2 The application of sublinear time maximum matching algorithms for approximating maximum path

cover was first proposed by Gupta and Onak. See [16].
3 We note that even though a subsequent result of Behnezhad [2] improved the running time for maximal

matchings and graphic TSP from O(n
Ô
n) in [10] to ÂO(n), it is not immediately clear whether the same

holds for path cover and (1, 2)-TSP as they rely on a di�erent notion of a matching pair.

https://sublinear.info/index.php?title=Open_Problems:71
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Table 1 Comparison of running time and approximation ratio of our TSP algorithms and lower
bounds with prior work.

Running Time Approximation
Ratio Metric Reference

ÂO(n) 1.75 + Á (1,2) Folklore
ÂO(n

Ô
n) 1.625 + Á (1,2) Chen, Kannan, and Khanna [10]

ÂO(n) 1.5 + Á (1,2) This work (Result 2)

ÂO(n) 1.929 Graphic Chen, Kannan, and Khanna [10]
ÂO(n) 1.834 Graphic This work (Result 3)

n
2≠�(1) 1.667 Graphic This work (Result 4)

�(n2) 1 + Á (1,2) & Graphic Chen, Kannan, and Khanna [10]

n
1+�(1)

(Conditional) 1.5 ≠ Á (1,2) & Graphic This work (arXiv version)

time approximation is 8/7 [7] which can be implemented in O(n3) time [1]. For sublinear
time algorithms, an ÂO(n)-time (almost) 1.75-approximation is folklore [16]. Chen, Kannan,
and Khanna [10] improved the approximation to (almost) 1.625 in ÂO(n

Ô
n) time.

It is not hard to see that up to a small additive error of 1, (1, 2)-TSP is equivalent to
finding a maximum path cover on the weight-1 edges and then connecting their endpoints via
weight-2 edges. A simple calculation shows that any –-approximation for the maximum path
cover problem leads to a (2 ≠ –)-approximation for (1, 2)-TSP. Our path cover algorithm of
Result 1 immediately implies the following result as a corollary:

I Result 2. For any Á > 0, there is a randomized algorithm that w.h.p. (1.5 + Á)-
approximates the cost of (1, 2)-TSP in ÂO(n · poly(1/Á)) time.

Similar to Result 1, the running time of Result 2 is information-theoretically optimal up
to poly logn factors, and its approximation ratio hits a natural barrier due to a connection
to sublinear time matching that we establish in this work.

Graphic TSP. The graphic TSP problem is equivalent to finding a tour of the minimium
size that visits all the vertices. This is an important instance of TSP that has received a
lot of attention over the years. For polynomial time algorithms, a 1.5-approximation of
Christofides [12] (which also works more generally for metric TSP) had remained the best
known until a series of works over the last decade improved it to (1.5 ≠ Á0) [15], 1.461 [22],
1.444 [23], and finally to 1.4 [25]. For sublinear time algorithms, Chen, Kannan, and Khanna
[10] showed that an (almost) (27/14 ¥ 1.928)-approximation of graphic TSP can be obtained
in ÂO(n

Ô
n) time. The running time was subsequently improved to ÂO(n) by Behnezhad [2].

We first show that plugging Result 1 into the framework of [10] immediately improves
their approximation from 1.928 to (almost) 1.9 while keeping the running time ÂO(n). We
then give a more fine tuned algorithm that obtains a much improved approximation ratio of
(11/6 ¥ 1.833).

ICALP 2024
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I Result 3. For any Á > 0, there is a randomized algorithm that w.h.p. (1+Á)( 11
6

¥ 1.833)-
approximates the cost of graphic TSP in ÂO(n · poly(1/Á)) time.

Over the past few years, significant advancements have been made in the development
of sublinear matching algorithms and lower bounds. Several recent results [3, 4, 5, 6, 8, 9]
have led to the creation of a (1, Án)-approximation algorithm for maximum matching, with
running time of n2≠�Á(n). Leveraging these sublinear algorithms, we have devised a slightly
subquadratic algorithm that provides a more accurate estimation of the size of graphic TSP.

I Result 4. For any Á > 0, there is a randomized algorithm that w.h.p. (1+Á)( 5
3

¥ 1.666)-
approximates the cost of graphic TSP in n2≠�Á(1) time.

We contrast our results with prior sublinear TSP algorithms in Table 1.

Further related work. Finally, we note that in a recent paper, Chen, Khanna, and Tan [11]
show that assuming that the metric has a spanning tree supported on weight 1 edges, one can
obtain a (2 ≠ Á0)-approximation with ÂO(n

Ô
n) queries for some small unspecified constant

Á0 > 0. While this is a more general metric than graphic TSP and (1,2)-TSP that we study
in this paper, we note that the two papers are orthogonal and their results are incomparable.
In particular, the techniques developed in this paper are specifically designed to improve the
approximation to much below 2, whereas [11] focuses on generalizing the distance function
while beating 2.

2 Technical Overview

In this section, we give an overview of our algorithms, especially our sublinear time maximum
path cover algorithm of Result 1 which is the key to the other results as well.

Let us start with using matchings to approximate maximum path cover. Consider a
graph that has a Hamiltonian path. Here, the optimal maximum path cover has size n ≠ 1.
On the other hand, any maximum matching can have at most n/2 edges, which is by a
factor 2 smaller than our optimal path cover. On top of this, we only know close to 1/2
approximations for maximum matching if we restrict the running to be close to linear in n
[2, 6], thus can only achieve an approximation close to 1/4.

Instead of a single matching, Chen, Kannan, and Khanna [10] showed how to estimate
the number of edges in a maximal matching pair in ÂO(n

Ô
n) time, where a matching pair

is simply two edge disjoint matchings. It is not hard to see that the number of edges in a
maximal matching pair is at least half the number of edges in a maximum path cover. The
problem, however, is that a maximal matching pair is not a collection of paths! In particular,
the two matchings can form cycles of length as small as four. Therefore, one may only be
able to use 3/4 fraction of the edges of a matching pair in a path cover. This is precisely
why the algorithm of [10] only obtains a 1

2
◊ 3

4
= 3

8
approximation for path cover, and a

2 ≠ 3

8
= 1.625 approximation for (1, 2)-TSP.

If we could modify the matching pair algorithm of [10], and avoid cycles by manually
excluding edges whose endpoints are the endpoints of a path in the current matching pair,
then we could avoid the 3/4 factor loss discussed above and achieve a 1/2-approximation.
Unfortunately, checking whether the endpoints of an edge are endpoints of a path requires
knowledge about whether a series of other edges belong to the solution, which seems hard to
implement in sublinear time.
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Instead of checking for cycles manually, we introduce the following Algorithm 1 which
avoids cycles more naturally. While our final algorithm is a modified variant of Algorithm 1
described below, we start with Algorithm 1 as we believe it provides the right intuition.

Algorithm 1 A new algorithm for path cover.

1 Initialize P Ω ÿ.
2 Each vertex v has two ports that we denote by v0 and v1. Each of these ports

throughout the algorithm will be either free or occupied. Initially, all ports are free.
3 Iterate over the edges in some ordering fi. Upon visiting an edge e = (u, v):

If v0 and u0 are free, add e to P , mark both as occupied, and skip to the next edge.
If v1 and u0 are free, add e to P , mark both as occupied, and skip to the next edge.
If v0 and u1 are free, add e to P , mark both as occupied, and skip to the next edge.

4 Return P .

Two properties of Algorithm 1 are crucial. First, it prioritizes occupying (u0, v0) (compared
to (u1, v0) or (u0, v1)) which in particular implies that any component in P must have a
(u0, v0) edge. Second, it never occupies (u1, v1) with an edge (u, v). While it is easy to see
that the output of Algorithm 1 has maximum degree 2, and is thus a collection of paths or
cycles, the two properties above actually guarantee that it never includes any cycle. See
Figure 1. We provide the formal proof of this later in Section 4. Additionally, we show that
the output of Algorithm 1 must be at least half the size of a maximum path cover, as we
prove next. Hence, if we manage to estimate the size of the output P of Algorithm 1, then
we have proved Result 1.
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Figure 1 Examples of why the output of Algorithm 1 will not have cycles.

Our final algorithm is slightly di�erent from Algorithm 1 discussed above. In particular, we
slightly relax it – see Algorithm 2 – so that it can be solved via a randomized greedy maximal
independent set (RGMIS), for which we have a rich toolkit of sublinear time estimators.
Existing approaches (particularly the algorithm of Yoshida, Yamamoto, and Ito [27] and its
two-step implementation by Chen, Kannan, and Khanna [10]) can be employed to estimate
the value of this modified Algorithm 2 in ÂO(n

Ô
n) time. We achieve the improved, and near

tight, ÂO(n) time bound guarantee of Result 1 by building on the analysis of Behnezhad [2]
for maximal independent set on the line graphs (i.e., maximal matchings). Though we note
that several new ideas are needed, because the MIS graph in our case will not be exactly a
line graph. We defer more discussions about this to Sections 4 and 5.
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Implications for TSP. By having an –-approximate maximum path cover algorithm, we
immediately obtain a (2 ≠ –)-approximation for (1, 2)-TSP. Therefore, the algorithm above
immediately proves Result 2 that we can (almost) 1.5-approximate (1, 2)-TSP in ÂO(n) time.
For our Result 3 for graphic TSP, we first observe that our improved path cover algorithm can
be employed to provide a better lower bound for the optimal TSP solution. This improves
the 1.92-approximation of [10] as black-box to 1.9-approximation (see the arXiv version of
the paper). However, the final improvement to 1.83 requires more ideas, in particular, on
how to better estimate the number of certain bridges in the graph. See Section 8 for more
details about this.

3 Preliminaries

Problem Definition. In the sublinear TSP problem, we have a set V of n vertices and a
distance function d : V ◊ V æ R+. The algorithm has query access to this distance function.
Namely, for any pair (u, v) of the vertices of its choice, the algorithm may query the value
of d(u, v). The goal is to design an algorithm that runs in sublinear time in the input size,
which is �(n2) (all the distance pairs), and produces an estimate of the size of the optimal
TSP solution. Denoting the optimal TSP value by ·(V ), we say an estimate Â·(V ) provides
an –-approximation for – Ø 1 if

·(V ) Æ Â·(V ) Æ – · ·(V ).

We focus specifically on graph TSP and (1, 2)-TSP problems. In graphic TSP, the distance
function d is the shortest path metric on an unweighted undirected graph G that is unknown
to the algorithm. Note, however, that the distance queries essentially provide adjacency
matrix access to this graph G. In (1, 2)-TSP, the assumption is that d(u, v) œ {1, 2} for every
pair u, v. In the case of (1, 2)-TSP we may use G to refer to the subgraph induced on the
pairs with distance 1.

Defining graph G as above, we use n to denote the number of its vertices, m to denote
the number of its edges, � to denote its maximum degree, µ(G) to denote its maximum
matching size, ‹(G) to denote its minimum vertex cover size, and d̄ to denote its average
degree.

Path Cover Definitions. Given an unweighted graph G, a path cover in G is a collection of
vertex disjoint paths in G. A maximum path cover is a path cover of G with the maximum
number of edges in it (note that we are not counting the number of paths, but rather the
total number of edges in them). We use fl(G) to denote the size of the maximum path cover
in G. We say an estimate Âfl(G) for fl(G) provides an (–, Á)-approximation for –, Á œ [0, 1] if

– · fl(G) ≠ Án Æ Âfl(G) Æ fl(G).

We may also use –-approximation instead of (–, 0)-approximation.

Graph Theory Definitions/Tools. A bridge (cut edge) in a graph is an edge whose deletion
increases the number of connected components. Similarly, a cut vertex is a vertex whose
deletion (along with its edges) increases the number of connected components. A biconnected
graph is a connected graph with no cut vertex. Also, a biconnected component (block) of a
graph is a maximal biconnected subgraph of the original graph. A non-trivial biconnected
component is a block that is not a bridge. We say a graph is 2-edge-connected if there is no
bridge in the graph. A 2-edge-connected component of a graph is maximal 2-edge-connected
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subgraph of the original graph. The bridge-block tree of a graph is a tree obtained by
contracting the 2-edge-connected components; note that the edge set of a bridge-block tree
correspond to the bridges in the original graph.

We use the following classic theorem of König [20] that the size of the minimum vertex
cover is equal to the size of maximum matching in bipartite graphs. Namely:

I Proposition 1 (König’s Theorem). In any bipartite graph G, µ(G) = ‹(G).

Probabilistic Tools. In our proofs, we use the following standard concentration inequalities.

I Proposition 2 (Cherno� Bound). Let X1, X2, . . . ,Xn be independent Bernoulli random
variables. Let X =

q
n

i=1
Xi. For any t > 0, Pr[|X ≠ E[X]| Ø t] Æ 2 exp

1
≠ t

2

3E[X]

2
.

I Proposition 3 (Hoe�ding’s Inequality). Let X1, X2, . . . ,Xn be independent random variables
such that a Æ Xi Æ b. Let X̄ = (

q
n

i=1
Xi)/n. For any t > 0, Pr[|X̄ ≠ E[X]| Ø t] Æ

2 exp
1

≠ 2nt

(b≠a)2

2
.

4 New Meta Algorithms for Maximum Path Cover

In this section, we present a new meta algorithm for maximum path cover that obtains a
1/2-approximation. The algorithm, as we will state it in this section, will not be particularly
in the sublinear time model. We discuss its sublinear time implementation later in Sections 5
and 6.

Our starting point is the Algorithm 1 described in Section 2. Let us first formally prove
that it obtains a 1/2-approximation, and that no component in it is a cycle.

B Claim 4. The output of Algorithm 1 is a collection of disjoint paths.

Proof. Since P has maximum degree two, it su�ces to show none of its connected components
are cycles. Property (i) above implies that at any point during the algorithm, any degree
one vertex v has its port v0 occupied. Now take an edge e = (u, v) that forms a cycle if
added to P . Both u and v must have degree one and so u0 and v0 are occupied. Since by
property (ii) edge e does not occupy both v1 and u1, the algorithm does not add e to P thus
not completing a cycle. C

B Claim 5. Let P ı be any path cover using weight one edges. Then the output of Algorithm 1
has size at least 1

2
|P ı|.

Proof. For any edge e = (u, v) œ P ı define „(e) = 1

4
(deg

P
(u)+deg

P
(v)). We first claim that

for every edge e = (u, v) in G, we have „(e) Ø 1/2 (or, equivalently, deg
P
(u) + deg

P
(v) Ø 2).

This is clear for edges e œ P due to the contribution of e itself to its endpoints’ degrees, so
fix e ”œ P . Consider the time that we process e = (u, v) in the algorithm and decide not to
add it to P . We claim that out of v0, v1, u0, u1 at least two ports must be occupied. Suppose
w.l.o.g. and for contradiction that only vx is occupied for x œ {0, 1}. Then (u, v) can occupy
v1≠x and ux and be added to P . This contradicts (u, v) not being added to P and proves
our claim that „(e) Ø 1/2.

From the discussion above, we get that
ÿ

eœPı

„(e) Ø
ÿ

eœPı

1/2 = |P ı|/2.

ICALP 2024
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Moreover, because every vertex has degree at most two in P ı, we get
ÿ

eœPı

„(e) = 1
4

ÿ

(u,v)œPı

deg
P
(u) + deg

P
(v) Æ 1

4 · 2
ÿ

vœV

deg
P
(v) = |P |.

The two inequalities above combined imply that |P | Ø |P ı|/2. C

As discussed, our final algorithm is di�erent from Algorithm 1 discussed above. One
problem with Algorithm 1 is that it cannot be cast as an instance of the randomized greedy
maximal independent set (RGMIS) algorithm for which there is a rich toolkit of sublinear
time estimators. To remedy this, we present a modified variant of Algorithm 1 whose output
is (almost) as good, but in addition can be modeled as an instance of RGMIS. We denote
the output of RGMIS on a graph G with a permutation fi on its vertices by RGMIS(G,fi).

The algorithm is stated below as Algorithm 2. Similar to the output of Algorithm 1, the
output of Algorithm 2 can be verified to have maximum degree two. Thus, it is a collection
of paths and cycles. But unlike Algorithm 1, the output of Algorithm 2 can have cycles. This
happens since, unlike Algorithm 1, each connected component of the output of Algorithm 2
is not guaranteed to have an edge (u, v) occupying both u0 and v0. Nonetheless, we are able
to show that this bad event only happens for a small fraction of connected components of
the output of Algorithm 2 in expectation, and so once we remove one edge of each of these
cycles, the resulting collection of disjoint paths has almost the same size.

Algorithm 2 A modification of Algorithm 1 that uses RGMIS.

1 Parameter: K (think of it as a large constant integer).
2 Let G = (V,E) be the subgraph of weight one edges. We construct a graph

H = (VH , EH) from G on which we run RGMIS.
3 Each vertex in H corresponds to an edge e in G and two ports (as in Algorithm 1) of

the endpoints of e that it occupies. Formally, for any (u, v) œ E we have K + 2
vertices in H:

One vertex that corresponds to occuping u0 and v1.
One vertex that corresponds to occuping u1 and v0.
K vertices that each corresponds to occuping u0 and v0.

4 Consider two distinct vertices a and b in H corresponding to edges ea and eb in G:
If ea = eb then we add an edge between a and b in H.
If ea and eb share exactly one endpoint v and both a and b occupy the same port
of v, we add an edge between a and b in H.

5 Find a randomized greedy maximal independent set I of H.
6 Let P be the set of edges in G corresponding to the vertices in I.
7 Return P .

I Observation 6. Let C be a connected component in the output of Algorithm 2. If C is a
cycle, then every edge in C occupies one 0-port and one 1-port (that is, no edge occupies two
0-ports).

Proof. Suppose that C has nÕ vertices. Since each vertex in a cycle has degree two, both
ports of each vertex in C must be occupied. Hence, nÕ 0-ports and nÕ 1-ports of C are
occupied in total. Given that any edge occupies at least one 0-port by the algorithm, we
cannot have an edge that occupies two 0-ports, or else we should occupy more 0-ports than
1-ports of C, which is a contradiction. J
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Next, we show that up to a factor of (1 + 2/k) which is negligible for K in the order 1/Á,
the output of Algorithm 2 is an (almost) 1/2-approximation of the maximum path cover
value.

I Observation 7. Let C be a connected component in the output of Algorithm 2. If C is a
path, then it contains at most one edge that occupies two 0-ports.

Proof. Let C be the path (v1, v2, . . . , vr). Since the degree of any vertex vi for 1 < i < r is
two in the path, both ports of vi must be occupied. For v1 and vr, on the other hand, only
one port is occupied. Hence, the total number of 0-ports that are occupied by C minus the
number of 1-ports occupied by it is at most two. This means that there is at most one edge
that occupies two 0-ports since all other types of edges occupy exactly one 0-port and one
1-port. J

I Lemma 8. let P be the output of Algorithm 2 on graph G. Then

1
2fl(G) Æ E |P | Æ

3
1 + 2

K

4
fl(G),

where the expectation is taken over the randomization of computing RGMIS in Algorithm 2.

Proof. Let P ú be a maximum path cover. For any edge e = (u, v) œ P ı define „(e) =
1

4
(deg

P
(u) + deg

P
(v)). With the exact same argument as in the proof of Claim 5, we get

that „(e) Ø 1/2, which implies
ÿ

eœPı

„(e) Ø
ÿ

eœPı

1/2 = fl(G)/2.

Since the degree of each vertex in P is at most two, we get
ÿ

eœPı

„(e) = 1
4

ÿ

(u,v)œPı

deg
P
(u) + deg

P
(v) Æ 1

4 · 2
ÿ

vœV

deg
P
(v) = |P |.

By combining above inequalities we get 1

2
fl(G) Æ |P |. Note that we do not need the

randomization for the proof of the lower bound.
By construction of P , every vertex has degree at most two in P . Hence, all connected

components of P are cycles and paths. We claim that at most 2

K+2
fraction of connected

components are cycles in expectation. Since the expected number of connected components is
at most E |P |, from this we get that the expected number of cycles is at most 2E |P |/(K+2).
By removing one edge from each cycle, we obtain a valid solution for maximum path cover
problem. Thus,

E |P | ≠ 2E |P |
K + 2 = K

K + 2 E |P | Æ fl(G) ∆ E |P | Æ
3
1 + 2

K

4
· fl(G).

So it remains to show that at most 2

K+2
fraction of connected components are cycles in

expectation. As we process edges one by one according to the ordering of RGMIS, let A be
the set of edges that none of their incident edges are added to the solution of Algorithm 2.
By definition of A, if one copy of edge (u, v) is in A, then all other copies of (u, v) are also
in A. Therefore, at any point during running RGMIS, if a new component is added to the
solution, the edge (u, v) that gets added to the solution occupies (u0, v0) with probability
at least K

K+2
since K copies out of the K + 2 copies are for (u0, v0). Let C0 be the number

of times that the newly added component is an edge occupying two 0-ports, and C1 be the
number of times that the newly added component is an edge occupying one 0-port and one
1-port. By the above argument, we have

ICALP 2024
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E[C0]
E[C0] +E[C1]

= K

K + 2 . (1)

Note that after running Algorithm 2, it is possible that the number of connected com-
ponents is actually smaller than C0 + C1, since some of the components may merge as
the algorithm proceeds. However, by Observation 7, two components that their first edge
occupies two 0-ports will not merge together. Also, by Observation 6, none of the cycle
components have an edge that occupies two 0-ports. Therefore, in the end, there exists at
most E[C0] + E[C1] connected components and at least E[C0] of them will not be cycles.
This completes the proof. J

5 A Local Query Process for Algorithm 2 and its Complexity

In this section, we define a query process to estimate the size of the output of Algorithm 2.
In graph H of Algorithm 2, each vertex corresponds to an edge in the original graph. More

precisely, we make K +2 copies of each edge (u, v) such that one of the copies corresponds to
an edge occupying (u0, v1), one for (u1, v0), and K for (u0, v0). We use GÕ = (V,EÕ) to show
the new graph with these parallel edges. During the course of Algorithm 2, two di�erent
edges that share the same endpoint and port cannot appear in the solution together. We use
the following definition to formalize this notion.

I Definition 9 (Conflicting Pair of Edges). Two edges e, eÕ œ EÕ that share an endpoint v
are conflicting if both e and eÕ correspond to same port vi for i œ {0, 1}. We call (e, eÕ) a
conflicting pair of edges.

In order to estimate the size of the output of Algorithm 2, we define a vertex oracle that
given a vertex v and a permutation fi on EÕ, returns the degree of vertex v in the output of
Algorithm 2. These are akin to the query processes used before in the works of [2, 27], but
are specific to our Algorithm 2.

Algorithm 3 “vertex oracle” VO(u,fi) to determine the degree of vertex u in
RGMIS(GÕ

,fi).

1 Let e1 = (u, v1), . . . , er = (u, vr) be the edges incident to u with fi(e1) < . . . < fi(er).
2 d Ω 0
3 for i in 1 . . . r do
4 if EO(ei, vi,fi) = True then d Ω d+ 1;
5 return d

Note that in Line 2 of the Algorithm 4 we only recursively call the function on edges that
their label, conflict with edge e since if other edges appear in the RMGIS subgraph, we can
still have e in the RGMIS subgraph. Before analyzing the query complexity of the vertex
oracle, we prove the correctness of the vertex oracle.

B Claim 10. For any edge e = (u, z) œ EÕ that is occupying ports ui and zj , if EO(e, u,fi)
is called while computing VO(v,fi), then EO(e, u,fi) = True i� e œ RGMIS(GÕ,fi).

Proof. We prove the claim using induction on ranking of edge e. Assume that the claim is true
for all edges with ranking smaller than fi(e). If EO(e, u,fi) is called by EO(eÕ = (w, z), z,fi)
or directly by VO(v,fi), then by definition of Algorithm 4 and Algorithm 3, all edges
eÕÕ = (wÕ, z) with fi(eÕÕ) < fi(eÕ) that are occupying zj are queried before eÕ which means that
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Algorithm 4 “edge oracle” EO(e, u,fi) to determine an edge e is in RGMIS(GÕ
,fi). Also,

u must be an endpoint of e.

1 if EO(e, u,fi) computed before then return the computed result.;
2 Let e1 = (u, v1), . . . , er = (u, vr) be the edges incident to e such that

fi(e1) < . . . < fi(er) < fi(e). Also, (e, ei) is a conflicting pair for all 1 Æ i Æ r.
3 for i in 1 . . . r do
4 if EO(ei, vi,fi) = True then return False;
5 return True

none of them return True. Hence, by induction hypothesis, none of the edges incident to z
that are occupying zj with lower rank are in the RGMIS(GÕ,fi). Moreover, EO(e, u,fi) calls
all incident edges to u with lower rank that are occupying ui and return Trueif none of
them are in the RGMIS(GÕ,fi) by induction hypothesis. Therefore, EO(e, u,fi) = True i�
e œ RGMIS(GÕ,fi). C

B Claim 11. Let v œ V and d be the output of VO(v,fi). Then d is equal to the degree of
vertex v in the subgraph outputted by RGMIS(GÕ,fi).

Proof. The observation follows by combining the fact that the vertex oracle queries edges in
increasing order and Claim 10. C

Let T (v,fi) denote the number of recursive calls to the edge oracle during the execution
of VO(v,fi).

I Theorem 12. For a randomly chosen vertex v and permutation fi on EÕ, we have that

Ev,fi[T (v,fi)] = O(d̄ · log2 n)

where d̄ is the average degree of the graph G.

Let Q(e, v,fi) be the number of EO(e, ·,fi) calls during the execution of VO(v,fi).
Moreover, let Q(e,fi) be the number of EO(e, ·,fi) calls starting from any vertex. In
other words, we have that Q(e,fi) =

q
vœV

Q(e, v,fi).

I Observation 13. For every edge e and permutation fi, Q(e,fi) Æ O(n2).

Proof. Let e = {x, y}. For a fixed vertex u, either the vertex oracle VO(u,fi) queries the
edge oracle for e directly, or through some incident edge eÕ. Hence, the edge oracle of e is
called through at most (K +2)(deg(x)≠ 1)+ (K +2)(deg(y)≠ 1) of its incident edges (K +2
appears since each edge has K+2 copies), which implies that Q(e, u,fi) Æ (2K+4)(n≠1)+1.
Therefore,

Q(e,fi) Æ
ÿ

uœV

Q(e, u,fi) Æ n ((2K + 4)(n ≠ 1) + 1) Æ O(n2). J

The main contribution of this section is to show that the expected number of EO(e,fi)
calls over all permutations fi is O(log2 n), which is formalized in the following lemma.

I Lemma 14. For any edge e œ EÕ, we have Efi[Q(e, ·,fi)] = O(log2 n).

Assuming the correctness of Lemma 14, we can complete the proof of Theorem 12.
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Proof of Theorem 12.

Ev,fi[T (v,fi)] =
1
n
Efi

Ë ÿ

vœV

T (v,fi)
È
= 1

n
Efi

Ë ÿ

vœV

ÿ

eœEÕ

Q(e, v,fi)
È

= 1
n
Efi

Ë ÿ

eœEÕ

ÿ

vœV

Q(e, v,fi)
È
= 1

n
Efi

Ë ÿ

eœEÕ

Q(e,fi)
È

= 1
n

ÿ

eœEÕ

Efi[Q(e,fi)] = 1
n

ÿ

eœEÕ

O(log2 n)

= 1
n
O(|EÕ| · log2 n) = O(d̄ · log2 n). J

We defer the proof of Lemma 14 to the arXiv version of the paper due to the page limit.

6 Our Estimator for Maximum Path Cover

In this section, we use the oracle of the previous section to estimate the number of edges
in the output of Algorithm 2. In Section 5, we provide a lower bound on the number of
recursive calls to our local query process. Note that this bound does not necessarily imply
the same running time algorithm. For example, if we generate the whole permutation over
all copies of edges before running the algorithm, it takes �(m) which is no longer sublinear.
Using by now standard ideas of the literature, we show how we can implement the query
process in almost the same running time (multiplied by a polylogarithmic factor) which is
formalized in the following lemma (see the arXiv version of the paper).

I Lemma 15. There exists a data structure that given a graph G in the adjacency list format,
(implicitly) fixes a random permutation fi over its edges. Then for any vertex v, the data
structure returns the degree of vertex v in the subgraph P produced by Algorithm 2 according
to a random permutation fi. Each query v to the data structure is answered in Õ(T (v,fi))
time w.h.p. where T (v,fi) is as defined in Section 5.

Note that in our local query process, we need access to the adjacency list of weight-
one edges. So the challenge that arises here is how to estimate the size of the output of
Algorithm 2 in the adjacency matrix model. We present a reduction from adjacency matrix
to adjacency list that appeared in the literature [2]. In this reduction, each query to the
adjacency list can be implemented with O(1) queries to the adjacency matrix and still we
are able to estimate the maximum path cover with some additive error.

Let “ = 16Kn. We construct a graph Ĝ = (V
Ĝ
, E

Ĝ
) for weight-one edges of graph G as

follows:
V
Ĝ

is the union of V1, V2 and U1, U2, . . . , Un such that:
V1 and V2 are two copies of the vertex set of the original graph G.
Ui is a vertex set of size “ for each i œ [n].

We define the edge set such that degree of each vertex is in {1, n, n+ “}:
Degree of each vertex v œ V1 is n. The i-th neighbor of v is the i-th vertex in V1 if
(v, i) œ E, otherwise its i-th neighbor is the i-th vertex in V2 for i Æ n. Note that
graph (V1, EH fl (V1 ◊ V1)) is isomorphic to G.
Degree of each vertex v œ V2 is n + “. The i-th neighbor of v is the i-th vertex in
V2 if (v, i) œ E, otherwise, its i-th neighbor is the i-th vertex in V1 for i Æ n. For all
n < i Æ n+ “, the i-th neighbor of v is i-th vertex in Uv.
Degree of each vertex u œ Ui is one for i œ [n]. The only neighbor of u is the i-th
vertex of V2.
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By the construction of Ĝ, the only neighbor of v œ
t

n

i=1
Ui can be determined without

any query to the adjacency matrix. Also, the i-th neighbor of each vertex in V1 fi V2 can be
determined with one query.

I Observation 16. For each vertex v œ V
Ĝ

and i œ [deg
Ĝ
(v)], the i-th neighbor of vertex v

can be determined using at most one query to the adjacency matrix.
Fix a vertex v œ V2. When we run Algorithm 2, intuitively with high probability the first

edge that is incident to v and occupies port v0 is between v and u œ Uv. Furthermore, with
high probability, the first two edges that are incident to v and occupies port v1 are between
v and u œ Uv. A vertex v œ V2 is an abnormal vertex if the above properties do not hold for
v. Let R œ V2 be the set of abnormal vertices. We can show that there are few abnormal
vertices exist in V2, which implies that most of the incident edges to vertices of V1 in the
output of Algorithm 2 are in Ĝ[V1] (only those between V1 and R violate this property).
Therefore, a natural way to estimate the number of edges in the output of Algorithm 2 on G,
is to estimate the number of edges in Ĝ[V1] in the output of Algorithm 2 on Ĝ.

Algorithm 5 Final algorithm for maximum path cover.

1 Let Ĝ = (V
Ĝ
, E

Ĝ
) as described above.

2 r Ω 192 ·K2 · logn.
3 Sample r vertices u1, u2, . . . , ur uniformly at random from V1 with replacement.
4 Sample r ports p1, p2, . . . , pr uniformly at random from {0, 1}.
5 Run vertex oracle for each ui and let Xi be the indicator if port upi

i
is occupied with

an edge in Ĝ[V1] in output of Algorithm 2.
6 Let X =

q
iœ[r]

Xi and f = X/r.
7 Let fl̃ = K

2(K+2)
· (f · n ≠ n

4K
).

8 return fl̃

I Theorem 17. Given an adjacency matrix access for input graph G, there exists a randomized
algorithm that w.h.p. runs in ÂO(n) time and produces an estimate fl̃, such that

3
1
2 ≠ Á

4
· fl(G) ≠ Án Æ fl̃ Æ fl(G).

You can find the full version of this section with formal proofs in the arXiv version of the
paper.

7 Our Estimator for (1,2)-TSP

In this section, we use the algorithm for estimating the size of maximum path cover as
a black box to estimate the size of (1,2)-TSP. First, note that if there is no Hamiltonian
cycle with weight one edges of the graph, then the set of weight-one edges of the graph
(1,2)-TSP is a solution for maximum path cover of graph G. Also, in the case that there
exists a Hamiltonian cycle, then the size of maximum path cover is n ≠ 1. Moreover, if P ú is
the maximum path cover of a graph G, then it is possible to create a TSP by connecting
these paths using edges with weight two. This intuition helps to formalize the following
observation.

I Observation 18. Let ·(V ) be the cost of (1,2)-TSP of graph G = (V,E). Then, we have

2n ≠ fl(G) ≠ 1 Æ ·(V ) Æ 2n ≠ fl(G).
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Now we are ready to present the final algorithm for estimating (1,2)-TSP.

Algorithm 6 Final algorithm for (1,2)-TSP.

1 Construct Ĝ = (V
Ĝ
, E

Ĝ
) implicitly as desribed in Section 6.

2 Let fl̃ be the output of Algorithm 5 on Ĝ.
3 ·̃ = 2n ≠ fl̃
4 return ·̃

I Theorem 19. Let ·(V ) be the cost of (1,2)-TSP of graph G = (V,E). For any Á > 0,
there exists an algorithm that estimate the cost of (1,2)-TSP, ·̃ , such that

·(V ) Æ ·̃ Æ (32 + Á) · ·(V ),

w.h.p in Õ(n) running time.
You can find the full version of this section with formal proofs in the arXiv version of the

paper.

8 Our Estimator for Graphic TSP

In this section, we use our algorithm for estimating the size of maximum path cover to
estimate the size of graphic TSP. In a recent work, Chen et al. [10] showed that it is possible
to obtain a (27/14)-approximate algorithm for graphic TSP by estimating the matching size
and the number of biconnected components in the graph. Since the size of graphic TSP is at
most 2n (the cost of MST is n ≠ 1), they proved that if a graph has large matching and a
few biconnected components, the cost of graphic TSP is significantly lower than 2n. Since
estimating the number of biconnected components is not an easy task in sublinear time, they
use a proxy quantity that can be estimated in sublinear time.

In the full version of the paper, we show that if we use our estimator for maximum path
cover as a black-box instead of matching estimator in algorithm of [10], we can improve the
approximation ratio to 19/10. Moreover, we show that we can estimate the number of bridges
in Õ(n). We exploit this estimation for further improvement to get a 11/6-approximate
algorithm for graphic TSP. We use the following algorithm for estimating the size of graphic
TSP.

Algorithm 7 Improved algorithm for graphic TSP.

1 Construct Ĝ = (V
Ĝ
, E

Ĝ
) implicitly as described in Section 6.

2 Let fl̃ be the output of Algorithm 5 on Ĝ.
3 Let B̃ be the estimate of the number of bridges.
4 ·̃ = 2n ≠ 1

3
(fl̃ ≠ B̃)

5 return ·̃

I Theorem 20. Let ·(V ) be the cost of graphic TSP of graph G = (V,E). For any Á > 0,
there exists an algorithm that estimate the cost of graphic TSP, ·̃ , such that

·(V ) Æ ·̃ Æ (116 + Á) · ·(V ),

w.h.p in Õ(n) running time.
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You can find the full version of this section with formal proofs in the arXiv version of the
paper.
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Abstract
We consider the problem of reconstructing the symmetric di�erence between similar sets from their
representations (sketches) of size linear in the number of di�erences. Exact solutions to this problem
are based on error-correcting coding techniques and su�er from a large decoding time. Existing
probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-e�cient but
o�er insu�cient success guarantees for many applications. Here we propose a tunable trade-o�
between the two approaches combining the e�ciency of IBLTs with exponentially decreasing failure
probability. The proof relies on a refined analysis of IBLTs proposed in (Bæk Tejs Houen et al.
SOSA 2023) which has an independent interest. We also propose a modification of our algorithm
that enables telling apart the elements of each set in the symmetric di�erence.
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1 Introduction

The problem of set reconciliation (or database reconciliation [12]) lies at the intersection
of several lines of algorithmic research. One intuitive way to define it is in terms of
communication protocols: assume that two parties Alice and Bob hold similar sets S and T ,
respectively, that they seek to reconcile (i.e. identify di�erences) using low communication
overhead. Rather than exchanging representations of entire sets, they exchange their small
sketches holding enough information to identify di�erences of S and T provided that their
number does not exceed a pre-defined parameter D.

In this paper, we study the version of the problem where the di�erences S—T :=
(S \T )fi (T \S) should be recovered from the sketches of S and T rather than from the sketch
of one of them and the entire other set. This opens a way to the setting, relevant to some
applications, when only sketches of sets are stored in a database, and for each pair of sets,
items proper to one of them can be retrieved from the corresponding sketches. As an example,
consider a vast database of highly similar genomic sequences, such as those of SARS-Cov-2
genomes1, that are stored in the form of sketches, rather than raw sequences, still supporting
retrieval of di�erences between any two of them. Beyond this example, set reconciliation

1 More than 16M SARS-Cov-2 are available in GISAID database at the time of writing, which typically
di�er one from another by just a few characters, over about 30,000 characters of length.
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problem occurs in many other scenarios in distributed systems, where information needs
to be synchronized between computational units. Those include blockchain systems, P2P
systems, ad-hoc networks, synchronizing information across devices or data centers, and
others.

The set reconciliation problem is also raised in the streaming framework. It is a common
and natural requirement that the sketch can be e�ciently updated when a new key is added
to or deleted from the set. For example, [6] considers the straggler identification problem
defined on a stream of insertions and deletions of keys modeling a stream of people entering
and leaving a building. In this model, the sketch summarizes information about people
currently in the building and if their number does not exceed D, is capable of listing them.

1.1 Prior work
Solutions to set reconciliation can be categorized into probabilistic and exact ones (although
there exists an interplay between these two classes of algorithms) [25]. Probabilistic algorithms
are based on Invertible Bloom Lookup Tables (IBLTs), also known as Invertible Bloom Filters,
based on random hash functions. Originally proposed in [6] where they were applied to
the problem of subset reconciliation (set reconciliation assuming S ™ T ), they (in a slightly
di�erent version) were more systematically studied in [12]. Earlier a related data structure,
called k-set data structure, was proposed in [10]. Set reconciliation by computing a di�erence
of IBLTs (called di�erence digest) was studied in [7]. Work [21] further applies IBLTs to
multi-party set reconciliation. The idea of “subtracting” IBLTs has also been applied in [9],
where the emphasis is to store in an IBLT carefully defined hash values obtained using
cryptography techniques. Very recent work [1] studies a simplified version of IBLTs that also
applies to set reconciliation. We rely on this construction in the present paper.

An exact solution of the set reconciliation problem uses algebraic techniques, in particular
error-correcting codes [7, 3, 4]. Work [20] proposes an exact solution based on characteristic
polynomials to both subset and set reconciliation problems using (D + 1) logU bits of space
(i.e. essentially the space needed to storeD di�erences). [11] studies the straggler identification
problem with multiplicities and proposes an O(D log(Um))-bit solution based on polynomials
over finite field, where each key occurs at most m times. A somewhat similar solution to
subset reconciliation was proposed in [6], based on Newton polynomials. [3] surveys code-
theoretic techniques for space recovery many of which apply to set reconciliation as well. Set
reconciliation with BCH codes has been implemented in Minsketch software [19], leveraging
an e�cient syndrome decoding algorithm for BCH codes [5]. [4] proposes a method for
sparse recovery based on expander codes; the construction of [4] can be interpreted as a table
somewhat similar to IBLT but with a di�erent decoding mechanism. Recent papers [23, 2]
apply algebraic techniques to construct specific “hash functions” that guarantee successful
decoding for IBLTs. The general downside of exact solutions is a larger decoding time,
typically growing at least quadratically in D and relying on finite field arithmetic. Note
also that the relationship between codes and set reconciliation is two-way: [22] proposes a
construction of codes based on set reconciliation with IBLTs.

1.2 Our contribution: overview
The IBLT solution to set reconciliation is very e�cient but provides a poor success guarantee.
For example, if we have to compute similarity joins by performing all pairwise reconciliations
of the objects in our database, then a significant fraction of comparisons may fail. On the
other hand, techniques based on error-correcting codes are exact but have a high cost of
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decoding. Here we propose a family of solutions to set reconciliation o�ering a trade-o�
between these two approaches, that is having significantly smaller error rate compared to
IBLT at the price of an asymptotically vanishing increase of space and time bounds.

Our solution is based on the space-e�cient IBLT from [1] complemented by an additional
stash data structure supporting recovery in case of failure of the main IBLT. The analysis
of [1] provides no guarantee in the case when the IBLT decoding fails. Therefore, here we
enhance the analysis of [1] and prove a probability bound on the number of missing and
extraneous elements reported by the data structure, in the event that the correct decoding
fails. This is a key argument of our construction and its proof constitutes the main technical
contribution of this paper.

The algorithm we obtain is parametrized and provides a tunable trade-o� between the
failure probability and space and time consumption. In the table below, we provide an
overview of how our solution relates to the existing approaches surveyed in Section 1.1.

Table 1 Comparison of main techniques of set reconciliation to the results of the present work. r
is a parameter assumed to verify r = min

!
O(D/ log2 U),O(logU)

"
. For our algorithm, decoding

time given is expected.

Method Sketch size (bits) Insertion
time

Decoding
time

Failure
probability

IBLT [1] (c3 + ‘)D logU O(1) O(D) O(D≠1)
IBLT with t-bit
hashsum field (c3 + ‘)D(logU + t) O(1 + t/logU) O(D(1 + t/logU)) min(O(D≠1),

O(D/2t))
BCH D logU O(D logU) O(D2 log2 U) 0

expander code [4] O(D log2 U) O(logU) O(D logU) 0

this paper (c3 + ‘)D logU + r logU O(r logU) O(D) 2≠�(r)

The paper is organized as follows. In Section 2, we introduce our version of IBLT, which
is a slightly modified set sketch from [1]. This data structure is very space-e�cient, however
its compactness has a price: the decoding process can “go wrong” triggering undesirable
anomalous steps [1]. In Section 3.2, we provide a refined analysis of anomalies and prove
the following fundamental property: if the sketch stores a set S, the decoding produces
a set Sdec with |S—Sdec| Æ r, with a failure probability of 2≠�(r). Section 4 introduces a
solution to set reconciliation based on BCH error-correcting codes. Relying on that result, in
Section 5, we extend the IBLT with a backup data structure (stash) to obtain an e�cient
solution to set reconciliation. The algorithm resorts to the stash when the decoding with
the main IBLT is not completed, leaving out a small number of keys. The stash is defined
using error-correcting codes. In Section 6, we discuss how to extend our algorithm in order
to identify the original set of the keys of the set di�erence.

2 Set reconciliation with Invertible Bloom Lookup Tables

Definition of IBLT. An Invertible Bloom Lookup Table (IBLT) is an array A[1 : n]
equipped with k random hash functions h1, . . . , hk : U æ [n], from the key universe U to
[n] = {1, . . . , n}. We assume hi’s to be fully random and denote h(x) = {h1(x), . . . , hk(x)}.

Several variants of IBLTs have been considered, which di�er in how entries A[i] are
configured. In all of them, A[i] contains a keysum field that holds either bitwise XOR
[12, 7, 21, 1] or arithmetic sum [6, 12] of all current keys hashed to i. XOR provides a more
elegant and space-e�cient option whereas arithmetic sum becomes necessary when multi-sets
are considered. In this work, the keysum field is defined with XOR and is set to contain
logU bits (U = |U| ).

ICALP 2024
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Algorithm initialise:
A[1 : n] = (0, . . . , 0)

Algorithm toggle(x):
for i œ h(x) do

A[i] Ω A[i] ü x

Algorithm merge(A[1 : n], AÕ[1 : n]):
for i œ [n] do

B[i] Ω A[i] ü AÕ[i]
return B

Algorithm looksPure(i œ [n]):
return A[i] ”= 0 · i œ h(A[i])

Algorithm decode:
Sdec Ω ?
Q Ω {i œ [n] | looksPure(i)}
(t, tmax) Ω (0, 2n) // time limit 2n
while Q ”= ? do

Qnext Ω ?
for i œ Q if looksPure(i) do

x Ω A[i] // detected key x

toggle(x)
Sdec Ω Sdec—{x}
Qnext Ω Qnext

fi{i œ h(x) | looksPure(i)}
t Ω t+ 1
if t Ø tmax then

return Sdec

Q Ω Qnext

return Sdec

Figure 1 IBLT implementation from [1] with added time limit in decode.

Besides the keysum, A[i] can include a hashsum field that holds a hash sum of the keys
in A[i] and/or a counter field that tracks the current number of keys in A[i]. These are used
for enforcing proper functioning and integrity of the data structure at the price of using
additional space. In this work, we use the most compact IBLT configuration with three hash
functions (k = 3) and A[i] storing the keysum field only. This variant was introduced and
analysed in recent paper [1] that we rely on in this work. Later in Section 6 we consider an
extension introducing a restricted counter field.

Our IBLT implementation is defined in Figure 1. Initially, all entries A[i] are set to zero
with initialise. Both insertion and deletion of a key x is done by performing toggle(x).

Decoding the keys stored in an IBLT resembles the peeling process of the k-hypergraph,
where n IBLT entries correspond to hypergraph vertices and each stored key corresponds to
a hyperedge defined as the set of entries the key is hashed to. Peeling a hypergraph iterates
the following operation: for any vertex of degree 1, delete the incident hyperedge. If the
peeling results in the empty graph with no hyperedges, the input graph is called peelable;
otherwise the process yields the largest subhypergraph with every vertex of degree at least 2,
which is called the 2-core (hereafter simply core). It is known that peelability of random
k-hypergraphs (k Ø 3) with n vertices and m hyperedges undergoes a phase transition: if
n > ckm, then the hypergraph is peelable with high probability (hereafter, whp), whereas if
n < ckm, the hypergraph is not peelable whp. Here constant ck is the peelability threshold,
in particular c3 = 1.22179 . . . is the smallest of ck for k Ø 3. The following results is shown
in [12].

I Theorem 1. Whenever n > ckm, a random k-hypergraph is peelable except with probability

O(1/nk≠2).

Set reconciliation using di�erence IBLT. Consider two sets S and T stored in IBLTs
AS [1 : n] and AT [1 : n] respectively, using the same hash functions. If S and T have a
bounded symmetric di�erence, that is |S�T | Æ D, and n > ckD, then the keys of S�T can
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be recovered whp from the di�erence IBLT AST [1 : n] = merge(AS , AT ). It is immediate to
see that common keys of S and T are canceled out and AST stores exactly the keys S�T .
Thus, the di�erence IBLT can solve set reconciliation except with probability O(1/D).

Note that AST does not allow distinguishing keys of S \ T and T \ S; below in Section 6
we will extend the construction to make this possible. Note also that for the reconciliation
to be possible, the size n of IBLTs only depends on the size of the symmetric di�erence and
does not depend on the sizes of S and T .

3 Improved Guarantees for IBLTs

Consider the IBLT implementation as given in Figure 1. It uses only the keysum field in
its buckets and was studied, modulo slight changes stated below, in [1] under the name
“simple set sketch”. In this section we enhance the analysis given in [1] (reproduced as (i) in
Theorem 2 below) by also probabilistically bounding the magnitude of the error of decode in
its failure cases (given as (ii)). Note that we restrict our attention to three hash functions
(k = 3) as this yields the best threshold value.2

I Theorem 2. Let Á > 0 and n > (c3 + Á)|S|. Let Sdec be the set returned by decode.

(i) Pr[Sdec = S] = 1 ≠ ÂO(1/n).
(ii) For any r = o(n) we have Pr[|S—Sdec| > r] = 2≠�(r)

.

Changes made to decode. Our version of decode di�ers from that in [1] in two minor
ways. First, we have introduced a time limit of 2n to the number of peeling steps that are
performed and return the current state of Sdec when the time limit is reached3. The result
from [1] still applies with this change, since the authors proved that decode terminates in
n+ poly log(n) peeling steps with Sdec = S with probability 1 ≠ O(1/n). Second, we insist
that Q and Qnext are implemented as set data structures, e.g. using hash tables, whereas [1]
pointed out that Q and Qnext can be implemented as multiset data structures, e.g. using
FIFO queues.4

It should be clear that our version of decode can be implemented such that it has running
time O(n), both in expectation and with high probability.

3.1 The issue of anomalies
Decode checks if the ith bucket of A contains a single key using the function looksPure(i)
that checks if hj(A[i]) = i for some j œ {1, 2, 3}. Importantly, looksPure(i) may produce
a false positive result when A[i] = x1 ü x2 ü . . . ü x¸≠1 is the sum of several keys hashing
to i and y = A[i] also happens to hash to i, i.e. h‡(y) = i for some ‡ œ {1, 2, 3}. Such an
occurence {x1, . . . , x¸≠1, y} is called an anomaly (of size ¸) in [1] and causes the key y to be
toggled and thus inserted into the data structure. Anomalies corrupt the decoding process
and may cause decode to fail or even to run in an infinite loop if no time limit is set [1].

2 In [1] any k Ø 3 was considered and our analysis here could likewise be extended.
3 In practice a dynamic time limit could be considered. For instance: Abort if a round of decode only

toggles keys that have already been toggled in a previous round.
4 At no point did the analysis from [1] actually rely on Q or Qnext being multisets. The motivation was

merely that FIFO queues are the more lightweight data structure. We revert this simplification here
because an argument from [1] showing that the impact of duplicated elements is negligible no longer
applies. In fact, with a FIFO implementation of Q and Qnext we could see 2R copies of the same element
in Q in the Rth iteration of the while loop with small but non-negligible probability n≠O(1).
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Dealing with anomalies is a challenging issue. In [1], it was proved that certain kinds of
anomalies and certain interactions of several anomalies do not occur except with probability
Õ(1/n). Since O(1/n) is the probability for the existence of a non-empty core (see Theorem 1
for k = 3), which also causes decoding to fail, anomalies do not increase the failure probability
significantly.

In this section we will go further, proving that even in the unlikely cases where decoding

produces an incorrect result, e.g. due to problematic anomalies, the magnitude of the error is
likely to be small.

3.2 Proof Outline
We quantify the e�ect of anomalies by considering two sets. First, the set F of all foreign
keys, which are keys from U \S that are added to the sketch at least once during the decoding
process. Second, the set N of all centres of certain anomalies we call internal anomalies

(defined in Section 3.4). Our proof of Theorem 2 rests on the following arguments.
In Section 3.3 we bound the size of F . Intuitively, the heuristic looksPure is used O(n)
times and fails each time with probability O(1/n). Each failure can cause one foreign key
to be added, suggesting E[|F |] = O(1). The precise argument, including a concentration
bound for |F |, is more subtle since failures do not happen independently.
In Section 3.4 we import a tail bound on |N | from [1].
In Section 3.5 we reframe the decoding process as the well-understood peeling process on
a random hypergraph. Since peeling follows a local rule, the corruption due to anomalies
spreads locally as well. This already implies that the majority of keys are correctly
decoded if anomalies are rare.
In Section 3.6 we prove a claim regarding the maximum hyperedge density of any
subhypergraph of a given random hypergraph. Its intuitive role is to show that the size
of the queue Q in late rounds of decode would always be, in the absense of anomalies, at
least linear in the number of remaining keys. This implies that the anomalies only have
the potential to stall progress in a significant way if they a�ect a number of buckets that
is linear in the number of remaining keys.
In Section 3.7 we stitch everything together: The e�ect of anomalies as quantified by |F |
and |N | is probabilistically bounded. Peeling is likely to proceed largely unhindered in
its early rounds. In its later rounds it proceeds until the number of remaining keys is
linear in |F |+ |N |.

3.3 Bounding Foreign Keys
Let y œ U \ S be any foreign key. In order for y to be added to the IBLT, y must occur as
the sum of several keys in one of the buckets h1(y), h2(y), h3(y). Since h1(y), h2(y), h3(y) are
uniformly random in [n] and independent of the initial state of the data structure, decode
would have to e�ectively “guess” a hash of y. We argue that decode is, in this sense, a player
in a corresponding guessing game that, even if played optimally, rarely allows a player to
guess a lot of hashes correctly.

A guessing game. Let (Xj,‡)jœN,‡œ[3] be a family of i.i.d. random variables with uniformly
random values in [n]. Consider a game in which the player does not know the random
variables. She may issue queries of the form (i, j) œ [n] ◊ N and is told whether or not
i œ {Xj,‡ | ‡ œ [3]}. If she gets a positive answer, we say she has solved group j and she is
told the values Xj,1,Xj,2 and Xj,3.

I Lemma 3. Assume a player is given 6n queries. She solves more than r groups with

probability O(2≠r).
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Proof. Consider a query (i, j) œ [n] ◊N that is the kth query of the form (·, j) where j is an
unsolved group. We distinguish two cases.
Case 1: k Ø n/2. We generously grant group j as solved. This a�ects at most 6n/(n/2) =

12 groups.
Case 2: k Æ n/2. Up to k ≠ 1 values are already excluded for the variables Xj,1, Xj,2 and

Xj,3. All other values are equally likely. The probability of solving group j with this
query is at most 1 ≠ (1 ≠ 1

n≠k+1
)3 < 1 ≠ (1 ≠ 2

n )
3 Æ 6

n .
Let Y be the number of successes due to Case 2. A simple coupling yields a random
variable Z with Y Æ Z and Z ≥ Bin(6n, 6

n ). We can think of Z as the sum of the
outcomes of 6n Bernoulli trials. In order for Z to attain a value of at least ¸ = r ≠ 12
there must exist a set T ™ [6n] of size ¸ such that the corresponding Bernoulli trials are
all successes. A union bound over all choices of T yields:

Pr[Y Ø ¸] Æ Pr[Z Ø ¸] Æ
3
6n
¸

41 6
n

2¸
Æ

16ne
¸

2¸1 6
n

2¸

Æ
136e

¸

2¸
=

1 36e
r ≠ 12

2r≠12

Æ 2≠r+12,

where the last step assumes r Ø 72e+ 12.
Overall, if r Ø 72e+12 then the number of successes is bounded by r, except with probability
O(2≠r). J

How this relates to the foreign keys. Let F ™ U \ S be the set of all foreign keys that are
added to Sdec at least once during the execution of decode.

I Lemma 4. For any r œ N we have Pr[|F | > r] = O(2≠r).

Proof. Before decoding begins, the family (h‡(y))yœU\S,‡œ[3] of hashes of foreign keys are
independent and uniformly random in [n] just as is required in the guessing game above. We
interpret decode as a player. Whenever decode executes the looksPure operation for a bucket
i containing A[i] = y œ U \ S, then we interpret this as the player issuing the query (y, i).
He learns whether i œ {h1(y), h2(y), h3(y)} and, on a positive answer, he also learns the
values h1(y), h2(y), h3(y). This is su�cient to continue the execution of decode, in particular
decode amounts to a valid player respecting the access limitation to the relevant random
variables.

The crucial observation is that any y œ F is solved by decode. Indeed, if y œ F then
y was added to Sdec at some point during the execution of decode and this addition was
immediately preceeded by a corresponding successful looksPure check.

The number q of queries issued by decode is by definition the number of calls to looksPure.
Every time a bucket i is considered to be added to Q or Qnext there is one such call, and, if i
is added, there can be another call when i is removed from Q. Due to the time limit we have
q Æ 2(n+ tmax) Æ 6n. Therefore Lemma 3 implies our claim. J

3.4 Bounding Centres of Internal Anomalies
It is worthwhile to clarify the notion of anomalies by giving a precise definition of the set A
of all anomalies.

A =
Ó
? ”= A ™ U

---
n

xœA

x = 0,
‹

xœA

h(x) ”= ?
Ô
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If A = {x1, . . . , x¸} is an anomaly then the presence of any ¸≠1 keys from A can be mistaken
as the presence of the missing ¸th key (because of x1ü. . .üx¸≠1 = x¸). A value i œ

u
xœA h(x)

is a centre of the anomaly A (in principle a single anomaly could have multiple centres).
The set A makes no mention of S and contains many anomalies that are unlikely to become
relevant during decoding. Immediately threatening is, however, the set of native anomalies

Anat define as

Anat = {A œ A | |A \ S| Æ 1}.

For a native anomaly A, all but at most 1 key from A are present in the beginning, enough
to cause trouble right away. In what follows, a subset of the native anomalies, namely the
internal anomalies Aint and the set N of its centres play a role. They are defined as

Aint = {A œ A | A ™ S} and N =
€

AœAint

‹

xœA

h(x).

I Lemma 5. For any r œ N we have Pr[|N | > r] = O(2≠r).

Proof. The authors of [1] show in their Lemma 2.2 that the set Nnat =
t

AœAnat

u
xœA h(x)

of centres of native anomalies satisfies Pr[N Õ Ø r] Æ
1

3e4

r

2r
. For r Ø 6e4 this is at most 2≠r.

Since Nnat ´ N the claim follows. J

3.5 Early Rounds of the Peeling Process
We will use a result by Molloy who analysed cores of random hypergraphs [24]. The hypergraph
H arising in our setting has vertex set is [n] and the m hyperedges {{h‡(x) | ‡ œ [k]} | x œ S}.
By the parallel peeling process we mean an algorithm on a hypergraph. In each round, all
vertices of degree 0 or 1 are determined (simultaneously) and then all of these vertices are
removed, including all incident hyperedges. When no vertex of degree 0 or 1 remains, the
core of the hypergraph is reached, which may be empty. Note that decode implements this
peeling process, except that anomalies may occur.

Early Peeling Without Anomalies. A lemma by Molloy is the following.

I Lemma 6 ([24, Lemma 3]). For any Á, ” > 0, there exists R œ N such that after peeling

a k-uniform hypergraph with
n
m > c3 + Á for R rounds then at most ”n vertices remain in

expectation.
5

In the following we assume that constants Á, ” > 0 are given and R œ N is the corresponding
constant from Lemma 6.

By the R-neighbourhood of a vertex v or hyperedge e we mean the subhypergraph of H
induced by all vertices that can be reached from v or e by traversing at most R hyperedges.

It is a well-known fact (and a consequence of the Poisson limit theorem) that the degree
distribution of H converges to a Poisson distribution with parameter 3/c3 for n æ Œ. More
generally, the distribution of the R-neighbourhoods of the vertices in H converges (see e.g.
[15, 16]). This implies that we can choose a constant D = D(Á, ”, R) large enough such the
probability that a given vertex has a vertex of degree at least D in its R-neighbourhood is at
most ”.

5 Molloy’s Lemma is slightly stronger in that it claims that at most ”n vertices remain with probability
1 ≠ o(1). Since we need a much stronger concentration bound, we will redo a corresponding step
ourselves.
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In this context call a vertex v good if
(a) v is removed by the R-round peeling process
(b) the R-neighbourhood of v does not contain a vertex of degree at least D.
Since the first condition is met by at least (1 ≠ ”)n vertices in expectation by Lemma 6 and
the second condition by at least (1 ≠ ”)n vertices in expectation by choice of D, the set G of
good vertices has expectation at least (1 ≠ 2”)n.

We will now use the bounded di�erence inequality by McDiarmid [18].

I Lemma 7 (McDiarmid’s inequality [18]). Let X be some set, d œ N and f : Xn æ R a

function such that changing any one argument of f can a�ect the function value by at most

d. Let X1, . . . ,Xn be i.i.d. random variables with values in X . Then

Pr[|f(X1, . . . ,Xn) ≠ E[f(X1, . . . ,Xn)]| > Á] Æ exp(≠Á2/(nd2)).

This gives us a concentration bound on the number of good vertices.

I Lemma 8. In the above context there exists a constant “ = “(Á, ”, R,D) > 0 such that

Pr[|G| < (1 ≠ 3”)n] Æ exp(≠“n).

Proof. Note that whether or not a vertex is good is a local property in the sense that it
only depends on its R-neighbourhood. This gives us a bounded di�erence property of |G| as
follows.

The set G (and therefore |G|) is a function of the 3m hash values defining them hyperedges.
Assume we change a single hash value from v to vÕ ”= v. A previously non-good vertex might
become good only if it was in the vicinity of v and a previously good vertex might become
non-good only if it ends up in the vicinity of vÕ. More precisely, a vertex w might be a�ected
if prior to the change, v or vÕ (or both) were reachable from w via a path of length at most
R that only traverses vertices of degree at most D (vertices reachable through vertices of
higher degree are non-good anyway). To bound the number of such paths, note that in every
step we can first choose among Æ D incident hyperedges and then among 3 ≠ 1 endpoints of
the chosen hyperedge, or we can choose to end the path at the current vertex. In particular,
changing a single incidence a�ects the number of good vertices by at most 2(2D + 1)R. We
can therefore apply McDiarmid’s inequality (Lemma 7) to conclude that

Pr[n ≠ |G| > 3”n] Æ Pr
#
(n ≠ |G|) ≠ E[n ≠ |G|] > ”n

$

Æ exp(≠(”n)2/(n · (4(2D ≠ 1)2R)) = exp(≠“n)

when defining “ = ”2/(4(2D + 1)2R). J

Early Peeling With Anomalies. We now get back to the analysis of decode. Let SR
dec

be
the state of Sdec after R rounds of the while-loop are executed (ignoring the time limit). Let
SR := SR

dec
—S be the set of elements stored in the IBLT at that time and IR :=

t
xœSR h(x)

the set of buckets touched by SR.

I Lemma 9. For any Á > 0 and ” > 0 there exist constants R and — such that

Pr[|IR| > 7”n] Æ O(2≠—n).

Proof. Given Á and ”, let R = R(Á, ”), D = D(Á, ”, R) and “ = “(Á, ”, R,D), be the
corresponding constants from the discussion of the discussion above. Recall from Lemmas 4,
5, and 8 that F is the set of foreign keys added to S at least once, N is the set of centres of
internal anomalies and G is the set of good vertices. We know:
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|F | Æ
”n

(2D+1)R except with probability O

1
2≠

”n
(2D+1)R

2
by Lemma 4

|N | Æ
”n

(2D+1)R except with probability O

1
2≠

”n
(2D+1)R

2
by Lemma 5

|G| Ø (1 ≠ 3”)n except with probability exp(≠“n) by Lemma 8

The sum of the error probabilities is O(2≠—n) where — = ”/(2D + 1)R + “ log2(e). Thus we
may assume that all three stated events occur.

We now upper bound |IR|. We pessimistically assume that each i œ [n] that is not good
is in IR, which accounts for at most 3”n vertices. Any good i œ [n] would be removed by the
proper peeling process, so if i œ IR then an anomaly must have interfered. Therefore, the
R-neighbourhood of i must include the centre of an internal anomaly or a vertex incident
to a key from F . In other words, the R-neighbourhood of i must include a vertex from
|N fi h(F )|. At most |N fi h(F )| · (2D+1)R good vertices can be a�ected in this way, namely
those reachable from a vertex in N fi h(F ) via a path of length at most R traversing only
vertices of degree at most D. Taken together the size of IR is bounded by

|IR| Æ 3”n+ |N fi h(F )| · (2D + 1)R Æ 3”n+ 4”

(2D + 1)Rn · (2D + 1)R Æ 7”n. J

3.6 Late Rounds of the Peeling Process
I Lemma 10. There exists a constant ” such that for any 1 Æ r Æ n there is an event E
with probability O(2≠r) such that, when E occurs, then

’I ™ [n] with 5r Æ |I| Æ ”n : |S[I]| Æ 3

5
|I|.

Proof. We use a union bound over all possible sizes i of I and all possible sets of size i. Let
pi be the probability that a violating set of size i exists and j := 3

5
i. Multiplying the number!n

i

"
of choices for I, the number

!m
j

"
of choices for T ™ S of size j and the probability for

T ™ S[I] (i.e. the probability that all x œ T satisfy h(x) ™ I) gives

pi Æ
3
n

i

43
m

j

41 i

n

23j
Æ

1ne

i

2i1ne

j

2j1 i

n

23j

= ei+j
1 i

j

2j1 i

n

2≠i+2j
Æ e3i

1 i

n

2i/5
=

1e15i

n

2i/5
.

Setting ” = 1/(2e15) we can bound the overall failure probability p as

p Æ
”nÿ

i=5r

pi Æ
”nÿ

i=5r

1e15i

n

2i/5
Æ

”nÿ

i=5r

1e15 · ”n

n

2i/5
Æ

”nÿ

i=5r

( 1
2
)i/5

=
”nÿ

i=5r

1
( 1
2
)1/5

2i
Æ 2≠r ·

Œÿ

i=0

1
( 1
2
)1/5

2i
= 2≠r · �(1) = O(2≠r). J

3.7 Proof of Theorem 2
We now assemble the previous Lemmas into a proof of Theorem 2. Note that we only claimed
an error probability of 2≠�(r), not O(2≠r). By a change of parameters it therefore su�ces
that we show Pr[|Sdec—S| > 185r] = O(2≠r).

The parameter Á > 0 and r = o(n) are given. We use the absolute constant ” > 0 from
Lemma 10. We apply Lemma 9 for Á and ”Õ = ”/7 which gives us R œ N and — > 0. For
convenience, let us summarise the statements used in the following. Since each holds with
probability 1 ≠ O(2≠r) we need only show that they imply |Sdec—S| Æ 185r.
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|IR| < ”n by Lemma 9 (1)
’I ™ [n] with 5r Æ |I| Æ ”n : |S[I]| Æ 3

5
|I| by Lemma 10 (2)

|N | Æ r and |F | Æ r by Lemmas 4 and 5 (3)

Recall that anomalous decoding steps are those that add a key rather than removing a key.

B Claim 11. There are at most |N |+ 3|F | Æ 4r anomalous decoding steps per round.

Proof. There are at most 3|F | buckets in which a key from F might be placed. We may
conservatively assume that there is an anomalous decoding step in each round for each of
these buckets. Anomalous decoding steps where no foreign key is involved can arise, by
definition, only in centres of internal anomalies, hence there can be at most |N | per round.

C

We are most interested in the first fl̂ rounds of decode where fl̂ := R + log 20
19
( n
300r ) =

�(log n
r ). We now make sure that we are referring to well-defined rounds. Execution might

end due to Q = ?, or due to the time limit. If execution ends prior to round fl̂ due to Q = ?,
just pretend the loop is executed for a suitable number of additional rounds. Note that an
additional round does not perform any steps when Q = ?. Let us now deal with the time
limit.

B Claim 12. The limit tmax = 2n on steps does not take e�ect within the first fl̂ rounds.

Proof. We use a potential argument. There are n keys in the beginning. Each non-anomalous
decoding step removes a key and each anomalous decoding step adds a key. Hence, if a
denotes the number of anomalous decoding steps in the first fl̂ rounds then the total number
of decoding steps is at most n+ 2a. The previous claim gives a Æ 4rfl̂. We can therefore
bound the number of decoding steps in the first fl̂ rounds by

n+ 2a Æ n+ 8rfl̂ = n(1 + �( rn log n
r )) = n(1 + o(1)) Æ 2n.

The last step uses r = o(n) and limxæ0 x log 1

x = 0. C

We can now safely refer to each round fl œ {1, . . . , fl̂}. Let Sfl be the set of keys stored in
the IBLT after fl rounds, Ifl = h(Sfl) the set of buckets touched by these keys and Sfl

0
= Sfl\F .

B Claim 13. If 300r Æ |Ifl| Æ ”n then |Ifl+1| Æ 19

20
|Ifl|.

Proof. Since Sfl
0

™ S[Ifl] we know |Sfl
0
| Æ 3

5
|Ifl| from Equation (2). The number of incidences

due to the keys from Sfl
0
is 3|Sfl

0
| Æ 9

5
|Ifl| = 9

10
· 2|Ifl|. Thus at most a 9

10
-fraction of the

buckets in Ifl have two or more incidences to keys from Sfl
0
. This leaves at least 1

10
|Ifl| buckets

with at most one incidence to Sfl
0
. If i is such a bucket, we would normally expect i /œ Ifl+1.

There are only two exceptions. A foreign key might be stored in i at some point during
round fl + 1 or a key from S is added back into bucket i at some point during round fl + 1.
Each foreign key and each anomalous decoding step a�ects at most 3 buckets. Hence, by an
earlier claim, at most 3(|F |+ 4r) Æ 15r buckets are exceptional in this sense. Together we
get

|Ifl+1| Æ |Ifl| ≠ 1

10
|Ifl|+ 15r Æ 9

10
|Ifl|+ 15r Æ 19

20
|Ifl|.

where the last step uses |Ifl| Ø 300r. C
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B Claim 14. If |Ifl| Æ 300r then |Ifl+1| Æ 300r.

Proof. Assume w.l.o.g. that |Ifl| Ø 5r and modify the last step of the previous claim:

9

10
|Ifl|+ 15r Æ 9

10
· 300r + 15r = 285r < 300r. C

Let now flmax be the last round that is fully executed.

B Claim 15. |Iflmax | Æ 300r.

Proof. We have |IR| < ”n by Equation (1). In subsequent rounds fl œ {R + 1, R + 2, . . . },
the size of Ifl decreases by at least a factor of 19

20
until being at most 300r by Claim 13. By

choice of fl̂ we have Ifl Æ 300r for some fl Æ fl̂. By Claim 14 |Ifl| will subsequently not rise
above 300r for larger values of fl. C

By the last claim and Equation (2) we have

|Sflmax
0

| Æ S[|Iflmax |] Æ 3

5
· (max(5r, |Iflmax |)) Æ 3

5
· 300r = 180r.

The set Sflmax of all keys after round flmax might additionally include up to |F | Æ r foreign
keys. Since an additional round might be started but cut short due to the time limit, another
4r keys might be added due to anomalous decoding steps. Overall the set S—Sdec of keys
returned in the end has size at most 180r + r + 4r = 185r. This concludes the proof.

4 Set reconciliation with error-correcting codes

The set reconciliation problem can be modeled by encoding a set as a binary string of length
U which is then sent through a channel inflicting up to D errors (bitflips). Recovering the
errors is then equivalent to reporting the keys inserted to or deleted from the set. This
reduction immediately implies that the problem can be solved by an appropriate application
of error-correcting codes, in particular a linear code such as BCH, Reed-Solomon or expander
code (see [14]). This reduction, in turn, highlights the relationship of set reconciliation to the
problem of sparse recovery: reconstructing a sparse vector from a set of linear measurements
(see e.g. [4]).

We will use a BCH code over the field GF (2w) with U = 2w ≠ 1. It is known (see e.g.
[17]) that if up to D errors have to be corrected, the binary parity-check matrix H for BCH
has dimensions Dw ◊ U . Let each set S be conceptually represented by a binary vector of
size U . Denote H(S) the image of S by H. Then for two sets S, T , H(S)üH(T ) = H(S—T ).
That is, if |S—T | Æ D, then H(S—T ), called syndrome, encodes the di�erences between S
and T and can be reconstructed by a syndrome decoding algorithm. This implies that H(S)
can be defined as a sketch of S of Dw bits so that the di�erences between two sets can be
recovered from the XOR of their sketches, provided that there are at most D of them.

From the algorithmic viewpoint, inserting a key amounts to XORing the sketch with the
corresponding column of H composed of D blocks of w bits (elements of GF (2w)). Computing
each block amounts to D multiplications in GF (2w)6. A multiplication in GF (2w) can be
done with O(w logw) bit operations [13], but only with O(w) operations in the RAM model
(see Appendix). Thus, an insertion of a key takes time O(Dw) = O(D logU).

6 We refer to [5] for details on how keys of U are represented as elements of GF (2w).
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Algorithm insert(x,S):
toggle(x) in S.A
S.H Ω S.H ü h(x)
toggle_BCH(x,S.C)

Algorithm diff(S1,S2):
Ŝ.A Ω merge(S1.A,S2.A)
Ŝ.H Ω S1.H ü S2.H

Ŝ.C Ω merge_BCH(S1.C,S2.C)
return Ŝ

Algorithm report(S):
Sdec Ω decode(S.A)
for x œ Sdec do

S.H Ω S.H ü h(x)
if S.H ”= 0 then

for x œ Sdec do
toggle_BCH(x,S.C) // delete x

from S.C

SÕ
dec

Ω decode_BCH(S.C)
return Sdec—SÕ

dec

Figure 2 Sketch operations. insert(x,S) inserts key x to sketch S, diff(S1,S2) computes the
di�erence of sketches S1 and S2, report(S) reports keys stored in S.

Decoding is a more complex operation. The e�cient syndrome decoding algorithm of [5]
requires O(D2w) multiplications in GF (2w) resulting in O(D2w2) = O(D2 log2 U) time for
decoding. Note that if the number d < D of errors is known, then by properties of syndromes,
it is su�cient to decode the first dw bits of the sketch, and the decoding complexity becomes
O(d2 log2 U).

Denote toggle_BCH(x,C) and decode_BCH(C) the operation of inserting/deleting a key
x to/from a BCH sketch C and decoding a BCH sketch C, respectively. Complexity of BCH
sketches is summarized in the following theorem.

I Theorem 16. Consider a set S containing no more than D keys from U . Let S be stored

in a BCH sketch C of D log(U + 1) bits of space. Then

toggle_BCH(x,C) takes O(D logU) time,

decode_BCH(C) decodes keys of S with no error in O(D2 log2 U) time.

Reconciliation of two sets is done by simply XORing their sketches C1 and C2, which can be
trivially sped up by packing bits in words. We denote this operation by merge_BCH(C1, C2).
A software implementation of a BCH sketch for set reconciliation is available [19].

5 IBLT with stash

Our goal is to enhance the IBLT in order to solve set reconciliation with a much stronger
success guarantee than that provided by IBLT alone ([1], Table 1) while keeping small space
and fast decoding time provided by the IBLT approach. Given an upper bound D on the size
of set di�erences, our sketch S consists of three components depending on a parameter r:

an IBLT S.A of size n = (c3 + Á)D with three hash functions, as defined in Section 2,
a control checksum S.H of r bits,
a stash data structure S.C defined as a BCH syndrome of r logU bits (see Section 4).

The control checksum S.H is used to check if the decoding of the main IBLT S.A succeeded.
Before the decoding, S.H =

m
xœS h(x) where h : U æ 2r is a random hash function and S

is the currently stored key set.
The stash S.C is configured so that it can decode up to r keys with no error, as described

in Section 4. The entire sketch takes (c3 + Á)D logU + r(1 + logU) = (c3 + Á)D logU + o(D)
bits.

Figure 2 shows Algorithms for inserting a key to a sketch, computing a sketch di�erence,
and reporting keys.
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A run of report(S) (Figure 2) can follow two scenarios. If the number of keys in
the sketched set is no more than D, the main IBLT recovers those keys with probability
1 ≠ Õ(1/D) (Theorem 2). With probability Õ(1/D), however, the recovery may fail by
“getting stuck”, by resulting in a “falsely empty” IBLT (see [1]), or by being aborted after 2n
steps. Checking the checksum ensures that an incorrect decoding will be recognized except
with probability O(1/2r). By Theorem 2, with probability 2≠�(r), the output Sdec di�ers
from S by no more than r missing or foreign keys. The algorithm resorts then to the stash in
order to correct the output, i.e. to recover the missing/superfluous keys, under assumption
that there are at most r of them. In this case, the stash reports those keys with no error.

The execution time of report depends on whether the correction step is triggered or
not. If the decoding of the main IBLT is deemed to be successful by the checksum, the
time taken will be O(D(1 + r

w )), where w is the wordsize. Here we assume that updating
the checksum is done by bit packing and takes O( r

w ) time. Otherwise the algorithm will
spend additional O(r logU) time on performing toggle_BCH on each of O(D) key in Sdec,
followed by the decoding taking additional O(r2 log2 U) time. Since the stash is activated
with probability Õ(1/D), the expected time is O(D(1 + r

w ) + r logU + r2 log
2 U

D ). Assuming
r = min

!
O(D/ log2 U),O(logU)

"
, the time of report is O(D).

We summarize the properties of report in the following theorem.

I Theorem 17. Let S be a sketch built for a key set S and r = min
!
O(D/ log2 U),O(logU)

"
.

Then

S takes (c3 + Á)D logU + r(1 + logU) = (c3 + Á)D logU + o(D) bits,
inserting an element to S takes time O(r logU),
when |S| Æ D, report(S) correctly recovers S with probability 1 ≠ 2≠�(r)

,

report(S) takes O(D) expected time.

Note that if r = Ê(logD), the failure probability for report to recover a set of up to D
keys is o(1/D), as opposed to Õ(1/D) for recovery without stash [1].

For two sets S and T represented by their respective sketches SS and ST , diff(SS ,ST )
is the sketch of symmetric di�erence S�T . Therefore, Theorem 17 applies directly to the
set reconciliation problem. In particular, if |S�T | Æ D, then S�T can be recovered with
guarantees stated in Theorem 17.

6 Distinguishing S \ T and T \ S

The algorithm we presented computes symmetric di�erence S�T but is not capable of
distinguishing elements of S and T in the output. However, the latter is desirable for many
applications. Here we outline how our sketch and set reconciliation protocol (Figure 2) can
be modified in order to make this possible. The general idea is to assign a “sign” to keys
depending on whether they come from S or T and to keep track of it in a consistent manner.
Formal proofs are left to the full version of the paper.

Modified IBLT. We modify our IBLT (Section 2) as follows. IBLT entries will now be
ternary strings of {0, 1, 2}‹ seen as elements of group Z‹

3
(additive group of GF (3‹)). The

first trit encodes a sign and the other ‹ ≠ 1 trits encode a keysum. We use an appropriate
encoding of U into strings {0, 1, 2}‹≠1 and denote by Âx the encoding of x.

Toggling a key x is replaced by two operations: insertion and deletion. Inserting x into
an IBLT is done by adding (in Z‹

3
) 1Âx to each of the three entries at h(x), and deleting x

is done by subtracting 1Âx from each of the three entries at h(x) or, equivalently, adding
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2(≠Âx) © (≠1)(≠Âx) where ≠Âx is the inverse of Âx in Z‹≠1

3
. Observe that insertion and deletion

of x cancel each other out, and that inserting twice the same key x is equivalent to deleting
x and vice versa.

IBLT operations (Figure 1) are modified as follows. Operation looksPure checks if the
first trit equals 1 or 2 © ≠1. If it is 2, the key assumed to sit in this entry is the inverse of the
retrieved key value. toggle(x) deletes or inserts x from/to each of the three entries at h(x)
depending on whether x has been identified as pure with the first trit 1 or 2, respectively.
Merging two IBLTs merge(A,AÕ) now becomes non-commutative and is done by subtracting
(in Z‹

3
) AÕ from A entry-wise.

Consider a sketch resulting from merge(A,AÕ). When reporting a set di�erence (modified
Algorithm report in Figure 2) the algorithm now outputs signed elements, where elements
annotated with 1 (i.e. those with the first trit equal to 1 at the moment of toggling) are
interpreted as belonging to the first set, while those annotated with 2 are interpreted as
belonging to the second. The symmetric di�erence operation � in both decode and report

is also modified as follows. When computing S1�S2, an element is canceled only if it occurs
in S1 and S2 with opposite signs. If an element occurs in S1 and S2 with the same sign, it is
reported in the resulting set with the opposite sign.

Observe that the modified structure does not prevent anomalies to occur but only makes
them less likely: an anomaly can still occur if the first trit is 1 or 2 but the entry actually
contains more than one key. On the other hand, our analysis of Section 3 carries over to
the signed case. The di�erence in Sdec compared to the original decoding is due to repeated
reportings of the same key with di�erent sign combinations, which does not a�ect the proof
ideas of the main Theorem 2.

Modified control hashsum. Here the hashsum uses arithmetic summation instead of XOR.
We assume that overflow is implemented in a consistent way, that is (x+ y) ≠ y = x even
if x + y results in overflow. Toggling x entails subtracting h(x) from the hashsum if x is
annotated with 1, and adding if it is annotated ≠1. The hashsum of diff(S1,S2) is now
defined as S1.H ≠ S2.H.

Modified BCH sketch. In order to deal with signed elements, we use BCH code over field
GF (3‹≠1). The BCH sketch of a set is still defined as the syndrome vector under assumption
that each set element is encoded by value 1 in the error vector. The merge_BCH operation
will now subtract the syndromes (in GF (3)) instead of XORing them. By linearity of the
code, the “positive” and “negative” elements will correspond to positions with 1 and 2 © ≠1
respectively in the recovered error vector.

Given a BCH sketch resulting from the di�erence of sketches of input sets S and T ,
algorithm report will subtract the syndrome corresponding to the set Sdec of signed elements
decoded by the IBLT. Naturally, positive and negative elements are encoded respectively by
values 1 and 2 as well. Again, by linearity, the resulting syndrome will encode exactly the
elements SÕ

dec
so that Sdec�SÕ

dec
= S�T , where positive (resp. negative) elements are those

belonging to S (resp. T ) only.
Observe that, in general, Sdec will contain a subset of S�T as well as possibly some

foreign keys, however our modified definition of � will ensure a correct recovery of the
original set. As an example, assume x œ S \ T and assume x has been reported by the IBLT
as positive, followed by another reporting of x (produced by an anomaly) as positive as well.
From our definition of �, x will become negative in Sdec and will be added (rather than
subtracted) to the BCH sketch. This will result in reporting x as negative again by the BCH
sketch, and, by our definition of �, will be eventually correctly reported as positive in the
final output.
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The syndrome of the BCH code over GF (3‹≠1) consists of at most 2D elements of
GF (3‹≠1) i.e. at most 4D log3 U bits by a straightforward encoding. Using ternary repres-
entation of keys and arithmetic operations in GF (3‹) instead of GF (2w) introduces only a
constant factor change in time complexities of both insertion and decoding (see Appendix).
In conclusion, time and robustness guarantees of Theorem 17 remain valid.

7 Concluding remarks

The presented solution to set reconciliation uses asymptotically negligible additional space
and additional time for decoding compared to the IBLT-only solution, but provides a drastic
improvement in robustness. The decoding time of our algorithm is small in expectation,
however it becomes substantial in worst case. More precisely, when the BCH correction is
activated, the decoding time becomes O(D r polylog(U)) which can approach O(D2). We
believe however this can be overcome by implementing the stash with expander codes which
have much smaller insertion and decoding times. We leave details for future work.

Very recently, we learned about paper [8] that proposes a modified construction of IBLT
and applies hash functions of restricted independence, rather than assuming them fully
random. As a result, the construction takes a smaller space (compared to the original IBLT
with the same error guarantee) and requires less randomness for hash functions. However,
space is measured in terms of the number of IBLT buckets rather than in bits, which leads
to a much larger multiplicative constant compared to our result. The decoding time of [8]
appears to be larger than ours as well (not specified in the paper). On the other hand, an
emphasis of [8] is to using hash functions of restricted randomness, the issue that we don’t
deal with in this work.
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A Appendix

Below we describe how to perform multiplication in GF (2w) and GF (3‹) in RAM model in
times O(w) and O(‹) respectively.

A.1 Multiplications in GF (2w) in RAM model in O(w) time
The algorithm we describe is folklore, but since we did not find a reference we briefly sketch it
here. The multiplication of two elements x and y in GF (2w) proceeds in two phases. In the
first phase, one computes the product z = x · y, where · refers to a carry-less multiplication
of the binary representation of x and y. Thus, z will be a bitstring of length 2w ≠ 1. This
phase can be easily implemented in O(w) time using O(w) XOR and shift operation (the
result is the XOR of copies of y right-shifted by bit-positions of x that are equal to one) 7.
The second phase is the polynomial euclidean division of z by an irreducible polynomial P of
degree w. The remainder of the division will be the final result of the multiplication and can
also be easily implemented in O(w) time using O(w) XOR and shift operations: successively
for decreasing positions i of z starting from position 2w ≠ 1 check whether the bit at that
position is equal to one and if so, do z Ω (z ü (P π (i ≠ w)).

A.2 Multiplications in GF (3‹) in RAM model in O(‹) time
Likewise, multiplication in GF (3‹) can be implemented in O(‹) time. For that we can use a
representation of an element using 2‹ bits, where each element from the base field GF (3)
is represented using 2 bits. Note that any integer in the range [0..3‹ ≠ 1] can be converted
to this representation in O(‹) time, by doing successive euclidean divisions by 3. Notice
that a division by 3 can be simulated using multiplications and other elementary operations.
For a technical reason that will become clear later, we will instead use 4 bits to represent
each element of the base field, resulting in a representation that uses 4‹ bits. Let G be the
function that transforms integers of [0..3‹ ≠ 1] into binary representation of 4‹ bits. Let G≠1

be the inverse of G. Now assume that given two elements x and y represented as integers,
we want to compute z = x · y. We will first convert x and y into their binary representations
xÕ = G(x) and yÕ = G(y), then compute the product zÕ = xÕ · yÕ, and finally convert zÕ

back into an integer z using function G≠1. We now describe how we do multiplication in
the 4‹-bit representation. For that, we successively extract the quadbits (4-bit units) of xÕ,
multiply each of them with yÕ, and aggregate all of them. The reason we use 4 bits instead
of 2 to represent each digit is to accomodate the temporary result of the multiplication
of two digits (numbers in [0..2]) which will be in the range [0..4] (before doing Modulo 3
operation). Finally, the remainder of euclidean division by an irreducible polynomial can
also be done in time O(‹) using O(‹) operations. Figure 3 shows the pseudocode of all steps
of the algorithm.

7 Note that in practice, most modern processors natively support carry-less multiplication in constant
time using much less complex hardware implementation than standard multiplication, but is not part of
the standard RAM operations.
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Algorithm G(x):
xÕ

Ω 0
j Ω 0
for i Ω 1 to ‹ do

xÕ
Ω xÕ + ((x mod 3) π j)

x Ω x/3
j Ω j + 4

return xÕ

Algorithm G≠1(xÕ):
x Ω 0
j Ω 4 · (w ≠ 1)
for i Ω 1 to ‹ do

x Ω x · 3 + ((xÕ
∫ j) · (0011)2)

j Ω j ≠ 4
return x

Algorithm MOD3(x):
//reduce each quadbit modulo 3
//works only if quadbit in range
[0..5]

A Ω (x+ 1) · (0100)‹
2

x Ω x ≠ ((A ∫ 2) + (A ∫ 1))
return x

Algorithm reduce(x, P ):
//P : irreducible polynomial
represented in quadbits

P Õ
Ω MOD3(2 · P )

j Ω 4 · (2 · ‹ ≠ 1)
for i Ω 1 to ‹ do

if (x ∫ j) > 0 then
x Ω x+ (0011)‹

2
if (x ∫ j) = (P ∫ (‹ ≠ 1))
then

x Ω x ≠ P

else
x Ω x ≠ P Õ

x Ω MOD3(x)
j Ω j ≠ 4

return x

Algorithm mult(xÕ, yÕ):
zÕ

Ω 0
j Ω 4 · (‹ ≠ 1)
for i Ω 1 to ‹ do

t Ω (xÕ
∫ j) · (0011)2

t Ω t · yÕ

t Ω MOD3(t)
zÕ

Ω (zÕ
π 4) + t

zÕ
Ω MOD3(zÕ)

j Ω j ≠ 4
zÕ

Ω reduce(zÕ, P )
return zÕ

Algorithm MULT(x, y):
xÕ

Ω G(x)
yÕ

Ω G(y)
zÕ

Ω mult(x, y)
z Ω G≠1(z)
return z

Figure 3 Multiplication algorithm GF (3‹) modulo an irreuducible polynomial.
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Oracle Separation of QMA and QCMA with

Bounded Adaptivity

Shalev Ben-David �

Institute for Quantum Computing, University of Waterloo, Canada

Srijita Kundu �

Institute for Quantum Computing, University of Waterloo, Canada

Abstract

We give an oracle separation between QMA and QCMA for quantum algorithms that have bounded
adaptivity in their oracle queries; that is, the number of rounds of oracle calls is small, though each
round may involve polynomially many queries in parallel. Our oracle construction is a simplified
version of the construction used recently by Li, Liu, Pelecanos, and Yamakawa (2023), who showed
an oracle separation between QMA and QCMA when the quantum algorithms are only allowed
to access the oracle classically. To prove our results, we introduce a property of relations called
slipperiness, which may be useful for getting a fully general classical oracle separation between QMA
and QCMA.
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1 Introduction

It is a long-standing open problem in quantum complexity theory whether the two possible
quantum analogs of the complexity class NP are equivalent. QMA is defined as the class of
decision problems that are solvable by a polynomial-time quantum algorithm that has access
to a polynomial-sized quantum witness, whereas QCMA is the class of decision problems
that are solvable by a polynomial-time quantum algorithm that only has access to the
polynomial-sized classical witness. In other words, the question asks: are quantum proofs
more powerful than classical proofs?

While the inclusion QCMA ™ QMA is easy to see, the question of whether these two
classes are actually equal, which was first posed by Aharonov and Naveh [3], remains
unanswered. Indeed, an unconditional separation between these classes is beyond currently
known techniques.

An easier, but still unsolved, problem is to show an oracle separation between QMA

and QCMA. This is because oracle separations in the Turing machine model can be shown
by means of separations in the much simpler model of query complexity, where similar

1 Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada
(CRSNG), DGECR-2019-00027 et RGPIN-2019-04804.

EA
T
C
S

© Shalev Ben-David and Srijita Kundu;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shalev.b@uwaterloo.ca
https://orcid.org/0009-0009-4176-8693
mailto:srijita.kundu@uwaterloo.ca
https://orcid.org/0000-0002-8630-0113
https://doi.org/10.4230/LIPIcs.ICALP.2024.21
https://arxiv.org/abs/2402.00298
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Oracle Separation of QMA and QCMA with Bounded Adaptivity

separations between complexity classes are routinely shown (for example, a recent oracle
separation between BQP and PH was provided in [12]). The problem of finding an oracle
separation between QMA and QCMA has been a longstanding focus of the quantum computing
community; it boils down to asking whether quantum proofs are more powerful than classical
proofs in the query model.

1.1 Previous work

The first progress on the question of an oracle separation of QMA and QCMA was made by
Aaronson and Kuperberg [2], who showed that there is a quantum oracle, i.e., a blackbox
unitary, relative to which QMA ”= QCMA. Later, Fe�erman and Kimmel [7] showed that the
separation also holds under what they called an “in-place permutation oracle”, which is still
inherently quantum. Ideally, we would like to get these separations in the standard model of
classical oracles: classical functions that a quantum algorithm may query in superposition.
[4] showed separations between QMA and QCMA in other non-standard oracle models.

Very recently, there has been some progress on this question, with two di�erent variations
of the standard classical oracle model. Natarajan and Nirkhe [11] showed an oracle separation
relative to a “distributional oracle”. This essentially means that the classical oracle is drawn
from a distribution, which the prover knows, but the specific instance drawn is not known to
the prover. Therefore, the witness only depends on the distribution over the oracles, which
makes it easier to show QCMA lower bounds. Following this, [9] showed a separation with a
classical oracle that is fully known to the prover, but assuming the verifier is only allowed to
access this classical oracle classically, i.e., the verifier is not allowed to make superposition
queries (this makes the class similar to MA in terms of its query power and witness type).
This model is also simpler to analyze because whatever information the verifier gets from
the oracle by classically querying it, could also have been provided as the classical QCMA

witness. [9] also gave an alternate construction of a distributional oracle separation, with a
simpler proof than [11]. Their constructions are based on the relational problem used by
Yamakawa and Zhandry [14], in their result on quantum advantage without structure.

Closely related to the QMA vs QCMA question is the BQP/qpoly vs BQP/poly question.
BQP/qpoly is the class of decision problems that are solvable by a polynomial-time quantum
algorithm with access to polynomial-sized quantum advice, which depends non-uniformly on
the length of inputs, but nothing else. BQP/qpoly is the class of decision problems solvable
by a polynomial-time quantum algorithm with access to polynomial-sized classical advice.
Most works which have found oracle separations for QMA vs QCMA in various oracle models,
such as [2, 11, 9], have also found oracle separations between BQP/qpoly and BQP/poly with
related constructions in the same oracle models.

The question of the relative power of classical vs quantum advice was recently re-
solved unconditionally (without oracles) for relational problems by Aaronson, Buhrman and
Kretschmer [1], who showed an unconditional separation between FBQP/qpoly and FBQP/poly.
FBQP/qpoly and FBQP/poly are the classes of relational problems analogous to BQP/qpoly

and BQP/poly respectively. Their result was based on observing that separations between
quantum and classical one-way communication complexity can be used to show separations
between classical and quantum advice. The reason their result only works for the relation
classes is that a separation in one-way communication complexity which satisfies the necessary
conditions can only hold for relational problems. The specific relational problem used in [1] is
known as the Hidden Matching problem. But as was observed in [9], the Yamakawa-Zhandry
problem [14] also achieves the required communication separation, and could have been used
instead. In light of this, the constructions in [14] can viewed as a way to convert relational
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separations in one-way communication complexity, which correspond to relational separations
for quantum vs classical advice, to separations for decision QMA vs QCMA, and BQP/qpoly

vs BQP/poly, relative to classically accessible oracles. The construction is not blackbox – it
does not work if the Hidden Matching Problem is used instead of the Yamakawa-Zhandry
problem, though it plausibly might work with a parallel repetition of the former.

1.2 Our results

Unlike previous work, we prove an oracle separation between QMA and QCMA relative to a
bona fide regular oracle with regular (quantum) queries. Our catch is, instead, that we only
allow the algorithms bounded adaptivity.

Bounded adaptivity means that the number of rounds of queries made by the algorithms
is small, although there can be polynomially many queries in each round. Although our
result is not formally stronger than those of [11] and [9], we feel our result is intuitively closer
to a full QMA-QCMA separation, as it allows the full power of classical proofs and some of
the power of quantum queries. Our main result is formally stated below.

I Theorem 1. There is an oracle O : {0, 1}ú
æ {0, 1} such that QCMA

O,r
”= QMA

O,r
, for

r = o(logn/ log logn).

In the above statement, QMA
O,r is the class of decision problems solvable by QMA algorithms

that have oracle access to O, and make at most r batches of parallel queries to O; QCMA
O,r

is defined analogously. The parameter n is the e�ciency parameter (so the number of queries
is poly(n)).

I Theorem 2. There is a function family F = {FN}NœI which is e�ciently computable

in 1-round query QMA, but with the property that the growth rate of QCMAr(FN ) for

r = o(log logN/ log log logN) as N æ Œ is not in O(polylog(N)).

We shall formally define the query versions of QMA and QCMA, and the r-round QCMA
query complexity QCMAr, which are used in this theorem statement, in Section 2.1.

Our construction for the query complexity separation is a somewhat simplified version of
the construction in [9], which is based on the Yamakawa-Zhandry problem. [14] and [10]
showed that there exists a relational problem Rf , indexed by functions f : [n] ◊ {0, 1}m æ

{0, 1}, for m = �(n), such that given oracle access to a quantum advice |zf Í, a quantum
algorithm on any input x œ {0, 1}n, and on average over f , can find a u such that (x, u) œ Rf

2.
On the other hand, no quantum algorithm can find such an u for most x, when given only
a classical advice zf , and classical query access to f . Using this relation Rf , for a subset
E ™ {0, 1}n, we construct the following oracle:

O[f,E](x, u) =
I
1 if (x, u) œ Rf · x /œ E

0 otherwise.

The 1-instances of the problem FN that will separate QMA and QCMA in the query complexity
model will be O[f, ÿ], and the 0-instances will be O[f,E] for |E| Ø

2

3
· 2n, for a large subset

of all functions f . This is essentially the same construction that is used in [9], except they
also use an additional oracle G for a random function from {0, 1}n to {0, 1}n, which O also
depends on.

2 The Yamakawa-Zhandry relation is a TFNP relation, which means that the u-s are of poly(n) length,
and a u such that (x, u) œ Rf exists for every x.
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Note that the query complexity lower bound we obtain for QCMA is of a di�erent nature
than the one obtained in [9]: we need to lower bound (bounded-round) quantum query
algorithms instead of only classical query algorithms, and we focus on the worst-case rather
than average-case setting. In order to get an oracle separation for Turing machines from
a separation in query complexity, one needs to use a diagonalization argument; because
our result is set up a bit di�erently than in previous work, we reprove the diagonalization
argument for our setting in. This can be found in Appendix A of the full version of this
paper on arXiv.

Finally, we emphasize that the bounded adaptivity limitation of our result is because we
allow the full power of classical proofs and also quantum queries. If one were to drop the
power of classical proofs (resulting in the class BQP), or if one were to drop the power of
quantum queries (resulting in, essentially, MA), it would follow from [9] that close variants
of FN cannot be solved even without the bounded-round restriction. We conjecture their
lower bounds apply to FN as well.

1.3 Our techniques

We briefly describe the techniques used to obtain the query complexity result. We start by
observing that the oracle O[f, ÿ] is essentially just a verification oracle for the Yamakawa-
Zhandry relation. Therefore, there is a quantum witness and a quantum algorithm that can
distinguish O[f, ÿ] and O[f,E] by using this witness, with only one query, with probability
1 ≠ 2≠�(n) over f . The witness for the yes instance O[f, ÿ] is simply the quantum advice
for the Yamakawa-Zhandry problem, which finds a u for any x with probability 1 ≠ 2≠�(n)

over f . The quantum algorithm finds a u for a random x using the witness, and queries
the oracle. Since the no instances return 0 on any (x, u) for most x, this algorithm can
distinguish O[f, ÿ] and O[f,E] for 1 ≠ 2≠�(n) fraction of the f -s.

We now consider the uniform distribution over these good f -s (for which we can distinguish
O[f, ÿ] andO[f,E] with quantum advice), which has 2�(n) min-entropy. If there was a classical
witness function depending on f , of size k, that made a quantum algorithm accept O[f, ÿ] for
these f -s, then there would exist a fixed witness string w that would make O[f, ÿ] accept for
2≠k fraction of f -s. The quantum algorithm depends on the witness, but if we fix the witness
string w, the algorithm is fixed, and we can then ignore the dependence of the algorithm on
the witness.

We now attempt to remove rounds of the quantum query algorithm, starting with the
first round, while keeping the behavior of the algorithm the same on as many oracles as
possible. Every time we remove a round, we restrict our attention to a smaller set of oracles,
all of which are consistent with a growing partial assignment we assume is given to us. At
the end, the quantum algorithm will have no rounds left, and hence will make no queries; we
want the set of oracles O[f, ÿ] on which the behavior is preserved to be non-empty, because
then we can conclude that the algorithm cannot distinguish O[f, ÿ] and O[f,E] for some
large erased set E (since it now makes no queries).

To remove the first round of the query algorithm, we start by considering the the uniform
distribution over the 2≠k fraction of good f -s such that O[f, ÿ] is accepted by w. This
distribution has 2�(n)

≠k min-entropy, and therefore, by a result of [8, 6], it can be written as
a convex combination of finitely many dense distributions. Dense distributions are a concept
that was first introduced in the context of communication complexity: in a dense distribution,
some coordinates are fixed, and the rest of the coordinates have high min-entropy in every
subset. In fact we will not need the full convex combination of dense distributions – we
restrict our attention to one such distribution in the convex combination, and try to preserve
the behavior of the quantum algorithm only within a subset of its support.
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Since some coordinates are fixed in our dense distribution, the probability over this
distribution of the event (x, u) œ Rf non-negligible, for some (x, u) pairs (this probability is
exactly 2≠n over uniform f). The quantum algorithm can potentially learn a lot about f by
querying the oracle O[f, ÿ] for these pairs. Therefore, we shall fix the coordinates of f that
are fixed by (x, u) being in Rf . Here is where we use the fact that the Yamakawa-Zhandry
relation is what we shall call slippery. This essentially means that given a small number
of fixed coordinates for f , the number (x, u) pairs that have non-negligible probability is
not too high, and the number of extra coordinates fixed by these (x, u) pairs being in Rf is
also not too high. The Yamakawa-Zhandry relation being slippery essentially follows from it
using a code that has good list recoverability properties. (The Hidden Matching relation, or
its parallel repetition, are not slippery by this definition, and so our construction does not
work with these.)

Using the slippery property, we can increase the size of the partial assignment by not
too much, and via a hybrid-like argument [5], we can ensure that the first round of the
quantum algorithm does not learn much from queries outside this partial assignment. We
then restrict our attention to oracles consistent with this partial assignment; on those, we
can simulate the first round of the algorithm without making real queries (we simply use
the known partial assignment and guess “0” on the rest of the oracle positions, which are
highly unlikely to be 1). This way, we get a quantum algorithm with one fewer round, which
mimics the original algorithm on a small (but not too small) set of oracles.

Continuing this way, we eliminate all rounds of the algorithm while still maintaining
a non-empty set of oracles on which the behavior is preserved. Each such oracle can be
“erased”, turning a 1-input into a 0-input, so we only need the final 0-round algorithm to
preserve the behavior of the original algorithm on at least one input. Using this technique,
we can handle up to o(logn/ log logn) rounds of O(polyn) non-adaptive quantum queries
each.

1.4 Discussion and further work

We expect our techniques for the QMA vs QCMA separation may also work for a BQP/qpoly

vs BQP/poly separation with boundedly adaptive oracle queries, using the same problem
that is described in [9]. Their oracle in the query complexity setting is given by a random
function G, which the BQP algorithm has to compute given oracle access to

O[f,G](x, u) =
I
G(x) if (x, u) œ R

Õ

f

‹ otherwise,

and a quantum or classical advice. Here RÕ

f
is a modified 1-out-of-n version of the Yamakawa-

Zhandry problem, which has better completeness properties, but is similar to the original
problem otherwise. Clearly this problem can be solved in BQP/qpoly by using the quantum
advice for the Yamakawa-Zhandry problem. It cannot be solved on input x with any classical
advice and with access to an oracle that outputs ‹ for every (x, u). In order to show a
BQP/poly lower bound for this problem, one needs that there exist many x-s such that a
quantum algorithm with classical advice cannot distinguish O[f,G] from a version of O[f,G]
that is erased on those x-s. Since O[f,G] essentially serves as a verification oracle for the
relation just as O[f, ÿ] does in the QMA vs QCMA construction, we expect that when the
quantum algorithm has bounded rounds, a proof very similar to our QCMA lower bound will
work.3

3
R

Õ
f , being a 1-out-of-n version of Rf , has worse slipperiness properties than Rf , which gets in the way

of applying our techniques. But instead of using R
Õ
f for better completeness, we can focus on the (large

enough) subset of x, f for which the BQP algorithm with quantum advice works for Rf with high
probability, and have O[f,G] give G(x) for free outside of this set. This would make the analysis very
similar to the QMA vs QCMA case.
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The final goal is, of course, to be able to show both these results without a bound on
the number of rounds of oracle queries the quantum algorithm makes. As mentioned earlier,
we fail to do this because the slipperiness parameters of the relation we picked are not
good enough, and our methods would work to separate QMA and QCMA with an analogous
problem definition where the Yamakawa-Zhandry relation is replaced by a di�erent relation
Rf that has the appropriate slipperiness property.

We now expand more on the required strong slipperiness property. Let Rf be a family
of TFNP relations on {0, 1}n ◊ {0, 1}m indexed by f œ {0, 1}N , where m = poly(n) and
N = �(2n). We further assume Rf satisfies the property that if (x, u) œ Rf , then there is a
polynomial-sized partial assignment p for f which certifies this, i.e., (x, u) œ Rf ’f ´ p. Let
P ™ {0, 1, ú}N denote the set of polynomial-sized partial assignments for f . We define the
extended version ÂR of the family of relations Rf as follows:

ÂR = {(p, x, u) : p is the minimal partial assignment s.t. (x, u) œ Rf ’f ´ p}.

Since p is polynomial-sized, if we consider the uniform distribution over {0, 1}N , Pr[p ™ f ] is
exponentially small. Now consider a partial assignment q for f with size at most s(n); we
fix the bits in q and generate the other bits of f uniformly at random, which can make the
probability of some other partial assignments p non-negligible. The slipperiness property is
concerned with the total additional support (outside of q) of all partial assignments p such
that Pr[p ™ f |q ™ f ] is non-negligible, and (p, x, u) œ ÂR. We say ÂR is (÷, s(n), t(n))-slippery
if for all s(n)-sized q, the total additional support of all p-s such that Pr[p ™ f |q ™ f ] Ø ÷

and (p, x, u) œ ÂR is at most t(n). See Definition 13 for a more formal definition.
Our techniques show that the following conjecture implies an oracle separation between

QMA and QCMA.
I Conjecture 3. There exists a family of TFNP relations Rf such that

1. There exists a polynomial-time algorithm A, and for each f , a poly(n)-sized quantum

state |zf Í such that, given access to x and |zf Í, A can find u such that (x, u) œ Rf , with

probability at least 1 ≠ 2≠�(n)
over a product distribution µXµF on x, f . Moreover, µX

and µF are required to respectively have min-entropy 2�(n)
and �(n).

2. There exists a function s(n) = 2o(n) such that for all polynomial functions p(n), the

extended relation ÂR is (1/p(n), s(n), t(n))-slippery for some t(n) such that log(t(n)) =
o(log(s(n))).

Assuming Conjecture 3 is true, the oracle function separating QMA and QCMA would be
distinguishing O[f, ÿ] and O[f,E], for |E| Ø

2

3
· 2n, which we have defined earlier, using a

relation Rf that satisfies the conjecture. (We can only prove the Yamakawa-Zhandry relation
is (÷, s(n), t(n))-slippery, with t(n) bigger than s(n), though it is possible that is satisfies the
conjecture under finer analysis.)

We further note that any family of relations Rf that satisfies Conjecture 3 must give an
exponential separation between quantum and randomized one-way communication complexity,
with the communication setting being that Alice gets input f , Bob gets input x, and Bob
has to output u such that (x, u) œ Rf .4 This is because, if there was a polynomial-sized
classical message wf that Alice could send to Bob in the communication setting, then wf

could also serve as a QCMA proof. Therefore, it seems that the slipperiness condition could
also be used for lower-bounding one-way randomized communication complexity (although
weaker slipperiness parameters than in the conjecture would also su�ce for this).

4 Strictly speaking, condition 1 of the conjecture only implies that there exists a one-way communication
protocol, in which Alice sends the state |zf Í, which works on average over x and f , whereas we usually
require worst-case success in communication complexity. However, we can restrict to the set of x and f

for which the algorithm A works, in order to get the communication problem.
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2 Preliminaries

2.1 QMA and QCMA in query complexity

In this section, we review the formal definitions of QMA, QCMA, computationally-e�cient
QMA, and bounded-round QCMA in the context of query complexity.

I Definition 4 (Bounded-round quantum query algorithm). For r, T, n œ N, give the following

definition of a quantum query algorithm Q acting on n bits, using r rounds, with T queries

in each round. The algorithm will be a tuple of r + 1 unitary matrices, Q = (U0, U1, . . . , Ur).
These unitary matrices will each act on T “query-input” registers of dimension n, T “query-

output” registers of dimension 2, an “output” register of dimension 2, and a work register of

arbitrary dimension.

For each x œ {0, 1}n, let Ux
be the oracle unitary, which acts on the query-input and

query-output registers by mapping

|i1Í |b1Í |i2Í |b2Í . . . |iT Í |bT Í æ |i1Í |b1 ü xi1Í |i2Í |b2 ü xi2Í . . . |iT Í |bT ü xiT Í

for all i1, . . . , iT œ [n] and all b1, . . . , bT œ {0, 1}. We extend U
x
to other registers via a

Kronecker product with identity, so that U
x
ignores the other registers.

The action of the algorithm Q on input x œ {0, 1}n, denoted by the Bernoulli random

variable Q(x), will be the result of measuring the output register of the state

UrU
x
Ur≠1U

x
. . . U

x
U1U

x
U0 |ÂinitÍ ,

where |ÂinitÍ is a fixed initial state.

We will use the term “T -query quantum algorithm” without referring to the number of
rounds to indicate T rounds with 1 query in each.

I Definition 5 (Query algorithm with witness). Let Q be a r-query quantum algorithm on

n bits with T queries in each round. For any quantum state |„Í and any x œ {0, 1}n, let
Q(x, |„Í) be the random variable corresponding to the measured output register after the

algorithm terminates, assuming the initial state contained |„Í in the work register (with

ancilla padding) instead of being |ÂinitÍ. That is, Q(x, |„Í) is a Bernoulli random variable

corresponding to the measurement outcome of the output register of the final state

UrU
x
Ur≠1U

x
. . . U1U

x
U0 |„Í |padÍ ,

where |padÍ is the ancilla padding.

I Definition 6 (Query QMA and QCMA). Let f be a possibly partial Boolean function on n

bits, and let Q be a quantum query algorithm on n bits with T total queries. We say that Q

is a QMA algorithm for f with witness size k if the following holds:

1. (Soundness). For every x œ f
≠1(0) and every k-qubit state |„Í, we have Pr[Q(x, |„Í) =

1] Æ ‘.

2. (Completeness). For every x œ f
≠1(1), there exists a k-qubit state |„Í such that

Pr[Q(x, |„Í) = 1] Ø 1 ≠ ”.

Here, ‘ and ” govern the soundness and completeness of Q; by default, we take them both to

be 1/3. We denote the QMA query complexity of f by QMA‘,”(f), which is the minimum

possible value of T + k over any QMA algorithm for f with the specified soundness and

completeness.
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We say that Q is a QCMA algorithm for f if the same conditions hold, except with

the witness state |„Í quantifying over only classical k-bit strings in both the soundness and

completeness conditions. We define QCMA‘,”(f) analogously to QMA‘,”(f), and we omit

the subscripts when they are both 1/3.

I Definition 7 (Bounded round query QMA and QCMA). We define r-round QMA and QCMA

in exactly the same way as the above definition, except the query algorithms are required to

have at most r rounds. We use QMAr

Á,”
(f) and QCMAr

Á,”
(f) to denote the r-round QMA

and QCMA query complexities of f respectively.

I Definition 8 (Function family). A function family is an indexed set F = {fn}nœI where

I ™ N is an infinite set and where each fn is a partial Boolean function fn : Dom(fn) æ {0, 1}
with Dom(fn) ™ {0, 1}n.

I Definition 9 (E�ciently computable QMA). Let F = {fn}nœI be a function family. We say

that F is in e�ciently computable query QMA if there is a polynomial-time Turing machine

which takes in the binary encoding ÈnÍ of a number n œ I and outputs a QMA verifier Q by

explicitly writing out the unitaries of Q as quantum circuits (with a fixed universal gate set).

The verifier Q must be sound and complete for fn. E�ciently computable bounded-round

QMA is defined analogously.

In other words, QMA(fn) must be O(polylog(n)), and moreover, the di�erent algorithms

for fn must be uniformly generated by a single polynomial-time Turing machine.

With these definitions, we show in the full version that Theorem 2 implies Theorem 1.

2.2 Error-correcting codes

A Reed-Solomon error-correcting code RSq,“,k over Fq, with degree parameter 0 < k < q ≠ 1
and generator “ œ Fú

q
, is defined as

RSq,“,k = {(f(“), . . . f(“q)) : f œ Fq[x]degÆk},

where Fq[x]degÆk is the set of polynomials over Fq of degree at most k.
Let q ≠ 1 = mn, for some integers m and n. The m-folded version RS(m)

q,“,k
of RSq,“,k is a

mapping of the code to the larger alphabet Fm

q
as follows:

RS(m)

q,“,k
= {((x1, . . . , xm), . . . , (xq≠m, . . . , xq)) : (x1, . . . , xq) œ RSq,“,k}.

Note that the alphabet of RS(m)

q,“,k
is Fm

q
.

I Definition 10. We say that a code C ™ �n
is combinatorially (’, ¸, L)-list recoverable if

for any subsets Si ™ � such that |Si| Æ ¸, we have,

|{(x1, . . . , xn) œ C : |{i : xi œ Si}| Ø (1 ≠ ’)n}| Æ L.

I Lemma 11 ([13, 14]). For a prime power q such that mn = q ≠ 1, any generator “ œ Fú

q
,

and degree k < q ≠ 1, RS(m)

q,“,k
is (’, ¸, qs)-list recoverable for some s Æ m if there exists an

integer r such that the following inequalities hold:

(1 ≠ ’)n(m ≠ s+ 1) Ø

1
1 + s

r

2
(mn¸k

s)1/(s+1) (1)

(r + s)
3
mn¸

k

41/(s+1)

< q. (2)
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I Corollary 12. Let m be �(n) integer such that nm+1 = q is a prime power. Let k = 5

6
mn

and let c, d be constants. Then RS(m)

q,“,k
is (c logn/n, 2(logn)

d

, 2(logn)
d+2)-list recoverable.

This corollary is proved simply by checking that the equations (1)–(2) are satisfied
with this choice of parameters. The choice of parameters is in fact the same as those
as [14]. Therefore, the above code satisfies the other conditions required for the [14] quantum
algorithm to succeed in evaluating the relation RC,f defined in the next section.

3 The Yamakawa-Zhandry problem

For a function f : [n] ◊ {0, 1}m æ {0, 1} and a linear code C ™ {0, 1}nm, define the relation
RC,f ™ {0, 1}n ◊ {0, 1}nm

RC,f = {(x, u) = (x1 . . . xn, u1 . . . un) : (u1 . . . un œ C) · (’i f(i, ui) = xi)}.

We shall typically work with m = �(n). We shall usually work with a fixed code C, in which
case we shall omit the subscript C from RC,f .

Let P ™ {0, 1, ú}n2m denote the set of polynomial-sized partial assignments for functions
f : [n]◊ {0, 1}m æ {0, 1}. We define the extended version ÂRC of {RC,f}f over P ◊ {0, 1}n ◊

{0, 1}nm as follows:

ÂRC = {(p, x, u) : p is the minimal partial assignment s.t. (x, u) œ RC,f ’f ´ p}.

In particular, (p, x, u) is in ÂRC when p is the partial assignment (f(i, ui) = xi)i, which is n
bits.

I Definition 13. Let ÂRn be a sequence of relations on Pn ◊ {0, 1}n ◊ {0, 1}poly(n), where Pn

consists of fixed polynomial-sized partial assignments for N = 2�(n)
-bit strings, and poly(n)

is some fixed polynomial. We say ÂRn is (÷, s(n), t(n))-slippery w.r.t. distribution µ on f if

for any partial assignment q on N bits with size at most s(n), if we fix the bits of q in f and

generate the other bits of f according to µ (conditioned on q), we will have

---------

€

(p,x,u)œÂRn,

Prf≥µ[p™f |q™f ]Ø÷

supp(p) \ supp(q)

---------

Æ t(n).

We omit mentioning the distribution µ explicitly if it is the uniform distribution.

I Lemma 14. When C is a code with parameters from Corollary 12, then for c = polylog(n)
and d = o(logn/ log logn), ÂRC is ( 1

nc , 2(logn)
d

, c logn · 2(logn)
d+2)-slippery.

Proof. Let q be a partial assignment of size 2(logn)
d . For each i œ [n], let Si = {v :

(i, v) is fixed in q}. Clearly for each i, |Si| Æ 2(logn)
d . By Corollary 12,

Cq = |{u1 . . . un œ C : |{i : ui œ Si}| Ø n ≠ c logn}| Æ 2(logn)
d+2

.

A tuple (p, x, u) can satisfy (p, x, u) œ ÂRC and Prf≥U [p ™ f |q ™ f ] only if u œ Cq, so we
only need to compute |

t
supp(p)| for such tuples. In fact we only need to worry about the

number of (x, u) pairs that could be in RC,f , since p is completely fixed by x and u. Each
u has at most c logn many locations that are not fixed by q, and x can take any value in
those c logn locations. The x-s taking di�erent values in these locations have overlapping
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p-s (i.e., the same bits are fixed to di�erent values for the di�erent x-s), and since we only
care about |

t
supp(p)|, we need not count these x-s separately. Therefore, the number of

unique indices fixed by such p-s is determined only by the number of u-s in Cq.
Since the total support of each p is outside of q is c logn, we have,
----------

€

(p,x,u)œÂRn,

Prf [p™f |q™f ]Ø
1
nc

supp(p) \ supp(q)

----------

Æ 2(logn)
d+2

· c logn. J

I Corollary 15. If µ is a distribution such that for all partial assignments p with |p| = n,

we have µ|q[p] Æ k · u|q[p] (where µ|q[p] is the probability mass of strings consistent with p

under µ conditioned on q, and u|q[p] is the same with the uniform distribution), then ÂRC

from Lemma 14 is also ( k

nc , 2(logn)
d

, c logn · 2(logn)
d+2)-slippery w.r.t. µ.

Proof. Since µ[p] Æ k · u|q[p] for all p, partial assignments that have probability at least
k

nc against µ conditioned on q have probability at least 1

nc against the uniform distribution
conditioned on q. Now we can apply Lemma 14. J

I Theorem 16. There exists a code C such that

1. ÂRC is ( 1

nc , 2(logn)
d

, c logn · 2(logn)
d+2)-slippery for c = polylog(n) and d =

o(logn/ log logn).
2. There exists a quantum advice |zf Í with polynomially many qubits, and a polynomial-time

quantum algorithm A that has access to |zf Í , x, and makes no queries to any oracle, such

that for any x œ {0, 1}n,

Pr
f≥U

[(u Ω A(|zf Í , x)) · ((x, u) œ RC,f )] Ø 1 ≠ 2≠�(n)
,

where the probability is over uniformly random functions f : [n] ◊ {0, 1}m æ {0, 1}, and
the internal randomness of A.

Proof. Item 1 is due to Lemma 14. As stated before, the problem ÂRC , and the choice of
parameters for the code C in Lemma 14, is the same as [14]. Therefore, item 2 is due to
[14, 10].5 J

4 Techniques for bounded-round quantum query algorithms

In this section, we prove some results about bounded-round quantum query algorithms that
will be useful in proving our QCMA lower bound.

Recall that a non-adaptive quantum algorithm works on T query-input registers and T

query-output registers plus an additional work register W , so that its basis states look like

|i1Í |b1Í |i2Í |b2Í . . . |iT Í |bT Í |W Í .

To clear up notational clutter, we will use į œ [N ]T to represent a tuple of T indices in [N ].
Moreover, for a string x œ {0, 1}N and for į œ [N ]T , we will define x̨

i
:= (x̨

i1
, x̨

i2
, . . . , x̨

iT
).

5 The quantum algorithm in [14] makes some non-adaptive quantum queries (not depending on x), and
does not take an advice state. The modified algorithm, which instead takes an advice state (which is
essentially the state of the algorithm in [14] after its non-adaptive queries) and makes no queries, was
described in [10].
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The basis states can then be written |̨iÍ |̨bÍ |W Í, and the action of the query unitary U
x to

the string x is to map |̨iÍ |̨bÍ |W Í æ |̨iÍ |̨b ü x̨
i
Í |W Í, extended linearly to the rest of the space.

(Here ü denotes the bitwise XOR of the two strings of length T .)
Define �̨

i
:= |̨iÍ Ę̀i| ¢ Į

b,W
to be the projection onto basis states with į in the query-input

registers. For i œ [N ], define �i :=
q

į–i
�̨

i
to be the projection onto basis states with i

occurring in one of the query-input registers. The projections �̨
i
are onto orthogonal spaces,

though the projections �i are not. Observe that
q

į
�̨

i
= I, and that

q
i
�i =

q
i

q
į–i

�̨
i
=q

į

q
iœ̨i

�̨
i
= T · I. Moreover, since the oracle unitary U

x does not change the query-input
registers, Ux commutes with both �̨

i
and �i. Another convenient property is that if x̨

i
= y̨

i

for two strings x, y œ {0, 1}N , then �̨
i
(Ux

≠U
y) = 0; this holds because both U

x and U
y map

|̨iÍ |̨bÍ |W Í to the same vector when x̨
i
= y̨

i
. Using these properties, we have the following

lemma.

I Lemma 17 (Hybrid argument for nonadaptive queries). For any strings x, y œ {0, 1}N and

any quantum state |ÂÍ =
q

į,̨b,W
–̨
i,̨b,W

|̨iÍ |̨bÍ |W Í, we have

ÎU
x
|ÂÍ ≠ U

y
|ÂÍ Î

2

2
Æ 4

ÿ

i:xi ”=yi

Î�i |ÂÍ Î
2

2
.

Proof. We write the following, with justification afterwards.

ÎU
x
|ÂÍ ≠ U

y
|ÂÍ Î

2

2
=

......

ÿ

į

�̨
i
(Ux

≠ U
y) |ÂÍ

......

2

2

=
ÿ

į

Î�̨
i
(Ux

≠ U
y) |ÂÍ Î

2

2

=
ÿ

į:x̨i ”=y̨i

Î�̨
i
(Ux

≠ U
y) |ÂÍ Î

2

2

Æ

ÿ

į

ÿ

iœ̨i:xi ”=yi

Î�̨
i
(Ux

≠ U
y) |ÂÍ Î

2

2

=
ÿ

i:xi ”=yi

ÿ

į–i

Î�̨
i
(Ux

≠ U
y) |ÂÍ Î

2

2

=
ÿ

i:xi ”=yi

......

ÿ

į–i

�̨
i
(Ux

≠ U
y) |ÂÍ

......

2

2

=
ÿ

i:xi ”=yi

Î�i(Ux
≠ U

y) |ÂÍ Î
2

2

=
ÿ

i:xi ”=yi

Î(Ux
≠ U

y)�i |ÂÍ Î
2

2

Æ 4
ÿ

i:xi ”=yi

Î�i |ÂÍ Î
2

2
.

In the first line, we used
q

į
�̨

i
= I. In the second, we used the orthogonality of the images

of the projections �̨
i
. In the third, we used �̨

i
(Ux

≠ U
y) = 0 when x̨

i
= y̨

i
.

In the fourth line, we replaced the sum over į containing at least one i with xi ”= yi with
a weighted sum, where the weight of į is the number of i œ į such that xi ”= yi; this weight is
0 when x̨

i
= y̨

i
and at least 1 when x̨

i
”= y̨

i
. This weight can be represented as a sum over

i œ į with xi ”= yi, since we are counting į once for each such i in the tuple.
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The fifth line flips the order of the sums, and the sixth uses orthogonality of the images
of �̨

i
to put the sum back inside the squared norm. The seventh line is the definition of �i,

and the eighth holds since �i commutes with U
x and U

y. Finally, the last line follows either
from the triangle inequality, or from the fact that the spectral norm of (Ux

≠ U
y) is at most

2 (since U
x and U

y are unitary). J

For an oracle x œ {0, 1}n and a block B ™ [N ], use x[B] to denote the string x with
queries in B erased; that is, x[B]i = xi if i /œ B, and x[B]i = 0 for i œ B. Next, we use this
hybrid argument in combination with a Markov inequality to show that if a distribution µ

over {0, 1}n has a set of queries B œ [N ] that nearly always return zero for oracles sampled
from µ, then for any non-adaptive quantum algorithm, there exists a large set of oracles
(measured against µ) such that the algorithm does not detect whether any subset of B is
erased.

I Lemma 18 (Nonadaptive algorithms don’t detect oracle erasures). Fix |ÂÍ representing the

state of a quantum algorithm before a batch of non-adaptive queries. Let µ be a distribution

over {0, 1}N , and let ‘ > 0. Let B = {i œ [N ] : Prx≥µ[xi = 1] Æ ‘}. Then there exists a set

S ™ {0, 1}N such that µ[S] Ø 1/2 and for all x œ S and all subsets B1, B2 ™ B, we have

ÎU
x[B1] |ÂÍ ≠ U

x[B2] |ÂÍ Î2 Æ

Ô

8‘T .

Proof. We write the following, with justification afterwards.

E
x≥µ

S

U
ÿ

i:xi ”=x[B]i

Î�i |ÂÍ Î
2

2

T

V = E
x≥µ

C
ÿ

iœB

xiÎ�i |ÂÍ Î
2

2

D

=
ÿ

iœB

Î�i |ÂÍ Î
2

2
E

x≥µ
[xi]

Æ ‘

ÿ

iœB

Î�i |ÂÍ Î
2

2

Æ ‘

ÿ

iœ[N ]

Î�i |ÂÍ Î
2

2

= ‘

ÿ

iœ[N ]

ÿ

į–i

Î�̨
i
|ÂÍ Î

2

2

= ‘T

ÿ

į

Î�̨
i
|ÂÍ Î

2

2

= ‘T.

The first line follows by noting that xi ”= x[B]i can only happen if both i œ B and xi = 1;
we replace the sum over i : xi ”= x[B]i with the sum over i œ B, and multiply the summand
by the indicator for xi = 1, which is xi itself.

The second line is the result of pushing the expectation inside the sum, and observing that
the norm does not depend on x and can be factored out of the expectation. The third line
follows from the definition of B: we know that for all i œ B, the probability of xi = 1 is at
most ‘. The fourth replaces the sum over B with that over [N ]. The fifth uses the definition
of �i, and exchanges the sum over į with the squared norm using orthogonality. The sixth
line follows by noting that each į appears exactly T times in this double sum. Finally, the
last line follows by pushing the sum inside the squared norm (using orthogonality), and
recalling that

q
į
�̨

i
= I, together with the fact that |ÂÍ is a unit vector.
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Given this bound on the expectation, we can apply Markov’s inequality to conclude that
at least half the strings x (weighted by µ) must satisfy

q
i:xi ”=x[B]i

Î�i |ÂÍ Î
2
2

Æ 2‘T . Let S be
the set of such strings x; then µ[S] Ø 1/2. Observe that for any x œ S and any B1, B2 ™ B,
the set {i : x[B1]i ”= x[B2]i} is a subset of {i : xi ”= x[B]i}. We now apply Lemma 17 to get

ÎU
x[B1] |ÂÍ ≠ U

x[B2] |ÂÍ Î
2

2
Æ 4

ÿ

i:x[B1]i ”=x[B2]i

Î�i |ÂÍ Î
2

2
Æ 4

ÿ

i:xi ”=x[B]i

Î�i |ÂÍ Î
2

2
Æ 8‘T.

The desired result follows by taking square roots. J

5 QMA vs QCMA

In this section, we prove Theorem 2. Theorem 19 will define the function FN and show that
it is in QMA, and Theorem 21 will show that it is not in QCMA.

5.1 Construction and QMA protocol

Fix a code C for which Theorem 16 holds, with c = logn. We shall henceforth refer to RC,f as
only Rf for this C. For a subset E ™ {0, 1}n, define the oracle O[f,E] : {0, 1}n ◊ {0, 1}nm æ

{0, 1} as

O[f,E](x, u) =
I
1 if (x, u) œ Rf · x /œ E

0 otherwise.

I Theorem 19. There exists an e�cient uniform collection of query QMA protocols (generated

uniformly by a polynomial time Turing machine) which uses 1 query and polynomial witness

size, and which outputs 0 on all oracles O[f,E] with |E| Ø (2/3) · 2n, and outputs 1 on

O[f, ÿ] for 1 ≠ 2≠�(n)
fraction of f-s.

Proof. The quantum witness for the algorithm will be quantum advice state for Rf from
Theorem 16. The quantum algorithm works as follows: it samples a uniformly random
x œ {0, 1}n, and runs the procedure from Theorem 16 to find a u such that (x, u) œ Rf .
Note that this requires no queries to the oracle. Then it queries the oracle at (x, u) and
returns the query output. If the oracle is O[f, ÿ] and the actual state |zf Í from Theorem 16
is provided as witness, then due to Theorem 16 we have,

Pr
f≥U

[AO[f,ÿ](|zf Í) = 1] Ø 1 ≠ 2≠�(n)
.

On the other hand, if the oracle is O[f,E] for |E| Ø
2

3
·2n, no matter what witness is provided,

and what u is obtained from this witness, the oracle outputs 0 on (x, u) for 2

3
of the x-s.

Since the algorithm samples a uniformly random x and queries it with some u for every f ,
we have for every f ,

Pr[AO[f,E](|zf Í) = 1] Æ
1
3 . J

Defining the function FN . We now define the following partial query function with input
size 2n ◊2mn: its 1-inputs are all the oracles O[f, ÿ] for which the algorithm from Theorem 19
accepts with probability at least 2/3, and its 0-inputs are O[f,E] for which O[f, ÿ] is a
1-input and |E| Ø (2/3) · 2n. Note that these oracles correspond to the inputs “x” of the
query problem. This defines a family FN of query tasks with N = 2n ◊ 2mn, and Theorem 19
showed that this family is in e�ciently-computable QMA.
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5.2 Densification of probability distributions

To prove our QCMA lower bound, we will need some properties of distributions on {0, 1}N .
For such a distribution µ, let RU(µ) := maxxœ{0,1}N log2(2Nµ[x]) be the max relative entropy
of µ relative to the uniform distribution. We will generally be interested in distributions
µ such that RU(µ) is small (say, polylogN), which means that no input x œ {0, 1}N has
probability µ[x] much larger than 2≠N .

For a partial assignment p, let µ[p] be the probability mass of strings in {0, 1}N which
are consistent with p. Let |p| be the size of p (the number of revealed bits in p). We define
the density of µ to be density(µ) := 1 ≠ maxp log2(2

|p|
µ[p])

|p|
, with the maximum taken over

partial assignments p. The density of the uniform distribution is 1.
For a partial assignment p, we let µ|p denote the distribution µ conditioned on the

sampled input being consistent with p. Items 1 and 3 of the following lemma essentially
follow from results in [8, 6]. We produce a proof here because the version of the lemma we
need is simpler than what was shown in [8, 6].

I Lemma 20 (Densification). Let µ be a distribution over {0, 1}N , and let ” œ (0, 1). Then

there exists a partial assignment p such that

1. |p| Æ RU(µ)/”

2. RU(µ|p) Æ RU(µ)/”

3. density(µ|p) > 1 ≠ ”, where the density is measured on the bits not fixed by p.

Proof. Let p be the largest partial assignment (we can pick the lexicographically first one
according to some ordering, if there is a tie) for which µ[p] Ø 2≠(1≠”)|p|. Then

2≠(1≠”)|p|
Æ µ[p] =

ÿ

x´p

µ[x] Æ 2N≠|p|
· 2≠(N≠RU(µ)) = 2RU(µ)≠|p|

,

so ”|p| Æ RU(µ), from which the first item follows. Next,

RU(µ|p) = max
x

log2(2Nµ|p[x]) = max
x´p

log2(2Nµ[x]/µ[p]) Æ RU(µ) + log2(1/µ[p])

Æ RU(µ) + log2(2(1≠”)|p|) = RU(µ) + (1 ≠ ”)|p| Æ RU(µ) + (1 ≠ ”)RU(µ)/” = RU(µ)/”,

which gives the second item. Finally, to upper bound the density of µ|p, let q be a partial
assignment on a set of indices disjoint from that of p. By the maximality of p, we must have
µ[p fi q] < 2≠(1≠”)(|p|+|q|). Now,

log2(2|q|µ|p[q]) = log2(2|q|µ[q fi p]/µ[p]) < log2(2|q|2≠(1≠”)(|p|+|q|)
/2≠(1≠”)|p|) = ”|q|.

From this it follows that density(µ|p) > 1 ≠ ”, as desired. J

5.3 QCMA lower bound

I Theorem 21. There is no bounded-round, polynomial-cost QCMA protocol for the family

FN defined in Section 5.1. More formally, consider any family of QCMA protocols for the

query problems FN . If the number of rounds for these QCMA protocols grows slower than

o(log logN/ log log logN), then either the number of queries or the witness size must grow

like logÊ(1)
N .

We will prove this theorem by a sequence of claims. The idea of the proof will be to
remove the rounds of the algorithm one by one. We start by moving from QCMA to BQP
via the following claim.
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B Claim 22. If there is a QCMA protocol for FN with witness size k = k(N), then there is
a quantum algorithm Q and a large set of functions S such that Q accepts all oracles O[f, ÿ]
for f œ S and rejects all oracles O[f,E] for f œ S and |E| Ø (2/3)2n. The set S is large
enough that the uniform distribution µ over S has RU(µ) Æ 2k. The algorithm Q makes the
same number of rounds and number of queries as the QCMA protocol. By “accepting” and
“rejecting”, we mean with probability at least 2/3.

Proof. The idea is just to take a witness w that works for as many 1-inputs as possible, and
hard-code this witness into the quantum algorithm. S will correspond to the set of 1-inputs
on which this witness works.

More explicitly, since the witness is a classical string, there are only 2k witnesses over
which we quantify. Since each 1-input O[f, ÿ] has some witness accepting it, we conclude
that at least one witness w of size k is a valid witness for at least a 2≠k fraction of the
1-inputs, and hence also for at least a 2≠k(1≠2≠�(n)) fraction of all oracles O[f, ÿ] (including
those not in the domain of FN ). This is because the fraction of f -s for which the quantum
algorithm does not succeed with probability at least 2/3 is at most 2≠�(n). We can assume
2≠k(1 ≠ 2≠�(n)) Ø 2≠2k.

Let S be the set of f such that O[f, ÿ] is accepted by the algorithm given witness w. Let
µ be the uniform distribution over S, and observe that RU(µ) Æ 2k. Let Q be the quantum
algorithm which hard-codes the witness w into the verifier; then Q accepts all oracles O[f, ÿ]
for f œ supp(µ) and rejects all oracles O[f,E] if |E| Ø (2/3)2n. C

Defining the round reduction. Given a pair (Q,µ) of a quantum algorithm and a distribution
over functions, we wish to define a pair (Q̃, µ̃) such that Q̃ has one less round than Q, supp(µ̃)
is a subset of supp(µ) but “not by much” (i.e. RU(µ̃) is not much larger than RU(µ)), and
the two algorithms behave similarly on µ̃.

To define (Q̃, µ̃) given (Q,µ), we proceed in several steps.

1. First, use Lemma 20 with ” = 1/n to find a partial assignment q with |q| Æ nRU(µ),
RU(µ|q) Æ nRU(µ), and with µ|q being (1 ≠ ”)-dense on the bits not used by q.

2. Second, use Lemma 18 with ‘ = 1/3200r2T on the distributions of oracles O[f, ÿ] when
f is sampled from µ|q. The state |ÂÍ in the lemma will be the state of the algorithm
Q just before the first batch of T queries. The lemma gives a set S ™ supp(µ|q) with
µ|q[S] Ø 1/2. It has the property that for all f œ S and all sets B1, B2 containing pairs
(x, u) with Prf≥µ|q

[O[f, ÿ](x, u) = 1] Æ ‘, we have ÎU
O[f,B1] |ÂÍ ≠U

O[f,B2] |ÂÍ Î2 Æ 1/20r.
Condition µ|q on the set S to get a distribution µ

Õ.
Note that O[f,B1] is an abuse of notation, since normally we erase inputs x to f from
the oracle, yet B1 is a set of pairs (x, u). We will use this abuse of notation throughout; if
we write O[f,B] where B is a set of pairs, we mean to erase those pairs from the oracle,
while if B is a subset of Dom(f), we mean to erase the pairs (x, u) for x œ B and all u
from the oracle.

3. Third, use the slippery property from Corollary 15 on q to conclude that the number of
bits used by partial assignments p for which (p, x, u) œ R̃C and Prf≥µÕ [p ™ f |q ™ f ] Ø ‘/4
is small. Recall that (p, x, u) œ R̃C means that the condition O[f, ÿ](x, u) = 1 is equivalent
to p ™ f for all f ; such certifying p have |p| = n. Corollary 15 can be applied because
‘/4 is larger than 1/nc for c = logn, since we are choosing r = o(logn/ log logn) and
T Æ O(2log2

n
/ logn). Now, since µ|q is (1 ≠ ”)-dense outside of q, the probability of a

partial assignment p against µ|q is at most 2”|p| times the probability against the uniform
distribution conditioned on q. Here |p| = n and ” = 1/n, so the probability against
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µ|q is at most twice that against the uniform distribution conditioned on q. Moving
from µ|q to µ

Õ conditions on a set S of probability at least 1/2, so it can increase the
probability of p by at most a factor of 2. Hence the probability of p against µÕ is overall
at most 4 times its probability against the uniform distribution conditioned on q. By
Corollary 15, we conclude the total number of bits used by partial assignments p for
which Prf≥µÕ [O[f, ÿ](x, u) = 1] Ø ‘ is small. Let Z be the set of all such bits.
Our final modification to µ

Õ will be to fix the bits in Z to the highest-probability partial
assignment (measured against µÕ), and let µ̃ be µ

Õ conditioned on this partial assignment.
4. Set Q̃ to be the quantum algorithm which is the same as Q, except that the first batch

of queries is made to a fake oracle instead of a real one. The fake oracle is defined as
follows: on queries (x, u) for which O[f, ÿ](x, u) is fixed for all f œ supp(µ̃), return this
value O[f, ÿ](x, u); on queries (x, u) for which this value is not fixed for f œ supp(µ̃),
return 0. Note that the fake oracle does not depend on the true input oracle O[f, ÿ], so
queries to it can be implemented by Q̃ without making queries to the real oracle. This
replaces the first round of Q, so Q̃ has one less round.

B Claim 23. Let Q and µ be as in Claim 22 (with µ the uniform distribution over S). Let
(Q0, µ0) = (Q,µ), and iteratively define (Q¸, µ¸) = (Q̃¸≠1, µ̃¸≠1) for ¸ = 1, 2, . . . , r, where r

is the number of rounds of Q.
Then Qr makes no queries and µr “has large support”: log RU(µr) Æ (2 logn)2r log 2k

(assuming n is su�ciently large).

Proof. That Qr makes no queries is clear, since each Q¸ in the chain makes one less round of
queries than Q¸≠1, and since the first algorithm Q0 = Q makes r rounds.

To bound RU(µr), we need to show that log RU(µ¸+1) is at most a factor of 2 log2 n more
than log RU(µ¸).

Recall the construction of µ¸+1 from µ¸. The first step moved from µ¸ to µ¸|q with
RU(µ¸|q) Æ nRU(µ¸). The second step conditioned the latter distribution on a set S of
probability mass at least 1/2, which can only increase RU(·) by 1, so RU(µÕ

¸
) Æ nRU(µ¸)+ 1.

The third step found the set of all bits fixed in partial assignments p which certify some
(x, u) as evaluating to 1, and picked the highest-probability partial assignment on those
bits. The maximum increase in RU(·) is the number of bits that were fixed in this way.
This number comes from Theorem 16, and depends on the number of bits fixed in q; when
|q| = 2(logn)

d , the number we are looking for is c logn · 2(logn)
d+2 , so we can express this

as c logn · 2(log2
n)(log |q|). We had |q| Æ nRU(µ¸) and c = logn. It is not hard to see that

this additive increase dominates nRU(µ¸) + 1; assuming everything is large enough (e.g.
logn is su�ciently large, and RU(µ¸) is at least n

2, which is without loss of generality
by restricting the original µ0 to a smaller set if necessary), we can get the upper bound
RU(µ¸+1) Æ 22 log

2
n logRU(µ¸), as desired. C

B Claim 24. Assume the witness size k is O(poly(n)) and the number of rounds r is
o(logn/ log logn), and let n be large enough. With notation as in Claim 23, there exists
f̂ œ supp(µr) and a large set E (with |E| Ø (2/3)2n) of inputs x such that for every x œ E

and every u, the pair (x, u) is “not fixed to 1 by µr” (that is, there exists f œ supp(µr) such
that O[f, ÿ](x, u) = 0).

Proof. We essentially apply another round-reduction iteration (without the second step)
to µr. Using Lemma 20, we find a partial assignment q

Õ such that µr|qÕ is (1 ≠ ”)-dense
outside of qÕ, with ” = 1/n. We then apply Theorem 16 to conclude there are few pairs (x, u)
with Prf [O[f, ÿ](x, u) = 1] Ø 1/2, and hence few pairs (x, u) with Prf [O[f, ÿ](x, u) = 1] = 1
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when f is sampled from µr|qÕ ; the number of such pairs is at most 2(2 logn)
2r+2

log k. Using
k = O(poly(n)) and r = o(logn/ log logn), this means that there are at most 2o(n) pairs
(x, u) that are fixed to 1 for all the oracles O[f, ÿ] for f œ supp(µr|qÕ). Therefore, there are
2n≠o(n) many inputs x such that for all u, the pair (x, u) is not fixed to 1 by supp(µr|qÕ).
Let E be the set of such x; then |E| Ø (2/3)2n. Let f̂ œ supp(µr|qÕ) be arbitrary, and the
desired result follows. C

Proof of Theorem 21. Start with a QCMA protocol for fN , and use Claim 22 to get a Q

and µ; to get a contradiction, we just need to find f œ supp(µ) and a large set E of inputs x
such that Q fails to distinguish the oracle O[f, ÿ] from the oracle O[f,E].

Let (Q¸, µ¸) be as in Claim 23, and let f̂ and E be as in Claim 24. To complete the proof,
we just need show that Q = Q0 fails to distinguish O[f̂ , ÿ] and O[f̂ , E].

Let B = {(x, u) : x œ E,O[f̂ , ÿ](x, u) = 1}. Moreover, let B¸ be the set of pairs (x, u)
which had Prf≥µ¸≠1|q [O[f, ÿ](x, u) = 1] Æ ‘ in iteration ¸ (where q is the partial assignment
from step 1 of iteration ¸). Note that the pairs not in B¸ are all fixed in all the oracles in the
support of µ¸, because we choose values for the bits used by their proving partial assignments
p. This means that B ™ B¸ for all ¸. Also, let O¸ be the oracle used by Q¸ to simulate the
first query batch of Q¸≠1. Recall that O¸(x, u) returns 0 unless (x, u) is fixed to 1 in all
O[f, ÿ] for f œ supp(µ¸). Since the support of µ¸ decreases as a subset in each iteration, the
bits fixed in µ¸ are also fixed in µr, and hence also agree with f̂ . This means that O¸ can be
written as an erased oracle O[f̂ , A¸] for some set A¸ of pairs (x, u) that were not fixed in µ¸;
in other words, A¸ ™ B¸.

We now note the oracle O[f̂ , E] is the same as O[f̂ , B]. Additionally, since B,A¸ ™ B¸,
we have by Lemma 18,

ÎU
O[f̂ ,B]

|ÂÍ ≠ U
O[f̂ ,A¸] |ÂÍ Î2 Æ 1/20r

where |ÂÍ is the state right before the first query of the algorithm Q¸≠1. This can also be
written

ÎU
O[f̂ ,E]

|ÂÍ ≠ U
O¸ |ÂÍ Î2 Æ 1/20r.

Now, applying additional unitary matrices does not change the 2-norm, and Q¸ replaces only
the first query of Q¸≠1 with O¸ and applies the same unitaries as Q¸≠1 in all other rounds.
If we use Q¸(O) to denote the final state of Q¸ on the oracle O, we therefore get

ÎQ¸(O[f̂ , E]) ≠ Q¸≠1(O[f̂ , E])Î2 Æ 1/20r.

By triangle inequality, we then get

ÎQ(O[f̂ , E]) ≠ Qr(O[f̂ , E])Î2 Æ 1/20.

Since ÿ ™ B¸ for all ¸, the same argument also works to show that

ÎQ(O[f̂ , ÿ]) ≠ Qr(O[f̂ , ÿ])Î2 Æ 1/20,

and of course we also have Qr(O[f̂ , ÿ]) = Qr(O[f̂ , E]) since Qr makes no queries. A final
application of the triangle inequality gives us

ÎQ(O[f̂ , E]) ≠ Q(O[f̂ , ÿ])Î2 Æ 1/10.

This gives the desired contradiction, as Q failed to su�ciently distinguish these two oracles
(it must accept one with probability at least 2/3 and the other with probability at most 1/3;
converting this to a lower bound on the 2-norm distance is a straightforward exercise). J
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Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar
graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum
number of edges to remove from G, such that all vertices in S are separated from all vertices
in T , while maintaining that every vertex in S, and respectively in T , stays in the same connected
component. We show that this problem can be solved in 2|S|+|T |

n
O(1) time with a one-sided-error

randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion
problem on planar graphs, which resolves an open question from the literature. More generally, we
show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r
of faces in a planar embedding covering the terminals SfiT , by providing a 2O(r)

n
O(1)-time algorithm.
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1 Introduction

A cut in a graph G = (V,E) is a partitioning (A,B) of V , and we denote by cutG(A) the
cut-set, that is, the set of edges with one endpoint in A and the other in B = V \A. For two
disjoint sets of vertices S and T , (A,B) is an S-T -cut if S ™ A and T ™ B. We study the
following variant of the cut-uncut problem.

Input: A graph G, two disjoint terminal sets S, T ™ V (G), and an integer k Ø 0.
Task: Decide whether there exists an S-T -cut (A,B) of G with |cutG(A)| Æ k such

that the vertices of S are in the same connected component of G[A] and the
vertices of T are in the same connected component of G[B].
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22:2 Two-Sets Cut-Uncut on Planar Graphs

Our interest in Two-Sets Cut-Uncut is two-fold. First, Two-Sets Cut-Uncut
is a natural optimization variant of the 2-Disjoint Connected Subgraphs problem
that received considerable attention from the graph-algorithms and computational-geometry
communities [14, 25, 30, 40, 43, 44]. In this problem, one asks whether, for two given disjoint
sets S, T ™ V (G), one can find disjoint sets A1 ´ S and A2 ´ T such that the subgraphs
of G induced by Ai, i = 1, 2, are connected. In Two-Sets Cut-Uncut we not only want to
decide whether there are disjoint connected sets containing terminal sets S and T , but also
minimize the size of the corresponding cut (if it exists). Van ’t Hof et al. [44] showed that
2-Disjoint Connected Subgraphs is NP-complete in general graphs, even if |S| = 2, and
Gray et al. [25] proved that the problem is NP-complete on planar graphs. This implies that
Two-Sets Cut-Uncut is also NP-complete on planar graphs.

Second, Two-Sets Cut-Uncut is closely related to the Network Diversion problem,
which has been studied extensively by the operations research and networks communities [10,
11, 19, 22, 29, 36]. In this problem, we are given an undirected graph G, two terminal vertices
s and t, an edge b = uv, and an integer k. The task is to decide whether it is possible to
delete at most k edges such that the edge b will become a bridge with s on one side and t on
the other. Equivalently, the task is to decide whether there exists a minimal s-t-cut of size at
most k + 1 containing b. While this problem seems very similar to the classic s-t-Minimum
Cut problem, the complexity status of this problem (P vs. NP) is widely open. Let us
observe that a polynomial-time algorithm for the special case of Two-Sets Cut-Uncut
with |S| = |T | = 2 implies a polynomial time algorithm for Network Diversion: There are
two cases, either s is in the same component as u, or s is in the same component as v, and
these correspond to instances of Two-Sets Cut-Uncut with S = {s, u} and T = {t, v}
and S = {s, v} and T = {t, u}, respectively.

Network Diversion has important applications in transportation networks and has
therefore also been studied on planar graphs. Cullenbine et al. [10] gave a polynomial-
time algorithm for Network Diversion on planar graphs for the special case when both
terminals s and t are located on the same face. They posed as an open problem whether
this polynomial-time algorithm can be generalized to work on arbitrary planar graphs [10].
Duan et al. put out a preprint [18], which among other results, claims an algorithm resolving
Network Diversion on planar graphs in polynomial time, but without a description
of the algorithm. We were not able to verify the correctness of the result due to several
missing details. The result, however, is an immediate consequence of our main contribution,
Theorem 1, establishing the fixed-parameter tractability of Two-Sets Cut-Uncut on
planar graphs parameterized by |S|+ |T |. Theorem 1 also establishes a more general result
about fixed-parameter tractability of the problem parameterized by the minimum number of
faces r of the graph containing all terminals. (Notice that r never exceeds |S|+ |T |.)

I Theorem 1. There is a one-sided-error randomized algorithm solving Two-Sets Cut-
Uncut on planar graphs in 2|S|+|T |

· nO(1)
time. Moreover, there is a one-sided-error

randomized algorithm solving the problem in 2O(r)
· nO(1)

time, where r is the number of

faces needed to cover S fi T in a planar embedding.

Theorem 1 provides the first polynomial-time algorithm for Two-Sets Cut-Uncut on
planar graphs for non-singleton S and T . Duan and Xu [19] showed how to solve Two-Sets
Cut-Uncut on planar graphs for |S| = 1 and |T | = 2. This was later extended by Bezáková
and Langley [4], who present an O(n4)-time algorithm for |S| = 1 and arbitrary T on planar
graphs. However, the polynomial time solvability of the case |S| = |T | = 2 (which is a
generalization of Network Diversion) remained open.
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The main tool we develop for showing Theorem 1 is a new algorithmic result about
computing shortest paths in group-labeled graphs. We believe this new result to be of
independent interest. The group that we consider is the Boolean group (Zd

2
,+), consisting

of length-d binary vectors, where the operation + is the component-wise exclusive or (xor).
Our algorithm finds a shortest s-t-path in a graph, whose edges are labeled by elements
of (Zd

2
,+) such that the sum of the labels assigned to the edges of the path equals a given

value. Furthermore, we impose the constraint that the path can visit certain sets of vertices
only once. Formally, we consider the following problem.

Input: A graph G, two vertices s and t, an edge labeling function g : E(G) æ Zd
2, a

value c œ Zd
2, and p sets of vertices X1, . . . , Xp ™ V .

Task: Find an s-t-path P in G that satisfies
(i)

q
eœE(P ) g(e) = c, and

(ii) for each i œ [p], |V (P ) fl Xi| Æ 1,
and among all such paths minimizes the length.

Xor-Constrained Shortest Path

In Section 3, we give an algorithm for Xor-Constrained Shortest Path that in fact
works for general graphs instead of only planar graphs. The result is the following theorem.

I Theorem 2. Xor-Constrained Shortest Path can be solved in 2d+p
· (n+m)O(1)

time

by a one-sided-error randomized algorithm.

We call the problem variant where we replace path by cycle in the above problem definition
Xor-Constrained Shortest Cycle. We will later show that Theorem 2 directly implies
an algorithm for Xor-Constrained Shortest Cycle with the same running time.

The proof of Theorem 2 is based on enhancing the technique introduced by Björklund,
Husfeldt, and Taslaman [7] for the T -cycle problem. In T -cycle, the task is to find a
shortest cycle that visits a list of specified vertices T ™ V (G)1, and Björklund et al. gave
a 2|T |nO(1)-time algorithm for it. Our algorithm generalizes the algorithm of Björklund et
al., because T -cycle can be reduced to Xor-Constrained Shortest Cycle with d = |T |
and p = 0 as follows. We assign each vertex v œ T to one dimension of Zd

2
, and to enforce

that the cycle passes through v, we add a true twin u of v, that is, a vertex adjacent to v
with the same neighborhood as v to the graph and assign the edge uv the vector in Zd

2
that

has 1 at only the dimension assigned to v. All other edges are assigned the zero vector 0. A
cycle evaluating to the all-one vector corresponds to a cycle that visits all vertices in T .

Related work. Besides the closely related work on Network Diversion, 2-Disjoint
Connected Subgraphs, and Two-Sets Cut-Uncut that we already mentioned above,
let us briefly go through other relevant work.

Two-Sets Cut-Uncut is a special case of Multiway Cut-Uncut, where for a
given equivalence relation on the set of terminals, the task is to find a cut (or node-cut)
separating terminals according to the relation. This problem is well-studied in parameterized
complexity [8, 13, 41]. However, all previous work on parameterized algorithms for Multiway
Cut-Uncut has focused on parameterizing by the size of the cut.

1 The algorithm can also take a list of edges as input by subdividing each target edge and add the new
vertex to T .
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22:4 Two-Sets Cut-Uncut on Planar Graphs

Multiway Cut is also one of the closest relatives of our problem. Here for a given set
of k terminals, one looks for a minimum number of edges separating all terminals. On planar
graph, the seminal paper of Dahlhaus et al. [15] provides an algorithm of running time nO(k).
Klein and Marx [32] improve the running time to nO(

Ô
k) and Marx [37] shows that this

running time is optimal (assuming the Exponential Time Hypothesis (ETH)).
The second part of Theorem 1 concerns the parameterization by the number of faces cov-

ering the terminal vertices. Such parameterization comes naturally for optimization problems
about connecting or separating terminals in planar graphs. In particular, parameterization
by the face cover was investigated for Multiway Cut [39], Steiner Tree [3, 31], and
various flow problems [21, 23, 35].

Our Theorem 2 belongs to the intersection of two areas around paths in graphs. The
first area is about polynomial-time algorithms computing shortest paths in group-labeled
graphs [16, 26, 33]. Recently, Iwata and Yamaguchi [28] gave an algorithm for shortest
non-zero paths in arbitrary group-labeled paths. However, for our purposes, we need an
algorithm computing a shortest path whose labels sum to a specific element of the group.

The second area is about FPT algorithms for finding paths in graphs satisfying certain
properties [6, 7, 24, 20, 34, 45]. As mentioned above, our algorithm for Xor-Constrained
Shortest Path can be seen as an extension of the algorithm of Björklund, Husfeldt, and
Taslaman [7] for the T -cycle problem to a group-labeled setting.

Organization. The remainder of the article is organized as follows. We start with a general
overview of how we achieve our two main results. We then present some notation and
necessary definitions in Section 2. Afterwards, we show how to solve Xor-Constrained
Shortest Path in Section 3. In Section 4, we apply this algorithm to show Theorem 1 by
developing a (randomized) FPT-time algorithm for Two-Sets Cut-Uncut parameterized
by the minimum number of faces such that each terminal vertex is incident to at least one
such face. Section 5 is devoted to showing that Two-Sets Cut-Uncut is W[1]-hard on
general graphs when parameterized by the number of terminals. We conclude in Section 6
with several open problems. Due to space constraints, proofs of some statements are omitted
in this extended abstract. These statements are marked (ı). The detailed proofs can be
found in the full arXiv version of the paper [2]. In the full version, we also present two
applications of our FPT-time algorithm to generalize known results from the literature.

1.1 Outline of the Proofs for Theorems 1 and 2
In this section, we outline the proofs of Theorems 1 and 2. For Theorem 1, we first outline
the 2|S|+|T |

· nO(1)-time algorithm for planar Two-Sets Cut-Uncut and then discuss the
setting when S fi T can be covered by at most r faces. Then we consider Theorem 2.

We observe that any optimal solution to Two-Sets Cut-Uncut is an (inclusion-wise)
minimal cut in the graph G. Our algorithm is based on the relation between minimal
cuts in a planar graph and cycles in its dual graph (see Figure 1). In particular, a set of
edges C ™ E(G) is a cut-set of a minimal cut in G if and only if in the dual graph Gú, the
corresponding set Cú

™ E(Gú) is a (simple) cycle. Now, to translate Two-Sets Cut-Uncut
into a problem about finding a cycle Cú in Gú, we wish to understand, based on Cú, whether
two terminal vertices u and v are on the same side of the cut C in G or on di�erent sides.
For this, we observe that if P ™ E(G) is the set of edges of an (arbitrary) u-v-path in G and
P ú is the corresponding set of edges in Gú, then u and v are on di�erent sides of C if and
only if |Cú

fl P ú
| is odd.
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Figure 1 An example of a plane graph (blue) and its dual (multi)graph (dashed/red). Notice
that there are bijections between the faces and the vertices, and also between the edges, that is,
there is exactly one blue vertex in each red face, one red vertex in each blue face, and each red edge
intersects exactly one blue edge and vice versa.

It follows that a constraint stating that ui and vi should be on the same/di�erent side of
the cut C in G can be expressed as a constraint stating that |Cú

flP ú

i | should be even/odd for
some P ú

i ™ E(Gú). By selecting one vertex v in the set of terminals S and writing a “same
side” constraint with every other terminal vertex in S and a “di�erent side” constraint with
every terminal vertex in T , the Two-Sets Cut-Uncut problem reduces to the problem of
finding a shortest cycle Cú in Gú that satisfies |S|+ |T | ≠ 1 given constraints, each requiring
that |Cú

fl P ú

i | © bi (mod 2) for some P ú

i ™ E(Gú) and bi œ {0, 1}.
This problem can be equivalently phrased as the Xor-Constrained Shortest Cycle

problem with d = |S|+ |T |≠1, and therefore Theorem 2 indeed implies a 2|S|+|T |
·nO(1)-time

algorithm for Two-Sets Cut-Uncut on planar graphs. Note that here we did not use the
condition (ii) in the statement of the Xor-Constrained Shortest Path problem; this
condition will be used only for the algorithm utilizing the face cover.

Next, we turn to the more general setting when SfiT can be covered by at most r faces in
a planar embedding of G. First, we observe that by the results of Bienstock and Monma [5],
we can decide in 2O(r)

· n time whether the input graph has a planar embedding such that
the terminals can be covered by at most r faces. Thus, we can assume that G is a plane
graph and we are given a face cover of S fi T . Further, we observe that it can be assumed
without loss of generality that the input graph is 2-connected. This assumption simplifies
arguments because the boundary of each face of a plane 2-connected graph is a cycle [17].

Suppose that f is a face of G that covers some terminals and let C Õ be the cycle forming
the frontier of f . We use the following crucial observation: for the cut-set C ™ E(G) of
any minimal cut in G separating S and T , it holds that (i) if C Õ contains vertices of both
sets of terminals, then C fl E(C Õ) separates C Õ into two connected components (paths) such
that each component contains the vertices of exactly one set of terminals, and (ii) if C Õ

contains vertices of one set, then either C fl E(C Õ) = ÿ or C fl E(C Õ) separates C Õ into two
connected components (paths) such that the terminals are in the same component. We use
this observation to restrict the behavior of the cycle Cú in Gú corresponding to a potential
solution cut-set C. In case (i), we simply delete the edges of Gú that correspond to the
edges of C Õ that should not participate in C (see Figure 2 (a) in the proof of Theorem 1).
Case (ii) is more complicated. Suppose that C Õ contains q terminals. We find q internally
vertex disjoint paths P1, . . . , Pq in C Õ whose end-vertices are the terminals. Then we “split”

ICALP 2024



22:6 Two-Sets Cut-Uncut on Planar Graphs

the vertex f of Gú into q vertices f1, . . . , fq in such a way that each fi is incident to the
edges of Gú corresponding to the edges of Pi (see Figure 2 (b)). However, this splitting
would allow a cycle in the dual graph to visit the face f several times. To forbid this, we
define Xf = {f1, . . . , fq} as used in constraint (ii) of Xor-Constrained Shortest Path
and this is the reason why we need constraint (ii) in the problem definition.

We perform the modifications of Gú for all the faces in the cover. This allows us to
restrict the number of terminals that we should separate. We pick representatives for each
face f in the cover. If the frontier cycle C Õ of f contains terminals from both sets, we
chose one representative from each set from the terminals on C Õ. If C Õ contains terminals
from one set, we choose one representative. We then apply the same algorithm as for the
parameterization by |S|+ |T |. The di�erence is that we work only with the representatives
and add constraint (ii) to the auxiliary instance of Xor-Constrained Shortest Path
given by the sets constructed for the faces from the cover.

We conclude by sketching the main ideas of the algorithm from Theorem 2 for Xor-
Constrained Shortest Path. This algorithm works not only on planar graphs but also
on general graphs, and it is a generalization of the algorithm by Björklund, Husfeldt, and
Taslaman [7] for the T -cycle problem. Our algorithm, like many previous parameterized
algorithms for finding paths in graphs [6, 7, 24, 34, 45], exploits the cancellation of monomials
in polynomials over fields of characteristic two and randomized polynomial identity testing [42,
46].

The idea of our algorithm is to associate with the input a polynomial over a finite field of
characteristic two, and argue that (1) this polynomial is non-zero if and only if a solution
exists, and (2) given an assignment of values to variables of the polynomial, the value of the
polynomial can be evaluated in 2d+p

· nO(1) time.2 By the DeMillo–Lipton–Schwartz–Zippel
lemma [42, 46], the problem can then be solved in 2d+p

· nO(1) time by evaluating the
polynomial for a random assignment of values. Note that solving the decision version also
allows to recover the solution by self-reduction.

In more detail, the polynomial associated with the input is defined as follows. Let us
assume that the input graph is a simple graph, as the problem on multigraphs can easily
be reduced to simple graphs. For each edge e œ E(G) of the input graph, we associate
a variable f(e), and then, for an s-t-walk W = (e1, e2, . . . , e¸) of length ¸, we associate a
monomial f(W ) =

r¸
i=1

f(ei). For an integer ¸, we let C¸ denote the set of all s-t-walks
of length ¸ that satisfy the conditions (i) and (ii) of the statement of Xor-Constrained
Shortest Path, and finally let f(C¸) =

q
WœC¸

f(W ) be the polynomial associated with the
input. As the monomials of f(C¸) correspond to walks instead of paths, it is not complicated
to design a 2d+p

· nO(1)-time dynamic program for evaluating the value of f(C¸). A more
technical part of the proof is to argue that the polynomial f(C¸) is non-zero if and only if
a solution exists, in particular, that monomials corresponding to walks that are not paths
cancel each other out. This argument is a generalization of the argument used by Björklund
et al. [7].

2 Preliminaries

For integers a and b, we use [a, b] to denote the set {a, a+ 1, . . . , b} and [b] to denote the
set [1, b].

2 Recall that p is the number of constraints for condition (ii) in the Xor-Constrained Shortest Path
problem.
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Graphs. In this paper, we consider undirected multigraphs, that is, we allow multiple
edges and self-loops. We use standard graph-theoretic notation and refer to the textbook by
Diestel [17] for undefined notions. Let G = (V,E) be an undirected graph. We use V (G)
and E(G) to denote the set of vertices and the set of edges of G, respectively. We use n
and m to denote the number of vertices and edges in G, respectively. A path P is a graph
with vertex set {v0, v1, . . . , v¸} and edge set {vi≠1vi | i œ [¸]}. The vertices v0 and v¸ are
called the endpoints of P . A cycle C is a path with an additional edge between the two
endpoints. The length of a path or a cycle is the number of edges in it. For a vertex
subset U ™ V , we use G[U ] to denote the subgraph of G induced by the vertices in U
and G ≠ U to denote G[V \ V Õ]. For a set of edges S ™ E, we write G ≠ S to denote the
graph obtained from G by deleting the edges of S.

We are mostly interested in planar input graphs. We refer the reader to the textbooks of
Diestel [17] and Agnarsson and Greenlaw [1] for rigorous introductions. Informally speaking,
a graph is planar if it can be drawn on the plane such that its edges do not cross each other.
Such a drawing is called a planar embedding of the graph and a planar graph with a planar
embedding is called a plane graph. We note that checking whether a graph is planar and
finding a planar embedding can be done in linear time by the classic algorithm of Hopcroft
and Tarjan [27]. The faces of a plane graph are the regions bounded by a set of edges and
that do not contain any other vertices or edges. The vertices and edges on the boundary of a
face form its frontier.

Given a plane graph G = (V,E) with faces F , its dual graph Gú = (F,Eú) (see Figure 1)
is defined as follows. The vertices of Gú are the faces of G and for each e œ E(G), Gú has
the dual edge eú whose endpoints are either two faces having e on their frontiers or eú is a
self-loop at f if e is in the frontier of exactly one face f (i.e., e is a bridge of G). Observe
that Gú is not necessarily simple even if G is a simple graph as the example in Figure 1
shows. We note that Gú is a planar graph that has a plane embedding where each vertex of
Gú corresponding to a face f of G is drawn inside f and each dual edge eú intersects e only
once and eú does not intersect any other edge of G. Throughout this paper, we assume that
Gú has such an embedding.

It is crucial for our results that for a connected plane graph G, each minimal cut in G
has a one-to-one correspondence to a cycle in Gú. To be more precise, recall that each cycle
on the plane has exactly two faces. Then (A,B) is a minimal cut of a plane graph G if and
only if there is a cycle Cú in Gú such that the vertices of A are inside one face of Cú and the
vertices of B are inside the other face. Furthermore, Cú is formed by the edges eú that are
dual to the edges e œ cut(A) and the length of Cú is | cut(A)|.

Let G be a plane graph and let Gú be its dual. We say that a path P (a cycle C) in G
crosses a cycle Cú of Gú in e œ E(P ) (e œ E(C), respectively) if Cú contains the edge eú

œ Eú

that is dual to e. The number of crosses of P and Cú is the number of edges of P where P
and Cú cross. We use the following observation.

I Observation 3. Let G be a plane graph, let s, t œ V , and let P be an s-t-path. For any

cycle Cú
of Gú

, s and t are in distinct faces of Cú
if and only if the number of crosses of P

and Cú
is odd.

Lastly, given a subset U ™ V of vertices in a plane graph G with faces F , a face cover

of U is a subset F Õ
™ F of faces such that each vertex in U is on the frontier of a face in F Õ.

Groups. The group (Zd
2
,+) consists of the set of all length-d binary strings, and the sum

of two strings is defined as the bitwise xor of the strings (or addition without carry over).
In this regards, it can be seen as the d-dimensional bitwise xor vector space Fd

2
. It is easy
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to see that this is indeed an (abelian) group: (1) The closure property is trivial, since it by
definition contains every length-d binary string. (2) Associativity can be seen by a simple
case analysis, i.e., (a ü b) ü c = a ü (b ü c) is bitwise 1 if and only if there is an odd number
of 1s in the bit’s position. (3) The identity element is the all 0 vector, i.e. aü 0 = a. (4) The
inverse element of a is a itself, i.e., a ü a = 0.

3 Shortest Paths under Xor Constraints

In Xor-Constrained Shortest Path, we are given a graph G, two vertices s and t, an edge-
labeling function g : E(G) æ Zd

2
, a value c œ Zd

2
, and p sets of vertices X1, . . . ,Xp ™ V (G).

The problem is to find an s-t-path P that satisfies (i)
q

eœE(P )
g(e) = c and (ii) for each i œ [p],

|V (P ) fl Xi| Æ 1, and among such paths minimizes the number of edges in P . In this section
we prove Theorem 2, which we restate here.

I Theorem 2. Xor-Constrained Shortest Path can be solved in 2d+p
· (n+m)O(1)

time

by a one-sided-error randomized algorithm.

As a corollary, we obtain an algorithm for Xor-Constrained Shortest Cycle by
guessing one vertex v in a solution, adding a false twin u of v, that is, a non-neighbor of v
with the same neighborhood as v to the input graph such that all edges incident to u are
assigned value zero, and then asking for a shortest u-v-path satisfying conditions (i) and (ii).

I Corollary 4. Xor-Constrained Shortest Cycle can be solved in 2d+p
·(n+m)O(1)

time

by a one-sided-error randomized algorithm.

3.1 The Algorithm
In the remainder of this section, we assume that the input graph G is a simple graph. Note
that an input n-vertex m-edge multigraph can be turned into an (n+m)-vertex 2m-edge
simple graph by first removing self-loops, and then subdividing each edge once, giving the
label of the edge to one of the subdivision edges and labeling the other subdivision edge
with zero. This exactly doubles the length of the solution. We also assume without loss of
generality that s ”= t.

Let us next introduce some notation. We say that a sequence (v0, v1, . . . , v¸≠1, v¸)
of ¸ + 1 vertices is an s-t-walk of length ¸ if v0 = s, v¸ = t, and vi≠1vi œ E(G) for
each i œ [¸]. Note that unlike a path, a walk can contain a vertex more than once. We say
that an s-t-walk is feasible if it satisfies analogies of the contraints (i) and (ii), in particular, if
1.

q¸
i=1

g(vi≠1vi) = c, and
2. for each i œ [p], there is at most one j œ [0, ¸] such that vj œ Xi.
For an integer ¸ Ø 1, let C¸ denote the set of all feasible s-t-walks of length (exactly) ¸. We
associate with C¸ a polynomial as follows.

Let q = 2Álog2 nË+1, and recall that GF(q) is a finite field of characteristic 2 and order q.
We define a polynomial over GF(q) as follows. For each edge uv œ E(G) we associate a
variable f(uv). Then, for an s-t-walk W = (v0, . . . , v¸) of length ¸, we associate the monomial

f(W ) =
Ÿ̧

i=1

f(vi≠1vi), (1)

and for the set C¸ of all feasible s-t-walks of length ¸, we associate the polynomial

f(C¸) =
ÿ

WœC¸

f(W ).

Note that the degree of f(C¸) is ¸. Our algorithm will be based on the following lemma,
which will be proven in Section 3.2.
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I Lemma 5. The length of a shortest s-t-path satisfying (i) and (ii) is equal to the smallest

integer ¸ such that f(C¸) is a non-zero polynomial. If no such ¸ exists, then no such s-t-path
exists.

Given Lemma 5, it remains to design an algorithm for testing if f(C¸) is a non-zero
polynomial. For this, we use the DeMillo–Lipton–Schwartz–Zippel lemma.

I Lemma 6 ([42, 46]). Let f(x1, . . . , xn) be a non-zero polynomial of degree d over a field F,
and let S be a subset of F. If each xi is independently assigned a uniformly random value

from S, then f(x1, . . . , xn) = 0 with probability at most d/|S|.

By Lemma 6 to probabilistically test if f(C¸) is non-zero it su�ces to evaluate f(C¸) on a
random assignment of values from GF(q) to the variables f(uv). Because the degree of f(C¸)
is ¸ Æ n and the order of GF(q) is q Ø 2n, this test is correct with probability at least 0.5
whenever f(C¸) is non-zero. Note that if f(C¸) is the zero polynomial, this test is always
correct. Next we show that this evaluation can be done e�ciently.

I Lemma 7. Given an assignment of values to the variables f(uv) for all uv œ E(G), the
value of the polynomial f(C¸) can be evaluated in O(2d+pn2¸) time.

Proof. We evaluate the polynomial by dynamic programming on walks. For u œ

V (G), l œ [0, ¸], y œ Zd
2
, and T ™ [p], let C(u, l, y, T ) denote the set of s-u-

walks (s = v0, v1, . . . , vl = u) of length l whereql
i=1

g(vi≠1vi) = y,
for each i œ [p] \ T , it holds that {v0, v1, . . . , vl} fl Xi = ÿ, and
for each i œ T , there exists exactly one j œ [0, l] such that vj œ Xi.

We denote by f(C(u, l, y, T )) the value
q

WœC(u,l,y,T )
f(W ), where f(W ) is defined as in

Equation (1), with the empty product interpreted as being equal to 1. Now, we have
that f(C¸) =

q
T™[p] f(C(t, ¸, c, T )). It remains to show that the values f(C(u, l, y, T )) can

be computed by dynamic programming.
Let Tv = {i œ [p] | v œ Xi} for each v œ V (G). Then, the values for l = 0 are computed

by setting f(C(s, 0, 0, Ts)) = 1 and all other values with l = 0 to 0. When l Ø 1, the
values f(C(u, l, y, T )) are computed by dynamic programming from the values for smaller l
as follows.

If Tu ™ T , then f(C(u, l, y, T )) =
q

uwœE(G)

f(uw) · f(C(w, l ≠ 1, y ≠ g({u,w}), T \ Tu)).

Otherwise, f(C(u, l, y, T )) = 0.
This clearly computes the values correctly, and runs in overall O(2d+pn2¸) time. J

Now, our algorithm works by using Lemma 7 to evaluate f(C¸) for random assignments
of values to variables f(uv) for increasing values of ¸ Æ n, and once it evaluates to non-zero,
reports that ¸ is the length of the shortest s-t-path satisfying (i) and (ii). If no such ¸ Æ n is
found, the algorithm reports that no such s-t-path exists. Note that the correctness of the
algorithm depends only on the randomness on the evaluation with the correct ¸, and therefore
the algorithm is correct with probability at least 0.5, and never reports a length shorter than
the length of a shortest solution. This probability can be exponentially improved by running
the algorithm multiple times. To recover the solution, it su�ces to use the algorithm to test
which edges can be removed from the graph G until G turns into an s-t-path. Clearly, to
both recover the solution and to have an exponentially small error probability it su�ces to
run the algorithm a polynomial number of times, so this finishes the proof of Theorem 2,
modulo the proof of Lemma 5 that will be given in the next subsection.
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3.2 Proof of Correctness
This section is devoted to the proof of Lemma 5. We first prove the direction that the
existence of a solution of length ¸ implies that f(C¸) is non-zero.

I Lemma 8. If an s-t-path of length ¸ satisfying (i) and (ii) exists, then f(C¸) is a non-zero

polynomial.

Proof. Let W = (s = v0, v1, . . . , v¸ = t) be the sequence of vertices on an s-t-path of length ¸
satisfying conditions (i) and (ii). Note that W is a feasible s-t-walk and W œ C¸. Since
each vertex occurs in the walk W at most once, we observe that W can be determined
uniquely from its set of edges, and W is therefore the only walk in C¸ with the mono-
mial f(W ) =

r¸
i=1

f(vi≠1vi). Thus, the monomial f(W ) occurs in the polynomial f(C¸)
with coe�cient 1, and therefore f(C¸) is non-zero. J

It remains to prove that if no solutions of length at most ¸ exists, then f(C¸) is the zero
polynomial. For this, let us state our main lemma, but delay its proof for a bit.

I Lemma 9. If no s-t-path of length at most ¸ satisfying conditions (i) and (ii) exists, then

there exists a function „ : C¸ æ C¸ such that for every W œ C¸ it holds that

1. „(„(W )) = W ,

2. „(W ) ”= W , and

3. f(„(W )) = f(W ).

Now, assuming Lemma 9, the proof of Lemma 5 can be finished as follows.

I Lemma 10. If no s-t-path of length at most ¸ satisfying conditions (i) and (ii) exists,

then f(C¸) is the zero polynomial.

Proof. Let „ be the function given by Lemma 9. By properties 1 and 2, the set C¸ can be par-
titioned into pairs {W,„(W )}. Now, property 3 states that f(W ) = f(„(W )) and since GF(q)
is a field of characteristic 2, it holds that f(W )+f(„(W )) = 0. Thus,

q
WœC¸

f(W ) = 0. J

Putting Lemmas 8 and 10 together implies Lemma 5. It remains to prove Lemma 9.

Proof of Lemma 9. Assume that no s-t-path of length at most ¸ satisfying (i) and (ii) exists.
We will define the function „ : C¸ æ C¸ explicitly and show that it satisfies all of the required
properties. Let W = (v0, v1, . . . , v¸) be an s-t-walk in C¸. The idea of the definition of „
will be to locate a subwalk (vi, vi+1, . . . , vj≠1, vj) of W where 0 Æ i < j Æ ¸, and reverse the
subwalk, i.e., map the walk

W = (v0, v1, . . . , vi≠1, vi, vi+1, . . . , vj≠1, vj , vj+1, . . . , v¸)

into the walk

W
Ω≠≠
[i, j] = (v0, v1, . . . , vi≠1, vj , vj≠1, . . . , vi+1, vi, vj+1, . . . , v¸).

In particular, we will have that „(W ) = W
Ω≠≠
[i, j] for a carefully chosen pair i, j

with 0 Æ i < j Æ ¸. This pair will be chosen so that vi = vj , which ensures that W
Ω≠≠
[i, j] œ C¸

and f(W
Ω≠≠
[i, j]) = f(W ) since the multiset of pairs of adjacent vertices in the walk does not

change.
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It remains to argue that such a pair i, j can be chosen so that the properties „(„(W )) = W
and „(W ) ”= W hold. Observe that the property „(W ) ”= W holds if and only if the subwalk
from i to j is not a palindrome, i.e., a sequence that is the same when reversed. Now we
define a process that outputs a pair i, j so that 0 Æ i < j Æ ¸, vi = vj , and the subwalk
from i to j is not a palindrome.

The process starts by setting i = j = 0. Then, it repeats the following: It first selects i to
be the smallest integer i > j so that the vertex vi occurs in the walk in the indices greater
than j more than once. If no such i exists, it outputs FAIL. Then, it sets j to be the largest
integer so that vi = vj , in particular, the index of the last occurrence of vi in the walk. At
this point, it is guaranteed that 0 Æ i < j Æ ¸ and vi = vj . Now, if the subwalk from i to j
is not a palindrome, it outputs the pair i, j. Otherwise, the process repeats.

Observe that the process always outputs either FAIL or a pair i, j with 0 Æ i < j Æ ¸
and vi = vj such that the subwalk from i to j is not a palindrome. We prove that it actually
never outputs FAIL.

B Claim 11. The process defined above never outputs FAIL.

Proof of Claim 11. Suppose that the process output FAIL and let i1 < j1 < i2 < . . . < jt be
the sequence of pairs i, j considered during the process. We define the contracted walk W Õ

to be the subsequence of W = (v0, . . . , v¸) obtained by removing the vertices on the indices
in [i1 +1, j1]fi [i2 +1, j2]fi . . .fi [it +1, jt] from W . In particular, W Õ is obtained from W by
contracting each palindrome vik , . . . , vjk considered in the process into a single vertex vik .

Now, we claim that W Õ is a feasible s-t-walk of length at most ¸, and moreover that no
vertex occurs more than once in W Õ. This is a contradiction, because in that case W Õ would
be in fact an s-t-path of length at most ¸ that satisfies conditions (i) and (ii), but we assumed
that no such s-t-path exists. We observe that the contracted walk W Õ is indeed an s-t-walk,
because it was obtained from an s-t-walk by contracting subwalks that each start and end in
a same vertex. It also clearly has length at most ¸, and it satisfies the condition (ii) because
the multiset of vertices in W Õ is a subset of the multiset of vertices in W . For condition (i),
we observe that if a subwalk vi, . . . , vj is a palindrome, then

qj
k=i+1

g(vk≠1vk) = 0 because
each pair of adjacent vertices occurs an even number of times as G is a simple graph and we
are working in the group Zd

2
. Thus, contracting the palindromes does not change the sum of

the edge labels on W , and thus W Õ satisfies condition (i).
Lastly, we argue that no vertex occurs more than once in W Õ. For the sake of con-

tradiction, suppose that some vertex occurs more than once in W Õ, which in particular
implies that there are indices iÕ,jÕ with 0 Æ iÕ < jÕ

Æ ¸ and viÕ = vjÕ that are not
in [i1 + 1, j1] fi [i2 + 1, j2] fi . . . fi [it + 1, jt]. If iÕ < i1, then this would contradict the choice
of i1, and if iÕ = i1, then this would contradict the choice of j1. Similarly, if jk < iÕ Æ ik+1

for some 1 Æ k < t, then this would contradict either the choice of ik+1 or jk+1, and if iÕ > jt,
then this would contradict the fact that it, jt was the last pair considered by the algorithm.

C

Now, the function „ : C¸ æ C¸ is defined as „(W ) = W
Ω≠≠
[i, j], where i, j is the pair output by

the process described above. We have already proven that „(W ) ”= W and f(„(W )) = f(W ),
so it remains to prove that „(„(W )) = W . For this, it remains to observe that the
operation W

Ω≠≠
[i, j] does not change how the process for selecting i,j behaves, because it does

not change the walk before the index i and it does not change the fact that the last occurrence
of vi is at the index j. J

This finishes the proof of Theorem 2.
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4 Two-Sets Cut-Uncut Parameterized by the Face Cover Number

In this section, we show that Two-Sets Cut-Uncut is FPT when parameterized by the
minimum number of faces in a planar embedding of the input graph covering the terminals.
We use the following result by Bienstock and Monma [5] showing that a minimum face cover
can be found in FPT time when parameterized by the size of a cover.

I Proposition 12 ([5]). It can be decided in 2O(r)
· n time whether for a set of vertices U

of a planar graph G and a positive integer r, there is a planar embedding of G such that at

most r faces cover U . Furthermore, if such an embedding exists, it can be found together

with the face cover of U in the same time.

By Proposition 12, we can assume that the input graph is plane, that is, we are given its
planar embedding and, furthermore, we are given a face cover of the terminals.

Next, we note that we can consider only minimal cuts.

I Observation 13 (ı). Let (G,S, T, k) be an instance of Two-Sets Cut-Uncut where G
is a connected graph. Then, (G,S, T, k) is a yes-instance if and only if there is a minimal

cut (A,B) of G with |cut(A)| Æ k such that S ™ A and T ™ B.

This observation implies that to solve Two-Sets Cut-Uncut on a plane graph G, we
have to find a shortest cycle Cú in the dual graph Gú such that the vertices of S and T are
in distinct faces of Cú. First, we prove that we can assume without loss of generality that
the input graph is 2-connected. This assumption simplifies arguments because the frontier of
each face of a plane 2-connected graph is a cycle [17].

I Lemma 14 (ı). There is a polynomial-time algorithm that, given an instance (G,S, T, k) of
Two-Sets Cut-Uncut, solves the problem or outputs an equivalent instance (GÕ, SÕ, T Õ, k)
of Two-Sets Cut-Uncut where GÕ

is a 2-connected induced subgraph of G. Furthermore,

given a planar embedding of G such that S fi T can be covered by at most r faces, SÕ
fi T Õ

can

be covered in the induced embedding of GÕ
by at most r faces.

From now on, we assume that the graph of the considered instances of Two-Sets
Cut-Uncut is 2-connected. Hence, the dual graph Gú has no loops. Also, since loops are
irrelevant for Two-Sets Cut-Uncut, we assume that the input graph has no loops.

We use the following two separation properties for vertices on the frontier of the same
face of a graph.

I Lemma 15. Let G be a plane graph, let C be the cycle formed by the frontier of a face f
of G, and let X and Y be disjoint nonempty sets of vertices in C. Let Cú

be any cycle

in Gú
. Then, the vertices of X and the vertices of Y are in distinct faces of Cú

if and only

if f œ V (Cú) and C crosses Cú
in two edges e1 and e2 such that (i) the vertices of X are

in the same connected component of C ≠ {e1, e2}, (ii) the vertices of Y are in the same

connected component of C ≠ {e1, e2}, and (iii) the vertices of X and the vertices of Y are in

distinct connected components of C ≠ {e1, e2}.

Proof. Suppose that the vertices of X and the vertices of Y are in distinct faces of Cú. Then,
f is a vertex of Cú. Let eú

1
and eú

2
be the edges of Cú incident to f and let e1 and e2 be the

dual edges of eú
1
and eú

2
, respectively. Note that C contains both e1 and e2 and C crosses Cú

only in these two edges. We have that C ≠ {e1, e2} has two connected components P1 and P2

that are paths. Since Cú separates X and Y , we have that X is fully contained in P1 or fully
contained in P2 and Y is fully contained in the respective other path. Thus, conditions (i)–(iii)
are fulfilled.
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For the opposite direction, assume that C crosses Cú in two edges e1 and e2 such that
conditions (i)–(iii) are fulfilled. Consider an x-y-path P in C for arbitrary x œ X and y œ Y
containing e1 and excluding e2 that exists by (i)–(iii). The number of crosses of P and Cú

is one. Hence, x and y are in distinct faces of Cú by Observation 3. This concludes the
proof. J

I Lemma 16. Let G be a plane graph, let C be the cycle formed by the frontier of a face f
of G, and let X be a nonempty sets of vertices in C. Let Cú

be any cycle in Gú
. Then, the

vertices of X are in the same face of Cú
if and only if either f /œ V (Cú) and C does not

cross Cú
or f œ V (Cú) and C crosses Cú

in two edges e1 and e2 such that the vertices of X
are in the same connected component of C ≠ {e1, e2}.

Proof. Suppose that the vertices of X are in the same face of Cú and assume that C
crosses Cú. Then, f is a vertex of Cú and Cú has two edges eú

1
and eú

2
incident to f . We have

that C crosses Cú in the edges e1 and e2 that are dual to eú
1
and eú

2
, respectively. Since C

is a cycle, C ≠ {e1, e2} has two connected components P1 and P2 that are both paths. We
show that either X ™ V (P1) or X ™ V (P2). For the sake of contradiction, assume that there
are x, y œ X such that x œ V (P1) and y œ V (P2). Then, there is an x-y-path P in C that
contains e1 but excludes e2. The number of crosses of P and Cú is one and x and y are
therefore in distinct faces of Cú by Observation 3; a contradiction. Hence, the vertices of X
are in the same connected component of C ≠ {e1, e2}.

For the opposite direction, assume that either C does not cross Cú or C crosses Cú

in two edges e1 and e2 such that the vertices of X are in the same connected component
of C ≠ {e1, e2}. In both cases, for any two vertices x, y œ X, there is an x-y-path P that
does not cross Cú. Then by Observation 3, the vertices of X are in the same face of Cú.
This concludes the proof. J

We are now in a position to present the main result of this section.

I Theorem 1. There is a one-sided-error randomized algorithm solving Two-Sets Cut-
Uncut on planar graphs in 2|S|+|T |

· nO(1)
time. Moreover, there is a one-sided-error

randomized algorithm solving the problem in 2O(r)
· nO(1)

time, where r is the number of

faces needed to cover S fi T in a planar embedding.

Proof. We show the claim for the parameterization by the size of a face cover of the terminals
and then explain how a simplified version of the algorithm can be used for the parameterization
by the number of terminals.

Let (G,S, T, k) be an instance of Two-Sets Cut-Uncut where G is planar. We use
Proposition 12 to decide whether there is a planar embedding of G such that the set of
terminals S fi T can be covered by at most r faces. When the algorithm reports that such an
embedding does not exist, we stop. Otherwise, we obtain an embedding of G in the plane
and a set of faces F Õ of size at most r covering S fi T . From now on, we assume that G is
a plane graph. We remind that G can be assumed to be 2-connected by Lemma 14. We
use the embedding of G to construct the dual graph Gú together with its embedding. By
Observation 13 and duality, our task is to find a cycle Cú in Gú of length at most k such
that S and T are in distinct faces of Cú. We find such a cycle using the algorithm for
Xor-Constrained Shortest Cycle from Corollary 4.

We partition F Õ into two sets where F1 ™ F Õ is the set of faces having vertices from both S
and T on their frontiers and F2 ™ F Õ consists of the faces f œ F Õ such that the frontier of f
contains either only vertices of S or only vertices of T . We modify Gú by analyzing each
face f œ F Õ. The ultimate aim of the modification is to reduce the number of considered
terminals.
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Figure 2 (a) The modification for f œ F1. The vertices of SÕ are shown by white circles, the
vertices of T Õ are shown by black squares, and the other vertices of G are shown by black circles.
The edges of Gú are shown by dashed lines. The paths P1 and P2 are shown by thick lines. (b) The
modification for f œ F2. The vertices of L œ {S, T} are shown by white circles and the other vertices
of G are shown by small black circles. The vertex f of Gú and the vertices f1, f2 . . . , f4 are shown
by large black circles and the edges of Gú and the constructed new edges are shown by dashed lines.

Modifications for F1. Let f œ F1 and let C be the cycle of G forming the frontier of f .
Recall that SÕ = SflV (C) ”= ÿ and T Õ = T flV (C) ”= ÿ. If there are no two edges e1, e2 œ E(C)
such that the vertices of SÕ and T Õ are in distinct connected components of C ≠ {e1, e2},
then by Lemma 15, there is no cycle Cú such that the vertices of SÕ and the vertices of T Õ

are in distinct faces of Cú. This implies that (G,S, T, k) is a no-instance. Hence, we assume
that this is not the case and select two inclusion-minimal disjoint paths P1 and P2 in C such
that SÕ

™ V (P1) and T Õ
™ V (P2). We modify Gú by deleting each edge eú incident to f that

is dual to an edge e œ E(P1) fi E(P2) (see Figure 2 (a)).

Modifications for F2. Let f œ F2, let C be the cycle of G forming the frontier of f , and
let L = V (C) fl (S fi T ). Note that by definition of F2, either L ™ S or L ™ T . We
split the vertex f of Gú into q = |L| vertices f1, f2, . . . , fq as follows. If q Ø 2, then C
contains q internally vertex disjoint paths P1, P2, . . . , Pq whose end-vertices are in L (and
whose internal vertices are not in L). We then

delete f and construct a set Xf = {f1, f2, . . . , fq} of q new vertices,
for each j œ [q] and edge e in Pj , we replace the dual edge eú of Gú by an edge incident to fj
whose second endpoint is the same as for eú unless eú was deleted by some modification
for F1.

For q = 1, we set Xf = {f} and f1 = f , that is, we do not perform any modification. The
construction is shown in Figure 2 (b). Note that the vertices f1, f2, . . . , fq can be embedded
in the face f of G such that the resulting graph Hú is plane. For each edge eú

œ E(Hú),
there is an edge e œ E(Gú) such that eú was constructed from the edge that is dual to e
in Gú. Slightly abusing notation, we do not distinguish between the edges of Hú and Gú. In
particular, we say that eú is dual to e.

Next, we assign labels to the edges of Hú from Zd
2
for some appropriate d. For this, we

greedily pick a set R of representatives from S fi T for each f œ F Õ. From each f œ F1, we
select two terminals from S and T , respectively, that are on the frontier of the face f of G.
For each f œ F2, we pick one terminal from the frontier of the face of f . We then construct an
arbitrary inclusion minimal tree Q in G that spans R. This can be done in linear time using
standard tools (see, e.g., [9]). We select an arbitrary vertex u œ R fl S and set d = |R| ≠ 1.
Observe that |R| Æ 2|F1|+ |F2| and d Æ 2|F1|+ |F2| ≠ 1. Denote by v1, . . . , vd the vertices
of L \ {u} and let Qi be the u-vi-path in Q for each i œ [d]. We define g : E(G) æ Zd

2
by

setting g(e) = (”1, . . . , ”d)| where for each i œ [d], ”i =
I
1 if e œ E(Qi),
0 if e /œ E(Qi).
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Moreover, let gú : E(Hú) æ Zd
2
be defined by setting gú(eú) = g(e) for each eú

œ E(Hú)
that is dual to e œ E(G) and let c = (c1, . . . , cd)| œ Zd

2
where

ci =
I
0 if vi œ S,

1 if vi œ T
for i œ [d].

We show the following claim using Lemma 15 and Lemma 16.

B Claim 17 (ı). The graph Gú contains a cycle Cú of length at most k such that
the vertices of S and the vertices of T are in distinct faces of Cú if and only if the in-
stance (Hú, gú, c, {Xf | f œ F2}) of Xor-Constrained Shortest Cycle has a solution
and the length of a solution cycle is at most k.

By Claim 17, solving Two-Sets Cut-Uncut for (G,S, T, k) is equivalent to solving
Xor-Constrained Shortest Cycle for (Hú, gú, c, {Xf | f œ F2}). For this, we use the
algorithm from Corollary 4.

For the running time, observe that a face cover F Õ of size r can be constructed in 2O(r)n
time by Proposition 12. Given such a cover, the graphHú together with the setsXf for f œ F2

can be constructed in polynomial time. Since d Æ 2|F1| + |F2| ≠ 1 Æ 2r, the labeling gú

and c œ Zd
2
can also be constructed in polynomial time. Finally, since d Æ 2|F1|+ |F2| ≠ 1

and p = |{Xi | f œ F2}| = |F2|, we have that p + d Æ 2r ≠ 1 and the algorithm from
Corollary 4 runs in 4rnO(1) time. We conclude that the overall running time is in 2O(r)nO(1).
This concludes the proof.

If we parameterize Two-Sets Cut-Uncut by ¸ = |S|+ |T |, then we can use a simplified
variant of the algorithm. Given an instance (G,S, T, k) of Two-Sets Cut-Uncut where G
is a planar graph, we use the classic algorithm of Hopcroft and Tarjan [27] to find a plane
embedding of G. We then use the variant of the algorithm where we do not modify Gú,
that is, we set Hú = Gú, and where we assume that all the terminals are representatives,
that is, we set R = S fi T . The labeling gú : E(Hú) æ Zd

2
and c are defined in the same way

as in the algorithm for the parameterization by the size of a face cover. By Observation 3,
solving Two-Sets Cut-Uncut for (G,S, T, k) is equivalent to solving Xor-Constrained
Shortest Cycle for (Hú, gú, c, ÿ). Since d = |R| ≠ 1 = |S|+ |T | ≠ 1, we conclude that we
can solve the problem in 2|S|+|T |

· nO(1) time using Corollary 4. J

5 Hardness

It is known that Two-Sets Cut-Uncut is NP-complete [25] in planar graphs and that
it is NP-complete in general graphs even if |S| = 2 [44]. We strengthen the latter result
by showing that Two-Sets Cut-Uncut remains W[1]-hard parameterized by |T | even
if |S| = 1 by providing a polynomial-time reduction from Regular Multicolored Clique
parameterized by solution size k – a variant of Multicolored Clique where each vertex
has the same degree d – such that |T | = k. This problem is known to be W[1]-hard and
assuming ETH, it cannot be solved in f(k) · no(k) time [38, 12].

I Proposition 18 (ı). Two-Sets Cut-Uncut is W[1]-hard when parameterized by |T |
even if |S| = 1. Moreover, this restricted version cannot be solved in f(|T |) ·no(k)

time unless

the ETH breaks.
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6 Conclusion

In this paper, we have shown that Two-Sets Cut-Uncut is FPT on planar graphs
parameterized by the number of terminals. We have also proven a more general result that
the problem remains FPT parameterized by the minimum number of faces required to cover
the terminals. Our result implies a polynomial-time algorithm for Network Diversion
on planar graphs. We complement this result by showing that Two-Sets Cut-Uncut
parameterized by the number of terminals (|S|+ |T |) is W[1]-hard in general graphs even
when |S| = 1.

We conclude with a few open problems.
1. First, we repeat the long-standing open question, whether Network Diversion is

polynomial-time solvable in general graphs. Even the case for graphs embeddable on a
torus remains open.

2. A natural extension of the Two-Sets Cut-Uncut is to extend it to a larger number
of sets. Since on general graphs, 3-Way Cut is NP-complete [15], the same holds for
Three-Sets Cut-Uncut even when all sets are of size one. However, for planar graphs,
k-Way Cut is solvable in polynomial time for fixed k [15, 32, 39]. As a very concrete
open question, we ask whether Three-Sets Cut-Uncut is solvable in polynomial time
on planar graphs when two sets are of size one and one set is of size two.

3. Our algorithm is randomized and works only on unweighted graphs; can we get rid of
either of these restrictions?

4. Finally, is it possible to solve Two-Sets Cut-Uncut in subexponential time (in |S|+|T |)?
In our opinion, this could be a challenging problem. In particular, it is already an open
question whether it is possible to find a cycle in a planar graph containing a given set
of k terminals in subexponential time (in k).
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1 Introduction

The splitting-o� operation in undirected graphs is a simple yet powerful operation in graph
theory. It is a reduction operation that detaches all edges incident to a given vertex and adds
new edges between the neighbors of that vertex while preserving their degrees. Equivalently,
it enables a vertex to exit the network by informing its neighbors how to reconfigure the
lost links among themselves in order to preserve their degrees. Lovász [45, 47] introduced
the splitting-o� operation and showed the existence of the operation to preserve global edge-
connectivity under certain conditions. Mader [48] showed the existence of the splitting-o�
operation to preserve local edge-connectivity (i.e., all pairwise edge-connectivities) under
certain conditions. Both Lovász’s and Mader’s results also admit strongly polynomial-time
algorithms [24, 27,49]. Owing to the inductive nature of the splitting-o� operation, Lovász’s
and Mader’s results have enabled fundamental results in graph theory as well as e�cient
algorithms and min-max relations for numerous graph optimization problems. In fact,
Mader [48] illustrated the power of his local edge-connectivity preserving splitting-o� result
by deriving Nash-Williams’ strong orientation theorem [52] (also see Frank’s exposition
of this derivation [26]). Subsequently, the splitting-o� operation has been used to give
a constructive characterization of k-edge-connected graphs [24] and to address problems
in edge-connectivity augmentation [2, 22, 23, 24, 49], graph orientation [25, 38], minimum
cuts enumeration [29, 32, 50], network design [12, 30, 35], tree packing [7, 41], congruency-
constrained cuts [51], and approximation algorithms for TSP [8,30]. Designing fast algorithms
for global/local edge-connectivity preserving splitting-o� remains an active area of research
(e.g., see recent works [9, 10,11,42]) due to these far-reaching applications. In this work, we
introduce a splitting-o� operation in hypergraphs, show the existence of local-connectivity
preserving splitting-o� operation and design a strongly polynomial-time algorithm to compute
it in weighted hypergraphs, and illustrate its usefulness by showing two applications.

Hypergraphs. Hypergraphs o�er a richer and more accurate model than graphs for several
applications. Consequently, hypergraphs have found applications in several modern areas
(e.g., see [44, 54, 57, 60]) and these applications have, in turn, driven exciting recent progress
in algorithms for hypergraph optimization problems [1, 4, 13, 14, 15, 18, 19, 21, 28, 31, 34, 36,
37, 39, 43, 55, 58]. A hypergraph G = (V,E) consists of a finite set V of vertices and a
set E of hyperedges, where every hyperedge e œ E is a subset of V . We will denote a
hypergraph G = (V,E) with hyperedge weights w : E æ Z+ by the tuple (G,w) and use
Gw to denote the unweighted multi-hypergraph over vertex set V containing w(e) copies of
every hyperedge e œ E. Throughout this work, we will be interested only in hypergraphs
with positive integral weights and for algorithmic problems where the input/output is a
hypergraph, we will require that the weights are represented in binary. If all hyperedges have
size at most 2, then the hyperedges are known as edges and we call such a hypergraph as a
graph. We emphasize a subtle but important distinction between hypergraphs and graphs:
the number of hyperedges in a hypergraph could be exponential in the number of vertices.
This is in sharp contrast to graphs where the number of edges is at most the square of the
number of vertices. Consequently, in hypergraph network design problems where the goal is
to construct a hypergraph with certain properties, one needs to be mindful of the number
of hyperedges in the hypergraph returned by the algorithm. Recent works in hypergraph
algorithms literature have focused on this issue in the context of cut/spectral sparsification
of hypergraphs [4, 18,19,34,36,37,39,43,55,58].
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Notation. Let (G = (V,E), w : E æ Z+) be a hypergraph. For X ™ V , let ”G(X) :=
{e œ E : e fl X ”= ÿ, e \ X ”= ÿ}. We define the cut function d(G,w) : 2V æ ZØ0 by
d(G,w)(X) :=

q
eœ”G(X)

w(e) for every X ™ V . For a vertex v œ V , we use d(G,w)(v) to denote
d(G,w)({v}). We define the degree of a vertex v to be the sum of the weights of hyperedges
containing v – we note that the degree of a vertex is not necessarily equal to d(G,w)(v) since we
could have {v} itself as a hyperedge (i.e., a singleton hyperedge that contains only the vertex
v). For distinct vertices u, v œ V , let ⁄(G,w)(u, v) := min{d(G,w)(X) : u œ X ™ V \ {v}} –
i.e., ⁄(G,w)(u, v) is the value of a minimum {u, v}-cut in the hypergraph. If all hyperedge
weights are unit, then we drop w from the subscript and simply use dG and ⁄G.

Hypergraph Splitting-o�. We now introduce our definition of splitting-o� in hypergraphs.
To compare and contrast our definition of splitting-o� for hypergraphs with the classical
definition of splitting-o� for graphs, we include both our definition and the classical definition
and distinguish them by identifying them as h-splitting-o� and g-splitting-o�. In the
definitions below, we encourage the reader to consider the input hypergraph (G,w) to be a
graph while considering g-splitting-o� terminology and to be a hypergraph while considering
h-splitting-o� terminology. We encourage the reader to also assume unit weights during first
read. See Figure 1 for an example.

I Definition 1. Let (G = (V,E), w : E æ Z+) be a hypergraph and s œ V .

1. In merge almost-disjoint hyperedges, we pick a pair of hyperedges e, f œ ”G(s) such that

e fl f = {s}, pick a positive integer – œ Z+ such that – Æ min{w(e), w(f)}, reduce the

weights of hyperedges e and f by –, and increase the weight of a hyperedge g by –. Here,

a. if we choose g := e fi f , then the associated operation will be called as h-merge almost-
disjoint hyperedges operation.

b. if we choose g := (e fi f) \ {s}, then the associated operation will be called as g-merge
almost-disjoint hyperedges operation.

In the above, if – = w(e) (resp. if – = w(f)), then we discard the hyperedge e (resp.

hyperedge f) from the hypergraph obtained after the operation; if the hyperedge g ”œ E,

then we introduce g as a new hyperedge with weight w(g) := 0 before performing the weight

increase on the hyperedge g.
2. In trim hyperedge operation, we pick a hyperedge e œ ”G(s), pick a positive integer

– œ Z+, reduce the weight of the hyperedge e and increase the weight of the hyperedge

g := e \ {s}. Here,

a. if we choose – Æ w(e), reduce the weight of the hyperedge e by –, and increase the

weight of the hyperedge g by –, then the associated operation will be called as h-trim
operation (if – = w(e), then we discard e from the hypergraph obtained after the

operation; if g ”œ E, then we add g as a new hyperedge with weight w(g) := 0 before

performing the weight increase on the hyperedge g).
b. if we choose – Æ w(e)/2, reduce the weight of the hyperedge e by 2–, and increase the

weight of the hyperedge g by 2–, then the associated operation will be called as g-trim
operation (if – = w(e)/2, then we discard e from the hypergraph obtained after the

operation; if g ”œ E, then we add g as a new hyperedge with weight w(g) := 0 before

performing the weight increase on the hyperedge g).
3. We say that a hypergraph (H = (V,EH), wH : EH æ Z+) is obtained by applying a

a. h-splitting-o� operation at s from (G,w) if (H,wH) is obtained from (G,w) by either

the h-merge almost-disjoint hyperedges operation or the h-trim hyperedge operation.

b. g-splitting-o� operation at s from (G,w) if (H,wH) is obtained from (G,w) by either

the g-merge almost-disjoint hyperedges operation or the g-trim hyperedge operation.
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Certain remarks regarding the definitions are in order. Firstly, the trim operation is valuable
and unique to hypergraphs. It has been used in the hypergraph literature to obtain small-sized
certificates for hypergraph connectivity [18] and for certain notions of directed hypergraph
connectivity [24]. We note that the trim operation has limited value in graphs – trimming
an edge leads to a singleton edge and singleton edges contribute only to the degree but not
to the cut value of any set. Secondly, all operations mentioned above are degree preserving
for vertices u œ V \ {s}: both h-trim and g-trim operations preserve degrees by definition;
both h-merge and g-merge almost-disjoint hyperedges operations preserve degrees due to
the almost-disjoint property of the chosen hyperedges. Thirdly, all operations mentioned
above do not increase the cut values of subsets X ™ V \ {s}. Thus, the relevant goal with
these operations is ensuring that the cut values do not decrease too much – i.e., preserving
global/local connectivity. We will be interested in repeated application of h-splitting-o�
operations at a vertex from a given hypergraph to isolate that vertex while preserving
global/local connectivity. We define these formally next.

I Definition 2. Let (G = (V,E), w : E æ Z+) be a hypergraph and s œ V .

1. We say that a hypergraph (Gú = (V,Eú), wú : Eú æ Z+) is a

a. complete h-splitting-o� at s from (G,w) if d(Gú,wú)(s) = 0 and (Gú, wú) is obtained

from (G,w) by repeatedly applying h-splitting-o� operations at s from the current

hypergraph.

b. complete g-splitting-o� at s from (G,w) if d(Gú,wú)(s) = 0 and (Gú, wú) is obtained

from (G,w) by repeatedly applying g-splitting-o� operations at s from the current

hypergraph.

2. Let (Gú, wú) be a complete h-splitting-o�/g-splitting-o� at s from (G,w). We say that

(Gú, wú)
a. preserves local connectivity if ⁄(Gú,wú)(u, v) = ⁄(G,w)(u, v) for every distinct u, v œ

V \ {s} and

b. preserves global connectivity if

min{⁄(Gú,wú)(u, v) : u, v œ V \ {s}, u ”= v} = min{⁄(G,w)(u, v) : u, v œ V \ {s}, u ”= v}.

Our first contribution in this work is the definition of h-splitting-o� operations at a vertex
from a hypergraph. To the best of our knowledge, this definition has not appeared in the
literature before. A notion of hypergraph splitting-o� motivated by hypergraph connectivity
augmentation applications has been studied in the literature before [3,6, 20]. These works
have explored local connectivity preserving complete g-splitting-o� at a vertex s from a
hypergraph under the assumption that all hyperedges incident to the vertex s are edges (i.e.,

have size at most 2). In contrast, our focus is on local connectivity preserving complete
h-splitting-o� at a vertex s from a hypergraph without any assumption on the size of the
hyperedges incident to the vertex s (i.e., the vertex s could have arbitrary-sized hyperedges
incident to it). We refer the reader to Figure 1 for an example of complete h-splitting-o� at
a vertex from a hypergraph.

We will primarily be concerned with complete h-splitting-o� at a vertex from a hypergraph

and complete g-splitting-o� at a vertex from a graph. Complete g-splitting-o� at a vertex
from a graph is equivalent to the classical and well-studied notion of complete splitting-o�
at a vertex from a graph (for the definition of the classical notion in graphs, see [24, 49]).
We cast the results of Lovász [45, 47] and Mader [48] in the framework of our definitions
now. Let (G,w) be a graph and let s be a vertex in G. Lovász [45, 47] showed that if
d(G,w)({s}) is even and min{⁄(G,w)(u, v) : u, v œ V \ {s}} Ø K for some K Ø 2, then there
exists a global connectivity preserving complete g-splitting-o� at the vertex s from (G,w).
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Figure 1 Example of (local connectivity preserving) complete h-splitting-o� at a vertex s from a
hypergraph. Consider the leftmost hypergraph where all hyperedge weights are one and the vertex s

is as labeled. Operations (I) and (II) correspond to h-merge almost-disjoint hyperedges operations
and Operation (III) corresponds to an h-trim hyperedge operation.

Mader [48] showed that if d(G,w)({s}) is even, there is no cut-edge1 incident to s, and (G,w)
is connected, then there exists a local connectivity preserving complete g-splitting-o� at the
vertex s from (G,w).

We compare and contrast complete h-splitting-o� at a vertex from a hypergraph and
complete g-splitting-o� at a vertex from a graph. Complete h-splitting-o� at a vertex s
from a hypergraph enables the vertex s to exit the hypergraph by informing its incident
hyperedges about how to merge and trim themselves in order to preserve degrees. In this
sense, the definition of complete h-splitting-o� at a vertex from a hypergraph serves the
same role as complete g-splitting-o� at a vertex from a graph. On the other hand, there are
important di�erences between the two notions. Firstly, complete h-splitting-o� at a vertex
from a graph may not necessarily be a graph (owing to the creation of hyperedges of size at
least 3) while it is an easy exercise to show that complete g-splitting-o� at a vertex from a
graph will necessarily be a graph. Secondly, local/global connectivity preserving complete
g-splitting-o� at a vertex from a graph may not exist – see Figure 2.

Figure 2 An example showing that global connectivity preserving complete g-splitting-o� at a
vertex from a graph may not exist. All edge weights are one and the vertex s is as labeled.

As our second main contribution, we show that local connectivity preserving complete
h-splitting-o� at a vertex from a hypergraph always exists and can be computed in strongly
polynomial time (the rightmost hypergraph in Figure 1 is a local connectivity preserving
complete h-splitting-o� at the vertex s from the hypergraph in Figure 2).

I Theorem 3. Given a hypergraph (G = (V,E), wG : E æ Z+) and a vertex s œ V , there

exists a strongly polynomial-time algorithm to find a local connectivity preserving complete

h-splitting-o� at s from (G,wG).

A di�erence between Theorem 3 and the graph splitting-o� results of Lovász and Mader is
that Theorem 3 shows the existence of a local connectivity preserving complete h-splitting-o�
at a vertex from a hypergraph without any assumptions on the hypergraph whereas Lovász’s

1 Equivalently, for every edge e œ ”G(s) with w(e) = 1, the removal of that edge does not disconnect the
graph.
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and Mader’s results hold only under certain technical assumptions on the graph. In several
applications of their results, additional arguments are needed to address cases where those
technical assumptions do not hold. For this reason, we believe that Theorem 3 could be
useful in simplifying the arguments involved in some of the applications of Lovász’s and
Mader’s graph splitting-o� results (e.g., we will later see that the edge version of Menger’s
theorem in undirected graphs follows in a straightforward fashion from Theorem 3).

A crude run-time of our algorithm that proves Theorem 3 is O(|V |6(|V | + |E|)3). We
understand that this run-time is impractical for applications. Nevertheless, we mention it
here explicitly for the sake of completeness and as a potential starting point for future work:
it would be interesting to design a near-linear time algorithm to find a local connectivity
preserving complete h-splitting-o� at a vertex from a weighted hypergraph.
I Remark 4. We note that existence of a local/global connectivity preserving complete
h-splitting-o� at a vertex from a hypergraph does not necessarily imply a polynomial-time
algorithm to find it. This is because, a local/global connectivity preserving complete h-
splitting-o� at a vertex from a hypergraph (G,wG) could contain exponential number of
hyperedges although G contains only polynomial number of hyperedges. We give an example
to illustrate this issue. Consider the graph (G = (V,E), wG) where G is the star graph on
n+ 1 vertices with s being the center of the star and all edge weights are 2n≠1 ≠ 1. Consider
the hypergraph (H = (V,EH), wH) such that EH := {e : e ™ V \ {s} and |e| Ø 2} with all
hyperedge weights being one. The hypergraph (H,wH) is a local connectivity preserving
complete h-splitting-o� at s from (G,wG), but (H,wH) has exponential number of hyperedges
although (G,wG) has only n edges. In order to design a polynomial-time algorithm to find
a local connectivity preserving complete h-splitting-o� at a vertex from a hypergraph, a
necessary step is to show the existence of a local connectivity preserving complete h-splitting-
o� at a vertex from a hypergraph that contains only polynomially many additional hyperedges.
For the star graph (G,wG) with edge weights 2n≠1 ≠ 1 mentioned above, the hypergraph
(H Õ = (V,EHÕ), wHÕ) containing only one hyperedge, namely EHÕ := {V \ {s}} with the
weight of that hyperedge being 2n≠1 ≠ 1 is also a local connectivity preserving complete
h-splitting-o� at s from (G,wG). One of the features of our algorithmic proof of Theorem 3
is the existence of a local connectivity preserving complete h-splitting-o� at a vertex from a
hypergraph that contains only polynomially many additional hyperedges.

As our third main contribution, we present two applications of Theorem 3.

Application 1: Constructive characterization of k-hyperedge-connected hypergraphs.
For the purposes of this application, graphs and hypergraphs will refer to multi-graphs
and multi-hypergraphs, respectively. Let k be a positive integer. A graph G = (V,E) is
k-edge-connected if dG(X) Ø k for every non-empty proper subset X ( V . Constructive
characterization of k-edge-connected graphs is a central problem in graph theory. It is
well-known that a graph is 1-edge-connected if and only if it containss a spanning tree.
Robbins’ [56] showed that a graph is 2-edge-connected if and only if it admits an ear
decomposition (see [24] for definition of ear decomposition). Generalizing Robbins’ result,
Lovász [45,47] gave a constructive characterization of k-edge-connected graphs for even k
using his result on global connectivity preserving complete g-splitting-o� at a vertex from
a graph. Mader [48] gave a constructive characterization of k-edge-connected graphs for
odd k using his result on local connectivity preserving complete g-splitting-o� at a vertex
from a graph. Motivated by these results, we present a constructive characterization of
k-hyperedge-connected hypergraphs using our splitting-o� result in Theorem 3. A hypergraph
G = (V,E) is defined to be k-hyperedge-connected if dG(X) Ø k for every non-empty proper
subset X ( V .
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Both Lovász’s and Mader’s constructive characterizations of k-edge-connected graphs are
based on a pinching operation in graphs. Our constructive characterization of k-hyperedge-
connected hypergraphs is also based on a pinching operation, but our pinching operation is
defined for hypergraphs. We define this operation now (see Figure 3 for an example).

I Definition 5. Let G = (V,E) be a hypergraph and p, k œ Z+ be positive integers such that

p Æ k. In (k, p)-pinching hyperedges of G, we obtain a new hypergraph by performing the

following sequence of operations:

1. pick p distinct hyperedges e1, . . . , ep œ E,

2. pick p positive integers t1, . . . , tp œ Z+ such that
q

p

i=1
ti = k,

3. for each i œ [p], choose a partition of the hyperedge ei into ti non-empty parts ei =
‡jœ[ti]

f j

i
,

4. remove the hyperedges e1, . . . , ep from the hypergraph G,

5. add a new vertex s and hyperedges {f j

i
fi {s} : j œ [ti], i œ [p]} to the hypergraph G.

Figure 3 An example of a (4, 2)-pinching operation. Here, t1 = t2 = 2.

With this definition of pinching, we show the following constructive characterization of
k-hyperedge-connected hypergraphs.

I Theorem 6. Let k œ Z+ be a positive integer. A hypergraph G = (V,E) is k-hyperedge-
connected if and only if G can be obtained by starting from the single vertex hypergraph with

no hyperedges and repeatedly applying one of the following two operations:

1. add a new hyperedge over a subset of vertices of the existing hypergraph, and

2. (k, p)-pinching hyperedges of the existing hypergraph for some positive integer p Æ k.

Our proof of Theorem 6 is constructive: i.e., given a k-hyperedge-connected hypergraph
G, our proof gives a polynomial-time algorithm to construct a sequence of hypergraphs
G0, G1, G2, . . . , Gt, where G0 is the single vertex hypergraph with no hyperedges, Gt = G and
for each i œ [t], the hypergraph Gi is obtained from Gi≠1 by either adding a new hyperedge
over a subset of vertices in Gi≠1 or by (k, p)-pinching hyperedges in Gi≠1 for some positive
integer p Æ k.

I Remark 7. Robbins’ constructive characterization of 2-edge-connected graphs and Lovász’s
constructive characterization of 2k-edge-connected graphs find applications in graph orient-
ation problems – e.g., Robbins’ result leads to an algorithm to find a strongly connected
orientation of 2-edge-connected graphs and Lovász’s result leads to an algorithm to find a
strongly k-arc-connected orientation of 2k-edge-connected graphs. In fact, the latter leads
to an alternative proof of Nash-Williams’ weak orientation theorem [52]. Along the same
vein, we hope that our above characterization of k-edge-connected hypergraphs might find
applications in hypergraph orientation problems.
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Application 2.1: Steiner Rooted k-arc-connected Orientation of Graphs. Orienting a
graph to achieve high connectivity is a fundamental area in graph theory, combinatorial
optimization, and algorithms. Let G = (V,E) be an undirected graph. An orientation

≠æ
G of

G is a directed graph obtained by assigning a direction to each edge of G. Let G = (V,E)
be an undirected graph, T ™ V be a set of terminals, r œ T be a root vertex, and k be a
positive integer. An orientation ≠æ

G of G is defined to be Steiner rooted k-arc-connected if
there exist k arc-disjoint paths in ≠æ

G from t to r for every terminal t œ T \ {r}. In Max

Steiner Rooted-Connected Orientation problem, the goal is to find the maximum
integer k and an orientation ≠æ

G of G such that ≠æ
G is Steiner rooted k-arc-connected. Max

Steiner Rooted-Connected Orientation generalizes two classic problems in graph
theory: The case of |T | = 2 is the max edge-disjoint {r, v}-paths problem and is solved via
Menger’s theorem. The case of T = V is the max edge-disjoint spanning trees problem and is
solved via Tutte and Nash-Williams’ theorem [53, 59]. We mention that both these problems
are also generalized by the Steiner Tree Packing problem and the associated Kriesell’s
conjecture [33,40,41], but we will not focus on that generalization.

Király and Lau [38] introduced the Max Steiner Rooted-Connected Orientation,
showed that it is NP-hard, and gave a 2-approximation via an approximate min-max relation.
We state their approximate min-max relation now. An undirected graph G is Steiner k-
edge-connected if ⁄G(u, v) Ø k for every pair of distinct terminals u, v œ T . It is clear that
if the graph G has a Steiner rooted k-arc-connected orientation, then G should be Steiner
k-edge-connected. However, the converse is not necessarily true. Király and Lau observed
that if the graph is Steiner 2k-edge-connected, then it has a Steiner rooted k-arc-connected
orientation.

I Theorem 8 (Király and Lau [38]). Let G = (V,E) be an undirected graph, T ™ V be a

subset of terminals, r œ T be the root vertex, and k be a positive integer. If G is Steiner

2k-edge-connected, then it has a Steiner rooted k-arc-connected orientation.

Király and Lau observed that Theorem 8 follows immediately from Nash-Williams’ strong
orientation theorem. Nash-Williams’ strong orientation theorem [52] states that every
undirected graph G = (V,E) admits an orientation ≠æ

G such that ⁄≠æ
G
(u, v) Ø Â⁄G(u, v)/2Ê

for every distinct u, v œ V , where ⁄≠æ
G
(u, v) is the maximum number of arc-disjoint directed

paths from u to v in ≠æ
G . In this work, we give an alternative proof of Theorem 8 that does

not rely on Nash-Williams’ strong orientation theorem. Instead, we use Theorem 3. Our
proof strategy is unique since it proves an orientation result for graphs using tools developed
for hypergraphs.
I Remark 9. Nash-Williams’ proof of the strong orientation theorem [52] is a sophisticated
inductive argument. Giving a simple and more insightful proof of the strong orientation
theorem has been a central topic of interest in graph theory and combinatorial optimization
(see [26]). Mader [48] gave a di�erent proof of the strong orientation theorem using his
local connectivity preserving splitting-o� theorem, but his proof also involved sophisticated
technical arguments. Frank [26] condensed the ideas of both Nash-Williams and Mader to
present a proof of the strong orientation theorem using Mader’s local connectivity preserving
splitting-o�, but it is still technically complicated. The technical complication in using
Mader’s local connectivity preserving splitting-o� result arises from the assumptions that
need to be satisfied by the vertex to be split-o�. In contrast, our splitting-o� result for
hypergraphs (namely, Theorem 3) does not need any assumptions on the vertex to be split-o�.
In light of these considerations, our proof of Theorem 8 using Theorem 3 provides hope
that Theorem 3 (or the ideas therein) could be used to give a conceptually simpler proof of
Nash-Williams’ strong orientation theorem.
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Application 2.2: Steiner Rooted k-hyperarc-connected Orientation of Hypergraphs. Ori-
enting hypergraphs is also a fundamental area in graph theory and combinatorial optimization
(see Frank’s book [24]) with far reaching implications. For example, Woodall’s conjecture
can be reformulated as a hypergraph orientation problem (see Conjecture 9.4.15 in [24]);
moreover, hypergraph orientation results have recently been used in coding theory [1]. Király
and Lau [38] showed that the approximate min-max relation in Theorem 8 also holds for
hypergraphs. To state their result, we need some terminology in hypergraph orientations.

Let G = (V,E) be a hypergraph. An orientation
≠æ
G = (V,E, head : E æ V ) of G is a

directed hypergraph obtained by assigning a unique head vertex head(e) œ e for each e œ E.
A pair (e, head(e)) is denoted as a hyperarc with the head of the hyperarc being head(e) and
the tails of the hyperarc being e\head(e). Let G = (V,E) be a hypergraph, T ™ V be a set of
terminals, r œ T be a root vertex, and k be a positive integer. An orientation ≠æ

G of G is defined
to be Steiner rooted k-hyperarc-connected if there exist k hyperarc-disjoint paths in ≠æ

G from
t to r for every terminal t œ T \ {r}. Here, a path from t to r in a directed hypergraph is an
alternating sequence of distinct vertices and hyperarcs t = v1, a1, v2, a2, ..., a¸≠1, v¸ = r such
that vi is a tail of ai and vi+1 is the head of ai for every i œ [¸≠1]. We say that a hypergraph
G is Steiner k-hyperedge-connected if ⁄G(u, v) Ø k for every pair of distinct terminals u, v œ T .
It is clear that if the hypergraph G has a Steiner rooted k-hyperarc-connected orientation,
then G should be Steiner k-hyperedge-connected. However, the converse is not necessarily
true. Király and Lau [38] showed that if the hypergraph is Steiner 2k-hyperedge-connected,
then it has a Steiner rooted k-hyperarc-connected orientation.

I Theorem 10 (Király and Lau [38]). Let G = (V,E) be a hypergraph, T ™ V be a subset of

terminals, r œ T be the root vertex, and k be a positive integer. If G is Steiner 2k-hyperedge-
connected, then it has a Steiner rooted k-hyperarc-connected orientation.

Király and Lau’s proof of Theorem 10 was based on careful uncrossing and contractions.
In this work, we give an alternative proof of Theorem 10 using Theorem 3. Our proof of
Theorem 10 reveals the source of the 2-factor gap in the approximate min-max relation of
Király and Lau for Max Steiner Rooted-Connected Orientation Problem: it arises
from the 2-factor gap between connectivity and weak-partition-connectivity of hypergraphs
(see Definition 5.1 for the definition of weak-partition-connectivity and Lemma 5.2 in the full
version).

I Remark 11. Our proof technique for Theorems 8 and 10 using Theorem 3 – i.e., via
the local-connectivity preserving splitting-o� operation in hypergraphs – also leads to an
alternate proof of Menger’s theorem in undirected graphs and hypergraphs (edge-disjoint
version). For details, we refer the reader to Section 5 of the full version where we discuss a
proof of Menger’s theorem using Theorem 3 as a warm-up towards a proof of Theorems 8
and 10.

Both Theorems 8 and 10 can be extended to weighted graphs/hypergraphs (by considering
parallel copies of edges/hyperedges). The weighted version of Theorems 8 and 10 can also be
shown to admit strongly polynomial-time algorithms using our proof strategy as well as the
proof strategy of Király and Lau. We avoid stating the weighted versions in the interests of
brevity.

1.1 Proof Technique for Theorem 6
We outline the proof technique for Theorem 6. The reverse direction follows by observing
that if a hypergraph is k-hyperedge-connected, then both operations in the statement of the
theorem preserve k-hyperedge-connectivity. We sketch a proof of the forward direction. The
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proof is by induction on the number of hyperedges plus the number of vertices. First, suppose
that there exists a hyperedge e œ E such that G ≠ e is still k-hyperedge-connected. We note
that deleting the hyperedge e is the inverse of operation (1). Consequently, the proof follows
by deleting the hyperedge e, using the induction hypothesis on the resulting hypergraph H,
and then noting that the hypergraph G is obtained from H by operation (1). Next, suppose
that there does not exist a hyperedge e œ E such that G ≠ e is k-hyperedge-connected. We
call such a hypergraph to be minimally k-hyperedge-connected. In Lemma 4.1 of the full
version, we show that a minimally k-hyperedge-connected hypergraph contains a vertex u
with degree exactly k. By Theorem 3, there exists a global-connectivity preserving complete
h-splitting-o� at the vertex u from the hypergraph G. Let H be a global-connectivity
preserving complete h-splitting-o� at the vertex u from the hypergraph G. We note that
complete h-splitting-o� at u followed by deletion of the vertex u is the inverse of operation (2)
at u. Consequently, the proof follows by using the induction hypothesis on the hypergraph
H ≠ u and then noting that the hypergraph G is obtained from H ≠ u by operation (2).

1.2 Proof Technique for Theorems 8 and 10
We outline the proof technique for Theorem 10 and will remark after the proof about how it
also implies a proof for Theorem 8. Our proof of Theorem 10 will be in three steps. Let us
denote the set of non-terminals as Steiner vertices. Our first step is to obtain a hypergraph
H = (T,EH) by applying our local connectivity preserving complete h-splitting-o� at each
Steiner vertex of G (sequentially, in arbitrary order of the Steiner vertices) and deleting the
isolated vertices. We note that deleting the isolated vertices ensures that the vertex set of H
is the set of terminals T . Moreover, our local connectivity preserving complete h-splitting-o�
ensures that the hypergraph H is 2k-hyperedge-connected since the hypergraph G is Steiner
2k-hyperedge-connected. Our second step is to show that this hypergraph H = (T,EH)
admits a rooted k-hyperarc-connected orientation. A known characterization for the existence
of a rooted k-hyperarc-connected orientation of a hypergraph is that the hypergraph is k-
weak-partition-connected (see Definition 5.1 for the definition of weak-partition-connectivity
and Theorem 5.1 for the characterization in the full version). We mention that the notion
of weak-partition-connectivity in hypergraphs has been used recently in the context of
coding theory [1, 31]. In order to use the characterization for the existence of a rooted
k-hyperarc-connected orientation of a hypergraph, we relate the connectivity of a hypergraph
to its weak-partition-connectivity and conclude that if H is 2k-hyperedge-connected, then
it is k-weak-partition-connected (see Lemma 5.2 in the full version). Consequently, the
hypergraph H admits a rooted k-hyperarc-connected orientation. We note that such an
orientation of H is equivalent to a Steiner rooted k-hyperarc-connected orientation of H
since the vertex set of H is the set T of terminals. Our third step is to use this Steiner rooted
k-hyperarc-connected orientation of H to obtain a Steiner rooted k-hyperarc-connected
orientation of the hypergraph G: we will see that there is a natural way to extend the
orientation of hyperedges while reversing the h-splitting-o� operations to preserve Steiner
rooted k-hyperarc-connected property (see Lemma 5.1 in the full version). This would
complete the proof of Theorem 10.

We note that if the hypergraph G is a graph, then the same proof above obtains the
required graph orientation, thus proving Theorem 8. In particular, to prove Theorem
8, we start from a graph G = (V,E) that is Steiner 2k-edge-connected, but our local
connectivity preserving complete h-splitting-o� operations at Steiner vertices results in a
hypergraph H = (T,EH) that is 2k-hyperedge-connected; by Lemma 5.2 in the full version,
the hypergraph H is k-weak-partition-connected; now Theorem 5.1 in the full version gives a
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rooted k-hyperarc-connected orientation of the resulting hypergraph. Such an orientation is
extended to a Steiner rooted k-hyperarc-connected orientation of the graph G = (V,E) using
Lemma 5.1 in the full version. Essentially, the proof starts from the given graph, obtains a
related hypergraph, orients that hypergraph, and extends that orientation of the hypergraph
back into a desired orientation of the given graph.

Our proof technique for Theorems 8 and 10 also leads to an alternate proof of Menger’s
theorem in undirected graphs and hypergraphs (edge-disjoint version) – see Section 5 in the
full version.

1.3 Proof Technique for Theorem 3
We prove a more general statement that implies Theorem 3. We begin with the definitions
needed for the more general statement.

I Definition 12. Let V be a finite set, p : 2V æ Z be a set function, and (H = (V,E), w :
E æ Z+) be a hypergraph.

1. The set function p
a. is symmetric if p(X) = p(V ≠ X) for every X ™ V , and

b. is skew-supermodular if for every X,Y ™ V , at least one of the following inequalities

hold:

i. p(X) + p(Y ) Æ p(X fl Y ) + p(X fi Y ).
ii. p(X) + p(Y ) Æ p(X ≠ Y ) + p(Y ≠ X).

2. The coverage function b(H,w) : 2V æ ZØ0 is defined by b(H,w)(X) :=
q

eœBH(X)
w(e) for

every X ™ V , where BH(X) := {e œ E : e fl X ”= ÿ} for every X ™ V .

3. The hypergraph (H,w) weakly covers the function p if b(H,w)(X) Ø p(X) for every X ™ V .

4. The hypergraph (H,w) strongly covers the function p if d(H,w)(X) Ø p(X) for every

X ™ V .

If a hypergraph (H,w) strongly covers a function p : 2V æ Z, then it also weakly covers
the function p. However, the converse is false – i.e., a weak cover is not necessarily a strong
cover2. Bernáth and Király [5] showed that a weak cover of a symmetric skew-supermodular

function can be converted to a strong cover of the same function by repeated merging of

disjoint hyperedges. We recall their definition of the merging operation, discuss their result,
and its significance now.

I Definition 13. Let (H = (V,E), w : E æ Z+) be a hypergraph. We use Hw to denote the

unweighted multi-hypergraph over vertex set V containing w(e) copies of every hyperedge

e œ E. By merging two disjoint hyperedges of Hw, we refer to the operation of replacing

them by their union in Hw. We will say that a hypergraph (G = (V,EG), c : EG æ Z+) is

obtained from (H,w) by merging hyperedges if the multi-hypergraph Gc is obtained from the

multi-hypergraph Hw by repeatedly merging two disjoint hyperedges in the current hypergraph.

Bernáth and Király showed the following result:

I Theorem 14 (Bernáth and Király [5]). Let (H = (V,E), w : E æ Z+) be a hypergraph and

p : 2V æ Z be a symmetric skew-supermodular function such that b(H,w)(X) Ø p(X) for

every X ™ V . Then, there exists a hypergraph
!
Hú = (V,Eú), wú : Eú æ Z+

"
such that

(1) d(Hú,wú)(X) Ø p(X) for every X ™ V and

(2) the hypergraph (Hú, wú) is obtained by merging hyperedges of the hypergraph (H,w).

2 For example, consider the function p : 2V æ Z defined by p(X) := 1 for every non-empty proper subset
X ( V and p(ÿ) := p(V ) := 0, and the hypergraph (H = (V,E := {{u} : u œ V }), w : E æ {1}).
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We observe that Theorem 14 can be used to prove the existential version of Theorem 3:
namely, for every hypergraph (G = (V,E), wG : E æ Z+) and a vertex s œ V , there exists a
local connectivity preserving complete h-splitting-o� at s from (G,wG). This can be shown
by setting up the hypergraph (H,w) and the function p suitably based on (G,wG) and using
Theorem 14 (see the first two paragraphs of the proof of Theorem 3.1 in Section 3 of the full
version). We emphasize that this conclusion regarding hypergraph splitting-o� from Bernáth
and Király’s result was not known before in the literature and is one of our contributions.
I Remark 15. We were also able to prove the existential version of Theorem 3 using element-

connectivity preserving reduction operations (see [16] for the definition of element-connectivity
and the notion of element-connectivity preserving reduction operations) – we omit the details
of this alternate proof in the interests of brevity. The alternate proof does not seem to be
helpful for the purposes of a strongly polynomial time algorithm. In fact, it remains open
to design a strongly polynomial-time algorithm to perform complete element-connectivity
preserving reduction operations in the weighted setting [16].

We recall that existence of a local connectivity preserving complete h-splitting-o� at a
vertex from a hypergraph does not immediately imply a polynomial-time algorithm – see the
example in Remark 4. However, the above-mentioned proof of existence of a local-connectivity
preserving complete splitting-o� at an arbitrary vertex from a hypergraph (i.e., existential
version of Theorem 3) via Theorem 14 suggests a natural approach towards designing a
strongly polynomial time algorithm to find a local-connectivity preserving complete splitting-
o� at a given vertex from a given hypergraph: it su�ces to prove a constructive version of
Theorem 14 via a strongly polynomial-time algorithm. Towards this end, the example in
Remark 4 suggests a necessary structural step towards a strongly polynomial-time algorithmic
version of Theorem 14: we need to show Theorem 14 with the extra conclusion that the
number of additional hyperedges in Hú is polynomial in the number of hyperedges and
vertices in H.

Bernáth and Király proved Theorem 14 in the context of a reduction between certain
hypergraph connectivity augmentation problems. For that reduction, the existential version of
Theorem 14 is su�cient. However, for the purposes of our application to hypergraph splitting-
o�, we need an algorithmic version of Theorem 14. Bernáth and Király’s proof of Theorem
14 is in fact algorithmic, but the run-time of the associated algorithm is not necessarily
polynomial. Their proof implies that the number of additional hyperedges in the hypergraph
(Hú, cú) returned by their algorithm is at most

q
eœE

w(e) (i.e., |Eú| ≠ |E| Æ
q

eœE
w(e))

and the run-time of the algorithm is O(
q

eœE
(|e|+ w(e)). In particular, their run-time is

polynomial only if the input weights are given in unary. Moreover, the exponential-sized
hypergraph from Remark 4 could indeed arise as a consequence of their algorithm.

We address both the structural and the algorithmic issues mentioned above by proving a
stronger algorithmic version of Theorem 14. In order to phrase an algorithmic version of
Theorem 14, we need suitable access to the function p. Bernáth and Király [5] suggested
access to a certain function maximization oracle associated with the function p that we
describe below.

I Definition 16. Let p : 2V æ Z be a set function. p-max-sc-Oracle
!
(G0, c0) , S0, T0

"
takes

as input a hypergraph (G0 = (V,E0), c0 : E0 æ Z+) and disjoint sets S0, T0 ™ V , and returns

a tuple (Z, p(Z)), where Z is an optimum solution to the following problem:

max
Ó
p(Z) ≠ d(G0,c0)(Z) : S0 ™ Z ™ V ≠ T0

Ô
. (p-max-sc-Oracle)
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For the purposes of our application (namely local connectivity preserving complete h-splitting-
o� at a vertex from a hypergraph), the above-mentioned function maximization oracle can be
implemented to run in strongly polynomial time (see Lemma 3.1 in the full version). Using
the above mentioned oracle, we prove the following algorithmic version of Theorem 14.

I Theorem 17. Let (H = (V,E), w : E æ Z+) be a hypergraph and p : 2V æ Z be a

symmetric skew-supermodular function such that b(H,w)(X) Ø p(X) for every X ™ V . Then,

there exists a hypergraph
!
Hú = (V,Eú), wú : Eú æ Z+

"
such that

(1) d(Hú,wú)(X) Ø p(X) for every X ™ V ,

(2) the hypergraph (Hú, wú) is obtained by merging hyperedges of the hypergraph (H,w), and
(3) |Eú| ≠ |E| = O(|V |).
Furthermore, given a hypergraph (H = (V,E), w : E æ Z+) and access to p-max-sc-Oracle
of a symmetric skew-supermodular function p : 2V æ Z where b(H,w)(X) Ø p(X) for every

X ™ V , there exists an algorithm that runs in O(|V |3(|V |+ |E|)2) time using O(|V |3(|V |+
|E|)) queries to p-max-sc-Oracle and returns a hypergraph

!
Hú = (V,Eú), wú : Eú æ Z+

"

satisfying the above three properties. The run-time includes the time to construct the

hypergraphs used as input to the queries to p-max-sc-Oracle. Moreover, for each query to

p-max-sc-Oracle, the hypergraph (G0, c0) used as input to the query has O(|V |) vertices and

O(|V |+ |E|) hyperedges.

Theorem 17 is a strengthening of Theorem 14 in two ways. Firstly, our theorem shows
the existence of a hypergraph that not only satisfies properties (1) and (2), but also satisfies
property (3) – i.e., the number of additional hyperedges in the returned hypergraph is linear
in the size of the vertex set. Secondly, our Theorem 17 shows the existence of a strongly
polynomial-time algorithm that returns a hypergraph satisfying the three properties. Our
main contribution is modifying Bernáth and Király’s algorithm and analyzing the modified
algorithm to bound the number of additional hyperedges and the run-time. We mention that
property (3) cannot be tightened to guarantee that |Eú ≠ E| = O(|V |) – we were able to
construct an example where |Eú ≠ E| = �(|V |2) (see Appendix A of the full version).

Theorem 17 immediately leads to a proof of Theorem 3 (see Theorem 3.1 and its proof in
Section 3 of the full version). Instead of using Theorem 17 as a black-box, if we delve into
the proof of it in the context of the proof of Theorem 3, we obtain the following theorem:

I Theorem 18. Let (G = (V,E), w : E æ Z+) be a hypergraph and s œ V . Then, there exists

a hypergraph (GÕ = (V,EÕ), wÕ : EÕ æ Z+) obtained by applying a h-splitting-o� operation at

s from (G,w) such that ⁄(GÕ,wÕ)(u, v) = ⁄(G,w)(u, v) for every distinct u, v œ V \ {s}.

We omit the proof of Theorem 18 in the interests of brevity. Theorem 18 closely resembles
the existential edge splitting-o� results of Lovász [45,47] and Mader [48] for graphs. Lovász’s
and Mader’s existential edge splitting-o� results for graphs are important since they have
been used to simplify the proofs of fundamental results in graph theory – e.g., Nash-Williams’
Strong Orientation Theorem. On the other hand, Theorem 18 does not immediately imply
a strongly polynomial-time algorithm for finding a local connectivity preserving complete
h-splitting o� at a vertex from a given weighted hypergraph. So, Theorem 3 may be useful
in algorithmic contexts while Theorem 18 may be useful in graph-theoretical contexts.

1.4 Proof Technique for Theorem 17
In this section, we describe our proof technique for the existential result in Theorem 17.
The algorithmic results in that theorem follow from the existential result using standard
algorithmic tools for submodular functions, so we focus only on outlining a proof of the
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existential result. Let (H = (V,E), w : E æ Z+) be a hypergraph and p : 2V æ Z+ be a
symmetric skew-supermodular function such that (H,w) weakly covers the function p. Our
goal is to show that there exists a hypergraph (Hú = (V,Eú), wú : E æ Z+) such that
(1) (Hú, wú) strongly covers the function p,
(2) (Hú, wú) is obtained by merging hyperedges of the hypergraph (H,w), and
(3) |Eú| ≠ |E| = O(|V |).

Preliminaries. We define a set X ™ V to be (p,H,w)-tight if b(H,w)(X) = p(X). For a
function p and hypergraph (H,w), let Tp,H,w denote the family of (p,H,w)-tight sets and let
Tp,H,w be the family of inclusionwise maximal sets in Tp,H,w. We will need the following two
operations:
(i) For hyperedges e, f œ E and a positive integer – Æ min{w(e), w(f)}, the operation

Merge ((H,w), e, f,–)) returns the hypergraph obtained from (H,w) by decreasing
the weight of hyperedges e and f by – and increasing the weight of the hyperedge efi f
by –. All hyperedges with zero weight are discarded.

(ii) For a hyperedge e œ E and a positive integer – Æ w(e), the operation Reduce

((H,w), e,–) returns the hypergraph obtained by decreasing the weight of the hyperedge
e by –. All hyperedges with zero weight are discarded.

Algorithm of [5]. Our proof of the existential result builds on the techniques of Bernáth and
Király [5] who proved the existence of a hypergraph (Hú = (V,Eú), wú : Eú æ Z+) satisfying
properties (1) and (2), so we briefly recall their techniques. We present the algorithmic
version of their proof since it will be useful for our purposes.

The proof in [5] is inductive, and consequently, the algorithm implicit in their proof is
recursive. The algorithm takes as input a hypergraph ((H = (V,E), w : E æ Z+) and a
symmetric skew-supermodular function p : 2V æ Z such that the hypergraph (H,w) weakly
covers the function p. If w(E) = 0, then the algorithm is in its base case and returns the empty
hypergraph. Otherwise, w(E) > 0; the algorithm chooses an arbitrary hyperedge e œ E and
defines hypergraphs (H0, w0) and (H Õ, wÕ) and the function pÕ by considering two cases. First,
suppose that the hyperedge e is not contained in any set of the family Tp,H,w. In this case,
the algorithm defines (H0, w0) to be the hypergraph on vertex set V consisting of a single
hyperedge e with w0(e) = 1, constructs the hypergraph (H Õ, wÕ) := Reduce((H,w), e, 1),
and defines the function pÕ := p≠d(H0,w0). Second, suppose that the hyperedge e is contained
in some set X œ Tp,H,w. It can be shown that there exists a hyperedge f œ E such that
f ™ V ≠ X. In this case, the algorithm defines (H0, w0) to be the empty hypergraph on
vertex set V , constructs the hypergraph (H Õ, wÕ) := Merge((H,w), e, f, 1), and defines the
function pÕ := p. In both cases, the algorithm recurses on the inputs (H Õ, wÕ) and pÕ to obtain
a hypergraph (Hú

0
, wú

0
) and returns the hypergraph (Hú, wú) = (Hú

0
+H0, wú

0
+ w0). Here,

the hyperedges of Hú are the union of the hyperedges of Hú
0
and H0 with the weight wú(e)

of a hyperedge e being the sum of the weights wú
0
(e) + w0(e) if the hyperedge e is present in

both Hú
0
and H0, being wú

0
(e) if the hyperedge e is present only in Hú

0
, and being w0(e) if

the hyperedge e is present only in H0.
We note that wÕ(EÕ) = w(E) ≠ 1. Furthermore, it can be shown that the function pÕ

is symmetric skew-supermodular and the hypergraph (H Õ, wÕ) weakly covers the function
pÕ. Consequently, by induction on w(E), the algorithm can be shown to terminate in w(E)
recursive calls and returns a hypergraph satisfying properties (1) and (2). Moreover, the
number of additional hyperedges in the returned hypergraph is at most the number of
recursive calls where the Merge operation is performed, which is also at most w(E). Thus,
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in order to reduce the number of additional hyperedges and to design a strongly polynomial-
time algorithm, our goal is to reduce the recursion depth of the algorithm. We emphasize
that the recursion depth of Bernáth and Király’s algorithm could indeed be exponential
(the exponential sized example mentioned in Remark 4 could arise in the execution of their
algorithm), so we need to necessarily modify their algorithm.

Preprocessing for Additional Structure. Similar to Bernáth and Király’s algorithm, our
algorithm also takes as input a hypergraph (H = (V,E), w : E æ Z+) and a symmetric
skew-supermodular function p : 2V æ Z such that the hypergraph (H,w) weakly covers
the function p. However, unlike Bernáth and Király’s algorithm, our algorithm performs
a preprocessing step so that the inputs (H,w) and p satisfy the following two additional
conditions:
(a) every hyperedge e œ E is contained in some set of Tp,H,w and
(b) the degree of every vertex in (H,w) is non-zero.
As a consequence of these additional conditions, the family Tp,H,w will be a disjoint family, a
property that we leverage heavily throughout our analysis. Furthermore, we modify Bernáth
and Király’s algorithm to ensure that these conditions hold during every recursive call.

Our Algorithm. We now describe our modification of the above-mentioned Bernáth and
Király’s algorithm to reduce the recursion depth. Our algorithm is also recursive and its base
case is the same as that of Bernáth and Király’s algorithm (i.e., w(E) = 0). During recursive
cases (i.e., if w(E) > 0), instead of performing one of the two (i.e., Merge or Reduce)
operations, our algorithm performs both operations in a sequential fashion. In particular,
we find a pair of disjoint hyperedges e, f œ E contained in distinct sets of Tp,H,w (such a
pair exists by condition (a) and the arguments of Bernáth and Király mentioned above).
Next, instead of performing one Merge operation (as was done by Bernáth and Király’s
algorithm), we perform as many Merge operations as possible using the hyperedges e and
f . Formally, let

–M := max
)

– œ Z+ : hypergraph returned by Merge((H,w), e, f,–) weakly covers p
*
.

We let (HM , wM ) := Merge((H,w), e, f,–M ) and pM := p. Next, instead of recursing on
((HM , wM ), pM ) (as was done by Bernáth and Király’s algorithm), we perform as many
Reduce operations as possible on the newly created hyperedge e fi f . Formally, let

–R := max
I

– œ ZØ0 : Hypergraph returned by Reduce((HM , wM ), e fi f,–)
weakly covers the function (pM ≠ d(H–

0 ,w
–

0 ))

J

where (H–

0
, w–

0
) denotes the hypergraph on vertex set V consisting of a single hyperedge efif

with w–

0
(e fi f) = –. We construct the hypergraph (H0, w0) := (H–

R

0
, w–

R

0
), the hypergraph

(HR, wR) := Reduce((HM , wM ), efi f,–R) and define the function pR := pM ≠ d
(H–R

0 ,w
–R

0 )
.

This immediate reduce step ensures that the hypergraph (HR, wR) and the function pR

satisfy condition (a) – i.e., every hyperedge in (HR, wR) is contained in some set of TpR,HR,wR .
Finally, we compute sets Z := {u œ V : b(HR,wR)(u) = 0} and V Õ := V ≠ Z, hypergraph
(H Õ := (V Õ, EÕ := ER), wÕ := wR), and define the function pÕ : 2V Õ æ Z by pÕ(X) :=
max{p(X fi R) : R ™ Z} for every X ™ V Õ – this final step can be viewed as a clean up
step since it gets rid of vertices that are not incident to any hyperedges (and revises the
function p appropriately). This clean up step ensures that the hypergraph (H Õ, wÕ) satisfies
condition (b) – i.e., the degree of every vertex in (H Õ, wÕ) is non-zero. It can be shown that
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the function pÕ is symmetric skew-supermodular and the hypergraph (H Õ, wÕ) weakly covers
the function pÕ. Furthermore, the function pÕ and hypergraph (H Õ, wÕ) satisfy conditions (a)
and (b). We recursively call the algorithm on input ((H Õ, wÕ), pÕ) to obtain a hypergraph
(Hú

0
, wú

0
). We obtain the hypergraph (G, c) from (Hú

0
, wú

0
) by adding the vertices Z and

return the hypergraph (G+H0, c+ w0). By induction on the total weight of hyperedges in
the input hypergraph, it can be shown that our algorithm returns a hypergraph satisfying
properties (1) and (2) and also terminates within a finite number of recursive calls.

Recursion Depth and Potential Functions. We now sketch our proof to show that the
recursion depth of our algorithm is |E|+O(|V |). We note that this also bounds the number
of additional hyperedges in the hypergraph returned by the algorithm, and consequently
this hypergraph also satisfies property (3). Let ¸ be the number of recursive calls made by
the algorithm on the input instance ((H,w), p). We partition the set [¸] of recursive calls
into two parts: let P1 ™ [¸] be the set of recursive calls during which the merged hyperedge
e fi f survives in the hypergraph (H Õ, wÕ) that is input to the subsequent recursive call and
P2 ™ [¸] be the recursive calls during which the merged hyperedge e fi f does not survive
in the hypergraph (H Õ, wÕ) that is input to the subsequent recursive call. We note that
[¸] = P1 ‡ P2. We bound |P1| and |P2| separately using certain carefully designed potential
functions.

First, we show that |P1| = O(|V |) as follows: for i œ [¸], consider the maximal tight
set family Ti = Tpi,Hi,wi

where ((Hi, wi), pi) is the input to the ith recursive call. Also, let
TÆ1 := T1 and TÆi := Ti fi {X fl Vi : X œ TÆi≠1} for integers i where 2 Æ i Æ ¸ and Vi is the
ground set of the input to the ith recursive call. Thus, TÆi is the projection of all the maximal
tight sets encountered in the first i recursive calls of the algorithm onto the ground set of the
inputs at the ith recursive call. We show that TÆi is laminar for every i œ [¸] (Lemma 6.11 in
the full version). However, |TÆi| is not necessarily non-decreasing with i since projection of a
set family to a subset could result in the loss of sets from the family. Consequently, |TÆi|
is not suitable as a potential function to measure progress. Instead, we use the potential
function „(i) := |TÆi| + 3|ZÆi≠1|, where ZÆi is the union of the sets Z computed up to
the ith recursive call. We show that „(i) is non-decreasing and strictly increases if i œ P1

(Claim 6.4 in Lemma 6.12 of the full version). Consequently, |P1| = O(|V |).
Secondly, we bound |P2| as follows. We use a lookahead-potential function: let �1(i)

be the number of recursive calls between i and ¸ during which the merged hyperedge e fi f
survives in the hypergraph (H Õ, wÕ) that is input to the subsequent recursive call and let
�(i) := |Ei|+�1(i), where Ei is the set of hyperedges in the hypergraph (Hi, wi) input to the
ith recursive call. We show that �(i) is non-increasing and strictly decreases if i œ P2 (Claim
6.5 in Lemma 6.12 of the full version). Hence, |P2| Æ �(1) ≠ �(¸) Æ �(1) Æ |E1|+ |P1| =
|E| + O(|V )), where the last equality is because of the bound on |P1| from the previous
paragraph.

I Remark 19. Our key technical contributions are twofold. Our first key technical contribution
is identifying conditions (a) and (b) under which Tp,H,w becomes a disjoint family. We ensure
that conditions (a) and (b) hold in every recursive call by performing immediate reduction
and clean-up steps in the algorithm. Our second key technical contribution is identifying
appropriate potential functions to measure progress of the algorithm. The disjointness of
Tp,H,w was crucial for identifying the laminar structure of the family of projected maximal
tight sets across recursive calls, which was subsequently helpful in bounding the number
of recursive calls corresponding to P1. Moreover, we bound the number of recursive calls
corresponding to P2 using a lookahead-potential function that relates |P2| to |P1|. As
discussed above, the additive |E| in the recursion depth comes from the bound on |P2|.
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2 Conclusion

We introduced a splitting-o� operation in (weighted) hypergraphs. Our contribution on
this front is conceptualizing an appropriate notion of splitting-o� in hypergraphs. Next,
we proved that for every hypergraph there exists a local-connectivity preserving complete
h-splitting-o� at an arbitrary vertex from the hypergraph. Although our proof of existence
follows from previously known existential results of Bernáth and Király [5] for an abstract
function cover problem, our main contribution is identifying that our newly introduced
notion of hypergraph splitting-o� falls within their framework. Next, we designed a strongly
polynomial-time algorithm to find a local-connectivity preserving complete splitting-o� at
a vertex. This involved substantial technical challenges to overcome. In particular, our
main contribution towards the strongly polynomial-time algorithm is a strengthening of
the above-mentioned existential result: we showed that there exists a local connectivity
preserving complete h-splitting-o� at an arbitrary vertex from the hypergraph in which

the number of additional hyperedges is polynomial in the number of vertices. The strongly
polynomial-time algorithm follows from our techniques to achieve this stronger existential
result via standard algorithmic tools in submodularity. Finally, we illustrated the usefulness
of the existence of local connectivity preserving complete h-splitting-o� at an arbitrary
vertex from a hypergraph by presenting two applications. Our first application is to give a
constructive characterization of k-hyperedge-connected hypergraphs. Our second application
is to give an alternative proof of an approximate min-max relation for the max Steiner
rooted-connected orientation problem in graphs and hypergraphs. Two notable features of
our proof of this relation for graphs are that (1) it avoids the strong orientation theorem of
Nash-Williams and (2) it proves a result for graphs using tools developed for hypergraphs.

Local and global connectivity preserving complete splitting-o� at a vertex from a graph is
a powerful operation for graphs. It finds applications in a variety of graph problems including
graph orientation [25,26,38,48], connectivity augmentation [2,22,23,24,49], minimum cuts
enumeration [29,32,50], network design [12,17,35,46], tree packing [7,33,40,41], congruency-
constrained cuts [51], and approximation algorithms for TSP [8, 30]. We believe that our
local connectivity preserving complete splitting-o� results for hypergraphs is likely to find
future applications akin to its counterpart in graphs. We mention some of the open questions
raised by our work:
1. Our work focused on local connectivity preserving complete h-splitting-o� at a vertex

from a hypergraph. We gave an example showing that local/global connectivity preserving
complete g-splitting-o� at a vertex from a hypergraph may not exist (Figure 2). Are there
su�cient conditions to guarantee local/global connectivity preserving complete g-splitting-
o� at a vertex from a hypergraph? We recall that Lovász’s [45, 47] and Mader’s [48]
results give su�cient conditions to guarantee local and global connectivity preserving
complete g-splitting-o� at a vertex from a graph.

2. As one of the applications of our splitting-o� result, we presented an alternative proof of an
approximate min-max relation for the max Steiner rooted-connected orientation problem
in hypergraphs. The computational complexity of a closely related hypergraph orientation
problem is open: In max Steiner connected orientation problem in hypergraphs, the input
is a hypergraph G = (V,E) and a subset T of terminals. The goal is to find the maximum
k and an orientation ≠æ

G of G such that ≠æ
G contains k hyperarc-disjoint paths from u to v

for every pair of distinct terminals u, v œ T . Max Steiner connected orientation problem
in graphs is solvable in polynomial time via the Nash-Williams’ strong orientation theorem.
Is max Steiner connected orientation problem in hypergraphs solvable in polynomial time?
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Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not
have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits
computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In
this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-
size algebraic circuits. We show that the famous Shub-Smale · -conjecture indeed implies such
an exponential lower bound for an exponential sum. Our main tools come from parameterized
complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound
for the parameterized algebraic complexity class VW0

nb[P], assuming the same conjecture. VW0
nb[P]

can be thought of as the weighted sums of (unbounded-degree) circuits, where only ±1 constants
are cost-free. To the best of our knowledge, this is the first time the Shub-Smale · -conjecture has
been applied to prove explicit exponential lower bounds.

Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely
the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential
sums is fpt, then integers, as well as polynomials with coe�cients being definable in the linear
counting hierarchy have subpolynomial · -complexity.

Finally, we characterize a related class VW[F], in terms of permanents, where we consider an
exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle
covers that have one long cycle and all other cycles have constant length, then the resulting family
of polynomials is complete for VW[F] on certain types of graphs.
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Valiant [23] proposed an algebraic version of the P versus NP question and defined the
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(addition gate) or ◊ (multiplication gate), with the obvious syntactic meaning, and (4) there
is a unique gate of out-degree 0, the output gate. Clearly, every gate in a circuit computes a
polynomial in K[X]. We say that the circuit C computes P (X) œ K[X] if the output gate
of C computes P (X). The size of C, denoted by size(C), is the number of nodes in the
circuit. An algebraic circuit is an algebraic formula if every gate in the circuit has out-degree
1 except for the output gate. The class VNP, the algebraic analogue of NP, is definable by
taking exponential sums of the form

f(X) =
ÿ

eœ{0,1}¸

g(X, e) , (1)

where g is computable by a polynomial-size circuit and ¸ is polynomial in the number of
variables. It is known that one can also replace algebraic circuits by algebraic formulas, and
still get the same class VNP [23, 18]. Valiant further proved that the permanent family is
complete for VNP (over fields of characteristic not two). Recall that the permanent of a
matrix (Xi,j) is defined as

perX =
ÿ

fiœSn

X1,fi(1) · · ·Xn,fi(n). (2)

The famous Valiant’s conjecture VP ”= VNP is equivalent to the fact that the permanent
does not have polynomial-size circuits. The representation of the permanent in (2), although
it looks very natural, is not optimal. Ryser’s formula [19] yields an algebraic formula of size
O(2nn2). A formula of similar size was later found by Glynn [11]. Ryser’s formula is now over
sixty years old and has not been improved since. This gives rise to the interesting question
whether there is a formula or circuit of subexponential-size (in n) for the permanent? More
generally, we can now ask the following question.

I Question 1. Is an exponential sum f (as in Eq. (1)) always computable by an algebraic
circuit or formulas of size subexponential in ¸, that is, size 2o(¸)? Or are there instances for
which exponential-size is necessary?

Note that exponential-size being necessary is a much stronger claim than VP ”= VNP. It
could well be that VP ”= VNP but still exponential sums like in (1) have subxponential size
circuits! In this paper, we shed some light on the question what happens if exponential sums
would always have subexponential size circuits.

Question 1 works as driving force between the famous Shub-Smale · -conjecture [20]
and exponential lower bounds on exponential sums. The · -complexity ·(f) of an integer
polynomial is the size of a smallest division-free circuit that computes f starting from the
constants ±1. The · -conjecture states the the number of integer zeroes of f is polynomially
bounded in ·(f), see [20]. [20] shows that the · -conjecture implies PC ”= NPC, in the
Blum–Shub–Smale (BSS) model of computation over the complex numbers [5, 4].

Super-polynomial lower bounds assuming the · -conjecture. Bürgisser [6] connected the
· -complexity of the permanent to various other conjectures. He showed that the · -conjecture
implies a superpolynomial lower bound on ·(pern), implying the constant-free version of
VP ”= VNP, namely VP

0 ”= VNP
0; for definitions, see Section 2.1. The proof strategy of [6]

is as follows: assume ·(pern) = poly(n), and conclude a complexity-theoretic “collapse”
that the counting hierarchy CH (for a definition, see Section 3) is in P/poly. Consider the
Pochhammer–Wilkinson polynomial fn(x) :=

r
n

i=1
(x ≠ i), and construct a unique O(logn)-

variate multilinear polynomial Bn such that under a “suitable” substitution, one gets back fn.
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The coe�cients of fn as well as Bn, are e�ciently computable (since CH ™ P/poly), implying
Bn œ VNP

0. An inspection of Valiant’s completeness result reveals that if Bn œ VNP
0, then

there is a polynomially bounded sequence p(n) such that ·(2p(n)Bn) = poly(logn), which
implies ·(2p(n)fn) = poly(logn), contradicting the · -conjecture.

In [6], the superpolynomial lower bound on ·(pern) was also implied by any of the
quantities ·(n!), ·(

q
n

k=0

1

k!
T k), or ·(

q
n

k=0
krT k) (for any fixed negative integer r) not being

poly-logarithmically bounded as a function of n. Here, we remark that the separation proof of
VP

0 and VNP
0, even assuming strong bounds on the · -conjecture, is merely superpolynomial:

we do not get the (possibly) desirable exponential separation between VP
0 and VNP

0. This
leads to the following question.

I Question 2. Does the · -conjecture imply exponential algebraic lower bounds?

Here, we mention that there are variants of the · -conjecture, e.g., the real · -conjecture [15, 21]
or SOS-· -conjecture [8], which also give strong algebraic lower bounds. There is also super
polynomial lower bound known from a proof complexity theoretic view due to [1] from the
original Shub-Smale · -conjecture. However, the Shub-Smale · -conjecture is not known to
give an exponential lower bound for the permanent.

1.1 Our results
The results of our paper revolve around answering both Question 1-2 positively. The main
result is the following.

I Theorem 1 (Informal). The · -conjecture implies an exponential lower bound for some
explicit exponential sum.

Remarks.
(1) Although the existence of some polynomial requiring exponential circuits is clear from

dimension/counting, the existence of an (even non-explicit) exponential sum polynomial
requiring exponential-size circuits is unclear. Explicit here means that the family is in
VNP.

(2) One can also think of an exponential sum f in Equation (1), as f =
q

eœ{0,1}¸(n) U(X, y, e),
where U(X,Y,Z) is a universal circuit of size size(U) = poly(size(g)) with Y =
(Y1, . . . , Yr) and Z = (Z1, . . . , Z¸(n)) and y œ Fr is chosen such that U(X, y, e) = g(X, e);
and the number of variables ¸(n) is linear in n.

(3) Since there’s a polynomial (non-linear) blowup in the reduction of the exponential sum on
the universal circuit from the permanent, we will only get a subexponential lower bound
on the permanent polynomial assuming the · -conjecture. We leave it as an open question
to achieve an exponential lower bound on the permanent assuming the · -conjecture.

The proof of Theorem 1 is rather indirect, and goes via exponential sums, which is our
main object of study (and bridge between many results and classes).

log-variate exponential sum polynomial. Let g(X,Y) be some polynomial in n-many
X-variables and ¸(n)-many Y-variables, where ¸(n) = O(n). Assume that g is computed by
a circuit of size m. Then we define

p-log-Expsumm,k(g) :=
ÿ

yœ{0,1}¸(n)

g(X, y) ,

ICALP 2024
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where k = n/ logm. The size of the exponential is measured in the number ¸(n) of Y-variables.
In the end, we want to measure in the input size, the number n of X-variables. To talk about
subexponential complexity, ¸(n) should be linearly bounded. g will be typically computed
by a circuit (of unbounded degree). We want to view p-log-Expsumm,k as a parameterized
problem, the parameter will be k. Our definition of p-log-Expsum, as a polynomial-sum,
is motivated by the log-parameterizations which are used in the definition of the so-called
M -hierarchy in the Boolean setting, see [9, 10].

We show that p-log-Expsum is most likely not fixed-parameter tractable (fpt). A polyno-
mial family pn,k is fpt if both its size and degree are fpt bounded, i.e., of the form f(k)q(n),
for q Æ poly(n), and f : N æ N being any computable function. We connect p-log-Expsum
with – (1) a linear variant of the counting hierarchy (we denote it by CHlin), where the size
of the oracle calls are bounded linearly in the size of the input; for definition see Section 3;
and (2) integers definable in CHlin, similar to Bürgisser [6]. Informally, an integer is definable
in CHlin, if its sign and bits are computable in the same class.

I Theorem 2 (Informal). If p-log-Expsum is fixed-parameter tractable, then the following
results hold.
1. The linear counting hierarchy (CHlin) collapses.
2. Any sequence a(n) definable in the linear counting hierarchy, as well as univariate polyno-

mials with coe�cients being definable in the linear counting hierarchy, have subpolynomial
· -complexity.

For formal statements, see Theorem 13 and 21.
Finally, many algebraic complexity classes can be defined in terms of permanents. Most

prominently, the “regular” permanent family (pern) is complete for VNP. The class VW[1]
is an important class in parameterized complexity. It is defined as a bounded sum over
constant depth weft-1 circuits. Bounded sum means that we sum over {0, 1}-vectors with k
ones and k is the parameter. Bläser and Engels [3] prove that VW[1] is described by so-called
k-permanents with k being the parameter. In a k-permanent, we only sum over permutations
with n≠ k self-loops. The crucial parameterized class of this work is VW[P]: it is defined as a
bounded exponential sum over polynomially-sized arithmetic circuits computing a polynomial
of degree that is polynomially bounded. While we do not characterise VW[P] in terms of
permanents, we characterize the related class VW[F]: Here instead of summing over circuits,
we sum over formulas.1 The permutations that we sum over for defining our permanent
family will have one cycle of length k and all other cycles bounded by 4. Again, k is the
parameter. We call the corresponding polynomials (k, 4)-restricted permanents. It turns out
that we also need to restrict the graph classes. We call a graph G = (V,E) (4, b)-nice if we
can partition the set V = V1 fi V2 disjointly, such that in the induced graph G[V1], every
cycle is either a self-loop or has length > 4 and in the induced graph G[V2] has tree-width
bounded by b. While this looks artificial at a first glance, it turns out that there is a constant
b such that (k, 4)-restricted permanent on (4, b)-nice graphs describes the natural class VW[F].
There is a family of (4, b)-nice graphs such that the corresponding family of (k, 4)-restricted
permanents is VW[F]-hard. On the other hand, the (k, 4)-restricted permanent family is in
VW[F] for every family of (4, b)-nice graphs. Together, this implies:

I Theorem 3 (VW[F]-Completeness). (k, 4)-restricted permanent family on (4, b)-nice graphs
is VW[F]-complete.

1 Maybe an explanation of the naming convention is helpful: In VW[P], we sum of polynomial-size circuits,
which describe the class VP. In VW[F], we sum over polynomial size formulas, which define the class
VF, the modern name for VPe.
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We also prove strong separations of algebraic complexity classes and parameterized algebraic
complexity classes (Theorem 30), and exponential lower bounds in the parameterized setting
(Theorem 36).
For VNP it is known that it does not matter whether we sum over formulas or circuits, that
is, VNP = VNPe. Whether VW[P] = VW[F] remains an open questions for future research.

1.2 Proof ideas

In this section, we briefly sketch the proof ideas. The omitted proofs of the paper can be
found in the longer arxiv version of the paper. We first present the proofs of Theorem 2,
because the techniques and lemmas involved in proving them are the backbone of Theorem 1.

Proof idea of Theorem 2. We prove them in two parts.
Proof of Part (1): We prove even a stronger statement for the subexponential version of the
linear counting hierarchy. The proof goes via induction on the level of the counting hierarchy.
The criteria for some language B being in the (k + 1)-th level is that there should be some
language A in the k-th level such that |{y œ {0, 1}n : Èx, yÍ œ A}| > 2n≠1. Essentially, for a
language A in the k-th level, we express |{y œ {0, 1}n : Èx, yÍ œ A}| > 2n≠1 as an exponential
sum over an algebraic circuit ‰A(x, y), which captures the characteristic function of A.
Furthermore, one can show that p-log-Expsum is fpt (in an unbounded constant-free setting)
i�

q
y
g(X, y) has 2o(n)poly(m) size circuits, where g has a circuit of size m; see Theorem 15

and 16. Putting these together, one gets that the exponential sum has a subexponential-size
constant-free circuit. Lastly, we want to get the information about the highest bit of the
sum (which is equivalent to looking at it mod 2n), which can be e�ciently arithmetized. In
every step there is polynomial blowup in the size, and hence the size remains subexponential,
yielding the desired result. For details, see Theorem 13.
Proof of Part (2): This proof is an adaption of [6, 14] in our context. Take a sequence
(an)n œ CHlinP. We define a multilinear polynomial A(Y) such that the coe�cient of Yj

is the j-th bit of a(n), where j is the binary representation of j. Furthermore, checking
a(n, j) = b can be done by a subexponential circuit C(N,J), where N and J have logn and
bit(n)-many variables capturing n and j respectively. Moreover, one can define F (N,Y,J) =
C(N,J) ·

r
i
(JiYi + 1 ≠ Ji) and show that A can be expressed as an exponential sum

over F (j,N,Y)! This is clearly a p-log-Expsum instance, which finally yields that the · -
complexity of a(n) is subpolynomial. A similar proof strategy also holds for the polynomials
with coe�cients being definable in CHlinP. For details, see Section 6.

Proof idea of Theorem 1. Take the Pochhammer polynomial pn(X) =
r

n

i=1
(X + i).

The coe�cient of Xn≠k in pn will be ‡k(1, . . . , n), where ‡k(z1, . . . , zn) is the k-th element-
ary symmetric polynomial in variables z1, . . . , zn. It is not hard to show that CHlinP is
closed under polynomially-many additions and multiplications (Theorem 19). Therefore,
(‡k(1, . . . , n))nœN,kÆn is definable in the linear counting hierarchy (see Corollary 20). And by
Theorem 21, (pn)nœN has no(1)-sized constant-free circuits if p-log-Expsum is fixed-parameter
tractable. But pn has n distinct integer roots. Assuming the · -conjecture, p-log-Expsum is
not fpt. On the other hand, one can show that when exponential sums over circuits of size m
have circuits have size 2o(n)poly(m), then the p-log-Expsum is fpt, by Theorem 16; in other
words, p-log-Expsum is not fpt implies an exponential lower bound on an exponential sum.
This finishes the proof.
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Proof idea of Theorem 3. The hardness proof is gadget based (Theorem 42). The details
are however quite complicated since we have to cleverly keep track of the cycle lengths. For
the upper bound, we work along a tree decomposition. While it is known that the permanent
can be computed in fpt time on graphs of bounded treewidth, we cannot simply adapt these
algorithms, since we have to produce a formula. This can be achieved using a balanced tree
decomposition.

1.3 Previous results
To prove (conditional) exponential lower bounds, the standard assumptions that P ”= NP

or VP ”= VNP are not enough. It is consistent with our current knowledge that for instance
P ”= NP, but NP-hard problems can have subexponential time algorithms. What we need is
a complexity assumption stating that certain problems can only be solved in exponential
time. This is the exponential time hypothesis (ETH) in the Boolean setting. Dell et al. [7]
studied the exponential time complexity of the permanent, they prove that when there is an
algorithm for computing the permanent in time 2o(n), then this violates the counting version
of the exponential time hypothesis #ETH. #ETH states that there is a constant c such that
no deterministic algorithm can count the number of satisfying assignments of a formula in
3-CNF in time 2cn. For connections between parameterized and subexponential complexity
in the Boolean setting, we refer to [9, 10].

Bläser and Engels [3] transfer the important definitions and results from parameterized
complexity in the Boolean world to define a theory of parameterized algebraic complexity
classes. In particular, they define the VW-hierarchy and prove that the clique polynomial and
the k-permanent are VW[1]-complete (under so-called fpt-substitutions). They also claim
the hardness of the restricted permanent for the class VW[t] for every constant t and sketch
a proof. Note that VW[F] contains each VW[t]. So we strengthen the hardness proof in [3]
and complement it with an upper bound.

The main tool used by Bürgisser [6] to prove the results above is the counting hierarchy.
The polynomial counting hierarchy was introduced by Wagner [24] to classify the complexity
of Boolean counting problems. The fact that small circuits for the permanent collapses the
counting hierarchy is used by Bürgisser to prove the results mentioned above.

Finally, there have been quite a few works [6, 14, 16, 15], where we have conditional
separations on the constant-free version of VP and VNP, namely VP

0 and VNP
0, or their

variants, depending on the strength of the conjecture. But this is the first time that we are
separating algebraic classes and proving exponential lower bounds, assuming the · -conjecture.

1.4 Structure of the paper
In Section 2, we defined the basics of constant-free Valiant’s model and the unbounded and
parameterized setting. In Section 3, we introduce the linear counting hierarchy (CHlin) and
its basic properties. Section 4 connects Valiant’s model to the counting hierarchy. Here,
we formally introduce exponential sums and investigate their relation to the parameterized
classes. The main result is that the fixed-parameter tractability of exponential sums collapses
the counting hierarchy. The proofs are quite similar to [6], however, we need to pay
special attention to the fact the witness size is linear. Section 5 introduces the definability
(computability) of integers in the linear counting hierarchy, and some closure properties
of the same. Section 6 proves the exponential lower bound on exponential sum assuming
· -conjecture. Section 7 introduces the parameterized VW-classes and its basic properties.
In Section 8 we prove some easy conditional collapse results of the VW-hierarchy in various
circuit models.
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2 Preliminaries I

2.1 Constant-free and unbounded models
Constant-free Valiant’s classes. We will say that an algebraic circuit is constant-free, if no
field elements other than {≠1, 0, 1} are used for labeling in the circuit. Clearly, constant-free
circuits can only compute polynomials in Z[X]. For f(X) œ Z[X], ·(f) is the size of a
minimum size constant-free circuit that computes f , while L(f) denotes the minimum size
circuit that computes f . It is noteworthy to observe that, unlike Valiant’s classical models,
computing integers in the constant-free model can be costly; e.g., ·(22nXn) = �(n), while
L(22nXn) = �(logn). On the other hand, for any f œ Z[X], L(f) Æ ·(f).

Before defining the constant-free Valiant classes, we formalize the notion of formal degree
of a node, denoted formal-deg(·). It is defined recursively as follows: (1) the formal degree of
an input gate is 1, (2) if u = v+w, then formal-deg(u) = max(formal-deg(v), formal-deg(w)),
and (3) if u = v ◊ w, then formal-deg(u) = formal-deg(v) + formal-deg(w). The formal
degree of a circuit is defined as the formal degree of its output node.

The class constant-free Valiant’s P, denoted by VP
0, contains all p-families (f) in Z[X],

such that formal-deg(f) and ·(f) are both p-bounded. Analogously, VNP
0 contains all

p-families (fn), such that there exists a p-bounded function q(n) and (gn) œ VP
0, where

fn(X) =
ÿ

yœ{0,1}q(n)

gn(X, y1, . . . , yq(n)) .

It is not clear whether showing VP
0 ”= VNP

0 implies VP ”= VNP, it is not even clear
whether VP

0 ”= VNP
0 =∆ ·(pern) = nÊ(1). The subtlety here is that in the algebraic

completeness proof for the permanent, divisions by two occur! However, a partial implication
is known due to [6, Theorem 2.10]: Showing ·(2p(n)fn) = nÊ(1), for some fn œ VNP

0 and all
p-bounded p(n) would imply that ·(pern) = nÊ(1).

Arithmetization is a well-known technique in complexity theory. To arithmetize a Boolean
circuit C computing a Boolean function Ï, we use the arithmetization technique wherein we
map Ï(x1, . . . , xn) to a polynomial p(x1, . . . , xn) such that for any assignment of Boolean
values vi œ {0, 1} to the xi, Ï(v1, . . . , vn) = p(v1, . . . , vn) holds.

We define the arithmetization map � for variables xi, and clauses c1, . . . , cm, as follows:
1. xi ‘æ xi,
2. ¬xi ‘æ 1 ≠ xi,
3. c1 ‚ · · · ‚ cm ‘æ 1 ≠

r
iœ[m]

(1 ≠ �(ci)),
4. c1 · · · · · cm ‘æ

r
iœ[m]

�(ci).
This map allows us to transform C into an arithmetic circuit for p. For a Boolean circuit
C, we denote the arithmetized circuit by arithmetize(C). Here, we remark that the degree
of arithmetize(C) can become exponentially large; this is because there is no known depth-
reduction for Boolean circuits, and hence the degree may double at each step, owing to an
exponential blowup in the degree.

Valiant’s classes in the unbounded setting. It is well-known that an algebraic circuit
of size s, can compute polynomials of degree exp(s); e.g., f(x) = x2

s , and L(f) = O(s).
This brings us to the next definition, the class VPnb, originally defined in [17]. A sequence
of polynomials (f) = (fn)n œ VPnb, if the number of variables in fn and L(fn) are both
p-bounded (the degree may be exponentially large). The subscript “nb” signifies the “not
bounded” phenomenon on the degree of the polynomial, in contrast to the original class
VP. Similarly, a sequence of polynomials (f) = (fn)n œ VNPnb, if there exists a p-bounded
function q(n) and gn(X, Y1, . . . , Yq(n)) œ VPnb where
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24:8 Exponential Lower Bounds via Exponential Sums

fn(X) =
ÿ

yœ{0,1}q(n)

gn(X, y1, . . . , yq(n)) .

One can analogously define VP
0

nb
and VNP

0

nb
, in the constant-free setting. It is obvious that

VPnb = VNPnb implies VP = VNP, but the converse is unclear. However, [17] showed that over
a ring of positive characteristic, the converse holds, i.e., VP = VNP implies VPnb = VNPnb!
On the other hand, [16] showed that VP

0 = VNP
0 implies that VP

0

nb
= VNP

0

nb
, and the

converse is unclear because it seems di�cult to rule out the possibility that some polynomial
family in VNP

0 does not lie in VP
0, but still in VP (i.e., computable by polynomial-size

algebraic circuits using exponentially large-bit integers).

2.2 Parameterized Valiant’s classes
Parameterized Valiant’s classes were introduced in [3]. We will briefly review the definitions
and results there and extend them to the constant-free and unbounded setting. We first
start with the fixed-parameter tractable classes. The W -hierarchies will be introduced later
since we only need them in the second part of this work.

Our families of polynomials will now have two indices. They will be of the form (pn,k).
Here, n is the index of the family and k is the parameter. We will say a polynomial family
(pn,k) is a parameterized p-family if the number of variables is p-bounded in n and the degree
is p-bounded in n, k. If there is no bound on the degree, we say it is parameterized family.

The most natural parameterization is by the degree: Let (pn) be any p-family then we
get a parameterized family (pn,k) by setting pn,k := the homogeneous part of degree k of pn.
For more details, we will refer the reader to [3].

We now define fixed-parameter variants of Valiant’s classes with the constant-free version.

I Definition 4 (Algebraic FPT classes).
1. A parameterized p-family (pn,k) is in VFPT i� L(pn,k) is upper bounded by f(k)q(n) for

some p-bounded function q and some function f : N æ N (such bound will be called an
fpt bound). If one removes the requirement of p-family on pn,k, and imposes only that the
number of variables is p-bounded, one gets the class VFPTnb.

2. A parameterized p-family pn,k is in VFPT
0 i� ·(pn,k) is upper bounded by f(k)q(n) for

some p-bounded function q and some function f : N æ N. Similarly, one gets VFPT
0

nb
,

if one removes the requirement of p-family, and imposes only that the number of variables
is p-bounded.

We remark that in the above, f need not be computable as Valiant’s model is non-uniform.

I Definition 5 (Fpt-projection). A parameterized family f = (fn,k) is an fpt-projection of
another parameterized family g = (gn,k) if there are functions r, s, t : N æ N such that r is
p-bounded, s, t are functions and fn,k is a projection of gr(n)s(k),kÕ for some kÕ Æ t(k),2. We
write f Æfpt

p
g.

However p-projection in Valiant’s world seems to be weaker compared to parsimonious
poly-time reduction in the Boolean world; therefore we need a stronger notion of reduction
for defining algebraic models of the Boolean #W -classes, see [3]. That’s why we are defining
substitutions. We will analogously define it for constant-free model as well.

2 kÕ might depend on n, but its size is bounded by a function in k. There are examples in the Boolean
world, where this dependence on n is used.
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I Definition 6 (Fpt-substitution).
1. A parameterized family f = (fn,k) is an fpt-substitution of another parameterized family

g = (gn,k) if there are functions r, s, t, u : N æ N and polynomials h1, . . . , hu(r(n)s(k)) œ
K[X] with both L(hi) and deg(hi) fpt-bounded such that r, u are p-bounded, s, t are
functions, and fn,k(X) = gr(n)s(k),kÕ(h1, . . . , hu(r(n)s(k))) for some kÕ Æ t(k). We write
f Æfpt

s
g. When we allow unbounded degree substitution of hi (i.e. only L(hi) is

fpt-bounded), we say that f is an fptnb-substitution of g. We denote this as f Æfptnb
s g.

2. A parameterized family f = (fn,k) is a constant-free fpt-substitution of another para-
meterized family g = (gn,k) if there are functions r, s, t, u : N æ N and polynomials
h1, . . . , hu(r(n)s(k)) œ K[X] with both ·(hi) and deg(hi) are fpt-bounded such that r, u
are p-bounded, s, t are functions and fn,k(X) = gr(n)s(k),kÕ(h1, . . . , hu(r(n)s(k))) for some
kÕ Æ t(k). We write f Æ·-fpt

s
g. If we remove the degree condition, we get fptnb-

substitutions, denoted as f Æ·-fptnb
s g.

One can define constant-free fpt-projections analogously. The following lemma should be
immediate from the definitions, see [3] for a proof in the case of VFPT.

I Lemma 7. VFPT,VFPTnb and their constant-free versions (VFPT0, VFPT0

nb
) are closed

under fpt-projections and fpt-substitutions (constant-free fpt-projections and constant-free
fpt-substitutions, respectively).

3 Linear counting hierarchy

In this section, we define the linear counting hierarchy, a variant of the counting hierarchy,
which will allow us to talk about subexponential complexity. The original counting hierarchy
was defined by Wagner [24]. We here restrict the witness length to be linear, which is
important when dealing with exponential complexity. Allender et al. [2] also define a
linear counting hierarchy. Their definition is not comparable to ours. We use an operator-
based definition: The base class is deterministic polynomial time and the witness length is
linearly bounded. Allender et al. use an oracle TM definition: The oracle Turing machine is
probabilistic and linear time bounded, which automatically bounds the query lengths.

I Definition 8. Given a complexity class K, we define C.K to be the class of all languages
A such that there is some B œ K and a function p : N æ N, p(n) = O(nc) for some constant
c, and some polynomial time computable function f : {0, 1}ú æ N such that,

x œ A ≈∆ |{y œ {0, 1}p(|x|) : Èx, yÍ œ B}| > f(x).

We start from C0P := P and for all k œ N, Ck+1P := C.CkP. Then the counting hierarchy
is defined as CH :=

t
kØ0

CkP. We now define our linear counting hierarchy:

I Definition 9. Given a complexity class K, we define Clin.K to be the class of all languages
A such that there is some B œ K and a function ¸ : N æ N, ¸(n) = O(n), and some
polynomial time computable function f : {0, 1}ú æ N such that,

x œ A ≈∆ |{y œ {0, 1}¸(|x|) : Èx, yÍ œ B}| > f(x).

We define C-lin0P := P and for all k œ N, C-link+1P := Clin.C-linkP. The linear counting
hierarchy is CHlinP :=

t
kØ0

C-linkP.
Now, we slightly modify the above definition to get ÷lin.K and ’lin.K in the following

way: x œ A ≈∆ ÷y œ {0, 1}¸(|x|) : Èx, yÍ œ B and x œ A ≈∆ ’y œ {0, 1}¸(|x|) : Èx, yÍ œ B,
respectively. Clearly, it can be said that K ™ ÷lin.K ™ Clin.K and K ™ ’lin.K ™ Clin.K.

We can define the linear counting hierarchy in a slightly easier manner.
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24:10 Exponential Lower Bounds via Exponential Sums

I Definition 10. Given a complexity class K, we define CÕ
lin.K to be the class of all languages

A such that there is some B œ K and a function ¸ : N æ N, ¸(n) = O(n), such that

x œ A ≈∆ |{y œ {0, 1}¸(|x|) : Èx, yÍ œ B}| > 2¸(|x|)≠1.

It is clear that CÕ
lin.K ™ Clin.K for any class K. Moreover, by an easy adaption of

the proof of [22, Lemma 3.3], for any language K œ CH, Clin.K ™ CÕ
lin.K. Also, from the

definition, we can say that CHlinP ™ CH. Therefore, the following holds.

I Fact 11. C-link+1P = CÕ
lin.C-linkP.

We also need a subexponential version of the counting hierarchy. Let SUBEXP =
DTime(2o(n)). Then we set C-lin0SUBEXP = SUBEXP and for all k œ N, C-link+1SUBEXP :=
Clin.C-linkSUBEXP. Moreover, CHlinSUBEXP =

t
kØ0

C-linkSUBEXP.
Here we define a few more terms that we shall use later in Section 5. We set NPlin = ÷lin.P,

NP with linear witness size. In the same way, we can define the levels of the linear polynomial
time hierarchy, �lin

i
and �lin

i
, by applying the operators ÷lin and ’lin in an alternating fashion

to P. The linear polynomial hierarchy PHlin is the union over all �lin
i
.

From the above definitions, we get the following conclusion.

I Fact 12. NPlin ™ PHlin ™ CHlin.

4 Connecting Valiant’s model to the counting hierarchy

In this section, we aim to prove that subexponential upper bounds for exponential sums imply
a collapse of the linear counting hierarchy (for a definition, see Section 3). To show this, we will
define a polynomial family p-log-Expsum and show that p-log-Expsum œ VFPT

0

nb
is equivalent

to exponential sums having subexponential circuits (Corollary 34). p-log-Expsum œ VFPT
0

nb

will imply a collapse of the linear counting hierarchy (Theorem 13).

4.1 log-variate exponential sum polynomial family
In this section, we will define a parameterized log-variate exponential sum polynomial family,

p-log-Expsumm,k(g) :=
ÿ

yœ{0,1}¸(n)

gn(X, y) ,

where X has n variables, ¸(n) = O(n), and gn has circuits of size m (n = �(logm)), and the
parameter is k = n

logm
. m and k are functions of n. Note that the running parameter of the

family is m. When we write p-log-Expsum œ VFPT, we mean that {p-log-Expsumm,k(g)}m,k œ
VFPT for all families g. We are allowing g to have unbounded degree, i.e., g may not necessarily
be a p-family. We will also be using constant-free circuits computing g in the constant-free
context.

4.2 Collapsing of CHlinSUBEXP
The main theorem of the section is the following:

I Theorem 13. If p-log-Expsum œ VFPT
0

nb
, then for every language L in CHlinSUBEXP, we

have a constant-free algebraic circuit ‰L so that x œ L =∆ ‰L(x) = 1, x /œ L =∆ ‰L(x) = 0
and ‰L has size 2o(n).



S. Bhattacharjee, M. Bläser, P. Dutta, and S. Mukherjee 24:11

Proof. We prove the above statement by induction on the level of CHlinSUBEXP. By
definition, CHlinSUBEXP =

t
kØ0

C-linkSUBEXP. For k = 0, C-linkSUBEXP = SUBEXP.
Now by standard arithmetization, we can get a 2o(n) size, unbounded degree constant-free
circuit for each L œ SUBEXP, so that the above-mentioned condition holds.

Now, by induction hypothesis say, it is true up to k-th level of the hierarchy. We will
prove that it is true for the (k+1)-th level. Take any B œ C-link+1SUBEXP. By Fact 11 and
Definition 10, there exists A œ C-linkSUBEXP such that

x œ B ≈∆ |{y œ {0, 1}¸(|x|) : Èx, yÍ œ A}| > 2¸(|x|)≠1 ,

where ¸ is some linear polynomial. By slight abuse of notation, let ‰A denote an algebraic
circuit capturing the characteristic function for A, i.e.,

‰A(x, y) = 1 ≈∆ Èx, yÍ œ A .

By the induction hypothesis, we can assume that ‰A has size 2o(|x|). Now, one can equivalently
write the following:

x œ B ≈∆
ÿ

yœ{0,1}¸(|x|)

‰A(x, y) > 2¸(|x|)≠1 .

In this way, we get an instance of p-log-Expsum,
q

yœ{0,1}¸(|x|) ‰A(x, y), where the size of ‰A

is m = 2o(|x|) and it computes a polynomial of unbounded degree (there is no depth-reduction
known for Boolean circuits and thus, it cannot be reduced).

As p-log-Expsum œ VFPT
0

nb, there is an algebraic circuit C such that C(x) :=q
yœ{0,1}¸(|x|) ‰A(x, y) and C has subexponential-size by Theorem 15.
Trivially, ·(2¸(|x|)≠1) Æ poly(|x|). So, we can make C first constant-free and then Boolean

by the standard procedure of computing on the binary representation modulo 2¸(n). Let
C̃ is the Boolean circuit that computes the highest bit. We just arithmetize C̃ and take
‰B = arithmetize(C̃). Each time we convert the arithmetic circuit to a Boolean one and
arithmetize the Boolean circuit, we incur only a small polynomial blow-up in size. Therefore,
‰B has subexponential-size, as desired. J

I Remark 14. Clearly, CHlinP ™ CHlinSUBEXP and hence, p-log-Expsum œ VFPT
0

nb
implies

that every language in CHlinP has subexponential-size constant-free algebraic circuits.

I Theorem 15. If p-log-Expsum œ VFPT
0

nb
, then

q
yœ{0,1}¸(n) g(X, y) has circuits of size

2o(n)poly(m).

Proof. Assume that p-log-Expsum has circuits of size f(n/ logm)poly(m). We can assume
that f is an increasing function. Let i(n) = max({1}fi {j | f(j) Æ n}). i(n) is nondecreasing
and unbounded. Moreover, f(i(n)) Æ n for all but finitely many n.

We will prove that
q

yœ{0,1}¸(n) g(X, y) has circuits of size 2n/i(n)poly(m). If m Ø 2n/i(n),
then f(n/ logm) Æ f(i(n)) Æ n, thus there are circuits of size n · poly(m) = poly(m). If
m < 2n/i(n), then let m̂ = 2n/i(n). We can take a circuit C for g and pad it to a circuit Ĉ of
size s with m̂ Æ s Æ O(m̂), such that Ĉ has the same variables as C. Then let k̂ = n/ log m̂.
Thus,

q
yœ{0,1}¸(n) g(X, y) has circuits of size f(k̂)poly(m̂) = n · poly(2n/i(n)). J

We will need the unbounded version as stated above, but a similar proof also works for
the bounded case. The same is true of the non-constant-free version. We will also need the
following converse direction:
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I Theorem 16. Let
q

yœ{0,1}¸(n) g(X, y) have circuits of size 2o(n)poly(m) for each g of size
m. Then p-log-Expsum œ VFPT

0

nb
.

Proof. Let Cn be a circuit for
q

yœ{0,1}¸(n) g(X, y) of size 2O(n/i(n))
poly(m) for some non-

decreasing and unbounded function i. Let f be a nondecreasing function such that
f(i(n)) Ø 2n. We claim that p-log-Expsum has circuits of size f(k)poly(m) with k = n/ logm.
If m Ø 2n/i(n), then Cn has size poly(m) Æ f(k)poly(m). Otherwise, k = n/ logm Ø
i(n) and therefore f(k) Ø 2n. Thus, the trivial circuit for

q
yœ{0,1}¸(n) g(X, y) has size

f(k)poly(m). J

5 Integers definable in CHlinP

In [6, Section 3], integers are studied that are definable in the counting hierarchy. We
adapt this notation to the linear counting hierarchy. Formally, we are given a sequence
of integers (a(n, k))nœN,kÆq(n) for some p-bounded function q : N æ N. We can assume
that |a(n, k)| Æ 2nc for some constant c. In other words, the bit-size of a(n, k) is at most
exponential, as we think n, k has been represented in binary by O(logn) bits. Now consider
two languages,

sgn(a) := {(n, k) : a(n, k) Ø 0} and
Bit(|a|) := {(n, k, j, b) : jth bit of |a(n, k)| is b} .

Here in both of these two languages, n, k, j are given in binary representation.

I Definition 17. We say an integer sequence (a(n, k))nœN,kÆq(n) for some p-bounded function
q is definable in CHlinP whenever both of sgn(a) and Bit(|a|) are in CHlinP.

Chinese remainder language. Now, we define another language and make a connection to
the definition of an integer sequence to be definable in CHlinP, via the Chinese remainder
representation. Given that the bit-size of a(n, k) is at most nc, we consider the set of all
primes p < n2c. The product of all such primes is > 2nc . Therefore, from a(n, k) mod p, for
all primes p < n2c, we can recover a(n, k). Consider

CR(a) :=
)
(n, k, p, j, b) : p prime, p < n2c, j-th bit of (a(n, k) mod p) is b

*
.

Now we show an essential criterion for a sequence to be in CHlinP. It is an adaption with
some additional modifications and observations from [12], which were further implemented
in [6, Theorem 3.5].

I Theorem 18. Let (a(n, k))nœN,kÆq(n) be a integer sequence of exponential bit-size
(|a(n, k)| < 2nc). Then, (a(n, k)) is definable in CHlinP i� both sgn(a) and CR(a) are
in CHlinP.

Now, we can prove an important closure property of non-negative integers definable in
CHlinP, which we shall use later.

I Theorem 19 (Closure properties). Let (a(n, k))nœN,kÆq(n) be a non-negative integer sequence
for some p-bounded function q : N æ N with a(n, k) having bit-size < nc and it is definable
in CHlinP. Consider the sum and product of a(n, k) defined as follows:

b(n) :=
q(n)ÿ

k=0

a(n, k) and c(n) :=
q(n)Ÿ

k=0

a(n, k) .

Then, both of (b(n))nœN and (c(n))nœN are definable in CHlinP.
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I Corollary 20. Take a(n, k) := ‡n,k(1, . . . , n), k Æ n, where ‡n,k(z1, . . . , zn) is the k-th
elementary symmetric polynomial on variables z1, . . . , zn. Then, (a(n, k))nœN,kÆn is definable
in CHlinP.

6 Connecting the counting hierarchy to the · -conjecture

In this section, we connect the · -conjecture to the counting hierarchy. Specifically, we show
that the collapse of CHlinP implies that some explicit polynomial, whose coe�cients are
definable in CHlinP, is “easy”. Formally, we prove the following theorem:

I Theorem 21. Say, (a(n))nœN and (b(n, k))kÆq(n),nœN are both definable in CHlinP. Here q
is some p-bounded function. If p-log-Expsum œ VFPT

0

nb
then the following holds:

1. ·(a(n)) = no(1),
2. If fn(X) :=

qq(n)

k=1
b(n, k)Xk then ·(fn) = no(1).

Proof. We can assume that if a(n) is definable in CHlinP, |a(n)| Æ 2nc , that is, the bit-size
of any integer definable in CHlinP is polynomially bounded. Furthermore, if p-log-Expsum œ
VFPT

0

nb
, then every language in CHlinP has subexponential-size circuits by Theorem 13. We

will use both facts below.

Proof of part (1). Let a(n) =
q

p(n)

j=1
a(n, j)2j be the binary decomposition of a(n) and

p(n) = O(nc). Define a new polynomial:

AÁlognË(Y1, . . . , Ybit(n)) :=
p(n)ÿ

j=0

a(n, j)Y j1
1

. . . Y
jbit(n)
bit(n) ,

where bit(n) := Álog(p(n))Ë. By our assumption, we can decide if a(n, j) = b by a
subexponential-size circuit, given input n and j in binary. Say, Cr(N,J) is the corres-
ponding circuit, where r = ÂlognÊ. We have Cr(n1, . . . , nÂlognÊ+1, j1, . . . , jbit(n)) = a(n, j),
where the ni’s and the ji’s are the bits of n and j, respectively. Consider the polynomial

Fr(J1, . . . , Jcr+1, N1, . . . , Nr+1, Y1, . . . , Ycr+1) := Cr(N,J) ·
cr+1Ÿ

i=1

(JiYi + 1 ≠ Ji) .

Now, by our assumption and Theorem 13, we can say that Fr has 2o(r) size constant-free
algebraic circuits (of unbounded degree). Consider the exponential sum

F̃r(N,Y) :=
ÿ

jœ{0,1}cr+1

Fr(j,N,Y) .

It is an instance of p-log-Expsum with ·(Fr) = 2o(r). By assumption, this implies
that ·(F̃r) = 2o(r). Finally, note that AÁlognË(Y) = F̃r(n1, . . . , nr+1,Y), and a(n) =
AÁlognË(22

0
, . . . , 22bit(n)≠1). Therefore,

·(a(n)) Æ ·(F̃r) + ·(22
bit(n)≠1

) Æ no(1) ,

as desired.
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Proof of part (2). Again we can assume that |b(n, k)| has polynomially many bits. Let
b(n, k) =

q
p(n)

j=1
b(n, k, j)2j be the binary decomposition with p(n) = O(nc

Õ) and q(n) =
O(nc). Define

BÁlognË(Y1, . . . , Yµ(n), Z1, . . . , Z⁄(n)) :=
q(n)ÿ

k=0

p(n)ÿ

j=0

b(n, k, j)Y j1
1

. . . Y
jµ(n)
µ(n)

Zk1
1

. . . Z
k⁄(n)
⁄(n)

.

Here µ(n) := Álog(p(n))Ë and ⁄(n) := Álog(q(n))Ë. Let the variable sets be J =
(J1, . . . , JcÕr+1),N = (N1, . . . , Nr+1),K = (K1, . . . ,Kcr+1),Y = (Y1, . . . , YcÕr+1),Z =
(Z1, . . . , Zcr+1), where again r = ÂlognÊ. Define a new polynomial Fr as follows:

Fr(J,K,N,Y,Z) := Dr(N,J,K) ·
c

Õ
r+1Ÿ

m=1

(JmYm + 1 ≠ Jm)
cr+1Ÿ

s=1

(KsZs + 1 ≠ Zs) .

Like in the previous part of the proof, (Dr(N,J,K))r is the circuit family for computing
(b(n, k, j)). In particular,

Dr(n1, . . . , nr+1, j1, . . . , jµ(n), k1, . . . , k⁄(n)) = b(n, k, j) .

By our assumption, Dr has 2o(r) size constant-free algebraic circuits (of unbounded degree).
Consider,

F̃r(N,Y,Z) =
ÿ

jœ{0,1}cÕr+1

ÿ

kœ{0,1}cr+1

Fr(j, k,N,Y,Z).

It is an instance of p-log-Expsum with ·(Fr) is 2o(r). Since p-log-Expsum œ VFPT
0

nb
=∆

·(F̃r) = 2o(r). Now, BÁlognË(Y,Z) = Fr(n1, . . . , nr+1,Y,Z) and

fn(X) = BÁlognË(22
0
, . . . , 22

µ(n)≠1
, X2

0
, . . . ,X2

⁄(n)≠1
) .

Therefore, ·(fn) Æ ·(BÁlognË) + ·(22µ(n)) + ·(X2
⁄(n)) Æ no(1), as desired. J

I Theorem 22. If the · -conjecture is true, then p-log-Expsum /œ VFPT
0

nb
.

Proof. Take the Pochhammer polynomial pn(X) =
r

n

i=1
(X + i). The coe�cient of Xn≠k in

pn will be ‡k(1, . . . , n), where ‡k(z1, . . . , zn) is the k-th elementary symmetric polynomial in
variables z1, . . . , zn. And (‡k(1, . . . , n))nœN,kÆn is definable in linear counting hierarchy by
Corollary 20. By Theorem 21, (pn)nœN has no(1) size constant-free circuit if p-log-Expsum
is fixed-parameter tractable. But pn has distinct n many integer roots. So, assuming the
· -conjecture, p-log-Expsum is not fpt. J

I Remark 23. Instead of taking the Pochhammer polynomial, there are many other possible
choices for some explicit polynomial, see [6].

Finally, we prove the exponential lower bound for an exponential sum, proving Theorem 1.

I Theorem 24 (Exponential algebraic lower bound). If the · -conjecture is true, then there
exists an n-variate polynomial family

q
yœ{0,1}n gn(X, y), which requires 2�(n)-size circuits.

Proof. If the · -conjecture is true, then Theorem 22 shows that p-log-Expsum /œ VFPT
0

nb
. By

the contrapositive statement of Theorem 16, the existence of such a hard exponential sum
follows. J

I Remark 25. The family gn simply is a universal circuit of size polynomial in n, where the
polynomial is large enough to simulate the computation of the Turing machine that shows
that the n-th Pochhammer polynomial is definable in CHlinP.
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7 Preliminaries II: The VW-hierarchy

In this section, we define di�erent variants of the VW-hierarchy, which will be analogous to
#W -hierarchy, see [3]. We will consider circuits that can have unbounded fanin gates.

I Definition 26 (Weft). For an algebraic circuit C, the weft of C is the maximum number
of unbounded fan-in gates on any path from a leaf to the root.

For n Ø k œ N, let Èn

k
Í be the set of all vectors in {0, 1}n which have exactly k many 1s.

I Definition 27.
1. A parameterized p-family fn,k(X) is in VW[F] i� there exists a p-bounded function q(n)

and p-family gn(X, y1, . . . , yq(n)) such that fn,k Æfpt
s

ÿ

yœÈ q(n)
k Í

gn(X, y1, . . . , yq(n)) and gn

can be computed by a polynomial-size formula.
2. A parameterized family fn,k(X) is in VWnb[F] i� there exists a p-bounded function q(n)

and family gn(X, y1, . . . , yq(n)) such that fn,k Æfptnb
s

ÿ

yœÈ q(n)
k Í

gn(X, y1, . . . , yq(n)) and gn

can be computed by a polynomial-size formula.
3. A parameterized p-family fn,k(X) is in VW

0[F] i� there exists a p-bounded function q(n)
and p-family gn(X, y1, . . . , yq(n)) such that fn,k Æ·-fpt

s

ÿ

yœÈ q(n)
k Í

gn(X, y1, . . . , yq(n)) and gn

can be computed by a constant-free, polynomial-size formula.
4. A parameterized family fn,k(X) is in VW

0

nb
[F] i� there exists a p-bounded function q(n)

and family gn(X, y1, . . . , yq(n)) such that fn,k Æ·-fptnb
s

ÿ

yœÈ q(n)
k Í

gn(X, y1, . . . , yq(n)) and gn

can be computed by a constant-free, polynomial-size formula.

In some sense, VW[F] is a substitution of a weighted sum of formulas. We will define
VW[P] as a weighted sum as above, but summing over an arbitrary circuit of polynomial-size.
Similarly, we can define VW

0[P], and its counterpart in the unbounded setting, i.e. VWnb[P],
and VW

0

nb
[P].

Finally, we will define the completeness notion:

I Definition 28. We will say a parameterized p-family fn,k is VW[F]-hard if every gn,k œ
VW[F], gn,k Æfpt

s
fn,q. Similarly, we can define completeness for VW[P].

We can also define completeness and hardness in the constant-free and unbounded models.

8 Conditional collapsing of VW-hierarchy and applications

Let us recall the definition of k-degree n-variate (n Ø k) elementary symmetric polynomial
‡n,k(X) :=

q
yœÈ n

k Í Xy1
1
Xy2

2
. . . Xyn

n
. It is known that (‡n,k)n œ VP

0, with a simple
dynamic programming algorithm; see [13, Section 4]. Let us define a new polynomial
family Bn,k(X), which will be important in the latter part of the section: Bn,k(X) :=q

n≠k

t=0
(≠1)t

!
k+t

k

"
· ‡n,k+t(X) . The following claim is crucial:

B Claim 29. For y œ {0, 1}n, Bn,k(y) =
Ó

1, if yœÈ n
k Í,

0, otherwise.

Proof. For a string y œ {0, 1}n, we will call the weight of y, denoted wt(y), the number of 1’s
present in y. Note that if wt(y) < k, then ‡n,k(y) = 0 implying Bn,k(y) = 0. Similarly if
wt(y) = k, then Bn,k(y) = ‡n,k(y), which will be exactly equal to 1. Now if wt(y) = k + r
where r > 0, then
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Bn,k(y) =
n≠kÿ

t=0

(≠1)t
3
k + t

k

4
· ‡n,k+t(y) =

rÿ

t=0

(≠1)t
3
k + t

k

4
· ‡n,k+t(y)

=
rÿ

t=0

(≠1)t
3
k + t

k

4
·
3
k + r

k + t

4

=
rÿ

t=0

(≠1)t (k + r)!
k!t!(r ≠ t)! .

Let us further define the tri-variate polynomial Q(x, y, z) := (x+ y ≠ z)k+r œ Z[x, y, z]. Note
that the coe�cient of xk in Q(x, y, z) is

rÿ

t=0

yr≠tzt(≠1)t · (k + r)!
k!t!(r ≠ t)! .

Now putting y = z = 1, we get the coe�cient exactly equal to Bn,k(y); since r ”= 0, we can
say that the coe�cient of xk in Q(x, 1, 1) is 0, which finally implies that Bn,k(y) = 0. C

Now we are ready to prove the following transfer theorem from the parameterized Valiant’s
classes to Valiant’s algebraic models.

I Theorem 30. VW
0[P] ”= VFPT

0 =∆ VP
0 ”= VNP

0. Similarly, VW[P] ”= VFPT =∆
VP ”= VNP.

Proof. We will prove the contraposition. Assume that VP0 = VNP
0. As mentioned before,

we know that (‡n,k)n œ VP
0. Further, since k œ [n], for t Æ n ≠ k, it is trivial to see that

·(
!
k+t

k

"
) = nO(1). Therefore, for each 0 Æ t Æ n≠k, (≠1)t

!
k+t

k

"
·‡n,k+t(X) has a VP

0-circuit.
Since VP

0 is closed under polynomially many additions, it follows that (Bn,k)n œ VP
0.

Let qn,k œ VW
0[P]. By definition, there is a polynomial family pn,k of the above form

pn,k(X) :=
q

yœÈ n
k Í gn(X, y), where gn(X,Y) is in VP

0, such that qn,k Æfpt
s

pn,k. By
Claim 29, it follows that

pn,k =
ÿ

yœ{0,1}n

gn(X, y) ·Bn,k(y) .

We have already proved above that Bn,k has poly(n) sized constant-free circuits. Hence,
gn(X, y)Bn,k(y) has constant-free poly(n)-size circuit. Therefore, by definition and our
primary assumption, it follows that pn,k œ VNP

0 = VP
0 ™ VFPT

0. Since, VFPT0 is closed
under constant-free fpt-substitution (Lemma 7), it follows that qn,k œ VFPT

0, implying
VW

0[P] ™ VFPT
0.

The proof in the usual (not constant-free) model also follows essentially along the same
line as above. J

I Remark 31. The above theorem holds in the unbounded regime as well, i.e., VW0

nb
[P] ”=

VFPT
0

nb
=∆ VP

0

nb
”= VNP

0

nb
(which further implies VP

0 ”= VNP
0, see [16]). Similarly,

VWnb[P] ”= VFPTnb =∆ VPnb ”= VNPnb.
We now aim to prove a conditional separation of VW0

nb
[P] and VFPT

0

nb
, by showing that

VW
0

nb
[P] = VFPT

0

nb
implies a collapse of the linear counting hierarchy. To show this, we will

show that VW0

nb
[P] = VFPT

0

nb
=∆ p-log-Expsum œ VFPT

0

nb
(Corollary 34) from which the

collapse of the linear counting hierarchy follows.
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I Theorem 32. Let f(X) =
ÿ

yœ{0,1}¸(n)

g(X, y), where ¸(·) is a linear function and g is

computed by an arithmetic circuit of size m = 2O(n
c
) for some constant c. Then, f(X) can

be written as

f(X) =
ÿ

eœÈ b(m)
k Í

G(X, e) ,

for some p-bounded function b and k = ¸(n)/ logm and G has poly(m) size circuits.

Proof. Let f(X) be an instance of p-log-Expsum, i.e., f(X) =
q

yœ{0,1}n g(X, y), where
g(X,Y) has size m constant-free circuit. Here we mention that, although we just take sum
over n variables here for the ease of presentation, the same proof also works if we sum over
¸(n) many variables for some linear function ¸.

Let us partition the variable set Y = {Y1, . . . , Yn} = E1 Û · · · Û Ek. Here k = n/ logm,
and for all i, |Ei| = logm. For each S ™ Ei, we take a new variable ZS

i
and we do this for

all i. Define Zi := {ZS

i
: S ™ Ei} and Z =

t
i
Zi. The number of Z-variables is 2logm · k,

which is polynomial in m.
Let us call an assignment of Z variables a good assignment, if exactly one variable in each

set Zi is set to be 1. Below we show that there is a one-to-one correspondence between {0, 1}
assignments to the Y variables and good assignments to the Z variables.

Let Ï be a homomorphism from R[Y] æ R[Z], where R := F[X], such that Ï : Yi ‘ær
S™Ei, Yj ”œS

(1≠ZS

i
). Let us define g̃(X,Z) := Ï(g). Now let us fix an assignment y œ {0, 1}n

to the Y variables. We construct a corresponding good assignment of Z. For each Ei of
Y, we have some Si ™ Ei such that each variable of Ei, which is in Si, gets value 1. The
remaining variables in Ei \ Si get value 0 (so that it corresponds to y). Pick this particular
Si ™ Ei. Note that this Si is unique (it can be the empty set). Now set ZSi

i
= 1 and ZS

i
= 0,

if S ”= Si, for all i œ [k].
Each variable in

t
i
Si gets the value 1 and variables in

t
i
(Ei \ Si) are assigned 0. Under

the map Ï, any Yj œ E1 \ S1 is replaced by
r

S™E1, Yj ”œS
(1 ≠ ZS

1
). Since, S1 ™ E1 and

Yj /œ S1, (1 ≠ ZS1
1
) occurs in the product. And, hence the product becomes 0. Now, let

Y¸ œ S1 and Ï(Y¸) =
r

S™E1, Y¸ ”œS
(1 ≠ ZS

1
). As Y¸ œ S1, (1 ≠ ZS1

1
) does not contribute to

the product. Thus, under the assignment defined before, Ï(Y¸) becomes 1. This argument
holds for any Ei. Therefore, one can conclude that

f =
ÿ

e: e is a good assignment

g̃(X, e) .

Note that the weft of the circuit for g̃ has increased by 1 (from that of g), and the size
has also increased by a polynomial (in m) factor. To capture a k-weight good assignment
exactly, define a new polynomial p(Z) œ F[Z] as follows:

p(Z) :=
kŸ

i=1

3 ÿ

S™Ei

ZS

j

4
.

Clearly, p has a weft-2 circuit of size poly(m). Further, it is simple to see that for any
k-weight {0, 1} assignment e to the Z variables, p(e) = 1 i� e is a good assignment because
from each of the product terms, only one variable will survive. Therefore,

f =
ÿ

eœÈ b(m)
k Í

p(e) · g̃(X, e) , where b(m) = |Z| .
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We set G(X,Z) := p(Z)g̃(X,Z). By the construction, g̃ has weft Æ t+ 1, p has weft Æ 2,
and g̃, p have poly(m) size circuits. So, this ends our proof. J

I Remark 33. The construction above increases the weft by one.

I Corollary 34. VW
0

nb
[P] = VFPT

0

nb
=∆ p-log-Expsum œ VFPT

0

nb
.

Proof. In Theorem 32 we have reduced an instance of p-log-Expsum to an instance of VW0

nb
[P]

with parameter k = ¸(n)/ logm. By our assumption VW
0

nb
[P] = VFPT

0

nb
and thus we can

say that p-log-Expsum œ VFPT
0

nb
. J

I Remark 35. If one restricts p-log-Expsum to exponential sums over g, where g is a p-family

(i.e., it has polynomial degree and size), denoted p-log-Expsumbd (bd for bounded-degree),
then the above proof similarly implies that VW0[P] = VFPT

0 =∆ p-log-Expsumbd œ VFPT
0.

Similarly, we also prove a lower bound for the class VWnb[P], assuming an fpt lower
bound on p-log-Expsum.

I Theorem 36. Say that any family Fm,k(X) =
ÿ

eœÈ b(m)
k Í

G(X, e) œ VW
0

nb
[P] has 2o(n)poly(m)

size constant-free circuits where ·(G) Æ m, n := k logm/c, for some constant c and b is
some p-bounded function. Then, p-log-Expsum œ VFPT

0

nb
.

Proof. Take an instance of p-log-Expsum, f(X) =
q

yœ{0,1}¸(n) g(X, y), for some ¸(n) = O(n).
And g has a constant-free circuit of size m. By Theorem 32, we can make it an instance of
VW

0[P] and say,

f =
ÿ

eœÈ b(m)
k Í

g̃(X, e) , where b is p-bounded, k = ¸(n)/ logm

By our assumption, f has a constant-free circuit of size 2o(n)poly(m) = 2O(n/i(n))
poly(m) for

some unbounded and non-decreasing function i : N æ N. Let h be a non-decreasing function,
so that h(i(n)) Ø 2n. We shall prove that f has h(k)poly(m) size constant-free circuit. If
m Ø 2n/i(n), clearly, f has poly(m) size constant-free circuit. Otherwise, if m < 2n/i(n),
this will imply i(n) Æ n/ logm = k. And hence, h(k) Ø 2n. So, f has h(k)poly(m) size
constant-free circuit. J

9 Restricted permanent

A cycle cover of a directed graph is a collection of node-disjoint directed cycles such that each
node is contained in exactly one cycle. Cycle covers of a directed graph stand in one-to-one
relation with permutations of the nodes.

I Definition 37. A cycle cover is (k, c)-restricted, if it contains one cycle of length k and all
other cycles have length Æ c.

Let G = (V,E) be directed graph and w : E æ R be a weight function. Here R is a ring
and typically the ring of polynomials. The weight of a cycle cover C of G is the product of
the weights of the edges in it, that is, w(C) =

r
eœC

w(e).

I Definition 38. The (k, c)-restricted permanent of an edge-weighted directed graph G is

per(k,Æc)(G) =
ÿ

C

w(C),

where the sum is over all (k, c)-restricted cycle covers.



S. Bhattacharjee, M. Bläser, P. Dutta, and S. Mukherjee 24:19

If X = (Xi,j) is a variable matrix, then pern(X) is the permanent of the complete directed
graph with the edge weights w(i, j) = Xi,j . The (k, c)-restricted permanent family per(k,Æc) =
(per(k,Æc)

n (Xn)), where Xn is an n ◊ n-variables matrix. per(k,Æc) is a parameterized family,
n is the input size, k is the parameter, and c will be some constant to be determined later.

On general graphs, the restricted permanent is very powerful, even if we keep the
parameter fixed.

I Proposition 39. The (2, 2)-restricted permanent family is VNP-complete.

If we restrict the underlying graph appropriately, then the restricted permanent is complete
for the class VW[F]. Recall that the girth of an undirected graph is the length of a shortest
cycle in the graph. When we talk of the girth of a directed graph, we mean the girth of
the graph when we disregard the direction of edges. Furthermore, when we talk about the
treewidth of a directed graph, we mean the treewidth of the underlying undirected graph.

I Definition 40. A directed graph G = (V,E) is (c, b)-nice if we can partition the nodes
V = V1 fi V2 into two disjoint sets, such that
1. the graph induced by V1 has girth > c (not counting self-loops),
2. every node in V1 has a self-loop, and
3. the graph induced by V2 has tree-width bounded by b.
4. every cycle that contains vertices from V1 and V2 has length > c.

Our main result is the following completeness result.

I Theorem 41. Let c and b be constants. Let (Gn) be a family of (c, b)-nice graphs. Then
the (k, c)-restricted permanent is in VW[F].

I Theorem 42. Let the underlying field have characteristic 0. There is a constant b and a
family of (4, b)-nice graphs (Hn) such that the (3k, 4)-restricted permanent of Hn forms a
family of VW[F]-hard polynomials.
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Abstract
The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad
applications. The theorem asserts that for a point a not in a closed convex set K, there is a
hyperplane with K on one side and a strictly on the other side. Our first result, Random Separating
Hyperplane Theorem (RSH), is a strengthening of this for polytopes. RSH asserts that if the distance
between a and a polytope K with k vertices and unit diameter in Ÿd is at least ”, where ” is a fixed
constant in (0, 1), then a randomly chosen hyperplane separates a and K with probability at least
1/poly(k) and margin at least �

!
”/

Ô
d
"
.

RSH has algorithmic applications in learning polytopes. We consider a fundamental problem,
denoted the “Hausdor� problem”, of learning a unit diameter polytope K within Hausdor� distance
”, given an optimization oracle for K. Using RSH, we show that with polynomially many random
queries to the optimization oracle, K can be approximated within error O(”). To our knowledge,
this is the first provable algorithm for the Hausdor� Problem in this setting. Building on this result,
we show that if the vertices of K are well-separated, then an optimization oracle can be used to
generate a list of points, each within distance O(”) of K, with the property that the list contains
a point close to each vertex of K. Further, we show how to prune this list to generate a (unique)
approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g.,
topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace.
Thus, our work yields the first e�cient algorithm for finding approximations to the vertices of the
latent polytope under the well-separatedness assumption. This assumption states that each vertex
of K is far from the convex hull of the remaining vertices of K, and is much weaker than other
assumptions behind algorithms in the literature which find vertices of the latent polytope.
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1 Introduction
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Clustering, Mixture Learning , LDA (linear discriminant analysis), Topic Models. The
algorithmic result is shown by reducing the problem of learning latent polytopes in a variety
of settings to that of constructing approximate optimization oracles for the corresponding
polytopes. Bulk of our algorithmic contribution is in proving this reduction and the existence
of such oracles.

1.1 Random Separating Hyperplane Theorem (RSH)
RSH draws its motivation mainly from the Separating Hyperplane Theorem of Convex Geo-
metry. It also has connections to the Johnson-Lindenstrauss Random Projection theorem [15].
The Separating Hyperplane Theorem formally states that given a closed convex set K and a
point a /œ K, there exists a vector u such that

u · a > MaxyœK u · y.

The following question arises: Does a randomly picked u separate a from K? Taking into
account some necessary conditions for a positive answer, we can ask if the following inequality
holds for a randomly chosen u: (here � is the diameter of K, a is at distance at least ”�
from K, where ” œ (0, 1)):

Pr (u · a Ø MaxyœKu · y + |u|–”�) Ø 1/poly”,
1 (1)

with – being as high as possible.
The question (1) is also motivated from the Johnson-Lindenstrauss Random Projection

theorem (JL theorem) [15] which states that if a, b are points in R
d and U is a random

subspace of dimension s, then with probability bounded away from 0, the distance between the
projection of a and b on U is at least �(|a ≠ b|

Ô
s/

Ô
d). The following natural generalization

of this is interesting already for s = 1:
Instead of b being a point, if it is now a polytope K, does a similar lower bound on the

distance of a to K in the projection onto a random line hold?
It is easy to see that in spirit, this is the same question as whether (1) holds. It is also

easy (see below) to see that the projection shrinks the distance between a and K by a factor
of �ú(

Ô
d). The RSH theorem proves that the shrinkage is O(

Ô
d) thus making this parameter

nearly (within log factors) tight. We now state the RSH theorem:

I Theorem 1 (Random Separating Hyperplane Theorem(RSH): Informal version). Suppose
K is a k vertex polytope with diameter �(K) and a is a point at distance at least ”�(K),
” œ (0, 1), from K. Let V be an m≠dimensional subspace containing K fi {a}. For a random
Gaussian vector u œ V , the following event happens with probability at least 1/poly”(k):

u · a Ø MaxyœKu · y + ”�(K)|u|
10

Ô
m

. (2)

We provide a simple example where K is a line segment (see Appendix A) to show that the
factor

Ô
m cannot be improved. It is also interesting to note that the success probability of

the event in (2) needs to depend on k. (see Appendix A). In particular, RSH does not hold
for general convex sets (where k is not necessarily finite.)

1 poly”(z) denotes zpoly(1/”)
.
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1.2 Algorithmic application of RSH
We now discuss the second main contribution of our work, i.e., applications of RSH to learning
vertices of a latent polytope. We begin with the definition of an approximate optimization
oracle.

I Definition 2. For a non-empty convex set K ™ Ÿ
d and Á œ (0, 1), an Optimization oracle

for K with error Á, denoted OptOrÁ(K) oracle, takes as input any u œ Ÿ
d, |u| = 1, and

returns a point x(u) satisfying both these conditions :
x(u) œ K + Á�(K)Bd, where Bd is the unit ball, i.e., {x œ Ÿ

d : |x| Æ 1}, and
u · x(u) Ø MaxyœKu · y ≠ Á�(K)

Problem Formulation. Several latent variable problems including Clustering, LDA, MMBM
can be reduced (See Section 6 for details) to a problem that we call k-OLP: given an Á-
optimization oracle for a k vertex polytope K ™ R

d, learn the vertices of K (approximately).
We define two simpler (than k-OLP) problems – ListLearn and Hausdor�, that are related to
k-OLP, and then we define k-OLP.

The first problem, Hausdor�, seeks to find an approximation to a polytope K when we
are given an approximate optimization oracle for the polytope.

I Definition 3 ((Á, ”)-Hausdor�-Problem). Given an OptOrÁ(K) oracle for a polytope K in
R

d with k vertices, find a set P of m = poly”(dk) points such that Haus(CH(P ),K) Æ ”�(K),
where, Haus denotes Hausdor� distance (see Definition 20 for a formal definition), and CH(P )
is the convex hull of P .

In the problem ListLearn, we also wish to find a small list of points, such that each vertex
of K is close to at least one point in this list.

I Definition 4 ((Á, ”)-ListLearn Problem). Given an OptOrÁ(K) oracle for a polytope K in
Ÿ

d with k vertices, each separated from the convex hull of the other k ≠ 1 vertices by at least
”�(K), find a list P ™ K + ”�(K)Bd of m = poly”(dk) points such that for every vertex v
of K, there is some vÕ

œ P with |v ≠ vÕ
| Æ ”�(K)/10.

When the parameters Á, ” will be clear from the context, we shall abbreviate the above
two problems as Hausdor� and ListLearn problems respectively. It is not di�cult to see that
any solution P to ListLearn is also a solution to Hausdor�, but, the converse need not hold:
CH(P ) may nearly contain K without P having any point close to some vertex of K. Our
technical results (see below for the informal versions) show that if Á œ O”(1/

Ô
d) 2, then we

can solve the above-mentioned problems e�ciently and indeed then, the following simple
algorithm gives the desired answers (the proof crucially uses RSH):

Random Probes Algorithm

Pick uniformly at random unit vectors u1, u2, . . . um, where m =poly”(dk).
Return P , which is the set of m answers of the OptOrÁ(K) oracle to the queries
u1, u2, . . . um.

The first result (see Theorem 21 for a formal statement) states that the convex hull
of answers to polynomially many random queries to the approximate optimization oracle
approximates K well.

2
O”(x) stands for f(”)x for some function f .

ICALP 2024
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I Theorem 5 (Hausdor� Approximation from oracle (Informal)). Consider an instance of
the (Á, ”)-Hausdor� problem for a polytope K ™ Ÿ

d. Assume that Á œ O”(1/
Ô
d), and let P

be the set of points returned by the Random Probes Algorithm above. Then with high
probability,

Haus(CH(P ),K) Æ ”�(K).

The second result (see Theorem 28 for a formal statement) shows that as long as each
vertex of K is well-separated from the convex hull of the other vertices of K, the set P
constructed by the Random Probes Algorithm contains an approximation to each of the
vertices. Thus, answers to polynomially many random queries list-learns the polytope.

I Theorem 6 (List-Learning from Oracle (Informal)). Consider an instance of the ListLearn
problem for a polytope K ™ Ÿ

d, and assume that Á œ O”(1/
Ô
d). Then, with high probability,

the set P output by the Random Probes Algorithm above has the following property: for
every vertex a of K, there is a point aÕ

œ P with

|aÕ
≠ a| Æ ”�(K)/10.

The
Ô
d factor in both the above theorems is near-optimal (within a log d factor). Indeed,

we shall prove:

I Theorem 7 (Oracle Lower Bound). The problem where, one is required to output a point
which is within �(K)/10 of some vertex of K, given only by an OptOrÁ(K) oracle, cannot
be solved in deterministic polynomial time when Á Ø 8 ln d/

Ô
d.

We now define the k-OLP problem (the parameters Á, ” in the definition will often be
clear from the context and may not be mentioned explicitly). The problem statement is
similar to that of ListLearn, but we want to output a list of exactly k points.

I Definition 8 ((Á, ”)-k-OLP Problem). Under the same hypothesis as for the ListLearn
problem, find a set of points P , |P | = k, satisfying the following condition: for each vertex v
of K, there is a (unique) point vÕ

œ P such that |v ≠ vÕ
| Æ ”�(K)/10.

Our next result gives a strengthening of Theorem 6.

I Theorem 9. Consider an instance of the k-OLP problem on a polytope K ™ Ÿ
d, and assume

Á œ O”(1/
Ô
d) in a k-OLP problem. Let P be the set of points returned by the Random

Probes Algorithm. Then, in polynomial time, we can find a Q ™ P, |Q| = k satisfying the
following condition: for each vertex v of K, there is a (unique) vÕ

œ P, |v ≠ vÕ
| Æ ”�(K)/10.

The algorithm for finding Q from P is likely of independent interest. We call this problem
the “Soft Convex Hull” problem and it is described in Section 6.1.

Do Approximate Optimization Oracles exist?

The answer to this question is a qualified Yes. They exist, but unfortunately, as we point out
below, for many latent variable problems including the simple mixture of two Gaussians with
means separated by �(1) standard deviations, we do not get Á œ O”(1/

Ô
d), when, k < d.

Thus, we do not satisfy the hypothesis of the results mentioned in Theorem 5,Theorem 6,
and Theorem 9. But we are able to tackle this hurdle by projecting to the k-SVD subspace
(of the input data points which satisfy conditions discussed below) where, we do get the
necessary Á œ O”(1/

Ô
k).
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First we observe that approximate optimization oracles arise in a natural setting – that
of latent variable models. [7] show that these models can be reduced to a geometric problem
called LkP described below. [We will not reproduce the reduction here.] LkP is the following
problem: Let K be a k vertex polytope in Ÿ

d. Let M·,1, . . . ,M·,k denote the vertices of K.
Assume that there are latent (hidden) points P·,j , j = 1, 2, . . . , n, in K. The observed data
points A·,j , j = 1, 2, . . . , n are generated (not necessarily under any stochastic assumptions)
by adding displacements A·,j ≠ P·,j respectively to P·,j . Let3

‡0 := ||P ≠ A||
Ô
n

.

We assume that there is a certain w0 fraction of latent points close to every vertex of K, i.e.,
for all ¸ œ [k],

C¸ := {j : |P·,j ≠ M·,¸| Æ
‡0

Ô
w0

} satisfies |C¸| Ø w0n.

I Theorem 10 (From Data to Oracles). Using the above notation, the following “Subset
Smoothing algorithm” gives us a polynomial time OptOr 4‡0

�Ô
w0

(K) oracle..

Subset Smoothing Algorithm

Given query u, let S be the set of the w0n j’s with the highest u ·A·,j values.
Return A·,S := 1

w0n

q
jœS

A·,j .

The Subset Smoothing algorithm was used in [7]. It is also reminiscent of Super-
quantiles [18], though our use here is not directly related to them. While this theorem helps
us get optimization oracles, the error guarantee of O(‡0/�Ô

w0) is not good enough in many
applications. An elementary example illustrates this issue:

Consider a mixture of two equal weight standard Gaussians centered at ≠v and v, where,
v is a vector of length 10. [This fits the paradigm “means separated by �(1) standard
deviations”.] Then, data generated by the mixture model fits our data generation process
with K = {⁄v,⁄ œ [≠1, 1]}, and each P·,j is either v or ≠v depending on the Gaussian from
which the point has been sampled. Here A·,j denotes the actual sampled point from the
mixture. Now, � = 20 and it can be seen from Random Matrix Theorems (see e.g., [19]) that
‡0 = O(1) with high probability. So, ‡0/�Ô

w0 œ O(1) with high probability, and hence, the
Theorem above yields an OptOrÁ(K) oracle with Á œ �(1). But d can be arbitrarily large
and so we do not have the required OptOr

O(1/
Ô
d)
(K) oracle.

This elementary example can be tackled in several ways. Our algorithm which we call
the “k-OLP algorithm” is simply stated and works in general settings (including on this toy
example) for several Latent Variable problems (see Section 6 for details). The main idea is
to first project the input points on a suitable SVD subspace and then use the approximate
optimization oracle in the projection.

SVD and the k-OLP Algorithm

We now state the result (see Theorem 39 for a formal version) for k-OLP in the setting of
LkP. As mentioned above, this uses SVD followed by subset smoothing.

3 By the standard definition of spectral norm, it is easy to see that ‡
2
0 is the maximum mean squared

displacement in any direction.

ICALP 2024
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I Theorem 11. Recall the notation and assumptions of Theorem 10. In addition, we assume
that each vertex of K is ”�(K) far from the convex hull of other vertices of K, where, ”
satisfies:

‡0 Æ c”2�
Ô
w0/

Ô

k.

Then, the set of points P returned by the following k-OLP algorithm list learns the vertices
of K. Further, we can find a subset Q of P with |Q| = k and for each v, vertex of K, Q
contains a vÕ with |v ≠ vÕ

| Æ ”�/10 :

Algorithm k-OLP

1. Project to the k-dim SVD subspace V corresponding to the points A·,j .
2. Pick m = poly”(k) random vectors u1, u2, . . . , um in V .
3. For each ui, take the mean of the A·,j with the w0n/2 highest values of ui ·A·,j .
4. Let P be the set of m means computed in the step above.
5. Output a subset Q of P , |Q| = k, using Theorem 9.

We sketch here the steps in the proof (the details are contained in the proof of Theorem 39.)

Sketch. Let ‚K denote projection of K onto V . By Theorem 10 , Step 3 of Algorithm k-OLP
is an OptOrÁ( ‚K) oracle, where Á = O

1
‡0

�
Ô
w0

2
. Also, each „M·,¸, which is the projection of

„M·,¸ on V , is O(”�(K)) far from the convex hull of the other vertices of ‚K. Now, Theorem 9
applied to ‚K in the subspace V implies the desired result. J

It is worth noting that data obtained from several generative models are known to satisfy
the LkP condition stated in Theorem 11, e.g., Stochastic Mixture models with k components,
Topic Models, Mixed membership community models.

From List Learning to k-OLP

As outlined above, the k-OLP algorithm works in two stages: (i) Project the data points
on the SVD subspace V of dimension k, and (ii) make polynomially calls to the OptOrÁ(K)
oracle, where each query is given by a randomly chosen unit vector in the subspace V (as in
the statement of Theorem 5) – let P be the set of points returned by the oracle. The first
statement in Theorem 11 shows that the convex hull of P is close to K.

Obtaining approximations to the vertices of K from P requires addressing a new problem:
given a set of points W , find a small subset T of W , such that their convex hulls are close. We
call this the soft convex hull problem. A similar problem was addressed by [12]; however they
gave a bi-criteria approximation algorithm for this problem. Under stronger assumptions,
where we assume that there in the optimal solution T ı, each point of T ı is well-separated from
the convex hull of the rest of the points of T ı, we show that one can recover approximations
to each of the points in T ı. Applying this result to the set of points P returned by the
optimization oracle, we get a set of k points Q, each of which approximates a unique vertex
of the polytope K.

The algorithm for obtaining soft convex hull proceeds as follows. We first prune points
w œ W which have the following property: consider the subset X of points in W which are
su�ciently far from w. Then w is close the convex hull of X. After pruning such points from
W , we pick a subset of points which are su�ciently far-apart from each other. The main
technical result shows that this procedure outputs the desired set T .
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1.3 Related Work
The well known result of [15] shows that given a set of n points in Ÿ

d, projection to a random
subspace of dimension O(logn/Á2) preserves all pair-wise distances up to (1 + Á)-factor with
high probability. Further, this bound on the dimension on which the points are projected
is known to be tight [2, 16]. Note that in our setting, there are k + 1 points “of interest”,
namely, the k vertices of K and a point a /œ K and by the above, a random projection to
Oú(log k) dimensional space preserves all pairwise distances among them. But this is not
su�cient for our problems. We need separation of a not just from the vertices of K, but from
all of K in the projection. We achieve this by projecting to a set of random 1-dimensional
subspaces, and show that the distance between a point and a polytope does not scale down by
more than O(

Ô
d) factor for at least one of them with high probability (this is an immediate

corollary of the RSH Theorem).
The problem of learning vertices of a polytope arises in many settings where data is

assumed to be generated by a stochastic process parameterized by a model. Examples
include topic models [10], stochastic block models [1], latent Dirichlet allocation [11]. A
variety of techniques have been developed for these specific problems (see e.g. [3, 4, 14]). [7]
(see also [5]) proposed the latent k-polytope (LkP) model which seeks to unify all of these
latent variable models. In this model, there is latent polytope with k vertices, and data is
generated in a two step process: first we pick latent points from this polytope, and then the
observed points are obtained by perturbing these latent points in an adversarial manner.
They showed that under suitable assumptions on this deterministic setting, one can capture
the above-mentioned latent variable problems. Assuming strong separability conditions on
the vertices of the polytope (i.e., each vertex of K is far from the a�ne hull of other vertices
of K), they showed that one can e�ciently recover good approximations to the vertices of
the polytope from the input data points. In comparison, our assumption on K is that each
vertex of K is far from the convex hull of the remaining vertices of K. This is a much milder
condition, e.g., it allows a polytope with more than 2 vertices in a plane. [8] showed how to
infer the parameter k from data in the LkP setting (under the strong separation condition).

[12] addressed a problem similar to the Hausdor� problem: instead of an Á-optimization
oracle for a polytope K, we are given an explicit set P of points, whose convex hull is within
Hausdor� distance at most ”�(K) from K. They are able to get better dependencies on the
parameters k, ”, Á than Theorem 21 under these stronger assumptions.

2 Preliminaries

For two points x, y œ Ÿ
d, |x≠ y| denotes the Euclidean distance between the points. Given a

point x œ Ÿ
d and a subset X ™ Ÿ

d, define dist(x,X) as the minimum distance between x
and a point in X, i.e., infyœX |x ≠ y|. For a set of points X, �(X) denotes the diameter of
X, i.e., supx,yœX |x ≠ y|. We denote the convex hull of X by CH(X). For two subsets A,B
of Ÿ

d, define their Minkowski sum A+ B as {x+ y : x œ A, y œ B}. Similarly, define ⁄A,
where ⁄ œ Ÿ, as {⁄x : x œ A}. For an m ◊ n matrix B, we use B·,j to denote the jth column
of B. For a subset S ™ [n] of columns of B, B·,S denotes 1

|S|
q

jœS
B·,j . Often, we represent

the vertices of a polytope K in Ÿ
d by a d ◊ k matrix M , and so the columns M·,1, . . . ,M·,k

would represent the vertices of K. We shall use the notation poly”(z) to denote a quantity
which is zpoly(1/”). Further the notation O”(z) shall denote a quantity which is f(”)z, where
f(”) is a function depending on ” only (and hence, is constant if ” is constant).

We now give an outline of rest of the paper. In Section 3, we prove the Random Separating
Hyperplane theorem. In Section 4, we prove Theorem 5 by showing that an OptOrÁ(K) oracle
leads to e�cient constructions of approximation to K. In Section 5 we give an algorithm
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25:8 Random Separating Hyperplane Theorem and Learning Polytopes

for the ListLearn problem under the stronger assumption that the vertices of K are well
separated. We also prove the lower bound result Theorem 7 in this section. In Section 6,
we extend the algorithm for ListLearn to the k-OLP problem. This requires the concept of
soft convex hulls. The algorithm for constructing soft convex hulls in given in Section 6.1.
Finally, in Section 7, we apply the k-OLP algorithm for the latent polytope problem. As note
earlier, in the setting of latent polytopes K, we can only guarantee OptOrÁ(K) oracles with
Á being O(1/

Ô
k), whereas our algorithm for k-OLP requires Á to be O(1/

Ô
d). We handle

this issue by projecting to a suitable SVD subspace and executing the k-OLP algorithm in
this subspace. We conclude with some open problems in Section 8.

3 Random Separating Hyperplane (RSH) Theorem

In this section, we prove RSH for polytopes: If a point p point is at a distance from a polytope
K, then, the Gaussian measure of the set of well-separating hyperplanes has a positive lower
bound depending on the number of vertices in K. More specifically, we show:

I Theorem 12. Suppose K is a polytope in Ÿ
d with k vertices and diameter �(K). Suppose

a is a point in R
d and ” œ (0, 1] with

min
yœK

|a ≠ y| Ø ”�(K). (3)

Let V be an m-dimensional subspace containing Span(K fi {a}) and let u be a random vector
drawn from the normal distribution N(0, Im) in V . Then,

Pru

5
(u · a ≠ max

yœK

u · y) Ø |u| · ”�(K) ·
Ô
log k

3
Ô
log k + 4”

Ô
m

6
Ø

1
40k

≠10/”
2
.

Proof Overview

We give an informal overview of the proof. A naive, though incorrect, idea would be
the following: let ’ be the closest vertex of K to a. We can argue that with reasonable
probability (i.e., �(k≠1/”

2)) that |(’ ≠ a) · u| is at least 2

Ô
log k·|’≠a|

”
Ô
m

Ø
2

Ô
log k·�(K)Ô

m
. Call

this event E1. Now consider a line segment joining two distinct vertices, say ’i, ’j , of K.
The length of such a line segment is at most �(K), and hence there is high probability
that |(’i ≠ ’j) · u| Æ

1.5

Ô
log k·�(K)Ô

m
. In fact, we can apply union bound, and show that this

property holds for all pairs of vertices of K – call this event E2. If both E1 and E2 occur,
then it is easy to see that along the direction u, a is separated from all the vertices of K.
However, the events E1 and E2 are not independent, and hence, we cannot argue that both
events will occur with non-trivial probability. Here one could use the union bound, but a
calculation shows that for this we need ” > 1. But ” < 1 in our applications, so we cannot
use this approach.

Instead, we rely on the following more nuanced idea. Let w be the unit direction along
the line joining a and the closest point b of K. As argued above, we can show that |(b≠a) ·u|
is at least �(

Ô
log k·|b≠a|
”
Ô
m

Ø
�(

Ô
log k)·�(K)Ô

m
– this only requires arguing about the component

of u along w; let E Õ
1
denote this event. Now we show that the following event, say E

Õ
2
, occurs

with high probability: along the component of u orthogonal to w, the projections of the
line segments joining any two vertices of K is at most O(

Ô
log k)�(K)Ô

m
. Since E

Õ
1
and E

Õ
2
are

concerned with orthogonal directions, they are independent using properties of the Gaussian.
Thus we can show that both of these events happen with non-trivial probability. This su�ces
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to show the desired result. We now give the formal proof of this result. First, we state the
following well-known concentration bound for Gaussian random variables (see e.g. [19]):

I Theorem 13 (Gaussian Concentration Bounds). Let X be an N(0, 1) Gaussian random
variable, i.e., with mean 0 and variance 1. Then, for any t > 0,

e≠t
2
/4/2 Æ Pr[|X| Ø t] Æ 2e≠t

2
.

We shall also need the following result on the sum of squares of i.i.d. normal random variables.

I Theorem 14 ([17]). Let X1, . . . ,Xn be n i.i.d. N(0, 1) Gaussian random variables. Then,

Pr[
nÿ

i=1

X2

i
> 4n] Æ e≠

Ô
n.

We now proceed with the proof of Theorem 12.

Proof of Theorem 12. Let ’1, ’2, . . . , ’k be the k vertices of K. Let b be the closest point
in K to a, and define

w = a ≠ b

|a ≠ b|
.

Then by standard results on separation between a point and a closed convex set (see e.g. [13]),
we know that for all points y œ K:

w · y Æ w · b. (4)

Now, we extend w to an orthonormal basis w1 := w,w2, . . . , wm of the subspace V . The
random vector u can be generated as follows: sample m i.i.d. N(0, 1) random variables
⁄1, . . . ,⁄m, and define u :=

q
m

i=1
⁄iwi. We first observe that it is enough to argue that the

projection of a along u is well separated from that for each vertex ’¸ of K. Indeed, we can
express (u · a ≠ maxyœK u · y) as

u · (a ≠ b) ≠ max
yœK

u · (y ≠ b) = u · (a ≠ b) ≠ max
¸=1,...,k

u · (’¸ ≠ b) (5)

It su�ces to show that with reasonably high probability, there is a lower bound on
u · (a ≠ b) and an upper bound on u · (’¸ ≠ b) for all ¸. We proceed with the latter goal
first. Observe that along the direction w, K lies below b. Thus, it su�ces to argue that the
projection of (’¸ ≠ b) along the direction orthogonal to w is not large for any vertex ’¸ of
K. Let z denote ⁄2w2 + . . .+ ⁄mwm. Then u can be expressed as ⁄1w + z. We now define
events upper bounding z · (’¸ ≠ b) for all vertices ’¸ of K.

I Definition 15. For ¸ = 1, 2, . . . , k, define the event E¸ as [|z · (’¸ ≠ b)| Æ 2
Ô
ln k�(K)].

I Proposition 16. Suppose the events E¸ occur for all ¸ = 1, . . . , k. Then, for any ¸ œ [k],

u · (’¸ ≠ b) Æ 2
Ô

ln k�(K).

Proof. Observe that

u · (’¸ ≠ b) = ⁄1w · (’¸ ≠ b) + z · (’¸ ≠ b)
(4)

Æ z · (’¸ ≠ b).

The desired result now follows from the definition of the event E¸. J
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25:10 Random Separating Hyperplane Theorem and Learning Polytopes

We now define events to lower bound u · (a ≠ b). Observe that (a ≠ b) is along w, and
hence, is orthogonal to z. Therefore u · (a≠ b) = ⁄1w(̇a≠ b) = ⁄1|a≠ b|. Therefore, we define
an event that lower bounds ⁄1. We also define an event that upper bounds |z|.

I Definition 17. Define E0 as the event [|z| Æ 4
Ô
m]. Also define Ek+1 as the event

[⁄ Ø 3
Ô
ln k/”].

I Proposition 18. Suppose the events E0, . . . , Ek+1 happen. Then,

u · a ≠ max
yœK

u · y Ø
⁄”�(K)|u|
3(⁄ + 4

Ô
m) Ø

”
Ô
ln k�(K)|u|

3
Ô
ln k + 4”

Ô
m
.

Proof. As observed above, u · (a ≠ b) = ⁄1|a ≠ b|. Now observe that for any vertex ’¸ of
K, Proposition 16 shows that

u · (’¸ ≠ b) Æ 2
Ô

ln k�(K)
(3)

Æ 2
Ô

ln k|a ≠ b|/” Æ 2⁄1|a ≠ b|/3,

where the last inequality follows from the definition of of event Ek+1. Thus, we see from the
above two inequalities and (5) that

u · a ≠ max
yœK

u · y Ø ⁄1|a ≠ b|/3
(3)

Ø ⁄1”|�(K)|/3. (6)

It remains to upper bound |u|. Recall that u = ⁄1w+z, and hence, |u| Æ |⁄1|+|z| Æ ⁄1+4
Ô
m,

where we have used the definition of the event Ek+1 and the fact that ⁄1 > 0 because of
event E0. Using this in (6) yields the first inequality in the desired claim. The second desired
inequality follows from the fact that ⁄1” Ø 3

Ô
ln k (definition of event Ek+1). J

It remains to show that the events E0, . . . , Ek+1 occur with reasonable probability.

I Proposition 19. Pr
#
·
k+1

¸=0
E¸

$
Ø

1

40
k≠10/”

2
.

Proof. Consider any ¸ œ [k]. Observe that z · (’¸ ≠ b) is a 1-dimensional Gaussian random
variable with zero mean and with variance |’¸ ≠ b|2 Æ �(K)2. Thus, z·(’¸≠b)

�(K)
is an N(0, 1)

normal random variable. Therefore, Theorem 13 shows that

Pr[¬E¸] = Pr
5
z · (’¸ ≠ b)

�(K) Ø 2
Ô

ln k
6

Æ
1

2k2 .

By definition of z, |z|2 = ⁄2 + . . .+ ⁄2
m
. By Theorem 14,

Pr[¬E0] = Pr[|z|2 > 16m] Æ e≠
Ô
m

Æ 1/20,

for large enough m. Applying union bound to the above two inequalities, we get

Pr
!
·
k

¸=0
E¸

"
Ø 1 ≠

kÿ

¸=0

Pr(¬E¸) Ø 1/4 (7)

Finally we consider event Ek+1. Observe that ⁄1 is N(0, 1) Gaussian random variable.
Applying Theorem 13 to ⁄1, we see that

Pr[Ek+1] = Pr
Ë
⁄1 Ø 3

Ô

ln k/”
È

Ø
1
10k

≠10/”
2
. (8)

Observe that the event ·
k

¸=0
E¸ depends on the random variables ⁄2, . . . ,⁄k, and hence, is

independent of the event Ek+1. The desired result now follows from the (7) and (8). J

The theorem now follows from Proposition 18 and Proposition 19. J
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4 From OptOrÁ(K) oracles to the Hausdor� Problem

We prove Theorem 5 in this section. We begin by defining Hausdor� distance formally.

I Definition 20. The Hausdor�-distance, Haus(K,K Õ), between two polytopes K and K Õ is
the infimum over all values – such that the following condition is satisfied: for every point
x œ K, there is a point y œ K Õ such that |x ≠ y| Æ –, and vice versa.

We now give the formal version of Theorem 5:

I Theorem 21. Suppose Á, ” are reals in [0, 1] with

” > cÁ
Ô

d, ” > c/
Ô

d, (9)

where c is a large enough constant. Let K be a k-vertex polytope with �(K) denoting
the diameter of K. Suppose we are also given an OptOrÁ(K) oracle O. Let P be the
set of answers from the oracle on m := k10+c”

≠2 independent random queries. Then,
Haus(K,CH(P )) Æ ” · �(K).

Before giving the proof, we highlight the main ideas here. Let the random queries
correspond to unit directions u1, . . . , um, and for each of these queries uj , the oracle O

returns a near-optimal point x(uj). Let P j denote the subset {x(u1), . . . , x(uj)}. Let v be a
vertex of K. The non-triviality in the proof lies in showing that there is a point in CH(P )
close to v. Suppose there is no such point in CH(P j), and let b the closest point in CH(P j)
to v. Then we show that with constant probability the following events happen: (i) the
unit vector uj+1 has a non-trivial component along the direction joining b and v, and (ii) its
component along the orthogonal direction is not too large. If both of these events happen, we
show that dist(v,CH(P j+1)) Æ (1 ≠ O(”2))dist(v,CH(P j)). We now give details of the proof.

Proof. We describe the algorithm for obtaining the desired set S (referred as Random

Probes Algorithm in Section 1.2) in Algorithm 1. The set P is constructed as follows: we
pick a set of m random unit vectors. For each such unit vector u, we add the corresponding
point x(u) returned by the oracle O to the set P .

Algorithm 1 Algorithm for finding the set P such that CH(P ) approximates K.

1.1 Input: An OptOrÁ(K) oracle O.
1.2 Initialize a set P to ?
1.3 Repeat m times:
1.4 Let u be a random unit vector in Ÿ

d.
1.5 Call O on u to get a vector x(u).
1.6 Add x(u) to P .
1.7 Output P .

One side of the desired result is easy to show:

B Claim 22. For each x œ CH(P ), there is a y œ K such that |x ≠ y| Æ ”�(K).

Proof. For a point x(u) œ P , we know by the definition of OptOrÁ(K) oracle that there is
a point y œ K such that |x(u) ≠ y| Æ Á�(K) Æ ”�(K), where Á Æ ” follows from (9). The
desired result now follows from the convexity of K. C
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25:12 Random Separating Hyperplane Theorem and Learning Polytopes

It remains to show that for any vertex v of K, there is a point y œ CH(P ) such that
|v ≠ y| Æ ”�(K). Fix such a vertex v of K for rest of the discussion. Let the random unit
vectors considered in Algorithm 1 (in the order they get generated) be u1, . . . , um. Let P j

denote the subset {x(u1), . . . , x(uj)} of P . Define an event Ej as follows:

dist(v,CH(P j)) Æ ” · �(K) or dist(v,CH(P j+1)) Æ

3
1 ≠

”2

cÕ

4
dist(v,CH(P j)),

where cÕ is a large enough constant. Our main technical result is to show that conditioned
on any choice of u1, . . . , uj the event Ej happens with reasonably high probability (where
the probability is over the choice of uj+1):

I Lemma 23. For any index j œ [m ≠ 1],

Pr
uj+1

#
Ej |u

1, . . . , uj
$

Ø
1

100 .

Proof. Fix the vectors u1, . . . , uj . If dist(v,CH(P j)) Æ ” · �(K), then we are done. So
assume this is not the case. Let b be the closest point in CH(P j) to v. Thus,

|v ≠ b| Ø ” · �(K). (10)

Define w as

w := v ≠ b

|v ≠ b|
.

We can now express the vector uj+1 as ⁄w+ z, where Èz, wÍ = 0. We first show the following
useful properties of these vectors.

B Claim 24. With probability at least 1

100
, the following three events happen:

|z| Æ 4
Ô

d (11)

max
yœK

|z · (v ≠ y)| Æ 2
Ô

ln k�(K) (12)

⁄ Ø
100
”

Ô

ln k (13)

Proof. The proofs of these three inequalities are same as the arguments in Proposition 19 (in
order to prove (12), it su�ces to show it for points y which are vertices of K). C

The following fact is also easy to show:

I Proposition 25.

|v ≠ x(uj+1)| Æ 2�(K).

Proof. By the definition of OptOrÁ(K) oracle, there is a point p œ K such that |p≠x(uj+1)| Æ

” · �(K) Æ �(K). The desired result now follows by triangle inequality. J

Let ”1 denote ”
2

100
. Let b1 denote the vector

”1x(uj+1) + (1 ≠ ”1)b.

Since b1 œ CH(P j+1), the desired result will follow if we prove the following:

|v ≠ b1|
2

Æ

3
1 ≠

”2

100

4
|v ≠ b|2. (14)
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Now,

|v ≠ b1|
2 = ”2

1
|v ≠ x(uj+1)|2 + (1 ≠ ”1)2|v ≠ b|2 + 2”1(1 ≠ ”1)(v ≠ x(uj+1)) · (v ≠ b)

Prop. 25
Æ 4”2

1
�(K)2 + (1 ≠ 2”1)|v ≠ b|2 + ”2

1
�(K)2 + 2”1(1 ≠ ”1)(v ≠ x(uj+1)) · (v ≠ b)

(10)

Æ

3
1 ≠

3”1
2

4
|v ≠ b|2 ++2”1(1 ≠ ”1)|v ≠ b| · (v ≠ x(uj+1)) · w

=
3
1 ≠

3”1
2

4
|v ≠ b|2 ++2”1(1 ≠ ”1)

Q

cca
|v ≠ b|

⁄
· (v ≠ x(uj+1)) · uj+1

¸ ˚˙ ˝
:=A

≠
|v ≠ b|

⁄
· (v ≠ x(uj+1)) · z

¸ ˚˙ ˝
:=B

R

ddb (15)

We now bound each of the terms A and B above. Now,

A Æ
|v ≠ b|

⁄
Á�(K)

(9)

Æ
|v ≠ b|”�(K)

c⁄

(10)

Æ
|v ≠ b|2

c⁄

(13)

Æ
|v ≠ b|2”

c
,

where the first inequality follows from the definition of OptOrÁ(K) oracle. We now bound the
quantity B. Let y be the point in K closest to x(uj+1). We know that |y≠x(uj+1)| Æ Á�(K).
Therefore,

B Æ
|v ≠ b|

⁄
(|(v ≠ y) · z|+ |z|Á�(K))

(11),(12)

Æ
|v ≠ b|

⁄

1
2
Ô

ln k�(K) + 4Á
Ô

d�(K)
2

(9),(13)

Æ
”|v ≠ b|�(K)

10
(10)

Æ
|v ≠ b|2

10 .

Substituting the above bound on A and B in (15) yields the desired result. J

We are now almost done. As the following result shows, it su�ces to argue that enough
number of events Ej happen:

B Claim 26. If at least c
Õ

”2 ln(2/Á) of the events Ej , j œ [m≠1] happen, then dist(v,CH(P )) Æ

”�(K).

Proof. Assume, for the sake of contradiction, that dist(v,CH(P )) > Á�(K). Assume that
events Ej1 , . . . , Ejh happen, where h := c

Õ

”2 ln(2/Á). Now, for any index i œ [h ≠ 1], the
definition of Eji+1 implies that

dist(v,CH(P ji+1)) Æ

3
1 ≠

”2

cÕ

4
dist(v,CH(P ji+1≠1) Æ dist(v,CH(P ji)).

Therefore,

dist(v,CH(P jh)) Æ

3
1 ≠

”2

cÕ

4h

dist(v, P 1)
Proposition 25

Æ

3
1 ≠

”2

cÕ

4h

2�(K) Æ ”�(K). C
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It remains to show that with high probability at least h := c
Õ

”2 ln(2/Á) of the events happen.
In order to prove this, we divide the sequence [m] into [h] subsequences, each of length m/h.
Call these subsequences C1, . . . , Ch. It follows from Lemma 23 that for any i œ [h],

Pr [·jœCi¬Ej ] Æ 0.99m/h
Æ

1
h2

.

A simple union bound now shows that with probability at least 1 ≠ 1/h, at least one event
Ej happens during each of the subsequences C1, . . . , Ch. Claim 26 now proves the theorem.

J

5 From OptOrÁ(K) oracles to ListLearn

We first define the notion of well-separatedness.

I Definition 27. We say that a polytope K with vertex set V is ”-well-separated if for every
vertex v œ V , we have dist(v,CH(V \ {v})) Ø ” · �(K).

Recall that Theorem 7 states that given access to only an OptOrÁ(K) oracle, Á must be
�(ln d/

Ô
d) for any deterministic algorithm to output a point within �(K)/10 of K. We show

this result in the full version [9]. We now prove Theorem 6, which gives such an algorithm
for the ListLearn problem.

I Theorem 28. Suppose Á, ” are reals in [0, 1] with ”2 Ø cÁ
Ô
d, ”3 Ø c Á, where c is a large

enough constant. Let K be a ”-well-separated k-vertex polytope. Suppose we are also given
OptOrÁ(K) oracle O. Let W be the set of answers of the oracle to m = poly(d) · k�(1/”

2
)

independent random queries. Then for each vertex v of K, there is a point vÕ
œ W such that

|v ≠ vÕ
| Æ O(”2�(K)/c).

Proof. The algorithm chooses a set U of k�(1/”
2
) unit length i.i.d. Gaussian vectors. For each

u œ U , it calls the oracle O to find a vector x(u). Let W denote the set {x(u) : u œ U}. We
first show that for every vertex of K, there is a direction u in U along which the projection of
this vertex is higher than the projection of the remaining vertices by a large enough margin.
Let M·,1, . . . ,M·,k be the vertices of K. The proof of the following result is deferred to the
full version [9].

B Claim 29. With high probability, the following event happens: for each ¸ œ [k], there is a
vector u(¸)

œ U such that for all ¸Õ
œ [k], ¸Õ

”= ¸, we have

u(¸)
·M·,¸ > u(¸)

·M·,¸Õ + c Á · �(K)
8”2

(16)

For rest of the proof, assume that the statement in Claim 29 holds true, i.e., there are
directions u(1), . . . , u(k)

œ U satisfying (16). We now show that for every vertex of M·,¸ of
K, the corresponding point x(u¸) is close to M·,¸.

B Claim 30. For every ¸ œ [k], |x(u(¸)) ≠ M·,¸| Æ 17”2�(K)/c.

Proof. By the definition of O, we know that x(u(¸)) can be written as y(u¸) + z(u(¸)), where
y(u(¸)) œ K and |z(u(¸))| Æ Á�(K). Thus, there is a convex combination ⁄¸Õ , ¸Õ

œ [k], of the
vertices M·,¸Õ of K such that x(u(¸)) =

q
¸Õœ[k]

⁄¸ÕM·,¸Õ + z(u(¸)).
By the definition of O, x(u(¸)) · u(¸)

Ø M·,¸ · u(¸)
≠ Á�(K) and |z(u(¸)) · u(¸)

| Æ Á�(K).
So, we get

M·,¸ · u
(¸)

≠ Á�(K) Æ

ÿ

¸Õœ[k]

⁄¸ÕM·,¸Õ · u(¸
Õ
) + Á�(K),



C. Bhattacharyya, R. Kannan, and A. Kumar 25:15

which implies (after subtracting ⁄¸M·,¸ · u(¸) from both sides):

(1 ≠ ⁄¸)M·,¸u
(¸)

Æ

ÿ

¸Õ ”=¸

⁄¸ÕM·,¸Õ · u(¸
Õ
) + 2Á�(K)

which, using Claim 29, yields:

(1 ≠ ⁄¸)M·,¸u
(¸)

Æ (1 ≠ ⁄¸)M·,¸u
(¸)

≠ (1 ≠ ⁄¸)
cÁ�(K)

8”2
+ 2Á�(K).

It follows from the above inequality that 1 ≠ ⁄¸ Æ
16”

2

c
. Therefore,

|x(u(¸)) ≠ M·,¸| =

------

ÿ

¸Õ ”=¸

⁄¸Õ(M·,¸ ≠ M·,¸Õ)

------
+ Á�(K) (17)

Æ

ÿ

¸Õ ”=¸

⁄¸Õ�(K) + Á�(K) Æ
17”2�(K)

c
. C

This completes proof of the Theorem. J

6 From ListLearn to the k-OLP Problem

In this section, we show that for well-separated polytopes, a solution for the ListLearn problem
can be used to solve the k-OLP problem as well. This algorithm uses the notion of soft
convex hulls. We first describe the algorithm for constructing soft convex hulls, and then use
it to solve the k-OLP problem.

6.1 Soft Convex Hulls
Let W be a finite set of points in Ÿ

d, and T be the vertices of CH(W ). The subset T of W
is the unique subset of W with the following properties:
(P1) W ™ CH(T )
(P2) ’w œ W , if w /œ CH(W \ {w}), then w œ T .

We now define a natural notion of soft convex hull.

I Definition 31. For an Á Ø 0, and S ™ W , define the Á-convex hull of S, Á-CH(S), as
CH(S) + Á�(W )B, where B is the unit ball of the Euclidean norm.

The intuition behind the above definition is that CH(W ) can have many vertices, but there
may be a small set of points whose soft convex hull contains W . This is defined more formally
as follows:

I Definition 32. We call a subset T ™ W an Á-envelope of W , written Á-ENV(W ), if
W ™ Á-CH(T ).

Remarks. The following observations about the set Á-ENV(W ) are easy to see:
(a) There are several distinct sets T which could qualify as Á-ENV(W ). For example, let W
consist of the following set of points in Ÿ

2: a set of points W1 close to (0, 0) and a set of
points W2 close to (1, 0). Let T be a pair of points {x, y} with x œ W1, y œ W2. Then it is
easy to check that T is an Á-ENV(W ); and (b) Let T be Á-ENV(W ). Unlike property (P2)
above, it is not necessary that if w œ W is such that w /œ Á-CH(W \ {w}), then w œ T .

Since the set Á-ENV(W ) is not uniquely determined, we will impose one more condition
on it to make it unique (if it exists) and polynomial time computable. This condition requires
the points of T to be “far apart” from each other. More precisely:
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I Definition 33. For Á, ” œ [0, 1], a set T is called a (Á, ”)-ENV(W ) if it is an Á-ENV(W )
and

’w œ T, dist(w,CH(T \ {w})) > ”�(W ) (18)

The proof of the following result follows from standard arguments and is deferred to the
appendix.

Given a subset T of W , we can check in polynomial time whether T is an (Á, ”)-ENV(W ).
For rest of the section, we address the following question: given the set W , and parameters

Á, ”, is there a (Á, ”)-ENV(W ), and if so, can we find in polynomial time an approximation
to this set? In the full version [9], we argue that several “natural” greedy strategies do not
work. If Á = 0, the above question is easy to answer in polynomial time. The answer is yes
i� the set T of vertices of CH(W ) satisfies (18). Also, if ” = 1, T has to be a singleton to
satisfy (18).

In rest of this section, we consider the following problenm: For what pairs of values of
Á, ”, can we prove that there is essentially at most one (Á, ”)-ENV(W ), and if so, can we
determine this set e�ciently? We do not know the exact answer to this, but our main result
here (which su�ces for the applications) is (verbally stated) an a�rmative answer to the
question if the following condition is satisfied: ” œ �(

Ô
Á). This will follow as a corollary of

our main result:

I Theorem 34. Let ”, Á, Á3 be reals in (0, 1/8) satisfying

” > max
3

2Á

Á3 ≠ Á
, 4Á3

4
(19)

Let W be a finite set of points in Ÿ
d. We can determine in polynomial time whether exists a

set T in (Á, ”)-ENV(W ), and if so, we can e�ciently find a subset Q of W such that

|Q| = |T | (20)
’w œ T,÷x œ Q : |w ≠ x| Æ 2Á3�(W ) (21)

I Corollary 35. Let ”, Á be reals in (0, 1/8) satisfying ” > 16
Ô

Á Let W be a finite set of points
in Ÿ

d. We can determine in polynomial time whether exists a set T forming a (Á, ”)-ENV(W ),
and if so, we can e�ciently find a subset Q of W such that

|Q| = |T | (22)
’w œ T,÷x œ Q : |w ≠ x| Æ 8

Ô
Á�(W ) (23)

Proof. The Corollary follows from Theorem (34) by taking Á3 = 4
Ô

Á J

We defer the proof of Theorem 34 to the full version [9]. The procedure for computing the
set Q is as follows: We first compute a subset QÕÕ of W consisting of points w œ W which do
not lie in the soft convex hull of the points in W which are “far” from w – this can be done
in polynomial time by using arguments similar to those in the proof of Section 6.1. Then Q
is defined as a maximal subset of points in QÕÕ such that the pair-wise distance between the
points in it is large.

6.2 Algorithm for k-OLP
We now show how soft convex hulls can be used to generate a solution for the k-OLP
problem. The following result, which formalizes Theorem 9, uses the same setting as that
in Theorem 28:
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I Theorem 36. Suppose Á, ” are reals in [0, 1] with ”2 Ø cÁ
Ô
d, ”3 Ø c Á, where c is a large

enough constant. Let K be a ”-well-separated k-vertex polytope. Suppose we are also given an
OptOrÁ(K) oracle O. Let W be the set of answers of the oracle O to m = poly(d) · k�(1/”

2
)

independent random queries. We can find Q ™ W, |Q| = k in randomized poly(d) · k�(1/”
2
)-

time which satisfies the following condition w.h.p.: for every vertex v of K, there is a point
vÕ in Q with |v ≠ vÕ

| Æ ”�(K)/10.

Proof. The proof of Theorem 28 shows that for every vertex M·,¸ of K, there is a point
x(u¸) œ W such that

|x(u(¸)) ≠ M·,¸| Æ 17”2�(K)/c. (24)

Let T denote {x(u(¸)) : ¸ œ [k]}. Our first claim is that the points of T are also well-separated.

B Claim 37. For any ¸ œ [k], dist(x(u(¸)),CH(T \ {x(u(¸))})) Ø ”�(K)/2. Further, the
diameter of CH(T ) is at most 2�(K).

Proof. Fix an index ¸ œ [k] and a point y œ CH(T \ {x(u(¸))})). We can express y as a convex
combination of points in T \ {x(u(¸))}, i.e., y =

q
¸Õ ”=¸

⁄¸Õ · x(u(¸
Õ
)), where

q
¸Õ ”=¸

⁄¸Õ = 1.
Now,

|x(u(¸)) ≠ y| Ø

------
M·,¸ ≠

ÿ

¸Õ ”=¸

⁄¸Õ ·M·,¸Õ

------
≠ |x(u(¸)) ≠ M·,¸| ≠

ÿ

¸Õ ”=¸

⁄¸Õ · |x(u(¸
Õ
)) ≠ M·,¸Õ |

Ø

3
” ≠

34”2

c

4
�(K) Ø ”�(K)/2,

where the second last inequality follows from (24) and the fact that K is ”-well-separated.
Since dist(x(u(¸)),K) Æ Á�(K), it follows that �(CH(T )) Æ 2�(K). C

Recall that W denotes the set {x(u) : u œ U}. We now show that CH(T ) closely approximates
CH(W ).

B Claim 38. W ™ ÁÕ-CH(T ), where ÁÕ = 32”
2

c
.

Proof. Fix a point x(u) œ W . We know that x(u) can be written as x(u) = y(u) +
z(u), y(u) œ K, |z(u)| Æ Á. Let y(u) =

q
¸œ[k]

⁄¸ · M·,¸, where the coe�cients ⁄¸ form a
convex combination. Then
------
x(u) ≠

ÿ

¸œ[k]

⁄¸x(u(¸))

------
Æ

ÿ

¸œ[k]

⁄¸·|x(u(¸))≠M·,¸|+|z(u)| Æ
17”2�(K)

c
+Á�(K) Æ

32”2�(K)
c

,

where the second last inequality follows from (24) and the last inequality by the assumption
in. C

Claim 37 and Claim 38 imply that T is (ÁÕ, ”Õ)-ENV(W ) with ”Õ = ”/4, ÁÕ = 32”
2

c
. We can

now apply Corollary 35 to get approximations to x(u(¸)) within distance 17
Ô

ÁÕ�(K). Claim 38
now implies that we can get approximations to M·,¸ within distance

17
Ô

ÁÕ�(K) + 16”2�(K)
c

Æ
”�(K)

10 .

This proves the desired result. J
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7 k-OLP algorithm for Latent Polytopes using Singular Value
Decomposition

Theorem 7 showed that a solution to k-OLP problem requires the error parameter Á to
be Oú(1/

Ô
d). Theorem 28 gives an algorithm achieving this bound. However, for many

polytopes with k vertices, we can solve the k-OLP problem with Á being Oú(1/
Ô
k). However,

if k < d, this error is too high. To tackle this, we find a good approximation to the
subspace spanned by the vertices of K, then we project to this subspace and use the result
in Theorem 28. One such example is the “Latent k≠ Polytope” (abbreviated LkP) problem
which we now describe.

The LkP problem has been studied in [7]. Certain assumptions were made on the model,
namely, the hidden polytope K as well as on the (hidden) process for generating observed
data from latent points in K. These assumptions are (a) shown to hold in several important
Latent Variable models and (b) are su�cient to enable one to get polynomial time learning
algorithms.

Here, we formulate assumptions which are similar, but, weaker in one important aspect.
Whereas [7] assumed that each vertex of K has a separation from the a�ne hull of the
other vertices (thus, in particular, each vertex is a�nely independent of other vertices), we
assume here that each vertex is separated only from the convex hull of the others. Under this
weaker assumption, the algorithm of [7] does not work. We give a di�erent algorithm which
we prove works. It is also simpler to state and carry out and its proof is based on a new
general tool we introduce here - the Random Separating Hyperplane theorem (Theorem 12).

Assumptions on data in the LkP problem. Let M·,1, . . . ,M·,k denote the vertices of K and
M be the d ◊ k matrix with columns representing the vertices of K. We assume there are
latent (hidden) points P·,j , j = 1, 2, . . . , n in K and observed data points A·,j , j = 1, 2, . . . , n
are generated (not necessarily under any stochastic assumptions) by adding displacements
A·,j ≠P·,j respectively to P·,j . Clearly if the displacements are arbitrary, it is not possible to
learn K given only the observed data. So we need some bound on the displacements.

Secondly, if all (or almost all) latent points lie in (or close to) the convex hull of a subset
of k ≠ 1 or fewer vertices of K, the missing vertex cannot be learnt. To avoid this, we will
assume that there is a certain w0 fraction of latent points close to every vertex of K.

Let 4 ‡0 := ||P≠A||Ô
n

. We now show that the k-OLP-Algorithm mentioned in Section 1.2
has the desired properties:

I Theorem 39. Suppose K is a latent poytope with k vertices M·,1,M·,2, . . . ,M·,k and P,A
are latent points (all in K) and observed data respectively. Assume

For all ¸ œ [k] , C¸ := {j : |P·,j ≠ M·,¸| Æ
‡0

Ô
w0

} satisfies |C¸| Ø w0n. (25)

Suppose (
Ô
log k/

Ô
c0k) Æ ” Æ 1 and c0 is a large constant satisfying

‡0 Æ
”2�(K)
100c0

Ô
w0

Ô
k
. (26)

Let V be the k-dimensional SVD subspace of A, and ‚K denote the projection of K on V .

4 By the standard definition of spectral norm, it is easy to see that ‡
2
0 is the maximum mean squared

displacement in any direction.
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There is an OptOr 10‡0Ô
w0�

( ‚K) oracle O.
The algorithm k-OLP Algorithm in Section 1.2 outputs a set Q of k points such that
the following condition is satisfied w.h.p.: for every vertex v of K, there is a point vÕ in
Q with |v ≠ vÕ

| Æ ”�(K)/5.
In the Theorem above, (26) implies an upper bound on ‡0 of �(K)Ôw0/(c0

Ô
k) and so

the oracle O used by the Theorem lies in optÁ( ‚K) for Á Æ 1/(c0
Ô
k). Thus, we get around

the lower bound result Theorem 7 by working in the k-dimensional SVD subspace of A. The
proof of this result is deferred to the full version [9].

8 Open Problems

We now mention some problems that remain open in our work:
(i) In the statement of RSH, the success probability of the desired event is O

1
1/kO(1/”

2
)

2
.

Can we improve the exponential dependence of the success probability on 1/”?
(ii) Theorem 21 on the Haus problem returns exponentially many points whose convex hull

approximates K. Can this be improved, either via an improvement mentioned in the
first open problem above or by feeding the exponentially many points to the algorithm
of [12]?

(iii) RSH asserts that if a point is su�ciently far from a k vertex polytope, then, a random
hyperplane separates them, where, “su�cienlty” is measured with respect to the diameter
of the polytope. An interesting question is whether there is a “dual” statement. The
dual of points are facets, so, intuitively, a dual statement might assert that if for
a polytope with k facets, there is a su�ciently deep cut, then, a random cut cuts
reasonably deep into the polytope. But it is not obvious how to measure “deep” (and
reasonably deep) . We leave a dual statement of RSH as an open question.
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A Some Examples

The first example shows that the factor 1/
Ô
m in the statement of RSH (Theorem 1) cannot

be improved, even for a simple polytope K consisting of just one line segment.

I Example 1. Suppose K is a polytope in Ÿ
d with just two vertices � distance apart and

V = Ÿ
d, ” = 1. It is easy to verify from standard results on random projection on a line that

the additive term in inequality (2) is tight up to constant factors.

The next example shows that the success probability of the desired event (2) in Theorem 1
needs to depend on k, the number of vertices of the polytope K.

I Example 2. Consider the Euclidean space Ÿ
d and the d ≠ 1 dimensional sphere K :=

{x œ Ÿ
d : |x| Æ 1, x1 = 0}. Observe that the diameter � of K is 1. Let a denote the

point (1, 0, 0, . . . , 0). It is at distance 1 from K, and so the parameter ” in the statement
of Theorem 1 can be set to 1. But, with high probability, a random unit length vector u has
u · a ¥

cÔ
d
for some constant c, whereas the maximum of v · x over all points x in the sphere

K is about 1. Therefore the probability of the event (2) is exponentially small in d.
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Abstract
Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains
so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In
fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for
finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to
exist, such as for odd-degree graphs. We identify a graph class – the bipartite Pfa�an graphs of
minimum degree three – where it is NP-complete to decide whether a given graph in the class is
Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian
cycle can be found e�ciently.

We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm
for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfa�an
graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Water-
loo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs
where the lollipop method takes exponential time.

Beyond the reach of the lollipop method, we address a slightly more general graph class and
present two algorithms, one running in linear-time and one operating in logarithmic space, that take
as input (i) a bipartite Pfa�an graph G of minimum degree three, (ii) a Hamiltonian cycle H in G,
and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G.

We also present further improved algorithms for finding optimal traveling salesperson tours and
counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet
in general planar graphs.

Our technique also has purely graph-theoretical consequences; for example, we show that every
cubic bipartite Pfa�an graph has either zero or at least six distinct Hamiltonian cycles; the latter
case is tight for the cube graph.
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26:2 Another Hamiltonian Cycle in Bipartite Pfa�an Graphs

1 Introduction

Finding a Hamiltonian cycle in a given undirected graph is a well-known, well-researched,
and hard problem. This paper studies the question whether knowledge of one Hamiltonian
cycle helps in finding another one. More precisely, the Another Hamiltonian Cycle

problem asks, given as input (i) a graph1 G, (ii) a Hamiltonian cycle H in G, and (iii) an edge
e œ E(H), to find another Hamiltonian cycle H Õ ”= H in G with e œ E(H Õ).

Our interest is in the class of bipartite Pfa�an
2 graphs, a superclass of the bipartite planar

graphs. This focus is partly motivated by the fact that both in cubic bipartite graphs and
cubic planar graphs, a well-known general algorithm for finding another Hamiltonian cycle,
Thomason’s lollipop method [27], requires exponential time in the worst case, cf. Section 1.1.
Also, the problem of deciding if the graph contains a Hamiltonian cycle at all remains
NP-hard in the family of cubic bipartite planar graphs, as proved by Akiyama, Nishizeki,
and Saito [1].

As our main result, we show that Another Hamiltonian Cycle admits both a
linear-time algorithm as well as a logarithmic-space algorithm in bipartite Pfa�an graphs of
minimum degree three. Further restricted to cubic bipartite Pfa�an graphs, we prove that
Thomason’s lollipop method runs in a linear number of steps and can be implemented to run
in linear time. This is to our knowledge a first example of a nontrivial graph class where
Another Hamiltonian Cycle is e�ciently solvable; such an example was solicited by
Kintali [18]. By trivial we here intend a graph class in which Hamiltonicity detection is NP-
hard but is artificially constructed to ensure a simple local rerouting of any Hamiltonian cycle.
Rather, in our case the global properties of bipartiteness, Pfa�anity, and the everywhere-local
property of minimum-degree three, interplay to enable an e�cient algorithm. Without the
minimum-degree constraint, the problem is NP-hard (see the full version [4]).

Our techniques have also purely graph-theoretic consequences. We show that every cubic
bipartite Pfa�an graph has at least three other Hamiltonian cycles through any edge of a
Hamiltonian cycle. All three Hamiltonian cycles can be found in linear time. We also show
that such Hamiltonian graphs must have at least six Hamiltonian cycles. The 8-vertex cube
graph ( ), the canonical example in this class, is an extremal example to both results. It
has precisely six distinct Hamiltonian cycles with every graph edge in exactly four of them.

1.1 Motivation and earlier work
While a graph need not be Hamiltonian, and a Hamiltonian graph need not admit another
Hamiltonian cycle, there exist graph families with Hamiltonian members where another
Hamiltonian cycle is always known to exist. Perhaps the most prominent such family are the
odd-degree graphs, which via Smith’s Theorem (see [30]) have an even number of Hamiltonian
cycles through any given edge. Thomason [27] gave a constructive proof by describing an
algorithm that solves for another Hamiltonian cycle in cubic graphs. The algorithm is often
called Thomason’s lollipop method as it transforms a Hamiltonian cycle to another one
by a sequence of lollipop graphs, see Section 3.3 for a precise description of the algorithm.
Dropping the requirement that the Hamiltonian cycle should go through a specific edge,

1 We tacitly work with undirected simple loopless graphs unless mentioned otherwise, as well as assume
knowledge of standard graph-theoretic terminology [32]. Our conventions with graphs can be found in
Section 1.6.

2 We postpone a precise definition and motivation of Pfa�an graphs to Section 1.5. Planar graphs are
Pfa�an.
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Bosák [5] proved that every cubic bipartite graph has an even number of Hamiltonian cycles.
Thomassen [28, 29] showed that no bipartite graph in which every vertex in one of the two
parts of the bipartition has degree at least three, has a unique Hamiltonian cycle. A famous
conjecture due to Sheehan [26] claims that no 4-regular graph can have a unique Hamiltonian
cycle; Thomassen’s result proves Sheehan’s conjecture for bipartite graphs.

Papadimitriou [24] popularized the Another Hamiltonian Cycle problem and Thoma-
son’s algorithm by introducing the complexity class PPA and showed the containment of
the problem in odd-degree graphs; completeness for PPA remains open. It is also open
whether the problem can be solved in polynomial time – indeed, the drawback of Thomason’s
algorithm is that it may run for a very long time; Krawczyk [19] and Cameron [8] showed
that Thomason’s algorithm requires exponential time for a family of cubic planar graphs.
Later this was shown by Zhong [33] also for cubic bipartite graphs. The best bound to date
is the recent result of BriaÒski and Szady [6], which shows that there are cubic 3-connected
planar graphs on n vertices, in which Thomason’s lollipop algorithm runs in �(1.18n) time.

The above papers reason about Thomason’s algorithm specifically, but it may of course
be other algorithms that solve the problem more e�ciently. Some progress in this direction
was provided by Bazgan, Santha, and Tuza [2] that showed that one given a cubic graph on
n vertices and one of its Hamiltonian cycles can find another cycle of length (1 ≠ ‘)n for any
fixed constant ‘ > 0 in polynomial time. Deligkas, Mertzios, Spirakis, and Zamaraev [12]
derived an exponential-time polynomial-space deterministic algorithm that given a cubic
graph along with one of its Hamiltonian cycles finds another Hamiltonian cycle; the algorithm
is shown to be faster than the fastest known exponential-time polynomial-space deterministic
algorithm for finding a Hamiltonian cycle in cubic graphs.

1.2 Main results for bipartite Pfa�an graphs
Let us now review our main results for bipartite Pfa�an graphs and the underlying techniques
in more detail. Our main theorems are as follows.

I Theorem 1 (Main; Linear–time Another Hamiltonian Cycle in minimum degree three).
There exists a deterministic linear-time algorithm that, given as input (i) a bipartite Pfa�an

graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge

e œ E(H), outputs a Hamiltonian cycle H Õ ”= H in G with e œ E(H Õ).

I Theorem 2 (Main; Logarithmic–space Another Hamiltonian Cycle in minimum degree

three). There exists a deterministic logarithmic-space algorithm that, given as input (i) a

bipartite Pfa�an graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and

(iii) an edge e œ E(H), outputs a Hamiltonian cycle H Õ ”= H in G with e œ E(H Õ).

The framework underlying our main theorems can be used to prove an upper bound on
the number of steps needed for Thomason’s lollipop method to terminate.

I Theorem 3 (Thomason’s lollipop method in cubic bipartite Pfa�an graphs). Thomason’s

lollipop method starting from any Hamiltonian cycle H and any edge e œ E(H) in an n-vertex
cubic bipartite Pfa�an graph G, terminates after at most n steps.

It was conjectured in a master thesis at Waterloo by Haddadan [14] that Thomason’s
lollipop method runs in a linear number of steps in cubic bipartite planar graphs. It was
there also proven to hold for the subfamily of such graphs that does not have the wheel
graph on six vertices as a minor. However, as the author himself points out, finding a first
Hamiltonian cycle in this limited graph family does not seem intractable. We are not aware
of any other papers providing a polynomial time bound on Thomason’s lollipop method in
any graph class.
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Our framework also can be used to prove the following structural results for Hamiltonian
cycles. Their proofs appear in the full version [4] of this paper.

I Corollary 4 (Non-uniqueness in minimum degree three). For every bipartite Pfa�an graph

G of minimum degree three and for every edge e œ E(G), it holds that G has either zero or

at least four distinct Hamiltonian cycles H with e œ E(H).

The cube graph is a cubic bipartite Pfa�an graph with six distinct Hamiltonian cycles.
We show that no Hamiltonian graph in this class can have fewer Hamiltonian cycles.

I Corollary 5 (Cubic tight lower bound). Every cubic bipartite Pfa�an graph has either zero

or at least six distinct Hamiltonian cycles.

Chia and Ong [9] (in the paragraph after Theorem 10) asked whether there exists cubic
bipartite planar graphs with exactly four Hamiltonian cycles. The above Corollary rules out
that possibility.

Remarks. One consequence of Theorem 1 is that if the Another Hamiltonian Cycle

problem in general odd degree graphs is PPA-complete as hypothesized by Papadimitriou [24,
Open Problem (4)], then any proof cannot carry over to cubic bipartite planar graphs unless
also PPA = FP. Our result also seems related to another well-known conjecture, namely
Barnette’s conjecture (cf. Tutte [31, Unsolved Problem V]), which states that every cubic
3-connected bipartite planar graph (Barnette graph) has a Hamiltonian cycle. Gorsky, Steiner,
and Wiederrecht [13] recently extended the conjecture by showing that if Barnette’s conjecture
is true, it also holds that every cubic bipartite 3-connected Pfa�an graph has a Hamiltonian
cycle. It is known that if Barnette’s conjecture is true, then there is a Hamiltonian cycle
through every edge in every such graph, see Kelmans [17]. Moreover, it was indirectly shown
by Holton, Manvel, and McKay [15] that any Barnette graph larger than the smallest such
graph – namely the cube graph – can be reduced to a smaller Barnette graph in such a way
that if the smaller graph has a Hamiltonian cycle through every edge, then the larger one
must also have a Hamiltonian cycle. This means that if it was possible given any single
Hamiltonian cycle in a Barnette graph to generate a Hamiltonian cycle through any specific
edge not on the initial cycle, then Barnette’s conjecture would be constructively true. We
remark that our algorithm is not known to be able to do this, not even indirectly by applying
it several times in a chain of Hamiltonian cycle transformations. We do note however, that
our algorithms in Theorems 1 and 2 not only make sure the edge e = {s, t} is part of both
Hamiltonian cycles, they also retain the other edge incident to s on H; this can be observed
by Lemma 10, that is, no edge incident to s is changed by the algorithms since it is not on
the alternating cycle we use. In particular this makes it possible given H and any given edge
f œ E(G) not on H, to find another Hamiltonian cycle H Õ such that f is also not part of H Õ.

1.3 Overview of techniques
At the heart of our algorithms and structural results is what we believe to be a new
framework for e�ciently witnessing a Hamiltonian cycle H through an arbitrary anchor

edge e in a bipartite Pfa�an graph G. We associate a (not necessarily proper) two-coloring
‰H : V (G) æ {0, 1} to H that is unique to H (but dependent on a fixed but arbitrary Pfa�an
orientation of G as well as e) and that defines a unique acyclic Hamiltonian3 orientation of

3 In precise terms, the orientation is a directed acyclic graph that contains as a directed subgraph a
directed Hamiltonian path from one end of e to the other.
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G \ e. We will refer to such an ‰H as a good coloring. This acyclicity in particular enables
the unique recovery of H in linear time by standard topological sorting when given ‰H as
advice. The reader may want to consult Figure 1 (on page 9) for an advance illustration at
this point; the framework itself is developed in Section 2.

We also show that it su�ces to know ‰H in only one of the parts of a bipartition of G to
e�ciently extend to a Hamiltonian cycle, which is not necessarily equal to H however. More
precisely, we show that a coloring ⁄ of one of the parts leads to an auxiliary bipartite graph
F⁄ whose perfect matchings correspond to the good colorings ‰H extending ⁄, which in turn
each define a unique Hamiltonian cycle H. We refer to Figure 2 (on page 11) for an advance
illustration of this setting.

Finally, when G has minimum degree three, we observe that we can use F⁄ to e�ciently
switch from one Hamiltonian cycle H in G (described by a perfect matching MH in F⁄) to
another Hamiltonian cycle H Õ ”= H in G by switching along an alternating cycle in F⁄ which
can be discovered through a directed cycle in an auxiliary directed graph D⁄,H . Moreover,
we show that this construction and discovery can be executed in deterministic linear time
– we refer to Figure 3 (on page 14) for an advance illustration; the switching construction
itself is developed in Section 3.

1.4 Further results
Our framework for witnessing Hamiltonicity should be contrasted with the Cut&Count
approach for detecting Hamiltonian cycles by Cygan, Nederlof, Pilipczuk, Pilipczuk, Van
Rooij, and Wojtaszczyk [10], which reduces the Hamiltonian cycle problem to a local problem
by showing that a cycle cover of the input graph is Hamiltonian if and only if the number
of the exponentially many vertex partitions that are consistent (defined in a certain local
way) with it is odd. This approach therefore necessarily reduces the original decision problem
to a parity counting problem, which has several disadvantages that seem inherent to the
approach, including the need for randomization and a running time factor that is pseudo-
polynomial in the integer weights for edge-weighted problem variants. Our framework shows
that for bipartite Pfa�an graphs there is a more natural way to witness that a cycle cover is
Hamiltonian using only a single vertex partition; that is, ‰H .

We explore the algorithmic consequences of our technique in the context of counting
Hamiltonian cycles and in the context of the Traveling Salesperson Problem (TSP) in bipartite
Pfa�an/planar graphs. For reasons of space, we postpone a detailed statement of these
results, a discussion of pertinent earlier work, as well as the proofs, to the full version [4] of
this paper.

1.5 Pfa�an graphs
Let us now define and motivate Pfa�an graphs in more detail. An orientation of a graph
G replaces every edge {u, v} œ E(G) with either the directed arc (u, v) or the directed arc
(v, u), thereby obtaining a directed graph G̨. A cycle C in G is central if the graph G \ V (C)
admits a perfect matching. We say that an orientation of a cycle is consistent if it is strongly
connected. An orientation G̨ of G is Pfa�an if for every central cycle C in G it holds that
both consistent orientations of C have an odd number of arcs in common with G̨. A graph is
Pfa�an if it admits a Pfa�an orientation.

The bipartite Pfa�an graphs are most famous as the graph class in which Pólya’s
permanent problem has a solution, the bipartite graphs in which one can compute the number
of perfect matchings e�ciently by reduction to a matrix determinant, see e.g. Robertson,
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Seymour, and Thomas [25] and McCuaig [22]. This brings us to one of our motivations
to study the complexity of the detection (and counting) of Hamiltonian cycles on this
graph class: Previous algorithms for Hamiltonian cycles (such as the one by Björklund [3])
use determinant-based methods previously designed for counting matchings (modulo 2) in
polynomial time; given this close connection between the two problems it is natural to ask
whether Pfa�anity can be exploited for detecting and counting Hamiltonian cycles, similarly
as for counting perfect matchings.

The bipartite Pfa�an graphs were characterized by Little [21] as those graphs G that
do not have a vertex set U ™ V (G) such that G \ U has a perfect matching and the
induced subgraph G[U ] admits an even subdivision of K3,3 as a subgraph. McCuaig [22]
and Robertson, Seymour, and Thomas [25] gave a structural characterization of bipartite
Pfa�an graphs and the latter also outlined an O(n3) time algorithm for their recognition;
this algorithm can also produce a Pfa�an orientation when one exists.

A general Pfa�an graph, as opposed to a bipartite one, can be very dense as observed by
Norine [23]: there is an infinite family of n-vertex Pfa�an graphs with �(n2) edges. This
construction in particular poses obstacles to find characterizations as the ones mentioned
above for bipartite graphs. Indeed, it is not known how to e�ciently recognize a general
Pfa�an graph.

The most famous Pfa�an graphs are the planar ones, graphs whose vertices can be
embedded in the plane with straight lines connecting the vertices of every edge without
line crossings except at endpoints. That planar graphs are Pfa�an was discovered by
Kasteleyn [16]; there is also a linear-time algorithm that finds a Pfa�an orientation given a
planar graph by Little [20].

1.6 Conventions and organization

We assume knowledge of standard graph-theoretic terminology; see e.g. West [32]. Graphs
in this paper are undirected unless otherwise mentioned; this in particular also applies to
subgraphs such as paths, cycles, and Hamiltonian cycles. No graph or directed graph in
this paper has loops or multiple edges. For a graph or directed graph G, we write V (G) for
the vertex set of G and E(G) for the edge set of G. We identify the edges of a graph with
two-subsets {u,w} where u and w are distinct vertices. We call the edges of a directed graph
arcs in what follows, and identify each arc with a two-tuple (u,w) where u and w are distinct
vertices. We recall our conventions with orientations and Pfa�an graphs from Section 1.5.

We work with Iverson’s bracket notation – for a logical proposition P , we define

[[P ]] =
I
1 if P is true ;
0 if P is false .

The rest of this paper is organized as follows. Section 2 presents our novel witnessing
technique for Hamiltonian cycles in bipartite Pfa�an graphs. We prove our main theorems
and their indirect structural corollaries in Section 3. Proofs of Lemmas, Theorems, and
Corollaries that are omitted due to space constraints can be found in the full version [4] of
this paper. In the full version we also prove the NP-hardness of Another Hamiltonian

Cycle in bipartite Pfa�an graphs without constrained vertex degrees, and state, motivate,
and prove further results on counting Hamiltonian cycles as well as on TSP.
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2 Hamiltonian cycles in bipartite Pfa�an graphs

This section presents what we believe to be a novel technique to e�ciently witness Hamiltonian
cycles in bipartite Pfa�an graphs via (not necessarily proper) two-colorings of the vertices.
We also show how to e�ciently construct a Pfa�an orientation from a known Hamiltonian
cycle in a bipartite Pfa�an graph, as well as show how to e�ciently find a witness by
extending a given partial witness defined on only one of the parts of a bipartition.

Throughout this section G is an n-vertex bipartite Pfa�an graph and G̨ is a fixed
but otherwise arbitrary Pfa�an orientation of G. Since we are interested in whether G is
Hamiltonian, without loss of generality we may assume that n is even and n Ø 4 in what
follows.

Select an arbitrary edge e œ E(G) and call it the anchor edge.

2.1 Preliminaries: The structure of Pfa�an orientations
We start by recalling the known structure of Pfa�an orientations of G. Namely, de Carvalho,
Lucchesi, and Murty [11] observed that all Pfa�an orientations of G are obtainable from
each other by reversals of arcs across vertex cuts. More precisely, for any Pfa�an orientation
G̨ and any vertex u œ V (G), it holds that reversing the arcs incident to u in G̨ results in
another Pfa�an orientation; furthermore, every Pfa�an orientation of G can be obtained
by starting with an arbitrary Pfa�an orientation of G and repeating such operations for
di�erent vertices [11].

2.2 The two-coloring defined by an anchored Hamiltonian cycle
We are interested in characterising each Hamiltonian cycle H in G that traverses the selected
anchor edge e – we say that such an H is anchored – using a function ‰H : V (G) æ {0, 1}
that is unique4 to H and from which we will (in the next subsection) see H can be e�ciently
constructed.

Towards this end, let us study the Pfa�an orientation G̨ at the anchor e. Let (s, t) œ E(G̨)
be the arc in G̨ whose underlying edge in G is the anchor edge e = {s, t}. Construct from
the Pfa�an orientation G̨ a new orientation G̨e of G that is otherwise identical to G̨ except
that the arc (s, t) has been replaced with the arc (t, s). That is, by definition we have
(t, s) œ E(G̨e).

Now consider an arbitrary anchored Hamiltonian cycle H in G. Since e œ E(H), there is
a unique consistent orientation H̨ of H such that (t, s) œ E(H̨). Let us write v0, v1, . . . , vn≠1
for the vertices of G indexed in the directed H̨-path order from s to t; that is,

v0 = s , vn≠1 = t , and (vi, v(i+1) mod n) œ E(H̨) for all i = 0, 1, . . . , n ≠ 1 . (1)

Associate with H the (not necessarily proper) vertex-coloring function ‰H : V (G) æ {0, 1}
defined by setting

‰H(v0) = 0 and

‰H(vi+1) © ‰H(vi) + [[(vi, vi+1) œ E(G̨e)]] (mod 2) for all i = 0, 1, . . . , n ≠ 2 . (2)

4 Unique but not canonical; as we will see, the function ‰H will depend not only on the Hamiltonian
cycle H but also on the choice of our assumed fixed but arbitrary Pfa�an orientation G̨ of G.
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Because G̨ is a Pfa�an orientation and H is a central cycle of G, we have

|E(H̨) fl E(G̨)| =
n≠1ÿ

i=0
[[(vi, v(i+1) mod n) œ E(G̨)]] © 1 (mod 2) . (3)

Since G̨ and G̨e di�er only in the orientation of e œ E(H), from (3) we immediately have

|E(H̨) fl E(G̨e)| =
n≠1ÿ

i=0
[[(vi, v(i+1) mod n) œ E(G̨e)]] © 0 (mod 2) . (4)

We thus conclude

‰H(v0)
(2)= 0

(4)
© |E(H̨) fl E(G̨e)| =

n≠2ÿ

i=0
[[(vi, vi+1) œ E(G̨e)]] + [[(vn≠1, v0) œ E(G̨e)]]

(2)
© ‰H(vn≠1) + [[(vn≠1, v0) œ E(G̨e)]] (mod 2) . (5)

Since by definition of G̨e we have (t, s) œ E(G̨e), from (1) and (5) we conclude that ‰H(t) = 1.
Furthermore, from (2) and (5) we have for all (u,w) œ E(H̨) that

‰H(w) © ‰H(u) + [[(u,w) œ E(G̨e)]] (mod 2) . (6)

That is, each arc (u,w) œ E(H̨) is ‰H -monochromatic (i.e. both endpoints are assigned the
same value by ‰H) if and only if (w, u) œ E(G̨e).

2.3 The orientation induced by a good coloring
Suppose now that we do not know anything about the (anchored) Hamiltonian cycles of G,
if any, and have access only to the Pfa�an orientation G̨ and the orientation G̨e; the latter
is easily obtainable from G̨, cf. Section 2.2.

Consider an arbitrary vertex coloring ‰ : V (G) æ {0, 1} with ‰(s) = 0 and ‰(t) = 1.
The last observation in Section 2.2 suggests that we should explore reversing exactly the
‰-monochromatic arcs in G̨e. Let us make this formal as follows. Let the orientation G̨‰

e

induced by the coloring ‰ be the unique orientation of G that for each edge {u,w} œ E(G)
satisfies

(u,w) œ E(G̨‰

e
) if and only if ‰(w) © ‰(u) + [[(u,w) œ E(G̨e)]] (mod 2) . (7)

To witness the serendipity of (7), suppose that G admits an anchored Hamiltonian cycle
H; it follows immediately from (6) and (7) that E(H̨) ™ E(G̨‰H

e
). Thus, if we know only

the coloring ‰H but not H, we can search for E(H̨) in E(G̨‰H

e
); let us next analyse this

situation in more detail from the standpoint of our arbitrary ‰.
Call the coloring ‰ good if there exists an anchored Hamiltonian cycle H in G with

‰ = ‰H ; otherwise call ‰ bad. The following lemma shows that the orientation G̨‰

e
for a

good ‰ enables linear-time and unique algorithmic recovery of H by standard longest-path
search in a directed acyclic graph (DAG); in fact, mere topological sorting su�ces, as is
apparent from the proof. See also Figure 1 for an illustration of the concepts involved in a
Hamiltonian planar graph.

I Lemma 6 (Acyclic Hamiltonicity of good-coloring-induced orientations). Let ‰ be good. Then,

the orientation G̨‰

e
\ (t, s) of G \ e is acyclic with the unique source vertex s and the unique

sink vertex t. Moreover, the longest directed path in G̨‰

e
\ (t, s) is unique and a directed

Hamiltonian path.



A. Björklund, P. Kaski, and J. Nederlof 26:9

s

t

s

t

s

t

Figure 1 Illustration of orientations induced by good colorings. Left: an undirected bipartite
planar graph G drawn in one of its orientations G̨e with e = {s, t}, one arc reversal away from a
Pfa�an orientation G̨. Middle and right: two vertex colorings ‰H and coloring-induced orientations
G̨

‰H
e for two di�erent Hamiltonian cycles H, with the arcs of H̨ drawn in bold in each case. Observe

that every monochromatic arc reverses its orientation with respect to G̨e, whereas bichromatic arcs
keep their orientation. Observe also that the removal of the arc (t, s) from G̨

‰H
e leaves an acyclic

Hamiltonian directed graph, whereby the directed Hamiltonian path and hence H can be found, for
example, by topological sorting; cf. Lemma 6.

Proof. Since ‰ is good, there exists an anchored Hamiltonian cycle H with ‰ = ‰H .
Furthermore, we can follow the notational conventions in Section 2.2 with respect to this
H, including the vertex-indexing v0, v1, . . . , vn≠1 for G and (1) in particular. From E(H̨) ™
E(G̨‰

e
) we thus conclude that the sequence v0, v1, . . . , vn≠1 defines a longest directed path

(which is also a directed Hamiltonian path from s to t) in the directed graph G̨‰

e
\ (t, s). It

follows immediately that s is the only possible source vertex and t is the only possible sink
vertex in G̨‰

e
\ (t, s).

Let us next show that G̨‰

e
\ (t, s) is acyclic as a directed graph. To reach a contradiction,

suppose that D̨ is a directed cycle in G̨‰

e
\ (t, s). Since (t, s) = (vn≠1, v0) /œ E(D̨) and D̨

is a directed cycle with V (D̨) ™ {v0, v1, . . . , vn≠1}, there must exist 0 Æ i < j Æ n ≠ 1
with at least two proper inequalities among the three such that (vj , vi) œ E(D̨) and thus
(vj , vi) œ E(G̨‰

e
). Let C̨ be the directed cycle with V (C̨) = {vi, vi+1, . . . , vj} and E(C̨) =

{(vi, vi+1), (vi+1, vi+2), . . . , (vj≠1, vj), (vj , vi)}. In particular, C̨ ”= H̨ since (t, s) /œ E(C̨). Let
C be the underlying undirected cycle of C̨, and observe that C is a cycle of G. Since G
is bipartite, C is even and has at least four vertices. Thus, the edges of H \ V (C) contain
a perfect matching of G \ V (C), implying that C is central. Since C avoids e and C̨ is a
consistent orientation of C, we conclude by Pfa�anity that

|E(C̨) fl E(G̨e)| = |E(C̨) fl E(G̨)| © 1 (mod 2) .

But this is a contradiction since for all (u,w) œ E(C̨) we have (u,w) œ E(G̨‰

e
), and thus by

(7) it holds that ‰(w) © ‰(u)+ [[(u,w) œ E(G̨e)]] (mod 2); take the sum of these congruences
over all arcs (u,w) œ E(C̨) to conclude that |E(C̨) fl E(G̨e)| © 0 (mod 2), a contradiction.
Thus, G̨‰

e
\ (t, s) is acyclic as a directed graph.

From acyclicity it also immediately follows that s is a source vertex and t is a sink vertex of
G̨‰

e
\ (t, s); indeed, any arc into s or any arc out of t would complete a directed cycle together

with an appropriate proper segment of the directed Hamiltonian path s = v0, v1, . . . , vn≠1 = t.
This longest path (of n vertices) is also seen to be unique in G̨‰

e
\ (t, s); indeed, the existence

of any other such path would again imply an arc that would complete a directed cycle
together with an appropriate proper segment of v0, v1, . . . , vn≠1. J

An immediate corollary of the proof Lemma 6 is that there are at most 2n≠2 Hamiltonian
cycles through any fixed edge in an n-vertex bipartite Pfa�an graph. For comparison, there
are planar graphs with at least 2.08n Hamiltonian cycles, see [7].
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2.4 Constructing a Pfa�an orientation from a Hamiltonian cycle
Next we address the task of constructing a Pfa�an orientation if we know one Hamiltonian
cycle, with the intent of constructing possible further Hamiltonian cycles with the help of
the Pfa�an orientation obtained.

I Lemma 7 (Constructing a Pfa�an orientation from a Hamiltonian cycle). There exists a

linear-time algorithm that, given as input a bipartite Pfa�an graph G and a Hamiltonian

cycle H in G, outputs a Pfa�an orientation G̨ of G. ıSee full version [4] for proof ı

2.5 Finding a good coloring
Let us now study the task of finding a good coloring ‰ given the bipartite Pfa�an graph
G, the Pfa�an orientation G̨, and the anchor edge e as input; also recall the conventions
and further notation – in particular, the vertices s and t – from Sections 2.2 and 2.3. In this
setting, a natural question to ask is how much one needs to reveal from a good coloring ‰ to
enable e�cient completion to a good coloring. We now show that it su�ces to reveal ‰ in
one of the parts of the bipartition of G by a reduction to bipartite perfect matching in an
auxiliary bipartite graph.

More precisely, let the sets L (“left”) and R (“right”) form a partition of the vertices
of G such that s œ L, t œ R, and every edge of G has one end in L and the other end in
R.5 Let ⁄ : L æ {0, 1} with ⁄(s) = 0 be a given further input. Our task is to find whether
there exists a good coloring ‰ : V (G) æ {0, 1} with ‰(¸) = ⁄(¸) for all ¸ œ L ™ V (G); that
is, whether there exists a good coloring that extends the partial coloring ⁄.

Construct an auxiliary bipartite graph F⁄ as follows. Let the vertex set V (F⁄) =
V (G) ◊ {0, 1}. To avoid notational confusion between arcs and vertices of F⁄, we will use
bracketed notation [u, k] for vertices of F⁄ with u œ V (G) and k œ {0, 1}. The edge set
E(F⁄) is defined by the following rule. For all ¸ œ L, r œ R, p œ {0, 1}, and fl œ {0, 1} with
{¸, r} œ E(G), we have

{[¸, p], [r, fl]} œ E(F⁄) (8)

if and only if both

fl © ⁄(¸) + [[(¸, r) œ G̨e]] (mod 2) (9)

and

¸ ”= s or p ”= 0 or r = t . (10)

For an edge {[¸, p], [r, fl]} œ E(F⁄), we say that the edge {¸, r} œ E(G) is the projection of
the edge (to G) and call p the port at ¸ and fl the parity at r, stressing that port and parity
have asymmetric roles in our construction even though both range in {0, 1}.

Let us now start analysing the structure of F⁄ in more detail. First, the parts L ◊ {0, 1}
and R ◊ {0, 1} witness by (8) that F⁄ is bipartite. In particular, F⁄ has 2n vertices with
|L| = |R| = n/2, where we recall that n Ø 4 is the number of vertices in G with n even.
Second, recalling that s œ L and t œ R, the constraint (10) e�ectively states that [s, 0] is
adjacent only to [t, 0] in F⁄; indeed, recalling that ⁄(s) = 0 and (s, t) /œ G̨e, from (9) we

5 This bipartition (L,R) of G is in fact unique unless G is not Hamiltonian. Moreover, (L,R) is computable
in linear time from the given input.
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have that [s, 0] is not adjacent to [t, 1]. Third, for all ¸ œ L \ {s}, we observe from (9) and
(10), the latter being trivially true, that the vertices [¸, 0] and [¸, 1] have identical vertex
neighborhoods in F⁄.

We are now ready for our next key lemma. Recall the coloring ‰H associated to an
anchored Hamiltonian cycleH of G from Section 2.2. The first lemma shows that every perfect
matching in F⁄ gives rise to an anchored Hamiltonian cycle; di�erent perfect matchings may
give rise to the same anchored Hamiltonian cycle however. This structure is illustrated in
Figure 2.

s

t

s

t

Figure 2 Illustration of a perfect matching in the graph F⁄. Left: The graph G drawn in one
of its orientations G̨e with e = {s, t} and the bipartition (L,R) with vertices in L drawn as white
circles and the vertices in R drawn as black boxes. Right: The graph F⁄ and the coloring ⁄ drawn
as an oriented overlay of G. Observe that each vertex r œ R has two copies [r, fl] in F⁄, one for
each parity fl œ {0, 1}, with a blue square indicating parity 0 and an orange square indicating
parity 1. Although each vertex ¸ œ L has two copies [¸, p] in F⁄, one copy for each port p œ {0, 1},
we contract these two copies into one vertex (circle) in the drawing, and display for each vertex its
color ⁄(¸) œ {0, 1} (blue or orange) instead. Each arc in the drawing is oriented from L to R and
represents two edges of F⁄ with opposite ports. A perfect matching M in F⁄ is represented by the
bold arcs. In particular, observe that each circle is incident to two bold arcs; these two bold arcs
represent two edges in M with opposite ports. These opposite ports are otherwise arbitrary except
for the edge of M that projects to {s, t}, which must have port 0. Also observe that from the drawn
M it is visually intuitive how to obtain a Hamiltonian cycle in G corresponding to M by turning
the bold arcs into the edges of a Hamiltonian cycle in G; this intuition is made rigorous in Lemma 8
by the Hamiltonian cycle H[M ] of G obtained from M .

I Lemma 8 (Perfect matchings witness good extensions). For every perfect matching M in

F⁄, there exists a Hamiltonian cycle H[M ] in G with ‰H[M ](¸) = ⁄(¸) for all ¸ œ L.

Proof. Let M be an arbitrary perfect matching in F⁄. For [¸, p] œ L ◊ {0, 1} and [r, fl] œ
L ◊ {0, 1}, let us use functional notation M([¸, p]) = [r, fl] or M([r, fl]) = [¸, p] to signal
that the vertices [¸, p] and [r, fl] are matched by M in F⁄. We construct the anchored
Hamiltonian cycle H[M ] as well as the coloring ‰ = ‰H[M ] with ‰(¸) = ⁄(¸) for all ¸ œ L
by traversing all the vertices of F⁄ in an order determined by M to yield the Hamiltonian
cycle H[M ]. In particular, we will define H[M ] in steps by introducing, one vertex at
a time, a vertex order v0, v1, . . . , vn≠1 for the vertices of G with v0 = s, vn≠1 = t, and
(vi, v(i+1) mod n) œ E(

≠≠≠æ
H[M ]) ™ E(G̨‰

e
) for all i = 0, 1, . . . , n ≠ 1.

Our traversal starts from the vertex [¸0, p0] of F⁄ defined by ¸0 = s and p0 = 1. The
traversal then follows edges in the perfect matching M , changing parity (at vertices in
R ◊ {0, 1}) and port (at vertices in L ◊ {0, 1}) to arrive at subsequent edges; for these
changes, for z œ {0, 1} it is convenient to write z = (z+1) mod 2 for notational brevity; that
is, 0 = 1 and 1 = 0.

In precise terms, the traversal is as follows. Assuming we have defined ¸j œ L and pj œ
{0, 1} for all j œ {0, 1, . . . , i} with i Ø 0, we proceed to define ¸i+1 œ L and pi+1 œ {0, 1} as
follows. Set v2i = ¸i and ‰(¸i) = ⁄(¸i). Define ri œ R and fli œ {0, 1} by M([¸i, pi]) = [ri, fli].
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Set v2i+1 = ri and ‰(ri) = fli. Define ¸Õ
i

œ L and pÕ
i

œ {0, 1} by M([ri, fli]) = [¸Õ
i
, pÕ

i
]. Set

¸i+1 = ¸Õ
i
and pi+1 = pÕ

i
as well as ‰(¸i+1) = ⁄(¸i+1) and v2(i+1) = ¸i+1. We continue this

process for i = 0, 1, . . . and claim that eventually ¸i+1 = ¸0 and pi+1 = p0 with i+1 = n/2, at
which point {v0, v1, . . . , vn≠1} = V (G) and H[M ] is a Hamiltonian cycle in G with ‰H[M ] = ‰
with ‰(¸) = ⁄(¸) for all ¸ œ L.

Let us now analyse the traversal process in more detail. First, we observe that ¸i+1 ”= ¸i;
indeed, suppose that ¸i+1 = ¸i and observe that the traversal step from ¸i to ¸i+1 changes
parity from fli to fl̄i at ri, yet from (9) we observe that every edge of F⁄ that projects to the
edge {¸i, ri} = {¸i+1, ri} has the same parity at ri, a contradiction. Next, let us observe that
(v2i, v2i+1) = (¸i, ri) œ E(G̨‰

e
). Indeed, the identity is immediate, and membership holds

by (7) and

‰(ri) = fli

(9)
© ⁄(¸i) + [[(¸i, ri) œ G̨e]] = ‰(¸i) + [[(¸i, ri) œ G̨e]] (mod 2) .

Let us then observe that (v2i+1, v2i+2) = (ri, ¸i+1) œ E(G̨‰

e
). Again the identity is immediate,

and membership holds by (7), the fact that G̨‰

e
orients {¸i+1, ri} œ E(G) in one of two

possible orientations, and

‰(ri) = fli ”= fl̄i

(9)
© ⁄(¸i+1) + [[(¸i+1, ri) œ G̨e]] = ‰(¸i+1) + [[(¸i+1, ri) œ G̨e]] (mod 2) .

Next let us show that all the vertices ¸i and ri traversed by the process are distinct,
until ¸i+1 = ¸0 for some i Ø 1, noting that the case i = 0 has already been excluded earlier.
Suppose ¸1, ¸2, . . . , ¸i are distinct; since M contains exactly two edges (of opposite parities)
that project to edges incident to any fixed r œ R, we observe that these two edges of M
have been each traversed once by the process for each r0, r1, . . . , ri since ¸0, ¸1, . . . , ¸i are
distinct, implying that r0, r1, . . . , ri are distinct, and thus that v0, v1, . . . , v2i+1 are distinct.
So suppose that ¸i+1 = ¸j for some 0 Æ j Æ i; also note that this must happen for some
i < |L| = n/2. If j Ø 1, we have a contradiction since M contains exactly two edges (of
opposite ports) that project to edges incident to any fixed ¸ œ L, and for ¸ = ¸j these two
edges (projecting to {¸j , rj≠1} and {¸j , rj}) have already been traversed; so there is no edge in
M that projects to {¸j , ri} = {¸i+1, ri}, a contradiction. So we must have j = 0. This implies
in particular that (vk, v(k+1) mod (2i+2)) œ E(G̨‰

e
) for all k = 0, 1, . . . , 2i + 1. Furthermore,

since the edge of M that is incident to [¸0, p0] = [s, 1] has already been traversed, we have that
the edge {[¸i+1, pi+1], [ri, fl̄i]} in M must be the edge {[s, 0], [t, 0]} (recall our analysis earlier
that [s, 0] is adjacent only to [t, 0] in F⁄); thus we conclude that ‰(t) = ‰(ri) = fli ”= fl̄i = 0;
that is, ‰(t) = 1.

Let us next show that i = n/2 ≠ 1. So to reach a contradiction, suppose that i < n/2 ≠ 1.
In particular, the edges of G underlying the arcs (vk, v(k+1) mod (2i+2)) œ E(G̨‰

e
) for k =

0, 1, . . . , 2i+ 1 trace a cycle of even length 2i+ 2 < n in G. This leaves some of the vertices
in G, and thus all corresponding vertices of F⁄ regardless of port/parity, unvisited by the
traversal process. By starting the traversal process again from an arbitrary unvisited vertex
in L ◊ {0, 1}, we end up tracing a further even-length cycle in G, and repeating the process
until all vertices of G are visited, we obtain a vertex-disjoint union of even-length cycles that
together cover the vertices of G, as well as a coloring ‰ such that all the cycles (in their
consistently oriented form as they were traversed) occur as directed subgraphs of G̨‰

e
. Since

2i+ 2 < n, this cycle cover thus contains a cycle C that does not contain the anchor edge e
and whose consistent orientation C̨ is a subgraph of G̨‰

e
; observing that C is central – indeed,

use every other edge from each even cycle other than C in the cover to witness a perfect
matching in G \ V (C) – this leads to a contradiction via Pfa�anity by the same argument
as was used in the proof of Lemma 6; thus, i = n/2 ≠ 1.
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Since i = n/2 ≠ 1, it follows from (vk, v(k+1) mod n) œ E(G̨‰

e
) for all k = 0, 1, . . . , n ≠ 1

and from Lemma 6 we conclude that ‰ = ‰H[M ] for the anchored Hamiltonian cycle H[M ]
in G defined by V (H[M ]) = {v0, v1, . . . , vn≠1} and E(H[M ]) = {{vk, v(k+1) mod n} : k =
0, 1, . . . , n ≠ 1}. J

Conversely, we show that good extensions of ⁄ are witnessed by perfect matchings in F⁄.

I Lemma 9 (Good extensions witness perfect matchings). For every anchored Hamiltonian

cycle H in G with ‰H(¸) = ⁄(¸) for all ¸ œ L, there exists a perfect matching MH in F⁄ with

H[MH ] = H. ıSee full version [4] for proof ı

Thus, F⁄ has a perfect matching if and only if ⁄ has a good extension. Moreover, from
the proofs of Lemma 8 and Lemma 9 we observe that the transformations M ‘æ H[M ] and
H ‘æ MH are computable in linear time. We also observe that for every anchored Hamiltonian
cycle H in G there are exactly 2n/2≠1 perfect matchings M in F⁄ with H[M ] = H; these M
are all obtainable from each other by transposing ports at zero or more vertices ¸ œ L \ {s}.

3 Another Hamiltonian cycle in bipartite Pfa�an graphs

This section studies the problem of finding another Hamiltonian cycle when given as input
(i) a bipartite Pfa�an graph G and (ii) a Hamiltonian cycle H in G. Recall from Lemma 7
that we can in linear time construct a Pfa�an orientation G̨ from this input. In what follows
we thus tacitly assume that such a G̨ is available and fixed together with an arbitrary anchor
edge e œ E(H).

3.1 Linear-time solvability in minimum degree three
Our first objective in this section is our main theorem, which we restate below for convenience.

I Theorem 1 (Main; Linear–time Another Hamiltonian Cycle in minimum degree three).
There exists a deterministic linear-time algorithm that, given as input (i) a bipartite Pfa�an

graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge

e œ E(H), outputs a Hamiltonian cycle H Õ ”= H in G with e œ E(H Õ).

We now proceed to prove Theorem 1. Recall and assume the setting of Section 2.5.
Observe that from the given input, we can in linear total time (a) find a Pfa�an orientation
G̨ using H, (b) compute the orientation G̨e, (c) compute the coloring ‰H , (d) compute the
vertex bipartition (L,R) of G, (e) restrict ‰H to L to obtain the coloring ⁄, (f) construct
the graph F⁄, as well as (g) construct the perfect matching MH in F⁄.

Using MH and F⁄, introduce the directed graph D⁄,H with the vertex set V (D⁄,H) = L
and the arc set defined for all distinct ¸, ¸Õ œ L by the rule (¸, ¸Õ) œ E(D⁄,H) if and only if
there exist p, pÕ œ {0, 1}, r œ R, and fl œ {0, 1} such that

{[¸, p], [r, fl]} œ E(F⁄) \MH and {[¸Õ, pÕ], [r, fl]} œ MH . (11)

That is, an arc (¸, ¸Õ) œ E(D⁄,H) indicates that (disregarding ports p and pÕ) we can walk
from ¸ to ¸Õ in F⁄ by traversing first an edge not in MH , followed by an edge in MH . We stress
that the traversal (11) preserves the parity fl for consecutive edges, whereas the traversal in
the proof of Lemma 8 changes parity for consecutive edges; the latter also uses edges only
in MH .

We recall that G has minimum degree at least three; this enables us to find a Hamiltonian
cycle other than H in G with the help of a directed cycle in D⁄,H revealed in the following
lemma.
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I Lemma 10 (Existence of an s-avoiding directed cycle in D⁄,H). Suppose that every vertex

of G has degree at least three. Then, the directed graph D⁄,H contains at least one directed

cycle that avoids the vertex s. ıSee full version [4] for proof ı

By the previous lemma we thus know that D⁄,H contains an s-avoiding directed cycle Q̨
with V (Q̨) = {¸0, ¸1, . . . , ¸k≠1} ™ L and (¸j , ¸(j+1) mod k) œ E(Q̨) for each j = 0, 1, . . . , k ≠ 1
and k Ø 2. We will use Q̨ to construct from MH another Hamiltonian cycle H Õ ”= H in G.
Figure 3 illustrates the construction.

1a
s

t

1b
s

t

2a
s

t

2b
s

t

Figure 3 Obtaining another Hamiltonian cycle using a directed cycle in D⁄,H . 1a, 2a: Two
perfect matchings MH in F⁄ drawn as oriented overlays of G (cf. Figure 2), with further overlaying
drawn in green and constituting the arcs of D⁄,H . 1b, 2b: The corresponding two orientations G̨‰H

e

and colorings ‰H . In both cases we have that D⁄,H contains a unique s-avoiding directed cycle Q̨.
Using Q̨ in each case we can switch between the left and right Hamiltonian cycles in G. Note in
particular that the two vertex colorings agree in L but di�er in R.

From (11) applied to each arc of Q̨ in turn we conclude that for j = 0, 1, . . . , k ≠ 1 there
exist rj œ R and flj , pj œ {0, 1} with

{[¸j , pj ], [rj , flj ]} œ E(F⁄) \MH and {[¸(j+1) mod k, p
Õ
j
], [rj , flj ]} œ MH . (12)

We observe that the vertices [rj , flj ] for j = 0, 1, . . . , k≠1 are distinct because MH is a perfect
matching and ¸(j+1) mod k for j = 0, 1, . . . , k ≠ 1 are distinct. In spite of this, the edges (12)
for j = 0, 1, 2, . . . , k ≠ 1 need not form a cycle in F⁄ because we can have pÕ

j
”= p(j+1) mod k.

Here is where the fact that Q̨ is s-avoiding pays o�. Let M = MH and recall that the vertices
[¸, 0] and [¸, 1] for each ¸ œ L\{s} have identical vertex neighborhoods in F⁄. Thus, whenever
we have pÕ

j
”= p(j+1) mod k, we can modify M by transposing the vertices [¸(j+1) mod k, 0]

and [¸(j+1) mod k, 1] in the edges of M ; by the identical vertex neighborhoods property, the
resulting M will still be a perfect matching in F⁄. Moreover, we have H = H[MH ] = H[M ];
indeed, the traversal construction in Lemma 8 is insensitive to the specific values of the
(opposite) ports. For j = 0, 1, . . . , k ≠ 1 we thus now have

{[¸j , pj ], [rj , flj ]} œ E(F⁄) \M and {[¸(j+1) mod k, p(j+1) mod k], [rj , flj ]} œ M ; (13)

that is, these edges now form a 2k-vertex cycle in F⁄. Let us write A for this cycle in F⁄.
Observe in particular from (13) that the edges of A alternate between edges in M and

edges not in M . Thus, we have that the symmetric di�erence M Õ = (M \E(A))fi (E(A)\M)
is a perfect matching in F⁄. Furthermore, M Õ and M project to a di�erent set of edges of
G; indeed, from (13) we have that rj changes adjacency from ¸(j+1) mod k in H[M ] to ¸j in
H[M Õ] for j = 0, 1, . . . , k ≠ 1. It follows that H Õ = H[M Õ] ”= H[M ] = H. Thus, we have
constructed a Hamiltonian cycle H Õ in G that is di�erent from H. Moreover, this construction
is computable in deterministic linear time. This completes the proof of Theorem 1. J
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3.2 Logarithmic-space solvability in minimum degree three
We can implement the ideas of the previous section in an algorithm that uses little space.
We consider as input a bipartite Pfa�an graph G of minimum degree three, a consistently
oriented Hamiltonian cycle H̨ in G, and an arc (t, s) œ H̨. More precisely, we assume both
graphs G and H̨ are given in the input as a list of adjacency lists for each vertex. We seek to
output a list of edges of another Hamiltonian cycle H Õ ”= H with {s, t} œ E(H Õ). We assume
that the vertices of G are represented as O(logn)-bit integers in the input, where n is the
number of vertices in G.

I Theorem 2 (Main; Logarithmic–space Another Hamiltonian Cycle in minimum degree

three). There exists a deterministic logarithmic-space algorithm that, given as input (i) a

bipartite Pfa�an graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and

(iii) an edge e œ E(H), outputs a Hamiltonian cycle H Õ ”= H in G with e œ E(H Õ).
ıSee full version [4] for proof ı

3.3 Thomason’s lollipop method in cubic bipartite Pfa�an graphs
In this section we prove that Thomason’s lollipop method runs in linear time in cubic bipartite
Pfa�an graphs. Let us first set up some preliminaries and then describe Thomason’s lollipop
method.

Let G be a Hamiltonian cubic graph and let H be a Hamiltonian cycle in G. Select an
edge e = {s, t} in the Hamiltonian cycle H. Let us call e the anchor edge. A lollipop is a
connected graph with one vertex of degree one, one vertex of degree three, and all other
vertices of degree two. All lollipops considered in what follows are subgraphs of G such that
t is the unique degree-one vertex and e is the edge incident to t on the lollipop.

The lollipop method is best described as operating on a family of Hamiltonian paths in
G. We say that a Hamiltonian path in G that starts at the vertex t and continues via the
anchor edge e is an e-anchored Hamiltonian path. Now recall that G is cubic, so the vertex
t is adjacent to s (via the anchor edge e) and to two other vertices a and b. The lollipop
method transforms a given e-anchored Hamiltonian path Pe that ends at either a or b into an
e-anchored Hamiltonian path P Õ

e
”= Pe that ends at either a or b. Observe in particular that

both Hamiltonian paths Pe and P Õ
e
can be completed into e-anchored Hamiltonian cycles by

adding the missing edge {a, t} or {b, t} into the respective path.
The transformation from Pe to P Õ

e
is via a sequence of lollipop steps. A lollipop step

consists of adding one edge to an e-anchored Hamiltonian path and removing another one, so
that another e-anchored Hamiltonian path is formed. More precisely, let Q be an e-anchored
Hamiltonian path ending at some vertex u. Since G is cubic, u is adjacent to two other
vertices, x and y, such that the edges {u, x} and {u, y} of G are not in Q. Assume that
x ”= t. Add the edge {u, x} into Q to obtain a lollipop � where the unique degree-three
vertex is x. Now observe that among the three adjacent vertices to x there is a unique vertex
v /œ {u, t} such that both {v, x} œ E(�) and removing {v, x} from � leaves an e-anchored
Hamiltonian path QÕ ending at v. The transformation from Q to QÕ now constitutes one
lollipop step. Observe also that lollipop steps are reversible; that is, we can go back to Q
from QÕ by performing a lollipop step starting from QÕ.

The lollipop state graph L(G, s, t) has as its vertices the e-anchored Hamiltonian paths in
G and two vertices are joined by an edge if and only if it is possible to transform between the
e-anchored Hamiltonian paths by one lollipop step. We observe immediately that L(G, s, t)
has no isolated vertices – indeed, from any vertex Q we can arrive at another vertex QÕ ”= Q
by a lollipop step – and the degree-one vertices are exactly the e-anchored Hamiltonian paths
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Q that end at a vertex u adjacent to t in G; that is, u œ {a, b}; moreover, all other vertices
have degree two. Thus, we can transform from Pe to P Õ

e
”= Pe by tracing a path in L(G, s, t)

from Pe to P Õ
e
.

We now proceed to prove an upper bound on the maximum length of a path in L(G, s, t)
on a cubic bipartite Pfa�an graph G. An example of the lollipop method applied to a cubic
bipartite planar graph using the terminology in the subsequent proof is given in Figure 4.

I Theorem 3 (Thomason’s lollipop method in cubic bipartite Pfa�an graphs). Thomason’s

lollipop method starting from any Hamiltonian cycle H and any edge e œ E(H) in an n-vertex
cubic bipartite Pfa�an graph G, terminates after at most n steps.

Proof. To analyze the lollipop method in cubic bipartite Pfa�an graphs, let a cubic bipartite
Pfa�an graph G, a Hamiltonian cycle H in G, and e = {s, t} œ E(H) be given as input.
This input enables us to work in the setting of Section 3.1; let the vertex bipartition (L,R)
of G, the coloring ⁄ of L, the graph F⁄, the perfect matching MH in F⁄, and the directed
graph D⁄,H be constructed accordingly. Recall that s œ L and t œ R.

The lollipop method starts by removing the edge {t, u} with u ”= s from H to obtain e-
anchored Hamiltonian path Pe. LetQ0, Q1, . . . , Qh be the sequence of e-anchored Hamiltonian
paths traversed by consecutive lollipop steps in L(G, s, t) with Pe = Q0 and Qh = P Õ

e
. We

will show that P Õ
e
ends at u and thus we can obtain a Hamiltonian cycle H Õ ”= H by inserting

the edge {t, u} into P Õ
e
. Moreover and crucially, we will show that h Æ n.

Our analysis of the lollipop method is based on the directed graph D⁄,H . We recommend
consulting Figure 4 for intuition at this point. Recall from the proof of Lemma 10 that, in
the directed graph D⁄,H , the vertex s has in-degree zero and every vertex has out-degree at
least one. In particular, by traversing out-arcs from the vertex u in D⁄,H , and traversing
the eventual directed cycle encountered, as well as traversing backwards to u from the
directed cycle, in precise terms we observe that there exist vertices w0, w1, . . . , wd≠1 with
(wj , w(j+1) mod d) œ E(D⁄,H) for j = 0, 1, . . . , d ≠ 1 as well as vertices wÕ

0, w
Õ
1, . . . , w

Õ
dÕ with

w0 = wÕ
dÕ , wÕ

0 = u, {w0, w1, . . . , wd≠1} fl {wÕ
0, w

Õ
1, . . . , w

Õ
dÕ≠1} = ÿ, and (wÕ

j
, wÕ

j+1) œ E(D⁄,H)
for j = 0, 1, . . . , dÕ ≠ 1. That is, the sequence wÕ

0, w
Õ
1, . . . , w

Õ
dÕ forms a directed path starting

at the vertex u = wÕ
0 and ending at the vertex wdÕ = w0, which is on the directed cycle

formed by the vertices w0, w1, . . . , wd≠1 in D⁄,H ; the directed cycle and the directed path
intersect exactly at the vertex wdÕ = w0. In particular d+ dÕ Æ |L| = n/2.

It will be convenient to introduce the following sequence of vertices visited on the traversal
of D⁄,H from u. For i = 0, 1, . . . , 2dÕ + d, define

vi =

Y
__]

__[

wÕ
i

for i = 0, 1, . . . , dÕ ≠ 1 ;
wi≠dÕ for i = dÕ, dÕ + 1, . . . , dÕ + d ≠ 1 ;
wÕ

2dÕ+d≠i
for i = dÕ + d, dÕ + d+ 1, . . . , 2dÕ + d .

(14)

We have (vi, vi+1) œ E(D⁄,H) for i = 0, 1, . . . , dÕ + d ≠ 1; these arcs are precisely the arcs
traversed forward. We have (vi+1, vi) œ E(D⁄,H) for i = dÕ + d, dÕ + d+ 1, . . . , 2dÕ + d ≠ 1;
these arcs are precisely the arcs traversed backward. For an arc (¸, ¸Õ) œ E(D⁄,H), let us write
r(¸, ¸Õ), fl(¸, ¸Õ), and pÕ(¸, ¸Õ), respectively, for the unique r œ R, fl œ {0, 1}, and pÕ œ {0, 1}
such that (11) holds. Also, let us write p(¸, ¸Õ) for the minimum p œ {0, 1} such that that
(11) holds.

Let M≠ be a matching with n≠ 1 edges in F⁄ such that the vertex [t, 1] is left unmatched
by M≠; we call such matchings almost perfect – indeed, any perfect matching M in F⁄ has
n edges. Also observe that the other vertex left unmatched by M≠ is [¸, p] for some ¸ œ L
and p œ {0, 1}. Recall the parity-and-port-changing traversal of M in the proof of Lemma 8
resulting in the Hamiltonian cycle H[M ]. Define a similar parity-and-port-changing traversal
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Figure 4 An example of the sequence of steps of Thomason’s lollipop method in an n-vertex cubic
bipartite planar graph viewed as a sequence of arc reversals in the directed graph D⁄,H . The given
input G and H together with e = {s, t} is displayed in the top left; the black arcs are oriented as in
G̨e obtained from Lemma 7 on input H. We display the initial Hamiltonian cycle H (top left) and
the final Hamiltonian cycle H

Õ (bottom right) obtained by the method, as well as the intermediate
e-anchored Hamiltonian paths Q0, Q1, . . . , Q9 obtained in consecutive lollipop steps; the end-vertex
of each Qi is highlighted with red. The green arcs in Q0 are the arcs of D⁄,H . Observe that each
lollipop step from Qi to Qi+1 can be understood as reversing the light-green arc in Qi; the method
terminates when the end-vertices of Q0 and Qi+1 agree. By the structure of D⁄,H , we must have
i Æ n; cf. Theorem 3.
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of M≠ by starting at the vertex [¸, p̄] and observe by a similar argument as in the proof of
Lemma 8 that this traversal defines an e-anchored Hamiltonian path P[M≠] from the vertex
¸ to the vertex t in G; in particular, observe that P[M≠] is e-anchored since by the structure
of F⁄ the almost perfect M≠ must contain the edge {[s, 0], [t, 0]}.

We now proceed to characterize the e-anchored Hamiltonian paths Q0, Q1, . . . , Qh using
corresponding almost perfect matchingsM≠

0 ,M≠
1 , . . . ,M≠

h
, and conclude that h = 2dÕ+d Æ n

in the process. For i = 0, 1, . . . , h, let us write ui for the end-vertex of Qi other than t.
Recalling that Q0 = Pe is constructed by deleting the edge {u, t} from the Hamiltonian cycle
H, let p œ {0, 1} be the port and f œ E(F⁄) the edge with f = {[u, p], [t, 1]} œ MH . Take
M≠

0 = MH \ {f}. In particular, we have Q0 = Pe = P[M≠
0 ] and u0 = v0 = u. Let p0 = p;

we will fix values pi œ {0, 1} for i = 1, 2, . . . , h as we progress in what follows.
We split the analysis into two ranges based on the parameter i. The first range corresponds

to the forward-traversal of arcs in D⁄,H . For i = 0, 1, . . . , dÕ + d≠ 1, we say an almost perfect
matching M≠ has property i if
(i) [vi, pi] is left unmatched by M≠; and
(ii) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), fl(vj , vj+1)]} œ M≠ and

{[r(vj , vj+1), fl(vj , vj+1)], [vj+1, pÕ(vj , vj+1)]} /œ M≠ for all 0 Æ j Æ i ≠ 1; and
(iii) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), fl(vj , vj+1)]} /œ M≠ and

{[r(vj , vj+1), fl(vj , vj+1)], [vj+1, pÕ(vj , vj+1)]} œ M≠ for all i Æ j Æ dÕ + d.
The second range corresponds to the backward-traversal of arcs in D⁄,H . For i = dÕ + d, dÕ +
d+ 1, . . . , 2dÕ + d, we we say an almost perfect matching M≠ has property i if
(i’) [vi, pi] is left unmatched by M≠; and
(ii’) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), fl(vj , vj+1)]} œ M≠ and

{[r(vj , vj+1), fl(vj , vj+1)], [vj+1, pÕ(vj , vj+1)]} /œ M≠

for all dÕ Æ j Æ dÕ + d ≠ 1 as well as for all 0 Æ j Æ 2dÕ + d ≠ 1 ≠ i; and
(iii’) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), fl(vj , vj+1)]} /œ M≠ and

{[r(vj , vj+1), fl(vj , vj+1)], [vj+1, pÕ(vj , vj+1)]} œ M≠ for all 2dÕ + d ≠ i Æ j Æ dÕ ≠ 1.
From previous observations and (11) we have that M≠

0 satisfies property 0.
Let us now analyse the lollipop step mapping Qi to Qi+1 one value i = 0, 1, . . . , dÕ + d≠ 1

at a time. Suppose that there is an almost perfect matching M≠
i

of F⁄ that satisfies
property i and that Qi = P[M≠

i
]. In particular, we have ui = vi by (i) and Qi =

P[M≠
i
]. We claim that the vertex r(vi, vi+1) is the unique degree-three vertex in the

lollipop formed by the lollipop step transforming Qi to Qi+1. Observe by (iii) that
{[r(vi, vi+1), fl(vi, vi+1)], [vi+1, pÕ(vi, vi+1)]} œ M≠

i
, implying that {r(vi, vi+1), vi+1} is an

edge in Qi = P[M≠
i
]. Recalling that M≠

i
is almost perfect, all vertices in R ◊ {0, 1} are

matched, so r(vi, vi+1) œ R is in fact adjacent to another vertex Êi ”= vi+1 along an edge
in Qi = P[M≠

i
]. By (iii) and (11) we have {vi, r(vi, vi+1)} is an edge in G but not in

Qi = P[M≠
i
], and Qi ends at vi. Thus, r(vi, vi+1) is the unique degree-three vertex in

the lollipop. Next, the lollipop step proceeds to delete an edge adjacent to the degree-
three vertex r(vi, vi+1) in the lollipop. This edge is {vi+1, r(vi, vi+1)} by the previous
analysis. It follows that Qi+1 is obtained from Qi by deleting {vi+1, r(vi, vi+1)} and inserting
{vi, r(vi, vi+1)}. Thus, Qi+1 ends at ui+1 = vi+1. Define M≠

i+1 by starting with M≠
i

and
deleting the edge {[r(vi, vi+1), fl(vi, vi+1)], [vi+1, pÕ(vi, vi+1)]} as well as inserting the edge
{[vi, p(vi, vi+1)], [r(vi, vi+1), fl(vi, vi+1)]}. Fix pi+1 = pÕ(vi, vi+1). From (i), (ii), and (iii) we
have that M≠

i+1 is an almost perfect matching that satisfies property i + 1. Furthermore,
Qi+1 = P[M≠

i+1].
The analysis of the lollipop step mapping Qi to Qi+1 for i = dÕ+d, dÕ+d+1, . . . , 2dÕ+d≠1

is now similar, but relying on properties (i’), (ii’), (iii’) instead. From the existence of an
almost perfect matching M≠

i
of F⁄ that satisfies property i and Qi = P[M≠

i
], by a similar
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analysis we conclude that there exists an almost perfect matching M≠
i+1 of F⁄ that satisfies

property i+ 1 and Qi+1 = P[M≠
i+1]. Since v2dÕ+d = u and u is adjacent to t in G, from (i’)

we conclude in particular that P Õ
e
= Q2dÕ+d and thus h = 2dÕ + d. Since 2dÕ + d Æ n, we have

shown that the lollipop method terminates in at most n lollipop steps. J

We note that the algorithm implicit in the proof not only uses at most a linear number of
lollipop steps, but also can be implemented with the guidance of D⁄,H to run in linear time.
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Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties
of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the
elements of the system so that each set contains approximately the same number of elements of each
color. Hereditary discrepancy has numerous applications in computational geometry, communication
complexity and derandomization. More recently, the hereditary discrepancy of the set system of
shortest paths has found applications in di�erential privacy [Chen et al. SODA 23].

The contribution of this paper is to improve the upper and lower bounds on the hereditary
discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any
system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n1/4),
and we construct lower bound examples demonstrating that this bound is tight up to polylog n

factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous
lower bound of �(n1/6) obtained by applying the trace bound of Chazelle and Lvov [SoCG’00] to a
classical point-line system of Erd�s.

As applications, we improve the lower bound on the additive error for di�erentially-private all
pairs shortest distances from �(n1/6) [Chen et al. SODA 23] to Â�(n1/4), and we improve the lower
bound on additive error for the di�erentially-private all sets range queries problem to Â�(n1/4), which
is tight up to polylog n factors [Deng et al. WADS 23].
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27:2 The Discrepancy of Shortest Paths

1 Introduction

In graph algorithms, a fundamental problem is to e�ciently compute distance or shortest
path information of a given input graph. Over the last decade or so, the community has
increasingly sought a principled understanding of the combinatorial structure of shortest
paths, with the goal to exploit this structure in algorithm design. That is, in various graph
settings, we can ask:

What notable structural properties hold for shortest path systems, that do not neces-

sarily hold for arbitrary path systems?

The following are a few of the major successes of this line of work:
An extremely popular strategy in the literature is to use hitting sets, in which we (often
randomly) generate a set of nodes S and argue that it will hit a shortest path for every
pair of nodes that are su�ciently far apart. Hitting sets rarely exploit any structure
of shortest paths, as evidenced by the fact that most hitting set algorithms generalize
immediately to arbitrary set systems. However, they have inspired a successful line of
work into graphs of bounded highway dimension [1, 6, 7]; very roughly, these are graphs
whose shortest paths admit unusually e�cient hitting sets of a certain kind.
Shortest paths exhibit the notable structural property of consistency, i.e., any subpath of
a shortest path is itself a shortest path. This fact is used throughout the literature on
graph algorithms [21, 22, 8], including e.g. in the classic Floyd-Warshall algorithm for
All-Pairs Shortest Paths. A recent line of work has sought to characterize the additional
structure exhibited by shortest path systems, beyond consistency [8, 21, 19, 20, 17, 4, 2].
Planar graphs have received special attention within this research program, and planar
shortest path systems carry some notable additional structure. For example, it is known
that planar shortest paths have unusually e�cient tree coverings [5, 11], and that their
shortest paths can be compressed into surprisingly small space [12, 13]. Shortest path
algorithms also often benefit from more general structural facts about planar graphs,
such as separator theorems [29, 28].

The main result of this paper is a new structural separation between shortest path systems
and arbitrary path systems, expressed through the lens of discrepancy theory. We will come
to formal definitions of discrepancy in just a moment, but at a high level, discrepancy has
been described as a quantitative measure of the combinatorial pseudorandomness of a discrete
system [18], and it has widespread applications in discrete and computational geometry,
random sampling and derandomization, communication complexity, and much more1. We
will show the following:

I Theorem 1 (Main Result, Informal). The discrepancy of unique shortest path systems in

weighted graphs is inherently smaller than the discrepancy of arbitrary path systems in graphs.

This separation between unique shortest paths and arbitrary paths is due to the structural
property of consistency of unique shortest path systems, which is well-studied in the literature
[21, 22, 8].

1 We refer to the excellent textbooks of Alexander, Beck, and Chen [3], Chazelle [14], Matouöek [33] for
discussion and further applications.
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Our results can be placed within a larger context of prior work in computational geometry.
A classical topic in this area is to determine the discrepancy of incidence structures between
points and geometric range spaces such as axis-parallel rectangles, half-spaces, lines, and
curves (cf. [14, Section 1.5]). These results have been used to show lower bounds for geometric
range searching [37, 34].

Indeed, systems of unique shortest paths in graphs capture some of the geometric range
spaces studied in prior work. For instance, arrangements of straight lines in Euclidean space
can be interpreted as systems of unique shortest paths in an associated graph, implying a
relation between the discrepancies of these two set systems. This connection has recently
found applications in the study of di�erential privacy on shortest path distance and range
query algorithms [16, 23].

More generally, discrepancy on graphs have also found applications in proving tight lower
bounds on answering cut queries on graphs [26, 32]. We provide a detailed literature review
for discrepancy on graphs in the full version of our paper [9]. The full version of our paper
further discusses the connection between our results and the discrepancy of arrangements of
curves.

1.1 Formal Definitions of Discrepancy
We first collect the basic definitions needed to understand this paper.

I Definition 2 (Edge and Vertex Incidence Matrices). Given a graph G = (V,E) and a set

of paths � in G, the associated vertex incidence matrix is given by A œ R|�|◊|V |
, where for

each v œ V and fi œ � the corresponding entry is

Afi,v =
I
1 if v œ fi

0 if v /œ fi.

The associated edge incidence matrix is given by A œ R|�|◊|E|
, where for each e œ E and

fi œ � the corresponding entry is

Afi,e =
I
1 if e œ fi

0 if e /œ fi.

I Definition 3 (Discrepancy and Hereditary Discrepancy). Given a matrix A œ Rm◊n
, its

discrepancy is the quantity

disc(A) = min
xœ{1,≠1}n

ÎAxÎŒ.

Its hereditary discrepancy is the maximum discrepancy of any submatrix AY obtained by

keeping all rows but only a subset Y ™ [n] of the columns; that is,

herdisc(A) = max
Y ™[n]

discv(AY ).

For a system of paths � in a graph G, we will write discv(�),herdiscv(�) to denote the

(hereditary) discrepancy of its vertex incidence matrix, and disce(�),herdisce(�) to denote

the (hereditary) discrepancy of its edge incidence matrix.

For intuition, the vertex discrepancy of a system of paths � can be equivalently understood
as follows. Suppose that we color each node in G either red or blue, with the goal to balance
the red and blue nodes on each path as evenly as possible. The discrepancy associated to
that particular coloring is the quantity

max
fiœ�

---- |{v œ fi | v colored red}| ≠ |{v œ fi | v colored blue}|
----.
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The discrepancy of the system � is the minimum possible discrepancy over all colorings. The
hereditary discrepancy is the maximum discrepancy taken over all induced path subsystems

�Õ of �; that is, �Õ is obtained from � by selecting zero or more vertices from G, deleting
these vertices, and deleting all instances of these vertices from all paths.2 We may delete
nodes from the middle of some paths fi œ �, in which case �Õ may no longer be a system of
paths in G, but rather a system of paths in some other graph GÕ with fewer nodes and some
additional edges. Nonetheless, its vertex incidence matrix and therefore herdiscv(�Õ) remain
well-defined with respect to this new graph GÕ. Edge discrepancy can be understood in a
similar way, coloring edges rather than vertices.

1.2 Our Results
Our main result is an upper and lower bound on the hereditary discrepancy of unique shortest
path systems in weighted graphs, which match up to hidden polylog n factors.

I Theorem 4 (Main Result).
(Upper Bound). For any n-node undirected weighted graph G with a unique shortest path

between each pair of nodes, there exists a polynomial-time algorithm that finds a coloring

for the system of shortest paths � such that:

herdiscv(�) Æ ÂO(n1/4) and herdisce(�) Æ ÂO(n1/4).

(Lower Bound). There are examples of n-node undirected weighted graphs G with a

unique shortest path between each pair of nodes in which this system of shortest paths

� has herdiscv(�) Ø Â�(n1/4) and herdisce(�) Ø Â�(n1/4). In fact, in these lower bound

examples we can take G to be planar or bipartite.

This theorem has immediate applications in di�erential privacy; we refer to Theorem 6
discussed below. We can strengthen the hereditary discrepancy lower bound into a vertex
(non-hereditary) discrepancy lower bound in the undirected and directed settings. We leave
open whether our lower bound extends to (non-hereditary) edge discrepancy as well, and to
vertex or edge discrepancy of planar graphs. We refer to Table 1 for a list of our results in
these settings.

Table 1 Overview of vertex/edge (hereditary) discrepancy on general graphs and special families
of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is
the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree Bipartite Planar Undirected Graph Directed Graph

V
disc �(1) �(1) O(n1/4) Â�(n1/4) Â�(n1/4)

herdisc �(1) Â�(n1/4) Â�(n1/4) �(n1/6)[15] æ Â�(n1/4) Â�(n1/4)

E
disc �(1) �(1) O(n1/4) O(n1/4) min

Ó
O(m1/4), ÂO(D1/2)

Ô

herdisc �(1) Â�(n1/4) Â�(n1/4) �(n1/6)[15] æ Â�(n1/4) Â�(n1/4)

2 In the coloring interpretation, hereditary discrepancy allows a di�erent choice of coloring for each
subsystem �Õ, rather than fixing a coloring for � and considering the induced coloring on each �Õ.
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The upper bound in Theorem 4 is constructive and algorithmic; that is, we provide
an algorithm that colors vertices (resp. edges) of the input graph to achieve vertex (resp.
edge) discrepancy ÂO(n1/4) on its shortest paths (or on a given subsystem of its shortest
paths). Notably, Theorem 4 should be contrasted with the fact that the maximum possible
discrepancy of any simple path system of polynomial size in a general graph is known to be
Â�(n1/2).3 In fact, the lower bound on discrepancy (as well as hereditary discrepancy) for a
grid graph for a polynomial number of simple paths can be �(

Ô
n) (see the full version of

our paper [9] for a proof and more discussion on grid graphs). Thus, Theorem 4 represents a
concrete separation between unique shortest path systems and general path systems.

The main open question that we leave in this work is on the hereditary edge discrepancy
of shortest paths in directed weighted graphs. We show the following:

I Theorem 5. For any n-node, m-edge directed weighted graph G with a unique shortest

path between each pair of nodes, the system of shortest paths � satisfies

herdiscv(�) Æ O(n1/4) and herdisce(�) Æ O(m1/4).

Lower bounds in the undirected setting immediately apply to the directed setting as well,
and so this essentially closes the problem for directed hereditary vertex discrepancy. It is an
interesting open problem whether the bound for directed hereditary edge discrepancy can be
improved to ÂO(n1/4) as well.

Applications to Di�erential Privacy. One application of our discrepancy lower bound on
unique shortest paths is in di�erential privacy (DP) [24, 25]. An algorithm is di�erentially
private if its output distributions are relatively close regardless of whether an individual’s
data is present in the data set. More formally, for two databases Y and Y Õ that are identical
except for one data entry, a randomized algorithm M is (Á, ”) di�erentially private if for any
measurable set A in the range of M, Pr [M(Y ) œ A] Æ eÁ Pr [M(Y Õ) œ A] + ”.

The topic of discrepancy of paths on a graph is related to two problems already studied in
di�erential privacy: All Pairs Shortest Distances (APSD) ([16, 27, 36]) and All Sets Range

Queries (ASRQ) ([23]), both assuming the graph topology is public. In APSD problem, the
edge weights are not publicly known. A query in APSD is a pair of vertices (u, v) œ V ◊ V
and the answer is the shortest distance between u and v. In contrast, in ASRQ problem, the
edge weights are assumed to be known, and every edge also has a private attribute. Here,
the range is defined by the shortest path between two vertices (based on publicly known
edge weights). The answer to the query (u, v) œ V ◊ V then is the sum of private attributes
along the shortest path. In what follows, we give a high-level argument for the lower bound
on DP-APSD problem; the lower bound of Â�(n1/4) for the DP-ASRQ problem also follows
nearly the same arguement (see the full version of our paper [9] for details).

Chen et al. [16] showed that DP-APSD can be formulated as a linear query problem. In
this setting, we are given a vertex incidence matrix A of the

!n
2
"
shortest paths of a graph and

a vector x of length n and asked to output Ax. They show that the hereditary discrepancy
of the matrix A provides a lower bound on the ¸Œ error for any (Á, ”)-DP mechanism for
this problem. With this argument, our new discrepancy lower bound immediately implies:

3 A path system is simple if no individual path repeats nodes. The upper bound of ÂO(n1/2) follows by
coloring the nodes randomly and applying standard Cherno� bounds. The lower bound is nontrivial
and follows from an analysis of the Hadamard matrix; see [14], Section 1.5.
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I Theorem 6 (Informal version of Corollaries 7.1 and F.1 in [9]). The (Á, ”)-DP APSD problem

and (Á, ”)-DP ASRQ problem require additive error at least Â�(n1/4).

The best known additive error bound for the DP-ASRQ problem is ÂO(n1/4) [23], which,
by Theorem 6, is tight up to a polylog(n) factor. Prior to this work, the only known
lower bounds for DP-ASRQ and DP-APSD were from a point-line system with hereditary
discrepancy of �(n1/6) [16]. The best known additive error upper bound for DP-APSD is
ÂO(n1/2) [16, 27]. Closing this gap remains an interesting open problem.

In addition to di�erential privacy, our hereditary discrepancy results also have implications
for matrix analysis. In short, we can show that the factorization norm of the shortest path
incidence matrix is Â�(n1/4). We delay a detailed discussion to the full version of our paper [9].

1.3 Our Techniques
We will overview our upper and lower bounds on discrepancy separately.

Upper Bound Techniques. A folklore structural property of unique shortest paths is
consistency. Formally, a system of undirected paths � is consistent if for any two paths
fi1,fi2, their intersection fi1 fl fi2 is a (possibly empty) contiguous subpath of each. It is well
known that, for any undirected graph G = (V,E,w) with unique shortest paths, its system of
shortest paths � is consistent. An analogous fact holds for directed graphs. Our discrepancy
upper bounds will actually apply to any consistent system of paths – not just those that
arise as unique shortest paths in a graph.

We give our upper bounds on the discrepancy of consistent systems in two steps. First,
we prove the existence of a low-discrepancy coloring using a standard application of primal

shatter functions (see the the full version of our paper [9] for a definition). For consistent
paths, the primal shatter function has degree two in both directed and undirected graphs.
This immediately gives us an upper bound of O(n1/4) for vertex discrepancy and O(m1/4)
for edge discrepancy (since edge discrepancy is defined on a ground set of m edges in the
graph G).

When the graph is dense, this upper bound on edge discrepancy deteriorates, becoming
trivial when m = �(n2). We thus present a second proof of Õ(n1/4) for both vertex and
edge discrepancy, which explicitly constructs a low-discrepancy coloring. This improves the
bound for vertex discrepancy by polylogarithmic factors and edge discrepancy by polynomial
factors. The main idea in this construction is to adapt the path cover technique, used in the
recent breakthrough on shortcut sets [30]. That is, we start by finding a small base set of
roughly n1/2 node-disjoint shortest paths in the distance closure of the graph. These paths
have the property that any other shortest path fi in the graph contains at most O(n1/2)
nodes that are not in any paths in the base set. We then color randomly, as follows:

For every node that is not contained in any path in the base set, we assign its color
randomly. Thus, applying concentration bounds, the contribution of these nodes to the
discrepancy of fi will be bounded by ± ÂO(n1/4).
For every path in the base set, we choose the color of the first node in the path at
random, and then alternate colors along the path after that. Then we can argue that
by consistency, the nodes in each base path randomly contribute +1 or ≠1 (or 0) to the
discrepancy of fi (see Figure 1 for a visualization). Since there are only n1/2 paths in the
base set, we may again apply concentration bounds to argue that the contribution to
discrepancy from these base paths will only be ± ÂO(n1/4).
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Figure 1 If we color the nodes of a unique shortest path with alternating colors, then its nodes
will contribute discrepancy 0, +1, or ≠1 to all unique shortest paths that intersect it.

Summing together these two parts, we obtain a bound of ÂO(n1/4) on discrepancy, which
holds with high probability. We can translate this to a bound on hereditary discrepancy
using the fact that consistency is a hereditary property of path systems.

Lower Bound Techniques. For lower bounds, we apply the trace bound of [15] on hereditary
discrepancy together with an explicit graph construction [10] that was recently proposed as
a lower bound against hopsets in graphs. An (exact) hopset of a graph G with hopbound
— is a small set of additional edges H in the distance closure of G, such that every pair of
nodes has a shortest path in G fi H containing at most — edges.

Until recently, the state-of-the-art hopset lower bounds were achieved using a point-line
construction of Erd�s [35], which had n points and n lines in R2 with each point staying on
�(n1/3) lines and each line going through �(n1/3) points. This point-line system also implies
tight lower bounds for the Szemerédi-Trotter theorem and the discrepancy of arrangements of
lines in the plane [15], as well as the previous state-of-the-art lower bound on the discrepancy
of unique shortest paths.

This point-line construction can be associated with a graph that possesses useful properties
derived from geometry. If edges in this graph are weighted by Euclidean distance, then the
paths in the graph corresponding to straight lines are unique shortest paths by design. On
the other hand, two such shortest paths (along straight lines) only intersect at most once.

Recently, a construction in Bodwin and Hoppenworth [10] obtained stronger hopset lower
bounds with a di�erent geometric graph construction, which still took place in R2 but allowed
shortest paths to have many vertices/edges in common. We show that this construction can
be repurposed to derive a stronger lower bound of Â�(n1/4) on vertex hereditary discrepancy,
by applying the trace bound of [15]. Combined with our upper bounds, this substantially
improves our understanding of the discrepancy of unique shortest paths.

The above upper and lower bounds are for general graphs. Naturally, one can ask if we
have better bounds for special families of graphs. We further show that the lower bounds
remain the same for two interesting families: planar graphs and bipartite graphs. The lower
bound construction mentioned above is not planar, and so this requires some additional work.
A natural attempt is to restore planarity by adding vertices to the construction wherever
two edges cross. However, this comes at a cost of an increase in the number of vertices,
and also with a potential danger of altering the shortest paths. In the full version of our
paper [9], we first show that the number of crossings is not too much higher than n. Then,
by carefully changing the weights of the edges and by exploiting the geometric properties of
the construction, we show that the topology and incidence of shortest paths are not altered.
For bipartite graphs, although the vertex discrepancy can be made very low – by coloring
the vertices on one side +1 and vertices on the other side ≠1 – the hereditary discrepancy
can be as high as the general graph setting. Specifically, we show a 2-lift of any graph G to
a bipartite graph which essentially keeps the same hereditary discrepancy. Details can be
found in the full version of our paper [9].
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2 Preliminaries

A path system is a pair S = (V,�) where V is a ground set of nodes and � is a set of vertex
sequences called paths. Each path may contain at most one instance of each node. We now
formally define consistency, a structural property of unique shortest paths that will be useful.

I Definition 7. A path system S = (V,�) is consistent if no two paths in S intersect, split

apart, and then intersect again later. Formally:

In the undirected setting, consistency means that for all u, v œ V and all fi1,fi2 œ � such

that u, v œ fi1 fl fi2, we have that fi1[u, v] = fi2[u, v], i.e., the intersection of fi1 and fi2 is

a contiguous subpath (subsequence) of fi1 and fi2.

In the directed setting, consistency means that for all u, v œ V and all fi1,fi2 œ � such

that u precedes v in both fi1 and fi2, we have that fi1[u, v] = fi2[u, v].

In every weighted graph for which all pairs shortest paths exist (i.e. no negative cycles),
we can represent all-pairs shortest paths using a consistent path system. In particular, if all
shortest paths are unique, then consistency is implied immediately.

We will investigate the combinatorial discrepancy of path systems (V,�). Usually, we will
assume that |V | = n and |�| is polynomial in n. We define a vertex coloring ‰ : V ‘æ {≠1, 1}
and define the discrepancy of � as

disc(�) = min
‰

‰(�), where ‰(�) = max
fiœ�

|‰(fi)| , ‰(fi) =
ÿ

vœfi

‰(v).

Using a random coloring ‰, we can guarantee that for all paths fi œ � [14]:

|‰(fi)| Æ

2|fi| ln(4|�|).

This immediately provides a few observations.

I Observation 8. When � is a set of paths with size polynomial in n, then disc(�) =
O(

Ô
n logn). This bound is true even for paths that are possibly non-consistent.

I Observation 9. When the longest path in � has D vertices we have disc(�) = O(
Ô
D logn).

Thus, for graphs that have a small diameter (e.g., small world graphs), the discrepancy of

shortest paths is automatically small.

Hereditary discrepancy is a more robust measure of the complexity of a path system
(V,�), defined as herdisc(�) = maxY ™V disc(�|Y ), where �|Y is the collection of sets of the
form fi fl Y with fi œ �. Clearly, herdisc(�) Ø disc(�). Sometimes the discrepancy of a set
system may be small while the hereditary discrepancy is large [14]. Thus in the literature,
we often talk about lower bounds on the hereditary discrepancy.

Now that we have defined vertex and edge (hereditary) discrepancy, one may wonder if
there is an underlying relationship between vertex and edge (hereditary) discrepancy since
they share the same bounds in most settings presented in Table 1. The following observation
shows that vertex discrepancy bounds directly imply bounds on edge discrepancy.

I Observation 10. Denote by disc(n) (and herdisc(n)) the maximum discrepancy (minimum

hereditary discrepancy, respectively) of a consistent path system of a (undirected or directed)

graph of n vertices. We have that

1. Let g(x) be a non-decreasing function. If herdiscv(n) Ø g(n), then herdisce(n) Ø g(n/2).
2. Let f(x) be a non-decreasing function. If discv(n) Æ f(n), then disce(m) Æ f(m).

The proof of Observation 10 is deferred to the full version of our paper [9]. We also use
some technical tools from discrepancy theory and statistics. For details please refer to the
full version of our paper [9].
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3 Undirected Graphs: Lower Bound and Explicit Colorings

We now discuss the main result (Theorem 4). We first show in Section 3.1 a hereditary
discrepancy lower bound of �(n1/4/

Ô
logn) for both edge and vertex discrepancy in general

undirected graphs. Then in Section 3.2 we present a vertex coloring achieving hereditary
discrepancy of ÂO(n1/4). Finally, we present an explicit edge coloring with the same hereditary
discrepancy bound in Section 3.3.

3.1 Lower Bound
As suggested by Observation 10, we focus on the vertex hereditary discrepancy, and our
goal is to prove the following statement (Theorem 11). In Theorem 10 of the full version of
our paper [9], we show that this theorem implies the same lower bound on (non-hereditary)
vertex discrepancy as well.

I Theorem 11. There are examples of n-vertex undirected weighted graphs G with a unique

shortest path between each pair of vertices in which this system of shortest paths � has

herdiscv(�) Ø �(n1/4/

logn).

To obtain the lower bound, we employ the new graph construction by [10], which shows
that any exact hopset with O(n) edges must have at least Â�(n1/2) hop diameter. Despite
seeming unrelated, this construction also sheds light on our problem. Another technique we
use to show the hereditary discrepancy lower bound is the trace bound [31] (and restated
in the full version of our paper [9]). In the following proof section, we first summarize the
construction related to our objective, then show the calculation using the trace bound that
leads to our lower bound.

Proof. The key properties of the graph construction in [10] (see also Section 5 of [9]) that
we need can be summarized in the following lemma.

I Lemma 12 (Lemma 1 of [10]). For any p œ [1, n2], there is an infinite family of n-node
undirected weighted graphs G = (V,E,w) and sets � of p paths in G such that

G has ¸ = �
3

nÔ
p logn

4
layers. Each path in � starts in the first layer, ends in the last

layer, and contains exactly one node in each layer.

Each path in � is the unique shortest path between its endpoints in G.

For any two nodes u, v œ V , there are at most
¸

h(u,v) paths in � that contain both u and

v, where h(u, v) is the hopdistance (number of edges on the shortest path) between u and

v in G and 1 Æ h(u, v) Æ ¸.

Each node v œ V lies on at most O
1

¸p
n

2
distinct paths in �.

We will make use of the shortest path vertex incidence matrix of this graph. Recall that
hereditary discrepancy considers the sub-incidence matrix induced by columns corresponding
to a set of vertices. We select the set of vertices occurring in the paths in �, and show it
leads to hereditary discrepancy at least �(n1/4/

Ô
logn). Specifically, take A as the incidence

matrix such that each row corresponds to one path in �. A has dimension p ◊ n where n is
the number of vertices in G and the (i, j)-th entry of A is 1 is the vertex j is in the path i.

Now define M = ATA. Recall that tr(M) is the number of 1s in the matrix A. Since
by construction, every path has length ¸, we have tr(M) = p¸. Furthermore, let mij be the
(i, j)-th element of matrix M , and observe that it is exactly the number of paths that contain
vertices i and j. (Note that mij = mji.) Additionally, tr(M2) is the number of length 4
closed walks in the bipartite graph representing the incidence matrix A. This implies that
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tr(M2) =
pÿ

j=1

ÿ

u,vœPj ,
u ”=v

mu,v +
nÿ

i=1
m2

ii =
pÿ

j=1

ÿ̧

i=1

ÿ

u,vœPj ,
h(u,v)=i

mu,v + n ·O
3
p¸

n

42

Æ
pÿ

j=1

ÿ̧

i=1
¸ · ¸

i
+O

3
p2¸2

n

4
Æ p¸2 log ¸ +O

3
p2¸2

n

4
= np¸2 log(¸) +O(p2¸2)

n
. (1)

By setting p = n logn, it follows that ¸ = �(
Ô
n/ logn) and tr(M) = p¸. Further,

np¸2 log ¸ = O(n · n logn · n

log2 n
· logn) = O(n3) = O(p2¸2).

By Equation (1), we have tr(M2) = O(p2¸2/n). Using this and tr(M) = p¸ in the trace
bound of [31] gives us

herdisc(A) Ø (tr(M))2
8emin{p, n} · tr(M2)

Û
tr(M)

max{p, n} = (tr(M))2
8en · tr(M2)

Û
tr(M)

p

Ø �
3
p2¸2

p2¸2
Ô

¸

4
= �(

Ô
¸) = �

3
n1/4

Ô
logn

4
.

The trace bound is formally stated in the full version of our paper [9]. J

3.2 Vertex Discrepancy Upper Bound – Explicit Coloring
In this subsection, we will upper bound the discrepancy ‰(�) of a consistent path system
(V,�) with |V | = n and |�| = poly(n). This will immediately imply an upper bound for the
hereditary vertex discrepancy of unique shortest paths in undirected graphs.

I Theorem 13. For a consistent path system S = (V,�) where |V | = n and |�| = poly(n),
there exists a labeling ‰ such that ‰(�) = O(n1/4 log1/2 n). Consequently, every n-vertex
undirected graph has hereditary vertex discrepancy O(n1/4 log1/2 n).

Let S = (V,�) be a consistent path system with |V | = n and |�| = poly(n). As the first
step towards constructing our labeling ‰ : V ‘æ {≠1, 1}, we will construct a collection of
paths �Õ on V that will have a useful covering property over the paths in �.

Constructing path cover �Õ. Initially, we let �Õ = ÿ. We define V Õ to be the set of all
nodes in V belonging to a path in �Õ, i.e., V Õ :=

t
fiÕœ�Õ fiÕ. While |fi \ V Õ| Ø n1/2 for some

fi œ �, find a (possibly non-contiguous) subpath of fi of length n1/2 that is vertex-disjoint
from all paths in �Õ. Formally, find a subpath fiÕ ™ fi such that |fiÕ| = n1/2 and fiÕ fl V Õ = ÿ.
Add path fiÕ to path cover �Õ and update V Õ. Repeatedly add paths to path cover �Õ in this
manner until |fi \ V Õ| < n1/2 for all fi œ �.

I Proposition 14. Path cover �Õ
satisfies the following properties:

1. for all fi œ �Õ
, |fi| = n1/2

,

2. the number of paths in �Õ
is |�Õ| Æ n1/2

,

3. (Disjointness Property). The paths in �Õ
are pairwise vertex-disjoint,

4. (Covering Property). For all fi œ �, the number of nodes in fi that do not lie in any path in

path cover �Õ
is at most n1/2

. Formally, let V Õ = fifiÕœ�ÕfiÕ
. Then ’fi œ �, |fi \ V Õ| Æ n1/2,

5. (Consistency Property). For all fi œ � and fiÕ œ �Õ
, the intersection fi fl fiÕ

is a (possibly

empty) contiguous subpath of fiÕ
.
4

4 Note that it may not be true that fi fl fi
Õ is a contiguous subpath of fi.
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Proof. Properties 1, 3, and 4 follows from the construction of �Õ. Property 2 follows from
Properties 1 and 3 and the fact that |V | = n. The Consistency Property of �Õ is inherited
from the consistency of path system S. Specifically, by the construction of �Õ, path fiÕ œ �Õ is
a subpath of a path fiÕÕ œ �. Recall that by the consistency of path system S, the intersection
fi fl fiÕÕ is a (possibly empty) contiguous subpath of fiÕÕ. Then fi fl fiÕ is a contiguous subpath
of fiÕ since fiÕ ™ fiÕÕ. This concludes the proof. J

Constructing labeling ‰. Let fiÕ = (v1, . . . , vk) œ �Õ be a path in our path cover. We will
label the nodes of fiÕ using the following random process. With probability 1/2 we define
‰ : fiÕ ‘æ {≠1, 1} to be

‰(vi) =
I
1 i © 0 mod 2 and i œ [1, k]
≠1 i © 1 mod 2 and i œ [1, k]

,

and with probability 1/2 we define ‰ : fiÕ ‘æ {≠1, 1} to be

‰(vi) =
I

≠1 i © 0 mod 2 and i œ [1, k]
1 i © 1 mod 2 and i œ [1, k]

.

The labels of consecutive nodes in fiÕ alternate between 1 and ≠1, with vertex v1 taking labels
1 and ≠1 with equal probability. Since the paths in path cover �Õ are pairwise vertex-disjoint,
the labeling ‰ is well-defined over V Õ := fifiÕœ�ÕfiÕ. We choose a random labeling for all nodes
in V \ V Õ, i.e., we independently label each node v œ V \ V Õ with ‰(v) = ≠1 with probability
1/2 and ‰(v) = 1 with probability 1/2. An illustration can be found in Figure 2.

⇡1

⇡2⇡3

Figure 2 In this figure, paths fi1,fi2,fi3 œ �Õ from the path cover are intersecting a path
fi œ �. Paths in the path cover are pairwise vertex-disjoint, and each path in the cover contributes
discrepancy 0, ≠1, or +1 to fi.

Bounding the discrepancy ‰(�). Fix a path fi œ �. We will show that
--q

vœfi ‰(v)
-- =

O(n1/4 log1/2 n) with high probability. Theorem 13 will follow as |�| = poly(n).

I Proposition 15. For each path fiÕ
in path cover �Õ

,

ÿ

vœfiflfiÕ

‰(v) œ {≠1, 0, 1}.

If |fi fl fiÕ| © 0 mod 2, then
q

vœfiflfiÕ ‰(v) = 0. Moreover,

Pr
C

ÿ

vœfiflfiÕ

‰(v) = ≠1
D
= Pr

C
ÿ

vœfiflfiÕ

‰(v) = 1
D
.

Proof. By the Consistency Property of �Õ (as proven in Proposition 14), path fi fl fiÕ is a
(possibly empty) contiguous subpath of fiÕ. Then since consecutive nodes in fiÕ alternate
between ≠1 and 1, it follows that

q
vœfiflfiÕ ‰(v) œ {≠1, 0, 1}.

Now note that
q

vœfiflfiÕ ‰(v) ”= 0 i� |fi fl fiÕ| is odd. Moreover, the first vertex of fi fl fiÕ

takes labels 1 and ≠1 with equal probability. This concludes the proof of Proposition 15. J
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We are now ready to bound the discrepancy of fi.

I Proposition 16. With high probability, ‰(fi) = O(n1/4 log1/2 n).

Proof. We partition the nodes of fi into two sources of discrepancy that we will bound
separately. Let V Õ := fifiÕœ�ÕfiÕ.

Discrepancy of fi fl V Õ. For each path fiÕ œ �Õ, let XfiÕ be the random variable defined as

XfiÕ :=
ÿ

vœfiflfiÕ

‰(v).

We can restate the discrepancy of fi fl V Õ as
-----

ÿ

vœfiflV Õ

‰(v)

----- =

-----
ÿ

fiÕœ�Õ

XfiÕ

----- .

By Proposition 15, if |fi fl fiÕ| © 0 mod 2, then XfiÕ = 0, so we may assume without
any loss of generality that |fi fl fiÕ| is odd for all fiÕ œ �Õ. In this case, Pr [XfiÕ = ≠1] =
Pr [XfiÕ = 1] = 1/2, implying that E[

q
fiÕœ�Õ XfiÕ ] = 0. Then by Proposition 14 and Cherno�,

it follows that for any constant c Ø 1,

Pr
C-----

ÿ

fiÕœ�Õ

XfiÕ

----- Ø c · n1/4 log1/2 n
D

Æ e
≠c2 n1/2 logn

2|�Õ| Æ e≠c2/(2·log(n)) = n≠c2/2.

Discrepancy of fi \ V Õ. Note that by the Covering Property of the path cover (as proven
in Proposition 14), |fi \ V Õ| Æ n1/2. Moreover, the nodes in V \ V Õ are labeled independently
at random, implying that E[

q
vœfi\V Õ ‰(v)] = 0. Then we may apply a Cherno� bound to

argue that for any constant c Ø 1,

Pr

S

U

------

ÿ

vœfi\V Õ

‰(v)

------
Ø c · n1/4 log1/2 n

T

V Æ exp{≠c2
n1/2 logn
2|fi \ V Õ| } Æ e≠c2/(2·log(n)) = n≠c2/2.

We have shown that with high probability, the discrepancy of our labeling is O(n1/4 log1/2 n)
for fi fl V Õ and O(n1/4 log1/2 n) for fi \ V Õ, so we conclude that the total discrepancy of fi is
O(n1/4 log1/2 n), completing the proof of Proposition 16. J

Extending to hereditary discrepancy. Let A be the vertex incidence matrix of a path
system S = (V,�) on n nodes, and let AY be the submatrix of A obtained by taking all of
its rows but only a subset Y of its columns. Then there exists a subset VY ™ V of the nodes
in V such that AY is the vertex incidence matrix of the path system S[VY ] (path system
S induced on VY ). Moreover, if path system S is consistent, then S[VY ] is also consistent.
Then we may apply our explicit vertex discrepancy upper bound to S[VY ]. We conclude that
the hereditary vertex discrepancy of S is O(n1/4 log1/2 n).

3.3 Edge Discrepancy Upper Bound – Explicit Coloring
By Theorem 5, the edge discrepancy of the unique shortest paths of a (possibly directed)
graph on m edges is O(m1/4). However, in the case of undirected graphs and DAGs, we
can improve the edge discrepancy to O(n1/4 log1/2 n), where n is the number of vertices
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in the graph, by modifying the explicit construction for vertex discrepancy in Section 3.2.
Our proof strategy will follow the same framework as the explicit construction for vertex
discrepancy, but with some added complications in the construction and analysis.

We first introduce some new notation that will be useful in this section. Given a path fi
and nodes u, v œ fi, we say that u <fi v if u occurs before v on path fi. Additionally, given a
path system S = (V,�), we define the edge set E ™ V ◊ V of the path system as the set of
all pairs of nodes u, v œ V that appear consecutively in some path in �. Likewise, for any
path fi over the vertex set V , we define the edge set of fi, E(fi) ™ fi ◊ fi, as the set of all
pairs of nodes u, v œ fi such that u, v appear consecutively in fi and (u, v) œ E. Note that if
path system S corresponds to paths in a graph G, then E will be precisely the edge set of G.

Recall that we wish to construct an edge labeling ‰ : E ‘æ {≠1, 1} so that

‰(�) = max
fiœ�

------

ÿ

eœE(fi)

‰(e)

------

is minimized. We will upper bound the discrepancy ‰(�) of consistent path systems such
that |V | = n and |�| = poly(n). This will immediately imply an upper bound on the edge
discrepancy of unique shortest paths in undirected graphs.

I Theorem 17. For all consistent path systems S = (V,�) where |V | = n and |�| = poly(n)
with edge set E, there exists a labeling ‰ : E æ {≠1, 1} such that

‰(�) = O(n1/4 log1/2 n).

Consequently, every n-vertex undirected graph has hereditary edge discrepancy

O(n1/4 log1/2 n).

Let S = (V,�) be a consistent path system with |V | = n and |�| = poly(n). As the first
step towards constructing our labeling ‰ : E ‘æ {≠1, 1}, we will construct a collection of
paths �Õ on V that will have a useful covering property over the paths in �.

3.3.1 Constructing path cover �
Õ

Initially, we let �Õ = ÿ. We define V Õ to be the set of all nodes in V belonging to a path in
�Õ, i.e.,

V Õ :=
€

fiÕœ�Õ

fiÕ.

While there exists a path fi œ � such that |fi \ V Õ| Ø n1/2, find a (possibly non-contiguous)
subpath of fi of length n1/2 that is vertex-disjoint from all paths in �Õ. Specifically, let fiÕ ™ fi
be a (possibly non-contiguous) subpath of fi containing exactly the first n1/2 nodes in fi \ V Õ.
Add path fiÕ to path cover �Õ and update V Õ. Repeatedly add paths to path cover �Õ in this
manner until |fi \ V Õ| < n1/2 for all fi œ �.

Note that our path cover �Õ is very similar to the path cover used in the explicit vertex
discrepancy upper bound. Indeed, path cover �Õ inherits all properties of the path cover
defined in Subsection 3.2. The key di�erence here is that we require subpaths fiÕ ™ fi in �Õ

to contain the first n1/2 nodes in fi \ V Õ. This will imply an additional property of our path
cover, which we call the No Repeats Property.

I Proposition 18. Path cover �Õ
satisfies all properties of Proposition 14, as well as the

following additional properties:
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v1 v2 v3 v4

⇡1 ⇡2

⇡

Figure 3 In this figure, paths fi1,fi2 œ �Õ are intersecting a path fi œ �. This arrangement of
paths is forbidden by the No Repeats Property of Proposition 18.

(Edge Covering Property). For all fi œ �, the number of edges in fi that are not incident

to any node lying in a path in path cover �Õ
is at most n1/2

. Formally, let V Õ = fifiÕœ�ÕfiÕ
.

For all fi œ �,

|{(u, v) œ E(fi) | u ”œ V Õ
and v ”œ V Õ}| Æ n1/2,

(No Repeats Property). For all paths fi œ �, fi1,fi2 œ �Õ
, and nodes v1, v2, v3, v4 œ fi such

that v1, v3 œ fi1 and v2, v4 œ fi2, the following ordering of the vertices in � is impossible:

v1 <fi v2 <fi v3 <fi v4,

where x <fi y indicates that node x occurs in fi before node y.

Proof. All properties from Proposition 14 follow from an identical argument as in the original
proof. The Edge Covering Property follows immediately from the Covering Property of
Proposition 14. What remains is to prove the No Repeats Property.

Suppose for the sake of contradiction that there exist paths fi œ �, fi1,fi2 œ �Õ, and nodes
v1, v2, v3, v4 œ fi such that v1, v3 œ fi1 and v2, v4 œ fi2, where v1 <fi v2 <fi v3 <fi v4. We will
assume that path fi1 was added to �Õ before path fi2 (the case where fi2 was added to �Õ

first is symmetric). By the construction of �Õ, path fi1 œ �Õ is a (possibly non-contiguous)
subpath of a path fiÕÕ

1 œ � that it was constructed from. Additionally, by the consistency of
the path system S, the intersection fi fl fiÕÕ

1 is a contiguous subpath of fi. Then v2 œ fi fl fiÕÕ
1 ,

and specifically, v2 œ fiÕÕ
1 .

We assumed that v2 œ fi2, which implies that v2 ”œ fi1, since paths in �Õ are pairwise
vertex-disjoint. Since path fi1 was added to �Õ before path fi2, this means that when fi1 was
added to �Õ, node v2 did not belong to any path in �Õ (i.e., v2 was not in V Õ). Recall that in
our construction of �Õ, we constructed subpath fi1 ™ fiÕÕ

1 so that it contained exactly the first

n1/2 nodes in fiÕÕ
1 \ V Õ. However, v2 ”œ fi1, but v3 œ fi1, and v2 comes before v3 in fiÕÕ

1 . This
contradicts our construction of path fi1 in path cover �Õ. J

3.3.2 Constructing labeling ‰

Let fiÕ œ �Õ be a path of length k in our path cover. Let e1, . . . , ek œ E(fiÕ) be the edges in fiÕ

listed in the order they appear in fiÕ. Note that since fiÕ is a possibly non-contiguous subpath
of a path in �, pairs of nodes u, v œ V that appear consecutively in fi do not necessarily
correspond to edges in edge set E.

We will label the edges in E(fiÕ) using the following random process. With probability
1/2 we define ‰ : E(fiÕ) ‘æ {≠1, 1} to be

‰(ei) =
I
1 i © 0 mod 2 and i œ [1, k]
≠1 i © 1 mod 2 and i œ [1, k]

,
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and with probability 1/2 we define ‰ : E(fiÕ) ‘æ {≠1, 1} to be

‰(ei) =
I

≠1 i © 0 mod 2 and i œ [1, k]
1 i © 1 mod 2 and i œ [1, k]

.

Note that the labels of consecutive edges ei, ei+1 in fiÕ alternate between 1 and ≠1, with
edge e1 taking labels 1 and ≠1 with equal probability.

Since the paths in path cover �Õ are pairwise vertex-disjoint, the labeling ‰ is well-
defined over EÕ := fifiÕœ�ÕE(fiÕ). We take a random labeling for all edges in E \EÕ, i.e., we
independently label each edge e œ E \EÕ with ‰(e) = ≠1 with probability 1/2 and ‰(e) = 1
with probability 1/2.

3.3.3 Bounding the discrepancy „

Fix a path fi := fi[s, t] œ �. We will show that
------

ÿ

eœE(fi)

‰(e)

------
= O(n1/4 log1/2 n)

with high probability. This will complete the proof of Lemma 17 since |�| = poly(n). The
proof of the following proposition follows from an argument identical to Proposition 15 and
hence omitted.

I Proposition 19. For each path fiÕ
in path cover �Õ

,

ÿ

eœE(fi)flE(fiÕ)

‰(e) œ {≠1, 0, 1}.

If |E(fi) fl E(fiÕ)| © 0 mod 2, then
q

eœE(fi)flE(fiÕ) ‰(e) = 0. Moreover,

Pr

S

U
ÿ

eœE(fi)flE(fiÕ)

‰(e) = ≠1

T

V = Pr

S

U
ÿ

eœE(fi)flE(fiÕ)

‰(e) = 1

T

V .

We are now ready to bound the edge discrepancy of fi. Define

V Õ :=
€

fiÕœ�Õ

fiÕ and EÕ :=
€

fiÕœ�Õ

E(fiÕ).

We partition the edges of the path fi into three sources of discrepancy that we will bound
separately. Specifically, we split E(fi) ™ fi ◊ fi into the following sets E1, E2, E3:

E1 := E(fi) fl EÕ,
E2 := E(fi) fl ((V \ V Õ) ◊ (V \ V Õ)), and
E3 := E(fi) \ (E1 fi E2).

Sets E1 and E2 roughly correspond to the two sources of discrepancy considered in the vertex
discrepancy upper bound, while set E3 corresponds to a new source of discrepancy that will
require new arguments to bound. We begin with set E1.

I Proposition 20 (Discrepancy of E1). With high probability,
--q

eœE1
‰(e)

-- = O(n1/4 log1/2 n).
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Proof. The proposition follow from an argument similar to Proposition 16. For each path
fiÕ œ �Õ, let XfiÕ be the random variable defined as

XfiÕ :=
ÿ

eœE(fi)flE(fiÕ)

‰(e).

We can restate the discrepancy of E1 as
-----
ÿ

eœE1

‰(e)

----- =

-----
ÿ

fiÕœ�Õ

XfiÕ

----- .

By Proposition 19, if |E(fi) fl E(fiÕ)| © 0 mod 2, then XfiÕ = 0, so without any loss of
generality, we may assume that |E(fi) fl E(fiÕ)| is odd for all fiÕ œ �Õ. In this case,

Pr [XfiÕ = ≠1] = Pr [XfiÕ = 1] = 1/2,

implying that E[
q

fiÕœ�Õ XfiÕ ] = 0. Then by Proposition 18 and the Cherno� bound, it follows
that for any constant c Ø 1,

Pr
C-----

ÿ

fiÕœ�Õ

XfiÕ

----- Ø c · n1/4 log1/2 n
D

Æ e
≠c2 n1/2 logn

2|�Õ| Æ e≠c2/2·logn Æ n≠c2/2. J

We now bound the discrepancy of E2.

I Proposition 21 (Discrepancy of E2). With high probability,
--q

eœE2
‰(e)

-- = O(n1/4 log1/2 n).

Proof. The proposition follow from an argument similar to Proposition 16. Note that by the
Edge Covering Property of the path cover (Proposition 18),

|E2| = |{(u, v) œ E(fi) | u, v ”œ V Õ}| Æ n1/2.

Moreover, the edges in E \ EÕ are labeled independently at random, so we may apply a
Cherno� bound to argue that for any constant c Ø 1,

Pr
C-----

ÿ

eœE2

‰(e)

----- Ø c · n1/4 log1/2 n
D

Æ e≠c2 n1/2 logn
2|E2| Æ e≠c2/2·logn Æ n≠c2/2.

completing the proof. J

Finally, we upper bound the discrepancy of E3.

I Proposition 22 (Discrepancy of E3). With high probability,
--q

eœE3
‰(e)

-- = O(n1/4 log1/2 n).

Proof. Let

k := |{fiÕ œ �Õ | fi fl fiÕ ”= ÿ}|

denote the number of paths in our path cover that intersect fi. We define a function
f : ZØ0 ‘æ ZØ0 such that f(„) equals the largest possible value of |E3| when „ = k. Note
that f is well-defined since 0 Æ |E3| Æ |E|. We will prove that f(„) Æ 4„, by recursively
decomposing path fi.
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When „ = 1, there is only one path fiÕ œ �Õ that intersects fi. Then the only edges in E3
are of the form

E(fi) fl ((V Õ ◊ (V \ V Õ)) fi ((V \ V Õ) ◊ V Õ)) = E(fi) fl ((fiÕ ◊ (V \ fiÕ)) fi ((V \ fiÕ) ◊ fiÕ)).

By the Consistency Property of Proposition 18, path fiÕ can intersect fi and then split apart
at most once. Then

f(1) = |E3| = |E(fi) fl ((fiÕ ◊ (V \ fiÕ)) fi ((V \ fiÕ) ◊ fiÕ))| Æ 2.

When „ > 1, we will split our analysis into the two cases:
Case 1. There exists paths fiÕ

1,fi
Õ
2 œ �Õ and nodes v1, v2, v3 œ fi such that v1, v3 œ fiÕ

1 and
v2 œ fiÕ

2 and v1 <fi v2 <fi v3. In this case, we can assume without any loss of generality
that fi[v1, v3] fl fiÕ

1 = {v1, v3} (e.g., by choosing v1, v3 so that this equality holds). Let x
be the node immediately following v1 in fi, and let y be the node immediately preceding
v3 in fi. Recall that s is the first node of fi and t is the last node of fi. It will be useful
for the analysis to split fi into three subpaths:

fi = fi[s, v1] ¶ fi[x, y] ¶ fi[v3, t],

where ¶ denotes the concatenation operation. Let

„1 := |{fiÕ œ �Õ | fi[x, y]fl fiÕ ”= ÿ}| and „2 := |{fiÕ œ �Õ | (fi[s, v1] ¶ fi[v3, t])fl fiÕ ”= ÿ}|.

We claim that „1 < „, „2 < „, and „1 + „2 = „. We will use these facts to establish a
recurrence relation for f . By our assumption that fi[v1, v3]fl fiÕ

1 = {v1, v3}, it follows that
fi[x, y] fl fiÕ

1 = ÿ, and so „1 < „. Likewise, by the No Repeats Property of Proposition 18,

(fi[s, v1] ¶ fi[v3, t]) fl fiÕ
2 = ÿ,

so „2 < „. Finally, observe that more generally, if there exists a path fiÕ œ �Õ such
that fiÕ fl fi[x, y] ”= ÿ and fiÕ fl (fi[s, v1] ¶ fi[v3, t]) ”= ÿ, then the No Repeats Property of
Proposition 18 is violated. We conclude that „1 + „2 = „.
Now |E3| can be upper bounded by the following inequality:

|E3| Æ |E3 fl E(fi[x, y])|+ |E3 fl E(fi[s, v1] ¶ fi[v3, t])|+ 2.

Then using the observations about „1,„2, and „ in the previous paragraph, we obtain
the following recurrence for f :

f(„) Æ f(„1) + f(„2) + 2 = f(i) + f(„ ≠ i) + 2,

where 0 < i < „.
Case 2. There exists a path fiÕ œ �Õ and v1, v2 œ fi such that fi fl fiÕ = fi[v1, v2] fl V Õ.
Let x be the node immediately preceding v1 in fi, and let y be the node immediately
following v2 in fi. Again, we split fi into three subpaths:

fi[s, t] = fi[s, x] ¶ fi[v1, v2] ¶ fi[y, t].

Let

„1 := |{fiÕ œ �Õ | fi[v1, v2]fl fiÕ ”= ÿ}| and „2 := |{fiÕ œ �Õ | (fi[s, x] ¶ fi[y, t])fl fiÕ ”= ÿ}|.
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By our assumption in Case 2, it follows that „1 = 1 and „2 = „ ≠ 1. Since |E3| can be
upper bounded by the inequality

|E3| Æ |E3 fl E(fi[v1, v2])|+ |E3 fl E(fi[s, x] ¶ fi[y, t])|+ 2,

we immediately obtain the recurrence

f(„) Æ f(„1) + f(„2) + 2 Æ f(1) + f(„ ≠ 1) + 2.

Taking our results from Case 1 and Case 2 together, we obtain the recurrence relation

f(„) Æ
I
max {f(i) + f(„ ≠ i) + 2, f(1) + f(„ ≠ 1) + 2} „ > 1 and 1 < i < „

2 „ = 1

Applying this recurrence Æ „ times, we find that

f(„) Æ „ · f(1) + 2„ Æ 4„.

Finally, since k Æ |�Õ| Æ n1/2 and we defined f so that f(k) equals the largest possible value
of |E3|, we conclude that

|E3| Æ f(k) Æ f(n1/2) = O(n1/2).

Since the edges in E3 ™ E \EÕ are labeled independently at random, we may apply a Cherno�
bound as in Proposition 21 to argue that ‰(E3) = O(n1/4 log1/2 n) with high probability. J

We have shown that with high probability, the discrepancy of our edge labeling is
O(n1/4 log1/2 n) for E1, E2, and E3, so we conclude that the total discrepancy of fi is
O(n1/4 log1/2 n). A straightforward extension of this argument implies identical bounds for
hereditary discrepancy. We defer this proof to the full version of our paper [9].

4 Conclusion and Open Problems

This paper reported new bounds on the hereditary discrepancy of set systems of unique
shortest paths in graphs. An open problem is to improve our edge discrepancy upper
bound in directed graphs. Standard techniques in discrepancy theory imply an upper bound
of min{O(m1/4), ÂO(D1/2)} for this problem, leaving a gap with our �(n1/4/

Ô
logn) lower

bound when m = Ê(n). Unfortunately, we were not able to extend our low-discrepancy
edge and vertex coloring arguments for undirected graphs to the directed setting, due to the
pathological example in Figure 4.

Figure 4 An example in directed graphs that demonstrates how coloring unique shortest paths
with alternating colors can fail to imply low discrepancy.
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Abstract
We construct n-node graphs on which any O(n)-size spanner has additive error at least +�(n3/17),
improving on the previous best lower bound of �(n1/7) [Bodwin-Hoppenworth FOCS ’22]. Our
construction completes the first two steps of a particular three-step research program, introduced
in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning
aspects of the upper and lower bound constructions. More specifically, we develop techniques that
enable the use of inner graphs in the lower bound framework whose technical properties are provably
tight with the corresponding assumptions made in the upper bounds. As an additional application
of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to
+�(n1/14).
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1 Introduction

Suppose that we want to compute shortest paths or distances in an enormous graph G.
When G is too big to store in memory, a popular strategy is to instead use a spanner of G,
which is a much sparser subgraph H with approximately the same shortest path metric as
G. This can substantially improve storage or runtime costs, in exchange for a small error
in the distance information. Perhaps the most well-applied case is when the spanner is
asymptotically as sparse as possible; that is, |E(H)| = O(n) for an n-node input graph G
(note that �(n) edges are needed just to preserve connectivity).

There are several ways to measure the quality of approximation of a spanner. The two
most popular are as follows:
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Table 1 The progression of upper and lower bounds on the additive error associated to n-node
spanners on O(n) edges; current state of the art bounds are highlighted in red. See also [10, 11, 6, 3, 2]
for work on additive spanners of superlinear size.

Upper Bound Lower Bound

O(n)-size Spanners

�(logn) [23]
ÂO(n9/16) [20] �(n1/22) [1]
ÂO(n1/2) [9] �(n1/11) [16, 18]
O(n3/7+Á) [8] �(n2/21) [19]
O(n

15≠
Ô

54
19 <0.403) [21] �(n1/7) [7]

�(n3/17) this paper

I Definition 1 (Multiplicative and Additive Spanners). Given a graph G, a subgraph1 H ™ G
is a multiplicative ·k spanner if for all nodes s, t we have distH(s, t) Æ distG(s, t) · k. It is an
additive +k spanner if we have distH(s, t) Æ distG(s, t) + k.

The parameter k is called the (additive or multiplicative) stretch of the spanner. A famous
paper of Althöfer, Das, Dobkin, Joseph, and Soares [4] settled the optimal multiplicative
stretch for O(n)-size spanners:2

I Theorem 2 ([4]). Every n-node graph has a spanner H of size |E(H)| = O(n) and
multiplicative stretch O(logn). This stretch cannot generally be improved to o(logn).

The goal of this paper is to make progress on the corresponding question for additive
error. This question has been intensively studied; see Table 1 for the progression of results.
Our contributions are on the lower bounds side:

I Theorem 3 (Main Result). There exists an infinite family of n-vertex undirected graphs
for which any additive spanner on O(n) edges has additive stretch �(n3/17).

Our techniques also lead to progress on related questions for O(n)-size emulators, which
we discuss further in Section 1.2. Before we explain this, we contextualize Theorem 3 by
explaining in more depth the sense in which it moves the upper and lower bounds closer
together.

1.1 Our Contribution and Next Steps for the Area
There are well-established frameworks in place for proving upper and lower bounds for
O(n)-size spanners, and the current sentiment among experts is that these two frameworks
could eventually produce near-matching (likely within nÁ factors) upper and lower bounds.
Both frameworks can be broken down into three corresponding steps, and over the last few
years, a research program has emerged in which the long-term goal is to find optimal bounds
for the problem by making each of these three steps align.3 That is, we can investigate what
“should” happen in each step if a hypothetical optimal version of the upper bound framework
were run on the graph from a hypothetical optimal version of the lower bound framework.
This thought experiment leads to a list of three concrete features that should be realized in
an ideal lower bound, which we overview at a high level in Table 2.

1 Throughout the paper, for brevity, we write “subgraph” to specifically mean a subgraph over the same
vertex set as the original graph.

2 Although we generally treat input graphs G as undirected and unweighted in this paper, this particular
theorem also extends to the setting where G is weighted.

3 This program was made somewhat explicit in [7] (c.f. Section 2.4), but was implicit in work before that.
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However, it is easier to write down this wishlist for the lower bound than it is to actually
achieve the listed features in a construction; we discuss the various technical barriers in
Section 2. The contribution of the current paper is to achieve the first two steps of alignment
(i.e., the first two items in Table 2) simultaneously, which both have to do with optimizing
properties of the so-called inner graph in the lower bound construction. That said, the ideal
structure of an inner graph has been known since [8], and well before that Coppersmith
and Elkin [12] found graph constructions achieving this ideal structure (“subset distance
preserver lower bound graphs”). Our main technical contributions are not in designing new
inner graphs, but rather, in improving the outer graph in a way that allows these previously
known optimal inner graphs to be used within the framework for the first time.

This paper makes no real progress on the third and final point of alignment, which
contends with optimizing certain quantitative properties of the shortest paths in the outer
graph. Here there is still significant misalignment between the upper and lower bounds,
which is responsible for essentially all of the remaining numeric gap between the current
upper and lower bounds for O(n)-size spanners. Improving this third point, either on the
upper bounds side or the lower bounds side, is the clear next step for the area and it may
first require advances in our understanding of distance preservers [12]; see [7] for discussion.

1.2 Additional Results
The technical improvements to the construction that enable our improved spanner lower
bounds also imply improvements for two nearby objects, which we overview next. First, an
emulator is similar to a spanner, but not required to be a subgraph:

I Definition 4 (Additive Emulators). Given a graph G, a graph H on the same vertex set as
G is an additive +k emulator if for all nodes s, t we have

distG(s, t) Æ distH(s, t) Æ distG(s, t) + k.

An emulator H is allowed to be weighted, even when the input graph G is unweighted.
Emulators generalize spanners, and hence the upper and lower bounds known for O(n)-size
emulators are a bit lower than the corresponding bounds for spanners. See Table 3 for the
progression of results on the additive error that can be obtained for O(n)-size emulators.

A similar lower bound framework is used to achieve lower bounds for emulators, and
hence our new technical machinery improves the current lower bounds for emulators as well:

I Theorem 5. There exists an infinite family of n-vertex undirected graphs for which any
additive emulator on O(n) edges has additive stretch �(n1/14).

Our numeric improvement in the lower bound for emulators is more modest than our
improvement for spanners; at a high level, this is because our main improvement is to enable
stronger inner graphs in the lower bound framework, but the role of the inner graph is
generally less important in emulator lower bounds.

We next provide a more fine-grained overview of our lower bound framework, and we
describe our technical improvements that lead to our new results in more detail.

2 Technical Overview

In this section we will give an overview of the di�erent technical components in our lower
bound graph construction. We start by reviewing the obstacle product framework in
Section 2.1 and recalling some ideas from prior work in Section 2.2. Finally we will discuss
the new components in our construction in Section 2.3.

ICALP 2024
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Table 2 A point-by-point comparison of the frameworks used to prove upper and lower bounds.
Our main technical contributions are to satisfy the first point of alignment by enabling the use of
inner graphs with �(r4/3) nodes (where +�(r) is the desired lower bound on spanner error), and to
satisfy the second point of alignment by enabling the use of subset distance preserver lower bounds
for our inner graphs. Neither of these properties were fully achieved in prior work.

Step in Upper Bounds Step in Lower Bounds What should ideally happen
when we run the upper bound
framework on a lower bound
graph?

Cover the input graph by
clusters C of radius r each.
These clusters are classified as
either small or large, depend-
ing on whether their number of
nodes is smaller or larger than
r
4/3.

Start with an outer graph, and
systematically replace each
node with a disjoint copy of
an inner graph.

The upper bound should select
the inner graphs as its clusters.
All inner graphs should have
�(r4/3) nodes, since the worst
case for the upper bound is
when all clusters are near the
large/small threshold.

Small clusters C have a node
separator of size Æ |C|1/4.
Construct a subset distance
preserver on each small cluster,
preserving all shortest paths
between separator nodes, at
cost O(|C|) [12].

The inner graphs should be se-
lected as the union of many
long unique shortest paths
among nodes that form a sep-
arator for the graph, and also
any two of these shortest paths
may intersect on at most one
node.

The inner graph should be a
lower bound graph against sub-
set distance preservers with
�(|C|1/4) source nodes (with
a large implicit constant), so
that the approach of construct-
ing a subset distance preserver
is too expensive to be used
in an attack against the lower
bound.

Large clusters C are handled
by adding some additional
shortest paths in the spanner
to connect far-away clusters to
each other. Using the path-
buying framework [6], we can
limit the total number and
length of the shortest paths we
need to add.

The outer graph is selected
to be the union of as many
long unique shortest paths
as possible, and any two of
these shortest paths may in-
tersect on at most one edge.
That is, the outer graph is a
slightly modified distance pre-
server lower bound graph.

The shortest paths added for
large clusters should coincide
with the shortest paths in the
original outer graph (before in-
ner graph replacement). The
path-buying bounds on the
number and length of these
shortest paths should coincide
with the number and length
of these shortest paths in the
outer graph.

Table 3 The progression of upper and lower bounds on the additive error associated to n-node
emulators on O(n) edges; current state of the art bounds are highlighted in red. See also [13].

Upper Bound Lower Bound

O(n)-size Emulators

O(n1/3+Á) [9] �(logn) [23]
O(n3/11+Á) [8] �(n1/22) [1]
ÂO(n1/4) [20] �(n1/18) [16]
ÂO(n2/9≠1/1600<0.222) [17] �(n2/29) [19]
O(n

1
3+

Ô
5
+Á<0.191) [15] �(n1/14) this paper
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2.1 The obstacle product framework
Similar to all previous works including [1, 16, 19, 7] on proving stretch lower bounds for linear-
sized additive spanners, our construction falls under the obstacle product framework introduced
in [1]. Any construction under this framework consists of an outer graph GO = (VO, EO) and
an inner graph GI = (VI , EI) where every vertex in the outer graph is replaced by a copy of
the inner graph. The desired outer graph should contain a set pairs PO ™ VO ◊ VO often
called the critical pairs such that the following holds:
1. For each pair (s, t) œ PO, the shortest path from s to t is unique. These unique shortest

paths connecting between pairs in PO are often called the critical paths.
2. The critical paths have roughly the same length �(k).
3. The critical paths are pairwise edge disjoint.
When we replace each vertex in the outer graph with a copy of the inner graph GI , we make
sure that the critical paths remain the unique shortest paths between their endpoints and
pairwise edge-disjoint by attaching each incoming edge and outgoing edge to distinct vertices
of the inner graph. Finally, we subdivide the edges originally in GO into paths of length
�(k). Now in the resulting graph denoted as Gobs = (Vobs, Eobs) with critical pairs Pobs, each
critical path between the endpoints in Pobs uniquely corresponds to a critical path in GO

and it takes the form of traveling alternatingly between subdivided edges in GO and paths in
GI . In particular, each critical path travels through �(k) subdivided paths of length �(k),
and �(k) inner graph copies.

Now let us see how to show that any sparse spanner on Gobs must su�er additive distortion
+�(k). The goal is to argue that if lots of edges are missing in the spannerH ™ Gobs compared
to Gobs, then there exists some pair (s, t) œ Pobs whose shortest path fi in H falls into one of
the following two cases:
1. If fi traverses the same sequence of inner graph copies as the critical path in Gobs, then it

must use at least one extra edge in each inner graph copy compared to the critical path
in the original graph due to missing edges. Since the critical path passes through �(k)
inner graph copies, the path fi must su�er a +�(k) distortion in total.

2. If fi traverses a di�erent sequence of inner graph copies, then it must traverse a di�erent
set of subdivided paths corresponding to the edges in GO. Since the critical paths in GO

are the unique shortest paths between its endpoints, fi must traverse at least one more
subdivided path of length �(k) and thus su�er a +�(k) distortion.

Furthermore, note that the reason behind doing inner graph replacement is that without
the inner graphs, subdividing each edge of the outer graph would significantly sparsify the
graph so that even a trivial spanner including all the edges would have linear size. Adding the
inner graphs helps balance the overall density of the graph so that any linear-sized spanner
needs to be nontrivial. Thus, ideally we would want the inner graphs to be dense.

2.2 The outer graph: distance preservers and the alternation product
In this subsection, we review the two key components for the outer graph construction: the
distance preserver lower bound graph given in [12] and the alternation product first used
in [14].

2.2.1 Distance preserver lower bound graph
Given a graph G = (V,E) and a set of pairs P ™ V ◊ V , a distance preserver H is a
sparse subgraph of G that preserves the distances for every pair in P exactly. Previously,
Coppersmith and Elkin [12] obtained a lower bound instance for distance preservers by

ICALP 2024
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constructing a large set of vertex pairs with pairwise edge-disjoint unique shortest paths
that are as long as possible; the union of the edges of these paths is the lower bound
instance. Following the intuition outlined in Section 2.1, it is natural to consider using the
distance preserver lower bound construction of [12] as the outer graph. From now on, we
will abbreviate the term “distance preserver lower bound graph” to “DP LB graph” and the
term “Coppersmith-Elkin construction” to “CE construction” for convenience.

Indeed, all prior work uses some version of the CE construction of DP LB graph as the
outer graph, and so do we. The CE construction is a geometric construction where the vertex
set corresponds to a d-dimensional integer grid [n]d and edges are added corresponding to a
d-dimensional convex set Bd(r) defined to be the vertices of the convex hull of integer points
contained in a ball of radius r > 0. More specifically, the vertices corresponding to the points
x̨, y̨ are connected by an edge if y̨ ≠ x̨ œ Bd(r). Then the critical paths are defined to be the
paths corresponding to the straight lines starting from a “start zone” passing through the
grid, i.e. the paths that repeatedly take the edge corresponding to the same vector in Bd(r).
By convexity of the set Bd(r), one can show that these critical paths are edge-disjoint and
they are the unique shortest paths between their endpoints.

Prior to the work of [7], works including [16, 19] all considered a layered version of the
DP LB graph as the outer graph. Namely the graph contains ¸ + 1 layers where each layer
corresponds to a d-dimensional integer grid [n]d and edges are added between adjacent layers
corresponding to the convex set Bd(r) similarly as defined in [12]. Then the critical paths are
defined to be the paths that start in the first layer and end in the last layer that repeatedly
take the edge corresponding to the same vector in Bd(r). This layering simplifies the stretch
analysis for additive spanner lower bounds because it is easy to argue that all the critical
paths have length exactly ¸ and the shortest path should not take any backward edges as it
will then need to traverse more layers. However, the layered version resulted in worse bounds
compared to the original unlayered version but it was unclear at the time how to analyze
an unlayered outer graph. Most recently, Bodwin and Hoppenworth [7] developed a new
analysis framework and successfully analyzed an obstacle product graph with a modified
version of the unlayered DP LB graph as the outer graph. As a result, they improved the
lower bound to �(n1/7) from �(n1/10.5) where the former remains the current best known
lower bound before this work. We use the unlayered outer graph construction in [7] as an
ingredient in our construction.

2.2.2 The alternation product
Another important idea that goes in to the outer graph construction is the alternation product
first used in [14]. Subsequent works including [1, 16, 19] all use the alternation product in
the outer graph construction. Consider two copies G1, G2 of the same 2-dimensional layered
DP LB graph with ¸ + 1 layers and convex set B2(r). Namely, each layer corresponds to
the [n]2 grid and the edges correspond to the 2-dimensional convex set B2(r) of radius r.
The original implementation of the alternation product graph Galt used in [14, 1, 16] of
G1 and G2 is a graph on 2¸ + 1 layers with each layer corresponding to the 4-dimensional
grid [n]4. Each vertex in Galt corresponds the pair (v1, v2) where v1 œ G1, v2 œ G2 and the
edges are added alternatingly between adjacent layers according to G1 and G2, respectively.
Specifically, between layer i and i+1 for i odd, we connect the vertex (x̨, y̨) for x̨, y̨ œ [n]2 to
(x̨+ w̨, y̨) for w̨ œ B2(r); for i even, we connect the vertex (x̨, y̨) to (x̨, y̨ + w̨) for w̨ œ B2(r).
In other words, Galt keeps track of G1 using the first two coordinates and G2 using the last
two coordinates. Then a critical path fi in Galt corresponds to a pair of critical paths fi1 in
G1 and fi2 in G2 by taking alternating steps from fi1 and fi2. So the main advantage of the
alternation product for us is that it gives an extra product structure over the set of critical
paths that we want in our construction.
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Unlike in our construction, prior works including [14, 1, 16, 19] apply the alternation
product in order to obtain a di�erent relative count between the number of vertices and the
number of critical pairs rather than to obtain the extra product structure. However, these
changes in parameters are in fact unfavorable to the construction for linear-sized spanner
lower bounds. To see this, notice that one can equivalently think of Galt as 4-dimensional
CE construction graph using the smaller convex set {(w̨1, w̨2) | w̨1, w̨2 œ B2(r)} instead of
B4(r), which means that Galt has fewer critical pairs (see Section 2.3 for a more detailed
discussion). In fact, in [16], Huang and Pettie gave an �(n1/11) lower bound construction
without the alternation product that improved on their own construction that uses the
alternation product which gave a bound of �(n1/13) in the same paper. Later in [19], Lu,
Vassilevska Wiliams, Wein and Xu improved on the alternation product that reduces the
loss in the number of critical pairs compared to the CE construction, thereby obtaining
an �(n1/10.5) lower bound that improved on the previous best bound of �(n1/11). Most
recently, Vassilevska Wiliams, Xu and Xu implicitly constructed an alternation product
graph in their O(m)-shortcut lower bound construction in [22] that asymptotically matches
the number critical pairs in the CE construction. Unfortunately, their construction is under a
di�erent setting so we cannot directly apply their technique to our construction as a blackbox.
However, by isolating a main observation implied in their work, we were able to integrate
such an alternation product into our construction (see Section 2.3).

2.3 Our construction: optimal unlayered alternation product and
optimal inner graph structure

Our main technical contribution is a linear-sized additive spanner lower bound construction
that carefully combines the following ideas:
1. An unlayered DP LB graph as the outer graph, as in [7].
2. An optimal alternation product implicit in [22].
3. An optimal subset DP LB graph as the inner graphs, as motivated in Table 2.
We start with comparing our construction with the previously known lower bound construc-
tions in Table 4.

Table 4 All known lower bound constructions.

Citation Lower bound Outer graph Inner graph

Woodru� [23] �(logn) Butterfly Biclique

Abboud, Bodwin [1] �(n1/22) Layered DP LB + Alt Product Biclique

Huang, Pettie [16] �(n1/13) Layered DP LB + Alt Product Biclique

Huang, Pettie [16] �(n1/11) Layered DP LB Layered DP LB

Lu, Vassilevska W.,
Wein, Xu [19]

�(n1/10.5) Layered DP LB + Improved Alt
Product

Biclique

Bodwin, Hoppen-
worth [7]

�(n1/7) Unlayered DP LB DP LB

This work �(n3/17) Unlayered DP LB + Optimal Alt
Product

Subset DP LB

In the following, we will discuss the main components of our construction.
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2.3.1 Outer Graph: Unlayered DP LB graph with optimal alternation
product

As mentioned in Section 2.2, we would like to be able to apply the implicit alternation
product in [22] to unlayered DP LB graphs. By isolating the main idea that one can use the
set {(x, y, x2 + y2) | x, y œ [r]} as the convex set in the alternation product graph, we are
able to apply the implicit alternation product in [22] on unlayered DP LB graphs successfully
after certain modifications (See Section 4.1 for more details). In the following, we give a
more detailed discussion of the informal intuition behind why the alternation product we use
is more desirable than the alternation product used in prior works including [1, 16, 19].

Recall that in Section 2.2, one may view an alternation product graph as a CE construction
with a di�erent convex set that determines the set of edges of the graph. In addition, a
vector from the convex set and a vertex in the “start zone” determines a critical path, so
we get more critical pairs if we use a larger convex set. More precisely, we want to use a
convex set that is “large” with respect to the total number of integer points contained in
the convex hull of the set. We recall from [5] that |Bd(r)| = �(rd·

d≠1
d+1 ). Let us compare

the convex sets used in the various alternation product graphs against Bd(r) in the same
number of dimension that is scaled to contain the same number of points in its convex hull
asymptotically in Table 5. Then we can see from Table 5 that all prior constructions use
a convex set that contains less points than the respective Bd(r) while the convex set we
use in this work matches the quality of B3(r), which is optimal in 3-dimensions (see [5] for
more details). That is, the construction that we use is as good as the CE construction in
3-dimensions.

Table 5 Comparison between known constructions of the alternation product and the CE
construction. The top row in each pair is the corresponding CE construction in the same number of
dimensions and scaled to contain the same number of points in its convex hull. The bottom row in
each pair indicates the alternation product construction used in the work cited.

Citation Convex Set Used Convex Set Size Convex Hull Size
4-dim [12] B4(r) �(r12/5) �(r4)
[1, 16] {(x̨, y̨) | x̨, y̨ œ B2(r)} �(r4/3) �(r4)

3-dim [12] B3(r) �(r3/2) �(r3)
[19] {(x1, x2 + y1, y2) | x̨, y̨ œ B2(r)} �(r4/3) �(r3)

3-dim [12] B3(r4/3) �(r2) �(r4)
This work
(based on [22])

{(x, y, x2 + y
2) | x, y œ [r]} �(r2) �(r4)

One may wonder why we do not simply use the CE construction as our outer graph. The
reason is that the alternation product has extra structure that is crucial for allowing us to
use our desired inner graph. The CE construction lacks these properties. We elaborate on
this below.

2.3.2 Inner graph: Optimal subset DP LB graph
For our inner graphs, we use the CE construction of subset DP LB graphs in the regime
where the pairs S ◊ S has size |S| = �(n1/4) where n denotes the number of vertices in the
graph. In fact, this construction is tight in the sense that it has �(n) edges while on the
other hand it is known that there exists subset distance preservers of size O(n) for every
set of sources S of size O(n1/4). So not only are we using an inner graph structure that
aligns with the upper bound algorithm as illustrated in Table 2, we are in fact using a tight
construction of the desired structure.
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The main reason why we are able to use subset DP LB graphs as inner graphs in our
construction is that we have an alternation product graph as our outer graph. We discuss
below why an alternation product is necessary for using subset DP LB graphs as inner
graphs. In the inner graph replacement step under the obstacle product framework, we need
to attach the incoming edges and outgoing edges adjacent to a vertex v to vertices in the
corresponding inner graph copy so that each critical path passing through v in the outer
graph will pass through a unique critical path in the inner graph copy as well. Since the
subset DP LB graph has critical pairs of the form S ◊ S for some subset S of the vertex set,
it is required that the critical paths passing through v in the outer graph also be equipped
with a product structure. In DP LB graphs, we have no such product structure over the
critical paths. However, notice that applying an alternation product would exactly give us a
product structure over the critical paths as desired.

3 Preliminaries

We use the following notations:
We use Conv(·) to denote the convex hull of a set.
We use È·, ·Í to denote the standard Euclidean inner product, Î · Î the Euclidean norm,
and projw̨(·) the Euclidean scalar projection onto w̨.
We use [x], where x is a positive integer, to denote the set {1, . . . , x}.

4 Outer Graph GO

The goal of this section will be to construct the outer graph GO of our additive spanner and
emulator lower bound constructions. The key properties of GO are summarized in Theorem 6.

I Theorem 6 (Properties of Outer Graph). For any a, r > 0 œ Z, there exists a graph
GO(a, r) = (VO, EO) with a set �O of critical paths in GO that has the following properties:
1. The number of nodes, edges, and critical paths in GO is:

|VO| = �(a3r),
|EO| = �(a3r2),
|�O| = �(a2r4).

2. Every critical path fi œ �O is a unique shortest path in GO of length at least |fi| Ø a
4r .

3. Every pair of distinct critical paths fi1,fi2 œ �O intersect on at most two nodes.
4. Every edge e œ EO lies on some critical path in �O.

The rest of the section is devoted to constructing the graph GO(a, r) and paths �O that
satisfy Theorem 6.

4.1 Convex Set of Vectors
Before specifying the construction of the graph GO, we begin by specifying our construction
of a set of vectors W ™ R3 that is crucial to the construction of GO. Set W will be
parameterized by a positive integer r, i.e., W = W (r). The vectors in W will satisfy a certain
strict convexity property that we will use to ensure the unique shortest paths property of
paths �O in GO.

I Definition 7 (W (r)). Given a positive integer r, let

W1(r) := {(x, 0, x2) | x œ {r/2, . . . , r}} and W2(r) := {(0, y, y2) | y œ {r/2, . . . , r}}.
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We define W (r) to be the sumset

W (r) := W1(r) +W2(r) = {(x, y, x2 + y2) | x, y œ {r/2, . . . , r}}.

We now verify that sets of vectors W1(r),W2(r),W (r) have the necessary convexity
property to ensure that graph GO has unique shortest paths (Property 2 of Theorem 6).
The convexity property of W stated in Lemma 8 is roughly similar to the notion of “strong
convexity” in [7], but is in fact stronger.

I Lemma 8 (Convexity property). Let W1,W2,W be the sets defined in Definition 7 for some
positive integer r. Let W Õ be the set

W Õ = W fi (≠W ) fi (W1 ≠ W2) fi (W2 ≠ W1).

Then each vector w̨ œ W is an extreme point of the convex hull Conv(W Õ) of W Õ.

We omit the proof as it simply follows from checking that every vector in W Õ is an extreme
point of Conv(W Õ).

4.2 Construction of GO

Let a, r > 0 œ Z be the input parameters for our construction of outer graph GO = (VO, EO).
Let W1 = W1(r), W2 = W2(r), and W = W (r) be the sets of vectors constructed in
Definition 7 and parameterized by our choice of r.

Vertex Set VO

Our vertex set VO will correspond to two copies of integer points arranged in a grid in R3.
These two copies will be denoted as V L

O and V R
O . For a point p œ R3, we will use pL to

denote the copy of point p in V L
O , and pR to denote the copy of point p in V R

O . Likewise,
for a set of points P ™ R3, we will use PL to denote the copy of set P in V L

O , and PR to
denote the copy of set P in V R

O . Then we define V L
O and V R

O as:

V L
O = ([a] ◊ [a] ◊ [ar])L, and V R

O = ([a] ◊ [a] ◊ [ar])R.

When denoting a node vL or vR in VO, we will drop the subscript and simply denote this
node as v when its membership in V L

O and V R
O is clear from the context or otherwise

irrelevant.

Edge Set EO

The edges EO in GO will pass between V L
O and V R

O , so that EO ™ V L
O ◊ V R

O .
Just as the nodes in VO are integer points in R3, we will identify the edges in EO with
integer vectors in R3. Specifically, for each edge (xL, yR) in EO, we identify xL æ yR
with the vector y ≠ x œ R3. Note that y ≠ x corresponds to the orientation xL æ yR of
edge (xL, yR); we would use vector x ≠ y œ R3 to denote yR æ xL.
For each node vL œ V L

O and each vector w̨ œ W1, if (v + w̨)R œ V R
O , then add edge

(vL, (v + w̨)R) to EO. Likewise, for each node vR œ V R
O and each vector w̨ œ W2, if

(v + w̨)L œ V L
O , then add edge (vR, (v + w̨)L) to EO.
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Critical Paths �O

Let S ™ R3 denote the set of points S = [a] ◊ [a] ◊ [r2/8].
Let s be a point in S. Additionally, let w̨1 be a vector in W1, and let w̨2 be a vector in
W2, where w̨1 + w̨2 œ W .4 If s + w̨1 ”œ S, then we define a corresponding path in GO

starting from sL œ SL as

sL æ (s+ w̨1)R æ (s+ w̨1 + w̨2)L æ (s+ 2w̨1 + w̨2)R æ (s+ 2w̨1 + 2w̨2)L æ
· · · æ (s+ i · w̨1 + i · w̨2)L,

where i is the largest integer i such that node (s + i · w̨1 + i · w̨2)L œ V L
O . Let t =

(s+ i · w̨1 + i · w̨2)L be the endpoint of this path, and add this s t path to our set of
critical paths �O.
Note that every critical path fi œ �O constructed this way is uniquely specified by a start
node sL œ SL and vectors w̨1 œ W1 and w̨2 œ W2.
For every critical path fi œ �O where |fi| < a

4r , remove fi from �O.
As a final step in our construction of GO, we remove all edges in GO that do not lie on some
critical path fi œ �O.

4.3 Properties of GO

We will now verify that GO and �O satisfy the properties specified in Theorem 6 via the
following claims. We omit the proofs as most of them follow from definition and Lemma 8.

B Claim 9. Every critical path fi œ �O is the unique shortest path between its endpoints in
GO. Moreover, |fi| Ø a

4r .

B Claim 10. Every pair of distinct critical paths fi1,fi2 œ �O can intersect on either a single
vertex or a single edge.

B Claim 11. Every edge in GO is used by at most r/2 critical paths fi œ �O.

B Claim 12. The number of nodes, edges, and critical paths in GO(a, r) is:

|VO| = �(a3r),
|EO| = �(a3r2),
|�O| = �(a2r4).

Proof of Theorem 6. Note that graph GO and critical paths �O satisfy Properties 1, 2, and
3 of Theorem 6 by Claim 9, Claim 10, and Claim 12. Moreover, Property 4 of Theorem 6
follows immediately from the final step in our construction of GO. This completes the proof
of Theorem 6. J

5 Spanner Lower Bound Construction

In this section we present our lower bound construction for additive spanners. This con-
struction will have a similar structure to the obstacle product graph G constructed for our
emulator lower bound, but with several complications. We now describe these modifications
to the obstacle product argument:

4 Note that w̨1 + w̨2 œ W for all w̨1 œ W1 and w̨2 œ W2, since W = W1 +W2. However, in Section 5.1,
we will modify W so that W is a strict subset of W1 +W2, which will make this requirement relevant.
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Convex Sets W1,W2, and W . In Section 5.1, we modify the convex sets of vectors
W1,W2, and W3 that we defined in Section 4. The purpose of this modification is
technical, but it has to do with the projection argument we employ in our analysis. Our
new convex sets of vectors W1(r, c),W2(r, c),W (r, c) will now be parameterized by an
additional integer c > 0. These new sets of vectors will roughly resemble the outer graph
vectors in Lemma 8 of [7] and will play a similar role in our analysis of G.
Inner Graph GI . We choose our inner graphs to be the sourcewise distance preserver
lower bound graphs constructed in [12]. Lemma 19 specifies the exact properties of these
new inner graphs GI that we require in our analysis. See Subsections 1.1 and 2.2 for an
overview of why we make this design choice.

5.1 Modifying Convex Sets W1,W2, and W in GO

In this section, we modify the definitions of the convex sets of vectors W1,W2, and W used
to construct outer graph GO. Let r, c > 0 œ Z be the input parameters to our convex sets of
vectors W1,W2, and W .

We define Ii be the interval

Ii :=
5
r

2 + (2i ≠ 2) · r
4c ,

r

2 + (2i ≠ 2) · r
4c + r

16c3

6
,

for i œ [1, c]. The following claim is immediate from the definition of intervals Ii.

B Claim 13. Intervals {Ii}iœ[1,c] satisfy the following properties:
Ii ™ [r/2, r],
|Ii| = r

16c3
if x, y œ Ii, then |x ≠ y| Æ r

16c3 , and
if x œ Ii and y œ Ij , where i ”= j, then |x ≠ y| Ø r/(2c).

We will use intervals {Ii}iœ[1,c] to construct our sets of vectors W1(r, c) and W2(r, c).

I Definition 14 (W1(r, c) and W2(r, c)). Let r, c be positive integers. We define W1(r, c) and
W2(r, c) as

W1(r, c) :=
)
(x, 0, x2) | x œ Ii, i œ [1, c]

*
and W2(r, c) :=

)
(0, y, y2) | y œ Ii, i œ [1, c]

*
.

Now we partition the vectors in W1(r, c) into c sets S1
1 , . . . ,S1

c we call stripes. We define
the ith stripe S1

i of W1(r, c) as {(x, 0, x2) | x œ Ii}. Likewise, we define the ith stripe S2
i of

W2(r, c) as {(0, y, y2) | y œ Ii}. The key properties of our stripes are summarized in Claim 15,
which follows immediately from Claim 13.

B Claim 15. Stripes {S1
i }iœ[1,c] satisfy the following properties:

S1
i ™ [r/2, r],

|S1
i | = r

16c3 ,
if (x, 0, x2), (y, 0, y2) œ S1

i , then |x ≠ y| Æ r
16c3 , and

if (x, 0, x2) œ S1
i and (y, 0, y2) œ S1

j , where i ”= j, then |x ≠ y| Ø r
2c .

Moreover, stripes {S2
i }iœ[1,c] satisfy analogous properties.

Roughly, Claim 15 states that vectors in the same stripe in W1(r, c) or W2(r, c) are “close”
to each other in some sense, and vectors in di�erent stripes in W1(r, c) and W2(r, c) are
“far” from each other in some sense. This notion of partitioning a set of vectors into stripes
satisfying these properties was introduced in the spanner lower bound construction of [7].
We are now ready to define our set of vectors W (r, c).
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I Definition 16 (W (r, c)). Let r, c be positive integers. Unlike in Definition 7, we will define
W (r, c) to be a subset of the sumset W1(r, c) +W2(r, c). In particular, for w̨1 œ W1(r, c) and
w̨2 œ W2(r, c), we only add w̨1 + w̨2 to W (r, c) if w̨1 and w̨2 share the same stripe index
i œ [1, c]. Formally,

W (r, c) :=
)
(x, y, x2 + y2) | x, y œ Ii, i œ [1, c]

*
µ W1(r, c) +W2(r, c).

The following claim is immediate from the definitions of W1(r, c), W2(r, c) and W (r, c).

B Claim 17. Sets W1(r, c), W2(r, c) and W (r, c) satisfy the following properties:
|W1(r, c)| = |W2(r, c)| = �

!
r
c2

"
,

|W (r, c)| = �
1

r2

c5

2
,

W1(r, c) µ W1(r), W2(r, c) µ W2(r), and W (r, c) µ W (r), so W (r, c) satisfies the
convexity property stated in Lemma 8.

We modify the construction of outer graph GO in Section 4 by replacing sets W1(r),W2(r),
and W (r) defined in Section 4.1 with the new sets W1(r, c),W2(r, c), and W (r, c). Note that
our new choice of sets W1(r, c) and W2(r, c) changes the the set of vectors EO in GO, while
our new choice of set W (r, c) changes the set of critical paths �O (see Footnote 4).

By inserting convex sets W1(r, c),W2(r, c), and W (r, c) into GO in place of the sets
W1(r),W2(r), and W (r), we obtain the following theorem about our modified outer graph
GO = GO(a, r, c).

I Theorem 18 (Properties of Modified Outer Graph). For any a, r, c > 0 œ Z, there exists a
graph GO(a, r, c) = (VO, EO) with a set of critical paths �O that has the following properties:
1. The number of nodes, edges, and critical paths in GO is:

|VO| = �(a3r), |EO| = �
3
a3r2

c2

4
, |�O| = �

3
a2r4

c5

4
.

2. Every critical path fi œ �O is a unique shortest path in GO of length at least |fi| Ø a
4r .

3. Every pair of distinct critical paths fi1 and fi2 intersect on at most two nodes.
4. Every edge e œ EO lies on some critical path in �O.

Just like in the original construction of GO in Section 4, every critical path fi œ �O

corresponds to a unique vector w̨ œ W (r, c). Specifically, by the definition ofW1(r, c),W2(r, c),
and W (r, c), path fi is constructed using vectors w̨1 œ W1(r, c) and w̨2 œ W2(r, c), where

w̨ = w̨1 + w̨2, and
w̨1 œ S1

i and w̨2 œ S2
i , for some i œ [1, c].

Critically, w̨1 and w̨2 both lie in the ith stripe S1
i and S2

i , respectively.

5.2 Inner Graph GI

In this subsection, we formally state the properties of the family of graphs we choose for
our inner graphs GI when constructing the obstacle product graph G. We will choose our
inner graphs to be the sourcewise distance preserver lower bound graphs constructed in [12].
Lemma 19 formally captures the exact properties of this family of graphs that we need for
spanner lower bound argument. We will defer our proof of Lemma 19 to the appendix, as it
largely follows from the proof of Theorem 5.10 in [12].

I Lemma 19 (cf. Theorem 5.10 of [12]). For any a, c > 0 œ Z, there exists a graph
GI(a, c) = (VI , EI) with a set SI ™ VI of sources, a set TI ™ VI of sinks, and a set
PI ™ SI ◊ TI of critical pairs that has the following properties:
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1. The number of nodes, edges, sources, sinks, and critical pairs in GI is:

|VI | = �(a2),
|EI | = �(a2c),
|SI | = �(a1/2c11/4),
|TI | = �(a1/2c11/4),
|PI | = �(ac5/2).

2. Every path fis,t, where (s, t) œ PI , contains �(a/c3/2) edges that do not lie on any other
path fisÕ,tÕ , where (sÕ, tÕ) œ PI .

3. For every source s œ SI and sink t œ TI , the distance between s and t in GI satisfies the
following:

distGI (s, t) = �(ac1/2).

4. The set of sources SI can be partitioned into b = �(c3) sets S1
I , . . . , S

b
I , where |Si

I | =
�(a1/2c≠1/4) for all i œ [b]. Let T i

I = {t œ TI | (Si
I ◊ {t}) fl PI ”= ÿ} be the set of all

sinks that belong to a critical pair with a source in Si
I . Then for all i œ [b] the following

properties hold:
|T i

I | = �(a1/2c≠1/4) for all i œ [b],
Si
I ◊ T i

I ™ PI , and
for all (s, t) œ PI such that s œ Si

I and t œ T i
I ,

distGI (s, t) Æ distGI (Si
I , T

i
I ),

where distGI (Si
I , T

i
I ) denotes the minimum distance between Si

I and T i
I in GI .

5.3 Construction of Obstacle Product Graph G

Let a, r, c > 0 œ Z be the input parameters of an instance of outer graph GO = GO(a, r, c).
Let W1 = W1(r, c), W2 = W2(r, c), and W = W (r, c) be the sets of vectors constructed in
Section 5.1. Additionally, let aÕ, cÕ > 0 œ Z be the input parameters of an instance of inner
graph GI = GI(aÕ, cÕ). We will specify the precise values of a, r, c, aÕ, and cÕ later, as needed.
Roughly, our choices of parameters a, r, and aÕ will grow with the size of our final graph G,
while parameters c and cÕ will be (su�ciently large) integer constants.

We will construct our final graph G by performing the obstacle product. The obstacle
product is performed in two steps: the edge subdivision step and the inner graph replacement.
In the inner graph replacement step, we will need to carefully define two functions, „1 :
W1 ‘æ SI ◊ TI and „2 : W2 ‘æ SI ◊ TI between vectors in W1 and W2 and pairs of nodes in
SI ◊ TI in inner graph GI .

Edge Subdivision

We subdivide each edge in GO into a path of length Â. Denote the resulting graph as GÕ
O.

For any edge e = (u, v) œ EO, let Pe denote the resulting u v path of length Â. We will
take Â = �

1
r3

c29/3

2
.
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Inner Graph Replacement

We now perform the inner graph replacement step of the obstacle product.
For each node v in V (GÕ

O) originally in GO, replace v with a copy of GI . We refer to this
copy of GI as Gv

I . Likewise, refer to the sources and sinks SI and TI in Gv
I as Sv

I and T v
I .

After applying the previous operation, the endpoints of the subdivided paths Pe in GÕ
O

no longer exist in the graph. If e = (u, v) œ EO, then Pe will have endpoints u and v. We
will replace the endpoints u and v of Pe with nodes in Gu

I and Gv
I , respectively.

In order to precisely define this replacement operation, it will be helpful to define two
functions, „1 : W1 ‘æ SI ◊ TI and „2 : W2 ‘æ SI ◊ TI . For ease of understanding, we will
first assume the existence functions „1 and „2. We will specify our choices of „1 and „2
later.
Let e = (u, v) œ EO. If v≠u œ W1, then let „1(v≠u) = (x, y) œ SI ◊TI . We will replace
the endpoints u and v of Pe with nodes y œ Tu

I in Gu
I and x œ Sv

I in Gv
I , respectively.

Otherwise, if v≠u œ W2, then let „2(v≠u) = (x, y) œ SI ◊TI , and replace the endpoints
u and v of Pe with nodes y œ Tu

I in Gu
I and x œ Sv

I in Gv
I , respectively. We repeat this

operation for each e œ EO to obtain the obstacle product graph G.
Note that after performing the previous operation, every subdivided path Pe, where
e = (u, v), will have a start node in Tu

I and an end node in Sv
I . We will use te to denote

the start node of Pe in Tu
I and se to the end node of Pe in Sv

I .
This completes the construction of the obstacle product graph G (up to defining functions
„1 and „2).

Defining functions „1 and „2

Let S1
1 , . . . ,S1

c be the stripes of W1, and let S2
1 , . . . ,S2

c be the stripes of W2. Let S1
I , . . . , S

b
I

and T 1
I , . . . , T

b
I be the partition of sources SI and sinks TI as described in Lemma 19, where

b = �(cÕ4). In order to construct our desired functions, we will require the following relations
to hold:

b Ø c,
|Si

I | Ø |Sj
i |, for all i œ [1, c] and j œ {1, 2}, and

|T i
I | Ø |Sj

i |, for all i œ [1, c] and j œ {1, 2}.
This can be achieved by setting

cÕ = �(c1/3) and aÕ = �
3

r2

c35/6

4
,

using the fact that |Sj
i | = �(r/c3), |Si

I | = �(aÕ1/2cÕ≠1/4), and |T i
I | = �(aÕ1/2cÕ≠1/4) by

Claim 15 and Lemma 19.
We are now ready to define our functions „1 and „2. Let w̨k

i,j denote the jth vector of
Sk
i , where i œ [1, c], j œ [1, |Sk

i |], and k œ {1, 2}. Let sij denote the jth node of Si
I , where

i œ [1, c] and j œ [1, |Si
I |]. Likewise, let tij denote the jth node of T i

I , where i œ [1, c] and
j œ [1, |T i

I |]. We define „1 and „2 as follows:

„1(w̨1
i,j) = (sij , tij) and „2(w̨2

i,j) = (sij , tij) for i œ [1, c], j œ [1, |S1
j |].

The key properties of functions „1 and „2 are summarized in Claim 20.
B Claim 20. Functions „1 and „2 satisfy the following properties:
1. Our choice of „1 and „2 imply that for each node u œ SI fi TI in an inner graph copy Gv

I ,
there is at most one subdivided path Pe incident to u in G.

2. „k(S1
i ) ™ Si

I ◊ T i
I for k œ {1, 2} and i œ [1, c], where „k(S1

i ) denotes the image of S1
i

under „k.
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Critical Paths �
Fix a critical path fiO œ �O with associated vectors w̨1 œ W1 and w̨2 œ W2.
By our construction of GO, there exists w̨ œ W such that w̨ = w̨1 + w̨2 (see Footnote 4).
Then by the construction of W there exists some index i œ [1, c] such that every edge
(u, v) œ fiO satisfies v ≠ u œ {w̨1, w̨2} ™ S1

i fi S2
i . Let ‰ œ [1, c] denote this index.

Let ei denote the ith edge of fiO for i œ [1, k]. Note that by Property 2 of Claim 20,
it follows that sei œ S‰

I and tei œ T‰
I for i œ [1, k]. Then by Property 5 of Lemma 19,

(sei , tei+1) œ PI . By Property 2 of Lemma 19, path fisei ,tei+1
is a unique shortest

sei  tei+1 path in GI .
We now define a corresponding path fi in G:

fi = Pe1 ¶ fise1 ,te2
¶ Pe2 ¶ · · · ¶ Pek≠1 ¶ fisek≠1 ,tek

¶ Pek ,

Note that if ei = (x, y) and ei+1 = (y, z), then fisei ,tei+1
corresponds to the unique

shortest path between sei œ S‰
I and tei œ T‰

I in inner graph copy Gy
I . We add path fi to

our set of critical paths �.
We repeat this process for all critical paths in �O to obtain our set of critical paths � in
G. Each critical path fi œ � is uniquely constructed from a critical path fiO œ �O, so
|�| = |�O|. We will use „ : � ‘æ �O to denote the bijection between � and �O implicit
in the construction.

As the final step in our construction of obstacle product graph G, we remove all edges in
G that do not lie on some critical path fi œ �. Note that this will only remove edges in G that
are inside copies of the inner graph GI . Theorem 21 summarizes some of the key properties of
obstacle product graph G. The proof of Theorem 21 follows from straightforward calculations
and arguments similar to those in Section 5.2 in the full paper.

I Theorem 21 (Properties of Obstacle Product Graph). For any a, r, c > 0 œ Z, there exists a
graph G(a, r, c) = (V,E) with a set of critical paths � that has the following properties:
1. The number of nodes, edges, and critical paths in G is:

|V | = �(a3r5c≠23/2),

|E| = �
1
c1/4 · |V |

2
,

|�| = �
3
a2r4

c5

4
.

2. Every path fi œ � that passes through inner graph copy Gv
I contains �(aÕ/cÕ3/2) edges

that do not lie on any other path fiÕ œ �, for all v œ VO.

For the full analysis of our spanner construction, please refer to the full version of the
paper on ArXiv.
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Abstract

Given a graph G = (V,E), a set T ™ V , and an integer b, the Steiner Tree problem asks whether
G has a connected subgraph H with at most b vertices that spans all of T . This work presents a
3k · n

O(1) time one-sided Monte-Carlo algorithm for solving Steiner Tree when additionally a
clique-expression of width k is provided. Known lower bounds for less expressive parameters imply
that this dependence on the clique-width of G is optimal assuming the Strong Exponential-Time
Hypothesis (SETH). Indeed our work establishes that the parameter dependence of Steiner Tree

is the same for any graph parameter between cutwidth and clique-width, assuming SETH.
Our work contributes to the program of determining the exact parameterized complexity of

fundamental hard problems relative to structural graph parameters such as treewidth, which was
initiated by Lokshtanov et al. [SODA 2011 & TALG 2018] and which by now has seen a plethora of
results. Since the cut-and-count framework of Cygan et al. [FOCS 2011 & TALG 2022], connectivity
problems have played a key role in this program as they pose many challenges for developing tight
upper and lower bounds. Recently, Hegerfeld and Kratsch [ESA 2023] gave the first application of
the cut-and-count technique to problems parameterized by clique-width and obtained tight bounds
for Connected Dominating Set and Connected Vertex Cover, leaving open the complexity
of other benchmark connectivity problems such as Steiner Tree and Feedback Vertex Set.

Our algorithm for Steiner Tree does not follow the cut-and-count technique and instead works
with the connectivity patterns of partial solutions. As a first technical contribution we identify a
special family of so-called complete patterns that has strong (existential) representation properties,
and using these at least one solution will be preserved. Furthermore, there is a family of 3k basis
patterns that (parity) represents the complete patterns, i.e., it has the same number of solutions
modulo two. Our main technical contribution, a new technique called “isolating a representative,”
allows us to leverage both forms of representation (existential and parity). Both complete patterns
and isolation of a representative will likely be applicable to other (connectivity) problems.
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Hypothesis (SETH)2 this dependence on the clique-width is optimal, i.e., time (3≠ Á)k ·nO(1)

1 Given a graph G = (V,E), a set T ™ V of terminals, a number b, and a k-clique-expression of G, with k

being the parameter, is there a connected subgraph H of G with at most b vertices that spans all of T?
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is known to be impossible [15]. Our algorithm relies on a new technique, called isolating a
representative, that allows it to employ both counting modulo two and reduction to a specific
smaller family of representative partial solutions. Implicitly, it thus works with a reduced
compatibility matrix of GF (2)-rank 3k, rather than the full matrix of GF (2)-rank 4k, which
is key for obtaining the claimed tight running time.

Our work fits into the program of determining the exact complexity of parameterized
problems (modulo SETH), especially relative to width parameters like treewidth, which was
initiated by Lokshtanov et al. [35, 36]. Since their work, there has been a plethora of such tight
bounds relative to treewidth, see, e.g., [7, 13, 12, 14, 40, 26, 37, 41, 18, 22, 32, 21], but also
relative to other parameters such as cutwidth [45, 30, 37, 44, 24, 4], modular treewidth [34, 28],
and clique-width [29, 13, 31, 34, 23, 27]. An important breakthrough was made by Cygan et
al. [15, 17], who were the first to obtain tight complexity bounds for connectivity problems
such as Steiner Tree, Connected Vertex Cover, and Feedback Vertex Set (all
parameterized by treewidth). In particular, their novel cut-and-count paradigm led to the
surprising result that many of these problems admit Oú(ctw) time (randomized) dynamic
programming (DP) algorithms. Intuitively, this is done by counting cuts of relaxed solutions
modulo two and relying on cancellation of disconnected solutions. Note that this makes such
algorithms inherently probabilistic as they rely on the isolation lemma to reduce, with high
probability, to the case that there is a unique solution of minimum weight. In this way, they
are able to reduce decision to counting modulo two.

The exact complexity of Steiner Tree[cw] is a natural and important question: Steiner
Tree is central among connectivity problems, which have been key benchmarks in the exact
complexity program. Clique-width is a well-studied graph parameter that, in particular, also
allows to capture structure present in dense graphs (unlike treewidth and cutwidth etc.). So
far, there are only two results regarding exact complexity (modulo SETH) of connectivity
problems relative to clique-width: Hegerfeld and Kratsch [27] showed tight bounds of
6k ·nO(1) for Connected Vertex Cover[cw] and 5k ·nO(1) for Connected Dominating

Set[cw], with both algorithms relying on cut-and-count. They explicitly leave open the
exact complexities of Steiner Tree[cw], Connected Odd Cycle Transversal[cw],
and Feedback Vertex Set[cw] as not being within range of their techniques. For the
latter, the algorithm for Feedback Vertex Set[tw] [17] counts edges outside the tentative
feedback vertex set to ensure that no cycles remain, but this seems infeasible relative to
clique-width (cf. [1, 2]). For the former two, it is mentioned that their approach via cut-and-
count would give time 4k ·nO(1) for Steiner Tree[cw] and time 14k ·nO(1) for Connected

Odd Cycle Transversal[cw]. However, matching lower bounds were not in sight, as
current lower bound methods rely on su�ciently large triangular submatrices inside certain
compatibility matrices that correspond to the problem, which were lacking. Indeed, it is this
gap between upper and lower bound that our technique allows us to close.

Our result and techniques. Formally, our result for Steiner Tree[cw] reads as follows.

I Theorem 1. There is a one-sided error Monte Carlo algorithm (no false positives) that,
given a graph G = (V,E), a set of terminals T ™ V , a number b, and a k-clique-expression of
G, takes time 3k · nO(1) and determines, with high probability, whether a connected subgraph
H of G of exactly b vertices exists that spans all of T .

Since the clique-width of any graph G is at most its pathwidth plus two (folklore), i.e.,
cw(G) Æ pw(G)+2, the lower bound for Steiner Tree[pw] [15] rules out time (3≠Á)k ·nO(1)

for Steiner Tree[cw]. In fact, recent work of Bojikian et al. [4] shows that the same lower
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Table 1 Tight complexity bounds (modulo SETH) for a selection of (connectivity) problems
relative to cutwidth, treewidth, modular-treewidth, and clique-width. (Table adapted from [27].)

cutwidth treewidth modular-tw clique-width

q-Coloring O
ú(2k) O

ú(qk) O
ú(

!
q

Âq/2Ê

"k) O
ú((2q ≠ 2)k)

Vertex Cover O
ú(2k) O

ú(2k) O
ú(2k) O

ú(2k)
Connected Vertex Cover O

ú(2k) O
ú(3k) O

ú(5k) O
ú(6k)

Connected Dominating Set O
ú(3k) O

ú(4k) O
ú(4k) O

ú(5k)
Steiner Tree O

ú(3k) O
ú(3k) O

ú(3k) O
ú(3k)

Feedback Vertex Set O
ú(2k) O

ú(3k) O
ú(5k) ?

Connected Odd Cycle Transversal O
ú(4k) O

ú(4k) ? ?

References [4, 30, 45] [16, 17, 36] [28, 34] [27, 34]

bound already holds relative to cutwidth. Thus, for all parameters between cutwidth and
clique-width we get the same tight dependence of 3k ·nO(1) for solving Steiner Tree, which
contrasts the growing dependence exhibited by most other problems (see Table 1).

Our algorithm does not apply cut-and-count, i.e., counting consistent cuts of relaxed
partial solutions. Instead, it works with the connectivity patterns of partial solutions for the
graphs that correspond to parts of the given k-clique-expression. Roughly, a connectivity
pattern indicates how the connected components of a partial solution connect the di�erent
label classes, noting that several components may intersect the same label class. Of course,
the full set of possible patterns is much too large to be of use for us. Instead, we identify a
family of patterns, called complete patterns, that are representative for the class of all patterns
in a strong and constructive sense: For each pattern p there is a set Rp = {q1, . . . , q¸} of
complete patterns that together completes into exactly the same set of solutions as p does.
Moreover, we identify a subfamily of 3k basis patterns such that for each complete pattern
there is a set of basis patterns that completes into the same number modulo two of solutions;
again, this necessitates randomization through the use of the isolation lemma to guarantee
existence of a unique minimum weight solution.

Now, if we simply combine these two means of representation, namely existential and
modulo two, we will not end up with a correct algorithm: Existential representation makes
no guarantee about the number, and hence the parity, of representations, even if there is a
unique global solution. This is where our technique of isolating a representative comes in:
When a step in the DP creates a partial solution whose connectivity pattern p is not complete,
then each representing complete pattern has its weight increased by a globally set random
weight (with four weights per DP step su�cing for our algorithm). In this way, a unique
minimum weight representation is isolated with high probability. Combined with the usual
setup of isolating a unique solution of minimum weight (and fast convolution), this allows
our algorithm to count modulo two the partial solutions relative to the 3k basis patterns and
arrive at the correct answer with high probability. Overall, we have two applications of the
isolation lemma, once for isolating a solution and once for isolating a representation of the
solution. This makes our algorithm inherently probabilistic, though with low error bounds,
and it may fail (like preceding work) by returning a false negative when either isolation fails.
Success chance (of this one-sided error algorithm) can be boosted in the usual way.

Our approach can be easily generalized to solve the vertex-weighted version of this
problem, when weights are bounded polynomially by the size of the graph, in the obvious
way with weights replacing cardinalities of partial solutions. This contrasts the status of the
edge-weighted version of this problem, which can be easily seen to be para-NP-hard when
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parameterized by clique-width: One can reduce any instance of the unweighted Steiner Tree

problem to the edge-weighted version of this problem on a complete graph (of clique-width 2)
by assigning weight one to existing edges, and some large weight to all other edges.

Related work. It has been observed that many results on exact parameterized complexity
are closely related to properties of certain matrices that are related to the problem in question
and the considered graph structure, and this was recently surveyed by Nederlof [39]: E.g.,
methods such as cut-and-count rely on low-rank factorizations of the corresponding matrices.
Since cut-and-count works modulo two, i.e., over GF (2), and since it can be verified that the
relevant matrix for Steiner Tree[cw] has GF (2)-rank (at least) 4k, this makes it unlikely
that a pure cut-and-count approach could succeed in getting time 3k · nO(1). (Indeed, it
was this fact combined with the intuition that current lower bound techniques would not
stretch further than the (3≠ Á)k ·nO(1), known already relative to pathwidth, that motivated
the present work.) This leaves open the possibility that the same time bound of 3k · nO(1)

could be obtained by working over a di�erent field and/or studying the support rank3 of the
matrix (cf. [39]). So far, there are few results that obtain tight complexity bounds that do
not coincide with the rank of the corresponding matrices [30, 4].

Clique-width was introduced by Courcelle and Olariu [11] building on work of Courcelle
et al. [9] and it is similar to the NLC-width of Wanke [46]. Courcelle et al. [10] showed that
every graph problem expressible in MSO1 logic (monadic second order logic of graphs with
quantification over vertex sets but not edge sets) can be solved in linear time for graphs
with a given k-clique-expression, i.e., in time f(k) · n, though the function f depends on
the formula capturing the problem and may be non-elementary (cf. [33]), so likely far from
being tight. This tractability is not restricted to MSO1-expressible problems but many other
important problems are solvable in time f(cw) · nO(1) or at least time nf(cw) (see, e.g., [19]).
Nevertheless, some problems, like Disjoint Paths, are NP-complete on graphs of bounded
clique-width, while being solvable in time f(k) · nO(1) with respect to treewidth (cf. [25]).
The first single-exponential time algorithms for connectivity problems parameterized by
clique-width were given by Bergougnoux and Kanté [1, 2], e.g., Steiner Tree, Connected

Dominating Set, and Connected Vertex Cover each in time 2O(cw)
· n, but building

on the rank-based approach these bounds are likely not tight.
The main drawback of clique-width lies in the di�culty of finding good expressions, i.e.,

good bounds on the clique-width of given graphs, in reasonable time. Fellows et al. [20]
showed that it is NP-complete to determine, on input of graph G and integer k, whether
the clique-width of G is at most k. It is open, however, whether for each fixed value of
k there is an e�cient algorithm for recognizing graphs of clique-width at most k; such
algorithms are known only for k Æ 3 [8]. In particular, there is neither an FPT-algorithm for
Clique-Width[k] known, nor is it known to be W[1]-hard with respect to k. The arguably
best way for using low clique-width is an exponential-ratio FPT-algorithm due to Seymour
and Oum [43] (made faster by Oum [42]). That being said, better algorithms for computing
clique-width are still possible, and there may be variants of clique-width that give similar
complexity (used as parameters) but are easier to compute.

Organization. In Section 3 we introduce connectivity patterns and provide related notation.
In Section 4 we show how to represent partial solutions through patterns. In Section 5 we
show that one can represent arbitrary patterns using complete patterns only. In Section 6 we

3 The smallest rank of any matrix with the same zero vs. non-zero pattern over any field, so this is only
interesting for fields other than GF (2).
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show that one can count complete patterns by reducing them a smaller family of patterns.
In Section 7 we show how to count these families e�ciently, providing the main algorithm of
this paper. Finally, we conclude with final thoughts in Section 8.

2 Preliminaries

In this work we deal with undirected graphs only. Given a natural number k, we denote by
[k] = {1, 2, . . . k} the set of natural numbers smaller than or equal to k, and [k]0 = [k] fi {0}.
A labeled graph is a graph G = (V,E) together with a labeling function lab: V æ N. We
usually omit the function lab and assume that it is given implicitly when defining a labeled
graph G. We say that G is k-labeled, if it holds that lab(v) Æ k for all v œ V . We define a
clique-expression µ as a well-formed expression that consists only of the following operations
on labeled graphs:

Create vertex i(v) for i œ N. This operation constructs a graph containing a single vertex
and assigns label i to this vertex.
The union operation G1 ‡ G2. The constructed graph consists of the disjoint union of
the labeled graphs G1 and G2.
The relabel operation fliæj(G) for i, j œ N. This operations changes the labels of all
vertices in G labeled i to the label j.
The join operation ÷i,j(G) for i, j œ N, i ”= j. The constructed graph results from G by
adding all edges between the vertices labeled i and the vertices labeled j, i.e.

÷i,j(G) = (V,E fi {{u, v} : lab(u) = i · lab(v) = j}).

We denote the graph resulting from a clique-expression µ by Gµ, and the constructed labeling
function by labµ. We associate with a clique-expression µ a syntax tree Tµ (we omit the
symbol µ when clear from the context) in the natural way, and associate with each node
x œ V (T ) the corresponding operation. For x œ V (T ), the subtree rooted at x induces
a subexpression µx. We define Gx = Gµx , Vx = V (Gx), Ex = E(Gx) and labx = labµx .
Finally, we say that a clique-expression µ is a k-expression if Gx is a k-labeled graph for
all x œ V (T ). We define the clique-width of a graph G (denoted by cw(G)) as the smallest
value k such that there exists a k-expression µ with Gµ isomorphic to G. We can assume
without loss of generality, that any given k-expression defining a graph G = (V,E) uses at
most O(|V |) union operations, and at most O(|V |k2) unary operations [1, 11].

We define the Steiner Tree problem as follows: Given an undirected graph G = (V,E),
a terminal set T ™ V and some value b œ N, asked is whether there exists a set of vertices
S ™ V of size at most b, such that T ™ S and G[S] is connected. For k œ N, and f some
computable function, we denote by O

ú(f(k)) the running time f(k) poly(n), where n is the
size of the input.

Let F be a field, and let S be some set. For a vector T œ FS , and some value x œ S, we
denote by T [x] the element of T indexed by x. In general, we will only deal with binary
vectors, i.e. F = GF(2). By 0S we denote the vector T with T [x] = 0 for all x œ S. We
omit the subscript S when clear from the context. For two sets S, T , let M œ FS◊T be some
matrix, whose rows are indexed by S and columns by T . We denote by M [s, t] the element
of M indexed by s and t.

For some integer k, given sets S1, T1, . . . , Sk, Tk, let Mi œ FSi◊Ti for each i œ [k].
We define the Kronecker product of M1, . . .Mk as the matrix M = M1 ¢ · · · ¢ Mk œ

F(S1◊···◊Sk)◊(T1◊···◊Tk), where for si œ Si and ti œ Ti for all i œ [k],

M [(s1, . . . , sk), (t1, . . . , tk)] =
Ÿ

iœ[k]

Mi[si, ti].

It is well-known that rk(M1 ¢ · · · ¢ Mk) = rk(M1) · rk(M2) · · · · rk(Mk).
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Given two sets S, T , we denote by S—T the symmetric di�erence of S and T . It holds by
a simple counting argument that |S—T | ©2 |S|+ |T |. Given a finite set U , the power-set of
U (denoted by 2U ) is the set of all subsets of U . A partition is a family of pairwise disjoint
subsets of U that span all its elements.

A lattice is a partial order (L,∞) over a set L, such that any two elements have a greatest
lower bound (called meet), and a least upper bound (called join). We call two lattices
isomorphic, if the underlying orders are isomorphic.

Let f : U æ V be a mapping between two sets U and V , and x /œ U a new element. Let
i œ V . We define the extension f |x‘æi : U fi {x} æ V of f in the natural way. We also define
the disjoint union of two mappings defined over two disjoint sets in the natural way.

Let U, V be two sets, and f : Uk
æ V a mapping. Given sets S1, . . . Sk ™ U , we define

f(S1, . . . Sk) = {f(s1, . . . sk) : (s1, . . . sk) œ S1 ◊ S2 ◊ . . . Sk}.

For a set S ™ V we also define

f≠1(S) = {(s1, . . . sk) œ S1 ◊ S2 ◊ . . . Sk : f(s1, . . . sk) œ S}.

An exception to this notation, is when we explicitly mention that f : U æ V is a weight
function, and V ™ Z. In this case, for some set S ™ U we define f(S) =

q
uœS f(u), where

we compute the sum over Z.
Given a logical expression fl, we denote by [fl] the Iverson bracket of fl. We refer the

reader to the full version [5] for formal definitions of all mentioned notation.

3 Connectivity patterns

3.1 Definition and terminology

Along this work, let U be some totally ordered ground set. In this section we define the
main structures we build this paper on, we call them patterns. A pattern, as we shall see,
represents the state of a partial solution, and carries enough information to extend it to a
solution over the whole graph.

I Definition 2. Let 0 be an element not in U . A pattern p is a subset of the power-set of
U fi {0}, such that there exists exactly one set of p containing the element 0. With P(U) we
denote the family of all patterns over U . We omit U when clear from the context. By Zp œ p
we denote the only set of p containing the element 0, and we call it the zero-set of p.

Given a pattern p œ P, we define label(p) ™ U as the set of all labels in U occurring in p,
and with singleton(p) ™ U the set of all labels in U appearing as singletons in p, i.e.

label(p) =
€

Sœp

S \ {0}, and singleton(p) =
)
u : {u} œ p · u ”= 0

*
.

I Definition 3. We define a more concise way to write patterns, that we use quite often
along this paper. For a pattern p = {{u1

1
, . . . , u1

r1}, . . . , {u
¸
1
, . . . , u¸

r¸
}}, we write

p = [u1

1
u1

2
. . . u1

r1 , . . . , u
¸
1
. . . u¸

r¸
],

where we use square brackets to enclose the pattern, we do not use any separator between the
elements of the same set, and separate di�erent sets with comas. We also sometimes omit
the symbol 0 when it appears as a singleton.

When we use this notation, we assume that each element is represented by a single symbol.
Hence, such patterns admit a unique interpretation. For example, both [12] and [0, 12] denote
the pattern {{0}, {1, 2}}, while the pattern {{0, 10}} cannot be written in this concise way.
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Now we introduce pattern operations. These operations will allow us to extend families
of patterns over the syntax tree of a clique-expression to build larger solutions recursively.
We define these operations in a similar way to the operations on partitions defined in [3].

I Definition 4. Let p, q œ P. We define the following operations:

Join: r = p Û q. Let ≥I= {(S, T ) : S œ p · T œ q · S fl T ”= ÿ} be a relation over p fi q,
and ≥

T
I be its reflexive, transitive and symmetric closure. Let R be the equivalence

classes of ≥
T
I , then r = {

t
SœP

S : P œ R}.
Relabel: r = piæj , for i, j œ U , where r results from p by replacing i with j in each set of p.
Union: r = p ü q, where r = (p \ {Zp}) fi (q \ {Zq}) fi {Zp fi Zq}.

I Definition 5. For i, j œ U, i ”= j, we define the operation ⇤i,jp for p œ P as

⇤i,jp =
I
p : {i, j} ”™ label(p),
p Û [ij] : otherwise.

This combines all sets containing the labels i or j into one set, if both labels appear in p.

I Definition 6. Let p, q œ P. We say that p and q are consistent (denoted by p ≥ q), if for
r = p Û q it holds that r = {Zr} contains the zero-set only, i.e. the join operation merges
all sets into one set only. We say that a pattern p dominates another pattern q (denoted by
p Ø q), if it holds for all patterns r œ P that q ≥ r implies p ≥ r.

3.2 Characteristics of patterns

In the full version of this paper we introduce the notion of alternating walks between two
patterns. Using this notion, we provide a new characterization of the join operation, upon
which, we prove a multitude of properties of patterns. We use these properties to prove
domination and consistency results on manipulated and derived patterns. In particular, this
allows us to correctly reduce the states of a dynamic programming solution keeping the
transitions correct. We present these properties here and refer the reader to the full version
for a formal proof.

I Lemma 7. Let p, q, r œ P be arbitrary patterns, and i, j œ U two arbitrary labels, with
i ”= j. Then all the following is true:
1. It holds that ⇤i,jp Ø p

2. If {i, j} ™ label(p), then p Û [ij] ≥ q if and only if p ≥ q ü [ij, i, j].
3. If singleton(p) \ label(q) ”= ÿ, then p ”≥ q.
4. For S œ p, and u œ S, let SÕ = S \ {u}, and pÕ = (p \ {S}) fi {SÕ

}. It holds that p Ø pÕ.
5. For S œ p, SÕ

™ S, and pÕ = p fi {SÕ
}, it holds that p Ø pÕ.

6. If p ≥ q holds, then it must hold that label(p) = label(q) and singleton(p) = singleton(q).
7. Let qÕ be the pattern that results from q by removing all labels in label(q) \ label(p) from

each set of q. Then p ≥ q if and only if p ≥ qÕ.

I Definition 8. Given a pattern p œ P and two di�erent labels i, j œ U . We define the
operation pÕ = pjxi over patterns, where pÕ results from p by removing the label i from all
sets, and then adding i to each set that contains the label j, i.e.

pjxi =
€

Sœp
j /œS

S \ {i} fi

€

Sœp
jœS

S fi {i}.
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I Lemma 9. For all p, q, r œ P the following two equivalences hold
1. It holds that p Û q ≥ r if and only if p ≥ q Û r.
2. For i, j œ U with i ”= j, it holds that piæj ≥ q if and only if p ≥ qjxi.

I Lemma 10. Given two patterns p, q œ P(U). Let U Õ be a new label set disjoint from U and
fl a one-to-one mapping from U to U Õ. Let qÕ be the pattern resulting from q by relabeling
u to fl(u) for each u œ U . Then it holds for each pattern r œ P(U) that p ü q ≥ r if and
only if p ≥ qÕ

Û rÕ for rÕ
œ P(U fi U Õ) the pattern resulting from r by adding fl(u) to each set

containing u for each u œ U .

4 Partial solutions as patterns

From now on, let (G,T, b) be the given instance of the Steiner Tree problem, for some
graph G = (V,E), a set of terminals T ™ V , and b œ N. Let n = |V | and m = |E|. Let µ
be a k-expression of G for some value k œ N. We fix U = [k]. Let T be the corresponding
syntax tree, and r its root. We also fix a value W œ N, and a weight function w : V æ [W ].
Both will be chosen later. Let v0 œ T be an arbitrary but fixed terminal vertex. For a node
x œ V (T ), we define Tx = T fl Vx.

I Definition 11. Let x œ V (T ). We call a set S ™ Vx where Tx ™ S a partial solution. Each
partial solution defines a pattern p = px(S) over Gx as follows: Let C1, . . . C¸ be the connected
components of Gx[S]. For i œ [¸], let Si = labx(Ci) be the set of all labels appearing in Ci.
If v0 /œ S, we define p =

)
S1, . . . , S¸

*
fi

)
{0}

*
. Otherwise, assume that v0 œ C¸ (otherwise

swap C¸ and the component containing v0). We define p =
)
S1, . . . , S¸≠1

*
fi

)
S¸ fi {0}

*
.

That means the zero-set is defined by the component containing v0 if v0 œ S, or as a singleton
otherwise. We call px(S) the pattern corresponding to S in Gx. We denote by p(S) the
pattern pr(S) corresponding to a partial solution S in the whole graph G.

I Lemma 12. Given a set S ™ V such that T ™ S, it holds that S is a Steiner tree in G, if
and only if p(S) consists of one set only.

We refer the reader to the full version for a formal proof. Now we define families of partial
solutions that allow to build recursive formulas for a dynamic programming scheme over T .

I Definition 13. For x œ V (T ), b œ [b]0, c œ [n ·W ]0, we define the family Sx [b, c] ™ P of
patterns corresponding to partial solutions of cardinality b and weight c over Gx as

Sx [b, c] = {p œ P : ÷S ™ Vx, where Tx ™ S · px(S) = p · |S| = b · w(S) = c}.

From now on, we always assume that x œ V (T ), b œ [b]0, and c œ [n · W ]0. We skip
repeating this to avoid redundancy.

I Lemma 14. The families Sx can be built recursively over the nodes of T in a bottom-up
manner using the operations defined in Definition 4 and Definition 5.

Proof. We sketch the recursive definitions of Sx for di�erent types of nodes x œ V (T ), and
refer to the full version for a complete proof of correctness.

For a create node µx = i(v) (a leaf of T ), let c = w(v). Let p = [0, i] if v ”= v0, and
p = [0i] otherwise. Then we set Sx [1, c] = {p}. We set Sx [0, 0] to {[0]}, if v /œ T , and to ÿ

otherwise. For all other values of b and c, we set Sx [b, c] = ÿ. We define Sx for the other
cases as follows:
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Join node µx = ÷i,j(µxÕ), then Sx [b, c] = ⇤i,j

!
SxÕ [b, c]

"
,

Relabel node µx = fliæj(µxÕ), then Sx [b, c] =
!
SxÕ [b, c]

"
iæj

,
Union node µx = µx1 ‡ µx2 , then Sx [b, c] =

t
b1+b2=b
c1+c2=c

!
Sx1 [b1, c1] ü Sx2 [b2, c2]

"
.

J

I Lemma 15. The graph G admits a Steiner tree of size b and weight c, if and only if there
exists a pattern p œ Sr

#
b, c

$
with p ≥ [0].

This lemma follows from Lemma 12 (see the full version for a proof). So far, we can
solve the Steiner Tree problem by defining a dynamic programming over T that computes
all families Sx

#
b, c

$
for all values of b and c. However, since there exist approximately 22k

di�erent patterns over k labels, we seek to reduce the family of all patterns into a family of
representing patterns in a sense that allow us to apply the dynamic programming scheme
over the resulting families.

5 Pattern representation

Now we define a special family of patterns (called complete patterns), and show that we can
represent any family of patterns by a family of complete patterns only.

5.1 Representation and complete patterns

I Definition 16. Given two families S,R ™ P, we say that R represents S, if for each q œ P

the following holds: there exists a pattern p œ S such that p ≥ q if and only if there exists a
pattern pÕ

œ R such that pÕ
≥ q. Given a family R ™ P, and a pattern p œ P, we say that R

represents p if R represents {p}.

Clearly, it holds that representation is an equivalence relation. In the full version, we define
the notion of representation-preserving operations, and show that the operations defined in
Definition 4 preserve representation. This allows to restrict a dynamic programming scheme
to representing families, preserving the correctness of the transitions.

I Definition 17. A pattern p œ P is complete, if label(p) = singleton(p), i.e. a pattern p
is complete, if each label of p appears as a singleton in p as well. We denote by PC(U) the
family of all complete patterns over U .

I Lemma 18. For all p, q œ PC the following holds: p ≥ q implies that label(p) = label(q).

We refer to the full version for a proof.

I Definition 19. Let p œ P. For i œ U , we define the operations fix(p, i) and forget(p, i) as

fix(p, i) = p fi
)
{i}

*
,and forget(p, i) =

)
S \ {i} : S œ p

*
,

if i œ label(p) \ singleton(p). Otherwise, we define fix(p, j) = forget(p, j) = p. We say that
pÕ = fix(p, i) results from p by fixing the label i, and pÕÕ = forget(p, i) results from p by
forgetting the label i. Given a pattern p œ P, we define inc(p) = label(p) \ singleton(p).

I Definition 20. Given a pattern p œ P. Let ¸ = | inc(p)|, and i1, . . . i¸ be the elements of
inc(p) in an increasing order. Let R0 = {p}, and Rj = forget(Rj≠1, ij)fi fix(Rj≠1, ij) for all
j œ [¸]. We define the family Rp = R¸ and call it a complete representation of p.
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The following lemmas show that Rp represents p, which proves that any set of patterns
admits a representation of complete patterns only. We refer to the full version for proofs.

I Lemma 21. Let p œ P, and i œ U . It holds that {fix(p, i), forget(p, i)} represents p.

I Lemma 22. It holds for all p œ P that Rp ™ PC , |Rp| Æ 2| inc(p)|, and Rp represents p.

I Corollary 23. Let S ™ P. Then the family R =
t

pœS
Rp ™ PC represents S.

I Observation 24. It holds that the family of complete patterns is closed under both relabel
operation i æ j for all i, j œ U , and union operation ü. On the other hand, it holds for
i, j œ U, i ”= j, R ™ PC , RÕ = ⇤i,jR and for each p œ RÕ that inc(p) œ {ÿ, {i, j}}. If
inc(p) = {i, j}, then Rp contains at most four patterns, that result from p by fixing or
forgetting either labels independently.

5.2 Counting representations

I Definition 25. Let Op : Pk
æ P be a k-ary pattern operation. We define the operation

—

Op :
!
2P

"k
æ 2P over subsets of P as

—

Op(S1, . . . , Sk) = —
(p1,...,pk)œ

S1◊···◊Sk

{Op(p1, . . . , sk)}, for all

S1, . . . , Sk ™ P, and we call it the exclusive version of Op. We compare this operation to
the notion Op(S1, . . . , Sk) given by the union over all resulting patterns from the operation.

Given two sets of patterns S1, S2 ™ P, we define S1

—

Û S2, S1

—

ü S2, S1
i

—
æj

and
—

⇤i,jS1 as the
exclusive version of join, union, relabel and ⇤i,j of S1 (and S2) respectively.

The following lemma can be proven by a simple counting argument. We refer to the full
version for a formal proof.

I Lemma 26. Let Op : Pk
æ P be a k-ary pattern operation, and S1, . . . Sk ™ P. It holds

for q œ P, that

|{p œ

—

Op(S1, . . . Sk) : p ≥ q}| ©2 |{(p1, . . . pk) œ S1 ◊ · · · ◊ Sk : Op(p1, . . . pk) ≥ q}|

As we have already mentioned, for p œ PC , and pÕ = ⇤i,jp, it holds that either RpÕ = pÕ,
or RpÕ contains four patterns that result from pÕ by either forgetting or fixing both labels i
and j independently. We can enumerate these patterns as follows:

I Definition 27. We define a new operation called actions Ac: P◊ [4] æ P as follows: Given
p œ P, if p œ PC , we define Ac(p, ¸) = p, for all ¸ œ [4]. For inc(p) = {i}, we define

Ac(p, 1) = fix(p, i),
Ac(p, 2) = forget(p, i).

We set Ac(p, 3) and Ac(p, 4) to undefined in this case. If inc(p) = {i, j} for i < j, we define
Ac(p, 1) = fix(fix(p, i), j),
Ac(p, 2) = forget(fix(p, i), j),
Ac(p, 3) = fix(forget(p, i), j),
Ac(p, 4) = forget(forget(p, i), j).

In all other cases we set Ac(p, ¸) to be undefined for all ¸ œ [4].

Using this enumeration, we can assign to each action at a create or a join node in the
subtree of Tx a weight, which defines a di�erent weight to each pattern in a complete pattern
representation of the patterns in Sx

#
b, c

$
.
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I Definition 28. For x œ V (T ) let fi : V (Tx) æ [4] be some mapping, such that fi(xÕ) œ [2]
whenever xÕ is a create node, and fi(xÕ) = 1 whenever xÕ is a union node or a relabel node.
We call fi an action sequence. Let D œ N be some value that will be fixed later, and let
d : V (T ) ◊ [4] æ [D] be a weight function. We define the weight of fi as

d(fi) =
ÿ

xÕ
œV (Tx),

xÕ is a join or create node

d
!
xÕ,fi(xÕ)

"
.

Given a partial solution S ™ Vx where Tx ™ S, the action sequence fi defines a pattern
pfi
S, that can be defined recursively over Tx, where for a create node i(v), let v be the

vertex introduced at this node. If v /œ S, then we set pfi
S = [0]. Otherwise, we set pfi

S =
Ac(px({v}),fi(x)). For a relabel or union node, pfi

S results by applying the corresponding
operation on the patterns resulting at the children of x in the natural way. For a join node
µx = ÷i,j(µxÕ), let pÕ = ⇤i,jpfiÕ

S , where fiÕ is the restriction of fi to the nodes in V (TxÕ). We
set pfi

S = Ac(pÕ,fi(x)). We say that fi is an action sequence generating the pattern pfi
S from S

in Gx.

The proof of the following lemma follows by induction over T using transitivity of
representation. We refer the reader to the full version for more details.

I Lemma 29. Given a node x œ V (T ), and a partial solution S ™ Vx, where Tx ™ S. Let �x

be the set of all action sequences at x. Let PS
x = {pfi

S : fi œ �}. Then PS
x represents px(S).

I Definition 30. For x œ V (T ), b œ [n], c œ [n ·W ], d œ [|V (T )| ·D], we define the families
Dx

#
b, c, d

$
as follows:

Create node i(v), let c = w(v). For ¸ œ [2], we set Dx [1, c,d(x, ¸)] =
)
Ac

!
px({v}), ¸

"*
,

and set Dx [0, 0,d(x, ¸)] to {[0]} if v /œ T , or to ÿ otherwise. For all other values of b, c
and d, we set Dx

#
b, c, d

$
= ÿ.

Relabel node µx = fliæj(µxÕ), then Dx

#
b, c, d

$
=

!
DxÕ

#
b, c, d

$ "
i

—
æj

.

Union node µx = µx1 ‡µx2 , then Dx

#
b, c, d

$
= —b1+b2=b

c1+c2=c
d1+d2=d

!
Dx1 [b1, c1, d1]

—

üDx2 [b2, c2, d2]
"
.

Join node µx = ÷i,j(µxÕ), we define the families D
Õ
x

#
b, c, d

$
=

—

⇤i,j

!
DxÕ

#
b, c, d

$ "
. Now we

set Dx

#
b, c, d

$
= —

¸œ[4]

—

Ac
!
D

Õ
x

#
b, c, d ≠ d(x, ¸)

$
, i

"
.

The following lemma shows that the families Dx correctly count action sequences. A
formal proof of the lemma and the corollary following it can be found in the full version.

I Lemma 31. For x œ V (T ), and all values b, c and d, it holds for p œ PC that p œ Dx

#
b, c, d

$

if and only if there exist odd many pairs (S,fi) where S ™ Vx with Tx ™ S, |S| = b,w(S) = c
and fi is an action sequence of weight d generating p from S in Gx.

I Corollary 32. If G does not admit a Steiner tree of size b, then it holds for all values
c œ [W · n], d œ [D · |V (T )|] that [0] /œ Dr

#
b, c, d

$
.

5.3 Isolation Lemma

Now we fix W = (2 +
Ô
2)|V |, and D = 4(2 +

Ô
2)|V (T )|. We choose w œ [W ]V and

d œ [D]V (T )◊[4] uniformly and independently at random. We use the isolation lemma to
show that, if a Steiner tree of size b exists, then there exist two positive integers c and d,
such that, with high probability, there exists a unique solution S of size b and weight c, and
a unique action sequence of weight d that generates the pattern [0] from S.
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I Definition 33. A function Ê : U æ Z isolates a set family F ™ 2U if there exists a unique
SÕ

œ F with Ê(SÕ) = minSœF Ê(S).

I Lemma 34 ([38, 17]). Let F ™ 2U be a set family over a universe U with |F| > 0, and let
N > |U | be an integer. For each u œ U , choose a weight Ê(u) œ {1, 2, . . . N} uniformly and
independently at random. Then it holds that P [Ê isolates F ] Ø 1 ≠ |U |/N .

We use the following lemmas to show that, if a solution exists, then, with high probability,
there exists a unique minimum weight representation of a minimum weight solution. We
refer the reader to the full version for a formal proof.

I Lemma 35. If a Steiner tree of size b exists, let c be the smallest weight of such a tree.
Then there exists a unique Steiner tree of size b and weight c with probability at least 1≠

1

2+
Ô
2
.

I Lemma 36. Let S be a Steiner tree in G, and fi be a minimum weight action sequence
generating [0] from S in G. Then fi is unique with probability at least 1 ≠

1

2+
Ô
2
.

I Lemma 37. If G admits a Steiner tree of size b, then with probability at least 1/2 it holds
that [0] œ Dr

#
b, c, d

$
for some values of c and d.

6 Parity-representation

Now we define a new kind of representation, called the parity-representation. This allows to
count complete patterns (modulo 2) that are consistent with a specific pattern.

I Definition 38. We define the family of CS-patterns PCS(U) ™ PC(U) as the family of
complete patterns containing only a zero-set and singletons, i.e.

PCS(U) =
Ó)

X fi {0}
*

fi
)
{u} : u œ Y

*
: X ™ Y ™ U

Ô
.

I Observation 39. For each ground set U it holds that |PCS(U)| = 3|U |.

I Observation 40. For p, q œ PCS and all i, j œ U , it holds that piæj , p ü q œ PCS.

I Definition 41. Given two sets of patterns D,C ™ P, we say that C parity-represents D,
if and only if for each q œ PC it holds

|{p œ C : p ≥ q}| ©2 |{p œ D : p ≥ q}|.

For a set of patterns C ™ P and a single pattern p œ P, we say that C parity-represents p if
it holds that C parity-represents {p}.

I Observation 42. Parity-representation is an equivalence relation.

Now we show how to build a concrete parity-representation of an arbitrary complete
pattern using CS-patterns only. We refer the reader to the full version for formal proofs.

I Lemma 43. Given a pattern p œ PC \PCS. Let S œ p \ {Zp} be an inclusion-wise minimal
set, such that |S| > 1. Let A = AS

p be the family of patterns defined from p as follows
AS

p =
)
(p \ {Zp, S}) fi (Zp fi SÕ) : SÕ

µ S
*
. Then A parity-represents of p.

I Lemma 44. Given a complete pattern p œ PC . Let S1, . . . Sr be the sets in p such that
Si ”= Zp and |Si| Ø 2 for each i œ [r]. Let A0 = {p}. For i œ [r], we define Ai = —qœAi≠1

ASi
q .

Let Ap = Ar. Then it holds that Ap ™ PCS, and that it parity-represents p.
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I Corollary 45. For each family of complete patterns D ™ PC , there exists a family of
CS-patterns C ™ PCS that parity-represents D.

Similar to pattern representation, in the full version of this paper we define the notion of
parity-representation-preserving operations. We show that all defined operations (including
actions and symmetric di�erence) preserve parity-representation. This allows to restrict a
dynamic programming algorithm to a parity-representation of the underlying families.

Now we define families of partial solutions over PCS that parity-represent the families
Dx

#
b, c, d

$
. In the next section, we show that we can e�ciently compute these families, and

hence, solve the decision version of the Steiner Tree problem with high probability.

I Definition 46. For p œ PC let Ap be the set defined in Lemma 44. We define the operator
Acú : P ◊ 4 æ 2PCS as Acú(p, ¸) = AAc(p,¸) if Ac(p, ¸) œ PC or as undefined otherwise. We

denote the exclusive version of Acú by
—

Acú.

I Definition 47. For x œ V (T ), b œ [n], c œ [n ·W ], d œ [|V (T )| ·D], we define the families
Cx

#
b, c, d

$
as follows: For a create, relabel or union nodes x, we define the families Cx in

an analogous way to Dx, where we replace each C with D in the definition. For a join node
µx = ÷i,j(µxÕ), we define the families

C
Õ

x

#
b, c, d

$
=

—

⇤i,j

!
CxÕ

#
b, c, d

$ "
,and set Cx

#
b, c, d

$
= —

¸œ[4]

—

Acú
!
C

Õ

x

#
b, c, d ≠ d(x, ¸)

$
, ¸

"
.

In the full version, we show that Cx
#
b, c, d

$
parity-represents Dx

#
b, c, d

$
for all x œ V (T )

and all values b, c, d. The following corollary follows

I Corollary 48. It holds for all values b, c, d that [0] œ Cr

#
b, c, d

$
≈∆ [0] œ Dr

#
b, c, d

$
.

7 Algorithm

In this section, we define the final dynamic programming table that computes Cx
#
b, c, d

$
for

x œ V (T ) and all values b, c and d in time Oú(3k).

I Definition 49. For all x œ V (T ) and all values b œ [k]0, c œ [|V | ·W ]0 and d œ [|V (T )| ·D]0,
we define the vectors T = T

#
x, b, c, d

$
œ {0, 1}PCS as follows:

Create node i(v). Let p = [0, i] if v ”= v0, and p = [0i] otherwise. First we initialize
T [x, b, c, d] = 0 for all values b, c, d. Now we set T [x, 0, 0, 0][[0]] = [v /œ T ], and for ¸ œ [2]
we set T [x, 1,w(v),d(x, ¸)][Ac(p, ¸)] = 1.
Relabel node µx = fliæj(µxÕ), we define T

#
x, b, c, d

$
[p] =

q
qœPCS
qiæj=p

T
#
xÕ, b, c, d

$
[q].

Join node µx = ÷i,j(µxÕ). For all values b, c, d, we define T Õ
#
x, b, c, d

$
œ {0, 1}P as

T Õ
#
x, b, c, d

$
[p] =

ÿ

qœPCS ,
⇤ijq=p

T
#
xÕ, b, c, d

$
[q],

for all patterns p œ P. Now for all p œ PCS we set

T
#
x, b, c, d

$
[p] =

ÿ

¸œ[4]

ÿ

qœP,
pœAc

ú
(q,¸)

T Õ
#
x, b, c, d ≠ d(x, ¸)

$
[q].
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Union node µx = µx1 ‡ µx2 . For all p œ PCS, we define

T
#
x, b, c, d

$
[p] =

ÿ

b1+b2=b
c1+c2=c
d1+d2=d

ÿ

p1,p2œPCS
p1üp2=p

T [x1, b1, c1, d1][p1] · T [x2, b2, c2, d2][p2].

The following lemmas show the correctness of the algorithm (proof in the full version).

I Lemma 50. It holds that T
#
x, b, c, d

$
[p] =

#
p œ Cx

#
b, c, d

$$
for all x, b, c, d, and p œ PCS.

I Corollary 51. It holds for all b, c, d that T
#
r, b, c, d

$
[[0]] ©2 1 ≈∆ [0] œ Dr

#
b, c, d

$
.

Although computing the tables T
#
x, b, c, d

$
for a union node x in the naive way yields a

running time polynomial in |PCS |
2 which exceeds the bound we seek by far, we make use of

a result by Hegerfeld and Kratsch [27] to compute convolutions over lattices more e�ciently.

I Definition 52. Given a lattice (L,∞), and two tables A,B : L æ F for some field F, we
define the join-product (or ‚-product) A ¢L B as follows: for each x œ L we define

A ¢L B(x) =
ÿ

y,zœL

y‚z=x

A(y) ·B(z).

To avoid unnecessary notation, we state a modified, more restrictive version of the
mentioned result by Hegerfeld and Kratsch [27, Corollary A.10], and refer the reader to the
full version for an exact statement and background definitions.

I Corollary 53. Let (L,∞) be a finite lattice such that the join operation over L can be
computed in polynomial time. Let k be a natural number. Given two tables A,B : Lk

æ Z2,
the ‚-product A ¢Lk B can be computed in time O

ú(|L|k).

I Definition 54. We define a new ordering ∞CS over PCS where p1 ∞CS p2, if for each
i œ U it holds that i œ Zp1 if i œ Zp2 and i œ label(p1) if i œ label(p2).

I Observation 55. The join operation over the lattice (PCS ,∞CS) is given by p ‚ q = r,
where Zr = Zp fiZq and label(r) = label(p)fi label(q). This corresponds exactly to the union
operation over CS-patterns r = p ü q. Hence, it holds for a union node that

T
#
x, b, c, d

$
=

ÿ

b1+b2=b
c1+c2=c
d1+d2=d

T [xÕ, b1, c1, d1] ¢PCS T [xÕÕ, b2, c2, d2].

In the full version, we show that the lattice (PCS(U),∞CS) is isomorphic to the lattice
L
k, where L = ({1, 2, 3},Æ) is defined in the natural way. Using Corollary 53, it follows that

T
#
x, b, c, d

$
for a union node x can be computed in time Oú(3k). The following lemma states

that this is indeed the case for all nodes x of T . We refer the reader to the full version for
formal proofs.

I Lemma 56. The families T
#
x, b, c, d

$
for all x œ V (T ) and all values b, c, d can be computed

in time O
ú(3k).

Now we are ready to prove the main theorem of this work (Theorem 1).
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Proof (Theorem 1). The algorithm first computes all families T
#
x, b, c, d

$
for all x œ V (T )

and all values of b, c, d. The algorithm states that there exists a Steiner tree of size b, if and
only if there exist two values c, d with T

#
r, b, c, d

$
[[0]] = 1.

By Lemma 56, we can compute all families T
#
x, b, c, d

$
in time O

ú(3k). By Lemma 50, it
holds for all values b, c, d that

T
#
r, b, c, d

$
[[0]] ©2 1 ≈∆ [0] œ Dr

#
b, c, d

$
.

By Corollary 32 it holds that if no Steiner tree of size b exists, then the algorithm will always
return false. On the other hand if a Steiner tree of size b exists, by choosing W = (2+

Ô
2)|V |,

and D = 4(2 +
Ô
2)|V (T )|, and by choosing both function w œ [W ]V , and d œ [D]V (T )◊[4]

uniformly and independently at random, it holds by Lemma 37 that the algorithm will
correctly decide the existence of such a tree with probability at least one half. J

8 Conclusion

We have presented a 3k ·nO(1) time one-sided Monte-Carlo algorithm for Steiner Tree[cw].
Under the Strong Exponential-Time Hypothesis, lower bounds for Steiner Tree relative to
less expressive parameters [15, 4] rule out time (3≠ Á)k ·nO(1), and show that this parameter
dependence is optimal for all parameters between cutwidth and clique-width.

Rather than using cut-and-count, which is the go-to technique for connectivity problems,
our algorithm works with connectivity patterns. Two technical contributions, make this work:
The family of complete connectivity patterns has strong existential representation properties,
so that each connectivity pattern has an explicit existential replacement by complete patterns.
This avoids spending more time for getting the representative partial solutions (such as for
Gaussian elimination in the rank-based approach [3]). The second technical contribution, the
technique of isolating a representative, allows to combine this with working via a 3k-sized
family of basis patterns, that represents complete patterns modulo two. We expect that both
techniques will be of use for settling the complexity of other (connectivity) problems.

Very recently, the present authors announced a tight bound of 12k ·nO(1) (modulo SETH)
for Connected Odd Cycle Transversal[cw] [6].
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Abstract

Dynamic Time Warping (DTW) distance is the optimal cost of matching two strings when extending
runs of letters is for free. Therefore, it is natural to measure the time complexity of DTW in terms
of the number of runs n (rather than the string lengths N).

In this paper, we give an Õ(n2) time algorithm for computing the DTW distance. This matches
(up to log factors) the known (conditional) lower bound, and should be compared with the previous
fastest O(n3) time exact algorithm and the Õ(n2) time approximation algorithm. Our method also
immediately implies an Õ(nk) time algorithm when the distance is bounded by k. This should be
compared with the previous fastest O(n2

k) and O(Nk) time exact algorithms and the Õ(nk) time
approximation algorithm.
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1 Introduction

Dynamic Time Warping (DTW) [39] is one of the most popular methods for comparing
time-series (see e.g. [2, 5, 8, 25, 27, 30, 33, 40, 43]). It is appealing in numerous applications
such as bioinformatics, signature verification, and speech recognition, where two time-series
can vary in speed but still be considered similar. For example, in speech recognition, DTW
can detect similarities even if one person is talking faster than the other.

To define DTW, recall that a run-length encoding S = s
¸1
1
s

¸2
2
· · · s¸n

n of a string S over an
alphabet � is a concise (length n) representation of the (length N =

q
i ¸i) string S. Here

s
¸i
i denotes a letter si œ � repeated ¸i times. For example, the string S = aaaabbbaaaaa is
encoded as a4b3a5. A string S

Õ = s
¸Õ
1
1
s

¸Õ
2
2
· · · s¸Õ

n
n is a time-warp of string S = s

¸1
1
s

¸2
2
· · · s¸n

n if
every ¸

Õ
i Ø ¸i.
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30:2 Õptimal Dynamic Time Warping on Run-Length Encoded Strings

I Definition 1 (Dynamic Time Warping). For a function ” : �2 æ R+, the Dynamic Time
Warping distance of two strings S and T over alphabet � is defined as

DTW(S, T ) = min
|SÕ|=|T Õ|

|SÕ|ÿ

i=1

”(SÕ[i], T Õ[i]),

where S
Õ and T

Õ range over all time-warps of S and T respectively.

In 1968, Vintzyuk [39] gave an O(MN) time dynamic programming algorithm for comput-
ing the DTW of two strings S and T of lengths N and M respectively. His algorithm is one
of the earliest uses of dynamic programming and is taught today in basic algorithms courses
and textbooks. Apart from logarithmic factor improvements [17], the O(MN) quadratic
time complexity remains the fastest known and a strongly subquadratic-time O((MN)1≠Á)
algorithm is unlikely as it would refute the popular Strong Exponential Time Hypothesis
(SETH) [3,10].

The complexity of DTW in terms of N and M is thus well understood. Special cases of
DTW are also well understood. These include DTW on binary strings [23,38], approximation
algorithms [4, 22,42], the low distance regime [22], sparse inputs [20,31,32], and reductions
to other similarity measures [22,36,37]. However, the complexity of DTW is not yet resolved
in terms of n and m (the run-length encoding sizes of S and T respectively). Namely, in
the (especially appealing) case where the strings contain long runs. The currently fastest
algorithms are O(Nm+Mn) [13,15,22] and O(n2

m+m
2
n) [15]. In particular, an Õ(nm) time

algorithm is only known to be possible if we are willing to settle for a (1+Á)-approximation [41].
It remained an open question whether it is possible to obtain an exact Õ(nm) algorithm
(which is optimal up to log factors). In this paper we answer this open question in the
a�rmative.

Prior work on DTW. The classical dynamic programming for DTW is as follows. Let
DTW(i, j) = DTW(S[1 . . . i], T [1 . . . j]), then DTW(0, 0) = 0, DTW(i, 0) = DTW(0, j) = Œ
for every i > 0 and j > 0, and otherwise:

DTW(i, j) = ”(S[i], T [j]) + min

Y
__]

__[

DTW(i ≠ 1, j)
DTW(i, j ≠ 1)
DTW(i ≠ 1, j ≠ 1)

(1)

The above dynamic programming is equivalent to a single-source shortest path (SSSP)
computation in the following grid graph. We denote [n] = {1, 2, . . . , n}.

I Definition 2 (The Alignment Graph). The alignment graph of S and T is a directed weighted
graph G with vertices V = [0 . . . N ] ◊ [0 . . .M ]. Every vertex (i, j) œ [N ] ◊ [M ] has three
entering edges, all with weight ”(S[i], T [j]): A vertical edge from (i ≠ 1, j), a horizontal edge
from (i, j ≠ 1), and a diagonal edge from (i ≠ 1, j ≠ 1).

We denote the distance from vertex (0, 0) to (i, j) as dist(i, j).1 Clearly, DTW(i, j) =
dist(i, j). Therefore, DTW(S, T ) = dist(N,M) and can be computed in O(MN) time by an
SSSP algorithm (that explicitly computes the distances from (0, 0) to all the O(MN) vertices
of the graph). The way to beat O(MN) is to only compute distances to a subset of vertices.

1 Abusing notation, we will later also use dist((x, y), (xÕ
, y

Õ)) to denote the distance from vertex (x, y) to
vertex (xÕ

, y
Õ).
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Namely, partition the alignment graph into blocks where each block is the subgraph
corresponding to a single run in S and a single run in T . Then, proceed block-by-block and
for each block compute its output (the last row and last column) given its input (the last
row of the block above and the last column of the block to the left). Since blocks are highly
regular (i.e., all edges inside a block have the same weight), it is not di�cult to compute the
output in time linear in the size of the output. Since the total size of all outputs (and all
inputs) is O(Nm+Mn), this leads to an overall O(Nm+Mn) time algorithm [13,15,22].

In order to go below O(Nm+Mn), in [15] it was observed that we do not really need
to compute the entire output. It su�ces to compute only the intersection of the output
with a set of O(mn) diagonals. Specifically, each block contributes one diagonal starting in
its top-left corner, so there are overall O(mn) diagonals and each diagonal intersects with
O(m+ n) blocks. This leads to an O(n2

m+m
2
n) time algorithm. In [41] it was shown that

if we are willing to settle for a (1 + Á)-approximation, then it su�ces to compute only Õ(1)
output values per block.

Prior work on edit distance. There are many similarities between DTW and the edit
distance problem: (1) like DTW, edit distance can be computed in O(MN) time using the
alignment graph [35, 39]. The only di�erence is in the edge-weights. (2) like DTW, edit
distance has a lower bound prohibiting strongly subquadratic time algorithms conditioned
on the SETH [3,10, 22], and (3) like DTW, edit distance can be computed in O(Nm+Mn)
time by proceeding block-by-block and computing the outputs from the inputs. However,
unlike DTW, it is known how to compute the edit distance of run-length encoded strings in
Õ(nm) time [6, 7, 11–13,19, 26, 28, 29]. Specifically, Cli�ord et. al. [13] showed that the input
and output of a block can be implicitly represented by a piecewise linear function, and, that
the representation of the output can be computed in amortized O(polylog(mn)) time from
the representation of the input. This implies an Õ(nm) time algorithm for edit distance.

In [41], Xi and Kuszmaul write about the prospects of obtaining an Õ(nm) time algorithm
for DTW: “Such an algorithm would finally unify edit distance and DTW in the run-length-
encoded setting”.

Our result and techniques. We present an Õ(nm) time algorithm for DTW. This is optimal
up to logarithmic factors under the SETH. Our algorithm is independent of the alphabet
size |�| and of the function ”. In fact, ” need not even satisfy the triangle inequality.

We follow the approach for edit distance by Cli�ord et. al. [13] of representing and
manipulating inputs and outputs with a piecewise-linear function. However, the manipulation
is more challenging for several reasons which were highlighted by Xi and Kuszmaul [41]: (1)
unlike edit distance, DTW does not satisfy the triangle inequality. (2) we are interested
in arbitrary cost functions ” for DTW, whereas the Õ(nm) algorithm for edit distance [13]
works only for Levenshtein distance (when ”(·, ·) œ {0, 1}). (3) in the standard setting (i.e.
not the run-length encoded setting) edit distance actually reduces to DTW [22].

In Section 2, we show that the required manipulation of inputs and outputs naturally
reduces to O(nm) operations on a data structure that, given an array A of size M + N

initialized to all zeros, supports the following range operations:

I Definition 3 (Range Operations).

Lookup(i) - return A[i].
AddConst(i, j, c) - for every k œ [i . . . j], set A[k] Ω A[k] + c.
AddGradient(i, j, g) - for every k œ [i . . . j], set A[k] Ω A[k] + k · g.
LeftLinearWave(i, j,–) - for every k œ [i . . . j], set A[k] Ω mintœ[i...k]

!
A[t] + (k ≠ t)–

"
.

RightLinearWave(i, j,–) - for every k œ [i . . . j], set A[k] Ω mintœ[k...j]

!
A[t] + (t ≠ k)–

"
.
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30:4 Õptimal Dynamic Time Warping on Run-Length Encoded Strings

In Section 3, we show our main technical contribution:

I Theorem 4. Performing s range operations of Definition 3 can be done in amortized
O(polylog(s)) time per operation.

The proof of Theorem 4 can be roughly described as follows: We represent the array
A by the line segments of the linear interpolation of A. This way, the range operations of
Definition 3 translate to creating and deleting segments, changing their slopes, and shiftings
segments up and down. For most operations, these changes apply to a single contiguous range
of A and are therefore quite simple to implement in polylog time. The di�cult operations
are LeftLinearWave and RightLinearWave. These operations may need to replace each of �(n)
di�erent sets of consecutive segments with a single new segment. We refer to the process of
replacing a set of consecutive segments with a single new segment as a ray shooting process.
Shooting each of these rays separately would be too costly. More accurately, a ray shooting
process that replaces many segments with a single one is not problematic since its cost can
be charged to the decrease in the number of segments. The challenge is in shooting rays that
replace a single segment with another one, as this does not decrease the number of segments.

Our main technical contribution is a lazy approach for handling the problematic ray
shooting processes. We study the structural properties of ray shooting processes, and
characterize long rays which we can a�ord to shoot explicitly, and short rays, which we
cannot. The structure we identify allows us to divide the segments representing A into
mega-segments, and keep track of a single pending short ray in each mega-segment such that
executing the pending ray shooting process in each mega-segment would result in the correct
representation of the array A. While we cannot a�ord to actually carry out all of these
pending ray shooting processes, we can a�ord to perform the process locally, e.g., in order to
support Lookup for a specific element of A, or to facilitate the other range operations.

One component of our lazy approach is a data structure (sometimes called Segment
tree beats in programming competitions) for the following problem: Maintain an array A

under lookup queries and two kinds of update: AddConst(i, j, c) - for every k œ [i . . . j] set
A[k] Ω A[k] + c, and Min(i, j, c) - for every k œ [i . . . j] set A[k] Ω min{A[k], c}. Though we
are not aware of any o�cial publication, it is known (see e.g. [1]) that this problem can be
solved in amortized polylog time. We show a di�erent and worst-case polylog time solution.2

Implications for low regime DTW. In Section 4, we show that our Õ(n ·m) algorithm for
computing DTW(S, T ) immediately implies an Õ(n ·k) time algorithm where k = DTW(S, T ).
This is useful when k is small. It is achieved using the standard trick of limiting the
computation to blocks that are in the k-neighborhood of the alignment graph’s main diagonal.
It improves the O(N · k) algorithm of [22], the Õ(n2 · k) algorithm of [15], and the Õ(n · k)
time approximation algorithm of [41] (all obtained with the same k-neighborhood idea).

We note that for the closely related problem of low regime edit distance, using the same
k-neighborhood idea, the algorithm of [13] runs in Õ(n · k) time (now k is the edit distance
between S and T ). However, unlike DTW, there is a vast literature on low regime edit
distance (and the approximation algorithms inspired by it). Most notable are the celebrated
O(N + k

2) time algorithms of Myers [34] and Landau-Vishkin [24] for unweighted edit
distance, and the very recent O(N + k

5) time algorithm for weighted edit distance [14].

2 We note that the solution in [1] also supports range-sum queries and for such a conditional lower bound
(from the Online Matrix-Vector Multiplication (OMV) problem) is known [16]. The lower bound implies
that worst-case operations unlikely to be possible in O(n1/2≠Á) time. We are able to circumvent this
lower bound because we only support lookups, but not range-sum queries.



I. Boneh, S. Golan, S. Mozes, and O. Weimann 30:5

Implications for pattern matching DTW. The pattern matching version of DTW asks to
compute, for every index j œ [1 . . . |T |] the value miniœ[1...j](DTW(S, T [i . . . j])). In [18], an
O(NM) algorithm was presented for pattern matching DTW. Additionally, they provided
an O(nmk) algorithm for the low regime version of the problem, in which the goal is to
report every index j such that miniœ[1...j](DTW(S, T [i . . . j])) Æ k. The key ingredient of
these algorithms (See [18, Lemma 2]) is a dynamic programming formula that is identical to
Equation (1), except for the initialization. Since our Õ(nm) algorithm for DTW is obtained
by implementing the dynamic programming implicitly, by changing the initialization step,
our algorithm implies an Õ(nm) time algorithm for pattern matching DTW. This improves
upon both the O(NM) algorithm for DTW pattern matching and the O(nmk) algorithm for
the low regime DTW pattern matching (when k is super poly-logarithmic).

2 DTW via Range Operations

In this section we prove that Theorem 4 implies an Õ(nm) algorithm for DTW. Namely,
that DTW reduces to e�ciently supporting the range operations of Definition 3.

Blocks in the alignment graph. Let S[i1 . . . i2] and T [j1 . . . j2] be the i’th run in S and
the j’th run in T respectively. The block Bi,j in the alignment graph is the set of vertices
(a, b) with a œ [i1 . . . i2] and b œ [j1 . . . j2]. All of the edges entering any vertex in block Bi,j

have the same weight ”(S[i1], T [j1]), which we denote by cBi,j . We call the blocks Bi≠1,j ,
Bi,j≠1 and Bi≠1,j≠1 the entering blocks of Bi,j . The input of a block consists of all vertices
belonging to the first row or first column of the block. The output of a block consists of
all vertices belonging to the last row or last column of the block. The following structural
lemma was also used implicitly in previous works (see formal proof in the full version).

I Lemma 5. Let B be a block.
If (x, y), (x, y + 1) œ B then there is a shortest path from (0, 0) to (x+ 1, y + 1) that does
not visit (x, y + 1).
If (x, y), (x+ 1, y) œ B then there is a shortest path from (0, 0) to (x+ 1, y + 1) that does
not visit (x+ 1, y).
If (x, y), (x+ 1, y + 1) œ B then there is a shortest path from (0, 0) to (x+ 1, y + 1) that
goes through (x, y).

Frontiers in the alignment graph. Our algorithm for DTW processes all blocks in the
alignment graph. At every step, the algorithm can process any block B as long as all its
entering blocks have already been processed. When block B is processed, the algorithm
computes dist(x, y) for every output vertex (x, y) of B. After processing block B, we say
that the output vertices of B are resolved. At every step of the algorithm, the frontier is the
set of resolved vertices with an outgoing edge to a block that was not yet processed. Observe
that, at any given time in the execution of the algorithm, for every value d œ [≠N . . .M ],
the frontier includes exactly one vertex (x, y) such that y ≠ x = d. At every step t of the
algorithm, we will maintain an array Ft[≠N . . .M ] where Ft[d] = dist(x, y) such that vertex
(x, y) belongs to the current frontier and y ≠ x = d. In the full version of this paper ( [9]),
we prove the following lemma.

I Lemma 6. Ft+1 can be obtained by using O(1) range operations (Definition 3) on Ft.

In the rest of this section, we prove that Lemma 6 implies our main result:

ICALP 2024
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Figure 1 A block B, its inputs LB fiUB and its outputs DB fiRB . The entering edges to LB are
from RL, the corner of its diagonally adjacent block C, and the leftmost node of DU . The entering
edges to UB are from DU , the corner of C, and the topmost node of RL.

I Theorem 7. The Dynamic Time Warping distance of two run-length encoded strings S

and T with n and m runs respectively can be computed in Õ(nm) time.

Proof. We initialize the data structure of Theorem 4 as an array of length N +M + 1. We
treat the indices of A as if they are in [≠N . . .M ]3. Initially, the frontier consists of the
vertices (x, 0) with x œ [0 . . . N ] and (0, y) with y œ [M ]. We start by turning A into F0.
According to Equation (1), we need to set A[0] = 0 and A[i] = Œ for i ”= 0. This can be
done by applying AddConst(1,M,Œ) and AddConst(≠N,≠1,Œ).

The algorithm runs in nm iterations. At the beginning of iteration t, we have A = Ft. The
algorithm picks any block B whose entering blocks have already been processed, and applies
O(1) range operations (due to Lemma 6) on A in order to obtain A = Ft+1. After the last
iteration, it is guaranteed that the block Bn,m has been processed. Therefore, Fnm[M ≠N ] =
DTW(S, T ). Every iteration requires O(1) range operations each in O(polylog(nm)) time, so
overall the algorithm performs O(nm) operations in total Õ(nm) time. J

3 Implementing the Range Operations

In this section, we prove Theorem 4. We view the array A as a piecewise linear function. We
associate with A a set P = {p1 = (x1, y1), p2 = (x2, y2), . . .} of points satisfying A[xi] = yi.
The set P is uniquely defined by A as the endpoints of the maximal linear segments of the
linear interpolation of A. Note that the first point of P is always (1, A[1]) and the last
point is (n,A[n]).4 Let ¸i(x) = –ix + —i be the line segment between pi and pi+1. Our
representation will maintain the –i’s and —i’s. With this representation we can retrieve A[x]
for any x œ [1, n] from –i and —i where xi is predecessor of x in the sequence (x1, x2, . . .).
Upon initialization, A is represented as one linear segment, with –1 = 0, and —1 = 0.

We will use the following simple data structure.5

3 When a gradient update AddGradient(i, j, c) a�ects a value A[k], we would like A[k] to be increased by
k · c with k œ [≠N . . .M ] being the ’simulated’ index rather then the actual index k +N + 1. This can
be achieved by applying an additional operation AddConst(i, j, (≠N ≠ 1) · c).

4 Here we use n to denote the size of the array A.
5 The data structure can be implemented using a balanced search tree with a delta-representation (where
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I Lemma 8 (Interval-add Data Structure). There is a data structure supporting the following
operations in O(logn) time per operation on a set of n points with distinct first coordinates.

Lookup(x) - return the second coordinate of the point with first coordinate x, if exists.
Insert(x, y) - insert the point (x, y).
Remove(x) - remove the point with first coordinate x, if exists.
AddToRange(i, j, c) - for every point (x,y) with x œ [i . . . j] set y Ω y + c.
nextGT(x, y) - return the point pÕ = (xÕ

, y
Õ) with smallest xÕ

> x among points with y
Õ
> y.

prevLT(x, y) - return the point pÕ = (xÕ
, y

Õ) with largest xÕ
< x among points with y

Õ
< y.

3.1 A Warmup Algorithm

We first present a naive and ine�cient implementation of a range operations data structure.
We maintain the sequence P in a predecessor/successor data structure over the sequence
(x1, x2, . . .). With a slight abuse of notation we shall also use P to refer to this data structure.
We maintain the –i’s and —i’s using two Interval-add data structures D– and D— , respectively.
The parameters –i,—i of the linear segment ¸i starting at xi are represented by points (xi,–i)
in D– and (xi,—i) in D— . In what follows, whenever we say we add a point p = (x, y) to P
we mean that (x, y) is inserted into the predecessor/successor data structure P, and that
points with first coordinate x are inserted into D– and D— , with their second coordinates
appropriately set to reflect the parameters –,— of the segment ending at p and the segment
starting at p. This process requires O(1) operations on P, D– and D— .

The e�ect of AddConst(i, j, c) (see Figure 2) is to break the segment containing i into
at most three linear segments (a prefix ending at i ≠ 1, a segment [i ≠ 1, i], and a su�x
starting at i), and similarly for the segment containing j. Thus, to apply AddConst(i, j, c),
we first replace the segments containing i and j with these O(1) new segments by inserting or
updating the endpoints of the segments in P, D–, and D— . We then invoke AddToRange(i, j, c)
on D— to shift all segments between i and j by c. Next, we set the parameters for the
segment [i ≠ 1, i] and for the segment [j, j + 1] by O(1) additional calls to AddToRange on
D– and D— . Finally, we check if any of the new segments we inserted has the same slope
as its adjacent segments and, if so, we merge them into a single segment by removing their
common point from P, D– and D— . This guarantees that the set P we maintain is indeed
the set P defined by A. Supporting AddGradient(i, j, g) is similar. The only di�erence is that
we invoke AddToRange(i, j, g) on D– instead of on D— because the slopes of the segments
are shifted rather than their values.

The challenge is thus in supporting LeftLinearWave(i, j,–). We first describe its e�ect
and then describe how it is implemented. We assume without loss of generality that i and j

are both endpoints of segments (otherwise we break the segments containing them into O(1)
segments as above). Let pa = (i, A[i]) and pb+1 = (j, A[j]) be the points corresponding to i

and j. Thus, the segments contained within [i . . . j] are ¸a, ¸a+1 . . . ¸b.
If –a Æ – then the segment ¸a is not a�ected by the linear wave. This is because for

every k œ [xa . . . xa+1], the linear wave assigns

A[k] Ω min
xaÆtÆk

(A[t] + (k ≠ t)–) = min
xaÆtÆk

(A[k] ≠ (k ≠ t)–a + (k ≠ t)–)

= min
xaÆtÆk

(A[k] + (k ≠ t)(– ≠ –a)) = A[k].

the value of a node is represented by the sum of values of its ancestors), and having every node also
store the minimal and maximal values in its subtree. See e.g. [21].

ICALP 2024
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Figure 2 An illustration of applying the AddConst(i, j, c) operation. The dashed line represents
the segments before the operation. After the operation, new points are created with x coordinates
i ≠ 1, i, j and j + 1 and the segments in [i . . . j] are shifted by c.

Let z œ [a . . . b] be the minimum index such that –z > –. By the same reasoning, none of
the segments ¸a, ¸a+1, . . . , ¸z≠1 are a�ected by the linear wave. Let rz(x) be the (positive)
ray with slope6 – starting at pz. Since –z > –, the ray rz is below the linear segment ¸z.
Hence, the segment ¸z starting at pz is a�ected by the linear wave; its slope changes from
–z to –, and it extends beyond xz+1 as long as A[x] Ø rz(x). We describe this e�ect of
LeftLinearWave by a ray shooting process from pz (See Figure 3). This process identifies the
new endpoint pÕ of ¸z, and removes all the existing segments between pz and p

Õ, as follows.
Let z

Õ œ [z + 1..b + 1] be the minimum index with yzÕ < rz(xzÕ), i.e. the first point
in P that lies strictly below the ray rz. Let p

ú = (xú
, y

ú) be the intersection point of the
ray rz with ¸zÕ≠1 (if zÕ does not exist, then p

ú = pb). The new endpoint of ¸z is the point
p

Õ = (xÕ
, y

Õ) = (ÂxúÊ , rz(ÂxúÊ), and it replaces all the points pw for w œ (z . . . zÕ). If xú

is not an integer (or if zÕ does not exist) then a new segment is formed between p
Õ and

p
ÕÕ = (xÕ + 1, A[xÕ + 1]).

(a) (b)

(c) (d)

Figure 3 The e�ect of LeftLinearWave(i, j,–). The segments before pz are not a�ected. The
segments between pz and pzÕ are a�ected. Namely, a ray rz with slope – (in dashed blue) is shot from
pz and intersects at point pú = (xú

, y
ú). The new endpoint of ¸z becomes p

Õ and all the segments
between pz and p

Õ are removed. Since x
ú = 15.5 is not an integer, a new segment is formed between

p
Õ (with x coordinate 15) and p

ÕÕ (with x coordinate 16).

The e�ect of LeftLinearWave(i, j,–) on the remaining part of A, namely on A[xzÕ . . . j]
is analyzed in the same way as above, this time starting from pzÕ instead of from pa. In
particular, the prefix of segments with slopes less than – is not a�ected, and a ray with slope

6 Note that in Figure 3 and in all subsequent figures we indicate the slope – of the ray rz by drawing an
angle – between the ray and the positive direction of the x-axis. However, formally – is the slope of the
ray, not the indicated angle.
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– is shot from the next pw with –w > –, and so on. In the the full version of this paper
([9]) we formally prove that the above characterization indeed represents the new values of
A[i . . . j].

We now describe a naive, non-e�cient implementation of LeftLinearWave(i, j,–) according
to the description above. Recall that i and j are assumed to be endpoints pa and pb+1

of segments. We begin by finding the first pz with xz œ [i . . . j] and –z > – by querying
D–.nextGT(i,–). A ray shooting process is then performed from pz (if pz exists) as follows:
Recall that rz(x) denotes the positive ray with slope – shot from pz. We scan the successor
points of pz one by one in order, and for every point pw we check whether the ray rz(xw) Æ yw.
If so, pw is removed by removing xw from P ,D— andD–. Otherwise, we compute pú = (xú

, y
ú),

the intersection point of rz and ¸w≠1, and from it the points pÕ = (xÕ
, y

Õ) = (ÂxúÊ , rz(ÂxúÊ)
and, if xú is not an integer, also p

ÕÕ = (ÁxúË , ¸w≠1(ÁxúË)). Then, we insert the new points pÕ

and p
ÕÕ just before pw, as discussed above for AddConst. The scanning then continues with

another nextGT query from pw, and so on. If, at the end of the process, the last point pb is
removed since it is above some rz, we insert a new point (xb, rz(xb)).

Time Complexity. We now analyze the time complexity of this naive implementation.
Each AddConst and AddGradient operation requires O(1) operations on the Interval-add
data structures, and therefore takes O(polylog|P|) time per operation, with |P| being the
cardinality of P when the operation is applied.

Regarding LeftLinearWave operations, one might hope that the cost of each ray shooting
process can be charged to the removal of points from P during the process. However, each
ray shooting process might also add up to two new points, which might result in the size of
P increasing. Indeed, a LeftLinearWave operation may give rise to many such ray shooting
processes, and hence may significantly increase the size of P and take too much time. This
is the main technical challenge we need to address.

The idea is to distinguish between long ray shootings for which we can globally charge
the new insertions, and short ray shootings for which we cannot. We handle the long rays as
in the naive solution and devise a separate lazy mechanism that delays the application of all
the short rays stemming from a single LeftLinearWave operation using a constant number of
updates to a separate data structure that keeps track of the delayed rays.

Symmetry of RightLinearWave. The discussion so far was focused on the LeftLinearWave

operation. We note that the analysis of RightLinearWave is symmetric. In particular, the
execution of RightLinearWave(i, j,–) can be described as a sequence of ray shootings with
negative rays. The first point from which a ray is shot is pz with largest z œ [a . . . b] such that
–z≠1 < ≠– (pz is found using D–.prevLT). Note that the condition for starting a ray shooting
process for RightLinearWave is on –z≠1 rather than –z since the slope of the segment to the
left of pz is –z≠1. To simplify the presentation, we will keep describing only LeftLinearWave,
and will comment at the very end about the minor adjustments required to also handle the
symmetric RightLinearWave.

3.2 Active and Passive Points, Long and Short Rays

On our way to formally define long rays and short rays we first observe that ray shootings
only occur at points where slopes increase. We call such points active points.

I Definition 9 (Active and Passive points). A point pz in P is called active if z œ {1, |P|} or
–z > –z≠1. A point that is not active, is called passive. We denote the sets of active points
by Pactive.
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I Lemma 10. Ray shootings stemming from LeftLinearWave(i, j,–) occur either at point
pa = (i, A[i]) or at active points. Ray shootings stemming from RightLinearWave(i, j,–) occur
either at point pb = (j, A[j]) or at active points.

Proof. We focus on LeftLinearWave. The proof for RightLinearWave is symmetric. Assume
to the contrary that a ray shooting process starts at a passive point pz ”= pa. If pz is the
first point where a ray shooting starts, then z is the minimal index in [a . . . b] with –z > –.
But since pz is passive, we have – < –z Æ –z≠1, contradicting the minimality of z (note that
pz ”= pa so z ≠ 1 œ [a . . . b]).

Otherwise, let pq be the last point before pz from which a ray shooting process occurred.
Let pqÕ be the first point below the ray shot from pq. Since pz is the next point from which
a ray is shot, z is the first point in [qÕ

. . . b] with –z Ø –. Since pz is passive, we have
– < –z Æ –z≠1. If z ”= q

Õ, we have z ≠ 1 œ [qÕ
. . . b], a contradiction to the minimality of z.

Otherwise, pz = pqÕ is the first point below the ray with slope – shot from pq. It follows
that pz≠1 is above the ray, and –z≠1 > –. It must be the case that pqÕ is above the ray, a
contradiction. J

Let Pactive = (q1, q2, . . .) be the restriction of the sequence P to the active points. We
can think of the active points as defining a piecewise linear function whose segments are
a coarsening of the segments of A. We refer to these segments as mega-segments. Let “z

denote the slope of the mega-segment whose endpoints are qz and qz+1. The following lemma
asserts that the segments of A are never below their corresponding mega-segments, and that
the slope of a segment starting at an active point is never smaller than the slope of the
mega-segment starting at the same point.

I Lemma 11. Let qz = pw and qz+1 = pwÕ be two consecutive active points. For every
k œ [w . . . w

Õ], the passive point pk is not below the mega-segment connecting qz and qz+1.
Furthermore, –w Ø “z.

Proof. (See Figure 4) Clearly, pw and pwÕ are on the mega-segment, and in particular not
below it. Assume by contradiction that there is a point below the mega-segment, and let
k

Õ œ (w . . . w
Õ) be the smallest index of such a point. Since pkÕ≠1 is not below the mega-

segment and pkÕ is below the mega-segment, we must have –kÕ≠1 < “z. Moreover, since the
points pk with k œ [kÕ

. . . w
Õ) are passive, the slopes are non-increasing and therefore every

–k Æ “z. This means that all these points and in particular pwÕ are below the mega-segment.
In contradiction to pwÕ lying on the mega-segment. Furthermore, since pw+1 is not below
the mega-segment, we have –w Ø “z. J

We next show that if a ray shooting process starts at an active point qz with “z < – then
the process ends before qz+1, and the only a�ected points are the passive points between qz

and qz+1. On the other hand, if “z Ø – then as a result of the process qz+1 ceases to be an
active point, so |Pactive| decreases.

I Lemma 12. Consider a ray shooting process starting from point pw = qz œ Pactive during
the application of LeftLinearWave(i, j,–). Let qz+1 = pwÕ .
1. No new active points p = (x, y) with x ”= j are created in this process.
2. If “z < – then the points that are deleted by this process are the (passive) points pk with

k œ [w+ 1 . . . r] for some w < r < w
Õ. No other points between pw and pwÕ are deleted by

LeftLinearWave(i, j,–).
3. If “z Ø – then qz+1 is either deleted or becomes passive.
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Figure 4 The impossible configuration in Lemma 11. The points qz and qz+1 are represented by
the purple points and the mega-segment connecting them is represented by a thick purple line. The
first point pkÕ below the segment is marked with red stroke. Since the points strictly within the
mega-segment are passive, the points following pkÕ within the mega-segment (and in particular qz+1)
must remain below the mega-segment.

Proof. Let ¸ be the ray starting from pw = qz. Assume the process terminates by finding the
first point pú = (xú

, y
ú) below ¸ (the only process that does not end this way is the one that

ends by reaching (j, A[j])). The ray shooting process adds at most two new points pÕ and p
ÕÕ

with decreasing slopes, so no new active points are created by the process. The slope of pÕ is
decreasing because the segment entering p

Õ is (a sub-segment of) ¸ and the segment leaving
p

Õ is to a point below ¸. The slope of pÕÕ is decreasing because the line segment entering p
ÕÕ is

a line from p
Õ (a point on ¸) and the line segment leaving p

ÕÕ is to the su�x of a line segment
below ¸.

Consider the case “z < –. Then qz+1 is below the ray with slope – starting at qz. Hence
the ray shooting process terminates at a point after pw+1 and before qz+1. Since no active
points are created, the next ray will be shot from qz+1 or later, so no other points between
qz and qz+1 are deleted by LeftLinearWave(i, j,–).

Now consider the case “z > –. Then the mega-segment between qz and qz+1 is above the
ray with slope – shot from qz. By Lemma 11, all the (passive) points between qz and qz+1

are also above this ray. Hence qz+1 is deleted by the ray shooting process.
Finally, consider the case “z = –. Then the mega-segment between qz and qz+1 coincides

with the ray with slope – shot from qz. By Lemma 11, all the (passive) points between qz

and qz+1 will be deleted by the ray shooting process. Let w
Õ be such that qz+1 = pwÕ . If

–wÕ Ø – then qz+1 will be deleted by the process. Otherwise, –wÕ < –, so the ray shooting
process terminates at qz+1. Since all the passive points between qz and qz+1 were deleted, qz
and qz+1 become consecutive in P, and the slope of the corresponding segment is “z = –.
But the slope of the segment starting at qz+1 is –wÕ < –, so qz+1 becomes passive. J

We call rays with “z > – long rays, and those with “z Æ – short rays. Since long rays
decrease the size of Pactive we can handle them explicitly as in the warmup, charging the
deletion of passive points during the process to their creation, and charging the insertion
of the at most two passive points at the end of the process to the decrease in |Pactive|. The
short rays, which do not decrease |Pactive|, will be handled lazily. Namely, instead of explicitly
shooting a short ray in the mega-segment starting at an active point qz, we only store the
slope of the ray and postpone its execution until it is required (e.g., by a Lookup operation).
Note that subsequent short rays shot in this mega-segment may further change the stored
slope, and subsequent long rays may also a�ect it. We explain this in detail next.
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3.3 The Data Structure

In this section, we provide a technical overview of the construction of the range operation
data structure of Definition 3. The complete implementation details and proofs appear in
the full version of this paper ( [9]). Since our data structure is lazy, the sequence of points it
maintains will be di�erent than the sequence P that would have been maintained had we
used the warmup algorithm from Section 3.1. We will therefore use P̃ to denote the set of
points actually maintained by the data structure. The points P̃ define linear segments ˜̧

i(x)
in the usual way. For x œ [1, n] we denote by Ã[x] the value ˜̧

i(x), where ˜̧
i is the segment

containing x. We stress that our algorithm does not maintain P. However, for the sake of
description and analysis only we shall keep referring to the original P, and array A. The
definition of active and passive points, of the slopes “ of mega-segments, and of short and
long rays are now with respect to the slopes of the ˜̧

i’s.7 However, we shall maintain that
the set of active points with respect to P and Pactive is the same:

I Invariant 1. P̃active = Pactive.

Following Section 3.1, we maintain P̃ in a predecessor/successor data structure, as well
as the Interval-add data structures D– and D— representing the parameters of the linear
segments ˜̧

i(x) defined by the points of P̃. By implementing AddConst,AddGradient and
long ray shootings similarly to Section 3.1 (the exact details will be spelled out below), we
shall maintain the invariant that this part of the data structure correctly represents the
values of active points.8

We maintain the set of active points P̃active = (q1, q2, . . .) using a predecessor/successor
structure on their x-coordinates. For each qz œ P̃active, we maintain the slope “z of the
mega-segment starting at qz in an Interval-add data structure D“ . In addition, we maintain
a pending short ray rz with slope flz passing through qz (see Figure 5) by maintaining flz

in a data structure Dfl. This data structure, which we call the Add-min data structure is
summarized below and proved in the full version of this paper.

I Lemma 13 (Add-min Data Structure). There exists a data structure supporting the following
operations in O(polylogn) time on a set of points S.
1. Insert(x, y) - insert the point (x, y) to S.
2. Remove(x) - remove the point p = (x, y) from S, if such a point exists.
3. Lookup(x) - return y such that p = (x, y) is in S, or report that there is no such point.
4. AddToRange(i, j, c) - for every p = (x, y) œ S with x œ [i . . . j] set y Ω y + c.
5. Min(i, j, c) - for every p = (x, y) œ S with x œ [i . . . j] set y Ω min(y, c).

Note that storing flz su�ces to compute rz(x) since the active point qz that determines
the free coe�cient of rz is correctly represented by D– and D— . We shall show that storing
a single pending ray su�ces to represent all the pending changes in a mega-segment. This
property will rely on maintaining the following invariant.

I Invariant 2. For every active point qz we have flz > “z. (Recall that “z is the slope of the
mega-segment connecting qz and qz+1.)

7 It would have been more accurate to use –̃, —̃, and “̃, but this would be too cumbersome, so we stick to
using –,—, “.

8 See Invariant 3 and the note following it.
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The idea is that with this representation, for any x, the value of A[x] is given by the
minimum of the value Ã[x] = ¸w(x) of the segment of P̃ containing x, and the value rz(x) of
the pending short ray for the mega-segment containing x. This is captured by the following
main invariant maintained by the data structure.

I Invariant 3. Let x œ [1, n], and let pw and qz be the predecessor of x in P̃ and in P̃active,
respectively. It holds that A[x] = min(˜̧w(x), rz(x)). Furthermore, if p = (x,A[x]) is an active
point in P, then A[x] = Ã[x].

Figure 5 An illustration of the data stored for a mega-segment between two consecutive active
points qz and qz+1 (purple points). The slope “z is the slope of the mega-segment. The slope
flz > “z stored in qz represents a pending ray rz (dashed blue) that should be shot from qz. The
value of A[x] is the minimum between rz(x) (a blue point) and Ã[x] (a red point), the value of the
piece-wise linear function defined by P̃ (in grey).

Note that the first part of Invariant 3, together with Invariant 1 implies the second part
of Invariant 3. This is because the predecessor of x for an active point p = (x,A[x]) in Pactive
is itself. Since Pactive = P̃active we have that p œ P̃active is the predecessor of x in P̃active as well.
By definition rz goes through p = qz, so rz(x) = Ã[x], and Ã[x] = ˜̧

w(x) by definition. Hence,
when proving that the invariants are maintained, we will not need to explicitly establish the
second statement in Invariant 3.

Initially, P̃ = P = {(1, 0), (|A|, 0)}, and fl1 = fl2 = Œ (We interpret a line with a slope of
Œ as y = Œ). Indeed, A[x] = min(Ã[x], r1(x)) = min(0,Œ) = 0 and Invariant 3 is satisfied.
It remains to specify the implementation of the various operations supported by the data
structure, to prove that the invariants are maintained, and to analyze the running times.

The flush Operation. We first describe a service operation flush(qz) which explicitly shoots
the pending short ray in the mega-segment starting at the active point qz. It will be useful to
invoke flush before serving Lookup operations, but also when serving the other operations in
order to guarantee that the lazy implementation properly follows the explicit implementation
in the warmup. This is particularly important in operations which may create O(1) new active
points and thus change the partition into mega-segments, but is also useful to streamline
the proof of correctness. Recall that the reason we avoided shooting local rays in the first
place was that there could be many of them, and we could not a�ord to pay for the possible
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creation of O(1) new passive points at the end of each of them. We can a�ord, however,
to perform O(1) flush operations before each Lookup,AddConst or AddGradient operation,
because the cost of adding the O(1) new points can be charged to the operation itself.

A flush of qz = pw œ Pactive is performed as follows. Starting from pw+1, we scan the
points in P̃. When scanning p = (x, y), we compare y and rz. If rz(x) Æ y, we remove p

from P̃. Otherwise, the scan halts. Let pend be the point on which the scan halts. If no point
was deleted throughout the scan, we set flz = Œ and terminate. Otherwise, let pdel be the
last point deleted by the scan. We compute the intersection p

ú = (xú
, y

ú) of rz and the line
˜̧ between pdel and pend. Finally, we insert pÕ = (ÂxúÊ , rz(ÂxúÊ)) and p

ÕÕ = (ÁxúË , ˜̧(ÁxúË)) to
P̃ (as in the warmup algorithm of Section 3.1), update D– and D— with the new parameters
of the segments ending and starting at pÕ or at pÕÕ, and set flz = Œ.

I Lemma 14. Applying flush to an active point qz œ Pactive preserves Invariants 1–3.
Furthermore, it guarantees that the restriction of P and P̃ to the (passive) points between qz

and qz+1 is identical, and that for every x œ [xz . . . xz+1], A[x] = Ã[x].

Proof. Invariant 2 is maintained because the flush operation sets flz to Œ. Since flz > “z, it
is guaranteed by Lemma 12 that the scan of flush ends at qz+1 or before qz+1. It follows that
Invariant 1 is maintained because Pactive does not change and flush only deletes passive points
of P̃. We proceed to prove that Invariant 3 is maintained. Note that flz is set to Œ by the
end of flush, and that qz remains the predecessor active point of every x œ [xz . . . xz+1], so
we need to show A[x] = Ã[x]. Let x œ [xz . . . xz+1]. If x Æ x

ú, then before flush was applied,
we had Ã[x] Ø rz(x), and therefore by Invariant 3 A[x] = min(Ã[x], rz(x)) = rz(x). Since
flush sets the value of Ã[x] to be rz(x) for x < x

ú, Invariant 3 still holds. If x > x
ú, the

value of Ã[x] is not changed by flush. Since the line ˜̧ between pdel and pend starts not below
the rz and ends below rz, its slope is smaller than flz. Since the points between pend and qz

(excluding qz) are passive, the slopes of the corresponding segments are also lower than flz

and therefore (x, Ã[x]) is below rz for every x œ (xÕ
. . . xz+1]. Due to Invariant 3 before the

application of flush, we have A[x] = min(Ã[x], rz(x)) = Ã[x]. Therefore, assigning flz Ω Œ
and not changing Ã[x] satisfies Invariant 3. J

4 Bounded DTW

In this section, we study the k-bounded version of DTW. In this version, every ”(a, b) Ø 1,
and we wish to compute DTWk(S, T ) = min(DTW(S, T ), k+1) for a given integer k. In this
section, we prove the following theorem:

I Theorem 15. The Dynamic Time Warping distance of two run-length encoded strings S

and T with n and m runs respectively can be computed in Õ(nk) time if DTW(S, T ) Æ k.

The key structural insight for Theorem 15 is that there is a set of O(nk) blocks containing
all the vertices (x, y) with dist(x, y) Æ k. Therefore, it is su�cient to process only those
blocks instead of the entire grid. Informally, the set of O(nk) blocks is a band of width �(k)
around the main diagonal of blocks. This property holds since a path to a vertex outside the
band requires �(k) orthogonal steps between blocks. Note that since every ”(a, b) Ø 1, at
least one of any two orthogonally adjacent blocks is a non-zero block, and the part of the
path that goes through this block must incur a cost of at least 1. Formally:

B Claim 16. Let (x, y) be a vertex in the alignment graph. Let Bi,j be the block containing
(x, y). If |j ≠ i| > 2k, then dist(x, y) > k.
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Proof. We assume without loss of generality that j ≠ i > 2k. Let p be a path from
(0, 0) to (x, y). Let P = Bi1,j1 , Bi2,j2 . . . Bi|P |,j|P | be the sequence of blocks visited by p

(where Bi1,j1 = B0,0 and Bi|P |,j|P | = Bi,j). Note that for every a œ [1 . . . |P | ≠ 1] we have
(ia+1, ja+1) œ {(ia+1, ja), (ia, ja+1), (ia+1, ja+1)}. Since j|P | ≠ i|P | > 2k, and i1 ≠ j1 = 0,
there must be at least 2k + 1 values of a œ [1 . . . |P | ≠ 1] such that (ia+1, ja+1) = (ia, ja + 1).

Consider a value of a with this property. Since the ja’th run and the (ja + 1)’th run in
T are adjacent, they must consist of di�erent symbols. It follows that either cBia,ja

Ø 1 or
cBia,ja+1 Ø 1. Let BÕ œ {Bia,ja , Bia,ja+1} be the block with non-zero weight. The fragment of
p that goes through B

Õ incurs a weight of at least 1. Note that every block may be associated
with at most 2 di�erent values of a - once when p enters the block and once when it leaves
the block. Therefore, 2k + 1 di�erent values of a indicate that the cost of p is at least k + 1.

C

We denote the set of blocks Bi,j such that |j ≠ i| Æ 2k as the band. It follows directly
from Claim 16 that if dist(x, y) Æ k for some vertex (x, y) then there is a shortest path from
(0, 0) to (x, y) that uses only the vertices of the band. Therefore, we can set the weight of
every block outside of the band to Œ. Then, instead of processing all the blocks, we only
process the blocks of the band. Any block not in the band is considered vacuously processed.
Before processing a block with an input that is not in the band, we initialize the values in
the frontier corresponding to this input to Œ. This is implemented by an AddConst(i, j,Œ)
for the appropriate interval [i, j]. Note that with this assignment, the inputs have the same
values as if the algorithm would have processed all the blocks. Finally, the algorithm reports
DTWk(S, T ) = min(dist(N,M), k + 1).
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Abstract

A class of graphs admits an adjacency labeling scheme of size b(n), if the vertices in each of its
n-vertex graphs can be assigned binary strings (called labels) of length b(n) so that the adjacency of
two vertices can be determined solely from their labels.

We give bounds on the size of adjacency labels for every family of monotone (i.e., subgraph-
closed) classes with a “well-behaved” growth function between 2�(n logn) and 2O(n2≠”) for any ” > 0.
Specifically, we show that for any function f : N æ R satisfying logn 6 f(n) 6 n

1≠” for any fixed
” > 0, and some sub-multiplicativity condition, there are monotone graph classes with growth
2O(nf(n)) that do not admit adjacency labels of size at most f(n) logn. On the other hand, any such
class does admit adjacency labels of size O(f(n) logn). Surprisingly this bound is a �(logn) factor
away from the information-theoretic bound of �(f(n)). Our bounds are tight upto constant factors,
and the special case when f = log implies that the recently-refuted Implicit Graph Conjecture
[Hatami and Hatami, FOCS 2022] also fails within monotone classes.

We further show that the Implicit Graph Conjecture holds for all monotone small classes. In
other words, any monotone class with growth rate at most n! cn for some constant c > 0, admits
adjacency labels of information-theoretic order optimal size. In fact, we show a more general result
that is of independent interest: any monotone small class of graphs has bounded degeneracy. We
conjecture that the Implicit Graph Conjecture holds for all hereditary small classes.

2012 ACM Subject Classification Mathematics of computing æ Combinatorics; Mathematics of
computing æ Graph theory

Keywords and phrases Adjacency labeling, degeneracy, monotone classes, small classes, factorial
classes, implicit graph conjecture

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.31

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2310.20522 [11]

Funding This work has been supported by Research England funding to enhance research culture,
by the Royal Society (IES\R1\231083), by the ANR projects TWIN-WIDTH (ANR-21-CE48-
0014) and Digraphs (ANR-19-CE48-0013), and also the EPSRC project EP/T004878/1: Multilayer
Algorithmics to Leverage Graph Structure.

Acknowledgements We are grateful to Nathan Harms for valuable feedback on the early version of
this paper.

EA
T
C
S

© Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and

Maksim Zhukovskii;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 31; pp. 31:1–31:20

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:julien.duron@ens-lyon.fr
https://orcid.org/0009-0004-0925-9438
mailto:john.sylvester@liverpool.ac.uk
https://j-sylvester.github.io/
https://orcid.org/0000-0002-6543-2934
mailto:viktor.zamaraev@liverpool.ac.uk
https://www.victorzamaraev.com/
https://orcid.org/0000-0001-5755-4141
mailto:m.zhukovskii@sheffield.ac.uk
https://www.maksimzhukovskii.com/
https://orcid.org/0000-0001-8763-9533
https://doi.org/10.4230/LIPIcs.ICALP.2024.31
https://arxiv.org/abs/2310.20522
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Tight Bounds on Adjacency Labels for Monotone Graph Classes

1 Introduction

A class of graphs is a set of graphs which is closed under isomorphism. For a class of graphs
X we denote by Xn the set of graphs in X with vertex set [n]. The function n ‘æ |Xn| is
called the speed of X . A coding of graphs is a representation of graphs by words in the
binary alphabet {0, 1}. One of the main considerations with graph representations is their
succinctness; clearly, any representation of n-vertex graphs in a class X would require at
least Álog |Xn|Ë bits for some graphs in Xn.

Another consideration is whether the representation is global or local. Standard graph
representations, such as adjacency matrix or adjacency lists, are examples of global repres-
entations, where a graph is stored in a single data structure that needs to be accessed in
order to query some information about the graph, e.g., adjacency between a pair of vertices.
By contrast, in local graph representations, the encoding of a graph is distributed over
its vertices in such a way that the queries can be answered by looking only into the local
information associated with the vertices involved in the query. In this work we are concerned
with local graph representations for adjacency queries, i.e., queries that given two vertices
answer whether they are adjacent or not.

Let X be a class of graphs and b : N æ N be a function. A b(n)-bit adjacency labeling
scheme (or simply b(n)-bit labeling scheme) for X is a pair (encoder, decoder) of algorithms
where for any n-vertex graph G œ Xn the encoder assigns binary strings, called labels, of
length b(n) to the vertices of G such that the adjacency between any pair of vertices can
be inferred by the decoder only from their labels. We note that the decoder depends on
the class X , but not on the graph G. The function b(·) is the size of the labeling scheme.
Adjacency labeling schemes were introduced by Kannan, Naor, and Rudich [24, 25], and
independently by Muller [28] in the late 1980s and have been actively studied since then.
Adjacency labeling schemes are closely related to induced universal graphs, which we will
refer to simply as universal graphs. For a function u : N æ N, a universal graph sequence
or simply universal graph of size u(n) is a sequence of graphs (Un)nœN such that for every
n œ N the graph Un has at most u(n) vertices and every n-vertex graph in X is an induced
subgraph of Un. It was observed in [25] that for a class of graphs the existence of a b(n)-bit
labeling scheme is equivalent to the existence of a universal graph of size 2b(n).

The binary word, obtained by concatenating labels of the vertices of a graph G œ Xn

assigned by an adjacency labeling scheme, uniquely determines graph G. Thus, a b(n)-bit
labeling scheme cannot represent more than 2nb(n) graphs on n vertices, and therefore, if
X admits a b(n)-bit labeling scheme, then |Xn| 6 2nb(n). This implies a lower bound of
log |Xn|

n
on the size b(n) of any adjacency labeling scheme for X . A natural and important

question is: which classes admit an adjacency labeling scheme of a size that matches this
information-theoretic lower bound?

We say that a graph class X admits an implicit representation, if it admits an information-
theoretic order optimal adjacency labeling scheme, i.e., if X has a b(n)-bit labeling scheme,
where b(n) = O(log |Xn|/n). Equivalently, X admits an implicit representation if X has a
universal graph of size exp(O(log |Xn|/n)). For example, the class A of all graphs admits an
implicit representation, because

|An| = 2(
n
2) = 2�(n

2
) and b(n) = O

3
log |An|

n

4
= O(n),

and one can easily design an O(n)-bit labeling scheme for A, e.g., by assigning to each vertex
of a graph an (n+ ÁlognË)-bit label consisting of the row in an adjacency matrix of the graph
corresponding to the vertex and the index of that row; in fact, as we discuss below, the class
of all graphs admits an asymptotically optimal (1 + o(1))n/2-bit labeling scheme [3].
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However, not every class admits an implicit representation. The following example is due
to Muller [28] (see also [32]). Let Y be the class of graphs in which the number of edges does
not exceed the number of vertices. It is easy to estimate that |Yn| = 2O(n logn). To show that
this class does not admit an implicit representation, consider an arbitrary n-vertex graph
G. Obviously, G does not necessarily belong to Y, but after adding n2 ≠ n isolated vertices
to G, we obtain a graph H on N = n2 vertices that belongs to Y. Now, if an O(logn)-bit
labeling scheme for Y existed, then the O(logN)-bit adjacency labels for H could be used as
O(logn)-bit adjacency labels for G. Since, G was chosen arbitrarily, this is in contradiction
with the lower bound of log |An|

n
= �(n) on the size of any labeling scheme for the class A of

all graphs.
The crucial property used in the above example is that by adding isolated vertices to a

graph not in Y , one can obtain a graph in Y . Using more familiar terminology, one would say
that class Y is not hereditary, i.e., it is not closed under vertex removal or, equivalently, under
taking induced subgraphs. Many natural graph classes (e.g., forests, planar graphs, bipartite
graphs, geometric intersection graphs) are hereditary. It turns out that finding a hereditary
graph class that does not admit an implicit representation is a non-trivial question. The first
instance of this question was asked by Kannan, Naor, and Rudich [24] for factorial classes
(i.e., graph classes X with the speed |Xn| = 2O(n logn)), which was later stated by Spinrad [32]
in the form of a conjecture, that became known as the Implicit Graph Conjecture.

(IGC ): Any hereditary graph class of at most factorial speed admits an O(logn)-bit labeling
scheme.

This question remained open for over 30 years until a recent breakthrough by Hatami
and Hatami [23]. They showed that, for any ” > 0, there exists a hereditary factorial class
that does not admit a labeling scheme of size n1/2≠”, which is very far from the information-
theoretic lower bound of �(logn). This result leaves wide open the question of characterizing
factorial hereditary graph classes that admit an implicit representation (see e.g. [22] for more
discussion).

Factorial hereditary classes form an important family, as many classes of theoretical or
practical interest are factorial (e.g., forests, planar graphs, disk graphs, graphs of bounded
twin-width). However, as was noted by Spinrad [32], there is nothing that prevents one from
considering implicit representability of other hereditary graph classes. Spinrad [32] raised
this as the Generalized Implicit Graph Question, which we restate using the terminology of
our paper as follows.

I Question 1 ([32]). Which hereditary graph classes admit implicit representations?

The answer to this question is known for classes with |Xn| = 2�(n
2
), and for subfactorial

graph classes, i.e., classes X with |Xn| = 2o(n logn). Indeed, for the latter classes, it is known
that they have at most exponential speed, i.e., |Xn| = 2O(n) [2, 31], and also admit O(1)-bit
labeling schemes [30]. For the former classes, the O(n)-bit labeling scheme mentioned above
for the class A of all graphs is an order optimal labeling scheme. In fact, in this regime,
information-theoretic asymptotically optimal (up to the second-order term) labeling schemes
are available. For the class of all graphs, such results (in the language of universal graphs) were
available since 1965 [27, 6, 3]. For proper hereditary graph classes X with the speed 2�(n

2
), by

the Alekseev–Bollobás–Thomason theorem [1, 9], their speed is |Xn| = 2(1≠1/k(X ))n
2
/2+o(n

2
),

where k(X ) is an integer greater than 1. Recently, Bonamy, Esperet, Groenland, and Scott
showed [10] that all such classes have asymptotically optimal adjacency labeling schemes of
size (1 ≠ 1/k(X ))n/2 + o(n).
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For the classes in the intermediate range, i.e., the classes with the speed between 2�(n logn)

and 2o(n2
) the picture is much less understood (see Figure 1). Most known information

is concentrated on the lower extreme of the range, i.e., around factorial speed, which was
promoted by the Implicit Graph Conjecture. Factorial graph classes from certain families
are known to admit implicit representations: proper minor-closed graph classes [20], graph
classes of bounded degeneracy (equivalently, of bounded arboricity) [24], clique-width [15, 32]
(see also [7]), and twin-width [13] all admit implicit representations. The only lower bound
witnessing (non-constructively) factorial classes1 that do not admit an implicit representation
is the above-mentioned result by Hatami and Hatami [23]. A notable family of hereditary
graph classes where Question 1 remains open is the small graph classes, i.e., classes X with
|Xn| 6 n! cn for some constant c. These classes encompass only the bottom part of the
factorial layer and include proper minor-closed classes [8, 29], and more generally, classes of
bounded twin-width [13]. However, it is still unknown if all such classes admit an implicit
representation (see [12] for more details on implicit representation of small classes). Alon
showed [4] that every hereditary graph class X with |Xn| = 2o(n2

) admits an n1≠”-bit labeling
scheme for some ” > 0.

1.1 Our contribution

In this paper, we study Question 1 for monotone graph classes, i.e., graph classes that are
closed under taking subgraphs. Monotone graph classes form a subfamily of hereditary graph
classes. Many interesting and natural classes are monotone, for example classes of bounded
chromatic number/index, bounded clique number, bounded genus, triangle free, and so on.
Together with some previous results mentioned in the introduction, the contribution of this
paper is to give a near complete resolution of Question 1 for monotone classes.

The degeneracy of a graph G is the minimum d such that every subgraph of G has a
vertex of degree at most d. We say that a class of graphs X has bounded degeneracy, if there
exists a constant d such that the degeneracy of every graph G œ X is at most d; otherwise,
we say that X has unbounded degeneracy. Our first main result shows that degeneracy is
bounded for monotone small classes.

I Theorem 2. Let X be a monotone small class. Then, X has bounded degeneracy.

Theorem 2 has wider reaching implications than just labeling schemes, and is of independ-
ent interest. In the context of Question 1, we obtain the following result from Theorem 2
and a classical labeling scheme for classes of bounded degeneracy [24] (see also Lemma 14).

I Theorem 3. Any monotone small class admits an implicit representation.

This answers Question 1 from [12] for monotone graph classes.
We now turn to monotone classes that are not small. Our next result shows that any

monotone class with non-decreasing speed admits a labeling scheme of size at most O(logn)
away from the information-theoretic lower bound.

I Proposition 4. Let f : R>0 æ R>0 be a non-decreasing function. Then, any monotone
class of graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size
O(f(n) logn).

1 This lower bound is su�ciently large to rule out the existence of implicit representations even for
hereditary classes of size 2�(n3/2≠”), for any fixed 0 < ” < 1/2.
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Hereditary ClassesSpeed |Xn|

Sub-Factorial

2o(n logn)

X
[30]

Small

2�(n) · n!

?

Bounded
Twin-Width
X[13]

Factorial

2�(n logn) LB: n1/2≠” [23]

Super-Factorial

2o(n2
) UB: n1≠” [4]

Dense

2�(n
2
)

X
[10]

Monotone

7

LB/UB: log |Xn|
n

· logn

[Theorem 5 & Proposition 4]

7

LB/UB: log2 n

[Corollary 6]

X Theorem 3

Bounded
Degeneracy

X [25]

Minor-Closed
[20]

Figure 1 A X indicates that all classes of the given type have an implicit representation, a 7
shows that they do not, and a ? signals that the question is open. A X is inherited by every
sub-region, a 7 is inherited to the left of the marked region, and a ? only holds in that region. The
upper and lower bounds (UB and LB respectively) are stated up to constants which may depend
on the class. The dashed extension of the bounded degeneracy region illustrates its containment
of monotone small classes (Theorem 3).

This upper bound is an easy consequence of an estimation of the number of edges in
graphs from monotone classes combined with a standard labeling scheme for k-degenerate
graphs [24]. Our second main result shows that this upper bound is attained by some
monotone classes. Before stating the result formally we must briefly introduce a family
of non-decreasing functions we call “decent”. Roughly speaking, on some domain [s,Œ),
decent functions are sub-multiplicative, i.e., f(xy) 6 f(x)f(y), and moderate-growing, that
is log x 6 f(x) 6 x1≠” for some constant ” œ (0, 1), see Definition 16 for the formal definition
of decent functions.

I Theorem 5. Let f : R>0 æ R>0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most
2f(n) logn. Equivalently, X admits no adjacency labeling scheme of size at most f(n) logn.

Theorem 5 gives the existence of monotone classes requiring labels whose size is a
logn-factor above the information-theoretic lower bound. In particular, this shows that
Proposition 4 is tight. A special case of Theorem 5 (when f(x) = log x) implies that the
Implicit Graph Conjecture does not hold even for monotone graph classes. Combining this
observation with Proposition 4 gives the following result.
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I Corollary 6. For any constant c > 0, there are factorial monotone classes that do not admit
a (c log2 n)-bit labeling scheme, while any factorial monotone class admits an O(log2 n)-bit
labeling scheme.

This result (more generally Theorem 5 and Proposition 4) gives the first example of
tight bounds for families of graph classes that do not admit information-theoretic order
optimal adjacency labeling schemes. Chandoo [14] observed that the proof of the refutation
of the IGC by Hatami and Hatami [23] implies that the family of factorial classes cannot be
“described” by a countable set of factorial classes. Using the same ideas, we establish the
following result from our proof for monotone classes.

I Theorem 7. Let f : R>0 æ R>0 be any decent function, and X be any countable set of
graph classes, each with speed at most 2nf(n) logn. Then, there exists a monotone graph class
X of speed 2O(nf(n)) such that there does not exist a D œ X with X ™ D.

This shows that monotone classes are complex in the sense that they cannot be covered by
a countably infinite family of classes growing slightly faster, even if these classes are not
restricted to being hereditary (thus, also to being monotone).

1.2 Proof outline and techniques

Monotone small classes have bounded degeneracy and implicit representations

We establish Theorem 2 in the contrapositive: if a monotone class X has unbounded
degeneracy, then it is not small. To prove this we establish the following two intermediate
steps:

1. We first show that every graph of minimum degree d admits an induced subgraph with
minimum degree at least d that has a spanning tree of maximum degree at most d.

2. Next, we show that if G = Mon({G}), where G is any graph with minimum degree
d > 1000, then there exists a k œ N such that |Gk| > k! · 2kd/3.
To achieve this, we start from an induced graph H of G satisfying the previous item,
with k = |V (H)| and m = |E(H)|. Graph H can be shown to have at least 24m/5

pairwise non-isomorphic spanning subgraphs, due to its large minimum degree. Let
us denote by F this set of subgraphs. Crucially each member of F has at most 2m/10

automorphisms, due to the spanning tree of bounded maximum degree. We conclude
since |Gk| >

q
FœF

k!

aut(F )
.

Finally, to show the contrapositive of Theorem 2, we consider an arbitrary monotone class
X of unbounded degeneracy and assume that for some constant c we have |Xn| 6 n! cn for
every n œ N. Since X has unbounded degeneracy, it contains a graph G with arbitrarily
large minimum degree d. If we take d suitably large, then applying Step 2 to such a graph
yields a contradiction with the assumption of smallness of X .

Having established Theorem 2, any small monotone class X has bounded degeneracy.
Thus, Theorem 3 follows by applying a classical O(logn)-bit labeling scheme for classes of
bounded degeneracy [25], see Lemma 14 for a description of this scheme.
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Monotone classes that do not admit implicit representations

Recall that, roughly speaking2, a function f : R>0 æ R>0 is decent if log x 6 f(x) 6 x1≠”

for some constant ” œ (0, 1), and f is sub-multiplicative, i.e., f(xy) 6 f(x) · f(y), for all
x, y in the domain. Our approach is inspired by the refutation of the IGC by Hatami and
Hatami [23]. Namely, for any decent function f , we expose so many monotone classes of
speed 2nf(n) that there are not enough universal graphs of size 2f(n) logn to capture all of
them. The approach involves several key ingredients:
1. Estimation of the number of sets of graphs of fixed cardinality representable by universal

graphs. A set of graphs M is representable by a universal graph U , if every graph in
M is an induced subgraph of U . A direct estimation shows that the number of sets of
cardinality kn := Á2

Ô
nf(n)Ë of n-vertex graphs that are representable by a un-vertex

universal graph, with un := 2f(n) logn, is at most

2u
2
n · unkn

n
= 22

2f(n) logn
+kn·nf(n) logn. (1)

2. Notion of f-good graphs. We will construct our monotone classes of speed 2nf(n) by
taking the monotone closure of an appropriately chosen set of graphs. The monotonicity
and the speed of target classes impose a natural restriction on the number of edges in
graphs that can be used in such constructions. To explain, let X be a monotone class
with |Xn| 6 2nf(n). Since X is closed under taking subgraphs, if X contains an n-vertex
graph with m edges, then X contains at least 2m labeled n-vertex graphs. This, together
with the speed assumption, imply that for any G œ X and k, every subgraph of G on k
vertices contains at most kf(k) edges.
This restriction, however, is not strong enough for our purposes. Indeed, while each graph
with the above property contributes to the monotone closure an appropriate number of
subgraphs at every level (i.e., on every number of vertices), we build our desired classes
by taking the monotone closure of infinitely many of such graphs, and this can result
in some levels having too many graphs. To overcome this di�culty, we introduce the
notion of f -good graphs, which are n-vertex graphs in which the number of edges in every
k-vertex subgraph is at most kf(k) if k >

Ô
n, and at most kf(k)

log k
if 2 6 k 6 Ô

n. The
latter condition ensures that if we take the monotone closure of a set of f -good graphs,
then all su�ciently small subgraphs of any graph in this class belong to a fixed monotone
class of speed 2nf(n). Namely, the class of all n-vertex graphs in which very k-vertex
subgraph has at most kf(k)

log k
edges for every 2 6 k 6 n.

3. Construction of monotone classes of speed 2nf(n) from sets of f -good graphs. We show that
for any sequence (Mn)nœN, where Mn is a set of f -good n-vertex graphs of cardinality kn,
the monotone closure Mon(finœNMn) has speed at most 2nf(n).

4. Lower bound on the number of sets of cardinality kn of f -good n-vertex graphs. We show
that for any “ > 1, there exists some c := c(“, ”) > 0 such that for every n œ N there
are at least 2(“”/2≠o(1))·nf(n) logn many unlabeled cf -good n-vertex graphs. Thus, the
number of sets of cardinality kn of cf -good n-vertex graphs is at least

2kn·(“”/2≠o(1))·nf(n) logn. (2)

2 The formal definition of decent (Definition 16) is more general and depends on three parameters ”, C, s.
For this proof sketch it su�ces to work with the simplified (informal) definition above which only has
one parameter ”.
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By setting “ = 4/” and recalling that kn = Á2
Ô

nf(n)Ë, we show that Equation (2) is
larger than Equation (1). Therefore, there exists a monotone class Mon(finœNMn) of speed
2nf(n) that is not representable by a universal graph of size 2f(n) logn.

Many f -good graphs

A core step in the above approach is to show that for any “ > 1, there exists some c :=
c(“, ”) > 0 such that the number of n-vertex cf -good graphs grows as 2(“”/2≠o(1))·nf(n) logn.
To do so, we show that a random graph Gn ≥ G(n, “f(n)/n) is cf -good with high probability
(w.h.p.). It is in this step that we really need to use the sub-multiplicativity property of
decent functions, as we need to relate the magnitude of f at two di�erent parts of its domain.

In particular, to show that w.h.p. Gn is cf -good, we apply a first moment bound to show
there are no “large” k-vertex subgraphs of Gn with more than ckf(k) edges, and “small”
ones with more than ckf(k)/ log k edges. Observe that the number of edges › in a given
k-vertex subgraph has expectation

!
k

2

"
“f(n)

n
. Thus, for “large” subgraphs, the probability

that › is constant factor larger than ckf(k) decays with exponent Ã ≠f(k) · ln nf(k)

kf(n)
by

the Cherno� bound. From this we see that unless f(k)/f(n) > k/n, then the bound fails.
Sub-multiplicativity helps us here as it allows us to say f(n) = f(k · (n/k)) 6 f(k) · f(n/k),
moderate-growth then bounds the term f(n/k). A similar issue occurs for “small” subgraphs.

From the explanation above it may seem that needing such tight control over the ratio of
f(k) to f(n) for all k 6 n is an artifact of our proof, however some “smoothness” condition on
the function is necessary. To see this, consider a function f : N æ R>0 such that f(n) = logn,
if n is odd, and f(n) =

Ô
n, if n is even. Then, for any c > 0, and large enough even n,

G(n, f(n)/n) will not be cf -good as the restriction on the subgraphs with odd number of
vertices is far too stringent. Sub-multiplicativity was the most natural and broad condition
we could find to combat this issue, and we show in Lemma 17 that many common functions
growing at a suitable rate satisfy this.

It would be interesting to see if sub-multiplicativity can be replaced with something more
general. We also used sub-multiplicativity in Step 3 above (which corresponds to Lemma 22)
to bound the speed of Mon(finœNMn), however it is possible that some less stringent property
can be used there.

A matching upper bound on the size of adjacency labels

We show that for any non-decreasing function f : R>0 æ R>0, any monotone class with speed
2O(nf(n)) admits an O(f(n) logn)-bit labeling scheme. This follows from an easy observation
that any such class is O(f(n))-degenerate, followed by the same standard O(k logn)-bit
labeling scheme for k-degenerate graphs used to prove Theorem 3. One consequence of this
upper bound is that our result on the “f -goodness” of a random graph (Theorem 18) is tight:
for any p œ Ê(f(n)/n) and c > 0, a random graph Gn ≥ G(n, p) is not cf -good w.h.p.

1.3 Discussion

A natural question arising from our work is to characterize monotone classes that admit an
implicit representation. Motivated by the Implicit Graph Conjecture, of particular interest is
the case of factorial classes.

I Question 8. Which monotone factorial graph classes admit an O(logn)-bit labeling scheme?
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An analogous question is completely understood for constant-size adjacency sketches (a
probabilistic version of adjacency labeling schemes) that were studied in [18, 21, 22]. The
importance of constant-size adjacency sketches is that they can be derandomized to O(logn)-
bit adjacency labels [21, 22]. Thus, if a class admits constant-size adjacency sketches, then it
admits an O(logn)-bit labeling scheme. Though, the converse is not always true. Esperet,
Harms, and Kupavskii showed [16] that a monotone class admits constant-size adjacency
sketches if and only if it has bounded degeneracy. This result may suggest that bounded
degeneracy also characterizes monotone classes that admit O(logn)-bit labeling schemes.
This, however, is not the case, as the class of subgraphs of hypercubes is monotone, has
unbounded degeneracy, and admits an O(logn)-bit labeling scheme [17].

Recall that Question 1 (first raised in [32]), asks which hereditary graph classes admit
implicit representations. A prominent instance of Question 1 is whether every hereditary
small class admits an implicit representation. It was shown in [12] that for any Ÿ > 0 there
is a monotone small class which does not admit a (Ÿ logn)-bit labeling scheme; in particular,
some monotone small classes admit no information-theoretic asymptotically optimal labeling
scheme. One of our main results (Theorem 3) shows that every monotone class admits an
information-theoretic order optimal labeling scheme, i.e., an implicit representation. We
conjecture that the same holds for all hereditary small classes.

I Conjecture 9 (Small Implicit Graph Conjecture). Any hereditary small class admits an
implicit representation.

Conjecture 9 is also known to hold for classes of bounded twin-width [13].
We conclude this discussion with a more technical (yet natural) question of whether the

conditions (moderate-growth and sub-multiplicativity) of “decent” can be relaxed. Due to
the discussion under the heading “Many f -good graphs” in Section 1.2, the moderate-growth
condition is essentially necessary, and if one is to follow our method, some notion of global
“smoothness” is required to prove Theorem 18. However, it is not so clear to what extent the
sub-multiplicativity condition is necessary to achieve the required “smoothness”.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we cover some common notation
and definitions. In Section 3, we prove our first main result, namely, that any monotone small
class has bounded degeneracy, and therefore admits an implicit representation. Sections 4
and 5 are devoted to our second main result, namely, tight bounds on the size of adjacency
labeling schemes for monotone classes. In Section 4.1 we introduce two key concepts used in
the proofs. Firstly, we give the notion of f-good graphs, which are the building blocks for
the monotone classes used to prove the lower bounds. Secondly, we formally define decent
functions which describe the speeds of these monotone graph classes, before concluding
Section 4.1 with some natural examples of decent functions. In Section 4.2, we prove a
result about random graphs which is the main technical ingredient of our lower bounds. In
Section 5, we establish the lower and upper bounds on labeling schemes for monotone classes,
along with the result on the complexity of monotone graph classes.

2 Standard definitions and notation

We let [n] denote the set {1, . . . , n} of natural numbers, and use lnc x as a shorthand for
(ln x)c. We take R>0 to denote the set of non-negative real numbers. We use X ≥ D to
denote that the random variable X has distribution D. We say that a sequence of events
(An) holds with high probability (w.h.p.) if P [An ] æ 1 as n æ Œ.
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We consider finite undirected graphs, without loops or multiple edges. Given a graph G,
we write V (G) for its vertex set, and E(G) for its edge set. A graph H is a subgraph of G
if V (H) ™ V (G) and E(H) ™ E(G). Thus, H can be obtained from G by vertex and edge
deletions. The graph H is an induced subgraph of G if V (H) ™ V (G), and E(H) consists
exactly of the edges in E(G) with both endpoints in V (H). In that case, H can be obtained
from G by vertex deletions only. In the usual way, for a set of vertices U ™ V (G), we denote
by G[U ] the induced subgraph of G with the set of vertices U . We denote by e(G) the
number of edges in G

When we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n],
and we distinguish two di�erent labeled graphs even if they are isomorphic. In contrast, if
we refer to G as unlabeled graph, its vertices are indistinguishable and two isomorphic graphs
correspond to the same unlabeled graph.

A graph class is hereditary if it is closed under taking induced subgraphs, and it is
monotone if it closed under taking subgraphs. For a set X of graphs we let Her(X ) denote
the hereditary closure of X , i.e., the inclusion-wise minimal hereditary class that contains
X ; and Mon(X ) denote the monotone closure of X , i.e., the minimal monotone class that
contains X .

3 Monotone small classes admit an implicit representation

In this section we show that any monotone small class admits an implicit representation.
To do so, we first establish (Theorem 2) that any small monotone classes has bounded
degeneracy. This result has a broader scope than just implicit representations, and is of
independent interest. For example, it generalizes the fact that monotone classes of bounded
twin-width have bounded degeneracy [13, (iv) ∆ (iii) in Theorem 2.12]. The labeling scheme
for monotone small classes then follows from a classical labeling scheme for graphs of bounded
degeneracy, see Lemma 14.

We proceed with some notation and known auxiliary facts that we will employ in the
proof. Recall that for a class of graphs X , we denote by Xn the set of graphs in X with
vertex set [n]. We will denote by X u

n
the set of unlabeled n-vertex graphs in X , i.e., the set of

isomorphism classes in Xn. Observe that for an unlabeled n-vertex graph G there are exactly
n!

aut(G)
labeled graphs isomorphic to G, where aut(G) is the order of the automorphism group

of G. Thus we have

|Xn| =
ÿ

GœXu
n

n!
aut(G) .

Let F be a spanning subgraph of a fixed labeled graph G. Thus, we recall, F is defined
by a subset of E(G). We denote by #Sub(F æ G) the number of subgraphs of G isomorphic
to F , and by #Emb(F æ G) the number of embeddings of F into G, i.e., the number of
permutations from Sn that map F to an isomorphic copy of F in G. Thus,

#Emb(F æ G) = #Sub(F æ G) · aut(F ).

We will use the following well known facts (see e.g. [26]).

I Lemma 10. Let F be a spanning subgraph of a graph G. Then

aut(G) 6 #Emb(F æ G) = #Sub(F æ G) · aut(F ).

I Lemma 11. Let G be a connected graph of maximum degree �. Then

aut(G) 6 n · �! · (� ≠ 1)n≠�≠1 6 n�n≠1.
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We start with the following deceptively simple lemma.

I Lemma 12. Let G be a graph of minimum degree d. Then G has an induced subgraph H
of minimum degree at least d with a spanning tree of maximum degree at most d.

Proof. Let T be an inclusion-wise maximal tree among subgraphs of G with maximum
degree at most d. Let H be G[V (T )]. Note that any vertex v of H that has degree less than
d in T , has no neighbors among V (G) \V (H) in G, as otherwise T could have been extended
by adding any neighbor of v from V (G) \ V (H), which would contradict the maximality of
T . Thus all neighbors of v are in V (H), which implies that the minimum degree of H is
at least d. J

We show next that if a graph has large minimum degree and a spanning tree of bounded
maximum degree, then it contains many pairwise non-isomorphic spanning connected sub-
graphs with a small number of automorphisms.

I Lemma 13. Let G be an n-vertex m-edge connected graph of minimum degree d > 1000, with
a spanning tree of maximum degree at most d. Then, G contains at least 24m/5 pairwise non-
isomorphic spanning connected subgraphs F with aut(F ) 6 2m/10. Consequently, Mon({G})
contains at least n! · 2nd/3 graphs on vertex set [n].

Proof. Fix a spanning tree T of G of maximum degree at most d. Denote by F the family
of all subgraphs of G containing T . Then,

|F| = 2m≠n+1 > 2m≠ 2m
d > 29m/10,

where we used the fact that n 6 2m/d by the assumption on the minimum degree of G, and
the assumption d > 1000.

For a fixed graph F œ F , we will now estimate the number NF (F ) of graphs in F that are
isomorphic to F . This number is at most the number#Emb(T æ G) = #Sub(T æ G)·aut(T )
of embeddings of T into G. The number #Sub(T æ G) of subgraphs of G isomorphic to T
is at most

3
m

n ≠ 1

4
6

3
m

2m/d

4
6

3
ed

2

42m/d

6 2m/20,

where the last inequality holds for every d > 1000. Recalling that the maximum degree of T is
at most d and using Lemma 11, we conclude that aut(T ) 6 ndn≠1 6 22n log d. Consequently,

NF (F ) 6 #Emb(T æ G) 6 2m/20 · 22n log d 6 2m/20+2(2m/d) log d 6 2m/10, (3)

where again we used n 6 2m/d and d > 1000. Note that the bound in (3) holds for any
F œ F . Thus, the number of pairwise non-isomorphic graphs in F is at least

|F|
maxFœF NF (F ) > 29m/10 · 2≠m/10 = 24m/5.

Furthermore, for any F œ F , we have

aut(F ) 6 #Sub(T æ F ) · aut(T ) 6 #Sub(T æ G) · aut(T ) = #Emb(T æ G) 6 2m/10,

where we used Lemma 10, the fact that #Sub(T æ F ) 6 #Sub(T æ G), and (3).
Finally, the number of graphs with vertex set [n] isomorphic to a subgraph of G is at least
ÿ

FœF

n!
aut(F ) > 24m/5 · n!

2m/10
= n! · 27m/10 > n! · 2dn/3,

where in the last inequality we used m > dn/2. J
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We can now prove the main result of this section.

I Theorem 2. Let X be a monotone small class. Then, X has bounded degeneracy.

Proof. To prove the theorem we will show the contrapositive, i.e., if a class X has unbounded
degeneracy, then it is not small. Suppose towards a contradiction that X has unbounded
degeneracy, but there exists a constant c, such that |Xn| 6 n! · cn holds for every n œ N.

Since X has unbounded degeneracy and is closed under taking subgraphs, for any positive
d, the class X contains a connected graph with minimum degree at least d. Fix any
d > max{1000, 3 log c}, and let G œ X be a connected graph of minimum degree at least d.
Let G = Mon({G}). By Lemmas 12 and 13, for some n œ N we have

|Gn| > n! · 2nd/3 > n! · 2n log c = n! · cn,

where the first strict inequality holds due to d > 3 log c. Since G ™ X , this is in contradiction
with the assumed upper bound on the number of labeled graphs in X . Thus X is not
small. J

The previous result is of independent interest, and provides some structural insight on
monotone small classes. To show that some property generally holds on small monotone
classes, one can now use their degeneracy. We give the first such application of Theorem 2.

I Theorem 3. Any monotone small class admits an implicit representation.

The relevance of Theorem 2 to labeling schemes should be clear from the following folklore
bound [25], which we recall for completeness.

I Lemma 14. The class of k-degenerate graphs has a (k + 1) · ÁlognË-bit adjacency labeling
scheme.

Proof. For any k-degenerate graph G on n-vertices, we first order vertices so that each vertex
has at most k neighbors appearing after it in the ordering. This can be done greedily since
each subgraph has a vertex of degree at most k. One can then assign each vertex a label
consisting of its place in the order, followed by the places of the at most k neighbor vertices
following it in the ordering. J

Theorem 3 follows directly from Lemma 14 and Theorem 2.

4 Ingredients for the proof of the lower bound

This section contains many of the components needed to construct the classes used in the
proof of the lower bound (Theorem 5). In Section 4.1 we introduce several notions related to
subgraph density, which are then applied to random graphs in Section 4.2.

4.1 Good graphs and decent functions

Our first definition describes graphs which do not have overly dense subgraphs.

I Definition 15 (f -good). Let f : R>0 æ R>0 be a function. An n-vertex graph G is f -good
if the number of edges in any subgraph on k vertices is bounded from above by

I
k·f(k)
log k

if 2 6 k 6 Ô
n

k · f(k) if Ô
n < k 6 n

.
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We observe that f -goodness is a monotone property, i.e., if a graph G is f -good, then
so is any of its subgraphs. Indeed, moving the threshold (between the first and the second,
more relaxed, upper bound) from

Ô
n down to a smaller value may only help in satisfying

these bounds.
The next definition gives a class of functions used to describe speeds of monotone classes,

where, for such a function f(n), we will consider classes of growth 2nf(n).

I Definition 16 ((”, C, s)-decent). For constants ” œ (0, 1), C > 1 and s > 2, we say that a
non-decreasing function f : R>0 æ R>0 is (”, C, s)-decent if the following properties hold
(Moderate-growth): log x 6 f(x) 6 C · x1≠” holds for every x œ [s,Œ),
(Sub-multiplicativity): f(xy) 6 C · f(x) · f(y) holds for any x, y œ [s,Œ).

We say that a function f is decent if there exist some constants ” œ (0, 1), C > 1, and
s > 2 such that f is (”, C, s)-decent. For any constant Ÿ > 1, the function f(x) = Ÿ log x is
decent; this captures factorial growth. We now give some other natural examples of decent
functions, due to space constraints a proof can be found in the full version [11].

I Lemma 17. For any fixed – > 0,— > 1, “ > 1 and d œ (0, 1), the following are decent:
(i) f(x) = –xd,
(ii) f(x) = exp

1
– · lnd x

2
,

(iii) f(x) = exp (— · ln“(log x)),
(iv) f(x) = — · g(x), where g(x) is decent,
(v) f(x) = g(x) · h(x), where g(x), h(x) are decent and g(x) · h(x) is moderately-growing.

4.2 Growth of the number of edges in subgraphs of random graphs

The aim of this Section is to show that there are many graphs which are suitable for building
the classes we need to prove Theorem 5. We will achieve this using random graphs, where
G(n, p) denotes the distribution on n-vertex graphs where each edge is included independently
with probability p, see (for example) [19]. Our main result shows that random graphs are
suitable with high probably.

I Theorem 18. Let f : R>0 æ R>0 be (”, C, s)-decent for some constants ” œ (0, 1), C > 1,
and s > 2. Then, for any fixed “ > 1, there exists c := c(”, C, s, “) > 0 such that, for large n,

P [G(n, “f(n)/n) is not (cf)-good ] 6 n≠2.

To prove this we will utilize the following version of the Cherno� bound (see [5, Theorem
A.1.15]), where Bin(N, p) denotes the binomial distribution with parameters N and p.

I Lemma 19 (Cherno� bound). Let › ≥ Bin(N, p), µ = Np, and a, t > 0. Then,

P(› > (1 + a)µ) 6
3

ea

(1 + a)1+a

4µ

6 exp
3

≠(1 + a)µ · ln 1 + a

e

4
.

Proof of Theorem 18. Let p := p(n) = “f(n)/n, and let c1, c2 be su�ciently large constants
(depending on “) fixed later. Let E1,k (respectively E2,k) be the event that there are no
subgraphs of size k with more than c1kf(k)/ log k edges (respectively c2kf(k) edges). Observe
that if c = max{c1, c2,

!
s

2

"
}, then

{G(n, p) is not (cf)-good} ™

Q

a
Â
Ô
nÊ€

k=s

¬E1,k

R

b fi

Q

a
n€

k=Â
Ô
nÊ+1

¬E2,k

R

b . (4)
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Let k denote the number of vertices in a subgraph, and thus › ≥ Bin
1!

k

2

"
, p

2
denotes

the number of edges in a given k-vertex subgraph. The expectation of › is

µ :=
3
k

2

4
p = “

2 · k(k ≠ 1)f(n)
n

.

On the other hand, the number of ways to select a k-vertex subgraph is
3
n

k

4
6

1en

k

2k

= exp
1
k ln n

k
+ k

2
6 exp (2k lnn) . (5)

Our strategy will be to bound the probability of the events on the right-hand side of (4)
using the union and Cherno� bounds.

We begin by considering events of the form E2,k and thus can assume that Â
Ô
nÊ+1 6 k 6 n.

Observe that since f is sub-multiplicative, non-decreasing, and moderately-growing, we have
f(k)
f(n) = f(k)

f
!
n

k
· k

" > f(k)
C · f(n

k
) · f(k) > f(k)

C · f( sn
k
) · f(k) > f(k)

C2 · ( sn
k
)1≠” · f(k) > k

C2s · n. (6)

If we now fix

c2 = C2s · e2 · “ > 6, (7)

then by (6) we have
2c2nf(k)

e“(k ≠ 1)f(n) = 2C2se · nf(k)
(k ≠ 1)f(n) > 2ek

k ≠ 1 > e. (8)

So, applying Cherno� bound (Lemma 19) with 1 + a = c2kf(k)
µ

= 2c2nf(k)
“(k≠1)f(n)

gives

P(› > c2kf(k)) 6 exp
3

≠(1 + a)µ · ln 1 + a

e

4

= exp
3

≠c2kf(k) · ln
2c2nf(k)

e“(k ≠ 1)f(n)

4

(8)

6 exp (≠c2kf(k))
(7)

6 exp (≠6kf(k)) . (9)

Thus, by (5), (9), the union bound, and as f(k) > log k > ln k, we have

P

Q

a
n€

k=Â
Ô
nÊ+1

¬E2,k

R

b 6
nÿ

k=Â
Ô
nÊ+1

exp (2k lnn) · exp (≠6kf(k)) 6
nÿ

k=Â
Ô
nÊ+1

k≠k

6 exp(≠
Ô
n). (10)

We now treat events of the form E1,k, and thus we can assume that s 6 k 6 Â
Ô
nÊ.

Observe that for any fixed constant d > 0 and su�ciently large n we have n
2/3

k(log k)d
> s as

k 6 Ô
n. Thus, by sub-multiplicativity, and moderate-growth we have

f

3
n2/3

(log k)d

4
= f

3
n2/3

k(log k)d · k
4

6 C · f
3

n2/3

k(log k)d

4
· f (k)

6 C2 ·
3

n2/3

k(log k)d

41≠”

· f(k)

6 C2 · n2/3

k(log k)d · f(k).
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Similarly, by sub-multiplicativity and moderate-growth, we have

f(n) = f

3
n2/3

(log k)d · n1/3(log k)d
4

6 C · f
3

n2/3

(log k)d

4
· f

1
n1/3(log k)d

2

6 C2 · f
3

n2/3

(log k)d

4
· n(1≠”)/3(log k)(1≠”)·d.

If we set d = 1/” > 0 then the two bounds above give

f(k)
f(n) >

f
1

n
2/3

(log k)d

2
· k(log k)

d

C2n2/3

C2 · f
1

n2/3

(log k)d

2
· n(1≠”)/3(log k)(1≠”)·d

= k(log k)”d

C4n1≠”/3
= k log k

C4n
· n”/3. (11)

Foreseeing the need for the constant 15 later on, we now set

c1 = e · 15 · C4“/”. (12)

We now set 1 + a := c1kf(k)
µ·log k

, which by (11) satisfies

1 + a = c1kf(k)
µ · log k = 2c1nf(k)

“(k ≠ 1)f(n) log k > 2c1k
“(k ≠ 1)C4

· n”/3 > e · n”/3. (13)

As before, Cherno� bound (Lemma 19) with this 1 + a gives

P
3

› >
c1kf(k)
log k

4
6 exp

3
≠c1kf(k)

log k · ln 1 + a

e

4
(13)

6 exp
3

≠c1kf(k)
log k · ”

3 lnn
4
. (14)

Recall that the bound f(k) > log k holds by moderate-growth. Applying this to (14) yields

P
3

› >
c1kf(k)
log k

4
6 exp

3
≠c1k · ”

3 lnn
4

(12)

6 exp (≠5k lnn) . (15)

Thus, by (5), (15), and the union bound,

P

Q

a
Â
Ô
nÊ€

k=s

¬E1,k

R

b 6
Â
Ô
nÊÿ

k=s

exp (2k lnn) · exp (≠5k lnn) 6
Ô
n · n≠3s 6 n≠5. (16)

The result follows by taking c = max{c1, c2,
!
s

2

"
}, (4), and the union bound over (10) and

(16). J

We now use Theorem 18 to prove Lemma 21, which bounds the number of cf -good graphs
from below. To prove Lemma 21, it is convenient to switch to an alternative model of random
graphs with a fixed number of edges. We let G(n,m) to denote the uniform distribution on
n-vertex graphs with m edges. The following lemma allows us to transfer results from one
graph model to another.

I Lemma 20. Let P be any graph property (i.e., graph class) and 0 6 p 6 1 satisfy p
!
n

2

"
æ Œ

and
!
n

2

"
≠ p

!
n

2

"
æ Œ and m =

'
p
!
n

2

"(
. Then, for Gn ≥ G(n,m) and GÕ

n
≥ G(n, p), we have

P [Gn œ P ] 6 10
Ô
m · P [GÕ

n
œ P ] .
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Lemma 20 follows by a very minor adaption of [19, Lemma 3.2], the only di�erence is
a ceiling in the number of edges, which makes no di�erence in the proof.

I Lemma 21. Let f : R>0 æ R>0 be (”, C, s)-decent for some constants ” œ (0, 1), C > 1,
and s > 2. Then, for any fixed “ > 1, there exists some c := c(“, ”, C, s) > 0 such that
for every n œ N there are at least 2(“”/2≠o(1))·nf(n) logn many unlabeled (cf)-good n-vertex
graphs.

Proof. Let m :=
'

“(n≠1)f(n)

2

(
and Gn ≥ G

!
n,m

"
. Observe that by Theorem 18 and

Lemma 20, there exists some fixed c > 0 such that for su�ciently large n

P [Gn is (cf)-good ] > 1 ≠ 10
Ò'

“(n≠1)f(n)

2

(
· n≠2 = 1 ≠ o(1). (17)

The number of labeled graphs in the support of G
!
n,m

"
is

3!
n

2

"

m

4
=

3 !
n

2

"
Ï

“(n≠1)f(n)

2

Ì
4

>
3

n

“f(n)

4 “(n≠1)f(n)

2

= 2
“
2 ·(n≠1)f(n)·(logn≠log(“f(n))).

By (17), a 1 ≠ o(1) fraction of these labeled graphs are (cf)-good. Furthermore, there are at
most n! 6 nn labelings of a given unlabeled graph. Thus, the number of unlabeled n-vertex
(cf)-good graphs is bounded from below by

(1 ≠ o(1)) · 1
nn

· 2
“
2 ·(n≠1)f(n)·(logn≠log(“f(n))) = 2

“
2 ·nf(n)·(logn≠log(f(n))≠O(1))

> 2
“
2 ·nf(n)·(logn≠(1≠”) log(n)≠O(1))

= 2(”“/2≠o(1))·nf(n) logn,

as claimed, since logn 6 f(n) 6 Cn1≠” by moderate-growth. J

5 Tight bounds on labeling schemes for monotone classes

We begin in Section 5.1 with a lemma which is useful for bounding the speed when constructing
monotone classes with no implicit representation. This is then used to prove our lower bound
in Section 5.2. Finally, in Section 5.3 we give a matching upper bound on labeling schemes
for monotone classes, this follows from [25] and included mainly for completeness.

5.1 Construction of monotone classes

We begin with a lemma showing that, for a decent function f , we can create monotone
classes from the union of many f -good graphs and still maintain control over the speed. The
proof follows the broad idea of [23, Claim 3.1].

I Lemma 22. Let f : R>0 æ R>0 be (”, C, s)-decent for some constants ” œ (0, 1), C > 1, and
s > 2. Let c > 0 be a constant, and, for every n œ N, let Mn be any set of (cf)-good unlabeled
n-vertex graphs satisfying |Mn| 6

'
2
Ô

nf(n)
(
. Then the speed of X := Mon(finœNMn) is

2O(nf(n)).

Proof. Let Y := Her(finœNMn). Note that X = Mon(Y). We first estimate the speed of
Y. For an n-vertex graph G œ Y, let N be the smallest integer such that G is an induced
subgraph of a graph H œ MN . We split the proof over two cases: (i): N > n2, and (ii):
N < n2.
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Case (i): Since H is a (cf)-good N -vertex graph and G is its n-vertex induced sub-
graph, where n 6

Ô
N , it follows from Definition 15 that G must have at most

g(n) := cnf(n)/ logn many edges. The number of such graphs is at most
3 !

n

2

"

g(n)

4
6

3
n2e

g(n)

4g(n)

= 2g(n)·log
n2e
g(n) = 2c

nf(n)
logn ·log n2e

g(n) = 2O(nf(n)),

and so Y contains 2O(nf(n)) many n-vertex labeled graphs each of which is an induced
subgraph of a graph in MN for some N with n 6

Ô
N .

Case (ii): For this case, we simply use the fact that any H œ MN has at most Nn many
n-vertex induced subgraphs. Thus, the number of n-vertex labeled graphs in Y each of
which is an induced subgraph of a graph in MN for some N with N < n2 is bounded
from above by

n! ·
n
2ÿ

N=n

Nn · |MN | 6 n! ·
n
2ÿ

N=n

Nn ·
Ï
2
Ô

Nf(N)

Ì

6 n! · n2 · (n2)n ·
Ï
2
Ô

n2f(n2)
Ì

6 2O(n logn) ·
Ï
2

Ô
Cnf(n)

Ì

= 2O(nf(n)),

where in the last inequality we used sub-multiplicativity of f , and in the final equality we
used the fact that f(x) > log x.

Thus, |Yn| = 2O(nf(n)). Now, since every n-vertex labeled graph in X is a subgraph of an
n-vertex labeled graph in Y, and, due to (cf)-goodness, every graph in Yn has at most
2cnf(n) n-vertex subgraphs, we conclude that |Xn| 6 |Yn| · 2cnf(n) = 2O(nf(n)). J

5.2 Lower bound

We can now show the main result of the paper, which we recall for convenience.

I Theorem 5. Let f : R>0 æ R>0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most
2f(n) logn. Equivalently, X admits no adjacency labeling scheme of size at most f(n) logn.
Proof. By assumption f : R>0 æ R>0 is (”, C, s)-decent for some constants ” œ (0, 1), C > 1,
and s > 2. We will construct a monotone class (via the probabilistic method) with the speed
2O(nf(n)) that does not admit a universal graph of size un := 2f(n) logn. Fix “ := 4/” > 1
and let c := c(“, ”, C, s) > 0 be the satisfying constant from Theorem 18 corresponding to
this choice of “. Let kn :=

Ï
2
Ô

nf(n)

Ì
.

The number of distinct un-vertex graphs is at most 2u2
n and the number of n-vertex

induced subgraphs of a fixed un-vertex graph is at most
!
un

n

"
. Hence the number of collections

of kn graphs on n vertices that are induced subgraphs of a un-vertex (universal) graph is at
most

2u
2
n ·

3!
un

n

"

kn

4
6 2u

2
n · ukn·n

n
. (18)

On the other hand, from Lemma 21, the number of di�erent collections of n-vertex
(cf)-good graphs of cardinality kn is at least

3
2(“”/2≠o(1))·nf(n) logn

kn

4
>

3
2(“”/2≠o(1))·nf(n) logn

kn

4kn

= 2kn·(“”/2≠o(1))·nf(n) logn, (19)
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as log kn = O(

nf(n)) = o(nf(n) logn). By taking logarithms, we can see that for

su�ciently large n the upper bound (18) is smaller than the lower bound (19). In particular,
taking the logarithm of (18) gives

log
1
2u

2
n · ukn·n

n

2
= u2

n
+ kn · n log un

= 22f(n) logn + kn · nf(n) logn
= (1 + o(1)) · kn · nf(n) logn,

as kn :=
Ï
2
Ô

nf(n)

Ì
= Ê(22f(n) logn). However, since “ = 4/”, the logarithm of (19) is

log
1
2kn·(“”/2≠o(1))·nf(n) logn

2
= kn · (“”/2 ≠ o(1)) · nf(n) logn

= (2 ≠ o(1)) · kn · nf(n) logn.

Thus, for any su�ciently large n, there exists a collection Mn of kn (cf)-good n-vertex
graphs that are not representable by any universal graph of size at most un = 2f(n) logn.
Consequently, by Lemma 22, the speed of X := Mon(finMn) is |Xn| = 2O(nf(n)) and X does
not admit a universal graph of size at most 2f(n) logn. J

5.3 Upper bound

In this section we prove the following upper bound on labeling schemes for monotone classes.

I Proposition 4. Let f : R>0 æ R>0 be a non-decreasing function. Then, any monotone
class of graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size
O(f(n) logn).

Proof. Let X be a monotone class with at most 2Cnf(n) labeled n-vertex graphs for every
n. If an n-vertex graph G œ X has m edges, then X contains at least 2m labeled n-vertex
graphs, as every subgraph of G also belongs to X due to monotonicity.

This implies that every n-vertex graph G in X contains at most Cnf(n) edges, and hence,
has a vertex of degree at most 2Cf(n). Due to monotonicity of f , the same is true for every
subgraph of G. Indeed, if H is a k-vertex subgraph of G, then, since H belongs to X , the
number of edges in H is at most Ckf(k) 6 Ckf(n), and therefore H has a vertex of degree
at most 2Cf(n). Thus, every n-vertex graph in X is 2Cf(n)-degenerate, and Lemma 14
implies that X admits a (2Cf(n) + 1) · ÁlognË-bit labeling scheme. J

5.4 Complexity of monotone classes

The following result shows that monotone classes are complex in the sense that they cannot
be “described” by even a countable number of classes of a slightly larger speed. The proof of
this theorem follows the exact same idea as [14, Lemma 2.4], also see [12, Theorem 1.2] for
the proof of a similar theorem in the context of small classes.

I Theorem 7. Let f : R>0 æ R>0 be any decent function, and X be any countable set of
graph classes, each with speed at most 2nf(n) logn. Then, there exists a monotone graph class
X of speed 2O(nf(n)) such that there does not exist a D œ X with X ™ D.
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Proof. Let X be a monotone class with at most 2Cnf(n) labeled n-vertex graphs for every
n. If an n-vertex graph G œ X has m edges, then X contains at least 2m labeled n-vertex
graphs, as every subgraph of G also belongs to X due to monotonicity.

This implies that every n-vertex graph G in X contains at most Cnf(n) edges, and hence,
has a vertex of degree at most 2Cf(n). Due to monotonicity of f , the same is true for every
subgraph of G. Indeed, if H is a k-vertex subgraph of G, then, since H belongs to X , the
number of edges in H is at most Ckf(k) 6 Ckf(n), and therefore H has a vertex of degree
at most 2Cf(n). Thus, every n-vertex graph in X is 2Cf(n)-degenerate, and Lemma 14
implies that X admits a (2Cf(n) + 1) · ÁlognË-bit labeling scheme. J
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Abstract

We provide polynomial-time reductions between three search problems from three distinct areas:
the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orienta-
tion (USO), and a variant of the –-Ham Sandwich problem. For all three settings, we show that
“two choices are enough”, meaning that the general non-binary version of the problem can be reduced
in polynomial time to the binary version. This specifically means that generalized P-LCPs are
equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by
showing that both the P-LCP and our –-Ham Sandwich variant are equivalent to a new problem we
introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as
P-LCPs.
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1 Introduction
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Figure 1 Red: Reductions we show in this paper. Black: Existing reductions and trivial inclusions.

In this paper we study three search problems from three distinct areas: the problem
of solving a P-matrix linear complementarity problem (P-LCP), an algebraic problem, the
problem of finding the sink of a unique sink orientation (USO), a combinatorial problem,
and a variant of the –-Ham Sandwich problem, a geometric problem. Our results are a suite
of reductions between these problems, which are shown in Figure 1.

There are two main themes for these reductions.
Two choices are enough. For all three settings, the problems can be restricted to
variants in which all choices are binary. In all three cases we show that the general
non-binary problem can be reduced in polynomial time to the binary version.
A new tool for working with P-LCPs. We introduce the P-Lin-Bellman problem,
which serves as a crucial intermediate problem for our reductions with P-LCPs, and
provides a new tool for showing equivalence to the P-LCP problem.

We now describe each of the three problems and our results.

P-Matrix LCPs. In the Linear Complementarity Problem (LCP), we are given an n ◊ n

matrix M and an n-dimensional vector q, and we are asked to find two n-dimensional
vectors w, z such that w = Mz + q, both w and z are non-negative, and w and z satisfy the
complementarity condition of wT

z = 0. In general, there is no guarantee that an LCP has a
solution. However, if M is promised to be a P-matrix, that is, all its principal minors are
positive, then the LCP problem always has a unique solution for every possible q [19], and
we call this the P-LCP problem.

The P-LCP problem is important because many optimization problems reduce to it, for
example, Linear Programming [12, 16] and Strictly Convex Quadratic Programming [5, 20],
and solving a Simple Stochastic Game (SSG) [11, 23]. However, the complexity status
of the P-LCP remains a major open question. The P-LCP problem is not known to be
polynomial-time solvable, but NP-hardness (in the sense that an oracle for it could be used
to solve SAT in polynomial time) would imply NP = co-NP [18].

The P-LCP problem naturally encodes problems that have two choices. This property
arises from the complementarity condition, where for each index i, one must choose either
wi = 0 or zi = 0. Thus the problem can be seen as making one of two choices for each of the
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n possible dimensions of w and z. For example, this means that the direct encoding of a
Simple Stochastic Game as a P-LCP [16] only works for binary games, in which each vertex
has exactly two outgoing edges, and for each vertex the choice between the two outgoing
edges is encoded by choosing between wi and zi.

To directly encode a non-binary SSG one must instead turn to generalized LCPs, which
allow for more than two choices in the complementarity condition [23]. Generalized LCPs,
which were defined by Habetler and Szanc [15], also have a P-matrix version, which we will
refer to as P-GLCP.

Two choices are enough for P-LCPs. Our first main result is to show that P-GLCP and
P-LCP are polynomial-time equivalent problems. Every P-LCP is a P-GLCP by definition,
so our contribution is to give a polynomial-time reduction from P-GLCP to P-LCP, meaning
that any problem that can be formulated as a P-GLCP can also be e�ciently recast as a
P-LCP. Such a result was already claimed in 1995, but later a counterexample to a crucial
step in the proof was found by the same author [6, 7].

To show this result we draw inspiration from the world of infinite games. SSGs are a
special case of stochastic discounted games (SDGs), which are known to be reducible in
polynomial-time to the P-LCP problem [16, 17]. This reduction first writes down a system
of Bellman equations for the game, which are a system of linear equations using min and max
operations. These equations are then formulated as a P-LCP using the complementarity
condition to encode the min and max operations.

We introduce a generalization of the Bellman equations for SDGs, which we call P-Lin-
Bellman. We show that the existing reduction from SDGs to P-LCP continues to work
for P-Lin-Bellman, and we show that we can polynomial-time reduce P-LCP to P-Lin-
Bellman. Thus, we obtain a Bellman-equation type problem that is equivalent to P-LCP.

Then we use P-Lin-Bellman as a tool to reduce P-GLCP to P-LCP. Specifically we show
that a P-GLCP can be reduced to P-Lin-Bellman. Here our use of P-Lin-Bellman as an
intermediary shows its usefulness: while it is not at all clear how one can reduce P-GLCP
to P-LCP directly, when both problems are formulated as P-Lin-Bellman instances, their
equivalence essentially boils down to the fact that max(a, b, c) = max(a,max(b, c)).

Unique Sink Orientations. A Unique Sink Orientation (USO) is an orientation of the
n-dimensional hypercube such that every subcube contains a unique sink. An example of an
USO can be found in Figure 2. The goal is to find the unique sink of the entire hypercube.
USOs were introduced by Stickney and Watson [22] as a combinatorial abstraction of the
candidate solutions of the P-LCP and have been studied ever since Szabó and Welzl formally
defined them in 2001 [24].

Figure 2 A 3-dimensional USO. The marked vertex denotes its unique global sink.

USOs have received much attention because many problems are known to reduce to them.
This includes linear programming and more generally convex quadratic programming, simple
stochastic games, and finding the smallest enclosing ball of given points.
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As with P-LCPs, USOs naturally capture problems in which there are two choices. Each
dimension of the cube allows us to pick between one of two faces, and thus each vertex of
the cube is the result of making n binary choices. To remove this restriction, prior work has
studied unique sink orientations of products of complete graphs [10], which the literature
somewhat confusingly calls grid USOs. For example, as with P-LCP, the direct reduction
from SSGs to USOs only works for binary games, while a direct reduction from non-binary
games yields a grid USO.

Two choices are enough for USOs. Our second main result is to show that grid USOs
and cube USOs are polynomial-time equivalent problems. Every cube USO is a grid USO by
definition, so our contribution is to provide a polynomial-time reduction from grid USOs to
cube USOs. Despite many researchers suspecting that grid USOs are a strict generalization
of cube USOs, our result shows that at least in the promise setting, the two problems
are computationally equivalent. For the reduction we embed a k-regular grid into a (also
k-regular) k-cube. The main challenge to overcome is that the k-cube contains many more
vertices and significantly more edges. These edges need to be oriented in such a way to be
consistent with the orientation of the grid, and this orientation also needs to be computable
locally, i.e., without looking at the whole orientation of the grid.

It should be noted that while P-LCP is known to reduce to cube USOs, and P-GLCP is
known to reduce to grid USOs, neither of our “two choices is enough” results imply each other.
This is because there is no known reduction from an USO-type problem to an LCP-type
problem.

Equivalence between P-LCP and Colorful Tangent Problems. The Ham Sandwich theorem
is a classical theorem in computational geometry: given d sets of points in Rd, we can find
a hyperplane that simultaneously bisects all of the sets. Steiger and Zhao [21] have shown
that in a restricted input setting we can not only bisect, but cut o� arbitrary fractions
of each point set. This is the so-called –-Ham Sandwich theorem: if the point sets are
well-separated, then for each vector – there exists a unique choice of one point per set, such
that the hyperplane spanned by these points has exactly –i of the points from set i above.
The –-Ham Sandwich problem asks to determine this unique choice of one point per set.

In this paper, we consider a restricted variant of the –-Ham Sandwich problem. Firstly,
we slightly strengthen the assumption of well-separation to strong well-separation. Secondly
we restrict the input vector – such that each entry takes either be the minimum or maximum
possible value. This means that for every point set, either all points of the set must lie above,
or all below the desired –-cut. Thus, the –-cuts we search for are tangents to all the point
sets. Combining the assumption of strong well-separation and the solutions being tangents,
we call this problem SWS-Colorful-Tangent. We also consider the binary variant of the
problem, which we call SWS-2P-Colorful-Tangent, where we restrict the size of each
point set to 2; finding an –-cut then corresponds to a series of binary choices, one per set.

Here our contribution is to show that SWS-Colorful-Tangent is polynomial-time
equivalent to the P-LCP problem. Our new intermediate problem P-Lin-Bellman plays
a crucial role in this result: we give a polynomial-time reduction from SWS-Colorful-
Tangent to P-Lin-Bellman, and a polynomial-time reduction from P-Lin-Bellman
to SWS-2P-Colorful-Tangent. This also shows that two choices are enough for this
problem as well.

For these reductions, we consider the point-hyperplane dual of the colorful tangent
problems. In the dual, every input point becomes a hyperplane, and the solution we search
for is a point lying on one hyperplane of each color, and lying either above or below all
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other hyperplanes. This can be encoded in the min and max operations of the P-Lin-
Bellman problem. This demonstrates the usefulness of P-Lin-Bellman as an intermediate
problem, since it has allowed us to show what is – to the best of our knowledge – the first
polynomial-time equivalence between P-LCP and another problem.

Related Work. All problems we consider in this paper are promise search problems which
lie in the complexity class PromiseUEOPL [2, 3], which is the promise setting analogue of the
class UEOPL (short for Unique End of Potential Line) [9]. The latter has recently attracted
the attention of many researchers trying to further the understanding of the hierarchy of
total search problem classes, with a breakthrough result separating UEOPL from EOPL [14].
There is only one known natural1 complete problem for UEOPL, called One Permutation
Discrete Contraction (OPDC). OPDC also admits a natural binary variant, and it has
already been shown implicitly that the binary variant is polynomial-time equivalent to the
general variant [9]. Our reductions may help in finding another natural UEOPL-complete
problem, even though our results for now only hold in the promise setting.

2 A New Intermediate Problem: P-Lin-Bellman

Our new P-Lin-Bellman problem is motivated by discounted games. A stochastic discounted
game (SDG) is defined by a set of states S, which are partitioned into SMax and SMin, a set
of actions A, a transition function p : S ◊ A ◊ S æ R, a reward function r : S ◊ A æ R, and
a discount factor ⁄. The value of a SDG is known to be the solution to the following system
of Bellman equations. For each state s we have an equation

xs =
I
maxaœA

!
r(s, a) + ⁄ ·

q
sÕœS p(s, a, sÕ) · xsÕ

"
if s œ SMax,

minaœA

!
r(s, a) + ⁄ ·

q
sÕœS p(s, a, sÕ) · xsÕ

"
if s œ SMin.

Prior work has shown that, if the game is binary, meaning that |A| = 2, then these Bellman
equations can be formulated as a P-LCP [17, 16].

For our purposes, we are interested in the format of these equations. Note that each
equation is a max or min over a�ne functions of the other variables. We capture this idea in
the following generalized definition.

I Definition 1. A Lin-Bellman system G = (L,R, q, S) is defined by two matrices L,R œ
Rn◊n, a vector q œ Rn, and a set S ™ {1, 2, . . . , n}. These inputs define the following system
of equations over a vector of variables x œ Rn:

xi =
I
max(

q
1ÆjÆn Lijxj + qi,

q
1ÆjÆn Rijxj) if i œ S,

min(
q

1ÆjÆn Lijxj + qi,
q

1ÆjÆn Rijxj) if i ”œ S.
(1)

Observe that this definition captures systems of equations in which a min or max operation
is taken over two a�ne expressions in the other variables. Note that here we have included
the additive q term only in the first of the two expressions (the second is thus linear), whereas
the SDG equations have additive terms in all of the a�ne expressions. This is because, for
our reductions, we do not need the second additive term. Otherwise, this definition captures
the style of Bellman equations that are used in SDGs and other infinite games.

1 By natural we mean a problem that is not a variant of the Unique End of Potential Line problem which
naturally characterizes the class.
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We say that x œ Rn is a solution of a Lin-Bellman system G if Equation (1) is satisfied
for all i. In general, however, such an x may not exist or may not be unique. To get a
problem that is equivalent to P-LCP, we need a restriction that ensures that the problem
always has a unique solution, like the P-matrix restriction on the LCP problem.

To make sure that a unique solution exists, we introduce a promise to yield the promise
problem P-Lin-Bellman. As the promise we guarantee the same property that is implied
by the promise of the P-LCP: For every q

Õ œ Rn, the given Lin-Bellman system shall have
a unique solution. We use the following restriction.

I Definition 2. P-Lin-Bellman

Input: A Lin-Bellman system G = (L,R, q, S).
Promise: The Lin-Bellman system (L,R, q

Õ
, S) has a unique solution for every q

Õ œ Rn.
Output: A solution x œ Rn of G.

This promise insists that the linear equations not only have a unique solution for the
given vector q, but that they also have a unique solution no matter what vector q is given.
This is analogous to a property from SDGs: an SDG has a unique solution no matter the
rewards for the actions, and this corresponds to the additive q vector in the problem above.

Similarly to the LCP, where unique solutions for any right-hand side q imply that
the matrix M is a P-matrix (and vice versa), this promise of P-Lin-Bellman implies
something about the involved matrices. However, for P-Lin-Bellman we do not have a
full characterization of the systems (L,R, ·, S) that fulfill the promise. We only have the
following rather weak necessary condition (proven in the full version of the paper), which is
however useful for several of our reductions.

I Lemma 3. In any P-Lin-Bellman instance, R ≠ I is invertible.

Since P-Lin-Bellman is so similar to the P-LCP, we will prove the equivalence of
P-LCP and P-Lin-Bellman first, in the next section.

3 Linear Complementarity Problems

We begin by giving the definitions of the (binary) linear complementarity problems.

I Definition 4. LCP(M, q)
Input: An n ◊ n matrix M and a vector q œ Rn.
Output: Two vectors w, z œ Rn such that

w = Mz + q,
w, z Ø 0, and
w

T · z = 0.
We are particularly interested in the case where the input matrix M is a P-matrix.

I Definition 5. An n ◊ n matrix M is a P-matrix if every principal minor of M is positive.

One particularly interesting feature of the P-matrix Linear Complementarity Problem is
that it always has a unique solution.

I Theorem 6 ([5]). M is a P-matrix if and only if LCP(M, q) has a unique solution for
every q œ Rn.

There are two problems associated with P-matrix LCPs. The first problem is a total
search problem in which we must either solve the LCP, or show that the input matrix M is
not a P-matrix by producing a non-positive principal minor of M . The second problem is a
promise problem, where the promise is that the input is a P-matrix.
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I Definition 7. P-LCP(M, q)
Input: An n ◊ n matrix M and a vector q œ Rn.
Promise: M is a P-matrix.
Output: Two vectors w, z œ Rn that are solutions of LCP(M, q).

In the next two sections, we will show that P-Lin-Bellman and P-LCP are equivalent
under polynomial-time many-one reductions.

3.1 P-LCP to P-Lin-Bellman

Let M œ Rn◊n and q œ Rn be an instance of P-LCP. We will build a P-Lin-Bellman
instance G(M, q) in the following way. For each i in the range 1 Æ i Æ n, we set

xi = min((Mx+ x)i + qi, 2xi). (2)

In other words, we set L = M + I, R = 2I, and S = ÿ. We first show that every solution of
G(M, q) corresponds to a solution of the LCP. We do not need to use any properties of the
P-matrix in this part of the proof.

I Lemma 8. A vector z œ Rn is a solution of the Lin-Bellman system G(M, q) if and only
if z and w = Mz + q are a solution of LCP(M, q).

Proof. If z solves Equation (2) then we have min(Mz + z + q, 2z) ≠ z = 0, and hence that
min(Mz + q, z) = 0. This implies that both z and w are non-negative:

z Ø min(Mz + q, z) = 0,
w = Mz + q Ø min(Mz + q, z) = 0.

Moreover, since min(Mz + q, z) = 0, the complementarity condition also holds. Hence w and
z are a solution of the LCP.

In the other direction, if w and z are solutions of the LCP, then we argue that z must be
a solution of G(M, q). This is because any solution of the LCP satisfies min(Mz + q, z) = 0
due to the complementarity condition, and so we must have that z solves Equation (2). J

Next we show that the promise of P-Lin-Bellman is also satisfied.

I Lemma 9. If M is a P-matrix, then G(M, q) satisfies the promise of P-Lin-Bellman.

Proof. We must show that the Lin-Bellman system G(M, q
Õ) has a unique solution for

every q
Õ. This follows from Lemma 8, which shows that G(M, q

Õ) has a unique solution if
and only if the LCP defined by M and q

Õ has a unique solution, which follows from the fact
that M is a P-matrix. J

3.2 P-Lin-Bellman to P-LCP

For this direction, we follow and generalize the approach used by JurdziÒski and Savani [17].
Suppose that we have a P-Lin-Bellman instance defined by G = (L,R, q, S).

The reduction is based on the idea of simulating the operation x = max(a, b) by introducing
two non-negative slack variables w and z:

x ≠ w = a, x ≠ z = b, w, z Ø 0, w · z = 0.
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Since w and z are both non-negative, any solution to the system of equations above must
satisfy x Ø max(a, b). Moreover, since the complementarity condition insists that either
w = 0 or z = 0, we have that x = max(a, b).

An operation x = min(a, b) can likewise be simulated by

x+ w = a, x+ z = b, w, z Ø 0, w · z = 0.

We use this technique to rewrite the system of equations given in (1) in the following
way. For each i in 1 Æ i Æ n we have the following.

xi + wi =
ÿ

1ÆjÆn

Lij · xj + qi, if i ”œ S (3)

xi ≠ wi =
ÿ

1ÆjÆn

Lij · xj + qi, if i œ S (4)

xi + zi =
ÿ

1ÆjÆn

Rij · xj , if i ”œ S (5)

xi ≠ zi =
ÿ

1ÆjÆn

Rij · xj , if i œ S (6)

wi, zi Ø 0 (7)
wi · zi = 0. (8)

We have already argued that this will correctly simulate the max and min operations in
Equation (1), and so we have the following lemma.

I Lemma 10. x œ Rn is a solution of G if and only if x is a solution of the system defined
by Equations (3)–(8).

We shall now reformulate Equations (3)–(8) as an LCP. To achieve this we first introduce
some helpful notation: For every n ◊ n matrix A, we define ‚A in the following way. For each
i, j œ {1, 2, . . . , n} we let

‚Aij :=
I

Aij if i œ S,
≠Aij if i ”œ S.

Equations (3)–(6) can be rewritten as the following matrix equations:
‚Ix = w + ‚Lx+ ‚Iq,
‚Ix = z + ‚Rx,

Eliminating x yields (‚I ≠ ‚L)(‚I ≠ ‚R)≠1
z = w+ ‚Iq, which is equivalent to w = Mz + q

Õ for

M = (‚I ≠ ‚L)(‚I ≠ ‚R)≠1
, q

Õ = ≠‚Iq.

We rely here on the fact that by Lemma 3, R ≠ I and thus also (‚I ≠ ‚R) is invertible. We
have so far shown the following lemma.

I Lemma 11. A vector x œ Rn is a solution of G if and only if there are vectors w, z such
that w, z are a solution of LCP(M, q) and x, w, and z are a solution of Equations (3)–(8).

To show that M is a P matrix, we must show that LCP(M, q
ÕÕ) has a unique solution for

every q
ÕÕ œ Rn. By Lemma 11, this holds if and only if G(L,R, q

ÕÕ
, S) has a unique solution

for every q
ÕÕ, which holds due to the P-Lin-Bellman promise. Our reduction is thus correct,

and we have established our first main result:

I Theorem 12. P-Lin-Bellman and P-LCP are equivalent under polynomial-time many-
one reductions.
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3.3 P-matrix Generalized LCP to P-LCP

Generalized LCPs were originally introduced by Cottle and Dantzig [4]. A generalized LCP
instance is defined by a vertical block matrix M , and a vertical block vector q where

M =

S

WWWU

M1

M2

...
Mn

T

XXXV
q =

Q

ccca

q1

q2

...
qn

R

dddb

Each matrix Mi has dimensionality bi ◊ n, while each vector qi has bi dimensions. Thus, if
N =

q
i bi, we have that M œ RN◊n and q œ RN . Given a vertical block vector x with n

blocks, we use x
j
i to refer to the jth element of the ith block of x.

Given such an M and q, the generalized linear complementarity problem (GLCP) is to
find vectors w œ RN and z œ Rn such that

w = Mz + q,
w Ø 0,
z Ø 0, and
zi ·

rbi
j=1

w
j
i = 0 for all i.

Given a tuple p = (p1, p2, . . . , pn) such that each pi lies in the range 1 Æ i Æ bi, the
representative submatrix of M defined by p is given by M(p) œ Rn◊n and is constructed by
selecting row pi from each block-matrix Mi. We then say that M is a P-matrix if all of its
representative submatrices are P-matrices.

We define the P-matrix GLCP (P-GLCP) as a promise problem, analogously to the
P-LCP: The input is a GLCP instance (M, q) with the promise that M is a P-matrix. This
promise again guarantees unique solutions:

I Theorem 13 (Habetler, Szanc [15]). A vertical block matrix M is a P-matrix if and only
if the GLCP instance (M, q

Õ) has a unique solution for every q
Õ œ RN .

We are now ready to show our reduction of P-GLCP to P-Lin-Bellman.

I Lemma 14. There is a poly-time many-one reduction from P-GLCP to P-Lin-Bellman.

Proof. We can turn a P-matrix GLCP instance into a P-Lin-Bellman instance in much
the same way as we did for P-LCPs in Section 3.1. For each i in the range 1 Æ i Æ n we set

zi = min
1
min

)
(Mz + q)ji + zi : 1 Æ j Æ bi

*
, 2zi

2
. (9)

We claim that any solution of the system of equations defined above yields a solution of
the GLCP. In any solution to the system we have

min
1
min

)
(Mz + q)ji : 1 Æ j Æ bi

*
, zi

2
= 0.

So if we set wj
i = (Mz + q)ji then we have the following non-negativities

w
j
i = (Mz + q)ji Ø min

1
min

)
(Mz + q)ji : 1 Æ j Æ bi

*
, zi

2
= 0.

zi Ø min
1
min

)
(Mz + q)ji : 1 Æ j Æ bi

*
, zi

2
= 0.

We can also see that the complementarity condition is satisfied, since either zi = 0 or wj
i = 0

for some j.
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To write this as a Lin-Bellman system, we must carefully write Equation (9) using
two-input min operations. We will introduce a variable x

j
i for each i in the range 1 Æ i Æ n

and each j in the range 1 Æ j Æ bi. We use x1 to denote the vector (x1
1
, x

1
2
, . . . , x

1
n). For

each i, and each j in the range 1 Æ j < bi we use the following.

x
j
i = min

1
(Mx1 + q)ji + x

1

i , x
j+1

i

2
(10)

We also use the following when j = bi.

x
bi
i = min

1
(Mx1 + q)bii + x

1

i , 2x1

i

2
(11)

Let G = (L,R, q, S) denote the resulting Lin-Bellman system. It is now easy to see that
on the one hand, for every solution x of G the vectors z := x1 and w with w

j
i = (Mz + q)ji

form a solution of the input P-matrix GLCP. On the other hand, from any solution to
the GLCP we can extract the vector x1 := z. Given this vector x1 there is only one way
to extend this to an assignment for all xj

i that is a solution to G. We thus get a one-to-
one correspondence between solutions to G and solutions to the GLCP. Since the GLCP
defined by M is promised to have a unique solution for every q

Õ, this thus implies that the
Lin-Bellman system G

Õ = (L,R, q
Õ
, S) also has a unique solution for every q

Õ. Thus, this is
indeed a P-Lin-Bellman instance. J

Combining this with the previously proven Theorem 12, we get the following corollary:

I Corollary 15. P-GLCP and P-LCP are polynomial-time equivalent.

4 Colorful Tangents and P-Lin-Bellman

Let us start by introducing the definitions and prior results on the –-Ham Sandwich theorem.

I Definition 16. A family of point sets P1 = {p1,1, . . . , p1,s1}, P2, . . . , Pd µ Rd is said to be
well-separated if for any non-empty index set I µ [d], there exists a hyperplane h such that h
separates the points in

t
iœI Pi from those in

t
iœ[d]\I Pi.

In the setting of well-separated point sets, the classical Ham Sandwich theorem can be
strengthened to the more modern –-Ham Sandwich theorem due to Steiger and Zhao [21],
for which we need the definition of an (–1, . . . ,–d)-cut:

I Definition 17. Given positive integers –i Æ |Pi| for all i œ [d], an (–1, . . . ,–d)-cut is a
hyperplane h such that h fl Pi ”= ÿ and |h+ fl Pi| = –i for all i œ [d].

In this definition and in the rest of this section, h+ and h
≠ denote the two closed halfspaces

bounded by a hyperplane h. When h is a colorful hyperplane (i.e., a hyperplane containing a
colorful point set, which is a set {p1, . . . , pd} with pi œ Pi), its positive side is determined by
the orientation of the points pi œ Pi spanning it.

I Theorem 18 (–-Ham Sandwich theorem [21]). Given d point sets P1, . . . , Pd µ Rd that
are well-separated and in weak general position2, for every (–1, . . . ,–d) where 1 Æ –i Æ |Pi|,
there exists a unique (–1, . . . ,–d)-cut.

2 Weak general position is a weaker version of general position. We will not go further into this since we
will always ensure classical general position when invoking this theorem.
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The –-Ham Sandwich theorem guarantees us existence and uniqueness of an (–1, . . . ,–d)-
cut, and it is thus not too surprising that the problem of finding such a cut is contained in
UEOPL [3].

In this section, we wish to show equivalence of this problem to P-Lin-Bellman, however,
we only manage this with some slight changes. Firstly, we wish to drop the assumption of
weak general position, since it is not easily guaranteed when reducing from P-Lin-Bellman.
Because of this we need to weaken the definition of (–1, . . . ,–d)-cuts accordingly:

I Definition 19. Given a well-separated family of point sets P1, . . . , Pd µ Rd and (–1, . . . ,–d)
such that 1 Æ –i Æ |Pi|, a hyperplane h is an (–1, . . . ,–d)-cut if for all i œ [d], h fl Pi ”= ÿ
and |(h+ \ h) fl Pi|+ 1 Æ –i Æ |h+ fl Pi|.

In other words, we allow a hyperplane to contain more than one point per color, and all
the additional points may be “counted” for either side of the hyperplane. Note that even
without any general position assumption, the a�ne hull of every colorful set of points must
have dimension at least d ≠ 1, and thus span a unique hyperplane (see the full version of the
paper). We further show in the full version that every colorful subset of points on the same
hyperplane h must be oriented the same way, and thus h+ is uniquely defined even without
the weak general position assumption.

Note that the –-Ham Sandwich theorem (Theorem 18) generalizes directly to the setting
where the assumption of weak general position is dropped and Definition 17 is replaced by
Definition 19.

I Theorem 20. Given a well-separated family of point sets P1, P2, . . . , Pd µ Rd and
(–1, . . . ,–d) for 1 Æ –i Æ |Pi|, there exists a unique hyperplane h that is an (–1, . . . ,–d)-cut
according to Definition 19.

Proof. This simply follows from perturbing the points and applying Theorem 18. J

Secondly, we have to strengthen well-separation to strong well-separation. We illustrate
well-separation and strong well-separation in Figure 3.

I Definition 21. A family of point sets P1 = {p1,1, . . . , p1,s1}, P2, . . . , Pd µ Rd is said to be
strongly well-separated if the point sets P

Õ
1
, . . . , P

Õ
d obtained by projecting P1, . . . , Pd to the

hyperplane spanned by p1,1, . . . , pd,1 are well-separated.

p1,1

p2,1

p1,1

p2,1

Figure 3 The point sets (dots) on the left are well-separated but not strongly well-separated,
since their projections (circles) are not well-separated. The point sets on the right are strongly
well-separated.
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We are now ready to introduce the problem we wish to study.

I Definition 22. SWS-Colorful-Tangent(P1, . . . , Pd,–1, . . . ,–d)
Input: d point sets P1, . . . , Pd µ Rd and a vector (–1, . . . ,–d), where –i œ {1, |Pi|}.
Promise: The point sets P1, . . . , Pd are strongly well-separated.
Output: An (–1, . . . ,–d)-cut.
We depart from the Ham Sandwich name for this problem since for –i œ {1, |Pi|}, the –-“cuts”
are really just colorful tangent hyperplanes, as can be seen in Figure 4.

↵ = (3, 1)
↵ = (1, 4)

↵ = (3, 4) ↵ = (1, 1)

Figure 4 Two well-separated point sets and the solution –-cuts to all four possible –-vectors.
Note that the positive side of a colorful line is considered to be the right side when orienting the line
from the red point to the blue point.

Similarly to P-GLCP and its binary variant P-LCP, we also define SWS-2P-Colorful-
Tangent as the restriction of SWS-Colorful-Tangent to inputs where |Pi| = 2 for all
i œ [d]. We now wish to prove these two problems polynomial-time equivalent to P-Lin-
Bellman. To achieve this, we reduce SWS-Colorful-Tangent to P-Lin-Bellman, and
P-Lin-Bellman to SWS-2P-Colorful-Tangent, with the reduction by inclusion from
SWS-2P-Colorful-Tangent to SWS-Colorful-Tangent closing the cycle.

For our reductions, we will use the concept of point-hyperplane duality, as described by
Edelsbrunner in [8, p.13]. Point-hyperplane duality is a bijective mapping from all points
in Rd to all non-vertical hyperplanes in Rd. A point p = (p1, . . . , pd) is mapped to the
hyperplane p

ú = {x œ Rd | 2p1x1 + . . . 2pd≠1xd≠1 ≠ xd = pd}. The hyperplane p
ú is called

the dual of p, and for a non-vertical hyperplane h, its dual hú is the unique point p such that
p

ú = h.
Point-hyperplane duality has the nice properties of incidence preservation and order

preservation: for any point p and non-vertical hyperplane h, we have that p œ h if and only
if hú œ p

ú, and furthermore we have that p lies above h if and only if hú lies above p
ú.

We are now ready to begin presenting our reductions. For all of these reductions, we use
the following crucial yet simple observation on strongly well-separated point sets:

I Observation 23. If a set of point sets P1, . . . , Pd is strongly well-separated, then every set
of point sets P

Õ
1
, . . . , P

Õ
d obtained by moving points pi,j (j ”= 1) orthogonally to the hyperplane

spanned by p1,1, . . . , pd,1 is also strongly well-separated.

The general idea of the reduction is to represent the linear inputs to a min or max
operation in a Lin-Bellman system by a point pi,1 and the a�ne inputs by a point pi,j

(j ”= 1). As a warm-up, we first only reduce from the two-point version.
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I Lemma 24. SWS-2P-Colorful-Tangent poly-time reduces to P-Lin-Bellman.
Proof. We first linearly transform our point sets such that the plane through p1,1, . . . , pd,1 is
mapped to the horizontal plane {(x1, . . . , xd) œ Rd | xd = 0}. Without loss of generality, we
assume that after this transformation the colorful hyperplane h spanned by p1,1, . . . , pd,1 is
oriented upwards, i.e., its positive halfspace contains (0, . . . , 0,+Œ).

Then, we apply point-hyperplane duality. Each point pi,j becomes a hyperplane hi,j = p
ú
i,j ,

which can be described by some function hi,j : Rd æ R such that a point x œ Rd lies strictly
above hi,j if hi,j(x) > 0, and on hi,j if hi,j(x) = 0. For the hyperplanes hi,1 dual to our
points pi,1, we furthermore have that they go through the origin, i.e., hi,j is a linear function
(and not only an a�ne function; it has no additive constant term).

Before applying duality, the desired (–1, . . . ,–d)-cut hyperplane is a hyperplane h con-
taining at least one point pÕ

i per set Pi, such that the other point of Pi lies on or above h if
and only if –i = |Pi|, and on or below h if and only if –i = 1. In the dual, this now means
that we need to find a point p which lies on at least one of the hyperplanes hi,1, hi,2 for each i,
and such that it lies above (below) or on both of these hyperplanes if –i = |Pi| (–i = 1). This
can be described by the equations min{hi,1(x), hi,2(x)} = 0 if –i = |Pi| (and max instead
of min, otherwise). This can of course be rewritten as xi = min{hi,2(x) + xi, hi,1(x) + xi}.
Note again that the second input to this minimum is linear in x (there is no additive term).
With one such constraint each per point set Pi, we thus get a system of d equations over d
variables, which together form a Lin-Bellman system.

It remains to check whether this system is also a P-Lin-Bellman instance. We first see
that changing q simply corresponds to moving the hyperplanes hi,2 in a parallel fashion (i.e.,
without changing their normal vectors), which in the primal corresponds to moving them in
direction xd. By Observation 23 and Theorem 20, we always have unique (–1, . . . ,–d)-cuts in
this modified family of point sets, and thus the Lin-Bellman instance has a unique solution
for all qÕ. J

I Theorem 25. SWS-Colorful-Tangent poly-time reduces to P-Lin-Bellman.
Proof (sketch). The proof works exactly the same way as the previous proof of Lemma 24.
The only di�erence is that the equations that need to be encoded are of the form

xi = min{hi,1(x) + xi, . . . , hi,|Pi|(x) + xi}, (12)

where still only hi,1(x) is guaranteed to be a linear function. To encode this as a Lin-Bellman
system, we apply the same trick as in the proof of Lemma 14 to split the multi-input minimum
into multiple two-input minima, with the remaining details found in the full version of the
paper. J

To complete our cycle of reductions, we need to reduce from P-Lin-Bellman to SWS-
2P-Colorful-Tangent. For this reduction we basically perform the process from the
proof of Lemma 24 in reverse. The details are found in the full version of the paper.
I Theorem 26. P-Lin-Bellman poly-time reduces to SWS-2P-Colorful-Tangent.

To end this section, we want to note that the assumption of strong well-separation is not
too strong, at least combinatorially:
I Theorem 27. For every family of well-separated point sets, there exists a family of strongly
well-separated point sets with the same combinatorial structure, i.e., the two families have
the exact same order type.

The proof can be found in the full version of the paper. Note that the proof is merely
existential and it is unlikely that the translation can be performed e�ciently.
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5 Grid-USO and Cube-USO

We saw in the two previous sections that both P-GLCP and SWS-Colorful-Tangent can
be reduced to their respective “binary” variants, P-LCP and SWS-2P-Colorful-Tangent.
In this section we discuss grid USOs and cube USOs, which are a combinatorial framework
that can be used to model all the problems studied in the sections above as well as many
more algebraic and geometric problems. Similarly to the previous sections, cube USOs are a
restriction of grid USOs to the “binary” case.

5.1 Definitions

We define C as a d-dimensional hypercube. We say V (C) := {0, 1}d and {J,K} œ E(C) i�
|J ü K| = 1, where ü is the bit-wise xor operation (i.e., addition in Zd

2
) and | · | counts the

number of 1-entries. For notational simplicity, in this section we use the same name both
for a bitvector in {0, 1}d and for the set of dimensions i œ [d] in which the vector is 1. For
example for J,K œ {0, 1}d we write J ™ K if for all i œ [d] with Ji = 1 we also have Ki = 1.

The orientation of the edges of the cube C is given by an orientation function O : V (C) æ
{0, 1}d, where O(J)i = 0 means J has an incoming edge in dimension i and O(J)i = 1 is an
outgoing edge in dimension i.

I Definition 28. An orientation is a unique sink orientation (USO) if and only if every
induced subcube has a unique sink.

The common search problem version of this problem is to find the global sink of the cube,
given the function O as a boolean circuit. Note that it is co-NP-complete to test whether a
given orientation is USO [13]. We consider the promise version Cube-USO, which was one
of the first search problems proven to lie in the complexity class Promise-UEOPL [9].

I Definition 29. Cube-USO

Input: A circuit computing the orientation function O on a d-dimensional cube C.
Promise: O is a Unique Sink Orientation.
Output: A vertex J œ V (C) which is a sink, i.e., ’i œ [d] : O(J)i = 0.

While the d-dimensional hypercube is the product of d copies of K2 (the complete
graph on two vertices), a grid graph is the product of complete graphs of arbitrary size: A
d-dimensional grid graph � is given by n1, . . . , nd œ N+:

V (�) := {0, . . . , n1} ◊ · · · ◊ {0, . . . , nd},
E(�) := {{v, w} | v, w œ V (�),÷!i œ [d] : vi ”= wi}.

We say the grid has d dimensions and each dimension i has ni + 1 directions.
The subgraph �Õ of � induced by the vertices V (�Õ) = N1 ◊ · · · ◊ Nd for non-empty

Ni ™ {0, . . . , ni} is called an induced subgrid of �. Note that if for some i we have |Ni| = 1,
the induced subgrid loses a dimension. If |Ni| = 1 for all i œ [d] except one, we say that the
induced subgrid �Õ is a simplex. A simplex is a complete graph Knj+1 for some j œ [d].

The orientation of a grid is given by the outmap function, which assigns each vertex a
binary vector that encodes whether its incident edges are incoming or outgoing. More formally,
the outmap function is a function ‡ : V (�) æ {0, 1}n1+...+nd , where ‡(v)n1+...+ni+j = 1
denotes that the edge from v to its j-th neighbor w in dimension i + 1 is outgoing, i.e.,
oriented from v to w. Note that any circuit computing ‡ has n1 + . . .+ nd outputs, and is
thus of size �(n1 + . . .+ nd).
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For notational convenience, we denote the entry of ‡(v) relevant to the edge {v, w} by
‡(v, w). In other words, for each pair of vertices v, w such that {v, w} œ E(�), ‡(v, w) = 1
i� the edge between v and w is oriented towards w.

I Definition 30 (Gärtner, Morris, Rüst [10]). An orientation of a grid graph is a unique sink
orientation (USO) if and only if every induced subgrid has a unique sink.

A unique sink orientation of a simplex with n vertices is equivalent to a permutation of n
elements, i.e. every unique sink orientation of one simplex can be given by a total order of its
vertices. The minimum element of the order is the source, the maximum element is the sink.

Since every cube is also a grid, the complexity of checking whether ‡ is USO is also
co-NP-hard. So again, we consider the promise search version of this problem:

I Definition 31. Grid-USO

Input: A d-dimensional grid � = (n1, . . . , nd) and a circuit computing its outmap ‡.
Promise: ‡ is a Unique Sink Orientation.
Output: A sink, i.e. a vertex v œ V (�) s.t. ’w œ V (�) with {v, w} œ E(�) : ‡(v, w) = 0.

Just like Cube-USO, Grid-USO also lies in the search problem complexity class Promise-
UEOPL [1]. It is well known that P-LCP reduces to Cube-USO [22] and P-GLCP reduces
to Grid-USO [10]. Since SWS-2P-Colorful-Tangent and SWS-Colorful-Tangent
can both be reduced to P-LCP and P-GLCP respectively, they also reduce to Cube-USO
and Grid-USO respectively. However, we show a direct and straightforward reduction from
SWS-2P-Colorful-Tangent to Cube-USO, and from SWS-Colorful-Tangent to
Grid-USO. These direct reductions do not require strong well-separation, only classical
well-separation. The proof can be found in the full version of the paper.

I Lemma 32. Assuming general position of the input points, finding an –-cut in a well-
separated point set family P1, . . . , Pd µ Rd for –i œ {1, |Pi|} can be reduced to Grid-USO in
polynomial time. The reduction goes to Cube-USO if for all i, |Pi| = 2.

I Remark 33. If we instead want to find an –
Õ-cut for arbitrary –

Õ, we can use the reduction
from Lemma 32 with – = (1, . . . , 1), but instead of searching for a sink in the resulting grid
USO �, we need to find a vertex with –

Õ
i ≠ 1 outgoing edges in each dimension i.

By [10, Theorem 2.14], this vertex is guaranteed to exist and to be unique. We call the
problem of searching for such a vertex –-Grid-USO. Note that –-Grid-USO is not known
to reduce to regular Grid-USO, nor is it known to lie in Promise-UEOPL (compared to
–-Ham Sandwich which does lie in Promise-UEOPL [3]).

5.2 Grid-USO to Cube-USO

In this section we show that every Grid-USO instance (�, ‡) can be reduced to a Cube-USO
instance (C,O) in polynomial time such that given the global sink of O, we can derive the
global sink of ‡ in polynomial time.

We are given a d-dimensional grid � = (n1, . . . , nd) and turn it into a hypercube of
dimension n :=

q
ni. Note that � is n-regular and so is C. For every dimension of the

grid spanned by ni + 1 directions, we assign a block of ni dimensions in C. For simplicity,
we index into the dimensions of the hypercube using double indices: for every bitstring
J œ {0, 1}n, we write Ji,j (where j œ [ni]) as a shorthand for Jj+q

lœ[i≠1]
nl
.

Each vertex J œ V (C) is assigned a corresponding vertex in the grid � as follows: For
every grid dimension i œ [d], we assign J a color ji with

ji := max({0} fi {h | h œ [ni], Ji,h = 1}). (13)
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The tuple of colors (j1, . . . , jd) is the vertex in the grid that we associate with J . When
we orient J , we orient each block i of dimensions of C independently, according to the
corresponding simplex in dimension i in � that contains this vertex (j1, . . . , jd).

A single simplex of � with ni+1 directions is turned into an ni-cube as shown in Figure 5.
The vertex (0) of the simplex is mapped to the vertex 0ni , and all the other vertices of the
grid are mapped to its neighbors. We call these ni + 1 vertices the grid-vertices, all others
are called non-grid-vertices. The paths of length one and two between these grid-vertices
encode the orientation of the grid. This completely orients the grid-vertices. The rest of the
cube is oriented according to the colors of the non-grid-vertices; edges between vertices of
two di�erent colors are oriented as the corresponding edge in the grid. Vertices of the same
color are oriented in such a way that in the subcube corresponding to all vertices of the same
color all the edges of the same dimension are oriented the same way. This orientation is
uniquely defined since the unique grid-vertex of this color is already completely oriented.

(0)

(1)

(2)

(3)

(4)

I4

0ni

I3

I2

I1

Figure 5 Example of placing grid-vertices (large) in the cube, coloring the non-grid-vertices
(small) and orienting the edges. Each edge of the grid becomes a path of length two between two
grid-vertices, see the red edges. Edges between vertices of di�erent colors are oriented the same as
in the grid, see the blue edges. Each subcube of the same color is oriented in a uniform way.

To formalize this construction for the complete grid, we need to define a secondary color
j

ú
i for each vertex J œ V (C) and each grid dimension i œ [d], which for all vertices with color
ji ”= 0 corresponds to the color of the neighboring vertex of J in dimension (i, ji):

j
ú
i := max({0} fi {h | h œ [ni] \ {ji}, Ji,h = 1}). (14)

The orientation O of the cube C is now defined as follows:

O(J)i,h :=

Y
__]

__[

‡((j1, . . . , ji, . . . , jd), (j1, . . . , h, . . . jd)) ü Ji,h for h < ji,

‡((j1, . . . , ji, . . . , jd), (j1, . . . , h, . . . jd)) for h > ji,

‡((j1, . . . , ji, . . . , jd), (j1, . . . , jú
i , . . . jd)) for h = ji.

(15)

I Theorem 34. If ‡ is a unique sink orientation, then the orientation constructed by
Equation (15) is a unique sink orientation. A circuit computing O can be computed in
polynomial time. Given the sink of O, the sink of ‡ can be found in polynomial time.

The proof can be found in the full version of the paper.
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6 Open Questions

Total Search Problem Versions. All reductions we provided in this paper are between
the promise problem versions of the involved problems. It may be interesting to also find
reductions between the total search problem versions.

Missing Reductions. We were unable to show that finding an –-cut for arbitrary – is not
more di�cult than finding it for –i œ {1, |Pi|}. There might thus be a di�erence in the
computational complexity of –-Ham-Sandwich and SWS-Colorful-Tangent. Similarly,
in Grid-USO, we also do not know whether it is not more di�cult to find a vertex with a
specific refined index (which must also be unique) rather than searching for a sink. Note
that in the case of –-Ham-Sandwich, it is at least known that the problem is contained in
UEOPL. This is not known for –-Grid-USO.

Semantics of the Grid-USO to Cube-USO Reduction. On the levels of USOs, we do
not know the exact operations that the reductions from P-GLCP to P-LCP and SWS-
Colorful-Tangent to SWS-2P-Colorful-Tangent perform. It would be very in-
teresting to analyze whether these reductions actually perform the same operation as the
Grid-USO to Cube-USO reduction (Theorem 34), i.e., whether these reductions commute.
It would also be interesting to study whether the Grid-USO to Cube-USO preserves
realizability, i.e., whether if there exists a P-GLCP instance inducing a certain grid USO,
there also exists a P-LCP instance inducing the resulting cube USO.
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Abstract
For a fixed graph H, the H-Subgraph Hitting problem consists in deleting the minimum number
of vertices from an input graph to obtain a graph without any occurrence of H as a subgraph. This
problem can be seen as a generalization of Vertex Cover, which corresponds to the case H = K2.
We initiate a study of H-Subgraph Hitting from the point of view of characterizing structural
parameterizations that allow for polynomial kernels, within the recently active framework of taking
as the parameter the number of vertex deletions to obtain a graph in a “simple” class C. Our main
contribution is to identify graph parameters that, when H-Subgraph Hitting is parameterized by
the vertex-deletion distance to a class C where any of these parameters is bounded, and assuming
standard complexity assumptions and that H is biconnected, allow us to prove the following sharp
dichotomy: the problem admits a polynomial kernel if and only if H is a clique. These new graph
parameters are inspired by the notion of C-elimination distance introduced by Bulian and Dawar
[Algorithmica 2016], and generalize it in two directions. Our results also apply to the version of
the problem where one wants to hit H as an induced subgraph, and imply in particular, that the
problems of hitting minors and hitting (induced) subgraphs have a substantially di�erent behavior
with respect to the existence of polynomial kernels under structural parameterizations.
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1 Introduction
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function f , which is the size of the kernelization. A kernelization algorithm, or just kernel,
can be seen as a preprocessing procedure with provable guarantees, and it is fundamental to

EA
T
C
S

© Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 33; pp. 33:1–33:20

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marin.bougeret@lirmm.fr
https://orcid.org/0000-0002-9910-4656
mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:ignasi.sau@lirmm.fr
https://orcid.org/0000-0002-8981-9287
https://doi.org/10.4230/LIPIcs.ICALP.2024.33
https://arxiv.org/abs/2404.16695
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 KernelizationDichotomies for Hitting SubgraphsUnder Structural Parameterizations

find kernels of the smallest possible size, ideally polynomial. Identifying which parameterized
problems admit polynomial kernels is one of the most active areas within Parameterized
Complexity (cf. for instance [24]).

When dealing with a problem where the goal is to find a (say, small) subset of vertices
S of an input graph G satisfying some property, such as Vertex Cover, it is natural to
consider as the parameter the size of the desired set S. Assuming that the problem admits
a polynomial kernel parameterized by |S|, as it is the case for Vertex Cover and many
other problems [15, 24], we can ask whether the problem still admits polynomial kernels
when the parameter is (asymptotically) smaller than the solution size. The goal of this
approach is to provide better preprocessing guarantees, as well as to understand what is
the limit of the polynomial-time “compressibility” of the considered problem. For problems
defined on graphs, apart from using the solution size as a parameter, it is common to consider
so-called structural parameters, which quantify some structural property of the input graph
that can be seen as a measure of its “complexity”. Among structural parameters, the most
successful is probably treewidth [15, 35], but unfortunately taking the treewidth of the input
graph as the parameter does not allow for polynomial kernels for essentially all natural
optimization problems, unless NP ™ coNP/poly [6, 8]. The same applies to another relevant
graph parameter called treedepth, denoted by td and defined as the minimum number of
rounds needed to obtain the empty graph, where each round consists of removing one vertex
from each connected component.

In fact, the lower bound proofs go through for parameterizations for which the value on a
disconnected graph is the maximum, rather than the sum, of the values of its components,
and whose value is polynomially bounded in the size of the graph. Hence, to be able to
obtain positive kernelization results, we need to turn to parameterizations other than width
measures. This motivates to consider structural parameters that quantify the “distance
from triviality”, a concept first coined by Guo, Hü�ner, and Niedermeier [28]. The idea is
to take as the parameter the vertex-deletion distance of a graph to a “trivial” graph class
where the considered problem can be solved e�ciently. This paradigm has proved very
successful for a number of problems, in particular for Vertex Cover. In an influential work,
Jansen and Bodlaender [30] showed that Vertex Cover admits a polynomial kernel when
parameterized by the feedback vertex number of the input graph, which is the vertex-deletion
distance to the “trivial” class of forests. This result triggered a number of results in the
area, aiming to characterize the “trivial” families F for which Vertex Cover admits a
polynomial kernel under this parameterization [10,12,25,29,40].

Let us mention some of these results that are relevant to our work. Bougeret and Sau [12]
proved that Vertex Cover admits a polynomial kernel parameterized by the vertex-deletion
distance to a graph of bounded treedepth. This result was further generalized into two
orthogonal directions, namely by considering a more general problem or a more general
target graph class F . For the former generalization, Jansen and Pieterse [33] proved that
the following problem also admits a polynomial kernel parameterized by the vertex-deletion
distance to a graph of bounded treedepth: for a fixed finite set of connected graphs M,
the M-Minor Deletion problem consists in deleting the minimum number of vertices
from an input graph to obtain a graph that does not contain any of the graphs in M as a
minor. Note that this problem (vastly) generalizes Vertex Cover, which corresponds to
the case M = {K2}. For the latter generalization, Bougeret, Jansen, and Sau [10] proved
that Vertex Cover admits a polynomial kernel parameterized by the vertex-deletion
distance to a graph of bounded bridge-depth, which is a parameter that generalizes treedepth
and the feedback vertex number. It turns out that, under the assumption that the target
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graph class F is minor-closed, the property of F having bounded bridge-depth is also a
necessary condition for Vertex Cover admitting a polynomial kernel. Another complexity
dichotomy of this flavor has been achieved by Dekker and Jansen [18] for the Feedback

Vertex Set problem (with another characterization of the target graph class F). These
complexity dichotomies, while precious, are unfortunately quite hard to obtain, and the
current knowledge seems still far from obtaining dichotomies of this type for general families
of problems, such as for M-Minor Deletion for any finite family of graphs M. Indeed, it
is wide open whether M-Minor Deletion admits a polynomial kernel parameterized by
the solution size for any set M containing only non-planar graphs [23, 34], so considering
parameters smaller than the solution size is still out of reach.

Our contribution. We consider an alternative generalization of Vertex Cover by consid-
ering (induced) subgraphs instead of minors. Namely, for a fixed graph H, the H-Subgraph
Hitting problem is defined as deleting the minimum number of vertices from an input
graph to obtain a graph without any occurrence of H as a subgraph. The H-Induced
Subgraph Hitting problem is defined analogously by forbidding occurrences of H as an
induced subgraph. (As we shall see later, both problems behave in the same way with respect
to our results.) Note that both problems correspond to Vertex Cover for the case H = K2

and therefore are indeed generalization of it. As opposed to the case for hitting minors, it
is well-known that both the H-Subgraph Hitting and H-Induced Subgraph Hitting

problems admit polynomial kernels parameterized by the solution size for any graph H [1,21].
Therefore, it does make sense to parameterize these problems by structural parameters

in the “distance from triviality” spirit, and this is the main focus of this article. To the best
of our knowledge, this is an unexplored topic, besides all the literature for Vertex Cover

discussed above. Our main result is to identify structural parameters that allow to provide
sharp dichotomies for these problems depending on the forbidden (induced) subgraph H.

Before presenting our results, we proceed to motivate and define these structural para-
meters. They are inspired by the following parameter, first introduced by Bulian and
Dawar [13, 14] and further studied, for instance, in [2, 22, 29, 31, 41, 42]. For a fixed class
of graphs H, the H-elimination distance of a graph G, denoted by edH(G), is defined by
mimicking the above definition of treedepth and replacing “empty graph” with “a graph
in H”. The recursive definitions of treedepth and H-elimination distance suggest the notion
of elimination forest, which is the forest-like process of vertex removals from the considered
graph to obtain either an empty graph for treedepth, or a graph in H for H-elimination
distance. Suppose now that H is defined by the exclusion of a fixed graph H as a subgraph or
as an induced subgraph. Formally, let F

H̄
(resp. F ind

H̄
) be the class of graphs that exclude a

fixed graph H as a subgraph (resp. induced subgraph). For this particular case, the notion of
F

H̄
-elimination distance (or F ind

H̄
-elimination distance) can be interpreted as a generalization

of treedepth where, in the last round of the elimination process, the vertices that do not
belong to any occurrence of H as a subgraph (or induced subgraph) can be deleted “for free”.
We generalize the notion of H-elimination distance by allowing “free removal” of vertices
not contained in a copy of H in every round of the elimination process, rather than just
the last; we denote the corresponding parameter by ved+

F
H̄

(or ved+
F

ind
H̄

), where “v” stands for
the removal of vertices, in order to distinguish this parameter from the one defined below
(see Section 2 for the formal definitions of these parameters). Our first main result is the
following somehow surprising dichotomy, which states that, under the assumption that H
is biconnected, whenever H has a non-edge, the problem is unlikely to admit a polynomial
kernel. Our result applies to both the induced and non-induced versions of the problem.
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33:4 KernelizationDichotomies for Hitting SubgraphsUnder Structural Parameterizations

I Theorem 1.1. Let H be a biconnected graph, let ⁄ Ø 1 be an integer, and assume that
NP * coNP/poly. H-Subgraph Hitting (resp. H-Induced Subgraph Hitting) admits
a polynomial kernel parameterized by the size of a given vertex set X of the input graph G

such that ved+
F

H̄

(G ≠ X) Æ ⁄ (resp. ved+
F

ind
H̄

(G ≠ X) Æ ⁄) if and only if H is a clique.

Note that a graph G satisfies ved+
F

H̄

(G) = 0 (resp. ved+
F

ind
H̄

(G) = 0) if and only if G does
not contain H as a subgraph (resp. induced subgraph), so the setting ⁄ = 0 corresponds to
the parameterization by solution size which always admits a polynomial kernel [1, 21]; this is
why we assume that ⁄ Ø 1 in the statement of Theorem 1.1.

Theorem 1.1 shows that the behavior of the considered problems in terms of the existence
of polynomial kernels drastically changes as soon as one edge is missing from H (under the
biconnectivity assumption, which is needed in the reduction). To the best of our knowledge,
this is the first time that such a dichotomy, in terms of H, is found with respect to the
existence of polynomial kernels. It is worth mentioning that, with respect to the existence of
certain fixed-parameter tractable algorithms parameterized by treewidth, dichotomies of this
flavor exist for hitting subgraphs [17], induced subgraphs [43], or minors [4].

The proof of Theorem 1.1 consists of two independent pieces. On the one hand, we need
to prove that both problems admit a polynomial kernel when H is a clique (note that, in
that case, both problems are equivalent, as any H-subgraph is induced). On the other hand,
we need to provide a kernelization lower bound for all other graphs H (cf. Theorem 3.2),
and here is where we need the hypothesis that NP * coNP/poly and, for technical aspects of
the reduction, that H is biconnected.

In fact, we provide a kernel that is more general than the one stated in Theorem 1.1. Also,
on the negative side, we present another lower bound incomparable to that of Theorem 1.1.
For the former, we provide a polynomial kernel, when H is a clique, for a parameter that is
more powerful than ved+

F
H̄

(or ved+
F

ind
H̄

). This more powerful parameter is somehow inspired
by the parameter bridge-depth mentioned before [10], which is a generalization of treedepth
in which, in every round of the elimination process, we are allowed to remove subgraphs in
each component that are more general than just single vertices. In our setting, it turns out
that we can a�ord to remove vertex sets T ™ V (G) that induce connected subgraphs that do
not contain H as a subgraph (or induced subgraph) and that are “weakly attached” to the
rest of the graph, meaning that each connected component of G≠T has at most one neighbor
in T . If H is biconnected, it is easily seen that the “candidate” sets T to be removed can be
assumed to be connected unions of blocks (biconnected components) of G, and this is why
we call this parameter bed+

F
H̄

(or bed+
F

ind
H̄

), where “b” stands for the removal of blocks. For
any two graphs G and H, the following inequalities, as well as the corresponding ones for
the induced version, follow easily from the definitions (cf. Section 2):

td(G) Ø edF
H̄
(G) Ø ved+

F
H̄

(G) Ø bed+
F

H̄

(G). (1)

We prove the following result, where Kt denotes the clique on t-vertices, and note that in
this case the induced and non-induced versions of the problem coincide.

I Theorem 1.2. Let t Ø 3 and ⁄ Ø 1 be fixed integers. The Kt-Subgraph Hitting problem
admits a polynomial kernel parameterized by the size of a given vertex set X of the input
graph G such that bed+

F
K̄t

(G ≠ X) Æ ⁄.

Note that for t = 2, the parameter bed+
F

K̄t

is exactly treedepth, and therefore Theorem 1.2
can be seen as a far-reaching generalization of the main result of [12], that is, a polynomial
kernel forVertex Cover parameterized by the vertex deletion distance to a graph of bounded
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treedepth. Also, note that Equation 1 and Theorem 1.2 imply that the same dichotomy
stated in Theorem 1.1 holds if we substitute “ved+

F
H̄

(G ≠ X) Æ ⁄” for “bed+
F

H̄

(G ≠ X) Æ ⁄”,
and the same for the induced version.

As for strengthening our hardness results, we present kernelization lower bounds for
H-Subgraph Hitting and H-Induced Subgraph Hitting, when H is not a clique,
parameterized by the vertex-deletion distance to a graph of constant treedepth. By Equation 1,
lower bounds for treedepth are stronger than the ones of Theorem 1.1. However, in our
next main result, we need a condition on H that is stronger than biconnectivity, namely the
non-existence of a stable cutset, that is, a vertex separator that induces an independent set.

I Theorem 1.3. Let H be a graph on h vertices that is not a clique and that has no
stable cutset. H-Subgraph Hitting and H-Induced Subgraph Hitting do not admit
a polynomial kernel parameterized by the size of a given vertex set X of the input graph G

such that td(G ≠ X) = O(h), unless NP ™ coNP/poly.

Note that, for t Ø 4, the graph Kt minus one edge satisfies the conditions of Theorem 1.3.
The mere existence of a graph H satisfying the conditions of Theorem 1.3 is remarkable, as
it shows that (induced) subgraph hitting problems behave di�erently than minor hitting
problems. Indeed, as mentioned before, it is known [33] that, for every finite family M of con-
nected graphs, the M-Minor Deletion problem admits a polynomial kernel parameterized
by the vertex-deletion distance to a graph of constant treedepth.

Dekker and Jansen [18] asked if for every finite set of graphs M, M-Minor Deletion

admits a polynomial kernel parameterized by the vertex-deletion distance to a graph with
constant exc(M)-elimination distance, where exc(M) is the class of graphs that excludes all
the graphs in M as a minor. Theorem 1.3 shows that, by Equation 1, for the problems of
excluding subgraphs or induced subgraphs, the answer to this question is negative.

Finally, let us mention another consequence of our results. Agrawal et al. [2] proved,
among other results, that for every hereditary target graph class C satisfying some mild
assumptions, parameterizing by the vertex-deletion distance to C and by the C-elimination
distance are equivalent from the point of view of the existence of fixed-parameter tractable
algorithms. Our results imply, in particular, that the same equivalence does not hold with
respect to the existence of polynomial kernels in this “distance from triviality” setting, namely
for problems defined by the exclusion of (induced) subgraphs.

Organization of the paper. In Section 2 we provide an overview of the main ideas of the
kernelization algorithm, which is our main technical contribution. The formal description of
the kernel and its analysis, which are quite lengthy, can be found in the full version of the
article [11]. In Section 3 we present our hardness results (with some proofs deferred to the
full version as well), and in Section 4 we discuss some directions for further research.

2 Overview of the kernelization algorithm

In this section we sketch the main ideas of the kernelization algorithm stated in Theorem 1.2,
along with intuitive explanations and the required definitions.

Preliminaries. Given a graph G and C ™ V (G), we denote by N(C) =
t

vœC
N(v) \ C and

G ≠ C = G[V (G) \ C]. Given a graph H, and a subgraph (resp. induced subgraph) F of G,
we say that F is a copy (resp. induced copy) of H if F is isomorphic to H. We say that G is
H-free (resp. H-induced free) if there is no copy of H (resp. induced copy) in G. Given two
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33:6 KernelizationDichotomies for Hitting SubgraphsUnder Structural Parameterizations

disjoint subsets A,B ™ V (G), we say that there is an edge between A and B if there exists
e œ E(G) such that |e fl A| = |e fl B| = 1. Otherwise, A and B are said to be anticomplete.
When P = {V1, . . . , Vm} is a set of subsets of V (G), we let V (P) =

t
ViœP

Vi. A t-clique is a
set K ™ V (G) such that G[K] is a clique and |K| = t. For any integer n œ N, we denote by
[n] = {1, . . . , n}. We study the following problem(s) for a fixed graph H.

H-SH (for H-Subgraph Hitting)
Input: A graph G.
Objective: Find a set S ™ V (G) of minimum size such that G ≠ S is H-free.

We denote by H-ISH (for H-Induced Subgraph Hitting) the variant of the above problem
where we impose that G ≠ S is H-induced free. We denote by optH(G) the optimal value of
the considered problem for G, or simply opt(G) when H is clear from the context.

Let us now introduce the main graph measures used in this paper.

I Definition 2.1. Let H be a fixed graph. For a graph G, define ved+
F

H̄

(G) as
Y
____]

____[

0 if V (G) = ÿ,
ved+

F
H̄

(G ≠ v) if v is a vertex that is not in any copy of H,
maxCi

ved+
F

H̄

(Ci) if G has connected components C1, . . . , Cc with c Ø 2,
1 + minvœV (G) ved+F

H̄

(G ≠ v) otherwise.

We define ved+
F

ind
H̄

in the same way as ved+
F

H̄

, except that we replace “in any copy of H” by
“in any induced copy of H”. Note that the notation ved+

F
H̄

is motivated by the fact that it
corresponds to vertex elimination distance, with additional power of removing “free” vertices
not in any copy of H. Note also that even though there could be multiple vertices v which
satisfy the second criterion, the value is well-defined since it does not matter which one is
picked; the second case will apply until all such vertices have been removed. As the case
where H = Kt plays an important role in this paper, for the sake of shorter notation we use
the shortcut ved+

t
to denote the parameter ved+

F
K̄t

(or ved+
F

ind
K̄t

, which is the same).

To define the parameters bed+
F

H̄

and bed+
F

ind
H̄

, it is convenient to introduce the following
definitions (see Figure 1).

I Definition 2.2 (root and pending component). Given a fixed graph H and a connected
graph G, we say that a set T ™ V (G) is a root of G if

T ”= ÿ, G[T ] is connected and H-free, and
for any connected component C of G ≠ T , |N(C) fl T | = 1.

We extend to notion of root to any graph G as follows. For any graph G with connected
components C, we say that a set T = {TC | C œ C} is a root of G if for any C œ C, TC is a
root of G[C]. We define V (T ) =

t
CœC

TC , and E(T ) as the set of edges that have both their
endpoints inside V (T ).

Given a graph G, a root T of G, and a vertex v œ V (T ), we define the pending component
of v relatively to T , denoted by C

T (v), as the connected component of v in the graph obtained
from G by removing all edges e ™ E(T ). We extend the notation to any subset Z ™ V (T )
with C

T (Z) =
t

vœZ
C

T (v). When the root is clear from context, we use C(v) instead of
C

T (v).

We define an induced root in the same way, except that we replace “G[T ] is connected
and H-free” by “G[T ] is connected and H-induced free”. Note that any graph admits a root,
by taking for example a single vertex (to play the role of TC) in each connected component.
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v2

v1
u1 u2

v4

w1

v3

w2 w3

Figure 1 In this example we consider that H = K4, and we denote by C1 and C2 the two connected
components of G (where v1 œ C1). Observe that T = (T1, T2) is a root of the depicted graph with
T1 = {v1, v2, v3, v4} and T2 = {u1, u2}. We have C(v1) = {v1} and C(v2) = {v2, w1, w2, w3}. Finally,
taking T

Õ
1 = T1 fi {w1} and T Õ = {T Õ

1, T2} would not be a root as T Õ
1 is not a root of G[C1].

I Observation 2.3. Let G be a graph and T be a root of G. For any v œ V (T ), there is no
edge between C(v) \ {v} and V (G) \ C(v).

I Definition 2.4. Let H be a fixed graph. For a graph G, we define bed+
F

H̄

(G) as

Y
____]

____[

0 if V (G) = ÿ,
bed+

F
H̄

(G ≠ v) if v is a vertex that is not in any copy of H,
maxCi

bed+
F

H̄

(Ci) if G has connected components C1, . . . , Cc with c Ø 2,
1 + minTµV (G) bed+F

H̄

(G ≠ T ) otherwise, where T ranges over all roots of G.

We define bed+
F

ind
H̄

in the same way as bed+
F

H̄

, except that we replace “where T ranges over
all roots of G” by “where T ranges over all induced roots of G”. Again, as the case where
H = Kt plays an important role in this paper, for the sake of shorter notation we use the
shortcut ved+

t
to denote the parameter bed+

F
K̄t

(or bed+
F

ind
K̄t

, which is the same). We point

out that, to make the definition of bed+
F

H̄

as simple as possible, we allowed T to range over
all roots of G. However, as shown in [11, Lemma 6.9], as soon as H is biconnected, there
always exists a root that is the connected union of H-(induced-)free blocks of G, hence our
choice of notation to di�erentiate bed+

F
H̄

from ved+
F

H̄

.
Given ⁄ œ N, let us now define the following variant of the considered problem, where we

suppose that we are given as an additional input a modulator (corresponding to set X) to a
“simple” graph G ≠ X, where the simplicity is captured by bed+

t
being at most ⁄.

Kt-SHM
⁄ (for Kt-Subgraph Hitting given a modulator to bed+

t
at most ⁄)

Input: A graph G and a set X ™ V (G) such that bed+
t
(G[R]) Æ ⁄, where R = V (G)\X.

Objective: Find a set S ™ V (G) of minimum size such that for any t-clique Z of G,
S fl Z ”= ÿ.

We denote by Kt-SHM
⁄

p the associated parameterized decision problem with an additional
k in the input, where the goal to decide whether opt(G) Æ k, and the parameter is |X|.

In [11, Section 5] we prove our main positive result that we restate here with less details,
and which is a reformulation of Theorem 1.2 with the notation introduced in this section:

I Theorem 2.5. There is a polynomial kernel for Kt-SHM
⁄

p of size O⁄,t(|X|”(⁄,t)) for some
function ”(⁄, t).

Let us now present an overview of the techniques used to establish the above result.
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Warming up with Vertex Cover. As an extreme simplification of our set up, let us
consider the case where t = 2, corresponding to Vertex Cover, and assume that X is a
modulator to the simplest graph class, namely an independent set. Our kernel uses a marking
procedure (cf. [11, Definition 5.5]) that corresponds to the following marking algorithm for
Vertex Cover. For any u œ X, mark up to |X|+1 vertices v œ R such that {u, v} œ E(G).
Let M ™ R be the set of marked vertices. Observe the following “packing property” of the
marking algorithm: if there exists v œ R \M and u œ X with {u, v} œ E(G), then there
exists a “packing” P ™ M of |X|+ 1 vertices such that for any v

Õ œ P, {vÕ
, u} œ E(G) (the

term “packing” may seem inappropriate here, but becomes natural for t > 2 as the marking
algorithm will mark disjoint sets of vertices instead of distinct vertices). Now, if R = M then
|R| Æ O(|X|2) and the instance is kernelized. Otherwise, if there exists v œ R \M , then
define a reduced instance as GÕ = G ≠ v and k

Õ = k. Let us sketch why this removing step is
safe, as the arguments also correspond to a very simplified version of [11, Lemma 5.14]. The
only non-trivial direction is that if (GÕ

, k
Õ) is a yes-instance, then (G, k) is also a yes-instance.

Given a solution Z
Õ of (GÕ

, k
Õ), if there exists u œ X \ Z Õ such that {u, v} œ E(G), then the

packing property implies the existence of the above set P. Thus, we get that Z Õ overpays
for u: it contains one extra vertex (in this case, one instead of zero) for each v

Õ œ P as we
must have P ™ Z

Õ. This implies that we can restructure Z
Õ into Z̃ = X, while ensuring that

|Z̃| Æ |Z Õ|. Now, Z̃ can be easily completed to a solution of G of size k (in this case, by
doing nothing). By repeating this reduction rule, we get the kernel of size O(|X|2).

Parts, chunks, and conflicts. Let us now point out some important ideas used to lift
up the previous kernel for Vertex Cover to Kt-SHM

⁄

p . In the previous setting, the key
property when proving the safeness of the reduction rule, given a solution Z

Õ of (GÕ
, k

Õ), is
the following: when “adding back” a non-marked vertex v œ R \M to G

Õ, either there exists
u œ X \ Z Õ such that Z Õ overpays for u, or there is no edge {u, v} for any u œ X \ Z Õ.

Let us now rephrase this key property in the setting of hitting t-cliques using the adapted
concepts of part, chunk, and conflict; we will formally define these terms later. When “adding
back” a non-marked part V

Õ ™ R \ M to G
Õ, we know that either there exists a chunk

X
Õ ™ X \ Z Õ such that Z Õ overpays for X Õ, or there is no conflict between X

Õ and V
Õ for any

chunk X
Õ. Observe first that, as G ≠ X is now more general than an independent set, we

have to consider a packing of “parts” (subsets of vertices of R), meaning that if there is a
non-marked part V Õ that we remove, we now set kÕ = k ≠ opt(G[V Õ]). The second di�erence
is the notion of “conflict between X

Õ and V
Õ” that plays the role of “edge {u, v}”. We say

that there is no conflict between X
Õ and V

Õ if conft
XÕ(V Õ) = 0, the condition conft

XÕ(V Õ) = 0
being equivalent to the fact that we can pick only opt(G[V Õ]) vertices in V

Õ, while still hitting
all t-cliques in G[X Õ fi V

Õ] (see [11, Definition 5.2] for the formal definition of conft). The
third di�erence is the notion of chunk and blocking set. A good starting point when trying
to complete a solution Z

Õ of GÕ to a solution Z of G is that conft
X\ZÕ(V Õ) = 0. Indeed, this

condition implies that there exists a set Sı

V Õ of size opt(G[V Õ]) such that Sı

V Õ hits all t-cliques
in G[V Õ fi (X \Z Õ)]. Thus, Sı

V Õ is a good candidate to build a solution Z = Z
Õ fiS

ı

V Õ of (G, k).
Note that this only remains a good starting point, as Z may not be a solution: it could miss
cliques using V

Õ, (X \ Z Õ), and other vertices in R \ V Õ. This condition conft
X\ZÕ(V Õ) = 0

could be achieved by a marking algorithm that, for any U ™ X, marks up to |X|+ 1 parts
V

Õ such that conft
U
(V Õ) > 0, which is a generalization of the previous marking algorithm for

Vertex Cover. However, the running time and the number of marked parts by such an
algorithm would not be polynomial in |X|, as there are too many subsets U to consider.
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To overcome this issue, the trick is the notion of maximum minimal blocking sets,
denoted by mmbst (cf. [11, Definition 4.1]), which is a graph parameter for which we skip
the definition for the moment. What is important to state about mmbst here is that
in [11, Theorem 2.6] we prove that there exists a function — : N2 æ N such that for every
graph G, mmbst(G) Æ —(bed+

t
(G), t). As in the kernelization algorithm we apply this to

G[R] and bed+
t
(G[R]) Æ ⁄, we obtain mmbst(G[R]) Æ —(⁄, t). Moreover, [11, Lemma 5.4]

implies that the previous marking condition “there exists U ™ X such that conft
U
(V Õ) > 0”

is equivalent to “there exists X
Õ œ X such that conft

XÕ(V Õ) > 0”, where X = {X Õ ™ X |
|X Õ| Æ (t ≠ 1)—(⁄, t) and X

Õ does not contain a t-clique} is the set of chunks. Observe that,
as the chunks have bounded size, the marking algorithm runs in time Oı(|X|(t≠1)—(⁄,t)). The
conclusion is that the “triviality” of G[R] (bed+

t
(G[R]) Æ ⁄) implies that G[R] has bounded

mmbst, which allows to certify the absence of conflict (for any U ™ X) in polynomial time.
These notions of conflict, chunk, and minimal blocking set were also critical in previous

work on kernelization: the notion of conflict was introduced in [30], and bounds on mmbs2 (for
Vertex Cover) have been proved for di�erent triviality measures of G[R] [3, 10,12,29,30].
A first di�erence here is the study of mmbst for Kt-Subgraph Hitting, whose behavior is
more complex than Vertex Cover, as discussed below when mentioning the new challenges.

Decreasing bed+t (G[R]) and using recursion. Let us now informally describe the main
steps of the kernel (see Figure 2). Given a graph G, we denote by N

t(G) = {v œ V (G) |
@ t-clique K with v œ K} the set of vertices of G that do not occur in any copy of Kt, called
the non-Kt-vertices. Given an input (G,X, k) of Kt-SHM

⁄

p , we first compute N
t(G[R])

and, using the algorithm of [11, Lemma 6.9], a bed+
t
-root T of G[R] ≠ N

t(G[R]), where a
bed+

t
-root of G is a root T such that bed+

t
(G ≠ V (T )) = bed+

t
(G) ≠ 1. We point out that,

unlike the case for treedepth or bridge-depth, computing such a root is not straightforward,
as one cannot try the a priori exponentially many possible roots to find one that decreases
bed+

t
. However, the algorithm of [11, Lemma 6.9] relies on the fact that it is possible to

compute in polynomial time a set of size O(n) that contains a bed+
t
-root. Coming back to

the kernel strategy, observe that there may be edges between some C(v) and N
t(G), but not

between C(v) and C(u) for u ”= v, and that by definition of a bed+
t
-root, bed+

t
(G[RÕ]) < ⁄,

where RÕ = R≠V (T ). Then, we mark a small (polynomial in |X|) set M(T , N
t(G[R]), G,X)

of vertices (cf. [11, Definition 5.8]) of V (T ) using the mark algorithm (cf. [11, Definition 5.5]).
If there exists v œ V (T ) \M(T , N

t(G[R]), G,X), then we can remove C(v) and decrease k

by opt(G[C(v)]) (cf. [11, Lemma 5.14]). Otherwise, |M(T , N
t(G[R]), G,X)| = O(|X|f(⁄,t))

for some function f , and thus we can move M(T , N
t(G[R]), G,X) to the modulator and

get a new modulator X Õ = X fi M(T , N
t(G[R]), G,X) whose size is still polynomial in |X|.

The key point is that bed+
t
(G ≠ X

Õ) = bed+
t
(G[RÕ]) < ⁄, and thus we use induction on ⁄

and make a recursive call to (G,X
Õ), which is an input of Kt-SHM

⁄≠1
p , leading to a kernel

polynomial in |X Õ|, and thus in |X|.
This idea of shrinking the “root” of a decomposition of G ≠ X to decrease the “triviality

measure” (here, bed+
t
) and recurse originates in [27], and was used in [12] for treedepth.

It was subsequently generalized in [10], where the triviality measure is a parameter called
bridge-depth and the equivalent of a root is a so-called tree of bridges for each connected
component of G[R].

New challenges. With respect to the strategies followed in previous work on related
topics [10, 12, 18, 29, 30, 32, 33], in our setting we encounter (at least) the following three
orthogonal di�culties, for which we have to develop new ideas: dealing with the non-Kt-
vertices, dealing with cliques Kt for arbitrary fixed t instead of t = 2, and proving that there
exists a function — such that for every graph G, mmbst(G) Æ —(bed+

t
(G)).

ICALP 2024



33:10 KernelizationDichotomies for Hitting SubgraphsUnder Structural Parameterizations

R′

V (T )

X

N t(G[R])

T1 T2

C(v)

v

M(T , N t(G[R]), G,X)

Figure 2 Main steps of the kernel. In this example T = {T1, T2} (edges inside Ti are in bold,
and dotted edges cannot exist), and there exists a non-marked vertex v, implying that the pending
component C(v) will be removed.

The first di�culty is handling vertices of N t(G[R]), which are vertices not belonging
to a t-clique in G[R]. Indeed, observe that these non-Kt-vertices are “free” for bed+

t
, in

the sense that bed+
t
(G[R]) = bed+

t
(G[R] ≠ N

t(G[R])). However, these vertices make the
structure of G[R] more complicated. Indeed, T being a root of G[R] ≠ N

t(G[R]) implies
that for any T œ T and v œ T , there are no edges between C(v) \ {v} and other vertices
in C(u) for u œ V (T ) \ {v}, but there could be edges between C(v) and N

t(G[R]). Thus,
unlike in [10,12], we cannot just bound the number of connected components of G[R], and
then assume that we have a single root T with simple properties (again, the root being a
single vertex in [12], and a tree of bridges in [10]). Typically, here G[R] could have only one
connected component, but the nice structure given by T could be “polluted” by vertices
of N t(G[R]). We handle these vertices by considering a packing of “bidimensional” parts
(Vi, Ni), where in particular Vi ™ V (T ) is a clique of size at most t ≠ 1 and Ni ™ N

t(G[R]),
and we use a kind of generalized “sunflower-like” marking by first creating a maximal packing
P of parts (Vi, Ni), of size at most |X|+1, and then recursively marking around each possible
g œ

t
Ni (see the last line of [11, Definition 5.5]).

The second di�culty is to handle t-cliques instead of edges. Indeed, assume that
we just removed a pending component C(v) for some v œ V (T ) and defined k

Õ = k ≠
opt(G[C(v)]). Assume also that, given a solution Z

Õ of (GÕ
, k

Õ), we have the good starting
point conft

(XfiNt(G[R]))\ZÕ(C(v)) = 0, implying, by the definition of conflict, that there exists
a locally optimal solution S

ı

v
of G[C(v)] that intersects all t-cliques of G[C(v) fi ((X fi

N
t(G[R])) \ Z Õ)]. However, there could also exist “spread” cliques K containing v and using

vertices of ((X fiN
t(G[R]))\Z Õ) and M

Õ ™ (V (T )\{v}). These cliques may be spread across
several vertices of V (T ), and by definition of a root they cannot use vertices in C(u) \ {u}
for any u œ M

Õ fi {v} (according to Observation 2.3). To take into account the potential
conflicts generated by these spread cliques, we perform t≠1 marking steps (cf. [11, Definition
5.8]), where informally at each step we guess all possible subsets M

Õ, with |M Õ| Æ t ≠ 1,
corresponding to a guessed intersection of a spread clique with previously marked vertices.

The last di�culty is to bound mmbst(G) as a function of bed+
t
(G) for any graph G. We

first need to define the notion of blocking set adapted to our problem. Let EKt-SH (for
Extended Kt-Subgraph Hitting) be the problem where given (G,F), where F is a set of
subsets of V (G) such that for any Z œ F , 1 Æ |Z| Æ t ≠ 1 and G[Z] is a clique, a solution
must intersect all t-cliques of G and all Z œ F . A blocking set B of G is a set of subsets
of vertices of G such that opt(G,B) > opt(G), where opt(G,B) is the minimum size of a
solution of the EKt-SH problem with input (G,B), meaning that any set hitting all t-cliques
of G and all Z œ B cannot be an optimal solution of G for Kt-SH. Then, mmbst(G) is the
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maximum size of an inclusion-wise minimal blocking set of G. The “max-min” taste of this
definition makes it di�cult to handle, but fortunately we will use [11, Property 1] stating
that for any —, mmbst(G) Æ — is equivalent to the fact that for any blocking set B of G, there
exists B ™ B such that B is still a blocking set of G and |B| Æ —. We obtain the following
upper bound, which requires a considerable amount of technical work.

I Theorem 2.6. For any graph G and any integer t Ø 3, it holds that mmbst(G) Æ

—(bed+
t
(G), t), where —(x, t) = 2t2

t2···
t

¸ ˚˙ ˝
x times

(i.e., —(1) = 2t,—(2) = 2t2t , etc.)

To explain the di�culty of proving the above theorem, let us sketch how such a bound is
obtained for Vertex Cover as a function of treedepth, for example in the proof in [12]
that, for every graph G, mmbs2(G) Æ 2td(G).

Observe first that for the Vertex Cover problem, a blocking set B is a set of singletons,
which we consider as a subset of vertices, such that any vertex cover S containing B is not
optimal. Let us now use [11, Property 1] and consider a blocking set B of G, and let us show
that there exists B ™ B such that B is still a blocking set of G and |B| Æ 2td(G). Consider a
graph G and a “root” v of a treedepth decomposition of G, meaning that td(G ≠ v) < td(G).
Let us consider the most complex case where there exists an optimal solution using v,
another avoiding v, and v /œ B. It is not di�cult to prove that, as B is a blocking set
of G, B1 = B is a blocking set of G1 := G ≠ v, and B2 = B \ N(v) is a blocking set of
G2 := G ≠ ({v} fi N(v)). Thus, as for any i œ [2], td(Gi) < td(G), by induction we get
that there exists Bi ™ Bi such that Bi is a blocking set of Gi and |Bi| Æ 2td(G)≠1. As
B1 fi B2 is a blocking set of G, we get the desired bound. The problem when lifting this
idea to Kt-Subgraph Hitting instead of Vertex Cover is that, when considering an
optimal solution S that avoids a root v, we do not know which vertex the solution S will
pick in N(v). This is the reason for which we consider the more general version of the
problem, namely EKt-SH, to encode the fact that a solution of (G, ÿ) avoiding a root v

must be a solution of (G ≠ v, prt
v
(V (G) \ {v})), where given two disjoint sets A,B ™ V (G),

prt
A
(B) = {K fl B | K is a t-clique in G[A fi B] and K fl A ”= ÿ and K fl B ”= ÿ}. We also

need to define the corresponding generalized notion of blocking set of an instance (G,F) of
EKt-SH (cf. [11, Definition 4.1]), and not only of a graph G. Moreover, we have to keep
track of the structure of F , as there is no hope to bound mmbst(G,F) as a function of
bed+

t
(G) for an arbitrary set F . Indeed, for example, let G¸ be a chain of triangles of length

¸, as depicted in Figure 4. We have mmbs2(G¸) Ø ¸, as if we let B be the set of top vertices
of the ¸ triangles, then it can be easily seen that B is a minimal blocking set of G¸ with
|B| = ¸. Now, take F = E(G¸), t = 4, and observe that any solution of instance (G¸,F) of
EKt-SH is a vertex cover of G¸, and thus B is also a minimal blocking set of size ¸ for the
input (G¸,F) with t = 4, while bed+

t
(G¸) = 0 as G¸ is K4-free.

We resolve this problem by proving bounds on mmbst(G,F) only for a special type of
instances that we call clean, which are pairs (G,F) such that opt(G,F) = opt(G). The first
main di�culty is that, when starting with a blocking set B of (G,F), reducing to a graph G

Õ

with bed+
t
(GÕ) < bed+

t
(G) requires to remove the entire root T of G≠N

t(G), instead of just
one vertex as in the treedepth case. As |V (T )| may be arbitrarily large, we need to prove
(see [11, Lemma 4.8]) that it is enough to “zoom in” on a small number of subgraphs (pending
components here), allowing us to extract (by induction) a small blocking set only in each of
these subgraphs. The second main di�culty is to ensure that we can reduce via recursion
to smaller clean instances. Indeed, even if we initially consider a clean instance (G, ÿ), and
even in the favorable case where T is just one vertex v (as in treedepth), we have to consider
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the case where there exists an optimal solution of G using v, another avoiding v, and v /œ B,
where B is fixed blocking set from which we try to extract a small one. However, observe
that optimal solutions avoiding v are optimal solutions of (G ≠ v, prt

v
(V (G) \ {v})), and that

opt(G≠v, prt
v
(V (G)\{v})) = opt(G) = 1+opt(G≠v) (the last equality holds since there are

optimal solutions taking v). Thus, we observe that this situation leads to a non-clean instance
(G≠ v, prt

v
(V (G) \ {v})), but “almost clean” as opt(G≠ v, prt

v
(V (G) \ {v})) = opt(G≠ v) + 1.

We treat these almost clean instances in [11, Lemma 4.5], which is the main cause of the huge
growth of function — in the final bound mmbst(G) Æ —(bed+

t
(G), t) given in Theorem 2.6.

As this bound directly reverberates both in the running time and the size of the kernel
(see [11, Theorem 5.16], where ”(⁄, t) is dominated by —(⁄, t) for an instance (G,X) of
Kt-SHM where bed+

t
(G ≠ X) Æ ⁄), improving this bound is crucial in order to improve the

kernel size. In this direction, we provide in [11, Lemma 4.12] a significantly better upper
bound for minimal blocking sets of the Kt-SH problem as a function of td instead of bed+

t
.

As the proof technique is also di�erent, we believe that this result might be of independent
interest.

Finally, let us mention that in several earlier papers on kernelization using structural
parameterizations, it was also crucial to understand the maximum size of an inclusion-minimal
set with additional requirements on the solution to a vertex-deletion problem, for which no
optimal solution can satisfy all additional requirements; these correspond to variations on the
notion of blocking sets. They were explored for the problems of hitting forbidden connected
minors in graphs of bounded treedepth [33], and for hitting cycles in graphs of bounded
elimination distance to a forest [18], both of which lead to super-exponential bounds in terms
of the graph parameter.

3 Hardness results

In this section we present two reductions from CNF-SAT, and to transfer the non-existence
of polynomial kernels (under reasonable complexity assumptions), we use the notion of
polynomial parameter transformation, introduced by Bodlaender, Thomassé, and Yeo [9]. A
polynomial parameter transformation from a parameterized problem P to a parameterized
problem Q is an algorithm that, given an instance (x, k) of P , computes in polynomial time
an equivalent instance (xÕ

, k
Õ) of Q such that kÕ is bounded by a polynomial depending only

on k. It follows easily from the definition that if P does not admit a polynomial generalized1
kernel under some complexity assumption, then the same holds for Q. The complexity
hypothesis in the following proposition builds on the results by Fortnow and Santhanam [26].

I Proposition 3.1 (Dell and van Melkebeek [19]). CNF-SAT does not admit a polynomial
generalized kernel parameterized by the number of variables of the input formula, unless
NP ™ coNP/poly.

We are ready to present our main hardness result, which is inspired by other reductions
for related problems [10, 16, 18, 25, 32]. The crucial issue of this reduction, and its main
conceptual novelty, is the following fact: when H is not a clique, the intersection of an
occurrence of H with (a subgraph of) G ≠ X may be disconnected. We exploit this fact by

1 A generalized kernel for a parameterized problem P , also called sometimes compression in the literat-
ure [15], is a polynomial-time algorithm reducing any instance (x, k) of P to an equivalent instance
(xÕ

, k
Õ) with size bounded by a function f(k) depending only on k of a fixed but potentially di�erent

parameterized problem Q. A generalized kernel is polynomial if f(k) is a polynomial function.
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creating clause gadgets with large minimal blocking sets whose elements are disconnected (in
Figure 3, each pair of consecutive non-adjacent vertices u, v is an element of a blocking set),
and this results in clause gadgets behaving as “chains” where the propagation of information
(that is, the vertices picked by the solution) is done without needing edges connecting the
elements of the chain (thus, in a “wireless” fashion), easily implying that the corresponding
parameter in G ≠ X is bounded by a constant.

I Theorem 3.2. Let H be a biconnected graph that is not a clique. The H-Subgraph
Hitting (resp. H-Induced Subgraph Hitting) problem does not admit a polynomial
kernel parameterized by the size of a given vertex set X of the input graph G such that
ved+

F
H̄

(G ≠ X) Æ 1 (resp. ved+
F

ind
H̄

(G ≠ X) Æ 1), unless NP ™ coNP/poly.

Proof. We present a polynomial parameter transformation from the CNF-SAT problem
parameterized by the number of variables, which does not admit a polynomial generalized
kernel by Proposition 3.1, unless NP ™ coNP/poly. We present our reduction for the H-
Subgraph Hitting problem, and at the end of the proof we observe that the same reduction
applies to H-Induced Subgraph Hitting as well.

Given a CNF-SAT formula „ with n variables x1, . . . , xn and m clauses C1, . . . , Cm, we
proceed to construct in polynomial time an instance G of H-Subgraph Hitting, together
with a set X ™ V (G) with ved+

H
(G≠X) Æ 1 and |X| = |V (H)| ·n, such that „ is satisfiable if

and only if G contains a solution of H-Subgraph Hitting of size at most n≠m+
q

m

j=1
cj ,

where cj denotes the number of literals in clause Cj . Since |V (H)| is a constant, this would
indeed define a polynomial parameter transformation from CNF-SAT parameterized by the
number of variables to H-Subgraph Hitting parameterized by the size of a given vertex
set X of the input graph G such that ved+

H
(G ≠ X) Æ 1.

For each variable xi, we add a disjoint copy of H to G. We call such a copy of H the
i-variable-copy of H. For each clause Cj , we add cj ≠ 1 disjoint copies of H to G, and we
order them arbitrarily from 1 to cj ≠ 1. Moreover, we add two new vertices u0

j
and v

cj

j
to G.

We call each of these cj ≠ 1 copies of H a j-clause-copy of H. Note that, so far, we have
introduced n ≠ m+

q
m

j=1
cj disjoint copies of H in G.

We now proceed to interconnect these copies of H according to „. Since H is a biconnected
graph that is not a clique (hence, it is 2-connected), it follows that |V (H)| Ø 4. Thus, in
particular there exist two non-adjacent vertices u, v œ V (H) and another vertex w œ V (H)
distinct from u and v. Let H Õ = H ≠ {u, v, w}. (Even if it is not critical for the proof, note
that |V (H Õ)| Ø 1.) Let also z

+ and z
≠ be two distinct vertices of H (not necessarily di�erent

from u, v, w). We will use the copies of these vertices in the variable-copies and clause-copies
of H to interconnect them in G. To this end, for three distinct vertices a, b, c œ V (G) and a
subgraph F of G isomorphic to H

Õ not containing any of a, b, c, by adding an (a, b, c, V (F ))-
copy of H to G we mean the operation of, starting from G[{a, b, c} fi V (F )], adding the
missing edges to complete a copy of H, where vertex a (resp. b, c) of G plays the role of
vertex w (resp. u, v) of H, and F plays the role of H Õ, with a fixed isomorphism that we
suppose to have at hand.

For each clause Cj of „, consider an arbitrary ordering of its literals as ¸1, . . . , ¸cj , and
recall that G contains cj ≠ 1 ordered disjoint j-clause-copies of H together with two extra
vertices u

0

j
and v

cj

j
. For i œ [cj ], we add a new copy of H Õ to G, which we denote by F

i

j
.

For i œ [cj ≠ 1], let u
i

j
and v

i

j
be the copies of vertices u and v of H, respectively, in the

i-th j-clause-copy of H. For i œ [cj ], if literal ¸i of clause Cj corresponds to a positive
(resp. negative) occurrence of a variable xp, let z be the copy of vertex z

+ œ V (H) (resp.
z

≠ œ V (H)) in the p-variable-copy of H. Then we add a (z, ui≠1

j
, v

i

j
, V (F i

j
))-copy of H to G,
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x1 x2 x3 x4

C1 C2

u0
1 v11 u1

1 v21 u0
2 v12 u1

2 v22 u2
2 v32 u3

2 v42

z+1 z�1 z+2 z�2 z+3 z�3 z+4 z�4
X

Figure 3 Example of the construction of graph G in the proof of Theorem 3.2 for H-Subgraph
Hitting. In this example, H is the diamond (that is, K4 minus one edge), u and v are the only
pair of non-adjacent vertices in H, and w is any other vertex. The construction corresponds to a
CNF-SAT formula „ consisting of two clauses C1 = (x1 ‚ x2) and C2 = (x̄1 ‚ x̄2 ‚ x̄3 ‚ x̄4), and the
satisfying assignment –(x1) = 1, –(x2) = 0, –(x3) = 1, and –(x4) = 0. The variable-copies and
clause-copies of H are depicted in blue, the vertices in the copies of H Õ = H ≠ {u, v, w} (which is a
single vertex) are the white ones, and the vertices in the solution S are the large red ones. Note that
clause C2 is satisfied by both x̄2 and x̄4; in the example we have taken x̄2 as the satisfying literal.

and we call such a copy of H a transversal-copy of H, denoted by H
i

j
. We define X ™ V (G) to

be the union of the vertex sets of all the variable-copies of H, and note that |X| = |V (H)| ·n.
This completes the construction of G and X, which is illustrated in Figure 3.

In the next claim we prove one of the properties claimed in the statement of the theorem.

B Claim 3.3. ved+
F

H̄

(G ≠ X) = 1 and ved+
F

ind
H̄

(G ≠ X) = 1.

Proof. Note that each connected component of G ≠ X corresponds to the clause-copies of H
associated with a clause Cj and isolated vertices, together with the copies of H Õ between
those j-clause-copies of H and isolated vertices. By construction of G, each such a copy of H Õ,
say F

i

j
, has at most two neighbors in G ≠ X, namely vertices ui≠1

j
and v

i

j
. If an occurrence

of H as a subgraph in G ≠ X, say F , contained a vertex of F i

j
, since |V (H Õ)| = |V (H)| ≠ 3,

necessarily F contains at least one of ui≠1

j
and v

i

j
, and at least one more vertex in the

(i ≠ 1)-th or i-th j-clause-copies of H. Thus, ui≠1

j
or v

i

j
is a separator of size one of F ,

contradicting the hypothesis that H is biconnected.
That is, we have proved that no vertex in a copy F

i

j
of H Õ in G ≠ X is contained in an

occurrence of H as a subgraph, hence neither as an induced subgraph. Therefore, those
vertices can be removed while preserving the value of ved+

F
H̄

(G ≠ X). Formally,

ved+
F

H̄

(G ≠ X) = ved+
F

H̄

(G ≠ X ≠
m€

j=1

cj€

i=1

V (F i

j
)),

and the same holds for ved+
F

ind
H̄

(G ≠ X). To conclude the proof of the claim, it su�ces to
note that G ≠ X ≠

t
m

j=1

tcj

i=1
V (F i

j
) consists of a disjoint union of clause-copies of H and

isolated vertices, and using the fact that ved+
F

H̄

(resp. ved+
F

ind
H̄

) of a disconnected graph is the
maximum of ved+

F
H̄

(resp. ved+
F

ind
H̄

) over its connected components, by removing one arbitrary
vertex from each such a copy of H we get that ved+

F
H̄

(G ≠ X) = 1 and ved+
F

ind
H̄

(G ≠ X) = 1.
C
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We now claim that „ is satisfiable if and only if G contains a solution S ™ V (G) of
H-Subgraph Hitting of size at most n ≠ m+

q
m

j=1
cj .

Suppose first that „ is satisfiable and let – : {x1, . . . , xn} æ {0, 1} be a satisfying
assignment of the variables. We define a set S ™ V (G) of size n≠m+

q
m

j=1
cj as follows (cf.

the red vertices in Figure 3). For each variable xi, if –(xi) = 1 (resp. –(xi) = 0), we add to
S the copy of z+ (resp. z≠) in the i-variable-copy of H, which we denote by z

+

i
(resp. z≠

i
).

For each clause Cj , let ¸sj be a literal in Cj that is satisfied by the assignment –. Recall
that the cj ≠ 1 j-clause-copies of H are ordered (arbitrarily) from 1 to cj ≠ 1. We add to S

the vertex set

{vi
j
| 1 Æ i Æ sj ≠ 1} fi {ui

j
| sj Æ i Æ cj ≠ 1}.

In words, we add to S the copy of vertex v in all the j-clause-copies of H from 1 to sj ≠ 1,
and the copy of vertex u in all the j-clause-copies of H from sj to cj ≠ 1. Note that
|S| = n≠m+

q
m

j=1
cj , and it remains to prove that G≠S does not contain H as a subgraph.

Note that each variable-copy and clause-copy of H contains exactly two vertices that have
neighbors outside of that copy – let us call these vertices boundary vertices of that copy – ,
and that S contains exactly one of these two boundary vertices for each of these copies of H.
Hence, since H is biconnected, no occurrence of H in G ≠ S can contain a non-boundary
vertex in a variable-copy or clause-copy of H.

Moreover, there do not exist two pairs of integers (i1, j1) and (i2, j2), with i1 ”= i2 or
j1 ”= j2, such that there exists an occurrence F of H in G≠S with F fl (V (Hi1

j1
)\X) ”= ÿ and

Ffl(V (Hi2
j2
\X) ”= ÿ. Indeed, if such (i1, j1) and (i2, j2) existed, then, as |N(V (Hi

j
)\X)flX| =

1 for any two indices i, j, and as F cannot contain a non-boundary vertex of a variable-copy
of H, there would exist z œ X such that F fl X = {z}, implying that z is a separator of F ,
contradicting the 2-connectivity of H.

Thus, if an occurrence of H in G ≠ S existed, say F , then the above discussion and the
construction of G imply that F should be one of the transversal-copies of H. But such an F

cannot exist in G≠S by the choice of S: either S contains one of the boundary vertices in the
two j-clause-copies intersected by F for some j œ [m] or, if it is not the case, then S contains
the vertex in a variable-copy of H corresponding to the literal that satisfies clause Cj .

Conversely, let S ™ V (G) be a solution of H-Subgraph Hitting of size n≠m+
q

m

j=1
cj .

Since G contains |S| disjoint variable-copies and clause-copies of H, necessarily S consists
of exactly one vertex in each of these copies. Since the boundary vertices in each of the
variable-copies and clause-copies of H are the only vertices with neighbors outside of the
corresponding copy, we may assume that all the vertices in S are boundary vertices. We
define from S a satisfying assignment – of „ as follows. If S contains z

+

i
(resp. z

≠

i
) we

set –(xi) = 1 (resp. –(xi) = 0). Let us verify that – indeed satisfies all the clauses of „.
Consider an arbitrary clause Cj with cj literals, and note that S contains cj ≠ 1 vertices in
the j-clause-copies of H. Therefore, since by construction no two transversal-copies intersect
a clause-copy in a common vertex, there exists sj œ [cj ] such that the sj-th transversal-copy
of H associated with Cj , say F , is not hit by a vertex in a clause-copy of H. Thus, since
S fl V (F ) ”= ÿ, necessarily there exists an index i œ [n] such that S fl V (F ) is equal to either
z
+

i
or z≠

i
, and thus the defined assignment of variable xi satisfies clause Cj .

To conclude the proof, we claim that the same reduction presented above proves the
hardness result for the H-Induced Subgraph Hitting problem. Indeed, in the proof of the
equivalence between the satisfiability of „ and the existence of a solution S of H-Subgraph
Hitting with the appropriate size, all that is relevant to the proof are the variable-copies,
clause-copies, and transversal-copies of H. As all these occurrences of H in G occur as
induced subgraphs, the same reduction implies the non-existence of polynomial kernels for
H-Induced Subgraph Hitting. J
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In Theorem 1.3 we replace the condition “ved+
H
(G ≠ X) Æ 1” of Theorem 3.2 with the

condition that td(G ≠ X) is bounded by a constant. However, in the proof of Theorem 1.3
we need an extra condition on H stronger than biconnectivity, namely the non-existence of a
stable cutset. The reduction in the proof of Theorem 1.3 follows essentially the same lines as
the one described in Theorem 3.2, but in order to guarantee that td(G ≠ X) is bounded by
a constant (depending on H), we need to be more careful. Namely, in the interconnection
among the variable and clause gadgets, now we cannot a�ord to add a distinct gadget for
each literal in a clause, as it was the case for the copies of H Õ in the proof of Theorem 3.2 (cf.
the white vertices in Figure 3). Indeed, these copies of H Õ can be removed “for free” when
dealing with ved+

H
, but it is not the case anymore when dealing with treedepth, as they may

blow up the value of td(G ≠ X). In a nutshell, we overcome this issue by “reusing” these
copies of a (now, carefully chosen) subgraph H

Õ ™ H for all the literals of the same clause.
However, having a single common H

Õ for each clause may create undesired occurrences of
H (other than the variable-copies, clause-copies, and transversal-copies, as we wish), and
preventing the existence of these undesired copies is the reason why we need an assumption
on H stronger than biconnectivity. The proof of Theorem 1.3 can be found in the full
version [11].

4 Further research

In this paper we studied the existence of polynomial kernels for the H-Subgraph Hitting

and H-Induced Subgraph Hitting problems under structural parameterizations, namely
parameterized by the size of a modulator to a graph class C that has a “simple structure”. Our
main achievement is the identification of two arguably natural graph parameters ved+

F
H̄

and
bed+

F
H̄

(or ved+
F

ind
H̄

and bed+
F

ind
H̄

for the induced version) that allowed us to prove complexity
dichotomies in terms of the forbidden graph H. Our results pave the way to a systematic
investigation of this topic, where we identify the following avenues for further research.

Getting rid of the hypothesis on H. In our hardness results we need additional assumptions
on H, mainly that H is biconnected in Theorem 3.2. Observe that the requirement that H
is connected is necessary to obtain polynomial kernels. Indeed, when H is the union of a K5

and a K1,3, it is known [31] that H-Subgraph Hitting is para-NP-hard, even for edH = 0.
Moreover, when H is a non-edge, H-Induced Subgraph Hitting parameterized by vertex
cover (which is a larger parameter than edH) is equivalent to maximum clique parameterized
by vertex cover, which does not admit a polynomial kernel under standard complexity
assumptions [7]. Thus, it is natural to wonder whether the biconnectivity hypothesis could
be replaced by just connectivity.

Improving the degree of the kernel. The degree of our polynomial kernel depends on the
size t of the excluded clique and on the value ⁄ of the promised upper bound bed+

t
(G≠X) Æ ⁄.

Namely, as stated in Theorem 2.5, the kernel has size O⁄,t(|X|”(⁄,t)), where function ” mainly
depends on the upper bound on mmbst given in Theorem 2.6. This function behaves as
a tower of exponents in t of height ⁄. Hence, improving the bound on mmbst directly
translates to an improvement of the kernel size. We did obtain such an improvement if
instead of assuming that bed+

t
(G ≠ X) Æ ⁄, one assumes that td(G ≠ X) Æ ⁄, namely with

a function ⁄
⁄ · 2⁄

2 ; see [11, Lemma 4.12]. We leave as an open problem to obtain improved
upper bounds for mmbst in terms of ved+

t
and bed+

t
.
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Computing the modulator. In our kernelization algorithm we assume that we are given a
modulator, namely a set X ™ V (G) such that bed+

t
(G ≠ X) Æ ⁄. Note that this hypothesis

appears also in the related work dealing with Feedback Vertex Set [18]. Obtaining a
constant factor or even poly(opt)-approximation of the modulator in polynomial time for
fixed t and ⁄, which will be enough for our kernelization algorithm (note that minimizing
its size is NP-hard [38]), remains an interesting direction. One may start with the probably
simpler cases of a modulator to bounded F

H̄
-elimination distance or bounded ved+

t
.

Finding the right measure. The focus of this article is on obtaining kernelization dichotomies
as a function of the forbidden (induced) subgraph H. Of course, it is also relevant to
characterize, for a fixed graph H, which is the most general (monotone or hereditary)
target family CH such that H-(Induced) Subgraph Hitting admits a polynomial kernel
parameterized by the size of a modulator to a graph in CH . Needless to say, solving this
general problem seems quite challenging. Indeed, even the case of Vertex Cover, that
is, H = K2, is far from being well understood for monotone or hereditary target graph
classes, as for instance the only known polynomial kernel for Vertex Cover parameterized
by a modulator to a bipartite graph (i.e., an odd cycle transversal) is randomized and
relies on quite powerful tools [36, 37]. One may hope that larger cliques allow for simpler
characterizations, the natural first candidate being the case where H is a triangle. Let C� be
the, say, hereditary target graph class that we want to characterize. Following the approach
of [10] that characterized the target minor-closed graph classes for Vertex Cover, one may
hope that K3-Subgraph Hitting admits a polynomial kernel parameterized by a modulator
to C� if and only if the graphs in C� have bounded mmbs3. With no extra assumption on C�,
this property is probably false due to the results of Hols, Kratsch, and Pieterse [29], but we
conjecture that it is true if we ask C� to be hereditary and closed under disjoint union, even
for hitting Kt for every t Ø 3, replacing mmbs3 by mmbst. Toward an eventual proof of this
conjecture, having unbounded minimal blocking sets seems to permit a generic reduction to
obtain the lower bound, in the spirit of the one of Theorem 3.2 or any similar one in previous
work [10, 16, 18, 25, 32]. Indeed, Hols, Kratsch, and Pieterse [29, Thm 1.1] show that for
Vertex Cover, lower bounds on kernel sizes directly follow from lower bounds on mmbs2.
However, the opposite direction seems way more challenging. In [10], this fact was established
for Vertex Cover and minor-closed target classes via the notion of bridge-depth by proving,
in particular, that there is a single minor-obstruction for having large maximum minimal
blocking sets, namely the chains of triangles (cf. left part of Figure 4). Unfortunately, we
cannot hope the same nice behavior for K3-Subgraph Hitting and monotone or hereditary
graph classes, as chains of triangles are still an obstruction in this setting, but there exist
other incomparable ones, as depicted in Figure 4.

Figure 4 Two chains of length three incomparable with respect to the (induced) subgraph relation.
In both graphs, it can be verified that the set of four red thicker edges is a minimal blocking set.

Finally, in the ambitious quest for finding the appropriate measures that characterize the
hereditary or monotone classes Ct for which Kt-Subgraph Hitting admits a polynomial
kernel parameterized by the size of a modulator X to Ct, we hope that the techniques
we developed to provide a polynomial kernel for the case bed+

t
(G ≠ X) Æ ⁄ will play an

ICALP 2024
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important role. A natural attempt to generalize bed+
t
to a more powerful measure is to relax,

or even drop, the “weak attachment” condition on the sets to be removed in every round of
the elimination process. This raises new challenges for obtaining a polynomial kernel that do
not seem easy to overcome, at least with the existing tools in this area.
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Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the
input, then the problem can be solved with exponential dependence on t. A line of research initiated
by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many
cases known algorithms already achieve the best possible exponential dependence on t, assuming the
Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the
same lower bounds can already be obtained in a much more restricted setting: informally, a graph
consisting of a block of t vertices connected to components of constant size already has the same
hardness as a general tree decomposition of width t.

Formally, a (‡, ”)-hub is a set Q of vertices such that every component of Q has size at most ‡

and is adjacent to at most ” vertices of Q. We explore if the known tight lower bounds parameterized
by the width of the given tree decomposition remain valid if we parameterize by the size of the given
hub.

For every Á > 0, there are ‡, ” > 0 such that Independent Set (equivalently Vertex Cover)
cannot be solved in time (2 ≠ Á)p · n, even if a (‡, ”)-hub of size p is given in the input, assuming
the SETH. This matches the earlier tight lower bounds parameterized by width of the tree
decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut,
q-Coloring, and edge/vertex deletions versions of q-Coloring.
For every Á > 0, there are ‡, ” > 0 such that —-Partition cannot be solved in time (2 ≠ Á)p · n,
even if a (‡, ”)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In
fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be
proved assuming the SETH.
For Dominating Set, we can prove a non-tight lower bound ruling out (2≠Á)p ·nO(1) algorithms,
assuming either the SETH or the SCC, but this does not match the 3p · nO(1) upper bound.

Thus our results reveal that, for many problems, the research on lower bounds on the dependence
on tree width was never really about tree decompositions, but the real source of hardness comes
from a much simpler structure.

Additionally, we study if the same lower bounds can be obtained if ‡ and ” are fixed universal
constants (not depending on Á). We show that lower bounds of this form are possible for Max Cut

and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However,
no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the
vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every
fixed (‡, ”).
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1 Introduction

Starting with the work of Lokshtanov, Marx, and Saurabh [24], there is a line of research
devoted to giving lower bounds on how the running time of parameterized algorithms
can depend on treewidth (or more precisely, on the width of a given tree decomposition)
[32, 31, 11, 7, 4, 19, 27, 8, 13, 28, 12]. The goal of this paper is to revisit the fundamental
results from [24] to point out that previous work could have considered a simpler parameter
to obtain stronger lower bounds in a more uniform way. Thus, in a sense, this line of research
was never really about treewidth; a fact that future work should take into account.

Suppose we want to solve some algorithmic problem on a graph G given with a tree
decomposition of width t. For many NP-hard problems, standard dynamic program techniques
or meta theorems such as Courcelle’s Theorem [5] show that the problem can be solved
in time f(t) · nO(1) for some computable function f [10, Chapter 7]. In many cases, the
running time is actually ct · nO(1) for some constant c > 1, where it is an obvious goal
to make the constant as small as possible. A line of work started by Lokshtanov, Marx,
and Saurabh [24] provides tight conditional lower bounds for many problems with known
ct · nO(1)-time algorithms. The lower bounds are based on the Strong Exponential-Time
Hypothesis, formulated by Impagliazzo, Paturi, and Zane [16, 17].

I Strong Exponential-Time Hypothesis (SETH). There is no Á > 0 such that for every k,
every n-variable instance of k-Sat can be solved in time (2 ≠ Á)n · nO(1)

.

The goal of these results is to provide evidence that the base c of the exponent in the best
known ct · nO(1)-time algorithm is optimal: if a (c ≠ Á)t · nO(1)-time algorithm exists for any
Á > 0, then SETH fails. The following theorem summarizes the basic results obtained by
Lokshtanov, Marx, and Saurabh [24].

I Theorem 1.1 ([24]). If there exists an Á > 0 such that

1. Independent Set can be solved in time (2 ≠ Á)t · nO(1)
, or

2. Dominating Set can be solved in time (3 ≠ Á)t · nO(1)
, or

3. Max Cut can be solved in time (2 ≠ Á)t · nO(1)
, or

4. Odd Cycle Transversal can be solved in time (3 ≠ Á)t · nO(1)
, or

5. q-Coloring can be solved in time (q ≠ Á)t · nO(1)
for some q > 3, or

6. Triangle Partition can be solved in time (2 ≠ Á)t · nO(1)
,

on input an n-vertex graph G together with a tree decomposition of width at most t, then the

SETH fails.

Already in [24] it is pointed out that many of the lower bounds remain true even in the
more restricted setting where the input is not a tree decomposition, but a path decomposition.
This raises the following natural questions:

How much further can we restrict the input and still obtain the same lower bounds?
What is the real structural source of hardness in these results?

https://doi.org/10.4230/LIPIcs.ICALP.2024.34
https://doi.org/10.48550/arXiv.2402.07331
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In this paper, we show that many of these lower bounds remain true in a much more restricted
setting where a block of p vertices is connected to constant-size components. Additionally,
we demonstrate that our results are very close to being best possible, as further restrictions
of the structure of the graphs allow better algorithms.

We say that a set Q of vertices is a (‡, ”)-hub of G if every component of G≠Q has at most
‡ vertices and each such component is adjacent to at most ” vertices of Q in G1. Our goal is
to prove lower bounds parameterized by the size of a (‡, ”)-hub given in the input, where ‡
and ” are treated as constants. One can observe that a (‡, ”)-hub of size p in G can be easily
turned into a tree decomposition of width less than p+‡, hence the treewidth of G is at most
p+ ‡. Therefore, any lower bound parameterized by the size p of hub immediately implies a
lower bound parameterized by the width of the given tree decomposition. We systematically
go through the list of problems investigated by Lokshtanov, Marx, and Saurabh [24], to see
if the same lower bound can be obtained with this parameterization. Our results show that,
in most cases, the results remain valid under parameterization by hub size. However, new
insights, techniques and arguments are needed; in particular, we require di�erent complexity
assumptions for some of the statements.

1.1 Coloring Problems and Relatives
Let us first consider the q-Coloring problem: given a graph G, the task is to find a coloring
of the vertices of G with q colors such that adjacent vertices receive di�erent colors. Given
a (‡, ”)-hub Q of size p, we can try all possible q-colorings on Q and check if they can be
extented to every component of G ≠ Q. Assuming ‡ and ” are constants, this leads to a
qp · nO(1) algorithm. Our first result shows that this is essentially best possible, assuming
the SETH; note that this result immediately implies Theorem 1.1(5).

I Theorem 1.2. Let q > 3 be an integer.

1. For every ‡, ” > 1, q-Coloring on n-vertex graphs can be solved in time qp · nO(1)
if a

(‡, ”)-hub of size p is given in the input.

2. For every Á > 0, there exist integers ‡, ” > 1 such that if there is an algorithm solving in

time (q ≠ Á)p · nO(1)
every n-vertex instance of q-Coloring given with a (‡, ”)-hub of

size at most p, then the SETH fails.

The q-ColoringED problem is an edge-deletion optimization version of q-Coloring:
given a graph G, the task is to find a set X of edges of minimum size such that G \X has a
q-coloring. We show that qp · nO(1) running time is essentially optimal for this problem as
well.

I Theorem 1.3. Let q > 2 be an integer.

1. For every ‡, ” > 1, q-ColoringED on n-vertex graphs can be solved in time qp · nO(1)
if

a (‡, ”)-hub of size p is given in the input.

2. For every Á > 0, there exist integers ‡, ” > 1 such that if there is an algorithm solving in

time (q ≠ Á)p · nO(1)
every n-vertex instance of q-ColoringED given with a (‡, ”)-hub

of size at most p, then the SETH fails.

1 This notion is related to component order connectivity, which is the size of the smallest set Q of
vertices such that deleting Q leaves components of size not larger than some predefined constant ‡
[37, 33, 26, 3, 20, 22, 1, 14, 34, 6, 25]. Our definition has the additional constraint on the neighborhood
size of each component. As we often refer to the set Q itself (not only its smallest possible size) and we
want to make the constants ‡, ” explicit, the terminology (‡, ”)-hub is grammatically more convenient
than trying to express the same using component order connectivity.
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For q > 3, the lower bound of Theorem 1.2 for q-Coloring immediately implies the same
lower bound for the more general problem q-ColoringED. Observe that for q = 2, the
q-ColoringED problem is equivalent to the Max Cut problem: deleting the minimum
number of edges to make the graph bipartite is equivalent to finding a bipartition with the
maximum number of edges going between the two classes. Thus the lower bound for Max

Cut is needed to complete the proof of Theorem 1.3.
Let us consider now the vertex-deletion version q-ColoringVD, where given a graph

G, the task is to find a set X of vertices of minimum size such that G ≠ X has a q-coloring
(equivalently, we want to find a partial q-coloring on the maximum number of vertices).
For this problem, a brute force approach would need to consider (q + 1)p possibilities on a
(‡, ”)-hub of size p: each vertex can receive either one of the q colors, or be deleted.

I Theorem 1.4. Let q > 1 be an integer.

1. For every ‡, ” > 1, q-ColoringVD on n-vertex graphs can be solved in time (q+1)p ·nO(1)

if a (‡, ”)-hub of size p is given in the input.

2. For every Á > 0, there exist integers ‡, ” > 1 such that if there is an algorithm solving in

time (q+1≠Á)p ·nO(1)
every n-vertex instance of q-ColoringVD given with a (‡, ”)-hub

of size at most p, then the SETH fails.

Observe that Vertex Cover is equivalent to 1-ColoringVD and Odd Cycle Trans-

versal is equivalent to 2-ColoringVD. Furthermore, Independent Set and Vertex

Cover have the same time complexity (due to the well-known fact that minimum size of a
vertex cover plus the maximum size of an independent set is always equal to the number of
vertices). Thus the definition of q-ColoringVD gives a convenient unified formulation that
includes these fundamental problems.

1.2 Packing Problems
Given a graph G, the Triangle Partition (denoted by —-Partition for short) problem
asks for a partition of the vertex set into triangles. Triangle Packing (denoted by
—-Packing) is the more general problem where the task is to find a maximum-size collection
of vertex-disjoint triangles. Given a tree decomposition of width t, Theorem 1.1(6) shows
that 2t · nO(1) is essentially the best possible running time. It seems that the same lower
bound holds when parameterizing by the size of a hub, but the source of hardness is somehow
di�erent. Instead of assuming the SETH, we prove this lower bound under the Set Cover

Conjecture (SCC) [9, 10]. In the d-Set Cover problem, we are given a universe U of
size n and a collection F of subsets of U , each with size at most d. The task is to find a
minimum-size collection of sets whose union covers the universe.

I Set Cover Conjecture (SCC). For all Á > 0, there exists d > 1 such that there is no

algorithm that solves every 6d-Set Cover instance (U,F) in time (2 ≠ Á)n · nO(1)
where

n = |U |.

We actually show that the lower bounds for —-Partition/—-Packing are equivalent to
the SCC.

I Theorem 1.5. The following three statements are equivalent:

The SCC is true.

For every Á > 0, there are ‡, ” > 0 such that —-Partition on an n-vertex graph cannot

be solved in time (2 ≠ Á)p · nO(1)
, even if the input contains a (‡, ”)-hub of size p.

For every Á > 0, there are ‡, ” > 0 such that —-Packing on an n-vertex graph cannot be

solved in time (2 ≠ Á)p · nO(1)
, even if the input contains a (‡, ”)-hub of size p.
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Ideally, one would like to prove lower bounds under the more established conjecture: the
SETH. However, Theorem 1.5 shows that it is no shortcoming of our technique that we
prove the lower bound based on the SCC instead. If we proved statement 2 or 3 under the
SETH, then this would prove that the SETH implies the SCC, resolving a longstanding open
question.

1.3 Dominating Set
Given an n-vertex graph with a tree decomposition of width t, a minimum dominating set
can be computed in time 3t · nO(1) using an algorithm based on fast subset convolution
[35, 36]. By Theorem 1.1 (2), this running time cannot be improved to (3≠ Á)t ·nO(1) for any
Á > 0, assuming the SETH. Can we get a (3 ≠ Á)p · nO(1) algorithm if a hub of size p is given
in the input? We currently have no answer to this question. In fact, we do not even have a
good guess whether or not such algorithms should be possible. What we do have are two
very simple weaker results that rule out (2 ≠ Á)p · nO(1) algorithms, with one proof based on
the SETH and the other proof based on the SCC.

I Theorem 1.6. For every Á > 0, there are ‡, ” > 0 such that Dominating Set on

an n-vertex graph with a (‡, ”)-hub of size p given in the input cannot be solved in time

(2 ≠ Á)p · nO(1)
, unless both the SETH and the SCC fail.

Theorem 1.6 suggests that, if there is no (3 ≠ Á)p · nO(1) time algorithm for Dominating

Set, then perhaps the matching lower bound needs a complexity assumption that is stronger
than both the SETH and the SCC.

1.4 Universal Constants for ‡ and ”?
The lower bounds in Theorems 1.2–1.6 are stated in a somewhat technical form: “for every
Á > 0, there are ‡ and ” such that. . .”. The statements would be simpler and more intuitive
if they were formulated in a setting where ‡ and ” are universal constants, say, 100. Can we
prove statements that show, for example, that there is no (2 ≠ Á)p · nO(1) algorithm, where p
is the size of a (100, 100)-hub given in the input? The answer to this question is complicated.
For the vertex-deletion problem q-ColoringVD (which includes Vertex Cover and Odd

Cycle Transversal) there are actually better than brute force algorithms for fixed constant
values of ‡ and ”.

I Theorem 1.7. For every q > 3 and ‡, ” > 0, there exists Á > 0 with the following property:

every instance (G,L) of q-ColoringVD with n vertices, given with a (‡, ”)-hub of size p,
can be solved in time (q + 1 ≠ Á)p · nO(1)

.

Thus Theorem 1.7 explains why the formulation of Theorem 1.4 needs to quantify over ‡
and ”, and cannot be stated for a fixed pair (‡, ”).

On the other hand, for the edge-deletion problem q-ColoringED (which includes Max

Cut), we can prove stronger lower bounds where ‡ and ” are universal constants. However,
we need a complexity assumption di�erent from the SETH.

An instance of Max 3-Sat is a CNF formula Ï with at most three literals in each clause.
We ask for the minimum number of clauses that need to be deleted in order to obtain a
satisfiable formula. Equivalently, we look for a valuation of the variables which violates
the minimum number of clauses. Clearly, an instance of Max 3-Sat with n variables can
be solved in time 2n · nO(1) by exhaustive search. It is a notorious problem whether this
running time can be significantly improved, i.e., whether there exists an Á > 0 such that
every n-variable instance of Max 3-Sat can be solved in time (2 ≠ Á)n.

ICALP 2024
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I Max 3-Sat Hypothesis (M3SH). There is no Á > 0 such that every n-variable instance of

Max 3-Sat can be solved in time (2 ≠ Á)n · nO(1)
.

Under this assumption, we can prove a lower bound where ” = 6 and ‡ is a constant
(depending only on q).

I Theorem 1.8. For every q > 2 there is an integer ‡ such that the following holds. For

every Á > 0, no algorithm solves every n-vertex instance of q-ColoringED that is given

with a (‡, 6)-hub of size p, in time (q ≠ Á)p · nO(1)
, unless the M3SH fails.

For the case q = 2 we even show a slight improvement over Theorem 1.8 – in this case it
su�ces to consider instances with a constant ‡ and ” = 4.

For —-Partition, we do not know if the lower bound of Theorem 1.5, ruling out
(2 ≠ Á)p · nO(1) running time under the SCC, remains valid for some fixed universal ‡ and ”
independent of Á. Note that the proof of Theorem 1.5 provides a reduction from —-Partition

to d-Set Packing for some d. It is known that d-Set Packing over a universe of size n can
be solved in time (2≠ Á)n · (n+m)O(1) with some Á > 0 depending on d [30, 21, 2]. However,
our reduction from —-Partition to d-Set Packing chooses d in a way that it cannot be
used to reduce the case of a fixed ‡ and ” to a d-Set Packing problem with fixed d. It
seems that we would need to understand if certain generalizations of d-Set Packing can
also be solved in time (2≠ Á)n · (n+m)O(1) for fixed d. The simplest such problem would be
the generalization of d-Set Packing where the sets in the input are partitioned into pairs
and the solution is allowed to use at most one set from each pair.

1.5 Discussion
Given the amount of attention to algorithms on tree decompositions and the number of
nontrivial techniques that were developed to achieve the best known algorithms, it is a natural
question to ask if these algorithms are optimal. Even though understanding treewidth is
a very natural motivation for this line of research, the actual results turned out to be
less related to treewidth than one would assume initially: the lower bounds remain valid
even under more restricted conditions. Already the first paper on this topic [24] states the
lower bounds in a stronger form, as parameterized by pathwidth or by feedback vertex set
number (both of which are bounded below by treewidth). Some other results considered
parameters such as the size of a set Q where every component of G ≠ Q is a path [18] or
has bounded treewidth [15]. However, our results show that none of these lower bounds got
to the fundamental reason why known algorithms on bounded-treewidth graphs cannot be
improved: Theorems 1.2–1.5 highlight that these algorithms are best possible already if we
consider a much more restricted problem setting where constant-sized gadgets are attached
to a set of hub vertices. Moreover, Theorems 1.2 and 1.4 are likely to be best possible: as we
have seen, for coloring and its vertex-deletion generalizations, ‡ and ” cannot be made a
constant independent from Á (Theorem 1.7). Therefore, one additional conceptual message
of our results is understanding where the hardness of solving problems on bounded-treewidth
graphs really stems from, by reaching the arguably most restricted setting in which the lower
bounds hold.

The success of Theorems 1.2–1.4 (for coloring problems and relatives) suggests that
possibly all the treewidth optimality results could be revisited and the same methodology
could be used to strengthen to parameterization by hub size. But the story is more complicated
than that. For example, for —-Packing, the ground truth appears to be that the lower
bound parameterized by width of the tree decomposition can be strengthened to a lower
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bound parameterized by hub size. However, proving the lower bound parameterized by hub
size requires a di�erent proof technique, and we can do it only by assuming the SCC – and
for all we know this is an assumption orthogonal to the SETH. In fact, we showed that the
lower bound for —-Packing is equivalent to the SCC, making it unlikely that a simple proof
based on the SETH exists. For Dominating Set, we currently do not know how to obtain
tight bounds, highlighting that it is far from granted that all results parameterized by width
of tree decomposition can be easily turned into lower bounds parameterized by hub size.

Another important aspect of our results is the delicate way they have to be formulated,
with the values of ‡ and ” depending on Á. Theorem 1.8 shows that in some cases it is
possible to prove a stronger bound where ‡ and ” are universal constants, but this comes
at a cost of choosing a di�erent complexity assumption (M3SH). Thus, there is a tradeo�
between the choice of the complexity assumption and the strength of the lower bound. In
general, it seems that the choice of complexity assumption can play a crucial role in these
kind of lower bounds parameterized by hub size. This has to be contrasted with the case of
parameterization by the width of the tree decomposition, where the known lower bounds are
obtained from the SETH (or its counting version).

It would be natural to try to obtain lower bounds parameterized by hub size for other
algorithmic problems as well. The lower bounds obtained in this paper for various fundamental
problems can serve as a starting point for such further results. Concerning the problems
studied in this paper, we leave two main open questions:

For Dominating Set, can we improve the lower bound of Theorem 1.6 to rule out
(3 ≠ Á)p · nO(1) algorithms, under some reasonable assumption? Or is there perhaps an
algorithm beating this bound?
For —-Partition/—-Packing, can we improve the lower bound of Theorem 1.5 such
that ‡ and ” are universal constants? Or is it true perhaps that for every fixed ‡ and ”,
there is an algorithm solving these problems in time (2 ≠ Á)p · nO(1) for some Á > 0?

2 Technical Overview

In this section, we overview some of the most important technical ideas in our results.

2.1 q-Coloring
The algorithmic statement in Theorem 1.2 is easily obtained via a simple branching procedure.
For the hardness part, we use a lower bound of Lampis [23] for constraint satisfaction problems
(CSP) as a starting point: for any Á > 0 and integer d, there is an integer r such that there
is no algorithm solving CSP on n variables of domain size d and r-ary constraints in time
(d ≠ Á)n. Therefore, to prove Theorem 1.2 (2), we give a reduction that, given an n-variable
CSP instance where the variables are over [q] and the arity of constraints is some constant r,
creates an instance of q-Coloring having a hub of size roughly n.

First, we introduce a set of n main vertices in the hub, representing the variables of
the CSP instance. We would like to represent each r-ary constraint with a gadget that is
attached to a set S of r vertices. We will first allow our gadgets to use lists that specify to
which colors certain vertices are allowed to be mapped. In a second step we then remove
these lists.

A bit more formally, we say that an r-ary q-gadget is a graph J together with a list
assignment L : V (J) æ 2[q] and r distinguished vertices x = (z1, . . . , zr) from J . The vertices
z1, . . . , zr are called portals. A list coloring of (J, L) is an assignment Ï : V (J) æ [q] that
respects the lists L, i.e., with Ï(v) œ L(v) for all v œ V (J).

ICALP 2024
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A construction by Ja�ke and Jansen [18] gives a gadget that enforces that a set of vertices
forbids one prescribed coloring. We use this statement to construct a gadget extends precisely
the set of colorings that are allowed according to some relation.

I Proposition 2.1. Let q > 3 and r > 1 be integers, and let R ™ [q]r be a relation. Then

there exists an r-ary q-gadget F = (F,L, (z1, . . . , zr)) such that

the list of every vertex is contained in [q],
for each i œ r, it holds that L(zi) = [q],
{z1, . . . , zr} is an independent set,

for any Â : {z1, . . . , zr} æ [q], coloring vertices z1, . . . , zr according to Â can be extended

to a list coloring of (F,L) if and only if (Â(z1), . . . ,Â(zr)) œ R.

Then, by introducing one gadget per constraint and attaching it to the vertices of the
hub, from the qn possible behaviors of the hub vertices, only those can be extended to the
gadgets that correspond to a satisfying assignment of the CSP instance. Note that gadgets
are allowed to use lists and they model the relational constraints using list colorings. So the
final step to obtain a reduction to q-Coloring is to remove these lists. This can be done
using a standard construction, where a central clique of size q is used to model the q colors,
and a vertex v of the graph is adjacent to the ith vertex of the clique, whenever i /œ L(v).

2.2 Vertex Deletion to q-Coloring
Similarly to q-Coloring, the algorithmic statement in Theorem 1.4 is easily obtained via
a simple branching procedure. However, for q-ColoringVD, we need to consider q + 1
possibilities at each vertex: assigning to it one of the q colors, or deleting it. This leads
to the running time (q + 1)p · nO(1). The hardness proof is also similar, but this time we
have to give a reduction that, given an n-variable CSP instance where the variables are over
[q+1] and the arity of constraints is some constant r, creates an instance of q-ColoringVD

having a hub of size roughly n. Intuitively, we are using deletion as the (q + 1)-st color: the
(q+1)n possibilities for these vertices in the q-ColoringVD problem (coloring with q colors
+ deletion) correspond to the (q + 1)n possible assignments of the CSP instance. To enforce
this interpretation, we attach to these vertices small gadgets representing each constraint.
We attach a large number of copies of each such gadget, which means that it makes no sense
for an optimum solution to delete vertices from these gadgets and hence deletions occur only
in the hub. This means that we can treat the vertices of the gadgets as “undeletable”.

We would like to use again the construction from Proposition 2.1 to create gadgets that
enforce that a set of vertices has one of the prescribed colorings/deletions. A gadget can
force the deletion of a vertex if its neighbors are colored using all q colors. However, there is
a fundamental limitation of this technique: deleting a vertex is always better than coloring
it. That is, a gadget cannot really force a set S of vertices to the color “red”: from the
viewpoint of the gadget, deleting some of them and coloring the rest red is equally good. In
other words, it is not true that every relation R ™ [q + 1]r can be represented by a gadget
that allows only these combinations of q colors + deletion on a set S of r vertices.

To get around this limitation, we use a grouping technique to have control over how
many vertices are deleted. Let us divide the n variables into M = n/b blocks B1, . . . , BM of
size b each. Let us guess the number fi of variables in Bi that receive the value q + 1 in a
hypothetical solution; that is, we expect fi deletions in block Bi of central vertices. Instead
of just attaching a gadget to a set S of at most r vertices, now each gadget is attached
to the at most r blocks containing S. Besides ensuring a combination of values on S that
satisfies the constraint, the gadget also ensures that each block Bi it is attached to has at
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least the guessed number fi of deletions. This way, if we have a solution with exactly
q

M

i=1
fi

deletions, then we know that it has exactly fi deletions in the i-th block. Therefore, if a
gadget forces the deletion of fi vertices of Bi and forces a coloring on the remaining vertices
of Bi, then we know that that block has exactly this behavior in the solution.

2.3 Edge Deletion to q-Coloring
Let us turn our attention to the edge-deletion version now. Similarly to the vertex-deletion
version, the algorithmic results are simple, thus we discuss only the hardness proofs here.
As starting point for all our reductions, we use a CSP problem with domain size q that
naturally generalizes Max 3-Sat: the task is to find an assignment of variables that satisfies
the maximum number of constraints. For q = 2, the hardness of this problem follows from
the SETH and the M3SH. For q > 3, we prove a new tight lower bound based on M3SH.

For q > 3, the lower bound of Theorem 1.3 (hardness of q-ColoringED under the SETH)
already follows from our result for finding a q-coloring without deletions (Theorem 1.2). So,
in order to complete the proof of Theorem 1.3, we give a reduction from the CSP problem
with q = 2 to 2-ColoringED (i.e., Max Cut), which shows hardness under SETH. As the
gadgets of Proposition 2.1 work only for q > 3, we need to design new gadgets using only 2
colors for this case.

The same reduction can be used to establish the lower bound from Theorem 1.8 (hardness
of q-ColoringED under the M3SH) in the q = 2 case. For the q > 3 case, we present a
reduction from the CSP problem with domain size q to q-ColoringED. Here we can once
again use the gadgets from Proposition 2.1.

In all cases, as the gadgets we design may use lists, we establish respective lower bounds
for the list coloring problem on the way. In a second step, we then show how to remove the
lists.

MaxCSP – Hardness under the M3SH

For some positive integers d and r, we define Max (d,r)-CSP: Given v variables over a
q-element domain and a set of n relational constraints of arity 3, the task is to find an
assignment of the variables such that the maximum number of constraints are satisfied.
The problem can be solved in time qv · nO(1) by brute force. For q = 2, the problem is
clearly a generalization of Max 3-Sat, hence the M3SH immediately implies that there is
no (q ≠ Á)v · nO(1) algorithm for any Á > 0. We show that the M3SH actually implies this for
any q > 2. This might also be a helpful tool for future work.

I Theorem 2.2. For d > 2 and any r > 3, there is no algorithm solving every n-variable
instance of Max (d,r)-CSP in time (d ≠ Á)n · nO(1)

for Á > 0, unless the M3SH fails.

In order to show Theorem 2.2, if q is a power of 2, then a simple grouping argument
works: for example, if q = 24 = 16, then each variable of the CSP instance can represent 4
variables of the Max 3-Sat instance, and hence it is clear that a (q ≠ Á)v algorithm would
imply a (2 ≠ Á)4v algorithm for a Max 3-Sat instance with 4v variables.

The argument is not that simple if q is not a power of 2, say q = 15. Then a variable
of that CSP instance cannot represent all 16 possibilities of 4 variables of the Max 3-Sat
instance, and using it to represent only 3 variables would be wasteful. We cannot use the
usual trick of grouping the CSP variables such that each group together represents a group of
Max 3-Sat variables: then each constraint representing a clause would need to involve not
only 3 variables, but 3 blocks of variables, making ” larger than 3. Instead, for each block
of 4 variables of the Max 3-Sat instance, we randomly choose 15 out of the 16 possible
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assignments, and use a single variable of the CSP instance to represent these possibilities.
An optimum solution of a 4v-variable Max 3-Sat instance “survives” this random selection
with probability (15/16)v. Thus a (15 ≠ Á)v · nO(1) time algorithm for the CSP problem
would give a randomized (16/15)v · (15 ≠ Á)v · nO(1) = (16 ≠ ÁÕ)v · nO(1) = (2 ≠ ÁÕÕ)4v · nO(1)

time algorithm for Max 3-Sat, violating (a randomized version of) the M3SH. Furthermore,
we show in the full version that the argument can be derandomized using the logarithmic
integrality gap between integer and fractional covers in hypergraphs.

Realizing Relations using Lists

Recall that an r-ary q-gadget is a graph with lists in [q] and r specified portal vertices. For
our hardness proofs, we reduce from Max (q,r)-CSP, and we use gadgets to “model” the
relations in [q]r. We say that an r-ary q-gadget realizes a relation R œ [q]r if there is an
integer k such that (1) for each d œ R, if the portals are colored according to d, then it
requires precisely k edge deletions to extend this to a full list coloring of the gadget, and (2)
extending a state that is not in R requires strictly more than k edge deletions. We say that
such a gadget 1-realizes R, if for each state outside of R it takes precisely k+1 edge deletions
to extend this state. So, this is a stronger notion in the sense that now the violation cost
is the same for all tuples outside of R. Moreover, with a 1-realizer in hand, by identifying
copies of this gadget with the same portal vertices one can freely adjust the precise violation
cost – this works as long as the portals form an independent set and therefore no multiedges
are introduced in the copying process.

For our treatment of the case q > 3, we again use Proposition 2.1 to show that arbitrary
relations over a domain of size q can be realized. As Proposition 2.1 is for the decision problem
without deletions, it does not help for the case q = 2, i.e., for Max Cut/2-Coloring. In
this case, we need a di�erent approach to show that every relation over a domain of size 2
can be realized. For 2-Coloring, a single edge is essentially a “Not Equals”-gadget as the
endpoints have to take di�erent colors or otherwise the edge needs to be deleted. Starting
from this, we show how to model OR-relations of any arity. With these building blocks we
then obtain the following result.

I Theorem 2.3. For each r > 1, and R ™ [2]r, there is an r-ary 2-gadget that 1-realizes R.

Removing the Lists

Note that gadgets may use lists and therefore, on the way, we first obtain the following lower
bounds for the respective list coloring problems.

I Theorem 2.4. For every q > 2 and Á > 0, there are integers ‡ and ” such that if an

algorithm solves in time (q≠ Á)p ·nO(1)
every n-vertex instance of List-q-ColoringED that

is given with a (‡, ”)-hub of size p, then the SETH fails.

I Theorem 2.5. For every q > 2, there is a constant ‡q such that, for every Á > 0, if an
algorithm solves in time (q≠ Á)p ·nO(1)

every n-vertex instance of List-q-ColoringED that

is given with a (‡q, 3)-hub of size p, then the M3SH fails.

In a second step, we show how to remove the lists by adding some additional object of
size roughly q (a central vertex or a q-clique for q = 2 or q > 3, respectively). This addition is
then considered to be part of the hub, thereby increasing the size of the hub by some constant.
However, this modification means that for the other gadgets the number of neighbors in the
hub increases slightly. This is irrelevant for the SETH-based lower bound, but it leads to a
slight increase in the universal constant ” that we obtain for our M3SH-based lower bounds
for the coloring problems without lists.
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2.4 Covering, Packing, and Partitioning
Theorem 1.5 gives lower bounds for —-Partition and —-Packing based on the Set Cover
Conjecture. This hypothesis was formulated in terms of the d-Set Cover problem. For
our purposes, it is convenient to consider slightly di�erent covering/partitioning problems.
To facilitate our reductions and as a tool for future reductions of this type, we establish
equivalences between eight di�erent covering type problems. Before we make this more
formal in Theorem 2.6, let us briefly introduce the corresponding problems.

First, we use =d-Set Cover and 6d-Set Cover to distinguish between the problem
for which the sets have size exactly d or at most d, respectively. For —-Partition, it is
more natural to start a reduction from the partitioning problems =d-Set Partition or
6d-Set Partition, in which the task is to find pairwise disjoint sets that cover the universe.
The 6d-Set Partition problem can be considered as a decision problem. However, we
can also consider the corresponding optimization problem in which the task is to minimize
the number of selected sets, and we use 6d-Set Partition (#Sets) to denote this
problem. Further variants are the optimization problems =d-Set Packing (#Sets) and
6d-Set Packing (#Sets), in which we need to select the maximum number of pairwise
disjoint sets. For 6 d-Set Packing, an equally natural goal is to maximize the total size
of the selected sets (for = d-Set Packing, this is of course equivalent to maximizing the
number of selected sets). So we use 6d-Set Packing (Union) to denote the packing
problem in which the union/total size of the selected sets is maximized.

Given the large number of variants of d-Set Cover, one may wonder how they are
related to each other. In particular, does the SCC imply lower bounds for these variants?
There are obvious reductions between some of these problems (e.g., from = d-Set Cover to
6 d-Set Cover) and there are also reductions that are not so straightforward. We fully
clarify this question by showing that choosing any of these problems in the definition of the
SCC leads to an equivalent statement. Thus in our proofs to follow we can choose whichever
form is most convenient for us. Knowing this equivalence could prove useful for future work
as well.

I Theorem 2.6. Suppose that for one of the problems below, it is true that for every Á > 0,
there is an integer d such that the problem cannot be solved in time (2 ≠ Á)n · nO(1)

, where n
is the size of the universe. Then this holds for all the other problems as well. In particular,

any of these statements is equivalent to the SCC.

1. =d-Set Cover
2. =d-Set Partition
3. =d-Set Packing (#Sets)
4. 6d-Set Cover
5. 6d-Set Partition
6. 6d-Set Partition (#Sets)
7. 6d-Set Packing (#Sets)
8. 6d-Set Packing (Union)

To make the statements about relationships between the problems from the list in
Theorem 2.6 more concise, it will be convenient to introduce some shorthand notation. Let
A = {Ad}d>1 and B = {Bd}d>1 be two families of problems where Ad and Bd belong to the
list in Theorem 2.6. To shorten notation, we speak of an n-element instance if the universe
U of an instance has size n. We say that A is 2n-hard if the following lower bound holds

For each Á > 0 there is some d > 1 such that no algorithm solves Ad on all n-element
instances in time (2 ≠ Á)n · nO(1).
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6ú-Set Partition (#Sets)

6ú-Set Cover

6ú-Set Packing (Union)

=ú-Set Cover

=ú-Set Partition

=ú-Set Packing (#Sets)

6ú-Set Packing (#Sets)

6ú-Set Partition

Figure 1 An overview of the proof of Theorem 2.6. An arrow from A to B indicates an implication
stating that if A is 2n-hard then B is 2n-hard as well. The details are in the full version.

Using this language, the SCC states that {6d-Set Cover}d>1 is 2n-hard. To establish
Theorem 2.6, we show reductions, stating that if A is 2n-hard then B is 2n-hard as well.
Spelled out this means:

Suppose for each Á > 0 there is some d > 1 such that no algorithm solves Ad on all
n-element instances in time (2 ≠ Á)n · nO(1).

Then, for each Á > 0 there is some dÕ > 1 such that no algorithm solves BdÕ on all
n-element instances in time (2 ≠ Á)n · nO(1).

This shows that this is really a relationship between two classes of problems, and not
necessarily a relationship between Ad and Bd for the same value d. To make this distinction
explicit, we write =ú-Set Cover if we refer to the class of problems {=d-Set Cover}d>1.
We use analogous notation for the other problems on the list. For example, a simple
observation is that if =ú-Set Cover is 2n-hard then so is 6ú-Set Cover as the latter is a
generalization of the former. The reductions we use to prove Theorem 2.6 are illustrated in
Figure 1.

2.5 Triangle Partition and Triangle Packing
Now let us discuss the proof of Theorem 1.5 that can be found in the full version. The proof
consists of two main steps: (1) a reduction from =ú-Set Partition to —-Partition, and
(2) a reduction from —-Packing to 6ú-Set Packing (#Sets) (see Figure 2). Recall that
by Theorem 2.6, assuming the SCC, all of =ú-Set Partition, 6ú-Set Packing (#Sets),
and 6ú-Set Cover are 2n-hard. Finally, —-Partition trivially reduces to —-Packing, so
indeed, the statements in Theorem 1.5 are equivalent.

Reducing Set Partition to —-Partition

We start with step (1), i.e., reducing an instance (U,F) of =d-Set Partition to an equivalent
instance G of —-Partition. With a simple technical trick we can ensure that d is divisible
by 3.
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=⇤-Set Partition 4-Partition

4-Packing⇤-Set Packing (#Sets)

⇤-Set Cover

(2)

(1)

(trivial)

Figure 2 An overview of the reductions in the proof of Theorem 1.5. The two dashed arrows
refer to 2n-hardness reductions from Theorem 2.6. To establish these two connections, note that we
actually utilize almost all the reductions shown in Figure 1. The arrows annotated with (1) and (2)
refer to another two reductions proved in the full version.

The main building block used in the reduction is the so-called —-eq gadget. For fixed d,
it is a graph with d designated vertices called portals. The gadget essentially has exactly two
triangle packings that cover all non-portal vertices:

one that also covers all portals (i.e., is actually a triangle partition), and
one that covers no portal.

Now the construction of G is simple: we introduce the set Q containing one vertex for
each element of U , and for each set S œ F we introduce a copy of the —-eq gadget whose
portals represent elements of S and are identified with corresponding vertices from Q. It
is straightforward to verify that there is F Õ ™ F that partitions U if and only if G has a
triangle partition: the sets from F Õ correspond to —-eq gadgets whose non-portal vertices are
covered in the first way. Note that Q is a (‡, d)-hub of G, where ‡ is the number of vertices
of the —-eq gadget, i.e., is a constant that depends only on d.

Reducing —-Packing to Set Packing.

Now let us consider a graph G given with a (‡, ”)-hub Q of size p, and an integer t. We
will show that a hypothetical fast algorithm for 6d-Set Packing (#Sets) can be used to
determine whether G has a triangle packing of size at least t.

For simplicity of exposition, assume that G has no triangles contained in Q; dealing with
such triangles is not di�cult but would complicate the notation. We say that a component
C of G ≠ Q is active in some triangle packing � if there is a triangle in � that intersects
both C and Q. Note that for any triangle packing there are at most p active components.

We would like to guess components that are active for some (unknown) solution �.
However, this results in too many branches. We deal with it by employing color-coding and
reducing the problem to its auxiliary precolored variant. Suppose for a moment that we are
given a coloring Â of components of G ≠ Q into p/c colors, where c is a large constant, with
a promise that at most c components in each color are active in �.

For a color i œ [p/c], let Ci denote the set of components of G ≠ Q colored i by Â. The
contribution of the color i to � is the number of triangles that intersect vertices in components
from Ci. Note that the size of � is the sum of contributions of all color (since we assumed
that there are no triangles contained in Q). What can be said about the contribution of i?
Certainly picking a maximum triangle packing in the graph consisting only of components
from Ci is a lower bound. Let Xi denote the number of triangles in such a triangle packing
and note that Xi can be computed in polynomial time as each component of G ≠ Q is of
constant size. Moreover, for each active component C œ Ci, there are at most ‡ triangles that
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intersect both C and Q (as each of them has to use a distinct vertex from C). As, by the
promise on Â, there are at most c active components in Ci, we observe that the contribution
of i is at most Xi + c‡. We exhaustively guess the contribution of each color by guessing the
o�set qi against Xi; it gives a constant number of options per color. We reject guesses where
the total contribution of all colors, i.e., the number of all triangles packed, is less than t.

For each color i, we enumerate all sets S ™ Q that are candidates for these vertices of Q
that form triangles with vertices from components of Ci; call such sets i-valid. An i-valid set
S must satisfy the following two conditions. First, the size of S is at most 2c‡, as there are
at most c‡ vertices in active components from Ci and each such vertex belongs to a triangle
with at most two vertices from Q. Second, there exists a triangle packing �S in the graph
induced by S together with components of Ci such that

at most c elements from Ci are active in �S (this follows from the promise on Â), and
the number of triangles in �S is at least Xi + qi (by our guess of qi).

It is not di�cult to verify that i-valid sets can be enumerated in polynomial time, where the
degree of the polynomial depends on c and ‡.

Now we are ready to construct an instance (U,F , p/c) of 6d-Set Packing (#Sets).
The universe U is Q fi {ai | i œ [p/c]}, i.e., it consists of the hub of G and one extra vertex
per color. For each i-valid set S, we include in F the set S fi {ai}. Again, one can verify
that F contains p/c pairwise disjoint sets if and only if G has a packing of t triangles that
agree both with Â and with the guessed values of qi’s.

By adjusting c, we can ensure that the whole algorithm works in time (2≠ÁÕ)p · |V (G)|O(1),
for some ÁÕ > 0, provided that we have a fast algorithm for 6d-Set Packing (#Sets).

The only thing left is to argue how we obtain the coloring Â satisfying the promise.
Here we use splitters introduced by Naor, Schulman, and Srinivasan [29]. Informally, a
splitter is a family of colorings of a “large set” X , such that for each “small subset” Y ™ X
there is a coloring that splits Y evenly. In our setting, the “large set” X is the set of all
components of G ≠ Q and the “small subset” Y is the set of all active components with
respect to some fixed (but unknown) solution; recall that there are at most p such active
components. Since our colorings use p/c colors, we are sure that there is some Â for which at
most p

p/c
= c components in each color are active. Calling the result of Naor, Schulman, and

Srinivasan [29], we can find a small splitter �, and then just exhaustively try every coloring
Â œ �. Again, carefully adjusting the constants, we can ensure that the overall running time
is (2 ≠ Á)p · |V (G)|O(1), for some Á > 0.
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Abstract

We give a randomized algorithm that approximates the number of independent sets in a dense,
regular bipartite graph – in the language of approximate counting, we give an FPRAS for #BIS
on the class of dense, regular bipartite graphs. E�cient counting algorithms typically apply to
“high-temperature” problems on bounded-degree graphs, and our contribution is a notable exception
as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused
complement to the long line of work in combinatorial optimization showing that CSPs such as
Max-Cut and Unique Games are easy on dense graphs via spectral arguments.

Our contributions include a novel extension of the method of graph containers that di�ers
considerably from other recent low-temperature algorithms. The additional key insights come from
spectral graph theory and have previously been successful in approximation algorithms. As a result,
we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In
particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e.,
bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts e�ciently.
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1 Introduction

Exactly computing the number i(G) of independent sets in a graph G is #P-hard, even when
restricted to bipartite graphs [41]. In the general case, approximating i(G) (to within, say, a
constant factor) is NP-hard, even when restricted to d-regular graphs with d Ø 6 [20, 46, 45].
Restricted to bipartite graphs the problem of counting independent sets is known as #BIS,
and the prospect of hardness of approximation is less clear because finding a maximum
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independent set can be done in polynomial time. Under polynomial-time approximation-
preserving reductions, many natural counting problems are equivalent to #BIS [17], and the
complexity of approximating #BIS has received a lot of attention. Existing approximation
algorithms for #BIS include “high-temperature” algorithms that work when degrees on one
side of the bipartition are small [38], “low-temperature” algorithms that require additional
assumptions such as expansion [11, 29] or unbalanced degrees [8], and exponential-time
algorithms that are nonetheless faster than algorithms for the general, non-bipartite case [24].
The description of these methods in terms of temperature is due to a common generalization
in terms of weighted counting and strong connections to statistical physics, where counting
(weighted) independent sets corresponds to computing the partition function of the hard-core
model.

The idea that Max-CSP optimization problems such as Max-Cut and Unique Games
should be easy to approximate on dense graphs – perhaps because they have good expansion
properties – is well-established [3, 18, 19]. Many of the techniques that apply to dense or
expanding graphs have been generalized in interesting directions. In particular, spectral
methods give good results in both dense graphs and expanders, and in many cases can be
extended to more refined structural properties such as small-set expansion and threshold rank
to great e�ect. Most of the prominent approaches to Max-CSPs relevant to this work fall into
three categories: algorithmic regularity lemmas which began with Frieze and Kannan [19] and
were extended to threshold rank by Oveis Gharan and Trevisan [39]; convex hierarchies and
correlation rounding [4, 6, 25]; and the spectral technique of subspace enumeration due to
Kolla and Tulsiani [36, 37]. Prior to these developments were several algorithms demonstrating
that counting problems on dense graphs admit e�cient approximation algorithms [1, 16, 33],
though these results do not apply to counting independent sets.

An analogous theme in approximate counting is to obtain algorithms on expander graphs
or random graphs [7, 10, 21, 26, 29]. Despite superficial similarity to the aforementioned work
on Max-CSPs in the sense that these works give algorithms for dense or expanding instances,
there is relatively little work establishing any common underlying phenomenon that makes
Max-CSP problems and counting problems easy on dense or expanding graphs. A notable
exception is due to Risteski [42], who connected the work on correlation rounding and convex
hierarchies [6] to the broad and well-studied problem of approximating partition functions.
His approach is also known as the variational method. Regularity methods and correlation
rounding do provide some evidence of structure common to these problems; for example,
Coja–Oghlan and various coauthors have developed a range of regularity lemmas and applied
them to both Max-CSPs and spin models on random graphs [5, 13, 14], and Coja–Oghlan
and Perkins independently discovered correlation rounding in the context of Gibbs measures
and partition functions [15]. Counting independent sets is not typically one of the examples
studied, though occasionally this is more for convenience than for fundamental reasons.

In the specific context of #BIS, connections to Max-CSP research are even more scarce.
The polymer approach of Jenssen, Keevash and Perkins [29] is a major algorithmic break-
through for #BIS which shows that several prominent #BIS-hard problems can be approx-
imated in polynomial time on bounded-degree expander graphs (and thus random d-regular
graphs for d = O(1)). Further refinements of the method broaden the range of problems
covered [21, 26], provide faster algorithms based on rapid mixing of Markov chains known as
polymer dynamics [11], or weaken the structural properties required by applying container
theorems to combinatorial enumeration problems that arise in the method [10, 32]. None
of these developments give polynomial-time algorithms in dense graphs, however. Carlson,
Davies, and Kolla [9] applied the polymer method to approximate the Potts model partition
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function on (bounded-degree) graphs with bounded threshold rank, but the conditions their
analysis requires are prohibitively restrictive, and it is unclear whether their techniques can
be applied to #BIS. While Risteski’s approach has been extended and improved [28, 35],
results are stated for spin models with soft constraints such as the Ising and Potts models,
and the approximation guarantees degrade in the presence of the hard constraints that are
inherent to independent sets.

1.1 Main result

We specifically address the superficial similarities between algorithms for Max-CSPs and
counting independent sets by giving an algorithm for approximately counting independent
sets in dense, regular bipartite graphs which combines the highly successful techniques of
polymer models, subspace enumeration, and container theorems for the enumeration of
independent sets in bipartite graphs. Our approximation guarantee is of the strong type
typically sought in approximate counting. We say that a relative ‘-approximation of a real
number x is a real number y such that e≠‘ Æ x/y Æ e

‘, and a fully polynomial randomized
approximation scheme (FPRAS) for a counting problem is an algorithm that with probability
at least 3/4 outputs a relative ‘-approximation to the solution in time polynomial in the
instance size and 1/‘.

I Theorem 1. For each ” œ (0, 1) there is an FPRAS for #BIS on the class of d-regular
bipartite graphs G with d = Â”|V (G)|/2Ê.

We use spectral methods and subspace enumeration to enumerate small cuts in d-regular
bipartite graphs via an ‘-net of the vector space spanned by small eigenvalues of the
Laplacian matrix of the graph, influenced by the use of these methods in combinatorial
optimization [2, 36, 37] and approximate counting. Some of our analysis builds upon the
perturbative approach of [27, 29] and an important refinement of this method due to Jenssen
and Perkins [30] (and with Potukuchi [31]) that uses graph container lemmas of the type
developed by Sapozhenko [43, 44]. While container theorems for independent sets have
been used to control enumeration problems that arise in establishing the convergence of the
cluster expansion [30, 31, 32], and these have inspired container-like theorems for controlling
analogous enumeration problems [10], our addition of subspace enumeration here has a
di�erent purpose.

In terms of running time, our result improves upon the dense case of an algorithm of
Jenssen, Perkins, and Potukuchi [32] which runs in subexponential time on d-regular bipartite
graphs for all d Ø Ê(1). In the case d = �(n) their algorithm takes time exp(�(log4 n)), and
our contribution works for any accuracy parameter ‘, which is not given by the methods
in [32]. The improvement stems from incorporating the spectral techniques mentioned
above, which lets us sidestep algorithmic cluster expansion. That is, our spectral techniques
overcome an obstacle in the algorithm of [32] related to polynomial accuracy: we can achieve
arbitrary accuracy without resorting to a naive enumeration of polymers (which in this
setting are connected subgraphs of the square of the instance).

An interesting question posed in [32] is whether #BIS admits a general subexponential-
time algorithm. One of our technical contributions is to show that a perspective on graph
spectra involving higher-order eigenvalues and eigenvectors advances our understanding of
#BIS.
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2 Overview

Fix ” > 0 and for d = Â”nÊ, a bipartite graph G = (X fi Y,E) on 2n vertices. Let ‘ > 0 and
note that we allow ‘ to depend on n.

Our proof begins with the well-known observation that to enumerate independent sets
in a bipartite graph it su�ces to enumerate deviations from the “ideal” independent set X.
That is, we have the identity

i(G) =
ÿ

A™X

2|Y \N(A)| (1)

because, for a fixed A ™ X, any vertex of Y \N(A) can be added to A without spanning
an edge. There is a similar formula for i(G) based on enumerating deviations from Y . An
important achievement of [29] is to give a rigorous proof that in bipartite graphs with strong
expansion, typical independent sets are small deviations from either X or Y . Intuitively, we
see a hint of this idea in equation (1) as when G is an expander we expect that N(A) ∫ |A|
and so the terms on the right-hand side are small unless |A| is small. Given this, one might
hope to obtain an algorithm provided one can solve the problem of e�ciently enumerate
the small deviations and quantifing their contributions to i(G). This is done in [29] by
approximating i(G) with the sum of two polymer models, and brute force enumeration of
terms in the cluster expansion for these models.

If the bipartite graph is not an expander, then large deviations from X and Y must be
handled. For example, in a 2n-vertex disjoint union of complete d-regular bipartite graphs, a
significant number of independent sets intersect both X and Y on �(n) vertices. To extend
the algorithm to all bipartite graphs, using an idea from [32] we can separate contributions
from expanding and non-expanding pieces of the deviation A. The first step is to break
A ™ X in the sum in (1) into pieces with disjoint neighborhoods. We say that a subset
A ™ X is polymer2 if it is connected in the square G2 of G, and note that any A ™ X admits
a unique partition into polymers which have disjoint neighborhoods. We call the polymers
in this partition the components of A and denote the set of components of A by K(A). We
say that two polymers are compatible if their neighborhoods are disjoint, and that a set or
tuple of polymers is compatible if the polymers in it are pairwise compatible. Thus, subsets
A ™ X correspond to compatible sets of polymers via the unique partition into polymers
with disjoint neighborhoods.

B Claim 2.

i(G) =
ÿ

kØ0

1
k!

ÿ

(A1,...,Ak) s.t.

each Ai is a polymer and

(A1, . . . , Ak) compatible

2
--Y \

tk

j=1
N(Aj)

--
. (2)

Proof. The claim follows from the correspondence between subsets A ™ X and sets of
compatible polymers given by A ‘æ K(A). By convention, we sum over compatible tuples of
polymers which leads to the term 1/k! to account for the permutations of each tuple. We
use the fact that compatible polymers have disjoint neighborhoods for the correspondence of
the summands. C

The closure [A] of a subset A ™ X is [A] := {x œ X : N(x) ™ N(A)}, and we say that A
is closed if A = [A]. Note that A is closed if and only if each component of A is closed. A
subset A ™ X is called t-expanding if |N(A)| = |[A]|+ t, and (in a slight abuse of terminology

2 In related works the term “2-linked” is used for the property of being connected in G2.
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that we hope the reader permits) t-contracting if |N(A)| < |[A]|+ t. For a fixed t0 that we
determine later, we split the sum over polymers in (2) according to t0-contraction. To do
this, for each subset A ™ X, let XA = X \N(N(A)) and YA = Y \N(A). Let PA be the set
of polymers which are subsets of XA and define

�(A) :=
ÿ

kØ0

1
k!

ÿ

(B1,...,Bk) s.t.

Bi œ PA is not t0-contracting
and (B1, . . . , Bk) compatible

2≠
qk

i=1
|N(Bi)|

,

where the inner sum is over compatible k-tuples of polymers, each of which is not t0-contracting
(equivalently, t-expanding for some t Ø t0).

B Claim 3.

i(G) =
ÿ

kØ0

1
k!

ÿ

(A1,...,Ak) s.t.

each Ai is a t0-contracting polymer

and (A1, . . . , Ak) compatible

2
--Y \

tk
j=1

N(Aj)
--
· �

1tk
j=1

Aj

2
. (3)

Proof. From Claim 2 we can split the sum over tuples of polymers into a sum over tuples
of t0-contracting polymers and tuples of non-t0-contracting polymers. The idea is to first
sum over tuples (A1, . . . , Ak) of t0-contracting polymers and then use the fact that for
A =

tk
j=1

Aj the quantity �(A) contains a sum over the ways to extend this tuple to one
containing non-t0-contracting polymers and the summand is the additional contribution that
each such extension makes. The definition of PA means that any Bi œ PA is compatible with
each component of A. With a little care, one can check that the permutaions of the tuples
are correctly taken into account and the claim follows. C

A further refinement of the expression for i(G) groups t0-contracting polymers according
to their neighborhoods. The motivation for this is that two subsets A ™ X and B ™ X (each
corresponding to the union of some compatible tuple of t0-contracting polymers) have the
same contribution in the sum if N(A) = N(B) because this implies that �(A) = �(B). For
a subset A ™ X write

D(A) :=
Ÿ

AÕœK(A)

--{BÕ ™ A
Õ : BÕ is a polymer and N(BÕ) = N(AÕ)}

--.

The quantity D(A) counts the number of subsets B of A such that N(B) = N(A) and which
are formed by choosing for each component AÕ of A, a subset BÕ ™ A

Õ which is a polymer.
Note that if AÕ is t0-contracting then so is any polymer BÕ ™ A

Õ with N(BÕ) = N(AÕ). For
convenience, we define A to be the set of all A ™ X with closed, t0-contracting components.

B Claim 4.

i(G) =
ÿ

AœA
D(A) · 2|Y \N(A)| · �(A), (4)

Proof. From Claim 3 we can restrict the sum over tuples of t0-contracting polymers to
closed t0-contracting polymers provided, for each compatible tuple (A1, . . . , Ak) of closed
t0-contracting polymers, we multiply their contribution to the sum by a term counting the
number of ways of getting that contribution with polymers that are not necessarily closed.
Identifying compatible tuples of closed polymers with their union, i.e. setting A =

tk
j=1

Aj ,
the contribution to the sum from A is 2|Y \N(A)| ·�(A). The term D(A) is exactly the number
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of ways of getting this contribution. The claim follows from the conversion of the sum back
into one over suitable subsets of X, namely those in A, instead of a sum over compatible
tuples of polymers. C

Now that we have a suitable expression (4) for i(G), we can describe how our algorithm
approximates i(G). Our algorithm simply enumerates the sets A œ A, approximates each
D(A) term, and uses the fact (which we must prove) that 1 is a good approximation of each
�(A) to approximate i(G). Given these subroutines, computing the sum (4) is straightforward.
The analysis of our algorithm thus splits into three separate components. Recall that the
input is a d-regular bipartite graph G on 2n vertices such that for some constant ” > 0 we
have d = Â”nÊ, and an approximation error ‘. We set t0 = C log(n/‘), where C = C(”) is
large enough, and the correctness and running time of our algorithm follows from the results
below. Note that for this choice of t0 an exponential such as 4t0 is polynomial in n and 1/‘.

I Lemma 5. For t0 Æ 2≠8
d, the set A = {A ™ X : A closed and t0-contracting} has size at

most nO(1/”) · 4t0 and can be enumerated in the same time.

The proof of this lemma uses subspace enumeration to find small cuts in G, and then for
each such small cut enumerates the sets A œ A which are close to the cut. See Section 4.

I Lemma 6. Let A ™ X be a closed t0-contracting polymer. Then for ‘
Õ
, fl

Õ
> 0 there

is a randomized algorithm running in time polynomial in n, 1/‘
Õ and log(1/fl

Õ) that with
probability at least 1≠fl

Õ outputs a relative ‘
Õ-approximation to the number of polymers B ™ A

such that N(B) = N(A).

This lemma uses straightforward estimation of an expectation by repeated sampling, and
is very similar to the analogous result in [32]. The proof is in Section 5. We use the lemma in
each component of the sets A œ A in the claim below. This claim requires an upper bound
on t0, but this is a small technical detail as the only way to violate this bound is to choose
an error parameter ‘ so small that one has time for brute force because an FPRAS can take
time polynomial in 1/‘, see Section 3 where we use the claim.

B Claim 7. Suppose that t0 Æ d/2. Then each set A œ A has at most 2/” = O(1)
components, and for ‘

Õ
, fl

Õ
> 0 there is a randomized algorithm running in time polynomial

in n, 1/‘
Õ and log(1/fl

Õ) that, given a set A œ A as input, with probability 1 ≠ fl
Õ obtains an

‘
Õ-approximation of D(A).

Proof. Any t0-contracting set must have size at least d ≠ t0, and in the case t0 Æ d/2 we
have d ≠ t0 Ø d/2 and hence each A œ A has at least 2n/d = 2/” components.

Observe that if A œ A has ¸ components then running the algorithm of Lemma 6 on each
component with error parameter ‘

Õ
/¸ and probability parameter fl

Õ
/¸ yields, with probability

at least 1≠ fl
Õ, a relative ‘-approximation to D(A) in time polynomial in n, ¸/‘

Õ and log(¸/fl
Õ).

When t0 Æ d/2 we have the upper bound ¸ = O(1) from above and the claim follows. C

I Lemma 8. Let A œ A, then 1 Æ �(A) Æ e
‘/2.

This result means that 1 is a relative ‘/2-approximation for each of the �(A) terms
appearing in (4). The proof is based on graph container methods due to Sapozhenko [43,
44], which have since been refined, [23, 22, 34, 40], and their application to algorithmic
counting [30, 31, 32]. We give the proof in Section 6.
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3 The algorithm and proof of Theorem 1

Input A Â”nÊ-regular bipartite graph G = (X fi Y,E) on 2n vertices and an approximation
error ‘ > 0.

Output A relative ‘-approximation i
Õ of i(G).

Recall that C = C(”) is a large enough constant, and that t0 = C log(n/‘). In the
following proof, implicit constants in the O(·) notation and implicit polynomials are allowed
to depend on ” but not ‘. If ‘ Æ n exp(≠d/(28C)) then we can a�ord to run a brute force
algorithm that computes i(G) exactly in time e

O(n) and the running time is still polynomial
in 1/‘. Otherwise, we note that for all large enough n we have d ≠ 27t0 Ø d/2 and run the
following algorithm. For convenience, we assume that ‘ Æ 1 and simply run the algorithm
for ‘ = 1 if the given ‘ is larger.

First, construct the set A, which can be done in time (n/‘)O(1) by Lemma 5. Note also
that |A| is polynomial in n and 1/‘. Then, for each A œ A compute an ‘/2-approximation
D̃A of DA with the algorithm of Claim 7 and probability parameter fl

Õ = 3/(4|A|). Then
log(1/fl

Õ) is polynomial in logn and log(1/‘) so the running time of this step is polynomial in
n and 1/‘. By a union bound, with probability at least 3/4 we get the desired approximation
in each application of the claim, and thus a valid relative ‘/2-approximation D̃A of each DA.
Then output iÕ =

q
AœA D̃A2|Y \N(A)|. By Lemma 8 and the analysis above, the output is a

valid ‘-approximation of i(G) obtained in time (n/‘)O(1), thus proving Theorem 1.

4 Subspace enumeration and contracting sets

The proof of Lemma 5 has two parts. First, we show how to enumerate small cuts using
subspace enumeration. For related results see [2, 36, 37]. We use the term cut to mean a
subset of V = X fi Y , and the value |Ò(C)| of a cut C is the number of edges with precisely
one endpoint in C. Subspace enumeration involves what is commonly called an ‘-net of a
subset U Õ of a vector space, which is a collection of points such that U Õ is contained in the
union of the balls of radius ‘ around each point. Since we reserve ‘ for the error parameter
in our algorithm, our nets are ›-nets.

I Lemma 9. Let G = (V,E) be a d-regular bipartite graph on N = 2n vertices. There is a
set Ccut ™ 2V such that |Ccut| Æ n

O(n/d) and Ccut has the following property. For all t Ø 1
and cuts S ™ V with value |Ò(S)| Æ td, there is some C œ Ccut such that |S — C| Æ 32t and
|Ò(C)| Æ 33td. Moreover, the set Ccut can be constructed in time n

O(n/d).

Proof. Let d = ⁄1 Ø · · · Ø ⁄N = ≠d be the spectrum of the adjacency matrix A of G. The
facts that ⁄1 = d = ≠⁄N and that the spectrum of A is symmetric about zero are standard,
see e.g. [12]. Let k be such that A has precisely 2k eigenvalues of absolute value at least d/2.
Counting closed walks of length two gives

Tr(A2) = Nd =
Nÿ

i=1

⁄
2

i Ø kd
2
/2,

and hence k Æ 4n/d.
Let L = dI ≠A be the Laplacian matrix of G and let e1, . . . , eN be an orthonormal basis

of eigenvectors of L such that ei has eigenvalue µi with 0 = µ1 Æ · · · Æ µN = 2d. By the
definition of k, it must be the case that µk+1 > d/2. Let U be the span of e1, . . . ek, and U

‹

be the orthogonal complement of U . For › =
Ô
2, we require an e�cient construction of a

›-net E ™ U covering all vectors of L2-norm at most
Ô
n in U . For example, we can take
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E :=
I
p =

kÿ

i=1

xiei : x1, . . . , xk œ (›/
Ô
k) · Z, ÎpÎ Æ

Ô
n

J
,

yielding |E| Æ (2
Ô
nk/›)k. Then every vector in U with L

2-norm at most
Ô
n lies at most

distance › from a vector in E .
The algorithm to construct Ccut is as follows. Start with Ccut = ÿ and for each point

p œ E , form pÕ by rounding each coordinate of p to {0, 1} (breaking ties with 1/2 ‘æ 1) and
add the vertex subset with indicator vector pÕ to Ccut.

We now show that Ccut has the desired properties. By the construction of Ccut and E we
have |Ccut| Æ |E| Æ n

O(n/d). To establish the other property of Ccut, let t Ø 1 and consider
an arbitrary subset S ™ V with |Ò(S)| Æ td. Let s be the indicator vector of the set S and
write this vector in the eigenbasis of L as s =

qN
i=1

siei. Let u =
qk

i=1
siei be the projection

of s onto U and let p be the point in E closest to u. Indicator vectors of subsets of V have
L
2-norm at most

Ô
n, and hence Îu ≠ pÎ Æ ›.

Without considering our need for an e�cient construction, the idea is that because Ò(S)
is small we know that s is an indicator vector close to its projection u onto U . Thus, if we
form Ccut as the union of all sets whose indicator vectors are close to vectors in U , each set
S of interest has an indicator vector that lies within a distance twice the definition of “close”
to a set in C.

To make the above sketch e�cient, we replace U with the ›-net E . Note that

td Ø |Ò(S)| = sTLs =
Nÿ

i=1

µis
2

i Ø d

2

Nÿ

i=k+1

s
2

i .

But
qN

i=k+1
s
2

i = Îs≠uÎ2, so we have the bound Îs≠uÎ Æ
Ô
2t. Then we immediately have

Îs ≠ pÎ Æ
Ô
2t+ › from the triangle inequality. Let pÕ be obtained from p by rounding each

coordinate to {0, 1}, breaking ties with 1/2 ‘æ 1, and let C ™ V be the set whose indicator
vector is pÕ. We have |S—C| = Îs≠pÕÎ2 and we bound the latter with the triangle inequality.
In particular, s is an indicator vector of distance at most

Ô
2t+ › from p and pÕ must be the

closest indicator vector to p, hence Îp ≠ pÕÎ Æ
Ô
2t+ ›. Then Îs ≠ pÎ Æ 2(

Ô
2t+ ›), and

because t Ø 1 and › =
Ô
2 we have

|S — C| Æ 4
1Ô

t+ ›

22

Æ 32t.

It remains to bound the value of the cut |Ò(C)|, and the desired bound follows from the
observation that

|Ò(C)| Æ |Ò(S)|+ d|S — C| Æ td+ 32td = 33td. J

Lemma 9 tells us that there is an e�cient construction of a collection Ccut of cuts such
that any small cut S must be close to a cut in Ccut in Hamming distance. We now show that
given a small cut S we can enumerate the sets A œ A which are close to S. For this to be
useful, it must be that each A œ A is close to some small cut, and we give the details of this
later.

I Lemma 10. Fix any c Ø 1 and let t Æ d
8c . Given a cut C with value at most td, there

are at most 4t closed t-contracting subsets A ™ X such that |A — (C fl X)| Æ ct and
|N(A) — (C fl Y )| Æ ct. Moreover, these sets A can be enumerated in time 4t · nO(1).
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Proof. Let AÕ := C fl X and W
Õ := C fl Y . By the fact that G is d-regular, |E(AÕ

,W
Õ)| Æ

dmin{|AÕ|, |W Õ|} and hence |Ò(C)| Ø dmax
)
|W Õ| ≠ |AÕ|, |AÕ| ≠ |W Õ|

*
. By assumption, we

have |Ò(C)| Æ td and therefore
--|W Õ| ≠ |AÕ|

-- Æ t.
Set

SX :=
)
v œ X \AÕ : |N(v) \W Õ| Æ 3ct

*
, and

SY :=
)
v œ W

Õ : |N(v) fl A
Õ| Æ ct

*
,

so that SX ™ X consists of vertices in X \AÕ with almost all of their neighbors in W
Õ and

SY ™ Y consists of vertices in W
Õ with almost all of their neighbors in X \AÕ. We have the

following claims.

B Claim 11. For any closed t-contracting subset A ™ X such that |A—A
Õ| Æ ct, A\AÕ ™ SX .

Proof. Suppose for contradiction that there is a vertex v œ A \AÕ such that

|N(v) \W Õ| > 3ct.

We derive the contradiction using the facts that |Ò(A fl A
Õ)| = d|A fl A

Õ| and that any of the
edges in Ò(A fl A

Õ) not incident to W
Õ contribute to the value of the cut C. These facts

imply that |E(A fl A
Õ
,W

Õ)| Ø d|A fl A
Õ| ≠ t · d, and hence

|N(A fl A
Õ) fl W

Õ| Ø |A fl A
Õ| ≠ t.

Then because A is closed and non-expanding,

|A|+ t Ø |N(A)| Ø |N((A fl A
Õ) fi {v})|

> |N((A fl A
Õ) fi {v}) fl W

Õ|+ 3ct
Ø |A fl A

Õ|+ 2ct Ø |A|+ ct,

which is a contradiction because there is a strict inequality in the chain and c Ø 1. C

B Claim 12. For any t-contracting subset A ™ X such that |A—A
Õ| Æ ct, W Õ\N(AflAÕ) ™ SY .

Proof. We note that for each vertex v in W
Õ \N(A fl A

Õ), we have that

N(v) fl A
Õ ™ A

Õ \A.

Since |AÕ \A| Æ ct, it follows that |N(v) fl A
Õ| Æ ct. C

We can now complete the proof of the lemma. Using the degree constraints in the
definitions of SX and SY , we have

td Ø |Ò(C)|
Ø |SX |(d ≠ 3ct) + |SY |(d ≠ ct)
Ø (d/2) · (|SX |+ |SY |)

where the last inequality uses t < d
8c . As a result, we have

|SX |+ |SY | Æ 2t.

Putting Claim 11 and Claim 12 together, we have that each closed t-contracting sets A
with |A — A

Õ|, |N(A) — W
Õ| Æ ct must be of the form

A = [(AÕ \N(SÕ
Y )) fi S

Õ
X ]

for some subsets S
Õ
Y ™ SY and S

Õ
X ™ SX . Thus, the total number of such A is at most

2|SX |+|SY | Æ 4t. Since we are given the cut C, SX and SY can be found in time polynomial
in n as required. J
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With these ingredients we can proof Lemma 5, which we recall states that A can be
enumerated in time n

O(1/”)4t0 .

Proof of Lemma 5. Since d = Â”nÊ, we construct Ccut as in Lemma 9 in time n
O(1/”). We

then choose c = 32 and enumerate for each C œ Ccut, every closed t0-contracting subset A
with |A—(CflX)| Æ 32t0 and |N(A)—(CflY )| Æ 32t0 using Lemma 10. We are done if every
A œ A appears in this enumeration process, as the running times combine to give the required
n
O(1/”)4t0 . This holds because each A œ A is closed and t0-contracting and hence setting

SA = A fi N(A), by a double counting argument, we have |Ò(SA)| = d|N(A)| ≠ d|A| Æ t0d.
So each A œ A corresponds to a cut of value at most t0d and hence some C œ Ccut has
|SA — C| Æ 32t0 by Lemma 9. J

5 Approximating the number of covers

For convenience, we restate Lemma 6 here.

I Lemma 6. Let A ™ X be a closed t0-contracting polymer. Then for ‘
Õ
, fl

Õ
> 0 there

is a randomized algorithm running in time polynomial in n, 1/‘
Õ and log(1/fl

Õ) that with
probability at least 1≠fl

Õ outputs a relative ‘
Õ-approximation to the number of polymers B ™ A

such that N(B) = N(A).

Proof. The method is exactly the same as [32, Lem. 17], but in our setting with d = Â”nÊ
the resulting algorithm runs in time polynomial in n.

Let |A| = a, N(A) = W have size |W | = w, and let W Õ = {v œ W : |N(v) fl A| Æ d/2}
have size |W Õ| = w

Õ. Let

D = {B ™ A : N(B) = W and B is a polymer}

be the set whose size we wish to estimate.
By [32, Cor. 10], there is a polymer AÕ ™ A of size at most

2a
d

log d+ 2w
d

+ 2(w ≠ a) Æ 2
”
(1 + logn) + 2t0

such that N(AÕ) = W . Then |D| Ø 2a≠( 2
” (1+logn)+2t0), because any subset of A which

contains AÕ is a polymer. Now |D| can be estimated to relative error ‘
Õ with probability at

least 1 ≠ fl by sampling

1
(‘Õ)2 log(1/fl)nO(1/”)4t0

subsets of A uniformly at random, and this can be proved with a suitable application of the
Cherno� bound. J

6 Enumerative lemmas

In this section we prove Lemma 8 which states that for A œ A we have 1 Æ �A Æ e
‘/2.

Proof of Lemma 8. For the proof, we fix an arbitrary A œ A. The terms in the sum giving
�A are non-negative, and the lower bound comes from the term k = 0 which contributes
1. For the upper bound, we use recent results on graph containers and adapt them to our
purposes.
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Recall that a polymer is a 2-linked subset B ™ X and that the function �A involves a
sum over tuples of non-t0-contracting polymers. For convenience, we define G(w, t) to be the
set of t-expanding polymers with neighborhood size w,

G(w, t) = {B ™ X, polymer : |N(B)| = w, |N(B)| ≠ |[B]| = t}.

In terms of this notation, we have

�A =
ÿ

kØ0

ÿ

{B1,...,Bk}œPA compatible

s.t. each Bi not t0-contracting

2≠
qk

i=1
|N(Bi)| (5)

Æ
ÿ

kØ0

1
k!

Q

a
ÿ

tØt0

ÿ

wØ0

|G(w, t)|2≠w

R

b
k

, (6)

where we drop the requirement on the tuples of being compatible and relax the requirement
that the Bi are subsets of XA to being subsets of X, and hence have an upper bound. To
proceed, we require upper bounds on |G(w, t)| and split into two cases according to t. The
following result is proved in the rest of this section and Appendix A.

I Lemma 13. There is an absolute constant “ > 0 such that for t0 Æ t, and any integer w,

|G(w, t)| Æ 2w≠“t
.

With this lemma in hand, and because each neighborhood size w that we see is in [1, n],
there is an absolute constant “ > 0 such that

�A Æ
ÿ

kØ0

1
k!

Q

a
ÿ

tØt0

n2≠“t

R

b
k

(7)

=
ÿ

kØ0

1
k!

3
n

2≠“t0

1 ≠ 2≠“

4k

= exp
3
n

2≠“t0

1 ≠ 2≠“

4
. (8)

This at most the required e
‘/2 provided that

t0 Ø 1
“
log2

3
2

1 ≠ 2≠“

n

‘

4
,

which our choice t0 = C log(n/‘) satisfies for all large enough constants C = C(”). J

Before we proceed with the proof of Lemma 13, we would like to remark out that one of
the main contributions of this paper is to handle the case when t is small.

Proof of Lemma 13. We first take care of the case when t Ø log4 n. For each v œ V , let us
define

GÕ(v, w, t) = {A œ G(w, t) : v œ A}.

First, we observe that log2 d · t
d Æ log2 n · n

”n π log4 n. Lemma 4 in [32] gives us that there
is a constant c such that for each v, GÕ(v, w, t) Æ 2w≠ct. Thus, we have

|G(w, t)| Æ
ÿ

v

|GÕ(v, w, t)| Æ n · 2n≠ct Æ 2n≠ct/2

for n large enough.
Before we address the case when t0 Æ t < log4 n, let us set up some additional notation.

Given a vertex v œ V and a subset S ™ V , we write dS(v) for the number of neighbors of v
in S.
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I Definition 14 (Essential subset). For a subset A ™ X, we write W = N(A) and Ws =
)
y œ

W : dA(y) Ø s
*
. We say that F is an essential set for A if W ´ F ´ Wd/2 and N(F ) ´ [A].

It may be useful to consider such an F an approximation for the neighborhood W = N(A).

I Definition 15 (Container). We call a tuple (SÕ
, T

Õ) œ 2X ◊ 2Y a “
Õ-container for a subset

A ™ X that is t-contracting, with neighborhood W = N(A) if
1. S

Õ ´ [A] and Wd/2 ™ T
Õ ™ W ,

2. dY \T Õ(v) Æ “
Õ
t for each v œ S

Õ, and
3. dSÕ(v) Æ “

Õ
t for each v œ Y \ T Õ.

The following two results show the existence of containers and bound the number of sets for
which a given container is a “

Õ-container.

I Lemma 16. For any “
Õ
> 0 and any set F ™ Y , there is a set Cind ™ 2X ◊ 2Y of size at

most nO(1/“Õ
) such that any A ™ X for which F is an essential set, has a “

Õ-container in
Cind.

I Lemma 17. There is an absolute constant “
ÕÕ
> 0 such that the following holds.

For any “
Õ
> 0, w < n, t < log4 n, and tuple (SÕ

, T
Õ) œ Cind, there are at most 2w≠“ÕÕt

sets A œ G(w, t) such that (SÕ
, T

Õ), and is a “
Õ-container for A.

Since the proofs of these results are small modifications of existing container results,
e.g. [40], we defer their proofs to Appendix A. We are now ready to handle the case of small t
as follows. Consider an integer t œ [t0, log4 n] and a set A œ G(w, t). Define SA := [A]fiN(A).
As in the proof of Lemma 5, we have that |Ò(SA)| = d|N(A)| ≠ d|[A]| = td. By Lemma 9,
there is a cut C œ Ccut such that g := |SA — C| Æ O(t). Let AÕ := C fl X and W

Õ := C fl Y .
Consider the set W Õ

g = {u œ Y : dAÕ(u) > g}. We have the following two claims.

B Claim 18. W ´ W
Õ
g ´ Wd/2.

Proof. Consider a vertex u œ Wd/2. We have

dAÕ(u) Ø dA(u) ≠ |A \AÕ| Ø d/2 ≠ |L — L
Õ| Ø d/2 ≠ g > g,

where the last inequality holds since d = Â”nÊ and g = O(log4 n). Therefore u œ W
Õ
g.

Moreover, consider a vertex u œ W
Õ
g. We have

dA(u) Ø dAÕ(u) ≠ |AÕ \A| > g ≠ |L — L
Õ| > 0,

and hence u œ W . C

B Claim 19. A ™ N(W Õ
g).

Proof. Suppose otherwise, i.e. there is a vertex u œ A such that for each vertex v œ N(u) we
have dAÕ(v) Æ g. For any such v, we have

dA(v) Æ dAÕ(v) + |A \AÕ| Æ dAÕ(v) + |L — L
Õ| Æ 2g.

This gives us that

t · d = |E(W,X \A)| Ø |E(N(u),W \A)| Ø d(d ≠ 2g),

contradicting the assumptions that d = Â”nÊ and t and g are both O(log4 n). C
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Claims 18 and 19 show that W Õ
g is an essential set for A. The set A œ G(w, t) may be

constructed by
1. choosing the appropriate cut C in the set Ccut constructed in Lemma 9,
2. constructing the essential subset W Õ

g for it as above,
3. using Lemma 16 to obtain a “

Õ-container of A, where “
Õ is the absolute constant of

Lemma 17, and finally
4. reconstructing A from the “

Õ-container with Lemma 17.
There are n

O(1/”) choices for LÕ in the first step, a unique construction of W Õ
g for the second,

n
O(1/“Õ

) possible containers in the third step, and 2w≠“ÕÕt ways for the final step. In total
there are

2w≠“ÕÕt+O(1/“Õ
+1/”) logn Æ 2w≠“ÕÕt/2

such sets A œ G(w, t). The last inequality comes from our assumption that t Ø t0 for our
choice of t0 = C(”) log(n/‘) Ø C log(n) (because wlog ‘ Æ 1) satisfying

t0 Ø �
3
logn
“ÕÕ

3
1
“Õ +

1
”

44
. J

7 Concluding remarks and future directions

1. Naturally, a next goal is to understand the power and limitations of the methods presented,
especially in conjunction with existing cluster expansion methods. More specifically, we
are curious about the following two questions:
a. Can this spectral point of view help with our understanding of independent sets in a

larger class of bipartite graphs?
b. To what extent do these methods help in reducing the computation needed to implement

algorithmic cluster expansion?
In this context, the problem of approximating the number of independent sets in small-set
expanders feels within striking distance.

2. Our next remark concerns Lemma 9. As mentioned before, similar results have had
other applications in optimization and Unique Games [2, 36, 37], though we take a subtly
di�erent viewpoint worth noting: we seek to approximate all cuts in the graph, not just
small ones. In any case, we find the lemma interesting in its own right and conjecture
something stronger.
I Conjecture 20. Lemma 9 holds with |Ccut| Æ 2O(n/d).
If true, this would be best possible, as evidenced by a disjoint union of 1/” components.
Setting t = 0 in this case gives exactly 21/” cuts of size 0.

3. Finally, we leave open the problem of making our algorithm deterministic. At the moment,
the only step where randomness is used is Lemma 6.
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A Deferred proofs

A.1 Proof of Lemma 16

We restate the result for convenience.

I Lemma 16. For any “
Õ
> 0 and any set F ™ Y , there is a set Cind ™ 2X ◊ 2Y of size at

most nO(1/“Õ
) such that any A ™ X for which F is an essential set, has a “

Õ-container in
Cind.

Proof. Let A ™ X be a subset for which F is an essential set and let W = N(A), t :=
|N(A)| ≠ |[A]|. Consider the following algorithm

initialize T
Õ Ω F

while ÷ v œ [A] s.t. dW\T Õ(v) > “
Õ
t, pick such a v do

T
Õ Ω T

Õ fi N(v)
end while
initialize S

Õ Ω {v œ X : dY \T Õ(v) Æ “
Õ
t}

while ÷ v œ Y \W s.t. dSÕ(v) > “
Õ
t, pick such a v do

S
Õ Ω S

Õ \N(v)
end while
T

Õ Ω T
Õ fi {v œ Y : dS(v) > “

Õ
t}

return (SÕ
, T

Õ)
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The lemma follows provided we can show that (SÕ
, T

Õ) as given by the algorithm above is
a “

Õ-container for A by establishing properties 1–3, and provided we can show a good enough
bound on the total number of outputs (SÕ

, T
Õ) which can occur for a fixed F as A varies.

To prove that the output (SÕ
, T

Õ) is a “
Õ-container of A, we first show that SÕ ´ [A] and

Wd/2 ™ T
Õ ™ W , establishing 1. Since F is an essential subset for A, we initialize T

Õ Ω F ,
and T

Õ can then only grow, we have Wd/2 ™ T
Õ. Clearly, T Õ ™ W at the end of the first

while loop. After the second initialize statement, we have that each vertex v œ [A] satisfies
dW\T Õ(v) Æ dY \T Õ(v) Æ “

Õ
t. Therefore, SÕ ´ A at the end of this line. This property is

maintained during the second while loop since we only delete N(v) from S for v ”œ W . This
also means that in the penultimate line, all vertices added to T

Õ are from W . Thus T Õ ™ W

is also maintained at the end of the algorithm. Next, we prove 3. At the beginning of the
second loop, every v œ S

Õ satisfies dY \T Õ(v) Æ “
Õ
t. Since vertices are only removed from S and

added to T
Õ after this point, this property is preserved till the end. Finally, to prove 2 note

that the penultimate line of the algorithm ensures that every v œ Y \ T satisfies dS(v) Æ “
Õ
t.

To bound the number of possible outputs for a fixed F , note that before the start of the
first loop we have |W \ T Õ| Æ O(t). Each step in the first loop of the algorithm removes “t

vertices from W \ T Õ. Therefore, this loop runs at most O(1/“
Õ) times. Next, each step in

the second loop removes at least “
Õ
t vertices from S \ [A]. Immediately after the second

initialize statement, we have

dt Ø |E(SÕ \ [A], T Õ)| Ø (d ≠ “
Õ
t)|SÕ \ [A]|.

As a result, |SÕ \ [A]| = O(t). So the second loop runs for at most 1/“
Õ steps. The output is

determined by the set of O(1/“
Õ) vertices chosen in both loops, so the number of possible

outputs for the algorithm for a given F is at most nO(1/“Õ
). J

A.2 Proof of Lemma 17

We restate the result for convenience.

I Lemma 17. There is an absolute constant “
ÕÕ
> 0 such that the following holds.

For any “
Õ
> 0, w < n, t < log4 n, and tuple (SÕ

, T
Õ) œ Cind, there are at most 2w≠“ÕÕt

sets A œ G(w, t) such that (SÕ
, T

Õ), and is a “
Õ-container for A.

We need the following lemma

I Lemma 21. Let (SÕ
, T

Õ) be a “
Õ-container for a set A œ G(w, t). Then |SÕ| Æ |T Õ|.

Proof. Let us denote W = N(A). First, we observe that |E(SÕ
,W )| Æ d|T Õ|+ “

Õ
t|W \ T Õ|

by 3. We also have that |E(SÕ
,W )| Ø d|[A]|+ |SÕ \ [A]|(d ≠ “

Õ
t) = d|SÕ| ≠ “

Õ
t|SÕ \ [A]| by 1

and 2. Combining these inequalities, we have

|SÕ| Æ |T Õ|+ “
Õ
t(|SÕ \ [A]|+ |W \ |T Õ||)

d
. (9)

Since T
Õ ´ Wd/2, we have that |W \ T Õ| Æ O(t) and

td = |E(W,X \ [A])| Ø
ÿ

vœSÕ\[A]

dT Õ(v) Ø |SÕ \ [A]|(d ≠ “
Õ
t)

which gives |SÕ \ [A]| = O(t). So (9) implies

|SÕ| Æ |T Õ|+O

3
“

Õ
t
2

d

4
.

Since t Æ log4 n, d = Â”nÊ, and |SÕ| and |T Õ| are both integers, we have that |SÕ| Æ |T Õ|. J
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We finish the proof using the following lemma from [40], whose proof we reproduce for
clarity.

I Lemma 22 ([40], Lemma 11). There is an absolute constant “
ÕÕ
> 0 such that the following

holds.
For any tuple (SÕ

, T
Õ) œ 2X ◊ 2Y such that |SÕ| Æ |T Õ|, there are at most 2w≠“ÕÕt sets

A œ G(w, t) such that [A] ™ S
Õ and T

Õ ™ N(A).

To be precise, in [40] the graph in question is the d-dimensional hypercube and additional
hypotheses are stated, namely w ≠ t < n/4 and w > d

4. These play no role in the proof,
however, and it extends verbatim to the result stated above.

Proof. Throughout, we denote W = N(A), and let – > 0 be a constant that will be
determined later.

If |SÕ| < w ≠ –t, then A is among the possible 2w≠–t subsets of SÕ. Suppose otherwise,
that |SÕ| > w ≠ –t. Let A

ú œ G(w, t) such that (SÕ
, T

Õ) is a “
Õ-container for A

ú and let
W

ú = N(Aú). We have that [A] is completely determined by W \W ú and W
ú \W . Since

W
ú \W ™ W

ú \ T , and

|W ú \ T Õ| Æ |W ú| ≠ |T Õ| = |W | ≠ |T Õ| Æ |W | ≠ |SÕ| Æ –t,

there are at most 2–t choices for W
ú \W . Next, for each vertex in W \W ú, we choose a

neighbor in A \Aú ™ S
Õ \Aú. Observe that W \W ú = N(A \Aú) \W ú. Since

|W \W ú| Æ |W \ F | = |W | ≠ |F | Æ |W | ≠ |SÕ| Æ –t,

and

|SÕ \Aú| Æ |SÕ| ≠ |Aú| = |SÕ| ≠ |A| Æ |T Õ| ≠ |A| Æ |W | ≠ |A| = t.

Therefore, the number of choices for W \W ú is at most
3

t

–t

4
Æ 2H(–)t

.

Once we have [A], there are at most 2w≠t possibilities for A. Thus the total number of
choices is at most

2w≠t+t(–+H(–))
.

Choosing e.g., – = 0.17 allows one to choose “
ÕÕ = 0.17. J
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Abstract

We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such
that it is possible to induce any stabilizer state on any k qubits, by using only local operations
and classical communications. These states generalize the notion of k-pairable states introduced
by Bravyi et al., and can be studied from a combinatorial perspective using graph states and
k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph
states that are optimal in size with n = �(k2) qubits. We also provide parameters for which a
random graph state on �(k2) qubits is k-stabilizer universal with high probability. Our second
contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k4)
qubits. Both rely upon the incidence graph of the projective plane over a finite field Fq. This provides
a major improvement over the previously known explicit construction of k-pairable graph states with
n = O(23k), bringing forth a new and potentially powerful family of multipartite quantum resources.
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1 Introduction

Quantum communication networks often rely on classical communication along with pre-
shared entanglement. In this context, a highly pertinent problem is to explore which resource
states enable a group of n parties, equipped with the capability of employing Local Operations
and Classical Communication (LOCC), to create entangled EPR pairs among any k pairs
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of qubits. It is only recently that Bravyi et al. addressed this fundamental question and
provided both upper and lower bounds for what they called the k-pairability of quantum
states, in terms of the number of parties and the number of qubits per party needed for a
quantum state to be k-pairable [2]. Formally, an n-party state |ÂÍ is said to be k-pairable if,
for every k disjoint pairs of parties {a1, b1}, . . . , {ak, bk}, there exists a LOCC protocol that
starts with |ÂÍ and ends up with a state where each of those k pairs of parties shares an
EPR pair. Bravyi et al. studied n-party states in the case where each party holds m qubits,
with m ranging from 1 to log(n). In the case where each party holds at least m = 10 qubits,
they showed the existence of k-pairable states where k is of the order of n/polylog(n), which
is nearly optimal when m is constant. They also showed that if one allows a logarithmic
number of qubits per party, then there exist k-pairable states with k = n/2. Moreover, before
their work, numerous variations of this problem had surfaced in the literature, some in the
context of entanglement routing [16, 26, 27], and some about problems that can be described
as variants of k-pairability [5, 7–9,12,13,18,24,25].

The notion of k-pairability that we focus on in the present paper relates to the scenario
that is both the most natural and challenging [2], when each party possesses precisely
one qubit, i.e., m = 1. Protocols with multi-qubit parties, require the use of quantum
operations acting on two (or more) qubits, which are significantly harder to implement in
all the known technologies. For instance in quantum optics, whose ’flying’ qubits are well
suited for pairability protocols, one-qubit operations are easy to perform using o�-the-shelf
standard devices, whereas two-qubit operations, like those required by the protocols using
multi-qubit parties, can only be performed probabilistically with a non-negligible probability
of failure [1,14,21,22]. Bravyi et al. provided some results in the setup where each party holds
one single qubit, although arguably weaker than those obtained in the case where each party
holds at least 10 qubits. Using Reed-Muller codes, they were able to construct a k-pairable
state of size exponential in k, namely n = 23k, leaving the existence of a k-pairable states
of size n = poly(k) as an open problem. They also found a 2-pairable graph state of size
10 and proved that there exists no stabilizer state on less than 10 qubits that is 2-pairable
using LOCC protocol based on Pauli measurements.

A natural generalization is to consider quantum states satisfying a stronger property: for
some integer k, it is possible to induce any stabilizer state on any subset of k qubits, by means
of LOCC protocols. We call these states k-stabilizer universal. Stabilizer states constitute a
powerful resource for multipartite quantum protocols [17,19,23,28], and can be described,
up to local 1 unitaries, by the formalism of graph states: a subset of quantum states which
are in one-to-one correspondence with (undirected, simple) graphs. 2k-stabilizer universality
is a stronger notion than k-pairability: any 2k-stabilizer universal state is k-pairable, as EPR
pairs are stabilizer states.

Our contributions rely on the graph state formalism and the ability to characterize
properties of quantum states using tools from graph theory. In particular, we reformulate
k-pairability as a property of a graph (rather than a property of a quantum state), such that
the graph state corresponding to a k-pairable graph, is k-pairable. Furthermore, we relate
pairability to the standard notion of vertex-minor (a complete and up-to-date survey on
vertex-minors can be found in [20]). A graph H is a vertex-minor of G if one can transform
G into H by means of local complementations2 and vertex deletions. If H is a vertex-minor
of G then the graph state |HÍ can be obtained from |GÍ using only local Cli�ord operations,

1 As we consider one qubit per party, “local” is to be understood as “on each single qubit independently”.
2 Local complementation on a vertex u consists in complementing the subgraph induced by its neighbors.
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local Pauli measurements and classical communications. Dahlberg, Helsen, and Wehner
proved that the converse is also true when H has no isolated vertices [10]. In [9], they proved
that it is NP-complete3 to decide whether a graph state can be transformed into a set of EPR
pairs on specific qubits using using only local Cli�ord operations, local Pauli measurements
and classical communications. In [8], they showed that it is also NP-complete to decide
whether a graph state can be transformed into another one using using only local Cli�ord
operations, local Pauli measurements and classical communications.

The graphical counterpart of k-stabilizer universal graph states are called k-vertex-minor
universal graphs, introduced by some of the authors in [6]: a graph is k-vertex minor universal
if it has any graph defined on any k of its vertices as a vertex minor. If a graph is k-vertex-
minor universal then the corresponding graph state is k-stabilizer universal. Stabilizer
universal states (and thus k-vertex-minor universal graphs) are useful in themselves beyond
the fact that they imply pairability, as they can serve as a primitive for quantum protocols
using multipartite entanglement. For instance, in [6], it is shown that stabilizer universal
states constitute a resource to perform a robust pairability protocol, in the sense that it
allows some known parties to be malicious, while ensuring the correctness of the protocol.
Furthermore, the notion of stabilizer universality is stronger than the notion of pairability.
Nevertheless, while previous work [6] establishes the existence of k-stabilizer universal graph
states of size n = O(k4 ln(k)) and of k-pairable graph states of size n = O(k3 ln3(k)), there
are no known graph states that are k-pairable but not 2k-stabilizer universal.

In this work, we provide both probabilistic and explicit constructions of k-stabilizer
universal graph states resulting from k-vertex-minor universal graphs. While the results are
interesting in themselves from a combinatorial perspective, they allow one to explicitly define
quantum communication protocols: if a k-stabilizer universal graph state is prepared, and
each qubit is sent to a di�erent party, then, with the assumption that each party can perform
local quantum operations and that they can share classical information, any stabilizer state
on any k qubits can be generated. Note that this includes any set of disjoint EPR pairs on
less than k qubits. The local operations to perform in order to induce a given subgraph state
derive directly from the proofs of our results.

The main contributions of the paper are as follows. In the first part of the paper, we
prove the existence of k-vertex-minor universal graphs of order n = �(k2), which is optimal
as shown in [6]. We adopt a probabilistic approach, exhibiting a family of random bipartite
graphs of quadratic order in k, which are k-vertex-minor universal with probability going
to 1 exponentially fast in k. On the practical side, in the proof we introduce an e�cient
algorithm that tries to generate any induced graph of order k as a vertex-minor on any k
vertices of a random bipartite graph, and the proof yields a bound on the probability of
failure of the algorithm. The second part of the paper focuses on explicit constructions of
k-vertex-minor universal graphs. We derive our constructions from the incidence graph of the
projective plane over the finite field Fq, where q is a prime power. It is a bipartite graph of
order n = 2(q2 + q+1), with the same number (n/2) of left and right vertices, corresponding
respectively to points and lines of the projective plane (equivalently, 1-dimensional and
2-dimensional linear subspaces of F3

q
). We show it satisfies the k-vertex-minor universality

property, with k = �(n1/4). Furthermore, we show that the graph on the points of the
projective plane, with edges connecting points corresponding to orthogonal 1-dimensional
linear subspaces of F3

q
, is k-vertex-minor universal, again with k = �(n1/4). To the best of

our knowledge, these are the first explicit constructions of k-vertex-minor universal graphs
of order polynomial in k, significantly improving on the previous explicit construction of
k-pairable states based on Reed-Muller codes from [2], with exponential overhead.

3 Where the size of the input is the number of bits needed to describe the given graph state.
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2 Vertex-minor and stabilizer universality

The goal of this section is to cover di�erent notions related to k-pairability and k-vertex-minor
universality properties. We first define the above properties for graphs, then we discuss their
implications on the corresponding graph states.

We denote a graph as G = (V,E), where V is the vertex set and E is the edge set. All
graphs are assumed to be undirected and simple (without loops or multiple edges). A vertex
subset S ™ V is said to be stable if no two vertices in S are adjacent. Bipartite graphs are
denoted as G = (L,R,E), where V = L Û R, with L and R disjoint stable sets referred to as
left and right vertex sets, respectively. To avoid possible confusion, we may sometimes
write V (G), E(G), L(G), or R(G). A pairing is a graph G such that any vertex is incident
to exactly one edge. Given a vertex v œ V , we denote by NG(v) the neighborhood of v in
G, consisting of vertices v œ V adjacent to v.

A local complementation on a vertex v of a graph G consists in complementing
the subgraph induced by the neighborhood of v, more precisely, it leads to a graph G ı v
such that V (G ı v) = V (G) and E(G ı v) = E(G) ü E(KNG(v)) where KS denotes the
complete graph on the vertices in S, and ü denotes the symmetric di�erence of two sets.
We say that GÕ is a vertex-minor of G, if GÕ can be obtained from G by means of local
complementations and vertex deletions. Here we consider V (GÕ) ™ V (G) and require GÕ

to be obtained exactly (not up to an isomorphism of graphs), meaning that there exists a
sequence of graph transformations consisting of local complementations and the deletions of
the vertices of V (G) \ V (GÕ).

I Definition 1. Given a graph G, a vertex subset V Õ ™ V (G), and an integer k > 0, we say

that:

G is k-vertex-minor universal on V Õ
, if k 6 |V Õ| and any graph on any k vertices in

V Õ
is a vertex-minor of G.

G is k-pairable on V Õ
, if k 6 |V Õ|/2 and any pairing on any 2k vertices in V Õ

is a

vertex-minor of G.

If any of the above properties is satisfied with V Õ = V (G), we say that G is k-vertex-minor
universal or that G is k-pairable, respectively.

I Definition 2. We say that a bipartite graph G = (L,R,E) is left (resp. right) k-vertex-
minor universal or k-pairable if the corresponding condition from Definition 1 is satisfied

for V Õ = L (resp. V Õ = R). We say that G is two-side k-vertex-minor universal / k-pairable
if it is both left and right k-vertex-minor universal / k-pairable.

Graph states form a standard family of quantum states that can be represented using
simple undirected graphs (Ref. [17] is an excellent introduction to graph states). Given a
graph G = (V,E), the corresponding graph state |GÍ is the |V |-qubit state:

|GÍ = 1
Ô
2|V |

ÿ

xœ2V

(≠1)|G[x]||xÍ

where |G[x]| is the size (number of edges) of the subgraph induced by x, and |xÍ is the
corresponding base vector in the Hilbert space4.

4 With a slight abuse of notation we identify a subset (say x = {u2, u4}) of the set of qubits V =
{u1, . . . , u5} with its characteristic binary word (x = 01010).
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We shall alternatively refer to the vertex set V as qubit set. A graph state |GÍ can
be prepared as follows: initialize every qubit in |+Í = |0Í+|1ÍÔ

2
then apply for each edge of

the graph a CZ gate on the corresponding pair of qubits, where CZ : |abÍ ‘æ (≠1)ab|abÍ.
The graph state |GÍ is the unique quantum state (up to a global phase) that, for every
vertex u œ V , is a fixed point of the Pauli operator XuZNG(u). 5 Hence, graph states form a
subfamily of stabilizer states. Formally, an n-qubit stabilizer state [15] is a quantum state
that is the simultaneous eigenvector with eigenvalue 1 of n commuting and independent Pauli
operators. A useful property is that any stabilizer state is related to some graph state by the
application of local Cli�ord unitaries, and these unitaries can be computed e�ciently [11].
For instance, an EPR pair is equal to |K2Í up to local Cli�ord unitaries, where K2 is the
graph with two vertices and one edge. Thus, under LOCC protocols, generating any graph
state on a given set of qubits is equivalent to generating any stabilizer state. We introduce
below the notion of k-stabilizer universal states.

I Definition 3. A quantum state |ÂÍ is k-stabilizer universal (resp., k-pairable) if any

stabilizer state on any k qubits in V (resp., any k EPR pairs on any 2k qubits in V ) can be

induced by means of LOCC protocols.

If H is a vertex-minor of a G then the graph state |HÍ can be obtained from |GÍ using
only local Cli�ord operations, local Pauli measurements and classical communications, and
the converse is true when H has no isolated vertices [10]. As a pairing on 2k vertices has no
isolated vertices, we have the following:

I Proposition 4. A graph G is k-pairable if and only if the corresponding graph state |GÍ
is k-pairable using only local Cli�ord operations, local Pauli measurements, and classical

communication.

In the case of vertex-minor universality and stabilizer universality, the characterization
from [10] does not apply directly, because of possible isolated vertices. For instance, K2 is
not 2-vertex-minor universal since no local complementation can turn it into an empty graph.
However, |K2Í is 2-stabilizer universal: with e.g. an X-measurement on each qubit, one
can map the corresponding graph state (a maximally entangled pair of qubits) to the graph
state composed of a tensor product of two qubits. To be able to state a characterization, a
solution is to introduce destructive measurements (i.e., the measured qubit is removed from
the system and can no longer be used).

I Proposition 5. Given two graphs G and H such that V (H) ™ V (G), H is a vertex-minor

of G if and only if |HÍ can be obtained from |GÍ (on the qubits corresponding to V (H))
using only local Cli�ord operations, local destructive Pauli measurements, and classical

communications.

Proof. Notice that a similar statement – involving non-destructive measurements and only
valid when H does not contain isolated vertices – has been proved in [10] (Theorem 2.2). We
provide here a direct proof of Proposition 5 which is actually slightly simpler thanks to the use
of destructive measurements. In the following proof all measurements are destructive. (∆)
Local complementations can be implemented by means of local Cli�ord unitaries, and vertex
deletions by means of Z-measurements together with classical communications and Pauli
corrections [11]. (≈) We prove the property by induction on the number of measurements. If

5 It consists in applying X : |aÍ ‘æ |1≠aÍ on u and Z : |aÍ ‘æ (≠1)a|aÍ on each of its neighbors in G.
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there are no measurements the property is true [11]. Otherwise, let u be the first qubit to be
measured. Assume u is measured according to P and Cu is the Cli�ord operator applied on
u before the measurement. C†

u
PCu is proportional to some Pauli operator P0 œ {X,Y, Z}:

(i) if P0 = Z, then the measurement of u can be interpreted as a vertex deletion and leads
to |G \ uÍ up to Pauli corrections. By the induction hypothesis, H is a vertex minor of
G \ u, thus of G.

(ii) if P0 = Y , then the measurement of u can be interpreted as a Z-measurement on
|G ı uÍ (up to a Cli�ord operator on some other qubits), thus according to (i), H is a
vertex minor of G ı u, so is of G.

(iii) if P0 = X and NG(u) ”= ÿ, then the measurement u can be interpreted as a Y -
measurement on |G ı vÍ with v œ NG(u) (up to local Cli�ord operations on qubits
di�erent from u), thus according to (ii) H is a vertex minor of G ı v, so is of G.

(iv) if P0 = X and NG(u) = ÿ, then |GÍ = |G \ uÍ ¢ |+Í
u
so after the measurement of u

the state is |G \ uÍ, thus, by the induction hypothesis, H is a vertex minor of G \ u, so
is of G. J

I Corollary 6. A graph G is k-vertex-minor universal if and only if the corresponding graph

state |GÍ is k-stabilizer universal using only local Cli�ord operations, local destructive Pauli

measurements, and classical communication.

Relations between pairability, vertex-minor universality and stabilizer universality of
graph and graph states, are shown in Figure 1. To the best of our knowledge, all known
examples of k-stabilizer universal (resp. k-pairable) graph states come from k-vertex-minor
universal (resp. k-pairable) graphs. Furthermore, to date, it is not known whether there
exist k-pairable states which are not 2k-stabilizer universal. Throughout this paper, we will
essentially focus on the existence and the explicit construction of k-vertex-minor universal
graphs.

G is 2k-vertex-minor universal =∆ |GÍ is 2k-stabilizer universal
» »

G is k-pairable =∆ |GÍ is k-pairable

Figure 1 Implications between pairability, vertex-minor universality and stabilizer universality of
graphs and graph states.

3 Existence of k-vertex-minor universal graphs of order quadratic in k

Given any k, a k-vertex-minor universal graph has at least a quadratic order in k:

I Proposition 7 ([6]). If a graph G of order n is k-vertex-minor universal then

k <

2n log2(3) + 2.

In this section we prove that this bound is tight asymptotically, i.e. there exists k-
vertex-minor universal graphs whose order grows quadratically with k. This greatly improves
over the probabilistic construction obtained by some of us in [6], where the existence of
k-vertex-minor universal graphs of order O(k4 ln(k)) was proven.
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I Theorem 8. For any constant – > 2, there exists k0 s.t. for any k > k0, there exists a

k-vertex-minor universal graph G of order at most –k2.

The remaining of this section is a proof of Theorem 8. First we bound the probability that
some graph of order k is not a vertex-minor of a random bipartite graph G, in Lemma 10.
Then we bound the probability that such a random bipartite graph is k-vertex-minor universal,
in Lemma 11, by defining some algorithm that tries to generate any graph as a vertex-minor of
G. Finally, we prove that there exists a k-vertex-minor universal bipartite graph of quadratic
order in k. More precisely, the probability of a random bipartite graph of quadratic order
being k-vertex-minor universal goes to 1 exponentially fast in k:

I Proposition 9. Fix constants ‘ > 0, c > 2, and cÕ > 1+‘

ln(2)
. There exists k0 s.t. for

any k > k0, the random bipartite graph G (the probability of an edge existing between two

vertices, one in L(G) and one in R(G), is 1/2, independently of the other edges) with

|L(G)| = ÂcÕk ln(k)Ê and |R(G)| = Âck2Ê, is k-vertex-minor universal with probability at least

1 ≠ e≠‘k ln(k)
.

Proposition 9 will be proved alongside Theorem 8 in this section. Notation-wise, given a
set A and an integer k,

!
A

k

"
refers to {B ™ A | |B| = k}.

I Lemma 10. Consider a random bipartite graph G with |L(G)| > k, |R(G)| > 4
!
k

2

"
+ 5:

the probability of an edge existing between two vertices (one in L(G) and one in R(G)) is

1/2, independently of the other edges. Take k œ N and consider a set of vertices K œ
!
L(G)

k

"
.

The probability that there exists a graph defined on K which is not a vertex-minor of G is

upper bounded by e
≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7|R(G)|

4 ≠(k2)+1
"
.

Proof. For some j œ N \ {0} and X œ
!
R(G)

j

"
, consider the incidence matrix MX of size

j ◊
!
k

2

"
, whose column i represents the pairs of vertices of K that are in the neighborhood

of the ith vertex of X, in the sense that its entries are 1 if the pair of vertices u,v is in its
neighborhood, 0 else. Note that if there exists some X œ

!
R(G)

(k2)
"
whose incidence matrix MX

is of full column-rank, then any 2(
k
2) graph defined on K is a vertex-minor of G. Indeed,

column number i represents the edges (resp. non-edges) of K to be toggled by a local
complementation on the ith vertex of X. So now we will bound the probability of such a set
X existing within R(G).

For this purpose we will greedily try to construct the set X œ
!
R(G)

(k2)
"
, one vertex after

the other, by considering each vertex in R(G) one by one, and we will lower bound the
probability of the event “there exists some X œ

!
R(G)

(k2)
"
whose incidence matrix MX is of full

column-rank” by the probability of success of the algorithm. The algorithm works as follows.
Arbitrarily order the vertices of R(G). At each step (say that we have j vertices in X at
some step), suppose the corresponding matrix of incidence (of size j ◊

!
k

2

"
) full column-rank.

We consider the next vertex u œ R(G) in the list: if adding its corresponding vector to MX

increases its column-rank, then we add u to X, else we remove u from the vertices to consider.
The algorithm stops (and succeeds) if MX has

!
k

2

"
columns and is full column-rank. Let us

show that the probability of a vertex u increasing the column-rank of MX (if j <
!
k

2

"
) is

lower-bounded by 1/4.
If MX is of rank j <

!
k

2

"
, there exists a non-zero vector W (i.e. a set of pairs of vertices

of K) which is orthogonal to all j first vectors. W can be seen as the characteristic function
of the edges of some graph H on the vertices of L(G). Adding a vertex u to X increases the
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rank of MX if the vector U of incidence of u in K is such that U ·W = 1 mod 2 (because
then U is not in the span of MX). Note that, if H has exactly one edge, then there is exactly
probability 1

4
that U ·W = 1 mod 2 (in this case the two ends of the unique edge of H are

connected to u, which happens with probability 1

2
◊ 1

2
). As H has at least one edge, it has

at least one vertex of non-zero degree z. Let us draw randomly the neighborhood of u: first
we draw among the vertices of H \ {z}, then we add z with probability 1

2
. The probability

that an odd number of neighbors of z are neighbors of u is 1/2, so drawing z changes the
parity of the number of edges in H whose ends are both neighbors of u, with probability 1/2.
At the end of the day there is a probability of at least 1

4
that U ·W = 1 mod 2, so that u

increases the column-rank of MX .
Finally, the algorithm fails if we encounter more than |R(G)| ≠

!
k

2

"
+ 1 vertices that did

not increase the column-rank of MX . Let us introduce a random variable T that follows the
distribution B(|R(G)|, 3/4). The probability that the algorithm fails is upper bounded by
Pr(T > |R(G)| ≠

!
k

2

"
+ 1). We will use the Cherno� bound: With µ = E[T ] = 3|R(G)|

4
, for

any ” > 0, Pr(T > (1 + ”)µ) 6 e≠ ”2
2+” µ. As we need (1 + ”)µ = |R(G)| ≠

!
k

2

"
+ 1, we take

” = |R(G)|≠(k2)+1≠µ

µ
. From |R(G)| > 4

!
k

2

"
+ 5 it follows that ” > 0. The Cherno� bound then

gives

Pr
3
T > |R(G)|≠

3
k

2

4
+1

4
6 e

≠

1
|R(G)|≠(k2)+1≠µ

µ

22

1
|R(G)|≠(k2)+1+µ

µ

2 µ

= e

≠
(|R(G)|≠(k2)+1≠µ)2
(|R(G)|≠(k2)+1+µ) = e

≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7|R(G)|

4 ≠(k2)+1
"

So the probability of the existence of X ™
!
R(G)

k

"
whose incidence matrix MX if of full

column-rank is lower bounded by 1 ≠ e
≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7|R(G)|

4 ≠(k2)+1
"
. J

I Lemma 11. Consider a random bipartite graph G with |L(G)| > k, |R(G)| > 4
!
k

2

"
+ 5:

the probability of an edge existing between two vertices (one in L(G) and one in R(G)) is

1/2, independently of the other edges. The probability that G is k-vertex-minor universal is

lower bounded by

1 ≠

Q

cca
k

2|L(G)|≠k+1
+ e

≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7(|R(G)|≠k)

4 ≠(k2)+1
"

R

ddb ◊
3
|L(G)|+ |R(G)|

k

4

The proof makes use of the union bound along with Lemma 10, and can be found in
the extended version of this paper [3]. Roughly speaking, the proof introduces an algorithm
that makes use of pivoting to get all k vertices of some set K ™ V (G) on the left side of the
bipartite graph, in order to use Lemma 10 properly.
I Remark 12. Lemma 11 has concrete applications on its own right: in particular for any
integer k, it yields an integer n such that there exists a (bipartite) k-vertex-minor universal
graph of order n. In general, one can infer a lower bound on the probability of generating a
k-vertex-minor universal graph, for any choice of k and n, using the algorithm presented in
the proof of Lemma 11. A table presenting orders for which some bipartite k-vertex-minor
universal graph exists, as well as orders for with a randomly generated bipartite graph is
k-vertex-minor universal with at least 99% probability, for particular values of k ranging
from 3 to 100, can be found in Appendix A. Surprisingly enough, we observe that a small
constant additive overheard in the order of the graph is su�cient to attain a high probability
of generating a k-vertex-minor universal graph.
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Now we are ready to conclude. Fix some constants c > 2 and cÕ > 1

ln(2)
. Let G be a

random bipartite graph G with |L(G)| = ÂcÕk ln(k)Ê and |R(G)| = Âck2Ê: the probability of
an edge existing between two vertices (one in L(G) and one in R(G)) is 1/2, independently
of the other edges.

Note n = |V | = |L(G)|+ |R(G)| = ÂcÕk ln(k)Ê + Âck2Ê. Using Lemma 11, the probability
that G is k-vertex-minor universal is lower bounded by

1 ≠

Q

cca
k

2|L(G)|≠k+1
+ e

≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7(|R(G)|≠k)

4 ≠(k2)+1
"

R

ddb ◊
3
n

k

4

Let us prove that this probability is positive with our choice of parameters, for some big
enough k. It is su�cient to have:

(1) k

2|L(G)|≠k+1

3
n

k

4
<

1
2 and (2) e

≠

!
|R(G)|

4 ≠(k2)+1
"2

!
7(|R(G)|≠k)

4 ≠(k2)+1
" 3

n

k

4
<

1
2

Let us show that these equations are satisfied for any large enough k. Recall that!
n

k

"
6 2nH(k/n) where H(x) = ≠x log2(x) ≠ (1 ≠ x) log2(1 ≠ x) is the binary entropy.
(1): It is su�cient that log2(k) + nH(k/n) ≠ |L(G)|+ k ≠ 1 < ≠1.
log2(k)+nH(k/n)≠ |L(G)|+k≠1 ≥kæŒ n k

n
log2( kn )≠cÕk ln(k) = k(log2(k)≠ log2(n))≠

cÕk ln(k) ≥kæŒ
1

ln(2)
k ln(k)≠ cÕk ln(k). The choice of cÕ guarantees that for any large enough

k, (1) is satisfied.

(2): It is su�cient that nH(k/n) ln(2)≠
!

|R(G)|
4 ≠(k2)+1

"2

!
7(|R(G)|≠k)

4 ≠(k2)+1

" < ≠ ln(2).
!

|R(G)|
4 ≠(k2)+1

"2

!
7(|R(G)|≠k)

4 ≠(k2)+1

"

≥kæŒ

!
ck2
4 ≠ k2

2

"2

!
7ck2

4 ≠ k2
2

" = k2
(c ≠ 2)2
4(7c ≠ 2) . We saw above that nH(k/n) ln(2) ≥kæŒ k ln(k). The

choice of c guarantees that for any large enough k, (1) is satisfied.

This proves that, for any large enough k, G of order ÂcÕk ln(k)Ê+ Âck2Ê, is k-vertex-minor
universal with non-zero probability. Taking – > c, for any large enough k, ÂcÕk ln(k)Ê+Âck2Ê 6
–k2, proving Theorem 8.

Furthermore, we just saw that side (1) of the equation dominates (2) asymptotically.
Thus, the probability of G being k-vertex-minor universal is roughly lower bounded by
1 ≠ 2

1
ln(2)k ln(k)≠c

Õ
k ln(k) = 1 ≠ e≠(ln(2)c

Õ≠1)k ln(k) as k grows. Then, for any ‘ > 0 such that
‘ < ln(2)cÕ ≠ 1, for any large enough k, G of order ÂcÕk ln(k)Ê + Âck2Ê, is k-vertex-minor
universal with probability at least 1 ≠ e≠‘k ln(k), proving Proposition 9.

4 Vertex-minor universal graphs from projective planes

In this section, we provide explicit constructions of families of k-vertex-minor universal
graphs, of order n proportional to k4. Thus, the order of the constructed graphs scales as the
square of the asymptotically optimal graph order from Section 3. We start in Section 4.1 with
some preparatory lemmas. In Section 4.2, we introduce a family of bipartite incidence graphs

of projective planes, and study their k-pairability and k-vertex-minor universality properties.
In Section 4.3 we introduce a new family of so-called reduced graphs from projective planes,
and investigate their k-vertex-minor universality properties.
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4.1 Su�cient conditions for k-pairability and k-vertex-minor universality

Below and throughout Section 4, given a graph G, a vertex v œ V (G), and a vertex subset
U ™ V (G), we shall use the shorthand notation NU (v) := NG(v) fl U , that is, the set of
neighbors of v that belong to U (in such a case, we shall always ensure that the context
makes the choice of G unambiguous).

The following two lemmas give su�cient conditions for a bipartite graph G to be one-side
(i.e., left or right) k-pairable or k-vertex-minor universal. For simplicity, we state these
conditions for the set of left vertices.

I Lemma 13. Let G be a bipartite graph satisfying the following property:

(P) For any set of 2k vertices K = {u1, v1, u2, v2, . . . , uk, vk} ™ L(G), there exist:

(i) a set of k vertices C = {c1, c2, . . . , ck} ™ L(G), with C fl K = ÿ, and
(ii) a set of 2k vertices S = {–1,—1,–2,—2, . . . ,–k,—k} ™ R(G), such that NKfiC(–i) =

{ui, ci} and NKfiC(—i) = {vi, ci}, for all i = 1, . . . , k.
Then G is left k-pairable.

Proof. We use first local complementation on vertices –i and —i to create edges (ui, ci) and
(vi, ci), followed by local complementation on vertices ci to create edges (ui, vi), as desired.
It is easily seen that no edges are created between ui and K \ {vi}, or between vi and
K \ {ui}. J

I Lemma 14. Let G be a bipartite graph satisfying the following property:

(VMU) For any set of k vertices K = {u1, u2, . . . , uk} ™ L(G), there exist:

(i) a set of k(k ≠ 1)/2 vertices C = {cij | 1 6 i < j 6 k} ™ L(G), with C fl K = ÿ, and
(ii) a set of k(k≠1) vertices S = {–ij ,—ij | 1 6 i < j 6 k} ™ R(G), such that NKfiC(–ij) =

{ui, cij} and NKfiC(—ij) = {uj , cij}, for all 1 6 i < j 6 k.
Then G is left k-vertex-minor universal.

Proof. (See also Figure 2a.) The proof is similar to that of Lemma 13. To create an edge
between ui and uj , we use first local complementation on vertices –ij and —ij , followed by
local complementation on vertex cij . This procedure does not create any other edge between
the vertices of K. J

Providing su�cient conditions for a bipartite graph G to be k-vertex-minor universal
(on the entire vertex set) is more involved. To induce an arbitrary graph with vertex set
K = K1 Û K2, where K1 ™ L(G) and K2 ™ R(G), we may need to create edges with both
endpoints in either K1 or K2, which can be dealt with by using conditions similar to those
in Lemma 14, but also “toggle” (i.e., either create or remove, as needed) edges between K1

and K2, which represents an additional di�culty. We give su�cient conditions for doing so,
in the lemma below (see also Figure 2b).

I Lemma 15. Let G be a bipartite graph satisfying the following property:

(VMU
ı
) For any set of k vertices K = K1 Û K2, with K1 = {u1, . . . , uk1} ™ L(G), and

K2 = {⁄1, . . . ,⁄k2} ™ R(G), there exist:

(i) a subset C1 = {cij | 1 6 i < j 6 k1} ™ L(G), such that C1 flK1 = ÿ and NK2(C1) = ÿ,
(ii) a subset S1 = {–ij ,—ij | 1 6 i < j 6 k1} ™ R(G), such that S1 fl K2 = ÿ and

for all 1 6 i < j 6 k1, NK1ÛC1(–ij) = {ui, cij} and NK1ÛC1(—ij) = {uj , cij},
(iii) a subset � = {Êij | 1 6 i 6 k1, 1 6 j 6 k2} ™ R(G) such that � fl (K2 Û S1) = ÿ and

for all 1 6 i 6 k1, 1 6 j 6 k2, NK1ÛC1(Êij) = {ui},
(iv) a subset C2 = {“ij | 1 6 j 6 k2, j < i 6 k1+k2} ™ R(G) such that C2fl(K2ÛS1Û�) = ÿ

and NK1ÛC1(C2) = ÿ,
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K

S

C

L(G) R(G)

uj

ui

cij

–ij

—ij

(a) (VMU) conditions.

K1 uj

ui
K2⁄j

S1
–ij

—ij

C1 cij

�Êij

C2“iÕjS2 aiÕj

biÕj

L(G) R(G)

(b) (VMUı) conditions where i
Õ := i+ k2.

Figure 2 Illustration of the (VMU) and (VMUı) conditions from Lemma 14 and Lemma 15.

(v) a subset S2 = {aij , bij | 1 6 j 6 k2, j < i 6 k1+k2} ™ L(G) such that S2fl(K1ÛC1) = ÿ
and for all 1 6 j 6 k2, j < i 6 k1 + k2,

NK2ÛS1Û�ÛC2(aij) = {⁄i, “ij} and NK2ÛS1Û�ÛC2(bij) = {⁄j , “ij}, if i 6 k2
NK2ÛS1Û�ÛC2(aij) = {Ê(i≠k2)j , “ij} and NK2ÛS1Û�ÛC2(bij) = {⁄j , “ij}, otherwise.

Then G is k-vertex-minor universal.

Proof. We start by removing all vertices that are not in any set defined in (VMUı). Then
we proceed in the following three steps.
1) In case we need to create an edge (ui, uj) for 1 6 i < j 6 k1 between two vertices in

K1. We first use local complementations on –ij and —ij to create edges (ui, cij) and
(uj , cij) (no other edges are created) and then remove –ij and —ij . Then, we use local
complementation on cij to create the edge (ui, uj) (no other edges are created). Finally,
we remove vertex cij , thus only the edge (ui, uj) has been constructed.

2) In case we need to create an edge (⁄i,⁄j) for 1 6 j < i 6 k2 between two vertices in
K2. We first use local complementations on aij and bij to create edges (⁄i, “ij) and
(⁄j , “ij) (no other edges are created) and then remove aij and bij . Then, we use local
complementation on “ij to create the edge (⁄i,⁄j) (no other edges are created). Finally,
we remove vertex “ij , thus only the edge (⁄i,⁄j) has been constructed.

3) In case we need to toggle an edge (ui,⁄j) for 1 6 i 6 k1 and 1 6 j 6 k2 between two
vertices in K1 and K2. We first use local complementations on a(i+k2)j and b(i+k2)j to
create edges (Êij , “(i+k2)j) and (⁄j , “(i+k2)j) (no other edges are created) and then remove
a(i+k2)j and b(i+k2)j . Then, we use local complementation on “(i+k2)j to create the edge
(Êij ,⁄j) (no other edges are created). After that, we remove vertex “ij , thus only the
edge (Êij ,⁄j) has been constructed. Finally, we use local complementation on Êij to
create the edge (ui,⁄j) (no other edges are created). Then, we remove vertex Êij , thus
only the edge (ui,⁄j) has been toggled. J

The following lemma is a generalization of Lemma 14 to the case of general (not necessarily
bipartite) graphs.

I Lemma 16. Let G be a graph satisfying the following property:

(VMU
¶
) For any set of k vertices K = {u1, u2, . . . , uk} ™ V (G), there exist:

(i) a set of k(k ≠ 1)/2 vertices C = {cij | 1 6 i < j 6 k} ™ V (G), such that C is stable,

C fl K = ÿ, and NK(cij) = ÿ, for all 1 6 i < j 6 k, and
(ii) a set of k(k ≠ 1) vertices S = {aij , bij | 1 6 i < j 6 k} ™ V (G), such that S is stable,

S fl (K fi C) = ÿ, NKfiC(aij) = {ui, cij} and NKfiC(bij) = {uj , cij}, ’1 6 i < j 6 k.
Then G is k-vertex-minor universal.
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Proof. Whenever we need to create or to remove an edge between vertices ui, uj œ K, we
use first local complementation on vertices aij and bij to create edges between ui and cij ,
and between uj and cij , and then we use local complementation on cij . J

4.2 Bipartite graphs from projective planes

Let q > 0 be a prime power, Fq be the finite field with q elements, and PG(2, q) :=
!
F3
q

"ú
/Fú

q

be the projective plane over Fq. Points and lines of PG(2, q) are identified respectively to
1-dimensional and 2-dimensional linear subspaces of F3

q
. A line ⁄ passes through a point a

(we write a œ ⁄) if the 2-dimensional linear subspace of F3
q
corresponding to ⁄ contains the

1-dimensional linear subspace corresponding to a. We will use the following properties of the
projective plane:

PG(2, q) has q2 + q + 1 points and q2 + q + 1 lines.
Any line contains exactly q + 1 points, and any point is contained in exactly q + 1 lines.
Any two distinct lines intersect in one point, and for any two distinct points there is one
unique line containing them.

We denote by Gq the bipartite incidence graph of the projective plane PG(2, q). Precisely,
the set of left vertices L(Gq) is the set of points of PG(2, q), the set of right vertices R(Gq)
is the set of lines of PG(2, q), and the set of edges E(Gq) corresponds to incidences between
points and lines, that is E(Gq) = {(a,⁄) œ L(Gq) ◊ R(Gq) | a œ ⁄}.

I Theorem 17. Let k be such that k 6 (q + 4)/5. Then Gq is two-side k-pairable.

Proof. Due to the symmetry of Gq, it is enough to prove it is left k-pairable. For this, we
will use Lemma 13. Let K = {u1, v1, u2, v2, . . . , uk, vk} ™ L(Gq) be a set of 2k points. To
construct the sets C = {c1, c2, . . . , ck} ™ L(Gq) and S = {–1,—1,–2,—2, . . . ,–k,—k} ™ R(Gq)
from the property (P) in Lemma 13, we will proceed by recursion.

First, since there are q + 1 lines passing through u1 and |K \ {u1}| = 2k ≠ 1 6 q, we may
choose a line –1 passing through u1 and not passing through any other point in K \ {u1}.
Similarly, let —1 be a line passing through v1 and not passing through any other point in
K \ {v1}. We take c1 to be the intersection point between –1 and —1.

For 1 6 j < k, assume that we have constructed a set of j points Cj = {c1, . . . , cj} ™ L(Gq)
and a set of 2j lines Sj = {–1,—1, . . . ,–j ,—j} ™ R(Gq), satisfying the following conditions:
(i) Cj fl K = ÿ,
(ii) NKfiCj (–i) = {ui, ci} and NKfiCj (—i) = {vi, ci}, for all i = 1, . . . , j.

To construct –j+1,—j+1, and cj+1, we proceed in the following steps (see also Figure 3).
We take –j+1 to be any line passing through uj+1 and not passing through
any other point in (K \ {uj+1}) fi Cj.
This is possible since |(K \ {uj+1}) fi Cj | = 2k ≠ 1 + j 6 3k ≠ 2 6 q. Moreover,
–j+1 ”œ Sj , since by construction no line in Sj passes through uj+1. We further denote
by Ij+1 ™ L(Gq) the set consisting of the intersection points between –j+1 and the 2j
lines in Sj . Thus, |Ij+1| 6 2j.
We take —j+1 to be any line passing through vj+1 and not passing through
any other point in (K \ {vj+1}) fi Cj fi Ij+1.
This is possible since |(K \ {vj+1}) fi Cj fi Ij+1| 6 2k ≠ 1 + 3j 6 5k ≠ 4 6 q. Clearly,
—j+1 ”œ Sj fi {–j+1}, since no line in Sj fi {–j+1} passes through vj+1.
We take cj+1 to be the intersection point between –j+1 and —j+1.
Clearly, cj+1 ”œ Cj , since neither one of –j+1 nor —j+1 passes through the points in Cj .
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Figure 3 Recursive construction of sets C and S in the proof of of Theorem 17, for k = 2. (1)
We chose –1 any line passing through u1, and not passing through v1, u2, v2. Similarly, we choose —1
passing through v1, and not passing through u1, u2, v2. We take c1 the intersection point between
–1 and —1. (2) We chose –2 any line passing through u2, and not passing through u1, v1, c1, v2. We
determine the intersection points a and b of –2 with –1 and —1. (3) We chose —2 any line passing
through v2, and not passing through u1, v1, c1, u2, as well as a, b (to avoid –2 and —2 intersecting on
these points). We take c2 the intersection point between –2 and —2.

To complete our recursion, we need to prove:
(i) Cj+1 fl K = ÿ. We only have to prove that cj+1 ”œ K. This follows from the fact that

each of –j+1 and —j+1 passes through only one point in K, namely uj+1 and vj+1,
respectively, and they are distinct.

(ii) NKfiCj+1(–i) = {ui, ci} and NKfiCj+1(—i) = {vi, ci}, for all i = 1, . . . , j + 1.
For i = j + 1, the above equalities follow by construction. Indeed, –j+1 passes through
uj+1 and cj+1, but it does not pass through any other point in (K \ {uj+1}) fi Cj , and
similarly, —j+1 passes through vj+1 and cj+1, but it does not pass through any other
point in (K \ {vj+1}) fi Cj .
For 1 6 i 6 j, we only need to prove that neither –i nor —i passes through cj+1.
This follows from the fact that —j+1 does not pass through any point of Ij+1. Indeed,
assuming that cj+1 belongs to either –i or —i, implies it belongs to Ij+1, the set of
intersection points between –j+1 and the lines in Sj . This contradicts the fact that
—j+1 does not pass through any point of Ij+1.

By recursion, we can construct sets C := Ck and S := Sk satisfying the property (P) from
Lemma 13, and thus we conclude that Gq is left k-pairable. J

I Theorem 18. Let k be such that 3k2 ≠ k ≠ 8 6 2q. Then Gq is two-side k-vertex-minor

universal.

Proof. Due to the symmetry of Gq, it is enough to prove it is left k-vertex-minor universal. We
prove Gq satisfies the property (VMU) from Lemma 14. Let K = {u1, u2, . . . , uk} ™ L(Gq)
be a set of k points. To construct the sets C = {cij | 1 6 i < j 6 k} ™ L(Gq) and
S = {–ij ,—ij | 1 6 i < j 6 k} ™ R(Gq) from Lemma 14 we will proceed again by recursion,
by running through pairs (ui, uj) in some particular order, say in lexicographical order with
respect to indexes (i, j).

The recursion is similar to the one in the proof of Lemma 13. We construct recursively
lines –ij and —ij , passing through ui and uj , respectively, and take cij = –ij fl —ij . In the
recursion, we take –ij to be any line passing through ui and not passing through any other
point in (K \ {ui}) fi Cij , where Cij := {ciÕjÕ | (iÕ, jÕ) < (i, j)}. Since | (K \ {ui}) fi Cij | 6
(k ≠ 1)+ (k(k ≠ 1)/2≠ 1) = 1

2
(k2 + k ≠ 4), such a choice of –ij is possible if k2 + k ≠ 4 6 2q.
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A stronger constraint on the value of k comes from the choice of —ij . Indeed, for —ij we take
any line passing through uj and not passing through any other point in (K \ {uj})fiCij fi Iij ,
where Iij is the set of intersection points between –ij and the previously constructed lines
–iÕjÕ and —iÕjÕ , with (iÕ, jÕ) < (i, j). Since |(K \{uj})fiCij fiIij | 6 (k≠1)+3(k(k≠1)/2≠1) =
1

2
(3k2 ≠k≠ 8), we conclude that such a choice of —ij is possible as long as 1

2
(3k2 ≠k≠ 8) 6 q,

as stated in the lemma. J

I Theorem 19. Let k be such that 7k2 ≠ 16 6 4q. Then Gq is k-vertex-minor universal.

The proof is done by showing that Gq satisfies the property (VMUı) from Lemma 15,
and can be found in the extended version of this paper [3].

4.3 Reduced graphs from projective planes

I Definition 20. Let G be a bipartite graph and Ï : L(G) æ R(G). The Ï-reduction of G
is the graph GÏ such that:

The vertex set of GÏ is the left vertex set of G, that is V (GÏ) = L(G),
There is an edge between a, b œ V (GÏ), if a ”= b and either (a and Ï(b)) or (b and Ï(a))
are neighbors in G, that is,

E(GÏ) = {(a, b) | a ”= b and [ (a,Ï(b)) œ E(G) or (b,Ï(a)) œ E(G) ] }

The reduction is said to be bijective if Ï is bijective. It is said to be symmetric if Ï is such

that (a,Ï(b)) œ E(G) … (b,Ï(a)) œ E(G),’a, b œ L(G).

We enforce the condition a ”= b in the definition of E(GÏ), in order to avoid loops in case
(a,Ï(a)) œ E(G) for some a œ L(G).

Let GÏ be a bijective, symmetric reduction of G. For any vertex a œ V (GÏ) = L(G), let
NGÏ(a) ™ L(G) be the set of neighbors of a in GÏ, and NG(a) ™ R(G) be the set of neighbors
of a in G. By definition, if b œ NGÏ(a) then Ï(b) œ NG(a). The converse is also true, except if
Ï(a) œ NG(a), or equivalently, (a,Ï(a)) œ E(G). Hence, NGÏ(a) = {b | Ï(b) œ NG(a)} \ {a},
and therefore:

If (a,Ï(a)) ”œ E(G), the map Ï induces a bijection between NGÏ(a) and NG(a). In
particular, |NGÏ(a)| = |NG(a)|.
If (a,Ï(a)) œ E(G), the map Ï induces a bijection between NGÏ(a) and NG \ {Ï(a)}. In
particular, |NGÏ(a)| = |NG(a)| ≠ 1.

In what follows, we take Gq to be the bipartite incidence graph of the projective plane
PG(2, q) from the previous section. Let Ï : L(Gq) æ R(Gq) be defined as follows. Recall that
a vertex a œ L(Gq) (that is, a point of the projective plane) corresponds to a 1-dimensional
linear subspace of F3

q
, while a vertex ⁄ œ R(Gq) (that is, a line of the projective plane)

corresponds to a 2-dimensional linear subspace of F3
q
. Hence, for a œ L(Gq), we define

Ï(a) œ R(Gq) as the projective line corresponding to the 2-dimensional linear subspace
orthogonal to a. Clearly, Ï is bijective. It is also symmetric, since a œ Ï(b) … (a and b are
orthogonal 1-dimensional linear subspaces) … b œ Ï(a). Note also that (a,Ï(a)) œ E(Gq) if
and only if a is self-orthogonal.

Let Gq|„ be the bijective, symmetric reduction of Gq induced by Ï. We will not use the
explicit definition of Ï, but only the fact it is bijective and symmetric. Note that Gq|„ is a
graph with q2 + q + 1 vertices, and vertex degree equal to either q (vertices corresponding to
self-orthogonal linear subspaces) or q + 1 (other vertices). The diameter of Gq|„ is equal to
2, and for any two non-adjacent vertices a, b œ V (Gq|„), there is a unique path of length 2
connecting them.
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I Theorem 21. Let k be such that 5k2 ≠k≠10 6 2q. Then Gq|„ is k-vertex-minor universal.

The proof is done by showing that Gq|„ satisfies the property (VMU¶) from Lemma 16,
and can be found in the extended version of this paper [3]. Here, we briefly discuss the
implications of the two constructions from Theorem 19 and Theorem 21. We denote by ÁxËp
the smallest prime power greater than or equal to a real number x > 1. For a given k > 1,
let q2 :=

'
7

4
k2 ≠ 4

(
p
and q1 :=

'
5

2
k2 ≠ 1

2
k ≠ 5

(
p
given by the inequalities in Theorem 19

(bipartite graph) and Theorem 21 (reduced graph), respectively. It follows that Gq2 is a
k-vertex-minor universal of order n2 = 2(q2

2
+ q2 +1) ≥ 49

8
k4, while Gq1|„ is a k-vertex-minor

universal of order n1 = q2
1
+ q1 + 1 ≥ 25

4
k4 (where ≥ indicates asymptotic equivalence, as k

goes to infinity). Thus, asymptotically, the bipartite graph construction yields k-vertex-minor
universal graphs of slightly lower order than the reduced graph construction. Another
interesting property of the bipartite graph is that the corresponding graph state |Gq2Í
is equivalent, up to local Cli�ord unitaries, to a Calderbank-Shor-Steane (CSS) state [4,
Section IV]. However, to construct a desired graph on k-vertices of the bipartite-graph Gq2 ,
we need to follow Lemma 15, thus to construct the sets C1, C2, S1, S2,� therein, which is
done by following the steps highlighted in bold in the proof of Theorem 19. Note that this
directly translates into a LOCC protocol to induce a desired graph state on k qubits of the
state |Gq2Í, using Proposition 5. For the reduced graph the corresponding protocol is simpler,
as we only have to construct the sets C, S from Lemma 16, which is again done by following
the steps highlighted in bold in the proof of Theorem 21.

5 Conclusion

We showed the existence of k-vertex-minor universal graphs of order quadratic in k, which
attain the optimum. This implies the existence of k-vertex-minor universal and thus k-
pairable graph states with a quadratic number of qubits. Then, our study of the incidence
graph of a finite projective plane exhibited two families of k-vertex-minor universal graphs of
linear order in k4. These two families being, to our knowledge, the first k-stabilizer universal
quantum states, and so k-pairable quantum states, that can be constructed on a polynomial
number of qubits in k.
This leaves open some questions for future work.

The logical next step is the explicit, deterministic construction of an infinite family of k-
vertex-minor universal graphs whose order is cubic, or even quadratic in k, asymptotically
matching the order of the k-vertex-minor universal graphs which can be constructed in a
probabilistic, non-deterministic way (although with arbitrarily high probability).
Our probabilistic construction for k-vertex-minor universal graphs is asymptotically
optimal. The graph states corresponding to 2k-vertex-minor universal graphs are also
k-pairable: however the only known lower bound on the size of k-pairable states (where
one party holds only one qubit) is quasi-linear [2]. Does there exist k-pairable states with
a quasi-linear number of qubits?
Even though 2k-stabilizer universality is a stronger requirement than k-pairability, it is
not clear whether there exist k-pairable states which are not 2k-stabilizer universal. A
similar question can be asked for graphs: it is not clear whether there exist k-pairable
graphs on more than 2 vertices which are not 2k-vertex-minor universal.
Bravyi et al. presented a construction of k-pairable states with an asymptotically optimal
number of parties, in the case where each party holds at least 10 qubits [2]. How does
k-stabilizer universality evolve when considering quantum communication networks where
each party holds more than one qubit? Note that the construction of Bravyi et al. where
each party holds at least 10 qubits does not translate well for k-stabilizer universality.
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A Some data on the size of the existence constraints

By Lemma 11, given some k œ N \ {0}, there exists a k-vertex-minor universal bipartite
graph G with |L(G)| > k, |R(G)| > 4
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In Table 1 we provide values for which there exists a k-vertex-minor universal bipartite
graph of this order, for some particular values of k. In Table 2 we provide values for which a
randomly generated bipartite graph is k-vertex-minor universal with at least 99% probability.
Experimentally, adding a small, constant number of vertices to the randomly generated
bipartite graph, greatly increases the probability of it to be k-vertex-minor universal.

Table 1 Parameters for which some k-vertex-minor universal bipartite graph exists.

k 3 4 5 6 7 8 9 10 11 12 13 14 15
|V(G)| 36 57 83 113 147 184 226 272 322 377 434 497 563
|L(G)| 18 24 32 40 48 55 63 72 80 90 97 107 115
|R(G)| 18 33 51 73 99 129 163 200 242 287 337 390 448

k 20 25 30 35 40 50 60 70 80 90 100
|V(G)| 955 1448 2041 2736 3531 5424 7718 10414 13512 17012 20912
|L(G)| 161 208 256 306 357 461 568 677 788 902 1016
|R(G)| 794 1240 1785 2430 3174 4963 7150 9737 12724 16110 19896
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Table 2 Parameters for which a randomly generated bipartite graph is k-vertex-minor universal
with at least 99% probability.

k 3 4 5 6 7 8 9 10 11 12 13 14 15
|V(G)| 47 68 93 123 156 194 235 281 331 385 443 505 571
|L(G)| 25 32 39 47 55 63 71 79 88 96 105 113 122
|R(G)| 22 36 54 76 101 131 164 202 243 289 338 392 449

k 20 25 30 35 40 50 60 70 80 90 100
|V(G)| 962 1456 2049 2743 3539 5431 7726 10422 13519 17019 20920
|L(G)| 167 215 263 313 364 468 575 684 795 908 1023
|R(G)| 795 1241 1786 2430 3175 4963 7151 9738 12724 16111 19897
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Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed
graphs. For triangles, T�tek [ICALP’22] gave an algorithm that returns a (1± Á)-approximation
in Õ(nÊ

/t
Ê≠2) time, where t is the unknown number of triangles in the given n node graph and

Ê < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running
time is, within polylogarithmic factors the same as that for multiplying an n ◊ n/t matrix by an
n/t ◊ n matrix. We then extend our framework to obtain the first nontrivial (1± Á)-approximation
algorithms for the number of h-cycles in a graph, for any constant h Ø 3. Our running time is

Õ
!
MM

!
n, n/t

1/(h≠2)
, n

""
, the time to multiply n ◊ n

t1/(h≠2) by n

t1/(h≠2) ◊ n matrices.

Finally, we show that under popular fine-grained hypotheses, this running time is optimal.
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1 Introduction

Detecting small subgraph patterns inside a large graph is a fundamental computational task
with many applications. Research in this domain has flourished, leading to fast algorithms
for many tractable versions of the subgraph isomorphism problem: given a fixed (constant
size) graph H, detect whether a large graph G contains H as a subgraph, list all copies of H
in G, count the copies (exactly or approximately) and more.

The topic of this paper is the fast estimation of the number of copies of a pattern H
in a graph G. One of the most studied patterns H is the triangle whose detection, listing
and approximate counting has become a prime testing ground for ideas in classic graph
algorithms [25, 3, 30, 8, 31], sublinear and distributed algorithms [24, 23, 20, 22, 21, 12,
15, 26, 19, 33, 11, 13, 14], streaming [10, 6, 5, 27, 28], parallel [7, 29, 32] algorithms and
more. This is largely because triangles are arguably the simplest subgraph patterns and
moreover, often algorithms for the triangle version of the (detection, counting or listing)
problem formally lead to algorithms for other patterns as well (see Neöetril and Poljak [30]).
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Detecting and finding a triangle, and counting the number of triangles in an n-vertex
graph can all be reduced to fast matrix multiplication [25], and the fastest algorithm for these
versions has running time O(nÊ), where Ê is the exponent of square matrix multiplication,
currently Ê Æ 2.371552 [35]. It is also believed that even detecting a triangle requires nÊ≠o(1)

time, due to known fine-grained reductions that show that Boolean matrix multiplication
and triangle detection are equivalent, at least for combinatorial algorithms [34].

Obtaining an approximate count t̂ to the number of triangles t in an n-node graph such
that (1 ≠ Á)t Æ t̂ Æ (1 + Á)t for an arbitrarily small constant Á > 0 can be used to detect
whether a graph has a triangle, as the algorithm would be able to distinguish between t = 0
and t = 1. Thus, it is plausible that when the number of triangles is O(1), nÊ≠o(1) time is
needed to obtain an approximate triangle count.

When the number of triangles t in G is large, however, a simpler sampling approach
can obtain a good estimate of t: repeatedly sample a triple of vertices and check whether
they form a triangle; in expectation O(n3/t) samples are su�cient to get a constant factor
approximation.

The best known algorithm for approximately counting triangles is by T�tek [33], with
running time Õ(nÊ/tÊ≠2). When t becomes constant, the running time becomes Õ(nÊ),
which is believed to be optimal, as we mentioned earlier. When t becomes �(n), the running
time is the same as the naïve sampling algorithm, Õ(n2). This quadratic running time is
provably necessary even for randomized algorithms (see [21]). Nevertheless, it is unclear
whether Õ(nÊ/tÊ≠2) time is needed for all values of t between O(1) and �(n).

Is there a faster algorithm for approximate triangle counting
when the triangle count is in [�(1), O(n)]?

As triangle counting is an important special case of fixed subgraph isomorphism counting,
a natural question is, what is the fastest algorithm for approximately counting arbitrary
subgraphs H?

Dell, Lapinskas and Meeks [18] provide a general reduction from approximate H counting
to detecting a “colorful” H in an n-node, m-edge graph, so that a T (n,m) time detection
algorithm can be converted into an Õ(Á≠2T (n,m)) time (1±Á)-approximation algorithm. For
many patterns 1 such as triangles and k-cliques or directed h-cycles, the colorful and normal
versions of the detection problems are equivalent (e.g. via color-coding [2] and layering).
While the detection running time is provably necessary to approximately count when the
number of copies of the pattern is constant, similarly to the case of triangles, when the
number of copies t is large, faster sampling algorithms are possible. Unfortunately, the
reduction of [18] doesn’t seem easy to extend to provide runtime savings that grow with t.
Thus, we ask:

What is the best approximate counting algorithm for subgraph patterns H
with running time depending on the number t of copies of H?

As triangles are also cycles, one special case of the above question is when H is a cycle
on h vertices.

1 This equivalence is not true in general: detecting cycles of fixed even length is believed to be compu-
tationally easier than detecting colorful even cycles which are known to be equivalent to the directed
version of the problem.
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1.1 Our Contribution
The main result of our paper is a new algorithm for approximating the number of h-cycles in
a given directed graph, for any constant h Ø 3, together with a conditional lower bound from
a fine-grained hypothesis, showing that the running time of our algorithm is likely tight.

Our main theorem is:

I Theorem 1 (Approximating the Number of h-Cycles). Let G be a given graph with n vertices
and let h Ø 3 be a fixed integer. There is a randomized algorithm that outputs an approximation
t̂ for the number t of h-cycles in G such that Pr

#
(1 ≠ Á)t Æ t̂ Æ (1 + Á)t

$
Ø 1 ≠ 1/n2, for

any constant Á > 0. The running time is bounded by Õ
!
MM

!
n, n/t1/(h≠2), n

""
, the fastest

running time to multiply an n ◊ n/t1/(h≠2) matrix by an n/t1/(h≠2)
◊ n matrix.

As long as Ê > 2, the running time in the theorem is always upper-bounded by
Õ

1
nÊ/t

Ê≠2
(h≠2)(1≠–) + n2

2
, where Ê Æ 2.371552 is the square matrix multiplication expo-

nent mentioned earlier and – Ø 0.321334 [35] is the largest real number such that one can
multiply n◊n– by n–

◊n matrices in n2+o(1) time.2 It is easy to see that for any value Ê > 2,
our Õ

1
nÊ/t

Ê≠2
1≠–

2
time for triangles is faster than the previous state of the art Õ

!
nÊ/tÊ≠2"

for approximate counting of triangles [33] for all t between �(1) and O(n), answering our
first question in the introduction. Figure 1 plots our two running times for approximate
triangle counting together with T�tek’s algorithm, naive sampling and the O(nÊ) time exact
counting algorithm.
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Figure 1 A comparison between our new run-
ning times for approximate triangle counting
with prior work, together with the lower bounds,
both conditional and unconditional.
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Figure 2 Comparative Runtime Analysis.

We obtain our algorithm via a simplification and generalization of T�tek’s approach
that allows us to both obtain an improved running time for triangles, but also to get faster
algorithms for longer cycles. The approach can also extend to other patterns; we leave this
as future work.

Our algorithm for longer cycles is arguably the first non-trivial algorithm for the problem
with a negative dependence on the number of cycles t. To our knowledge, prior to our work
the only approximate counting algorithms for h-cycles for h > 3 in directed graphs (or in

2 We use MM (a, b, c) to denote the time complexity of multiplying two matrices with dimensions a ◊ b

and b ◊ c.
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undirected graphs when h is odd3) were to either use naive random sampling resulting in an
O(n4/t) time or to approximate the answer in the best h-cycle detection time, O(nÊ) (e.g.
via [18]), a running time that does not depend on t.

We complement our algorithms for approximately counting h-cycles with a tight conditional
lower bound under a popular fine-grained hypothesis. The k-Clique Hypothesis of fine-grained
complexity (e.g. [1, 4, 9, 16]) postulates that the current fastest algorithms for detecting a
k-clique in a graph (for constant k Ø 3) are optimal, up to no(1) factors. We formulate a
natural hypothesis about the complexity of triangle detection in unbalanced tripartite graphs
that is motivated by and in part implied by the k-Clique Hypothesis. Then we show, under
that hypothesis:

I Theorem 2. Under fine-grained hypotheses, in the word-RAM model with O(logn) bit
words, for any constant integer h Ø 3, any randomized algorithm that, when given an n node
directed graph G, can distinguish between G being h-cycle-free and containing Ø t h-cycles
needs MM

!
n, n/t1/(h≠2), n

"1≠o(1) time. The same result holds for undirected graphs as well
whenever h is odd.

As any algorithm that can approximate the number t of h-cycles multiplicatively, can
distinguish between 0 and t h-cycles, we get that our algorithm running times are essentially
tight. We present our lower bound for triangles in Figure 1 as a dotted line. Together with
the lower bound by [21], our lower bound shows that our algorithm is (conditionally) optimal
for all values of t. Due to space considerations, the lower bound proof is deferred to the full
version.

Similarly to T�tek’s algorithm, our algorithms for approximate h-cycle counting can be
used to obtain improved h-cycle counting algorithms for sparse graphs, where the running
time is measured in terms of the number of edges m. In particular, for triangles, one can
simply substitute our new algorithm in terms of n in T�tek’s argument [33] to obtain an
approximate counting algorithm that runs in time Õ

1
m2Ê/(Ê+1)/t

2(Ê≠1)
Ê+1 + –(Ê≠2)

(1≠–)(Ê+1)
2
. This

running time is always faster than T�tek’s Õ
1
m2Ê/(Ê+1)/t

2(Ê≠1)
Ê+1

2
for any Ê > 2. One can

similarly adapt the algorithms of Yuster and Zwick [37] and their analysis in [17] to obtain
approximate counting algorithms for longer cycles. We leave this to future work.

1.2 Technical Overview
To frame our technical contribution, we first briefly overview the approach of [33]. The
latter gives a randomized approximate counting algorithm for triangles, in time Õ

!
nÊ/tÊ≠2"

.
In a nutshell, the algorithm finds a subset of vertices S that contains all �-heavy vertices
and no �/polylog (n)-light vertices – a vertex is called �-heavy if it participates in at least
� triangles, and otherwise it is called �-light. Then, the algorithm approximately counts
the number of �-heavy triangles, which are triangles with at least one heavy vertex. The
algorithm then continues by sampling subsets of vertices from the set V ≠ S, where each
vertex is kept independently uniformly at random with some probability, and processing the
sampled graphs by recursion.

3 The detection problem for even h-cycles in undirected graphs is known to be much easier than that
for odd cycles, and for directed graphs, as for every even constant integer h, an O(n2) time algorithm
was developed by Yuster and Zwick [36]. Meanwhile, directed h-cycles and undirected odd h-cycles are
believed to require n

Ê≠o(1) time to detect.
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Our technical contribution consists of three parts: (I) We simplify the above recursive
approach, (II) we improve upon the component that finds heavy vertices, and (III) we
improve upon the component that counts the number of cycles that contain heavy vertices.
A compelling aspect of our technique is that it applies to any constant-length cycle. In what
follows, we overview each of these aspects.

I. The Recursive Template. In [33], each recursive invocation triggers seven further recursive
calls and takes the median of their return values. As the depth of the recursion increases,
the algorithm needs to use a precision parameter that becomes exponentially tighter.

In contrast, our algorithm initiates only a single recursive call. This allows us to avoid
having to compute the median of several subcalls, which makes it easier to apply standard
amplification tools. In particular, it allows us to fix the precision parameter.

In addition, by reducing the recursive tree to a “path”, we simplify the analysis of the
running time.

A prime feature of our simplification of the recursion is that it allows us to present it
as a template for approximate subgraph counting for any fixed subgraph H, provided one
designs the two black boxes (one for finding a superset S of the �-heavy vertices with no
�/polylog (n)-light vertices, and another for approximately counting the number of copies of
H that intersect the set S).

For triangles, our improvement comes from simplifying the recursion and implementing the
black box that finds heavy vertices faster, using rectangular matrix multiplication. Crucially,
our implementations of these black boxes are general, in the sense that they apply to constant
length h-cycle. Specifically, we find the set S in time Õ

!
MM

!
n, n/�1/(h≠2), n

""
. For such

S, we find an (1 + ‘) approximation for the number of copies of H that intersect S in time
Õ

!
n2/Á3

"
, which is independent of � and of the cardinality of S.

II. Finding the Heavy Vertices. The algorithm in [33] finds �-heavy vertices by sampling
a subset of vertices uniformly at random, and using matrix multiplication to detect triangles
inside the induced sampled subgraph. This takes Õ

!
nÊ/�Ê≠2"

time, by Õ
!
�2"

repetitions
of multiplying n/� ◊ n/� matrices.

At the heart of our approach for finding the heavy vertices lies non-uniform sampling, and
computing the product of rectangular matrices rather than square ones. We obtain a running
time of Õ

!
MM

!
n, n/�1/(h≠2), n

""
= Õ (nÊ/�“h) for h-cycles, where “h , Ê≠2

(1≠–)(h≠2) . This
comes from multiplying an n ◊ n/�1/(h≠2) matrix by an n/�1/(h≠2)

◊ n matrix. In [35]
it was shown that – Ø 0.321334, and therefore Ê≠2

1≠–
Ø 1.47(Ê ≠ 2), which establishes that

our algorithm is never slower, and is faster (if Ê > 2), where the gap increases with � (for
su�ciently large �, the folklore naïve sampling algorithm is superior).

Our starting point for finding the heavy vertices is the color-coding technique of [2], which
is widely employed for detecting h-cycles for h = O (1). This technique colors the vertices
using h colors uniformly independently at random and looks for colorful h-cycles, which are
h-cycles with exactly one vertex of each color. This restriction allows for faster detection
but su�ers some probability of missing h-cycles that are colored out of order, which can be
overcome with su�ciently large probability by repeating this process.

To find colorful h-cycles, we utilize matrix multiplication. However, we do so in a refined
manner. Rather than considering all vertices, we sample a subset of vertices from each color
class in a nonuniform manner. To illustrate this, consider the task of finding �-heavy vertices
w.r.t. triangles. We assign a random color to each vertex, and denote the three color classes
by V1, V2, V3. We focus on identifying the �-heavy vertices within V1. Fix some i œ [log�].
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We sample each vertex from V2 with probability 2i/�, and we sample each vertex from V3
with probability 1/2i. Let Hi denote the induced graph obtained by all vertices from V1
and the sampled vertices from V2 and V3, where we also direct edges from Vj to Vj+1 mod 3
and discard monochromatic edges. We show that for every �-heavy vertex v, there exists
an index i œ [log�] such that v is in a triangle in Hi with some probability at least pheavy,
where 1/pheavy = Õ (1). On the other hand, for �/polylog (n)-light vertex u, we show that
for every i œ [log�], the vertex v is in a triangle in Hi with probability at most pheavy/2.
Therefore, we can distinguish between these cases. Checking whether v is in a triangle in Hi

can be done in Õ (MM (n, n, n/�)) time. Using amplification, we approximate the probability
that v is in a triangle in Hi for every v œ V1, and thus distinguish heavy vertices from lighter
ones.

We generalize our approach for h-cycles by coloring the vertices with h colors, and
directing edges and discarding monochromatic edges, as for triangles. We also discard edges
between non-consecutive color classes. To find �-heavy vertices in the first color class, we
sample in a nonuniform manner a subset of vertices from the j-th color class for 2 Æ j Æ h,
where the product of the sampling probabilities of the color classes should be at most 1/�,
as for triangles. Let H denote the obtained random induced subgraph. The running time of
computing the exact number of h-cycles each vertex in H participates in, which is dominated
by the size of the smallest color class in H, becomes Õ

!
MM

!
n, n, n/�1/(h≠2)""

. To see
why, consider an h-partite graph G with n vertices in each part. Suppose G has a vertex
v œ V1 with a neighbor u œ V2, such that all h-cycles that intersect v, also intersect the edge
(u, v). Now, suppose each vertex set Vj , for 3 Æ j Æ h has a subset Wj of �1/(h≠2) vertices,
such that any h-tuple of the form (v, u, w3, w4, . . . , wh) is an h-cycle in G, where wj œ Wj

for 3 Æ j Æ h. This implies that v is �-heavy. Note that if we keep each vertex from the
j-th color class with a probability of o(1/�1/(h≠2)), we are unlikely to sample any vertex
from Wj , and therefore we fail to learn that v is �-heavy. On the other hand, if we sample
vertices from each class with probability �

!
1/�1/(h≠2)", the smallest color class is of size

�
!
n/�1/(h≠2)".

III. Counting the Heavy Copies. Given a graph G and a subset of vertices S, where each
vertex in S participates in at least a and at most b copies of h-cycles for h = O (1), we show
how to compute a (1 + ‘) approximation for the number of h-cycles that intersect the set S,
in time Õ

!
n2b/Áa

"
. In particular, the runtime is independent of size of the set S.

Consider a naïve approach, which approximates the average number of h-cycles that a
vertex from S intersects, and let us see why it fails to provide a good approximation for the
total number of h-cycles intersecting S. Suppose h = 3 and |S| = 3 and each vertex v œ S
participates in exactly one triangle in G. Based solely on the number of triangles in which a
vertex participates, it is impossible to distinguish the case where the set S intersects one
triangle in G from the case in which it intersects three triangles in G. The issue here is
double counting, as we did not avoid counting the same cycle more than once. For triangles,
this obstacle can be avoided by replacing G with a tripartite graph GÕ, where each of the
three parts is a copy of V , and for each edge in G there are six edges in GÕ, one for every
ordered pair of parts. It is easy to see that every triangle in G corresponds to six triangles
in GÕ, and thus an estimate on GÕ directly gives an estimate on G. That is, we sample a
subset F of vertices from S, and for each copy vÕ of v œ F in the, say, first part of in the
tri-partition GÕ, we compute the number of triangles that go through it in GÕ. This avoids
double counting, because each triangle in GÕ intersects copies of the set F from the first part
at most once (as vertices in the same part form an independent set and hence cannot be in
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the same triangle). To summarize, restricting to triangles would significantly simplify this
part to a single Cherno� inequality for independent random variables. The source of this
simplicity is that triangles are cliques. However, larger cycles are not cliques. If we simply
repeat every vertex h times to create a new graph GÕ as in the triangle case, we could create
h-cycles in GÕ that do not correspond to h-cycles in G: every closed walk of length h would
become an h-cycle. As in [2], we use color-coding to overcome this, and this necessitates a
more careful probabilistic analysis .

First, we sample a subset of vertices from S and for each sampled vertex v we approximate
the number of h-cycles which go through v (and therefore intersect the set S). The crux
of our algorithm is that in order to approximate the above, we approximate the number of
h-cycles which go through v and intersect the set S exactly k times, for each 1 Æ k Æ h. The
summation of these approximations yields our final result, and it naturally avoids the pitfall
of double-counting.

To approximate the number of h-cycles intersecting the set S exactly k times for some
k, we color the graph with h ≠ 1 colors and color vertex v with the color h. This ensures
that any colorful h-cycle intersects v. Then, we choose k ≠ 1 color classes from the first h≠ 1
classes, and retain only vertices of S within those classes. For the remaining color classes, we
keep only vertices that are not in S. The color class h is fixed and always contains only v.
This promises that each colorful h-cycle with v in this auxiliary graph intersects S exactly
k times. The number of ways to choose exactly k ≠ 1 color classes that keep only vertices
from S is

!
h≠1
k≠1

"
. We compute the number of h-cycles in each such auxiliary graph. We prove

that the expectation of this number is some fixed constant multiplicative factor o� from the
number of h-cycles intersecting v and S exactly k times. Finally, we prove that the variance
of this random variable is suitably bounded. Therefore, conducting this process Õ (b/(aÁ))
times enables us to obtain an (1 ± Á) approximation for its expectation by Chebyshev’s
inequality. We compute the number of h-cycles in this auxiliary graph using rectangular
matrix multiplication. Since the auxiliary graph is h-partite and one part contains only a
single vertex, we get a running time of MM (n, n, 1) = Õ

!
n2"

. Thus, we achieve our claimed
running time of Õ

!
n2b/Áa

"
.

We mention that we invoke this procedure on the set of vertices given by the previous
component of finding heavy vertices, which is called upon in every recursion step. A crucial
observation that we make is that not only does this set contain all �-heavy vertices and no
�/polylog (n)-light vertices, but rather we also know that it does not contain (2h�)-heavy
vertices, because those are handled during previous steps of the recursion. This means that
we invoke this procedure for a, b that di�er only by polylog (n) and Á2 factors, and thus we
e�ectively get a running time of Õ

!
n2/Á3

"
for counting h-cycles through �-heavy vertices.

Roadmap. Section 2 contains our template for the recursion, and proves its correctness for
any graph H given implementations of two black boxes, one that finds heavy vertices and
another that counts the copies of H that contain heavy vertices. Section 3 proves the running
time that our template obtains for h-cycles, given the running times of implementations of
the two black boxes. We implement our black boxes for h-cycles in Sections 4 and 5. Missing
proofs, as well as our hardness result, appear in the full version.

1.3 Preliminaries
Let G be a graph on n vertices. Let H be a fixed graph with h = O (1) vertices. For a
subgraph GÕ

™ G, and a subset of vertices S, denote by tGÕ(S) number of copies of H in GÕ

which intersect S. Denote by · = ·GÕ the maximal number of copies of H in GÕ in which a
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37:8 Fast Approximate Counting of Cycles

vertex participates. We say that a vertex v is �-heavy (in G) if tG(v) Ø �, and otherwise it
is �-light. We say that a copy C of H is �-heavy if C contains at least one �-heavy vertex.
Let G be a graph and p some parameter that could depend on G. We denote by G[p] a
random induced subgraph of G obtained by keeping each vertex from G independently with
probability p. We use t(1± Á) to denote the closed interval [t(1 ≠ Á), t(1 + Á)]. We say that a
value t̂ = t(1± Á) if t̂ œ [t(1 ≠ Á), t(1 + Á)]. We assume that Á œ (0, 1/2], which might depend
on n. If Á is bigger, our algorithm assumes Á Æ 1/2. Finally, all logarithms in this paper are
base 2.

I Definition 3 (Fast Matrix Multiplication Definitions). We denote the time it takes to compute
the product of two matrices of dimension na

◊ nb and nb
◊ nc by either MM

!
na, nb, nc

"

or nÊ(a,b,c). We also abuse the notation and write Ê = Ê(1, 1, 1), and Ê(k) = Ê(1, k, 1).
Note that for any permutation fi : [3] æ [3] we have Ê(x1, x2, x3) = Ê(xfi(1), xfi(2), xfi(3)) . In
addition to Ê, we will also use – to be the largest real number such that n by n– by n matrix
multiplication can be done in n2+o(1) time.

2 The Recursive Template

Organization. In this section, we present an algorithm for approximating the number of
copies of a graph H in a graph G, denoted by t, which builds upon two black boxes. The first
black box, called Find9Heavy, takes a graph H and a parameter � as input and computes
a superset of the �-heavy vertices, excluding any �/polylog (n)-light vertices. We denote
the computed superset of heaviest vertices as S. The second black box, called Count9Heavy,
is used to compute an approximation for the number of heavy-copies of H in G, which is
the set of all copies that contain at least one vertex from S. Our algorithm for subgraph
approximate counting that uses the specified black boxes consists of two parts: a doubling
algorithm called Doubling9Template, and a recursive algorithm called Template, which is the
main focus of this section.

The Template Algorithm. The Template
ÁÕ (G,�) algorithm takes two parameters: a graph

G and a heaviness threshold �. The output of the algorithm is a value t̂, which, with a
probability of at least 2/3, is within the range t± (t · ÁÕ + � · polylog (n) /ÁÕ), where ÁÕ is the
fixed precision parameter of the algorithm.

We next explain how the recursive Template algorithm works. The algorithm does the
following. (1) Find the heaviest vertices using the Find9Heavy black box, and denote this set
by V�. (2) Compute an approximation to the number of heavy copies of H, i.e., copies of H
with at least one vertex from V�, using the Count9Heavy black box, and denote the output
by t̂�. (3) Let H = G[V (G) ≠ V�], and let F Ω H[p]. That is, F is an induced subgraph of
H, where each vertex from H joins F independently with probability p. (4) Make a recursive
call to Template

ÁÕ
!
H,� · p|H|

"
and let t̂H denote its output. (5) Return t̂� + t̂H/p|H|. The

analysis of the probability that the algorithm produces a good approximation appears in the
proof of Lemma 7. The running time of the algorithm depends on the implementation of the
black boxes. In the next section, we analyze the running time of the algorithm for the case
where H is a cycle.

The Doubling-Template Algorithm. The Doubling9Template algorithm is a doubling al-
gorithm, which starts with an initial guess for t, denoted by W0 = n|H|. This is the maximal
number of copies of H an n vertex graph can contain (h! ·

!
n

|H|
"

Æ n|H|). The algorithm then
makes Õ (1) calls to Template

ÁÕ (G,�0), where �0 Ω W · Á2/8Q, where Q = 8 log4(n), and
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computes their median, which we denote by t̂0. If t̂0 Ø W0 the doubling algorithm stops and
outputs t̂0 as its approximation for t. Otherwise, the guess for the value of t is decreased by
a factor of 2. The main point here is that the smaller the value of � given to the recursive
algorithm is, the better approximation we get, while simultaneously increasing the running
time. The guess W is a guess for the highest heaviness threshold the algorithm can start
with to output a good approximation, and not an actual guess for the value of t (although
both quantities are related).

Formally, the black boxes that we assume are the following.

Find9Heavy(G,�)

Input: A graph G, some parameter �.
Output: A subset V� of vertices, such that with probability at least 1 ≠

1
n4 , ’v œ V (G):

1. If tG(v) Ø �, then v œ V�.
2. If tG(v) Æ �/(logn)h

2
, then v /œ V�.

Count9Heavy
ÁÕ(G, V�, a, b)

Input: A graph G, a precision parameter ÁÕ, a subset of vertices V�, and two real numbers
0 < a Æ b, such that ’v œ V� we have tG(v) œ [a, b].

Output: t̂� which satisfies Pr
#
t̂� = tG(V�)(1± ÁÕ)

$
Ø 1 ≠

1
n4 .

It should be noted that Count9Heavy cannot be applied to the entire graph, as it might
contain a vertex v with tG(v) = 0. Moreover, even if all vertices have tG(v) > 0, employing
this black box on the entire graph might result in slower running time. Indeed, in our
implementation of the black box, the runtime is contingent on the ratio b/a. Therefore, we
only employ this black box with b/a = O(1/Á2).

Algorithm 1 TemplateÁÕ (G,�).

Input: A graph G = (V,E), a heaviness threshold �, and a precision parameter ÁÕ.

1 V� Ω Find9Heavy(G,�) ; Û V� is a superset of �-heavy vertices in G

with no �/(logn)h
2
-light vertices

2 a� Ω
�

(logn)h2 , b� Ω � ·
8Q
Á2 ; Û Q = 8 log4(n)

3 t̂� Ω Count9Heavy
ÁÕ(G, V�, a�, b�) ; Û t̂� is a (1± ÁÕ) approximation for

tG(V�) (the number of copies of H intersecting V�)

4 if � Æ 1 then return t̂�;
5 H Ω G[V ≠ V�];
6 p Ω 1/2; Û We keep p instead of 1/2 for readability

7 F Ω H[p] ; Û F is a random subgraph of H
8 t̂F Ω Template

ÁÕ
!
F,� · ph

"
;

9 return t̂� + t̂F /ph;

The depth of the recursion in Template
ÁÕ (G,�) is at most log1/ph(�) + 1. Since we will

only call this algorithm with � Æ |V (G)|h, we can conclude that the depth of the recursion
is at most logn+ 1. The guarantees for the template are given in the following lemma.
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I Lemma 4 (Guarantees for the Template Algorithm). For every Á œ (0, 1/2] and every
� Ø ·G ·

Á
2

8Q , we have Pr
Ë
Template

ÁÕ (G,�) = tG(1± Á

2 )± � ·
log4(n)

2Á

È
Ø

2
3 ,where ÁÕ = Á

4 logn
.

Algorithm 2 Doubling9Template (G, Á).

Input: A graph G = (V,E) with tG copies of H and a precision parameter Á Æ 1/2.
Output: t̂, which is a (1± Á) approximation for t w.h.p.

1 ÁÕ
Ω

Á

4 logn
, W Ω nh , Q Ω 8 log4(n) , � Ω W · Á2/Q

2 for i = 0 to i = h logn do

3 t̂i Ω Median
#
Template

ÁÕ
!
G,�/2i

"
, 400 logn

$
; Û t̂i is the median of

400 logn independent executions of Template
ÁÕ

!
G,�/2i

"
.

4 if t̂i Ø W/2i then return t̂i ;
5 return Exact deterministic count of tG.

I Lemma 5 (Guarantees for the Doubling9Template Algorithm). Let G be a graph with n
vertices and tG copies of H. Fix some Á > 0 that may depend on n. Let t̂ denote the output
of Doubling9Template (G, Á) (specified in Algorithm 2). Then, Pr

#
t̂ = t(1± Á)

$
Ø 1 ≠ 1/n2 .

The main result that we prove in this section is Lemma 5. We prove it using Lemma 4.
First, we use amplification, to show that the event specified in Lemma 4 occurs with high
probability, and not only with probability at least 2/3. The rest assumes that this event
always occurs. We then use case analysis on �/2i.
1. For i such that �/2i Ø 4tG, we show that t̂i < �/2i w.h.p., meaning the doubling

algorithm does not stop for such i w.h.p., and makes another iteration with a refined
initial heaviness threshold.

2. For i such that �/2i Æ 4tG, we show that t̂i = tG(1± Á) w.h.p.
3. For i such that �/2i Æ tG/2, we show that t̂i Ø �/2i w.h.p., which means the algorithm

stops as soon as �/2i Æ tG/2 w.h.p.
To summarize, the doubling algorithm always stops (by the third property). It does not stop
when �/2i Ø 4tG w.h.p. Therefore, when it does stop we have that �/2i Æ 4tG, and then it
obtains a (1± Á) approximation for tG.

To prove Lemma 4, we state and prove a more refined version of the guarantees of the
template algorithm. We need the following definition to restate it.

I Definition 6 (D̂ (�)). We define the depth of the call Template
ÁÕ (F,�) as D̂ (�) =

max
Ó
0,

Ï
log1/ph(�)

ÌÔ
.

We assume � Æ (h!) ·
!
n

h

"
Æ nh, and therefore that D̂ (�) Æ logn+ 1.

I Lemma 7 (Induction Hypothesis). Given a graph G and Á, we set p = 1/2, and ÁÕ = Á

4 logn
.

Then, for any � Ø ·G ·
Á
2

8Q , and any K = o(n) that could depend on n, D̂ (�) and p, we have

Pr
Ë
Template

ÁÕ (G,�) = tG(1± ÁÕ)D̂(�)
± 2D̂ (�)K · �/ÁÕ

È
Ø 1 ≠ 4hD̂ (�) /(Kph) .

Proof Sketch. We prove using induction on the depth of the recursion. We skip the proof of
the base case and state the induction hypothesis. The full proof appears in the full version.
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Step. We first define some notation and events. We have three graphs F ™ H ™ G, where
G is the input graph, H is an induced subgraph of G without the �-heavy vertices, and
F is a random induced graph of H obtained by keeping each vertex of H independently
with probability p. Let t̂G denote the output of Template

ÁÕ (G,�), and let t̂F denote the
output of Template

ÁÕ
!
F,� · ph

"
. We use t� to denote tG(V�), and let t̂� denote the output

of Count9Heavy
ÁÕ(G, V�). Note that D̂ (�) Ø D̂(�ph) + 1 (unless D̂ (�) = 0, in which case

D̂ (�) = D̂(�ph) = 0).

Intuition. We compute two values, t̂� and t̂F . We then output t̂ = t̂� + t̂F /ph as an
approximation for tG. By the black box guarantees, we have that t̂� is a good approximation
for t�. What is left is to show that t̂F /ph is a good approximation for tH . We split this
into two parts. First, we show that tF /ph is “close” to the value of tH . Next, we use the
induction hypothesis, to show that t̂F is a good approximation of tF . We need to show that
the “composition” of these approximations is also good. Let EFind9Heavy denote the event
that all calls made to the Find9Heavy black box produce a valid output. That is, the event
that V� contains a superset of the �-heavy vertices, without any �/(logn)h

2
n-light vertices.

We prove the correctness of the algorithm under the assumption that EFind9Heavy

occurs. We define:
1. E1 , {t̂� = t�(1± ÁÕ)}. The heavy copies of H are approximated correctly.
2. E2 , {t̂F = tF (1± ÁÕ)D̂(�p

h)
± 2D̂(�ph) ·K · (� · ph)/ÁÕ

}. This is the event in the induction
hypothesis.

3. E3 , {tF /ph = tH(1± ÁÕ)± K · �/ÁÕ
}. This is a concentration bound on tF .

4. E4 , {t̂F /ph = tH(1± ÁÕ)D̂(�)
± 2D̂ (�)K · �/ÁÕ

}. This event contains E2 fl E3.
5. E5 , {t̂G = tG(1± ÁÕ)D̂(�)

± 2D̂ (�)K · �/ÁÕ
}. This is the event specified in Lemma 7.

Lemma 7 requires us to show that Pr [E5] Ø 1≠
4hD̂(�)
Kph . We show this by proving that E1 fl

E2 fl E3 ™ E5, which implies that it is su�cient to prove that Pr [EFind9Heavy fl E1 fl E2 fl E3] Ø

1≠
4hD̂(�)
Kph . To show the latter, we show that Pr [EFind9Heavy fl E1 fl E2] Ø 1≠

4hD̂(�p
h)+2

Kph and
that Pr [E3] Ø 1 ≠

h+1
Kph . Summing up the two error probabilities in the above expressions

gives the desired result. J

3 Application: Approximating the Number of h-Cycles

In this section, we analyze the running time of the recursive and doubling algorithm, when
the counted subgraph is an h-cycle for h = O (1). For this task, we assume the black boxes
can be implemented in specific runtime, as stated in the following lemma which is proven in
the next sections.

I Lemma 8. Let G be a graph with n vertices, let H be an h-cycle for some h = O (1), and
let ÁÕ be some parameter. Then, each call to Find9Heavy(G,�) can be implemented in time
Õ

!
MM

!
n, n, n

�1/(h≠2)

""
and each call to Count9Heavy

ÁÕ(G, V�, a�, b�) can be implemented
in time Õ

1
MM (n, n, 1) · b�

a�·Á

2
= Õ

1
n2

·
b�
a�·Á

2
.

I Theorem 1 (Approximating the Number of h-Cycles). Let G be a given graph with n vertices
and let h Ø 3 be a fixed integer. There is a randomized algorithm that outputs an approximation
t̂ for the number t of h-cycles in G such that Pr

#
(1 ≠ Á)t Æ t̂ Æ (1 + Á)t

$
Ø 1 ≠ 1/n2, for

any constant Á > 0. The running time is bounded by Õ
!
MM

!
n, n/t1/(h≠2), n

""
, the fastest

running time to multiply an n ◊ n/t1/(h≠2) matrix by an n/t1/(h≠2)
◊ n matrix.
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Proof Sketch. Consider the Doubling9Template (G, Á). Its correctness follows from Lemma 5.
We analyze its running time. We prove that given Lemma 8, the running time of the recursive
algorithm Template

ÁÕ (G,�) is bounded by Õ

1
MM

!
n, n, n

�1/(h≠2)

"
+ n

2

Á3

2
with probability at

least 1 ≠ exp(≠ log2 n). Then, we show that the complexity of the doubling algorithm is
bounded by Õ

! 1
Á3 ·MM

!
n, n, n

t1/(h≠2)

""
with probability at least 1 ≠

1
n3 . The full details

appear in the full version. Here we give a sketch of why the running time of Template
ÁÕ (G,�)

is bounded by Õ

1
MM

!
n, n, n

�1/(h≠2)

"
+ n

2

Á3

2
with probability at least 1 ≠ exp(≠ log2 n).

We unroll the recursion of the algorithm: it makes a single call to Find9Heavy, then a single
call to Count9Heavy

ÁÕ , and then a recursive call. The algorithm’s runtime can be analyzed
by bounding {Find9Heavy(Gk,�k)}rk=0, and {Count9Heavy

ÁÕ(Gk, V�k , a�k , b�k)}
r

k=0, where
r is the recursion depth and Gk denotes the input graph for the k-th call of the recursive
algorithm, where G0 = G. Let �k = �0 · pkh denote the heaviness threshold, and let V�k

denote the set of �k-heavy vertices in the k-th iteration. We bound the running time
of the k-th call to each of the black boxes. We prove in the full version that the total
running time for all calls to the Count9Heavy

ÁÕ black-box is Õ
!
n2/Á3

"
. Next, we bound the

running time of the k-th call to the Find9Heavy black-box. Note that for any k, the call
Find9Heavy(Gk,�k) takes Õ(MM

1
|V (Gk)|, |V (Gk)|, |V (Gk)|/�1/(h≠2)

k

2
) by Lemma 8. We

use Cherno�’s inequality to show that the number of vertices in Gk is Õ
!
max

)
1, npk

*"
,

thus we can replace |V (Gk)| by npk in the above expression.
The crux is that the running time of the first call to Find9Heavy also ap-

plies to subsequent calls. This is because MM

1
npk, npk, npk/

!
� · phk

"1/(h≠2)
2

Æ

MM
!
n, n, n

�1/(h≠2) · p
k·(3≠h/(h≠2))"

Æ MM
!
n, n, n/�1/(h≠2)", where the first inequality is

a simple observation that we prove in the full version, and the second inequality follows
since 3 ≠ h/(h ≠ 2) = 2h≠3

h≠2 is non-negative for h Ø 3 and therefore pk·(3≠h/(h≠2))
Æ 1.

We conclude that the running time of each call in {Find9Heavy(Gk,�k)}rk=0 is at most
r · O

!
MM

!
n, n, n/�1/(h≠2)""

. As r Æ logn, we get that all calls take a total of
Õ

!
MM

!
n, n, n/�1/(h≠2)""

time.
This completes the proof, as all calls to the Find9Heavy black box and the Count9Heavy

ÁÕ

black box take at most Õ
!
MM

!
n, n, n/�1/(h≠2)" + n2/Á3

"
time in total. J

4 Implementing the Black Box Count9HeavyÁ

In this section, we implement Count9Heavy
Á
. We prove the second part of Lemma 8, stated

next.

I Theorem 9. There is an algorithm that implements the Count9Heavy
Á
(G,S, a, b) black box,

when H is an h-cycles, for h = O (1), in time Õ
!
n2

·
b

a·Á
"
.

For this entire section, the graph G is fixed, and the set S is a fixed subset of vertices,
where for every v œ S we have tG(v) œ [a, b]. We emphasize that a is only a lower bound
on minvœS tG(v) and b is only an upper bound on maxvœS tG(v). Denote Nk , |S|/k. As
explained in the introduction, it is insu�cient to sample a few vertices from S, estimate tG(v)
for each one, and apply a concentration bound to compute tG(S). Formally, this approach
fails because

q
vœS

tG(v) ”= tG(S) due to possible double counting. We overcome this issue
by sampling a small subset of vertices SÕ

™ S, and then, for every v œ SÕ we approximate
the number of copies of H which intersect v and exactly i additional vertices from S for
0 Æ i Æ h ≠ 1. This will allow us to estimate the number of multiple countings and therefore
get an estimation of tG(S).
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That is, the key ingredient of our approach for approximating t̂ as required by
Count9Heavy

Á
is to approximate the number of cycles that intersect S in exactly k ver-

tices. To this end, we define the following.

I Definition 10. Let C denote the set of copies of H in G. For U ™ V , define C(U) ,
{C œ C | C fl U ”= ÿ}. Denote t , |C| and t(U) , |C(U)|. In general, we replace the symbol C
by t, to denote the cardinality of a set. Let Ck denote the set of copies C œ C with |C fl S| = k.
Let Ck(v) , C

k
fl C(v). Let tk =

--Ck
--.

The following lemma shows that we can e�ciently approximate tk.

I Lemma 11 (Algorithm Approx
tk). There exists a randomized algorithm Approx

tk with
the following characteristics. The input is a graph G, a set S, a precision parameter ”,
a parameter k œ [h], and a tuple (a, b), such that for every v œ S we have tG(v) œ [a, b].
The algorithm produces an output t̂k which satisfies Pr

#
t̂k = tk ± tG(S) · ”

$
Ø 1 ≠

1
n4 . The

running time of the algorithm is bounded by Õ
!
n2

·
b

a
·
1
”

"
.

Approximating tk directly leads to Theorem 9 because
q

kœ[h] t
k = tG(S). A formal proof

appears in the full version. To approximate tk as required by Lemma 11, we find a value
whose expectation is tk and whose variance is at most O

1
(Nk · b)2

2
(recall that Nk = |S|/k).

We can do this e�ciently, as follows.

I Lemma 12 (Algorithm ApproxE[tk]). There is a randomized algorithm ApproxE[tk] whose
input is G,S, ” and k. Note that unlike Approx

tk , the algorithm ApproxE[tk] does not require
a and b as part of its input parameters. ApproxE[tk] computes a value X such that E [X] = tk

and Var [X] Æ C · (Nk · b)2, where C is a constant. The running time of the algorithm is
bounded by Õ

!
n2"

.

The reason that Lemma 12 is helpful is that we can run the algorithm it provides r times
and take the median of means of these invocations. A formal proof of Lemma 11 appears in
the full version. To get a sample X with E [X] = tk and Var [X] Æ C · (b ·Nk)2 as needed
by Lemma 12, we find samples Yv with E [Yv] = tk(v) and Var [Yv] Æ C · b2. We can do this
e�ciently, as follows.

I Lemma 13. There is a randomized algorithm ApproxE[vertex9tk] whose input is G,S, ”, k
and a vertex v œ S. Unlike ApproxE[tk], ApproxE[vertex9tk] additionally takes a vertex v œ S as
input. ApproxE[vertex9tk] computes a value Yv such that E [Yv] = tk(v) and Var [Yv] Æ C · b2,
where C is a constant. The running time of the algorithm is bounded by Õ

!
n2"

.

The reason that Lemma 13 is helpful is that we can sample a vertex v uniformly at random
from S, and get, using Lemma 13, an unbiased estimator for the number of copies of H which
contains v, and intersect S exactly k times, i.e., tk(v). By the law of total expectation, we get
that the expected value of this quantity, is equal to 1

|S|
q

uœS
E

#
tk(u)

$
= tk/Nk. Therefore,

we get an unbiased estimator for tk up to a known value Nk. A formal proof of Lemma 12
appears in the full version.

To prove Lemma 13, we utilize the color-coding technique introduced by [2]. The high
level approach of the technique is to randomly color vertices with h colors and detect colorful
h-cycles that are ordered by, say, increasing colors. This additional structure allows for faster
detection, at the cost of some probability of missing h-cycles that are colored out of order,
which is overcome by repeated experiments.
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A pertinent question arises: why are the algorithms ApproxE[tk],ApproxE[vertex9tk] neces-
sary? Why not just choose a random coloring, compute the number of colorful copies of
H intersecting a set S exactly k times, and apply Chebyshev’s inequality to conclude that
repeating this process Õ

!
n2

·
b

a”

"
times su�ces for a good approximation of tk? The answer

lies in the execution time of the matrix multiplication algorithm for counting colorful copies,
which is dominated by the sizes of the largest, second largest, and smallest color classes.
Roughly speaking, the smaller the product of these sizes, the faster the algorithm runs. Under
random coloring, color classes each have a size of �(n) with high probability. Conversely,
ApproxE[vertex9tk] produces a color class containing just a single vertex, which significantly
improves the running time in the worst case, compared to the approach which does not use
the algorithms ApproxE[tk],ApproxE[vertex9tk]. We need the following definitions to explain
how color-coding works, and how the algorithm ApproxE[vertex9tk] uses rectangular matrix
multiplication.

I Definition 14. Fix some coloring Ï : V æ [¸] for some ¸ œ N (¸ will usually be h). Let
CÏ denote the set of all copies C œ C, such that Ï(C) = [¸]. If C œ CÏ, we say that C is
Ï-colorful. Also define CÏ(v) = CÏ fl C(v), tÏ , |CÏ|, and tÏ(v) , |CÏ(v)|. Let Ck

Ï
, C

k
fl CÏ.

That is, Ck

Ï
is the set of copies of H in G, where each such copy is colorful w.r.t. Ï, and

additionally intersects the set S exactly k times. Let tk
Ï
=

--Ck

Ï

--.
Let A,B be two finite sets. We say that a function Ï : A æ B is a random coloring, if

the value of each a œ A is set to some value b œ B, where b is chosen uniformly at random
from B and independently of values chosen for other elements in A.

Let Ï : V æ [h]. For i œ [h], we denote by Ï≠1(i) the set of all vertices v with Ï(v) = i,
and call this set the i-th color class. Assume without loss of generality that the color classes
are sorted according their cardinalities, in a non-decreasing order. That is, for every i < h
we have

--Ï≠1(i)
-- Ø

--Ï≠1(i+ 1)
--.

The last part of the above definition is used to quantify the complexity of computing tk
Ï
as a

function of the sizes of the color classes that the coloring Ï induces, as follows.

I Lemma 15. Let (Ï1,Ï2,Ïh) denote the cardinality of the largest, second largest, and
smallest color classes, respectively. For any fixed k œ [h], there is a deterministic algorithm
for computing

)
tk
Ï
(v)

*
vœV

in time O
!
(h!)2 · h2

·MM (Ï1,Ï2,Ïh)
"
.

Next, we explain how to implement the algorithm ApproxE[vertex9tk] given that we can
compute the number tk

Ï
of colorful copies of H. The algorithm works as follows. It colors

each vertex with a random color from the set [h ≠ 1]. It then recolors the input vertex by
a new color h. Let Ï denote this coloring. The algorithm then computes tk

Ï
and outputs

tk
Ï
/q for some constant q such that E [tÏ/q] = tk(v). We prove in the full version that the

expectation and variance of this output satisfy the claimed requirements.
We are left with proving Lemma 15, which is the final step in the implementation of

the algorithm ApproxE[vertex9tk]. To prove it, we reduce the problem of computing tk
Ï
to the

problem of computing tÏ on an auxiliary graph, in which every h-cycle is colorful and also
intersects the set S exactly k times. We construct the auxiliary graph by randomly coloring
the vertices with h colors, then selecting k color classes and keeping only vertices from S in
them, while discarding the rest of the vertices in those classes. For the remaining h ≠ k color
classes, we retain only vertices that are not part of S. We get a graph in which each color
class is either contained in S or disjoint from S. This reduces the problem of computing tk

Ï

on the auxiliary graph, to computing tÏ on it. The next claim addresses the running time
of computing tÏ (on the auxiliary graph) instead of computing tk

Ï
, and is the final missing

piece for the proof of Theorem 9.
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B Claim 16. Let G be a graph and let ‡ , (U1, . . . , Uh) be an (ordered) sequence of
disjoint subsets of vertices of V (G). Let t‡

G
denote the number of copies C œ CG where

C = (v1, v2, . . . , vh) and vi œ Ui for every i œ [h]. Let U(1), U(2), U(h) denote the cardinality
of the largest, second largest, and smallest subset, respectively. Then, there is a deterministic
algorithm that outputs {t‡

G
(v)}

vœV
in time O

!
h2

·MM
!
U(1), U(2), U(h)

""
.

Proof of Claim 16. We assume without loss of generality that |U1| = U(h), i.e., that U1 is the
smallest set. We first explain how to compute {t‡

G
(v)}

vœU1
, and then we generalize this for

Uj for any j œ [h].
Let A denote the adjacency matrix of G. For X,Y ™ V (G) let A[X,Y ] denote the

submatrix containing all rows v for v œ X and all columns u for u œ Y . Combinatorially,
define a new directed graph H Õ with vertex set X fi Y , and a directed edge (x, y) between a
pair of vertices x œ X and y œ Y if and only if (x, y) is an edge in G. Note that A[X,Y ]
is exactly the adjacency matrix of the new graph H Õ. Define B0 , I|U1|, and for 0 Æ i < h,
define A‡

i
, A[Ui, Ui+1] and B‡

i
, Bi≠1 · Ai. We compute B‡

i
for 0 Æ i < h. Note that

B‡

i
[x, y] denotes the number of paths with i edges between a vertex x œ U1, and a vertex

y œ Ui+1, which are of the form (x, u2, u3, . . . , ui≠1, y) where uj œ Uj for 2 Æ j < i. Let
Ah , A[Uh, U1]. After computing Bh, we compute M = B‡

h
· A‡

h
and return all entries on

the diagonal of M . Note that for v œ U1, we have that M [v, v] = t‡
G
(v).

The generalization to other values j œ [h] has only a small modification and appears in
the full version.

Running Time. In the i-th iteration, for 1 Æ i Æ h, we compute the product of the
matrices Bi≠1 with the matrix Ai. Let aÕ, bÕ denote the dimensions of Ai. The dimensions
of Bi≠1 are U(h), a

Õ, and therefore the running time is MM
!
aÕ, bÕ, U(h)

"
. Without loss of

generality, we can assume bÕ
Æ aÕ, because MM (aÕ, bÕ, X) = MM (X, bÕ, aÕ) for any aÕ, bÕ, X.

We also have aÕ
Æ U(1) and bÕ

Æ U(2). This bounds the time for the i-th iteration by
O

!
h2

·MM
!
aÕ, bÕ, U(h)

""
Æ O

!
h2

·MM
!
U(1), U(2), U(h)

""
, which proves the claim. C

5 Implementing the Find-Heavy Black Box

In this section, we prove the first part of Lemma 8, as is specified in the following theorem.

I Theorem 17. There is an algorithm that implements the Find9Heavy(G,�) black box when
H is an h-cycle with h = O (1), in time Õ

!
MM

!
n, n, n/�1/(h≠2)""

.

An algorithm for Theorem 17 is given a graph G and a heaviness threshold �, and needs to
output a superset of the �-heavy vertices, which contains no �/(logn)h

2
-light vertices. Our

algorithm works as follows. The algorithm selects a vector P = (p1, . . . , ph), where pi œ [0, 1]
for i œ [h], which we explain shortly how to select. The algorithm then samples a uniform
coloring Ï for the vertices, and keeps each vertex of the i-th color class with probability pi.
We emphasize that not all vertices are kept with the same probability. Let F denote the
obtained graph. If v is in at least one Ï-colorful cycle in F , we say that v is P -discovered. We
can find all P -discovered vertices over F using Lemma 15. For every vertex v œ V , let v[P ]
denote the probability that v is P -discovered. The randomness is taken over the choice of the
coloring and the sampling of vertices. We call this experiment the P -discovery experiment.
We repeat this P -discovery experiment k times. If v is P -discovered more than k· times,
where · is a threshold we set later, then P adds v into the set of heavy vertices. In this case,
we say that v is P -added to the set of heavy vertices.
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The final step of our algorithm is choosing a vector P , or rather a set of vectors P, and
then performing the P -discovery experiment with each vector in the set k times. Before
specifying how we should choose P, k, and · , we state the properties we hope to achieve.

(1) Each vector P œ P induces a graph F , such that invoking Lemma 15 for computing
the set of P -discovered vertices, takes Õ

!
MM

!
n, n, n/�1/(h≠2)""

time. (2) Each vertex with
tG(v) Ø � has at least one P œ P that P -adds v to the set of heavy vertices, w.h.p. (3) Any
vertex v with tG(v) Æ �/(logn)h

2
is w.h.p. not P -added to the heavy vertex set for any

P œ P. (4) The set P has only Õ (1) vectors, allowing us to avoid repeating this experiment
too many times.

The set of all vectors we will use is as follows. We take a (finite) subset of the all vectors
(p1, . . . , ph) œ [0, 1]h which satisfy

r
iœ[h] pi Æ Õ (1/�). That is, all such vectors for which

pi œ {2≠j
| 0 Æ j Æ log(�) + 1} for i œ [h]. We denote this set of vectors by Producth(�).

Note that |Producth(�)| Æ (log(�) + 2)h = Õ (1), where the last inequality follows because
� Æ nh, since no vertex in G participates in more than nh copies of any h-vertex graph (that
is, if the input was � > nh, the algorithm could simply output an empty set). This means
that log(�) Æ h logn = Õ (1). This proves Property (4) above.

The rest of the section proves that this set satisfies Properties (1)–(3). We first prove
the first property, stating that for each P œ Producth(�), the P -discovery experiment can be
implemented in the desired time.

I Lemma 18. Let G be a graph with n vertices and let � be some positive number. Let
P = (p1, . . . , ph) be a vector in [0, 1]h with

r
h

i=1 pi = Õ
! 1

�
"
. Let F be the (random) graph

obtained in a P -discovery experiment. Then, we can find all the P -discovered vertices in
time Õ

!
MM

!
n, n, n · �≠1/(h≠2)""

, w.h.p.

Proof Sketch. The proof is included in the full version, and we provide the proof sketch
here. Fix some P œ [0, 1]h where P = (p1, . . . , ph), and

r
h

i=1 pi Æ 1/X, for X Ø 1. Assume
without loss of generality that pi Ø pj for i > j. This implies that p1 is the largest
coordinate. Let F be the random graph, and let F1, F2, Fh denote the sizes of the first,
second, and h color classes in F . First, note that we can use Lemma 15 to compute the
set of discovered vertices in time O (MM (F1, F2, Fh)). We analyze the running time of the
algorithm specified in Lemma 15 on the random graph F . Using a standard Cherno�’s
inequality, we can get that O (MM (F1, F2, Fh)) = Õ (MM (np1, np2, nph)) w.h.p. The crux
of the algorithm is the following inequalities MM (np1, np2, nph) Æ MM (n, n, n · (p1p2ph)) Æ

MM
!
n, n, n/X1/(h≠2)" , which completes the proof by setting X Ω �. The first inequality is

proved in the full version. The second inequality reduces to solving the following optimization
task. Maximize p1 · p2 · ph, under the constraints pi Ø pi+1, and

r
iœ[h] pi = 1/X. The proof

is also in the full version, where we show that an optimal value is obtained when p1 = p2 = 1
and pi = X1/(h≠2), which completes the proof sketch. J

It remains to prove Properties (2) ≠ (3). For this, we prove that each � · (2h log(n))h+1-
heavy vertex v, has a vector P œ Producth(�) for which v[P ] = � (1). On the other hand, for
every �/ logn-light vertex v, and any vector P œ Producth(�), we have v[P ] = O (1/ logn),
and therefore, we can distinguish between the two. The full details appear in the full version.

The upper bound on v[P ] for light vertex uses Markov’s inequality. For the rest of this
section we prove the statement on heavy vertices, by induction on h, for which the base case
is h = 3. The intuition for the proof is as follows. Consider the base case of triangles. Let
Vi denote the i-th color class. Consider finding the heavy vertices in the first color class.
Consider all vectors Pi = (1, 2≠i, 2i/�), for 0 Æ i Æ log(�) + 1. These vectors form a subset
of Producth(�). Fix some �-heavy vertex v œ V1. We want to prove that for at least one
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i œ [log(�)] we have v[Pi] Ø � (1). Our choice for the vectors is designed to deal with the
following two extreme cases. The first case is that every C œ CÏ(v) intersects one specific
vertex u œ V2. For this case, the vector P0 = (1, 1, 1

� ) is the right choice for discovering v
because it maximizes the probability we hit u and a common neighbor of v and u, under the
constraint that the sampling probability p1 · p2 · p3 Æ 1/�. The second case is that among
each of V2 fl N(v) and V3 fl N(v), there are

Ô
� vertices that are connected as a complete

bipartite graph (contained in V2 ◊ V3). For this case, the vector Pi for i = log(�)/2 is the
right choice for discovering v, because Pi = (1, 1Ô

�
, 1Ô

�
). For a larger h, the “hard” case

is the following generalization of the above. From each color class Vi for i œ {3, . . . , h} we
take k = �1/(h≠2) vertices and connect them by a complete (h ≠ 2)-partite graph. We then
take v œ V1 and u œ V2, we add an edge between v and u, and we connect v to all the
aforementioned k vertices from Vh and we connect u to all the aforementioned k vertices
from V3. The vector (1, 1, 1

k
, . . . , 1

k
) is the right choice for this case.

Roughly speaking, we show the set Producth(�) gradually shifts from handling one
extreme case to another, and therefore “covers” all cases in between, which are the di�erent
ways to split vertices in h-cycles into h pieces whose product of sizes is �.

We need a final technical step before presenting the proof. First, we construct an h-partite
graph which is easier to work with. For this, we sample uniform h coloring of the vertices of
G. For i œ [h] let Vi denote the set of vertices colored in the i-th color. For every i œ [h]
we keep only edges between the vertices of Vi and Vi+1 mod h, and direct those edges from
Vi to Vi+1. Let GÏ denote the obtained directed graph. We emphasize that tGÏ(v) Æ tÏ(v),
as the latter counts all colorful cycles in which v participates in, whereas the former counts
only colorful cycles with edges between Vi and Vi+1 in which v participates in. We prove
that a heavy vertex will be P discovered in GÏ, with probability at least � (1), by some
P œ Producth(�), whereas light vertices will only be discovered with probability O (1/ logn).
In other words, since the gap between the heavy and light vertices is su�ciently large, we
can still distinguish between the two in GÏ.

The rest of this section is dedicated to proving the following proposition.

I Proposition 19. Fix a vertex v, and an h-coloring of the vertices of G. Suppose tGÏ(v) Ø

� · (2h log(n))(h≠1)2 . Then, there exists a vector P œ Producth(�) such that the probability
that v gets P -discovered in GÏ is at least (1 ≠ 1/e)h≠1.

Due to space considerations, we prove here only the base case where the induction step is
deferred to the full version.

Proof of Proposition 19. We prove this by induction on h. We start with the base case,
that is, h = 3. We fix some h-coloring Ï. Recall that we denote the i-th color class by Vi.
Consider a vertex v œ V1 with tGÏ(fi)(v) Ø � · (2h log(n))4 To simplify the notation, we use
GÕ = GÏ. We will prove that there exists a vector P œ Producth(�), such that the probability
that the vertex v is P -discovered over GÕ is at least (1 ≠ 1/e)2. Let K0 = log(�) + 1. We
consider a subset of vectors in Producth(�) of the form Pi = (1, pi, qi), for i œ {0, 1, . . . ,K0},
where pi , 2≠i , qi , 2i

� . We partition V2 into classes as follows. For k œ {1, 2, . . . ,K0}, let
Qk = {u œ V2 | |CGÕ(v) fl CGÕ(u)| œ [1/qk, 2/qk)} , Q0 = {u œ V2 | |CGÕ(v) fl CGÕ(u)| Ø 1/q0} .
In words, u œ Qk if and only if the number of 3-cycles in GÕ that contain both v and u is
at least 1/qk and less than 2/qk. The set Q0 consists of all vertices u œ V2, such that the
number of 3-cycles in GÕ that contain both v and u is at least 1/q0 = �. We claim that
there exists k œ {0, 1, . . . ,K0} such that |Qk| Ø 1/pk. The proof appears in the full version.
We next show that for such k, we have v[Pk] Ø (1 ≠ 1/e)h≠1 which completes the proof of
the base case. Fix k œ {0, 1, . . . ,K0} where |Qk| Ø 1/pk. For any non-empty subset S ™ Qk,
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let E1(S) denote the event that {Qk fl V2[pk] = S}. That is, E1(S) denote the event that
during the Pk-discovery experiment, the set of vertices that were sampled from V2 fl Qk is
exactly the set S. Let R(S) denote the subset of vertices in V3 which participate in a 3-cycle
(in GÕ) that contains v and some additional vertex from S. Let E2(S) denote the event
that {V3[qk] fl R(S) ”= ÿ}. That is, E2(S) denotes the event that during the Pk-discovery
experiment, the set of vertices that were sampled from V3 fl R(S) is not empty. Next, we
show that

v[Pk] Ø

ÿ

S:ÿ(S™Qk

Pr [E1(S) fl E2(S)] Ø (1 ≠ 1/e)2 . (1)

For every fixed S ™ Qk, which is not empty, the events E1(S) and E2(S) are independent,
since E1(S) addresses sampling vertices from V2, while E2(S) addresses sampling vertices
from V3, where the two samples are independent of each other. Also note that E1(S) fl E2(S)
is contained in the event that v is Pk-discovered, and since the events {E1(S)}S™Qk

are
disjoint, so are the events {E1(S) fl E2(S)}S™Qk

. Therefore, the event that v is Pk-discovered,
contains the union of the following disjoint events {

t
S:ÿ(S™Qk

E1(S) fl E2(S)}. We get

v[Pk] Ø Pr[
€

S:ÿ(S™Qk

E1(S) fl E2(S)] =
ÿ

S:ÿ(S™Qk

Pr [E1(S) fl E2(S)]

=
ÿ

S:ÿ(S™Qk

Pr [E1(S)] Pr [E2(S)] .

To complete the proof, we need to show that (1)
q

S:ÿ(S™Qk
E1(S) Ø 1 ≠ 1/e, and (2) that

for every S ™ Qk, which is not empty, we have E2(S) Ø 1 ≠ 1/e. The first claim follows as
ÿ

S:ÿ(S™Qk

E1(S) = Pr [Qk[pk] ”= ÿ] = 1 ≠ (1 ≠ pk)|Qk| Ø 1 ≠ 1/e ,

where the inequalities hold for the following reasons. The first two equalities follows from
definition, and the last inequality follows from the assumption that |Qk| Ø 1/pk.

The second claim follows as every non-empty subset S ™ Qk satisfies |R(S)| Ø 1/qk. To
see this, fix some vertex u œ S. We have R(u) ™ R(S), and |R(u)| Ø 1/qk because u œ Qk.
Therefore, for any such S, we have

Pr [E2(S)] = Pr [R(S)[qk] ”= ÿ] = 1 ≠ (1 ≠ qk)|R(S)|
Ø 1 ≠ (1 ≠ qk)1/qk Ø 1 ≠ 1/e .

This completes the proof of Equation (1). The rest of the proof appears in the full version. J
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Abstract

The access lemma (Sleator and Tarjan, JACM 1985) is a property of binary search trees (BSTs) that
implies interesting consequences such as static optimality, static finger, and working set property
on any access sequence X = (x1, x2, . . . , xm). However, there are known corollaries of the dynamic
optimality that cannot be derived via the access lemma, such as the dynamic finger, and any
o(logn)-competitive ratio to the optimal BST where n is the number of keys.

In this paper, we introduce the group access bound that can be defined with respect to a reference
group access tree. Group access bounds generalize the access lemma and imply properties that are
far stronger than those implied by the classical access lemma. For each of the following results, there
is a group access tree whose group access bound
1. Is O(

Ô
logn)-competitive to the optimal BST.

2. Achieves the k-finger bound with an additive term of O(m log k log logn) (randomized) when
the reference tree is an almost complete binary tree.

3. Satisfies the unified bound with an additive term of O(m log logn).
4. Matches the unified bound with a time window k with an additive term of O(m log k log logn)

(randomized).

Furthermore, we prove the simulation theorem: For every group access tree, there is an online
BST algorithm that is O(1)-competitive with its group access bound. In particular, any new group
access bound will automatically imply a new BST algorithm achieving the same bound. Thereby, we
obtain an improved k-finger bound (reference tree is an almost complete binary tree), an improved
unified bound with a time window k, and matching the best-known bound for Unified bound in the
BST model. Since any dynamically optimal BST must achieve the group access bounds, we believe
our results provide a new direction towards proving o(logn)-competitiveness of the Splay tree and
Greedy, two prime candidates for the dynamic optimality conjecture.
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38:2 The Group Access Bounds for Binary Search Trees

1 Introduction

In the amortized analysis of a self-adjusting binary search tree (BST), the access lemma [32]
is perhaps the most fundamental property of a BST algorithm that allows us to prove the
competitiveness against many performance benchmarks, including temporal and spatial
locality. If a BST algorithm satisfies the access lemma, then, by plugging in appropriate
parameters, the algorithm also satisfies many interesting corollaries of the dynamic optimality
conjecture including, for example, balance theorem [32], static optimality [32, 20], static
finger property [32], working set property [32], and key-independent optimality [19]. For
example, Splay tree [32], Greedy [14, 30], and Multi-splay tree [34] are all known to satisfy
the access lemma [32, 20, 34].

Despite these many applications, several strong BST properties cannot be implied via
the access lemma, including “non-trivial” competitiveness, k-finger property (or even the
(weaker) dynamic finger property [13]), and the unified bound [24, 17]. For completeness, we
discuss each one of them in turn.

Competitiveness. Dynamic optimality conjecture [32] postulates that there is an online
binary search tree (BST) on n keys whose cost to perform a search (access) sequence
(x1, . . . , xm) œ {1, 2, . . . , n}m (including the cost to adjust the internal structure in between
the sequence) is at most that of the o�ine optimum up to a constant factor. We say that a
BST algorithm is f(n)-competitive if its total cost is, at most, the cost of the o�ine optimum
up to a factor of f(n). A BST algorithm is dynamically optimal if it is O(1)-competitive.

Splay tree [32] and Greedy [14] are widely regarded as the prime candidates for dynamic
optimality conjecture. However, the best-known competitiveness of both the algorithms
remains O(logn), which can be shown from the access lemma or (via static optimality) using
any balanced trees. The access lemma cannot be used to prove o(logn)-competitive (for
example, we cannot even derive the sequential access theorem [33] via the access lemma). In
contrast, there are BST algorithms with O(log logn)-competitiveness. In [15], the authors
presented the first O(log logn)-competitive binary search tree, which they call Tango Trees.
Several subsequent results provided alternate O(log logn)-competitive algorithms [21, 35, 3,
11]. Despite achieving the best-known competitive ratios, the fact that these algorithms do
not satisfy many corollaries of the dynamic optimality conjecture makes them less promising
than Splay and Greedy.

k-Finger Bound. Several notions of finger bounds [32, 13, 26] have been introduced to
capture the “locality” of input sequences. The strongest finger bound, called k-Finger bound,
was motivated by the connection between BSTs and the k-server problem [8]. It has still
remained unclear whether any online BST algorithm achieves this property.

We define k-Finger bound as follows. Assume we have an almost complete binary tree
where each leaf represents a distinct key from {1, . . . n}. This tree is called the reference tree.
Assume that there are k-fingers stationed at k arbitrary leaves in the reference tree.

I Definition 1 (k-Finger Bound). When a key xt is searched at time t, we must move one
finger from its current position to the node containing xt. The cost of the search is the
number of nodes on the unique path connecting the finger’s source to its destination. We
define F

k(X) as the minimum, overall finger movement strategies distance traversed by the
fingers to process the sequence X when the reference tree is an almost complete binary tree.

The classical access lemma cannot imply the k-finger property even when k = 1 (called
the lazy finger bound [26], which generalizes the dynamic finger bound [13]). Nonetheless,
it is possible to prove a non-trivial bound w.r.t. k-Finger using di�erent techniques. In [8],
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the authors claimed the existence of an online BST algorithm with cost O((log k)7Fk(X)).
However, this claim has an error since the algorithm employs Lee’s [29] k-server result, which
the author has retracted. Instead of Lee’s result, we can use the k-server result of Koutsoupias
and Papadimitriou [27], (2k ≠ 1)-competitive. By using [8], it implies that an online BST
algorithm exists with a running time of O(kFk(X)). This is a relatively large gap when
compared with the best achievable o�ine BST bound of O(log k)F k(X) [8]; in fact, whether
there exists a BST whose cost is additive in the k-finger bound, that is O(F k(X) +m log k),
has remained open.

Unified Bound. To describe the unified bound, we should first understand the working
set bound [25, 32] and the dynamic finger bound [13, 32, 26]. If xt is a search key, then the
working set bound requires xt to be searched in amortized time O(logWs(xt)), where Ws(xt)
is the number of distinct keys searched since the last search of xt. The working set bound is
based on temporal locality and implies many more bounds, such as the static finger bound,
the static optimality bound, etc. The dynamic finger bound states that the amortized time
to search xt is O(log |xt ≠ xt≠1|+ 2). The dynamic finger bound is based on spatial locality.

The unified bound [24] implies both the working set and the dynamic finger.

I Definition 2. The unified bound can be defined as Ub(X) =
qm

t=2
log(mintÕ<t{t ≠ t

Õ +
|xt ≠ xtÕ |+ 2}).

The unified bound is stronger than both the working set and the dynamic finger, as it suggests
that it is in-expensive to search a key that is close to a recently searched key. It is true
that the access lemma cannot prove the unified bound, although there are data structures
that satisfy the unified bound. Iacono [24] gave a comparison-based data structure called
the unified structure that achieves the unified bound. In [1], the authors gave a dynamic
comparison-based data structure that achieves the unified bound. Derryberry and Sleator [17]
designed the first BST algorithm called Skip-Splay tree that nearly achieves the unified bound
with its running time of O(Ub(X) +m log logn). In [4], the authors modified Skip-Splay
using layered working-set trees to get amortized O(Ub(xi) + log logn) time, where xi is a
search key at time i. In Derryberry’s thesis [18], Cache trees were introduced as the first BST
algorithm aiming to achieve the Unified bound. However, this assertion was later questioned
by Sleator in [31]. The question of whether a BST algorithm can truly achieve the Unified
bound remains open and intriguing.

Unified Bound with time window. In the unified bound, for each xt, we find a key xtÕ that
minimizes the term (t ≠ t

Õ + |xt ≠ xtÕ |+ 2) where t
Õ
< t. We can add another condition that

t
Õ should be one of the last k searched keys before time t. Thus, tÕ comes from some time
window. We call this variant Unified Bound with a time window. We formally define it as
follows.

I Definition 3. Given an integer k, the unified bound with a time window is

Ub
k(X) =

mÿ

t=2

log
1

min
tÕœ[t≠k...t≠1]

{t ≠ t
Õ + |xt ≠ xtÕ |+ 2}

2
.

This bound can be seen as “interpolating” between the dynamic finger and the unified
bounds: When k = 1, Ub

k(X) is the dynamic finger bound, and when k = m, Ub
m(X) is

the unified bound. For k = 1, we know that both Splay tree and Greedy satisfy the dynamic
finger bound. The authors of [8], showed a relation between Ub

k(X) and Opt(X), i.e,
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Opt(X) Æ —(k)Ub
k(X)

where —(·) is some fixed (super exponentially growing) function.
In sum, the access lemma is an intrinsic property of a BST which implies nice properties

but cannot seem to imply any of the aforementioned properties.

1.1 Our New Concept: The Group Access Bounds

The main conceptual contribution of this paper is to introduce the group access bounds that
generalize the bound from the access lemma. Informally, the access lemma states that the
amortized cost to access xt at time is O

1
log W

w(xt)

2
, where w(xt) is the weight of xt and W

is the sum of weights of all the keys in the BST.
We give an informal definition of the group access bounds (see Section 3 for the formal

definitions). Denote [n] = {1, . . . , n}. The key gadget to describe our bound is the notion of
group access tree, which captures a hierarchical partition of [n] until singletons are obtained.
That is, in a group access tree T , each node v œ V (T ) is associated with an “interval”
Iv ™ [n] (consecutive integers). The root r œ V (T ) has Ir = [n], if a node v has children
v1, . . . , vk, then we have that {Iv1 , . . . , Ivk} forms a partition of Iv. This process continues
until each leaf v œ V (T ) is associated with a singleton. Note that the tree does not have to
be binary. See Figure 1 for illustration.

Figure 1 Examples of two group access trees. Each represents a hierarchical partition of [n] until
singletons are obtained. When a group access tree is a star (LHS), our bound is simply the access
lemma.

Let w be a positive weight function that assigns a real-valued weight to each node in
T . We define the cost to access the tree T w.r.t. the weight function w as follows. For any
edge (u, v) where u is the parent of v, the cost on (u, v) is log W (u)

w(v) where W (u) is the total
weight of all the children of u. The access cost of a key a œ [n], denoted as costT ,w(a), is
defined as the total cost of all the edges in the path Pa from the root to the leaf containing
a in the group access tree T . That is,

costT ,w(a) =
ÿ

(u,v)œPa

log W (u)
w(v) .

Some readers may have observed the similarity between our cost function and that of the
access lemma. Indeed, one can show that it generalizes the access lemma.

I Observation 4. If the group access tree T is a star, then the access a œ [n] on T gives the
same (amortized) cost as the access lemma on the same weight function.

Intuitively, the group access bound o�ers a “search tree” (which is not necessarily binary)
where the cost of searching a is the sum of the cost of the edges on the search path Pa.
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Let W = (w(1)
, . . . , w

(m)) be a sequence of weight functions. The total cost of the group
access tree T on an access sequence X = (x1, . . . , xm) , where xt œ [n] for all t, is

costT ,W(X) =
ÿ

t

costT ,w(t)(xt).

Similar to the access lemma, the weight functions should change in a controllable manner
in order to be meaningful (e.g., the weight functions for the working set bound are changed
in a structured way in the access lemma). Here, we introduce the notion of locally bounded
weight families. We say that a sequence of weight functions W = (w(1)

, . . . , w
(m)) is locally

bounded if for all t, the weight increase from time t to t+ 1 can happen only at the nodes in
the path from root to xt in the group access tree T .

Given an input sequence X = (x1, . . . , xm), the group access bound GAB(T , X) w.r.t. a
group access tree T is

GAB(T , X) = min
W locally bounded

costT ,W(X).

1.2 Our Technical Results: Deriving BST Bounds from GAB

We show that the cost of the group access tree (with respect to certain weight functions) is
competitive against many strong BST bounds that are not known via the access lemma. We
say a group access bound is randomized if the group access tree T is obtained by a random
process that iteratively partitions [n] until singletons are obtained.

I Theorem 5. For each of the following bounds, there exists deterministic group access
trees T1, T3 and randomized group access trees T2, T4 such that for all access sequences
X = (x1, . . . , xm) where xt œ [n] for all t,
1. GAB(T1, X) = O(

Ô
logn) ·Opt(X) where Opt(X) is the cost of o�ine optimal BST on

X.
2. GAB(T2, X) = O(Fk(X) +m log k log logn) (randomized). That is, it is competitive with

k-finger up to an additive term when the reference tree is an almost complete binary tree.
3. GAB(T3, X) = O(Ub(X) +m log logn). That is, it is competitive with the unified bound

up to an additive term.
4. GAB(T4, X) = O(Ub

k(X) + m log k log logn) (randomized). That is, it is competitive
with unified bound with a time window up to an additive term.

The group access tree for the second and the fourth bound can be e�ciently constructed from
a probability distribution.

It is not immediately clear that these group access bounds can be realized by BST
algorithms. We show that every group access tree T can be simulated by an online BST
algorithm. Let A be a BST algorithm. We denote costA(X) to be the cost of algorithm A
running on a sequence X = (x1, . . . , xm).

I Theorem 6 (Simulation Theorem). For any group access tree T , there exists an online BST
algorithm A such that for any su�ciently long access sequence X , costA(X) = O(GAB(T , X)).
Furthermore, if the group access tree T is randomized, then A is randomized, where the
competitive ratio is measured in the oblivious adversary model.

The Simulation Theorem (Theorem 6) signifies that one can prove new BST bounds by
just proving the existence of a group access tree along with locally bounded weight families.
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Table 1 Summary of the new bounds that can be derived via the group access bound. The first
two columns show the best-known results prior to this paper. Asymptotic notations (Big-Oh and
Big-Omega) are hidden for brevity.

O�ine Upper Online Upper Our new bounds

OPT OPT log logn [15] OPT log logn [15] OPT
Ô
logn

F
k

F
k(X) log k [8] kF

k(X) [8] F
k(X) +m log k log logn

UB UB(X) +m log logn [17] UB(X) +m log logn [17] UB(X) +m log logn
UB

k
—(k)UBk(X) [8] —(k)UBk(X) [8] UB

k(X) +m log k log logn

1.3 Significance of our results

Beyond the access lemma, group access bounds serve as the first step towards providing
a unified framework for proving binary search tree bounds systematically. To resolve the
dynamic optimality conjecture, a candidate algorithm must satisfy all dynamic optimality
corollaries simultaneously, and we believe group access bounds are the starting point for this.

Apart from the competitiveness result, the results we present here either match the
best-known bounds (such as unified bound) or provide an improvement upon even the
best-known o�ine algorithms (k-finger bound when reference tree is an almost complete
binary tree and unified bound with bounded time window) in the BST model.

We remark that even though our competitive ratio does not match the O(log logn)
best-known factor, what we prove is more general where any BST algorithm satisfying the
GAB will automatically be O(

Ô
logn)- competitive. The BST algorithm we present here

is called Ggreedy, a very similar algorithm to Greedy – a prime candidate for dynamic
optimality. Ggreedy resembles Greedy and inherits its conceptual simplicity. Even after a
lot of work in this area [20, 26, 5, 7, 6, 8, 11, 22, 23, 17, 28, 9], only the trivial bound for
Greedy is known: Greedy(X) = O(logn) Opt(X) for all possible X. Thus, Greedy is
O(logn)-competitive. Our result raises some hope of proving o(logn)-competitive ratio for
Greedy by showing that Greedy satisfies the group access bound.

We illustrate the power of the group access bound by deriving two new BST bounds that
have not been known for even o�ine BST algorithms.

I Corollary 7. For each of the following items, there is a randomized online BST algorithm
A such that the expected cost for any search sequence X = (x1, . . . , xm) where xt œ [n] for
all t,

costA(X) = O(Fk(X) +m log k log logn), and
costA(X) = O(Ub

k(X) +m log k log logn).
The algorithms are randomized because the group access trees are chosen based on a
probability distribution. The bound O(F k(X)+m log k log logn) gives an improvement from
the best known online BST that costs O(kF k(X)) in [8] and improves upon the o�ine bound
O(log k)F k(X) for some range of parameter k when the reference tree is an almost complete
binary tree.

From such an improvement, we can derive a new “pattern-avoiding” bound for BSTs. We
say that a sequence contains another sequence (or pattern) fi if it contains a subsequence
that is order-isomorphic to fi.

I Corollary 8. Let X œ [n]m be a sequence that does not contain the pattern (k, k ≠ 1, . . . , 1).
Then there exists a randomized BST that accesses X with cost O(nk +m log k log logn).



P. Chalermsook et al. 38:7

This bound improves the best-known online algorithm [9] that gives a bound of O(mk
2)

and the best-known bound on the o�ine optimum O(mk) [8] for some range of parameters
when the reference tree used to calculate F

k(X) is an almost complete binary tree.
The unified bound obtained in this paper matches the best-known bound of O(Ub(X) +

m log logn) by Derryberry and Sleator [17]. In fact, we show that we can use the analysis
of [17] as a black box once we obtain the group access tree for Unified bound.

We do expect more applications of the group access bounds in binary search trees since
group access bounds are generic and yet (unlike the dynamic optimality conjecture) maintain
a certain flavor of being “static” (since T is still fixed). We show that this static component
can be algorithmically leveraged. We believe that our bound o�ers a “bridge” between the
relatively static access lemma to the dynamic optimality conjecture, which requires a full
understanding of dynamic BSTs.

Contribution to potential function analysis. Another interesting aspect of our work is that
once the group access bound is formulated, the proof relies solely on the use of the standard
Sum-of-logs potential function, which in general, does not seem su�cient to prove any strong
bounds beyond the access lemma. We show that by “augmenting” the access lemma with a
group access tree, a natural and standard sum-of-logs potential function immediately provides
significantly stronger BST bounds.

In general, designing a potential function for analyzing a given algorithm is a highly
innovative but rather ad-hoc task. Our work suggests that the sum-of-logs potential function
on the group access tree might be a good candidate for proving that Greedy or Splay is
O(

Ô
logn)-competitive.

Combining BSTs. In [16], the authors showed that di�erent BSTs with well-known bounds
can be combined into a single BST that achieves all the properties of the combined BSTs.
For example, Tango trees and Skip-Splay trees can be combined to get a BST, which is
O(log logn)-competitive and achieves the Unified bound with an additive term of O(log logn).
The combined BST from their approach, however, results in a di�erent BST algorithm. Our
group access bounds o�er another way to combine known BST bounds, as we have illustrated
in the above discussion, while retaining the original algorithm, e.g., proving that Splay
satisfies the group access bound implies that Splay itself possesses all the nice properties
derived from GAB.

1.4 Concluding Remarks

We propose the group access bound – a far-reaching extension of the standard access lemma
and present applications in deriving new and unifying old bounds. Some of our bounds even
improve the best-known upper bound on the o�ine optimum on some range of parameters.

An immediate (and perhaps most interesting) open question is whether Greedy or Splay
satisfies the group access bound via the sum-of-logs potential function. We believe that
this question is very concrete (since it involves a specific potential function), so proving or
refuting it would not be beyond our reach.

Developing further understanding and finding more applications of our group access
bounds are interesting directions. For instance, what are other BST bounds that can be
implied by the group access bounds? Can we show that GAB(T , X) Æ O(OPT(X)) for some
(distribution of) group access tree T ? Can one derive a non-trivial result about more general
pattern-avoiding bounds [6, 23, 10, 12]? It was shown that optimal BST takes linear time
for a pattern of bounded length [2]. Can we design a BST algorithm with a running time
O(Fk(X) +m log k) for any sequence X of length m where the k-finger bound is calculated
on any arbitrary reference tree?
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There are also open questions to settle the complexity of specific BST bounds both in
the online and o�ine settings. Most notably, is there any BST data structure that satisfies
the unified bound?

1.5 Organization

We introduce notation and terminology in Section 2. We formalize the description of the
group access bounds in Section 3. We prove O(

Ô
logn)-competitiveness in Section 4. Owing

to space limitations, the k-finger bound, unified bound and unified bound with a time
window can be found in the full version of the paper. To prove the Simulation theorem
(Theorem 6), we first define an algorithm, called Ggreedy, that simulates the group access
tree in Section 5. We derive the group access lemma in Section 6 and finally prove the
Simulation theorem (See to the full version of the paper). Certain proofs and sections are
removed which can be found in the full version of the paper.

2 Preliminaries

Let X = (x1, x2, . . . , xm) be a sequence of m accesses where each access is from the set
{1, 2, ..., n}. This sequence can be represented as points in the plane, that is, Xp = {(xt, t) :
t œ [m]} ™ R2. Imagine these points on a plane with an origin and X-Y axis. Since both
the coordinates of a point are positive, all points lie in the first quadrant. The positive
x-axis represents the key space, and the y-axis represents time. For any two points p, q in a
point-set P , if they are not in the same horizontal or vertical line, we can form a rectangle
⇤pq. A rectangle ⇤pq is said to be arborally satisfied if ÷r œ P \ {p, q} such that r lies in
⇤pq. [14] introduced us to the following beautiful problem:

I Definition 9 (Arborally Satisfied Set). Given a point set Xp, find a point set Y such that
|Xp fi Y | is minimum and every pair of points in Xp fi Y is arborally satisfied.

[14] showed that finding the best BST execution for a sequence X is equivalent to finding
the minimum cardinality set Y such that Xp fi Y is arborally satisfied.

I Lemma 10 (See Lemma 2.3 in [14]). Let A be an online algorithm that outputs an arborally
satisfied set on any input representing X. Then, there is an online BST algorithm A

Õ such
that the cost of AÕ is asymptotically equal to the cost of A, where the cost of A is the number
of points added by A plus the size of X.

At time t, we say that xt is an access key. An algorithm adds (or touches) points while
processing a key with the aim of making the final point set arborally satisfied. For a point p,
denote p.x and p.y as its x-coordinate and y-coordinate, respectively. Note that p.x denotes
a key, and p.y denotes the time when the point p was added.

Let q be a key. When we say that Greedy (or any other algorithm) adds a point at key
q at time t, it means that Greedy adds a point at coordinates (q, t). Given two points p1
and p2, p2 lies to the right of p1 if p2.x > p1.x, else it lies to the left of p1. For brevity, we
will avoid using ceil and floor notation for various parameters used in this paper.

3 The Group Access Bound

In this section, we describe the group access bound, which generalizes the access lemma. The
concept of group access bound consists of two ingredients:
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Hierarchical partition: An interval partition of [n] is a partition fi such that each
set S œ fi is an interval (i.e. consecutive integers). Let fi be an interval partition of
[n]. We say that fi is a refinement of another partition fi

Õ if for all S œ fi and S
Õ œ fi

Õ,
we have S ™ S

Õ or S fl S
Õ = ÿ. For instance {{1, 2}, {3, 4}, {5, 6}} is a refinement of

{{1, 2, 3, 4}, {5, 6}}.
A hierarchical partition is a sequence of partitions P = {fi0,fi1, . . . ,fik} such that (i) for
all i, fii+1 is a refinement of fii, (ii) fi0= {[n]} and (iii) fik = {{i}}iœ[n] (singletons). Given
such P , each interval (set) in fii is referred to as a group. The sets in fii are called level-i
groups for P.
A hierarchical partition P has a natural corresponding tree T where each node in V (T )
corresponds to a group. The root of T is [n] (the group in fi0). Level-i of the tree
contains nodes that have 1-to-1 correspondence with sets in fii. Moreover, there is an
edge connecting S œ fii to S

Õ œ fii+1 if SÕ ™ S.
Weight functions: Given a canonical hierarchical partition P, a P-weight function is
an assignment of positive real values to nodes in V (T ), i.e., w : V (T ) æ R>0.

We use the term group access tree to denote a hierarchical partition P (as well as its
corresponding tree T ). See Figure 2 for illustration.

1 2 3 4 n



ଵ

ଶ



………….

………….

………….

Figure 2 An illustration of group access tree.

I Definition 11 (Group given a key). Let P (or T ) be a group access tree and let p œ [n] be a
key. Then, for each j, we use gj(p) to denote the (unique) level-j group S œ fij in which p

lies.
I Definition 12 (Level j groups of a group). Given a level-(j ≠ 1) group (interval) g, denote
by CG(g) the set of children groups in level j that are contained in g, i.e., CG(g) = {gÕ œ fij :
g

Õ ™ g}. These are exactly the same as the groups that are children of node g œ V (T ).
We are now ready to define the access cost in the group access tree. When accessing key

a œ [n] in the group access tree T and P-weight w, denote by T (a) the path from root to a

in the tree T ; in particular, this path contains T (a) = (g0(a), g1(a), . . . , gk(a) = {a}). The
cost incurred on edge e = (gj≠1(a), gj(a)) is

ce(T , w, a) = log
3

W
j

w(gj(a))

4

whereW j =
q

gÕœCG(gj≠1(a))
w(gÕ). The total access cost is c(T , w, a) =

q
eœT (a) ce(T , w, a).

Notice that this access cost is very similar to the access lemma cost. In fact, one can show
that it generalizes the access lemma:
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I Observation 13. The access lemma corresponds to the cost c(T , w, a) when T is a star.

In this way, our group access bound can be seen as an attempt to strengthen the standard
access lemma by introducing hierarchical partitioning. As in the access lemma, the interesting
application to BSTs happens when the changes of weights are “controllable” (e.g., in the
working set bound). We introduce the concept of locally bounded weight families W to
capture this property.

I Definition 14. The weight family W is locally bounded if for all time t, for every group
g ”œ T (xt), we have wt+1(g) Æ wt(g). This means that the weight can increase only when
g œ T (xt).

We are interested in the total access cost on a sequence X = (x1, . . . , xm) œ [n]m where
the group access trees are allowed weight changes over time, that is, we are given a sequence
of weight functions W = {w1, . . . , wm} where wt denotes the weight function at time t.

The group access bound w.r.t. (T , X) is:

GAB(T , X) = min
W locally bounded

ÿ

tœ[m]

c(T , wt, xt).

Note that the use of “minimum” in the definition of group access bound serves to select
the weight family with the lowest weight among multiple locally bounded weight families.

Our main contribution is in showing that the group access bound is competitive to many
strong bounds in the binary search tree model. We say that the group access bound is
(–,—)-competitive to function f : [n]m æ R if there exists a group access tree T such that
GAB(T , X) Æ –f(X) + —|X|.

I Theorem 15. The group access bound is (O(
Ô
logn), O(1))-competitive to OPT.

The group access bound can also be used by allowing randomization in choosing the hier-
archical partition P . We say that the group access bound is randomized (–,—)-competitive

to function f : [n]m æ R if there is an e�ciently computable distribution D that samples T
such that

ET ≥D[GAB(T , X)] Æ –f(X) + —|X|.

I Theorem 16. The group access bound is (randomized) (O(1), O(log k log logn))-competitive
to the k-finger bound when the reference tree is an almost complete binary tree.

I Theorem 17. The group access bound is (O(1), O(log logn))-competitive to the unified
bound.

I Theorem 18. The group access bound is (randomized) (O(1), O(log k log logn))-competitive
to the unified bound with a time window of size k.

We say that a BST algorithm A satisfies the group access bound w.r.t. group access
tree T if the cost of the algorithm is at most O(GAB(T , X)) for all input sequence X.

I Proposition 19. If a BST algorithm satisfies the group access bound and the group access
bound is (–,—)-competitive to function f , then the cost of the BST algorithm on any sequence
X is at most O(– · f(X) + —|X|).

We will later show that a family of BST algorithms (named Ggreedy) satisfies the group
access bound and possesses all the aforementioned properties.
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4 (O(
Ô
logn), O(1))-competitiveness

In this section, we prove Theorem 15. We will define the appropriate group access tree so
that the group access bound is upper bounded by (O(

Ô
logn), O(1)) · OPT(X).

Group access tree

Define the partition P inductively as follows. Let M = 2
Ô

logn. First fi0 = {[n]}. Given fii,
we define fii+1 by, for each interval S œ fii, partitioning S into S1, S2, . . . , SM equal-sized
intervals and adding them into fii+1. This would give us a group access tree where each
non-leaf node has M children and its height is at most h = O(

Ô
logn).

Weight function

Given a sequence X = (x1, x2, . . . , xm), we define a weight function W which is locally
bounded and such that c(T ,W, X) =

q
t c(T ,W, xt) Æ O(

Ô
logn) · (OPT(X) +m). This

will give us the desired result. Our weight function uses the notion of last access.

I Definition 20. Consider time t and the group g = gj≠1(xt). Let tÕ < t be the last time
before t at which g is on the search path T (xt). We say that a child g1 œ CG(g) is last
accessed (child) group of g at time t if the edge (g, g1) is on search path T (xtÕ).

Remark that each group can have at most one child in T that is the last access group.
Now, we are ready to define the weight function:

wt(g) =
I
M if g is the last accessed group of its parent
1 otherwise

It is easy to verify that this family of weight functions W is locally bounded (there is
only one key whose weight can increase between time t and (t+ 1)).

I Lemma 21. Consider edge e = (gj≠1(xt), gj(xt)). We have

ce(T ,W, xt) =
I
O(logM) if gj(xt) is not the last accessed group of gj≠1(xt)
O(1) otherwise

Proof. By definition, W j =
q

gÕœCG(gj≠1(xt))
wt(gÕ) Æ 2M because there is only one group in

CG(gj≠1(xt)) with weight M (the last accessed group) and there can be at most M groups
with weight 1.

We analyze the cost in two cases: If g = gj(xt) is the last accessed group, then we have
ce(T ,W, xt) Æ log(W j

/wt(g)) Æ log(2M/M) = O(1). Otherwise, if gj(xt) is not the last
accessed group, then we have log(2M) Æ O(logM). J

Cost analysis

Consider the search path T (xt). Denote by “t the number of groups on T (xt) that are
not the last accessed group of its parents. The cost c(T , wt, xt) =

q
eœT (xt)

ce(T , wt, xt),
and from the above lemma, the cost is at most O(logM) · “t + O(h) Æ O(

Ô
logn)(“t + 1).

Therefore, the total cost is O(
Ô
logn) · (

q
t “t +m). The sum of “t will be upper bounded

by the Wilber bound.
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The Wilber bound. Wilber [36] gave two lower bounds on the running time of any BST
on a sequence X. These bounds are known as Wilber1 and Wilber2.1 We now describe
Wilber1(X). Let R be a leaf-oriented (keys at the leaves) binary search tree, and for
each a œ [n], denote by R(a) the search path in R of key a. When searching a sequence
X in R, for each node v œ V (R), the preferred child of node v at time t (denoted by
Preferred-Childt(v)) is the child of v on the last search path in R at time t. If node
v is not on the search path R(xt), we know that the preferred child cannot change, i.e.,
Preferred-Childt(v) = Preferred-Childt≠1(v).

The Wilber bound with respect to R at time t and node v is:

Wilber1
t
R(v) =

I
1 if Preferred-Childt(v) ”= Preferred-Childt≠1(v)
0 otherwise

The total Wilber bound of a sequence X is Wilber1R(X) =
q

t

q
v Wilber1

t
R(v). The

Wilber bound is defined as the maximum, overall reference BST R, of Wilber1R(X).

I Lemma 22. We have that
q

t “t Æ O(Wilber1(X))

Proof. It is su�cient to define a reference tree R that allows us to charge the cost of
q

t “t

to Wilber1R(X). Notice that our group access tree T is not a binary search tree. However,
it can be naturally extended into a binary search tree R as follows: We process the non-leaf
nodes in V (T ) in a non-decreasing order of distance from the root. When a group g œ V (T )
is processed, we remove the edges from g to its children. Let Tg be an arbitrary BST rooted
at g and leave CG(g); we add the tree Tg in place of the deleted edges (See Figure 3). After
all vertices are processed, it is straightforward to see that the resulting tree is a (leaf-oriented)
BST.

Now we claim that
q

t “t can be upper bounded by Wilber1R(X). Recall that “t is the
number of groups on the search path T (xt) that are not last accessed. Let Gt ™ V (T (xt))
be those groups on the search path that are not last accessed. For each such group g1 œ Gt,
let g be its parent, so we know that the last time g was on the search path, some other group
g2 œ CG(g) was instead chosen. Notice that the search paths R(g1) and R(g2) also visit g
but branch away at some vertex b inside Tg (it could be that b = g). This would imply that
Preferred-Childt(b) ”= Preferred-Childt≠1(b) and therefore Wilber1

t
R(b) = 1. This

implies that “t Æ
q

v Wilber1
t
R(v) and hence the lemma. J

The lemma implies that the total group access bound is at most

O(

logn)(Wilber1(X) +m) Æ O(


logn) · (OPT(X)).

See the full version of the paper for sections related to the k-finger bound, Unified bound,
and Unified bound with a time window.

5 Ggreedy algorithm

This section will define a new BST algorithm named Ggreedy, which satisfies the group
access bound. The Ggreedy algorithm is very similar to Greedy. Therefore, we first
describe the Greedy algorithm and then provide some intuition about the Ggreedy

algorithm before describing it formally.

1 They can also be derived using an elegant geometric language of [14].
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𝕘

𝑇𝕘

Figure 3 An example of g and Tg.

Given a search sequence X = {x1, x2, . . . , xm}, intuitively the Greedy algorithm works
as follows:
At time t, the Greedy algorithm performs a horizontal line sweep of the points at y = t. By
induction, we can assume that all the pairs of the points below the line y = t are arborally
satisfied. So, at time t, we find all the rectangles with one endpoint xt and the other endpoint
q, where q is a point below the sweep line. If the rectangle ⇤xtq is not arborally satisfied,
then add a point at the corner of the rectangle ⇤xtq on the sweep line to make it arborally
satisfied. See Algorithm 2 for the formal definition of Greedy (Figure 4b illustrates the
execution of Greedy).

Algorithm 1 AddPoints(A,xt).

1 foreach ⇤xtq in A do

2 Add a point at (q.x, xt.y)
3 end

Algorithm 2 Processing Greedy at time t.

1 Let A be the set of all the arborally
unsatisfied rectangles with one endpoint as
xt and another endpoint below the line
y = t;

2 AddPoints(A, xt);

We will now try to provide some intuition (motivation) behind the Ggreedy algorithm.
While analyzing the Greedy algorithm, we observed that if we can partition the keys into
groups (containing consecutive keys) and treat these groups as keys, then we can apply the
Greedy algorithm to this new set of keys. We can then recursively do this within each
group, making the analysis easy.

As an example, we can divide the key space into three groups, say from [1, . . . , n/3], [n/3+
1, . . . , 2n/3] and [2n/3 + 1, . . . , n] which we can represent as keys k1, k2 and k3. We can now
run the Greedy algorithm on this set of keys. When a key in the range [n/3 + 1, . . . , 2n/3]
is searched at time t, we can assume that the key k2 is searched and perform the Greedy

algorithm accordingly on the keys k1, k2 and k3. We can recursively do this procedure inside
each group. To separate the groups and to ensure that the resultant point set is arborally
satisfied, we add points at the boundaries of the groups.

One can observe that the recursive partition of the keys corresponds to a group access
tree. An astute reader can see that Ggreedy is not a single algorithm but a family of BST
algorithms, which depends on the group access tree.
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1 2 3 4 5 6 7 8 9 10
(a) Ggreedy.

1 2 3 4 5 6 7 8 9 10
(b) Greedy.

Figure 4 Ggreedy(on level 1) vs Greedy on a sequence (6, 2, 3, 9, 10, 4, 5, 8, 1, 2). There are
three groups {[1 . . . 4], [4 . . . 7], [7 . . . 10]} in level 1, recursively we can define groups within each
group. Red points are the searched keys. (a) Light blue points are added at the boundary of a group
g = g1(xt). Black points are added to make Ggreedy arborally satisfied with other groups in level
1 (b) Blue points are added to make Greedy arborally satisfied.

We are now ready to define the Ggreedy algorithm. Pick a group access tree T . Let g
be a group at any level in the group access tree. The group g contains a set of consecutive
keys at the leaves of T . The group g has two end keys, which we denote as the boundary
keys of the group.

I Definition 23 (Boundary of a group). Let g be a group that contains consecutive keys
(a, a+1, a+2, . . . , b), then left(g) = a is called the left boundary key of the group g. Similarly,
right(g) = b is called the right boundary key. Together, they are called the boundary keys of
the group g.

In Greedy, we access a search key xt at time t, but in Ggreedy, when a key is searched
at time t, we access a group per level of the group access tree T . We define the access of a
group as follows:

I Definition 24 (Accessed group at time t in level j). A group g is said to be accessed at time
t in level j if g = gj(xt).

I Definition 25 (Accessed boundary key at time t in level j). The boundary keys of a group
are accessed at time t in level j when the group g is accessed at time t in level j. We denote
the boundary key access by adding points at the two boundaries of the group g at time t in
level j.

While accessing a key in Greedy at time t, the algorithm touches keys to form an arborally
satisfied set. Similarly, in Ggreedy, when a group is accessed at time t, we might touch
other groups. We define a touch group in Ggreedy as follows:

I Definition 26 (Touched group at time t in level j). A group g is said to be touched at time
t in level j if one of the boundary keys of g is touched.

I Remark 27. An accessed group is also a touch group at time t in level j, where both the
boundary keys are touched.
Similar to the definition of unsatisfied rectangle for Greedy, we define an unsatisfied group
in Ggreedy as follows:
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I Definition 28 (Unsatisfied group at time t in level j). A group g1 is said to be unsatisfied
at time t in level j if one of the boundary keys of g1 forms an unsatisfied rectangle with the
boundary keys of g = gj(xt) at time t. We denote the unsatisfied group by ⇤g1g.

Let g1 be a group at time t in level j, which is unsatisfied when the group g is accessed.
We touch g1 at time t in level j to make it an arborally satisfied group.

Let us now informally describe the Ggreedy algorithm. When a key xt is accessed at
time t, we access one group per level in the group access tree T . While accessing the group
g = gj(xt) in level j, we find all the unsatisfied groups in level j which lie inside the group
gj≠1(xt) and make them arborally satisfied. We recursively do this for level j + 1 and so
on. The Ggreedy algorithm can be viewed as if we are applying the Greedy algorithm
on groups at each level of the group access tree T . Hence the name, Greedy on groups or
Ggreedy.

We now describe the Ggreedy algorithm formally (See Algorithm 4).

Algorithm 3 Touchgroups(A,g,j).

1 Touch g in level j;
2 foreach ⇤g1g in A do

3 Touch g1 in level j;
4 end

Algorithm 4 Processing of Ggreedy at
time t.

1 foreach j = 1 to k do

2 Let Aj be the set of all arborally
unsatisfied groups in level j when
accessing g = gj(xt);

3 Touchgroups(Aj , g, j);
4 end

In the above algorithm, at iteration j, we first add points at left(gj(xt)) and right(gj(xt))
(same as touching group gj(xt)). Then, we process all the arborally unsatisfied groups with
one endpoint as gj(xt) and the other endpoint inside the group gj≠1(xt) (See Figure 4a for
the execution of Ggreedy on level 1).

I Observation 29. Although the Ggreedy algorithm is very similar to Greedy, it is not
a candidate for dynamic optimality conjecture because of the inherent cost of the groups at
each level in the group access tree T .

We will now try to bound the number of groups touched by Ggreedy in iteration j of
Algorithm 4. Let us give it a special notation:

I Definition 30. Let Tj(t) be the set of groups touched by Ggreedy in the j-th iteration of
Algorithm 4 at time t.

Touching a group is the same as touching the group’s boundary key(s). Therefore, we
consider the boundary keys of the group for the rest of this section to provide better-detailed
proofs. We now show some essential properties of Tj(t).

I Lemma 31. Tj(t) only contains points that are at the boundaries of level j groups that lie
inside gj≠1(xt).

For proof, refer to the full version.
An immediate corollary of the above lemma is:

I Corollary 32. Let p be a point that lies strictly inside gj≠1(xt). If Ggreedy adds p at
time t then xt lies in gj(p).
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We will now show that Ggreedy outputs an arborally satisfied set. Let us assume that
we are processing xt. We can visualize Ggreedy as running Greedy first on the level
1 group. This execution is the same as Greedy. Then, we add points at the boundary
of g1(xt). This is the first step when we deviate from the Greedy algorithm. Once we
have added the boundary points, we again run Greedy on level 2 groups, and the process
continues. One may feel that touching the boundary keys may create some unsatisfied
rectangles. But in the following lemma, we show that this is not the case.

I Lemma 33. Ggreedy outputs an arborally satisfied set on any input representing X.

The proof can be found in the full version of the paper.
In the next section, we generalize the access lemma, which have been proved for the Splay

tree and Greedy [33, 20]. Let us define a notation before we move to the next section.

I Definition 34. Let T̂j(t) denote the amortized number of groups touched by Ggreedy in
the j-th iteration of Algorithm 4 at time t.

6 The Group Access Lemma

In this section, we introduce the group access lemma, which is a generalization of the access
lemma and show that the Ggreedy algorithm satisfies it.

Consider the group access tree T . When a BST algorithm A accesses xt at time t, after
the access, it adjusts itself to AÕ. Let g1 = gj(xt) be the group that contains xt. Let �j

t be a
potential function that depends on the state of the algorithm with respect to the groups at
level j in T . Define �t =

q
j �j

t . Define the group access lemma as follows:

I Definition 35 (Group Access Lemma). A BST algorithm A satisfies the group access lemma
if the amortized cost to access xt at time t in level j is:

T̂j(t) Æ O

3
log W

j

wt≠1(g1)

4
+ �j

t≠1
≠ �j

t

The amortized cost of the algorithm A at time t can be denoted as:

T̂ (A, xt) =
ÿ

j

T̂j(t)

and the amortized cost of the algorithm A on the access sequence X can be defined as:

T̂ (A, X) =
ÿ

t

T̂ (A, xt).

With the definition of the group access lemma in hand, we will now show that Ggreedy

satisfies the group access lemma.
Please refer to the full version of the paper for the proof that Ggreedy satisfies the

group access lemma and the simulation theorem.
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Abstract

A fundamental concept related to strings is that of repetitions. It has been extensively studied
in many versions, from both purely combinatorial and algorithmic angles. One of the most basic
questions is how many distinct squares, i.e., distinct strings of the form UU , a string of length n can
contain as fragments. It turns out that this is always O(n), and the bound cannot be improved to
sublinear in n [Fraenkel and Simpson, JCTA 1998].

Several similar questions about repetitions in strings have been considered, and by now we seem
to have a good understanding of their repetitive structure. For higher-dimensional strings, the basic
concept of periodicity has been successfully extended and applied to design e�cient algorithms –
it is inherently more complex than for regular strings. Extending the notion of repetitions and
understanding the repetitive structure of higher-dimensional strings is however far from complete.

Quartics were introduced by Apostolico and Brimkov [TCS 2000] as analogues of squares in
two dimensions. Charalampopoulos, Radoszewski, Rytter, WaleÒ, and Zuba [ESA 2020] proved
that the number of distinct quartics in an n ◊ n 2D string is O(n2 log2 n) and that they can be
computed in O(n2 log2 n) time. Gawrychowski, Ghazawi, and Landau [SPIRE 2021] constructed an
infinite family of n ◊ n 2D strings with �(n2 logn) distinct quartics. This brings the challenge of
determining asymptotically tight bounds. Here, we settle both the combinatorial and the algorithmic
aspects of this question: the number of distinct quartics in an n ◊ n 2D string is O(n2 logn) and
they can be computed in the worst-case optimal O(n2 logn) time.

As expected, our solution heavily exploits the periodic structure implied by occurrences of
quartics. However, the two-dimensional nature of the problem introduces some technical challenges.
Somewhat surprisingly, we overcome the final challenge for the combinatorial bound using a result
of Marcus and Tardos [JCTA 2004] for permutation avoidance on matrices.

2012 ACM Subject Classification Theory of computation æ Pattern matching

Keywords and phrases 2D strings, quartics, repetitions, periodicity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.39

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://doi.org/10.48550/arXiv.2403.06667

1 Introduction

Repetitions are a staple topic of both combinatorics on words [22] and algorithms on
strings [33]. In both areas, the classical objects of study are linear sequences of characters
from a finite alphabet. Depending on whether we are more interested in their combinatorial
properties or designing e�cient algorithms for them, it is customary to call such sequences
words or strings, respectively. In this paper, we use the latter convention.

Perhaps the most natural example of a repetition in a string is a square, that is, a string
of the form UU , also known as a “tandem repeat” in the biological literature [53]. The basic
question concerning squares is whether any of the fragments of a string of length n is a
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square, and, if so, what is the number of such fragments. The origins of this question can be
traced back to Thue [75], who constructed an infinite string over a ternary alphabet that
contains no squares. Thus, we can construct arbitrarily long square-free strings over such
alphabets. The next question is what is the largest possible number of fragments that are
squares. However, any even-length fragment of an is a square. One way to make the question
non-trivial is to only consider the primitively rooted squares, meaning that U is not a power
of another string. This decreases the possible number of occurrences to O(n logn), which is
asymptotically tight [30]. Another way is to only consider distinct squares.

Fraenkel and Simpson [46] showed that any string of length n contains at most 2n distinct
squares and constructed an infinite family of strings such that each string S in this family
contains |S| ≠ �(


|S|) distinct squares. For many years, it was conjectured that the upper

bound should be at most n. After a series of simplifications and improvements [41,57,58,65,74],
the conjecture was finally proven by Brlek and Li [24], who showed an upper bound of
n ≠ ‡ + 1, where ‡ is the size of the alphabet. The same authors [25] also showed an upper
bound of n ≠ �(logn). On the algorithmic side, Apostolico and Preparata [16], Main and
Lorentz [67] and Crochemore [30] showed how to find a compact representation of all squares
(in particular, test square-freeness) in a string of length n in O(n logn) time. Specifically,
such a representation stores all distinct squares. To obtain a faster algorithm for finding only
the distinct squares, one needs to restrict the size of the alphabet. For constant alphabets,
Gusfield and Stoye [54] designed an O(n) time algorithm. This was later generalized to the
more general case of an integer alphabet (that can be sorted in linear time) [20, 36]. The
complexity of testing square-freeness over general ordered and unordered alphabets of size ‡

was very recently settled by Ellert and Fischer [43] providing a linear time algorithm, and
Ellert et al. [44] providing an O(n log ‡) time algorithm, respectively; this problem has been
also studied in the parallel [13, 14, 37, 38] and the online settings [55, 63, 64, 66]. Thus, by
now we seem to have obtained a rather good understanding of both the combinatorial and
the algorithmic properties of distinct squares. We stress that, while these properties are
interesting on their own, and naturally the combinatorial bound was used to design e�cient
enumeration algorithms [21, 54], they were also crucial in designing e�cient algorithms
and data structures for other problems. For example, the Maximal Augmented Su�x Tree
(MAST) introduced by Apostolico and Preparata [17] which enables counting the maximum
number of non-overlapping occurrences uses O(n) space due to the linear upper bound on
the number of distinct squares (as observed by Brodal et al. [26]). The same applies to the
construction time and the space of the Cover Su�x Tree (CST) [61,71].

Arguably, linear sequences are not always best suited to model the objects that we
would like to study. A natural extension is to consider rectangular arrays of characters
from a finite alphabet, which can be seen as 2D strings. Possible applications in image
processing [72] sparked interest in designing algorithms for searching in 2D strings already in
the late 1970s [18,23]. This turned out to be significantly more challenging than searching
in 1D strings: both versions were studied already in the 70s, but while for 1D strings an
alphabet-independent linear-time algorithm had been soon found [60], achieving the same
goal for 2D strings took till the 90s [3, 39, 47]. Extensions of this basic problem such as
approximate searching [9, 29], indexing [28, 49, 50], searching in smaller space [32], scaled
searching [6, 7], searching in random 2D strings [59], dictionary searching [8, 56, 69], and
searching in compressed 2D strings [1, 4, 11] have been also considered.

The combinatorial structure of 2D strings seems to be significantly more involved than that
of 1D strings. As a prime example, the basic tool used in algorithms and combinatorics on
1D strings is periodicity. We say that p is a period of a 1D string S[1 . . n] when S[i] = S[i+p]
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for all i = 1, 2, . . . , n ≠ p. The set of all periods is very structured due to a classical result
of Fine and Wilf [45] according to which for any two periods p, q such that p + q Æ n,
the greatest common divisor of p and q is also a period. The natural way to extend this
notion to 2D strings is to define (x, y) to be a period of a 2D string S[1 . . n][1 . . n] when
S[i][j] = S[i+ x][j + y] for all i = 1, 2, . . . , n ≠ x and j = 1, 2, . . . , n ≠ y. This notion was
introduced by Amir and Benson [2], who provided a detailed study based on classifying 2D
strings into four periodicity classes. This classification was later crucial in designing solutions
for pattern matching, namely, an alphabet-independent linear-time algorithms [39,47] and
alphabet-independent optimal parallel algorithms [5, 31].

The rich combinatorial structure of 2D strings brings the challenge of finding the right
generalization of the concept of repetitions. Apostolico and Brimkov [12] introduced two
notions of repetitions in 2D strings that can be seen as natural analogues of squares in 1D
strings. A tandem W

1,2 (or W 2,1) consists of 2 occurrences of the same block W arranged
in a 1 ◊ 2 (or 2 ◊ 1) pattern. Next, a quartic W

2,2 consists of 4 occurrences of the same
block W arranged in a 2 ◊ 2 pattern. Note that Apostolico and Brimkov [12] additionally
required that W is primitive, meaning that it cannot be partitioned into non-overlapping
copies of another block. However, it is more natural to call such tandems and quartics
primitively rooted, as in [27]. Apostolico and Brimkov [12] showed asymptotically tight
bounds of O(n3 logn) and O(n2 log2 n) for the number of primitively rooted tandems and
quartics, respectively. The former bound was later complemented with a worst-case optimal
O(n3 logn)-time algorithm [15]. Finally, Amir, Landau, Marcus, and Sokol [10] introduced
the notion of maximal repetitions in 2D strings, as an analogue of so-called runs in 1D
strings.

Two tandems T = W
1,2 and T

Õ = V
1,2 are distinct when W ”= V . Similarly, two quartics

Q = W
2,2 and Q

Õ = V
2,2 are distinct when W ”= V . It is easy to see that an n ◊ n 2D

string contains O(n3) distinct tandems by applying the bound on the number of 1D distinct
squares on every horizontal slice of the 2D string. It is also not hard to show that this bound
is asymptotically tight, even over a binary alphabet [48]. Thus, tandems do not seem to be
the right generalization of squares, and we should rather focus on quartics.

Recently, Charalampopoulos, Radoszewski, Rytter, WaleÒ, and Zuba [27] showed a non-
trivial upper bound of O(n2 log2 n) on the number of distinct quartics in an n ◊ n 2D string,
and an algorithm that finds them in the same time complexity. At this point, it was quite
unclear to what extent distinct quartics su�er from the “curse of dimensionality”. Could it
be that, similarly to the number of distinct squares, their number is also linear in the size
of the input? Gawrychowski, Ghazawi, and Landau [48] very recently showed that this is
not the case, by constructing an infinite family of n ◊ n 2D strings over a binary alphabet
containing �(n2 logn) distinct quartics. This shows that there is a qualitative di�erence
between distinct squares and distinct quartics, but leaves a significant gap between the lower
bound of �(n2 logn) and the upper bound of O(n2 log2 n) [27].

Our Results. Our contribution is twofold. First, we show an asymptotically tight bound
of O(n2 logn) on the number of distinct quartics in an n ◊ n 2D string. Thus, the “curse
of dimensionality” for this problem is a single logarithm for going from 1D to 2D. Second,
we show how to find all distinct quartics in worst-case optimal O(n2 logn) time. We thus
resolve both the combinatorial and algorithmic complexity of distinct quartics.
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A notable di�erence of our algorithm from the previously fastest algorithm for computing
distinct quartics [27] is that the algorithm of [27] first finds all 2D runs1 of the 2D string,
which are not even known to be O(n2 logn), and then infers the quartics from those. We
manage to circumvent this, by focusing on some selected occurrences of 2D strings of the
form Q

5,5, instead of considering all of them via 2D runs.

Overview of the Combinatorial Upper Bound. When bounding the number of distinct
squares, one begins with fixing the rightmost occurrence of every distinct square [46]. In two
dimensions, it is less clear what an extreme occurrence could mean. We simply say that it is
an occurrence at a position (i, j) such that there is no other occurrence at a di�erent position
(iÕ, jÕ) such that iÕ Ø i and j

Õ
Ø j. Next, a standard trick used when working with strings is

to partition them into groups with length in [2a . . 2a+1) for di�erent integers a. Similarly
to previous work [27], we partition quartics into groups C(a,b) with height in [2a . . 2a+1)
and width in [2b . . 2b+1) for pairs of integers (a, b). We begin with proving that, for any
position (i, j), the set of extreme occurrences at (i, j) may have a non-empty intersection
with only O(logn) such groups. Next, we partition all quartics into thin and thick (note
that the meaning of thin and thick is slightly di�erent than in the previous work [27]). More
specifically, a quartic Q is thick if and only if it can be partitioned into x ◊ y occurrences
of a primitive 2D string R, i.e., Q = R

x,y for some x, y Ø 5. Then, we show that for any
position (i, j) and group C(a,b), there can be at most 10 extreme occurrences of thin quartics
in C(a,b) at position (i, j). Overall, we thus have only O(n2 logn) distinct thin quartics.

The main part of our proof for the combinatorial upper bound is the analysis of the
number of distinct thick quartics. Our starting point is the observation (already present
in [27]) that this number can be upper bounded by the number of occurrences of 2D strings
of the form R

5,5, for primitive R, that participate in the partition of an extreme occurrence
of some quartic R

x,y. To bound the number of such occurrences, we assign an occurrence of
R

5,5 at position (i, j) to position (x, y) = (i+ 2 · height(R), j + 2 · width(R)) and say that
this occurrence is anchored at position (x, y). Then, our goal is to show that the number
of occurrences assigned to every position is only O(logn). For a fixed position (i, j), this is
done by first arguing that the pairs (Âlog(height(R))Ê , Âlog(width(R))Ê) are pairwise distinct
among occurrences of di�erent R

5,5 assigned to (i, j). This requires a careful analysis of
the implied periodic structure and allows us to focus on bounding the number of such pairs.
What we do next is the main novelty of our approach for the combinatorial upper bound.
We treat the pairs as a set of points P ™ [1 . .m]2, where m = ÂlognÊ, and argue that, for
each (a, b) œ P, the set of points of P that are strictly dominated by (a, b) can be partitioned
into at most two chains. Next, our goal is to upper bound the size of any set P with this
property by O(m). To this end, we leverage a result from extremal combinatorics, namely,
the proof of the Füredi-Hajnal conjecture by Marcus and Tardos [68]. This result states
that, if an m ◊ m binary matrix M avoids a fixed permutation matrix P as a submatrix,
i.e., if P cannot be obtained by deleting some rows and columns of M and changing some
1s to 0s, then M contains at most cP · m 1s, where cP is a constant if the size of P is a
constant. We reformulate the constraint on P to avoid the permutation matrix shown below
as a submatrix. Overall, this allows us to conclude that the number of extreme occurrences
of thick quartics is also O(n2 logn).

1 2D runs are subarrays that are periodic both vertically and horizontally and cannot be extended without
any of the periods changing.
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A high-level description of our approach for the algorithmic part is provided in Section 4,
as it is best read after the full proof of the combinatorial upper bound.

Open Problem. An interesting follow-up question on repetitions in 2D strings is that of
settling the number of 2D runs that a 2D string can have. Charalampopoulos et al. [27]
proved an O(n2 log2 n) upper bound for the number of 2D runs that an n ◊ n 2D string can
contain, while Gawrychowski et al. [48] constructed an infinite family of n ◊ n 2D strings
(over a binary alphabet) with �(n2 logn) 2D runs. On the algorithms’ side, Amir et al. [10]
devised an algorithm that computes all 2D runs in an n◊n 2D string in O(n2 logn+ |output|)
time, and is thus optimal. For 1D strings, after a long line of results [34, 35, 51, 52, 62, 70, 73]
the number of runs was shown to be less than n [19] and they can be computed in O(n)
time for strings over ordered alphabets [43] (see [19,62] for earlier algorithms for strings over
linear-time sortable alphabets).

2 Preliminaries

For integers i, j œ Z, we denote the set {k œ Z : i Æ k Æ j} by either of [i . . j], (i≠ 1 . . j + 1),
[i . . j + 1), and (i ≠ 1 . . j].

Let us consider a string S = S[1]S[2] · · ·S[n] of length |S| = n. For integers i Æ j in
[1 . . n], we denote the fragment S[i] · · ·S[j] by S[i . . j]. A positive integer p Æ n is a period
of S if and only if S[i] = S[i+ p] for all i œ [1 . . n ≠ p]. The smallest period of S is called the
period of S and is denoted by per(S). A string is called periodic if and only if its period is at
most half its length. We will extensively use the following property of periods.

I Lemma 2.1 (Periodicity Lemma [45]). If p and q are periods of a string S and satisfy
p+ q Æ |S|, then gcd(p, q) is also a period of S.

We denote the concatenation of two strings U and V by UV . Further, for k œ Z+, we
denote the concatenation of k copies of U by U

k. A string V that cannot be written as Uk

for a string U and an integer k > 1 is called primitive. A string of the form UU is called a
square. A square UU is said to be primitively rooted if U is primitive. More generally, a
string of the form U

k is called a k-th power, and it is said to be primitively rooted if U is
primitive. We extensively use the following property of squares.

I Lemma 2.2 (Three Squares Lemma [40]2). If squares U
2 and V

2 are proper prefixes of a
square W

2, |U | < |V |, and U is primitive, then |U |+ |V | Æ |W |.

We next summarise some combinatorial properties of squares and higher powers.

I Proposition 2.3. Consider a string S and an integer a. At most two prefixes of S with
lengths from [2a . . 2a+1) can be primitively rooted squares.

Proof. Assume that there are three such prefixes, and denote them by UU , V V , WW , where
|U | < |V | < |W |. Since |UU |, |V V |, |WW | œ [2a . . 2a+1), we have |U | + |V | > |W |, which
together with the primitivity of |U | leads to a contradiction. J

2 This formulation comes from [46].
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W W W W W
W W W W W

Figure 1 2D string W 2,5 is shown for some 2D string W .

I Proposition 2.4. Consider a string S and an integer a. All prefixes of S with lengths in
[2a . . 2a+1) that are powers higher than 2 are of the form U

k for the same primitive string U .

Proof. Assume that there are two such prefixes Uk and V
¸, where U is primitive, k, ¸ Ø 3,

and |U | < |V |. First, |V | is a period of Z := S[1 . . |U | + |V |]. Second, |V | < 2a+1
/3 and

consequently |U
k≠1

| Ø |V |, as otherwise we would have |U
k
| < k · |V |/(k ≠ 1) Æ 3|V |/2 < 2a,

hence |U | is also a period of Z. We thus have that both |U | and |V | are periods of Z. Then,
an application of Lemma 2.1 yields that gcd(|U |, |V |) is a period of Z. But U is primitive so
gcd(|U |, |V |) = |U |, and V hence is a power of U , a contradiction. J

A fragment S[i . . j] of a string S is a run if and only if it is periodic and it cannot be
extended by a character in either direction with its period remaining unchanged.

An m ◊ n 2D string A is simply a two-dimensional array with m rows and n columns,
where height(A) = m and width(A) = n. The position that lies on the i-th row and the j-th
column of A is position (i, j). We regard the top-left position of a 2D string as position (1, 1),
and the bottom-right position as position (m,n). That is, we index rows from top to bottom
and columns from left to right. We say that a 2D string P occurs at a position (i, j) of a 2D
string T if and only if the subarray (also called fragment) T [i . . i+height(P ))[j . . j+width(P ))
of T equals P . We write �ú,ú to denote the set of all 2D strings over alphabet �.

A positive integer p is a horizontal period of a 2D string A such that width(A) Ø p if and
only if the j-th column of A is equal to the (j+p)-th column of A for all j œ [1 . .width(A)≠p].
The smallest horizontal period of A is the horizontal period of A. An integer q is a (the)
vertical period of A if and only if q is a (resp. the) horizontal period of the transpose of A.

It will be sometimes convenient to view a 2D string as a 1D metastring by viewing
each column (or row) as a metacharacter such that metacharacters are equal if and only
if the corresponding columns (resp. rows) are equal. Observe that the horizontal periods
(resp. vertical periods) of a 2D string A are in one-to-one correspondence with the periods of
the metastring obtained from A by viewing each column (resp. row) as a metacharacter.

For a 2D string W and x, y œ Z+, we denote by W
x,y the 2D string that consists of

x ◊ y copies of W ; see Figure 1 for an illustration. A 2D string W is primitive if it cannot
be written as Y

a,b for any 2D string Y and a, b œ Z+ that are not both equal to 1. The
primitive root of a 2D string X is the unique primitive 2D string Y such that X = Y

a,b for
a, b œ Z+. Note that the primitive root is indeed unique by the periodicity lemma applied to
the horizontal and vertical 1D metastrings obtained from X.

Model of computation. For our algorithm, we assume the standard word-RAM model of
computation with word-size �(logn), where n is the size of the input.

3 The Combinatorial Bound

We consider an n ◊ n 2D string A, whose entries are over an arbitrary alphabet �. We say
that a fragment A[i . . iÕ)[j . . jÕ) is a quartic-fragment if and only if it equals some quartic Q;
further, we say that it is an extreme or bottom-right quartic-fragment if Q does not have
any occurrence at another position (iÕÕ, jÕÕ) with i

ÕÕ
Ø i and j

ÕÕ
Ø j. We refer to such an
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occurrence of Q as an extreme or bottom-right occurrence. We denote by BR(i, j) the set of
extreme quartic-fragments with top-left corner (i, j). Further, we denote the union of all
BR(i, j) by BR. Observe that the distinct quartics in BR are exactly the distinct quartics
in A as every quartic that occurs in A has at least one extreme occurrence. Note that a
quartic may have �(n) extreme occurrences; an example is provided in Figure 2.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1

Figure 2 Consider an n ◊ n 2D string A all of whose entries that lie weakly above the main
diagonal are equal to 0 and all of whose entries that lie strictly below the main diagonal are equal
to 1. The quartic that equals 02,2 has n ≠ 2 extreme occurrences in A. This is illustrated for n = 8:
the bottom-right corners of extreme occurrences of said quartic are marked.

Let us consider a partition of the quartic-fragments of A into O(log2 n) canonical sets, such
that, for each (a, b) œ [1 . . ÂlognÊ]2, the canonical set C(a,b) consists of all quartic-fragments
of A whose height is in [2a . . 2a+1) and whose width is in [2b . . 2b+1).3

I Lemma 3.1. For each position (i, j) of A, BR(i, j) has a non-empty intersection with
O(logn) canonical sets.

Proof. We say that the aspect ratio of a quartic Q is equal to 2 raised to the power
Âlog(height(Q))Ê ≠ Âlog(width(Q))Ê. The aspect ratio of all quartic-fragments in a canonical
set C(a,b) is 2a≠b. Observe, that there are 2 · ÂlognÊ ≠ 1 di�erent possible values for the
aspect ratio of a quartic. For each d œ [≠ ÂlognÊ+1 . . ÂlognÊ ≠ 1], let BRd(i, j) be the subset
of BR(i, j) that contains exactly the elements of BR(i, j) with aspect ratio 2d.

Next, we show that, for each d, we have at most two canonical sets contributing to
BRd(i, j). Let us suppose towards a contradiction that we have three canonical sets C(a,b),
C(aÕ,bÕ), and C(aÕÕ,bÕÕ) that contribute to BRd(i, j). In other words, there are quartic-fragments

Q œ BRd(i, j) with height in [2a . . 2a+1) and width in [2b . . 2b+1),
Q

Õ
œ BRd(i, j) with height in [2aÕ

. . 2aÕ
+1) and width in [2bÕ

. . 2bÕ
+1), and

Q
ÕÕ

œ BRd(i, j) with height in [2aÕÕ
. . 2aÕÕ

+1) and width in [2bÕÕ
. . 2bÕÕ

+1).
Since a≠ b = a

Õ
≠ b

Õ = a
ÕÕ

≠ b
ÕÕ = d, we can assume without loss of generality that a < a

Õ
< a

ÕÕ

and b < b
Õ
< b

ÕÕ. We thus have that a + 1 < a
ÕÕ and b + 1 < b

ÕÕ, which implies that Q

is fully contained in the top left quarter of QÕÕ. Thus, Q has an occurrence at position
(i+ height(QÕÕ)/2, j + width(QÕÕ)/2); see Figure 3. This contradicts our assumption that the
occurrence of Q at position (i, j) is an extreme occurrence.

Thus, O(logn) canonical sets contribute to BR(i, j): at most two for each aspect ratio. J

Henceforth, we call a quartic Q with primitive root P thick if Q = P
x,y for x, y Ø 5 and

thin otherwise.

3 Throughout this work, logarithms have base 2.
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39:8 Optimal Bounds for Distinct Quartics

Figure 3 An illustration of the proof of Lemma 3.1 with quartics Q, QÕ, and QÕÕ drawn in red,
blue, and green, respectively.

I Lemma 3.2. For any position (i, j) of A and any pair (a, b) œ [1 . . ÂlognÊ]2, C(a,b)flBR(i, j)
can contain at most 10 thin quartics.

Proof. The possible forms of thin quartics are P
2,2, P 2,2x, P 2y,2, P 4,2x, and P

2y,4 for x > 1
and y > 1. We will consider each form separately.

First, we consider quartics of the form P
2,2 in C(a,b) fl BR(i, j). We analyse the fragment

A[i . . n][j . . j + 2b) and treat it as a metastring by viewing rows as metacharacters. We
observe that each considered quartic defines a prefix of this string that is a square. Further,
all those squares need to be primitive, as otherwise P could be written as P = Q

k,1, for some
k > 1, in contradiction with the primitivity of P . Thus, by Proposition 2.3 we have at most
two possible heights for the considered quartics. By a symmetric argument, we have at most
two possible widths, and so at most 4 quartics.

Second, we consider quartics of the form P
2,2x in C(a,b) flBR(i, j). By the same reasoning

as above, we have at most two possible heights for the considered quartics; let h by one of
them. We analyse the fragment A[i . . i+ h)[j . . n] and treat it as a metastring by viewing
columns as metacharacters. Each considered quartic with height h corresponds to a prefix
that is a (2x)-th power, for some x > 1. By Proposition 2.4, all such prefixes are powers
of the same U ; let U

2x be the longest such prefix. Then, for any x
Õ
< x, the prefix U

2xÕ

also occurs at position (i, j + |U |), so the occurrence at position (i, j) cannot be an extreme
occurrence. Therefore, for every possible height, we have at most one quartic, so at most 2
in total.

Third, we consider quartics of the form P
4,2x for x > 1 in C(a,b) fl BR(i, j). We (again)

analyse the fragment A[i . . n][j . . j + 2b) and treat it as a metastring by viewing its rows as
metacharacters. We observe that each considered quartic defines a prefix that is a primitively
rooted fourth power there. Thus, by Proposition 2.4 we have at most one possible height,
and, by the same reasoning, as above at most one quartic.

Symmetric arguments bound the number of quartics of the forms P 2y,2 and P
2y,4. J

I Lemma 3.3. The number of distinct thin quartics in A is O(n2 logn).

Proof. For each position (i, j) of A, BR(i, j) has a non-empty intersection with at most
O(logn) canonical sets due to Lemma 3.1. Further, by Lemma 3.2, there are at most 10 thin
quartics in each such intersection. Since A has n2 positions, the stated bound follows. J

3.1 Reduction to a Geometric Problem

We next partition the thick quartics by primitive root. For each primitive 2D string R,
we choose any bottom-right occurrence of each distinct thick quartic with primitive root
R. We denote the obtained set of quartic-fragments by ThickR. Additionally, let us denote
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Figure 4 The red point corresponds to the anchor of the shown occurrence of R5,5.

by occ5◊5(R) the set of all positions (i, j) of A where R
5,5 occurs such that there is an

element of ThickR that fully contains this occurrence of R5,5 and has top-left corner equal to
(i ≠ x · height(R), j ≠ y · width(R)) for some non-negative integers x and y.

The proof of the following lemma proceeds almost exactly as the proof of Claim 18 in [27],
except that we work with occurrences of R5,5 instead of R3,3 and do not need the notion of
special points. We provide a detailed description for completeness.

I Lemma 3.4 (cf. the proof of [27, Claim 18]). For any 2D string R, |ThickR| Æ |occ5◊5(R)|.

Proof. We will map each Q œ ThickR to an occurrence of R5,5 in such a way that two distinct
quartic-fragments Q,Q

Õ
œ ThickR are mapped to distinct occurrences. This will imply that

the number of occurrences of R is at least as large as the number of elements of ThickR.
For each x = 6, 8, . . . in this order, we selectQ œ ThickR such that height(Q) = x·height(R)

and width(Q) = y · width(R) is the largest among all Q
Õ

œ ThickR with height(QÕ) =
x · height(R). We note that the number of QÕ

œ ThickR with height(QÕ) = x · height(R) is
at most y/2 ≠ 2, and our goal is to map them to occurrences of R5,5 that have not been
used so far. Additionally, we will ensure that those occurrences are all in the same row. Let
(i, j) be the position of an extreme occurrence of Q. We observe that R5,5 occurs at every
position (iÕ, jÕ) with i

Õ = i+ k · height(R) and j
Õ = j + ¸ · width(R), for every k œ [0 . . x ≠ 5]

and ¸ œ [0 . . y ≠ 5]. We choose k œ [0 . . x ≠ 5] such that none of the occurrences of R5,5 at
positions (i + k · height(R), j + ¸ · width(R)), for ¸ = 0, 1, . . . , y ≠ 3 have been used so far.
This is possible because so far we have used occurrences of R5,5 in only x/2≠ 3 < x≠ 4 rows.
Then, we map every Q

Õ
œ ThickR with height(QÕ) = x · height(R) to an occurrence of R5,5 at

position (i+ k · height(R), j + ¸ · width(R)), for some ¸ œ [0 . . y ≠ 5], which is possible due to
y/2 ≠ 2 Æ y ≠ 4. J

Thus, it remains to upper bound
q

R |occ5◊5(R)|, i.e., the sum, over all R, of the number
of occurrences of R5,5 which are contained in some element of ThickR.

Consider an occurrence of a 2D string of the form R
5,5, for a primitive string R, at a

position (i, j) of A. We call position (i+ 2 · height(R), j + 2 · width(R)) the anchor of this
occurrence; see Figure 4.

Now, for each primitive string R, for each element of occ5◊5(R), we assign the corres-
ponding occurrence of R5,5 to its anchor. Let assign(i, j) be the set of primitive 2D strings R
such that an occurrence of R5,5 has been assigned to position (i, j). We have

ÿ

R

|occ5◊5(R)| =
nÿ

i=1

nÿ

j=1

|assign(i, j)|. (1)

It now su�ces to show that
qn

i=1

qn
j=1

|assign(i, j)| = O(n2 logn). We will show that
|assign(i, j)| = O(logn) for all i, j, which straightforwardly yields the desired bound.

Let us fix a position (i, j). By applying Proposition 2.4 horizontally and vertically one
easily obtains the following fact.
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Figure 5 The red rectangles correspond to T 1,2 and the green rectangles correspond to S3,6.

I Fact 3.5 ([27, Corollary 13]). Let a, b be non-negative integers and W,Z be di�erent 2D
strings with height in [2a . . 2a+1) and width in [2b . . 2b+1). If W 3,3 and Z

3,3 occur at some
position of A, then at least one of W and Z is not primitive.

This, together with the fact that, for each R œ assign(i, j), R3,3 occurs at position (i, j),
implies the following.

I Fact 3.6. For each pair (a, b) œ [1 . . ÂlognÊ]2, for each position (i, j) of A, the set assign(i, j)
contains at most one element with height in [2a . . 2a+1) and width in [2b . . 2b+1).

Let us define a map �ú,ú
æ [1 . . ÂlognÊ]2 as g(R) ‘≠æ (Âlog(height(R))Ê , Âlog(width(R))Ê).

Let f be the restriction of g to the domain assign(i, j). Due to Fact 3.6, f is an injective
function. We henceforth identify each element R of assign(i, j) with point f(R). We denote
the image of f by P.

We say that a point (a, b) œ Z2 dominates or weakly dominates a point (aÕ
, b

Õ) if aÕ
Æ a

and b
Õ
Æ b; the dominance is strict if aÕ

< a and b
Õ
< b. (If we require some dominance to be

strict we explicitly say so; that is, whenever we refer to some dominance without explicitly
mentioning whether it is weak or strict, we refer to weak dominance.) A set of points on
which the domination relation forms a total order is called a chain. A set of points such that
none dominates another is called an antichain. We are going to use Dilworth’s theorem [42],
which states that, in any finite partially ordered set, the size of the largest antichain is equal
to the minimum number of chains in which the elements of the set can be decomposed.

For two primitive 2D strings S and T , with 3 · height(S) < height(T ) and width(S) <

width(T ), we say that S horizontally spans T when the 2D string row3·height(S)(T 1,2), consisting
of the 3 ·height(S) topmost rows of T 1,2, equals S3,y for some even integer y Ø 4; see Figure 5.
Similarly, when width(S) < width(T ) and height(S) < height(T ), we say that S vertically
spans T when the 2D string col3·width(S)(T 2,1), consisting of the 3 ·width(S) leftmost columns
of T 2,1, equals Sx,3 for some even integer x Ø 4.

I Fact 3.7. Let S and T be two primitive 2D strings. If S spans T horizontally, then the
horizontal period of row3·height(S)(T 1,2) is width(S). Symmetrically, if S spans T vertically,
then the vertical period of col3·width(S)(T 2,1) is height(S).
Proof. We only prove the first statement as the second one follows by symmetry. Let us
view row3·height(S)(T 1,2) as a metastring Z by viewing each of its columns as a metacharacter;
the horizontal period of row3·height(S)(T 1,2) equals p := per(Z). Note that width(S) is a
period of Z. Towards a contradiction, suppose that p < width(S). Then, an application of
the periodicity lemma to Z implies that p must divide width(S). This fact contradicts the
primitivity of S, as we would have that S = (S[1 . . height(S)][1 . . p])1,k for k = width(S)/p;
see Figure 5. J

When reading the following lemma, one can think of M being in assign(i, j). However,
the lemma is slightly more general, as needed for the algorithm that is presented in the full
version.
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I Lemma 3.8. Let R œ assign(i, j) and M be a primitive 2D string such that:
M

5,5 has an occurrence with anchor (i, j);
g(M) strictly dominates g(R).

Then, R spans M either horizontally or vertically (or both).

Proof. By the definition of assign(i, j), the occurrence of R5,5 assigned to position (i, j)
appears inside an element of ThickR, which is necessarily a bottom-right occurrence of a
thick quartic with primitive root R. Let us denote this quartic by Q. Observe that the
considered occurrence of Q cannot be fully contained inside the occurrence of M4,4 at position
(i ≠ 2 · height(M), j ≠ 2 · width(M)) as this would contradict the fact that the considered
occurrence of Q is bottom-right: there would be another occurrence width(M) positions to the
right. Therefore, Q must contain at least one of the following four fragments of A, depicted in
Figure 6: A[i . . i+3·height(R))[j . . j+2·width(M)), A[i . . i+3·height(R))[j≠2·width(M) . . j),
A[i . . i+ 2 · height(M))[j . . j + 3 · width(R)), A[i ≠ 2 · height(M) . . i)[j . . j + 3 · width(R)).

Figure 6 The considered occurrences of each of M5,5 and R5,5 are shown, together with the four
specified fragments, at least one of which must be fully contained in Q.

We next show that in either of the first two cases, R horizontally spans M . In the
remaining cases, a symmetric argument yields that R vertically spans M . First, observe that
we have width(R) < width(M) as a direct consequence of g(M) strictly dominating g(R).
We next need to argue that 3height(R) < height(M). If this were not the case, width(R)
would be a horizontal period of M1,2, contradicting the primitivity of M . This completes
the proof. J

I Lemma 3.9. Two primitive 2D strings R1 and R2 such that g(R1) and g(R2) form an
antichain cannot both horizontally span a 2D string R.

Proof. Let g(R1) = (a1, b1) and g(R2) = (a2, b2). Without loss of generality, we can assume
that a1 < a2 and b1 > b2. Suppose towards a contradiction that both R1 and R2 horizontally
span R. By applying Fact 3.7, we obtain that

width(R1) is the horizontal period of row3·height(R1)(R1,2) and
width(R2) is the horizontal period of row3·height(R2)(R1,2).

Note that, for any k œ [1 . . height(R)], the horizontal period of the string comprised of
the k topmost rows of R1,2 equals the least common multiple of the periods of those k

rows. Hence, the period cannot decrease as we increase the number of considered rows.
We thus have width(R1) Æ width(R2) since our assumption that a2 > a1 implies that
height(R2) > height(R1). This is a contradiction to our assumption that b1 > b2, which
implies that width(R1) > width(R2). J
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The above lemma, Fact 3.6, and Dilworth’s theorem together imply the following.

I Corollary 3.10. All primitive 2D strings that span a primitive 2D string R can be decom-
posed to two sets H and V , such that

the elements of H span R horizontally;
the elements of V span R vertically;
the restriction of g to H fi V is an injective function;
each of the sets g(H) and g(V ) is a chain.

Finally, as mentioned in the introduction, we need the following purely geometric lemma
that follows from the result of Marcus and Tardos [68] on the number of 1s in an m ◊ m

binary matrix M that avoids a fixed permutation P as a submatrix.

I Lemma 3.11. Consider a positive integer m and a set P ™ [1 . .m]2. If, for each p œ P,
the set of points of P that are strictly dominated by p can be partitioned into at most two
chains, then |P| = O(m).

Proof. We think of P as anm◊mmatrixM [1 . .m][1 . .m], whereM [a][b] = 1 when (a, b) œ P

and M [a, b] = 0 otherwise. Next, we say that M contains a matrix P as a submatrix when P

can be obtained from M by removing rows, removing columns, and changing 1s into 0s. We
claim that, by the assumptions in the lemma, M does not contain the following matrix P as
a submatrix:

1
1

1
1

To establish this, assume otherwise towards a contradiction. Then, there exists (a, b) œ P and
(a1, b1), (a2, b2), (a3, b3) œ P such that (a, b) strictly dominates (a1, b1), (a2, b2), (a3, b3) and
further (a1, b1), (a2, b2), (a3, b3) create an antichain. By Dilworth’s theorem, this implies that
the points in P dominated by (a, b) cannot be partitioned into two chains, a contradiction.
Thus, M indeed does not contain P as a submatrix. Because P is a permutation matrix,
this implies |P| = O(m). J

We now complete the proof of our main result with the aid of Lemma 3.11.

I Theorem 3.12. An n ◊ n 2D string has O(n2 logn) distinct quartics.

Proof. The number of distinct thin quartics is O(n2 logn) by Lemmas 3.2 and 3.3. The
number of distinct thick quartics is

ÿ

R

|ThickR| Æ

ÿ

R

|occ5◊5(R)| (Lemma 3.4)

Æ

nÿ

i=1

nÿ

j=1

|assign(i, j)|. (1)

To conclude the proof, it remains to show that |assign(i, j)| = O(logn) for all (i, j) œ [1 . . n]2.
Let m = ÂlognÊ, and recall that P ™ [1 . .m]2 was defined as the image of f , which in turn
was the restriction of g to the domain assign(i, j). By Fact 3.6, we only need to show that
|P| = O(m). By Lemma 3.8 and Corollary 3.10, for each p œ P, the set of all points of P that
are strictly dominated by p can be partitioned into at most two chains. Thus, by Lemma 3.11
we conclude that indeed |P| = O(m), concluding the proof. J
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4 Overview of the Algorithm

The detailed algorithm can be found in the full version of this work. After preprocessing
the input 2D string, we compute thin and thick quartics separately. Here, we provide an
overview of the main ideas of our O(n2 logn)-time algorithm for computing distinct quartics
in an n ◊ n 2D string A over an ordered alphabet.

Computation of Thin Quartics

For thin quartics, our algorithm is quite similar to the combinatorial analysis. For each
position (i, j), we compute an O(logn)-size superset C of the canonical sets that have a non-
empty intersection with BR(i, j). We do this by relating extreme occurrences of quartics with
occurrences of squares in metastrings obtained by viewing the columns of A[i . . i+2a)[1 . . n],
where a œ [1 . . ÂlognÊ], as metacharacters. These squares can be e�ciently computed and
give us a handle on the sought thin quartics. Then, we compute the intersection of each
canonical set in C with BR(i, j) in constant time using known tools that allow us to e�ciently
operate on the metastrings. We do this by fixing (a, b) œ [1 . . ÂlognÊ]2 and computing all
quartics with height in [2a . . 2a+1) and width [2b . . 2b+1) that occur at position (i, j) of A, of
the form P

2y,2, P 2y,4, P 2,2x, and P
4,2x, for a primitive 2D string P and x, y Ø 1.

Computation of Thick Quartics

For thick quartics, our algorithmic approach follows our combinatorial approach in a more
relaxed sense. The main technical challenge is to compute, for each position (i, j), an
O(logn)-size set R of primitive 2D strings R, such that assign(i, j) ™ R. Then, those
supersets can be postprocessed as in [27] in time linear in their total size to yield the sought
distinct thick quartics. The computation of R is split into two major steps outlined next.

Skyline Computation. First, we compute a set S of skyline primitive 2D strings such that
S œ S when (a) S

5,5 has an occurrence anchored at position (i, j), and (b) there is no
other primitive 2D string T with g(T ) Ø g(S) such that T 5,5 has an occurrence anchored
at position (i, j). This part of the proof is quite technical: it heavily relies on the analysis
of periodicity for 1D (meta)strings and, roughly speaking, on the analysis of the evolution
of the horizontal periodic structure of a 2D string as rows are appended to it. We show
that, for each a œ [1 . . ÂlognÊ], there is a single candidate h œ [2a . . 2a+1) to be considered
as the height of an element of S. Then, using runs in 1D metastrings whose origins in A

have su�cient overlap and bit-tricks, we can compute the widest 2D string S with height h
such that an occurrence of S5,5 is anchored at position (i, j) in constant time (using batched
computations), if one exists.

Computation of Dominated 2D strings. This turned out to be the most challenging part of
our approach. For this exposition, let us treat �ú,ú as a partially ordered set, in the order of
decreasing widths. Let S = {S1, . . . , S¸} in accordance with this order. To obtain R from S,
we need to add to it the 2D strings R œ assign(i, j) \ S. By the construction of S we know
that there exists S œ S such that g(R) Æ g(S).

Our combinatorial analysis implies that each R œ assign(i, j) spans each element S œ S

for which g(S) strictly dominates g(R) either vertically or horizontally. It turns out that
if R spans all of these elements of S either vertically or horizontally, it is easy to compute it
e�ciently. This is, unfortunately, not the case in general. However, we observe that R spans
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vertically (resp. horizontally) a contiguous subset of S. We show that the problem boils down
to computing the union, over all k, of sets Ik, where Ik contains exactly those primitive 2D
strings that span Sk≠1 vertically and span Sk horizontally. Crucially, we observe that due to
a strong form of transitivity of the spanning property, the intersection of any two such Ik

and IkÕ consists of a number of the smallest elements of both (i.e., their longest common
prefix if viewed as strings). Hence, by computing the elements of Ik from the largest to the
smallest, we can stop whenever we encounter an element that has already been reported by
this procedure. This allows us to reduce the computation of R to the problem of e�ciently
computing sets Ik. To this end, we prove that an O(logn)-bits representation of the evolution
of the periodic structure of certain fragments of A as rows and columns are appended to
them su�ces for inferring Ik; we then use tabulation to infer it e�ciently.

References

1 Amihood Amir and Gary Benson. E�cient two-dimensional compressed matching. In Data

Compression Conference, pages 279–288. IEEE Computer Society, 1992. doi:10.1109/DCC.
1992.227453.

2 Amihood Amir and Gary Benson. Two-dimensional periodicity in rectangular arrays. SIAM

J. Comput., 27(1):90–106, 1998. doi:10.1137/S0097539795298321.
3 Amihood Amir, Gary Benson, and Martin Farach. An alphabet independent approach

to two-dimensional pattern matching. SIAM Journal on Computing, 23(2):313–323, 1994.
doi:10.1137/S0097539792226321.

4 Amihood Amir, Gary Benson, and Martin Farach. Optimal two-dimensional compressed
matching. J. Algorithms, 24(2):354–379, 1997. doi:10.1006/JAGM.1997.0860.

5 Amihood Amir, Gary Benson, and Martin Farach. Optimal parallel two dimensional text
searching on a CREW PRAM. Inf. Comput., 144(1):1–17, 1998. doi:10.1006/INCO.1998.
2705.

6 Amihood Amir, Ayelet Butman, Moshe Lewenstein, and Ely Porat. Real two dimensional
scaled matching. Algorithmica, 53(3):314–336, 2009. doi:10.1007/S00453-007-9021-X.

7 Amihood Amir and Eran Chencinski. Faster two dimensional scaled matching. Algorithmica,
56(2):214–234, 2010. doi:10.1007/S00453-008-9173-3.

8 Amihood Amir and Martin Farach. Two-dimensional dictionary matching. Inf. Process. Lett.,
44(5):233–239, 1992. doi:10.1016/0020-0190(92)90206-B.

9 Amihood Amir and Martin Farach. E�cient 2-dimensional approximate matching of half-
rectangular figures. Inf. Comput., 118(1):1–11, 1995. doi:10.1006/INCO.1995.1047.

10 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional maximal
repetitions. Theoretical Computer Science, 812:49–61, 2020. doi:10.1016/j.tcs.2019.07.
006.

11 Amihood Amir, Gad M. Landau, and Dina Sokol. Inplace 2d matching in compressed images.
J. Algorithms, 49(2):240–261, 2003. doi:10.1016/S0196-6774(03)00088-9.

12 A. Apostolico and V.E. Brimkov. Fibonacci arrays and their two-dimensional repetitions.
Theoretical Computer Science, 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)00182-0.

13 Alberto Apostolico. Optimal parallel detection of squares in strings. Algorithmica, 8(4):285–319,
1992. doi:10.1007/BF01758848.

14 Alberto Apostolico and Dany Breslauer. An optimal O(log logn)-time parallel algorithm for
detecting all squares in a string. SIAM J. Comput., 25(6):1318–1331, 1996. doi:10.1137/
S0097539793260404.

15 Alberto Apostolico and Valentin E. Brimkov. Optimal discovery of repetitions in 2D. Discrete

Applied Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.
16 Alberto Apostolico and Franco P. Preparata. Optimal o�-line detection of repetitions in a

string. Theor. Comput. Sci., 22:297–315, 1983. doi:10.1016/0304-3975(83)90109-3.

https://doi.org/10.1109/DCC.1992.227453
https://doi.org/10.1109/DCC.1992.227453
https://doi.org/10.1137/S0097539795298321
https://doi.org/10.1137/S0097539792226321
https://doi.org/10.1006/JAGM.1997.0860
https://doi.org/10.1006/INCO.1998.2705
https://doi.org/10.1006/INCO.1998.2705
https://doi.org/10.1007/S00453-007-9021-X
https://doi.org/10.1007/S00453-008-9173-3
https://doi.org/10.1016/0020-0190(92)90206-B
https://doi.org/10.1006/INCO.1995.1047
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/S0196-6774(03)00088-9
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1007/BF01758848
https://doi.org/10.1137/S0097539793260404
https://doi.org/10.1137/S0097539793260404
https://doi.org/10.1016/j.dam.2005.02.019
https://doi.org/10.1016/0304-3975(83)90109-3


P. Charalampopoulos, P. Gawrychowski, and S. Ghazawi 39:15

17 Alberto Apostolico and Franco P. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15(5):481–494, 1996.

18 Theodore P. Baker. A technique for extending rapid exact-match string matching to arrays of
more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978. doi:10.1137/
0207043.

19 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

20 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in
linear time for integer alphabets. In CPM, pages 22:1–22:18, 2017. doi:10.4230/LIPICS.CPM.
2017.22.

21 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in linear
time for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern Matching,

CPM 2017, volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.22.

22 Jean Berstel and Dominique Perrin. The origins of combinatorics on words. Eur. J. Comb.,
28(3):996–1022, 2007. doi:10.1016/J.EJC.2005.07.019.

23 Richard S. Bird. Two dimensional pattern matching. Inf. Process. Lett., 6(5):168–170, 1977.
doi:10.1016/0020-0190(77)90017-5.

24 S. Brlek and S. Li. On the number of squares in a finite word. arXiv, 2022. arXiv:2204.10204.
25 Srecko Brlek and Shuo Li. On the number of distinct squares in finite sequences: Some old

and new results. In Combinatorics on Words – 14th International Conference, WORDS 2023,
pages 35–44, 2023. doi:10.1007/978-3-031-33180-0_3.

26 Gerth Stølting Brodal, Rune B. Lyngsø, Anna Östlin, and Christian N. S. Pedersen. Solving
the string statistics problem in time o(n log n). In ICALP, volume 2380 of Lecture Notes in

Computer Science, pages 728–739. Springer, 2002.
27 P. Charalampopoulos, J. Radoszewski, W. Rytter, T. WaleÒ, and W. Zuba. The number of

repetitions in 2D-strings. In 28th Annual European Symposium on Algorithms, ESA 2020,
pages 1–18, 2020. doi:10.4230/LIPICS.ESA.2020.32.

28 Ying Choi and Tak Wah Lam. Dynamic su�x tree and two-dimensional texts management.
Inf. Process. Lett., 61(4):213–220, 1997. doi:10.1016/S0020-0190(97)00018-5.

29 Raphaël Cli�ord, Allyx Fontaine, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj. Dynamic
and approximate pattern matching in 2D. In SPIRE, pages 133–144, 2016. doi:10.1007/
978-3-319-46049-9_13.

30 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-

tion Processing Letters, 12(5):244–250, 1981.
31 Maxime Crochemore, Leszek Gasieniec, Ramesh Hariharan, S. Muthukrishnan, and Wojciech

Rytter. A constant time optimal parallel algorithm for two-dimensional pattern matching.
SIAM J. Comput., 27(3):668–681, 1998. doi:10.1137/S0097539795280068.

32 Maxime Crochemore, Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. Two-
dimensional pattern matching in linear time and small space. In STACS 95, 12th Annual

Symposium on Theoretical Aspects of Computer Science, pages 181–192, 1995. doi:10.1007/
3-540-59042-0_72.

33 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

34 Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. J. Comput. Syst. Sci.,
74(5):796–807, 2008. doi:10.1016/j.jcss.2007.09.003.

35 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The “runs” conjecture. Theor. Comput.

Sci., 412(27):2931–2941, 2011. doi:10.1016/j.tcs.2010.06.019.
36 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech

Rytter, and Tomasz Walen. Extracting powers and periods in a word from its runs structure.
Theor. Comput. Sci., 521:29–41, 2014. doi:10.1016/J.TCS.2013.11.018.

ICALP 2024

https://doi.org/10.1137/0207043
https://doi.org/10.1137/0207043
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPICS.CPM.2017.22
https://doi.org/10.4230/LIPICS.CPM.2017.22
https://doi.org/10.4230/LIPIcs.CPM.2017.22
https://doi.org/10.1016/J.EJC.2005.07.019
https://doi.org/10.1016/0020-0190(77)90017-5
https://arxiv.org/abs/2204.10204
https://doi.org/10.1007/978-3-031-33180-0_3
https://doi.org/10.4230/LIPICS.ESA.2020.32
https://doi.org/10.1016/S0020-0190(97)00018-5
https://doi.org/10.1007/978-3-319-46049-9_13
https://doi.org/10.1007/978-3-319-46049-9_13
https://doi.org/10.1137/S0097539795280068
https://doi.org/10.1007/3-540-59042-0_72
https://doi.org/10.1007/3-540-59042-0_72
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1016/j.tcs.2010.06.019
https://doi.org/10.1016/J.TCS.2013.11.018


39:16 Optimal Bounds for Distinct Quartics

37 Maxime Crochemore and Wojciech Rytter. E�cient parallel algorithms to test square-freeness
and factorize strings. Inf. Process. Lett., 38(2):57–60, 1991. doi:10.1016/0020-0190(91)
90223-5.

38 Maxime Crochemore and Wojciech Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theor. Comput. Sci., 88(1):59–82, 1991.
doi:10.1016/0304-3975(91)90073-B.

39 Maxime Crochemore and Wojciech Rytter. On linear-time alphabet-independent 2-dimensional
pattern matching. In LATIN ’95: Theoretical Informatics, pages 220–229, 1995. doi:10.1007/
3-540-59175-3_91.

40 Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space e�cient string
searching. Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

41 A. Deza, F. Franek, and A. Thierry. How many double squares can a string contain? Discrete

Applied Mathematics, 180:52–69, 2015. doi:10.1016/J.DAM.2014.08.016.
42 R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,

51(1):161–166, 1950. URL: http://www.jstor.org/stable/1969503.
43 Jonas Ellert and Johannes Fischer. Linear Time Runs Over General Ordered Alphabets. 48th

International Colloquium on Automata, Languages, and Programming (ICALP 2021), pages
63:1–63:16, 2021. doi:10.4230/LIPICS.ICALP.2021.63.

44 Jonas Ellert, Pawel Gawrychowski, and Garance Gourdel. Optimal square detection over
general alphabets. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2023, pages 5220–5242. SIAM, 2023. doi:10.1137/1.9781611977554.CH189.
45 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings

of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.
46 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of

Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.
47 Zvi Galil and Kunsoo Park. Alphabet-independent two-dimensional witness computation.

SIAM J. Comput., 25(5):907–935, 1996. doi:10.1137/S0097539792241941.
48 P. Gawrychowski, S. Ghazawi, and Gad M. Landau. Lower bounds for the number of repetitions

in 2D strings. In SPIRE 2021, pages 179–192, 2021. doi:10.1007/978-3-030-86692-1_15.
49 Ra�aele Giancarlo. A generalization of the su�x tree to square matrices, with applications.

SIAM J. Comput., 24(3):520–562, 1995. doi:10.1137/S0097539792231982.
50 Ra�aele Giancarlo and Roberto Grossi. On the construction of classes of su�x trees for

square matrices: Algorithms and applications. Inf. Comput., 130(2):151–182, 1996. doi:
10.1006/INCO.1996.0087.

51 Mathieu Giraud. Not so many runs in strings. In Language and Automata Theory and

Applications, Second International Conference, LATA 2008, volume 5196, pages 232–239.
Springer, 2008. doi:10.1007/978-3-540-88282-4_22.

52 Mathieu Giraud. Asymptotic behavior of the numbers of runs and microruns. Inf. Comput.,
207(11):1221–1228, 2009. doi:10.1016/j.ic.2009.02.007.

53 Dan Gusfield. Algorithms on Strings, Trees, and Sequences – Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.
54 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the

tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004. doi:10.1016/J.JCSS.
2004.03.004.

55 Jin-Ju Hong and Gen-Huey Chen. E�cient on-line repetition detection. Theor. Comput. Sci.,
407(1-3):554–563, 2008. doi:10.1016/j.tcs.2008.08.038.

56 Ramana M. Idury and Alejandro A. Schä�er. Multiple matching of rectangular patterns. Inf.
Comput., 117(1):78–90, 1995. doi:10.1006/INCO.1995.1030.

57 L. Ilie. A simple proof that a word of length n has at most 2n distinct squares. Journal of
Combinatorial Theory, Series A, 112(1):163–164, 2005. doi:10.1016/J.JCTA.2005.01.006.

58 L. Ilie. A note on the number of squares in a word. Theoretical Computer Science, 380(3):373–
376, 2007. doi:10.1016/J.TCS.2007.03.025.

https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1016/0304-3975(91)90073-B
https://doi.org/10.1007/3-540-59175-3_91
https://doi.org/10.1007/3-540-59175-3_91
https://doi.org/10.1007/BF01190846
https://doi.org/10.1016/J.DAM.2014.08.016
http://www.jstor.org/stable/1969503
https://doi.org/10.4230/LIPICS.ICALP.2021.63
https://doi.org/10.1137/1.9781611977554.CH189
https://doi.org/10.2307/2034009
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1137/S0097539792241941
https://doi.org/10.1007/978-3-030-86692-1_15
https://doi.org/10.1137/S0097539792231982
https://doi.org/10.1006/INCO.1996.0087
https://doi.org/10.1006/INCO.1996.0087
https://doi.org/10.1007/978-3-540-88282-4_22
https://doi.org/10.1016/j.ic.2009.02.007
https://doi.org/10.1016/J.JCSS.2004.03.004
https://doi.org/10.1016/J.JCSS.2004.03.004
https://doi.org/10.1016/j.tcs.2008.08.038
https://doi.org/10.1006/INCO.1995.1030
https://doi.org/10.1016/J.JCTA.2005.01.006
https://doi.org/10.1016/J.TCS.2007.03.025


P. Charalampopoulos, P. Gawrychowski, and S. Ghazawi 39:17

59 Juha Kärkkäinen and Esko Ukkonen. Two- and higher-dimensional pattern matching in optimal
expected time. SIAM J. Comput., 29(2):571–589, 1999. doi:10.1137/S0097539794275872.

60 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977. doi:10.1137/0206024.

61 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen.
Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015.

62 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

63 Dmitry Kosolobov. Online square detection. CoRR, abs/1411.2022, 2014. arXiv:1411.2022.
64 Dmitry Kosolobov. Online detection of repetitions with backtracking. In Combinatorial Pattern

Matching – 26th Annual Symposium, CPM 2015, volume 9133, pages 295–306. Springer, 2015.
doi:10.1007/978-3-319-19929-0_25.

65 N. H. Lam. On the number of squares in a string. AdvOL-Report 2, 2013.
66 Ho-fung Leung, Zeshan Peng, and Hing-Fung Ting. An e�cient algorithm for online square

detection. Theor. Comput. Sci., 363(1):69–75, 2006. doi:10.1016/J.TCS.2006.06.011.
67 Michael G. Main and Richard J. Lorentz. An O(n logn) algorithm for finding all repetitions

in a string. J. Algorithms, 5(3):422–432, 1984. doi:10.1016/0196-6774(84)90021-X.
68 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the stanley-wilf

conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004. doi:10.1016/J.JCTA.2004.04.
002.

69 Shoshana Neuburger and Dina Sokol. Succinct 2D dictionary matching. Algorithmica, 65(3):662–
684, 2013. doi:10.1007/S00453-012-9615-9.

70 Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string contain?
Theor. Comput. Sci., 401(1-3):165–171, 2008. doi:10.1016/J.TCS.2008.04.020.

71 Jakub Radoszewski. Linear time construction of cover su�x tree and applications. In ESA,
volume 274 of LIPIcs, pages 89:1–89:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023.

72 Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing: Volume 1 and 2. Computer
Science and Applied Mathematics. Academic Press, Orlando, FL, 2 edition, 1982.

73 Wojciech Rytter. The number of runs in a string: Improved analysis of the linear upper bound.
In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, pages
184–195, 2006. doi:10.1007/11672142_14.

74 A. Thierry. A proof that a word of length n has less than 1.5n distinct squares. arXiv, 2020.
arXiv:2001.02996.

75 A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr., I Mat.–Nat. Kl., Christiania,
7:1–22, 1906.

ICALP 2024

https://doi.org/10.1137/S0097539794275872
https://doi.org/10.1137/0206024
https://doi.org/10.1109/SFFCS.1999.814634
https://arxiv.org/abs/1411.2022
https://doi.org/10.1007/978-3-319-19929-0_25
https://doi.org/10.1016/J.TCS.2006.06.011
https://doi.org/10.1016/0196-6774(84)90021-X
https://doi.org/10.1016/J.JCTA.2004.04.002
https://doi.org/10.1016/J.JCTA.2004.04.002
https://doi.org/10.1007/S00453-012-9615-9
https://doi.org/10.1016/J.TCS.2008.04.020
https://doi.org/10.1007/11672142_14
https://arxiv.org/abs/2001.02996




Streaming Edge Coloring with Subquadratic

Palette Size

Shiri Chechik �

Tel Aviv University, Israel

Doron Mukhtar �

Tel Aviv University, Israel

Tianyi Zhang �

Tel Aviv University, Israel

Abstract

In this paper, we study the problem of computing an edge-coloring in the (one-pass) W-streaming
model. In this setting, the edges of an n-node graph arrive in an arbitrary order to a machine with
a relatively small space, and the goal is to design an algorithm that outputs, as a stream, a proper
coloring of the edges using the fewest possible number of colors.

Behnezhad et al. [Behnezhad et al., 2019] devised the first non-trivial algorithm for this problem,
which computes in Õ(n) space a proper O(�2)-coloring w.h.p. (here � is the maximum degree
of the graph). Subsequent papers improved upon this result, where latest of them [Ansari et al.,
2022] showed that it is possible to deterministically compute an O(�2/s)-coloring in O(ns) space.
However, none of the improvements succeeded in reducing the number of colors to O(�2≠‘) while
keeping the same space bound of Õ(n)1. In particular, no progress was made on the question of
whether computing an O(�)-coloring is possible with roughly O(n) space, which was stated in
[Behnezhad et al., 2019] to be an interesting open problem.

In this paper we bypass the quadratic bound by presenting a new randomized Õ(n)-space
algorithm that uses Õ(�1.5) colors.
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1 Introduction

The last few decades have witnessed significant technological advancements, which have led
to an exponential increase in the volume of data sets and network tra�c that require e�cient
processing. However, many of the devices that we use to perform these tasks lack su�cient
storage capacity to store even a small fraction of the input data, which typically arrives
in an unordered stream. Consequently, we often find ourselves processing this data using
partial information. This scenario is commonplace, especially when attempting to receive
information from remote servers over the internet or fetch data from an external memory
unit.
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40:2 Streaming Edge Coloring with Subquadratic Palette Size

To gain a better understanding of computing capabilities in such scenarios, the data
stream model has been introduced. This model involves receiving an arbitrary stream of
tokens as input, and the objective is to compute a function of this input by performing one
or more passes over the stream while using minimal working memory. The model has been
primarily applied to problems on graphs. In this context, the data stream consists of a
sequence of updates that defines the edge-set of a graph with a known number of vertices,
and the aim is to compute various properties of this graph.

Clearly, our aim in such problems is to design algorithms whose space complexity is
asymptotically much less than the number of edges - preferably linear in the number of
vertices. However, in some cases, the size of the output may be as large as the size of the
input, forcing us to use a very large space to store it. To get around this, we use a known
variant of the streaming model, called the W-steaming model [5], which allows us to stream
parts of the output along the computation. However, it forces the algorithm to commit to
parts of the output without even seeing the entire input.

Many important problems have been studied in the W-streaming model. In this paper
we focus on the problem of properly coloring the edges of a given graph with a small number
of colors. This problem is considered to be one of the most fundamental and well-studied
problems in graph theory, with many applications in scheduling and communications.

Behnezhad et al. [2] were the first to consider the problem of edge-coloring in the W-
streaming model. They distinguished between two variants: random order streams – in which
the edges arrive according to a random permutation that was chosen uniformly at random
before the start of the algorithm, and adversarial order streams – in which the edges arrive
in an arbitrary order. For the first variant, they provided a simple one-pass algorithm that
uses O(�) colors and Õ(n) space (where as usual � and n respectively denote the maximum
degree of the input graph and the number of its vertices). For the second one, they provided
a di�erent one-pass algorithm that in Õ(n) space computes w.h.p. a proper O(�2)-coloring.
Charikar and Liu [7] improved the above results by devising a one-pass Õ(n)-space algorithm
that uses � + o(�) colors for random order streams, and a one-pass randomized algorithm
that uses Õ(ns) space and (1+ o(1))�2/s colors for adversarial order streams. More recently,
Ansari et al. [1] provided two simple deterministic algorithms that in one pass and O(ns)
space compute a proper coloring that uses no more than (1+ o(1))�2/s colors for adversarial
order streams, improving the result of [7].

Interestingly, for the more challenging model of adversarial order streams, all of the above
results require �̃(�2) colors when the available space is Õ(n). This raises the question of
whether one can get asymptotically below this number of colors, while retaining the same
space bound, or if �̃(�2) is an inherent limitation. In this paper we resolve this question, and
show that it is possible to reduce the number of colors without compromising on increasing
the given space.

1.1 Our result

We break the quadratic barrier for the first time by providing a new randomized algorithm
that in one pass and Õ(n)-space (in expectation) computes a proper edge-coloring which
uses, in expectation, no more than Õ(�1.5) colors (for adversarial order streams).

I Theorem 1. For an undirected (multi-)graph G = (V,E) on n vertices and maximum
degree �, there is a single-pass randomized streaming algorithm using Õ(n) space for edge
coloring that uses Õ(�1.5) colors with high probability.
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1.2 Related work

The edge-coloring problem has been studied in several models of computation (see, e.g.
[12, 10, 6, 2]). A closely related model to the W-Streaming is known as the Online model. In
the online edge-coloring problem, we also assume that the edges of the input graph arrive as
a data stream (which can be either random or arbitrary). There is no space limitation, but
there is a requirement to instantly compute and output a color for each newly received edge,
as opposed to the W-Streaming model in which we can delay the announcement of some of
the edges by bu�ering them. See [15, 11, 13, 4, 8] for some latest results on this problem.

Independent work

In a concurrent work [3], Behnezhad and Saneian have obtained the same result as Theorem 1;
besides, they have a general trade-o� of Õ(ns) space and Õ(�1.5/s) colors, for any parameter s.
In another concurrent work [9], Ghosh and Stoeckl have achieved a trade-o� of Õ(ns) space
and Õ(�2/s2) colors, for any parameter s.

1.3 Technical Overview

Ansari et al. [1] used, in their second algorithm, a very simple bu�ering approach to color
the graph’s edges. Let G = (V,E) be the input graph, n be its number of vertices and � be
its maximum degree. Assuming that we have a working space of at least n words, we divide
the edge-stream E into continuous intervals E1, ..., Ek of n edges each, bu�er each one of
them in order, and color each graph Gi = (V,Ei) separately by using a di�erent set of O(�)
colors. This gives us a proper O(�2)-coloring as there can be at most � such intervals.

To reduce the number of colors in such an approach, we have to avoid somehow the
allocation of a new O(�)-color palette for each interval. Our main observation here is that
we may not be able to edge-color the graph of a given interval Gi with much less than �(�)
colors (as it may contain vertices of high degree), but we can use fewer colors to color all the
edges in Gi that are between vertices of a su�ciently low vertex degrees. We will still have
to use palettes of O(�) colors to color the rest of the edges, but these edges are now adjacent
to high degree vertices. As the number of these vertices in each of the intervals cannot be
too large, we can a�ord to store in the machine more information about the colorings that
were used to color these edges across several intervals (which we call a phase). This way, it
will hopefully be su�cient to allocate a few palettes of O(�)-colors per phase, instead of
allocating a new one for each interval.

Let us develop this idea further. We divide the intervals E1, ..., Ek into contiguous phases
P1, ..., PkÕ of D intervals each. In each phase i œ {1, ..., kÕ}, we are going to process the
intervals one by one, and color their edges. To do that, we distinguish, in each interval
Ej œ Pi, between the “low” edges - those whose endpoints are of low degree (at most some
parameter t = �(

Ô
�)) in Gj , the “high” edges - those whose endpoints are of high degree

(greater than t in Gj) and the “mixed” - all the rest. As we discussed above, in each interval
Ej œ Pi, the number of nodes whose degree in Gj is greater than t, cannot be that large
(less than 2n/t). Thus, as long as t Ø D, we can store for the current phase, O(1) words for
each node and each interval such that this node is of degree greater than t in this interval.

With that in mind, consider the following procedure for coloring the high edges. We
allocate at the start of the phase, c palettes A1, ..., Ac of O(�) colors each. In each interval,
we choose uniformly at random a set A from the collection, and color all the high edges that
are incident only to vertices that weren’t previously incident to high edges that were colored
using A. (that is, we store for each node that was incident to a high edge, the IDs of all the
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40:4 Streaming Edge Coloring with Subquadratic Palette Size

palettes that were used to color its incident edges.) Note that each vertex may have a high
degree in no more than �/t intervals. Therefore, the probability that a high edge will not
be colored in a certain interval is at most 2�/tc, which for c = C(�/t) is 2/C. This means
that in expectation only a fraction of the edges remains uncolored. Let us ignore these edges
for a moment, and discuss how we color the rest of the edges.

Coloring the low edges of each interval is simple as we don’t need big palettes for them.
So we just allocate a new set of O(t) colors for each interval, and properly color the low
edges of that interval with it.

We move now for the task of coloring the mixed edges. Note that this case is more
complicated than the previous ones, as we need to use palettes of K = O(�)-colors, but
cannot store too much information for the nodes with low degree. As before, we start by
assigning at the start of the phase a set of c = C(�/t) palettes B1, ..., Bc of O(�) colors
each. In each interval, we choose uniformly at random a set B from the collection, and the
idea now is that the vertex with the low degree of each mixed edge will choose a color from
B to color this edge.

We illustrate the problems that could arise (when trying to color these edges) and the
way we handle them, by focusing on two edges {u, v} and {u,w} that belong to two di�erent
intervals. Note that since these edges share a vertex, they cannot be colored with the same
color. In the first case, u has a high degree in both of the intervals. A possible conflict can
occur if we happen to chose the same set B in both of them. To solve this, we do the same
thing that we did for the high edges (i.e. we store at the high degree vertices the IDs of
the palettes with which previous incident edges were colored, and avoid coloring an edge
if a conflict was detected). This will guarantee that in expectation only a fraction of them
remains uncolored. In the second case, u has a low degree in both of the intervals. This
means that both w and v have a high degree in their intervals, but they may be di�erent,
and so we cannot know the IDs of the previous palettes. To solve this, we maintain for u a
counter cu, which counts the total number of edges that connected u to high degree vertices
when it had low degree. When u wants to choose a color from B it simply takes the cu color
in it, this will guarantee that no conflict can occur in such cases. In the third and last case,
u has a high degree in one of the intervals and a low in the other. For resolving possible
conflicts in this case, we make use of random o�sets. At the start of the phase, we choose for
each vertex v a uniformly random integer rv between 0 and K ≠ 1, and use it to permute
the colors in the set (that is, v considers the first color in B to be the color in the position
rv, and so on). Before we color an edge {u, v} we check whether the o�sets rv and ru are far
enough. If this is not the case we skip it (this happens with small probability).

To summarize, in each phase we use O(c� + tD) colors. As we have O(�/D) phases, we
get that the total number of colors is O(�3/(tD) + t�). The edges that were left uncolored,
we treat as a new virtual stream, and apply recursively the algorithm on it. As in expectation
the number of uncolored edges reduces each time by a constant factor, we get that it only
increases the space bound and the number of colors by a factor of O(log�) .

2 Edge coloring with subquadratic palette size

2.1 Algorithm description

Preparation

Our algorithm assumes prior knowledge of the maximum degree �. Without loss of generality,
assume

Ô
� is an integer power of 2. If the data stream contains at most O(n) edges, then the

entire stream fits in the memory, so we can color the graph with O(�) colors straightforwardly
(more precisely, Á 3�

2
Ë colors for multi-graphs, and � + 1 colors for simple graphs [14, 16]).
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The algorithm divides the data stream into intervals, each interval consisting of n edges
from E (the last interval may have less than n edges). In general, there are at most
|E|/n = O(�) intervals in the data stream. Let El ™ E be the set of edges in the l-th
interval. Denote by Gl = (V,El) the subgraph collected from this interval. We further
partition all intervals into phases, each phase consisting of �1/2 consecutive intervals (the
last phase may have less). Di�erent phases will use di�erent sets of edge colors and thus are
independent. For the rest of this section, we will describe our algorithm for an individual
phase.

Fix any degree threshold d be any integral power of 2. If d <
Ô

�, we will create O(
Ô

�)
new colors for each interval which should be enough to color all edges (u, v) such that

max{deg
Gl
(u),deg

Gl
(v)} < 2d

Otherwise if d Ø
Ô

�, then for each interval El, we will describe an algorithm that assigns
colors to all edges (u, v) such that

max{deg
Gl
(u),deg

Gl
(v)} œ [d, 2d)

Ranging over all choices of d, we would be able to color the whole graph Gl, by blowing up
the total number of colors by a factor of O(log�).

A vertex v œ V is called high-degree in Gl, if degGl
(v) œ [d, 2d), and if deg

Gl
(v) < d, then

it is called low-degree; we will not consider any vertices whose degree in Gl is at least 2d.
Let Ÿ Ø 32 be a constant which is an integer power of 2. At the beginning of a single

phase, the algorithm prepares three sequences of disjoint color palettes: A1, A2, · · · , AŸ�/d,
and B1, B2, · · · , BŸ�/d, and C1, C2, · · · , CŸ�/d. All palettes Ai, Bi, Ci have size K = 2Ÿd.

For each palette X (X œ {Ai, Bi, Ci}), its colors will be indexed by 0, 1, 2 · · · ,K≠1. Each
Ai will only be used to color edges between high-degree vertices in some intervals, and each
BifiCi will only be used to color edges between high-degree vertices and low-degree vertices in
some intervals. For each vertex v œ V , take a uniformly random integer o�set rv œ [0,K ≠ 1].
Additionally, for each palette index i, maintain a counter cv[i] œ {‹} fi [0,K ≠ 1] which will
bound the number of edges incident on v with colors from palette Ci; when cv[i] = ‹, it
means this counter cv[i] has not been initialized yet, so it does not take any space in the
storage.

During this phase, each vertex v holds a set of indices Iv ™ [Ÿ�/d], such that i œ Iv if
edges incident on v have been colored with colors from palette Ai in any previous intervals.
Finally, the algorithm maintains a virtual stream of leftover edges, which are edges discarded
temporarily but will be processed again recursively.

Processing intervals

Let l0 be the index of the first interval of this phase. For each interval indexed by l, draw
a random index ‡l œ [Ÿ�/d] uniformly at random. For any i, keep a counter pl[i] =
|{‡k = i | l0 Æ k < l}|. Note that all these counters {pl[i]}1ÆiÆŸ�/d can be stored using
O(Ÿ�/d) = O(n) space; for the l-th interval, we are only using counters pl[ú], and previous
counters will be discarded.

Partition the graph Gl = (V,El) into two disjoint subgraphs: Gl = H1

l
fi H2

l
defined

below; edges in these subgraphs will be colored separately.
(1) H1

l
consists of all edges between high-degree vertices in Gl.

To color edges in H1

l
, let U be the set of all high-degree vertices such that ‡l /œ Iv. Then,

use the palette A‡l to color the subgraph H1

l
[U ] since |A‡l | = 2Ÿd > 4d ≠ 1.
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40:6 Streaming Edge Coloring with Subquadratic Palette Size

After that, for each high-degree vertex v, add ‡l to Iv by updating Iv Ω Iv fi {‡l}.
Finally, for each high-degree vertex v /œ U , insert all its incident edges in Gl to the
virtual stream as leftover edges; we emphasize the point that this also includes its edges
connecting to low-degree vertices.

(2) H2

l
consists of all edges connecting high-degree vertices to low-degree vertices.

To color edges in H2

l
, go over all low-degree vertices u in the alphabetical order. For each

low-degree vertex u, if cu[‡l] = ‹, then check if deg
Gl
(u) >

Ô
�; if so, then initialize a

counter cu[‡l] Ω 0.
Enumerate its incident edges inH2

l
in the alphabetical order. For the b-th edge (u, v) œ El

incident on u (starting with b = 0), consider several cases below.
(a) If (u, v) was already inserted to the virtual stream in Step (1) due to the reason that

v /œ U , then skip it and proceed to the next edge incident on u.
(b) Define ” = rv ≠ ru mod K, so d œ [0,K ≠ 1]. If ” < 2d or ” > K ≠ 2d, then insert

edge (u, v) to the virtual stream as a leftover edge.
(c) Otherwise, assume 2d Æ ” Æ K ≠ 2d. There are several sub-cases.

If cu[‡l] = 2d, then simply insert the edge (u, v) to the virtual stream as a leftover
edge.
If cu[‡l] ”= ‹ and cu[‡l] < 2d, then check if the (ru + cu[‡l])-th color from palette
C‡l has already been used in H2

l
on any other edge incident on high-degree vertex

v. If so, then insert the edge (u, v) to the virtual stream as a leftover edge;
otherwise, assign the (ru + cu[‡l])-th color from palette C‡l to edge (u, v).
Otherwise if cu[‡l] = ‹, check if pl[‡l] Ø 2d/

Ô
�. If so, insert edge (u, v) to the

virtual stream as a leftover edge.
In the case that cu[‡l] = ‹ and pl[‡l] < 2d/

Ô
�, check if the1

ru + b+
Ô

� · pl[‡l]
2
-th color from palette B‡l has already been used in H2

l
on

any other edge incident on high-degree vertex v. If so, then insert the edge (u, v) to
the virtual stream as a leftover edge; otherwise, assign the

1
ru + b+

Ô
� · pl[‡l]

2
-

th color from palette B‡l to edge (u, v).
In all cases (a)(b)(c), if cu[‡l] ”= ‹, increment the counter by one cu[‡l] Ω cu[‡l] + 1
afterwards (even if (u, v) is inserted to the virtual stream).

Coloring leftover edges

To color all leftover edges in the virtual stream, we apply the above algorithm recursively on
this virtual stream as its input data stream, with fresh colors and independent randomness.
Some of the notations used in the algorithm description are summarized in Table 1.

2.2 Proof of correctness

Let us first state some basic properties of the algorithm.

I Lemma 2. The value of any counter cu[i] depends on the data stream and randomness of
indices {‡l}, but is independent of the random shifts {rv | v œ V }.

Proof. According to the description of the algorithm, each counter cu[i] is initialized to 0 in
the first interval of edges Ek such that deg

Gk
(u) >

Ô
� and ‡k = i; this event is independent

of random shifts {rv | v œ V }. Later on, for any l Ø k such that ‡l = i, cu[i] will increase by
|deg

H
2
l
(u)| if u is a low-degree vertex in Gl. Therefore, cu[i] is always independent of the

random shifts {rv | v œ V }. J
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Table 1 Some of the notations used in the algorithm.

notation definition
El the set of O(n) edges in the l-th interval in from the data stream
Gl Gl = (V,El) is the subgraph collected in the l-th interval

phase a phase consists of �1/2 consecutive intervals
Ÿ a constant at least 32 which is also an integer power of 2

Ai, Bi, Ci, 1 Æ i Æ Ÿ�/d three sequences of sets of palettes of size K = 2Ÿd

cv[i] œ {‹} fi [0,K ≠ 1] a counter bounding using colors from palette Ci

rv rv œ [0,K ≠ 1] is a random shift
Iv i œ Iv if v already has edges with colors from Ai

‡l a uniformly random index from [1,Ÿ�/d] for the l-th interval
pl[i] a counter defined by pl[i] = |{‡k = i | l0 Æ k < l}|

high-degree vertex high-degree if deg
Gl

œ [d, 2d)
low-degree vertex high-degree if deg

Gl
< d

H1
l all edges between high-degree vertices in Gl

H2
l all edges connecting high-degree vertices and low-degree vertices

I Lemma 3. At the beginning of the l-th interval, for any low-degree vertex u, if cu[‡l] ”= ‹,
then all colors from any palette C‡l indexed by ru + cu[‡l], rv + cu[‡l] + 1, · · · , ru + 2d ≠ 1
mod K haven’t been used for any edge incident on u.

Proof. This is because the counter cu[‡l] increases by one each time we use a color from C‡l

on edges incident on u, so the colors indexed by larger integers have not been used yet. J

I Lemma 4. For each vertex u, at any moment during the current phase, there are at most
�

2d
di�erent indices i such that
ÿ

l,‡l=i

deg
Gl
(u) Ø 2d

Proof. Since deg
G
(u) Æ �, the number of indices i such that

q
l,‡l=i

deg
Gl
(u) Ø 2d is

bounded by �

2d
. J

Next, we show that our algorithm always produces a valid edge coloring.

I Lemma 5. The algorithm always outputs a valid edge coloring of G.

Proof. Consider any two adjacent edges (u, v), (u,w) œ E, and we will show that (u, v), (u,w)
must have di�erent colors in the output stream. Note that v does not need to be di�erent
from w since G might not be a simple graph. If one of them appears in the virtual stream,
then because the recursion for leftover edges uses fresh colors for each interval, we can make
sure that (u, v), (u,w) are assigned di�erent colors. For the rest we assume that (u, v), (u,w)
are not leftover edges.

First, consider the case where both (u, v), (u,w) appear in the same interval from the
input stream. According to the algorithm, if they are colored in di�erent Step (1) and (2)
respectively, then they are picking colors from separate palettes; if they are colored in the
same Step (1) or (2), then the algorithm must have colored them in a compatible way.

Secondly, consider the case where (u, v), (u,w) appear in di�erent intervals from the input
stream. Assume (u, v) is in interval El and (u,w) is in interval Eh, h ”= l. Consider the
following cases.
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40:8 Streaming Edge Coloring with Subquadratic Palette Size

One of (u, v), (u,w) is colored in Step (1) and the other in Step (2).
In this case, they are using di�erent palettes, so their colors are always di�erent.
Both (u, v), (u,w) are colored in Step (1) but in di�erent intervals.
In this case, since (u,w) is not a leftover edge, by the algorithm we know that ‡l ”= ‡h.
Therefore, (u, v), (u,w) use colors from di�erent palettes A‡l , A‡h .
Both (u, v), (u,w) are colored in Step (2) but in di�erent intervals.
If u is high-degree in both intervals El, Eh, then since neither of (u, v), (u,w) is a leftover
edge, it must be ‡l ”= ‡h. Hence, (u, v), (u,w) are taking colors from di�erent palettes.
Next, assume u is low-degree in both intervals, plus that ‡l = ‡h. If (u, v), (u,w) were
selecting colors from B‡l , C‡h , then their colors must be di�erent. So, we only need to
consider the case where both (u, v), (u,w) were selecting colors from B‡l , or from C‡l .
Let us analyze these two cases separately.

(u, v), (u,w) were selecting colors from B‡l . Then, by the algorithm description, (u, v)
could only take colors from B‡l taking indices from the range

[ru +
Ô

� · pl[‡l], ru +
Ô

� · (pl[‡l] + 1) ≠ 1] mod K

and (u,w) could only take colors from B‡l taking indices from the range

[ru +
Ô

� · ph[‡h], ru +
Ô

� · (ph[‡h] + 1) ≠ 1] mod K

As l ”= h and ‡l = ‡h, we know that pl[‡l] ”= ph[‡h], and therefore the two ranges

[ru +
Ô

� · pl[‡l], ru +
Ô

� · (pl[‡l] + 1) ≠ 1] mod K

and

[ru +
Ô

� · ph[‡h], ru +
Ô

� · (ph[‡h] + 1) ≠ 1] mod K

are disjoint, and thus the colors of the two edges must be di�erent.
(u, v), (u,w) were selecting colors from C‡l .
Suppose the color indices of (u, v), (u,w) were ru + c(1)u [‡l] and ru + c(2)u [‡l], where
c(1)u [‡l] ”= c(2)u [‡l] are the counter values of cu[‡l] by the time when the color was
selected. Hence, (u, v), (u,w) are picking colors with di�erent indices.

Finally, assume u is high-degree in Gl and low-degree in Gh. Then, when coloring the
edge (u, v), by the condition on Step (2)(b), we know that ” = ru ≠ rv mod K belongs to
[2d,K≠2d]. By Lemma 3, as the color index of (u, v) always belongs to {rv, rv+1, · · · , rv+
2d ≠ 1} and the color index of (u,w) always belongs to {ru, ru + 1, · · · , ru + 2d ≠ 1}, the
colors of (u, v), (u,w) should be di�erent as the two index sets are disjoint. J

Next, we verify that the total space of each recursion level is at most O(n).

I Lemma 6. The space usage of each recursion level of the algorithm is O(n).

Proof. It is clear that in each phase, the total space of all o�sets is at most O(n). For the
number of counters in a single phase, every time a new counter cu[‡l] has been initialized,
we must have deg

Gl
(u) >

Ô
� for some interval index l within this phase. Since the total

sum of vertex degrees within this phase is bounded by O(n
Ô

�), we know that the number
of counters is bounded by O(n).

As for the total space sets Iv’s, in each interval, any set Iv adds one more element if v is
high-degree. As the total number of edges collected from a single phase is O(n

Ô
�), The

total size of
q

vœV
|Iv| would be at most O(n

Ô
�/d) = O(n). J
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To bound the total number di�erent colors in G, we need to analyze the total number of
leftover edges of each recursion level.

I Lemma 7. Suppose there are m edges from the input stream (across all phases) in total.
Then, the expected number of leftover edges to enter the virtual stream is at most 7m/Ÿ, over
the randomness of shifts {rv}vœV and indices {‡l}.

Proof. Consider any single phase, and let (u, v) œ E be an arbitrary edge that appears in
interval El. There are several cases where (u, v) could possibly be a leftover edge that gets
inserted to the virtual stream.

Edge (u, v) becomes leftover on Step (1).
The condition for (u, v) being cast as a leftover edge is that ‡l œ Iu fi Iv; that is, palette
A‡l was already used for edges incident on u or v in a previous interval. Since any vertex
can be high-degree in at most �/d intervals, the number of non-zero entries of Iu, Iv is
at most 2�/d. As ‡l œ [Ÿ�/d] is uniformly random, the probability that ‡l œ Iu fi Iv is
at most 2/Ÿ, over the randomness of ‡l.
Edge (u, v) becomes leftover on Step (2) because cu[‡l] = 2d.
By Lemma 4, there are at most �

2d
di�erent indices i such that

q
l≠1

k=l0,‡k=i
deg

Gk
(v) Ø 2d;

let I be the set of these indices. Then, since ‡l is picked uniformly at random, the
probability that ‡l œ I is at most 1

2Ÿ
.

As cu[i] Æ
q

l≠1

k=l0,‡k=i
deg

Gk
(v) for any i, the probability that cu[‡l] = 2d is at most 1

2Ÿ
.

Therefore, (u, v) becomes leftover on this step with probability at most 1

2Ÿ
.

Edge (u, v) becomes leftover on Step (2)(b).
In this case, we have ” < 2d or ” > K ≠ 2d for ” = rv ≠ ru mod K. Since rv, ru were
chosen uniformly at random from [0,K ≠ 1], the probability of this event is at most
4d/K < 2/Ÿ, over the randomness of rv.
Edge (u, v) becomes leftover on Step (2)(c) due to pl[‡l] Ø 2d/

Ô
�.

Note that since each ‡k was picked uniformly at random, the expectation of pl[‡l]
which counts |{‡k = ‡l | l0 Æ k < l}| is bounded by d

Ÿ

Ô
�
, over the randomness of

‡l0 ,‡l0+1, · · · ,‡l≠1. By Markov’s inequality, the probability that pl[‡l] Ø 2d/
Ô

� is at
most 1

2Ÿ
.

Edge (u, v) becomes leftover on Step (2)(c) and pl[‡l] < 2d/
Ô

�.
In this case, assume u is low-degree and v is high-degree in interval El. We need to
consider two more sub-cases below.

cu[‡l] ”= ‹.
In this case, edge (u, v) was attempting to use a color from C‡l . Right before (u, v)
was enumerated, let S be the set of low-degree neighbors w of v whose alphabetical
orders are before u, plus that cw[‡l] ”= ‹.
For each vertex w œ S, suppose there are kw parallel edges between v, w, and let bw
be the value of the counter cw[‡l] when the first edge (u,w) was enumerated from the
perspective of w. Define an index set

I =
€

wœS

{rw + bw, rw + bw + 1, · · · , rw + bw + kw ≠ 1}

Note that |I| < 2d since
q

wœS
kw Æ deg

Gl
(v) < 2d. As the algorithm enumerates

vertices and edges on Step (2)(c) in the alphabetical order, we know that I is the set
of all possible color indices of edges (v, w), w œ S in palette C‡l .
Now, on the one hand, by Lemma 2, all values of bw, kw are independent of the random
shifts {rz | z œ V }. Therefore, as u /œ S, we know that ru is independent of I. On
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the other hand, for (u, v) to be a leftover edge, ru + cu[‡l] must belong to I. As the
value cu[‡l] is also independent of ru, the probability that ru + cu[‡l] œ I is at most
|I|/K < 1/Ÿ, over the random choice of ru.
cu[‡l] = ‹.
In this case, edge (u, v) was attempting to use a color from B‡l . Similar to the previous
sub-case, right before (u, v) was enumerated, let T be the set of low-degree neighbors
w of v whose alphabetical orders are before u, plus that cw[‡l] = ‹.
For each vertex w œ T , suppose there are kw parallel edges between u,w, and (u,w)
(the first copy) is the bw-th edge incident on w. Define an index set

J =
€

wœT

{rw+bw+
Ô

�·pl[‡l], rw+bw+
Ô

�·pl[‡l]+1, · · · , rw+bw+
Ô

�·pl[‡l]+kw≠1}

Note that |J | < 2d since
q

wœT
kw Æ deg

Gl
(v) < 2d. As the algorithm enumerates

vertices and edges on Step (2)(c) in the alphabetical order, we know that J is the set
of all possible color indices of edges (v, w), w œ T in palette B‡l .
Suppose (u, v) is the b-th edge of u in Gl, so ru + b+

Ô
� · pl[‡l] is the color index that

(u, v) attempted to use in B‡l . Since u /œ T , and that ru is independent of pl[‡l] and
all values in {bw | w œ T}, we know that the probability that ru + b+

Ô
� · pl[‡l] œ J

is at most |J |/K < 1/Ÿ, over the random choice of ru.

Taking a summation of all the cases, the probability that (u, v) becomes a leftover edge
is at most 7/Ÿ. Therefore, expected number of leftover edges is bounded by 7m/Ÿ. J

I Lemma 8. The expected recursion depth of the main algorithm is O(log�).

Proof. Consider any recursion where the input stream contains m edges. By Markov’s
inequality and Lemma 7, at each recursion level, with probability at least 1/2, the number of
leftover edges is at most 14m/Ÿ < m/2. Since the original graph G contains O(n�) edges,
after O(log�) recursion levels in expectation, the input has at most O(n) edges, so the
algorithm would not recurse further. J

As a corollary, we can bound the total number of di�erent colors and total memory, which
concludes the proof of Theorem 1.

I Corollary 9. The number of colors used by our algorithm is Õ
!
�1.5

"
, and the total memory

is bounded by O(n log�); both bounds hold in expectation.

Proof. Consider any recursion level. According to the algorithm, in each phase and each
choice of d Ø

Ô
� which is an integer power of 2, the total number of colors in the palettes

{Ai} fi {Bi} fi {Ci} is O(�). Also, each interval creates at most O(
Ô

�) new colors when
d <

Ô
�. Since there are O(

Ô
�) phases, the number of colors used for processing intervals

is Õ(�1.5), summing over all choices of d. As the expected recursion depth is O(log�),
together with Lemma 6 we can finish the proof. J

2.3 Adaptation to an unknown �
So far we have assumed that the value of the maximum degree � of G is known to the
algorithm as prior knowledge. We can adapt our algorithm to an unknown � by losing a
constant factor in the total number of colors in the following way. Basically, we will maintain
the value �t which is the maximum degree of the subgraph containing the first t edges in
the data stream. Whenever �t œ (2k≠1, 2k], we will apply Theorem 1 with � = 2k to color
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all the edges. If k increases at some point, we will restart a new instance of Theorem 1 with
a new choice of � = 2k and continue to color the edges with a separate palette; to clarify,
when a new instance of Theorem 1 is restarted, we continue with the current pass of the
data stream, not starting over with a new pass. In the end, the total number of colors will
be Õ(

qÁlog �Ë
k=1

21.5k) = Õ(�1.5) in expectation.

2.4 From expectation to high probability

So far our bounds on memory and the number of colors only hold in expectation, not with
high probability. These bounds can actually hold with high probability rather than in
expectation. In fact, as shown in Lemma 8, the expected recursion depth can be bounded by
O(log�). We can also show that the depth is O(logn) with high probability, and therefore
the total number of colors is at most O(�1.5 · logn). To get rid of the dependency on logn,
we can increase the size of intervals by a factor of logn; that is, each interval now contains
O(n logn) edges. This would decreases the total number of phases by a factor of �(logn)
and thus decreases the number of colors, which cancels out the extra logn factor in the color
bound.
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Faster Algorithms for Dual-Failure Replacement

Paths
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Abstract

Given a simple weighted directed graph G = (V,E,Ê) on n vertices as well as two designated
terminals s, t œ V , our goal is to compute the shortest path from s to t avoiding any pair of
presumably failed edges f1, f2 œ E, which is a natural generalization of the classical replacement
path problem which considers single edge failures only.

This dual failure replacement paths problem was recently studied by Vassilevska Williams,
Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted
digraphs which is conditionally optimal; in the same paper, for unweighted graphs where Ê © 1,
the authors presented an algebraic algorithm with runtime Õ(n2.9146), as well as a conditional
lower bound of n8/3≠o(1) against combinatorial algorithms. However, it was unknown in their work
whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs.

As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure
replacement paths in unweighted digraphs. Our runtime is Õ(n3≠1/18). Besides, we also study
algebraic algorithms for digraphs with small integer edge weights from {≠M,≠M+1, · · · ,M ≠1,M}.
As our secondary result, we obtained a runtime of Õ(Mn2.8716), which is faster than the previous
bound of Õ(M2/3n2.9144 +Mn2.8716) from [Vassilevska Williams, Woldeghebriela and Xu, 2022].
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1 Introduction

In the replacement path problem, we want to understand shortest paths in a directed graph
that avoid presumably failed edges. More specifically, let G = (V,E,Ê) be an edge-weighted
simple digraph on n vertices and m edges. Fix a pair of source and terminal vertices s, t œ V ,
we want to compute the shortest path from s to t that avoids any designated set F ™ E of
failed edges.

The most classical setting is when the number of failures is at most one; namely, we
want to compute all the values of dist(s, t,G \ {f}) when f ranges over all edges on the
shortest path from s to t in G. The complexity of single-failure replacement path is now
well-understood. On the hardness side, it was proved that computing all single-failure
replacement paths in weighted graphs requires at least n3≠o(1) time [19] assuming the APSP
conjecture. To breach the cubic barrier, we need to assume the input digraph has small
integer edge weights, or allow approximation errors in the algorithm output. When the edge
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weights are integers in the range {≠M,≠M + 1, · · · ,M ≠ 1,M}, there is an algorithm with
runtime Õ(MnÊ)1 [7, 17]. For the special case when the input digraph is unweighted (Ê © 1),
there is a combinatorial algorithm (algorithms not using fast matrix multiplication) with
runtime Õ(mn1/2) [16], which is optimal under the hardness of combinatorial boolean matrix
multiplication [19].

A natural extension is to study replacement paths when there are two edge failures. We
are interested in fast algorithms that compute for all pairs of edges f1, f2 œ E the value of
dist(s, t,G \ {f1, f2}). This problem was first studied in [4] and recently revisited in [20]. For
general weighted digraphs, the authors of [20] designed an algorithm with runtime Õ(n3),
which is the same as the easier single failure replacement paths problem. When the graph
has small edge weights from range {≠M,≠M + 1, · · · ,M ≠ 1,M}, in the same paper the
authors have shown subcubic runtime upper bound of Õ(M2/3n2.9144 +Mn2.8716) using fast
matrix multiplication. Finally, as complementary to their algorithms, the authors showed
a conditional lower bound of n8/3≠o(1) against combinatorial algorithms for unweighted
digraphs assuming the hardness of boolean matrix multiplication.

According to the results in [20], there is a gap in their understanding about dual-failure
replacement paths in unweighted graphs. On the one hand, their algebraic algorithm computes
dual-failure replacement paths in Õ(n2.9144) by setting M = 1; on the other hand, their
conditional lower bound against combinatorial algorithms is also subcubic. So, it is not clear
whether combinatorial algorithm can achieve subcubic runtime as well, or the conditional
lower bound can be improved to cubic.

1.1 Our results

In this paper, we first study fast combinatorial algorithms for unweighted digraphs and show
that subcubic runtime can indeed be achieved without using fast matrix multiplication.

I Theorem 1. Given a simple unweighted directed graph G = (V,E) on n vertices, and
fix any pair of vertices s, t œ V , the values of all dual-failure replacement path distances
dist(s, t,G \ {f1, f2}),’f1, f2 œ E can be computed in Õ(n3≠1/18) time with high probability;
most importantly, the algorithm does not use fast matrix multiplication.

Here, a digraph is simple if it does not contain two edges between the same pair of vertices
with the same direction. Secondly, we also study fast algebraic algorithms for dual-failure
replacement paths when the edge weights are from the set {≠M,≠M + 1, · · · ,M ≠ 1,M}.
The proof of the following statement is presented in the full version.

I Theorem 2. Given a simple weighted directed graph G = (V,E,Ê) on n vertices along
with integer edge weights Ê : E æ {≠M,≠M + 1, · · · ,M ≠ 1,M} without negative cycles,
and fix any pair of vertices s, t œ V , the values of all dual-failure replacement path distances
dist(s, t,G \ {f1, f2}),’f1, f2 œ E can be computed in time Õ(Mn2.8716).

1.2 Other related works

The replacement paths problem has also been studied in other settings, including the
single-source setting [13, 6, 12, 11] and the approximation setting [8, 2, 15].

1 Ê œ [2, 2.371552] is the fast matrix multiplication exponent [21, 10, 1, 14, 18].
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s tsi ti sj tj sk tk
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f2

f1
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Figure 1 For simplicity, let us assume that when f1 falls on the sub-paths fi[si, ti], the dual-failure
replacement path also passes through si, ti. In this picture, the two cyan dual-failure replacement
paths have length less than L, and we will show that they are vertex-disjoint. The orange dual-failure
replacement path has length at least L, and so it hits a vertex p œ U with high probability; in this
case, we will compute single-source single-failure replacement paths to and from p in graph G \E(fi)
to help us compute dual-failure replacement paths.

1.3 Subcubic combinatorial algorithm for unweighted digraphs

1.3.1 One failure on a long st-path

Let us first consider the case where one edge failure f1 lies on the shortest st-path fi, while
the other one f2 does not. This case would be easy when we use fast matrix multiplication
as did by [20], but it becomes complicated when we are restricted to purely combinatorial
algorithms.

As a preliminary step, we first show how to deal with the case where |fi| > L for some
parameter L slightly larger than n0.5, say L = n0.55. Partition the st-path fi into sub-paths
of length exactly 5L as fi = “1 ¶ “2 ¶ · · · ¶ “h, h Æ Án/5LË, and let si, ti be the endpoints of
sub-path “i. Assume only one edge failure f1 falls on sub-path “i, and let fl be the optimal
replacement path from s to t avoiding {f1, f2}.

Take a random set of vertices U of size O(n logn/L). If |fl \ fi| > L, then with high
probability fl\fi would contain a vertex p from U . Then, we can compute single-source single-
failure replacement paths to and from p in graph G\E(fi) that takes runtime Õ(n3.5/L) [6], so
that for each vertex z œ V , we know the shortest path between z, p in graph G\ (E(fi)fi{f2}).
Using this information, we will be able to recover fl.

Now suppose |fl \ fi| < L. Then in this case, we will show that the detour parts of
di�erent dual-failure replacement paths fl are vertex-disjoint from each other when the first
edge failure f1 comes from di�erent choice of sub-paths “i. Then, we can partition G into
vertex-disjoint subgraphs G1, G2, · · · , Gh, such that the dual-failure replacement paths for
failures on “i belong to subgragh Gi, and solve the dual-failure replacement paths problem
for source-terminal pair (si, ti) in graph Gi. See Figure 1 for an illustration.

1.3.2 One failure on a short st-path

By the previous subsection, we have reduced to the case that the st-path has length at most
L. So, for the rest, let us rename the problem instance and assume that |fi| Æ L. For the i-th
edge ei on fi (0 Æ i < L), we can compute the optimal replacement path from s to t avoiding
ei and let –i be the corresponding detour whose endpoints are ai and bi. Again, through
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s tai bi

xi

yi

ei

fi

–i

“i

Figure 2 The cyan path is the detour –i that avoids ei, and the orange path is the detour “i that
avoids fi which lies on –i. Via some case analysis, we will show the di�cult case is that |–i| < L.

some case analysis, we can assume that the span of each detour –i which is |fi[ai, bi]| is at
most g for some parameter g slightly larger than n1/3 (say g = n0.35). Consider any edge
failure fi œ E(–i), as a simplification let us assume that the optimal replacement path from
s to t avoiding {ei, fi} is a concatenation:

fl = fi[s, ai] ¶ –i[ai, xi] ¶ “i ¶ –i[yi, bi] ¶ fi[bi, t]

where “i is a detour with respect to –i in G \ E(fi). Via some case analysis, we can assume
that |–i| < L. See Figure 2 for an illustration.

Let us first consider the case when |“i| < g. A wishful thought is that for two di�erent
choice of dual failures {ei, fi} and {ej , fj} where ei and ej are well-separated on the shortest
path fi (|fi(ei, ej)| Ø 10g), we are guaranteed that the two dual-failure detours “i and “j are
vertex-disjoint; if this is the case, then we can partition the graph G into O(L/g) vertex-
disjoint subgraphs and compute dual-failure replacement paths separately. However, this
is generally not true. The key observation is that when fi and fj are roughly at the same
height on the detour, namely |–i[ai, fi)| ¥ |–j [aj , fj)| up to an additive error of at most g,
such a disjointness condition indeed holds. Therefore, our algorithm will further partition
each detour –i into sub-paths of length g as –i = —i

1
¶ —i

2
¶ · · · ¶ —i

l . Then, fix any height
index 1 Æ h Æ l, we will deal with all the dual failures {ei, fi},’1 Æ i Æ L/g,’fi œ E(—i

h) at
the same time. See Figure 3 for an illustration.

Now, what happens if |“i| Ø g? We can take a random sample U of pivot vertices of size
O(n logn/g). Then, with high probability, “i contains a vertex in U . For simplicity, assume
both endpoints of the detour “i are lying within the sub-path —i

h which contains the second
edge failure fi, then we could compute single-source shortest paths to and from each vertex
p œ U in the subgraph G \

!
E(fi) fi E(—i

h)
"
which takes time Õ(n3/g), then we can compute

each detour “i for each choice of fi on —i
h in time Õ(g2) by guessing the positions of xi, yi.

Unfortunately, there are L2/g di�erent choices for the subgraph G \
!
E(fi) fi E(—i

h)
"
, and

thus we do not have enough time to compute single-source shortest paths for each vertex in
U in all these subgraphs. In fact, we can only a�ord to compute single-source shortest paths
for vertices in U in the subgraph Gh = G \

1
E(fi) fi

tL≠1

i=0
E(—i

h)
2
; that is, for each index

h, remove all sub-paths —i
h,’0 Æ i < L from G \ E(fi) simultaneously (which becomes Gh),

and compute multi-source shortest paths to and from U in Gh. The key observation is that
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Figure 3 For two well-separated edges ei, ej such that |fi(ei, ej)| Ø 10g, if both |“i|, |“j | are less
than g, and fi, fj are roughly at the same height (i.e., |–i[ai, fi)| ¥ |–j [aj , fj)|), then we can show
that the two dual-failure detours “i, “j are vertex-disjoint.

the detour “i cannot touch vertices on —j
h if |i ≠ j| > 10g. Therefore, to compute “i, we can

build a small shortcut graph consisting of all vertices in U fi
ti+10g

j=i≠10g V (—j
h) which contains

all edges in
ti+10g

j=i≠10g E(—j
h) \ E(—i

h) and all shortcut edges to and from p œ U weighted by
the single-source distances we have computed in Gh. See Figure 4 for an illustration.

1.3.3 Both failures on the st-path

Now let us assume both edge failures lie on fi. As the same in [20], the main di�culty of
dual-failure replacement path for this case comes from the backward paths. More specifically,
given two edge failures {f1, f2}, in general the optimal dual replacement path fl has three
parts.

A prefix of fl that diverges from fi before the first edge failure f1 on fi[s, f1), and then
meets somewhere in the middle y œ V (fi(f1, f2)) using edges in G \ E(fi).
A sub-path of fl that travels from y to another vertex x œ V (fi(f1, y]) using edges in
(G \ E(fi)) fi E(fi(f1, f2)); this sub-path is the so-called backward path of fl which may
converge and diverge multiple times with fi(f1, f2).
A su�x of fl that converges with fi after the second edge failure f2 on fi(f2, t] starting
from x using edges in G \ E(fi), and then reach t using the rest of fi.

To compute the backward path, let us divide fi into sub-paths of length L for some parameter
L as fi = “1 ¶ “2 ¶ · · · ¶ “n/L. Take a random pivot vertex set U of size O(n logn

L ). The
main observation is that if f1 and f2 are in di�erent sub-paths “i, “j , j ≠ i > 1, plus that
x œ V (“i), y œ V (“j), then the prefix fl[s, y] must have length at least L and thus contain a
pivot p œ U with high probability. Therefore, if we compute single-source replacement paths
[6] from p in graph G \E(“i), then it would provide useful information about the backward
path of fl from y to x. See Figure 5 for an illustration.

1.4 Faster algebraic algorithm for weighted digraphs

Let us divide the shortest path fi from s to t into sub-paths of hops at most L; that is,
fi = “1 ¶ “2 ¶ · · · ¶ “Án/LË. Given a pair of edge failures {f1, f2}, suppose f1 and f2 belong to
“l1 and “l2 respectively. In the previous paper [20], the di�cult case is when f1, f2 come from
di�erent sub-paths, say l1 < l2. To compute dist(s, t,G \ {f1, f2}) e�ciently, their approach
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s t
ai biai≠1 bi≠1

ai+1 bi+1
ai≠10g bi≠10g

ai+10g bi+10gei

fi

Figure 4 A shortcut graph that helps computing the dual-failure detour “i avoiding {fi, gi}, which
consists of vertices in Ufi

ti+10g
j=i≠10g V (—j

h). This shortcut graph includes all edges in
ti+10g

j=i≠10g E(—j
h)\

E(—i
h), and some shortcut edges representing distances to and from U in Gh; actually, it will also

contain some shortcut edges between vertices in
ti+10g

j=i≠10g V (—j
h) which we have not discussed in the

overview.

s t

p

x y
f1 f2

“i “j

Figure 5 When f1, f2 lie in di�erent sub-paths “i, “j such that j ≠ i > 1, we can show that fl
must contain a vertex in U with high probability. Then we can apply the algorithm from [6] to
compute single-source replacement path from p in graph G \ E(“i) to learn about the sub-path
fl[p, x] which contains the backward path in the middle.
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was to build a sketch graph Hf1,f2 on vertices {s, t} fi V (“l1) fi V (“l2) which encodes an
optimal replacement path, and then run s-t shortest path in Hf1,f2 which takes Õ(L2) time
for each {f1, f2}, leading to a total runtime overhead of Õ(n2L2).

Divide each sub-path “l into segments “l = –l
1

¶ –l
2

¶ · · · ¶ –l
ÁL/gË of hops at most g (for

some parameter g < L). Assume f1 lies on –l1
h1

and f2 lies on –l2
h2
, and let fl be the optimal

replacement path from s to t avoiding {f1, f2}. Our main observation is that, if fl intersects
both –l1

h1
,–l2

h2
, then we can build a smaller sketch graph Hf1,f2 on {s, t}fiV

1
–l1
h1

2
fiV

1
–l2
h2

2

which still encodes fl, and so the runtime would be reduced to Õ(g2). Otherwise, if fl skips over
–l2
h2

entirely, we will build a sketch graph Hf1,(l2,h2) on the vertex set {s, t}fi V (“l1) fi V (“l2)
which only depends on f1 and –l2

h2
and not on f2. As the number of such graphs Hf1,(l2,h2)

is at most O(n2/g), the runtime can be bounded by Õ(n2L2/g). Overall, the runtime would
be Õ(n2g2 + n2L2/g) which is always better than the previous bound of Õ(n2L2).

2 Preliminaries

Throughout the paper, logarithm log(ú) will have base 2, and we assume the number of
vertices n in the input graph is an integral power of 2. In any weighted digraph G = (V,E,Ê),
for any vertex u œ V , let deg(u,G) be its vertex degree (counting both in-edges and out-
edges); for any pair of vertices u, v œ V , let dist(u, v,G) be the weighted length of the shortest
path from u to v in G. Throughout the algorithm, we will maintain a distance estimation
function est(ú, ú, ú), such that the value est(u, v,G) Ø dist(u, v,G) is always an upper bound.
All values of est(ú, ú, ú) are initially infinity and are non-increasing throughout the algorithms.
When we update the value of an estimation est(u, v,G) with a distance value D, we mean
est(u, v,G) Ω {D, est(u, v,G)}.

Given any directed path or walk fl in G, let |fl| be the number of edges on fl, and let Ê(fl)
be its total edge weight. For any two vertices u, v œ V (fl) where u comes before v on fl, let
fl[u, v] ™ fl be the sub-path of fl from u to v. In addition, let fl[ú, v] and fl[u, ú] be the prefix
and su�x sub-path of fl; this notation will be useful when we don’t have variable names for
the endpoints of path fl.

For any edge f œ E(fl) and vertex u œ V (fl) which comes before edge f , let fl[u, f) be
the sub-path from u to f (excluding edge f); similarly we can define notations fl(f, v] and
fl(f1, f2) in the natural way.

Borrowing a terminology from [20], let us define the notion of canonical paths.

I Definition 3 ([20]). Let s, t œ V be two vertices, and let fi be a shortest path from s to
t. For any edge set F ™ E, a path fl from s to t in G \ F is called canonical with respect
to fi and F , if for any u, v œ V (fi) fl V (fl) such that u appears before v in both fi, fl and
E(fi[u, v]) fl F = ÿ, then fl[u, v] is the same as fi[u, v].

2.1 Unweighted digraphs

For tie-breaking among shortest paths, we can randomly perturb all unit edge weights slightly
so that all replacement shortest paths for at most two edge failures are unique under the
perturbed weights. We can show that, under the weight perturbation, all replacement shortest
paths are canonical. Next, let us state a basic property regarding shortest replacement paths
for one edge failure.

I Lemma 4. Consider any edge f œ E(fi), any canonical shortest path fl from s to t avoiding
f can be decomposed as fl = fi[s, a] ¶ – ¶ fi[b, t], where a, b œ V (fi) and – is a shortest path
from a to b in G \ E(fi). For convenience, – will be called the detour of the replacement
path, and a, b are called the divergence and convergence vertex, respectively.
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It is known that shortest replacement paths for one failure can be computed e�ciently.

I Lemma 5 ([16]). Given an unweighted digraph G = (V,E) on n vertices and m edges.
Fixing any source-terminal pair s, t œ V , we can compute all canonical shortest replacement
paths from s to t avoiding f with high probability in time Õ(mn1/2 + n2), where f ranges
over all edges in E.

We also need a basic property about replacement paths for dual edge failures where only
one edge falls on the st-path fi.

I Lemma 6. Consider any edge f1 œ E(fi) and let – be the detour of the shortest replacement
path that avoids f1. Consider any edge f2 œ E(–). Then, there is a shortest replacement
path fl avoiding {f1, f2} such that:

fl is a canonical shortest path avoiding f1 in graph G \ {f1}.
fl diverges and converges with fi for once.
We will be applying the following algorithm for single-source replacement paths algorithm

from [6] as a black-box.

I Lemma 7 ([6]). Given an unweighted digraph G = (V,E) on n vertices and m edges.
Fixing any vertex s œ V , we can compute all shortest replacement paths from s to t avoiding
f with high probability in time Õ(mn1/2 + n2), where t ranges over all vertices in V \ {s}
and f ranges over all edges in E.

To be consistent with our perturbation-based tie-braking, we should also impose the same
edge weight perturbation on the graph on which Lemma 7 is applied; although Lemma 7
is only stated for unweighted digraphs, it also works with edge weight perturbation (for
example, all hitting set arguments still work, since perturbation only changes path lengths
negligibly).

In the original paper [6], they only claim to compute all the length of shortest replacement
paths, but here we need the actual shortest paths tree in each graph G \ {f}. To achieve
such an augmentation, during the execution of the algorithm in [6], we can keep track of
the last edge of each replacement path, and by uniqueness of shortest paths under weight
perturbation, the set of these last edges form the shortest paths tree.

Finally, one of our basic tools is a truncated version of Dijkstra’s algorithm, which is
stated below.

I Lemma 8 ([9]). Given an unweighted digraph G = (V,E) on n vertices. For any vertex
s œ V and any threshold L, let U = {u | dist(s, u,G) Æ L}. Then we can compute shortest
paths from s to all vertices in U in time O(

q
uœU deg(u,G) + n logn).

2.2 Weighted digraphs

When the input graph contains negative edge weights, we assume it does not contain any
negative cycles. For weighted graphs, since fast matrix multiplication algorithms only work
with small integer edge weights, we will not assume unique shortest paths by perturbing the
edge weights.

Our algorithm relies on fast algorithms which computes shortest paths in digraphs with
negative edge weights.

I Lemma 9 ([3]). Given a weighted digraph G = (V,E,Ê) with edge weights Ê : E æ
{≠M,≠M + 1, · · · ,M ≠ 1,M} without negative cycles, and fix any source vertex s œ V .
Then, single-source shortest path from s can be computed in time Õ(m logM) with high
probability.
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I Lemma 10 ([22]). Given a weighted digraph G = (V,E,Ê) with edge weights Ê : E æ
{≠M,≠M + 1, · · · ,M ≠ 1,M} without negative cycles, all-pairs shortest paths in G can be
computed in time Õ(M

1
4≠Ê n2+

1
4≠Ê ) with high probability.

We will apply single-source multi-terminal replacement paths algorithms as a black-box;
the currently best known upper bound is stated below.

I Lemma 11 ([13]). Given a weighted digraph G = (V,E,Ê) with edge weights Ê : E æ
{≠M,≠M +1, · · · ,M ≠1,M} without negative cycles, and fix any source vertex s œ V and a
terminal set T ™ V . Then, the value of all dist(s, t,G \ {f}),’t œ T, f œ E can be computed
in time Õ(MnÊ +M

1
4≠Ê n1+

1
4≠Ê · |T |) with high probability.

We will use the following fast algorithm for distance sensitivity oracles in weighted digraphs.
In a weighted digraph G = (V,E,Ê) with edge weights Ê : E æ {≠M,≠M+1, · · · ,M≠1,M},
a distance sensitivity oracle is an e�cient data structure that answers dist(u, v,G \ {f}) for
any u, v œ V, f œ E.

I Lemma 12 ([5]). Given a weighted digraph G = (V,E,Ê) with edge weights Ê : E æ
{≠M,≠M +1, · · · ,M ≠1,M} without negative cycles, a distance sensitivity oracle with Õ(1)
query time can be constructed in time Õ(Mn2.8719).

3 One failure on a short st-path

We use two parameters g and L which will be determined in the end such that g < n1/2 < L.
In this section, we study the case where only one edge failure lies on a short st-path, plus
that the input graph is sparse and dist(s, t,G) Æ L. More specifically, let G = (V,E) be an
unweighted digraph with n vertices and m edges, and consider a pair of vertices s, t with a
shortest st-path E(fi) of length at most L. The task is to compute for any pairs of edges
f1, f2 the value of dist(s, t,G \ {f1, f2}), where f1 œ E(fi), f2 /œ E(fi). The purpose of this
section is to prove the following lemma.

I Lemma 13. Let G = (V,E) be an unweighted digraph with n vertices and m edges. Fix
a pair of source and terminal s, t œ V such that dist(s, t,G) Æ L. Then, all values of
dist(s, t,G \ {f1, f2}) can be computed with high probability in time:

Õ

3
mn1.5 + n3

L
+mn1/2L/g + n2L/g +mL2/g +mnL2/g3 +mLg + L2g4 + n2L2/g2

4

when f1 œ E(fi) while f2 /œ E(fi); here g is an arbitrary parameter to be determined later.

Let fi = Ès = u0, u1, · · · , u|fi| = tÍ. First, we use Lemma 5 to compute for each
(ui, ui+1) œ E(fi) the replacement path from s to t that avoids ei = (ui, ui+1), and let –i be
the corresponding detour avoiding ei which starts at ai and ends at bi.

For each detour –i, divide –i into sub-paths of length g (except for the last sub-path)
and list them as —i

1
, · · · ,—i

li
, and assume f œ E(—i

l ); later on, when we refer to —i
l , if l Æ 0 or

l > li, then —i
l would simply be an empty path.

Throughout the algorithm, for each 0 Æ i < |fi| and every edge f œ E(–i), we will
maintain a distance estimation est(s, t,G \ {ei, f}) Ø dist(s, t,G \ {ei, f}), and in the end it
will be guaranteed that est(s, t,G \ {ei, f}) = dist(s, t,G \ {ei, f}).

Let fli,f be a canonical shortest replacement path for {ei, f}. Suppose fli,f departs from
fi[s, ai] ¶ –i ¶ fi[bi, t] at vertex xi,f and converges with fi[s, ai] ¶ –i ¶ fi[bi, t] at vertex yi,f . For
the rest, we address di�erent cases depending on the properties regarding –i, fli,f ; note that
our algorithm does not need to know which case it is in advance.
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s tai bixi,f

yi,f

ei

f

(a) In this case, xi,f ”= ai and fli,f [xi,f , ú] diverges from fi immediately.

s tai bi

xi,f

yi,f

ei

f

(b) In this case, xi,f = ai and fli,f [xi,f , ú] uses some edges on fi[ai, bi] before it diverges.

Figure 6 In this picture, the cyan path is detour –i, and the orange path is fli,f [xi,f , yi,f ].

Case 1: xi,f œ V (fi[s, ai]) or yi,f œ V (fi[bi, t])

This is an easy case of our algorithm, and the runtime of this part can be bounded by O(mL).
See Figure 6 for an illustration. Check the full version for more details.

Case 2: xi,f , yi,f œ V (–i) and |–i| Ø L

This is an easy case of our algorithm, and the runtime of this part can be bounded by
Õ(mn1.5

+n3

L ). See Figure 7 for an illustration. Check the full version for more details.

Case 3: xi,f , yi,f œ V (–i), plus that |fi[ai, ui]| > g or |fi[ui+1, bi]| > g

This is an easy case of our algorithm, and the runtime of this part can be bounded by

Õ
!
m

Ô
nL/g + n2L/g + L2

"

See Figure 8 for an illustration. Check the full version for more details.

Case 4: xi,f , yi,f œ V (–i), plus that xi,f /œ V (—i
l) or yi,f /œ V (—i

l), and |–i| < L

This is an easy case of our algorithm, and the runtime of this part can be bounded by
Õ(mL2/g). See Figure 9 for an illustration. Check the full version for more details.
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s tai bi

xi,f yi,f

ei

f

Figure 7 The sub-path fli,f [ai, bi] has length greater than L.

at least g edges

s tai bi

xi,f yi,f

ei

f

Figure 8 In this picture, xi,f , yi,f œ V (–i) plus that |fi[ai, ui]| > g.

s tai bi

xi,f

yi,f

ei

f

Figure 9 The dotted cyan path is —i
l .

ICALP 2024



41:12 Faster Algorithms for Dual-Failure Replacement Paths

s t
aj bjaj≠1 bj≠1

aj+1 bj+1
ab+10kg bb+10kg

ab+(10k+5)g bb+(10k+5)g

Figure 10 Graph Xb+10kg
l excludes all edges in E(fi)fi

tb+(10k+5)g
j=b+10kg,jœI

E(—j
l ) which are drawn and

black and cyan solid paths.

Main case: |fi[ai, ui]|, |fi[ui+1, bi]| Æ g, and xi,f , yi,f œ V (—i
l), and |–i| < L

Algorithm Main case.

Let I ™ [L] be the set of all indices such that |fi[ai, ui]|, |fi[ui+1, bi]| Æ g and |–i| < L.
For each pair of indices (p, q) œ [L/g] ◊ [L/g], define the set of sub-paths:

Pp,q = {—i
l | (l, li ≠ l + 1) = (p, q), i œ I}

(1) Let U ™ V be the uniformly random subset of size 10n logn
g . Then, for each pair of indices

p, q œ [L/g], define the graph:

Gp,q = G \

Q

aE(fi) fi
€

—œPp,q

E(—)

R

b

Then, for each vertex u œ U , compute single-source shortest paths to and from u in Gp,q.
(2) For any index 1 Æ l Æ ÁL/gË, and for any o�set 1 Æ b Æ 10g, initialize two sets of vertices

Ab,l, Bb,l Ω V . Then, go over the sequence of all sub-paths —b
l ,—

b+10g
l , · · · ,—b+10hg

l ,
where h Æ Á L

10g Ë.
Next, for each sub-path —b+10kg

l , define the following two graphs

Xb+10kg
l = G \

Q

aE(fi) fi
€

jœ[b+10kg,b+(10k+5)g]flI

E(—j
l )

R

b

Y b+10kg
l = G \

Q

aE(fi) fi
€

jœ[b+(10k≠5)g,b+10kg]flI

E(—j
l )

R

b

See Figure 10 for an illustration.

(a) Then, for each vertex v œ V
1

—b+10kg
l

2
, perform a truncated Dijkstra at v in the

induced subgraph Xb+10kg
l [Ab,l] up to depth g. For each z œ Ab,l, record the distance

value

µX(v, z) Ω dist
1
v, z,Xb+10kg

l [Ab,l]
2

if dist
1
v, z,Xb+10kg

l [Ab,l]
2

Æ g.
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s t
ai biai≠1 bi≠1

ai+1 bi+1
ai≠5g bi≠5g

ai+5g bi+5g

Figure 11 Vertices on the topmost are in U , and orange edges represent shortcut edges in Hi
l .

After we have visited all vertices v œ V
1

—b+10kg
l

2
, let P k

b,l ™ Ab,l be the set of all

vertices searched by truncated Dijkstra of any v œ V
1

—b+10kg
l

2
. Then, prune the

vertex set

Ab,l Ω Ab,l \ P k
b,l

(b) Symmetrically, for each vertex v œ V
1

—b+10kg
l

2
, perform a truncated Dijkstra at v

in the induced subgraph Y b+10kg
l [Bb,l] up to depth g. For each z œ Bb,l, record the

distance value

µY (v, z) Ω dist
1
v, z, Y b+10kg

l [Bb,l]
2

if dist
1
v, z, Y b+10kg

l [Bb,l]
2

Æ g.

After we have visited all vertices v œ V
1

—b+10kg
l

2
, let Qk

b,l ™ Bb,l be the set of all

vertices searched by truncated Dijkstra of any v œ V
1

—b+10kg
l

2
. Then, prune the

vertex set

Bb,l Ω Bb,l \Qk
b,l

(3) For any index i œ I and index 1 Æ l Æ li/g, let us build a shortcut digraph Hi
l with edge

weight function Ê in the following manner. See Figure 11 for an illustration.

Vertices. Add all vertices in sub-paths V (—j
l ),’j œ [i ≠ 5g, i+ 5g] fl I, as well as all

pivot vertices in U to Hi
l .

Edges. First, add to E(Hi
l ) all the sub-paths:

Q

a
€

jœ[i≠5g,i+5g]flI

E
1

—j
l

2
R

b \ E
!
—i
l

"

Then, add the following three types of weighted edges.
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(a) For any u œ U and any vertex v œ V (Hi
l ), add an edge (u, v) with edge weight:

Ê(u, v) = dist(u, v,Gl,li≠l+1)

and edge (v, u) with edge weight:

Ê(v, u) = dist(v, u,Gl,li≠l+1)

(b) For any pair of vertices u, v œ V (Hi
l ) where u œ V (—j

l ), j œ [i ≠ 5g, i], add an edge
(u, v), and assign a weight:

Ê(u, v) = µX(u, v)

If µX(u, v) was not assigned in Step (2), then it is infinity by default.
(c) For any pair of vertices u, v œ V (Hi

l ) where u œ V (—j
l ), j œ [i, i+ 5g], add an edge

(u, v), and assign a weight:

Ê(u, v) = µY (u, v)

If µY (u, v) was not assigned in Step (2), then it is infinity by default.

After that, for each vertex z œ V
!
—i
l

"
, apply single-source shortest path on z in Hi

l .
In this way, for every pair of vertices x, y œ V

!
—i
l

"
, we have computed a distance

dist
!
x, y,Hi

l

"
.

Finally, for every edge f œ E
!
—i
l

"
, update the estimation est(s, t,G \ {ei, f}) with:

min
xœV (—i

l
[ú,f)),yœV (—i

l
(f,ú])

)
dist(s, x,G \ {ei}) + dist

!
x, y,Hi

l

"
+ dist(y, t, G \ {ei})

*

Runtime. The runtime of Step (1) is bounded by Õ(|U | ·mL2/g2) = Õ(mnL2

g3 ). As for the
runtime of Step (2), consider any o�set 1 Æ b Æ 10g. We argue that the Dijkstra procedure for
all vertices on sub-paths —b

l ,—
b+10g
l , · · · ,—b+10hg

l has runtime at most O(mg); this is because
every vertex in V is visited by at most O(g) instances of Dijkstra rooted at vertices from
some sub-paths —b+10kg

l . Therefore, the overall runtime of Step (2) is bounded by O(mLg)
summing over all 1 Æ b Æ 10g and 1 Æ l Æ L/g.

Finally, let us estimate the runtime of Step (3). For each index i œ I, there are at most
L/g di�erent sub-paths —i

l as |–i| Æ L. By definition, the shortcut digraph Hi contains at
most O(g2 + n logn

g ) vertices, and so the number of edges within is bounded by Õ(g4 + n2

g2 ),
and hence the runtime of multi-source shortest paths computation for all vertices in V (—i

l )
in Hi

l is Õ(g5 + n2

g ). Then, for each f œ E(—i
l ), the time of calculating the formula

min
xœV (—i

l
[ú,f)),yœV (—i

l
(f,ú])

{dist(s, x,G \ {ei}) + dist(x, y,Hi) + dist(y, t, G \ {ei})}

is bounded by O(g2). Summing over all i, l and f œ E(—i
l ), the runtime of this part is

bounded by Õ(L2g4 + n2L2

g2 ).
Taking a summation, the overall runtime for this case is at most:

Õ
!
mnL2/g3 +mLg + L2g4 + n2L2/g2

"



S. Chechik and T. Zhang 41:15

Correctness. To prove that our algorithm computes the correct value for |fli,f |, it su�ces
to prove that dist

!
xi,f , yi,f , Hi

l

"
= |fli,f [xi,f , yi,f ]|. First we argue that dist

!
xi,f , yi,f , Hi

l

"
Ø

|fli,f [xi,f , yi,f ]| due to the following reason.

B Claim 14. Any weighted edge (u, v) in Hi
l corresponds to a path from u to v in G that

does not contain any edge in E(fi) fi E(—i
l ).

Proof. If the weighted edge (u, v) was defined on Step (3)(a), then it corresponds to a shortest
path in Gl,li≠l+1 which excludes all edges in E(fi) fi E(—i

l ).
If the weighted edge (u, v) was defined on Step (3)(b), suppose u œ V (—j

l ) where j œ
[i ≠ 5g, i], then by definition of Ê(u, v) = µX(u, v), which is equal to the length of a path in
graph Xj

l which excludes all edges in E(fi) fi E(—i
l ).

Symmetrically, if the weighted edge (u, v) was defined on Step (3)(c), suppose u œ V (—j
l )

where j œ [i, i+ 5g], then by definition of Ê(u, v) = µY (u, v), it is equal to the length of a
path in graph Y j

l which excludes all edges in E(fi) fi E(—i
l ). C

For the rest, let us prove that dist
!
xi,f , yi,f , Hi

l

"
Æ |fli,f [xi,f , yi,f ]|. To do this, we will

find a path in Hi
l from xi,f to yi,f with weighted length at most |fli,f [xi,f , yi,f ]|.

B Claim 15. fli,f [xi,f , yi,f ] does not contain any vertices in the following vertex subset:
i≠5g≠1€

j=0

V
1

—j
l

2
fi

L€

j=i+5g+1

V
1

—j
lj≠li+l

2

Proof. Suppose otherwise that the sub-path fli,f [xi,f , yi,f ] contains a vertex v œti≠5g≠1

j=0
V (—j

l ) fi
tL

j=i+5g+1
V (—j

lj≠li+l). Let us assume that v œ V (—j
l ) for some index

0 Æ j < i ≠ 5g; if v œ V (—j
lj≠li+l) for some j > i+ 5g, the proof will be similar.

By the assumption that i œ I, we know that |fi[ai, ui]| Æ g. Since j < i ≠ 5g, we know
that vertex uj lies between s, ai, and consequently |fi[s, aj ]| Æ |fi[s, uj ]| < |fi[s, ai]| ≠ 4g.

Consider the path fi[s, aj ] ¶ –j [aj , v]. We first argue that this path does not contain edges
from {ei, f}. Clearly, fi[s, aj ] ¶ –j [aj , v] does not contain the edge ei, since aj lies between s
and ui, and E(–j [aj , v]) fl E(fi) = ÿ. As for the position of f , if f œ E(–j [aj , v]), then there
must be a vertex z œ V (–j [aj , v]) fl V (—i

l ). Then fi[s, aj ] ¶ –j [aj , z] ¶ –i[z, bi] ¶ –i[bi, t] is a
replacement path that avoids edge ei, with length at most:

|fi[s, aj ]|+ |–j [aj , z]|+ |–i[z, bi]|+ |–i[bi, t]|
< (|fi[s, ai]| ≠ 4g) + |–j [aj , v]|+ |–i[z, bi]|+ |–i[bi, t]|
Æ (|fi[s, ai]| ≠ 4g) + l · g + |–i[z, bi]|+ |–i[bi, t]|
Æ (|fi[s, ai]| ≠ 4g) + (|–i[ai, z]|+ g) + |–i[z, bi]|+ |–i[bi, t]|
Æ |fi[s, ai] + |–i[ai, z]|+ |–i[z, bi]|+ |–i[bi, t]| ≠ 3g = |fi[s, ai] ¶ –i ¶ fi[bi, t]| ≠ 3g

which is a contradiction that fi[s, ai] ¶ –i ¶ fi[bi, t] is a shortest replacement path avoiding ei.
Next, we argue that |fi[s, aj ]¶–j [aj , v]| < |fli,f [s, xi,f ]| < |fli,f [s, v]|. In fact, by |fi[s, aj ]| <

|fi[s, ai]| ≠ 4g, we have:

|fi[s, aj ]|+ |–j [aj , v]| < (|fi[s, ai]| ≠ 4g) + l · g
Æ (|fi[s, ai]| ≠ 4g) + (|–i[ai, xi,f ]|+ g) = |fli,f [s, xi,f ]| ≠ 3g

As we have proved, fi[s, aj ] ¶ –j [aj , v] is a path avoiding {ei, f} of length less than
|fli,f [s, v]|. So, if we replace the prefix fli,f [s, v] with fi[s, aj ] ¶ –j [aj , v] and consider a new
path:

flÕ = fi[s, aj ] ¶ –j [aj , v] ¶ fli,f [v, t]

ICALP 2024
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s t
aj bj ai bi

xi,f

yi,f
v

ei

f

Figure 12 The sub-path fli,f [xi,f , yi,f ] is drawn as the orange curve. If fli,f [xi,f , yi,f ] contains a
vertex v œ V

!
—j
l

"
, then the alternate path fi[s, aj ] ¶ –j [ú, v] ¶ fli,f [v, yi,f ] ¶ –i[yi,f , bi] ¶ fi[bi, t] be a

shorter replacement path than fli,f avoiding {ei, f}.

then we have a new replacement path flÕ avoiding {ei, f} from s to t with a strictly better
distance, a contradiction. See Figure 12 for an illustration.

C

Decompose the path fli,f [xi,f , yi,f ] into minimal sub-paths whose endpoints are belonging
to V (Hi

l ); this is achievable because both xi,f , yi,f œ V (Hi
l ). To prove the upper bound:

dist(xi,f , yi,f , H
i
l ) Æ |fli,f [xi,f , yi,f ]|

it su�ces to show that for any two consecutive vertices u, v œ V (Hi
l ) on path fli,f [xi,f , yi,f ],

we have Ê(u, v) Æ |fli,f [u, v]|. Consider several cases below.
One of u, v belongs to the pivot set U .
Without loss of generality, assume that u œ U . It su�ces to show that the shortest path
from u to v in graph Gl,li≠l+1 is has the same length as fli,f [u, v].
Since v is the next vertex in V (Hi

l ) after u on the path fli,f , the sub-path fli,f [u, v] does
not contain any vertices from V (Hi

l ) except for its endpoints; in other words, fli,f [u, v]
does not contain vertices from U fi

ti+5g
j=i≠5g V (—j

l ). Additionally, according to Claim 15,
fli,f [u, v] does not contain (internally) any vertices in

i≠5g≠1€

j=0

V
1

—j
l

2
fi

L€

j=i+5g+1

V
1

—j
lj≠li+l

2

Therefore, fli,f [u, v] does not contain (internally) any vertices from the set:

Ufi
€

jœ[i≠5g,i+5g]flI

V
1

—j
l

2
fi

i≠5g≠1€

j=0

V
1

—j
l

2
fi

L€

j=i+5g+1

V
1

—j
lj≠li+l

2
´ Ufi

€

—œPl,li≠l+1

V (—)

By definition of graph Gl,li≠l+1, we know that dist(u, v,Gl,li≠l+1) Æ |fli,f [u, v]|.
Both of u, v are not in U .
Assume that u œ V (—c

l ) for some c œ [i ≠ 5g, i + 5g], and v œ V (—d
l ) for some d œ

[i ≠ 5g, i + 5g]. Without loss of generality, assume that c Æ i; if c Ø i, a symmetric
argument would work.
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Since v is the next vertex in V (Hi
l ) after u on the path fli,f and that U is a uniformly

random vertex set of size 10n logn
g , with high probability over the randomness of U , we

must have |fli,f [u, v]| Æ g.
Similar to the previous case, we know that fli,f [u, v] does not contain (internally) vertices
from

ti+5g
j=i≠5g V

1
—j
l

2
. Therefore, by definition of Xc

l , we know that fli,f [u, v] ™ Xc
l ;

namely, the sub-path fli,f [u, v] belongs to graph Xc
l . Therefore, to prove that Ê(u, v) =

µX(u, v) Æ |fli,f [u, v]|, it su�ces to show that the truncated Dijkstra procedure correctly
computes the value µX(u, v) = dist(u, v,Xc

l ).
Decompose the integer c = b + 10kg, where 1 Æ b Æ 10g, k Ø 0. To prove that the
truncated Dijkstra procedure correctly computes the value µX(u, v) = dist(u, v,Xc

l ),
it su�ces to show that the vertex set Ab,l contains all vertices on fli,f [u, v] when u is
performing a truncated Dijkstra in the induced subgraph Xc

l [Ab,l]; in other words, we
need to show that any vertex on fli,f [u, v] has not been pruned from Ab,l by truncated
Dijkstraes from vertices on previous sub-paths —b

l ,—
b+10g
l , · · · ,—b+10(k≠1)g

l .
Assume otherwise there is a vertex z œ V (fli,f [u, v]) which was also visited by the truncated
Dijkstra of some vertices w œ V (—b+10jg

l ) for some j < k. As all Dijkstra searches are
truncated up to depth g, we know that there is a path “ from w to z in Xb+10jg

l of length
at most g. Consider the path

◊ = fi[s, ab+10jg] ¶ –b+10jg[ú, w] ¶ “ ¶ fli,f [z, v] ¶ –d[v, bd] ¶ fi[bd, t]

and claim two properties of it.

B Claim 16. ◊ is a path from s to t that avoids the edge ed.

Proof. It is clear that path ◊ departs from fi at vertex ab+10jg and converges with fi
at vertex bd. So it su�ces to show that ab+10jg lies between s and vertex ud. This is
straightforward since ab+10jg lies on path fi[s, ub+10jg] which is strictly a prefix of fi[s, ud],
as d Ø i ≠ 5g Ø b+ (10k ≠ 5)g > b+ 10jg. C

To reach a contradiction, we show that |◊| is a strictly better replacement path from s to
t that avoids ed than path fi[s, ad] ¶ –d ¶ fi[bd, t]. In fact, on the one hand, since d œ I, we
know that |fi[ad, ud]| Æ g. Therefore,

|fi[s, ab+10jg]| Æ |fi[s, ub+10jg]| = b+10jg Æ 10(k≠1)g Æ i≠10g Æ d≠5g Æ |fi[s, ad]|≠4g

On the other hand, since v œ V (—d
l ) and w œ V (—b+10jg

l ), we know that

|–d[ú, v]| Ø (l ≠ 1)g + 1 > |–b+10jg[ú, w]| ≠ g

Finally, as |“|, |fli,f [z, v]| Æ g, we have:

|◊| Æ (|fi[s, ad]| ≠ 4g) + (|–d[ú, v]|+ g) + |“|+ |fli,f [z, v]|+ |–d[v, bd]|+ |fi[bd, t]|
Æ |fi[s, ad]|+ |–d[ú, v]|+ |–d[v, bd]|+ |fi[bd, t]| ≠ g

= |fi[s, ad] ¶ –d ¶ fi[bd, t]| ≠ g

which contradicts the fact that fi[s, ad] ¶ –d ¶ fi[bd, t] is the shortest replacement path
avoiding ed. See Figure 13 for an illustration.
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s t
ab+10jg bb+10jg

ac bc ad bd

w u v

z

ed

Figure 13 If µX(u, v) does not capture the orange path fli,f [u, v], then a previous Dijkstra search
from vertex w must have intercepted fli,f [u, v] at a vertex z through a path “ drawn as the red curve.
In this case, –b+10jg[ú, w] ¶ “ ¶ fli,f [z, v] ¶ –d[v, bd] would be a better detour than –d for avoiding ed.

Proof of Lemma 13

Summarizing the total runtime of all five cases, the overall runtime is bounded by as following:

Õ

3
mn1.5 + n3

L
+mn1/2L/g + n2L/g +mL2/g +mnL2/g3 +mLg + L2g4 + n2L2/g2

4

4 One failure on a long st-path

In this section, we study the case where only one edge failure lies on the shortest path, plus
that the input graph is dense and dist(s, t,G) could be as large as O(n). Let G = (V,E) be
a digraph with n vertices, and consider a pair of vertices s, t as well as an st-shortest path
fi = Ès = u0, u1, u2, · · · , u|fi| = tÍ. The task is to compute for any pairs of edges f1, f2, the
value of dist(s, t,G \ {f1, f2}) where f1 œ E(fi), f2 /œ E(fi). The following lemma is proved in
the full version.

I Lemma 17. All values of dist(s, t,G \ {f1, f2}) can be computed with high probability in
time Õ

!
n3≠1/18

"
when f1 œ E(fi) while f2 /œ E(fi).

5 Both failures on the st-path

In this section, we study the case where both edge failures f1, f2 are lying the shortest path.
Let G = (V,E) be a digraph with n vertices, and consider a pair of vertices s, t as well as an
st-shortest path fi = Ès = u0, u1, u2, · · · , u|fi| = tÍ. For convenience, define H = G \ E(fi).
The task is to compute for any pairs of edges f1, f2 œ V (fi), the value of dist(s, t,G\{f1, f2}).
The following lemma is proved in the full version.

I Lemma 18. All values of dist(s, t,G \ {f1, f2}) can be computed in time Õ(n3≠1/7) when
both edges f1, f2 are on fi.

Proof of Theorem 1. This is a direct combination of Lemma 17 and Lemma 18. J
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Path-Reporting Distance Oracles with Logarithmic
Stretch and Linear Size
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Abstract
Given an undirected graph G = (V,E,w) on n vertices with positive edge weights, a distance oracle
is a space-e�cient data structure that answers pairwise distance queries in fast runtime. The quality
of a distance oracle is measured by three parameters: space, query time, and stretch. In a landmark
paper by [Thorup and Zwick, 2001], they showed that for any integer parameter k Ø 1, there exists a
distance oracle with size O(kn1+1/k), O(k) query time, and (2k≠1)-stretch error on the approximate
distances. After that, there has been a line of subsequent improvements which culminated in the
optimal trade-o� of O(n1+1/k) space, O(1) query time, and (2k ≠ 1)-stretch [Chechik, 2015].

However, these line of constructions did not require that the distance oracle is capable of printing
an actual path besides an approximate distance estimate, and there has been a performance gap
between path-reporting distance oracles and ones that are not path-reporting. It is known that the
earliest construction by [Thorup and Zwick, 2001] is path-reporting, but the parameters are worse
by a factor of k. In a later construction by [Wul�-Nilsen, 2013], the query time was improved from
O(k) to O(log k). Better trade-o�s were discovered in [Elkin and Pettie, 2015] where the authors
broke the O(kn1+1/k) space barrier and achieved O(n1+1/k log k) space with O(log k) query time,
but their stretch was blown up to a polynomial O(klog4/3 7); they also gave an alternative choice of
O(n1+1/k) space which is optimal, and O(k)-stretch which is also optimal up to a constant factor,
but their query time rose exponentially to O(n‘). In a recent work [Elkin and Shabat, 2023], the
authors obtained significant improvements of O(n1+1/k log k) space, O(k)-stretch, and O(log log k)
query time, or O(n1+1/k) space, O(k log k)-stretch, and O(log log k) query time.

All the above constructions of path-reporting distance oracles share a common barrier; that is,
they could not achieve optimal space O(n1+1/k) and stretch O(k) simultaneously within logarithmic
query time; for example, in the natural regime where k = ÁlognË, previous distance oracles had to
pay an extra factor of log logn either in the space or stretch. As our result, we bypass this barrier
by a new construction of path-reporting distance oracles with O(n1+1/k) space and O(k)-stretch
and O(log log k) query time.
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1 Introduction

Given an undirected graph G = (V,E,w) on n vertices with positive edge weights , distance
oracles are space-e�cient data structures that process distance queries with approximate
answers in fast runtime. More specifically, given any pair of vertices s, t œ V , the distance
oracle needs to return a distance estimate est(s, t) in the range [distG(s, t),— · distG(s, t)],
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where — is an upper bound on the stretch error. Intuitively, when the distance oracle has
smaller size, the stretch error grows larger, and the general goal is to understand the optimal
trade-o� between space and stretch with a fast query e�ciency.

In a pioneering work by Thorup and Zwick [10], they constructed distance oracles for
any integer parameter k Ø 1 with O(kn1+1/k) space, (2k ≠ 1)-stretch and O(k) query time.
This balance between size and stretch is optimal when k Æ logn

log logn because the famous
Erd�s girth conjecture implies an �(n1+1/k) space lower bound for any distance oracle
with (2k ≠ 1)-stretch, and it was left open in [10] if anything better can be achieved for
larger choices of parameter k. In a subsequent work by Mendel and Naor [9], using Ramsey
partitions and tree embeddings, the authors diverged from the techniques of [10] and devised
a new distance oracle with optimal space O(n1+1/k) and O(1) query time, but its stretch
becomes O(k) which is worse than the optimal 2k ≠ 1 by a constant factor. Later on, still
following the old construction of [10], Wul�-Nilsen [11] improved the query time from O(k)
to O(log k) while retaining O(kn1+1/k) space and (2k ≠ 1)-stretch; in the same paper, he
could also obtain constant query time O(1/‘) by allowing a slightly larger stretch of (2 + ‘)k.
This line of works culminated in an optimal construction of distance oracles that achieve
O(n1+1/k) space, (2k ≠ 1)-stretch and O(1) query time simultaneously [5, 4].

However, these works mentioned above did not require that the distance oracles should
be capable of printing an actual path between the queried vertex pair that realizes the
approximate distance estimate; distance oracles with this extra function are called path-

reporting distance oracles. More specifically, in this setting, the query e�ciency consists
of two parts: the query time which is the amount of time to compute a distance estimate
est(s, t), and after that we need to report a path fi between the vertex pair with total weight
w(fi) Æ est(s, t) in time O(|fi|).

So far there has been a performance gap between path-reporting distance oracles and ones
that do not support reporting paths. It was known that the earliest construction of Thorup
and Zwick [10] is path-reporting, but some later improvements including [9, 11, 4, 5] are not,
except one by [11] with O(kn1+1/k) space, (2k ≠ 1)-stretch and O(log k) query time. In a
subsequent work [7], the authors achieved optimal O(n1+1/k) space by tolerating a constant
blowup in the stretch O

!
k · (1/‘)log4/3 7

"
and a sublinear query time O(n‘), or alternatively,

a sub-optimal space complexity of O(n1+1/k log k) and faster query time O(log k), but a
polynomial blowup in the stretch O

!
k
log4/3 7

"
.

In a very recent work [8], the authors devised new constructions of path-reporting distance
oracles with multiple choices of trade-o�s which are significant improvements over prior works:
(1) with space O

1
n
1+1/k ·

Ï
k log logn·log(3) n

logn

Ì2
, they could achieve (4+‘)k-stretch and O(log k)

query time, and (2) with space O

1
n
1+1/k ·

Ï
k log logn

logn

Ì2
, they could achieve (24 + ‘)k-stretch

and O(log log k) time, and (3) with optimal space O(n1+1/k) they could achieve O(k log k)-
stretch and O(log log k) query time; here we have not listed all the trade-o�s, but only the
representative ones in [8].

One common quantitative barrier of all the above constructions of path-reporting distance
oracles is that they could not achieve optimal space O(n1+1/k) and linear stretch O(k)
simultaneously using a fast query time. For example, when k gets close to logn, the trade-o�s
in [8] needs to pay O(log logn) factor either in the space or in the stretch. As for the results
from [7], although could achieve O(n1+1/k) space and O

!
k · (1/‘)log4/3 7

"
-stretch at the same

time, their query time blows up exponentially to O(n‘); besides, their stretch upper bound
has a large constant coe�cient of O

!
(1/‘)log4/3 7

"
in front of k. This leads to the following

natural question even for k = ÁlognË.



S. Chechik and T. Zhang 42:3

I Question 1. How to design a path-reporting distance with O(n) space and O(logn)-stretch
that supports O(logn) query time?

As our result, we give a positive answer to the above question, which is formalized in the
statement below.

I Theorem 2. Given an undirected graph G = (V,E,w) with positive edge weights on n

vertices, for any integer k Ø 1, there is a path-reporting distance oracle with 12k-stretch,
O(n1+1/k) space, and O(log log k) query time; furthermore, an approximate shortest path fi

can be retrieved in time O(log log k + |fi|) time.

1.1 Technical overview
To support the function of path-reporting, prior works adopted di�erent strategies: in [7] the
authors were heavily exploiting the power of distance preservers [6], and in [8] the authors
were utilizing the connection to hopsets. In our construction, we employed another di�erent
strategy of using tree covers which is adapted from the notion of cluster covers in the design
of the optimal but non-path-reporting distance oracles [5].

The approach of [5]

Similar to [10], let us take a hierarchy of random sets V = A0 ´ A1 ´ A2 ´ · · · ´ Ak≠1 ´ Ak,
where Ai+1 includes each vertex in Ai with probability n

≠1/k independently. For any Ai,
a cluster cover is a collection of (not necessarily disjoint) subsets Ci with the following
properties.

Weak radius. Each vertex v œ V is assigned to a unique cluster Ci
home(v) œ Ci which

contains v. Plus, Ci
home(v) has weak radius of roughly distG(v,Ai).

Packing. The total size of clusters in C is bounded by O(n1+1/k).
Covering. For any pair of vertices s, t, if distG(s, t) Æ 1

i · distG(s,Ai), then Ci
home(s)

contains both s, t.

The idea of using cluster covers to compute approximate distances is to build cluster covers
C(i) for a constant number of indices i œ {k/2, k/4, k/8, . . . , k/128} (assuming k is an integer
multiple of 128), and check if t œ Ci

home(s) for each such i. If we can locate two consecutive
indices i, i/2 such that t œ Ci

home(s) and t /œ Ci/2
home(s), then we will estimate distG(s, t)

through the weak radius of Ci
home(s). The reason why this would be a good estimate is

because t /œ Ci/2
home(s) and so distG(s, t) > 2

i · distG(s,Ai/2), and therefore distG(s, t) cannot
be too much smaller than the weak radius of Ci

home(s) when distG(s,Ai/2) and distG(s,Ai)
are not too di�erent; if distG(s,Ai/2) is also way smaller than distG(s,Ai), we will use some
other shortcuts between pivots in Ai/2 to find a better distance estimate.

If we cannot locate any pair of consecutive indices i, i/2 such that t œ Ci
home(s) and

t /œ Ci/2
home(s), then this means that both s, t are actually a small cluster Ck/128

home (s). In this
case, we should expect that the same distance oracle construction by Thorup and Zwick [10]
to give a much better distance estimate with roughly k/64-stretch. To take advantage of
this slack, we can apply the construction by Mendel and Naor [9] to quickly calculate an
estimation.

Tree covers

One of the reasons why the distance oracle of [5] is not path-reporting is that cluster covers
only have an upper bound on weak radius rather than strong radius. Therefore, for the cause
of reporting paths, we need to ensure that each cluster has a spanning tree whose radius is
small; in other words, we are looking for a tree cover Ci with the following revised properties.
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Strong radius. Each vertex v œ V is assigned to a unique cluster Ci
home(v) œ Ci which

contains v. Plus, Ci
home(v) has a spanning tree of radius at most distG(v,Ai).

To find such a tree cover, let us start with the basic approach of ball-carving (which
is similar to the approach for cluster covers [5]): starting with W Ω V , while W is not
empty, pick an arbitrary vertex v œ W and grow a tree T in graph G[W ] to a radius
r · fl = r

i · distG(v,Ai) such that:
--BallG[W ](v, (r ≠ 1)fl)

-- Ø n
≠1/k

--BallG[W ](v, rfl)
--

Then, we add this tree T to Ci and remove all vertices in BallG[W ](v, (r ≠ 1)fl) from W ;
for those vertices we have just removed, assign their home trees to be T . By doing this we
can guarantee the strong radius and the packing property. However, this could damage the
covering property. Imagine that for some pair of vertices s, t which are close, some vertices
on the shortest path between s, t were removed after adding a spanning tree T to Ci, then
the home tree of s might not be able to reach t. To fix this issue, the idea is to assign s to
this earlier tree T which might not have removed s at the time it was created.

Graph contraction

Another obstacle of path-reporting is that the construction of Chechik [5] incorporates the
construction of Mendel and Naor [9]. To avoid using the distance oracle by Mendel and Naor,
we could continue to apply tree covers for smaller indices i < k/128, but this would raise
the space complexity from O(n1+1/k) to O(n1+1/k log k). Notice that on lower levels, we are
obtaining much better stretch than O(k), which gives us some slack when designing our data
structures. To take advantage of such slack, the idea is to apply the stretch-friendly partition
of a recent work [3] which roughly contracts the graph G into n/· clusters while blowup the
stretch by O(·), and then build our tree cover structures on the contracted graph which
takes only O(n1+1/k

/·) space.

2 Preliminaries

Let ‘ = 0.01 be a fixed constant (independent of n, k), and assume k > 100. Logarithms
are of base 2. For any graph G = (V,E,w) and any vertex subset S ™ V , let G[S] be the
induced subgraph of G on S.

I Definition 3 (bunches and balls). Let G = (V,E,w) be an undirected weighted graph. For

each vertex v œ V and vertex subset S ™ V , let pivG(v, S) œ S be the closest vertex to v,

and define the bunch around v with respect to S as:

BunG(v, S)
def= {u | distG(u, v) < distG(u, S)}

Furthermore, for any ” > 0, define

Bun”
G(v, S)

def= {u | distG(u, v) < ” · distG(u, S)}

Balls are similar to bunches, except that the radius is specified by a value, rather than a

vertex set. More specifically, for any value fl Ø 0, define the ball around v to be:

BallG(v, fl) = {u | distG(u, v) Æ fl}
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2.1 Stretch-friendly partitions
We need the notion of stretch-friendly partition from [3].

I Definition 4 ([3]). Let G = (V,E,w) be an undirected weighted graph, and fix an integer

· Ø 1. A stretch-friendly · -partition of G is a partition C µ 2V of V with the following

guarantees for every U œ C.
(1) There is a spanning tree T [U ] of G[U ] rooted at the cluster center vertex cntr[U ] œ U ,

such that for every v œ U , the unique tree path between cntr[U ], v has at most · edges.

(2) If (x, y) œ E, x œ U, y /œ U , then the weight of every edge on the tree path in T [U ]
between x, cntr[U ] is at most w(x, y).

(3) If (x, y) œ E, x, y œ U , then the weight of every edge on the tree path in T [U ] between
x, y is at most w(x, y).

For any stretch-friendly partition C, define G/C to be the quotient graph where each
cluster in C is contracted to a single node. Here are some basic properties of stretch-friendly
partitions.

I Lemma 5. Let G = (V,E,w) be an undirected weighted graph, and let C be a stretch

friendly · -partition of G. Consider any pair of vertices s, t œ V , then we can find a path fi

between s, t using edges of G/C and tree edges of T [C], C œ C, such that:

w(fi) Æ 4· · distG(s, t)

Furthermore, given the shortest path fi
Õ
between C(s), C(t) in G/C, the above path fi can be

computed in time O(|fi|).

Proof. If C(s) = C(t), then we can take the tree path between s, t in T [C(s)] which has
length at most 2· · distG(s, t). Otherwise, take the shortest path fi0 between C(s), C(t) and
suppose it visits contracted nodes C(s) = U0, U1, . . . , Ul = C(t). Let (ui, vi) œ E be the edge
connecting Ui, Ui+1,’0 Æ i < l. By definition of stretch-friendly · -partitions, we have:

distG(s, t) Ø 1
·
·min

)
distT [U0](s, cntr[U0]),distT [Ul]

(t, cntr[Ul])
*

w(ui, vi) Ø 1
2·

·
!
distT [Ui]

(ui, cntr[Ui]) + distT [Ui+1](vi, cntr[Ui+1])
"

To find a path between s, t, let fi be a concatenation of these paths: tree path between
s, u0 in T [U0], edge (u0, v0), tree path between v0, u1 in T [U1], ...... , tree path between
vl≠1, t in T [Ul]. Taking a summation of the above inequalities, we have:

w(fi) Æ 2· · distG(s, t) + 2· · distG/C (C(s), C(t)) Æ 4· · distG(s, t)

As for the runtime to compute fi, using the tree structure of T [C], it is straightforward to
compute fi by its definition in time O(|fi|). J

The next statement shows how to construct a hierarchy of stretch-friendly clusters.

I Lemma 6 ([3]). For any 0 Æ i Æ ÁlognË, there exists a stretch-friendly (3 · 2i ≠ 1)-partition
Ci and each cluster in Ci has size at least 2i. Moreover, Ci is a refinement of Ci+1; that is,

for each cluster U œ Ci+1, U can be partitioned into sub-clusters U = U1 fiU2 fi · · ·fiUk, such

that Uj œ Ci,’1 Æ j Æ k, and each tree T [Uj ] is a sub-tree of T [U ].
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2.2 Distance preservers
Throughout this paper, we assume shortest paths are unique by breaking ties using alphabetic
ordering. We need a path-reporting distance preserver from [7].

I Definition 7 (branching events, [7]). For a collection of paths � in an undirected graph

G, a pair of paths together with common vertex (fi1,fi2, x) is called a branching event, if
x œ V (fi1) fl V (fi2), and that the edges incident on x of fi1 and fi2 are di�erent.

I Lemma 8 ([7]). Given an undirected weighted graph G = (V,E,w) and a collection of

paths �, there is a distance-preserving path-reporting data structure that reports any path

fi œ � in time O(|fi|). The data structure has size O(n+ |�|+ |br(�)|) where br(�) is the

set of branching events of �.

As a by-product, though it is not necessary for our main result, we slightly improve the
above lemma as following, thus answering a small open question in [7]. This matches the
sparsity bound of distance-preservers which do not require the function of path-reporting [6].

I Lemma 9. Given an undirected weighted graph G = (V,E,w) and a collection of shortest

paths �, there is a distance-preserving path-reporting data structure that reports any path

fi œ � in time O(|fi|). The data structure has size O

1
n+ |�|+


n|br(�)|

2
where br(�) is

the set of branching events of �.

3 Tree covers

Before describing our path-reporting distance oracles, we will first need a building block
which is adapted from [5]. Our stretch guarantee is worse than [5] roughly by a factor of 3/2
because our data structure is path-reporting, while the data structure from [5] could only
report distance values, not any real paths in the graph.

I Lemma 10. Let G = (V,E,w) be an undirected weighted graph and let S ™ V be a

vertex subset. Suppose that there exists an integer parameter r Ø log2 k such |BunG(v, S)| Æ
O(n r

k log2 n) for each v œ V . Then, there exists a collection of trees T of G with the following

properties.

The size of all trees in T is bounded by O(n1+1/k).
For any pair of vertices u, v, if distG(u, v) Æ 2

3(1+‘)2r · distG(u, S), then there exists a

tree T œ T such that T contains both u, v, and more importantly:

distT (u, v) Æ distT (u, rt[T ]) + distT (v, rt[T ]) Æ 2(1 + ‘) · distG(u, S)

where rt[T ] is a fixed root of T ; plus, such a tree T can be found in constant time.

Proof. For any integer 0 Æ b Æ
'
log1+‘ 3

(
, consider the sequence of values (1 + ‘)b, 3(1 +

‘)b, 9(1+ ‘)b, · · · , 3i(1 + ‘)b, · · · . For any i Ø 0, let Vi,b ™ V be the set of vertices v such that
distG(v, S) œ

#
3i(1 + ‘)b, 3i(1 + ‘)b+1

$
; by definition, we have V =

t
i,b Vi,b.

Constructing a tree cover. Fix any o�set 0 Æ b Æ
'
log1+‘ 3

(
, we will build a collection

of trees Tb by a greedy ball-carving scheme on G; in the end, we will take the union of all
trees T =

t
b Tb. Initially, set W Ω V , and go over all integers i = 0, 1, 2, · · · . As long

asVi,b\W ”= ÿ, enumerate all vertices v œ Vi,b. Define a distance value flv = 1

(1+‘)r ·distG(v, S).
Therefore, as r > log2 k, we have

--BallG[W ] (v, (1 + ‘)rflv)
-- Æ |BunG(v, S)| < O(nr/k log2 n) < n

%
r

(1≠‘)

&
· 1k



S. Chechik and T. Zhang 42:7

B Claim 11. There must exist an integer 0 Æ rv < Â(1 + ‘)rÊ such that:
--BallG[W ] (v, (rv + 1) · flv)

-- Æ n
1/k

--BallG[W ] (v, rv · flv)
--

Proof of claim. Suppose otherwise, then for any integer 0 Æ l < Â(1 + ‘)rÊ, we have:
--BallG[W ] (v, (l + 1) · flv)

-- > n
1/k

--BallG[W ] (v, l · flv)
--

Taking a product of these inequalities over all integers 0 Æ l < Â(1 + ‘)rÊ, we have:
--BallG[W ] (v, Â(1 + ‘)rÊ · flv)

-- > n
Â r

1≠‘ Ê· 1k

Which is a contradiction. C

Then, let T be the single-source shortest paths tree rooted at rt[T ] Ω v that spans
the vertex set BallG[W ] (v, (rv + 1) · flv). All vertices in BallG[W ] (v, rv · flv) fl V (T ) will be
called core vertices of T denoted as core(T ), and vertices in BallG[W ] (v, (rv + 1) · flv) will
be called peripheral vertices of T . After that, add T to Tb, and then remove all the core
vertices BallG[W ] (v, rv · flv) from W by updating the vertex set:

W Ω W \BallG[W ] (v, rv · flv)

After that, move on to the next vertex in Vi,b \W .

Assigning home trees. To find a tree that meets the requirement in the lemma statement
in constant time, we need each vertex to remember a constant number of trees that contain
itself, which are called home trees. Specifically, for each vertex v œ V , we will associate a
tree T b

home(v) œ Tb with v which is defined to be the first tree T created in Tb containing v

such that:

distT (v, core(T )) Æ 1
3(1 + ‘)2 flv

Size of the tree cover. By the algorithm, each time we add a new tree T to Tb, |T | is at
most n1/k|core(T )|. As core vertices are removed from W right afterwards, the total size of
Tb is bounded by O

!
n
1+1/k

"
.

The covering property. Consider any pair of vertices u, v such that distG(u, v) Æ 2

3(1+‘)2r ·
distG(u, S). Let us first state an elementary inequality.

B Claim 12. flu Æ (1 + ‘) · flv.

Proof of claim. By triangle inequality, we have:

distG(u, S) Æ distG(v, S) + distG(u, v)

Æ distG(v, S) +
2

3(1 + ‘)2r · distG(u, S)

< distG(v, S) +
‘

1 + ‘
· distG(u, S)

The last inequality holds as r Ø log2 k and ‘ is a constant. Therefore, by definition of flu, flv,
we can conclude the proof. C
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Let fi be the shortest path between u, v in G. Assume u œ Vi,b for some i, b Ø 0.

B Claim 13. Vertices on fi cannot be core vertices of trees rooted at any vertices from Vj,b

for some j < i.

Proof of claim. Suppose otherwise that there was a vertex w œ Vj,b which grew a tree T œ Tb
whose core includes a vertex z œ V (fi). Then, by triangle inequality, we would have:

distG(u, S) Æ distG(u, z) + distG(z, w) + distG(w, S)

Æ 2
3(1 + ‘)r · 3i · (1 + ‘)b+1 + 2 · 3i≠1 · (1 + ‘)b+1

<

3
1
32 + 2

4
· 3i≠1 · (1 + ‘)b+1

< 3i · (1 + ‘)b

This contradicts the definition that u œ Vi,b. C

As for the tree covering property, consider the first tree T created whose core intersected
with V (fi), and consider the moment right before T was created. Since z œ V (fi), it must be:

min{distG[W ](z, u),distG[W ](z, v)} Æ 0.5 · distG(u, v) Æ flu

3(1 + ‘)2

Consider two possibilities.
distG[W ](z, u) Æ 0.5 · distG(u, v) Æ flu

3(1+‘)2 .
In this case, we have distT (u, core(T )) Æ flu

3(1+‘)2 . Hence, by definition of T b
home(u),

T b
home(u) must have been created no later than T . Therefore, when T b

home(u) was being
created with root z œ Vi,b (Claim 13), all vertices on fi was still present in W . Therefore,
at the moment, we have:

distG[W ]

!
v, core

!
T b
home(u)

""
Æ distG[W ](u, v) + distT b

home(u)

!
u, core

!
T b
home(u)

""

Æ flu

(1 + ‘)2 < flz

Hence, v was included in T b
home(u). As for their distance in the tree, by our algorithm,

the radius of T b
home(u) is at most 3i · (1 + ‘)b+1 Æ (1 + ‘)distG(u, S). Hence, we have:

distT b
home(u)

(u, v) Æ 2(1 + ‘) · distG(u, S)

distG[W ](z, v) Æ 0.5 · distG(u, v) Æ 1

3(1+‘)2 flu.
In this case, we have distT (v, core(T )) Æ 1

3(1+‘)2 flu Æ 1

3(1+‘)flv. Hence, by definition of
T b
home(v), T b

home(v) must have been created no later than T . Therefore, when T b
home(v)

was being created with root z œ Vi,b (Claim 13), all vertices on fi was still present in W .
Therefore, at the moment, we have:

distG[W ]

!
u, core

!
T b
home(v)

""
Æ distG[W ](u, v) + distT b

home(v)

!
v, core

!
T b
home(v)

""

Æ 1
1 + ‘

flv Æ flz

Hence, u was included in T b
home(v). As for their distance in the tree, by our algorithm,

the radius of T b
home(v) is at most 3i · (1 + ‘)b+1 Æ (1 + ‘)distG(u, S). Hence, we have:

distT b
home(u)

(u, v) Æ 2(1 + ‘) · distG(u, S) J
Given such a collection of trees T satisfying the conditions of Lemma 10, let us state

a subroutine TreeCover(s, t, T ) with constant runtime that checks if the tree cover data
structure T can provide a distance estimation for distG(s, t) as long with the a path.
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Algorithm 1 TreeCover(s, t, T ).

1 Assume s œ Vi,a, t œ Vj,b;
2 for v œ {s, t}, c œ {a, b} do
3 if T c

home(v) contains both {s, t} then
4 return distT c

home(v)
(s, t), along with the tree path in T c

home(v) between s, t if
required;

5 return ‹;

4 Path-reporting distance oracles

4.1 Data structures

Define – = 3/4 + ‘. Apply Lemma 6 on G to create a sequence of stretch-friendly partitions
{Ci}0ÆiÆÁlognË. Build a level ancestor data structure with O(n) space so that for any u œ V

and any index 0 Æ i Æ ÁlognË, we can access the cluster Ci(u) in constant time [2].
Take a hierarchy of vertex sets V = A0 ´ A1 ´ A2 ´ · · · ´ Ak, where Ai+1 includes

each vertex in Ai independently with probability n
≠1/k, ’0 Æ i < k. Therefore, with high

probability, size of Ai is at most O(n1≠ i
k logn).

Define a sequence of integers h0, h1, h2, . . . , hÿ satisfying h0 = k, h1 = Á–kË, and for l Ø 1
define hl = max

)'
–
l
k
(
, 2

'
log2 k

(*
, the sequence stops until it reaches hÿ = 2

'
log2 k

(
.

Data structures for high levels

Let Ÿ = 50 be an integer threshold. For every integer 0 Æ l Æ ÿ, we will build some data
structures separately. When l > Ÿ, let C(l) œ {Ci}0ÆiÆÁlognË which is a stretch-friendly
·l-partition where ·l œ [–≠l/5

, 2–
≠l/5]; we can make sure that the sequence {·l}ŸÆlÆÿ is

non-decreasing. Plus, if 0 Æ l Æ Ÿ, then set C(l) to be singletons (that is, ·l = 1). For each
vertex v œ V , let C(l)(v) œ C(l) be the unique cluster that contains v. Let G/C(l) be the
quotient graph of G where each cluster in C(l) is contracted to a single node, and the edges
of G/C(l) are edges in G between di�erent clusters in C(l).

For the rest, we will build some graph data structures. For each integer 1 Æ l Æ ÿ, let Bhl

be the set of contracted nodes in G/C(l) containing at least one vertex from the random set
Ahl , and let Chl≠1 be the set of contracted nodes in G/C(l) containing at least one vertex
from the random set Ahl≠1 . Build the following data structures.
(i) For each integer 1 Æ l Æ ÿ, apply Lemma 10 on the quotient graph G/C(l) to build

a tree cover Tl with respect to the terminal set Bhl by setting the parameter r = hl;
we will prove that this parameter r satisfies the requirement of Lemma 10 with high
probability over the random choices of A1, . . . , Ak.
For the special case when l = 0, simply set T0 to be single-source shortest paths trees
rooted at each vertex in Ak in G, and each vertex in u œ V has a pointer to the vertex
in Ak that is the closest one to u. It is straightforward to see that T0 is also a valid
tree cover for Ak using the definition of Lemma 10 (by setting r Ω k, S Ω Ak), and
TreeCover(s, t, T0) can always return a nonempty value whether or not the inequality
distG(u, v) Æ 2(1≠‘)2

3k · distG(u,Ak) is satisfied.
(ii) For each integer 0 Æ l Æ ÿ and for each contracted node x in G/C(l), store a shortest

path from x to its nearest node in Bhl denoted as pivG/C(l) (x,Bhl).
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(iii) For each integer 1 Æ l Æ ÿ, we will build a set of paths �l in G/C(l) in the following
manner.
For each pair of nodes x œ Bhl and y œ Bhl flBun1/2

G/C(l)

!
x,Chl≠1

"
, let fix,y the shortest

path between x, y in graph G/C(l), and add fix,y to �l. After building path set �l, apply
Lemma 8 to build a path-reporting distance preserver data structure in the quotient
graph G/C(l) with respect to �l.

Data structures for low levels

Let C(ÿ) be a stretch-friendly �(log2 k)-partition of G, and let G/C(ÿ) be the quotient graph.
For each 0 Æ i Æ 2

'
log2 k

(
, let Bi be the set of nodes in G/C(ÿ) containing at least one vertex

in Ai. Store the following data structures for each 0 Æ i Æ 2
'
log2 k

(
.

(i) For each node x in graph G/C(ÿ), store the shortest paths to all nodes y œ Bi in G/C(ÿ)

such that distG/C(ÿ)(x, y) < distG/C(ÿ) (x,Bi+1), as well as the shortest path from x to
pivG/C(ÿ)(x,Bi). We assume shortest paths are unique by breaking ties alphabetically.

(ii) For each node x in graph G/C(ÿ) and each even index 0 Æ i < 2
'
log2 k

(
, store the

di�erence:

�(x, i) def= distG/C(ÿ) (x,Bi+2) ≠ distG/C(ÿ) (x,Bi)

Then, for each such x, store a range minimum query data structure for all entries
�(x, i), i = 0, 2, . . . , 2

'
log2 k

(
≠ 2 with linear space and constant query time [1].

4.2 Query algorithm
Given any query (s, t) œ V

2, the query algorithm consists of two phases, one for high levels
(in range

#
2

'
log2 k

(
, k

$
), and one for low levels (in range

#
0, 2

'
log2 k

($
).

High-level phase

By the design of the data structure, TreeCover (s, t, T0) always returns nonempty value
because each tree in T0 is a spanning tree of G. For each 1 Æ l Æ ÿ, define ul = C(l)(s), vl =
C(l)(t). Next, run the subroutine TreeCover (uÿ, vÿ, Tÿ); if it successfully returns a nonempty
value, then move on to the next phase. Otherwise, the algorithm maintains two indices
l1 Ω 0, l2 Ω ÿ and performs the following binary search procedure; the goal of the binary
search procedure is to find a consecutive pair of indices l≠1, l such that TreeCover (ul, ul, Tl)
returns an empty value, while TreeCover (ul≠1, vl≠1, Tl≠1) returns successfully a nonempty
value.
(1) If l1 < l2 ≠ 1, define l3 = Â(l1 + l2)/2Ê, and run the subroutine TreeCover (ul3 , vl3 , Tl3).

If the subroutine returns an empty value, then assign l2 Ω l3; otherwise, assign l1 Ω l3.
Then, continue with the new pair (l1, l2).

(2) Now suppose l1 + 1 = l2 = l and TreeCover (ul≠1, vl≠1, Tl≠1) returns a nonempty
value, but the procedure TreeCover (ul, vl, Tl) returns null. Then, query part (ii)
of the data structure in the storage to find the vertices x = pivG/C(l) (ul, Bhl) and
y = pivG/C(l) (vl, Bhl), and check two possibilities below.
(a) The shortest path between nodes x, y in G/C(l) is preserved in the distance-preserver;

that is, there is a path between x, y in �l

In this case, query the shortest path fi
Õ
1
from ul to x using part (ii), and the shortest

path fi
Õ
2
from x to y using the path-reporting distance preserver in part (iii), and

the shortest path fi
Õ
3
from y to vl using part (ii). Then, define the concatenation

fi
Õ = fi

Õ
1

¶ fi
Õ
2

¶ fi
Õ
3
and then recover a path fi between s, t in G by unpacking the

contracted nodes in C(l) using fi
Õ by Lemma 5 with runtime O(|fi|).



S. Chechik and T. Zhang 42:11

(b) The shortest path between nodes x, y in G/C(l) is not preserved in the distance-
preserver.
In this case, as TreeCover (ul≠1, vl≠1, Tl≠1) returned a nonempty value, we can use
the tree in Tl≠1 that covers both ul≠1, vl≠1 to get a path fi

Õ between them. Then,
by Lemma 5 we can obtain a path between s, t in G which unpacks the contracted
nodes in C(l≠1).

Low-level phase

This part is pretty much the same as the query algorithm from [11]. The di�erence is that
we are making the queries in the contracted graph G/C(ÿ), and total number of levels is at
most 2

'
log2 k

(
rather than k. For convenience, rename the variables by u = C(ÿ)(s) and

v = C(ÿ)(t). We first check if u = v; if it is the case, we can directly retrieve a path using
the spanning trees of the stretch-friendly ·ÿ-partition C(ÿ) which has stretch error at most
2·ÿ < k. For the rest, let us assume that u ”= v.

I Definition 14 ([11]). For a pair of contracted nodes u, v in G/C(ÿ)
, and even index

j œ [0, 2 log2 k] is called (u, v)-terminal if (1) j = 2
'
log2 k

(
or (2) j < 2

'
log2 k

(
and one of

the following conditions holds:

pivG/C(ÿ) (u,Bj) œ BunG/C(ÿ) (v,Bj+1)

pivG/C(ÿ) (v,Bj+1) œ BunG/C(ÿ) (u,Bj+2)

Next, we will perform a binary search on the interval
#
0, 2

'
log2 k

($
as did in [11]. Initially,

set i1 Ω 0, i2 Ω 2
'
log2 k

(
. In each iteration we perform the following steps while guaranteeing

that i2 is always (u, v)-terminal.
If i1 = i2, since i2 is (u, v)-terminal, we can consider three di�erent possibilities.

i2 = 2
'
log2 k

(
.

Since TreeCover(u, v, Tÿ) returns successfully, we can use the tree in Tÿ that covers
both u, v to get a path fi

Õ between them. Then, by Lemma 5 we can obtain a path
between s, t in G which unpacks the contracted nodes in C(ÿ).
pivG/C(ÿ) (u,Bi2) œ BunG/C(ÿ) (v,Bi2+1).
According to part (i) of our low-level data structures, we have stored the shortest path
fi1 from v to pivG/C(ÿ) (u,Bi2) in G/C(ÿ), as well as the shortest path fi2 from u to
pivG/C(ÿ)(u,Bi2). Then, we can retrieve a path between s, t by applying Lemma 5 on
fi1 ¶ fi2.
pivG/C(ÿ) (v,Bi2+1) œ BunG/C(ÿ) (u,Bi2+2).
Similarly, according to part (i) of our low-level data structures, we have stored the
shortest path fi1 from u to pivG/C(ÿ) (v,Bi2+1) in G/C(ÿ), as well as the shortest path
fi2 from v to pivG/C(ÿ)(u,Bi2+2). Then, we can retrieve a path between s, t by applying
Lemma 5 on fi1 ¶ fi2.

Otherwise, let j be the middle even index among i1, i1 + 2, · · · , i2 ≠ 2, and let i3 be the
even index in i1, i1 + 2, · · · , j maximizing �(u, i3) by querying part (ii) of our low-level
data structure. If i3 is not (u, v)-terminal, then recurse on the index pair (j + 2, i2);
otherwise, recurse on (i1, i3).

4.3 Space analysis
Size of high-level data structures

Let us analyze the size of our data structures part by part for each index 0 Æ l < ÿ.
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B Claim 15. Let N = O(n · –
l/5) be the number of contracted nodes in G/C(l). With high

probability over the randomness of Ahl , for any contracted node u œ G/C(l), we have the
following bounds.--BunG/C(l) (u,Bhl)

-- Æ O

1
N

hl
k log2 N

2
.

--Bhl fl BunG/C(l)
!
u,Chl≠1

"-- Æ O

1
n

hl≠1≠hl
k logn

2
.

Proof. Let S be the set of nodes in G/C(l) which are the nearest 10n
hl
k logn ones to u.

Then, since Ahl samples each vertices in V independently with probability n
≠ hl

k , with high
probability, Ahl contains at least one vertex contracted in some nodes in S. Therefore, in
this case we have

--BunG/C(l) (u,Bhl)
-- Æ O

1
n

hl
k logn

2
Æ O

1
N

hl
k log2 N

2
.

As for the second inequality bound, let u1, u2, . . . , uj œ Bhl be the nearest nodes to u in
G/C(l), for some j = O

1
n

hl≠1≠hl
k logn

2
. Then, since each ui belongs to Chl≠1 with probability

at least n≠
hl≠1≠hl

k , at least one node ui, 1 Æ i Æ j should belong to Chl≠1 with high probability.
Therefore, the size of

--Bhl fl BunG/C(l)
!
u,Chl≠1

"-- should be Æ O

1
n

hl≠1≠hl
k logn

2
. C

Using Lemma 10 and Claim 15, we know that the total size of the tree cover data structure
for the quotient graph G/C(l) is bounded by O

1
n
1+

1
k · –

l/5
2
. Then, taking a summation

over all indices 0 Æ l < ÿ, the size bound becomes O
1
n
1+

1
k

2
. Similarly, we can also bound

the total size of shortest paths from all the nodes x to pivG/C(l) (x,Bhl).
To bound the total size of our path-reporting distance preservers, we need to bound the

total number of branching events of �l.

B Claim 16. For each 0 Æ l Æ ÿ, the expectation of |br(�l)|+ |�l| over the randomness of
A1, . . . , Ak is bounded by O(n/ logn).

Proof. Let (fi1,fi2, ú) œ br(�l) be any branching event, and assume fi1,fi2 are shortest paths
in G/C(l) between nodes u1, v1 and u2, v2 such that vb œ Bun1/2

G/C(l)

!
ub, Chl≠1

"
,’b œ {1, 2}.

Without loss of generality, assume that w(fi1) Ø w(fi2). Then, we have:

distG/C(l)(u1, x) Æ w(fi1) +w(fi2) < distG/C(l)
!
u1, Chl≠1

"
,’x œ {v1, u2, v2}

Therefore, v1, u2, v2 œ Bhl fl BunG/C(l)
!
u1, Chl≠1

"
. Therefore, using Claim 15, with high

probability, |br(�l)| is bounded by the following up to a constant factor (recall that – =
3/4 + ‘):

ÿ

uœBhl

--Bhl fl BunG/C(l)
!
u,Chl≠1

"--3 Æ |Bhl | ·O
3
n

3hl≠1≠3hl
k log3 n

4

Æ |Ahl | ·O
3
n

3hl≠1≠3hl
k log3 n

4

Æ O

3
n
1≠ hl

k +
3hl≠1≠3hl

k log4 n
4

< O

A
n
1≠

4Á–lkË≠3Á–l≠1kË
k log4 n

B

Æ O

3
n
1≠ 3‘·–l≠1k≠3

k log4 n
4

< O

1
n
1≠‘·log2 k log4 n

2

< n/ logn
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As for the size of �l, by definition, it is bounded by
q

uœBhl

---Bhl fl Bun1/2
G/C(l)

!
u,Chl≠1

"---
which is also at most O(n/ logn) according to the above calculation. C

Applying Definition 7 and Claim 16, we can bound the expected size of part-(iii) of our
data structures by O(n).

Size of low-level data structures

It is clear that part (ii) only takes space O(n log2 k/·ÿ) Æ O(n). As for part (i), for each
node x, we have stored the shortest path from x to every node y œ Bi fl BunG/C(ÿ)(x,Bi+1)
and pivG/C(ÿ)(x,Bi). It is clear that the total size of the shortest paths to pivots is at most
O(n/·ÿ), so it is at most O(n) by taking a summation over all indices 0 Æ i Æ 2

'
log2 k

(
.

Next, let us focus on shortest paths from x to nodes in Bi fl BunG/C(ÿ)(x,Bi+1).
B Claim 17. For each node x in G/C(ÿ), the expected size of Bi fl BunG/C(ÿ)(x,Bi+1) is at
most n1/k over the randomness of A1, A2, . . . , Ak.
Proof. Fix any node x, order all nodes in G/C(ÿ) in an increasing order of distances as
y0, y1, . . . , yl, . . .. For each yj , let |yj | be the number of vertices in V contracted within.
Conditioning on pivG/C(ÿ)(x,Bi+1) being yl, the expected total number vertices contracted
in nodes from Bi fl BunG/C(ÿ)(x,Bi+1) is equal to n

≠i/k
ql≠1

j=0
|yj |. Therefore, the overall

expected total number vertices contracted in nodes from Bi fl BunG/C(ÿ)(x,Bi+1) would be:

n
≠i/k

ÿ

lØ1

l≠1ÿ

j=0

|yj | · Pr
Ë
pivG/C(ÿ)(x,Bi+1) = yl

È

= n
≠i/k

ÿ

lØ1

l≠1ÿ

j=0

|yj | ·
1
1 ≠ n

≠(i+1)/k
2ql≠1

j=0
|yj |

·
3
1 ≠

1
1 ≠ n

≠(i+1)/k
2|yl|

4

Æ n
≠i/k · n(i+1)/k = n

1/k

The inequality holds as the summation is maximized when |yj | = 1,’j Ø 0. Therefore, the
expected size of Bi fl BunG/C(ÿ)(x,Bi+1) is also at most n1/k. C

To bound the total size of shortest paths from x to Bi flBunG/C(ÿ)(x,Bi+1), we need the
one more statement below.
B Claim 18. Fix any node x, and for any y œ Bi fl BunG/C(ÿ)(x,Bi+1) and node z on the
shortest path from x to y in graph G/C(ÿ), we have y œ BunG/C(ÿ)(z,Bi+1).
Proof. By triangle inequality, we have:

distG/C(ÿ)(z, y) = distG/C(ÿ)(x, y) ≠ distG/C(ÿ)(x, z)
< distG/C(ÿ)(x,Bi+1) ≠ distG/C(ÿ)(x, z)
< distG/C(ÿ)(z,Bi+1)

So by definition of bunches, we have y œ BunG/C(ÿ)(z,Bi+1). C

By Claim 18, if the data structure needs to store the shortest path “x,y from x to
y œ BiflBunG/C(ÿ)(x,Bi+1), then it also needs to store each shortest path “z,y for any z œ “x,y.
Therefore, to store all the path {“x,y} in a space-e�cient manner, we only need to store the
first edge of “x,y (which is incident on x) for all x in G/C(ÿ) and y œ Bi flBunG/C(ÿ)(x,Bi+1);
this also allows us to retrieve the path “x,y in |“x,y| time. Then, by Claim 17, the total
size of this shortest path data structure over all node x in G/C(ÿ) would be bounded by
O(n1+1/k

/·ÿ), which is O(n1+1/k) summing over all 0 Æ i Æ 2
'
log2 k

(
.
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4.4 Stretch analysis
Let us analyze the stretch of the high-level phase and the low-level phase separately.

High-level phase

By the algorithm description, suppose that the subroutine TreeCover (uÿ, vÿ, Tÿ) does not
return any nonempty value. Then, by the binary search procedure, in the end we will find an in-
dex 1 Æ l Æ ÿ such that TreeCover (ul, vl, Tl) returns null and TreeCover (ul≠1, vl≠1, Tl≠1)
returns a nonempty value. Define x = pivG/C(l) (ul, Bhl) and y = pivG/C(l) (vl, Bhl).

B Claim 19. If 1 Æ l Æ Ÿ, then:

distG(x, y) Æ
!
3(1 + ‘)2hl + 1

"
· distG(s, t)

If Ÿ < l Æ ÿ, then:

distG/C(l)(x, y) Æ
!
3(1 + ‘)2hl + 1

"
· distG/C(l)(ul, vl)

Proof. For the first inequality, since TreeCover (s, t, Tl) does not return anything, by the
guarantee of Lemma 10, we know that:

distG(s, t) >
2

3(1 + ‘)2hl
·max {distG (s,Ahl) ,distG (t, Ahl)}

Thus, by triangle inequality, we have:

distG(x, y) Æ distG(x, s) + distG(s, t) + distG(t, y) Æ
!
3(1 + ‘)2hl + 1

"
· distG(s, t)

Similarly, for the second inequality, since TreeCover (ul, vl, Tl) does not return anything,
by the guarantee of Lemma 10, we know that:

distG/C(l)(ul, vl) >
2

3(1 + ‘)2hl
·max{distG/C(l) (ul, Bhl) ,distG/C(l) (vl, Bhl)}

Thus, by triangle inequality, we have:

distG/C(l)(x, y) Æ distG/C(l)(x, ul) + distG/C(l)(ul, vl) + distG/C(l)(vl, y)
Æ

!
3(1 + ‘)2hl + 1

"
· distG/C(l)(ul, vl) C

Next, let us study two possibilities. First, assume that the shortest path between nodes
x, y in G/C(l) belongs to �l.

1 Æ l Æ Ÿ.
In this case, using Claim 19, the path reported by our distance oracle has length at most:

distG(s, x)+distG(x, y)+distG(y, t) Æ
!
6(1 + ‘)2hl + 1

"
·distG(s, t) Æ 5k ·distG(s, t)

Ÿ < l Æ ÿ.
In this case, let fi

Õ be the concatenation of shortest paths between ul, x, and x, y, and
y, vl in graph G/C(l). Using Claim 19 and triangle inequality, we have:

w(fiÕ) = distG/C(l)(ul, x) + distG/C(l)(x, y) + distG/C(l)(y, vl)
Æ

!
6(1 + ‘)2hl + 1

"
· distG/C(l)(ul, vl)
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Applying Lemma 5 on fi
Õ and then we can obtain a path between s, t with length at most:

4·l ·
!
6(1 + ‘)2hl + 1

"
· distG/C(l)(ul, vl) Æ 4·l ·

!
6(1 + ‘)2hl + 1

"
· distG(s, t)

Æ 8–
≠l/5 ·

!
6(1 + ‘)2

'
–
l
k
(
+ 1

"
· distG(s, t)

< 50–
4l/5

k · distG(s, t)
< 10k · distG(s, t)

Next, consider the case where the shortest path between nodes x, y in G/C(l) does not
belong to �l. Consider two possibilities.

1 Æ l Æ Ÿ.
In this case, using Claim 19, we know distG(x, y) Æ

!
3(1 + ‘)2hl + 1

"
· distG(s, t). Also,

in the proof of Claim 19, we have also shown:

distG(s, t) >
2

3(1 + ‘)2hl
·max {distG (s, x) ,distG (t, y)}

Now, since y /œ Bun1/2
G

!
x,Ahl≠1

"
and x /œ Bun1/2

G

!
y,Ahl≠1

"
, we know that:

max
)
distG

!
x,Ahl≠1

"
,distG

!
y,Ahl≠1

"*
Æ 2distG(x, y)

Therefore, we have:

max
)
distG

!
s,Ahl≠1

"
,distG

!
t, Ahl≠1

"*

Æ max
)
distG(s, x) + distG

!
x,Ahl≠1

"
,distG(t, y) + distG

!
y,Ahl≠1

"*

Æ
3
15(1 + ‘)2hl

2 + 2
4
· distG(s, t)

As TreeCover (s, t, Tl) successfully returns a nonempty value, by Lemma 10, the path
retrieved between s, t has length at most (k > 100, ‘ < 0.1):

3
15(1 + ‘)hl

(1 ≠ ‘) + 4(1 + ‘)
4
· distG(s, t)

<

3
15(1 + ‘) Á(0.75 + ‘)kË

(1 ≠ ‘) + 4(1 + ‘)
4
· distG(s, t)

< 12k · distG(s, t)

l > Ÿ.
In this case, using Claim 19, we know that distG/C(l)(x, y) Æ

!
3(1 + ‘)2hl + 1

"
·

distG/C(l)(ul, vl). Also, in the proof of Claim 19, we have also show:

distG/C(l)(ul, vl) >
2

3(1 + ‘)2hl
·max{distG/C(l) (ul, x) ,distG/C(l) (vl, y)}

Now, since x /œ BunG/C(l)(y, Chl≠1) and y /œ BunG/C(l)(x,Chl≠1), we know that:

max
)
distG/C(l)

!
x,Chl≠1

"
,distG/C(l)

!
y, Chl≠1

"*
Æ 2distG/C(l)(x, y)

Therefore, we have:

max
)
distG/C(l)

!
ul, Chl≠1

"
,distG/C(l)

!
vl, Chl≠1

"*

Æ max
)
distG/C(l)(ul, x) + distG/C(l)

!
x,Chl≠1

"
,distG/C(l)(vl, y) + distG/C(l)

!
y, Chl≠1

"*

Æ
3
15(1 + ‘)2hl

2 + 2
4
· distG/C(l)(ul, vl)
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Take an arbitrary vertex z œ V contracted in the node pivG/C(l)(ul, Chl≠1). Then,
applying Lemma 5, we can bound distG(s,Ahl≠1) as:

distG(s,Ahl≠1) Æ distG(s, z) Æ 4·l ·
3
15(1 + ‘)2hl

2 + 2
4
· distG/C(l)(ul, vl)

< 8–
≠l/5 · 8–

l
k · distG(s, t) = 64–

4l/5
k · distG(s, t)

Similarly we can prove that distG(t, Ahl≠1) < 64–
4l/5

k · distG(s, t).
As TreeCover (ul≠1, vl≠1, Tl≠1) successfully returns a nonempty value, by Lemma 10,
the path retrieved between ul≠1, vl≠1 in G/C(l≠1) has length at most (k > 100, ‘ < 0.1):

2(1 + ‘)max
)
distG/C(l≠1)

!
ul≠1, Bhl≠1

"
,distG/C(l≠1)

!
vl≠1, Bhl≠1

"*

Æ 2(1 + ‘) ·max
)
distG(s,Ahl≠1),distG(t, Ahl≠1)

*

< 130 · –
4l/5

k · distG(s, t)

Then, applying Lemma 5 again, we can unpack this path and retrieve a path between s, t

with weight at most (note that l > Ÿ = 50 and – = 3

4
+ ‘):

4·l · 130 · –
4l/5

k · distG(s, t) < 1040 · –
3l/5

k · distG(s, t) < 10k · distG(s, t)

Low-level phase

Next, let us turn to the stretch if the query procedure is in the low-level phase. By the
algorithm description, we should assume that the subroutine TreeCover (uÿ, vÿ, Tÿ) returns
a nonempty value.

B Claim 20. During the binary search procedure on the index pair (i1, i2), it always holds
that distG/C(ÿ) (u,Bi1) Æ i1 · distG/C(ÿ) (u, v). Plus, i2 is always (u, v)-terminal.

Proof. The second half of the statement is straightforward. So, let us prove the first half
by an induction. At the beginning of the algorithm, i1 = 0, and thus distG/C(ÿ) (u,Bi1) =
0. In each iteration, if i3 is (u, v)-terminal, then i1 does not change, so the induction
holds. Otherwise, since pivG/C(ÿ) (u,Bi3) /œ BunG/C(ÿ) (v,Bi3+1) and pivG/C(ÿ) (v,Bi3+1) /œ
BunG/C(ÿ) (u,Bi3+2), we know that by definition of bunches:

distG/C(ÿ) (v,Bi3+1) Æ distG/C(ÿ)(u, v) + distG/C(ÿ) (u,Bi3)

distG/C(ÿ) (u,Bi3+2) Æ distG/C(ÿ)(u, v) + distG/C(ÿ) (v,Bi3+1)

Hence, �(u, i3) Æ 2distG/C(ÿ)(u, v). Since �(u, i3) is the maximum among �(u, i), i1 Æ i Æ
j ≠ 2, we know that distG/C(ÿ)(u,Bj) Æ j · distG/C(ÿ)(u, v). C

In the end, when the algorithm terminates, we have i1 = i2 = i. By the above claim,
we know that distG/C(ÿ)(u,Bi) Æ i · distG/C(ÿ)(u, v), and either i = 2

'
log2 k

(
or i is (u, v)-

terminal. Consider two possibilities.
i = 2

'
log2 k

(
.

In this case, as TreeCover(u, v, Tÿ) successfully returned a nonempty value, by Lemma 10,
the path length between u, v in G/C(ÿ) reported by our distance oracle is at most:

2(1 + ‘) · distG/C(ÿ)(u,Bi) < 5 log2 k · distG/C(ÿ)(u, v)

If we unpack the clusters in C(ÿ), according to Lemma 5, this path has length at most:

20·ÿ · log2 k · distG(u, v) < 40k1/5 log2 k · distG(u, v) < 10k · distG(u, v)
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i < 2
'
log2 k

(
.

In this case, as i is (u, v)-terminal, we know that either pivG/C(ÿ) (u,Bi) œ
BunG/C(ÿ) (v,Bi+1) or pivG/C(ÿ) (v,Bi+1) œ BunG/C(ÿ) (u,Bi+1). Therefore, our data
structure can report a path in G/C(ÿ) of length at most (2i+ 1) · distG/C(ÿ)(u, v) between
u, v. If we unpack the clusters in C(ÿ), according to Lemma 5, this path has length at
most:

4·ÿ · (2i+ 1) · distG(u, v) < 10k · distG(u, v)
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A Missing proofs

I Lemma 21 (restate Lemma 9). Given an undirected weighted graph G = (V,E,w) and a

collection of shortest paths �, there is a distance-preserving path-reporting data structure that

reports any path fi œ � in time |fi|. The data structure has size O

1
n+ |�|+


n|br(�)|

2

where br(�) is the set of branching events of �.

Proof. First, for any path fi œ �, store both of endpoints in V as well as its first and last
edges. Since all paths in � are shortest paths, there are no two paths sharing the same pair
of endpoints. For any path fi œ �, we can identify fi with its starting and ending vertex
which is denoted by ID(fi). This part takes space O(n+ |�|).
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We will build a routing table data structure Du at any vertex u œ V . That is, for any
path fi œ � that passes through u through a pair of edges (v, u), (u,w), given the ID of fi, the
routing data structure Du is able to answer the edges (v, u), (u,w) in constant time. Once
this is goal is fulfilled, as we have also stored starting and ending edges of each path, our
path-reporting distance preserver is complete. For the rest, let us focus on the design of Du.

For any vertex u œ V , let �u be the set of paths in � that pass through u, and for any
unordered pairs of di�erent neighbors v, w of u in G, let �{v,w}

u be the set of paths that use
edges (v, u), (u,w) to go through u, and so |�u| =

q
v ”=w

---�{v,w}
u

---, and also by definition of
branching events, the number of branchings at x is equal to:

|br(�u)| =
ÿ

{v,w} ”={vÕ,wÕ}

---�{v,w}
u

--- ·
---�{vÕ,wÕ}

u

--- =
1
2

Q

a|�u|2 ≠
ÿ

v ”=w

---�{v,w}
u

---
2

R

b

Consider two di�erent cases.
For any vertex pair v, w, we have

---�{v,w}
u

--- Æ 1

2
· |�u|.

In this case, for each path fi œ �u using edges (v, u), (u,w), store a triple (ID(fi), v, w);
all such triples will be stored in a hash table that supports constant-time queries using
path IDs.
As for the space of Du, on the one hand, it is O(|�u|). On the other hand, under this
condition we have:

|br(�u)| =
1
2

Q

a|�u|2 ≠
ÿ

v ”=w

---�{v,w}
u

---
2

R

b Ø 1
2

3
|�u|2 ≠ 1

2 |�u|2
4

= 1
4 |�u|2

Therefore, |Du| = O

1
|br(�u)|

2
.

There exists a vertex pair vú, wú such that
---�{vú,wú}

u

--- > 1

2
· |�u|.

In this case, for each path fi œ �u using edges (v, u), (u,w) such that {v, w} ”= {vú, wú},
store a triple (ID(fi), v, w); all these triples will be stored in a hash table that supports
constant-time queries using path IDs. For those paths fi which pass through u using
edges (vú, u), (u,wú), we can query this hash table with ID(fi) which returns nothing, and
then answer the query with {(vú, u), (u,wú)}.
As for the size of Du, on the one hand, its space is O

1
�u \ �{vú,wú}

u

2
. On the other

hand, we have:

|br(�u)| =
1
2

Q

a|�u|2 ≠
ÿ

v ”=w

---�{v,w}
u

---
2

R

b Ø 1
2 ·

3
|�u|2 ≠

---�{vú,wú}
u

---
2

≠
---�u \ �{vú,wú}

u

---
2
4

Ø
---�{vú,wú}

u

--- ·
---�u \ �{vú,wú}

u

--- Ø
---�u \ �{vú,wú}

u

---
2

Therefore, we also have |Du| = O

1
br(�u)

2

In either case, we are able to show |Du| = O

1
br(�u)

2
, and so the total size can be

bounded by:

ÿ

uœV

|Du| Æ
Û
n

ÿ

uœV

|Du|2 = O

1
n|br(�)|

2
J
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Abstract

We consider the design of a positioning system where a robot determines its position from local
observations. This is a well-studied problem of considerable practical importance and mathematical
interest. The dominant paradigm derives from the classical theory of de Bruijn sequences, where the
robot has access to a window within a larger code and can determine its position if these windows
are distinct. We propose an alternative model in which the robot has more limited observational
powers, which we argue is more realistic in terms of engineering: the robot does not have access to
the full pattern of colours (or letters) in the window, but only to the intensity of each colour (or the
number of occurrences of each letter). This leads to a mathematically interesting problem with a
di�erent flavour to that arising in the classical paradigm, requiring new construction techniques.
The parameters of our construction are optimal up to a constant factor, and computing the position
requires only a constant number of arithmetic operations.
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1 Introduction

Consider a robot located on a grid of coloured squares that must determine its position
after observing part of the grid through a fixed viewing window. The dominant paradigm
for this problem derives from the mathematical theory of de Bruijn sequences, i.e. binary
(or bi-coloured) cyclic sequences of length 2n in which each binary sequence of length n

appears exactly once as a subsequence of consecutive entries. Such a sequence can be used
for positioning a robot in one dimension: the robot sees a viewing window of length n; this
window induces a subsequence with a unique colour pattern; from this colour pattern the
robot can then reconstruct its position in the sequence (if we disregard issues of computational
e�ciency and error correction). Generalisations of this idea to higher dimensions and related
combinatorial structures have led to a rich mathematical theory; see Section 1.2.

However, while this theory is mathematically pleasing, we will argue in Section 1.3 that
engineering constraints support a model in which the robot does not have access to the
full colour pattern in the window, but must infer its position only knowing the intensity of
each colour, that is, the multiset of colours. More precisely, given an n ◊ n grid, a robot
with an m ◊ m viewing window, and a palette of k colours, our task is to colour the grid so
that each possible location of the viewing windows produces a di�erent multiset of colours.
Furthermore, it will be mathematically more natural to undertake this task for a torus of
side n rather than a grid, and also to generalise to an arbitrary dimension d.

I Example 1. The grid colouring illustrated in Figure 1 has dimension d = 2, size n = 8,
window size m = 4, and k = 3 colours (red 0, green 1, and blue 2). No two 4 ◊ 4 subsquares
contain the same multiset of colours. For example, two viewing windows are shown with
multisets that have multiplicities for (0, 1, 2) equal to (6, 2, 8) and (3, 5, 8), respectively.
Observe that the second window “wraps around” because the grid is considered as a torus.

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

Figure 1 A grid coloring of dimension d = 2, size n = 8, window size m = 4. Observe that the
two windows depicted contain distinct multisets of colours.

Our question of study is, given m, d, k, what is the largest grid size n for which position
reconstruction is possible? Unfortunately, even the one-dimensional version of this question
is the subject of several unsolved problems, discussed in Section 1.2. However, for practical
purposes one can be content to relax from finding the optimal n given m, d, k to a value
that is optimal up to a constant factor, where we think of d and k as fixed and consider
the asymptotics for large m and n. There is a clear information theoretic barrier (see
Observation 10) at n = �k,d(mk≠1), where the subscripts indicate that k and d are constants.
The main contribution of this paper is a construction that achieves this theoretical optimum
up to a constant factor, and moreover has optimal computational e�ciency, in that only a
constant number of arithmetic operations are required to compute the location of the window
from its multiset of colours. We implemented and tested this construction in Python [13].
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1.1 Definitions and Results

Notations. All vectors, tuples and sequences are indexed starting at 0. Integer intervals
are denoted with square brackets, such as [0, n ≠ 1]. Given a length d, the vector ei has
all coordinates equal to 0, except the ith, which is equal to 1. The value of 1condition is 1
if condition is satisfied, and 0 otherwise. We write i © j mod n when the integer i ≠ j is
divisible by n. Tables are represented with row indices increasing from top to bottom and
column indices increasing from left to right, both starting at 0.

We first present general definitions that will be useful for discussing the literature and
presenting our construction, starting with cycle packings for the one-dimensional case, and
continuing with their higher dimensional generalisation, torus packings. Then the central
objects of this article, grid colouring, are formally defined as particular cases of torus packings.
Our main result, Theorem 9, is a near-optimal construction for grid colourings. It will make
use of vector sum packings (Definition 11), which are particular cases of cycle packings.

I Definition 2. Given an alphabet A, a size n, a window size m, and a function f on A
m
,

an (A, f, n,m)-cycle packing is a function W : Z ‘æ A that satisfies

Periodicity. For all x œ Z we have Wx = Wx+n.

Injectivity. If f(Wx,Wx+1, . . . ,Wx+m≠1) = f(Wy,Wy+1, . . . ,Wy+m≠1), for any in-

tegers x and y, then x © y mod n.

Let us explain this formal definition. Consider a circle composed of n squares, each
receiving a letter from A. A robot located on this circle wants to recover its position. It makes
a local measurement, function f of the letters in a window of size m around it. The injectivity
condition ensures that two positions of the robot (and thus of the window) correspond to two
distinct values of f . Thus the robot is always able to deduce its position. Observe that the
form of function f matters as di�erent functions induce di�erent types of information that
robot can extract from the viewing window. To illustrate this point, consider the following
three examples of (A, f, n,m)-cycle packings. These examples all have A = {0, 1, 2} and
m = 3 but di�er in their functions f (which in turn lead to varying sizes of n).

I Example 3. Take the basic case where f is the identity function. The robot thus
receives the entire colour pattern in its viewing window. Thus a cycle packing corres-
ponds to a sequence of length n where all the contiguous subsequences of length m have
distinct colour patterns. With A = {0, 1, 2} and window size m = 3, we have that
(0, 1, 1, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 1, 0, 0, 2, 2, 1, 2, 2, 2, 0, 2, 0, 0) is a cycle-packing of size n = 27
as each possible string of length 3 appears at most once; thus, the injectivity property holds.
In fact, each such string appears exactly once (e.g. the factor (0, 0, 0) = f(0, 0, 0) appears by
wrapping around), making it a de Bruijn sequence. This exactness property is not required
for cycle packings, but when it is satisfied the cycle packing is called a universal cycle.

I Example 4. Recall our motivation is that the robot extracts the colour intensities rather
than the entire colour pattern. So instead of the identity function, assume that f is the
multiset counting function which simply counts the number of appearances of each colour
in the viewing window. Now, for the alphabet A = {0, 1, 2} with window size m = 3, the
sequence (0, 1, 1, 1, 2, 2, 2, 0, 0) is a cycle packing of size n = 9 as every multiset appears
at most once (e.g. the multiset (3, 0, 0) = f(0, 0, 0) arises by wrapping around) and the
injectivity property holds. However, this cycle packing is not a universal cycle as no viewing
window contains all three colours, so the multiset (1, 1, 1) does not appear.
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I Example 5. Again take A = {0, 1, 2} with window size m = 3, but now let f be the
summation function. We claim the sequence (0, 0, 0, 2, 2, 2, 1) is a cycle packing of size n = 7.
To see this, observe that f(0, 0, 0) = 0+ 0+ 0 = 0, f(0, 0, 2) = 0+ 0+ 2 = 2, etc. Continuing
these calculations, the outputted sequence of sums is (0, 2, 4, 6, 5, 3, 1). This has distinct
entries, so injectivity is satisfied. The reader may query the relevance of the summation
function. In fact, this example is a special case of vector sum packings (Definition 11) which,
in turn, will play a critical role in the construction underlying our main theorem.

Of course, our interest lies in dimension d > 1, so we now extend the definition of cycle
packings to higher dimensions.

I Definition 6. Given an alphabet A, a size n, a window size m, a dimension d, and a

function f on A
md

, an (A, f, n,m, d)-torus packing is a function W : Zd
‘æ A that satisfies

Periodicity. For all x œ Zd
and j œ [0, d≠1], we have Wx = Wx+nej where ej denotes

the vector with a 1 in position j and 0 elsewhere.

Injectivity. For any x and y in Zd
, if f

!
(Wx+c)cœ[0,m≠1]d

"
= f

!
(Wy+c)cœ[0,m≠1]d

"
,

then xj © yj mod n for all j (where xj denote the jth coordinate of the vector x).

Note the key distinction in this definition is that the viewing window shares the same
higher dimension as the torus. Again, by the periodicity property, we can identify a torus
packing W with its pattern (Wx)xœ[0,n≠1]d . We are now ready to define the central objects
of this paper. These are grid colourings, a particular case of torus packing that correspond
exactly to the robot position reconstruction problem.

I Definition 7. An (n,m, d, k)-grid colouring is an (A, f, n,m, d)-torus packing with

|A| = k and f mapping any sequence to the multiset of its entries.

I Example 8. Consider, again, our example in Figure 1. This is an (A, f, n,m, d)-torus
packing with A = {0, 1, 2}, n = 8, m = 4, d = 2 and where f is the multiset counting
function. Consequently, since |A| = 3, this is an (8, 4, 2, 3)-grid colouring.

The following is our main result on grid colourings, implemented and tested in Python [13].

I Theorem 9. Fix a dimension d Ø 2 and a number of colours k of the form bd+1 for some

b Ø 1. For any window size m multiple of 2(k ≠ 1), there is an (n,m, d, k)-grid colouring W

(explicitly constructed in the proof) with

n ≥ C
1/d
k ·m

k≠1
where Ck =

3
2

k ≠ 1

4k≠1

.

Furthermore, for any x in Zd
, given the multiset of colours in (Wx+c)cœ[0,m≠1]d one can

compute x mod n with Ok,d(1) arithmetic operations.

Our construction in Theorem 9 of size n = �k,d(mk≠1) is optimal up to a multiplicative
constant. This fact follows from the following observation, which is immediate from counting
considerations (injectivity requires the number of possible colour multisets to be at least the
number of windows that they must distinguish).

I Observation 10. The parameters of any (n,m, d, k)-grid colouring satisfy the inequality

n
d

Æ

3
m

d + k ≠ 1
k ≠ 1

4
.

In particular, for fixed dimension d and number of colours k, as the window size m tends to

infinity, we have

n Æ C
Õ1/d
k ·m

k≠1(1 +O(m≠1)) with C
Õ
k = 1

(k ≠ 1)! .
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We conclude this section by discussing related work and providing technological justifica-
tions for our positioning model.

1.2 Related Work

The combinatorial structures associated with torus packings (Definition 6) have a rich
mathematical literature, starting from a problem solved in the 19th century, independently
rediscovered by de Bruijn and now known as de Bruijn sequences (see [12]). The generalisation
to higher dimensions was independently considered in several papers starting from the 1960’s
(see [24]) and has developed an extensive literature (see e.g. [17, 18, 20]) under the name
of de Bruijn tori. The extension to general combinatorial structures encoded by sequences
as in Definition 6 was proposed by Chung, Graham and Diaconis [9], who considered the
one-dimensional problem (“universal cycles”) for a variety of combinatorial structures. These
early formulations of the problem generally asked for optimal solutions in which every object
in a given combinatorial class is realised exactly once; in the context of Definition 6 this
corresponds to strengthening injectivity to bijectivity. However, for practical purposes one
can be satisfied with approximately optimal solutions, and given the di�culty of finding
optimal solutions there is also a substantial literature (see e.g. [3,10,11]) finding approximate
solutions from the perspective of packing (injectivity) and covering (surjectivity).

For the multiset encoding problem considered in this paper, finding the exact optimum
is an open problem even for the one-dimensional setting of universal cycles, considered by
Knuth [21, Fascicle 3, Section 7.2.1.3, Problem 109]. Hurlbert et al. [19] construct universal
cycles for multisets with particular parameters, and Blanca and Godbole [3] consider the
problem when the multisets have bounded multiplicities. Furthermore, the known results
only consider the opposite regime of parameters from those needed for our application: we
consider small palettes of colours (a.k.a. alphabets) and a large window, whereas previous
techniques in the literature only apply to small windows and large alphabets. This comment
also applies to the problem replacing “multiset” by “set”, which is perhaps even more natural
mathematically, given that it can be viewed as a hypergraph version of the Euler tour problem
(introduced by Euler in the 18th century). Following many partial results, an exact solution
to this problem (for small windows and large alphabets) was found by Glock et al. [14],
solving a conjecture from Chung et al. [9]. We are unaware of any results in the literature
on multiset packing in one dimension (meaning maximizing the number of multisets that
appear in a sequence, rather than looking for sequences that contain all possible multisets).

Moving on from the abstract mathematical problem, we now consider some of the
computer science literature aimed towards the specific application of indoor positioning.
Much of the early work was surveyed by Burns and Mitchell [5]. More recent literature
(see e.g. [2, 4, 6, 25]) has emphasised two further conditions that do not appear in the
mathematical formulation but are naturally desirable for practical implementations: namely
(a) computational e�ciency, and (b) robustness against measurement errors. These works
bring a variety of techniques from coding theory to bear on the positioning problem, providing
e�cient positioning algorithms with error correction. However, while these algorithms make
natural use of an existing toolkit and are conceptually pleasing, we will argue that they are
not addressing the most appropriate formulation of the problem from the point of view of
the target application of robot positioning, for which a new paradigm is needed.
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1.3 Motivation and Engineering Aspects

The focus of this paper is theoretical, concerning near-optimal designs for elegant combinat-
orial structures, namely torus packings. However, as stated, our motivation derives from the
problem of position reconstruction (where the dimension is 2 and the torus of is considered a
square). The vast number of applications of localization and positioning have prompted the
design of a plethora of systems; see [31] and references therein.

Given the great practical importance of positioning systems, it behoves us to justify our
claim that the approporiate way to model them is with multiset counting functions. We do
this in this section by summarising two systems where our code (and variants of it) will be
useful.

Light-Based Positioning. Recently, visible light based positioning systems have gained
much attention [23, 26, 31] for two key reasons: (i) there is a strong demand for accurate but
low-cost solutions, and (ii) there have been breakthroughs in the energy consumption and
life expectancy of light-emitting diodes (LEDs). Contrary to systems requiring several light
emitters and relying on triangulation [26], systems based on universal torus packing (such
as de Bruijn torus [1, 27, 28] and our construction) rely on only one light source, reducing
cost and energy consumption. Consider a room lit by a light-emitting diode (LED). A robot
moving on the floor wears a light sensor or camera. A printed film is placed on top of the
robot, above this sensor. The film is printed with a coloured grid, distorted so that depending
on the position of the robot in the room, the light coming from the LED projects a square
window of the coloured grid on the sensor [16]. If the coloured grid code depends on the
respective positions of the colours (such as de Bruijn torus), the light detector must be a
camera [22, 30] to recognize the pattern. If a torus packing for multisets is used instead,
the robot can wear a simple light intensity sensor to recover the multiset of colours: the
pattern of the colours is not needed, and we side-step the problematic issue of resolving the
image. Such a device is considerably less expensive and has much shorter response time
(lower latency) than a camera. It should be noted that the total light intensity (number of
coloured rays) received by the detector depends on the position and also the orientation of
the robot. Thus, for practical application of the construction presented in this article some
redundancy should be added to allow for a unique position decoding in all cases. Positioning
systems based on a de Bruijn torus also require redundancy to correct errors [6] and allow
di�erent orientations of the receiver [29]. We plan to explore redundancy in universal torus
packing for multisets in future work.

Ambient Backscatters. An ambient backscatter is a small and inexpensive device that,
upon reception of a radio wave, turns it into electricity and sends back data through a radio
signal. Consider a warehouse where ambient backscatter devices are regularly placed, forming
a grid. A robot with a radio emitter and receptor needs to locate itself in the warehouse.
Each backscatter device, when in reach of the emitted radio wave, sends back its identification
number (ID). If all devices have distinct IDs, the robot can determine its position based on
the signals it receives. However, in the interest of energy consumption, IDs composed of
few bits are preferred [7]. The same ID can be reused by several devices, provided that at
any position, the multiset of IDs detected by the robot is unique. The relative position of
the robot to its neighbouring backscatter devices is unknown, so the IDs should be chosen
following a universal torus packing for multisets (a de Bruijn torus would require the robot
to have directional antennas, making the system less practical and more expensive). For this
application, our construction should be adapted to account for radial symmetry and decay
of signal power in the detection window.
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2 Overview

We have reduced the position reconstruction problem to the design of grid colourings.
Consequently our main result, Theorem 9, is based upon an near-optimal grid colouring
construction. A key building block in this construction will be the following family of cycle
packings, which we call vector sum packings.

I Definition 11. Given positive integers n, m, b and s, an (n,m, b, s)-vector sum packing
is an (A, f, n,m)-cycle packing with A = [0, s]b and f(z0, . . . ,zm≠1) = z0 + · · ·+ zm≠1.

I Example 12. For the special case of vector dimension b = 1 we have already encountered
a (8, 3, 1, 2)-vector sum packing in Example 5.

I Example 13. Let us see an example of a vector sum packing with vector dimension b = 3.
Set m = 2, s = 1, n = 8 and (z0,z1, . . . ,z7) =

11
0
0
0

2
,

1
1
0
0

2
,

1
0
1
0

2
,

1
0
0
0

2
,

1
0
0
1

2
,

1
1
0
0

2
,

1
0
1
1

2
,

1
0
0
0

22
.

Then f(z0,z1) =
1
1
0
0

2
, f(z1,z2) =

1
1
1
0

2
, f(z2,z3) =

1
0
1
0

2
, f(z3,z4) =

1
0
0
1

2
, f(z4,z5) =

1
1
0
1

2
,

f(z5,z6) =
1
1
1
1

2
, f(z6,z7) =

1
0
1
1

2
, and f(z7,z0) =

1
0
0
0

2
. As these sums all di�er, the

injectivity property holds and we have a vector sum packing.

The strategy of our construction is encapsulated in the following two key lemmas (proven
in Section 3 and Section 4, respectively). The first reduces the construction of a grid colouring
to the construction of a vector sum packing.

I Lemma 14. Consider a dimension d, size n, window size m, and number of colours k,

and assume the existence of integers b and s satisfying k = bd + 1 and s = md≠1

bd . Then

the existence of an (n,m, b, s)-vector sum packing implies the existence of a (n,m, d, k)-grid
colouring.

Given Lemma 14, the final piece in the puzzle is a construction of vector sum packings.

I Lemma 15. For any s Ø 1, m Ø 2 and b Ø 1, there exists an (nb,m, b, 2s)-vector sum

packing with

nb = (2ms+ 1)b≠1

3
2ms ≠

1
s

4
+ 1

s
.

To deduce the existence of the construction for Theorem 9, we combine Lemmas 14 and 15,
choosing m as a large multiple of 2bd, with k = bd+ 1 and s = md≠1

2bd . Then the value of nb

in Lemma 15 satisfies nb ≥
!

2

k≠1

"(k≠1)/d
m

k≠1 for large m. We will prove in Corollary 22
that the position can be computed with a constant number of arithmetic operations.

We remark that the vector sum packing problem is related to the combinatorial theory
of antimagic labellings (a natural variant on the classic topic of magic labellings) in which
one is required to label the edges (or vertices) of a graph (or hypergraph) from a given set
of integers (or vectors) so that vertices (or edges) are uniquely determined by the sum of
their incident labels. A well-known conjecture of Ringel (cited in [15]) states that for any
connected graph with m > 1 edges there is an antimagic labelling of its edges by {1, . . . ,m}.
It appears that this connection has not previously been exploited and may be fruitful for
further research.

3 From Vector Sum Packing to Grid Colouring

The aim of this section is to prove Lemma 14, which reduces the grid colouring problem to
the vector sum packing problem.
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3.1 The Separation Property

In this section, we consider a fixed dimension d Ø 2, window size m Ø 2 and grid size n Ø m.
For x œ Zd, let us define the window of corner x as the set of points

Window(x) = {x+ c | c œ [0,m ≠ 1]d}.

For the grid colouring problem, we require that the coordinates of each point x are uniquely
determined modulo n by the multiset of colours of the points from Window(x). This multiset
is denoted by colourMultiset(x), and the colour of the point x is denoted by colour(x).

We now present a su�cient condition, called separation, that guarantees this property.
Each colour is represented as a pair (pigment, shade). We divide the set of colours into
d pigment classes, one pigment class Ci for each dimension i œ [0, d ≠ 1]. Each pigment
class contains b shades. Thus Ci = {ci,0, ci,1, . . . , ci,b≠1} where if i is the green pigment, say,
then ci,0 represents very light green and ci,b≠1 represents very dark green. The idea now
is that for each square x œ Zd, the coordinate xi modulo n is uniquely determined by the
pigment class Ci, for each i œ [0, d≠ 1], precisely by colourMultiset(x)flCi. In particular, xi

is independent of any other pigment class j ”= i on Window(x), for example, shades of red.
Evidently, this separation property implies that if x and y have the same colour multiset
for every pigment class then xi © yi mod n for each i œ [0, d ≠ 1] and, hence, x © y mod n.
Thus the separation property implies that we have a proper grid colouring.

Rather than working directly with separation, it will be convenient to consider the
following two further conditions that together clearly imply separation.

Dimensional Inconsistency: Given x and y, if xi ”= yi mod n then

colourMultiset(x) fl Ci ”= colourMultiset(y) fl Ci.

Anti-Dimensional Consistency: Given x and y, if xi = yi mod n then

colourMultiset(x) fl Ci = colourMultiset(y) fl Ci.

To ensure anti-dimensional consistency it will be convenient to focus on the following condition
called quasi-periodicity, which states that if some x is coloured a shade of pigment i then
any translate y of x by distance m in any dimension other than i has the same colour as x

’i ”= j, if colour(x) œ Ci then colour(x+m ej) = colour(x).

I Lemma 16. Any quasi-periodic grid colouring satisfies anti-dimensional consistency.

Proof. Take a quasi-periodic colouring. It su�ces to show, given xi, that colourMultiset(x)fl

Ci is fixed. This will hold if the number of squares of colour ci,¸ in a window does not change
if we translate by one square in any dimension j other than i. Let us define

A = Window(x) \Window(x+ ej), B = Window(x+ ej) \Window(x).

Since B is obtained from A by translation by mej , quasi-periodicity implies that the number
of points of colour ci,¸ in A and B are equal. Thus, the number of points of colour ci,¸

in Window(x) and Window(x + ej) are equal as well. As this argument applies for any
j ”= i, the anti-dimensional consistency property holds. Thus, quasi-periodicity implies
anti-dimensional consistency. J
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3.2 Separation via Vector Sum Packing

Assume we have an (n,m, b, s)-vector sum packing (zj)jœZ of size n and window size m,
containing vectors in [0, s]b, where s is a positive integer equal to md≠1

bd for some dimension
d Ø 2. We will now construct a (n,m, d, k)-grid colouring with number of colours k = bd+ 1.
We detail our algorithm below and illustrate it in Figure 2. As we saw in the previous section,
to ensure the separation condition, it is su�cient that our grid colouring satisfies dimensional
inconsistency and quasi-periodicity.

(a) We begin with an initial colouring of the grid using only d pigments, each coming in b

di�erent shades. Take a pigment i œ [0, d ≠ 1] and shade h œ [0, b ≠ 1]. Then the point
x = (x0, . . . , xd≠1) has pigment i and shade h if and only if

d≠1ÿ

j=0

xj © i+ hd mod bd.

This initial colouring is quasi-periodic. But, of course, it does not satisfy dimensional
inconsistency. To rectify this, we will apply the last unused colour, which we call blank,
to erase some colours from the initial colouring.

(b) Consider a dimension i œ [0, d ≠ 1]. We associate to it the pigment i and the set Ci of
the corresponding b shades. For each j œ Z, let

Bi,j = {x | xi = j and ’¸ ”= i, x¸ œ [0,m ≠ 1]}.

We apply the blank colour to erase some of the colours from Bi,j , so that the number of
points of shade ci,¸ is equal to the ¸th component of zj . This is always possible, because
in the initial colouring, Bi,j contains s = md≠1

bd occurrences of shade ci,¸, and the values
of the vectors from the vector sum packing are all in [0, s].

(c) We apply quasi-periodicity to reproduce this construction on the rest of the grid. Spe-
cifically, point x = (x0, . . . , xd≠1) of pigment i and shade h in the initial colouring is
erased if and only if the point y with yi = xi and for all j ”= i, yj = xj mod m was
erased at step (b).

The injectivity of the vector sum packing implies the dimensional inconsistency of our grid
colouring. By construction, our grid colouring is quasi-periodic, so by Lemma 16, it satisfies
the separation property, concluding the proof of Lemma 14.

3.3 An Example

An illustration of the proof of Lemma 14 is given in Figure 2 on a grid of dimension d = 2,
size n = 8, window size m = 4, number of colours k = 3. To create the grid-colouring we use
the vector sum packing (z0,z1, . . . ,z7) = (0, 0, 0, 0, 2, 2, 2, 1) (note each vector has dimension
1, so is represented by its content). In particular, s = 2 and b = 1; note that k = bd+ 1 and
s = md≠1

bd . Recall, the aim is that number of occurrences of 0 (resp. 1) in a 4 by 4 square
characterizes its row (resp. column) number. Following the proof of Lemma 14, we start with
a periodic colouring, represented in (a). We now use the blank colour 2 to erase some of the 0.
First, in (b), we erase entries in the first 4 columns so the number of occurrences of 0 in these
columns for the eight rows are (0, 0, 0, 0, 2, 2, 2, 1). Second in (c), we apply quasi-periodicity
on the rest of the grid. Next, in (d) and (e), we apply the same approach to erase some of
the 1. The final result is (e). No two 4 ◊ 4 subsquares contain the same multiset of colours.

Let us now illustrate how this grid is used for localization. Recall that our convention
is to number the rows from top to botton, and column from left to right, both starting at
0. Assume we are measuring in a window (i.e. a 4 ◊ 4 subsquare) the multiset of colors
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0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

2 1 2 1 0 1 0 1
1 2 1 2 1 0 1 0
2 1 2 1 0 1 0 1
1 2 1 2 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 0

2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 2

(a) (b) (c)

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

(d) (e)

Figure 2 Illustration of the steps of the proof of Lemma 14 on a grid of dimension d = 2, size
n = 8, window size m = 4, number of colours k = 3.

containing 5 occurrences of 0, 3 occurrences of 1 and 8 occurrences of 2. We wish to locate
this window in the grid (e). The naive algorithm is to consider each possible window in the
grid and compare the multisets of colors. This becomes costly for large grids, so we present
a more e�cient algorithm. By convention, color 0 is used to determine the row. Looking at
the vector sum packing (0, 0, 0, 0, 2, 2, 2, 1), we observe that the sequence whose jth element
is the sum of m = 4 consecutive elements starting at position j, is (0, 2, 4, 6, 7, 5, 3, 1). The
number 5 is located at position 5 in this sequence, so the upper-left corner of the window
we are seeking has row number 5. To determine the column, we consider the color 1. Its
number of occurrence 3 has position 6 in (0, 2, 4, 6, 7, 5, 3, 1), so the column number is 6. On
the torus (e), the 4◊ 4 subsquare with top left corner in row 5 and column 6 indeed contains
5 occurrences of 0, 3 occurrences of 1 and 8 occurrences of 2.

Observe that for any fixed dimension, the localization problem in the grid reduces in
constant complexity to the problem of computing the position of a vector in a vector
sum packing. We call this second problem decoding. In the next section, we will present
our construction for vector sum packings, as well as a decoding algorithm with constant
complexity (in the number of arithmetic operations, as the dimension d and parameter b,
defined there, are fixed).

A grid colouring of size 256, window size 8, and 5 colours is presented in the appendix.

4 Vector Sum Packing

This section presents our construction of vector sum packings, thus proving Lemma 15, which
is the last missing ingredient for the proof of our main result Theorem 9.
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4.1 Profiles and Duals

To build vector sum packings (see Definition 11), we introduce certain integer sequences that
we call profiles. Profiles with di�erent parameters will be used to fill the coordinates of the
vector sum packing, in Lemma 21.

The m-dual of a profile w is an integer sequence of same length |w|, defined as the sum
of the elements of w on a cycling window of length m

Dualm(w) =
3 i+m≠1ÿ

j=i

wi mod |w|

4

iœ[0,|w|≠1]

.

Consider integers s Ø 1 and m Ø 2. Let us write sequences of length 1 as (‡) and
sequences of length m as (‡0,‡1, . . . ,‡m≠1). For a finite sequence L and a nonnegative
integer T , the sequence obtained by concatenating T copies of L one after the other is
denoted by L

T . Let ÿ denote the emptysequence, and let a · b denote the concatenation of
the sequences a and b, so (1, 2, 3) · (4) is equal to (1, 2, 3, 4). In the following tables, the rows
and columns are numbered starting at 0, in red. Straight lines have been added between
some of the rows to distinguish parts of the tables following di�erent rules.

Let us define the sequence Profile(s,m, 0) as the concatenation of the cells from the
following table, read line by line from top left to bottom right.

0 1 2 · · · s ≠ 1
0 (0, . . . , 0) (2, . . . , 2) (4, . . . , 4) · · · (2s ≠ 2, . . . , 2s ≠ 2)
1 (2s, . . . , 2s, 2s ≠ 1) (2s ≠ 2, . . . , 2s ≠ 2, 2s ≠ 3) (2s ≠ 4, . . . , 2s ≠ 4, 2s ≠ 5) · · · (2, . . . , 2, 1)

For example, we have Profile(1, 3, 0) = (0, 0, 0, 2, 2, 1) and Profile(2, 2, 0) = (0, 0, 2, 2, 4, 3, 2, 1).

I Lemma 17. Profile(s,m, 0) has length 2ms. Furthermore, its m-dual is

Dualm(Profile(s,m, 0)) = (0, 2, 4, . . . , 2ms ≠ 2, 2ms ≠ 1, 2ms ≠ 3, 2ms ≠ 5, . . . , 1).

Proof. Profile(s,m, 0) has length 2ms because each entry in the table is a sequence of
cardinality m and there are 2s entries in the table. The reader may easily verify that the
m-dual begins with non-negative even numbers increasing up to 2ms≠ 2 followed by positive
odd numbers decreasing down from 2ms ≠ 2. Thus, the m-dual contains every integer in
[0, 2m ≠ 1] exactly once. J

Let us define the (s,m, 0)-decoding function as the function that associates to an integer v
its smallest index in them-dual of Profile(s,m, 0). For example, the (2, 2, 0)-decoding function
sends 6 to 3, because the 2-dual of Profile(2, 2, 0) = (0, 0, 2, 2, 4, 3, 2, 1) is (0, 2, 4, 6, 7, 5, 3, 1) ,
where the first (and only) occurrence of 6 is at position 3.

I Corollary 18. The (s,m, 0)-decoding function is

v ‘æ

I
v
2

if v is even,

2ms ≠ 1 ≠
v≠1

2
if v is odd.

It is computable in a constant number of arithmetic operations.
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For any positive integer T and m Ø 2, let us define the sequence Profile(s,m, T ) as the
concatenation of the cells from the following table.

0 1 2 · · · s ≠ 1
0 (0, . . . , 0, 0)T (0, . . . , 0, 2)T (0, . . . , 0, 4)T · · · (0, . . . , 0, 2s ≠ 2)T
1 (0, . . . , 0, 0, 2s)T (0, . . . , 0, 2, 2s)T (0, . . . , 0, 4, 2s)T · · · (0, . . . , 0, 2s ≠ 2, 2s)T
...

...
...

...
m ≠ 1 (0, 2s, . . . , 2s, 2s)T (2, 2s, . . . , 2s, 2s)T · · · · · · (2s ≠ 2, 2s, . . . , 2s)T

m (2s)mT≠1 (2s ≠ 1, 2s, . . . , 2s)T (2s ≠ 3, 2s, . . . , 2s)T · · · (3, 2s, . . . , 2s)T

m+ 1 (1, 2s, 2s, . . . , 2s)T≠1 (1, 2s, . . . , 2s, 2s ≠ 2)T (1, 2s, . . . , 2s, 2s ≠ 4)T · · · (1, 2s, . . . , 2s, 2)T

m+ 2 (1, 2s, . . . , 2s, 0)T (1, 2s, . . . , 2s ≠ 2, 0)T (1, 2s, . . . , 2s, 2s ≠ 4, 0)T · · · (1, 2s, . . . , 2s, 2, 0)T
...

...
...

...
2m ≠ 1 (1, 2s, 0, . . . , 0)T (1, 2s ≠ 2, 0, . . . , 0)T · · · · · · (1, 2, 0, . . . , 0)T

2m (1, 0, . . . , 0)T≠1
· (1) ÿ ÿ · · · ÿ

I Lemma 19. For any m Ø 2, Profile(s,m, T ) has length m((2ms+ 1)T ≠ 2). Furthermore,

its m-dual is obtained by concatenation of the cells of the following table

0 1 2 · · · s ≠ 1
0 (0)mT (2)mT (4)mT

· · · (2s ≠ 2)mT

1 (2s)mT≠1 (2s+ 2)mT (2s+ 4)mT
· · · (4s ≠ 2)mT

2 (4s)mT≠1 (4s+ 2)mT (4s+ 4)mT
· · · (6s ≠ 2)mT

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

m ≠ 1 (2(m ≠ 1)s)mT≠1 (2(m ≠ 1)s+ 2)mT (2(m ≠ 1)s+ 4)mT
· · · (2ms ≠ 2)mT

m (2ms)mT≠1 (2ms ≠ 1)mT (2ms ≠ 3)mT
· · · (2(m ≠ 1)s+ 3)mT

m+ 1 (2(m ≠ 1)s+ 1)mT≠1 (2(m ≠ 1)s ≠ 1)mT (2(m ≠ 1)s ≠ 3)mT
· · · (2(m ≠ 2)s+ 3)mT

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2m ≠ 1 (2s+ 1)mT≠1 (2s ≠ 1)mT (2s ≠ 3)mT
· · · (3)mT

2m (1)mT≠1
ÿ ÿ · · · ÿ

Proof. In the table, there are 2ms ≠ 2 cells containing sequences of length mT , one cell
containing a sequence of length mT ≠ 1, one cell containing a sequence of length m(T ≠ 1)
and one celle containing a sequence of length m(T ≠ 1) + 1, so Profile(s,m, T ) has length

(2ms ≠ 2)mT +mT ≠ 1 +m(T ≠ 1) +m(T ≠ 1) + 1 = mT (2ms+ 1) ≠ 2m

as desired. Again, the reader may verify that the m-dual begins with non-negative even
numbers increasing up to 2ms followed by positive odd numbers decreasing down from
2ms ≠ 1 (repeated in the quantities specified). J

We define the (s,m, T )-decoding function as the function that associates to an integer v
its smallest index in the m-dual of Profile(s,m, T ).

I Corollary 20. The (s,m, T )-decoding function output on the input v is computed using the

following algorithm. If v is even, we define r = Â
v
2sÊ and c = v

2
mod [s]. They represent the

row and column in the m-dual from Lemma 19. Then the output of the decoding function is

(rmT s ≠ r + 1)1r>0 + (cmT ≠ 1 + 1r=0)1c>0.

Otherwise, v is odd and we define r = Â
2ms≠v+1

2s Ê and c = 2ms≠v+1

2
mod s. The output is

then

1 +m(mT s ≠ 1) + (mT s r ≠ r)1r>0 + (cmT ≠ 1)1c>0.

It is computable in a constant number of arithmetic operations.
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4.2 Generating a Vector Sum Packing

We will explicitly construct the vector sum packing by combining profiles, thus proving
Lemma 15.

Recall that an (n,m, b, s)-vector sum packing is characterised by its pattern (z0, . . . ,zn≠1)
where each zi is a vector in [0, s]b. These vectors will be defined as the columns of a matrix
M

(b). Furthermore, the rows of this matrix will be constructed using sequences given by the
Profile(s,m, T ).

The matrix M
(b) will have b rows and m · Tb = nb columns. Specifically, given s Ø 1 and

m Ø 2, we set T0 = 0 and T1 = 2s. Then, for each b Ø 1, we recursively set

Tb+1 = (2ms+ 1)Tb ≠ 2.

Thus we obtain the dimensions of our M (b) matrices. To fill in the entries of the matrices we
again apply a recursive construction.

For b = 1, the matrix M
(1) has only one row, which is identical to the sequence

Profile(s,m, 0). We remark that M (1) does indeed have n1 = m · T1 = 2ms columns, as
required by Lemma 17.
Next consider the case b Ø 2. The basic idea is that M (b) should simply be the concat-
enation on 2ms+ 1 copies of M (b≠1), plus an additional row identical to the sequence
Profile(s,m, Tb≠1), which will be used to distinguish between the di�erent copies.

However, this basic idea does not scale correctly, so instead of concatenating identical
copies of M (b≠1), we also concatenate truncated copies of M (b≠1). Specifically, we allow for
the truncated matrix M

(b≠1,ı) which is identical to M
(b≠1) except that its first column is

removed.
We now set M (b) = M

(b≠1,0)
¶M

(b≠1,2)
¶ · · · ¶M

(b≠1,2ms)
¶M

(b≠1,2ms≠1)
¶ · · · ¶M

(b≠1,1)),
where each M

(b≠1,¸) is either M
(b≠1) or M

(b≠1,ı) and where ¶ denotes the concatenation
operation. Thus, it remains, to prescribe, for each for ¸ œ [0, 2ms] whether M (b≠1,¸) is set
equal to M

(b≠1) or M
(b≠1,ı). To do this, we use the m-dual of the Profile(s,m, Tb≠1). In

particular, define I¸ to be the set of indices where the m-dual of the profile takes value ¸.
That is,

I¸ = {i | Dualm(Profile(s,m, Tb≠1))i = ¸} (1)

Recall that nb = mTb = m · ((2ms+ 1) · Tb≠1 ≠ 2). Observe then, from Lemma 19, that the
(I¸)s are disjoint integer intervals of length either nb≠1 or nb≠1 ≠ 1 whose union is [0, nb ≠ 1].
For each ¸ œ [0, 2ms], we now define

M
(b≠1,¸) =

I
M

(b≠1) if |I¸| = nb≠1,

M
(b≠1,ı) if |I¸| = nb≠1 ≠ 1.

The resultant construction of M (b) is then illustrated in Figure 3. For example, for s = 1,
m = 2 and b = 2, we have T0 = 0 and T1 = 2, so

Profile(s,m, Tb≠1) = Profile(1, 2, 2) = (0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 1, 2, 1, 0, 1),
Dualm(Profile(s,m, Tb≠1)) = (0, 0, 0, 0, 2, 2, 2, 4, 4, 4, 3, 3, 3, 1, 1, 1),

Profile(s,m, Tb≠2) = Profile(1, 2, 0) = (0, 0, 2, 1),

so

M
(2) =

3
0 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1
0 0 0 0 0 2 0 2 2 2 2 1 2 1 0 1

4
.
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M
(b) =

I0˙ ˝¸ ˚ I2˙ ˝¸ ˚ I2ms˙ ˝¸ ˚ I1˙ ˝¸ ˚

M
(b≠1,0)

M
(b≠1,2)

· · · M
(b≠1,2ms)

· · · M
(b≠1,1)

Profile(s,m, Tb≠1)

Figure 3 The recursive construction of the matrix M (b). The indices j for the sets Ij on top of
the figure are first increasing even numbers, then decreasing odd numbers.

As stated, we will take our vectors (z0,z1, . . . ,znb≠1) to be the columns of M (b). That
is, let Vi,j = M

(b)
i mod nb, j

. Then, for any i œ Z, we have zi = (Vi,j)jœ[0,b≠1].

I Lemma 21. The sequence of vectors (z0,z1, . . . ,znb≠1) is the pattern of an (nb,m, b, 2s)-
vector sum packing.

Proof. Given (z0,z1, . . . ,znb≠1) recall that f(zj ,zj+1, . . . ,zj+m≠1) = zj + zj+1 + · · · +
zj+m≠1, where the indices are taken modulo nb. Our task is to prove that f is injective.

We will show this by extending the definition of an m-dual to matrices: we define the
m-dual of a matrix M with n columns to be the matrix D of the same dimensions where
for all i, the ith column of D is equal to the sum of the columns of M of all indices in
[i, i+m ≠ 1] modulo n.

Proving (z0,z1, . . . ,znb≠1) is an (nb,m, b, 2s)-vector sum packing is then equivalent to
proving that the m-dual of M (b) does not contain any identical columns. We will do so by
induction on b.

Initialization. For the base case b = 1, recall that M
(b) = Profile(s,m, 0). Hence, by

Lemma 17, Dualm(M (b)) does not contain two identical columns.

Induction Step. For the induction hypothesis, assume that Dualm(M (b≠1)) does not contain
two identical columns. Now define Profileú(s,m, T ) to be equal to Profile(s,m, T ) except with
the first 0 removed. By construction, each row j œ [0, b≠ 1] of M (b) is a concatenation of the
form P0 ¶P1 ¶ · · ·¶Pr where each Pi is equal either to Profile(s,m, Tj) or to Profileú(s,m, Tj).
Next observe that both Profile(s,m, Tj) and Profileú(s,m, Tj) start with m ≠ 1 occurrences
of 0. This implies that m-dual and concatenation commutes as

Dualm(P0 ¶ P1 ¶ · · · ¶ Pr) = Dualm(P0) ¶ Dualm(P1) ¶ · · · ¶ Dualm(Pr).

Therefore the m-dual of the matrix M
(b) is

Dualm(M (b)) =

I0˙ ˝¸ ˚ I1˙ ˝¸ ˚

Dualm(M (b≠1,0)) · · · Dualm(M (b≠1,1))

Dualm(Profile(s,m, Tb≠1))

(2)

Assume that two columns c and c
Õ with column indices i and i

Õ in Dualm(M (b)) are equal.
Let ¸ œ [0, 2ms] denote the value of c in its final row b≠ 1. Thus, cÕ also has entry ¸ in its last
row. But the last row b ≠ 1 of Dualm(M (b)) is defined to equal Dualm(Profile(s,m, Tb≠1)).
Hence, by definition of I¸ from Equation (1), we have i œ I¸ and i

Õ
œ I¸. Let d and d

Õ be
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obtained from c and c
Õ by removing their last row b ≠ 1. By Equation (2), both d and d

Õ

belong to Dualm(M (b≠1,¸)). Thus, they both belong to Dualm(M (b≠1)). By the induction
hypothesis, this implies i = i

Õ and concludes the proof. J

Let the (n,m, b, s)-decoding function for vector sum packing be defined as the function
that inputs an integer vector x and outputs its index in the m-dual of the (n,m, b, s)-vector
sum packing we defined.

I Corollary 22. For fixed b, the (nb,m, b, 2s)-decoding function for our vector sum packing

is computable in a constant number of arithmetic operations.

Proof. This decoding function is computed recursively, following the recursive construction
of matrix Dualm(M (b)) from Equation (2). It inputs a vector x and an auxiliary Boolean
parameter B, initialized at False, that indicates if we are looking for localization in a vector
sum packing where the first vector has been removed.

We first use the decoding function for profiles from Corollaries 18 and 20 on the last
coordinate of x to compute an integer c, and set p = c if B is equal to False, and p = c ≠ 1
if B is equal to True. For b = 1, as x is a vector of dimension 1, the algorithm stops
and p is returned. Otherwise, by construction, p is the smallest possible index for any
vector whose last coordinate is equal to the last coordinate of x. Now, in Equation (2), we
want to determine whether the matrix Dualm(M b≠1,j) on top of p is equal to Dualm(M b≠1)
or to Dualm(M b≠1,ı). As explained in the construction, this is decided by looking at
Dualm(Profile(s,m, Tb≠1)) from Lemma 19. In this sequence, let ¸ denote the number of
repetition of the element at position p.

If ¸ = mTb≠1, then we are working with Dualm(M b≠1). In that case, we call recursively
the (nb≠1,m, b ≠ 1, 2s)-decoding function on the vector x without its last coordinate,
with auxiliary parameter equal to False. The output is added to p and returned.
Otherwise, we have ¸ = mTb≠1 ≠ 1, and we are working with Dualm(M b≠1,ı). We call
recursively the (nb≠1,m, b ≠ 1, 2s)-decoding function on the vector x without its last
coordinate, with auxiliary parameter equal to True. The output is added to p and
returned.

Deciding whether ¸ = mTb≠1 or ¸ = mTb≠1 ≠ 1 is achieved by looking at the parity of p
and its value modulo s. This recursive construction has depth b, so for b fixed, it requires
only a constant number of arithmetic operations. Python code for this algorithm is provided
in [13]. J

4.3 Summary and Complexity

Let us summarize our algorithm constructing a grid coloring. It inputs a dimension d Ø 2
and two other parameters b Ø 1 and t Ø 1. The first step is to compute the window size
m = 2bdt, the number of colors k = bd + 1, the parameter s = (2bd)d≠2

t
d≠1 to ensure

2s = md≠1

bd , and the grid size n = (2ms + 1)b≠1(2ms ≠ 1/s) + 1/s. The second step is to
construct an (n,m, b, 2s)-vector sum packing, as described in Section 4.2, using the profile

sequences defined in Section 4.1. In the third step, we finally colour the points of our grid of
side n and dimension d. Our set of colours is {0, 1, . . . , k ≠ 1}. Here the last colour k ≠ 1 is a
“blank” color used to erase the other colours. The other colours are divided into d sets, called
pigment classes. Each pigment class contains b colours, which we call its shades. To each
dimension of the grid is associated a unique pigment. The vector sum packing is then used,
as explained in Section 3, to colour the points of the grid.
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Next consider the localization problem. Localization means, given a multiset S of colours,
the recovery of the unique window of size m in the grid that contains this multiset of colors
(if it exists). To achieve localization, we proceed dimension by dimension. We count in S the
colours from the pigment class corresponding to the dimension considered and make a vector
out of it. For example, if the dimension corresponds to the colours 4, 5, 6 and S contains
three occurrences of the color 4, zero occurrences of the colour 5 and two occurrences of
the colour 6, the vector is (3, 0, 2). We use the decoding algorithm for vector sum packing
from Corollary 22 to translate this vector into a coordinate. Having achieved this for every
coordinate, we deduce the position of the window whose multiset of colours is equal to S.

The construction of the grid and localization procedure are illustrated in Section 3.3. We
measure complexity as the number of arithmetic operations for b and d fixed, while t goes to
infinity. The construction of the grid has complexity proportional to the size of its output,
which is O(nd) = O(tb d2). Corollary 22 implies that the complexity of the localization
algorithm is constant.

5 Conclusion

Many interesting directions for future research remain, both theoretical and practical. One
nice extension would be to make our grid colouring robust by allowing for error detection
and correction. This has been achieved for other cycle and torus packing problems (see, for
example, [2, 4, 6, 25]) and is a necessary step for practical applications. Another valuable
contribution would be to study disc-like windows rather than the square windows examined
in this article. This would match the natural shape of the domain where an emission emitted
at a point is detectable.
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A Software Implementation

We implemented our algorithm constructing the grid colouring as well as the decoding
algorithm in Python. The code is available at [13]. An example of grid colouring computed
with this code is presented in Figure 4.

Figure 4 Grid colouring of size 256, window size 8 and number of colours 5. It corresponds to
the parameters d = 2, b = 2 and t = 1.



Bayesian Calibrated Click-Through Auctions
Junjie Chen �

City University of Hong Kong, Hong Kong, China

Minming Li �

City University of Hong Kong, Hong Kong, China

Haifeng Xu �

University of Chicago, IL, USA

Song Zuo �

Google Research, New York, NY, USA

Abstract
We study information design in click-through auctions, in which the bidders/advertisers bid for
winning an opportunity to show their ads but only pay for realized clicks. The payment may or
may not happen, and its probability is called the click-through rate (CTR). This auction format is
widely used in the industry of online advertising. Bidders have private values, whereas the seller has
private information about each bidder’s CTRs. We are interested in the seller’s problem of partially
revealing CTR information to maximize revenue. Information design in click-through auctions turns
out to be intriguingly di�erent from almost all previous studies in this space since any revealed
information about CTRs will never a�ect bidders’ bidding behaviors – they will always bid their
true value per click – but only a�ect the auction’s allocation and payment rule. In some sense, this
makes information design e�ectively a constrained mechanism design problem.

Our first result is an FPTAS to compute an approximately optimal mechanism under a constant
number of bidders. The design of this algorithm leverages Bayesian bidder values which help to
“smooth” the seller’s revenue function and lead to better tractability. The design of this FPTAS
is complex and primarily algorithmic. Our second main result pursues the design of “simple”
mechanisms that are approximately optimal yet more practical. We primarily focus on the two-
bidder situation, which is already notoriously challenging as demonstrated in recent works. When
bidders’ CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose
construction relies on a parameter termed optimal signal ratio. The constructed scheme provably
obtains a good approximation as long as the maximum and minimum of bidders’ value density
functions do not di�er much.

2012 ACM Subject Classification Theory of computation æ Algorithmic game theory and mechanism
design

Keywords and phrases information design, ad auctions, online advertising, mechanism design

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.44

Category Track A: Algorithms, Complexity and Games

Related Version Full Version (with missing Proofs and Appendices): https://arxiv.org/abs/2306.
06554

Funding Haifeng Xu: Supported by NSF Award CCF-2303372, Army Research O�ce Award
W911NF-23-1-0030, O�ce of Naval Research Award N00014-23-1-2802 and the AI2050 program at
Schmidt Sciences (Grant G-24-66104).

1 Introduction

Many of the phenomenal Internet Technology companies are powered by online advertising [25].
When an Internet user browses a webpage, an ad auction may be run to determine which
ads to be displayed to this user. Such ad auctions can be either done by the webpage owner
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or through ad exchange platforms. Large website owners (sellers) sometimes may know the
users much better than individual advertisers (bidders) do. It is thus natural for the seller to
utilize such information advantage to improve its ad revenue. As an example, the seller’s
knowledge about the user can be used to better predict an Internet user’s click-through rate

(CTR), which is then used in ad auctions to deliver ad impressions more e�ciently.
Interestingly, a recent line of works, starting from Bro Miltersen and She�et [14], Emek

et al. [26], comes to realize that it may not always be the seller’s best interest to use as
much information as possible. That is, partially use certain amount – and the right type – of
information may be more beneficial for the seller’s revenue. This insight has motivated many
studies on the algorithmic problem of optimal information design – i.e., determining what
information to be shared with which bidders – in order to maximize revenue in di�erent
auction formats [14, 26, 12, 38, 30, 5].

While there are two main types of bidding strategies in online advertising: autobidding
[20, 7, 6] and manual bidding, to better understand the optimal design of information in an
auction environment, we follow the rich literature and turn to the cleaner manual bidding
where the platform incentivizes buyers to tell the truth. However, di�erent from almost
all previous works focusing on stylized auction formats such as the second price auction
for independent-value bidders [14, 26, 12, 5] and common-value bidders [38] and Myerson’s
optimal auction [30], we focus on a di�erent auction format, i.e., the click-through auction,
which is the main auction format employed by the current online advertising industry [27].
The click-through auction is also widely known as the generalized second-price auction [25]
or position auctions [44]. We use the term “click-through auction” as coined by Bergemann
et al. [11] to emphasize the sale of clicks, since this factor turns out to make information
design in click-through auctions significantly di�erent from that in almost all other previously
studied auctions. In a click-through auction for selling a single ad position, each bidder i
submits a bid bi expressing his value for each click of his ad. Additionally, the seller will
estimate a click through rate (CTR) ri for bidder i. The auction runs by ranking bidders
according to the product score biri, denoted as b(1)r(1) Ø b(2)r(2) Ø · · · , and allocates the
item to the bidder with the highest product score b(1)r(1). Crucially, since the auction only
sells clicks, the winner does not need to pay unless a click truly happens in which case the
winner pays the second highest score divided by his own CTR, i.e., b(2)r(2)/r(1). When
there is only a single ad slot to allocate, it is straightforward to verify that this auction
is truthful, regardless of the CTR values (even mistakenly estimated).1 As a result, the
seller’s information advantage of knowing the CTRs cannot be exploited to influence the
advertisers’ bidding behaviors since it is always their best interest to bid the true value per
click vi. In some sense, information design here is e�ectively a naturally restricted format
of mechanism design for multiple items with additive bidder values (which is generally a
very di�cult question [19]). This crucially di�ers from the information design task in all
previously studied auction formats, in which the seller’s information about the item (e.g.,
the CTR) can be revealed to alter bidders’ bidding behaviors. This is intrinsically because
bidders pay for realized clicks only thus the probability of receiving a click will not matter
in click-through auctions. Note that, even in per-impression ad auctions as studied in [5],
bidders pay for impressions but care about clicks or conversions, thus their values do depend
on the probability of receiving a click, i.e., the CTR.

1 Such truthfulness holds only when there is a single slot, which is the case we focus on in this paper.
Click-through auctions are well-known to be non-truthful and di�cult to analyze when there are multiple
slots [25].
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Most relevant to ours is the recent work by Bergemann et al. [11], who study the same
information design question of optimally revealing the CTR information in click-through
auctions. They focused on a simplified setup with complete information about the bidders,
i.e., the bidders’ values are assumed to be fully known to the seller. A natural calibration
constraint, originating from Foster and Vohra [29], is imposed on their information design,
which simply means the disclosed CTR estimation to each bidder has to be consistent with
(i.e., equal in expectation) the true CTR of the bidder. They thus call the new model
calibrated click-through auctions. Notably, the seller is allowed to privately communicate
information with each bidder, which is known as private signaling. The main contribution of
this paper is to extend the setup of [11] to the more natural and also more widely studied
setup of Bayesian bidders with independent values. For this reason, We call our model the
Bayesian calibrated click-through auction.

To our knowledge, Bergemann et al. [11] is the first study of information design in
auctions in which the revealed information cannot influence bidders’ behaviors, but only
a�ect the mechanism itself. This gives rise to an intriguing information design problem
– in some sense, it is even in contrast to one’s first impression about information design,
also known as persuasion [33], which seeks to exploit information advantage to influence
others’ behaviors. In contrast, information design in click-through auctions only a�ects
the final allocation and payment of the mechanism but has no e�ect on bidders’ bidding
behaviors. From this perspective, information design here is e�ectively a form of mechanism
design. Indeed, a similar phenomenon was observed by Daskalakis et al. [19], who study
the co-design of information structure and the auction mechanism. They observe that at
the optimal co-design, there is no signaling to bidders whatsoever, and the seller will only
use the underlying state to decide the item allocation and payment. Our problem is similar,
except that we restrict ourselves to the class of click-through auctions. This restriction is
motivated by its practical applications.

Before proceeding to describe our results, we briefly highlight the challenges of information
design in our problem. Indeed, the di�culty of information design in strategic games is well
documented in previous works [22, 13]. Even just for auctions, Emek et al. [26] shows that
computing an optimal information design in a second price auction is NP-hard in general
for Bayesian bidder values, though it does become polynomial-time solvable in cases with
complete information of bidder values. Unfortunately, such tractability does not transfer to
the click-through auctions: in a general environment with complete information about bidder
values, even the problem of optimal information design in two-bidder click-through auctions
is left as an open question in [11]. Bergemann et al. [11] show that when the distributions of
CTRs are symmetric, an optimal signaling policy can be characterized. However, back to our
Bayesian generalization of their setup, their optimal design for the symmetric information
environment is no longer applicable because the design of their signaling scheme relies crucially
on knowing the exact identity of the winner for any signal realization, which unfortunately
becomes uncertain in our Bayesian setup with random bidder values. This barrier brings
challenges, but also brings opportunities to adopt more algorithmic approaches. Next, we
elaborate on our findings.

1.1 Results
We study the theoretical aspects of Bayesian calibrated click-through auctions and develop
two encouraging positive results.

Our first result, Theorem 3.1, exhibits a Fully Polynomial Time Approximation Scheme
(FPTAS) for computing an approximately revenue-optimal signaling scheme in an arbitrary

information environment, assuming no point mass in bidders’ value distributions. This
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FPTAS applies to any constant number of bidders. Interestingly, our FPTAS bypasses the
notorious challenge of the complete-information general setup of [11] by relaxing it to the
more natural Bayesian valuation setup with smooth value distributions. We use signals of
the form k‘ for some integer k. The key challenge is to enforce the calibration constraint –
i.e., the posterior mean of the CTR conditioned on the signal has to equal the signal itself –
in the rounding process. We develop a nontrivial technique to address the challenge. Notably,
this FPTAS applies to any auction mechanism, as long as its revenue as a function of signals
is Lipschitz continuous.

Our second main result, Theorem 4.2, examines the popular recent computational model
of unknown value distributions, also known as prior-free setups [21]. We give explicit
and e�cient construction of simple prior-free signaling schemes for symmetric information
environments (as studied also by Bergemann et al. [11]) with strong approximation guarantees.
The constructed signaling scheme is based on a parameter coined the optimal signal ratio,
which we find is at most 1. This allows us to send larger signals (i.e., larger CTR estimations)
to the bidder with a high click-through rate than the bidder with a low click-through rate.
The proof mainly consists of (i) establishing a connection between the optimal signaling
scheme under the unknown value distribution and the optimal signaling scheme under a
uniform value distribution and (ii) providing the approximation ratio of the constructed
signaling scheme under a uniform value distribution, which is proved to be 0.995. En route
to proving (ii), we prove a more general result (Proposition 4.11) which shows that, if the
optimal signal ratio is convex in CTR (which is true for various commonly used distributions),
then a signaling scheme with better approximation can be devised. This result may be of
independent interest.

1.2 Additional Related Works
Due to the space limit, we briefly discuss the related works here, while additional discussions
in detail are in Appendix A. The most relevant literature to our work is information
design in auctions. Information design has been adopted to second price auctions [14,
26, 18, 5] and Myerson auctions [30] in various setups. Recently, Bergemann et al. [11]
provided characterizations for a symmetric calibrated click-through auction but with complete
information of bidder values. Another line of related literature is the sale of information,
which selectively reveals information for revenue improvement. There are a series of works
in this line [2, 17, 9, 15, 39, 46, 37, 10]. Our work is also related to Bayesian persuasion
[34, 1, 4, 24, 3, 45, 31]. We also refer interested readers to a comprehensive survey by
Dughmi [23]. Finally, our work is partly related to the literature on automated bidding in
auctions [36, 35, 28, 40, 8].

2 Preliminaries

We consider the (arguably more natural) Bayesian version of the calibrated click-through

auction of [11], which is directly motivated by advertising auctions. At a high level, bidders
in this auction are ranked by the products of their private values (i.e., the willingness-to-pay
per click) and the seller’s prediction of click-through-rate (abbr. CTR). Bergemann et al. [11]
consider a basic setup in which bidders’ private values are perfectly known to the seller. In
this paper, we generalize their problem to the Bayesian setup by assuming that bidders’
values are independently drawn from distributions. While each bidder knows his own private
value, the seller only knows the distributions of bidder values (though our second main result
further removes this assumption). This generalization is more aligned with the rich literature
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of Bayesian auction design, starting from the seminal work of [41]. Similar to [11], we also
aim to design a revenue-maximizing auction. Di�erent from classic auction design, the seller
in a click-through auction has an additional knob to tune, i.e., informing bidders about their
CTRs through partial information disclosure (also known as information design [33]). So the
optimal auction requires designs of both incentives and information.

We now describe the general auction setting. There are n bidders. The private value vi

of bidder (she) i = 1, 2, 3, . . . , n is independently drawn from some known distribution Fi(vi)
(with a density function fi(vi)), over some bounded interval [a, b] with a, b œ RØ0 fi {Œ} and
a < b. Note that the density functions f1(v1), f2(v2), . . . , fn(vn) are not necessarily identical.
As seen, our problem is a natural Bayesian variant of [11], whose settings can be obtained by
allowing fi(vi) to be some Dirac ”-function. i.e., a point distribution.

When auctions start, the seller privately observes a CTR vector r = (r1, r2, . . . , rn) œ
[r, 1]n for n bidders, which is drawn from a commonly known joint distribution ⁄(r). r > 0
is a small positive value close to 0. The CTR ri represents the probability of bidder i’s ad
being clicked, which may be estimated by the seller with some machine learning method.
For bidder i, assume the marginal probability ⁄(ri) Ø ›, where › is a small positive value
since it does not make sense to consider a CTR with a marginal probability arbitrarily close
to 0 in practice.

To maximize his revenue, the seller may privately disclose some information about ri

to bidder i. Suppose the seller has the power of commitment2, and he designs a signaling
scheme denoted as fi, which is also observed by the bidders. Hence, conditioning on observing
CTR vector r, the seller sends signal s = (s1, s2, . . . , sn) with probability fi(s|r), where si is
the signal privately sent to bidder i. In the rest of the paper, we assume that ri œ R with R
being a discrete and finite set of CTR values.

Calibrated Click-Through Auction. The calibrated click-through auction was previously
studied by Bergemann et al. [11]. Initially, each bidder privately observes her value vi and
the seller privately observes the CTR vector r. The seller then sends a signal si to each
bidder i privately. Upon receiving the signal si, bidder i submits her bid bi to the auction
and the auction determines the winner iú by selecting the one with the highest product, i.e.,
biúsiú = maxj bjsj , and charges the winner for each realized click by

piú = max
j ”=iú

bjsj

siú
.

The winner only pays when a click is received2. Hence, the seller’s expected revenue is
riúpiú . One can easily prove that the auction is truthful2 for any s1, . . . , sn, as it follows the
“minimum-bid-to-win” payment rule. Therefore, without loss of generality, we will assume
bi © vi in the rest of the paper.

Following [11], we adopt the concept calibration to information design. That is, given any
private signal si = s

Õ
i, bidder i’s posterior estimation of CTR ri should be equal to s

Õ
i, i.e.,

E[ri|si = s
Õ
i] = s

Õ
i. (1)

The calibration constraint is a consequence of the revelation principle. Given any signal
realization si = s

Õ
i, bidder i will interpret s

Õ
i through Bayes updates by computing the

expected CTR value E[ri|si = s
Õ
i]. The calibration constraint simply requires that the signal

2 More discussions about pay-per-click, commitment power and truthfulness are in Appendix B.
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44:6 Bayesian Calibrated Click-Through Auctions

itself directly reflects this expected value so that bidders do not need to compute the expected
CTR value by themselves. Such revelation-principle-style simplification is widely adopted in
information design [34, 24, 33], where signals can without loss of generality be persuasive

action recommendations. Analogously, in our auction setup, such direct information scheme
will directly signal the posterior mean of the signal, i.e., obeying the calibration constraint (1).
Hence, any signal si must be within [r, 1] ™ [0, 1] by (1). One important observation in [11]
is that if the CTRs and signals are discrete, we can rewrite (1) as

ÿ

(r,s):si=sÕ
i

⁄(r)fi(s|r)(ri ≠ s
Õ
i) = 0. (2)

Bayesian Calibrated Click-Through Auction. We focus on the seller’s information design
problem, i.e., to design a signaling scheme fi in order to maximize the seller’s expected
revenue. The problem is formulated as below,

max
fi,s

ÿ

r

⁄(r)
ÿ

s

fi(s|r)
⁄

v
f(v)R(r, v, s)dv

subject to E[ri|si = s
Õ
i] = s

Õ
i ’sÕ

i œ [0, 1],’i

fi(s|r) œ [0, 1],
ÿ

s

fi(s|r) = 1, ’r, s œ [0, 1]n, (3)

where f(v) = f1(v1)f2(v2) · · · fn(vn) is the density function of v = (v1, v2, . . . , vn), and the
revenue R(r, v, s) = riú

maxj ”=iú vjsj
siú . Since both the signals s and the probabilities of sending

signals fi(s|r) are variables, the objective of (3) is non-convex.
Given CTR vector r and signal s, denote the seller’s expected revenue as R(r, s) =s

v f(v)R(r, v, s)dv. Specifically, R(r, s) for 2 bidders is

R(r, s) =
⁄

v

f(v)R(r, v, s)dv

=
⁄ b

a

r1
v2s2
s1

Pr (v1s1 Ø v2s2|v2) f2(v2)dv2 +
⁄ b

a

r2
v1s1
s2

Pr (v2s2 Ø v1s1|v1) f1(v1)dv1, (4)

where Pr (v1s1 Ø v2s2|v2) is the probability of bidder 1 winning given that bidder 2’s value
is v2 (similarly for Pr (v2s2 Ø v1s1|v1)).

By (4), we can see that our problem di�ers from [11] in a crucial way: With any fixed
s, the winner is also fixed in [11] since they have complete information on v, while in our
case, either bidder can be the winner with some probability due to the uncertainty in their
valuations. This di�erence somewhat “smooths” our objective function while at the same
time brings new challenges.

3 Click-Through Auctions in General Environments

In this section, we present an FPTAS for (3) achieving 1 ≠ O(‘) approximation when the
number of bidders is a constant. This result hinges on a minor continuity assumption on
bidders’ value distribution. That is, we assume every distribution Fi has no point mass3 and
has finite second moment, i.e., Evi≥Fi [v2i ] < Œ. Under these two mild technical assumptions,
we prove the following theorem.

3 The no-point-mass assumption alleviates the tie-breaking problem arising in the case of deterministic
bidders’ values. A discussion on this assumption is in Appendix D.
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I Theorem 3.1. For any small ‘ > 0, there is an algorithm that computes a (multiplicative)

1 ≠ O(‘) approximate signaling scheme in poly(|R|n, (n‘ )
n) time where n is the number of

bidders and |R| is the size of set R of CTR values.

To prove Theorem 3.1, we resort to discretizing the strategy space. Our starting point is
a reformulation of Program (3) as a linear program with infinite dimension, and then convert
the infinite-dimensional program into a finite-dimensional one by discretizing the signal
space. The main technical challenge is to prove that the solution to the discrete program
approximates the optimal solution to the original infinite-dimensional one. This is more
involved than typical rounding approaches and hinges on the following two key properties:
a). For any signaling scheme, the value of the discrete objective is su�ciently close to the

original objective. This is a consequence of the following Lipschitz continuity of revenue
function R(r, s), whose proof is deferred to Appendix C.
I Lemma 3.2. R(r, s) is Lipschitz continuous in s œ [r, 1]n with some constant Cn, for

any given CTR r = (r1, r2, . . . , rn).
b). For any solution to the original infinite dimensional program, there exists a corresponding

feasible solution to the discrete program that is su�ciently close to the original solution.
These two properties together can ensure the existence of a solution to the discrete program
yielding the revenue that approximates the optimal solution of the original infinite dimensional
program. Thus by solving the discrete program, we can get an approximately optimal solution.

The major challenge here is to prove property b), as any naïve rounding of a signaling
scheme from the continuous signal space to a discrete space would break the calibration
constraints and hence end up with an infeasible rounded signaling scheme to the discrete
program. To circumvent the di�culty, we introduce a novel technique to retain all the
calibration constraints.

At a high level, we will reserve a small amount of probability mass from the given signaling
scheme at the beginning and only apply rounding to the remaining probability mass. After
the rounding step, we will redistribute the reserved probability mass to carefully fix all the
calibration constraints broken by the rounding step. In particular, one has to be extremely
careful to avoid the straightforward discretization structure of the signal space, because
otherwise a large fraction of probability mass reservation will be needed for the fixing stage,
which leads to a significant revenue loss and fails the 1 ≠ O(‘) approximation. The detailed
proof of Theorem 3.1 is involved and relegated to Appendix C.2.

It is worthwhile to compare our FPTAS in Theorem 3.1 with a recent FPTAS for multi-
channel Bayesian persuasion by Babichenko et al. [4], and highlight their key di�erences.
While both rely on the continuity of the sender’s utility functions, their techniques are
significantly di�erent. Specifically, the FPTAS of [4] applies to a constant number of states
but many receivers (i.e., bidders) whereas our FPTAS applies to many states but a constant
number of bidders. Their FPTAS discretizes the space of distributions over the states (thus
requires a constant number of states) whereas our FPTAS discretizes the space of posterior
CTR mean, which is why we have to adjust the scheme to satisfy the calibration constraints.
Our choice of discretizing posterior means is due to its direct usage in click-through auctions.
Such a special structure and the resultant challenges of fixing calibration constraint violation
– which is the core di�culty in our proof – is not present in the setup of [4].

We remark that the discretization technique applied to Theorem 3.1 is in fact regardless
of the expected revenue R(r, s). To retain the calibration constraint and preserve the
approximation simultaneously, one basic requirement is that R(r, s) needs to be Lipschitz-
continuous in signal s. Therefore, our algorithm can be treated as a framework that can
accommodate di�erent auctions (with Lipschitz continuous expected revenue R(r, s)) and
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maintain the calibration of signals. Based on this observation, we consider one simple
modified auction: a click-through auction with a reserved price. Reserve prices are widely
studied in the literature and commonly used in the industry [43, 42]. Similarly, we only need
to show R(r, s) of this modified auction is Lipschitz-continuous for Corollary 3.3 to be true,
which is deferred to Appendix C.3.

I Corollary 3.3. In a click-through auction where winner pays at least some fixed reserve

price p, for any constant number of bidders and any small ‘ > 0, there is an algorithm

that computes (multiplicatively) 1 ≠ O(‘) approximate signaling scheme with time complexity

poly(|R|, 1
‘ ).

4 Click-Through Auctions in Symmetric Environments

While Theorem 3.1 provides an algorithm that can compute an approximately optimal
signaling scheme in fairly general setups, the algorithm relies on solving large-scale linear
programs thus may be too costly in reality and also lacks interpretability. In this section,
we pursue the design of “simple” signaling schemes through the approximation lens. Given
the challenge of the problem in general, we shall restrict our attention to a fundamental
special case in this section – i.e., 2 bidders and symmetric environments – which is also a
major focus of our preceding work by Bergemann et al. [11]. For this basic case, we first
characterize that without calibration constraint, the optimal information design is governed
by a single parameter called optimal signal ratio, which is at most 1. Such an observation
motivates an explicit construction of a simple and prior-free signaling scheme, which is close
to the optimal when bidder values’ probability density function does not fluctuate much.

An environment is symmetric [11] if 1) the distribution of the products v1r1, v2r2, . . . , vnrn
are exchangeable, and 2) the values vi’s are i.i.d. drawn from a distribution F (v). Hence,
the symmetric environment further implies that the distribution of r1, r2, . . . , rn are also
exchangeable, i.e., ⁄(r1, r2, . . . , rn) = ⁄(perm(r1, r2, . . . , rn)) where perm(·) is any permuta-
tion function. For the purpose of easy exposition, we allow ri to be drawn from a slightly
enlarged interval [0, 1], with which the results obtained hold for ri œ [r, 1] as in our original
setting.

I Definition 4.1. The distribution F (v) (with density f(v)) has a monotone hazard rate

(MHR) if the “hazard rate” of the distribution
f(v)

1≠F (v) is increasing in v.

MHR is a standard assumption widely used in economics [5, 32, 16]. Many distributions
are MHR, such as uniform distribution, exponential distribution, gamma distribution, etc.
Note that MHR implies regularity proposed by Myerson [41].

I Theorem 4.2. There exists a prior-free signaling scheme that can be found in polynomial

time and guarantees a (multiplicative) 0.995 · (f/f)2-approximation for any continuous MHR

distribution f(v), where f and f are the respective maximum and minimum values of f(v)
for v œ [0, c] with any c > 0.

The approximation ratio in Theorem 4.2 achieves its best ratio 0.995 for uniform distri-
bution. More generally, the approximation ratio depends on the term f/f which intuitively
captures how much the distribution deviates from being uniform. Notably, both the algorithm
and the signaling scheme require no knowledge about the value distribution F , i.e., F could
be unknown to the seller (though Section 4.4 provides a better guarantee when F is known
and satisfy certain properties). We remark that the signaling scheme in Theorem 4.2 is simple

in the sense that its construction is parameterized by a single parameter called optimal signal
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ratio. The information design problem thus can be easily optimized by empirically selecting a
value that gives the best performance. More importantly, Theorem 4.2 also provides a robust
solution to the problem, which can be very useful when it is hard or costly to accurately
estimate the distributions of bidder values.

4.1 Key Primitive of the Construction: the Optimal Signal Ratio
Before presenting the proof, we discuss the main ingredient for the construction of the
signaling scheme, the optimal signal ratio. Given a CTR vector r = (h, l) (without loss of
generality, assume h Ø l) and a signal pair s = (s1, s2), the expected revenue by (4) can be
rewritten as (Recall f(v) = 0,’v /œ [0, c]. Note that although the seller requires no knowledge
about F (v) to construct the scheme, the bidders’ value should follow some prior F (v).)

R(r, s) =
⁄ c

0
(hv2s2

s1
)
⁄ c

v2s2
s1

f(v1)dv1f(v2)dv2 +
⁄ c

0
(l v1s1

s2
)
⁄ c

v1s1
s2

f(v2)dv2f(v1)dv1. (5)

Clearly, from (5), the expected revenue is determined by the signals through their ratio
x = s2

s1
, which we call the signal ratio. We define the optimal signal ratio to be the signal

ratio maximizing (5). In the rest of the paper, without loss of generality, we assume h = 1.
Then the optimal signal ratio only depends on the smaller CTR l, denoted as x(l) with
l œ [0, 1].

I Lemma 4.3. The optimal signal ratio l < x(l) Æ 1 for l œ [0, 1) and x(1) = 1.

Lemma 4.3 is directly implied by Lemma E.1 and E.2 in Appendix E, where more
discussion about x(l) can be found. There are two interesting implications from Lemma
4.3. The first interesting implication is that without the calibration constraint, it would
be optimal for the seller to only send pairs of signals with the optimal signal ratio where
a larger (resp. smaller) signal is observed by the bidder with a higher (resp. lower) CTR,
which motivates our construction of the signaling scheme. The second implication is that
by l < x(l) in Lemma 4.3, information design induces more intensive competition between
buyers by partial-information revelation (with signal ratio x(l)) than full revelation (with
signal ratio l). This again explains the observations in [5] that revenue extraction in auctions
needs competition and too “fine-grained” targeting information may lead to a thin market.
More detailed discussions on the second implication are in Appendix F.

As an application of Lemma 4.3, we observed that x(l) = 1 for l œ [0, 1] for any exponential

distribution. It turns out that in this special case, the revenue-maximizing calibrated signaling
scheme is simply to reveal no information, i.e., always sending one calibrated signal pair
with s1 = s2 = E[ri]. This leads to the following proposition, whose proof is deferred to
Appendix G.5.

I Proposition 4.4. If the value distribution is an exponential distribution with density

f(v) = ⁄e
≠⁄v

, v Ø 0,⁄ > 0, the signaling scheme revealing no information is revenue-

optimal.

4.2 Construction of the Simple Signaling Scheme
In this part, we present the construction of a simple signaling scheme. Recall that given
the smaller CTR l, the maximum expected revenue is achieved when s2

s1
= x(l), i.e., the

optimal signal ratio. In other words, one can construct an approximately optimal signaling
scheme by sending signal pairs of the optimal signal ratio x(l) as frequently as possible, while
maintaining the calibration constraints.
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Algorithm 1 Construction of Simple Signaling Scheme.

1. Given CTR vector r = (1, l), we compute a list of candidate signals ‡0,‡1, . . . ,‡K≠1,
where K = Âlogx(l) lÊ such that x(l)K+1 Æ l Æ x(l)K . The signal ‡i is computed as

‡K = 1,‡0 = x(l)K ,‡i = ‡i≠1 · x(l),’i œ [K]. (6)

2. Define p(r, s) = ⁄(r)fi(s|r) as the probability mass of sending signal s conditioning on
CTR r. Let (l, 1) and (1, l) send signals (‡k,‡k+1) and (‡k+1,‡k), respectively, with the
same probability mass

p

1
(l, 1), (‡k,‡k+1)

2
= p

1
(1, l), (‡k+1,‡k)

2
= pk,’k{1, 2, . . . ,K ≠ 1}

where pk is computed as

pk = pk≠1 ·
1 ≠ ‡k

‡k ≠ l
= p0

kŸ

i=1

1 ≠ ‡i

‡i ≠ l
,’k œ {1, 2, . . . ,K ≠ 1}. (7)

3. By the above construction, we know p

1
(l, 1), (‡K≠1, 1)

2
= p

1
(1, l), (1,‡K≠1)

2
= pK≠1.

To maintain calibration constraint, the seller will additionally send signal (‡0,‡0) with
p

1
(l, 1), (‡0,‡0)

2
= p

1
(1, l), (‡0,‡0)

2
= z, where

z = p0 ·
‡0 ≠ l

l + 1 ≠ 2‡0
. (8)

4. Choose a proper p0 (other parameters z, pi are then determined) so that

z + p0 + p1 + · · ·+ pK≠1 = ⁄(r) = 1
2

Based on the above intuition, we then present the construction of the simple signaling
scheme fi depicted in Algorithm 1. Since the CTRs of bidders are exchangeable, we can
separately consider the signaling scheme for each pair of CTR vectors. Without loss of
generality, consider a pair of CTR vectors (l, 1) and (1, l) such that ⁄(r = (l, 1)) = ⁄(r =
(1, l)) = 1

2 . In particular, we assume x(l) < 1 (otherwise, optimality can be easily achieved
by revealing no information). With properly chosen parameter p0, the constructed signaling
scheme is calibrated and valid (see Appendix G.1). Note that by (8), the probability mass
z = 0 if ‡0 = l, which implies all the signals sent are of the optimal signal ratio. Therefore,
the optimal expected revenue is achieved.

I Remark 4.5. As mentioned previously, the construction only depends on one parameter,
the optimal signal ratio x(l). Besides, the scheme has a clear structure, i.e., computing a
geometric series of signals {‡i} and then assigning probabilities, both of which can be done
e�ciently.

We present the following concrete example that describes the constructed signaling
scheme.

I Example 4.6. Let f(v) be the uniform distribution over [0, 1]. The click-through rates are
h = 1 and l = 0.6, with ⁄((h, l)) = ⁄((l, h)) = 0.5. By solving (5), we obtain the optimal
signal ratio x = 9

10 . We consider k = 4 levels of signals within [0.6, 1) as ‡0 = ( 9
10 )

4
,‡1 =
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Table 1 Example of a signaling scheme. Each entry corresponds to ⁄(r)fi(s|r), i.e., the probability
mass of sending signals s = (‡i,‡j) when observing the CTR vector r.

r
s (‡0, ‡0) (‡0, ‡1) (‡1, ‡2) (‡2, ‡3) (‡3, ‡4) (‡1, ‡0) (‡2, ‡1) (‡3, ‡2) (‡4, ‡3)

(0.6, 1) z p0 p1 p2 p3 0 0 0 0
(1, 0.6) z 0 0 0 0 p0 p1 p2 p3

( 9
10 )

3
,‡2 = ( 9

10 )
2
,‡3 = 9

10 ,‡4 = ( 9
10 )

0 = 1. The signaling scheme is given by Table 1, where
the probabilities z and p0, p1, p2, p3 are determined according to (7) and (8) to keep the
construction a calibrated signaling scheme.

Note that all signal pairs except (‡0,‡0) follows the optimal signal ratio x = 9
10 . Hence

the revenue suboptimality only happens when sending the signal s = (‡0,‡0), of which the
probability mass is z ¥ 0.016. It turns out that the expected revenue of this calibrated
signaling scheme is 0.2698. In contrast, by relaxing the calibration constraint, the maximum
revenue one can achieve is 0.27 (i.e., always sending signals of the optimal signal ratio 9/10).
Since 0.27 is clearly an upper bound of the optimal revenue for any calibrated signaling
scheme, the revenue loss of our construction is less than 0.075%.

We remark that the revenue loss decreases very quickly as the number of signals k

increases. In this example, if l = 0.2 instead, then the optimal signal ratio x(l) = 4
5 and we

can choose k = 7, yielding a much smaller probability mass of sending suboptimal signals
z ¥ 1.5 ◊ 10≠5.

4.3 Proof of Theorem 4.2
We first show a special case of Theorem 4.2, which is also a cornerstone for the main proof.
That is, if the value distribution is uniform (i.e., f/f = 1), we can design a 0.995-approximate
scheme.

I Proposition 4.7. Given a uniform distribution supported on [0, c], the constructed signaling

scheme can achieve at least (multiplicative) 0.995-approximation.

Simple calculation leads to the optimal signal ratio x(l) = 3+l
4 under the uniform distribution.

The proof of Proposition 4.7 is a combination of the following two lemmas. Recall that
the constructed signaling scheme sends signal pairs of the optimal signal ratio x(l) with
probability 1 ≠ z and with the remaining probability z sends the suboptimal signal pair
(‡0,‡0). Lemma 4.8 bounds the probability z, while Lemma 4.9 lower bounds the revenue
approximation when sending out (‡0,‡0). We will discuss the proof of Lemma 4.8 in
Section 4.4, where a more general result is proved, and defer the proof of Lemma 4.9 to
Appendix G.6.

I Lemma 4.8. For optimal signal ratio function x(l) = 3+l
4 , there exists a signaling scheme

whose worst-case approximation is 1 ≠ z
ú
, where z

ú Æ 0.04.

I Lemma 4.9. Sending signal (‡0,‡0), i.e., the signal ratio is 1, is (multiplicatively)
8
9 -

approximation.

Proof of Proposition 4.7. Combining Lemma 4.8 and Lemma 4.9, the approximation of the
constructed signaling scheme is at least (1 ≠ z

ú) · 1 + z
ú · 8

9 Ø 224/225 ¥ 0.995. J
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We prove Theorem 4.2 by showing that the signaling scheme we constructed for the
uniform distribution is a 0.995·(f/f)2-approximation for any value distribution. In particular,
sending signal pairs of signal ratio 3+l

4 is (f/f)2-approximate and sending (‡0,‡0) is 8
9 ·

(f/f)2-approximate. An analysis similar to Proposition 4.7 finally leads to 0.995 · (f/f)2
approximation.

Proof of Theorem 4.2. We first derive the upper and lower bound of the expected revenue
R(r, s) by connecting to the uniform-distribution case. Given a CTR r = (1, l) and any signal
pair s = (s1, s2) with ratio s2

s1
Æ 1 (by Lemma 4.3, s2

s1
Æ 1 is without loss of generality), the

upper bound by (5) is computed as

R(r, s) =
⁄ c

0

v2s2
s1

⁄ c

v2s2
s1

f(v1)dv1f(v2)dv2 +
⁄ c· s2s1

0
(l · v1s1

s2
)
⁄ c

v1s1
s2

f(v2)dv2f(v1)dv1

Æ
⁄ c

0

v2s2
s1

⁄ c

v2s2
s1

fdv1fdv2 +
⁄ c· s2s1

0
(l · v1s1

s2
)
⁄ c

v1s1
s2

fdv2fdv1

=(fc)2 ·
1 ⁄ c

0

v2s2
s1

⁄ c

v2s2
s1

1
c
dv1

1
c
dv2 +

⁄ c
s2
s1

0
(l · v1s1

s2
)
⁄ c

v1s1
s2

1
c
dv2

1
c
dv1

2

=(fc)2 ·R(r, s)

where R(r, s) computes the expected revenue under a uniform value distribution given CTR
vector r and signal pair s. Similarly, the lower bound is R(r, s) Ø (fc)2 ·R(r, s). Since R(r, s)
is only related to the signal ratio x = s2

s1
, we rewrite R(r, s) as R(r, x). Similarly, rewrite

R(r, s) as R(r, x). Let x
ú Æ 1 and x Æ 1 (by Lemma 4.3) be the optimal signal ratio for

R(r, x) and R(r, x), respectively. Then,

(fc)2 ·R(r, xú) Æ R(r, xú) Æ (fc)2 ·R(r, xú)
(fc)2 ·R(r, x) Æ R(r, x) Æ (fc)2 ·R(r, x)

Simple calculation leads to (f/f)2 · R(r, xú) Æ (fc)2 · R(r, xú) Æ (fc)2 · R(r, x) Æ R(r, x).
The second inequality is due to the optimality of x to R(r, x). The whole inequality
implies that if the seller sends signal pair whose ratio is optimal under a uniform value
distribution, the approximation ratio is at least (f/f)2. Notice that Lemma 4.9 shows that
under a uniform value distribution, sending a signal pair with signal ratio s2

s1
= 1 achieves 8

9
approximation, i.e., 8

9R(r, x) Æ R(r, 1). Hence, we have 8
9 (f/f)

2 ·R(r, xú) Æ 8
9 (fc)

2 ·R(r, x) Æ
(fc)2 · R(r, 1) Æ R(r, 1), implying that if the seller sends signal pair with ratio equal to 1,
then the approximation is 8

9 · (f/f)2.
Now, we present the 0.995 ·(f/f)2 approximation. Lemma 4.8 shows that under a uniform

distribution, the probability mass z of sending signal (‡0,‡0) is upper bounded as z < 0.04,
while 1 ≠ z > 0.96 probability mass is for sending signal pairs of the optimal signal ratio
x. Hence, if we construct a signaling scheme by assuming the unknown value distribution
to be a uniform distribution, it can achieve at least 0.995 · (f/f)2-approximation, where
0.995 ¥ 0.04 ◊ 8

9 + 0.96. J

The above proof implies that the prior-free signaling scheme is constructed with signal
ratio x(l) = 3+l

4 obtained by assuming the unknown value distribution to be a uniform
distribution. One direct result from the proof is that an easier but loose scheme is revealing
no information which gives 8

9 · (f/f)2 approximation. The improved ratio in Theorem 4.2
demonstrates the benefits of strategic information revelation.



J. Chen, M. Li, H. Xu, and S. Zuo 44:13

4.4 Completing the Last Piece – Approximation Guarantee with Known
Distributions

The only missing piece for completing the proof of Theorem 4.2 is the proof of Lemma 4.8,
which is for a special linear optimal signal ratio function x(l) = 3+l

4 . In this part, we prove a
more general result for any convex x(l), which directly implies Lemma 4.8 with linear x(l).
To formally state the general proposition for convex x(l), we need the following definitions.

I Definition 4.10. Given that the optimal signal ratio x(l) is a convex function in l œ [0, 1],
define the following notations.

1. Initial number K0: it satisfies that i) x = x(l)K0 Ø l, and ii) x = x(l)K0+1
crosses the

line x = l and intersects at some point (l, l) with l < 1.
2. Define S(k, l) with ‡0 = x(l)k, ‡i = x(l)k≠i

as

S(k, l) = 1 + l + 1 ≠ 2‡0
‡0 ≠ l

+ l + 1 ≠ 2‡0
‡0 ≠ l

· 1 ≠ ‡1
‡1 ≠ l

+ · · ·+ l + 1 ≠ 2‡0
‡0 ≠ l

·
k≠1Ÿ

i=1

1 ≠ ‡i

‡i ≠ l
(9)

3. Intersection point l[k]: given some k > K0, l[k] ”= 1 is a solution to the equation x(l)k = l.

In another word, x = x(l)k crosses the line x = l and intersects at the point (l[k], l[k]).

Recall in the construction of the signaling scheme that given a CTR vector r = (l, 1), at
most K = Âlogx(l) lÊ signals (i.e., ‡i) are within the interval [l, 1]. In fact, the initial number
K0 specifies the minimum number of signals constructed within [l, 1] for any l < 1. Also, the
probability mass z of sending (‡0,‡0) can be computed with the defined S(k, l),

z + p0 + p1 + · · ·+ pK≠1 = 1
2 ≈∆ z · S(K, l) = 1

2 (10)

With the above definition, we present the general result.

I Proposition 4.11. Assume x(l) is a convex function. There exists a signaling scheme

whose worst-case approximation is 1≠z
ú
, where z

ú = 1/S(K0, l[K0+1]) and S(K0, l[K0+1])
is computed as (9).

Proposition 4.11 provides a worst-case approximation bound for the constructed signaling
scheme and shows how it depends on the intrinsic properties of the optimal signal ratio
function. Intuitively, by Equation (9), two situations lead to a small zú: 1) The initial
number K0 is large. In this case, it implies that the seller can send many signal pairs with
the optimal signal ratio and thus S(K0, l[K0 + 1]) grows exponentially; 2) l[K0 + 1] is close
to ‡0 in (9). Later, we will show it is equivalent to that l[K0 + 1] is close to x(l[K0 + 1])K0 .
This case will lead to a large S(K0, l[K0 + 1]) and thus small zú. In fact, given the number
of signals k Ø K0 and the CTR l, the approximation of the constructed signaling scheme can
be calculated similarly as 1 ≠ z with z = 1/S(k, l). As we will prove later, the worst-case
approximation is obtained only when l is approaching l[K0 + 1] from above (see Figure 1b
for an example). Hence, when l varies, the actual approximation of the constructed scheme
may be (much) better than 1 ≠ z

ú.
Proposition 4.11 may be of independent interest. If an estimate for the bidders’ value

distribution is available, the seller then can construct a signaling scheme as in Section 4.2 that
has an approximation guarantee indicated by Proposition 4.11. Note that Proposition 4.11
only requires x(l) to be convex. This condition applies to various classic distributions, e.g.,
(1) the uniform distribution admits a 0.995-approximation, (2) the exponential distribution
can have the exact optimal mechanism, (3) the standard Weibull distribution (truncated on
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(a) (b)

Figure 1 K0 is initial number. l[k] is the intersection point. k1 < K0 < k2 < K < k3. x(l) is
convex.

[0, 1]) with parameter “ Ø 2 (specifically we let “ = 10) admits approximation ratio ¥ 0.75.
In some cases, it may be di�cult to write down the explicit formula of x(l) and verify its
convexity. We find it relatively easy to compute l(x), the inverse of x(l). Hence, to verify
the convexity of x(l), we only need to verify the concavity of l(x). An example of this idea is
in Appendix H.

Before presenting the proof of Proposition 4.11, we show some properties for convex x(l).

I Observation 4.12. The function x = x(l)k, for any integer k > 1 and l œ [0, 1], intersects
with line x = l at most twice: one point intersecting is (1, 1), and the other one (if exists)

is (l[k], l[k]) (called intersection point as in Definition 4.10). Furthermore, when k > K0
increases, l[k] decreases and limkæŒ l[k] = 0.

The idea of Observation 4.12 is depicted in Figure 1a. Given an initial number K0 and
K = Âlogx(lÕ) lÕÊ for some l

Õ, we can observe from the figure that: i) If k Æ K0, the curve
x(l)k will be above line x = l; ii) If K0 Æ k Æ K, then l

Õ Æ l[K] and x(lÕ)k will be above
point (lÕ, lÕ). If lÕ = l[K], then there are exactly K signals constructed within [lÕ, 1]; and iii)
If k > K, x(lÕ)k will be below (lÕ, lÕ).

The following key lemma characterizes the monotonicity of convex x(l).

I Lemma 4.13. x(l) is a monotone increasing function.

Now we are ready to show the proof of Proposition 4.11. The high-level idea of the proof
is by upper bounding the probability mass z of sending (at most one) non-optimal signal pair
(‡0,‡0), because when sending other signal pairs (‡i,‡i+1) as constructed in the signaling
scheme, the signaling scheme achieves the maximum of expected revenue expressed in (5).

Proof of Proposition 4.11. Without loss of generality, we consider the case where there
is only one pair of CTR vectors, (l, 1) and (1, l) such that ⁄((l, 1)) = ⁄(1, l)) = 1

2 . By the
definition of symmetric environments, the analysis can be easily generalized to the case of
more than two CTR vectors.

The following lemma segments [0, 1] by the intersection points l[k]’s, and shows how the
probability mass z changes within each segment. Note that starting from k = K0 + 1, x(l)k
crosses the line x = l (see Figure 1b). Then, we define l[K0] = 1.
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I Lemma 4.14. Given k Ø K0 Ø 1, the probability mass z > 0 is decreasing in l œ
(l[k + 1], l[k]].

The proof of Lemma 4.14 is in Appendix G.4.The reason we only care about (l[k + 1], l[k]]
instead of the closed interval [l[k + 1], l[k]] is that i) for l[k + 1] < l Æ l[k], there will be
k signals constructed in the interval [l, 1], and ii) if l = l[k + 1], the seller can construct a
signaling scheme with a list of k + 1 signals where all the signal pairs sent have the optimal
signal ratio x(l[k + 1]) and the probability mass z = 0.

One implication of Lemma 4.14 is that when there are at most k signals constructed,
the probability mass z achieves its maximum when l approaches l[k + 1] from above, i.e.,
l ¿ l[k + 1]. Therefore, at the limit l[k + 1], the probability mass z is computed with
S(k, l[k+1]) where ‡0 = x(l[k+1])k,‡1 = x(l[k+1])k≠1

, · · · ,‡i = x(l[k+1])k≠i. In another
word, when l = l[k + 1], instead of constructing a scheme with a list of k + 1 signals where
all the signal pairs sent have signal ratio x(l[k + 1]), the seller constructs a signaling scheme
with a list of k signals starting from ‡0 = x(l[k + 1])k, which sends signal pair (‡i≠1,‡i) of
signal ratio x(l[k + 1]) and one signal pair (‡0,‡0).

By the above analysis, to upper bound z, we only need to compare its values at these
limit points l[k]’s. Alternatively, we compare S(k, l[k + 1]) for di�erent k. The following
lemma shows that S(k, l[k + 1]) is increasing in k, whose proof is in Appendix G.7.

I Lemma 4.15. Given k ≠ 1 Ø K0 Ø 1, we have S(k, l[k + 1]) Ø S(k ≠ 1, l[k]).

Lemma 4.15 implies that S(K0, l[K0+1]) is the minimum compared with other S(k, l[k+1])
for k > K0. The quantity S(K0, l[K0 + 1]) is computed as (9) with

‡0 = x(l[K0 + 1])K0 ,‡1 = x(l[K0 + 1])K0≠1
, . . . ,‡i = x(l[K0 + 1])K0≠i

Since both CTR vectors (1, l) and (l, 1) will send signal (‡0,‡0), the upper bound of the
probability mass of sending signal pair (‡0,‡0) in the constructed signaling scheme is
z

ú = 1/S(K0, l[K0 + 1]).
The above analysis generalizes to the case of more than two CTR vectors. Note that

given any CTR vector (h, l), in the symmetric environment, we can find one CTR vector
(l, h) with equal probability, i.e., ⁄((h, l)) = ⁄((l, h)). Hence, we can separately consider
these pairs of CTR vectors when designing a signaling scheme and each of them achieves at
least (1 ≠ z

ú) (multiplicatively) approximation. Therefore, the constructed signaling scheme
can achieve at least (1 ≠ z

ú) (multiplicatively) approximation. J

5 Conclusions and Open Problems

This paper studies the natural Bayesian variant of the calibrated click-through auction of [11].
We focus on the seller’s information design problem to maximize the expected revenue. In
general environments, we develop an FPTAS to compute an approximately optimal signaling
scheme. In a symmetric environment, we give a simple and prior-free signaling scheme with
a constant approximation guarantee for not-too-fluctuating value distributions.

Our results raise many interesting questions for future research. Below we discuss some
of them. The first is to develop a simple signaling scheme for more than two bidders in
symmetric environments. More generally, it is interesting to study more e�cient algorithms
for optimal signaling. Though our FPTAS for the general model enriches our understanding
of the tractability of the problem, such an algorithm may not be ideal from a practitioner’s
perspective. The second is to consider the worst-case approximation as in Proposition 4.11
but without the convexity assumption. In Appendix I,we provide more discussions about
these two open problems.
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High-Accuracy Multicommodity Flows via Iterative
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Abstract
The multicommodity flow problem is a classic problem in network flow and combinatorial optimiza-
tion, with applications in transportation, communication, logistics, and supply chain management,
etc. Existing algorithms often focus on low-accuracy approximate solutions, while high-accuracy
algorithms typically rely on general linear program solvers. In this paper, we present e�cient
high-accuracy algorithms for a broad family of multicommodity flow problems on undirected graphs,
demonstrating improved running times compared to general linear program solvers. Our main result
shows that we can solve the ¸q,p-norm multicommodity flow problem to a (1 + Á) approximation in
time Oq,p(m1+o(1)

k
2 log(1/Á)), where k is the number of commodities, and Oq,p(·) hides constants

depending only on q or p. As q and p approach to 1 and Œ respectively, ¸q,p-norm flow tends to
maximum concurrent flow.

We introduce the first iterative refinement framework for ¸q,p-norm minimization problems,
which reduces the problem to solving a series of decomposable residual problems. In the case
of k-commodity flow, each residual problem can be decomposed into k single commodity convex
flow problems, each of which can be solved in almost-linear time. As many classical variants
of multicommodity flows were shown to be complete for linear programs in the high-accuracy
regime [Ding-Kyng-Zhang, ICALP’22], our result provides new directions for studying more e�cient
high-accuracy multicommodity flow algorithms.
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1 Introduction

The multicommodity flow problem is a classic challenge in network flow and combinatorial
optimization, where the goal is to optimally route multiple commodities through a network
from their respective sources to their respective sinks, subject to flow conservation constraints.
This problem has significant applications in various fields such as transportation, commu-
nication, logistics, and supply chain management [43, 6, 57, 9, 71]. Currently, the fastest
algorithms for computing high-accuracy solutions involve formulating these problems as
linear programs and employing generic linear program solvers [44, 39, 62, 22]. Notably, linear
programs can be reduced to multicommodity flow problems with near-linear overhead [35, 26].
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Existing research predominantly focuses on obtaining (1 + Á)-approximate solutions for
maximum concurrent k-commodity flows [49, 48, 73, 27, 37, 30, 56, 51], as summarized in
Table 1. However, these low-accuracy algorithms feature running times that are polynomial
in 1/Á for computing (1 + Á)-approximate solutions. In contrast, high-accuracy algorithms
exhibit running times that are polynomial in log(1/Á). Importantly, [26] demonstrated that
any enhancement in the high-accuracy algorithm for the 2-commodity flow problem would
result in a faster general linear program solver.

In this paper, we investigate multicommodity flow problems on undirected graphs,
which possess more structure than their directed counterparts. Prior work has shown
that maximum concurrent 2-commodity flow on undirected graphs can be reduced to two
instances of maximum flow problems, both solvable in almost-linear time [63, 15]. More
generally, maximum concurrent k-commodity flows can be reduced to 2k≠1 maximum flows1.
Additionally, researchers have discovered that (1 + Á)-approximate algorithms for undirected
graphs are considerably faster than those for directed graphs [42, 41, 66]. Nevertheless, the
fastest high-accuracy algorithms still rely on general linear program solvers. Given these
advancements, we pose the following natural question:

Is it possible to solve multicommodity flow problems on undirected graphs to high

accuracy more e�ciently than with general linear program solvers?

This paper gives an a�rmative answer and presents high-accuracy algorithms for a large
family of multicommodity flow problems that run in time m

1+o(1)poly(k, log(1/Á)). Our
main result is an algorithm that, for any 1 Æ q Æ 2 Æ p with p = ÂO(1)2 and 1

q≠1
= O(1),

given edge weights w œ RE
+

and k vertex demands D = [d1, · · · ,dk] œ RV ◊k, solves the
following optimization problem to a (1 + Á)-approximation with high probability3 in time
Oq,p(m1+o(1)

k
2 log(1/Á)):

min
k-commodity flow F with residue D

ÎWFÎpq
q,p

def=
ÿ

eœE

w
pq

e

Q

a
kÿ

j=1

|Fej |q
R

b
p

.

The problem generalizes the maximum concurrent flow problem by setting the edge
weights we as the reciprocal of edge capacities and letting q æ 1, p æ Œ. Therefore,
¸q,p-norm flows are natural relaxations of the combinatorial maximum concurrent flows.
However, unlike the typical relaxations using the exponential function (exp(congestion)) in
previously e�cient approximation schemes, we show that ¸q,p-norm problems themselves
admit high-accuracy solutions. Thus, we provide a large family of multicommodity flows
that admit high-accuracy solutions in almost linear time.

From a technical standpoint, our exploration of multicommodity flows reflects the research
trajectory of ¸p-norm single commodity flows in recent years [46, 1]. This line of study has
led to the development of several novel algorithmic components, some of which have proven
beneficial for classical single-commodity flow as well [40, 7]. More significantly, examining
¸p-norm flows, particularly their weighted variants, has directed attention towards the core
challenges of flow problems. We posit that further investigation of ¸q,p-norm flows is likely
to yield similar insights, potentially for variants of multicommodity flows not known to be
hard, such as unit-capacity maximum concurrent flows on undirected graphs.

1 To see this, the edge capacity constraint
q

j
|Fej |Æ ue is equivalent to |

q
j

ÁjFej |Æ ue for any Á œ {±1}k.
2 We use ÂO(f(n)) to hide poly log f(n) factors.
3 We use “with high probability” (w.h.p.) throughout to say that an event happens with probability at

least 1 ≠ n
≠C for any constant C > 0.
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To summarize, this paper introduces the first iterative refinement framework for solving
¸q,p-norm minimization problems. The proposed framework reduces the problem to approx-
imately resolving Op,q(k log(1/Á)) instances of decomposable residual problems. For the
k-commodity flow case, each residual problem can be divided into k single commodity flow
problems and solved in km

1+o(1)-time using the almost-linear time convex flow solver [15].
We are the first to combine the iterative refinement framework [2, 3] with the convex flow
solver [15], and give a non-trivial application to ¸q,p-norm multicommodity flow problem.
As many classical variants of multicommodity flows were shown to be complete for linear
programs in the high-accuracy regime [26], our result provides new directions for studying
more e�cient high-accuracy multicommodity flow algorithms.

1.1 Main Result
Given an undirected graph G = (V,E) and parameters q and p, the ¸q,p-norm multicommodity

flow problem asks for a multicommodity flow F = [f1, · · · , fk] œ RE◊k that routes the given
demands while minimizing the following objective:

min
B€F=D

ÎWFÎpq
q,p

def=
ÿ

eœE

w
pq

e

Q

a
kÿ

j=1

|Fej |q
R

b
p

. (1)

Here, we have
1. B œ RE◊V , the edge-vertex incidence matrix of G;
2. D = [d1, · · · ,dk] œ RV ◊k, representing the set of k vertex demands, where Èdj ,1V Í = 0

for each j œ [k];
3. w œ RE

+
, the vector of edge weights, and W = diag(w).

This problem can be seen as a generalization of the classical maximum concurrent flow
problem, which aims to find a feasible flow F that minimizes edge congestion:

min
B€F=D

max
eœE

1
ce

ÿ

jœ[k]

|Fej |=
..C≠1F

..
1,Œ . (2)

Here, c œ RE
+

denotes the vector of edge capacities and C = diag(c). Our generalization
allows for fractional vertex demands, meaning that for each commodity j, the demand dj is
not restricted to source-sink pairs.

The main technical result of this paper is presented below.

I Theorem 1. Given any 1 < q Æ 2 Æ p with p = ÂO(1) and
1

q≠1
= O(1) and an error

parameter Á > exp(≠ ÂO(1)), let OPT be the optimal value to Problem (1). There is a

randomized algorithm that computes a feasible flow F to Problem (1) such that

ÎWFÎpq
q,p

Æ (1 + Á)OPT + Á.

The algorithm runs in time

O

A
p
2 ·

3
1

q ≠ 1

4 1
q≠1

m
1+o(1) · k2 · log 1

Á

B

with high probability.
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Table 1 A summary of algorithms for the max concurrent k-commodity flow problem.

Year References Time Directed?

1990 [64] O(nm7
/Á

5) Directed

1991 [49] ÂO(mnk/Á
3) Directed

1996 [34] ÂO(mnk/Á
2) Directed

1996 [61] ÂO(mnk/Á
2) Directed

2009 [56] ÂO(k2
m

2
/Á) Directed

2010 [51] ÂO((m+ k)n/Á
2) Directed

2012 [42] ÂO(m4/3poly(k, 1
Á )) Undirected

2014 [41] m
1+o(1)

k
2
/Á

2 Undirected

2017 [66] ÂO(mk/Á) Undirected

2019 [21] (mk)Ê+o(1) log 1
Á Directed

1.2 Related Works
In this section, we discuss some work related to the problem and the techniques we use.

Multicommodity Flow

The multicommodity flow problem is a classic problem in network flow and combinatorial
optimization. Multicommodity flow has a wide range of applications in various fields which
are addressed in numerous surveys [43, 6, 57, 9, 71]. These problems can be formulated as
linear programs and solved using generic linear program solvers which remain the fastest
algorithms for computing high-accuracy solutions [44, 39, 62, 22]. On the other hand, linear
programs can be reduced to 2-commodity flow e�ciently [35, 26]. Specifically, any linear
program can be reduced to a maximum throughput 2-commodity flow on sparse graphs with
a near-linear overhead [26]. Recently, Brand and Zhang [13] proposed a faster algorithm for
2-commodity flow on non-sparse graphs with running time ÂO(

Ô
mn

Ê≠1/2) that outperforms
the existing time complexities ÂO(mÊ) [22] and ÂO(

Ô
mn

2) [36]. For the general k-commodity
flow, they proposed an algorithm with time complexity ÂO(k2.5

Ô
mn

Ê≠1/2).
Much of the existing works focus on finding (1 + Á)-approximate solutions. [64] gave the

first FPTAS to the maximum concurrent flow problem with unit capacity (Problem (2)).
Subsequently, a series of work [49, 48, 32, 33, 45, 38, 60, 34, 61, 67] based on Lagrangian
relaxation and linear program decomposition gave algorithms with improved running times
for various versions of the problem with arbitrary edge capacity. These algorithms iteratively
update the current flow and make progress by computing a series of either shortest paths [64,
45, 60, 67], or single commodity minimum cost flows [49, 48, 32, 33, 38, 34, 61]. In particular,
[61] and [34] showed that finding (1 + Á)-approximate solutions can be reduced to ÂO(k/Á

2)
min-cost flow computations which take ÂO(kmn/Á

2)-time in total using the fastest min-cost
flow algorithm at the time. Combining with the almost-linear time min-cost flow algorithm
yields a randomized m

1+o(1)
k/Á

2-time max concurrent flow algorithm.
Later, a series of works based on multiplicative weight updates (MWU) gave conceptually

simpler and faster algorithms at their time [73, 27, 37, 30, 51]. These methods build the
solution from scratch without re-routing the current flow. At each step, they augment the
current flow via a shortest path computation that favors relatively uncongested paths. [51]
used dynamic APSP data structure to speed up these computations and resulted in an
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ÂO((m+k)n/Á
2)-time max concurrent flow algorithm. At the time, the fastest max concurrent

flow runs in ÂO(m1.5
k/Á

2)-time due to the ÂO(m1.5)-time min-cost flow algorithm by [24]. The
result of [51] was a significant improvement in the case when k is large.

Another line of work focused on improving the 1/Á
2 term. [11] found an FPTAS that

only has O( 1

Á log 1/Á
) dependence. Later, [56] gave an FPTAS with only O(1/Á) dependence.

In particular, the algorithm by Nesterov runs in ÂO(k2m2
/Á)-time.

Similar to the situation of single commodity flows, researchers have discovered approx-
imate algorithms with m

1.5≠O(1) dependence on undirected graphs. [42] gave the first
ÂO(m4/3poly(k, 1/Á)) algorithm for max concurrent flow. The algorithm implements the
method of [49, 48] using electrical capacity-constrained flows instead of min-cost flows. Each
electrical capacity-constrained flow can be reduced to, using width-reduction MWU [17],
ÂO(m1/3poly(k, 1/Á)) graph Laplacian systems. In the breakthrough result of [41], they
improved the running time to m

1+o(1)
k
2
/Á

2 based on non-Euclidean gradient descent and
fast oblivious routing. Specifically, the algorithm computes an oblivious routing of congestion
m

o(1) and uses it to reduce the number of gradient descent iterations to m
o(1) · k/Á

2
. Later,

[66] introduced the idea of area convexity and improved the iteration count to ÂO(1/Á). This
resulted in the first ÂO(mk/Á)-time max concurrent flow algorithm.

¸p-Norm Regression

The ¸p-norm regression problem seeks to find a vector x that minimizes ÎAx ≠ bÎp, where
A œ Rd◊n and b œ Rd. Varying in p interpolates between linear regression (p = 2) and linear
program (p œ {1,Œ}). ¸p-norm regression has gained significant attention in the past decade
due to its wide range of applications and its implications for other convex optimization
problems [54, 72]. Many works have focused on low-accuracy algorithms for overconstrained
matrices, i.e., d ∫ n [25, 54, 72, 19, 20, 18]. These results show various ways to find another
matrix ÂA with fewer rows such that Î ÂAxÎp¥ ÎAxÎp for any x. Then, approximate ¸p-norm
regression can be reduced to ÂA and solved in time O(nnz(A) + poly(d, 1/Á)) when p is a
constant.

High-accuracy solutions can be found using interior point methods (IPM) in ÂO(
Ô
n) or

ÂO(
Ô
d) iterations [47]. [14] showed a homotopy method that finds high accuarcy solution in

ÂO(n|1/2≠1/p|) iterations of linear system solvers. Based on the idea of iterative refinement
and width reduction, a series of works [2, 4, 5, 3] obtained improved iteration complexities
of ÂOp(n(p≠2)/(3p≠2)) for p Ø 2. Motivated by the success of sparse linear system solver [59]
and linear program in matrix multiplication time [22], [31] gave a high-accuracy algorithm
that runs in time ÂOp(n◊) for some ◊ < Ê ≠ �(1), where Ê is the matrix multiplication time
exponent.

¸p-Norm Flows

The ¸q,p-norm formulation can be viewed as a multicommodity extension of the ¸p-norm flows,
which seeks to find a flow f œ RE that routes the given demand and minimizes Îdiag(w)fÎp
where w œ RE

+
. Varying in p interpolates between the transshipment (p = 1), the electrical

flow (p = 2), and the maximum flow problem (p = Œ). Combining the result on ¸p-norm
regressions and Laplacian solvers, [2] gave an ÂOp(m1+|p≠2|/(2p+|p≠2|))-time ¸p-norm flow
algorithm. Opening up the black box of the Spielman-Teng Laplacian solver [68], [46] gave
the first ÂOp(m1+O(1/

Ô
p))-time high-accuracy ¸p-norm flow algorithm for unweighted graphs,

i.e., w = 1. The runtime is almost linear for p = Ê(1) and this was the first almost-linear
time high-accuracy algorithm for a large family of single commodity flow problems. In the
weighted case, [1] gave a p(m1+o(1) + n

4/3+o(1))-time high-accuracy ¸p-norm flow algorithm
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by combining [46] with the idea of sparsification. The study of the ¸p-norm flow algorithms
has been proved useful for single commodity flow problems such as unit-capacity maximum
flows, bipartite matchings, and min-cost flows [40, 7].

Continuous Optimization on Graphs

From a technical point of view, our ¸q,p-norm multicommodity flow algorithm is inspired by
the recent trend of applying continuous optimization techniques to solve graph problems.
As one of the earlier results in this direction, [24] combined interior point methods with
fast graph Laplacian system solver [68] and gave an ÂO(m3/2)-time min-cost flow algorithm.
Later, the idea culminated in a decade of works improving max flow and min-cost flow
algorithms [17, 52, 65, 41, 53, 58, 23, 7, 12, 40, 70, 8, 10, 15, 29, 69].

Beyond classical flow problems, the idea of combining continuous and combinatorial
techniques gives improved algorithms for approximate shortest paths in parallel/distributed
setting [50, 74], faster network flow algorithms in distributed setting [28], flow di�usion [16],
¸p-norm flows [46, 1], and more.

1.3 Our Approach
For the clarity of the presentation, we focus on the unweighted version of Problem (1), i.e.,
we = 1 for each edge e, which is shown as follows:

min
B€F=D

ÎFÎpq
q,p

=
ÿ

eœE

Q

a
kÿ

j=1

|Fej |q
R

b
p

.

The algorithm follows an overall iterative refinement framework. That is, given the current
flow F, we want to find an update direction � so that ÎF+ �Îpq

q,p
is smaller than ÎFÎpq

q,p
.

However, finding the optimal � is equivalent to the original problem. The idea of iterative
refinement is to find a proxy residual function R(�;F) that approximates the Bregman
divergence of ÎFÎpq

q,p
, i.e.,

R(�;F) ¥ ÎF+ �Îpq
q,p

≠ÎFÎpq
q,p

≠ ÈG,�Í ,

where G def= d

dFÎFÎpq
q,p

œ RE◊k is the gradient. Then we can compute the direction � by
solving the residual problem:

min
B€�=0

ÈG,�Í +R(�;G) ¥ ÎF+ �Îpq
q,p

≠ÎFÎpq
q,p

.

If R(�;F) is a good approximation to the Bregman divergence, i.e., has a “condition number”
of Ÿ, we would obtain a (1 + Á)-approximate solution in O(Ÿ log(1/Á)) iterations. On the
other hand, R(�;F) should be computationally easier to minimize so that we can implement
each iteration e�ciently.

For any p > 1, [2] shows that |x+ ”|p can be locally approximated by a linear term plus
an error term “p(”; |x|), which behaves quadratically in ” when |”|Æ |x| and as |”|p otherwise.
Our key lemma (Lemma 8) extends the observation to approximating ÎF+ �Îpq

q,p
and gives

ÎF+ �Îpq
q,p

≠ÎFÎpq
q,p

≠ ÈG,�Í ¥ Op,q(k)
ÿ

e,j

Îf eÎq(p≠1)

q
“q(�ej ;Fej)

+ Op,q(kp)
ÿ

e,j

|�ej |pq.
(3)
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Intuitively, the Bregman divergence can be approximated by a decomposable function on each
coordinate (e, j). The contribution of each coordinate (e, j) behaves di�erently depending
on the absolute value of �ej . When |�ej |Æ |Fej |, it behaves quadratically in |�ej |q; when
|�ej |> |Fej | but smaller than Îf eÎq

q
, the summation of k flow values to the power of q on

edge e œ E, it is dominated by the term |�ej |pq. The factors k and k
p in Equation (3) come

from that given any k-dimensional vector x œ Rk, we have

ÎxÎp
p

Æ ÎxÎp
1

Æ k
p≠1 ÎxÎp

p
.

Surprisingly, this approximation has a conditioner number of Oq,p(k) and is decomposable
for each commodity j œ [k]. To obtain a (1 + Á)-approximate solution, we only need to solve
Oq,p(k log(1/Á)) iterations of residual problems of the form

min
B€�=0

ÈG,�Í +Op,q(k)
ÿ

e,j

Îf eÎq(p≠1)

q
“q(�ej ;Fej) +Op,q(kp)

ÿ

e,j

|�ej |pq.

The decomposability allows us to use the convex flow solver from [15] and solve the residual
problem to high accuracy for each commodity in almost-linear time. Thus, each iteration
takes km1+o(1)-time and the final running time is Oq,p(k2m1+o(1) log(1/Á)).

1.4 Paper Organization
In Section 2, we introduce some preliminaries before presenting the technical parts, including
the convex flow solver [15] that is the core tool for solving the residual problem and the
iterative refinement framework shown in [2, 3]. We formally present the proposed ¸q,p-norm
k-commodity flow algorithm in Section 3, and then solve the residual problem in Section 4.

2 Preliminaries

2.1 General Notations
We denote vectors (resp. matrices) by boldface lowercase (reps. uppercase) letters. For a
vector x œ Rn, the scalar xi, i œ [n] represents the i-th entry of x. For two vectors x and y,
the vector x · y represents the entrywise product, i.e., (x · y)i = xiyi. Besides, for a vector x,
let |x| and xp denote the entrywise absolute value and entrywise power of x respectively,
that is, |x|i= |xi| and (xp)i = (xi)p. We use Èx,yÍ to denote the inner product of x,y, i.e.,
Èx,yÍ = x€y. For a vector x, let diag(x) represent a diagonal matrix whose i-th entry is
equal to xi.

Graphs

In this paper, we consider multi-graph G, with edge set E(G) and vertex set V (G). When
the graph is clear from context, we use the short-hand E for E(G) and V for V (G) with
|E|= m and |V |= n. Assume that each edge e œ E has an implicit direction, used to define
its edge-vertex incidence matrix B œ RE◊V . Abusing notation slightly, we often write
e = (u, v) œ E, where u and v are the tail and head of e respectively (note that technically
multi-graph does not allow for edges to be specified by their endpoints). We say a flow
f œ RE routes a demand d œ RV if B€f = d. Given a k-commodity flow F œ RE◊k, let
fe œ Rk denote F’s e-th row vector, a vector of k flow values through edge e œ E, and
fj œ RE denote F’s j-th column vector, the flow vector of commodity j œ [k]; let Fi,j denote
the entry at the i-th row and j-th column of F.
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Model of Computation

In this paper, for problem instances encoded with z bits, all algorithms work in fixed-point
arithmetic where words have O(logO(1)

z) bits, i.e., we prove that all numbers stored are in
the interval [exp(≠ logO(1)

z), exp(logO(1)
z)].

2.2 Convex Flow Solver
In this paper, we utilize the almost-linear time convex flow algorithm from [15]. Given a set
of computationally e�cient convex cost functions on edges {ce(·)}e, the algorithm finds a
single commodity flow f that routes the given demand d and minimizes

q
e
ce(fe) up to a

small exp(≠ logO(1)
m) additive error.

I Assumption 1 (Definition 10.1 and Assumption 10.2, [15]). Let K = ÂO(1) be a parameter

fixed throughout. Given a convex cost function c : R æ R fi {+Œ}, c is computationally
e�cient if there is a barrier function Âc(f, y) defined on the domain Dc

def= {(f, y)| c(f) Æ y}
such that

1. The cost is quasi-polynomially bounded, i.e., |c(f)|= O(mK + |f |K) for all f œ R.
2. Âc is a ‹-self-concordant barrier for some ‹ = O(1), that is, the following holds

Âc(x) æ Œ, as x approaches the boundary of Dc,

--Ò3
Âc(x)[v,v,v]

-- Æ 2
!
Ò2

Âc(x)[v,v]
"3/2

,’x œ Dc,v œ R2
,

ÈÒÂc(x),vÍ2 Æ ‹ · Ò2
Âc(x)[v,v].

3. The Hessian is quasi-polynomially bounded as long as the function value is ÂO(1) bounded,
i.e., for all points |f |, |y|Æ m

K
with Âc(f, y) Æ ÂO(1), Ò2

Âc(f, y) ∞ exp(logO(1)
m)I.

4. Both ÒÂc and Ò2
Âc can be computed and accessed in ÂO(1)-time.

I Theorem 2 (Theorem 10.13, [15]). Let G be a graph, and d œ RV
be a demand vector.

Given a collection of computationally e�cient cost functions on edges {ce(·)}e and their

barriers {Âe(·)}e (Assumption 1), there is an algorithm that runs in m
1+o(1)

time and outputs

a flow f œ RE
that routes d and for any fixed constant C > 0,

c(f) Æ min
B€fú=d

c(fú) + exp(≠ logC m),

where c(f) def=
q

eœE
ce(fe).

2.3 Iterative Refinement
At a high level, the iterative refinement framework introduced by [2] approximates the
Bregman Divergence of the function |x|p with something simpler.

I Definition 3 (Bregman divergence). Given a di�erentiable convex function g(·) and any

two points x,y in its domain, we define its Bregman divergence as

Dg(y,x) def= g(y) ≠ g(x) ≠ ÈÒg(x),�Í =
⁄

1

0

⁄
t

0

È�,Ò2
g(x+ u�)�Ídudt,

where � def= y ≠ x.

For any p > 1, [2] shows that the Bregman Divergence of |x + ”|p can be locally
approximated by an error term “p(”; |x|), which behaves quadratically in ” when |”|Æ |x| and
as |”|p otherwise.
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I Definition 4 ([14]). For x œ R, f > 0, and p > 1, we define

“p(x, f)
def=

I
p

2
f
p≠2

x
2 |x|Æ f,

|x|p≠
!
1 ≠ p

2

"
f
p |x|> f.

For 1 < q Æ 2, [3] approximates the Bregman divergence of |x|q using the “q function we
just defined.

I Lemma 5 (Lemma 2.14, [3]). For q œ (1, 2] and f, x œ R, it holds that

q ≠ 1
q2q · “q(x, |f |) Æ |f + x|q≠|f |q≠q|f |q≠2

fx Æ 2q · “q(x, |f |).

For p Ø 2, the Bregman divergence of |x|p can be approximated by an x
2 and an |x|p

term.

I Lemma 6 (Lemma 2.5, [3]). For p Ø 2 and f, x œ R, it holds that

p

8 |f |
p≠2

x
2 + 1

2p+1
|x|pÆ |f + x|p≠|f |p≠p|f |p≠2

fx Æ 2p2|f |p≠2
x
2 + p

p|x|p.

Here we present some facts about “q functions that are helpful.

I Lemma 7 (Lemma 3.3, [2]). For q œ (1, 2], f, x œ R, and t Ø 1, it holds that

t
q · “q(x, |f |) Æ “q(tx, |f |) Æ t

2 · “q(x, |f |).

3 Iterative Refinement Algorithm

In this section, we present the ¸q,p-norm k-commodity flow algorithm based on iterative
refinement and prove Theorem 1.

I Theorem 1. Given any 1 < q Æ 2 Æ p with p = ÂO(1) and
1

q≠1
= O(1) and an error

parameter Á > exp(≠ ÂO(1)), let OPT be the optimal value to Problem (1). There is a

randomized algorithm that computes a feasible flow F to Problem (1) such that

ÎWFÎpq
q,p

Æ (1 + Á)OPT + Á.

The algorithm runs in time

O

A
p
2 ·

3
1

q ≠ 1

4 1
q≠1

m
1+o(1) · k2 · log 1

Á

B

with high probability.

In the rest of the paper, we use E(F) to denote the objective of Problem (1), that is,
E(F) = ÎWFÎpq

q,p
.

Our iterative refinement algorithm is based on an approximation to the Bregman diver-
gence of the objective ÎWFÎpq

q,p
. Since the objective can be decomposed into a summation of

m seperate terms, i.e.,
q

eœE
w

pq
e

ÎfeÎpq
q
, we approximate the Bregman divergence for each

edge separately. Consequently, we present the following lemma that approximates Îfe+xeÎpq
q

for each edge e. This is the key technical lemma of this paper and its proof can be found in
the full version.
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I Lemma 8. [¸q,p-Norm Iterative Refinement] Given 1 < q Æ 2 Æ p, and any f ,x œ Rk
, we

have

Îf + xÎpq
q

≠ÎfÎpq
q

≠pqÎfÎq(p≠1)

q
È|f |q≠2·f ,xÍ Ø p(q ≠ 1)

16 ÎfÎq(p≠1)

q
·“q(x, |f |)

+ q ≠ 1
pq ≠ 1

1
2pq+2

ÎxÎpq
pq
, (4)

Îf + xÎpq
q

≠ÎfÎpq
q

≠pqÎfÎq(p≠1)

q
È|f |q≠2·f ,xÍ Æ 7

k
ÎfÎq(p≠1)

q
·“q(6kpx, |f |)

+ 3(6pk)pq
k

ÎxÎpq
pq
, (5)

where we write “q(x,y) def=
q

j
“q(xj , yj) for vectors x,y œ Rk

.

Using Lemma 8, we can define the residual function R(x; f) that upper bounds the
di�erence in the objective, i.e., R(x; f) Ø Îf + xÎpq

q
≠ÎfÎpq

q
.

I Definition 9 (Residual Problem). Given two vectors f ,x œ Rk
, we define R(x; f) as

R(x; f) def= pqÎfÎq(p≠1)

q
È|f |q≠2·f ,xÍ + 7

k
ÎfÎq(p≠1)

q
·“q(6kpx, |f |) +

3(6pk)pq
k

ÎxÎpq
pq
.

In the setting of Problem 1, given a feasible flow F œ RE◊k
, we define the residual problem

w.r.t. F as follows

min
XœRE◊k

R(X;F) def=
ÿ

eœE

w
pq

e
R(xe; f e) (6)

s.t. B€X = 0.

Note that in the residual problem, the objective is decomposable for each coordinate (e, j).
The decomposability allows us to use the almost-linear time convex flow solver (Theorem 2) to
solve the residual problem to high accuracy. The following lemma summarizes the algorithm
and the proof is deferred to Section 4.

I Lemma 10. Given any feasible flow F œ RE◊k
to Problem (1), there is a randomized

algorithm that runs in time km
1+o(1)

and outputs, for any C > 0, a k-commodity circulation

X such that

R(X;F) Æ min
B€Xú=0

R(Xú;F) + exp
1

≠ logC m

2
.

Now, we are ready to prove Theorem 1 with the following Algorithm 1. The algorithm
starts with some initial flow and runs in T iterations. Each iteration, the algorithm updates
the flow F(t+1) Ω F(t) +X(t) with a near-optimal solution to the residual problem. In other
words, given a current flow F, the algorithm updates the flow by solving a simpler residual
problem which is an upper bound to the change in objective value.

To analyze Algorithm 1 and prove Theorem 1, we first relate the value of R(X;F) to the
change in objective value when updating F with X.

I Lemma 11. For any F,X œ RE◊k
, we have

E(F+X) ≠ E(F) Æ R(X;F) and (7)

E(F+ ⁄X) ≠ E(F) Ø ⁄R(X;F), where ⁄
def= O

A
kp

3
4032
q ≠ 1

4 1
q≠1

B
. (8)
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Algorithm 1 High-Accuracy ¸q,p-norm Multicommodity Flow.

1 procedure LqpNormFlow(G,w,D, q, p)
2 Initialize the flow F(0) œ RE◊k such that B€F(0) = D via Lemma 13.
3 T Ω O(p⁄ log(m/Á)), where ⁄ comes from Lemma 11
4 for t = 0 to T ≠ 1 do
5 Solve the residual problem (6) w.r.t. F(t) via Lemma 10 and obtain the

solution X(t)
.

6 F(t+1) Ω F(t) +X(t)

7 end
8 return F(T )

Proof. By the definition of R(x) and Lemma 8, the Inequality (7) holds trivially. We now
focus on proving Inequality (8). In particular, we show that for any vector f ,x œ Rk, the
following

Îf + ⁄xÎpq
q

≠ ÎfÎpq
q

Ø ⁄R(f ;x). (9)

Inequality (9) implies Inequality (8) by taking the summation over all edges.
Lemma 8 gives

Îf + ⁄xÎpq
q

≠ÎfÎpq
q

Ø pqÎfÎ(p≠1)q

q
È|f |q≠2·f ,⁄xÍ + p(q ≠ 1)

16 ÎfÎ(p≠1)q

q
·“q(⁄x, |f |) +

q ≠ 1
pq ≠ 1

1
2pq+2

Î⁄xÎpq
pq
.

In addition, we have

⁄R(x) = ⁄pqÎfÎ(p≠1)q

q
È|f |q≠2·f ,xÍ + 7⁄

k
ÎfÎ(p≠1)q

q
·“q(6kpx, |f |) +

3⁄(6pk)pq
k

ÎxÎpq
pq
.

In order to prove (9), it su�ces to ensure that

p(q ≠ 1)
16 ÎfÎ(p≠1)q

q
·“q(⁄x, |f |) Ø 7⁄

k
ÎfÎ(p≠1)q

q
·“q(6kpx, |f |),

q ≠ 1
pq ≠ 1

1
2pq+2

Î⁄xÎpq
pq

Ø 3⁄(6pk)pq
k

ÎxÎpq
pq
.

We can consider each entry separately and (9) follows if for any f, x œ R, we have

p(q ≠ 1)
16 · “q(⁄x, |f |) Ø 7⁄

k
· “q(6kpx, |f |), (10)

q ≠ 1
pq ≠ 1

1
2pq+2

|⁄x|pq Ø 3⁄(6pk)pq
k

|x|pq. (11)

Inequality (10) follows from Lemma 7

p(q ≠ 1)
16 · “q(⁄x, |f |) Ø p(q ≠ 1)

16

3
⁄

6kp

4q

· “q(6kpx, |f |) Ø 7⁄

k
· “q(6kpx, |f |),

if we set

⁄ Ø kp

3
4032
q ≠ 1

4 1
q≠1

Ø 6kp. (12)
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For Inequality (11) to hold, we need to set

⁄ Ø 1728k
3
pq ≠ 1
q ≠ 1

4 1
pq≠1

p
pq

pq≠1 . (13)

Observe that
3
pq ≠ 1
q ≠ 1

4 1
pq≠1

= (pq ≠ 1)
1

pq≠1

3
1

q ≠ 1

4 1
pq≠1

Æ e

3
1

q ≠ 1

4 1
q≠1

, and

p
pq

pq≠1 = p
1+

1
pq≠1 Æ p

1+
1

p≠1 Æ 2p.

Combining the observation along with (12) and (13), Inequality (9) follows if we set

⁄ = O

A
kp

3
4032
q ≠ 1

4 1
q≠1

B
.

This completes the proof. J

Using Lemma 11, we now show that each iteration decreases the objective exponentially.
This is summarized by the following lemma

I Lemma 12 (Convergence Rate). Let Fú
be the optimal solution to Problem (1). At any

iteration t of Algorithm 1, we have

E(F(t+1)) ≠ E(Fú) Æ
3
1 ≠ 1

⁄

4 1
E(F(t)) ≠ E(Fú)

2
+ exp(≠ logC m).

Proof. Recall that F(t+1) = F(t) +X(t) and X(t) is a high-accuracy solution to the residual
problem w.r.t. F(t)

. Lemma 11 and the optimality of X(t) yields

E(F(t+1)) ≠ E(F(t)) Æ R(X(t);F(t))

Æ R
1

⁄
≠1

1
Fú ≠ F(t)

2
;F(t)

2
+ exp(≠ logC m)

Æ 1
⁄

1
E(Fú) ≠ E(F(t))

2
+ exp(≠ logC m).

(14)

We can conclude the lemma as follows:

E(F(t+1)) ≠ E(Fú) = E(F(t+1)) ≠ E(F(t)) + E(F(t)) ≠ E(Fú)

Æ 1
⁄

1
E(Fú) ≠ E(F(t))

2
+ exp(≠ logC m) + E(F(t)) ≠ E(Fú)

=
3
1 ≠ 1

⁄

4 1
E(F(t)) ≠ E(Fú)

2
+ exp(≠ logC m). J

Then, we show how to find an initial solution e�ciently.

I Lemma 13 (Initial Flow). Given an instance of Problem (1), there is an algorithm that

runs in ÂO(pmk) time and finds a feasible flow F(0) œ RE◊k
such that E(F(0)) Æ 4mp+1E(Fú),

where Fú
is the optimal solution.

Proof. Let flow F(0) be a (1 + 1/pq)-approximate maximum concurrent flow on (G,w) that
routes the demand D. That is, F(0) is a (1 + 1/pq)-approximate solution to the following
problem

min
B€F=D

max
eœE

we

kÿ

j=1

|Fej |.
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Moreover, F(0) can be computed in ÂO(pmk) time using the algorithm from [66]. Set F = F(0)

and let G = Fú be the optimal solution to Problem (1). We can view G as a collection of k
single commodity flows and the approximation guarantee of F yields

max
eœE

we Îf eÎ
1

Æ
3
1 + 1

pq

4
max
eœE

we ÎgeÎ
1
. (15)

We now analyze the approximation ratio of F. Recall the fact that for any vector x œ Rk,
we have ÎxÎ

1
Æ m

1≠1/q ÎxÎ
q
. Combining the observation with Inequality (15), we have

E(G) Æ E(F) =
ÿ

eœE

w
pq

e
Îf eÎpq

q

Æ
ÿ

eœE

w
pq

e
ÎfeÎpq

1
Æ m

3
max
eœE

we ÎfeÎ
1

4pq

Æ m

3
1 + 1

pq

4pq 3
max
eœE

we ÎgeÎ
1

4pq

Æ 4m
ÿ

eœE

w
pq

e
ÎgeÎpq

1
Æ 4m1+pq≠p

ÿ

eœE

w
pq

e
ÎgeÎpq

q

Æ 4mp+1E(G). J

We use Lemma 12 to analyze the correctness of the algorithm and prove Theorem 1.

Proof of Theorem 1. After T = O(p⁄ log(m/Á)) iterations, we use Lemma 12 to bound the
objective of the final flow F(T ) output by Algorithm 1 as follows:

E(F(T )) ≠ E(Fú) Æ
3
1 ≠ 1

⁄

4T 1
E(F(0)) ≠ E(Fú)

2
+ exp(≠ logC m) ·

T≠1ÿ

t=0

3
1 ≠ 1

⁄

4t

Æ exp
3

≠T

⁄

4 1
E(F(0)) ≠ E(Fú)

2
+ ⁄ · exp(≠ logC m)

Æ ÁE(Fú) + Á,

where the last inequality comes from E(F(0))≠E(Fú) Æ 4mp+1E(Fú) and the su�ciently small
constant C in Lemma 10. Rearrangement yields that E(F(T )) is at most (1 + Á)E(Fú) + Á.

We now analyze the runtime. Initialization of F(0) takes ÂO(pmk) time by Lemma 13.
Each iteration takes km

1+o(1) time due to Lemma 10 and there are T = ÂO(p⁄ log(1/Á))
iterations. Then the runtime bound follows. J

4 Solving the Residual Problem

In this section, we prove Lemma 10.

I Lemma 10. Given any feasible flow F œ RE◊k
to Problem (1), there is a randomized

algorithm that runs in time km
1+o(1)

and outputs, for any C > 0, a k-commodity circulation

X such that

R(X;F) Æ min
B€Xú=0

R(Xú;F) + exp
1

≠ logC m

2
.

At a high level, we will show that solving the residual problem is equivalent to solving k

instances of single commodity convex flow problems. Each of them can be solved in m
1+o(1)

time via Theorem 2. In particular, we need to construct computationally e�cient barriers
for the edge cost functions.

ICALP 2024



45:14 High-Accuracy Multicommodity Flows via Iterative Refinement

Proof of Lemma 10. Recall the residual problem

min
XœRE◊k

R(X;F)

s.t. B€X = 0.
(16)

From Definition 9, we know

R(X;F) =
ÿ

eœE

kÿ

j=1

w
pq

e
·
3
pqÎf eÎq(p≠1)

q
|Fej |q≠2

FejXej +
7
k

Îf eÎq(p≠1)

q
“q(6kpXej , |Fej |)

+ 3(6pk)pq
k

|Xej |pq
4
.

For each commodity j œ [k], we write xj and fj to be the j-th column of X and F respectively,
i.e., the flow that routes the commodity j. The constraint B€X = 0 is equivalent to B€xj = 0
for each j. Thus, (16) is equivalent to solving, for each commodity j, the following single
commodity flow problem:

min
xœRE

ÿ

eœE

w
pq

e

3
pqÎfeÎq(p≠1)

q
|Fej |q≠2

Fejxe +
7
k

Îf eÎq(p≠1)

q
“q(6kpxe, |Fej |) +

3(6pk)pq
k

|xe|pq
4

s.t. B€x = 0.
(17)

To use Theorem 2 to solve (17), we need to show that the objective is a sum of convex
edge costs with e�cient barriers. For each edge e and commodity j, we define the cost cej(x)
to be

cej(x) = Aejx+Bej“q(6kpx, |Fej |) + Cej |x|pq, where

Aej

def= w
pq

e
· pqÎf eÎq(p≠1)

q
|Fej |q≠2

Fej ,

Bej

def= w
pq

e
· 7
k

Îf eÎq(p≠1)

q
,

Cej

def= w
pq

e
· 3(6pk)

pq

k
.

Clearly cej(x) is a convex function and the objective of (17) is exactly
q

e
cej(xe).

We now present computationally e�cient barriers for each cej(x) and show that cej(x)
satisfies Assumption 1. For clarity, we ignore both subscripts e and j and use f to denote
|Fej |. That is, we will show that the following function satisfies Assumption 1 for any positive
A,B,C, f > 0,

c(x) = A · x+B · “q(6kpx; f) + C · |x|pq.

Item 1 holds because p = ÂO(1).
We now show Item 2 using Theorem 9.1.1 from [55]. It says that the function Âc(x, y) =

≠ ln(y ≠ c(x)) is a 1-self-concordance barrier for the epigraph Dc

def= {(x, y)|c(x) Æ y} if there
is some — > 0 such that |cÕÕÕ(x)|Æ 3—|cÕÕ(x)/x| holds for all x œ R. The derivatives of c(x)
have di�erent forms depending on the value of x due to the “q function.

If |6kpx|Æ f , we know “q(6kpx; f) = q

2
f
q≠2(6kp)2x2 and

c
Õ(x) = A+Bqf

q≠2(6kp)2x+ Cpq|x|pq≠1sgn(x),
c

ÕÕ(x) = Bqf
q≠2(6kp)2 + Cpq(pq ≠ 1)|x|pq≠2

,

c
ÕÕÕ(x) = Cpq(pq ≠ 1)(pq ≠ 2)|x|pq≠3sgn(x).
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In this case, we have
----
c

ÕÕ(x)
x

---- =
Bqf

q≠2(6kp)2
|x| + Cpq(pq ≠ 1)|x|pq≠3Ø 1

pq ≠ 2 |c
ÕÕÕ(x)|.

It su�ces to set — Ø (pq ≠ 2)/3.
Otherwise, |6kpx|> f . We know “q(6kpx; f) = |6kpx|q≠(1 ≠ q

2
)fq, and

c
Õ(x) = A+B(6kp)qq|x|q≠1sgn(x) + Cpq|x|pq≠1sgn(x),

c
ÕÕ(x) = B(6kp)qq(q ≠ 1)|x|q≠2+Cpq(pq ≠ 1)|x|pq≠2

,

c
ÕÕÕ(x) = B(6kp)qq(q ≠ 1)(q ≠ 2)|x|q≠3sgn(x) + Cpq(pq ≠ 1)(pq ≠ 2)|x|pq≠3sgn(x).

In this case, notice that q ≠ 2 < 0 and we have
----
c

ÕÕ(x)
x

---- = B(6kp)qq(q ≠ 1)|x|q≠3+Cpq(pq ≠ 1)|x|pq≠3, and

|cÕÕÕ(x)| =
--B(6kp)qq(q ≠ 1)(q ≠ 2)|x|q≠3+Cpq(pq ≠ 1)(pq ≠ 2)|x|pq≠3

--

Æ B(6kp)qq(q ≠ 1)(2 ≠ q)|x|q≠3+Cpq(pq ≠ 1)(pq ≠ 2)|x|pq≠3
.

Setting — Ø max{2 ≠ q, pq ≠ 2}/3 yields that

3—

----
c

ÕÕ(x)
x

---- Ø B(6kp)qq(q ≠ 1)(2 ≠ q)|x|q≠3+Cpq(pq ≠ 1)(pq ≠ 2)|x|pq≠3Ø |cÕÕÕ(x)|.

We conclude Item 2 with the barrier function Âc(y, x) = ≠ ln(y≠c(x)). Item 3 follows directly
from Item 1, and Item 4 follows using the explicit formula for c(x), cÕ(x), and c

ÕÕ(x).
Now we can apply Theorem 2 to compute, for each j, a flow xj in time m1+o(1) such that

c(xj) Æ min
B€xú=0

c(xú) + exp(≠ logC m).

Let X = [x1,x2, · · · ,xk], then we have B€X = 0 and X is optimal to (16) up to a
k exp(≠ logC m)-additive error, i.e.,

R(X;F) Æ min
B€Xú=0

R(Xú;F) + k exp(≠ logC m).

The total runtime is k ·m1+o(1) since we compute xj for each j œ [k]. J
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Abstract
In this paper we study the problem of finding (‘,„)-expander decompositions of a graph in the
streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is
to partition the vertex set so that every component induces a „-expander, while the number of
inter-cluster edges is only an ‘ fraction of the total volume. It was recently shown that there exists a
simple algorithm to construct a (O(„ logn),„)-expander decomposition of an n-vertex graph using
ÂO(n/„

2) bits of space [Filtser, Kapralov, Makarov, ITCS’23]. This result calls for understanding the
extent to which a dependence in space on the sparsity parameter „ is inherent. We move towards
answering this question on two fronts.

We prove that a (O(„ logn),„)-expander decomposition can be found using ÂO(n) space, for
every „. At the core of our result is the first streaming algorithm for computing boundary-linked
expander decompositions, a recently introduced strengthening of the classical notion [Goranci et
al., SODA’21]. The key advantage is that a classical sparsifier [Fung et al., STOC’11], with size
independent of „, preserves the cuts inside the clusters of a boundary-linked expander decomposition
within a multiplicative error.

Notable algorithmic applications use sequences of expander decompositions, in particular one
often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g.,
the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal
of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS’22], among
others). We prove that any streaming algorithm that computes a sequence of (O(„ logn),„)-expander
decompositions requires Â�(n/„) bits of space, even in insertion only streams.

2012 ACM Subject Classification Theory of computation æ Streaming models; Theory of computa-
tion æ Sparsification and spanners; Theory of computation æ Sketching and sampling; Theory of
computation æ Lower bounds and information complexity

Keywords and phrases Graph Sketching, Dynamic Streaming, Expander Decomposition

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.46

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.16701 [12]

1 Introduction

Expander graphs are known to represent a class of easier instances for many problems.
Therefore, breaking down the input into disjoint expanders can allow to conveniently solve
the task on each of them separately, before combining the partial results into a global
solution. This approach is enabled by (‘,„)-expander decompositions (for short, (‘,„)-

EA
T
C
S

© Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yu.chen@epfl.ch
https://orcid.org/0009-0006-3595-1297
mailto:michael.kapralov@epfl.ch
mailto:mikhail.makarov@epfl.ch
mailto:davide.mazzali@epfl.ch
https://doi.org/10.4230/LIPIcs.ICALP.2024.46
https://arxiv.org/abs/2404.16701
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 On the Streaming Complexity of Expander Decomposition

ED). For an undirected graph G = (V,E), this is a partition U of the vertex set V , such
that there are at most ‘|E| inter-cluster edges, while every cluster U œ U induces a „-
expander. The list of successful applications of this framework is long, including Laplacian
system solvers [31], deterministic algorithms for minimum cut [28], graph and hyper-graph
sparsification [2, 14, 23, 32], dynamic algorithms for cut and connectivity problems [18, 19],
fast max flow algorithms [11], distributed triangle enumeration [9], polynomial time algorithms
for semirandom planted CSPs [20], and many more.

We refer to ‘ and „ as the sparsity parameters: the former controls how sparsely connected
the clusters need to be, and the latter determines how expanding (i.e. non-sparse) the cuts
within clusters are. The reason for using the same term for both is that they are in fact very
closely related. One can show that any n-vertex graph has an (‘,„)-ED with ‘ = O(„ logn).
To see this, consider the following constructive argument: if the graph has no „-sparse cut
then {V } is a valid ED of G, otherwise recurse on the two sides (S, V \ S) of a „-sparse cut
and union the results to get an ED for G. Every cluster in this decomposition is then an
expander, and a charging argument allows to bound the number of inter-cluster edges by
O(„|E| logn) [30]. One can also observe that no better asymptotic trade-o� between ‘ and „
is possible in general [6]. Therefore, this sets the benchmark for algorithmic constructions of
EDs.

At a high level, many ED algorithms follow the approach suggested by the existential
argument. As a naive implementation would take exponential time, the crux often lies
in e�cient algorithms that either certify that a large portion of the input is an expander,
or find a balanced sparse cut. This would result in a small depth recursion, thanks to
balancedness, where each level requires little computational resources. There are several
successful examples of this approach. In the sequential setting, a recent algorithm constructs
a (O(„ log3 n),„)-ED in ÂO(|E|) time [29], based on the previous best algorithm which runs in
ÂO(|E|/„) time [30]. There is also a deterministic counterpart, which outputs a („ · no(1),„)-
ED in almost linear time [15]. For the CONGEST model of distributed computing, it is
possible to obtain, for instance, a („1/

Ô
logn · no(1),„)-ED in no(1)/„ rounds [9]. It is also

possible to maintain a („ · no(1),„)-ED for a graph undergoing edge updates in no(1)/„2

amortized update time [19, 21].

1.1 Previous Work
In the streaming setting, the problem of finding EDs was open until the recent work of [16].
They obtain a dynamic stream algorithm which outputs a (O(„ logn),„)-ED and takes
ÂO(n/„2) space. While being optimal in the quality of the decomposition, decoding the sketch
to actually output an ED takes exponential time. The authors also give a polynomial time
version: one can produce a („ · no(1),„)-ED using space ÂO(n/„2) + n1+o(1)/„1≠o(1), with
a post-processing that takes poly(n) time (where the o(1)’s can be tuned, allowing for a
quality-space trade-o�).

These streaming algorithms also adopt the recursive approach based on finding balanced
„-sparse cuts, but the streaming model poses a challenge that we now illustrate. Sparsification
for graph streams has been extensively studied [3, 4, 5, 24, 25], so a natural attempt would
consist of maintaining a cut sparsifier as the stream comes and later run the recursive
partitioning on it. However, it must be noted that these cuts are to be found in the subgraphs
induced by the two sides of a previously made cut. This is not a problem in a classical
computational setting, but it actually constitutes the main obstacle for the streaming model:
at sketching time, the algorithm does not know which subgraphs it will need to access.
Unfortunately, it is impossible to preserve cut sizes in arbitrary subgraphs with multiplicative
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precision. The natural work-around is to introduce an additive error term: in [16], the
authors introduce the concept of power-cut sparsifiers. For any given partition U of V , these
sparsifiers preserve the cuts |E(S,U \ S)| of each cluster U œ U in the partition up to an
error of ” · |E(S,U \ S)|+ Â · vol(S). They further show that maintaining ÂO(n/”Â) random
linear measurements of the incidence matrix of the input graph is enough to obtain such
sparsifiers. One can see that setting ” π 1 and Â ¥ „ preserves the sparsity of cuts to within
an additive error of roughly „, using ÂO(n/„) linear measurements. This is enough to find
a balanced „-sparse cut in every subgraph induced by a given partition of the vertex set.
There is another caveat, though: power-cut sparsifiers give a high probability guarantee for
any fixed partition, but we cannot expect them to work for all partitions simultaneously.
Therefore, in order not to use the sparsifiers adaptively, we need one power-cut sparsifier
for every recursion level. The authors show that the depth of the procedure cannot exceed
ÂO(1/‘) = ÂO(1/„), thus obtaining the space complexity stated before. A few more details are
involved in the polynomial time algorithm, but the underlying framework is the same.

1.2 Our Contribution
The work of [16] initiated the study of expander decompositions in the streaming setting,
and consequently raised the question of whether a dependence in space on the sparsity
parameter „ is inherent. In this paper, we move towards settling the streaming complexity
of expander decompositions by attacking the problem on two fronts: (1) we give a nearly
optimal algorithm for “one-level” expander decomposition that avoids the sparsity dependence,
and (2) we show that computing a “repeated” expander decomposition, commonly used in
applications, cannot avoid such dependence.

Upper Bound

We give an ÂO(n) space algorithm for computing a (O(„ logn),„)-ED in dynamic streams.
Specifically, we show that a “universal” sketch consisting of ÂO(n) random linear measurements
of the incidence matrix can be decoded into a (O(„ logn),„)-ED for any „: the sketch is
independent of the sparsity „.

I Theorem 1 (ED algorithm – exponential time decoding). Let G = (V,E) be a graph given in
a dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in ÂO(n)
space. For any „ œ (0, 1), the algorithm decodes the sketch to compute a (O(„ logn),„)-ED
of G with high probability, in ÂO(n) space and 2O(n) time.

We note that at least �(n logn) space is needed for any small enough „: for example, if
the input graph is a matching of size n/10, say, its ED gives a 1 ≠ O(„ logn) fraction of the
matching edges.

The decoding time of our sketch can be made polynomial, at the expense of some loss
in the quality of the expander decomposition (similarly to [16]), but keeping the space
independent of the sparsity „.

I Theorem 2 (ED algorithm – polynomial time decoding). Let G = (V,E) be a graph given in
a dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in n1+o(1)

space. For any „ œ (0, 1), the algorithm decodes the sketch to compute a („ · no(1),„)-ED
of G with high probability, in n1+o(1) space and poly(n) time.

In this case we are o� by subpolynomial factors in both quality and space complexity as
compared to the optimal ones. The actual theorem that we prove allows one to trade-o� the
loss in quality and increase in space.
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Lower Bound

Most algorithmic applications of EDs, including the ones mentioned above, do not use just one
ED of the input graph. Rather, they use an ED sequence obtained by repeatedly computing
an ED of the inter-cluster edges from the previous level. This can be done in two natural
ways: by contracting the clusters of an ED (we call this variant CED, for “contraction”), or
by removing the intra-cluster edges without changing the vertex set (we call this variant RED,
for “removal”, see Section 1.3). These approaches lead to di�erent results and are used for
di�erent applications (e.g., [19, 28] contract the clusters, and [32, 11] recurse on inter-cluster
edges). In the sequential setting, both CEDs and REDs can be obtained straightforwardly
given an ED algorithm. However, this is not so obvious in the streaming model.

One the one hand, one should be able get a sparsity-independent algorithm for computing
CEDs in dynamic streams via Theorem 1 or Theorem 2: observe that contracting the vertices
of a sparsifier of the input graph G gives a sparsifier of the graph obtained by contracting
vertices in G, so the idea would be to maintain an independent copy of our algorithm for each
of the O(logn) levels and contracting vertices in the sparsifier based on the decomposition of
the previous level. On the other hand, we show a space lower bound for computing REDs,
even in insertion only streams, showing that a dependence on 1/„ is necessary.

I Theorem 3 (RED lower bound). Let ‘,„ œ (0, 1) such that 1/n π „ π 1/polylogn and
‘ = ÂO(„). Any streaming algorithm that with constant probability computes at least two levels
of an (‘,„)-RED requires Â�(n/„) bits of space.

The result seems to challenge the intuition that EDs become weaker as „ and ‘ decrease
(note that when „ is, say, 1/n2, an ED can simply consist of connected components). The
questions of (1) whether this bound can be improved, (2) how it scales with the number of
levels of RED we compute, and (3) whether there are algorithms matching such bounds,
remain open.

1.3 Preliminaries

Graph Streaming

In this paper, we will be mostly working in the dynamic graph streaming model, where we
know the vertex set V = [n], and we receive a stream of insertions and deletions for undirected
edges over V . In insertion-only graph streams, the only di�erence is that previously inserted
edges cannot be deleted. At the end of the stream, the graph G = (V,E) consists of the
edges that have been inserted and not deleted, and we say that G is given in a (dynamic)
stream. When we consider a graph given in a (dynamic) stream, we are implicitly assuming
it to have n vertices, without introducing the parameter n explicitly. Also, when we refer to
G and n without reintroducing them we are implicitly considering the graph resulting from
the input stream and its number of vertices.

A powerful tool for dynamic graph streams is linear sketching, introduced in the seminal
work of Ahn, Guha, and McGregor [4]. The idea is to left-multiply the
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. Since the sketch consists of

linear measurements, it automatically handles the case of dynamic streams. We will not be
using sketching techniques directly, but rather employ existing algorithms that do. In this
paper we restrain ourselves to unweighted edge streams. One may study the same problem
in general turnstile graph streams [13], but we do not do this here.
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Cuts, Volumes, and Expanders

Given an unweighted graph G = (V,E), possibly with multiple self-loops on the vertices, we
will operate with weighted graphs that approximate G in an appropriate sense. We write
GÕ = (V Õ, EÕ, w) to denote a weighted graph, possibly with multiple weighted self-loops on
the vertices. We describe next some notation for such weighted graph GÕ. The same notation
carries over to the unweighted graph G by implicitly setting w to assign a weight of 1 to all
edges and self-loops.

For any A,B ™ V Õ we denote by EÕ(A,B) the edges in EÕ with one endpoint in A and
one in B, and by w(A,B) the total weight of edges in EÕ(A,B). The volume of a cut S ™ V Õ

is the sum of the (weighted) degrees, including self-loops, of its vertices. We denote it by
volGÕ(S). The sparsity of a cut ÿ ”= S ( V Õ is defined as

�GÕ(S) = w(S, V Õ \ S)
min{volGÕ(S), volGÕ(V Õ \ S)} .

For Â œ (0, 1), we make a distinction between cuts having sparsity less than Â, which we call
Â-sparse, and cuts having sparsity at least Â, which we call Â-expanding. The sparsity of GÕ

is then defined as

�GÕ = min
ÿ”=S(V Õ

�GÕ(S) ,

and we call GÕ a Â-expander if all its cuts are Â-expanding, i.e. �GÕ Ø Â.

Expander Decomposition

As we will treat expander decompositions for the input graph G only, we conveniently use
the following additional notation. For a cluster U ™ V , i.e. a subset of the vertices, and a
cut S ™ U , which is also a subset of the vertices, we denote the number of edges crossing S
in U by ˆUS, i.e. ˆUS = |E(S,U \ S)|. This is the local cut of S in U . If U = V , we use a
shorthand notation ˆS = ˆV S. We call such a cut the global cut of S, since for S ™ U we
will be interested in both ˆUS and ˆS. Moreover, we drop the subscript from the volume
and simply write vol(·) instead of volG(·). Then, EDs can be defined as follow.

I Definition 4 (Expander decomposition). Let G = (V,E) and let ‘,„ œ (0, 1). A partition U
of V is an (‘,„)-expander decomposition (for short, (‘,„)-ED) of G if
1. 1

2

q
UœU ˆU Æ ‘|E|, and

2. for every U œ U , one has that G[U ] is a „-expander.

Boundary-Linked Expander Decomposition

A boundary-linked ED [19] is the same as a classical ED except that Property 2 of Definition 4
is strengthened. For a cut S in a cluster U , the boundary bndU (S) of S with respect to U
is the number of edges that go from S to the outside of U , i.e. bndU (S) = |E(S, V \ U)|.
For U ™ V and · Ø 0, the · -boundary linked subgraph of G on U , denoted by G[U ]· , is
the subgraph of G induced by U with additional · · bndU ({u}) self-loops attached to every
u œ U . Then a boundary-linked ED can be defined as follows.

I Definition 5 (Boundary-linked expander decomposition [19]). Let G = (V,E), let b, ‘,„ œ
(0, 1) be parameters such that b Ø „, and let “ Ø 1 be an error parameter. A partition U of V
is a (b, ‘,„, “)-boundary-linked expander decomposition (for short, (b, ‘,„, “)-BLD) of G if
1. 1

2

q
UœU ˆU Æ ‘|E|, and

2. for every U œ U , G[U ]b/„ is a „/“-expander.
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Algorithm 1 Decompose: recursive procedure for computing a (O(„ logn),„)-ED of G.

// G = (V,E) is the input graph
// „ œ (0, 1) is the sparsity parameter

1 procedure Decompose(G):
2 if G is a „-expander then
3 return {V }
4 else
5 S Ω a „-sparse cut of G
6 return Decompose(G[S]) fi Decompose(G[V \ S])
7 end

Expander Decomposition Sequence

For a partition U of V (think of U as an ED of G), we denote by E \U the set of inter-cluster
(or crossing) edges with respect to U , i.e.

E \ U = E \
€

UœU

3
U

2

4
.

Analogously, we let G \ U = (V,E \ U) be the subgraph of G obtained by removing the
intra-cluster edges in U . For a sequence of partitions U1, . . . ,U¸ of V and i œ [¸], we define
GR

1
= G and denote by GR

i+1
= GR

i
\ Ui the subgraph of G obtained by removing the

intra-cluster edges of the first i partitions.

I Definition 6 (Removal-based ED sequence). Let G = (V,E), let ‘,„ œ (0, 1), let ¸ Ø 1,
and let U1, . . . ,U¸ be a sequence of partitions of V . The sequence U1, . . . ,U¸ is an ¸-level
removal-based (‘,„)-ED sequence (for short, ¸-level (‘,„)-RED or (‘,„, ¸)-RED) of G if, for
all i œ [¸], Ui is an (‘,„)-ED of the graph GR

i
.

2 Sparsity-Independent One-Level Expander Decomposition

Given a graph G = (V,E) in a dynamic stream, and a parameter „ œ (0, 1), we consider the
problem of computing an (‘,„)-ED of G for ‘ = O(„ logn). We show that one can do this in
ÂO(n) bits of space, without any dependence on „. In this section, we sketch our approach.

Let us begin by recalling the standard recursive framework for constructing expander
decompositions [22, 32, 33], concisely summarized in Algorithm 1. For any parameter
„ Æ 10≠1/ logn, this algorithm produces a (O(„ logn),„)-ED by recursively partitioning G
along „-sparse cuts until no more such cuts are found.

Many algorithmic constructions of EDs are essentially e�cient implementations of Al-
gorithm 1. Adapting Algorithm 1 to dynamic streams comes with its own set of challenges.
When the input is given in a dynamic stream, one can only a�ord to store a limited amount
of information about the input graph. Since Algorithm 1 only needs to measure the sparsity
of cuts, it seems enough to have access to cut sizes and volumes. Both these quantities are
preserved by cut sparsifiers. According to the classical definition [7], a ”-cut sparsifier is a
weighted subgraph H = (V,EÕ, w) of the input G = (V,E), where for every cut S ™ V one
has

(1 ≠ ”) · ˆS Æ ˆwS Æ (1 + ”) · ˆS .
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It is known that such a sparsifier can be constructed in dynamic streams using ÂO(n/”2) bits
of space [5]. With the same space requirement we can also measure the sparsity of cuts up
to a (1± ”) multiplicative error. Having this in mind, it is natural to consider the following
algorithm: first, read the stream and construct a cut sparsifier, then run Algorithm 1 on it
and output the resulting clustering as the expander decomposition. However, this approach
does not work as is. As it turns out, more information is needed about the graph than what
is captured by the regular notion of a cut sparsifier.

The problem with this approach becomes immediately apparent when one considers
the second recursion level. As the process recurses on the two sides of a sparse cut S, it
will repeat the procedure on the subgraphs G[S] and G[V \ S]. Unfortunately, the cut
preservation property of the sparsifier does not carry over to those subgraphs, making it
inadequate for estimating the sparsity of the cuts in those graphs. In fact, the notion of
expander decomposition itself already operates on the subgraphs, as it is required that each
cut in each cluster of the decomposition is expanding.

2.1 Testing Expansion of Subgraphs
The reasoning from above gives rise to the following sketching problem: produce a sparsifier
that can be used to check that any subgraph is a „-expander. To solve it, the authors of [16]
introduced the concept of a (”,Â)-power-cut sparsifier. Its property is that, for any cluster
U ™ V , with high probability all cuts S ™ U are preserved within an additive-multiplicative
error. Recall that ˆUS is equal to the size of the cut S inside the induced subgraph G[U ].
When talking about sparsifiers in this section, we will slightly abuse notation by assuming
that there is some instance H = (V,EÕ, w) of it and denote by ˆw

U
S the size of the cut S in

the subgraph H[U ] of this sparsifier H. Then we can write the guarantee of a (”,Â)-power-cut
sparsifier as follows1:

’S ™ U, (1 ≠ ”) · ˆUS ≠ Â · vol(S) Æ ˆw

U
S Æ (1 + ”) · ˆUS + Â · vol(S) .

The authors also give a dynamic stream construction, which uses ÂO(n/”Â) bits of space by
sampling edges proportionally to the degrees of their endpoints.

To check the „-expansion of subgraphs up to a small constant multiplicative error, it
is enough to set ” to be a small constant. However, the multiplicative error parameter Â
must be . „. This is a significant downside of this construction, as it was shown in [16] that
a (”,„)-power-cut sparsifier must have at least �(n/„) edges. In fact, their lower bound is
more general, and holds for general subgraphs2. In other words, �(n/„) space is necessary
in order to test „-expansion of general subgraphs. Consequently, new tools must be used to
have any hope of getting an algorithm independent of 1/„.

Our Contribution: Sparsification of Boundary-Linked Subgraphs

As it turns out, solving the expansion testing problem, as it was stated, is not necessary.
Recently, in the breakthrough work of [19], it was shown that one could demand additional
properties from the expander decomposition, and it will still exist at the price of increasing
the number of inter-cluster edges by a small multiplicative factor.

1 A similar sparsifier construction was proposed by [1]. Their construction has an additive error of Â|S|,
so the dependence is on the number of vertices instead of the volume.

2 The lower bound instance is a 1/„-regular graph. There, each edge by itself forms a „-expander, while
any pair of vertices without an edge between them is not. Being able to test the „-expansion of the
majority of those small subgraphs would imply being able to recover the majority of edges in the graph.
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More formally, let U ™ V and · > 0. Note that if the · -boundary-linked subgraph G[U ]·
(see Section 1.3 for the definition) is a „-expander, then so necessarily is G[U ], but not the
other way around. Then it is possible, for a given „, and ‘ = ÂO(„), · ¥ 1/„, to construct an
(‘,„)-expander decomposition U where for each cluster U œ U , G[U ]· is a Â�(„)-expander [19].
Such a decomposition is called a boundary-linked expander decomposition.

A key observation is that if in our algorithm we were aiming to construct a boundary-
linked expander decomposition, the testing problem would only involve checking that any
given boundary-linked subgraph is „-expanding. Indeed, this problem is much easier than
the original one and can be solved in space ÂO(n). We will show how to do it in two steps:
first, we will discuss how to strengthen the power-cut sparsifier, and then prove that this
strengthening is enough to resolve the problem.

Achieving Additive Error in the Global Cut

As was noted in [16], the idea behind constructing a power-cut sparsifier was to reanalyse
the guarantee given by the construction of [32] for sparsifying expanders. In other words,
a power-cut sparsifier results from a more rigorous analysis of an existing sparsifier. The
problem with this approach is that the sparsifier of [32] is relatively weak to begin with: it only
preserves cuts in expanders, while other constructions can preserve them in all graphs [7, 17].
To strengthen the guarantee, one can give the same treatment to the construction of [17] (see
the full version of this paper). For the sake of simplicity and to gain an intuition for why
this kind of sparsification is at all possible, we discuss here how to do that with the classical
construction of [27] by closely following the original proof.

We show that, given a graph G = (V,E) with a minimum cut of size k, it is possible to
construct a sparsifier H of G such that every cut inside any given subgraph G[U ] of G is
preserved with high probability with the following guarantee:

’S ™ U, ˆUS ≠ ” · ˆS Æ ˆw

U
S Æ ˆUS + ” · ˆS . (1)

In this paper, a sparsifier with the property of Equation (1) is called a cluster sparsifier. To
achieve the guarantee of Equation (1), consider using the same process as in [27]: sample
each edge with the same probability p ¥ ”≠2/k.

To see why this works, fix a subgraph U ™ V , and consider any cut S in U . We wish to
show that the size of the cut S inside U concentrates well after sampling. In the original
proof, this is done by simply applying a Cherno� bound. In our case, this bound would look
like this:

Pr[|ˆw

U
S ≠ ˆUS| Ø ” · ˆUS] Æ exp

3
≠1
3”2p · ˆUS

4
.

However, this is insu�cient, as the probability depends on the cut size inside G[U ]. As we
have no lower bound on its size, unlike with the sizes of global cuts, the second part of the
argument of [27] cannot be applied. Instead, we apply an additive-multiplicative version
of the Cherno� bound (see for example [16]), that allows us to compare the approximation
error with a bigger value than its expectation. This gives us

Pr[|ˆw

U
S ≠ ˆUS| Ø ” · ˆS] Æ 2 exp

3
≠ 1
100”2p · ˆS

4
.

Expressing the probability in terms of the global cut allows us to use the cut counting
lemma [26], which bounds the number of global cuts of size at most –k by n2–, for – Ø 1.
The proof is concluded by associating each global cut with a local cut in G[U ] and taking
the union bound over them.
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In order to get the guarantee of Equation (1) for all graphs, not only those with a minimum
cut of size k, one can sample edges proportionally to the inverse of their edge connectivity
(as in the work of [17]) as opposed to uniformly. Moreover, one can implement such sampling
scheme in dynamic streams, using the approach of Ahn, Guha, and McGregor [5]. We
defer the details of these reanalyses to the full version of this paper, where we show how to
construct cluster sparsifiers with the property of Equation (1) in dynamic streams.

Benefits of Boundary-Linked Subgraphs

To see why the cluster sparsifier is enough to solve the boundary-linked „-expansion testing
problem, consider the following reasoning. Set the self-loop parameter · equal to b/„, for
some b ∫ „ and b π 1. Fix a cluster U , for which G[U ]b/„ is an Â�(„)-expander. The crucial
fact is that the size of any cut inside G[U ]b/„ is lower bounded by its size in the global graph
up to a small polylogarithmic factor in the following way:

ˆUS Ø Â�(b) · ˆS . (2)

We will now explain the derivation of the above equation in detail. For a cut ÿ ”= S ( U ,
recall that bndU (S) is the number of edges going from S to V \U . Note that by the definition
of G[U ]b/„, the volume of any cut S inside of it is equal to

volG[U ]b/„(S) = vol(S) +
3
b

„
≠ 1

4
bndU (S) .

First, because we assume that G[U ]b/„ is an Â�(„)-expander, we have

ˆUS Ø Â�(„) · volG[U ]b/„(S) .

Then, applying the aforementioned formula for volG[U ]b/„(S), we have

ˆUS Ø Â�(„) vol(S) + Â�(„)
3
b

„
≠ 1

4
bndU (S) .

Since b ∫ „ and dropping the first summand, the above simplifies to

ˆUS Ø Â�(b) bndU (S) .

Finally, applying ˆUS + bndU (S) = ˆS and b π 1, we arrive back at Equation (2).
A consequence of Equation (2) is that setting ” ¥ 1/b in the cluster sparsifier produces

the following guarantee for Â�(„)-expander subgraphs G[U ]b/„:

’S ™ U, ˆUS ≠ O(1) · ˆUS Æ ˆw

U
S Æ ˆUS +O(1) · ˆUS ,

where the O(1) can be made arbitrarily small. In other words, we achieve a multiplicative
approximation guarantee on subgraphs of interest, which is enough to solve the testing
problem. Since b can be set to be 1/polylogn, the final sparsifier size does not depend
on 1/„. In this sense, such sparsifier can be thought of as a “universal” sketch of the graph
that allows to solve the testing problem for all „ simultaneously.

Even though we now know how to solve the testing problem, an implementation of
Algorithm 1 would need to actually find a sparse cut when the test fails (and in particular, it
needs to find a balanced sparse cut, see the next section). In the full version of this paper,
we show that cluster sparsifiers enable to solve this harder task too: consider an o�ine
algorithm that either correctly determines a graph to be a boundary-linked expander or finds
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a (balanced) sparse cut; one can prove that we can run such algorithm on a subgraph of the
sparsifier as a black box and obtain essentially the same result as if the algorithm was run
on the corresponding subgraph of the original graph. In this sense, cluster sparsifiers serve
as small error proxies to the original graph for expander-vs-sparse-cut type of queries on
vertex-induced subgraphs.

2.2 Low Depth Recursion

Another problem that arises when using the recursive approach is that the subgraph sparsi-
fication guarantee of both power-cut sparsifiers and cluster sparsifiers is only probabilistic,
and it can be shown that it cannot be made deterministic [16]. This means that after finding
a sparse cut S in a subgraph G[U ]b/„ of a sparsifier, we cannot claim that the same sparsifier
would preserve the cuts inside the new graph G[S]b/„ with high probability, as it is dependent
on another cut that we have already found inside the sparsifier. This means we cannot use
the same sparsifier for two di�erent calls to Algorithm 1 inside the same execution path.
However, we can share a sparsifier among all the calls at the same recursion level since these
will operate on independent portions of G. Therefore, we want to have a separate sparsifier
for every recursion level. This means that in order to minimize space requirements, it is
crucial to have a small recursion depth.

To have small recursion depth, the algorithmic approach of [8, 9, 16] enforces the sparse
cut S from line 5 of Algorithm 1 to be balanced, i.e. none of S and V \S is much larger than
the other. In particular, they only recurse on the two sides of a cut if vol(S) & ‘ vol(V \ S).
When there is no balanced sparse cut and yet the input is not an expander, a lemma of
Spielman and Teng [32] suggests there should be an �(„)-expander G[SÕ] that accounts for
a (1 ≠ O(‘))-fraction of the total volume. An algorithmic version of this structural result
allows us to iteratively trim o� a small piece of the graph until such SÕ is found. At this
point, the algorithm of [16] can simply return {SÕ} fi (fiuœV \SÕ{u}) as an ED, with at most
O(‘|E|) inter-cluster edges between singletons. As the volume of the cluster multiplicatively
decreases by 1 ≠ O(‘) after each call, this gives recursion depth at most ÂO(1/‘) ¥ ÂO(1/„).

Our Contribution: Adaptation of Trimming

We show that a simple refinement of this approach allows us to adapt the framework of [30],
which leads to an algorithm with recursion depth independent of „. We run the same
algorithm, but instead of separating each vertex in V \ SÕ into its own singleton cluster, we
recurse with Algorithm 1 on the whole set V \SÕ. Conceptually, this implements an analogue
of the trimming step of [30].

This means that at the end, fewer edges in V \ S become inter-cluster edges. Because
of that, we can strengthen the balancedness requirement: we recurse on the two sides of a
sparse cut only if vol(S) & 1

C
vol(V \ S) for a large constant C. This allows us to trim more

vertices each time, resulting in ÂO(1) depth of the trimming step. On the other hand, because
in each call to Algorithm 1 the volume of clusters passed to recursive calls is decreased by at
least a constant factor, the total recursion depth becomes at most ÂO(1).

Other than the refinement discussed above, our space e�cient implementation of Al-
gorithm 1, as well as the iterative procedure to find the large expander SÕ, are almost the
same as the ones of [16] (which in turn are inspired by the one of [9]). The details of the
algorithms are given in the full version of this paper.
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2.3 Putting It All Together
Combining the ideas illustrated in the two sections above, neither the sparsifier’s size nor
the recursion depth depend on „, thus giving a sparsity-independent space algorithm for
boundary-linked expander decomposition (BLD for short). This result is stated in terms
of parameters b, ‘,„ œ (0, 1), “ Ø 1: a (b, ‘,„, “)-BLD is a partition U with at most an ‘
fraction of crossing edges and every U œ U induces a „/“-expander G[U ]b/„ (see Section 1.3).
Using this terminology, we obtain the following result.

I Theorem 7 (Exponential time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b œ (0, 1) be a parameter such that b Æ 1/ log2 n. Then, there is an algorithm
that maintains a linear sketch of G in ÂO(n/b3) space. For any ‘ œ [n≠2, b logn], the algorithm
decodes the sketch to compute, with high probability and in ÂO(n/b3) space and 2O(n) time, a
(b, ‘,„, “)-BLD of G for

„ = �
3

‘

logn

4
and “ = O(1) .

From this, one can easily conclude our main result.

I Theorem 8 (See Theorem 1). Let G = (V,E) be a graph given in a dynamic stream. Then,
there is an algorithm that maintains a linear sketch of G in ÂO(n) space. For any „ œ (0, 1)
such that „ Æ c/ log2 n for a small enough constant c > 0, the algorithm decodes the sketch
to compute a (O(„ logn),„)-ED of G with high probability, in ÂO(n) space and 2O(n) time.

We remark that for „ Ø �(1/ log2 n), one can use the algorithm of [16] to still have an
ÂO(n) space construction of a (O(„ logn),„)-ED.

Proof. First note that without loss of generality we can assume „ Ø 1/n2, otherwise an ED
can simply consist of the connected components of G (which can be computed in dynamic
streams in ÂO(n) space [4]). Then, we note that since c is small enough and „ Æ c/ log2 n,
one can always define ‘ = C · „ · logn for an appropriate constant C > 0 while ensuring
1/n2 Æ ‘ Æ 1/ logn. We can thus prove the theorem by equivalently showing that there is an
algorithm that maintains a linear sketch of G in ÂO(n) space, and that for all ‘ œ [1/n2, 1/logn]
decodes the sketch to compute, with high probability, an (‘,�(‘/ logn)))-ED of G in ÂO(n)
space and 2O(n) time.

Let then ‘ œ [1/n2, 1/logn]. We use the algorithm from Theorem 7 with parameter ‘ and
a parameter b of our choice. We need to meet two preconditions: b Æ 1/ log2 n and ‘ Æ b logn.
Since we assume ‘ Æ 1/ logn, we can set b = 1/ log2 n, and all the prerequisites are fulfilled.
Then the algorithm from Theorem 7 runs in 2O(n) time and takes ÂO(n/b3) = ÂO(n) bits of
space. The output U is a (b, ‘,„, “)-BLD of G with high probability, where „ = �(‘/ logn)
and “ = O(1). Since a (b, ‘,„, “)-BLD of G is an (‘,„/“)-ED of G, we have obtained an
(‘,�(‘/ logn))-ED of G with high probability. J

The exponential time in the decoding is due to the subtask of finding a balanced sparse
cut. As we show, one can make the decoding time polynomial by resorting to known o�ine
approximation algorithms [29, 30]. However, we only have log�(1) n-approximations for
finding a balanced sparse cut, and in particular, we do not expect (under NP-hardness
and the Unique Games Conjecture) there to be a polynomial time O(1)-approximation [10].
Such super-constant factor error incurs some loss in the quality of decomposition and space
requirement, which, nevertheless, remains independent of the sparsity.
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I Theorem 9 (Polynomial time decoding BLD). Let G = (V,E) be a graph given in a
dynamic stream, and let b œ (0, 1) be a parameter such that b Æ 1/ log5 n. Then, there is
an algorithm that maintains a linear sketch of G in n/b3 · logO(logn/ log

1
b ) n space. For any

‘ œ [n≠2, b logn], the algorithm decodes the sketch to compute, with high probability and in
n/b3 · logO(logn/ log

1
b ) n space and poly(n) time, a (b, ‘,„, “)-BLD of G for

„ = �
3

‘

log4 n

4
and “ = logO

!
logn

log 1/b

"
n .

A polynomial time version of Theorem 8 then follows from Theorem 9.

I Theorem 10 (See Theorem 2). Let G = (V,E) be a graph given in a dynamic stream,
and let b œ (0, 1) be a parameter such that b Æ 1/ log5 n. Then, there is an algorithm that
maintains a linear sketch of G in n/b3 · logO(logn/ log

1
b ) n space. For any „ œ (0, 1) such that

„ Æ b/ logC·logn/ log
1
b n for a large enough constant C > 0, the algorithm decodes the sketch to

compute a („ · logO(logn/ log
1
b ) n,„)-ED of G with high probability, in n/b3 · logO(logn/ log

1
b ) n

space and poly(n) time.

We remark that setting, say, b = 2≠
Ô

logn in the above result gives a n1+o(1) space
algorithm for computing a („ · no(1),„)-ED for any „ Æ 2≠2C log logn

Ô
logn. For larger values

of „, one can use the polynomial time algorithm of [16] to still get a n1+o(1) space construction
for a („ · no(1),„)-ED.

Proof. As in the proof of Theorem 8, we can assume „ Ø 1/n2. Also, by virtue of C
being a large enough constant and „ Æ b/ logC·logn/ log

1
b n, one can always define ‘ to be

‘ = „ · logC·logn/ log
1
b n while ensuring n≠2 Æ ‘ Æ b logn. Then, we equivalently prove that

for any b œ (0, 1) with b Æ 1/ log5 n there is an algorithm that maintains a linear sketch
of G in n/b3 · logO(logn/ log

1
b ) n space, and that for any ‘ œ (0, 1) such that n≠2 Æ ‘ Æ b logn

decodes the sketch to compute, with high probability, an (‘, ‘/ logO(logn/ log
1
b ) n)-ED of G in

n/b3 · logO(logn/ log
1
b ) n space and poly(n) time.

Let then b, ‘ œ (0, 1) with b Æ 1/ log5 n and n≠2 Æ ‘ Æ b logn. We use the algorithm from
Theorem 9 with the same parameters b and ‘, since every admissible pair of parameters b
and ‘ fulfils the conditions of Theorem 9. The space complexity is also the same, and the
running time is poly(n). Again, observe that a (b, ‘,„, “)-BLD of G is an (‘,„/“)-ED of G.
Hence the claim, since Theorem 9 gives

„

“
= �

3
‘

log4 n

4
· 1

logO
!

logn
log 1/b

"
n
= ‘

logO
!

logn
log 1/b

"
n
. J

The proofs of Theorem 7 and Theorem 9 can be found in the full version of this paper.

3 Two-Level Expander Decomposition Incurs a Sparsity Dependence

Given a graph G = (V,E) in a stream and parameters ‘,„ œ (0, 1), we consider the problem
of computing a two-level (‘,„)-RED of G (see Section 1.3). In other words, we study the
problem of computing an (‘,„)-ED U of G and an (‘,„)-ED U Õ of the graph GÕ = (V,E \ U),
where E \ U denotes the set of inter-cluster edges of U , i.e. the edges of E that are not
entirely contained in a cluster U œ U . We remark that we wish to do so in a single pass over
the stream.
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S1

Sn/m

T is an expander

s1,K

sn/m,K

Si

si,K

degree from vertices in T to the LHS is ddegree from si,K to the RHS is dm/2

. . .
. . .

Figure 1 Illustration of the graph we use for proving the lower bound. Thick bullets represent
important vertices, thick lines represent important edges, dotted lines represent edges connecting
the important vertices to T .

A Natural Algorithmic Approach and Why It Fails

A naive attempt to solve this problem would be that of sketching the graph twice, for example
by using our algorithm from Theorem 1. One can use the first sketch to construct the first
level ED U . After, the hope is that one can send updates to the second sketch so as to
remove the intra-cluster edges and then decode this sketch into an ED of GÕ = (V,E \ U)
using again Theorem 1. However, this hope is readily dashed. Indeed, sketching algorithms
break down if we send a removal update for an edge that was not there in the first place,
and we do not have knowledge of which of the pairs

!
U

2

"
are in E and which are not.

Our Contribution: Space Lower Bound

We show that, in sharp contrast to our algorithm for constructing a one-level expander
decomposition, this problem requires Â�(n/„) space, i.e. a dependence on 1/„ is unavoidable.
Formally, we obtain the following result.

I Theorem 11 (See Theorem 3). Let ¸ Ø 2 and let ‘,„ œ (0, 1) such that ‘ = 1≠ �(1), „ Æ ‘,
and „ Ø C ·max{‘2, 1/n} for a large enough constant C > 0. Any streaming algorithm that
with probability at least 9/10 computes an ¸-level (‘,„)-RED requires �(n/‘) bits of space.

The above theorem gives an Â�(n/„) space lower bound for algorithms that compute
a RED with near-optimal parameters, i.e. algorithms that achieve ‘ = ÂO(„) for any
1/n π „ π 1/ logn.

Setup and Hard Instances

Throughout this section, the symbols π and ∫ mean smaller or larger by a large constant
factor. Let us fix the RED parameters ‘,„ œ (0, 1), and let us restrain ourselves to the
regime „ ∫ ‘2 (and of course „ π ‘). We prove the lower bound by giving a distribution
over hard instances G = (V,E). This distribution is parametrised by integers d and m such
that 1 π d π m π n, m ∫ 1/„, m π 1/‘2, and d π 1

‘
. With these parameters fixed, our

hard distribution G is defined below in Definition 12. An illustration is given in Figure 1.
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First level ED Second level ED

U ∗

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2 Illustration of the ideal expander decomposition of the graph. Thick bullets represent
important vertices, smaller bullets represent ordinary vertices, thick lines represent important edges,
dotted lines represent the rest of the edges. Grey areas represent the clusters in the decomposition.

I Definition 12 (Distributions G and GÕ – Informal). We partition V arbitrarily into two sets
S and T with n/2 vertices each, and further partition S into n/m sets S1, . . . , Sn/m with
m/2 vertices each. The edge set of the graph G = (V,E) ≥ G is defined as follows.
1. For each i œ [n/m], the induced subgraph G[Si] is an Erd�s-Rényi random graph with

m/2 vertices and degree ¥ d. We denote by GÕ the distribution of the subgraph G[S].
2. The induced subgraph G[T ] is a fixed d-regular �(1)-expander.
3. We fix for convenience an arbitrary labelling si,1, . . . , si,m/2 of the vertices in each Si, and

we sample an index K uniformly from [m/2]. Then, for every i œ [n/m], we add dm/2
edges from si,K to T so that each t œ T has d incident edges connecting to S.
Roughly speaking, our hard instances should be composed of n/m regular expanders

that are densely connected to T , which is also an expander, through a selection of “special”
vertices. We will show that the hardness arises from recovering information about certain
important vertices and edges, defined below and also illustrated in Figure 1.

I Definition 13 (Important vertices and edges – Informal). Let G = (V,E) ≥ G. We define
the set of important vertices V ú = {si,K : i œ [n/m]} to be the set of vertices of S that are
connected to T , and define the set of important edges Eú = {{si,K , v} : i œ [n/m], v œ S} to
be the set of edges in the induced subgraph G[S] that are incident on V ú.

The lower bound proof has two steps: we first prove that a two-level RED leaks a
non-trivial amount of information about the graph G ≥ G; then we prove that, in order to
obtain such amount of information, the algorithm must use a lot of space.

3.1 Two-Level Expander Decomposition of the Hard Instance
In this section, we show that any valid two-level RED reveals a lot of informations about the
important edges. The following lemma shows that a non-trivial amount of important edges
are inter-cluster edges in the first level decomposition. An ideal decomposition is illustrated
in Figure 2.

I Lemma 14 (Informal). Let G = (V,E) œ supp(G). Then, any (‘,„)-ED U of G satisfies

|Eú \ U| Ø 4
5 · |Eú| .



Y. Chen, M. Kapralov, M. Makarov, and D. Mazzali 46:15

Proof sketch. By definition of the graph, there are �(dn) edges in the graph. Since there
is at most an ‘ fraction of crossing edges, there are only O(‘dn) crossing edges. Note that
there are �(dn) edges in G[T ], so only an O(‘) fraction of the edges in G[T ] are crossing
edges. Furthermore, G[T ] is a regular expander: this implies that there is a large cluster
Uú œ U comprising a 1 ≠ O(‘) fraction of T , together with a 1 ≠ O(‘) fraction of important
vertices. The latter is true since the edges between S and T make up a constant fraction of
the total volume and only a small fraction of the edges can be crossing. We refer the reader
to the full version of this paper for more details.

The edges in the subgraph G[S] also account for a constant fraction of the total volume.
Together with the fact that each Si induces a regular expander, for many of the Si’s we will
have a cluster in U that contains most of Si. Now consider a set Si such that the important
vertex of Si is in Uú and most of the vertices in Si are all in the same cluster. If most
of the vertices in Si are also inside Uú, then consider the cut from (Uú fl Si) \ {si,K} to
(Uú \Si)fi{si,K}. The cut size is at most the number of important edges in Si, which is O(d).
On the other hand, the volume of the cut is �(dm) since most of the vertices of Si are in the
cluster. Recalling that m ∫ 1

„
, one concludes that the cut is sparse. Therefore, we ruled out

the possibility of having many vertices of Si in Uú. See the full version of this paper for a
detailed discussion.

In summary, as illustrated in Figure 2, in any valid expander decomposition, most of the
vertices in T and most of the important vertices are inside a giant cluster Uú, and for most
of the Si’s, there is a cluster other than Uú that contains most of the vertices in Si. For any
such Si, most of the important edges inside it are then crossing edges. J

The second level expander decomposition, i.e. an expander decomposition of the inter-
cluster edges from the first level, is also quite structured, as illustrated in the ideal RED of
Figure 2.

I Lemma 15 (Informal). Let G = (V,E) œ supp(G), and let U1,U2 be any 2-level (‘,„)-RED
of G. Then, there are at most n/10 vertices in S that are non-isolated vertices3 in U2.
Moreover, at least a 2/3 fraction of important edges are not in E \ U2, i.e. a 2/3 fraction of
important edges are inside clusters of U2.

Proof sketch. The number of crossing edges in the first level decomposition is O(‘dn), which
is much less than n since d π 1

‘
. This means that most of the vertices are isolated vertices

in the second level. Moreover, by Lemma 14, most of the important edges are crossing edges
in the first level decomposition. Among these �(dn/m) edges, at most O(‘2dn) edges can be
crossing edges in the second level decomposition. Recalling that m π 1

‘2 , we see that most
of the important edges are not crossing edges in the second level decomposition. J

3.2 Lower Bound via Communication Complexity
Our streaming lower bound will be proven in the two-player one-way communication model.
In this setting, Alice gets the edges in G[S] and G[T ], and Bob gets the edges between S
and T . We prove that in order to give a two-level RED, Alice needs to send �(dn) bits of
information to Bob.

The high level idea is the following. Note that the identity of the important vertices can
be only revealed by edges given to Bob. Thus, given Alice’s input, every vertex in S has the
same probability to be an important vertex, which means that every edge in S has the same

3 We call a vertex v non-isolated in a decomposition U if U puts v in a cluster with other vertices, i.e. v
does not constitute a singleton cluster in U .
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probability to be an important edge. Therefore, in order to make sure that Bob recovers
most of the important edges (which is morally equivalent to computing a two-level RED, as
suggested by Figure 2), Alice needs to send most of the edges in S to Bob, which is �(dn).

To make the above idea concrete, we consider a communication problem where Alice is
given a graph, and Bob is asked to output a not too large set of pairs that contains a good
fraction of the edges of Alice’s input. We first reduce this new problem to the two-level RED
problem. Then, we will prove a communication complexity lower bound for this problem.

I Definition 16 (Informal). In the communication problem recover, Alice’s input is a graph
GÕ = (S,EÕ) where |S| = n/2, and Bob’s output is a set of pairs of vertices F ™

!
S

2

"
that

must satisfy |F | Æ nm/10 and |F fl EÕ| Ø �(|EÕ|), i.e. at least a constant fraction of the
edges in GÕ are in F .

Now, the idea is to plant Alice’s input for recover into our instance from Definition 12.
The input distribution for recover is sampled from the distribution GÕ. In other words, the
distribution of Alice’s input is the same as the left-hand side part of G ≥ G (i.e. the subgraph
G[S]). Then, in the reduction, Alice gets the edges of G[S] and G[T ] while Bob gets the
edges between S and T . By virtue of the discussion in the previous section, we expect a RED
of G to allow Bob to recover many important edges in G[S]. Hence, Bob could simulate the
RED algorithm for all the m/2 possible choices of the random index K ≥ [m/2] that defines
the important edges (see Definition 12): in this way, the k-th RED should reveal information
about Alice’s edges that are incident on the vertices {si,k}i. Therefore, by varying k over
[m/2], Bob should obtain information about all the edges in Alice’s graph. More precisely,
the reduction is the following.

I Reduction (Informal). Let A be a deterministic streaming algorithm for computing a 2-level
(‘,„)-RED. Alice, given her input graph GÕ = (S,EÕ) generated by GÕ, feeds her edges EÕ to
A, together with the fixed edges of G[T ]. Then, she sends the memory state of A to Bob.
Upon receiving the message, Bob makes m/2 copies of A and initialises them to the memory
state he received from Alice. Call these copies A1, . . . ,Am/2. Next, for each k œ [m/2],
call Gk = (V,Ek) the graph we obtain from G when K = k and the left-hand side Gk[S]
is exactly Alice’s input GÕ (so that the vertices {si,k}i are the important vertices in Gk,
see Definition 12 and Definition 13). Then, Bob feeds the edges Ek(S, T ) to Ak. Let then
Uk
1
,Uk

2
be the RED output by Ak. Bob finally constructs his output set F as follows: for

each k œ [m/2], add the pair {s, si,k} to F for every i œ [n/m] and every vertex s œ Si that
is not isolated in Uk

2
. y

By Lemma 15, the number of non-isolated vertices in the second-level decomposition is at
most n/10. Hence, the total number of pairs added to F is at most nm/10, thus satisfying
the first requirement of Definition 16. Moreover, by Lemma 15, at least a 2/3 fraction of the
important edges are not crossing edges in the second level. This means that for each k, at
least a 2/3 fraction of the edges that are incident on si,k is added to F . In turn, this implies
that F contains at least a constant fraction of the edges in EÕ, thus satisfying the second
requirement of Definition 16. More precisely, one can prove the following.

I Lemma 17 (Informal). If there is a deterministic L-bit space streaming algorithm A that
computes a 2-level (‘,„)-RED with constant probability over inputs G ≥ G, then there is a
deterministic protocol R that solves recover with constant probability over inputs GÕ ≥ GÕ.
The communication complexity of R is at most L.

The final component of the proof is the communication complexity lower bound for recover.
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I Lemma 18 (Informal). The one-way communication complexity of solving recover with
constant probability over inputs sampled from GÕ is �(dn).
Proof sketch. Roughly speaking, we show that the posterior distribution of the input
conditioned on the output is shifted away from its prior distribution.

Recall that when the input GÕ = (S,EÕ) is sampled from GÕ, the graph is a disjoint union
of n/m random graphs with m/2 vertices each and degree ¥ d. There are roughly

A3
m/2
d

4m/2
Bn/m

¥
1m

2d

2dn/2

possible inputs in total and the information complexity is �(dn). Conditioning on the
the output F of a correct protocol for recover, the number of possible inputs is greatly
decreased. In particular, to determine the input EÕ, we need to select a constant fraction,
say 2/3 for example, of the pairs from F , and select the rest of the edges (a 1/3 fraction, in
our example) arbitrarily. Since |F | is at most nm/10, |EÕ| = �(dn), and

!
S

2

"
¥ nm/2, the

total number of possible inputs is then roughly
3
nm/10
2/3 · dn

4
·
3

nm/2
1/3 · dn

4
¥

3
3m
20d

41/3·dn
·
3
3m
2d

41/6·dn
<

1m

3d

2dn/2

.

This means the information complexity of the input is decreased by a constant factor, which
means that the protocol needs to communicate �(dn) bits of information. J

Finally, one can conclude the main result Theorem 11 combining Lemma 17 and Lemma 18.
The formal proofs and definitions are deferred to the full version of this paper.
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Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V,E, c), a set T ™ V of its
vertices called terminals, and a semi-metric D over T , and the goal is to find an assignment f of each
non-terminal vertex to a terminal, minimizing the sum, over all edges (u, v) œ E, the product of the
edge weight c(u, v) and the distance D(f(u), f(v)) between the terminals that u, v are mapped to.
Current best approximation algorithms on 0-Extension are based on rounding a linear programming
relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by
O(log |T |/ log log |T |) and lower bounded by �((log |T |)2/3), has been shown to be closely related to
the quality of cut and flow vertex sparsifiers.

We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically,
we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following
from previous work, this new integrality gap turns out to be closely related to the quality achievable
by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We
show that the new integrality gap stays superconstant �(log log |T |) even if we allow a super-linear
O(|T | log1≠Á |T |) number of Steiner nodes.
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1 Introduction

In the 0-Extension problem (0-Ext), we are given an undirected edge-weighted graph G =
(V,E, c), a set T ™ V of its vertices called terminals, and a metric D on terminals, and
the goal is to find a mapping f : V æ T that maps each vertex to a terminal in T ,
such that each terminal is mapped to itself (i.e., f(t) = t for all t œ T ), and the sumq

(u,v)œE
c(u, v) ·D(f(u), f(v)) is minimized.

The 0-Ext problem was first introduced by Karzanov [22]. It is a generalization of the
multi-way cut problem (by setting D(t, tÕ) = 1 for all pairs t, tÕ œ T ) [15, 7, 17, 5, 2, 6, 4],
and a special case of the metric labeling problem [23, 10, 3, 20, 14]. C�linescu, Karlo� and
Rabani [8] gave the first approximation algorithm for 0-Ext, achieving a ratio of O(log |T |),
by rounding the solution of a semi-metric LP relaxation (LP-Metric), which is presented
below.
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(LP-Metric) minimize
q

(u,v)œE
c(u, v) · ”(u, v)

s.t. (V, ”) is a semi-metric space
”(t, tÕ) = D(t, tÕ), ’t, tÕ œ T

Fakcharoenphol, Harrelson, Rao and Talwar [16] later gave a modified rounding algorithm
on the same LP, improving the ratio to O(log |T |/ log log |T |), which is the current best-
known approximation. On the other hand, this LP was shown to have integrality gap
�(


log |T |) [8], and this was recently improved to �((log |T |)2/3) by Schwartz and Tur [31].

Another LP relaxation called earthmover distance relaxation (LP-EMD) was considered by
Chekuri, Khanna, Naor and Zosin [10] and utilized to obtain an O(log |T |)-approximation of
the metric labeling problem (and therefore also the 0-Ext problem). It has been shown [21] by
Karlo�, Khot, Mehta and Rabani that this LP relaxation has an integrality gap �(


log |T |).

Manokaran, Naor, Raghavendra and Schwartz [28] showed that the integrality gap of this
LP relaxation leads to a hardness of approximation result, assuming the Unique Game
Conjecture.

In addition to being an important problem on its own, the 0-Ext problem and its two LP
relaxations are also closely related to the construction of cut/flow vertex sparsifiers, a central
problem in the paradigm of graph compression. Given a graph G and a set T ™ V (G) of
terminals, a cut sparsifier of G with respect to T is a graph H with V (H) = T , such that
for every partition (T1, T2) of T , the size of the minimum cut separating T1 from T2 in G
and the size of the minimum cut separating T1 from T2 in H, are within some small factor q,
which is also called the quality of the sparsifier1. Moitra [29] first showed that every graph
with k terminals admits a cut sparsifier with quality bounded by the integrality gap of its
LP-Metric (hence O(log k/ log log k)). Later on, Leighton and Moitra [26], and Makarychev
and Makarychev [27] concurrently obtained the same results for flow sparsifiers, and then
Charikar, Leighton, Li and Moitra [9] showed that the best flow sparsifiers can be computed
by solving an LP similar to LP-EMD. On the lower bound side, it was shown after a line
of work [26, 9, 27] that there exist graphs with k terminals whose best flow sparsifier has
quality �̃(

Ô
log k).

A major open question on vertex sparsifiers is:

Q1. Can better quality sparsifiers be achieved by allowing a small number of Steiner vertices?

In other words, what if we no longer require that the sparsifier H only contain terminals,
but just require that H contain all terminals and its size be bounded by some function f on
the number of terminals (for example, f(k) = 2k, k2 or even 2k)? Chuzhoy [13] constructed
O(1)-quality cut/flow sparsifiers with size dependent on the number of terminal-incident
edges in G. Andoni, Gupta and Krauthgamer [1] showed the construction for (1 + Á)-quality
flow sparsifiers for quasi-bipartite graphs. For general graphs, they constructed a sketch of
size f(k, Á) that stores all feasible multicommodity flows up to a factor of (1 + Á), raising
the hope for a special type of (1 + Á)-quality flow sparsifier, called contraction-based flow
sparsifiers, of size f(k, Á) for general graphs, which was recently invalidated by Chen and
Tan [12], who showed that contraction-based flow sparsifiers whose size are bounded by any
function f(k) must have quality 1+�(1). But it is still possible for such flow sparsifiers with
constant quality and finite size to exist. Prior to this work, Krauthgamer and Mosenzon [24]
showed that there exist 6-terminal graphs G whose quality-1 flow sparsifiers must have an
arbitrarily large size.

1 flow sparsifiers has a slightly more technical definition, which can be found in [19, 26, 13, 1].
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Given the concrete connection between the 0-Ext problem and cut/flow sparsifiers, it is
natural to ask a similar question for 0-Ext:

Q2. Can better approximation of 0-Ext be achieved by allowing a small number of

Steiner vertices?

In this paper, we formulate and study the following variant of the 0-Ext problem, which
we call the 0-Extension with Steiner Nodes problem (0EwSN). (We note that a similar
variant was mentioned in [1], and we provide a comparison between them in more detail
in Appendix A.) We are also given a function f : Z æ Z with f(k) Ø k for all k œ Z, this
should be the total number of Steiner vertices.

0-Extension with Steiner Nodes

In an instance of 0EwSN(f), the input consists of an edge-weighted graph G = (V,E, c), a
subset T ™ V of k vertices, that we call terminals, and a metric D on terminals in T , which
is exactly the same as 0-Ext. A solution to the instance (G,T,D) consists of

a partition F of V with |F| Æ f(k), such that distinct terminals of T belong to di�erent
sets in F ; we call sets in F clusters, and for each vertex u œ V , we denote by F (u) the
cluster in F that contains it;

a semi-metric ” on the clusters in F , such that for each pair t, tÕ œ T , ”(F (t), F (tÕ)) =
D(t, tÕ).

We define the cost of a solution (F , ”) as cost(F , ”) =
q

(u,v)œE
c(u, v) · ”(F (u), F (v)), and

its size as |F|. The goal is to compute a solution (F , ”) with size at most f(k) and minimum
cost.

The di�erence between 0EwSN(f) and 0-Ext is that, instead of enforcing every vertex
to be mapped to a terminal, in 0EwSN(f) we allow vertices to be mapped to (f(k) ≠ k)
non-terminals (or Steiner nodes), which are the clusters in F that do not contain terminals.
We are also allowed to manipulate the distances between these non-terminals, conditioned on
not destroying the induced metric D on terminals. Clearly, when f(k) = k, the 0EwSN(f)
problem degenerates to the 0-Ext problem.

It is easy to see that (LP-Metric) is still an LP relaxation for 0EwSN(f), as each solution
(F , ”) to 0EwSN naturally corresponds to a semi-metric ”Õ on V (where we can set ”Õ(u, uÕ) =
”(F (u), F (uÕ)) for all pairs u, uÕ œ V ). Denote by IGf (k) the worst integrality gap for
(LP-Metric) to any 0EwSN(f) instance with at most k terminals. In fact, similar to the
connection between the integrality gap of (LP-Metric) and the quality achievable by flow
sparsifiers [29, 26], it was recently shown by Chen and Tan [12] that the value of IGf (k) is also
closely related to the quality achievable by flow sparsifiers with Steiner nodes. Specifically,
for any function f , every graph G with k terminals has a quality-

!
(1 + Á) · IGf (k)

"
flow

sparsifier with size bounded by (f(k))(log k/Á)
k2
. This means that any positive answer to

question Q2 (by proving that IGf (k) = o(log k/ log log k) for some f) also gives a positive
answer to question Q1.

This makes it tempting to study the 0EwSN problem. Specifically, can we prove any
better-than-O(log k/ log log k) upper bound for IGf (k), for any function f? To the best of
our knowledge, no such bound is known for any f , leaving the problem wide open. In fact,
no non-trivial lower bound on IGf (k) is known for even very small function like f(k) = O(k).
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1.1 Our Results
In this paper, we make a first step in investigating the value of IGf (k), by giving a supercon-
stant lower bound on IGf (k) for near-linear functions f . Our main result is summarized in
the following theorem.

I Theorem 1. For any 0 < Á < 1 and any size function f : Z+ æ Z+
with f(k) =

O(k log1≠Á k), the integrality gap of the LP-relaxation (LP-Metric) is IGf (k) = �(Á log log k).

We remark that our lower bound for the integrality gap of 0EwSN(f) does not imply a
size lower bound for O(log log k)-quality flow sparsifiers. However, if the same lower bound
can be proved for a slightly generalized version of 0EwSN(f), that was proposed in [1] and
analyzed in [12], then it will imply an �(k log1≠Á k) size lower bound for O(log log k)-quality
flow sparsifiers. We provide a detailed discussion in Appendix A.

1.2 Technical Overview
We now discuss some high-level ideas in the proof of Theorem 1. Given any k, we will
construct an unweighted graph G on n vertices (where n ¥ k log k) and k terminals, and
show that any solution of the 0EwSN problem with size O(k log1≠Á k) has cost lower bounded
by �(log log k) times the number of edges in G.

Our hard instance is a constant degree expander (with an arbitrary set of its k vertices
as terminals). There are two main reasons to choose such a graph. First, in previous
work [8] for proving the �(

Ô
log k) integrality gap lower bound for the 0-Extension problem,

a graph called “expander with tails” was used. Though the tails in their construction appear
useless for our purpose, as we allow a super-linear number of Steiner vertices which easily
accomodate a single-edge tail for each terminal, the expander graph turns out to still be
the core structure that is hard to compress. Second, it has been shown [3] that 0-Extension
problem on minor-free graphs has integrality gap O(1), so our hard example has to contain
large cliques as minor, which makes expanders, a favorable choice. For technical reasons, we
need some additional properties like Hamiltonicity and high girth. See Section 3.1 for more
details.

Next we want to lower bound the cost of an 0EwSN solution of size O(k log1≠Á k). We
first consider a special type of solutions where each cluster is mapped to a vertex on the
graph. Recall that a solution consists of a partition F of V (G) into clusters and a metric ”
on clusters in F . Specifically, in this special type of solutions, we require that each cluster
F œ F corresponds to a distinct vertex vF (called its center) in G, and for all pairs F, F Õ

the metric ”(F, F Õ) coincides with the shortest-path distance between vF , vF Õ in G. We show
that all special solutions have cost �(n · Á log log k). Intuitively, as the graph is a constant
degree expander, every center vF is within distance (Á/100) · log log k to at most (log k)Á/10

other centers, but its cluster F contains (log k)Á vertices on average and so it has �((log k)Á)
inter-cluster edges. As we measure the distance between clusters using their centers, only a
small fraction of the inter-cluster edges will cost less than (Á/100) · log log k, making the total
new edge length �(n · Á log log k) (as the number of inter-cluster edges in a balanced expander
partition is �(n)). Careful calculations are needed to turn these informal arguments into a
rigorous proof. See Section 3.2 for more details.

Afterwards, we show that general solutions can actually be reduced to the special type
of solutions considered in the first step, losing only an O(1) factor in its cost. In fact, it
has been recently shown [12] that, to analyze the cost of any 0EwSN instance, it su�ces
to consider 0EwSN solutions whose metric ” is embeddable into a geodesic structure of the
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terminal-induced shortest path distance metric called tight span. Our main contribution here,
on a conceptual level, is showing that for a graph with high girth, its tight span structure

locally coincides with the graph structure itself. In this sense, we can compare any solution to
some special solution considered in Step 1. On a global level, in such a comparison it turns
out that we will lose a factor which is approximately the diameter-girth ratio, which we can
manage to get to O(1) with an additional short-cycle-removing step in the construction of
the expander. We believe this diameter-girth ratio quantifies how “local” a graph structure is,
and should be of independent interest to other graph problems on shortest-path distances. To
carry out the technical steps, we employ a notion called continuiazation of a graph recently
studied in [11]. See Section 3.3 for more details.

2 Preliminaries

By default, all logarithms are to the base of 2.
Let G = (V,E, ¸) be an edge-weighted graph, where each edge e œ E has weight (or

length) ¸e. For a vertex v œ V , we denote by degG(v) the degree of v in G. For each pair
S, T ™ V of disjoint subsets, we denote by EG(S, T ) the set of edges in G with one endpoint
in S the other endpoint in T . For a pair v, vÕ of vertices in G, we denote by distG(v, vÕ) (or
dist¸(v, vÕ)) the shortest-path distance between v and vÕ in G. We define the diameter of G
as diam(G) = maxv,vÕœV {distG(v, vÕ)}, and we define the girth of G, denoted by girth(G), as
the minimum weight of any cycle in G. We may omit the subscript G in the above notations
when the graph is clear from the context.

Given a graph G, its conductance is defined as

�(G) = min
S™V,S ”=ÿ,S ”=V

I
|EG(S, V \ S)|

min
)q

vœS
degG(v),

q
v/œS

degG(v)
*

J
.

We say that G is a „-expander i� �(G) Ø „.

3 Proof of Theorem 1

In this section we prove the main result Theorem 1, which shows that, when we only have
O(k log1≠Á k) Steiner nodes, the best ratio we can get is �(Á log log k). We begin by describing
the hard instance in Section 3.1, which is essentially a high-girth expander with a subset of
vertices designated as terminals. Then in Section 3.2 we show that a special type of solutions
may not have small cost. Finally, in Section 3.3 we generalize the arguments in Section 3.2
to analyze an arbitrary solution, completing the proof of Theorem 1. Some technical details
in Section 3.3 are deferred to Section 3.4.

3.1 The Hard Instance
Let k be a su�ciently large integer. Let n > k be an integer such that k =

Ï
n log logn

logn

Ì
. Let

V be a set of n vertices. Let � be the set of all permutations on V . For a permutation ‡ œ �,
we define its corresponding edge set E‡ = {(v,‡(v)) | v œ V }.

We now define the hard instance (G,T,D). Graph G is constructed in two steps. In the
first step, we construct an auxiliary graph GÕ. Its vertex set is V . Its edge set is obtained as
follows. We sample three permutations ‡1,‡2,‡3 uniformly at random from �, and then let
E(GÕ) = E‡1 fi E‡2 fi E‡3 . In the second step, we remove all short cycles in GÕ to obtain G.
Specifically, we first compute a breath-first-search tree · starting from an arbitrary vertex
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47:6 Lower Bounds on 0-Extension with Steiner Nodes

of GÕ. We then iteratively modify GÕ as follows. While GÕ contains a cycle C of length at
most (logn)/100, we find an edge of C \ · (note that such an edge must exist, as · is a tree),
and remove it from GÕ. We continue until GÕ no longer contains cycles of length at most
(logn)/100. We denote by G the resulting graph. The terminal set T is an arbitrary subset
of V with size k. For each edge e œ E(G), its weight c(e) is defined to be 1, and its length ¸e
is also defined to be 1. The metric D on the set T of terminals is simply defined to be the
shortest-path distance (in G) metric on T induced by edge length {¸e}eœE(G)

.
We next show some basic properties of the graphs GÕ and G. We start with the following

observations and propositions.

I Observation 2. GÕ
is a 6-regular graph, so |E(G)| Æ |E(GÕ)| Æ 3n.

I Observation 3. girth(G) Ø (logn)/100.

I Proposition 4. The probability that |E(GÕ) \ E(G)| Ø n0.3
is at most O(n≠0.2).

Proof. Let v1, . . . , vL be a sequence of L Æ (logn)/100 distinct vertices of V . We now show
that the probability that the cycle (v1, . . . , vL, v1) exists in E(GÕ) is at most

!
6/(n ≠ L)

"L.
Indeed, to realize the cycle edge (vi, vi+1), for some ¸ œ {1, 2, 3}, ‡¸(vi) = vi+1 or ‡¸(vi+1 = vi,
where for convenience we say vL+1 = v1. There are 6 possible events. In order to form
the cycle, we need to form L edges, and each edge has 6 possible events, which means
there are at most 6L ways to form the cycle in total. Consider any possible way, we have
¸1 . . . , ¸L œ {1, 2, 3} and j1, . . . , jL œ {0, 1} such that for any index 1 Æ i Æ L, we have
‡¸i(vi+ji) = vi+1≠ji . Let Ei denote this event, we have Pr[Ei|E1, . . . , Ei≠1] Æ 1/(n ≠ i). Thus
the probability that all events Ei happen is at most 1/(n ≠ L)L. Applying union bound
on all the ways to form the cycle, the probability that the cycle exists in E(GÕ) is at most!
6/(n ≠ L)

"L.
Therefore, the expected number of cycles in GÕ with length at most (logn)/100 is at most

ÿ

3ÆLÆ(logn)/100

n(n ≠ 1) · · · (n ≠ L+ 1)
2L ·

!
n≠L

6

"L Æ
ÿ

3ÆLÆ(logn)/100

6L
2L ·

3
1 + L

n ≠ L

4L

Æ
ÿ

3ÆLÆ(logn)/100

6L Æ n0.1.

Therefore, from Markov Bound, with probability n≠0.2, the number of cycles in GÕ with length
at most (logn)/100 is at most n0.3. Note that we delete at most one edge per each cycle, so
|E(GÕ) \E(G)| is less than the number of cycles in GÕ with length at most (logn)/100, the
proposition follows. J

We use the following previous results on the conductance and the Hamiltonicity of GÕ.

I Lemma 5 ([30]). With probability 1 ≠ o(1), �(GÕ) = �(1).

I Corollary 6. With probability 1 ≠ o(1), the diameter of G is at most O(logn).

Proof. From the construction of G, G contains a BFS tree of GÕ, so the diameter of G is at
most twice the diameter of GÕ. Therefore, it su�ces to show that, if �(GÕ) Ø �(1), then the
diameter of graph GÕ is at most O(logn), which we do next.

Let v be an arbitrary vertex of GÕ. For each integer t, we define the set Bt =
{vÕ | dist(v, vÕ) Æ t}, and –t =

q
vÕ:distGÕ (v,vÕ)Æt

deg(vÕ), namely the sum of degrees of all
vertices in Bt.



Y. Chen and Z. Tan 47:7

Denote tú = max {t | –t Æ |E(GÕ)|}. Note that, for each 1 Æ t Æ tú, as �(GÕ) Ø �(1),
|E(Bt, V \Bt)| Ø �(–t). Therefore,

–t+1 Ø –t +
ÿ

vÕœBt+1\Bt

deg(v) Ø –t + |E(Bt, V \Bt)| Ø –t · (1 + �(1)).

It follows that tú Æ O(logn). Therefore, for any pair v, vÕ œ V , the set of vertices that are at
distance at most tú + 1 from v must intersect the set of vertices that are at distance at most
tú +1 from vÕ, as otherwise the sum of degrees in all vertices in these two sets is greater than
2|E(GÕ)|, a contradiction. Consequently, the diameter of GÕ is at most 2tú+2 Æ O(logn). J

I Lemma 7 ([18]). With probability 1≠o(1), the subgraph of GÕ
induced by edges of E‡1 fiE‡2

is Hamiltonian.

Now if we consider the semi-metric LP relaxation (LP-Metric) of this instance (G,T,D),
then clearly the graph itself gives a solution ” to (LP-Metric). Specifically, ”(u, uÕ) =
dist¸(u, uÕ), where dist¸(·, ·) the shortest-path (in G) distance metric on V induced by the
lengths {¸e}eœE(G). Such a solution has cost |E(G)| = O(n) (as all edges have weight
c(e) = 1). Therefore, in order to prove Theorem 1, it su�ces to show that any solution (F , ”)
with size O(k log1≠Á k) has cost at least �(Án log logn) = �(Án log log k).

Observe that, the graph G constructed above is essentially a bounded-degree high-girth
expander, which is similar to the hard instance used in [26] for proving the �(log log k)
quality lower bound for flow vertex sparsifier (without Steiner nodes). However, our proof in
the following subsections takes a completely di�erent approach from the approach in [26].

3.2 Proof of Theorem 1 for Canonical Solutions
In this subsection, we prove the cost lower bound for a special type of solutions to the
0EwSN(f) instance (G,T,D) which we call canonical. Specifically, a solution is canonical
(F , ”) if

each cluster F œ F corresponds to a distinct vertex of V , we call this vertex the center

of F , denote as v(F ) (note however that v(F ) does not necessarily lie in F ). For each
terminal t œ T , the unique cluster F œ F that contains t, v(F ) = t; and
for each pair F, F Õ of clusters in F , ”(F, F Õ) = distG(v(F ), v(F Õ)).

In this subsection, we show that, with high probability, any canonical solution of size
o(n/ logÁ n) has cost �(Án log logn).

Consider now a canonical solution (F , ”) to the instance. We say that F œ F is large

i� |F | Ø n0.1, otherwise we say it is small. We distinguish between the following cases,
depending on the total size of large clusters.

Recall that cost(F , ”) =
q

(u,uÕ)œE(G)
”(F (u), F (uÕ)), where F (u) (F (uÕ), resp.) is the

unique cluster in F that contains u (uÕ, resp.). We call ”(F (u), F (uÕ)) the contribution of
edge (u, uÕ) to the cost cost(F , ”).

Case 1: The total size of large clusters is at most 0.1n
As the solution (F , ”) is canonical,

”(F (u), F (uÕ)) = distG(v(F (u)), v(F (uÕ)) Ø distGÕ(v(F (u)), v(F (uÕ)),

as G is obtained from GÕ by only deleting edges. We say that a pair F, F Õ of clusters are
friends (denoted as F ≥ F Õ), i� distGÕ(v(F ), v(F Õ)) Æ Á log logn/30. We say that an edge
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(u, uÕ) is unfriendly, i� the pair of clusters that contain u and uÕ are not friends. Therefore, in
order to show cost(F , ”) = �(Án log logn), it su�ces to show that there are �(n) unfriendly
edges in GÕ. In particular, since graph G is obtained from GÕ by deleting at most n0.3 edges,
there are �(n) edges contributing at least Á log logn each to cost(F , ”). Note that, as G is a
6-regular graph, each cluster is a friend to at most 6Á log logn/30 < logÁ/10 n clusters in F .

The following lemma shows that there with high probability, const fraction of the edges
in GÕ are unfriendly edges whose lengths are �(Á log logn). This lemma completes the proof
in this case.

I Lemma 8. With probability 1≠o(1), the random graph GÕ
satisfies that, for any partition F

of V into |F| Æ O(n/ logÁ n) clusters such that
q

|F |Øn0.1 |F | Æ 0.1n, and for any friendship

relation on F in which each cluster F is a friend to at most log0.1Á n other clusters, GÕ

contains at least n/10 unfriendly edges, i.e.,
q

F ”≥F Õ |EGÕ(F, F Õ)| Ø n/10.

Proof. Recall that GÕ is obtained by sampling three random permutations ‡1,‡2,‡3 from
� and taking the union of their corresponding edge sets E‡1 , E‡2 , E‡3 . We alternatively
view GÕ as constructed in two steps. In the first step, we obtain a graph Ĝ by sampling two
random permutations ‡1,‡2 from � and letting Ĝ = (V,E‡1 fi E‡2). In the second step, we
sample a third permutation ‡3 from � and let GÕ = (V,E(Ĝ) fi E‡3). From Lemma 7, with
high probability, Ĝ contains a Hamiltonian cycle on V .

For convenience, we denote by (F ,≥) a pair of clustering F and the friendship relation on
clusters of F . We say that the pair (F ,≥) is valid, i� |F| Æ O(n/ logÁ n),

q
|F |Øn0.1 |F | Æ 0.1n,

and each cluster F is a friend to at most logÁ/10 n other clusters.

B Claim 9. For any Hamiltonian cycle C on V , there are at most nn/4 valid pairs (F ,≥)
satisfying that

q
F ”≥F Õ |EC(F, F Õ)| < n/10.

Proof. Denote by L = cún/ logÁ n the number of clusters of F , and let F = {F1, . . . , FL}.
First, the number of possible friendship relations on F such that each cluster of F is a

friend to at most log0.1Á n other clusters is at most
3

L

log0.1Á n

4L

Æ
3 c

ú
n

logÁ n

log0.1Á n

4 cún
logÁ n

Æ
3

cún

logÁ n

4 cún
logÁ n ·log0.1Á

n

< nc
ú
n log

≠0.05Á
n.

Assume now that we have a fixed friendship relation ≥ on the clusters in F . We now count
the number of clusterings F with

q
F ”≥F Õ |EC(F, F Õ)| < n/10. Denote C = (v1, v2, . . . , vn, v1).

First, the number of possible unfriendly edge set (which is a subset of E(C) of size at most
0.1n) is at most

n/10ÿ

i=0

3
n

i

4
Æ n ·

3
n

n/10

4
< n ·

3
en

n/10

4n/10

< nn log
≠0.5

n.

We now count the number of clusterings F that, together with the fixed friendship relation
≥, realizes a specific unfriendly edge set. We will sequentially pick, for each i from 1 to n, a
set among {F1, . . . , FL} to add the vertex vi to. The first vertex v1 has L choices. Consider
now some index 1 Æ i Æ n≠ 1 and assume that we have picked sets for v1, . . . , vi. If (vi, vi+1)
is an unfriendly edge, then vertex vi+1 has L choices; if (vi, vi+1) is not an unfriendly edge,
this means that vi+1 must go to some cluster that is a friend of the cluster we have picked
for vi (or vi+1 can go to the same cluster as vi), so vi+1 has at most log0.1Á n+ 1 choices. As
there are no more than 0.1n unfriendly edges, the number of possible clusterings F is at most

n · (log0.1Á n)n ·
3

n

logÁ n

40.1n

< nn/5.
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Altogether, the number of valid pairs (F ,≥) satisfying that
q

F ”≥F Õ |EC(F, F Õ)| Ø n/10 is at
most

nc
ú
n log

≠0.05Á
n · nn log

≠0.5
n · nn/5 < nn/4. C

B Claim 10. For every valid pair (F ,≥), the probability that the edge set E‡3 of a random
permutation ‡3 contains at most n/10 unfriendly edges is at most n≠n/3.

Proof. We say that a cluster F œ F is bad if it does not have a friend cluster of size at least
n0.4, otherwise we say it is good. We first prove the following observation that most vertices
lie in a bad cluster.

I Observation 11.
q

F :bad |F | Ø 0.8n.

Proof. As the pair (F ,≥) is valid,
q

|F |Øn0.1 |F | Æ 0.1n, so F contains at most 0.1 · n0.6

clusters with size at least n0.4. As each cluster is a friend to at most log0.1Á n other clusters,
F contains at most

!
0.1 · n0.6 · log0.1Á n

"
good sets. Therefore, the total size of all good

clusters is at most 0.1n+ n0.1 · 0.1 · n0.6 · log0.1Á n < 0.2n. The observation now follows. J

We alternatively construct the random permutation ‡3 as follows. We arrange the vertices
in V into a sequence (v1, . . . , vn), such that each of the first half v1, . . . , vn/2 lies in some bad
set. Now sequentially for each 1, 2, . . . , n, we sample a vertex ui (without replacement) from
V and designate it as ‡3(vi). It is easy to observe that the permutation ‡3 constructed in
this way is a random permutation from �.

The following observation completes the proof of Claim 10.

I Observation 12. The probability that the number of unfriendly edges in

{(vi,‡3(vi)) | 1 Æ i Æ 9n/10} is less than 0.1n is at most n≠n/3
.

Proof. For any v in a bad cluster, the number of vertices in its friend clusters is at most
n0.4 log0.1 n. For each 1 Æ i Æ 9n/10, when we pick ‡3(vi), we have at least n/10 choices
from the remaining element in V , and as vi is in a bad set, at most n0.4 log0.1 n of them
will not create an unfriendly edge. Therefore, the probability that the edge we sample is
not a bad edge is at most 1Ô

n
. Let Xi be the indicator random variable such that Xi = 1 if

(vi,‡3(vi)) is not a bad edge. By Azuma’s Inequality (Cherno� Bounds on martingales, see
e.g., [25]),

Pr

S

U
2n/3ÿ

i=1

Xi > 4n/5

T

V <

3
5

4
Ô
n

44n/5

< n≠n/3.

Thus, with probability at least 1 ≠ n≠n/3, the set {(vi,‡3(vi))|1 Æ i Æ 9n/10} contains at
least 9n/10 ≠ 4n/5 = n/10 bad edges. J

C

Combining Claim 9 and Claim 10, we get that, over the randomness in the construction
of GÕ, the probability that there exists a pair (F ,≥) in which each cluster F is a friend to
at most log0.1Á n other clusters, such that GÕ contains less than n/10 unfriendly edges, is at
most n≠n/3 · nn/4 = n≠n/12. This completes the proof of Lemma 8. J
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Case 2: The total size of large clusters is greater than 0.1n
We denote by V Õ the union of all large clusters in F . We start by proving the following claim.

B Claim 13. There exists a collection of k/4 edge-disjoint paths in G, such that each path
connects a distinct terminal to a distinct vertex of V Õ.

Proof. We construct a graph Ĝ as follows. We start from graph GÕ, and add two vertices s, t
to it. We then connect s to each terminal in T by an edge, and connect each vertex in V Õ

to t by an edge. All edges in Ĝ has unit capacity. We claim that there exists a collection
P of k/3 edge-disjoint paths in Ĝ, such that each path connects a distinct terminal to a
distinct vertex of V Õ. Note that this implies Claim 13. This is because the number of edges
in E(GÕ) \E(G) is at most n0.3 < k/12, and each such edge is contained in at most one path
in P (since the paths in P are edge-disjoint), so at least k/3 ≠ k/12 Ø k/4 paths in P are
entirely contained in G. We now prove the claim. From the max-flow min-cut theorem, it
su�ces to show that the minimum s-t cut in Ĝ contains at least k/3 edges.

Consider any s-t cut (S fi {s} , (V \ S) fi {t}) in Ĝ and denote by EÕ the set of edges in
this cut. We distinguish between the following cases.
Case 1: |S| Æ |V |/2. Recall that G is a 6-regular graph, so

q
vœS

deg(v) Æ
q

v/œS
deg(v).

Then from Lemma 5, |EÕ| Ø
q

vœS
deg(v)/2 Ø |S| /2. If |S| Ø 2k/3, then |EÕ| Ø k/3. If

|S| < 2k/3, then at least k/3 terminals lie in V \ S. As there is an edge connecting s to
each terminal, |EÕ| Ø k/3.

Case 2: |S| > |V |/2. Via similar arguments, we can show that |EÕ| Ø |V Õ|/3 Ø 0.1n/3 >
k/3. C

We denote by P the collection of paths given by Claim 13. We now use these paths to
complete the proof. Consider such a path P = (u1, . . . , ur). Denote by Fi the cluster that
contains ui, then the contribution of P to the cost cost(F , ”) is

ÿ

(ui,ui+1)œE(P )

”(Fi, Fi+1) =
ÿ

1ÆiÆr≠1

distG(v(Fi), v(Fi+1)) Ø distG(v(F1), v(Fr))

Ø distGÕ(v(F1), v(Fr)).

(We have used the property that for every pair v, vÕ œ V , distG(v, vÕ) Ø distGÕ(v, vÕ), as G is
obtained from GÕ by only deleting edges.)

Recall P connects a terminal to a vertex in V Õ. Recall that each large cluster has
size at least n0.1, so there are at most n0.9 of them. Therefore, if we denote by V ÕÕ the
subset of vertices that large clusters corresponds to, then |V ÕÕ| Æ n0.9. For each path
P œ P, we denote by tP the terminal endpoint of P (that is, u1 = v(F1) = tP ), and
by vÕÕ

P
the vertex that the cluster containing ur corresponds to (that is, vÕÕ

P
= v(Fr)),

then
q

(ui,ui+1)œE(P )
”(Fi, Fi+1) Ø dist¸(tP , vÕÕ

P
). As the paths in P are edge-disjoint, their

contribution to cost(F , ”) can be added up, i.e.,

cost(F , ”) Ø
ÿ

PœP
dist¸(tP , vÕÕ

P
). (1)

On the one hand, as graph GÕ is 6-regular, for each vÕÕ œ V ÕÕ, the number of vertices
at distance at most logn/100 to vÕÕ is at most 6logn/100 Æ n1/30. Therefore, there are at
most n1/30 · n0.9 = n14/15 terms on the RHS of Equation (1) that at most Æ logn/100. On
the other hand, there are at least k/4 = �(n log logn

logn
) terms on the RHS of Equation (1), so

at least k/4 ≠ n14/15 Ø k/5 terms has value at least logn/100. Consequently, cost(F , ”) Ø
(k/5) · (logn/100) = �(k logn) = �(n log logn).
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3.3 Completing the Proof of Theorem 1
We have shown in Section 3.2 all canonical solutions with size O(k log1≠Á n) have cost
�(Án log logn). In this subsection, we complete the proof of Theorem 1 by showing that,
intuitively, an arbitrary solution (F , ”) to the instance (G,T,D) can be “embedded” into a
canonical solution, without increasing its cost by too much.

We start by introducing the notion of continuization.

Continuization of a graph

Let G = (V,E, ¸) be an edge-weighted graph. Its continuization is a metric space (V con, ¸con),
that is defined as follows. Each edge (u, v) œ E is viewed as a continuous line segment
con(u, v) of length ¸(u,v) connecting u, v, and the point set V con is the union of the points
on all lines {con(u, v)}

(u,v)œE
. Specifically, for each edge (u, v) œ E, the line con(u, v) is

defined as

con(u, v) =
)
(u,–) | 0 Æ – Æ ¸(u,v)

*
=

)
(v,—) | 0 Æ — Æ ¸(u,v)

*
,

where (u,–) refers to the unique point on the line that is at distance – from u, and (v,—)
refers to the unique point on the line that is at distance — from v, so (u,–) = (v, ¸(u,v) ≠ –).

The metric ¸con on V con is naturally induced by the shortest-path distance metric dist¸(·, ·)
on V as follows. For a pair p, pÕ of points in V con,

if p, pÕ lie on the same line (u, v), say p = (u,–) and pÕ = (u,–Õ), then ¸con(p, pÕ) = |–≠–Õ|;
if p lies on the line (u, v) with p = (u,–) and pÕ lies on the line (uÕ, vÕ) with pÕ = (uÕ,–Õ),
then

¸
con(p, pÕ) = min{dist¸(u, uÕ) + – + –

Õ
, dist¸(u, vÕ) + – + (¸(uÕ,vÕ) ≠ –

Õ),
dist¸(v, uÕ) + (¸(u,v) ≠ –) + –

Õ
, dist¸(v, vÕ) + (¸(u,v) ≠ –) + (¸(uÕ,vÕ) ≠ –

Õ)}.

Clearly, every vertex u œ V also belongs to V con, and for every pair u, uÕ œ V , dist¸(u, uÕ) =
¸con(u, uÕ). For a path P in G connecting u to uÕ, it naturally corresponds to a set P con of
points in V con, which is the union of all lines corresponding to edges in E(P ). The set P con

naturally inherits the metric ¸con restricted on P con. We will also call P con a path in the
continuization (V con, ¸con).

We show that, for each graph G with a set T of terminals, then any other metric w
on a set of points containing T , such that w restricted on T is identical to distG restricted
on T , can be “embedded” into the continuation of G, with expected stretch bounded by
some structural measure that only depends on G. Specifically, we prove the following main
technical lemma.

I Lemma 14. Let (G,T, ¸) be any instance of 0EwSN such that G is not a tree (so girth(G) <
+Œ), and let (F , ”) be any solution to it. Let (V con, ¸con) be the continuization of graph G.

Then there exists a random mapping „ : F æ V con
, such that

for each terminal t œ T , if F is the (unique) cluster in F that contains t, then „(F ) = t;
and

for every pair F, F Õ œ F ,

E [¸con(„(F ),„(F Õ))] Æ O

3diam(G)
girth(G)

4
· ”(F, F Õ).

Before we prove Lemma 14 in Section 3.4, we provide the proof of Theorem 1 using it.
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Proof of Theorem 1. Consider any solution (F , ”) to the instance (G,T, ¸) constructed in
Section 3.1 with size |F| Æ o(k · log1≠Á k). From Observation 3 and Corollary 6, diam(G)

girth(G)
Æ

O(logn)

(logn)/100
= O(1). From Lemma 14, there exists a random mapping „ : F æ V con, such that

for every pair F, F Õ œ F , E [¸con(„(F ),„(F Õ))] Æ O(1) · ”(F, F Õ).
Fix such a mapping „, we define a canonical solution (F , ”̂) based on (F , ”) as follows.

The collection of clusters is identical to the collection F . For each F œ F , recall that „(F ) is
a point in V con. Assume the point „(F ) lies on the line (u, v) and is closer to u than to v (i.e.,
¸con(„(F ), u) Æ ¸con(„(F ), v)), then we let u be the vertex in V that it corresponds to. For
each pair F, F Õ œ F , with F corresponding to uF and and F Õ corresponding to uF Õ , we define
”̂(F, F Õ) = dist¸(uF , uF Õ). As graph G in the instance (G,T, ”) constructed in Section 3.1 is
an unweighted graph, it is easy to see that

”̂(F, F Õ) = dist¸(uF , uF Õ) Æ ¸con(„(F ),„(F Õ)) + 2.

As the mapping „ is random, ”̂ is also random, and so E
Ë
”̂(F, F Õ)

È
Æ O(1) · ”(F, F Õ) + 2.

From the properties of mapping „ in Lemma 14, we are guaranteed that such a solution
(F , ”̂) is a canonical solution. Moreover, from linearity of expectation,

E
Ë
cost(F , ”̂)

È
= E

S

U
ÿ

(u,v)œE

”̂(F (u), F (v))

T

V =
ÿ

(u,v)œE

O

3
”(F (u), F (v))

4
+ 2

= O

3
cost(F , ”)

4
+O(n).

Therefore, it follows that there exists a canonical solution (F , ”̂), such that cost(F , ”̂) Æ
O(cost(F , ”) + n). As we have shown in Section 3.2 that any canonical solution (F , ”̂) with
|F| Æ o(k log1≠Á k) satisfies that cost(F , ”̂) = �(Án log logn), it follows that cost(F , ”) =
�(Án log logn). This implies that the integrality gap of (LP-Metric) is at least �(Á log logn).

J

3.4 Proof of Lemma 14
In this subsection, we provide the proof of Lemma 14. We first consider the special case
where G is a tree, and then prove Lemma 14 for the general case.

I Lemma 15. Let (G,T, ¸) be an instance of 0EwSN where G is a tree. Let (F , ”) be an

solution to it. Let (V con, ¸con) be the continuization of G. Then there exists a mapping

„ : F æ V con
, such that

for each terminal t œ T , if F is the (unique) cluster in F that contains t, then „(F ) = t;
and

for every pair F, F Õ œ F , ¸con(„(F ),„(F Õ)) Æ ”(F, F Õ).

Proof. For each terminal t œ T , we denote by Ft the cluster in F that contains it, and set
„(Ft) = t. For each cluster F œ F that does not contain any terminals, we define

‹(F ) = min
;
1
2 ·

!
”(F, Ft) + ”(F, FtÕ) ≠ ”(Ft, FtÕ)

"
| t, tÕ œ T

<
.

Denote by t1, t2 the pair of terminals (t, tÕ) that minimizes (”(F, Ft)+”(F, FtÕ)≠”(Ft, FtÕ))/2.
As G is a tree, there is a unique shortest path connecting t1 to t2 in G, and therefore
there exists a unique point p in V con (that lies on the t1-t2 shortest path in V con) with
¸con(p, t1) = ”(F, Ft1) ≠ ‹(F ) and ¸con(p, t2) = ”(F, Ft2) ≠ ‹(F ). We set „(F ) = p.
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B Claim 16. For every cluster F œ F and every terminal t œ T , ¸con(„(F ), t) Æ ”(F, Ft) ≠
‹(F ).

Proof. Note that the point „(F ) lies on the (unique) shortest path between a pair t1, t2
of terminals. For t œ {t1, t2}, clearly the claim holds. Consider any other terminal t.
Clearly „(F ) lies on either the path connecting t to t1 or the path connecting t to t2.
Assume without lose of generality that „(F ) is on the path connecting t1 and t. Since
G is a tree, ¸con(„(F ), t1) + ¸con(„(F ), t) = ¸con(t1, t) = dist¸(t1, t). On the other hand,
by definition of ‹(F ) and „(F ), ”(F, Ft1) + ”(F, Ft) Ø ”(Ft1 , Ft) + 2 · ‹(F ) holds, and
¸con(„(F ), t1) = ”(F, Ft1) ≠ ‹(F ). Therefore, ”(F, Ft) Ø ¸con(„(F ), t) + ‹(F ). C

We now show that, for every pair F, F Õ œ F , ¸con(„(F ),„(F Õ)) Æ ”(F, F Õ). Denote by t1, t2
the pair of terminals whose shortest path contains „(F ), and by tÕ

1
, tÕ

2
the pair of terminals

whose shortest path contains „(F Õ). Assume without lose of generality that „(F ) is on the
tree path between „(F Õ) and t1, so ¸con(„(F Õ),„(F )) + ¸con(„(F ), t1) = ¸con(„(F Õ), t1). On
the other hand, from the definition of „(F ) and Claim 16, ¸con(„(F ), t1) = ”(F, Ft1) ≠ ‹(F )
and ¸con(„(F Õ), t1) Æ ”(F Õ, Ft1) ≠ ‹(F Õ). Therefore,

¸con(„(F ),„(F Õ)) Æ ”(F Õ, Ft1) ≠ ”(F, Ft1) ≠ ‹(F Õ) + ‹(F ) Æ ”(F, F Õ) + ‹(F ) ≠ ‹(F Õ).

Similarly, ¸con(„(F ),„(F Õ)) Æ ”(F, F Õ) + ‹(F Õ) ≠ ‹(F ). Altogether, ¸con(„(F ),„(F Õ)) Æ
”(F, F Õ). J

In the remainder of this subsection, we complete the proof of Lemma 14. Denote
g = girth(G). Let r be a real number chosen uniformly at random from the interval
[g/60, g/30], so r Æ g/30 always holds. For each terminal t œ T , we denote by Ft the cluster
in F that contains it, and set „(Ft) = t, so the first condition in Lemma 14 is satisfied.

For each cluster F œ F , we define AF = min {”(F, Ft) | t œ T}. We first determine the
image „(F ) for all clusters F with AF Æ r, in a similar way as Lemma 15 as follows.

Define

‹(F ) = min
;
1
2 ·

3
”(F, Ft) + ”(F, FtÕ) ≠ ”(Ft, FtÕ)

2

4
| t, tÕ œ T

<
.

Denote by t1, t2 the pair (t, tÕ) that minimizes the above formula. We prove the following
claim.

B Claim 17. ”(F, Ft1) + ”(F, Ft2) Æ 4 ·AF Æ 4r.

Proof. Let t be the terminal such that ”(F, Ft) = AF . By definition of ‹(F ),

‹(F ) Æ
”(F, Ft) + ”(F, Ft) ≠ 1

2
· ”(Ft, Ft)

2 = AF .

On the other hand, from triangle inequality,

‹(F ) =
”(F, Ft1) + ”(F, Ft2) ≠ 1

2
· ”(Ft1 , Ft2)

2 Ø ”(F, Ft1) + ”(F, Ft2)
4 .

Altogether, ”(F, Ft1) + ”(F, Ft2) Æ 4 ·AF . C

From Claim 17, ”(Ft1 , Ft2) Æ ”(F, Ft1) + ”(F, Ft2) Æ 4r < g/3. Therefore, there is a
unique shortest path connecting t1 to t2 in G, as otherwise G must contain a cycle of length
at most 2g/3, contradicting the fact that girth(G) = g.
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We then set „(F ) to be the point in V con that lies in the t1-t2 shortest path, such that
¸con(„(F ), t1) = 2 · (”(F, Ft1) ≠ ‹(F )) and ¸con(„(F ), t2) = 2 · (”(F, Ft2) ≠ ‹(F )). Note that,
by definition of t1, t2,

¸con(„(F ), t1) + ¸con(„(F ), t2) = 2 · ”(F, Ft1) + 2 · ”(F, Ft2) ≠ 4 · ‹(F ) = ”(Ft1 , Ft2).

We prove the following claim, that is similar to Claim 16.

B Claim 18. For every terminal t with ”(F, Ft) Æ 6r, ¸con(„(F ), t) Æ 2 · (”(F, Ft) ≠ ‹(F )).

Proof. From Claim 17,

”(Ft, Ft1) + ”(Ft, Ft2) + ”(Ft1 , Ft2) Æ
3
2 · ”(F, Ft) + ”(F, Ft1) + ”(F, Ft2)

4
+ ”(Ft1 , Ft2)

Æ 12r + 4r + 4r + 4r < g.

Therefore, the point „(F ) must lie on either the t-t1 shortest path or the t-t2 shortest path
in V con, as otherwise the union of t-t1 shortest path, t-t2 shortest path, and t1-t2 shortest
path contains a cycle of length less than g, a contradiction.

Assume without loss of generality that „(F ) lies on the t-t1 shortest path, so

¸con(„(F ), t) = ”(Ft, Ft1) ≠ ¸con(„(F ), t1) = ”(Ft, Ft1) ≠ 2(”(F, Ft1) ≠ ‹(F )).

By definition of ‹(F ), ”(Ft, Ft1) Æ 2 · (”(F, Ft) + ”(F, Ft1) ≠ 2 · ‹(F )). Therefore,

¸con(„(F ), t) Æ 2
3

”(F, t) + ”(F, Ft1)≠ 2‹(F )≠
!
‹(F, Ft1)≠ ‹(F )

"4
= 2(”(F, Ft)≠ ‹(F )).

C

We now show in the next claim that the second condition in Lemma 14 holds for pairs of
clusters that are close in ”.

B Claim 19. For every pair F, F Õ œ F with AF , AF Õ , ”(F, F Õ) Æ r, ¸con(„(F ),„(F Õ)) Æ
2 · ”(F, F Õ).

Proof. Since ”(F, F Õ) < r, from triangle inequality and Claim 17,

”(F Õ, Ft1) Æ ”(F Õ, F ) + ”(F, Ft1) Æ r + 4r Æ 5r.

Similarly, ”(F Õ, Ft2) Æ 5r. Then from Claim 18,

¸con(„(F Õ), t1) Æ 2 · (”(F Õ, Ft1) ≠ ‹(F Õ)) Æ 2 · ”(F Õ, Ft1) Æ 10r,

and symmetrically, ¸con(„(F Õ), t2) < 10r. Therefore,

¸con(„(F Õ), t1) + ¸con(„(F Õ), t2) + ¸con(t1, t2) < 20r + 4r < g.

Therefore, the point „(F ) must lie either on the „(F Õ)-t1 shortest path or the „(F Õ)-t2
shortest path in V con, as otherwise the union of „(F Õ)-t1 shortest path, „(F Õ)-t2 shortest
path, and t1-t2 shortest path in V con contains a cycle of length less than g, a contradiction.

Assume without loss of generality that „(F ) lies on the „(F Õ)-t1 shortest path. Then

¸con(„(F ),„(F Õ)) = ¸con(„(F Õ), t1(F )) ≠ ¸con(„(F ), t1(F ))

Æ 2
3

”(F Õ, t1(F )) ≠ ‹(F Õ)
4

≠ 2
3

”(F, t1(F )) ≠ ‹(F )
4

Æ 2
3

”(F, F Õ) + ‹(F ) ≠ ‹(F Õ)
4
.

Similarly, ¸con(„(F ),„(F Õ)) Æ 2
!
”(F, F Õ) + ‹(F Õ) ≠ ‹(F )

"
. Altogether, ¸con(„(F ),„(F Õ)) Æ

2”(F, F Õ). C
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We now complete the construction of the mapping „, by specifying the images of all
clusters F œ F with AF > r. Let tú be an arbitrarily chosen terminal in T . For all clusters
F œ F with AF > r, we simply set „(F ) = tú.

It remains to show that the second condition in Lemma 14 holds for all pairs F, F Õ œ F .
Consider a pair F, F Õ. Assume first that ”(F, F Õ) > g/60. Then

¸con(„(F ),„(F Õ)) Æ diam(G) Æ 60 · diam(G)
girth(G) · ”(F, F Õ).

Assume now that ”(F, F Õ) Æ g/60, and without loss of generality that AF Æ AF Õ . Note
that, from triangle inequality, for every terminal t œ T , ”(F Õ, Ft) Æ ”(F, Ft) ≠ ”(F, F Õ). This
implies that AF Õ ≠ AF Æ ”(F, F Õ). Therefore, the probability that the random number
r takes value from the interval [AF , AF Õ ] is at most ”(F,F

Õ
)

g/60
. Note that, if r Æ AF , then

„(F ) = „(F Õ) = tú and ¸con(„(F ),„(F Õ)) = 0. And if r Ø AF Õ , then from Claim 19,
¸con(„(F ),„(F Õ)) Æ 2”(F, F Õ). Altogether,

E [¸con(„(F ),„(F Õ))] Æ 60 · diam(G)
girth(G) · ”(F, F Õ) + 2”(F, F Õ) Æ O

3diam(G)
girth(G)

4
· ”(F, F Õ).
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A Comparison between 0EwSN and the variant in [1]

The Steiner node variant of 0-Ext in [1]

In [1], the following problem (referred to as 0EwSNAGK) was proposed.
The input consists of
an edge-capacitated graph G = (V,E, c), with length {¸e}eœE

on its edges;
a set T ™ V of k terminals; and
a demand D : T ◊ T æ R+ on terminals.

A solution consists of
a partition F of V with |F|, such that distinct terminals of T belong to di�erent sets in
F ; for each vertex u œ V , we denote by F (u) the cluster in F that contains it;
a semi-metric ” on the clusters in F , such that:q

t,tÕ D(t, tÕ) · ”(F (t), F (tÕ)) Ø
q

t,tÕ D(t, tÕ) · dist¸(t, tÕ),
where dist¸(·, ·) is the shortest-path distance (in G) metric induced by edge length
{¸e}eœE(G)

.
The cost of a solution (F , ”) is cost(F , ”) =

q
(u,v)œE

c(u, v) · ”(F (u), F (v)), and its size

is |F|.
From (LP1) and Proposition 4.2 in [1], it is proved that:

I Proposition 20. Given a graph G and a subset T of its terminals, and a function f , if for
every length {¸e}eœE(G)

and every demand D, the instance (G,T, ¸,D) of 0EwSNAGK has a

solution (F , ”) with size |F| Æ f(k) and cost

ÿ

(u,v)œE

c(u, v) · ”(F (u), F (v)) Æ q ·
ÿ

(u,v)œE

c(u, v) · dist¸(u, v),

then there is a quality-(1+ Á)q flow sparsifier H for G w.r.t T with |V (H)| Æ (f(k))(log k/Á)
k2
.

The 0EwSN problem

In studying the integrality gap of (LP-Metric), we are essentially considering the following
problem.

The input consists of
an edge-capacitated graph G = (V,E, c), with length {¸e}eœE

on its edges; and
a set T ™ V of k terminals.

A solution consists of
a partition F of V with |F|, such that distinct terminals of T belong to di�erent sets in
F ; for each vertex u œ V , we denote by F (u) the cluster in F that contains it;
a semi-metric ” on the clusters in F , such that
for all pairs t, tÕ œ T , ”(F (t), F (tÕ)) = dist¸(t, tÕ), where dist¸(·, ·) is the shortest-path
distance (in G) metric induced by edge length {¸e}eœE(G)

.
The cost and the size of a solution is defined in the same way as 0EwSNAGK.

The di�erence between two problems are underlined. Specifically, in 0EwSNAGK it is only
required that some “average terminal distance” does not decrease, while in our problem it is
required that all pairwise distances between terminals are preserved. Clearly, our requirement
for a solution is stronger, which implies that any valid solution to our instance is also a
valid solution to the same 0EwSNAGK instance (with arbitrary D). Therefore, we have the
following corollary.
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I Corollary 21. Given a graph G and a subset T of its terminals, and a function f , if
for every length {¸e}eœE(G)

, the instance (G,T, ¸) of 0EwSN has a solution (F , ”) with size

|F| Æ f(k) and cost

ÿ

(u,v)œE

c(u, v) · ”(F (u), F (v)) Æ q ·
ÿ

(u,v)œE

c(u, v) · dist¸(u, v),

then there is a quality-(1+ Á)q flow sparsifier H for G w.r.t T with |V (H)| Æ (f(k))(log k/Á)
k2
.

On the other hand, the main result of our paper is a lower bound for the 0EwSN problem.
As 0EwSN has stronger requirement (for solutions) than 0EwSNAGK, our lower bound does
not immediately imply a lower bound for 0EwSNAGK or for the flow sparsifier. However, if
we can show that, for some function f , there exists a graph G, a terminal set T with size k,
and a demand D on T , such that any solution (F , ”) with size |F| Æ f(k) has cost at least

ÿ

(u,v)œE

c(u, v) · ”(F (u), F (v)) Ø q ·
ÿ

(u,v)œE

c(u, v) · dist¸(u, v),

then this, from the (LP1) and the discussion in [1], implies that any quality-o(q) contraction-
based flow sparsifier for G has size at least f(k).
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anonymous Hedonic Game with interval approval preferences admits a wonderful partition.

We resolve the open problem in the a�rmative by presenting an O(n5) time algorithm for
Woeginger’s Hiking Problem. Our solution is based on employing a dynamic programming approach
for a specific rectangle stabbing problem from computational geometry. Moreover, we propose
natural, more demanding extensions of the problem, e.g., maximizing the number of satisfied
participants and variants with single-peaked preferences, and show that they are also e�ciently
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48:2 Solving Woeginger’s Hiking Problem

1 Introduction

Suppose there are n attendees of a workshop, who aim to go for a joint hike during a break.
Keeping the whole group together is logistically challenging, so typically the attendees split
into smaller subgroups that will do the hike together. It is natural that di�erent attendees
might have di�erent preferences for the sizes of the subgroups they will eventually join. In
particular, each attendee i reports an interval [¸i, ri] signifying that they will be content if
they are in a group of size s œ [¸i, ri]. The organizers of the hike now face the following
problem: Is there a polynomial time algorithm that determines whether there is a partition of
the attendees into subgroups such that they are all content with the sizes of their subgroups?

In 2013, Gerhard Woeginger famously phrased this problem underlying an anonymous
hedonic game to explain an open question stemming from his work [29]. It is one of the very
nice problems that he used to share at various occurrences, e.g., at the co�ee machine, while
waiting in a seminar room, or even during a joint walk.2 As this is one of the problems he
explained to many people, it became known as Woeginger’s Hiking Problem.

In this work we answer Woeginger’s question in the a�rmative by exploiting a tight
connection to a variant of the rectangle stabbing problem from computational geometry that
can be solved in polynomial time via elegant dynamic programming.

Using Woeginger’s motivation of the problem, many natural extensions arise that we
introduce in this paper. If the sought partition does not exist, then what is the maximum
number of attendees that can be satisfied with their group sizes, or what is the minimum
number of attendees to exclude such that the remaining ones can be partitioned to all
become satisfied? Moreover, we also consider a version where the hikers have single-peaked
preferences over the group sizes and a partition is sought that minimizes the utilitarian or
egalitarian cost, where cost is defined as a function of the assigned and the ideal group size.
We show that these more demanding problems can also be solved e�ciently. Finally, we
discuss the relationship between the hiking problem and the problem of maximizing the
egalitarian welfare in (general) anonymous Hedonic Games.

1.1 Related Work
Hedonic Games (HGs), introduced by Dreze and Greenberg in [19], model multi-agent systems
where selfish agents have to be partitioned into coalitions and have preferences over the
possible outcomes. Such games are called hedonic as agents’ preferences only depend on the
coalition they belong to but not on how the other agents are grouped. HGs have been widely
studied (see [7] for a survey) and numerous prominent subclasses have been identified based
on properties of the agents’ preferences or other possible constraints: [8, 14, 1, 26, 21, 2].
Simple examples of such classes are anonymous HGs [9], where the preferences of the agents
depend only on the size of their coalition and not on the individual participants, or HGs with
approval-based (Boolean) preferences [6], where agents have binary values for the coalitions.
Woeginger’s Hiking Problem resides in the intersection of these classes.

The HGs literature has typically focused on the existence and computation of stable or
optimal solutions, see, e.g., [14]. The most desirable, ideal partition is the one where every
agent is assigned to one of her best coalitions – called perfect (or wonderful) partition [3].

2 Gerhard’s ability to explain open research questions in an easily accessible way has been extraordinarily
motivating. In particular, this work would not have started without Gerhard meeting one of the authors
for lunch and explaining the problem exactly in this way. With this work we contribute to the recent
line of publications celebrating the life and work of Gerhard Woeginger, see [25].
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Unfortunately, such a solution rarely exists and the related decision or computational problem
is usually hard [3, 27]. Even in simple cases such as anonymous approval-based HGs, it
is NP-complete to determine the existence of a wonderful partition [18, 29]. Such a result
holds true even if the number of approved coalition sizes of each agent is at most 2 [18]. The
problem of finding a wonderful partition in Hedonic Games is related to the one of maximizing
the utilitarian welfare, i.e. the sum of agents’ utilities, for Boolean utilities. An overall picture
of the complexity of finding wonderful partitions in Boolean Hedonic Games, including
anonymous ones, is given in [27]. For general utility functions, the problem of maximizing
the utilitarian or egalitarian social welfare has been studied in various settings, e.g., in
fractional [5] and additively separable Hedonic Games [4]. To the best of our knowledge,
these objectives have not been considered in the context of anonymous Hedonic Games.

In our paper, we show the tractability of computing a wonderful partition for instances
with interval approvals as formulated by Woeginger [29]. To this aim, we provide a dynamic
program that relies on the approach used in [22] to solve a capacitated rectangle stabbing
problem from computational geometry. Here, the goal is to stab a set of rectangles with a
minimum subset of a given set of lines, each intersecting (i.e., potentially stabbing) some of
the rectangles. Each line has a maximum number of rectangles it can stab, and to stab all
rectangles, one is allowed to use multiple copies of each line.

We also consider variants with single-peaked cost functions of the agents. Single-peaked
preferences date back to Black [12]. Such preferences are a common theme in the Economics
and Game Theory literature. In particular, they play a prominent role in di�erent fields
such as Hedonic Diversity Games [16, 13], Schelling Games [11, 23], and in various works on
voting and social choice [28, 30, 10, 20, 15].

1.2 Model

The hiking problem as formulated by Gerhard Woeginger is a special case of anonymous
Hedonic Games with approval-based preferences. In an anonymous Hedonic Game with
approval-based preferences we are given a set N of n agents to be partitioned into coalitions.
Each agent i œ N reports an approval set Si ™ [n] representing the approved group sizes
for agent i. In particular, agent i wants to be in some group of size s such that s œ Si. An
approval set Si is said to be an interval if Si = {¸i, ¸i + 1, . . . , ri}, for some 1 Æ ¸i Æ ri Æ n.
The agents have to be partitioned into coalitions, i.e., subsets of the agent set. This induces
a partition fi of the set of agents N . We denote by fi(i) the coalition agent i belongs to
in the partition fi. We follow the notation in Woeginger’s survey paper [29] and call a
partition fi wonderful if each agent approves of the size of its coalition in fi, i.e., for each
agent i, |fi(i)| œ Si. This leads to the following natural computational problem called
WONDERFUL-PARTITION.

WONDERFUL-PARTITION

Input: A set N of agents and size approval sets (Si)iœN .

Problem: Decide whether there exists a wonderful partition of the agents. If yes,
compute one.

Woeginger’s Hiking Problem is WONDERFUL-PARTITION with interval approval sets,
which we formally define as follows.

ICALP 2024



48:4 Solving Woeginger’s Hiking Problem

WONDERFUL-PARTITION-INTERVALS (HIKING)
Input: A set N of agents and for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}.

Problem: Decide whether there exists a wonderful partition of the agents. If yes,
compute one.

We also consider natural extensions of the hiking problem, to be introduced later.

1.3 Our Contribution
We solve Woeginger’s Hiking Problem in the a�rmative by giving an O(n5)-algorithm that
computes a wonderful partition for an instance with n agents that each have interval approval
sets (see Figure 1 (a)), if such a partition exists. For this we use a dynamic programming
approach for a rectangle stabbing problem from computational geometry. Moreover, we
extend this approach to achieve an O(n5)-algorithm for computing the minimum set of hikers
that have to be excluded from the hike, in order for a wonderful partition to become possible.
We also give an O(n7)-algorithm for deciding if a wonderful partition exists if exactly x hikers
are excluded. This is then used to derive an O(n7 logn)-algorithm for finding a partition that
maximizes the number of hikers that approve of their assigned group size. These approaches
can also be extended to a setting where hikers have weights.

All these positive results hold for the case where the agents have interval approval sets
(Figure 1 (a)). The special case where every hiker only approves of one group size, i.e.,
approval intervals of size 1, can be solved e�ciently by checking if for all i the number of
agents approving only of size i is divisible by i. In contrast to this, it was already known that
the problem is NP-hard even if each attendee has at most two di�erent approved group sizes
that need not form an interval [18] (see Figure 1 (b)). We extend the original proof slightly
by establishing a connection to a graph orientation problem. For the sake of completeness
and to improve readability, it can be found in the full version [17].

We complete the picture by considering agents with single-peaked preferences over group
sizes. In this setting an agent has a cost that is a function of its assigned group size and
its ideal group size. If all agents incur a cost that is given by a fixed function that depends
on their peak (but di�erent peak values are allowed, see Figure 1 (c)) and if this function
satisfies a mild technical condition, we compute a partition that minimizes the social cost in
time O(n2(– + 1)), if at most – agents can be excluded from the hike. This holds for the
utilitarian setting, i.e., minimizing the sum of the agents’ costs, and also for the egalitarian
setting, where the maximum agent cost is to be minimized. Finally, we prove polynomial time
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Figure 1 Examples of utility functions considered in this paper. (a) interval approval sets, (b)
non-interval approval sets with two approved group sizes, (c) utility functions are single-peaked and
all agents with the same peak have the same utility function (under some additional mild technical
assumptions), (d) individual single-peaked utility functions for all agents (as shown, the functions
may di�er even if they have the same peak).



A. Constantinescu, P. Lenzner, R. Rei�enhäuser, D. Schmand, and G. Varricchio 48:5

equivalence of the wonderful partition problem and the problem of minimizing the egalitarian
social cost in (general) anonymous Hedonic Games. We use this result to show that even for
the setting where each agent has its own single-peaked cost function (see Figure 1 (d)), a
partition that minimizes the egalitarian social cost can be computed in O(n5 logn).

All omitted details can be found in the full version [17].

2 E�cient Algorithm for Woeginger’s Hiking Problem, and Extensions

We prove that WONDERFUL-PARTITION-INTERVALS can be solved in polynomial time by
casting the problem as a version of capacitated rectangle stabbing, which can be e�ciently
solved via an elegant dynamic programming approach introduced by Even, Levi, Rawitz,
Schieber, Shahar, and Srividenko [22]. In the capacitated rectangle stabbing problem, we are
given axis parallel rectangles and a set of lines. The goal is to find a minimum number of
lines that intersect and stab all rectangles. Each line has a maximum number of intersecting
rectangles it can stab, and to stab all rectangles, one is allowed to use multiple copies of
each line. Woeginger’s Hiking Problem can be seen as a special case of the capacitated
rectangle stabbing problem in one dimension, where the agents’ intervals correspond to
1-dimensional rectangles and stabbing rectangles at some integer position i corresponds to
creating a partition of size i where the respective agents belonging to the stabbed rectangles
are included. Using this relationship, we give a simpler and faster O(n5) dynamic program
that is specifically tailored to our needs. Note that this reduction from our partition problem
to a version of rectangle stabbing draws a powerful new connection between the problem
types that is not limited to our specific problem version, but is possible in more generality;
e.g., it can be adapted to the variant where there can be at most one group of each size.

In the following, we use the central observations of Even, Levi, Rawitz, Schieber, Shahar,
and Srividenko [22] to derive a dynamic programming solution to Woeginger’s Hiking problem,
i.e., to WONDERFUL-PARTITION-INTERVALS. The definition and analysis of which will then
also power our results on the more demanding problem variants discussed in the introduction.

2.1 Dynamic Program for Woeginger’s Hiking Problem
Consider an instance of WONDERFUL-PARTITION-INTERVALS, i.e., a set N of n agents,
without loss of generality N = [n], and n pairs (¸i, ri)iœN such that agent i œ [n] approves
of sizes Si = {¸i, . . . , ri}. We are interested in checking whether there exists a wonderful
partition of the agents; i.e., one where every agent approves of their coalition size. For
consistent tie-breaking reasons, throughout this section we write i ª j for two distinct agents
i, j œ [n] if either ri < rj , or ri = rj and i < j. Note that ª is a well-defined strict linear
order and, without loss of generality, assume that agents are ordered so that 1 ª . . . ª n.

As the main technical ingredient of our approach, given a subset N Õ
™ N of agents, we

say that a wonderful partition fi of N Õ is earliest-due-date if for any two agents i ª j it
does not hold that ¸i Æ |fi(j)| < |fi(i)|. This terminology is borrowed from the scheduling
literature, and based on the following well-known observation: let us view the agents’ allowed
intervals of coalition sizes on an axis labeled with the natural numbers 1, . . . , n, and consider
an arbitrary collection of coalition sizes we might decide on using, in non-decreasing order of
coalition size. Then, going in this order, it is always safe to include those agents first whose
right interval endpoints are the smallest: in said order of coalitions, they are the ones that
stop being servable first, making an earliest-due-date approach impose the least restrictions
on later assignments. In other words, whenever a wonderful partition into the given coalition
sizes exists, there also exists one that is earliest-due-date. We prove this formally below for
completeness. Note that, to make the process well-defined, instead of comparing agents by
right endpoints, we compare them by ª.
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I Lemma 1. If a subset N Õ
™ N of agents admits a wonderful partition, then it admits an

earliest-due-date wonderful partition.

Proof. Consider a wonderful partition fi of N Õ
. If it satisfies the required property, then we are

done, otherwise, consider i, j œ N
Õ such that i ª j and ¸i Æ |fi(j)| < |fi(i)|. These conditions

imply that |fi(j)| œ [¸i, ri] and |fi(i)| œ [¸j , rj ]. Hence, one can construct a new wonderful
partition fi

Õ from fi by exchanging the groups of agents i and j; i.e., fi
Õ(i) = (fi(j) \ {j})fi {i}

and fi
Õ(j) = (fi(i) \ {i}) fi {j}. Subsequently, set fi Ω fi

Õ and repeat the same procedure
until the required condition is satisfied. To complete the proof, we need to show that this
is eventually the case. To do so, since 1 ª . . . ª n, each exchange strictly increases the
sequence (|fi(n)|, . . . , |fi(1)|) lexicographically. Because this sequence is bounded from above
by (n, . . . , n), the process eventually ends. J

Hence, from now on, we will only seek earliest-due-date wonderful partitions. This crucial
restriction, which we have shown to be without loss of generality, will allow us to bootstrap
a dynamic programming algorithm that determines a wonderful partition if one exists.

To construct our algorithm, we first show that earliest-due-date partitions admit an
attractive recursive decomposition. Consider an earliest-due-date wonderful partition fi of
the agents (if any exist), and consider the size of the coalition that agent n is a part of; i.e.,
|fi(n)|. Moreover, consider an arbitrary agent i ”= n. Agent i is part of a coalition of size |fi(i)|.
Because fi is earliest-due-date, by definition it can not be the case that ¸i Æ |fi(n)| < |fi(i)|,
so either |fi(n)| < ¸i or |fi(i)| Æ |fi(n)| holds.

I Lemma 2. Consider an earliest-due-date wonderful partition fi of N. Partition the agents
as N = N≠ fi N+ fi {n}, where N≠ = {i œ N \ {n} | ¸i Æ |fi(n)|} and N+ = {i œ N \ {n} |

¸i > |fi(n)|}, then it holds that:
1. For all i œ N≠ we have |fi(i)| Æ |fi(n)|;
2. For all i œ N+ we have |fi(i)| > |fi(n)|.

Proof. For (2) note that any i œ N+ by definition satisfies ¸i > |fi(n)|. Since we have the
requirement that |fi(i)| œ [¸i, ri], this means that |fi(i)| Ø ¸i > |fi(n)|, as desired.

For (1), consider some i œ N≠. By definition, we have that ¸i Æ |fi(n)|. Assume for a
contradiction that |fi(i)| > |fi(n)|. This implies that ¸i Æ |fi(n)| < |fi(i)|. Since ri Æ rn and
by the sorting criterion we also have i ª n, which contradicts that fi is earliest-due-date. J

Notably, the same result holds true if we work with a subset of the agents N Õ ( N and n is
replaced with the agent a œ N

Õ with maximum ra.

Armed as such, to build intuition, Lemma 2 tells us that no two agents a≠ œ N≠
and a+ œ N+ can go into the same group, so a first attempt at a recursive algorithm
looking for a wonderful partition of N, to be later optimized by memorization/dynamic
programming, would proceed as follows: start with N

Õ = N ; at each step, identify the
agent a œ N

Õ maximizing ra and exhaust over all possibilities for |fi(a)|; for each one, write
N

Õ = N
Õ
≠ fi N

Õ
+

fi {a} as defined in Lemma 2 and recurse with N
Õ
≠ and N

Õ
+
. We will specify

the details of the process such that, if the recursive calls yield wonderful partitions of N Õ
≠

and N
Õ
+
, a wonderful partition of N can also be constructed by incorporating agent a into

them. Of course, the last step of reasoning is incorrect, since one needs to make sure that
a group of size |fi(a)| with one space available indeed exists, and this information needs to
be somehow propagated across recursive calls. Moreover, it is unclear what the number
of sets N

Õ reachable by the recursion is. This has to be polynomially bounded so that
memorization/dynamic programming leads to a polynomial-time algorithm.
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Let us first address the second issue outlined above, namely the size of the state space.
This turns out to be relatively simple: define N(x1, x2, i) = {j œ N | j Æ i and ¸j œ [x1, x2]}.
Then, we can adapt the recursive approach: instead of storing N

Õ explicitly, start with x1 = 1
and x2 = n, as well as i = n, from which implicitly N

Õ = N(x1, x2, i). At each step we will
first check whether i, which by the sorting criterion is the largest agent maximizing ri, is
in N

Õ = N(x1, x2, i); i.e., whether ¸i œ [x1, x2]. If not, then N(x1, x2, i) = N(x1, x2, i ≠ 1)
and we simply recurse with the same x1, x2 and i

Õ = i ≠ 1. Otherwise, i is the largest agent
in N

Õ maximizing ri, so we can exhaust as before over all possible values for |fi(i)| and
perform two recursive calls in each case: one with (xÕ

1
, x

Õ
2
, i

Õ) = (x1, |fi(i)|, i≠ 1) and one with
(xÕ

1
, x

Õ
2
, i

Õ) = (|fi(i)|+ 1, x2, i ≠ 1). We have yet to solve the correctness issue, but we have
made progress: the state space now consists of triples (x1, x2, i) such that 1 Æ x1 Æ x2 Æ n

and 1 Æ i Æ n, which there are O(n3) of.
Let us now turn our attention to ensuring correctness. To do so, we need to investigate

more closely how to ensure that the group of size |fi(i)| of agent i (recall that we only exhaust
over its size, not over which agents are in it) exists and is used to its full capacity in the
solution constructed by the recursion. There is one crucial guarantee given by Lemma 2 that
we have so far not exploited. Namely, the recursive call with (x1, |fi(i)|, i≠ 1) should only use
groups of sizes s œ [x1, |fi(i)|] and the one with (xÕ

1
, x

Õ
2
, i

Õ) = (|fi(i)|+ 1, x2, i ≠ 1) should only
use groups of sizes s œ [|fi(i)|+1, x2]. In general, state (x1, x2, i) should only consider groups
of sizes s œ [x1, x2]. This can be ensured by requiring that the exhausted value for |fi(i)|
additionally satisfies x1 Æ |fi(i)| Æ x2. This small, seemingly inconsequential, refinement of
the approach will ultimately allow us to propagate information about incomplete groups
across states in the recursion. Before describing how this is done in general, to build more
intuition, let us consider the first level of the recursion, namely (x1, x2, i) = (1, n, n). At
this level, the algorithm exhausts over the possible values for |fi(n)| œ [¸n, rn]. For each
possibility, in the ensuing recursive call with (xÕ

1
, x

Õ
2
, i

Õ) = (|fi(n)| + 1, n, n ≠ 1) all used
groups will be of size at least |fi(n)| + 1 > |fi(n)| so nothing special needs to be done in
this case since those agents can not be part of agent n’s group. However, in the other call,
having (xÕ

1
, x

Õ
2
, i

Õ) = (1, |fi(n)|, n ≠ 1) some |fi(n)| ≠ 1 other agents will need to share a group
of size |fi(n)| with agent n, and this is not yet modeled by our approach. To model this
e�ect across recursive calls, we introduce a fourth variable 0 Æ k < x2 to the state of our
recursive algorithm; i.e., each state is now of the form (x1, x2, i, k). This variable intuitively
signifies that there exists (from upward in the recursion) an incomplete group, currently of
size k, whose final size should be x2. With this setup, the starting top-level call will now
be with (x1, x2, i, k) = (1, n, n, 0). For each value of |fi(n)|, the two resultant recursive calls
will be with (xÕ

1
, x

Õ
2
, i

Õ
, k

Õ) = (1, |fi(n)|, n ≠ 1, 1)3 and (xÕ
1
, x

Õ
2
, i

Õ
, k

Õ) = (|fi(n)|+ 1, n, n ≠ 1, 0).
Note how the former call has k

Õ = 1, signifying that we just “opened a new (incomplete)
group of size one, whose final size should be x

Õ
2
= |fi(n)|” The fundamental reason why

such an approach can work is that in any node of the recursion tree, there is at most a
single incomplete group to keep track of. Note that this fact crucially depends on each call
(x1, x2, i, k) only considering partitions into groups of sizes between x1 and x2. We still need
to describe the transitions for general calls (x1, x2, i, k) given the newly added parameter k.
The formal details will following below, but in rough lines, the call for N≠ creates a new
group; i.e., kÕ = 1; while the call for N+ keeps the currently open one; i.e., kÕ = k; the
exception comes when |fi(i)| = x2, in which case the call for N≠ adds to the same group,
possibly closing the group; i.e., kÕ = (k + 1) (mod x2); and no call for N+ is generated.

3 Strictly speaking, this should be (xÕ
1, x

Õ
2, i

Õ
, k

Õ) = (1, |fi(n)|, n ≠ 1, 1 mod |fi(n)|). We omit this detail
from the higher-level exposition to improve readability.
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I Theorem 3. Deciding whether a wonderful partition exists and computing one if so can be
achieved in O(n5) time.

Proof. We show how to solve the decision version. Constructing a wonderful partition for
yes-instances can be subsequently achieved by standard techniques. We proceed by dynamic
programming (DP). Define the Boolean DP array dp[x1, x2, i, k] for 1 Æ x1 Æ x2 Æ n,

0 Æ i Æ n and 0 Æ k < x2, with the meaning dp[x1, x2, i, k] = 1 if and only if there exists
a wonderful partition of agents in N(x1, x2, i) using only groups of sizes in [x1, x2] and
assuming that we start with an incomplete group of current size k which has to have final size
x2. Naturally, if k = 0 this means starting with no partially filled group. The final answer
will be available at the end in dp[1, n, n, 0]. To compute the DP table, we use the following
recurrence relations and base cases (using a hyphen as stand-in for any group size):
1. dp[≠,≠, 0, 0] = 1;
2. dp[≠,≠, 0, k] = 0 if k ”= 0;
3. dp[x1, x2, i, k] = dp[x1, x2, i ≠ 1, k] if ¸i /œ [x1, x2];
4. dp[x1, x2, i, k] =

xmin(x2,ri)
x=¸i

Fx if ¸i œ [x1, x2], where

Fx :=
;

dp[x1, x2, i ≠ 1, (k + 1) mod x2] x = x2

dp[x1, x, i ≠ 1, 1 mod x] · dp[x+ 1, x2, i ≠ 1, k] x < x2.

The first three cases are immediate from the definition of the DP. For the last case, we iterate
over x œ [¸i,max(x2, ri)] which is agent i’s group size. There are two cases: if x = x2, then
we put i into the group of current size k and final size x2 that we assumed to have at our
disposal; this increases the size of the group by one, or completes it if k = x2 ≠ 1; otherwise,
x < x2, and we recurse into partitioning agents in N(x1, x, i≠ 1) into groups of sizes between
x1 and x, and N(x + 1, x2, i ≠ 1) into groups of sizes between x + 1 and x2. For the first
call, this generates a new group of size 1 (unless x = 1), while for the latter, this keeps the
previously open group of current size k and final size x2 that we assumed to have.

To compute the DP table in an acyclic fashion, it su�ces to iterate through i in ascending
order. The complexity of the approach is O(n5) because there are O(n4) states and computing
the value for states of type (4) requires iterating through O(n) values of x. J

2.2 Extensions
Using a similar DP approach, we can solve the following natural extension.

HIKING-MIN-DELETE

Input: A set N of agents and for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}.

Problem: Compute a set N Õ
™ N of minimum size such that N \N

Õ has a wonderful
partition. Output N Õ and a wonderful partition of N \N

Õ
.

The approach relies on essentially the same recursive reasoning as before, except that
we now also consider the possibility of “ignoring” an agent i and hence recursing with
(xÕ

1
, x

Õ
2
, i

Õ
, k

Õ) = (x1, x2, i ≠ 1, k). Moreover, instead of making the recursion return whether
a wonderful partition is possible or not, we make it return the minimum number of agents
that need to be removed so that this is possible. In light of this, the “ignore i” recursive call
incurs a cost of 1 removed agent. The details are formalized in the following.
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I Theorem 4. HIKING-MIN-DELETE is solvable in O(n5) time.

Proof. We use a similar approach as in the proof of Theorem 3. As before, it su�ces to show
how to compute the minimum size of N Õ

, as computing such a set N Õ and a corresponding
wonderful partition for N \N

Õ follow by standard techniques. Define the integer-valued DP
array dp[x1, x2, i, k] for 1 Æ x1 Æ x2 Æ n, 0 Æ i Æ n and 0 Æ k < x2, with the meaning
that dp[x1, x2, i, k] contains the minimum number of agents which need to be removed from
N(x1, x2, i) so that the remaining agents admit a wonderful partition into groups of sizes in
[x1, x2] assuming that we start with an incomplete group of current size k which has to have
final size x2. Note that, in contrast to the previous DP, the value 0 corresponds to removing
no agents, which is the best possible outcome, while previously it corresponded to the need
for removing at least one agent. The final answer will be available at the end in dp[1, n, n, 0].
To compute the DP table, we use the following recurrence relations and base cases:
1. dp[≠,≠, 0, 0] = 0;
2. dp[≠,≠, 0, k] = Œ if k ”= 0;
3. dp[x1, x2, i, k] = dp[x1, x2, i ≠ 1, k] if ¸i /œ [x1, x2];
4. dp[x1, x2, i, k] = min{1 + dp[x1, x2, i ≠ 1, k], X} if ¸i œ [x1, x2], where

X := min{Fx | ¸i Æ x Æ min(x2, ri)}

and

Fx :=
;

dp[x1, x2, i ≠ 1, (k + 1) mod x2] x = x2

dp[x1, x, i ≠ 1, 1 mod x] + dp[x+ 1, x2, i ≠ 1, k] x < x2.

The reasoning stays largely the same as before, with the only di�erence being the new
1 + dp[x1, x2, i ≠ 1, k] term, which accounts for discarding agent i and incurring a cost of 1
corresponding to removing an agent. J

Another subtly distinct natural variant of Woeginger’s Hiking Problem is the following:

HIKING-MAX-SATISFIED

Input: A set N of agents and for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}.

Problem: Compute a partition fi of N maximizing the number of agents approving
of their coalition sizes.

Indeed, HIKING-MAX-SATISFIED and HIKING-MIN-DELETE are related, in that if N Õ is a
minimum-size set of agents such that N \N

Õ has a wonderful partition, then it is also possible
to satisfy at least n ≠ |N

Õ
| agents in a partition of N. This is because agents in N

Õ can be
put together in a group in tandem to a wonderful partition of N \N

Õ to get a partition of N
with at least n ≠ |N

Õ
| satisfied agents. However, it might be possible to satisfy more than

n ≠ |N
Õ
| agents if unsatisfied agents do not all go into the same group.

Hence, solving this variant of the problem introduces new challenges that require further
insight. Let us fix a number k and ask whether it is possible to satisfy at least |N | ≠ k

agents. If the answer is a�rmative, we also want a partition achieving this. To solve
HIKING-MAX-SATISFIED, we will binary search for the smallest 0 Æ k Æ |N | for which the
answer is a�rmative, call it kú, and then recover a partition for kú

. It remains to show how
to solve the problem for a fixed value of k. To do so, we need to adjust the angle from which
we look at the problem. In particular, instead of looking for a partition satisfying at least k
agents, we will look for a size-k subset N Õ

™ N (corresponding to k agents which we do not
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require to be satisfied) such that (N \N
Õ) fi Dk admits a wonderful partition, where Dk is a

set of k dummy agents happy with any group size. Intuitively, k agents are replaced with
dummies not minding their group size. Because it is always no worse to remove agents from
N in contrast to removing agents from Dk, it is enough to ask to remove exactly k agents
from N fi Dk such that the remaining agents admit a wonderful partition. Checking whether
this is possible and finding a corresponding wonderful partition reduces to the following more
general problem, which we will show can be solved in polynomial time.

HIKING-X-DELETE

Input: A set N of agents, for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}, and also a number 0 Æ x Æ |N |.

Problem: Compute a set N Õ
™ N of size x such that N \N

Õ has a wonderful partition
(or report impossibility). Output N Õ and a wonderful partition of N \N

Õ
.

We now show how to solve HIKING-X-DELETE in polynomial time. We can once again
try to attack the problem recursively with our usual state (x1, x2, i, k). Just like we did for
HIKING-MIN-DELETE, we will have recursive calls for ignoring an agent; i.e., adding it to
the set N Õ of removed agents.4 In order to ensure that exactly x agents are removed, we add
another variable r to the state of the recursion: (x1, x2, i, k, r), where r is how many agents
we want to remove. The top-level call will be invoked with r = x. The recursive approach
for HIKING-MIN-DELETE now translates relatively swiftly to the new setting. The main
di�erence is the case where a state of the form (x1, x2, i, k,≠) with ¸i œ [x1, x2] performs
two recursive calls to (x1, x, i ≠ 1, 1,≠) and (x + 1, x2, i ≠ 1, k,≠). In particular, say the
state is (x1, x2, i, k, r), then what should be the values rÕ and r

ÕÕ for the two recursive calls?
Intuitively, there is no fixed answer, since it could be that we remove more agents in the first
or in the second call. In fact, we have full freedom over how to split the r removals across
the two calls as long as rÕ + r

ÕÕ = r. Hence, we will iterate over all options 0 Æ r
Õ
Æ r and set

r
ÕÕ = r≠r

Õ
, and in each case call recursively with (x1, x, i≠1, 1, rÕ) and (x+1, x2, i≠1, k, rÕÕ).

I Theorem 5. HIKING-X-DELETE is solvable in O(n7) time.

Proof. As before, it su�ces to check feasibility, a solution can then be recovered using
standard techniques. Define the Boolean DP array dp[x1, x2, i, k, r] for 1 Æ x1 Æ x2 Æ n,

0 Æ i Æ n, 0 Æ k < x2, and 0 Æ r Æ x with the meaning that dp[x1, x2, i, k, r] = 1 if and only
if there exist r agents that can be removed from N(x1, x2, i) such that the remaining agents
admit a wonderful partition into groups of sizes in [x1, x2] assuming that we start with an
incomplete group of current size k which has to have final size x2. At the end, dp[1, n, n, 0, x]
will be 1 if and only if it is possible to remove x agents from N such that the remaining
agents admit a wonderful partition. To compute the DP table, we use the following:
1. dp[≠,≠, 0, 0, 0] = 1;
2. dp[≠,≠, 0, k, r] = 0 if k ”= 0 or r ”= 0;
3. dp[x1, x2, i, k, r] = dp[x1, x2, i ≠ 1, k, r] if ¸i /œ [x1, x2];
4. dp[x1, x2, i, k, r] = dp[x1, x2, i≠1, k, r≠1, d]‚X

5 if ¸i œ [x1, x2], whereX :=
xmin(x2,ri)

x=¸i
Fx

and

Fx :=
;

dp[x1, x2, i ≠ 1, (k + 1) mod x2, r] x = x2xr
rÕ=0

!
dp[x1, x, i ≠ 1, 1 mod x, r

Õ] · dp[x+ 1, x2, i ≠ 1, k, r ≠ r
Õ]
"

x < x2.

4 Note that previously we used N
Õ to denote N(x1, x2, i) when discussing the recursive algorithm for the

original hiking problem. We do not keep this notation here.
5 Only X for r = 0 as otherwise we would be referring to the invalid value r = ≠1.
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We explain the four cases separately: for cases (1) and (2) we have i = 0; i.e., the set of
yet-to-be-considered agents is empty, so k = r = 0 is necessary and su�cient for the table to
store a 1, signifying feasibility. As before, case (3) straightforwardly ignores an agent that is
not part of the current set of active agents.

The more interesting case is case (4). First, the dp[x1, x2, i≠ 1, k, r ≠ 1] term corresponds
to removing an agent, and it only applies to r Ø 1, as in the footnote. This decreases r by 1
since we have just removed an agent. The X :=

xmin(x2,ri)
x=¸i

Fx term is more involved. The
selection of ¸i Æ x Æ min(x2, ri) corresponds to selecting the size of the group that agent i
will be part of. For x = x2, the analysis is similar to our previous DPs. For x < x2, on the
other hand, we moreover split the r agent removals into r

Õ removals for the first recursive
call and r

ÕÕ = r ≠ r
Õ for the second. Whether both calls are successful is represented by the

expression dp[x1, x, i ≠ 1, 1 mod x, r
Õ] · dp[x+ 1, x2, i ≠ 1, k, rÕÕ].

As before, to compute the DP table in an acyclic fashion, it su�ces to iterate through i

in ascending order. The complexity is O(n7) because there are O(n5) states and computing
the value for states of type (4) requires iterating through O(n2) values for (x, r). J

Using the above binary search approach we get a solution for HIKING-MAX-SATISFIED that
runs only a O(logn) factor slower than the runtime for HIKING-X-DELETE.

I Theorem 6. HIKING-MAX-SATISFIED is solvable in O(n7 logn) time.

2.3 Further Weighted Extensions
If not all agents can be satisfied, HIKING-MIN-DELETE and HIKING-MAX-SATISFIED
provide two ways of implementing a compromise. However, both treat unsatisfied/de-
leted agents equally. In certain settings, it might be more desirable to take into account the
di�erent entitlements of the agents; i.e., one agent might have been dissatisfied with their
group size during the previous edition of the workshop, or another agent might be the senior
invited speaker. One modelling option is to assign a weight wi to each agent i œ N and
weigh the dissatisfied/deleted agents accordingly leading to the following variants:

HIKING-MIN-DELETE-WEIGHTED

Input: A set N of agents and for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}. Moreover, for each agent i œ N, a number wi œ RØ0.

Problem: Compute a set N
Õ

™ N minimizing
q

iœN Õ wi such that N \ N
Õ has a

wonderful partition. Output N Õ and a wonderful partition of N \N
Õ
.

HIKING-MAX-SATISFIED-WEIGHTED

Input: A set N of agents and for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}. Moreover, for each agent i œ N, a number wi œ RØ0.

Problem: Compute a partition fi of the agents such that if Nfi is the set of agents
approving of their coalition sizes in fi, then

q
iœNfi

wi is maximized.

Our dynamic programs, with minor modifications which we sketch next, can also be used
to solve the weighted variants. We begin with HIKING-MIN-DELETE-WEIGHTED.

I Theorem 7. HIKING-MIN-DELETE-WEIGHTED is solvable in O(n5) time.

Proof Sketch. In the proof of Theorem 4, we defined the DP as follows: “dp[x1, x2, i, k]
contains the minimum number of agents which need to be removed from N(x1, x2, i) so that
the remaining agents admit a wonderful partition into groups of sizes in [x1, x2] assuming
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that we start with an incomplete group of current size k which has to have final size x2”.
To handle weights, this is replaced by “dp[x1, x2, i, k] contains the minimum total weight of
agents which need to be removed from N(x1, x2, i) so that the remaining agents admit a
wonderful partition into groups of sizes in [x1, x2] assuming that we start with an incomplete
group of current size k which has to have final size x2”. The rest of the proof stays the
same, with the minor adaptation that the fourth recurrence relation accordingly becomes
dp[x1, x2, i, k] = min{wi+dp[x1, x2, i≠ 1, k], X}, where previously wi = 1 has been used. J

To get a similar result for HIKING-MAX-SATISFIED-WEIGHTED following our previous proof
outline, we first define a weighted analogue of HIKING-X-DELETE, as follows.

HIKING-X-DELETE-MIN-WEIGHT

Input: A set N of agents, for each agent i œ N two numbers ¸i Æ ri such that
Si = {¸i, . . . , ri}, and also a number 0 Æ x Æ |N |. Moreover, for each agent i œ N, a
number wi œ RØ0.

Problem: Compute a set N Õ
™ N of size x minimizing

q
iœN Õ wi such that N \N

Õ

has a wonderful partition (or report impossibility). Output N
Õ and a wonderful

partition of N \N
Õ
.

I Theorem 8. HIKING-X-DELETE-MIN-WEIGHT is solvable in O(n7) time.

Proof Sketch. In the proof of Theorem 5 for the unweighted version, we defined a boolean
DP as follows: “dp[x1, x2, i, k, r] = 1 if and only if there exist r agents that can be removed
from N(x1, x2, i) such that the remaining agents admit a wonderful partition into groups
of sizes in [x1, x2] assuming that we start with an incomplete group of current size k which
has to have final size x2”. For the current problem, we want the states to signal not only
possibility/impossibility but also what is the minimum total weight of those r removed
agents. Hence, we replace this definition by “dp[x1, x2, i, k, r] is the minimum total weight of
r agents that can be removed from N(x1, x2, i) such that [...] (or Œ if impossible)”. The rest
of the reasoning stays analogous with minor changes: the values 0, 1 in the base cases become
Œ, 0, disjunctions (‚) are replaced by “min” and conjunctions (·) by +. Finally, the fourth
recurrence relation becomes dp[x1, x2, i, k, r] = min{wi + dp[x1, x2, i ≠ 1, k, r ≠ 1, d], X}. J

We make use of Theorem 8 to show the following.

I Theorem 9. HIKING-MAX-SATISFIED-WEIGHTED is solvable in O(n8) time.

Proof Sketch. In the proof of Theorem 6 for the unweighted case, we were looking for the
largest k such that there exists a size-k subset N

Õ
™ N (corresponding to k agents which

we do not require to be satisfied) such that (N \ N
Õ) fi Dk admits a wonderful partition,

where Dk was a set of k dummy agents happy with any group size. We then argued
that we could relax to asking for a size-k subset N Õ

™ (N fi Dk) such that (N fi Dk) \N Õ

admits a wonderful partition, which can be done using our polynomial-time algorithm for
HIKING-X-DELETE-MIN in Theorem 5. This time, we follow a similar approach, except
without binary search: we will try out all values 0 Æ k Æ n and ask for a size-k subset
N

Õ
™ (N fi Dk) such that (N fi Dk) \N Õ admits a wonderful partition. For a fixed k, out

of all abiding N
Õ
, we want one minimizing

q
iœN Õ wi. Such an N

Õ can be computed using
our O(n7) algorithm for HIKING-X-DELETE-MIN-WEIGHT in Theorem 8. We do this for
all values 0 Æ k Æ n and take the minimum-weight solution, adding an extra O(n) factor, so
the overall complexity is O(n8). J
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3 Single-Peaked Preferences over Group Sizes

We extend the binary version of the hiking problem by considering single-peaked preferences
over group sizes. We assume that each agent i has an ideal group size si and the cost of
agent i if placed in a group of size s is given by a cost function dependent on si and s.

Given these ingredients, minimizing the social cost can be done in two variants: a utilitarian
variant and an egalitarian variant. In the utilitarian variant, the goal is to minimize the total
cost of the agents, while in the egalitarian version we want the cost of the agent having the
highest cost to be as low as possible, i.e., we replace summation with maximum. We are
also interested in a variation of the problem where the hike organizers consider it reasonable
to exclude at most – of the agents from the hike, the goal becoming to select the agents to
remove and then to organize a hike with best social cost among the remaining agents.6 Note
that we assume that each excluded agent has a cost of 0. This is di�erent from assuming
that excluded agents have to hike alone, which is covered by the case – = 0.

More formally, we assume that each agent i œ N announces an ideal coalition size si;
i.e., agent i would be most happy when belonging to a coalition of size si. Moreover, given
some cost function cost : N2

æ R agent i incurs a cost of cost(si, s) if placed in a coalition
of size s œ [n] and a cost equal to 0 if not participating in the hike. We assume c to be
monotone, i.e., cost(si, s) Æ cost(si, sÕ) if si Æ s Æ s

Õ or s
Õ

Æ s Æ si. Notice that since
agent i incurs a disutility equal to cost(si, s), where si is the most preferred size of i, the
monotonicity condition on cost(·, ·) implies that the preferences of agents are single-peaked
w.r.t. the natural ordering. We refer to the next section for a formal definition. Given a
partition fi, we recall that fi(i) denotes the coalition of agent i; if i is not participating in the
hike we write fi(i) = ‹. Furthermore, by slight abuse of notation, for an agent i we write
i œ fi to indicate that agent i takes part in the hike; i.e., fi(i) ”= ‹.

The utilitarian social cost of a partition fi is given by cost(fi) =
q

iœfi cost(si, |fi(i)|) while
the egalitarian social cost is given by cost(fi) = maxiœfi cost(si, |fi(i)|). The goal is, therefore,
to find a partition minimizing the social cost under the constraint |{i | fi(i) = ‹}| Æ –, or
equivalently, |{i | i œ fi}| Ø n≠–, where – is the maximum number of agents that are allowed
to not participate in the hike. Without loss of generality, we assume that s1 Æ . . . Æ sn.

We begin by proving two structural properties of optimal solutions that will allow us
to greatly reduce the space of solutions that have to be considered, hence enabling us later
to give e�cient dynamic programming algorithms computing optimal partitions for both
the utilitarian and the egalitarian settings. For the utilitarian social cost we need a mild
assumption on the cost function cost.

I Definition 10. A function cost : N2
æ R fulfills the quadrangle inequality if and only if

cost(a, c) + cost(b, d) Æ cost(a, d) + cost(b, c) for all a Æ b Æ c Æ d.

Analogously, it fulfills the reverse quadrangle inequality if and only if

cost(a, c) + cost(b, d) Æ cost(a, d) + cost(b, c) for all a Ø b Ø c Ø d.

Note that quadrangle inequality and reverse quadrangle inequality are equivalent if cost
is symmetric, i.e. cost(a, b) = cost(b, a). Moreover, notice that if cost(·, ·) is the Euclidean
distance on R or cost(a, b) = |b ≠ a|

k for any k Ø 1, then it satisfies both the aforementioned
quadrangle inequalities. The first observation that our approach will hinge upon is that it is
enough to consider size-monotonic partitions.

6 The original problem can be seen to be the – = 0 case.
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I Definition 11 (Size-Monotonicity). A partition fi is size-monotonic if for any two agents
i, j œ fi, with i < j, it holds that |fi(i)| Æ |fi(j)|.

Roughly speaking, there are optimal solutions where all participating agents with lower
preferred coalition sizes belong to smaller coalitions than agents with higher preferred sizes.
We prove this fact in the following.

I Lemma 12. The following properties hold.
(a) In the utilitarian setting, if cost(·, ·) is monotone and fulfills quadrangle inequality and

reverse quadrangle inequality, then there exists a size-monotonic optimal solution.
(b) In the egalitarian setting, if cost(·, ·) is monotone, then there exists a size-monotonic

optimal solution.

Finally, we will show that it is enough to consider size-monotonic partitions which additionally
are compact. The latter is defined as follows:

I Definition 13 (Compactness). A coalition C is compact if it is of the form C = {i, i +
1, . . . , j} for some i Æ j. A solution fi is compact if all coalitions C œ fi are compact.

We now prove that we can modify any optimal size-monotonic partition so that it is size-
monotonic and compact.

I Lemma 14. There exists an optimal partition which is size-monotonic and compact.

With the above observations, we now know that it is enough to give an e�cient algorithm
to compute the best size-monotonic and compact solution. We do so in the following. In
fact, our algorithm will only directly leverage compactness.7 To begin, for any two agents
i Æ j define c(i, j) to be the social cost induced by agents i, i+ 1, . . . , j when forming the
coalition {i, i + 1, . . . , j}. In particular, c(i, j) =

qj
k=i cost(sk, j ≠ i + 1) in the utilitarian

case, and similarly with summation replaced by maximum in the egalitarian case. With
this definition in place, note that selecting the best compact solution fi with at most –

agents not taking part in the hike amounts to selecting compact non-intersecting coalitions
C1, . . . , C¸ where Ck = {ak, ak + 1, . . . , bk ≠ 1, bk}, such that

q¸
k=1

(bk ≠ ak + 1) Ø n ≠ –,
and the sum/maximum of c(a1, b1), . . . , c(a¸, b¸) is minimized. Without loss of generality
we can assume that b1 < a2, b2 < a3, . . . , b¸≠1 < a¸, i.e., we assume that the coalitions are
sorted by index in increasing order. Before giving the actual algorithm, we note that, to get
the best e�ciency possible, we will need that the values c(i, j), for all pairs (i, j) with i Æ j,
can be computed in total time O(n2) as a preprocessing step. We show this now.

I Lemma 15. All values c(i, j) for i Æ j can be computed in total time O(n2).

Proof. We will compute the values separately for each value of j ≠ i. In particular, for each
0 Æ ¸ < n we will compute all values c(i, i + ¸) for 1 Æ i Æ n ≠ ¸ in linear time. To do
this, for a fixed ¸, note the contribution of agent k to the c-values that it counts into is
precisely cost(sk, ¸+1). Therefore, the values [c(i, i+ ¸)]1ÆiÆn≠¸ that we want to compute are
aggregate queries over a sliding window of length ¸+1 over the sequence [cost(sk, ¸+1)]1ÆkÆn.

Depending on the utilitarian/egalitarian goal, the aggregate can be either summation or
maximum, but in either case, all the n ≠ ¸ aggregates can be computed in linear time using
standard sliding window techniques. J

7 However, size-monotonicity is crucial in showing that considering compact solutions is enough.
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We are now ready to present our algorithm. We construct a weighted directed acyclic graph
G corresponding to the problem instance, as follows. We are given a source node s = (0, 0)
and a target node t = (n+ 1, ú). For the remaining vertices, we have one vertex for each
pair (i, j) with 1 Æ i Æ n+ 1 and 0 Æ j Æ –. Intuitively, vertex (i, j) has the meaning “agent
1 Æ i Æ n+1 is the next one to consider8 and so far we have excluded 0 Æ j Æ – agents from
the hike. The source s is connected with a directed edge towards (1, 0) and such an edge has
weight 0, while t is reachable from the node (n+ 1, j), for each 0 Æ j Æ –, via an edge of
weight 0. For the remaining edges, we add the following two types:

We add a weighted edge (i, j) 0
≠æ (i+1, j +1) for all 1 Æ i Æ n and 0 Æ j < –. Intuitively,

these correspond to excluding agent i from the hike.
We add a weighted edge (i, j) c(i,k)

≠≠≠æ (k + 1, j) for all 1 Æ i Æ k Æ n and 0 Æ j Æ –,.
Intuitively, these correspond to adding a new coalition C = {i, i+ 1, . . . , k} to the hike,
incurring a cost of c(i, k).

The next lemma establishes how paths in G correspond to compact solutions to our problem
and its statement immediately follows by the construction of G.

I Lemma 16. There is a bijection from compact solutions to s-t paths in G. Moreover, the
social cost of a compact solution is the cost of the associated path, defined as either the sum
or the maximum of the costs of its constituent edges.

As a result, computing an optimal compact solution amounts to finding a minimum cost s-t
path in G; this gives us a polynomial time algorithm for computing an optimal solution.

I Theorem 17. A hike with minimum social cost can be computed in time O(n2(– + 1)).

Proof. By Lemma 14 it is enough to compute the best hike among compact solutions. To
do so, we construct the graph G corresponding to the problem instance. Subsequently, we
compute an s-t path in G of minimum cost. This can be done in time linear in the size of
the graph, as the graph is acyclic. Correctness is assured by Lemma 16. For the time bound,
note that the number of vertices in the graph is O(n(– + 1)) and the number of edges is
O(n2(– + 1)). Moreover, edge costs can be computed in constant time after O(n2) total
precomputation by Lemma 15. Overall, we get a time complexity of O(n2(– + 1)). J

4 Wonderful Partitions versus Minimum Egalitarian Partitions

So far we assumed each agent has an ideal group size, a peak, and there exists a cost function
cost(x, y) which expresses the cost that any agent having ideal group size x incurs if placed in
a coalition of size y. More broadly, agents may express their disutility with any cost function,
that is, for each agent i there is a mapping costi : N æ R simply expressing the cost agent i
incurs when assigned to a coalition of a certain size.

In this section, we are interested in finding the minimum egalitarian cost achievable by any
partition and we denote by MIN-EG the problem of computing this value. In Section 3, we
have already shown that whenever costi(s) = cost(si, s), MIN-EG can be computed in O(n2).
In what follows, we exploit the connection between WONDERFUL-PARTITION and MIN-EG

delineating the tractability of the latter with respect to the properties of the cost functions.
First, we show a general connection between WONDERFUL-PARTITION and MIN-EG.

I Proposition 18. WONDERFUL-PARTITION and MIN-EG are polynomial time equivalent.

8 Indeed, there is a “dummy” agent n+ 1 signifying that there are no more agents to consider.
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Proof. A WONDERFUL-PARTITION instance can be transformed into a MIN-EG instance
by setting for each agent a cost function costi where costi(j) = 1 if agent i does not approve
coalition size j and costi(j) = 0, otherwise. Hence, the WONDERFUL-PARTITION instance
is a yes instance if MIN-EG is 0 and it is a no instance, otherwise.

If we have a MIN-EG instance, there are at most n
2 distinct values costi(j). Assume

there are k distinct such values and let us sort them from the lowest to the highest, namely,
c1 < . . . < ck. For each value ch, we can define a WONDERFUL-PARTITION instance where
a coalition of size j œ [n] is approved by agent i if and only if costi(j) Æ ch. We can therefore
determine if there exists a partition having egalitarian welfare of at most ch by solving
WONDERFUL-PARTITION on the just described instance. Clearly, if there exists a partition
having an egalitarian cost of at most c then there exists a partition having an egalitarian cost
of value at most cÕ for each c Æ c

Õ. Conversely, if there is no partition having an egalitarian
welfare of at most c then there is no partition having an egalitarian cost of at most cÕÕ, for
each 0 Æ c

ÕÕ
Æ c. Therefore, we can use binary search among the possible values c1, . . . , ck to

find the minimum value c such that a partition having an egalitarian welfare of at most c
exists. This solves MIN-EG. J

I Corollary 19. If WONDERFUL-PARTITION can be decided in time T (n), then MIN-EG

can be solved in O((n2 + T (n)) · log2 n).

Given the polynomial time equivalence between these two problems, it follows that
solving MIN-EG is in general computationally intractable because WONDERFUL-PARTITION

is NP-hard as soon as the approval sets are not intervals [18].
Nevertheless, there exists a special class of costs that can be solved using our dynamic

programming approach for WONDERFUL-PARTITION described in Section 2.1. Such a class
is a generalization of what we discussed in Section 3: Namely, each agent has an ideal group
size si, and the closer the coalition size is to si the lower the cost. We align to the Hedonic
Games literature calling this property naturally single-peakedness.9

I Definition 20. A cost function cost : N æ RØ0 is said to be naturally single-peaked if
there exists an ideal group size, a peak, p œ [n] such that h < k Æ p or h > k Ø p imply that
cost(k) < cost(h) holds.

We observe that the reduction from MIN-EG to WONDERFUL-PARTITION described
in Proposition 18 produces an interval instance in the case of naturally single-peaked cost
functions. With this, we obtain the following theorem.

I Theorem 21. MIN-EG for naturally single-peaked costs can be found in time O(n5 log2 n).

Proof. We can use a similar idea as in the polynomial time reduction from MIN-EG to
WONDERFUL-PARTITION, as described in Proposition 18. In MIN-EG we are looking for
a partition that minimizes the cost of the agent having the highest disutility. Here, since
we consider naturally single-peaked preferences, the disutility of an agent i is decreased
the closer the size of their assigned group |fi(i)| is to their ideal group size si (the peak
value of agent i). We can now fix, for a value c, some distances �,�Õ such that costi(s) Æ

c for each s œ [si ≠ �, si + �Õ]. Therefore, we define that any agent i approves their
assigned group size if it is in the interval [si ≠ �, si + �Õ]; this defines the instance of
WONDERFUL-PARTITION-INTERVALS to be solved for determining if there exists a partition
of having an egalitarian cost of at most c.

Now, applying Corollary 19 and Theorem 3, the statement follows. J

9 We say naturally as general single-peakedness may be defined w.r.t. any fixed ordering of coalition sizes.
In our setting we consider cost functions that are single-peaked w.r.t. the natural ordering 1, . . . , n.
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Notice that the computational complexity guaranteed by Theorem 17 is way more e�cient
than the one of Theorem 21. However, the former holds true for very specific naturally
single-peaked costs, while the latter establishes the tractability of MIN-EG whenever agents
have naturally single-peaked costs.

5 Conclusions

We resolved an open problem posed a decade ago by Gerhard Woeginger by giving a
polynomial-time algorithm via establishing a connection to a version of rectangle stabbing,
and investigated several interesting variants. We give a complete picture on the tractability
of the Hiking Problem itself and show that maximizing the number of satisfied participants
or deleting the minimal number such that the remaining participants admit a wonderful
partition is polynomial time solvable. The tractability of both the original decision-, and the
according optimization problems is crucially enabled by the existence of optimal solutions
that exhibit simple and intuitive structural properties, fueling the algorithmic solutions based
on Dynamic Programming. Last but not least, we employ our solution to e�ciently compute
a partition that maximizes the egalitarian welfare for anonymous naturally single-peaked
Hedonic Games. We note that our approach also works for general interval instances, that
is, for a given permutation ‡ of numbers 1, . . . , n, intervals are defined over the numbers
in order of the permutation, i.e., ‡(1), . . . ,‡(n). This extends our results from naturally
single-peaked to general single-peaked cost functions. The problem of minimizing utilitarian
cost for general single-peaked cost functions remains open.

References
1 José Alcalde and Pablo Revilla. Researching with whom? Stability and manipulation. Journal

of Mathematical Economics, 40(8):869–887, 2004. doi:10.1016/j.jmateco.2003.12.001.
2 Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik Peters.

Fractional hedonic games. ACM Transactions on Economics and Computation, 7(2):1–29,
2019. doi:10.1145/3327970.

3 Haris Aziz, Felix Brandt, and Paul Harrenstein. Pareto optimality in coalition formation.
Games and Economic Behavior, 82:562–581, 2013. doi:10.1016/j.geb.2013.08.006.

4 Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing desirable partitions in additively
separable hedonic games. Artificial Intellgence, 195:316–334, 2013. doi:10.1016/J.ARTINT.
2012.09.006.

5 Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Julián Mestre, and Hanjo Täubig. Welfare
maximization in fractional hedonic games. In International Joint Conference on Artificial
Intelligence, IJCAI 2015, pages 461–467. AAAI Press, 2015. URL: http://ijcai.org/
Abstract/15/071.

6 Haris Aziz, Paul Harrenstein, Jérôme Lang, and Michael J. Wooldridge. Boolean hedonic games.
In Principles of Knowledge Representation and Reasoning, KR 2016, pages 166–175. AAAI
Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12869.

7 Haris Aziz and Raul Savani. Hedonic games. In Handbook of Computational Social Choice.
Handbook of Computational Social Choice. Cambridge University Press, 2016.

8 Coralio Ballester. Np-completeness in hedonic games. Games and Economic Behavior,
49(1):1–30, 2004. doi:10.1016/j.geb.2003.10.003.

9 Suryapratim Banerjee, Hideo Konishi, and Tayfun Sönmez. Core in a simple coalition formation
game. Social Choice and Welfare, 18:135–153, 2001. doi:10.1007/s003550000067.

10 Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. On the computation of fully
proportional representation. Journal of Artificial Intelligence Research, 47:475–519, 2013.
doi:10.1613/JAIR.3896.

11 Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Molitor. Tolerance is necessary for
stability: Single-peaked swap schelling games. In International Joint Conference on Artificial
Intelligence, IJCAI 2022, pages 81–87, 2022. doi:10.24963/IJCAI.2022/12.

ICALP 2024

https://doi.org/10.1016/j.jmateco.2003.12.001
https://doi.org/10.1145/3327970
https://doi.org/10.1016/j.geb.2013.08.006
https://doi.org/10.1016/J.ARTINT.2012.09.006
https://doi.org/10.1016/J.ARTINT.2012.09.006
http://ijcai.org/Abstract/15/071
http://ijcai.org/Abstract/15/071
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12869
https://doi.org/10.1016/j.geb.2003.10.003
https://doi.org/10.1007/s003550000067
https://doi.org/10.1613/JAIR.3896
https://doi.org/10.24963/IJCAI.2022/12


48:18 Solving Woeginger’s Hiking Problem

12 Duncan Black. On the rationale of group decision-making. Journal of political economy,
56(1):23–34, 1948. doi:10.1086/256633.

13 Niclas Boehmer and Edith Elkind. Individual-based stability in hedonic diversity games.
In AAAI Conference on Artificial Intelligence, AAAI 2020, pages 1822–1829, 2020. doi:
10.1609/AAAI.V34I02.5549.

14 Anna Bogomolnaia and Matthew O. Jackson. The stability of hedonic coalition structures.
Games and Economic Behavior, 38(2):201–230, 2002. doi:10.1006/GAME.2001.0877.

15 Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemaspaandra. Bypassing
combinatorial protections: Polynomial-time algorithms for single-peaked electorates. Journal
of Artificial Intelligence Research, 53:439–496, 2015. doi:10.1613/JAIR.4647.

16 Robert Bredereck, Edith Elkind, and Ayumi Igarashi. Hedonic diversity games. In International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pages 565–573,
2019. URL: http://dl.acm.org/citation.cfm?id=3331741.

17 Andrei Constantinescu, Pascal Lenzner, Rebecca Rei�enhäuser, Daniel Schmand, and Giovanna
Varricchio. Solving woeginger’s hiking problem: Wonderful partitions in anonymous hedonic
games, 2023. arXiv:2311.02067.

18 Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard
Woeginger. Group activity selection problem with approval preferences. International Journal
of Game Theory, 47(3):767–796, 2018. doi:10.1007/S00182-017-0596-4.

19 Jacques H Dreze and Joseph Greenberg. Hedonic coalitions: Optimality and stability. Econo-
metrica: Journal of the Econometric Society, pages 987–1003, 1980. doi:10.2307/1912943.

20 Edith Elkind, Piotr Faliszewski, and Piotr Skowron. A characterization of the single-peaked
single-crossing domain. Social Choice and Welfare, 54(1):167–181, 2020. doi:10.1007/
S00355-019-01216-3.

21 Edith Elkind and Michael J. Wooldridge. Hedonic coalition nets. In International Joint
Conference on Autonomous Agents and Multiagent Systems AAMAS 2009, pages 417–424,
2009. URL: https://dl.acm.org/citation.cfm?id=1558070.

22 Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Shahar, and Maxim Sviridenko.
Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM
Transactions on Algorithms, 4(3):34:1–34:17, 2008. doi:10.1145/1367064.1367074.

23 Tobias Friedrich, Pascal Lenzner, Louise Molitor, and Lars Seifert. Single-peaked jump
schelling games. In International Symposium on Algorithmic Game Theory, SAGT 2023, pages
111–126, 2023. doi:10.1007/978-3-031-43254-5_7.

24 Martin Hoefer, Sigal Oren, Roger Wattenhofer, and Giovanna Varricchio. Computational
Social Dynamics (Dagstuhl Seminar 22452). Dagstuhl Reports, 12(11):28–44, 2023. doi:
10.4230/DagRep.12.11.28.

25 Jan Karel Lenstra, Franz Rendl, Frits Spieksma, and Marc Uetz. In memoriam Gerhard
Woeginger. Journal of Scheduling, 25(5):503–505, 2022. doi:10.1007/s10951-022-00748-4.

26 Martin Olsen. Nash stability in additively separable hedonic games and community structures.
Theory of Computing Systems, 45:917–925, 2009. doi:10.1007/s00224-009-9176-8.

27 Dominik Peters. Complexity of hedonic games with dichotomous preferences. In AAAI
Conference on Artificial Intelligence, AAAI 2016, pages 579–585. AAAI Press, 2016. doi:
10.1609/AAAI.V30I1.10047.

28 Toby Walsh. Uncertainty in preference elicitation and aggregation. In AAAI Conference on
Artificial Intelligence, AAAI 2007, pages 3–8, 2007. URL: http://www.aaai.org/Library/
AAAI/2007/aaai07-001.php.

29 Gerhard Woeginger. Core stability in hedonic coalition formation. In International Conference
on Current Trends in Theory and Practice of Computer Science, SOFSEM 2013, pages 33–50.
Springer, 2013. doi:10.1007/978-3-642-35843-2_4.

30 Lan Yu, Hau Chan, and Edith Elkind. Multiwinner elections under preferences that are
single-peaked on a tree. In International Joint Conference on Artificial Intelligence, IJCAI
2013, pages 425–431, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/
paper/view/6777.

https://doi.org/10.1086/256633
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1006/GAME.2001.0877
https://doi.org/10.1613/JAIR.4647
http://dl.acm.org/citation.cfm?id=3331741
https://arxiv.org/abs/2311.02067
https://doi.org/10.1007/S00182-017-0596-4
https://doi.org/10.2307/1912943
https://doi.org/10.1007/S00355-019-01216-3
https://doi.org/10.1007/S00355-019-01216-3
https://dl.acm.org/citation.cfm?id=1558070
https://doi.org/10.1145/1367064.1367074
https://doi.org/10.1007/978-3-031-43254-5_7
https://doi.org/10.4230/DagRep.12.11.28
https://doi.org/10.4230/DagRep.12.11.28
https://doi.org/10.1007/s10951-022-00748-4
https://doi.org/10.1007/s00224-009-9176-8
https://doi.org/10.1609/AAAI.V30I1.10047
https://doi.org/10.1609/AAAI.V30I1.10047
http://www.aaai.org/Library/AAAI/2007/aaai07-001.php
http://www.aaai.org/Library/AAAI/2007/aaai07-001.php
https://doi.org/10.1007/978-3-642-35843-2_4
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6777
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6777


An Optimal Sparsification Lemma for Low-Crossing
Matchings and Its Applications to Discrepancy and
Approximations
Mónika Csikós �

Université Paris Cité, IRIF, CNRS UMR 8243 and DI-ENS, Université PSL, France

Nabil H. Mustafa �

Université Sorbonne Paris Nord, Laboratoire LIPN, CNRS 7030, France

Abstract
Matchings with low crossing numbers were originally introduced in the late 1980s in the seminal
works of Welzl [35, 36] and Chazelle-Welzl [11]. They have since become fundamental structures in
combinatorics, computational geometry, and algorithms.

In this paper, we study matchings with low crossing numbers and their relation to random
samples. In particular, our main technical result states that, given a set system (X,S) with dual
VC-dimension d and a parameter – œ (0, 1], a random set of �̃

!
n
1+–

"
edges of

!
X
2
"
contains a

linear-sized matching with crossing number O
!
n
1≠–/d

"
.

Furthermore, we show that this bound is optimal up to a logarithmic factor.
By incorporating the above sampling step to existing algorithms, we obtain improved running

times, by a factor of �̃(n), for computing matchings with low crossing numbers. This immediately
implies new bounds for a number of well-studied problems, such as combinatorial discrepancy,
Á-approximations and their applications.

To the best of our knowledge, these are the first near-linear time algorithms for general, non-
geometric set systems, for a) matchings with sub-linear crossing numbers, and b) discrepancy beating
the standard deviation bound. As an immediate consequence we get fast algorithms for computing
o(1/Á

2)-sized Á-approximations.
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1 Introduction

A perfect matching of a set X is a partition of X into |X|/2 disjoint pairs1. Given a set
system (X,S), we say that a set S œ S crosses a pair {x, y} ™ X i� |S fl {x, y}| = 1. Then
for a perfect matching M of X, the crossing number of M with respect to S is defined to be
the maximum number of edges of M crossed by any S œ S.

Matchings with low crossing numbers were originally introduced by Welzl [35, 36] for
the special case where X is a set of points in Rd and S is induced on X by half-spaces. His
result was then improved and generalized by Chazelle and Welzl [11] to a broader class of
set systems using the notion of the dual shatter function fiú

S of (X,S), which is defined as
follows:

1 If |X| is odd, then we partition X into Â|X|/2Ê disjoint pairs plus a singleton set.
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49:2 An Optimal Sparsification Lemma for Low-Crossing Matchings and Applications

For any k Æ |S|, fiú
S(k) denotes the maximum number of equivalence classes on X

defined by a k-element subfamily R ™ S, where x, y œ X are equivalent w.r.t. R i�
x belongs to the same sets of R as y. The number of such equivalence classes, for
a given R ™ S, is essentially the number of non-empty cells, w.r.t. X, in the Venn
diagram of the sets of R.

The family of set systems with polynomially bounded dual-shatter function includes set
systems with bounded dual VC-dimension and most of the commonly-studied geometric cases
– e.g., the primal and dual set systems induced by half-spaces, balls, intersections/unions of
bounded complexity geometric objects and more generally, algebraic varieties [26].

The following theorem on the existence of matchings with low crossing number is a
celebrated and fundamental result in computational geometry.

I Theorem A ([11, 20]). Let (X,S) be a set system with n = |X|, and dual shatter
function fiú

S(k) = O(kd). Then there exists a perfect matching on X with crossing number
O

!
n1≠1/d + ln |S|

"
.

Theorem A has had numerous applications, including range searching, extremal results for
hypergraphs with bounded VC dimension, low-discrepancy colorings in geometric hypergraphs,
near-optimal sized epsilon-approximations, to name a few. We refer the reader to these
books [10, 25, 29] for more information.

The power of Theorem A, as well as the di�culty in e�ciently computing such matchings,
come from the same source: a vanishingly small proportion of matchings are low-crossing
matchings. Indeed, it is not di�cult to see that a random matching will have crossing number
� (n). For example, any set containing n/2 elements of X will cross, in expectation, a linear
number of edges of such a matching.

This contrasts sharply with the case for the related structures of Á-nets and Á-approxima-
tions: a large-enough random sample is an Á-net/Á-approximation with high probability and
thus a constant fraction of all subsets of X are Á-nets and Á-approximations. The use of
randomness fails in our case since these Á-net/Á-approximation bounds rely on the fact that
each set in the set system has large measure – at least Á-th measure – and the behavior of the
random sample can be analyzed independently for each set, which are all known in advance.

Thus the ingenious proof of Theorem A takes a di�erent route: it constructs a matching
in n/2 iterations, where each iteration considers all remaining edges and picks one minimizing
a certain function. This is computationally expensive, and consequently, all old and recent –
with one exception – algorithms for building matchings with crossing numbers o(n) in general
set systems have �

!
n2"

running times, even when |S| = O (n) [11, 13, 18, 19].
The one exception is the algorithm proposed by Duco�e et al. [16], designed specifically

to get below the quadratic (in |X| + |S|) running time barrier: they show that there is a
universal constant c > 2 such that for any set system (X,S) with VC-dimension D and dual
VC-dimension d, one can compute a spanning path with crossing number Õ

!
n1≠1/(c·D·d)" in

time Õ
!
|S|+ n2≠1/(c·D·d)".

2 Our Results

Motivated by the above considerations, we revisit the key question, of independent interest,
of the utility of random sampling for constructing matchings with low crossing numbers.
Our main technical result is that although a random perfect matching is very far from
a low-crossing matching, a slightly larger random sample of edges contains a linear-sized
matching that is close to a low-crossing matching. More precisely:
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I Lemma 1 (Main lemma; Proof in Section 4). Let (X,S), n = |X|, be a set system with
dual shatter function fiú(k) = O(kd), and let – œ (0, 1], ” œ (0, 1) be two given parameters.
Let E be a uniform random sample from

!
X

2
"
, where each edge is picked i.i.d. with probability

p = min
;
2 lnn
n1≠–

+ 4 ln(2/”)
n2≠–

, 1
<
.

Then with probability at least 1 ≠ ”, E contains a matching of size n/4 of crossing number

O
1
n1≠–/d + ln |S|

2
.

Moreover, we show that the above is near-optimal.

I Lemma 2 (Optimality; Proof in Section 5). For any d Ø 2, c Ø 2, – > 0, and n0 œ N, there
is a set system (X,S) with |X| = n Ø n0, and dual shatter function fiú

S(k) = O(kd), such
that the following holds:

let E be a random edge-set obtained by selecting each edge in
!
X

2
"
i.i.d. with probability

p(n) = o
!
n–≠1"

. Then with probability at least 1/2, every matching in E of size
n/c has crossing number Ê

!
n1≠–/d

"
with respect to S, where the constants in the

asymptotic notation depend on d and c.

I Remark. The same asymptotic results hold for low-crossing spanning paths and spanning
trees.

We find Lemma 1 surprising for the following reason: the classical proof of Theorem A
assigns exponentially-increasing weights to the sets of S, which then dictate the choice of the
edge picked at each iteration. Thus a di�erent choice of the edge at iteration i could result in
a changing of the weight distribution, which then influences the sequence of edges picked for
all later iterations. At first glance, a random sample chosen once, and uniformly from

!
X

2
"

cannot simply assure that it will contain many edges from all possible exponentially many
paths possibly chosen by the algorithm.

In particular, if we fix an initial uniform sample of edges, and build the matching using
this sample (by always choosing a light edge from the sample, as in previous algorithms),
it introduces a bias (as the set of uncovered points depend on the initial sample of edges)
and we cannot assume anymore that among the uncovered points, every edge is picked i.i.d.
with a fixed probability. Indeed, with later iterations, the possible paths to be taken care
of increase exponentially and the initial random sample has low probability of containing a
good perfect matching.

Therefore, we take a di�erent, more subtle, approach in the analysis, similar in spirit to
the technique of quasi-uniform sampling of Varadarajan [34] and Chan et al.[9]:
1. instead of a perfect matching, we aim for a linear-sized partial matching with crossing

number O
!
n1≠–/d

"
. As we will prove, this requirement is weak-enough for a single sample

to work, but strong-enough so that to compute a perfect matching, O(logn) adaptive
uniform samples are su�cient.

2. instead of the classical algorithm, we propose a new randomized version where an edge
from our initial, fixed, random sample of edges is picked in each iteration with a carefully
chosen probability distribution that does depend on the changing weights in each iteration.

While Lemma 1 only guarantees the existence of a low-crossing partial matching, it can
be used to speed up the fastest existing algorithms, by computing a linear sized matching
and recursing on the uncovered points. This leads to the following result that improves the
running times of previous-best algorithm of Csikós and Mustafa [13] by nearly a factor of
� (n), at the cost of a higher, but still sub-linear crossing number.

ICALP 2024
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Table 1 (X,S) has dual-shatter function fi
ú(k) = O(kd), n = |X|, m = |S|.

Our Method Previous-best
Problem Guarantee Time Guarantee Time

matching with
low crossing number O

!
n1≠–/d + lnm lnn

"
Õ

1
n(1+–)+ 2–

d +m · n 2–
d

2
O

!
n1≠1/d + lnm lnn

" Õ
1
n2+ 2

d +m · n 2
d

2

[13]

O
1
n1≠1/O(d·2d) + lnm lnn

2 Õ
1
m+ n2≠1/O(d·2d)

2

[16]

combinatorial
discrepancy O

1
n1≠–/d lnm+ ln2 m lnn

2
Õ

1
n(1+–)+ 2–

d +m · n 2–
d

2
O

1Ô
n1≠1/d lnm

2 Õ
1
n2+ 2

d +m · n 2
d

2

[13]

I Corollary 3 (Proof in Appendix A.1). Let (X,S) be a set system with dual shatter function
fiú
S(k) = O(kd), n = |X| and – œ (0, 1]. Then there is a randomized algorithm which returns

a perfect matching of expected crossing number O
!
n1≠–/d + ln |S| lnn

"
in expected time

Õ
1
n1+–+ 2–

d + |S| · n 2–
d

2
.

I Remark. The algorithm of Corollary 3 can easily be modified to create a spanning path
with the same crossing number guarantee.

Figure 1 The matchings output by the algorithm of Corollary 3 on the set system induced by
half-spaces in R2 are shown below, for – = 0.25, 0.5 and 0.75.

Algorithmic Consequences
Besides a new trade-o� between quality and speed of computation, Corollary 3 has several
algorithmic applications.

1. A better sub-quadratic time (in |X| + |S|) algorithm. Setting a low value for the
parameter – œ (0, 1] allows us to get a running time that is close to linear, at the expense of the
crossing number. At the other end of the spectrum, we can get below the quadratic running
time barrier without sacrificing too much in the crossing number. This improves the result of
Duco�e et al. [16] – who computed a spanning path with crossing number Õ

!
n1≠1/(c·D·d)"

in time Õ
!
m+ n2≠1/(c·D·d)", where D = VCdim(X,S) – by letting – = d/(d+ 3). Besides

improving the crossing number, the new algorithm also does not depend on the primal VC
dimension.

I Corollary 4. Let (X,S) be a set system with dual shatter function fiú
S(k) = O(kd), n = |X|.

Then there is a randomized algorithm which returns a perfect matching of expected crossing
number O

!
n1≠1/(d+3) + ln |S| lnn

"
in expected time Õ

1
n2≠ 1

d+3 + |S| · n
2

d+3
2
.
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I Remark. In the work of Duco�e et al. [16], spanning paths were used as a key algorithmic
tool for computing the diameter of graphs. Their main result is a Õ

1
k n2≠1/O(d·2d)

2
time

algorithm to decide whether the diameter of a graph G with distance VC-dimension d is
at most k. Using Corollary 4 in their algorithmic framework ([16, Lemma 6]), we get an
algorithm that decides whether G has diameter at most k, in time O

!
k n2≠1/(d+3)".

2. Discrepancy. Using Corollary 3 in a standard iterative halving scheme [27] gives us faster
approximation algorithms for combinatorial discrepancy, again improving the previous-best
algorithms by nearly a factor of �̃(n), at the cost of a slightly higher discrepancy.

I Corollary 5 (Proof in Appendix A.2). Let (X,S), n = |X|, m = |S|, be a set system and d be a
constant such that fiú

S(k) = O
!
kd

"
. For any 0 < – Æ 1, there is a randomized algorithm which

constructs a coloring ‰ of X with expected discrepancy O
1

n1≠–/d lnm+ ln2 m logn
2
, in

expected time Õ
1
n1+–+ 2–

d +m · n 2–
d

2
.

This allows us to get the first near-linear time algorithm, for general non-geometric set
systems, that beats the standard deviation discrepancy bound:

I Corollary 6. Let (X,S), n = |X|, m = |S|, be a set system and d be a constant such that
fiú
S(k) = O

!
kd

"
. For any 0 < Á Æ 1, there is a randomized algorithm which constructs a

coloring ‰ of X with expected discrepancy O

3Ò
n1≠ Á

d+2 lnm+ ln2 m logn
4
, in expected time

Õ
!
n1+Á +m1+Á

"
.

3. Á-Approximations. The iterative application of Corollary 5 implies the following faster
algorithm for computing Á-approximations [10, 29, 32, 24, 14].

I Corollary 7. Let Á œ (0, 1), (X,S) be a set system and c, d,D be constants such that
fiú
S(k) Æ ckd and VCdim(X,S) Æ D. Then for any – œ (0, 1), there is a randomized

algorithm which returns an Á-approximation A µ X of size

O

A3
1
Á2

log 1
Á

4 d
d+–

B

in expected time

Õ

A3
D

Á2

41+–+ 2–
d

+
3
D

Á2

4D+ 2–
d

B
.

3 Previous Results

Matchings with low crossing numbers

The study of perfect matchings (along with spanning paths and spanning trees) with low
crossing number was originally introduced for geometric range searching [35, 11]. Since then,
they have found applications in various fields, for instance, discrepancy theory [27], learning
theory [3], or algorithmic graph theory [16].

The proof of Theorem A is constructive, using the Multiplicative Weights Update (MWU)
technique. Moreover it works for any (abstract) set system (X,S) with polynomially bounded
dual-shatter function. It builds a low-crossing matching iteratively, guided by a weight

ICALP 2024
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Algorithm 1 MatchingMWU
!
(X,S)

"
.

Ê1(S) Ω 1 for all S œ S
X1 Ω X

for i = 1, . . . , n/2 do
ei Ω the lightest edge in

!
Xi
2

"
w.r.t. Êi

Obtain Êi+1 from Êi by doubling the weights of each set crossing ei

Xi+1 Ω Xi \ endpoints(ei)
return

)
e1, . . . , en/2

*

function Ê on S, with initial weights set to 1. At each iteration, the algorithm adds the
“lightest” edge to the matching – that is, the edge that is crossed by sets of minimum
total weight. At the end of an iteration, it updates Ê by doubling the weight of each set
crossing the picked edge. See Algorithm 1. The algorithmic bottleneck is in finding such
an edge: for an abstract set system without additional structure, this takes O(n2m) time
for each of the n/2 iterations, giving a total running time of O

!
n3m

"
, where n = |X| and

m = |S|. Using MWU together with ideas from linear programming duality have led to the
current-best running time for computing matchings with crossing number O

!
n1≠1/d"

in time
Õ

!
n2+2/d +mn2/d"

[13].
A di�erent approach was proposed by Har-Peled [19] (see also [17]). His result implies

that if (X,S) has a spanning tree with crossing number Ÿ = �(n“) for some “ œ [1/ logn, 1],
then a spanning tree of crossing number O(Ÿ/“) can be found by solving an LP on

!
n

2
"

variables and m+ n constraints, see also [18]. Another result for general set systems having
spanning trees with crossing number Ÿ, is based on rounding fractional solutions of minimax
integer programs with matroid constraints. This method gives a randomized algorithm that
constructs a spanning tree with expected crossing number at most Ÿ +O(

Ô
Ÿ logm) in time

Õ(mn4 + n8) [12].
For the geometric case, where X is a set of points in Rd and S is induced by half-spaces,

Chan [8] gave a O (n logn) time algorithm to compute a matching with crossing number
O

!
n1≠1/d"

using hierarchical cuttings. More generally, spatial partitioning by polynomials
has also been extensively studied in the last decade [1, 2].

Discrepancy

Spencer [31] showed that for any set system (X,S), there exists a coloring of X with
discrepancy O

1
n ln(m/n)

2
, which is tight and improves the general bound for m = O (n).

A series of algorithms for its construction started with the breakthrough work of Bansal [5],
who gave the first polynomial-time randomized algorithm (using SDP rounding) to compute a
coloring with discrepancy O (

Ô
n ln(m/n)), which matches the bound of Spencer form = O(n).

Later Lovett and Meka [23] gave a combinatorial randomized algorithm for constructing
colorings with discrepancy O

1
n ln(m/n)

2
and improved the expected running time to

Õ
!
n3 +m3"

; see also [30] for a di�erent proof. The algorithm of Bansal was de-randomized [7]
(but still used a non-constructive method to prove the feasability of an underlying SDP), and
later, Levy et al.[22] used the multiplicative weights update technique to give a deterministic
O

!
n4m

"
-time algorithm to compute a two-coloring with discrepancy O

1
n ln(m/n)

2
for an

arbitrary set system. See also [6] for a random-walk algorithm for Banaszczyk’s discrepancy
bound, with running time O

!
n3.3728.. + nm2.3728..". Most recently, Larsen proposed an
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O(n2m ln(2 +m/n) + n3) time algorithm with hereditary discrepancy guarantees [21]. The
discrepancy guarantees of [21] can also be achieved with an Õ(nnz(A) + n3) time algorithm
[15], where A is the membership matrix of (X,S). We note that many of these algorithms
can be applied in more general settings (e.g. for real-valued matrices), however none of
them provide a sub-quadratic time algorithm for the combinatorial discepancy problem in
structured set systems.

4 Proof of the Main Lemma

In this section, we prove Lemma 1. Given a weight function Ê : S æ R+, for e œ
!
X

2
"
, set

weight(e,Ê) :=
ÿ

SœS :
e crosses S

Ê(S).

Then for any integer k > 0, by “the k lightest edges of
!
X

2
"
w.r.t. Ê”, we refer to the k edges

with the smallest values of weight(·,Ê) (ties broken arbitrarily).
We show the required property of the random sample E via the analysis of the randomized

algorithm RelaxedMWU presented in Algorithm 2. In particular, Lemma 1 immediately
follows from these two properties.

I Lemma 8. Let (X,S) be a set system with dual shatter function fiú
S(k) = O

!
kd

"
, – œ (0, 1]

and E ™
!
X

2
"
. For any halting iteration T = t, the set of edges returned by Relaxed-

MWU
!
(X,S),–, E

"
have crossing number O

!
t1≠–/d + ln |S|

"
.

I Lemma 9. If E ™
!
X

2
"
is an i.i.d. sample where each edge is picked with probability

p = min
;
2 lnn
n1≠–

+ 4 ln(2/”)
n2≠–

, 1
<
,

then RelaxedMWU((X,S),–, E) returns at least n/4 edges with probability at least 1 ≠ ”.
I Remark. Lemma 8 does not use the fact that E is chosen randomly, or the randomness
used in the algorithm; these are only used by Lemma 9.

Algorithm 2 RelaxedMWU
!
(X,S),–, E

"
.

Ê1(S) Ω 1 for all S œ S
X1 Ω X
for iteration i = 1, . . . , n/2 do

Ei Ω the |Xi|2≠– lightest edges in
!
Xi

2
"
w.r.t. Êi

if E fl Ei = ÿ then

return {e1, . . . , ei≠1} and set T = i ≠ 1
else

Pick an edge ei from E fl Ei uniformly at random
Compute Êi+1 from Êi by doubling the weight of each set crossing ei
Xi+1 Ω Xi \ endpoints(ei)

return
)
e1, . . . , en/2

*
and set T = n/2

I Remark. The precise definition of Ei (line 4 of Algorithm 2) should consider the Â|Xi|2≠–Ê
lightest edges. For the simplicity of presentation, we replace Â|Xi|2≠–Ê with |Xi|2≠– through-
out the proof.
We now prove the two key properties of RelaxedMWU separately.
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4.1 Proof of Lemma 8
For any function f : S æ R, define f(S) :=

q
SœS

f(S).

We will use the following key lemma; its proof will be presented later.

I Lemma 10. Let (X,S) be a set system with dual shatter function fiú
S(k) Æ c1 · kd. Then

given any Y µ X, a weight function w : S æ Z+, and an integer ¸ œ
Ë
|Y |,

!|Y |
2

"È
, there are

at least ¸ distinct edges in
!
Y

2
"
such that the total weight of the sets of S crossing each edge

is at most

(10c1)1/d ·
w(S) · ¸1/d

|Y |2/d
.

Let {e1, . . . , et} be the output of RelaxedMWU and for each i œ [1, t], set ÷i =
weight(ei,Êi).

At the start of iteration i, we have |Xi| = n≠ 2i+2 and we pick one of the |Ei| = |Xi|2≠–

lightest edges of
!
Xi

2
"
w.r.t. Êi. Applying Lemma 10 with Y = Xi, Ê = Êi and ¸ = |Ei|, gives

an upper bound on the weight of each edge in Ei w.r.t. Êi. In particular, as ei œ Ei, we have

÷i Æ (10c1)1/d ·
Êi(S) · |Xi|(2≠–)/d

|Xi|2/d
= (10c1)1/d ·

Êi(S)
|Xi|–/d

= (10c1)1/dÊi(S)
(n ≠ 2i+ 2)–/d

. (1)

Let Ÿt denote the maximum number of edges in {e1, . . . , et} that are crossed by a set in
S. By the weight-update rule of the algorithm, we have

Êt+1(S) Ø max
SœS

Êt+1(S) = 2Ÿt ,

and for any j œ [1, t]

Êj+1(S) = Êj (S) + ÷j = Êj (S)
3
1 + ÷j

Êj (S)

4
.

Applying the above equality for j = t, . . . , 1 iteratively and using Ê1(S) = |S|, we obtain

Êt+1(S) = Êt (S)
3
1 + ÷t

Êt (S)

4
= · · · = |S| ·

tŸ

j=1

3
1 + ÷j

Êj(S)

4
Æ |S| · exp

A
tÿ

j=1

÷j

Êj(S)

B
.

Combining the upper and lower bounds for Êt+1 (S), we get

2Ÿt Æ Êt+1(S) Æ |S| · exp

Q

a
tÿ

j=1

÷j
Êj(S)

R

b =∆ Ÿt Æ 1
ln 2

Q

aln |S|+
tÿ

j=1

÷j
Êj(S)

R

b . (2)

Using the upper-bound on ÷j from Equation (1), we conclude that for any stopping time
t œ [1, n/2], the matching {e1, . . . , et} returned by RelaxedMWU has crossing number at
most

1
ln 2

A
ln |S|+

tÿ

j=1

(10c1)1/d

(n ≠ 2j+2)–/d

B
Æ 1

ln 2

A
ln |S|+

tÿ

j=1

(10c1)1/d

(2t ≠ 2j + 2)–/d

B A
since t Æ n

2

B

Æ 1
ln 2

A
ln |S|+

tÿ

j=1

(10c1)1/d

(t ≠ j+1)–/d

B

= 1
ln 2

A
ln |S|+

tÿ

j=1

(10c1)1/d

j
–/d

B

= ln |S|
ln 2 +O

!
t
1≠–/d

"
= O

!
t
1≠–/d + ln |S|

"
.
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This concludes the proof of Lemma 8 assuming Lemma 10. We now return to the proof
of Lemma 10, for which we need the following two statements.

I Theorem 11 (Turán’s Theorem [33]). Let G = (V,E) be a graph with no clique of size
r + 1. Then

|E| Æ
3
1 ≠ 1

r

4
n2

2 .

I Lemma 12 (Packing Lemma [20, 28, 29]). Let (X,S) be a set system with shatter function
fiS(k) Æ c1 · kd and let ” œ (1, |X|) be a parameter. Furthermore, let P µ S be a ”-separated
set; that is, |S1�S2| Ø ” for all S1, S2 œ P (where S1�S2 denotes the symmetric di�erence
of S1 and S2). Then

|P| Æ 2c1
3
|X|
”

4d

.

Proof of Lemma 10. Let (Sw,RY ) denote the set system dual to (Y,S) with multiplicities
given by w(·). That is, the base set Sw consists of sets of S, where each S œ S has w(S)
copies in Sw. And RY consists of |Y | sets, one for each element of Y :

RY =
)
Ry : y œ Y

*
, where Ry =

)
S œ Sw : y œ S

*
.

Observe that
for any x, y œ Y , the set Rx�Ry contains precisely the sets in Sw that cross the edge xy,
|Sw| = w(S), and
the shatter function of (Sw,RY ) is the dual shatter function of (Y,S).

Consider a graph G on Y , where there is an edge between two elements x, y œ Y if and only
if xy is crossed by more than ”¸ sets in Sw, where we set

”¸ =
3
10c1 ·

w(S)d¸

|Y |2

41/d

.

Now the Packing Lemma implies that any ”¸-separated subset of sets in RY has cardinality
at most

C¸ = 2c1
3
w(S)

”¸

4d

= 2c1
w(S)d

10c1 · w(S)d¸

|Y |2
= |Y |2

5¸
.

This implies that G does not contain a clique on C¸ + 1 vertices, and so by Turán’s

Theorem, the number of pairs that are not edges in G is at least
3
|Y |
2

4
≠

3
1 ≠ 1

C¸

4
|Y |2

2 = |Y |2

2C¸

≠ |Y |
2 = 5¸

2 ≠ |Y |
2 Ø ¸,

where we used that |Y | Æ ¸. Thus, we have shown that there are at least ¸ edges which cross
sets of total weight at most ”¸. This concludes the proof of Lemma 10 and thus the proof of
Lemma 8. J
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4.2 Proof of Lemma 9
Our goal is to prove that if E ™

!
X

2
"
is a random set of edges, where each edge from

!
X

2
"
is

picked i.i.d. with probability

p = min
;
2 lnn
n1≠–

+ 4 ln(2/”)
n2≠–

, 1
<
,

then the random halting time T of RelaxedMWU
!
(X,S),–, E

"
satisfies

P [ T Æ n/4 ] Æ ”.

If p = 1, then the statement is trivially true, therefore assume that p < 1.
Note that we have two di�erent sources of randomness: we run the algorithm on an

initial sample E of edges and at each iteration, if E fl Ei ”= ÿ, we sample an edge ei œ E fl Ei
uniformly at random. The notation P[A] denotes the probability of event A under both
randomness sources.

We will upper bound the probabilities P [ T = i ] for each i = 0, . . . , n/4. For the case
i = 0, since E is an i.i.d. uniform random sample of

!
X

2
"
, we have

P [ T = 0 ] = P [ E fl E1 = ÿ ] = (1 ≠ p)|E1| = (1 ≠ p)n
2≠–

.

Now consider the case i Ø 1. Observe that the edge-set Ei depends on the edges chosen in
earlier iterations j < i. To signify this, for any sequence of i ≠ 1 edges (e1, . . . , ei≠1), let
Ei(e1, . . . , ei≠1) denote the set of (n ≠ 2(i ≠ 1))2≠– lightest edges assuming that e1, . . . , ei≠1

were added to the matching and the weights of the sets of S were adjusted multiplicatively
accordingly.

We say that a sequence (e1, . . . , ei) is feasible if e1 œ E1, e2 œ E2(e1), . . . , ei œ
Ei(e1, . . . , ei≠1). We denote the set of all feasible sequences of length i by Ci.

For a c œ Ci, we use the notation c
0 = ÿ, and c

j = (e1, . . . , ej) for all j œ [1, i]; note
that c

i = c. Let ei = (e1, . . . , ei) denote the sequence of random variables representing
the edges actually chosen at each step by the algorithm up to iteration i, with e0 = ÿ and
ej = (e1, . . . , ej) for all j œ [1, i].

In the analysis, we will apply the law of total probability over the events that the algorithm
picks the edges given by a certain feasible sequence c œ Ci, that is, ei = c

i.
We break the analysis into three steps.

1. Unfolding the probability P [ T = i ]

Given the above notation, we have

P [ T = i ] = P [ E fl E1 ”= ÿ, . . . , E fl Ei ”= ÿ, E fl Ei+1 = ÿ ]

=
ÿ

cœCi

P
#
E fl E1(c0) ”= ÿ, . . . , E fl Ei(ci≠1) ”= ÿ, E fl Ei+1(ci) = ÿ

-- ei = ci
$
· P

#
ei = ci

$

Æ
ÿ

cœCi

P
#
E fl Ei+1(ci) = ÿ

-- ei = ci
$
· P

#
ei = ci

$
.

Note that Ei+1(ci) is a fixed set once we are given c
i = (e1, . . . , ei). Using Bayes’ theorem,

we can express the conditional probabilities on the R.H.S. of the above inequality as

P
#
E fl Ei+1(ci) = ÿ

-- ei = ci
$
=

P
#
ei = ci

-- E fl Ei+1(ci) = ÿ
$
· P

#
E fl Ei+1(ci) = ÿ

$

P [ ei = ci ] .
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Thus, we get

P [ T = i ] Æ
ÿ

cœCi

P
#
ei = c

i | E fl Ei+1(ci) = ÿ
$
· P

#
E fl Ei+1(ci) = ÿ

$
.

Fixing ei = c
i completely determines the set of edges in Ei+1(ci), and so

=
ÿ

cœCi

P
#
ei = c

i | E fl Ei+1(ci) = ÿ
$
· (1 ≠ p)|Ei+1(ci)|.

We now proceed by bounding the probability P
#
ei = c

i | E fl Ei+1(ci) = ÿ
$
, iteration by

iteration:

P
#
ei = c

i | E fl Ei+1(ci) = ÿ
$

= P
#
ei = ei | E fl Ei+1(ci) = ÿ, ei≠1 = c

i≠1 $
· P

#
ei≠1 = c

i≠1 | E fl Ei+1(ci) = ÿ
$

= . . . =
iŸ

j=1
P

#
ej = ej | E fl Ei+1(ci) = ÿ, ej≠1 = c

j≠1 $
,

recalling that e0 = c
0 = ÿ. We conclude that

P [ T = i ] Æ
ÿ

cœCi

(1 ≠ p)|Ei+1(ci)| ·
iŸ

j=1
P

#
ej = ej | E fl Ei+1(ci) = ÿ, ej≠1 = c

j≠1 $
. (3)

2. Bounding the probabilities P[ ej =ej |Efl Ei+1(ci) = ÿ, ej≠1=c
j≠1

], jœ [1, i]

Note that the condition ej≠1 = c
j≠1 fixes the set Ej(cj≠1). As ej was picked uniformly from

E fl Ej(cj≠1), we further condition on all possible choices of E fl Ej(cj≠1), with the constraint
that E fl Ei+1(ci) = ÿ:

P
#
ej = e

j | E fl Ei+1(ci) = ÿ, ej≠1 = cj≠1 $

=
ÿ

SÕ™Ej(cj≠1)

1
P

#
ej = e

j
-- E fl Ei+1(ci) = ÿ, ej≠1 = cj≠1

, E fl Ej(cj≠1) = S
Õ $ 2

·
1
P

#
E fl Ej(cj≠1) = S

Õ -- E fl Ei+1(ci) = ÿ, ej≠1 = cj≠1 $ 2

Note that if SÕ is such that ej /œ SÕ, then the first probability in the above product is 0.
Similarly, if SÕ fl Ei+1(ci) ”= ÿ, then the second probability is equal to 0. Continuing,

=
ÿ

SÕ™Ej(cj≠1)\Ei+1(ci) :
ejœSÕ

1
P

#
ej = e

j
-- E fl Ei+1(ci) = ÿ, ej≠1 = cj≠1

, E fl Ej(cj≠1) = S
Õ $ 2

·
1
P

#
E fl Ej(cj≠1) = S

Õ -- E fl Ei+1(ci) = ÿ, ej≠1 = cj≠1 $ 2

=
ÿ

SÕ™Ej(cj≠1)\Ei+1(ci) :
ejœSÕ

3
1

|SÕ|

4
·
1
p
|SÕ| · (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|≠|SÕ|

2
.
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Rearranging the sum by the sizes of the SÕ’s containing ej :

=
|Ej(cj≠1)\Ei+1(ci)|ÿ

¸=1

3
|Ej(cj≠1) \ Ei+1(ci)| ≠ 1

¸ ≠ 1

4
· 1

¸
· p¸ · (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|≠¸

=
|Ej(cj≠1)\Ei+1(ci)|ÿ

¸=1

¸

|Ej(cj≠1) \ Ei+1(ci)|

3
|Ej(cj≠1) \ Ei+1(ci)|

¸

4

· 1
¸
· p¸ · (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|≠¸

= 1
|Ej(cj≠1) \ Ei+1(ci)|

|Ej(cj≠1)\Ei+1(ci)|ÿ

¸=1

3
|Ej(cj≠1) \ Ei+1(ci)|

¸

4

· p¸ · (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|≠¸
.

Using the Binomial theorem, and adjusting for the case ¸ = 0,

= 1
|Ej(cj≠1) \ Ei+1(ci)|

1
(p+ (1 ≠ p))|Ej(cj≠1)\Ei+1(ci)| ≠ (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|

2

= 1
|Ej(cj≠1) \ Ei+1(ci)|

1
1 ≠ (1 ≠ p)|Ej(cj≠1)\Ei+1(ci)|

2
.

We can thus conclude that, setting a = |Ej(cj≠1) \ Ei+1(ci)|,

P
#
ej = ej | E fl Ei+1(ci) = ÿ, ej≠1 = c

j≠1 $
= 1

a
(1 ≠ (1 ≠ p)a) Æ p, (4)

where the last bound follows from Bernoulli’s inequality (1 + x)r Ø 1 + rx for x Ø ≠1 and
r Ø 1, which holds in our case since x = ≠p Ø ≠1 and r = |Ej(cj≠1) \ Ei+1(ci)| Ø 1.

3. Putting everything together

Let ki =
--Ei(ci≠1)

-- = |Xi|2≠– = (n ≠ 2(i ≠ 1))2≠–.
Continuing Equation (3) together with the bound from Equation (4), we get

P [ T = i ] Æ (1 ≠ p)ki+1 ·
ÿ

cœCi

iŸ

j=1
p = (1 ≠ p)ki+1 · k1 · k2 · · · ki · pi.

Summing the above over all iterations,

P [ T Æ i ] Æ (1 ≠ p)k1 +
iÿ

¸=1
(1 ≠ p)k¸+1 · k1 · k2 · · · k¸ · p¸

Using that k1 Ø k2 Ø · · · Ø ki+1,

P [ T Æ i ] Æ (1 ≠ p)ki+1 +
iÿ

¸=1
(1 ≠ p)ki+1 · k¸

1 · p¸ = (1 ≠ p)ki+1 ·
iÿ

¸=0
(k1 · p)¸ .

Thus, for i = n/4, using that pk1 = pn2≠– Ø 2n lnn Ø 2, we obtain

P [ T Æ n/4 ] Æ (1 ≠ p)kn/4+1

n/4ÿ

¸=0

(pk1)¸

= (1 ≠ p)kn/4+1 (pk1)
n/4+1 ≠ 1

pk1 ≠ 1 < (1 ≠ p)kn/4+1 (pk1)
n/4+1

pk1 ≠ 1

= (1 ≠ p)kn/4+1 · (pk1)
pk1 ≠ 1 · (pk1)n/4 Æ (1 ≠ p)kn/4+1 · 2 · (pk1)n/4

1
pk1 > 2

2

Æ exp(≠pkn/4+1) · 2 · kn/4
1 .
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Substituting k1 = n2≠–, kn/4+1 = (n/2)2≠– Ø n2≠–/4 and p = 2 lnn

n1≠– + 4 ln(2/”)
n2≠– , we conclude

P [ T Æ n/4 ] Æ 2 exp
3

≠n lnn
2 ≠ ln 2

”

4
·
!
n2≠–

"n/4 = 2 · 1
nn/2 · ”

2 · nn/2≠–n/4

= n≠–n/4 · ” Æ ”.

Therefore, with probability at least 1 ≠ ”, RelaxedMWU returns a matching of size at
least n/4, which concludes the proof of Lemma 9. J
I Remark. In the last equation, to get failure probability at most ”, we crucially need the
fact that at the final iteration i, we still have ki Ø n2≠–/4, which limits the range of i. This
is the technical reason why we can only guarantee that E contains a good partial matching,
but the analysis breaks for perfect matchings.

5 Proof of Optimality

In this section we present the proof of Lemma 2. Let X be the set of n =
Ï
n1/d
0

Ìd

points

defined as
Ë
1,

Ï
n1/d
0

Ì È
◊ · · ·◊

Ë
1,

Ï
n1/d
0

Ì È
µ Zd, and let S consist of the d ·

Í
n1/d
0

Î
subsets

of X induced by half-spaces of the form

Hi,j =
)
x œ Rd : xi Æ j + 1/2

*
, i = 1, . . . , d, j = 1, . . .

Í
n1/d
0

Î
.

Observe that for any edge {x, y} œ
!
X

2
"
, the number of sets in S that crosses {x, y} is precisely

the ¸1-distance2 of x and y. Using this observation, it is easy to see that for any k œ N+ and
x œ X, the number of edges {x, y} that are crossed by at most k sets from S is O(kd). Thus,
there is an absolute constant c0 (depending on d) such that the total number of edges in

!
X

2
"

crossed by at most k sets from S is at most c0 · nkd. We refer to these edges as k-good and
denote their set with Gk.

Let p(n) = o(n–≠1) and E be a uniform random sample of edges, where each edge of
!
X

2
"

is picked with probability p(n). Setting kp,c(n) =
1

1
4c·c0p(n)

21/d
, the expected number of

kp,c(n)-good edges in E is

E
#
|E fl Gkp,c(n)|

$
Æ c0n (kp,c(n))d · p(n) =

n

4c .

Thus, by Markov’s inequality, we have |E fl Gkp,c(n)| Æ n

2c with probability at least 1/2.
Assume that |E fl Gkp,c(n)| Æ n

2c holds and let M µ E be any subset of size n

c
. Then M

contains at least n

2c edges which are not kp,c(n)-good. Therefore, the number of crossings
between the edges of M and the sets of S is at least

n

2c ·
3

1
4c · c0 · p(n)

41/d
.

Recall that |S| = d ·
Í
n1/d
0

Î
Æ dn1/d and so by the pigeonhole principle, we get that there is

a set in S that crosses at least

2 The ¸1-distance of x and y is defined as ¸1(x, y) =
qd

i=1 |xi ≠ yi|, where xi is the i-th coordinate of x.
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n

2c ·
1

1
4c·c0p(n)

21/d

|S| Ø
n

2c ·
1

1
4c·c0p(n)

21/d

dn1/d = 1
2c · d · (4c · c0)1/d

· n1≠1/d
3

1
p(n)

41/d

¸ ˚˙ ˝
Ê(n(1≠–)/d)

= Êd,c ·
1
n1≠–/d

2

edges of M . This concludes the proof of Lemma 2. J
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A Appendix

A.1 Proof of Corollary 3
The algorithm achieving the guarantees of Corollary 3 is presented inMatchingPresampled.
It is essentially the algorithm presented in [13] run on an initial random sample of edges
with a small modification: to incorporate the pre-sampling step in the analysis, we need to
recurse slightly more often (after n/16 steps instead of n/4).

We use the following key lemma for PartialMatching.

I Lemma 13 ([13]). Let Ẽ µ E denote the set of edges that have non-zero weight when
PartialMatching

!
(X,S), E,Ÿ

"
terminates. Then

E

S

U max
SœS

n/16ÿ

i=1
I (ei, S)

T

V Æ 2 · E

S

U min
eœẼ

n/16ÿ

i=1
I (e, Si)

T

V +O (Ÿ + ln |E|+ ln |S|) . (5)
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Algorithm 3 MatchingPresampled
!
(X,S), d,–

"
.

M Ω ÿ
while |X| > 16 do

n Ω |X|
E Ω sample of O(n1+– lnn) edges from

!
X

2
"

)
e1, . . . , en/16

*
Ω PartialMatching

!
(X,S), E, (n/16)1≠–/d

"

M Ω M fi
)
e1, . . . , en/16

*

X Ω X \ endpoints(M)
match the remaining elements of X randomly and add the edges to M
return M

Algorithm 4 PartialMatching
!
(X,S), E,Ÿ)

"
.

Ê1(e) Ω 1, fi1(S) Ω 1 ’e œ E, S œ S
p Ω min{106 · |X|/Ÿ2 · ln(|E| · |X|/16), 1}
q Ω min{39 · |X|/Ÿ2 · ln(|S| · |X|/16), 1}
for i = 1, . . . , |X|/16 do

Êi(E) Ω
q

eœE
Êi(e)

fii(S) Ω
q

SœS fii(S)
choose ei ≥ Êi ; // P[ei = e] = Êi(e)

Êi(E) ’e œ E

choose Si ≥ fii ; // P[Si = S] = fii(S)
fii(S) ’S œ S

Ei Ω sample from E with probability p ; // P[e œ Ei] = p ’e œ E
Si Ω sample from S with probability q ; // P[S œ Si] = q ’S œ S
; // I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise
for e œ Ei do

Êi+1(e) Ω Êi(e)
!
1 ≠ 1

2 I (e, Si)
"
; // halve weight if Si crosses e

for S œ Si do

fii+1(S) Ω fii(S)
!
1 + I (ei, S)

"
; // double weight if S crosses ei

set the weight in Êi+1 of ei and of each edge adjacent to ei to zero
return {e1, . . . , e|X|/16}

In MatchingPresampled, the subroutine PartialMatching is called with the parameter
Ÿ = (n/16)1≠–/d, thus we get the following bound on the expected crossing number of)
e1, . . . , en/16

*
:

E

S

U max
SœS

n/16ÿ

i=1
I (ei, S)

T

V Æ 1
2 · E

S

U min
eœẼ

n/16ÿ

i=1
I (e, Si)

T

V +O
1
n1≠–/d

2
. (6)

The left-hand side of Equation (5) is precisely the expected crossing number of the edges
returned by PartialMatching. It remains to bound the expectation on the right-hand side
of Equation (6). By Lemma 1, with probability at least 1 ≠ 1

n
, the initial sample E contains

a matching M0 of size Án/4Ë with crossing number

c0 ·
1
n1≠–/d + ln |S|

2

for some fixed constant c0. Assume that it happens, then clearly M0 fl Ẽ also has crossing
number at most c0 ·

!
n1≠–/d + ln |S|

"
with respect to S. Moreover, since we only zeroed the

weights of edges adjacent to 2 · n/16 distinct vertices of X, there are at least n/8 edges of
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M0 with positive weight when PartialMatching terminates. That is,
--M0 fl Ẽ

-- Ø n/8 and
n/8 > 0 since n > 16 at each call of PartialMatching . By the pigeonhole principle, there
is an edge in M0 fl Ẽ which is crossed by at most

c0 ·
!
n1≠–/d + ln |S|

"
· n/16

n/8 = O
1
n1≠–/d + ln |S|

2

sets from S1, . . . , Sn/16. Therefore, we have

E

S

U max
SœS

n/16ÿ

i=1
I (ei, S)

T

V Æ 1
2 ·E

S

U min
eœẼ

n/16ÿ

i=1
I (e, Si)

T

V+O
1
n1≠–/d

2
= O

1
n1≠–/d + ln |S|

2
,

where the last bound holds with with probability at least 1 ≠ 1
n
. Since the crossing number

of any matching of X is at most n/2, the expected crossing number of the matching returned
by the subroutine PartialMatching

!
(X,S), E, (n/16)1≠–/d

"
is O

!
n1≠–/d + ln |S|

"
.

The bottleneck algorithmic step in PartialMatching is to update the weights of edges
and sets belonging to Ei and Si at each iteration i = 1, . . . , n/16.

For any i, we have E [ |Ei|+ |Si| ] = Õ
!
n1+–

p+mq
"
, thus in expectation,

the total running time is O
!
n

!
n1+– ·min{n/Ÿ2 lnn, 1}+m ·min{n/Ÿ2 lnm, 1}

""
=

Õ
1
n1+–+ 2–

d +mn
2–
d

2
.

The algorithm MatchingPresampled makes logn calls to PartialMatching with
exponentially decreasing input sizes. It can easily be deduced that MatchingPresampled
returns a matching with expected crossing number O

!
n1≠–/d + ln |S| lnn

"
in expected time

Õ
1
n1+–+ 2–

d +mn
2–
d

2
. This concludes the proof of Corollary 3. J

A.2 Proof of Corollary 5
Now we deduce how Corollary 3 implies Corollary 5. The randomized algorithm that achieves
the guarantees of Corollary 5 is presented in Algorithm 5.

Algorithm 5 LowDiscColorPresampled
!
(X,S), d,–

"
.

n Ω |X|)
e1, . . . , eÁn/2Ë

*
Ω MatchingPresampled

!
(X,S), d,–

"

for i = 1, . . . , Án/2Ë do

{xi, yi} Ω endpoints (ei)

‰(xi) =
I
1 with probability 1/2
≠1 with probability 1/2

‰(yi) = ≠‰(xi) ; // we skip this step if yi = xi

return ‰

I Lemma 14. Let (X,S) be a set system, n = |X|, m = |S| Ø 34, and let M be a perfect
matching of X with crossing number Ÿ with respect to S and for each edge {x, y} œ M define

‰M (x) =
I
1 with probability 1/2
≠1 with probability 1/2

and ‰M (y) = ≠‰M (x). Then the expected discrepancy of ‰M is at most
Ô
3Ÿ lnm.
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I Remark. A “high probability version” of Lemma 14 is well-known [27, Lemma 2.5] and
implies the above bound.
Corollary 3 and Lemma 14 immediately imply that the algorithm LowDiscColorPres-
ampled constructs a coloring with expected discrepancy O

1
n1≠–/d lnm+ ln2 m logn

2
,

in time Õ
!
n1+–+2–/d + |S| · n2–/d

"
. This concludes the proof of Corollary 5. J

Proof of Lemma 14. Let S œ S be a fixed range. We express the sum ‰M (S) of colors over
elements of S as

‰M (S) =
ÿ

{x,y}œM ;x,yœS

(‰M (x) + ‰M (y)) +
ÿ

xœcr(S,M)

‰M (x) =
ÿ

xœcr(S,M)

‰M (x) ,

where cr(S,M) = {x œ S : {x, y} œ M,y /œ S}. Since cr(S,M) Æ Ÿ for any S œ S,
disc(S,‰M ) is a sum of at most Ÿ independent random variables. We use the following
concentration bound from [4].

B Claim 15 (Theorem A.1.1 from [4]). Let X1, . . . ,Xk be independent {≠1, 1}-valued random
variables with P[Xi = ≠1] = P[Xi = 1] = 1/2. Then for any – Ø 0

P
C -----

kÿ

i=1
Xi

----- > –

D
Æ 2e≠–

2
/2k.

Applying Claim 15, we get that for any fixed S œ S and – > 0,

P [ |‰M (S)| > – ] Æ 2e≠–
2
/2Ÿ.

By the union bound, we get

P [ discS(‰M ) > – ] = P
5
max
SœS

|‰M (S)| > –

6
Æ m · 2e≠–

2
/2Ÿ.

Finally, we bound the expected discrepancy by applying Fubini’s theorem

E [ discS(‰M ) ] def=
Œ⁄

0

P [ discS(‰M ) > – ] d– Æ
Œ⁄

0

min
Ó
2m · e≠–2/2Ÿ

, 1
Ô
d–

=

Ô
2Ÿ ln(2m)⁄

0

1d– +
Œ⁄

Ô
2Ÿ ln(2m)

2m · e≠–2/2Ÿ
d– =


2Ÿ ln(2m) + 2m

Ô
2Ÿ

Œ⁄

Ô
ln(2m)

e
≠t2

dt

=


2Ÿ ln(2m) + 2m
Ô
2Ÿ

Œ⁄

Ô
ln(2m)

t

t
· e≠t2

dt Æ


2Ÿ ln(2m) + 2m
Ú

2Ÿ

ln(2m)

Œ⁄

Ô
ln(2m)

te
≠t2

dt

=


2Ÿ ln(2m) + 2m
Ú

2Ÿ

ln(2m)

5
≠e

≠t2

2

6Œ

Ô
ln(2m)

=


2Ÿ ln(2m) +
Ú

Ÿ

2 ln(2m) Æ
Ô
3Ÿ lnm,

if m Ø 34. This concludes the proof of Lemma 14. J
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Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These
algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning
that the local memory in each machine may be n

‡ for arbitrarily small fixed ‡ > 0. Importantly,
the local memory may be substantially smaller than the number of clusters k, yet all our algorithms
are fast, i.e., run in O(1) rounds.

We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location.
This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering
problem in general geometric setting; previous algorithms only provide poly(logn)-approximation
or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara
and Wijewardena, ICML’18; Cohen-Addad et al., NeurIPS’21; Cohen-Addad et al., ICML’22].
We then build on this Facility Location result and devise a fast MPC algorithm that achieves
O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ Á)k clusters
of cost within O(1/Á

2)-factor of the optimum for k clusters.
A primary technical tool that we introduce, and may be of independent interest, is a new

MPC primitive for geometric aggregation, namely, computing for every data point a statistic of
its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our
implementation of this primitive works in high dimension, and is based on consistent hashing
(aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al.,
FOCS’22].
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1 Introduction

Clustering large data sets is a fundamental computational task that has been studied
extensively due to its wide applicability in data science, including, e.g., unsupervised learning,
classification, data mining. Two highly popular and extremely basic problems are k-Median
and k-Means. In the geometric (Euclidean) setting, the k-Median problem asks, given
as input an integer k and a set P ™ Rd of n data points, to compute a set C µ Rd of k
center points, so as to minimize the sum of distances from each point in P to its nearest
center. The k-Means problem is similar except that instead of the sum of distances, one
minimizes the sum of squares of distances. A closely related problem is (uniform) Facility
Location, which can be viewed as a Lagrangian relaxation of k-Median, where the number
of centers can vary but it adds a penalty to the objective, namely, each center (called open
facility) incurs a given cost f > 0. Other variants include a similar relaxation of k-Means, or
generalizing the squaring each distance to raising it to power z Ø 1 (see Section 2 for formal
definitions), and there is a vast literature on these computational problems.

Clustering is often performed on massive datasets, and it is therefore important to
study clustering in the framework of distributed and parallel computations. We consider
fundamental clustering problems in the theoretical model of Massively Parallel Computation
(MPC), which captures key aspects of modern large-scale computation systems, such as
MapReduce, Hadoop, Dryad, or Spark. The MPC model was introduced over a decade ago
by Karlo�, Suri, and Vassilvitskii [55], and over time has become the standard theoretical
model to study data-intensive parallel algorithms (see, e.g., [11, 41, 47]). At a high level, the
MPC model consists of many machines that communicate with each other synchronously
in a constrained manner, in order to solve a desired task in a few rounds. In more detail,
an MPC system has m machines, each with a local memory of s words, hence the system’s
total memory is the product m · s. Computation takes place in synchronous rounds, where
machines perform arbitrary computations on their local memory and then exchange messages
with other machines. Every machine is constrained to send and receive at most s words in
every round, and every message must be destined to a single machine (not a broadcast). At
each round, every machine processes its incoming messages to generate its outgoing messages,
usually without any computational restrictions on this processing (e.g., running time). At
the end of the computation, the machines collectively output the solution. The e�ciency
of an algorithm is measured by the number of rounds and by the local-memory size s. The
total space should be low as well, but this is typically of secondary importance.

The local-memory size s is a key parameter and should be sublinear in the input size N

(for if s Ø N then any sequential algorithm can be executed locally by a single machine in
one round). We focus on the more challenging regime, called fully-scalable MPC, where the
local-memory size is an arbitrarily small polynomial, i.e., s = N

‡ for any fixed ‡ œ (0, 1).
This regime is highly desirable because in practice, the local memory of the machines is
limited by the hardware available at hand, and the parameter ‡ can be used to model
this limitation. The total memory should obviously be large enough to fit the input, i.e.,
m · s Ø N , and ideally not much larger.
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Modern research on MPC algorithms aims to solve fundamental problems in as few rounds
as possible, ideally in O(1) rounds, even in the fully-scalable regime, and so far there have
been some successes in designing fast (i.e., O(1)-rounds) algorithms for fixed ‡ < 1; see
e.g., [4, 12, 41]. In contrast, many graph problems, including fundamental ones such as
connectivity or even distinguishing between 1 and 2 cycles, seem to require super-constant
number of rounds (at the same time, proving a super-constant lower bound would yield a
breakthrough in circuit complexity [62]). One can also consider smaller local space s, i.e.,
‡ = o(1), and in fact many algorithms work as long as s Ø polylog(N). In this regime,
the best one can hope for is usually not O(1) but rather O(logs N) rounds, because even
broadcasting a single number to all machines requires �(logs N) rounds; see [62] for further
discussion.

Clustering of massive datasets has received significant attention recently, with numerous
algorithms that span multiple computational models, such as streaming [18, 63] or distributed
and parallel models [16, 35, 15, 8, 9, 60, 6, 21, 12, 34]. However, this advance is facing a
barrier, first identified by Bhaskara and Wijewardena [13]: State-of-the-art methods for
k-clustering (i.e., when the number k of clusters is specified in the input) typically fail to yield
fully-scalable MPC algorithms, because when implemented in the MPC model, these methods
usually require local-memory size s Ø �(k). For example, many streaming algorithms for
k-clustering problems are based on a linear sketch and thus readily applicable to the MPC
model; however, all known streaming algorithms require �(k) space, and in fact there are
lower bounds to this e�ect [23] even in low dimension. Another example is coresets [43],
an extremely e�ective method to decrease the size of the dataset, even in high dimension;
see [29, 17, 26] for the latest in this long line of research. Coresets can often be merged and/or
applied repeatedly via the so-called “merge-and-reduce” framework [43], and can thus be
applied successfully in many di�erent settings, including the parallel setting. However, this
method su�ers from the drawback (which so far seems inherent) that each coreset must be
stored in its entirety in a single machine, and it is easy to see that a coreset for k-clustering
must be of size at least k; see also [26].

These shortcomings have led to a surge of interest in MPC algorithms for clustering, with
emphasis on fully-scalable and fast algorithms (i.e., taking O(1) rounds even for large k)
that work in high dimension d. The first such result for k-clustering was by Bhaskara and
Wijewardena [13]; their O(1)-round fully-scalable MPC algorithm achieves polylogarithmic
bicriteria approximation for k-Means, i.e., it outputs k ·polylog(n) centers (or clusters) whose
cost is within polylog(n)-factor of the optimum for k centers. Recent work by Cohen-Addad
et al. [27] achieves for k-Median a true polylog(n)-approximation (i.e., without violating the
bound k on number of centers); their algorithm actually computes a hierarchical clustering,
that is, a single hierarchical structure of centers that induces an approximate solution for
k-Median for every k. These were the best fully-scalable O(1)-round MPC algorithms
known for k-Median and k-Means prior to our work, and it remained open to achieve
better than O(logn)-approximation, even as a bicriteria approximation.

Not surprisingly, previous work on MPC algorithms has focused also on achieving improved
approximation for restricted inputs. In particular, (1 + Á)-approximation is achieved in [28]
for k-Means and k-Median on inputs that are perturbation-resilient [14], meaning that
perturbing pairwise distances by (bounded) multiplicative factors does not change the optimal
clusters; unfortunately, results for such special cases rarely generalize to all inputs. There
are also known fully-scalable MPC algorithms for k-center [10, 30], but they are applicable
only in low dimension d and thus less relevant to our focus.
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Despite these many advances on fully-scalable MPC algorithms, we are not aware of O(1)-
approximation for any clustering problem in high dimension.1 From a technical perspective,
the primary di�culty is to distribute the data points across machines, so that points arriving
to the same machine are from the same cluster. This task seems to require knowing the
clustering, which is actually the desired output, so we run into a chicken-and-egg problem!
Fortunately, powerful algorithmic tools can spot points that are close together, even in
high-dimensional geometry. Namely, locality sensitive hashing (LSH) is employed in [13] and
tree embedding is used in [27], but as mentioned above, these previous results do not achieve
O(1)-approximation. We rely instead on the framework of consistent hashing, which was first
employed for streaming algorithms in [33], although it was originally proposed in [53]; see
Section 1.2 for details.

1.1 Our Results
We devise fully-scalable O(1)-round MPC algorithms for a range of clustering problems
in Rd, most notably Facility Location, k-Median, and k-Means. We first devise an
O(1)-approximation algorithm for Facility Location and then exploit the connection
between the problems to solve k-clustering.

By convention, we express memory bounds in machine words, where each word can store
a counter in the range [poly(n)], i.e., O(logn) bits, and/or a coordinate of a point from
Rd with restricted precision (comparable to that of a point from P ). For example, the
input P µ Rd

, |P | = n fits in nd words. Throughout, the notation OÁ(·) hides factors that
depend on Á. We stress that in the next theorem, the memory bounds are polynomial in
the dimension d (and not exponential); this is crucial because the most important case is
d = O(logn), as explained in Remark 1.2f below.

I Theorem 1.1 (Simplified version). Let Á,‡ œ (0, 1) be fixed. There is a randomized fully-
scalable MPC algorithm that, given a multiset P µ Rd of n points distributed across machines
with local memory of size s Ø n

‡ ·poly(d), computes in O‡(1) rounds an OÁ(1)-approximation
for uniform Facility Location. The algorithm uses O(n1+Á) · poly(d) total space.

I Remark 1.2. This simplified statement omits standard technical details:
a) We consider here fixed ‡, but the algorithm works for any local-memory size s Ø

poly(d logn), and in that case the number of rounds becomes O(logs n).
b) Similarly, Á can be part of the input, and the approximation factor is in fact (1/Á)O(1).
c) The algorithm succeeds with high probability 1 ≠ 1/poly(n).
d) The input P can be a multiset, in contrast to streaming algorithms for such problems [49,

33], where data points must be distinct.
e) The algorithm outputs a feasible solution, i.e., a set of facilities F µ Rd and an assignment

of the input points to facilities. In fact, in all our algorithms F ™ P . We focus throughout
on computing F , since our methods can easily compute a near-optimal assignment given
F .

f) We state here the dependence on d explicitly for sake of completeness, but our result
works whenever s Ø polylog(dn), which is preferable when d ∫ logn. This is achieved by
reducing to the case d = O(logn), using a standard dimension reduction, as discussed in
Remark 2.4.

1 Having said that, (3 + Á)-approximation is known for (non-geometric) correlation clustering [12].
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Our full result (in the full version) is more general in two respects. First, it addresses
a generalization of Facility Location where distances are raised to power z Ø 1 (see
Section 2 for definitions). Second, it assumes access to consistent hashing with parameters �
and �, and here we plugged in a known construction [33] that achieves a tradeo� � = O(1/Á)
and � = n

Á for any desired Á œ (0, 1); see Lemma 2.3 and Remark 2.4. The description of
the hash function should be included in our MPC algorithm, but it takes only poly(d) bits,
which is easily absorbed in our bounds.

Previously, no fully-scalable MPC algorithm was known for Facility Location, al-
though one can apply the algorithm for k-Median from [27] to obtain an O(polylog(n))-
approximation in O(logs n) rounds. Another previous result that one could use is a streaming
algorithm that achieves O(1)-approximation [33]. Although many streaming algorithms, in-
cluding this one, can be implemented in the MPC model, they approximate the optimal value
without reporting a solution; see Section 1.3 for details. Thus, from a technical perspective,
our chief contribution is to compute an approximately optimal solution, which is a set of
facilities F , in the fully-scalable regime.

k-Clustering. Our second result presents MPC algorithms for k-Median and k-Means
that achieve an (O(µ≠2), 1 + µ)-bicriteria approximation, for any desired µ œ (0, 1). As
usual, (–,—)-bicriteria approximation means that for every input, the algorithm outputs
at most —k centers whose cost is at most –-factor larger than the optimum cost for k

centers. By letting µ > 0 be arbitrarily small but fixed, our algorithm gets arbitrarily
close (multiplicatively) to k centers, while still approximating the optimal cost within O(1)-
factor; in both respects, this is far stronger than the previous bicriteria approximation for
k-Means [13]. Our result is incomparable to the previous bound for k-Median, which is a
true O(polylog(n))-approximation [27]. Nevertheless, our bicriteria approximation breaks
a fundamental technical barrier in their tree-embedding approach, which cannot go below
O(logn) ratio, due to known distortion lower bounds, and moreover does not generalize to
k-Means, because it fails to preserve the squared distance.

Our approach is to tackle k-Median and k-Means via Lagrangian relaxation and rely on
our algorithm for Facility Location. This approach can inherently handle large k, because
our core algorithms for Facility Location can even output n clusters. The Lagrangian
technique was initiated by Jain and Vazirani [51], who achieved a true O(1)-approximation
for k-Median by leveraging special properties of their algorithm for Facility Location
(see Section 1.2). However, their primal-dual approach for Facility Location seems
challenging to implement in fully-scalable MPC. We thus develop an alternative approach
that is inherently more parallel, albeit achieves only bicriteria approximation for k-clustering.

I Theorem 1.3 (Simplified version). Let Á,‡ œ (0, 1) be fixed. There is a randomized fully-
scalable MPC algorithm that, given µ œ (0, 1), k Ø 1, and a multiset P µ Rd of n points
distributed across machines of memory s Ø n

‡ · poly(d), computes in O‡(1) rounds an
(OÁ(µ≠2), 1 + µ)-bicriteria approximation for k-Median, or alternatively k-Means. The
algorithm uses O(n1+Á) · dO(1) total space.

This simplified statement omits the same standard details as in Theorem 1.1, and
Remark 1.2 applies here as well. In addition, it is known for k-Median and k-Means (but
not known for Facility Location) that any (true) finite approximation requires �(logs n)
rounds [13].
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1.2 Technical Overview
We overview the main components in our algorithms, and highlight technical ideas that may
find more applications in the future. We focus in this overview on Facility Location and
k-Median, noting that our algorithm for k-Means (and other powers z Ø 1) is essentially
the same. We further assume that s = n

‡ · poly(d) for a fixed ‡ œ (0, 1), and we aim to
achieve round complexity O(logs n) = O‡(1).

Facility Location. Several di�erent algorithmic approaches have been used in the past to
achieve O(1)-approximation for Facility Location, including LP-rounding [19, 56], primal-
dual [51], greedy [50], and local search [5]. Some of these sequential algorithms were adapted to
the PRAM model [16], i.e., to run in polylogarithmic parallel time (RNC algorithms). These
algorithms can be implemented in the MPC model, but as some logarithmic factors in the time
complexity seem inherent, these fall short of O(1) rounds in the fully-scalable regime. Our
starting point is the Mettu-Plaxton (MP) algorithm [61], which is a combinatorial algorithm
inspired by [51], that has been previously used to achieve O(1)-approximation in a few related
models, particularly streaming, congested clique, and sublinear-time computation [7, 38, 33].
At a high level, this MP algorithm has two steps, it first computes a “radius” rp > 0 for
every p œ P , and then uses these rp values to determine which facilities to open. However,
implementing these steps in MPC is technically challenging:

Computing rp (approximately) can be reduced to counting the number of points in P

within a certain distance from p [7], which is non-trivial to compute inO(1) rounds, because
many geometric techniques are ine�ective in high dimension, for instance quadtrees/tree
embeddings incur large approximation error and grids/nets require large memory. We
overcome this issue by devising a new MPC primitive for geometric aggregation (in high
dimension), that can handle a wide range of statistics, including the counting mentioned
above.
The MP algorithm determines which facilities to open by scanning the points in P in
order of non-decreasing rp value and deciding greedily whether to open each point as
a facility. We design a new algorithm that avoids any sequential decision-making and
decides whether to open each facility locally and in parallel. Our new algorithm may
thus be useful also in other models.

Let us discuss these two new ideas in more detail.

MPC Primitive for Geometric Aggregation in High Dimension. We propose a new MPC
primitive for aggregation tasks in high-dimensional Euclidean spaces (see Theorem 3.1 for
details). Given a radius r > 0, this primitive outputs, for every data point p œ P , a certain
statistic of the ball BP (p, r) := P fl {y œ Rd : dist(x, y) Æ r}. Our implementation can
handle any statistic that is defined by a composable function f , which means that f(fiiSi)
for disjoint sets Si µ Rd can be evaluated from the values {f(Si)}i. Composable functions
include counting the number of points, or finding the smallest label (when data points are
labeled). In fact, this primitive can even be used for approximate nearest-neighbor search in
parallel for all points (see Section 3.1). This natural aggregation tool plays a central role in
all our MPC algorithms, and we expect it to be useful for other MPC algorithms in high
dimension.

Technically, exact computation of such statistics may be di�cult, and our algorithm
estimates the statistic by evaluating it (exactly) on a set AP (p, r) that approximates the ball
BP (p, r) in the sense that it is sandwiched between BP (p, r) and BP (p,—r) for some error
parameter — Ø 1. To implement this algorithm in MPC, a natural idea is to “collect” all
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data points in the ball BP (p, r) at a single machine, however this set might be too large to
fit in one or even few machines. A standard technique to resolve this issue in low dimension
is to impose a grid of fine resolution, say Ár, and move each data point to its nearest grid
point, which provides a decent approximation (e.g., — = 1 +

Ô
dÁ). However, a ball BP (p, r)

might contain Á
≠�(d) grid points, which for high dimension might still not fit in one machine.

Our approach is to use consistent hashing (see Definition 2.2), which was first introduced
in [53] under the name sparse partition, and was recently employed in the streaming setting
for Facility Location in high dimension [33]. Roughly speaking, consistent hashing is a
partition of the space Rd, such that each part has diameter bounded by —r, and every ball
BP (p, r) intersects at most n1/— parts.2 Our algorithm moves each data point p œ P to a
fixed representative point inside its own part, then computes the desired statistic on each
part (namely, on the data points moved to the same representative), and finally aggregates,
for each p œ P , the n

1/— statistics of the parts that intersect BP (p, r). This algorithm can
be implemented in O(logs n) rounds on MPC, albeit with slightly bigger total space n

1+1/— .
An interesting feature of this algorithm is that its core is deterministic and hence leads to
new deterministic MPC algorithms, including for approximate nearest-neighbor search; see
Section 3.1.

Computing A Solution for Facility Location. Our algorithm is based on the MP algorithm,
where a key notion is the “radius” rp > 0 defined for each data point p œ P . Formally,
it takes the value r such that serving all points in the ball B(p, r) by p, i.e., opening a
facility at p and assigning points to p, incurs a cost of |BP (p, r)| · r. This value r always
exists and is unique. It is known that a constant-factor approximation r̂p of rp satisfies
that |BP (p, r̂p)| ¥ 1/r̂p, hence computing |BP (p, r)| for O(poly logn) di�erent values of r
su�ces to compute an O(1)-approximation of rp [7, Lemma 1]. However, it is not easy
to estimate |BP (p, r)| in MPC (simultaneously for all p and r), and the abovementioned
geometric aggregation only estimates |AP (p, r)| for some AP (p, r) that is sandwiched between
B(p, r) and B(p,—r). Nonetheless, we show this weaker estimate su�ces for approximating
rp within O(—) factor. Thus, our aggregation primitive yields an O(1)-approximation for all
the rp values in O(1) rounds.

An O(1)-factor estimate of the optimal cost OPT can be computed from an O(1)-
approximation of the rp values for all p œ P , because

q
pœP

rp = �(OPT) [7, 38]. Moreover,
the rp values can be used to compute an O(1)-approximate solution for Facility Location.
Specifically, the MP algorithm [61] scans the points in P in order of non-decreasing rp value,
and opens a facility at each point p if so far no facility was opened within distance 2rp from
p. The sequential nature of this algorithm makes it inadequate for MPC, and we therefore
design a new algorithm that makes decisions in parallel. It has two separate rules to decide
whether to open a facility at each point p œ P :
(P1) open a facility at p with probability �(rp), independently of other points; and
(P2) open a facility at p if it has the smallest label among BP (p, rp), where each point q œ P

is assigned independently a random label h(q) œ [0, 1].
Let us give some intuition for these rules. Rule (P1) is a straightforward way to use the rp

values so that the expected opening cost is O(
q

p
rp) = O(OPT), but it is not su�cient by

itself because the connection cost might be too large. Indeed, if a cluster of points is very far
from all other points, say, a cluster of t points all with the same rp = 1/t, then with constant

2 This tradeo� between —r and n
1/— is just one specific choice of known parameters. Our theorem works

with any possible parameters of consistent hashing, see Lemma 2.3 and Remark 2.4.
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probability, (P1) does not open any facility inside this cluster, and the closest open facility is
prohibitively far. However, (P2) guarantees that at least one facility is opened inside this
cluster, at the point that has the smallest label. Rule (P2) is not su�cient by itself as well.
Indeed, let x1 œ P be the minimizer from the viewpoint of p, i.e., have the smallest label
in BP (p, rp). Then it may happen that there is no facility at x1 because BP (x1, rx1) has
another point x2 with an even smaller label. The same may happen also to x2, and we may
potentially get a long “assignment” sequence (p = x0, x1, x2, x3, . . . , xt), where each xi+1 is
the minimizer from the viewpoint of xi and only the last point xt is an open facility. In this
case, the connection cost of p can be as large as

q
t≠1
i=0 rxi (i.e., matching the bound obtained

by the triangle inequality), which might be unbounded relative to rp. This might happen
not only for one point p but actually for many points, and the total connection cost would
be prohibitive.

We deal with this assignment issue using rule (P1), and in e�ect use both rules together.
Given such an assignment sequence, we prove that for every i Ø 0, either (i) BP (xi, rxi)
contains an open facility with constant probability, or (ii) rxi+1 Æ rxi/2, i.e., the rp value
drops significantly in the next step. Property (i) means that the sequence stops at xi with
constant probability and thus, unless (ii) occurs, the expected length of the assignment
sequence is O(1). Property (ii) implies that the connection cost of the next step drops
significantly as it is proportional to its rp value, and hence, we just sum up a subsequence
of geometrically decreasing rp values. Combining the two properties, we obtain that the
expected connection cost for every point p is O(rp). Hence, the expected total connection
cost is O(

q
p
rp) = O(OPT).

The main technical challenge is to show property (i) when (ii) does not occur. Specifically,
we need to show that, given a partial reassignment sequence (p = x0, . . . , xi≠1), the probability
that the sequence does not terminate at xi is bounded by a small constant. This event can
be broken into two sub-events: (a) rule (P1) does not open any facility at the “new” points
of BP (xi, rxi), where a point is considered new if it is not in fij<iBP (xj , rxj ); and (b) the
smallest label appears at a new point (and thus rule (P2) does not open a facility at xi). Let
t œ [0, 1] be the fraction of points that are new in BP (xi, rxi). Then the probability of (a)
is roughly (1 ≠ rxi)�(t/rxi ) ¥ e

≠�(t), where this calculation crucially uses that (ii) does not
occur, which means all new points have a similar rp value as xi, and that for every point x,
the ball BP (x, rx) roughly contains �(1/rx) points. Since the two events are independent
and since (b) happens with probability t by symmetry, we conclude that the probability
we need to bound is at most exp(≠O(t)) · t Æ O(1). Here, one can observe that (P1) and
(P2) are “complementing” each other to make the said probability small: when t is large,
the probability exp(≠O(t)) of (a), which comes from rule (P1), is small; otherwise, the
probability t of (b), which comes from rule (P2), is small.

The idea of opening facilities using random labels and analyzing the cost by constructing
an assignment sequence was previously used in [3]. The context there is of a dynamically
changing input, and this technique is used to limit changes in the solution over time, while
our goal is to have a fast parallel implementation. Although the high level idea is similar,
the setup is quite di�erent, as their algorithm needs a solution to a linear-programming (LP)
relaxation for Facility Location, while ours only needs the rp values; and consequently
also the analysis is di�erent, as their analysis uses the LP constraints and bounds the cost
relative to LP value, while our analysis crucially uses basic properties of the rp values.

It remains to bound the opening cost which is the easy part. We show that the number
of open facilities is O(

q
p
rp) in expectation. Indeed, for points selected by rule (P1) this is

clear. For rule (P2), since BP (p, rp) contains at least 1/rp points, the probability that p has
the smallest label in BP (p, rp) is at most rp.
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When implementing our algorithm in the MPC model, the only non-trivial part (except
for estimating the rp values) is to check that p has the minimum label in the ball B(p, rp).
Nevertheless, it is su�cient to look for the minimum label in a larger set that approximates
the ball, such as a set sandwiched between this ball and a ball whose radius is larger by
O(1)-factor. Therefore, the MPC primitive for geometric aggregation is su�cient to execute
rule (P2).

Overall, these rules compute a set of open facilities. To compute also an assignment
of each point p œ P to an open facility, we use our approximate nearest-neighbor search
algorithm, to find for each point p œ P its O(1)-approximately closest facility (see Section 3.1).
Notice that the assignment algorithm searches for the closest facility, but the analysis is still
based on the assignment sequence as above, even though the connection cost of this sequence
may substantially exceed the distance to the closest facility.

k-Clustering. Our algorithm for k-Median follows the Lagrangian-relaxation framework
established by Jain and Vazirani [51] (and used implicitly earlier by Garg [37]). They
managed to obtain a true O(1)-approximation for k-Median by leveraging a special property
guaranteed by their algorithm for Facility Location, namely, its output solution has
opening cost costO and connection cost costC that satisfy – · costO +costC Æ – ·OPT for a
certain – = O(1). Unfortunately, this stronger property is obtained via a highly sequential
primal-dual approach, and seems di�cult to implement e�ciently in MPC, particularly
because it is too sensitive for the known toolkit for high dimension, like locality sensitive
hashing (LSH) and our geometric aggregation via consistent hashing.

We therefore take another approach of relying on a generic “-approximation algorithm for
Facility Location, and using it in a black-box manner to obtain bicriteria approximation
for k-Median. Our algorithm can output (1 + µ)k centers whose cost is at most O(1/µ2)-
factor larger than the optimum cost for k centers, for any desired 0 < µ < 1. This type of
tradeo�, where the number of centers is arbitrarily close to k, was relatively less understood, as
previous work has focused mostly on a smaller O(1)-factor in the cost, but using significantly
more than k centers [57, 58, 1, 64, 46]. The result of [59] does give (1 + µ)k centers, and
is thus the closest to ours in terms of bicriteria bounds, however it relies explicitly on LP
rounding, which seems di�cult to implement in MPC. To the best of our knowledge, obtaining
(1 + µ)k centers for k-clustering by a black-box reduction to Facility Location was not
known before. We believe this new reduction, and the smooth tradeo� it o�ers, may be of
independent interest.

In more detail, the black-box reduction from k-Median to Facility Location goes as
follows: Assume momentarily that we know (an approximation of) the optimal clustering
cost OPT, and consider the clustering instance as an input for Facility Location with
opening cost f := OPT /k. The optimal cost of this instance is at most k · f+OPT = 2OPT
as the optimal k-Median solution is also a feasible solution for Facility Location with
at most k facilities; note that the choice of f balances the opening and connection costs
in this solution. We then run (any) “-approximation algorithm for Facility Location,
and it will find a solution whose cost is at most “ · 2OPT. The choice of f implies that the
number of open facilities in this solution is at most “ · 2OPT / f = 2“ · k. Hence, we obtain
a (2“, 2“)-bicriteria approximation of k-Median. Finally, we remove the assumption of
knowing OPT by running this procedure in parallel for a logarithmic number of guesses for
OPT, and taking the cheapest solution that uses at most O(“ · k) centers. Using our MPC
algorithm for Facility Location, this gives an e�cient MPC algorithm for clustering with
(O(“), O(“))-bicriteria approximation guarantees.
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In this approach, the number of centers (in the solution) might exceed k by a large
constant factor. We now use a di�erent method to reduce it to be arbitrarily close to k. First,
we observe that the (O(“), O(“))-approximate solution can be used to get a weak coreset,
namely, a weighted set of at most O(“ · k) distinct points, such that any –-approximate set
of centers for the coreset is also an O(– · “)-approximate solution for the original instance.
To obtain the coreset, we just move every point to its approximately nearest facility in the
approximate solution, which is a standard step in the clustering literature (see e.g. [42]).
Then, weight w(p) of a point p is the number of original points rounded to p. We note that
the problem becomes trivial if the coreset fits in one machine, and thus the interesting case
is when k is very large.

Given this weak coreset, we find an approximate solution with at most, say, 2k centers
and cost increased by another factor of O(“), using the following simple but sequential
algorithm: Process the coreset points in order of non-increasing weights w(·), and open a
center at point p if so far there is no center within distance OPT /(k · w(p)) from p; here
we again need a guess for OPT. In a nutshell, the analysis of this algorithm is based on
averaging arguments; intuitively, only few points in the weak coreset can have a relatively
large connection cost in the optimal solution.

We then convert this sequential algorithm into a parallel one using similar ideas as for
Facility Location. That is, for every point in parallel, we add it to the set of centers using
two separate rules: (i) independently with probability 1/“; or (ii) if there is no point with
larger weight within distance OPT /(k ·w(p)). To implement (ii) in MPC, we need to ensure
a consistent tie-breaking, for which a small random perturbation of the weights is su�cient.
Finally, to e�ciently find the point of maximum (perturbed) weight in the neighborhood of
every point, we again employ our MPC primitive for geometric aggregation.

1.3 Related Work
Parallel and Distributed Algorithms. A more general metric setting of Facility Location
has been studied earlier in the distributed Congest and CongestedClique models (see, e.g.,
[38, 44, 45]), and these results immediately transfer into MPC algorithms with O(n) local
memory and O(n2) total space. In particular, in combination with the recent result in [20],
these results yield an O(1)-round MPC algorithm for metric Facility Location. In this
general-metric setting of Facility Location, instances have size O(n2), which makes the
problem significantly di�erent from our geometric setting, e.g., instances in Rd are trivial if
the local memory is O(n). Furthermore, those results for general metrics rely on computing
O(1)-ruling sets, and by the conditional lower bounds in [40, 31], this seems to require
Ê(1) rounds on a fully-scalable MPC. Our algorithms bypass the obstacle of ruling sets by
leveraging the geometric structure in Rd and one can view our high-level contribution as
proposing a setting avoiding that obstacle.

Clustering problems (e.g., Facility Location, k-Means, k-Median) have been also
studied in the PRAM model of parallel computation [16, 15]. These algorithms can be
implemented in the MPC model, but the logarithmic factors in the running time or the
approximation ratio seem inherent, and they fall short of achieving O(1) rounds in the
fully-scalable regime.

Connections to Streaming. A closely related model is the streaming model, which mainly
focuses on sequential processing of large datasets by a single machine with a limited (sublinear)
memory. In general, if a streaming algorithm is storing only a linear sketch and uses space
O(s1≠Á) for a fixed Á > 0, then it can be simulated on MPC in O(logs N) rounds (recall
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s is the local memory per machine and N is the input size); this was also observed and
mentioned in, e.g., [24]. Thus, the various recent results on streaming algorithms in high
dimension can be readily applied in MPC, and we briefly discuss the most relevant ones in
the following. We note that streaming algorithms typically assume the input is discrete, i.e.,
P ™ [�]d with � = poly(n).

For both k-Median [18] and k-Means [63], it is possible to find (1 + Á)-approximate
solution with k centers using space poly(Á≠1

kd log�). However, these algorithms are not
directly applicable in our setting, since to simulate these algorithms it requires local memory
size s = �(k) which is not fully scalable. For Facility Location, [49] gave O(d log�)-
approximation (along with several other problems including minimum spanning tree and
matching), using space poly(d log�). Later on, an O(d/ log d)-approximation for Facil-
ity Location was obtained using similar space poly(d log�), and alternatively O(1/Á)-
approximation using space O(nÁ) [33]. However, these results for Facility Location can
only estimate the optimal cost, as storing the solution requires linear space (which is too
costly since streaming algorithms aim to use sublinear space). Hence, simulating these results
only leads to estimating the optimal cost in MPC, while our result for Facility Location
can indeed find an approximate solution.

MPC Algorithms for MST. A similar issue of cost estimation versus finding approximate
solutions is present also for the minimum spanning tree (MST) problem. The classical
streaming algorithm of [49] was recently improved to an O(logn)-approximation using the
same space regime poly(d log�) [25] and to an O(1/Á

2)-approximation for the n
Á space

regime [24]. However, these results are for estimating the optimal MST cost, and it is still
open to find an O(1)-approximate solution for high-dimensional MST in O(logs n) rounds
of MPC. Indeed, the currently best MPC algorithm finds an O(1)-approximate MST in
Õ(log logn) rounds [52] (using local space polynomial in n), while in O(logs n) rounds, one
can only find an O(1)-approximation in a low dimension [4] (see also [22] for an exact MST
algorithm for d = 2) or a poly(logn)-approximation in a high dimension [2]. For a related
problem of single-linkage clustering in a low dimension, there is a (1 + Á)-approximation on
MPC in O(logn) rounds [65].

2 Preliminaries

For integer n, let [n] := {1, 2, . . . , n}. For a function Ï : X æ Y , the image of a subset
S ™ X is defined Ï(S) := {Ï(x) : x œ S}, and the preimage of y œ Y is defined as
Ï

≠1(y) := {x œ X : Ï(x) = y}. A Euclidean ball centered at x œ Rd with radius r Ø 0 is
defined as B(x, r) :=

)
y œ Rd : dist(x, y) Æ r

*
, where dist(x, y) := Îx≠yÎ2 refers throughout

to Euclidean distance. For a set P µ Rd, we define BP (x, r) := B(x, r) fl P , which is also a
metric ball inside P . Let diam(S) denote the diameter of S ™ Rd. For two sequences S, T ,
denote their concatenation by S ¶ T . The aspect ratio of a point set S µ Rd is the ratio
between the maximum and minimum inter-point distance of S, i.e., maxx,yœS dist(x,y)

minx”=yœS dist(x,y) .
I Fact 2.1 (Generalized triangle inequality). Let (V, fl) be a metric space, and let z Ø 1. Then

’x, xÕ
, y œ V, fl

z(x, y) Æ 2z≠1(flz(x, xÕ) + fl
z(xÕ

, y)).

Power-z (Uniform) Facility Location. Given a set of data points P µ Rd, a (uniform)
opening cost f > 0 and some z Ø 1, the objective function of Power-z (Uniform) Facility
Location for a set of facilities F µ Rd is defined as

flz(P, F ) := |F | · f+
ÿ

pœP

distz(p, F ),

ICALP 2024



50:12 Fully-Scalable MPC Algorithms for Clustering in High Dimension

where again dist(x, y) := Îx≠ yÎ2 and dist(x, S) := minyœS dist(x, y). From now on, we omit
“uniform” from the name of the problem, and simply use Power-z Facility Location. We
denote the minimum value of a solution for Power-z Facility Location by OPTfl

z
(P ) :=

minF™Rd flz(P, F ); we omit P if it is clear from the context.

(k, z)-Clustering. Given a set of data points P µ Rd, an integer k Ø 1 and some z Ø 1, the
objective function of (k, z)-Clustering for a center set C µ Rd with |C| Æ k is defined as

clz(P,C) :=
ÿ

pœP

distz(p, C).

Notice that the special cases z = 1 and z = 2 are called k-Median and k-Means, respect-
ively. We denote the minimum value of a solution for (k, z)-Clustering by OPTcl

z
(P ) :=

minC™Rd:|C|Æk clz(P,C); we again omit P when it is clear from the context.

Consistent Hashing. As mentioned above, our MPC primitive for geometric aggregation
relies on consistent hashing. We define it below, and then state the best known bounds for
its parameters, which are near-optimal [36].

I Definition 2.2 ([33, Definition 1.6]). A mapping Ï : Rd æ Rd is called a �-gap �-consistent
hash with diameter bound ¸ > 0, or simply (�,�)-hash,3 if it satisfies:
1. Diameter: for every image z œ Ï(Rd), we have diam(Ï≠1(z)) Æ ¸; and
2. Consistency: for every S ™ Rd with diam(S) Æ ¸/�, we have |Ï(S)| Æ �.

I Lemma 2.3 ([33, Theorem 5.1]). For every � œ [8, 2d], there exists a (deterministic)
(�,�)-hash Ï : Rd æ Rd where � = exp(8d/�) ·O(d log d). Furthermore, Ï can be described
using O(d2 log2 d) bits and one can evaluate Ï(x) for any point x œ Rd in space O(d2 log2 d).

I Remark 2.4. Our main results also hold under the assumption that s Ø polylog(dn),
which is preferable when d ∫ logn. It follows by the well-known idea of applying a JL
transform fi (named after Johnson and Lindenstrauss [54]) with target dimension O(logn) as
a preprocessing of the input P µ Rd, i.e., running our algorithm on fi(P ) instead of P . Then,
with probability 1 ≠ 1/poly(n), all the guarantees in our results would su�er only an O(1)
factor. To implement this preprocessing in MPC using polylog(dn) words of local memory, we
use a bounded-space version of the JL transform [48], that requires only polylog(dn) words
to specify fi (in comparison, a naive implementation of fi requires O(d logn) words). One
machine can randomly generate this specification of fi and broadcast it, and then all machines
can apply fi locally in parallel. This requires additional O(polylog(dn)) local memory and
O(logs n) rounds, and these additional costs are easily absorbed in our bounds. Hence, in all
our results we can assume without loss of generality that P is replaced by fi(P ). Furthermore,
after this preprocessing, we can use d = O(logn) also in the consistent hashing bounds in
Lemma 2.3 to obtain a tradeo� � = O(1/Á) and � = O(nÁ), for any desired fixed Á œ (0, 1),
and also the hash can be described using polylog(n) bits.

3 MPC Primitive for Geometric Aggregation in High Dimension

In our MPC algorithms, we often face a scenario where we want to compute something for
each input point p œ P . That computation is a relatively simple problem, like computing
the number of points in the ball BP (p, r) for some global value r > 0. A more general

3 Note that this definition is scale invariant with respect to ¸, i.e., a scaling of Rd will scale ¸ but not
a�ect the parameters � and �. Thus, upper and lower bounds can restrict attention to the case ¸ = 1.
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version is to allow di�erent radii r (local for each p); another generalization is to compute
some function f over the points in BP (p, r), like finding the point with smallest identifier or
smallest distance to p. A naive approach is to collect (copies of) all the points in BP (p, r) to
the same machine, say the one holding p, and then compute f there. This is very challenging
and our solution is to approximate these balls by generating sets AP (p, r) ¥ BP (p, r), and
evaluate f on these sets instead of on the balls. The approximation here just means that
the set AP (p, r) is sandwiched between a ball of radius r and one of larger radius, see (1).
Informally, we thus compute f(AP (p, r)) ¥ f(BP (p, r)), but of course the approximation
here need not be multiplicative.

Our MPC algorithm derives these sets AP (p, r) from consistent hashing (see Definition 2.2),
and thus our description below requires access to such a hash function Ï, and moreover
the final guarantees depend on the parameters � and � of the consistent hashing. The
theorem below is stated in general, i.e., for any (�,�)-hash, but we eventually employ known
constructions with � = O(1/Á) and � = n

Á, for any desired Á > 0 (see Remark 2.4 and
Lemma 2.3 for details). Obviously, running this algorithm in MPC requires an implementation
of consistent hashing, which might require additional memory; but this memory requirement
is typically much smaller than

Ô
s, and thus the hash function can be easily stored in each

machine.
Yet another challenge is that the entire set AP (p, r) might not fit in a single machine,

and we thus impose on f another requirement. We say that a function f is composable
if for every disjoint S1, . . . , St ™ Rd, one can evaluate f(S1 fi · · · fi St) from the values of
f(S1), . . . , f(St).4 In our context, f maps finite subsets of Rd to R. For instance, f(S) = |S|
is clearly composable. For a few more interesting examples, suppose every x œ Rd is associated
with a value h(x) œ R. Now if h(x) represents the weight of x, then f(S) =

q
xœS

h(x) is
the total weight of S; and if h(x) represents an identifier (perhaps chosen at random), then
f(S) = minxœS h(x) is the smallest identifier in S.

I Theorem 3.1 (Geometric Aggregation in MPC). There is a deterministic fully-scalable
MPC algorithm with the following guarantees. Suppose that

the input is r Ø 0 and a multiset P µ Rd of n points distributed across machines with
local memory s Ø poly(d logn); and
the algorithm has access to a composable function f (mapping finite subsets of Rd to R)
and to a (�,�)-hash Ï : Rd æ Rd.

Then the algorithm uses O(logs n) rounds and O(� ·poly(d)) · Õ(n) total space, and computes
for each p œ P a value f(AP (p, r)), where AP (p, r) is an arbitrary set that satisfies

BP (p, r) ™ AP (p, r) ™ BP (p, 3� · r). (1)

(In fact, the set AP (p, r) is determined by Ï.)

Proof. Our algorithm makes use of the following standard subroutines in MPC, and we note
that they are deterministic. In the broadcast procedure, to send a message of length at
most

Ô
s from some machine M0 to every other ones, one can build an

Ô
s-ary broadcasting

tree whose nodes are the machines (with M0 as the root), and send/replicate the message
level-by-level through the tree (starting from the root). Observe that the height of the tree
is O(logs n) and hence the entire process runs in O(logs n) rounds. The reversed procedure
defined on the same broadcast tree, sometimes called converge-cast [39], can be used to

4 We use general t here because of our intended application, but obviously it follows from the special case
t = 2.
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aggregate messages with size at most
Ô
s distributed across machines to some root machine

M0 (for instance, to aggregate the sum of vectors of length
Ô
s distributed across machines),

in O(logs n) rounds. In particular, it can be used to evaluate the composable function f on a
(distributed) set S, where each machine M evaluates f(SM) for its own part SM ™ S, and
aggregate using converge-cast.

I Lemma 3.2 (Sorting in MPC [41]). There is a deterministic MPC algorithm that given
a set X of N comparable items distributed across machines with local memory s, sorts X

such that each x œ X knows its rank and ’x < y œ X, it holds that the machine that holds x

has an ID no larger than that of y. The algorithm uses O(logs N) rounds and total space of
O(N) words.

We give an outline of our algorithm in Algorithm 1; the implementation details in MPC
are discussed below. The algorithm starts with “partitioning” Rd into buckets with respect
to the (�,�)-hash Ï, and approximates each ball B(p, r) by the union of buckets that this
ball intersects. This distorts the radius by at most an O(�)-factor. Then, we evaluate the f

value on each bucket, and the approximation to f(BP (p, r)) is obtained by “aggregating” the
f value for the intersecting buckets of B(p, r), where the composability of f is crucially used.

Implementation Details. Here we discuss how each step of Algorithm 1 is implemented
e�ciently in MPC. In line 3, since after the sorting, for each u œ Ï(P ) the points in Pu, i.e.,
the set of points p such that u = Ï(p), span a (partial) segment of machines with contiguous
IDs, one can use a converge-cast in parallel in each segment to aggregate f(Pu). In line 4,
although the total space is su�cient to hold all tuples, we may not have enough space to
store the O(�) tuples for a point p in a single machine. Instead, we allocate for every point
p a (partial) segment of machines whose total space is O(�) (which can be figured out via
sorting), replicate p’s to them (via broadcast), and generate Ï(B(p, r)) in parallel on those
machines. Specifically, each machine in the segment is responsible for generating a part of
Ï(B(p, r)), and a part can be generated locally without further communication since every
machine holds the same deterministic Ï. Line 6 and line 7 can be implemented similarly by
broadcast and converge-cast, respectively, in parallel on each segment of machines.

Algorithm 1 MPC algorithm for evaluating f(AP (p, r)) for p œ P , for given P µ Rd
, r > 0.

1: each machine imposes the same (�,�)-hash Ï : Rd æ Rd with diameter bound ¸ := 2�r
Û notice that Ï is deterministic, hence no communication is required

2: sort P with respect to Ï(p) for p œ P (using Lemma 3.2)
3: for u œ Ï(P ), evaluate and store f(Pu) where Pu := Ï

≠1(u) fl P

4: for each p œ P and u œ Ï(B(p, r)), create and store a tuple (p, u)
Û as |Ï(B(p, r))| = O(�) by Definition 2.2, the total space is enough to hold all

tuples
5: sort the tuples with respect to u (using Lemma 3.2)
6: let Tu = {(·, u)}, append f(Pu) to all tuples in Tu

Û f(Pu) is already evaluated and stored, as in line 3
7: sort the tuples with respect to p, and evaluate f(AP (p, r)) for each p, where

AP (p, r) :=
€

uœÏ(B(p,r))

Pu
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Round Complexity and Total Space. The round complexity is dominated by the sorting,
broadcast and converge-cast procedures, which all take O(logs n) rounds to finish and are
invoked O(1) times in total. Therefore, the algorithm runs in O(logs n) rounds. The total
space is asymptotically dominated by poly(d logn) times the total number of tuples, which
is O(�) · n by Definition 2.2.

Correctness. Observe that the algorithm is deterministic, and hence there is no failure
probability. It remains to show that AP (p, r) satisfies that BP (p, r) ™ AP (p, r) ™ BP (p, 3�r).
Recall that Pu = Ï

≠1(u) fl P as defined in line 3, and that AP (p, r) =
t

uœÏ(B(p,r)) Pu as in
line 7. Hence, we have

AP (p, r) = P fl Ï
≠1(Ï(B(p, r))).

Therefore, the first inequality is straightforward as BP (p, r) ™ Ï
≠1(Ï(B(p, r)))flP = AP (p, r)

for any mapping Ï.
To prove the second inequality, fix some p œ P . For a point q œ AP (p, r), by definition

there is a uq œ Ï(BP (p, r)) such that q œ Ï
≠1(uq). Then by Definition 2.2, we have

diam(Ï≠1(uq)) Æ ¸ = 2�r which implies that any point x œ Ï
≠1(uq) satisfies dist(x, q) Æ 2�r.

Now, pick a point x œ BP (p, r) such that Ï(x) = uq; such a point exists as uq œ Ï(BP (p, r)).
Then by definition, x œ BP (p, r) fl Ï

≠1(uq) and dist(p, x) Æ r. Hence, by triangle inequality,
we have that dist(p, q) Æ dist(p, x) + dist(x, q) Æ r + 2�r Æ 3�r, which implies that
AP (p, r) ™ BP (p, 3�r). This finishes the proof. J

3.1 Application to Nearest Neighbor Search
Given a set X ™ Rd of terminals and a set P ™ Rd of data points, the fl-approximate
nearest neighbor search problem asks to find for every p œ P a terminal x œ X, such
that dist(p, x) Æ fl · dist(p,X). This process is useful in clustering and facility location
problems, since one can find an assignment of every data point to its approximately nearest
center/facility. We show how to solve this problem using Theorem 3.1, provided the knowledge
of the aspect ratio � of X fi P .

Pick an arbitrary point x œ X fi P , compute in O(logs n) rounds the maximum distance
M := maxyœXfiP dist(x, y) from x to every other point (via broadcast and converge-cast).
Since M is a 2-approximation to diam(X fi P ), we conclude that for every x ”= y œ X fi P ,
M/� Æ dist(x, y) Æ 2M . Rescale the instance by dividing M/�, then the distances are
between 1 and O(�). Then, let Z := {2i : 1 Æ 2i Æ O(�)}. We apply Theorem 3.1 in
parallel for r œ Z and f such that f(Y ) for Y ™ X finds the terminal with the smallest ID
in Y (where the ID of a point can be defined arbitrarily as long as it is consistent), and f

returns ‹ if Y = ÿ. This f is clearly composable. After we obtain the result of Theorem 3.1,
i.e., f(AX(p, r)) for p œ P and r œ Z, we find in parallel for each p œ P the smallest r œ Z

such that f(AX(p, r)) ”= ‹. This way, we explicitly get for each point p an approximately
nearest facility in X. This algorithm has approximation factor fl = O(�), using total space
by an O(log�)-factor larger than that of Theorem 3.1, while the round complexity remains
O(logs n).

We remark that techniques based on locality sensitive hashing (LSH) can also be applied
in MPC to solve the approximate nearest neighbor problem [13, 28]. LSH in fact achieves a
slightly better tradeo�, namely, an O(c)-approximation using total space n

1/c2 · Õ(n), while
our approach requires total space n

1/c · Õ(n), by plugging in Lemma 2.3 and assuming the
dimension reduction in Remark 2.4 is performed. Alternatively, if d Æ O(logn), one can
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obtain the same n
1/c · Õ(n) bound without applying the randomized dimension reduction in

Remark 2.4, which leads to a deterministic algorithm, whereas approaches based on LSH are
inherently randomized.
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given an n-vertex graph G and an integer k, in time n

O(k3) either constructs a tree decomposition
of G whose independence number is O(k3) or correctly reports that the tree-independence number
of G is larger than k.

In this paper, we first give an algorithm for computing the tree-independence number with
a better approximation ratio and running time and then prove that our algorithm is, in some
sense, the best one can hope for. More precisely, our algorithm runs in time 2O(k2)

n
O(k) and either

outputs a tree decomposition of G with independence number at most 8k, or determines that the
tree-independence number of G is larger than k. This implies 2O(k2)
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�(k) factor in the running
time is unavoidable for any approximation algorithm for the tree-independence number.

Our second result is that the exact computation of the tree-independence number is para-NP-
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tree-independence number at most k.
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1 Introduction

Tree decompositions are among the most popular tools in graph algorithms. The crucial
property of tree decompositions exploited in the majority of dynamic programming algorithms
is that each bag of the decomposition can interact with an optimal solution only in a bounded
number of vertices. The common measure of a tree decomposition is the width, that is, the
maximum size of a bag in the decomposition (minus 1). The corresponding graph parameter
is the treewidth of a graph. Many problems that are intractable on general graphs can be
solved e�ciently when the treewidth of a graph is bounded.

However, it is not always the size of a bag that matters. For example, suppose that every
bag of the decomposition is a clique, that is, the graph is chordal. Since every independent set
intersects each of the clique-bags in at most one vertex, dynamic programming still computes
maximum weight independent sets in such graphs in polynomial time even if the bags could
be arbitrarily large. An elegant approach to capturing such properties of tree decompositions
is the notion of the tree-independence number of a graph. The independence number of a
tree decomposition is the maximum of the independence numbers (that is, the maximum
size of an independent set) of the subgraphs induced by its bags. The tree-independence
number of a graph G, denoted by tree-–(G), is the minimum independence number of a tree
decomposition of G. In particular, the tree-independence number of a chordal graph is at
most one, and for any graph G, the value tree-–(G) does not exceed the treewidth of G (plus
1) or the independence number –(G) of G.

The family of graph classes with bounded tree-independence number forms a significant
generalization of graph classes with bounded treewidth. It also contains dense graphs classes,
including graph classes with bounded independence number; classes of intersection graphs of
connected subgraphs of graphs with bounded treewidth, studied by Bodlaender, Gustedt,
and Telle [6], which in particular include classes of H-graphs, that is, intersection graphs of
connected subgraphs of a subdivision of a fixed multigraph H, introduced in 1992 by Bíró,
Hujter, and Tuza [4] and studied more recently in a number of papers [8, 9, 22]; classes of
graphs in which all minimal separators have bounded size, studied by Skodinis in 1999 [38];
and, more generally, classes of graphs in which all minimal separators induce subgraphs with
bounded independence number, studied by Dallard, Milani�, and ätorgel [15].

Our results. Yolov [40] gave an algorithm that for a given n-vertex graph G and integer k,
in time n

O(k3
) either constructs a tree decomposition of G whose independence number is

O(k3) or correctly reports that the tree-independence number of G is larger than k. Our
first main result is the following improvement over Yolov’s algorithm.

I Theorem 1. There is an algorithm that, given an n-vertex graph G and an integer k, in
time 2O(k2

)
n
O(k) either outputs a tree decomposition of G with independence number at most

8k, or concludes that the tree-independence number of G is larger than k.

The performance of the algorithm from Theorem 1 (the running time and the need of
approximation) are in some sense optimal, for the following reasons. First, by a simple
reduction that given an n-vertex graph G produces a 2n-vertex graph G

Õ with tree-–(GÕ) =
–(G) hardness results for the independence number (or clique) translate into hardness results
for the tree-independence number. In particular, from the result of Lin [30] it follows
that a constant-factor approximation of the tree-independence number is W[1]-hard, and
from the result of Chalermsook, Cygan, Kortsarz, Laekhanukit, Manurangsi, Nanongkai,
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and Trevisan [7] it follows that assuming Gap-ETH1, there is no f(k) · no(k)-time g(k)-
approximation algorithm for the tree-independence number for any computable functions f
and g. In particular, the time complexity obtained in Theorem 1 is optimal in the sense that
an n

�(k) factor is unavoidable assuming Gap-ETH, even if the approximation ratio would be
drastically weakened.

The above arguments do not exclude the possibility of exact computation of the tree-
independence number in time n

f(k) for some function f . The computational complexity of
recognizing graphs with the tree-independence numbers at most k for a fixed integer k Ø 2
was asked as an open problem by Dallard, Milani�, and ätorgel [15, Question 8.3]2. While
for values k = 2 and k = 3 the question remains open, our next result resolves it for any
constant k Ø 4.3

I Theorem 2 (ı). For every constant k Ø 4, it is NP-complete to decide whether tree-–(G) Æ

k for a given graph G.

Let us observe that Theorem 2 implies also that, assuming P ”= NP, there is no n
f(k)-time

approximation algorithm for the tree-independence number with approximation ratio less
than 5/4.

We supplement our main results with a second NP-completeness proof for a problem
closely related to computing the tree-independence number and the algorithm of Theorem 1.
We consider the problem where we are given a graph G, two non-adjacent vertices u and
v, and an integer k, and the task is to decide if u and v can be separated by removing a
set of vertices that induces a subgraph with independence number at most k. We show in
Theorem 14 that this problem is NP-complete for any fixed integer k Ø 3. This hardness
result is motivated by the fact that the algorithm of Theorem 1 finds separators with bounded
independence number as a subroutine. While for the algorithm of Theorem 1 we design a
2O(k2

)
n
O(k)-time 2-approximation algorithm for a generalization of this problem, assuming

that a tree decomposition of independence number O(k) is given, this proof shows that this
step of the algorithm cannot be turned into an exact algorithm (in our reduction, we can
construct along the graph G also a tree decomposition of independence number O(k) of G).

Previous work and applications of Theorem 1. The notion of the tree-independence
number is very natural and it is not surprising that it was introduced independently by
several researchers [15, 40]. Yolov in [40] introduced a new width measure called minor-
matching hypertree-width, tree-µ.4 He proved that a number of problems including Maximum
Independent Set, k-Colouring, and Graph Homomorphism permit polynomial-time
solutions for graphs with bounded minor-matching hypertree width. Furthermore, Yolov
showed that the minor-matching hypertree-width of a graph is equal to the tree-independence
number of the square of its line graph, that is, tree-µ(G) = tree-–(L(G)2) holds for all
graphs G, where L(G)2 is the graph whose vertices are the edges of G, with two distinct
edges adjacent if and only if they have nonempty intersection or there is a third edge

1 Gap-ETH states that for some constant ‘ > 0, distinguishing between a satisfiable 3-SAT formula and
one that is not even (1 ≠ ‘)-satisfiable requires exponential time (see [20,32]).

2 There is a linear-time algorithm for deciding if a given graph has the tree-independence number at most
1, because such graphs are exactly the chordal graphs, see, e.g., [25].

3 The proofs of the statements marked (ı) are omitted due to space constraints and can be found in the
full version of the paper [13].

4 Minor-matching hypertree-width is defined for hypergraphs, but algorithms for computing decompositions
for it are only known for graphs.
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intersecting both. Moreover, a tree decomposition of L(G)2 with independence number at
most k can be turned into a tree decomposition of G with minor-matching hypertree-width
at most k. Then, Yolov gave an n

O(k3
)-time O(k2)-approximation algorithm computing the

tree-independence number of an n-vertex graph, implying also the same bounds for computing
the minor-matching hypertree-width of a graph. Theorem 1 improves the running time and
approximation ratio of Yolov’s algorithm. Pipelined with Yolov’s reduction, Theorem 1 also
implies an 8-approximation of minor-matching hypertree-width of graphs in time 2O(k2

)
n
O(k).

Theorem 2 implies also the NP-hardness of deciding whether tree-µ(G) Æ k for every
constant k Ø 4 because a simple reduction that attaches a pendant vertex to every vertex of
a graph G produces a graph G

Õ such that tree-µ(GÕ) = tree-–(G) (see [40]).
The tree-independence number of a graph was introduced independently by Yolov [40]

and Dallard et al. [15].5 The original motivation for Dallard et al. [15] stems from structural
graph theory. In 2020, Dallard, Milani�, and ätorgel [14,17] initiated a systematic study of
(tw,Ê)-bounded graph classes, that is, hereditary graph classes in which the treewidth can
only be large due to the presence of a large clique. While (tw,Ê)-bounded graph classes are
known to possess some good algorithmic properties related to clique and coloring problems
(see [9, 10,14,15,17]), the extent to which this property has useful algorithmic implications
for problems related to independent sets is an open problem. The connection with the
tree-independence number follows from Ramsey’s theorem, which implies that graph classes
with bounded tree-independence number are (tw,Ê)-bounded with a polynomial binding
function (see [15]). Dallard, Milani�, and ätorgel [16] conjecture the converse, namely,
that every (tw,Ê)-bounded graph class has bounded tree-independence number. A related
research direction in structural graph theory is the study of induced obstructions to bounded
treewidth and tree-independence number; see for example the recent work of Abrishami,
Alecu, Chudnovsky, Hajebi, Spirkl, and VuökoviÊ [1].

In our opinion, the most interesting application of Theorem 1 lies in the area of graph
algorithms for NP-hard optimization problems. Dallard et al. [15] and Yolov in [40] have
shown that certain NP-hard optimization problems like Maximum Independent Set,
Graph Homomorphism, or Maximum Induced Matching problems can be solved in time
n
O(k) if the input graph is given with a tree decomposition of independence number at most k.

Lima et al. [29] extended this idea to generic packing problems in which any two of the
chosen subgraphs have to be at pairwise distance at least d, for even d. They also obtained
an algorithmic metatheorem for the problem of finding a maximum-weight sparse (bounded
chromatic number) induced subgraph satisfying an arbitrary but fixed property expressible
in counting monadic second-order logic (CMSO2). In particular, the metatheorem implies
polynomial-time solvability of several classical problems like finding the largest induced forest
(which is equivalent to Minimum Feedback Vertex Set), finding the largest induced
bipartite subgraph (which is equivalent to Minimum Odd Cycle Transversal), finding
the maximum number of pairwise disjoint and non-adjacent cycles (Maximum Induced
Cycle Packing), and finding the largest induced planar subgraph (which is equivalent to
Planarization).

However, the weak spot in all these algorithmic approaches is the requirement that a
tree decomposition with bounded independence number is given with the input. Theorem 1
fills this gap by constructing a decomposition of bounded independence number in time
that asymptotically matches or improves the time required to solve all these optimization
problems.

5 Yolov called it –-treewidth in [40].
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Theorem 1 appears to be a handy tool in the subarea of computational geometry concerning
optimization problems on geometric graphs. Treewidth plays a fundamental role in the
design of exact and approximation algorithms on planar graphs (and more generally, H-
minor-free graphs) [3, 19, 26]. The main property of such graphs is that they enjoy the
bounded local treewidth property. In other words, any planar graph of a small diameter has
a small treewidth. A natural research direction is to extend such methods to intersection
graphs of geometric objects [23, 31]. However, even for very “simple” objects like unit
disks, the corresponding intersection graphs do not have locally bounded treewidth. On
the other hand, in many scenarios, the treewidth-based methods on such graphs could
be replaced by tree decompositions of bounded independence number. In particular, de
Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden use tree decompositions whose
bags are covered by a small number of cliques, and thus of small independence number,
to design subexponential-time algorithms on geometric graph classes [18]. Galby, Munaro,
and Yang [24] use Theorem 1 for obtaining polynomial-time approximation schemes for
several packing problems on geometric graphs. It is interesting to note that algorithms on
geometric graphs often require geometric representation of a graph. Sometimes, like for unit
disk graphs, finding such a representation is a challenging computational task [27]. On the
contrary, Theorem 1 does not need the geometric properties of objects or their geometric
representations and thus could be used for developing so-called robust algorithms [35] on
geometric graphs [11].

In parameterized algorithms, Fomin and Golovach [21] and Jacob, Panolan, Raman, and
Sahlot [28] used tree decompositions where each bag is obtained from a clique by deleting at
most k edges or adding at most k vertices, respectively. These type of decompositions are
special types of tree decompositions with bounded independence numbers.

The rest of this paper is organized as follows. In Section 2, we overview the proof of our
main algorithmic result Theorem 1. In Section 3 we recall definitions. Section 4 is devoted
to the proof of Theorem 1. In Section 5, we survey our computational lower bounds. Due to
space constraints, the proofs of the hardness results are omitted and are available in the full
version of the paper [13]. We conclude in Section 6 with final remarks and open problems.

2 Overview

In this section we sketch the proof of Theorem 1. For simplicity, we sketch here a version
with approximation ratio 11 instead of 8. The di�erence between the 11-approximation and
8-approximation is that for 11-approximation it is su�cient to use 2-way separators, while
for 8-approximation we use 3-way separators.

On a high level, our algorithm follows the classical technique of constructing a tree
decomposition by repeatedly finding balanced separators. This technique was introduced by
Robertson and Seymour in Graph Minors XIII [37], was used for example in [5, 18,28], and
an exposition of it was given in [12, Section 7.6.2] and in [34].

The challenge in applying this technique is the need to compute separators that are both
balanced and small with respect to the independence numbers of the involved vertex sets.
Our main technical contribution is an approximation algorithm for finding such separators.
In what follows, we will sketch an algorithm that given a graph G, a parameter k, and a
set of vertices W ™ V (G) with independence number –(W ) = 9k either finds a partition
(S,C1, C2) of V (G) such that each S, C1, and C2 are nonempty, S separates C1 from C2,
–(S) Æ 2k, and –(W fl Ci) Æ 7k for both i = 1, 2, or determines that the tree-independence
number of G is larger than k. (For S ™ V (G) we use –(S) to denote the independence
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number of the induced subgraph G[S].) Our algorithm for finding such balanced separators
works in two parts. First, we reduce finding balanced separators to finding separators, and
then we give a 2-approximation algorithm for finding separators.

At first glance, it is not even clear that small tree-independence number guarantees
the existence of such balanced separators. To prove the existence of balanced separators
and to reduce the finding of balanced separators to finding separators between specified
sets of vertices, instead of directly enforcing that both sides of the separation have a small
independence number, we enforce that both sides of the separation have su�ciently large
independence number. More precisely, we pick an arbitrary independent set I ™ W of size
|I| = 9k. By making use of the properties of tree decompositions, it is possible to show that
there exists a separation (S,C1, C2) with |I fl Ci| Æ 6k for i œ {1, 2} and –(S) Æ k. Hence
|IflCi| Ø 2k for i œ {1, 2}. By enforcing the condition |IflCi| Ø 2k for both i œ {1, 2}, we will
have that –(W flCi) Æ 7k for both i œ {1, 2}. (Note that –(W flC1) +–(W flC2) Æ –(W ).)
Therefore, to find a balanced separator for W or to conclude that the tree-independence
number of G is larger than k, it is su�cient to select an arbitrary independent set I ™ W

with |I| = 9k, do 2O(k) guesses for sets I fl C1 and I fl C2, and for each of the guesses search
for a separator between the sets I fl C1 and I fl C2.

In the separator finding algorithm the input includes two sets V1 = IflC1 and V2 = IflC2,
and the task is to find a set of vertices S disjoint from both V1 and V2 separating V1 from V2

with –(S) Æ 2k or to conclude that no such separator S with –(S) Æ k exists. Our algorithm
works by first using multiple stages of di�erent branching steps, and then arriving at a special
case which is solved by rounding a linear program. We explain some details in what follows.

First, by using iterative compression around the whole algorithm, we can assume that
we have a tree decomposition with independence number O(k) available. We show that
any set S ™ V (G) with –(S) Æ k can be covered by O(k) bags of the tree decomposition.
This implies that by first guessing the covering bags, we reduce the problem to the case
where we search for a separator S ™ R for some set R ™ V (G) with independence number
–(R) = O(k2).

Then, we use a branching procedure to reduce the problem to the case where R ™

N [V1 fi V2]. In the branching, we select a vertex v œ R \N [V1 fi V2], and branch into three
subproblems, corresponding to including v into V1, into V2, or into a partially constructed
solution S. The key observation here is that if we branch on vertices v œ R \N [V1 fiV2], then
the branches where v is included in V1 or in V2 reduce the value –(R \N [V1 fi V2]). By first
handling the case with –(R \N [V1 fi V2]) Ø 2k by branching on 2k vertices at the same time
and then branching on single vertices, this branching results in 2O(–(R))

n
O(k) = 2O(k2

)
n
O(k)

instances where R ™ N [V1 fi V2].

Finally, when we arrive at the subproblem where R ™ N [V1 fi V2], we design a
2-approximation algorithm by rounding a linear program. For v œ R, let us have vari-
ables xv with xv = 1 indicating that v œ S and xv = 0 indicating that v /œ S. Because
R ™ N [V1 fi V2], the fact that S ™ R separates V1 from V2 can be encoded by only using
inequalities of form xv +xu Ø 1. To bound the independence number of S, for every indepen-
dent set I of size |I| = 2k+1 we add a constraint that

q
vœI xv Æ k. Now, a separator S with

–(S) Æ k corresponds to an integer solution. We then find a fractional solution and round
xv to 1 if xv Ø 1/2 and to 0 otherwise. Note that this satisfies the xv + xu Ø 1 constraints,
so the rounded solution corresponds to a separator. To bound the independence number of
the rounded solution, note that

q
vœI xv Æ 2k for independent sets I of size |I| = 2k + 1,

therefore implying that –(S) Æ 2k.
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3 Preliminaries

We denote the vertex set and the edge set of a graph G = (V,E) by V (G) and E(G),
respectively. The neighborhood of a vertex v in G is the set NG(v) of vertices adjacent to v

in G, and the closed neighborhood of v is the set NG[v] = NG(v) fi {v}. These concepts are
extended to sets X ™ V (G) so that NG[X] is defined as the union of all closed neighborhoods
of vertices in X, and NG(X) is defined as the set NG[X] \X. The degree of v, denoted by
dG(v), is the cardinality of the set NG(v). When there is no ambiguity, we may omit the
subscript G in the notations of the degree, and open and closed neighborhoods, and thus
simply write d(v), N(v), and N [v], respectively.

Given a set X ™ V (G), we denote by G[X] the subgraph of G induced by X. We also
write G \X = G[V (G) \X]. Similarly, given a vertex v œ V (G), we denote by G \ v the
graph obtained from G by deleting v. A graph G is chordal if it has no induced cycles of
length at least four.

A clique (resp. independent set) in a graph G is a set of pairwise adjacent (resp. non-
adjacent) vertices. The independence number of G, denoted by –(G), is the maximum size
of an independent set in G. For a set of vertices X ™ V (G), the independence number of X
is –(X) = –(G[X]).

Let (V1, V2, . . . , Vt) be a tuple of disjoint subsets of V (G). A (V1, V2, . . . , Vt)-separator is
a set S ™ V (G) such that S fl Vi = ÿ for each i œ [t], and in the graph G \ S there is no path
from Vi to Vj for all pairs i ”= j. Such a separator is sometimes called a t-way separator.
Note that if Vi is adjacent to Vj for some i ”= j, then no (V1, V2, . . . , Vt)-separator exists.

A tree decomposition of a graph G is a pair T = (T, {Xt}tœV (T )) where T is a tree and
every node t of T is assigned a vertex subset Xt ™ V (G) called a bag such that the following
conditions are satisfied: (1) every vertex of G is in at least one bag, (2) for every edge
uv œ E(G) there exists a node t œ V (T ) such that Xt contains both u and v, and (3) for every
vertex u œ V (G) the subgraph Tu of T induced by the set {t œ V (T ) : u œ Xt} is connected
(that is, a tree). The independence number of a tree decomposition T = (T, {Xt}tœV (T )) of a
graph G, denoted by –(T ), is defined as follows:

–(T ) = max
tœV (T )

–(Xt) .

The tree-independence number of G, denoted by tree-–(G), is the minimum independence
number among all tree decompositions of G.

4 An 8-approximation algorithm for tree-independence number

In this section we prove Theorem 1, that is, we give a 2O(k2
)
n
O(k)-time algorithm for either

computing tree decompositions with independence number at most 8k or deciding that the
tree-independence number of the graph is more than k. Our algorithm consists of three parts.
First, we give a 2O(k2

)
n
O(k)-time 2-approximation algorithm for finding 3-way separators

with independence number at most k, with the assumption that a tree decomposition
with independence number O(k) is given with the input. Then, we apply this separator
finding algorithm to find balanced separators, and then apply balanced separators in the
fashion of the Robertson-Seymour treewidth approximation algorithm [37] to construct a
tree decomposition with independence number at most 8k. The requirement for having a
tree decomposition with independence number O(k) as an input in the separator algorithm
is satisfied by iterative compression (see, e.g., [12]), as we explain at the end of Section 4.3.

The presentation of the algorithm in this section is in reverse order compared to the
presentation we gave in Section 2.
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4.1 Finding approximate separators
In this subsection, we show the following theorem.

I Theorem 3. There is an algorithm, that given a graph G, an integer k, a tree decomposition
T of G with independence number –(T ) = O(k), and three disjoint sets of vertices V1, V2, V3 ™

V (G), in time 2O(k2
)
n
O(k) either reports that no (V1, V2, V3)-separator with independence

number at most k exists, or returns a (V1, V2, V3)-separator with independence number at
most 2k.

To prove Theorem 3, we define a more general problem that we call partial 3-way
–-separator, which is the same as the problem of Theorem 3 except that two sets S0 and
R are given with the input, and we are only looking for separators S with S0 ™ S ™ S0 fi R.

I Definition 4 (Partial 3-way –-separator). An instance of partial 3-way –-
separator is a 5-tuple (G, (V1, V2, V3), S0, R, k), where G is a graph, V1, V2, V3, S0, and R

are disjoint subsets of V (G), and k is an integer. A solution to partial 3-way –-separator
is a (V1, V2, V3)-separator S such that S0 ™ S ™ S0 fi R. A 2-approximation algorithm for
partial 3-way –-separator either returns a solution S with –(S) Æ 2k or determines
that there is no solution S with –(S) Æ k.

We give a 2-approximation algorithm for partial 3-way –-separator. Then Theorem 3
will follow by setting S0 = ÿ and R = V (G) \ (V1 fi V2 fi V3).

We give our 2-approximation algorithm by giving 2-approximation algorithms for in-
creasingly more general cases of partial 3-way –-separator. First, we give a linear
programming based 2-approximation algorithm for the special case when R ™ N(V1fiV2fiV3).
Then, we use branching and the first algorithm to give a 2-approximation algorithm for the
case when –(R) = O(k2). Then, we use the input tree decomposition to reduce the general
case to the case where –(R) = O(k2).

Let us make some observations about trivial instances of partial 3-way –-separator.
First, we can assume that –(S0) Æ k, as otherwise any solution S has –(S) > k and we can
return no immediately. All our algorithms include an n

O(k) factor in the time complexity,
so it can be assumed that this condition is always tested. Then, we can also always return
no if Vi is adjacent to Vj , where i ”= j. This can be checked in polynomial time, so we can
assume that this condition is always tested. Note that testing this condition implies that
N(V1 fi V2 fi V3) = N(V1) fi N(V2) fi N(V3). For simplicity, we write N(V1 fi V2 fi V3) as it is
shorter.

We start with the linear programming based 2-approximation algorithm for the case when
R ™ N(V1 fi V2 fi V3).

I Lemma 5. There is an n
O(k)-time 2-approximation algorithm for partial 3-way –-

separator when R ™ N(V1 fi V2 fi V3).

Proof. First, note that we may assume that for all i, j œ {1, 2, 3}, i ”= j, there is no path in
the graph G \ (R fi S0) between a vertex of Vi and a vertex of Vj , since otherwise the given
instance has no solution at all. Furthermore, under this assumption, we can safely replace
each set Vi with the set of vertices reachable from a vertex in Vi in the graph G \ (R fi S0).
We thus arrive at an instance such that R ™ N(V1 fi V2 fi V3) ™ R fi S0. We then make an
integer programming formulation of the problem (with n

O(k) constraints) and show that it
gives a 2-approximation by rounding a fractional solution.

For every vertex v œ RfiS0 we introduce a variable xv, with the interpretation that xv = 1
if v œ S and xv = 0 otherwise. We force S0 to be in the solution by adding constraints xv = 1
for all v œ S0. Then, we say that a pair (vi, vj) of vertices with vi œ N(Vi), vj œ N(Vj),
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i ”= j, is connected if there is a vi, vj-path in the graph G \ ((S0 fiR) \ {vi, vj}). For any pair
(vi, vj) of connected vertices we introduce a constraint xvi + xvj Ø 1 indicating that vi or vj
should be selected to the solution. Note that here it can happen that vi = vj , corresponding
to the case when vi œ N(Vi)flN(Vj), resulting in a constraint forcing vi to be in the solution.
Finally, for every independent set I ™ R fi S0 of size |I| = 2k + 1, we introduce a constraintq

vœI xv Æ k.
We observe that any solution S with –(S) Æ k corresponds to a solution to the integer

program. In particular, any (V1, V2, V3)-separator S must satisfy the xvi +xvj Ø 1 constraints
for connected pairs (vi, vj), as otherwise there would be a Vi,Vj-path in G\S, and a separator
with –(S) Æ k satisfies the independent set constraints as otherwise it would contain an
independent set larger than k.

Then, we show that any integral solution that satisfies the xvi + xvj Ø 1 constraints for
connected pairs (vi, vj) and the constraints xv = 1 for v œ S0 corresponds to a (V1, V2, V3)-
separator. Suppose that all such constraints are satisfied by an integral solution corresponding
to a set S, but there is a path from Vi to Vj with i ”= j in G \ S. Take a shortest path
connecting N(Vi) \ S to N(Vj) \ S in G \ S for any i ”= j, and note that the intermediate
vertices of such path do not intersect N(V1 fi V2 fi V3), as otherwise we could get a shorter
path, and therefore do not intersect R. By S0 ™ S, we have that the intermediate vertices
do not intersect R fi S0, so this path is in fact a path in the graph G \ ((S0 fi R) \ {vi, vj}),
where vi œ N(Vi) \ S is the first vertex and vj œ N(Vj) \ S is the last vertex. However, in
this case (vi, vj) is a connected pair and we have a constraint xvi + xvj Ø 1, which would be
violated by such an integral solution, so we get a contradiction.

We solve the linear program in polynomial time (which is nO(k) as the number of variables
is O(n) and the number of constraints is nO(k)), and round the solution by rounding xv to
1 if xv Ø 1/2 and otherwise to 0. This rounding will satisfy the xvi + xvj Ø 1 constraints
for connected pairs, so the resulting solution corresponds to a separator. Then, by the
constraints

q
vœI xv Æ k for independent sets I of size 2k + 1, the rounded solution will

satisfy
q

vœI xv Æ 2k for independent sets I of size 2k+1. Therefore, there are no independent
sets of size 2k + 1 in the resulting solution, so its independence number is at most 2k. J

We will pipeline Lemma 5 with branching to obtain a 2-approximation algorithm for
partial 3-way –-separator in a setting where –(R) is small. In our final algorithm, –(R)
will be bounded by O(k2), and this is the part that causes the 2O(k2

) factor in the time
complexity.

Let us observe that we can naturally branch on vertices in R in instances of partial
3-way –-separator.

I Lemma 6 (Branching). Let I = (G, (V1, V2, V3), S0, R, k) be an instance of partial 3-way
–-separator, and let v œ R. If S is a solution of I, then S is also a solution of at least
one of
1. (G, (V1 fi {v}, V2, V3), S0, R \ {v}, k),
2. (G, (V1, V2 fi {v}, V3), S0, R \ {v}, k),
3. (G, (V1, V2, V3 fi {v}), S0, R \ {v}, k), or
4. (G, (V1, V2, V3), S0 fi {v}, R \ {v}, k).
Moreover, any solution of any of the instances 1-4 is also a solution of I.

Proof. If S is a solution of I, we can partition V (G) \ S to parts V
Õ
1

´ V1, V Õ
2

´ V2, and
V

Õ
3

´ V3 by including the vertices in any connected component of G \S containing vertices of
Vi into V

Õ

i for all i œ {1, 2, 3}, and including the vertices in connected components containing
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no vertices of V1, V2, V3 into V
Õ
1
, resulting in a partition (V Õ

1
, V

Õ
2
, V

Õ
3
) of V (G) \ S such that

S is a (V Õ
1
, V

Õ
2
, V

Õ
3
)-separator. Therefore, the first branch corresponds to when v œ V

Õ
1
, the

second when v œ V
Õ
2
, the third when v œ V

Õ
3
, and the fourth when v œ S.

The direction that any solution of any of the instances 1-4 is also a solution of the original
instance is immediate from the fact that we do not remove vertices from any Vi or S0. J

Lemma 6 allows to branch into four subproblems, corresponding to the situation whether
a vertex from R goes to V1, V2, V3, or to S0. Now, our goal is to branch until we derive an
instance with R ™ N(V1 fi V2 fi V3), which can be solved by Lemma 5. In particular, we
would like to branch on vertices v œ R \N(V1 fi V2 fi V3). The following lemma shows that
we can use –(R \N(V1 fi V2 fi V3)) as a measure of progress in the branching.

I Lemma 7. For any vertex v œ R \N(V1 fi V2 fi V3) it holds that –(R \ (N [v]fiN(V1 fi V2 fi

V3))) < –(R \N(V1 fi V2 fi V3)).

Proof. If –(R \ (N [v] fi N(V1 fi V2 fi V3))) Ø –(R \N(V1 fi V2 fi V3)), then we could take an
independent set I ™ R \ (N [v] fi N(V1 fi V2 fi V3)) such that |I| = –(R \ N(V1 fi V2 fi V3)
and construct an independent set I fi {v} ™ R \ N(V1 fi V2 fi V3) of size |I fi {v}| >

–(R \N(V1 fi V2 fi V3)), which is a contradiction. J

Lemma 7 implies that when branching on a vertex v œ R \N(V1 fi V2 fi V3), the branches
where v is moved to V1, V2, or V3 decrease –(R \N(V1 fi V2 fi V3)). This will be the main
idea of our algorithm for the case when –(R) is bounded, which we give next.

I Lemma 8. There is a 2O(–(R))
n
O(k)-time 2-approximation algorithm for partial 3-way

–-separator.

Proof. We give a branching algorithm, whose base case is the case when R ™ N(V1 fiV2 fiV3),
which is solved by Lemma 5. The main idea is to analyze the branching by the parameter
–(R \N(V1 fi V2 fi V3)), in particular with –(R \N(V1 fi V2 fi V3)) = 0 corresponding to the
base case. The branching itself will be “exact” in the sense that all four cases of Lemma 6
are always included, in particular, the 2-approximation is caused only by the application of
Lemma 5.

First, while –(R \N(V1 fi V2 fi V3)) Ø 2k, which can be checked in n
O(k) time, we branch

as follows. We select an independent set I ™ R \N(V1 fi V2 fi V3) of size |I| = 2k, and for
all of its vertices we branch on whether to move it into V1, V2, V3, or S0, i.e., according to
Lemma 6. Because I is an independent set, at most k of the vertices can go to S0, so at least
k go to V1, V2, or V3. Also for the reason that I is an independent set, Lemma 7 can be
successively applied for all of the vertices that go to V1, V2, or V3. Therefore, this decreases
–(R \N(V1 fi V2 fi V3)) by at least k, so the depth of this recursion is at most –(R)/k, so
the total number of nodes in this branching tree is at most (42k)–(R)/k = 2O(–(R)).

Then, we can assume that –(R \ N(V1 fi V2 fi V3)) < 2k. We continue with a similar
branching, this time branching on single vertices. In particular, as long as R \N(V1 fiV2 fiV3)
is nonempty, we select a vertex in it and branch on whether to move it into V1, V2, V3, or S0.
To analyze the size of this branching tree, note that by Lemma 7, when moving a vertex into
V1, V2, or V3, the value of –(R \N(V1 fi V2 fi V3)) decreases by at least one. Therefore, as
initially –(R \N(V1 fi V2 fi V3)) < 2k, any root-to-leaf path of the branching tree contains
less than 2k edges that correspond to such branches, and therefore any root-leaf path can
be characterized by specifying the < 2k indices corresponding to such edges, and then for
these indices whether they correspond to V1, V2, or V3. The length of any root-leaf path is
at most n because |R \N(V1 fi V2 fi V3)| decreases in every branch, and therefore the number
of di�erent root-to-leaf paths is at most n2k32k = n

O(k), and therefore the total number of
nodes in this branching tree is nO(k).
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Therefore, the total size of both of the branching trees put together is 2O(–(R))
n
O(k), so our

algorithm works by 2O(–(R))
n
O(k) applications of Lemma 5, resulting in a 2O(–(R))

n
O(k)-time

algorithm. J

Finally, what is left is to reduce the general case to the case where –(R) = O(k2). We do
not know if this can be done in general, but we manage to do it by using a tree decomposition
with independence number O(k). To this end, we show the following lemma. Given a graph
G, a tree decomposition T of G, and a set W ™ V (G), we say that W is covered by a set B
of bags of T if every vertex in W is contained in at least one of the bags in B. The lemma
generalizes the well-known fact that any clique W of G, that is, a set with –(W ) = 1, is
covered by a single bag of the tree decomposition.

I Lemma 9. Let G be a graph, T a tree decomposition of G, and W a nonempty set of
vertices of G. Then W is covered by a set of at most 2–(W ) ≠ 1 bags of T .

Proof. We denote T = (T, {Xt}tœV (T )). Every edge ab œ E(T ) corresponds to a partition
(Xa fl Xb, Ca, Cb) of V (G), where Ca is the set of vertices of G \ (Xa fl Xb) in the bags of T
that are closer to a than b, Cb is the set of vertices of G \ (Xa fl Xb) in the bags of T that
are closer to b than a, and Xa fl Xb is a (Ca, Cb)-separator.

First, assume that for every edge ab either Ca fl W = ÿ or Cb fl W = ÿ. If both
Ca flW = Cb flW = ÿ, then W ™ Xa flXb, and we cover W by a single bag Xa (or Xb). Thus
we may assume that for every edge exactly one of the sets Ca fl W and Cb fl W is nonempty.
We orient the edge ab from a towards b if Cb fl W ”= ÿ, and from b to a if Ca fl W ”= ÿ.
Because T is a tree, there exists a node t œ V (T ) such that all edges incident with t are
oriented towards t. This implies that Xt covers W because otherwise some edge would be
oriented away from t.

Note that if –(W ) = 1, then W is a clique and indeed for every edge ab either Ca flW = ÿ

or Cb fl W = ÿ. The remaining case is that –(W ) Ø 2 and that there exists an edge ab

such that both |Ca fl W | Ø 1 and |Cb fl W | Ø 1 hold. In this case, we use induction on
–(W ). Since Xa flXb is a (Ca, Cb)-separator, we have that –(Ca flW )+–(Cb flW ) Æ –(W ).
Therefore we can take the union of a smallest set of bags covering Ca fl W , a smallest set of
bags covering Cb fl W , and the bag Xa. By induction, this set of bags covering W contains
at most 2–(W fl Ca) ≠ 1 + 2–(W fl Cb) ≠ 1 + 1 Æ 2–(W ) ≠ 1 bags. J

With Lemma 9, we can use a tree decomposition T with independence number –(T ) =
O(k) to 2-approximate the general case of partial 3-way –-separator as follows. By
Lemma 9, any solution S with –(S) Æ k is covered by at most 2k ≠ 1 bags of T . Therefore,
with T available (and having n

O(1) bags by standard arguments), we can guess a set of at
most 2k ≠ 1 bags of T that covers S, and intersect R by the union of these bags, resulting in
–(R) Æ –(T )(2k ≠ 1) = O(k2). Therefore, we solve the general case by n

O(k) applications
of Lemma 8 with –(R) = O(k2), resulting in a total time complexity of 2O(k2

)
n
O(k). This

completes the proof of Theorem 3.

4.2 From separators to balanced separators
In this subsection we show that Theorem 3 can be used to either find certain balanced
separators for sets W ™ V (G) or to show that the tree-independence number of the graph is
large.

To enforce the “balance” condition, we cannot directly enforce that the separator separates
a given set W into sets of small independence numbers. (This would result in time complexity
exponential in |W | instead of –(W ).) Instead, we fix a maximum independent set in W ,
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and enforce that this independent set is separated in a balanced manner. As long as the
independent set is large enough, this will enforce that the separator is balanced also with
respect to –. The following lemma, which is an adaptation of a well-known lemma given in
Graph Minors II [36] is the starting point of this approach.

I Lemma 10. Let G be a graph with the tree-independence number at most k and I ™ V (G)
an independent set. Then there exists a partition (S,C1, C2, C3) of V (G) (where some Ci can
be empty) such that S is a (C1, C2, C3)-separator, –(S) Æ k, and |I fl (Ci fi Cj)| Ø |I|/2 ≠ k

for any pair i, j œ {1, 2, 3} with i ”= j.

Proof. Let T = (T, {Xt}tœV (T )) be a tree decomposition of G with –(T ) Æ k. As in
Lemma 9, we introduce the following notation. Every edge ab œ E(T ) of T corresponds to a
partition (Xa fl Xb, Ca, Cb) of V (G), where Ca is the set of vertices of G \ (Xa fl Xb) in the
bags of T that are closer to a than b, Cb is the set of vertices of G \ (Xa fl Xb) in the bags
of T that are closer to b than a, and Xa fl Xb is a (Ca, Cb)-separator. We orient the edge
ab from a to b if |Cb fl I| > |I|/2, from b to a if |Ca fl I| > |I|/2, and otherwise arbitrarily.
Now, because T is a tree, there exists a node t œ V (T ) such that all of its incident edges
are oriented towards it. Therefore, for all connected components C of G \Xt, we see that
|V (C) fl I| Æ |I|/2, as otherwise some edge would be oriented out of t.

As long as the number of such connected components C is at least 4, we can take two
of them with the smallest values of |V (C) fl I| and merge them, in the end arriving at
a partition (Xt, C1, C2, C3) of V (G) such that Xt is a (C1, C2, C3)-separator, –(Xt) Æ k,
and |I fl Ci| Æ |I|/2 for all i œ {1, 2, 3}. Then, because |I fl Ci| Æ |I|/2, we have that
|Ifl(V (G)\Ci)| Ø |I|/2. Therefore, since |IflXt| Æ k, it follows that |Ifl(CjfiC¸)| Ø |I|/2≠k,
where (i, j, ¸) is any permutation of the set {1, 2, 3}. J

Next we use Lemma 10 together with the separator algorithm of Theorem 3 to design an
algorithm for finding –-balanced separators of sets W with –(W ) = 6k.

I Lemma 11. There is an algorithm that for a given graph G, an integer k, a tree decompo-
sition of G with independence number O(k), and a set W ™ V (G) with –(W ) = 6k, in time
2O(k2

)
n
O(k) either concludes that the tree-independence number of G is larger than k, or

finds a partition (S,C1, C2, C3) of V (G) such that S is a (C1, C2, C3)-separator, –(S) Æ 2k,
at most one of C1, C2, and C3 is empty, and –(W fl Ci) Æ 4k for each i œ {1, 2, 3}.

Proof. First, we take an arbitrary independent set I ™ W of size |I| = 6k, which can
be found in n

O(k) time. If the tree-independence number of G is at most k, then, by
Lemma 10, there exists a partition (S,C1, C2, C3) of V (G) such that S is a (C1, C2, C3)-
separator, –(S) Æ k, and |I fl (Ci fi Cj)| Ø |I|/2 ≠ k Ø 2k for any pair i, j œ {1, 2, 3} with
i ”= j. We guess the intersection of such a partition with I, in particular we guess the
partition (S fl I, C1 fl I, C2 fl I, C3 fl I), immediately enforcing that it satisfies the constraints
|I fl (Ci fi Cj)| Ø 2k for i ”= j.

For each such guess, we use Theorem 3 to either find a (C1 fl I, C2 fl I, C3 fl I)-separator
with independence number at most 2k or to decide that no such separator with independence
number at most k exists. The set S of the partition guaranteed by Lemma 10 is indeed a
(C1 fl I, C2 fl I, C3 fl I)-separator with independence number at most k, so if the algorithm
reports for every guess that no such separator exists, we return that G has the independence
number larger than k.

Otherwise, for some guess a (C1 fl I, C2 fl I, C3 fl I)-separator S
Õ with –(SÕ) Æ 2k is

found, and we return the partition (SÕ
, C

Õ
1
, C

Õ
2
, C

Õ
3
), where C

Õ

i is the union of the vertex
sets of components of G \ S

Õ that contain a vertex of Ci fl I, for all i œ {1, 2, 3}. Because
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|I fl (Ci fi Cj)| Ø 2k for i ”= j, we see that –(W fl C¸) Æ –(W ) ≠ 2k Æ 4k, where (i, j, ¸) is
an arbitrary permutation of the set {1, 2, 3}, because otherwise we could use the union of
I fl (Ci fi Cj) and a maximum independent set in W fl C¸ to construct an independent set in
W of size larger than –(W ). Also, because |I fl (Ci fiCj)| Ø 2k for any pair i ”= j, the set Ci

cannot be empty for more than one i.
The algorithm works by first finding an independent set of size 6k and then using the

algorithm of Theorem 3 at most 46k times, so the total time complexity is O(n6k) + 46k ·

2O(k2
)
n
O(k) = 2O(k2

)
n
O(k). J

4.3 Constructing the decomposition
Everything is prepared for the final step of the proof – the algorithm constructing a tree
decomposition with independence number at most 8k by using the balanced separator
algorithm of Lemma 11. Our algorithm constructs a tree decomposition from root to the
leaves by maintaining an “interface” W and breaking it with balanced separators. This is
a common strategy used for various algorithms for constructing tree decompositions and
branch decompositions. In our case, perhaps the largest hurdle in the proof is the analysis
that the size of the recursion tree and the constructed decomposition is polynomial in n.

A rooted tree decomposition is a tree decomposition where one node is designated as the
root.

I Lemma 12. There is an algorithm that for a given graph G, an integer k, a tree decompo-
sition of G with independence number O(k), and a set W ™ V (G) with –(W ) Æ 6k, in time
2O(k2

)
n
O(k) either determines that the tree-independence number of G is larger than k or

returns a rooted tree decomposition T of G with independence number at most 8k such that
W is contained in the root bag of T .

Proof. The algorithm will be based on recursively constructing the decomposition, using W

as the interface in the recursion. First, if –(G) Æ 6k, we return the trivial tree decomposition
with only one bag V (G). Otherwise, we start by inserting arbitrary vertices of G into W

until the condition –(W ) = 6k holds.
Then, we apply the algorithm of Lemma 11 to find a partition (S,C1, C2, C3) of V (G)

such that S is a (C1, C2, C3)-separator, –(S) Æ 2k, –(W fl Ci) Æ 4k for each i œ {1, 2, 3},
and at most one of C1, C2, C3 is empty, or to determine that the tree-independence number
of G is larger than k, in this case returning no immediately. Then, we construct the tree
decomposition recursively as follows: for each i œ {1, 2, 3}, we recursively use the algorithm
with the graph Gi = G[Ci fiS] and the set Wi = (Ci flW )fiS. Let T1, T2, T3 be the obtained
tree decompositions and let r1, r2, r3 be their root nodes. We create a new root node r with
a bag Xr = S fi W , and connect r1, r2, and r3 as children of r.

Lemma 11 guarantees that –(Ci fl W ) Æ 4k and –(S) Æ 2k, and therefore –(Wi) Æ 6k.
Also, –(SfiW ) Æ 8k because –(W ) Æ 6k and –(S) Æ 2k. Therefore, the independence number
of the constructed tree decomposition is at most 8k. The constructed tree decomposition
satisfies all conditions of tree decompositions: Because S is a separator between C1, C2, and
C3, when recursing into the graphs Gi = G[Ci fi S] for i œ {1, 2, 3}, the union of the graphs
G1, G2, and G3 includes all vertices and edges of G. Therefore, by induction, every vertex
and edge will be contained in some bag of the constructed tree decomposition (the base case
is –(G) Æ 6k). By induction, the decomposition satisfies also the connectivity condition: if a
vertex occurs in Gi and Gj for i ”= j, then it is in S and therefore in the bag Xr and also in
the sets Wi and Wj and therefore in the root bags Xri and Xrj of Ti and Tj .
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It remains to argue that the size of the recursion tree (and equivalently the size of the
decomposition constructed) is nO(1). First, by the guarantee of Lemma 11 that Ci is empty
for at most one i œ {1, 2, 3}, we have that each Gi has strictly fewer vertices than G, and
therefore the constructed tree has height at most n. We say that a constructed node t is a
forget node if its bag contains a vertex v so that its parent’s bag does not contain v. The
number of forget nodes is at most n because a vertex can be forgotten only once in a tree
decomposition.

Recall that in the start of each recursive call, on a graph Gi and a subset Wi, we either
recognize that –(Gi) Æ 6k, creating a leaf node in this case, or add vertices to Wi until
–(Wi) = 6k. In the latter case, as these added vertices were not initially in Wi, they are
not in the bag of the parent node, and therefore the node constructed in such a call will be
a forget node if any such vertices are added. Therefore, the new node constructed can be
a non-forget non-leaf node only if –(Wi) = 6k already for the initial input Wi. Then, we
observe that –(Wi) = 6k can hold for the initial input Wi only if –(Ci fl W ) = 4k did hold
for the corresponding component Ci of the parent and the corresponding set W . Therefore,
as –(Ci fl W ) = 4k can hold for at most one i œ {1, 2, 3}, we have that any node can have at
most one non-forget non-leaf child node.

It follows that non-forget non-leaf nodes can be decomposed into maximal paths going
between a node and its ancestor, and these paths have a length at most n by the height of
the tree. Each such path either starts at the root or its highest node is a child of a forget
node. Thus, the number of maximal paths of non-forget non-leaf nodes is at most n, and
therefore the number of non-forget non-leaf nodes is at most n2. The number of leaf nodes is
at most three times the number of non-leaf nodes, so the total number of nodes is O(n2).

Therefore, the algorithm works by O(n2) applications of the algorithm of Lemma 11, and
therefore its time complexity is 2O(k2

)
n
O(k). J

It remains to observe that by using iterative compression, we can satisfy the requirement
of Lemma 12 to have a tree decomposition with independence number O(k) as an input (in
particular, here the independence number will be at most 8k + 1), and therefore Lemma 12
implies Theorem 1.

In more detail, we order the vertices of G as v1, . . . , vn, and iteratively compute tree
decompositions with independence number at most 8k for induced subgraphs G[{v1, . . . , vi}],
for increasing values of i. The iterative computation guarantees that when computing the tree
decomposition for G[{v1, . . . , vi}], we have the tree decomposition for G[{v1, . . . , vi≠1}] with
independence number at most 8k available, which can be used to obtain a tree decomposition
with independence number at most 8k + 1 of G[{v1, . . . , vi}] by adding vi to each bag to be
used as the input tree decomposition. More precisely, we use Lemma 12 to either determine
in time 2O(k2

)
n
O(k) that the tree-independence number of G[{v1, . . . , vi}] is larger than k

or obtain a rooted tree decomposition T of G[{v1, . . . , vi}] with independence number at
most 8k. As the tree-independence number does not increase when taking induced subgraphs,
if for some induced subgraph we conclude that the tree-independence number is larger than
k, we can conclude the same holds also for G. Otherwise, after n steps we will have a rooted
tree decomposition T of G with independence number at most 8k.

5 Hardness of computing tree-independence number

In this section, we complement our main algorithmic result by complexity lower bounds. First,
we use the W[1]-hardness of independent set approximation by Lin [30] and the Gap-ETH
result of Chalermsook et al. [7] to prove the following theorem.
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I Theorem 13 (ı). For any constant c Ø 1, there is no algorithm running in f(k) · nO(1)

time for a computable function f(k) that, given an n-vertex graph and a positive integer k,
can distinguish between the cases tree-–(G) Æ k and tree-–(G) > ck, unless FPT = W[1].
Moreover, assuming Gap-ETH, for any computable function g(k) Ø k, there is no algorithm
running in f(k) ·no(k) time for a computable function f(k) that, given an n-vertex graph and
a positive integer k, can distinguish between the cases tree-–(G) Æ k and tree-–(G) > g(k).

Theorem 13 implies that it is W[1]-hard to decide whether tree-–(G) Æ k for the parame-
terization by k. However, the problem is, in fact, harder. We prove that it is NP-complete to
decide whether tree-–(G) Æ 4.

I Theorem 2 (ı). For every constant k Ø 4, it is NP-complete to decide whether tree-–(G) Æ

k for a given graph G.

Finally, we show that, for every fixed integer k Ø 3, deciding if two given vertices of a
graph can be separated by removing a set of vertices that induces a graph with independence
number at most k is NP-complete. To put this result in perspective, note that the case with
k = 1 is polynomial since we can compute all clique cutsets in polynomial time using Tarjan’s
algorithm [39]. We leave open the case with k = 2.

I Theorem 14 (ı). For every integer k Ø 3, it is NP-complete to decide, given a graph H

and two distinct vertices u, v œ V (H), if there exists a u,v-separator S such that –(H[S]) Æ k.

6 Conclusion

The main result of our paper is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k2

)
n
O(k) either outputs a tree decomposition of G with independence number

at most 8k, or concludes that the tree-independence number of G is larger than k. This
yields also the same result for computing the minor-matching hypertree-width of a graph [40].
Our results allow to solve in 2O(k2

)
n
O(k) time a plethora of problems when the inputs are

restricted to graphs of tree-independence number k or minor-matching hypertree-width
k [15, 29,40]. We now show that this result is tight in several aspects.

First, one could ask what is the most general width-parameter defined by a min-max
formula over the bags of a tree decomposition (see, e.g. [2, 33]) that allows to solve problems
like Maximum Independent Set in polynomial time when bounded? For parameters where
the width of a bag depends only on the induced subgraph of the bag, this turns out to be
tree-–. In particular, we recall that Maximum Independent Set is NP-hard on graphs
with each edge subdivided twice, but such graphs admit a tree decomposition where one bag
is a large independent set, and the induced subgraphs of the other bags are isomorphic to
4-vertex paths. It follows that if the width-measure of a bag is monotone, i.e., it does not
increase when taking induced subgraphs, it must be unbounded whenever – is unbounded.
In other words, if there would be a width parameter tree-⁄ defined as the minimum, over all
tree decomposition, of the maximum of ⁄(G[Xt]) over the bags Xt of the tree decomposition,
where ⁄ is a monotone graph invariant, then either Maximum Independent Set is already
NP-hard when ⁄ is a constant, or the parameterization by tree-– is more general than the
parameterization by tree-⁄.

The width parameter tree-µ, the minor-matching hypertree-width, escapes this argument
because it does not only depend on the subgraphs induced by the bags, but also on the
neighborhoods of the bags. In particular, for tree-µ the width of a bag Xt is defined as
the maximum cardinality of an induced matching in G whose every edge intersects Xt. A
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similar example shows that this type of parameters where the width of a bag Xt depends
on G[N [Xt]] cannot be generalized much more: If we start from Maximum Independent
Set on cubic graphs and subdivide each edge four times, we obtain graphs where Maximum
Independent Set is NP-hard, but that admit tree decompositions that contain one large
bag Xt such that every connected component of G[N [Xt]] is a 3-vertex path, while for all
other bags Xt their closed neighborhood N [Xt] has bounded size.

Further, we remind that our main result is computationally tight. In particular, in
Theorem 13, we proved that it is unlikely that there is a g(k)-approximation algorithm for
the tree-independence number with running time f(k)no(k), for any computable function g.
This shows that the n

�(k)-factor in the running time is unavoidable up to some reasonable
complexity assumptions. For exact computation of the tree-independence number, we proved
in Theorem 2 that it is NP-complete to decide whether tree-–(G) Æ k for every constant
k Ø 4. Since tree-–(G) = 1 if and only if G is a chordal graph, Theorem 2 leads to the
question about the complexity of deciding whether the tree-independence number is at most
k for k = 2 and 3. In Theorem 14, we demonstrated that for every fixed integer k Ø 3,
deciding if two given vertices of a graph can be separated by removing a set of vertices that
induces a graph with independence number at most k is NP-complete. This result indicates
that it may be already NP-complete to decide whether tree-–(G) Æ 3. We hesitate to state
any conjecture for the case k = 2.

The final question is about the place of computing the tree-independence number in the
polynomial hierarchy. For a fixed k, deciding whether tree-–(G) Æ k is in NP. However, when
k is a part of the input, the problem is naturally placed in the class �P

2
on the second level

of the polynomial hierarchy. Is the problem �P
2
-complete?
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Abstract
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial
algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for
all ¸p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of
the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is
needed in order to optimize di�erent norms of the disagreement vector. In addition, our algorithm
is the first combinatorial approximation algorithm for the ¸2-norm objective, and more generally the
first combinatorial algorithm for the ¸p-norm objective when 1 < p < Œ. It is also faster than all
previous algorithms that minimize the ¸p-norm of the disagreement vector, with run-time O(nÊ),
where O(nÊ) is the time for matrix multiplication on n ◊ n matrices. When the maximum positive
degree in the graph is at most �, this can be improved to a run-time of O(n�2 logn).
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1 Introduction

Correlation clustering is one of the most prominent problems in clustering, as it cleanly
models community detection problems [38, 36] and provides a way to decompose complex
network structures [39, 32]. The input to the unweighted correlation clustering problem is
a complete graph G = (V,E), where |V | = n and each edge e œ E is labeled positive (+)
or negative (≠). If the edge (u, v) is positive, this indicates that u and v are similar, and
analogously if the edge (u, v) is negative, this indicates that u and v are dissimilar. The
output of the problem is a partition of the vertex set into parts C1, C2, . . ., where each part
represents a cluster.
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The output should cluster similar vertices together and separate dissimilar vertices.
Specifically, for a fixed clustering (i.e., partition of the vertices), a positive edge (u, v) is
a disagreement with respect to the clustering if u and v are in di�erent clusters and an
agreement if u and v are in the same cluster. Similarly, a negative edge (u, v) is a disagreement
with respect to the clustering if u and v are in the same cluster and an agreement if u and
v are in di�erent clusters. The goal is to find a clustering that minimizes some objective
that is a function of the disagreements.1 For example, the most commonly studied objective
minimizes the total number of disagreements.

As an easy example to illustrate the problem, consider a social network. Every pair of
people has an edge between them, and the edge is positive if the two people have ever met
before, and negative otherwise. The goal of correlation clustering translates to partitioning all
the people into clusters so that people are in the same cluster as their friends/acquaintances
and in di�erent clusters than strangers. The di�culty in constructing a clustering is that
the labels may not be consistent, making disagreements unavoidable. Consider in the social
network what happens when there is one person with two friends who have never met each
other (u, v, w with (u, v) and (u,w) positive but (v, w) negative). The choice of objective
matters in determining the best clustering.

For a given clustering C, let yC(u) denote the number of edges incident to u that are
disagreements with respect to C (we drop C and write y when it is clear from context). The
most commonly considered objectives are ÎyCÎ

p
= p

q
uœV

yC(u)p for p œ RØ1 fi {Œ}, the
¸p-norms of the disagreement vector y. Note that the optimal objective values may drastically
vary for di�erent norms too. (For instance, in the example in Appendix A of [35], V = AÛB2,
where |A| = |B| = n/2, and all edges are positive except for a negative matching between A
and B. The optimal ¸Œ-norm objective value is 1 whereas the optimal for ¸1 is �(n).) When
p = 1, this objective minimizes the total number of disagreements. Setting p = Œ minimizes
the maximum number of disagreements incident to any node, ensuring a type of worst-case
fairness.3 Balancing these two extremes – average welfare on one hand and fairness on the
other – is the ¸2-norm, which minimizes the variance of the disagreements at each node.

Correlation clustering was proposed by Bansal, Blum, and Chawla [7] with the objective of
minimizing the ¸1-norm of the disagreement vector. The problem is NP-hard and several ap-
proximation algorithms have been proposed [7, 4, 16, 18]. Puleo and Milenkovic [35] proposed
studying ¸p-norms of the disagreement vector for p > 1, and they give a 48-approximation for
any fixed p. Charikar, Gupta, and Schwartz [15] introduced an improved 7-approximation,
which Kalhan, Makarychev, and Zhou [29] further improved to a 5-approximation. When
p > 1, up until recently, the only strategies were LP or SDP rounding, and it has been of
interest to develop fast combinatorial algorithms [37]. Davies, Moseley, and Newman [19]
introduced a combinatorial O(1)-approximation algorithm for p = Œ (see also [25] for a
di�erent combinatorial algorithm), and leave open the question of discovering a combinatorial
O(1)-approximation algorithm for 1 < p < Œ.

In all prior work, solutions obtained for ¸p-norms are tailored to each norm (i.e., p is
part of the input to the algorithm), and it was not well-understood what the trade-o�s were
between solutions that optimize di�erent norms. Solutions naively optimizing one norm can
be arbitrarily bad for other norms (see Figure 1). A natural question is whether this loss
from using a solution to one objective for another is avoidable. More specifically:

1 Note that the sizes and number of clusters are unspecified.
2 Û denotes disjoint union.
3 In the social network example, minimizing the ¸1-norm corresponds to finding a clustering that minimizes

the total number of friends who are separated plus the total number of strangers who are in the same
cluster. The ¸Œ-norm corresponds to finding a clustering minimizing the number of friends any person
is separated from plus the number of strangers in that person’s same cluster.
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Figure 1 Two clusterings of the star graph, which has one node (w) with positive edges to all
nodes, and the rest of the edges negative. Left: Clustering assigns all nodes to one (blue) cluster,
and is (almost) optimal for the ¸Œ-norm with cost �(n). Right: Clustering assigns all nodes to
di�erent clusters and is (almost) optimal for the ¸1-norm with cost �(n). The left solution is terrible
for the ¸1-norm, as the negative clique has �(n2) edges that are disagreements.

For any graph input to unweighted, complete correlation clustering, does there exist a
partition (clustering) that is simultaneously O(1)-approximate for all ¸p-norm objectives?

Phrased another way, does there exist a universal algorithm for ¸p-norm correlation
clustering – one which is guaranteed to produce a solution that well-approximates many
objectives at once? When the goal is to simultaneously optimize every ¸p-norm, this is known
as the all-norms objective.4 Universal algorithms and the all-norms objective are well-studied
in combinatorial optimization problems, such as load balancing and set cover (see Section 1.2
for more discussion). In the context of correlation clustering, such an algorithm outputs a
partition that has good global performance (i.e. ¸1-norm) and also has no individual node
with too many adjacent disagreements (i.e. ¸Œ-norm). Universal algorithms exist for some
problems and are provably impossible for others. The question looms, what can be said
about universal algorithms for correlation clustering?

As far as we are aware, there are no known results for the all-norms objective in other
clustering problems. In fact, for the popular k-median and k-center problems, it is ac-
tually impossible to O(1)-approximate (or even o(

Ô
n)-approximate) these two objectives

simultaneously [5].

1.1 Results

This paper is focused on optimizing all ¸p-norms (p Ø 1) for correlation clustering at the
same time. The main result of the paper answers the previous question positively: perhaps
surprisingly, there is a single clustering that simultaneously O(1)-approximates the optimal
for all ¸p-norms. Further, it can be found through an e�cient combinatorial algorithm. This
is also the first known combinatorial approximation algorithm for the ¸2-norm objective and
more generally ¸p-norm objective for fixed 2 Æ p < Œ.

In what follows, let O(nÊ) denote the run-time of n ◊ n matrix multiplication.

I Theorem 1. Let G = (V,E) be an instance of unweighted, complete correlation clustering
on |V | = n nodes. There exists a combinatorial algorithm returning a single clustering that
is simultaneously an O(1)-approximation5 for all ¸p-norm objectives, for all p œ RØ1 fi {Œ},
and its run-time is O(nÊ).

4 In some of the literature, for instance that of Golovin et al. [24], it is called the all-¸p-norms objective.
5 Note this is independent of p.
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The algorithm gives the fastest run-time of any O(1)-approximation algorithm for the
¸p-norm objective when p œ R>1. Further, the run-time can be improved when the positive
degree of the graph is bounded, as shown in the following corollary.

I Corollary 2. Let � denote the maximum positive degree in an instance G = (V,E) of
unweighted, complete correlation clustering on |V | = n nodes. Suppose G is given as an
adjacency list representation of its positive edges. There exists a combinatorial algorithm
returning a single clustering that is simultaneously an O(1)-approximation for all ¸p-norm
objectives, for all p œ RØ1 fi {Œ}, and its run-time is O(n�2 logn).

The run-time of the algorithm matches the fastest known algorithm for the ¸Œ-norm
objective [19], in both the general case and when the maximum positive degree is bounded.
The best-known algorithm before our work relied on solving a convex relaxation on |V |2
variables and |V |3 constraints. We improve the run-time by avoiding this bottleneck.

In the setting when the positive edges form a regular graph, the interested reader may
also find a clean proof (which is much simpler than that of Theorem 1) in Section 3 showing
there is a solution that is simultaneously O(1)-approximate for the ¸1-norm and ¸Œ-norm
objectives.

1.2 Related work
Correlation clustering was introduced by Bansal, Blum, and Chawla [7]. The version they
introduced also studies the problem on unweighted, complete graphs, but is concerned with
minimizing the ¸1-norm of the disagreement vector. For this problem, Ailon, Charikar, and
Newman [4] designed the Pivot algorithm, which is a randomized algorithm that in expectation
obtains a 3-approximation. While we know algorithms with better approximations for ¸1
correlation clustering than Pivot [16, 18], the algorithm remains a baseline in correlation
clustering due to its simplicity. (However, Pivot can perform arbitrarily badly – i.e., give �(n)
approximation ratios – for other ¸p-norms; see again the example in Appendix A of [35].) It
is an active area of research to develop algorithms for the ¸1-norm that focus on practical
scalability [11, 17, 33, 36, 14]. Correlation clustering has also been studied on non-complete,
weighted graphs [15, 29], with conditions on the cluster sizes [34], and with asymmetric errors
[26]. In fact, in recent work Veldt [37] highlighted the need for deterministic techniques
in correlation clustering that do not use linear programming. Much interest in correlation
clustering stems from its connections to applications, including community detection, natural
language processing, location area planning, and gene expression [38, 36, 39, 32, 9, 21].

Puleo and Milenkovic [35] introduced correlation clustering with the goal of minimizing
the ¸p-norm of the disagreement vector. They show that even for minimizing the ¸Œ-norm on
complete, unweighted graphs, the problem is NP-hard (Appendix C in [35]). Several groups
found O(1)-approximation algorithms for minimizing the ¸p-norm on complete, unweighted
graphs [35, 15, 29], the best of which is currently the 5-approximation of Kalhan, Makarychev,
and Zhou [29]. Many other interesting objectives for correlation clustering focus on finding
solutions that are (in some sense) fair or locally desirable [3, 8, 1, 22, 27, 2]. All of these
previous works that study general ¸p-norms or other notions of fairness or locality rely on
solving a convex relaxation. This has two downsides: (1) the run-time of the algorithms are
bottle-necked by the time it takes to solve the relaxation with at least �(n2) many variables
and �(n3) constraints; in fact, it is time-consuming to even enumerate the �(n2) variables
and �(n3) constraints; and (2) the solution is only guaranteed to be good for one particular
value of p.
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Several problems have been studied with the goal of finding a solution that is a good
approximation for several objectives simultaneously. The all-norms objective was introduced
by Azar et al. [6], where the goal is to design a fl-approximation algorithm for all ¸p-norm
objectives of a problem. They originally introduced the objective for the restricted assignment
load balancing problem and showed an all-norms 2-approximation. Further follow-up on
the all-norms objective has been done for load balancing [30, 10, 31], and for set cover [24].
The term “universal” algorithm has also been used for Steiner tree [12, 13], TSP [28], and
clustering [23], though in these settings the goal is di�erent, namely, to find a solution that
is good for any potential input; e.g., in Universal Steiner Tree, the goal is to find a spanning
tree where for any set of terminals, the sub-tree connecting the root to the terminals is a
good approximation of the optimal.

2 Preliminaries

We will introduce notation, and then we will discuss two relevant works – the papers by
Kalhan, Makarychev, and Zhou [29] and Davies, Moseley, and Newman [19].

2.1 Notation
Recall our input to the correlation clustering problem is G = (V,E), an unweighted, complete
graph on n vertices, and every edge is assigned a label of either positive (+) or negative (≠).
Let the set of positive edges be denoted E+ and the set of negative edges E≠. Then, we can
define the positive neighborhood and negative neighborhood of a vertex u as N+

u
= {v œ V |

(u, v) œ E+} and N≠
u

= {v œ V | (u, v) œ E≠}, respectively. We further assume without loss
of generality that every vertex has a positive self-loop to itself.

A clustering C is a partition of V into clusters C1, . . . , Ck (but recall that k is not pre-
specified). Let C(u) denote the cluster that vertex u is in, i.e., if C has k clusters, there
exists exactly one i œ [k] such that C(u) = Ci. It is also helpful to consider the vertices in a
di�erent cluster than u, and so we let C(u) = V \ C(u) denote this. We say that a positive
edge e = (u, v) œ E+ is a disagreement with respect to C if v œ C(u). On the other hand, we
say that a negative edge e = (u, v) œ E≠ is a disagreement with respect to C if v œ C(u). For
a fixed clustering C, we denote the disagreement vector of C as yC œ Zn

Ø0, where for u œ V ,
yC(u) is the number of edges incident to u that are disagreements with respect to C. We
omit the subscript throughout the proofs when a clustering is clear.

Throughout, we let OPT be the optimal objective value, and the ¸p-norm to which it
corresponds will be clear from context. The next fact follows from the definitions seen so far
(recalling also the positive self-loops).

I Fact 3. For any u, v œ V , n = |N+
u

fl N+
v
|+ |N≠

u
fl N≠

v
|+ |N+

u
fl N≠

v
|+ |N≠

u
fl N+

v
|.

2.2 Summary of work by Kalhan, Makarychev, and Zhou
The standard linear program relaxation for correlation clustering is given in (P) below.6 In
the integer LP, the variable xuv indicates whether vertices u and v will be in the same cluster
(0 for yes, 1 for no), and the disagreement vector is y; the optimal solution to the integer LP
has value OPT, while the optimal solution to the relaxation gives a lower bound on OPT.
Note the triangle inequality is enforced on all triples of vertices, inducing a semi-metric space

6 Technically this is a convex program as the objective is convex; we say LP as the constraints are linear.
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on V . Throughout this paper, as in [19], we refer to the algorithm by Kalhan, Makarychev,
and Zhou as the KMZ algorithm. The KMZ algorithm has two phases: it solves (P), and then
uses the KMZ rounding algorithm to obtain an integral assignment of vertices to clusters. At
a high-level, the KMZ rounding algorithm is an iterative, ball-growing algorithm that uses
the semi-metric to guide its choices. Their algorithm is a 5-approximation, and produces
di�erent clusterings for di�erent p, since the optimal solution xú to (P) depends on p.

min ÎyÎ
p

s.t. yu =
ÿ

vœN
+
u

xuv +
ÿ

vœN
≠
u

(1 ≠ xuv) ’u œ V (P)

xuv Æ xuw + xvw ’u, v, w œ V

0 Æ xuv Æ 1 ’u, v œ V.

I Definition 4. Let f be a semi-metric on V , i.e., taking x = f gives a feasible solution to
(P). The fractional cost of f in the ¸p-norm objective is the value of (P) that results from
setting x = f . When p is clear from context, we will simply call this the fractional cost of f .

2.3 Summary of work by Davies, Moseley, and Newman

The main take-away from the work of Kalhan, Makarychev, and Zhou [29] is that one only
requires a semi-metric on the set of vertices, whose cost is comparable to the cost of an optimal
solution, as input to the KMZ rounding algorithm. Thus, the insight of Davies, Moseley, and
Newman [19] for the ¸Œ-norm objective is that one can combinatorially construct such a
semi-metric without solving an LP, and at small loss in the quality of the fractional solution.
They do this by introducing the correlation metric.

I Definition 5 ([19]). For all u, v œ V , the correlation metric defines the distance between u
and v as

duv = 1 ≠ |N+
u

fl N+
v
|

|N+
u fi N+

v |
= |N+

u
fl N≠

v
|+ |N≠

u
fl N+

v
|

|N+
u fl N+

v |+ |N+
u fl N≠

v |+ |N≠
u fl N+

v |
.

Note that the rewrite in the second equality is apparent from Fact 3.
The correlation metric captures useful information succinctly. Intuitively, if u and v

have relatively large positive intersection, i.e., N+
u

fl N+
v

is large compared to their other
relevant joint neighborhoods (N+

u
fl N≠

v
) fi (N≠

u
fl N+

v
), then from the perspective of u and

v, fewer disagreements are incurred by putting u and v in the same cluster than by putting
them in di�erent clusters. This is because if u and v are in the same cluster, then they
have disagreements on edges (u,w) and (v, w) for w œ (N+

u
fl N≠

v
) fi (N≠

u
fl N+

v
), but if they

are in di�erent clusters, then u and v have disagreements on edges (u,w) and (v, w) for
w œ N+

u
fl N+

v
. For more on intuition behind the correlation metric, see Section 2 in [19].

Davies, Moseley, and Newman [19] prove that the correlation metric d can be used as
input to the KMZ rounding algorithm by showing that (1) d satisfies the triangle inequality
and (2) the fractional cost of d in the ¸Œ-norm (recall Definition 4) is no more than 8 times
the value of the optimal integral solution (OPT). Since the KMZ rounding algorithm loses a
factor of at most 5, inputting d to that algorithm returns a 40-approximation algorithm. A
benefit of the correlation metric is that it can be computed in time O(nÊ), and even faster
when the subgraph on positive edges is sparse.



S. Davies, B. Moseley, and H. Newman 52:7

2.4 Technical overview
It is not hard to see that the correlation metric cannot be used as input to the KMZ algorithm
for ¸p-norms other than p = Œ, as one cannot bound the fractional cost of the correlation
metric against the optimal with only an O(1)-factor loss. To see why, consider the star again,
as in Figure 1. Here, for all u, v œ {v1, . . . , vn≠1}, duv = 1 ≠ 1/(n ≠ (n ≠ 3)) = 2/3, but for
the ¸1-norm, we need the semi-metric to have the value 1 ≠ duv be close to 0, i.e. O(1/n),
for such u, v, in order for the fractional cost to be comparable to the value of OPT for p = 1.

There are several possible fixes one could try to make to the correlation metric. One idea is
that since one can interpret the correlation metric as a coarse approximation of the probability
the Pivot algorithm7 separates u and v, one could try to adapt the correlation metric to
more accurately approximate this probability.8 Another idea, inspired by an observation
below, is that one could define a semi-metric for edges in E+ and another semi-metric for
edges in E≠, but then there is the di�culty of showing the triangle inequality holds when
positive and negative edges are mixed. Both of these ideas were, for us, unsuccessful.

Instead, the following two observations of how the correlation metric works with respect
to the ¸1-norm led us to an e�ective adaptation:
1. One can bound the fractional cost, restricted to positive edges, of the correlation metric in

the ¸1-norm by an O(1)-factor times the optimal solution’s cost (see Claim 1 in Appendix
C of the full version [20]). Negative edges still pose a challenge.

2. If the subgraph of positive edges is regular, then we can actually bound the fractional
cost of the correlation metric in the ¸1-norm on negative edges as well.9 See Section 3.

These observations led us to ask whether some adjustments to the correlation metric
might yield a semi-metric with bounded fractional cost in the ¸1-norm or even the ¸p-norm
more generally (while still remaining bounded in the ¸Œ-norm). Moreover, since the KMZ
rounding algorithm does not depend on p (whereas in the KMZ algorithm, the solution to the
LP does depend on p), inputting the same semi-metric to the rounding algorithm produces
the same clustering for all ¸p-norms!

We are ready to define the adjusted correlation metric. Let �u denote the positive degree
of u (the degree of u in the subgraph of positive edges).

I Definition 6. Define the adjusted correlation metric f : E æ [0, 1] as follows:
1. For d the correlation metric, i.e., duv = 1 ≠ |N+

u
flN

+
v
|

|N+
u fiN

+
v | , initially set f = d.

2. If e œ E≠ and de > 0.7, set fe = 1 (round up).
3. For u œ V such that |N≠

u
fl {v : duv Æ 0.7}| Ø 10

3 �u, set fuv = 1 for all v œ V \ {u}.

The idea in Step 3 is that if the fractional cost of negative edges incident to u is su�ciently
large, we instead trade this for the cost of positive disagreements, as the rounding algorithm
will now put u in its own cluster. For the ¸Œ-norm, this trade-o� is innocuous. For ¸p-norms
in general, a refined charging argument is needed to show that post-processing d in this way
su�ciently curbs the (too large) fractional cost of d.

In Section 3, we start with a warm-up exercise and show that if the graph on positive
edges is regular, then the (original) correlation metric d has O(1)-approximate fractional
cost. Note this section is not necessary to understanding the rest of the paper, but we

7 Pivot operates as follows: Choose a random unclustered u œ V . Take u and all its unclustered positive
neighbors and let this be the newest cluster. Continue until all vertices in V are clustered.

8 If in (P), xuv is set exactly to the probability that u and v are separated by Pivot, then x will be a
feasible solution with cost at most 3OPT. However, this probability seems di�cult to express in closed
form, even approximately.

9 In contrast, one cannot bound the fractional cost of the correlation metric on the star (Figure 1).
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include it in the main body because we find the proof here is clean and lends insight into
the challenges for the irregular case. The main technical result of the paper is Section 4,
where we prove Theorem 1 by showing that the adjusted correlation metric can be input to
the KMZ rounding algorithm. Namely, we will first show (quite easily) that the adjusted
correlation metric satisfies an approximate triangle inequality. Then, it remains to upper
bound the fractional cost of the adjusted correlation metric against OPT. We tackle this with
a combinatorial charging argument. This argument leverages a somewhat di�erent approach
from that used in [19] and is simpler than their proof for only the ¸Œ-norm. The constant
approximation factor obtained from inputting the adjusted correlation metric to the KMZ
rounding algorithm is bounded above (and below) by universal constants for all p (this is the
worst case and one can get better constants for each p).

3 A Special Case: Regular Graphs

In general, the original correlation metric d (Definition 5) does not necessarily have bounded
fractional cost for the ¸1-norm objective (or more generally for ¸p-norm objectives). So, we
use the adjusted correlation metric f (Definition 6) as input to the KMZ rounding algorithm.
In this section, we show that if the subgraph of positive edges is regular, then the correlation
metric d can be used as is (i.e., without the adjustments in Steps 2 and 3 of Definition 6) to
yield a clustering that is constant approximate for the ¸1-norm and ¸Œ-norm simultaneously:

I Theorem 7. Let G = (V,E) be an instance of unweighted, complete correlation clustering,
and let E+ denote the set of positive edges. Suppose that the subgraph induced by E+ is
regular. The fractional cost of d in the ¸1-norm objective is within a constant factor of OPT:

ÿ

uœV

ÿ

vœN
+
u

duv +
ÿ

uœV

ÿ

vœN
≠
u

(1 ≠ duv) = O(OPT).

Therefore, the clustering produced by inputting d to the KMZ rounding algorithm is a constant-
factor approximation simultaneously for the ¸1-norm and ¸Œ-norm objectives.

Proof. Let � be the (common) degree of the positive subgraph. To show that the fractional
cost of d in the ¸1-norm objective is O(OPT) for regular graphs, we will use a dual fitting
argument. The LP relaxation we consider is from [4], which uses a dual fitting argument
to show constant approximation guarantees for Pivot (although the proof here does not
otherwise resemble the proof for Pivot). The primal is given by

min
Ó ÿ

eœE

xe | xij + xjk + xki Ø 1,’ijk œ T , x Ø 0
Ô

(P Õ)

where T is the set of bad triangles (i.e. triangles with exactly two positive edges and one
negative edge). For x œ {0, 1}|E|, x corresponds to disagreements in a clustering: we set
xe = 1 if e is a disagreement and xe = 0 otherwise. The constraints state that every clustering
must make a disagreement on every bad triangle. Thus, (P Õ) is a relaxation for the ¸1-norm
objective. In fact, we will prove the stronger statement that the fractional cost is O(OPTP Õ),
where OPTP Õ is the optimal objective value of (P Õ).

The dual is given by

max
Ó ÿ

TœT
yT |

ÿ

TœT :T–e

yT Æ 1,’e œ E, y Ø 0
Ô
. (DÕ)
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We show that by setting yT = 1
2� for all T œ T , y satisfies the following properties:

1. y is feasible in (DÕ).
2. The fractional cost of d is at most 6 ·

q
TœT yT .

Letting OPTDÕ be the optimal objective value of (DÕ), we have 6 ·
q

TœT yT Æ 6 ·OPTDÕ =
6 · OPTP Õ Æ 6 · OPT, which will conclude the proof.

To prove feasibility, we case on whether e is positive or negative.
If e œ E≠, then |{T œ T : T – e}| = |N+

u
fl N+

v
| Æ �, where equality is by the definition

of a bad triangle. So
q

TœT :T–e
yT Æ �

2� Æ 1.
If e œ E+, then |{T : T – e}| = |(N+

u
fl N≠

v
) fi (N≠

u
fl N+

v
)| Æ 2�. We conclude y is

feasible, since
q

TœT :T–e
yT Æ 2�

2� = 1.
Now we need to show that the fractional cost of d is bounded in terms of the objective

value of (DÕ). First we bound the fractional cost of the negative edges:
ÿ

(u,v)œE≠

(1 ≠ duv) Æ
ÿ

(u,v)œE≠

|N+
u

fl N+
v
|/� =

ÿ

eœE≠

ÿ

TœT :T–e

1/� =
ÿ

eœE≠

ÿ

TœT :T–e

2yT ,

where in the first inequality we have used that |N+
u

fiN+
v
| Ø �. Next we bound the fractional

cost of the positive edges:
ÿ

(u,v)œE+

duv Æ
ÿ

(u,v)œE+

(|N+
u fl N

≠
v |+ |N≠

u fl N
+
v |)/� =

ÿ

eœE+

ÿ

TœT :T–e

1/� =
ÿ

eœE+

ÿ

TœT :T–e

2yT .

So the total fractional cost is bounded by
q

eœE

q
TœT :T–e

2yT = 6 ·
q

TœT yT , since each
triangle contains three edges. This is what we sought to show. Since the fractional cost of d
is bounded for the ¸1-norm objective (and the ¸Œ-norm objective by [19]), using d as input
to KMZ rounding algorithm produces a clustering that is simultaneously O(1)-approximate
for the ¸1- and ¸Œ-norm objectives. J

4 Proof of Theorem 1

The goal of this section is to prove Theorem 1 and the subsequent Corollary 2. We begin by
outlining that the adjusted correlation metric satisfies an approximate triangle inequality
in Subsection 4.1. Then in Subsection 4.2, we prove the fractional cost of the adjusted
correlation metric in any ¸p-norm objective is an O(1) factor away from the optimal solution’s
value. We tie it all together to prove Theorem 1 and Corollary 2 in Subsection 4.3.

We start with an easy but key proposition. Loosely, it states that if two vertices are close
to each other according to d, then they have a large shared positive neighborhood.

I Proposition 8. Fix vertices u, v œ V and a clustering C on V such that duv Æ 0.7 and
|N+

u
fl C(u)| / |N+

u
| Ø 0.85. Then |N+

u
fl N+

v
fl C(u)| Ø 0.15 · |N+

u
|.

4.1 Triangle inequality
Recall that the correlation metric d satisfies the triangle inequality (see Section 4.2 in [19]). We
will show that the adjusted correlation metric f satisfies an approximate triangle inequality,
which is su�cient for the KMZ rounding algorithm. Formally, we say that a function g is
a ”-semi-metric on some set S if it is a semi-metric on S, except instead of satisfying the
triangle inequality, g satisfies g(u, v) Æ ” · (g(u,w) + g(v, w)) for all u, v, w œ S.

I Lemma 9 (Triangle Inequality). The adjusted correlation metric f is a 10
7 -semi-metric.
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The proof of Lemma 9 is straightforward given that d satisfies the triangle inequality.
Lemma 3 in [19] proves that one can input a semi-metric that satisfies an approximate

triangle inequality (instead of the exact triangle inequality) to the KMZ rounding algorithm
(with some loss in the approximation factor). We summarize the main take-away below.

I Lemma 10 ([19]). If g is a ”-semi-metric on the set V , instead of a true semi-metric (i.e.,
1-semi-metric), then the KMZ algorithm loses a factor of 1 + ” + ”2 + ”3 + ”4.10

Since we show in Lemma 9 that f is a 10
7 -semi-metric, we lose a factor of 12 in inputting f

to the KMZ algorithm (along with the factor loss from the fractional cost).

4.2 Bounding the fractional cost of ¸p-norms
This section bounds the fractional cost of the adjusted correlation metric for the ¸p-norms.
The following lemma considers the case where p = Œ. The general case is handled after.

I Lemma 11. The fractional cost of the adjusted correlation metric f in the ¸Œ-norm
objective is at most 56 · OPT, where OPT is the cost of the optimal integral solution.

The lemma follows from the fact that the fractional cost of the correlation metric d in
the ¸Œ-norm is known to be bounded by [19], and that it only decreases when d is replaced
by f due to Definition 6. See Appendix B in the full version [20] for a proof.

We use two primary lemmas – one for the positive edge fractional cost and one for the
negative edge fractional cost – to show that the adjusted correlation metric well approximates
the optimal for general ¸p-norms.

I Lemma 12. The fractional cost of the adjusted correlation metric f in the ¸p-norm objective
is a constant factor (independent of p) away from the cost of the optimal integral ¸p solution.

Proof. Let y be the disagreement vector for an optimal clustering C in the ¸p-norm, for
any p œ RØ1 fi {Œ}. When p = Œ, see Lemma 11. For p œ RØ1, by definition OPT

p =q
wœV

(y(w))p, and the pth power of the fractional cost of f is given by

cost(f)p =
ÿ

uœV

S

U
ÿ

vœN
+
u

fuv +
ÿ

vœN
≠
u

(1 ≠ fuv)

T

V
p

.

Observe that cost(f)p Æ 2p
ÿ

uœV

1 ÿ

vœN
+
u

fuv
2p

¸ ˚˙ ˝
(S+)p

+2p
ÿ

uœV

1 ÿ

vœN
≠
u

(1 ≠ fuv)
2p

¸ ˚˙ ˝
(S≠)p

.

We refer to bounding (S+)p as bounding the fractional cost of the positive edges, and
likewise (S≠)p for the negative edges. The first sum, (S+)p, is bounded in Lemma 13 and
the second sum, (S≠)p, is bounded in Lemma 16. Using those two bounds, together we
have cost(f) Æ [2p((S+)p + (S≠)p)]1/p Æ 529, for p œ [1,Œ). Specifically, the middle term is
maximized at p = 1, giving the bound of 529, and tends to below 214 as p æ Œ. (A more
tailored analysis gives a constant of 74 for p = 1; see Appendix C in the full version [20].) J

We note that, as our main interest is determining whether a simultaneous constant ap-
proximation is even possible (and a combinatorial one, at that), we did not pay particular
attention to optimizing constants, but suspect these could be greatly reduced.

10When ” = 1, this factor equals 5, which is the loss in the KMZ algorithm.
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4.2.1 Fractional cost of positive edges in ¸p-norms

We first bound the fractional cost of the positive edges.

I Lemma 13. For p œ RØ1, the fractional cost of the adjusted correlation metric f in the
¸p-norm objective for the set of positive edges is a constant factor approximation to the
optimal, i.e.,

(S+)p =
ÿ

uœV

1 ÿ

vœN
+
u

fuv
2p

Æ 2p · [(8p/2 + 1)((20/3)p + 2 + 2 · 4p) + 8p + 1] · OPTp.

One of the challenges in bounding the cost of f is that disagreements in the ¸p-norm
objective for p ”= 1 are asymmetric, in that a disagreeing edge charges y(u) and y(v) (whereas
for p = 1 we can just sum the number of disagreeing edges). Step 3 rounds up the edges
incident to u when the tradeo� is good from u’s perspective. However, an edge (u, v) may be
rounded up to 1 when this tradeo� is good from v’s perspective, but not from u’s perspective.
The high-level idea for why this is fine is that if u and v are close under d, their positive
neighborhoods overlap significantly and, in some average sense, u can charge to v. Proving
this requires a double counting argument using a bipartite auxiliary graph. If u and v are far
under d, on the other hand, we can charge to the cost of the correlation metric, which will
be bounded on an appropriate subgraph. The second challenge is showing that the ¸p-norm
of the disagreement vector, restricted to vertices u that are made singletons in Step 3, is
bounded. This again requires a double counting argument.

Proof. Fix an optimal clustering C. We partition vertices based on membership in C(u) or
C(u) (as defined in Subsection 2.1). Let y denote the disagreement vector of C. We have

(S+)p =
ÿ

uœV

1 ÿ

vœN
+
u

fuv
2p

Æ 2p
ÿ

uœV

1 ÿ

vœN
+
u flC(u)

fuv
2p

¸ ˚˙ ˝
S

+
1

+2p
ÿ

uœV

1 ÿ

vœN
+
u flC(u)

fuv
2p

¸ ˚˙ ˝
S

+
2

.

It is easy to bound S+
2 by using the trivial upper bound fuv Æ 1:

S+
2 =

ÿ

uœV

1 ÿ

vœN
+
u flC(u)

fuv
2p

Æ
ÿ

uœV

1 ÿ

vœN
+
u flC(u)

1
2p

Æ
ÿ

uœV

(y(u))p = OPT
p,

where we used that every edge (u, v) œ E+ with v ”œ C(u) is a disagreement incident to u.
Next, we bound S+

1 . Let R1 be the set of u for which Step 3 of Definition 6 applies. For
these u, we have fuv = 1 for all v œ V \ {u}. Let R2 = V \R1. For u œ R2 and v œ N+

u
, we

have that either v œ R2, in which case fuv = duv; or v œ R1, in which case fuv = 1. (Note
that V is the disjoint union of R1 and R2.) So

S+
1 =

ÿ

uœR1

1 ÿ

vœN
+
u flC(u),v ”=u

1
2p

¸ ˚˙ ˝
S

+
11

+
ÿ

uœR2

1 ÿ

vœN
+
u flC(u)

fuv
2p

¸ ˚˙ ˝
S

+
12

,
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and in particular

S+
12 =

ÿ

uœR2

1 ÿ

vœN
+
u flC(u)flR1

1 +
ÿ

vœN
+
u flC(u)flR2

duv
2p

=
ÿ

uœR2

1 ÿ

vœN
+
u

flC(u)flR1
duvÆ1/4

1 +
ÿ

vœN
+
u

flC(u)flR1
duvØ1/4

1 +
ÿ

vœN
+
u flC(u)flR2

duv
2p

Æ
ÿ

uœR2

1 ÿ

vœN
+
u

flC(u)flR1
duvÆ1/4

1 +
ÿ

vœN
+
u

flC(u)flR1
duvØ1/4

4 · duv +
ÿ

vœN
+
u flC(u)flR2

duv
2p

Æ
ÿ

uœR2

1 ÿ

vœN
+
u

flC(u)flR1
duvÆ1/4

1 +
ÿ

vœN
+
u flC(u)

4 · duv
2p

Æ 2p
ÿ

uœR2

1 ÿ

vœN
+
u

flR1
duvÆ1/4

1
2p

¸ ˚˙ ˝
S

+
13

+8p ·
ÿ

uœR2

1 ÿ

vœN
+
u flC(u)

duv
2p

¸ ˚˙ ˝
S

+
14

.

First we bound S+
13. We will strongly use that duv Æ 1/4 in the inner sum. Observe:

I Proposition 14. Let d be the correlation metric, and duv Æ 1/4. Then |N+
u
| Æ 7

3 · |N+
v
|.

Next, we will need to create a bipartite auxiliary graph H = (R2, R1, F ) with R2 and
R1 being the sides of the partition, and F being the edge set. We will then use a double
counting argument. Place an edge between u œ R2 and v œ R1 if uv œ E+ and duv Æ 1/4.
Then we have precisely that S+

13 =
q

uœR2
deg

H
(u)p. We will show that

S+
13 =

ÿ

uœR2

deg
H
(u)p Æ 4p≠1 ·

ÿ

vœR1

|N+
v
|p Æ 4p≠1 · ((20/3)p + 2 + 2 · 4p) · OPTp (1)

where the last bound follows from Proposition 15, which we establish separately below.
We will bound via double counting the quantity L, defined below. Let NH(·) denote the
neighborhoods in H of the vertices.

L :=
ÿ

f=uvœF

(deg
H
(u) + deg

H
(v))p≠1 Æ

ÿ

vœR1

ÿ

uœNH(v)

(deg
H
(v) + deg

H
(u))p≠1

Æ
ÿ

vœR1

ÿ

uœNH(v)

!
|N+

v
|+ |N+

u
|
"p≠1 Æ

ÿ

vœR1

ÿ

uœNH(v)

4p≠1 · |N+
v
|p≠1 (2)

Æ 4p≠1 ·
ÿ

vœR1

|N+
v
| · |N+

v
|p≠1 = 4p≠1 ·

ÿ

vœR1

|N+
v
|p

where in (2) we’ve used Proposition 14. Note that L is upper bounded by the right-hand
side in (1). Now it just remains to show that L is lower bounded by the left-hand side in (1).

L =
ÿ

f=uvœF

(deg
H
(u) + deg

H
(v))p≠1 =

ÿ

uœR2

ÿ

vœNH(u)

(deg
H
(u) + deg

H
(v))p≠1

Ø
ÿ

uœR2

ÿ

vœNH(u)

deg
H
(u)p≠1 =

ÿ

uœR2

deg
H
(u) · deg

H
(u)p≠1 =

ÿ

uœR2

deg
H
(u)p,
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which is what we sought to show. Now we bound S+
14.

S+
14 Æ

ÿ

uœV

A
ÿ

vœN
+
u flC(u)

|N+
u

fl N≠
v
|+ |N≠

u
fl N+

v
|

|N+
u fi N+

v |

Bp

Æ
ÿ

uœV

A
ÿ

vœN
+
u

y(u) + y(v)
|N+

u fi N+
v |

Bp

Æ
ÿ

uœV

|N+
u
|p≠1

ÿ

vœN
+
u

(y(u) + y(v))p

|N+
u fi N+

v |p

Æ 2p
ÿ

uœV

ÿ

vœN
+
u

|N+
u
|p≠1 · y(u)p

|N+
u fi N+

v |p
+ 2p

ÿ

uœV

ÿ

vœN
+
u

|N+
u
|p≠1 · y(v)p

|N+
u fi N+

v |p
.

In the second line, the first inequality uses the fact that for w œ (N+
u

fl N≠
v
) fi (N≠

u
fl N+

v
),

then at least one of (u,w), (v, w) is a disagreement, since v œ C(u) in the inner summation
of the first line. The second inequality in the second line uses Jensen’s inequality.

To bound the first double sum above, we use an averaging argument:
ÿ

uœV

ÿ

vœN
+
u

|N+
u
|p≠1 · y(u)p

|N+
u fi N+

v |p
Æ

ÿ

uœV

ÿ

vœN
+
u

y(u)p

|N+
u |

=
ÿ

uœV

y(u)p = OPT
p.

To bound the second double sum, we first have to flip it:
ÿ

uœV

ÿ

vœN+
u

|N+
u |p≠1 · y(v)p

|N+
u fi N

+
v |p

=
ÿ

vœV

ÿ

uœN+
v

|N+
u |p≠1 · y(v)p

|N+
u fi N

+
v |p

Æ
ÿ

vœV

ÿ

uœN+
v

|N+
u |p≠1 y(v)p

|N+
u |p≠1 · |N+

v |
=

ÿ

vœV

y(v)p = OPT
p
.

In total, we have

S+
14 Æ 2 · 2p · OPTp = 2p+1 · OPTp

and S+
12 Æ 2p · S+

13 + 8p · S+
14 Æ 2p · 4p≠1 · ((20/3)p + 2 + 2 · 4p) · OPTp + 8p · OPTp.

Next we turn to bounding S+
11. Recall that R1 = {u : |N≠

u
fl {v : duv Æ 0.7}| Ø 10

3 · �u}
and

S+
11 Æ

ÿ

uœR1

|N+
u

fl C(u)|p Æ
ÿ

uœR1

|N+
u
|p.

So it su�ces to bound the right-hand side, which we do in the following proposition.

I Proposition 15. Let R1 be the set of u for which Step 3 of Definition 6 applies. Then
ÿ

uœR1

|N+
u
|p Æ ((20/3)p + 2 + 2 · 4p) · OPTp.

Proof of Proposition 15. For u œ R1, define R1(u) = N≠
u

fl {v : duv Æ 0.7}, so in particular
|R1(u)| Ø 10

3 · �u. Fix a vertex u œ R1. We consider a few cases. The crux is Case 2a(ii).

Case 1. At least a 0.15 fraction of N+
u

is in clusters other than C(u).
Let u œ V 1 be the vertices in this case. This means that 0.15 · |N+

u
| Æ y(u), so

ÿ

uœV 1

|N+
u
|p Æ

ÿ

uœV 1

1
0.15p y(u)

p Æ (20/3)p · OPTp.
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+
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w

Figure 2 Left: Case 2a(i). For v œ |N≠
u fl C(u)|, (u, v) is a disagreement. Right: Case 2a(ii).

For w œ |N+
u fl C(u)| and v œ N

+
w fl R

Õ
1(u), (w, v) is a disagreement.

Case 2. At least a 0.85 fraction of N+
u

is in C(u).
We further partition the cases based on how much R1(u) intersects C(u).

Case 2a: At least half of R1(u) is in clusters other than C(u).
We partition into cases (just one more time!) based on the size of N≠

u
fl C(u). See

Figure 2.
Case 2a(i): At least half of R1(u) is in clusters other than C(u) and |N≠

u
fl C(u)| Ø �u.

Let u œ V 2a(i) be the vertices in this case. Note that y(u) Ø |N≠
u

fl C(u)|. Then
ÿ

uœV 2ai

|N+
u
|p =

ÿ

uœV 2ai

�p

u
Æ

ÿ

uœV 2ai

|N≠
u

fl C(u)|p Æ
ÿ

uœV 2ai

y(u)p Æ OPT
p.

Case 2a(ii): At least half of R1(u) is in clusters other than C(u) and |N≠
u

flC(u)| Æ �u.
Let u œ V 2a(ii) be the vertices in this case. Denote the vertices in R1(u) that are in
clusters other than C(u) by RÕ

1(u). By definition of Case 2a(ii), |RÕ
1(u)| Ø 5

3 · �u. A
key fact we will use is that |C(u)| Æ 2 · �u:

|C(u)| = |N≠
u

fl C(u)|+ |N+
u

fl C(u)| Æ �u + �u = 2 · �u.

For u œ V 2a(ii) and w œ N+
u

fl C(u), define Ï(u,w) = |RÕ
1(u) fl N+

w
|.

Each w œ N+
u

fl C(u) dispenses Ï(u,w)p/|C(u)| charge to u. Also, observe that for
v œ RÕ

1(u), we have that duv Æ 0.7, so we know by Proposition 8 that |N+
u

fl N+
v

fl
C(u)| Ø 0.15 · |N+

u
|. This implies that

ÿ

wœN
+
u flC(u)

|RÕ
1(u) fl N+

w
| =

ÿ

wœN
+
u flC(u)

ÿ

vœR
Õ
1(u)flN

+
w

1 =
ÿ

vœR
Õ
1(u)

ÿ

wœflN
+
v

flC(u)flN
+
u

1

=
ÿ

vœR
Õ
1(u)

|C(u) fl N+
u

fl N+
v
| Ø

ÿ

vœR
Õ
1(u)

0.15 · |N+
u
|

= 0.15 · |N+
u
| · |RÕ

1(u)| Ø 0.15 · �u · 53�u = 0.25 · �2
u
.

By Jensen’s inequality, the amount of charge each u satisfying Case 2a(ii) receives is
at least

1
|C(u)|

ÿ

wœN
+
u flC(u)

Ï(u,w)p Ø 1
|C(u)| ·

1
|N+

u fl C(u)|p≠1 ·
1 ÿ

wœN
+
u flC(u)

Ï(u,w)
2p

Ø 1
2�u

· 1
�p≠1

u

·
1
0.25 · �2

u

2p

Ø 1
2 · 0.25p · |N+

u
|p,
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Next we need to upper bound the amount of charge dispensed in total to all u satisfying
Case 2a(ii). Note by definition that Ï(u,w) Æ y(w). Each vertex w œ V dispenses at
most y(w)p/|C(u)| = y(w)p/|C(w)| charge to each u œ C(w)flN+

w
. So in total each w

dispenses at most |C(w)| · y(w)p/|C(w)| = y(w)p charge to all u satisfying Case 2a(ii).
Now we put together the lower and upper bounds on the total charge dispensed:

ÿ

wœV

y(w)p Ø charge dispensed Ø
ÿ

uœV 2a(ii)

1
|C(u)|

ÿ

wœN
+
u flC(u)

Ï(u,w)p

Ø
ÿ

uœV 2a(ii)

1
2 · 0.25p · |N+

u
|p.

In all,
ÿ

uœV 2a(ii)

|N+
u
|p Æ 2 · 4p ·

ÿ

wœV

y(w)p Æ 2 · 4p · OPTp.

Case 2b: At least half of R1(u) is in C(u).
Let u œ V 2b be the vertices in this case. Denote the vertices in R1(u) that are in C(u) by
RÕÕ

1 (u). By definition of Case 2b, |RÕÕ
1 (u)| Ø 5

3 · �u. Since every vertex in RÕÕ(u) is in N≠
u
,

there are at least |RÕÕ(u)| disagreements incident to u. So y(u) Ø |RÕÕ(u)| Ø 5
3 ·�u, giving

ÿ

uœV 2b

|N+
u
|p =

ÿ

uœV 2b

�p

u
Æ

ÿ

uœV 2b

y(u)p Æ OPT
p.

Adding the terms in the boxed expressions across all cases, the proposition follows. J

So we have S+
11 Æ

ÿ

uœR1

|N+
u
|p Æ ((20/3)p + 2 + 2 · 4p) · OPTp.

Adding together all the cases, we conclude that

(S+)p Æ 2p·(S+
1 +S+

2 ) Æ 2p·(S+
11S12++S+

2 ) Æ 2p·[(8p/2+1)((20/3)p+2+2·4p)+8p+1]·OPTp.

J

4.2.2 Fractional cost of negative edges in ¸p-norms
This section bounds the cost of negative edges. The meanings of C, C(·), and y are as before.

I Lemma 16. For p œ RØ1, the fractional cost of the adjusted correlation metric f in the
¸p-norm objective for the set of negative edges is a constant factor away from optimal:

(S≠)p =
ÿ

uœV

1 ÿ

vœN
≠
u

(1 ≠ fuv)
2p

Æ 2p((200/9)p + 1 + (10/3)p + 2 · (20/3)p) · OPTp.

Proof. We have

(S≠)p =
ÿ

uœV

1 ÿ

vœN
≠
u

(1 ≠ fuv)
2p

Æ 2p
ÿ

uœV

1 ÿ

vœN
≠
u flC(u)

(1 ≠ fuv)
2p

¸ ˚˙ ˝
S

≠
1

+ 2p
ÿ

uœV

1 ÿ

vœN
≠
u flC(u)

(1 ≠ fuv)
2p

¸ ˚˙ ˝
S

≠
2

.
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It is easy to bound S≠
1 by using the trivial upper bound 1 ≠ fuv Æ 1:

S≠
1 =

ÿ

uœV

1 ÿ

vœN
≠
u flC(u)

(1 ≠ fuv)
2p

Æ
ÿ

uœV

1 ÿ

vœN
≠
u flC(u)

1
2p

Æ
ÿ

uœV

y(u)p = OPT
p,

where we have used that every edge (u, v) œ E≠ with v œ C(u) is a disagreement incident to
u. Next, we bound S≠

2 . Let R1 and R2 be as in the previous subsection: R1 = {u : |N≠
u

fl{v :
duv Æ 0.7}| Ø 10

3 · �u} and R2 = V \R1. For u œ R2, define

Vu = {v : v œ N≠
u

fl C(u), duv Æ 0.7}.

Note that the definition of Vu is the same as RÕ
1(u) in the previous subsection, but here

Vu is only defined for u œ R2, while RÕ
1(u) was defined for u œ R1. For u œ R1, we have

1 ≠ fuv = 0 for every v œ V \ {u}. So the outer sum in S≠
2 only need be taken over u œ R2:

S≠
2 =

ÿ

uœR2

1 ÿ

vœN
≠
u flC(u)

(1 ≠ fuv)
2p

Æ
ÿ

uœR2

1 ÿ

v:vœN
≠
u

flC(u),
duvÆ0.7

(1 ≠ duv)
2p

Æ
ÿ

uœR2

|Vu|p

In the second equality, we have used that if u œ R2 and v œ N≠
u
, then fuv = duv, unless fuv

was rounded up to 1 in Step 2 of Definition 6 (which happens when duv > 0.7), or fuv was
rounded up to 1 in Step 3 (in which case 1 ≠ fuv = 0 Æ 1 ≠ duv).

A key observation is that since u œ R2, it is the case that |Vu| Æ 10
3 · �u.

Fix a vertex u œ R2. We consider a few cases.

Case 1. At least a 0.15 fraction of N+
u

is in clusters other than C(u).
Define V 1 to be the set of u œ R2 satisfying Case 1. Then for u œ V 1, 0.15 · |N+

u
| Æ y(u), and

|Vu| Æ 10
3 �u Æ 1

0.15 · 103 y(u) = 200
9 y(u).

so
ÿ

uœV 1

|Vu|p Æ (200/9)p ·
ÿ

uœV 1

y(u)p Æ (200/9)p · OPTp.

Case 2. At least a 0.85 fraction of N+
u

is in C(u).
Define V 2 to be the set of u œ R2 that satisfy Case 2. Fix u œ V 2 and v œ Vu. Define
Nu,v = N+

u
fl N+

v
fl C(u). Since duv Æ 0.7 and by the assumption of this case, using

Proposition 8 we have

|Nu,v| = |N+
u

fl N+
v

fl C(u)| Ø 0.15 · �u.

Observe that since v ”œ C(u) for v œ Vu, (v, w) is a (positive) disagreement for all w œ Nu,v.
Case 2a: |N≠

u
fl C(u)| Ø �u.

Define V 2a to be the set of u œ V 2 that satisfy Case 2a. Since all edges (u, v) with
v œ N≠

u
fl C(u) are disagreements, we have y(u) Ø �u. Recalling that |Vu| Æ 10

3 · �u for
u œ R2, we have

ÿ

uœV 2a

|Vu|p Æ
ÿ

uœV 2a

(10/3 · �u)p Æ (10/3)p ·
ÿ

uœV 2a

y(u)p Æ (10/3)p · OPTp.
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Case 2b: |C(u)| Æ 2�u.
Define V 2b to be the u œ V 2 satisfying Case 2b. Fix w œ N+

u
flC(u) and u œ V 2b. Define

Ï(u,w) = |Vu fl N+
w
|,

i.e. Ï(u,w) is the number of v œ Vu with w œ Nu,v. Each w œ N+
u

fl C(u) dispenses
Ï(u,w)p
|C(u)| charge to u. Also,

ÿ

wœN
+
u flC(u)

Ï(u,w) =
ÿ

wœN
+
u flC(u)

|Vu fl N+
w
| =

ÿ

wœN
+
u flC(u)

ÿ

vœVuflN
+
w

1

=
ÿ

vœVu

ÿ

wœNu,v

1 =
ÿ

vœVu

|Nu,v| Ø |Vu| · 0.15 · �u.

By Jensen’s inequality, the amount of charge each u satisfying Case 2b receives is at least

1
|C(u)|

ÿ

wœN
+
u flC(u)

Ï(u,w)p Ø 1
|C(u)| ·

1
|N+

u fl C(u)|p≠1

1 ÿ

wœN
+
u flC(u)

Ï(u,w)
2p

Ø 1
2�u

· 1
�p≠1

u

(|Vu| · 0.15 · �u)p = 1
2 · 0.15p · |Vu|p,

To upper bound the amount of charge dispensed in total to all u satisfying Case 2b,
first note that Ï(u,w) Æ y(w). Also, each vertex w œ V only distributes charge to
u œ C(w) fl N+

w
, and the amount of charge distributed to each such u is

Ï(u,w)p
|C(u)| = Ï(u,w)p

|C(w)| Æ y(w)p
|C(w)| ,

so that in total each w dispenses at most y(w)p
|C(w)| · |C(w)| Æ y(w)p charge. Putting together

the lower and upper bounds on the amount of charge dispensed:
ÿ

wœV

y(w)p Ø total charge dispensed Ø
ÿ

uœV 2b

1
|C(u)|

ÿ

wœN
+
u flC(u)

Ï(u,w)p

Ø
ÿ

uœV 2b

1
2 · 0.15p · |Vu|p.

In all,
ÿ

uœV 2b

|Vu|p Æ 2 · (20/3)p ·
ÿ

wœV

y(w)p = 2 · (20/3)p · OPTp.

Combining the cases, we see that (S≠)p Æ 2p((200/9)p+1+(10/3)p+2 · (20/3)p) ·OPTp. J

4.3 Proofs of Theorem 1 and Corollary 2
Here we show that Theorem 1 follows directly from the preceding lemmas. We defer the
proof of Corollary 2 to the full version [20].

Proof of Theorem 1. First we show that Lemma 12 implies that the clustering resulting
from inputting f into the KMZ rounding algorithm is O(1)-approximate in any ¸p-norm.
Since the rounding algorithm does not depend on p, the clustering will be the same for all
p. Let Cú be the clustering produced by running the KMZ rounding algorithm with the
adjusted correlation metric f as input. Let ALG(u) be the number of edges incident to u
that are disagreements with respect to Cú. From [29] and Lemmas 9 and 10, we have that

ICALP 2024
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for every u œ V , ALG(u) Æ 12 · yu where yu is as in LP P when taking x = f . So ||y||p is the
fractional cost of f in the ¸p-norm. In what follows, ||ALG||p is the objective value of Cú in
the ¸p-norm and OPT(p) is the optimal objective value in the ¸p-norm. Thus using Lemma
12 in the last inequality, we have

||ALG||p Æ 12 · ||y||p Æ 12 · 529 · OPT(p) = 6348 · OPT(p).

The overall run-time is O(nÊ). From the analysis in [19], computing the correlation
metric takes time O(nÊ), and the KMZ rounding algorithm takes time O(n2). We just have
to show the post-processing of d in Steps 2 and 3 of Definition 6 that were done in order to
obtain the adjusted correlation metric f can be done quickly. Indeed, Step 2 takes O(n2)
time as it simply iterates through the edges. Step 3 also takes O(n2) time, since it visits
each vertex and iterates through the neighbors. Thus, the run-time remains O(nÊ). J

5 Conclusion

This paper considered correlation clustering on unweighted, complete graphs, a problem that
arises in many settings including community detection and the study of large networks. All
previous works that study minimizing the ¸p-norm (for p œ R>1) of the disagreement vector
rely on solving a large, convex relaxation (which is costly to the algorithm’s run-time) and
produce a solution that is only O(1)-approximate for one specific value of p. We innovate
upon this rich line of work by (1) giving the first combinatorial algorithm for the ¸p-norms
for p œ R>1, (2) designing scalable algorithms for this practical problem, and (3) obtaining
solutions that are O(1)-approximate for all ¸p-norms (for p œ RØ1 fi {Œ}) simultaneously.
We emphasize this last point, as such solutions are good in both global and local senses, and
thus may be more desirable than typical optimal or approximate solutions. The existence of
these solutions reveals a surprising structural property of correlation clustering.

One question is whether there is a simpler existential (not necessarily algorithmic) proof
that there exists an O(1)-approximation for the all-norm objective for correlation clustering.

It is also of interest to implement the KMZ algorithm with the adjusted correlation
metric as input, and empirically gain an understanding of how good the adjusted correlation
metric is for di�erent ¸p-norms. We suspect that our analysis is lossy (we did not focus on
optimizing constants), and that the approximation obtained would be of much better quality.

References
1 Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. Fair correlation clustering.

arXiv preprint, 2020. arXiv:2002.03508.
2 Saba Ahmadi, Samir Khuller, and Barna Saha. Min-max correlation clustering via multicut.

In International Conference on Integer Programming and Combinatorial Optimization, pages
13–26. Springer, 2019.

3 Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation
clustering. In International Conference on Artificial Intelligence and Statistics, pages 4195–4205.
PMLR, 2020.

4 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
ranking and clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

5 Soroush Alamdari and David Shmoys. A bicriteria approximation algorithm for the k-center and
k-median problems. In Approximation and Online Algorithms: 15th International Workshop,
WAOA 2017, Vienna, Austria, September 7–8, 2017, Revised Selected Papers 15, pages 66–75.
Springer, 2018.

https://arxiv.org/abs/2002.03508


S. Davies, B. Moseley, and H. Newman 52:19

6 Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J Woeginger. All-norm approximation
algorithms. Journal of Algorithms, 52(2):120–133, 2004.

7 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56(1):89–113, 2004.

8 Mohammadhossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, and Silvio Lattanzi.
Scalable and improved algorithms for individually fair clustering. In Workshop on Trustworthy
and Socially Responsible Machine Learning, NeurIPS 2022, 2022.

9 Amir Ben-Dor and Zohar Yakhini. Clustering gene expression patterns. In Proceedings of the
third annual international conference on computational molecular biology, pages 33–42, 1999.

10 Aaron Bernstein, Tsvi Kopelowitz, Seth Pettie, Ely Porat, and Cli�ord Stein. Simultaneously
load balancing for every p-norm, with reassignments. In 8th Innovations in Theoretical
Computer Science Conference (ITCS 2017). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

11 Francesco Bonchi, David Garcia-Soriano, and Edo Liberty. Correlation clustering: from theory
to practice. In KDD, page 1972, 2014.

12 Costas Busch, Chinmoy Dutta, Jaikumar Radhakrishnan, Rajmohan Rajaraman, and Srivath-
san Srinivasagopalan. Split and join: Strong partitions and universal steiner trees for graphs.
In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 81–90.
IEEE, 2012.

13 Ostas Busch, Arnold Filtser, Daniel Hathcock, D Ellis Hershkowitz, Rajmohan Rajaraman,
et al. One tree to rule them all: Poly-logarithmic universal steiner tree. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS), pages 60–76. IEEE, 2023.

14 Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation
clustering. keep it simple! arXiv preprint, 2023. arXiv:2305.13560.

15 Moses Charikar, Neha Gupta, and Roy Schwartz. Local guarantees in graph cuts and
clustering. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming
and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,
pages 136–147. Springer, 2017. doi:10.1007/978-3-319-59250-3_12.

16 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal lp rounding algorithm for correlationclustering on complete and complete k-partite
graphs. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 219–228, 2015.

17 Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar. Correlation clustering in mapreduce. In
Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and
data mining, pages 641–650, 2014.

18 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
sherali-adams. Symposium on Foundations of Computer Science (FOCS)., 2022.

19 Sami Davies, Benjamin Moseley, and Heather Newman. Fast combinatorial algorithms for min
max correlation clustering. In International Conference on Machine Learning. PMLR, 2023.

20 Sami Davies, Benjamin Moseley, and Heather Newman. Simultaneously approximating all
¸p-norms in correlation clustering, 2024. arXiv:2308.01534.

21 Erik D Demaine and Nicole Immorlica. Correlation clustering with partial information. In
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques,
pages 1–13. Springer, 2003.

22 Zachary Friggstad and Ramin Mousavi. Fair correlation clustering with global and local
guarantees. In Workshop on Algorithms and Data Structures, pages 414–427. Springer, 2021.

23 Arun Ganesh, Bruce M Maggs, and Debmalya Panigrahi. Universal algorithms for clustering
problems. ACM Transactions on Algorithms, 19(2):1–46, 2023.

24 Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-norms and
all-l_p-norms approximation algorithms. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2008.

ICALP 2024

https://arxiv.org/abs/2305.13560
https://doi.org/10.1007/978-3-319-59250-3_12
https://arxiv.org/abs/2308.01534


52:20 Simultaneously Approximating All ¸p-Norms in Correlation Clustering

25 Holger Heidrich, Jannik Irmai, and Bjoern Andres. A 4-approximation algorithm for min max
correlation clustering. arXiv preprint, 2023. arXiv:2310.09196.

26 Jafar Jafarov, Sanchit Kalhan, Konstantin Makarychev, and Yury Makarychev. Local correla-
tion clustering with asymmetric classification errors. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
4677–4686. PMLR, 2021. URL: http://proceedings.mlr.press/v139/jafarov21a.html.

27 Jafar Jafarov, Sanchit Kalhan, Konstantin Makarychev, and Yury Makarychev. Local correla-
tion clustering with asymmetric classification errors. In International Conference on Machine
Learning, pages 4677–4686. PMLR, 2021.

28 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal
approximations for tsp, steiner tree, and set cover. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 386–395, 2005.

29 Sanchit Kalhan, Konstantin Makarychev, and Timothy Zhou. Correlation clustering with local
objectives. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, pages 9341–9350, 2019. URL: https://proceedings.
neurips.cc/paper/2019/hash/785ca71d2c85e3f3774baaf438c5c6eb-Abstract.html.

30 Jon Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
568–578. IEEE, 1999.

31 Zach Langley, Aaron Bernstein, and Sepehr Assadi. Improved bounds for distributed load
balancing. In 34th International Symposium on Distributed Computing (DISC 2020). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

32 Andrew McCallum and Ben Wellner. Conditional models of identity uncertainty with applica-
tion to noun coreference. Advances in neural information processing systems, 17, 2004.

33 Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael I
Jordan. Scaling up correlation clustering through parallelism and concurrency control. In
DISCML Workshop at International Conference on Neural Information Processing Systems,
2014.

34 Gregory J Puleo and Olgica Milenkovic. Correlation clustering with constrained cluster sizes
and extended weights bounds. SIAM Journal on Optimization, 25(3):1857–1872, 2015.

35 Gregory J. Puleo and Olgica Milenkovic. Correlation clustering and biclustering with locally
bounded errors. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
869–877. JMLR.org, 2016. URL: http://proceedings.mlr.press/v48/puleo16.html.

36 Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14:2305–2313,
2021.

37 Nate Veldt. Correlation clustering via strong triadic closure labeling: Fast approximation
algorithms and practical lower bounds. In International Conference on Machine Learning,
pages 22060–22083. PMLR, 2022.

38 Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Proceedings of the 2018 World Wide Web Conference, pages 439–448,
2018.

39 Anthony Wirth. Correlation clustering. In Claude Sammut and Geo�rey I. Webb, editors,
Encyclopedia of Machine Learning and Data Mining, pages 280–284. Springer, 2017. doi:
10.1007/978-1-4899-7687-1_176.

https://arxiv.org/abs/2310.09196
http://proceedings.mlr.press/v139/jafarov21a.html
https://proceedings.neurips.cc/paper/2019/hash/785ca71d2c85e3f3774baaf438c5c6eb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/785ca71d2c85e3f3774baaf438c5c6eb-Abstract.html
http://proceedings.mlr.press/v48/puleo16.html
https://doi.org/10.1007/978-1-4899-7687-1_176
https://doi.org/10.1007/978-1-4899-7687-1_176


Parameterized Algorithms for Coordinated Motion

Planning: Minimizing Energy

Argyrios Deligkas �

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Eduard Eiben �

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Robert Ganian �

Algorithms and Complexity Group, TU Wien, Austria

Iyad Kanj �

School of Computing, DePaul University, Chicago, IL, USA

M. S. Ramanujan �

Department of Computer Science, University of Warwick, Coventry, UK

Abstract

We study the parameterized complexity of a generalization of the coordinated motion planning
problem on graphs, where the goal is to route a specified subset of a given set of k robots to their
destinations with the aim of minimizing the total energy (i.e., the total length traveled). We develop
novel techniques to push beyond previously-established results that were restricted to solid grids.

We design a fixed-parameter additive approximation algorithm for this problem parameterized
by k alone. This result, which is of independent interest, allows us to prove the following two
results pertaining to well-studied coordinated motion planning problems: (1) A fixed-parameter
algorithm, parameterized by k, for routing a single robot to its destination while avoiding the other
robots, which is related to the famous Rush-Hour Puzzle; and (2) a fixed-parameter algorithm,
parameterized by k plus the treewidth of the input graph, for the standard Coordinated Motion

Planning (CMP) problem in which we need to route all the k robots to their destinations. The
latter of these results implies, among others, the fixed-parameter tractability of CMP parameterized
by k on graphs of bounded outerplanarity, which include bounded-height subgrids.

We complement the above results with a lower bound which rules out the fixed-parameter
tractability for CMP when parameterized by the total energy. This contrasts the recently-obtained
tractability of the problem on solid grids under the same parameterization. As our final result, we
strengthen the aforementioned fixed-parameter tractability to hold not only on solid grids but all
graphs of bounded local treewidth – a class including, among others, all graphs of bounded genus.
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1 Introduction

The task of routing a set of robots (or agents) from their initial positions to specified
destinations while avoiding collisions is of great importance in a multitude of di�erent
settings. Indeed, there is an extensive body of works dedicated to algorithms solving this task,
especially in the computational geometry [1,24–26,30,32–34,37], artificial intelligence [6,35,38]
and robotics [3, 23,36] research communities. Such algorithms typically aim at providing a
schedule for the robots which is not only safe (in the sense of avoiding collisions), but which
also optimizes a certain measure of the schedule – typically its makespan or energy (i.e., the
total distance traveled by all robots). In this article, we focus solely on the task of optimizing
the latter of these two measures.

A common formalization of our task of interest is given by the Coordinated Motion

Planning problem (also known as Multiagent Pathfinding). In the context of energy
minimization, the problem can be stated as follows: Given a graph G, a budget ¸ and a set
M of robots, each equipped with an initial vertex and destination vertex in G, compute a
schedule which delivers all the robots to their destinations while ensuring that the combined
length traveled of all the robots is at most ¸. Here, a schedule can be seen as a sequence
of commands to the robots, where at every time step each of the robots can move to an
adjacent vertex as long as no vertex or edge is used by more than a single robot at that time
step. Coordinated Motion Planning, which generalizes the famous NP-hard (n2

≠ 1)-
puzzle [11, 29], has been extensively studied – both in the discrete setting considered here as
well as in various continuous settings [4, 6, 10, 14,23, 28,32–36,38–40] – and has also been the
target of specific computing challenges [17]. In other variants of the problem, there is no
requirement to route all the robots to their destinations – sometimes the majority (or all but
1) of the robots are simply movable obstacles that do not have destinations of their own. This
is captured, e.g., by the closely-related and well-studied Rush Hour puzzle/problem [7, 19]
and by Graph Motion Planning with 1 Robot (GCMP1) [27], which both feature a
single robot with a designated destination.

Both Coordinated Motion Planning and GCMP1 are known to be NP-hard [11, 29,
39]. While several works have already studied Coordinated Motion Planning in the
context of approximation and classical complexity theory, a more fine-grained investigation of
the di�culty of finding optimal schedules through the lens of parameterized complexity [9,13]
was only carried out recently [15, 18]. The work in [15] established the fixed-parameter
tractability1 of Coordinated Motion Planning parameterized by either the number k
of robots or the budget ¸ (as well as the makespan variant when parameterized by k), but
only on solid grids; a solid grid is a standard rectangular p ◊ q grid (i.e., with no holes),
for some p, q œ N. The more recent work in [18] showed the W[1]-hardness of the makespan
variant of Coordinated Motion Planning w.r.t. the number of robots. The paper [18]
also showed the NP-hardness of the makespan problem-variant on trees, and presented
parameterized complexity results with respect to several combinations of parameters. In
this article, we focus our attention on GCMP [27], which generalizes both Coordinated

Motion Planning and GCMP1 by allowing an arbitrary partitioning of the robots into
those with destinations and those which act merely as movable obstacles2.

1 A problem is fixed-parameter tractable w.r.t. a parameter k if it can be solved in time f(k) ·nO(1), where
n is the input size and f is a computable function.

2 While previous hardness results for GCMP considers serial motion of robots (e.g., [27]), the hardness
applies to parallel motion as well. Here we obtain algorithms for the coordinated motion variant with
parallel movement, but note that the results can be directly translated to the serial version.
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Contribution. The aim of this article is to push our understanding of the parameterized
complexity of finding energy-optimal schedules beyond the class of solid grids. While this
aim was already highlighted in the aforementioned paper on solid grids [15, Section 5], the
techniques used there are highly specific to that setting and it is entirely unclear how one
could generalize them even to the setting of subgrids; a subgrid is a subgraph of a solid grid
and we define its height to be the minimum of its two dimensions.

As our two main contributions, we provide novel fixed-parameter algorithms (1) for
GCMP1 parameterized by the number of robots alone (Theorem 1), and (2) for GCMP

parameterized by the number of robots plus the treewidth of the graph (Theorem 2).
Theorem 2 implies, as a corollary, the fixed-parameter tractability of GCMP parameterized
by k plus the minimum dimension of the subgrid.

I Theorem 1. GCMP1 is FPT parameterized by the number k of robots.

I Theorem 2. GCMP is FPT parameterized by the number of robots and the treewidth of
the input graph.

The main technical tool we use to obtain both of these results is a novel fixed-parameter
approximation algorithm for Generalized Coordinated Motion Planning parameter-
ized by k alone, where the approximation error is only additive in k. We believe this result –
summarized in Theorem 3 below – to be of independent interest.

I Theorem 3. There is an FPT approximation algorithm for GCMP parameterized by the
number k of robots which guarantees an additive error of O(k5).

The proof of Theorem 1 builds upon Theorem 3. For the proof of Theorem 2, we need to
combine the approximation algorithm with novel insights concerning the “decomposability” of
schedules along small separators in order to design a treewidth-based dynamic programming
algorithm for the problem. A brief summary of the ideas used in this proof is provided at
the beginning of Section 3.

We complement our positive results which use k as a parameter with an algorithmic
lower bound showing that Coordinated Motion Planning is W[1]-hard (and hence not
fixed-parameter tractable under well-established complexity-theoretic assumptions) when
parameterized by the energy budget ¸. This result (Theorem 4 below) contrasts the fixed-
parameter tractability of the problem under the same parameterization when restricted to
solid grids [15, Theorem 19].

I Theorem 4. GCMP is W[1]-hard when parameterized by ¸.

While Theorem 4 establishes the intractability of the problem when parameterized by
the energy on general graphs, one can in fact show that GCMP is fixed-parameter tractable
under the same parameterization when the graphs are “well-structured” in the sense of having
bounded local treewidth [16, 22]. This implies fixed-parameter tractability, e.g., on graphs of
bounded genus and generalizes the aforementioned result on grids [15, Theorem 19].

I Theorem 5. GCMP is FPT parameterized by ¸ on graph classes of bounded local treewidth.

Further Related Work. As surveyed above, the computational complexity of GCMP has
received significant attention, particularly by researchers in the fields of computational
geometry, AI/Robotics, and theoretical computer science. The problem has been shown to
remain NP-hard under a broad set of restrictions, including on graphs where only a single
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vertex is not occupied [21], on grids [3], and bounded-height subgrids [20]. On the other hand,
a feasibility check for the existence of a schedule can be carried out in polynomial time [41].
The recent AAMAS blue sky paper [31] also highlighted the need of understanding the
hardness of the problem and asked for a deeper investigation of its parameterized complexity.

2 Terminology and Problem Definition

The graphs considered in this paper are undirected simple graphs. We assume familiarity
with the standard graph-theoretic concepts and terminology [12]. For a subgraph H of a
graph G and two vertices u, v œ V (H), we denote by distH(u, v) the length of a shortest
path in H between u and v. We write [n], where n œ N, for {1, . . . , n}.

We also assume basic familiarity with parameterized complexity theory, including fixed-
parameter tractability, parameterized reductions, and the class W[1] [9, 13].

Treewidth. Treewidth is a structural parameter that provides a way of expressing the
resemblance of a graph to a forest. Formally, the treewidth of a graph is defined via the
notion of tree decompositions as follows.

I Definition 6 (Tree decomposition). A tree decomposition of a graph G is a pair (T,—) of a
tree T and — : V (T ) æ 2V (G), such that:t

tœV (T )
—(t) = V (G),

for any edge e œ E(G), there exists a node t œ V (T ) such that both endpoints of e belong
to —(t), and
for any vertex v œ V (G), the subgraph of T induced by the set Tv = {t œ V (T ) : v œ —(t)}
is a tree.

The width of (T,—) is maxvœV (T ){|—(v)|} ≠ 1. The treewidth of G is the minimum width of a
tree decomposition of G.

Let (T,—) be a tree decomposition of a graph G. We refer to the vertices of the tree T as
nodes. We always assume that T is a rooted tree and hence, we have a natural parent-child
and ancestor-descendant relationship among nodes in T . A leaf node nor a leaf of T is a
node with degree exactly one in T which is di�erent from the root node. All the nodes of T
which are neither the root node or a leaf are called non-leaf nodes. The set —(t) is called the
bag at t. For two nodes u, t œ T , we say that u is a descendant of t, denoted u ∞ t, if t lies
on the unique path connecting u to the root. Note that every node is its own descendant.
If u ∞ t and u ”= t, then we write u ª t. For a tree decomposition (T,—) we also have a
mapping “ : V (T ) æ 2V (G) defined as “(t) =

t
u∞t

—(u).
We use the following structured tree decomposition in our algorithm.

I Definition 7 (Nice tree decomposition). Let (T,—) be a tree decomposition of a graph G,
where r is the root of T . The tree decomposition (T,—) is called a nice tree decomposition if
the following conditions are satisfied.
1. —(r) = ÿ and —(¸) = ÿ for every leaf node ¸ of T ; and
2. every non-leaf node (including the root node) t of T is of one of the following types:

Introduce node: The node t has exactly one child t
Õ in T and —(t) = —(tÕ) fi {v},

where v /œ —(tÕ).
Forget node: The node t has exactly one child t

Õ in T and —(t) = —(tÕ) \ {v}, where
v œ —(tÕ).
Join node: The node t has exactly two children t1 and t2 in T and —(t) = —(t1) = —(t2).
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A graph class closed under vertex and edge deletion is said to have bounded local
treewidth [16,22] if the treewidth of each graph in the class is upper-bounded by a function of
its diameter. Examples of classes of bounded local treewidth include, e.g., graphs of bounded
genus [5].

Problem Definition. In our problems of interest, we are given an undirected graph G and a
set R = {R1, R2, . . . , Rk} of k robots where R is partitioned into two sets M and F . Each
Ri œ M has a starting vertex si and a destination vertex ti in V (G) and each Ri œ F

is associated only with a starting vertex si œ V (G). We refer to the elements in the set
{si | i œ [k]} fi {ti | Ri œ M} as terminals. The set M contains robots that have specific
destinations they must reach, whereas F is the set of remaining “free” robots. We assume
that all the si are pairwise distinct and that all the ti are pairwise distinct. At each time step,
a robot may either move to an adjacent vertex, or stay at its current vertex, and robots may
move simultaneously. We use a discrete time frame [0, t], t œ N, to reference the sequence of
moves of the robots and in each time step x œ [0, t] every robot remains stationary or moves.

A route for robot Ri is a tuple Wi = (u0, . . . , ut) of vertices in G such that (i) u0 = si

and ut = ti if Ri œ M and (ii) ’j œ [t], either uj≠1 = uj or uj≠1uj œ E(G). Put simply,
Wi corresponds to a “walk” in G, with the exception that consecutive vertices in Wi may
be identical (representing waiting time steps), in which Ri begins at its starting vertex at
time step 0, and if Ri œ M then Ri reaches its destination vertex at time step t. Two
routes Wi = (u0, . . . , ut) and Wj = (v0, . . . , vt), where i ”= j œ [k], are non-conflicting if (i)
’r œ {0, . . . , t}, ur ”= vr, and (ii) @r œ {0, . . . , t ≠ 1} such that vr+1 = ur and ur+1 = vr.
Otherwise, we say thatWi andWj conflict. Intuitively, two routes conflict if the corresponding
robots are at the same vertex at the end of a time step, or go through the same edge (in
opposite directions) during the same time step.

A schedule S for R is a set of pairwise non-conflicting routes Wi, i œ [k], during a time
interval [0, t]. The (traveled) length of a route (or its associated robot) within S is the number
of time steps j such that uj ”= uj+1. The total traveled length of a schedule is the sum of the
lengths of its routes; this value is often called the energy in the literature (e.g., see [17]).

Using the introduced terminology, we formalize the Generalized Coordinated Mo-

tion Planning with Energy Minimization (GCMP) problem below.

Input: A tuple (G,R = (M,F), k, ¸), where G is a graph, R = {Ri | i œ [k]} is
a set of robots partitioned into sets M and F , where each robot in M is
given as a pair of vertices (si, ti) and each robot in F as a single vertex si,
and k, ¸ œ N.

Problem: Is there a schedule for R of total traveled length at most ¸?

GCMP

By observing that the feasibility check of Yu and Rus [41] transfers seamlessly to the case
where some robots do not have destinations, we obtain the following.

I Proposition 8 ([41]). The existence of a schedule for an instance of GCMP can be decided
in linear time. Moreover, if such a schedule exists, then a schedule with total length traveled
of O(|V (G)|3) can be computed in O(|V (G)|3) time.

Proposition 8 implies inclusion in NP, and allows us to assume henceforth that every
instance of GCMP is feasible (otherwise, in linear time we can reject the instance). We
denote by GCMP1 the restriction of GCMP to instances where |M| = 1. We remark that
even though GCMP is stated as as a decision problem, all the algorithms provided in this
paper are constructive and can output a corresponding schedule (when it exists) as a witness.
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3 An Additive FPT Approximation for GCMP

In this section, we give an FPT approximation algorithm for GCMP with an additive error
that is a function of the number k of robots.

We start by providing a high-level, low-rigor intuition for the main result of this section.
Let I = (G,R = (M,F), k, ¸) be an instance of GCMP. Ideally, we would like to route the
robots in M along shortest paths to their destinations, while having the other robots move
away only a “little” (‘(k)-many steps) to unblock the shortest paths for the robots in M.
Unfortunately, this might not be possible as it is easy to observe that a free robot might
have to travel a long distance in order to unblock the shortest paths of other robots. (For
instance, think about the situation where a free robot is positioned in the middle of a long
path of degree-2 vertices that the shortest paths traverse.) However, we will show that such a
situation could only happen if the blocking robots are positioned in simple graph structures
containing a long path of degree-2 vertices.

We then exploit these simple structures to “guess” in FPT-time, for each robot, a location
which it visits in an optimal solution and which is in the vicinity of a safe location, called a
“haven”; this haven is centered around a “nice” vertex of degree at least 3, and allows the
robot to avoid any passing robot within ‘(k) moves. We show how to navigate the robots
to these havens optimally in the case of GCMP1, and with an ‘(k) overhead in the case of
GCMP. Moreover, this navigation is well-structured and can be leveraged to show that no
robot in an optimal solution will visit the same vertex many times. A similar navigation takes
place at the end, during the routing of the robots from their havens to their destinations.

Once we obtain such a reduced instance in which all starting positions and destinations of
the robots are in havens, we can use our intended strategy to navigate each robot in M along
a shortest path, with only an ‘(k) overhead, which immediately gives us the approximation
result and the property that no robot visits any vertex more than ‘(k) times in an optimal
solution. This latter property about the optimal solution is crucial, as we exploit it later in
Section 5 to design an intricate dynamic programming algorithm over a tree decomposition
of the input graph.

In addition, each free robot moves at most ‘(k) times in the considered solution for the
reduced instance. This, together with the equivalence between I and the reduced instance
in the case of GCMP1, allow us to restrict the movement of the free robots in an optimal
solution to only ‘(k)-many locations, which we use in Section 4 to obtain the FPT algorithm
for GCMP1.

We start by defining the notion of a nice vertex and its haven.
I Definition 9 (Nice Vertex). A vertex w œ V (G) is nice if there exist three connected
subgraphs C1, C2, C3 of G such that: (i) the pairwise intersection of the vertex sets of any pair
of these subgraphs is exactly w, and (ii) |V (C1)| Ø k + 1, |V (C2)| Ø k + 1, and |V (C3)| Ø 2.
If w is nice, let x œ V (C3) be a neighbor of w, and define the haven Hw of w to be the
subgraph of G induced by the vertices in {x} fi V (C1) fi V (C2) whose distance from w in
Hw (i.e., distHv (w, u), for u œ V (C1) fi V (C2)) is at most k.

For a set S ™ R of robots and a subgraph H, a configuration of S w.r.t. H is an injection
ÿ : S ≠æ V (H). The following lemma shows that we can take the robots in a haven from
any configuration to any other configuration in the haven, while incurring a total of O(k3)
travel (in the haven) length.
I Lemma 10. Let w be a nice vertex, let C1, C2, C3 be three subgraphs satisfying conditions
(i) and (ii) of Definition 9, and let Hw be a haven for w. Then for any set of robots S ™ R

in Hw with current configuration ÿ(S), any configuration ÿ
Õ(S) with respect to Hw can be

obtained from ÿ(S) via a sequence of O(k3) moves that take place in Hw.
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Figure 1 Illustration of the four types for a vertex v that is not nice.

Call a path P in G a 2-path if P is an induced path of degree-2 vertices in G. The next
lemma is used to characterize the possible graph structures around a vertex that is not nice;
an illustration for the four cases handled by the lemma is provided in Figure 1.

I Lemma 11. For every vertex v that is not nice, one of the following holds:
(1) There is a nice vertex at distance at most 3k from v; or
(2) vertex v is on a 2-path whose both endpoints are nice vertices; or
(3) there is a 2-path P such that one of its endpoints is nice and the other is contained in a

connected subgraph Q of size at most 8k that P cuts from the nice vertex and such that
v is in P fi Q; or

(4) Either |V (G)| Æ 8k, or G consists of a 2-path P , each of whose endpoints is contained
in a subgraph of size at most 8k, such that P cuts the two subgraphs from one another.

I Definition 12 (Vertex Types). Let v be a vertex in G that is not nice. We say that v is a
type-(i) vertex, where i œ {1, . . . , 4}, if v satisfies Statement (i) in Lemma 11 but does not
satisfy any Statement (j), where j < i (if Statement (j) exists). Note that, by Lemma 11,
every vertex v that is not nice must be a type-(i) vertex for some i œ {1, . . . , 4}.

The following lemma shows that we can restrict our attention to the case where there is
no type-(4) vertex in G.

I Lemma 13. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP. If there exists a
type-(4) vertex v œ V (G) then I can be solved in time O

ú((4k2 + 16k)2k) and hence is FPT.
Before we are ready to prove the main theorem for this section, we first need the following

lemma, which will allow us to restrict the movement of the free robots.

I Lemma 14. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP. For every Ri œ F

that is within distance ⁄i from a nice vertex, there is a set B(Ri,⁄i) of vertices of cardinality
k
O(⁄i·k+k

4
) such that, for any optimal solution opt(I), there exists an optimal solution opt

Õ(I)
satisfying that, in opt

Õ(I) Ri moves only on vertices in B(Ri,⁄i) and all the remaining
robots move exactly the same in opt(I) and opt

Õ(I). Moreover, B(Ri,⁄i) is computable in
O(|V (G)|+ |E(G)|) time.
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I Theorem 15. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP. In FPT-time, we
can reduce I to p = g(k)-many instances (for some computable function g(k)) I1, . . . , Ip

such that there exists j œ [p] satisfying:
1. If M = {R1} then Ij = (Gj ,Rj = (Mj , ÿ), kj , ¸j), where kj Æ k and ¸j Æ ¸, is a yes-

instance of GCMP if and only if I is a yes-instance. Moreover, in this case there is an
optimal solution opt(Ij) such that |opt(Ij)| = distGj (s1, t1) +O(k5), and for every robot
Ri œ Mj \ {R1}, the moves of Ri in opt(Ij) are restricted to a vertex set of cardinality
at most kO(k

4
) that is computable in linear time.

2. In polynomial time we can compute a schedule for Ij with total traveled length at mostq
RiœMj

dist(si, ti)+O(k5), and given such a schedule for Ij, in polynomial time we can
compute a schedule for I of cost at most |opt(I)|+O(k5).

Furthermore, every optimal schedule for I satisfies the property that every vertex in G is
visited at most O(k5) many times in the schedule.

Proof Sketch. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP, and let opt(I)
denote an optimal schedule for I. We give a nondeterministic reduction that produces a
single instance Ij = (Gj , Rj = (Mj , ÿ), kj , ¸j), which can be made deterministic in FPT-time.

To construct Ij , we will be making guesses about the initial and final segments of the
robots’ routes in opt(I), which may lead to redefining the starting and final positions for some
of them, with the purpose of getting them close to havens – as explained at the beginning of
this section. The guessing is based on the types of the starting and final positions of the
robots (see Lemma 11). We set ¸j = ¸.

Case I. If the starting or the final position of a robot is at distance at most 11k from a
nice vertex, we do not change it.

Case II. If the starting or the final position of a robot is a type-(2) vertex on a path P

that connects two nice vertices, then we look separately at all the robots that start on P

and all the robots that end on P (guessing for each free robot whether it ends on P ). Let
us first consider the robots that start on P . We make a guess, for each of these robots,
about whether it ever leaves P , and if it does, from which endpoint of P it leaves for the
first time. This splits the robots on P into three sets SLeft, SMid, SRight. Observe that these
three sets have to be “consecutive” on P (i.e., their robots respect the order of the sets),
and we push the starting points of the robots in SLeft and in SRight to distance at most k
from the nice vertex they leave from for the first time. Similarly, we split the robots that
end on P into the sets TLeft, TMid, TRight. We redefine the destinations of the robots in
TLeft and TRight to vertices at distance at most k from their respective nice vertices through
which they enter P , and we compute the additional travel length incurred by moving them
directly from these positions at distance at most k from nice vertices to their destinations
and subtract this number from ¸j . Recall that, according to our guess, SMid and TMid each
contains precisely the robots that never leave P , and hence SMid = TMid. We show that
for most of the robots in SMid, any optimal solution takes them directly from their starting
positions to their destinations, except for those that start and end at distance at most k

from the same nice vertex. For those that do not start and end at distance at most k from
the same nice vertex, we compute the travel length incurred by taking them directly to their
destinations, subtract it from ¸j , and delete these robots from R. Finally, if SMid ”= ÿ, then
no robot can use P to move between its two endpoints. Moreover, if a robot is on P , then it
does not need to go beyond the k-closest vertices on P to a nice vertex. Hence, if SMid ”= ÿ,
then we delete all the vertices on P that are at distance at least k + 1 from a nice vertex.
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Case III. If the starting or the final position of a robot is a type-(3) vertex, which consists
of a nice vertex nR joined by a 2-path P to a vertex u in a connected subgraph C of size at
most 8k, then we start by treating this situation the same as that of a type-(2) vertex, with
the role of the second nice vertex replaced by u. In particular, we guess the sets SLeft, SMid,
SRight, TLeft, TMid, TRight, where SRight (resp. TRight) are the robots that start their routing
by going from a vertex on P to u, or from u to a vertex on P . We also change the starting
and ending positions for the robots that are not in SMid to vertices that are at distance at
most k from either nR or u; we compute the routing that reflects this change, and subtract
its travel length from ¸j .

If SMid ”= ÿ, then the vertices on which the robots in SMid are positioned separate
the robots that are in SRight fi TRight plus the robots that start or end in C, from the
rest of the graph. Note that at this point, there is no interaction between the robots in
SRight fi TRight fi SMid and the other robots in R. Therefore, we can treat C and the part of
P containing the robots in SRight fi TRight fi SMid as a separate instance, which has the same
structure as that of a type-(4) vertex. We solve this instance optimally using Lemma 13, and
keep on V (P ) only the k-closest vertices to nR. On the other hand, if SMid = ÿ then some
robots that start (resp. end) in SRight (resp. TRight) or in C might also visit nR. We show
that, in the case of GCMP1, this happens only in a very restricted setting where the single
robot in M starts or ends in C, which can be dealt with easily with the help of Lemma 13.
On the other hand, if |M| Ø 2, then this is no longer the case. We now further guess which
of the robots that start (resp. end) in SRight (resp. TRight) or in C also visit nR on the other
end of P . Using Proposition 8, we can show that we can always route these robots at the
beginning (resp. at the end) to (resp. from) a position at distance at most k from nR with
overhead at most O(k3) over an optimal routing. Afterwards, we keep in G only the vertices
on P at distance at most k from nR, and remove the rest of V (C) fi V (P ).

This concludes the reduction to obtain the instance Ij from I.
Let us now prove Statement 1. Observe that all the free robots can now be either at

distance at most 11k from a nice vertex and we can use Lemma 14 to compute the set
B(Ri, 11k) where they can move; or alternatively, they can be at distance at most k from a
connected subgraph of size at most 8k associated with a type-(3) vertex and they will stay
there, and hence, their movement in this case is restricted to 9k vertices.

We now show how to compute a schedule for Ij with total traveled length at most
dist(s1, t1) +O(k5). To do so, we first move all the robots that are at distance at most 11k
from a nice vertex v to a haven Hv of v. We then compute a shortest path P between s1 and
t1. We note that P can only interact with a connected subgraph C of a type-(3) vertex at the
beginning or at the end. In both cases, we can use Lemma 13 to compute an optimal routing
of R1 from C (resp. to) to the first (resp. from the last) haven P intersects. Afterwards, all
free robots on P are in havens. We let R1 follow P . Whenever P interacts with a haven
H that contains a free robot, we replace the subpath of P between the first interaction of
R1 with H and the last interaction of R1 with H with a schedule computed by Lemma 10
that reconfigures H taking R1 between its two interaction positions. Each interaction with a
haven increases the length of P by O(k3) and there are at most k havens that contain a free
robot. Finally, we move the free robots at the end to their guessed destinations in Ij . We
can show that this incurs a travel length of O(k5).

For Statement 2, if |M| = 1 then Statement 2 follows from Statement 1. Otherwise, all
starting positions and destinations are at distance at most 11k from nice vertices. Due to
this, we can show that we can start by incurring an O(k2) travel length to route each robot
to a nearest haven, and finish by incurring O(k4) travel length to route all the robots from
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havens at distance at most 11k from their destinations to their destinations. We can then
route the robots one-by-one from a “starting” haven to a “destination” haven along a shortest
path in the same manner we routed the robot R1 in the case of GCMP1. The routing of
each robot incurs an overhead of O(k4) above its shortest path length, and hence the total
overhead for routing all the robots between havens is O(k5) and Statement 2 follows. J

The approximation algorithm claimed in the introduction (restated below) follows directly
from Statement 2 of Theorem 15.

I Theorem 3. There is an FPT approximation algorithm for GCMP parameterized by the
number k of robots which guarantees an additive error of O(k5).

4 An FPT Algorithm for GCMP1 Parameterized by k

The aim of this section is to establish Theorem 1 by using Theorem 15.

I Theorem 1. GCMP1 is FPT parameterized by the number k of robots.

Proof Sketch. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP1. By Statement
1 of Theorem 15, in FPT-time we can compute an equivalent instance Ij = (Gj ,Rj =
(Mj , ÿ), kj , ¸j) to I satisfying that kj Æ k and |opt(Ij)| = distGj (s1, t1) + O(k5), where
M = {R1}. Moreover, for every robot Ri œ Mj \ {R1}, the moves of Ri in opt(Ij) are
restricted to the vertices of a vertex-set B(Ri) of cardinality at most kO(k

4
) that is computable

in linear time.
Define a state graph Q whose vertices are k-tuples with coordinates defined as follows.

The first coordinate of a kj-tuple corresponds to R1 and can be any of the at most n vertices
in V (Gj); the i-th coordinate of a tuple, where i œ {2, . . . , kj}, encodes the possible location
of Ri and is confined to the vertices in B(Ri). We purge any tuple in which a vertex in
V (Gj) appears in more than one coordinate of the tuple (i.e., is occupied by more than one
robot in the same time step). Since |B(Ri)| = k

O(k
4
), for i œ {2, . . . , kj}, it follows that the

number of vertices in Q is at most O(n · k
O(k

5
)). Two vertices/states S and S

Õ in Q are
adjacent if there is a valid (i.e., causing no collision) single (parallel) move for the robots
from their locations in S to their locations in S

Õ; the weight of an edge (S, SÕ) in Q is the
number of robots in S that have moved (i.e., their positions have changed).

Define the starting configuration Sstart in Q to be the kj-tuple whose coordinates
correspond to the starting positions of the robots in Ij . Define Sfinal to be the kj-tuple
whose coordinates correspond to the destinations of the robots in Ij . Now compute a shortest
(weighted) path from Sstart to Sfinal in Q (e.g., using Dijkstra’s algorithm) and accept the
instance I if and only if the weight of the computed shortest path is at most ¸j . The running
time of the algorithm is O(|V (Q)|2) = O(n2

·k
O(k

5
)), and it is clear that the above algorithm

decides the instance correctly. It follows that GCMP1 is FPT parameterized by k. J

5 An FPT Algorithm Parameterized by Treewidth and k

In this section, we present an FPT algorithm for GCMP parameterized by the number of
robots and the treewidth of the input graph combined. This result implies that the problem
is FPT on certain graph classes such as graphs of bounded outerplanarity, which include
subgrids of bounded height. In this sense, the result can be seen as complementary to the
recently established NP-hardness of the problem on bounded-height subgrids [20].
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I Definition 16 (Semi-routes). A semi-route for Ri is a tuple Wi = (ui

0
, . . . , u

i

t
) such that

each u
i

j
is either a vertex of G or the symbol ‹, and such that (i) ui

0
= si and moreover, if

Ri œ M, then u
i

t
= ti, and (ii) ’j œ [t], either u

i

j≠1
= u

i

j
or u

i

j≠1
u
i

j
œ E(G) or one out of

u
i

j≠1
and u

i

j
is the symbol ‹. The notion of two conflicting semi-routes is identical to that

for routes, except that we only consider time steps where neither semi-routes has ‹.

Intuitively, the above definition gives us a notion of partial routes, where the robots can
be thought of as having become “invisible” (but still potentially in motion) for some time
steps during a route (assume only a small part of the graph is visible to us). These time
steps where a robot disappears from view are represented by the symbol ‹. Note that a
robot can “reappear” at a di�erent vertex than the one it “disappeared” at. A semi-schedule
for R is a set of semi-routes during a time interval [0, t] that are pairwise non-conflicting.
The length of a semi-route and a semi-schedule is naturally defined as the number of time
steps in which the robot moves from one vertex to a di�erent vertex, and the total traveled
length of a semi-schedule is the sum of the lengths of its semi-routes.

A boundaried graph [9] is a graph G with a set X ™ V (G) of distinguished vertices called
boundary vertices; the set X is called the boundary of G. A boundaried graph (G,X) is called
a p-boundaried graph if |X| Æ p. A p-boundaried subgraph of a graph G is a p-boundaried
graph (H,Z) such that (i) H is a vertex-induced subgraph of G and (ii) Z separates V (H)\Z
from V (G) \ V (H).

In what follows, let I = (G,R = (M,F), k, ¸) be an instance of GCMP. Let (H,Z) be
a p-boundaried subgraph of G with boundary Z containing all the terminals. Let S be a
schedule for this instance with routes Wi, i œ [k].

I Definition 17 (Signatures of Schedules). Call the tuples in the set (Zfi{ø, ¿})k, configuration
tuples for (H,Z). We define the signature of the schedule S with respect to (H,Z) as a
sequence of tuples ·0, . . . , ·t, where each ·i is a configuration tuple defined as follows: the
j
th coordinate of ·i signifies whether at the end of time step i

Rj is on a vertex v œ Z, in which case this value is v; or
whether it is inside H but not on the boundary, in which case this value is ¿; or
whether it is disjoint from H, in which case this value is ø.

The tuple ·i is called the signature of the schedule S with respect to (H,Z) at time step i.
The tuple ·0 and ·t are called starting and ending configuration tuples.

I Definition 18 (Checkpoints of Schedules). We say that the schedule S:
externally a�ects (H,Z) at time steps i and i + 1 if some robot moves from a vertex
outside H to a vertex in Z during time step i + 1, or if some robot moves from some
vertex of Z to a vertex outside H during time step i+ 1. That is, for some robot Rj , we
either have that uj

i
/œ V (H) and u

j

i+1
œ Z, or we have u

j

i
œ Z and u

j

i+1
/œ V (H).

internally a�ects (H,Z) at time steps i and i+ 1 if some robot moves from a vertex of H
to a vertex of Z during time step i+ 1, or if some robot moves from some vertex of Z
to a vertex in H during time step i+ 1. That is, for some robot Rj , we have u

j

i
”= u

j

i+1

and moreover, we either have that u
j

i
œ V (H) and u

j

i+1
œ Z or we have u

j

i
œ Z and

u
j

i+1
œ V (H).

a�ects (H,Z) at time steps i and i+ 1 if it internally or externally a�ects (H,Z) at time
steps i and i+ 1.

The pairs of consecutive time steps at which the schedule a�ects (H,Z) are called checkpoints
of the schedule with respect to (H,Z). We drop the explicit reference to (H,Z) whenever it
is clear from the context. Two checkpoints (x, x+ 1) and (y, y+ 1) are said to be consecutive
if x < y and there is no checkpoint (z, z + 1) such that x < z < y.
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Roughly speaking, the checkpoints are the time steps at which the schedule interacts in some
way with the separator Z. The interaction involves a robot either moving to or from a vertex
of Z. As a result, the notion of checkpoints enables one to “decompose” a solution along the
vertices of Z between consecutive checkpoints. We will argue that whenever Z is su�ciently
small, the number of possible checkpoints will also be small.

I Definition 19 (Semi-schedules). A semi-schedule with respect to (H,Z) is a semi-schedule
where every vertex on every semi-route is contained in V (H) and for every subtuple
(u,‹, . . . ,‹, v) in a semi-route, where u, v œ V (H), it must be the case that u, v œ Z.

The intuition here is that whenever the robot “vanishes” or “reappears”, it happens at the
boundary Z. This allows us to analyze how a schedule interacts with the subgraph H since
every movement between H and the rest of G must happen through the boundary Z.

I Definition 20 (Signatures of Semi-schedules). The signature ·0, . . . , ·t of a semi-schedule
with respect to (H,Z) is defined similarly to that of a schedule after making the assumption
that ‹ denotes a vertex outside H, that is, we have the symbol ø in the j

th coordinate of
tuple ·i if and only if the robot Rj has uj

i
= ‹. A semi-schedule externally a�ects (H,Z)

at time steps i and i + 1 if some robot “moves” from ‹ to Z during time step i + 1 or it
“moves” from Z to ‹ during time step i+ 1. That is, for some robot Rj , we have u

j

i
= ‹

and u
j

i+1
œ Z or we have u

j

i
œ Z and u

j

i+1
= ‹. The notions of internally a�ecting (H,Z),

a�ecting (H,Z), checkpoints with respect to (H,Z) are defined exactly as for schedules.

I Definition 21 (Checkpoint Tuples). Checkpoint tuples of a schedule or semi-schedule S

with respect to (H,Z) are defined as those configuration tuples for (H,Z) that appear in
the signature of S at the time steps participating in checkpoints of S with respect to (H,Z).
The checkpoint tuple sequence of S with respect to (H,Z) is the set of checkpoint tuples
ordered according to their respective time steps.

Our dynamic programming algorithm will make use of the following observation about
signatures of schedules and semi-schedules to narrow down the search space.

I Observation 22. Let ·0, . . . , ·t be the signature of a schedule or semi-schedule with respect
to (H,Z). Then, the following properties hold:
1. ·0 = (s1, . . . , sk). Moreover, the coordinates of ·t that correspond to the robots in M are

fixed, that is, ·t = (t1, . . . , t|M|, v1, . . . , vk≠|M|) for some vertices v1, . . . , vk≠|M| distinct
from {t1, . . . , t|M|}.

2. The first two and last two tuples in the signature are at checkpoints. That is, (0, 1) and
(t ≠ 1, t) are checkpoints.

3. Let (x, x+ 1), (y, y + 1) be consecutive checkpoints such that x+ 1 < y. Then, the tuples
·x+2, . . . , ·y≠1 are identical.

4. Let (x, x+ 1) be a checkpoint. There is a coordinate j such that ·x[j] ”= ·x+1[j] and at
least one of ·x[j] or ·x+1[j] is a vertex of Z.

5. Let (x, x+1) be a checkpoint. There is no coordinate j such that ·x[j] = ø and ·x+1[j] = ¿

or ·x[j] = ¿ and ·x+1[j] = ø.
6. For every time step x, ·x contains at most one occurrence of any vertex of Z.
7. Let (x, x + 1) be a checkpoint and suppose that ·x[j] ”= v œ Z and ·x+1[j] = v. Then,

either there is no j
Õ such that ·x[jÕ] = v or it must be the case that ·x+1[jÕ] ”= v.

8. Parallel movements between vertices of the boundary Z in a single time step must happen
along edges that exist and moreover, no edge can be used by two robots.
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Proof. The first two statements follow from the fact that the terminals are contained in
Z. The third, fourth and fifth statements follow from the definition of checkpoints and the
fact that the boundary is a separator between V (H) \ Z and V (G) \ V (H). The sixth and
seventh statements are due to the fact that no vertex can be occupied by two robots at the
same time. The eighth statement is due to the fact that a schedule or semi-schedule must be
comprised of pairwise non-conflicting routes or semi-routes. J

I Observation 23. Let I = (G,R = (M,F), k, ¸) be an instance of GCMP. Let (H,Z) be
a p-boundaried subgraph of G with boundary Z containing all the terminals. If there is a
schedule S for I in which each vertex is entered by any robot at most ‹(k) times, then the
following hold.
1. The number of checkpoints of S with respect to (H,Z) is bounded by O(pk · ‹(k)).
2. The number of possible checkpoint tuple sequences of S with respect to (H,Z) is bounded

by g(k, p) = p
O(pk·‹(k)).

We now proceed by defining the partial solutions which play a central role in our algorithm.

I Definition 24 (Partial Solutions). Let I = (G,R = (M,F), k, ¸) be an instance of
GCMP. Let (H,Z) be a p-boundaried subgraph of G with boundary Z containing all the
terminals. Given an ordered set of configuration tuples “1, . . . , “q for (H,Z) where q is
even, “1 is a starting configuration tuple and “q is an ending configuration tuple, a partial
solution corresponding to the sequence (“1, “2), . . . , (“q≠1, “q) is a semi-schedule S with
respect to (H,Z) such that the checkpoint tuple sequence of S with respect to (H,Z) is
exactly these tuples in this order. That is, the checkpoints of S with respect to (H,Z) are
(x1, x2), . . . , (xq≠1, xq) and ·xi = “i for each i œ [q].

I Theorem 2. GCMP is FPT parameterized by the number of robots and the treewidth of
the input graph.

Proof Sketch. Let I = (G,R = (M,F), k, ¸) be the given instance of GCMP. We start
with a tree decomposition (T,—) of G of optimal width and add the terminals to every bag.
Call the resulting tree decomposition (T,—Õ) and let its width be w. By invoking Theorem 3
and setting ‹(k) = O(k5) in Observation 23, we infer that the length of the checkpoint tuple
sequence of S with respect to each boundaried graph (G¿

x,T
,—

Õ(x)) where x œ V (T ), is at
most twice the number of checkpoints in this sequence. Hence, the length of this checkpoint
tuple sequence is bounded by ⁄(k,w) = O(wk6). Here, G¿

x,T
denotes the graph induced by

the vertices that lie either in the bag —
Õ(x) or below it. Moreover, by the same observation,

the number of possible checkpoint tuple sequences of S with respect to each boundaried
graph (G¿

x,T
,—

Õ(x)) is at most g(k,w + 1) = w
O(wk

6
).

Based on this fact, our goal is to use dynamic programming to compute, for every x œ V (T )
and boundaried graph (G¿

x,T
,—

Õ(x)), and for every possible checkpoint tuple sequence of
length at most ⁄(k,w) with respect to this boundaried graph, the length of the best partial
solution corresponding to this checkpoint tuple sequence within the boundaried graph. When
x is the root node, G¿

x,T
is exactly the input graph G. Hence, the solution is given by the

minimum entry in the table computed at the root node. Note that we only describe an
algorithm to compute the length of an optimal solution. However, it is straightforward to
see that an optimal schedule can also be produced in the same running time. J

6 Using the Total Energy as the Parameter

In the final part of our paper, we consider the complexity of GCMP in settings where we
are dealing with many robots but the energy budget ¸ is small. While intuitively this may
seem like an “easier” case due to the fact that ¸ immediately bounds the number of robots
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that will end up moving in a hypothetical schedule, we show that the problem (and even
its restriction to the often-studied case where all robots have destinations) is unlikely to be
fixed-parameter tractable when parameterized by ¸.

I Theorem 4. GCMP is W[1]-hard when parameterized by ¸.

Proof. We provide a parameterized reduction from the well-known W[1]-complete Multi-

colored Clique problem [9, 13]: decide whether a given Ÿ-partite graph (V1, . . . , VŸ, E)
contains a clique of size Ÿ. To avoid any confusion, we explicitly remark that in this proof
we use Ÿ to denote the parameter of the initial instance of Multicolored Clique and not
the number of robots in the resulting instance of GCMP.

Our reduction takes an instance (V1, . . . , VŸ, E) of Multicolored Clique and constructs
an instance (G,R = (M,F),ŸÕ

, ¸) of GCMP as follows. To obtain G, we:
1. subdivide each edge e œ E Ÿ

3 many times;
2. attach a single new pendant vertex v

Õ to each vertex v œ V1 fi · · · fi VŸ in the original
graph; and

3. for each pair of integers i, j such that 1 Æ i < j Æ Ÿ, construct a new vertex si,j and make
it adjacent to every vertex in Vi, and construct a new vertex ti,j and make it adjacent to
every vertex in Vj .

For R = (M,F), we set F = ÿ and add two sets of robots into M. First, for each vertex
v in V1 fi · · · fi VŸ, we construct a blocking robot rv and set v as its starting point as well
as its destination. Second, for each of the newly constructed si,j œ V (G), we construct
a clique robot r

i,j , set si,j as its starting point and ti,j as its destination. Finally, we set
¸ := 2Ÿ +

!
Ÿ

2

"
· (Ÿ3 + 3) and Ÿ

Õ := |R|. This completes the description of our reduction.
Towards proving correctness, we first observe that a hypothetical schedule for (G,R,Ÿ

Õ
, ¸)

can never use less than ¸ := 2Ÿ +
!

Ÿ

2

"
· (Ÿ3 + 3) travel length. Indeed, there are

!
Ÿ

2

"
many

clique robots, and the shortest path between their starting and destination points has length
Ÿ
3 + 3. Moreover, every schedule must route each clique robot r

i,j through at least one
vertex in Vi and at least one vertex in Vj , and hence a hypothetical solution must spend a
length of at least 2 to move at least one of the blocking robots in each Vp, p œ [Ÿ], out of the
way and then back to its initial position (which is also its destination).

Now, assume that (G,R,Ÿ
Õ
, ¸) is a yes-instance. By the argument above, this implies

that there is a schedule which moves precisely one of the blocking robots in each Vp, p œ [Ÿ];
let us denote by wp the starting vertex of the unique blocking robot which is moved from
Vp. Since (G,R,Ÿ

Õ
, ¸) is a yes-instance, E must contain an edge between each wi and wj ,

1 Æ i < j Æ Ÿ; in particular, these vertices induce a clique in (V1, . . . , VŸ, E).
For the converse, assume that (V1, . . . , VŸ, E) contains a Ÿ-clique w1, . . . , wŸ. We construct

a solution for (G,R,Ÿ
Õ
, ¸) as follows. First, for each robot starting at wi, i œ [Ÿ], we spend a

length of 1 to move it to the pendant vertex w
Õ

i
. Next, we route each robot ri,j from si,j to

wi, through the (Ÿ3 + 1)-length path to wj (whereas the existence of this path is guaranteed
by the existence of the edge wiwj œ E), and then to its destination ti,j . Finally, we route
each blocking robot which originally started at wi back to wi from w

Õ

i
. The travelled length

of this schedule is precisely 2Ÿ +
!

Ÿ

2

"
· (Ÿ3 + 3), as desired. J

As mentioned in the introduction, we complement Theorem 4 with a fixed-parameter
algorithm on graph classes of bounded local treewidth.

Before proceeding to the proof, we recall the syntax of Monadic Second Order Logic
(MSO) of graphs. It contains the logical connectives ‚, ·, ¬, …, ∆, variables for vertices,
edges, sets of vertices and sets of edges, and the quantifiers ’ and ÷, which can be applied to
these variables. It also contains the following binary relations: (i) u œ U , where u is a vertex



A. Deligkas, E. Eiben, R. Ganian, I. Kanj, and M. S. Ramanujan 53:15

variable and U is a vertex set variable; (ii) d œ D, where d is an edge variable and D is an
edge set variable; (iii) inc(d, u), where d is an edge variable, u is a vertex variable, with the
interpretation that the edge d is incident to u; (iv) equality of variables representing vertices,
edges, vertex sets and edge sets.

The well-known Courcelle’s theorem [2,8] states that checking whether a given graph G

models a given MSO formula „ can be done in FPT time parameterized by the treewidth of
G and the size of „. Morover, this result holds even if some vertices of G are given labels
or colors (i.e., we allow a fixed number of additional unary relations over V (G)). This is
because one can produce an equivalent graph G

Õ such that G has bounded treewidth if and
only if GÕ does, plus an alternate MSO formula „

Õ such that G models „ if and only if GÕ

models „
Õ.

I Theorem 5. GCMP is FPT parameterized by ¸ on graph classes of bounded local treewidth.
Proof. Let I = (G,R = (M,F), k, ¸) be the given instance of GCMP where G belongs to a
graph class that is closed under taking subgraphs and in which the treewidth of a graph of
diameter d is bounded by f(d) for some function f . Let MÕ denote the set of those robots in
M whose final position is distinct from the starting position. Since each of the robots in M

Õ

must move at least one step, it follows that if |MÕ
| > ¸, then the instance is a no-instance.

So, assume that |MÕ
| Æ ¸. Let U denote the set of starting points of the robots in M

Õ.
Consider an optimal schedule S. We say that an edge e appears in a routeW = (u0, . . . , ut)

in S if the endpoints of e are the vertices uj≠1 and uj for some j œ [t]. We say that e

appears in S if it appears in some route in S. Let ES denote the set of edges of G that
appear in S. We observe that every connected component of the subgraph of G induced by
ES (call it GS) contains a vertex of U . If this were not the case and there is a connected
component of GS disjoint from U , then we can delete all the routes whose edges appear in this
connected component and still have a feasible schedule for the given instance, contradicting
the optimality of S. Moreover, since S has total energy at most ¸, it follows that at most ¸

edges can appear in S. Hence, it follows that S is contained in the subgraph H defined as
the union of the subgraphs induced by the ¸-balls centered at the starting positions of the
robots in M

Õ.
Notice that since H is obtained by taking the union of at most ¸ graphs, each of diameter

at most 2¸, it follows that H has diameter at most 2¸
2 and so, the treewidth of H is upper

bounded by f(2¸
2). It remains to argue that GCMP is FPT parameterized by the energy

and treewidth of the input graph. We do this by making some guesses, obtaining a bounded
number of MSO formulas such that input is a yes-instance if and only if at least one of these
formulas is true on the graph H with a label function (with constant number of labels) and
then invoking Courcelle’s theorem [2, 8]. Let MÕÕ denote the subset of M\M

Õ contained in
H and let RÕ = R fl V (H).

Suppose that – Æ ¸ robots move in S and let the routes in S be {Wi = (vi
1
, . . . , v

i

di
) |

i œ [–]}. Assume that the first |MÕ
| routes, W1, . . . ,W|MÕ|, correspond to the robots in M

Õ.
We guess – and d1, . . . , d– as these are all at most ¸. Moreover, we guess, for every pair of
vertices vi

j
and v

p

q
whether they are equal. Let this be expressed by a function µ(vi

j
, v

p

q
) that

evaluates to 1 if and only if these vertices are guessed to be equal. Thus, even though we do
not know the actual vertices in the solution (except for the starting and endpoint positions
of the robots in M

Õ), this guess gives us the “structure” of the entire solution. Notice that
the number of guesses is bounded by a function of ¸. Now, we consider the labeled graph H

where the starting points of all robots in R
Õ
\M

ÕÕ are labeled red and the starting points of
the robots in M

ÕÕ are labeled blue. Fix a guess of –, the numbers d1, . . . , d– and a guess of
the function µ and express the following as an MSO formula.
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There are ordered vertex sets {Wi = (vi
1
, . . . , v

i

di
) | i œ [–]} such that the following hold:

1. Each Wi is a walk in H.
2. For every i, j, p, q, vi

j
and v

p

q
are equal if and only if µ(vi

j
, v

p

q
) is 1.

3. The walks Wi are pairwise non-conflicting routes.
4. For each of the first |MÕ

| walks W1, . . . ,W|MÕ|, the initial and final vertices are precisely
the starting and ending points, respectively, of some robot in M

Õ.
5. For each labeled vertex appearing on any walk Wi, this vertex must be the first vertex of

some walk Wi.
6. For each walk Wi starting at a blue vertex, it must terminate at the same blue vertex.

Expressing the above in MSO is straightforward to do, so we do not go in to lower level
details of the MSO formula.

We next argue that the input is a yes-instance if and only if there is a guess of –, the
numbers d1, . . . , d– and a guess of the function µ such that the resulting MSO formula is
true on H. Consider the forward direction. An optimal schedule S with routes W1, . . . ,W–

naturally gives us a “correct” guess of –, d1, . . . , d– and the function µ. Moreover notice
that Properties 1-4 are clearly satisfied. For Property 5, notice that only the starting
points of robots that never move can be disjoint from the set of initial vertices of the routes
{Wi | i œ [–]} in the optimal schedule S. Since these robots do not move, they also cannot
appear on any route Wi or they would obstruct a robot that moves. Finally, Property 6 is
satisfied since every robot in M

ÕÕ that moves also ends up returning to its starting point.
The converse is trivial. J

7 Conclusion

In this paper, we presented parameterized algorithms for fundamental coordinated motion
planning problems on graphs. In particular, we proved that GCMP1 is fixed-parameter
tractable parameterized by the number of robots, and that GCMP is fixed-parameter tractable
parameterized by the number k of robots and the treewidth of the input graph combined. This
latter result implies that GCMP is fixed-parameter tractable in several graph classes which
may be of interest w.r.t. application domains, including graphs of bounded outerplanarity.

We conclude by highlighting three directions that may be pursued in future works:
1. Is GCMP FPT parameterized by k (alone) on planar graphs, or even on general graphs?
2. What is the complexity of GCMP on trees? While GCMP1 is known to be in P on trees,

the complexity of the general problem on trees remains unresolved.
3. The focus of this paper was on minimizing the travel length/energy, which is one of the

most-studied optimization objectives. Nevertheless, there are other important objectives,
most notably that of minimizing the makespan. It seems that at least in the settings
considered here, optimizing the makespan may be a computationally more challenging
problem. In particular, the question of whether Coordinated Motion Planning on
trees is FPT parameterized by k remains open.
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Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only
via its independence oracle or via its colourful independence oracle, and each oracle query may
incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC
2018; Dell, Lapinskas, and Meeks, SODA 2020) give e�cient algorithms to approximately count
the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained
reductions from approximate counting to decision, with overhead only log�(k)

n over the running
time n

– of the original decision algorithm, for many well-studied problems including k-Orthogonal
Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs,
and k-variable first-order model checking.

We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds
on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful
and uncoloured settings. In both settings, we also obtain algorithms which essentially match these
lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell,
Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to log�(k≠–)

n. Our lower
bound for the uncoloured setting shows that there is no fine-grained reduction from approximate
counting to the corresponding uncoloured decision problem (except in the case – Ø k ≠ 1): without
an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead
of roughly n

(k≠–)2/4. The uncoloured setting has previously been studied for the special case k = 2
(Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020),
and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and
to oracles with cost.

2012 ACM Subject Classification Theory of computation æ Fixed parameter tractability; Theory
of computation æ Oracles and decision trees; Mathematics of computing æ Graph algorithms

Keywords and phrases Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.54

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.03874 [14]

Funding Kitty Meeks: Supported by EPSRC grant EP/V032305/1.

1 Introduction

Many decision problems in computer science, particularly those in NP, can naturally be
expressed in terms of determining the existence of a witness. For example, solving SAT
requires determining the existence of a satisfying assignment to a CNF formula. All such
problems � naturally give rise to a counting version #�, in which we ask for the number of

EA
T
C
S

© Holger Dell, John Lapinskas, and Kitty Meeks;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8955-0786
https://orcid.org/0000-0003-3197-0854
https://orcid.org/0000-0001-5299-3073
https://doi.org/10.4230/LIPIcs.ICALP.2024.54
https://arxiv.org/abs/2211.03874
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


54:2 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

witnesses. It is well-known that #� is often significantly harder than �; for example, Toda’s
theorem implies that it is impossible to solve #P-complete counting problems in polynomial
time with access to an NP-oracle unless the polynomial hierarchy collapses. However, the
same is not true for approximately counting witnesses (to within a factor of two, say). For
example, it is known that: if � is a problem in NP, then there is an FPRAS for #� using
an NP-oracle [30]; if � is a problem in W [i], then there is an FPTRAS for #� using a
W [i]-oracle [25]; and that the Exponential Time Hypothesis is equivalent to the statement
that there is no subexponential-time approximation algorithm for #3-SAT [12].

In this paper we are concerned with analogous results in the fine-grained setting, which
considers exact running times rather than coarse-grained classifications such as polynomial,
FPT, or subexponential; such results turn out to be inextricably bound to graph oracle
results of independent interest.

Past work in this area has focused on the family of uniform witness problems [13]. Roughly
speaking, these are problems which can be expressed as counting edges in a k-hypergraph G in
which the edges correspond to witnesses and induced subgraphs correspond to sub-problems.
(See Section 3 for a detailed definition.) Many of the most important problems in fine-grained
and parameterised complexity can be expressed as uniform witness problems including k-
SUM, k-OV, k-Clique, Hamming weight-k solutions to CNFs, Size-k Graph Motif, most
subgraph detection problems (including weighted problems such as Zero-Weight k-Clique

and Negative-Weight Triangle), and first-order model-checking [13], in addition to
certain database queries [16] and patterns in graphs [9]. Here k may be either a constant, as
in the case of k-SUM, or a parameter, as in the case of k-Clique. In this setting, invoking
a decision algorithm on a sub-problem of the original problem corresponds to invoking an
oracle to test, given a set of vertices S, whether the induced subgraph G[S] contains any
edges; this oracle is called an independence oracle for G and is well-studied in its own right
(see Section 4 for an overview).

Surprisingly, there is a partial analogue of the above reductions from approximate counting
to decision in this setting. If the vertices of G are coloured, given a set S ™ V (G), a colourful
independence oracle tests whether G[S] contains any edges with one vertex of each colour.
This typically corresponds to a natural colourful variant of the original decision problem –
for example, for k-Clique, it corresponds to deciding whether a k-coloured graph contains a
size-k clique with one vertex of each colour. These oracles are again well-studied in their own
right (see Section 4), and for many but not all uniform witness problems they can be e�ciently
simulated using the independence oracle. Given access to a colourful independence oracle
for a graph G, we can count G’s edges to within a factor of 1± Á using Á≠2kO(k) log�(k) n
oracle queries [13]. (See [4] for an improvement to the log factor.) In fact, we can say more –
if we can simulate the colourful independence oracle in time n–k with –k Ø 1, then these
queries dominate the running time and we obtain an approximate counting algorithm with
running time n–k · Á≠2kO(k) log�(k) n in the usual word-RAM model. Translating back out
of the oracle setting, this means that if we simulate the oracle by running an algorithm
for the colourful decision problem, then for constant k and Á, we obtain an approximate
counting algorithm with only polylogarithmic overhead over that decision algorithm. This
result has led to several improved approximate counting algorithms – see [13] for applications
to k-OV over finite fields and graph motifs, [16] for applications to database queries, and [9]
for applications to patterns in graphs.

We are left with two major open problems of concern to researchers in fine-grained
complexity, parameterised complexity and graph oracles, and we expect our paper to be of
interest to all three communities. First, can the result of [13] be generalised from colourful
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independence oracles to independence oracles? This would imply, for example, a fine-grained
reduction from approximate induced sub-hypergraph counting to induced sub-hypergraph
detection. In this setting, e�ciently simulating the colourful independence oracle using the
independence oracle requires solving a long-standing open problem – see Section 3 – so the
result of [13] does not straightforwardly apply. Second, in the parameterised setting, the
factor of log�(k) n is not truly polylogarithmic, but equivalent to a factor of kO(k)no(1). Can
it be improved to logO(1) n?

In this paper, we answer both questions, and in the process substantially generalise recent
graph oracle results for the k = 2 case [11]. In both the colourful and uncoloured settings, we
pin down the optimal oracle algorithm almost exactly. In both cases this algorithm improves
on the current state of the art, and it allows for the desired fine-grained reductions if and
only if the cost of calling the oracle on an x-vertex set (corresponding to the run-time of a
decision algorithm on an x-element instance) is close to xk. Moreover, our lower bounds are
unconditional – they do not rely on conjectures such as SETH or FPT ”= W[1].

In a little more detail, suppose for the moment that Á = 1/2, and that the cost of
calling the oracle on an x-vertex set is x–k for some –k œ [0, k]. In the uncoloured setting,
we define a function g(k,–k) ¥ (k ≠ –)2/(4k) (see (2.1.1)) and show that an overhead of
2O(k)ng(k,–k)±o(1) is both achievable and required; we have g(k,–k) = 0 when –k Ø k ≠ 1,
so in this regime we obtain a fine-grained reduction. In the colourful setting, we show
that the log�(k) n overhead of [13, 4] can be improved to log�(k≠–k) n, but no further; thus
polylogarithmic overhead is possible if and only if k ≠ –k œ O(1) as k æ Œ. For general
values of Á, both of our upper bounds have an additional multiplicative overhead of O(Á≠2),
which is common in approximate counting algorithms.

In the rest of the paper, we state our results for graph oracles more formally in Section 2,
followed by their (immediate) corollaries for uniform witness problems in Section 3. We then
give an overview of related work in Section 4, followed by a brief description of our proof
techniques in Section 5 and a generalisation to non-polynomial running times in Section 6.
A full version of the paper is available as [14].

2 Oracle results

Our results are focused on two graph oracle models on k-hypergraphs: independence oracles
and colourful independence oracles. Both oracles are well-studied in their own right from a
theoretical perspective, as they are both natural generalisations of group testing from unary
relations to k-ary relations, and the apparent separation between them in power is already a
source of substantial interest. They also provide a point of comparison for a rich history of
sublinear-time algorithms for oracles which provide more local information, such as degree
oracles. See the introduction of [11] for a more detailed overview of the full motivation, and
Section 4 for a survey of past results.

In both the colourful and uncoloured case, while formally the oracles are bitstrings and a
query takes O(1) time, in order to obtain reductions from approximate counting problems to
decision problems in Section 3 we will simulate oracle queries using a decision algorithm. As
such, rather than focusing on the number of queries as a computational resource, we define a
more general cost function which will correspond to the running time of the algorithm used
to simulate the query; thus the cost of a query will scale with its size. In our application,
this allows for more e�cient reductions by exploiting cheap queries, while also substantially
strengthening our lower bounds. Indeed, simulating an oracle query typically requires between
poly(k) and poly(n) time, so a lower bound on the total number of queries required would
tell us very little; meanwhile, setting the cost of all queries to 1 in our results yields tight
bounds for the number of queries required.
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We are also concerned with the running times of our oracle algorithms, again due to
our applications in Section 3. We work in the standard RAM-model of computation with
�(logn) bits per word and access to the usual O(1)-time arithmetic and logical operations on
these words; in addition, oracle algorithms can perform oracle queries, which are considered
to take O(1) time.

As shorthand, for all real x, y > 0 and Á œ (0, 1), we say that x is an Á-approximation to
y if |x ≠ y| < Áy. We define an Á-approximate counting algorithm to be an oracle algorithm
that is given n and k as explicit input, is given access to an oracle representing an n-vertex
k-hypergraph G, and outputs an Á-approximation to the number of edges of G, denoted
by e(G). We allow Á to be part of the input (for upper bounds) or fixed (for lower bounds).

2.1 Our results for the uncoloured independence oracle
Given a k-hypergraph G with vertex set [n], the (uncoloured) independence oracle is the
bitstring IND(G) such that for all sets S ™ [n], IND(G)S = 1 if G[S] contains no edges and 0
otherwise. Thus a query to IND(G)S allows us to test whether or not the induced subgraph
G[S] contains an edge. We define the cost of an oracle call IND(G)S to be a polynomial
function of the form costk(S) = |S|–k , where the map k ‘æ –k satisfies –k œ [0, k] but
is otherwise arbitrary. (This upper bound is motivated by the fact that we can trivially
enumerate all edges of G by using O(nk) queries to all size-k subsets of [n], incurring oracle
cost at most nk

· k–k .)
It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of

querying every possible edge and the naive O(n–k)-cost algorithm to decide whether any
edge is present by querying [n] are both essentially optimal. For approximate counting we
prove the following, where for all real numbers x we write ÂxË := Âx+ 1/2Ê for the value of x
rounded to the nearest integer, rounding up in case of a tie.

I Theorem 1 (Uncoloured independence oracle, polynomial cost function). Let –k œ [0, k] for
all k Ø 2, let costk(x) = x–k , and let

g(k,—) := 1
k
·

Ík ≠ —

2

Ì
·

3
k ≠ — ≠

Ík ≠ —

2

Ì4
. (2.1.1)

There is a randomised Á-approximate counting algorithm Uncol(IND(G), Á, ”) with failure
probability at most ”, worst-case running time

O

1
log(1/”)

!
k5k + Á≠225k log5 n · ng(k,1)

· n
"2

,

and worst-case oracle cost

O

1
log(1/”)

!
k7k + Á≠225k log5 n · ng(k,–k) · n–k

"2

under costk. Moreover, every randomised (1/2)-approximate edge-counting IND-oracle al-
gorithm with failure probability at most 1/10 has �((ng(k,–k)/k3k) · n–k) worst-case expected
oracle cost under costk.

Observe that the polynomial overhead ng(k,–k) of approximate counting over decision is
roughly equal to n(k≠–k)2/(4k). If –k = 0, then the worst-case oracle cost of an algorithm is
simply the worst-case number of queries that it makes. Thus Theorem 1 generalises known
matching upper and lower bounds of Â�(

Ô
n) queries in the graph case [11], both by allowing

k > 2 and by allowing –k > 0. (See Section 4 for more details.) Moreover, if –k Ø k ≠ 1,
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then g(k,–k) = 0; thus in this case, Theorem 1 shows that approximate counting requires
the same oracle cost as decision, up to a polylogarithmic factor. Taking k = 2 and –k = 1,
this implies that whenever we can simulate an edge-detection oracle for a graph in linear
time, then we can also obtain a linear-time approximate edge-counting algorithm (up to
polylogarithmic factors). Analogous upper bounds on the running time and oracle cost
of Uncol also hold for any “reasonable” cost function of the form costk(n) = n–k+o(1); for
details, see Section 6 and Theorem 10.

2.2 Our results for the colourful independence oracle
Given a k-hypergraph G with vertex set [n], the colourful independence oracle is the bitstring
cIND(G) such that for all disjoint sets S1, . . . , Sk ™ [n], cIND(G)S1,...,Sk = 1 if G contains
no edge e œ E(G) with |Si fl e| = 1 for all i, and 0 otherwise. We view S1, . . . , Sk as
colour classes in a partial colouring of [n]; thus a query to cIND(G)S1,...,Sk allows us to test
whether or not G contains an edge with one vertex of each colour. (Note that we do not
require S1 fi · · · fi Sk = [n].) Analogously to the uncoloured case, we define the cost of
an oracle call cIND(G)S1,...,Sk to be a polynomial function of the form costk(S1, . . . , Sk) =
costk(|S1|+ · · ·+ |Sk|) = (|S1|+ · · ·+ |Sk|)–k , where the map k ‘æ –k satisfies –k œ [0, k]
but is otherwise arbitrary.

It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of
querying every possible edge and the naive O((kk/k!)n–k)-cost algorithm to decide whether
any edge is present by randomly colouring the vertices are both essentially optimal, and
indeed we prove as Proposition 65 of the full version that any such decision algorithm requires
cost �(n–k). For approximate counting, we prove the following.

I Theorem 2 (Colourful independence oracle, polynomial cost function). Let –k œ [0, k]
for all k Ø 2, let costk(x) = x–k , and let T := log(1/”)Á≠2k27k log4(k≠Á–kË)+18 n. There
is a randomised Á-approximate edge counting algorithm Count(cIND(G), Á, ”) with worst-
case running time O(T · nmax(1,–k)), worst-case oracle cost O(T · n–k) under costk, and
failure probability at most ”. Moreover, every randomised (1/2)-approximate edge counting
cIND-oracle algorithm with failure probability at most 1/10 has worst-case oracle cost

�
3
k≠9k

1 logn
log logn

2k≠Â–kÊ≠3
· n–k

4

under costk.
The upper bound replaces a log�(k) n term in the query count of the previous best-known

algorithm ([5] for –k = 0) by a log�(k≠–k) n term in the multiplicative overhead over decision,
giving polylogarithmic overhead over decision when k ≠ –k = O(1). The lower bound shows
that this term is necessary and cannot be reduced to logO(1) n; this is a new result even
for –k = 0. (See Section 4 for more details.) Analogous upper bounds on the running
time and oracle cost of Count also hold for any “reasonable” cost function of the form
costk(n) = n–k+o(1); for details, see Section 6 and Theorem 10.

2.3 Approximate sampling results
There is a known fine-grained reduction from approximate sampling to approximate count-
ing [13]. Strictly speaking this, reduction is proved for –k = 1 with a colourful independence
oracle, but the only actual use of the oracle in the reduction is to enumerate all edges in
a set X with O(|X|

k) size-k queries, so it transfers immediately to our setting. The upper
bounds of Theorems 1 and 2 therefore also yield approximate sampling algorithms with
overhead 2O(k) logO(1) n over approximate counting.
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2.4 A parameterised complexity motivation for our lower bound results
To understand an important motivation for the lower bounds in our results, consider as an
example the longest path problem: Given (G, k), does there exist a simple path of length k?
A long sequence of works in parameterised complexity led to a spectacular algorithm [7] for
this problem in undirected graphs that runs in time 1.66k · poly(n). There is a somewhat
shorter sequence of works for the corresponding approximate counting version of the problem,
which culminated in a 4k poly(n)-time algorithm [8, 20].

Instead of designing ever-more sophisticated algorithms for approximately counting k-
paths in order to get closer to the running time of the decision problem, our dream result
would instead be a subexponential-time approximate-counting-to-decision reduction that uses
the decision problem in a black-box fashion and causes only a factor 2o(k) poly(n) overhead in
the running time. This way, any improvements to the decision algorithm would automatically
carry over. One way to formalise what the black-box can do is captured by defining the
k-hypergraph whose edges are the k-paths of the underlying graphs; using an algorithm for
the k-path decision problem, it is trivial to simulate the independence oracle and easy to
simulate the colourful independence oracle for this hypergraph.

Theorem 2 implies that any decision algorithm for k-path can be turned into an approx-
imate counting algorithm by paying a logO(k) n-factor overhead in the running time. While
this is still a fixed-parameter tractable running time, it leads to a useless algorithm, since the
running time is much worse than ck poly(n). The main consequence of Theorem 2 for k-path
stems not from this meaningless upper bound, but from the lower bound, which is new even
for –k = 0: Our results imply that if the decision algorithm for k-path is formalized using
the colourful independence oracle, then the overhead of the approximate-counting-to-decision
reduction must be log�(k) n, and so a subexponential-time reduction cannot exist. Conversely,
if a useful approximate-counting-to-decision reduction exists, it cannot merely be based on
the hypergraph whose edges consist of all k-paths; instead, the reduction would have to have
access to and exploit the underlying structure of the original graph. We believe that this is a
useful insight for the design of future algorithms for approximate counting.

3 Reductions from approximate counting to decision

Theorems 1 and 2 can easily be applied to obtain reductions from approximate counting to de-
cision for many important problems in fine-grained and parameterised complexity. The follow-
ing definition is taken from [13]; recall that a counting problem is a function #� : {0, 1}ú

æ N
and its corresponding decision problem is defined via � = {x œ {0, 1}ú : #�(x) > 0}.

I Definition 3. The decision problem � is a uniform witness problem if there is a function
that maps instances x œ {0, 1}ú to uniform hypergraphs Gx such that the following statements
hold:
(i) #�(x) is equal to the number e(Gx) of edges in Gx;
(ii) V (Gx) and the size k(Gx) of edges in E(Gx) can be computed from x in time ÂO(|x|);
(iii) there exists an algorithm which, given x and S ™ V (Gx), in time ÂO(|x|) prepares an

instance Ix(S) œ {0, 1}ú such that GIx(S) = Gx[S] and |Ix(S)| œ O(|x|).
The set E(Gx) is the set of witnesses of the instance x.

Intuitively, we can think of a uniform witness problem as a problem of counting witnesses
in an instance x that can be naturally expressed as edges in a hypergraph Gx, in such a way
that induced subgraphs of Gx correspond to sub-instances of x. This allows us to simulate
a query to IND(Gx)S by running a decision algorithm for � on the instance Ix(S), and if
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our decision algorithm runs on an instance y in time T (|y|) then this simulation will require
time ÂO(T (|S|)). Typically there is only one natural map x ‘æ Gx, and so we consider it to
be a part of the problem statement. Simulating the independence oracle in this way, the
statement of Theorem 1 yields the following.

I Theorem 4. Suppose –k œ [1, k] for all k Ø 2. Let � be a uniform witness problem.
Suppose that given an instance x of �, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve � on x with error probability at most 1/3 in time ÂO(n–k). Then there is
an Á-approximation algorithm for #�(x) with error probability at most 1/3 and running time

kO(k) + Á≠2n–k · 2O(k)ng(k,–k) .

Note that the running time of the algorithm for #� is the sum of the oracle cost and
the running time of the algorithm of Theorem 1; by requiring –k Ø 1, we ensure this is
dominated by the oracle cost. (Indeed, for most uniform witness problems it is very easy to
prove that every decision algorithm must read a constant proportion of the input, and so we
will always have –k Ø 1.) The lower bound of Theorem 1 implies that the n–k+g(k,–k) term
in the running time cannot be substantially improved with any argument that relativises;
thus in simple terms, there is a generic fine-grained reduction from approximate counting to
decision if and only if the decision algorithm runs in time �(nk≠1).

It is instructive to consider an example. Take � to be the problem Induced-H of
deciding whether a given input graph G contains an induced copy of a fixed graph H. In this
case, the hypergraph corresponding to an instance G will have vertex set V (G) and edge set
{X ™ V (G) : G[X] ƒ H}; thus the witnesses are vertex sets which induce copies of H in G.
The requirements of Definition 3(i) and (ii) are immediately satisfied, and Definition 3(iii) is
satisfied since deleting vertices from the hypergraph corresponds to deleting vertices of G.
Thus writing k = |V (H)|, Theorem 4 gives us a reduction from approximate #Induced-H to
Induced-H with overhead Á≠22O(k)ng(k,–k) over the cost of the decision algorithm. Moreover,
on applying the fine-grained reduction from approximate sampling to counting in [13] we also
obtain an approximate uniform sampling algorithm with overhead Á≠22O(k)ng(k,–k). Many
more examples of uniform witness problems to which Theorem 4 applies can be found in the
introduction of [13].

We now describe the corresponding result in the colourful oracle setting, which we now
set out – again, the following definition is taken from [13].

I Definition 5. Suppose � is a uniform witness problem. Colourful-� is defined as the
problem of, given an instance x œ {0, 1}ú of � and a partition of V (Gx) into disjoint sets
S1, . . . , Sk, deciding whether cINDGx(S1, . . . , Sk) = 0 holds.

Continuing our previous example, in Colourful-Induced-H, we are given a (perhaps
improper) vertex colouring of our input graph G, and we wish to decide whether G contains
an induced copy of H with exactly one vertex from each colour. Simulating an oracle call
to cIND(Gx)S1,...,Sk corresponds to running a decision algorithm for Colourful-� on the
instance Ix(S1 fi · · · fi Sk) with colour classes S1, . . . , Sk, and if this decision algorithm runs
on an instance y in time T (|y|) then this simulation will require time ÂO(T (|S1|+ · · ·+ |Sk|)).
Simulating the colourful independence oracle in this way, the statement of Theorem 2 yields
the following.

I Theorem 6. Suppose –k œ [1, k] for all k Ø 2. Let � be a uniform witness problem.
Suppose that given an instance x of �, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve Colourful-� on x with error probability at most 1/3 in time O(n–k).
Then there is an Á-approximation algorithm for #�(x) with error probability at most 1/3
and running time Á≠2n–k · kO(k)(logn)O(k≠–k) .
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As in the uncoloured case, the requirement –k Ø 1 ensures that the dominant term in the
running time is the time required to simulate the required oracle queries, and the lower bound
of Theorem 2 implies that the logO(k≠–k) n term in the running time cannot be substantially
improved with any argument that relativises. Again writing k = |V (H)|, Theorem 6 gives
us a reduction from approximate #Induced-H to Colourful-Induced-H with overhead
Á≠2kO(k)(logn)O(k≠–k) over the cost of the decision algorithm. This result improves on
the reduction of [13, Theorem 1.7] by a factor of log�(–k) n, and using the fine-grained
reduction from approximate sampling to counting in [13] it can immediately be turned into
an approximate uniform sampling algorithm.

Observe that in most cases, there is far less overhead over decision in applying Theorem 6
to reduce #Induced-H to Colourful-Induced-H than there is in applying Theorem 4 to
reduce #Induced-H to Induced-H. In some cases, such as the case where H is a k-clique,
there are simple fine-grained reductions from Colourful-Induced-H to Induced-H, and
in this case Theorem 6 is an improvement. However, it is not known whether the same is
true of all choices of H, and indeed even an FPT reduction from Colourful-Induced-H to
Induced-H would imply the long-standing dichotomy conjecture for the embedding problem
introduced in [18]. More generally, but still within the setting of uniform witness problems,
the problem of detecting whether a graph contains a size-k set which either spans a clique
or spans an independent set is in FPT by Ramsey’s theorem, but its colourful version is
W[1]-complete [22].

While the distinction between colourful problems and uncoloured problems is already
well-studied in subgraph problems, these results strongly suggest that it is worth studying
in many other contexts in fine-grained complexity as well. Indeed, it is easy to simulate
IND(G) from cIND(G) with random colouring; thus the lower bound of Theorem 1 and the
upper bound of Theorem 2 imply that there is a fine-grained reduction from uncoloured
approximate counting to colourful decision, but not to uncoloured decision. By studying the
relationship between colourful problems and their uncoloured counterparts, we may therefore
hope to shed light on the relationship between approximate counting and decision.

Finally, we observe that the set of running times allowed by Theorems 4 and 6 may
not be su�ciently fine-grained to derive meaningful results for some problems. In fine-
grained complexity, even a subpolynomial improvement to a polynomial-time algorithm
may be of significant interest – the classic example is the Negative-Weight-Triangle

algorithm of [31], which runs in n3/e�(
Ô

logn) time on an n-vertex instance, compared to the
naive O(n3)-time algorithm. In order to “lift” such improvements from decision problems
to approximate counting, we must generalise the upper bounds of Theorems 1 and 2 to
cost functions of the form costk(x) = x–k±o(1) while maintaining low overhead. We do
so in Theorem 10 for all “reasonable” cost functions, including any function of the form
costk(x) = n–k log—k n and any function of the form costk(x) = n–ke±(logn)“k where “k < 1.
A full list of technical requirements is given in Section 6, but the most important one is
regular variation – this is a standard notion from probability theory for “almost polynomial”
functions, and requiring it avoids pathological cases where (for example) we may have
costk(x) = O(x) as x æ Œ, but costk(2xi) = Ê(costk(xi)) as i æ Œ along some sequence
(xi : i Ø 1).

4 Discussion of related work

In order to compare algorithms without excessive re-definition of notation, throughout this
subsection we consider the problem of Á-approximating the number of edges in an m-edge,
n-vertex k-hypergraph.
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Colourful and uncoloured independence oracles were introduced in [3] in the graph setting,
then first generalised to hypergraphs in [6]. Edge estimation using these oracles was first
studied in the graph setting (i.e. for k = 2) in [3], which gave an Á≠4 logO(1) n-query algorithm
for colourful independence oracles and an (Á≠4 + Á≠2 min{

Ô
m,n2/m}) logO(1) n = (Á≠4 +

Á≠2n2/3) logO(1) n-query algorithm for uncoloured independence oracles. The connection to
approximate counting in fine-grained and parameterised complexity was first studied in [12].

For colourful independence oracles in the graph setting, [12] (independently from [3])
gave an algorithm using Á≠2 logO(1) n cIND queries and Á≠2n logO(1) n adjacency queries. [1]
subsequently gave a non-adaptive algorithm using Á≠6 logO(1) n cIND queries.

The case of edge estimation in k-hypergraphs (i.e. for arbitrary k Ø 2) was first con-
sidered independently by [13, 4]; [13] gave an algorithm using Á≠2kO(k) log4k+O(1) n queries,
while [4] gave an Á≠4kO(k) log4k+O(1)-query algorithm. [13] also introduced a reduction from
approximate sampling to approximate counting in this setting (which also applies in the
uncoloured setting) with overhead kO(k) logO(1) n. [5] then improved the query count further
to Á≠2kO(k) log3k+O(1) n.

In this paper, we give an algorithm with total query cost Á≠2kO(k) log4(k≠–k)+O(1) n under
costk(x) = x–k , giving polylogarithmic overhead when –k ¥ k. We also give a lower bound
which shows that a log�(k≠–k) term is necessary; no lower bounds were previously known
even for –k = 0 (i.e. the case where the total query cost equals the number of queries).

For uncoloured independence oracles of graphs, [11] improved the algorithm of [3] to use

Á≠�(1) min{
Ô
m,n/

Ô
m}polylogn = Á≠�(1)Ôn polylogn (4.0.1)

queries and gave a matching lower bound. (It is di�cult to tell the exact value of the �(1)
term from the proof, but it is at least 9 – see the definition of N in the proof of Lemma
3.9 on p. 15.) It is worth noting that the bound in (4.0.1) is stated as a function of both n
and m. We believe that our results can be stated in such a way as well, but we defer doing
so to the journal version of this paper.

To the best of our knowledge, no results on uncoloured edge estimation for –k > 0 or k > 2
have previously appeared in the literature. However, we believe it would be easy to partially
generalise the proof of [3] to this setting. Very roughly speaking, their argument works by
running a naive sampling algorithm and a more subtle branch-and-bound approximation
algorithm in parallel, with the sampling algorithm running quickly on dense graphs and
the branch-and-bound algorithm running quickly on sparse graphs. The main obstacle to
generalising this approach would be the branch-and-bound approximation algorithm; however,
by replacing it with a slower branch-and-bound enumeration algorithm for k-hypergraphs such
as [23], we believe we would obtain worst-case oracle cost kO(k)+Á≠22O(k)n–k+(k≠–k)/2 under
costk(x) = x–k ; this technique is well-known in the literature and also appears in e.g. [29].
By comparison (see Figure 1), the algorithm of Theorem 1 achieves a much smaller worst-case
oracle cost of kO(k) + Á≠22O(k)n–k+g(k,–k), where g(k,–k) ¥ (k ≠ –k)2/(4k) < (k ≠ –k)/2
and where g(k,–k) = 0 for –k Ø k ≠ 1. This substantially improves on the algorithm implicit
in [3], and indeed is optimal up to a factor of Á�(1)k�(k). Also, our algorithm has a better
dependence on Á compared with [11] when k = 2; however, we bound the cost only in terms
of n and not in terms of m.

Although a full survey is beyond the scope of this paper, there are natural generalisations
of (colourful and uncoloured) independence oracles [27], and edge estimation problems are
studied for other oracle models including neighbourhood access [28]. Other types of oracle
are also regularly applied to fine-grained complexity in other models, notably including cut
oracles [24, 2]. Perhaps surprisingly, we were unable to find any previous examples in the
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Figure 1 Left: If each IND-query of size x has cost x
–k , then up to k

O(k) logO(1)
n factors, we

show in Theorem 1 that ng(k,–k)+–k is the smallest possible IND-oracle cost to (1/2)-approximate
the number of edges. Plotted here in thick lines is the overhead – ‘æ g(k,–) in the exponent of n
for k œ {2, 3, 4, 5}, and in dashed lines is the larger overhead exponent – ‘æ (k ≠ –)/2 obtained from
a naive generalisation of the techniques of [3]. Right: If each cIND-query of size x has cost x–k , then
up to k

O(k)(logn)O(1)(log logn)O(k≠–k) factors, we show in Theorem 2 that n–k log4(k≠Á–kË)+18
n is

the smallest possible cIND-oracle cost to (1/2)-approximate the number of edges. Plotted in thick

lines is the overhead – ‘æ 4(k ≠ Á–Ë) + 18 in the exponent of logn for k = 12, and the dashed line

depicts the overhead – ‘æ 3k + 5 obtained by using the bound on the number of queries by [5]; our
bound is better if Á–kË Ø k/4 + �(1).

literature of unconditional oracle lower bounds relative to a general query cost function, and
so our definitions and methods are novel in that sense. Of course, many existing works prove
unconditional lower bounds in terms of query count [28], or consider algorithmic construction
of graph oracles with bounded query times [19], or provide oracle algorithms with fast running
times in addition to low query counts [26]. In our setting, however, a lower bound in terms
of query cost is absolutely necessary. Recall that for us, query cost is the running time of
an algorithm for the decision problem we are reducing to, and the algorithmic results of
Theorems 4 and 6 all rely on smaller queries running faster; thus to prove they are “best
possible” in any meaningful sense, we absolutely require the formal notion of query cost set
out in Section 2.

Outside the oracle setting, it was recently proved [21] that any decision algorithm built
around the representative family technique of [17] can be turned into an approximate counting
algorithm with substantially lower overheads in k than those of [13]. More recently, several
important decision problems in the fine-grained setting with k = 3 have been discovered to
be “equivalent” to their exact counting versions [10]. This work is not directly comparable
to ours, as they work in a substantially stronger setting and use a correspondingly weaker
notion of equivalence. Their equivalence is in the sense of equivalence of conjectures – for
example, they prove that if there is an O(n2≠Á)-time algorithm for 3-SUM, then there exists
0 < ÁÕ < Á such that there is an O(n2≠ÁÕ)-time algorithm for #3-SUM. We stress that for
exact counting problems as studied in [10], such equivalence results are genuinely deep and
surprising. However, for the approximate counting problems we study, analogous results are
typically quite easy to prove via the standard combination of sampling and branch-and-bound
approaches discussed above, and so we instead study the stronger notion of fine-grained
reductions from approximate counting to decision. Where no such reductions exist, we aim
to nail down the exact value of ÁÕ. (Recall also that there are uniform witness problems
whose decision versions are in FPT but whose exact counting versions are W[1]-hard [22], so
we cannot hope to extend our results to exact counting in this setting.)
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5 Proof techniques

5.1 Colourful upper bound
We first discuss the proof of the upper bound of Theorem 2, our cIND-oracle algorithm for edge
estimation using the colourful independence oracle of an n-vertex k-hypergraph G. In [13], it
is implicitly proved that a cIND-oracle algorithm that computes a “coarse approximation”
to e(G), which is accurate up to multiplicative error b, can be bootstrapped into a full
Á-approximation algorithm with overhead Á≠22O(k) logO(1) n · b2. (See Theorem 49 of the full
version for details.) It therefore su�ces to improve the coarse approximation algorithm of [13]
from kO(k) log�(k) n queries and kO(k) log�(k) n multiplicative error to kO(k) log�(k≠–k) n
query cost and kO(k) log�(k≠–k) n multiplicative error. Moreover, by a standard colour-
coding argument, it su�ces to make this improvement when G is k-partite with vertex classes
V1, . . . , Vk known to the algorithm.

Oversimplifying a little, and assuming n is a power of two, the algorithm of [13] works by
guessing a probability vector (Q1, . . . , Qk) œ {1, 1/2, 1/4, . . . , 1/n}k. It then deletes vertices
from V1, . . . , Vk independently at random to form sets X1, . . . ,Xk, so that for all v œ Vj we
have P(v œ Xj) = Qj . After doing so, in expectation, Q1Q2 . . . Qk proportion of the edges
of G remain in the induced k-partite subgraph G[X1, . . . ,Xk]. If e(G) π 1/(Q1 . . . Qk), it is
easy to show with a union bound that no edges are likely to remain. What is more surprising
is that there exist q1, . . . , qk with q1 . . . qk ¥ 1/e(G) such that if Q̨ = q̨, then at least one edge
is likely to remain in G[X1, . . . ,Xk]. Thus the algorithm of [13] iterates over all log�(k) n
possible values of Q̨, querying cIND(G) on X1, . . . ,Xk for each, and then outputs the least
value m such that e(G[X1, . . . ,Xk]) > 0 for some Q1, . . . , Qk with 1/(Q1 . . . Qk) = m.

Our algorithm improves on this idea as follows. First, [13] does not actually prove the
existence of the vector q̨ described above – it relies on a coupling between the di�erent
guesses of Q̨. We require not only the existence of q̨ but also a structural result which may
be of independent interest. For all I ™ [k] and all ’ œ (0, 1], we define an (I, ’)-core to be an
induced subgraph H = G[Y1, . . . , Yk] of G such that:
(i) H contains at least k≠O(k) proportion of the edges of G.
(ii) For all i œ I, the set Yi is very small, containing at most 2/’ vertices.
(iii) For all i /œ I, every vertex of Yi is contained in at most ’ proportion of edges in H.
As an example, the most extreme core is the rooted star : It consists of some vertices ri œ Yi

for all i œ I and all k-partite edges e with e ´ { ri : i œ I }. We prove in Lemma 56 of the
full version that, for all ’ œ (0, 1], there is some I ™ [k] such that G contains an (I, ’)-core H.

Suppose for the moment that we are given the value of I, but not Y1, . . . , Yk. By
property (i), it would then su�ce to approximate e(H) using kO(k) logO(k≠–k) n query cost.
If |I| Ø –k, then we can adapt the idea of the algorithm of [13], but taking Qj = 1 for all i /œ I
to use only logO(k≠–k) n queries in total; intuitively, this is possible due to property (ii), which
implies that this is the “correct” setting. We set this algorithm out as CoarseLargeCore in
Section 4.1.3 of the full version.

If instead |I| Æ –k, then we will exploit the fact that query cost decreases polynomially
with instance size by breaking H into smaller instances. For all i /œ I, we randomly delete
vertices from Vi with a carefully-chosen probability p. Property (iii), together with a
martingale bound (see Lemma 59 of the full version), guarantees that the number of edges
in the resulting hypergraph GÕ will be concentrated around its expectation of pke(G). If
we had access to Y1, . . . , Yk, we could then intersect Vi with Yi for all i œ I to obtain a
substantially smaller instance, whose edges we could count with cheap queries; we could
then divide the result by pk to obtain an estimate for e(G). Unfortunately we do not have
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access to Y1, . . . , Yk, but we can still break GÕ into smaller sub-hypergraphs by applying
colour-coding to the vertex sets Vi with i œ I, and as long as |I| Æ –k this still gives enough
of a saving in query cost to prove the result. We set this algorithm out as CoarseSmallCore
in Section 4.1.2 of the full version.

Now, we are not in fact given the value of I in the (I, ’)-core of G. But both
CoarseLargeCore and CoarseSmallCore fail gracefully if they are given an incorrect value of
I, returning an underestimate of e(G) rather than an overestimate. We can therefore simply
iterate over all 2k possible values of I, applying CoarseLargeCore or CoarseSmallCore as
appropriate, and return the maximum resulting estimate of e(G). This proves the result.

5.2 Colourful lower bound
We now discuss the proof of the lower bound of Theorem 2. Using the minimax principle, to
prove the bound for randomised algorithms, it is enough to give a pair of random graphs G1
and G2 with e(G2) ∫ e(G1) and prove that no deterministic algorithm A can distinguish
between G1 and G2 with constant probability and worst-case oracle cost as in the bound.
We base these random graphs on the main bottleneck in the algorithm described in the
previous section: the need to check all possible values of Q in a k-partite k-hypergraph with
an (I, ’)-core where |I| ¥ k ≠ –k.

We take G1 to be an Erd�s-Rényi k-partite k-hypergraph with edge density p :=
t≠(k≠Â–kÊ≠2)/2. We take the vertex classes V1, . . . , Vk of G1 to have equal size t, so that
t = n/k. We then define a random complete k-partite graph H as follows. We first define a
random vector Q̨ of probabilities, then take binomially random subsets X1, . . . ,Xk≠Â–kÊ≠2
of V1, . . . , Vk≠Â–kÊ≠2, with P(v œ Xj) = Qj for all v œ Vj . For j Ø k ≠ Â–kÊ ≠ 1, we take
Xj ™ Vj to contain a single uniformly random vertex. We then define H to be the complete
k-partite graph with vertex classes X1, . . . ,Xk, and form G2 = G1 fi H by adding the edges
of H to G1. We choose Q in such a way that Q1 · . . . · Qk≠Â–kÊ≠2 is guaranteed to be a
bit larger than ptÂ–kÊ+2, so that E(e(H)) ∫ E(e(G1)). Intuitively, this corresponds to the
situation of a randomly planted (I, ’)-core where I = {k ≠ Â–kÊ ≠ 1, . . . , k} – we will show
that the algorithm A needs to essentially guess the value of Q using expensive queries.

To show that a low-cost deterministic algorithm A cannot distinguish G1 from G2, suppose
for simplicity that A is non-adaptive, so that its future oracle queries cannot depend on the
oracle’s past responses. In this setting, it su�ces to bound the probability of a fixed query
S = (S1, . . . , Sk) distinguishing G1 from G2.

It is not hard to show that without loss of generality we can assume Si ™ Vi for all i œ [k].
If |Sj | π t for some j Ø k ≠ Â–kÊ ≠ 1, then with high probability Sj will not contain the
single “root” vertex of Xj , so H[S1, . . . , Sk] will contain no edges and S will not distinguish
G1 from G2. With some e�ort (a simple union bound does not su�ce), this idea allows us
to essentially restrict our attention to large, expensive queries S. However, if |S1| . . . |Sk| is
large, then with high probability G1[S1, . . . , Sk] will contain an edge, so again S will not
distinguish G1 from G2 = G1fiH. With some more e�ort, this allows us to essentially restrict
our attention to queries where for some possible value q̨ of Q̨ we have |Sj | ¥ 1/qj for all
j Æ k ≠ Â–Ê ≠ 2; we choose these possible values to be far enough apart that such a query is
only likely to distinguish G1 from G2 if Q̨ = q̨. There are roughly ((logn)/ log logn)k≠Â–kÊ≠2

possible values of Qj , so the result follows.
Of course, in our setting A may be adaptive, and this breaks the argument above. Since

the query A makes depends on the results of past queries, we cannot bound the probability
of a fixed query distinguishing G1 from G2 in isolation – we must condition on the results
of past queries. This is not a small technical point – it is equivalent to allowing A to be
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adaptive in the first place. The most damaging implication is that we could have a query
S = (S1, . . . , Sk) with |S1| . . . |Sk| very large but such that G1[S1, . . . , Sk] contains no edges,
because most of the potential edges have already been exposed as not existing in past queries.
We are able to deal with this while preserving the spirit of the argument above, by arguing
based on the number of unexposed edges rather than |S1| . . . |Sk|, but it requires significantly
more e�ort and a great deal of care.

5.3 Uncoloured upper bound
We now discuss the proof of the upper bound of Theorem 1. We adapt a classic framework
for approximate counting algorithms that originated in [30], and that was previously applied
to edge counting in [12]. We first observe that by using an algorithm from [23], we can
enumerate the edges in an n-vertex k-hypergraph G with 2O(k) logO(1) n · e(G) queries to an
independence oracle. Suppose we form an induced subgraph Gi of G by deleting vertices
independently at random, keeping each vertex with probability 2≠i; then in expectation,
we have e(Gi) = 2≠kie(G). If e(Gi) is small, and e(Gi) ¥ E(e(Gi)), then we can e�ciently
count the edges of Gi using [23] and then multiply by 2ki to obtain an estimate of e(G). We
can then simply iterate over all i from 0 to logn and return an estimate based on the first i
such that e(Gi) is small enough for [23] to return a value quickly.

Of course in general we do not have e(Gi) ¥ E(e(Gi))! One issue arises if, for some
r œ [k≠ 1], every edge of G contains a common size-r set R – a “root”. Then with probability
1 ≠ 2≠ri, at least one vertex in R will be deleted and Gi will contain no edges. We address
this issue in the simplest way possible: by taking more samples. Roughly speaking, suppose
we are given i, and that we already know (based on the failure of previous values of i to
return a result) that e(G) > nk≠r≠1 for some 0 Æ r Æ k ≠ 1. This implies that G cannot
have any “roots” of size greater than r. Rather than taking a single random subgraph Gi,
we take ti ¥ 2ri independent copies of Gi and sum their edge counts using [23]; thus if G
does contain a size-r root, we are likely to include it in the vertex set of at least one sample.
Writing �i for the sum of their edge counts, we then return �i/(ti2≠ik) if the enumeration
succeeds.

The exact expression we use for ti is more complicated than 2ri, due to the possibility of
multiple roots – see Section 3.2.2 of the full version for a more detailed discussion – but the
idea is the same. The proof that �i is concentrated around its expectation is an (admittedly
somewhat involved) application of Chebyshev’s inequality, in which the rooted “worst cases”
correspond to terms in the variance of �i. We consider it surprising and interesting that
such a conceptually simple approach yields an optimal upper bound, and indeed gives us a
strong hint as to how we should prove the lower bound of Theorem 1.

5.4 Uncoloured lower bound
We finally discuss the proof of the lower bound of Theorem 1. As in the colourful case, we
apply the minimax principle, so we wish to define random k-hypergraphs G1 and G2 with
e(G2) ∫ e(G1) which cannot be distinguished by a low-cost deterministic algorithm A.

Our construction of G1 and G2 is natural from the above discussion, and the special case
with k = 2 and –k = 0 is very similar to the construction used in [11]. We take G1 to be
an Erd�s-Rényi k-hypergraph with edge probability roughly k!/nr. We choose a random
collection of size-r sets in V (G1) to be “roots”, with a large constant number of roots present
in expectation, and we define a k-hypergraph H to include every possible edge containing at
least one of these roots as a subset. We then define G2 := G1 fi H.
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Similarly to the colourful lower bound, in the non-adaptive setting, any fixed query Si

with |Si| large is likely to contain an edge of G1, and any fixed query with |Si| small is
unlikely to contain a root and therefore unlikely to contain any edges of H; in either case,
the query does not distinguish G1 from G2. Also as in the colourful case, generalising this
argument from the non-adaptive setting to the adaptive setting requires a significant amount
of care and e�ort.

6 More general cost functions for upper bounds

In our previous theorem statements we focused on polynomial cost functions of the form
costk(S) = |S|–k for some –k œ [0, k], and these functions are easy to work with. However,
even subpolynomial improvements to an algorithm’s running time can be of interest and
by considering more general cost functions we can lift these improvements from decision
algorithms to approximate counting algorithms. To take a well-known example, in the
negative-weight triangle problem, we are given an n-vertex edge-weighted graph G and
asked to determine whether it contains a triangle of negative total weight; this problem is
equivalent to a set of other problems under subcubic reductions, including APSP [32]. The
naive �(n3)-time algorithm can be improved by a subpolynomial factor of e�(

Ô
logn) [31],

but as stated in the introduction our result would not lift this improvement from decision
to approximate counting – we would need to take k = 3 and cost(n) = n3/e�(

Ô
logn). (For

clarity, in this specific case the problem is equivalent to its colourful version and a fine-grained
reduction is already known [12, 13].)

While we cannot hope to say anything meaningful in the algorithmic setting with a fully
general cost function, our results do extend to all cost functions which might reasonably arise
as running times. A natural first attempt to formalise what we mean by “reasonable” would
be to consider cost functions of the form costk(n) = n–k+o(1) as n æ Œ. Unfortunately, such
cost functions can still have a pathological property which makes a fine-grained reduction
almost impossible: the o(1) term might vary wildly between di�erent values of n. For
example, if we take costk(n) = n–k+sin(fin/2)/

Ô
log(n), then we have costk(n) = n–k+o(1), but

costk(2n)/costk(n) could be Ê(polylog(n)), �(1) or o(1/polylog(n)) depending on whether
n is congruent to 3, 2 or 1 modulo 4 (respectively). It is even possible to construct a similar
example which is monotonically increasing. We will need to be able to approximate f(Ax)
by A–kf(x) and so we require something slightly stronger, borrowing a standard notion from
the probability literature for distributions which are “almost power laws”.

I Definition 7. A function f : (0,Œ) æ R is regularly-varying if, for all fixed A > 0,

lim
xæŒ

|f(Ax)/f(x)| œ (0,Œ).

We say f is slowly-varying if this limit is always 1.

Observe that any cost function likely to arise as a running time is regularly-varying.
While Definition 7 may look overly general for our purposes, in fact it gives us exactly what
we need – regularly-varying functions are all of the form f(x) = x–+o(1) as x æ Œ, are
eventually increasing whenever – > 0, and satisfy very strict bounds on f(Ax)/f(x) as
x æ Œ as detailed in the following lemma. (These properties are all well-known, see e.g.
Feller [15].) With these properties in hand, the extra generality of Definition 7 adds very
little overhead to our existing arguments.



H. Dell, J. Lapinskas, and K. Meeks 54:15

I Lemma 8. Let f : (0,Œ) æ R be a function. Then f is regularly-varying if and only if
there exists a unique – œ R, called the index of f , and a unique slowly-varying function
‡ : (0,Œ) æ R, called the slowly-varying component of f , such that f(x) = x–‡(x). Moreover,
any regularly-varying function f and slowly-varying function ‡ satisfy the following properties.
(i) ‡(x) = xo(1) as x æ Œ.
(ii) For all fixed A > 0, limxæŒ(‡(Ax)/‡(x)) = 1. Moreover, for all closed intervals I ™ R,

this limit is uniform over all A œ I.
(iii) For all ” > 0, there exists x0 such that for all x Ø x0 and all Ax Ø 1,

A≠”
x Æ ‡(Axx)/‡(x) Æ A”

x.

(iv) If f has positive index, then there exists x0 such that f is strictly increasing on [x0,Œ).

Our cost function will be a function of both the parameter k and the number n of vertices
in the instance, and we will only require regular variation in n. We are now ready to state
the technical requirements on our cost functions.

I Definition 9. For each k Ø 2, let costk : (0,Œ) æ (0,Œ). We say that cost = {costk : k Ø

2} is a regularly-varying parameterised cost function if costk(x) Æ xk for all k and x, and
there exists a slowly-varying function ‡ : (0,Œ) æ (0,Œ) and a map k ‘æ –k satisfying the
following properties:
(i) for all k and x, costk(x) = x–k‡(x);
(ii) for all k, –k œ [0, k];
(iii) for all k and x, costk(x) Æ xk;
(iv) either lim infkæŒ –k > 0 or there exists x0 such that for all k, costk is non-decreasing

on (x0,Œ);
(v) there is an algorithm to compute Â–kÊ in time O(k9k).

We say that k is the parameter of cost, – is the index of cost, and ‡ is the slowly-varying
component of cost.

Point (i) is the main restriction, and the one we have been discussing until now. Points
(ii) and (iii) have already been discussed in the introduction. In the colourful case we will
need to compute Â–kÊ, so point (v) avoids an additive term in the running time; the precise
choice of k9k is purely for technical convenience. Finally, the purpose of point (iv) is to
guarantee monotonicity (together with point (i) and Lemma 8(iv)). Requiring point (iv) is
unlikely to a�ect applications of our results – typically such applications would satisfy either
–k = 0 (for tracking total query count) or –k Ø 1 (for tracking total running time, where
query cost is the running time of a decision algorithm which needs to read its entire input).

I Theorem 10. Theorems 1 and 2 remain valid when the cost function costk(x) = x–k is
replaced by an arbitrary regularly-varying parameterised cost function. Likewise, Theorems 4
and 6 remain valid when the the running time Õ(n–k) of the decision algorithm is replaced
by an arbitrary regularly-varying parameterised cost function.
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Abstract

Temporal graphs are dynamic graphs where the edge set can change in each time step, while the
vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a
connected graph, called connected temporal graphs, has been widely studied. In this paper, we
extend the concept of graph automorphisms from static graphs to temporal graphs and show for the
first time that symmetries enable faster exploration: We prove that a connected temporal graph
with n vertices and orbit number r (i.e., r is the number of automorphism orbits) can be explored
in O(rn1+‘) time steps, for any fixed ‘ > 0. For r = O(nc) for constant c < 1, this is a significant
improvement over the known tight worst-case bound of �(n2) time steps for arbitrary connected
temporal graphs. We also give two lower bounds for temporal exploration, showing that �(n logn)
time steps are required for some inputs with r = O(1) and that �(rn) time steps are required for
some inputs for any r with 1 Æ r Æ n.

Moreover, we show that the techniques we develop for fast exploration can be used to derive the
following result for rendezvous: Two agents with di�erent programs and without communication
ability are placed by an adversary at arbitrary vertices and given full information about the connected
temporal graph, except that they do not have consistent vertex labels. Then the two agents can
meet at a common vertex after O(n1+‘) time steps, for any constant ‘ > 0. For some connected
temporal graphs with the orbit number being a constant, we also present a complementary lower
bound of �(n logn) time steps.
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1 Introduction

For many decades, graph theory has been a tool used to model and study many real world
problems and phenomena [15]. A usual assumption for many of these problems is that
the graphs have a fixed structure. However, there are quite a number of cases where the
structure of a system changes over time. For example, consider the problem of routing in
transportation networks (roads, rails) where specific connections can become unavailable
(due to a disaster) or they are active during specific times (due to safety). Such scenarios can
be modeled using temporal graphs, a sequence of graphs over the same vertex set where the
edges possibly change in each time step. The temporal graph setting has received significant
interest from the research community in the recent past as seen in recent surveys [19, 48].

In this paper, we study two problems on temporal graphs. The first is the temporal
exploration problem (texp), which has been studied, e.g., by Michail and Spirakis [49, 50]
and by Ilcinkas et al. [37]. It requires an agent to explore all vertices of the temporal graph
as quickly as possible. The second is the temporal rendezvous problem (trp), which we
formulate for the first time in this paper. It requires two heterogeneous agents (in terms of
the programs they run) to rendezvous on a temporal graph when they cannot communicate
with one another. For both problems, we assume that each agent has complete knowledge of
the temporal graph in advance (a common assumption [3, 14, 27, 28, 30, 31, 37, 49, 50, 62]).
However, in the case of trp the agents may have di�erent names for the same vertices, i.e.,
the local labels of the vertices may be di�erent.

The problem of exploration has been well studied in the static setting since it was
introduced in 1951 by Shannon [59]. It has also been intensively studied in the temporal
graph setting since 2014 (see all references from the previous paragraph). On an application-
oriented note, the problem captures the setting where a person is trying to visit various
parts of a city using public transportation. For example, train schedules involve multiple
train stations (vertices) with trains running between them at di�erent times (i.e., repeatedly
changing edges). Thus, planning a visit to multiple destinations over a given day using
railways is an example of solving texp.

The rendezvous problem can be broadly categorized into two types: symmetric and
asymmetric rendezvous. The version where agents have the same strategy (symmetric
rendezvous) was introduced by Alpern [10]. The version where agents can have distinct
strategies (asymmetric rendezvous) was introduced by Alpern [7] and is the focus of research
in this paper. trp is a natural extension of the asymmetric rendezvous problem to the
dynamic setting. As a real world example, consider a pair of tourists who want to explore a
city together and have to agree on a strategy to meet up in case they are separated and their
cell phones die. In this scenario, they may use public transportation (dynamically changing
network) to meet and agree in advance to use di�erent strategies that guarantee that they
meet quickly.

In this paper, we present results that extend the literature in two ways. Firstly, we
formalize the trp problem in the setting where agents have complete knowledge of the
temporal graph a priori and develop good upper and lower bounds for it. Secondly, we utilize
interesting structural properties (namely automorphisms of a graph and associated orbits
of vertices) in order to analyze bounds on the number of time steps required by temporal
walks that solve certain problems. In particular, we develop upper and lower bounds for
both texp and trp that leverage the aforementioned graph properties. To the best of our
knowledge, this is the first work that takes advantage of these graph properties to study
problems in temporal graphs.
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1.1 Our Contributions

We present results for two problems: first, the temporal exploration problem (texp)
which, for a given temporal graph G, asks for a temporal walk that visits all vertices of G,
and secondly, the temporal rendezvous problem (trp), which considers two agents that
try to meet in the given temporal graph, meaning they must be stationed at the same vertex
in the same time step.

One of our primary contributions is formalizing the problem of trp in Section 2, and
in doing so extending the problem of asymmetric rendezvous to the temporal graph setting
where agents have complete knowledge of the temporal graph in advance. Another significant
contribution is that we show how to leverage the use of a structural graph property, namely
the automorphism group of a temporal graph and the associated notion of orbits, to bound
the number of time steps required by algorithms we devise for these problems. To the best
of our knowledge, this work is the first instance of leveraging such properties to study any
problem on temporal graphs apart from a practical implementation of a generator for listing
all non-isosomorphic simple temporal graphs [18]. Intuitively, an automorphism of a graph is
a mapping from the set of vertices of the graph to the same set of vertices that preserves
the neighborhood relation between the vertices. The set of automorphisms of a temporal
graph consists of the intersection of the sets of automorphisms of the graph at each time
step. The set of automorphisms of the temporal graph, along with function composition
as group operation, forms the automorphism group of the temporal graph. An orbit of the
automorphism group of a temporal graph is a maximal set of vertices such that each vertex
can be mapped to any other vertex in the set via an automorphism of the group. Intuitively,
the vertices in an orbit look indistinguishable to an agent that has full information about
the temporal graph but without meaningful vertex labels. As the agents are able to compute
a consistent numbering of the orbits (Lemma 13), they can agree to meet in some specific
orbit, but not at a specific vertex. Therefore, temporal graphs where all orbits are large
(or that even have a single orbit containing all vertices) appear to be the most challenging
graphs for solving trp. Our result providing fast exploration schedules in temporal graphs
with few orbits is therefore a crucial ingredient for enabling our solution to trp to handle all
possible temporal graphs (including those with a single orbit).

We give precise definitions and present further preliminaries in Section 2. Then, we
introduce some useful utilities related to automorphisms in Section 3. These will be used in
later sections, where we present the following results.

Upper bounds. In Section 4, we develop a deterministic algorithm to solve texp in
O(rn1+‘) time steps for any fixed ‘ > 0 (see Corollary 12), where n is the number
of vertices in the temporal graph and r is the number of orbits of the automorphism
group of the temporal graph. Note that r can range in value from 1 to n. Thus, for
r = O(nc) for constant c < 1, this is a significant improvement over the known tight
worst-case bound of �(n2) time steps for arbitrary connected temporal graphs [27]. In
Section 5, we leverage this algorithm for texp to develop a deterministic solution for trp
using O(n1+‘) time steps for any fixed ‘ > 0 (see Theorem 14). Our focus is on bound-
ing the time steps of the temporal walks required to solve texp and trp, and not on
optimizing the running time of the respective algorithms to compute such walks.

Lower bounds. We complement our algorithms with lower bounds for both texp and
trp in Section 6. In particular, we design an instance of trp such that any solution for
it requires �(n logn) time steps (see Theorem 16). We then show how this translates to a
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lower bound of �(n logn) time steps for some instances of texp where the temporal graph
at hand has an orbit number r = O(1) (see Corollary 17). By revisiting the lower bound
of [27] for texp, which focused on arbitrary temporal graphs, and studying it through the
lens of automorphisms and orbits, we can obtain a more fine-grained lower bound of �(rn)
time steps (see Lemma 15) for some temporal graphs with orbit number 1 Æ r Æ n. Notice
that the multiplicative gap between our upper and lower bounds for both problems is only a
factor of O(n‘).

Relevance of the orbit number. It is well known in graph theory that almost all (static)
graphs are rigid [12], meaning that the automorphism group contains only the trivial identity
function. This is in contrast to observations in practice. Many real-world graphs have
non-trivial automorphisms. A recent analysis of real-world graphs in the popular database
https://networkrepository.com showed that over 70% of the analyzed graphs had non-
trivial automorphisms [12]. One may reasonably expect that real-world temporal graphs have
similar properties. Symmetries are also abundant in graphs arising in chemistry [11], which
have been studied in temporal settings as well [57]. We believe that these observations provide
a strong motivation for studying temporal graph problems for temporal graphs with fewer
than n orbits, e.g., with algorithms parameterized via the number of orbits. Furthermore,
we emphasize that our results for trp hold for all temporal graphs, independent of the orbit
number parameter, even though they utilize techniques we develop for texp parameterized
by the orbit number. Roughly speaking, for orbit number r, the penalty factor r in the
number of time steps to solve texp is saved when solving trp by focusing only on a smallest
orbit of size at most n/r.

1.2 Technical Overview and Challenges

Firstly, we give an intuitive overview of our upper bound results. The concepts used in this
section are more precisely defined in the next sections.

For texp, we first consider the problem of visiting all the vertices of one orbit S. One
key insight is that, if we have a temporal walk W that visits k vertices of S, we can use the
automorphisms of the temporal graph to transform W into other walks that visit di�erent
sets of k vertices of S (Lemma 3). Therefore, even if the k vertices visited by W have already
been explored earlier, we can transform W into a temporal walk W Õ that visits a “good”
number of previously unexplored vertices of S. The number of previously unexplored vertices
of S that W Õ is guaranteed to visit increases with the number of possible start vertices in
S that we allow for W Õ, but the larger that set X of possible start vertices is, the longer it
may take the agent to reach the best start vertex in that set. A challenge is to analyze this
tradeo�. By carefully relating the size of X to the guaranteed number of unexplored vertices
that a walk W Õ starting at a vertex in X can visit (Corollary 4), we manage to balance the
number of time steps needed to move to the start vertex of W Õ and the number of previously
unexplored vertices that W Õ visits. To show that vertices of X can be reached quickly, we
study the structure of edges that connect vertices in di�erent orbits (Lemma 5) and use it to
analyze reachability between orbits (Lemmas 6 and 7).

We then employ a recursive construction: We recursively construct a temporal walk W1

that visits k vertices of S, concatenate W1 with a temporal walk that moves quickly from
the endpoint of W1 to a good start vertex in S for what follows, and then use a second
recursively constructed walk (transformed via an automorphism to a “good” temporal walk
W2 starting in a vertex of S) to visit “nearly” k further vertices of S. A careful analysis then
shows that in this way we can visit a constant fraction of the vertices of S in O(r|S|1+‘) steps

https://networkrepository.com
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(Lemma 9 and Corollary 10). We then show that the concatenation of O(log |S|) such walks
(each one again transformed via an automorphism to maximize the number of newly explored
vertices) su�ces to visit all vertices of S in O(r|S|1+‘ + n log |S|) time steps (Theorem 11),
which can be bounded by O(rn1+‘Õ) time steps). By visiting the r orbits one after another,
we can finally show that the whole temporal graph can be explored in O(rn1+‘Õ) time steps
(Corollary 12).

For trp, a simple and fast solution one first thinks of is to have the agents simply meet
at a vertex with a specific label. However, this is not feasible in the model we consider. In
particular, we assume that the agents cannot communicate and, while both agents have
complete information about the temporal graph, they do not have access to consistent vertex
labels. As such, the agents are unable to agree upon the same vertex based on the vertex
label. We rely, instead, on structural graph properties and let the agents meet at a vertex in
a smallest orbit: One agent moves to any vertex in that orbit, and the other searches all
vertices in that orbit. The first challenge is for the agents to independently identify the same
orbit in which to meet. We show that this can be done by letting each agent enumerate
all temporal graphs, together with colorings of their orbits, until it encounters for the first
time a temporal graph that is isomorphic to the input graph in which trp is to be solved.
In this way both agents obtain the same colored temporal graph and can independently
select, among all orbits of smallest size, the one with smallest color (Lemma 13). Then
one agent moves to a vertex in that orbit S, while the other searches all vertices of S. The
challenge here is to deal with orbits that are large, because previously known techniques
would require �(n2) time steps to explore an orbit of size �(n). Fortunately, this is where
our above-mentioned results for exploration of (orbits of) temporal graphs come to the rescue:
As |S| Æ n/r, we have O(r|S|1+‘ + n log |S|) = O(n1+‘Õ), and hence S can be explored (and
trp solved) in O(n1+‘Õ) time steps (Theorem 14).

Now we turn to our lower bounds. For texp, we first observe that the existing lower
bound construction that shows that �(n2) time steps are necessary for exploration on some
temporal graphs uses temporal graphs with n

2
+1 orbits. By slightly varying the construction,

we can show for any r in the range from 1 to n that there are temporal graphs with r orbits
that require �(rn) time steps for exploration (Lemma 15). Our main lower bound result is
the lower bound of �(n logn) for trp in temporal graphs with a single orbit (Theorem 16).
The temporal graph is a cycle on n = 2m ≠ 1 vertices in every step, and the edges change
every Ân/16Ê time steps. Each period of Ân/16Ê time steps in which the edges do not change
is called a phase. We number the vertices of the cycle from 0 to n ≠ 1 and consider the
binary representation of the vertex labels. In phase 1, each vertex j is adjacent to j + 1 and
j ≠ 1, while in any phase i > 1, it is adjacent to j + 22i and j ≠ 22i (with all computations
done modulo n). As all vertices are indistinguishable to the agents, we can force each
agent to make the same movements no matter where we place it initially. By fixing the
five highest-order bits of the agents’ start positions in a certain way, we can ensure that
the agents do not meet in the first phase, no matter how the remaining bits of their start
positions are chosen. Depending on the positions where the agents end up at the end of
each phase (relative to their start position in that phase), we fix a certain number of bits
of the binary representations of the start positions of the agents: After the first phase, we
fix the lowest four bits, and after each further phase, we fix the next-higher two bits. We
can show that this is su�cient to ensure that the agents start the next phase at vertices
that are su�ciently far from each other in the cycle of that phase. This process can be
repeated �(logn) times, showing that it takes �(n logn) time steps for the agents to meet.
This lower bound for trp implies also that exploration of the constructed temporal graph
requires �(n logn) steps (Corollary 17).
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1.3 Related Work

There is a divide in the research on temporal graphs with respect to the amount of knowledge
known in advance by the agents on the graph. When complete knowledge of the temporal
graph is known in advance to the agents, as is assumed in this paper, the setting is sometimes
referred to as the post-mortem setting (see, e.g., Santoro [58]). Since we consider scenarios
where agents plan temporal walks using advance knowledge of future time steps, we refer to
the post-mortem setting as the clairvoyant setting in the remainder of this section.

The clairvoyant setting is in contrast to the live setting where agents only have partial
knowledge of the temporal graph, and the solutions to problems in these di�erent settings are
of a di�erent nature. The reader can refer to the survey by Di Luna [22] for more information
on problems and solutions in the live setting. We restrict the rest of this related work section
to work in the clairvoyant setting.

Exploration. We trace the progress of solving instances of texp, first by identifying which
assumptions are required for the problem to even be solvable, and then by identifying
properties that were leveraged to give faster and faster solutions.

Michail and Spirakis [49, 50] showed that it is NP-complete to decide whether a given
temporal graph with a given lifetime, i.e., the number of time steps it exists, is explorable
when no assumptions are made on the input graph. This holds even if the graph is connected
in every time step, termed connected (and sometimes called always-connected in the literature).
Even when a restriction is placed on the underlying graph, i.e., the union of the graphs at
each time step, such that the underlying graph has pathwidth at most 2, Bodlaender and
van der Zanden [14] showed that texp is NP-complete.

However, the exploration is always possible when the lifetime of the graph is su�ciently
large. In particular, Michail and Spirakis [50] showed that a connected graph with n vertices
may be explored in O(n2) time steps. For the rest of the related work on texp, we focus on
the case of connected temporal graphs with a su�ciently large lifetime. Erlebach et al. [27]
showed that exploration on arbitrary temporal graphs takes �(n2) time steps. By restricting
their study of temporal graphs to those where the underlying graph belongs to a special
graph class, however, they showed that texp can be solved in o(n2) time steps in several such
cases. In particular, when the underlying graph is planar, has bounded treewidth k, or is a
2◊n grid, they showed that texp can be solved in O(n1.8 logn) time steps, O(n1.5k1.5 logn)
time steps, and O(n log3 n) time steps, respectively. They also showed a lower bound of
�(n logn) when the underlying graph is a planar graph of degree at most 4.

The study of texp when the temporal graph is restricted continued in several papers.
Taghian Alamouti [62] showed that texp can be solved in O(k2(k!)(2e)kn) time steps when
the underlying graph is a cycle with k chords. Adamson et al. [3] improved this to O(kn)
time steps. They also improved the upper bounds on texp for underlying graphs that have
bounded treewidth k or are planar to O(kn1.5 logn) and O(n1.75 logn), respectively. In
addition, they strengthened the lower bound for underlying planar graphs by showing that
even if the degree is at most 3, the lower bound is �(n logn). Erlebach et al. [28] further
improved work on bounded degree underlying graphs by showing that texp can be solved
in O(n1.75) time steps for such temporal graphs. Ilcinkas et al. [37] showed that when the
underlying graph is a cactus, the exploration time is 2�(

Ô
logn)n time steps.

Other variants of texp have been studied where the problem is slightly di�erent, or
the edges of the temporal graph vary in some particular way (e.g., periodically, T -interval
connected, k-edge deficient), or multiple agents explore the graph [1, 2, 5, 17, 30, 31, 38].
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Rendezvous. Symmetric rendezvous [10] and asymmetric rendezvous [7] have received
much interest over the years, resulting in numerous surveys [8, 9, 32, 40, 41, 54, 55] being
written on the problems covering di�erent settings. In this work, we are the first to extend
asymmetric rendezvous to temporal graphs in the clairvoyant setting. Note that there has
been previous work [16, 21, 23, 51, 53, 60, 61] that has studied multi-agent rendezvous (also
called gathering) in a dynamic graph setting, but that was in the live setting. For an overview
of rendezvous in static graphs we refer the reader to [9, 41]. Rendezvous has been studied in
deterministic settings [13, 56] and asynchronous settings [24, 43], and has been shown to be
solvable in logarithmic space [20].

Other Related Work. Other problems have also been studied in the temporal graph setting,
e.g., matchings [46], separators [34, 63], vertex covers [6, 36], containments of epidemics [26],
Eulerian tours [17, 44], graph coloring [45, 47], network flow [4], treewidth [33] and cops and
robbers [29, 52]. See the survey by Michail [48] for more information.

2 Preliminaries

Basic terminology. We use standard graph terminology. All static graphs are assumed to
be simple and undirected. We write [x] = {1, . . . , x} for any integer x.

A temporal graph G = (G1, . . . , G¸) is a sequence of static graphs, all with the same vertex
set V . For a temporal graph G, the graph G = (V,

t
tœ[¸] E(Gt)) is the underlying graph of

G. We call G connected if each Gt for t œ [¸] is connected. We use n to refer to the number
of vertices of the (temporal) graph under consideration. A temporal walk W is a walk in
a temporal graph G that is time respecting, i.e., traverses edges in strictly increasing time
steps. For a temporal walk W starting at time step t we write W = (u1, u2, u3, . . .) to mean
the temporal walk starts at vertex u1 in time step t, is at vertex u2 at the beginning of time
step t+ 1, and so forth. Note that subsequent vertices in the temporal walk can be the same
vertex, i.e., we can wait for an arbitrary number of time steps at a vertex. We say that a
temporal walk spans x time steps if it starts at some time step t and ends at some time step
tÕ with tÕ ≠ t = x. We assume that the lifetime ¸ is large enough such that a desired temporal
walk can be constructed. For all our results it is enough to assume ¸ Ø n2, as n2 time steps
su�ce for texp [27] and therefore also for trp. For any function f : X æ X for a universe
X we write f i(x) when we mean applying the function i-times iteratively for any x œ X
and integer i, e.g., f2(x) = f(f(x)). We use ¶ to denote function composition, i.e., for two
functions f : X æ X and g : X æ X, we denote with f ¶ g the function that maps x œ X to
f(g(x)).

Isomorphisms and automorphisms. Two static graphs G and H are isomorphic exactly if a
bijection ◊ : V (G) æ V (H) (called an isomorphism) exists with the following property: two
vertices u, v are adjacent in G exactly if ◊(u) is adjacent to ◊(v) in H. We write G ≥= H if G
is isomorphic to H. An automorphism is an isomorphism from a graph G to itself. The set
of all automorphisms of a graph G forms a group Aut(G), with ¶ as group operation. Refer
to [35, 39, 42] for further reading on the topic of isomorphisms and automorphisms of graphs.

For a temporal graph G with lifetime ¸ we denote with Aut(G) the set of all functions
‡ such that ‡ is an automorphism of each graph Gt at every time step t œ [¸] (and hence
also an automorphism of the underlying graph G). Aut(G) with ¶ as group operation is the
automorphism group of the temporal graph G. We remark that the automorphism group of
the temporal graph G is the intersection of the automorphism groups of the graphs Gt for
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t œ [¸] and that the automorphism group of G can be viewed as the automorphism group of
the underlying graph G of G with edge labels such that each edge is labeled with the set of
time steps in which it occurs.

The orbit of a vertex u in a temporal graph G with respect to Aut(G) is the set V Õ
™ V

of all vertices that u can be mapped to by automorphisms in Aut(G). Note that, if V Õ is the
orbit of u, then the orbit of every vertex in V Õ is also V Õ: For any two vertices v, vÕ in V Õ,
the automorphisms ‡ and ‡Õ that map u to v and vÕ, respectively, can be composed to the
automorphism ‡Õ

¶ ‡≠1 that maps v to vÕ. Furthermore, there cannot be an automorphism fl
that maps v to a vertex outside V Õ because fl ¶ ‡ would then be an automorphism that maps
u to a vertex outside V Õ; a contradiction to the definition of the orbit V Õ of u. We denote by
G/Aut(G) the set of all orbits of the vertices of G. Note that this set forms a partition of V .
We call |G/Aut(G)| the orbit number of G. We call an edge {u, v} œ E(Gt) for t œ [¸] an orbit
boundary edge if u and v are in di�erent orbits, and inner orbit edge otherwise. Two orbits
connected by an orbit boundary edge in time step t are called adjacent (in time step t).

We use automorphisms to transform temporal walks, as outlined in the following. For a
temporal graph G with lifetime ¸ and any automorphism ‡ œ Aut(G) and any temporal walk
W = (ut, ut+1, . . . , utÕ) that starts at time t and ends at time tÕ with t, tÕ œ [¸], we say we
apply ‡ to W when we construct the temporal walk W Õ = (‡(ut),‡(ut+1), . . . ,‡(utÕ)).

Temporal Exploration Problem. The temporal exploration problem (texp) is defined
for a given temporal graph G with vertex set V and lifetime ¸ and asks for the existence of a
temporal walk W such that W starts at a given vertex u œ V and visits all vertices of V .
In connected temporal graphs with su�ciently large lifetime such a walk always exists, and
this is the setting we consider throughout this work. As such, the question of existence is no
longer of interest, and instead we focus on the time span of temporal walks that start at u at
time step 1 and visit all (or a certain set of) vertices.

The following is an adaptation of a result of Erlebach et al. [27], slightly modified to fit
our notation and use case. Intuitively speaking, the lemma states that with every extra time
step at least one additional vertex becomes reachable. Thus, starting from any vertex at any
time step, we can reach any particular other vertex in n ≠ 1 steps. Consequently, there is
always a temporal walk that visits all vertices of G within n2 time steps.

I Lemma 1 (Reachability, [27]). Let G be a connected temporal graph with vertex set V and
lifetime ¸. Denote by Rt,tÕ(u) the set of vertices reachable by some temporal walk starting at
vertex u œ V at time step t œ [¸] and ending at time step tÕ œ [¸] with tÕ Ø t. If Rt,tÕ(u) ”= V
and tÕ < ¸, then Rt,tÕ(u) ( Rt,tÕ+1(u).

Temporal Rendezvous Problem. We consider a problem we call temporal rendezvous
problem (trp) defined as follows. Let G be a temporal graph with vertex set V and lifetime
¸. Two agents a1, a2 are placed at arbitrary vertices u1, u2 œ V (respectively) in G1 of G.
They compute respective temporal walks W1 and W2 such that the agents meet at the same
vertex in the same time step at least once during these walks. The agents have the full
information of G available, but they cannot communicate with each other. Furthermore, they
do not know the location of the other agent, and the vertex labels that one agent sees can be
arbitrarily di�erent from the vertex labels that the other agent sees. The lack of consistent
labels prohibits trivial solutions such as the two agents agreeing to meet at a vertex with a
specific label, e.g., the lowest labeled vertex. We call such agents label-oblivious. A solution
to trp is a pair of possibly di�erent programs p1 and p2 for agents a1 and a2, respectively,
that the agents use to compute and execute their temporal walks. The respective start
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positions u1, u2 œ V of the agents (and the vertex labels that each agent sees) are chosen
by an all-knowing adversary once a solution (p1, p2) is provided. As we assume that ¸ Ø n2,
there is always a solution that ensures that the agents meet: Agent a1 simply waits at its
start vertex, while agent a2 explores the whole graph and visits every vertex, which is always
possible within n2 time steps as mentioned above. Therefore, we are interested in solutions
that enable the agents to meet as early as possible and aim to obtain worst-case bounds
significantly better than n2 on the number of steps that are required for trp.

3 Automorphism Utilities

We now introduce some helpful utilities regarding automorphisms that we use in the following
sections. Intuitively, we build up to a framework that allows us to transform a temporal
walk W into a temporal walk W Õ that visits more vertices that are desirable (with respect
to the exploration goal) than W does, by applying a well-chosen automorphism to W . The
following is needed to give specific guarantees that the transformed temporal walks must
uphold. Throughout this section we use and extend techniques of the field of algebraic graph
theory [35, 39, 42], adapted to our specific use cases.

For this, we begin with some definitions. Let G be a temporal graph with vertex set V
and let S œ G/Aut(G) be any orbit. For any X ™ S and any u œ S denote with Aut(G)[u,X]
the set of all automorphisms ‡ œ Aut(G) that map u to any vertex v œ X. We use the
shorthand Aut(G)[u, x] for Aut(G)[u, {x}]. We can then show the following.

I Lemma 2. Let S œ G/Aut(G) be any orbit. Then |Aut(G)[u, x1]| = |Aut(G)[u, x2]| for any
u, x1, x2 œ S.

Let S œ G/Aut(G). We now consider a special 2-dimensional automorphism matrix
Mu,Y,X for any u œ S, Y ™ S, and X ™ S. It has columns C1, C2, . . . , C|Y |+1, and a row for
each ‡ œ Aut(G)[u,X]. We refer to the row for some ‡ simply as row ‡. The entry in row ‡
of column C1 is ‡(u). Each vertex y œ Y is assigned a unique column among C2, . . . C|Y |+1

in an arbitrary way. The entry in row ‡ of the column to which y is assigned is ‡(y). We
now give some intuition about the application of an automorphism matrix. Assume that we
are constructing a temporal walk W that has already visited a set T ( S and we want to
extend it to visit the vertices of S \T (with S an arbitrary orbit). To facilitate this extension
we first construct a temporal walk W Õ that visits at least a certain number of vertices of S,
but that is not guaranteed to visit vertices of S \ T . This walk W Õ cannot be used to extend
W in a meaningful way. Instead, using the automorphism matrix we show that there always
exists an automorphism ‡ œ Aut(G) that we can apply to W Õ to obtain a temporal walk W‡

that visits a guaranteed fraction of vertices of S \ T . We can then use W‡ as our desired
extension. Figure 2 visualizes this concept. In later sections we will show how repeated
application of such extensions leads to temporal walks that visit all vertices of an orbit S.
Note that the value p in the following lemma represents the fraction of vertices that we
still need to visit compared to all vertices in the orbit under consideration. While T is a
set of already visited vertices in the application sketched above, the following lemma and
Corollary 4 are formulated more generally for arbitrary sets T ™ S.

I Lemma 3. Let G be a connected temporal graph with lifetime ¸ and let S œ G/Aut(G) be
any orbit. Let T ™ S with p = (|S| ≠ |T |)/|S| and W = (u1, u2, . . . , ux) a temporal walk
starting at time step t and ending at tÕ with t, tÕ œ [¸] and u1 œ S such that W visits k vertices
of S. Then there exists a temporal walk W Õ starting at a vertex uÕ

œ S in time step t and
ending at time step tÕ that visits at least pk vertices of S \ T .
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When restricting the possible start vertices where the temporal walk W Õ of Lemma 3 is
allowed to start, we obtain the following corollary. In detail, we are given a set X µ S such
that the walk W Õ is only allowed to begin at a vertex uÕ

œ X. In Lemma 3, W Õ was allowed
to start at any vertex of S. Our use case for the following corollary is that X is a set of
vertices that can be reached faster, making them better candidates for start vertices when
extending walks in the way sketched above Lemma 3.

I Corollary 4. Let G be a connected temporal graph with lifetime ¸ and let S œ G/Aut(G) be
any orbit. Let T ( S and W a temporal walk starting at time step t and ending at tÕ with
t, tÕ œ [¸] such that the first vertex of W is in S and such that W visits k di�erent vertices
of S. For any X ™ S with |X| > |T | there exists a temporal walk W Õ starting at a vertex
uÕ

œ X at time step t and ending at time step tÕ that visits at least (c ≠ 1)/c · k vertices of
S \ T , with c = |X|/|T |.

4 Upper Bounds for TEXP

A common approach to build a temporal walk for texp is to use Lemma 1, i.e., to construct
a (large) set X of reachable vertices so that an unseen vertex v of the current walk is in the
set X and the walk can then be extended by v. We are interested in exploring the vertices of
one orbit quickly, as this will be useful for trp in Section 5 where the agents try to meet in
one orbit, and for texp because we can explore a temporal graph orbit by orbit. Therefore,
we want to find walks visiting many vertices of one orbit. Our approach is similar to the
common approach mentioned above, and so we want to construct a (large) set X of reachable
vertices, but now with the property that X is a subset of the orbit under consideration. To
construct X, we show in Lemma 6 a kind of “reachability between orbits.”

To describe this in more detail, we need the concept of so-called lanes. Intuitively, lanes
are defined for a set of vertices that are all contained in some single orbit, and give us
knowledge about the vertices that are quickly reachable while only using orbit boundary
edges in each time step. Using this concept of lanes we derive a first result for exploring a
single large orbit with a temporal walk that spans O((n5/3+rn) logn) time steps (Theorem 8).
In the proof of that lemma we build the final temporal walk iteratively, by concatenating
multiple smaller temporal walks. To make sure each new such small temporal walk visits a
desired number of vertices not yet visited, we use Lemma 3, which – informally – lets us
transform temporal walks that visit too many previously visited vertices into temporal walks
that visit many previously unvisited vertices.

We follow this up with a more refined technique that considers the size of the orbit S one
wants to explore as a parameter, but also uses the concept of lanes and walk transformations
sketched above. It gives us an upper bound of O(|S|1+‘ + n log |S|), for any constant ‘ > 0.
This result is formulated in Theorem 11. Finally, we use a repeated application of Theorem 11
to achieve an upper bound for TEXP of O(rn1+‘). We start with an auxiliary lemma that
focuses on the orbit boundary edges between two orbits.

I Lemma 5. Let Gt be the graph at time step t in a connected temporal graph G and
S, SÕ

œ G/Aut(G), and let GÕ be the subgraph of Gt that contains only orbit boundary edges.
Then all vertices in S have the same degree in the bipartite graph GÕ[S fi SÕ].

To describe reachability between orbits, we have to introduce some extra notation. Let G
be a temporal graph with lifetime ¸ and vertex set V and S œ G/Aut(G) be an orbit. We call
a lane Lt,tÕ(X) with X ™ S and t, tÕ œ [¸] the set of all vertices reachable from any u œ X in
G by any temporal walk W that only uses orbit boundary edges and starts in time step t
and ends in time step at most tÕ. We write Lt,tÕ(u) instead of Lt,tÕ({u}). See Fig. 1 for some
intuition.
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Figure 1 Visualization of the properties of a lane Lt,t+r(X). Each vertex in the set X is colored
black, and the set of reachable vertices in each time step is colored gray. Each figure represents one
additional time step. In the second time step (Figure b) all vertices of the lane are reachable. In the
third time step (Figure c) one vertex outside the lane must be reachable, for example the diamond
shaped vertex. This is due to the fact that the temporal graph at hand is connected, and thus at
least one additional vertex is reachable with every next time step. Here, one additional time step
then su�ces to reach a vertex of S2 \X (Figure d).

The next lemma gives us a lower bound on the number of vertices of an orbit SÕ that
can be reached from a subset X of the vertices of an orbit S within r time steps. Intuitively
speaking, we show a lower bound on the number of vertices reachable from orbit S in another
orbit SÕ. A simple consequence of the following lemma is that, from any start vertex in the
temporal graph, at least one vertex in every orbit is reachable within r time steps.

I Lemma 6 (Reachability between Orbits). Let G be a connected temporal graph with lifetime
¸ and S œ G/Aut(G). For any X ™ S and SÕ

œ G/Aut(G) it holds that |Lt,tÕ(X) fl SÕ
| Ø

Á|X| · |SÕ
|/|S|Ë for any t œ [¸] and tÕ = t+ r, where r = |G/Aut(G)| is the orbit number.

By using Lemma 1 and Lemma 6, we now bound the number of time steps needed to
reach a set of h vertices within an orbit S.

I Lemma 7. Let G be a connected temporal graph with lifetime ¸ and vertex set V . Let
S œ G/Aut(G) and let r = |G/Aut(G)| be the orbit number. For any h Æ |S|, start vertex
u œ S and start time t, there exists a set X µ S with |X| = h such that we can reach any
vertex in X in at most O(min{h · n/|S|, hr}+ r) time steps. That is, for every vertex uÕ of
X, we have a temporal walk starting at u at time step t and ending at uÕ at time step tÕ with
tÕ ≠ t = O(min{h · n/|S|, hr}+ r).

Next we present Theorem 8, which states an upper bound for visiting all vertices of a
given orbit S. The rough idea used in the proof is that we iteratively build the final temporal
walk W by concatenating smaller temporal walks. In each step of the iteration, a small
temporal walk W Õ is first constructed via Lemma 7 to visit a subset of the vertices of S,
which are not necessarily unvisited, but such that the size of the subset is at least a certain
threshold value. Using Lemma 3 we find an automorphism ‡ that we apply to W Õ to obtain
a temporal walk W‡ that visits many unvisited vertices of S. We then extend W via this
transformed walk W‡ (see Fig. 2 for a sketch of the proof idea). In this way we can explore
all vertices of a large orbit S faster than by repeated application of Lemma 1. The key to
obtain a good bound on the number of time steps required is to find a good value for the
number of vertices of S visited by each small temporal walk.
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1 2 3 4 5 6 7 8 9...
W

:T

:S \ T

:V \ S

10 2 13 11 3 . . .

8 10 7 12 13 . . .
.
.
.

14 3 10 15 8 . . .

 !
M10,Y,S :

10 9 2 13 19 18 11 3 23 ...
W 0

8 22 10 7 1 2 12 13 56 ...

..
.

W�

14 1 3 10 5 16 15 8 22 ...

Figure 2 The construction scheme of Theorem 8. W is the temporal walk constructed so far. We
aim to extend the walk with a walk W‡ that visits many vertices of S \ T , where T is the set of
vertices of orbit S that we have already visited. To find W‡, we construct W Õ and the automorphism
matrix (bottom left) for the vertex with label 10 (the start vertex of W Õ), the set Y of vertices of S
visited by W

Õ, and the entire orbit S as the set of possible start vertices of W‡. One of the rows in
the matrix then gives us an automorphism ‡ that, when applied to W

Õ, yields the desired walk W‡.

I Theorem 8. Let G be a temporal graph with lifetime ¸ and vertex set V . Take S œ

G/Aut(G) and r = |G/Aut(G)| the orbit number. For any t œ [¸] there exists a temporal
walk W starting at time step t that visits all vertices of S and ends at time step tÕ with
tÕ ≠ t = O((n5/3 + rn) logn).

The following lemma is concerned with visiting a fraction 1/c of the vertices of a given orbit
S with a temporal walk. One significant contribution to the number of time steps required
by the temporal walk constructed in Theorem 8 is the use of Lemma 3. Roughly speaking,
Lemma 3 provides a temporal walk that visits a large number of unvisited vertices, but with
the caveat that every vertex of S can potentially be the start vertex of this transformed walk
(instead of restricting the potential start vertices for the walk to a smaller subset, which might
be reachable more quickly). The consequence of this is that for each such transformation we
require, we must plan a “bu�er” of n time steps to ensure that all vertices of S are reachable
by the time step in which the transformed walk starts (Lemma 1). Corollary 4 provides
a “trade-o�” for this: a decrease in the set of possible start vertices of the transformed
walk W‡ decreases the number of previously unvisited vertices W‡ visits, but also decreases
the number of time steps required to reach the first vertex of W‡. Using this property we
construct a recursive algorithm that visits a fraction of the vertices of S quickly instead of
applying the iterative construction of Theorem 8. In our recursive construction, the walks
we concatenate shrink with each recursive call. If we were to use Lemma 3 during this, we
would have an additional n time steps with each recursive call. Instead, Corollary 4 lets us
reduce the number of possible start vertices dramatically. The time span required by this
walk is then not dependent on n, but dependent on |S| and r (the orbit number), and thus is
especially useful for exploring smaller orbits. This can then be used iteratively to construct
a temporal walk that visits all vertices of S, which we in turn use to visit all vertices V by
visiting all orbits one after the other.

I Lemma 9. Let G be a connected temporal graph with lifetime ¸ and vertex set V . Let
S œ G/Aut(G) and let r = |G/Aut(G)| be the orbit number. For any t œ [¸] and any u œ S
there exists a temporal walk W that starts at vertex u in time step t and visits a fraction 1/c
(for any 1 < c < |S|) of the vertices of S such that W spans O(rc(|S|/c)„(c) log |S|) time
steps, with „(c) = 1/(log f(c)) and f(c) = (1 + (c ≠ 1)/c).
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I Corollary 10. Let G be a temporal graph with lifetime ¸ and vertex set V . Let S œ G/Aut(G)
and r = |G/Aut(G)| be the orbit number. For any t œ [¸], any u œ S, and any fixed ‘ > 0,
there exists a temporal walk W that starts at vertex u in time step t and visits some constant
fraction – < 1 of the vertices of S such that W spans O(r|S|1+‘) time steps.

We now present an improved version of Theorem 8 for exploring a whole orbit.

I Theorem 11. Let G be a temporal graph with lifetime ¸ and vertex set V . Let S œ G/Aut(G)
and r = |G/Aut(G)| be the orbit number. For any t œ [¸], any u œ V , and any fixed ‘ > 0,
there exists a temporal walk W that starts at vertex u in time step t and visits all vertices of
S such that W spans O(r|S|1+‘ + n log |S|) time steps.

By using the theorem above repeatedly for each orbit, we get a temporal walk for the whole
temporal graph.

I Corollary 12. Let G be a temporal graph with lifetime ¸ and vertex set V . For any fixed
‘ > 0, there exists a temporal walk W that spans O(rn1+‘) time steps and visits all vertices
of V , where r = |G/Aut(G)| is the orbit number.

5 Upper Bound for TRP

Using Theorem 11 we show that trp can be solved by constructing a walk that spans
(asymptotically) the same number of steps as a walk for exploring an arbitrary single orbit.
The idea is that the two agents identify an orbit in which they meet, and then the first agent
moves to this orbit, and after n time steps the second agent starts exploring this orbit. For
this the agents must be able to independently identify the same orbit, for which we introduce
some additional notation. We extend the definition of isomorphism to temporal graphs
as follows. Let G,H be two temporal graphs with lifetime ¸ and vertex sets VG and VH,
respectively. We call a bijection ◊ : VG æ VH a temporal isomorphism if ◊ is an isomorphism
from Gt to Ht for each t œ [¸] (and thus also an isomorphism from G to H, which denote the
underlying graphs of G and H, respectively). If clear from the context, we say isomorphism
instead of temporal isomorphism.

We define an integer coloring as a coloring of the vertices in the vertex set V of a temporal
graph G (with the colors being integer values). The assigned colors induce a partial order
ªP on the vertex set V such that, for all vertices u, v œ V that are assigned colors cu and
cv, respectively, with cu ”= cv it holds that u ªP v if cu < cv. The idea is now that the two
agents compute the same integer coloring of the given temporal graph G with the property
that two vertices u, v œ V are assigned the same color c if and only if u, v œ S, with S some
orbit of G/Aut(G). The agents then meet at the smallest orbit, breaking ties via the coloring.

Note that, since the agents do not have access to consistent labels of the vertices in V ,
they are unable to distinguish between two vertices u, v œ S with S being an orbit. Intuitively,
the two agents a1 and a2 view G as di�erent temporal graphs G1 and G2, respectively, such
that G1

≥= G ≥= G2. A natural idea is for the agents to pick a smallest orbit for their meeting,
but the challenge is how to ensure that the agents pick the same orbit if there are multiple
equal-size orbits that all have the smallest size. Therefore, in the proof of the following
lemma we let the agents iterate over all possible temporal graphs until they find a graph
H with G1

≥= H ≥= G2. Then both agents compute an integer coloring for H as outlined in
the previous paragraph. This coloring is translated to a coloring of G1 by agent a1 and to a
coloring of G2 by agent a2 via isomorphism functions, which are independently computed by
the agents.
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I Lemma 13. Let G be a temporal graph with vertex set V and lifetime ¸ and let a1, a2 be
two label-oblivious agents. There exists a pair of programs (p1, p2) assigned to a1 and a2,
respectively, such that each agent computes the same integer coloring of V and such that two
vertices u, v œ V have the same color exactly if u, v are in the same orbit of G/Aut(G).

We can now easily construct an algorithm for trp. The agents simply meet in a smallest
orbit, breaking ties via the integer coloring (Lemma 13). The first agent moves to said orbit,
then the second agent searches the orbit for the first agent. Note that the smallest orbit has
size at most n/r, where r is the orbit number. Thus, the bound on the number of time steps
provided by Theorem 11 becomes O(r(n/r)1+‘ + n log(n/r)) = O(n1+‘), and we obtain the
following upper bound for trp.

I Theorem 14. Let G be a temporal graph with lifetime ¸ and a1, a2 two label-oblivious agents.
For any fixed ‘ > 0, there exists a pair of programs (p1, p2) assigned to a1, a2, respectively,
such that the two agents are guaranteed to meet after O(n1+‘) time steps.

6 Lower Bounds for TEXP and TRP

We start this section with a simple lower bound for texp, which is a fairly straightforward
adaptation of the known lower bound of �(n2) time steps [27]. Following that, we give
a lower bound of �(n logn) time steps for trp. For this we describe the construction of
a temporal graph that is connected and has only a single orbit. We then show how an
adversary can choose the starting positions of the two agents that want to meet in order to
delay their meeting. Intuitively, the graph we create is a cycle that changes repeatedly after
some number of steps. By our construction, the adversary can make sure that after every
change of the graph, the two agents are placed far away from each other. In the end, we also
show that the resulting lower bound for trp yields a corresponding lower bound for texp.

I Lemma 15. For any 1 Æ r Æ n, there exist n-vertex instances of texp with orbit number
r that require �(rn) time steps to be explored.

I Theorem 16. For any two agents a1 and a2 with arbitrary deterministic programs, there
exist instances of trp where the agents require �(n logn) time steps to meet.

I Corollary 17. There exist connected temporal graphs G with vertex set V , lifetime ¸ and a
single orbit such that all temporal walks W require �(n logn) time steps to visit all vertices
of V .

The lower bounds of Theorem 16 and Corollary 17 can be adapted to temporal graphs with r
orbits for any constant r as follows: Use the construction from the proof of Theorem 16, but
instead of letting the graph Gt in each time step be a single cycle Ci, let Gt contain 2r ≠ 1
copies of Ci, and for each vertex u of Ci connect all copies of u by a path Pu (starting with
the vertex u in the first copy of Ci and ending with the vertex u in the (2r ≠ 1)-th copy of
Ci). The resulting temporal graph has r orbits: The vertices of the “middle” copy of Ci form
one orbit, and the vertices in the two copies of Ci that have distance k from the middle copy,
for 1 Æ k Æ r ≠ 1, also form an orbit. Let nÕ = n/r denote the number of vertices in one copy
of Ci. By the arguments in the proof of Theorem 16, it takes �(nÕ lognÕ) time steps for the
two agents to reach a location in the same path Pu, and thus trp requires �(nÕ lognÕ) time
steps. As nÕ = n/r and r is a constant, this gives a lower bound of �(n logn) for trp. The
lower bound of �(n logn) time steps for exploration of temporal graphs with orbit number r
for any constant r then follows as in the proof of Corollary 17.
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7 Conclusions & Future Work

In this work, we looked at temporal graphs where agents know the complete information
of the temporal graph ahead of time. In this clairvoyant setting, we studied the temporal
exploration problem (texp) and showed how to bound the exploration time of a temporal
graph using the structural graph property of the number of orbits of the automorphism group
of the temporal graph. Additionally, we formalized the problem of asymmetric rendezvous in
this setting as the temporal rendezvous problem (trp) and showed how to adapt our ideas
for texp to solve trp quickly. For both texp and trp we provided lower bounds such that
the gap between upper and lower bounds is O(n‘) for any fixed ‘ > 0. There are several ways
in which our work can be extended. One line of research for both problems is to reduce the
gap between the lower and upper bounds by improving either of them. A second line of work
is to study the symmetric variant of rendezvous in the given setting and see if something
can be said about it. Another interesting situation to explore is when multiple agents are
used to explore the temporal graph (and also if multiple agents need to perform temporal
rendezvous) and how much faster solutions in these scenarios might be. Lastly, a possible
avenue of research is to study the structural properties provided by automorphism groups
and how they can be used to tackle other problems that concern temporal graphs.
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Abstract

We study a family of matroid optimization problems with a linear constraint (MOL). In these
problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear
objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii)
additional linear constraint. A notable member in this family is budgeted matroid independent

set (BM), which can be viewed as classic 0/1-knapsack with a matroid constraint. While special
cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack,
admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM
on a general matroid is an E�cient PTAS. Prior to this work, the existence of a Fully PTAS for
BM, and more generally, for any problem in the family of MOL problems, has been open.

In this paper, we answer this question negatively by showing that none of the (non-trivial)
problems in this family admits a Fully PTAS. This resolves the complexity status of several well
studied problems. Our main result is obtained by showing first that exact weight matroid basis

(EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the
special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial
time. We then obtain unconditional hardness results for the family of MOL problems in the oracle
model (even if randomization is allowed), and show that the same results hold when the matroids
are encoded as part of the input, assuming P ”= NP. For the hardness proof of EMB, we introduce
the �-matroid family. This intricate subclass of matroids, which exploits the interaction between a
weight function and the matroid constraint, may find use in tackling other matroid optimization
problems.
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1 Introduction

Matroids are simple combinatorial structures, providing a unified abstraction for independence
systems such as linear independence in a vector space, or cycle-free subsets of edges in a
given graph. A matroid is a set system (E, I), where E is a finite set and I ™ 2E are the
independent sets (IS) such that (i) ÿ œ I, (ii) for all A œ I and B ™ A it holds that B œ I,
and (iii) for all A,B œ I where |A| > |B|, there is e œ A \B such that B fi {e} œ I.1

1 Properties (ii) and (iii) are known, respectively, as hereditary property, and exchange property.
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56:2 Lower Bounds for Matroid Optimization Problems

While serving as a generic abstraction for numerous applications, matroids possess useful
combinatorial properties that allow the development of e�cient algorithms. These algorithms
include such canonical results as the classic greedy approach for finding a maximum weight
independent set of a matroid (see, e.g., [13]), Edmond’s algorithm for matroid partitioning [21],
and Lawler’s algorithm for matroid intersection [31]. In all of the above, polynomial running
time is enabled due to the structure of the problem ≠ a single objective function with
a matroid constraint. However, in many natural applications, there is an added linear

constraint.
Consider, for example, the problem of finding a maximum independent set in a matroid

subject to a budget constraint. Formally, we are given a set of elements E, a membership
oracle for a collection of independent sets I ™ 2E of a matroid (E, I), a budget L > 0,
a weight function w : E æ RØ0, and a value function v : E æ RØ0. A solution for the
problem is an independent set S œ I of total weight at most L, i.e., w(S) Æ L.2 The value

of a solution S is given by v(S), and the objective is to find a solution of maximum value.
This problem, known as budgeted matroid independent set (BM), is a generalization
of the classic 0/1-knapsack, which is NP-hard and therefore unlikely to admit an exact
polynomial-time algorithm. Thus, obtaining e�cient approximations has been a main focus
in the study of BM.

For an instance I of an optimization problem G, let OPTG(I) be the value of an optimal
solution for I. For some fl Ø 1, a fl-approximate solution S for I is a solution of value
v Ø OPTG(I)

fl
(v Æ fl ·OPTG(I)) if G is a maximization (minimization) problem. We say that

A is a randomized fl-approximation algorithm for G if given an instance I of G A returns with
probability at least 1

2 a fl-approximate solution for I ≠ if a solution exists. If no solution
exists ≠ A returns that I does not have a solution.

Let |I| be the encoding size of an instance I of a problem G. A (randomized) polynomial-

time approximation scheme (PTAS) for G is a family of algorithms (AÁ)Á>0 such that, for
any Á > 0, AÁ is a (randomized) polynomial-time (1 + Á)-approximation algorithm for G.
A (randomized) E�cient PTAS (EPTAS) is a (randomized) PTAS (AÁ)Á>0 with running
time of the form f

! 1
Á

"
· |I|O(1), where f is an arbitrary computable function. The strong

dependence of run-times on the error parameter, Á > 0, often renders the above schemes
highly impractical. This led to the study of the following more desirable class of schemes. A
(randomized) approximation scheme (AÁ)Á>0 is a (randomized) Fully PTAS (FPTAS) if the

running time of AÁ is of the form
1

|I|
Á

2O(1)
.3

In the past decades, BM was shown to admit a PTAS [2, 12, 25], and more recently an
E�cient PTAS [18, 17]. As the special case of 0/1-knapsack admits a Fully PTAS, it is
natural to explore the existence of a Fully PTAS for BM. There are known Fully PTASs
for BM on restricted families of matroids. This includes knapsack with a cardinality

constraint [7], multiple-choice knapsack [32], and BM with laminar matroid

constraint [19]. However, the question whether BM admits a Fully PTAS on general
matroids remained open.

In this paper, we resolve this question negatively for BM and other fundamental matroid
optimization problems with a linear constraint.

2 For every set X, a function f : X æ RØ0 and Y ™ X we define f(Y ) =
q

eœY
f(e).

3 To better distinguish between EPTAS and FPTAS, we use throughout the paper E�cient PTAS and
Fully PTAS.
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1.1 Our Results
For a matroid M = (E, I) we define IS(M) = I and bases(M) = {S œ I | |S| = rank(M)},
where rank(M) = maxTœI |T | is the rank of M, i.e., the maximum cardinality of an inde-
pendent set. We study a family of matroid optimization problems with a linear constraint

(MOL). Problems in this family are characterized by three parameters:
(i) The optimization objective opt ≠ either the operator “max” or “min”.
(ii) A matroid feasibility constraint F ≠ either the independent sets of a matroid, or the

set of bases of a matroid. The feasibility constraint is F œ {IS,bases}.
(iii) A relation Ù ≠ realized by one of the relations “Ø” or “Æ”.

Let P = {max,min} ◊ {bases, IS} ◊ {Æ,Ø} be the set of parameters for MOL problems.
Based on the set of parameters P, we define for every triplet a problem in the MOL family.
For P œ P where P = (opt,F , Ù), define the P -matroid optimization with a linear

constraint (P -MOL) problem as follows. An instance is a tuple I = (E, I, v, w, L) such
that M = (E, I) is a matroid, v : E æ RØ0 is the objective function, w : E æ RØ0 is a
weight function, and L œ RØ0 is a bound for the linear constraint. A solution of I is S ™ E

which satisfies the matroid feasibility constraint S œ F(M) and the linear constraint w(S)ÙL.
The goal is to optimize (i.e., maximize or minimize) the value v(S). Thus, we can formulate
a P-MOL optimization problem as

opt v(S) s.t. S œ F(M), w(S) Ù L. (1)

Observe that (max, IS,Æ)-MOL is the BM problem. That is, given a BM instance (equi-
valently, (max, IS,Æ)-MOL instance) I = (E, I, v, w, L), the goal is to find an independent
set S œ I of maximum total value v(S) such that w(S) Æ L. Other notable examples for
MOL problems are constrained minimum basis of a matroid (CMB) [26], which can be
cast as (min,bases,Æ)-MOL, and knapsack cover with matroid constraint (KCM)
[8] formalized by (min, IS,Ø)-MOL.4

We note that (1) does not refer to the representation of the instance I. We consider two
possible representations. For any P œ P, in an instance (E, I, v, w, L) of oracle P -MOL, the
arguments E, v, w, L are given as the input, and the independent sets I are accessed via a
membership oracle, which determines whether a given set S ™ E belongs to I in a single
query. Thus, the independent sets are not considered in the encoding size of the instance.
The term running time for problems involving oracles refers to the sum of the number of
queries to the oracle and the number of basic operations. Previous works on MOL problems
often consider membership oracles [12, 2, 8, 18, 17]. As hardness with oracles does not
necessarily imply hardness in non-oracle models (see, e.g., [6, 9]), in Section 4 we show lower
bounds for variants of MOL problems in which the independent sets are encoded as part of
the input.

Clearly, the problem (min, IS,Æ)-MOL is trivial since the empty set achieves the optimal
objective value. However, for any other P œ P, solving the P -MOL problem is challenging.
The non-trivial MOL problems are all the MOL problems excluding (min, IS,Æ)-MOL. That
is, P -MOL is non-trivial if P œ Q where Q = P \ {(min, IS,Æ)}. Observe that non-trivial
MOL problems are NP-hard (e.g., 0/1-knapsack is a special case of (max, IS,Æ)-MOL);
however, all previously studied MOL problems admit approximation schemes.

4 CMB, KCM, and other MOL problems may not have a solution; however, we can decide in polynomial
time if a solution exists, and our definition of approximation algorithms captures instances with no
solution.

ICALP 2024



56:4 Lower Bounds for Matroid Optimization Problems

For certain special cases of MOL problems, e.g., BM with simple matroid constraints, the
existence of a Fully PTAS is known for decades [38, 7]. However, for MOL problems with
arbitrary matroid constraints, the best known results are E�cient PTAS. While matroids
form an important generalization of well known basic constraints, the complexity of the
corresponding MOL problems remained open. Specifically, prior to this work, the existence
of a MOL problem which does not admit a Fully PTAS was open.

Our main result is that none of the (non-trivial) oracle matroid optimization problem with
a linear constraint admits a Fully PTAS, even if randomization is allowed. This unconditioned
hardness result is established by deriving a lower bound on the minimum number of queries
to the membership oracle.

I Theorem 1. For every P œ Q there is no randomized Fully PTAS for oracle P -MOL.

Table 1 Implications of our results for previously studied MOL problems. All of our bounds hold
for randomized algorithms.

Problem Previous Results This Paper

Budgeted Matroid Independent Set E�cient PTAS [18] No Fully PTAS
Budgeted Matroid Intersection E�cient PTAS [17] No Fully PTAS
Constrained Minimum Basis of Matroid E�cient PTAS [26] No Fully PTAS
Knapsack Cover with a Matroid PTAS [8] No Fully PTAS

Theorem 1 conclusively distinguishes MOL problems with arbitrary matroids, such as
BM, from special cases with simpler matroid constraints. Furthermore, it shows that existing
E�cient PTAS [26, 18, 17] for MOL problems on general matroids are the best possible.
Notable implications of our results are given in Table 1, and consequences of our lower
bounds for a set of previously studied problems [5, 26, 2, 12, 25, 8, 18, 17, 16] are given in
Section 1.3. By resolving the complexity status of MOL problems on general matroids, our
results promote future research to design (or rule out) Fully PTAS for MOL problems on
restricted matroid classes (see Section 5).

To prove Theorem 1, we turn our attention to the following problem.

I Definition 2. An instance of Exact Matroid Basis (EMB) is I = (E, I, c, T ), where
(E, I) is a matroid, c : E æ N is a weight function, and T œ N is a target value. A solution
is a basis S of (E, I) such that c(S) = T . The goal is to decide if there is a solution.

Similar to MOL problems, EMB does not specify the input. In an instance (E, I, c, T ) of
oracle-EMB, E, c, T are explicitly given, and the independent sets I are accessed via
a membership oracle. An instance I of a decision problem D is a “yes”-instance if the
correct answer for I is “yes”; otherwise, I is a “no”-instance. We say that A is a randomized

algorithm for a decision problem D if, given a “yes”-instance I of D, A returns “yes” with
probability at least 1

2 ; for a “no”-instance, A returns “no” with probability 1. The next
result rules out a pseudo-polynomial time algorithm for oracle-EMB, thus distinguishing the
problem from the special cases of k-subset sum and EMB on linear matroids, which admit
a pseudo-polynomial time algorithm [5].

I Theorem 3. For any oracle-EMB instance I = (E, I, c, T ), there is no randomized

algorithm for oracle-EMB that runs in time (n · (T + 2) ·m)O(1)
, where n = |E|+ 1 and

m = c(E) + 1.
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1.2 Technical Contribution
We derive our results by introducing �-matroids. This new family of paving matroids carefully
exploits a simple weight function to define a matroid that successfully hides a specific property
� within its independent sets (see Section 2).5 Using �-matroids, we define oracle-EMB
instances whose solutions must satisfy the property �. This shows the unconditional hardness
of oracle-EMB, as � can be discovered only via an exponential number of queries to the
membership oracle. Our hardness results for MOL problems (as stated in Theorem 1) are
derived via reduction from oracle-EMB.

Despite the abundance of lower bounds for matroid problems [33, 28, 29, 39], as well
as for knapsack problems [10, 30, 14, 3], we are not aware of lower bounds that leverage
the interaction between the matroid constraint and the additional linear constraint required
for deriving our new lower bound for EMB, and consequently for MOL problems. Indeed,
if the matroid constraint is removed from (1) (equivalently, F(M) = 2E), MOL problems
become variants of classic 0/1-knapsack, which admits a Fully PTAS. Alternatively, if the
linear constraint imposed by w,L is removed, then we have the polynomially solvable maxim-
um/minimum weight matroid independent set problem. This distinguishes our construction
from existing lower bounds for matroid problems, as even previous constructions of paving
matroids (e.g., [28]) cannot be easily adapted to tackle both the knapsack constraint along
with the matroid constraint. �-matroids may be useful for deriving lower bounds for other
problems (see Section 5).

Our unconditional lower bounds apply in the oracle model, where the independent sets
of the given matroid can be accessed only via a membership oracle. One may question the
validity of the bounds for variants of the problems where the matroid is encoded as part of
the input. Indeed, in some scenarios, the use of oracles makes problems harder [6, 9]. Thus,
we complement our results by showing that the same lower bounds hold under the standard
complexity assumption P ”= NP, even if the matroid is encoded as part of the instance and
membership can be decided in polynomial time. We accomplish this by designing the family
of SAT-matroids ≠ a counterpart of the �-matroid family whose members can be e�ciently
encoded. This construction can be used to obtain hardness results for other matroid problems
in non-oracle models, based on existing analogous lower bounds in the oracle model (e.g., [28]).
We elaborate on that in Section 4.

1.3 Implications of Our Results and Prior Work
Below we describe in further detail the implications of our results, and discuss previous work
on MOL problems. In the following problems, general matroids are assumed to be accessed
via membership oracles.

Exact Matroid Basis (EMB). This is a generalization of the k-subset sum problem (where
(E, I) is a uniform matroid).6 Thus, EMB is unlikely to be solvable in polynomial time.
Instead, we seek a pseudo-polynomial time algorithm whose running time has polynomial
dependence on the encoding size of the instance and the target value T . Indeed, the
special case of EMB in which the matroid is representable (or, linear) admits such a pseudo-
polynomial time algorithm [5]. Since the 1990s, it has been an open question whether the
result of Camerini et al. [5] can be extended to general matroids. Theorem 3 resolves this
question, ruling out the existence of a pseudo-polynomial time algorithm for EMB.

5 We note that paving matroids have been used in earlier work, e.g., to show intractability of the matroid
matching problem in the oracle model [33, 28].

6 In a uniform matroid, I = {S ™ E | |S| Æ k}.
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Budgeted Matroid Independent Set (BM). This problem is cast as (max, IS,Æ)-MOL. BM
is a natural generalization of the classic 0/1-knapsack problem, for which a Fully PTAS has
been known since the 1970s [32]. As mentioned above, a Fully PTAS is known also for other
special cases of BM. A PTAS for BM was first given in [2] as a special case of budgeted
matroid intersection (BMI). In this generalization of BM, we are given two matroids
(E, I1) and (E, I2), and a solution has to be an independent set of both matroids. A PTAS
for BM also follows from the results of [25, 12] which present PTASs for multi-budgeted
variants of BM. An E�cient PTAS for BM was recently given in [18] and for BMI in [17].
The existence of a Fully PTAS for BM was posed as a central open question in [2, 18, 17].
We answer this question negatively, as formalized in Theorem 1, giving a tight lower bound
for BM and BMI.

Constrained Minimum Basis of a Matroid (CMB). This problem can be cast as the
matroid optimization problem (min,bases,Æ)-MOL. The constrained minimum spanning

tree (CST) problem is the special case of CMB in which the matroid (E, I) is graphical
[36, 1, 26, 27], namely, there is a graph G = (V,E) such that the independent sets I are
cycle-free subsets of edges in G. A PTAS for CST was given by Ravi and Goemans [36]. This
result was improved to an E�cient PTAS by Hassin and Levin [26]. A bicriteria FPTAS,
which violates the budget constraint by a factor of (1+ Á), was presented in [27]. The authors
of [26] mention that their result actually gives an E�cient PTAS for CMB. The existence
of a Fully PTAS for CMB remained an open question. Theorem 1 shows that the E�cient
PTAS for CMB cannot be improved.

Knapsack Cover with a Matroid (KCM). As a final implication, Theorem 1 rules out the
existence of a Fully PTAS for a coverage variant of 0/1-knapsack, formulated as (min, IS,Ø)-
MOL. In [8], Chakaravarthy et al. presented a PTAS for KCM using integrality properties of
a linear programming formulation of KCM. Moreover, for the special case of KCM with a
partition matroid, they give a Fully PTAS based on dynamic programming. The existence of
a Fully PTAS for KCM on a general matroid was posed in [8] as an open question. Theorem 1
answers this question negatively. Our initial study indicates that an E�cient PTAS for KCM
can potentially be obtained by adapting the approach of Hassin and Levin [26] to the setting
of KCM. This suggests that our lower bound cannot be strengthened.

1.4 Organization
In Section 2 we introduce the �-matroid family and give the proof of Theorem 3. In Section 3
we prove Theorem 1, and in Section 4 we show that similar lower bounds hold in the standard
computational model. We conclude in Section 5 with a summary and directions for future
work. Due to space constraints, some of the proofs are given in the full version of the
paper [20].

2 The Hardness of oracle exact matroid basis

In this section, we prove Theorem 3. We use in the proof the family of �-matroids. For
any m œ N, let [m] = {1, . . . ,m}. A member in the �-matroid family is given by four
arguments: n, k,– œ N>0, and � ™ 2[n]. The first argument, n œ N>0, is the number of
elements, and the ground set is [n]. The second argument, k œ [n], is the rank of the matroid.
The third argument, – œ N>0, is a target value, that is usually equal to sum(S) for some
S ™ [n], where sum(S) =

q
iœS

i. The last argument is a family of subsets � ™ 2[n].
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1 2

3 4

� = {independent sets of G}A graph G

J4,2 = {ÿ, {1}, {2}, {3}, {4}}, K4,2,5 = {{2,4}, {2,1}, {4,3}, {3,1}}, L4,2,5(�) = {{2,3}}

Figure 1 The independent sets of the �-matroid Mn,k,–(�), with parameters n = 4, k = 2, and
– = 5. The secret family � contains all independent sets in the graph G, where {2, 3} is the only
independent set in G with k elements.

The set � is called the secret family because finding S œ � is possible only via repeated
queries to the membership oracle of the matroid. Since � can have an arbitrary structure,
this may require exhaustive enumeration.

I Definition 4. Let n, k,– œ N>0. For some � ™ 2[n], define the �-matroid on n, k, and –

as Mn,k,–(�) = ([n], In,k,–(�)), where

In,k,–(�) = Jn,k fi Kn,k,– fi Ln,k,–(�)

and Jn,k,Kn,k,–,Ln,k,–(�) are defined as follows.

Jn,k =
)
S ™ [n]

-- |S| < k
*

Kn,k,– =
)
S ™ [n]

-- |S| = k, sum(S) ”= –
*

Ln,k,–(�) =
)
S ™ [n]

-- |S| = k, sum(S) = –, S œ �
*
.

(2)

In words, Jn,k contains all subsets of strictly less than k elements; Kn,k,– contains all
subsets of cardinality k whose total sum is not –. Finally, Ln,k,–(�) contains all subsets
of cardinality k and total sum – which also belong to �. See Figure 1 for an example of a
member of the �-matroid family. Using a simple argument, we show that the set system in
Definition 4 is indeed a matroid. For the sets In,k,–(�), Jn,k, Kn,k,– and Ln,k,–(�) defined
in Definition 4, we often omit the subscripts n, k,– and n, k when the values of n, k,– are
known by context. For simplicity, for any set A and an element a, let A+a, A≠a be Afi{a}
and A \ {a}, respectively.

I Lemma 5. For every n, k,– œ N>0, and � ™ 2[n] it holds that Mn,k,–(�) is a matroid.
7

Proof. We first note that ÿ œ J since 0 < k; therefore, ÿ œ I(�). For the hereditary property,
let A œ I(�). For all B µ A it holds that |B| < k; thus, B œ J and it follows that B œ I(�).
For the exchange property, let A,B œ I(�) such that |A| > |B|. We consider the following
cases.
1. |B| < k ≠ 1. Then, for all e œ A \ B it holds that |B + e| < k ≠ 1 + 1 = k. Hence,

B + e œ J and it follows that B + e œ I(�). Note that there is such e œ A \B because
|A| > |B|.

2. |B| = k ≠ 1 and |A| = k. We consider two subcases.
a. B ™ A. Then, as |A| > |B| there is e œ A \B. Hence, B + e = A (because |B| = k ≠ 1

and |A| = k). As A œ I(�), it follows that B + e œ I(�).

7 We remark that the lemma can be proved using Theorem 5.3.5 in [23]. We give the proof for completeness.
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I

1

no

2

yes

3

no . . .

|Q(b)|

no S /œ Q(b), S /œ I(�ÿ)

IS

1

no

2

yes

3

no . . .

|Q(b)|

no S /œ Q(b), S œ I(�S)

Figure 2 An illustration of the proof of Theorem 3. The figure presents the sequences of queries
to the membership oracles by the algorithm on the instances I and IS for a string of bits b, such
that S /œ Q(b). The label ”yes” (”no”) indicates that the queried set is (not) independent in the
matroid. The only query that distinguishes between I and IS is on the set S, which is not queried;
thus, the algorithm returns the same output for I and IS .

b. B ”™ A. Then, as |B| = k ≠ 1 and |A| = k it follows that |B fl A| < |B| = k ≠ 1. Thus,
|A \ B| = |A| ≠ |A fl B| > k ≠ (k ≠ 1) = 1. Hence, there are e, f œ A \ B such that
e ”= f . It follows that there is g œ {e, f} such that sum(B + g) = sum(B) + g ”= –. We
conclude from (2) that B + g œ K, implying that B + g œ I(�). J

Observe that Kn,k,– fi Ln,k,–(�) is the set of bases of the matroid. Moreover, for any
arguments n, k, – and �, the cardinality of every dependent set S œ 2[n] \ In,k,–(�) is at
least the rank of the �-matroid Mn,k,–(�) = ([n], In,k,–(�)). Such matroids are known as
paving matroids (see, e.g., [34, 35]). Using �-matroids, we define the following collection
of oracle-EMB instances. In these instances, the matroid is a �-matroid, where � is some
unknown fixed family of subsets of the ground set.

IDefinition 6. For every n, k,– œ N>0, and � ™ 2[n] define the induced oracle-EMB instance

of n, k,–,�, denoted In,k,–(�), as follows. Let idn : [n] æ [n], where idn(i) = i ’i œ [n].
Then, In,k,–(�) = ([n], In,k,–(�), idn,–).

Observe that the above is indeed an oracle-EMB instance if the independent sets of the
given matroid are accessible via a membership oracle. The following is an easy consequence
of Definition 6.

I Observation 7. For every n, k,– œ N>0 and � ™ 2[n], it holds that In,k,–(�) is an oracle-
EMB ”yes”-instance if and only if there is S œ � such that |S| = k and sum(S) = idn(S) = –.

By Observation 7, an algorithm that finds an independent set of Mn,k,–(�) satisfying
|S| = k and sum(S) = –, in fact outputs a subset S œ �. As the input for an induced
oracle-EMB instance In,k,–(�) does not contain an explicit encoding of �, finding S œ �
requires a sequence of queries to the membership oracle of Mn,k,–(�). Roughly speaking, to
decide In,k,–(�), an algorithm for oracle-EMB must iterate over all (exponentially many)
subsets S ™ [n] such that |S| = k and sum(S) = –. This is the intuition behind the proof of
the next result.

I Theorem 3. For any oracle-EMB instance I = (E, I, c, T ), there is no randomized

algorithm for oracle-EMB that runs in time (n · (T + 2) ·m)O(1)
, where n = |E|+ 1 and

m = c(E) + 1.
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Proof. Assume towards contradiction that there exist a constant d œ N and a randomized
algorithm A that decides every oracle-EMB instance (E, I, c, T ) in time ((T + 2) · n ·m)d,
where n = |E|+ 1 and m = c(E) + 1. For every n, k,– œ N>0, consider the set of all subsets
of [n] with cardinality k and sum –, i.e.,

Fn,k,– =
)
S ™ [n]

-- |S| = k, sum(S) = –
*
.

To reach a contradiction, we construct an induced oracle-EMB instance on which A does not
compute the proper output with su�ciently high probability. The parameters of the instance
are extracted from the following combinatorial claim.

B Claim 8. There are ñ œ N>0, k̃ œ [ñ], and –̃ œ
#
ñ
2$

such that |F
ñ,k̃,–̃

| > 2 ·
!
12 · ñ5"d.

Proof. Since d is a constant, there is ñ œ N>0 such that

!
12 · ñ5"d

<
2ñ ≠ 1
2 · ñ3 . (3)

Fix ñ œ N>0 satisfying (3). Recall that
q

kœ{0,1,...,ñ}
!
ñ

k

"
= 2ñ from a basic property of the

Pascal triangle; therefore,
q

kœ{1,...,ñ}
!
ñ

k

"
= 2ñ ≠ 1. Thus, there is k̃ œ {1, . . . , ñ}, such that

3
ñ

k̃

4
Ø 2ñ ≠ 1

ñ
. (4)

Fix k̃ œ [ñ] satisfying (4). Observe that for each S œ 2[ñ] satisfying |S| = k̃ > 0, it holds that
1 Æ sum(S) Æ |S| ·maxiœ[ñ] i = ñ

2. Thus, there are ñ
2 possibilities for – œ

#
ñ
2$

satisfying
– = sum(S), for some S œ 2[ñ] such that |S| = k̃. Moreover, there are

!
ñ

k̃

"
subsets of [ñ] of

cardinality k̃. By the pigeonhole principle, there is –̃ œ
#
ñ
2$

such that |F
ñ,k̃,–̃

| Ø (ñk̃)
ñ2 . Thus,

|F
ñ,k̃,–̃

| Ø
!
ñ

k̃

"

ñ2 Ø 2ñ ≠ 1
ñ · ñ2 > 2 ·

!
12 · ñ5"d

.

The second inequality follows from (4), and the third inequality holds by (3). C

Let ñ œ N>0, k̃ œ [ñ], and –̃ œ
#
ñ
2$

satisfying the conditions of Claim 8. Define t to be
the maximum running time of A on an induced EMB instance I

ñ,k̃,–̃
(�) over all � œ 2[ñ].

B Claim 9. t Æ
!
12 · ñ5"d.

Proof. Let T = –̃, n = ñ+ 1, and m = idñ([ñ]) + 1. By the running time guarantee of A, it
follows that t Æ (n · (T + 2) ·m)d. It remains to bound n·(T+2)·m. Since idñ([ñ]) = sum([ñ])
and –̃ Æ ñ

2,

n · (T + 2) ·m Æ (ñ+ 1) ·
!
ñ
2 + 2

"
(sum([ñ]) + 1) Æ 2ñ · 3ñ2 ·

3
ñ · (ñ+ 1)

2 + 1
4

Æ 12 · ñ5
.

The second inequality follows from the sum of the terms of an arithmetic sequence. By the
above and the running time guarantee of A, it follows that t Æ (n · (T + 2) ·m)d Æ

!
12 · ñ5"d.

C

Given an induced oracle-EMB instance I
ñ,k̃,–̃

(�), for some � ™ [ñ], the randomized
algorithm A generates a random string of bits b̄ œ {0, 1}t and performs a sequence of queries
to the membership oracle of M

ñ,k̃,–̃
, based on b̄, ñ, k̃, –̃, and the results of the previous queries.

Then, the algorithm decides the given instance based on the queries.
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Let �ÿ = ÿ, and consider the induced oracle-EMB instance I = I
ñ,k̃,–̃

(�0). Given a
string of bits b œ {0, 1}t, let Q(b) ™ 2[ñ] be the set of all subsets S ™ [ñ] queried by A on the
instance I and the bit-string b (on the membership oracle of M

ñ,k̃,–̃
(�ÿ)). For clarity, we

use b̄ for a random string, and b for a realization of b̄ to a specific string. Note that Q(b) is a
set, since the algorithm is deterministic for every b œ {0, 1}t; conversely, Q(b̄) is a random
set for a random string b̄ œ {0, 1}t. As the running time of A on I is bounded by t, it holds
that |Q(b)| Æ t for every b œ {0, 1}t. Let

R(I) =
;
S œ F

ñ,k̃,–̃

---- Pr
!
S œ Q(b̄)

"
Ø 1

2

<

be all sets in F
ñ,k̃,–̃

that are queried by A with probability at least 1
2 .

B Claim 10. |R(I)| < |F
ñ,k̃,–̃

|.

Proof. By the definition of R(I), it holds that

|R(I)| =
----

;
S œ F

ñ,k̃,–̃

---- Pr
!
S œ Q(b̄)

"
Ø 1

2

<----

Æ 2 ·
ÿ

SœFñ,k̃,–̃

Pr
!
S œ Q(b̄)

"

= 2 ·
ÿ

SœFñ,k̃,–̃

ÿ

bœ{0,1}t

Pr (S œ Q(b)) · Pr(b̄ = b).

Thus, by changing the order of summation, we have

|R(I)| Æ 2 ·
ÿ

bœ{0,1}t

Pr(b̄ = b) ·
ÿ

SœFñ,k̃,–̃

Pr (S œ Q(b)) Æ 2 ·
ÿ

bœ{0,1}t

Pr(b̄ = b) · |Q(b)|.

Since |Q(b)| Æ t for all b œ {0, 1}t, by the above we have

|R(I)| Æ 2t ·
ÿ

bœ{0,1}t

Pr(b̄ = b) = 2 · t Æ 2 ·
!
12 · ñ5"d

< |F
ñ,k̃,–̃

|.

The second inequality follows from Claim 9. The last inequality holds by Claim 8. C

By Claim 10, there exists S œ F
ñ,k̃,–̃

\R(I). Consider the induced oracle-EMB instance
IS = I

ñ,k̃,–̃
(�S) where �S = {S}, and let B = {b œ {0, 1}t | S /œ Q(b)} be all strings for

which S is not queried by A on the instance I. Observe that for all b œ B it holds that
the answers to all queries for T œ Q(b) are the same for both oracles (of M

ñ,k̃,–̃
(�ÿ) and

M
ñ,k̃,–̃

(�S)). Moreover, the decision on which set to query next depends only on b, ñ, k̃, –̃,
and the answers to previous queries.

Hence, for all b œ B, the executions of A on the instances I and IS are identical. Since
�ÿ = ÿ, by Observation 7, I is a “no”-instance for oracle-EMB; thus, A returns that IS is a
“no”-instance for every b œ B. However, since idn(S) = sum(S) = –, |S| = k, and S œ �S ,
it follows that IS is a “yes”-instance by Observation 7. Therefore, A does not decide IS

correctly for all b œ B. We give an illustration in Figure 2. Since S /œ R(I), it holds that
Pr

!
b̄ œ B

"
= Pr

!
S /œ Q(b̄)

"
>

1
2 ; thus, with probability greater than 1

2 , A does not decide
correctly the instance IS . A contradiction to the correctness of A as a randomized algorithm
for oracle-EMB. The statement of the theorem follows. J
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3 Hardness of Matroid Optimization with a Linear Constraint

In this section we use Theorem 3 to prove Theorem 1. We apply the following reductions
from EMB to MOL problems. Recall that Q = P \ {(min, IS,Æ)} is the set of parameters for
non-trivial MOL problems. Given a P -MOL problem for some P œ Q, and an EMB instance
I, the reduction returns an instance RP (I) of the P -MOL problem. Note that the reduction
is purely mathematical, and does not specify the encoding of the instance. This will be useful
for obtaining our hardness results in non-oracle computational models (see Section 4).

Given (opt,F , Ù), (optÕ
,F Õ

, Ù
Õ) œ Q, we use the notation (opt is optÕ), (F is F Õ), (Ù is Ù

Õ)
to denote the boolean expressions of equality between parameters of a MOL problem. For
example, (opt is optÕ) is true if and only if either opt, optÕ are both max, or opt, optÕ are
both min.

I Definition 11. Given an EMB instance I = (E, I, c, T ) and P œ Q where P = (opt,F , Ù),
define the reduced P -MOL instance of I, denoted by RP (I) = (E, I, vI , wI,P , LI,P ), as

follows.

1. Define the auxiliary variable

d(P ) =

Y
]

[
0 if

3
(opt is max) and (Ù is Æ)

4
or

3
(opt is min) and (Ù is Ø)

4

1 otherwise.

For example, if P = (max, IS,Æ) then d(P ) = 0, and if P
Õ = (max, IS,Ø) then d(P Õ) = 1.

2. Let HI = 2 ·max{1, c(E)}.
3. For all e œ E let vI(e) = HI + c(e).
4. For all e œ E let wI,P (e) = HI + c(e) · (≠1)d(P )

.

5. Let kI = maxSœI |S| be the rank of (E, I).
6. Define LI,P = kI ·HI + T · (≠1)d(P )

.

Now, for every EMB instance I = (E, I, c, T ), define the error parameter of I as

ÁI = 1
8 · (|E|+ 1) · (T + 1) · (c(E) + 1) . (5)

Indeed, since the value selected for of the error parameter is su�ciently small, we can use a
(1 + ÁI)-approximation for RP (I) to decide an EMB instance I.

I Theorem 12. Given an instance I = (E, I, c, T ) of EMB, and P œ Q with P = (opt,F , Ù),
the following holds.

1. If there is a solution S for RP (I) such that vI(S) = kI ·HI +T , then I is a “yes”-instance.

2. If I is a “yes”-instance then: (i) RP (I) has a solution, and (ii) every (1+ÁI)-approximate

solution S for RP (I) satisfies vI(S) = kI ·HI + T .

Using Theorem 12 and an assumed randomized Fully PTAS for the P -MOL problem, we
can decide EMB in time which contradicts Theorem 3. This gives the proof of Theorem 1.
We first prove Theorem 1, and later give the proof of Theorem 12.

I Theorem 1. For every P œ Q there is no randomized Fully PTAS for oracle P -MOL.

Proof. Assume towards a contradiction that there is a randomized Fully PTAS A for oracle
P -MOL. We use A to decide oracle-EMB. Let I = (E, I, c, T ) be an oracle-EMB instance,
and consider the following randomized algorithm B that decides I.
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1. Construct the oracle P -MOL instance RP (I) with the membership oracle of (E, I).
2. Execute A with the input RP (I) and ÁI .
3. If A returns that RP (I) does not have a solution ≠ Return ”no” on I.
4. Otherwise, let S Ω A(RP (I), ÁI) be the solution returned by A.
5. Return ”yes” on I if and only if vI(S) = HI · kI + T .

Let n = |E|+ 1 and m = c(E) + 1. Note that RP (I) can be naively constructed from
I in time (n · (T + 2) ·m)O(1) using Definition 11. As A is a randomized Fully PTAS for
oracle P -MOL, and by the selection of the error parameter (5), the running time of B on I

is (n · (T + 2) ·m)O(1). We now show correctness.
If B returns “yes” on I, then Step 4 of the algorithm computes a solution S for Rp(I)
satisfying vI(S) = HI · kI + T . Thus, by Theorem 12, I is a “yes” instance.
If I is a “yes” instance then RP (I) has a solution by Theorem 12. As A is a randomized
Fully PTAS, with probability at least 1

2 A returns a (1 + ÁI)-approximate solution S

for RP (I) in Step 4. By Theorem 12, vI(S) = HI · kI + T (with probability at least 1
2 ).

Thus, B returns “yes” on I with probability at least 1
2 .

Hence, B is a randomized algorithm which decides the oracle-EMB instance I in time
(n · (T + 2) ·m)O(1). This is a contradiction to Theorem 3. J

In the remainder of this section we prove Theorem 12. We start with some basic properties
of the reduction outlined in Definition 11.

I Lemma 13. Given an instance I = (E, I, c, T ) of EMB, let P œ Q and consider a solution

S for RP (I) satisfying vI(S) = kI ·HI + T . Then, S is a solution for I.

Proof. Let M = (E, I). As S is a solution for RP (I), it holds that S œ IS(M); thus,
|S| Æ kI . Assume towards contradiction that |S| < kI . Then,

vI(S) = |S| ·HI + c(S) Æ (kI ≠1) ·HI + c(S) Æ (kI ≠1) ·HI + c(E) < kI ·HI Æ kI ·HI +T.

We reach a contradiction since vI(S) = kI ·HI + T ; thus, |S| = kI , and

kI ·HI + T = vI(S) = |S| ·HI + c(S) = kI ·HI + c(S). (6)

As |S| = kI , we have that S is a basis of M, and by (6), c(S) = T . Hence, S is a solution
for I. J

The next result is the converse of the statement in Lemma 13.

I Lemma 14. Let S be a solution for a given EMB instance I = (E, I, c, T ), and let P œ Q
where P = (opt,F , Ù). Then, S is a solution for RP (I) of value vI(S) = kI ·HI + T .

Proof. Let M = (E, I). Since S is a solution for I we have S œ bases(M); thus, S œ F(M).
Then,

wI,P (S) = |S| ·HI + c(S) · (≠1)d(P ) = kI ·HI + T · (≠1)d(P ) = LI,P .

The second equality holds since S is a solution for I; thus, |S| = kI (as S is a basis of M),
and c(S) = T . We conclude that S is a solution for RP (I). Finally, note that S satisfies

vI(S) = |S| ·HI + c(S) = kI ·HI + T J

The next claim gives an upper bound on the optimal value for maximization MOL
problems. We then derive an analogous lower bound for minimization (non-trivial) MOL
problems.
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I Lemma 15. Let I = (E, I, c, T ) be an EMB instance and P œ Q, where P = (opt,F , Ù)
and (opt is max). Then, for every solution S of RP (I) it holds that vI(S) Æ kI ·HI + T .

Proof. Let S be an optimal solution for RP (I). Thus, |S| Æ kI as S œ I. If |S| < kI then

vI(S) Æ (kI ≠ 1) ·HI + c(S) Æ (kI ≠ 1) ·HI + c(E) < kI ·HI Æ kI ·HI + T.

Otherwise, |S| = kI . Consider the two cases for Ù.
1. (Ù is Æ). Then, d(P ) = 0 (see Definition 11); thus, since S is a solution for RP (I):

vI(S) = wI,P (S) Æ LI,P = kI ·HI + T.

2. (Ù is Ø). Then, d(P ) = 1. As S is a solution for RP (I),

kI ·HI ≠ c(S) = |S| ·HI ≠ c(S) = wI,P (S) Ø LI,P = kI ·HI ≠ T. (7)

By (7), it follows that c(S) Æ T ; thus, vI(S) = kI ·HI + c(S) Æ kI ·HI + T .

In all the above cases, we have that vI(S) Æ kI ·HI + T , implying the statement of the
lemma. J

Now, for minimization problems we have the next result.

I Lemma 16. Let I = (E, I, c, T ) be an EMB instance, and P œ Q, where P = (opt,F , Ù)
and (opt is min). Then, for every solution S of RP (I), it holds that vI(S) Ø kI ·HI + T .

Using Lemmas 13–16, we can now prove Theorem 12.

I Theorem 12. Given an instance I = (E, I, c, T ) of EMB, and P œ Q with P = (opt,F , Ù),
the following holds.

1. If there is a solution S for RP (I) such that vI(S) = kI ·HI +T , then I is a “yes”-instance.

2. If I is a “yes”-instance then: (i) RP (I) has a solution, and (ii) every (1+ÁI)-approximate

solution S for RP (I) satisfies vI(S) = kI ·HI + T .

Proof. We note that Property 1 follows directly from Lemma 13. For Property 2, assume
that I is a “yes”-instance, then by Lemma 14, there is a solution D for RP (I) such that
vI(D) = HI · kI + T . It remains to show Property 2. (ii). Let S be a (1 + ÁI)-approximate
solution for RP (I). We distinguish between two cases.

1. (opt ismax). Then, by Lemma 15,

0 Æ HI · kI + T ≠ vI(S).

Moreover, since S is a (1 + ÁI)-approximate solution for RP (I), and D is a solution for
RP (I),

HI · kI + T ≠ vI(S) Æ HI · kI + T ≠ vI(D)
(1 + ÁI)

= ÁI · (HI · kI + T )
(1 + ÁI)

Æ ÁI · (HI · kI + T ) .

By the above, it follows that

|vI(S) ≠ (HI · kI + T )| Æ ÁI · (HI · kI + T ) .
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2. (opt ismin). This case is analogous to the above. By Lemma 16,

0 Æ vI(S) ≠ (HI · kI + T ) .

Since S is a (1 + ÁI)-approximate solution for RP (I), and D is a solution for RP (I),

vI(S) ≠ (HI · kI + T ) Æ (1 + ÁI) · vI(D) ≠ (HI · kI + T ) = ÁI · (HI · kI + T ) .

By the above,

|vI(S) ≠ (HI · kI + T )| Æ ÁI · (HI · kI + T ) .

Thus in both cases it holds that,

|vI(S) ≠ (HI · kI + T )| Æ ÁI · (HI · kI + T ) . (8)

Let n = |E|+ 1 and m = c(E) + 1. Then, by the selection of ÁI in (5),

ÁI · (HI · kI + T ) = HI · kI + T

8 · n · (T + 1) ·m Æ 2 ·m · n+ T

8 · n · (T + 1) ·m <
4 ·m · n · (T + 1)
8 · n · (T + 1) ·m = 1

2 . (9)

The first inequality holds since kI Æ |E| and HI Æ 2 ·m. Therefore, by (8) and (9),

|vI(S) ≠ (HI · kI + T )| Æ ÁI · (HI · kI + T ) < 1
2 . (10)

Since vI(S) œ N by Definition 11, it follows from (10) that vI(S) = HI · kI + T . This gives
the statement of the theorem. J

4 Lower Bounds in the Standard Computational Model

Our hardness result in Section 2 shows that oracle Exact Matroid Basis (EMB) is
hard, leading to the unconditional lower bounds for all non-trivial oracle MOL problems
in Section 3. Nonetheless, these hardness results consider matroids with general membership
oracles, and do not give a lower bound for matroids that can be e�ciently encoded. This
is particularly important, as in some settings oracle models di�er from non-oracle models
w.r.t complexity [6, 9]. Moreover, some matroids show up in problems that can be encoded
e�ciently. This includes partition matroids, graphic matroids, linear matroids, etc (see,
e.g., [37] for a survey on various families of matroids). Next, we formally define an e�cient
encoding of matroids.

I Definition 17. A function f : {0, 1}ú æ 2N ◊ 22N is called matroid decoder if for every

I œ {0, 1}ú
it holds that f(I) =

!
Ef(I), If(I)

"
is a matroid, and the following holds.

1. There is an algorithm that given I œ {0, 1}ú
returns Ef(I) in time |I|O(1)

.

2. There is an algorithm that given I œ {0, 1}ú
and S ™ Ef(I) decides if S œ If(I) in time

|I|O(1)
.

There is a simple matroid decoder that can decode every matroid (E, I) (such that
E ™ N), in which the encoding I explicitly lists I. However, using such a matroid decoder,
the encoding size of a matroid might be very large, up to |I| = �

!
2|E|", while we often seek

algorithms with running times polynomial in |E|. One way to overcome this di�culty is
via the oracle model considered in previous sections. However, our results in this model
may suggest that the hardness of EMB and MOL problems is due to the intrinsic hardness
of the oracle model. Yet, there are families of matroids with very e�cient encoding. For
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U V W

u1

u2 u3

v1

v2 w3 w2w1

Figure 3 An example of a partition matroid (E, I), which can be e�ciently encoded. The ground
set is E = {u1, u2, u3, v1, v2, w1, w2, w3}, partitioned into three sets: U, V,W . The independent sets
are all subsets of E containing at most one element from U, V , and W ; that is, I = {S ™ E | ’X œ
{U, V,W} : |S fl X| Æ 1}. A simple e�cient encoding of (E, I) is I = (E,U, V,W ). Membership can
be decided e�ciently given I, by checking the feasibility of a given set S w.r.t. U, V and W .

example, a uniform matroid (E, I), where I = {S ™ E | |S| Æ k}, can be e�ciently encoded
using I = (E, k) œ {0, 1}ú. Clearly, the time to decide membership of a given subset S ™ E

depends only on |S| and k. Another example is given in Figure 3.
We start with a definition of an encoded variant of EMB. We technically define a di�erent

problem for every decoder f . The definition of the problem is analogous to the versions
of EMB considered earlier in the paper, besides that the matroid is given via an arbitrary
bit-string I œ {0, 1}ú, that a matroid decoder f decodes into a matroid f(I).

f-decoded Exact Matroid Basis (f-decoded EMB)

Decoder f : {0, 1}ú æ 2N ◊ 22N is a matroid decoder.
Instance (I, c, T ), where I œ {0, 1}ú, c : Ef(I) æ N, T œ N.
Solution A basis S of the matroid f(I) such that c(S) = T .
Objective Decide if there is a solution.

I Definition 18. The f-decoded Exact Matroid Basis (f-decoded EMB) problem is

defined as follows.

Decoder: f : {0, 1}ú æ 2N ◊ 22N is a matroid decoder.

Instance: (I, c, T ), where I œ {0, 1}ú
, c : Ef(I) æ N, T œ N.

Solution: A basis S of the matroid f(I) such that c(S) = T .

Objective: Decide if there is a solution.

As a simple example, consider the fu-decoded EMB problem, for a specific matroid decoder
fu that decodes uniform matroids. The matroid decoder fu interprets every I œ {0, 1}ú

as I = (E, k) where E is a set (of numbers) and k œ N, and returns the uniform matroid
fu(I) = (E, I) such that I = {S ™ E | |S| Æ k}; clearly, fu is a matroid decoder. Thus,
an instance of fu-decoded EMB is a tuple U = ((E, k), c, T ) and a solution of U is S ™ E

such that |S| = k and c(S) = T ; the goal, as before, is to decide if there is a solution. This
problem is commonly known as the k-subset sum.

Recall that Theorem 3 asserts that oracle-EMB does not admit a pseudo-polynomial time
algorithm. However, this does not rule out that hypothetically, for every matroid decoder f
there is a pseudo-polynomial time algorithm for f -decoded EMB. The next result excludes
this option.

I Theorem 19. Assuming P ”= NP, there is a matroid decoder f such that there is no

algorithm for f-decoded EMB that for any f-decoded EMB instance U = (I, c, T ), where
n =

--Ef(I)
-- + 1 and m = c

!
Ef(I)

"
+ 1, runs in time (n · (T + 2) ·m)O(1)

.
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The proof of Theorem 19 is given towards the end of this section. Analogously to our
hardness result for oracle MOL problems, we use Theorem 19 to give a hardness result for
an encoded version of MOL problems. For every matroid decoder f and every P œ P, we
define a variant of the P -matroid optimization with a linear constraint (P -MOL)

problem in which the matroid is given via an arbitrary bit-string which a matroid decoder f
decodes into a matroid. Formally, let P œ P, where P = (opt,F , Ù), be the parameters of
the P -MOL problem. For a matroid decoder f , we define the f -decoded P -MOL problem as
follows.

I Definition 20. The f-decoded P -matroid optimization with a linear constraint

(f-decoded P -MOL) problem is defined as follows.

Decoder: f : {0, 1}ú æ 2N ◊ 22N is a matroid decoder.

Instance: (I, v, w, L), where I œ {0, 1}ú
, v : Ef(I) æ RØ0, w : Ef(I) æ RØ0, L œ RØ0.

Solution: A basis S of the matroid f(I) such that c(S) = T .

Objective: opt v(S) s.t. S œ F (f(I)) , w(S) Ù L.

For example, consider the encoded version of the P -MOL for P = (max, IS,Æ) with the
matroid decoder fu that decodes uniform matroids. An instance of the fu-decoded P -MOL
problem is a tuple U = (I, v, w, L) where I = (E, k) is a bit-string used for extracting the
uniform matroid fu(I) = (E, I) such that I = {S ™ E | |S| Æ k}, v is the value function, w
is the weight function, and L is the bound. A solution of U is S ™ E such that |S| Æ k and
w(S) Æ L; the goal is to find a solution S of maximum value v(S). This problem is widely
known as knapsack with cardinality constraint.

Recall that Q = P \ {(min, IS,Æ)} is the set of parameters for non-trivial MOL problems.
Using the hardness of f -decoded, for some matroid decoder f (details on f are given towards
the end of the section), we show the hardness of the f -decoded variant of all non-trivial
MOL problems.

I Theorem 21. Assuming P ”= NP, for any P œ Q there is a matroid decoder f such that

there is no Fully PTAS for f-decoded P -MOL.

In the remainder of this section, we prove Theorem 19 and Theorem 21. The matroid
decoder used in our proofs decodes a subclass of the �-matroid family (see Section 2), in
which the secret family � consists of the solutions for a boolean satisfiability problem

(SAT) instance.
In a SAT instance A = (V, V̄ , C) with n œ N variables (in a slightly simplified notation),

we are given a set V = {v1, . . . , vn} of variables, their negations V̄ = {v̄1, . . . , v̄n}, and a set
C ™ 2V fiV̄ of clauses. The goal is to decide if there is a set S ™ [n] satisfying that for all
C œ C there is i œ [n] such that one of the following holds.

vi œ C and i œ S.
v̄i œ C and i /œ S.

Such a set S is called a solution of A; let S(A) be the set of solutions of a SAT instance
A. In addition, let n(A) = n be the number of variables in the instance A. The family of
SAT-matroids is the subfamily of �-matroids where � = S(A) for some SAT instance A (for
the notation and definition of �-matroids, see Definition 4). Specifically,

I Definition 22. Let A be a SAT instance, k œ [n(A)], and – œ
Ë
n(A)2

È
. Define the

SAT-matroid on A, k,– as Mn(A),k,–(S(A)) =
!
[n(A)] , In(A),k,–(S(A))

"
.
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We show below that SAT-matroids can be encoded e�ciently. For every I œ {0, 1}ú, we
interpret I as I = (A, k,–), where A is a SAT instance, k œ [n(A)], and – œ

Ë
n(A)2

È
;

w.l.o.g., we may assume that every I = (A, k,–) œ {0, 1}ú can be interpreted in that manner;
moreover, we can assume that n(A) Æ |A|, where |A| is the encoding size of A. The following
definition defines a matroid decoder that decodes SAT-matroids from a bit-string.

I Definition 23. Define the SAT-decoder as the function fSAT : {0, 1}ú æ 2N ◊ 22N such

that for all I = (A, k,–) œ {0, 1}ú
it holds that fSAT(I) = Mn(A),k,–(S(A)).

In the next result, we show that the SAT-decoder fSAT is indeed a matroid decoder.

I Lemma 24. fSAT is a matroid decoder such that |I| = |A|O(1)
for every I = (A, k,–) œ

{0, 1}ú
.

Recall the sets Jn,k, Kn,k,–, Ln,k,–(�) and In,k,–(�) were defined in Definition 4. We will
use an algorithm for f -decoded EMB to obtain an algorithm for SAT. To this end, consider
the following family of structured fSAT-decoded EMB instances.

I Definition 25. An fSAT-decoded EMB instance (I, c, T ), where I = (A, k,–) is called

structured if – œ
Ë
n(A)2

È
, T = –, and c : [n(A)] æ N such that for all i œ [n(A)] it holds

that c(i) = i

The next observation immediately follows from the definition of structured fSAT-decoded
EMB instances and SAT-matroids.

I Observation 26. for any structured fSAT-decoded EMB instance U = (I, c, T ), where
I = (A, k,–), and S ™ [n(A)], it holds that: S is a solution for U if and only if S œ S(A),
|S| = k, and sum(S) = c(S) = –.

We show that given a polynomial algorithm that decides structured fSAT-decoded EMB
instances, we can decide SAT. This result easily imply Theorem 19 as shown afterwards.

I Lemma 27. Assuming P ”= NP, there no algorithm that decides every fSAT-decoded EMB
structured instance (I, c, T ) in time |I|O(1)

.

From the above result, the hardness of the more general fSAT-decoded EMB easily follows.
As an immediate corollary, Theorem 28 gives the proof of Theorem 19.

I Theorem 28. Assuming P ”= NP, there is no algorithm for fSAT-decoded EMB that

runs in time (n · (T + 2) ·m)O(1)
, for any fSAT-decoded EMB instance U = (I, c, T ) where

n =
--EfSAT(I)

-- + 1 and m = c
!
EfSAT(I)

"
+ 1.

Finally, we show that the variants of non-trivial matroid optimization with a linear
constraint (MOL) problems, in which the decoding is performed by the SAT-decoder fSAT,
do not admit Fully PTAS under the standard assumption P ”= NP. The proof is similar to
the proof of Theorem 1 in Section 3. Lemma 29 directly gives the proof of Theorem 21.

I Lemma 29. Assuming P ”= NP, for any P œ Q there is no Fully PTAS for fSAT-decoded
P -MOL.
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5 Discussion

In this paper, we derive lower bounds for a family of matroid optimization problems with a
linear constraint. We show that none of the (non-trivial) members of this family admits a
Fully PTAS. In particular, this rules out a Fully PTAS for well studied problems such as
budgeted matroid independent set, constrained minimum basis of a matroid,
and knapsack cover with a matroid. As BM and CMB admit an E�cient PTAS, our
lower bounds resolve the complexity status of these problems, which has been open also for
the generalization of budgeted matroid intersection [12, 2, 17]. Our preliminary study
shows that using the techniques of [26], we may be able to derive E�cient PTAS for all MOL
problems. This would imply that Theorem 1 gives a tight lower bound for the entire MOL
family. We leave the details for future work.

A key result of this paper is that exact matroid basis (EMB) does not admit a
pseudo-polynomial time algorithm, unlike the known special cases of k-subset sum and
EMB on a linear matroid. Our proofs can be used to obtain lower bounds for other problems.
For example, the hardness result for EMB can be adapted to yield lower bounds for related
parameterized problems [22, 16]. Moreover, the proof of Theorem 1 can be modified to show
that an E�cient PTAS for a non-trivial MOL problem with running time f

! 1
Á

"
·poly(n) must

satisfy f
! 1

Á

"
= �

1
2Á

≠ 1
4

2
. We leave these generalizations of our results to a later version of

this paper.
Our results build on the �-matroid family introduced in this paper. Such matroids exploit

the interaction between a weight function and the underlying matroid constraint of the given
problem. Aside from the implications of our results for previously studied problems, the
new subclass of �-matroids may enable to derive lower bounds for other problems. For
example, consider the generalization of BM where the objective function is submodular
and monotone. This is known as monotone submodular maximization with a knapsack and
a matroid constraint [11]. Indeed, if the knapsack constraint is removed, there is a tight!
1 ≠ 1

e

"
-approximation for the problem [4]. The same bound holds if we relax the matroid

constraint [40]. However, the best known approximation for the problem with a knapsack
and a matroid constraint is

!
1 ≠ 1

e
≠ Á

"
[11]. This setting resembles the status of MOL

problems prior to our work, where removing either the linear or the matroid constraint
induces a substantially easier problem. The potential use of �-matroid variants to rule out a!
1 ≠ 1

e

"
-approximation for the above problem remains an interesting open question.

In the context of solving configuration LPs for packing problems with a matroid constraint
(e.g., [24, 15]), our lower bound implies that an FPTAS for an LP in this class cannot be
obtained using the standard ellipsoid method.

We show unconditional hardness results in the oracle model (even if randomization is
allowed), and give analogous lower bounds where the matroids are encoded as part of the
input, assuming P ”= NP. Our construction in Section 4 can be used to derive hardness
results for other matroid problems in non-oracle models. Specifically, we can obtain in the
standard computational model hardness results analogous to those in the oracle model of [28].
This includes a proof that it is NP-hard to decide if a given matroid is uniform, analogous
to the unconditional hardness result in the oracle model of [28]. We leave these results for
future work.

Our lower bounds for MOL problems on general matroids call for a more comprehensive
study of these problems on restricted classes of matroids. We note the existence of Fully
PTASs for MOL problems on some restricted matroid classes, e.g., BM on a laminar matroid
or KCM on a partition matroid. The question whether (non-trivial) MOL problems admit
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Fully PTAS on broader matroid classes, such as graphical matroids or linear matroids,
remains open. In particular, it would be interesting to obtain a Fully PTAS for constrained
minimum spanning tree [26] and BM on a linear matroid ≠ or show that one does not
exist.

References
1 Kim Allan Andersen, Kurt Jörnsten, and Mikael Lind. On bicriterion minimal spanning trees:

An approximation. Computers & Operations Research, 23(12):1171–1182, 1996.
2 André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schäfer. Budgeted matching

and budgeted matroid intersection via the gasoline puzzle. Mathematical Programming,
128(1):355–372, 2011.

3 Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset
sum and partition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1797–1815. SIAM, 2021.
4 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone

submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

5 Paolo M. Camerini, Giulia Galbiati, and Francesco Ma�oli. Random pseudo-polynomial
algorithms for exact matroid problems. Journal of Algorithms, 13(2):258–273, 1992.

6 Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM (JACM), 51(4):557–594, 2004.

7 Alberto Caprara, Hans Kellerer, Ulrich Pferschy, and David Pisinger. Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Operational Research,
123(2):333–345, 2000.

8 Venkatesan T Chakaravarthy, Anamitra Roy Choudhury, Sivaramakrishnan R Natarajan, and
Sambuddha Roy. Knapsack cover subject to a matroid constraint. In Proc. FSTTCS, 2013.

9 Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Håstad, Desh Ranjan,
and Pankaj Rohatgi. The random oracle hypothesis is false. Journal of Computer and System

Sciences, 49(1):24–39, 1994.
10 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the

multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.
11 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via

exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on

Foundations of Computer Science, pages 575–584. IEEE, 2010.
12 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid

intersection via dependent rounding. In Proc. SODA, pages 1080–1097, 2011.
13 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein. Introduction to

algorithms. MIT press, 2022.
14 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and MichaI WIodarczyk. On problems

equivalent to (min,+)-convolution. ACM Transactions on Algorithms (TALG), 15(1):1–25,
2019.

15 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An AFPTAS for bin packing with
partition matroid via a new method for LP rounding. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), 2023.
16 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Budgeted matroid maximization: A

parameterized viewpoint. IPEC, 2023.
17 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matching and

budgeted matroid intersection via representative sets. In Proc. ICALP, pages 49:1–49:16, 2023.
18 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matroid

independent set. In Proc. SOSA, pages 69–83, 2023.

ICALP 2024



56:20 Lower Bounds for Matroid Optimization Problems

19 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An FPTAS for budgeted laminar matroid
independent set. Operations Research Letters, 51:632–637, 2023.

20 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Lower bounds for matroid optimization
problems with a linear constraint. arXiv preprint, 2023. arXiv:2307.07773.

21 Jack Edmonds. Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur.

Standards Sect. B, 69:67–72, 1965.
22 Fedor V Fomin, Petr A Golovach, Tuukka Korhonen, Kirill Simonov, and Giannos Stamoulis.

Fixed-parameter tractability of maximum colored path and beyond. In Proc. SODA, pages
3700–3712, 2023.

23 András Frank. Connections in combinatorial optimization, volume 38. Oxford University Press
Oxford, 2011.

24 Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An EPTAS for machine scheduling with
bag-constraints. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,
pages 135–144, 2019.

25 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independ-
ence systems. In Proc. ESA, pages 536–548, 2010.

26 Refael Hassin and Asaf Levin. An e�cient polynomial time approximation scheme for the
constrained minimum spanning tree problem using matroid intersection. SIAM Journal on

Computing, 33(2):261–268, 2004.
27 Sung-Pil Hong, Sung-Jin Chung, and Bum Hwan Park. A fully polynomial bicriteria ap-

proximation scheme for the constrained spanning tree problem. Operations Research Letters,
32(3):233–239, 2004.

28 Per M Jensen and Bernhard Korte. Complexity of matroid property algorithms. SIAM Journal

on Computing, 11(1):184–190, 1982.
29 Richard M Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel computation on

matroids. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages
541–550. IEEE, 1985.

30 Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional knapsack. Information

Processing Letters, 110(16):707–710, 2010.
31 Eugene L Lawler. Matroid intersection algorithms. Mathematical programming, 9(1):31–56,

1975.
32 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res.,

4(4):339–356, 1979.
33 László Lovász. The matroid matching problem. Algebraic methods in graph theory, 2:495–517,

1978.
34 James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.
35 Rudi Pendavingh and Jorn Van der Pol. On the number of matroids compared to the number

of sparse paving matroids. arXiv preprint, 2014. arXiv:1411.0935.
36 Ram Ravi and Michel X Goemans. The constrained minimum spanning tree problem. In

Algorithm Theory – SWAT’96: 5th Scandinavian Workshop on Algorithm Theory Reykjavík,

Iceland, July 3–5, 1996 Proceedings 5, pages 66–75. Springer, 1996.
37 Alexander Schrijver. Combinatorial optimization: polyhedra and e�ciency, volume 24. Springer,

2003.
38 Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem. Operations

Research, 27(3):503–515, 1979.
39 José A Soto. A simple PTAS for weighted matroid matching on strongly base orderable

matroids. Discrete Applied Mathematics, 164:406–412, 2014.
40 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack

constraint. Operations Research Letters, 32(1):41–43, 2004.

https://arxiv.org/abs/2307.07773
https://arxiv.org/abs/1411.0935


Non-Linear Paging
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Abstract

We formulate and study non-linear paging - a broad model of online paging where the size of subsets
of pages is determined by a monotone non-linear set function of the pages. This model captures
the well-studied classic weighted paging and generalized paging problems, and also submodular and
supermodular paging, studied here for the first time, that have a range of applications from virtual
memory to machine learning.

Unlike classic paging, the cache threshold parameter k does not yield good competitive ratios
for non-linear paging. Instead, we introduce a novel parameter ¸ that generalizes the notion of
cache size to the non-linear setting. We obtain a tight deterministic ¸-competitive algorithm for
general non-linear paging and a o

!
log2(¸)

"
-competitive lower bound for randomized algorithms.

Our algorithm is based on a new generic LP for the problem that captures both submodular and
supermodular paging, in contrast to LPs used for submodular cover settings. We finally focus on the
supermodular paging problem, which is a variant of online set cover and online submodular cover,
where sets are repeatedly requested to be removed from the cover. We obtain polylogarithmic lower
and upper bounds and an o�ine approximation algorithm.
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1 Introduction

In the well studied paging problem, we are given a collection of n pages and a cache that can
contain up to k pages simultaneously, where k < n. At each time step, one of the pages is
requested. If the requested page is already in the cache, the request is immediately served.
Otherwise, there is a cache miss and the requested page is fetched to the cache; to ensure
that the cache contains at most k pages, some other page is potentially evicted. In the most
fundamental model, the goal is to minimize the number of cache misses (or equivalently,
number of evictions).

In more general models, pages may have di�erent sizes and costs (see, e.g., [1, 5]) and
then the sum of the sizes of the pages in cache cannot exceed its capacity. However, a linear
function over page sizes that defines cache feasibility fails to capture scenarios with more
involved relations between subsets of pages that can reside together in cache. Consider a
system in which pages share parts of their memory and then only the missing memory parts
of a requested page can contribute to the increase in cache size. This setting can be modeled
using a submodular function that defines cache feasibility. Another example is a setting in
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which items stored in cache have dependencies yielding additional overhead in their mutual
storage demand. The rule caching problem is one such setting and it has been well studied
in networking [12, 46, 37, 21, 25, 39, 24, 17, 9, 35, 26, 16, 45, 34, 33, 47, 13].

Our focus in this paper will be on settings where such non-linear behavior exists. We will
further motivate our model in detail in Section 1.2.

1.1 Our Model

Before presenting our model, we give some required preliminary definitions. Let P be a
set and let f : 2P æ N be a set function of P. The function f is called monotone if for
every S ™ P and S

Õ ™ S it holds that f(SÕ) Æ S. In addition, f is called submodular if for
every S, S

Õ ™ P it holds that f(S) + f(SÕ) Ø f (S fi S
Õ) + f (S fl S

Õ). Conversely, f is called
supermodular if for every S, S

Õ ™ P it holds that f(S) + f(SÕ) Æ f (S fi S
Õ) + f (S fl S

Õ).
In this work, we introduce a very general model of paging with an arbitrary function

defining cache feasibility. In the non-linear paging problem, we are given a collection P of n
pages where each page p œ P has a fixed eviction cost c(p). We are also given a monotone
feasibility function f : 2P æ N that assigns a value to every subset of pages, indicating their
size. Finally, we are given a cache threshold k. As in standard paging, in each time step t

there is a request pt for one of the pages. If pt is already in cache, the request is immediately
served. Otherwise, pt is fetched to the cache and possibly some subset of pages is evicted to
ensure that the set of pages in the cache, denoted by St, is feasible, i.e., f (St) Æ k. The goal
is to minimize the total cost incurred from page evictions. The classic paging problem is
obtained by setting f(S) = |S| for all S ™ P. Other interesting applications of our model
are described below.

Generalized Paging [5, 1]. Here the feasibility function is linear; that is, for every S ™ P
it holds that f(S) =

q
pœS f(p), where f(p) is the size of page p œ P.

Submodular Paging. The feasibility function is submodular. A natural application of this
variant is to settings where pages share memory items (see Section 1.2).
Supermodular Paging. The feasibility function is supermodular, implying a submodular
cover function for pages remaining out of the cache. This setting e�ectively captures
online submodular covering problems [2, 23, 20]. Supermodular paging will be the main
focus of our paper.

Supermodular paging is a variant of online set cover [2] and online submodular cover [20].
In online set cover, we are given a ground set X and a family S of subsets of X. Requests
for elements of X arrive online; if a requested element is not already covered by a previously
chosen set, a set S œ S containing it is chosen, paying a cost c(S). The goal is to minimize
the cost of the selected sets. Online submodular cover generalizes online set cover - the goal
is to cover a general (monotone) submodular function with an increasing cover demand over
time. In supermodular paging (submodular cover), the cover demand does not change over
time, as the same page (a set S œ S in online set cover) may be requested (removed from the
cover) multiple times. We show in the full version of the paper (see [14]) that supermodular
paging is even more challenging than (online) submodular cover.

1.2 Motivation

Non-linear paging generalizes several fundamental caching problems, capturing many real
world applications. Besides known applications of the classic paging models with linear
feasibility functions [38, 15, 4, 5, 1], there are many scenarios in which the interaction between
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Figure 1 An illustration of a shared memory systems with four pages and four shared memory
units (“atoms”). The cache is of size k = 3 and contains pages p2, p3 (in blue) whose shared memory
is of size 3 - the three red atoms. Observe that either fetching p1 or evicting it will not change the
number of atoms stored in cache, however, fetching p4 requires evicting p2.

pages is non-linear, requiring the more general non-linear paging model. As already indicated,
supermodular paging roughly generalizes online set cover and therefore has both theoretical
and practical importance [20, 2]. We describe below several interesting applications of
non-linear paging.

A major motivation for the study of non-linear paging is caching in shared memory
systems (e.g., [28, 7, 43, 40]). Each process in a multi-process memory system is associated
with a virtual memory [11], providing the illusion that it has a much larger memory. In some
shared memory systems, caching policies are defined over entire processes, that is, the entire
virtual address space of a process can be taken to the cache. Since the virtual memory of two
processes typically overlaps in physical memory, the increase in (physical) memory in cache
is larger if the cache is empty, as the entire memory of a process is loaded to the cache. In
contrast, if the cache is nearly full, and a process is loaded to the cache, the increase in total
size is smaller, as most of the virtual memory addresses are already in cache. In a similar
vein, when caching hot data at the network edge, to avoid serving requests from a remote
cloud, space e�ciency of similar files is achieved through deduplication (e.g. [27]), which is
very similar to the way overlaps are handled in virtual memory.

Thus, caching in shared memory systems is a special case of submodular paging. More
formally, consider a cache that can store up to k atoms from a larger set A = {a1, . . . , an}
spanning the physical memory. Each page (process) p contains a subset of atoms a(p) ™ A

corresponding to the physical memory to which process p is mapped. The feasibility
function f ensures that a collection S of pages contains jointly at most k atoms. Thus,
f(S) =

---
t

pœS a(p)
---, and it is a submodular function. See Figure 1 for an illustration.

Paging with a supermodular feasibility function arises in common settings where the
storage demand grows rapidly as a function of the number of “pages” stored in cache. In
these scenarios, there is a large set of n entities (corresponding to vertices), and among
subsets of entities certain interactions exist (represented by hyperedges). This data struc-
ture, known as a hypergraph, is ubiquitous in applications such as recommendation sys-
tems [19, 41] (where vertices represent individuals and hyperedges represent communities),
image retrieval [29](vertices represent images and hyperedges represent correlations), and
bioinformatics [32] (vertices represent substances and hyperedges stand for biochemical
interactions). Other applications arise in machine learning [42, 18, 49] and databases [6].

In various practical settings, the hypergraph is very large (e.g., [36, 31, 22]). Therefore,
a natural approach is to store frequently accessed vertices in a cache. However, caching is
e�ective only if all interactions (i.e., hyperedges) among subsets of vertices in cache are also
stored therein. As a set of x vertices may have up to 2x induced hyperedges, the storage
demand for hyperedges tends to be significantly larger compared to the number of vertices.
Caching hypergraphs in the non-linear paging framework can be formally defined as follows:
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57:4 Non-Linear Paging

consider a set P of vertices and define a feasibility function f over P, such that for a subset
of vertices S ™ P, the storage demand f(S) is the number of induced hyperedges in S plus
the cardinality of S. Function f is a supermodular function.

For example, a real-world problem related to supermodular paging is caching in device-to-
device (D2D) communication networks, with social ties among users and common interests
that are used as key factors in determining the caching policy and are modeled via a
hypergraph [3]. Here, the number of hyperedges (describing roughly interferences among
users of the network, content, transmission rate, etc.) grows in a supermodular manner with
respect to the number of users placed in cache. In addition, our reduction from online set
cover (similarly, online submodular cover) to supermodular paging implies that applications
of online set cover are also applications of supermodular paging.

1.3 Our Results and Techniques

We now present our results and elaborate on the techniques used. We start with general
non-linear paging and then proceed to the special case of supermodular paging.

1.3.1 General Non-Linear Paging

In classic paging models, competitive ratios are typically given as a function of k, the cache
size. However, non-linear paging is more di�cult. Even for non-linear paging instances
with k = 0 the competitive ratio can be very high. For example, consider a (classic) paging
instance I

Õ with cache threshold k
Õ; define a non-linear paging instance I with a (non-linear)

feasibility function f for which f(S) = 0 if S is feasible for I Õ and f(S) = 1 otherwise. In
addition, we set k = 0 as the cache threshold of I. Clearly, a solution for I implies a solution
for I

Õ. Hence, by the hardness of paging [38, 15] the best competitive ratio of non-linear
paging is arbitrarily large as a function of k (we give the remaining details in [14]). Thus,
instead of k, we look for a parameter that better captures the competitiveness of general
non-linear paging. This parameter turns out to be the maximum cardinality of a minimally
infeasible set, i.e., an infeasible set where every proper subset of it is feasible1. Formally,

I Definition 1. A set S ™ P is called feasible if f(S) Æ k and is infeasible otherwise.
Additionally, S is minimally infeasible if S is infeasible and every S

Õ µ S is feasible, and let
M = {S ™ P | f(S) > k and f(SÕ) Æ k ’SÕ µ S} be all minimally infeasible sets. Finally,
let the width of f be

¸(f) = max
SœM

(|S| ≠ 1) .

We simply let ¸ = ¸(f) when it is clear from context. Clearly, for paging (or weighted
paging) the width ¸ equals k. Hence, the width accurately captures the optimal performance
of paging algorithms: there is a tight ¸-competitive deterministic algorithm [38] and a
tight �(log(¸))-competitive randomized algorithm [15]. However, the width behaves quite
di�erently in other scenarios. For example, in the setting of submodular paging described
in Section 1.2, the instance can have a fixed width ¸ = O(1), but the number of pages in
cache can be unbounded (e.g., all pages use the same atom). Interestingly, we show that the
width gives a tight competitive ratio also for general non-linear paging via a new LP for the
problem (see Sections 2 and 2.1).

1 Technically, we subtract one so that the definition coincides with the parameter k in paging.
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I Theorem 2. There is a deterministic ¸-competitive algorithm for non-linear paging.
Moreover, every deterministic algorithm for non-linear paging is at least ¸-competitive.

The algorithm achieving Theorem 2 is based on a new LP relaxation, designed for the
general setting of non-linear paging. We now explain why previous techniques for classic
paging are not su�cient for obtaining a competitive online algorithm for this setting.

Previous work on generalized paging [5, 1] and on other online covering problems [20, 10]
use knapsack cover constraints. This powerful technique, originated by Wolsey [44], is very
useful for relaxing submodular cover constraints using linear inequalities. Indeed, paging
problems are often studied from the viewpoint of a covering problem (e.g., [4]), where the
complement of the cache (i.e., pages outside the cache) needs to be covered. In classic paging,
at any point of time at least n ≠ k pages are not in the cache.

Consider the covering function g : 2P æ N of a feasibility function f defined to be the
(non-linear) size requirement outside of the cache: g(S) = f(P) ≠ f(P \ S) for every S ™ P.
Observe that for classic paging it holds that g(S) = n ≠ (n ≠ |S|) = |S| and the feasibility
constraint translates to g(S) Ø n ≠ k at all times. If f is submodular (i.e., submodular
paging) then g is supermodular, and vice versa. Knapsack cover constraints yield a relaxation
of the covering problem when the cover function g is submodular [20], as is the case in classic
paging problems.

However, for submodular paging, the covering function g is supermodular and knapsack
cover constraints do not even provide a relaxation of the problem. For example, let g(S) = 1
for S = P and g(S) = 0 otherwise. Then, the knapsack constraints are not satisfied by the
unique solution that covers a demand of k = 1 (the entire set P). Specifically, P does not
satisfy the knapsack constraint for S = ÿ, i.e.,

q
pœP xp · gÿ({p}) = 0, but gÿ(P) = 1.

To circumvent the limits of knapsack cover constraints for submodular paging, we
formulate a new set of covering constraints that are valid for any feasibility functions f and
g. Specifically, the constraints require removing at least one page from every infeasible set.
Then, using the online primal-dual approach applied to this set of constraints, we obtain a
tight ¸-competitive deterministic algorithm for non-linear paging. Specifically, upon arrival
of a page that induces an infeasible set of pages in cache, our algorithm identifies a minimally
infeasible set of pages and continuously increases their corresponding dual variable in the LP,
evicting tight pages.

Interestingly, as a special case, Theorem 2 gives a simple k-competitive deterministic
algorithm for generalized paging; to the best of our knowledge, there are only (k + 1)-
competitive deterministic algorithms [8, 48] for generalized paging. Thus, our bound is tight
for this problem.

I Corollary 3. There is a deterministic k-competitive algorithm for generalized paging.

We emphasize that the lower bound of Theorem 2 can be obtained for any function f

with a minimally infeasible set of cardinality ¸ (regardless of whether f is linear, submodular,
supermodular, or any other function). This shows the robustness of the parameter ¸ as an
indicator for the competitiveness of non-linear paging. Thus, it is natural to ask whether the
parameter ¸ for non-linear paging is analogous to the parameter k for classic paging when
allowing randomization. We answer this question in the negative by showing that in contrast
to paging, that admits an O(log(¸))-competitive randomized algorithm [15], non-linear paging
is substantially harder w.r.t. the parameter ¸.

I Theorem 4. Unless NP ™ BPP, there is no polynomial-time randomized o(log2(¸))-
competitive algorithm for non-linear paging.
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A very intriguing open question is whether there exists a randomized polylog(¸)-competi-
tive algorithm for general non-linear paging. Unfortunately, we show that the LP used for
obtaining Theorem 2 has an integrality gap of ¸, and thus would need to be strengthened to
achieve this end (see Section 2.3). Hence, obtaining a polylog(¸) competitive factor would
require a new set of techniques. As we have already discussed earlier, existing techniques
for obtaining randomized online algorithms for paging problems and related variants focus
on solving covering linear programs (LP) online, and they break down in the presence of
general non-linear paging constraints.

To overcome the integrality gap of our LP, we formulate a stronger LP for non-linear
paging (see Section 2.3). Obtaining even a fractional polylog(¸)-competitive algorithm for
this LP seems a hard task. Thus, we consider another parameter which allows us to get a
better competitive ratio. The parameter is the maximum number of pages that fit together
in the cache. Formally, define

µ = max
S™P s.t. f(S)Æk

|S| (1)

as the maximum cardinality of a feasible set in cache. Observe that µ = k for e.g., generalized
paging, hence it is a natural parameter to also consider in our setting. We also remark
that in many practical settings, such as classic paging, it holds that n ∫ µ and obtaining a
competitive ratio that depends on µ (rather than n) is much more desirable.

Clearly, µ Ø ¸. The following example illustrates a scenario demonstrating a scenario
where µ ∫ ¸. Consider a non-linear paging instance on a set P of pages which is partitioned
into disjoint sets X,Y , where |X| = n, |Y | = k+1, and n ∫ k. Define a feasibility function f

such that for all subsets S of P , f(S) = |Y fl S|. Define the cache threshold as k. Therefore,
the only minimally infeasible set is Y ; thus, ¸ = k. On the other hand, the maximum
cardinality of a set that fits into cache is the cardinality of all pages in X and any k pages
from Y ; thus, µ = n + k. Since n ∫ k (i.e., n can be chosen to be arbitrarily large with
respect to k) it follows that µ ∫ ¸.

We give the following fractional algorithm for solving the strengthened LP online.

I Theorem 5. There is an O (logµ)-competitive algorithm for obtaining a fractional solution
for the strengthened LP.

It as an interesting open question if a randomized polylog(µ)-competitive algorithm for
non-linear paging can be designed by rounding the fractional solution obtained in Theorem 5.

1.3.2 Supermodular Paging

We now discuss our results and techniques for supermodular paging. Our main result is a
polylogarithmic randomized competitive algorithm for supermodular paging, i.e., submodular
cover paging. As we show later on, our upper bound turns out to be quite close to the lower
bound we prove.

I Theorem 6. There is an O

1
log2 µ · log

1
cmax
cmin

· f(P)
22

-competitive randomized algorithm
for supermodular paging (submodular cover paging), where cmax, cmin are the maximum and
minimum costs of pages, respectively.

In particular, for unweighted supermodular paging (where cp = 1 ’p œ P), the above theorem
implies an O

!
log2(µ) · log (f(P))

"
-competitive algorithm.

Our algorithm relies on a di�erent LP relaxation than the one described in Section 1.3.1.
As we aim to solve supermodular paging, which implies a submodular cover function g, we
design an LP relaxation inspired by the submodular cover relaxation of Wolsey [44] (see
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also [20]). We solve this LP in the case that the constraints arrive online to obtain a fractional
O(log(µ))-competitive (deterministic) algorithm, while maintaining the property that the
entries are either integral or multiples of 1

k .
To obtain an integral solution, one is tempted to maintain online a set of feasible cache

states respecting (even approximately) the marginal probabilities induced by the fractional
solution, similarly to previous works on weighted paging and generalized paging [4, 5, 1].
However, techniques for online cache state maintenance of [4, 5, 1] seem to break down in
the presence of submodular cover constraints. Instead, we augment the fractional solution
by an additional polylogarithmic boosting factor and perform randomized rounding, with
possible corrections to ensure feasibility. The probability of a page to be evicted at some
point in time is shown to be proportional to the page’s fractional increase normalized by the
probability that the page is in cache.

We also give lower bounds for online supermodular paging. Surprisingly, even though
online set cover seems starkly di�erent from supermodular paging, in particular since the
cover constraints change over time for online set cover, we can show that supermodular
paging is in a sense harder to solve online.

I Theorem 7. For any fl Ø 1, if there is a fl-competitive algorithm for supermodular paging,
then there is a fl-competitive algorithm for online set cover having the same running time up
to polynomial factors.

By Theorem 7 and the results of [2, 23], we give a lower bound on the competitiveness of
supermodular paging, indicating the necessity of the factor logµ · log (P).

I Corollary 8. Unless NP ™ BPP, there is no polynomial o (logµ · log (f(P)))-
competitive algorithm for supermodular paging. Moreover, there is no deterministic
o

1
logµ·log(f(P))

log logµ+log log(f(P))

2
-competitive algorithm for supermodular paging of any running time.

We remark that some of our results from Section 1.3.1 can be stated using the parameter
µ as well. However, as we showed earlier, there are non-linear paging instances in which
the parameter µ ∫ ¸ and it grows artificially apart from the true hardness of the instance –
in terms of competitive analysis. In contrast, every minimally infeasible set of cardinality
¸ + 1 can be used to obtain the lower bounds for classic paging [38, 15] (i.e., ¸- deterministic
and O(log ¸)-randomized lower bounds). Thus, in an informal sense, an increase in ¸ always
incurs an increase in the di�culty of the problem, unlike an increase in µ. For this reason,
we believe that searching for competitive algorithms and lower bounds in terms of ¸, rather
than µ, may be of greater interest in the non-linear paging setting.

Finally, we also aim at obtaining an o�ine approximation algorithms for supermodular
paging (i.e., where all requests are known in advance). A first attempt would be to reduce
the problem to o�ine submodular cover, as follows. Define a covering function G on the
domain containing all pairs (p, j), for every page p and the j-th time it is requested. Define
the value of G on a subset of pairs S as G(S) =

q
tœT g(St), where g is the covering function

of the instance (see Section 1.3.1), and St is the set of all pages p, where (p, j) belongs to
S and the time interval between requests j and (j + 1) for p intersects t. Clearly, the total
cover demand, even with a unit demand per-time slot, is a function of T ; thus, applying an
o�ine set cover algorithm in a black box manner gives only an � (log (T ))-approximation
[30]. As T may be very large, a di�erent technique is in place.

Combined with the strong round-or-separate algorithm of [20], our techniques yield an
approximation algorithm for supermodular paging independently of T (see Section 3). We
defer the details to the full version of the paper.
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I Theorem 9. There is an o�ine O

1
log

1
cmax
cmin

· f(P)
22

-approximation algorithm for su-
permodular paging.

Due to space constraints, some of the proofs (including our lower bounds) are given only
in the full version of the paper [14].

2 Deterministic Algorithm for Non-Linear Paging

In this section, we present a deterministic algorithm for non-linear paging and show that it
gives a tight competitive ratio for the problem, thus providing proofs for Theorem 2 and
Corollary 3. Our algorithmic results are based on a new LP relaxation for the problem which
we introduce here.

2.1 LP Relaxation for Non-Linear Paging

Consider a non-linear paging instance with a set of pages P, a feasibility function f , cache
threshold k, a set of time points T , and a page request pt œ P for every time t œ T . To
simplify notation, for a set S and an element p we use S + p = S fi {p} and S ≠ p = S \ {p}.
The LP is as follows.

The variables of the LP are xp(j) for every page p œ P and the j-th time that p is
requested. Intuitively, the value of the variable xp(j) indicates to what extent page p is
evicted between its j-th and (j+1)-th requests. The constraints state that for every infeasible
set S containing the requested page pt, for time point t, we must “break” this set - i.e.,
evicting at least one page from S ≠ pt. If this constraint is satisfied for every such infeasible
set by an integral solution, then it induces a feasible set of pages in the cache at all times.
See Figure 2 for a visualization of these constraints.

We use np to denote the number of requests for page p during the request sequence.
Also, we use r(p, t) to denote the number of requests for page p until time t. We assume
that xp(0) is a variable always set to 0, for all p œ P. To simplify notation, for every t œ T ,
let S(t) = {S ™ P | pt œ S and f(S) > k} denote the infeasible sets containing pt. For any
w œ N, let [w] = {1, 2, . . . , w}. Our LP relaxation is as follows.

min
ÿ

pœP

ÿ

jœ[np]

xp(j) · c(p)

s.t.
ÿ

pœS≠pt

xp(r(p, t)) Ø 1, ’t œ T ’S œ S(t)

xp(j) Ø 0 ’p œ P ’j œ [np]

(2)

We now define the dual LP. For page p œ P and j œ [np] let I(p, j) = {t œ T | j = r(p, t)} be
the interval of all time points between the j-th request to p till the last time point before the
(j + 1)-st request for page p. The dual of (2) is the following.

max
ÿ

tœT

ÿ

SœS(t)

yt(S)

s.t.
ÿ

tœI(p,j)

ÿ

SœS(t)
--pœS≠pt

yt(S) Æ c(p), ’p œ P ’j œ [np]
(3)
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p1

p2
pt

Figure 2 An illustration of the LP constraints. Each colored shape represents a minimally
infeasible set of pages upon the arrival of a page pt. Removing pages p1 and p2 ensures cache
feasibility.

We use Primal-LP and Dual-LP to denote the values of the optimal solutions for the primal
and dual programs, respectively, and by OPT the o�ine (integral) optimum. The next result
follows from weak duality and since our LP is a relaxation of non-linear paging.

I Lemma 10. Dual-LP Æ Primal-LP Æ OPT.

Proof. The first inequality follows from weak duality, since (3) is the dual program of (2).
For the second inequality, we show that (2) is a relaxation of non-linear paging. Consider an
integral feasible solution M to our instance; define a solution x for (2) such that xp(j) = 1
if and only if page p is removed from the cache during the interval I(p, j) in M , for every
p œ P and j œ [np]. Then, for every time t œ T and S œ S(t), S cannot be fully contained in
the cache at time t, since M is a feasible solution, and there is at least one p œ S ≠ pt which
is not in the cache at this time. Therefore, the primal constraint corresponding to t and S is
satisfied. We conclude that x is feasible for (2); consequently, (2) is indeed a relaxation of
non-linear paging, implying the second inequality. J

2.2 A Deterministic Algorithm for Non-Linear Paging

In this section, we give a primal-dual algorithm, based on the LP relaxation of non-linear
paging presented in Section 2.1. For brevity, we denote the left handside of the dual constraint
corresponding to page p and j œ [np] as

Yp(j) =
ÿ

tœI(p,j)

ÿ

SœS(t)
--pœS≠pt

yt(S). (4)

We call a page p tight at time t if Yp(j) = c(p).
The algorithm initializes an infeasible primal solution and a feasible dual solution as

vectors of zeros 0̄. In every time step t, if the set of pages currently in cache, denoted by
Cachet, is infeasible, then our algorithm finds a subset of pages Q in the cache such that:
first, Q is infeasible; second, Q contains the requested page pt, i.e., Q œ S(t); third, Q has
minimum cardinality amongst all such sets. we increase the variable yt(Q) continuously.
Once one of the pages becomes tight, we remove it from cache. If the cache is feasible, the
algorithm proceeds to time t+ 1; otherwise, we repeat this process with a new set QÕ from
the current cache. The pseudocode is given in Algorithm 1.

We start by showing the feasibility of the algorithm.
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Algorithm 1 Deterministic.

1 Initialize (infeasible) primal and (feasible) dual solutions x Ω 0̄ and y Ω 0̄.
2 for time t œ T do
3 Let Cachet = {p œ P | r(p, t) Ø 1 and xp(r(p, t)) = 0} be the pages currently in

cache.
4 while f (Cachet) > k do
5 Find Q ™ Cachet such that Q œ S(t) of minimum cardinality.
6 while Yp(r(p, t)) < c(p) ’p œ Q ≠ pt do
7 Increase yt(Q) continously.
8 end
9 for p œ Q ≠ pt such that Yp(r(p, t)) = c(p) do

10 Remove p from cache: xp(r(p, t)) Ω 1, Cachet Ω Cachet ≠ p.
11 end
12 end
13 end
14 Return the (primal) solution x and the (dual) solution y.

I Lemma 11. Algorithm 1 returns primal and dual feasible solutions of (2).

Proof. By Algorithm 1, the algorithm keeps evicting pages until reaching a feasible set of
pages in the cache. By the monotonicity of the feasibility function f , we eventually reach
a feasible set in cache: every page p is considered to be feasible alone in the cache, i.e.,
f({p}) Æ k; thus, in the worst case, the content of the cache at the end of time step t is
pt. The above shows that the primal solution x is feasible, being a relaxation of the integer
problem. In addition, the dual y is feasible since for all p œ P and j œ [np] it holds that
Yp(j) Æ c(p) by Algorithm 1. J

In the following we bound the competitive ratio of the algorithm. Let c(x) be the cost
of our (integral) solution x and let v(y) be the value of the dual solution y obtained by
Algorithm 1. Using the selection of minimal sets for Q in Algorithm 1 we have the following
result. Recall the width parameter ¸ defined in Definition 1.

I Lemma 12. c(x) Æ ¸ · v(y)

Proof. By LP (2),

c(x) =
ÿ

pœP

ÿ

jœ[np]

xp(j) · c(p) Æ
ÿ

pœP

ÿ

jœ[np]

xp(j) · Yp(j)

=
ÿ

pœP

ÿ

jœ[np]

xp(j) ·

Q

ca
ÿ

tœI(p,j)

ÿ

SœS(t)
--pœS≠pt

yt(S)

R

db .

(5)

The inequality holds since we only evict tight pages. By changing summation order in (5),

c(x) Æ
ÿ

tœT

ÿ

SœS(t)

yt(S) ·
ÿ

pœS≠pt

xp(r(p, t)) Æ
ÿ

tœT

ÿ

SœS(t)

yt(S) · ¸ = ¸ · v(y).

The second inequality holds since in Algorithm 1 we always choose a minimally infeasible set
of cardinality at most ¸ + 1; hence, yt(S) ”= 0 only if |S| Æ ¸ + 1. J
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We are now ready to give the proof of our main theorem.

Proof of Theorem 2. By Lemma 11, the returned solution x is a feasible solution. Combined
with Lemma 10 and Lemma 12, c(x) Æ ¸ · v(y) Æ ¸ ·OPT. Along with the tight lower bound
from the special case of paging [38], the statement of the theorem follows.

We remark that for any ¸ and function f such that ¸(f) = ¸, there is a minimally infeasible
set S of cardinality ¸; as a result, the lower bound for deterministic algorithms of paging [38]
can be obtained from the set S. Namely, given a deterministic algorithm A for unweighted
non-linear paging, construct a sequence of requests for pages in S that always requests the
page missing in cache by algorithm A; clearly, A pays a cost of one at each time step, since S
is minimally infeasible. Conversely, the o�ine optimum would evict the page that is requested
latest in the future, missing only once in ¸ requests, giving the lower bound of ¸. J

2.3 Integrality Gap

In this section, we show the limitations of the LP. Specifically, we show that the integrality
gap of the LP defined in (2) is at least ¸; together with our algorithmic upper bound the
integrality gap is exactly ¸. We then discuss a stronger LP formulation based on (2).

I Lemma 13. The integrality gap of LP (2) is ¸.

Proof. For some n Ø 1, consider an instance with n pages P = {p1, . . . , pn} with uniform
costs c(p) = 1 ’p œ P and a uniform feasibility function f as in classic paging, i.e., f(S) = |S|
for all S ™ P, and some cache capacity k. Thus, all minimally infeasible sets are of cardinality
k + 1 and it follows that ¸(f) = k. Define the sequence of requests p1, . . . , pn. That is, each
page is requested exactly once. Observe that each request results in a page fault. Hence, any
integral solution, in particular the optimal integral solution, evicts at least n ≠ k pages. On
the other hand, define a fractional solution such that xp(1) = 1

k for all p œ P, i.e., each page
is evicted after its first request with fraction 1

k (note that each page is requested exactly
once). Consider some infeasible set S ™ P such that |S| > k. It holds that

ÿ

pœS

xp(1) = |S| · 1
k

Ø k + 1
k

Ø 1.

Thus, x satisfies the constraints of (2). The cost paid by the fractional solution x is n
k .

Therefore, as n and k can be chosen arbitrarily, the integrality gap of the LP is at least

lim
næŒ

n ≠ k

n
k

= lim
næŒ

3
k ≠ k

2

n

4
= k = ¸(f).

Therefore, in general, the integrality gap cannot be smaller than ¸. J

2.3.1 Discussion: a Stronger LP

The integrality gap example shows that LP (2) is not su�cient for obtaining a randomized
polylog(¸)-competitive algorithm for general non-linear paging. Instead, we describe a
stronger version of our LP (2), in which we require removing from each infeasible set S a
set of pages SÕ, so that the complement of SÕ in S, S \ SÕ, will be feasible in the cache (i.e.,
f (S \ SÕ) Æ k). The strengthened LP and our fractional algorithm for solving the LP online
are presented in [14], giving the proof of Theorem 5.

ICALP 2024
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3 A Randomized Algorithm for Supermodular Paging

We provide here an O(logµ)-competitive algorithm for a fractional version of supermodular
paging. Then, we design randomized online and o�ine algorithms for supermodular paging.

3.1 LP for Supermodular Paging

The starting point of our fractional algorithm is earlier work on submodular cover LP
[44, 20, 10]. Consider a supermodular paging instance with a set of pages P, a feasibility
function f inducing the submodular cover function g (recall that g(S) = f(P) ≠ f(P \ S)
for every S ™ P), cache threshold k, a set of time points T , and a page request pt œ P for
every time t œ T . We use the following LP relaxation of supermodular paging. As in the LP
introduced in Section 2.1, the variables of the LP are xp(j) for every page p œ P and the
j-th time that p is requested. We will use the same notation as in the LP of (2). Recall that
for some S ™ P and p œ P we use gS(p) = gS({p}) = g(S + p) ≠ g(S). Let N = f(P) ≠ k be
our cover demand; at any point of time, the (non-linear) total size outside of the cache must
be at least N .

Our LP relaxation goes as follows; the constraints of the LP require that for every time t

and subset of pages S (assumed to already be outside of the cache) we must evict from the
cache (fractionally) a total size of at least N ≠ g(S) = f (P \ S) ≠ k, since we cannot have
more than a total size of k in cache. This constraint is very natural in the linear case (i.e.,
classic paging), but more involved in the submodular cover setting.

min
ÿ

pœP

ÿ

jœ[np]

xp(j) · c(p)

s.t.
ÿ

pœP≠pt

xp(r(p, t)) · gS(p) Ø N ≠ g(S), ’t œ T ’S ™ P

xp(j) Ø 0 ’p œ P ’j œ [np]

(6)

In the following we define the dual LP of (6).

max
ÿ

tœT

ÿ

S™P
yt(S) · (N ≠ g(S))

s.t.
ÿ

tœI(p,j)

ÿ

S™P
--pœS≠pt

yt(S) Æ c(p), ’p œ P ’j œ [np]

yt(S) Ø 0 ’t œ T ’S ™ P.

(7)

We use Primal-LP and Dual-LP to denote the values of the optimal solutions for the primal
and dual programs, respectively, and by OPT the o�ine (integral) optimum.

Before we describe our fractional algorithm, we show that it is su�cient to satisfy only
minimal constraints rather than all constraints of the LP. Formally, a primal constraint of
(6) corresponding to t œ T and S ™ P is called minimal for some solution x

Õ if for all p œ P
where x

Õ
p(r(p, t)) = 1 it holds that p œ S.

I Lemma 14. If xÕ satisfies all minimal constraints of (6), then x
Õ is feasible for (6).
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Our fractional algorithm initializes the (infeasible) primal solution x and the (feasible)
dual solution y both as vectors of zeros 0̄. When the requested page pt at time t arrives, we
do the following til x satisfies all LP constraints (6) up to time t.

At time t, the algorithm considers a minimally violating set of pages Q ™ P. This set is a
minimal set for our solution x violating the primal constraint in (6) corresponding to t and Q.
We increase variable yt(P \Q) continuously and at the same time increase variables xp(r(p, t))
for all pages in (P ≠ pt) \Q except pt. The increasing rate is a function of Yp(r(p, t)), where

Yp(j) =
ÿ

tœI(p,j)

ÿ

S™P
--pœS≠pt

yt(S) (8)

is the left hand side of the corresponding dual constraint of p and j = r(p, t) in (6) (analogously
to (4)). This growth function has an exponential dependence on Yp(r(p, t)) scaled by the
cost of the page c(p) and the number of pages possible in cache - the parameter µ. The
growth of the variable xp(j) stops once it reaches 1

2
.

Algorithm 2 Fractional.

1 Initialize (infeasible) primal solutions x, z Ω 0̄
2 Initialize (feasible) dual solution y Ω 0̄.
3 for t œ T do
4 while x is not feasible for t do
5 Find a minimal set Q ™ P for x such thatq

pœP≠pt
xp(r(p, t)) · gQ(p) < N ≠ g(Q).

6 while
q

pœP≠pt
xp(r(p, t)) · gQ(p) < N ≠ g(Q) and Q is minimal for x do

7 Increase yt(P \Q) continously.
8 forall p œ (P ≠ pt) \Q do
9 increase xp(r(p, t)) according to

xp(r(p, t)) Ω 1
µ
·
3
exp

3
ln(µ+ 1)

c(p) · Yp(r(p, t))
4

≠ 1
4
.

10 if xp(r(p, t)) ≠ zp(r(p,t))
2

Ø 1

4·N ·µ then
11 zp(r(p, t)) Ω 2 · xp(r(p, t)).
12 end
13 if xp(r(p, t)) Ø 1

2
then

14 zp(r(p, t)), xp(r(p, t)) Ω 1.
15 end
16 end
17 end
18 end
19 end
20 Return the (primal) solution x and the (dual) solution y.

Once the primal constraint corresponding to t, Q is satisfied, or Q is no longer minimal for
x (a page p œ P \Q reaches 1), there are two cases. If x is feasible, the algorithm proceeds to
the next time step. Otherwise, the algorithm repeats the above process with a new minimal
violating set QÕ. An additional property that will be useful in the analysis is that all non-zero
entries of the obtained solution will be larger than �

1
1

N ·µ

2
and there will be no fractional

ICALP 2024
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entries larger than 1

2
. Thus, we update through the algorithm another primal solution z;

we update an entry zp(j) to be the value of 2 · xp(j) whenever the di�erence xp(j) ≠ zp(j)
becomes larger than �

1
1

N ·µ

2
. Moreover, we increase zp(j) immediately to 1 once xp(j)

reaches 1

2
. The pseudocode of the algorithm is given in Algorithm 2.

3.2 Analysis of Algorithm 2

We now analyze the competitive ratio of the fractional algorithm. We start by claiming the
feasibility of the solutions obtained throughout the execution of the algorithm.

I Lemma 15. The primal solution x defined by Algorithm 2 is feasible for the LP (6).

I Lemma 16. The solution z returned by Algorithm 2 is feasible for (6).

I Lemma 17. Algorithm 2 returns a feasible dual solution to the LP (6).

It remains to prove that the algorithm is O(log(µ))-competitive. To do so, we bound the
increase in the primal x by a O(logµ) factor of the dual increase, at any time.

I Lemma 18. The cost of x is bounded by O(log(µ)) times the value of the dual y.

Proof. Consider an infinitesimal increase in the value of the dual solution y. Specifically,
assume that the algorithm chooses a minimal set Q in Algorithm 2 for time step t and that
the dual variable yt(P \Q) increases infinitesimally by dyt(P \Q). Let dx and dy denote the
infinitesimal change in the objective value of x and y, respectively. We bound the increase
dx in x as a function of the increase dy.

dx =
ÿ

pœP≠pt

dxp(r(p, t)) · c(p)

=
ÿ

pœ(P≠pt)\Q

dxp(r(p, t)) · c(p) · dyt(P \Q)
dyt(P \Q)

=
ÿ

pœ(P≠pt)\Q

ln (µ+ 1) ·
3
xp(r(p, t)) +

1
µ

4
· dyt(P \Q).

(9)

The first equality holds since the increase in yt(P \Q) induces an increase only on the primal
variables corresponding to pages in (P ≠ pt) \Q by (6). The last equality follows from the
growth rate of a variable xp(r(p, t)), for some p œ (P ≠ pt) \Q, as a result of the growth in
yt(P \Q). We separately analyze two of the expressions in (9). First, since y changes as a
result of the increase in the variable yt(P \Q), by Algorithm 2 it implies that

ÿ

pœ(P≠pt)\Q

xp(r(p, t)) · gQ(p) Æ
ÿ

pœP≠pt

xp(r(p, t)) · gQ(p) < N ≠ g(Q). (10)

For the second expression, let SÕ œ (P ≠ pt) \Q such that (i) gQ(SÕ) Ø N ≠ g(Q) and (ii)
S

Õ is of minimum cardinality of all such sets. Clearly, there is such S
Õ as SÕÕ = (P ≠ pt) \Q

satisfies the first condition (pt is feasible alone in cache). Since SÕ satisfies the cover constraints
it holds that f(P \ (SÕ fi Q) Æ k; thus, by the definition of µ it holds that |P \ (SÕ fi Q| Æ µ.
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Therefore,

ÿ

pœ(P≠pt)\Q

1
µ

= |(P ≠ pt) \Q| ≠ 1
µ

= |SÕ|+ |P \ (SÕ fi Q)| ≠ 1
µ

Æ N ≠ g(Q) + µ ≠ 1
µ

Æ N ≠ g(Q) + 1 Æ 2 · (N ≠ g(Q)) .

(11)

The first inequality holds since |SÕ| Æ N ≠ g(Q), as SÕ is the minimum cardinality set that
covers the demand of N ≠ g(Q); thus, the marginal contribution of any page in S

Õ to the
cover is at least 1 implying the inequality. The first inequality also uses |P \ (SÕ fi Q| Æ µ

as explained above. For the last inequality, note that N ≠ g(Q) Ø 1 since we assume that
yt(P \Q) increases at this time, implying that the corresponding constraint of t and S is not
trivially satisfied. Therefore, by (9), (10), and (11),

dx Æ ln (µ+ 1) · dyt(P \Q) ·

Q

a
ÿ

pœ(P≠pt)\Q

xp(r(p, t)) +
ÿ

pœ(P≠pt)\Q

1
µ

R

b

= ln (µ+ 1) · dyt(P \Q) · 3 · (N ≠ g(Q))
= O(log(µ)) · dy.

(12)

Thus, by (12), every increase in y incurs an increase of at most a factor O(log(µ)) in x.
Finally, note that if xp(j) Ø 1

2
then we immediately increase xp(j) to 1; this increase the

total cost of x by a factor of 2 w.r.t. the value of y. J

To conclude, by Algorithm 2 and Algorithm 2 we can trivially bound the cost of z by a
constant factor of the cost of x.

I Observation 19. The cost of z is bounded by 4 times the cost of x.

Finally, using the above we summarize the properties of z.

I Lemma 20. Algorithm 2 returns a feasible primal solution z to (6) such that the following
holds.
1. For all p œ P and j œ [np] it holds that either zp(j) œ {0, 1} or that zp(j) œ

Ë
1

4·N ·µ ,
1

2

È
.

2. The cost of z is bounded by O(log(µ)) times the cost of OPT.

3.3 Randomized Rounding

In this section, we construct a randomized algorithm for supermodular paging based on an
online rounding scheme of the solution z to the LP (6) obtained by Algorithm 2. Let

C = max
p,qœP

c(p)
c(q)

be the maximum ratio of costs taken over all pairs pages; we assume without the loss of
generality that all costs are strictly positive. As a scaling factor for our algorithm, let
– = log

!
4 · C ·N2 · µ2

"
and let zÕ be the solution obtained by augmenting z by a factor of

–. That is, for all p œ P and j œ [np] define z
Õ
p(j) = min (1,– · zp).

ICALP 2024
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Our algorithm computes zÕ in an online fashion. At every time t, after updating z
Õ, the

algorithm evicts each page p œ P from the cache with probability chosen carefully so that
the total probability that p is missing from cache after this moment is exactly z

Õ
p(r(p, t)).

If the cache is not feasible after this randomized rounding procedure, we evict pages that
increase the total cover until we reach feasibility. The pseudocode of the algorithm is given
in Algorithm 3.

Algorithm 3 Randomized Rounding.

1 for t œ T do
2 If pt is missing from cache: fetch pt.
3 Initialize �pt Ω 0.
4 Update the solution z according to Algorithm 2.
5 Define z

Õ
p(r(p, t)) Ω min (1,– · zp) for all p œ P.

6 for p œ P do
7 Evict p from cache with probability zÕ

p(r(p,t))≠�p

1≠�p
.

8 Update �p = z
Õ
p(r(p, t)).

9 end
10 Let F be the pages outside of the cache (part of the cover).
11 while g(F) < N do
12 Evict a page p œ P \ F such that gF (p) > 0.
13 end
14 end
15 Return the integral solution.

Observe that we evict a page p at time t with probability zÕ
p(r(p,t))≠�p

�p
, conditioned on

the event that p is still in the cache. Thus, the probability that p belongs to the cache at the
beginning of time t is �p, and is zÕ

p(r(p, t)) after Algorithm 3. Thus, we have the following
observation.

I Observation 21. For all p œ P and t œ T the probability that p is missing from the cache
at time t is at least zÕ

p(r(p, t)).

To analyze the performance of the algorithm, we use the following lemma. The proof
follows from Lemma 2.5 in [20] combined with Observation 21.

I Lemma 22. Let F be the set of pages outside cache at Algorithm 3 at time t. Then,

E [g(F)] Ø N ≠ e
≠– ·N Ø N ≠ 1

2 · µ2 · C ·N .

Using Lemma 22, we bound the expected cost of the algorithm.

I Lemma 23. Algorithm 3 returns a feasible integral solution for supermodular paging with
expected cost O (log(µ) · –) ·OPT = O

!
log2(µ) · log (C ·N)

"
·OPT.

The proof of Theorem 6 follows from Lemma 23. Moreover, the proof of Theorem 9
follows using the “round-or-separate” approach of [20].
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Abstract
We provide new tradeo�s between approximation and running time for the decremental all-pairs
shortest paths (APSP) problem. For undirected graphs with m edges and n nodes undergoing edge
deletions, we provide four new approximate decremental APSP algorithms, two for weighted and
two for unweighted graphs. Our first result is (2 + ‘)-APSP with total update time Õ(m1/2

n
3/2)

(when m = n
1+c for any constant 0 < c < 1). Prior to our work the fastest algorithm for weighted

graphs with approximation at most 3 had total Õ(mn) update time for (1 + ‘)-APSP [Bernstein,
SICOMP 2016]. Our second result is (2 + ‘,Wu,v)-APSP with total update time Õ(nm3/4), where
the second term is an additive stretch with respect to Wu,v, the maximum weight on the shortest
path from u to v.

Our third result is (2+ ‘)-APSP for unweighted graphs in Õ(m7/4) update time, which for sparse
graphs (m = o(n8/7)) is the first subquadratic (2 + ‘)-approximation. Our last result for unweighted
graphs is (1 + ‘, 2(k ≠ 1))-APSP, for k Ø 2, with Õ(n2≠1/k

m
1/k) total update time (when m = n

1+c

for any constant c > 0). For comparison, in the special case of (1+ ‘, 2)-approximation, this improves
over the state-of-the-art algorithm by [Henzinger, Krinninger, Nanongkai, SICOMP 2016] with total
update time of Õ(n2.5). All of our results are randomized, work against an oblivious adversary, and
have constant query time.
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1 Introduction

The dynamic algorithms paradigm is becoming increasingly popular for studying algorithmic
questions in the presence of gradually changing inputs. A natural goal in this area is to design
algorithms that process each change to the input as fast as possible to adapt the algorithm’s
output (or a data structure for querying the output) to the current state of the input. The
time spent after an update to perform these computations is called the update time of the
algorithm. In many cases, bounds on the update time are obtained in an amortized sense
as an average over a long enough sequence of updates. Among dynamic graph problems,
the question of maintaining exact or approximate shortest paths has received considerable
attention in the past two decades. The main focus usually lies on maintaining a distance
oracle that answers queries for the distance between a pair of nodes. For this problem, we
call an algorithm fully dynamic if it supports both insertions and deletions of edges, and
partially dynamic if it supports only one type of updates; in particular we call it decremental
if it only supports edge deletions (which is the focus of this paper), and incremental if it
only supports edge insertions.

The running times of partially dynamic algorithms are usually characterized by their
bounds on the total update time, which is the accumulated time for processing all updates in
a sequence of at most m deletions (where m is the maximum number of edges ever contained
the graph). A typical design choice, which we also impose in this paper, is small (say
polylogarithmic) query time. In particular, our algorithms will have constant query time.
While fully dynamic algorithms are more general, the restriction to only one type of updates
in partially dynamic algorithms often admits much faster update times. In particular, some
partially dynamic algorithms have a total update time that almost matches the running time
of the fastest static algorithm, i.e., computing all updates does not take significantly more
time than processing the graph once.

Decremental shortest paths

For the decremental single-source shortest paths problem, conditional lower bounds [58, 48]
suggest that exact decremental algorithms have an �(mn) bottleneck in their total update
time (up to subpolynomial factors). On the other hand, this problem admits a (1 + ‘)-
approximation (also called stretch) with total update time m1+o(1) in weighted, undirected
graphs [22, 47, 20, 19, 21], which exceeds the running time of the state-of-the art static
algorithm by only a subpolynomial factor. Hence for the single-source shortest paths problem
on undirected graphs we can fully characterize for which multiplicative stretches the total
update time of the fastest decremental algorithm matches (up to subpolynomial factors) the
running time of the fastest static algorithm.

Obtaining a similar characterization for the decremental all-pairs shortest paths (APSP)
problem is an intriguing open question. Conditional lower bounds [32, 48] suggest an �(mn)
bottleneck in the total update time of decremental APSP algorithms with (a) any finite
stretch on directed graphs and (b) with any stretch guarantee with a multiplicative term of
– Ø 1 and an additive term of — Ø 0 with 2– + — < 4 on undirected graphs. This motivates
the study of decremental (–,—)-approximate APSP algorithms such that 2– + — Ø 4, i.e.,
with multiplicative stretch – Ø 2 or additive stretch — Ø 2.

Apart from two notable exceptions [46, 5], all known decremental APSP algorithms fall
into one of two categories. They either (a) maintain exact distances or have a relatively small
multiplicative stretch of (1 + ‘) or (b) they have a stretch of at least 3. The space in between
is largely unexplored in the decremental setting. This stands in sharp contrast to the static
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setting where for undirected graphs approximations guarantees di�erent from multiplicative
(1 + ‘) or “3 and above” have been the focus of a large body of works [7, 32, 28, 14, 16, 51,
11, 55, 61, 52, 8, 9]. The aforementioned exceptions in dynamic algorithms [46, 5], concern
unweighted undirected graphs and maintain (1 + ‘, 2)-approximations that simultaneously
have a multiplicative error of 1 + ‘ and an additive error of 2, which implies a purely
multiplicative (2 + ‘)-approximation. The algorithms run in Õ(n5/2)1 and n5/2+o(1) total
update time respectively. In the next section, we will detail how our algorithms improve over
this total update time and generalize to weighted graphs.

Concerning the fully dynamic setting, Bernstein [17] provided an algorithm for (2 + ‘)-
APSP which takes m1+o(1) time per update. Although we are not aware of any lower bounds,
it seems to be hard to beat this: no improvements have been made since. The lack of progress
in the fully-dynamic setting motivates the study in a partially dynamic setting, where we
obtain improvements for the decremental case.

1.1 Our Results
In this paper, we provide novel decremental APSP algorithms with approximation guarantees
that previously were mostly unexplored in the decremental setting. Our algorithms are
randomized and we assume an oblivious adversary. For each pair of nodes, we can not only
provide the distance estimate, but we can also report a shortest path fi of this length in
Õ(|fi|) time using standard techniques, see e.g. [43].

(2 + ‘)-APSP for weighted graphs

Our first contribution is an algorithm for maintaining a (2 + ‘)-approximation in weighted,
undirected graphs.

I Theorem 1. Given a weighted graph G and a constant 0 < ‘ < 1, there is a decremental
data structure that maintains a (2 + ‘)-approximation of APSP. The algorithm has constant
query time and the total update time is w.h.p.

Õ(m1/2n3/2 log2(nW )) if m = n1+�(1) and m Æ n2≠fl for an arbitrary small constant fl,
Õ(m1/2n3/2+fl log2(nW )) if m Ø n2≠fl for any constant fl,
Õ(m1/2n3/2+o(1) log2(nW )) otherwise,

where W is the ratio between the maximum and minimum weight.

The fastest known algorithm with an approximation ratio at least as good as ours is
the (1 + ‘)-approximate decremental APSP algorithm by Bernstein [18] with total update
time Õ(mn). With our (2 + ‘)-approximation, we improve upon this total update time
when m = n1+÷, for any ÷ > 0. Furthermore, the fastest known algorithm with a larger
approximation ratio than our algorithm is the (3+‘)-approximate decremental distance oracle
by £πcki and Nazari [53] with total update time Õ(m

Ô
n). Our result also has to be compared

to the fully dynamic algorithm of Bernstein [17] for maintaining a (2 + ‘)-approximation
that takes amortized time m1+o(1) per update. Note that in unweighted graphs, (2 + ‘)-
approximate decremental APSP algorithm can be maintained with total update time Õ(n2.5)
(which is implied by the results of Abraham and Chechik [5] and Henzinger, Krinninger, and
Nanongkai [46]). Our approach improves upon this bound for most densities, and matches it
for m = n2.

1 In the introduction, we make two simplifying assumptions: (a) ‘ is a constant and (b) the ratio W

between the maximum and minimum weight is polynomial in n. Unless otherwise noted, the cited
algorithms have constant or polylogarithmic query time. Throughout we use Õ(·) notation to omit
factors that are polylogarithmic in n.
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(2 + ‘, 1)-APSP for unweighted and (2 + ‘,Wu,v)-APSP for weighted graphs

Our second contribution is a faster algorithm with an additional additive error term of 1 for
unweighted graphs, which in turn can be used to obtain our unweighted (2 + ‘)-APSP result.
The corresponding generalization to weighted graphs can be formulated as follows.

I Theorem 2. Given a weighted graph G and a constant 0 < ‘ < 1, there is a decremental data
structure that maintains a (2+‘,Wu,v)-approximation for APSP, where Wu,v is the maximum
weight on a shortest path from u to v. The algorithm has constant query time and the total
update time is w.h.p. Õ(nm3/4 log2(nW )) if m = n1+�(1), and Õ(n1+o(1)m3/4 log2(nW ))
otherwise, where W is the ratio between the maximum and minimum weight.

(2 + ‘)-APSP for unweighted graphs

We obtain this result by a general reduction from mixed approximations to purely multiplic-
ative approximations, which might be of independent interest beyond the dynamic setting.
See Theorem 5 for the statement. We can then combine this with Theorem 2 to obtain a
fast algorithm for non-dense unweighted graphs.

I Theorem 3. Given an undirected unweighted graph G, there is a decremental data structure
that maintains a (2 + ‘)-approximation for APSP with constant query time. W.h.p. the total
update time is bounded by Õ(m7/4) if m = n1+�(1), and Õ(m7/4+o(1)) otherwise.

Note that form = o(n8/7) this gives the first subquadratic decremental (2+‘)-approximate
APSP algorithm. For m Æ n6/5, this approach is faster than our weighted result, Theorem 1,
which was already beating the unweighted state-of-the-art [5, 46].

(1 + ‘, 2(k ≠ 1))-APSP for unweighted graphs

Our fourth contribution is an algorithm for unweighted, undirected graphs that maintains, for
any k Ø 2, a (1+ ‘,2(k≠ 1))-approximation, i.e., a distance estimate that has a multiplicative
error of 1 + ‘ and an additive error of 2(k ≠ 1).

I Theorem 4. Given an undirected unweighted graph G, a constant 0 < ‘ < 1 and an
integer 2 Æ k Æ logn, there is a decremental data structure that maintains (1 + ‘, 2(k ≠ 1))-
approximation for APSP with constant query time. The expected total update time is bounded
by min{O(n2≠1/k+o(1)m1/k), Õ((n2≠1/km1/k)O(1/‘)k/fl)} where m = n1+fl.

Note that for small values of k and if m = n1+fl for a constant fl > 0, we get total update
time of Õ(n2≠1/km1/k), and otherwise we have an extra no(1) factor. In addition, in the
special case of k = logn, we get a near-quadratic update time of O(n2+o(1)). The state-of-the-
art for a purely multiplicative (1 + ‘)-approximation is the algorithm of Roditty and Zwick
with total update time Õ(mn).2 It was shown independently by Abraham and Chechik [5]
and by Henzinger, Krinninger, and Nanongkai [46] how to improve upon this total update
time bound at the cost of an additional small additive error term: a (1 + ‘, 2)-approximation
can be maintained with total update time Õ(n2.5). This has been generalized by Henzinger,
Krinninger, and Nanongkai [45] to an additive error term of 2(1 + 2

‘ )
k≠2 and total update

time Õ(n2+1/kO( 1‘ )
k≠1). We improve upon this tradeo� in two ways: (1) our additive term

is independent of 1/‘ and linear in k and (2) our algorithm profits from graphs being sparse.

2 Note that the algorithms of Roditty and Zwick [59] for unweighted, undirected graphs precedes the
more general algorithm of Bernstein [18] for weighted, directed graphs.
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Static follow-up work

Interestingly, our techniques inspired a new algorithm for a static 2-approximate distance
oracle [33], giving the first such distance oracle algorithm with subquadratic construction
time for sparse graphs. Moreover, for m = n they match conditional lower bounds [56, 3].

1.2 Related Work
Static algorithms

The baseline for the static APSP problem are the exact textbook algorithms with running
times of O(n3) and Õ(mn), respectively. There are several works obtaining improvements
upon these running times by either shaving subpolynomial factors or by employing fast matrix
multiplication, which sometimes comes at the cost of a (1 + ‘)-approximation instead of an
exact result. See [67] and [66], and the references therein, for details on these approaches.
For the regime of stretch 3 and more in undirected graphs, a multitude of algorithms has
been developed with the distance oracle of Thorup and Zwick [64] arguably being the most
well-known constructions. In the following, we focus on summarizing the state of a�airs for
approximate APSP with stretch between 1 + ‘ and 3.

In weighted, undirected graphs, Cohen and Zwick [28] obtained a 2-approximation with
running time Õ(m1/2n3/2). This running time has been improved to Õ(m

Ô
n+n2) by Baswana

and Kavitha [14] and, employing fast matrix multiplication, to Õ(n2.25) by Kavitha [51].
For (2 + ‘)-APSP, Dory et al. [33] provide two algorithms, for dense graphs: O(n2.214) and
sparse graphs: Õ(mn2/3). In addition, e�cient approximation algorithms for stretches of
7

3
[28] and 5

2
[51] have been obtained. These results have recently been generalized by

Akav and Roditty [9] who presented an algorithm with stretch 2 + k≠2

k and running time
Õ(m2/kn2≠3/k + n2) for any k Ø 2.

In unweighted, undirected graphs, a (1, 2)-approximation algorithm with running time
Õ(n2.5) has been presented by Aingworth, Chekuri, Indyk and Motwani [7]. This has been
improved by Dor, Halperin, and Zwick [32] that showed a (1, 2)-approximation with running
time Õ(min{n3/2m1/2, n7/3}). They also show a generalized version of the algorithm that
gives stretch (1, k) and running time Õ(min{n2≠2/(k+2)m2/(k+2), n2+2/(3k≠2)}) for every even
k > 2. Recently faster (1, 2)-approximation algorithms based on fast matrix multiplication
techniques were developed [31, 36], the fastest of them runs in O(n2.260) time [36]. This
was extended to a (1 + ‘, 2)-approximation in O(n2.152) [33]. In addition, recently Roditty
[57] extended the approach of [32] to obtain a combinatorial (2, 0)-approximation for APSP
in Õ(n2.25) time in unweighted undirected graphs. Using fast matrix multiplication, this
running time was improved to O(n2.032) [33, 60].

Berman and Kasiviswanathan [16] showed how to compute a (2, 1)-approximation in time
Õ(n2). Subsequent works [11, 14, 55, 61, 52] have improved the polylogarithmic factors in
the running time and the space requirements for such nearly 2-approximations. Recently,
slightly subquadratic algorithms have been given: an algorithm with stretch (2(1 + ‘), 5) by
Akav and Roditty [8], and an algorithm with stretch (2, 3) by Chechik and Zang [25].

Decremental algorithms

The fastest algorithms for maintaining exact APSP under edge deletions have total update
time Õ(n3) [30, 13, 39]. There are several algorithms that are more e�cient at the cost
of returning only an approximate solution. In particular, a (1 + ‘)-approximation can be
maintained in total time Õ(mn) [59, 18, 49]. If additionally, an additive error of 2 is tolerable,
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then a (1 + ‘, 2)-approximation can be maintained in total time Õ(n2.5) in unweighted,
undirected graphs [46, 5]. Note that such a (1 + ‘, 2)-approximation directly implies a
(2+‘)-approximation because the only paths of length 1 are edges between neighboring nodes.
All of these decremental approximation algorithms are randomized and assume an oblivious
adversary. Deterministic algorithms with stretch 1 + ‘ exist for unweighted, undirected
graphs with running time Õ(mn) [46], for weighted, undirected graphs with running time
Õ(mn1+o(1)) [21] and for weighted, directed graphs with running time Õ(n3) [50].

Decremental approximate APSP algorithms of larger stretch, namely at least 3, have first
been studied by Baswana, Hariharan, and Sen [12]. After a series of improvements [59, 22, 6,
47], the state-of-the-art algorithms of [24, 53] maintain (2k ≠ 1)(1 + ‘)-approximate all-pairs
shortest paths for any integer k Ø 2 and 0 < ‘ Æ 1 in total update time Õ((m+n1+o(1))n1/k)
with query time O(log log(nW )) and O(k) respectively. All of these “larger stretch” algorithms
are randomized and assume an oblivious adversary.

Recently, deterministic algorithms have been developed by Chuzhoy and Saranurak [27]
and by Chuzhoy [26]. One tradeo� in the algorithm of Chuzhoy [26] for example provides
total update time Õ(m1+µ) for any constant µ and polylogarithmic stretch. As observed
by Mπdry [54], decremental approximate APSP algorithms that are deterministic – or
more generally work against an adaptive adversary – can lead to fast static approximation
algorithms for the maximum multicommodity flow problem via the Garg-Könemann-Fleischer
framework [44, 41]. The above upper bounds for decremental APSP have recently been
contrasted by conditional lower bounds [4] stating that constant stretch cannot be achieved
with subpolynomial update and query time under certain hardness assumptions on 3SUM or
(static) APSP.

Fully dynamic algorithms

The reference point in fully dynamic APSP with subpolynomial query time is the exact
algorithm of Demetrescu and Italiano [29] with update time Õ(n2) (with log-factor improve-
ments by Thorup [62]). For undirected graphs, several fully dynamic distance oracles have
been developed. In particular, Bernstein [17] developed a distance oracle of stretch 2 + ‘
(for any given constant 0 < ‘ Æ 1) and update time O(m1+o(1)). In the regime of stretch
at least 3, tradeo�s between stretch and update time have been developed by Abraham,
Chechik, and Talwar [6], and by Forster, Goranci, and Henzinger [42]. Finally, most fully
dynamic algorithm with update time sensitive to the edge density can be combined with a
fully dynamic spanner algorithm leading to faster update time at the cost of a multiplicative
increase in the stretch, see [15] for the seminal work on fully dynamic spanners.

2 High-Level Overview

In this section we provide a high-level overview of our algorithms, for the complete algorithms
and their proof we refer to the full version. First we describe our (2+ ‘)-APSP algorithms for
weighted graphs, by giving a simpler static version first. Then we describe our (2 + ‘,Wu,v)-
APSP algorithm, where we introduce a notion of bunch overlap threshold to overcome the
challenge of dynamically maintaining a well-known static adaptive sampling technique [63]
(see Section 2.2). We give a reduction from mixed approximations to purely multiplicative
approximations, which together with the previous result gives our (2 + ‘)-APSP algorithm
for unweighted graphs. Finally, we describe our (1 + ‘, 2(k ≠ 1))-APSP algorithm for any
k Ø 2 in unweighted graphs.
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2.1 (2 + ‘)-APSP for Weighted Graphs
We first present a warm-up static algorithm, that we later turn into a dynamic algorithm.

2.1.1 Static 2-APSP
We start by reviewing the concepts of bunch and cluster as defined in the seminal distance
oracle construction of [64].

Let 0 < p < 1 be a parameter and A a set of nodes sampled with probability p. For each
node u, the pivot p(u) is the closest node in A to u. The bunch B(v) of a node v is the
set B(v) := {u œ V : d(u, v) < d(v, p(v))} and the clusters are C(u) := {v œ V : d(u, v) <
d(v, p(v))} = {v œ V : u œ B(v)}. Hence bunches and clusters are reverse of each other:
u œ B(v) if any only if v œ C(u).

These structures have been widely used in various settings, including the decremental
model (e.g. [46, 58, 53, 24]). We can use these existing decremental algorithms to maintain
bunches and clusters, but will need to develop new decremental tools to get our desired
tradeo�s that we will describe in Section 2.1.2.

Using the well-known distance oracles of [64], we know that by storing the clusters and
bunches and the corresponding distances inside them, we can query 3-approximate distances
for any pair. At a high-level, for querying distance between a pair u, v we either have u œ B(v)
or v œ B(u) and so we explicitly have stored their distance, or we can get a 3-approximate
estimate by computing min{d(u, p(u) + d(p(u), v), d(v, p(v)) + d(p(v), u)}. In the following
we explain that in some special cases we can use these estimates to a obtain 2-approximation
for a pair u, v, and in other cases by storing more information depending on how B(u) and
B(v) overlap we can also obtain a 2-approximation to d(u, v).

Let us assume that for all nodes v we have computed B(v) and have access to all the
distances from v to each node u œ B(v). Also assume that we have computed the distances
from the set A to all nodes. We now describe how using this information we can get a
2-approximate estimate of any pair of nodes u, v in one case. In another case we will discuss
what other estimates we need to precompute. Let fi be the shortest path between u and
v. We consider two cases depending on how the bunches B(u) and B(v) interact with
fi. A similar case analysis was used in [23, 35] in distributed approximate shortest paths
algorithms.
1. There exists w œ fi such that w ”œ B(u) fi B(v) (left case in Figure 1): Since w is on

the shortest path, we either have d(w, u) Æ d(u, v)/2 or d(v, w) Æ d(u, v)/2. Suppose
d(w, u) Æ d(u, v)/2. We observe that by definition d(u, p(u)) Æ d(u,w), hence we obtain
d(u, p(u))+d(p(u), v) Æ d(u, p(u))+d(u, p(u))+d(u, v) Æ 2d(u, v). The case that d(v, w) Æ
d(u, v)/2 is analogous, and hence by computing min{d(u, p(u)) + d(p(u), v), d(v, p(v)) +
d(p(v), u)} we get a 2-approximation.

2. There exists no w œ fi such that w ”œ B(u) fi B(v). In other words, B(u) fl B(v) fl fi = ÿ
and there exists at least one edge {uÕ, vÕ} on fi where uÕ œ B(u) and vÕ œ B(v) (right case
in Figure 13): in this case we can find the minimum over estimates obtained through all
such pairs uÕ, vÕ, i.e. by computing d(u, uÕ) + w(uÕ, vÕ) + d(vÕ, v).

If we had access to all the above distances for the bunches and the pivots, we could then
use them to query 2-approximate distances between any pair u, v œ V . As we will see, in our
algorithms we only have approximate bunches and pivots which lead to (2 + ‘)-approximate
queries.

3 Although the picture implies B(u) and B(v) are disjoint, this also includes the case where they overlap,
or even where u œ B(v) or v œ B(u).
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Figure 1 Possible scenarios for the overlap between the bunches B(u), B(v) and the shortest path fi

from u to v.

Running time

We can compute bunches and clusters in Õ(mp ) time [64]. We need to compute shortest paths
from A for the estimates in Case 1. This takes O(|A|m) = Õ(pnm) time using Dijkstra’s
algorithm. Finally, we consider Case 2. A straight-forward approach is to consider each pair
of vertices u, v, and all uÕ œ B(u) and vÕ œ B(v). This takes O(n

2

p2 ) time.
We use a sophisticated intermediate step that computes the distance between uÕ and

v if there is an edge {uÕ, vÕ} œ E such that vÕ œ B(v). For each node v œ V , we consider
all vÕ œ B(v), for which we consider all neighbors uÕ œ N(vÕ) and compute the estimate
w(uÕ, vÕ)+d(vÕ, v) (and replace current uÕ ≠ v minimum if it is smaller). Since |B(v)| = Õ( 1p ),
we can compute these estimates for d(uÕ, v) in Õ(n

2

p ) time.
Next, for each pair u, v œ V , we take the minimum over the distances d(u, uÕ) + d(uÕ, v)

for all uÕ in the bunch B(u) using the precomputed distances from the previous step in
time Õ(n2/p), by iterating over all pairs u, v œ V , and all uÕ œ B(u). So in total the
adjacent case takes time Õ(n

2

p ). Hence the total running time of the algorithm will be
Õ(pnm+m/p+ n2/p) = Õ(pnm+ n2/p). By setting p =


n
m we obtain the total update

time Õ(m1/2n3/2) as stated in Theorem 1.
There are several subtleties that make it more di�cult to maintain these estimates in

decremental settings since the bunches and which bunches are adjacent keep on changing
over the updates. We next discuss how these can be handled. We obtain a total update time
that matches the stated static running time (up to subpolynomial factors).

2.1.2 Dynamic Challenges
Maintaining bunches and pivots

First, we need to dynamically maintain bunches e�ciently as nodes may join and leave a
bunch throughout the updates using an adaptation of prior work. One option would be
maintaining the clusters and bunches using the [59] framework, however using this directly is
slow for our purposes. Hence we maintain approximate clusters and bunches using hopsets of
[53]. This algorithm also maintains approximate pivots, i.e. pivots that are within (1 + ‘)-
approximate distance of the true closest sampled node. These estimates let us handle the first
case (up to (1 + ‘) approximation). One subtlety is that the type of approximate bunches
used in [53] is slightly di�erent with the type of approximate bunches we need for other
parts of our algorithm. Specifically we need to bound the number of times nodes in a bunch
can change. Roughly speaking, we can show this since the graph is decremental and the
estimates obtained from the algorithm of [53] are monotone. Hence we perform lazy bunch
updates, where we only let a bunch grow if the distance to the pivot grows by at least a
factor 1 + ‘. This means a bunch grows at most O(log1+‘(nW )) times. In addition, these
approximate bunches need to be taken into account into our stretch analysis.
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We note that (1 + ‘)-approximate decremental SSSP takes Õ(m1+o(1)) total update time.
However, we use the multi-source shortest path result from [53], where the no(1)-term vanishes
when applied with polynomially many sources, giving us a total update time of Õ(|A|m).

Maintaining estimates for Case 2

When we are in Case 2, we need more tools to keep track of estimates going through these
nodes since both the bunches and the distances involved are changing. In particular, we
explain how by using heaps in di�erent parts of our algorithm we get e�cient update and
query times. Moreover, note that we have an additional complication: there are two data
structures in this step, where one impacts the other. We need to ensure that an update in
the original graph does not lead to many changes in the first data structure, which all need
to be processed for the second data structure.

To be precise, we need intermediate data structures QuÕ,v that store approximate distances
for uÕ and v of the form w(uÕ, vÕ) + ”(vÕ, v) for each vÕ œ B(v) such that {uÕ, vÕ} œ E, as
explained for the static algorithm4. As opposed to the static algorithm, we do not only keep
the minimum, but instead maintain a min-heap, from which the minimum is easily extracted.

However, this approach has a problem: ”(vÕ, v) might change many times, and for each
such change we need to update at most |N(vÕ)| Æ n heaps. To overcome this problem, we
use another notion of lazy distance update: we only update a bunch if the estimate of a node
changes by at least a factor 1 + ‘. Combining this with the fact that, due to the lazy bunch
update, nodes only join a cluster at most O(log1+‘(nW )) times, and thus there is only an
O(log1+‘(nW ) log(nW )) overhead in maintaining these min-heaps QuÕ,v dynamically due to
bunch updates.

Similarly, w(uÕ, vÕ) might change many times, which has an impact for every v œ C(vÕ).
Since this can be many nodes, we need to use an additional trick so an adversary cannot
increase our update time to mn. Again the solution is a lazy update scheme: instead of
w(uÕ, vÕ) we use w̃(uÕ, vÕ) = (1 + ‘)Álog1+‘ w(uÕ,vÕ

)Ë, which can only change log1+‘ W times.
This comes at the cost of a (1 + ‘) approximation factor.

We note that our bunches are approximate bunches in three di�erent ways. We have one
notion of approximation due to the fact that we are using hopsets (that implicitly maintain
bunches on scaled graphs). We have a second notion of approximation due to our lazy bunch
update, which only lets nodes join a bunch a bounded number of times. We have a third
notion of approximation due to the lazy distance update, which only propagates distance
changes O(log(nW )) times. We need to carefully consider how these di�erent notions of
approximate bunch interact with each other and with the stretch of the algorithm.

Next, we want to use the min-heaps QuÕ,v to maintain the distance estimates for u, v œ V
(see again the right case in Figure 1). We construct min-heaps QÕ

u,v, with for each pair u, v
entries ”(u, uÕ) + ”(uÕ, v) for uÕ œ B(u). Here ”(uÕ, v) is the minimum from the intermediate
data structure QuÕ,v.

An entry ”(u, uÕ) + ”(uÕ, v) in QÕ
u,v has to be updated when either ”(u, uÕ) or ”(uÕ, v)

change. We have to make sure we do not have to update these entries too often. For the first
part of each entry, we bound updates to the distance estimates ”(u, uÕ) by the lazy distance
updates. One challenge here is that when the distance estimates in a bunch change we need
to update all the impacted heaps i.e. if ”(u, uÕ) inside a bunch B(u) changes, we must update
all the heaps QÕ

u,v such that there exists {uÕ, vÕ} œ E with vÕ œ B(v). For this purpose one

4 In this section, ”(·, ·) denotes (1 + ‘)-approximate distances in our dynamic data structures.
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approach is the following: for each u œ V, uÕ œ B(u) we keep an additional data structure
Setu,uÕ that stores for which v œ V we have vÕ œ B(v) with {uÕ, vÕ} œ E. This means that
given a change in ”(u, uÕ), we can update each of the heaps in logarithmic time.

For the second part of the entry, which is the distance estimate ”(uÕ, v) from the first data
structure, this is more complicated. Another subtlety for our decremental data structures is
the fact that ”(uÕ, v) may also decrease due to a new node being added to B(v). However, our
lazy bunch update ensures that ”(uÕ, v) can only decrease O(log1+‘(nW )) times. Further, we
use lazy distance increases in between such decreases. Hence in total we propagate changes
to ”(uÕ, v) at most O(log1+‘(nW ) log(nW )) times, and thus our decremental algorithm has
Õ(log1+‘(nW ) log(nW )) overhead compared to the static algorithm.

2.2 (2 + ‘,Wu,v)-APSP for Weighted Graphs
For a moment, let us go back to the first static algorithm. It turns out, that if instead
of computing an estimate for two “adjacent” bunches, we keep an estimate for bunches
that overlap in at least one node, we obtain a (2,Wu,v)-approximation, where Wu,v is the
maximum weight on the shortest path from u to v.

Figure 2 Possible scenarios for the overlap between the bunches B(u) and B(v) and the shortest
path fi from u to v.

The stretch analysis comes down to the following cases:
There exists no w œ fi fl B(u) fl B(v) (the left and right case in Figure 2).
There exists w œ fi such that w œ B(u) fl B(v) (the middle case in Figure 2).

The crucial observation here is that the distance estimate via the pivot (Case 1 in the
previous section) already gives a (2,Wu,v)-approximation for the adjacent case (the right
case in Figure 2). So if we maintain an estimate for d(u, v) if there exists w œ fi such that
w œ B(u) fl B(v) (the “overlap case”), then we obtain a (2,Wu,v)-approximation in total.

Here we need to create a min-heap for the overlap case, later we show we can maintain in
Õ(nCmax/p) time. First we focus on the challenge of bounding Cmax.

E�ciency challenge

While the bunches are small, there is no bound on the size of the clusters. To overcome
this issue in the static case, Thorup and Zwick developed an alternative way to build the
bunches and clusters, that guarantees that the clusters are also small [63]. At a high-level,
their approach is to adaptively change (grow) A by sampling big clusters into smaller clusters
using a sampling rate proportional to the cluster size and adding these nodes to the set of
pivots A. In total, in Õ(m/p) time we obtain bunches and clusters, both of size Õ(1/p). This
idea was developed in the context of obtaining compact routing schemes, and later found
numerous applications in static algorithms for approximating shortest paths and distances
(see e.g., [14, 8, 10, 9]).
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Using this trick, the static algorithm has running time Õ(mp + pnm+ n
p2 ) = Õ(nm3/4 +

m4/3), for p = m≠1/3 or Õ(mn1/2 + n2) for p = n≠1/2.
However, the adaptive sampling procedure does not seem to be well-suited to a dynamic

setting. The reason is that the sampling procedure is adaptive in such a way that when the
bunches/clusters change, the set of sampled nodes can also change. Although (a dynamic
adaptation of) the algorithm can guarantee that the set of sampled nodes is small at any
particular moment, there is no guarantee on the monotonicity of the set A of sources that
we need to maintain distances from. This would add a significant amount of computation
necessary to propagate these changes to other parts of the algorithm. A possible solution is
to enforce monotonicity by never letting nodes leave A. This would require us to bound the
total number of nodes that would ever be sampled, which seems impossible with the current
approach. To overcome this, we next suggest a new approach that gives us the monotonicity
needed for our dynamic algorithm. For simplicity, we first present this in a static setting.

Introducing bunch overlap thresholds

Our proposed approach is to divide the nodes into two types depending on the number of
bunches they appear in. In particular, we consider a threshold parameter · and we define a
node to be a heavy node if it is in more than · bunches (equivalently its cluster contains more
than · nodes), and otherwise we call it a light node. In other words, for the set of light nodes
we have Cmax Æ · . This threshold introduces a second type of pivot for each node u, which
we denote by q(u) that is defined to be the closest heavy node to u. In particular, instead of
computing all distance estimates going through nodes w œ B(u)flB(v), we only compute them
for the case that w is light, and otherwise it is enough to compute the minimum estimates
going through the heavy pivots, i.e. min{d(u, q(u)) + d(q(u), v), d(v, q(v)) + d(q(v), u)}. We
emphasize that these heavy pivots are not a subset of our original pivots p(v), v œ V , and
they have a di�erent behavior in bounding the running time than the bunch pivots. As we
will see later, introducing these thresholds is crucial in e�ciently obtaining the estimates
required for Case 2.2 as we can handle the light and heavy case separately.

Stretch of the algorithm with bunch overlap thresholds

As discussed above, the stretch analysis was divided into two cases. In the new variant of
the algorithm we add a third case, where we look at the distance estimates going through
heavy pivots, i.e. min{d(u, q(u)) + d(q(u), v), d(v, q(v)) + d(q(v), u)}. The main idea is that
now we only need to consider the di�cult case, Case 2.2, if the relevant node is light, which
allows us to implement the algorithm e�ciently.

If the relevant node w œ B(u) fl B(v) in Case 2 is heavy, we obtain a 2-approximation
through the heavy pivot: we get that the min{d(u,w), d(v, w)} Æ d(u, v)/2, since d(u, v) =
d(u,w) + d(w, v). W.l.o.g. say d(u,w) Æ d(u, v)/2. Then d(u, q(u)) Æ d(u,w) Æ d(u, v)/2,
hence d(u, q(u)) + d(q(u), v) Æ d(u, q(u)) + d(q(u), u) + d(u, v) Æ 2d(u, v).

Maintaining estimates through heavy nodes

For the stretch analysis above, we need to maintain a shortest path tree from each heavy
node. We ensure a bunch grows at most O(log1+‘(nW )) times. Hence by a total load
argument we get that the total number of nodes in all bunches over all updates is at most
O(np log1+‘(nW )). This implies there cannot be too many heavy nodes in total, hence we can
enforce monotonicity by keeping in Vheavy all nodes that were once heavy. As a consequence,
we can maintain multi-source approximate distances from all heavy nodes e�ciently: we can
compute shortest paths from this set to all other nodes in O(|Vheavy|m) = O(nmp· ) time.
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Running time of the algorithm with bunch overlap thresholds

Summarizing, we compute bunches and clusters in O(m/p) time, compute distances from
A to V in O(|A|m) = Õ(pnm) time, and we can compute shortest paths from ththe heavy
nodes in O(|Vheavy|m) = O(nmp· ) time.

Finally, we consider Case 2.2. For each node u œ V , we consider every light node
w œ B(u), and then all nodes v œ C(W ). Since w is light, we have |C(w)| Æ · , so this takes
time Õ(n · 1

p · ·).
Hence, in the total update time, we obtain Õ((pnm+ nm

p· + n·/p) log2(nW )). Setting
p = m≠1/4 and · = m1/2 gives a total update time of Õ(nm3/4 log(nW )).

Again for a decremental algorithm, we need to combine this new idea with the subtleties
we had in the previous section: the bunches, their overlaps, and the heavy nodes keep on
changing over the updates. We obtain a total update time that matches the stated static
running time (up to subpolynomial factors) for the algorithm using bunch overlap thresholds.

2.2.1 (2 + ‘)-APSP for Unweighted Graphs
We observe that in unweighted graphs mixed approximation can always be turned into a
multiplicative approximation – at the cost of a blow-up in the number of vertices. More
precisely, we prove the following reduction.

I Theorem 5. Let A be an algorithm that provides a (a+ ‘, k)-approximation for APSP in
·A(nÕ,mÕ) time, for any unweighted nÕ-node mÕ-edge graph GÕ, and any constants a, k œ NØ1

and ‘ œ [0, 1). Given an unweighted graph G = (V,E) on n nodes and m vertices, we can
compute (a+ (k + 2)‘, 0)-APSP in ·A(n+ km, (k + 1)m) time.

If A is a dynamic algorithm, then each update takes (k + 1) · [update time of A] time.
The query time remains the same (up to a constant factor).

The result is obtained by splitting every edge into k edges, by introducing new nodes on
the edge. Now a path corresponding to a +k approximation cannot take a non-trivial detour.

We combine this result with Theorem 2 to obtain a (2 + ‘)-approximation for unweighted
graphs in Õ(m7/4) total update time.

2.3 (1 + ‘, 2(k ≠ 1))-APSP for Unweighted Graphs
In this section, we describe our near-additive APSP algorithm. Our work is inspired by
a classic result of Dor, Halperin, and Zwick [32], that presented a static algorithm that
computes purely additive +2(k ≠ 1) approximation for APSP in Õ(n2≠1/km1/k) time in
unweighted graphs. Our goal is to obtain similar results dynamically. More concretely, we
obtain decremental (1 + ‘, 2(k ≠ 1))-approximate APSP in O(n2≠1/k+o(1)m1/k) total update
time in unweighted graphs.

2.3.1 (1 + ‘, 2)-APSP
To explain the high-level idea of the algorithm, we first focus on the special case that k = 2,
and that we only want to approximate the distances between pairs of nodes at distance at most
d from each other, for a parameter d. In this case, we obtain a +2-additive approximation in
Õ(n3/2m1/2d) time. This case already allows to present many of the high-level ideas of the
algorithm. Later we explain how to extend the results to the more general case. We start by
describing the static algorithm from [32], and then explain the dynamic version. The static
version of the data structure is as follows:
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Let s1 = (mn )
1/2. Let V1 be the set of dense nodes: V1 := {v œ V : deg(v) Ø s1}. Also

let E2 be the set of sparse edges, i.e. edges with at least one endpoint with degree less
than s1.
Node set D1. Construct a hitting set D1 of nodes in V1. This means that every node
v œ V1 has a neighbor in D1. The size of D1 is O(n logn/s1).
Edge set Eú. Let Eú be a set of size O(n) such that for each v œ V1, there exists
u œ D1 fl N(v) such that {u, v} œ Eú.
Computing distances from D1. Store distances D1 ◊ V by running a BFS from each
u œ D1 on the input graph G.
Computing distances from V \ D1. For each u œ V \D1 store a shortest path tree,
denoted by Tu rooted at u by running Dijkstra on (V,E2 fi Eú fi ED1

u ), where ED1
u is the

set of weighted edges corresponding to distances in ({u} ◊ D1) computed in the previous
step.

Dynamic data structure

The static algorithm computes distances in two steps. First, it computes distances from
D1 by computing BFS trees in the graph G. This step can be maintained dynamically by
using Even-Shiloach trees (ES-trees) [40], a data structure that maintains distances in a
decremental graph. Maintaining the distances up to distance O(d) takes O(|D1|md) time.
The more challenging part is computing distances from V \D1. Here the static algorithm
computes distances in the graphs Hu = (V,E2 fiEú fiED1

u ). Note that the graphs Hu change
dynamically in several ways. First, in the static algorithm, the set E2 is the set of light
edges. To keep the correctness of the dynamic algorithm, every time that a node v no longer
has a neighbor in D1, we should add all its adjacent edges to E2. Second, when an edge
in Eú is deleted from G, we should replace it by an alternative edge if such an edge exists.
Finally, the weights of the edges in ED1

u can change over time, when the estimates change.
This means that other than deletions of edges, we can also add new edges to the graphs Hu

or change the weights of their edges. Because of these edge insertions we can no longer use
the standard ES-tree data structure to maintain the distances, because that only works in a
decremental setting.

To overcome this, we use monotone ES-trees, a generalization of ES-trees proposed by
[46, 45]. In this data structure, to keep the algorithm e�cient, when new edges are inserted,
the distance estimates do not change. In particular, when edges are inserted, some distances
may decrease, however, in such cases the data structure keeps an old larger estimate of the
distance. The main challenge in using this data structure is to show that the stretch analysis
still holds. In particular, in our case, the stretch analysis of the static algorithm was based
on the fact the distances from the nodes V \D1 are computed in the graphs Hu, where in
the dynamic setting, we do not have this guarantee anymore.

Stretch analysis

The high-level idea of the stretch analysis uses the special structure of the graphs Hu. To
prove that the distance estimate between u and v is at most d(u, v) + 2, we distinguish
between two cases. First, we maintain the property that as long as v has a neighbor x œ D1,
then an edge of the form {v, x} is in Eú for x œ D1 fl N(v), and since we maintain correctly
the distances from D1, we can prove that we get an additive stretch of at most 2 in this case.
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In the second case, all the edges adjacent to v are in E2 ™ Hu, and here we can use an
inductive argument on the length of the path to prove that we get an additive stretch of at
most 2. Note that the estimate that we get can be larger compared to the distance between
u and v in the graph Hu, but we can still show that the additive approximation is at most 2
as needed.

Update time

Our update time depends on the size of the graphs Hu. While in the static setting it is easy to
bound the number of edges in E2 and Eú, in the decremental setting, as new edges are added
to these sets, we need a more careful analysis. For example, in the static setting |Eú| = O(n),
as any node only adds one adjacent edge to the set Eú, where in the decremental setting,
we may need to add many di�erent edges to this set because the previous ones got deleted.
However, we can still prove that even if a node needs to add to Eú edges to all its adjacent
neighbors in D1 during the algorithm, the size of Hu is small enough as needed. In the full
version we show that the total update time is Õ(m1/2n3/2d) in expectation, this matches the
static complexity up to the factor d.

Handling large distances

The algorithm described above is e�cient if d is small, to obtain an e�cient algorithm for the
general case, we combine our approach with a decremental near-additive APSP algorithm.
More concretely, we use an algorithm from [45] that allows to compute (1+‘,—)-approximation
for APSP in O(n2+o(1)) total update time, for — = no(1). Now we set d = �(—/‘), and
distinguish between two cases. For pairs of nodes at distance at most d from each other, we
get a +2-additive approximation as discussed above, in O(m1/2n3/2+o(1)) time. For pairs
of nodes at distance larger than d, the near-additive approximation is already a (1 +O(‘))-
approximation by the choice of the parameter d. For such pairs, the additive — term becomes
negligible, as their distance is �(—/‘). Overall, we get a (1+ ‘, 2)-approximation for APSP in
O(m1/2n3/2+o(1)) time. In fact, if the graph is dense enough (m = n1+�(1)), the no(1) term
is replaced by a poly-logarithmic term.

2.3.2 General k
We can extend the algorithm to obtain a (1 + ‘, 2(k ≠ 1))-approximate APSP in
O(n2≠1/k+o(1)m1/k) total update time, by adapting the general algorithm of [32] to the
dynamic setting. At a high-level, instead of having one hitting set D1, we have a series
of hitting sets D1, D2, ...,Dk, such that the set Di hits nodes of degree si. We compute
distances from Di in appropriate graphs Hi

u, that are sparser when the set Di is larger.
Balancing the parameters of the algorithm leads to the desired total update time.

2.3.3 Limitations of previous approaches
We next explain why approaches used in previous decremental algorithms cannot be general-
ized to obtain our near-additive results. First, the unweighted (1 + ‘, 2)-approximate APSP
algorithm that takes Õ(n5/2/‘) time [46], is inspired by static algorithms for +2-additive
emulators, sparse graphs that preserve the distances up to a +2-additive stretch. The main
idea is to maintain a sparse emulator of size Õ(n3/2), and exploit its sparsity to obtain a fast
algorithm. This construction however is specific for the +2 case, and cannot be generalized to
a general k. Note that the update time of the algorithm crucially depends on the size of the
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emulator, and to obtain a better algorithm for a general k, we need to be able to construct
a sparser emulator for a general k. However, a beautiful lower bound result by Abboud
and Bodwin [1] shows that for any constant k, a purely additive +k emulator should have
�(n4/3≠‘) edges. This implies that dynamic algorithms that are based on purely additive
emulators seem to require �(n7/3≠‘) time, and we cannot get running time arbitrarily close
to O(n2). An alternative approach is to build a near-additive emulator. This is done in [45],
where the authors show a (1 + ‘, 2(1 + 2/‘)k≠2)-approximation algorithm for decremental
APSP with expected total update time of Õ(n2+1/k(37/‘)k≠1). Here the running time indeed
gets closer to O(n2), but this comes at a price of a much worse additive term of 2(1+2/‘)k≠2.
While in the static setting there are also other bounds obtained for near-additive emulators,
such as O(1 + ‘, O(k/‘)k≠1) emulators of size O(kn1+

1
2k+1≠1 ) [38, 65, 2, 37], in all of the

constructions the additive term depends on ‘, and the dependence on ‘ is known to be nearly
tight for small k by lower bounds from [2]. Hence this approach cannot lead to small constant
additive terms that do not depend on ‘.
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Decremental Matching in General Weighted
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Abstract
In this paper, we consider the problem of maintaining a (1 ≠ Á)-approximate maximum weight

matching in a dynamic graph G, while the adversary makes changes to the edges of the graph.
In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and
Peng [20] gave an algorithm for this problem with an update time of ÕÁ(

Ô
m). We study a natural

relaxation of this problem, namely the decremental model, where the adversary is only allowed to
delete edges. For the unweighted version of this problem in general (possibly, non-bipartite) graphs,
[3] gave a decremental algorithm with update time OÁ(poly(logn)). However, beating ÕÁ(

Ô
m)

update time remained an open problem for the weighted version in general graphs. In this paper,
we bridge the gap between unweighted and weighted general graphs for the decremental setting.
We give a OÁ(poly(logn)) update time algorithm that maintains a (1 ≠ Á) approximate maximum
weight matching under adversarial deletions. Like the decremental algorithm of [3], our algorithm
is randomized, but works against an adaptive adversary. It also matches the time bound for the
unweighted version upto dependencies on Á and a logR factor, where R is the ratio between the
maximum and minimum edge weight in G.
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1 Introduction

In a dynamic graph G with vertex set V , an adversary makes updates to the edge set E
of the graph, and the algorithm is required to adjust to these changes and maintain a key
property of the graph. An algorithm is called decremental if it can only cope with edge
deletions, incremental if it can only cope with edge insertions, and fully dynamic if it can
cope with both edge insertions and deletions. Typically, the algorithm has to optimize the
update time, which is the time taken to adapt to a single edge update. For incremental
(respectively, decremental) algorithms, one seeks to optimize the amortized update time,
which is the average time taken over m edge insertions (respectively, deletions).

In this paper, we consider the problem of maintaining a (1 ≠ Á)-approximate matching in
a dynamic graph. For the general fully dynamic setting, where we have an unweighted graph
undergoing updates, the best known algorithms for this problem due to Bhattacharya, Kiss,
Saranurak [11] and Assadi, Behnezhad, Khanna, Li [2] have update times of O(m0.5≠�Á(1))
and O(n/logú n), respectively. Improving these bounds to OÁ(poly(logn)) is a fundamental
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Table 1 A Comparison of Weighted and Unweighted Dynamic Matching in General Graphs.

Setting Approximation Time (Unweighted) Time (Weighted)
Fully Dynamic (1 ≠ Á) O(m0.5≠�Á(1)) [11] ÕÁ(

Ô
m) [20]

Fully Dynamic (2 ≠
Ô
2) ÕÁ(1) [5] ÕÁ(

Ô
m) [20]

Fully Dynamic 0.609 Õ(min
)

�1/3
,m

1/6
*
) [7] ÕÁ(

Ô
m) [20]

Incremental (1 ≠ Á) OÁ(1) [18] ÕÁ(
Ô
m) [20]

Decremental (1 ≠ Á) ÕÁ(1) [3] ÕÁ(1) (new)

open problem, and conditional lower bounds of �(
Ô
m) (see [21] and [23]) for the exact case,

seem to suggest that this problem is quite challenging. This has motivated the study of
more relaxed versions of this problem. For example, one line of research has focussed on
obtaining considerably faster update times, but at the cost of worse approximation ratios
[6, 12]. Another research direction has been to study this problem in partially dynamic
settings. In the incremental setting, there has been steady progress over the years. Several
results [19, 18, 11, 14] culminated in a OÁ(1) update time algorithm for maintaining (1 ≠ Á)-
approximate matching in incremental graphs. On the decremental side, [9] and [22] gave
OÁ(poly(logn)) update time algorithms for maintaining (1 ≠ Á)-approximate matching in
bipartite graphs. Subsequently, [3] extended these results to the case of general graphs by
giving a OÁ(poly(logn)) update time algorithm for the same approximation ratio.

For the case of weighted graphs, the picture is less clear. A general reduction of Stubbs
and Williams [25] shows that any –-approximation unweighted matching algorithm can be
converted to a (0.5 ≠ Á) · –-approximation weighted matching algorithm with nearly the
same update time. Subsequently, [8] showed that one can avoid this factor 2 loss in the
approximation ratio for the specific case of bipartite graphs. However, for the case of general
graphs (possibly, non-bipartite), there is a significant gap between the best known weighted
and unweighted dynamic algorithms, as illustrated in Table 1. The main contribution of our
paper is to close this gap between weighted and unweighted matching for general graphs in
the decremental setting:

I Result 1 (Formalized in Theorem 4). Given a decremental weighted graph G, there is a

randomized algorithm that with high probability maintains a (1 ≠ Á)-approximation to the

maximum weight matching in G in total time ÕÁ(m).

Concurrent Work. Independent of this work, Chen, Sidford, and Tu also [15] gave a
OÁ(poly(logn)) update time algorithm for maintaining (1 ≠ Á)-maximum weight matching
in decremental graphs. Their techniques are very di�erent from ours, and extend the
entropy regularization approach of [22], who originally gave this framework for bipartite
unweighted graphs. Both approaches are of independent interest, since they use vastly
di�erent technical frameworks: [15] use insights from concave optimization, whereas our
approach is combinatorial. Our approach also has a better dependence on logn1, and
additionally uses simple algorithmic paradigms such as independent sampling or the static
approximate matching algorithms of [16]. In contrast, their approach has better dependence
on Á (in particular, their update time has a dependence of (1/Á)O(1/Á)), but uses more involved
algorithmic subroutines such as computing k-partial Gomory-Hu trees.

1 while they don’t state it explicitly, we determined that their algorithm has an update time of OÁ(log11 n).
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2 High-Level Overview

Our high-level approach is to follow the congestion balancing framework of [9], who maintain
a fractional matching that is robust to deletions. In order to do this, they hope to compute a
fractional matching which “spreads out” its flow. Therefore, they impose a capacity function
on the edges. These capacities are initially small, and are increased gradually. In particular,
they repeatedly invoke a subroutine M-or-E*() that does one of the following in OÁ(m · logn)
time (here µ(G) refers to the size of the maximum cardinality matching):
1. Either output a fractional matching x̨, with x(e) 6 Ÿ(e) for all e œ E, and

q
eœE x(e) >

(1 ≠ Á) · µ(G), or,
2. Output a set of bottleneck edges Eú, along which we can increase capacities:

a. We have, Ÿ(Eú) = O(µ(G) · logn).
b. Every large matching M has at least Á · µ(G) edges in Eú.

Property 2 ensures that we increase capacities carefully: Property 2a ensures the capacity
increase is small, and Property 2b ensures that we only increase capacity along important
edges. The subroutine M-or-E*() can be used as a black-box to get a decremental matching
algorithm: if M-or-E*() outputs a fractional matching, then we can round it to an integral
matching (see [26, 10, 13]). Otherwise, the capacity obeying maximum fractional matching
is too small, and the algorithm outputs a set of bottleneck edges Eú. Thus, we increase
capacity along it. Property 2 ensures the matching obtained is “robust” to deletions since it
ensures the capacities are small on average.

The authors of [9] also use an outer subroutine which repeatedly invokes M-or-E*() to
get a decremental matching algorithm. Similar to the case of [3], this subroutine carries over
with some impediments for the case of general weighted graphs as well. But, M-or-E*()
is far more challenging to implement, and this will be the focus of this extended abstract.

2.1 M-or-E*() for General Weighted Graphs
We first explicate what the impediments for implementing M-or-E*() in general graphs is.
For bipartite graphs, M-or-E*() is much easier to implement, since approximate fractional
matchings obeying capacity constraints can be computed using approximate max flows.
Similarly, the set of bottleneck edges Eú correspond to the minimum cut. However, in
general graphs, we don’t have such a natural correspondence to max-flow/min-cut due to the
integrality gap. More specifically, we mean that not every fractional matching has a large
integral matching in its support. On the other hand, while fractional matchings which satisfy
odd set constraints do have large integral matchings in their support, this characterization
doesn’t seem computationally useful at first. [3], in the context of unweighted graphs defined
a fractional matching that is both computationally easy to compute, and also avoids the
integrality gap. In particular, their candidate fractional matching either puts flow 1 on an
edge or a flow of at most Á. By a folklore lemma, one can show that such fractional matchings
satisfy small odd set constraints, and therefore have an integrality gap of 1 ≠ Á. This is
su�cient for us, since we focus on only approximation algorithms.

In this work on weighted decremental graphs, we also focus on finding the fractional
matchings mentioned above, since even in weighted graphs they are known to have a small
integrality gap. Towards this, we show the following structural lemmas. We note that [3]
also prove unweighted versions of these structural lemmas, but as we will state later, their
proofs are tailored towards unweighted graphs. Consequently, to prove these lemmas for
weighted graphs, we come up with significantly di�erent proof strategies. In what follows,
we will use mwm(G) to denote the maximum weight matching of G.
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1. First, given a weighted graph G with capacities Ÿ on the edges of the graph, we want to
check if the maximum weight fractional matching obeying odd set constraints (denoted
mwm(G,Ÿ)) is at least (1≠ Á) ·mwm(G). As mentioned before, we can’t use approximate
min-cost flow to find such a fractional matching. First, such an algorithm is computation-
ally expensive. Secondly, the fractional matching returned by it may not obey odd set
constraints. Therefore, akin to [3] we prove a sampling theorem: sample every edge e of
G independently, with a probability p(e) _ Ÿ(e) to construct an uncapacitated graph Gs.
Then, we show, with high probability, mwm(Gs) > mwm(G,Ÿ) ≠ Á · n. Thus, we can now
use Gs as a substitute for (G,Ÿ): more concretely, we can compute (1 ≠ Á) ·mwm(Gs)
using e�cient algorithms such as the one by [16], and thus, get an estimate on mwm(G,Ÿ).
The authors in [3] proved the unweighted version of this lemma. However, their proof
strategy was to use the Tutte-Berge theorem. The Tutte-Berge theorem is the non-
bipartite counterpart of the Hall’s theorem. In Hall’s theorem, deficiency is defined as
maxT™L {|T | ≠ |N(T )|}, where L is the left vertex set and is equal to n ≠ µ(G). In the
Tutte-Berge theorem, deficiency is analogously defined. The authors in [3] showed that in
Gs, with high probability, the deficiency is at most n≠ (µ(G,Ÿ)+ Á ·n), and consequently,
µ(Gs) > µ(G,Ÿ) ≠ Á · n. However, since Tutte-Berge theorem is specific to unweighted
graphs, our proof deviates from this.

2. Suppose the sampling procedure tells us that mwm(G,Ÿ) > (1 ≠ Á) · mwm(G). In this
case, we would like to compute a fractional matching x̨ such that

q
eœE w(e) · x(e) >

mwm(G,Ÿ). Akin to [3], we consider any M such that w(M) > (1 ≠ Á) · mwm(Gs),
and we split up M into two parts MH ™ M , which are edges with high capacity, and
ML ™ M which are edges with low capacity, and VH = V (MH) and VL = V (ML). Let
EL be the low capacity edges of G. Then, we can show that with high probability,
|MH |+mwm(G[VL] fl EL,Ÿ) > mwm(Gs) ≠ Á · n. Since congestion balancing allows us
to round capacities of MH to 1, we only need to compute (1 ≠ Á)-approximation to
mwm(G[VL] fl EL,Ÿ), and we would have the required fractional matching. There are a
few impediments to showing this theorem, and to computing mwm(G[VL] fl EL,Ÿ).
a. First, the unweighted analog of this theorem by [3], showed the opposite of the

structural theorem in 1: it shows that deficiency of Gs can not reduce by too much
either. To do this, they consider the bipartite double cover of Gs and (G,Ÿ) and use
Hall’s theorem to derive this conclusion. As mentioned before, for weighted graphs,
we don’t have this tool at our disposal, and therefore, have to make other arguments.
We look at the dual linear programs of Gs and (G,Ÿ), and use facts about these to
draw our conclusions. We believe our arguments can be seen as a generalization of the
approach of [3]. Looking at the proof in this light also simplifies the proof considerably.

b. The second challenge is the computational aspect. We would like to compute a
(1 ≠ Á)-approximate maximum weight fractional matching in G[VL] fl EL that obeys
Ÿ. The authors in [3] observe that since G[VL] fl EL only consists of low capacity
edges, we can transform this into a bipartite graph, and then use an approximate
flow algorithm. However, for us that would mean computing an approximate min-cost
flow, which is computationally expensive. Another way to do this is to use LP-solvers
(see [1]). However, these incur additional logn factors, which we believe in the context
of dynamic graph algorithms can be huge. Therefore, we give a simple scaling based
algorithm that repeatedly uses maximal flow as a subroutine to obtain a (1 ≠ Á)
approximation to mwm(G[VL] fl EL,Ÿ), while avoiding these logn factors.

There are other peripheral challenges as well, such as computing the set Eú. [9] showed that
these edges Eú corresponded to the min-cut, and [3] showed that one can use the duals of
Gs to determine these edges. We extend the proof of [3] to weighted graphs. Secondly, the
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congestion balancing framework, as shown in [3] and [9] only applies to unweighted graphs,
we are able to show that it extends to weighted graphs as well. Finally, the known rounding
schemes of [26, 10, 13] as stated only apply to unweighted graphs. We extend [26] to handle
the weighted fractional matching we construct.
I Remark 2. The structural theorems stated in Item 1 and Item 2a incur an additive error
of Á · n. In order to account for this, we use the vertex sparsification technique of [4], which
allows us to construct O(R · logn) multigraphs Hi such that |V (Hi)| 6 O(R·mwm(G)/Á) and
each matching of G is preserved in one of the Hi. Here, R is the ratio of the max-weight
edge and min-weight edge in G. As is evident, this reduction will cause our algorithms to
have a large dependence on R. However, we can reduce this dependence by using a reduction
of [20] (see Lemma 3), which has been used similarly in other prior works (see [8, 15]). We
refer the reader to Appendix C of [8] for a proof.

I Lemma 3 ([20]). Let G be a weighted graph with arbitrary weights with R being the ratio

between maximum and minimum edge weights. Let Á œ (0, 0.5) and let “Á = (1/Á)O(1/Á)
. If

there is an algorithm A that maintains an –-approximate maximum weight matching in a

graph whose weights are {1, 2, 3, · · · ,W} with update time T (n,m,–,W ), then there is an

algorithm AÕ
that maintains a (1 ≠ Á) · –-approximate maximum weight matching in G in

update time O(T (n,m,–, “Á) · logR).

In the rest of the paper we will assume that mwm(G) = �(logn). This is because the
graph is undergoing deletions, and soon as mwm(G) drops below this value, we can switch
to a di�erent decremental algorithm which we describe in the full version of our paper.
Additionally, from Remark 2 we can also assume that mwm(G) = �(Á·n/W). Finally, from
Lemma 3 we can assume that our graphs are integer-weighted with weights in {1, 2, · · · ,W}.
All our structural theorems will be proven using these assumptions in mind. We will justify
these assumption in the full version of this paper.

3 Preliminaries

Throughout the paper, we will use G to refer to the current version of the graph, and let V
and E be the vertex set and edge set of G, respectively. The graphs we deal with are weighted,
and we use R to denote the ratio between the max-weight and min-weight edge. Additionally
use mwm(G) to denote the weight of the maximum weight matching of G. During the course
of the algorithm, we will maintain a fractional matching, which corresponds to a non-negative
vector x̨ œ [0, 1]m satisfying the following constraints :

q
v–e x(e) 6 1. For a set S ™ E, we let

x(S) =
q

eœS x(e). Given a capacity function Ÿ on the edges of the graph, we say that x̨ obeys
Ÿ if x(e) 6 Ÿ(e) for all e œ E. For a vector x̨, we use supp(x̨) to denote the set of edges that
are in the support of x̨. For a fractional matching x̨, we say that it satisfies odd set constraints
if for all odd-sized sets B ™ V , we have,

q
eœG[B]

x(e) 6 |B|≠1

2
. We use mwm(G,Ÿ) to denote

the size of the maximum weight fractional matching obeying the odd set constraints and
the capacity function Ÿ. Additionally, we will use “Á = (1/Á)O(1/Á), –Á = 2W

2/Á
3 · logn and

flÁ = 2W
2/Á

2 · logn. We also use Vodd to denote the set of all odd-sized subsets B ™ V . Our
main result is a decremental algorithm for maintaining (1≠ Á)-approximate maximum weight
matching in general graphs. In particular, we formally state our main theorem.

I Theorem 4. Let G be a weighted graph with weight function w on the edges of the graph and

let Á œ (0, 1/2). There is a decremental algorithm with total update time OÁ(m · log7 n · logR)
(amortized ÕÁ(1)) that maintains an integral matching M with w(M) > (1 ≠ Á) ·mwm(G),
with high probability, where G refers to the current version of the graph. The algorithm is

randomized but works against an adaptive adversary. The dependence on Á is 2(1/Á)
O(1/Á)

.
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Roadmap for Extended Abstract. As mentioned in the overview, our main contribution
is to give an algorithm M-or-E*() for weighted general graphs (we call this subroutine
WeightedM-or-E*()). Thus, rest of this paper is dedicated to setting this up. We
postpone the proof of Theorem 4 to the full version of this paper.

4 Properties of WeightedM-or-E*()

As mentioned in the overview, we will focus our attention on implementing M-or-E*() in
general weighted graphs. We will call this subroutineWeightedM-or-E*() We additionally
mentioned that we will be working with multigraphs, so this will motivate some definitions.
After giving these definitions, we state the properties of WeightedM-or-E*() that we need.
Finally, we show that we are indeed able to implement WeightedM-or-E*(). Recall, that
is su�cient to design WeightedM-or-E*() for the case of graph that have integer weights
in {1, 2, · · · ,W} by Section 2.1.

I Definition 5. Let G be a multigraph. For a pair of vertices u, v œ V , we define Di(u, v)
to be the edges e between u and v that have weight i. Additionally, we also have D(u, v) =
fiW
i=1

Di(u, v). Since we assume integral weights, these sets are well-defined. If e is an edge

between u, v œ V , then Di(e) := Di(u, v) and D(e) := D(u, v).

I Definition 6. Let G be a weighted multigraph, with n vertices and m edges. Let Ÿ be

the capacity function on the edges of the graph, and let x̨ be a fractional matching. We

define x̨C
to be a vector, with support size min

)
W ·

!n
2

"
,m

*
, where for vertices u, v œ V ,

xC
i (u, v) =

q
eœDi(u,v)

x(e). That is, x̨C
is obtained by “collapsing” all edges of the same

weight between a pair of vertices together. We now describe the opposite operation: the

“distribution” operation. Similarly, suppose y̨ is a vector with |supp(y̨)| 6
!n
2

"
·W , where,

yi(u, v) is the entry corresponding to the edge of weight i between u and v. Then, we

define y̨D to be an m length vector such that for every e œ E between u, v with w(e) = i,
yD(e) := yi(u,v)·Ÿ(e)

Ÿ(Di(u,v))
. Intuitively, y̨D is a multigraph obtained by distributing the yi(u, v)

among all edges of the same weight.

We will next, state two folklore observations (proved in the full version of the paper), which
motivates the main lemma which we want to prove.

I Observation 7. Let f̨ be a fractional matching on a multigraph, that puts flow 1 or, at

most Á between every pair of vertices u, v œ V . Then, f̨ satisfies odd set constraints of sets

of size at most 1/Á.

I Observation 8. Suppose x̨ is a fractional matching that satisfies odd set constraints for all

odd sets of size smaller than 3/Á + 1, then the fractional matching z̨ = x̨
(1+Á) satisfies odd set

constraints for all odd sets, and therefore, mwm(supp(x̨)) > (1 ≠ Á) ·
q

eœE w(e) · x(e).

We now state the main lemma, which we focus on proving in the extended abstract.

I Lemma 9. Let G be a multigraph with edge weights in {1, 2, · · · ,W}. Then, there is

an algorithm WeightedM-or-E*() that takes as input G,Ÿ, Á œ (0, 0.5), and a parameter

µ > mwm(G) · (1 ≠ Á), and in time O(m·W ·logn/Á) returns one of the following.

1. A fractional matching x̨ such that
q

eœE w(e)·x(e) > (1≠2Á)·mwm(G), with the following

properties.

a. Let e œ Di(u, v) such that e œ supp(x̨), with Ÿ(Di(u, v)) > 1/–2
Á
, then x(Di(u, v)) = 1,

and we have, x(e) = Ÿ(e)
Ÿ(Di(u,v))

. Moreover, since x̨ is a fractional matching, we have

x(Dj(u, v)) = 0 for all j ”= i.
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b. Consider any e œ Di(u, v) such that e œ supp(x̨), with Ÿ(Di(u, v)) 6 1/–2
Á
, then

x(Di(u, v)) 6 Ÿ(Di(u, v)) · –Á, and x(e) 6 Ÿ(e) · –Á. Moreover, for any e œ Dj(u, v)
with Ÿ(Dj(u, v)) > 1/–2

Á
, we have x(e) = 0.

2. A set of edges Eú
such that

q
eœEú w(e) · Ÿ(e) = O(mwm(G) · logn), and for any integral

matching M with w(M) > (1 ≠ 2Á) · mwm(G), we have w(M fl Eú) > Á · mwm(G).
Additionally, for all e œ Eú

, we have Ÿ(e) < 1.

We give some intuition about why x̨ avoids the integrality gap. Consider the situation in
which the algorithm WeightedM-or-E*() returns a fractional matching x̨. For any pair
of vertices u, v consider

qW
i=1

xC
i (u, v), then this is either 1 or at most Á by Lemma 9(1).

Thus, it satisfies odd set constraints for all odd sets of size at most 1/Á by Observation 7. By
Observation 8 , we can then argue that x̨ contains an integral matching of weight at least
(1 + Á)≠1 ·

q
u ”=v

qW
i=1

xC
i (u, v) · i in its support.

We will use WeightedM-or-E*() as a subroutine in our decremental matching algorithm,
and we will get a matching x̨ with the following properties. We mention these properties
since they will help us visualize the fractional matching better. These properties are evident
once we state the algorithm WeightedM-or-E*().

I Property 10. The set Eú
returned WeightedM-or-E*() has the following properties.

1. Each time WeightedM-or-E*() returns Eú
, we will increase capacity along Eú

by

multiplying existing capacities by the same factor.

2. Consider u, v œ V , and let e, eÕ
be two edges between u and v such that w(e) = w(eÕ), then

Ÿ(e) = Ÿ(eÕ) at all times during the run of the algorithm.

The next property follows directly as a consequence of Lemma 9(1).

I Property 11. Let x̨ be a matching output by Lemma 9, then x(e) 6 Ÿ(e) · –2
Á for all e œ E.

This is evident from Lemma 9(1).

I Definition 12. Let G be a multigraph, and let x̨ be a fractional matching of G. Then,

we split supp(x̨) into two parts: x̨i
and x̨f

, where, x̨ = x̨i + x̨f
, and supp(x̨i) =

{e | x(Dj(e)) > 1/–2
Á
and w(e) = j} and supp(x̨f ) = {e | x(Dj(e)) 6 1/–2

Á
and w(e) = j}.

When x̨ is the output of WeightedM-or-E*(), then these correspond to the integral and

fractional parts of x̨.

I Property 13. Let G be any multigraph, and let x̨ be a fractional matching of G that is

returned by WeightedM-or-E*(). Then, for any pair of vertices, u, v, we have the following

properties, which are a consequence of Lemma 9(1a) and Lemma 9(1b):

1. Either D(u, v) fl supp(x̨i) ”= ÿ or D(u, v) fl supp(x̨f ) ”= ÿ, but not both.
2. For any u, v, j such that Dj(u, v) fl supp(x̨) ”= ÿ, we have Dj(u, v) ™ supp(x̨).
Thus, the supports of x̨i

and x̨f
are vertex disjoint.

I Property 14. Let x̨ be a fractional matching returned by WeightedM-or-E*(), consider
z̨ = x̨i

. Then, z̨C is an integral matching. This is implied by Lemma 9(1).

5 Building Blocks for WeightedM-or-E*()

In this section, we focus on stating the building blocks we need for Lemma 9. The algorithm
WeightedM-or-E*() will proceed in phases. In Phase 1, we would like to determine if
a given graph G, with weight function w and capacity function Ÿ on the edges, has the
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property that mwm(G,Ÿ) > (1 ≠ Á) ·mwm(G). We give the structural theorem related to
this in Section 5.1. If it is indeed the case that mwm(G,Ÿ) > (1 ≠ Á) · mwm(G), then the
algorithm proceeds to Phase 2, and in this phase we want to find such a fractional matching.
We describe the main structural theorem of this phase in Section 5.2. In Phase 2, there is an
additional computational question, that of finding a (1 ≠ Á)-approximate maximum weight
fractional matching e�ciently. We give an algorithm for this in Section 5.4. Finally, if in
Phase 1 we know that mwm(G,Ÿ) < (1 ≠ Á) · mwm(G), then we increase capacities along
Eú. In Section 5.3, we give a characterization of these edges. We start with stating some
probabilistic tools that we will need, for example the Cherno� Bound:

I Lemma 15 ([17]). Let X1, X2, · · · , Xk be k negatively associated random variables with

0 6 |Xi| 6 M , and let X =
qk

i=1
Xi. Suppose µ = E [X], and µmin 6 µ 6 µmax. Then, we

have, for ” > 0,

Pr (X > (1 + ”) · µmax) 6
A

e”

(1 + ”)(1+”)

Bµmax
M

Pr (X < (1 ≠ ”) · µmin) 6 exp
3

≠ ”2 · µmin
(2 + ”) ·M

4

Additionally, we will also need Bernstein’s inequality.

I Lemma 16. Let X be the sum of negatively associated random variables X1, · · · , Xk with

Xi œ [0,M ] for each i œ [k]. Then, for ‡2 =
qk

i=1
Var [Xi] and all a > 0,

Pr (X > E [X] + a) 6 exp
3

≠a2

2 (‡2 + a·M/3)

4

5.1 Phase 1 of WeightedM-or-E*()
Recall that we used mwm(G,Ÿ) to denote the weight of the maximum weight fractional
matching ofG obeying Ÿ as well as the odd set constraints. As in the congestion balancing step,
we want to estimate mwm(G,Ÿ). In the bipartite case, because of the correspondence between
flows and fractional matchings, one could do this relatively easily. But in non-bipartite
graphs, we don’t have this correspondence.

In this section, we show the following structural lemma: if in a weighted graph G, we
sample every edge with probability p(e) = min {1,Ÿ(e) · flÁ} to create a graph Gs, then
mwm(Gs) > mwm(G,Ÿ) ≠ Á · mwm(G). Thus, now we can estimate mwm(Gs) (and con-
sequently, mwm(G,Ÿ)) by using existing results (such [16]). We remark that [3] proved the
unweighted version of this lemma, but their proof strategy relied on showing that with high
probability, Gs does not contain a Tutte set causing a high deficiency (see Lemma 28 in [3]).

I Lemma 17. Let G be an integer weighted multigraph with weights in {1, 2, · · · ,W}, and
with mwm(G) > max {Á·n/16·W , logn/Á4}, where Á œ (0, 1/2). Let Ÿ be a capacity function on

the edges of the graph, and let Gs be obtained by sampling every edge e independently with

probability p(e) = min {1,Ÿ(e) · flÁ}. Then, with high probability, mwm(Gs) > mwm(G,Ÿ) ≠
Á ·mwm(G).

Proof. Let x̨ denote the fractional matching that realizes mwm(G,Ÿ). In order to prove the
statement, we will construct a vector z̨ in the support of Gs. This vector z̨ will have the
following properties: it will satisfy the fractional matching constraints and small blossom
constraints with high probability. It will also have the property that

q
eœE)

w(e) · z(e) >
(1 ≠ Á) ·

q
eœE w(e) · x(e) > mwm(G,Ÿ) ≠ Á ·mwm(G) with high probability as well.
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Since with high probability Gs, contains a fractional matching z̨ satisfying the above
properties, there is an integral matching M in support of Gs with w(M) > (1≠Á)·

q
eœE w(e)·

z(e) > mwm(G,Ÿ) ≠ Á ·mwm(G) (see Observation 8).
Let Xe denote the indicator random variable of the event e œ Gs. We define z̨ as follows:

z(e) = Xe ·
x(e)

min {1,Ÿ(e) · flÁ}
· (1 ≠ Á)

Note that {z(e)}eœE are independent random variables, and, E
#q

eœE z(e) · w(e)
$
= (1 ≠

Á) ·
q

eœE w(e) · x(e). Further, consider any e with Ÿ(e) > 1

flÁ

, then w(e) · z(e) = w(e) · x(e)
always. Thus, we focus on e with Ÿ(e) < 1/flÁ. We first have the following observation.

IObservation 18. Note that,
q

eœE:Ÿ(e)<1/flÁ
w(e)·x(e) > Á·mwm(G). Otherwise,

q
eœE z(e)·

w(e) > (1 ≠ Á) ·
q

eœE x(e) · w(e) ≠ Á ·mwm(G) with probability 1.

Using Cherno� bound with M = W
flÁ

and µmin = Á ·mwm(G) (see Lemma 15), we have,

Pr

Q

a
ÿ

eœE:Ÿ(e)<1/flÁ

z(e) · w(e) 6
ÿ

eœE:Ÿ(e)<1/flÁ

w(e) · x(e) ≠ 2 · Á2 ·mwm(G)

R

b

= exp
3

≠Á4 ·mwm(G) · flÁ

2 ·W

4

By assumption, mwm(G) > 100·logn/Á4, we have that the above claim holds with probability
at least 1 ≠ O(1/n1/Á). We will now show that it obeys fractional matching constraints
with high probability as well. Consider an edge e with Ÿ(e) > 1/flÁ, we know that e œ Gs.
Consequently, we have Var [z(e)] = 0 for such an edge, since z(e) = x(e) always. For any edge
with Ÿ(e) < 1/fle, we have, Var [z(e)] 6 (1 ≠ 2Á) · x(e)

flÁ

. Since z(e) are independent random
variables, we have Var

#q
v–e z(e)

$
=

q
v–e Var [z(e)] 6 (1 ≠ 2Á) · fl≠1

Á . Moreover, we know
that E

#q
e–v z(e)

$
6 (1 ≠ Á). Thus, we want to compute the probability of the event thatq

e–v z(e) > 1. Note that, in order to do this, it is su�cient to consider the edges e for which
Ÿ(e) < fl≠1

Á , since for edges other than this, z(e) = x(e). Thus, by Lemma 16, with a = Á,
M = fl≠1

Á , Pr
!q

e–v z(e) > 1
"
= O

1
1

n1/Á

2
. J

Taking a union bound over all vertices in the graph, we have our claim. Next, we want
to compute the probability that z̨ also satisfies small odd set constraints. To see this,
consider any odd set B such that |B| 6 1/Á. We know that by definition of x̨, we have,
E

Ëq
eœG[B]

z(e)
È
6 (1 ≠ Á) · |B|≠1

2
. We can bound variance as well, Var

Ëq
eœG[B]

z(e)
È
6

(1 ≠ Á) · |B|≠1

2
· 1

flÁ

. Consider the following subclaim.

I Observation 19. Let B be any odd set with 3 6 |B| 6 1/Á. Then,
|B|≠1

2
> (1≠Á) · |B|≠1

2
+Á.

Let EB be the event that
q

eœG[B]
z(e) > |B|≠1

2
, then from the above observation, and

Lemma 16, Pr (EB) = O
1

1

n1/Á
2

2
. The second equality follows from the fact that we are

considering small blossoms, that is, |B| 6 1/Á. Taking a union bound over all small blossoms,
we have our claim.

5.2 Phase 2 of WeightedM-or-E*()
The algorithm WeightedM-or-E*() proceeds to Phase 2 only if in Phase 1, if mwm(G,Ÿ) >
(1 ≠ Á) · mwm(G) (Lemma 17). In Phase 2, we now want to construct a good fractional
matching: it should be close to mwm(G,Ÿ) and also satisfy odd set constraints. The fractional
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matching will be inspired by Observation 7 and is constructed as follows: Suppose M is
a matching in Gs with weight at least (1 ≠ Á) · mwm(Gs). Then, we will split up M into
high-capacity part, MH , and low capacity part ML. We can introduce some slack in the
congestion balancing framework, and round up the capacities of MH . We will then compute
a (1 ≠ Á)-approximate maximum weight fractional matching f̨ on the low-capacity edges of
G[V (ML)]. Since these capacities are small, we can accomplish by computing a fractional
matching in the bipartite double cover of G[V (ML)]. For now, in this section, we will show
that: w(MH) +

q
eœE f(e) · w(e) > mwm(Gs) ≠ Á ·mwm(G).

I Definition 20. Let G be a multigraph, we define EL = {e œ E | e œ Di(u, v),Ÿ(Di(u, v)) 6
1/–2

Á
}. Intuitively, these correspond to the low capacity edges. Similarly, we define Ÿ+(e) =

Ÿ(e) · –Á.

[3] proved an unweighted version of this lemma, but their proof strategy was based on
considering the bipartite double cover of Gs an (G,Ÿ), and analysing the size of the Hall set
in Gs. We take a di�erent approach based on the dual programs of mwm(Gs) and mwm(G,Ÿ).
We believe our proof is arguably simpler.

I Lemma 21. Let G be a weighted multigraph with maximum edge weight W . Suppose

mwm(G) > max {Á·n/16·W , logn/Á4} Then, with high probability, for all X ™ V , we have

mwm(Gs[X]) 6 mwm(G[X] fl EL,Ÿ
+) + Á ·mwm(G)

Proof. Consider a fixed X, and from now on, we use H := G[X]flEL and Hs := Gs[X]flEL.
To prove this, we will make use of a primal-dual argument. We state the linear program for
mwm(H,Ÿ+), and its dual.

maximize
ÿ

eœE(H)

w(e) · x(e)

subject to

q
e–v,eœE(H)

x(e) 6 1 ’v œ X

q
eœG[B]flE(H)

x(e) 6 |B|≠1

2
’B œ Xodd

x(e) 6 Ÿ+(e) ’e œ E(H)

The corresponding dual program is,

minimize f(y, z, r) =
ÿ

uœV

y(u) +
ÿ

B™Xodd

r(B) ·
3
|B| ≠ 1

2

4
+

ÿ

eœE(H)

z(e) · Ÿ+(e)

subject to
y(u) + y(v) + z(e) +

ÿ

BœXodd:(u,v)œG[B]

r(B) > w(e)

’e œ E(H) between u, v, ’u, v œ X

By strong duality, we know that mwm(H,Ÿ+) = f(y, z, r) for optimal y̨, z̨, r̨. Similarly, for
the uncapacitated graph Hs we have the same primal and dual programs, except we don’t
have the third constraint in the primal program, and in the dual program we omit the z
variables.
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maximize
ÿ

eœE(Hs)

w(e) · xÕ(e)

subject to

q
e–v,eœHs

xÕ(e) 6 1 ’v œ X

q
eœG[B]flE(Hs)

xÕ(e) 6 |B|≠1

2
’B œ Xodd

The corresponding dual program is as follows:

minimize
ÿ

uœV

yÕ(u) +
ÿ

B™Xodd

rÕ(B) ·
3
|B| ≠ 1

2

4

subject to
yÕ(u) + yÕ(v)+

q
BœXodd:(u,v)œG[B]

rÕ(B) > w(e) ’e œ E(Hs) between u, v, ’u, v œ X

Let g(yÕ, rÕ) denote the optimal for dual program corresponding to Hs. Note that this is
a random variable, since Hs is a random graph. We will show that with high probability,

g(yÕ, rÕ) 6 f(y, r, z) + Á ·mwm(G)

By duality, we have, mwm(Hs) 6 g(yÕ, rÕ), and f(y, z, r) = mwm(H,Ÿ+). This will show our
claim for a fixed H, and then we take a union bound over all H.

We will use
)
{y(u)}uœX , {r(B)}BœXodd

*
to get a solution for the dual program for Hs.

We will refer to this set of dual variables as an attempted cover. Let EÕ = {e | z(e) > 0}.
Observe that the edges left uncovered by attempted cover of Hs are precisely a subset of EÕ.
We now modify the cover as follows.

�y(u) =
ÿ

e–v,eœHs

z(e), and, yÕ(u) = y(u) + �y(u)

Note that
)
{yÕ(u)}uœX , {r(B)}BœXodd

*
is a valid cover of Hs. To see this, consider edge

e œ Hs and let u, v be the endpoints of Hs. Suppose e /œ EÕ, then, w(e) 6 yÕ(u) + yÕ(v) +q
eœG[B]

r(B). Similarly, for an edge e œ EÕ, we have, w(e) 6 yÕ(u) + yÕ(v) +
q

eœG[B]
r(B).

Moreover, g(yÕ, rÕ) = f(y, r, z)+
q

uœX �y(u). Thus, it is su�cient to bound
q

uœX �y(u) =
2 ·

q
eœEÕ z(e) · Xe, where Xe is the indicator variable that takes value 1 if e œ Hs, and

0 otherwise. Note that E
#q

eœEÕ z(e) ·Xe

$
6 mwm(H,Ÿ+) · 2≠W

2/Á
3 . Using Cherno� and

choosing ” = Á·mwm(G)·2W
2
/Á

3

mwm(H,Ÿ+)
and noting that M = W , we have,

Pr
A

ÿ

eœEÕ

z(e) ·Xe > 2 · Á ·mwm(G)
B

6 exp
3

≠Á ·mwm(G) · W
Á2

4

By assumption, n 6 mwm(G)·W
Á , thus taking a union bound over all subsets, we have our

theorem. J
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5.3 Phase 3: Finding Set E*
The algorithm WeightedM-or-E*() proceeds to Phase 3, if mwm(G,Ÿ) is not large enough
(see Lemma 17). At this point we have to increase capacity along some edges in the graph.
Recall Lemma 9(2), the properties required of such edges. Phase 3 finds such edges Eú, and
makes sure it has that this set has the property that

q
eœEú w(e) · Ÿ(e) = O(mwm(G) logn),

and moreover, every good matching in G has significant weight going through Eú.
Similar to the case of [3], we will use the dual variables of Gs to describe Eú. We will

first start with describing the dual program corresponding to the general matching LP:

minimize
ÿ

uœV

y(u) +
ÿ

B™Vodd

r(B) ·
3
|B| ≠ 1

2

4

subject to y(u) + y(v) +
ÿ

B:(u,v)œG[B]

r(B) > w(u, v) ’(u, v) œ E

Additionally, we define yr(e) to be the dual constraint corresponding to the edge e, andf(y, r)
to be the value of the objective function. We now describe some properties of Static-
Weighted-Match(H, Á). This is the algorithm whose properties we use to describe Eú. We
state these properties without proof for now and postpone the proof to the full version.

I Lemma 22 ([16]). There is an O(m/Á · log 1/Á) time algorithm Static-Weighted-Match()
that takes as input, a weighted graph G, and a parameter Á > 0, and outputs an integral

matching M , and dual vectors y̨ and r̨ with the following properties.

1. It returns an integral matching M such that w(M) > (1 ≠ Á) ·mwm(G)
2. A set � of laminar odd-sized sets such that {B œ Vodd | r(B) > 0} ™ �.

3. For all odd-sized sets B such that |B| > 1/Á + 1, r(B) = 0.
4. For all v œ V , y(v) is an integral multiple of Á, and for all B œ Vodd, r(B) is an integral

multiple of Á.

5. For each edge e œ E, we have yr(e) > (1 ≠ Á) · w(e), that is e is approximately covered
by y̨ and r̨.

6. The value of the dual objective, f(y, r) is at most (1 + Á) ·mwm(G).
We now state our first claim, which in Section 6 will help us show that when mwm(G,Ÿ) <

(1 ≠ 2Á) ·mwm(G), then every large matching in G has a lot of weight in Eú.

B Claim 23. Suppose H ™ G, and y̨, r̨ are the dual vectors returned by Static-Weighted-
Match(H, Á). Let EH = {e œ E | yr(e) > (1 ≠ Á) · w(e)}. Let M be any matching of G,
then w(M fl E \ EH) > w(M) ≠ (1 + Á)2 ·mwm(H).

Proof. Observe that if we scale up the dual variables y̨ and r̨ by (1 + Á), then y̨ and r̨ is a
feasible solution for the dual matching problem for the graph EH . Thus, by weak duality
and Lemma 22(6), we have mwm(EH) 6 (1 + Á) · f(y, r) 6 (1 + Á)2 · mwm(H). Thus, we
have: w(M) 6 (1 + Á)2 ·mwm(H) + w(M fl E \ EH). C

We now describe the set Eú, and show that w(Ÿ(Eú)) = O(mwm(G) · logn) with high
probability.

I Lemma 24. Let G be a multigraph such that mwm(G) > Án/W , and let Ÿ be the capacity

function on the edges of the graph. Suppose Gs is the graph obtained by sampling edge e with

probability p(e) = min {1, flÁ · Ÿ(e)}. Let y̨, r̨ be the duals returned by Static-Weighted-
Match(Gs, Á). Let Eú = {e | yr(e) < (1 ≠ Á) · w(e)}, then with high probability, w(Ÿ(Eú)) =
O(mwm(G) · logn).
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Proof. We consider the set D of duals y̨, r̨ that satisfy the following properties.
1. For all v œ V , y(v) is a multiple of Á, and for all B œ Vodd, r(B) is a multiple of Á.
2. Let � = {B | r(B) > 0}, then � is laminar.
3. If r(B) > 0 for some B, then |B| 6 1/Á.
Observe that D contains all possible duals that could be returned by Static-Weighted-
Match(). Now, we bound |D|.

|D| 6
2nÿ

i=0

3
n1/Á

i

4
·
3
W

Á

4n

·
3
W

Á

42n

6 210/Á
3·n·logW 6 210/Á

3·mwm(G)
W

·logW

This follows from the following argument. Since � is laminar (due to 2), there are at most
2n sets contained in �, and from 3, we can conclude that these laminar sets are chosen from
among n1/Á sets. Similarly, 1 suggests that each y(v) and chosen r(B) can be assigned W/Á

values, thus for a given choice of �, there are at most
!
W
Á

"n ·
!
W
Á

"2n choices for y̨ and r̨.
We can derive the last set of equations by the premise of our lemma: that mwm(G) > Án/W .
Additionally, observe that D includes the set of duals that can be returned by G, and therefore
|D| is an upper bound on the set of possible duals returned by Static-Weighted-Match().

Now, consider any y̨, r̨ œ D and let Ey,r = {e | yr(e) < (1 ≠ Á) · w(e)}. Observe that for
all e œ Ey,r, we have Ÿ(e) < 1/flÁ, since otherwise Ÿ(e) = 1, and e would be included in Gs with
probability 1 and be approximately covered by y̨, r̨ (by Lemma 22(5)). Thus, for all e œ Ey,r,
we have Ÿ(e) < 1/flÁ. Now, y̨, r̨ are such that w(Ÿ(Ey,r)) > mwm(G) · logn, then none of the
edges in Ey,r were sampled. Note that in this case, Ÿ(Ey,r) > mwm(G) · logn ·W≠1. Let
Ey,r denote the event that y̨, r̨ is returned by Static-Weighted-Match(Gs, Á) and E2 be
the event that Ey,r is not sampled into Gs. Then, observe that in this case,

Pr (Ey,r) 6 Pr (E2) 6
Ÿ

eœEy,r

(1 ≠ p(e)) 6 exp

Q

a≠
ÿ

eœEy,r

Ÿ(e) · flÁ

R

b 6 exp
3

≠mwm(G)
W

· flÁ

4

Now, we want to upper bound the probability that Static-Weighted-Match(Gs, Á) out-
puts y̨, r̨ such that w(Ÿ(Ey,r)) > mwm(G) · logn. To do this, we take a union bound
over all |D| many possible duals. From the previous discussion we know that |D| 6
exp

1
10

Á2 · mwm(G)

W · logW
2
. This concludes the proof. J

5.4 Weighted Fractional Matching in Bipartite Graphs
The final ingredient we need for WeightedM-or-E*() is the following lemma, which
computes a fractional matching on low capacity edges in bipartite graphs. We will show in
Section 6 how to use this as a subroutine to do the same in general graphs.

I Lemma 25. Consider a weighted bipartite multigraph G with the following property: for

any u, v œ V with e ”= eÕ
between u, v, then w(e) ”= w(eÕ). Suppose Ÿ is the capacity function

on the edges of the graph, and suppose the edge weights are in {1, 2, · · · ,W}. There is an

algorithm that in O(m ·W · logn · 1/Á) time finds a fractional matching x̨ obeying the capacity

function Ÿ such that
q

eœE w(e) · x(e) > (1 ≠ Á) ·mwm(G,Ÿ).

Note that there are algorithms in the literature, which can compute weighted fractional
matchings in bipartite graphs: such the one by [1]. However, like many LP solvers, one
incurs additional logn factors in the time bound. In contrast, our algorithm incurs a W
factor, but since we use Lemma 3, in the final algorithm, we will only incur a logW factor
for the entire decremental algorithm. In contrast, using LP solvers, we will incur additional

ICALP 2024



59:14 Decremental Matching in General Weighted Graphs

logn factors for implementing WeightedM-or-E*() alone. In order to come up with the
algorithm for Lemma 25, we first recall the maximum weight capacitated fractional matching
linear program for bipartite graphs, and its corresponding dual.

maximize
ÿ

eœE

w(e) · x(e)

subject to
x(e) 6 Ÿ(e) ’e œ E

ÿ

e–v

x(e) 6 1 ’v œ V

minimize
ÿ

vœL

y(v) +
ÿ

uœR

y(u) +
ÿ

eœE

z(e) · Ÿ(e)

subject to
y(u) + y(v) + z(e) > w(e) ’e œ E

Here, yz(e) = y(u) + y(v) + z(e), where u, v are the two endpoints of e.
Our algorithm will be a scaling algorithm, which essentially reduces the problem of finding

(1 ≠ Á)-approximate maximum weight fractional matching to the problem of finding a
maximal fractional matching, which can be easily accomplished using known subroutines
(see [24, 9, 3]). Before stating our algorithm, we give some definitions.

I Definition 26 (Residual Graph). Given a bipartite graph G = (L,R,E), with a capacity

function Ÿ on the edges of the graph. Let x̨ be a fractional matching obeying Ÿ. We define

Gx to be the residual graph with respect to x̨. In particular, this is a directed graph, where

corresponding to each undirected edge e œ G, there are two directed edges, ef (forward edges,

directed from L to R), and eb (backward edge, directed from R to L). Moreover, ef has a

residual capacity of Ÿ(e)≠x(e), and eb has a capacity of x(e). Thus, if an edge e is saturated,

that is x(e) = Ÿ(e), then ef is not in Gx. Similarly, if x(e) = 0, then eb is not in Gx.

I Definition 27 (Free Vertices). Given a graph G, and a fractional matching x̨, we say that

a vertex v is free with respect to x̨ if
q

e–v x(e) < 1.

I Definition 28. An augmenting path in Gx, will refer to a path starting and ending in a

free vertex, and all the intermediate vertices on this path will be saturated.

Before stating our algorithm, we will state the invariants that the algorithm will maintain.
Subsequently, we will show that maintaining these invariants throughout implies that the
algorithm will output a matching satisfying the approximation guarantees of Lemma 25 and
in the desired runtime.
I Remark 29. We round down Á so that 1/Á is an integer.

I Property 30. Our algorithm will at all times maintain, a fractional matching x̨, and the

dual variables y(u) for all u œ V , and z(e), for all e œ E with the following properties.

1. Granularity: At all times, y(u) for all u œ V , and z(e) for all e œ E, are integral

multiples of Á.
2. Domination: For all directed edges ef and eb in Gx, we have yz(e) > w(e) ≠ Á.
3. Tightness: For all backward edges eb œ Gx, we additionally have the property that

yz(e) 6 w(e) + Á.
4. Free Duals: The y(u) for free vertices u œ L are equal, and are at most y(v) for v œ L\Z.

The free vertex duals in R are always 0. The algorithm terminates when the free vertex

duals in L are all 0.
5. Complementary Slackness: If z(e) > 0 for some e œ E, then x(e) = Ÿ(e).

I Definition 31 (Eligible Edges). Let x̨ be the current fractional matching maintained by the

graph, and let Gx denote the residual graph with respect to x̨. A forward edge ef is eligible if

yz(e) = w(e) ≠ Á, and backward edge eb is said to be eligible if yz(e) = w(e) + Á. We use Gt
x

to denote the eligible subgraph of Gx.
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I Lemma 32. The fractional matching x̨ returned by the algorithm mentioned in Property 30

has
q

eœE w(e) · x(e) > (1 ≠ Á) ·mwm(G).

Proof. In order to see this, consider the dual variables returned by the algorithm. Note that
if we increase each of the duals by a factor of (1 + Á), then the dual solutions y̨, z̨ maintained
by the algorithm are feasible dual solutions to the dual program (this is by Property 30(2)).
Thus, by weak duality, we have,

q
uœV y(u) +

q
eœE z(e) · Ÿ(e) > (1 ≠ Á) · mwm(G). Due

to complementary slackness, (Property 30(5)), we have,
q

uœV y(u) +
q

eœE x(e) · z(e) >
(1≠ Á) ·mwm(G). Due to the fact that free vertex duals, at the end of the algorithm are zero
(Property 30(4)), we have,

q
uœV

q
e–u x(e) · y(u) +

q
eœE z(e) · x(e) > (1 ≠ Á) · mwm(G).

Simplifying the above expression, and using Property 30(3), that is, tightness, we have,q
eœE(1 + 4Á) · w(e) · x(e) > (1 ≠ Á) ·mwm(G).This shows the claim. J

The precise algorithm is stated in Algorithm 2. We now show that Algorithm 2 proves
Property 30. Later, we will show runtime guarantees of Algorithm 2. Towards this, we start
with the following observation.

I Observation 33. Let e œ E(G), then ef and eb cannot simultaneously appear in Gt
x.

I Definition 34. Let H and G be directed, capacitated graphs with capacity functions ch and

cg respectively. Then, we say E(H) ™c E(G) if e œ H implies e œ G, and ch(e) 6 cg(e).

B Claim 35. After Line 13, there are no augmenting paths in the graph Gt
x.

Proof. Let y̨ denote the fractional matching after the augmentation step. Then, in order
to show the claim, it is su�cient to show E(Gt

y) ™c E(Gt
x). Consider any forward edge

ef œ E(Gt
x), observe that eb /œ E(Gt

x) due to Observation 33. Since we don’t change the
duals, eb /œ E(Gt

y) as well. Finally, ef can either be augmented along or not, in either case,
we have, Ÿ(e) ≠ x(e) > Ÿ(e) ≠ y(e). Such an argument applies for any edge eb as well. From
this, we can conclude that any augmenting path that is present in Gt

y is in Gt
x as well, and

this contradicts the fact that we found a maximal set of augmenting paths P. The subsequent
claims follow from induction, and we prove them in the full version. C

B Claim 36 (Granularity). Throughout the algorithm, Property 30(1) holds.

B Claim 37 (Domination). Throughout the algorithm, Property 30(2) holds.

B Claim 38 (Tightness). Throughout the algorithm, Property 30(3) property holds.

B Claim 39 (Free Duals). Throughout the algorithm, Property 30(4) holds.

B Claim 40 (Complementary Slackness). Throughout the algorithm, Property 30(5) holds.

5.5 Runtime
Before proving the runtime of Algorithm 2, we start with the following structural lemma.

I Observation 41. In Gt
x, after dual adjustment step, there are only forward edges between

LflZ and R \Z, and backward edges between RflZ and L \Z i.e. all directed edges between

Z and V \ Z go from Z to V \ Z.

Proof. Suppose there is a backward edge eb between LflZ and R\Z after the dual adjustment
step. This implies, that after the dual adjustment step, yz(eb) = w(e) + Á. Thus, prior to the
dual adjustment step, we had that yz(eb) = w(e) + 2Á. However, this would contradict the
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tightness property (see Property 30(3)). Similarly, suppose there is a forward edge ef between
R fl Z and L \ Z after the dual adjustment step. This would imply that yz(ef ) = w(e) ≠ Á
after the dual adjustment step. Thus, before the dual adjustment step, yz(ef ) = w(e) ≠ 2Á,
which would contradict the domination property (see Property 30(2)). J

I Lemma 42. The graph Gt
x that is fed into Augmentation procedure is acyclic.

Proof. We will show this by induction. Observe that at the beginning of the algorithm, there
are no back edges, so the graph is acyclic. We now show that if no cycles are present in the
graph, then dual adjustment and augmentation procedures cannot create cycles.
1. First consider 8, observe that if eb œ Gt

x is subjected to this, then x(e) = Ÿ(e) due to
complementary slackness. Thus ef does not exist, and cannot be added to Gt

x due to
this modification. Moreover, Line 8 does not a�ect any other e. Thus, if the graph Gt

x

was acyclic before, then it remains acyclic after Line 8.
2. Let y̨ be the fractional matching after augmentation step. As we saw in Claim 35,

E(Gt
y) ™c E(Gt

x). Thus, if Gt
x is acyclic, then Gt

y is acyclic as well.
3. Now consider Line 17. By induction hypothesis, there are no cycles in Gt

x before Line
17 was executed. Suppose a cycle C exists in Gt

x after this step, then C contains either
ef or eb, where e is an edge subjected to Line 17. However, for eb, Ÿ(e) = x(e), and
therefore, ef cannot exist in Gt

x. Moreover, eb /œ Gt
x since before the dual modification

yz(e) = w(e) ≠ Á, and after dual adjustment, yz(e) = w(e).
4. By induction hypothesis, there are no cycles in Gt

x before Line 18 and Line 19. These
steps preserve eligibility and ineligibility status of any edge between LflZ and RflZ and
those between L \Z and R \Z. Thus, if a new cycle is created after Line 18 and Line 19,
then it must contain a directed edge from Z to V \ Z, and from V \ Z to Z. However,
Observation 41 suggests that after this step, the latter are not in Gt

x. J

I Observation 43. Property 30(4) holds. By Line 18, at the end of each iteration of the

while loop, the free duals in L fl Z drops by Á. Therefore, total number of iterations is O(WÁ ).

I Lemma 44 ([24]). For Gt
x acyclic, maximal augmenting paths can be found in time

O(m logn).

I Lemma 45. The total runtime of the algorithm is O(m/Á ·W · logn).

Proof. In a particular iteration of a while loop, we see how each of the steps contribute to
the runtime. Consider step Line 8, this takes time O(m) and similarly, the subsequent step
of updating Gt

x takes time O(m) as well. Since Gt
x is acyclic (by Lemma 42), we can use

Lemma 44 to find the maximal set of augmenting paths in time O(m · logn). Finally, the
dual adjustment steps can also be accomplished in time O(m). From Observation 43 implies
the total runtime is O(m/Á ·W · logn). J

6 Algorithm WeightedM-or-E*()

In this section, we now put everything together and describe the algorithm WeightedM-or-
E*(). Then, we describe how to use Weighted-Frac-Match() to get fractional matchings
obeying capacity, and odd set constraints in general graphs.

I Definition 46. Given a matching M , define EM
L (G,Ÿ) = EL(G,Ÿ) fl M , and V M

L to be

the set of vertices that are the endpoints of EM
L (G,Ÿ).
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I Definition 47. Given a multigraph G with weight function w and capacity function Ÿ
on the edges of G, we define the bipartite double cover of G, denoted bc(G), with capacity

function Ÿbc and weight function wbc as follows:

1. For every vertex v œ V (G), make two copies v and vÕ
in V (bc(G)).

2. If e is an edge between u, v, then we add an edge eÕ
between u and vÕ

and an edge eÕÕ

between uÕ
and v. Moreover, wbc(eÕ) = wbc(eÕÕ) = w(e) and Ÿbc(eÕ) = Ÿbc(eÕÕ) = Ÿ(e).

I Observation 48. For weighted graph G, with capacity Ÿ, mwm(bc(G),Ÿbc) > 2·mwm(G,Ÿ).

I Lemma 49. Given a weighted multigraph G (possibly non-bipartite) with capacity function

Ÿ, Á œ (0, 1), with edge weights from {1, 2, · · · ,W}, and with the property that for all i œ [W ],
and for all vertices u, v œ V we have, Ÿ(Di((u, v))) 6 1/–Á, then there is an algorithm

Weighted-Frac-Match-General() that takes as input G,Ÿ, w, Á and outputs a fractional

matching x̨ such that
q

eœE w(e) · x(e) > (1 ≠ Á) · mwm(G,Ÿ), and further x̨ obeys the

capacities and the odd set constraints.

Proof. In the previous section, we saw the algorithm Weighted-Frac-Match() that
solved this problem for bipartite graphs. For the case of general graphs, we proceed
as follows. We collapse edges of bc(G) as in Definition 6, and run Weighted-Frac-
Match(bc(G),Ÿbc, wbc, Á), and obtain a fractional matching y̨. We let z̨ = y̨C . To translate
this into a valid fractional matching x̨ in G, do the following: for each e œ G, consider
eÕ, eÕÕ œ bc(G), and let x(e) = z(eÕ

)+z(eÕÕ
)

2
. Note that z̨ is a fractional matching, since x̨ is

and moreover since x̨ satisfies capacity constraints since z̨ does. Applying Observation 48,
we know that

q
eœE w(e) · x(e) > (1 ≠ Á) ·mwm(G,Ÿ). Moreover, x̨

1+Á satisfies all odd set
constraints since it satisfies the premise of Observation 8. J

We show how Algorithm 1 satisfies the conditions of Lemma 9.

Proof. (Lemma 9) We first show the runtime of the algorithm. First note that Gs can be
computed in O(m) time since this only involves sampling edges independently. Moreover, by
Lemma 22, we know that the runtime of Static-Weighted-Match(G, Á) is O(m/Á · log 1/Á).
Additionally, from Lemma 24, we can conclude that we can obtain set Eú using the output
of Static-Weighted-Match(Gs, Á) and the time taken to do this is O(m). Finally, from
Lemma 49, we can conclude that we can run Line 7 in time O(m/Á · log 1/Á ·W · logn).

Now, we turn to show Lemma 9(1). In this case, first note that V M
L and V (MI) are disjoint.

This follows from Algorithm 1 and Definition 46. Thus, since y̨, x̨ are fractional matchings,
we can conclude that z̨ is also a fractional matching. Note that we land in Lemma 9(1) if
w(M) > (1≠Á) ·mwm(G). From Lemma 21 we can conclude that for H = EL(G,Ÿ)flG[V M

L ]
and Hs = EL(G,Ÿ) fl Gs[V M

L ], we have that mwm(Hs) 6 mwm(H,Ÿ+) + Á ·mwm(G). Thus,
we have,

q
eœE y(e) · w(e) +

q
eœE x(e) · w(e) > (1 ≠ Á) ·mwm(G) ≠ 2Á ·mwm(G).

We now proceed to proof Lemma 9(1a) and (1b). Consider any edge e œ supp(z̨) with
w(e) = i and Ÿ(Di(e)) 6 1/–2

Á
. Thus, we know that e œ supp(x̨), and so by Lemma 49,

we have that z(e) = x(e) 6 Ÿ+(e) 6 Ÿ(e) · –Á and z(Di(e)) = x(Di(e)) 6 Ÿ+(Di(e)) 6
Ÿ(Di(e)) · –Á. Similarly, for any e œ supp(z̨) with w(e) = i, and Ÿ(Di(e)) > 1/–2

Á
. We

know that e œ supp(y̨). By definition of y̨, we have z(e) = y(e) = Ÿ(e)/Ÿ(Di(e)), and
z(Di(e)) = 1. Finally, we prove Lemma 9(2). First consider Lemma 24, this lemma
implies that

q
eœEú Ÿ(e) · w(e) = O(mwm(G) · logn). Finally, by Claim 23, we have,q

eœMflEú w(e) > w(M)≠(1+Á)2 ·mwm(Gs), thus, for any M with w(M) > (1≠Á)·mwm(G),
we have

q
eœMflEú w(e) > Á ·mwm(G). This is implied by the fact that the algorithm returns

Eú when mwm(Gs) 6 (1 ≠ 5Á) ·mwm(G). Finally, for all edges in Eú, Ÿ(e) < 1, otherwise
they’d be sampled into Gs. J
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A Subroutines

Algorithm 1 WeightedM-or-E*(G,Ÿ, Á, µ, w).

1: Include each edge e œ E(G) independently with probability p(e) = Ÿ(e) · flÁ in Gs.
2: Let M, y̨, r̨ be the output of Static-Weighted-Match(Gs, Á). Û Phase 1.
3: if w(M) 6 (1 ≠ 6Á) ·mwm(G) then
4: Return Eú = {e | yr(e) < (1 ≠ Á) · w(e)}. Û Phase 3
5: else Û Phase 2
6: MI Ω M \ EL(G,Ÿ), y̨ Ω MD

I Û Convert MI into a matching on multigraph
7: x̨ Ω Weighted-Frac-Match-General(G[V M

L ] fl EL(G,Ÿ),Ÿ+, Á, w)
8: end if
9: Return z̨ Ω y̨ + x̨.
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Algorithm 2 Weighted-Frac-Matching(G,Ÿ, Á).
Ensure: A fractional matching x̨ with

q
eœE w(e) · x(e) > (1 ≠ Á) ·mwm(G,Ÿ)

1: procedure Initialization:
2: x(e) Ω 0 for all e œ E
3: y(u) Ω W ≠ Á for all u œ L, y(u) Ω 0 for all u œ R Û Initializing vertex duals.
4: z(e) Ω 0 for all e œ E Û Initializing edge duals.
5: end procedure
6: while y-values of free left vertices are greater than 0 do
7: for eb œ Gt

x with z(e) > 0 do
8: z(e) Ω z(e) ≠ min {z(e), yz(e) ≠ w(e) + Á}.
9: end for

10: Update Gt
x

11: procedure Augmentation:
12: Find the maximal set P of augmenting paths in Gt

x.
13: Augment along P. Update x̨ and Gt

x.
14: end procedure
15: procedure Dual Adjustment:
16: Let Z be the set of vertices reachable from free left vertices in Gt

x.
17: For all ineligible eb from R \Z to L fl Z, with yz(e) = w(e) ≠ Á, z(e) Ω z(e) + Á.
18: For all u œ L fl Z, y(u) Ω y(u) ≠ Á.
19: For all u œ R fl Z, y(u) Ω y(u) + Á.
20: end procedure
21: end while
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Abstract

We study the problem of testing Ck-freeness (k-cycle-freeness) for fixed constant k > 3 in graphs
with bounded arboricity (but unbounded degrees). In particular, we are interested in one-sided error
algorithms, so that they must detect a copy of Ck with high constant probability when the graph is
‘-far from Ck-free.

We next state our results for constant arboricity and constant ‘ with a focus on the dependence
on the number of graph vertices, n. The query complexity of all our algorithms grows polynomially
with 1/‘.
1. As opposed to the case of k = 3, where the complexity of testing C3-freeness grows with the

arboricity of the graph but not with the size of the graph (Levi, ICALP 2021 )1 this is no longer
the case already for k = 4. We show that �(n1/4) queries are necessary for testing C4-freeness,
and that ÂO(n1/4) are su�cient. The same bounds hold for C5.

2. For every fixed k Ø 6, any one-sided error algorithm for testing Ck-freeness must perform �(n1/3)
queries.

3. For k = 6 we give a testing algorithm whose query complexity is ÂO(n1/2).
4. For any fixed k, the query complexity of testing Ck-freeness is upper bounded by O(n1≠1/Âk/2Ê).

The last upper bound builds on another result in which we show that for any fixed subgraph
F , the query complexity of testing F -freeness is upper bounded by O(n1≠1/¸(F )), where ¸(F ) is a
parameter of F that is always upper bounded by the number of vertices in F (and in particular is
k/2 in Ck for even k).

We extend some of our results to bounded (non-constant) arboricity, where in particular, we
obtain sublinear upper bounds for all k.

Our �(n1/4) lower bound for testing C4-freeness in constant arboricity graphs provides a negative
answer to an open problem posed by (Goldreich, 2021).
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1 Introduction

Detecting small subgraphs with specific structures (referred to as finding network motifs)
is a basic algorithmic task, with a variety of applications in biology, sociology and network
science (see e.g. [21, 8, 31, 11, 7, 28, 5, 18, 6, 32, 23]). Of special interest is the natural case
of subgraphs that are cycles of a fixed size k, which we denote by Ck. When the algorithm
receives the entire graph as input, then by the well known result of Alon, Yuster and Zwick [4],
this task can be solved in time ÂO(nÊ) where n is the number of graph vertices and Ê is
the exponent of matrix multiplication.2 But what if we seek a sublinear-time (randomized)
algorithm that does not read the entire graph? Namely, the algorithm is given query access
to the graph3 and should find a Ck when the graph is not Ck-free. This is clearly not possible
if the graph contains only a single copy of Ck. However, is it possible to detect such a copy
in sublinear-time when the graph is relatively far from being Ck-free? By “relatively far” we
mean that it is necessary to remove a non-negligible fraction, denoted ‘, of its edges in order
to obtain an Ck-free graph. A closely related formulation of the question is whether we can
design a one-sided error algorithm for testing Ck-freeness.4

If the maximum degree in the graph is upper bounded by a parameter dmax, then the
Ck-freeness testing problem can easily be solved by performing a number of queries that grows
polynomially with dmax and exponentially with �(k) [20]. In particular, when dmax = O(1),
then there is no dependence on the size of the graph G. We are however interested in
considering graphs with varying degrees, so that, in particular, the maximum degree may be
much larger than the average degree, and possibly as large as �(n).

For the special and interesting case where k = 3, i.e., the cycle is a triangle, Alon, Kaufman,
Krivelevich and Ron [3] gave several upper and lower bounds on the query complexity of
testing triangle-freeness as a function of the average degree d of the graph (in addition to the
dependence on n and ‘). While the upper and lower bounds are not tight in general, they
are tight for d = O(1), where the complexity is �(

Ô
n) (for constant ‘). The lower bound in

this case is essentially based on “hiding” a small clique.
Since the aforementioned lower bound relies on the existence of a small dense subgraph,

a natural question, studied by Levi [26], is whether it is possible to obtain improved (and
possibly tight) results when the arboricity of the graph, denoted arb(G), is bounded.5
Focusing on the result under the assumption that m Ø n (i.e., d = �(1)) Levi showed
that ÂO(arb(G)) queries are su�cient for testing triangle-freeness (the dependence on 1/‘
is polynomial), and that �(arb(G)) queries are necessary.6 In particular, when arb(G) is a
constant, the complexity is polynomial in 1/‘ and does not depend on the size of the graph.

In this work we seek to understand the complexity of testing Ck-freeness, in particular
with one-sided error, for fixed k > 3. Our main focus is on constant arboricity graphs and
some of our results extend to bounded arboricity graphs, as well as to F -freeness for any

2 The dependence on k is exponential, but k is considered a constant.
3 The types of queries typically considered are neighbor queries (“what is the ith neighbor of a vertex

v?”), degree queries (“what is the degree of a vertex v?”), and pair queries (“is there an edge between a
pair of vertices v and u?”).

4 The problems are equivalent if the algorithm is not given access to degree queries, otherwise the algorithm
might find evidence to the existence of a Ck without actually detecting one. We note that all our
algorithms do detect copies of Ck when they reject.

5 The arboricity of a graph G is the minimum number of forests required to cover its edges, and is equal
(up to a factor of 2) to the maximum average degree of any subgraph of G.

6 To be precise, this lower bound holds for m Ø (arb(G))3 – if m < (arg(G))3 then the lower bound is
�(m1/3). See also Footnote 1 regarding the upper bound.
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general subgraph F (of constant size). We note that the problem of testing cycle-freeness
without requiring the cycle to be of specific length, is di�erent from our problem. We further
discuss this in Section 1.3. In the next subsection we state our findings.

1.1 Our results

Since our main focus is on graphs with constant arboricity, we first state our results in this
setting, and later discuss our extensions to graphs with non-constant arboricity. Throughout
this paper we assume that m = �(n) since even obtaining a single edge in the graph requires
�(n/m) queries. Our algorithms use degree and neighbor queries and our lower bounds also
allow pair queries (see Footnote 3). For simplicity, we state our results for constant ‘. All
our algorithms have a polynomial dependence on 1/‘.

Our first finding is that, as opposed to the case of k = 3, where the complexity of testing
C3-freeness grows with the arboricity of the graph but not with the size of the graph,7 this
is no longer the case for k = 4 (and larger k). In particular:

I Theorem 1. The query complexity of one-sided error testing of C4-freeness in constant-
arboricity graphs over n vertices is Â�(n1/4). The same bound holds for testing C5-freeness.

Theorem 1 (together with the upper bound in [20]) answers negatively the following open
problem raised by Goldreich.
Open problem (number 3.2 in [19]): From bounded degree to bounded arboricity.

Suppose that property � is testable within complexity Q(n, ‘) in the bounded-degree graph
model. Provide an upper bound on the complexity of testing � in the general graph model
under the promise that the tested graph has constant arboricity. For example, can the latter
complexity be linear in Q(n, ‘) while permitting extra poly(logn) or 1/‘ factors?

The �(n1/4) lower bound for testing C4-freeness, answers this question negatively. Indeed,
testing C4-freeness in d-bounded degree graphs can be done with poly(d, ‘) queries [20], while
our lower bound suggest that even in constant arboricity graphs, a polynomial dependence
on n is necessary.

When k Ø 6, we show that it is no longer possible to obtain a complexity of ÂO(n1/4) as
is the case for k = 4, 5.

I Theorem 2. Let k Ø 6. Any one-sided error tester for the property of Ck-freeness in
graphs of constant arboricity over n vertices must perform �(n1/3) queries.

While for C6 we were not able to match the lower bound of �(n1/3), we were able to
obtain a sublinear-time algorithm, as stated next.

I Theorem 3. There exists a one-sided error algorithm for testing C6-freeness in graphs of
constant arboricity over n vertices whose query complexity is ÂO(n1/2).

For general (fixed) k we prove the following upper bound.

I Theorem 4. There exists a one-sided error algorithm for testing Ck-freeness in graphs of
constant arboricity over n vertices whose query complexity is O(n1≠1/Âk/2Ê).

We also prove a more general result for testing F -freeness for any constant size subgraph
F . Below, ¸(F ) is as defined in Definition 10, and is always upper bounded by the number
of vertices in F .

7 We note that this is true also for other k-cliques for k > 3.
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I Theorem 5. There exists a one-sided error algorithm for testing F -freeness in graphs of
constant arboricity over n vertices whose query complexity is O(n1≠1/¸(F )).

1.1.1 Extensions for general arboricity

We state our results for general arboricity graphs assuming that the algorithm is given an
upper bound – on the arboricity of the graph (in the lower bounds the algorithm may be
assumed to know the arboricity). Alternatively, if the algorithm receives as an input the
number of edges, m, (as in previous results for Ck-freeness [3, 26]) instead of an upper bound
on the arboricity, then we can estimate a notion known [26] as the “e�ective arboricity” of
the graph, and depend on it instead of –. This is potentially beneficial since the e�ective
arboricity can be much smaller than the actual arboricity of the graph, and it does not
a�ect the asymptotic running times of our algorithms in terms of the dependence on the size
of the graph and –. For further details see Section 2.

For C4-freeness we give both an upper bound and a lower bound for general arboricity
graphs. In particular, we show that a linear dependence on – is su�cient and a

Ô
–-dependence

is necessary (both for one-sided error algorithms) as stated next.

I Theorem 6. There exists a one-sided error algorithm for testing C4-freeness in graphs of
arboricity at most – over n vertices whose query complexity is Õ

!
min{n1/4–,– + n3/4}

"
.8

I Theorem 7. Testing C4-freeness with one-sided error in graphs over n vertices with
arboricity c1 logn < – < n1/2/cÕ

1
for su�ciently large constants c1 and cÕ

1
requires �(n1/4–1/2)

queries.9

For general constant size subgraphs F (and in particular Ck) our upper bound also has
at most a linear dependence on – (recall that ¸(F ) is defined in Definition 10).

I Theorem 8. There exists a one-sided error tester for F -freeness whose query complexity
is O

!
k2+1/¸(F ) ·m1≠1/¸(F ) · –1/¸(F )

"
.

I Corollary 9. There exists a one-sided error tester for Ck-freeness whose query complexity for
even k is O

!
k2+(2/k)) ·m1≠2/k · –2/k

"
, and for odd k is O

!
k2+2/(k+1) ·m1≠2/(k+1) · –2/(k+1)

"
.

We comment that our lower bound of �(n1/3) for one-sided error algorithms, k Ø 6 and
constant arboricity (stated in Theorem 2) also applies to graphs with non-constant arboricity
(by adding a Ck-free subgraph with higher arboricity).10

We also note that it is possible to extend our algorithms for C5 and C6 freeness so as
to get a polynomial (but not linear) dependence on –. However, these extensions do not
introduce new techniques (and are most probably not optimal), so we do not present them
here.

8 More precisely, for values – < logn, the complexity is O(n1/4
–
1/2 log1/2 n/‘

3), for values logn < – <Ô
n, the complexity is O(n1/4

–/‘
3), and for values – > n

1/2, it is O((– + n
3/4)/‘

3).
9 Note that the two-sided error lower bound of �(n1/4) for constant arboricity graphs (as stated in
Theorem 1) also holds for graphs with higher arboricity –, and in particular, – = O(logn). This is
the case since we can simply add a small subgraph with arboricity – and no C4s to the lower bound
construction.

10For an odd k, it su�ces to add a dense bipartite graph, and for even k, by the Erd�s girth conjecture [16],
one can add a subgraph with arboricity n

2/k.



T. Eden, R. Levi, and D. Ron 60:5

1.2 A high-level discussion of our algorithms and lower bounds

Before discussing each of our results in more detail, we highlight some common themes. The
starting point of all our algorithms is that if a graph is ‘-far from being Ck-free (for a constant
k), then it contains �(‘m) edge-disjoint cycles.11 We next use the bounded arboricity of the
graph. Specifically, if a graph has arboricity at most –, then the number of edges between
pairs of vertices that both have degree greater than ◊0 = �(–/‘), is at most O(‘m).

Hence, there is a set of edge-disjoint Cks, which we denote by C, such that |C| = �(‘m),
and no Ck in C contains any edge between two vertices with degree greater than ◊0. In other
words, for every k-cycle fl in C, and for every vertex v with degree greater than ◊0 in fl, the
two neighbors of v in fl have degree at most ◊0. In particular, when – is a constant, the two
neighbors have degree O(1/‘).

At this point our algorithms diverge, but there are two common aspects when k = 4, 5, 6,
which we would like to highlight. The first is that for the sake of “catching” one of the Cks
in C, it will be useful to consider a subset, CÕ, in which every vertex v that participates in
one of the edge-disjoint Cks in CÕ actually participate in �(‘ · d(v)) Cks in CÕ. The existence
of such a subset follows by applying (as a mental experiment) a simple iterative process that
removes Cks with vertices that do not obey this constraint.

To illustrate why it is useful to have such a set CÕ, consider the case of k = 4, and assume
that a relatively large fraction of the C4s in CÕ contain, in addition to the two vertices of
degree at most ◊0 = O(–/‘), at least one other vertex that has degree at most ◊1 = O(n1/2/‘).
In this case we can obtain such a vertex v with high probability (as discussed below), and then
sample roughly


d(v)/‘ = O(


◊1/‘) = O(n1/4/‘) of its neighbors, so that the following

holds. By (a slight variant of) the birthday paradox, with high constant probability we hit
two of its neighbors, u and uÕ, that reside on the same C4 in CÕ (and hence have degree at
most ◊0). By querying all the neighbors of u and uÕ, we obtain this C4.

However, what if for most of the C4’s in CÕ there are two vertices with degree significantly
larger than

Ô
n (that are “one opposite the other” on the C4s)? Roughly speaking, in this

case we exploit the fact that the number of such high-degree vertices is bounded, and we
show how to detect a C4 by performing random walks of length 2. A related issue arises in
the case of k = 6, when there are three very high degree vertices on most C6s in CÕ. In this
case we show how to essentially reduce the problem to testing triangle-freeness in a certain
auxiliary graph. More precisely, the auxiliary graph is a multi-graph to which we have access
only to certain types of queries, so that we cannot apply the algorithm of [3]. However, we
can still show how to obtain a triangle in this graph, and hence a C6 in the original graph.
Interestingly, our general lower bound of �(n1/3) for Ck-freeness, k Ø 6 builds on the lower
bound for testing triangle-freeness of [3].

In the following subsections we assume for the sake of the exposition that ‘ is a constant.

1.2.1 The results for C4-freeness (and C5-freeness)

We discuss our results for C4-freeness in graphs with general arboricity. The results for
C5-freeness in constant arboricity graphs are obtained using very similar techniques.

11To verify this, let G be a graph that is ‘-far from being Ck-free for a fixed constant k. Consider any
maximal set S of edge-disjoint k-cycles. Since by removing all k · |S| edges on these cycles, the graph
can be made cycle-free, |S| Ø ‘m/k = �(‘m).
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The algorithm

Our algorithm for testing C4-freeness, Test-C4-freeness, which has query complexity ÂO(n1/4–),
is governed by two thresholds: ◊0 = �(–), and ◊1 = �(n1/2). For the sake of the current
high-level presentation, we assume that12 – Æ n1/2, so that ◊0 Æ ◊1.

The algorithm first samples O(1) edges approximately uniformly by invoking a procedure
Select-an-Edge,13 and then randomly selects one of their endpoints. For each vertex v
selected, it queries its degree, d(v). If d(v) Æ ◊1, then the algorithm selects O(


d(v))

random neighbors of v, and for each selected neighbor u such that d(u) Æ ◊0, it queries all
the neighbors of u. If d(v) > ◊1, then the algorithm performs ÂO(n1/4–1/2) random walks of
length two from v. If a C4 is observed in any one of these steps, then the algorithm rejects,
otherwise it accepts.

The analysis of the algorithm

By the above description, the algorithm will only reject a graph if it detects a C4, implying
that it never errs on C4-free graphs. Hence, consider a graph G that is far from being C4-free.
As discussed at the start of Section 1.2, the setting of ◊0 = �(–) (together with the fact that
G is �(1)-far from being C4-free) implies the following. There exists a set, denoted C, of
�(m) edge-disjoint C4s in G, such that no C4 in C contains an edge between two vertices
that both have degree greater than ◊0. Thus, for each C4 in C, there are at most two vertices
with degree greater than ◊0, and they do not neighbor each other.

Considering the second aforementioned degree threshold ◊1 (and recalling that ◊1 Ø ◊0),
we partition C into two subsets. The first, C1, consists of those C4s in C that contain at most
one vertex with degree greater than ◊1, and the second, C2, of the remaining C4s in C, which
contain exactly two vertices with degree greater than ◊1. Since C = C1 fi· C2, at least one of
these subsets is of size �(m).

C4s with at most one high-degree vertex. Suppose first that |C1| = �(m). Observe that
since each 4-cycle fl œ C1 contains at least two vertices with degree at most ◊0 and at most
one vertex with degree greater than ◊1, it must contain at least one vertex, with degree at
most ◊1 whose neighbors on the C4 both have degree at most ◊0. For an illustration, see the
LHS of Figure 1. Furthermore, we show that there exists a subset of C1, which we denote
by CÕ

1
, such that |CÕ

1
| = �(m), and every vertex v that participates in one of the C4s in CÕ

1
,

actually participates in �(d(v)) edges-disjoint C4s in C1. It follows that in this case, when
the algorithm selects a random edge (almost uniformly), with high constant probability it
will obtain an edge with (at least) one endpoint v having the above properties. Conditioned
on the selection of such a vertex v, the algorithm selects �(


d(v)) random neighbors of v.

By the birthday paradox, with high constant probability, among these neighbors there will
be a pair of vertices that reside, together with v, on a common C4 in CÕ

1
. Once their (at most

◊0) neighbors are queried, this C4 is revealed.

C4s with two high-degree vertex. We now turn to the case in which |C2| = �(m). Here
too we can show that there exists a subset of C2, denoted CÕ

2
, such that |CÕ

2
| = �(m), and

every vertex v that participates in one of the C4s in CÕ
2
actually participates in �(d(v))

edges-disjoint C4s in C2.

12 Indeed, graphs with arboricity greater than n
1/2 necessarily contain at least one C4, but since we are

interested in a one-sided error algorithm, and – is only known to be an upper bound on –, the algorithm
cannot reject if it is provided with – > n

1/2.
13 This is a fairly standard and simple procedure, where we use the fact that graph has bounded arboricity,

so that most of its edges have at least one endpoint with degree ◊0.
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Figure 1 An illustration for some of the cases considered in the analysis of the algorithm for
C4-freeness. On the left side are two examples in which there is a single vertex v

Õ with degree greater
than ◊1, so that there is a vertex v with degree at most ◊1 with two neighbors whose degree is at
most ◊0. On the right is an illustration when there are two such vertices with degree greater than ◊1.

Recall that by the definitions of C and C2 and since CÕ
2

™ C2 ™ C, the following holds. For
each 4-cycle fl in CÕ

2
, since it is in C2, there are two vertices whose degree is greater than ◊1.

Therefore, by the definition of C, they are both adjacent on fl to two vertices whose degree is
at most ◊0. Hence, if we consider the subgraph induced by the vertices and edges of the C4s
in CÕ

2
, it is a bipartite graph, where on one side, denoted L, all vertices have degree at most

◊0, and on the other side, denoted R, all vertices have degree greater than ◊1. Furthermore,
by the definition of CÕ

2
, for each vertex in R, a constant fraction of its neighbors (in the

original graph G) belong to L, and for each vertex in L, a constant fraction of its neighbors
belong to R. For an illustration, see the RHS of Figure 1.

Hence, if we select an edge almost uniformly and pick one of its endpoints with equal
probability, with high constant probability we obtain a vertex v œ R. Conditioned on this
event, since d(v) > ◊1, the algorithm will perform ÂO(n1/4–1/2) random walks of length two
from v, and with high constant probability, a constant fraction of these walks will be of
the form (v, u, vÕ) where u œ L and vÕ œ R. If for some vÕ we get two walks, (v, u, vÕ) and
(v, uÕ, vÕ) for u ”= uÕ, then a C4 is detected.

Observe that since all vertices in R have degree greater than ◊1 = �(n1/2), we have that
|R| Æ 2m/◊1 = O(n1/2–). This can be used to show that the expected number of pairs of
walks that induce a C4 is greater than 1. In order to show that we actually get such a pair
with high constant probability, we perform a more careful analysis to bound the variance.

A (two-sided error) lower bound for testing C4-freeness in constant arboricity graphs

To obtain this lower bound of �(n1/4), we define two distributions over graphs. In the
support of the first distribution, D0, all graphs are C4-free, and in the support of the second
distribution, D1, all graphs are �(1)-far from being C4-free. Furthermore, D0 is uniform over
all graphs isomorphic to a specific graph G0, and D1 is uniform over all graphs isomorphic
to a specific graph G1.

We next describe a slightly simplified version of the two graphs (which cannot be used
to prove the lower bound, but gives the essence of the proof). Both graphs are bipartite
graphs, where one side, Y , contains �(

Ô
n) vertices, and the other side, X, contains �(n)

vertices, In G0, each vertex in X has a unique pair of neighbors in Y (so there are no C4s).
On the other hand, in G1, each vertex x in X has a “twin”, xÕ, where x and xÕ have the same
pair of neighbors in Y (thus creating �(n) edge-disjoint C4. See Figure 2. Observe that the
arboricity of both graphs is 2 as for any subset of vertices S, the number of edges within S
is at most |S fl X| · 2 so the average degree in the subgraph induced by S is at most 2.
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In order to prove that no (possibly adaptive) algorithm can distinguish between a graph
selected according to D0 and a graph selected according to D1, we define two processes,
P0 and P1, which answer the queries of a testing algorithm while selecting a graph from
D0 (respectively, D1) “on the fly”. The lower bound of �(n1/4) follows from the fact that
when performing fewer than n1/4/c queries (where c is a su�ciently large constant), for
both distributions, with high constant probability, each new neighbor query is answered by a
uniformly selected vertex id.

Figure 2 An illustration for the lower bound construction. The graph on the left is C4-free while
the graph on the right contains �(m) edge-disjoint C4s and is hence �(1)-far from being C4-free.

A one-sided error lower bound for testing C4-freeness in graphs with arboricity –

We next discuss the lower bound of �(n1/4–1/2) for graphs with arboricity – = �(logn) and
one-sided error algorithms.

Here we define a single distribution D which is uniform over a family of graphs with
arboricity – such that almost all graphs in this family are �(1)-far from C4-free.

Roughly speaking, the graphs in the support of D are random bipartite graphs, where
one side, Y , is of size �(

Ô
n–) and the other side, X, is of size �(n). Every vertex in X has

– neighbors in Y , and every vertex in Y has �(
Ô
n) neighbors in X. We need to show that if

we select such a graph randomly, then on one hand it will be �(1)-far from C4-free, and on
the other hand, in order to detect a C4, any algorithm must perform �(n1/4–1/2) queries.

We next discuss the high-level idea as to why the resulting graphs are (with high constant
probability) far from being C4-free. Consider a fixed edge (x, y) in the bipartite graph, where
x œ X, y œ Y . The number of C4s this edge participates in is determined by the number of
edges between the sets of neighbors of x and y, respectively �(x) and �(y). Recall that x
has �(–) neighbors and y has �(

Ô
n) neighbors. Since overall there are |X| · |Y | = �(n3/2–)

potential pairs in the bipartite graph, and �(n–) edges, each pair in X ◊ Y is an edge
with probability �(1/

Ô
n). Hence, the expected number of edges between �(x) and �(y)

is |�(x)| · |�(y)| · (1/
Ô
n) = �(–). By analyzing the variance between pairs of edges, we

furthermore show that with high constant probability, most edges do not participate in too
many C4s. Combining the two insights, it follows that with high constant probability, the
graph is indeed far form being C4-free.

In order to prove that any algorithm that performs at most n1/4–1/2/c queries (for a
su�ciently large constant c), will not detect a C4 with high constant probability, we actually
prove that it will not detect any cycle. Roughly speaking, we show that by the randomness
of the construction, since |Y | = �(

Ô
n–), and the algorithm performs O(


|Y |) queries, each

new neighbor query is answered by a uniformly distributed vertex that has not yet been
observed. Therefore, the algorithm essentially views a forest.
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A central challenge that we need to overcome is that we do not want to allow parallel
edges, where the above construction might lead to their existence. One possibility is to first
define the distribution over graphs with parallel edges and then to remove them. The benefit
is that due to the higher degree of independence in the construction, it is somewhat easier
to formally prove that the graphs obtained (with parallel edges) are with high probability
�(1)-far from C4-free, and this remains the case when we remove parallel edges.

However, this creates a di�culty when we turn to argue that no (one-sided error) algorithm
can detect a C4 unless it makes �(n1/4–1/2) queries. The di�culty is due to the fact that
in the formal proof we need to deal with dependencies that arise due to varying degrees
(which occur because parallel edges are removed). While intuitively, varying degree should
not actually “help” the algorithm, this intuition is di�cult to formalize. Hence, we have
chosen to define the distribution, from the start, over graphs that do not have parallel edges.
This choice creates some technical challenges of its own (in particular in the argument that
the graphs obtained are �(1)-far from C4-free), but we are able to overcome them. For more
details see the full version.

1.2.2 The algorithm for C6-freeness

Recall that for C6 we have a (one-sided error) testing algorithm whose query complexity is
ÂO(n1/2). In addition to assuming (for the sake of the exposition) that ‘ is a constant, we also
ignore polylogarithmic factors in n. Similarly to the algorithm for testing C4-freeness, the
algorithm for testing C6-freeness in constant arboricity graphs is governed by two thresholds.
The first, ◊0, is of the order of the arboricity, so that it is a constant (recall that we assume
that ‘ is a constant). The second, ◊2, is of the order of

Ô
n.

The algorithm repeats the following process several times. It selects a vertex v uniformly
at random, and if d(v) Æ ◊0, it performs a restricted BFS starting from v to depth 4.
Specifically:
1. Whenever a vertex u is reached such that d(u) Æ ◊0, all its neighbors are queried.
2. Whenever a vertex u is reached such that d(u) > ◊0 and u is reached from a vertex uÕ

such that d(uÕ) Æ ◊0, there are two sub-cases. If d(u) Æ ◊1, then all of u’s neighbors are
queried. Otherwise, ◊1 neighbors of u are selected uniformly at random.

3. Whenever a vertex u is reached from a vertex uÕ such that both d(u) > ◊0 and d(uÕ) > ◊0,
the BFS does not continue from u.

The algorithm rejects if and only if it observes a C6.
Consider a graph that is far from being C6-free, so that it contains a set of �(m) = �(n)

edge-disjoint C6s. Furthermore, it contains such a set, denoted C for which every C6 in C
contains at most three vertices with degree greater than ◊0, and furthermore, these vertices
are not adjacent on the C6. We partition C into three subsets: C1, C2, and C3, depending on
the number of vertices with degree greater than ◊0 that it contains.

If either |C1| = �(m), or |C2| = �(m), then it is not hard to show that the algorithm
will detect a C6 with high constant probability. The more interesting part of the proof is
handling the case in which only |C3| = �(m).

In this case we define an auxiliary multi-graph, denoted GÕ, over the set of vertices that
participate in C6s belonging to C3, and have degree greater than ◊0 (in G). We denote this
set of vertices by M , and the set of vertices with degree at most ◊0 that participate in these
C6s, by L.
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Assume for simplicity that each vertex in L has degree exactly 2 (i.e., it participates in a
single C6). For each pair of vertices in M , we put in GÕ a set of parallel edges, whose size
equals the number of length-2 paths between them in G that pass through vertices in L.
Hence, for each C6 in C, we have a triangle in GÕ, where these triangles are edge-disjoint,
and we denote their set by T . See Figure 3.

Figure 3 An illustration of the auxiliary (multi-)graph G
Õ in the C6-freeness testing algorithm.

The dashed lines represent edges in G
Õ, each one corresponding to a length-2 path in G that passes

through a vertex with degree at most ◊0.

Observe that selecting a vertex uniformly at random from L and querying its two neighbors
in M corresponds to selecting an edge uniformly at random in GÕ. If we add an additional
simplifying assumption by which (in G), vertices belonging to M only neighbor vertices
belonging to L, then our algorithm on G essentially translates to picking a random edge in
GÕ. Then depending on the degree of the endpoints, either querying all their neighbors in GÕ

or ◊1 random neighbors.
Let H denote the subset of vertices in M whose degree in G is greater than ◊1. If relatively

many triangles in T contain at most one vertex in H, then we are done, since these triangles
contain an edge for which both endpoints have degree at most ◊1. Hence, it remains to
address the case in which almost all triangles in T have two or three vertices in H.

Roughly speaking, in this case we show that the existence of many edge-disjoint, but not
vertex-disjoint, triangles in GÕ that contain such high-degree vertices implies the existence of
“many more” triangles that may be caught by our algorithm. As an illustrative extreme (but
easy) special case, assume that in GÕ there are only three vertices. Then the existence of
some number t of edge-disjoint triangles between them, actually implies the existence of t3
(non edge-disjoint) triangles.

1.2.3 The general lower bound for Ck-freeness, k Ø 6
We establish our general lower bound of �(n1/3) for one-sided error testing of Ck-freeness
when k Ø 6 by building on a lower bound for testing triangle-freeness that appears in [3,
Lemma 2]. This lower bound for testing triangle-freeness is based on the di�culty of detecting
a triangle in graphs selected uniformly from a family GnÕ of graphs in which almost all graphs
are �(1)-far from being triangle-free. All graphs in the family are d-regular tri-partite graphs
over nÕ vertices and the lower bound on the number of queries necessary to detect a triangle
(with constant probability), is �(min{d, nÕ/d}). By setting d =

Ô
nÕ, the lower bound is

�(
Ô
nÕ).
We show that, for any constant k Ø 6, if we had a one-sided error testing algorithm A for

Ck-freeness of graphs with n vertices and constant arboricity using at most n1/3/c queries
(for a constant c), then we would be able to detect triangles in graphs selected uniformly
from GnÕ using at most

Ô
nÕ/cÕ queries (for a constant cÕ).
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To this end we define an algorithm A that, given query access to a graph GÕ œ GnÕ ,
implicitly defines a graph G for which the following holds. First, the number of vertices in G
is n = �((nÕ)3/2), and the number of edges is m = �(mÕ), where mÕ is the number of edges
in GÕ (so that mÕ = �((nÕ)3/2)). Second, G has arboricity 2. Third, the distance of G to
Ck-freeness is of the same order as the distance of GÕ to triangle-freeness. Fourth, there is a
one-to-one correspondence between triangles in GÕ and Cks in G. The basic idea is to replace
edges in the tri-partite graph GÕ with paths of length k/3. See Figure 4

Figure 4 An illustration for the lower bound construction for Ck-freeness in constant arboricity
graphs when k = 9. The three circles in the middle and the dashed lines represent a graph G

Õ œ GnÕ .
The outer circles represent the additional vertices in G. Since k = 9 in this example, each edge in
G

Õ is replaced by a path of length 3 in G.

Assuming there existed a testing algorithm A as stated above, the algorithm AÕ would
use it to try and find a Ck in G (and hence a triangle in GÕ). In order to be able to run A on
G, the algorithm AÕ must be able to answer queries of A to G by performing queries to GÕ.
We show how this can be done with a constant multiplicative overhead. Hence, the lower
bound of �(

Ô
nÕ) for testing triangle-freeness (when the degree is �(

Ô
nÕ)) translated into a

lower bound of �(n1/3) for testing Ck-freeness.

1.2.4 The general upper bound for Ck-freeness

Recall that our starting point is that if G is �(1)-far from being Ck-free, then it contains a
set C of �(m) edge-disjoint Ck’s that do not contain any edge between vertices that both
have degree greater than ◊0 = �(–). We refer to vertices with degree at most ◊0 as light
vertices, and to those with degree greater than ◊0 as heavy. Hence, each Ck in C has at least
Ák/2Ë light vertices, and each heavy vertex on it neighbors two light vertices.

We present two di�erent algorithms, where each of them is suitable for a di�erent setting.
The basic idea of both algorithms is to take a large enough sample of vertices and edges so
that the subgraph determined by the sampled light vertices and their incident edges, as well
as the sampled edges, contains a copy of Ck. The query complexity of each algorithm is
stated following its high-level description.

The first algorithm

Our first algorithm simply samples vertices uniformly, independently at random, and then
performs queries that reveal the neighbors of all light vertices in the sample. To analyze
what is the su�cient sample size for this algorithm, consider the following generalization of
the birthday paradox for k-way collisions. Assume we sample elements under the uniform
distribution over [n]. Then we obtain a k-way collision after taking �(n1≠1/k) samples.

ICALP 2024



60:12 Testing Ck-Freeness in Bounded-Arboricity Graphs

Similarly, suppose we sample vertices uniformly from a graph that is composed only of n/k
vertex-disjoint copies of Ck. Then, after sampling �(n1≠1/k) vertices, we will hit all the
vertices of at least one of the copies (with high constant probability). Conditioned on this
event, if we reveal the neighborhood of all the vertices in the sample, then we obtain a Ck.

The next observation is that, in fact, we only need to hit a vertex cover of a copy of a Ck

(as opposed to all its vertices). In particular we would like to hit such a cover that contains
only light vertices, which we refer to as a light vertex cover. For constant –, this yields an
improved dependence on k in the exponent, i.e., O(n1≠1/Âk/2Ê) sampled vertices su�ce.

When taking into account the dependence on – (so that it is not necessarily true that
m = O(n)) and incorporating this in the analysis, we prove that the query complexity is
upper bounded by O(m · (–/m)2/k) for even k and O(m · (–/m)2/(k+1)) for odd k (up to a
polynomial dependence on k). Since – Æ

Ô
m it follows that the above bounds are at most

O(m1≠1/k) and O(m1≠1/(k+1)), respectively.

The second algorithm

Our second algorithm is designed for the case in which k is odd and m = �(–(k+3)/2). In
particular it is preferable when – is constant. We observe that when k is odd, for each Ck in
C, there is an edge in which both endpoints are light vertices. Therefore, if we sample edges
(almost) uniformly from the graph (using a variant of the procedure Select-an-Edge), then we
are likely to hit one of these edges. This additional step reduces the number of vertices we
need to hit in each copy by 2, which results in improved complexity for some range of the
parameters. In particular, the query complexity of this algorithm is O(m · (–2/m)2/(k≠1)).
Specifically, when – is a constant, the query complexity of this algorithm (which works for
odd k) is O(m1≠2/(k≠1)) (instead of O(m1≠2/(k+1))).

General subgraph F

Our first algorithm also works for any constant-size subgraph, F , where the upper bound
on the sample size is of the form m1≠1/¸(F ) where ¸(F ) depends on the structure of F , as
defined next.

I Definition 10. For a graph F = (VF , EF ) let VC(F ) denote the set of all vertex covers of
F . For a vertex cover Z of F we denote by VCÕ(Z) the set of vertex covers of F that are
subsets of Z. We define ¸(F ) = maxZœVC(F )

)
minBœVCÕ(Z) (|B|)

*
.

Observe that by Definition 10, we have that ¸(F ) is lower bounded by the size of a minimum
vertex cover of F and is upper bounded by k = |VF |.

The high-level idea is that if we want to find a copy of F , it su�ces to hit a light vertex
cover of this copy and then query all neighbors of the sampled light vertices.

1.3 Related work

In this subsection we shortly discuss several related works, in addition to the two aforemen-
tioned works regarding testing C3-freeness [3, 26].

Testing subgraph-freeness for fixed, constant size subgraphs in the dense-graphs model
can be done using a number of queries that depends only on 1/‘ (where the dependence is a
tower of height poly(1/‘)), as shown by Alon, Fischer, Krivelevich and Szegedy [2]. Alon [1]
proved that a super polynomial dependence on 1/‘ is necessary, unless the subgraph F is
bipartite. Goldreich and Ron addressed the problem in the bounded-degree model [20], and
gave a simple algorithm that depends polynomially on 1/‘ and the maximum degree in the
graph, and exponentially on the diameter of F .
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A special case of graphs that have bounded arboricity is the family of graphs that exclude
a fixed minor (a.k.a. minor-free graphs). Newman and Sohler [29] showed that for this family
of graphs, in the bounded-degree model, all properties can be tested with no dependence on
the size of the graph G. Moreover, it was recently shown [25, 27] that any property which is
monotone and additive14 (and in particular F -freeness where F is a connected graph) can be
tested using a number of queries that is only polynomial in 1/‘ and d, where d is the degree
bound (and O(dfl(‘)) in general (‘, fl(‘))-hyperfinite graphs15). For minor-free graphs with
unbounded degrees, Czumaj and Sohler [10] showed that a property is testable with one sided
error and a number of queries that does not depend on the size of the graph if and only if it
can be reduced to testing for a finite family of finite forbidden subgraphs.16 The correctness
of their algorithm relies on the fact that the arboricity of minor-free graphs remains constant
even after contractions of edges (which is not the case for general constant-arboricity graphs).

In general graphs, it was shown that k-path freeness [22] and more generally T -freeness
where T is a tree of order k [17], can be tested with time and query complexity that depend
only on k, assuming the edges of the graph can be accessed uniformly at random. Testing
cycle-freeness (where a no instance is a graph that is far from being a forest) was studied
in the bounded-degree model in [20], where a two-sided error algorithm was given whose
query complexity is polynomial in 1/‘ and the degree bound. Czumaj et. al [9] showed that
the complexity of this problem for one-sided error algorithms in the bounded-degree model
is Â�(

Ô
n) (for constant ‘ – their algorithm has a polynomial dependence on 1/‘), and the

algorithm can be adapted to the general-graphs model.
Other sublinear-time graph algorithms for counting and sampling (rather than detecting)

subgraphs that give improved results when the graph G has bounded arboricity include [14,
12, 15, 13].

1.4 Organization

We start in Section 2 with some preliminaries. In Section 3 we give the upper bound for
testing C4-freeness. All missing details and proofs appear in the full version of the paper.

2 Preliminaries

Unless stated explicitly otherwise, the graphs we consider are simple, so that in particular
they do not contain any parallel edges. We denote the number of vertices in the graph by n
and the number of edges by m. Every vertex v in the graph has a unique id, denoted id(v),
and its degree is denoted by d(v).

We work in what is known as the general graph model [30, 24]. In particular, under this
model, the distance of a graph G to Ck-freeness, denoted dist(G,Ck-free), is the minimum
fraction of edges that should be removed from G in order to obtain a Ck-free graph. As for
the allowed queries, a neighbor query to the ith neighbor of a vertex v is denoted by nbr(v, i),
and to its degree by deg(v). A pair query between two vertices v1 and v2 is denoted by
pair(v1, v2). Given query access to a graph G and a parameter ‘, a one-sided error testing

14A property is monotone if it closed under removal of edges and vertices. A property is additive if it is
closed under the disjoint union of graphs.

15Let fl be a function from R+ to R+. A graph G = (V,E) is (‘, fl(‘))-hyperfinite if for every ‘ > 0 it is
possible to remove ‘|V | edges of the graph such that the remaining graph has connected components of
size at most fl(‘).

16They consider a model in which they can perform only random neighbor queries.
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algorithm for Ck-freeness should accept G if it is Ck-free, and should reject G with probability
at least 2/3 if dist(G,Ck-free) > ‘. If the algorithm may also reject Ck-free graphs with
probability at most 1/3, then it has two-sided error.

As noted in the introduction, we assume our algorithms for graphs whose arboricity is not
promised to be constant, are given an upper bound – on the arboricity arb(G) of the tested
graph G, and their complexity depends on this upper bound. Alternatively, if the algorithm
is provided with the number of edges, m, then it may run a procedure from [26] to obtain a
value –ú that with high constant probability satisfies the following: (1) –ú Æ 2arb(G); (2)
The number of edges between vertices whose degree is at least –ú/(c‘) for a constant c is at
most (1 ≠ ‘/cÕ)m (for another, su�ciently large, constant cÕ). Up to polylogarithmic factors
in n, the query complexity and running time of the procedure are O(arb(G)/‘3) with high
probability (assuming the average degree is �(1)).

Throughout this work we assume, whenever needed, that ‘ is upper bounded by some
su�ciently small constant (or else it can be set to that constant).

We also make use of the following claim – whose proof is given in the full version.

B Claim 11. For an integer s let {‰i,j}(i,j)œ�(s) be Bernoulli random variables where
Pr[‰i,j = 1] = µ for every (i, j) œ �(s). Suppose that the following conditions hold for some
c1 > 0 and c2 > 4.
1. For every (i1, j1) œ �(s) and (i2, j2) œ �(s) such that the four indices are distinct, ‰i1,j1

and ‰i2,j2 are independent.
2. For every (i1, j1) œ �(s) and (i2, j2) œ �(s) such that exactly two of the four indices are

the same, Pr[‰i1,j1 = ‰i2,j2 = 1] Æ c1 · µ3/2.
3. s Ø c2/

Ô
µ .

Then Pr
Ëq

(i,j)œ�(s) ‰i,j = 0
È

Æ 1+c1
c2

.

3 An upper bound of ÊO(n1/4
–) for testing C4-freeness

In this section we prove the more general (arboricity-dependent) form of the upper bound
for testing C4-freeness which is stated as Theorem 6 in the introduction.

Recall that the assumption on – is that it is an upper bound on the arboricity arb(G).
While it is known that for graphs with arb(G) >

Ô
n there exists a C4, we cannot simply

reject if we get – > n1/2 since it might be that arb(G) <
Ô
n (and we want one-sided error).

However, in the case that – > n1/2, the n1/4– term is replaced by n3/4 (and the additive –
term is due to the edge sampling).

The algorithm referred to in Theorem 6 is described next.

Algorithm 1 Test-C4-freeness(n, ‘,–).

1. Let ◊0 = 4–/‘, ◊1 = c1 ·
Ô
n/‘ (where c1 will be determined subsequently) and ◊min = min{◊0, ◊1}

(it is useful to read the algorithm while having in mind that ◊0 Æ ◊1 (i.e., – = O(
Ô
n)) so that

◊min = ◊0).
2. Repeat the following t = �(1/‘) times:

a. Select an edge e by calling the procedure Select-an-Edge(–, ‘), which appears below. If it does
not return an edge, then continue to the next iteration.

b. Select an endpoint v of e by flipping a fair coin.
c. If d(v) Æ ◊1, then select s1 = �(


d(v)/‘) (= O(n1/4

/‘)) random neighbors of v, and for
each neighbor u such that d(u) Æ ◊min query all the neighbors of u.

d. Otherwise (d(v) > ◊1), perform s2 = �(


(n–/◊1) logn/‘
2) (= Õ(n1/4

–
1/2

/‘
2)) random

walks of length 2 starting from v.
e. If a C4 is detected, then return it, “Reject” and terminate.

3. Return “Accept”.
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We note that the algorithm can be unified/simplified so that it only performs random
walks of length-2, where the number of walks is �(n1/4–/‘2), but then the analysis becomes
slightly more complicated.

Algorithm 2 Select-an-edge(‘,–).

1. Repeat the following �(–/‘) times:
a. Select a vertex u uniformly at random.
b. If d(u) Æ ◊0 for ◊0 = 4–/‘, then with probability d(u)/◊0 select an edge incident to u uniformly

at random and return it.
2. If no edge was selected, then return “Fail”.

We start by stating a claim concerning the procedure Select-an-Edge where its proof is
deferred to the full version.We then state and prove two additional claims that will be used
in the proof of Theorem 6.

B Claim 12. With probability at least 2/3 the procedure Select-an-Edge returns an edge.
Conditioned on it returning an edge, each edge incident to a vertex with degree at most ◊0
is returned with probability at least 1/(2mÕ) and at most 1/mÕ, where mÕ is the number of
edges incident to vertices with degree at most ◊0.

B Claim 13. Let v be a vertex and let C(v, ◊min) be a set of edge-disjoint C4’s containing
v such that the neighbors of v on these C4s all have degree at most ◊min, where ◊min is as
defined in the algorithm.17 Suppose that |C(v, ◊min)| Ø 1 and let ‘Õ = |C(v, ◊min)|/d(v). If
we select s = 16


d(v)/‘Õ random neighbors of v, and for each selected neighbor u such that

d(u) Æ ◊min we query all the neighbors of u, then the probability that we obtain a C4 is at
least 9/10.

Proof. Let EÕ(v) denote the set of edges incident to v that participate in the set C(v, ◊min).
By the premise of the claim, |EÕ(v)|/d(v) = 2|C(v, ◊min)|/d(v) = 2‘Õ. Let sÕ be the number
of neighbors of v that are incident to edges in EÕ(v) among the s selected random neighbors
of v. It holds that E[sÕ] = 2‘Õ · s, and by the multiplicative Cherno� bound, sÕ Ø ‘Õ · s with
probability at least 1≠e≠‘Õ·s/4. We first show that this probability is at least 19/20, and then
condition on this event. By the setting of s = 16


d(v)/‘Õ, it holds that ‘Õ · s = 16


‘Õ · d(v),

and by the setting of ‘Õ = |C(v, ◊)|/d(v), we get ‘Õ · s Ø 16


|C(v, ◊min)| Ø 16. Therefore,
with probability at least 19/20, sÕ > ‘Õ · s = 16


‘Õ · d(v). We condition on this event and

consider only those sÕ selected neighbors of v that are endpoints of EÕ(v).
For each 4-cycle fl œ C(v, ◊min), let u1(fl) and u2(fl) be the two neighbors of v on this

C4 (so that they are endpoints of edges in EÕ(v)). Since the C4s in C(v, ◊min) are edge-
disjoint, these vertices are distinct. Observe that the sÕ selected neighbors of v are uniformly
distributed in

t
flœC(v,◊min)

{u1(fl), u2(fl)}, and that sÕ Ø 16 ·


|C(v, ◊min)|. Hence, by the
“birthday paradox”, with high constant probability, the sample of neighbors of v contains
two vertices, u1(fl), and u2(fl) for some fl œ C(v, ◊min). Conditioned on this event, once the
(at most ◊min) neighbors of u1(fl) and u2(fl) are queried, the four-cycle fl is observed. C

B Claim 14. Let G be a graph over n vertices and m edges, and let ◊1, ‘Õ, ‘ÕÕ be parameters.
Suppose that G contains a bipartite subgraph GÕ = (L,R,E(GÕ)) such that every vertex
in R has degree at least ◊1 in G. Let v be a vertex in R such that v has at least ‘Õ · d(v)

17Actually, we do not rely on the setting of ◊min, so this claim holds for any threshold value.
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neighbors in L where each of these neighbors, u, has at least ‘ÕÕ ·max{d(u), m
n } neighbors

in R. If ◊1 Ø 2


n/(‘Õ · ‘ÕÕ) and we take s2 Ø 32

‘Õ·‘ÕÕ ·


2 logn · |R| random walks of length 2
from v for a su�ciently large constant cÕ, then with probability at least 9/10 we shall detect
a C4 in G.

Proof. For a pair of vertices v and vÕ ”= v in R, let ¸2(v, vÕ) be the number of length-2 paths
between v and vÕ, and let ¸2(v,R) =

q
vÕœR ¸2(v, vÕ). Consider taking two random length-2

walks from v, and let E1 be the event that both of them end at vertices in R. Let E2 be the
event that these two paths are distinct and end at the same vertex. Then for each single
vertex vÕ œ R, conditioned on E1, the probability that the two walks end at vÕ is exactly
¸2(v,v

Õ
)

¸2(v,R)
· ¸2(v,v

Õ
)≠1

¸2(v,R)
. Therefore,

Pr[E2 | E1] =
ÿ

vÕœR

¸2(v, vÕ)
¸2(v,R) ·

¸2(v, vÕ) ≠ 1
¸2(v,R) = 1

(¸2(v,R))2 ·
ÿ

vÕœR

(¸2(v, vÕ))2 ≠ 1
¸2(v,R) . (1)

We would like to lower bound the above probability. For the first term on the right-hand-side,
by applying the Cauchy-Schwartz inequality we get that

1
(¸2(v,R))2 ·

ÿ

vÕœR

(¸2(v, vÕ))2 Ø 1
(¸2(v,R))2 · |R| ·

3
¸2(v,R))

|R|

42

= 1
|R| . (2)

By combining Equations (1) and (2) we get that Pr[E2 | E1] Ø 1

|R| ≠ 1

¸2(v,R)
. Since each vertex

in R has degree at least ◊1, we have that |R| Æ 2m
◊1

. By the premise of the claim regarding
v and its neighbors, v has ‘Õd(v) Ø ‘Õ · ◊1 neighbors in L, and each of them has at least
‘ÕÕ · (m/n) neighbors in R. Therefore,

¸2(v,R) Ø ‘Õ · ◊1 · ‘ÕÕ · m
n

Ø ‘Õ · ‘ÕÕ · ◊2
1
· |R|

2n Ø 2|R|, (3)

where the last inequality is by the premise ◊1 Ø 2


n/(‘Õ · ‘ÕÕ). Therefore, Pr[E2 | E1] Ø 1

2|R| .
So far we have shown that when taking two distinct random walks from v, and conditioned
on them both ending at R (the event E1), the two paths collide on the end vertex (and hence
result in a C4) with probability at least 1/2|R|. We shall now prove, that when taking s
length-2 random walks from v, su�ciently many of them indeed end at R, and that with
high probability, at least two of them collide, resulting in a C4.

Consider first the event E1. By the premise of the claim, v has at least ‘Õ · d(v) neighbors
in L, and each u of them has at least ‘ÕÕ max{d(u),m/n} Ø ‘ÕÕd(u) neighbors in R. Therefore,
the probability that a single random walk from v ends at R is at least ‘Õ · ‘ÕÕ. Hence, if we
take s Ø 32

‘Õ·‘ÕÕ


2 logn · |R| length-2 random walks from v, and let sÕ denote the number

of walks that end at a vertex in R, we have that E[sÕ] = 32 ·


2 logn · |R|, and that with
probability at least 9/10, we have sÕ Ø 16 ·


2 logn · |R|. We henceforth condition on this

event.
Let ‰Õ

i,j denote the event that the ith and jth random walks among the ones that end at
R collide on the ending vertex (and thus result in a C4). By the above discussion, we have
that for a specific pair i ”= j, Pr[‰Õ

i,j = 1] Ø 1/2|R|. We now lower bound the probability
that at least one pair of random walks from the sÕ that end in R detects a C4, i.e. lower
bound

q
i,jœ[sÕ] ‰i,j , using Claim 11. For that end we also need to upper bound the variance

of the sum.
Partition the vertices in R according to ¸2(v, vÕ), where Rx(v) = {vÕ : 2x≠1 < ¸2(v, vÕ) Æ

2x} for x = 0, . . . logL Æ logn. Since
q

vÕœR
¸2(v,v

Õ
)

¸2(v,R)
· ¸2(v,v

Õ
)≠1

¸2(v,R)
> 1

2|R| , there exists at least
one setting of x for which

q
vÕœRx

¸2(v,v
Õ
)

¸2(v,R)
· ¸2(v,v

Õ
)≠1

¸2(v,R)
Ø 1

2|R| logn . We denote this setting by
xú and observe that xú > 0 (since for every vÕ œ R0, ¸2(v, vÕ) ≠ 1 = 0).
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For every i, j œ [sÕ], i < j, we define a Bernoulli random variable ‰i,j that is 1 if and
only if the ith and the jth random walks from v (among the sÕ considered) end at the
same vÕ œ Rxú and pass through a di�erent vertex in L. We next show that we can apply
Claim 11 (with s in that claim set to sÕ) to get an upper bound on the probability thatq

i,jœ[sÕ],i<j ‰i,j = 0 (which is an upper bound on the probability that we do not detect a
C4).

By the definition of the random variables, for every i1 ”= i2, j1 ”= j2, it holds that
‰i1,j1 ,‰i2,j2 are independent, so that the first condition in Claim 11 is satisfied. Next, for
any pair i, j œ [sÕ], i < j we have that

µ = Pr[‰i,j = 1] =
ÿ

vÕœRxú

¸2(v, vÕ)
¸2(v,R) ·

¸2(v, vÕ) ≠ 1
¸2(v,R) Ø 1

2|R| logn . (4)

Therefore, we have that sÕ Ø 16 ·

2|R| logn = 16/Ô

µ, and so the third condition in Claim 11
is satisfied (for c2 = 16, where sÕ serves as the parameter s in the claim).

It remains to verify that the second condition holds. For any four indices i1, j1, i2, j2 œ [sÕ],
i1 < j1, i2 < j2 such that exactly two of the four indices are the same,

Pr[‰i1,j1 = ‰i2,j2 = 1] =
ÿ

vÕœRxú

¸2(v, vÕ)
¸2(v,R) ·

3
¸2(v, vÕ) ≠ 1

¸2(v,R)

42

Æ µ · 2
xú ≠ 1

¸2(v,R) . (5)

Since by Equation (4), µ =
q

vÕœRxú
¸2(v,v

Õ
)

¸2(v,R)
· ¸2(v,v

Õ
)≠1

¸2(v,R)
Ø 2

2(xú≠1)

2(¸2(v,R))2 (as ¸2(v, vÕ) Ø 2xú≠1 for
every vÕ œ Rxú and ¸2(v, vÕ)≠ 1 Ø ¸2(v, vÕ)/2), we get that Pr[‰i1,j1 = ‰i2,j2 = 1] <

Ô
2 ·µ3/2,

and so the second condition in Claim 11 holds as well (for c1 =
Ô
2). Thus, the current claim

follows. C

We are now ready to prove Theorem 6.

Proof of Theorem 6. Since the algorithm only rejects a graph G if it detects a C4, it will
always accept graphs that are C4-free. Hence, we focus on the case that G is ‘-far from being
C4-free.

Recall that ◊0 = 4–/‘ and let E>◊0 be the subset of edges in G where both endpoints
have degree greater than ◊0. Since the arboricity of G is at most –, there are at most 2m/◊0
vertices with degree greater than ◊0, so that |E>◊0 | Æ (2m/◊0) · – = ‘m/2 edges.

Since G is ‘-far from C4-free, if we remove all edges in E>◊0 , then we get a graph that is
at least (‘/2)-far from C4-free. It follows that there exists a set of edge-disjoint C4s, denoted
C, such that no C4 in C contains an edge in E>◊0 , and |C| Ø ‘m/8.

We next partition C into two disjoint subsets: C1 contains those C4s that have at most
one vertex with degree at least ◊1 in them, and C2 contains those that have at least two
such vertices (where in the case ◊0 Æ ◊1 there will be exactly two). Since C = C1 fi C2, either
|C1| Ø ‘m/16 or |C2| Ø ‘m/16 (possibly both).

The case |C1| Ø ‘m/16. Consider first the case that |C1| Ø ‘m/16. In order to analyze
this case, we apply a process of “coloring” vertices and edges. Initially, all vertices and edges
that participate in C4s that belong to C1 are colored green, and all other vertices and edges
are colored red. We next apply the following iterative process. As long as there is a green
vertex v whose number of incident green edges is less than ‘d(v)/64, color v and its green
incident edges by red. Observe that the total number of edges colored red by this process is
at most ‘m/32. Furthermore, at the end of this process, every green vertex v has at least
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‘d(v)/64 incident green edges (and if a vertex is red, then all its incident edges are red). Let
CÕ
1
be the subset of C1 that consists of those C4s in C1 whose edges all remain green after the

process (and hence they are green), so that |CÕ
1
| Ø ‘m/32.

By the definition of C1, and hence also CÕ
1
, in each C4 in CÕ

1
there is at most one

vertex with degree greater than ◊1, and no edges such that both endpoints have degree
greater than ◊0. Assume without loss of generality that for each four-cycle fl œ CÕ

1
, where

fl = (v0(fl), v1(fl), v2(fl), v3(fl)), v2(fl) is the highest degree vertex (where d(v2(fl)) could be
any value between 1 to n). Let V0(CÕ

1
) =

t
flœCÕ

1
{v0(fl)} denote this set of vertices (i.e., the

ones that are across from the highest degree vertex in a (green) four-cycle in CÕ
1
).

Observation. For every fl œ CÕ
1
,

1. d(v0(fl)) Æ ◊1, and
2. v1(fl) and v3(fl) are of degree at most ◊min = min{◊0, ◊1}.

To verify this observation, note that by the definition of CÕ
1
, for every fl œ CÕ

1
, there is at

most one vertex with degree greater than ◊1, and since v2(fl) is the highest degree vertex in
fl, it follows that all three other vertices in fl are of degree at most ◊1.

We now show that d(v1(fl)) Æ ◊0, and the proof for v3(fl) is identical. If d(v2(fl)) > ◊0,
then it must be the case that d(v1(fl)) < ◊0, as otherwise both have degree greater than
◊0 and so they cannot be connected, which is a contradiction to them both being incident
on the four-cycle fl. If d(v2(fl)) Æ ◊0, then since v2(fl) is the highest degree vertex in fl,
d(v1(fl)) Æ d(v2(fl)) Æ ◊0.

Therefore, for every v œ V0(CÕ
1
), it has at least ‘d(v)/64 neighbors u such that (v, u) is

green and d(u) Æ ◊min. Hence, overall in the graph, the set of vertices V0(CÕ
1
) has at least

‘m/32 green edges that are incident to it and their second endpoint is of degree at most
◊min Æ ◊0. It follows that conditioned on an edge being returned by procedure Select-an-

Edge, by Claim 12, it returns an edge incident to a vertex v œ V0(CÕ
1
) with probability at

least (‘m/32)/2mÕ > ‘/128 (since mÕ > 1

2
m). So the probability that in some iteration of

Test-C4-freeness a vertex v0 œ V0(CÕ
1
) is selected, is at least 1 ≠ (1 ≠ ‘

128
)t > 9/10 (recall that

t = �(1/‘) so that it su�ces to set t = 500/‘).
Conditioning on this event, we apply Claim 13. Specifically:
◊0 = 4–/‘ (as defined in Step 1 in Algorithm Test-C4-freeness);
C(v0, ◊min) is the set of C4s in CÕ

1
that are incident to v0;

‘Õ = |C(v0, ◊min)|/d(v) Ø ‘/128 (since v0 has at least ‘d(v)/64 incident green edges,
and they can be partitioned into pairs such that each pair belongs to exactly one C4 in
C(v0, ◊min));
d(v0) Æ ◊1 (by the above observation);

In order to apply the claim, we must ensure that s > 16

d(v0)/‘Õ. By the above, it is

su�cient to set s1 in Step 2c, to be s1 = 512


d(v0)/‘.
Hence, by Claim 13, if Step 2c is applied to v0, then a C4 is observed with probability at

least 9/10.
The analysis for the case that |C2| Ø ‘m/16 is similar, and due to space constraints, it is

deferred to the full version.
We next turn to analyze the query complexity. By the settings of ◊0, ◊1, t, s1 and s2 in

the algorithm, the query complexity of the algorithm is upper bounded as follows.

O

3
1
‘
·
1–

‘
+max{s1, s2}

24
= O

A
1
‘

A
–

‘
+max

IÚ
◊1
‘

· ◊min,
1
‘2

·
Ú

n–

◊1
· logn

JBB
(6)
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For the case that – Æ (c1/4)
Ô
n, we have that ◊min = ◊0 = �(–/‘) and that ◊1 = �(

Ô
n/‘),

and so we get a complexity of

O
1

‘≠3 · n1/4–1/2 ·max{–1/2, log1/2 n}
2
= O(‘≠3 · n1/4–) , (7)

where the last inequality is for – > logn, and otherwise the complexity is O(‘≠3 ·
n1/4–1/2 log1/2 n).

For the case that – > (c1/4)
Ô
n, we have that ◊min = ◊1 = �(

Ô
n/‘). Therefore, the

complexity is

O(‘≠3 · (– + n3/4)) . (8)

Thus, the proof is complete. J
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Abstract

In this paper we reassess the parameterized complexity and approximability of the well-studied
Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-
weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in
which each given vertex pair lies in the same connected component. It is known that this problem
is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex
set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme
with a runtime of nO(k2

/Á) on graphs of treewidth k. Our main result is a much faster e�cient
parameterized approximation scheme (EPAS) with a runtime of 2O( k2

Á log k
Á ) · nO(1). If k instead

is the vertex cover number of the input graph, we show how to compute the optimum solution
in 2O(k log k) · nO(1) time, and we also prove that this runtime dependence on k is asymptotically
best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a
faster 2O(k) · nO(1) time algorithm, which again cannot be improved under ETH.
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1 Introduction

The Steiner Forest problem is one of the most well-studied problems in network design [16,
23, 24, 28]. In this problem the input consists of a graph G = (V,E) with positive edge
weights, a set of terminals R ™ V , and a set of demands D ™

!
R

2

"
. The objective is to

select a subgraph F ™ G, minimizing the total cost of selected edges, while ensuring that
for every demand pair {s, t} œ D, s and t are in the same connected component of F . Since
edge weights are positive, it is easy to see that the optimal solution is always a forest. The
Steiner Forest problem finds many applications (see surveys [11, 28, 32, 33]), for example
in telecommunication networks (cf. [33]).

Our goal in this paper is to reassess the complexity of this fundamental problem from the
point of view of parameterized complexity and approximation algorithms.1 In order to recall
the context, it is helpful to compare Steiner Forest to the even more well-studied Steiner

1 We assume the reader is familiar with the basics of parameterized complexity and approximation
algorithms, such as the classes FPT and APX and the definition of treewidth, as given in standard
textbooks [14, 19, 34]. We give full definitions of all parameters in Section 2.
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Tree problem, which is the special case of Steiner Forest where all terminals are required
to be connected, i.e., D =

!
R

2

"
, and an optimal solution is a tree. Steiner Tree was

already included in Karp’s seminal list [25] of NP-hard problems from the 1970s. From the
approximation point of view, Steiner Tree (and therefore Steiner Forest) is known to be
APX-hard [13], but both problems admit constant factor approximations in polynomial time
for general input graphs, where the best approximation factors known are ln(4)+Á < 1.39 [10]
and 2 [1, 31], respectively. Despite this similarity, when considering graph width parameters
the problems exhibit wildly divergent behaviors from the parameterized complexity point
of view: whereas Steiner Tree is FPT parameterized by standard structural parameters
such as treewidth and can in fact even be solved in single exponential 2O(k)nO(1) time [6]
when k is the treewidth, Steiner Forest is NP-hard on graphs of treewidth 3, as shown
independently by Gassner [21] and Bateni, Hajiaghayi, and Marx [4].

Steiner Forest is therefore a problem that presents a dramatic jump in complexity in
this context, compared to Steiner Tree, as the hardness result on graphs of treewidth 3 rules
out even an XP algorithm for parameter treewidth. One of the main positive contributions
of Bateni, Hajiaghayi, and Marx [4] was an algorithm attempting to bridge this gap using
approximation. In particular, they showed that Steiner Forest admits an approximation
scheme for graphs of treewidth k, which computes a (1 + Á)-approximation in nO(k

2
/Á) time

for any Á > 0. Hence, if we allow slightly sub-optimal solutions, we can at least place the
problem in XP parameterized by treewidth. In their paper, Bateni, Hajiaghayi, and Marx [4]
remark that because the exponent of the polynomial of this runtime depends on k and Á, “it
remains an interesting question for future research whether this dependence can be removed”,
that is, whether a (1 + Á)-approximation can be obtained in FPT time.

The main result of our paper is a positive resolution of the question of [4]: we show
that Steiner Forest admits an e�cient parameterized approximation scheme (EPAS) for
treewidth, that is, a (1+ Á)-approximation algorithm with a runtime of the form f(k, Á)nO(1).
In other words, we show that their algorithm can be improved in a way that makes the
running time FPT not only in the treewidth, but also in 1/Á. More precisely, we show the
following:

I Theorem 1. The Steiner Forest problem admits an EPAS parameterized by the

treewidth k with a runtime of 2O(
k2
Á log

k
Á ) · nO(1)

.

Moving on from treewidth, we ask what the most general parameter is for which we
may hope to obtain an FPT exact algorithm for Steiner Forest. We observe that the
NP-hardness result of [4, 21] for Steiner Forest on graphs of treewidth 3 actually has
some further implications for some even more restricted parameters: the graphs constructed
in their reductions also have constant treedepth and feedback vertex set size, implying that
the problem remains hard for both of these parameters (which are incomparable in general).
More precisely, known reductions imply the following:

I Theorem 2 ([4, 21]). The Steiner Forest problem is NP-hard on graphs of treewidth 3,
treedepth 4, and feedback vertex set of size 2.

This leads us to consider even more restricted parameters, such as the size of a vertex

cover and feedback edge set, which are not bounded in this reduction. Indeed, not only do
we prove that Steiner Forest is FPT for both of these parameters, but we are also able
to determine the correct parameter dependence, under the Exponential Time Hypothesis
(ETH). For feedback edge set the optimal dependence is single exponential:
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I Theorem 3. The Steiner Forest problem is FPT parameterized by the size k of a

feedback edge set and can be solved in 2O(k)nO(1)
time. Furthermore, no 2o(k)nO(1)

time

algorithm exists, under ETH.

For the parameterization by the vertex cover size, we obtain a slower runtime for our
FPT algorithm. Interestingly, we are also able to prove that this is best possible, under ETH.
Our lower bound for Steiner Forest is in contrast to the Steiner Tree problem, for
which a faster 2O(k)nO(1) time algorithm exists, even if k is the treewidth [6].

I Theorem 4. The Steiner Forest problem is FPT parameterized by the size k of a

vertex cover and can be solved in 2O(k log k)nO(1)
time. Furthermore, no 2o(k log k)nO(1)

time

algorithm exists, under ETH.

We remark that Bodlaender et al. [8] recently independently showed that Steiner
Forest admits a 2O(k log k)nO(1) time algorithm for the size k of a vertex cover (improving
an algorithm for the unweighted version of the problem given in [22]). While they develop
their own dynamic program to solve this problem, we rely on an existing algorithm by [4]
(see Theorem 5). Accordingly our description of the algorithm is very short compared to [8].
The more interesting part of Theorem 4 however is the proof of the lower bound.

1.1 Overview of Techniques

Let us briefly sketch the high level ideas of our results given by Theorems 1, 3, and 4.

EPAS for treewidth. Our algorithm extends the work of [4], so let us briefly recall some
key ideas. Given a rooted tree decomposition, a terminal t is called active for a bag B if
there is a demand {s, t} œ D such that t lies in the sub-tree rooted at B while s does not (see
Section 2 for formal definitions). It is a standard property of tree decompositions that every
bag is a separator. Hence the component of any feasible solution that contains an active
terminal must intersect B. The hardness of the problem now inherently stems from the fact
that we have to decide for all active terminals of a bag, how the corresponding component
intersects the bag, and therefore how the active terminals (whose number is unbounded by k)
are partitioned into connected components. Suppose, however, that someone supplied us
with this information, that is, suppose that for each bag B we are given a set of partitions �B

of its active terminals and we are promised that the optimal solution conforms to all �B.
By this we mean that if we look at how the optimal solution partitions the active terminals
of B into connected components and call this partition fi, then fi œ �B , that is, the optimal
partition is always one of the supplied options. In this case, using this extra information, the
problem does become tractable, as shown in [4]:

I Theorem 5 ([4]). For an input graph G on n vertices, let a rooted nice tree decomposition

of width k be given, such that all terminals lie in bags of leaf nodes of the decomposition.

Also, let a set �B of partitions of the active terminals of each bag B of the decomposition

be given. If p =
q

B
|�B | is the total number of partitions, then a minimum cost Steiner

Forest solution conforming to all �B can be computed in 2O(k log k) · (pn)O(1)
time.

The above theorem does not seem immediately helpful, since one would still need to find
a small collection of partitions �B in order to obtain an e�cient algorithm. Note however,
that the partition sets may conform to an approximate solution as well, which would let
the algorithm compute a solution that is at least as good. The strategy of [4] therefore is
to construct a collection of partitions that has size polynomial in n (when k, Á are fixed

ICALP 2024
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constants) by stipulating that when two active terminals are “close” to each other, they
should belong in the same set of the partition of some near-optimal solution. In order to
bound the resulting approximation ratio, they need to provide a charging scheme: starting
from an optimal solution, they merge components which are “close”, to obtain a solution
that conforms to the �B used by the algorithm. They then show that the resulting solution
is still near-optimal by charging the extra cost incurred by a merging operation to one of the
two merged components.

A blocking point in the above is that we need to make sure we do not “overcharge” any
component. This is accomplished in [4] via a partial ordering of the components: we order
the components according to the highest bag of the rooted tree decomposition they intersect,
and whenever two components are merged we charge this to the lower component. As shown
in [4], this ensures that no component is charged for more than k merges. Unfortunately,
this also implies that the merging procedure is not symmetric, which severely diminishes the
contexts in which we can apply it.

Let us now describe how our approach improves upon this algorithm. A key ingredient
will be a more sophisticated charging scheme, which will allow us to obtain a better (smaller)
collection of partitions �B , without sacrificing solution quality. Counter-intuitively, we will
achieve this by introducing a second parameter: the height h of the tree decomposition.
Informally, we will now construct a near-optimal solution by merging two components
whenever the connection cost is low compared to the cost of (a part of) either component
(as opposed to the lower component). As in [4], this runs the risk of charging many merging
operations to a higher component, but by performing an accounting by tree decomposition
level and using the fact that the decomposition only has h levels, we are able to show that
our solution is still near-optimal even though we merge components much more aggressively
than [4]. In this way, for each bag we construct one partition of its active terminals into a
number of sets that is polynomial in k + h+ 1

Á
+ logn, in a way that guarantees that this

partition is a refinement of a near-optimal solution. That is, whenever we decide to place
two terminals together in our partition, the near-optimal solution does the same. However,
this solution does not necessarily conform to the resulting partitions, as two terminals of the
same component might end up in di�erent sets of the partition for a bag.

At this point an astute reader may be wondering that since we consider both the width k
and the height h of the decomposition as parameters, we are e�ectively parameterizing by
treedepth, rather than treewidth. This is correct, but we then go on to invoke a result
of [7] which states that any tree decomposition can be rebalanced to have height O(logn)
without severely increasing its width. Hence, the family of partitions we now have has
size polynomial in k + 1

Á
+ logn. However, we are not done yet, since at this point we can

only guarantee that our partitions are refinements of a near-optimal solution. To complete
the algorithm, we work from this family of partitions to obtain a collection of partitions
conforming to our near-optimal solutions using ”-nets (this is similar to the approach of [4]).
This leads to a running time of the form (logn)O(

k2
Á )nO(1), which by standard arguments of

parameterized complexity is in fact FPT and can be upper-bounded by a function of the form
2O(

k2
Á log

k
Á ) · nO(1). To summarize, our high-level strategy is to show that the approach of [4]

can be significantly improved when the input decomposition has small width and height,
but then we observe that our new scheme is e�cient enough in the height that even if we
replace h by a bound that can be obtained for any graph, we still have an algorithm with an
FPT running time, that is, significantly faster than that of [4].
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Vertex Cover. For the parameterization by the vertex cover size, as mentioned we obtain
an FPT exact algorithm with dependence 2O(k log k). A similar algorithm was recently inde-
pendently obtained by [8] via dynamic programming. However, our algorithm is significantly
simpler, because our strategy is to show how to construct a tree decomposition and a
collection of partitions �B such that we only need one partition of the active terminals for
each bag. As a consequence, p = O(n) and Theorem 5 implies the algorithm of Theorem 4,
without the need to formulate a new dynamic program.

Our main result for this parameter is that under ETH the runtime dependence is
asymptotically optimal. Note that this also implies that the runtime of the dynamic program
given by Theorem 5 cannot be improved with regards to the dependence on the treewidth.
To show this, we present a reduction from 3-SAT, where the goal is to compress an n-
variable formula into a Steiner Forest instance such that the graph has vertex cover size
O(n/ logn). The intuition on why it is possible to achieve such a compression is the following:
suppose we have an instance with vertex cover of size k and a demand between two vertices
of the independent set. Then the simplest way to satisfy such a demand is to connect both
vertices to a common neighbor in the vertex cover. This encodes a choice among k vertices,
and hence it is su�cient to encode the assignment for log k binary variables. The strategy of
our reduction is to set up some choice gadgets which allow us to encode the assignments to
the original formula taking advantage of the fact that each choice can represent a logarithmic
number of variables. Hence we can obtain a construction of slightly sub-linear (O(n/ logn))
size. We then of course need to add some verification gadgets, representing the clauses, to
check that the formula is indeed satisfied. But even though the number of such gadgets is
linear in n, we make sure that they form an independent set, and hence the total vertex cover
size remains su�ciently small to obtain our lower bound. We note that this compression
strategy is similar to techniques recently used to obtain slightly super-exponential lower
bounds for vertex cover for other problems [26, 27], but the constructions we use are new
and tailored to Steiner Forest.

Feedback Edge Set. For the parameterization by the size k of a feedback edge set, instead
of relying on the dynamic program given by Theorem 5 we go an entirely di�erent route
in order to obtain the faster 2O(k)nO(1) time FPT algorithm of Theorem 3. First o�, it is
not hard to reduce the Steiner Forest problem to an instance in which all vertices have
degree at least 2. We then consider paths with internal vertices of degree 2, with endpoints
that are vertices incident to the feedback edge set or vertices of degree at least 3. We call
these paths topo-edges and argue that there are only O(k) of these. We then guess for which
topo-edges the two endpoints lie in di�erent components of the optimal Steiner Forest
solution, which can be done in 2O(k) time. If a topo-edge has both its endpoints in the
same component of the optimum, we show that it can be easily handled. For the remaining
topo-edges, we can decide which edges along the path do not belong to the optimal solution
by a reduction to the polynomial-time solvable Min Cut problem.

1.2 Related work

Bateni, Hajiaghayi, and Marx [4] show that one of the consequences of their XP approximation
scheme is a PTAS for Steiner Forest on planar graphs, by using the common technique
pioneered by Baker [2] of reducing this problem to graphs for which the treewidth is bounded
as a function of Á. Because their algorithm is not FPT, their PTAS has a running time
of the form nf(Á). By using our algorithm from Theorem 1 we can improve this runtime
to f(Á)nO(1), i.e., we obtain on EPTAS for planar graphs. However, [18] already showed that
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a (1 + Á)-approximation algorithm with a runtime of O(f(Á) · n log3 n) exists for Steiner
Forest on planar graphs. While they build on the work of [4], and in particular also reduce
to graphs of treewidth bounded as a function of Á, interestingly they do not obtain an
EPAS parameterized by treewidth. Instead they use a di�erent route and show that given
a graph H of treewidth k, in O(f(k, Á) · n log2 n) time it is possible to compute a Steiner
Forest solution in H whose cost is at most cost(F ı) + Á cost(H), i.e., there is an additive
error that depends on the cost of H compared to the optimum solution F ı. If the input
graph G is planar, then a result by [9] implies that from G a so-called banyan [3, 30] can
be computed, which is a subgraph of G with cost bounded by O(g(Á) cost(F ı)), and which
contains a near-optimal approximation of every Steiner forest (cf. [18, Lemma 2.1]). By
applying the framework of [4] on the banyan instead of the input graph, it is then possible
to obtain a graph H of treewidth bounded by a function of Á, for which the algorithm of [18]
computes a (1 +O(Á))-approximation for the input.

If it would be possible to compute a banyan for bounded treewidth graphs, then the
algorithm of [18] would also imply an EPAS for treewidth. However, to the best of our
knowledge, and as explicitly stated by [3], banyans are only known for planar graphs [9, 18],
Euclidean metrics [30], and doubling metrics [3] (in fact, the latter are so-called forest

banyans, which have weaker properties). Thus it is unclear how to obtain an EPAS for
Steiner Forest parameterized by the treewidth via the algorithm of [18]. We leave open
whether a banyan exists for bounded treewidth graphs, which could give an alternative
algorithm to the one given in Theorem 1. However, a further remark is that the cost of the
banyan for planar graphs obtained by [9] has exponential dependence on 1/Á, which implies
a double exponential runtime dependence on 1/Á for the EPTAS for planar graphs. If a
banyan can be obtained for bounded treewidth graphs by generalizing the techniques of [9]
to minor-free graphs, then the resulting EPAS parameterized by treewidth would also have
double exponential runtime in 1/Á. In this case however, our EPAS given by Theorem 1
would be exponentially faster.

A di�erent parameter that is often studied in the context of Steiner problems is the
number p = |R| of terminals. The classic result of [15] presents an FPT algorithm for
Steiner Tree with a runtime of 3pnO(1). For unweighted graphs, this was improved [5, 29]
to 2pnO(1), while the fastest known algorithm for weighted graphs can compute the optimum
in (2 + Á)pnO(

Ô
1
Á log

1
Á ) time [20] for any Á > 0. The algorithm of [15] can be generalized to

solve Steiner Forest in 2O(p)nO(1) time (cf. [12]). A somewhat dual parameter to the
number of terminals is the number q of non-terminals (so-called Steiner vertices) in the
optimum solution. For this parameter, a folklore result states that Steiner Tree (and
thus also Steiner Forest) is W[2]-hard (cf. [14, 17]). However, an EPAS with a runtime
of 2O(q

2
/Á

4
)nO(1) was shown to exist for Steiner Tree [17]. For Steiner Forest it is

not hard to see that such an EPAS parameterized by q cannot exist unless P=NP (cf. [17]),
but if c denotes the number of components of the optimum solution, there is an EPAS
with a runtime of (2c)O((q+c)

2
/Á

4
)nO(1) [17]. Similar results have been found for related

Steiner problems in directed graphs [12]. For further results in the area of parameterized
approximations, we refer to the survey in [19].

2 Preliminaries

As mentioned, we assume the reader is familiar with the basics of parameterized complexity,
such as the class FPT [14], and approximation algorithms such as a PTAS [34]. A parame-

terized approximation scheme (PAS) is an algorithm that computes a (1 + Á)-approximation
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for a problem in f(k, Á)ng(Á) time for some functions f and g, while an an e�cient parame-

terized approximation scheme (EPAS) is a (1 + Á)-approximation algorithm running in time
f(k, Á)nO(1) (that is, the running time is FPT in k+ 1

Á
). The distinction between a PAS and

an EPAS is similar to the one between a PTAS and an EPTAS.
By w : E æ R+ we denote an edge-weight function, so that the cost of a solution F to the

Steiner Forest problem is cost(F ) =
q

eœE(F )
w(e). We will use F ı to denote an optimal

solution, and for – Ø 1 we will say that a solution F is –-approximate if cost(F ) Æ – cost(F ı).
For u, v œ V we use dist(u, v) to denote the shortest-path distance from u to v in G according
to the weight function w.

I Definition 6. Given a graph G = (V,E), a tree decomposition is a pair (T, {Bi}iœV (T )),
where T is a tree and each node i œ V (T ) of the tree is associated with a bag Bi ™ V , with

the following properties:

1.
t

iœV (T )
Bi = V , i.e., all vertices of G are covered by the bags,

2. for every edge uv œ E of G there exists a node i œ V (T ) of the tree for which u, v œ Bi,

and

3. for every vertex v œ V of G the nodes {i œ V (T ) | v œ Bi} of the tree for which the bags

contain v induce a (connected) subtree of T .
The width of the tree decomposition is maxiœV (T ){|Bi| ≠ 1} and the treewidth of G is the

minimum width over all its tree decompositions.

A rooted tree decomposition is nice if for every i œ V (T ) we have one of the following:

1. i has no children
2
(i is a leaf node),

2. i has exactly two children i1 and i2 such that Bi = Bi1 = Bi2 (i is a join node),
3. i has a single child iÕ where Bi = BiÕ fi {v} for some v œ V (i is an introduce node), or
4. i has a single child iÕ where Bi = BiÕ \ {v} for some v œ V (i is a forget node).

Given a rooted tree decomposition T of a graph G, for a node u of T let B be the bag
associated with it. Then VB is the set of vertices of all bags in the subtree rooted at u. The
set AB ™ R denotes the active terminals of the bag B: for any demand pair {s, t} œ D,
if s œ VB and t /œ VB then s œ AB. For any Steiner Forest solution F , if a connected
component C of F contains an active terminal, then we say that C is an active component

for B. For a fixed solution F , we denote the set of all active components for B by CB . Note
that every active component must intersect the bag B.

If for every bag B a set of partitions �B of AB is given, a Steiner Forest solution F
is conforming to all �B , if for each bag B there exists a partition fi œ �B such that any two
active terminals in AB are in the same set S œ fi if and only if they are part of the same
active component C of F , i.e., S ™ V (C) and SÕ flV (C) = ÿ for any SÕ œ fi with SÕ ”= S (note
that this implies |fi| Æ |B|). One technicality of Theorem 5 is that the algorithm needs a nice
tree decomposition as input, for which the terminals only appear in bags that are leaf nodes
of the decomposition. Given any tree decomposition, these conditions are not hard to meet
(cf. [4, Lemma 6]). However, for our algorithms we are going to rely on tree decompositions
with certain additional properties. Hence we will need to revisit the conditions needed for
the algorithm of Theorem 5 when using it for our purposes.

We will also consider the following parameters: The treedepth of a graph G can be defined
recursively as follows: (i) the treedepth of K1 is 1 (ii) the treedepth of a disconnected graph
is the maximum of the treedepth of any of its components (iii) the treedepth of a connected
graph G is 1 + minvœV (G) td(G ≠ v). A feedback vertex set is a set of vertices whose removal

2 here we do not demand the leaf nodes to be empty, as is often assumed for this definition.
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leaves a forest. A vertex cover is a set of vertices such that its removal leaves an edge-less
graph. A feedback edge set is a set of edges whose removal leaves a forest. In a connected
graph with n vertices and m edges the minimum feedback edge set always has size m≠n+1.

As part of our approximation algorithm we will use the notion of ”-nets, defined as
follows. A well-known fact is that a ”-net exists for any metric and any ” Ø 0, and it can be
constructed greedily in polynomial time.

I Definition 7. Given a metric (X,dist), a ”-net is a subset N ™ X of points, such that

1. any two net points u, v œ N are far from one another, i.e., dist(u, v) > ”, and
2. for any node u œ X there is some net point v œ N close by, i.e., dist(u, v) Æ ”.

3 An e�cient parameterized approximation scheme for treewidth

In this section we describe the main result of this paper which is an EPAS for Steiner
Forest parameterized by treewidth. We begin by giving two preliminary tools (Lemma 8
and Lemma 9) which facilitate the algorithm by ensuring that the given tree decomposition
has logarithmic height and that the instance has aspect ratio (ratio of the weights of the
heaviest over the lightest edge) bounded by a polynomial in n.

We then go on to Subsection 3.1 where we introduce a second parameter, the height h of
the decomposition. Our goal is to fix an almost-optimal solution FÁ and describe an algorithm
that produces a partition ’B of the active terminals for each bag B of the decomposition,
where ’B is a refinement of the partition implied by FÁ (Lemma 10). In other words, we
seek a partition ’B of AB such that if two terminals t1, t2 are in the same set of ’B, then
they are also in the same component of FÁ. Of course, it is trivial to achieve this by giving
a ’B where each active terminal is in its own set, so the interesting part here is how we
group terminals together in a way that in the end allows us to bound |’B | by a polynomial
of k + h+ 1

Á
+ logn, while still ensuring that FÁ is almost optimal.

The partition ’B of Lemma 10 is not yet conforming, because two terminals which are
in distinct sets of ’B may still be in the same component of FÁ, and thus we cannot apply
Theorem 5 at this point. Therefore in Subsection 3.2, given ’B we focus on how to obtain
every possible partition of the set of active terminals, which could be conforming with an
almost-optimal solution. By an appropriate use of ”-nets, similar to [4], we are able to “guess”
(that is, brute-force) a choice of a small number of net points per active component. Since
the number of choices for each point is at most |’B | and we choose roughly O(k2/‘) points
in total, the total number of produced partitions (and hence the running time given by
Theorem 5) is of the form (logn+ k + 1

‘
)O(k

2
/‘)nO(1), which is FPT.

Let us now recall a result of Bodlaender and Hagerup [7] which states that a tree
decomposition of logarithmic height can always be obtained.

I Lemma 8 ([7]). Given a tree decomposition of width k of a graph G on n vertices, there is

a polynomial time algorithm computing a nice tree decomposition of G of width O(k) and

height O(k logn).

We also need to reduce the aspect ratio of the given graph to a polynomial. This can be
done using a standard technique, where however we need to make sure that the treewidth
of the given graph remains bounded. Note that the aspect ratio of the resulting graph GÕ

in the following lemma is polynomially bounded in the size of the original graph, but not
necessarily in the size of GÕ (because GÕ may have significantly fewer vertices).

I Lemma 9. Given Á > 0, an instance of Steiner Forest on a graph G with n vertices,

and a (nice) tree decomposition T of width k and height h for G, in polynomial time we can

compute an instance on a graph GÕ
with at most n vertices and a (nice) tree decomposition T Õ
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of width at most k and height h for GÕ
, such that the ratio of the longest to the shortest

edge in GÕ
is at most 2n/Á, and any –-approximation for GÕ

can be converted into an

(– + Á)-approximation for G.

For simplicity, in the following we will scale the edge lengths of any given graph so that
the shortest edge has length 1. In particular, after applying Lemma 9, the longest edge has
length at most 2n/Á.

3.1 Tree decompositions with bounded height

In this section we informally assume that the height h of the given tree decomposition is
bounded as well as the width k. Our aim is to prove the following statement, where we
restrict ourselves to input graphs of polynomial aspect ratio, which we may do according to
Lemma 9 (keeping in mind that n is the number of vertices of the original input graph).

I Lemma 10. Let an instance of Steiner Forest on a graph G with at most n vertices be

given together with a tree decomposition T of width k and height h for G. For any Á > 0,
if the ratio between the longest and shortest edge of G is at most 2n/Á, then there exists

a (1 + Á)-approximation FÁ with the following properties. There exists a polynomial time

algorithm, which for every bag B of T outputs a partition ’B of the active terminals AB,

such that each set of ’B belongs to the same component of FÁ and |’B | = O(k
4
h
2

Á2 log n

Á
).

To prove Lemma 10 we first identify the solution FÁ, after which we will show how to
compute the partitions ’B .

3.1.1 A near-optimal solution

The high-level idea to obtain a (1 + Á)-approximate solution FÁ is to connect components
of the optimum solution F ı that lie very close to each other. In particular, if the distance
between two components C and C Õ of F ı is of the form f(k, h, Á) cost(C) for some small
enough function f , then we may hope to add a shortest path between C and C Õ and charge
this additional cost to C, in order to obtain a (1 + Á)-approximation. Unfortunately, this
approach is not viable, since the number of components that are very close to C may be
very large, meaning that the function f in the distance bound would have to linearly depend
on the number of vertices in order to result in a (1 + Á)-approximation. This in turn would
mean that the size of the partition ’B would depend polynomially on the number of vertices,
making it unsuitable for an FPT time algorithm. This issue lies at the heart of the problem
and is the reason for why it is non-trivial to obtain an approximation scheme parameterized
by the treewidth. To get around this issue we will measure the distance between components
using a modified cost function, which we define next.

Given a bag B of the rooted tree decomposition T , we denote by TB the subtree of T
rooted at the node associated with B, and by GB = G[VB ] the graph induced by the vertices
VB lying in bags of TB. We also define the graph G¿

B
™ GB as the graph spanned by all

edges of GB , except those induced by B, i.e., the edge set of G¿
B

is

E(G¿
B
) = {uv œ E(GB) | u /œ B ‚ v /œ B}.

The cost of a component C of some Steiner Forest solution restricted to G¿
B

only counts
the edge weights of C in G¿

B
, and is denoted by

cost¿
B
(C) =

ÿ

eœE(C)flE(G
¿
B)

w(e).
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Based on these definitions, we fix an optimal solution F ı and construct a solution FÁ

by initially setting FÁ = F ı, and then connecting components by exhaustively applying the
following rule, where we say that two components C and C Õ

share a bag B if V (C) fl B ”= ÿ
and V (C Õ) fl B ”= ÿ:

I Rule 1. If C,C Õ
are components of F ı

sharing a bag B with dist(C,C Õ) Æ Á

kh
· cost¿

B
(C)

but C and C Õ
are in di�erent components of FÁ, then add a shortest path of length dist(C,C Õ)

between C and C Õ
to the solution FÁ.

I Lemma 11. The cost of the solution FÁ obtained by Rule 1 from F ı
is at most (1 + Á) cost(F ı).

Proof. It su�ces to prove that the cost of all paths added to F ı in order to obtain FÁ according
to Rule 1 is at most Á · cost(F ı). For this we use a charging scheme that charges new paths
to components of F ı. In particular, we charge a path of length dist(C,C Õ) Æ Á

kh
· cost¿

B
(C)

to component C.
Fix a component C of F ı and a bag B with V (C) fl B ”= ÿ. We define charge(C,B) to

be the cost we charge to C for operations involving other components of F ı that share B.
It is not hard to see that charge(C,B) Æ Á

h
· cost¿

B
(C), because there are at most k other

components of F ı that share B.
For ¸ œ {0, . . . , h ≠ 1}, let B¸ be the set of bags of the tree decomposition that appear at

distance exactly ¸ from the root, i.e., they lie on level ¸ of the tree. We now observe that
ÿ

BœB¸

charge(C,B) Æ
ÿ

BœB¸

Á

h
· cost¿

B
(C) Æ Á

h
cost(C),

where the last inequality follows because if we have two bags B,BÕ œ B¸, then E(G¿
B
) fl

E(G¿
BÕ) = ÿ: note that every edge of E(G¿

B
) must be incident on a vertex v that appears in

a descendant of B, but not in B. By the properties of tree decompositions, notably by the
fact that B is a separator of G, v cannot appear in BÕ or any of its descendants. Therefore
none of its incident edges are contained in E(G¿

BÕ). Because
q

BœB¸
cost¿

B
(C) is the sum of

costs of C over disjoint sets of edges, the sum is a lower bound on the total cost of C.
To conclude, we observe that the total charge of C is

charge(C) Æ
h≠1ÿ

¸=0

ÿ

BœB¸

charge(C,B) Æ Á cost(C).

Therefore, summing over all components of F ı, the total cost of the edges we have added
according to Rule 1 is at most Á · cost(F ı). J

3.1.2 Partitioning active terminals

We are now ready to prove Lemma 10 for the near-optimal solution FÁ constructed above,
for which we will compute the partitions ’B for all bags B. We will use the following two
claims for the active terminals AB of the given bag B.

B Claim 12. If there exist t1, t2 œ AB such that dist(t1, t2) Æ Á

kh
dist(t1, B), then t1, t2 are

in the same component of FÁ.

B Claim 13. Let A ™ AB and d Ø 0 be such that (i) there exists b œ B such that for all
t œ A we have dist(t, B) = dist(t, b) and d Æ dist(t, B) Æ 2d (ii) for all distinct t, tÕ œ A

we have dist(t, tÕ) > Á

kh
d (iii) |A| Ø 8k

2
(k+1)h

2

Á2 . Then, there exists a component of FÁ that
contains all terminals of A.
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Intuitively, Claim 12 allows us to place terminals of A which are very close to each other
into the same set of the partition ’B, as placing one terminal in a component forces the
placement of the other. Thanks to this claim we can work with an appropriate net. If we
find a large collection of such net points which also are roughly the same distance from the
bag and closest to the same vertex of the bag, Claim 13 allows us to group them all together
in the partition ’B . Armed with these tools, we can now prove the main lemma.

Proof of Lemma 10. To compute the partition ’B in polynomial time, we first partition the
active terminals AB fl B contained in the bag B. For this we simply add a set {t} for each
t œ AB fl B to ’B , which adds at most |B| Æ k + 1 sets to ’B . Let now A = AB \B be the
remaining active terminals.

To partition A, let d = mintœAB\B dist(t, B) and D = maxtœAB\B dist(t, B) be the
minimum and maximum distances of these active terminals from the bag B. Then partition
AB \B into |B| Æ k + 1 sets A1, A2, . . . , A|B|, depending on the vertex of B that is closest
to each t œ A (breaking ties arbitrarily). That is, for each Ai there exists b œ B such that
for all t œ Ai we have dist(t, B) = dist(t, b). Consider now a set Ai and further partition
it into r = Álog2 D

d
Ë sets Ai,0, Ai,1, . . . , Ai,r≠1, where Ai,j contains all t œ Ai such that

dist(t, B) œ [2jd, 2j+1d). Now (greedily) compute an ( Á

kh
2jd)-net Ni,j of Ai,j . We observe

that Ni,j satisfies the first two conditions of Claim 13 for 2jd, so if |Ni,j | Ø 8k
2
(k+1)h

2

Á2 , then
we add Ai,j as a set of our partition ’B , remove the terminals of Ni,j from A and continue
the algorithm for the remaining terminals. Repeat the previous step for all i, j for which
Ni,j is su�ciently large. This contributes at most (k + 1)Álog D

d
Ë sets to ’B . To partition A,

let d = mintœAB\B dist(t, B) and D = maxtœAB\B dist(t, B) be the minimum and maximum
distances of these active terminals from the bag B. Then partition AB \B into |B| Æ k + 1
sets A1, A2, . . . , A|B|, depending on the vertex of B that is closest to each t œ A (breaking
ties arbitrarily). That is, for each Ai there exists b œ B such that for all t œ Ai we have
dist(t, B) = dist(t, b). Consider now a set Ai and further partition it into r = Álog2 D

d
Ë

sets Ai,0, Ai,1, . . . , Ai,r≠1, where Ai,j contains all t œ Ai such that dist(t, B) œ [2jd, 2j+1d).
Now (greedily) compute an ( Á

kh
2jd)-net Ni,j of Ai,j . We observe that Ni,j satisfies the first

two conditions of Claim 13 for 2jd, so if |Ni,j | Ø 8k
2
(k+1)h

2

Á2 , then we add Ai,j as a set of
our partition ’B, remove the terminals of Ai,j from A and continue the algorithm for the
remaining terminals. Repeat the previous step for all i, j for which Ni,j is su�ciently large.
This contributes at most (k + 1)Álog D

d
Ë sets to ’B .

Suppose now that we are left with a set of terminals A such that the procedure above
fails to construct a su�ciently large net Ni,j to apply Claim 13. For every index pair i, j,
each remaining terminal t œ Ai,j is close enough to some net point tÕ œ Ni,j such that we can
apply Claim 12. We therefore create a set in the partition ’B for each tÕ œ Ni,j , placing into
such a set those terminals of Ai,j that are closest to tÕ (breaking ties arbitrarily). Since we
cannot apply Claim 13 to the remaining sets Ai,j , each of the at most (k + 1)Álog D

d
Ë nets

Ni,j has size less than 8k
2
(k+1)h

2

Á2 , which implies |’B | Æ O(k
4
h
2

Á2 log D

d
).

Clearly the above procedure can be implemented in polynomial time, and the fact that
every set of ’B is contained in the same component of FÁ follows from Claim 12 and Claim 13.
Finally, any path in a graph with at most n vertices has less than n edges, so that D

d
< 2n2/Á,

given that the ratio of the longest to the shortest edge is 2n/Á (note that d > 0 by definition).
Hence the claimed bound of |’B | Æ O(k

4
h
2

Á2 log n

Á
) follows. J
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3.2 Tree decompositions with logarithmic height

Given a tree decomposition T of logarithmic height, using Lemma 10 we are ready to compute
a set of partitions �B of FPT size for each bag B, such that a near-optimal solution conforms
to �B. In particular, by Lemma 8 we may assume that the height of T is h = O(k logn),
which means that the bound on ’B in Lemma 10 translates to O(k

6

Á2 log3 n

Á
). As in the

previous section, we need to apply Lemma 9 in order to bound the aspect ratio of the graph,
so that n denotes the number of vertices of the original input graph, while now the graph G
has at most n vertices but the ratio between the longest and shortest edge is at most 2n/Á.
We begin by describing how to obtain the near-optimal solution, after which we will identify
the partition sets �B .

3.2.1 A near-optimal solution

Bateni, Hajiaghayi, and Marx [4] construct a near-optimal solution by modifying the optimum.
We will use similar techniques to obtain our near-optimal solution, but we construct it by
instead modifying the (1 + Á)-approximate solution FÁ given by Lemma 10. In particular, we
construct a near-optimal (1 + Á)2-approximation ÂFÁ from FÁ. The main idea to obtain ÂFÁ is
to connect components of FÁ if they are very close to one another. As before however, doing
this naively would incur too much cost for the additional connections.

To make sure that the cost incurred by connecting components of FÁ is not too large,
[4] introduced a partial order on the components based on the structure of a given rooted
tree decomposition T . Let C1, C2 be two components of FÁ that share a bag B of T , i.e.,
V (C1) fl B ”= ÿ and V (C2) fl B ”= ÿ. Since C1 and C2 are connected subgraphs of the input
graph, a basic property of tree decompositions implies that there are (connected) subtrees T1

and T2 of T induced by the respective bags containing vertices of C1 and C2. Because these
components both contain vertices of B, the node associated with B is part of both T1 and
T2, and therefore the roots of both subtrees lie on the path from this node to the root of T .
This defines an order on C1 and C2, and we write C1 Æ C2 if the root of T1 is farther from
the root of T than the root of T2 is. This order is defined for any two components of FÁ

that share a bag, and thus we obtain a partial order on the components of FÁ, where any
components that do not share a bag are incomparable.

Using the defined order, [4] connect components of the optimum solution that are very
close to each other. In order to obtain smaller partition sets, we modify the distance bound
used in this procedure compared to [4]. In particular, for any value x > 0, let ÂxÊ2 = 2Âlog2 xÊ

denote the largest power of 2 that is at most x. Now, starting with ÂFÁ = FÁ we connect
components by exhaustively applying the following rule:

I Rule 2. If C,C Õ
are components of FÁ with C Æ C Õ

and dist(C,C Õ) Æ Á

k
Âcost(C)Ê2 but

C and C Õ
lie in di�erent components of ÂFÁ, then add a shortest path of length dist(C,C Õ)

between C and C Õ
to the solution ÂFÁ.

A crucial but subtle observation is that for a component C of FÁ there can be many
components C Õ Æ C at distance at most Á

k
Âcost(C)Ê2 to C, which however are not connected

to C in the resulting solution ÂFÁ according to Rule 2. This makes it non-trivial to find small
partition sets �B. Contrary to this however, an important property of the order on the
components is that for any component C of FÁ, there are at most k other components C Õ

for which C Æ C Õ, as we will argue for the following lemma to bound the cost of ÂFÁ. In
particular, the lemma implies that ÂFÁ is a near-optimal (1+ Á)2-approximation, given that FÁ

is a (1 + Á)-approximation.

I Lemma 14. The cost of the solution ÂFÁ obtained by Rule 2 from FÁ is at most (1 + Á) cost(FÁ).
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3.2.2 Partitioning active terminals

Given the construction of the (1+ Á)2-approximate solution ÂFÁ above, the next step is to find
a set of partitions �B of the active terminals AB for each bag B, such that ÂFÁ conforms with
all sets �B . In the following, fix a bag B of the given tree decomposition T . The technique
used by [4] is to guess a small net for each active component of bag B,3 so that every terminal
of AB close to a net point must be part of the same component in the approximate solution,
after taking the order on the active components as defined previously into account. Next we
choose a net on the terminals of each active component and bound its size.

I Lemma 15. Let N ™ AB fl C be an
Á

k
Âcost(C)Ê2-net of the metric induced by the active

terminals of some active component C. The size of the net can be bounded by |N | Æ Â4k/ÁÊ.4

Following the algorithm of [4], the next step would be to guess such an Á

k
Âcost(C)Ê2-net

for each of the at most k + 1 active components C of the bag B. By Lemma 15, the total
number of net points for these at most k + 1 nets is at most Â4k/ÁÊ(k + 1) = O(k2/Á). Since
however there may be up to n active terminals, guessing these nets for all active components
can result in nO(k

2
/Á) many possible choices, which leads to an XP time algorithm. To

circumvent this, we instead consider the partition ’B of the active terminals as given by
Lemma 10, and guess which of the sets of ’B contains a net point. We will argue that since
the size of ’B is O(k

6

Á2 log3 n

Á
) there are only (k

Á
log n

Á
)O(k

2
/Á) possibilities, leading to a faster

algorithm.
More concretely, to compute a set of partitions �B that ÂFÁ conforms to, our algorithm

considers every sequence ((S1, ”1), (S2, ”2), . . . , (S¸, ”¸), fl) of at most k + 1 pairs (Sj , ”j) and
partitions fl of the index set {1, . . . , ¸}, where each Sj is a subset of the parts of ’B such that
|Sj | Æ Â4k/ÁÊ, and ”j œ {2q | q œ N0 · 0 Æ q Æ log2(2n2/Á)} is an integer power of 2 between
1 and 2n2/Á, where n is the number of vertices of the original input graph in accordance
with Lemma 9. From every such sequence, the algorithm attempts to construct a partition
of the active terminals, and if it succeeds adds it to the set �B. As we will show, in this
process the algorithm will successfully construct one partition fi of AB that ÂFÁ conforms to.

Before describing how a partition of the active terminals arises from such a sequence, we
bound the number of these sequences, which determines the running time. By Lemma 10,
|’B | = O(k

6

Á2 log3 n

Á
) if the tree decomposition T has logarithmic height, so that there are

at most
! |’B |

Â4k/ÁÊ
"
= (k

Á
log n

Á
)O(k/Á) possible choices for each Sj . Clearly there are O(log n

Á
)

choices for each ”j , and ¸¸ = kO(k) possible partitions fl, given that ¸ Æ k + 1. Since a
sequence contains ¸ sets Sj , the total number of sequences is bounded by (k

Á
log n

Á
)O(k

2
/Á).

Each sequence may give rise to a partition fi œ �B of the active terminals as follows.
First, let fi = {Y1, . . . , Y|fl|}, i.e., fi has the same number of sets as the partition fl. Let
Uj =

t
UœSj

U denote the set of active terminals in Sj , and let fl(j) be the part of fl
containing j. We distinguish between active terminals t œ AB that lie in some set Uj and
those that do not:

if t œ Uj for some j œ [¸] then t œ Yfl(j) (i.e., Uj ™ Yfl(j)), and
otherwise, if pt œ {1, . . . , ¸} denotes the smallest index for which dist(t, Upt) Æ Á

k
”pt , then

t œ Yfl(pt)
.

If this fi is a partition of AB we add fi to �B , and otherwise we dismiss the current sequence.
Clearly fi can be constructed in polynomial time, given a sequence.

3 [4] refers to these nets as groups.
4 A slightly worse bound follows from [4, Lemma 19].
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I Lemma 16. The (1 + Á)2-approximate solution ÂFÁ conforms to the set �B of partitions

constructed above.

Proof. Consider the (1 + Á)-approximate solution FÁ of Lemma 10 from which ÂFÁ is con-
structed according to Rule 2, and the partition ’B of AB as given by Lemma 10. Let the active
components of FÁ be C1, . . . , C¸ indexed according to their order, i.e., Cj Æ CjÕ if and only
if j Æ jÕ. For each active component Cj we fix an Á

k
Âcost(Cj)Ê2-net Nj of size at most Â4k/ÁÊ

according to Lemma 15. Now, consider the sequence ((S1, ”1), (S2, ”2), . . . , (S¸, ”¸), fl), where
Sj contains exactly those sets of ’B that contain at least one net point of Nj ,
”j = Âcost(Cj)Ê2, and
fl is the partition of the index set corresponding to the components of ÂFÁ, i.e., fl(j) = fl(jÕ)
if and only if Cj and CjÕ lie in the same component in ÂFÁ.

Recall that after applying Lemma 9 to the input, the ratio between the shortest and
longest edge is at most 2n/Á, where n is the number of vertices of the original input graph.
Since we assume that the length of the shortest edge is 1, the cost of any component lies
between 1 and 2n2/Á, given that a component is a tree with less than n edges. Therefore
Âcost(Cj)Ê2 œ {2q | q œ N0 · 0 Æ q Æ log2(2n2/Á)}, which means that the algorithm will
consider the above sequence in some iteration.

We now turn to fi = {Y1, . . . , Y|fl|} constructed for this sequence, and show that it is a
partition of AB and that ÂFÁ conforms to it. For this, note that no set of ’B contains net
points of several active components of FÁ, since by Lemma 10 all active terminals in the same
set of ’B also belong to the same component of FÁ. Thus the sets Sj as defined above (and
also the corresponding sets Uj) are pairwise disjoint. This means that, due to the definition
of fl, any two terminals t œ Uj and tÕ œ UjÕ end up in the same set of fi if and only if t and tÕ

belong to the same component of ÂFÁ (as Uj ™ Yfl(j)).
Now consider a terminal t œ AB, which does not lie in any Uj , and let q be the index

of the active component Cq of FÁ containing t. As ”q = Âcost(Cq)Ê2, Nq is an Á

k
”q-net of

Cq fl AB. Also, we chose Sq so that Nq ™ Uq. Hence we get dist(t, Uq) Æ dist(t,Nq) Æ Á

k
”q,

and the definition of pt implies pt Æ q. Now Cpt is either equal to Cq, or Cq is connected
to the component Cpt in the approximate solution ÂFÁ according to Rule 2: on one hand we
have Cpt Æ Cq due to the order of the indices, and at the same time by Lemma 10 we have
Upt ™ V (Cpt) fl AB , which implies

dist(Cq, Cpt) Æ dist(t, Cpt) Æ dist(t, Upt) Æ Á

k
”pt =

Á

k
Âcost(Cpt)Ê2.

Hence we can conclude that t lies in the same component as Cpt in ÂFÁ.
In conclusion, adding Uj to Yfl(j) and t to Yfl(pt)

for each terminal t not lying in any Uj ,
partitions the terminals according to the components of ÂFÁ. Hence fi is a partition of the
active terminals AB that is added to �B , and ÂFÁ conforms to it. J

Using all of the above, we can finally prove our main theorem, stating that there is an
EPAS for Steiner Forest parameterized by the treewidth.

Proof of Theorem 1. The first steps of our algorithm are to preprocess the given tree
decomposition using Lemma 8 so that it is nice and its height is O(k logn), and the input
graph using Lemma 9 so that the aspect ratio is bounded (which means that n denotes the
number of vertices in the original input graph). We then compute the partition sets �B for
all bags B using the above procedure, resulting in partition sets of size (k

Á
log n

Á
)O(k

2
/Á) =

2O(
k2
Á log

k
Á ) · no(1). Here, we are using a well-known Win/Win argument: if k2/Á <

Ô
logn,

then (logn)k2
/Á = no(1); otherwise, logn Æ k4/Á2, therefore (k

Á
log n

Á
)O(k

2
/Á) = (k

Á
)O(

k2
Á ).
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Since each partition of a set �B can be computed in polynomial time, and the number
of bags of the nice tree decomposition is O(kn), this takes 2O(

k2
Á log

k
Á ) · nO(1) time. Next

we apply Theorem 5 to compute a solution that is at least as good as ÂFÁ conforming to all
�B , in 2O(

k2
Á log

k
Á ) · nO(1) time. Hence we obtain a (1 + Á)2-approximation F . According to

Lemma 9, F can be converted into a ((1+ Á)2 + Á)-approximation to the original input graph.
Since for any ÁÕ > 0 we may choose Á = �(ÁÕ) so that ((1 + Á)2 + Á) Æ 1 + ÁÕ, we obtain an
EPAS as claimed. J

4 Vertex cover

In this section we consider the parameterization by the size of a vertex cover, which is a set
S ™ V of vertices such that every edge is incident on at least one of the vertices of S. In the
full version of this paper we present an easy FPT algorithm based on Theorem 5.

Our goal here is to present a reduction showing that the algorithm we have given for
Steiner Forest parameterized by vertex cover is essentially optimal, assuming the ETH.
Recall that the ETH is the hypothesis that 3-SAT on instances with n variables cannot be
solved in time 2o(n). We will give a reduction that given a 3-SAT instance „, produces an
equivalent Steiner Forest instance with vertex cover at most O(n/ logn). We stress that
our reduction works even for unweighted instances.

I Theorem 17. If there exists an algorithm which, given an unweighted Steiner Forest
instance on n vertices with vertex cover k, finds an optimal solution in time 2o(k log k)nO(1)

,

then the ETH is false.

Proof. We present a reduction from 3-SAT. Before we proceed, we would like to add to our
formula the requirement that the variable set comes partitioned into three sets in a way that
each clause contains at most one variable from each set. It is not hard to show that this does
not a�ect the complexity of the instance much, as we demonstrate in the following claim.

B Claim 18. Suppose that there exists an algorithm that takes as input a 3-SAT instance „
on n variables and a partition of the variables into three sets of equal size, such that each
clause contains at most one variable from each set, and decides if „ is satisfiable in time
2o(n). Then, the ETH is false.

In the remainder we will then assume that we are given a formula „ on 3n variables which
are partitioned into three sets of size n as specified by the previous claim. Without loss of
generality, suppose that n is a power of 4 (this can be achieved by adding dummy variables).
Note that this ensures that logn

2
and

Ô
n are both integers.

We construct an equivalent instance of Steiner Forest as follows. Let L = Á n

log2 n
Ë.

We begin by constructing i choice gadgets, i.e., for i œ {1, . . . , 3 logn} we make:
2L left vertices, labeled ¸i

j
, for j œ {0, . . . , 2L ≠ 1}.

2L right vertices, labeled ri
j
, for j œ {0, . . . , 2L ≠ 1}.Ô

n middle vertices, labeled mi

j
, for j œ {0, . . . ,

Ô
n ≠ 1}.

We connect all middle vertices to all left and right vertices, that is, for all j œ {0, . . . , 2L≠1}
and jÕ œ {0,

Ô
n ≠ 1} we connect ¸i

j
and ri

j
to mi

jÕ .
For each j œ {0, . . . , 2L ≠ 1} we add a demand from ¸i

j
to ri

j
.

Notice that the graph we have constructed so far contains 3 logn choice gadgets, each of
which has 4L+

Ô
n = O(n/ log2 n) vertices, so the graph at the moment contains O(n/ logn)

vertices in total.
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Before we proceed, let X = Xa fi Xb fi Xc be the set of 3n variables of „ that was given
to us partitioned into three sets of size n. We partition X into 3 logn groups X1, . . . ,X3 logn

in a way that (i) |Xi| Æ Án/ lognË for all i œ {1, . . . , logn} and (ii) for all i œ {1, . . . , logn}
we have Xi is contained in one of Xa, Xb, Xc. This can be done by taking the n variables of
Xa and partitioning them arbitrarily into groups X1, . . . ,Xlogn of size as equal as possible
(therefore at most Án/ lognË), and we proceed similarly for Xb, Xc. Rename the variables of
„ so that for each i we have that Xi = {x(i,0), . . . , x(i,Án/ lognË≠1)}.

To give some intuition, we will now say that, for i œ {1, . . . , 3 logn}, the choice gadget
i represents the variables of the set Xi. In particular, for each j œ {0, . . . 2L ≠ 1}, we will
say that the way that the demand ¸i

j
æ ri

j
was satisfied encodes the assignment to the

logn

2
variables {x

(i,
j logn

2 )
, . . . , x

(i,
(j+1) logn

2 ≠1)
}. More precisely, in our intended solution the

demand ¸i
j

æ ri
j
is satisfied by connecting both terminals to a common middle vertex mi

jÕ .
We can infer the assignment to the logn

2
variables this represents simply by writing down

the binary representation of jÕ, which is a number between 0 and
Ô
n ≠ 1, hence a number

with logn

2
bits. Note that this way we represent 2L · logn

2
Ø Á n

logn
Ë variables, that is, we can

represent the assignment to all the variables of the group.
Armed with this intuition, we can now complete our construction. For each clause c we

construct two new vertices, c1, c2 and add a demand from c1 to c2. For each literal contained
in c, suppose that the literal involves the variable x

(i,
j logn

2 +–)
for i œ {1, . . . , 3 logn},

j œ {0, . . . , 2L ≠ 1}, – œ {0, . . . , logn

2
≠ 1}. We then connect c1 to ¸i

j
. Furthermore, if

x
(i,

j logn
2 +–)

appears positive in c, we connect c2 to all mi

jÕ such that the binary representation
of jÕ has a 1 in position –. If on the other hand x

(i,
j logn

2 +–)
appears negative in c, we connect

c2 to all mi

jÕ such that the binary representation of jÕ has a 0 in position –. In other words,
we connect c2 to all the middle vertices to which ¸i

j
could be connected and are consistent

with an assignment that satisfies c using the current literal. After repeating the above
for all literals of each clause the construction is complete. We set the target cost to be
B = 2m+ 12L logn.

Before we argue about the correctness of the reduction, let us observe that if the reduction
preserves the satisfiability of „, then we obtain the theorem, because the instance we
constructed has vertex cover k = O(n/ logn) and size polynomial in the size of „. Indeed,
as we argued the choice gadgets have O(n/ logn) vertices in total, and all further edges
we added have an endpoint in a choice gadget. If there was an algorithm solving the new
instance in time ko(k)nO(1), this would give a 2o(n) algorithm to decide „.

Regarding correctness, let us first observe that if „ is satisfiable, we can obtain a valid
solution using the intuitive translation from assignments to choice gadget solutions we gave
above. In particular, for each i œ {1, . . . , 3 logn} and j œ {0, . . . , 2L ≠ 1}, we consider the
assignment to variables {x

(i,
j logn

2 )
, . . . , x

(i,
(j+1) logn

2 ≠1)
} as a binary number, which must have

a value jÕ between 0 and
Ô
n≠1. We then connect both ¸i

j
, ri

j
to mi

jÕ . Repeating this satisfies
all demands internal to choice gadgets and uses 3 logn · 4L = 12L logn edges. Consider now
a clause c and the demand from c1 to c2. Since we started with a satisfying assignment, c
must contain a true literal, say involving the variable x

(i,
j logn

2 +–)
. We select the edge from

c1 to ¸i
j
. Furthermore, we observe that c2 must be a neighbor of all vertices mi

jÕ such that
the bit in position – of the binary representation of jÕ agrees with the value of x

(i,
j logn

2 +–)
.

Since ¸i
j
is already connected to such a mi

jÕ , we select the edge from that vertex to c2 to
satisfy the demand for this clause. We have therefore spent 2m further edges for the clause
demands and have used a budget of exactly B.
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For the converse direction, suppose we have a solution of cost B. We first observe that
each vertex ri

j
must be connected to a middle vertex mi

jÕ , since all right vertices are terminals,
but such vertices only have edges connecting them to middle vertices. Recall that, for each
i, j, the left vertex ¸i

j
must be in the same component of the solution as ri

j
, since there is a

demand between these two vertices. Hence, each ¸i
j
is in the same component of the solution

as some mi

jÕ . We now slightly edit the solution as follows: suppose there exists a vertex ¸i
j

which is not directly connected in the solution to any middle vertex mi

jÕ . Since this vertex is
in the same component as one such vertex mi

jÕ , we add to the solution the edge connecting
them, and since this creates a cycle, remove from the solution another edge incident on ¸i

j
.

Doing this repeatedly ensures that each ¸i
j
is connected to a middle vertex mi

jÕ in the solution
without increasing the total cost.

We now observe that since each ¸i
j
and each ri

j
is connected to at least one middle vertex

mi

jÕ in the solution, this already uses a cost of 3 logn · 4L = 12L logn. Furthermore, for each
clause we have constructed two terminals, each of which must use at least one of its incident
edges, giving an extra cost of 2m. Since our budget is exactly 2m+ 12L logn, we conclude
that each terminal constructed for a clause is incident on exactly one edge, and each ¸i

j
and

each ri
j
is connected to exactly one middle vertex. Crucially, these observations imply the

following fact: if for some i, j, jÕ we have that ¸i
j
and mi

jÕ are in the same component of the
solution, then the edge connecting ¸i

j
and mi

jÕ is part of the solution. To see this, observe
that any path connecting ¸i

j
and mi

jÕ that is not a direct edge would need to have length at
least 3. However, no clause terminal can be an internal vertex of such a path, since clause
terminals have degree 1 in the solution. Furthermore, if we remove clause terminals from the
graph, left and right vertices also have degree 1 in the remaining solution, so such vertices
also cannot be internal in the path. Finally, middle vertices are an independent set, so it is
impossible for all internal vertices of a path of length at least 3 to be middle vertices.

Armed with the observation that ¸i
j
and mi

jÕ are in the same connected component of
the solution if and only if they are directly connected, we are ready to extract a satisfying
assignment from the Steiner forest. For each i, j, if ¸i

j
is connected to mi

jÕ we write jÕ in
binary and assign to variable x

(i,
j logn

2 +–)
, for – œ {0, . . . , logn

2
≠ 1} the value in position –

of the binary representation of jÕ. We claim that this assignment must be satisfying. Indeed,
consider the clause c, and the terminals c1, c2 which represent it. Since these terminals have
a demand, they must be in the same component. Because c1 has at most three neighbors
which are in di�erent choice gadgets (as each clause contains variables from distinct groups),
we can see that c1 must be connected to some ¸i

j
and c2 to some mi

jÕ in the solution, such
that ¸i

j
and mi

jÕ are in the same component, and are therefore directly connected. But if
¸i
j
is directly connected to mi

jÕ this means that the assignment we extracted from ¸i
j
gives

a value to a variable x
(i,

j logn
2 +–)

which satisfies the clause c, hence we have a satisfying
assignment. J

5 Feedback Edge Set

A feedback edge set of a graph is a set of edges that when removed renders the graph acyclic.
It is well-known that if G is a connected undirected graph on n vertices and m edges, then
all minimal feedback edge sets of G have size k = m ≠ n + 1. Indeed, such a set can be
constructed in polynomial time by repeatedly locating a cycle in the graph and selecting an
arbitrary edge of the cycle to insert into the feedback edge set.

In this section we will consider Steiner Forest parameterized by the feedback edge
set of the input graph, which we will denote by k. Unlike the vertex cover section, here our
main result is positive: we show that Steiner Forest can be solved optimally in time
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2O(k)nO(1), that is, in time single-exponential in the parameter. Since we are able to achieve
a single-exponential dependence, it is straightforward to see that this is optimal under the
ETH.

I Theorem 19. If there is an algorithm solving Steiner Tree in time 2o(k)nO(1)
, where k

is the feedback edge set of the input, then the ETH is false.

Let us now proceed to the detailed presentation of the algorithm. Suppose that we are
given a budget b and we want to decide if there exists a Steiner Forest solution F such
that cost(F ) Æ b. We start by applying a simple reduction rule.

I Rule 3. Suppose we have a Steiner Forest instance on graph G with weight function

w and budget b, such that a vertex u œ V has degree 1. If u ”œ R, then delete u. If u œ R,

let v be the unique neighbor of u. Then set bÕ := b ≠ w(uv), delete u from the graph and the

demand {u, v} from D if it exists, and replace, for each x œ V \ {u, v} such that {u, x} œ D
the demand {u, x} with the demand {v, x}.

I Lemma 20. Rule 3 is safe.

Observe that if we apply Rule 3 exhaustively, then the minimum degree of the graph is 2.
As we show next, relatively few vertices can have higher degree.

I Lemma 21. Suppose we have a Steiner Forest instance with feedback edge set of size k
and minimum degree at least 2. Then G contains at most 2k vertices of degree at least 3.

In the remainder we will assume that we have a Steiner Forest instance G = (V,E)
with a feedback edge set H ™ E of size k, to which 3 can no longer be applied. We will
say that a vertex v is special if v is incident on an edge of H or v has degree at least 3. By
Lemma 21 we know that G contains at most 4k special vertices.

We define a topological edge (topo-edge for short) as follows: a path P in G is a topological
edge if the two endpoints of P are special vertices and all internal vertices of P are non-special.
Note that by this definition, all edges of H form topo-edges, since the endpoints of such
edges are special. We observe the following:

I Lemma 22. Suppose we have a graph G with feedback edge set of size k and minimum

degree at least 2. Then G contains at most 5k topological edges.

We are now ready to state the main algorithmic result of this section.

I Theorem 23. There is an algorithm that solves Steiner Forest on instances with n
vertices and a feedback edge set of size k in 2O(k)nO(1)

time.
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Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal
reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem
of approximating two terminal unreliability in DAGs is #BIS-hard.
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1 Introduction

Network reliability is one of the first problems studied in counting complexity. Indeed, s ≠ t
reliability is listed as one of the first thirteen complete problems when Valiant [29] introduced
the counting complexity class #P. The general setting is that given a (directed or undirected)
graph G, each edge e of G fails independently with probability qe. The problem of s ≠ t
reliability is then asking the probability that in the remaining graph, the source vertex s
can reach the sink t. There are also other variants, where one may ask the probability of
various kinds of connectivity properties of the remaining graph. These problems have been
extensively studied, and apparently most variants are #P-complete [6, 19, 8, 28, 7, 11].

While the exact complexity of reliability problems is quite well understood, their approx-
imation complexity is not. Indeed, the approximation complexity of the first studied s ≠ t
reliability is still open in either directed or undirected graphs. One main exception is the
all-terminal version (where one is interested in the remaining graph being connected or dis-
connected). A famous result by Karger [21] gives the first fully polynomial-time randomized
approximation scheme (FPRAS) for all-terminal unreliability, while about two decades later,
Guo and Jerrum [16] give the first FPRAS for all-terminal reliability. The latter algorithm
is under the partial rejection sampling framework [17], and the Markov chain Monte Carlo
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(MCMC) method is also shown to be e�cient shortly after [3, 12]. See [18, 22, 9], [15], and
[4, 10] for more recent results and improved running times along the three lines above for
the all-terminal version respectively.

The success of these methods implies that the solution space of all-terminal reliability is
well-connected via local moves. However, this is not the case for the two-terminal version
(namely the s≠ t version). Instead, the natural local-move Markov chain for s≠ t reliability is
torpidly mixing. Here the solution space consists of all spanning subgraphs (namely a subset
of edges) in which s can reach t. Consider a (directed or undirected) graph composed of two
paths of equal length connecting s and t. Suppose we start from one path and leave the
other path empty. Then before the other path is all included in the current state, we cannot
remove any edge of the initial path. This creates an exponential bottleneck for local-move
Markov chains, and it suggests that a di�erent approach is required.

In this paper, we give an FPRAS for the s ≠ t reliability in directed acyclic graphs. Note
that the exact version of this problem is #P-complete [28, Sec 3], even restricted to planar
DAGs where the vertex degrees are at most 3 [27, Theorem 3]. Our result positively resolves
an open problem by Zenklusen and Laumanns [30]. Without loss of generality, in the theorem
below we assume that any vertex other than s has at least one incoming edge, and thus
|E| Ø |V | ≠ 1 for the input G = (V,E).

I Theorem 1. Let G = (V,E) be a directed acyclic graph (DAG), failure probabilities
q = (qe)eœE œ [0, 1]E, two vertices s, t œ V , and Á > 0. There is a randomized algorithm
that takes (G,q, s, t, Á) as inputs and outputs a (1± Á)-approximation to the s ≠ t reliability
with probability at least 3/4 in time ÂO(n6m4 max{m4, Á≠4}) where n = |V |, m = |E|, and ÂO
hides polylog(n/‘) factors.

The running time of Theorem 1 is ÂO(n6m8) when Á > 1/m, and is ÂO(n6m4/Á4) when
Á < 1/m. The reason behind this running time is that our algorithm always outputs at least
a (1± 1/m)-approximation. Thus, when Á > 1/m, it does not matter what Á actually is for
the running time. This high level of precision is required for the correctness of the algorithm.

As hinted earlier, our method is a significant departure from the techniques for the
all-terminal versions. Indeed, a classical result by Karp and Luby [23, 25] has shown how to
e�ciently estimate the size of a union of sets. A direct application of this method to s ≠ t
reliability is e�cient only for certain special cases [24, 30]. Our main observation is to use the
Karp-Luby method as a subroutine in dynamic programming using the structure of DAGs.
Let s = v1, . . . , vn = t be a topological ordering of the DAG G. (Note that we can ignore
vertices before s and after t.) Let Ru be the u ≠ t reliability so that our goal is to estimate
Rs. We inductively estimate Rvi from i = n to i = 1. For each vertex u, our algorithm
maintains an estimator of Ru and a set Su of samples of subgraphs in which u can reach t.
In the induction step, we use the Karp-Luby method to generate the next estimator, and
use a self-reduction similar to the Jerrum-Valiant-Vazirani sampling to counting reduction
[20] to generate samples. Both tasks can be done e�ciently using only what have been
computed for previous vertices. Moreover, a naive implementation of this outline would
require exponentially many samples. To avoid this, we reuse generated samples and carefully
analyze the impact of doing so on the overall error bound. A more detailed overview is given
in Section 1.1.

Our technique is inspired by an FPRAS for the number of accepting strings of non-
deterministic finite automata (#NFA), found by Arenas, Croquevielle, Jayaram, and
Riveros [5], which in turn used some techniques from a quasi-polynomial-time algorithm
for sampling words from context-free languages by Gore, Jerrum, Kannan, Sweedyk, and
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Mahaney [14]. Their #NFA algorithm runs in time O
1!

n¸
Á

"172
,1 where n is the number of

states and ¸ is the string length. More recently, Meel, Chakraborty, and Mathur claim an
improved running algorithm which runs in time ÂO(n

4¸11

Á4 ) [26, Theorem 3]. These algorithms
first normalize the NFA into a particular layered structure. Applying similar methods on
the s ≠ t reliability problem can simplify the analysis, but would greatly slow down the
algorithm. In contrast, our method works directly on the DAG. This makes our estimation
and sampling subroutines interlock in an intricate way. To analyze the algorithm, we have
to carefully separate out various sources of randomness. This leads to a considerably more
sophisticated analysis, with a reward of a much better (albeit still high) running time.

Independently and simultaneously, Amarilli, van Bremen, and Meel [2] also found an
FPRAS for s ≠ t reliability in DAGs. Their method is to reduce the problem to #NFA via
a sequence of reductions, and then invoke the algorithm in [5]. Indeed, as Marcelo Arenas
subsequently pointed out to us, counting the number of subgraphs of a DAG in which s can
reach t belongs to a complexity class SpanL [1], where #NFA is SpanL-complete under
polynomial-time parsimonious reductions. In particular, every problem in SpanL admits an
FPRAS because #NFA admits one [5], which implies that s≠ t reliability in DAGs admits an
FPRAS if qe = 1/2 for all edges. The method of [2] reduces a reliability instance of n vertices
and m edges, where qe = 1/2 for all edges, to estimating length m accepting strings of an
NFA with O(m2) states.2 As a consequence, their algorithm (even using the faster algorithm
for #NFA [26]) has a running time of O

!
m19Á≠4"

. When qe ”= 1/2, their reduction needs to
expand the instance further to reduce to the qe = 1/2 case, slowing down the algorithm even
more. In contrast, our algorithm deals with all possible probabilities 0 Æ qe < 1 in a unified
way. In any case, an algorithm via reductions is much slower than the direct algorithm in
Theorem 1.

As both all-terminal reliability and unreliability in undirected graphs have FPRASes
[21, 16], one may wonder if FPRAS exists for s ≠ t unreliability in DAGs. Here s ≠ t
unreliability is the probability that s cannot reach t in the random subgraph. In contrast
to Theorem 1, we show that this problem is #BIS-hard, where #BIS is the problem of
counting independent sets in bipartite graphs, whose approximation complexity is still open.
This is a central problem in the complexity of approximate counting [13], and is conjectured
to have no FPRAS.

I Theorem 2. There is no FPRAS to estimate s ≠ t unreliability in DAGs unless there is
an FPRAS for #BIS. This is still true even if all edges fail with the same probability.

Theorem 2 is proved in Section 5. The hardness of s ≠ t unreliability does not contradict
Theorem 1. This is because a good relative approximation of x does not necessarily provide
a good approximation of 1 ≠ x, especially when x is close to 1.

The complexity of estimating s ≠ t reliability in general directed or undirected graphs
remains open. We hope that our work sheds some new light on these decades old problems.
Another open problem is to reduce the running time of Theorem 1, as currently the exponent
of the polynomial is still high.

1 The running time of the algorithm in [5] is not explicitly given. This bound is obtained by going through
their proof.

2 In fact, [2] first reduces the reliability instance to an nOBDD (non-deterministic ordered binary decision
diagram) of size O(m), which can be further reduced to an NFA of size O(m2). As they are working
with a more general context, no explicit reduction is given for the s ≠ t reliability problem in DAGs.
We provide a direct (and essentially the same) reduction in the full version of this paper.
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1.1 Algorithm overview
Here we give an overview of our algorithm. For simplicity, we assume that qe = 1/2 for all
edges. The general case of 0 Æ qe < 1 can be solved with very small tweaks.

Let s = v1 ª · · · ª vn = t be a topological ordering of the DAG G. (Note that we
can ignore vertices before s and after t.) Let Ru be the u ≠ t reliability so that our goal
is to estimate Rs. Note that Rvi depends only on the subgraph induced by the vertex set
{vi, vi+1, . . . , vn}. We denote this subgraph by Gvi = (Vvi

, Evi). As we assumed qe = 1/2,
estimating Rvi is equivalent to estimating the number of (spanning) subgraphs of Gvi in
which vi can reach t. Denote the latter quantity by Zvi so that Rvi = Zvi/2|Evi

|. For each
vertex vi, our algorithm maintains an estimator and a multi-set of random samples:

ÂZvi :3 an estimator that approximates Zvi
with high probability;

Svi : a multi-set of random subgraphs, where each H œ Svi is an approximate sample
from fivi and fivi is the uniform distribution over all spanning subgraphs of Gvi in which
vi can reach t.

Our algorithm computes ÂZvi
and Svi for i from n to 1 by dynamic programming. The

base case vn = t is trivial. In the induction step, suppose the vertex vi has d out-neighbors
u1, u2, . . . , ud. Note that each uj for j œ [d] comes after vi in the topological ordering. Let us
further assume vi ª u1 ª, . . . ,ª ud. For any subgraph H of Gvi , if vi can reach t in H, then
there exists a neighbor uj such that vi can reach uj and uj can reach t in H. We can write
Zvi

as the size of the union � := fid
j=1�(j), where �(j) contains all subgraph of Gvi where vi

can reach t through the neighbor uj . Note that it is straightforward to estimate the size of
�(j) given ÂZuj

, and to generate uniform random subgraphs from �(j) using samples in Suj
.

Given the size and samples from �(j), a classical algorithm by Karp and Luby [23, 25] can
be applied to e�ciently estimate the size of the union of sets, namely to compute ÂZvi

.
The more complicated task is to generate the samples of Svi . We use a sampling to

counting self-reduction á la Jerrum-Valiant-Vazirani [20]. To generate a sample H, we go
through each edge e in Gvi , deciding if e is added into H according to its conditional marginal
probability. The first edge to consider is (vi, u1). Its marginal probability depends on how
many subgraphs in � contain it. This quantity is the same as the number of subgraphs in
which � can reach t, where � is a new vertex after contracting vi and u1. To estimate this
number, denoted by Z�, we use the Karp-Luby algorithm again. Note that the Karp-Luby
algorithm requires estimates and samples from all out-neighbours of �, which have been
computed already as these vertices are larger in the topological ordering than vi. Having
estimated Z�, we estimate the marginal probability of (vi, u1) and decide if it is included
in H. The process then continues to consider the next edge. In each step, we contract all
vertices that can be reached from vi into �, and keep estimating new Z� using the Karp-Luby
algorithm to compute the conditional marginal probabilities, until all edges are considered to
generate H.

A naive implementation of the process above is to generate fresh samples every time Su

is used, which would lead to an exponential number of samples required. To maintain
e�ciency, the key property of our algorithm is to reuse random samples. For any vertex
u, the algorithm generates the multi-set of samples Su only once. Whenever the algorithm
needs to use random samples for u, it always picks one sample from the same set Su. Hence,
one sample may be used multiple times during the whole algorithm. Reusing samples

3 Our algorithm actually directly maintains an estimate ÂRvi
to the reliability Rvi

. In this overview, we
use ÂZvi

instead for simplicity.
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introduces very complicated correlation among all ( ÂZu, Su)’s, which is a challenge to proving
the correctness of the algorithm. Essentially, our analysis shows that as long as the estimates
( ÂZu’s) and the samples are accurate enough, the overall error can be controlled. Accurate
estimates of Zu’s allow us to bound the total variation (TV) distance between our samples
and perfect samples. In turn, the small TV distance implies that there is a coupling between
them, which helps us bound the errors of the estimates. This way, we circumvent the e�ect
of correlation on the analysis and achieve the desired overall error bound.

For the overall running time, there are two tasks for each vertex, namely the estimation
step (based on Karp-Luby) and the sample generation step. As we also need to perform
estimation steps as subroutines when generating samples, the running time is dominated
by the time for the sampling step. Let ¸ be the number of samples required per vertex, so
that the total number of samples generated is n¸. Roughly speaking, because we can only
use the union bound due to various correlation, and because errors accumulate throughout
dynamic programming, we set the error to be ” := n≠1 min{m≠1, Á} for the estimation
step. Each estimation has two stages, first getting a constant approximation and then
using the crude estimation to tune the parameters and obtain a 1± ” approximation. This
succeeds with constant probability using O(n”≠2) samples. The estimator itself requires
O(m) time to compute, and thus the total running time for each estimation step with
constant success probability is ÂO(mn”≠2). However, as samples are reused, we need to
apply a union bound to control the error over all possible values of the samples, which are
exponentially many. This requires us to amplify the success probability of the estimation
step to exp(≠�(m)), which means we need to repeat the algorithm O(m) times and take
the median. Each estimation step thus takes ÂO(m2n”≠2) time and O(mn”≠2) samples.
Instead of maintaining O(mn”≠2) samples for every vertex, the aforementioned two-stage
estimation allows us to spread the cost and maintain ¸ := O(mn”≠2)

n = O(n2mmax{m2, Á≠2})
samples per vertex, which we show su�ce with high probability. As we may do up to O(m)
estimation steps during each sampling step, the overall running time is then bounded by
ÂO(n¸ ·m ·m2n”≠2) = ÂO

!
n6m4 max{m4, Á≠4}

"
.

2 Preliminaries

2.1 Problem definitions
Let G = (V,E) be a directed acyclic graph (DAG). Each directed edge (or arc) e = (u, v)
is associated with a failure probability 0 Æ qe < 1. (Any edge with qe = 1 can be simply
removed.) We also assume graph G is simple because parallel edges with failure probabilities
qe1 , qe2 , . . . , qek can be replace with one edge with failure probability qe =

rm
i=1 qei . Given

two vertices s, t œ V , the s ≠ t reliability problem asks the probability that s can reach t if
each edge e œ E fails (namely gets removed) independently with probability qe. Formally, let
q = (qe)eœE . The s ≠ t reliability problem is to compute

RG,q(s, t) := PrG [ there is a path from s to t in G ], (1)

where G = (V, E) is a random subgraph of G = (V,E) such that each e œ E is added
independently to E with probability 1 ≠ qe.

Closely connected to estimating s ≠ t reliability is a sampling problem, which we call the
s ≠ t subgraph sampling problem. Here the goal is to sample a random (spanning) subgraph
GÕ conditional on that there is at least one path from s to t in GÕ. Formally, let �G,s,t be

ICALP 2024
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the set of all subgraphs H = (V,EH) of G such that EH ™ E and s can reach t in H. The
algorithm needs to draw samples from the distribution fiG,s,t,q whose support is �G,s,t and
for any H = (V,EH) œ �G,s,t,

fiG,s,t,q(H) = 1
RG,q(s, t)

·
Ÿ

eœEH

(1 ≠ qe)
Ÿ

fœE\EH

qf . (2)

2.2 More notations
Fix a DAG G = (V,E). For any two vertices u and v, we use u 

G
v to denote that u can

reach v in the graph G and use u ” 
G
v to denote that u cannot reach v in the graph G. It

always holds that u 
G
u. Fix two vertices s and t, where s is the source and t is the sink.

The failure probabilities q, s, and t will be the same throughout the paper, and thus we omit
them from the subscripts. For any vertex u œ V , we use Gu = G[Vu] to denote the subgraph
of G induced by the vertex set

Vu := {w œ V | u 
G
w · w  

G
t}. (3)

Without loss of generality, we assume Gs = G. This means that all vertices except s have
at least one in-neighbour, and thus m Ø n ≠ 1. If Gs ”= G, then all vertices and edges in
G ≠ Gs have no e�ect on s ≠ t reliability and we can simply ignore them. For the sampling
problem, we can first solve it on the graph Gs and then independently add each edge e in
G ≠ Gs with probability 1 ≠ qe.

Our algorithm actually solves the u ≠ t reliability and u ≠ t subgraph sampling problems
in Gu for all u œ V . Let Gu = (Vu, Eu). For any subgraph H = (Vu, EH) of Gu, define the
weight function

wu(H) :=
Ir

eœEH
(1 ≠ qe)

r
fœEu\EH

qf if u 
H
t;

0 if u ” 
H
t.

(4)

Define the distribution fiu by

fiu(H) := wu(H)
Ru

,

where the partition function (the normalizing factor)

Ru :=
ÿ

H: subgraph of Gu

wu(H)

is exactly the u ≠ t reliability in the graph Gu. Finally, let

�u := {H = (Vu, EH) | EH ™ Eu · u 
H
t} (5)

be the support of fiu. Also note that Rs and fis are the probability RG,q(s, t) and the
distribution fiG,s,t,q defined in (1) and (2), respectively. The set �s is the set �G,s,t in
Section 2.1.

2.3 The total variation distance and coupling
Let µ and ‹ be two discrete distributions over �. The total variation distance between µ
and ‹ is defined by

dTV (µ, ‹) := 1
2

ÿ

xœ�
|µ(x) ≠ ‹(x)| .
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If X ≥ µ and Y ≥ ‹ are two random variables, we also abuse the notation and write
dTV (X,Y ) := dTV (µ, ‹).

A coupling between µ and ‹ is a joint distribution (X,Y ) such that X ≥ µ and Y ≥ ‹.
The following coupling inequality is well-known.

I Lemma 3. For any coupling C between two random variables X ≥ µ and Y ≥ ‹, it holds
that

PrC [X ”= Y ] Ø dTV (µ, ‹) .

Moreover, there exists an optimal coupling that achieves equality.

3 The algorithm

In this section we give our algorithm. We also give intuitions behind various design choices,
and give some basic properties of the algorithm along the way. We give a sketch of the
analysis in Section 4 and the full analysis is in the full version of this paper.

3.1 The framework of the algorithm
As G = Gs is a DAG, there is a topological ordering of all vertices. There may exist many
topological orderings. We pick an arbitrary one, say, v1, . . . , vn. It must hold that v1 = s
and vn = t. The topological ordering guarantees that if (u, v) is an edge, u must come before
v in the ordering, denoted u ª v.

On a high level, our algorithm is to inductively compute an estimator ÂRu of Ru, from
u = vn to u = v1. In addition to ÂRu, we also maintain a multi-set Su of samples from fiu over
�u. For any vertex u œ V , let �out(u) := {w | (u,w) œ E} denote the set of out-neighbours
of u. Let

¸ := (60n+ 150m)(400n+ 500
'
104n2 max{m2, Á≠2}

(
) = O((n+m)n2 max{m2, ‘≠2})

(6)

be the size of Sv for all v œ Vu, where n is the number of vertices in G and m is the number
of edges in G. The choice of this parameter is explained in the last paragraph of Section 1.1.
Our algorithm is outlined in Algorithm 1. Note that Gt is an isolated vertex. For consistency,
we let St contain ¸ copies of ÿ.

The base case of vn = t is trivial. The subroutine Sample(·) uses ( ÂRvi , Svi
) for all i > k

and ÂRvk to generate samples in Svk . The subroutine ApproxCount(V,E, u, ( ÂRw, Sw)�out(u))
takes a graph G = (V,E), a vertex u, and ( ÂRw, Sw) for all w œ �out(u) as the input, and
it outputs an approximation of the u ≠ t reliability in the graph G. We describe Sample in
Section 3.2 and (a slightly more general version of) ApproxCount in Section 3.3.

3.2 Generate samples
Let u = vk where k < n. Recall that Gu = (Vu, Eu) is the graph defined in (3). The sampling
algorithm aims to output a random spanning subgraph H = (Vu, E) from the distribution fiu.
The algorithm is based on the sampling-to-counting reduction in [20]. It scans each edge e in
Eu and decides whether to put e into the set E or not. The algorithm maintains two edge
sets:

E1 ™ Eu: the set of edges that have been scanned by the algorithm;
E ™ E1: the current set of edges sampled by the algorithm.
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Algorithm 1 An FPRAS for s ≠ t reliabilities in DAGs.

Input: a DAG G = (V,E), a vector q = (qe)eœE , the source s, the sink t, and an
error bound 0 < Á < 1, where G = Gs and V = {v1, v2, . . . , vn} is
topologically ordered with v1 = s and vn = t

Output: an estimator ÂRs of Rs

1 let R̃t = 1 and St be a multi set of ¸ ÿ’s;
2 for k from n ≠ 1 to 1 do

3 ÂRvk
Ω ApproxCount

1
Vvk , Evk , vk, ( ÂRw, Sw)wœ�out(vk)

2
;

4 Svk Ω ÿ;
5 for j from 1 to ¸ do

6 Svk
Ω Svk fi Sample

1
vk, ( ÂRw, Sw)wœ{vk+1,vk+2,...,vn},

ÂRvk

2
;

7 return ÂRs.

Also, let E2 := Eu \ E1 be the set of edges that have not been scanned yet by the algorithm.
Given any E , we can uniquely define the following subset of vertices

� = �E := rch(u, Vu, E) = {w œ Vu | u can reach w through edges in E}. (7)

In other words, let GÕ = (Vu, E) and � is the set of vertices that u can reach in GÕ. Note that
u œ � for any E . We will keep updating � as E expands. When calculating the marginal
probability of the next edge, the path to t can start from any vertex in �. Thus we need to
estimate the reliability from � to t. Instead of having a single source, as called in Algorithm 1,
we use a slightly more general version of ApproxCount, described in Section 3.3, to allow
a set � of sources. This subroutine ApproxCount takes input (V,E,�, ( ÂRw, Sw)wœˆ�) and
approximates the � ≠ t reliability in (V,E), which is the probability that there exists at least
one vertex in � being able to reach t if each edge e œ E fails independently with probability
qe. An equivalent way of seeing it is to contract all vertices in � into a single vertex u
first, and then calculate the u ≠ t reliability in the resulting graph. Sample is described in
Algorithm 2, and some illustration is given in Figure 1.

Gu

u

t

�1

w1

w2

...

wd

(a) At the start, we consider the first edge
(u,w1). To compute its marginal, we estim-
ate two reliability, where the source is either
�1 = {u,w1} (shown in picture) or just u, re-
spectively.

Gu

u

t

�

(b) As Algorithm 2 progresses, there are chosen
edges E (blue), not chosen edges E1 \ E (green),
and the boundary edges (red). The set � con-
tains vertices reachable from u using only E .

Figure 1 An illustration of sampling from fiu.

I Remark 4 (Crash of Sample). The subroutine Sample (Algorithm 2) may crash in following
cases: (1) in Algorithm 2, ˆ� = ÿ; (2) in Algorithm 2, qec0+(1≠qe)c1 = 0; (3) in Algorithm 2,
wu(H)
4p0p

> 1; (4) in Algorithm 2, F = 0. If it crashes, we stop Algorithm 1 immediately and
output ÂRs = 0.
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Algorithm 2 Sample
1
u, (ÂRw, Sw)wœ{vk+1,vk+2,...,vn}, ÂRvk

2
.

Input: a vertex u = vk, all ( ÂRw, Sw) for w œ {vk+1, vk+2, . . . , vn}, and ÂRvk = ÂRu

Output: a random subgraph H = (Vu, E)
1 T Ω Á1000 log n

Á Ë and F Ω 0;
2 p0 Ω ÂRu;
3 repeat

4 let p Ω 1;
5 let E1 Ω ÿ, E2 Ω Eu \ E1 and � = {u};
6 while t /œ � do

7 let ˆ� Ω {w /œ � | ÷wÕ œ � s.t. (wÕ, w) œ E2}; let wú œ ˆ� be the smallest
vertex in the topological ordering; pick an arbitrary edge e = (wÕ, wú) œ E2
such that wÕ œ �;

8 let �1 Ω rch(u, Vu, E fi {e});
9 E1 Ω E1 fi {e} and E2 Ω E2 \ {e};

10 ˆ�1 Ω {w /œ �1 | ÷wÕ œ �1 s.t. (wÕ, w) œ E2} and
ˆ� Ω {w /œ � | ÷wÕ œ � s.t. (wÕ, w) œ E2};

11 c0 Ω ApproxCount(Vu, E2,�, ( ÂRw, Sw)wœˆ�);
12 c1 Ω ApproxCount(Vu, E2,�1, ( ÂRw, Sw)wœˆ�1);
13 let c Ω 1 with probability (1≠qe)c1

qec0+(1≠qe)c1 ; otherwise c Ω 0 ;
14 if c = 1, then let E Ω E fi {e}, � Ω �1, p Ω p (1≠qe)c1

qec0+(1≠qe)c1 ;

15 if c = 0, then let p Ω p
1
1 ≠ (1≠qe)c1

qec0+(1≠qe)c1

2
;

16 for all edges e œ E2 do

17 let c Ω 1 with probability 1 ≠ qe; otherwise c Ω 0;
18 if c = 1, then let E Ω E fi {e} and p Ω p(1 ≠ qe);
19 if c = 0, then let p Ω pqe;

20 let F Ω 1 with probability wu(H)
4pp0

, where H = (Vu, E);
21 T Ω T ≠ 1;
22 until T < 0 or F = 1;
23 if F = 1 then return H = (Vu, E); else return ‹;

The algorithm needs c0 and c1 in order to compute the marginal probability of e in
Algorithm 2. The quantity c0 is an estimate to the reliability conditional on e not selected
and all choices made so far (namely EH fl E1 = E). Similarly, c1 is an estimate to the
reliability conditional on e selected and EH fl E1 = E . Thus, if ApproxCount returns exact
values of c0 and c1, then

PrH=(Vu,EH)≥fiu
[e œ EH | EH fl E1 = E ] = (1 ≠ qe)c1

qec0 + (1 ≠ qe)c1
.

However, ApproxCount can only approximate the reliabilities c0 and c1. To handle the error
from ApproxCount, our algorithm maintains a number p, which is the probability of selecting
the edges in E and not selecting those in E1 \ E . By the time we reach Algorithm 2, p
becomes the probability that H is generated by the algorithm. Then the algorithm uses a
filter (with filter probability wu(H)

4p0p
) to correct the distribution of H. Conditional on passing

the filter, H is a perfect sample from fiu. The detailed analysis of the error is given in the
full version of this paper.
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Before we go to the ApproxCount algorithm, we state one important property of Al-
gorithm 2.

I Lemma 5. In Algorithm 2, the following property holds: at the beginning of every while-
loop, for any w œ ˆ�, E1 fl Ew = ÿ, where Ew is the edge set of the graph Gw = (Vw, Ew)
defined in (3).

The above lemma holds because we always pick the smallest vertex in the topological ordering
at the beginning of the while-loop. The formal proof is in the full version of this paper.

I Corollary 6. In Algorithm 2, in every while-loop, �1 = � fi {wú}.

Proof. Clearly � fi {wú} ™ �1. Suppose there exists w0 ”= wú such that w0 œ �1 \ �. Then
w0 œ Vu can be reached from wú through edges in E . The vertex w0 must be in Gwú , which
implies E fl Ewú ”= ÿ, and thus E1 fl Ewú ”= ÿ. A contradiction to Lemma 5. J

3.3 Approximate counting
Our ApproxCount subroutine is used in both Algorithm 1 and Algorithm 2. To suit Algorithm 2,
ApproxCount takes input (V,E,�, ( ÂRw, Sw)wœˆ�) and approximates the � ≠ t reliability
R� := PrG [� G t], where G is a random spanning subgraph of G obtained by removing
each edge e independently with probability qe, and � G t denotes the event that ÷w œ �
s.t. w  G t. When called by Algorithm 1, � is a single vertex, and when called by Algorithm 2,
� is the set defined in (7). Moreover, the input satisfies:

G = (V,E) is a DAG containing the sink t and each edge has a failure probability qe
(for simplicity, we do not write t and all qe explicitly in the input as they do not change
throughout Algorithm 1 and Algorithm 2);
� ™ V is a subset of vertices that act as sources and ˆ� := {w œ V \ � | ÷wÕ œ
� s.t. (wÕ, w) œ E};
for any w œ ˆ�, ÂRw is an approximation of the w ≠ t reliability in Gw and Sw is a set of
¸ approximate random samples from the distribution fiw, where Gw is defined in (3).

All points above hold when Algorithm 3 is evoked by Algorithm 1 or Algorithm 2. The first
two points are easy to verify and the last one is verified in the full version of this paper.

The algorithm first rules out the following two trivial cases:
if t œ �, the algorithm returns 1;
if � cannot reach t in graph G, the algorithm returns 0.4

As we are dealing with the more general set-to-vertex reliability, we need some more
definitions. Define

�� := {H = (V,EH) | EH ™ E · � 
H
t}. (8)

For any subgraph H = (V,EH) of G = (V,E), define the weight function

w�(H) :=
Ir

eœEH
(1 ≠ qe)

r
fœE\EH

qf if � 
H
t;

0 if � ” 
H
t.

(9)

Define the distribution fi�, whose support is ��, by

fi�(H) := w�(H)
R�

, where R� :=
ÿ

Hœ��

w�(H). (10)

4 Since all qe < 1, R� > 0 if and only if � 
G
t.
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Let ˆ� be listed as {u1, . . . , ud} for some d œ [n]. Note that d Ø 1 because R� > 0 and
t /œ �. To estimate R�, we first write �� in (8) as a union of d sets. For each 1 Æ i Æ d,
define

�(i)
� := {H = (V,EH) | (EH ™ E) · (÷u œ �, s.t. (u, ui) œ E) · (ui  H

t)} .

I Lemma 7. If t /œ �, �� = fid
i=1�(i)

� .

Proof. We first show fid
i=1�(i)

� ™ ��. Fix any H œ fid
i=1�(i)

� , say H œ �(iú)
� (iú œ [d] may not

be unique, in which case we pick an arbitrary one). Then � can reach t in H, because we
can first move from � to uiú and then move from uiú to t. This implies H œ ��. We next
show �� ™ fid

i=1�(i)
� . Fix any H œ ��. There is a path from � to t in H. Say the path is

w1, w2, . . . , wp = t. Then w1 œ � (hence w1 ”= t) and w2 = uiú for some iú œ [d]. Hence, H
contains the edge (w1, uiú) and uiú  

H
t. This implies H œ fid

i=1�(i)
� . J

Similar to (10), we define fi(i),5 whose support is �(i)
� , by

fi(i)
� (H) := w�(H)

R(i)
�

, where R(i)
� :=

ÿ

Hœ�(i)
�

w�(H). (11)

In order to perform the Karp-Luby style estimation, we need to be able to do the following
three things:
1. compute the value R(i)

� for each i œ [d];
2. draw samples from fi(i)

� for each i œ [d];
3. given any i œ [d] and H œ ��, determine whether H œ �(i)

� .
Suppose we can do them for now.6 Consider the following estimator Z�:
1. draw an index i œ [d] such that i is drawn with probability proportional to R(i)

� ;
2. draw an sample H from fi(i)

� ;
3. let Z� œ {0, 1} indicate whether i is the smallest index j œ [d] satisfying H œ �(j)

� .
It is straightforward to see that

E[Z�] =
dÿ

i=1

R(i)
�qd

j=1 R
(j)
�

ÿ

Hœ�(i)
�

fi(i)
� (H) · 1

Ë
H œ �(i)

� ·
1

’j < i,H /œ �(j)
�

2È

=

qd
i=1

q
Hœ�(i)

�
w�(H) · 1

Ë
H œ �(i)

� ·
1

’j < i,H /œ �(j)
�

2È

qd
j=1 R

(j)
�

(by Lemma 7) = R�
qd

j=1 R
(j)
�

Ø 1
d

Ø 1
n
, (12)

where the first inequality holds because each H belongs to at most d di�erent sets. Since Z�
is a 0/1 random variable, Var (Z�) Æ 1. Hence, we can first estimate the expectation of Z�
by repeating the process above and taking the average, and then use E[Z�]

qd
j=1 R

(j)
� as the

estimator ÂR� for R�. However, in the input of ApproxCount, we only have estimates ÂRui

and a limited set of samples Sui
for each ui œ ˆ�. Our algorithm will need to handle these

imperfections.

5 One may notice that if �(i)
� = ÿ, then fi

(i)
� is not well-defined. In the full version of this paper, we prove

that �(i)
� = ÿ never happens.

6 We will do (1) and (2) approximately rather than exactly. This will incur some error that will be
controlled later.
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The third step of implementing the estimator Z� is straightforward by a BFS. For the
first step, R(i)

� can be easily computed given Rui
, and we will use the estimates ÂRui

instead.
For the second step, define

”�(ui) := {(w, ui) œ E | w œ �}.

To sample from fi(i)
� , we shall sample at least one edge in ”�(ui), sample a subgraph H from

fiui
, and add all other edges independently. These are summarized by the next lemma.

I Lemma 8. For any i œ [d], it holds that R(i)
� =

1
1 ≠

r
uœ”�(ui) q(u,ui)

2
Rui

and a random
sample H Õ = (V,EHÕ) ≥ fi(i)

� can be generated by the following procedure:
sample H = (Vui

, EH) ≥ fiui
;

let EHÕ = EH fi D, where D ™ ”�(ui) is a random subset with probability proportional to

1[D ”= ÿ] ·
Ÿ

eœ”�(ui)flD

(1 ≠ qe)
Ÿ

fœ”�(ui)\D

qf ; (13)

add each e œ E \ (Eui
fi ”�(ui)) into EHÕ independently with probability 1 ≠ qe.

All three steps above handle mutually exclusive edge sets and thus are mutually independent.

Proof. If each edge e in G is removed independently with probability qe, we have a random
spanning subgraph G = (V, E). By the definition of R(i)

� ,

R(i)
� = Pr [÷u œ �, s.t. (u, ui) œ E · ui  G t]

= Pr [÷u œ �, s.t. (u, ui) œ E ] · Pr [ui  G t | ÷u œ �, s.t. (u, ui) œ E ] .

It is easy to see Pr[÷u œ �, s.t. (u, ui) œ E ] = 1≠
r

uœ”�(ui) q(u,ui). For the second conditional
probability, note that the event ui  G t depends only on the randomness of edges in graph
Gui

. In other words, for any edges e œ E \Eui
, whether or not e is removed has no e�ect on

the ui ≠ t reachability. Due to acyclicity, all edges in ”�(ui) are not in the graph Gui
. We

have

R(i)
� =

Q

a1 ≠
Ÿ

uœ”�(ui)

q(u,ui)

R

bRui
.

By definition (11), fi(i)
� is the distribution of G = (V, E) conditional on ÷u œ

�, s.t. (u, ui) œ E and ui  G t. For any graph H Õ = (V,EHÕ) satisfying ÷u œ �, s.t. (u, ui) œ
EHÕ and ui  

HÕ t, we have

fi(i)
� (H Õ) = Pr [G = H Õ | ÷u œ �, s.t. (u, ui) œ E · ui  G t]

= Pr[G = H Õ]
R(i)

�

= Pr[G = H Õ]
(1 ≠

r
uœ”�(ui) q(u,ui))Rui

=
Ÿ

eœE
HÕ :eœE\Eui

(1 ≠ qe)
Ÿ

f /œE
HÕ :fœE\Eui

qf · wui
(H Õ[Vui

])
(1 ≠

r
uœ”�(ui) q(u,ui))Rui

= fiui
(H Õ[Vui

]) ·
r

eœ”�(ui)flE
HÕ (1 ≠ qe)

r
fœ”�(ui)\EHÕ qf

1 ≠
r

uœ”�(ui) q(u,ui)

·
Ÿ

eœE
HÕ :

eœE\(Eui
fi”�(ui))

(1 ≠ qe)
Ÿ

f /œE
HÕ :

fœE\(Eui
fi”�(ui))

qf .

The probability above exactly matches the procedure in the lemma. J
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The first sampling step in Lemma 8 can be done by directly using the samples from Sui
. We

still need to show that the second step in Lemma 8 can be done e�ciently. The proof of
Lemma 9 is in the full version of this paper.

I Lemma 9. There is an algorithm such that given a set S = {1, 2, . . . , n} and n numbers 0 Æ
q1, q2, . . . , qn < 1, it return a random non-empty subset D ™ S with probability proportional
to 1[D ”= ÿ]

r
iœD(1 ≠ qi)

r
jœS\D qj in time O(n).

Now, we are almost ready to describe ApproxCount (Algorithm 3). For any ui, we have
an approximate value ÂRui

of Rui
and we also have a set Sui

of ¸ approximate samples from
the distribution fiui

. By Lemma 8 and Lemma 9, we can e�ciently approximate R(i)
� and

generate approximate samples from fi(i)
� . Hence, we can simulate the process described below

Lemma 7 to estimate R�.
However, to save the number of samples, there is a further complication. Our algorithm

estimates the expectation of E[Z�] in two rounds and then takes the median of estimators.
Recall (6). We further divide ¸ by introducing the following parameters:

¸ = B¸0, B := 60n+ 150m, ¸0 := ¸1 + 500¸2,

¸1 := 400n, ¸2 := Á104n2 max{m2, ‘≠2}Ë. (14)

Then we do the following.
For any ui œ ˆ�, we divide all ¸ samples in Sui

into B blocks, each containing ¸0 samples.
Denote the B blocks by S(1)

ui
, S(2)

ui
, . . . , S(B)

ui
. Each block here is used for one estimatior.

For each i œ [d] and j œ [B], we further partition S(j)
ui

into two multi-sets S(j,1)
ui

and
S(j,2)
ui

, where S(j,1)
ui

has ¸1 samples and S(j,2)
ui

has 500¸2 samples, used for the two rounds,
respectively.
For each j œ [B], we do the following two round estimation:
1. use samples in (S(j,1)

ui
)iœ[d] to obtain a constant-error estimation ‚Z(j)

� of E[Z�];
2. use ‚Z(j)

� and samples in (S(j,2)
ui

)iœ[d] to obtain a more accurate estimation ÂZ(j)
� of E[Z�];

3. let Q(j)
� Ω ÂZ(j)

�
qd

i=1
ÂR(i)

� , where ÂR(i)
� :=

!
1 ≠

r
uœ”�(ui) q(u,ui)

" ÂRui
for each i œ [d].

Return the median number ÂR� := median
Ó
Q(1)

� , Q(2)
� , . . . , Q(B)

�

Ô
.

A detailed description of ApproxCount is given in Algorithm 3. It uses a subroutine
Estimate, which generates the Karp-Luby style estimator and is described in Algorithm 4.

Each time Algorithm 3 finishes, its input (V,E,�) and output ÂR� are stored in the
memory. If Algorithm 3 is ever evoked again with the same (V,E,�), we simply return ÂR�
from the memory.

Algorithm 3 first obtains the constant-error estimation ‚Z(j)
� in Algorithm 3. Next, it

puts ‚Z(j)
� into the parameters and run the subroutine Estimate again to get a more accurate

estimation ÂZ(j)
� . The benefit of this two-round estimation is that we can save the number

of samples maintained for each vertex. It costs only a small number of samples to get the

crude estiamtion, but the crude estimation carries information of the ratio
q

tœ[d]
R(t)

�
R�

, which
allows us to fine tune the number of samples required per vertex for the good estimation.
To be more specific, in the second call of the subroutine Estimate, the number of overall
samples, namely the parameter T which depends on ‚Z(j)

� , can still be as large as �(¸2n) in
the worst case, and yet each S(j,2)

ui
has only O(¸2) samples in the block. In the analysis, we

will show that this many samples per vertex su�ce with high probability and Algorithm 4 of
Algorithm 4 (the failure case) is executed with low probability. The reason is that, roughly
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Algorithm 3 ApproxCount
1
V,E,�, (ÂRw, Sw)wœˆ�

2
.

Input: a graph G = (V,E), a subset � ™ V , all ( ÂRw, Sw) for w œ ˆ�, where
ˆ� = {w œ V \ � | ÷wÕ œ � s.t. (wÕ, w) œ E};

Output: an estimator ÂR� of R�
1 if t œ �, then return 0; if � cannot reach t in G, then return 1;
2 for ui œ ˆ� do

3 ÂR(i)
� Ω

!
1 ≠

r
uœ”�(ui) q(u,ui)

" ÂRui
;

4 partition Sui
(arbitrarily) into B multi-sets, denoted by S(j)

ui
for j œ [B], where

B = 60n+ 150m and each S(j)
ui

has ¸0 = ¸1 + 500¸2 samples;
5 for each j œ [B], partition S(j)

ui
further into two multi-sets S(j,1)

ui
and S(j,2)

ui
, where

|S(j,1)
ui

| = ¸1 and |S(j,2)
ui

| = 500¸2;
6 for j from 1 to B do

7 ‚Z(j)
� Ω Estimate

1
(S(j,1)

ui
)iœ[d], ¸1, ¸1

2
;

8 ÂZ(j)
� Ω Estimate

1
(S(j,2)

ui
)iœ[d], 500¸2, 25¸2 ·min{2/ ‚Z(j)

� , 4n}
2
;

9 Q(j)
� Ω ÂZ(j)

�
qd

i=1
ÂR(i)

� ;

10 return ÂR� := median
Ó
Q(1)

� , Q(2)
� , . . . , Q(B)

�

Ô
;

speaking, large T means large overlap among �(t)
� ’s, and the chance of hitting each vertex is

roughly the same, resulting in the number of samples required per vertex close to the average.
Conversely, small T means little overlap, and some vertex or vertices may be sampled much
more often than other vertices, but in this case the overall number of samples required,
namely T , is small anyways. To summarize, with this two-round procedure, O(¸) overall
samples per vertex are enough to obtain an estimation with the desired accuracy and high
probability.

4 Sketch of analysis

In this section, we give a sketch of the analysis of our algorithm. The complete analysis is
in the full version of this paper. Roughly speaking, what we need to show is that in the
induction step, accurate samples (in terms of the TV distance) imply accurate estimates,
and accurate estimates imply accurate samples.

First consider Sample
1
vk, ( ÂRw, Sw)wœ{vk+1,vk+2,...,vn},

ÂRvk

2
as being called by Algorithm 1.

Let u := vk, and the subroutine runs on the graph Gu = (Vu, Eu). We show that in Sample(·),
if every value returned by the ApproxCount(·) subroutine is accurate, then Sample(·) also
returns accurate samples. Formally, we assume access to an oracle P satisfying:

given u œ Vu, P returns p0 such that 1 ≠ 1
10m Æ p0

R(Vu,Eu,{u}) Æ 1 + 1
10m ;

given any E2 ™ Eu and �,�1 ™ V in Algorithm 2 and Algorithm 2 of Algorithm 2, P
returns c0(Vu, E2,�) and c1(Vu, E2,�1) such that 1 ≠ 1

10m Æ c0(Vu,E2,�)
R(Vu,E2,�) Æ 1 + 1

10m , and
1 ≠ 1

10m Æ c1(Vu,E2,�1)
R(Vu,E2,�1) Æ 1 + 1

10m .
Here, we use the convention 0

0 = 1 and x
0 = Œ for x > 0. For any V , E and U ™ Vu,

R(V,E,U) is the U -t reliability in the graph (V,E). The numbers p0, c0 and c1 returned by
P can be random variables, but we assume that the inequalities above are always satisfied.
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Algorithm 4 Estimate
!
(Ses

ui
)iœ[d], ¸es, T

"
.

Input: a set of samples Ses
ui

for each i œ [d], where |Ses
ui
| = ¸es, a threshold T

Output: an estimator Zes of E[Z�]
1 for each i œ [d], let ci = 0;
2 for k from 1 to T do

3 draw an index i œ [d] such that i is drawn with probability proportional to ÂR(i)
� ;

4 ci Ω ci + 1;
5 if ci > ¸es then return 0;
6 let H = (Vui

, EH) be the ci-th sample from S(j)
ui

;
7 do the following transformation on H to get H Õ = (V,EHÕ);
8 • let EHÕ Ω EH ;
9 • draw D ™ ”�(ui) with probability proportional to (13), and let

EHÕ Ω EHÕ fi D;
10 • for each e œ E \ (Eui

fi ”�(ui)), add e into EHÕ independently with
probability 1 ≠ qe;

11 let Z(k)
es œ {0, 1} indicate whether i is the smallest index t œ [d] satisfying

H Õ œ �(t)
� ;

12 return Zes := 1
T

qT
k=1 Z

(k)
es ;

Consider the following modified sampling algorithm, in which we replace Algorithm 2,
Algorithm 2 and Algorithm 2 of Algorithm 2 by calling the oracle P . This modified algorithm
has some nice properties, summarized in the next lemma.

I Lemma 10. Given any u = vk œ V , the with probability at least 1 ≠ (Á/n)200, the
modified sampling algorithm does not crash and returns a perfect independent sample from
the distribution fiu. The running time is ÂO(N(|Eu|+ |Vu|)), where N is the time cost for
one oracle call and ÂO hides polylog(n/Á) factors.

In the full analysis, we need to handle the real sampling algorithm, the analysis of which
also relies on the analysis of ApproxCount. ApproxCount behaves like P but only with high
probability. To analyze the error bounds, we also need to identify several random sources
and handle errors from di�erent sources separately.

Next consider ApproxCount(V,E,�, ( ÂRw, Sw)wœˆ�), where G = (V,E) is a DAG and
t ”œ �. Recall that for any w œ V , the graph Gw = G[Vw], where Vw contains all vertices v
satisfying w  

G
v and v  

G
t. Let Rw be the w ≠ t reliability in Gw. Recall that ¸2 and B

are parameters in ApproxCount, Algorithm 3. The next lemma shows that if in the input,
all ÂRw are accurate estimators of Rw and all Sw are accurate samples, then ApproxCount(·)
outputs an accurate estimator to R�. Let Sideal

w be a multi-set of ¸ independent and prefect
samples from fiw.

I Lemma 11. Suppose the following conditions are satisfied
for any w œ ˆ�, 1 ≠ Á0 Æ ÂRw

Rw

Æ 1 + Á0 for some Á0 < 1/2;
dTV

!
(Sw)wœˆ�, (Sideal

w )wœˆ�
"

Æ ”0.
Then with probability at least 1 ≠ ”0 ≠ 2≠B/30, it holds that

1 ≠ Á0 ≠ 2Ô
¸2

Æ
ÂR�
R�

Æ 1 + Á0 +
2Ô
¸2
. (15)

The running time of ApproxCount is O(n¸(|V |+ |E|)).
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As mentioned before, due to reusing samples, there is correlation among ÂRw and Sw for
di�erent w’s. However, the conditions of Lemma 11 do not rely on correlation, which is key
to the correctness of the algorithm.

We note that the failure probability in Lemma 11 is exponentially small (we plug the
bound in (16) as ”0). This is necessary because we eventually need to apply a union bound
over the exponential possibilities of spanning subgraphs.

Theorem 1 is proved by combining Lemma 10 and Lemma 11. We use an induction from
vn = t to v1 = s to show that the following events occur with high probability:

for any j Ø i, let Sideal
vj be a multi-set of ¸ independent perfect samples from fivj , it holds

that

dTV

1
(Svj )jØi, (Sideal

vj )jØi

2
Æ 2≠4m(2n≠i ≠ 1); (16)

the estimator ÂRvi
approximates the vi ≠ t reliability Rvi :

1 ≠ n ≠ i

50nmax{m, Á≠1} Æ
ÂRvi

Rvi

Æ 1 + n ≠ i

50nmax{m, Á≠1} . (17)

The base case of i = n is trivial. In the induction step, by using the I.H., we can show that
the condition in Lemma 11 is satisfied and thus ApproxCount(V,E,�, ( ÂRw, Sw)wœˆ�) returns
an accurate estimator of R�. Hence, the subroutine ApproxCount(·) behaves similarly like the
oracle P, which, by Lemma 10, implies that the Sample(·) algorithm also generates accurate
samples.

Here, we briefly explain why we set the parameter ¸2 = O(n2 max{m2, Á≠2}), which
controls the number of samples maintained (as ¸ = �(B¸2), recall (14)) and thus the overall
running-time of the algorithm. We want to guarantee that ÂR� returned by ApproxCount(·)
achieves the same accuracy as that returned by P . Note that the relative error in (17) serves
as Á0 in (15). Therefore combining (15) and (17), we need

n ≠ i

50nmax{m, Á≠1} + 2Ô
¸2

Æ 1
50max{m, Á≠1} + 2Ô

¸2
Æ 1

10m. (18)

To inductively prove (17), we also need

n ≠ (i+ 1)
50nmax{m, Á≠1} + 2Ô

¸2
Æ n ≠ i

50nmax{m, Á≠1} . (19)

The condition in (18) forces us to assume a strong induction hypothesis such that for each
vi, ÂRvi has 1±O( 1

m ) approximation error. And the condition in (19) is the bottleneck for
setting parameter ¸2.

In the full analysis, we use a more complicated induction hypothesis in the induction
proof. Moreover, we need to define certain bad and good events to carefully analyze where
errors come from and how they accumulate in every step.

The approximation guarantee in Theorem 1 follows directly from (17). Note that this
guarantee is always at least a (1 ± 1/m)-approximation and is stronger than a (1 ± Á)-
approximation when Á > 1/m. For the running time, recall that the number of samples per
vertex is ¸ = O

!
n2mmax{m2, Á≠2}

"
. The running time of ApproxCount (Algorithm 3) is at

most

Tcount = O(mn¸) = O
!
n3m2 max{m2, Á≠2}

"
.
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The running time of Sample (Algorithm 2) is at most

Tsample = ÂO((n+m)Tcount) = ÂO(mTcount) = ÂO
!
n3m3 max{m2, Á≠2}

"
.

Hence, the running time of Algorithm 1 is

T = O(n(Tcount + ¸Tsample)) = O(n¸Tsample) = ÂO
!
n6m4 max{m4, Á≠4}

"
.

5 #BIS-hardness for s ≠ t unreliability

In this section we show Theorem 2. We first reduce #BIS to s ≠ t unreliability where each
vertex (other than s and t) fails with 1/2 probability independently. Note that in this version
of the problem no edge would fail. Given a DAG D = (V fi {s, t}, A), this is equivalent to
counting the number of subsets S ™ V such that in the induced subgraph D[S fi {s, t}], s
cannot reach t. We call S a s ” t set.

Given a bipartite graph G = (V,E), let its two partitions be L and R. We add two special
vertices s and t, and connect, with directed edges, s to all vertices in L and all vertices in R
to t. Lastly, for any edge {u, v} œ E, where u œ L and v œ R, we replace it with a directed
edge (u, v). Call the new directed graph DG. Clearly it is a DAG.

For any independent set I in G, we claim that in DG[I fi {s, t}], s cannot reach t. This is
because for any e œ E, there is at least one vertex unoccupied. Thus s cannot reach t using
the directed version of e, and this holds for any e œ E.

In the other direction, let S be a s ” t subset of V . This means that for any edge
{u, v} œ E, either u ”œ S or v ”œ S, as otherwise s æ u æ v æ t. This means that S is an
independent set of G.

Thus, there is a one-to-one correspondence between independent sets of G and s ” t
subsets of V . Namely, s ≠ t unreliability where vertices (other than s and t) fail with 1/2
probability is #BIS-hard.

Next, we reduce s ≠ t unreliability from the vertex version. For this, we can replace each
vertex v (other than s and t) by two vertices v, vÕ and a directed edge v æ vÕ. All incoming
edges of v still goes into v, and all outgoing edges of v goes out from vÕ. Assign to the new
edges the failure probabilities of their corresponding vertices, and assign failure probability
0 to all original edges. Clearly the unreliability is the same with these changes. To make
failure probabilities uniform, we can replace edges with failure probability 0 by k parallel
edges. E�ectively, the connection fails only if all the parallel edges fail at the same time. If
the failure probability of each edge is q, the probability of all parallel edges failing is qk. As
this probability approaches 0 exponentially fast, it is easy to set a polynomially bounded k
so that the new unreliability is a su�ciently good approximation of the original.

As a side note, the last reduction also works for reliability. Thus Theorem 1 also works
for s ≠ t reliability in DAGs where vertices rather than edges fail independently.
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Abstract

We give the first O(1)-approximation for the weighted Nash Social Welfare problem with additive
valuations. The approximation ratio we obtain is e1/e + ‘ ¥ 1.445+ ‘, which matches the best known
approximation ratio for the unweighted case [3].

Both our algorithm and analysis are simple. We solve a natural configuration LP for the problem,
and obtain the allocation of items to agents using a randomized version of the Shmoys-Tardos
rounding algorithm developed for unrelated machine scheduling problems [30]. In the analysis, we
show that the approximation ratio of the algorithm is at most the worst gap between the Nash social
welfare of the optimum allocation and that of an EF1 allocation, for an unweighted Nash Social
Welfare instance with identical additive valuations. This was shown to be at most e1/e ¥ 1.445 by
Barman et al. [3], leading to our approximation ratio.
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1 Introduction

In the weighted (or asymmetric) Nash Social Welfare problem with additive valuations, we

are given a set A of n agents, and a set G of m indivisible items. Every agent i œ A has

a weight wi Ø 0 such that
q

iœA wi = 1. There is a value vij œ RØ0 for every i œ A and

j œ G. The goal of the problem is to find an allocation ‡ : G æ A of items to agents so as to

maximize the following weighted Nash social welfare of ‡:

Ÿ

iœA

Q

a
ÿ

jœ‡≠1(i)

vij

R

b
wi

.

In the case where all wi’s are equal to
1

n , we call the problem the unweighted (or symmetric)

Nash Social Welfare problem.

Allocating resources in a fair and e�cient manner among multiple agents is a fundamental

problem in computer science, game theory, and economics, with applications across diverse

domains [19, 33, 4, 28, 25, 2, 29, 5]. The weighted Nash social welfare function is a notable
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objective that balances e�ciency and fairness. The unweighted (or symmetric) objective

was independently proposed by di�erent communities [26, 20, 32], and later the study has

been extended to the weighted case [16, 18]. Since then it has been used in a wide range of

applications, including bargaining theory [21, 7, 31], water allocation [17, 10], and climate

agreements [34].

The unweighted Nash Social Welfare problem with additive valuations is proved to be NP-

hard by Nguyen et al. [27], and APX-hard by Lee [22]. Later the hardness of approximation

was improved to

8/7 ¥ 1.069 by Garg et al. [12], via a reduction from Max-E3-Lin-2.

On the positive side, Cole and Gkatzelis [9] gave a (2e
1/e

+ ‘ ¥ 2.889 + ‘)-approximation

using a market equilibrium with some spending restrictions. The ratio was improved by Cole

et al. [8] to 2 using a tight analysis, and by Anari et al. [1] to e via a connection of the problem

to real stable polynomials. Both papers formulated some convex program (CP) relaxations

for the problem. In particular, [8] showed that the optimum solution to their CP corresponds

to the spending-restricted market equilibrium defined in [9]. The state-of-the-art result for

the problem is a combinatorial (e
1/e

+ ‘ ¥ 1.45 + ‘)-approximation algorithm due to Barman

et al.[3]. They showed that when all the valuations of agents are identical, any allocation

that is envy-free up to one item (EF1) is e
1/e

-approximate. Their approximation result then

follows from a connection between the non-identical and identical valuation settings they

established.

All the results discussed above are for the unweighted case. For the weighted case with

agent weights w œ [0, 1]
A
, |w|1 = 1, Brown et al. [6] presented a 5 · exp(2 ·DKL

1
w|| 1̨n )

2
=

5 · exp(2 logn + 2
q

iœA wi logwi) approximation algorithm, where DKL denotes the KL

divergence of two distributions. This is the first work that studies the weighted version for

the additive valuation case. Prior to this work, there is an O(nwmax) = O(nmaxiœA wi)-

approximation for the more general submodular valuation case [13], which we discuss soon.

Brown et al. [6] showed that the two CPs from [8] and [1] are equivalent, and their result is

based on the CP from [8], generalized to the weighted setting.

The additive valuation setting is a special case of the submodular valuation setting, which

is another important setting studied in the literature. In this setting, instead of a vij value

for every ij pair, we are given a monotone submodular function vi : 2
G æ RØ0 for every agent

i œ A. Our goal is to find an allocation ‡ : G æ A so as to maximize
r

iœA

1
vi(‡

≠1
(i))

2wi

.

A bulk of the previous work has focused on the unweighted case; that is, wi =
1

n for all i œ A.

For this case, Garg et al. [15] proved a hardness of e/(e≠ 1) ¥ 1.5819 using a reduction from

Max-3-Coloring; this is better than the 1.069 hardness for the additive valuation case.

On the positive side, Li and Vondrak [24] extended the techniques of Anari et al. [1],

to obtain an e
3
/(e ≠ 1)

2
-approximation algorithm for the unweighted Nash Social Welfare

problem for a large family of submodular valuations, including coverage functions and linear

combinations of matroid rank functions. Later, Garg et al. [14] considered a family of

submodular functions called Rado functions, and gave an O(1)-approximation for this family

using the matching theory and convex program techniques. Li and Vondrak [23] developped

the first O(1)-approximation for general submodular functions, with an approximation ratio

of 380. Recently, Garg et al. [13] presented an elegant 4-approximation local search algorithm

for the problem, which is the current best approximation result for the problem. All the

results discussed above are for the unweighted case. For the weighted case, Garg et al. [13]

gave an O(nwmax)-approximation, where nmax = maxiœA wi. Whether the weighted Nash

Social Welfare problem with submodular valuations admits a constant approximation is a

big open problem.
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Recently, the problem has been studied in an even more general setting, namely, the

subadditive valuation setting. Dobzinski et al. [11] gives an O(1)-approximation for the

unweighted Nash Social Welfare problem in this setting under the demand oracle model.

1.1 Our Result and Techniques

In this note, we give the first O(1)-approximation algorithm for the weighted Nash Social

Welfare problem with additive valuations:

I Theorem 1. For any ‘ > 0, there is a randomized (e
1/e

+ ‘ ¥ 1.445 + ‘)-approximation
algorithm for the weighted Nash Social Welfare problem with additive valuations, with running
time polynomial in the size of the input and 1

‘ .

Our approximation ratio of e
1/e

+ ‘ matches the best ratio for the unweighted case due

to Barman et al. [3]. In contrast, the ratio given by Brown et al. [6] is 5 · exp(2 ·DKL(w|| 1̨n )),
which could be polynomial in n.

Our algorithm is based on a natural configuration LP for the problem, which has not

been studied before to the best of our knowledge. The configuration LP contains a yi,S

variable for every agent i and subset S of items, indicating if the set of items i gets is S or

not. We show that the configuration LP can be solved in polynomial time to any precision,

despite having exponential number of variables. Once we obtain the LP solution, we define

xij for every i œ A and j œ G to be the fraction of j assigned to i.

We use a randomized version of the Shmoys-Tardos rounding algorithm [30] developed

for unrelated machine scheduling problems, to round x into an integral solution. For every

agent i, we break the fractional items assigned to i into groups from the most valuable to

the least, each containing 1 fractional item. The rounding algorithm maintains marginal

probabilities, and the requirement that i gets exactly one item from each group (except

for the last one, from which i gets at most one item). In the analysis for each agent i, we

construct an instance of the unweighted Nash Social Welfare problem with identical additive
valuations, that involves many copies of the agent i, along with two alloations S and S Õ

to the instance. S corresponds to the LP solution, and S Õ
corresponds to the randomized

solution given by the rounding algorithm. Thanks to the condition that every group contains

one item, the solution S Õ
is envy-free up to one item (EF1). Using the result of [3] about

EF1 allocations, we show that the Nash social welfare of S Õ
is at least e

≠1/e
times that of S,

which eventually leads to our (e
1/e

+ ‘)-approximation.

We believe the configuration LP could be used in many other settings. We leave as an

immediate open problem whether it can give an O(1)-approximation for the weighted Nash

Social Welfare problem with submodular valuations.

2 (e1/e + ‘)-Approximation Using Configuration LP

We describe the configuration LP in Section 2.1 and the rounding algorithm in Section 2.2.

The analysis is given in Section 2.3.

2.1 The Configuration LP

For convenience, for any value function v : G æ RØ0, we define v(S) :=
q

jœS vj for every

S ™ G to be the total value of items in S according to the value funciton v. In the integer

program correspondent to the configuration LP, for every i œ A and S ™ G, we have a

variable yi,S œ {0, 1} indicating if the set of items assigned to i is S or not. We relax the

integer constraint to obtain the following configuration LP:

ICALP 2024
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max

ÿ

iœA,S™G
wi · yi,S · ln vi(S) s.t. (Conf-LP)

ÿ

iœA,S–j

yi,S Æ 1 ’j œ G (1)

ÿ

S™G
yi,S = 1 ’i œ A (2)

yi,S Ø 0 ’i œ A, S ™ G (3)

It is convenient for us to consider the natural logarithm of the Nash social welfare function

as the objective, which is
q

iœA wi · ln vi(‡≠1
(i)). This leads to the objective in (Conf-LP).

(1) requires that every item j is assigned to at most one agent, and (2) requires that every

agent i is assigned one set of items.

The configuration LP has exponential number of variables, but it can be solved within

an additive error of ln(1 + ‘) for any ‘ > 0, in time polynomial in the size of the instance

and
1

‘ . We defer the details to Appendix A. Notice that we are considering the logarithm of

Nash social welfare, and the typical (1 + ‘)-multiplicative factor becomes an additive error of

ln(1 + ‘).

2.2 The Rounding Algorithm

From now on, we assume we have obtained a vector y from solving the LP, described using a

list of non-zero coordinates; the value of y to (Conf-LP) is at least the optimum value minus

ln(1 + ‘). We can assume (1) holds with equalities:
q

iœA,S–j yi,S = 1 for every j œ G. Then
we let xij =

q
S–j yi,S for every i œ A and j œ G. So

q
iœA xij = 1 for every j œ G.

In this paragraph, we fix an agent i and break the fractional items assigned to i into a set

Gi of groups, each containing 1 fractional item. They are created in non-increasing order of

values, as in the Shmoys-Tardos algorithm for unrelated machine scheduling problems. That

is, the first group contains the 1 fractional most valuable items assigned to i, the second group

contains the 1 fractional most valuable items assigned to i after removing the first group, and

so on. Formally, we sort the items in G in non-increasing order of vij values, breaking ties

arbitrarily. Let pi = Á
q

jœG xijË. Then we can find vectors g
1
, g

2
, · · · , gpi œ [0, 1]

G
satisfying

the following properties:

(P1) For every t œ [1, pi≠1], we have |gt|1 = 1; for t = pi, we have |gt|1 =
q

jœG xij≠(pi≠1) œ
(0, 1].

(P2)
qpi

t=1
g
t
j = xij for every j œ G.

(P3) For every 1 Æ t < t
Õ Æ pi, and two items j, j

Õ
such that j appears before j

Õ
in the

ordering, it can not happen that g
t
jÕ > 0 and g

tÕ

j > 0.

It is easy to see that g
1
, g

2
, · · · , gpi are uniquely decided by the three conditions. We say

each g
t
is a group. Let Gi = {g1, g2, · · · , gpi} be the set of all groups constructed for this

agent i.

Now we take all agents i into consideration and let G = ‡iœAGi be the set of all groups

constructed.
1
The representations of groups give a fractional matching between the groups

G and items G: an item j is matched to a group g œ [0, 1]
G
with a fraction of gj . Then each

item is matched to an extent of 1, and every group g is matched to an extent of |g|1. So

1 It is possible that two groups from di�erent sets Gi and GiÕ have the same vector representation. So we
treat G as a multiset and we assume we know which set Gi each group g œ G belongs to.
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a group is matched to an extent of 1 if it is not the last group for an agent, and at most 1

otherwise. Therefore, we can e�ciently output a randomized (partial-)matching between the

groups G and items G so that the marginal probabilities are maintained:

(ı) For every group g œ G and item j œ G, we have Pr[j is matched to g] = gj .

(ı) implies that an item j œ G is matched with probability 1. If a group g has |g|1 = 1,

then it is matched with probability 1.

The matching naturally gives us an allocation of items to agents: If an item j œ G is

matched to some group g œ Gi, then we assign j to i. By (ı) we know that the probability

that j is assigned to i is precisely xij . Let Si be the set of items assigned to i in the algorithm;

notice that it is random. This finishes the description of the randomized rounding algorithm.

2.3 The Analysis

To analyze our rounding algorithm, we first formally define an EF1 allocation.

I Definition 2. Given an instance of the unweighted Nash Social Welfare problem with
agents A, items G, and identical additive valuation v : G æ RØ0 for all agents, an allocation
‡ : G æ A is said to be envy-free up to one item (EF1), if for every two distinct agents i, i

Õ

with ‡
≠1

(i
Õ
) ”= ÿ, there exists some j œ ‡

≠1
(i

Õ
), such that v(‡≠1

(i
Õ
) \ j) Æ v(‡

≠1
(i)).

We use the following result from [3]:

I Theorem 3 ([3]). For the unweighted Nash Social Welfare problem with identical additive
valuations, any EF1-allocation is an e

1/e-approximate solution.

With the theorem, we prove the following key lemma:

I Lemma 4. For every i œ A, we have

E
#
ln vi(Si)

$
Ø

ÿ

S™G
yi,S · ln vi(S) ≠ 1

e
.

Proof. Throughout the proof, we fix the agent i. Let � > 0 be an integer, so that every yi,S

is an integer multiply of 1/�, and the probability that Si = S for any S is also an integer

multiply of 1/�.
2
We consider an instance of the unweighted Nash Social Welfare problem

with identical additive valuations. In the instance, there are � copies of the agent i, and

�xij copies of every item j œ G; so all the agents are identical. The y = (yi,S)S™G vector

gives us an allocation S to the instance: For every S ™ G, there are exactly �yi,S agents

who get a copy of S. Notice that this is a valid solution, as
q

S yi,S = 1 and
q

S–j yi,S = xij

for every item j.

The Nash Social Welfare of the allocation S is

Q

a
Ÿ

S™G
vi(S)

�yi,S

R

b
1/�

=

Ÿ

S™G
vi(S)

yi,S .

The distribution for Si also corresponds to an allocation S Õ
of items to agents: For every

S ™ G, there are � ·Pr[Si = S] agents who get a copy of S. Again, this is a valid solution asq
S Pr[Si = S] = 1 and

q
S–j Pr[Si = S] = E[Si – j] = xij .

2 We can assume all yi,S values are rational numbers. Under this condition, it is easy to guarantee that
the probabilities are rational numbers.
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The Nash Social Welfare of the allocation S Õ
is

Q

a
Ÿ

S™G
vi(S)

�Pr[Si=S]

R

b
1/�

=

Ÿ

S™G
vi(S)

Pr[Si=S]
.

A crucial property for the solution S Õ
is that it is EF1. Indeed, if Pr[Si = S] > 0 for some

S, then S contains exactly one item from each group in Gi except for the last one, from

which S contains at most one item. Also, the items in the groups Gi are sorted by (P3). So

if there are two sets S and S
Õ
in the support of the distribution for Si, and we remove the

most valuable item from S
Õ
, then S beats S

Õ
item by item.

Therefore, by Theorem 3, we know that the Nash Social Welfare of S Õ
is at least e

≠1/e

times that of the optimum allocation for the instance, which is at least that of S. That is,
Ÿ

S™G
vi(S)

Pr[Si=S] Ø e
≠1/e ·

Ÿ

S™G
vi(S)

yi,S .

Taking logarithm on both sides gives the lemma. J

Applying the lemma for every i œ A and using linearity of expectation, we have

E
C

ÿ

iœA
wi · ln vi(Si)

D
Ø

ÿ

iœS,S™G
wi · yi,S · ln vi(S) ≠ 1

e
.

We used that
q

iœA wi = 1.

By the convexity of exponential function, we have

E
C

Ÿ

iœA
vi(Si)

wi

D
Ø e

≠1/e · exp

Q

a
ÿ

iœS,S™G
wi · yi,S · ln vi(Si)

R

b Ø e
≠1/e · opt

1 + ‘
,

where opt is the Nash Social Welfare of the optimum allocation, and the second inequality

used that the value of our solution y to (Conf-LP) is at least its optimum value minus

ln(1+ ‘). By scaling ‘ down by an absolute constant at the beginning, we can make the right

side to be at least
opt

e1/e+‘
. This finishes the proof of Theorem 1.

Finally, we briefly discuss how to derandomize the rounding algorithm. We round the

solution to the configuration LP in iterations, maintaining a fractional assignment x̄ of items

to agents; x̄ = x initially. Let � be a large enough integer so that every yi,S is an integer

multiply of 1/�. Focus on a fixed agent i œ A and consider the Nash Social Welfare instance

containing � copies of i, and �x̄ij copies of each item j œ G. Group the items as follows:

the � most valuable items belong to the first group, the next � most valuable items belong

to the second group, and so on. We define �i to be the logarithm of the Nash Social Welfare

of the worst allocation satisfying the following condition: every agent gets at most one item

from each group. Fortunately, the worst allocation can be defined naturally: the first agent

takes the most valuable item from each group, and the second agent takes the second most

valuable item from each group, and so on. Thus �i can be computed e�ciently. We define

� =
q

i wi�i to be the overall potential function. In the randomized version of the algorithm,

one can define the rotation operation over the fractional matching between groups G and

items G. In expectation the operation does not decrease �. To derandomize the algorithm,

we can perform the operation deterministically so that � does not decrease. The potential

value � at the end of the algorithm is at least that at the beginning, which is at least the

value of the configuration LP minus 1/e. On the other hand, the logarithm of the Nash

Social Welfare of the integral solution is exactly the final �. Therefore, the Nash Social

Welfare is at least e
≠1/e

times the exponential of the value of the configuration LP.



Y. Feng and S. Li 63:7

References

1 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Welfare, Matrix
Permanent, and Stable Polynomials. In Christos H. Papadimitriou, editor, 8th Innovations in
Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 36:1–36:12, Dagstuhl, Germany, 2017. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2017.36.

2 Julius Barbanel and Alan Taylor. The Geometry of E�cient Fair Division. The Geometry of
E�cient Fair Division, pages 1–462, January 2005. doi:10.1017/CBO9780511546679.

3 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding Fair and E�cient
Allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation,
EC ’18, pages 557–574, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3219166.3219176.

4 Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

5 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia. Handbook
of Computational Social Choice. Cambridge University Press, USA, 1st edition, 2016.

6 Adam Brown, Aditi Laddha, Madhusudhan Reddy Pittu, and Mohit Singh. Approximation
Algorithms for the Weighted Nash Social Welfare via Convex and Non-Convex Programs. In
Proceedings of the Thirty-Fifth ACM-SIAM Symposium on Discrete Algorithms, 2024.

7 Suchan Chae and Hervé Moulin. Bargaining Among Groups: An Axiomatic Viewpoint.
International Journal of Game Theory, 39(1):71–88, 2010. doi:10.1007/s00182-009-0157-6.

8 Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani,
and Sadra Yazdanbod. Convex Program Duality, Fisher Markets, and Nash Social Welfare.
In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, pages
459–460, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/

3033274.3085109.
9 Richard Cole and Vasilis Gkatzelis. Approximating the Nash Social Welfare with Indivisible

Items. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
STOC ’15, pages 371–380, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2746539.2746589.

10 Dagmawi Mulugeta Degefu, Weijun He, Liang Yuan, An Min, and Qi Zhang. Bankruptcy to
Surplus: Sharing Transboundary River Basin’s Water under Scarcity. Water Resources Man-
agement: An International Journal, Published for the European Water Resources Association
(EWRA), 32(8):2735–2751, 2018. URL: https://EconPapers.repec.org/RePEc:spr:waterr:
v:32:y:2018:i:8:d:10.1007_s11269-018-1955-z.

11 Shahar Dobzinski, Wenzheng Li, Aviad Rubinstein, and Jan Vondrak. A Constant Factor
Approximation for Nash Social Welfare with Subadditive Valuations. ArXiv, abs/2309.04656,
2023. arXiv:2309.04656.

12 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Satiation in Fisher Markets and Approximation
of Nash Social Welfare. Mathematics of Operations Research, 0(0):null, 2023. doi:10.1287/
moor.2019.0129.

13 Jugal Garg, Edin HusiÊ, Wenzheng Li, László A. Végh, and Jan Vondrák. Approximating
Nash Social Welfare by Matching and Local Search. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, pages 1298–1310, New York, NY, USA,
2023. Association for Computing Machinery. doi:10.1145/3564246.3585255.

14 Jugal Garg, Edin HusiÊ, and László A. Végh. Approximating Nash Social Welfare under
Rado Valuations. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2021, pages 1412–1425, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3406325.3451031.

15 Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating Nash Social Welfare under
Submodular Valuations through (Un)Matchings. ACM Trans. Algorithms, 19(4), September
2023. doi:10.1145/3613452.

ICALP 2024

https://doi.org/10.4230/LIPIcs.ITCS.2017.36
https://doi.org/10.1017/CBO9780511546679
https://doi.org/10.1145/3219166.3219176
https://doi.org/10.1007/s00182-009-0157-6
https://doi.org/10.1145/3033274.3085109
https://doi.org/10.1145/3033274.3085109
https://doi.org/10.1145/2746539.2746589
https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1955-z
https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1955-z
https://arxiv.org/abs/2309.04656
https://doi.org/10.1287/moor.2019.0129
https://doi.org/10.1287/moor.2019.0129
https://doi.org/10.1145/3564246.3585255
https://doi.org/10.1145/3406325.3451031
https://doi.org/10.1145/3613452


63:8 A Note on Approximating Weighted Nash Social Welfare with Additive Valuations

16 John C. Harsanyi and Reinhard Selten. A generalized nash solution for two-person bargaining
games with incomplete information. Management Science, 18(5):P80–P106, 1972. URL:
http://www.jstor.org/stable/2661446.

17 Harold Houba, Gerard van der Laan, and Yuyu Zeng. Asymmetric Nash Solutions in the
River Sharing Problem. Game Theory & Bargaining Theory eJournal, 2013. URL: https:
//api.semanticscholar.org/CorpusID:17619205.

18 E. Kalai. Nonsymmetric Nash Solutions and Replications of 2-Person Bargaining. Int. J.
Game Theory, 6(3):129–133, September 1977. doi:10.1007/BF01774658.

19 Mamoru Kaneko and Kenjiro Nakamura. The Nash Social Welfare Function. Econometrica,
47(2):423–435, 1979. URL: http://www.jstor.org/stable/1914191.

20 Frank Kelly. Charging and Rate Control for Elastic Tra�c. European Transactions on
Telecommunications, 8(1):33–37, 1997. doi:10.1002/ett.4460080106.

21 Annick Laruelle and Federico Valenciano. Bargaining in Committees as An Extension of
Nash’s Bargaining Theory. Journal of Economic Theory, 132(1):291–305, 2007. doi:10.1016/
j.jet.2005.05.004.

22 Euiwoong Lee. APX-Hardness of Maximizing Nash Social Welfare with Indivisible Items.
ArXiv, abs/1507.01159, 2015. arXiv:1507.01159.

23 W. Li and J. Vondrak. A Constant-Factor Approximation Algorithm for Nash Social Welfare
with Submodular Valuations. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 25–36, Los Alamitos, CA, USA, February 2022. IEEE
Computer Society. doi:10.1109/FOCS52979.2021.00012.

24 Wenzheng Li and Jan Vondrák. Estimating the Nash Social Welfare for Coverage and Other
Submodular Valuations. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’21, pages 1119–1130, USA, 2021. Society for Industrial and
Applied Mathematics.

25 Herve Moulin. Fair Division and Collective Welfare. The MIT Press, 2004.
26 John F. Nash. The Bargaining Problem. Econometrica, 18(2):155–162, 1950. URL: http:

//www.jstor.org/stable/1907266.
27 Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. Complexity and

Approximability of Social Welfare Optimization in Multiagent Resource Allocation. In Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems
- Volume 3, AAMAS ’12, pages 1287–1288, Richland, SC, 2012. International Foundation for
Autonomous Agents and Multiagent Systems.

28 Jack Robertson and William Webb. Cake-Cutting Algorithms: Be Fair if You Can. A K
Peters/CRC Press, 1998.

29 Jrg Rothe. Economics and Computation: An Introduction to Algorithmic Game Theory,
Computational Social Choice, and Fair Division. Springer Publishing Company, Incorporated,
1st edition, 2015.

30 David B. Shmoys and Éva Tardos. An Approximation Algorithm for the Generalized Assign-
ment Problem. Mathematical Programming, 62(1):461–474, 1993. doi:10.1007/BF01585178.

31 William Thomson. Replication Invariance of Bargaining Solutions. Int. J. Game Theory,
15(1):59–63, March 1986. doi:10.1007/BF01769276.

32 Hal R Varian. Equity, Envy, and E�ciency. Journal of Economic Theory, 9(1):63–91, 1974.
doi:10.1016/0022-0531(74)90075-1.

33 H. Peyton Young. Equity: In Theory and Practice. Princeton University Press, 1994. URL:
http://www.jstor.org/stable/j.ctv10crfx7.

34 S. Yu, E. C. van Ierland, H. P. Weikard, and X. Zhu. Nash Bargaining Solutions for
International Climate Agreements under Di�erent Sets of Bargaining Weights. International
Environmental Agreements: Politics, Law and Economics, 17(5):709–729, 2017. doi:10.1007/
s10784-017-9351-3.

http://www.jstor.org/stable/2661446
https://api.semanticscholar.org/CorpusID:17619205
https://api.semanticscholar.org/CorpusID:17619205
https://doi.org/10.1007/BF01774658
http://www.jstor.org/stable/1914191
https://doi.org/10.1002/ett.4460080106
https://doi.org/10.1016/j.jet.2005.05.004
https://doi.org/10.1016/j.jet.2005.05.004
https://arxiv.org/abs/1507.01159
https://doi.org/10.1109/FOCS52979.2021.00012
http://www.jstor.org/stable/1907266
http://www.jstor.org/stable/1907266
https://doi.org/10.1007/BF01585178
https://doi.org/10.1007/BF01769276
https://doi.org/10.1016/0022-0531(74)90075-1
http://www.jstor.org/stable/j.ctv10crfx7
https://doi.org/10.1007/s10784-017-9351-3
https://doi.org/10.1007/s10784-017-9351-3


Y. Feng and S. Li 63:9

A Solving Configuration LP within an Additive Error of ln(1 + ‘)

Let ‘ > 0 be upper bounded by a su�ciently small constant (we allow ‘ to be a sub-constant).

By only allowing every agent to get one item, we can obtain an m-approximation for the our

Nash Social Welfare instance. Then, by making O

1
logm

‘

2
guesses, we can assume we are

given a number o such that the value of (Conf-LP) is in (o, o+ ‘/3].

We consider the dual of (Conf-LP), with the objective replaced by a constraint.

ÿ

jœG
–j +

ÿ

iœA
—i Æ o (4)

ÿ

jœS

–j + —i Ø wi · ln vi(S) ’i œ A, S ™ G (5)

–j Ø 0 ’j œ G (6)

Since (Conf-LP) has value strictly larger than o, the dual LP (4-6) is infeasible. We

design an approximate separation oracle for the LP. Given some – œ RG
Ø0

and — œ RA
that

does not satisfy (5), we can find some i œ A and S ™ G such that

ÿ

jœS

–j + —i < wi ln
!
(1 + ‘/2)vi(S)

"
.

The running time of the oracle is polynomial in the input size and
1

‘ . This can be achieved

using the standard dynamic programming technique: For a fixed i œ A, to find the S, we

guess the item j
ú œ S with the largest vijú , coarsen the vij values based on the guess, and

run a dynamic programming to find the S.

So, using the ellipsoid method with the approximate separation oracle, we can find

polynomially many half spaces of the form
q

jœS –j + —i Ø wi ln
!
(1 + ‘/2)vi(S)

"
, whose

intersection is empty. Then, we consider the Nash Social Welfare instance where all vij

values are scaled up by 1 + ‘/2, and (Conf-LP) to the instance. By solving the LP restricted

to the variables yi,S correspondent to the half spaces (that is, we let all other variables be 0),

we obtain a solution y whose value is at least o w.r.t the scaled instance. So, the value of the

solution y to (Conf-LP) w.r.t the original instance is at least o≠
q

iœA,S™G yi,Swi ln(1+‘/2) =

o ≠
q

i wi ln(1 + ‘/2) = o ≠ ln(1 + ‘/2).

As the value of (Conf-LP) is at most o+ ‘/3, we solved the LP up to an additive error of

‘/3 + ln(1 + ‘/2). For a small enough ‘, this is at most ln(1 + ‘).
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Minimizing Tardy Processing Time on a Single

Machine in Near-Linear Time

Nick Fischer �
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Abstract

In this work we revisit the elementary scheduling problem 1||
q

pjUj . The goal is to select, among n

jobs with processing times and due dates, a subset of jobs with maximum total processing time that
can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a
classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial
time O(nP ), where P is the total processing time of all jobs. With the aim to develop best-
possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and
Moore’s algorithm for 1||

q
pjUj : First to time ÂO(P 7/4) [Bringmann, Fischer, Hermelin, Shabtay,

Wellnitz; ICALP’20], then to time ÂO(P 5/3) [Klein, Polak, Rohwedder; SODA’23], and finally to
time ÂO(P 7/5) [Schieber, Sitaraman; WADS’23]. It remained an exciting open question whether these
works can be improved further.

In this work we develop an algorithm in near-linear time ÂO(P ) for the 1||
q

pjUj problem. This
running time not only significantly improves upon the previous results, but also matches conditional
lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and
is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the
case of m machines in time ÂO(Pm). In contrast to the previous improvements, we take a di�erent,
more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string
problems. We thereby arrive at a satisfyingly simple algorithm.
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1 Introduction

Consider the following natural optimization problem: A worker is o�ered n jobs, where each
job j requires a processing time of pj days and must be completed before some due date dj .
Which jobs should the worker take on in order to maximize their pay, assuming that the
worker is paid a fixed amount per day of work? In standard scheduling notation [22], this
task is somewhat cryptically called the “1||

q
pjUj” problem (see Section 2 for a formal

definition). The 1||
q

pjUj problem constitutes an important scheduling task that is arguably
among the simplest nontrivial scheduling objectives, and has received considerable attention
in the literature, especially in recent years.
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The 1||
q

pjUj problem naturally generalizes the famous Subset Sum problem,1 and is
therefore NP-hard. However, it does admit pseudo-polynomial-time algorithms – in 1969,
Lawler and Moore [31] pioneered the first such algorithm in time O(nP ), where P =

q
j
pj

is the total processing time of all jobs. This result is the baseline in a line of research that,
more than 50 years after the initial e�ort, is finally brought to a close in this paper.

State of the Art. Lawler and Moore originally designed their algorithm for a weighted
generalization of the 1||

q
pjUj problem, and for this generalization the running time O(nP )

was proven to be conditionally tight.2 Even for the 1||
q

pjUj problem the Lawler-Moore
algorithm remained unchallenged for a long time. Only a few years ago, Bringmann,
Fischer, Hermelin, Shabtay and Wellnitz [12] managed to solve 1||

q
pjUj in time3 ÂO(P 7/4),

showcasing that improvements over Lawler-Moore are indeed possible in certain parameter
regimes (specifically, when P π n

4/3). Their strategy is to design a tight reduction to an
intermediate problem called Skewed Convolution4, and to develop an ÂO(N7/4)-time algorithm
for this intermediate problem.

Their work was later improved in two orthogonal ways. On the one hand, Klein, Polak
and Rohwedder [28] improved the running time of Skewed Convolution to ÂO(N5/3). On the
other hand, Schieber and Sitaraman [36] improved the algorithmic reduction and established
that, if Skewed Convolution is in time ÂO(N–), then 1||

q
pjUj is in time ÂO(P 2≠1/–). The

state-of-the-art algorithm for 1||
q

pjUj is obtained by combining these two works, resulting
in time ÂO(P 7/5).

In contrast, fine-grained lower bounds for the Subset Sum problem rule out 1||
q

pjUj

algorithms in time O(P 1≠‘ · nO(1)), for any ‘ > 0, conditioned on either the influential Strong
Exponential Time Hypothesis [1] or the Set Cover Hypothesis [17]. This leaves a substantial
gap between the best known upper bound ÂO(P 7/5) and the conceivable optimum ÂO(P ).
Closing this gap is the starting point of our paper:

Can the 1||
q

pjUj problem be solved in near-linear time ÂO(P )?

In light of the recent algorithmic developments [12, 28, 36], a reasonable strategy appears
to aim for even faster algorithms for the Skewed Convolution problem – unfortunately, this
approach soon faces a barrier. Namely, improving the running time of Skewed Convolution
beyond O(N3/2) would entail a similarly fast algorithm for (max,min)-Convolution, which,
while not ruled out under one of the big hypotheses, would be a surprising break-through
in fine-grained complexity theory. This leaves us in an uncertain situation. Even if Skewed
Convolution could be improved to time ÂO(N3/2), this would mean that the 1||

q
pjUj

problem is in time ÂO(P 4/3) [36]. Are further improvements impossible?

Our Results. In this paper we bypass this barrier and develop a new algorithm for 1||
q

pjUj

that avoids the reduction to Skewed Convolution altogether. We thereby successfully resolve
our driving question:

1 Indeed, Subset Sum is the special case of 1||
q

pjUj where all jobs share the same deadline d. In other
words, Subset Sum is the 1|dj = d|

q
pjUj problem.

2 In the so-called 1||
q

wjUj problem each job j is rewarded by a specified pay wj (instead of pj).
For this generalization the running time O(nP ) was proven to be conditionally optimal [18, 30], in
the sense that an algorithm in time O((n+ P )2≠‘), for any ‘ > 0, contradicts the well-established
(min,+)-Convolution hypothesis. See also the discussion in [12].

3 We write ÂO(T ) = T (log T )O(1) to suppress polylogarithmic factors.
4 Given length-N integer vectors A,B, the Skewed Convolution problem is to compute the length-(2N ≠1)

vector C defined by C[k] = mini+j=k max{A[i], B[j] ≠ i}.
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I Theorem 1. The 1||
q

pjUj problem can be solved in randomized time O(P logP ) and in
deterministic time O(P log1+o(1)

P ).

We stress that by the aforementioned lower bounds [1, 17] our new algorithm is optimal,
up to lower-order factors, conditioned on the Strong Exponential Time Hypothesis or the
Set Cover Hypothesis.

As an additional feature, and similar to all previous algorithms, our algorithm not only
computes the optimal value of the given instance, but in fact reports for each value 0 Æ x Æ P

whether there is a feasible schedule with processing time (i.e., pay) x. Moreover, we can
compute an optimal schedule (represented as an ordered subset of jobs) in the same running
time.

Another benefit of our work is that we managed to distill an astonishingly simple
algorithm. In fact, our algorithm is basically identical to the original Lawler-Moore algorithm,
except that we replace certain naive computations by an appropriate e�cient data structure
on strings, and employ a careful new analysis. This approach is inspired by the recent
progress on the Modular Subset Sum problem [5, 4, 14, 34] (see Section 3 for more details).
We find it surprising that these conceptually simple ideas lead to near-optimal running times
for 1||

q
pjUj .

In particular, in contrast to previous improvements for 1||
q

pjUj [12, 28, 36], our
algorithm is purely combinatorial and does not require the use of the Fast Fourier Transform.
Given this simple nature of our algorithm, we are confident that actual implementations of
the algorithm would perform well.

Multiple Machines. The “Pm||
q

pjUj” problem is the straightforward generalization of
the 1||

q
pjUj problem to m workers (or machines) that can partition the jobs arbitrarily

among themselves. The goal, as before, is to maximize the total workload across all workers
while respecting all due dates. We assume for simplicity that m is a constant.5

The Lawler-Moore algorithm generalizes in a straightforward manner to time O(nPm).
For the algorithms based on Skewed Convolution, it seems significantly harder to derive
multiple-machine generalizations. Luckily, with some appropriate changes our new algorithm
also generalizes to multiple machines:

I Theorem 2. The Pm||
q

pjUj problem can be solved in randomized time O(Pm logP ) and
in deterministic time O(Pm log1+o(1)

P ).

In particular, Theorem 2 outperforms the Lawler-Moore algorithm by a near-linear
factor Â�(n). In contrast to the single-machine setting, however, we emphasize that this
algorithm is not necessarily optimal. A conditional lower bound for this problem would,
most likely, be derived from an analogous lower bound for the multiple-target Subset Sum
problem [3]. This appears to be a challenging question which is not resolved yet.

Alternative Parameters. So far we have only mentioned the parameters n and P =
q

j
pj ,

which have been the main focus in previous work. But there are many other parameters
worth considering. Natural candidates include the number of distinct deadlines (D#), the
sum of all distinct deadlines (D), the largest processing time (pmax = maxj pj) and the
largest deadline (dmax = maxj dj).

5 When viewing m as an input, it is easy to trace that our algorithms depend only polynomially on m.
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There has been research on developing nontrivial 1||
q

pjUj algorithms (for a single
machine) with respect to these parameters, such as an ÂO(min{P ·D#, P +D})-time algorithm
due to [12], and an ÂO(n+ p

3
max

)-time algorithm due to [28]. We remark that the former is
subsumed by our new results. The latter algorithm is incomparable to our result (specifically,
our algorithm in time ÂO(P ) = ÂO(npmax) performs better if and only if pmax ∫ n

1/2). Both
of these results [12, 28] generalize to m machines as well, leading to similar comparisons with
our work.

It remains an interesting open question whether our ÂO(P )-time algorithm can be further
improved with respect to the parameters dmax and pmax. In principle it seems reasonable that
time ÂO(n+dmax) can be achieved, as the analogous question for Subset Sum is resolved [8, 26].
We leave this as an open question. An even more exciting question is whether we could
possibly achieve time ÂO(n+ pmax). However, such an algorithm would entail a break-through
for Subset Sum with small items, which currently seems out of reach.

Further Related Work. This work is part of a bigger e�ort of the fine-grained complexity
community to design best-possible pseudo-polynomial time algorithms for a host of optimiza-
tion problems. This line of research encompasses, besides the aforementioned scheduling
problems [12, 23, 28, 36], various variants of Subset Sum [29, 8, 1, 5, 6, 13, 33, 4, 14, 34, 19],
Knapsack [38, 18, 30, 7, 20, 33, 11, 16, 10, 9, 25], Integer Programming [20, 24] and many
others [15, 19].

2 Preliminaries

Throughout, we write [n] = {0, . . . , n ≠ 1} and use the interval notation [i . . j] = {i, . . . , j},
and similarly [i . . j), (i . . j], (i . . j). For two sets of integers S, T and an integer t we employ
the sumset notation S + t = {s+ t : s œ S} and S + T = {s+ t : s œ S, t œ T}.

Scheduling Problems. We begin with a formal definition of the 1||
q

pjUj problem. The
input consists of n jobs, where each job j œ [n] has a processing time pj œ N>0 and due
dates dj œ N>0. A schedule is a permutation ‡ : [n] æ [n]. The completion time Cj of a job j

in the schedule ‡ is Cj =
q

i:‡(i)Æ‡(j)
pj (i.e., the total processing time of all jobs preceding j,

including j itself). We say that j is early if Cj Æ dj and tardy otherwise, and let Uj œ {0, 1}
be the indicator variable indicating whether j is tardy. In this notation, our objective is to
find a schedule minimizing

q
j
pjUj (i.e., the total processing time of all tardy jobs). This

explains the description 1||
q

pjUj in three-field notation.6 For convenience we have defined
the problem in such a way that pj > 0, and as a consequence we can always bound n Æ P .7

For the m-machine problem Pm||
q

pjUj a schedule is analogously defined as a func-
tion ‡ : [n] æ [n] ◊ [m], where the first coordinate determines the order of the jobs as before,
and the second coordinate determines the machine which is supposed to execute the job.
The completion time Cj is the total processing time of all jobs preceding j on j’s machine
(including j itself), and the objective of the problem remains unchanged. For simplicity, we
assume throughout the paper that m is a constant (it can easily be verified that we only
omit mO(1)-factors this way).

6 The 1 in the first field denotes a single machine, the empty second field symbolizes no additional
constraints, and the third field gives the objective to minimize

q
j
pjUj .

7 If jobs with processing time pj = 0 were permitted, all of our algorithms would additionally require
O(n) time preprocessing.
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Earliest-Due-Date-First Schedules. A key observation about 1||
q

pjUj dating back to
Lawler and Moore [31] is that, without loss of generality, the early jobs are scheduled in
increasing order of their due dates. This observation is leveraged as follows: We reorder
the jobs such that d0 Æ · · · Æ dn≠1 (we will stick to this ordering for the rest of the
paper). Thus, the 1||

q
pjUj problem is e�ectively to compute a subset of jobs J ™ [n]

that maximizes
q

jœJ
pj and is feasible in the sense that all jobs in J are early (i.e.,

Cj =
q

iœJ:iÆj
pi Æ dj for all j œ J).

Machine Model. We work in the standard Word RAM model with word size �(logn+logP )
(such that each job can be stored in a constant number of cells). Moreover, all randomized
algorithms mentioned throughout are Las Vegas (i.e., zero-error) algorithms running in their
claimed time bounds with high probability 1 ≠ 1/n�(1).

3 Near-Optimal Algorithm for a Single Machine

In this section, we give the details of our near-optimal algorithm for 1||
q

pjUj . We start
with a brief summary of the Lawler-Moore algorithm.

Lawler and Moore’s Baseline. The Lawler-Moore algorithm [31] is the natural dynamic
programming solution for the 1||

q
pjUj problem. We present it here by recursively defining

the following sets S0, . . . , Sn ™ [0 . . P ]:

S0 = {0},
S

Õ
j+1

= Sj + {0, pj} (j œ [n]),
Sj+1 = S

Õ
j+1

fl [0, dj ] (j œ [n]).

(The construction of Sj+1 is divided into two steps as this will be convenient later on.) Each
set Sj+1 can naively be computed from Sj in time O(P ), and thus all sets S0, . . . , Sn can be
naively computed in time O(nP ). We can ultimately read o� the optimal value as maxSn,
based on the following observation:

I Observation 3 (Lawler and Moore [31]). There is a feasible schedule of total processing
time t if and only if t œ Sn.

More generally, Sj+1 is the set of processing times of feasible schedules involving the
jobs 0, . . . , j. To see this, consider any feasible schedule of the jobs 0, . . . , j ≠ 1 (whose
processing time is in Sj). We can either leave out the next job j or append to the schedule.
Thereby, the set of processing times becomes SÕ

j+1
= Sj + {0, pj} = {s, s+ pj : s œ S

Õ
j+1

}.
However, this appended schedule is not necessarily feasible as it might not comply with the
due date dj . Hence, all processing times greater than dj are deleted again in the construction
of Sj .

Our Approach. Perhaps surprisingly, our algorithm essentially follows the same approach,
i.e., our goal remains to compute the sets S0, . . . , Sn. However, we will demonstrate that the
naive O(P )-time computation of each step can be significantly sped up. Our algorithm relies
on two ingredients – an algorithmic and a structural one.
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Ingredient 1: An E�cient Data Structure. As the sets S
Õ
j
and Sj are constructed in a

highly structured way, can we compute them faster than time O(P )? Specifically, is there a
way to (i) compute each set SÕ

j+1
in time proportional to the number of insertions |SÕ

j+1
\Sj |,

and to (ii) compute Sj+1 in time proportional to the number of deletions |SÕ
j+1

\ Sj+1|?
Question (i) is closely related to the Subset Sum problem, and has been successfully

resolved in [5] leading to near-optimal algorithms for Modular Subset Sum. Their solution
based on linear sketching is quite involved [5], but two independent papers [4, 14] provided a
significantly simpler proof by replacing linear sketching with a reduction to a dynamic string
problem; see also [34]8. Regarding (ii), it turns out that we can adapt this reduction to
the dynamic string problem to e�ciently accommodate our deletions. The following lemma
summarizes the resulting data structure; we defer its proof to Section 3.1.

I Lemma 4 (Sum-Cap Data Structure). There is a randomized data structure that maintains
a set S ™ [u] and supports the following operations:

init(S): Initializes the data structure to the given set S ™ [u].
Runs in time O(|S| · log u+ log2 u).

query(s): Given s œ [u], tests whether s œ S.
Runs in time O(log u).

sum(p): Given p œ [u], updates S Ω S + {0, p}.
Runs in time O(|(S + p) \ S| · log u) (where S is as before the operation).

cap(d): Given d œ [u], updates S Ω S fl [d].
Runs in time O(log u).

If at any point during the execution an element s /œ [u] is attempted to be inserted, the data
structure becomes invalid. Moreover, the data structure can be made deterministic at the cost
of worsening all operations by a factor logo(1) u.

Ingredient 2: A Structural Insight. What have we gained by computing the sets Sj and S
Õ
j

with the data structure from Lemma 4? Due to the particularly e�cient cap operation,
the computation of the sets Sj is essentially for free. Computing the sets SÕ

j
using the sum

operation, however, amounts to time

ÂO

Q

a
ÿ

jœ[n]

|SÕ
j+1

\ Sj |

R

b.

A priori, it is not clear whether this is helpful. In case of only inserting elements, this sum
could be conveniently bounded by P (as is the case for Modular Subset Sum). Unfortunately,
we additionally have to deal with deletions. Specifically, it is possible that some element s is
inserted in S

Õ
1
, deleted in S1, inserted again in S

Õ
2
, and so on. All in all, s could be inserted

up to n times, and so the only immediate upper bound for the sum is nP (which recovers
the Lawler-Moore running time).

Our crucial structural insight is that, while the same element can indeed be inserted
and deleted multiple times, the total number of insertions is nevertheless bounded. More
precisely, we show that the overall number of insertions is at most O(P ):

8 In [34], Potepa proposes an improved deterministic data structure with applications to the Modular
Subset Sum problem. A priori, it looks like their improvement might similarly apply to our setting.
Unfortunately, the data structure is only e�cient if we have the freedom to arbitrarily reorder the items,
which is prohibitive for us as we have to stick to the order d0 Æ · · · Æ dn≠1.
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I Lemma 5 (Bounded Insertions). It holds that
q

jœ[n]
|SÕ

j+1
\ Sj | Æ 2P + 1.

Proof. We split the sum into two parts:
ÿ

jœ[n]

--(SÕ
j+1

\ Sj)
-- =

ÿ

jœ[n]

--(SÕ
j+1

\ Sj) fl [0 . . dj ]
-- +

ÿ

jœ[n]

--(SÕ
j+1

\ Sj) fl (dj . . P ]
--.

Intuitively, the first sum counts the number of elements that are irreversibly inserted
into Sj+1, . . . , Sn in the j-th step. The second sum counts the number of elements that are
inserted into S

Õ
j+1

and immediately deleted in Sj+1.
For the first sum, consider the following observation: For any x œ [0 . . P ], if x Æ dj and

x œ S
Õ
j+1

\ Sj , then x œ Sj+1, . . . , Sn (since dj Æ dj+1, . . . , dn≠1). It follows that
--{j œ [n] : x œ (SÕ

j+1
\ Sj) fl [0 . . dj ]}

-- Æ 1

for all x œ [0 . . P ]. Thus,
ÿ

jœ[n]

--(SÕ
j+1

\ Sj) fl [0 . . dj ]
-- =

ÿ

xœ[0 . . P ]

--{j œ [n] : x œ (SÕ
j+1

\ Sj) fl [0 . . dj ]}
-- Æ P + 1.

Second, we bound |(SÕ
j+1

\ Sj) fl (dj . . P ]| Æ |SÕ
j+1

fl (dj . . P ]|. Note that Sj ™ [0 . . dj≠1]
and therefore S

Õ
j+1

= Sj + {0, pj} ™ [0 . . dj≠1 + pj ]. Consequently,
--SÕ

j
fl (dj . . P ]

-- Æ
--[0 . . dj≠1 + pj ] fl (dj . . P ]

-- Æ dj≠1 + pj ≠ dj Æ pj ,

where the final inequality follows from the assumption that dj≠1 Æ dj . Hence, the number of
overall deletions is

ÿ

jœ[n]

--(SÕ
j+1

\ Sj) fl (dj . . P ]
-- Æ

ÿ

jœ[n]

pj = P.

Combining both parts concludes the proof. J

The proof for Lemma 4 is provided in Section 3.1. Using Lemma 5 and 4, we are in the
position to show our main result.

I Theorem 1. The 1||
q

pjUj problem can be solved in randomized time O(P logP ) and in
deterministic time O(P log1+o(1)

P ).

Proof. In summary, our algorithm works as follows. We compute S0, . . . , Sn ™ [0 . . P ] using
the data structure from Lemma 4 (with u = P + 1). Specifically, after initializing S with
init(S0), we repeatedly construct the sets S

Õ
j
and Sj using the operations sum(pj) and

cap(dj) for all j Ω 0, . . . , n ≠ 1. The largest element in the final set S = Sn is the maximal
total processing of a feasible schedule of all jobs 0, . . . , n ≠ 1. Finding and returning it is
the last step of our algorithm, by repeatedly using the query(i) operation and returning the
largest index i for which the query returns yes. The correctness of our algorithm follows
from Observation 3.

The running time is composed of the following parts: The initialization runs in time
O(log2 P ), the repeated use of sum and cap takes time O(

q
jœ[n]

(|SÕ
j+1

\ Sj | · logP + logP ))
and the optimal value is found in time O(P ). Using n Æ P and Lemma 5, it holds that

O

Q

a
ÿ

jœ[n]

(|SÕ
j+1

\ Sj | · logP + logP )

R

b Æ O(P logP ).

In total, we have a randomized running time of O(P logP ). Applying the same arguments
yields the deterministic running time of O(P log1+o(1)

P ). J
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We stress that the algorithm described in this section only computes the optimal value.
In Section 3.2, we explain how our algorithm can be easily extended to obtain the optimal
schedule as well.

3.1 Cap-Sum Data Structure via Dynamic Strings

In this section, we provide the missing proof of Lemma 4 by a reduction to the dynamic strings
data structure problem. This is the fundamental problem of maintaining a collection of strings
that can be concatenated, split, updated, and tested for equality – see [37, 35, 32, 2, 21].
We summarize the state of the art in the following lemma; the fastest randomized (and in
fact, optimal) data structure is due to Gawrychowski, Karczmarz, Kociumaka, Lacki and
Sankowski [21], and for the fastest deterministic one see [27, Section 8].

Here we use standard string notation for a string x, where x[i] denotes the letter at
index i, and x[i . . j], x[i . . j) denote the appropriate substrings.

I Lemma 6 (Dynamic String Data Structure [21, 27]). There is a data structure that maintains
a dynamic collection X of non-empty strings and support the following operations:

make_string(x): Given any string x œ �+, inserts x into X.
concat(x1, x2): Given x1, x2 œ X, inserts the concatenation x1x2 into X.
split(x, i): Given x œ X and i œ [0 . . |x|), inserts x[0 . . i] and x(i . . |x|) into X.
LCP(x1, x2): Given x1, x2 œ X, returns the length ¸ of their longest common prefix,

i.e., returns max{0 Æ ¸ Æ min{|x1|, |x2|} : x1[0 . . ¸) = x2[0 . . ¸)}.
query(x, i): Given x œ X and i œ [|x|], returns x[i].

Let n be the maximum of the total length of all strings and the number of executed operations.
Then all operations run in randomized time O(logn) or in deterministic time O(log1+o(1)

n),
except for make_string which takes time O(|x|+ logn) and O(|x| · logo(1) n), respectively.

For the sake of convenience, we include two more dynamic string operations that are
derived from the previous lemma in a black-box fashion. As both are standard operations [21],
we only provide their implementations for completeness.

update(x, i,‡): Given x œ X, an index i œ [|x|] and ‡ œ �, inserts the string obtained
from x by changing the i-th character to ‡ into the data structure. To implement
this, we split the string x twice to separate the letter x[i] from the rest of the string.
Specifically, we obtain the substring x[0 . . i] using split(x, i) and further divide it to
get the substring x[0 . . i) by split(x[0 . . i), i ≠ 1). Next, the make_string(‡) operation
creates the string ‡. Lastly, we use concat(x[0 . . i), concat(‡, x(i . . |x|))) to reinsert ‡

between the two substrings.
LCE(x1, x2, i1, i2): Given x1, x2 œ X and i1 œ [|x1|], i2 œ [|x2|], returns the longest
common extension max{0 Æ ¸ Æ min{|x1|≠ i1, |x2|≠ i2} : x1[i1 . . i1+ ¸) = x2[i2 . . i2+ ¸)}.
To implement this, using the two operations split(x1, i≠ 1) and split(x2, j ≠ 1) we first
separate the substrings x1[i . . |x1|) and x2[j . . |x2|). Observe that the length of the longest
common extension of the original strings is exactly the length of the longest common prefix
of x1[i . . |x1|) and x2[j . . |x2|) returned by the operation LCP(x1[i . . |x1|), x2[j . . |x2|)).

Both update and LCE require a constant number of original operations that run in randomized
time O(logn), or deterministic time O(log1+o(1)

n).
Now, we are in the position to provide the proof of Lemma 4. Recall that this proof is in

parts borrowed from [4, 14].
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Proof of Lemma 4. We maintain the set S ™ [u] as an indicator string xS œ {0, 1}u such
that i œ S if and only if xS [i] = 1.

init(S): Using repeated squaring, we construct the string 0u by inserting w = 0 and
concatenating w with itself log u times. Note that 0u will remain in the data structure and
can be used by other operations. We compute xS by updating 0u using update(xS , S[i], 1)
for all indices i œ S. Since the repeated squaring takes time O(log2 u) and updating the
elements takes time O(|S| · log u), the init operation runs in time O(log2 u+ |S| · log u).
query(i): As the original data structure already provides a query operation, we use
query(xS , i) that returns xS [i] in time O(log u).
sum(p): We implement sum in three steps. First, we will compute the string xS+p that
represents the set S + p. Observe that xS+p is obtained by shifting xS by p positions
to the right. Thus, we extend xS using concat(0p, xS) where the string 0p is split o�
the precomputed string 0u using split(0u, p). Then we trim it down to length u with
split(0pxS , u).

Second, note that the desired string xSfi(S+p) is the result of the bit-wise OR of xS

and xS+p. We compute the set D = {i œ [u] : xS [i] ”= xS+p[i]} that contains all indices at
which xS and xS+p di�er from each other. To this end, starting with i Ω 0, we will repeat
the following process as long as i < u: Compute ¸ Ω LCE(xS , xS+p, i, i) to determine the
next index ¸ at which both strings di�er, insert D Ω Dfi {i+ ¸} and update i Ω i+ ¸+1.

As the third and last step, we compute xSfi(S+p) by updating xS using update(xS , i, 1)
for all indices i œ D.

Creating the shifted string xS+p takes time O(log u). Both the construction of set D
and computing the string xSfi(S+p) require |(S + p) \ S|+ |S \ (S + p)| many operations
that each run in time O(log u). Since |S + p| = |S|, we have

|(S + p) \ S| = |S + p| ≠ |(S + p) fl S| = |S| ≠ |(S + p) fl S| = |S \ (S + p)|

and therefore |(S+p)\S|+ |S \ (S+p)| = 2 · |(S+p)\S|. In summary, the sum operation
takes time O(|(S + p) \ S| · log u).
cap(d): In order to set xS [i] = 0 for all i œ (d . . u), we separate the substring xS [0 . . d]
with split(xS , d) and split the substring 0u≠d+1 o� the precomputed string 0u using
split(0u, u ≠ d+ 1). Then xS is assembled using concat(xS [0 . . d], 0u≠d+1). All three
operations take time O(log u).

Following Lemma 6, the deterministic running times can be obtained by worsening all
operations by a factor logo(1) u. J

3.2 Obtaining an Optimal Schedule

In the previous sections we have argued that the optimal value OPT (i.e., the maximum
total processing of a feasible schedule) can be computed in near-linear time ÂO(P ). In this
section we explain how the actual optimal schedule can be computed by a deterministic
post-processing routine in time O(n).

The idea is, as is standard for dynamic programming algorithms, to trace through
the sets S0, . . . , Sn in reverse order. Making this traversal e�cient, we slightly modify our
algorithm to additionally compute an array A[0 . . P ] such that A[s] = min{j œ [n] : s œ Sj+1}.
Intuitively, A[s] stores the smallest job j such that there exists a feasible schedule with
total processing time s that contains j. Updating A appropriately whenever an element is
inserted into S

Õ
j+1

allows us to easily maintain the array without worsening the asymptotic
running time. Then, in order to compute an optimal schedule, we apply the following
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algorithm: We initialize J Ω ÿ and s Ω OPT. We repeatedly retrieve the next job j Ω A[s]
and update J Ω J fi {j} and s Ω s ≠ pj , until s = 0. In each step, we identify a job j that
is contained in the optimal schedule, and thus J is an optimal schedule once the process has
terminated. In fact, the same idea can be used to retrieve a feasible schedule for any given
processing time s œ Sn.

4 Generalization to Multiple Machines

In this section, we show that our algorithm for 1||
q

pjUj can be extended to Pm||
q

pjUj .
Since it follows the same approach as the single machine algorithm, we will keep this section
short and concise. For more details refer to Section 3.

Let e0, . . . , em≠1 denote the standard unit vectors of Zm, then we recursively define the
sets S0, . . . , Sn ™ [0, P ]m as follows:

S0 = {0},
S

Õ
j+1

= Sj + {0, pj · e0, . . . , pj · em≠1} (j œ [n]),
Sj+1 = S

Õ
j+1

fl [0, dj ]m (j œ [n]).

As before, the optimal value is the maximum entry in Sn:

I Observation 7 (Lawler and Moore [31]). There is a feasible schedule of total processing
time t if and only if there is some s œ Sn with s0 + · · ·+ sm≠1 = t.

The crucial di�erence to before is that here all s œ Sj are vectors where their i-th entry
corresponds to the i-th machine. Because each job is either scheduled on exactly one machine
or not at all, we consider all scheduling possibilities of job j with Sj+{0, pj ·e0, . . . , pj ·em≠1}.
As our goal is again to bound the total number of insertions, see the following lemma:

I Lemma 8 (Generalized Bounded Insertions). It holds that
ÿ

jœ[n]

--SÕ
j+1

\ Sj

-- Æ (m+ 1) · (P + 1)m.

Proof. In the following, we consider two parts of the sum separately:
ÿ

jœ[n]

--(SÕ
j+1

\ Sj)
-- =

ÿ

jœ[n]

--(SÕ
j+1

\ Sj) fl [0 . . dj+1]m
-- +

ÿ

jœ[n]

--(SÕ
j+1

\ Sj) \ [0 . . dj+1]m
--.

In other words, in analogy to Lemma 5, we first count the number of elements that are
irrevocably inserted into Sj+1, . . . , Sn in the j-th step. Second, we count the number of
elements that are inserted into S

Õ
j+1

and instantly deleted in Sj+1.
We bound the first sum with the following observation. For any x œ [0 . . P ]m, it holds

that if x œ (SÕ
j+1

\ Sj) and x œ [0 . . dj ], then x œ Sj+1, . . . , Sn. This follows directly from
the assumption that dj Æ dj+1, . . . , dn≠1. Therefore, it holds that

--{j œ [n] : x œ (SÕ
j+1

\ Sj) fl [0 . . dj ]m}
-- Æ 1,

for all x œ [0 . . P ]m, and thus
ÿ

jœ[n]

--(SÕ
j+1

\Sj) fl [0 . . dj ]m
-- =

ÿ

xœ[0 . . P ]m

--{j œ [n] : x œ (SÕ
j+1

\Sj) fl [0 . . dj ]m}
-- Æ (P + 1)m.
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For the second sum, we bound |(SÕ
j+1

\ Sj) \ [0 . . dj ]m| Æ |SÕ
j+1

\ [0 . . dj ]m|. Using
that Sj ™ [0 . . dj≠1]m, we have that

S
Õ
j+1

= Sj + {0, pj · e0, . . . , pj · em≠1}
™ [0 . . dj≠1]m + {0, pj · e0, . . . , pj · em≠1} =: Vj+1.

As each job j is scheduled on exactly one machine, we observe that Vj+1 is the set of vectors
where all entries are in [0 . . dj≠1], except for possibly one entry that is in [0 . . dj≠1 + pj ].
Hence, Vj+1 \ [0 . . dj ]m is the set of vectors where all entries are in [0 . . dj≠1], except for
exactly one entry that is in (dj . . dj≠1 + pj ]. Next, we bound the size of Vj+1 \ [0 . . dj ]m:
There are m options for the index of the special entry, there are dj≠1 + pj ≠ dj options for
the value of the special entry, and finally there are (P + 1)m≠1 options for the other m ≠ 1
entries. Thus,

--SÕ
j+1

\ [0 . . dj ]m
-- Æ

--Vj+1 \ [0 . . dj ]m
--

Æ m · (P + 1)m≠1 · (dj≠1 + pj ≠ dj)
Æ m · (P + 1)m≠1 · pj ,

where the final inequality follows from the assumption that dj≠1 Æ dj . Consequently, the
second sum is bounded by

ÿ

jœ[n]

--SÕ
j+1

\ [0 . . dj ]m
-- Æ m · (P + 1)m≠1 ·

ÿ

jœ[n]

pj Æ m · (P + 1)m.

Combining the bounds for both sums yields the overall bound. J

Analogous to Section 3, we use the generalized sum-cap data structure to e�ciently
maintain the generalized sets S0, . . . , Sn.

I Lemma 9 (Generalized Sum-Cap Data Structure). There is a randomized data structure
maintaining a set S ™ [u]m that supports the following operations:

init(S): Initializes the data structure to the given set S ™ [u]m.
Runs in time O(log2 u+ |S| · log u).

query(s): Given s œ [u]m, tests whether s œ S.
Runs in time O(log u).

sum(T ): Given T ™ [u]m, updates S Ω S + T .
Runs in time O(|T | · |(S + T ) \ S| · log u) (where S is as before the operation).

cap(d): Given d œ [u], updates S Ω S fl [d]m.
Runs in time O(um≠1 · log u).

If at any point during the execution an element s ”œ [u]m is attempted to be inserted, the data
structure becomes invalid. Moreover, the data structure can be made deterministic at the cost
of worsening all operations by a factor logo(1) u.

Proof. Let U = u
m. Let „ : [u]m æ [U ] be the bijection defined by „(s) =

q
iœ[m]

siu
i.

We extend the definition to sets S ™ [u]m via „(S) = {„(s) : s œ S}. We maintain the
set S ™ [u]m as the indicator string of „(S), namely x„(S) œ {0, 1}U , such that i œ S if and
only if x„(S)[i] = 1. In other words, we store for each s œ [u]m, listed in lexicographical order,
whether s œ S.

init(S): The string 0U is constructed using repeated squaring by inserting x = 0 and
concatenating x with itself m log u times. It will remain in the data structure available to
other operations. Repeatedly using update(·,„(s), 1) for all entries s œ S, we update the
string 0U to obtain x„(S). As repeated squaring takes time O(log2 u) and updating the
elements takes time O(|S| · log u), the init operation runs in time O(log2 u+ |S| · log u).
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query(s): Using query(x„(S), s) from the string data structure allows us to return x„(S)[s]
in time O(log u).
sum(T ): We can assume without loss of generality that 0 œ T (as otherwise we can simply
shift T and x„(S) appropriately such that the smallest element in T becomes 0). Fix
an arbitrary nonzero element p œ T . Analogously to Lemma 4, we first show how to
compute the set (S + p) \ S in output-sensitive time. The string x„(S+p) representing
the set S + p can be computed using the two following facts. If x, y, x+ y œ [u]m,
then it holds that „(x + y) = „(x) + „(y). Further, if p œ [u]m and S, S + p ™ [u]m,
then „(S + p) = „(S) + „(p). Therefore, x„(S+p) is x„(S) up to a shift of „(p), and can
be obtained by split(concat(0„(p)

, x„(S)), U).
Similarly to Lemma 4, repeatedly using LCE queries allows us to first compute the

set {i ™ [U ] : x„(S)[i] ”= x„(S+p)[i]} and then read o� the symmetric di�erence of S
and S + p, denoted by Dp = (S \ (S + p)) fi ((S + p) \ S). We repeat the same for all
other nonzero elements p œ T . Let D =

t
pœT\{0} Dp, then we have D ´ (S + T ) \ S.

Thus, we can update the indicator string x„(S) by calling update(·,„(s), 1) for all s œ D.
In order to bound the running time, we bound the size of the sets Dp and D. Using

that |S \ (S + p)| = |(S + p) \ S|, we have that |Dp| Æ 2|(S+p)\S| Æ 2|(S+T )\S|, and
therefore |D| Æ 2|T | · |(S + T ) \ S|. In total, we used O(|D|) data structure operations,
leading to a running time of O(|T | · |(S + T ) \ S| · log u).
cap(d): We delete all vectors s œ S with at least one entry that is larger than d as
follows. We enumerate all (m ≠ 1)-tuples (s1, . . . , sm≠1) œ [u]m≠1. Recall that the
vectors are stored in lexicographical order. Thus, the set of vectors (s0, s1, . . . , sm≠1)
where s0 ranges over [u] and s1, . . . , sm≠1 are fixed, is represented by a length-u substring
of x„(S). Specifically, the substring x„(S)[„(0, s1, . . . , sm≠1) . .„(u ≠ 1, s1, . . . , sm≠1)].
We distinguish two cases: If maxm≠1

i=1
si > d, then the entire substring is replaced with 0u.

Otherwise, we retain its length-(d + 1) prefix and replace its su�x is by 0u≠d+1. It
takes O(um≠1) concat and split operations to perform these modifications, running in
total time O(um≠1 · log u).

Again, following Lemma 6 the deterministic running time of the operations di�ers by replacing
log u with log1+o(1)

u. J

Based on Lemma 8 and 9, we show the following generalization of our main result.

I Theorem 2. The Pm||
q

pjUj problem can be solved in randomized time O(Pm logP ) and
in deterministic time O(Pm log1+o(1)

P ).

Proof. Analogous to Theorem 1, we use the algorithm: We initialize the data structure from
Lemma 8 (used with u = P + 1) with init(S0). For all j Ω 0, . . . , n ≠ 1, we repeatedly use
the operations sum({0, pj · e0, . . . , pj · em≠1}) and cap(dj) to compute the sets SÕ

j+1
and Sj+1.

We return the optimal value contained in Sn as described in Theorem 1. Our algorithm is
correct due to Observation 7. Finally, using Lemmas 8 and 9 and the assumption n Æ P , we
can bound the dominant term of the running time by

O

Q

a
ÿ

jœ[n]

(m · |SÕ
j+1

\ Sj | · logP + P
m≠1 logP )

R

b = O(Pm logP ).

(Recall that m is constant.) Thus, we obtain a randomized running time of O(Pm logP ),
and similarly a deterministic running time of O(Pm log1+o(1)

P ). J
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Abstract

In this paper, we investigate the question of whether the electrical flow routing is a good oblivious
routing scheme on an m-edge graph G = (V,E) that is a �-expander, i.e. where |ˆS| Ø � · vol(S)
for every S ™ V, vol(S) Æ vol(V )/2. Beyond its simplicity and structural importance, this question
is well-motivated by the current state-of-the-art of fast algorithms for ¸Œ oblivious routings that
reduce to the expander-case which is in turn solved by electrical flow routing.

Our main result proves that the electrical routing is an O(�≠1 logm)-competitive oblivious
routing in the ¸1- and ¸Œ-norms. We further observe that the oblivious routing is O(log2 m)-
competitive in the ¸2-norm and, in fact, O(logm)-competitive if ¸2-localization is O(logm) which is
widely believed.

Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every
p œ [2,Œ] and q given by 1/p+ 1/q = 1. Assuming ¸2-localization in O(logm), we obtain that in
¸p and ¸q, the electrical oblivious routing is O(�≠(1≠2/p) logm) competitive. Using the currently
known result for ¸2-localization, this ratio deteriorates by at most a sublogarithmic factor for every
p, q ”= 2.

We complement our upper bounds with lower bounds that show that the electrical routing
for any such p and q is �(�≠(1≠2/p) logm)-competitive. This renders our results in ¸1 and ¸Œ

unconditionally tight up to constants, and the result in any ¸p- and ¸q-norm to be tight in case of
¸2-localization in O(logm).
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1 Introduction

In this paper, we study flow-routing problems on connected, undirected (multi-)graphs
G = (V,E). A broad and well-studied class of single-commodity flow problems arises by
seeking a flow f œ RE that routes given demands ‰ œ RV , while minimizing a ¸p-norm of
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the flow. Denoting the graph edge-vertex incidence matrix by B œ RV ◊E , we can write these
optimization problems as

min
Bf=‰

ÎfÎp. (1)

The case p = Œ is known as undirected maximum flow, while p = 2 is called electrical flow
and p = 1 is called transshipment. Here we focus for simplicity on the unweighted setting,
but all results in this paper and in related work can in fact be extended to work in weighted
graphs.

We can generalize these flow problems to the multi-commodity case by allowing a collection
of demands {‰i} to be routed simultaneously by a collection of flows {f i}, while minimizing
a single objective on all of them.

min
Bf i=‰i,’i

Î
ÿ

i

|f i|Îp. (2)

For any p, solutions with (1 + 1/poly(|E|))-multiplicative error to these problems can be
computed in polynomial time and for the single-commodity setting even in almost-linear time
[18, 7]. For the special cases of p = 1, 2,Œ, optimal solutions can be computed in polynomial
time via linear/convex programming.

However, in many settings, we may want to sacrifice optimality of our routing solutions
for simplicity of the routing algorithm. A particularly simple and popular approach is
oblivious routing, where a collection of routing paths are chosen in advance between every
pair of nodes, without knowing the demands that will be eventually routed. Historically,
oblivious routings were first studied on specific networks, specifically the hypercube [37, 38].
A deeply influential technique in this area is the work of Rackë [27]. An oblivious routing is
linear operator A œ RE◊V that maps any valid1 demand vector ‰ œ RV to a flow f = A‰
that routes ‰. This extends to routing multiple demands in the multi-commodity setting,
{f i = A‰i}.

Conceptually, a highly attractive feature is that multiple demand vectors can be routed
simultaneously without knowing the other demands, and a single demand can be broken
down into multiple terms, e.g. source-sink demand pairs, and routings of each pair can be
again computed separately. These features make oblivious routings ideal for online routing
problems – which was the original motivation for their construction [27].

As mentioned above, using oblivious routing comes at the sacrifice of optimality. To
get a quantitative measure of the loss a routing scheme A might incur in the ¸p metric, we
define the competitive ratio of A, denoted by flp(A), to be the maximal ratio between the
objective value achieved by an oblivious routing A and the optimal solution achieved by any
(multi-commodity) demand.

In a ground-breaking sequence of papers [27, 3, 9], Räcke, Azar, Cohen, Fiat, Kaplan,
and Englert showed that for all ¸p-norms, oblivious routings with competitive ratio Õ(1)
exist2. In fact, for the well-studied setting of p = Œ, [28] gave an optimal construction with
O(logm) competitive ratio in polynomial time, matching a �(logm) lower bound [4, 25].

Fast Algorithms and Applications for ¸Œ Oblivious Routing

¸Œ oblivious routings are a fundamental tool in obtaining fast approximate maximum
flow algorithms in undirected graphs. Building on the techniques in [35, 24], [16, 33] give
algorithms that show that O(poly(–/Á)) applications of a –-competitive ¸Œ oblivious routing

1 A demand ‰ can be routed on a connected graph i�
q

v
‰(v) = 0.

2 We use Õ(·) to hide polylogarithmic factors in the graph size m.
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yield (1 + Á)-approximate maximum flow on undirected graphs by using gradient descent.
They then developed almost-linear time algorithms formo(1)-competitive ¸Œ oblivious routing.
As a result, they obtained approximate undirected maximum flow in time m1+o(1) poly(1/Á)
– one of the major recent breakthroughs in modern graph algorithms.

Later, [29] gave a reduction from computing Õ(1)-competitive ¸Œ oblivious routings to
approximate maximum flows resulting in a m1+o(1) time algorithm. [26] then showed that
combining these approaches recursively yields a Õ(m) algorithm to compute Õ(1)-competitive
¸Œ oblivious routings and a Õ(mpoly(1/Á)) algorithm for (1 + Á)-approximate undirected
maximum flow [26]. Recently, [12] presented an alternative, simple Õ(m) algorithm to obtain
(and maintain) ¸Œ oblivious routings with subpolynomial competitive factor.

While recently the first exact maximum flow algorithm with runtime m1+o(1) was given
in [7], ¸Œ oblivious routings and approximate undirected maximum flow remain important
tools with many algorithms crucially relying on them as subroutines to obtain runtime Õ(m).

We point out that above, for simplicity, we did not properly distinguish between ¸Œ
oblivious routings which are only constructed in [16], and their weaker counterparts congestion
approximators which are used in all other constructions. A congestion approximator is a
linear operator C that maps each demand ‰ to vector c = C‰ such that ÎcÎŒ approximates
the objective value of (2). Note, that c is not necessarily a flow.

¸Œ Oblivious Routing on Expanders and in General Graphs

Valiant’s trick [38], a popular scheme that routes demands from each source to a set of
randomly chosen intermediate nodes before routing them to the destination, establishes
the existence of O(�≠1 logn)-competitive ¸Œ-oblivious routings in expanders. However,
implementing Valiant’s trick algorithmically requires computing multi-commodity flows,
which are expensive to compute.

To the best of our knowledge, the only fast algorithm that computes an ¸Œ oblivious
routing on general graphs is given in [16]. In their approach, they first reduce the problem to
finding an ¸Œ oblivious routing on a �-expander with unit-weights (in this case � = m≠o(1)).
They then exploit a simple but striking statement, previously demonstrated by Kelner and
Maymounkov [15]: the electrical flow routing, henceforth denoted by AE , on a �-expander is
a O(�≠2 logm)-competitive ¸Œ-routing. It was later observed by Schild-Rao-Srivastava [32]
that on unweighted graphs, the statement can be derived from Cheeger’s Inequality ([5, 1]).
Further, the electrical flow routing can be applied e�ciently after Õ(m) preprocessing, due
to the breakthrough result by Spielman and Teng [35] and subsequent work [17, 8, 20, 14]3.
[16] then demonstrates that by assembling and combining these routings on expanders, one
obtains an ¸Œ oblivious routing of the entire graph that can be evaluated e�ciently.

As far as we know, no other fast algorithm is currently known to compute ¸Œ oblivious
routing, and all fast algorithms that compute congestion approximators again reduce to
expanders on which cuts can be approximated by stars. Therefore, to the best of our
knowledge, every almost-linear time approach to constructing ¸Œ oblivious routing reduces
to expanders, and on expanders the only known fast algorithm for obtaining an ¸Œ oblivious
routing is to use the electrical flow routing.

3 Technically, only a high-accuracy solution is obtained which su�ces for our application.

ICALP 2024
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Oblivious Routing for any ¸p

Analogous to the reduction of solving approximate undirected maximum flow via few applic-
ations of ¸Œ oblivious routing, Sherman later showed in [34], that any ¸p-norm minimizing
flow on undirected graphs can be computed to an (1 + Á)-approximation by applying ¸p
oblivious routings with – competitive ratio Õ(poly(–/Á)) times via gradient descent.

While we are not aware of any article studying fast algorithms for the general ¸p-norm,
the ¸1-norm has received considerable attention and Õ(m) time algorithms were given with
competitive ratio Õ(1) [23, 39, 30], and adapted to fully-dynamic graphs in [6].

Oblivious Routing for ¸1 on Expanders

Further, at least in the unit-capacity setting, the result by Kelner and Maymounkov [15]
extends seamlessly to the ¸1-norm, i.e. the electric flow routing AE has competitive ratio
O(�≠2 logm). This follows since the electrical flow routing is given by AE = B€L+, where
B is the vertex-edge incidence matrix and L = BB€ is the Laplacian matrix of the graph
and then bounding the ¸Œ competitive ratio of the oblivious routing for multicommodity
flow problems is equivalent to bounding the quantity Î|AEB|ÎŒæŒ, where |·| denotes the
entrywise absolute value, while the ¸1 competitive ratio equals Î|AEB|Î1æ1. The matrix
� = AEB = B€L+B is a frequently-studied orthogonal projection matrix and it is a
symmetric matrix, since B€L+B = B€A€

E = (AEB)€ = (B€L+B)€ where we use that
L+ is symmetric. But it is further well-known that ÎXÎŒæŒ = ÎX€Î1æ1 and thus we have
that Î|�|ÎŒæŒ = Î|�|Î1æ1, i.e. the competitive ratios achieved by AE in ¸1- and ¸Œ-norm
are equal.

Beyond Oblivious Routing

The quantity Î|�|ÎŒæ1 is important in several other contexts: It captures the so-called
localization of electrical flow on the graph [32]. Localization measures the ¸1-length of the
electrical flow corresponding to a demand placed at two endpoints of an edge, averaged over
all edges. The bound fl1(AE) = O(�≠2 logm) implies a stronger statement in expanders:
For every such edge-demand, the ¸1-length is bounded by O(�≠2 logm). It is known that
in general graphs, localization is bounded by O(log2 m) – but it is open whether O(logm)
holds (a lower bound of �(logm) is known) although it is widely believed. From [15], we see
that any graph with expansion 1/o(

Ô
logm) achieves localization o(log2 m).

Localization has been used in a number of contexts, including sampling random spanning
trees in almost-linear time [31], computing spectral subspace sparsification [22] of Laplacian
matrices, and building oblivious routings using Õ(

Ô
m) electrical flows [11].

An interesting message of our paper is that electrical flow on expanders simultaneously
is an excellent ¸1 and ¸Œ oblivious routing, i.e. it uses flow paths are are both short and
low congestion. A broad theory of expanders that simultaneously allow for short and low-
congestion paths has recently been developed in [10, 13], allowing for other possible trade-o�s
between length and congestion than those obtained by conventional expanders.

1.1 Main Contributions

In this article, we study a simple but important question:

Given any p œ [1,Œ], what is the competitive ratio flp(AE) of the electrical flow
routing AE on a �-expander?
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We first settle this question for the important cases when p œ {1,Œ} by proving the
following theorem that proves an upper bound that is tight up to constant factors.

I Theorem 1.1. For a �-expander multigraph G = (V,E) with edge-vertex incidence matrix
B and Laplacian L, the electrical routing AE = B€L+ has competitive ratios flŒ and fl1

for multi-commodity ¸Œ and ¸1 routing both bounded by

flŒ(AE), fl1(AE) Æ 3 · log(2m)
�

The Riesz-Thorin theorem then gives us a way to smoothly interpolate between the
upper bounds of any two ¸p1 - and ¸p2 -norm competitive ratios to obtain an upper bound on
the ¸p-norm competitive ratio flp(AE) for any p1 < p < p2. Using a smooth interpolation
between our results for ¸1- and ¸Œ-norm, we thus obtain the following more general result.

I Theorem 1.2. For a �-expander multigraph G = (V,E), and any p œ [1,Œ], we have that
the competitive ratio of AE is

flp(AE) Æ 3 · log(2m)
� .

It was proven in [32], that � = B€L+B satisfies Î|�|Î2æ2 Æ O(log2 n) (where |·|
indicates entry-wise absolute value). We refer to this quantity Î|�|Î2æ2 as ¸2-localization.
It is widely believed that Î|�|Î2æ2 Æ O(logm). Implicit in earlier works, albeit perhaps
not widely observed, is that fl2(AE) = Î|�|Î2æ2 (see Lemma 4.1), i.e. the competitive ratio
of multi-commodity ¸2 routing is exactly characterized by ¸2-localization. By interpolating
with this norm bound and our bounds on fl1(AE) and flŒ(AE), we obtain potentially much
stonger bounds on the competitive ratio flp(AE).

I Corollary 1.3 (implied by Riesz-Thorin). For a �-expander multigraph G = (V,E), and any
p œ [2,Œ] and q given by 1/p+ 1/q = 1, we have that the competitive ratios of AE for the ¸p
and ¸q norms are

flp(AE), flq(AE) Æ Î|�|Î2/p
2æ2

3
3 · log(2m)

�

41≠2/p

.

We complement our upper bounds with strong, unconditional lower bounds. Remarkably,
if Î|�|Î2æ2 Æ O(logm), as widely believed, then our bounds are tight up to constants.
Even with the currently known fact Î|�|Î2æ2 Æ O(log2 n), our lower bounds still prove a
sublogarithmic gap in every constant p ”= 2 and q and optimal � dependency.

I Theorem 1.4. For an infinite number of positive integers n and any � œ [1/ 3
Ô
n, 1], for

any p œ [2,Œ] and q given by 1/p+ 1/q = 1, we have that

flp(AE), flq(AE) Ø �
3

logm
�1≠2/p

4
.

1.2 Oblivious Electric Routing in Weighted Graphs

We can extend Theorem 1.1 to weighted graphs in the following way: Consider a graph
G = (V,E) with positive integer edge capacities c œ RE and positive integer edge lengths
s œ RE . Letting C,S œ RE◊E denote diagonal matrices with c and s on the diagonal
respectively, we are interested in the optimal weighted ¸Œ- and ¸1-routings for given demands
D = {‰1, . . . ,‰k}

ICALP 2024
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Figure 1 An illustration of the result given in Corollary 1.3 of the di�erent competitive ratios
achieved with respect to each ¸p-norm, where n and � are fixed and � π 1/ logm. The red curve
shows the optimal ratios, achieved if localization is in O(logm), which is also obtained up to constant
factors by our lower bound in Theorem 1.4. The lilac curve shows the current trade-o� where we use
the known result that localization is in O(log2 n). For � ∫ 1/ logm the upper bound of Theorem
1.2 achieves values between the two curves.

optŒ(D) = min
Bf i=‰i,’i

ÎC≠1
ÿ

i

|f i|ÎŒ and opt1(D) = min
Bf i=‰i,’i

ÎS
ÿ

i

|f i|Î1 (3)

Now consider defining an electrical routing by choosing resistances R = SC≠1 and
defining the electrical routing AE = R≠1B€(BR≠1B€)+. Let Ĝ denote the multigraph
with edge e replaced by c(e) unit-weight paths of length s(e). Now, one can easily show that
the electrical routing in G according to AE is equal to the unit-weight electrical routing in
Ĝ, when mapping flows on a capacitated edge to a collection of flows on multi-edge paths.

I Corollary 1.5 ((Informal) Electrical Oblivious ¸Œ- and ¸1-Routing on Weighted Expanders).

For (multi-)graph G = (V,E) with edge-vertex incidence matrix B and positive integer
edge weights and lengths given as diagonal matrices C,S œ RE◊E, the electrical routing
AE = R≠1B€(BR≠1B€)+, where R = SC≠1, has competitive ratios flŒ and fl1 for
multicommodity ¸Œ and ¸1 routing both bounded by

flŒ(AE), fl1(AE) Æ 3 ·
ln(2|EĜ|)

�(Ĝ)

where Ĝ denotes the multigraph with edge e replaced by a path of length S(e, e) with C(e, e)
unit-weight multi-edges across each hop of the path.

I Remark 1.6. When we take all edge lengths S(e, e) to be 1, the expansion of Ĝ equals the
usual definition of expansion in graph G with edge weight equal to capacity.

1.3 New Implications for Localization

From the connection to localization outlined earlier, we also immediately conclude that
localization of graphs with 1/o(logm) expansion improve over the general localization bound
of O(log2 m).

I Corollary 1.7 ((Informal) Localization of Electrical Flow). For a multigraph G = (V,E),
the average over multi-edges of the ¸1-norm the electrical flow routing 1 unit of flow across
the multi-edge is bounded by O

!
min{�≠1 logm, log2 n}

"
, and hence graphs with expansion

� = 1/o(logm) have localization o(log2 m).
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1.4 Roadmap

We next give a Preliminary section to set up the necessary notation for the article. We then
prove Theorem 3 in Section 3. We use this result together with the Riesz-Thorin theorem to
obtain Theorem 1.2 and Corollary 1.3 in Section 4. Finally, in Section 5, we give our lower
bounds as stated in Theorem 1.4.

2 Preliminaries

General Definitions

For any n œ Nú, we let [n] denote the set {1, 2, . . . , n}. We let 1 denote the all ones vector
and 1S denote the vector that has ones in the positions indexed by the elements of the set S
and zeros otherwise. For any A œ Rm◊n, we let |A| denote the matrix where the absolute
value operator has been applied entrywise.

Graphs

Although our results in the contribution section are for unweighted graphs, we also prove
stronger statements in the article that also work on weighted graphs. Therefore, we define
various notions with respect to weighted graphs.

Given an input graph G = (V,E,w) with positive weights which we all assume to be
at least 1, we define n = |V | and m = |E|. We assume an arbitrary underlying direction
assigned to each edge of G. We define the edge-vertex incidence matrix B œ RV ◊E of G as

B(w, e) =

Y
__]

__[

≠1, if e = (w, v)
1, if e = (v, w)
0, otherwise

.

We define the Laplacian L = BWB€ where W is the diagonal matrix given by the weights w
and denote by L+ the pseudo-inverse of the Laplacian. We call � = B€L+B the unweighted
projection matrix of G.

Expanders

We say G is a �-expander if |ˆS| Ø � · vol(S) for every S ™ V, vol(S) Æ vol(V )/2, where we
define |ˆS| to be the weight of all edges with exactly one endpoint in S, and vol(S) to be
the sum of weighted degrees of vertices in S.

Flows and Congestion

We say ‰ œ RV is a demand vector if 1€‰ = 0. We let ‰(a,b) œ RV for every (a, b) œ E to
be the unitary demand on the edge (a, b), that is ‰(a,b) = 1a ≠ 1b. We say a vector f œ RE

is a flow that routes demand ‰ if Bf = ‰. Given an arbitrary norm Î·Î on RE , we define
the congestion of a multi-set of flows {f1, . . . ,fk} to be:

cong ({f1, . . . ,fk}) =

.....W
≠1

kÿ

i=1

|f i|

..... .

ICALP 2024
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Oblivious Routings

We define an oblivious routing on G to be a linear operator A œ RE◊V such that BA‰ = ‰
for all demand vectors ‰ œ RV , i.e. to be a flow that routes the demand ‰.

Given a multiset of demands D = {‰1, . . . ,‰k}, we define the optimal congestion
achievable by

opt(D) = min
{f i}iœ[k] multiset : Bf i=‰i,’i

cong({f i}iœ[k]).

This allows us to define the competitive ratio of an oblivious routing, which we define

fl(A) = max
{‰i}iœ[k] multiset : ‰i‹1,’i

cong
!
{A‰i}iœ[k]

"

opt
!
{‰i}iœ[k]

" .

Note that whenever we use the subscript “p” for the competitive ratio fl, we mean that the
norm used in defining the congestion in that special case is the ¸p-norm.

Electrical Flows and Voltages

In this article, we define the electric flow routing operator AE = WB€L+. Right-applying
the operator A to any demand ‰ yields the electric flow f = A‰ that routes the demand ‰.
We define the electrical energy associated with the flow vector f by E(f) = f€W≠1f .

We define the electric voltage vector v œ RV with respect to a demand ‰ by v = L+‰.
We define the electrical energy associated with the voltage vector v as E(v) = v€Lv. Note
in particular that the energy of voltages induced by a certain demand coincides with the
energy of the respective flow.

We introduce the notion of “fractional” volume at given a threshold t œ R with respect
to a given voltage vector v œ RV . We first define the fractional volume per edge and then
for the whole graph. For an edge (a, b) œ E:

volØt(a, b) =

Y
__]

__[

2 · w(a, b), if v(a) > t

2 · w(a, b) · v(b)≠t
v(b)≠v(a) , if v(b) Æ t

0, otherwise
.

For the whole graph G:

volØ(t) =
ÿ

(a,b)œE

volØt(a, b),

vol+Ø(t) = volØ(t) + 1.

Note that in our notation we omit specifying which voltage vector the “fractional” volume
function is tied to, as it will be clearly specified upon usage during the proofs.

We define St = {a œ V | v(a) Ø t} as the set of vertices whose voltages are greater or
equal to the arbitrary threshold t œ R and the cut determined by the voltage threshold
t œ R to be Ct = (St, V \ St). For convenience, we let the weight of the cut Ct be
”(t) = |ˆCt| =

q
eœCt

w(e).

3 An Upper Bound on the Competitive Ratio of Electrical Flow

Routing for ¸Œ

In this section, we prove our main technical result, Theorem 1.1, by establishing a tight
upper bound on the competitive ratio when the congestion is defined in terms of ¸Œ which
then by the symmetry of � immediately gives the same competitive ratio in ¸1.
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However, while Theorem 1.1 only claims a result for unweighted (multi-)graphs, we show
in this section that AE even has good competitive ratio in weighted graphs with respect to
¸Œ. However, in the weighted setting, we cannot use the bound for ¸Œ to derive a bound
on ¸1, as the matrix-norms that exactly characterize the competitive ratio are not equal in
general. Nonetheless, the “multi-graph” trick from Corollary 1.5 can be used to transform
the weighted setting into an unweighted instance and derive bounds.

Intuition for our Proof

Kelner and Maymounkov showed that in order to bound the congestion of the electrical
routing, it su�ces, via a duality (or transposition) argument, to bound the worst case ¸1-norm
of the flow induced by routing 1 unit of flow electrically across any edge. We adopt the same
approach, but give a more precise analysis.

Suppose e = (x, y) is the edge such that routing one unit of flow between the endpoints
causes the highest overall congestion. We let v be the associated voltage vector that
induces the electrical flow routing one unit from x to y. The overall congestion then equalsq

(a,b)œE w(a, b)|v(a) ≠ v(b)|. We can express this by integrating with respect to voltage
along a voltage threshold cut with respect to v, where the function being integrated at point
t is exactly Yt =

q
(a,b)œCt

w(a, b), where Ct is the cut at voltage threshold t. This ensures
that after integrating Yt over the entire voltage range, each edge (a, b) contributes exactly
w(a, b)|v(a) ≠ v(b)|, as desired. Our proof proceeds by leveraging that the flow crossing the
cut Ct at threshold t is exactly

q
(a,b)œCt

w(a, b)|v(a) ≠ v(b)|.
As we are sending one unit of flow from x to y, and all electrical flow goes one way

across a voltage cut, this quantity is exactly 1. At each threshold t, this creates an “on
average” relationship between voltage di�erence |v(a) ≠ v(b)| and weight w(a, b) for edges
being cut. This in turn allows us to establish a pointwise relationship at each threshold
voltage t between the growth in congestion and the change in volume at t. Armed with this
relationship, we can bound the accumulated congestion of the integrated cuts in terms of the
accumulated volume, and this yields our result.

Contrast with the Kelner-Maymounkov Proof

It is instructive to consider why the Kelner-Maymounkov congestion bound loses an additional
factor � compared to our bound. For concreteness, consider the graph given by a direct edge
from x to y and an additional k disjoint paths of length k from x to y. It can be shown that
in this example, the edge that governs the congestion bound in the strategy above is in fact
the direct (x, y) edge.

Kelner-Maymounkov upper bound the true competitive ratio flÕ =
q

(a,b)œE w(a, b)|v(a)≠
v(b)| by the quantity flÕÕ =

q
aœV d(a)|v(a) ≠ c| for some constant c (see Equation (4.3)

in [15]). On this concrete graph, flÕ can be explicitly evaluated and is �(k). As the graph has
expansion 1/k, we can think of this as a bound of �(1/�). But, flÕÕ is �(k2) i.e. �(1/�2).

However, Kelner and Maymoukov’s strategy makes it di�cult to directly bound flÕ as
they first measure changes in volume over a (discrete) sequence of threshold cuts, and then
changes in voltage over the same sequence of cuts. Their discrete sequence of cuts skips
entirely over some edges, i.e. there will be edges that are not crossing any of their cuts. This
makes it di�cult to establish an estimate for each edge of the pointwise relation between
its contribution to volume growth versus voltage growth or congestion growth. Hence, they
work with summed bounds on voltage and compare these with summed bounds on volume,
which naturally yields bounds on flÕÕ. But, as we have seen, a bound on flÕÕ must inherently
be loose as there is a gap between flÕ and flÕÕ.
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I Theorem 3.1 (¸Œ Competitive bound of electrical flows). For a weighted �-expander
multigraph G = (V,E,w), the following holds:

flŒ(AE) Æ 3 · ln(vol(V ))
� .

Proof. We first use that

flŒ(AE) = max
eœE

...WB€L+‰e

...
1

. (4)

as shown in [16] as part of the proof of Lemma 26 (by using primarily Lemmas 10 and 11).
In order to prove the desired inequality, we then fix an e œ E such that the quantity in (4)
gets maximized, and let v = L+‰e be the voltage induced by setting a unitary demand on
this edge. Thus, we equivalently aim to bound:

flŒ(AE) =
...WB€L+‰e

...
1

=
...WB€v

...
1

=
ÿ

(a,b)œE

w(a, b) · |v(a) ≠ v(b)|. (5)

Observe now that shifting all the values of v by the same constant does not change the
value expressed in (5), and therefore we can assume without loss of generality that the
voltages are centered around 0, that is we can assume vol ({i œ V |v(i) Ø 0}) Ø vol(V )/2
and vol ({i œ V |v(i) Æ 0}) Ø vol(V )/2.

Note that, by convention, the electrical flow fE = AE‰e induces an orientation on the
edges in the set E. Henceforth, we assume without loss of generality that orientations of edges
in E align with the direction of the electrical flow fE , that is fE(a, b) = w(a, b)·(v(b)≠v(a)) Ø
0 for any (a, b) œ E.

In the following, we will employ the definitions introduced in Section 2. These concepts
give rise to the notion of “fractional” volume, which will ultimately allow us to bound the
quantity of Equation (5).

It can easily be proven that volØ is continuous in R and di�erentiable at any threshold
level t œ R for which there does not exist a node a œ V such that v(a) = t. Furthermore,
if tmin = min {v(a) | a œ V } and tmax = max {v(a) | a œ V }, then volØ(tmin) = vol(G) and
volØ(tmax) = 0. We can even assume without loss of generality a more precise centering of
the voltages around 0, namely that volØ(0) = vol(V )/2.

A voltage threshold level t œ R can be seen as naturally determining a cut Ct in G. Note
that the assumption about centering the voltages around 0 ensures that vol(St) Æ vol(V )/2
for any t > 0, so it holds that min{vol(St), vol(V \ St)} = vol(St).

By taking the orientation of the edges into account, we can drop the absolute value
operator and rewrite Equation (5) as:

ÿ

(a,b)œE

w(a, b) · |v(a) ≠ v(b)| =
ÿ

(a,b)œE

w(a, b) · (v(b) ≠ v(a))

=
ÿ

(a,b)œE

w(a, b) ·
⁄ tmax

tmin
v(a)<tÆv(b) dt

=
⁄ tmax

tmin

ÿ

(a,b)œE

w(a, b) · v(a)<tÆv(b) dt

=
⁄ tmax

tmin

”(t) dt

=
⁄

0

tmin

”(t) dt+
⁄ tmax

0

”(t) dt.

(6)
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We will bound the quantity in (6) by separately bounding each of the two terms in the last
equality. Only the proof for the integral over the non-negative values of t will be presented,
the one for the non-positive values proceeds in an analogous manner. Assume thus for the
rest of the proof that t Ø 0 holds.

In order to obtain the bound on ”(t) for non-negative t, we will inspect the rate of change
of the “fractional” volume with respect to the voltage threshold of the fixed voltage vector v.
Intuitively, we grow an electrical threshold ball, and directly relate the change in volume to
the stretch accumulated at the current voltage threshold. In more precise terms, we compute
a bound on the derivative of vol+Ø with respect to t on the domain of di�erentiability as
follows:

≠ d

dt
vol+Ø(t) = ≠ d

dt
volØ(t)

= ≠ d

dt

Q

a
ÿ

(a,b)œE

volØt(a, b)

R

b

= ≠ d

dt

Q

a
ÿ

(a,b)œCt

volØt(a, b)

R

b

=
ÿ

(a,b)œCt

≠ d

dt
volØt(a, b)

=
ÿ

(a,b)œCt

2 w(a, b)
v(b) ≠ v(a) .

(7)

By the construction based on the voltage levels, all edges of the cut Ct have their head in
the set St. Therefore, the flow carried by these edges has to be the unit flow, since this is
the demand of ‰e:

1 =
ÿ

(a,b)œCt

fE(a, b) =
ÿ

(a,b)œCt

w(a, b) · (v(b) ≠ v(a)). (8)

Hereafter, we show that the negative volume change must exceed the square of the cut
size. Informally, the change in volume per edge is relatively large whenever the voltage gap
across the edge is small (volume change scales as inversely proportional to the gap compared
to the cut-value of the edge). But, a “typical” edge in the cut must have a fairly small voltage
gap, as we otherwise route too much flow across the gap. Formally, since the voltage drops
among the edges in the cut Ct are non-negative, we can use (8) and the definition of the
conductance of G to further bound (7) using the Cauchy–Bunyakovsky–Schwarz inequality:
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≠ d

dt
vol+Ø(t) = 2

ÿ

(a,b)œCt

w(a, b)
v(b) ≠ v(a)

= 2

Q

a
ÿ

(a,b)œCt

w(a, b)
v(b) ≠ v(a)

R

b · 1

= 2

Q

a
ÿ

(a,b)œCt

w(a, b)
v(b) ≠ v(a)

R

b

Q

a
ÿ

(a,b)œCt

w(a, b) · (v(b) ≠ v(a))

R

b

Ø 2

Q

a
ÿ

(a,b)œCt

Û
w(a, b)

v(b) ≠ v(a) · w(a, b) · (v(b) ≠ v(a))

R

b
2

Ø 2

Q

a
ÿ

(a,b)œCt

w(a, b)

R

b
2

= 2 · ”(t)2

Ø 2 · ”(t) · � · vol(St).

(9)

Denote by volint(t) = vol(St) ≠ ”(t) twice the weight of the edges that have both endpoints
in the set St. Recall that we assumed all of the edges to have weights at least 1, therefore it
holds that ”(t) Ø 1. The definition of “fractional” volume implies volØ(t) Æ volint + 2”(t),
which can be used to further bound (9):

≠ d

dt
vol+Ø(t) Ø 2 · ”(t) · � · vol(St)

= 2 · ”(t) · � · (volint(t) + ”(t))

= ”(t) · 2�
3 · (3volint(t) + 3”(t))

Ø ”(t) · 2�
3 · (volint(t) + 2”(t) + 1)

Ø ”(t) · 2�
3 · (volØ(t) + 1)

= ”(t) · 2�
3 · vol+Ø(t).

Observe that we can rewrite the inequality above to obtain a bound on ”(t):

”(t) Æ ≠ 3
2� · 1

vol+Ø(t)
· d

dt
vol+Ø(t). (10)

We can now use equation (10) to bound the integral over the interval [0, tmax] in (6):

⁄ tmax

0

”(t) dt Æ
⁄ tmax

0

≠ 3
2� · 1

vol+Ø(t)
· d

dt
vol+Ø(t) dt.

The latter integral can easily be computed via the change of variable u = vol+Ø(t), yielding the
integration bounds vol+Ø(tmax) = volØ(tmax)+1 = 1 and vol+Ø(0) = volØ(0)+1 = vol(V )/2+1:
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⁄ tmax

0

”(t) dt Æ
⁄ tmax

0

≠ 3
2� · 1

vol+Ø(t)
· d

dt
vol+Ø(t) dt

=
⁄

0

tmax

3
2� · 1

vol+Ø(t)
· d

dt
vol+Ø(t) dt

= 3
2�

⁄
vol(V )/2+1

1

1
u
du.

Since the graph has by assumption at least two nodes connected by an edge with weight at
least 1, it follows that vol(V ) Ø 2 ≈∆ vol(V ) Ø vol(V )/2 + 1. Coupled with the fact that
u > 0 for u œ [1, vol(V )], this gives us the final bound for the integral:

⁄ tmax

0

”(t) dt Æ 3
2�

⁄
vol(V )/2+1

1

1
u
du

Æ 3
2�

⁄
vol(V )

1

1
u
du

= 3
2� · ln(vol(V )).

As already mentioned, the same bound can be obtained for the other term in (6) in an
analogous manner.

Combining the aforementioned result with the relations given by (5) and (6) gives the
desired inequality:

flŒ(AE) =
⁄

0

tmin

”(t) dt+
⁄ tmax

0

”(t) dt Æ 2 · 3 ln(vol(V ))
2� = 3 ln(vol(V ))

� . J

4 An Upper Bound on the Competitive Ratio of Electrical Flow

Routing for ¸p (for any p)

In this section, we prove two generalizations of Theorem 3.1. Previously, we gave a bound
on the competitive ratio when the congestion was defined in terms of the ¸Œ-norm. This
result can be extended to ¸p-norms for an arbitrary p œ [1,Œ] by using Theorem 3.1, and
instantiating a special case of the Riesz-Thorin theorem.

This establishes both the results in Theorem 1.2 and in Corollary 1.3. We stress that the
results obtained in this section crucially exploit the symmetry of � and therefore only hold
for unweighted graphs.

A Toolbox for ¸p-Norms

We first use the following lemma. Its proof is fairly standard and follows the structure of the
proof of Lemma 24 in [16]. We include a full proof in an extended version of this paper on
arXiv.

I Lemma 4.1 (Competitive ratio of ¸p-norms). Let G = (V,E) be a multigraph. For any
p œ [1,Œ] and oblivious routing A, we have

flp(A) = Î|AB|Îpæp.

Our second tool is the Riesz-Thorin theorem. We explicitly state the two relevant special
cases of the theorem that we require in the next section for the convenience of the reader.
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I Theorem 4.2 (Special cases of the Riesz-Thorin theorem, see [36, Theorem 1.3]). Let
A œ Rm◊n be a matrix with non-negative entries. For any p œ (1,Œ) it holds that:

ÎAÎpæp Æ ÎAÎ
1
p

1æ1
· ÎAÎ1≠ 1

p
ŒæŒ.

Furthermore, for p œ (2,Œ),

ÎAÎpæp Æ ÎAÎ
2
p

2æ2
· ÎAÎ1≠ 2

p
ŒæŒ.

Proof of Theorem 1.2

We have that the theorem already holds for ¸1 and ¸Œ since we have proven Theorem 1.1 in
the previous section. Consider therefore any p œ (1,Œ). Then, we have

flp(AE)
Lemma 4.1= Î|AEB|Îpæp

Theorem 4.2

Æ Î|AEB|Î
1
p

1æ1
· Î|AEB|Î1≠ 1

p
ŒæŒ

Lemma 4.1= (fl1(AE))
1
p · (flŒ(AE))1≠ 1

p

Theorem 1.1

Æ
3
3 · ln(2m)

�

4 1
p

·
3
3 · ln(2m)

�

41≠ 1
p

= 3 · ln(2m)
� .

Proof of Corollary 1.3

Consider next any p œ (1,Œ). Since we have again that for q given by 1/p+ 1/q = 1, we
have ÎXÎpæp = ÎX€Îqæq, we can assume w.l.o.g. that p Ø 2. Similarly to [21], we obtain

flp(AE)
Lemma 4.1= Î|AEB|Îpæp

Theorem 4.2

Æ Î|AEB|Î
2
p

2æ2
· Î|AEB|Î1≠ 2

p
ŒæŒ

Lemma 4.1= (fl2(AE))
2
p · (flŒ(AE))1≠ 2

p

Lemma 4.1, Theorem 1.1

Æ (Î|�|Î2æ2)
2
p ·

3
3 · ln(2m)

�

41≠ 2
p

.

5 A Lower Bound for Competitive Ratio of Electric Flow Routing

Finally, in this section, we provide a strong lower bound on the competitive ratio of the
electrical routing scheme in any ¸p-norm.

I Theorem 5.1 (Restatement of Theorem 1.4). For an infinite number of positive integers n
and any � œ [1/ 3

Ô
n, 1], for any p œ [2,Œ] and q given by 1/p+ 1/q = 1, we have that

flp(AE), flq(AE) Ø �
3

logm
�1≠2/p

4
.

In our proof, we use the following theorem given in [2]. We remind the reader that the
girth of a graph G is the weight of the smallest weight cycle of G.

I Theorem 5.2 ([2, Theorem 1.2]). There are infinitely many positive integer � and n, for
which an n-vertex unweighted graph G�,n = (V,E) exists such that G is �const-expander that
is �-regular with �const = �(1) such that G has girth �(log� n).
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In our proof, we use the existential result behind the statement to refine a proof technique
previously used by Englert and Räcke [9] to give a lower bound on the competitive ratio of
any ¸p oblivious routing scheme. Our refinement can also be used to strengthen their result
by a �(log logn) factor.

In our proof, we crucially exploit the following facts about e�ective resistance. Recall that
the e�ective resistance of a graph G for a pair (s, t) œ V 2 is the minimum energy required
to route one unit of demand from s to t in G, or alternatively the di�erence in voltages
of s and t induced by routing this unit of demand via an electrical flow which is given by
‰(s,t)L

+‰(s,t). The facts below can be derived straightforwardly from Cheeger’s Inequality,
mixing of random walks, and characterization of e�ective resistance by commute times (see
for example [19]).

I Fact 5.3. For G being a constant-degree �(1)-expander, we have that the e�ective resistance
of any pair (s, t) œ V is in �(1).

I Fact 5.4. Given two constant-degree graphs G and H over the same vertex set V . If the
e�ective resistance for a pair (s, t) œ V 2 is in �(1) in both G and H, then the electrical
flow routing one unit of demand from s to t on the union of graphs G fi H sends at least a
constant fraction of the flow over G and a constant fraction of the flow over H.

Let us now give a lower bound for any p Ø 2 and any parameter � œ [1/n, 1] such that
1/� is integer. We start by considering the electrical routing AE for a large constant �
and any n and G�,n of the multi-commodity demand that is given by routing for each
edge e = (u, v) in G�,n one unit of a commodity from u to v, i.e. we consider the demand
‰ =

Ó
‰(u,v)

Ô

e=(u,v)œE(G�,n)

. Towards understanding the electrical routing, we prove the
following simple claim.

B Claim 5.5. For any edge e in G�,n where � is a large constant, we have that the electrical
flow f = AE‰(u,v) routing the demand ‰(u,v) has ÎfÎ1 = �(logn).

Proof. The claim follows from showing that f(e) carries only (1 ≠ Á) units of flow for some
constant Á > 0. This is because it implies that a constant fraction of the flow is not routed
via the edge e. But since each path between the endpoints of e that does not use the edge e
is of length �(logn) (by the girth bound in Theorem 5.2), we have that this Á-fraction adds
�(Á logn) = �(logn) units of flow to the network G�,n.

To prove the claim, it su�ces to observe that the graph G�,n \ {e} is a �(1)-expander.
But to this end, it su�ces to observe that since the conductance of G�,n does not depend
on � by Fact 5.3, by choosing � su�ciently large (i.e. at least twice the inverse of the
conductance), we have that each cut contains at least 2 edges and thus the conductance of
G�,n \ {e} is at least half of the conductance of G�,n, and thus still constant.

Using that the trivial graph consisting only of the edge e is a constant-degree �(1)-
expander, we thus have that the e�ective resistance of the pair (u, v) in both the graph
G�,n \ e and e is constant by Fact 5.3. Thus, by Fact 5.4, we have that a constant fraction
of the demand ‰(u,v) is not routed into e, as desired. C

Using that multi-commodity flows do not cancel, we thus have that each edge in G�,n

carries on average �(logn) units of flow. We next transform the graph G�,n to then obtain
our final gadget on which we can prove the lower bound.

I Definition 5.6. Let G�

�,n be the graph obtained from G�,n by replacing each edge with
1/� vertex-disjoint paths of length 1/� between the endpoints of the vertices. Thus, G�

�,n,
for � being a constant, has �(n/�2) vertices.
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Next, we claim that the e�ective resistance of our demand pairs is the same up to a
constant in G�,n and G�

�,n.

B Claim 5.7. For each edge (u, v) œ E(G�,n), the e�ective resistance of the pair (u, v) in
the graph G�

�,n is �(1).

Proof. To show this result, we give an explicit mapping of the electrical flow routing ‰(u,v)
in G�,n to routing the flow in G�

�,n whose energy is at most constant. Let f be this electrical
flow routing on G�,n, then we map the flow on each edge eÕ in G�,n uniformly through the
1/� disjoint paths between the endpoints of eÕ in G�

�,n. Since each path now routes only a
�-fraction of the original flow on the edge eÕ, we have that the energy used to route through
each edge on the disjoint paths replacing eÕ

middle is (f(eÕ)�)2 = f(eÕ)2�2. We thus have that
the energy incurred by routing through the 1/� disjoint paths each consisting of 1/� edges
is 1/�2 · f(eÕ)2�2 = f(eÕ)2. Thus, the e�ective resistance of (u, v) in G�

�,n is at most the
resistance in G�,n which implies it is in O(1).

A lower bound of �(1) is observed by inversing this mapping to collect the amount of
flow pushed through the disjoint paths replacing edge eÕ together and adding it to eÕ in G�,n.
The proof is straightforward and therefore omitted. C

Before we can carry out the proof of our lower bound, it remains to show for our lower
bound gadget which is the graph G = G�,n fi G�

�,n that it is a �(�)-expander.

B Claim 5.8. G is �(�)-expander with �(n/�2) edges.

Proof. The number of edges is straightforward from our construction of G. To see that G is
O(�)-expander, observe that we can take the internal vertices of any path in G�

�,n replacing
an edge in G�,n which has volume �(1/�) but only two edges leaving (the once to the
endpoints of the replaced edges). To observe that it is an �(�)-expander, it su�ces to show
that each cut in S is maximized by assigning all internal vertices of each such path to one
side of the cut. It is then not hard to show from G�,n being a �(1)-expander that the claim
follows. C

Let us now give the proof of the main result. We take the graph under consideration to be
G = G�,n fi G�

�,n. We take as demand, the vector ‰� = 1

�
· ‰ = 1

�
· {‰(u,v)}e=(u,v)œE(G�,n)

.
Let AE denote the electrical flow routing on this graph G. Let us look at each edge
e = (u, v) œ E(G�,n). From Fact 5.3, Claim 5.7 and Fact 5.4, we have that the flow
fe = AE · 1

�
‰(u,v) restricted to the edges in E(G�,n) routes in total at least logn/Ï units

of flow along all of these edges. By linearity of AE and the fact that flows do not cancel,
we have that when routing ‰�, an average edge in E(G�,n) carries �(logn/�) units of flow.
Thus, the ¸p-norm of this flow is at least p


n · (logn/�)p = n1/p · logn · �. But observe

that we can route the flow with demand with congestion 1 in G�

�,n by routing for each
demand ‰(u,v) exactly 1 unit of flow through each of the disjoint paths corresponding to the
edge eÕ = (u, v) in G�

�,n. The ¸p-norm of this flow is �((n/�2)1/p) = �(n1/p�≠2/p) (using
Claim 5.8). We thus have that flp(AE) = �(logn · �p/(p≠2)).

To obtain the result for p < 2, we use that for q given by 1/p + 1/q = 1, we have
ÎXÎpæp = ÎX€Îqæq, and for the electrical routing, AEB = (AEB)€ since L+ is symmetric.

We note that in the construction above the number of vertices in the final graph G might
be much larger than n. By considering all possible parameters for � in [1/n, 1] (i.e. all such
numbers were 1/� is integer), we obtain a family of nÕ-vertex graphs with conductances in
[1, 1/ 3ÔnÕ], as claimed. Since every �-expander is also a �Õ-expander for every �Õ Æ �, we do
further not need to restrict the domain of �Õ further than in range. We point out that by
considering parameters � in our construction that are even smaller than 1/n, one can get up
to an arbitrarily small polynomial factor close to conductances as small as 1/

Ô
nÕ.
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Abstract
Treewidth serves as an important parameter that, when bounded, yields tractability for a wide class
of problems. For example, graph problems expressible in Monadic Second Order (MSO) logic and
Quantified SAT or, more generally, Quantified CSP, are fixed-parameter tractable parameterized
by the treewidth of the input’s (primal) graph plus the length of the MSO-formula [Courcelle,
Information & Computation 1990] and the quantifier rank [Chen, ECAI 2004], respectively. The
algorithms generated by these (meta-)results have running times whose dependence on treewidth is
a tower of exponents. A conditional lower bound by Fichte, Hecher, and Pfandler [LICS 2020] shows
that, for Quantified SAT, the height of this tower is equal to the number of quantifier alternations.
These types of lower bounds, which show that at least double-exponential factors in the running time
are necessary, exhibit the extraordinary level of computational hardness for such problems, and are
rare in the current literature: there are only a handful of such lower bounds (for treewidth and vertex
cover parameterizations) and all of them are for problems that are #NP-complete, �p

2-complete,
�p

2-complete, or complete for even higher levels of the polynomial hierarchy.
Our results demonstrate, for the first time, that it is not necessary to go higher up in the

polynomial hierarchy to achieve double-exponential lower bounds: we derive double-exponential
lower bounds in the treewidth (tw) and the vertex cover number (vc), for natural, important, and
well-studied NP-complete graph problems. Specifically, we design a technique to obtain such lower
bounds and show its versatility by applying it to three di�erent problems: Metric Dimension,
Strong Metric Dimension, and Geodetic Set. We prove that these problems do not admit
22

o(tw)
·nO(1)-time algorithms, even on bounded diameter graphs, unless the ETH fails (here, n is the

number of vertices in the graph). In fact, for Strong Metric Dimension, the double-exponential
lower bound holds even for the vertex cover number. We further complement all our lower bounds
with matching (and sometimes non-trivial) upper bounds.

For the conditional lower bounds, we design and use a novel, yet simple technique based on
Sperner families of sets. We believe that the amenability of our technique will lead to obtaining
such lower bounds for many other problems in NP.
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1 Introduction

Many interesting computational problems turn out to be intractable. In these cases, identi-
fying parameters under which the problems become tractable is desirable. In the area of
parameterized complexity, treewidth is a cornerstone parameter since a large class of problems
become tractable on graphs of bounded treewidth.

Courcelle’s celebrated theorem [13] states that the class of graph problems expressible in
Monadic Second-Order Logic (MSOL) of constant size is fixed-parameter tractable (FPT)
when parameterized by the treewidth of the graph. That is, such problems admit algorithms
whose running time is of the form f(tw) · poly(n), where tw is the treewidth of the input,
n is the size of the input, and f is a function that depends only on tw. Similarly, a result
by Chen [12] shows that the Quantified SAT (Q-SAT) problem can also be solved in
time f(tw) · poly(n), where tw is the treewidth of the primal graph of the input formula
and f is a function that depends only on tw and the number of quantifier alternations in
the input formula. Q-SAT is a generalization of SAT that allows universal and existential
quantifications over the variables. Note that Q-SAT with k quantifier alternations is �p

k-
complete or �p

k-complete. Unfortunately, in both of the aforementioned results, the function
f is a tower of exponents whose height depends roughly on the size of the MSOL and input
formulas, respectively. For Q-SAT, the height of this tower equals the number of quantifier
alternations in the Q-SAT instance [12].

Over the years, the focus shifted to making such FPT algorithms as e�cient as possible.
Thus, a natural question is to ask when this higher-exponential dependence on treewidth
is necessary. There is a rich literature that provides (conditional) lower bounds on this
dependency for many problems, and these bounds are commonly of the form 2o(tw) or, in
some unusual cases, 2o(tw log tw) (e.g., [15, 50]) and even 2o(poly(tw)) (e.g., [14, 55]). Most
notably, these lower bounds are far from the tower of exponents upper bounds given by the
(meta-)results discussed above. In this work, we develop a simple technique that allows to
prove double-exponential dependence on the treewidth tw and the vertex cover number vc,
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two of the most fundamental graph parameters. Notably, these are the first such results
for problems in NP, and we believe that the amenability of our technique will lead to many
more similar results for other problems in NP.

Indeed, after a preprint of this paper appeared on arxiv, our technique was also used to
prove double-exponential dependence on vc for an NP-complete machine learning problem [11]
and double-exponential dependence on the solution size and tw for NP-complete identification
problems like Test Cover and Locating-Dominating Set [10].

Double-exponential lower bounds: treewidth and vertex cover parameterizations. Fichte,
Hecher, and Pfander [25] recently proved that, assuming the Exponential Time Hypothesis1
(ETH), Q-SAT with k quantifier alternations cannot be solved in time significantly better
than a tower of exponents of height k in the treewidth. This exemplifies an interesting but
expected trait of this problem: its complexity, in terms of the height of the exponential tower
in tw, increases with each quantifier alternation. It strengthened the result that appeared
in [48], where conditional double-exponential lower bounds for ÷’SAT and ’÷SAT were
given. The results in [48] also yield a double-exponential lower bound in vc of the primal
graph for both problems. Besides these results, there are only a handful of other problems
known to require higher-exponential dependence in the treewidth of the input graph (or the
primal graph of the input formula). Specifically, the �p

2
-complete k-Choosability problem

and the �p
3
-complete k-Choosability Deletion problem admit a double-exponential and

a triple-exponential lower bound in treewidth [52], respectively. Recently, the �2
p-complete

problems Cycle HitPack and H-HitPack, for a fixed graph H, were shown to admit
tight algorithms that are double-exponential in the treewidth [26]. Further, the �2

p-complete
problem Core Stability was shown to admit a tight double-exponential lower bound in the
treewidth, even on graphs of bounded degree [32]. Lastly, the#NP-complete counting problem
Projected Model Counting admits a double-exponential lower bound in tw [23, 24]. For
other double-exponential lower bounds, see [1, 16, 27, 32, 37, 41, 43, 44, 47, 51, 56, 59].

All the double- (or higher) exponential lower bounds in treewidth mentioned so far are
for problems that are #NP-complete, �p

2
-complete, �p

2
-complete, or complete for even higher

levels of the polynomial hierarchy. To quote [52]: “�p
2
-completeness of these problems already

gives su�cient explanation why double- [. . . ] exponential dependence on treewidth is needed.
[. . . ] the quantifier alternations in the problem definitions are the common underlying reasons
for being in the higher levels of the polynomial hierarchy and for requiring unusually large
dependence on treewidth.”

As mentioned above, we develop a technique that allows to demonstrate, for the first
time, that it is not necessary to go to higher levels of the polynomial hierarchy to achieve
double-exponential lower bounds in the treewidth or the vertex cover number of the graph.

We prove that three natural and well-studied NP-complete problems admit double-
exponential lower bounds in tw or vc, under the ETH. These are the first problems in
NP known to admit such lower bounds.2

1 The Exponential Time Hypothesis roughly states that n-variable 3-SAT cannot be solved in time 2o(n).
2 While it may be possible to artificially engineer a graph problem or graph representation of a problem in

NP that admits such lower bounds (although, to the best of our knowledge, this has not been done), we
emphasize that this is not the case for these three natural and well-established graph problems in NP.
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NP-complete metric-based graph problems. We study three metric-based graph problems.
These problems are Metric Dimension [34, 58], Strong Metric Dimension [57], and
Geodetic Set [33], and they arise from network design and network monitoring. Apart from
serving as examples for double-exponential dependence on treewidth and the amenability of
our technique, these problems are of interest in their own right, and possess a rich literature
both in the algorithms and discrete mathematics communities (see, e.g., [2, 3, 4, 5, 7, 8,
17, 19, 20, 21, 31, 38, 45, 53] and the references below). Their non-local nature has posed
interesting algorithmic challenges and our results, as we explain later, supplement the already
vast literature on the structural parameterizations of these problems. Below we define the
three above-mentioned problems formally, and particularly focus on Metric Dimension as
it is the most popular and well-studied of the three.

Metric Dimension

Input: A graph G and a positive integer k.
Question: Does there exist S ™ V (G) such that |S| Æ k and, for any pair of vertices
u, v œ V (G), there exists a vertex w œ S with d(w, u) ”= d(w, v)?

The Metric Dimension problem dates back to the 70s [34, 58]. As in geolocation
problems, the aim is to distinguish the vertices of a graph via their distances to a solution
set. Metric Dimension was first shown to be NP-complete in general graphs in Garey
and Johnson’s book [30, GT61], and this was later extended to many restricted graph
classes [18, 22, 28], including graphs of diameter 2 [28] and graphs of pathwidth 24 [49]. In
a seminal paper, Metric Dimension was proven to be W[2]-hard parameterized by the
solution size k, even in subcubic bipartite graphs [35]. This drove the subsequent meticulous
study of the problem under structural parameterizations.

In particular, the complexity of Metric Dimension parameterized by treewidth remained
an intriguing open problem for a long time. Recently, it was shown that Metric Dimension

is para-NP-hard parameterized by pathwidth (pw) [49] (an earlier result [6] showed that it
is W[1]-hard for pathwidth). A subsequent paper showed that the problem is W[1]-hard
parameterized by the combined parameter feedback vertex set number (fvs) plus pathwidth
of the graph [29].

We conclude this part with the definitions of the remaining two problems, both of which
are known to be NP-Complete [9, 54]. Geodetic Set is also W[1]-hard parameterized by
the solution size, feedback vertex set number, and pathwidth, combined [39].

Strong Metric Dimension

Input: A graph G and a positive integer k.
Question: Does there exist S ™ V (G) such that |S| Æ k and, for any pair of vertices
u, v œ V (G), there exists a vertex w œ S such that either u lies on some shortest path
between v and w, or v lies on some shortest path between u and w?

Geodetic Set

Input: A graph G and a positive integer k.
Question: Does there exist S ™ V (G) such that |S| Æ k and, for any vertex u œ V (G),
there are two vertices s1, s2 œ S such that a shortest path from s1 to s2 contains u?

Our technical contributions. As Metric Dimension and Geodetic Set are NP-complete
on bounded diameter graphs or on bounded treewidth graphs, we study their parameterized
complexity with tw+ diam as the parameter and prove the following results.
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1. Metric Dimension and Geodetic Set do not admit algorithms running in time
2f(diam)o(tw) · nO(1), for any computable function f , unless the ETH fails.

2. Strong Metric Dimension does not even admit an algorithm with a running
time of 22o(vc) · nO(1), unless the ETH fails. This also implies the problem does not
admit a kernelization algorithm that outputs an instance with 2o(vc) vertices, unless
the ETH fails.

The above lower bounds for tw+diam, in particular, imply that Metric Dimension and
Geodetic Set on graphs of bounded diameter cannot admit 22o(tw) · nO(1)-time algorithms,
unless the ETH fails. The reduction for Metric Dimension (sketched in Section 2.3) also
works for fvs and td, and the one for Geodetic Set (Section 3) also works for td.

We show that all our lower bounds are tight by providing algorithms (kernelization
algorithms, respectively) with matching running times (guarantees, respectively).

1. Metric Dimension and Geodetic Set admit algorithms running in time 2diamO(tw)
·

n
O(1).

2. Strong Metric Dimension admits an algorithm running in time 22O(vc)
· n

O(1)

and a kernel with 2O(vc) vertices.

The (kernelization) algorithm for the vc parameterization is very simple, whereas the
algorithms for the tw+diam parameter are highly non-trivial and require showing interesting
locality properties in the instance. Further, for our tw+ diam parameterized algorithms, the
(double-exponential) dependency of treewidth in the running time is unusual (and rightly
so, as exhibited by our lower bounds), as most natural graph problems in NP for which a
dedicated algorithm (i.e., not relying on Courcelle’s theorem) parameterized by treewidth is
known, can be solved in time 2O(tw)

· n
O(1), 2O(tw·log(tw))

· n
O(1) or 2O(poly(tw))

· n
O(1).

Finally, our reductions rely on a novel, yet simple technique based on Sperner families of
sets that allows to encode particular SAT relations across large sets of variables and clauses
into relatively small vertex-separators. As mentioned before, we believe that this technique
is the key to obtaining such lower bound results for other problems in NP. In particular, as
witnessed by our results, our technique has the additional features that it even allows to
prove such lower bounds in very restricted cases, such as bounded diameter graphs, and is
not specific to any one structural parameter, as it also works for, e.g., the feedback vertex
set number and treedepth.

Due to space constraints, we cannot discuss all of our results in depth, and refer the
reader to the full version for full proofs, formal details, and more related work. Nonetheless,
we elaborate on our technique and present an overview of the results for Metric Dimension

in the next section. Then, in Section 3, we present a formal proof for the lower bound for
Geodetic Set. Finally, we conclude the paper in Section 4.

2 Technical Overview

In this section, we present an overview of our lower bound techniques. We first exhibit our
technique to obtain the double-exponential lower bounds in its most general setting. Then,
we continue with the problem-specific tools we developed that are required for the reductions.
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↵
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�

Figure 1 Graph representations of 3-Partitioned-3-SAT. (Left) incidence graph represent-
ation. (Right) representation with small separators using our technique. Note, for example, that x–

1
appears as a positive literal in the clause C1. Thus, on the left, t–

2 is the only literal vertex in A–

incident to c1, while on the right, t–
2 is the only literal vertex in A– that does not share a common

neighbor with c1 in V –. The edges from c2 to each vertex in V – are omitted for clarity.

2.1 General Technique for Double-Exponential Lower Bounds

The first integral part of our technique is to reduce from a variant of 3-SAT known as
3-Partitioned-3-SAT that was introduced in [46]. In this problem, the input is a formula
Â in 3-CNF form, together with a partition of the set of its variables into three disjoint
sets X

–, X— , X“ , with |X
–
| = |X

—
| = |X

“
| = n, and such that no clause contains more

than one variable from each of X–, X— , and X
“ . The objective is to determine whether Â

is satisfiable. Unless the ETH fails, 3-Partitioned-3-SAT does not admit an algorithm
running in time 2o(n) [46, Theorem 3].

Typical reductions from satisfiability problems to graph problems usually entail repres-
enting the satisfiability problem by its incidence graph, in which each variable is represented
by two vertices corresponding to its positive and negative literals. In this representation,
a clause vertex is adjacent to a literal vertex if and only if it contains that literal in Â

(see Figure 1 (left) for an illustration). However, this naive approach does not lead to any
structural parameters of the incidence graph being of bounded size. The core idea of our
technique is to instead represent the relationships between clause and literal vertices via
edges from these two sets of vertices to “small” separators (three separators in the case of
3-Partitioned-3-SAT) that encode these relationships.

Formally, this is achieved as follows. For a positive integer p, define Fp as the collection of
subsets of [2p] that contains exactly p integers. We critically use the fact that no set in Fp is
contained in any other set in Fp (such a collection of sets are called a Sperner family). Let ¸

be a positive integer such that ¸ Æ
!
2p
p

"
. We define set-rep : [¸] ‘æ Fp as a one-to-one function

by arbitrarily assigning a set in Fp to an integer in [¸]. By the asymptotic estimation of the
central binomial coe�cient,

!
2p
p

"
≥

4
p

Ô
fi·p [36]. To get the upper bound of p, we scale down

the asymptotic function and have ¸ Æ
4
p

2p
= 2p. Thus, p = O(log ¸).

Let Â be an instance of 3-Partitioned-3-SAT on 3n variables, and let p be the smallest
integer such that 2n Æ

!
2p
p

"
. In particular, p = O(logn). Define set-rep : [2n] ‘æ Fp as above.

Rename the variables in X
– to x

–
i for all i œ [n]. For each variable x

–
i , add two vertices t–

2i
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bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

accord
in
g to bin(

i)

H

G'

N(X)

Figure 2 Set Identifying Gadget. The blue box represents bit-rep(X) and the yellow lines
represent that nullifier(X) is adjacent to each vertex in bit-rep(X)fiN(X), and yı is adjacent to each
vertex in X. Also, GÕ is not necessarily restricted to the graph induced by the vertices in X fiN(X).

and f
–
2i≠1

corresponding to the positive and negative literals of x–
i , respectively. Let A– =

{t
–
2i, f

–
2i≠1

| i œ [n]}. Add a validation portal with 2p vertices, denoted by V
– = {v

–
1
, . . . , v

–
2p}.

For each i œ [n], add the edge t
–
2iv

–
pÕ for each p

Õ
œ set-rep(2i). Similarly, for each i œ [n], add

the edge f
–
2i≠1

v
–
pÕ for each p

Õ
œ set-rep(2i ≠ 1). Repeat the above steps for — and “.

Now, for each clause Cj (j œ [m]) in Â, add a clause vertex cj . Let ” œ {–,—, “}. For all
i œ [n] and j œ [m], if the variable x”

i appears as a positive (negative, respectively) literal in the
clause Cj in Â, then add the edge cjv”

pÕ for each p
Õ
œ [2p]\set-rep(2i) (pÕ

œ [2p]\set-rep(2i≠1),
respectively). For all j œ [m], if no variable from X

” appears in Cj in Â, then make cj

adjacent to all the vertices in V
”. See Figure 1 (right) for an illustration.

As a clause contains at most one variable from X
” in Â, cj and t

”
2i (f”

2i≠1
, respectively)

do not share a common neighbor in V
” if and only if the clause Cj contains x

”
i as a

positive (negative, respectively) literal in Â. For the reductions, we use this representation
of the relationship between clause and literal vertices. Since p = O(logn), this ensures
that tw(G) = O(logn), which we exploit along with the fact that, unless the ETH fails,
3-Partitioned-3-SAT does not admit an algorithm running in time 2o(n).

2.2 Basic Tools for Lower Bounds
For brevity, we focus on Metric Dimension and explain our problem-specific tools in
this context. We use two such simple tools: the bit representation gadget and the set
representation gadget. The set representation gadget is the problem-specific implementation
of the above technique, and it uses the bit representation gadget.

Before going further, we need to define some terms related to Metric Dimension. The
set S defined in the problem statement of Metric Dimension is called a resolving set of
G. A subset of vertices S

Õ
™ V (G) resolves a pair of vertices u, v œ V (G) if there exists a

vertex w œ S
Õ such that d(w, u) ”= d(w, v). Lastly, a vertex u œ V (G) is distinguished by a

subset of vertices SÕ
™ V (G) if, for any v œ V (G) \ {u}, there exists a vertex w œ S

Õ such
that d(w, u) ”= d(w, v).

Bit Representation Gadget to Identify Sets. Suppose we are given a graph G
Õ and a subset

X ™ V (GÕ) of its vertices. Further, suppose that we want to add a vertex set X+ to G
Õ to

obtain a new graph G with the following properties. We want that each vertex in X fi X
+ is
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distinguished by vertices in X
+ that must be in any resolving set S of G, and that no vertex

in X
+ can resolve any “critical pair” of vertices in G. Roughly, a pair of vertices is critical if

it forces certain “types” of vertices to be in any resolving set S of G, and the selection of the
specific vertices of those types depends on the solution to the problem being reduced from
(which, in our case, is 3-Partitioned-3-SAT [46]). We refer to the graph induced by the
vertices of X+, along with the edges connecting X

+ to G
Õ, as the Set Identifying Gadget for

the set X. Given a graph G
Õ and a non-empty subset X ™ V (GÕ) of its vertices, to construct

such a graph G, we add vertices and edges to G
Õ as follows (see Figure 2):

The vertex set X+ that we are aiming to add is the union of a set bit-rep(X) and a special
vertex denoted by nullifier(X).
First, let X = {xi | i œ [|X|]}, and set q := Álog(|X|+ 2)Ë + 1. We select this value for q
to (1) uniquely represent each integer in [|X|] by its bit-representation in binary (note
that we start from 1 and not 0), (2) ensure that the only vertex whose bit-representation
contains all 1’s is nullifier(X), and (3) reserve one spot for an additional vertex yı.
For every i œ [q], add three vertices yai , yi, ybi , and add the path (yai , yi, ybi ).
Add 3 vertices yaı , yı, y

b
ı and the path (yaı , yı, y

b
ı). Add edges to make {yi | i œ [q]}fi{yı}

a clique. Make yı adjacent to each vertex in X. Let bit-rep(X) = {yi, y
a
i , y

b
i | i œ

[q]} fi {yı, y
a
ı , y

b
ı} and denote its subset by bits(X) = {y

a
i , y

b
i | i œ [q]} fi {y

a
ı , y

b
ı}.

For every integer j œ [|X|], let bin(j) denote the binary representation of j using q bits.
Connect xj with yi if the i

th bit (going from left to right) in bin(j) is 1.
Add a vertex, denoted by nullifier(X), and connect it to each vertex in {yi | i œ [q]}fi{yı}.
For every vertex u œ V (G) \ (X fi X

+) such that u is adjacent to some vertex in X,
add an edge between u and nullifier(X). We add this vertex to ensure that vertices in
bit-rep(X) do not resolve critical pairs in V (G).

Set Representation Gadget. We define set-rep : [¸] ‘æ Fp as in Section 2.1, and recall that
p = O(log ¸). Suppose we have a “large” collection of vertices, say A = {a1, a2, . . . , a¸}, and
a “large” collection of critical pairs C = {Èc

¶
1
, c

ı
1
Í, Èc

¶
2
, c

ı
2
Í, . . . , Èc

¶
m, c

ı
mÍ}. Moreover, we are

given an injective function „ : [m] ‘æ [¸]. The objective is to design a gadget such that only
a„(q) œ A can resolve a critical pair Èc

¶
q , c

ı
qÍ œ C for any q œ [m], while keeping the treewidth

of this part of the graph of order O(log(|A|)). With this in mind, we do the following.
Add vertices and edges to identify the set A and to add critical pairs in C (for each
critical pair in C, both vertices share the same bit-representation in the Set Identifying
Gadget for C).
Add a validation portal, a clique on 2p vertices, denoted by V = {v1, v2, . . . , v2p}, and
vertices and edges to identify it.
For every i œ [¸] and for every p

Õ
œ set-rep(i), add the edge (ai, vpÕ).

For every critical pair Èc
¶
q , c

ı
qÍ, make c

¶
q adjacent to every vertex in V , and add every edge

of the form (cı
q , vpÕ) for p

Õ
œ [2p] \ set-rep(„(q)). Note that the vertices in V that are

indexed using integers in set-rep(„(q)) are not adjacent with c
ı
q .

See Figure 3 for an illustration. Now, consider a critical pair Èc
¶
q , c

ı
qÍ and suppose i = „(q).

By the construction, N(ai) fl N(c¶
q) ”= ÿ, whereas N(ai) fl N(cı

q) = ÿ. Hence, ai resolves
the critical pair Èc

¶
q , c

ı
qÍ as d(ai, c¶

q) = 2 and d(aj , cı
q) > 2.

For any other vertex in A, say aj , set-rep(j) \ set-rep(i) is a non-empty set. So, there are
paths from aj to c

¶
q and aj to c

ı
q through vertices in V with indices in set-rep(j)\set-rep(i).

This implies that d(aj , c¶
q) = d(aj , cı

q) = 2 and aj cannot resolve the pair Èc
¶
q , c

ı
qÍ.
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ai

aj

cq°

cq*

Figure 3 Set Representation Gadget. Let „(q) = i, i.e., only ai in A can resolve the critical
pair Èc¶

q , c
ı
qÍ. Let the vertices in V be indexed from top to bottom and let set-rep(i) = {2, 4, 5}. By

construction, the only vertices in V that cı
q is not adjacent to are v2, v4, and v5 (this is highlighted

by red-dotted edges). Thus, dist(ai, c
¶

q) = 2 and dist(ai, c
ı
q) > 2, and hence, ai resolves Èc¶

q , c
ı
qÍ. For

any other vertex in A, say aj , set-rep(j)\ set-rep(i) is non-empty, and thus, aj cannot resolve Èc¶

q , c
ı
qÍ.

2.3 Sketch of the Lower Bound Proof for Metric Dimension
With these tools in hand, we present an overview of the reduction from 3-Partitioned-3-SAT
used to prove Theorem 1, which we restate here for convenience.

I Theorem 1. Unless the ETH fails, Metric Dimension does not admit an algorithm
running in time 2f(diam)o(tw) · nO(1) for any computable function f : N ‘æ N.

The reduction in the proof of Theorem 1 takes as input an instance Â of 3-Partitioned-
3-SAT on 3n variables and returns (G, k) as an instance of Metric Dimension such that
tw(G) = O(log(n)) and diam(G) = O(1). In the following, we mention a crude outline of the
reduction, omitting some technical details.

2.3.1 Reduction
We rename the variables in X

– to x
–
i for i œ [n]. For every variable x

–
i , we add a critical

pair Èx
–,¶
i , x

–,ı
i Í of vertices. We denote X

– = {x
–,¶
i , x

–,ı
i | i œ [n]}.

For each variable x
–
i , we add the vertices t–

2i and f
–
2i≠1

. Let A– = {t
–
2i, f

–
2i≠1

| i œ [n]}.
For every i œ [n], we add the edges (x–,¶

i , t
–
2i) and (x–,¶

i , f
–
2i≠1

) which will ensure that any
resolving set contains at least one vertex in {t

–
2i, f

–
2i≠1

, x
–,¶
i , x

–,ı
i } for every i œ [n].

Let p be the smallest integer such that 2n Æ
!
2p
p

"
. In particular, p = O(logn). Define

set-rep : [2n] ‘æ Fp as in Section 2.1.
We add a validation portal, a clique on 2p vertices, denoted by V

– = {v
–
1
, v

–
2
, . . . , v

–
2p}.

For each i œ [n], we add the edge (t–
2i, v

–
pÕ) for every p

Õ
œ set-rep(2i). Similarly, for each

i œ [n], we add the edge (f–
2i≠1

, v
–
pÕ) for every p

Õ
œ set-rep(2i ≠ 1).

We repeat the above steps to construct X—
, A

—
, V

— , X“
, A

“
, V

“ .
For every clause Cq in Â, we introduce a pair Èc

¶
q , c

ı
qÍ of vertices. Let C be the collection

of vertices in such pairs.
We add edges across C and the portals as follows. Consider a clause Cq in Â and the
corresponding critical pair Èc

¶
q , c

ı
qÍ in C. Let ” œ {–,—, “}. As Â is an instance of 3-

Partitioned-3-SAT, at most one variable in X
” appears in Cq, say x

”
i for some i œ [n].

We add all edges of the form (v”
pÕ , c

¶
q) for every p

Õ
œ [2p]. If x”

i appears as a positive literal
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Vα

t2iα

f2i-1α

Aα

xiα,°

xiα,*

Xα C

cq°

cq*

nullifier(Xα) nullifier(Aα) nullifier(Vα) nullifier(С)

bit-rep(С)bit-rep(Vα)bit-rep(Aα)bit-rep(Xα)

Figure 4 Reduction for proof of Theorem 1. Yellow lines represent that vertex is connected
to every vertex in the set the edge goes to. Green edges denote adjacencies with respect to set-rep,
e.g., t–

2i is adjacent to vj œ V – if j œ set-rep(2i). Purple lines also indicate adjacencies with respect
to set-rep, but in a complementary way, i.e., if xi œ cq, then, for every pÕ œ [2p] \ set-rep(2i), we have
(v–

pÕ , cı
q) œ E(G), and if xi œ cq, then, for all pÕ œ [2p] \ set-rep(2i ≠ 1), we have (v–

pÕ , cı
q) œ E(G).

in Cq, then we add the edge (v”
pÕ , c

ı
q) for every p

Õ
œ [2p] \ set-rep(2i) (which corresponds

to t
”
2i). If x”

i appears as a negative literal in Cq, then we add the edge (v”
pÕ , c

ı
q) for every

p
Õ

œ [2p] \ set-rep(2i ≠ 1) (which corresponds to f
”
2i≠1

). Note that if x”
i appears as a

positive (negative, respectively) literal in Cq, then the vertices in V
” whose indices are

in set-rep(2i) (set-rep(2i ≠ 1), respectively) are not adjacent to c
ı
q . If no variable in X

”

appears in Cq, then we make each vertex in V
” adjacent to both c

¶
q and c

ı
q .

For all the sets mentioned above, we add vertices and edges to identify them as shown in
Figure 4 (for each critical pair, both vertices share the same bit-representation in their Set
Identifying Gadget). This concludes the construction of G. The reduction returns (G, k) as
an instance of Metric Dimension for some appropriate value of k.

2.3.2 Correctness of the Reduction
We give an informal description of the proof of correctness of the reverse direction here. Fix
” œ {–,—, “}. For all i œ [n], the only vertices that can resolve the critical pair Èx

”,¶
i , x

”,ı
i Í

are the vertices in {x
”,¶
i , x

”,ı
i } fi {t

”
2i, f

”
2i≠1

}. This fact and the budget k ensure that any
resolving set of G contains exactly one vertex from {t

”
2i, f

”
2i≠1

} fi {x
”,¶
i , x

”,ı
i } for all i œ [n].

This naturally corresponds to an assignment of the variable x
”
i if a vertex from {t

”
2i, f

”
2i≠1

} is
in the resolving set. However, if a vertex from {x

”,¶
i , x

”,ı
i } is in the resolving set, then we

can see this as giving an arbitrary assignment to the variable x
”
i . Suppose the clause Cq

contains the variable x
”
i as a positive literal. By the construction, every vertex in V

” that is
adjacent to t

”
2i is not adjacent to c

ı
q . However, c¶

q is adjacent to every vertex in V
”. Hence,

d(t”
2i, c

¶
q) = 2, whereas d(t”

2i, c
ı
q) > 2. Thus, t”

2i resolves the critical pair Èc
¶
q , c

ı
qÍ. Consider

any other vertex in A
”, say t

”
2j . Since set-rep(2i) is not a subset of set-rep(2j) (as both

have the same cardinality), there is at least one integer, say p
Õ, in set-rep(2j) \ set-rep(2i).

The vertex v
”
pÕ œ V

” is adjacent to t
”
2j , c¶

q , and c
ı
q . Hence, t”

2j cannot resolve the critical
pair Èc

¶
q , c

ı
qÍ as both these vertices are at distance 2 from it. Also, as Â is an instance of
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3-Partitioned-3-SAT, Cq contains at most one variable in X
”, which is x

”
i in this case.

This also helps to encode the fact that at most one vertex from A
” should be able to resolve

the critical pair Èc
¶
q , c

ı
qÍ. Since vertices in X

” cannot resolve critical pairs Èc
¶
q , c

ı
qÍ in C, then

finding a resolving set in G corresponds to finding a satisfying assignment for Â.

2.3.3 Lower Bounds Obtained from the Reduction
Let Z = {V

”
fi X

+
| X œ {X

”
, A

”
, V

”
, C}, ” œ {–,—, “}}. Note that |Z| = O(log(n)) and

G ≠ Z is a collection of P3’s and isolated vertices. Hence, tw(G), fvs(G), and td(G) are
upper bounded by O(log(n)). Also, G has constant diameter. Thus, if there is an algorithm
for Metric Dimension that runs in time 2f(diam)o(tw) (or 2f(diam)o(fvs) or 2f(diam)o(td)), then
there is an algorithm solving 3-Partitioned-3-SAT in time 2o(n), contradicting the ETH.

2.4 High-Level Description of the Dynamic Programming Algorithm for
Metric Dimension

The aim of this subsection is to give an informal description of how we prove the upper
bound concerning the parameter tw+ diam for Metric Dimension. To this end, we give
a dynamic programming algorithm on a tree decomposition for Metric Dimension. The
algorithm is inspired by the one from [7] for chordal graphs, though there are some non-trivial
di�erences. We will assume that a tree decomposition of the input graph G of width w is
given to us. Note that one can compute a tree decomposition of width w Æ 2tw(G) + 1 in
time 2O(tw(G))

n [42], and it can be transformed into a nice tree decomposition of the same
width with O(wn) bags in time O(w2

n) [40]. We now give a high-level overview of the
dynamic programming algorithm used to prove the following theorem.

I Theorem 2. Metric Dimension admits an algorithm running in time 2diamO(tw)
· n

O(1).

In [7], as the diameter of the graph was unbounded, it was crucial to restrict the
computations for each step of the dynamic programming to vertices “not too far” from the
current bag. This was possible due to the metric properties of chordal graphs. In our case,
as we consider the diameter of the graph as a parameter, we do not need such restrictions,
which makes the proof a little bit simpler.

We now give an intuitive description of the dynamic programming scheme. At each step of
the algorithm, we consider a bounded number of solution types, depending on the properties
of the solution vertices with respect to the current bag. At a given dynamic programming
step, we will assume that the current solution resolves all vertex pairs in Gi. Such a vertex
pair may be resolved by a vertex from G ≠ Gi, or by a vertex in Gi itself.

Any bag Xi of the tree decomposition whose node i lies on a path between two join
nodes in T , forms a separator of G: there are no edges between the vertices of Gi ≠ Xi and
G ≠ Gi. For a vertex v not in Xi, we consider its distance-vector to the vertices of Xi; the
distance-vectors induce an equivalence relation on the vertices of G ≠ Xi, whose classes we
call Xi-classes. Consider the two subgraphs Gi and G ≠ Gi. Any two solution vertices x, y
from G ≠ Gi that are in the same Xi-class, resolve the exact same pairs of vertices from Gi.
Thus, for this purpose, it is irrelevant whether x or y will be in a resolving set, and it is
su�cient to know that a vertex of their Xi-class will eventually be chosen. In this way, one
can check whether a vertex pair from Gi is resolved by a solution vertex of G ≠ Gi.

The same idea is used to “remember” the previously computed solution: it is su�cient
to remember the Xi-classes of the vertices in the previously computed resolving set, rather
than the vertices themselves.

ICALP 2024



66:12 Problems in NP Can Admit Double-Exponential Lower Bounds

It is slightly more delicate to make sure that vertex pairs in Gi are resolved in the case
where such a pair is resolved by a vertex in Gi. Indeed, this must be ensured, in particular
when processing a join node i, for vertex pairs belonging to bags in the two sub-trees
corresponding to the children i1, i2 of i. Such pairs may be resolved by four types of solution
vertices: from G ≠ Gi, Xi, Gi1 ≠ Xi, or Gi2 ≠ Xi. To ensure this, the dynamic programming
scheme makes sure that, at each step, for any possible pair C1, C2 of Xi-classes, all vertex
pairs Èu, vÍ consisting of a vertex u of Gi with class C1 and a vertex v of G ≠ Gi with class
C2 are resolved. The crucial step here is that when a new vertex v is introduced (i.e., added
to a bag Xi to form XiÕ), depending on its Xi-class, it must be made sure that it is resolved
from all other vertices depending on their Xi-classes, as described above. To ensure that v is
distinguished from all other vertices of Gi, we keep track of vertex pairs of Gi ◊ (G ≠ Gi)
that are already resolved by the partial solution, and enforce that, when processing bag XiÕ ,
for every vertex x of Gi, the pair Èx, vÍ is already resolved. As v belongs to the new bag XiÕ ,
we know its distances to all resolving vertices (indeed, XiÕ -classes of solution vertices can be
computed from their Xi-classes), and thus, the information can be updated accurately.

For a bag Xi and a vertex v not in Xi, the number of possible distance vectors to the
vertices of Xi is at most diam(G)|Xi|. Thus, a solution for bag Xi will consist of: (i) the
subset of vertices of Xi selected in the solution; (ii) a subset of the diam(G)|Xi| possible
vectors to denote the Xi-classes from which the currently computed solution (for Gi) contains
at least one vertex in the resolving set; (iii) a subset of the diam(G)|Xi| possible vectors
denoting the Xi-classes from which the future solution needs at least one vertex of G ≠ Gi

in the resolving set; (iv) a subset of the diam(G)|Xi| ◊ diam(G)|Xi| possible pairs of vectors
representing the Xi-classes of the pairs of vertices in Gi ◊ (G≠Gi) that are already resolved
by the partial solution.

3 Geodetic Set: Lower Bound Regarding Diameter plus Treewidth

The aim of this section is to prove the following theorem.

I Theorem 3. Unless the ETH fails, Geodetic Set does not admit an algorithm running
in time 2f(diam)o(tw) · nO(1) for any computable function f : N ‘æ N.

Here, we present a di�erent reduction from 3-Partitioned-3-SAT to Geodetic Set.
The reduction takes as input an instance Â of 3-Partitioned-3-SAT on 3n variables
and returns (G, k) as an instance of Geodetic Set such that tw(G) = O(log(n)) and
diam(G) = O(1). We rely on the tool of set representation from Section 2.2, that, for
convenience, we reintroduce in the context of Geodetic Set in the next subsection.

3.1 Preliminary Tool: Set Representation
For a positive integer p, define Fp as the collection of subsets of [2p] that contains exactly
p integers. We critically use the fact that no set in Fp is contained in any other set in Fp

(such a collection of sets is called a Sperner family). Let ¸ be a positive integer such that
¸ Æ

!
2p
p

"
. We define set-rep : [¸] ‘æ Fp as a one-to-one function by arbitrarily assigning a set

in Fp to an integer in [¸]. By the asymptotic estimation of the central binomial coe�cient,!
2p
p

"
≥

4
p

Ô
fi·p [36]. To get the upper bound of p, we scale down the asymptotic function and

have ¸ Æ
4
p

2p
= 2p. Thus, p = O(log ¸).

We will apply the existence of such a function in the context of Geodetic Set. Suppose
we have a “large” collection of vertices, say A = {a1, a2, . . . , a¸}, and a “large” collection of
vertices C = {c1, c2, . . . , cm}. Moreover, we are given a function „ : [m] ‘æ [¸]. The basic
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Vα

g3

Figure 5 Overview of the reduction. We only draw A– and V – here, as A— , A“ , V — , and V “ are
similar. The yellow lines joining g1, g2, y1, and y2 to sets indicate that the corresponding vertex is
adjacent to all the vertices of the corresponding set. Suppose that f–

2i≠1 and t–
2j are in the geodetic

set and xi appears in the clause cq. The thick green path is a shortest path between t–
2j and cbq

which does not cover cq. The thick violet path plus the edge (caq , cbq) is a shortest path between
f–
2i≠1 and cbq covering cq.

idea is to design gadgets such that cq is only covered by the shortest path from a„(q) œ A to
c
b
q (cbq is forced to be chosen in the geodetic set) for any q œ [m], while keeping the treewidth
of this part of the graph of order O(log(|A|)). To do so, we create a “small” intermediate
set V (of size O(log(|A|))) through which will go the shortest paths between vertices in A

and C, and we connect ai to the vertices of V corresponding to the bit-representation of
set-rep(i), and cq (with i = „(q)) to all the other vertices of V . In this way, the construction
will ensure that cq is covered by a shortest path between a„(q) and c

b
q, but is not covered by

any other shortest path between a vertex of A and a vertex of C. We give the details in the
following subsection.

3.2 Reduction
Consider an instance Â of 3-Partitioned-3-SAT, with X

–
, X

—
, X

“ the partition of the
variable set. From Â, we construct the graph G as follows. We describe the construction of
X

–, with the constructions for X— and X
“ being analogous. See Figure 5 for an illustration.

We rename the variables in X
– to x

–
i for i œ [n].

For every variable x
–
i , we add the vertices t–

2i and f
–
2i≠1

. Formally, A– = {t
–
2i, f

–
2i≠1

| i œ

[n]}, and hence, |A–
| = 2n.

For every variable x
–
i , we add four vertices: x–,Ù

i , x
–,Û
i , x

–,¶
i , x

–,ı
i . We make x

–,Ù
i and x

–,Û
i

adjacent to both t
–
2i and f

–
2i≠1

. We make x
–,¶
i adjacent to both x

–,Ù
i and x

–,Û
i . We make

x
–,ı
i adjacent to x

–,¶
i .

We add the vertices y1, y2, z1, z2. We make y1 and y2 adjacent to every vertex of A–. We
make yi adjacent to zi for i œ {1, 2}. Note that y1, y2, z1, z2 are common to X

— and X
“ .

We add the vertex g1 and make it adjacent to y1, y2, and x
–,¶
i for each i œ [n]. Note that

g1 is common to X
— and X

“ . We add edges between g1 and every vertex of A–.
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Let p be the smallest positive integer such that 2n Æ
!
2p
p

"
. In particular, p = O(logn).

We add a validation portal, a clique on 2p vertices, denoted by V
– = {v

–
1
, v

–
2
, . . . , v

–
2p}.

For each ” œ {–,—, “}, we add edges between g1 and every vertex of V ”.
For every clause Cq in Â, we introduce three vertices: cq, caq , cbq. We add the edges (cq, caq )
and (caq , cbq).
Define set-rep : [2n] ‘æ Fp as an arbitrary injective function, where Fp is the Sperner family
(and p is as defined two items above). Add the edge (t–

2i, v
–
pÕ) for every p

Õ
œ set-rep(2i) and

the edge (f–
2i≠1

, v
–
pÕ) for every p

Õ
œ set-rep(2i≠ 1). If the variable x

–
i appears positively in

the clause Cq, then we add the edges (cq, v–
pÕ) and (caq , v–

pÕ) for every p
Õ
œ [2p] \ set-rep(2i).

If the variable x
–
i appears negatively in the clause Cq, then we add the edges (cq, v–

pÕ)
and (caq , v–

pÕ) for every p
Õ
œ [2p] \ set-rep(2i ≠ 1).

Add a vertex g2 and make g2 adjacent to every vertex of A
– and every vertex of

{cq : q œ [m]}. Note that g2 is common to X
— and X

“ .
Add a vertex g3 and make it adjacent to every vertex of {caq : q œ [m]}. Note that g3 and
the vertices of {cq, caq , cbq : q œ [m]} are common to X

— and X
“ .

This concludes the construction of G. The reduction returns (G, k) as an instance of
Geodetic Set where k = 6n+m+ 2.

3.3 Correctness of the Reduction
Suppose, given an instance Â of 3-Partitioned-3-SAT, that the reduction above returns
(G, k) as an instance of Geodetic Set.

I Lemma 4. If Â is a satisfiable 3-Partitioned-3-SAT formula, then G admits a geodetic
set of size k.

Proof. Suppose that fi : X–
fi X

—
fi X

“
‘æ {True, False} is a satisfying assignment for Â.

We construct a geodetic set S of size k for G using this assignment.
For every ” œ {–,—, “} and i œ [n], if fi(x”

i ) = True, then let t
”
2i œ S, and otherwise,

f
”
2i≠1

œ S. We also put z1, z2, x”,ı
i , and c

b
q into S for all i œ [n], ” œ {–,—, “}, and q œ [m].

Note that |S| = k.
Now, we show that S is indeed a geodetic set of G. First, y1, y2, z1, z2, g1, and all

the vertices of A–
, A

—
, A

“ are covered by a shortest path between z1 and z2. Then, for
each ” œ {–,—, “} and i œ [n], x”,Ù

i , x”,Û
i , x”,¶

i , and x
”,ı
i are covered by a shortest path

between S fl {t
”
2i, f

”
2i≠1

} and x
”,ı
i . The vertex g3 is covered by any shortest path between

c
b
q and c

b
qÕ , where Cq and CqÕ are two clauses of Â. Suppose that fi(x”

i ), for some i œ [n]
and ” œ {–,—, “}, satisfies some clause Cq. By our construction, if x”

i appears positively
(negatively, respectively) in Cq, then t

”
2i (f”

2i≠1
, respectively) and c

b
q are at distance four

since t
”
2i (f”

2i≠1
, respectively) and c

a
q have no common neighbor in V

”. Moreover, there is
a shortest path from t

”
2i (f”

2i≠1
, respectively) to c

b
q of length four, covering g2, cq, c

a
q , and

c
b
q; there is also a shortest path from t

”
2i (f”

2i≠1
, respectively) to c

b
q of length four, covering

v
”
j , v

”
h, c

a
q , and c

b
q, where v

”
j œ V

” is a vertex adjacent to t
”
2i (f”

2i≠1
, respectively) and v

”
h is

any vertex of V ” that is not adjacent to t
”
2i (f”

2i≠1
, respectively). Thus, every vertex of V ”

for ” œ {–,—, “} is covered by a shortest path between two vertices of S. Since every clause
of Â is satisfied by fi, it follows that every vertex of {cq, caq , cbq : q œ [m]} is covered by a
shortest path between two vertices of S. As a result, S is a geodetic set of G. J

I Lemma 5. If G admits a geodetic set of size k, then Â is a satisfiable 3-Partitioned-3-
SAT formula.
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Proof. Suppose that G has a geodetic set S of size at most k. Since they all have degree 1,
z1, z2, x”,ı

i , and c
b
q for all i œ [n], ” œ {–,—, “}, and q œ [m] must be in any geodetic set S of

G.

B Claim 6. For each i œ [n] and ” œ {–,—, “}, exactly one of t”
2i and f

”
2i≠1

must be in S.

Proof. Since S is a geodetic set, for each i œ [n] and ” œ {–,—, “} x
”,Ù
i and x

”,Û
i must be covered

by shortest paths between two vertices of S. If t”
2i œ S (f”

2i≠1
œ S, respectively), x”,Ù

i and x
”,Û
i

are covered by shortest paths between t
”
2i œ S (f”

2i≠1
œ S, respectively) and x

”,ı
i . Suppose

that, for some iÕ œ [n] and ”
Õ
œ {–,—, “}, neither of t”Õ

2iÕ and f
”Õ

2iÕ≠1
is in S. Moreover, if neither

of x”Õ,Ù
iÕ and x

”Õ,Û
iÕ is in S, then, due to the edges incident with g1, no vertices in S have a

shortest path containing any of these two vertices. Similarly, if only one of x”Õ,Ù
iÕ and x

”Õ,Û
iÕ is in

S, then the other is not covered by S. Thus, if neither of t”Õ

2iÕ and f
”Õ

2iÕ≠1
is in S, then both x

”Õ,Ù
iÕ

and x
”Õ,Û
iÕ must be in S. Since k≠|{z1, z2}fi{x

”,ı
i : i œ [n], ” œ {–,—, “}}fi{c

b
q : q œ [m]}| = 3n,

we conclude that exactly one of t”
2i and f

”
2i≠1

must be in S for each i œ [n] and ” œ {–,—, “}.
C

By Claim 6 and earlier arguments, we now have that |S| = k.

B Claim 7. For each q œ [m], the vertex cq is covered either by a shortest path between
c
b
q and t

”
2i, where the variable x

”
i appears positively in the clause Cq, or by a shortest path

between c
b
q and f

”
2i≠1

, where the variable x
”
i appears negatively in the clause Cq. Moreover,

cq is covered by no other type of shortest path between two vertices in S.

Proof. By the construction of G, if the variable x
”
i appears positively in the clause Cq, then

there is a shortest path from t
”
2i to c

b
q of length four covering g2, cq, c

a
q , and c

b
q. If the variable

x
”
i appears negatively in the clause Cq, then there is a shortest path from f

”
2i≠1

to c
b
q of

length four covering g2, cq, c
a
q , and c

b
q.

Next, we show that cq is not covered by any shortest path between any other two vertices
of S. We can check that cq is not covered by any of the shortest paths between z1 and z2,
between zj (j œ {1, 2}) and x

”,ı
i (i œ [n], ” œ {–,—, “}), and between zj (j œ {1, 2}) and

S fl {t
”
2i, f

”
2i≠1

} (i œ [n], ” œ {–,—, “}). Note that any shortest path from zj (j œ {1, 2}) to
c
b
q (q œ [m]) is of length five, covering yj , some vertex of A” (” œ {–,—, “}), some vertex of
V

”, caq , and c
b
q.

We can check that cq is not covered by any of the shortest paths between x
”,ı
i and x

”Õ,ı
iÕ

(i, iÕ œ [n], ”, ”Õ
œ {–,—, “}), and between x

”,ı
i and Sfl{t

”Õ

2iÕ , f
”Õ

2iÕ≠1
} (i, iÕ œ [n], ”, ”Õ

œ {–,—, “}).
Note that any shortest path from x

”,ı
i (i œ [n], ” œ {–,—, “}) to c

b
q (q œ [m]) is of length five,

covering x
”,¶
i , g1, some vertex of V ”, caq , and c

b
q.

Note that any shortest path between c
b
q and c

b
qÕ (q, qÕ

œ [m]) is of length four, covering c
a
q ,

g3, and c
a
qÕ .

We can check that cq is not covered by any shortest paths between S fl {t
”
2i, f

”
2i≠1

} and
S fl {t

”Õ

2iÕ , f
”Õ

2iÕ≠1
} (i, iÕ œ [n], ”, ”Õ

œ {–,—, “}).
If the variable x

”
i does not appear positively in the clause Cq, then any shortest path

between c
b
q and t

”
2i is of length three (because c

a
q and t

”
2i have a common neighbour in V

”),
covering some vertex of V ” and c

a
q , but not cq. Similarly, if x”

i does not appear negatively in
Cq, then any shortest path between c

b
q and f

”
2i≠1

is of length three and does not cover cq.
By the case analysis above, the claim is true. C

By Claim 6, exactly one vertex of t
”
2i and f

”
2i≠1

belongs to S for each i œ [n] and
” œ {–,—, “}. We define an assignment fi to the variables of Â as follows. For each i œ [n] and
” œ {–,—, “}, if t”

2i œ S, then fi(x”
i ) = True. Otherwise, fi(x”

i ) = False. Since S is a geodetic

ICALP 2024
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set for G, every vertex cq (q œ [m]) is covered by a shortest path between two vertices of S.
By Claim 7, every vertex cq (q œ [m]) is covered by a shortest path between S fl {t

”
2i, f

”
2i≠1

}

and c
b
q, where the variable x

”
i appears in the clause Cq. It follows that every clause Cq is

satisfied by fi(x”
i ). As a result, Â is a satisfiable 3-Partitioned-3-SAT formula. J

Proof of Theorem 3. First, it is not hard to check that the diameter of G is at most 5.
Then, let X = V

–
fi V

—
fi V

“
fi {g1, g2, g3, y1, y2}. We can check that every component of

G \X has at most six vertices and |X| = O(logn). Thus, the treewidth tw(G) – in fact, even
the treedepth td(G) – of G is bounded by O(logn). By the description of the reduction,
it takes polynomial time to compute the reduced instance. Hence, if there is an algorithm
for Geodetic Set that runs in time 2f(diam)o(tw) (or 2f(diam)o(td)), then there is an algorithm
running in time 2o(n) for 3-Partitioned-3-SAT, which contradicts the ETH. J

4 Conclusion

We have shown (under the ETH) that three natural metric-based graph problems, Metric

Dimension, Geodetic Set, and Strong Metric Dimension, exhibit tight (double-)
exponential running times for the standard structural parameterizations by treewidth and
vertex cover number. This includes tight double-exponential running times for treewidth
plus diameter (Metric Dimension and Geodetic Set) and for vertex cover (Strong
Metric Dimension).

Such tight double-exponential running times for FPT structural paramaterizations of
graph problems had previously been observed only for counting problems and problems
complete for classes above NP. Thus, surprisingly, our results show that some natural
problems can be in NP and still exhibit such a behavior.

It would be interesting to see whether this phenomenon holds for other graph problems in
NP, and for other structural parameterizations. Perhaps one can determine certain properties
shared by these metric-based graph problems, that imply such running times, with the goal
of generalizing our approach to a broader class of problems. In particular, concerning the
general versatile technique that we designed to obtain the double-exponential lower bounds,
it would be intriguing to see for which other problems in NP our technique works.

In fact, after this paper appeared online, our technique was successfully applied to an
NP-complete problem in machine learning [11] (for vc) as well as NP-complete identification
problems [10] (for tw).
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Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ™ V (G) of k
terminals, and a demand graph D on T . The task is to find a subgraph H ™ G with the minimum
number of edges such that for every (s, t) œ E(D), the solution H contains a directed s æ t path.
The goal of this paper is to investigate how the complexity of the problem depends on the demand
pattern in planar graphs. Formally, if D is a class of directed graphs, then the D-Steiner Network
(D-DSN) problem is the special case where the demand graph D is restricted to be from D. We
give a complete characterization of the behavior of every D-DSN problem on planar graphs. We
classify every class D closed under transitive equivalence and identification of vertices into three
cases: assuming ETH, either the problem is
1. solvable in time 2O(k) · nO(1), i.e., FPT parameterized by the number k of terminals, but not

solvable in time 2o(k) · nO(1),
2. solvable in time f(k) · nO(

Ô
k), but cannot be solved in time f(k) · no(

Ô
k), or

3. solvable in time f(k) · nO(k), but cannot be solved in time f(k) · no(k).
Our result is a far-reaching generalization and unification of earlier results on Directed Steiner
Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar
graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely
planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved
in time f(k) · no(k): given two sets of terminals S and T with |S|+ |T | = k, find a subgraph with
minimum number of edges such that every vertex of T is reachable from every vertex of S.
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terminal. This problem models a network-design scenario where the terminals need to
be connected to each other with a network of minimum cost. Steiner Forest is the
generalization where we do not require connection between every pair of terminals, but have
to satisfy a given set of demands. Formally, the input of Steiner Forest is a graph G
with pairs of vertices (s1, t1), . . . , (sd, td), the task is to find a subgraph with the minimum
number of edges that satisfies every request, that is, si and ti are in the same component of
the solution for every i œ [d].

On directed graphs, Directed Steiner Tree (DST) is defined by specifying one of the
terminals in T to be the root and the task is to find a subgraph with the smallest number of
edges such that there is a path from the root to every terminal in the solution. This problem
models a scenario where we need to construct a network where the root can broadcast to
every other terminal. An equally natural network design problem on directed graphs is
the Strongly Connected Steiner Subgraph (SCSS) problem, where given a directed
graph G and a set T ™ V (G) of terminals, the task is to find a subgraph with the smallest
number of edges where T is in a single strongly connected component, or in other words, the
solution contains a path from every terminal to every other terminal. The directed variant
of Steiner Forest generalizes both of these problems: in Directed Steiner Network
(DSN), the input is a digraph G with pairs of vertices (s1, t1), . . . , (sd, td), and the task is
to find a subgraph with the minimum number of edges that has an si æ ti path for every
i œ [d].

Planar graphs. A well-known phenomenon on planar graphs is that the running time
of parameterized algorithms for typical NP-hard problems have exponential dependence
on O(

Ô
k), where k is the parameter, and this dependence is best possible assuming the

Exponential-Time Hypothesis (ETH) [8–10,15,20,21,24,26–28,30]. All three of DST, SCSS,
and DSN remain NP-hard on planar graphs. However, they behave very di�erently from the
viewpoint of parameterized complexity: the dependence of the running time on the number
k of terminals is very di�erent.

Our starting point

1. Planar DST can be solved in time 2k · nO(1) [4], but cannot be solved in time
2o(k) · nO(1) [27], assuming the ETH.

2. Planar SCSS can be solved in time 2O(k log k) · nO(
Ô
k) [8], but has no algorithm

with running time f(k) · no(
Ô
k) for any function f , assuming the ETH [8].

3. Planar DSN can be solved in time f(k) · nO(k) [12], but has no algorithm with
running time f(k) · no(k) for any function f , assuming the ETH [8].

Using the terminology of parameterized complexity, Planar DST is fixed-parameter

tractable (FPT) parameterized by the number k of terminals, but does not admit a subex-

ponential FPT algorithm, assuming the ETH. For Planar SCSS and Planar DSN, it is
already a highly nontrivial result to show that there is an algorithm that runs in polynomial
time for fixed values of k; such an algorithm is called an XP algorithm. Furthermore, Planar
SCSS admits a subexponential XP algorithm (i.e., the exponent of n is o(k)), while Planar
DSN has no such algorithm, assuming the ETH.

As these results show, there has been significant interest in parameterized directed
connectivity problems on planar graphs and in particular tight bounds were obtained for
the three problems Planar DST, Planar SCSS, Planar DSN. But what can we say
about other natural variants of connectivity requirements? For example, already with the
simple extension that the input contains two sets of terminals T1 and T2, we can define three
di�erent natural connectivity requirements:
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(1) The solution has to contain a directed path from any t œ Ti to any tÕ œ Ti.
(2) The solution has to contain a directed path from any t œ T1 to any tÕ œ T1 fi T2.
(3) The solution has to contain a directed path from any t œ T1 to any tÕ œ T2.

Do these problems behave similarly to one of the three problems listed above? The goal
of this paper is to answer such questions by putting the previous results into the context
of a wider landscape of directed network design problems. We systematically explore other
special cases of Planar DSN and determine their behavior on planar graphs. Our main
result is showing that every special case defined in a formal setting behaves similarly to one
of the three problems Planar DST, Planar SCSS, Planar DSN: assuming the ETH,
the best possible running time is of the form 2O(k) · nO(1), f(k) · nO(

Ô
k), or f(k) · nO(k).

Furthermore, we provide an exact combinatorial characterization of the problems belonging
to the three classes. In particular, we can use these results to show that variants (1) and (2)
behave similarly to Planar SCSS, while variant (3) behaves similarly to Planar DSN.
Therefore, (3) is a rare (perhaps first) example of a planar problem with k terminals where
the best possible running time is nO(k) and the input can be described in a purely planar
way (by the two sets T1 and T2) that does not contain any extra information violating the
planarity of the instance. This is in stark contrast with the general Planar DSN problem,
where the lower bound showing the optimality of the nO(k) running time requires that the
input contain an arbitary list of pairs of vertices, giving a highly nonplanar input.

Dichotomy for general graphs. We explore the di�erent special cases of Directed Steiner
Network on planar graphs in a framework similar to how Feldmann and Marx [14] treated
the problem on general graphs. We can define various special cases of Directed Steiner
Network by looking at what kind of graph the connection demands define on the terminals:
it is an out-star for Directed Steiner Tree, a bidirected clique for Strongly Connected
Steiner Subgraph, and a matching for Directed Steiner Network. More generally,
for every class D of directed graphs, we investigate the problem where the pattern of demands
has to belong to the class D. Our goal is to understand how the graph-theoretic properties
of the members of D influence the resulting special case of Directed Steiner Network.

Formally, for every class D, Feldmann and Marx [14] defined the restriction of the problem
in the following way.

D-Steiner Network
Input: Digraph G, a set of k terminals T ™ V (G), and a demand digraph D œ D with
vertex set T .
Question: What is the minimum number of edges in a subgraph H of G where for each
(u, v) œ E(D) there is a u æ v path in H?

One can define also the weighted version of the problem: the input contains weights on the
edges and the goal is to minimize the total weight of the subgraph H. Typically, the weighted
generalization does not make the problem harder (polynomially bounded integer weights can
be easily simulated by subdivided edges, but the algorithmic results in this paper and earlier
work allows integer weights in binary as well). Feldmann and Marx [14] characterized those
classes D where D-Steiner Network is fixed-parameter tractable (FPT) parameterized by
the number of terminals, that is, can be solved in time f(k) · nO(1). The characterization can
be stated in a clean way in terms of five hard families of patterns if we observe the following
closure properties of the problem. Observe first that only the transitive closure of D matters
for the problem: if D1 and D2 have the same transitive closure, then having D1 or D2 in the
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input results in exactly the same problem. Therefore, it makes sense to consider only classes
D that are closed under transitive equivalence, that is, if D1 and D2 have the same transitive
closure and D1 œ D, then D2 œ D as well. Moreover, we may assume that D is closed under

identifying vertices: that is, if G œ D and GÕ is obtained by merging two vertices x, y œ V (G)
to a single vertex whose in- and out-neighbors are the union of the in- and out-neighbors of x
and y, respectively, then GÕ is also in D. Feldmann and Marx [14, Lemma 5.2] showed that if
D-Steiner Network is FPT, then it is FPT also for the closure DÕ of D under identifying
vertices, that is, adding further demand patterns obtained by identifying vertices does not
make the problem any harder. Intuitively, if DÕ is obtained from D œ D by identifying x
and y to w, then an instance with demand pattern DÕ can be simulated by an instance with
demand pattern D if we replace w with the two terminals x and y connected by 0-weight
edges in both direction (or something similar in case of unweighted graphs1).

These arguments show that it is su�cient to obtain a characterization for classes closed
under transitive equivalence and identifying vertices. Under these assumptions, Feldmann
and Marx [14] identified five graph classes that prevent the problem from being FPT. A
pure out-diamond is a complete bipartite graph K2,t directed from the 2-element side to the
t-element side. A flawed out-diamond has in addition a vertex v and edges going from v
to the 2-element side. The pure in-diamond and flawed in-diamond are defined similarly
by reversing edge orientations. Let us denote by A1, A2, . . . , A5 the class of all pure
out-diamonds, flawed out-diamonds, pure in-diamonds, flawed in-diamonds, and directed
cycles, respectively.

I Theorem 1 (Feldmann and Marx [14]). Let D be a class of graphs closed under transitive

equivalence and identifying vertices.

1. FPT: If Ai ”™ D for any i œ [5], then D-Steiner Network can be solved in time

2O(k)nO(1)
, where k is the number of terminals.

2. Hard: If Ai ™ D for some i œ [5], then D-Steiner Network is W[1]-hard parameterized

by the number k of terminals.

The first part of Theorem 1 was proved by a combination of an algorithm that solves the
problem in time 2O(kw logw) · nO(w) if there is an optimum solution with treewidth w and a
combinatorial result showing that if D is not the superset of Ai for any i œ [5], then there is
a constant bound on the treewidth of optimum solutions. The second part follows from a
W[1]-hardness result for each of the five classes Ai.

Our result: trichotomy for planar graphs. Our main result classifies Planar D-Steiner
Network (the special case of the problem restricted to planar digraphs G) into three levels
of complexity: 2O(k) · nO(1), f(k) · nO(

Ô
k), or f(k) · nO(k) time. In light of Theorem 1 and

the earlier results on planar graphs, there are three natural questions that arise:
1. Are there cases that are FPT on planar graphs, but W[1]-hard on general graphs?
2. Are there subexponential FPT cases on planar graphs, that is, where the running time is

2o(k) · nO(1)?
3. Are there W[1]-hard cases where the optimal running time is neither f(k) · nO(

Ô
k) nor

f(k) · nO(k)? If not, where is the boundary line between these two cases?

1 As mentioned above, polynomially bounded integer weights can be simulated by subdivision of edges. If
there are C edges of weight 0, then let us consider every original weight-1 edge to have weight C+1 (i.e.,
a path of length C + 1) and every weight-0 to have weight 1. Then the original instance has a solution
of weight at most x if and only if the new instance has a solution of weight at most x(C + 1) + C.



E. Galby, S. Kisfaludi-Bak, D. Marx, and R. Sharma 67:5

We answer the first question negatively: the hard cases remain hard on planar graphs. The
answer to the second question is also negative: we show that every (nontrivial) case of
Planar D-DSN is at least as hard as Directed Steiner Tree, hence a known lower
bound [27] shows that there is no subexponential FPT algorithm, assuming the ETH.

The answer to the third question is positive, but arguably for the wrong reason. Consider
the following artificial case. Let D = {D1, D2, . . . } be defined the following way: Di consists
of the disjoint union of an out-star of i edges and a directed matching of Álog2 iË edges. Using
the results of Feldmann and Marx [14, Theorems 1.4 and 1.5], it can be shown that Planar
D-DSN is solvable in time f(k)nO(log k), as the graph Di can be interpreted as a “1-caterpillar
with Álog2 iË extra edges” (see the definition in [14]) and hence there is an optimum solution
of treewidth O(log k). On the other hand, a Planar DSN problem with Álog2 iË terminal
pairs can be reduced to Planar D-DSN with pattern Di: we can e�ectively “ignore” the
terminals in the out-star by putting these terminals on a directed cycle of 0-weight edges.
Thus the lower bound ruling out f(k)no(k) algorithms for Planar DSN [8] translates into
a lower bound ruling out f(k)no(log k) algorithms for Planar D-DSN, assuming the ETH.
Therefore, the optimal exponent of n in the running time is O(log k). This is somewhat
counterintuitive: as there is a simple reduction from Planar DSN to Planar D-DSN,
it feels that the latter problem should be harder. Formally, however, this is not the case:
the reduction introduced a new, irrelevant, trivial part of the problem (the terminals on the
cycle of 0-weight edges), which increased the parameter significantly.

One could argue that such trivial features of the instance should not influence the way we
measure the complexity of the problem. Terminals that are in the same strongly connected
component of 0-weight edges can be e�ectively treated as a single terminal. Therefore, instead
of the parameter k being the number of terminals, one could consider the parameter to be
the number of strongly connected components of the 0-weight edges that contain terminals,
or in other words, the number of terminals after contracting every directed cycle of weight
0. With this parameterization, the reduction from Planar DSN increases the parameter
only by 1 and shows that Planar D-DSN has no f(k)no(k) time algorithm, satisfying the
expectation that the problem should be at least as hard as Planar DSN. Equivalently, we
can consider the closure DÕ of D under identifying vertices: then DÕ contains every directed
matching, hence the problem is clearly at least as hard as Planar SCSS. Assuming that the
pattern class D is closed under identifying vertices is a clean way of formalizing the intention
that we want to consider terminals in a strongly connected component of weight-0 edges as
a single terminal that contributes only 1 to the parameter. In order to obtain meaningful
classifications, we assume in the rest of the paper that the class of patterns has this closure
property. This way, we avoid pathological examples similar to the one described above.

Under the assumption that D is closed under transitive equivalence and identifying
vertices, we can answer the third question in the negative and map the boundary line between
the f(k) ·nO(

Ô
k) and the f(k) ·nO(k) cases. We define a finite number Ÿ Æ 300000 of classes Ci,

i œ [Ÿ], and show that these are precisely the classes of patterns that prevent subexponential
f(k) · nO(

Ô
k) time algorithms. Note that for every i œ [Ÿ], it is easy to show that arbitrary

large strongly connected graphs can be obtained from Ci by identifying vertices. That is, if D
is closed under transitive equivalence and identifying vertices, and Ci ™ D, then A5 ™ Ci ™ D,
i.e., D contains every directed cycle. Thus we have three di�erent cases depending on whether
D contains (1) none of the Ai’s, (2) some Ai, but no Ci, or (3) some Ci.

ICALP 2024
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B
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Figure 1 The 5-hard biclique patterns: each gray vertex may or may not be present.

Our main result

I Theorem 2. Let D be a class of directed graphs closed under transitive equivalence

and identifying vertices where the number of edges is not bounded.

1. FPT: If Ai ”™ D for any i œ [5], then Planar D-Steiner Network
(i) can be solved in time 2O(k) · nO(1)

,

(ii) but has no 2o(k) · nO(1)
time algorithm assuming the ETH.

2. Subexponential XP: If Ai ™ D for some i œ [5], but Ci ”™ D for any i œ [Ÿ], then
Planar D-Steiner Network
(iii) can be solved in time f(k) · nO(

Ô
k)
,

(iv) but has no f(k) · no(
Ô
k)

time algorithm assuming the ETH.

3. Hard XP: If Ci ™ D for some i œ [Ÿ], then Planar D-Steiner Network
(v) can be solved in time f(k) · nO(k)

,

(vi) but has no f(k) · no(k)
time algorithm assuming the ETH.

We remark that the algorithms work also for weighted graphs, while the lower bounds
hold already for unweighted graphs.

Hard classes. Let us define now the graph classes Ci representing the hard-patterns. Given a
digraph G and a set X ™ V (G), an X-source is a vertex s œ V (G) \X such that N+(s) = X.
Similarly, an X-sink is a vertex t œ V (G) \X such that N≠(t) = X. The first 4 classes C1,
. . . , C4 are defined by extending a biclique.

I Definition 3 (t-hard-biclique-pattern). A t-hard-biclique-pattern is an (acyclic) digraph D
constructed in the following way. We start with two disjoint sets A and B with |A| = |B| = t
and introduce every edge from A to B. Furthermore, we introduce into D any combination

of the following items (see Figure 1):

1. an A-source;

2. a B-sink.

In particular, there are 2 · 2 types of t-hard-biclique patterns: we let C1, . . . , C4 be the 4 classes

that each contain all the t-hard-biclique-patterns of a specific type for every t.

The following definition specifies the remaining classes.

I Definition 4 (t-hard-matching-pattern). A t-hard-matching-pattern is an (acyclic) digraph

D constructed the following way. We start with disjoint vertex sets W = {w1, . . . , wt},
X = {x1, . . . , xt}, Y = {y1, . . . , yt} and Z = {z1, . . . , zt} and introduce the edges wixi and

yizi for every i œ [t]. Furthermore, we introduce into D any combination of the following

items:
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Figure 2 The 4-hard matching patterns (without source, sink, rWZ , or rY X).

1. either the directed path w1 æ w2 æ . . . æ wt æ z1 æ z2 æ . . . æ zt, or any of the

directed paths w1 æ w2 æ . . . æ wt and z1 æ z2 æ . . . æ zt;

2. either the directed path y1 æ y2 æ . . . æ yt æ x1 æ x2 æ . . . æ xt, or any of the

directed paths x1 æ x2 æ . . . æ xt and y1 æ y2 æ . . . æ yt;

3. a vertex s such that for exactly one S œ {W,X, Y, Z,W fi Y,X fi Z,X fi Y,W fi Z},
N+(s) fl (W fi X fi Y fi Z) = S;

4. a vertex t such that for exactly one S œ {W,X, Y, Z,W fi Y,X fi Z,X fi Y,W fi Z},
N≠(t) fl (W fi X fi Y fi Z) = S;

5. a vertex rWZ such that N≠(rWZ) \ {s} = W and N+(rWZ) \ {t} = Z;

6. a vertex rY X such that N≠(rY X) \ {s} = Y and N+(rY X) \ {t} = X;

7. arc s æ rWZ if N+(s) fl W = ÿ, or arc s æ rY X if N+(s) fl Y = ÿ, or both if

N+(s) fl (W fi Y ) = ÿ;
8. arc rWZ æ t if N≠(t) fl Z = ÿ, or arc rY X æ t if N≠(t) fl X = ÿ, or both if N≠(t) fl

(Z fi X) = ÿ
9. arc s æ t if s cannot already reach t.

In particular, there are less than 5 · 5 · 9 · 9 · 2 · 2 · 4 · 4 · 2 types of t-hard matching patterns: we

let C5, . . . , CŸ , where Ÿ Æ 259200, be the classes that each contain all the t-hard-matching-

patterns of a specific type for every t.

Note that some of these classes are isomorphic. For example, adding the path x1 æ xt or
the path z1 æ zt lead to isomorphic graphs. If we just consider the graph classes where we
choose not to add a source, sink, vertex rWZ , or vertex rY X , then we have 15 non-isomorphic
classes, as shown in Figure 2. One could think of t-hard-matching-patterns as (the transitive
closure of) one of these graphs, potentially extended by appropriate sources, sinks, and
rWZ/rY X vertices.

Finally, we define a t-hard pattern as any of the patterns defined above.

I Definition 5 (t-hard-pattern). A t-hard-pattern is either a t-hard-biclique-pattern or t-
hard-matching-pattern, that is, a pattern that belongs to one of the Ÿ classes C1, . . . , CŸ

defined in Definitions 3 and 4.
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1.1 Overview of our main result
Observe that Theorem 2 consists of six statements. Let us briefly discuss how these six
statements are proved. Note that some of these statements follow from known results, while
for others we need to do a substantial amount of new technical work. The proofs of statements
(iii) and (vi) form the main technical part of the paper (see Figure 4).

The main problem studied in this paper, obtaining tight upper and lower bounds for
di�erent families of network design problems, is a genuine computer science question. Due to
the nature of the question we are asking, our results are at the intersection of computational
complexity, algorithms, and combinatorics (graph theory). The lower bounds are obtained
using the standard method of computational complexity: by reductions from problems for
which (conditional) lower bounds were already established. In particular, we are using the
known lower bounds for Planar DSN and Planar SCSS on planar graphs [8]. However,
the majority of the hardness proofs we present contain significant new ideas, new gadget
constructions, and use new non-obvious global structures when connecting the gadgets.

The upper bounds are obtained using an algorithm of Feldmann and Marx [14] (see
Theorem 7 below) solving the problem in time depending on the treewidth of an optimum
solution. Therefore, in this paper the main technical e�ort is spent on the combinatorial
question of bounding the treewidth of optimum solutions. Our proof uses planarity in a
geometric way (arguing about faces, invoking Sperner’s Lemma, etc.) and hence completely
di�erent from earlier proofs that relied only on bidimensionality of planar graphs [8]. The
treewidth-based algorithm o�ers an abstraction that allows us to treat the upper bounds in
a clean, modular manner. Thus we can focus our e�orts on understanding the patterns that
allow faster solutions, without having to develop details of algorithmic steps.

Furthermore, we have the purely combinatorial task of connecting the obstructions that
prevent the treewidth upper bound and the hard structures. In the full version [16], we
establish this connection with a heavy use of case analysis and Ramsey-theoretical arguments.
The type and amount of combinatorial e�ort is very di�erent from what was needed in earlier
work on general graphs [14], where more elementary arguments were su�cient.

Statement (i): FPT algorithms
The FPT result (i) follows directly from Theorem 1 (here the surprising aspect is that, by
statement (iv), there are no further FPT cases).

Statement (ii): no subexponential FPT algorithms
The lower bound (ii) follows by observing that every relevant class contains either all in-stars
or all out-stars, hence the lower bound for Directed Steiner Tree [27] applies. To avoid
triviality, we need to assume that the class contains graphs with arbitrarily large number of
edges.

I Lemma 6. Let D be a class of graphs closed under identifying vertices and transitive

closure where the number of edges of the graphs is not bounded. Then one of the following

holds:

D contains every directed cycle,

D contains every out-star, or

D contains every in-star.

In statement (ii) of Theorem 2, we assume that Ai ”™ D, and A5 is the class of all directed
cycles. Thus D contains either every out-star or every in-star.
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Statement (iii): f(k)nO(
Ô
k) algorithms

Our main technical result is proving statement (iii): the existence of an f(k) · nO(
Ô
k) time

algorithm if Ci ”™ D for any i œ [Ÿ] (in the following subsection, we give a more detailed
description of the proof). This algorithm is obtained by showing that the treewidth of the
optimal solution is always O(

Ô
k) under these conditions. Then we can use the following

result of Feldmann and Marx [14].

I Theorem 7 (Theorem 1.5 of [14]). If an instance (G,T,D) of Directed Steiner Net-
work has an optimum solution H of treewidth w, then it can be solved in 2O(kw logw) · nO(w)

time.

Note that this is a slightly weaker form of the statement, with a simplified bound on
the running time. With Theorem 7 at hand, our main goal is to prove that every optimum
solution of Planar D-DSN has treewidth O(

Ô
k) if Ci ”™ D for any i œ [Ÿ].

Towards proving this bound, we first translate the question to a problem on acyclic
graphs: it is su�cient to show that if the solution is acyclic, then the total degree of the
branch vertices (i.e., of degree > 2) is O(k). More formally, for a vertex v of a digraph, let
dú(v) denote the branch degree of v, defined as

dú(v) = max(d+(v) + d≠(v) ≠ 2, 0),

where d+(v) and d≠(v) denotes the out- and in-degree of v, respectively. The total branch
degree of a graph G is the sum of all branch degrees of the vertices of G.

We say that a feasible solution H of (G,T,D) is edge-minimal if for all edges e œ E(H)
the graph H ≠ e is not feasible. An edge e is essential for some demand edge (t, tÕ) œ E(D)
if there is no t æ tÕ path in H ≠ e. Note that all edges of an edge-minimal graph H are
essential for some demand edge of D. We say that a pattern class D is c-acyclic-bounded for
some c = O(1) if for any instance (G,T,D) of Planar D-Steiner Network where G,D
are acyclic, and any edge-minimal solution H, the total branch degree of H is at most c|T |.

The next theorem moves the problem to the domain of acyclic digraphs: what we need
now is a linear bound on the total branch degree of acyclic solutions.

I Theorem 8. If the pattern class D is c-acyclic-bounded for some c = O(1), then for any

instance of Planar D-Steiner Network with |T | = k, the solution graph H has treewidth

O(
Ô
k).

Applying Theorem 7 implies that c-acyclic-bounded classes have the desired subexponen-
tial algorithm, but we still need to establish a link between non-c-acyclic-bounded classes and
t-hard-patterns. First, we argue that if the total branch degree is too large, then a grid-like
structure can be found in the solution. The grid-like structure appears in the solution to
satisfy a set of edges in the demand graph D, and this set of demands forms a certain hard
structure in the demand pattern that we call a t-tough-pair which we define informally here
(see Definition 14 for a formal definition). We say that two edges e1 and e2 are weakly

independent if there is no directed path from the head of one to the tail of the other. Edges
e1 and e2 are strongly independent if, in addition to being weakly independent, there is no
directed path containing the heads of both edges and there is no directed path containing
the tails of both edges. An edge e is minimal in a digraph D if there is no path from the tail
of e to the head of e avoiding e. Let E1 fi E2 be a vertex-disjoint set of minimal edges with
|E1| = |E2| = t. We say that (E1, E2) is a t-tough-pair if

any two edges e, eÕ œ E1 are weakly independent,
any two edges e, eÕ œ E2 are weakly independent, and
any two edges e1 œ E1 and e2 œ E2 are strongly independent.
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Observe that in particular the two matchings in a t-hard-matching-pattern form (vertical
edges in Figure 2) a t-tough-pair. Similarly, taking two vertex-disjoint matchings of size t
each in a 2t-hard-biclique-pattern is also a t-tough-pair.

Our main structure theorem connects the total branch degree to the existence of these
kind of hard structures.

I Theorem 9 (Structure Theorem). Let D be a class of graphs closed under identifying

vertices and transitive equivalence. Then either D has a pattern with a t-tough-pair for each

positive integer t, or it is c-acyclic-bounded for some constant c.

Theorems 8 and Theorem 9 show that the existence of arbitrarily large t-tough-pairs is the
canonical reason why the treewidth is not O(

Ô
k). The lower bounds ruling out f(k) · no(k)

time algorithms essentially rely on the existence of t-tough-pairs. However, the existence
of a t-tough-pair in a demand pattern D œ D is not su�cient for the lower bound: the
t-tough-pair could be only a small part of the pattern D, and hence the lower bounds may not
apply. We show, with heavy use of Ramsey’s Theorem and other combinatorial arguments,
that whenever a large t-tough-pair appears in a graph, then the graph can be “cleaned”:
we can identify vertices to obtain one of the t-hard-patterns. Therefore, if arbitrary large
t-tough-pairs appear in the members of a class D closed under identifying vertices, then the
class is a superset of one of the hard classes Ci.

I Theorem 10. Let D be a class of graphs closed under transitive equivalence and identifying

vertices. The following two are equivalent:

1. For every t, there is a D œ D that has a t-tough pair.

2. Ci ™ D for some i œ [Ÿ].
We can conclude that if D is not the superset of Ci for any i œ [Ÿ], then the treewidth

of the optimum solution is O(
Ô
k), implying that Planar D-DSN can be solved in time

f(k) · nO(
Ô
k).

Statement (iv): no f(k)no(
Ô
k) algorithms

If D contains A5 (directed cycles), then lower bounds ruling out f(k) ·no(
Ô
k) time algorithms

follow from the known lower bound for Strongly Connected Steiner Subgraph [8].
When D contains one of A1,A2,A3,A4 (pure or flawed dimonds), the problem is known to be
W[1]-hard on general graphs [14]. We reprove the hardness of diamonds, this time restricted
to planar graphs, and observe that this W[1]-hardness proof actually rules out f(k) · no(

Ô
k)

time algorithms. Compared to the W[1]-hardness on general graphs, the proof for planar
graphs is more involved. As it is very usual for planar problems, we establish these lower
bounds by reducing from k ◊ k-Grid Tiling, which cannot be solved in time f(k) · no(k),
assuming the ETH [9]. For statement (iv), we need to reduce from

Ô
k ◊

Ô
k Grid Tiling

to a Planar D-DSN with O(k) terminals forming a pure/flawed in/out-diamond pattern,
ruling out f(k) · no(

Ô
k) algorithms for such patterns.

In all these reductions, we are reusing and extending the gadget constructions from earlier
work [8]. However, the high-level structure of the reduction is substantially di�erent and
depends on the pattern class we are considering. In light of Theorem 7, we should first verify,
as a sanity check, that the treewidth of the solution can be su�ciently large, that is, it can
be �(

Ô
k) in case of diamonds. Typically, one can expect that examples with su�ciently

large treewidth shed some light on how the high-level structure of the hardness proof could
look like. Figure 3 shows that treewidth can be indeed su�ciently large: a

Ô
k ◊

Ô
k grid

can be obtained from two “interlocking combs.”
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Statement (v): f(k)nO(k) algorithms
The upper bound f(k) · nO(k) (statement (v)) follows from the work of Eiben et al. [12], who
showed that Planar DSN with k terminals can always be solved within this running time.
Note that Feldman and Ruhl [13] presented a nO(p) time algorithm for DSN on general graphs
where p is the number of demands. However, as the number of demands on k terminals can
be �(k2), their algorithm does not give an f(k) · nO(k) algorithm where k is the number of
terminals.

Statement (vi): no f(k)no(k) algorithms
To prove statement (vi) ruling out f(k) · no(k) algorithms, we provide such a lower bound
for each class Ci for i œ [Ÿ]. Analogously to statement (iv), the proof is by reduction from
k ◊ k Grid Tiling to a Planar D-DSN instance with a k-hard-matching-pattern or a
k-hard-biclique-pattern, ruling out f(k) · no(k) algorithms. Again, let us verify that the
treewidth can be su�ciently large: Figure 3 shows how a k◊k grid can appear in the solution
to an instance with k terminals.

For t-hard-matching-patterns, the simplest case is when we have two induced matchings
of size t. Then a t ◊ t grid can arise very easily in the solution if the terminals are on the
boundary of a grid. The crucial point here is that the t-hard-matching-pattern was defined in
a way that all the additional paths, sources etc. do not interfere with the grid, see the figure
for an example. For the t-hard-biclique-pattern, there is a non-obvious and highly delicate
way of constructing an instance with 2t terminals where a t ◊ t grid appears. Combining
these constructions gives the lower bound.

I Theorem 11. Let D be a class of graphs closed under identifying vertices and transitive

equivalence. If Ci ™ D for some i œ [Ÿ], then Planar D-Steiner Network has no

f(k) · no(k)
time algorithm assuming the ETH.

Let us observe that if D consists of bicliques directed from one side to the other, then
Planar D-DSN corresponds to the following problem: given a planar digraph G with two
sets S, T ™ V (G) of terminals with |S|+ |T | = k, find a subgraph with minimum number
of edges such that there is a path from every vertex of S to every vertex of T . Our result
shows that, assuming the ETH, this problem has no f(k) · no(k) time algorithm. This result
is surprising, as the problem can be considered to be genuinely planar in the sense that the
input is a planar graph with k terminals and a single bit of annotation at each terminal (and
there is no extra information, such as terminal pairs, that can disregard the planarity of the
instance). To our knowledge, this is the first example of a relatively natural planar problem
where f(k) · nO(k) is best possible and cannot be improved to f(k) · nO(

Ô
k).

1.2 Details of Statement (iii): the f(k) · nO(
Ô
k) algorithm

In this section, we give a more detailed overview of the technical steps of the proof of (iii)
sketched above.

From treewidth to total branch degree. Theorem 8 translates the question about the
treewidth of the solution in general graphs to a question about the total branch degree
of the solution in acyclic graphs. Suppose that we have an edge-minimal solution H in a
(not necessarily acyclic) graph G with k terminals. Let us contract the strongly connected
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diamond pattern. t-hard matching pattern. t-hard biclique pattern.

�(
Ô
t) ◊ �(

Ô
t) grid

in the solution.
�(t) ◊ �(t) grid
in the solution.

�(t) ◊ �(t) grid
in the solution.

Figure 3 Pattern graphs (top row) and example minimal solution graphs with large grid patterns
and large treewidth (bottom row). The red/blue edges show how (some of the) demands are
connected in the solution.

Thm 10large t-tough pair large t-hard
pattern

Thm 11

Treewidth of the
solution

Statement (vi):
no f(k)no(k)

algorithm

total branch
degree Ê(k)

Thm 9

Statement (iii):
2O(k)nO(

Ô
k)

algorithm

Ê(
Ô
k)

O(
Ô
k)

Thm 8

Thm 7

Figure 4 The structure of the proofs of statements (iii) and (vi).

components of H in both G and H to obtain GÕ and H Õ, respectively. We can observe that
H Õ is an acyclic graph that is the optimum solution to an instance in GÕ with at most k
terminals. Our goal is to show that if H Õ has total branch degree d, then H has treewidth
O(

Ô
d+ k). Therefore, in the later steps of the proof, we bound the total branch degree of

H Õ by O(k), giving an O(
Ô
k) bound on the treewidth of H.

We say that a vertex of a strongly connected component of H is a portal if it is incident
to an edge connecting it to some other component. For simplicity of discussion, let us assume
here that every strongly connected component of H has at least 3 edges incident to the
portals, that is, every vertex of H Õ has at least 3 incident edges. (If a component has less
than 3 such edges and has no terminal, then it consists only of a single vertex and does not
a�ect treewidth anyway; if it has terminals, then it can be taken into account with additional
calculations.) By this assumption, the set P of portals has size at most 6d, where d is the
total branch degree of H Õ.
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We want to bound the treewidth of H by showing that there is a set W of O(d + k)
vertices such that H ≠ W has treewidth at most 2. It is known that if removing a set W
of vertices from a planar graph reduces treewidth to a constant, then the planar graph has
treewidth O(


|W |). Thus the treewidth bound O(

Ô
d+ k) follows from the existence of

such a set W .
Let H[Vi] be a strongly connected component of H that has pi portals and contains ki

terminals. The key observation is that the only role of H[Vi] in the solution is to fully connect
the terminals and portals in H[Vi]. That is, we can assume that H[Vi] is an optimum solution
of a Strongly Connected Steiner Subgraph instance with pi + ki terminals. Chitnis
et al. [8] showed that we can remove a set Wi of O(pi + ki) vertices from such an optimum
solution to reduce its treewidth to 2. Therefore, taking the union of P and every Wi, we get
a set W of size O(d) +O(

q
(pi + ki)) = O(d+ k) whose removal reduces treewidth to 2 (as

removing P breaks the graph in a way that each component is a subset of some Vi, and the
removal of Wi breaks H[Vi] into components of treewidth at most 2).

Building a skeleton. Towards the proof of Theorem 9, our goal is to bound the total branch
degree by O(k) in an edge-minimal acyclic solution H. At some step of the proof, it will be
important to assume that H is a triangulated planar graph (every face has exactly three
vertices and edges), which is of course not true in general. Therefore, we introduce artificial
undirected edges in the graph H to make it triangulated. As these edges do not play any role
in the directed problem, it does not change the nature of the solution. Another simplification
step is that we assume that there is no vertex v ”œ T with d≠(v) = d+(v) = 1. Such a vertex
has branch degree 0 and hence suppressing it (i.e., removing it and adding an edge from
its in-neighbor to its out-neighbor) has no e�ect on the total branch degree and on the
connectivity of the terminals.

We start by building a skeleton of the solution: a connected subgraph that contains
every terminal. The skeleton is composed from segments of two types. A long segment is a
directed path of H of length at least some constant L. A short segment is any path in the
undirected sense of length at most L, possibly containing both undirected or directed edges
of any orientation. Furthermore, we require that any two long segments in the skeleton are
distant, that is, have distance at least L in the undirected sense.

A skeleton tree consisting of O(k) segments and containing all the terminals can be built
the following way. Initially, we start with an edgeless subgraph R containing only the k
terminals. For simplicity of discussion, let us assume that the demand pattern is connected
(in the undirected sense). Then there has to be a demand titj such that ti and tj are in
two di�erent components Ci and Cj of R, respectively. This means that H has a directed
path P connecting two di�erent components of R. If P has length at most L, then we can
introduce it as short segment to reduce the number of components of R. Otherwise, we can
shorten P to P Õ such that every vertex of P Õ is at distance at least L from R and the two
endpoints are at distance exactly L from two di�erent components C and C Õ of R. Then we
can reduce the number of components of R by introducing P Õ as a long segment and two
short segments connecting the endpoints of P Õ to C and C Õ. By repeating these steps, we
can reduce the number of components to 1 by introducing O(k) segments in total.

Refining the faces. Our next goal is to further refine the skeleton such that every face of
the skeleton has at most 35 segments on its boundary, and it is still true that the skeleton
consists of O(k) segments. We achieve this goal by iteratively dividing a face into two by
introducing to the skeleton a new path consisting of at most 5 segments. We argue below
that if the division is not very skewed in a certain sense, then the bound O(k) on the number
of segments can be achieved even after iterative applications of this step.
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ug

ur ub
Pur

Pug

Pub

Figure 5 Finding a division that is not skewed.

Suppose that we have a face F where x Ø 36 segments appear on the boundary. Let P
be a path between two segments of the boundary and assume that P consists of at most 5
segments. Introducing the path P into the skeleton creates two new faces F1 and F2 that
see some number x1 and x2 segments on the boundary of F , plus the 5 new segments of P .
We have x1 + x2 Æ x+ 2: if the endpoints of P are internal vertices of segments, then we
may have up to 2 segments that are now on the boundary of both F1 and F2.

For a face seeing x Ø 13 segments of the skeleton, let us define x ≠ 13 Ø 0 to be the
potential of the face. If we chose the path P such that x1, x2 Ø 13, then the potential of the
two new faces F1 and F2 are defined. Moreover, the total potential of the two faces is at
most

(x1 + 5 ≠ 13) + (x2 + 5 ≠ 13) Æ x ≠ 14,

strictly less than the potential of F . This means that if we start with a face F that sees x
segments of the skeleton, then repeated applications of this step can introduce only O(x)
new segments.

Finding a division that is not skewed. Next we show that if face F sees x Ø 36 segments
of the skeleton, then we can find a division with x1, x2 Ø 13. Then as we have seen above,
repeated applications of this step introduces O(x) segments and divide F into faces that see
at most 35 segments each.

Let us divide the boundary of F into three parts, red, green, and blue, each containing
at least 12 segments (see Figure 5). As every vertex v inside the face F is essential for the
solution, there is a directed path Pv from v to some vertex of the boundary; let us fix such a
Pv for each v. This defines a color of v according to which of the three parts of the boundary
contains the head of Pv. Then by Sperner’s Lemma and fact that the graph is triangulated,
there is a triangle ur, ug, ub inside F where the three vertices have three di�erent colors.
From the assumptions that ur, ug, ub are on three di�erent parts, and each part has length
at least 13, it follows that there are two vertices, say ur and ub, such that both subpaths of
the boundary between the heads of Pur and Pub have at least 12 segments. Then putting
together Pur and Pub creates a path P that divides the face F in the required way. This
argument needs to be refined a bit further: as we said earlier, we want a skeleton where the
long segments are distant, i.e., are at distance at least L from each other. But this can be
easily achieved by appropriately shortening the long segments Pur , Pub , and then extending
them by three short segments.

Many edges incident to a long path. We assume now that the skeleton has O(k) faces,
each seeing at most 35 segments. If we can show that the total branch degree (of the orginal
solution H without the artificial edges) is a constant in each face, then we can bound by O(k)
the total branch degree of the solution. We can observe, using the acyclicity of the edges
inside the face, that we need to bound only the number of edges incident on the boundary.
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Figure 6 Finding a grid.

Let e be an edge inside the face incident to vertex v of the boundary. We say that e is
essential for demand titj if removing e breaks every path from ti to tj . Then we can define a
path Pe the following way: let us take any path P from ti to tj , and let Pe be the subpath
of P starting from e (which has to appear on P ) to the first vertex on the boundary of F .
Let us consider two edges e1, e2 starting from the same vertex v of the boundary. Let us
observe that Pe1 and Pe2 cannot intersect: then we could bypass e.g. e1 by starting on Pe2

and following it until intersection. By a similar argument, Pe1 and Pe2 cannot go to the
same long segment: then one of Pe1 and Pe2 could be avoided by using the other path and
part of the long segment. From these observations, it follows that the only way the boundary
can have many edges incident to it is that if there are edges e1, . . . , es incident to distinct
vertices of a long segment S1, with paths P1, . . . , Ps going to distinct vertices of some other
long segment S2 (see Figure 6).

Finding a grid and a t-tough pair. Now comes the point where we use the assumption
that long segments are distant. In particular, this means that the “middle path” Pes/2 is
long. The internal vertices of this path have no terminals (as all the terminals are on the
skeleton), hence it is not possible that d+(v) = d≠(v) = 1 for any such internal vertex. Thus
either there are many vertices on this path that have an edge leaving the path, or many
vertices that have an edge entering the path. Assume without loss of generality the former,
let f1, . . . , fs be these edges. Again, each edge is essential for some demand, hence the path
satisfiying the demand has a subpath Qi starting with fi and going to the boundary. We
can observe again that these paths have to be disjoint. Therefore, we can obtain a grid-like
structure in the region surrounded by S1, Ps/2, S2, and Ps, see the region highlighted by
yellow in Figure 6. (There are some other cases to consider, which we ignore here. For
example, the paths Qi may go to S1 or S2.) This region has s/2 ≠ 1 “vertical” paths Ps/2,
. . . , Ps≠1, intersected by the s “horizontal paths” Q1, . . . , Qs.

We observe that if this grid has t horizontal and vertical paths, then we can use it to
discover a t-tough pair. Each edge ei is essential for some minimal demand; let E1 be the set
of these t demands. Similarly, we define E2 based on choosing a minimal demand for which
fi is essential. Then we can carefully verify that (E1, E2) is a t-tough-pair: if there is an edge
in the demand graph that is not allowed, then a careful analysis shows that there is a way of
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bypassing some ei or fi in the grid, contradicting the fact that it is essential. This concludes
the proof that if we have an upper bound on the size of the largest t-tough pair appearing in
the graphs of class D, then we can bound the treewidth of the solution by O(

Ô
k).

Cleaning. To prove Theorem 10, we need to show that if arbitrary large t-tough-pairs
appear in the graphs of D, then Ci ™ D for some i œ [Ÿ]. The proof is a long combinatorial
argument to show that we can find t-tough-pairs that are canonical in some sense, and then
we use the assumption that D is closed under identifying vertices to contract the vertices
outside the t-tough-pair into a small constant number of well-behaved vertices.

Suppose that there is a t-tough-pair (E1, E2) in a digraph D. The minimality of the
edges in E1 and the fact that they do not appear in directed cycles (as they are weakly
independent to themselves) imply that for any two edges xiyi, xjyj œ E1, at least one of the
following holds:
1. exactly the edges xiyj , xjyi appear between {xi, yi} to {xj , yj},
2. there is no edge from {xi, yi} to {xj , yj}, or
3. there is no edge from {xj , yj} to {xi, yi}.
Let us consider a complete graph on t vertices w1, . . . , wt, and for every i < j, color the
edge wiwj according to which of the three statements hold for the edges xiyi and xjyj (if
more than one statement is true, we can choose arbitrarily). By Ramsey’s Theorem, there is
a large subset EÕ

1
™ E1 where the same statement holds for any pair of edges. We can find a

similar subset EÕ
2

™ E2. We consider two main cases. The first case is when Statement 1
holds either in EÕ

1
or EÕ

2
. Then what we have is a matching xiyi of minimal edges that is

part of a complete bipartite graph, that is, every xi is adjacent to every yj (but note that
xiyj does not have to be a minimal edge). The second case is where we have Statement 2 or
3 in both EÕ

1
and EÕ

2
. Then we can reorder E1 and E2 to have a further ordering property:

there is no edge from {xi, yi} to {xj , yj} for j < i. We handle the two cases separately. With
further Ramsey arguments and case distinctions, we show that identifications can be used
to find a tÕ-hard biclique pattern or a tÕ-hard matching pattern appearing in a graph in D,
where tÕ is some unbounded function of t. It follows that if arbitrarily large t-tough pairs
appear in D, then D is a superclass of some Ci.

For full details and proofs, as well as a concluding discussion and open problems, please
see the full version of this article [16].

2 Formal definition of a t-tough-pair

In this section we give the formal definition of a t-tough-pair. Further definitions, that are
specific to the sections are defined in the beginning of the respective sections.

Given a digraph D and an edge e = (u, v) œ E(D), we say that e is a minimal edge of D
if D has no (u, v)-path of length strictly greater than 1 in D, where the length of the path is
the number of edges in it. We say that a digraph D is reachability-minimal if each edge of D
is minimal. For an edge e = (u, v) in a directed graph D, v is called the head of e and u is
called the tail of e. For any EÕ ™ E(D), head(EÕ) (resp. tail(EÕ)) denotes the set of heads
(resp. tails) of the edges in EÕ. Next we define weak independence and strong independence
that are crucial to define the t-tough-pair formally.

I Definition 12 (Weakly independent edges). Given a digraph D and edges e1 = (u1, v1), e2 =
(u2, v2) œ E(D), we say that the pair of edges (e1, e2) is weakly independent in D, if

u1 ”= v1 ”= u2 ”= v2, and D has neither a (v1, u2)-path nor a (v2, u1)-path. A set of edges

EÕ ™ E(D) is weakly independent if every pair of distinct edges in EÕ
are pairwise weakly

independent and for each edge (ui, vi) œ EÕ
, there is no (vi, ui)-path in D.
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Informally, a pair of edges is weakly independent, if the head of one edge cannot reach

the tail of the other. Therefore, if a pair of edges is weakly independent, then they cannot lie

on a directed path.

I Definition 13 (Strongly independent edges). Given a digraph D and edges e1 = (u1, v1), e2 =
(u2, v2) œ E(D), we say that the pair of edges (e1, e2) is strongly independent in D, if they

are weakly independent in D, and additionally D has no (u1, u2)-path, no (u2, u1)-path, no
(v1, v2)-path and no (v2, v1)-path.

Informally, a pair of edges is strongly independent, if they are weakly independent, and

the head of one cannot reach the head of the other, and the tail of one cannot reach the tail of

the other. That is, the vertices of the heads (resp. vertices of tails) do not lie on any directed

path.

I Definition 14 (t-tough-pair). Given a digraph D, E1, E2 ™ E(D), we say that (E1, E2) is
a tough-pair in D if:

1. |E1| = |E2|,
2. each edge of E1 fi E2 is a minimal edge in D,

3. all edges in Ei are pairwise weakly independent in D, for both i œ {1, 2}, and
4. for each e1 œ E1 and e2 œ E2, (e1, e2) are strongly independent in D.

Further, for a positive integer t, we say that (E1, E2) is a t-tough-pair if |E1| = |E2| = t.
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Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise
non-crossing curves drawn into “pages”, which are half-planes bounded by that line. Two-page
book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both
NP-hard to compute and have specific applications. We obtain a 2O(Ô

n) algorithm for computing a
book embedding of an n-vertex graph on two pages – a result which is asymptotically tight under
the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential
fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input
graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page
book embeddings when parameterized by the feedback edge number, settling an open question
arising from previous work on the problem.
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1 Introduction

Book embeddings of graphs are drawings centered around a line, called the spine, and half-
planes bounded by the spine, called pages. In particular, a k-page book embedding of a graph
G is a drawing which maps vertices to distinct points on the spine and edges to simple curves
on one of the k pages such that no two edges on the same page cross [6]. These embeddings
have been the focus of extensive study to date [16, 20, 21, 22, 25, 38, 47], among others due
to their classical applications in VLSI, bio-informatics, and parallel computing [11, 20, 31].

Every n-vertex graph is known to admit an Á
n

2 Ë-page book embedding [6, 11, 30], but
in many cases it is possible to obtain book embeddings with much fewer pages. Particular
attention has been paid to two-page embeddings, which have specifically been used, e.g.,

EA
T
C
S

© Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and
Mateusz Rychlicki;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 68; pp. 68:1–68:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:h.muller@leeds.ac.uk
https://orcid.org/0000-0002-1123-1774
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:g.paesani@leeds.ac.uk
https://orcid.org/0000-0002-2383-1339
mailto:mkrychlicki@gmail.com
https://orcid.org/0000-0002-8318-2588
https://doi.org/10.4230/LIPIcs.ICALP.2024.68
https://arxiv.org/abs/2404.14087
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


68:2 A Tight Subexponential Algorithm for Two-Page Book Embedding

to represent RNA pseudoknots [31, 42]. The class of graphs that can be embedded on two
pages was studied by Di Giacomo and Liotta [27], Heath [32] as well as by other authors [1],
and was shown to be a superclass of planar graphs with maximum degree at most 4 [5].

While two-page book embeddings are a special class of planar embeddings, they are
not polynomial-time computable unless P = NP. Indeed, a graph admits a two-page book
embedding if and only if it is subhamiltonian (i.e., is a subgraph of a planar Hamiltonian
graph) [6] and testing subhamiltonicity is an NP-hard problem [11]. On the other hand,
the aforementioned problem of constructing a two-page book embedding (or determining
that none exists) – which we hereinafter call Two-Page Book Embedding – becomes
linear-time solvable if one is provided with a specific ordering of the n vertices of the input
graph along the spine [31]. While Two-Page Book Embedding can be seen to admit a
trivial brute-force 2O(n·logn) algorithm, it has also been shown to be solvable in 2O(n) time –
in particular, one can branch to determine the allocation of edges into the two pages and
then solve the problem via dynamic programming on SPQR trees [2, 33, 34].

Contribution. As our main contribution, we break the single-exponential barrier for Two-

Page Book Embedding by providing an algorithm that solves the problem in 2O(
Ô
n) time.

Our algorithm is exact and deterministic, and avoids the single-exponential overhead of
branching over edge allocations to pages by instead attacking the equivalent subhamiltonicity
testing formulation of the problem. It is also asymptotically optimal under the Exponential
Time Hypothesis [35]: there is a well-known quadratic reduction that excludes any 2o(

Ô
n)

algorithm for Hamiltonian Cycle on cubic planar graphs [26], and a linear reduction from
that problem (under the same restrictions) to subhamiltonicity testing [46] then excludes
any 2o(

Ô
n) algorithm for our problem of interest.

The central component of our result is a non-trivial dynamic programming procedure
that solves Two-Page Book Embedding in time 2O(tw)

· n, where tw is the treewidth of
the input graph. The desired subexponential algorithm then follows by the well-known fact
that n-vertex planar graphs have treewidth at most O(

Ô
n) [28, 39, 44]. But in addition

to that, we believe our single-exponential treewidth-based algorithm to be of independent
interest also in the context of parameterized algorithmics [13, 19].

Indeed, while Two-Page Book Embedding was already shown to be fixed-parameter
tractable w.r.t. treewidth (i.e., to admit an algorithm running in time f(tw) ·n) by Bannister
and Eppstein [3], that result crucially relied on Courcelle’s Theorem [12]. More specifically,
they showed that the required property can be encoded via a constant-size sentence in Monadic
Second Order logic, which su�ces for fixed-parameter tractability – but unfortunately not for
a single-exponential algorithm, and a direct dynamic programming algorithm based on the
characterization employed there seems to necessitate a parameter dependency that is more
than single-exponential. Moreover, it is not at all obvious how one could employ convolution-
based tools – which have successfully led to 2O(tw)

· n algorithms for, e.g., Hamiltonian

Cycle [10, 14, 15] – for our problem of interest here.
Instead, we obtain our results by employing dynamic programming along a sphere-cut

decomposition – a type of branch decomposition specifically designed for planar graphs of small
treewidth [18]. However, unlike in previous applications of sphere-cut decompositions [36, 40],
our algorithm requires the nooses delimiting the bags in the sphere-cut decomposition to
admit a fixed drawing since our arguments rely on constructing a hypothetical solution (a
subhamiltonian curve) that is “well-behaved” w.r.t. a fixed set of curves. While this would
typically lead to extensive case analysis to compute the records of a parent noose from the
records of the children, we introduce a generic framework that allows us to transfer records
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from child to parent nooses via XOR operations. We believe that this technique may be of
broader interest, specifically when working with problems which require one to enhance the
embedding or drawing of an input graph.

In the final part of the article, we turn our attention to the parameterized complexity
of computing book embeddings. While Two-Page Book Embedding is fixed-parameter
tractable when parameterized by the treewidth of the input graph, the only graph parameter
which has been shown to yield fixed-parameter algorithms for computing ¸-page book
embeddings for ¸ > 2 is the vertex cover number1 [7]. Whether this tractability result also
holds for other structural graph parameters such as treewidth, treedepth [41] or the feedback
edge number [45] has been stated as an open question in the field2. We conclude by providing
a novel fixed-parameter algorithm for computing ¸-page book embeddings (or determining
that one does not exist) under the third parameterization mentioned above – the feedback
edge number, i.e., the edge deletion distance to acyclicity. This result is complementary to the
known vertex-cover based fixed-parameter algorithm, and can be seen as a necessary stepping
stone towards eventually settling the complexity of computing ¸-page book embeddings
parameterized by treewidth. Moreover, since the obtained kernel is linear in the case of
¸ = 2, the obtained kernel allows us to generalize our main algorithmic result to a run-time
of 2O(

Ô
k)

· nO(1) where k is the feedback edge number of the input graph.

2 Preliminaries

Basic Notions. We use basic terminology for graphs and multi-graphs [17], and assume
familiarity with the basic notions of parameterized complexity and fixed-parameter tractabil-
ity [13, 19]. The feedback edge number of G, denoted by fen(G), is the minimum size of any
feedback edge set of G, i.e., a set F ™ E(G) such that G ≠ F = (V (G), E(G) \ F ) is acyclic.

For a face f of a plane graph, we use ‡(f) to denote the cyclic sequence of the vertices
obtained by traversing the closed curve representing the border of f in a clock-wise manner.

Book Embeddings and Subhamiltonicity. An ¸-page book embedding of a multi-graph
G = (V,E) will be denoted by a pair Èª,‡Í, where ª is a linear order of V , and ‡ : E æ [¸]
is a function that maps each edge of E to one of ¸ pages [¸] = {1, 2, . . . , ¸}. In an ¸-page book
embedding Èª,‡Í it is required that for no pair of edges uv,wx œ E with ‡(uv) = ‡(wx) the
vertices are ordered as u ª w ª v ª x, i.e., each page must be crossing-free. The page number
of a graph G is the minimum number ¸ such that G admits an ¸-page book embedding. The
general problem of computing the page number of an input graph is thus:

Book Thickness

Instance: A multi-graph G with n vertices and a positive integer ¸.
Question: Does G admit a ¸-page book embedding?

It is known that a multi-graph admits a 2-page book embedding if and only if it is
subhamiltonian, i.e., if it has a planar Hamiltonian supergraph on the same vertex set [6]; an
illustration is provided in Figure 1. Hence, the problem of deciding whether a multi-graph
has page number 2 can be equivalently stated as:

1 The vertex cover number is the minimum size of a vertex cover, and represents a much stronger restriction
on the structure of the input graphs than, e.g., treewidth.

2 E.g., at Advances in Parameterized Graph Algorithms (Spain, May 2–7 2022) and also at
Dagstuhl seminar 21293 Parameterized Complexity in Graph Drawing [23].
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Figure 1 A drawing of a subhamiltonian graph G, made of the full-edges, which is completed by
the dashed edges to one of its Hamiltonian supergraphs GH (left) and the same graph drawn as a
two-page book embedding (right). In both drawings the Hamiltonian cycle H is colored in blue and
the edges belonging to page 1 and 2 are colored with green and red, respectively.

Subhamiltonicity (SUBHAM)

Instance: A multi-graph G with n vertices.
Question: Is G subhamiltonian?

Since the transformation between 2-page book embeddings and Hamiltonian cycles of
supergraphs is constructive in both directions, a constructive algorithm for SUBHAM (such
as the one presented here) allows us to also output a 2-page book embedding for the graph.

Let G be subhamiltonian. For a Hamiltonian cycle H on V (G) (where H is not necessarily
a subgraph of G), we denote by GH the graph obtained from G after adding the edges of
H and say that H is a witness for G if GH is planar. A drawing D of G respects H if D
can be completed to a planar drawing of GH by only adding the edges of H. We extend
the notion of “witness” to include all the information defining the solution as follows: a
tuple (D,DH , GH , H) is a witness for G if GH is a planar supergraph of G containing the
Hamiltonian cycle H, DH is a planar drawing of GH , and D is the restriction of DH to G;
note that DH witnesses that D respects H.

SPQR-Trees. We assume familiarity with the SPQR-tree data structure for biconnected
multi-graphs which decomposes a graph into (S)eries, (P)arallel, (R)igid and (Q) nodes (leaf
nodes and root node), following the formalism used by Gutwenger et al. [29], see also [4, 8, 9].
For a node b in an SPQR-tree, we use Sk(b) and Pe(B) to denote the skeleton and pertinent
graph of b, respectively. SPQR-trees can be computed in linear time, and an illustration of
the data structure is provided in Figure 2.
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Figure 2 (a) shows a biconnected multi-graph G. (b) shows the SPQR-tree B of G. (c) shows
the skeleton of b, Sk(b), where the edge e that corresponds to the child (with pertinent node) bÕ is
in bold and the dashed edge represents the reference edge. Finally, (d) shows Pe(bÕ).

Sphere-Cut Decompositions. A branch decomposition ÈT,⁄Í of a graph G consists of an
unrooted ternary tree T (meaning that each node of T has degree one or three) and of
a bijection ⁄ : L(T ) ¡ E(G) from the leaf set L(T ) of T to the edge set E(G) of G; to
distinguish E(T ) from E(G), we call the elements of the former arcs (as was also done in
previous work [18]). For each arc a of T , let T1 and T2 be the two connected components of
T ≠a, and, for i = 1, 2, let Gi be the subgraph of G that consists of the edges corresponding to
the leaves of Ti, i.e., the edge set {⁄(µ) : µ œ L(T ) fl V (Ti)}. The middle set mid(a) ™ V (G)
is the intersection of the vertex sets of G1 and G2, i.e., mid(a) := V (G1) fl V (G2). The
width —(ÈT,⁄Í) of ÈT,⁄Í is the maximum size of the middle sets over all arcs of T , i.e.,
—(ÈT,⁄Í) := max{|mid(a)| : a œ E(T )}. An optimal branch decomposition of G is a branch
decomposition with minimum width; this width is called the branchwidth —(G) of G. We
will need the following well-known relation between treewidth and branchwidth.

I Lemma 1 ([43, Theorem 5.1]). Let G be a graph. Then, bw(G)≠1 Æ tw(G) Æ
3
2bw(G)≠1,

where bw(G) is the branchwidth and tw(G) is the treewidth of G.

Let D be a plane drawing of a connected planar graph G. A noose of D is a closed simple
curve that (i) intersects D only at vertices and (ii) traverses each face at most once, i.e., its
intersection with the region of each face forms a connected curve. The length of a noose is
the number of vertices it intersects, and every noose O separates the plane into two regions
”1 and ”2. A sphere-cut decomposition ÈT,⁄,� = {fia | a œ E(T ) }Í of (G,D) is a branch
decompositionÈT,⁄Í of G together with a set � of circular orders fia of mid(a) – one for
each arc a of T – such that there exists a noose Oa whose closed discs ”1 and ”2 enclose the
drawing of G1 and of G2, respectively. Observe that Oa intersect G exactly at mid(a) and
its length is |mid(a)|. Note that the fact that G is connected together with Conditions (i)
and (ii) of the definition of a noose implies that the graphs G1 and G2 are both connected
and that the set of nooses forms a laminar set family, that is, any two nooses are either
disjoint or nested. A clockwise traversal of Oa in the drawing of G defines the cyclic ordering
fia of mid(a). We always assume that the vertices of every middle set mid(a) are enumerated
according to fia. A sphere-cut decomposition of a given planar graph with n vertices can be
constructed in O(n3) time [18].

ICALP 2024
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We say that a biconnected planar multi-graph G equipped with an SPQR-tree B is
associated with a set T of sphere-cut decompositions if T contains a sphere-cut decomposition
of Sk(b) for every R-node and every S-node b of B.

I Lemma 2. Let G be biconnected planar multi-graph with planar drawing D and SPQR-
tree B of G together with the associated set T of sphere-cut decompositions. Then, D can
be extended to a planar drawing DÕ of G together with all nooses in {Oa | a œ E(Tb) ·

ÈTb,⁄b,�bÍ œ T } as well as a noose Nb for every node b of B satisfying:
Nb intersects with D only at sb and tb.
Nb separates Pe(b) from G \Pe(b) in D.

Moreover, if any of the subcurves of the nooses Oa and the nooses Nb connect the same two
vertices in the same face of D, then the two subcurves are identical in DÕ.

Non-Crossing Matchings. Let Kn be the complete graph on vertices {1, . . . , n} and let <
be a cyclic ordering of the elements in {1, . . . , n}. A non-crossing matching is a matching
M in the graph Kn such that for every two edges {a, b}, {c, d} œ M it is not the case that
a < c < b < d.

3 Solution Normal Form

Our first order of business is to show that we can assume that the solution (Hamiltonian
cycle) to the SUBHAM problem interacts with the drawing in a restricted manner. In
particular, we aim to show that every subhamiltonian graph G has a witness (D,DH , GH , H)
in normal form, i.e., with the following property: it is possible to draw a curve in DH between
any two vertices occurring in a common face of D such that this curve only crosses the
Hamiltonian cycle at most twice. Note that this property will allow us to bound the number
of possible interactions of the Hamiltonian cycle with any subgraph corresponding to either
a node in the SQPR-tree or an arc in a sphere-cut decomposition and is crucial to bound the
number of types in our dynamic programming algorithm. The following lemma is the main
technical lemma behind our normal form. An illustration of the main ideas behind the proof
is provided in Figure 3.

I Lemma 3. Let G be a subhamiltonian graph with witness (D,DH , GH , H), let f be a face
of D and let c be a curve drawn inside f between two vertices u, v œ V (f). Then, there is a
witness (D,DHÕ , GHÕ , H Õ) for G such that:
(1) DHÕ and DH di�er only inside f .
(2) c crosses at most two curves corresponding to the edges of H Õ.
(3) c crosses each curve corresponding to an edge of H Õ at most once.
We are now ready to define our normal form for the Hamiltonian cycle. Essentially, we show
that if there is a Hamiltonian cycle, then there is one which crosses each subcurve that is
either part of the border of a node in the SPQR-tree or that is a subcurve of some noose in
a sphere-cut decomposition of an R-node or an S-node at most twice.

Let G be a biconnected subhamiltonian multi-graph with SPQR-tree B and the associated
set T of sphere-cut decompositions ÈTb,⁄b,�bÍ of Sk(b) for every R-node and S-node b of B.
We say that a witness W = (D,DH , GH , H) for G respects the sphere-cut decompositions
in T , if there is a planar drawing of all nooses in the sphere-cut decompositions of T into
D such that every subcurve c in

t
aœE(Tb) Oa crosses the curves corresponding to the edges

of H at most twice in DH . We say that the witness W for G respects B if it respects the
sphere-cut decompositions in T and for every node b of B with reference edge (sb, tb), it
holds that there is a noose Nb that can be drawn into DH such that:
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Figure 3 The cycle H = (u2, P1, u1, v1, P2, u3, v3, P3, v2, u2) represents a Hamiltonian cycle that
crosses the uv-curve at least three times (in p1, p2 and p3). Thanks to Lemma 3, we obtain a
Hamiltonian cycle H Õ = (u2, P1, u1, v3, P3, v2, v1, P2, u3, u2) that di�ers from H only inside the face
f = (u, u1, u2, u3, v, v3, v2, v1) and crosses the uv-curve two fewer times than H does. Finally, note
that the vertices u and v are part of either P1, P2, or P3.

Nb touches D only at sb and tb.
Nb separates Pe(b) from G \Pe(b) in D.
Each of the two subcurves Lb and Rb obtained from Nb by splitting Nb at sb and tb
crosses the curves corresponding to the edges of H at most twice.
Moreover, if any of the subcurves of the nooses Oa and the nooses Nb connect the same
two vertices in the same face of D, then the two subcurves are identical.

The following lemma allows us to assume our normal form and follows easily from a repeated
application of Lemma 3.

I Lemma 4. Let G be a biconnected subhamiltonian multi-graph with SPQR-tree B and the
associated set T of sphere-cut decompositions. Then, there is a witness W = (D,DH , GH , H)
for G that respects B.

4 Setting Up the Framework

In this section we provide the foundations for our algorithm. That is, in Subsection 4.1,
we show that it su�ces to consider biconnected graphs allowing us to employ SPQR-trees.
We then define the types for nodes in the SPQR-tree, which we compute in our dynamic
programming algorithm on SPQR-trees, in Subsection 4.2. Finally, in Subsection 4.3
we introduce our general framework for simplifying dynamic programming algorithms on
sphere-cut decompositions and introduce the types for nodes of a sphere-cut decomposition.

4.1 Reducing to the Biconnected Case
We begin by showing that any instance of SUBHAM can be easily reduced to solving the
same problem on the biconnected components of the same instance. It is well-known that
SUBHAM can be solved independently on each connected component of the input graph,
the following theorem now also shows that the same holds for the biconnected components
of the graph and allows us to employ SPQR-trees for our algorithm.
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I Theorem 5. Let G be a graph and let C ™ V (G) such that N(C) = {n}, where N(C) =
{ v œ V (G) \ C | ÷c œ C {v, c} œ E(G) } is the set of neighbors of any vertex of C in
V (G) \C. Then G is subhamiltonian if and only if both G≠ = G ≠ C and GC = G[C fi {n}]
are subhamiltonian.

4.2 Defining the Types for Nodes in the SPQR-tree
Here, we define the types for nodes in the SPQR-tree that we will later compute using
dynamic programming. In the following, we assume that G is a biconnected multi-graph
with SPQR-tree B and the associated set T of sphere-cut decompositions. Let b be a node of
B with pertinent graph Pe(b) and reference edge e = (s, t). A type of b is a triple (Â,M, S)
such that (please refer also to Figure 4 for an illustration of some types):

Â is a function from {L,R} to subsets of {l, lÕ, r, rÕ
} such that Â(L) œ {ÿ, {l}, {l, lÕ}} and

Â(R) œ {ÿ, {r}, {r, rÕ
}}. We denote by V (Â) the set Â(L) fi Â(R). Informally, Â captures

how many times the Hamiltonian cycle enters and exits the graph Pe(b) from the left (L)
and from the right (R).
M ™ { {u, v} | u, v œ {s, t} fi V (Â) · u ”= v } and M is a non-crossing matching w.r.t. the
circular ordering (s, r, rÕ, t, lÕ, l) that matches all vertices in V (Â) (i.e. V (Â) ™ V (M)),
where V (M) =

t
eœM

e. Informally, M captures the maximal path segments of the
Hamiltonian cycle inside Pe(b) fi V (Â) with endpoints in {s, t} fi V (Â).
S ™ {s, t} \ V (M). Informally, S captures whether s or t are contained as inner vertices
on path segments corresponding to M .

We now provide the formal semantics of types; see Figure 4 for an illustration. Let X be
the set of all types and Pe

ú(b) be the graph obtained from Pe(b) after adding the dummy
vertices l, lÕ, r, and rÕ together with the edges sl, llÕ, lÕt, sr, rrÕ, and rÕt. We say that b
has type X = (Â,M, S) if there is a set P of vertex-disjoint paths or a single cycle in the
complete graph with vertex set V (Peú(b)) such that:

P consists of exactly one path Pe between u and v for every e = {u, v} œ M or P is a
cycle and M = ÿ.
{ IN(P ) | P œ P } is a partition of (V (Pe(b)) \ {s, t}) fi S, where IN(P ) denotes the set
of inner vertices of P .
there is a planar drawing D(b,X) of Pe

ú(b) fi
t

PœP
P with outer-face f such that

‡(f) = {s, r, rÕ, t, lÕ, l}.

The way we define the types X = (Â,M, S) of a node b allows us to associate each witness
W = (D,DH , GH , H) with a type, denoted by �W (b), based on the restriction of the witness
to the respective pertinent graph.

4.3 Framework for Sphere-cut Decomposition
Here, we introduce our framework to simplify the computation of records via bottom-up
dynamic programming along a sphere-cut decomposition. Since the framework is independent
of the type of records one aims to compute, we believe that the framework is widely applicable
and therefore interesting in its own right. In particular, we introduce a simplified framework
for computing the types of arcs (or, equivalently, nooses) in sphere-cut decompositions.

Indeed, the central ingredient of any dynamic programming algorithm on sphere-cut
decompositions is a procedure that given an inner node with parent arc aP and child arcs aL
and aR computes the set of types for the noose OaP from the set of types for the nooses OaL

and OaR . Unfortunately, there is no simple way to obtain OaP from OaL and OaR and this
is why computing the set of types for OaP from the set of types for OaL and OaR usually
involves a technical and cumbersome case distinction [18]. To circumvent this issue, we
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Figure 4 The figure shows three di�erent types of a node in an SPQR-tree with reference edge
(s, t), i.e., the types shown are (from left to right): ({{L æ {l}}, {R æ {r, rÕ}}, {{l, s}, {r, rÕ}}, {t}),
({{L æ {l, lÕ}}, {R æ {r, rÕ}}, {{l, s}, {lÕ, r}, {t, rÕ}}, ÿ), and ({{L æ {l}}, {R æ {r}}, {{l, r}}, {t}).
The subset of {l, lÕ} and {r, rÕ} that appears corresponds to Â(L) and Â(R) respectively. The blue
edges correspond to the matching M and the blue vertices corresponds to S.

introduce a simple operation, i.e., the ü (XOR) operation defined below, and show that the
noose Oap can be obtained from the nooses OaL and OaR using merely a short sequence –
one of length at most four – of ü operations.

Central to our framework is the notion of weak nooses, which are defined below and can
be seen as intermediate results in the above-mentioned sequence of simple operations from
the child nooses to the parent noose; in particular, weak nooses are made up of subcurves
of the nooses in the sphere-cut decomposition. Let G be a biconnected multi-graph and
let B be an SPQR-tree of G. Let b be an R-node or S-node of B with pertinent graph
Pe(b). Let ÈTb,⁄b,�bÍ be a sphere-cut decomposition of Sk(b) and a be an arc of Tb with
pertinent graph Pe(b, a). Let C(Tb) be the set of all subcurves of all nooses occurring in Tb,
i.e., C(Tb) =

t
aœE(Tb) Oa where Oa is seen as a set of subcurves. We say O is a weak noose

if O is a noose consisting only of subcurves from C(Tb). For each O ™ C(Tb), let V (O) be
equal to the vertices of G touched by the noose O.

Having defined weak nooses, we will now define our simplified operation. Let A ü B be
an exclusive or for two sets A and B, i.e. A ü B = (A fi B) \ (A fl B). We will apply the
ü-operation to weak nooses, whose ü is again a weak noose. The following lemma, whose
setting is illustrated in Figure 5, is central to our framework as it shows that we can always
obtain the noose for the parent arc aP from the nooses of the child arcs aL and aR using a
short sequence of ü-operations such that every intermediate result is a weak noose.

I Lemma 6. Let aP be a parent arc with two child arcs aL and aR in a sphere-cut decompo-
sition ÈT,⁄,�Í of a biconnected multi-graph G with the drawing D. There exists a sequence
Q of at most 3 ü-operations such that:

each step generates a weak noose O with |O| Æ 1 +max{|mid(aP )|, |mid(aL)|, |mid(aR)|}
as the ü-operation of two weak nooses O1 and O2, whose inside region contains all
subcurves in (O1 fl O2),
the last step generates the noose OaP ,
Q contains OaL and OaR and at most two new weak nooses, each of them bounds the
edge-less graph of size 3.

We are now ready to define the types of weak nooses, which informally can be seen as
a generalization of the types of nodes in an SPQR-tree introduced in Subsection 4.2. An
illustration of the types is also provided in Figure 7. In the following we fix an arbitrary
order fiG of the vertices in G. A type of a weak noose O is a triple (Â,M, S) such that:
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Figure 5 An illustration of the relationship of the parent noose OaP and the child nooses OaL

and OaR . The illustration represents the case of Lemma 6 where OÕ = OaP ü OaL ü OaR consists of
two disjoint weak nooses (triangles) O1 and O2.

(1) Â is a function that for each subcurve c = ({u, v}, f) in O, i.e., the subcurve of O
between u and v in face f , returns a sequence of at most two new nodes, (2) S is a subset
of V (O), and (3) M ™ { {u, v} | u, v œ V (Â) fi (V (O) \ S) · u ”= v }, V (Â) ™ V (M), and M
is a non-crossing matching w.r.t. the circular order fi¶(Â) defined as follows. fi¶(Â) is the
circular order obtained from the circular order fi¶(O) of V (O) after adding Â(c) between u
and v, for every c = ({u, v}, f) œ O assuming that fiG(u) < fiG(v).

The semantics for the types as well as the definition of a type given a witness are now
defined in a similar way as in the case of types for SPQR-tree nodes.

5 An FPT-algorithm for SUBHAM using Treewidth

In this section we show that SUBHAM admits a constructive single-exponential fixed-
parameter algorithm parameterized by treewidth.

I Theorem 7. SUBHAM can be solved in time 2O(tw)
· nO(1), where tw is the treewidth of

the input graph.

Since the treewidth of an n-vertex planar graph is upper-bounded by O(
Ô
n) [28, 39, 44]

and there are single-exponential constant-factor approximation algorithms for treewidth [37],
Theorem 7 immediately implies the following corollary.

I Corollary 8. SUBHAM can be solved in time 2O(
Ô
n).

The main component used towards proving Theorem 7 is the following lemma, from
which Theorem 7 follows as an easy consequence .

I Lemma 9. Let G be a biconnected multi-graph with n vertices and m edges and SPQR-tree
B. Then, we can decide in time O(315Ên+ n3) whether G is subhamiltonian, where Ê is the
maximum branchwidth of Sk(b) over all R-nodes and S-nodes b of B.

The remainder of this section is therefore devoted to a proof of Lemma 9, which we show
by providing a bottom-up dynamic programming algorithm along the SPQR-tree of the
graph. That is, let G be a biconnected multi-graph, B be an SPQR-tree of G with associated
set T of sphere-cut decompositions for every R-node and S-node of B. Using a dynamic
programming algorithm starting at the leaves of B, we will compute a set R(b) of all types
X satisfying the following two conditions:
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(R1) If X œ R(b), then b has type X.
(R2) If there is a witness W = (D,DH , GH , H) for G that respects B such that b has type

X = �W (b), then X œ R(b).
Interestingly, we do not know whether it is possible to compute the set of all types X such that
b has type X as one would usually expect to be able to do when looking at similar algorithms
based on dynamic programming. That is, we do not know whether one can compute the set
of types that also satisfies the reverse direction of (R1). While we do not know, we suspect
that this is not the case because b might have a type that can only be achieved by crossing
some sub-curves of nooses inside of Pe(b) more than twice. Indeed Lemma 3, which allows
us to avoid more than two crossings per sub-curve, requires the property that the type of b
can be extended to a Hamiltonian cycle of the whole graph, which is clearly not necessarily
the case for every possible type of b.

5.1 Handling P-nodes
In this part, we show how to compute the set of types for any P -node in the given SPQR-tree
by establishing the following lemma.

I Lemma 10. Let b be a P-node of B such that R(c) has already been computed for every
child c of b in B. Then, we can compute R(b) in time O(¸), where ¸ is the number of children
of b in B.

In the following, let b be a P-node of B with reference edge (s, t) and let C with |C| = ¸ be
the set of all children of b in B. Informally, R(b) is the set of types X such that there is
an ordering fl = (c1, . . . , c¸) of the children in C and an assignment · : C æ X of children
to types with ·(c) œ R(c) for every child c œ C that “realizes” the type X for b. The
main challenge is to compute R(b) e�ciently, i.e., without having to enumerate all possible
orderings fl and assignments · . Below, we make this intuition more precise before proceeding.

For a type X = (Â,M, S) of b and A œ {L,R}, we let #A(X) = |Â(A)|. Moreover, for
every A œ {s, t}, we set #A(X) to be equal to 2 if A œ S, equal to 1 if A œ V (M) and equal
to 0 otherwise. Next, let fl = (X1, . . . ,X¸) be a sequence of types, where Xi = (Âi,Mi, Si)
for every i with 1 Æ i Æ ¸. We say that fl is weakly compatible if the following holds:
(C1) for every i with 1 Æ i < ¸, #R(Xi) = #L(Xi+1), and
(C2)

q
¸

i=1 #s(Xi) Æ 2 and
q

¸

i=1 #t(Xi) Æ 2.
Note that (C1) corresponds to our assumption made in Lemma 4 that we can add the nooses
Nb to any planar drawing D of G such that every face of D contains at most one subcurve
of any Nb. This in particular means that if Pe(c) is drawn immediately to the left of Pe(cÕ)
for two children c and cÕ of b, then the subcurves Rc and LcÕ are identical. Please also refer
to Figure 6 for an illustration of these subcurves.

Let fl be weakly compatible. We define the following auxiliary graph H(fl). H(fl) has
two vertices s and t and additionally for every i with 1 Æ i Æ ¸ and every vertex v œ V (Â),
H(fl) has a vertex vi. For convenience, we also use si and ti to refer to s and t, respectively.
Moreover, H(fl) has the following edges:

for every 1 Æ i Æ ¸ if Mi = ÿ and Si = {si, ti}, H(fl) has a cycle on si and ti,
for every 1 Æ i Æ ¸ if Mi ”= ÿ then for every e = {u, v} œ Mi, H(fl) has the edge {uivi},
for every 1 Æ i < ¸, H(fl) contains the edge {ri, li+1} if r œ Âi(R) and l œ Âi+1(L),
for every 1 Æ i < ¸, H(fl) contains the edge {rÕ

i
, lÕ

i+1} if rÕ
œ Âi(R) and lÕ œ Âi+1(L).

We say that fl is compatible if it is weakly compatible and furthermore either H(fl) is
acyclic, or H(fl) ≠ (

t
¸

i=1 Si) is a single (Hamiltonian) cycle.
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t

s

Figure 6 An illustration of how a Hamiltonian Cycle in normal form can interact with a drawing
of Pe(b) for a P-node b. Here, the pertinent graphs Pe(c) for all children c of b (without the nodes
s and t of the common reference edge (s, t)) are represented by gray ellipses. The Hamiltonian cycle
is given in blue with dashed segments representing path segments outside of Pe(b). The red curves
represent the subcurves of Nc for every child c of b. In this figure all but the types of the second
and fourth pertinent graph are clean. Moreover, the type of the third and fifth pertinent graphs are
1-good and 2-good, respectively, and the types of all other pertinent graphs are bad.

In the following let fl = (X1, . . . ,X¸) be compatible. We now define the type X associated
with fl, which we denote by X(fl), as follows. If H(fl) is a single cycle and {s, t} ™

t
¸

i=1 Si,
then we set X(fl) = (Â, ÿ, {s, t}), where Â(L) = Â(R) = ÿ. Otherwise, let P(fl) be the set of
paths in H(fl), which can be shown to have their endpoints in {s, t, l1, lÕ1, r¸, rÕ

¸
}. Then, we

set X(fl) = (Â,M, S), where Â, M , and S are defined as follows. M contains the set {u, v}
for every path in P(fl) with endpoints u and v; for brevity, we denote l1, lÕ1, r¸, rÕ

¸
as l, lÕ, r,

rÕ, respectively. Moreover, Â(L) = V (M) fl {l, lÕ}, Â(R) = V (M) fl {r, rÕ
}, and S contains s

(t) if
q

¸

i=1 #s(Xi) = 2 (
q

¸

i=1 #t(Xi) = 2).
We say that fl is realizable if there is an ordering fi = (c1, . . . , c¸) of the children in C and

an assignment · : C æ X from children to types with ·(c) œ R(c) for every c œ C such that
fl = ·(fi) = (·(c1), . . . , ·(c¸)). The following lemma now allows us to focus on finding the set
of all types X for which there is a compatible and realizable fl such that X = X(fl).

I Lemma 11. The set R containing every type X œ X such that there is a compatible and
realizable fl with X = X(fl) satisfies the properties (R1) and (R2).

We will now show that this can be achieved very e�ciently because only a constant number,
i.e., at most 8 types (and their ordering) need to be specified in order to infer the type of a
sequence fl. Let X = (Â,M, S) œ X be a type. We say that X is dirty if #s(X)+#t(X) > 0
and otherwise we say that X is clean. We say that X is 0-good, 1-good, and 2-good, if X is
clean and additionally M = ÿ, M = {{l, r}}, and M = {{l, r}, {lÕ, rÕ

}}, respectively. We say
that X is good if it is x-good for some x œ {0, 1, 2} and otherwise we say that X is bad. We
denote by XG and XB the subset of X consisting only of the good respectively bad types.
An illustration of these notions is provided in Figure 6.

I Lemma 12. Let fl = (X1, . . . ,X¸) be compatible, then fl contains at most 8 bad types.

Next, we will show that any compatible sequence contains at most 8 bad types and that
the type X(fl) is already determined by looking only at the sequence of bad types that
occur in fl. This will then allow us to simulate the enumeration of all possible sequences, by
enumerating merely all sequences of at most 8 bad types.

We say that a sequence flÕ is an extension of fl if fl is a (not necessarily consecutive)
sub-sequence of flÕ. We call a compatible sequence fl (X, i)-extendable for some X œ X and
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integer i, if there is a compatible extension flÕ of fl such that flÕ is obtained by adding i
elements of type X to fl and X(fl) = X(flÕ). We call fl X-extendable if fl is (X, i)-extendable
for any integer i. We say that flÕ is an (X, i)-extension of fl if flÕ is a compatible sequence
obtained after adding i elements of type X to fl and X(fl) = X(flÕ).

I Lemma 13. Let fl = (X1, . . . ,X¸) with Xi = (Âi,Mi, Si) and X œ XG. Then, fl is (X, 1)-
extendable if and only if fl is X-extendable. Moreover, deciding whether fl is (X, 1)-extendable
and if so computing an (X, i)-extension flÕ of fl can be achieved in time O(¸ + i) for every
integer i.

I Lemma 14. Let fl be a compatible sequence and let flÕ be the sub-sequence of fl consisting
only of the bad types in fl. Then, flÕ is compatible and X(fl) = X(flÕ).

At this point, we are ready to describe the algorithm we will use to compute R(b) (and
argue its correctness). The algorithm first enumerates all possible compatible sequences fl of
at most 8 bad types, i.e., fl = (Y1, . . . , Yr) with r Æ 8 and Yi œ XB for every i. Note that
there are at most (|XB |+ 1)8 (and therefore constantly many) such sequences and those can
be enumerated in constant time. Given one such sequence fl = (Y1, . . . , Yr), the algorithm
then tests whether the sequence can be realized given the types available for the children in
C as follows. It first uses Lemma 13 to test whether fl allows for adding a 0-good, 1-good or
2-good type in constant time. Let Afl ™ XG be the set of all good types that can be added
to fl and let Cfl be the subset of C containing all children c such that Afl fl R(c) ”= ÿ.

Consider the following bipartite graph Qfl having one vertex yi for every i with 1 Æ i Æ r
representing the type Yi on one side and one vertex vc for every c œ C representing the child c
on the other side of the bipartition. Moreover, Qfl has an edge between yi and vc if Yi œ R(c).
We claim that fl can be extended to a compatible and realizable sequence if and only if Qfl

has a matching that saturates {y1, . . . , yr} fi { vc | c œ C \ Cfl }. This problem can be solved
using a simple reduction to the well-known maximum flow problem. The following lemma
now establishes the correctness (i.e., the soundness and completeness) of the algorithm.

I Lemma 15. Let X œ X . Then, there is a compatible and realizable sequence fl with
X = X(fl) if and only if there is a compatible sequence fl = (Y1, . . . , Yr) of bad types with
r Æ 8 with X = X(fl) such that the bipartite graph Hfl has a matching that saturates
{y1, . . . , yr} fi { vc | c œ C \ Cfl }.

5.2 Handling R-nodes and S-nodes
Here, we will show how to compute a set of types satisfying (R1) and (R2) for every R-node
and S-node of B. To achieve this we will again use a dynamic programming algorithm albeit
on a sphere-cut decomposition of Sk(b) instead of on the SPQR-tree. The aim of this
subsection is therefore to show the following lemma.

I Lemma 16. Let b be an R-node or S-node of B such that R(c) has already been computed
for every child c of b in B. Then, we can compute R(b) in time O((84

Ô
14)ÊÊ¸ + ¸3), where

Ê is the branchwidth of the graph Sk(b) and ¸ is the number of children of b in B.

In the following, let b be an R-node or S-node of B with reference edge (sb, tb) and let
ÈTb,⁄b,�bÍ be a sphere-cut decomposition of Sk(b) that is rooted in r = ⁄≠1

b
((sb, tb)). For

a weak noose O ™ C(Tb), let A(O) be the set of all types of O satisfying the following two
natural analogs of (R1) and (R2), i.e.:
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(RO1) if X œ A(O), then O has type X, and (RO2) if there is a witness (D,DH , GH , H)
for G that respects B such that �W (b,O) = X, where �W (b,O) is defined analogously to
�W (b) for the graph Pe(b,O), then X œ A(O).

Our aim is to computeA(Oar ) for the arc ar incident to the root r of Tb. This is achieved by
computing A(Oa) for every inner arc a of Tb via a bottom-up dynamic programming algorithm
along Tb; after initially calculating A(Oa) from R(c) for every leaf-arc a corresponding to
the child c of b. Employing our framework introduced in Subsection 4.3, we only have to
show how to compute A(O1 ü O2) from A(O1) and A(O2) for any weak nooses O1 and O2.

Let O1 and O2 be two weak nooses having type X1 = (Â1,M1, S1) and type X2 =
(Â2,M2, S2), respectively. We say that X1 and X2 are compatible if
(1) O = O1 ü O2 is a weak noose,
(2) the inside region of the noose O contains all subcurves in (O1 fl O2),
(3) ’c œ O1 fl O2, it holds Â1(c) = Â2(c),
(4) for every u œ V (O1 fl O2) \ V (O1 ü O2), it holds that u is only in one of following sets:

S1, S2 or V (M1) fl V (M2), and
(5) the multi-graph obtained from the union of M1 and M2 is acyclic, or is one cycle and

V (O) ™ S1 fi S2 fi (V (M1) fl V (M2)),
(6) if X1 is the full type, then X2 is the empty type and V (O2) ™ V (O1), and vice versa.

We denote by X1 ¶ X2 the combined type X = (Â,M, S) of X1 = (Â1,M1, S1) and
X2 = (Â2,M2, S2) for the weak noose O = O1 ü O2 that is defined as follows and also
illustrated in Figure 7. For each c œ O, if c œ O1 then Â(c) is equal to Â1(c), otherwise Â(c)
is equal to Â2(c) and the set S is equal to (S1 fi S2 fi (V (M1) fl V (M2))) fl V (O), i.e., any
vertex with degree two w.r.t. X must be in V (O) and have degree two already w.r.t. X1 or
X2, or it must be in both matchings M1 and M2. If either X1 or X2 is a full type, then by
(6) we get that M1 = M2 = M = ÿ and X1 ¶X2 is the full type. If the multi-graph M1 fiM2
is one cycle, then by (5) we get that M = ÿ and X1 ¶ X2 is the full type. Otherwise, due to
(5), the multi-graph M1 fi M2 is acyclic and corresponds to a set of paths. Therefore, the
matching M is the set containing the two endpoints for every path in M1 fi M2.

I Observation 17. Let X1 and X2 be two types defined on the weak nooses O1 and O2,
respectively. Then, we can check whether X1 and X2 are compatible and if so compute the
type X1 ¶ X2 in time O(|O1|+ |O2|).

To show the correctness of our approach it now remains to show that: (1) if there is a
witness W for G that respects B, then for every two weak nooses O1 and O2 it holds that
�W (b,O1) and �W (b,O2) are compatible types and �W (b,O) = �W (b,O1) ¶ �W (b,O2) and
(2) if O1 and O2 have compatible types X1 and X2, then O = O1 ü O1 has type X1 ¶ X2.

5.3 Putting Everything Together
Finally, we show how to compute the set of types for every leaf (Q-node) l of B in time
O(1); informally, since Pe(b) is just an edge (s, t), R(l) contains all types that do not allow
the Hamiltonian cycle to cross from left to right without using either s or t. Together with
Lemma 10 and 16, this then concludes the proof of Lemma 9.

6 An Algorithm Using the Feedback Edge Number

In this section, we establish the following theorem:

I Theorem 18. Book Thickness is fixed-parameter tractable when parameterized by the
feedback edge number of the input graph.
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Figure 7 An illustration of combining two compatible types X1 = (Â1,M1, S1) and X2 =
(Â2,M2, S2) for two weak nooses O1 and O2 into the combined type X = (Â,M, S) = X1 ¶ X2 for
O = O1 ü O2. Vertices of the graph are represented as circles and vertices subdividing the nooses,
i.e., vertices in V (Â1) fi V (Â2), are represented as crosses. Black vertices are the vertices that are
within a matching, i.e., the vertices in V (M1) fi V (M2), green (red) vertices are the vertices in S1
(S2) and all other vertices of the graph are white.

The result is achieved by separately handling two cases: one where the targeted number
of pages is greater than 2, or where it is precisely 2. Both cases are handled by a kernelization
procedure, and in both cases it is easy to show that pendant vertices can be safely removed.
At this point, the target graph consists of a tree plus k edges, whereas the only part that
may remain large in this tree are paths of degree-2 vertices. In the former case, we obtain
a non-trivial proof that allows us to reduce the maximum length of such a path to length
that is bounded by an exponential function of the feedback edge number. In the latter case
(which is equivalent to solving SUBHAM), the reduction step is easier and we in fact obtain
a linear kernel for the problem:

I Theorem 19. SUBHAM parameterized by the feedback edge number k admits a kernel
with at most 12k ≠ 8 vertices and at most 14k ≠ 9 edges.

Moreover, by combining Theorem 19 with the subexponential algorithm of Corollary 8,
we can slightly strengthen our main result as follows.

I Corollary 20. SUBHAM can be solved in time 2O(
Ô
k)
·nO(1), where k is the feedback edge

number of the input graph.

7 Concluding Remarks

While our main algorithmic result settles the complexity of computing 2-page book embeddings
under the exponential time hypothesis, many questions remain when one aims at computing
k-page book embeddings for a fixed k greater than 2. To the best of our knowledge, even the
existence of a single-exponential algorithm for this problem is open.

In terms of the problem’s parameterized complexity, it is natural to ask whether one can
obtain a generalization of Theorem 7 for computing k-page book embeddings when k > 2.
In fact, it is entirely open whether computing, e.g., 4-page book embeddings is even in XP
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when parameterized by the treewidth. In this sense, our positive result for the feedback
edge number can be seen as a natural step on the way towards finally settling the structural
boundaries of tractability for computing page-optimal book embeddings.
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Abstract

Let U be a universe on n elements, let k be a positive integer, and let F be a family of (implicitly
defined) subsets of U . We consider the problems of partitioning U into k sets from F , covering U

with k sets from F , and packing k non-intersecting sets from F into U . Classically, these problems
can be solved via inclusion–exclusion in 2nnO(1) time [8]. Quantumly, there are faster algorithms
for graph coloring with running time O(1.9140n) [26] and for Set Cover with a small number of
sets with running time O

!
1.7274n|F|O(1)" [1]. In this paper, we give a quantum speedup for

Set Partition, Set Cover, and Set Packing whenever there is a classical enumeration algorithm
that lends itself to a quadratic quantum speedup, which, for any subinstance on a set X ™ U ,
enumerates at least one member of a k-partition, k-cover, or k-packing (if one exists) restricted to
(or projected onto, in the case of k-cover) the set X in c

|X|
n
O(1) time with c < 2. Our bounded-error

quantum algorithm runs in time (2 + c)n/2
n
O(1) for Set Partition, Set Cover, and Set Packing. It is

obtained by combining three algorithms that have the best running time for some values of c. When
c Æ 1.147899, our algorithm is slightly faster than (2 + c)n/2

n
O(1); when c approaches 1, it matches

the O
!
1.7274n|F|O(1)" running time of [1] for Set Cover when |F| is subexponential in n.

For covering, packing, and partitioning into maximal independent sets, maximal cliques, maximal
bicliques, maximal cluster graphs, maximal triangle-free graphs, maximal cographs, maximal claw-
free graphs, maximal trivially-perfect graphs, maximal threshold graphs, maximal split graphs,
maximal line graphs, and maximal induced forests, we obtain bounded-error quantum algorithms
with running times ranging from O(1.8554n) to O(1.9629n). Packing and covering by maximal
induced matchings can be done quantumly in O(1.8934n) time.

For Graph Coloring (covering with k maximal independent sets), we further improve the running
time to O(1.7956n) by leveraging faster algorithms for coloring with a small number of colors to
better balance our divide-and-conquer steps. For Domatic Number (packing k minimal dominating
sets), we obtain a O((2 ≠ Á)n) running time for some Á > 0.

Several of our results should be of interest to proponents of classical computing:

We present an inclusion-exclusion algorithm with running time O
ú

1qÂ–nÊ
i=0

!
n

i

"2
, which determ-

ines, for each X ™ U of size at most –n, 0 Æ – Æ 1, whether (X,F) has a k-cover, k-partition,
or k-packing. This running time is best-possible, up to polynomial factors.
We prove that for any linear-sized vertex subset X ™ V of a graph G = (V,E), the number of
minimal dominating sets of G that are subsets of X is O((2 ≠ Á)|X|) for some Á > 0.
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1 Introduction

Graph Coloring is an example of a problem requiring to partition an n-element set U into k

sets from a family F . In this case U is the vertex set of a graph G and F is implicitly defined
as the independent sets of G. We can also view Graph Coloring as a covering problem where
the vertex set needs to be covered with k maximal independent sets.

In 2006, Björklund and Husfeldt [4] and Koivisto [25] independently solved Graph Coloring
in O

ú(2n) time via a new inclusion–exclusion approach, along with other partitioning and
covering problems. The approach has been used for packing problems as well, and has been
generalized to solve more generic subset convolution problems [5, 7, 8].

In this work, we give faster quantum algorithms for a range of partitioning, covering, and
packing problems, including Graph Coloring and Domatic Number. To do this, we use the
framework of Ambainis et al. [1] where a preprocessing step computes solutions to small
subinstances and stores them in QRAM. These solutions are then accessed by a divide-and-
conquer algorithm which enjoys a quadratic speedup in quantum models of computation
via techniques such as Grover’s search [22]. For the preprocessing step (Section 3), we
adapt the afore-mentioned inclusion-exclusion approach [8] to compute the solutions to all
subinstances induced by a small subset of U up to roughly n/4 elements. For the divide-and-
conquer step (Section 4) one would ideally like to divide U into two halves; unfortunately,
optimal partitions1 may not allow for such a balanced split. However, we can restrict the
divide-and-conquer step to divide U into two parts where in the larger part (equivalently, in
both parts) the removal of one set of an optimal partition results in at most n/2 elements.
Finding one set of the optimal partition is done via an algorithm that enumerates all relevant
candidate sets; for Graph Coloring, it enumerates the maximal independent sets in the
graph induced by the subset X ™ U under consideration. Importantly, we need that this
enumeration can be done in O

ú !
c
|X|" time, for some c < 2 by a classical algorithm that has

a quadratic quantum speedup, so that after two levels of divide-and-conquer, the overall
quadratic quantum speedup outperforms the classical Oú(2n) running time.

Our algorithm di�ers from the previously fastest quantum algorithm for Graph Coloring
by Shimizu and Mori [26] in both the preprocessing step and the divide-and-conquer step.
Our preprocessing step is deterministic and its running time is optimal, matching the size
of the output up to polynomial factors; the preprocessing step of [26] is a bounded-error
quantum algorithm whose running time is a multiplicative factor of 3|X|/6 slower than ours
for each small (up to size roughly n/4) subset X ™ U . For the divide-and-conquer step, our
divide-then-enumerate strategy is described above; [26] employ an enumerate-then-divide
strategy, where the enumeration is done on the set to be divided and the remainder is then
divided into two sets of size at most half the original set. It turns out that blending the the
divide-then-enumerate and the enumerate-then-divide strategy gives faster algorithms when
c Æ 1.147899 (Section 5). For c Æ 1.0872 case, we also use a third level of divide-and-conquer,
and when c approaches 1, our O(1.7274n) running time matches the running time for Set
Cover with a subexponential number of sets of Ambainis et al. [1].

This gives improved algorithms for a range of partitioning, covering, and packing problems
(Section 6). We further improve the running time for Graph Coloring (Section 7) to O(1.7956n)
by leveraging faster algorithms for a small number of colors [26]. Our algorithm considers
large subsets of vertices (Ø 0.48n) and checks whether they are 5-colorable, 6-colorable with

1 For conciseness, we will mainly discuss partitions in the introduction. The treatment of covers and
packings is similar.
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no large 5-colorable subset, and in some cases 7-colorable via a new 7-Coloring algorithm
that relies on the preprocessing step. The advantage of excluding such cases from further
consideration is that we can make the divide-and-conquer steps more balanced.

For Domatic Number, at first glance it seems that our approach cannot be used. The
issue is that when considering a vertex subset X, even though there is an algorithm that
enumerates all minimal dominating sets of G[X] in O(1.7159n) time [16], this is insu�cient
for our purposes: we need to enumerate minimal vertex subsets of X that dominate all of
G, not just G[X], in O

ú !
c
|X|" time for some c < 2. In Section 8, we show that such an

enumeration algorithm (with a quadratic quantum speedup) indeed exists provided that
|X| = �(n). This then also gives a bounded-error quantum algorithm for Domatic Number
running in O((2 ≠ Á)n) time.

2 Preliminaries

For a proposition P , the Iverson bracket [P ] is a function that returns 1 if P is true and 0
otherwise.

Asymptotic notation

The O
ú-notation is similar to the usual O-notation but allows to hide polynomial factors

in the input size. The Õ-notation hides polylogarithmic factors. We make heavy use of

Stirling’s approximation for factorials, which implies that
!n
k

"
= O

ú
3!

n
k

"k
·

1
n

n≠k

2n≠k
4
,

and of the binomial theorem,
qn

k=0

!n
k

"
x
k
y
n≠k = (x+ y)n.

Set Systems

An implicit set system [15] is a function � that takes as input a string I œ {0, 1}ú and outputs
a set system (UI ,FI), where UI is a universe and FI is a collection of subsets of UI . The
string I is referred to as an instance and we denote by |UI | = n the size of the universe
and by |I| = N the size of the instance. We assume that N Ø n. The implicit set system
� is said to be polynomial time computable if (a) there exists a polynomial time algorithm
that given I, produces UI , and (b) there exists a polynomial time algorithm that given I,
UI and a subset S of UI , determines whether S œ FI . Throughout this paper, we consider
only polynomial time computable implicit set systems. We define a subset polynomial time
computable implicit set system � to be a polynomial time computable set system, where (c)
there exists a polynomial time algorithm that given I, UI and a subset S of UI , determines
whether S ™ S

Õ for some S
Õ
œ FI . This is equivalent to determining whether S œ F ¿, where

the downward closure F ¿ of F contains all sets in F and their subsets.
For any subset of elements X ™ U , an ordered tuple (S1, . . . , Sk) of k sets from F is a

k-cover for X if the union of these sets is X; it is a k-packing for X if the Si’s are contained
in X and are pairwise non-intersecting; it is a k-partition for X if it is both a k-cover and a
k-packing for X.

For a subset polynomial time computable implicit set system �, the input of the �-Set
Cover problem is an instance I and an integer k, and the question is whether the set system
�(I) = (UI ,FI) has a k-cover. This is equivalent to asking whether (UI ,FI ¿) has a k-cover
and therefore, we assume that FI = FI ¿ whenever discussing k-covers. For a polynomial
time computable implicit set system �, the input of the �-Set Partition and �-Set Packing
problem is an instance I and an integer k, and the question is whether the set system
�(I) = (UI ,FI) has a k-partition or k-packing, respectively. We generally omit � and the
subscript I when they are clear from context.

ICALP 2024
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Graphs

In a graph G = (V,E), the open neighborhood of a vertex v, denoted NG(v) is the set
containing all vertices adjacent to v in G. The closed neighborhood of v in G also contains
v itself, and is denoted NG[v] = {v} fi NG(v). Again, we may omit the subscript G. For a
vertex subset X ™ V , the graph G ≠ X is obtained from G by removing the vertices in X

and all their incident edges; the graph G[X] induced on X is the graph G ≠ (V \X).

Quantum Algorithms

It is known that most classical branching algorithms have a quadratic speedup on quantum
machines. As [26], we also rely on the following results.

I Theorem 1 ([22, 9]). Let A : {1, 2, . . . , N} æ {0, 1} be a bounded-error quantum al-
gorithm with running time T . Then, there is a bounded-error quantum algorithm computingx

xœ{1,...,N} A(x) with running time Õ(
Ô
NT ).

I Theorem 2 ([13]). Let A : {1, 2, . . . , N} æ {0, 1} be a bounded-error quantum al-
gorithm with running time T . Then, there is a bounded-error quantum algorithm computing
minxœ{1,...,N} A(x) with running time Õ(

Ô
NT ).

In our context, A is an algorithm exploring paths in superposition from the root to the leaves
of the search tree of a classical branching algorithm. The amplitudes of this exploration
depend on estimates of the sizes of the subtrees, either by relying on an analysis of the
classical branching algorithm [18, 26] or by on-the-fly estimations [2]. We speak of a simple
branching algorithm when the exploration of one root-to-leaf path is independent of the other
paths; this excludes, for example, algorithms relying on clause learning, re-use of computation
done in earlier branches, and branch-and-bound. For a simple branching algorithm with
running time O

ú(cn), one obtains a bounded-error quantum algorithm with running time
O

ú(cn/2) in this way; we simply say that we apply Grover’s search to the branching algorithm.

3 Preprocessing small subsets

For – œ [0, 1], a subset X of U is –-small if |X| Æ –n. Denote by s(n,–) =
qÂ–nÊ

i=0

!n
i

"

the number of –-small subsets of U . In this section, we consider the problem of counting
the number of k-covers, k-packings, and k-partitions for each –-small subset of U . When
considering k-covers, we assume that F has been replaced by F ¿. This is because when we
would like to cover a subset of elements of X, we may use a set from F that also contains
elements outside of X. Since � is subset polynomial time computable in the �-Set Cover
problem, we may as well replace F by F ¿; this makes the discussion of covering, partitioning,
and packing problems more uniform. Our algorithms run in O

ú (s(n,–)) time, which is best
possible, since the output is a list of s(n,–) integers.

This section heavily relies on previous O
ú(2n) inclusion-exclusion approaches [7, 8] to

compute the number of k-covers, k-packings, and k-partitions for U and these results are
well-known when – = 1. The work by [6] is also related, but their running times depends on
the number of supersets of F .

We start by defining the –-small zeta transform, which is central to this section.

I Definition 3. Let f be a function from subsets of the universe U to an algebraic ring R.
The –-small zeta transform of f , denoted f’– is

f’–(X) =
ÿ

Y ™X

f(Y )

for any –-small X ™ U .
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The 1-small zeta transform is also called the zeta transform and the –-small zeta transform
is precisely the restriction of the zeta transform to –-small sets. Throughout this paper we
assume that arithmetic operations in the ring R take O

ú(1) time and each ring element is
represented using O

ú(1) space.

I Definition 4. Let f be a function from subsets of the universe U to an algebraic ring R.
The –-small Möbius transform of f , denoted fµ– is

fµ–(X) =
ÿ

Y ™X

(≠1)|X\Y |
f(Y )

for any –-small X ™ U .

It is well-known (see, e.g., [17]) that f’–µ– = fµ–’– = f when – = 1, and the same is
true when – ”= 1.

I Lemma 5. The –-small zeta transform f’– and the –-small Möbius transform fµ– can
be computed in O

ú(s(n,–)) time.

Proof. We start with f’– and proceed as in Yates’s method [27]. Consider an arbitrary
ordering of the elements of U = {v1, . . . , vn}. The algorithm considers each –-small X ™ U

by increasing order of cardinality.
Set g0(X) = f(X). Then, iterate over the elements of U in the ordering fixed above.

When processing element vi, set

gi(X) = gi≠1(X) + [vi œ X] · gi≠1(X \ {vi}).

Finally, set f’–(X) = gn(X).
Correctness can be shown by induction on i by observing that

gi(X) =
ÿ

{vi+1,...,vn}flX™Y ™X

f(Y ).

For each set X the computation takes O
ú(1) time, and the number of sets X to be

considered is s(n,–).
To compute fµ–, we use the fact that µ– = ‡–’–‡–, where the –-small odd-negation

transform is

f‡–(X) = (≠1)|X|
f(X),

defined for any –-small X ™ U . Indeed,

f‡–’–‡–(X) = (≠1)|X|
·

ÿ

Y ™X

(≠1)|Y |
· f(Y )

=
ÿ

Y ™X

(≠1)|X|+|Y |
f(Y )

=
ÿ

Y ™X

(≠1)|X\Y |
f(Y )

since |X|+ |Y | and |X|≠ |Y | = |X \Y | have the same parity. The result now follows, because,
for a function g and a set X, g‡–(X) can be computed in O

ú(1) time. J

ICALP 2024
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We refer to these algorithms as the fast –-small zeta transform and the fast –-small Möbius
transform.

By inclusion-exclusion, the number of k-covers for a subset X ™ U is [7]

ck(F , X) =
ÿ

Y ™X

(≠1)|X\Y |
a(Y )k, (1)

where a(Y ) is the number of subsets Z ™ Y that belong to F = F ¿.
For the number of k-partitions, we use an indeterminate z in the ring R that allows us to

keep track of the sum of the cardinalities of the sets in the cover. The number of k-partitions
for a subset X ™ U is given [7] by the coe�cient of the monomial z|X| in the polynomial

dk(F , X) =
ÿ

Y ™X

(≠1)|X\Y |

Q

a
|Y |ÿ

j=0

aj(Y )zj
R

b
k

, (2)

where aj(Y ) is the number of size-j subsets Z ™ Y that belong to F .
For the number of k-packings of X, we compute the number of (k + 1)-partitions where

the first k members of the (k + 1)-tuple belong to F and the last member is an arbitrary
subset of X. Noting that (1 + z)|Y | =

q|Y |
i=0

!|Y |
i

"
z
i, the number of k-packings for X ™ U is

[7] the coe�cient of z|X| in

pk(F , X) =
ÿ

Y ™X

(≠1)|X\Y |(1 + z)|Y |

Q

a
|Y |ÿ

j=0

aj(Y )zj
R

b
k

. (3)

The first algorithmic step is to compute the values for a(Y ) in (1) and the polynomialsq|Y |
j=0

aj(Y )zj in (2) and (3). Observe that |Y | Æ |X| Æ –n. To compute the values a(Y )
for all –-small Y ™ U , observe that a(Y ) =

q
Z™Y [Z œ F ] is the –-small zeta transform of

the indicator function of F . Since the implicit set system is polynomial time computable,
the indicator function can be evaluated in polynomial time. Therefore, the fast –-small zeta
transform allows us to compute all relevant values of a(·) in O

ú(s(n,–)) time. Similarly, the
polynomial

q|Y |
j=0

aj(Y )zj equals h’–(Y ) where h(Z) = [Z œ F ] · z|Z| and can be computed
in the same time bound by the fast –-small zeta transform.

The second algorithmic step is to to use the fast –-small Möbius transform and apply it
to the functions that associate with each –-small Y ™ U the values a(Y )k;

1q|Y |
j=0

aj(Y )zj
2k

;

and (1 + z)|Y |
1q|Y |

j=0
aj(Y )zj

2k
, respectively.

We conclude that ck(F , X), dk(F , X), and pk(F , X) for each –-small X ™ U can be
computed in O

ú(s(n,–)) time.

I Theorem 6. Given a polynomial time computable implicit set family �(I) = (U,F) with
|U | = n, there is a O

ú(s(n,–)) time algorithm which determines, for all k Æ –n and all
–-small X ™ U , whether (X,F) has a k-cover (if we assume that F is closed under subsets),
k-partition, or k-packing.

4 Divide-and-conquer algorithm

Let �(I) = (U,F) be a polynomial time computable implicit set family for which we would
like to determine whether there is a k-cover (assuming F = F ¿), k-partition, or k-packing.
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We say that a simple branching algorithm enumerates a family F
Õ of subsets of U if, at

each leaf of its search tree it finds at most one member of F Õ, and collectively the leaves find
all members of F Õ (duplicates are allowed).

Our algorithm uses a divide-and-conquer strategy where the universe is twice partitioned
into two.

I Definition 7. For a family of subsets F of a universe U , and a subset X ™ U , the
restriction of F to X is r(F , X) = {S ™ X : S œ F}.

Observe that (U,F) has a k-partition (resp., a k-packing or a k-cover) for k Ø 2 i� there
is a set L ™ U and a positive integer kl < k such that (L, r(F , L)) has a kl-partition (resp.,
a kl-packing or a kl-cover) and (R, r(F , R)) has a kr-partition (resp., a kr-packing or a
kr-cover), where R = U \L and kr = k ≠ kl. We say that a k-partition, k-packing, or k-cover
(S1, . . . , Sk) does not straddle X if for each i œ {1, . . . , k}, either Si ™ X or Si fl X = ÿ.

In this section we prove the following theorem.

I Theorem 8. Suppose there is a simple (classical) branching algorithm A, which, given an
instance I with �(I) = (U,F) and a subset X ™ U , enumerates a family e(X,FX) of subsets
of X from FX such that

if (U,F) has a k-cover (resp., a k-partition or a k-packing) that does not straddle X, then
(U,F) has a k-cover (resp., a k-partition or a k-packing) (S1, . . . , Sk) with S1 œ e(X,FX),
and
the algorithm runs in O

ú(c|X|) time for some c Æ 2.
Then, there is a bounded-error quantum algorithm, which determines whether (U,F) has a
k-cover (resp., a k-partition or a k-packing) in O

ú
1! n

n/4

"
+ (2 + c)n/2

2
time, where n = |U |.

From now on, we focus on Set Cover; the discussion of Set Partition and Set Packing is
analogous. The first step is to use the algorithm from Theorem 6 with – = 1

4
and store the

result in QRAM.
Ideally, we would want to divide the universe U into equal sized sets L and R and compute

a k-cover where each set of the cover is responsible for covering elements of either L or R.
However, we cannot guarantee that such a k-cover exists. Instead, we can focus on partitions
of U into L and R with |L| Ø n/2 where the removal of one member of the k-cover decreases
the size of L to at most n/2.

I Lemma 9. For any x œ {0, . . . , n}, (U,F) has a k-cover, k Ø 2, i� there is a partition of
U into (L,R) with |L| Ø x and integers kL, kR Ø 1 with k = kL + kR such that (L, r(F , L))
has a kL-cover (S1, . . . , SkL) and (R, r(F , R)) has a kr-cover such that |Si| Ø |L| ≠ x for
every i œ {1, . . . , kL}.

Proof. For the backward direction, assume that (L, r(F , L)) has a kl-cover and (R, r(F , R))
has a kr-cover. Then (LfiR, r(F , L)fi r(F , R)) has a k-cover where k = kl+kr. This k-cover
is of the form (S1, S2, · · · , Sk), where Si ™ r(F , L) fi r(F , R). To turn it into a k-cover for
(U,F), we replace each Si by a set S

Õ
i with Si ™ S

Õ
i œ F , and we note that such a set S

Õ
i

exists in F , since Si is the restriction of some set in F to either L or R. Hence, (U,F) has a
k-cover.

For the forward direction, assume that (U,F) has a k-cover (S1, S2, · · · , Sk) and assume,
w.l.o.g., that |S1| Ø |S2| Ø · · · Ø |Sk|. Let L =

tkL

i=1
Si and R = U \ L where kL is the

smallest value such that |L| > x. Obviously, (S1, S2, · · · , SkL) is a kL-cover of (L, r(F , L))
and (Sk+1 fl R,Sk+2 fl R, · · · , Sk fl R) is a kR-cover of (R, r(F , R)) where kR = k ≠ kL.

ICALP 2024
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Focusing on SkL , the smallest set in the cover of L, we have that

kL€

i=1

Si \ SkL ™

kL≠1€

i=1

Si

=∆ |

kL€

i=1

Si| ≠ |SkL | Æ |

kL≠1€

i=1

Si|

=∆ |L| ≠ |SkL | Æ x

=∆ |Si| Ø |SkL | Ø |L| ≠ x for all i œ {1, . . . , kL}.

Therefore, (U,F) has a k-cover if and only if the conditions are satisfied. J

In particular, this means that removing any member Si of the kL-cover gives a (kL ≠ 1)-
cover of L \ Si and |L \ Si| Æ x.

We use Grover’s search to divide the elements into two sets (L,R) where |L| Ø n/2
and k into kL + kR. Then, we solve each of these two instances independently, again using
Grover’s search on (L, r(F , L)) (resp., on (R, r(F , R))), dividing it into (LL,LR) where
|LL| Ø n/4 and kLL + kLR = kL (similar for R). For (LL, r(F , LL)) (and, similarly, on the
corresponding instances for LR, RL, RR), we use Grover’s search on the branching algorithm
A to enumerate candidate sets S1 œ e(LL, r(F , LL)); if |LL| ≠ |S1| > n/4, then this branch
is unsuccessful; otherwise, look up whether LL \ S1 has a (kLL ≠ 1)-cover in QRAM.

The running time of this algorithm is

O
ú

33
n

n/4

44

for running the algorithm from Theorem 6; the steps using Grover’s search take

O
ú

Q

a
ı̂ıÙ

nÿ

l=Án/2Ë

3
n

l

4 lÿ

lÕ=Án/4Ë

3
l

lÕ

4
cl

Õ

R

b = O
ú

1
(2 + c)n/2

2

time to achieve constant success probability. This proves Theorem 8.

Discussion

When c Ø
16

33/2
≠ 2 ¥ 1.079201, then the running time is Oú !

(2 + c)n/2
"
. When c Æ

16

33/2
≠ 2,

then the running time is dominated by the term
! n
n/4

"
¥ 1.7548n. For c Æ 1.147899, the next

section gives faster algorithms.

5 Divide-and-conquer algorithms for small c

In this section, we again assume that there is an enumeration algorithm A, as in Theorem 8,
with running time O

ú !
c
|X|". We present two divide-and-conquer algorithms which are faster

for small values of c.
Throughout this section, we focus on Set Cover; the discussion of Set Partition and Set

Packing is analogous.

I Theorem 10. There is a bounded-error quantum algorithm, which determines whether
(U,F) has a k-cover (resp., a k-partition or a k-packing) in O

ú
1! n

n/4

"
+ (1 + c) 3

4 ·n
2
time,

where n = |U |.
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The first step is to use the algorithm from Theorem 6 with – = 1

4
and store the result in

QRAM. Our algorithm is similar to the algorithm in Theorem 8, but we use the branching
algorithm A to remove a subset from L before dividing it into (LL,LR). Again, Lemma 9 is
central to our algorithm.

We use Grover’s Search to divide the elements into two sets (L,R) where |L| Ø n/2 and k

into kL + kR. Then, we solve each of these two instances independently, again using Grover’s
search on (R, r(F , R)), dividing it into (RL,RR) where |RL| Ø n/4 and kRL+kRR = kR. For
the instance (L, r(F , L)), we use Grover’s search on the branching algorithm A to enumerate
candidate sets S1 œ e(L, r(F , L)); if |L| ≠ |S1| > n/2 then this branch is unsuccessful;
otherwise, we use Grover’s search on the subinstance (L \ S1, r(F , L \ S1)), dividing it into
(LL,LR) where |LL| Ø n/4 and kLL + kLR = kL ≠ 1.

We process (LL, r(F , LL)) (and, similarly, the corresponding instances for LR, RL, RR)
as we did in Theorem 8 – we use Grover’s search on the branching algorithm A to enumerate
candidate sets S1 œ e(LL, r(F , LL)); if |LL| ≠ |S1| > n/4, then this branch is unsuccessful;
otherwise, look up whether LL \ S1 has a (kLL ≠ 1)-cover in QRAM.

The running time of this algorithm is

O
ú

33
n

n/4

44

for the running the algorithm from Theorem 6; the steps using Grover’s search take

O
ú

Q

ca

ı̂ııÙ
nÿ

l=Án/2Ë

3
n

l

4
cl

Ân/2Êÿ

lÕ=Án/4Ë

3
n/2
lÕ

4
cl

Õ

R

db = O
ú

1
(1 + c) 3

4 ·n
2

time to achieve constant success probability. This proves Theorem 10.

Discussion

When c Ø
2
8/3

3
≠ 1 ¥ 1.11653, then the running time is Oú

1
(1 + c) 3

4 ·n
2
. When c Æ

2
8/3

3
≠ 1,

then the running time is dominated by the term
! n
n/4

"
¥ 1.7548n. When c Æ 1.0872, then

the following algorithm is faster.

I Theorem 11. If c Æ 1.0872, there is a bounded-error quantum algorithm, which determines
whether (U,F) has a k-cover (resp., a k-partition or a k-packing) in

O
ú

33
min

0.1303Æ–Æ0.25

1
(1 + c)3/4c–/2 (1 ≠ 4 · –)

4·–≠1
8 (4 · –)≠ –

2 , –
≠–

· (1 ≠ –)–≠1

24n4

time.

The first step is to use the algorithm from Theorem 6 with some 0.1303 Æ – < 0.25 and
store the result in QRAM. Our algorithm is identical to the one presented in Theorem 10
except that we cannot directly look up whether a subset X ™ U has a k-cover in QRAM for
|X| Æ n/4. Instead, we use the following approach.

I Lemma 12. If c Æ 1.0872 and 0.1303 Æ – < 0.25, after running the algorithm from
Theorem 6, there exists a bounded-error quantum algorithm that checks for a k-cover of a
subset X ™ U where |X| Æ n/4 in O

ú
3Ò!n/4

–·n
"
· c–·n

4
time.
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Proof. We use Grover’s search to divide the elements of X into two sets (XL,XR) where
|XL| Ø – · n and k into kXL + kXR. We use Grover’s search on the branching algorithm A

to enumerate candidate sets S1 œ e(XL, r(F , XL)); if |XL| ≠ |S1| > – · n, then this branch
is unsuccessful; otherwise, look up whether XL \ S1 has a (kXL ≠ 1)-cover and XR has a
kXR-cover in QRAM. The correctness of this approach follows from Lemma 9.

As the function f(x) =
!n/4

x

"
c
x is strictly decreasing for x >

c
c+1

·
n
4
and

– · n Ø 0.1303 · n >
1.0872 / 4
1.0872 + 1 · n Ø

c

c+ 1 ·
n

4 ,

the running time of this algorithm is

O
ú

Q

ca

ı̂ııÙ
Ân/4Êÿ

i=Á–·nË

3
n/4
i

4
ci

R

db = O
ú

AÛ3
n/4
– · n

4
c–·n

B
.

This proves the lemma. J

Our algorithm is the same as the one in Theorem 8, except when we check for a (kLL ≠1)-
cover for LL \ S1 (resp., on LR, RL, RR) we use Lemma 12 instead of a direct lookup in
QRAM.

Running the algorithm from Theorem 6 takes

O
ú

33
n

– · n

44
= O

ú
1

–
≠–n

· (1 ≠ –)(–≠1)n
2

time. The steps using Grover’s search take

O
ú

Q

ca

ı̂ııÙ
nÿ

l=Án/2Ë

3
n

l

4
cl

Ân/2Êÿ

lÕ=Án/4Ë

3
n/2
lÕ

4
cl

Õ

Û3
0.25 · n

– · n

4
c–·n

R

db

= O
ú

AA
(1 + c)3/4c–/2

3
1

1 ≠ 4 · –

4 1≠4·–
8

3
1

4 · –

4 –
2

BnB
time.

The running time of the first part increases with – while the running time of the second
part decreases with –. We can therefore optimise the running time by balancing the value of
– for a given c. To determine when this approach is faster than O

ú
1! n

n/4

"2
we compute the

value of c when – is balanced at 0.25:

(1 + c)3/4c1/8 = 4
33/4

=∆ c ¥ 1.08724 .

Therefore, this algorithm outperforms the algorithms of Theorem 8 and Theorem 10
when c Æ 1.08723.

Combining Theorem 8, Theorem 10, and Theorem 11, we obtain the following corollary.

I Corollary 13. There is a bounded-error quantum algorithm, which determines whether
(U,F) has a k-cover (resp., a k-partition or a k-packing) in O

ú !
(2 + c)n/2

"
time, where

n = |U |.
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Running time for various values of c

(2 + c)n/2
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Figure 1 Visual presentation of running times of Theorem 10 and Theorem 11.

When c Æ 1.147899, then the running time provided by the best among Theorem 10 and
Theorem 11 is slightly faster. At c = 1, the running time of Theorem 11 matches the running
time of the Set Cover algorithm of [1] when |F| is subexponential in n.

When c < ≠
2

3
+ 3

Ò
47

54
≠

Ô
93

18
+ 3

Ò
47

54
+

Ô
93

18
¥ 1.147899, then choosing the best algorithm

among Theorem 10 and Theorem 11 gives an algorithm running in O
ú(bn) time for some

b <
Ô
c+ 2. This can be seen visually in Figure 1 and proved rigorously, e.g., by interleaving

a stepwise function between the function (c+ 2)n/2 and the function from Theorem 11 when
c Æ 1.08:

steps(c, n) =

Y
____]

____[

3n/2 if c Æ 1.0123
1.735595n if 1.0123 Æ c Æ 1.0221
. . .

1.7533n if 1.0742 Æ c Æ 1.08.
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c – running time

1.0 0.236159 O
ú(1.7274n)

1.01 0.238036 O
ú(1.7312n)

1.02 0.239858 O
ú(1.7349n)

1.03 0.241622 O
ú(1.7384n)

1.04 0.243320 O
ú(1.7418n)

1.05 0.244946 O
ú(1.7450n)

1.06 0.246488 O
ú(1.7480n)

1.07 0.247928 O
ú(1.7508n)

1.08 0.249227 O
ú(1.7533n)
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Running time for various values of c

Theorem 8
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Theorem 11

Figure 2 Running time for various values of c.

When 1.08 Æ c Æ 1.147899, then Theorem 10 gives an algorithm with running time O
ú(dn)

for some d <
Ô
c+ 2. We list precise running times for certain values of c in Figure 2.

6 Applications

We can now use Corollary 13 in combination with simple branching algorithms enumerating
various vertex sets in graphs, in particular algorithms enumerating maximal independent
sets (equivalently, maximal cliques in the complement graph) in O

ú(3n/3) time [17] (we
note that the algorithm of [24] is not a simple branching algorithm), maximal bicliques in
O

ú(3n/3) time, maximal induced matchings in O
ú(10n/5) time [23], maximal induced forests

in O(1.8527n) time [19], and minimal k-hitting sets in O
ú((2 ≠ 1/k)n) time [15]. The last

result is used to enumerate maximal H-free subgraphs, which have no induced subgraph
isomorphic to any graph from the family H of graphs, all of which have at most k vertices.
Some well-known H-free graph classes are

cluster graphs with H = {P3}, where Pk denotes the path on k vertices,
triangle-free graphs with H = {K3}, where Kk denotes the complete graph on k vertices,
cographs with H = {P4} [12],
claw-free graphs with H = {K1,3}, where Kk,¸ denotes the complete bipartite graph with
partite sets of size k and ¸,
trivially-perfect graphs with H = {P4, C4} [21], where Ck denotes the cycle on k vertices,
threshold graphs with H =

)
P4, C4, C4

*
[11], where G denotes the complement of G,

split graphs with H =
)
C4, C4, C5

*
[14], and

line graphs, where H is a set of 9 graphs on at most 6 vertices each [3].

I Theorem 14. There are bounded-error quantum algorithms, which, for a graph on n

vertices and integer k, determine whether there is a k-packing, k-partitioning, or k-covering
of G

with maximal independent sets, maximal cliques, or maximal bicliques in O(1.8554n)
time,
with maximal cluster graphs or maximal triangle-free graphs in O(1.9149n) time,
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with maximal cographs, maximal claw-free graphs, maximal trivially-perfect graphs, or
maximal threshold graphs in O(1.9365n) time,
with maximal split graphs in O(1.9494n) time,
with maximal line graphs in O(1.9579n) time, and
with maximal induced forests in O(1.9629n) time.

There are bounded-error quantum algorithms, which, for a graph on n vertices and integer k,
determine whether there is a k-packing or k-partitioning of G

with maximal induced matchings in O(1.8934n) time2.

In particular, this leads to a bounded-error quantum algorithm computing the chromatic
number of an input graph in O(1.8554n) time; a graph can be covered with k maximal
independent sets i� it has chromatic number at most k. In Section 7, we expedite this
algorithm by exploiting fast algorithms for coloring a graph with a small number of colors and
this will enable us to partition the vertex set in a more balanced way in the divide-and-conquer
steps.

Even though there is a simple branching algorithm that enumerates all minimal dominating
sets in O(1.7159n) time [16], this algorithm cannot be readily used for computing the domatic
number using Theorem 8. This is because when we consider a subset X of the vertex set
of G = (V,E), we need to enumerate vertex subsets from X that are minimal dominating
sets for G, and not G[X]. In Section 8, we prove that such minimal dominating sets can be
enumerated in O

ú !
(2 ≠ Á)|X|" time if |X| is linear in |V |.

7 Faster Computation of the Chromatic Number

Assume the vertex set of input graph G = (V,E) can be partitioned into independent sets
C = (I1, I2, . . . , I‰) where ‰ is the chromatic number of G. Denote by n the number of
vertices of G.

Using the algorithm from Theorem 8, we can compute the chromatic number of G in
O(1.8554n) time. The family of subsets F corresponds to the independent sets of G and
the family e(X, r(F , X)) corresponds to the maximal independent sets of G[X], which can
be enumerated by a simple branching algorithm A in O(3|X|/3) time [17]. We now prove a
stronger result.

A proof of Lemma 17 along with a more detailed complexity analysis can be found in the
full version of the paper [20].

I Theorem 15. There is a bounded-error quantum algorithm, which for a graph on n vertices,
computes the chromatic number in O(1.7956n) time.

Assume, w.l.o.g., that |I1| Ø |I2| Ø |I3| Ø |I4| Ø · · · Ø |I‰|.
In the first step, we use the algorithm from Theorem 6 with – = 0.27 and store the result

in QRAM. That is, for each –-small subset X µ V , we find the chromatic number of X by
finding the smallest k such that there exists a k-partition of X into independent sets. This
takes Oú(

! n
0.27·n

"
) = O

ú(1.79187n) time.
We then consider a few di�erent possibilities for the large sets in C and present an

algorithm which finds a partition into a smallest number of independent sets for each of
these cases. These possibilities cover all configurations of C so one result is guaranteed to
find the chromatic number by detecting the partition C above, or an equivalent partition.
The cases are as follows:

2 Note that it is NP-hard to determine, for a graph G = (V,E) and vertex subset X ™ V , whether there
is a superset Y ´ X that induces a 1-regular subgraph of G. This can be seen by a simple reduction
from Independent Set.
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1. G contains a vertex subset of size at least 0.48 · n that is the union of at most five sets
in C.
We check for k-coloring for all 1 Æ k Æ n and take the minimum valid value of k as
the chromatic number. To check for a certain k, we use Grover’s search over all Q µ V

where |Q| Æ 0.52 · n and check whether G ≠ Q is 5-colorable. If it is 5-colorable, we
compute its chromatic number by checking its kÕ-colorability for kÕ

< 5. We then solve
the instance (Q, r(F , Q)) to find a kQ-coloring, where kQ = k ≠ ‰(G≠Q), using Grover’s
search to divide Q into (QL,QR) where |QL| Ø 0.27 · n and kQL + kQR = kQ. For
(QL, r(F , QL)) (and similarly for QR) we use Grover’s search on the branching algorithm
A to enumerate candidate sets S1 œ e(QL, r(F , QL)); if |QL| ≠ |S1| > 0.27 · n, then this
branch is unsuccessful; otherwise, find ‰(QL \ S1) in QRAM.
The running time of this case with quantum 5-coloring in O

ú(1.4695n) [26] is Oú(1.7831n).
2. G contains a vertex subset of size at least 0.48 · n that is the union of six sets in C, but

does not contain a vertex subset of size at least 0.48 · n that is the union of at most five
sets in C.
In this case we have

|I1|+ |I2|+ · · ·+ |I5| < 0.48 · n
=∆ 5 · |I6| Æ 5 · |I5| < 0.48 · n
=∆ |I1|+ |I2|+ · · ·+ |I6| < 0.576 · n,

which, along with the condition 0.48 · n Æ |
t

6

i=1
Ii| gives

0.424 · n < |V \

6€

i=1

Ii| Æ 0.52 · n.

For this case we check for k-coloring for all 1 Æ k Æ n and take the minimum valid value
of k as the chromatic number. To check for a certain k, we use Grover’s search over all
Q µ V where 0.424 · n < |Q| Æ 0.52 · n and check whether G ≠ Q is 6-colorable. If so, we
check whether the instance (Q, r(F , Q)) is (k ≠ 6)-colorable in the same way as in item 1.
The running time of this case with quantum 6-coloring in O

ú(1.5261n) [26] is Oú(1.7937n).
3. G does not contain a vertex subset of size at least 0.48 · n that is the union of at most six

sets in C. That is |
t

6

i=1
Ii| < 0.48 · n.

Let T =
tq

i=1
Ii where q is the maximum index such that |T | < n

2
. As |

t
6

i=1
Ii| < 0.48 ·n,

we have q Ø 6. We consider two possibilities for the size of T and present an algorithm
which finds a partition into a smallest number of independent sets for each case. As a
valid coloring is computed in each case, the smallest partition gives the chromatic number
if |

t
6

i=1
Ii| < 0.48 · n.

3.1. Consider the case where |T | <
6·n
13

:
Let L =

tq+1

i=1
Ii and R =

t‰
q+2

Ii. We have

|I1|+ |I2|+ · · ·+ |Iq| <
6 · n
13

=∆ |I1|+ |I2|+ · · ·+ |Iq+1| <
7 · n
13

≈∆ |L| <
7 · n
13

and 0.5 · n Æ |L| from the definition of q.



S. Gaspers and J. Z. Li 69:15

Assume L is not 7-colorable. There must be more than 7 independent sets in the
construction of of L, which means

q + 1 > 7 ≈∆ q Ø 7

=∆ 7 · |Iq+1| <
6 · n
13

=∆ |L| <
48 · n
91

By contraposition, |L| Ø
48·n
91

implies that L is 7-colorable.

I Lemma 16. After running the algorithm presented in Theorem 6, there exists a
bounded-error quantum algorithm to check the 7-colorability of a subset X ™ U where
|X| Æ

7

3
· – · n in O

ú(1.5622|X|) time.

Proof. Assume that X is 7-colorable and there is a partition D = (J1, J2, . . . , J7)
of X into independent sets. Assume, w.l.o.g., that |J1| Ø |J2| Ø · · · Ø |J7|. Let
TL = J1 fi J2 fi J3 and TR = J4 fi J5 fi J6 fi J7. We have

|TL|

3 Ø |J3| Ø |J4| Ø
|TR|

4
=∆ |TL|+ 4

3 · |TL| Ø |X|

≈∆ |TL| Ø
3
7 · |X|.

Consider TR \ J4,

|TR| Æ
4
7 · |X| and |J4| Ø

1
4 · |TR|

=∆ |TR \ J4| Æ
3
7 · |X| Æ – · n.

So there exists a subset S1 œ e(TR, r(F , TR)) such that |TR \ S1| Æ – · n.
We use Grover’s search to divide X into two sets (XL,XR) where |XL| Ø

3·|X|
7

.
We check XL for 3-colorability using a fast quantum algorithm. If it is 3-colorable,
we use Grover’s search on the branching algorithm A to enumerate candidate sets
S1 œ e(XR, r(F , XR)); if |XR|≠|S1| > –·n, then this branch is unsuccessful; otherwise,
check whether ‰(XR\S1) Æ 3 in QRAM. IfX is 7-colorable and (XL,XR) = (TL, TR),
we indeed detect 7-colorability.
The running time of this algorithm with quantum 3-coloring in O

ú(1.1528n) time [18]
is Oú(1.5622|X|). J

We check for k-coloring for all 1 Æ k Æ n and take the minimum valid value of k as the
chromatic number. To check for a certain k, we use Grover’s search to divide V into
two sets (L,R) where 0.5 ·n Æ |L| <

7·n
13

and k into kL+kR. When |L| <
48·n
91

, we solve
the subinstances (L, r(F , L)) and (R, r(F , R)) as in Theorem 8. When |L| Ø

48·n
91

, we
solve the subinstance (R, r(F , R)) as in Theorem 8 and run the algorithm in Lemma 16
on L; if L isn’t 7-colorable, then this branch is unsuccessful; otherwise the subinstance
(L, r(F , L)) is kL-colorable for kL Ø 7. This algorithm finds the chromatic number of
G when (L,R) are equal to the ones we constructed from C. The running time of this
algorithm is Oú(1.7956n).
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3.2. Otherwise, consider the case where 6·n
13

Æ |T | <
n
2
:

Let L = T =
tq

i=1
Ii and R =

t‰
q+1

Ii. We partition R into independent sets
C

Õ = (I Õ
1
, I

Õ
2
, . . . , I

Õ
‰Õ) where I

Õ
i = Iq+i for all 1 Æ i Æ ‰

Õ. By the definition of C, this is
an optimal partition of R. As q Ø 6, we get |L|

6
Ø |Iq| Ø |Iq+i| = |I

Õ
i| for all 1 Æ i Æ ‰

Õ.

I Lemma 17. Assume we have a partition D = (J1, J2, . . . , Jm) of a set X where
t Ø |J1| Ø |J2| Ø · · · Ø |Jm|. Define p =

Ï
|X|
t

Ì
and r = |X|

p . For any non-negative
integer a, 1 Æ a Æ p≠2, there exists an integer k such that a ·r Æ |

tk
i=1

Ji| Æ (a+1) ·r.
Let Ta =

tqÕ

i=1
I

Õ
i and Tb =

tqÕ
+1

i=1
I

Õ
i where qÕ is the maximum index such that |Ta| <

|R|
2
.

Note that |R|
2

Æ |Tb|. When we apply Lemma 17 with X = R, D = C
Õ and t = |L|

6
, we

get

|X|

t
= 6 · |R|

|L|
Æ

6 · 7·n
13

6·n
13

= 7

and 6 · |R|

|L|
>

6 · n
2

n
2

= 6

=∆ p =
9
|X|

t

:
= 7.

If we let a = 3, the lemma states that there exists a k such that
3·|R|
7

Æ |
tk

i=1
I

Õ
i| Æ

4·|R|
7

. As q
Õ and q

Õ + 1 di�er by 1, it is not possible that
|
tqÕ

i=1
I

Õ
i| <

3·|R|
7

Æ |
tk

i=1
I

Õ
i| Æ

4·|R|
7

< |
tqÕ

+1

i=1
I

Õ
i|. So, either 3·|R|

7
Æ |Ta| <

|R|
2

or
|R|
2

Æ |Tb| Æ
4·|R|
7

. We let TL = Ta or TL = Tb such that 3·|R|
7

Æ |TL| Æ
4·|R|
7

and
TR = R \ TL. Note that in both cases, removing the independent set I

Õ
qÕ+1

from
either TL or TR would leave both subsets with a size Æ

|R|
2
. Therefore, there exists a

subset S1 œ e(TL, r(F , TL)) (resp. for TR) such that |TL \ S1| Æ
|R|
2

Æ 0.27 (and
similarly for TR).

We check for k-coloring for all 1 Æ k Æ n and take the minimum valid value of k as
the chromatic number. To check for a certain k, we use Grover’s search to divide
V into two sets (L,R) where 6·n

13
Æ |L| < 0.5 · n and k into kL + kR. We solve the

subinstance (L, r(F , L)) as in Theorem 8. We also solve the subinstance (R, r(F , R))
as in Theorem 8, except that R is divided into (RL,RR) with 3·|R|

7
Æ |RL| Æ

4·|R|
7

instead of |RL| > 0.5 · |R|. This algorithm finds the chromatic number of G when
(L,R) are equal to the ones we constructed from C and (RL,RR) = (TL, TR). The
running time of this algorithm is Oú(1.7956n).

We observe that the overall running time of the algorithm is

O
ú

AÛ3
n

7

13
· n

43
7

13
· n

4

13
· n

4
3 1

3 ·
4
13 ·n

B

= O
ú

A3 Ô
13

27/13 · 323/78

4n
B

= O
ú(1.7956n)
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We reach this worst case when ‰(G) = 13 and |I1| = |I2| = |I3| = · · · = |I13|. An example of
such a graph is the disjoint union of n

13
complete graphs on 13 vertices. If the universe is

partitioned into 2, one part must have at least 7 independent sets which is then partitioned
into two parts where one part has at least 4 independent sets. Hence we cannot improve on
the running time with a di�erent twice-partitioning strategy.

We also note that the current best known quantum algorithms for checking 13-colorability,
7-colorability and 4-colorability [26] do not improve our running time. When iterating
through S1 œ (X, r(F , X)), we only need to consider S1 with |S1| Ø |X| ≠ – · n so we can
use an improved upper bound [10] when we only need to consider |S1| > |X| / 3. However,
this is only the case when |X| >

3

2
· – · n; so it does not a�ect our overall running time as

|X| = 4

13
· n in the worst case.

The pseudocode for the algorithm in this section can be found in [20].

8 Enumeration of Minimal Subset Dominating Sets

In this section, we prove that the number of minimal dominating sets of a graph that
are subsets of some linear-sized subset of vertices X is at most Oú !

(2 ≠ Á)|X|". Moreover,
they can be enumerated by a simple branching algorithm whose running time is within a
polynomial factor of this bound.

I Theorem 18. There is a simple branching algorithm, which, given any graph G = (V,E)
and any subset of vertices X ™ V with |X| Ø d · |V | for some d > 0, enumerates all minimal
dominating sets of G that are subsets of X in O

ú !
(2 ≠ Ád)|X|" time, for some Ád > 0.

The theorem will follow from a slightly more general theorem about minimal set covers of
a set system. From a graph G = (V,E) and a vertex subset X ™ V , we obtain a set system
(U,F) where U = V and a set Sx œ F for each x œ X that contains the closed neighborhood
of vertex x in the graph G: Sx = NG[x]. Then, there is a 1-to-1 correspondence between
inclusion-wise minimal dominating sets in G that are subsets of X and inclusion-wise minimal
set covers of (U,F).

I Theorem 19. There is a simple branching algorithm, which, given any set system
(U,F) with |U | Æ r · |F| for some r > 0, enumerates all minimal set covers of (U,F)
in O

ú !
2(1≠Ár)·|F|" time, for some Ár > 0.

Fomin et al. [16] proved Theorem 18 for X = V and Theorem 19 for r = 1. In particular,
their algorithm enumerates all minimal dominating sets of a graph on n vertices in O(1.7159n)
time.

Proof. Let r > 0. Let Á = 3(r+1)≠log(2
3(r+1)≠1)

3(r+1)2 . Consider the measure

µ(U,F) = (1 ≠ (r + 1)Á)|F|+ Á|U |

which associates a weight of 1 ≠ (r + 1)Á > 0 to each set and a weight of Á > 0 to each
element of a set system (U,F). We will show that every set system (U,F) has at most 2µ(U,F)

minimal set covers by induction on |F|. For a set system with |U | Æ r · |F|, this number
is 2(1≠(r+1)Á)|F|+Á|U |

Æ 2(1≠Á)·|F|. The proof can easily be turned into a simple branching
algorithm enumerating all minimal set covers whose search tree is the induction tree of this
proof.

The statement trivially holds when |F| = 0 since such an instance has at most 1 minimal
set cover. For the induction, we consider three cases.

ICALP 2024
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1. F contains a set S with |S| Ø 3(r + 1). Any minimal set cover either contains S or not.
Those that do not contain S are also minimal set covers of (U,F \ {S}) and those that
contain S are made up of S and a minimal set cover of (U \S,F \{S}). For the induction,
we would like that

2µ(U,F\{S}) + 2µ(U\S,F\{S})
Æ 2µ(U,F)

≈∆ 2µ(U,F)≠(1≠(r+1)Á) + 2µ(U,F)≠(1≠(r+1)Á)≠|S|·Á
Æ 2µ(U,F)

≈∆ 2≠1+(r+1)Á + 2≠1+(r+1)Á≠|S|·Á
Æ 1

≈= 2≠1+(r+1)Á + 2≠1≠2(r+1)Á
Æ 1,

and this inequality holds because Á Æ
1

r+1
log

1
1+

Ô
5

2

2
.

2. There is an element u œ U with frequency at most 3(r + 1), i.e., u occurs in at most
3(r+1) sets of F . Denote the sets that contain u by S = {S œ F : u œ S}. Since u needs
to be covered, each set cover contains at least one set from S. We use induction on all
2|S|

≠ 1 choices of including at least one set from S into the set covers and excluding the
remaining sets from S; each such choice leads to a set cover instance where we remove all
sets in S, and we remove all elements covered by the sets that are included in the set
covers. Each such choice reduces the measure µ by more than |S| · (1 ≠ (r + 1)Á). Now,
we would therefore like that

(2|S|
≠ 1) · 2µ(U,F)≠|S|·(1≠(r+1)Á)

Æ 2µ(U,F)

≈∆ (2|S|
≠ 1) · 2≠|S|·(1≠(r+1)Á)

Æ 1
≈∆ 2≠|S|·(1≠(r+1)Á)

Æ (2|S|
≠ 1)≠1

≈∆ ≠|S| · (1 ≠ (r + 1)Á) Æ ≠ log(2|S|
≠ 1)

≈∆ (r + 1)Á ≠ 1 Æ
≠ log(2|S|

≠ 1)
|S|

≈∆ Á Æ
|S| ≠ log(2|S|

≠ 1)
(r + 1)|S|

Note that |S|≠log(2
|S|≠1)

(r+1)|S| decreases when |S| increases, and for the maximum possible
value of |S|, which is 3(r + 1), the inequality holds with equality for the value of Á given
in the beginning of the proof.

3. It remains to consider the case where all sets have size less than 3(r+ 1) and all elements
have frequency more than 3(r + 1). Since the sum of set sizes equals the sum of element
frequencies, we have that |F| Ø |U |. Here, we use the result of Fomin et al. [16] who
proved that the number of minimal set covers is at most 1.7159|F|. For the induction, we
would like that

1.7159|F|
Æ 2µ(U,F)

≈∆ 2|F| log 1.7159
Æ 2(1≠(r+1)Á)|F|+Á|U |

≈= 0.779|F| Æ (1 ≠ (r + 1)Á)|F|

≈∆ Á Æ
0.221
r + 1

and this inequality holds for the value of Á given in the beginning of the proof.
This concludes the proof of the theorem. J

Theorem 8 now lets us conclude the following.
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I Corollary 20. There is a bounded-error quantum algorithm which computes the domatic
number of any graph on n vertices in O((2 ≠ Á)n) time for some constant Á > 0.
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Abstract

What is the power of polynomial-time quantum computation with access to an NP oracle? In this
work, we focus on two fundamental tasks from the study of Boolean satisfiability (SAT) problems:
search-to-decision reductions, and approximate counting. We first show that, in strong contrast to
the classical setting where a poly-time Turing machine requires �(n) queries to an NP oracle to
compute a witness to a given SAT formula, quantumly �(logn) queries su�ce. We then show this
is tight in the black-box model – any quantum algorithm with “NP-like” query access to a formula
requires �(logn) queries to extract a solution with constant probability.

Moving to approximate counting of SAT solutions, by exploiting a quantum link between
search-to-decision reductions and approximate counting, we show that existing classical approximate
counting algorithms are likely optimal. First, we give a lower bound in the “NP-like” black-box
query setting: Approximate counting requires �(logn) queries, even on a quantum computer. We
then give a “white-box” lower bound (i.e. where the input formula is not hidden in the oracle) –
if there exists a randomized poly-time classical or quantum algorithm for approximate counting
making o(logn) NP queries, then BPPNP[o(n)] contains a PNP-complete problem if the algorithm is
classical and FBQPNP[o(n)] contains an FPNP-complete problem if the algorithm is quantum.
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1 Introduction

A fundamental direction of study in classical complexity theory is: What can P or BPP
achieve with access to an NP oracle? Here, the study of relational-problems, i.e. where the
output is not a single bit, but a string, has proven particularly fruitful. (Formally, this refers
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to the classes FunctionP (FP) and FunctionBPP (FBPP); see Section 2.) A first direction
here has been search-to-decision reductions. Namely, given a SAT formula Ï and an NP
oracle, it is well-known that O(n) queries su�ce to extract a solution to Ï (assuming one
exists). Moreover, this is likely classically optimal: an o(n)-query algorithm would violate
the Exponential Time Hypothesis [17]1. (Before ETH was posited, Krentel showed that if
O(logn) queries su�ce, then P = NP [21].)

A second key direction has been approximate counting of the number of solutions of a
Boolean formula, first studied by Stockmeyer [22]. Approximate counting has proven widely
influential, even having applications in quantum advantage frameworks such as Aaronson
and Arkhipov’s Boson Sampling [2]. Stockmeyer showed [22] that an FBPP machine making
O(logn log logn) NP queries su�ces to approximate the number of solutions within a constant
multiplicative factor, and that at least �(logn) queries are required. This gap was closed
by Chakraborty, Meel, and Vardi, who improved the upper bound to O(logn) queries [13].
Thus, the NP-query complexity of these two tasks is now well understood.

The quantum setting. The guiding question of this work is the next natural frontier:
Can quantum access to an NP oracle reduce the number of required queries? For relation
problems, this is a particularly intriguing question: Intuitively, a single classical NP query
yields only 1 bit of information, suggesting that if an FP machine wishes to produce an n-bit
output, then �(n) queries are necessary. (Indeed, as mentioned above, this is the case for
search-to-decision reduction of SAT, assuming ETH.) Quantum access to an oracle, however,
can sometimes bypass this obstacle, producing n bit outputs with just a single query. A
notable instance of this is the Bernstein-Vazirani algorithm [11], which requires just a single
query to an oracle encoding an a�ne function f(x) = a · x+ b to output string x œ { 0, 1 }n.
We thus ask: Can a FunctionBQP (FBQP) machine make fewer queries to an NP oracle to

extract a SAT solution or approximately count the number of solutions?

Our results

In this work, we give tight resolutions to this question for both tasks.

Search-to-decision reductions. As mentioned earlier, classically, �(n) NP queries are
necessary and su�cient for search-to-decision reduction for SAT, assuming ETH. Before
proceeding to our main results, the lower bounds, we show that O(logn) queries su�ce
quantumly.

I Theorem 1. FNP ™ FBQP
NP[log]

.

Here, FunctionNP (FNP) asks to produce a witness to an NP relation (Section 2), and NP[log]
in the exponent denotes O(logn) NP queries. We remark that independently and prior to
this work, Irani, Natarajan, Nirkhe, Rao and Yuen [18] showed that for SAT formulae with a
unique satisfying assignment, a single NP query su�ces to extract said solution (see Related
Work).

1 If there is an FPNP[o(n)] algorithm outputting a satisfying assignment then SAT can be decided in time
2o(n) as follows: Enumerate through all possible strings y of o(n) NP query answers, which takes 2o(n)

time. For each y, run the FP machine on y to obtain candidate solution x, and check if Ï(x) = 1.
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Is Theorem 1 tight? Unfortunately, since we are in the white-box model for search-to-
decision reductions (i.e. the input formula Ï is given as input to the FBQP machine, rather
then hidden in the oracle), even a single-query lower bound would imply2 NP ”™ BQP, and
is thus likely out of reach. We hence move to the black-box model in order to prove a
lower bound. For this, note that the standard quantum query model does not capture the
power of “existential” or NP queries. Rather, we introduce the (straightforward quantum
reformalization of) Stockmeyer’s [22] existential query model:

I Definition 2 (Existential query model). An algorithm in the existential query model has

access to the input string x œ {0, 1}N via the following existential query gate:

O÷

x
: |zÍ ‘æ (≠1)overlap(x,z) |zÍ (1)

where z œ {0, 1}N and overlap(x, z) = 1 if there is an i such that xi = zi = 1 and 0 otherwise.

In this model, we show a matching lower bound for Theorem 1.

I Theorem 3. Any quantum algorithm with existential query access to x œ {0, 1}N that

outputs a i with xi = 1 with constant probability needs to make �(log logN) = �(logn)
existential queries.

Approximate counting. Recall that, classically, approximate counting requires �(logn) NP
queries. We next exploit the fact that the technique behind the proof of Theorem 1 (c.f. [18])
reveals a genuinely quantum link between search-to-decision reduction and approximate
counting. This allows us to show the following tight black-box lower bound on quantum

algorithms in the existential query model:

I Corollary 4. Any quantum algorithm with existential query access to a string x œ {0, 1}N

which outputs an estimate c such that 2|x|≠1
Æ c < 2|x|, where |x| is the Hamming weight of

x, requires at least �(log logN) queries to the oracle.

Above, x denotes the truth table of the SAT formula, and so N = 2n for n the number of
variables. Thus, for approximate counting, quantum algorithms do not outperform classical
algorithms.

Finally, we prove a tight white-box lower bound for both classical or quantum algorithms
which approximately count using o(logn) NP queries. As far as we are aware, no white-box
lower bounds existed for either setting prior to this work.

I Corollary 5. If there exists a classical randomized poly-time algorithm for approximate

counting, making o(logn) NP queries, then BPP
NP[o(n)]

contains a P
NP

-complete problem

3
. Similarly, if there is a poly-time quantum algorithm for approximate counting making

o(logn) NP queries, then FBQP
NP[o(n)]

contains an FP
NP

-complete problem.

While the complexity theoretic implications above are not as standard as P = NP or the
collapse of PH, they nevertheless would arguably be striking if true. This is because an FP

NP-
complete problem is finding a satisfying assignment of smallest lexicographical ordering [21].
Thus, using o(n) queries would seem to require resolving the lex-ordering in sublogarithmic
time (in the search space size), whereas classical and quantum algorithms for the closely
related task of binary search cannot achieve sublogarithmic time [5].

2 If one could show that any FBQP machine requires at least 1 NP query for search-to-decision, then
NP ”™ BQP. This is because if NP ™ BQP, then FNP ™ FBQP via the standard search-to-decision
reduction for SAT.

3 Note that this is not quite as strong as PNP ™ BPPNP[o(n)] as overheads in the reduction to the
PNP-complete problem may erase the reduction in the number of queries.
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Proof techniques

We now sketch our proof techniques, organized by topic.

Search-to-decision. Theorem 1 follows rather straightforwardly from prior results. We first
note that, quantumly, the solution of a formula with a unique satisfying assignment can be
found with a single NP query using the Bernstein Vazirani algorithm (c.f. [18]). Therefore,
it remains to reduce an arbitrary formula to a uniquely satisfiable one. Valiant and Vazirani
showed this can be done with probability O

!
1

n

"
[23]. If, however, the approximate cardinality

of the set of solutions is known, then this reduction succeeds with constant probability.
Since approximately counting this cardinality can be done with log(n) NP queries [22, 13]
classically, this gives a quantum algorithm for search-to-decision reduction using O(logn)
queries and with constant success probability. The success probability can now be boosted
to any constant by running the algorithm a constant number of times, checking the outputs
and outputting one of the satisfying assignments.

Next, we discuss the first of our main results, the black-box lower bound (Theorem 3).
Here the proof requires more work. Most quantum query lower bounds fall in one of two
groups: polynomial methods and adversary methods [8, 10, 6]. Unfortunately, these methods
are tailored to the standard query model, and it is not clear how to e�ectively utilize them
in our existential query model. Another complicating factor for us is that search-to-decision
is a relational problem, not a function problem. That is, for a given input formula Ï there
are multiple correct outputs: all solutions of Ï.

To overcome this, we instead give a reduction from “(unstructured) search with existential
queries” to “binary search with standard queries”, so we may invoke Ambainis’ binary search
lower bound [5]. We show that an algorithm for search on strings of length N = 2n using
q existential queries induces an algorithm for binary search on a space of size n with the
same number of standard queries. The basic idea for this is as follows. If we can find a
solution, then we can also sample a random solution by randomly permuting the solution
space. Furthermore, a binary search instance, which is the task of finding the index of the first
1 in a monotonically increasing binary string x œ {0, 1}n, can be modified in the following
way. We make a new exponentially longer string y œ {0, 1}N where the first 2n≠1 entries
of y are set to x1, the next 2n≠2 to x2 and so on. The index of a uniformly random 1 in y
corresponds to the index of the least 1 in x with probability > 1

2
. Therefore, transforming x

into y and running the random solution sampling algorithm on it solves binary search on
x using q existential queries. We now note that because x is monotonically increasing, any
existential query can be simulated by a standard query. The results of an existential query
with string z will be the same as simply querying the largest index i where zi = 1. As the
last step of the proof, we invoke Ambainis result that binary search on a space of size n takes
�(logn) queries to complete the proof [5].

Approximate counting. Our black-box lower bound (Corollary 4) follows by combining the
proof of Theorem 1 with Theorem 3. If there is an approximate counter making q existential
queries, then an index with xi = 1 can be found with constant success probability and q + 1
existential queries using the algorithm from Theorem 1. By Theorem 3 this is only possible
if q = �(logn).

Finally, we discuss our white-box lower bound (Corollary 5). We assume the existence of an
approximate counter making o(logn) queries and show that we can, with o(logn) queries, find
the lexicographically smallest solution of a formula Ï, which is an FP

NP-complete problem [21].
The main idea is as follows. The algorithm from Theorem 1 samples approximately from
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the uniform distribution on the set of solutions of Ï. We run this algorithm on the AND of
n2 copies of Ï, where we pick new sets of variables for each instance. This will give us n2

solutions of Ï picked almost uniformly at random. We find the least xmin and repeat the
process on the formula Ï(x) · (x Æ xmin). After every round the number of solutions will be
divided by at least n with high probability. Therefore, after O(logn(| sol(Ï)|)) = O

1
n

logn

2

rounds we will have found the lexicographically smallest solution of Ï. As every round takes
o(logn) queries, we have found the lexicographically smallest solution using o(n) queries,
completing the proof.

Related work

As previously mentioned, Irani, Natarajan, Nirkhe, Rao and Yuen already independently
showed that the Bernstein-Vazirani algorithm can be used to find the solution of a uniquely

satisfiable formula (our Lemma 17) [18]. They combine this with the Valiant-Vazirani
theorem to do search-to-decision reduction for QCMA (and NP) with a single query and
inverse polynomial success probability. However, they do not further study the case of a
constant success probability as done here. They also show that there exists a quantum
polynomial time algorithm that makes a single query to a PP oracle and generates a witness
for a QMA problem up to polynomial precision. Additionally, they show that there is an
oracle such that QMA search does not reduce to QMA decision relative to that oracle.

In their work [12], Buhrman and van Dam study the di�erence between classical and
quantum access to an NP-oracle. They show that an EQP machine, that is, a quantum
computer that is not allowed to err, can save on the number of queries compared to
classical. Among other results they prove the inclusions PÎ NP[2k]

™ EQP
Î NP[k] and FP

ÎNP
™

FEQP
NP(O(logn)). Note that while P

ÎNP = P
NP(O(logn)), a similar equality for FP would

collapse the polynomial hierarchy.
Search-to-decision reduction has been studied in other settings. If only parallel (i.e.

non-adaptive) queries to the NP oracle are allowed, then the standard O(n)-query search-
to-decision reduction for NP does not work. Nevertheless, it has been shown that O(n2)
parallel oracle queries su�ce for classical randomized algorithms [9]. Kawachi, Rossman
and Watanabe showed that this is optimal in a black-box model and give an algorithm with
improved error tolerance [19]. In a later work they also consider more general black-box
models and show that O(n2) parallel classical queries are still needed [20].

The class BQP with access to various resources has been studied before. Aaronson,
Ingram and Kretschmer [4] study oracle separations between various complexity classes
involving BQP as an oracle or BQP with access to an oracle. Among other results the
authors prove that there is an oracle relative to which BQP

NP
”™ PH

BQP and an oracle
relative to which NP

BQP
”™ BQP

PH. Aaronson, Buhrman and Kretschmer [3] investigate
BQP when given various types of advice. There it is shown, among other results, that
FBQP/qpoly ”= FBQP/poly (not relative to an oracle!).

Isolation algorithms, i.e., algorithms reducing the number of solutions of a Boolean
formula to 1, have been studied by Dell, Kabanets, van Melkebeek and Watanabe [15]. They
show that, unless NP ™ P/poly, no randomized polynomial time isolation algorithm with
success probability better than 2

3
can exist.

Discussion and open questions

Our paper characterizes the quantum NP-query complexity of search-to-decision reductions
and approximate counting (and additionally gives a white-box lower bound for classical
approximate counting algorithms). For this, some of our results utilized a quantum reformu-
lation of Stockmeyer’s classical existential query model. Can quantum query lower bound
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methods like polynomial methods and adversary methods be adapted to apply directly to
existential queries? An obstacle here is the fact that, for example, adversary methods often
keep track of how a “progress measure” increases with each query made. Existential queries,
however, seem to allow arbitrarily large jumps in such “progress measures”.

Second, we prove that BPPNP[o(n)] and FBQP
NP[o(n)] containing P

NP- and FP
NP-complete

problems, respectively, are consequences to very e�cient approximate counting. It would
be interesting to see if there are further consequences to these conclusions or if our results
can be strengthened. For example, can our results be strengthened to a contradiction of a
common complexity theoretic hypothesis such as the (strong) Exponential Time Hypothesis?
Third, what other tasks might a BQP

NP or FBQPNP machine be good for? Finally, we close
with a simple-to-state, concrete open question, which captures much of the di�culty of
working with BQP

NP: Let Ï be a SAT formula. Classically, it is easy to see that a solution
to Ï cannot be produced by an FBPP machine with a single NP query, for this would imply
BPP = NP. This is because one can simply plug each possible answer, 0 or 1, from the NP

machine into the FBPP machine, and check if the string x produced by the latter satisfies Ï.
Unfortunately, this approach completely breaks down for an FBQP machine making a single
NP query, since the query may involve exponentially many inputs in superposition! Can one
nevertheless show that FNP ™ FBQP

NP[1] implies NP ™ BQP?

Organization

In Section 2 we cover definitions and prior results used in this article. In Section 3, we will
give the proof of Theorem 1, the upper bound on search-to-decision reduction for NP with
quantum access to the oracle. Following that, in Section 4 we give the proofs of our results
in the existential query model, Theorem 3 and Corollary 5. Finally, we prove Theorem 5 in
Section 5.

2 Preliminaries

2.1 Notation

Throughout the paper we use n for the number of variables of the formulae and N = 2n for
the size of their truth tables. We write sol(Ï) for the set {x œ {0, 1}n : Ï(x)} of solutions of
the Boolean formula Ï. If x œ {0, 1}ú is a binary string we write |x| for its Hamming weight.

2.2 Function classes

We briefly recall the definition the relevant function classes. Contrary to what the name
suggests, function classes are actually classes of relations. We will require all relations R in
these classes to be p-bounded.

I Definition 6. A relation R ™ {0, 1}ú
◊ {0, 1}ú

is called p-bounded if there is some polyno-

mial p such that, for each x, if ÷y.R(x, y), then ÷z such that len(z) Æ p(len(x)) and R(x, z).
Here len(x) is the length of the string x.

I Definition 7. FP is the class of polynomial time computable
4
p-bounded relations R ™

{0, 1}ú
◊ {0, 1}ú

such that there is a deterministic poly-time algorithm that on input x does

the following:

1. If ÷y such that R(x, y) then the algorithm outputs one such y
2. If ’y.(x, y) /œ R then the algorithm outputs ‹.

4 With a poly-time computable relation we mean that there is a poly-time algorithm for evaluating R(x, y)
when given x and y as inputs.
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I Definition 8. The class FNP consists of all poly-time computable p-bounded relations

R ™ {0, 1}ú
◊ {0, 1}ú

.

To see the similarities with the definition of FP we note that this condition implies the
existence of a poly-time non-deterministic algorithm for computing R in the following
sense. The algorithm takes as input a string z, and each branch of the (non-deterministic)
computation outputs either a string z or ‹ and satisfies the following properties:
1. If ÷y such that R(x, y), then all branches either output ‹ or a string z such that R(x, z)

(not necessarily the same one). Furthermore, at least one branch does not output ‹.
2. If ’y (x, y) /œ R, then all branches output ‹.
An FNP-complete problem is FunctionSAT. It is the relation R(Ï, x) where Ï is a (bin-
ary encoding of) a Boolean formula and (Ï, x) œ R i� x is a satisfying assignment of Ï.
FunctionSAT is FNP-complete for the same reasons that SAT is NP-complete.

For the definition of FBQP we follow Aaronson [1].

I Definition 9. FBQP is the class of p-bounded relations R ™ {0, 1}ú
◊ {0, 1}ú

for which are

computable by a quantum algorithm in the following sense. There exists a poly-time quantum

algorithm that takes as input x and 01/‘
and outputs a y. This is such that R(x, y) with

probability at least 1 ≠ ‘ (assuming a y with R(x, y) exists). If ’y (x, y) /œ R then it outputs

‹ with probability at least 1 ≠ ‘.

2.3 Witness isolation

We consider algorithms that reduce an arbitrary formula to a uniquely satisfying one.

I Definition 10 (Isolation algorithm). An isolation algorithm with success probability p is a

randomized algorithm that maps a Boolean formula Ï on n variables to a formula u on the

same variables such that the formula Ï · u has a unique solution with probability at least p.

A celebrated result by Valiant and Vazirani states that isolation algorithms exist.

I Theorem 11 (Valiant Vazirani Theorem ([23])). There exists an isolation algorithm with

success probability
1

O(n)
.

The main idea of Valiant and Vazirani is to use cleverly chosen pairwise independent hash
function to reduce the size of the solutions space.

I Definition 12 (Pairwise independent hash functions ([7, Definition 8.14])). A collection Hn,k

of functions from {0, 1}n to {0, 1}k is a collection of pairwise independent hash functions if

for every x ”= xÕ
œ {0, 1}n and y, yÕ

œ {0, 1}k we have

Pr[h(x) = y · h(xÕ) = yÕ] = 2≠2k (2)

where the probability is over h being drawn uniformly at random from Hn,k.

The proof of Valiant and Vazirani’s theorem follows from the following lemma which will
also be of independent interest for us.

I Lemma 13 ([7, Lemma 17.19]). Let Hn,k be a collection of pairwise-independent hash

functions from {0, 1}n to {0, 1}k and suppose that sol(Ï) ™ {0, 1}n is such that 2k≠2
Æ

| sol(Ï)| Æ 2k≠1
. Then

Pr
h≥Hn,k

#--)x œ sol(Ï) : h(x) = 0k
*-- = 1

$
Ø

1
8 . (3)
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It follows that witness isolation can be performed with constant success probability if the
approximate size of the set of solutions is known.

We will also consider witness isolation algorithms with the added requirement that all
solutions of Ï will be the unique solution of Ï · u with approximately equal probability. We
call such algorithms almost-uniform isolation algorithms.

I Definition 14. An ‘-almost-uniform isolation algorithm Aiso with success probability p
takes as input a Boolean formula Ï, and e�ciently produces a Boolean formula u on the

same variables such that:

p-Completeness: if Ï œ SAT, then, with probability at least p, Ï(x) · u(x) has a unique

satisfying assignment. In this case we say that the isolation succeeds.

‘-almost-uniformity: for all x œ sol(Ï) we have:

Pr
Ë
Ï(x) · u(x)

---| sol(Ï(x) · u(x))| = 1
È

Æ
1 + ‘

| sol(Ï)| .

Note that we do not require a lower bound on this probability.

2.4 Approximate counting

Stockmeyer was the first to realize that an NP oracle can be used for approximate counting.
It was shown by Chakraborty, Meel and Vardi that a logarithmic number of NP queries
su�ce: [22, 13].

I Theorem 15 (Approximate counting, [22, 13]). Given a formula Ï on n variables and

parameters ”, ‘ > 0, there exists a randomized poly-time algorithm, making O
1

logn log(1/”)

‘2

2

queries to an NP-oracle, that outputs a value c such that:

Pr
3
| sol(Ï)|
1 + ‘

Æ c Æ (1 + ‘)| sol(Ï)|
4

Ø 1 ≠ ”. (4)

2.5 Query complexity

In query complexity one studies how often an algorithm needs to query an input string
x œ {0, 1}N in order to compute some function of x. In this paper we will consider three
di�erent types of oracles: standard oracles, succinct existential oracles and non-succinct
existential oracles.

With the standard oracle model we will refer to the oracle model that is usually used in
quantum query complexity. In this model, the queries give access to a string x œ {0, 1}N

using the following query gate:

Ox : |iÍ ‘æ (≠1)xi |iÍ . (5)

We will call an application of the oracle classical if it is applied to a computational basis
state.

In this paper, the string x will usually be the truth table of a hidden formula Ï (i.e.
xi = 1 ≈∆ Ï(i)). Then, querying the oracle on index i corresponds to computing Ï(i).

Standard queries do not satisfactorily capture the power of NP queries. For example,
it only takes one NP query to determine if a formula is satisfiable (i.e. if its truth table is
not all 0s), but it is well known that determining if there is an i with xi = 1 takes �(

Ô
N)

standard queries ([16, 10]). Therefore, we will also consider other query models that better
capture the power of NP queries.
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The first of these query models we will call the succinct existential query model. Here,
the oracle hides a formula Ï. A query consists of a di�erent poly-size formula Â and the
result to this query will be whether or not Ï · Â is satisfiable. Specifically, the oracle can be
queried using the query gate

ONP

Ï
: |ÂÍ ‘æ (≠1)sat(Ï·Â)

|ÂÍ (6)

where sat(Ï · Â) is 1 if Ï · Â is satisfiable and 0 otherwise. The succinct ÷-query model
captures the power of an actual NP oracle well. It is strong enough to be used for the most
common, if not all, well-known algorithms computing properties of Boolean formulae, such as
finding the lexicographically-least solution of the hidden formula Ï (a P

NP-complete problem)
and approximately count the number of solutions of Ï (e.g. with [13]).

We will also consider a non-succinct version of the existential query model, which we will
also simply call the existential query model. Essentially this model is a reformulation of a
model originally introduced by Stockmeyer [22] and used in e.g. [19]. We restated it in a
manner closer to the standard query model. Existential queries (÷-queries) are of the form

O÷

x
: |zÍ ‘æ (≠1)overlap(x,z) |zÍ , (7)

where overlap : {0, 1}N ◊ {0, 1}N æ {0, 1} is the function

overlap(x, z) =
I
1 if ÷i, xi = zi = 1
0 otherwise.

(8)

Again, the hidden string will usually be the truth table of a formula Ï. At first glance, this
query model may look rather useless. The query register has size exponential in n (the
number of variables of Ï). Therefore, even performing a single query will take exponential
time. However, if one is only concerned with the number of queries, and not with other
resources such as time and space, then non-succinct existential queries are more powerful
than succinct ones. Instead of making a succinct ÷-query with formula Â, an algorithm
can make a non-succinct existential query with z the truth table of Â. Furthermore, not
all truth tables correspond to poly-size formulae. In this paper we will prove lower bounds
on the number of existential queries an algorithm needs to make. The result will allow the
algorithms unbounded time and space and hence these lower bounds will in particular hold
for e�cient algorithms making succinct ÷-queries.

We are interested in the number of these queries needed to find a solution of Ï. In the
existential query model this corresponds to solving the search problem on the truth table x
of „, that is, outputting an index i such that xi = 1. It should be noted that, unlike in the
case of standard queries, the existential query complexity of this function search problem is
not necessarily the same as that of the decision search problem (i.e. determining if there is
such an index). For example, an information theoretic argument shows that classically �(n)
existential queries are needed for function search, but a single existential query with z = 1N
solves decision search.5

We will also be interested in a slight variation of the search problem which we call the
index sampling problem. Here the task is to sample according to the uniform distribution on
the support of x. Formally, we define it as

5 The string 1N has overlap with any non-zero string. Hence it has overlap with the truth table of Ï i� Ï

is satisfiable.

ICALP 2024



70:10 BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

I Definition 16 (Index sampling). An algorithm solves the index sampling problem if it, for

all x œ {0, 1}N \{0N}, outputs s œ [N ] fi {‹} such that:

for all i œ [N ] with xi = 1, Pr[s = i|s ”= ‹] = 1

|x|
,

there is a constant c such that Pr[s ”= ‹] Ø c.

3 Quantum algorithm for search-to-decision reduction

We are now ready to prove our results. For pedagogical reasons we start with the proof of
the upper bound (Theorem 1) before proving our main results: the lower bounds in Theorem
3 and Theorem 5.

I Theorem 1. FNP ™ FBQP
NP[log]

. Furthermore, all queries made to the oracle are of the

form Ï · ‰ where Ï is the input formula and ‰ some other formula.

Proof. We will show that there exists an FBQP
NP[log] algorithm that, when given a SAT

instance Ï, outputs a satisfying assignment x œ {0, 1}n of Ï if one exists, and outputs
“no solution” otherwise. The algorithm succeeds with constant probability. This success
probability can be boosted by running the algorithm a constant number of times, checking
for each output if it is indeed a satisfying assignment and then outputting one that is. Hence,
the success probability can be taken to be any arbitrary constant.

The existence of a satisfying assignment can be checked using a single query to the
NP-oracle. Therefore, we will restrict our attention to the case where a satisfying assignment
exists. We will proceed in two steps. First, we show how the satisfying assignment of a
formula with exactly one satisfying assignment can be found with only a single query to the
NP-oracle using the Bernstein Vazirani algorithm. Then we show how we can use O(logn)
queries to reduce any formula to a uniquely satisfying one with constant probability.

I Lemma 17 (“Bernstein-Vazirani (BV) trick” [18]). Let Ï be a formula with exactly one

solution. There exists a BQP algorithm that makes a single query to an NP-oracle and finds

this unique solution with probability 1.

Proof of BV trick. Let the unique solution of Ï be denoted by s and consider the formula

Âa := Ï(x) · (x · a = 1), (9)

where a œ {0, 1}n and x · a denotes the inner product of the two binary strings x and a
modulo 2. (Note that Âa is of the form Ï · ‰.) We now have that Âa is satisfiable (i.e. there
is a y such that Ï(y) · y · a = 1) if and only if6 a · s = 1 because s is, by assumption, the
only solution of Ï. Now we run the Bernstein-Vazirani algorithm, where to evaluate a · s
we ask the NP machine whether Âa is true. That is, we start with the state |0nÍ and apply
H¢n to get the uniform superposition on n qubits. The next step is to query the oracle on
input Âa where a is in a uniform superposition:

1
Ô
2n

ÿ

aœ{0,1}
n

|aÍ ‘æ
1

Ô
2n

ÿ

aœ{0,1}
n

(≠1)a·s |aÍ . (10)

Now another application of H¢n gives:
1
2n

ÿ

a,yœ{0,1}
n

(≠1)a·s+a·y
|yÍ = 1

2n
ÿ

a,yœ{0,1}
n

(≠1)a·(süy)
|yÍ = |sÍ . (11)

Hence measuring the final state in the computational basis gives the unique satisfying
assignment s of Ï. C

6 Note this does not imply a = s.
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To deal with an arbitrary number of solutions, we first use Theorem 15 and O(logn) queries
to the NP oracle to find k such that 2k≠2

Æ | sol(Ï)| < 2k≠1. (All queries made by the
approximate counting algorithm in [13] are of the form Ï · ‰.) Then, we invoke Lemma 13
to obtain u(x) := h(x) = 0k such that Ï · u has a unique solution with probability > 1

8
.

Applying the BV trick to Ï · u then completes the proof. Furthermore, all queries made
were of the claimed form. J

4 Lower bound for existential query complexity of search

We will prove that all quantum algorithms for the search problem need �(logn) existential
queries, even if we allow the algorithm to additionally make poly(n) classical standard queries.
To do so, we will reduce binary search to this problem in order to use Ambainis’ lower
bound for binary search [5]. A binary search problem consists of a monotonic binary string
x = 00 . . . 01 . . . 1 and the task is to find the index of the first 1.

I Theorem 3 (Restated). Any quantum algorithm with existential query access to x œ {0, 1}N

needs to make �(log logN) = �(logn) existential queries to find an i such that xi = 1. This

remains true even if the algorithm is allowed to make an additional poly(n) classical standard
queries.

The proof will follow from the following lemma.

I Lemma 18. Consider the following statements:

1. There exists a quantum algorithm for search on strings of size N = 2n that makes q
÷-queries and poly(n) classical standard queries and succeeds with constant probability.

2. There exists a quantum algorithm for search on strings of size N using q +O(log logn)
÷-queries and no additional standard queries which succeeds with constant probability.

3. There exists a quantum algorithm for index sampling on strings of size N using q +
O(log logn) ÷-queries and no additional standard queries which succeeds with constant

probability.

4. There exists a quantum algorithm for binary search on strings of size n using q+O(log logn)
÷-queries and no additional standard queries. The algorithm succeeds with constant

probability.

5. There exists a quantum algorithm for binary search on strings of size n using q+O(log logn)
standard quantum queries and no ÷-queries. The algorithm succeeds with constant prob-

ability.

Then, 1 =∆ 2 =∆ 3 =∆ 4 =∆ 5.

It is worth noting that all success probabilities can be boosted to be bigger than any constant
c < 1.

Proof. 1 =∆ 2: consider an algorithm for search using q ÷-queries and poly(n) classical
standard queries. We will modify the algorithm to get rid of the standard queries. Our
new modified algorithm will act exactly the same as the original algorithm, except it does
not actually perform the classical standard queries. Instead, it assumes the answer to those
queries is 0 and keeps track of the positions that should have been queried in a set A. At
the end of the algorithm, it checks if its assumptions were correct using an ÷-query. That is,
it performs an ÷-query with string z defined by zi = 1 i� the i-th index should have been
queried by a classical standard query at some point.

Now there are now two options. Either the result of this ÷-query is 0, in which case
the assumptions that all indices queried by classical standard queries were 0 is correct, and
hence the modified algorithm and the original algorithm coincide. Alternatively, the result of
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the ÷-query is 1. Then at least one of the assumptions was wrong. But now the algorithm
has determined that the set A ™ [N ] contains some i œ A with xi = 1. Furthermore, A
contains at most poly(n) elements since only poly(n) classical queries were made. The search
algorithm from Theorem 1 makes only (succinct) existential queries, so we can now use it to
search, within A, for an i with xi = 1.7 Because we know that |A| = poly(n), approximately
counting the number of solutions within A will take O(log log |A|) = O(log logn) ÷-queries
using the algorithm from [13].8 Therefore, finding a solution within A given that there is
one will take O(log logn) existential queries.

2 =∆ 3: consider a permutation ‡ œ SN mapping [N ] to itself drawn uniformly at
random. With slight abuse of notation we define ‡(x) by ‡(x)i = x‡(i). Our algorithm for
index sampling will apply the algorithm for search to ‡(x), undo the permutation, check if
it is indeed a solution and output the result if it is, and abort (i.e. output ‹) if it is not.
The probability of aborting is exactly the failure probability of the search algorithm. In the
following we condition on the sampling algorithm not aborting and assume x ”= 0N (this case
can be checked with 1 ÷-query).

Denote by search(x) the output of the search algorithm on input x. Consider the
probability p(i) = Pr[‡≠1(search(‡(x))) = i] = Pr[search(‡(x)) = ‡(i)]. We will show that
p(i) = 1

|x|
if xi = 1 and 0 otherwise. Note that there are two sources of randomness: the

random choice of ‡ and potentially random behavior of the search algorithm. We can write:

p(i) =
ÿ

yœ{0,1}
N

ÿ

kœ[N ]

Pr[‡(x) = y · ‡(i) = k · search(y) = k] (12)

=
ÿ

y,k

Pr[‡(x) = y] · Pr[‡(i) = k|‡(x) = y] · Pr[search(y) = k|‡(x) = y · ‡(i) = k].

(13)

Because the algorithm for search does not depend on ‡, we have that

py(k) := Pr[search(y) = k|‡(x) = y · ‡(i) = k] = Pr[search(y) = k]. (14)

The py(k) are unknown, but because the algorithm solves the search problem we do know
that Pr[search(y) = k|yk = 0] = 0 and

q
k:yk=1

py(k) = 1. Furthermore, we have

Pr[‡(x) = y] =
I
1/

!
N

|x|

"
if |x| = |y|

0 if |x| ”= |y|
(15)

and

Pr[‡(i) = k|‡(x) = y] =

Y
__]

__[

1

|x|
if xi = yk = 1

1

N≠|x|
if xi = yk = 0

0 if xi ”= yk.

(16)

We can now put everything together to get

p(i) =
ÿ

y:|x|=|y|

1!
N

|x|

"
ÿ

k:yk=1

1
|x|

py(k) =
1
|x|

(17)

7 We can add ·x œ A to all formulae to restrict the search to within A.
8 Essentially, the algorithm from [13] uses binary search to find k œ [n] such that 2k≠1

< | sol(Ï)| < 2k.
Because |A| = O(poly(n)), it is already known that | sol(Ï(x) · x œ A)| Æ O(poly(n)) = 2O(logn).
Therefore, the binary search is sped up.
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y1 y2 yn≠1 yn

xN/2x1
xN/2+1 x3N/4 xN≠2 xN≠1 xN

Duplicate

Permute

‡(x)1 ‡(x)N

Figure 1 Modification of the binary-search oracle y in steps 2 =∆ 3 and 3 =∆ 4. Queries to
‡(x) are made by “going up the arrows”.

if xi = 1. On the other hand, if xi = 0, we have that py(k) = 0 if yk = 0 and that
Pr[‡(i) = k|‡(x) = y] = 0 if yk = 1. Therefore, we have p(i) = 0 if xi = 0.

3 =∆ 4: let y œ {0, 1}n be a binary search instance. That is, y = 00 . . . 011 . . . 1 is
monotonically increasing. For binary search, we want to find the smallest index i such
that yi = 1. We will now define another (exponentially longer) binary string x œ {0, 1}N

by x1 = x2 = · · · = xN/2 = y1, xN/2+1 = · · · = x3N/4 = y2 and so on, ending with
xN≠2 = xN≠1 = ylogN≠1 and xn = ylogN , i.e.

x = y1y1 . . . y1¸ ˚˙ ˝
N
2 times

y2y2 . . . y2¸ ˚˙ ˝
N
4 times

. . . yiyi . . . yi¸ ˚˙ ˝
N
2i times

. . . ylogN≠1ylogN≠1ylogN . (18)

If we sample an i with xi = 1 uniformly at random, it will correspond to the smallest j with
yj = 1 with probability > 1

2
. This is because by construction each yj appears more in x

than all yk for k > j together. Furthermore, each query to y (standard or existential) can be
simulated by a single query of the same kind to x (see Fig. 1). Therefore, statement 3. allows
us to solve binary search with constant success probability and q +O(log logn) ÷-queries.

4 =∆ 5: because the strings considered in a binary search problem are monotonically
increasing we can simulate an ÷-query on such a string using only a single standard query.
Instead of an ÷-query with z, we find the largest i such that zi = 1 and use a standard query
to query the i-th bit. The claimed implication follows. J

With this lemma in hand, Theorem 3 is easily proven.

Proof of Theorem 3. Suppose there exists an algorithm for search on x œ {0, 1}N making
q = o(logn) existential queries and poly(n) classical standard queries. Then, by Lemma 18
there is an algorithm for binary search on strings of length n making q+O(log logn) = o(logn)
standard queries. This contradicts Ambainis’ lower bound on binary search, which states
that �(logn) queries are required for binary search on size n strings [5]. Therefore, any
search algorithm needs to make at least q = � logn existential queries, even if it also makes
poly(n) classical standard queries. J

Corollary 4 is an easy consequence of the previous theorem.

I Corollary 4. Any quantum algorithm that is given existential query access to a string

x œ {0, 1}N and outputs an estimate c such that 2|x|≠1
Æ c < 2|x|, where |x| is the Hamming

weight of x, needs to make at least �(log logN) queries to the oracle.

ICALP 2024
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Proof. We show that the existence of such an approximate counter making o(log logN) =
o(logn) ÷-queries implies the existence of an algorithm for search making o(logn) ÷-queries.
Using the approximate counter and Lemma 13 we can reduce x to be of Hamming weight
1 with constant probability and o(logn) ÷-queries. The index of the unique 1 can then be
extracted using the BV trick (Lemma 17) and a single ÷-query. J

5 Conditional lower bound on number of NP queries for approximate

counting

In order to prove Corollary 5 we will first concern ourselves with almost-uniform isolation
algorithms. We will first prove the following theorem stating consequences of the existence
of almost-uniform isolation algorithms making o(logn) NP queries. Thereafter, we will show
that approximate counting with o(logn) NP queries implies almost-uniform isolation with
o(logn) NP queries.

I Theorem 19. Let ‘ > 0 and p œ (0, 1] be constants such that there exists an ‘-almost-

uniform isolation algorithm Aiso with success probability p making Q(n) = o(logn) queries
to an NP-oracle. Then, BPP

NP[o(n)]
contains a P

NP
-complete problem if this algorithm is

classical and FBQP
NP[o(n)]

contains an FP
NP

-complete problem if it is quantum.

Proof. We will give a BPP
NP[o(n)] algorithm to isolate the lexicographically least solution

of an input formula Ï, as outputting the last bit of this solution is P
NP-complete [21].

The idea of the algorithm will be as follows. We work in rounds. In the first round we
sample n2 almost-uniformly random solutions of Ï. We will not explicitly know what these
solutions are, but we can find a formula to which they are the unique solution. Next, we
sample n2 solutions of Ï among all solutions that are lexicographically smaller than the
all previously found solutions. We keep going like this until only one solution remains,
which will be the lexicographically least solution of Ï. We show that with high probability,
the number of solutions that are smaller than the least solution found yet decreases by
at least a factor 1

n
every round. Therefore, we will, with high probability, need at most

logn(|sol(Ï)|) =
log(|sol(Ï)|)

logn
Æ

n

logn
rounds to isolate the lexicographically least solution of Ï.

In the first round we apply Aiso to �1(x̨1, . . . , x̨n2) := Ï(x̨1) · · · · · Ï(x̨n2). Here the x̨i

denote fresh sets of variables and we use the vector notation to emphasize that they are n-bit
strings and not bits. The result of this application will be u1(x̨1, . . . , x̨n2) such that �1 · u1

has a unique solution. This unique solution will be the concatenation of n2 solutions of Ï.
In round r + 1 we will do the following. From the previous round we have already

constructed

�r(x̨r,1, . . . , x̨r,n2 , . . . , x̨1,1, . . . , x̨1,n2)

with a unique solution. In this unique solution, x̨i,1, . . . , x̨i,n2 will be the solutions to Ï
picked in round i. We set

‰r+1(x̨r+1,1, . . . , x̨r+1,n2 , . . . , x̨1,1, . . . ,x̨1,n2) := Ï(x̨r+1,1) · · · · · Ï(x̨r+1,n2)
· �r(x̨r,1, . . . , x̨r,n2 , . . . , x̨1,1, . . . , x̨1,n2)
· x̨r+1,1 <lex x̨r,1 · · · · · x̨r+1,1 <lex x̨r,n2

· x̨r+1,n2 <lex x̨r,n2 · · · · · x̨r+1,1 <lex x̨r,n2 . (19)



S. Gharibian and J. Kamminga 70:15

In any satisfying assignment of ‰r+1, the first line of the RHS enforces that x̨r+1,1, . . . , x̨r+1,n2

are solutions of Ï. The second line makes sure that x̨r,1, . . . , x̨r,n2 , . . . , x̨1,1, . . . , x̨1,n2 are set
to the unique solutions picked in previous rounds. The third and fourth lines make sure that
the new solutions are lexicographically strictly smaller than any solution picked in a previous
round.9

We now pick the new solutions of round r + 1 by applying Aiso to ‰r+1. We call
the round is successful if Aiso succeeds, i.e. if its output ur+1 is such that ‰r+1 · ur+1

has a unique solution. We can check if Aiso succeeded by spending 2 NP queries.10 In
case of a success �r+1 := ‰r+1 · ur+1 will have a unique solution, which is picked almost
uniformly at random from all solutions of ‰r+1 (by definition of Aiso). In this unique
solution x̨r+1,1, . . . , x̨r+1,n2 will be the newly picked solutions. By construction they will be
smaller than the solutions found in the previous rounds. The previously picked solutions
x̨r,1, . . . , x̨r,n2 , . . . , x̨1,1, . . . , x̨1,n2 will be the same as in previous rounds because the second
line of Equation 19 has a unique solution. Finally, we check if there are still smaller solutions
available by checking if

Ï(y)·�r+1(x̨r+1,1, . . . , x̨r+1,n2 , . . . , x̨1,1, . . . , x̨1,n2)·y <lex x̨r+1,1·· · ··y <lex x̨r+1,n2 (20)

is still satisfiable. If it is satisfiable we proceed to the next round and if it is not then, in the
unique solution of �r+1, one of the x̨r+1,i will be the minimal solution of Ï. Therefore,

Ï(y)·�r+1(x̨r+1,1, . . . , x̨r+1,n2 , . . . , x̨1,1, . . . , x̨1,n2)·y Ælex x̨r+1,1·· · ··y Ælex x̨r+1,n2 (21)

will have a unique solution where y is the lexicographically least assignment of Ï (note the use
of Æ instead of <). Asking the oracle if this formula is still satisfiable with the last bit of y
set to 1 will then tell us the last bit of the lexicographically least solution of Ï. Alternatively,
a BQP-machine can use the BV trick to obtain the entire lexicographically least solution
with one query and solve the FP

NP-complete problem of outputting the lexicographically
least solution of Ï [21].
We will proceed by proving that this algorithm succeeds with probability at least 2

3
and

makes at most o(n) NP queries using the following claims. The proofs of these claims can be
found in Appendix A.1.

B Claim 20 (Number of successful rounds needed). For su�ciently large n, the probability
that the algorithm described above has not terminated after n

logn
successful rounds is less

than 1

6
(a successful round is a round in which a unique solution remains after the application

of Aiso).

B Claim 21 (Probability of successful rounds). The probability that after 2n

p logn
rounds there

have not been n

logn
successful rounds is at most 1

6
for su�ciently large n. Here, recall p is

the success probability of Aiso.

From these claims it follows that with probability at least 2

3
, the algorithm will, after

at most 2n

p logn
rounds, have terminated. In every round, Q(poly(n)) queries are made

because only a polynomial amount of terms are added to �r every round (recall that Q(n)
is the number of queries made by Aiso). Since Q(n) = o(logn) by assumption, we have
Q(nc) = o(c · logn) = o(logn). Hence the algorithm makes at most 2n

p logn
o(logn) = o(n)

queries. J

9 Note that comparing only to the previous rounds solutions su�ces.
10One query is used to check if the formula is satisfiable and the other is used to check if there are two or

more distinct solutions.
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Corollary 5 follows by showing that an algorithm for approximate counting induces an
algorithm for almost-uniform isolation with the same number of NP queries.

I Corollary 5. If there exists a classical randomized poly-time algorithm for approximate

counting making o(logn) NP queries, then BPP
NP[o(n)]

contains a P
NP

-complete problem.

Similarly, if there is a poly-time quantum algorithm for approximate counting making o(logn)
NP queries, then BQP

NP[o(n)]
contains an FP

NP
-complete problem.

The idea of the proof is that we can make a almost-uniform isolation algorithm by first
approximately counting the number of solutions (using o(logn) NP queries by assumption)
and then picking a suitable hash function. Using ideas from Dellanoy and Meel [14, Lemma 3]
it can be shown that this procedure indeed gives an almost-uniform isolation algorithm. The
full proof of the corollary can be found in Appendix A.2.
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B Claim 20 (Number of successful rounds needed). For su�ciently large n, the probability
that the algorithm described above has not terminated after n

logn
successful rounds is less

than 1

6
(a successful round is a round in which a unique solution remains after the application

of Aiso).

Proof of Claim 20. Let y̨1 < · · · < y̨k denote all solutions to Ï smaller than y̨min,r≠1, the
smallest solution found in round r ≠ 1. Define g =

'
k

n

(
. We now compute the probability

that, in a single round r, y̨min,r is larger than y̨g as
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Pr[y̨min,r >lex y̨g] = Pr
#
x̨r,1 >lex y̨g · · · · · x̨r,n2 >lex y̨g

$
(22)

= Pr[(x̨r,1, . . . , x̨r,n2) œ {y̨g+1, . . . , y̨k}
n
2
] (23)

Æ |{y̨g+1, . . . , y̨k}
n
2
| ·

1 + ‘

|{y̨1, . . . , y̨k}n
2
|

(24)

= (k ≠ g)n
2 1 + ‘

kn2 (25)

Æ

3
k

3
1 ≠

1
n

44n
2
1 + ‘

kn2 (26)

= (1 + ‘)
3
1 ≠

1
n

4n
2

, (27)

where Equation 25 follows from a union bound and the definition of an ‘-almost-uniform
isolation algorithm Hence, by a union bound, the probability that in at least one of n

logn

successful rounds y̨min,r >lex y̨goal,r, i.e., the probability that in at least on of the rounds
the search space is not cut down by at least a factor 1

n
is

Pr[÷r Æ
n

logn s.t. y̨min,r >lex y̨g,r] Æ (1 + ‘) n

logn

3
1 ≠

1
n

4n
2

, (28)

of which the right-hand side goes to 0 as n goes to Œ. The claim follows. C

B Claim 21 (Probability of successful rounds). The probability that after 2n

p logn
rounds there

have not been n

logn
successful rounds is at most 1

6
for su�ciently large n. Here, recall p is

the success probability of Aiso.

Proof of claim 21. Each round succeeds with probability p. After 2n

p logn
rounds the expected

number of successful rounds is 2n

logn
. By a Cherno� bound we have:

Pr[#successes < n

logn ] Æ exp
3

≠
n

4p logn

4
. (29)

For su�ciently large n, the right-hand side will indeed be at most 1

6
. C

A.2 Full proof of Corollary 19

I Corollary 5. If there exists a classical randomized poly-time algorithm for approximate

counting making o(logn) NP queries, then BPP
NP[o(n)]

contains a P
NP

-complete problem.

Similarly, if there is a poly-time quantum algorithm for approximate counting making o(logn)
NP queries, then BQP

NP[o(n)]
contains an FP

NP
-complete problem.

Proof of Corollary 5. The approximate counting algorithms can be used to make an almost-
uniform isolation algorithm as follows. First, use the approximate counting algorithm to
find k such that 2k≠2

Æ | sol(Ï)| Æ 2k≠1. Next, choose a random hash function h from a set
of pairwise independent hash functions from {0, 1}n to {0, 1}k. By Lemma 13, the formula
Ï(x)·h(x) = 0k will then have a unique solution with probability at least 1

8
.11 We claim that

in this case the unique solution will be distributed almost-uniformly at random among all
solutions of Ï. Our proof of this claim is based on work by Dellanoy and Meel [14, Lemma 3].

11We only require almost-uniformity in the case that there is a unique solution.
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Before we prove the claim let us first introduce some notation. Let the random variable
N denote the number of solutions of Ï(x) · h(x) = 0k and let SC denote the event that
the approximate counting was successful, i.e. 2k≠2

Æ | sol(Ï)| Æ 2k≠1. We assume that SC
occurs with probability 1 ≠ ”. For any fixed x, we are interested in

Pr[h(x) = 0k|N = 1] = Pr[h(x) = 0k · N = 1]
Pr[N = 1] (30)

= Pr[h(x) = 0k · N = 1]q
yœsol(Ï)

Pr[h(y) = 0k · N = 1] (31)

= Pr[N = 1|h(x) = 0k] Pr[h(x) = 0k]q
yœsol(Ï)

Pr[N = 1|h(y) = 0k] Pr[h(y) = 0k] (32)

= Pr[N = 1|h(x) = 0k]q
yœsol(Ï)

Pr[N = 1|h(y) = 0k] (33)

and want to show that this probability is Æ
‘

| sol(Ï)|
. Let ‰(y) be 1 if h(y) = 0k and 0

otherwise. For any x œ sol(Ï) we have:

E
#
N

--h(x) = 0k · SC
$
= E

S

U
ÿ

yœsol(Ï)

‰(y)

------
h(x) = 0k · SC

T

V (34)

=
ÿ

yœsol(Ï)

E
#
‰(y)

--h(x) = 0k · SC
$

(35)

= 1 + | sol(Ï)| ≠ 1
2≠k

(36)

where we use that h is a 2-wise independent hash function. By Markov’s inequality this
means that for all x œ sol(Ï)

Pr[N = 1|h(x) = 0k · SC] = 1 ≠ Pr[N Ø 2|h(x) = 0k · SC] (37)

Ø 1 ≠
E[N |h(x) = 0 · SC]

2 (38)

Ø
1
2 ≠

| sol(Ï)| ≠ 1
2k+1

(39)

Ø
1
4 . (40)

Combining with Equation 33 and using that Pr[N = 1|h(y) = 0k] Ø Pr[N = 1·SC|h(y) = 0k]
and Pr[N = 1|h(x) = 0k] Æ 1 gives

Pr[h(x) = 0k|N = 1] Æ
1q

yœsol(Ï)
Pr[N = 1 · SC|h(y) = 0k] (41)

Æ
1q

yœsol(Ï)
Pr[N = 1|h(y) = 0k · SC] Pr[SC] (42)

Æ
4

(1 ≠ ”)| sol(Ï)| . (43)

Note that this holds for any x. Hence the existence of an approximate counter gives us an
almost-uniform isolation algorithm with p = 1≠”

8
and ‘ = 3+”

1≠”
. Furthermore, the approximate

counter and isolation algorithm will make the same amount of NP queries (i.e. o(logn)). J
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Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former
needs edges to be assigned colors immediately after insertion, typically without any space restrictions,
while the latter limits memory to be sublinear in the input size but allows an edge’s color to be
announced any time after its insertion. We aim for the best of both worlds by designing small-space
online algorithms for edge coloring.

Our online algorithms significantly improve upon the memory used by prior ones while achieving
an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex
arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree �, our online
O(�)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation
hides polylog(n) factors). Under edge arrivals, we obtain an online O(�)-coloring in Õ(n

Ô
�) space.

We also achieve a smooth color-space tradeo�: for any t = O(�), we get an O(�t(log2 �))-coloring
in Õ(n


�/t) space, improving upon the state of the art that used Õ(n�/t) space for the same

number of colors.
The improvements stem from extensive use of random permutations that enable us to avoid

previously used colors. Most of our algorithms can be derandomized and extended to multigraphs,
where edge coloring is known to be considerably harder than for simple graphs.
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1 Introduction

A proper edge-coloring of a graph or a multigraph colors its edges such that no two adjacent
edges share the same color. The goal is to use as few colors as possible. Any graph with
maximum vertex-degree � trivially requires � colors to be properly edge-colored. Vizing’s
celebrated theorem [46] asserts that � + 1 colors su�ce for any simple graph.1 Constructive
polynomial-time algorithms exist for (� + 1)-edge-coloring in the classical o�ine setting
[39], and these are likely to be optimal with respect to the number of colors: distinguishing
between whether the edge-chromatic number (i.e., the minimum number of colors needed to
edge-color a graph) of a simple graph is � or � + 1 is NP-hard [33].

1 For multigraphs, 3�/2 colors are necessary and su�cient. [44]
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The edge-coloring problem finds applications in various practical scenarios, including
switch routing [2], round-robin tournament scheduling [34], call scheduling [27], optical
networks [42], and link scheduling in sensor networks [30]. In applications like switch routing,
where the underlying graph evolves through edge insertions, the color assignments must be
made instantly and irrevocably. This is modeled by the online edge coloring problem. Due to
its restrictions, an online algorithm cannot obtain a (� + 1)-coloring [11]. Nevertheless, the
simple greedy algorithm, which colors every edge with the first available color not assigned to
any neighbor, obtains a (2�≠1)-coloring since each edge can have at most 2�≠2 neighboring
edges. Thus, the competitive ratio achieved is 2 ≠ o(1) (since the optimum is � or � + 1).
Bar-Noy, Motwani, and Naor [11] showed that no online algorithm can outperform this
greedy algorithm. However, they proved this only for graphs with max-degree � = O(logn).
They conjectured that for � = Ê(logn), it is possible to get better bounds – specifically,
a (1 + o(1))�-coloring. For this regime of �, several works [2, 10, 23, 18, 43, 35, 41] have
studied online edge coloring with the goal of surpassing the greedy algorithm and, even
further, of resolving the said conjecture. Additionally, other variants of the online problem
have been investigated [29, 38, 28]. However, all prior works assume full storage of all graph
edges and their colors in memory.

With the ubiquity of big data in the modern world, the assumption of storing entire
graphs in memory becomes impractical. Even graphs like communication and internet routing
networks that motivate the study of edge coloring often turn out to be large-scale networks.
This challenge has given rise to big-graph processing models such as graph streaming which,
like the online model, sequentially accesses the graph edges, but only retains a small summary.
There is an immediate barrier for edge coloring in this setting: reporting all edge colors at
the end of the stream would use space linear in the number of edges. To remedy this, a
natural extension of the model, called the W-streaming model, allows reporting the output in
streaming fashion. Here, an algorithm with limited working memory stores information about
both the input graph and the output coloring and periodically streams or announces edge
colors. Unlike the online model, here we don’t need to assign a color to an incoming edge
right away, and can defer it. However, due to space constraints, we are not able to remember
all the previously announced colors. Note that this makes even the greedy (2� ≠ 1)-coloring
algorithm hard, if not impossible, to implement in this model.

In this work, we aim to get the best of both worlds of the online and the streaming
models by designing low-memory online algorithms for edge coloring. This addresses the
need for immediate color assignment in modern scenarios while optimizing space usage. We
achieve an O(1)-competitive ratio, i.e., a color bound of O(�). Note that no prior work in
the sublinear-space setting has achieved an O(�)-coloring W-streaming algorithm, let alone
an online algorithm. For adversarial edge-arrival streams, we get an online O(�)-coloring
in ÂO(n

Ô
�) space2, significantly reducing the space compared to prior online algorithms

with only a constant factor increase in colors. We can smoothly trade o� space with colors,
obtaining an ÂO(�t)-coloring in ÂO(n


�/t) space. This improves upon the state of the

art [21, 5] which used ÂO(n�/t) space for the same color bound. Furthermore, for natural
and well-studied settings of vertex-arrival in general graphs and one-sided vertex arrival in
bipartite graphs, we enhance the space usage to ÂO(n), the prevalent semi-streaming memory
regime for graph streaming problems. Most of our algorithms generalize to multigraphs and
can be made deterministic.

2 Throughout the paper, the ÂO(.) notation hides polylog(n) and polylog(�) factors.
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We remark that apart from being interesting online algorithms on their own, our results
can be also viewed as strengthening W-streaming algorithms with the guarantee of online
output-reporting. In particular, they contribute an important conceptual message: the
state-of-the-art W-streaming space bound for O(�) edge coloring can be matched without
the exclusive power of the W-streaming model (allowing delayed assignment of edge colors);
we can report edge colors online.

1.1 Our Results and Contributions

We study edge-coloring in the online model with sublinear (i.e., o(n�)) memory, under
(adversarial) edge-arrivals as well as vertex-arrivals. These results are summarized in Table 1,
and their corollaries for the W-streaming model in Table 2. The tables mention the state of
the art, for comparison.

Table 1 Our results in the online model. Here, t Æ � is any positive integer. Algorithms marked
with a ı require oracle randomness for randomized algorithms and an advice string computable in
exponential time for deterministic.

Arrival Algorithm Colors Space Graph Reference

Edge

Randomized
!

e
e≠1 + o(1)

"
� ÂO(n�) Simple [35]

Randomized O(�) ÂO(n
Ô

�) Simple Theorem 1

Deterministic (2� ≠ 1)t O(n�/t) Multigraph [5]

Deterministic ÂO(�t) ÂO(n


�/t)ı Multigraph Theorem 3 +
Lemma 5

Vertex

Randomized (1.9 + o(1))� ÂO(n�) Simple [43]
Randomized O(�) ÂO(n)ı Multigraph Theorem 6

Deterministic 2� ≠ 1 O(n�) Multigraph Greedy folklore
Deterministic O(�) ÂO(n)ı Multigraph Theorem 7

One sided
vertex

Randomized (1 + o(1))� ÂO(n�) Simple [23]
Randomized 1.533� ÂO(n�) Multigraph [41]
Randomized 5� ÂO(n)ı Multigraph Theorem 6

Deterministic 2� ≠ 1 O(n�) Multigraph Greedy folklore
Deterministic O(�) ÂO(n)ı Multigraph Theorem 7

Table 2 Our results in the W-streaming edge-arrival model. Here, s Æ �/2 is any positive integer.
Results marked with ı require oracle randomness for randomized algorithms and an advice string
computable in exponential time for deterministic.

Algorithm Colors Space Graph Reference

Randomized O(�2
/s) ÂO(ns) Simple [21]

Randomized O(�) ÂO(n
Ô

�) Simple Corollary 2
Deterministic (1 ≠ o(1))�2

/s O(ns) Simple [5]
Deterministic ÂO(�2

/s) ÂO(n
Ô
s)ı Multigraph Corollary 4 + Lemma 5
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Edge-arrival model

Here we design both online and W-streaming algorithms.

I Theorem 1. Given any adversarial edge-arrival stream of a simple graph, there is a
randomized algorithm for online O(�)-edge-coloring using ÂO(n

Ô
�) bits of space.

Previously, there was no sublinear space online algorithm known for O(�)-coloring. As
observed in Table 1, all prior algorithms need �(n�) space in the worst case to achieve a
color bound of O(�).

Note that Theorem 1 immediately implies a randomized W-streaming algorithm with the
same space and color bounds. Although immediate, we believe that it is important to note it
as a corollary.

I Corollary 2. Given an adversarially ordered edge stream of any simple graph, there is a
randomized W-streaming algorithm for O(�)-edge-coloring using ÂO(n

Ô
�) bits of space.

The above result improves upon the state of the art algorithms of [21, 5] which, as
implied by Table 2, only obtain Ê(�)-colorings for o(n�) space (the non-trivial memory
regime in W-streaming). In fact, we improve upon them by a factor of �(

Ô
�) in space for

O(�)-coloring.
Further, we prove that we can make the above algorithms deterministic, and able to

handle multigraphs, at the cost of only a polylogarithmic factor in the number of colors used.
Once again, the online algorithm is also a W-streaming algorithm.

I Theorem 3. Given an adversarially ordered edge-arrival stream of any multigraph, there is
a deterministic algorithm for online O(� log2 �)-edge-coloring using ÂO(n

Ô
�) bits of space.

I Corollary 4. Given an adversarially ordered edge stream of any multigraph, there is a
deterministic W-streaming algorithm for O(� log2 �)-edge-coloring using ÂO(n

Ô
�) bits of

space.

Furthermore, in each case, we can achieve a smooth tradeo� between the number of colors
and the memory used. This is implied by a framework captured in the following lemma.

I Lemma 5. Suppose that we are given an online f(n,�)-space streaming algorithm A for
O(�)-coloring any n-node multigraph with max-degree � under adversarial edge arrivals.
Then, for any t Ø 1, there is a online streaming algorithm B for O(�t)-coloring the same
kind of graphs under adversarial edge arrivals using f(n/t,�t) + ÂO(n) bits of space.

For the online model, the above lemma combined with Theorem 3 immediately gives
the tradeo� of ÂO(�t) colors and ÂO(n


�/t) space for any t = O(�), as claimed in Table 1.

In other words, combined with Corollary 4, it implies the W-streaming bounds of ÂO(�2/s)
colors and O(n

Ô
s) space for any s = O(�), as claimed in Table 2.3 Note that our results

match the tradeo� obtained by the state of the art for t = �(�) and s = O(1), and strictly
improve upon them for t = o(�) and s = Ê(1).

3 We use the parameter t for online algorithms and s for W-streaming, where t · s = �, so that a reader
can easily compare our bounds with the “ideal” bounds of O(�) colors and ÂO(n) space in the respective
models by smoothly growing t or s from 1 to �.
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Vertex-arrival Model

We now turn to the weaker vertex-arrival model. The online edge-coloring problem has been
widely studied in this setting as well (see Section 1.2 for a detailed discussion). Our online
algorithms obtain significantly better space bounds than the edge-arrival setting.

I Theorem 6. Given any adversarial vertex-arrival stream of a multigraph, there is a
randomized online O(�)-edge coloring algorithm using ÂO(n) bits of space. It works even
against an adaptive adversary and uses ÂO(n�) oracle random bits.4 In particular, for
one-sided bipartite vertex arrivals, there is an algorithm using 5� colors.

Thus, at the cost of only a constant factor in the number of colors, we can improve
the memory usage from ÂO(n�) to ÂO(n) for vertex-arrival streams. Since this algorithm
immediately implies a W-streaming algorithm with the same bounds, we see that for vertex-
arrival streams, O(�)-coloring can be achieved in semi-streaming space, the most popular
space regime for graph streaming. Behnezhad et al. [12] mentioned that “a major open
question is whether [the number of colors for W-streaming edge-coloring] can be improved to
O(�) while also keeping the memory near-linear in n.” Our results answer the question in
the a�rmative for the widely studied model of vertex-arrival streams.

Further, we show that the algorithm can be made deterministic using ÂO(n) bits of advice
instead of ÂO(n�) bits of oracle randomness. By picking a uniformly random advice string,
the updated algorithm can alternatively be used as a robust algorithm (see Definition 12)
with 1/poly(n) error; the advice can also be computed in exponential time.

I Theorem 7. Given any adversarial vertex-arrival stream of a multigraph, there is a
deterministic online O(�)-edge-coloring algorithm using ÂO(n) bits of space, using ÂO(n) bits
of advice.

An interesting special case of the vertex-arrival model is the one-sided vertex-arrival
setting for bipartite graphs. Here, the vertices on one side of the bipartite graph are fixed,
while the vertices on the other side arrive in a sequence along with their incident edges. A
couple of works [23, 41] have studied online edge-coloring specifically in this model. We
design low-memory online algorithms in this setting and use them as building blocks for our
algorithms in the more general settings of vertex-arrival and edge-arrival. These algorithms
may be of independent interest due to practical applications of the one-sided vertex-arrival
model; moreover, the randomized algorithm here uses only 5� colors (as opposed to our
other algorithms where the hidden constants in O(�) are rather large).

Finally, we present a lower bound on the space requirement of a deterministic online
edge-coloring algorithm. To the best of our knowledge, this is the first non-trivial space lower
bound proven for an online edge-coloring algorithm.

I Theorem 8. For � Æ Án for a su�ciently small constant Á, any deterministic online
algorithm that edge-colors a graph using (2 ≠ o(1))� colors requires �(n) space.

4 The use of oracle randomness here is not a big deal. In practice (where we assume cryptographic
pseudo-random number generators exist), it is straightforward to generate the bits of the oracle random
string on demand, ensuring that computationally bounded systems essentially cannot produce hard
inputs for the algorithm. Also, against oblivious adversaries, one can easily modify the randomized
vertex arrival algorithm to use only ÂO(n) random bits, by choosing its random permutations from
almost O(logn)-wise independent families, but we skip this to keep the proof simple.
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1.2 Related Work
Online model

Online edge-coloring has a rich literature [2, 5, 11, 10, 18, 19, 23, 28, 29, 37, 38, 41, 35, 43].
The seminal work of Bar-Noy, Motwani, and Naor [11] ruled out any online algorithm
outperforming the (2� ≠ 1)-coloring greedy algorithm that assigns each edge the first
available color not used by any adjacent edge. However, this lower bound applies only to
graphs with � = O(logn). They conjectured that for � = Ê(logn), there exist online
(1+ o(1))�-coloring algorithms. Although this conjecture remains unresolved, there has been
significant progress on it over the years. A number of works [2, 10, 18] considered the problem
under random-order edge arrivals: Aggarwal et al. [2] showed that if � = Ê(n2), then a
tight (1 + o(1))�-coloring is possible. For � = Ê(logn) (the bound in the said conjecture),
Bahmani et al. [10] obtained a 1.26�-coloring. Bhattacharya et al. [18] then achieved the
best aspect of each result as they attained the tight color bound of (1 + o(1))� for the broad
range of � = Ê(logn), essentially resolving the conjecture for random-order arrivals.

More relevant to our work is the setting of adversarial-order edge arrivals. Cohen et
al. [23] were the first to make progress on [11]’s conjecture in this regard, obtaining a
(1 + o(1))�-coloring for bipartite graphs under one-sided vertex arrivals (i.e., the nodes
on one side are fixed, and the nodes on the other side arrive one by one with all incident
edges). Their algorithm assumes a priori knowledge of the value of �. For unknown �, they
rule out any online algorithm using fewer than (e/(e ≠ 1))� colors and also complement
this result with a (e/(e ≠ 1) + o(1))�-coloring algorithm. For bipartite multigraphs with
one-sided vertex arrivals, Naor et al. [41] very recently proved that 1.533� colors su�ce,
while at least 1.207� colors are necessary even for � = 2. Saberi and Wajc [43] showed that
it is possible to beat the greedy algorithm for � = Ê(logn) under vertex arrivals in general
graphs: they designed a (1.9 + o(1))�-coloring algorithm. Recently, Kulkarni et al. [35]
made the first progress on the said conjecture for fully general adversarial edge arrivals: they
obtained a (e/(e ≠ 1) + o(1))�-coloring in this model. Note that the focus of all these works
was on resolving [11]’s conjecture without any space limitations. Our focus is on designing
low-memory online algorithms while staying within a constant competitive ratio. The only
prior sublinear-space online edge-coloring algorithm we know was given by Ansari et al. [5]:
a (deterministic) online 2�t-coloring in O(n�/t) space for any t Æ �.

Several works [29, 26, 28] have addressed the variant where, given a fixed number of
colors, the goal is to color as many edges as possible. Mikkelsen [37, 38] considered online
edge coloring with limited advice for the future.

W-Streaming model

The W-streaming model [25] is a natural extension of the classical streaming model for
studying problems where the output size is very large, possibly larger than our memory.
While the W-streaming literature has considered several graph problems [25, 24, 36, 31],
we are aware of only three past works [12, 21, 5] that have studied edge-coloring here.
Behnezhad et al. [12] initiated the study of W-streaming edge coloring. They considered the
problem for both adversarial-order and random-order streams: using ÂO(n) bits of working
memory, they gave an O(�2)-coloring in the former setting, and a (2e�)-coloring in the
latter setting. Charikar and Liu [21] improved these results: for adversarial-order streams, for
any s œ [�(logn),�], they presented an O(�2/s)-coloring algorithm that uses ÂO(ns) space;
and for random-order streams, they gave a (1 + o(1))�-coloring algorithm using ÂO(n) space.
Both of the said adversarial-order streaming algorithms are, however, randomized. Ansari
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et al. [5] designed simple deterministic algorithms achieving the same bounds of O(�2/s)
colors and ÂO(ns) space. Their algorithm can also be made online at the cost of a factor of
2 in the number of colors. Note that, parameterizing our results in Table 2 appropriately,
our algorithms achieve O(�2/s)-colorings in ÂO(n

Ô
s) space, matching the state of the art for

s = O(1), and strictly improving upon it for s = Ê(1).
The related problem of vertex coloring has a more mature literature in the streaming

model [1, 3, 6, 7, 8, 9, 15, 16, 17, 20, 32]. However, due to fundamental di�erences between
the classical streaming and W-streaming models and between the two problems, not many
techniques seem to carry over.

Concurrent work

In an independent and parallel work, Behnezhad and Saneian [13] have designed a randomized
ÂO(n

Ô
�)-space W-streaming algorithm for O(�)-edge-coloring for edge-arrival streams in

simple general graphs. This matches our Corollary 2. Their result generalizes to give,
for any s œ [

Ô
�], an O(�1.5/s) coloring algorithm in ÂO(ns) space, while we achieve an

O(�2/s2)-coloring in the same space. They also get an O(�)-edge-coloring algorithm for
vertex-arrival streams using ÂO(n) space, similar to our Theorem 6. Note that a crucial
di�erence between the two papers is that most of our algorithms have the additional strong
feature of being online, while it is not clear if their W-streaming edge-arrival algorithm can
also be implemented in the online setting. Thus, conceptually, our results a�rm that to
obtain an O(�)-coloring in sublinear space, the only advantage of W-streaming over online –
enabling delay of color assignment – is not necessary.

In terms of techniques, while both works have some high level ideas in common (e.g., using
random o�sets/permutations to keep track of colors, or designing a one-sided vertex-arrival
algorithm first and building on it to obtain the edge-arrival algorithm), the final algorithms
and analyses in the two papers are fairly di�erent.

Another independent work by Chechik, Mukhtar, and Zhang [22] obtains a randomized
W-streaming algorithm that colors an edge-arrival stream on general multigraphs using
O(�1.5 log�) colors in expectation5, and ÂO(n) space in expectation. Unlike us, they make
no claims in the online model.

2 Notation and Definitions

Throughout the paper, logarithms are in base 2. The notation [t] indicates the set of integers
{1, . . . , t}. The notation ÂO(x) ignores poly(log(n), log(�)) factors in x. A Û B gives the
disjoint union of A and B. St is the set of permutations over [t], and for any permutation
‡ œ St and X ™ [t], we denote ‡[X] := {‡i : i œ X}. For any set X,

!
X

k

"
denotes the set of

all k-sized subsets of X.
If not otherwise stated, n is the number of vertices in a graph G, V the set of vertices (or

A Û B if the graph is bipartite), E the (multi-)set of edges, and � is the maximum degree of
the graph (counting multiplicity, for multigraphs).

5 While [22] does not claim this, one can prove their algorithm uses O(�1.5 log�) colors with Ø 1 ≠
1/poly(n) probability.
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2.1 Models
We consider the following models for presenting edges (to be colored) to an algorithm. In all
cases, the set of vertices for the graph is known in advance.

I Definition 9 (Edge-Arrival Model). With an edge-arrival stream, the algorithm is given a
sequence of edges in the graph. Each edge is provided as an unordered pair {x, y} of vertices in
V . In this paper, online algorithms processing edge arrival streams will implement a method
Process({x, y}) which returns the color assigned to the edge. W-streaming algorithms may
assign the color for an edge at any time, although all edges must be given a color at the end
of the stream. We permit algorithms to output not just integers but also tuples of integers as
“colors”, since users of the algorithms can easily remap these colors to whatever space they
wish.

I Definition 10 (Vertex-Arrival Model). In a vertex-arrival stream, the algorithm is given a
sequence of (vertex, edge-set) pairs (v,Mv), where the edge (multi-)set Mv contains all edges
from v to vertices that have been seen earlier in the stream. Online algorithms should report
colors for all edges in Mv when (v,Mv) is processed.

A one-sided vertex-arrival stream on a bipartite graph with partite sets A,B is a vertex
arrival stream where the vertices in one partite set (B) are fixed, and then all the (vertex,
edge-set) pairs for the other partite set (A) are given. This means that the stream consists of
pairs (v,Mv), where each v œ A, and Mv contains all edges from v to vertices in B.

I Remark 11 (Assumption of prior knowledge of �). We assume that the maximum degree �
of G is known in advance. An edge-coloring algorithm for which � is not known in advance
can be converted to one which is, although one way to do this conversion (by running a new
2�-coloring algorithm with a fresh set of colors whenever the maximum degree of graph
formed by the input stream doubles) increases the total number of colors used by a constant
factor, and uses O(n log�) bits of space to keep track of the maximum degree. Since the
algorithms in this paper already have large constant factors on number of colors used, it is
not worth it to optimize the algorithms for the case where � is not known in advance.

I Definition 12 (Robust Streaming). An algorithm is said to be robust or adversarially robust
if it works with Ø 1 ≠ ” probability even when its input streams are adaptively generated. By
“adaptively generated”, we mean that the input is produced by an adaptive adversary that sees
all outputs of the online (or W-streaming) algorithm, and repeatedly chooses the next element
of the stream based on what the algorithm has output so far. See [14] for a more detailed
explanation.

2.2 Basic Definitions
I Definition 13 ((‘, k)-wise independent permutation). A random permutation ‡ is (‘, k)-wise
independent if for all distinct a1, . . . , ak in [n], the distribution of ‡ on a1, . . . , ak has total
variation distance Æ ‘ from uniform. In other words,

1
2

ÿ

distinct b1, . . . , bk œ [n]

------
Pr

S

U
fi

iœ[k]

{‡(ai) = bi}

T

V ≠ 1r
iœ[k]

(n ≠ i+ 1)

------
Æ ‘ .

Per [4], while it is not known if there are nontrivial (0, k)-wise independent families of
permutations for large k and n, one can always construct weighted distributions which have
support of size nO(k) and provide (0, k)-wise independence. However, sampling from these
may not be e�cient.

We say a random permutation is almost k-wise independent when it is (‘, k)-wise inde-
pendent for su�ciently small ‘.
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We, using a result by [40] on switching networks, give a short lemma describing an e�cient
construction of (‘, k)-wise independent permutations.

I Lemma 14 (Random permutations through switching networks). Let C be a power of 2, let
s be a natural number Æ C, and let ‘ > 0. For r = O(s(logC)4 log 1

‘
), there is a map f from

{0, 1}r to SC so that, if U is a uniformly random string of r bits, then ‡ = f(U) is an (‘, s)
wise independent random permutation.

Furthermore, for any i œ [C] and u œ {0, 1}r, with ‡ = f(u), we can evaluate ‡(i) and
‡≠1(i) in O(s(logC)4 log 1

‘
logC) time.

3 Technical Overview

In this section, we give a high-level overview of our algorithms and techniques. We see these
techniques as a major contribution of the paper since many of them are used for the first
time in the context of W-streaming and online edge coloring. The proofs of our results are
given in the full version of this paper.

3.1 General Reductions

Reducing to bipartite case

We show that it is essentially enough to consider bipartite graphs. Suppose that we can
partition a general graph into O(logn) bipartite graphs, each of which has max-degree
roughly �/ logn, where � is the max-degree of the original graph. Then, if we run our
algorithm on these bipartite graphs with disjoint palettes, we use colors roughly proportional
to �. It is known (see [21] or for a similar result, [43, Lemma 2.1]) that such a partition
can be done in a randomized way, incurring a multiplicative overhead of just 1 + o(1) in the
number of colors. In this work, we show that if we are willing to tolerate an O(1) blowup
in the number of colors, then this partition can be done deterministically. Since such a
primitive is used in multiple edge-coloring algorithms, this deterministic version might be
of independent interest. One advantage of this version is that it works against adaptive
adversaries, unlike the randomized version which can be shown to be breakable by such an
adversary.

We construct this partition using appropriate binary codes for the vertices: the codes
are of length O(logn) and we have a bipartite graph corresponding to each bit, where the
bipartition is given by whether the bit is 0 or 1. Now, we need to ensure that (a) every edge
goes to “some” bipartition, and (b) the max-degree of a single bipartite graph is not much
higher than �/ logn. This can be done using codes with constant rate and relative distance,
like the expander codes described by [45]. Now we can focus on getting O(�)-colorings
for bipartite graphs, which would give us asymptotically same number of colors for general
graphs.

Note that for the vertex-arrival model, we can go one step farther and assume “one-sided”
vertex arrival, i.e., vertices along with their incident edges arrive on only one side of the
bipartite graph. This is because we can run two copies of the algorithm, one each for the
vertices arriving on either side, with disjoint palettes. This incurs only a factor of 2 in the
number of colors.
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Space-color tradeo� for multigraphs

We show with Lemma 5 that if an algorithm can handle multigraphs, then we can smoothly
tradeo� colors with space. This is one of our motivations behind extending our algorithms
to multigraphs. Recall that we reduce the problem to just bipartite graphs. Now the idea for
the tradeo� is simple: we arbitrarily group t nodes (for some parameter t) from the same
partite set together as a single supernode. Since the vertices on the same partite set do not
share any edges, there are no edges inside a supernode. Then, the resulting multigraph has
no self-loops, but any pair of supernodes can have multiple edges between them. Observe
that the max-degree can now increase to �t, where � is the max-degree of the original graph.
Thus, if we have an S(n,�)-space f(�)-coloring algorithm for multigraphs, then we can
turn it into an S(n/t,�t)-space f(�t)-coloring algorithm. In particular, our ÂO(n

Ô
�)-space

ÂO(�)-coloring algorithm from Theorem 3 generalizes to an ÂO(n


�/t)-space ÂO(�t)-coloring
for any 1 Æ t Æ �. We generalize most of our algorithms to multigraphs and establish such a
tradeo�.

3.2 Randomized Online Algorithms

Randomized online algorithm for vertex arrivals

Recall the simple greedy algorithm for online (2� ≠ 1)-coloring: we assign each incoming
edge a color that is not already taken up by any of its adjacent edges. However, even
in the one-sided vertex arrival model, to naively implement this algorithm, we need to
remember the colors assigned to edges incident on each vertex on the “fixed” side, and hence,
essentially colors assigned to all previous edges. This needs O(n�) space, and hence, the
greedy algorithm doesn’t seem to help in getting low-memory algorithms.

Algorithm 1 Randomized algorithm for 5�-coloring under one sided vertex arrivals.

Input: Stream of vertex arrivals of n-vertex graph G = (A Û B,E)

Initialize:
1: Let C = 5�.
2: for v œ B do

3: Let ‡v be a uniformly random permutation over [C] Û constructed on demand from
random oracle bits

4: hv Ω 1. Û counter for vertex v

Process(vertex x œ A with multiset Mx of edges)
5: Let Sx Ω ÿ Û set of colors Mx will have used so far
6: for e = {x, y} in Mx, in arbitrary order do

Û Increase counter for y to next value with color ‡y[hy] not already used, if possible
7: while (hy Æ C) · (‡y[hy] œ Sx) do
8: hy Ω hy + 1 Û increment counter for y

9: if hy > C then Û counter exceeded 5�
10: abort
11: Assign color ‡y[hy] to e Û if this line is reached, current color must be unused; assign

to e
12: Sx Ω Sx fi {‡y[hy]} Û add assigned color to set of used colors
13: hy Ω hy + 1 Û increment counter for y
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We observe, however, that for the vertex-arriving side, it is enough to remember only
the colors assigned to edges on the “current” vertex so as to ensure no conflict among these
edges. We shoot for a semi-streaming, i.e., ÂO(n) space algorithm, and hence can a�ord to
store the entire edge set of the current vertex with the assigned colors. To ensure that there
is no color-conflict on the fixed side, we resort to random permutations. On each such vertex
v, we have a random permutation ‡v of [5�] and a counter hv. When an edge {a, b} arrives
with b on the fixed side, we look at the color at the hbth index of ‡b. If that color is already
taken by any edge incident on a (whose colors we explicitly store), then we increment the
counter hb. We continue this until we find an available color and increment the counter.
The random permutations ensure (i) no color will be repeated on any fixed vertex (since a
permutation takes distinct counter values to distinct colors) and (ii) with high probability,
none of the counters can exceed 5�.6 Intuitively, the slack in the number of colors ensure
that for a single edge, an available color is reached within a constant counter increment in
expectation. Hence, the � edges incident on a vertex can increase its counter to at most
O(�) in expectation. Since we only store a counter for each vertex whose value can go up to
O(�), the space usage is ÂO(n). Thanks to the reductions discussed above, we can extend
this to a semi-streaming7 O(�)-coloring for the general vertex arrival case, even for general
graphs.

Randomized algorithm for online edge arrivals

When handling edge arrivals for simple graphs, our goal on receiving an edge {u, v} is to
assign a color that has not been used by any edge incident on u or on v. As precisely tracking
the set of available colors for any given vertex requires �(�) space, we will instead keep
track of a subset of the available colors for a vertex, and choose colors for edges in a way
that limits the amount of information we must store.

Algorithm 2 Storing free regions from a permutation.

F ΩInitFreeTracker(C,s,�,‡): Û Assume C,s,� are powers of two, C Ø �, C Ø s,
and ‡ œ SC

1: H Ω [s] be a subset of [s]
2: b Ω 1 be a counter with range from 1 to C/s

Interpreting F as subset of [C]

3: return ‡[H + (b ≠ 1)s]

F .RemoveAndUpdate(c) Û This will only be called with c œ F
4: H Ω H \ {‡≠1(c)}
5: if |H| Æ s ≠ s�/C then Û Switch to next block
6: H Ω [s]
7: b Ω b+ 1

Specifically, for each vertex v in the graph, we associate a uniform and independently
chosen random permutation ‡v over the set [C] of colors, where C = O(�) is the number of
colors used. When edges incident on v arrive, we will choose colors by very roughly increasing

6 This algorithm essentially discards colors that it skips over. We suspect one can obtain a semi-streaming
(2� ≠ 1)-edge-coloring, or better, by retaining and promptly using the skipped colors in some fashion.

7 Not counting random oracle bits. To implement without oracle randomness, choose each permutation
independently from an almost O(logn)-wise independent distribution over permutations.
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order in ‡v. Specifically, we split ‡v up into a sequence of disjoint blocks Pv,1, . . . , Pv,C/s

of size s = O(


� logn) each. At any given time, the algorithm have an integer bv so that,
all colors in blocks from Pv,1 up to Pv,bv≠1 are assumed unsafe to use; none of the colors in
Pv,bv+1, . . . , Pv,C/s have been used; and the set Fv of colors in Pv,bv that are still available is
tracked exactly. Pseudocode for updating this state is given in Algorithm 2; it will ensure
that |Fv| Ø s(1 ≠ �/C). Whenever an edge {x, y} arrives, the algorithm (Algorithm 3) will
assign it a random color in Fx fl Fy. We will prove that, since Fx and Fy have size close to s,
and only a �/C fraction of (biased) random elements from Px,bx and Py,by will have been
used/excluded from Fx and Fy, the intersection of Fx flFy will have size �(s2/C) = �(logn)
with high probability. Thus, our algorithm will w.h.p. be able to pick a color for the edge
{x, y}.

Algorithm 3 Randomized algorithm for O(�) edge coloring for simple graph edge arrival streams.

Input: Stream of vertex arrivals n-vertex graph G = (V,E)
Assume � is a power of two, and � = �(log(n/”))
” is the maximum failure probability over all input streams

Initialize:
1: Let C = 128� and ‘ = ”

16n3

2: Let s be the least power of two which is Ø 128


� log(n/”)
3: for v œ V do

4: ‡v Ω permutation drawn from the (‘, s)-wise independent distribution over SC from
Lemma 14

5: Fv Ω InitFreeTracker(C, s,�,‡v)

Process(edge {x, y}) æ color

6: if Fx fl Fy = ÿ then

7: abort
8: Let c be chosen uniformly at random from Fx fl Fy.
9: Fx.RemoveAndUpdate(c)

10: Fy.RemoveAndUpdate(c)
11: return color c

Keeping track of the available colors for each vertex will use ÂO(
Ô

�) space per vertex.
We will choose the random permutations from an (Á, s)-wise independent distributions (see
Definition 13). We show in a technical lemma that there is a particular such distribution
whose permutations can be encoded using ÂO(

Ô
�) space each, and for which sampling and

permutation evaluation are e�cient. In total over all vertices, we will use ÂO(n
Ô

�) space for
our algorithm.

3.3 Deterministic Online Algorithms
Derandomization of online vertex arrival

When a vertex a and its neighboring edges are processed, the randomized online vertex
arrival algorithm is greedily finding an assignment for each edge incident on a to the next
few available colors on the “fixed” vertex at the other endpoint. While this greedy selection
works acceptably in the average case, it does not provide strong worst-case guarantees: with
�(1/poly(n)) probability, some vertex adjacent to a will increase its counter by �(logn),
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thereby marking (“consuming”) �(logn) colors from its random permutation as unavailable.
Consequently, there is small but nonzero risk that a vertex will use up too many colors from
its random permutation and run out. In contrast, our deterministic algorithm for online
edge coloring for one-sided vertex arrivals (Algorithm 4) is designed to ensure that, for any
fixed vertex, the amortized number of colors consumed per edge incident on a fixed vertex is
always bounded by a constant.

First, instead of greedily coloring the edges incident to a, we explicitly construct a
matching in a bipartite graph between the set Ma of edges incident to a and the set of all
colors, where each edge {a, b} in Ma is linked to some of the colors that are known to be still
available for vertex b. This avoids the problem of the greedy color selection, where there was
always a small risk that for some vertex, all the next few colors in its random permutation
were used; although it has the risk that the matching might not exist. Fortunately, as
the number of color candidates per edge in Ma increases, the probability of there being
no matching shrinks rapidly. If there are no repeated edges in Ma, and if each edge has t
uniformly randomly chosen color candidates, the probability of there being no matching is
exp(≠�(t|Ma|)).

Second, instead of using random permutations, the deterministic algorithm uses a certain
“good” array of permutations for which we are guaranteed that whenever we look for a
matching, one will exist. This relies on an additional modification: instead of having each
“fixed” vertex v keep track of a single counter hv, we store a set of Ø t = �(logn) colors
known to still be available for vertex v, and periodically replace this set with a range of new
colors from the permutation ‡v. The exact details of the encoding ensure that each fixed
vertex has only O(polyn) possible states. Now, consider what happens when a vertex a
(with incident edge set Ma) arrives, assuming for simplicity that Ma has no repeated edges.
The number of possible configurations of states of vertices in N(a) will be exp(|Ma| logn). If
each vertex had a random permutation, the probability of there being no matching would be
exp(≠�(|Ma| logn). By carefully adjusting parameters, we can ensure the product of these
two is exponentially small. Then by a union bound we can show that the probability (over
the random permutations) of any matching failing, for any set Ma and any associated vertex
state, is at most 1

2
. In other words, for a good choice of permutations, our algorithm would

always find a matching, in any state.
A notable problem is that storing each permutation would require ÂO(�) bits each.8 To

avoid this, we select the permutations from small, almost-k-wise independent families of
permutations, instead. This works, but requires a more careful analysis to prove correct, and
a large fraction of our proof is spent dealing with the interaction of this and support for
multigraphs.

Derandomization of online edge arrival

We did not find a way to directly derandomize the randomized algorithm for online edge
arrival. Instead, we created an algorithm (Algorithm 5) that manages to partially solve the
edge coloring problem, only assigning a color to a Ø 1/3 fraction of the incoming edges, and
leaving the rest uncolored. Now, say we run O(log�) instances of this algorithm in parallel,
each using a distinct palette of O(�) colors. When an edge arrives, we pass it to the first
instance of the algorithm, and if it wasn’t assigned a color, pass it to the second instance;

8 One could recompute individual “good” permutations on demand, instead of storing all of the permuta-
tions, but this has the risk of the computation itself requiring ÂO(n�) bits of scratch space.
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Algorithm 4 Deterministic O(�) edge coloring algorithm for one sided bipartite vertex arrivals.

Input: Stream of vertex arrivals for n-vertex graph G = (A Û B,E) of max degree �,
where � is a power of 2

Initialize(”):
Let C = 218�.
Let s =

'
218 log n�

”

(
.

Û To get a deterministic algorithm, fix “good” values of these permutations
Û When the permutations are chosen randomly, with probability Ø 1 ≠ ” the algorithm
will succeed on all inputs
Let (‡v)vœB be permutations drawn from an (‘ = C≠s≠1, s)-wise independent distribution
over SC , using Lemma 14

1: for v œ B do

2: bv Ω 1.
3: Qv Ω [s].

Process(vertex x with multiset Mx of edges to B)
Let dx,y be the number of times edge {x, y} is in Mx

4: for each y œ B with dx,y > 0 do

5: if dx,y < 1

16
s then

6: Let Fy = (by ≠ 1)s+Qy

7: else

8: Let Fy = ((by ≠ 1)s+Qy) Û
Ë
bys+ 1, bys+

Ï
64dx,y

s

Ì
s
È

9: Construct bipartite graph H from Mx to [C], edge e œ Mx is linked to all c œ ‡y[Fy].
10: Compute an Mx-saturating matching P of H.
11: for each e œ Mx do

12: Assign color P (e) to e
13: if dx,y < 1

16
s then

14: Remove ‡≠1
y

(P (e)) ≠ (by ≠ 1)s from Qy

15: for each y œ B with dx,y > 0 do

16: if dx,y < 1

16
s then

17: if |Qy| Æ s ≠ 1

217 s then

18: by Ω by + 1
19: Qy Ω [s]
20: else

21: Qy Ω [s]
22: by Ω by +

Ï
64dx,y

s

Ì
+ 1

and if that didn’t assign a color, pass it to the third instance, and so on. All in all, only a
Æ 1/poly(�) fraction of the input stream will fail to be colored by this process, and there
are few enough of these leftover edges that one can store them all and color them using O(�)
colors. This approach uses O(� log�) colors in total.

The partial edge coloring algorithm itself uses an interesting trick. Let C be the number
of colors allowed. Each vertex v has an associated permutation ‡v œ SC , which is partitioned
into a number of blocks Pv,1, Pv,2, . . . of ÂO(

Ô
�) colors each. Whenever an edge {u, v} arrives,

it must be colored using a color in the set Pv,i fl Pu,j , where i and j depend on the degrees
of vertices v and u at the time. Parameters are set up so this set has size �(logn), and the
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Algorithm 5 (1/3)-partial O(�) edge coloring algorithm for graph edge arrival streams.

Input: Stream of edge arrivals in n-vertex graph G = (V,E) of max degree �, where �
is a power of two

Initialize(�,C,s):
Û C: number of colors used; s: block size parameter
Û As with Algorithm 4, a “good” set of permutations will exist, if C/� is large
(‡v)vœV are specific s-wise almost independent permutations

1: for v œ V do

2: Fv Ω InitFreeTracker(C, s,�,‡v). Û Defined in: Algorithm 2

Process(edge {x, y}) æ Option<color> œ {‹} fi [C]
3: if Fx fl Fy ”= ÿ then

4: Choose c œ Fx fl Fy arbitrarily
5: Fx.RemoveAndUpdate(c, {x, y})
6: Fy.RemoveAndUpdate(c, {x, y})
7: return color c
8: else

9: return ‹

algorithm knows which colors in Pv,i and Pu,j have been used so far. We prove that, if the
algorithm could preview the future of the stream, it could always pick the “right” color in
Pv,i fl Pu,j , and thereby find a valid edge coloring. On the other hand, without being able to
look at future edges, if one just greedily picks valid colors in Pv,i fl Pu,j that don’t conflict
with colors chosen earlier – assuming there are any – then the algorithm will color at least a
1/3 fraction of the edges.

Handling multigraphs in online edge arrival

Let us now turn to multigraphs. Note that the degree of a vertex takes into consideration
the multiplicity of each incident edge. Both the randomized online edge arrival algorithm
and what was described so far of the deterministic algorithm will fail when faced with input
streams that repeat edges. But looking more closely, both can tolerate some amount of
repeated edges – a given edge e could be repeated up to ÂO(

Ô
�) times, as long as it doesn’t

arrive too frequently. Specifically, as long as, for a given endpoint x of e, the substream of
edges incident on x does not contain e more than ÂO(1) times in any interval of ÂO(

Ô
�) edges.

This is a consequence of the way the edge arrival algorithms rotate between blocks of colors
for each vertex.

On the other hand, the edges that would break the sketch, which repeat many times
within the last ÂO(

Ô
�) edges incident on a given vertex, are easy to detect using ÂO(n

Ô
�)

space. All one must do is keep track of the edges which recently arrived at a vertex, and
detect duplicates.

To handle the “bad” type of repeated edges, we maintain O(log�) modified instances of
an edge arrival algorithm. (In this paper, we use the basic deterministic online edge arrival
algorithm, but the same argument would work for the randomized one.) The first instance
processes all edges in the stream, filtering out the edges which it detects to have repeated
at least once. The repeated edges are sent to the second instance, which filters out edges
that it finds to have repeated twice, and sends those to the third instance. In general, the
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ith instance will receive edges which have been seen �(2i) times in the stream. (The exact
condition is a bit more complicated.) The ith instance is also modified to handle edges with
high repetition rates, assigning batches of colors to each edge type that it processes.

3.4 A Lower Bound
Space lower bound for online deterministic edge coloring

Our last notable result is a lower bound on the space needed for deterministic online edge
coloring algorithms, which use —� colors, for a constant — < 2. It applies in the one sided
bipartite vertex arrival setting, and thus automatically gives a lower bound for general vertex
and edge arrivals. Let B be the “fixed” set of vertices, and A the “arriving” set of vertices.
We prove the lower bound by reducing a deterministic, �-player, one way, communication
game to (deterministic, one-sided, bipartite, vertex arrival) online edge coloring.

In this game, each player receives a set of edges to color, and must immediately output a
coloring for the edges, before sending a message to the next player. Say that there are only
2o(n) possible messages. Each message corresponds to a collection of inputs which the player
could have received. One can show that each message “rules out” some of the colors for each
vertex v in B, so that, if the protocol is correct, future players cannot mark edges going to v
with one of the ruled out colors. Furthermore, there must be some message which has a large
number of associated inputs, and which rules out > — colors for each fixed vertex, on average.
As this can happen for each of the � players, by the end of the protocol it is possible to
have ruled out > —� colors per vertex, on average, which contradicts the assumption that
the algorithm uses at most —� colors. Thus, there must be 2�(n) possible messages.
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Abstract

We propose a unifying framework for smoothed analysis of combinatorial local optimization problems,
and show how a diverse selection of problems within the complexity class PLS can be cast within
this model. This abstraction allows us to identify key structural properties, and corresponding
parameters, that determine the smoothed running time of local search dynamics. We formalize
this via a black-box tool that provides concrete bounds on the expected maximum number of steps
needed until local search reaches an exact local optimum. This bound is particularly strong, in the
sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely
on the choice of specific noise distributions that are applied on the input, but it is parameterized by
just a global upper bound „ on the probability density. The power of this tool can be demonstrated
by instantiating it for various PLS-hard problems of interest to derive e�cient smoothed running
times (as a function of „ and the input size).

Most notably, we focus on the important local optimization problem of finding pure Nash equilibria
in Congestion Games, that has not been studied before from a smoothed analysis perspective.
Specifically, we propose novel smoothed analysis models for general and Network Congestion Games,
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We study PLS-hard instances of these problems and show that their standard local search algorithms
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1 Introduction

Local search heuristics are some of the most prominent, and widely used in practice, algorithms
for solving computationally hard, combinatorial problems [1, 15]. Their appeal stems not
only from their simplicity and theoretical elegance, but also from the fact that, for many
applications, they seem to perform remarkably well both in terms of their running time and
the quality of the solutions they produce.

Theoreticians have long tried to rigorously study the performance of local search, but also
explain its prevalence in practice. Johnson, Papadimitriou, and Yannakakis [13] introduced
the class PLS to capture the complexity of local optimization problems; since then, many
important such problems have been shown to be PLS-complete, implying that they most
likely cannot be solved (exactly) in polynomial time. This hardness applies not only to local
search algorithms, but to arbitrary local optimization methods. For local search, in particular,
PLS-hardness (under tight reductions) implies the provable existence of instances leading
to exponentially slow convergence [26]. Examples include the Travelling Salesman problem
under the k-Opt heuristic [14, 5] (TSP/k-Opt in the following), Local Maximum Cut on
weighted graphs [23] (LocalMaxCut), and the problem of finding pure Nash equilibria in
Congestion Games [10] (PNE-Congestion).

On the other hand, Orlin, Punnen, and Schulz [17] designed a local-search-based
polynomial-time scheme for e�ciently computing approximately locally-optimal solutions
for general combinatorial optimization problems (with linear objectives). Although this
result provides concrete justification for the practical tractability of local optimization, there
are still many important aspects that call for further investigation. First, if one requires
exponential accuracy, their FPTAS still cannot provide polynomial running times. Secondly,
approximate solutions do not always make sense for all local optimization problems; there
are problems in PLS that are inherently exact and they are not derived by simply considering
the local version of some “master” global optimization problem. A notable example is
PNE-Congestion [19]. Finally, we would like to be able to argue about the more general
family of “vanilla” local search, and to ideally get positive results that do not depend on
additional details and specific choices of pivoting rules. Addressing these points is a key
objective of the present paper.

Smoothed analysis was introduced by Spielman and Teng [24] as a more realistic alternative
to traditional worst-case analysis, where now the adversarially selected input is submitted to
small random shocks of its numerical parameters, before being presented to the algorithm;
the running time is then measured in expectation with respect to these perturbations. Under
this model, Spielman and Teng were able to show that Simplex, the archetypical method
for solving linear programs, is guaranteed to terminate in polynomial time (under a shadow
pivoting rule) – as opposed to its exponential complexity under worst-case analysis. This
remarkable result established smoothed analysis as a canonical framework for studying the
performance of algorithms beyond the worst-case (see [20] for an overview of this field).

In particular, smoothed analysis has been applied successfully to important local search
algorithms, providing thus a theoretical basis for the justification of their good performance
in practice; these include, e.g., the k-Opt heuristic for TSP and the Flip heuristic for
LocalMaxCut. (A more detailed exposition of related work on this front is deferred to the
following sections of this paper, where each of our local optimization problems of interest
is explicitly studied; see, namely, Section 4 and [12, Sec. 5].) A common characteristic
of this prior work, though, is that running-time analysis is usually tailored specifically to
the local optimization problem at hand. This naturally creates the need for technically
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heavy derivations, from which it is generally not clear how to pin down the core properties
of the underlying local-search structure that allow for the e�cient smoothed complexity.
Furthermore, as a result, it is often not easy to immediately generalize these results to
capture interesting extensions, e.g., argue about the asymmetric version of TSP, or go from
TSP/2-Opt to TSP/k-Opt. Finally, this lack of su�cient abstraction is one of the reasons
that smoothed analysis has not been yet considered at all for prominent PLS-hard problems,
including, e.g., PNE-Congestion. Dealing with this set of challenges is another driving
force behind our paper.

Our Results and Outline

We start by proposing an abstract model for smoothed analysis of combinatorial local
optimization (CLO) in Section 2. Our family of CLO problems includes problems in PLS
that have an arbitrary combinatorial neighbourhood structure and linear objective functions;
essentially, our model generalizes that of [17] beyond binary configurations. In Section 2.1,
we add our smoothness layer that introduces probabilistic noise (independently) to the cost
parameters of the CLO problem. No further assumptions are made on the distributions of the
perturbed costs; their densities are only parameterized by a global upper bound of „. This
is a standard model (employed, e.g., in [3, 22, 8, 9]) that makes positive smoothed-analysis
results even stronger, and extends the seminal model of Gaussian perturbations from [24].

Section 3 contains our key technical result for deriving upper bounds on the expected
(under smoothness) number of local-search steps, until an exact local optimum is reached.
Our black-box tool (Theorem 2) can be readily applied to an abstract CLO problem, once its
underlying neighbourhood structure is appropriately captured; this is formalized through the
notion of separability (see Definition 1), quantified by a collection of three parameters that are
critical for the upper bound given by Theorem 2. We note here that our bounds are robust
against the specific choice of a starting point for the local search dynamics, as well as the
pivoting rule utilized at every step to transition to an improving neighbour. In other words,
our main black-box tool establishes bounds for the entire family of local search heuristics of
a local optimization problem. At a technical level, our proof works by lower-bounding the
probability that all steps of the local-search sequence improve su�ciently the objective.

In Section 4 we demonstrate the applicability of our general framework by instantiating it
for PNE-Congestion, a prominent PLS-complete problem which has not been studied before
from a smoothed analysis perspective. First, we propose smoothed analysis formulations
for various representations of interest for the problem, namely explicit, step-function, or
polynomial resource latencies. Next, after formally establishing how PNE-Congestion

is indeed a CLO problem in Section 4.1, we identify a natural parameterization of the
problem that we call B-restrained games (Section 4.2), where B is an upper bound on the
number of resources that can be changed during a single-player deviation (see Definition 5).
Interestingly enough, the case of constant B is still rich enough to encode the full PLS-
hardness of PNE-Congestion ([12, Appendix B]), while at the same time it can be shown
(see the proof of Theorem 6) to be appropriately separable in order to immediately provide
polynomial smoothed running time bounds via our black-box tool developed in Section 3.
Similarly, in Section 4.3 we also study a special class of network congestion games, which
we term (A,B)-compact (Definition 9); we establish polynomial smoothed complexity for
various families of instances, including the one where A is polynomial and B is constant
(Corollary 11), which we pair with a complementing PLS-hardness proof ([12, Appendix C]).

Finally, we apply our high-level framework to various other local optimization problems
of interest, by first formally establishing that they can be viewed as CLO problems and then
identifying the proper separability structures that can be plugged into our black-box tool to
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provide good smoothed bounds for local search. This not only unifies, and greatly simplifies,
prior existing positive results, but also allows us to extend or improve them. Notable examples
include: rederiving and strengthening the polynomial smoothed time for local Max-Cut, for
graphs with up to logarithmic degree, first given by Elsässer and Tscheuschner [7]; extending
the polynomial smoothed time, of Englert, Röglin, and Vöcking [8], for the 2-Opt heuristic
for the general (symmetric) Travelling Salesman problem (TSP), to k-Opt neighbourhoods
and to asymmetric TSP (ATSP); and improving the quasipolynomial smoothed time for
Network Coordination Games, by Boodaghians, Kulkarni, and Mehta [4], to polynomial for
constant-degree graphs.

Due to space constraints, the study of all these additional applications of our framework
is deferred to the full version of our paper [12].

2 Smoothed Combinatorial Local Optimization

In this section we formalize our model and fix the necessary notation.
We denote by N and R, the natural and real numbers, respectively. We also denote

Nú := N \ {0} and [k] := {1, 2, . . . , k}, JkK := {0} fi [k] for k œ N. We will use boldface
notation for vectors, s = (s1, s2, . . . , sn) œ Rn. For an index i œ [n], we use s≠i to denote
the (n ≠ 1)-dimensional vector that results from an n-dimensional vector s if we remove its
i-component; in that way, we can express s as (si, s≠i) in order to easily denote deviations in
the i-th component. More generally, for a set of indices I ™ [n], sI denotes the |I|-dimensional
vector that we get if we keep only the components of s whose indices are in I. For finite sets
I, I, we say that I is a cover of I if I ™

t
IÕœI I Õ. All logarithms appearing in our paper are

of base 2.

Combinatorial local optimization (CLO)

An instance of a combinatorial local optimization (CLO) problem is composed of:

A set of feasible configurations S ™ JMK‹
◊ {0, 1}‹̄ , where M, ‹ œ Nú, ‹̄ œ N. A

configuration s can be expressed as s = (s•, s¶), where s• = (s1, . . . , s‹) œ JMK‹ is called
its cost part and s¶ = (s‹+1, . . . , s‹+‹̄) œ {0, 1}‹̄ its non-cost part.

A vector of costs c = (c1, c2, . . . , c‹) œ [≠1, 1]‹ . We call the ci cost coe�cients.1

A neighbourhood function N : S ≠æ 2S . For s œ S, any configuration sÕ
œ N(s) will be

called a neighbour of s.
For the special case of M = 1 we will call our problem binary.

The cost of a configuration s (with respect to a fixed cost vector c) is given by

C(s) := c · s• =
‹ÿ

i=1

cisi.

1 Note that the restriction of costs to the range of [≠1, 1] has been made to facilitate the translation to
smoothed CLO problems below (see Section 2.1). In fact, due to the linearity of our objective, scaling c
by any positive constant does not change the structure of the problem, and we will implicitly use this
fact when formulating other problems as CLO problems.
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A configuration s is said to be a local optimum (minimum
2
) if there are no neighbours with

better costs; formally,

C(s) Æ C(sÕ) for all sÕ
œ N(s). (1)

For every CLO problem we can define its configuration (or neighbourhood) graph, made
up by all edges pointing from configurations to their neighbours. Formally, it is the directed
graph G = (V,E) with node set V = S and edges E = {(s, sÕ) | s œ S, sÕ

œ N(s)}. Observe
that the configuration graph does not depend on the costs c, but only on the combinatorial
structure of the problem. Taking the cost vector c into consideration, we can now restrict
the configuration graph edges to those that correspond to locally improving moves, i.e. take
EÕ = {(s, sÕ) œ E | C(sÕ) < C(s)}. The resulting acyclic subgraph GÕ = (V,EÕ) is called
transition graph.

The transition graph provides an elegant and concise interpretation of local optimization:
finding a local optimum of a combinatorial (local optimization) problem translates to finding
a sink of its transition graph. This task is exactly the object of interest of our paper: we
study (the running time of) algorithms that find local optima of such problems.

Complexity

If the configuration set and the neighbourhoods N(·) were given explicitly in the input of
a local optimization algorithm, then finding a locally optimal solution would have been a
computationally trivial task: we could a�ord (in polynomial time) to exhaustively go over
all nodes of the transition graph, until we find a sink. Notice that the existence of a sink is
guaranteed, by the fact that S is finite. However, most problems of interest (including all
the problems that we study here) have exponential-size configuration graphs, with respect
to the dimension ‹ + ‹̄ of the problem. Therefore, S and N are usually instead described
implicitly, via some succinct representation (that is polynomial on ‹, ‹̄ and M). Then, the
computational complexity of our algorithms is naturally measured as a function of the critical
parameters ‹, ‹̄ and M (and the bit representation of the costs c).

Polynomial local optimization (PLS)

In this paper we want to study problems contained in PLS, the “canonical” complexity class
for local optimization problems, introduced by Johnson, Papadimitriou, and Yannakakis [13].
Therefore, without further mention, from now on we will assume that our CLO problems
further satisfy the following properties:

An initial configuration s0 œ S can be computed in polynomial time (on the size of the
input).
There exists a polynomial-time algorithm that, given as input any configuration s, decides
whether s is a local optimum and, if not, returns an improving neighbour sÕ

œ N(s) with
C(sÕ) < C(s). Such an algorithm is called pivoting rule.

It is important to clarify that the polynomial time algorithms of the bullets above are
formally not part of the description of the CLO problem, neither are they required to be
specified in the input of a local optimization algorithm. The existence of these algorithms is

2 Here we choose to write the local optimality condition with respect to minimization problems. All the
theory developed in this paper applies immediately to local maximization problems as well: just flip the
inequality in (1) or, equivalently, negate the cost vector c.
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72:6 On the Smoothed Complexity of Combinatorial Local Search

merely a requirement for the membership of the problem in the class PLS (similarly to the
existence of short certificates and an e�cient verifier for membership in NP). As a result,
PLS can be interpreted as the class of problems that correspond to looking for a sink in an
(implicitly given, possibly exponentially large) directed acyclic graph3, where at least one
node can be found e�ciently and, for any given node, at least one neighbour (if such exists)
can be found e�ciently [6, 11].

This interpretation naturally gives rise to the standard local search heuristic: start
from an arbitrary initial configuration, and at every iteration perform an (arbitrary4) locally
improving move until no such move exists anymore. For a fixed pivoting rule, this corresponds
to traversing a single path of the transition graph. Due to the definition of PLS membership
above, the running time of such a process is thus determined by the number of these local
search iterations. In the worst case, this amounts to bounding the length of the longest path

in the transition graph.
It is important to emphasize that, regardless of being a very natural heuristic, standard

local search is definitely not the only method for finding local optima: as a matter of fact,
we know that there exist local optimization problems that are e�ciently solvable via more
involved, “centralized” methods (e.g., by using linear programming), but for which standard
local search would provably require exponential time (see, e.g., [2]): more precisely, there
exist nodes in their transition graphs from which all paths have exponential length [23].

To assert the intractability of a problem, the common argumentation is via complexity
theory techniques that prove the conditional inexistence of polynomial time algorithms. If a
problem is PLS-hard, then unless PLS = P, there is no algorithm that solves it in polynomial
time under traditional worst-case analysis. However, since we are studying the performance
of local search heuristics, we are in fact interested in specifically their running time. Schä�er
and Yannakakis [23] introduced the notion of a stronger reduction among problems in PLS,
named tight PLS-reduction, which preserves key structural properties of the initial instance
to the target-problem’s instance. An important implication of an initial-problem P having a
tight PLS-reduction to target-problem Q is the following: for any instance I of P , a path
in the transition graph of the corresponding reduced instance J of Q induces a path of I
of length no larger than its own. In particular, if for an instance I there exists a starting
configuration from which all paths to solutions are exponentially long, this also applies to
the reduced instance J . We show that all the problems we study have this property, either
by referring to explicit bad instances for the problem at hand, or through (chains of) tight
reductions, which we construct if they haven’t been established before.

For a more thorough treatment of the complexity of local optimization and the class PLS,
the interested reader is referred to the excellent monograph of Yannakakis [26].

2.1 Smoothed Combinatorial Local Search

Under traditional, worst-case algorithmic analysis, the running time of an algorithm for a
CLO problem would be evaluated against an adversarially selected cost vector c = (c1, . . . , c‹).
Instead, our goal here is to propose a systematic smoothed analysis [25, 21, 20] framework
for local optimization. Therefore, for the remainder of this paper we assume that c is
not fixed, but drawn randomly from a product distribution. More specifically, each cost
coe�cient ci is drawn independently from a continuous probability distribution with density

3 This is the transition graph mentioned earlier.
4 Thus, standard local search is essentially a family of algorithms; di�erent pivoting rules can give rise to

di�erent local search algorithms.
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fi : [≠1, 1] ≠æ [0,„], where „ Ø
1

2
. These distributions can be adversarially selected,

but their realizations ci are not; the running time is then computed in expectation with
respect to the random cost vector c. An e�cient algorithm runs in time polynomial in
the combinatorial-structure parameters ‹, ‹̄ and M of the problem, and in the smoothness
parameter „. We will sometimes refer to this model as smoothed CLO, if we want to give
particular emphasis to the fact that we are performing a smoothed running time analysis (as
opposed to worst-case analysis).

In that sense, smoothed analysis can be seen as interpolating between two extremes: an
average-case analysis setting where all ci’s are drawn i.i.d. from a uniform distribution over
[≠1, 1], derived for „ = 1

2
; and traditional worst-case analysis that can be derived in the

limit, via „ æ Œ, as distributions fi approximate adversarial, single-point-mass instances.
In this paper we focus on smoothed analysis for standard local search, and so our quantity

of interest will be the expected number of improving moves (for any set of adversarially given
input distributions) until a local optimum is reached; that is, the expected length of the
longest path in the transition graph. This allows us to also avoid some delicate representation
issues that are typical of smoothed analysis, and which have to do with how the realizations ci
of continuous distributions (which therefore produce irrational numbers almost surely) can be
handled as inputs to a Turing-machine-based computational model. For a careful discussion
about this topic we point to the papers of Beier and Vöcking [3] or Röglin and Vöcking [22].
In a nutshell, for our purposes it is safe to think of the polynomial-time improving-local-move
oracle (from the PLS definition) as having access to real-number arithmetic.

3 Smoothed Analysis of Local Search

In this section we present our first main result, which is a black-box tool for upper-bounding
the number of improving moves of standard local search, under smoothed analysis. To achieve
this, we first highlight an appropriate underlying structure of CLO problems and identify
key parameters that characterize it (see Definition 1). Then, our bounds for standard local
search are directly expressed as a function of these parameters (see Theorem 2). As we will
demonstrate in Sections 4.2 and 4.3, and [12, Sec. 4.2], for various CLO problems of interest
these parameters are well-behaved enough to result in polynomial smoothed running times.

We now introduce some terminology and notation that will be necessary for stating our
main result in Theorem 2. Fix an instance of a CLO problem with cost coordinates [‹] and
configurations S (see Section 2), and let G = (S, E) be its neighbourhood graph. A covering

(E , I) of this instance consists of a cover E of the edges of its neighbourhood graph, and a
cover I of its cost coordinates. That is, E ™ 2E and I ™ 2[‹] such that E =

t
EÕœE E

Õ and
[‹] =

t
IœI I. We call E the transition cover and I the coordinate cover and they contain

transition clusters and coordinate clusters respectively. Recall that, under our previous
discussion (see Section 2), E can be simply interpreted as covering all potential configuration
transitions that can be made by standard local search, clustered appropriately in di�erent
groups T œ E . For an arbitrary set of such transitions T ™ E, we also define its core to be
the set of coordinates a�ected by any of the transitions:

core(T ) := {i œ [‹] | s•i ”= sÕ•
i for some (s, sÕ) œ T } ,

and its diversity with respect to a given set of coordinates I ™ [‹] to be the number of
di�erent configuration changes when projected to I:

”I(T ) := |rangeI(T )| , where rangeI(T ) := {s•I ≠ sÕ•
I | (s, sÕ) œ T } .
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I Definition 1 ((⁄,—, µ)-separable instances). An instance of a CLO problem is called

(⁄,—, µ)-separable if it has a covering (E , I) with |E| Æ ⁄, such that any transition cluster

T œ E:

(a) has a core that can be covered by using — many coordinate clusters from the cover I;

formally, there exists a IT ™ I with |IT | Æ — such that core(T ) ™
t

IœIT
I, and

(b) has at most µ diversity with respect to all coordinate clusters; formally, maxIœI ”I(T ) Æ µ.

I Theorem 2. On any (⁄,—, µ)-separable smoothed combinatorial local optimization instance,

standard local search terminates after at most

3 · µ—⁄ · ‹2M log(M + 1) · „

many steps (in expectation).

For the proof of Theorem 2 we will need the following technical lemmas. Their proofs
can be found in [12, Appendix A]. We would like to highlight the fact that the structural
quantities (⁄,—, µ) appear as the expression µ—⁄ in the statement of the theorem and are
the deciding quantities for the running time complexity of the problem, as evidenced in the
applications further below. As the choice of the covering is not unique (and often even allows
for more than just one natural choice), this exact expression helps to explain the quantitative
interaction between the properties of the covering.

I Lemma 3. Let I ™ [‹] be a set of cost coordinates and J ™ 2[‹] be a cover of I, i.e.
I ™

t
JœJ J . Then, for any set of transitions T ™ E,

”I(T ) Æ

Ÿ

JœJ
”J(T ).

I Lemma 4. Fix some „ > 0 and let X = (X1, X2, . . . ,Xm) be a random real vector,

where each component Xi is drawn independently from a continuous distribution with density

fi : R ≠æ [0,„]. Then, for any nonzero vector › œ Rm
and any Á Ø 0,

Prob [0 Æ › ·X Æ Á] Æ min
3

1
Î›ÎŒ

,

Ô
2

Î›Î
2

4
· Á„, (2)

where Î·Î
2
and Î·ÎŒ denote the Euclidean and maximum norms, respectively. For the special

5

case where › is a (nonzero) integer vector we get

Prob [0 Æ › ·X Æ Á] Æ Á„. (3)

Proof of Theorem 2. Fix a (⁄,—, µ)-separable smoothed CLO instance, with neighbourhood
graph G = (S, E), and let (E , I) be a covering satisfying the conditions of Definition 1.

We introduce the following notation:

�(s, sÕ) :=
I
C(s) ≠ C(sÕ), if this is positive,
Œ, otherwise,

5 In this paper we will be actually making use of Lemma 4 only via its weaker bound (3), rather than the
stronger form (2). This is su�cient for our purposes because, as it turns out, this has an asymptotically
negligible e�ect on our bounds. However, we still choose to state (and prove) Lemma 4 in its full
generality, since we expect it to be of potential independent interest for future extensions, especially if
one considers more involved structures, or non-integral configurations.
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for all (s, sÕ) œ E, and

� := min
(s,sÕ)œE

�(s, sÕ).

Notice that these are random variables, depending on the realizations of the cost vector c.
Our first goal is to give a bound on the probability that there exists a local move that

improves the cost only by (at most) Á > 0, as a function of this improvement bound Á.
If this quantity is su�ciently small, then with high probability, standard local search will
achieve improvements more than Á at every step, thus resulting in faster convergence. To
upper bound this probability Prob [� Æ Á], we first use a union bound over the cover E of all
transitions (s, sÕ) œ E to get

Prob [� Æ Á] = Prob

S

U
€

(s,sÕ)œE

[�(s, sÕ) Æ Á]

T

V Æ

ÿ

TœE
Prob

S

U
€

(s,sÕ)œT

[�(s, sÕ) Æ Á]

T

V . (4)

Next, for a fixed transition cluster T œ E we can express the inner union of events in (4) as
€

(s,sÕ)œT

[�(s, sÕ) Æ Á] =
€

(s,sÕ)œT

Ë
0 < ccore(T ) ·

1
score(T ) ≠ sÕ

core(T )

2
Æ Á

È

=
€

xœrangecore(T )(T )

#
0 < ccore(T ) · x Æ Á

$
. (5)

By the separability assumption of our CLO instance (see Definition 1), for any cluster T œ E

there exists a subset IT of I with |IT | Æ — that covers core(T ) such that, additionally,
maxJœIT ”J(T ) Æ maxIœI ”I(T ) Æ µ. So, from Lemma 3 we can deduce that

---rangecore(T )(T )
--- = ”core(T )(T ) Æ

Ÿ

JœIT

”J(T ) Æ µ— .

Furthermore, observe that each x œ rangecore(T )(T ) is a nonzero integral vector. Thus,
applying (3) of Lemma 4 we can derive that, for a fixed x œ rangecore(T )(T ), we have

Prob
#
0 < ccore(T ) · x Æ Á

$
Æ „Á.

Therefore, using again a union bound, this time on event (5), we can see that

Prob

S

U
€

(s,sÕ)œT

[�(s, sÕ) Æ Á]

T

V Æ

ÿ

xœrangecore(T )(T )

Prob
#
0 < ccore(T ) · x Æ Á

$
Æ µ—„Á.

Plugging this into (4), and using again the separability of our instance, we can finally bound
our desired probability

Prob [� Æ Á] Æ ⁄µ—Á„. (6)

Now we continue with the second part of the proof, in which we utilize the probability
bound in (6) to derive a concrete bound on the expected number of iterations of standard
local search. Let T denote the random variable of that maximum length among all paths in
the transition graph of our instance. Then, our goal is to bound E [T ].

Recall that the number of di�erent possible cost-part configurations is trivially upper-
bounded by (M + 1)‹ . Also, at every step of standard local search, the configuration cost is
strictly decreasing. Thus T Æ (M + 1)‹ and, furthermore, since the range of configuration
costs is within [≠M‹,M‹], and the minimum cost improvement of any iteration is �, we
also know that T Æ

2M‹
�

holds. Using these, we get
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E [T ] =
(M+1)

‹

ÿ

t=1

Prob [T Ø t]

Æ

(M+1)
‹

ÿ

t=1

Prob
5
� Æ

2M‹

t

6

Æ 2⁄µ—„M‹

(M+1)
‹

ÿ

t=1

1
t
, due to (6),

Æ 2⁄µ—„M‹
3
2 log(M + 1)‹ , since 1 + 1

2 + · · ·+ 1
n

Æ
3
2 logn ’n Ø 2,

= 3µ—⁄„‹2M log(M + 1). J

4 Smoothed Analysis for Congestion Games

Congestion games are composed of finite nonempty sets of players N = [n] and resources R.
Each player i œ N has a strategy set �i ™ 2R and each resource r œ R has a cost (or latency)
function Ÿr : [n] ≠æ RØ0. Each (pure) strategy profile (or outcome) ‡ = (‡1, . . . ,‡n) œ � :=
�1 ◊ · · · ◊ �n induces a load on each resource r, equal to the number of players that use it:

¸r(‡) := |{i œ N | r œ ‡i }| .

Then, the cost of player i is the total cost she experiences from all resources that she is using:

Ci(‡) :=
ÿ

rœ‡i

Ÿr(¸r(‡)).

An (exact) pure Nash equilibrium (PNE) is an outcome ‡ú from which no player can improve
her cost by unilaterally deviating. Formally, for any player i œ N and any deviation ‡Õ

i œ �i:

Ci(‡ú) Æ Ci(‡Õ
i,‡

ú
≠i).

Thus, if a strategy profile ‡ is not a PNE, there has to exist a player i and a deviation
‡Õ
i œ �i that reduces her cost, i.e.

Ci(‡Õ
i,‡≠i) < Ci(‡).

Such a strategy ‡Õ
i is then called a better-response (of player i with respect to the profile ‡).

By the seminal work of Rosenthal [18] we know that function � : � ≠æ RØ0 defined by

�(‡) =
ÿ

rœR

¸r(‡)ÿ

¸=1

Ÿr(¸) (7)

and commonly referred to as Rosenthal’s potential, has the property that

Ci(‡Õ
i,‡≠i) ≠ Ci(‡) = �(‡Õ

i,‡≠i) ≠ �(‡) ’‡ œ � ’i œ N ’‡Õ
i œ �i.

In other words, function � is an (exact) potential [16] of the corresponding congestion game.
This implies that PNE of a congestion game correspond exactly to the set of local minimizers
of its Rosenthal’s potential (7), meaning that �(‡ú) Æ �(‡Õ

i,‡
ú
≠i) for any player i and any

deviation ‡Õ
i œ �i. This also immediately establishes the existence of PNE in all congestion

games, since the potential function �(‡) can only take finitely many di�erent values.
Depending on the type and representation of the cost functions, di�erent classes of

congestion games can arise. Below, we describe three prominent ones which we will focus on
in this paper:
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General. The cost functions are given explicitly as a list of nonnegative values, one for
each possible load on the resource; (Ÿr(1),Ÿr(2), . . . ,Ÿr(n)). Notice how in this model
we do not impose a monotonicity constraint; this is deliberate, to maintain full generality.
If one wants to focus on nondecreasing cost functions (as is many times the case in the
literature), then the step-function representation (see below) can easily be used instead.
Polynomials (of degree d). The cost functions are polynomials of maximum degree d œ N
with nonnegative coe�cients. More specifically, the cost functions are given implicitly by
the coe�cients {–r,j}rœR,jœJdrK ™ RØ0, where dr Æ d, via

Ÿr(¸) =
drÿ

j=0

–r,j¸
j for all ¸ œ [n]. (8)

Step functions (with d break-points). The cost functions are nondecreasing, piecewise
constant, given by pairs of break-points and value-increases. More specifically, for each
resource r œ R there is a list of break-points Br ™ [n] and associated jumps {–r,j}jœBr

. We
denote the number of break-points of a resource r by dr := |Br|, and we set d := maxrœR dr.
Then, the cost functions are given via

Ÿr(¸) =
ÿ

jœBrfl[¸]

–r,j for all ¸ œ [n]. (9)

To the best of our knowledge, no smoothed analysis model has been established so far for
congestion games. In this paper, we propose and study the following perturbation semantics
for the aforementioned classes:

General congestion games. The costs Ÿr(¸) are independently distributed according to
densities fr,¸ : [0, 1] ≠æ [0,„], for all r œ R and ¸ œ [n].
Polynomial games. The coe�cients –r,j are independently distributed according to
densities fr,j : [0, 1] ≠æ [0,„], for all r œ R and j œ JdrK.
Step-function games. The jump increases –r,j are independently distributed according
to densities fr,j : [0, 1] ≠æ [0,„], for all r œ R and j œ Br. Notice, however, that the
break-points Br themselves are not subjected to any noise, and they are assumed to be
fixed (and adversarially selected).

4.1 Nash Equilibria as Combinatorial Local Optimization Problems

We now show how PNE-Congestion, the problem of finding a pure Nash equilibrium in
congestion games, can actually be interpreted as a combinatorial local optimization problem
(with respect to our definitions in Section 2.1), for any of the cost models described above.
For all models, their randomness semantics translate directly to the respective randomness
of cost coe�cients in the smoothed CLO problem.

General congestion games. By (7) we know that PNE correspond exactly to local
minimizers of the potential function �(‡) =

q
rœR

q¸r(‡)

j=1
Ÿr(j). Therefore, finding a

PNE of a general congestion game can be viewed as a binary (M = 1) CLO problem,
with cost dimension ‹ = |R|n (the cost coordinates are given by R ◊ [n]), where each
strategy profile ‡ is mapped to a cost configuration s• = (sr,j)rœR,jœ[n] given by the
indicator functions:

sr,j = [j Æ ¸r(‡)] . (10)

The CLO cost coe�cients are given by cr,j = Ÿr(j).
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Furthermore, we want to establish a one-to-one correspondence between configurations s
of the CLO problem and strategy profiles ‡ of our congestion games where, in partic-
ular, the neighbours of s are exactly the configurations corresponding to single-player
deviations {(‡Õ

i,‡≠i)}iœN ,‡Õ
iœ�i

. In that way, better-responses of the congestion game
would correspond exactly to local improvements in the CLO formulation. However, this
cannot be achieved by using just the cost part defined above by (10), since in that case,
di�erent strategy profiles may end up being mapped to the same cost part configuration
(when they induce the same resource loads). To overcome this technical pitfall, we also
maintain a non-cost part s¶, which keeps track of the actual strategies of the players:
this can be easily achieved, with only an additional polynomial size burden.6
Finally, notice that the neighbourhoods of the CLO problem we created can be explicitly
listed and e�ciently searched for a better (smaller cost) value: they have a maximum size
of n ·maxiœN |�i|, which is polynomial in the description of the original congestion game.
Polynomial games. Using (8), Rosenthal’s potential (7) can now be written as

�(‡) =
ÿ

rœR

¸r(‡)ÿ

¸=1

drÿ

j=0

–r,j¸
j =

ÿ

rœR

drÿ

j=0

–r,j

¸r(‡)ÿ

¸=1

¸j =
ÿ

rœR

drÿ

j=0

–r,jSj(¸r(‡)),

where

Sj(¸) :=
ÿ̧

k=1

kj Æ ¸j+1
Æ ¸d+1

Æ nd+1

for any ¸ œ N. This induces a CLO problem with parameters

‹ =
ÿ

rœR
(dr + 1) Æ |R| (d+ 1) and M = nd+1,

with each strategy profile ‡ corresponding to a cost configuration s• = (sr,j)rœR,jœJdrK
given by:

sr,j = Sj(¸r(‡)).

The costs coe�cients are given by cr,j = –r,j . Notice that again all neighbourhoods are
e�ciently searchable since they have a polynomial maximum size of n ·maxiœN |�i|.
Step-function games. Using (9), Rosenthal’s potential (7) can now be written as

�(‡) =
ÿ

rœR

¸r(‡)ÿ

¸=1

ÿ

jœBrfl[¸]

–r,j =
ÿ

rœR

ÿ

jœBrfl[¸r(‡)]

(¸r(‡) ≠ j + 1)–r,j

=
ÿ

rœR

ÿ

jœBr

max(0, ¸r(‡) ≠ j + 1)–r,j .

This induces a CLO problem with dimension

‹ =
ÿ

rœR
|Br| =

ÿ

rœR
dr Æ |R| d and M = n,

with each strategy profile ‡ corresponding to configuration s• = (sr,j)rœR,jœ[dr]
given by

sr,j = max(0, ¸r(‡) ≠ Br(j) + 1),

6 E.g. we can choose ‹̄ = |N | and let s¶
i œ [|�i|] be the index of strategy ‡i deployed by player i in profile

‡. To simplify our exposition, in the remaining congestion game classes studied below, we will avoid
explicitly discussing these non-cost parts; they are identical to the general congestion game model.
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where we use Br(j) to denote the j-th break-point7 of resource r. The costs are given by
cr,j = –r,Br(j). Again, it is straightforward to see that all neighbourhoods are e�ciently
searchable.

4.2 Restrained Congestion Games

Although congestion games are guaranteed to have (at least one) PNE, the computational
problem of actually finding one is considered hard; as a matter of fact, the problem PNE-

Congestion is one of the most prominent PLS-complete problems. Our goal in this section
is to investigate whether this computational barrier can be bypassed, under the lens of the
more optimistic complexity model of smoothed analysis.

To achieve this, we establish an upper bound (Theorem 6) on the expected number of
better-responses that need to be performed until a PNE is found in a congestion game, as a
function of a critical structural parameter of its action space that we identify (see Definition 5).
Then, we can deduce that for congestion games in which this parameter is appropriately
bounded, the smoothed running time becomes tractable (Corollary 7). At the same time, we
show how such a restriction does not make the problem trivially tractable, by proving that
PNE-Congestion remains PLS-complete even for this subclass of games (Theorem 8).

I Definition 5 (Restrained Congestion Games). A congestion game will be called B-restrained,
where B œ N, if the maximum number of resources changed by any single-player deviation is

at most B. Formally,

max
iœN

max
‡,‡Õœ�i

|‡—‡Õ
| Æ B,

where — denotes the standard symmetric di�erence operator (recall that ‡,‡Õ
are subsets of

resources).

I Theorem 6. Consider a B-restrained n-player congestion game, under any of the smoothed-

analysis models described in Section 4 (namely general, polynomial, or step-function latencies),

with maximum density parameter „. Then, performing any better-response dynamics, starting

from an arbitrary strategy profile, converge to an (exact) PNE of the congestion game in an

expected number of iterations that is bounded by

O
!
nB+3k2m2„

"
for general games,

O
!
nB+d+2 log(n)(d+ 1)3k2m2„

"
for polynomial games with degree at most d, and

O
!
(d+ 1)B+2n2 log(n)k2m2„

"
for step-function games with at most d break-points,

where m = |R| is the number of resources and k = maxiœN |�i| is the maximum strategy set

size.

Proof. In Section 4.1 we already showed how congestion games can be interpreted as CLO
problems. In particular, we established a one-to-one correspondence between better-responses
of the players to local improvements of the CLO cost objective (which corresponds to the
value of Rosenthal’s potential). Using this interpretation, we can now make use of our
main black-box tool from Section 3: bounding the expected number of local search steps
will induce the same bound in the expected iterations of better-response dynamics in the
original congestion game. Therefore, the gist of our proof is to construct coverings (E , I) so
that the induced CLO problem can be shown to be (⁄,—, µ)-separable (see Definition 1) for
parameters with appropriately small magnitude.

7 That is, if Br = {b1, b2, . . . , bdr} ™ [n], then Br(j) = bj , for any j œ [dr].
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We start by establishing some properties that will be shared across all three di�erent
cost models. Fix a congestion game and its corresponding CLO problem, as described
in Section 4.1.8 For convenience, we denote by ki := |�i| the size of the strategy set of
a player i, and let k := maxiœN ki. Also, in all of the models we have a similar index
structure in the cost part; the cost-part is given by (sr,j)rœR,jœJr , where Jr depends on
the cost function model (Jr = [n] for general, Jr = JdrK for polynomial, and Jr = [dr] for
step-function costs).

The transition cover E is constructed from clusters that collect all edges in the neighbour-
hood graph (of the CLO problem) that correspond to a fixed deviation of a player, regardless
of the configuration of the remaining players. Formally, we let

E := {E(i,‡i,‡
Õ
i) | i œ N , ‡i,‡

Õ
i œ �i } , where

E(i,‡i,‡
Õ
i) := {(s(‡i,‡≠i), s(‡Õ

i,‡≠i)) œ E | ‡≠i œ �≠i } ,

and s(‡) is used to denote the CLO configuration corresponding to strategy profile ‡ in the
congestion game. Now we immediately get the bound

|E| Æ nk(k ≠ 1),

which will be used as the value for our separability parameter ⁄ (see Definition 1).
Next, for the coordinate cover I, we cluster the indices with respect to each resource, i.e.

we choose

I := {Ir | r œ R} , where Ir = {(r, j) | j œ Jr} .

In congestion games, a deviation ‡i æ ‡Õ
i only a�ects the resources r œ ‡i—‡Õ

i. Their loads
are changed to increase by 1 for r œ ‡Õ

i \ ‡i and decrease by 1 for r œ ‡i \ ‡Õ
i; the load

of all other resources does not change. Our choice of the cover I, therefore, will allow us
to settle — for all models due to the B-restrain assumption on the size of ‡i—‡Õ

i. In more
detail, recall that the cost parts of a configuration depend only on the loads of the resources,
thus all components associated with resources r /œ ‡i—‡Õ

i (specifically, the components with
coordinates Ir) remain unchanged during the transition, since the load of r does not change
either. The fact that the size of those sets ‡i—‡Õ

i is universally bounded, by assumption, will
let us use — = B as a separability parameter (see Definition 1).

The remaining parameter µ depends on the structure of the configurations in the cost
part. Again, we emphasize that for all cost models in Section 4.1, the sub-configuration
sIr(‡), which comprises all components of s(‡) that correspond to a resource r, depends
only on the load ¸r(‡) of resource r (under strategy profile ‡). We can therefore represent
it as a function hr : JnK æ JMKJr , i.e., sIr(‡) = hr(¸r(‡)). For ease of notation we write
sr = sIr in the following.

To discuss rangeIr (E(i,‡i,‡Õ
i)), we need to consider the configuration changes given by

sr(‡) ≠ sr(‡Õ) =
I
hr(¸r(‡)) ≠ hr(¸r(‡Õ)) = hr(¸r(‡)) ≠ hr(¸r(‡) + 1), r œ ‡Õ

i \ ‡i,

hr(¸r(‡)) ≠ hr(¸r(‡Õ)) = hr(¸r(‡)) ≠ hr(¸r(‡) ≠ 1), r œ ‡i \ ‡Õ
i.

The only variable in this expression is therefore the initial load ¸r(‡). In either case, there are
n possible initial loads for each resource9 and therefore also at most n di�erence-vectors within
rangeIr(E(i,‡i,‡Õ

i)); thus µ Æ n. In the following, we will discuss the actual configuration
di�erence structure for each model and whether we can improve µ over this basic bound.

8 We will use standard notation for the various components and parameters of the game and the CLO
problem, as introduced above in Section 4.

9 Note that although there are n+ 1 di�erent loads 0, . . . , n, a load-increasing resource cannot already
have load n and a decreasing one cannot have 0.
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General. The CLO representation follows a binary model with M = 1 and ‹ = mn:
each resource r corresponds to components sr,j , j = 1, . . . , n (the indices from Ir), with a
value of sr,j = 1 for j Æ ¸r(‡) and sr,j = 0 otherwise. The function hr : JnK ≠æ {0, 1}n
is thus given by

(hr(¸))j = [j Æ ¸] , for all j œ [n].

In particular, the vectors ” œ rangeIr(E(i,‡i,‡Õ
i)) are a result of moving the rightmost

entry with value 1 within the vector sr to the next larger or smaller load in the configura-
tion, i.e. they are given by: ”¸r(‡)+1 = ≠1 for r œ ‡Õ

i \ ‡i; ”¸r(‡) = +1 for r œ ‡i \ ‡Õ
i; and

zeroes elsewhere. Since there are n many such vectors for every resource r, we cannot
improve over µ = n.
In this case, thus, Theorem 2 yields an expected running time of at most

3 · nBnk(k ≠ 1) · (mn)2 · „ = O
!
nB+3k2m2„

"
.

Polynomial games. For this model, each (cost-part) configuration component sr,j is given
by accumulated monomials Sj(¸r(‡)), for degrees j = 0, 1, . . . , dr. Thus, ‹ = m(d+ 1),
and also M = nd+1, in order to capture all possible values of these functions. Therefore
we now get hr : JnK ≠æ Jnd+1Kdr+1 with

hr(¸) = (S0(¸), . . . ,Sdr (¸))

for the configuration component of Ir. Again, we cannot do better than the basic bound,
so we use µ = n.
Similarly to the previous case for general latency functions, using Theorem 2 we can
bound the expected number of better-response iterations by

3 · nBnk(k ≠ 1) · (m(d+ 1))2nd+1 log(nd+1) · „ = O
!
nB+d+2 log(n)(d+ 1)3k2m2„

"
.

Step-function games. The configuration mapping is now given by

sr,j = max (0, ¸r(‡) ≠ Br(j) + 1)

and M = n, ‹ = m · d. Therefore, the (cost-part) configuration components of a resource
r are represented by the function hr : JnK ≠æ JnKdr given by

hr(¸) = (max(0, ¸ ≠ Br(1) + 1), . . . ,max(0, ¸ ≠ Br(dr) + 1)) .

In this case, we can do even better than the basic µ = n bound. We investigate the
structure of the di�erences with respect to each coordinate j œ Jr, for an increase in the
load of a resource r, i.e. for r œ ‡Õ

i \ ‡i (the decreasing case follows analogously):

(hr(¸) ≠ hr(¸ + 1))j = max (0, ¸ ≠ Br(j) + 1) ≠ max (0, (¸ + 1) ≠ Br(j) + 1)

=

Y
__]

__[

0 ≠ 0 = 0, if ¸ < Br(j) ≠ 1,
≠ ((¸ + 1) ≠ Br(j) + 1 ≠ 0) = ≠1, if ¸ = Br(j) ≠ 1,
(¸ ≠ Br(j) + 1) ≠ ((¸ + 1) ≠ Br(j) + 1) = ≠1, if ¸ > Br(j) ≠ 1.

Because the jump points Br(j) are ordered increasingly with respect to j, the resulting
vectors hr(¸) ≠ hr(¸ + 1) are of the form (≠1, . . . ,≠1, 0, . . . , 0), including the zero vector.
Therefore, with respect to the coordinate cluster Ir, there are at most dr + 1 possible
distinct vectors for the (cost-part) configuration di�erences, and we choose µ = maxr dr +
1 = d+ 1. By Theorem 2 we can thus bound the expected number of iterations by

3 · (d+ 1)Bnk(k ≠ 1) · (m · d)2n log(n) · „ = O
!
(d+ 1)B+2n2 log(n)k2m2„

"
. J
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An immediate corollary of Theorem 6 is that, when congestion games are su�ciently
restrained, PNE can be found e�ciently via better-response dynamics. In what follows, by a
constantly- and polylogarithmically-restrained congestion game we mean a B-restrained game
with B œ O (1) and B œ O (logc N) for some constant c > 0, respectively, where N is the
size of the input.

I Corollary 7. Better-response dynamics terminate in polynomial smoothed time for the

class of constantly-restrained congestion games, and in quasipolynomial smoothed time for

polylogarithmically-restrained games, under any cost model. Under the step-function cost

model, in O (logN)-restrained congestion games with a constant number of steps d, better-
response dynamics terminate in polynomial smoothed time.

We now show that the class of constantly-restrained congestion games, for which Co-
rollary 7 provides e�cient smooth running time, constitutes a computationally meaningful
restriction of arbitrary congestion games, since they can still encode the PLS-completeness of
the original problem. The hardness is a straightforward adaptation of that in [19], and so
the proof of Theorem 8 is deferred to [12, Appendix B] for completeness. It makes use of the
fact that LocalMaxCut is PLS-complete even for constant-degree graphs.

I Theorem 8. The problem of computing a PNE of a constantly-restrained congestion game

is PLS-complete, for all the input models described in Section 4 (namely general, polynomial,

or step-function cost representations).

In addition to the conditional intractability that PLS-hardness implies for these families of
congestion games, we show an unconditional lower bound on the worst-case running time of
the standard local search algorithm of the problem. We do this by using the notion of a tight

PLS-reduction, as discussed in Section 2. Since we reduce from the problem LocalMaxCut-

d for d Ø 5 (defined in [12, Appendix B]), which admits a configuration starting from which
the standard local search algorithm needs exponentially many iterations (see discussion after
proof of [12, Theorem 5.10]), our tight PLS-reduction implies that standard local search of
our families of congestion games – under any pivoting rule – takes exponential time in the
worst case.

4.3 Network Congestion Games

An interesting, and very well studied, variation on the vanilla representation model for
congestion games (which we presented at the start of Section 4 above) is that of network
congestion games. In such games, the strategy sets �i of the players are not given explicitly
in the input, but implicitly via an underlying directed graph G whose edges constitute the
resources of the game. More precisely, for each player i we are given an origin oi and a
destination di node of G. Then, �i is defined (implicitly) as the set of all (simple) oi æ di
paths in G. Importantly, this means that now players may have exponentially many strategies
available to them.

A critical implication is that �i cannot be searched exhaustively for better-responses.
However, a better-response can still be found e�ciently: keeping all other players fixed, a
minimum-cost strategy of player i is a shortest path on graph G with edge costs equal to the
cost cr (¸r(‡≠i) + 1) of an edge/resource r when used by player i. This means that actually a
polynomial-time best-response oracle does exist. This immediately places network congestion
games in the complexity class PLS (since neighbourhoods can be searched e�ciently for a
local cost improvement; see our discussion in Section 2) and thus it constitutes a valid CLO
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problem (via a similar interpretation as we did for general congestion games in Section 4.1).
To emphasize this, we will refer to these “canonical” best-response dynamics of network
congestion games as shortest-path dynamics.

Finding PNE of network congestion games remains a PLS-complete problem [2]. Given
the prominence of these games, both in the theoretical and applied literature, in this section
we want to identify conditions under which network congestion games inherit the desirable
properties of their general counterparts that allow them to be tractable under smoothed
analysis. More precisely, can our positive result from Theorem 6 be applied to network
congestion games in a straightforward way? And which structural parameters are now
relevant for the running time bound? At the same time, the network congestion game
instances that allow for e�cient smoothed solutions should still be interesting enough to
remain PLS-hard under traditional worst-case analysis. We introduce the following family of
network congestion games that are defined by two parameters.

I Definition 9 (Compact Network Congestion Games). For A,B positive integers, a network

congestion game is called (A,B)-compact if (a) each player has at most A di�erent best-

response strategies, and (b) all such strategies are paths of length at most B. Formally, there

exist strategy sets �ú
i ™ �i, such that:

(a) |�ú
i | Æ A for all i œ N and argmin‡iœ�i

Ci(‡i,‡≠i) ™ �ú
i for all i œ N ,‡≠i œ �≠i, and

(b) |‡i| Æ B for all i œ N ,‡i œ �ú
i .

Property (b) above will serve the purpose of imposing the restraint condition (see Defini-
tion 5) needed to deploy Theorem 6. Property (a) will help us constrain the exponentiality of
the strategy space of network games, in order to be able to handle them using tools designed
for general games. Intuitively, this property can be related to classical vehicle routing settings
in which players can a priori exclude unreasonable detours or paths that involve a road with
a construction site with large delay. Both properties are illuminated within the proof of our
following positive result for network congestion games.

I Theorem 10. Consider an (A,B)-compact n-player network congestion game, under

any of the smoothed-analysis models described in Section 4 (namely general, polynomial, or

step-function latencies), with maximum density parameter „. Then, performing shortest-path

dynamics, starting from an arbitrary strategy profile, converges to a PNE of the game in an

expected number of iterations that is polynomial in „, (d+ 1)B, A, and the description of the

game, where the parameter d depends on the cost function representation. In particular: for

general latencies, (d+ 1) can be replaced by n; for polynomial latencies, d is the maximum

degree; and for step-functions, d is the maximum number of break-points.

An immediate consequence of Theorem 10 is that (analogously to Corollary 7 for general
congestion games) in (A,B)-compact network games with su�ciently small parameters A,B,
a PNE can be found e�ciently under smoothness.

I Corollary 11. Let N be the size of the input, and A be a polynomial in N . Shortest-path

dynamics on (A,B)-compact network congestion games under any cost model terminate in

polynomial smoothed time when B œ O (1) and in quasipolynomial smoothed time when

B œ O (logc N) for some constant c > 0. Under the step-function cost model, when A is

a polynomial in N , B œ O (logN), and the number of steps d is constant, shortest-path

dynamics terminate in polynomial smoothed time.

The following hardness result establishes that such games, even for A,B œ O (1), are
PLS-hard. The proof is deferred to [12, Appendix C]. It is based on the reduction constructed
by Ackermann, Röglin, and Vöcking [2], with special care taken in order to incorporate
constant-length paths that can be established by making use of the fact that LocalMaxCut

is PLS-complete even for constant degree graphs.
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I Theorem 12. The problem of computing a PNE of an (A,B)-compact network congestion

game is PLS-complete, even for A,B œ O (1), for all the input models described in Section 4

(namely general, polynomial, or step-function latencies).

Similarly to our PLS-hardness reduction of Theorem 8, the above theorem’s PLS-reduction
is tight, in the sense of [23] (see Section 2). The chain of tight PLS-reductions that leads
to Network Congestion Games starts from LocalMaxCut with maximum degree 5, and
includes Congestion Games. As we discuss after the proof of [12, Theorem 5.10], in such
LocalMaxCut instances there is a starting configuration from which all improvement
sequences of standard local search have exponential length in the worst case. Therefore,
shortest-path dynamics on our family of network congestion games – under any pivoting rule
– need exponentially many iterations in the worst case. In contrast, our Theorem 10 and
Corollary 11 show that under smoothness, even for significantly wider instance families that
include these problematic cases, shortest-path dynamics terminate after polynomially many
steps in expectation.
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A Characterization of Complexity in Public Goods
Games
Matan Gilboa �
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Abstract
We complete the characterization of the computational complexity of equilibrium in public goods
games on graphs. In this model, each vertex represents an agent deciding whether to produce a
public good, with utility defined by a “best-response pattern” determining the best response to any
number of productive neighbors. We prove that the equilibrium problem is NP-complete for every
finite non-monotone best-response pattern. This answers the open problem of [Gilboa and Nisan,
2022], and completes the answer to a question raised by [Papadimitriou and Peng, 2021], for all
finite best-response patterns.
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1 Introduction

Public goods games describe scenarios where multiple agents face a decision of whether or
not to produce some “good”, such that producing this good benefits not only themselves,
but also other (though not necessarily all) agents. Typically, we consider the good to be
costly to produce, and therefore an agent might choose not to produce it, depending on
the actions of the agents that a�ect her. This type of social scenarios can be found in
various real-life examples, such as vaccination e�orts (an individual pays some personal cost
for being vaccinated but she and other people in her proximity gain from it) and research
e�orts (a research requires many resources, but the researcher benefits from the results along
with other researchers in similar areas). As is common in the literature, to model this we
use an undirected graph, where each node represents an agent and an edge between two
nodes captures the fact that these nodes directly a�ect one another by their strategy. As in
[4, 6, 7, 9, 10], in our model the utility of an agent is completely determined by the number
of productive neighbors she has, as well as by her own action. We focus on a specific version
of the game which has the following characteristics. Firstly, our strategy space is binary,
i.e. an agent can only choose whether or not to produce the good, rather than choose a
quantity (we call an agent who produces the good a productive agent); secondly, our game
is fully-homogeneous, meaning that all agents share the same utility function and cost of
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73:2 A Characterization of Complexity in Public Goods Games

producing the good; and thirdly, our game is strict, which means that an agent has a single
best response to any number of productive neighbors she might have (i.e. we do not allow
indi�erence between the actions).

The game is formally defined by some fixed cost c of producing the good, and by some
“social” function X(si, ni), which takes into account the boolean strategy of agent i and the
number of productive neighbors she has (marked as si and ni respectively), and outputs
a number representing how much the agent gains. The utility ui of agent i is then given
by the social function X(si, ni), reduced by the cost c if the agent produces the good, i.e.
ui(si, ni) = X(si, ni) ≠ c · si. However, since any number of productive neighbors yields
a unique best response (i.e. the game is strict), we can capture the essence of the utility
function and the cost using what we call (as in [3]), a Best-Response Pattern T : IN æ {0, 1}.
We think of the Best-Response Pattern as a boolean vector in which the kth entry represents
the best response to exactly k productive neighbors. We are interested in the problem of
determining the existence of a non-trivial pure Nash equilibrium in these games, which is
defined as follows.

Equilibrium decision problem in a public goods game. For a fixed Best-Response Pattern
T : IN æ {0, 1}, and with an undirected graph G = (V,E) given as input, determine whether
there exists a pure non-trivial Nash equilibrium of the public goods game defined by T on G,
i.e. an assignment s : V æ {0, 1} that is not all 0, such that for every 1 Æ i Æ |V | we have
that

si = T [
ÿ

jœN(i)

sj ],

where N(i) is the set of neighbors of agent i.
The first Best-Response Pattern for which this problem was studied was the so-called

Best-Shot pattern (where an agent’s best response is to produce the good only if she has no
productive neighbors, namely T = [1, 0, 0, 0, ...]), which was shown in [1] to have a pure Nash
equilibrium in any graph. In [1], they also show algorithmic results for “convex” patterns,
which are monotonically increasing (best response is 1 if you have at least k productive
neighbors). The question of characterizing the complexity of this problem for all possible
patterns was first raised in [7], where they manage to fully answer an equivalent problem
on directed graphs: They show tractability for the All-1 pattern, the infinite alternating
[1, 0, 1, 0, ...] pattern, and all patterns beginning with 0, and NP-completeness for all other
patterns. The open question on undirected graphs was then partially answered in [3],
where an e�cient algorithm is shown for the pattern [1, 1, 0, 0, 0, ...], and NP-completeness is
established for several classes of non-monotone patterns: Those beginning with 0 or 11, or
have a prefix of the form 1, 0, 0, ..., 0, 1, 1. There have been several studies concerning other
versions of this problem as well. In [9], the general version of this problem (where the pattern
is part of the input rather than being fixed) was shown to be NP-complete when removing
the strictness assumption, (i.e. allowing indi�erence between actions, such that both 0 and
1 are best responses in certain cases) 1. In [10], NP-completeness is shown for the general
version of the problem in the heterogeneous public goods game, in which the utility function
varies between agents. In [4], they show NP-completeness of the equilibrium problem when
restricting the equilibrium to have at least k productive agents, or at least some specific
subset of agents. In [6], the parameterized complexity of the equilibrium problem is studied,
for a number of parameters of the graph on which the game is defined.

1 The paper [11] had an earlier version [10] which presented a proof for this case as well, but an error in
the proof was pointed out in [9], who then also provided an alternative proof.
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In [3], two open problems are suggested regarding the two following patterns: T1 =
[1, 1, 1, 0, 0, 0, ...], T2 = [1, 0, 1, 0, 0, 0, ...]. T1 has been recently solved in [5], where they show
that all monotonically decreasing patterns can be viewed as potential games, and thus always
have a pure Nash equilibrium2.

There are various instances where non-monotonic patterns are of interest. For example,
consider work that necessitates collaboration from n agents or a financial e�ort that is
irrelevant if too few agents contribute but if too many do so it becomes redundant from
an agent’s perspective. Our main contribution is completing the characterization of the
equilibrium decision problem for all finite patterns, by showing that for all non-monotone
patterns the problem is NP-complete.

Theorem. For any Best-Response Pattern that is non-monotone and finite (i.e., has a finite
number of entries with value 1), the equilibrium decision problem in a public goods game is
NP-complete (under Turing reductions).

The first step along this way was to prove NP-completeness for the above pattern T2

(which we call the 0-Or-2-Neighbors pattern), namely the second open problem by [3]. An
alternative proof to this specific problem was obtained independently and concurrently in [5].

We note that we only focus on finite patterns, which we believe to be more applicable to
real-life problems that can be modeled by this game. Nonetheless, we find the characterization
of all infinite patterns to be of interest, and this topic remains open, though some initial
results can be found in Corollary 3.9. Another interesting open problem is to obtain a
similar characterization for the non-strict version of the game, where agents are allowed to
be indi�erent between the two possible actions.

The rest of this paper is organized as follows. In Section 2 we introduce the formal model
and some relevant definitions. We then set out to show hardness of all remaining patterns,
dividing them into classes. In Section 3 we present a solution for the open question from
[3], showing hardness of the 0-Or-2-Neighbors Best Response Pattern, and expanding the
result to a larger sub-class of patterns that begin with 1,0,1. In Section 4 we show hardness
of all patterns beginning with 1,0,0 (where we also have a slightly more subtle division into
sub-classes), and in Section 5 we show hardness of all patterns beginning with 1,0,1 that
were not covered in Section 3, thus completing the characterization for all finite patterns.
The outline of this paper is also depicted3 in Figure 1.

2 Model and Definitions

A Public Goods Game (PGG) is defined on an undirected graph G = (V,E), V = {v1, ..., vn},
where each node represents an agent. The strategy space, which is identical for all agents, is
S = {0, 1}, where 1 represents producing the good and 0 represents not producing it. The
utility of node vi (which is assumed to be the same for all agents) is completely determined
by the number of productive neighbors vi has, as well as by vi’s own strategy. Moreover,
our model is restricted to utility functions where an agent always has a single best response
to the strategies of its neighbors, i.e. there is no indi�erence between actions in the game.
Therefore, rather than defining a PGG with an explicit utility function and cost for producing

2 Alternatively, known results about k-Dominating and k-Independent sets (Theorem 19 in [2]) can be
used to prove this.

3 Some patterns which start with 1,0 were solved in [3], though for simplicity we omit them from Figure 1.
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Figure 1 Outline of this paper.

the good, we can simply consider the best response of an agent for any number of productive
agents in its neighborhood. Essentially, this can be modeled as a function T : IN æ {0, 1},
which, as in [3], we represent in the form of a Best Response Pattern:

I Definition 2.1. A Best-Response Pattern (BRP) of a PGG, denoted by T , is an infinite

boolean vector in which the kth entry indicates the best response for each agent vi given that

exactly k neighbors of vi (excluding vi) produce the good:

’k Ø 0 T [k] = best response to k productive neighbors.

I Definition 2.2. Given a Public Goods Game defined on a graph G = (V,E) with respect to

a BRP T , a strategy profile s = (s1, ..., sn) œ Sn
(where si œ {0, 1} represents the strategy of

node vi œ V ) is a pure Nash equilibrium (PNE) if all agents play the best response to the

strategies of their neighbors:

’1 Æ i Æ n si = T [
ÿ

jœN(i)

sj ],

where N(i) = {j : {vi, vj} œ E}. In addition, if there exists 1 Æ i Æ n s.t. si = 1, then s is

called a non-trivial pure Nash equilibrium (NTPNE).

We note that throughout the paper we also use the notation vi = 0 and vi = 1 to indicate
the strategy of some node vi, rather than use si = 0 and si = 1, respectively.

I Definition 2.3. For a fixed BRP T , the non-trivial
4
pure Nash equilibrium decision problem

corresponding to T , denoted by NTPNE(T ), is defined as follows: The input is an undirected

graph G. The output is ’True’ if there exists an NTPNE in the PGG defined on G with

respect to T , and ’False’ otherwise.

4 In this paper, we only study BRPs where the best response for zero productive neighbors is 1, for
which there never exists a trivial all-zero PNE (as these are the only BRPs left to solve). However,
we sometimes reduce from patterns where this is not the case, and therefore include the non-triviality
restriction in our problem definition, in order to correspond with the literature.
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I Definition 2.4. A BRP T is called monotonically increasing (resp. decreasing) if ’k œ IN,

T [k] Æ T [k + 1] (resp. T [k] Ø T [k + 1]).

I Definition 2.5. A BRP T is called finite if it has a finite number of entries with value 1:

÷N œ IN s.t. ’n > N T [n] = 0

As seen in Figure 1, the only patterns for which the equilibrium decision problem remains
open are patterns that begin with 1,0. We divide those into the two following classes of
patterns.

I Definition 2.6. A BRP T is called semi-sharp if:

1. T [0] = 1
2. T [1] = T [2] = 0
i.e. T begins with 1, 0, 0.

I Definition 2.7. A BRP T is called spiked if:

1. T [0] = T [2] = 1
2. T [1] = 0
i.e. T begins with 1, 0, 1.

We note that given any finite BRP T , the NTPNE(T ) problem is in NP, since an
assignment to the nodes can be easily verified as an NTPNE by iterating over the nodes and
checking whether they all play their best response. Therefore, we only prove NP-hardness of
the problems throughout the paper.

3 Hardness of the 0-Or-2-Neighbors Pattern

In this section we show that the equilibrium problem is NP-complete for the 0-Or-2-Neighbors
pattern, and provide some intuition about the problem. This result answers an open question
from [3]. We then expand this to show hardness of a slightly more general class of patterns.
In the 0-Or-2-Neighbors BRP the best response is 1 only to zero or two productive neighbors,
as we now define.

I Definition 3.1. The 0-Or-2-Neighbors Best Response Pattern is defined as follows:

’k œ IN T [k] =
I
1 if k = 0 or k = 2
0 otherwise

i.e.

T = [1, 0, 1, 0, 0, 0, ...].

I Theorem 3.2. Let T be the 0-Or-2 Neighbors BRP. Then NTPNE(T ) is NP-complete.

Before proving the theorem, we wish to provide basic intuition about the 0-Or-2-Neighbors
BRP, by examining several simple graphs. Take for example a simple cycle. Since T [2] = 1
(i.e. best response for two productive neighbors is 1), we have that any simple cycle admits a
pure Nash equilibrium5, assigning 1 to all nodes (see Figure 2). However, looking at a simple
path with n nodes, we see that the all-ones assignment is never a pure Nash equilibrium.

5 In this pattern, any pure Nash equilibrium must also be non-trivial, since T [0] = 1.
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The reason for this is that T [1] = 0 (i.e. best response for one productive neighbors is 0),
and so the two nodes at both ends of the path, having only one productive neighbor, do
not play best response. Nevertheless, any simple path does admit a pure Nash equilibrium.
To see why, let us observe the three smallest paths, of length 2, 3 and 4. Notice that in a
path of length two a PNE is given by the assignment 0,1; in a path of length three a PNE is
given by the assignment 0,1,0; and in a path of length four a PNE is given by the assignment
1,0,0,1. We can use these assignment to achieve a PNE in any simple path: given a simple
path of length n, if n © 0 (mod 3) we use the path of length three as our basis, adding 0,1,0
to it as many times as needed; if n © 1 (mod 3) we use the path of length four as our basis,
adding 0,0,1 to it as many times as needed; and if n © 2 (mod 3) we use the path of length
two as our basis, adding 0,0,1 to it as many times as needed (see example in Figure 3).

Figure 2 PNE in cycles. Figure 3 PNE in paths of lengths 2 and 5.

In contrast to the graphs discussed so far, there are graphs in which a pure Nash
equilibrium doesn’t exist for the 0-Or-2-Neighbors pattern. An example of this can be seen
in a graph composed of four triangles, connected as a chain where each two neighboring
triangles have a single overlapping vertex, as demonstrated in Figure 4. One may verify that
no PNE exists in this graph. This specific structure will also be of use to us during our
proof6.

Figure 4 No PNE exists in this graph.

Having provided some intuition regarding the problem, we move on to prove Theorem
3.2. The reduction is from ONE-IN-THREE 3SAT, which is a well known NP-complete
problem (see [8]). In ONE-IN-THREE 3SAT, the input is a CNF formula with 3 literals
in each clause, and the goal is to determine whether there exists a boolean assignment to
the variables such that in each clause exactly one of the literals is assigned True. We begin
by introducing our Clause Gadget, which is a main component of the proof. Given a CNF
formula, for each of its clauses we construct a 21-nodes Clause Gadget, in which three of the
nodes, denoted l1, l2, l3 (also referred to as the literal nodes) represent the three literals of the
matching clause. The purpose of this gadget is to enforce the property that in any NTPNE,
exactly one literal node in the gadget will be assigned 1, which easily translates to the key
property of a satisfying assignment in the ONE-IN-THREE 3SAT problem. The three literal

6 The Negation Gadget defined throughout the proof of Theorem 3.2 is constructed similarly to the graph
described here.
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Figure 5 Clause Gadget.

nodes are connected to one another, forming a triangle. Additionally, for each i œ {1, 2, 3},
li is connected to two other nodes xi, yi, which are also connected to one another, forming
another triangle. Lastly, xi and yi each form yet another triangle, along with nodes ai, bi
and ci, di respectively. We refer to xi, yi, ai, bi, ci, di as the sub-gadget of li. We note that out
of the nodes of the Clause Gadget, only the literal nodes may be connected to other nodes
outside of their gadget, a property on which we rely throughout the proof. The structure of
the Clause Gadget is demonstrated in Figure 5, where each sub-gadget is colored di�erently.

The next four lemmas lead us to the conclusion that the gadget indeed has the desired
property mentioned above.

I Lemma 3.3. In any NTPNE in a graph G which includes a Clause Gadget cg, if a literal

node li of cg is assigned 1 then so are its two neighbors from its respective sub-gadget, xi, yi.
Furthermore, there exists an assignment to the sub-gadget of li such that all its nodes play

best response.

Proof. Divide into cases.
Case 1: If xi = yi = 0, then if ai ”= bi (meaning only one of them is assigned 1) then xi

would have two productive neighbors and would not be playing its best response. However, if
ai = bi then ai and bi would not be playing their best response, and we reach a contradiction.

Case 2: If xi = 1, yi = 0 (the case where xi = 0, yi = 1 is, of course, symmetric) then xi

must have exactly one more productive neighbor (either ai or bi) in order to be playing best
response. But then that node would not be playing best response, in contradiction.

Case 3: We are left with the option where xi = yi = 1, where it is easy to verify that all
nodes of the sub-gadget of li are playing their best response if we set ai = bi = ci = di = 0. J

I Lemma 3.4. In any NTPNE in a graph G which includes a Clause Gadget cg, if one of the

literal nodes li of cg is assigned 1 then the other two literal nodes of cg must be assigned 0.

Proof. Since li = 1, from Lemma 3.3 we have that xi = yi = 1. Therefore, li has two
productive neighbors and cannot have any more, and so we have that the other two literal
nodes must play 0. J

I Lemma 3.5. In any graph G which includes a Clause Gadget cg, if exactly one of the

literal nodes of cg is assigned 1 then there exists an assignment to the other nodes of cg
such that they all (excluding the literal nodes) play best response. In addition, in any such

assignment, if the literal nodes have no productive neighbors outside cg, then they also play

best response.

ICALP 2024
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Proof. W.l.o.g. assume that l1 = 1, l2 = l3 = 0. Let us observe several details that must
hold in such an assignment. Focusing first on the sub-gadget of l1, according to Lemma 3.3
there exists an assignment the nodes of this sub-gadget such that they all play best response.
Furthermore, Lemma 3.3 tells us that x1 = y1 = 1 (and so l1 has two productive neighbors
within cg). We move on to the sub-gadget of l2. If x2 ”= y2 then l2 would have 2 productive
neighbors and would not be playing its best response. If x2 = y2 = 1 then there is no
assignment to a2, b2 s.t. a2, b2, x2 all play their best response. Therefore x2 = y2 = 0. We are
left only with the option of setting a2 ”= b2 and c2 ”= d2 (for instance a2 = c2 = 1, b2 = d2 = 0).
The sub-gadget of l3 is symmetric to that of l2. One may verify that in this assignment all
nodes of cg excluding the literal nodes indeed play best response, and that if the literal nodes
have no productive neighbors outside cg then they also play best response. J

I Lemma 3.6. In any graph G which includes a Clause Gadget cg, if all three of the literal

nodes of cg are assigned 0, and the literal nodes do not have any productive neighbors outside

of cg, then the assignment is not a PNE.

Proof. Assume by way of contradiction that there exists a PNE where l1 = l2 = l3 = 0, and
all three of them have no productive neighbors outside cg. It must be that the other two
neighbors of l1, x1, y1, are assigned with di�erent values (otherwise l1 is not playing its best
response). W.l.o.g. assume x1 = 1, y1 = 0. Now, if the remaining neighbors of y1 (c1 and
d1) are both assigned with 0 or both assigned with 1, then they themselves would not be
playing their best response. On the other hand, if we assign them with di�erent values then
y1 would not be playing its best response, and so we have reached a contradiction. J

So far, we have seen that in any PNE which includes a Clause Gadget, it must be that
exactly one of the literal nodes of that gadget is assigned with 1, as long as the literal nodes
don’t have productive neighbors outside of their Clause Gadget. As we introduce the external
nodes that will be connected to the literal nodes, we will show that indeed they all must be
assigned 0 in any PNE, and thus a literal node cannot have any productive neighbor outside
of its Clause Gadget, which will finalize the property we were looking to achieve with the
Clause Gadget.

Our next goal is to make sure the translation between solutions from one domain to the
other is always valid. Specifically, we wish to ensure that in any PNE in our constructed
graph, if any two literal nodes represent the same variable in the CNF formula then they
will be assigned the same value, and if they represent a variable and its negation then they
will be assigned opposite values. We begin with the latter, introducing our Negation Gadget.
The goal of the Negation Gadget is to force opposite assignments to two chosen nodes, in
any Nash equilibrium. The Negation Gadget is composed of 9 nodes: five ’bottom’ nodes
b1, b2, b3, b4, b5, and four ’top’ nodes t1, t2, t3, t4, and for each i Æ 4 we create the edges
{bi, bi+1}, {ti, bi} and {ti, bi+1}. It can intuitively be described as four triangles that are
connected as a chain. Say we have two nodes u, v which we want to force to have opposite
assignments, we simply connect them both to node t2 of a Negation Gadget, as demonstrated
in Figure 6.

I Lemma 3.7. In any Nash equilibrium in a graph G which includes two nodes u, v connected

through a Negation Gadget ng, u and v must have di�erent assignments. Moreover, the node

t2 of ng, to which u and v are connected, must be assigned 0. In addition, if indeed u ”= v
and t2 = 0, there exists an assignment to the the nodes of ng such that they all play best

response.

Proof. We first show that u and v must have di�erent assignments, dividing into two cases.
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Case 1: Assume by way of contradiction that u = v = 0. We divide into two sub-cases,
where in the first one t2 = 0; in this case, exactly one of the two remaining neighbors of t2
must be assigned 1 in order for t2 itself to be playing best response. If b2 = 0 then b3 = 1
and so, looking at t1, b1 (the remaining neighbors of b2), we see that any assignment to
them results either in b2 not playing best response, or in t1 not playing best response, in
contradiction. If, however, b3 = 0, then b2 = 1, and so, symmetrically, looking at t3, b4
(the remaining neighbors of b3) we see that any assignment to them results either in b3 not
playing best response, or in t3 not playing best response, in contradiction. In the second
sub-case, where t2 = 1, we have that its two remaining neighbors must be assigned the same
value in order for t2 itself to be playing best response. If b2 = b3 = 0 then again there is no
assignment to b1, t1 s.t. all of b1, t1, b2 play best response, and if b2 = b3 = 1 then one may
verify that there is no assignment to t3, t4, b4, b5 s.t. all of t3, t4, b3, b4, b5 play best response,
and so we reach a contradiction.

Case 2: Assume u = v = 1. Then we again divide into sub-cases according to t2’s assignment.
If t2 = 0, it must have at least one more productive neighbor in order to play best response.
The assignments where b2 = b3 = 1 or b2 = 0, b3 = 1 are easily disqualified, seeing as there
is no assignment to t1, b1 s.t. t1, b1, b2 all play best response. If b2 = 1, b3 = 0 then it must
hold that t3 = b4 in order for b3 to play best response, but this would mean that t3 is not
playing best response, in contradiction. If t2 = 1, then its two remaining neighbors b2, b3
must be set to 0 in order for it to play best response, and then there is no assignment to
b1, t1 s.t. all of t1, b1, b2 play best response, in contradiction.

And so it cannot be that u = v. We move on to show that t2 must play 0. Assume by
way of contradiction that t2 = 1. Then, seeing as exactly one of u, v is productive, t2 must
have exactly one more productive neighbor in order to play best response. If b2 = 1, b3 = 0
we reach a contradiction as there is no assignment to t1, b1 s.t. t1, b1, b2 all play best response.
If b2 = 0, b3 = 1 we reach a contradiction as there is no assignment to t3, t4, b4, b5 s.t. all
of t3, t4, b3, b4, b5 play best response. Lastly, one may verify that in the assignment where
t1 = b4 = 1, b1 = b2 = b3 = b5 = t2 = t3 = t4 = 0 all nodes of the gadget play best
response. J

Now, for each variable that appears in the CNF formula, we choose one instance of it and
one instance of its negation7 and connect the literal nodes representing these instances via a
Negation Gadget, thus ensuring they are assigned opposite values in any PNE, according to
Lemma 3.7. We note that this is not the only place where we use this gadget, as we will see
shortly.

We move on to introduce our Copy Gadget, which we will use to force literal nodes which
represent the same variable to have the same assignment in any PNE. The Copy Gadget
is composed of two negation gadgets ng1, ng2, and two additional nodes x, y which have an
edge between them. Say we have two nodes u, v which we want to force to have the same
assignment in any PNE, then we simply connect u and x to ng1, and we connect v and x to
ng2. The gadget is demonstrated in Figure 7.

I Lemma 3.8. In any Nash equilibrium in a graph G which includes two nodes u, v connected

through a Copy Gadget cpg, u, v must have the same assignment, and must have no productive

neighbors from cpg. In addition, if u = v then there exists an assignment to the nodes of cpg
s.t. all of them play best response.

7 We will soon ensure that instances of the same variable would get the same assignment in any PNE,
and thus it is su�cient to negate the assignments of only one instance of a variable and its negation.

ICALP 2024



73:10 A Characterization of Complexity in Public Goods Games

Figure 6 Negation Gadget connecting u and v. Figure 7 Copy Gadget connecting u and v.

Proof. We first show that u and v must have the same assignment. This follows directly
from the fact that x is connected to both u and v via a Negation Gadget. Therefore, from
Lemma 3.7 we have that x ”= u and x ”= v, and so u = v. Lemma 3.7 also tells us that the
Negation Gadget cannot add productive neighbors to the nodes that are connected to it in
any PNE, and therefore u and v have no productive neighbors from cpg. Lastly, we show
that there exists an assignment to the nodes of cpg s.t. they all play best response. From
Lemma 3.7 x cannot have any productive neighbors from ng1 or ng2. Therefore, if u = v = 0
then we can assign x = 1, y = 0, and if u = v = 1 then we can assign x = 0, y = 1. In both
cases, we assign ng1 and ng2 as suggested in the proof of Lemma 3.7. One may verify that
in this assignment indeed all nodes of cpg play best response. J

Now, for each variable in the CNF formula, we connect all the literal nodes representing
its di�erent instances via a chain of copy gadgets, thus (transitively) ensuring they are all
assigned the same value in any PNE, according to Lemma 3.8.

Given these lemmas and the graph we constructed, we can now prove Theorem 3.2.

Proof. (Theorem 3.2) Given a ONE-IN-THREE 3SAT instance, we construct a graph G
as described previously8: For each clause we create a Clause Gadget, we connect all literal
nodes representing the same variable through a chain of Copy Gadgets, and for each variable
we choose one instance of it and one instance of its negation, and connect the literal nodes
representing those instances with a Negation Gadget. If there exists a satisfying assignment
to the 3SAT problem, we can set all literal nodes according to the assignment of their
matching variable, and set all other nodes as described throughout Lemmas 3.5, 3.7 and 3.8,
and according to those lemmas, we get a pure Nash equilibrium. On the opposite direction,
if there exists a non-trivial pure Nash equilibrium, then by Lemmas 3.4 and 3.6 in each
Clause Gadget exactly one literal node is assigned 1, and by Lemmas 3.7 and 3.8 we have
that literal nodes have the same assignment if they represent the same variable, and opposite
ones if they represent a variable and its negation. Thus we can translate the NTPNE into
a satisfying ONE-IN-THREE 3SAT assignment, assigning ’True’ to variables whose literal
nodes are set to 1, and ’False’ otherwise. J

8 Note that we do not need to explicitly represent the conjunction between the clauses: It is given to us
implicitly by the fact that each Clause Gadget must independently satisfy the 1-In-3 property in any
Nash equilibrium.
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We now wish to expand this result to two slightly more general classes of patterns. Firstly,
we notice that the graph constructed throughout the proof of Theorem 3.2 is bounded9 by a
maximum degree of 6. Therefore, the proof is indi�erent to entries of the pattern from index
7 onward, which means it holds for any pattern that agrees with the first 7 entries of the
0-Or-2-Neighbors pattern.

I Corollary 3.9. Let T be a BRP such that:

T [0] = T [2] = 1
’k œ {1, 3, 4, 5, 6} T [k] = 0

Then NTPNE(T ) is NP-complete.

Secondly, according to Theorem 7 in [3], adding 1,0 at the beginning of a hard pattern
that begins with 1 yields yet another hard pattern. Using this theorem recursively on the
patterns of Corollary 3.9, we have that the equilibrium decision problem is hard for any
pattern of the form:

T = [1, 0, 1, 0, 1, 0, ..., 1, 0¸ ˚˙ ˝
finite number of Õ1,0Õ

, 0, 0, 0, ?, ?, ...].

I Corollary 3.10. Fix m Ø 1, and let T be a BRP such that:

’0 Æ k Æ m

1. T [2k] = 1
2. T [2k + 1] = 0
T [2m+ 2] = T [2m+ 3] = T [2m+ 4] = 0

Then NTPNE(T ) is NP-complete.

We will see later on that this result will also be of use during the proof of Theorem 5.1.
There is one very similar class of patterns on which the proofs throughout the paper rely.

This is the class of all finite patterns that start with a finite number of 1,0, followed by 1,1,
i.e. all patterns of the form:

T = [1, 0, 1, 0, 1, 0, ..., 1, 0¸ ˚˙ ˝
finite number of Õ1,0Õ

, 1, 1, ?, ?, ..., 0, 0, ...].

The complexity of those patterns was already discussed and solved in Section 5.4 of [3], but
was not formalized and so we state it here in the following lemma.

I Lemma 3.11. Fix m Ø 2, and let T be a BRP s.t.:

T is finite

’k œ IN s.t. 2k Æ m T [2k] = 1
T [1] = 0
÷1 Æ n where 2n+ 1 Æ m+ 1, s.t. T [2n+ 1] = 1

Then NTPNE(T ) is NP-complete under Turing reduction.

Proof. The proof follows directly from Theorems 6 and 7 from [3]. J

9 A literal node is connected to 4 nodes within its clause gadget, and possibly 2 nodes from copy gadgets
or 1 node from a negation gadget and 1 node from a copy gadget (assuming we connect the negation
gadgets at the end of their respective Copy-Gadget-chains).
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4 Hardness of Semi-Sharp Patterns

In this section we show hardness of semi-sharp Best-Response Patterns, beginning with a
specific sub-class of those patterns in Section 4.1, and expanding to all other semi-sharp
patterns in Section 4.2. We remind the reader that semi-sharp patterns are patterns that
begin with 1,0,0.

4.1 Semi-Sharp Patterns with Isolated Odd 1
In this section we show that any finite, semi-sharp pattern such that there exists some
“isolated” 1 (namely it has a zero right before and after it) at an odd index, presents a hard
equilibrium decision problem. Those patterns can be summarized by the following form:

T = [1, 0, 0, ?, ?, ..., 0, 1¸˚˙˝
odd index

, 0, ?, ?, ..., 0, 0, 0, ...]

I Theorem 4.1. Let T be a BRP which satisfies the following conditions:

T is finite

T is semi-sharp

÷m Ø 1 s.t.:

1. T [2m] = T [2m+ 2] = 0
2. T [2m+ 1] = 1

Then NTPNE(T ) is NP-complete under Turing reduction.

Before we proceed to the proof, we introduce two gadgets and prove two lemmas regarding
their functionality.

Force-1-Gadget. The first gadget is denoted the Force-1-Gadget, and it will appear in
several parts of the graph we construct for the reduction. The goal of this gadget is to
enable us to force any node to be assigned 1 in any Nash equilibrium in a PGG defined by T .
This gadget is composed primarily of a triangle x, y, z, where the triangle’s nodes have also
several ’Antenna’ nodes, which are connected only to their respective node from the triangle.
Specifically, x will have 2m + 1 Antenna nodes, and y and z will each have 2m Antenna
nodes. Say we have some node u, whose assignment we wish to force to be 1, then we simply
connect u to one of the Antenna nodes of x, denoted a. The gadget is demonstrated in
Figure 8.

Add-1-Gadget. our second gadget of this proof is denoted the Add-1-Gadget, and its goal
is to enable us to assure the existence of (at least) a single productive neighbor to any node
in a Nash equilibrium of a PGG defined by T . Say we have a node v, to which we wish to
add a single productive neighbor, in any equilibrium. We construct the Add-1-Gadget as
follows. We create m+1 nodes denoted x1, ..., xm+1, m+1 nodes denoted y1, ...ym+1, and an
additional ’bridge’ node, denoted b. We connect x1 and y1 to all of the other xi and yi nodes.
For all i, j Ø 2 s.t. i ”= j, we create the edges {xi, xj}, {yi, yj}, {xi, yj} (the xi, yi nodes
almost form a clique, except that for each i Ø 2 we omit the edge {xi, yi}). Additionally, for
all i Ø 2 the bridge node b is connected to xi and to yi. To b we attach a Force-1-Gadget,
and we also connect b to v. The gadget is demonstrated in Figure 9.

The following lemmas formalize the functionality of the two gadgets, beginning with the
Force-1-Gadget in Lemma 4.2.
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Figure 8 Force-1-Gadget with m = 2, attached
to u.

Figure 9 Add-1-Gadget with m = 2, attached
to v.

I Lemma 4.2. In any PNE in a graph G corresponding to the BRP T (from Theorem 4.1),

where G has a node u that is connected to a Force-1-Gadget fg as described, u must be

assigned 1, and its neighbor from fg, a, must be assigned 0.
10

Furthermore, if u = 1 there

exists an assignment to the nodes of fg such that they each play their best response.

Proof. First we show that u must be assigned 1. Assume by way of contradiction that u = 0.
Divide into the following two cases. If x = 1, then all of its Antenna nodes must be assigned
0 (according to T ). Additionally, y and z must also be assigned 0, as otherwise x wouldn’t
be playing best response, since T is semi-sharp. Therefore, the best response of all of the
Antenna nodes of y and z is to play 1, which leaves y and z with 2m+1 productive neighbors
each, and so they are not playing best response, in contradiction. If x = 0, then all of its
Antenna nodes must play 1. Therefore, x must have at least one other productive neighbor, as
otherwise it would have 2m+ 1 productive neighbors and wouldn’t be playing best response;
w.l.o.g. assume y = 1. Then all of y’s Antenna nodes must play 0. Therefore, z must play
0, as otherwise y wouldn’t be playing best response. This means the best response for z’s
Antenna nodes is to play 1, which leaves z with 2m+ 1 productive neighbors, and so it isn’t
playing best response, in contradiction. We move on to showing that a must play 0. This
follows directly from the fact that u = 1. Since a only has one other neighbor (x), regardless
of its strategy the best response for a, according to T , would be playing 0. It is left to show
that when u = 1 and a = 0, there exists an assignment to the nodes of fg s.t. they all play
best response. One may verify that when we set x = y = z = 0 and set all the Antenna
nodes in fg (except for a) to 1, then all nodes of fg play best response (specifically, x, y, z
would each have exactly 2m productive neighbors, which, by definition of T , means they are
playing best response). J

We move on to proving the following Lemma, which formalizes the functionality of the
Add-1-Gadget.

I Lemma 4.3. In any graph G corresponding to the BRP T (from Theorem 4.1), where G
has a node v that is connected to an Add-1-Gadget ag as described, there always exists an

assignment to the nodes of ag such that they all play best response, regardless of v’s strategy.

In addition, the bridge node b of ag must be assigned 1 in such an assignment.

10The property that a = 0 allows us to use the Force-1-Gadget without risking potentially adding
productive neighbors to the respective node.
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Proof. The claim that b must play 1 follows directly from the fact that it has a Force-1-
Gadget attached to it, i.e. from Lemma 4.2. Additionally, all the nodes of the Force-1-Gadget
attached to b can be assigned as suggested in Lemma 4.2. It is left to show a possible
assignment to the rest of the nodes of ag. We divide into cases. If v = 0, then we set x1 = 1
and all other xi, yi nodes we set to 0. If v = 1, then we set xi = yi = 1 for all 1 Æ i Æ m+ 1.
One may verify that given these assignments all nodes of ag play their best response. J

Given these two gadgets, we are almost ready to prove Theorem 4.1. We now introduce a
useful definition, and then proceed to the proof of the theorem.

I Definition 4.4. Let T and T Õ
be two BRPs. We say that T Õ

is shifted left by t from T if

’k Ø 0 T Õ[k] = T [k + t].

Proof. (Theorem 4.1) Denote by T Õ the pattern which is shifted left by 1 from T , i.e.:

’k Ø 0 T Õ[k] = T [k + 1].

Notice that T Õ is non-monotonic, finite, and begins with 0, and therefore NTPNE(T Õ) is
NP-complete according to Theorem 4 in [3], which allows us to construct a Turing reduction
from it. The technique of the reduction is very similar to those of the proofs of Theorems
5 and 6 in [3]. Given any graph G = (V,E), where V = v1, ..., vn, we construct n graphs
G1, ..., Gn, where for each 1 Æ i Æ n the graph Gi is defined as follows. The graph Gi

contains the original input graph G, and in addition, we connect a unique Add-1-Gadget
to each of the original nodes, and a Force-1-Gadget only to node vi. If there exists some
non-trivial PNE in the PGG defined on G by T Õ, let vj be some node who plays 1. Then the
same NTPNE is also an NTPNE in the PGG defined by T on Gj , when we assign the nodes
of the additional gadget as suggested in Lemmas 4.2 and 4.3. To see why, notice that T Õ

is shifted left by 1 from T , and the Add-1-Gadgets ensure that all nodes have exactly one
additional productive neighbor than they had in G.

In the other direction, if there exists an NTPNE in a PGG defined by T on one of
the graphs Gj , then by the same logic this is also a PNE in the game defined by T Õ on G
(ignoring the assignments of the added nodes). Moreover, the Force-1-Gadget ensures this
assignment is non-trivial even after removing the added nodes, since vj must play 1 in this
assignment. J

4.2 All Semi-Sharp Patterns
In this section we show that any finite, non-monotone, semi-sharp pattern presents a hard
equilibrium problem.

I Theorem 4.5. Let T1 be a finite, non-monotone, semi-sharp BRP. Then NTPNE(T1) is

NP-complete under Turing reduction.

Before proceeding to the proof, we wish to introduce the following definition and prove
two lemmas related to it.

I Definition 4.6. Let T and T Õ
be two BRPs such that ’k œ IN it holds that T [k] = T Õ[2k].

Then we say that T Õ
is a double-pattern of T , and T is the half-pattern of T Õ

. Notice that a

pattern has a unique half-pattern, whereas, since the definition does not restrict T Õ
in the

odd indices, any pattern has infinite double-patterns.

The first lemma is very simple and intuitive, stating that the largest index with value 1
in a half pattern is strictly smaller than the largest index with value 1 in its original pattern.
This is true since for any index i s.t. the value of the half pattern is 1 in that index, the
original pattern has a value of 1 in index 2i.
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I Lemma 4.7. Let T and T Õ
be two finite BRPs such that T is the half-pattern of T Õ

. Denote

by i the largest index s.t. T [i] = 1 and denote by j the largest index s.t. T Õ[j] = 1. Then if

j > 0 we have that i < j.

Proof. The proof is trivially given by the definition of a half pattern, since T Õ[2i] = T [i]. J

The next lemma is less trivial, stating the relation between hardness of a pattern and its
double-pattern.

I Lemma 4.8. Let T be a BRP such that NTPNE(T ) is NP-complete, and let T Õ
be a

double-pattern of T . Then NTPNE(T Õ
) is NP-complete.

Proof. We use a specific case of the same reduction that was used to prove Theorem 4 in
[3]. Given a graph G1 = (V1, E1) as input, where V1 = v1

1
, ..., v1n, we create another replica

of it G2 = (V2, E2), where V2 = v2
1
, ..., v2n. For each node (from both graphs), we add edges

connecting it to all replicas of its neighbors from the opposite graph. That is, the following
group of edges is added to the graph:

E = {{v1i , v2j }|{v1i , v1j } œ E1}.

A demonstration of the reduction can be seen in Figure 10.

Figure 10 Example of the reduction of Lemma 4.8’s proof.

Denote by P the PGG defined on G1 by T , and by P Õ the PGG defined by T Õ on
GÕ = (V Õ, EÕ) where V Õ = V1 fiV2, EÕ = E fiE1 fiE2. We show that there exists an NTPNE
in P i� there exists one in P Õ. If there exists an NTPNE in P , we simply give the nodes of
G2 the same assignment as those of G1. Since T Õ is a double pattern of T , any node vÕ œ V Õ

must play best response, having exactly twice as many supporting neighbors than it had (or
its replica had) in P . In addition, this assignment is clearly non-trivial as the nodes of G1

have the same (non-trivial) assignment they had in P .
In the opposite direction, if there exists an NTPNE in P Õ, notice that for all 1 Æ i Æ n it

must be that v1i and v2i have identical assignments, since they both share exactly the same
neighbors, and thus have identical best responses. Therefore, any node vÕ œ V must have
an even number of productive neighbors, half of which are in V1 and the other half in V2

(as for each productive neighbor from V1 there is a respective productive neighbor from V2).
We then simply ignore G2, and leave the assignment of G1 as it is, and each node shall now
have exactly half as many productive neighbors as it had in the original assignment. Since T
is a half pattern of T Õ, we get a PNE in P . Furthermore, the symmetry between matching
nodes from G1 and G2 ensures that at least one node from G1 was originally assigned 1, and
so the constructed PNE in P Õ is also non-trivial. J
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Given Lemmas 4.7 and 4.8, we are now able to prove Theorem 4.5. The intuitive idea
of the proof is that we halve the pattern T1 (i.e. find its half-pattern) repeatedly, until
eventually we reach some pattern for which we already know the equilibrium problem is hard,
which, as we will see, must happen at some point. Then, by applying Lemma 4.8 recursively,
we have that T1 is hard.

Proof of Theorem 4.5. From Lemma 4.7 we have that if we halve a pattern beginning
with 1 enough times, we will eventually reach the Best-Shot pattern: TBest-Shot[0] = 1 and
’k Ø 1 TBest-Shot[k] = 0. Divide into two cases.

In the first case assume that ’k œ IN it holds that T1[2k] = 0. In this case, we know
that no matter how many times we halve T1 into patterns T2, T3, ..., the value in index 1
of all these half-patterns will always be 0, i.e. Ti[1] = 0 for all i. Assume that we halve T1

repeatedly into patterns T2, T3, ..., Tm (where Ti is the half pattern of Ti≠1) such that Tm

is the first time that we reach the Best-Shot pattern. Observe Tm≠1. For any even index
k ”= 0 it must hold that Tm≠1[k] = 0, otherwise Tm would not be the Best-Shot pattern.
Additionally, there must exist at least one odd index j s.t. Tm≠1[j] = 1, since Tm is the first

time we reach the Best-Shot pattern. For these two reasons, we have that Tm≠1 satisfies
the conditions of Theorem 4.1 and therefore NTPNE(Tm≠1) is NP-complete under Turing
reduction. From Lemma 4.8 (used inductively), we have that ’1 Æ i Æ m ≠ 2 NTPNE(Ti) is
also NP-complete under Turing reduction, and specifically NTPNE(T1).

In the second case, assume that there exists some k œ IN s.t. T1[2k] = 1. In that
case, after at most k halvings, we reach some pattern for which the value of index 1 is
1. Assume that we halve T1 repeatedly into patterns T2, T3, ..., Tn (where Ti is the half
pattern of Ti≠1) such that Tn is the first time that we reach a pattern for which index 1 is
1, i.e. ’1 Æ i Æ n ≠ 1 Ti[1] = 0 and Tn[1] = 1. Notice that, additionally, by definition of
a half-pattern for each i it holds that Ti[0] = 1 (since T1[0] = 1). If Tn is non-monotone,
then by Theorem 5 in [3] we have that NTPNE(Tn) is NP-complete under Turing reduction,
and from Lemma 4.8 (used inductively), we have that ’1 Æ i Æ n ≠ 1 NTPNE(Ti) is also
NP-complete under Turing reduction, and specifically NTPNE(T1). Otherwise (i.e. Tn is
monotone), denote by l the largest index s.t. Tn[l] = 1, and observe Tn≠1. By definition of
double-patterns, we have that:

’j œ IN Tn≠1[2j] =
I
1 if j Æ l

0 otherwise

i.e. the value in the even indices up to 2l is 1, and afterwards 0. Since Tn is defined to be
the first halving of T1 s.t. its value in index 1 is 1, we have that Tn≠1[1] = 0. However, since
the definition of a double-pattern does not restrict its values in odd indices, there might be
odd indices (strictly larger than 1) for which the value of Tn≠1 is 1. Divide into 3 sub-cases:

Sub-case 1: If there exists some z Æ l s.t. Tn≠1[2z + 1] = 1, then by Lemma 3.11, we have
that NTPNE(Tn≠1) is NP-complete under Turing reduction.

Sub-case 2: Otherwise, if there exists some z > l s.t. Tn≠1[2z + 1] = 1, then observe the
pattern T Õ

n≠1
, which we define as the pattern shifted left by 2l from Tn≠1 i.e.:

’j œ IN T Õ
n≠1

[j] = Tn≠1[j + 2l]

Notice that this pattern satisfies the conditions of Theorem 4.1, and therefore NTPNE(T Õ
n≠1

)
is NP-complete under Turing reduction. Then, by applying Theorem 7 from [3] l times, we
have that NTPNE(Tn≠1) is also NP-complete under Turing reduction.
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Sub-case 3: Otherwise (i.e. there is no odd index whatsoever in which the value of Tn≠1

is 1), then by Corollary 3.10 we have that NTPNE(Tn≠1) is NP-complete under Turing
reduction.

And so, in either case we have that NTPNE(Tn≠1) is NP-complete under Turing reduction,
and therefore from Lemma 4.8 (used inductively), we have that ’1 Æ i Æ n ≠ 1 NTPNE(Ti)
is also NP-complete under Turing reduction, and specifically NTPNE(T1). J

5 Hardness of All Spiked Patterns

There are several finite, spiked patterns that we have not yet proved hardness for, and we now
have enough tools to close the remaining gaps. We remind the reader that spiked patterns
are patterns that begin with 1,0,1. The following theorem formalizes the result of this section,
and completes the characterization of all finite patterns.

I Theorem 5.1. Let T be a finite, spiked BRP. Then NTPNE(T ) is NP-complete under

Turing reduction.

The intuitive idea of the proof is as follows. If the pattern simply alternates between 1
and 0 a finite amount of times (and at least twice, since the pattern is spiked), followed by
infinite 0’s, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0¸ ˚˙ ˝
finite number of Õ1,0Õ

, 0, 0, 0, ...]

then the problem11 is already shown to be hard by Corollary 3.10. Otherwise, we wish to
look at the first “disturbance” where this pattern stops alternating from 1 to 0 regularly.
Either the first “disturbance” is a 1 at an odd index, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0¸ ˚˙ ˝
finite number of Õ1,0Õ

, 1, 1, ?, ?, ...]

or the first “disturbance” is a 0 at an even index, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0¸ ˚˙ ˝
finite number of Õ1,0Õ

, 0, ?, ?, ..., 1, ?, ?, ...]

(in the latter option, after the first “disturbance” there must be some other index with value
1, since otherwise the pattern fits the form of Corollary 3.10). The first option was solved in
Lemma 3.11, and the second option can be solved using our previous results, as we shall now
formalize in the proof.

Proof of Theorem 4.5. If T satisfies the conditions of Corollary 3.10 or Lemma 3.11 then
NTPNE(T ) is NP-complete under Turing reduction according to them. Otherwise, let k be
the smallest integer such that T [2k] = 0. Denote by T Õ the pattern which is shifted left by
2k ≠ 2 from T , i.e.:

’j Ø 0 T Õ[j] = T [j + 2k ≠ 2]

11 In fact, Corollary 3.10 gives a more general result, but we currently only need the special case where
the pattern ends with infinite 0’s.
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Notice that from definition of k (being the first even index such that T [2k] = 0) we have
that for all j < k it holds that T [2j] = 1. Moreover, since T does not satisfy the conditions
of Lemma 3.11 it must hold for all j Æ k that T [2j ≠ 1] = 0, i.e. the value of T in the odd
indices until 2k is 0 (since otherwise T would start with a finite number of 1,0, followed by
two consecutive 1’s, and would satisfy the conditions of Lemma 3.11). Thus, we have that

’j < 2k T [j] =
I
1 if j is even
0 if j is odd

(1)

In particular, we have that T [2k ≠ 2] = 1, T [2k ≠ 1] = 0, which implies that T Õ[0] =
1, T Õ[1] = 0; as T [2k] = 0 we have that T Õ[2] = 0, and thus we conclude that T Õ is semi-sharp.
In addition, since T does not satisfy the conditions of Corollary 3.10, there must be some
other index x > 2k such that T [x] = 1, and therefore we have that T Õ is non-monotone.
Therefore, by Theorems 4.1 and 4.5, we have that NTPNE(T Õ) is NP-complete under Turing
reduction. We now wish to use this in order to prove that NTPNE(T ) is also hard.

From Equation 1, we can apply Theorem 7 of [3] (k ≠ 1) times (we remind the reader
that this theorem states that prefixing a hard pattern with 1, 0 maintains its hardness), and
we have that NTPNE(T ) is NP-complete under Turing reduction. J
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Abstract

Relaxed locally decodable codes (RLDCs) are error-correcting codes in which individual bits of the
message can be recovered by querying only a few bits from a noisy codeword. For uncorrupted
codewords, and for every bit, the decoder must decode the bit correctly with high probability.
However, for a noisy codeword, a relaxed local decoder is allowed to output a “rejection” symbol,
indicating that the decoding failed.

We study the power of adaptivity and two-sided error for RLDCs. Our main result is that
if the underlying code is linear, adaptivity and two-sided error do not give any power to relaxed

local decoding. We construct a reduction from adaptive, two-sided error relaxed local decoders
to non-adaptive, one-sided error ones. That is, the reduction produces a relaxed local decoder
that never errs or rejects if its input is a valid codeword and makes queries based on its internal
randomness (and the requested index to decode), independently of the input.

The reduction essentially maintains the query complexity, requiring at most one additional query.
For any input, the decoder’s error probability increases at most two-fold. Furthermore, assuming
the underlying code is in systematic form, where the original message is embedded as the first bits
of its encoding, the reduction also conserves both the code itself and its rate and distance properties

We base the reduction on our new notion of additive promise problems. A promise problem is
additive if the sum of any two YES-instances is a YES-instance and the sum of any NO-instance and
a YES-instance is a NO-instance. This novel framework captures both linear RLDCs and property
testing (of linear properties), despite their significant di�erences.

We prove that in general, algorithms for any additive promise problem do not gain power from
adaptivity or two-sided error, and obtain the result for RLDCs as a special case. The result also
holds for relaxed locally correctable codes (RLCCs), where a codeword bit should be recovered.

As an application, we improve the best known lower bound for linear adaptive RLDCs. Specifically,
we prove that such codes require block length of n Ø k1+�(1/q2), where k denotes the message length
and q denotes the number of queries.
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74:2 Linear RLDCs and RLCCs Do Not Need Adaptivity and Two-Sided Error

1 Introduction

Suppose you receive a binary string (a “message”), and would like to know the value of the
message at some index i. How many queries do you need to make? The answer is obviously
1, as you can query index i and get the value. But what if some of the message bits are
corrupted, because they were, say, transmitted over a noisy channel? The bit at the needed
index i might have been corrupted.

Error-correcting codes might help. Such codes allow encoding the message with extra
redundancy as a codeword, and the original message can be recovered even if some bits of
the codeword were corrupted. However, one needs to read the entire codeword to recover the
original message. As our goal was to read only one bit from the message, this solution seems
ine�cient.

Locally decodable codes (LDCs), introduced by Katz and Trevisan [17], are aimed at
solving this problem. These codes are equipped with a local decoding algorithm (“decoder”)
that recovers each message bit by querying a few bits from a codeword, instead of reading
all of it. Two main measures of e�ciency for LDCs are the query complexity of the decoder
(which we want to be as small as possible) and the rate of the code (which we want to be
high). A similar notion, originated in works on program checking by Blum and Kannan [5]
and Lipton [21], is of locally correctable codes (LCCs). These are error-correcting codes that
admit a local algorithm (now called “corrector”) that not only recovers each message bit,
but is also required to correct any bit from the codeword.

LDCs and LCCs have profoundly impacted theoretical computer science and found
numerous applications. Despite the extensive research, current constructions require adding
a large amount of redundancy. Motivated by this, Ben-Sasson et. al. [3] introduced Relaxed
Locally Decodable Codes (RLDCs). For uncorrupted codewords, and for every bit, a relaxed
local decoder still must correctly decode the bit with high probability. However, for a noisy
codeword, it is now allowed to output a “rejection” symbol, indicating that the decoding
failed. This relaxation allows constructing codes with a dramatically better tradeo� between
query complexity and rate. Such codes have found various applications, notably in the
construction of proof systems (e.g., [22]) and within the area of property testing (e.g., [11]).

More formally, a relaxed local decoder of radius fl > 0 for a code C with soundness
error ‘soundness and completeness error ‘completeness is a procedure that gets oracle access to
w œ {0, 1}n, that is fl-close1 to some codeword c = C(x) and an index i, and satisfies the
following two requirements:
1. (completeness) If w is a valid codeword (that is, w = c) then for every i the relaxed local

decoder outputs xi with probability at least 1 ≠ ‘completeness.
2. (relaxed local decoding) Otherwise, with probability at least 1 ≠ ‘soundness, the relaxed

local decoder outputs xi or a “reject” symbol ‹, indicating the decoding failed.
We call n the block length of the code, and the length of x the message length.

Gur, Ramnarayan, and Rothblum [14] considered an analogous relaxation for local
correction, where the corrector either recovers the desired codeword bit, or rejects in case it
detects a corruption. They named such codes Relaxed Locally Correctable Codes, or RLCCs
(see Definition 7).

In this work, we study the power of adaptivity and two-sided error of linear RLDCs
and RLCCs. We say that a local algorithm is adaptive if it is allowed to choose its queries
according to answers of previous queries, and that it is non-adaptive otherwise (i.e, if it

1 Two strings are fl-close to each other if the normalized Hamming distance between them is at most fl.
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determines its queries based only on its internal coin tosses). Though adaptive algorithms
are syntactically stronger than non-adaptive ones, all known constructions of RLDCs and
RLCCs are non-adaptive (e.g. [3, 15, 2, 7, 20, 8]). This raises the question of whether it is
possible to cleverly utilize adaptivity in order to make improved constructions.

Adaptivity also plays a central role in the study of lower bounds. A common strategy for
establishing these bounds is to first address the easier case of non-adaptive RLDCs. Then,
the lower bound for adaptive RLDCs is derived by using a generic reduction from adaptive
decoders to non-adaptive ones. Alas, known reductions cause an exponential blow-up in
the query complexity (or a similar blow-up in the soundness error), resulting in worse lower
bounds for adaptive RLDCs [13, 10].

A main question in the study of probabilistic algorithms concerns the strength of two-sided
error algorithms vs. one-sided ones. We say that an algorithm has a one-sided error if it
never errs on “YES” instances, and a two-sided error if it is allowed to err on “both sides”.
A major open problem in computational complexity is whether BPP = RP, which asks
whether, in general, an algorithm allowed two-sided error possesses more computational
power than one restricted to have a one-sided error. In the standard definition of RLDCs,
the decoder can err with a small probability, even when its input is a valid codeword. That
is, it is allowed to have two-sided error. In this work, we ask the equivalent BPP = RP
question for RLCCs: Are one-sided error relaxed local decoders weaker than two-sided error
ones? Can we transform any two-sided error decoder, eliminate its errors on valid codewords,
to become a one-sided error decoder?

1.1 Our results

Our main result is that for linear codes, two-sided error and adaptivity do not give any
strength to RLDCs and RLCCs.

We show a reduction that starts with a relaxed local decoder (resp., corrector) that
might query adaptively and err on valid codewords, and ends with a relaxed local decoder
(resp., corrector) for the same code, that is non-adaptive and never errs or rejects on valid
codewords. The reduction adds at most one additional query. The new soundness error is
the sum of the completeness error and soundness error of the original algorithm. Hence the
gap between completeness and soundness stays the same. In particular, the error probability,
which is the probability to err on any specific input (i.e, max(‘completeness, ‘soundness)) is at
most doubled.

I Theorem 1. Let C be a linear systematic
2
code.

If C has a relaxed local decoder of radius fl with completeness error ‘completeness, soundness

error ‘soundness and query complexity q, then it has a one-sided error, non-adaptive decoder

of radius fl, with soundness error ‘completeness + ‘soundness and query complexity q + 1.

I Theorem 2. Let C be a linear code.
If C has a relaxed local corrector of radius fl with completeness error ‘completeness, sound-

ness error ‘soundness and query complexity q, then it has a one-sided error, non-adaptive
corrector of radius fl, with soundness error ‘completeness + ‘soundness and query complexity

q + 1.

2 A code is called systematic if the entire original message is embedded as the first bits of its encoding.
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Improved lower bound

Building upon the work of Gur and Lachish [13], Goldreich [10] established lower bounds
on the achievable rate by an RLDC with a constant query complexity q. Specifically, the
lower bounds are n Ø k1+�(1/q

2
) for the non-adaptive case and n Ø k1+�(1/q

3
) for adaptive

RLDCs. By utilizing Theorem 1, we can remove the adaptivity restriction from the tighter
lower bound (for linear codes), leading to the following result:

I Theorem 3. Let C be a linear RLDC with message length k, block length n, constant
query complexity q and constant correction radius and error probability.

Then n Ø k1+�(1/q
2
)
.

This represents an improvement over the current state-of-the-art lower bound by Dall’Agnol,
Gur and Lachish [9], which is n Ø k

1+�(
1

q2 log2 q
) (although it holds for non-linear codes as

well).

Linearity

Our reduction only works for linear codes. Nevertheless, linear codes are an important type
of error-correcting codes and have been extensively studied. Virtually all known RLDCs and
RLCCs (and their non-relaxed counterparts) constructions are of linear codes.3

Non-systematic codes

In Theorem 1, it is assumed that the code is in a systematic form. This is a technical detail,
not an inherent limitation. Any RLDC can be transformed to be systematic by adding the
message bits to the beginning of its encoding. This transformation results in, at most, a
doubling of the block length of the code and a corresponding reduction in the decoding
radius by the same factor. Consequently, if the code’s rate and decoding radius were initially
constant, they remain unchanged after this transformation. In addition, this transformation
enables the elimination of the systematic requirement in Theorem 3.

It is worth noting that any linear code can be made systematic through a basis change
without altering its block length. While such a transformation does not a�ect the set of valid
codewords, it does alter the encoding function. For RLDCs, this implies that the code’s
decoder may no longer be valid after the transformation.

Known reductions

We note two well-known immediate reductions from adaptive to non-adaptive local algorithms.
These reductions date back to [17], which stated them for non-relaxed LDCs, but they also
apply to relaxed ones.

The first reduction is to replace each of the q adaptive queries with multiple non-adaptive
ones. We replace the i-th query with 2i≠1 queries, one for each possible result of the previous
queries. This reduction yields an exponential blowup in the query complexity. The second
reduction is to “guess” the result of the first q ≠ 1 queries, and query a set of indices based
on that guess. This reduction exponentially decreases the algorithm’s soundness.

3 A remarkable exception is multiplicity codes, which are not linear. Fortunately, their codewords
constitute a subgroup (the sum of two codewords is a codeword), so our framework still covers them.
See Definition 4.
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In light of the above, even a reduction with a polynomial blowup in the query complexity
would have been an exciting result.

Our contribution

Ben-Sasson, Harsh and, Raskhodnikov [4] showed that for testing linear properties, adaptivity
and two-sided error do not help. Our work is based on [4], and extends their reductions to
the setting of RLDCs and RLCCs.

One technical di�culty in extending their work is that decoders and correctors get an
index as an input, in addition to the noisy codeword. This di�culty turns out to be minor.
The major di�culty is regarding the actual task at hand. First, testers work under the
promise that the input either has the property, or is far from any element having it. In
contrast, decoders and correctors work under the promise that the input is close to the code
(or in it). Furthermore, the “output type” is di�erent between those algorithms. On the one
hand, a tester has a binary verdict - it accepts or rejects the input. On the other hand, the
output of decoders and correctors is not binary - it is a symbol of the message, or a rejection
symbol.

To overcome those di�erences, we introduce the abstract notion of additive promise problem

(Definition 4). We show that testing linear properties and relaxed decoding/correction of
linear codes satisfy this notion.

We then present a reduction that applies to any promise problem satisfying this notion.
The reduction is a generalization of the one in [4]. The generalization is done by decoupling
the logic of the reduction from the testing context. We prove the main results by combining
the interpretation of relaxed decoding/correction as promise problems with the generic reduc-
tion. Arguably, the generalized reduction also provides a cleaner and more straightforward
presentation of [4].

We consider the main contribution of this work to be conceptual. By formalizing the
notion of additive promise problem, we demonstrate what is the minimal set of requirements
necessary for the techniques of [4] to be applicable. We believe the new notion is natural
and intuitive, and hope it will find more applications in the future.

1.2 Motivation

The primary motivation for this work is to enhance our understanding of RLDCs and RLCCs.
Additionally, we outline specific motivations as follows.

Applications for lower bounds

Our results show that, for linear codes, any lower bound for non-adaptive, one-sided error
RLDCs (resp., RLCCs) can be translated to a lower bound for adaptive, two-sided error
RLDCs (resp., RLCCs). Applying this outcome to the work of [10] yields Theorem 3, which
is the current best lower bound for linear, adaptive, two-sided error RLDCs. However, this
bound is not known to be tight; specifically, the best RLCC construction with constant query
complexity q, of Asadi and Shinkar [2], achieves block length n = k1+O(1/q). As our reduction
is applicable to any RLCC, it holds potential for accommodating future improvements in
lower bounds

In addition, in the case of linear codes, any lower bound applicable to RLDCs also serves
as a lower bound for RLCCs, but the reverse is not true. This arises from the fact that
every linear code can be represented systematically, with the initial bits of the codeword
corresponding to the original message. Hence, for such codes, the corrector can be used as a

ICALP 2024



74:6 Linear RLDCs and RLCCs Do Not Need Adaptivity and Two-Sided Error

decoder, so RLCCs are stronger objects than RLDCs. Our reduction operates independently
on each type, implying its potential application for improved lower bounds on RLCCs, which
may surpass those for RLDCs.

We note that the work of [9] extends the result of [13] to adaptive, two-sided error RLDCs,
for all codes, including non-linear ones. However, this extension does not rely on a generic
reduction and is notably highly involved. In contrast, our reduction is arguably much simpler,
o�ering an alternative, simpler proof for linear codes.

Constructions

Virtually all known constructions of RLDCs and RLCCs are non-adaptive, linear, and have
one-sided error. Our results show that this should not be a surprise. It is impossible to use
adaptivity or two-sided error to improve constructions of linear RLDCs / RLCCs.

Definitions

In some works (e.g, [6, 15, 2, 7]), the definition of RLDC requires it to have one-sided error
(i.e., it is not an additional property that a decoder might have). Other works (e.g., [3, 9])
use the same definition we gave above. Our result settles this nuance in the definitions -
both are equivalent (for linear codes).

1.3 Technical overview

We next give a high-level sketch of the reduction.

Promise problems

We prove Theorem 1 and Theorem 2 by proving a general result on a family of promise
problems. First, a promise problem is a pair of disjoint sets, Y (the YES-instances) and N
(the NO-instances). A randomized algorithm for a promise problem gets as input x œ Y fi N
(we sometimes call Y fiN “the promise”) and outputs YES or NO. If x œ Y then the algorithm
must output YES with high probability. Similarly, if x œ N it must output NO with high
probability.

The main new idea we introduce in this work is of additive promise problems.

I Definition 4. A promise problem (Y,N) ™ {0, 1}n is additive if it satisfies the following

conditions:

1. (YES-instances are a linear subspace
4
) For every x, y œ Y , x+ y œ Y

2. (NO-instances are a collection of cosets) For every x œ N, y œ Y , x+ y œ N
This definition can be generalized to any abelian group instead of {0, 1}n. For simplicity, in
this work we focus on {0, 1}n.

Testing linear properties

As a demonstration for the new definition, we next show that property testing, when the
tested property � ™ {0, 1}n is a linear subspace, is an additive promise problem. The
YES-instances in this case are the elements of the tested property. That is, Y = �. The
NO-instances are the elements ‘-far from every YES-instances. Namely,

4 Strictly speaking, the requirement is that the YES-instances are a subgroup. For {0, 1}n these require-
ments are equivalent.
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N = {x œ {0, 1}n | ’y œ Y, dist(x, y) > ‘}

where dist(x, y) is the relative Hamming distance between x and y, (i.e., dist(x, y) =
|{xi ”=yi|iœ[n]}|

n
).

The first item of Definition 4 follows from the assumptions that the property � is linear.
For the second item, let x œ N, y œ Y . We need to show that x+ y œ N . I.e, that x+ y is
‘-far from every yÕ œ Y . Indeed, for every yÕ œ Y we have

dist(x+ y, yÕ) = dist(x, yÕ ≠ y) > ‘.

The equality holds because in general, dist(a, b) = dist(a + c, b + c) for every a, b, c. The
inequality holds because, since y and yÕ are in the linear space Y then yÕ ≠ y œ Y , and since
x œ N it is ‘-far from every element in Y .

In Section 3, we show how to interpret relaxed decoding and correction of linear codes as
promise problems. This step might result in performing one additional query. We use similar
arguments as in the proof above to show that the resulting promise problems are additive.

The reduction

Next, we construct a reduction from adaptive, two-sided error local algorithms to non-
adaptive, one-sided error ones that works for any additive promise problem.

I Theorem 5. Let (Y,N) ™ {0, 1}n be an additive promise problem. If (Y,N) has an

adaptive algorithm A with completeness error ‘Y , soundness error ‘N and query complexity

q, it has a non-adaptive, one-sided error algorithm AÕ
with soundness error ‘Y + ‘N and

query complexity q.

By applying Theorem 5 to relaxed decoding we prove Theorem 1, and by applying it to
relaxed correction we prove Theorem 2.

The reduction works in two steps. The first step ensures that the algorithm never errs
on YES-instances. We start with an adaptive, two-sided error arbitrary algorithm, and
transform it to have one-sided error (and it remains adaptive). This step does not increase
the query complexity. If the original algorithm errs on YES-instances with probability at
most ‘Y and on NO-instances with probability at most ‘N , then the transformed algorithm
errs on NO-instances with probability at most ‘Y + ‘N .

The second step handles adaptivity. We start with an adaptive, one-sided error algorithm,
and transform it to a non-adaptive algorithm (that still has one-sided error). This step
maintains the query complexity and the soundness error.

We next describe the two reductions.

Two-sided to one-sided error

Every randomized algorithm A can be described as a distribution over a set of deterministic
decision trees. Each leaf of each decision tree is labeled with YES or NO, which is the output
of the algorithm when that tree is chosen. The first step of the reduction is to relabel the
leaves of all trees, in the following way: If there is an input x œ Y that “leads” to this
leaf, then it is relabeled to YES. This step is necessary to get a one-sided error algorithm.
However, this transformation may not maintain the algorithm’s soundness. In Section 4.1,
we explain the issue in detail.

ICALP 2024



74:8 Linear RLDCs and RLCCs Do Not Need Adaptivity and Two-Sided Error

The solution is to modify the algorithm. Instead of using the (relabeled) decision trees of
A with the given input x, choose a random YES-instance y, and use the tree as if the input
was x + y. Since (Y,N) is an additive promise problem, if x œ Y then x + y œ Y for any
(randomly chosen) y, and the original algorithm’s completeness can be used. Similarly, if
x œ N then x+ y œ N for any y, and the soundness of the original algorithm can be used.
In Lemma 16, we prove that with this modification the transformation maintains the sum of
soundness and completeness error.

Adaptivity

Consider an adaptive, one-sided error algorithm A. Without loss of generality, the only
freedom A has is in choosing its queries. Once it queried an input x, it must output YES if
there exists a YES-instance consistent with the queries. Otherwise, when no YES-instance is
consistent, then x cannot be a YES-instance and w.l.o.g A outputs NO.

The new non-adaptive algorithm AÕ works as follows: On input x, choose a random
YES-instance y. Query x on all indices A would have queried y, and output YES if the
partial view of x is consistent with some YES-instance (which might be di�erent than y).

The new algorithm is non-adaptive since now it determines its queries independently of
its input. Its query complexity is maintained, and it has one-sided error (as it always outputs
YES for YES-instances). In Lemma 20, we show that its soundness error is also maintained.
This is done by relating the probability AÕ outputs YES on some specific x to the average

probability A outputs YES for a random element of the set x+ Y .

1.4 Related work

Error correcting codes date back to the seminal works of Shannon [23] and Hamming [16].
LDCs, LCCs and their relaxed counterparts have attracted significant attention in recent
years. See the works of Yekhanin [26] and Kopparty and Saraf [19] and references within for
comprehensive surveys of LDCs, LCCs and their applications.

RLDCs and RLCCs constructions

The constructions of RLDCs and RLCCs can be separated into two regimes of parameters:
constant query complexity, and constant rate. In the constant rate regime, the state-of-the-art
code is the construction of Cohen and Yankovitz [8]. This construction is of a linear RLCC
with rate arbitrarily close to 1, and query complexity q = (logn)2+o(1). This construction
builds upon the result of Kumar and Mon [20], which shows a similar code but with query
complexity q = (logn)O(1).

In the constant query regime, the original work of [3] achieves RLDC with constant query
complexity O(q) and block length n = O(k1+1/

Ô
q). The work of [15] introduced the notion

of RLCCs, and constructed such a code with constant query complexity, but with worse
block length. Chiesa, Gur, and Shinkar [6] constructed an improved RLCC, matching the
block length of [3].

The current state-of-the-art construction is of Asadi and Shinkar [2], which builds upon [15]
and [6]. Their construction is of RLCC and RLDC with constant query complexity O(q) and
block length n = O(k1+1/q). This is the first construction of RLDC, in the constant query
complexity regime, with better block length than of [3].

We remark that all the above constructions are linear, non-adaptive, and have one-sided
error.



G. Goldberg 74:9

Lower bounds

In recent decades, extensive research has been conducted on lower bounds for (non-relaxed)
LDCs in various regimes [17, 18, 24, 25, 1]. Gur and Lachish [13] presented the first lower
bound for relaxed LDCs. Such lower bounds are arguably harder to obtain, as RLDCs
are weaker objects than LDCs. Specifically, they showed that any non-adaptive RLDC
requires a block length of n Ø k

1+�(
1

q2 log2 q
). For the adaptive case, they established a lower

bound of n Ø k
1+�(

1
22q log2 q

), by using the known reduction mentioned above, that causes an
exponential blowup in the query complexity.

The result of [13] was extended to additional settings, such as proofs of proximity, property
testing and to adaptive settings by Dall’Agnol, Gur and Lachish [9]. Their result extends
the lower bound of n Ø k

1+�(
1

q2 log2 q
) to adaptive RLDCs.

Goldreich [10] surveyed and simplified the work of [13], without employing the new
techniques of [9]). He established an improved bound of n Ø k1+�(1/q

2
) for the non-adaptive

case, and a bound of n Ø k1+�(1/q
3
) for the adaptive case (which is weaker than the one

presented in [9]).

Locally testable codes and RLDCs

Our work follows the theme of extending ideas from the area of LTCs (locally testable
codes [12]) to RLDCs. Refer to the full paper for an analysis comparing RLDCs and LTCs,
including details about their similarities, distinctions, and relevance to this study.

1.5 Open problems

We conclude this section with a few questions we leave for future research.

Non-linear codes

Our result holds only for linear codes. A natural open problem is to extend the result to
non-linear codes, or to show that for non-linear codes, adaptivity and / or two-sided error do
give more power. Our reduction heavily relies on linearity, so we believe other techniques
than the ones used in this paper will be needed.

Adaptivity of LDCs and LCCs

The power of adaptivity for (non-relaxed) LDCs and LCCs is an interesting open problem.
As we discuss in Section 3, our framework of additive problems does not seem to cover them.
This leaves the question open, even for linear codes. To the best of our knowledge, there
are currently no known reductions from adaptive to non-adaptive LDCs, besides the ones
described above. Even a reduction that polynomially increases the query complexity, or
slightly increases the code’s block length, would be an interesting result.

A main open problem is to separate the power of LDCs and that of relaxed LDCs.
Constructing an adaptive (linear) LDC might aid in this e�ort, showing that LDCs and
relaxed LDC di�er regarding adaptivity.

E�cient reduction

The reduction we propose could potentially incur an exponential cost in terms of time
complexity. Addressing the challenge of making the reduction e�cient, (i.e., ensuring that
the transformed algorithm runs in polynomial time), remains an open problem. See Remark
19 for details.

ICALP 2024



74:10 Linear RLDCs and RLCCs Do Not Need Adaptivity and Two-Sided Error

2 Definitions and preliminaries

Refer to the full paper for basic notations used herein.

2.1 Error correcting codes

Throughout, an error correcting code C with message length k and block length n is a function
C : {0, 1}k æ {0, 1}n. For simplicity, we consider only binary alphabet in this work. We
identify a code with its image, i.e, C ™ {0, 1}n.

A code C is linear if it is a linear function (or, equivalently, if C as a set is closed under
addition).

I Definition 6. Let C : {0, 1}k æ {0, 1}n be an error correcting code. A relaxed decoder
of radius fl > 0 for C is a randomized procedure A, that gets as inputs oracle access to

x œ {0, 1}n, and explicit input i œ [k], outputs an element of {0, 1,‹}, and satisfies the

following two requirements:

1. (completeness) If x = C(y) for some y œ {0, 1}k then Ax(i) = yi with probability at least

1 ≠ ‘completeness.

2. (relaxed local decoding) If there exists y œ {0, 1}k such that dist(x,C(y)) < fl, then

Ax(i) œ {yi,‹} with probability at least 1 ≠ ‘soundness.

The probabilities are over the internal randomness of A.

I Definition 7. Let C ™ {0, 1}n be an error correcting code. A relaxed corrector of radius
fl > 0 for C is a randomized procedure A, that gets as inputs oracle access to x œ {0, 1}n,
and explicit input i œ [n], outputs an element of {0, 1,‹}, and satisfies the following two

requirements:

1. (completeness) If x œ C then Ax(i) = xi with probability at least 1 ≠ ‘completeness.

2. (relaxed local correction) If there exists c œ C such that dist(x, c) < fl, then Ax(i) œ {ci,‹}
with probability at least 1 ≠ ‘soundness.

The probabilities are over the internal randomness of A.

In both definitions we call ‘completeness the completeness error, and ‘soundness the soundness
error.

In what follows we use the term local algorithm to refer to an algorithm which is a
relaxed local decoder or a relaxed local corrector. A local algorithm has one-sided error if its
completeness error is 0 (i.e., if it never errs on valid codewords). We say that a local algorithm
has query complexity q = q(n) if, on input i, and with oracle access to any x œ {0, 1}n, the
corrector makes at most q(n) queries. We say that a local algorithm is non-adaptive if it
determines all its queries based on its explicit input (namely, the index to decode / correct)
and internal coin tosses, independently of the specific x to which it is given oracle access.
Otherwise, we say that it is adaptive.

For an RLDC, we view its decoder A of a code as a set of k decoders A1, . . . , Ak, where
Ai(x) = Ax(i). We call Ai the decoders of C. Similarly, we view the corrector of a RLCC as
a set of n correctors, A1, . . . , An, and call them the correctors of C. The benefit of this view
is that each Ai is now an algorithm that gets a single (implicit) input x œ {0, 1}n.

2.2 Promise problems

I Definition 8. A Promise Problem is couple (Y,N) ™ {0, 1}n such that Y fl N = ÿ. We

call Y the YES-instances of the problem, and N the NO-instances of the problem.
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I Definition 9. An algorithm for a promise problem (Y,N) ™ {0, 1}n with completeness
error ‘Y > 0 and soundness error ‘N > 0 is a randomized procedure that gets oracle access to

an input x œ {0, 1}n, outputs YES or NO, and satisfies the following conditions:

1. (completeness) If x œ Y then it outputs YES with probability at least 1 ≠ ‘Y.
2. (soundness) If x œ N then its outputs NO with probability at least 1 ≠ ‘N.
We define query complexity and adaptivity of promise problem algorithms as they are
defined in Definition 7. We say that a promise problem algorithm has one-sided error if its
completeness error is 0 (i.e., if it never errs on YES-instances).

The main new definition of this work is of additive promise problems. See Definition 4.

3 Relaxed decoding and correction as additive promise problems

In this section, we show how to interpret relaxed decoding and relaxed correction of linear
codes as promise problems. We do that in Section 3.1. We then show, in Section 3.2, that
the resulting promise problems are additive.

3.1 Interpretation as promise problems

We start by showing how to interpret relaxed correction as a promise problem. There are
three possible values for the output of a relaxed local corrector: 0, 1 or ‹.5 In contrast, an
algorithm for a promise problem has only two possible outputs: YES and NO. We must
specify how to translate a correction problem (with multiple possible output values) into a
yes/no question. The following observation enables us to do that.

B Claim 10. If a code has a corrector A, then it has a corrector AÕ such that for every
x œ {0, 1}n, the output of AÕ for index i is xi or ‹. AÕ has the same completeness and
soundness errors as A, and it might make one additional query.

Proof. The new corrector AÕ
i
works according to the following rule:

AÕ
i
(x) =

I
Ai(x), if Ai(x) œ {xi,‹}
‹, otherwise.

From the construction, the output of AÕ
i
(x) is xi or ‹ for every input x (and never 1 ≠ xi).

AÕ makes at most one additional query compared to A in order to retrieve the value xi.
We next show that AÕ

i
satisfies the required completeness and soundness (Definition 7).

For completeness, if x œ C then Ai(x) = xi with probability 1 ≠ ‘completeness, and hence
AÕ

i
(x) = xi with the same probability.
For soundness, assume there exists c œ C such that dist(x, c) < fl. We need to show

AÕ
i
(x) œ {ci,‹} with high probability. Consider the case ci = xi. From the soundness of Ai,

Ai(x) œ {xi,‹} with probability at least 1≠ ‘soundness, and hence AÕ
i
(x) œ {xi,‹ } = {ci,‹}

with the same probability.
Otherwise, ci ”= xi. With probability at least 1 ≠ ‘soundness, the output of Ai is ci or ‹.

From the construction, whenever the output of Ai is ci or ‹, the output of AÕ
i
is ‹. Hence,

with the same probability, AÕ
i
(x) = ‹ œ {ci,‹}. C

By using Claim 10, we can replace item 2 of Definition 7, and assume the corrector always
outputs xi or ‹:

5 For a larger alphabet, the number of possible outputs of a corrector is the size of the alphabet +1.
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I Definition 11 (alternative definition of RLCCs). A relaxed corrector of radius fl > 0 for C
is a randomized procedure A, that gets as inputs oracle access to x œ {0, 1}n, and explicit

input i œ [n], outputs xi or ‹, and satisfies the following:

1. (completeness) If x œ C then Ax(i) = xi with probability at least 1 ≠ ‘completeness.

2. (soundness) If there exists c œ C such that dist(x, c) < fl and xi ”= ci, then Ai(x) = ‹
with probability at least 1 ≠ ‘soundness.

Definition 11 allows us to treat a corrector as having a “binary” output; On input x, the
output of Ai is either xi œ {0, 1} (signifying “accept”) or ‹ (signifying “reject”). We can
now phrase relaxed correction as a promise problem, as follows6:

I Definition 12. Let C µ {0, 1}n be an error correcting code, let fl > 0 and let i œ [n]. The

promise problem of relaxed correction of C at index i with correction radius fl is defined by:

1. (YES-instances are the codewords)

Y = C

2. (NO-instances are the inputs a corrector rejects)

N = {x œ {0, 1}n | ÷c œ C with dist(x, c) < fl and xi ”= ci}.

The promise problem of relaxed correction is equivalent to relaxed correction of codes (of
Definition 11) in the following sense:

B Claim 13. A corrector for index i of the code C can be translated to an algorithm for
the promise problem of relaxed correction of C at index i (Definition 12) by identifying the
outputs 0, 1 as “YES” and the output ‹ as “NO”. The parameters ‘completeness, ‘soundness, fl
remain the same.

Relaxed decoding

From the hypothesis for RLDCs, the code at hand is in systematic form. That is, we assume
that the first k bits of each codeword are the message encoded in it. Hence, a decoder is
simply a corrector that needs to “correct” only the first k bits of the input. The observation
above (Claim 10) holds for relaxed local decoders as well. Hence, we can assume w.l.o.g that
the output of the decoder, for input x and index i œ [k], is either xi or ‹. This allows us to
handle RLDCs in a manner similar to RLCCs. For further details, please refer to the full
paper.”

3.2 Additive promise problems

In this section, we show that the promise problems formulated above for relaxed decoding
and relaxed correction, have the special property of being additive (Definition 4).

B Claim 14. The relaxed correction and relaxed decoding promise problems for linear codes
is additive.

We prove the claim for relaxed correction. The proof for relaxed decoding is the same,
with the restriction that i œ [k] (instead of in [n]).

6 Another possible formulation is Y = {(x, b) | x œ C and b = xi} and N = {(x, b) | ÷c œ
C with dist(x, c) < fl and ci ”= b}. This formulation preserves better the decoding “flavor” of the
problem. We use the formulation of Definition 11, as it emphasizes the similarity to testing, with ‹
corresponding to “reject” and any other output corresponding to “accept”.
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Proof. Let C be a linear error correcting code, let fl > 0 and let i œ [n]. Let Y,N be as in
Definition 12.

From the linearity assumption Y = C is a linear subspace of {0, 1}n, and the first item of
Definition 4 holds.

To show the second item, let x œ N, y œ Y . We need to show that x + y œ N . Since
x œ N , there exists a codeword c œ C such that dist(x, c) < fl and xi ”= ci. Define cÕ = c+ y.
cÕ is a codeword in C, since it is a sum of two codewords, and C is a linear code. We get
dist(x + y, cÕ) = dist(x + y, c + y) = dist(x, c) < fl, and (x + y)i = xi + yi ”= ci + yi = cÕ

i
.

Hence x+ y œ N . C

Non-relaxed LDCs

We remark that non-relaxed decoding / correction (for a specific index) does not seem to fit
into our new framework. Refer to the full paper for an in-depth discussion on this topic.

4 The reduction

In this section, we prove our main results, Theorem 1 and Theorem 2.
We prove these theorems by constructing the following, more general reduction:

I Theorem 15 (Restatement of Theorem 5). Let (Y,N) ™ {0, 1}n be an additive promise

problem. If (Y,N) has an adaptive algorithm A with completeness error ‘Y , soundness

error ‘N and query complexity q, it has a one-sided error, non-adaptive algorithm AÕ
with

soundness error ‘Y + ‘N and query complexity q.

Theorem 1 and Theorem 2 are direct corollary of Theorem 15 applied to the relaxed
decoding and correcting promise problem.

The proof of Theorem 15 has two steps. The first is a reduction from two-sided error
to one-sided error algorithms. We show this reduction in Section 4.1. The second step is a
reduction from one-sided, adaptive algorithms to one-sided, non-adaptive algorithms. We
show this reduction in Section 4.2.

4.1 From two-sided to one-sided error

In this section, we show a reduction from two-sided error algorithms to one-sided error ones
for additive promise problems. The reduction does not change the query complexity of the
algorithm, and maintains the sum of the completeness and soundness errors.

I Lemma 16. Let (Y,N) ™ {0, 1}n be an additive promise problem. If (Y,N) has an

(adaptive) algorithm A with completeness error ‘Y , soundness error ‘N and query complexity

q, it has an (adaptive) one-sided error algorithm AÕ
with soundness error ‘Y + ‘N and query

complexity q.

Randomized algorithms as distributions over decision trees

Consider some randomized algorithm A for a promise problem. A can be described as a
distribution DA over a set of deterministic decision trees �A = {�1,�2, . . .}. We denote by
� ≥ DA a tree chosen randomly from �A according to the distribution DA. Each leaf ¸ of
each tree corresponds to a set of indices I = (i1, . . . , it) œ [n]t that are queried along the
path leading to ¸, and the corresponding values ‡ = (‡1, . . . ,‡t) œ {0, 1}t at these indices.
We identify each leaf with the corresponding indices and values and write ¸ = (I,‡).
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For an input x, we denote by �(x) the leaf of � at the end of the path corresponding to
querying x. That is, �(x) = ¸ if x|I = ‡, where ¸ = (I,‡), and x|I is the restriction of x to
indices I. Each leaf is labeled with YES or NO.

We can now describe the operation of A on input x as follows: It chooses a � ≥ DA and
outputs the label of �(x).

Relabeling decision trees

To convert an algorithm A to have one-sided error, we first go over all of � œ �A and relabel
them, so each � will have one-sided error. The relabeling works as follows: For every leaf ¸
of �, if there exists a YES-instance y such that �(y) = ¸, relabel ¸ with YES. We denote the
relabeled tree by �c and call it the one-sided error relabeling of �.

This step is necessary to get a one-sided error algorithm; as long as there exists y œ Y
and � such that the label of �(y) is NO, there is some probability that A outputs NO
for a YES-instance. The issue, however, is that this transformation may not maintain the
algorithm’s soundness. There might be NO-instances that the new algorithm (wrongly)
accepts with a high probability.

The soundness issue with relabeling

Pretend the transformed algorithm AÕ worked as follows. For an input x, choose a random
decision tree � ≥ DA, relabel the tree to get �c, and output the label of �c(x) (instead of
using �(x) as the original algorithm did). This new algorithm has one-sided error. In fact,
we can transform any algorithm this way to have one-sided error, so we should not expect it
to maintain soundness.

To see that the soundness is not necessarily maintained, consider some leaf ¸ of a tree
� that was relabeled from NO to YES. Let x œ {0, 1}n such that �(x) = ¸. If x œ Y , the
relabeling was beneficial. Before the relabeling, the algorithm returned a wrong output for x
(whenever it used the tree �), and now it returns the correct output. However, what if x is a
NO-instance? In this case, after the relabeling we return the wrong output for x each time
� is used. The tree � is sampled according to the distribution DA, which is arbitrary. If
DA gives much weight to � (say, it is chosen with probability 1

2
), then the new algorithm

returns the wrong output for x with high probability.7 This implies that AÕ does not have
the required soundness property, as it should hold for every NO-instance.

The actual reduction

The solution is to modify the algorithm in the following way. Instead of deterministically
returning the label of �c(x) (after � was chosen at random), the transformed algorithm
outputs the label of �c(x + y) for a random y œ Y . We give a formal description of the
transformation in Algorithm 1. Now, even if �c(x) was relabeled to YES, we output its label
with a small probability. In the proof of Lemma 16, we show that the soundness error of the
transformed algorithm is at most ‘Y + ‘N .8

7 Even if there is no one heavy tree, relabels of many leaves in di�erent trees might have the same e�ect
if their total weight is high.

8 Recall that ‘N is error probability of the original algorithm for NO-instances, and ‘Y is its error
probability for YES-instances.
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Algorithm 1 One-sided error local algorithm, AÕ.

Input: Oracle access to x œ {0, 1}n.
Output: YES or NO.

1. Choose � ≥ DA.
2. Choose y œ Y uniformly at random.
3. Output the label of �c(x+ y).

Query complexity

The relabeling does not change the query complexity (i.e., depth) of the decision trees. Hence,
the query complexity of AÕ is the same as that of A.

One-sided error

Let x œ Y . We argue that AÕ always outputs YES for x. From the definition of AÕ, its output
for x is the label of �c(x+ y) for some y œ Y . Since (Y,N) is an additive problem and x œ Y ,
we get that x + y œ Y . From the relabeling scheme for �c, the label of �c(yÕ) is YES for
every yÕ œ Y , and in particular for yÕ = x+ y. Hence, the output of AÕ for x is YES.

Before arguing about the soundness of the transformed algorithm, we need the following
preparations.

Probability of hitting a specific leaf

We stated above that for an input x, the modified algorithm uses the label of a specific leaf ¸
with a small probability. We next calculate this probability (conditioning on first choosing
the tree �c of ¸). There are |Y | possible options for y. The leaf ¸ is used if the chosen y

satisfies �c(x+ y) = ¸. Hence, we choose the label of ¸ with probability |(x+Y )fl�
≠1

(¸)|
|Y | , where

x+ Y = {x+ y | y œ Y } ™ {0, 1}n, and �≠1(¸) = {z | �(z) = ¸} ™ {0, 1}n. We argue that
this probability is either 0 (when there is no y œ Y such that �(x+ y) = ¸ so (x+Y )fl �≠1(¸)
is empty), or is equal to a quantity not depending on x.

I Lemma 17. Let Y ™ {0, 1}n be a subspace of {0, 1}n, and fix a decision tree � and a leaf

¸ = (I,‡). Define U = {u œ Y | u|I = 0}. Then for every x œ {0, 1}n, if there exists y œ Y
such that �(x+ y) = ¸, then |(x+ Y ) fl �≠1(¸)| = |U |.

Proof. First, notice that U is not empty since the all-zeros string is in Y (as Y is a linear
subspace). Furthermore, U is a subspace of Y , since if u, uÕ œ U then (u+uÕ)|I = u|I+uÕ|I = 0
and u+ uÕ œ U . We argue that (x+ Y ) fl �≠1(¸) is a coset of U , hence having the same size
as U . Namely, we claim:

(x+ Y ) fl �≠1(¸) = x+ y + U

where y is an element of Y such that �(x+ y) = ¸.
We begin by proving the inclusion (x+Y )fl�≠1(¸) ™ x+y+U . Let x+yÕ œ (x+Y )fl�≠1(¸).

That is, (x + yÕ)|I = ‡. Define u = yÕ ≠ y. Since (x + y)|I = (x + yÕ)|I = ‡, we have
u|I = ((x+ yÕ) ≠ (x+ y))|I = 0 and u œ U . Therefore x+ yÕ = x+ y + u œ x+ y + U .

To prove that (x + Y ) fl �≠1(¸) ´ x + y + U , let u œ U . Since y œ Y and u œ U ™ Y ,
and Y is closed under addition, we have y + u œ Y and x + y + u œ x + Y . Next,
(x+ y + u)|I = (x+ y)I + u|I = (x+ y)I = ‡ and hence x+ y + u œ �≠1(¸). J
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We are now ready to prove Lemma 16.

Proof of Lemma 16. We proved above that the reduction maintains the query complexity
of the algorithm, and that the transformed algorithm has one-sided error. We are left with
establishing an upper bound for its soundness error.

Let x œ N . We need to show that AÕ outputs NO for x with probability at least 1≠‘Y≠‘N.
That is, we need to prove Pr[AÕ(x) = YES ] < ‘Y + ‘N.

The probability for (wrongly) outputting YES for xmay increase due to the transformation.
Nevertheless, it does not increase too much. We argue the transformation does not decrease
the gap between the expected probability of returning YES for a random element of Y and
the expected probability of outputting YES for a random element of x + Y . That is, we
claim:

B Claim 18. For every x œ N :

E
yœY

[Pr[A(y) = YES]]≠ E
yœY

[Pr[A(x+ y) = YES]]

Æ E
yœY

[Pr[AÕ(y) = YES]] ≠ E
yœY

[Pr[AÕ(x+ y) = YES]]

where the probabilities are over the internal randomness of A and AÕ.

Proof of Claim 18. To prove this claim, it is enough to show that relabeling one leaf ¸ of one
decision tree does not decrease the gap. Then we obtain the claim by relabeling one leaf at a
time, to get AÕ from A.

Assume ¸ was relabeled from NO to YES. Let G := Y fl �≠1(¸) be the strings y œ Y such
that �(y) = ¸ (these are the “Good” strings, which are now labeled YES and are in Y ). The
set G is not empty since we relabel ¸ only if there exists y œ Y such that �(y) = ¸, i.e. y œ G.
Let B := (x+ Y ) fl �≠1(¸) be the strings x+ y œ x+ Y such that �(x+ y) = ¸ (these are
the “Bad” strings, which are now labeled YES but in x+ Y ™ N).

Every string in G fi B was rejected before the relabeling but is now accepted. The
algorithm’s behavior on the other elements in Y and x+Y is unaltered. Hence, E

yœY

[Pr[A(y) =

YES]] increases by D(�) · |G|
|Y | when ¸ is relabeled (recall that D(�) is the probability the

algorithm chooses �). Similarly, E
yœY

[Pr[A(x+ y) = YES]] increases by D(�) · |B|
|Y | . It su�ces

to show that |G| Ø |B|. Intuitively, this means any “harm” done to x by the relabeling (an
element of B that increases the probability to wrongly output YES) is “compensated” by
the relabeling (by an element of G improving the algorithm’s completeness).

If B is empty, we are done. Otherwise, due to Lemma 17, |B| = |U | and |G| = |U |, and
we conclude that |G| = |B|. C

From the claim, the soundness error for x gets worse by an amount bounded by the
completeness improvement. Since the completeness error reduces from ‘Y to 0, the soundness
error for x increases by at most ‘Y.

More formally, from Claim 18, the prefect completeness of AÕ and the completeness error
of A:

E
yœY

[Pr[AÕ(x+ y) = YES]]

Æ E
yœY

[Pr[AÕ(y) = YES]] ≠ E
yœY

[Pr[A(y) = YES]] + E
yœY

[Pr[A(x+ y) = YES]]

Æ 1 ≠ (1 ≠ ‘Y) + E
yœY

[Pr[A(x+ y) = YES]] = E
yœY

[Pr[A(x+ y) = YES]] + ‘Y.

(1)
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Now, x+ y œ N for every y œ Y , since x œ N and (Y,N) is additive. Hence, applying
the soundness of A to every x+ y, we have E

yœY

[Pr[A(x+ y) = YES ]] < ‘N.

In addition, from the definition of AÕ, Pr[AÕ(x+ y) = YES] = Pr[AÕ(x) = YES] for every
y œ Y . Hence, from equation 1 we get that Pr[AÕ(x) = YES] < ‘Y + ‘N. J

I Remark 19. As described, the reduction might be expansive in the terms of time complexity.
Sampling a YES instance uniformly at random and relabeling the trees can be computationally
intensive tasks.

On the positive side, sampling a YES instance can be implemented in polynomial time.
The set of YES instances Y forms a subspace, allowing for e�cient sampling by taking a
random linear combination of elements in a basis of Y . In the context of codes, this is
equivalent to encoding a random message using a generating matrix of the code, where the
columns of the matrix constitute a basis for the code.

Unfortunately, the relabeling process, even for a single leaf, appears to be computationally
hard. Brute-force relabeling involves iterating over a potentially exponentially large set of
candidates (all elements of {0, 1}n consistent with the leaf) and checking their membership
in Y . Checking membership in Y can be preformed e�ciently by considering the dual space
of Y . However, we do not see a way to eliminate the iteration over an exponential set of
candidates, and leave this question for further research.

4.2 From adaptive to non-adaptive algorithms

In this section, we show a reduction from one-sided error adaptive to (one-sided error) non-
adaptive algorithms for additive promise problems. The reduction maintains the algorithm’s
query complexity and its soundness error.

I Lemma 20. Let (Y,N) ™ {0, 1}n be an additive promise problem. If (Y,N) has an one-
sided error, adaptive algorithm A with soundness error ‘N and query complexity q, it has an

one-sided error non-adaptive algorithm AÕ
with soundness error ‘N and query complexity q.

Proof. Let D = DA be a distribution over decision trees � = �A corresponding to A.
We first observe that we can assume w.l.o.g that the label of each leaf ¸ = (I,‡) is YES

if and only if ÷y œ Y such that y|I = ‡. Since A never errs on YES-instances, if there exists
y œ Y such that y|I = ‡, then ¸ must be labeled YES. On the other hand, we can assume
that if no such y œ Y exists, then ¸ is labeled NO. Otherwise, ¸ can be relabeled from YES
to NO while only improving the algorithm’s soundness and maintaining its one-sided error.

Description of AÕ

The new non-adaptive algorithm works as follows. On input x, choose a random y œ Y .
Query x on all indices A would have queried y, and output YES if the partial view of
x is consistent with some yÕ œ Y . We give a formal description of the new algorithm in
Algorithm 2.

Analysis

The algorithm AÕ is non-adaptive, as its queries depend only on its internal randomness (the
choice of � and y). It has the same query complexity as A, since it uses the same decision
trees. The algorithm has one-sided error since if x œ Y , we can take yÕ = x at the last step
of the algorithm, and x|I = yÕ|I for every I.

ICALP 2024



74:18 Linear RLDCs and RLCCs Do Not Need Adaptivity and Two-Sided Error

Algorithm 2 Non-adaptive local algorithm, AÕ.

Input: Oracle access to x œ {0, 1}n.
Output: YES or NO.

1. Choose � ≥ D.
2. Choose y œ Y uniformly at random.
3. Let ¸ = (I,‡) = �(y).
4. Query x on the indices I.
5. Output “YES” if ÷yÕ œ Y such that x|I = yÕ|I , and “NO” otherwise.

We are left with proving that the transformation does not decrease the soundness error.
Towards this end, we relate the acceptance probability of AÕ to the average acceptance
probability of A.

B Claim 21. For every x œ {0, 1}n:

Pr[AÕ(x) = YES] = E
yœY

[Pr[A(x+ y) = YES]]

where the probabilities are over the internal randomness of A and AÕ.

This claim shows that soundness is maintained. If x œ N , then since (Y,N) is additive,
x+ y œ N for every y œ Y . Hence, by using the soundness of A for every x+ y, we get that

Pr[AÕ(x) = YES] = E
yœY

[Pr[A(x+ y) = YES]] < ‘N J

Proof of Claim 21. We begin by calculating E
yœY

[Pr[A(x+ y) = YES]]. Identifying the output
YES with 1, we can take expectation instead of probability. We denote by �(Y ) the set of
leaves in � labeled YES9 , and get:

E
yœY

[Pr[A(x+ y) = YES]] = E
yœY

E
�≥D

[A(x+ y)] = E
�≥D

E
yœY

[A(x+ y)]

= E
�≥D

S

U 1
|Y | ·

ÿ

¸œ�(Y )

|(x+ Y ) fl �≠1(¸)|

T

V (2)

where in the last equality, we take into account all y œ Y by iterating over each leaf ¸ œ �(Y )
(for other leaves the algorithm’s output is 0) and counting the number of y values for which
�(x+ y) = ¸ (i.e., that lead the algorithm to output the label of ¸).

On the other hand, for any I ™ {0, 1}n and x œ {0, 1}n define:

HI(x) =
I
1, if ÷y œ Y such that x|I = y|I
0, otherwise.

With this notation, the last step of AÕ can be described as “output HI(x)”.

9 This definition is equivalent to �(Y ) = {�(y) | y œ Y } since, as discussed above, a leaf ¸ is labeled YES
if and only if there exists y œ Y such that �(y) = ¸.
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We get:

Pr[AÕ(x) = YES] = E[AÕ(x)] = E
�≥D

E
yœY

(I,‡)Ω�(y)

[HI(x)]

= E
�≥D

S

U 1
|Y | ·

ÿ

¸=(I,‡)œ�(Y )

|Y fl �≠1(¸)| ·HI(x)

T

V (3)

Here it is su�cient to iterate over the leaves in �(Y ): the algorithm A never errs on YES
instances, so if ¸ is labeled NO, there cannot be y œ Y such that �(y) = ¸.

From equations 2 and 3 it is enough to show that for every ¸ = (I,‡) œ �(Y ):

|(x+ Y ) fl �≠1(¸)| = |Y fl �≠1(¸)| ·HI(x)

Since (I,‡) is labeled YES, and as discussed above, there exists yÕ œ Y such that yÕ|I = ‡
and Y fl �≠1(¸) is not empty.

Consider the case HI(x) = 0. We claim (x + Y ) fl �≠1(¸) is empty and hence the
equality holds. Assume towards contradiction that this set is not empty. Then there exists
(x+ y) œ (x+ Y ) such that (x+ y)|I = ‡. Hence (x+ y)|I = yÕ|I and x|I = (yÕ ≠ y)|I , which
implies HI(x) = 1 (since yÕ ≠ y œ Y ).

Next, consider the case HI(x) = 1. We argue that (x + Y ) fl �≠1(¸) is not empty.
HI(x) = 1 implies there exists y œ Y such that x|I = y|I , and (x ≠ y)|I = 0. Now
(x≠y+yÕ)|I = (x≠y)|I +yÕ|I = ‡, and hence x≠y+yÕ œ (x+Y )fl �≠1(¸) (as ≠y+yÕ œ Y ).
Since (x+ Y ) fl �≠1(¸) is not empty, from Lemma 17 we get that |(x+ Y ) fl �≠1(¸)| = |U |.
The set Y fl �≠1(¸) is also not empty, and again from Lemma 17 |Y fl �≠1(¸)| = |U |. We
conclude that |(x+ Y ) fl �≠1(¸)| = |Y fl �≠1(¸)|. C

I Remark 22. As in the previous reduction, the adaptive to non-adaptive reduction might
be expansive in the terms of time complexity. Similar to before, sampling a YES instance
uniformly at random might appear computationally intensive, although it can be implemented
in polynomial time without much di�culty.

Unfortunately, determining whether there exists a YES instance consistent with a partial
view of the input (step 5 in Algorithm 2) is computationally hard. We currently do not see a
feasible way to perform this task e�ciently, for reasons similar to those outlined in Remark
19. We leave addressing the e�ciency of this reduction as an open problem.
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Sharp Noisy Binary Search with Monotonic
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Abstract

We revisit the noisy binary search model of [10], in which we have n coins with unknown probabilities
pi that we can flip. The coins are sorted by increasing pi, and we would like to find where the
probability crosses (to within Á) of a target value · . This generalized the fixed-noise model of [2], in
which pi = 1

2 ± Á, to a setting where coins near the target may be indistinguishable from it. It was
shown in [10] that �( 1

Á2 logn) samples are necessary and su�cient for this task.
We produce a practical algorithm by solving two theoretical challenges: high-probability behavior

and sharp constants. We give an algorithm that succeeds with probability 1 ≠ ” from

1
C·,Á

·
1
log2 n+O(log2/3 n log1/3 1

”
+ log 1

”
)
2

samples, where C·,Á is the optimal such constant achievable. For ” > n
≠o(1) this is within 1 + o(1)

of optimal, and for ” π 1 it is the first bound within constant factors of optimal.
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1 Introduction

Binary search is one of the most fundamental algorithms in computer science, finding an
index iú œ [n] from log2 n queries asking if a given index i is larger than iú. But what if the
queries are noisy?

One model for noisy binary search has each query be incorrect independently with
exactly the same probability 1

2
≠ Á. In this model, which we call FixedNoiseNBS, a line of

work [2, 1, 5, 9] has found a sharp bound for the required expected sample complexity, with
tight constants. However, in many applications of noisy binary search the error probability
is not fixed, but varies with i: comparing i to iú is much harder when i is close to iú.

As one example, consider the problem of estimating the sample complexity of an algorithm
such as for distribution testing or noisy binary search itself. Proofs in this space are often
sloppy with constant factors, so the proven bound is not reflective of the true performance.
If so, we would like to empirically estimate the sample complexity i at which the success

EA
T
C
S

© Lucas Gretta and Eric Price;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 75; pp. 75:1–75:19

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucas_gretta@berkeley.edu
mailto:ecprice@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ICALP.2024.75
https://arxiv.org/abs/2311.00840
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


75:2 Sharp Noisy Binary Search with Monotonic Probabilities

Table 1 Comparison of our result to prior algorithms for MonotonicNBS in the regime of
Á π min(·, 1 ≠ ·) and ” = 1/no(1), ignoring lower order terms. The analysis in [10] is not careful
with constants, so we also include our best estimate of the actual constant after tuning constant
factors in the algorithms.

Algorithm Proven query complexity Actual constant

Binary Search w/ Repetition 2 ·(1≠·)
Á2 logn · log log2 n

”

[10] Multiplicative Weights 4000max(·,1≠·)
Á2 logn · log 1

” ¥ 31
[10] Backtracking 476909max(·,1≠·)

Á2 logn · log 1
” ¥ 2000

BayesianScreeningSearch 2 ·(1≠·)
Á2 logn

probability pi is above a given threshold · (say, 90%). (In some cases we even know the
worst-case distribution [6] so the empirical estimate is of the worst-case performance, not
just the distributional performance.) We can run the algorithm at a given sample complexity
i and check correctness, getting Success with probability pi. The success probability is
monotonic in i, and we would like to estimate the iú where pi crosses · . Finding iú exactly
may be very hard – the success probability at 10000 and 10001 samples are likely to be
almost identical – so we would settle for some index with pi ¥ · .

For a non-computer science example, calculating the LD50 for a substance (the dose
needed to kill half of the members of a specific population) is a noisy binary search problem
with error probability that skyrockets close to the true answer.

Such considerations led to the noisy binary search model of Karp and Kleinberg [10],
which we call MonotonicNBS: we have n coins whose unknown probabilities pi œ [0, 1] are
sorted in nondecreasing order. We can flip coin i to see heads with probability pi. The goal
is to find any coin i with nonempty [pi, pi+1] fl (· ≠ Á, · + Á) (See Figure 1 for a graphical
representation). This model subsumes FixedNoiseNBS (where pi = 1

2
≠ Á for i Æ iú and

1

2
+ Á otherwise) and of course regular binary search (where pi œ {0, 1}). Throughout this

paper we will suppose that · is a constant bounded away from {0, 1}, n grows to Œ, and Á
and the desired failure probability ” may be constant or may approach 0 as n æ Œ.

The naive solution to MonotonicNBS is binary search with repetition: we do regular
binary search, but repeat each query enough times to have ”

logn
failure probability if

pi /œ [· ≠ Á, · + Á]. This gives sample complexity O( 1

Á2 logn log logn

”
). In [10] it was shown

that this extra log logn term is unnecessary, giving two algorithms that each have sample
complexity

O( 1
Á2

logn log 1
”
).

In this paper, we show how to improve this bound. We show upper and lower bounds that
achieve the tight constant on logn, and reduce the log 1

”
dependence from multiplicative to

additive. Table 1 compares our result to existing methods for MonotonicNBS.

On Studying Constants. When analyzing sublinear algorithms, and trying to remove
log logn factors in query complexity, constant factors really matter. The proofs in [10] are
not careful with constants, but the algorithms themselves inherently lose constants. Our best
estimate is that one algorithm “improves” upon naive repetition by a factor of log log2 n

31
, and

the other by log log2 n

2000
(where log is the natural log). Neither is an improvement for any n that

will ever be practical – the better algorithm is only an improvement for n > 2e31 ¥ 101011 .
By studying constants, we are forced to design an algorithm that (as we shall see) gives
improvements for practical values of n. We give further discussion of the value of studying
constants in Section 2.2.
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Connection to Communication. Noisy binary search is intimately connected to the asym-
metric binary channel, i.e., the binary channel that can choose between sending 1 with
probability · ≠ Á or with probability · + Á. If each pi œ {· ± Á}, then noisy binary search
needs to reveal the log2 n-bit iú through such a channel; queries below iú are 1 with probability
· ≠ Á and those above iú are 1 with probability · + Á. The natural target sample complexity
is therefore 1

C·,Á

log2 n, where C·,Á is the information capacity of the asymmetric binary
channel:

C·,Á := max
q

H((1 ≠ q)(· ≠ Á) + q(· + Á)) ≠ (1 ≠ q)H(· ≠ Á) ≠ qH(· + Á) (1)

where H(p) is the binary entropy function. For · = 1

2
, the maximum is at q = 1

2
and this is

just C 1
2 ,Á

= 1≠H( 1
2

≠Á), the capacity of the binary symmetric channel with error probability
1

2
≠ Á. For · ”= 1

2
, the information obtained from · ≠ Á and · + Á probability coins is not the

same, so the capacity is achieved by getting · + Á coins with some probability q di�erent
from 1/2; it satisfies C·,Á ¥ Á

2

2·(1≠·) log 2
for fixed · as Á æ 0.

Our results. Our main result is the following:

I Theorem 1 (Upper bound). Let 0 < · < 1 be a constant. Consider any parameters

0 < Á, ” < 1/2 with 0 < Á < min(·, 1 ≠ ·)/2. On any MonotonicNBS(·, Á) input, the

algorithm BayesianScreeningSearch uses at most

1
C·,Á

(log2 n+O(log2/3 n log1/3 1
”
+ log 1

”
))

queries and succeeds with probability 1 ≠ ”.

Unlike [2, 1, 5, 15, 9], our results apply to MonotonicNBS, not just FixedNoiseNBS,
so they do not restrict the value of pi and handle · ”= 1

2
. Unlike [10], we achieve good constant

factors, high-probability results, and a better scaling with the target · . In particular, [10]
scales multiplicatively rather than additively with O(log 1

”
); and it uses a reduction that

incurs a constant-factor loss for targets · ”= 1

2
, while Theorem 1 scales with �(·(1 ≠ ·)) so

improves for · ”= 1

2
.

Using Shannon’s strong converse theorem, we show that the dependence on n is tight:
for Á ∫ n≠1/4, any algorithm must sometimes use (1 ≠ o(1)) 1

C·,Á

log2 n queries; in fact, it
must use this many queries with nearly 1 ≠ ” probability.

I Theorem 2 (Strong converse). Any MonotonicNBS(·, Á) algorithm that succeeds with

1≠ ” probability on inputs with all pi œ {· ± Á} must have at least a 1≠ ” ≠O( 1

“2nÁ4 ) chance
of using at least

(1 ≠ “) 1
C·,Á

log2 n

queries, for any “ > 0.

For · = 1

2
, this is also a lower bound for FixedNoiseNBS. Thus Theorem 2 gives a new

worst-case lower bound for FixedNoiseNBS, which is a 1

1≠”
factor larger than the lower

bound for expected query complexity achieved in prior work [2, 1, 5, 9].
For · ”= 1

2
, our results are the first ones connecting noisy binary search to C·,Á, the

information capacity of the binary asymmetric channel.

ICALP 2024
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Our results: expected queries. For constant ”, one can get a better bound for the expected
number of queries in a simple way: only run the algorithm with probability 1 ≠ (1 ≠ 1

logn
)”,

and otherwise output the wrong answer from zero queries. This saves essentially a 1 ≠ ”
factor in queries, which for constant ” is nontrivial:

I Corollary 3 (Upper bound: expected queries). Under the same conditions as Theorem 1 and

for any MonotonicNBS(·, Á) input, algorithm SillyBayesianScreeningSearch uses

1 ≠ ”

C·,Á

(log2 n+O(log2/3 n log1/3 logn
”

+ log 1
”
))

queries in expectation and succeeds with probability 1 ≠ ”.

This 1 ≠ ” savings is essentially the best possible. Our strong converse (Theorem 2)
already implies this, if Á ∫ n≠1/4; but using Fano’s inequality, the optimality is true in
general:

I Theorem 4 (Weak converse). Any MonotonicNBS(·, Á) algorithm that succeeds with

1 ≠ ” probability on inputs with all pi œ {· ± Á} must use

(1 ≠ ”) log2(n ≠ 2) ≠ 1
C·,Á

queries in expectation.

Theorem 4 was essentially shown in [2], which proved the · = 1

2
case (by giving hardness

for FixedNoiseNBS).

Our results: experiments. In Section A we compare our approach to naive repetition and
the [10] algorithms. We find, for n Ø 103 and Á = .1, that our approach outperforms naive
repetition, which outperforms both [10] algorithms. For n = 109, our approach uses 2.3◊
fewer samples than naive repetition.

1.1 Algorithm Overview

We now describe our noisy binary search algorithm in the case of · = 1

2
and ” > 1/no(1).

Bayesian start. The natural choice for a “hard” instance is when pi œ {· ± Á} (though we
will see that having multiple right answers is also hard in a di�erent way), so the algorithm
must find the transition location iú, and information theoretic arguments show 1

C·,Á

log2 n
queries are necessary. To avoid losing a constant factor in sample complexity, the algorithm
essentially must spend most of its time running the Bayesian algorithm. This algorithm
starts with a uniform prior over which interval crosses · , makes the maximally informative
query, updates its posterior, and repeats. When · = 1

2
, the maximally informative query is

the median under the posterior, and the Bayesian update is to multiply intervals on one side
of the query by 1 + 2Á and the other side by 1 ≠ 2Á. This algorithm, BayesLearn, is given
in Algorithm 1; the algorithm for general · is given in Section 4.

As a technical side note, the discrete nature of the problem introduces a bit of subtlety.
Note that MonotonicNBS flips coins i but returns an interval between coins that should
be good:

I Definition 5. We say that an interval [i, i+ 1] is (·, Á)-good if [pi, pi+1] fl (· ≠ Á, · + Á) is

nonempty.
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Precisely, our version of the Bayesian algorithm is as follows: we start with a uniform
prior over intervals. The median of our posterior can be viewed as a fractional coin, and
we flip the nearest actual coin but update our posterior as if we flipped the fractional coin.
So, for example, suppose the median is 4.7 (.7 ú w(5) +

q
4

i=1
w(i) = .5). We flip coin 5, and

if it comes out 0, that suggests the true threshold is probably above 5. We then scale up
our posterior on all intervals above 5 by 1 + 2Á; scale down intervals below 4 by 1 ≠ 2Á; and
scale the weight on interval [4, 5] by .3(1 + 2Á) + .7(1 ≠ 2Á). This new posterior is still a
distribution that sums to 1.

Algorithm 1 Bayesian learner in · = 1
2 case. Flips M coins and returns M intervals.

Input A set of n queryable coins, update size Á, number of steps M .
Output A list of M intervals queried.

1: procedure BayesLearn(coins, Á,M)
2: n Ω |coins|
3: w1 Ω uniform([n ≠ 1]) Û Prior distribution over intervals
4: L Ω {}
5: for i œ [M ] do
6: ji Ω median interval of wi

7: xi Ω either ji or ji + 1, whichever is closer to the median
8: append ji to L
9: yi Ω flip coin xi Û 1 with probability pxi

10: wi+1(x) Ω

Y
__]

__[

wi(x) · (1 ≠ 2Á(≠1)yi) if x < ji

wi(x) · (1 + 2Á(≠1)yi) if x > ji

remainder so wi+1 sums to 1 if x = ji

11: return L

Using the result. After running the Bayesian algorithm for most of our query budget, we
need to output an answer. The question becomes: how can we take the transcript of the
Bayesian algorithm and extract a useful worst-case frequentist guarantee? We need the
algorithm to work for all monotonic p, which can have values very di�erent than · ± Á.

In the prior work achieving tight constants for FixedNoiseNBS [2, 5], because the
pi are guaranteed to be 1

2
± Á, the analysis can show that the weight of the single “good”

interval grows in expectation at each step. By a Hoe�ding bound, after the desired number of
iterations the “good” interval has more weight than every other interval combined, so it can
be easily selected. But that property is not true for the more general pi of MonotonicNBS:
if many pi are 1

2
± 0.6Á, the Bayesian algorithm will wander somewhat too slowly through

these samples without growing any single interval by the desired amount.
However, in such cases the Bayesian algorithm is spending a lot of time among good

intervals. This holds in general. Our key lemma shows that, if we run BayesLearn for
1 +O(“) times the information theoretic bound 1

C·,Á

log2 n, a “ fraction of the intervals it
visits are (·, Á)-good:

I Lemma 6 (Bayesian performance). Consider any 0 < Á, ·, ”, “ < 1 with “ Æ 1

7
, Á <

min(·, 1 ≠ ·)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 +O(“)
C·,Á

·
A
log2 n+O(

Ú
logn log 1

”
+ log 1

”
)
B

iterations on an MonotonicNBS instance. With probability 1 ≠ ”, at least a “ fraction of

the intervals in L are (·, Á)-good.

ICALP 2024
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2 Proofs of Statements

By considering the “-quantiles of the returned list, we reduce n to 1

“
. We can now run

a less e�cient noisy binary search algorithm on this small subproblem. There are some
complications, as the solution to the new noisy binary search could correspond to a larger
interval than two adjacent coins. To deal with this, we run BayesLearn with ÁÕ = (1≠o(1))Á,
which lets us test our candidate answers.

Technical comparison of techniques. How we leverage the bayesian learner is the main
technical di�erence between our upper bound and that of prior work [10, 2, 5]. As described
above, the situation is rather simpler for FixedNoiseNBS. For MonotonicNBS, [10]
instead used conservative updates in their multiplicative weights algorithm: rather than the
true Bayesian update 1± 2Á, it multiplies by about 1± 3

5
Á. This necessarily loses a constant

factor, but ensures that either the median interval queried or the last interval queried is
good. This property is not true for the true Bayesian algorithm with sharp constant.

2.1 Related Work

The FixedNoiseNBS version of noisy binary search, where · = 1

2
and pi œ { 1

2
± Á}, was

posed by Burnashev and Zigangirov [2], who showed how to achieve

1
C 1

2 ,Á

3
log2 n+ log2

1
”
+ log2

1 + 2Á

1 ≠ 2Á

4

expected queries (in Russian; see [15] for an English proof). Essentially the same [2] algorithm
for FixedNoiseNBS was rediscovered in [1]. Some bugs with the [1] proof were discovered
and fixed in [5], as well as an analysis of a variant of the algorithm for worst-case sample
complexity

1
C 1

2 ,Á

A
log2 n+O(

Ú
logn log 1

”
) +O(log 1

”
)
B
.

For 1 π log 1

”
π logn, Gu and Xu [9] showed black-box improvements for other ”. If ”

is constant, they output ‹ with probability ” ≠ 1

logn
, and otherwise run the [5] algorithm

with ”Õ = 1

logn
. On the other hand, for ” = n≠�(1), repeatedly running [5] with ”Õ = 1

logn

and checking the result gives improvements:

(1 + o(1))
A
1 ≠ ”

C 1
2 ,Á

log2 n+
log 1

”

Á log 1+2Á

1≠2Á

B

For Á π 1, this is a factor 2 improvement on the constant factor on log 1

”
. Moreover, [9]

shows that this bound is sharp in both n and ”.
Our version of noisy binary search, MonotonicNBS, was first posed by Karp and

Kleinberg [10]. They gave two algorithms, based on recursive backtracking and multiplicative
weights respectively, that take O( 1

Á2 logn) queries for constant ”, which they showed is within
constant factors of optimal for constant ·, ”. Unfortunately, the constant factors make both
algorithms worse than the naive repetition algorithm for any reasonable n (see Table 1 and
Section A).
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Other models. There are many di�erent variations for noisy binary search (see [12] for
a survey of older work on the subject). Emamjomeh-Zadeh, Kempe, and Singhal [7] solve
an extension of FixedNoiseNBS from the line to graphs. This result was improved and
simplied by Dereniowski, Tiegel, UznaÒski and Wolleb-Graf [4], which was in later improved
and simplified by Dereniowski, £ukasiewicz, and UznaÒski [5]. Nowak developed a di�erent
generalization of FixedNoiseNBS to general hypothesis classes [11]. Waeber, Frazier, and
Henderson [14] investigates a continuous variant of FixedNoiseNBS, where the target is a
point in the real interval [0, 1], and show that the Bayesian algorithm converges geometrically
(the ideal convergence up to constant factors).

To our knowledge, [10] is the only previous work that handles a setting like Monoton-
icNBS where the “true” coin may be indistinguishable from nearby coins, and the goal is
just to find a su�ciently good answer.

Applications. Noisy binary search is also used as a subroutine in other algorithms. For
instance in [13] it is used for group testing, and in Crume [3] as a replacement for git-bisect
under unreliable tests. Both implementations were based on the multiplicative weights
algorithm of Karp and Kleinberg [10].

2.2 Why constants?

There is a tendency in theoretical computer science to regard constant factors as unimportant.
But theorists care about constants in many situations, such as approximation ratios or
rates of codes, and we believe that the query complexity of sublinear algorithms is another
situation where they should be considered.

In general, the arguments for ignoring constants in time complexity hold with much
less force for query complexity. The constant for time complexity is highly dependent on
the machine architecture, which changes over time (e.g., the relative cost of addition and
multiplication). Moreover, these hardware improvements mitigate the cost of poor constants.
But the number of queries is a mathematical value, and the cost of queries (which may be,
e.g., blood tests or running a giant test suite) does not clearly decrease with time.

The question should be: does theoretical study of constant factors lead to algorithmic
insights necessary for more practical algorithms? Our paper shows that it does. By considering
constants, we are forced to find a more e�cient way of translating the Bayesian algorithm
into one with frequentist guarantees (via Lemma 6). The constants lost in the previous
attempt at this (in [10]) mean that it is worse than the naive method until n > 101011 .

It should not be surprising that a simple method that loses an O(log logn) factor can
beat an algorithm that loses “only” constants, for all practical values of n. The study of
leading constants is a lens by which we found a new algorithm that actually outperforms the
naive method for reasonable values of n (namely n > 1000).

3 Detailed Proof Sketch for Upper Bound

3.1 Key Lemma on Bayesian Learner

For this proof overview, we focus on the case of ” > n≠o(1) and target · = 1

2
, where

BayesLearn queries the median of the posterior at each stage, and

C·,Á = 1 ≠ H(12 + Á) = (12 + Á) log2(1 + 2Á) + (12 ≠ Á) log2(1 ≠ 2Á) ¥ 2Á2

log 2 .
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We give an overview of the proof of our key lemma in this case:

I Lemma 6 (Bayesian performance). Consider any 0 < Á, ·, ”, “ < 1 with “ Æ 1

7
, Á <

min(·, 1 ≠ ·)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 +O(“)
C·,Á

·
A
log2 n+O(

Ú
logn log 1

”
+ log 1

”
)
B

iterations on an MonotonicNBS instance. With probability 1 ≠ ”, at least a “ fraction of

the intervals in L are (·, Á)-good.

Let a be the “best answer”, an interval that straddles the bias 1

2
. The algorithm keeps

track of a distribution w on [n ≠ 1]; at each step i, it queries the median of the current
distribution wi, then multiplies the density on one side by 1 + 2Á and the other by 1 ≠ 2Á to
form wi+1. We analyze the algorithm by looking at log2 w(a).

At each step, the interval j we choose is either good (a valid answer) or bad (invalid). If
it is bad, suppose the sampled coin x has probability px Ø 1

2
+ Á. Then x is above a, so w(a)

multiplies by 1 + 2Á with probability px, and 1 ≠ 2Á with probability 1 ≠ px. Hence:

E[log2 wi+1(a) ≠ log2 wi(a)] = px log2(1 + 2Á) + (1 ≠ px) log2(1 ≠ 2Á) Ø C·,Á.

The case of px Æ 1

2
≠ Á is symmetric, giving the same bound. So every bad interval we select

increases log2 w(a) by C·,Á in expectation.
On the other hand, if the interval we select is good, log2 w(a) may decrease in expectation.

For example, if we query coin a and
q

a≠1

i=1
w(i) = 1

2
, we could have

E[log2 wi+1(a) ≠ log2 wi(a)] =
1
2 log2(1 ≠ 2Á) + 1

2 log2(1 + 2Á) ¥ ≠ 2Á2

log 2 ¥ ≠C·,Á

It turns out this is essentially the worst case, and in general the expected decrease in log2 w(a)
is no more than 5C·,Á for any Á < 1

2
min(·, 1 ≠ ·). As a result, the potential function

log2 wi(a) ≠ “C·,Á · (# intervals chosen) + 6C·,Á · (# good intervals chosen)

increases by at least (1≠ “)C·,Á in expectation in each step i, regardless of where the median
is in that step. This potential function starts at ≠ log2(n≠1), so after M = (1+2“) 1

C·,Á

log2 n
steps it is at least �(“) log2 n in expectation. An Azuma-Hoe�ding bound shows that the
value concentrates about this expectation, and in particular will be positive with 1 ≠ ”
probability. If so, since log2 wi(a) Æ 0 always, we have

6 · (# good intervals chosen) ≠ “(# intervals chosen) Ø 0,

and hence a “

6
fraction of chosen intervals are good.

This proves the key lemma: after (1+O(“)) 1

C·,Á

logn steps of BayesLearn, a “ fraction
of coins flipped are good with decent probability.

Targets · ”= 1
2 . When · ”= 1

2
, the maximum-information query is no longer the median

coin, but a slightly di�erent quantile 1

2
± O( Á

·(1≠·)
), and the Bayesian updates use more

complicated factors. This choice is still capacity-achieving on bad intervals, i.e., the expected
“information gain” is E[log2 wi(a) ≠ log2 wi+1(a)] Ø C·,Á, and on good intervals the expected
information loss is still at most 5C·,Á, so the proof structure works unchanged.
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3.2 Rest of Upper Bound

Recall that in this overview we assume log 1

”
π logn. By Lemma 6, if we take all

{“, 2“, . . . , Â 1

“
Ê“} quantiles of the list returned by BayesLearn, run with parameter

ÁÕ = Á(1 ≠ –) (where – is introduced so we can later test the bias of each coin), we
get a size- 1

“
list containing at least one ÁÕ-good interval. This ÁÕ has C·,ÁÕ = (1 ≠ O(–))C·,Á.

For any “, we can just flip all of these coins O( 1

–2Á2 log 1

“”
) times to find an Á-good one. This

would give sample complexity

(1 +O(“))(1 +O(–)) 1
C·,Á

A
log2 n+O(

Ú
logn log 1

”
)
B

¸ ˚˙ ˝
BayesLearn, Lemma 6

+O( 1
“
· 1

–2Á2
log 1

“”
)

¸ ˚˙ ˝
Testing quantiles

(2)

which, by setting “ and – to ( log
1
”

logn
)1/4, gives sample complexity

(1 +O(
log 1

”

logn )
1/4) 1

C·,Á

log2 n.

This is the desired sharp bound, within (1 + o(1)) of optimal. One can do slightly better:
the second stage is itself a noisy binary search question on O(1/“) coins, so by apply-
ing the algorithm recursively with “Õ = O(1) we can solve it on the size-O(1/“) list in
O( 1

(1≠–)C·,Á

log 1

“”
+ 1

–2Á2 log 1

“”
) queries. As we recurse on a much smaller list, the samples

used are all lower order and we do not need to recurse more than once. However, the answer
to the recursive call might not be a valid answer to the original problem. Regardless, one of
the endpoints of the return call must be a valid answer, which we can test for. By optimizing
the parameters, this improves the sample complexity to

(1 +O(
log 1

”

logn )
1/3) 1

C·,Á

log2 n,

giving Theorem 1.

4 Proof of Lemma 6

4.1 Definitions

Let {l, . . . , r} be the set of good intervals. Let a be the maximum i œ [n ≠ 1] such that
pi Æ · . We also define the following functions:

C·,Á = max
q

H((1 ≠ q)(· ≠ Á) + q(· + Á)) ≠ (1 ≠ q)H(· ≠ Á) ≠ qH(· + Á) (3)

W (x) =
ÿ

iœ[x]

w(i) (4)

�(w,L) = log2 w(a) + 6C·,Á(|{x œ L|x œ [l, r]}| ≠ “|L|) (5)
q = argmax

x

H((1 ≠ x)(· ≠ Á) + x(· + Á)) ≠ (1 ≠ x)H(· ≠ Á) ≠ xH(· + Á) (6)

C·,Á is the capacity of a (·, Á)-BAC. We let q satisfy the equation which expresses the
shared information between a sent and received message through a (·, Á)-BAC. (See 12, 13
for explicit formulas for C·,Á, q) If our prior were true – so the coins really were · ± Á – we
would like to flip a · + Á coin with probability q. This is achieved by selecting the q-quantile
of our posterior, which is above the true threshold with probability q. If · = 1

2
, q = 1

2
and

we query the median; in general, we query the q = 1

2
±O( Á

·(1≠·)
) quantile.
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� is a potential function that we will be analyzing. We also define:

d0,0 = 1 ≠ · ≠ Á

1 ≠ · ≠ (2q ≠ 1)Á , d0,1 = 1 ≠ · + Á

1 ≠ · ≠ (2q ≠ 1)Á , d1,0 = · + Á

· + (2q ≠ 1)Á , d1,1 = · ≠ Á

· + (2q ≠ 1)Á
(7)

for brevity. In terms of BayesLearn we can think of dx,y as “the multiplicative e�ect
of a flip resulting in x (1 = Heads, 0 = Tails) on the density of an interval on side y
(1 = Right, 0 = Left) of the flipped coin.” When · = 1

2
, dx,y = 1 ≠ 2Á(≠1)xüy.

Algorithm 2 Acts as a Bayesian learner for M iterations, returns a list of all the chosen intervals.
Expressions for the dx,y values are given in (7).

1: procedure getIntervalFromQuantile(w, q)
2: i Ω min i œ [n] s.t. W (i) Ø q

3: procedure roundIntervalToCoin(i, w, q)
4: return i if q≠W (i≠1)

w(i)
Æ q else i+ 1

5: procedure BayesLearn({ci}ni=1
, n, ·, Á,M)

6: w1 Ω uniform([n ≠ 1])
7: Define q as in (13) Û The quantile we choose
8: L Ω {}
9: for i œ [M ] do

10: ji Ω getIntervalFromQuantile(wi, q) Û The chosen interval
11: xi Ω roundIntervalToCoin(ji, wi, q) Û The index of the coin we are going to

flip
12: append ji to L
13: yi Ω flip(cxi

)

14: wi+1 Ω

Y
__]

__[

wi(x)dyi,0
if x œ {1, . . . , ji ≠ 1}

dyi,0
(q ≠ Wi(ji ≠ 1)) + dyi,1

(Wi(ji) ≠ q) if x = ji

w(x)dyi,1
if x œ {ji + 1, . . . , n ≠ 1}

return L

I Lemma 7. In BayesLearn, E[�t+1 ≠ �t|yt, yt≠1, . . . , y1] Ø (1 ≠ O(“))C·,Á.

Proof. � is given by the sum of equations (8) and (9).

6C·,Á(|{j œ L|j œ [l, r]}| ≠ “|L|) (8)

log2 w(a) (9)

Recall that in the tth round, jt is the interval chosen, and xt is index of the coin flipped. Let
p be the probability cxt

lands heads.

Bad queries. Suppose jt /œ [l, r]. If jt > r, then p Ø · + Á and the expected change in (9) is

p log2 d1,0 + (1 ≠ p) log2 d0,0
The first log is positive and the second log is negative, so this expression is minimized at
p = · + Á, at which point some computation (Lemma 9) shows that it equals C·,Á. Similarly,
if xt < l then p Æ · ≠ Á and the expected change is

p log2 d1,1 + (1 ≠ p) log2 d0,1
which is also at least C·,Á by Lemma 9. As jt ”œ [l, r], the change in (8) is ≠“ ·6C·,Á. Therefore
in this case the expected change in � is at least (1 ≠ 6“)C·,Á.
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Good queries. Suppose jt œ [l, r]. The change in (8) is now 6C·,Á(1 ≠ “). But how much
can (9) decrease in expectation? Suppose that jt ”= a. Then the expected change is either

p log2 d1,0 + (1 ≠ p) log2 d0,0

with p Ø · , or

p log2 d1,1 + (1 ≠ p) log2 d0,1

with p Æ · .
As d1,0 = ·+Á

·+(2q≠1)Á
Ø 1≠·≠Á

1≠·≠(2q≠1)Á
= d0,0 and d1,1 = ·≠Á

·+(2q≠1)Á
Æ 1≠·+Á

1≠·≠(2q≠1)Á
= d0,1,

both of these expressions are minimized when p = · . So the expected change in (9) is lower
bounded by:

min (· log2 d1,0 + (1 ≠ ·) log2 d0,0, · log2 d1,1 + (1 ≠ ·) log2 d0,1) . (10)

We note that

· log2 d1,0 + (1 ≠ ·) log2 d0,0 = (· + Á) log2 d1,0 + (1 ≠ · ≠ Á) log2 d0,0 ≠ Á log2 d1,0 + Á log2 d0,0
= C·,Á ≠ Á log2 d1,0 + Á log2 d0,0

Ø C·,Á ≠ 3Á( Á

·
+ Á

1 ≠ ·
) (Lemma 13)

= C·,Á ≠ 3Á
2

·(1 ≠ ·)
Ø C·,Á ≠ (6 log 2)C·,Á (Lemma 10)
Ø ≠5C·,Á

a symmetric argument for lower bounding · log2 d1,1 + (1 ≠ ·) log2 d0,1 holds. Therefore, the
change in (9) is lower bounded by ≠5C·,Á.

Now suppose that jt = a. Then for some k œ [0, 1] the expected change in (9) is:

p log2(d1,0k + d1,1(1 ≠ k)) + (1 ≠ p) log2(d0,0k + d0,1(1 ≠ k))

If k Æ q then we flip a so p Æ · . d0,0k + d0,1(1 ≠ k) Ø d0,0q + d0,1(1 ≠ q) = 1. Also
d1,0k + d1,1(1 ≠ k) Æ d1,0q + d1,1(1 ≠ q) = 1. Therefore, this expression is minimized when
p = · . By symmetry, when k > q this expression is also minimized when p = · .

So the expected change in (9) is lower bounded by

· log2(d1,0k + d1,1(1 ≠ k)) + (1 ≠ ·) log2(d0,0k + d0,1(1 ≠ k))

for some k œ [0, 1]. Taking the derivative with respect to k, we get

·
d1,0 ≠ d1,1

d1,1 + (d1,0 ≠ d1,1)k
+ (1 ≠ ·) d0,0 ≠ d0,1

d0,1 + (d0,0 ≠ d0,1)k

As d1,1 < d1,0 and d0,1 > d0,0, · d1,0≠d1,1
d1,1+(d1,0≠d1,1)k

> 0 > (1 ≠ ·) d0,0≠d0,1
d0,1+(d0,0≠d0,1)k

. We note
that as k increases, · d1,0≠d1,1

d1,1+(d1,0≠d1,1)k
decreases in magnitude, while (1 ≠ ·) d0,0≠d0,1

d0,1+(d0,0≠d0,1)k

increases in magnitude. Therefore, the minimum value of the above expression is achieved
when k = 0 or k = 1.

So the expected change in (9) is lower bounded by

min(· log2 d1,0 + (1 ≠ ·) log2 d0,0, · log2 d1,1 + (1 ≠ ·) log2 d0,1)

which is the same expression which we lower bounded for the jt ”= a case. Combining
these two cases, when we are querying a good interval, the expected change is lower bounded
by 6C·,Á(1 ≠ “) ≠ 5C·,Á = (1 ≠ 6“)C·,Á. Therefore E[�t+1 ≠ �t|yt, yt≠1, . . . , y1] Ø (1 ≠
O(“))C·,Á. J
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Now that we have the gain in our potential function, we can apply a stochastic domination
argument with Freedman’s inequality in order to get Lemma 6 (Appendix C).

5 Algorithm and Analysis

Algorithm 3 Noisy Binary Search. It recurses at most once.
Input n queryable coins {ci}ni=1

, update size Á, target · , failure probability ”
Output An interval which is (·, Á)-good

1: procedure ReductionToGamma({ci}ni=1
, n, ·, Á, ”, “)

2: L Ω BayesLearn({ci}ni=1
, n, ·, Á, 1+O(“)

C·,Á

(log2 n+O(
Ò

logn log 1

”
+ log 1

”
)))

3: R Ω {}
4: for i œ [Â |L|

Á“|L|Ë Ê] do
5: append LÁ“|L|Ëi to R

return Sorted(removeDuplicates(R))
6: procedure BayesianScreeningSearch({ci}ni=1

, n, ·, Á, ”, “ = 1

7 log2(n)
)

7: ÁÕ = Á ·max(1 ≠ 3

logn(1/”), 2

3
)

8: R Ω ReductionToGamma({ci}ni=1
, n, ·, ÁÕ, ”/3, 1

3 log2(n)
)

9: if |R| > 7 then

10: R Ω [1] +R+ [n] Û Pad R with the extremes of the initial problem.
11: i Ω BayesianScreeningSearch({cRi

}|R|
i=1

, |R|, ·, ÁÕ, ”/3, 1

7
)

12: p̂Ri+1 Ω estimate pRi+1 up to ± Á≠Á
Õ

2
error with ”/3 f.p.

13: if p̂Ri+1 > · ≠ Á + Á≠Á
Õ

2
then

14: return Ri

15: else

16: return Ri+1 ≠ 1
17: else

18: for x œ R do

19: p̂x+1 Ω estimate px+1 up to ± Á≠Á
Õ

2
error with ”/18 f.p.

20: if p̂x+1 > · ≠ Á + Á≠Á
Õ

2
then

21: return x

I Theorem 1 (Upper bound). Let 0 < · < 1 be a constant. Consider any parameters

0 < Á, ” < 1/2 with 0 < Á < min(·, 1 ≠ ·)/2. On any MonotonicNBS(·, Á) input, the

algorithm BayesianScreeningSearch uses at most

1
C·,Á

(log2 n+O(log2/3 n log1/3 1
”
+ log 1

”
))

queries and succeeds with probability 1 ≠ ”.

Proof.

Correctness. Suppose that we run BayesianScreeningSearch on a MonotonicNBS
instance with parameters {ci}ni=1

, n, ·, Á, ”. Also assume that all probabilistic stages succeed,
meaning that ReductionToGamma, BayesianScreeningSearch, and our coin bias
estimation all succeed. By a union bound, this occurs with probability Ø 1 ≠ ”.

As we pick every “|L|th coin from L and L contains at least Á“|L|Ë ÁÕ-good intervals, R
contains at least one ÁÕ-good interval. Suppose that |R| Æ 7 and that Ri is the first ÁÕ-good
interval in R.
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Then for all j œ {1, . . . , i≠ 1}, either Rj is an Á-good interval or it is not. If it is, then we
have nothing to worry about outputting it. If it is not, then pRj+1 Æ · ≠Á (as if pRj+1 Ø · +Á

then Ri is not Á-good), so p̂Rj+1 Æ · ≠ Á+ Á≠Á
Õ

2
. So we do not output any not Á-good interval

before Ri. Once we reach Ri, pRi+1 > · ≠ ÁÕ, so p̂Ri+1 > · ≠ ÁÕ ≠ Á≠Á
Õ

2
= · ≠ Á + Á≠Á

Õ

2
and

we output Ri.
Now suppose that |R| > 7. As we recursively run BayesianScreeningSearch with

“ = 1/7, we note that for the R in the recursive call RÕ, |RÕ| = Â |L|
Á“|L|Ë Ê Æ Â 1

“
Ê = 7,

so |RÕ| Æ 7. By our work above, this means that the recursive call returns i such that
[pRi

, pRi+1 ] fl (· ≠ ÁÕ, · + ÁÕ) ”= ÿ.
Either Ri or Ri+1 ≠ 1 is ÁÕ-good, as if pRi+1 Æ · ≠ ÁÕ and pRi+1≠1 Ø · + ÁÕ then R must

not contain any good intervals. The same logic as for the |R| Æ 7 case holds, and we have
shown correctness.

Number of samples. Suppose that we run BayesianScreeningSearch with “ = 1/7.
The ReductionToGamma call takes

1 +O(“)
C·,ÁÕ

A
log2 n+O(

Ú
logn log 1

”
+ log 1

”
)
B

= 1
C·,Á

O(logn+ log 1
”
)

samples. As we have “ = 1/7, |R| Æ 7 and we go through the second branch. Then the
bias estimation takes O( ·(1≠·) log

1
”

(Á≠(1≠ 3
Ô

log
n

1
”
)Á)2

) = O( ·(1≠·) log
1
”

(Á
3
Ô

log
n

1
”
)2
) = O( log

2/3
n log

1/3 1
”

C·,Á

) samples,

for overall 1

C·,Á

O(logn+ log 1

”
) samples.

Now consider the case “ = 1

7 log2 n
, and suppose that 1 ≠ 3


logn(1/”) Ø 2/3. When

“ = O(1/ log(n)), ÁÕ = Á ú (1 ≠ 3

logn(1/”)), we have 1+O(“)

C
·,ÁÕ

= 1+O(
1

logn
)

C
·,ÁÕ

= 1

C
·,ÁÕ

=
1

(1≠O(
3
Ô

log
n
(1/”))C·,Á

, by Lemma 12. So ReductionToGamma takes

1
(1 ≠ O( 3


logn(1/”))C·,Á

·
A
log2 n+O(

Ú
logn log 1

”
+ log 1

”

B

= 1
C·,Á

·
3
log2 n+O(log2/3 n log1/3 1

”
+ log 1

”
)
4

samples.
If |R| Æ 7 we take the second branch and take O( log

2/3
n log

1/3 1
”

C·,Á

) more samples, which
meets our bound. If |R| > 7 we take the first branch and recurse with “ = 1/7 and
nÕ = O(logn), for 1

C·,Á

O(log logn+ log 1

”
) samples.

As established previously, the bias estimation takes O( log
2/3

n log
1/3 1

”

C·,Á

) samples. Overall
the algorithm takes

1
C·,Á

(log2 n+O(log2/3 n log1/3 1
”
+ log 1

”
))

samples. In the case 1 ≠ 3

logn(1/”) < 2/3, the O(log

1
”
)

C·,Á

term dominates the rest, and the
bound holds. J

Corollary 3 then follows by elementary analysis.
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6 Lower Bounds

We achieve our lower bounds by a communication complexity reduction.

I Lemma 8. Given any algorithm A which solves NBS for parameters (·, Á) with sample

budget m and failure probability ”, there exists a protocol that communicates over a discrete

memoryless channel with capacity C·,Á with rate R = log2(n≠1)

m
with failure probability ”.

Now we can use lower bounds from information theory. By applying Shannon’s Strong
Converse Theorem, we get Theorem 2, and by applying Fano’s inequality we get Theorem 4.
See Appendix C for proofs.

7 Future Work

One interesting topic of research is instance-dependent noisy binary search. If an instance is
much nicer than the worst case, say every coin has bias 1

2
± – for – ∫ Á, we would hope to

get a O( logn

–2 ) dependence, which BayesianScreeningSearch does not get. One could use
an adaptive coin bias estimator to get some adaptivity, but the constants gotten from this
will likely not be good.

Another open problem is attenuating the lower order terms in the upper bound for NBS.
For realistic n, lower order terms such as

Ô
logn, or even log logn are not negligible compared

to logn, and influences the practical application of BayesianScreeningSearch, as seen in
the experimental results where we spent 28% of our samples on the “lower order” recursive
calls.

One conjectural algorithm for noisy binary search would be: run BayesLearn for
(1 + O(“))OPT steps, then output the median of the last “OPT intervals chosen. This
interpolates between the overall median (which loses a constant factor) and the final interval
(which has a large probability of failure), and avoids the ine�ciency of recursive calls.
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A Figures and Experiments

Figure 1 In FixedNoiseNBS, every coin is Á-far from the true i
ú that must be found. We

consider MonotonicNBS, where many coins may be close to the threshold and the goal is to find
some good coin (the gray shaded region).

Applying NBS. To demonstrate the practicality of BayesianScreeningSearch we com-
pare it to standard binary search with repetition (NaiveNBS) and the two algorithms of [10]
(KKBacktracking and KKMultiplicativeWeights).

To fairly compare between these algorithms, we can’t just use the descriptions given in [10],
as the constants used in analysis are not optimized. We leverageBayesianScreeningSearch
to address this. We tweak the listed algorithms so they take a sample budget as input which
they allocate among all their stages. To estimate how large a budget is needed for algorithm
A to perform well on distribution D, we run BayesianScreeningSearch where when the
ith coin is flipped we run A on some input drawn from D, and return 1 if A succeeds and 0
if A fails. By setting · = .8, .9 and Á = .05, we get upper and lower bounds for how many
samples is needed to get ” = .15 failure probability.

Experiments. We compare results on 4 di�erent problem distributions: Standard, Biased,
Lopsided, and Wide.
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Figure 2 Performance of various MonotonicNBS algorithms for listed distributions.

Standard. pi œ {· ≠ Á, · + Á}, · = 1

2
, Á = .1, the transition interval chosen uniformly at

random..

Biased. pi œ {· ≠ Á, · + Á}, · = 3

4
, Á = .1, the transition interval chosen uniformly at

random.

Lopsided. pi œ {· ≠ .6Á, · + Á}, · = 1

2
, Á = .1, the transition interval chosen uniformly

at random..

Wide. we choose an interval (uniformly at random) of size 10 logn that linearly interpol-
ates between · ≠ Á and · + Á, and set the rest to be pi œ {· ≠ Á, · + Á}, · = 1

2
, Á = .1.

Results. We remark that KKBacktracking performed markedly worse than the other
algorithms, and so is not included in the figures. For reference, for Standard, N = 1000
KKBacktracking required m > 2.9 ◊ 106 samples, while the other algorithms need
m < 6000 samples (see Figure 2).

We find that KKMultiplicativeWeights is outperformed by NaiveNBS on all of
these distributions. In contrast, BayesianScreeningSearch outperforms NaiveNBS for
n > 103.

When · ”= 1

2
the di�erence between BayesianScreeningSearch, NaiveNBS and the

[10] algorithms increases. This is in line with our theory, as the first two perform better when
· is further from 1

2
, while the [10] algorithms reduce to the case · = 1

2
, losing a constant

factor.
More details on the experiments are in the full version.
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B Computations

This section gives the statements of some approximations used in the body of the paper.
The proofs are in the full version.

We give explicit formulas for some functions used in this paper

z = 2
H(·≠Á)≠H(·+Á)

2Á (11)

C·,Á = log2(z + 1) + · ≠ ‘

2‘
H(· + ‘) ≠ · + ‘

2‘
H(· ≠ ‘) (12)

q =
(1 ≠ · + Á) ≠ 1

1+z

2Á
(13)

I Lemma 9.

C·,Á = (· + ‘) log2(
· + ‘

· + (2q ≠ 1)Á ) + (1 ≠ · ≠ ‘) log2(
1 ≠ · ≠ ‘

1 ≠ · ≠ (2q ≠ 1)Á )

and

C·,Á = (· ≠ ‘) log2(
· ≠ ‘

· + (2q ≠ 1)Á ) + (1 ≠ · + ‘) log2(
1 ≠ · + ‘

1 ≠ · ≠ (2q ≠ 1)Á )

I Lemma 10. For Á Æ 1

2
min(·, 1 ≠ ·),

1
2 log 2

Á2

·(1 ≠ ·) Æ C·,Á Æ 1
log 2

Á2

·(1 ≠ ·) .

I Lemma 11. For 0 < Á Æ 1

2
min(·, 1 ≠ ·),

|q ≠ 1
2 | Æ 2Á

·(1 ≠ ·) .

I Lemma 12.

C·,(1≠o(1))Á Ø (1 ≠ o(1))C·,Á

I Lemma 13. For Á < 1

2
min(·, 1 ≠ ·),

log2 d0,0 Ø ≠3 Á

1≠·

log2 1

d0,1
Ø ≠3 Á

1≠·

log2 1

d1,0
Ø ≠3 Á

·

log2 d1,1 Ø ≠3 Á

·

C Omitted Proofs

I Lemma 6 (Bayesian performance). Consider any 0 < Á, ·, ”, “ < 1 with “ Æ 1

7
, Á <

min(·, 1 ≠ ·)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 +O(“)
C·,Á

·
A
log2 n+O(

Ú
logn log 1

”
+ log 1

”
)
B

iterations on an MonotonicNBS instance. With probability 1 ≠ ”, at least a “ fraction of

the intervals in L are (·, Á)-good.

Proof of Lemma 6. In this proof we omit some of the routine calculations, see the full
version for the complete proof.

Recall that � is given by the sum of equations (8) and (9).

6C·,Á(|{j œ L|j œ [l, r]}| ≠ “|L|) (8)

log2 w(a) (9)
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Reduction to � > 0. First note that �1 = ≠ log2(n ≠ 1), as initially L is empty so (8) is
0, and we initialize w as uniform so w(a) = 1

n≠1
. Next note that if (8) > 0, then

6C·,Á(|{x œ L|x œ [l, r]}| ≠ “|L|) > 0
|{x œ L|x œ [l, r]}| > “|L|

So there are strictly more than “|L| good intervals in L. Next note that (9) is Æ 0 always, so
� > 0 =∆ (8) > 0. So it su�ces to show that with ” failure probability �t+1 > 0, where
t = 1+O(“)

C·,Á

(log2 n+O(
Ò
logn log 1

”
+ log 1

”
))

Establishing a submartingale. By a stochastic domination argument, we can consider the
worst case where all coins sampled have bias in [· ≠ Á, · + Á]. Suppose that we are flipping a
coin that has bias p Æ · ≠ Á. The potential function consists of two parts, one of which does
not depend on the flip, and the other which does. We see that a tails increases the potential
function, while a heads decreases it. So p = · ≠ Á is the worst case. The argument for when
p Ø · + Á is symmetric. We do not need to worry about how this a�ects future states as
Lemma 7 conditions on the prior flips.

Let ‡2

i
be the variance of the di�erence random variables �i+1 ≠ �i, then we note that

‡2

i
is a Bernoulli random variable with parameter p œ [· ≠ Á, · + Á], that is scaled by at most

a max(log2 d1,0 ≠ log2 d0,0, log2 d0,1 ≠ log2 d1,1) . Á

·(1≠·)
factor, therefore

‡2

i
. p(1 ≠ p)

3
Á

·(1 ≠ ·)

42

. ·(1 ≠ ·)
3

Á

·(1 ≠ ·)

42

= Á2

·(1 ≠ ·) . C·,Á

Where we use the fact that Á Æ min(·,1≠·)

2
. Therefore ‡2

i
. C·,Á.

Freedman’s inequality. For brevity let g = (1 ≠ O(“))C·,Á, the lower bound given in
Lemma 7.

Pr[�t+1 Æ 0] = Pr[�t+1 ≠ �1 Æ ≠�1]

Æ exp
A

≠ 2(≠gt ≠ �1)2q
t

i=1
‡2

i
+O( Á

·(1≠·)
)(gt+ �1)

B
Freedman’s when gt Ø ≠�1

Æ exp(≠O(1)
tC·,Á

· (g2t2 + 2gt�1 + �2

1
))

Bounding this expression by ”, we get

g2t2 + (2g�1 ≠ logO(1)(1/”)C·,Á)t+ �2

1
Ø 0 (14)

(14) is a quadratic with respect to t, and has a positive leading coe�cient. Applying the
quadratic formula, if we set

t Ø ≠�1

g
+

C·,Á logO(1)(1/”)
2g2 +

Ò
(logO(1)(1/”)C·,Á)2 ≠ 4g�1 logO(1)(1/”)C·,Á

2g2 (15)

then (14) holds. As �1 = ≠ log2(n ≠ 1), g = (1 ≠ O(“))C·,Á we get that (15) is

1
1 ≠ O(“) ·

1
C·,Á

(log2 n+O(
Ú
logn log 1

”
+ log 1

”
))

As 1

1≠O(“)
is 1 +O(“), our lemma holds. J
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Algorithm 4 Noisy Binary Search that gets the optimal expected queries.

1: procedure SillyBayesianScreeningSearch({ci}ni=1
, n, ·, Á, ”)

2: return

I
Random([n ≠ 1]) w.p. ” ≠ ”/ log2 n
BayesianScreeningSearch({ci}ni=1

, n, ·, Á, ”

log(n)
) otherwise

Proof of Corollary 3. The failure probability of SillyBayesianScreeningSearch is Æ
” ≠ ”/ log2 n+(1≠ ” + ”/ log2 n)”/ log2 n = ” ≠ ”2/ log2 n+ ”2/ log2

2
n Æ ”. We use 0 samples

with probability ” ≠ ”/ log2 n, and the expression in Theorem 1 with ”Õ = ”/ log2 n, with
probability 1 ≠ ” + ”/ log2 n. J

Proof of Lemma 8. Omitted, see the full version. J

I Lemma 14 (Shannon’s Strong Converse Theorem). Over any discrete memoryless channel,

for R > C

Pe Ø 1 ≠ K1

n(R ≠ C)2 ≠ exp(≠K2n(R ≠ C))

where Pe is the probability of error, K1,K2 are positive constants which depend on the

channel, n is the input alphabet size, R is the rate of information, and C is the channel

capacity [8].

Proof of Theorem 2. Let – = 1

1+
K

C·,Á

Ô
—(n≠1)

, for constant K to be determined later. Sup-

pose that A uses at most – log2(n≠1)

C·,Á

samples with probability at least ” + —. Let AÕ be
the algorithm that runs A, but outputs a random answer if A uses more than – log2(n≠1)

C·,Á

samples. AÕ fails only whenever A fails or uses more than – log2(n≠1)

C·,Á

samples, so by a union
bound AÕ has a failure probability of at most 1 ≠ —. By Lemma 8 we can construct a
protocol over a discrete memoryless channel with capacity C·,Á that communicates at rate
R = log2(n≠1)

– log2(n≠1)
C·,Á

= C·,Á

–
= C

–
with a failure probability of at most 1 ≠ —.

By Lemma 14 we have that

1 ≠ — Ø 1 ≠ K1

(n ≠ 1)(R ≠ C)2 ≠ exp(≠K2(n ≠ 1)(R ≠ C))

= 1 ≠ K1

(n ≠ 1)((1/– ≠ 1)C)2 ≠ exp(≠(n ≠ 1)K2((1/– ≠ 1)C))

= 1 ≠ K1—

K
≠ exp(≠

Ú
n ≠ 1

—
K2K)

Ø 1 ≠ —

2 su�ciently large K and n

which is a contradiction. Therefore with probability at least 1 ≠ ” ≠ — A uses
1

1+
KÔ

—(n≠1)(C·,Á)

1

C·,Á

log2 n samples. J

Proof of Theorem 4. Omitted, see the full version. J
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Abstract

In the recently introduced framework of solution discovery via reconfiguration [Fellows et al.,
ECAI 2023], we are given an initial configuration of k tokens on a graph and the question is whether
we can transform this configuration into a feasible solution (for some problem) via a bounded number b
of small modification steps. In this work, we study solution discovery variants of polynomial-time
solvable problems, namely Spanning Tree Discovery, Shortest Path Discovery, Matching

Discovery, and Vertex/Edge Cut Discovery in the unrestricted token addition/removal model,
the token jumping model, and the token sliding model. In the unrestricted token addition/removal
model, we show that all four discovery variants remain in P. For the token jumping model we
also prove containment in P, except for Vertex/Edge Cut Discovery, for which we prove
NP-completeness. Finally, in the token sliding model, almost all considered problems become
NP-complete, the exception being Spanning Tree Discovery, which remains polynomial-time
solvable. We then study the parameterized complexity of the NP-complete problems and provide a
full classification of tractability with respect to the parameters solution size (number of tokens) k
and transformation budget (number of steps) b. Along the way, we observe strong connections
between the solution discovery variants of our base problems and their (weighted) rainbow variants
as well as their red-blue variants with cardinality constraints.
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1 Introduction

In classical optimization problems, we are given a problem instance and the task is to
compute an optimal solution. However, in many applications and real-world scenarios we are
already provided with a current solution, albeit non-optimal or infeasible for a given instance.
Depending on the application, it might be desirable to find an optimal or feasible solution
via a bounded number of small modification steps starting from the current solution.

Very prominent examples for such “systems” are typically settings where humans are
involved in the system and big changes to the running system are not easily implementable or
even accepted. When optimizing public transport lines, shift plans, or when assigning workers
to tasks it is clearly desirable to aim for an optimal solution that is as similar as possible to
the current state of the system. Fellows et al. [13] recently introduced the solution discovery

via reconfiguration framework addressing the computational aspects of such problems. In
their model, an optimizer is given a problem instance together with a current (possibly)
infeasible solution. The aim is to decide whether a feasible solution to the given problem
can be constructed by applying only a bounded number of changes to the current state. We
extend this line of work and focus on core polynomial-time solvable problems on graphs,
namely Spanning Tree, Shortest Path, Matching, and Vertex/Edge Cut. More
precisely, for any of the four aforementioned problems, say �, we consider instances consisting
of a graph G, a budget b, and a starting configuration of k tokens, which is not necessarily a
feasible solution for � (and where tokens either occupy vertices or edges of G). The goal
is to decide whether one can transform the starting configuration of tokens into a feasible
solution for � by applying at most b “local changes”.

The solution discovery framework is inspired by approaches transforming one solution
to another such as local search, reoptimization, and combinatorial reconfiguration. Local

search is an algorithmic paradigm that is based on iterative improvement of solutions in a
previously defined neighborhood. In contrast to our setting, local search typically improves
the current solution in each step, while we allow arbitrary configurations between the starting
and ending configurations (our only restriction is that each vertex/edge can be occupied
by at most one token). In reoptimization the aim is also to compute optimal solutions
starting from optimal solutions of “neighboring” instances (distance between instances being
usually defined as the number of vertex/edge addition/deletion required to make the two
graphs isomorphic). Closely related is the field of sensitivity analysis, a very classical area
studying how sensitive an optimal solution is (how it reacts) to small changes in the input. In
combinatorial reconfiguration we are also given a starting solution, but additionally a target

solution, and very often constraints on the intermediate steps, e. g., that every intermediate
step maintains a valid solution. In our setting the target and intermediate steps are not
explicitly specified, but we aim for any final configuration satisfying some desired properties.

As an illustrating example application, consider the scenario in which a city experiences
severe weather conditions, leading to a rapid increase in river water levels. The city relies
on the protection of a dam, but there is a foreseeable risk that the dam may eventually
fail. We assume that the dam breaks (continuously) from point A to point B, where the
(shortest) distance between A and B in our graph-view of the world is exactly k vertices
(including A and B). In anticipation of such emergencies, the city has also placed (at least) k
sandbags in fixed locations across the city so that one can move them as fast as possible
to avoid greater damage (we here make the simplifying assumption that each unit of the
broken dam can be fixed by a single sandbag). When the dam breaks we can easily compute
a shortest path between A and B, which also allows us to compute the minimum number of
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sandbags required to stop the flowing water. However, computing such a shortest path is not
enough in this situation. Instead, we additionally need to account for sandbags having to
move to the appropriate locations as quickly as possible. This corresponds exactly to the
problem of finding a shortest path (between two fixed vertices) that is quickly reachable from
a predefined set of positions (vertices) in the graph. In other words, this motivates the study
of discovery variants of the Shortest Path problem.

An alternative perspective at solution discovery problems is as follows. Consider a vertex
(resp. edge) selection problem � on graphs. Assume that each element (vertex or edge) in
the solution of size k must be supported by one of k support points, which are located at k
di�erent elements of the input graph, and which can each support exactly one element of
the solution. The cost of supporting an element is measured by the distance to the chosen
support point. The problem of deciding whether there exists a solution that can be supported
with cost b corresponds to a discovery variant of problem �.

Before we proceed and state our results we quickly recall the solution discovery framework
of Fellows et al. [13] (see preliminaries for formal definitions). Consider an instance of a
vertex (resp. edge) selection problem � on graphs, where some vertices (resp. edges) of the
input graph are occupied by (distinct and indistinguishable) tokens. A token may be moved
(in a specific way depending on the concrete model) for a cost of 1. In the unrestricted token

addition/removal model1, an existing token may be removed, or a new token may be placed
on an unoccupied vertex (resp. edge) for a cost of 1. In the token jumping model, a token
may be moved from one vertex (resp. edge) to an arbitrary unoccupied vertex (resp. edge) for
a cost of 1. In the token sliding model, a token may be moved to a neighboring unoccupied
vertex (resp. edge) for a cost of 1. The goal is to move the tokens such that they form a
valid solution for problem � within the given budget. We remark that these notions of token
moves have also been studied in the realm of combinatorial reconfiguration [21, 24].

Fellows et al. [13] considered the solution discovery variants of (computationally hard)
fundamental graph problems, namely Vertex Cover, Independent Set, Dominating

Set and Vertex Coloring. The complexity of solution discovery for Vertex Coloring

in the color flipping model was studied in [16] under the name k-Fix and in the color
swapping model in [10] under the name k-Swap. Since these problems, which we call base
problems, are NP-complete, it is not surprising that their solution discovery variants are also
NP-complete in all of the aforementioned models. In this work, we continue the examination
of the solution discovery framework and focus on the discovery variants of polynomial-time
solvable base problems, namely Spanning Tree Discovery, Shortest Path Discovery,
Matching Discovery, and Vertex/Edge Cut Discovery. When a base problem is
polynomial-time solvable, one may, given an instance with a partial or infeasible solution,
e�ciently compute an optimal solution from scratch. However, as previously illustrated,
there are situations in which a solution that is close to a currently established configuration
is more desirable. As we show in this work, the constraints put on these problems in the
solution discovery framework, namely a limited number of changes, can drastically alter their
complexities.

We observe strong connections between the solution discovery variants of our base
problems and their weighted rainbow variants as well as their red-blue variants with cardinality

constraints. An instance of a weighted rainbow vertex (resp. edge) selection problem consists

1 We call the model “unrestricted” to di�erentiate it from the addition/removal model usually considered
in reconfiguration problems as the latter imposes a lower or upper bound on the number of tokens in
the graph at all times.
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of a weighted vertex (resp. edge) colored graph, and the solution of such an instance may
not contain two vertices (resp. edges) of the same color, while “collecting” a certain amount
of weight. We show that if (the parameterized version of) the weighted rainbow variant of
problem � admits a fixed-parameter tractable (FPT-) algorithm, then this algorithm can be
used to design a fixed-parameter tractable algorithm for the solution discovery variant of �
in the token sliding model. Similarly, solving the solution discovery variant of a problem in
the token jumping model boils down to solving the red-blue variant of that same problem.
An instance of a red-blue vertex (resp. edge) selection problem consists of a graph where
every vertex (resp. edge) is either colored red or blue and two integer parameters k and b.
The goal is to find a solution of size k that contains at most b blue vertices (resp. edges).

1.1 Our results

We provide a full classification of tractability vs. intractability with respect to the classical
as well as the parameterized complexity of the aforementioned solution discovery problems in
all three token models (Table 1). Moreover, we prove some results for rainbow problems as
well as red-blue problems, which we believe to be of independent interest. Our main results
can be summarized as follows:

Spanning Tree Discovery, Shortest Path Discovery, Matching Discovery,
and Vertex/Edge Cut Discovery are polynomial-time solvable in the unrestricted
token addition/removal model.
Spanning Tree Discovery, Shortest Path Discovery and Matching Discovery

are polynomial-time solvable, while Vertex/Edge Cut Discovery is NP-complete in
the token jumping model.
Spanning Tree Discovery is polynomial-time solvable, while Shortest Path Dis-

covery, Matching Discovery, and Vertex/Edge Cut Discovery are NP-complete
in the token sliding model.

We then consider the parameterized complexity of the NP-complete discovery problems
and establish the following connection with their rainbow variants.

Meta theorem: For an optimization problem �, if the weighted Rainbow-� prob-
lem (parameterized by solution size k) admits an FPT algorithm, then �-Discovery

(parameterized by solution size k) admits an FPT algorithm in the token sliding model.

FPT algorithms for the Weighted Rainbow Shortest Path problem [1], Weighted

Rainbow Matching problem [19], and the Weighted Rainbow Vertex/Edge Cut

problem (which we provide in this paper) immediately imply FPT algorithms for the discovery
variants parameterized by k (in the token sliding model). We demonstrate the power of our
meta theorem by using it to show that Vertex/Edge Cut Discovery is FPT with respect
to parameter k in the sliding model. For Shortest Path Discovery and Matching

Discovery, we then give more intuitive and direct FPT algorithms, which also achieve
better running times. We conclude by studying the parameterized complexity of all hard
problems (not covered by the meta-theorem) when parameterized by either k or b, obtaining
the following results.

Shortest Path Discovery, Matching Discovery, and Vertex/Edge Cut Dis-

covery are FPT when parameterized by solution size k in the token sliding model.
Furthermore, Vertex/Edge Cut Discovery is FPT when parameterized by k in the
token jumping model.
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Table 1 Overview of our results.

Spanning Tree Shortest Path Matching Vertex/Edge Cut

Discovery
Add/Rem. in P in P in P in P

Discovery
Jumping in P in P in P NP-c., FPT[k],

W[1]-hard[b]
Discovery
Sliding in P NP-complete,

FPT[k], FPT[b]
NP-c., FPT[k],
W[1]-hard[b]

NP-c., FPT[k],
W[1]-hard[b]

Rainbow in P [6] NP-complete NP-complete
on paths [25]

NP-complete [3],
NP-c. on planar

Red-Blue in P in P in P NP-c., FPT[k],
W[1]-hard[b]

Shortest Path Discovery is FPT, while Matching Discovery and Vertex/Edge

Cut Discovery are W[1]-hard when parameterized by the budget b in the token sliding
model. Furthermore, Vertex/Edge Cut Discovery is W[1]-hard when parameterized
by the budget b in the token jumping model.

1.2 Related work

The solution discovery framework is closely related to the combinatorial reconfiguration
framework, introduced by Ito et al. [21] and studied widely since then. In the reconfiguration
variant of a problem we are given an initial solution S and a target solution T and the
question is whether S can be transformed into T by a sequence of reconfiguration steps
(e. g., token additions/removals, token jumps, or token slides) such that each intermediate
configuration also constitutes a solution.

The Minimum Spanning Tree Reconfiguration problem by edge exchanges, i.e.,
token jumps, was first studied by Ito et al. [21]. They showed that the problem is in P by
extending the exchange property of matroids to the reconfiguration of weighted matroid
bases. Shortest Path Reconfiguration was introduced by KamiÒski et al. [23] and
shown to be PSPACE-complete by Bonsma [4]. Reconfiguration of perfect matchings was
studied by Ito et al. [22]. The Vertex Cut Reconfiguration and Minimum Vertex

Cut Reconfiguration problems were studied by Gomes et al. [18, 17]. For further related
work on reconfiguration problems we refer the reader to the surveys of van den Heuvel [20],
Nishimura [28], and Bousquet et al. [5].

Rainbow spanning trees have been investigated by Broersma and Li [6]. They characterize
graphs in which there exists a rainbow spanning tree via matroid intersection. The question
to decide whether a graph contains a rainbow path has been studied in the classical and
influential work of Alon et al. [1] that introduced the color coding technique. In the related
Rainbow s-t-Connectivity problem the question is to decide whether there exists a
rainbow path between s and t, that is, a path on which no color repeats [31]. To the best of
our knowledge the Rainbow Shortest Path problem has not been studied in the literature.
We refer the reader to [7] for more background. The Rainbow Matching problem is
NP-complete, even when restricted to properly edge-colored paths [25]. The Rainbow

s-t-Cut problem is known to be NP-complete [3] on general graphs. We show that this
problem remains NP-complete even if we restrict it to the class of planar graphs.
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We furthermore consider red-blue variants of our base problems. Graphs are now vertex
(resp. edge) colored with colors red and blue. We are given two integers k and b and the
question is whether there exists a solution of size k using at most b blue vertices (resp. edges).
To the best of our knowledge these problem variants have not been studied in the literature,
however, variants where we have a cardinality constraint on both colors are related, but
seem to be more di�cult to solve. For example in the Color Constrained Matching

problem [29] we are given a 2-edge-colored graph (colors red and blue) and two parameters k
and w and we search for a matching of size k with at most w blue and at most w red edges.
This problem is known to be at least as hard as the Exact Matching problem [29] (via
a logarithmic-space reduction), which was introduced in [30]. Here, where we are given a
red-blue edge-colored graph and a parameter b and the question is whether there exists a
perfect matching with exactly b blue edges. The complexity of Exact Matching has been
open for more than 40 years [26].

2 Preliminaries

We denote the set of non-negative integers by N and the set of non-negative reals by R+.
For k œ N we define [k] = {1, 2, . . . , k} with the convention [0] = ?.

Graphs. We consider finite and loopless graphs. An undirected simple graph G consists
of its vertex set V (G) and edge set E(G), where E(G) is a subset of all two element sets
of V (G). Similarly, the edge set E(G) of a directed simple graph is a subset of pairs of its
vertices. In a multigraph we allow E(G) to be a multiset. We assume our graphs to be
undirected and simple if not stated otherwise. We denote an edge connecting vertices u and v
by uv. Observe that uv = vu for every undirected edge uv œ E(G). A sequence v1, . . . , vq
of pairwise distinct vertices is a path of length q ≠ 1 if vivi+1 œ E(G) for all 1 Æ i < q. We
write Pq for the path of length q. The distance distG(u, v) (or simply dist(u, v) if G is clear)
between two vertices u, v œ V (G) is the length of a shortest path starting in u and ending
in v in G. A graph is d-degenerate if it can be reduced to the empty graph by iterative
removal of vertices of degree at most d. For example, forests are 1-degenerate. A graph is
bipartite if its vertices can be partitioned into two parts A,B such that no edge has both its
endpoints in the same part. Equivalently, a graph is bipartite if it does not contain cycles of
odd length. For a vertex subset S ™ V (G), we denote by G[S] the subgraph of G induced
by S, i.e., the graph with vertex set S and edge set {uv œ E(G) | u, v œ S}. Likewise, for
an edge subset M ™ E(G), we denote by G[M ] the graph with edge set M and vertex set
{u, v | uv œ M}.

An edge coloring Ï : E(G) æ C is a function mapping each edge e œ E(G) to a color
Ï(e) œ C. Similarly, a vertex coloring assigns colors to vertices. An edge-weight function is a
function w : E(G) æ R+, and similarly a vertex-weight function assigns weights to vertices.
We denote colored weighted graphs by tuples (G,w,Ï). The weight of a set of vertices/edges
is the sum of the weights of its elements.

Solution discovery. Let G be a graph. A configuration of G is either a subset of its vertices
or a subset of its edges. We formalize the notions of token moves. In the unrestricted

token addition/removal model2, a configuration C Õ can be obtained (in one step) from C,
written C „ C Õ, if C Õ = C fi {x} for an element x /œ C, or if C Õ = C \ {x} for an element

2 Recall that this definition di�ers from the definition in [13].
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x œ C. In the token jumping model, a configuration C Õ can be obtained (in one step) from C
if C Õ = (C \ {y}) fi {x} for elements y œ C and x /œ C. In the token sliding model, a
configuration C Õ can be obtained (in one step) from C if C Õ = (C \ {y}) fi {x} for elements
y œ C and x /œ C if x and y are neighbors in G, that is, if x, y œ V (G), then xy œ E(G);
and if x, y œ E(G), then x fl y ”= ?. If C Õ can be obtained from C (in any model), we write
C „ C Õ. A discovery sequence of length ¸ in G is a sequence of configurations C0C1 . . . C¸

of G such that Ci „ Ci+1 for all 0 Æ i < ¸.
Let � be a vertex (resp. edge) selection problem, i.e., a problem defined on graphs such

that a solution consists of a subset of vertices (resp. edges) satisfying certain requirements.
The �-Discovery problem is defined as follows. We are given a graph G, a subset S ™ V (G)
(resp. S ™ E(G)) of size k (which at this point is not necessarily a solution for �), and a
budget b (as a non-negative integer). The goal is to decide whether there exists a discovery
sequence C0C1 . . . C¸ in G for some ¸ Æ b such that S = C0 and C¸ is a solution for �.

Note that for discovery problems in the token sliding model we can always assume that
b Æ kn, where n is the number of vertices in the input graph. This follows from the fact that
each token will have to traverse a path of length at most n to reach its target position. For
discovery problems in the token jumping model we can always assume b Æ k, as it is su�cient
to move every token at most once. Similarly, for the unrestricted token addition/removal
model we can always assume that b Æ n for vertex selection problems and b Æ m for edge
selection problems, where m is the number of edges in the input graph. As k is trivially
upper-bounded by n for vertex selection problems (resp. m for edge selection problems), all
solution discovery variants we consider are in NP and thus proving NP-hardness su�ces to
prove NP-completeness.

Parameterized complexity. A parameterized problem is a language L ™ �ú
◊ N, where �

is a fixed finite alphabet. For an instance (x,Ÿ) œ �ú
◊ N, Ÿ is called the parameter. The

problem L is called fixed-parameter tractable, FPT for short, if there exists an algorithm that
on input (x,Ÿ) decides in time f(Ÿ) · |(x,Ÿ)|c whether (x,Ÿ) œ L, for a computable function f
and constant c.

The W-hierarchy is a collection of parameterized complexity classes FPT ™ W[1] ™

W[2] ™ . . .. It is standard to assume that the inclusion FPT ™ W[1] is strict. Therefore,
showing intractability in the parameterized setting is usually accomplished by establishing
an FPT-reduction from a W-hard problem.

Let L,LÕ
™ �ú

◊ N be parameterized problems. A parameterized reduction from L to LÕ

is an algorithm that, given an instance (x,Ÿ) of L, outputs an instance (xÕ,ŸÕ) of LÕ such that
(x,Ÿ) œ L … (xÕ,ŸÕ) œ LÕ, ŸÕ

Æ g(Ÿ) for some computable function g, and the running time
of the algorithm is bounded by f(Ÿ) · |(x,Ÿ)|c for some computable function f and constant c.
We refer to the textbooks [9, 12, 14] for extensive background on parameterized complexity.

3 Spanning trees

A spanning tree in a connected graphG is a subset of edges EÕ
™ E(G), where |EÕ

| = |V (G)|≠1
and G[EÕ] is a tree containing all vertices of G. In the Spanning Tree problem we are
given a graph G and the goal is to compute a spanning tree in G.

ICALP 2024



76:8 Solution Discovery via Reconfiguration for Problems in P

3.1 Rainbow minimum spanning trees

We reduce the problem of discovering spanning trees in the sliding model to the problem
of finding (weighted) rainbow spanning trees. A spanning tree T ™ E(G) in a weighted
edge-colored multigraph (G,w,Ï) is a rainbow spanning tree if every edge in T has a distinct
color, i.e., ’e, eÕ

œ T we have Ï(e) = Ï(eÕ) if and only if e = eÕ. In the Rainbow Minimum

Spanning Tree (Rainbow MST) problem, we are given (G,w,Ï) and the goal is to
compute a rainbow spanning tree of minimum total weight in G, or report that no such
rainbow spanning tree exists. The Rainbow Spanning Tree (Rainbow ST) problem can
be defined similarly, i. e., by dropping the weights or assuming that all weights are uniform.

Rainbow spanning trees and their existence have been discussed by Broersma and Li [6].
In our reduction we will construct an instance of Rainbow Minimum Spanning Tree that
trivially guarantees the existence of at least one rainbow spanning tree. We show that we
can find a Rainbow MST e�ciently, even in multigraphs. The proof of the theorem uses
arguments similar to those presented in [6] and builds on matroid intersection.

I Theorem 1. The Rainbow Minimum Spanning Tree problem in weighted edge-colored

multigraphs can be solved in polynomial time.

3.2 Spanning tree discovery

In the Spanning Tree Discovery (STD) problem in the token sliding model, we are given
a graph G, an edge subset S ™ E(G) with |S| = |V (G)| ≠ 1 as a starting configuration, and
a non-negative integer b. The goal is to decide whether there is a spanning tree of G that
can be discovered (starting from S) using at most b token slides.

I Theorem 2. The Spanning Tree Discovery problem in the token sliding model can be

solved in polynomial time.

In the full version of the paper we show that the weighted discovery problem, i.e., where
we seek a spanning tree of minimum weight, can also be solved in polynomial time.

4 Shortest paths

A shortest path between two vertices of a graph G, say s and t, is a path connecting s and t
of minimum length. In the Shortest Path problem we are given a graph G and s, t œ V (G)
and the goal is to compute a shortest path between s and t in G.

4.1 Rainbow shortest paths

In the Rainbow Shortest Path (Rainbow SP) problem we are given a vertex-colored
graph (G,Ï) and two vertices s, t œ V (G). A shortest path P from s to t in G is a rainbow

shortest path if every vertex in P has a distinct color, i. e., ’v, vÕ
œ V (P ), we have Ï(v) = Ï(vÕ)

if and only if v = vÕ. The Rainbow Shortest Path problem asks for a rainbow shortest
path P from s to t in G (one can similarly define the edge-colored variant of the problem).

Rainbow paths have been studied in the literature before, specifically in relation to the
rainbow vertex-connection or edge-connection number of a graph. We refer the reader to [7]
for more details. In the following theorem, we show that the extra rainbow requirement
makes the problem a lot harder than the base problem, even on very restricted families of
graphs. To do so, we describe a reduction from the NP-complete [15] Hamiltonian Path

problem to the Rainbow Shortest Path problem.
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I Theorem 3. The Rainbow Shortest Path problem is NP-complete on the class of

2-degenerate bipartite graphs.

Proof. The fact that the problem is in NP is immediate. We show NP-hardness by a
reduction from the Hamiltonian Path problem, which is known to be NP-complete [15].
Given an instance G of Hamiltonian Path, where G is a graph with n vertices denoted by
V (G) = {v1, . . . , vn}, we construct an instance (H,Ï, s, t) of Rainbow Shortest Path as
follows. See Figure 1 for an illustration.

s

V1

ai
V2

W1

. . .

Vn

t

bi

Figure 1 An illustration of the hardness reduction for the Rainbow Shortest Path problem.

First, H consists of two vertices s and t. For every pair i, j Æ n we add a new vertex vi,j
in H. We define Vi = {vi,j | j Æ n}. Then, for every i < n and e œ E(G) we add a new
vertex wi,e and define Wi = {wi,e | e œ E(G)}. Finally, for every i Æ n we add new vertices ai
and bi. We define A = {ai | i Æ n} and B = {bi | i Æ n}. We connect the vertices as
follows. For every i Æ n, we insert the edges {s, ai}, {ai, v1,i}, {vn,i, bi}, and {bi, t}. Finally,
for every i < n and e = {vj , v¸} we insert the edges {vi,j , wi,e} and {wi,e, vi+1,¸}. We assign
all vertices in A the same color, all vertices in B the same new color, all vertices {vi,j | i Æ n}
the same new color (this set represents all copies of a vertex v œ V (G)), all vertices in Wi

the same new color, all vertices in B the same new color, and s and t receive two fresh new
colors. This finishes the construction of the instance (H,Ï, s, t).

Observe that H is indeed bipartite and 2-degenerate; all vertices of the form wi,j are of
degree two. Their removal results in a forest, which is 1-degenerate. Bipartiteness follows
from the fact that there are no edges in G[S], G[T ], G[Vi], nor G[Wi].

We show that G contains a Hamiltonian path if and only if (H,Ï, s, t) is a yes-instance
of Rainbow Shortest Path. Observe that every shortest s-t-path in H consists of s,
exactly one of the vertices ai œ A, exactly one vertex from every Vi and one from every Wi,
exactly one of the vertices bi œ B and t. Hence, there is no path of length less than 2n+ 2
and every such path of length 2n+ 2 is exactly of this form.

Now assume that G contains a Hamiltonian path vi1vi2 . . . vin . We pick the following
vertices in H. We pick ai1 and bin , the vertices vj,ij , and, for every j < n, we pick the
vertices wj,e where e = {vij , vij+1}. It is not hard to see that these vertices indeed form a
rainbow shortest path from s to t in H.

Conversely, assume that (H,Ï, s, t) is a yes-instance of Rainbow Shortest Path. By
the above observations, every shortest path must be of the same form (picking vertices from
the same sets). As every rainbow shortest path cannot contain two copies of the same vertex
from V (G) the claim follows, finishing the proof. J

4.2 Shortest path discovery

In the Shortest Path Discovery (SPD) problem in the token sliding model we are given
a graph G, two vertices s, t œ V (G), a starting configuration S ™ V (G) with |S| = k, which
is equal to the number of vertices on a shortest path between s and t (including s and t),
and a non-negative integer b. The goal is to decide whether we can discover a shortest path
between s and t (starting from S) using at most b token slides. We denote an instance of
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Shortest Path Discovery by a tuple (G, s, t, S, b). We show that the Shortest Path

Discovery problem is NP-complete even when restricted to 2-degenerate bipartite graphs
by a minor modification of the reduction from the Hamiltonian Path problem to the
Rainbow Shortest Path problem.

I Theorem 4. The Shortest Path Discovery problem in the token sliding model is

NP-complete on the class of 2-degenerate bipartite graphs.

In fact, since Hamiltonian Path remains NP-complete on cubic planar graphs, it turns
out that the class of all graphs arising in the reduction of Theorem 4 is not only 2-degenerate
but also has bounded expansion.

It remains an interesting open problem to determine whether Shortest Path Discovery

is polynomial-time solvable on classes of graphs excluding a topological minor, or even on
planar graphs. Next, we show that the problem is fixed-parameter tractable with respect to
the parameter k as well as the parameter b.

I Theorem 5. The Shortest Path Discovery problem in the token sliding model is

fixed-parameter tractable with respect to parameter k.

Proof. Let (G, s, t, S, b) be an instance of SPD. For every v œ V (G) we compute its distance
to s and delete v if the distance is larger than k. We enumerate the tokens in S as
s0, s1, . . . , sk≠1 such that token si shall slide to a vertex at distance i from s. There are k!
such enumerations. Now we orient and assign weights to the edges of G to obtain a weighted
directed graph H. If uv is an edge such that distG(s, u) = i and distG(s, v) = i + 1, then
we orient the edge as (u, v) and assign it weight distG(si+1, v), that is, the cost of moving
token si+1 to vertex v. We delete all edges that did not receive a weight, that is, all edges
that connect vertices at the same distance from s.

Since H contains only edges between vertices of distance i to distance i + 1 from s,
an s-t-path in H corresponds to a shortest s-t-path in G. Furthermore, by definition of
the weights, a shortest s-t-path P (with respect to the weights) corresponds exactly to the
discovery of a shortest path in G where token si slides to the vertex of P which is at distance i
from s. We can therefore simply compute a shortest s-t-path in H and verify whether its
weight is at most b ≠ distG(s, s0). Since H is a DAG we can compute such a path in time
O(n+m) and, consequently, the full algorithm runs in time O(k!(n+m)). J

I Theorem 6. The Shortest Path Discovery problem in the token sliding model is

fixed-parameter tractable with respect to parameter b.

Proof. Let (G, s, t, S, b) be an instance of SPD. Let us call the vertices at distance i from s
the vertices at level i. If we can discover a solution with budget b, then it must be the case
that all but at most b tokens of S are already in their correct positions. In particular, there
can be at most b many levels that do not contain a token from S and at most b many levels
containing two or more tokens (and each level can contain at most b+ 1 many tokens). We
call levels not containing exactly one token very bad levels. Now, for a level i containing
exactly one token on vertex v (not a very bad level), we say that i is a bad level whenever
one of the following is true:

i ≠ 1 Ø 0, level i ≠ 1 contains exactly one token on vertex u, and uv /œ E(G); or
i+ 1 Æ dist(s, t) + 1, level i+ 1 contains exactly one token on vertex w, and vw /œ E(G).
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Note that we can have at most b very bad levels and at most 3b bad levels (every 3 bad levels
require at least one unit of the budget); otherwise we can reject the instance. Each bad or
very bad level contains at most b+ 1 tokens and at most b tokens do not belong to a level
between s and t. Hence, the total number of tokens that potentially have to move is so far
5b(b+ 1) = 5b2 + 5b (located on at most 5b levels).

We call a level that is neither bad nor very bad a good level. Note that we can group the
good levels into at most 5b+ 1 groups of consecutive levels. Moreover, the tokens of each
group form a path. We denote those paths by P1, . . . , Pq, for q Æ 5b+ 1. Consider some Pi

with at least 2b+ 1 many vertices, say Pi = v1 . . . v¸ for ¸ Ø 2b+ 1. Let vx be a vertex of Pi

such that ¸ + 1 Æ x Æ ¸ ≠ (b+ 1). In other words, there are at least b vertices preceding and
at least b vertices succeeding vx in Pi. In what follows we assume, without loss of generality,
that the token on vx does not move whenever vx belongs to the final shortest path between s
and t. This is a safe assumption because if any other token must pass via vx to reach its
destination we simply swap the roles of both tokens. In other words, getting a token on vx
does not consume any units of the budget. We claim that in a shortest discovery sequence
of at most b token slides the token on vertex vx does not move. This follows from the fact
that otherwise it must be the case that either all tokens on vy, 1 Æ y < x, or all tokens
on vz, ¸ Ø z > x, must move. However, as there are at least b tokens to move in either
case this contradicts the fact that our discovery sequence slides no more than b tokens. To
prove that either every token before or after vx must move in a shortest discovery sequence
we aim towards a contradiction. Assume that the token at level x moves but there are
two levels y < x and z > x such that the tokens on level y and z do not move. Since the
subpath between levels y and z is already a path connecting vy and vz (going through vx),
the movement of the token at level x can be ignored, contradicting our assumption of a
shortest discovery sequence. Since at most b tokens can move, and by symmetry, we conclude
that at most 2b many tokens on the two boundaries of Pi can move. We call the tokens on
good levels that are not at distance at most b from some boundary of a Pi fixed tokens. Note
that the number of tokens that are not fixed is at most 10b2 + 2b.

Putting it all together, we conclude that the set of tokens that can potentially move has
size at most 15b2 + 7b. We can now proceed just as in the proof of Theorem 5 to obtain the
required algorithm for parameter b; we can now guess the subset of tokens that move as well
as the level each moving token will occupy. J

5 Matchings

A matching in a graph G is a set of edges M ™ E(G) such that each vertex v œ V (G)
appears in at most one edge in M . In the Matching problem we are given a graph G and
an integer k and the goal is to compute a matching of size k in G.

5.1 Rainbow matchings

We show NP-hardness of the Matching Discovery problem via a reduction from the
Rainbow Matching problem. Let (G,Ï) be an edge-colored graph. A matching M ™ E(G)
is said to be a rainbow matching if all edges in M have pairwise distinct colors. Formally,
the Rainbow Matching problem is defined as follows. Given an edge-colored graph (G,Ï)
and an integer k, decide whether there exists a rainbow matching of size k in G.

I Theorem 7 ([25]). The Rainbow Matching problem is NP-complete, even when restricted

to properly edge-colored paths.
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5.2 Matching discovery

In the Matching Discovery problem in the token sliding model we are given a graph G,
a starting configuration S ™ E(G) of size k, and a non-negative integer b. The goal is to
decide whether we can discover a k-sized matching M (starting from S) using at most b
token slides. Recall that a token on some edge e can only slide (in one step) to some edge eÕ

such that e and eÕ are adjacent, i.e., share a vertex. We denote an instance of Matching

Discovery by a tuple (G,S, b). We first show that the Matching Discovery problem is
NP-complete even on restricted graph classes.

I Theorem 8. The Matching Discovery problem in the token sliding model is NP-hard
on 2-degenerate bipartite graphs.

Furthermore, we show intractability of the problem when parameterized by the budget.
This result is established by a parameterized reduction from the W[1]-hard Multicolored

Clique problem and is the technically most demanding contribution of the paper.

I Theorem 9. The Matching Discovery problem in the token sliding model is W[1]-hard
when parameterized by b, even on the class of 3-degenerate graphs.

On the positive side, we next show that the Matching Discovery problem is fixed-
parameter tractable with respect to parameter k + b. Then we show that for any instance of
the problem one can bound b by a (quadratic) function of k, which implies fixed-parameter
tractability of the problem parameterized by k alone. We start with some relevant definitions.

Let d(t, w) denote the minimum number of slides token t has to slide in order to become
incident to vertex w. For an integer i œ {1, . . . , b} and a token t œ S, let Y i

t
= {w œ

V (G) | d(t, w) = i ≠ 1} and Zi
t
= {w œ V (G) | d(t, w) = i}. Let Gi

t
denote the graph

G[Y i
t

fi Zi
t
] ≠ E(G[Zi

t
]).

I Theorem 10. The Matching Discovery problem in the token sliding model parameterized

by both the number of tokens k and the budget b is fixed-parameter tractable.

Proof Sketch. Let (G,S, b) be an instance of the Matching Discovery problem, where
|S| = k. The algorithm proceeds as follows. We first guess a set SÕ

™ S of tokens that will
slide form their original positions. If such a guess leaves any overloaded vertices, i.e., vertices
incident to more than one token, we ignore the guess and proceed to the next one. Note that
this guessing procedure requires O(2k) time in the worst case. Next, for each r œ {0, 1, . . . , b}
and for a fixed SÕ, we guess a partition of r over the tokens in SÕ. In other words, we try all
possible ways of distributing the budget r over the tokens in SÕ.

Now, for a fixed subset SÕ, a fixed r, and a fixed distribution D of r over the tokens
of SÕ, let ri be the budget allocated to a token ti œ SÕ under D. The algorithm computes
the sets Y ri

ti
and Zri

ti
for each ti œ SÕ. The next step is to produce a set of candidate target

edges for each ti, which we denote by Ti. To do so, we run a maximum matching algorithm
in the graph Gri

ti
≠ (S \ SÕ). Roughly speaking, we show that it is enough to retain O(k2)

edges of the matching in Gri
ti

≠ (S \ SÕ); which also implies a bound on the size of Ti. Once
the candidate sets have been constructed, the algorithm exhaustively checks whether it can
reach a valid matching in the graph G where each token ti œ SÕ moves to some edge in Ti.
The algorithm declares a no-instance if no valid matching is found during the exhaustive
search; otherwise we have a yes-instance. J

Finally, using the notion of augmenting paths, we show that the algorithm of Theorem 10
is also a fixed-parameter tractable algorithm for parameter k alone by proving that k upper
bounds the parameter b.
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I Lemma 11. In any yes-instance (G,S, b) of the Matching Discovery problem in the

sliding model, b can be upper bounded by 2(k2 + k), where k = |S|.

Combining Theorem 10 with Lemma 11 we get the following result.

I Corollary 12. The Matching Discovery problem in the token sliding model is fixed-

parameter tractable with respect to parameter k.

6 Vertex/edge cuts

Let G be a graph and s and t vertices of G. A vertex s-t-cut is a set of vertices C ™ V (G)
such that every s-t-path contains a vertex of C. Likewise, an edge s-t-cut is a set of edges
C ™ E(G) such that every s-t-path contains an edge of C. In the Vertex Cut (resp. Edge
Cut) problem we are given a graph G, vertices s, t and an integer k and the goal is to
compute a vertex s-t-cut (resp. edge s-t-cut) of size k.

6.1 Rainbow vertex/edge cut

Given an edge-colored graph (G,Ï) with vertices s, t œ V (G), the Rainbow Vertex Cut

problem asks whether there exists a vertex s-t-cut C ™ V (G) such that all vertices in C
have pairwise di�erent colors. Such a cut is called a rainbow vertex s-t-cut. Likewise, the
Rainbow Edge Cut problem asks whether there exists an edge s-t-cut C ™ E(G) such
that all edges in C have pairwise di�erent colors. The Rainbow Edge Cut problem is
known to be NP-complete [3, Theorem 5.5]. We start by showing that the problem remains
NP-complete on planar graphs.

I Theorem 13. The Rainbow Edge Cut problem is NP-complete on planar graphs.

Proof. Containment in NP is clear as Rainbow Edge Cut on general graphs is in NP.
Hence we focus on the hardness proof. We present a reduction from Rainbow Matching

on paths. Let (P,Ÿ) be an instance of Rainbow Matching where P is a path on n vertices
denoted by v1, . . . vn and the edges are colored with colors from a color set C.

We construct an instance (G,Â : E(G) æ C
Õ) of Rainbow s-t-Cut as follows. The new

color set is CÕ = C fi {black} fi {ci | i Æ n ≠ 2}, that is, CÕ uses the colors from C as well as
n ≠ 2 fresh colors and the color black.

Let us describe the construction of G in detail; see Figure 2 for an illustration. In
the first step, G consists of Ÿ disjoint copies of P , which we call P1, . . . , PŸ. Let the
vertices of Pj be called vj,1 . . . vj,n. Additionally, we add two fresh vertices s and t. For
every j < Ÿ, insert a set Lj of n ≠ 1 fresh vertices, and call them uj,1, . . . , uj,n≠1. Hence,
V (G) =

t
jÆŸ

V (Pj) fi
t

j<Ÿ
V (Lj) fi {s, t}.

Now we connect s and t with a black edge, which enforces that this black edge must be
part of every (rainbow) s-t-cut. Hence, any other black edge may not be part of any rainbow
s-t-cut of G. We connect s and t to the vertices in Pj and Lj as follows. For every j Æ Ÿ
we insert the edges {s, vj,1} and {vj,n, t}, which are colored black. Likewise, for every j < Ÿ
we insert the edges {s, uj,1} and {uj,n≠1, t}, which are also colored black. Finally, for every
j < Ÿ and i Æ n ≠ 2, we insert the edge {vj,i, uj,i} which is colored black and the edges
{uj,i, vj,i+1} and {uj,i, vj+1,i+2}, which are colored ci. This finishes the construction.

We claim that P has a rainbow matching of size Ÿ if and only if G admits a rainbow
s-t-cut. Assume that P has a rainbow matching M = {e1, . . . , eŸ} of size Ÿ. Without loss
of generality, we assume that the edges in M are ordered with respect to the vi, i.e., if
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Figure 2 Illustration of the hardness reduction for Rainbow s-t-Cut on planar graphs.

ei = {v¸i , v¸i+1} and i < j, then ¸i < ¸j . We claim that the set C that consists of the black
edge {s, t}, the copy of ei in Pi, and the obvious edges connecting the Pi and Lj is a rainbow
s-t-cut of G. To be precise, we have

C = {s, t}fi {{vi,¸i , vi,¸i+1}, {ui,¸i , vi,¸i+1} | i Æ Ÿ}fi

€

iÆŸ

{{ui,j , vi,j+2} | ¸i < j Æ ¸i+1 ≠ 2}.

Observe that C is a cut by construction (see Figure 2), and that no two edges in C have
the same color, as M is a rainbow matching, and for every j < Ÿ and i Æ n ≠ 2 at most one
of the edges {vj,i, uji} and {uji , vj+1,i+2} is contained in C.

Now assume that G admits a rainbow s-t-cut. As s and t are directly connected, every
rainbow s-t-cut C for G must contain {s, t}. Furthermore, by construction C contains exactly
one edge from every Pj , say the edge {vj,¸i , vj,¸i+1}, as no other black edge is part of C.
We claim that M = {{v¸i , v¸i+1} | {vj,¸i , vj,¸i+1} œ C for some j Æ Ÿ} is a rainbow matching
of P . Obviously, M is rainbow, as C is rainbow. To show that M is indeed a matching,
observe that for all ¸i ”= ¸j we have |¸i ≠ ¸j | Ø 2, that is, M does not contain two (copies
of) consecutive edges of P . To see this, assume for the sake of contradiction that there are
i ”= j such that |¸i ≠ ¸j | Æ 1. Let j1 < j2 be such that {vj1,¸i , vj1,¸i+1} and {vj2,¸j , vj2,¸j+1}

are contained in C. By construction, C must also contain {uj1,¸i , vj1,¸i+1} and can hence
not contain {uj1,¸i , vj1+1,¸i+2}, as they share the same color. This however implies that
{vj2,¸j , vj2,¸i+1} cannot be contained in C, a contradiction. This finishes the proof. J

We reuse the ideas of the proof of Theorem 13 combined with standard tricks for
edge/vertex cuts, e.g., subdivision of edges, to obtain the following corollary.

I Corollary 14. The Rainbow Vertex Cut problem is NP-complete on planar graphs.

The following theorem is one of two main ingredients required for establishing the fixed-
parameter tractability of the discovery variants of cut problems parameterized by k, the
other being the aforementioned meta-theorem, which is formally stated in Section 7. In what
follows, we consider weighted variants of the rainbow problems, where in addition to finding
a rainbow cut of size k it is also required that it has weight at most b.
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I Theorem 15. The Weighted Rainbow Vertex/Edge Cut problem is fixed-parameter

tractable when parameterized by k.

Proof Sketch. We present an FPT algorithm for the Weighted Rainbow Vertex Cut

problem. The tractability of Weighted Rainbow Edge Cut follows by considering the
vertex cut version in the line graph of the input graph.

We use the treewidth reduction theorem [27, Theorem 2.15], which essentially states that
for every colored and weighted graph G and integer k we can e�ciently compute a graph H
of low treewidth that preserves all minimal vertex s-t-cuts of size at most k. Hence, it is
su�cient to find a minimum weight rainbow vertex s-t-cut of size at most k in H.

To do so, we apply the optimization version of Courcelle’s Theorem as presented in [2, 8].
In our case we conclude a running time of f(k) · n2 where f is some computable function
and n = |V (H)| Æ |V (G)|. J

6.2 Vertex/edge cut discovery

In the Vertex Cut Discovery problem in the token sliding model we are given a graph G,
vertices s, t œ V (G), a starting configuration S ™ V (G) of size k and a non-negative integer b.
The goal is to decide whether we can discover a vertex cut separating s and t in G (starting
from S) using at most b token slides. Similarly, in the Edge Cut Discovery problem,
we are given a graph G, vertices s, t œ V (G), a starting configuration S ™ E(G) of size k
and a non-negative integer b. The goal is again to decide whether we can discover an edge
cut separating s and t in G (starting from S) using at most b token slides. We denote an
instance of Vertex Cut Discovery resp. Edge Cut Discovery by a tuple (G, s, t, S, b).
We always use k to denote the size of S.

We prove that Vertex Cut Discovery in the token sliding model is NP-hard, fixed-
parameter tractable with respect to parameter k and W[1]-hard with respect to parameter b.
We show that these observations translate to Edge Cut Discovery as well. We start
by proving hardness via a reduction from the Clique problem, which is NP-hard and its
parameterized variant is W[1]-hard with respect to the solution size [11].

I Theorem 16. The Vertex Cut Discovery problem in the sliding model is NP-hard and

W[1]-hard with respect to parameter b on 2-degenerate bipartite graphs.

Proof Sketch. We show NP-hardness by a reduction from the Clique problem. The reduc-
tion is both a polynomial time reduction as well as a parameterized reduction, showing both
claimed results. Let (G,Ÿ) be an instance of the Clique problem.

We construct the following graph H (see Figure 3 for an illustration). We add two
vertices s and t in H where s has Ÿ pendent vertices, which we collect in a set named Z. For
every vertex u œ V (G), we add a vertex xu in H, which we connect with s, and for every
e œ E(G) we add a vertex ye in H, which we connect with t. Let X denote the set of the
xu and Y denote the set of the ye. For every vertex u œ V (G) and for each edge e œ E(G)
incident with u, connect xu and ye via a 1-subdivided edge (that is, a path with one interval
vertex). Furthermore, we add

!
Ÿ

2

"
disjoint paths P1, . . . , P(Ÿ

2), each with a single internal
vertex, connecting s and t. We denote the internal vertex of Pi by pi. This completes the
construction of H. We define the initial configuration S as Z fi Y and b = 2Ÿ + 2

!
Ÿ

2

"
. J

I Corollary 17. The Edge Cut Discovery problem in the token sliding model is NP-hard
and W[1]-hard with respect to parameter b on 2-degenerate bipartite graphs.

Finally, combining Theorem 15 and Theorem 19 (Section 7), we get the following result:

I Theorem 18. The Vertex/Edge Cut Discovery problem in the token sliding model is

fixed-parameter tractable with respect to parameter k.
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Figure 3 An illustration of the hardness reduction for the Vertex Cut Discovery problem.

7 Tractability via rainbow problems

In this section, we establish an algorithmic meta-theorem showing tractability of discovery
problems in the token sliding model (when parameterized by k) via the tractability of
(weighted) rainbow variants of optimization problems. We utilize the color-coding technique
introduced by Alon et al. [1] along with FPT algorithms for the rainbow problems to design
FPT algorithms for the discovery problems parameterized by k.

Let � be an optimization problem and (G, k) be an instance of �. In the Rainbow-�
problem we assume that G is either a vertex-colored graph or an edge-colored graph. The
parameter k refers to the solution size to be optimized. We consider problems that seek to
optimize the selection of edges or vertices, but not both. For instance, the rainbow variants
for shortest paths and vertex cuts are vertex selection problems whereas for spanning trees,
matchings and edge cuts we have edge selection problems. For a vertex (or edge) selection
problem, the Weighted Rainbow-� problem refers to the weighted variant where the input
graph G additionally has weights on the edges (or vertices) and we seek a solution of weight
at most b (amongst all solutions satisfying the cardinality constraint k).

I Theorem 19. For an optimization problem �, if the Weighted Rainbow-� problem

parameterized by k admits an FPT algorithm, then the �-Discovery problem in the token

sliding model parameterized by k admits an FPT algorithm.

Proof Sketch. Without loss of generality, assume that the problem � is an edge selection
problem. Let (G,S ™ E(G), b) be an instance of the �-Discovery problem. Let C be a
palette of k colors, and fi : C æ S be a bijection. We color the edges E(G) \ S uniformly at
random using C, yielding an edge coloring Ï : E(G) æ C. Now we define a weight function
w : E(G) æ R+ such that for each e œ E(G) we have w(e) = dist(e,fi(Ï(e))). Intuitively,
the weight function denotes the cost of moving a token from the initial configuration to an
edge with the same color. Observe that the weights of the edges in the initial configuration
are zero and they are colored using piece-wise distinct colors. Now we have an edge-colored
graph (G,Ï). We claim that if (G,Ï, k, b) is a yes-instance of the Weighted Rainbow-�
problem, then (G,S, b) is a yes-instance of the �-Discovery problem in the token sliding
model. Intuitively speaking, the color-coding step allows us to transforms the discovery
problem into a weighted rainbow problem.
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The rest of the proof consists of showing that if (G,S, b) is a yes-instance of the �-

Discovery problem, then the probability that (G,Ï, k, b) is a yes-instance of the Weighted

Rainbow-� problem is at least e≠k. We then derandomize the algorithm using the technique
introduced by Alon et al. [1]. Instead of a random coloring Ï, we construct an (m ≠ k, k)-
perfect hash family F such that for every X ™ E(G) \ S with |X| = k, there is a function
f œ F such that every element of X is mapped to a di�erent element in C (color palette as a
k-sized set). The family F can be constructed deterministically in time O(2O(k) logm) [1]. J

8 The jumping and addition/removal models

We now turn to the token jumping and unrestricted token addition/removal models. Recall
that in these models we are no longer restricted to sliding tokens along edges.

8.1 Token jumping

We first define the red-blue variant of a vertex (resp. edge) selection problem and show that
it is always at least as hard as the solution discovery variant in the token jumping model.

Let � be an arbitrary vertex (resp. edge) selection problem. An instance of the Red-

Blue-� problem consists of a graph G whose vertices (resp. edges) are either colored red
or blue, as well as two non-negative integers k and b. If � is the decision variant of a
minimization/maximization problem, the goal is to decide whether there exists a solution
X ™ V (G) (resp. X ™ E(G)) of � of size k such that the number of blue elements in X is at
most b. We denote an instance of Red-Blue-� by (G, k, b).

I Corollary 20. Let � be an arbitrary vertex (resp. edge) selection problem. Then the

following results hold in the token jumping model:

1. If Red-Blue-� is in P, then so is �-Discovery.
2. If Red-Blue-� is in FPT with respect to k or b, then so is �-Discovery.
3. If �-Discovery is NP-hard, then so is Red-Blue-�.

4. If �-Discovery is W[1]-hard with respect to k or b, then so is Red-Blue-�.

We remark that the other direction does not trivially hold, i. e., we can in general not
consider an instance of Red-Blue-� as an instance of �-Discovery, as the number of red
vertices/edges might exceed the bound k on the solution size. Nevertheless, we show that
Red-Blue Spanning Tree, Red-Blue Shortest Path and Red-Blue Matching are
in P, implying that their discovery variants in the token jumping model are in P as well,
whereas Vertex/Edge Cut Discovery is NP-hard in the token jumping model, implying
that Red-Blue Vertex/Edge Cut Discovery is NP-hard as well.

I Proposition 21. Red-Blue Spanning Tree, Red-Blue Shortest Path, and Red-
Blue Matching can be solved in polynomial time. Hence, Spanning Tree Discovery,
Shortest Path Discovery, and Matching Discovery in the token jumping model can

be solved in polynomial time.

I Proposition 22. The Vertex/Edge Cut Discovery problem in the token jumping

model is NP-complete. Hence, the Red-Blue Vertex/Edge Cut problem is NP-complete.

I Theorem 23. The Weighted Red-Blue Vertex/Edge Cut problem is fixed-parameter

tractable when parameterized by k.
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8.2 Unrestricted token addition/removal

Obviously, every spanning tree of a connected graph G has size |V (G)| ≠ 1 by definition.
Hence, the Spanning Tree Discovery problem in the unrestricted token addition/removal
model can easily be reduced to the token jumping model by halving the budget b (rounded
down). To see this, note that any solution to the Spanning Tree Discovery problem in
the unrestricted token addition/removal model adds and removes the same number of tokens.
Furthermore, the order in which we add or remove tokens from the initial configuration S
does not matter. Thus, we assume that the first modification step to S is a token removal,
followed by a token addition, followed by removals/additions in alternating order. This can
easily be simulated by jumps.

Similarly, the length of a shortest s-t-path in a graph G is a fixed number for fixed s and t.
Hence, the same argument as above boils the Shortest Path Discovery problem in the
unrestricted token addition/removal model down to the Shortest Path Discovery problem
in the token jumping model. When it comes to Matching Discovery and Vertex/Edge

Cut Discovery, the unrestricted token addition/removal model allows for two natural
variations on the problems. On one hand, and in tune with the rest of the paper, if we
impose solutions of size exactly |S| then it is not hard to see that the addition/removal model
becomes again equivalent to the jumping model.

I Corollary 24. The Spanning Tree Discovery, Shortest Path Discovery, Match-
ing Discovery, and Vertex/Edge Cut Discovery problems in the unrestricted token

addition/removal model can be solved in polynomial time.

Alternatively, if we drop the constraints on solution size and allow solutions of any size
then the problems become considerably di�erent. In particular, the Matching Discovery

problem becomes equivalent to asking for a smallest subset of S whose removal (from S)
results in a matching. Similarly, the Vertex/Edge Cut Discovery problem becomes
equivalent to the problem of computing a smallest subset of vertices whose addition to S
results in a cut between s and t. We show that, even in the relaxed setting, both problems
remain polynomial-time solvable.

I Proposition 25. The (Relaxed) Matching Discovery problem in the unrestricted

token addition/removal model can be solved in polynomial time.

I Proposition 26. The (Relaxed) Vertex/Edge Cut Discovery problem can be solved

in the unrestricted token addition/removal model in polynomial time.

Conclusion and future work

We contribute to the new framework of solution discovery via reconfiguration with complexity
theoretic and algorithmic results for solution discovery variants of polynomial-time solvable

problems. While we can employ the e�cient machinery of Weighted Matroid Intersec-

tion for the Spanning Tree Discovery problem, all other problems under consideration
are shown to be NP-complete, namely, Shortest Path Discovery, Matching Discovery,
and Vertex/Edge Cut Discovery. For the latter problems, we provide a full classification
of tractability with respect to the parameters solution size k and transformation budget b.

We expect further research on this new model capturing the dynamics of real-world
situations as well as constraints on the adaptability of solutions. It seems particularly
interesting to investigate directed and/or weighted versions of the studied problems. Notice
that all base problems that we studied remain polynomial-time solvable in the presence of
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edge weights and for cost functions summing the total weight of the solution (spanning tree,
path, matching, cut). Interestingly, our result on the Spanning Tree Discovery problem
can be generalized to the weighted setting with a clever adaptation of the reduction. For
other problems the hardness results clearly hold, but we leave the existence of FPT algorithms
for future work. Another challenge is the design of e�cient algorithms that can compute
approximate solutions with respect to the solution size/value or with respect to the allowed
transformation budget. We note, without proof, that the hardness reduction for the Vertex

Cut Discovery problem (Theorem 16) can be adjusted to give a n1≠Á-inapproximability of
the optimal transformation budget.
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Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H).
In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to
determine if there exists a homomorphism from an instance graph G to H. We study the complexity
of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a
linear ordering v1, . . . , vn of V (G) such that, for each i œ {1, . . . , n ≠ 1}, the number of edges with
one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn} is at most k.

We aim, for each H, for algorithms for Hom(H) running in time ckHnO(1) and matching lower
bounds that exclude ck·o(1)

H
nO(1) or ck(1≠�(1))

H
nO(1) time algorithms under the (Strong) Exponential

Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main
contribution is strong evidence of a close connection between cH and mimsup(H):

an information-theoretic argument that the number of states needed in a natural dynamic
programming algorithm is at most mimsup(H)k,
lower bounds that show that for almost all graphs H indeed we have cH Ø mimsup(H), assuming
the (Strong) Exponential-Time Hypothesis, and
an algorithm with running time exp(O(mimsup(H) · k log k))nO(1).

In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we
obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter
tractable, when parameterized by cutwidth of G and mimsup(H).

The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching
number in the graph obtained by multiplying p copies of H via a certain graph product, where p

tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of
H. Such parameters play a central role in, among others, algebraic complexity theory and additive
combinatorics. Our results tightly link the parameterized complexity of a problem to such an
asymptotic matrix parameter for the first time.
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1 Introduction

The study of the fine-grained complexity of NP-hard problems parameterized by width
parameters has recently received an explosive amount of attention. In this study one aims
to determine, for a given computational problem, a function f such that (1) the problem
can be solved in f(k)nO(1) time on given instances formed by an n-vertex graph along with
an appropriate decomposition with width k, and (2) any improvement to f(k)o(1)nO(1) or
even f(k)1≠�(1)

n
O(1) time would violate a standard hypothesis, typically being respectively

the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis
(SETH). Characterizing this complexity tightly often gives a deep insight in the combinatorial
structure of the problem at hand, in particular about the relation that indicates when two
“subsolutions” (for some definition of “subsolutions”) combine into a global solution. An
example where such insights had major consequences is Hamiltonian Cycle and the
Traveling Salesperson Problem [4, 17,50].

In contrast to the study of such fine-grained complexity, on the other side of the spectrum,
a celebrated meta-theorem by Courcelle [13] shows that every graph property definable in
the monadic second-order logic can be decided in time f(k) · n on n-vertex graphs given
with a tree decomposition of width k. While this is extremely general, it is not precise at
all in the sense that the functions f(k) given by Courcelle’s theorem are typically doubly-
exponential or more, while more tailored algorithms with single-exponential functions exist.
This begs the question: Could there be such a meta-theorem that gives a more fine-grained
upper bound akin to the ones sought after above? Unfortunately, such a fine-grained meta-
theorem still seems out of reach, and many recent works apply some highly non-trivial
problem-specific insights to actually get the combination of tight algorithms and lower
bounds [4, 5, 15,16,37,38,43,46,57,60].

An intermediate step towards more general results such as Courcelle’s theorem is to
consider general problems that capture many natural well-studied problems as special
cases. Such a step was already taken for certain locally checkable vertex subset problems,
which capture natural problems including Independent Set and Dominating Set [25]. A
particularly rich and elegant family of such problems can be defined via graph homomorphisms.
A homomorphism from G to H is a mapping Ï : V (G) æ V (H) such that for every uv œ E(G)
we have Ï(u)Ï(v) œ E(H). If H is the complete graph on k vertices, such mappings Ï

are exactly proper k-colorings, and this is why these mappings are often referred to as a
H-colorings of G. For a fixed graph H, by Hom(H) we denote the computational problem in
which one needs to determine whether there is a homomorphism to H from an input graph
G. The complexity dichotomy for Hom(H) was provided by Hell and Neöet�il [34]: Hom(H)
is polynomial-time solvable if H is bipartite, and NP-hard otherwise. So the cases relevant
to our work are when H is non-bipartite.

There has been impressive work on the complexity of Hom(H) in various settings [7,
9, 11, 12,14, 19,20,29, 58]. From the fine-grained perspective, a lot of attention was put in
the parameterization by treewidth of the instance graph [21, 23, 26, 53, 54]. In particular,
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for Hom(H) and some of its close relatives we exactly understand the fastest possible (up
to the SETH) running time of algorithms parameterized by treewidth. Perhaps even more
interestingly, the techniques developed in this line of research led to a deep understanding of
combinatorial properties of Hom(H) and its variants, and the results obtained on the way
can be used far beyond the bounded-treewidth case.

Typically, the lower bounds for (a variant of) Hom(H) are shown by a reduction from
(a variant of) q-Coloring, where the choice of q depends on H. In particular, Marx,
Lokshtanov, and Saurabh [44] showed that for any q Ø 3, the q-Coloring problem on every
instance G cannot be solved in time (q ≠ Á)tw(G)

· |V (G)|O(1) for any Á > 0, unless the SETH
fails (here tw(G) is the treewidth of G). Similar lower bounds for q-Coloring are also
known for other parameters, like cliquewidth [40], feedback vertex set number [44], vertex
cover number [35], or component-order-connectivity [23]. A common element in all these
results is that the constant in the base of the exponential factor in the complexity bound is
an increasing function of the number q of colors.

However, it appears that this is not the case for all natural width parameters. For a linear
ordering v1, v2, . . . , vn of vertices of a graph G, its width is the maximum number of edges
between the sets {v1, . . . , vi} and {vi+1, . . . , vn}, over all i œ {1, . . . , n ≠ 1}. The cutwidth of
G, denoted by ctw(G), is the minimum width of a linear ordering of V (G).

In stark contrast to the results listed above, Jansen and Nederlof [36] showed that for
every q, the q-Coloring problem on instances G given with a linear ordering of width k

can be solved in randomized1 time 2k · |V (G)|O(1). In particular, the base of the exponential
factor does not depend on q.

This phenomenon appears to be very fragile, e.g., it no longer occurs for the counting

variant of q-Coloring [32]. In the context of the discussion above, it is very natural to ask
about the situation for Hom(H), i.e., whether the natural dynamic programming approach
that works in time |V (H)|k · |V (G)|O(1) can be improved. In particular, whether there exists
an absolute constant cH , such that for every graph H, the Hom(H) problem on n-vertex
instances of cutwidth k can be solved in time c

k

H
· n

O(1). This question was answered in the
negative by Piecyk and Rzπøewski [56], who showed that the base cH of the exponential
factor in the complexity bound (seen as a function of H) grows to infinity even if we restrict
ourselves to cycles. More specifically, they show that cH is lower-bounded by the number of
edges in a maximum induced matching

2 in H, multiplied by 2.
Note that a maximum induced matching of a clique has only one edge, so this lower

bound matches the running time of the randomized algorithm for q-Coloring [36].
However, Piecyk and Rzπøewski [56] failed to provide an algorithm matching this lower

bound, even functionally, i.e., an algorithm with running time f(p, k) · nO(1), where f is any
function of the size p of a maximum matching in H and the cutwidth k of the instance. Thus,
while the size of a maximum induced matching in H certainly plays some important role
in the complexity of Hom(H) parameterized by the cutwidth, it is far from clear whether
it indeed determines the base of the exponential factor. The discussion above leads to the
following.

I Open Problem 1. Describe, for any fixed non-bipartite graph H, a constant cH such that:

1. There is an algorithm that, for all k, n œ N, given an n-vertex graph G with linear ordering

of width k, solves Hom(H) in time c
k

H
· n

O(1)
, and

2. Assuming the SETH, for any Á > 0, there is no algorithm that, for all k, n œ N, given an

n-vertex graph G with linear ordering of width k, solves Hom(H) in time (cH ≠Á)k ·nO(1)
.

1 A slightly slower deterministic algorithm was also given.
2 An induced matching of a graph is a set M of edges such that the graph induced by the endpoints of M

is a matching.

ICALP 2024
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Recall that when H is bipartite, Hom(H) is already known to be solvable in polynomial
time. Therefore, we restrict ourselves to non-bipartite graphs.

Moreover, for each graph H we have cH Æ |V (H)|, as a straightforward dynamic pro-
gramming algorithm works in time |V (H)|k · n

O(1).

Our contribution. We make significant progress towards Open Problem 1. In particular, for
each non-bipartite graph H we define a constant cH which we conjecture to have the desired
properties. We prove, for almost all graphs, that Hom(H) in n-vertex instances given with a
linear ordering of width k cannot be solved in time (cH ≠ Á)k · nO(1) for any Á > 0, assuming
the SETH. Moreover, we give a dynamic programming approach of which we show the table
sizes can be compressed to c

k

H
· n

O(1) (see the paragraph on representative sets below for
more details). This can be interpreted as an upper bound, for each i œ {1, . . . , n ≠ 1} on the
amount of information of the graph G[{v1, . . . , vi}] needed to decide Hom(H) based on only

G ≠ G[{v1, . . . , vi}]. Unfortunately, this is an existential result and we do not yet know how
to e�ciently perform this compression. We give partial progress towards such a computation,
yielding an algorithm with running time exp(2cHk log k)nO(1).

For a 0/1-matrix A, we definemim(A) as the largest r for which A has an r◊r permutation
submatrix.3 The aforementioned work [56] shows that cH needs to be at least mim(AH), if
AH is the adjacency matrix of H. However, one of our main insights is that, as the cutwidth
k increases, the accurate parameter for measuring the aforementioned amount of needed
information on G[{v1, . . . , vi}] is actually mim(A¢k

H
), where A¢k

H
denotes the result of taking

the Kronecker product of k copies of AH . Specifically, we introduce a new asymptotic rank
parameter, called mimsup, defined by

mimsup(A) = lim sup
kæŒ

mim(A¢k)1/k.

For a graph H, we define mimsup(H) to be mimsup(AH), where AH is the adjacency matrix
of H. We remark that mimsup(H) can be also defined in a purely graph-theoretic way, in
terms of the size of a maximum matching in a certain graph product. See Section 2 for more
thorough definitions and details. We prove the results above for cH equal to mimsup(H)
(modulo some standard preprocessing of H).

The parameter becomes especially clean and elegant if H is a projective core; such graphs
play a prominent role in the study of graph homomorphisms [29, 42, 54]. Their definition
is somewhat complicated, we refer the interested reader to the full version of the paper (in
Appendix). Let us just mention that this class captures almost all graphs [33, 45]. Formally,
let pn denote the probability that an n-vertex graph, chosen uniformly at random, is a
non-bipartite projective core. Then pn tends to 1 as n tends to infinity. Furthermore, up to
some conjectures from algebraic graph theory from the early 2000s [41,42], every graph H

that cannot be simplified by the above-mentioned preprocessing is actually a projective core.
We refer the interested reader to [54] for more information.

Going back to our setting, if H is a non-bipartite projective core, then we simply have
cH = mimsup(H). The first evidence that cH is indeed the “right” choice of the parameter
is the following lower bound4.

3 It is easily seen that mim(A) equals the maximum size of an induced matching in the bipartite graph
that has A as biadjacency matrix. If A is symmetric, it is the adjacency matrix of a graph H and
mim(A) equals twice the maximum size of an induced matching in H.

4 Full proofs of statements marked with (˝) can be found in the full version of the paper [31]
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I Theorem 1 (˝).
1. There exists ” > 0, such that for every non-bipartite projective core H, there is no

algorithm solving every instance G of Hom(H) in time mimsup(H)”·ctw(G)
· n

O(1)
, unless

the ETH fails.

2. Let H be a connected non-bipartite projective core. There is no algorithm solving every

instance G of Hom(H) in time (mimsup(H) ≠ Á)ctw(G)
· |V (G)|O(1)

for any Á > 0, unless
the SETH fails.

We next elaborate on the mentioned dynamic programming approach along with the
table size compression via which we aim to match these lower bounds.

Representative Sets. A crucial technique in our arguments is that of representative sets.
This is a method that allows us to considerably speed up dynamic programming algorithms
by sparsifying the associated tables. Specifically, dynamic programming algorithms generally
define a space of possible partial solutions S, and a dynamic programming table stores a
subset A of partial solutions that are valid in the given instance. A binary compatibility

matrix M with rows and columns indexed by S indicates whether two partial solutions
combine into a global solution. Generally speaking, a representative set of a set A ™ S is a
subset AÕ such that for each j œ S we have that there exists i œ A with M [i, j] = 1 if and
only if there exists iÕ œ A

Õ with M [iÕ, j] = 1; see Section 3.1 for details more specific to the
setting of our paper.

The power of representative sets lies in that (i) by definition, in any dynamic programming
algorithm we can replace the set A with the smaller set AÕ without missing solutions, and
(ii) for many matrices M , surprisingly small representative sets are guaranteed to exist. This
underlies, for example, fast algorithms for the k-Path problem [48] or connectivity problems
parameterized by treewidth [4,27]. However, a serious bottleneck in these algorithm is the
computation of such representative sets: It withholds us, for example, for getting faster
algorithms for connectivity problems such as Traveling Salesperson (both parameterized
by treewidth [4,17] and the classic parameterization by the number of cities [50, Theorem 3]),
and polynomial kernelization algorithms for Odd Cycle Transversal [39].

This already led some researchers to design faster algorithms for finding representative sets
in special settings. A natural setting that comes up, for example for connectivity problems
parameterized by treewidth, is to find representative sets for sets of partial solutions with a
certain product structure. In [28], the authors show that representative sets for such families
can be found faster than known for general families.

In this paper, the computation of representative sets is also a major bottleneck; in fact,
modulo the standard conjectures discussed above, it is the only issue that withholds us from
solving Open Problem 1 completely. Specifically, we show:

I Theorem 2 (Informal statement of Theorem 6). In the context of the natural dynamic

programming algorithm for Hom(H) parameterized by cutwidth k, there exist representative

sets of size at most mimsup(H)k.

Thus, by the definition of representative sets, any algorithm that computes these repres-
entative sets fast enough would imply a mimsup(H)ctw(G)

n
O(1) time algorithm for Hom(H)

and thus solve Open Problem 1. We view this as strong evidence that our lower bounds
cannot be improved. Indeed, state-of-the-art hardness reduction techniques (like [44]) for
problems parameterized by width parameters encode assignments to decision variables as
states of dynamic programming tables and gradually check constraints on global consistency
of these assignments throughout the graph. Our proof of existence of small representative

ICALP 2024
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0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 0 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 0 0 0

Figure 1 Illustration of a maximum induced matching (or equivalently, induced permutation
submatrix) of size mim(A¢2

H
) shown in red, where AH =

1
0 1 1
1 0 1
1 1 0

2
and H = K3. More generally,

the proof from [36] for determining the chromatic number of a graph shows that whenever H is a
complete graph, mim(A¢k

H
) = 2k and thus mimsup(H) = 2.

sets means the number of assignments that need to be considered in order to find a global
solution is also small, which means that this kind of approach to design lower bounds hits a
natural barrier at our lower bound.

Coping Algorithmically with the Mimsup Parameter. Matrix or graph parameters that
are defined in terms of large powers are sometimes called asymptotic rank parameters, and
they are notoriously hard to compute. For example, the value of the asymptotic rank of the
matrix multiplication tensor [8] (also known as Ê) or the Shannon capacity of the cycle on 7
vertices [30] remain elusive. Unfortunately, mimsup(H) seems no exception. Similarly to the
Shannon capacity [1, Question 6], it is even not clear whether its computation is decidable.
For mimsup(H), even for simple graphs such as H = Kq, determining its value is non-trivial
as well. As an illustration we depict the maximum induced matching in the second Kronecker
power of the adjacency matrix of K3 in Figure 1. One of the main insights of the 2ctw(G)

n
O(1)

time algorithm for the chromatic number from [36] shows that mimsup(Kq) in fact equals 2.
Even when the existence of small representative sets is guaranteed because mimsup(H) is

small, it is still challenging to find them quickly. Since mimsup is about products of graphs,
one may expect that this product structure can be used algorithmically. Indeed, product
structure has been exploited to compute representative sets in previous work [28], but there
the family that needs to be represented has some (Cartesian) product structure. In our
setting, this is not guaranteed and it is much less obvious how to proceed.

Nevertheless we show that, with some loss in precision (and hence, running time), we can
work with graphs with small mimsup, by approximating it with another (easier to compute)
value that we call the maximum half induced matching number him(H). For a matrix A, we
define him(A) as the largest r for which A has an r ◊ r triangular submatrix with ones on
its diagonal.5 For a graph H, we define him(H) to be him(AH), where AH is the adjacency
matrix of H. We show that him(AH) approximates mimsup(AH) in the following sense:

I Theorem 3. For every non-bipartite graph H with adjacency matrix AH and k œ N,

him(AH) Æ mimsup(AH) = lim sup
kæŒ

mim(A¢k

H
)1/k and mim(A¢k

H
) Æ k

(him(AH)+1)k
.

5 A submatrix of a matrix A is any matrix that can be obtained from A by removing and reordering any
of its rows and columns.
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The parameter him(AH) is easily computable in time 2O(|V (H)|). While the lower bound
on mimsup(A¢k

H
) is relatively easy, the upper bound uses an argument similar to the

“neighborhood chasing” argument for the upper bounds on multi-colored Ramsey numbers [22].
This argument can in fact be made algorithmic in the sense that it can be used to compute
representative sets for Hom(H) of size at most O(khim(H)k) in time O(k2him(H)k). Combining
this result with the dynamic programming algorithm for Hom(H) for graphs of small cutwidth
yields the following.

I Theorem 4. For any graphs G and H, where G is given with a linear ordering of width k,

in time O(k2k·mimsup(H)
· |V (H)|4|V (G)|) one can decide whether G admits a homomorphism

to H.

Let us compare the running time in Theorem 4 with the naive approach; recall that its
complexity is |V (H)|k · |V (G)|O(1). If we treat H as a constant and k as a parameter, then
the latter one is faster. However, we emphasize here that in Theorem 4 we do not assume
that H is a constant, so these two algorithms are incomparable. In particular, Theorem 4
shows that the homomorphism problem, where the input consists of both G and H, is
fixed-parameter-tractable when parameterized by the cutwidth of G and mimsup(H).

It should be noted that a similar notion of half-induced matching of a compatibility
matrix was already introduced in previous work in the context of representative sets of the
AntiFactor problem [47] parameterized by treewidth and list size. However, in that setting,
the authors were only able to provide a lower bound for their problem, and they did not
manage to make the connection with half-induced matchings algorithmic. Additionally, their
compatibility matrix has a very specific structure: it is indexed with integers and the value
of an entry only depends on the sum of the values associated with the row and column.

Comparison of Mimsup With Other Rank Parameters. One of our main conceptual
contributions is the introduction of the mimsup parameter in the context of parameterized
algorithms. It is actually the first asymptotic rank parameter shown to be relevant in this
context. Our mimsup parameter is very similar to the asymptotic induced matching number

studied by Arunachalam et al. [2] which was introduced for k-partite, k-uniform hypergraphs
(and so, in the graph setting, only for bipartite graphs). Various asymptotic variants of
rank parameters have been studied for tensors. For example, this has been done for rank
parameters such as subrank, tensor rank and slice rank. However, for matrices (2-tensors)
these are equal to the “standard” rank for matrices and so have no interesting asymptotic
aspects.

That being said, it is only natural to compare the mimsup parameter with di�erent
related rank parameters from the literature. We will discuss this now, and provide proofs
that formally support this discussion in the Appendix. The approach from [36] naturally
extends to solve Hom(H) quickly for all graphs H where the so-called support-rank [18, 49]
of the adjacency matrix of H is small. The following sequence of inequalities holds for every
matrix A:

mim(A) Æ him(A) Æ mimsup(A) Æ support-rank(A) Æ rank(A).

We believe all of the inequalities can be strict. When A is the (r ◊ r)-matrix with ones
on and above the diagonal and zeros below the diagonal, then mim(A) = 1 < r = him(A)
for r Ø 2. This means that mim is not functionally equivalent to him nor mimsup. We
use random matrices to show that him and mimsup may take very di�erent values (see
Theorem 13 for a formal statement). In the Appendix we find a connection of support-rank
to a parameter called graph dimension (or Prague dimension) [51,52]. We also show there
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that him is not functionally equivalent to support-rank. This shows that our algorithm
from Theorem 4 can be significantly faster than the discussed natural generalization of [36].
We leave it as an interesting open problem if mimsup is functionally equivalent to him or
support-rank.

The aforementioned (well studied) Shannon capacity has a definition that is very similar
to the mimsup parameter: It is defined in terms of the maximum size of an independent set
(also called the independence number) in an appropriate graph product, and the size of a
maximum induced matching of a graph equals the independence number of the square of
its line graph. Unfortunately, because the definitions of mimsup and Shannon capacity use
di�erent graph products, the relation between the two is somewhat loose; see Appendix for
details. Nevertheless, based on their similarity, one may expect that Shannon capacity shares
some of its peculiarities with mimsup, such as an unpredictable behaviour of the value in
graph powers [1].

2 Preliminaries

For an integer n, by [n] we denote the set {1, 2, . . . , n} and for integers a, b we write
[a, b] = {a, a+ 1, . . . , b}. For a set X, by 2X we denote the family of all subsets of X. For
i, s œ N, the multinomial coe�cient

3
is

s, . . . , s

4
= (is)!

s!, . . . , s! = i
(1+o(1))is

is the number of partitions of [as] into a parts of size s.
For a graph G and V

Õ
™ V (G) (resp. E

Õ
™ E(G)), by G[V Õ] (resp. G[EÕ]) we denote

the subgraph of G induced by V
Õ (resp. E

Õ). We say two graph parameters p and q are
functionally equivalent if there are functions f, g : R æ R such that p(G) Æ f(q(G)) and
q(G) Æ g(p(G)) for all graphs G.

Homomorphisms. For graphs G and H, a homomorphism from G to H is a mapping
Ï : V (G) æ V (H) such that for every uv œ E(G) we have Ï(u)Ï(v) œ E(H). If Ï is
a homomorphism from G to H, we denote it by writing Ï : G æ H. If G admits a
homomorphism to H, we denote is shortly by G æ H.

In the Hom problem we are given a pair (G,H) of graphs, and we ask whether G æ H.
In the Hom(H) the graph H is considered to be fixed and we ask whether a graph G given
as an input admits a homomorpshism to H.

We will always assume that H is a connected graph. Indeed, each component of G must
map to a single component of H, so the problem can be solved component-wise.

Cutwidth. Let G be a graph and consider a linear ordering ‡ = (v1, . . . , vn) of its vertices.
For i œ [n ≠ 1], the i-th cut is the partition of V (G) into sets {v1, . . . , vi} and {vi+1, . . . , vn}.
The width of such a cut is the number of edges with one endvertex in {v1, . . . , vi} and the
other in {vi+1, . . . , vn}. The width of ‡ is the maximum width of a cut of ‡. Finally, the
cutwidth of G, denoted by ctw(G), is the minimum width of a linear ordering of the vertices
of G.
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Associated bipartite graphs. In order to define the main parameters of our paper, we will
use a notion of associated bipartite graphs. For a graph G, the graph G

ú is defined as follows.

V (Gú) = {u
Õ
, u

ÕÕ
| u œ V (G)},

E(Gú) = {u
Õ
w

ÕÕ
, u

ÕÕ
w

Õ
| uw œ E(G)}.

Induced matchings and half-induced matchings. A set M ™ E of edges of a graph
H = (V,E) forms an induced matching if the edges in M are vertex disjoint and no edge in
E is incident with two edges from M . We may also view this as two sequences of distinct
vertices v1, . . . , vm and u1, . . . , um where viuj œ E if and only if i = j. For a bipartite graph
H, by mim(H) we denote the size of a maximum induced matching in H. For non-bipartite
H, we define mim(H) := mim(Hú).

A half-induced matching of a graph H consists of two sequences v1, . . . , vm and u1, . . . , um

of distinct vertices where viui œ E for i œ [m] and uivj ”œ E if 1 Æ i < j Æ m. For a bipartite
graph H, we denote the size of the largest half-induced matching in H by him(H). We
extend the definition to graphs H that are non-bipartite via him(H) = him(Hú). This notion
has been studied under the name constrained matching (a subset with a unique matching,
see e.g. [10, 55, 59]), but we decided to use the name which appeared more recently in a
similar setting to ours [47], since the word “constrained matching” has also been used for
various other purposes in the algorithmic community.

Mim and him for matrices. Let A œ {0, 1}n◊n be a matrix. Given a sequence r œ [n]a of
distinct row indices and c œ [n]b of distinct columns indices, for some integers a, b œ [n], we
write A[r, c] for the a ◊ b matrix with entries A[r, c]i,j = Ari,cj

for i œ [a] and j œ [b]. We
refer to any matrix which arises in such a manner as a submatrix after permutation of A.

We write mim(A) for the maximum r for which A has the r ◊ r identity matrix as
submatrix after permutation (equivalently, the largest permutation submatrix). We write
him(A) for the largest r for which A has an r ◊ r triangular matrix with 1’s on the diagonal
as submatrix after permutation. We will also refer to such a submatrix as half induced

matching. (A matrix is called triangular if either all entries below the diagonal, or all entries
above the diagonal are 0.)

For bipartite graphs H = (U, V,E), the bi-adjacency matrix B is indexed by rows from U

and columns from V where B[u, v] = 1 if uv œ E and B[u, v] = 0 otherwise. For a bipartite
graph H, there is a one-to-one correspondence between induced matchings of H of size m

and m ◊ m permutation submatrices of the bi-adjancency matrix of H. In particular, for a
bi-adjacency matrix B of H, mim(B) = mim(H). Similarly, him(B) = him(H).

For a non-bipartite graph G, if AG is its adjacency matrix, then AG is also the bi-
adjacency matrix of Gú. This means that for non-bipartite H with adjacency matrix AH ,
mim(H) = mim(AH) and him(H) = him(AH).

Mimsup. For a matrix A, we define

mimsup(A) = lim sup
kæŒ

mim(A¢k)1/k.

Here ¢ denotes the Kronecker product of the matrix. Given an n ◊ m matrix A =
(ai,j)iœ[n],jœ[m] and a matrix B, the Kronecker product is given by

A ¢ B =

Q

cca

a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB

. . .

an,1B an,2B . . . an,mB

R

ddb .

ICALP 2024
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Since mim(A ¢ B) Ø mim(A)mim(B), Fekete’s lemma [24] applies to show that (˝)

lim sup
kæŒ

mim(A¢k)1/k = lim
kæŒ

mim(A¢k)1/k = sup
kœN

mim(A¢k)1/k.

For a non-bipartite graph H, with adjacency matrix A, we set

mimsup(H) = mimsup(A).

When H is bipartite with bi-adjancency matrix6 B, mimsup(H) = mimsup(B). The para-
meters can also be defined in purely graph theoretical terms, as we now explain.

For a bipartite graph H with bipartition classes X,Y , and for k œ N, we define H
¢k to

be the graph on vertex set Xk
fi Y

k where there is an edge (x1, . . . , xk)(y1, . . . , yk) in H
¢k if

and only if xiyi œ E(H) for every i œ [k]. With this definition of graph product ¢, we define

mimsup(H) =
I
lim sup

kæŒ mim(H¢k)1/k if H is bipartite,
mimsup(Hú) otherwise.

The following property of mimsup is straightforward.

I Observation 5. If H is an induced subgraph of G, then mimsup(H) Æ mimsup(G).

For bipartite graphs, mimsup coincides with the parameter asymptotic induced matching
number studied by [2]. Although asymptotic rank parameters (e.g. asymptotic subrank,
asymptotic tensor rank and asymptotic slice rank) have been widely studied for tensors, the
“non-asymptotic” parameters are usually equal to the matrix rank for matrices, which has no
interesting asymptotic behaviour since rank(A¢n) = rank(A)n. In particular, the subrank in
some sense looks for the largest “identity subtensor”, similar to our mim, but since it allows
row operations to be applied (instead of merely permutations), this notion is the same as the
usual rank for matrices and the same holds for the asymptotic subrank.

3 Solving Hom with representative sets

In this section we discuss how we can use representative sets to create fast algorithms for
Hom. We start by giving a definition of a representative set in our setting. Intuitively we
want a representative set AÕ of A to carry all the important information from A, while being
smaller in size. In practice, being able to find small representative sets corresponds to having
to compute less entries in a dynamic programming algorithm. So this gives the following
natural extremal problem: how small of a representative set are we always guaranteed to
find, that is, what is the largest size of a set which has no smaller representative set? After
giving the definition, we explain why mimsup exactly determines the answer to this question
in our setting.

Finally, we give a general framework for solving Hom instances; it consists of an algorithm
that takes as input some reduction algorithm R that produces small representative sets and
uses it to solve Hom on input graphs G and H. In Section 4 we give examples of such
reduction algorithms.

6 Note that mimsup is invariant under row and column permutations. This means that the choice of
bi-adjacency matrix does not a�ect the mimsup and thus mimsup on bipartite graphs is well-defined.
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3.1 Definition of Representative Set
Given a 0/1 matrix M , with rows indexed by a set R and A ™ R, we are interested in
knowing whether for a column c, there is a row r œ A with M [r, c] = 1. In our case,

each row represents a coloring of the left-hand side of the cut;
all the colorings that can be extended to the left-hand side of the (input) graph are
contained in A;
each column represents a coloring of the right-hand side of the cut;
M [r, c] = 1 if and only if the colorings represented by row r and column c are compatible.

This makes the following definition very natural. We say that a subset AÕ
™ A M -represents

A, if for any column j we have that if there is a row index i œ A such that M [i, j] = 1, then
there is also i

Õ
œ A

Õ such that M [iÕ, j] = 1. Intuitively, this means that we do not “lose any
solutions” by restricting to A

Õ.
We will also refer to A

Õ as an M-representative set of A. We may omit M if it is clear
from context.

We remark that representing is transitive: if AÕÕ represents AÕ and A
Õ represents A, then

A
ÕÕ represents A.
Suppose we aim to solve Hom for input graphs G and H, where H is non-bipartite. We

will be interested in representative sets with respect to M = A
¢k

H
for integers k, where AH

is the adjacency matrix of H. We assume that G is given with a linear order v1, . . . , vn of
width at most w. For an integer i œ [n], then G[{v1, . . . , vi}] is the “left-hand side of the
graph” with respect to the ith cut and

Xi := {v œ {v1, . . . , vi} | ÷v
Õ
œ {vi+1, . . . , vn}, vv

Õ
œ E(G)} .

is “the left-hand side of the i-th cut.” Suppose there are k edges crossing the ith cut:
{a1, b1}, . . . , {ak, bk} œ E(G) with a1, . . . , ak œ {v1, . . . , vi} and b1, . . . , bk œ {vi+1, . . . , vn}.
Let Li = (a1, . . . , ak) and Ri = (b1, . . . , bk). Note that {a1, . . . , ak} = Xi but some elements
may be repeated. A row r (seen as “index”) of the matrix M = A

¢k

H
is a k-tuple (r1, . . . , rk) œ

V (H)k, which corresponds to a coloring Xi æ V (H) if rj = rjÕ whenever aj = ajÕ . If similarly
c œ V (H)k represents a coloring of the “right-hand side of the cut”, then M [r, c] = 1 if and
only if rjcj œ E(H) for all j œ [k], i.e. the colorings are compatible. So indeed we capture
the properties informally claimed above.

Since in our setting M will be the adjacency matrix of some graph H, we may refer to
H-representative sets rather than AH -representative sets.

3.2 Connection to Mimsup
When applied to the adjacency matrix AH of a non-bipartite graph H, the following result
shows that mimsup(H)k approximates how large a set A ™ V (H)k without smaller A

¢k

H
-

representative set can be. This easily follows from the definitions but is still an important
conceptual contribution.

I Theorem 6. Let M œ {0, 1}h◊h
be a matrix with rows indexed by R.

For each integer k œ N, for any A ™ R
k
, there is a subset A

Õ
™ A of size mimsup(M)k

that M
¢k

-represents A.

Conversely, for each Á > 0, for each su�ciently large k, there is a A ™ R
k
, for which no

A
Õ
™ A of size at most (mimsup(M) ≠ Á)k can M

¢k
-represent A.

Proof. Let A
Õ

™ A be of minimal size among the subsets that M -represent A. Then no
proper subset of it M -represents A. This means that for each a œ A

Õ it cannot be removed
from A

Õ to get a set that M -represents A. Thus, for each a œ A
Õ there is some µ(a) œ V (H)k
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such that M [a, µ(a)] = 1, but for every a
Õ

œ A
Õ
\ {a} we have that M [aÕ

, µ(a)] = 0. This
gives a permutation (|AÕ

| ◊ |A
Õ
|)-submatrix of M . This shows that |AÕ

| Æ mim(M¢k). By
definition of mimsup, mim(M¢k) Æ mimsup(M)k.

Conversely, by definition of limit, for each Á > 0 there is a k0 such that mim(M¢k) Ø

(mimsup(M) ≠ Á)k for all k Ø k0. Let k Ø k0. Let A ™ R be the rows of a largest induced
permutation submatrix of M¢k. Then |A| = mim(M¢k) Ø (mimsup(M) ≠ Á)k and none of
the strict subsets of A can M

¢k-represent it. J

3.3 Exploiting Representative Sets in Dynamic Programming
The main idea behind the use of representative sets in an algorithmic setting is as follows.
We solve the problem with a standard dynamic programming approach, where the cells are
indexed by the elements of the set A. A representative set then forms a small subset of these
indices, which still carries enough information to solve the problem. By regularly applying
the reduction algorithm, we can e�ectively run our dynamic programming algorithm on only
a small subset of the cells in the table. We formalize this in the following theorem. Let us
emphasize that H is not assumed to be fixed here but rather given as an input.

I Theorem 7. Let H be a non-bipartite graph on h vertices. Let R be a reduction algorithm

that, given an integer k Ø 2 and a subset A ™ V (H)k, outputs a set A
Õ
of size size(H, k)

that A
¢k

H
-represents A, running in time time(|A|, H, k). Then there exists an algorithm that,

given a linear ordering of an n-vertex graph G of width w, decides whether G æ H in time

O

1!
size(H,w) · h+ time (size(H,w) · h,H,w)

"
n

2
.

Proof. Let v1, . . . , vn be a linear ordering of G of width k. For i œ [n], by Ei we denote the
set of edges that cross the i-th cut, i.e., those with one endpoint in {v1, . . . , vi} and the other
in {vi+1, . . . , vn}. For i œ [n], let Xi be the set that contains all vertices from {v1, . . . , vi}

incident to an edge from Ei, i.e.,

Xi := {v œ {v1, . . . , vi} | ÷v
Õ
œ {vi+1, . . . , vn}, vv

Õ
œ E(G)} .

Note that we have |Xi| Æ |Ei| Æ w and X1 = {v1} (since G is connected). For a mapping
c : Xi æ V (H), we define the table entry Ti[c] as true if there exists a homomorphism
Ï : G[{v1, . . . , vi}] æ V (H), such that for all v œ Xi we have Ï(v) = c(v). (In other words,
the keys are given by the H-colorings of Xi and the table entry is true if there is an extension
of the coloring of Xi to the left-hand side of the graph.)

This table can be easily computed in time h
w+1

· n
O(1) by the following naive dynamic

programming procedure. We initiate every entry Ti[c] to be false and every entry T1[c] to be
true. Then, for every i œ [2, n], every mapping c

Õ : Xi≠1 æ V (H), such that Ti≠1[cÕ] is true,
and every u œ V (H), we check whether c : Xi≠1 fi {vi} æ V (H) defined as

c(v) =
I
u if v = vi,

c
Õ(v) v œ Xi≠1.

(1)

is a homomorphism from G[Xi≠1 fi {vi}] to H. If so, we set Ti[c|Xi
] to true.

We first outline why this correctly computes the table entries (that is, that at the end
Ti[c] is true if and only if c extends to a coloring of G[{v1, . . . , vi}]) and then explain how
to improve on this naive algorithm. We prove the claim by induction on i. For i = 1, the
coloring only assigns a color to v1 and does not need to be extended (and is automatically
proper). Now suppose that the claim has been shown for i = 1, . . . j and let – : Xj+1 æ V (H)
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be a coloring. If this extends to a coloring „ of G[{v1, . . . , vj+1}], then Tj [cÕ] is true for
c

Õ = „|Xj
(by the induction hypothesis) and we could obtain – as the restriction from c from

(1) with u = „(vj+1) and i = j + 1. So Tj+1[–] is true. Vice versa, if Tj+1[–] has been set
to true, then there is a c

Õ : Xj æ V (H) and u œ V (H) such that c (again defined as in (1))
is a homomorphism G[Xj fi {vj+1}] æ H which restricts to – on Xj+1. By the induction
hypothesis, there exists a proper coloring „

Õ that extends cÕ to G[{v1, . . . , vj}] and we extend
this to a coloring „ of G[{v1, . . . , vj+1}] by setting „(vj+1) = u. Then „ still restricts to –

and all of the edge constraints have been verified by c and/or „
Õ. In particular, G æ H if

and only if Tn[ÿ] is true, where ÿ denotes the empty mapping (Xn = ÿ).
We will speed up this naive version of the dynamic program by computing a representative

table T
Õ as follows. We first set T Õ

1
= T1. For i = 1, 2, . . . , n ≠ 1 we proceed as follows. Let

k = |Ei| Æ w and M = A
¢k

H
. Let {a1, b1}, . . . , {ak, bk} œ Ei be an enumeration of the edges,

with aj œ {v1, . . . , vi} for all j œ [k]. For each c : Xi æ V (H) such that T Õ

i
[c] is set to true,

we put the k-tuple (c(a1), . . . , c(ak)) in Ai. When k Ø 2, we apply the reduction algorithm
R to Ai, resulting in a set AÕ

i
of size at most size(H, k) that A¢k

H
-represents Ai. When k = 1,

we set AÕ

i
= Ai. We then compute the next table entries similarly as in the previous approach.

Each element of AÕ

i
corresponds to a coloring c

Õ : Xi æ V (H). For u œ V (H), we check
whether c : Xi fi {vi+1} æ V (H) with c(vi+1) = u and c|Xi

= c
Õ is a homomorphism from

G[Xi fi {vi+1}] to H. If so, we set T Õ

i+1
[c|Xi+1 ] to true. We repeat this for all pairs (cÕ

, u).
The procedure above is repeated for i = 1, . . . , n ≠ 1, after which we return T

Õ
n
[ÿ].

When |A
Õ

i
| Æ size(H, k), we find that |Ai+1| Æ size(H, k)h (for k = |Ei| Æ w and

size(H, k) = h for k = 1). We may assume size is a non-decreasing function on each
coordinate. So the total running time is as claimed:

O

1!
size(H,w) · h+ time (size(H,w) · h,H,w)

"
n

2
.

The fact that the dynamic programming steps preserve representation follows from transitivity
of representation, but let us spell out the details.

Let Yi+1 be the set of endpoints on the right-hand side of the (i+1)th cut and enumerate
the edges in Ei+1 as {x1, y1}, . . . , {xk, yk}, with xj œ Xi+1 and yj œ Yi+1. We will show that
for every i œ [n ≠ 1], if AÕ

i
represents the set Truei := {(c(x1), . . . , c(xk)) | Ti[c] = True},

then Ai+1 represents the set Truei+1. The same then holds for A
Õ

i+1
since the reduction

algorithm is assumed to work correctly.
We started with setting T

Õ
1
= T1, so A

Õ
1
indeed represents True1.

Let us first unravel the definitions to see what we need to show. Let i œ [n ≠ 1] and
suppose that c : G[Xi+1] æ H extends to a homomorphism „ : G[{v1, . . . , vi+1}] æ H (i.e.
Ti[c] = True). For the definition of represents, we will then assume there is a homomorphism
d : G[Yi+1] æ H for which c fi d respects all edges from the (i + 1)th cut (those in Ei+1),
i.e. this corresponds to a “one-entry in the compatibility matrix”. What needs to be shown
is that this “one-entry” can also be generated via a coloring coming from Ai+1, that is,
there is – : G[Xi+1] æ H, such that (–(x1), . . . ,–(xk)) œ Ai+1 and (– fi d)|G[Ei+1] is a
homomorphism.

By assumption, „fid respects all the edges with at least one endpoint in {v1, . . . , vi+1}, and
in particular those with one endpoint in {v1, . . . , vi}. Since AÕ

i
is a representative set of Truei,

there must be c
Õ : G[Xi] æ H such that (cÕ(xÕ

1
), . . . , cÕ(xÕ

kÕ)) œ A
Õ

i
, for {x

Õ
1
, . . . , x

Õ

kÕ} = Xi,
and where c

Õ
fi „|{vi+1} fi d respects all the edges with at least one endpoint in {v1, . . . , vi}.

We set – = (cÕ
fi „|{vi+1})|Xi+1 . Then (–(x1), . . . ,–(xk)) œ Ai+1, by definition of how we

obtain Ai+1 from A
Õ

i
. Moreover, – fi d is a homomorphism G[Ei+1] æ H, as desired. J
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4 Computing representative sets via half-induced matchings

In this section we present one of our main technical contributions, i.e., an algorithm to
compute H-representative sets whose size is bounded in terms of him(H). Actually, our
approach is rather general since it finds representative sets non-trivially fast for any large
Kronecker power of a matrix with small him parameter.

We will show how to find a representative set that has one fewer element, by finding some
element that can be safely removed. We then use this intermediate result to find our final
reduction algorithm, which will result in the following lemma.

I Lemma 8. Let ¸ Ø 1 and k Ø 2 be integers. Let A œ {0, 1}h◊h
be a matrix with him(A) < ¸,

and let A ™ [h]k. Then we can compute A
Õ

™ A that A
¢k

-represents A with |A
Õ
| Æ k

k¸
in

time O(|A|
2
h
2
k
2).

We will combine the reduction algorithm from Lemma 8 with Theorem 7 to find the
following result.

I Theorem 9. The Hom problem on an instance (G,H), where G is given with a linear

ordering of width k, can be solved in time O(k2k·(him(H)+1)
· |V (H)|4|V (G)|).

We emphasize that the algorithm does not need to know the value of him(H).

Proof. Let h = |V (H)| and let AH be the adjacency matrix of H. Recall that him(AH) =
him(H) is always an integer. By Lemma 8 we have a reduction algorithm R that returns
a representative set of size size(H, k) Æ k

k·(him(H)+1) in time time(|A|, H, k) = O(|A|
2
h
2
k
2).

Then

time(size(H, k) · h,H, k) = O

1
k
2
· k

2k·(him(H)+1)
· h

4

2
.

By Theorem 7 we find an algorithm that decides Hom(H) in time

O ((size(H, k) · h+ time(size(H, k) · h,H, k))|V (G)|) = O(k2k·(him(H)+1)
h
4
· |V (G)|).

This completes the proof. J

Since him(H) Æ mimsup(H) (see Lemma 11), we obtain Theorem 4 as a corollary from
Theorem 9. Lemma 8 and Lemma 11 also imply Theorem 3.

In order to prove the lemma, we will perform a recursive algorithm for which we want to
no longer treat all the coordinates symmetrically. We therefore define

gk(¸1, . . . , ¸k) =
3 q

i
¸i

¸1, . . . , ¸k

4
.

When ¸1 = · · · = ¸k = ¸, we have gk(¸, . . . , ¸) =
!

k¸

¸,...,¸

"
Æ k

k¸ (= the number of partitions of
k¸ into k parts, which no longer need to have the same size). The lemma will follow easily
from the following more complicated statement.

I Lemma 10. Let k Ø 2, ¸1, . . . , ¸k Ø 1 be integers. Let A œ {0, 1}h◊h
be a matrix and

let A ™ [h]k with |A| Ø gk(¸1, . . . , ¸k). Suppose that for every i œ [k], for the set of rows

Ri = {ri | r œ A}, we have him(A[Ri, ·]) < ¸i. Then there exists v œ A such that A \ {v}

A
¢k

-represents A. Moreover, v can be found in time O(
q

k

i=1
¸i · |A|hk).
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Proof. Note that |A| Ø gk(¸1, . . . , ¸k) Ø 1 for ¸1, . . . , ¸k, k Ø 1 so A is non-empty.
For i œ [k] and u œ [h], let

A
i

u
= {v = (v1, . . . , vk) œ A | A[vi, u] = 0}

be the set of rows which cannot “represent” u in the ith coordinate. We choose v œ A

(arbitrarily). We then iterate over u œ [h] and i œ [k] to find if there is (u, i) for which
A[vi, u] = 1, and
|A

i

u
| Ø gk(¸1, . . . , ¸i ≠ 1, . . . , ¸k).

This step can be performed in time O(|A|hk).
If we cannot find such (u, i) pair for v, then we return v as the row to be removed from

A (and the algorithm terminates).
Otherwise, we did find (u, i). If ¸i = 1, then since him(A[Ri, ·]) < ¸i, we know A[Ri, ·]

has all zero-entries and so A[vi, u] = 1 would not have been possible. This means that ¸i Ø 2.
We apply the same process after updating ¸i Ω ¸i ≠ 1 and A Ω A

i

u
. Note that v /œ A

i

u
and

¸i ≠ 1 Ø 1. We will show that
when v is returned, indeed A \ {v} A

¢k-represents A, and
when we recursively apply the algorithm, the conditions of the lemma are again satisfied,
for which it remains to show that him(A[RÕ

i
, ·]) < ¸i ≠ 1 for RÕ

i
= {ri | r œ A

i

u
}.

Since we reduce
q

k

i=1
¸i by one in each recursive call, the algorithm will terminate. Moreover,

the number of recursive calls is at most
q

k

i=1
¸i. This shows that assuming the claims above,

the time complexity is as stated.

Correctness. We first show the first claim: if the algorithm outputs v, indeed it can be
removed. Note that if for some subset AÕ

™ A, it is the case that AÕ
\ {v} represents AÕ, then

A
Õ
\ {v} fi (A \ A

Õ) = A \ {v}

will also represent A. This means we only have to check the claims in the “base case”.
Suppose towards a contradiction that we wrongly outputted v œ A, so

there exists u œ [h]k such that A¢k[v, u] = 1 yet A¢k[vÕ
, u] = 0 for all vÕ

œ A \ {v} (since
we “wrongly” outputted v, there needs to be a reason why we could not remove it),
for this u, for all i œ [k], |Ai

ui
| < gk(¸1, . . . , ¸i ≠ 1, . . . , ¸k) (else the algorithm would have

“recursed” instead of outputting v).
The fact that A¢k[vÕ

, u] = 0 in the first condition, means that each v
Õ
œ A\{v} is an element

of Ai

ui
for some i œ [k]. In particular,

|A \ {v}| Æ

kÿ

i=1

|A
i

ui
| Æ

kÿ

i=1

gk(¸1, . . . , ¸i ≠ 1, . . . , ¸k) ≠ k = gk(¸1, . . . , ¸k) ≠ k,

which contradicts the assumptions of the lemma since k Ø 2.
We now prove the second claim: the conditions of the lemma are satisfied when we

“recurse”. By assumption, ¸i Ø 1 for all i and the new A is su�ciently large. Moreover,
him can also decrease when taking submatrices, so indeed we only need to show that
him(A[RÕ

i
, ·]) < ¸i ≠ 1 for R

Õ

i
= {ri | r œ A

i

ui
}. If there is a half-induced matching of size

¸i ≠ 1, induced on rows w1, . . . , w¸i≠1 œ R
Õ

i
and columns z1, . . . , z¸i≠1, then there is a half-

induced matching of size ¸i in A[Ri, ·] by considering rows w1, . . . , w¸i≠1, vi œ Ri and columns
z1, . . . , z¸≠1, u. But by assumption this does not exist, so indeed him(A[RÕ

i
, ·]) < ¸i ≠ 1. J
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Proof of Lemma 8. Suppose that |A| Ø gk(¸, . . . , ¸). For i œ [k], set Ri = {ri | r œ A}.
Then him(A[Ri, ·]) < ¸ for each i. By Lemma 10 we can find a row v in A such that A \ {v}

A
¢k-represents A in time O(¸k · |A|hk) = O(|A|h

2
k
2), where we use that ¸ Æ h.

We repeat this at most |A| ≠ gk(¸, . . . , ¸) times until we find the desired representative
set in time O(|A|

2
h
2
k
2). J

5 Comparing him and mimsup

In this section, we discuss the relation between the considered parameters.

I Lemma 11. Let A be a matrix. Then mimsup(A) Ø him(A) Ø mim(A).

Proof. The second inequality follows directly since each induced matching is a half-induced
matching. We prove the first inequality.

Let R = {a1, . . . , ai} and C = {b1, . . . , bi} be the rows and columns respectively of a
maximum half-induced matching in A. We may assume that these are ordered such that
A[aj , bj ] = 1 for all j œ [i] and A[ak, bj ] = 0 for all k < j. For integers s Ø 1, we consider the
submatrix of A¢is induced on the rows consisting of “balanced” sequences, and similarly for
the columns

{(r1, . . . , ris) œ R
is

| |{¸ : r¸ = aj}| =s, for every j œ [i]},
{(c1, . . . , cis) œ C

is
| |{¸ : c¸ = bj}| =s, for every j œ [i]}.

We claim this forms an induced matching of size
!

is

s,...,s

"
. By Stirling approximation,

!
is

s,...,s

"
=

i
(1+o(1))is and so the claim implies that mimsup(A) Ø i = him(A). Since the size is clear
from the definition, it only remains to check that it indeed forms an induced matching. To
show this, we explain why the row of

r = (a1, . . . , a1, a2, . . . , a2, . . . , ai, . . . , ai)

has a single one entry in column

c = (b1, . . . , b1, b2, . . . , b2, . . . , bi, . . . , bi).

The other cases follow by symmetry. It is clear that A
¢is[r, c] = 1. Any column c

Õ with
A

¢is[r, cÕ] = 1 must have A[a1, cÕ

j
] = 1 for all j œ [s]. But A[a1, bj ] = 0 when j > 1, so this

implies that {j : cÕ

j
= b1} = [s]. Similarly, we require A[a2, cÕ

j
] = 1 for all j œ [s+ 1, 2s], but

c
Õ has already “used” all its b1’s and so {j | c

Õ

j
= b2} needs to be [s + 1, 2s]. Continuing

inductively, we find that {j | c
Õ

j
= bk} = [(k ≠ 1)s+ 1, ks] for all k œ [i], that is, cÕ = c. J

We are now ready to prove previously claimed bounds.

I Theorem 3. For every non-bipartite graph H with adjacency matrix AH and k œ N,

him(AH) Æ mimsup(AH) = lim sup
kæŒ

mim(A¢k

H
)1/k and mim(A¢k

H
) Æ k

(him(AH)+1)k
.

Proof. Lemma 11 shows the first inequality. The proof of Lemma 10 implies that for any
matrix A, mim(A¢k) Æ k

him(A)k, since no smaller representative set can be found when the
rows induce an induced matching (with some set of columns). J

The following observation implies that sequences such as mim(A¢2
k)1/2k are non-decreasing.
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I Lemma 12 (˝). Given two matrices A and B, mim(A ¢ B) Ø mim(A)mim(B). In

particular, mimsup(A¢k) = mimsup(A)k.

The results above also imply that

mimsup(A) = lim sup
kæŒ

him(A¢k)1/k.

At first glance, it may be natural to conjecture that in fact mimsup(A) = him(A) for all
matrices A. This is however not true, as the following result shows.

I Theorem 13 (˝). For all su�ciently large integers h, there is a symmetric (2h ◊ 2h)
matrix A with him(A) Æ 10 log2 h and mimsup(A) Ø

Ô
h.

6 Conclusion

An obvious open problem is to fully resolve Open Problem 1. As discussed, to achieve this
goal we only lack a fast algorithm that computes representative sets for partial solutions to
Hom(H). A far more ambitious (and probably currently out of reach) goal is to provide
a (more) fine-grained version of the Courcelle’s theorem for deciding any graph property
definable in the monadic second-order logic. While being homomorphic to a given graph
H is of course only a very special sort of such a property, we find our progress on Open
Problem 1 encouraging in this respect and hope that eventually similar connections between
the complexity of more general computational problems and asymptotic rank parameters
can be made as well. In particular, we believe that mimsup (or a similar parameter that
tracks the asymptotic behavior under appropriate products) is likely to determine the limit
of dynamic programming approaches in other settings as well, especially those determined
by various graph width parameters.

Another suggested direction of research is purely combinatorial/algebraic: we expect that
mimsup is an interesting parameter for further study in its own right. We suggest following
questions. (i) What type of values can mimsup(H) take given a matrix H? Can it take
non-integer values? Similar questions have recently been investigated for asymptotic tensor
parameters, see e.g. [3,6]. (ii) What is the value of mimsup for a n◊n random matrix, where
each entry of the matrix gets sampled independently to be 1 with probability p and to be 0
with probability 1 ≠ p? (iii) We showed that him and the support rank are not functionally
equivalent. Is mimsup functionally equivalent to either him or the support rank?
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Isomorphism for Tournaments of Small Twin Width
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Abstract

We prove that isomorphism of tournaments of twin width at most k can be decided in time
kO(log k)nO(1). This implies that the isomorphism problem for classes of tournaments of bounded or
moderately growing twin width is in polynomial time. By comparison, there are classes of undirected
graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for
the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter
that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention
in structural graph theory since then. On directed graphs, it is functionally smaller than clique
width. We prove that on tournaments (but not on general directed graphs) it is also functionally
smaller than directed tree width (and thus, the same also holds for cut width and directed path
width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter
tractable when parameterized by any of these parameters.

Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be
necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm
does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n).
(Throughout this abstract, n is the order of the input graphs.)

2012 ACM Subject Classification Theory of computation æ Fixed parameter tractability; Mathem-
atics of computing æ Graph algorithms; Theory of computation æ Finite Model Theory

Keywords and phrases tournament isomorphism, twin width, fixed-parameter tractability, Weisfeiler-
Leman algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.78

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2312.02048

Funding Martin Grohe: The research is funded by the European Union (ERC, SymSim, 101054974).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

Acknowledgements We thank the anonymous reviewers of an earlier version of this paper for helpful
feedback which, in particular, resulted an improved bound in Theorem 1.2.

1 Introduction

The tournament isomorphism problem (TI) was recognized as a particularly interesting
special case of the graph isomorphism problem (GI) early-on. Already in 1983, Babai and
Luks [3] proved that TI is solvable in time nO(logn); it took 33 more years for Babai [2] to
prove that the general GI is in quasi-polynomial time. An important fact that makes TI
more accessible than GI is that tournaments always have solvable automorphism groups.
This is a consequence of the observation that the automorphism groups of tournaments
have odd order and the famous Feit-Thompson Theorem [18] stating that all groups of
odd order are solvable. However, even Babai’s powerful new machinery did not help us to

EA
T
C
S

© Martin Grohe and Daniel Neuen;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 78; pp. 78:1–78:20

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:daniel.neuen@ur.de
https://orcid.org/0000-0002-4940-0318
https://doi.org/10.4230/LIPIcs.ICALP.2024.78
https://arxiv.org/abs/2312.02048
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


78:2 Isomorphism for Tournaments of Small Twin Width

improve the upper bound for TI, as one might have hoped. But TI is not only special from a
group-theoretic perspective. Another remarkable result, due to Schweitzer [42], states that
TI reduces to the problem of deciding whether a tournament has a nontrivial automorphism;
the so-called rigidity problem. It is an open question whether the same holds for general
graphs.

While there is an extensive literature on GI restricted to classes of graphs (see [25]
for a recent survey), remarkably little is known for restrictions of TI. Ponomarenko [40]
proved that TI is in polynomial time for tournaments whose automorphism group contains a
regular cyclic subgroup, and recently Arvind, Ponomarenko, and Ryabov [1] proved that TI
is in polynomial time for edge-colored tournaments where at least one edge color induces a
(strongly) connected spanning subgraph of bounded degree (even fixed-parameter tractable
when parameterized by the out-degree). While both of these results are very interesting
from a technical perspective, they consider classes of tournaments that would hardly be
called natural from a graph-theoretic point of view. Natural graph parameters that have
played a central role in the structural theory of tournaments developed by Chudnovsky,
Seymour and others [13, 14, 15, 16, 19] are cut width and path width. The more recent
theory of structural sparsity [20, 21, 36, 37] highlights clique width and twin width. Here twin
width is the key parameter. Not only is it functionally smaller than the other parameters,
which means that if cut width, path width, or clique width is bounded, then twin width is
bounded as well, it is also known [23] that a class of tournaments has bounded twin width
if and only if it has a property known as monadic dependence (NIP). Dependence is a key
property studied in classical model theory. A class of graphs is monadically dependent if
and only if all set systems definable in this class by a first-order transduction have bounded
VC dimension. This property seems to characterize precisely the graph classes that are
regarded as structurally sparse. Since twin width of graphs and binary relational structures
has been introduced in [11], it received a lot of attention in algorithmic structural graph
theory [5, 6, 7, 8, 9, 10, 21, 22, 23, 29, 44]. (We defer the somewhat unwieldy definition
of twin width to Section 2.3.) Our main result states that tournament isomorphism is
fixed-parameter tractable when parameterized by twin width.

I Theorem 1.1. The isomorphism problem for tournaments of twin width at most k can be
solved in time kO(log k) · nO(1).

Interestingly, isomorphism testing for undirected graphs of bounded twin width is as hard
as the general GI. This follows easily from the fact that an �(logn)-subdivision of every
graph with n vertices has bounded twin width [5]. Once more, this demonstrates the special
role of the tournament isomorphism problem, though here the reason is not group-theoretic,
but purely combinatorial.

Note that the dependence on the twin width k of the algorithm in Theorem 1.1 is
subexponential, so our result implies that TI is in polynomial time even for tournaments
of twin width 2O(

Ô
logn). Since twin width is functionally smaller than clique width, our

result implies that TI is also fixed-parameter tractable when parameterized by clique width.
Additionally, we prove that the twin width of a tournament is functionally smaller than
its directed tree width, a graph parameter originally introduced in [31]. Since the directed
tree width of every directed graph is smaller than its cut width or directed path width,
the same also holds for these two parameters. Hence, TI is fixed-parameter tractable also
when parameterized by directed tree width, directed path width or cut width. To the best
of our knowledge, this was not known for any of these parameters. The fact that twin
width is functionally smaller than directed tree width, directed path width and cut width on
tournaments is interesting in its own right, because this result does not extend to general
directed graphs (for any of the three parameters).
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Our proof of Theorem 1.1 heavily relies on group-theoretic techniques. In a nutshell, we
show that bounded twin width allows us to cover a tournament by a sequence of directed
graphs that have a property resembling bounded degree su�ciently closely to apply a group-
theoretic machinery going back to Luks [33] and developed to great depth since then (see,
e.g., [2, 3, 27, 35, 38]). Specifically, we generalize arguments that have been introduced by
Arvind et al. [1] for TI on edge-colored tournaments where at least one edge color induces a
spanning subgraph of bounded out-degree.

Yet one may wonder if this heavy machinery is even needed to prove our theorem, in
particular in view of the fact that on many natural graph classes, including, for example,
undirected graphs of bounded clique width [26], the purely combinatorial Weisfeiler-Leman
algorithm is su�cient to decide isomorphism (see, e.g., [24, 32]). We prove that this is not
the case for tournaments of bounded twin width.

I Theorem 1.2. For every k Ø 2 there are non-isomorphic tournaments Tk and T Õ
k of

order |V (Tk)| = |V (T Õ
k)| = O(k) and twin width at most 35 that are not distinguished by the

k-dimensional Weisfeiler-Leman algorithm.

We remark that it was known before that the Weisfeiler-Leman algorithm fails to decide
tournament isomorphism. Indeed, Dawar and Kopczynski (unpublished) proved that for every
k Ø 2 there are non-isomorphic tournaments Uk and U Õ

k of order |V (Uk)| = |V (U Õ
k)| = O(k)

that are not distinguished by the k-dimensional Weisfeiler-Leman algorithm. Theorem 1.2
strengthens this result by constructing tournaments where additionally the twin width is
bounded by a fixed constant.

The paper is organized as follows. After introducing the necessary preliminaries in
Section 2, Theorem 1.1 is proved in Sections 3 and 4. First, we give our main combinatorial
arguments in Section 3. After that, the mainly group-theoretic isomorphism algorithm of
Theorem 1.1 is presented in Section 4. Theorem 1.2 is proved in Section 5. Finally, in
Section 6 we compare twin width to other width measures for directed graphs. All omitted
proofs can be found in the full version.

2 Preliminaries

2.1 Graphs

Graphs in this paper are usually directed. We often emphasize this by calling them “digraphs”.
However, when we make general statements about graphs, this refers to directed graphs and
includes undirected graphs a special case (directed graphs with a symmetric edge relation).
We denote the vertex set of a graph G by V (G) and the edge relation by E(G). The vertex set
V (G) is always finite and non-empty. The edge relation is always anti-reflexive, that is, graphs
are loop-free, and there are no parallel edges. For a digraph G and a vertex v œ V (G), we
denote the set of out-neighbors and in-neighbors of v by N+(v) and N≠(v), respectively. Also,
the out-degree and in-degree of v are denoted by deg+(v) := |N+(v)| and deg≠(v) := |N≠(v)|,
respectively. Furthermore, E+(v) and E≠(v) denote the set of outgoing and incoming edges
into v, respectively. For X ™ V (G), we write G[X] to denote the subgraph of G induced
on X. For two sets X,Y ™ V (G) we write EG(X,Y ) := {(v, w) œ E(G) | v œ X,w œ Y } to
denote the set of directed edges from X to Y .

Let G be an undirected graph. A directed graph G̨ is an orientation of G if, for every
undirected edge {v, w} œ E(G), exactly one of (v, w) and (w, v) is an edge of G̨, and there
are no other edges present in G̨. A tournament is an orientation of a complete graph.
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78:4 Isomorphism for Tournaments of Small Twin Width

A tournament T is regular if deg+(v) = deg+(w) for all v, w œ V (T ). In this case,
deg+(v) = deg≠(v) = |V (G)|≠1

2
for all v œ V (T ). This implies that every regular tournament

has an odd number of vertices.
Let G1, G2 be two graphs. An isomorphism from G1 to G2 is a bijection Ï : V (G1) æ

V (G2) such that (v, w) œ E(G1) if and only if (Ï(v),Ï(w)) œ E(G2) for all v, w œ V (G1).
We write Ï : G1) ≥= G2 to denote that Ï is an isomorphism from G1 to G2. Also, Iso(G1, G2)
denotes the set of all isomorphisms from G1 to G2. The graphs G1 and G2 are isomorphic if
Iso(G1, G2) ”= ÿ. The automorphism group of G1 is Aut(G1) := Iso(G1, G1).

An arc coloring of a digraph G is a mapping ⁄ : (E(G) fi {(v, v) | v œ V (G)}) æ C for
some set C of “colors”. An arc-colored graph is a triple G = (V,E,⁄), where (V,E) is a graph
an ⁄ an arc coloring of (V,E). Isomorphisms between arc-colored graphs are required to
preserve the coloring.

2.2 Partitions and Colorings

Let S be a finite set. A partition of S is a set P ™ 2S whose elements we refer to as parts,
such that any two parts are mutually disjoint, and the union of all parts is S. A partition P
refines another partition Q, denoted by P ∞ Q, if for all P œ P there is some Q œ Q such
that P ™ Q. We say a partition P is trivial if |P| = 1, which means that the only part is S,
and it is discrete if |P | = 1 for all P œ P.

Every mapping ‰ : S æ C, for some set C, induces a partition P‰ of S into the sets ‰≠1(c)
for all c in the range of ‰. In this context, we think of ‰ as a “coloring” of S, the elements
c œ C as “colors”, and the parts ‰≠1(c) of the partition as “color classes”. If ‰Õ : S æ C Õ

is another coloring, then we say that ‰ refines ‰Õ, denoted by ‰ ∞ ‰Õ, if P‰ ∞ P‰Õ . The
colorings are equivalent (we write ‰ © ‰Õ) if ‰ ∞ ‰Õ and ‰ ∞ ‰Õ, i.e., P‰ = P‰Õ .

2.3 Twin Width

Twin width [11] is defined for binary relational structures, which in this paper are mostly
directed graphs. We need one distinguished binary relation symbol Ered that plays a special
role in the definition of twin width. Following [11], we refer to elements of Ered as red edges.
For every structure A, we assume the relation Ered(A) to be symmetric and anti-reflexive,
that is, the edge relation of an undirected graph, and we refer to the maximum degree of
this graph as the red degree of A. If Ered(A) is not explicitly defined, we assume Ered(A) = ÿ
(and the red degree of A is 0).

Let A = (V (A), R1(A), . . . , Rk(A)) be a binary relational structure, where V (A) is a
non-empty finite vertex set and Ri(A) ™ (V (A))2 are binary relations on V (A) (possibly,
Ri = Ered for some i œ [k]). We call a pair (X,Y ) of disjoint subsets of V (A) homogeneous if
for all x, xÕ œ X, and all y, yÕ œ Y it holds that
(i) (x, y) œ Ri(A) … (xÕ, yÕ) œ Ri(A) and (y, x) œ Ri(A) … (yÕ, xÕ) œ Ri(A) for all i œ [k],

and
(ii) (x, y) /œ Ered(A) and (y, x) /œ Ered(A).
For a partition P of V (A), we define A/P to be the structure with vertex set V (A/P) := P
and relations

Ri(A/P) :=
)
(X,Y ) œ P2

-- (X,Y ) is homogeneous and X ◊ Y ™ Ri(A)
*

for all Ri ”= Ered, and

Ered(A/P) :=
)
(X,Y ) œ P2

-- (X,Y ) is not homogeneous and X ”= Y
*
.
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A contraction sequence for A is a sequence of partitions P1, . . . ,Pn of V (A) such that
P1 = {{v} | v œ V (A)} is the discrete partition, Pn = {V (A)} is the trivial partition, and for
every i œ [n ≠ 1] the partition Pi+1 is obtained from Pi by merging two parts, i.e., there are
distinct P, P Õ œ Pi such that Pi+1 = {P fi P Õ} fi (Pi \ {P, P Õ}). The width of a contraction
sequence P1, . . . ,Pn of A is the minimum k such that for every i œ [n] the structure A/Pi

has red degree at most k. The twin width of A, denoted by tww(A), is the minimum k Ø 0
such that A has a contraction sequence of width k.

Note that red edges are introduced as we contract parts of the partitions. However, the
structure A we start with may already have red edges, which then have direct impact on its
twin width. In particular, the twin width of a graph G may be smaller than the twin width
of the structure Gred obtained from G by coloring all edges red. This fact is used later.

We also remark that for our isomorphism algorithms, we never have to compute a
contraction sequence of minimum width or the twin width.

We state two simple lemmas on basic properties of twin width.

I Lemma 2.1 ([11]). Let A be a binary relational structure and X ™ V (A). Then
tww(A[X]) Æ tww(A).
I Lemma 2.2. Let A be a structure over the vocabulary · . Then there is a linear order <
on V (A) such that tww(A,<) = tww(A).

2.4 Weisfeiler-Leman

In this section, we describe the k-dimensional Weisfeiler-Leman algorithm (k-WL). The
algorithm has been originally introduced in its 2-dimensional form by Weisfeiler and Leman
[46] (see also [45]). The k-dimensional version, coloring k-tuples, was introduced later by
Babai and Mathon (see [12]).

Fix k Ø 2, and let G be a graph. For i Ø 0, we describe the coloring ‰k,G
(i) of (V (G))k

computed in the i-th iteration of k-WL. For i = 0, each tuple is colored with the isomorphism
type of the underlying ordered induced subgraph. So if H is another graph and v̄ =
(v1, . . . , vk) œ (V (G))k, w̄ = (w1, . . . , wk) œ (V (H))k, then ‰k,G

(0)
(v̄) = ‰k,H

(0)
(w̄) if and only if,

for all i, j œ [k], it holds that vi = vj … wi = wj and (vi, vj) œ E(G) … (wi, wj) œ E(H). If
G and H are arc-colored, then the colors are also taken into account.

Now let i Ø 0. For v̄ = (v1, . . . , vk) we define

‰k,G
(i+1)

(v̄) :=
1

‰k,G
(i) (v̄),Mi(v̄)

2

where

Mi(v̄) :=
ÓÓ!

‰k,G
(i) (v̄[w/1]), . . . ,‰k,G

(i) (v̄[w/k])
" --- w œ V (G)

ÔÔ

and v̄[w/i] := (v1, . . . , vi≠1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w (and {{. . . }} denotes a multiset).

Clearly, ‰k,G
(i+1)

∞ ‰k,G
(i) for all i Ø 0. So there is a unique minimal iŒ Ø 0 such that

‰k,G
(iŒ+1)

© ‰k,G
(iŒ)

and we write ‰k,G := ‰k,G
(iŒ)

to denote the corresponding coloring.
The k-dimensional Weisfeiler-Leman algorithm takes as input a (possibly colored) graph G

and outputs (a coloring that is equivalent to) ‰k,G. This can be done in time O(k2nk+1 logn)
[30].

Let H be a second graph. The k-dimensional Weisfeiler-Leman algorithm distinguishes
G and H if there is a color c œ C such that

---
Ó
v̄ œ (V (G))k

--- ‰k,G(v̄) = c
Ô--- ”=

---
Ó
w̄ œ (V (H))k

--- ‰k,H(w̄) = c
Ô---.

We write G ƒk H to denote that k-WL does not distinguish between G and H.
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A graph G is k-WL-homogeneous if for all v, w œ V (G) it holds that ‰k,G(v, . . . , v) =
‰k,G(w, . . . , w).

2.5 Group Theory

For a general background on group theory we refer to [41], whereas background on permutation
groups can be found in [17]. Also, basics facts on algorithms for permutation groups are
given in [43].

Basics for Permutation Groups. A permutation group acting on a set � is a subgroup
� Æ Sym(�) of the symmetric group. The size of the permutation domain � is called the
degree of �. If � = [n] := {1, . . . , n}, then we also write Sn instead of Sym(�). For A ™ �
and “ œ � let “(A) := {“(–) | – œ A}. The set A is �-invariant if “(A) = A for all “ œ �.

Let ◊ : � æ �Õ be a bijection. We write �◊ := {“◊ | “ œ �} for the set of bijections from �
to �Õ obtained from concatenating a permutation from � and ◊. Note that (“◊)(–) = ◊(“(–))
for all – œ �.

A set S ™ � is a generating set for � if for every “ œ � there are ”1, . . . , ”k œ S such that
“ = ”1 . . . ”k. In order to perform computational tasks for permutation groups e�ciently the
groups are represented by generating sets of small size (i.e., polynomial in the size of the
permutation domain). Indeed, most algorithms are based on so-called strong generating sets,
which can be chosen of size quadratic in the size of the permutation domain of the group
and can be computed in polynomial time given an arbitrary generating set (see, e.g., [43]).

Group-Theoretic Methods for Isomorphism Testing. In this work, we shall be interested
in a particular subclass of permutation groups. Let � be a group and let “, ” œ �. The
commutator of “ and ” is [“, ”] := “≠1”≠1“”. The commutator subgroup [�,�] of � is
the unique subgroup of � generated by all commutators [“, ”] for “, ” œ �. Note that
[�,�] is a normal subgroup of �. The derived series of � is the sequence of subgroups
�(0) D �(1) D �(2) D . . . where �(0) := � and �(i+1) := [�(i),�(i)] for all i Ø 0. A group � is
solvable if there is some i Ø 0 such that �(i) is the trivial group (i.e., it only contains the
identity element). The next theorem follows from the Feit-Thompson Theorem stating that
every group of odd order is solvable.

I Theorem 2.3. Let T be a tournament. Then Aut(T ) is solvable.

Next, we state several basic group-theoretic algorithms for isomorphism testing.

I Theorem 2.4 ([3, Theorem 4.1]). There is an algorithm that, given two tournaments T1

and T2, computes Iso(T1, T2) in time nO(logn).

Note that Iso(T1, T2) may be of size exponential in the number of vertices of T1 and T2.
However, if T1 and T2 are isomorphic (i.e., Iso(T1, T2) ”= ÿ), we have Iso(T1, T2) = Aut(T1)Ï
where Ï œ Iso(T1, T2) is an arbitrary isomorphism from T1 to T2. Hence, the set Iso(T1, T2)
can be represented by a generating set for Aut(T1) of size polynomial in |V (T1)| and a single
element Ï œ Iso(T1, T2). Let us stress at this point that all isomorphism sets computed by
the various algorithms discussed in this work are represented in this way.

Let G1 and G2 be two (colored) directed graphs. Also let � Æ Sym(V (G1)) be a
permutation group and let ◊ : V (G1) æ V (G2) be a bijection. We define

Iso�◊(G1, G2) := Iso(G1, G2) fl �◊ = {Ï œ �◊ | Ï : G1
≥= G2}
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and Aut�(G1) := Iso�(G1, G1). Note that Aut�(G1) Æ � and, if Iso�◊(G1, G2) ”= ÿ, then
Iso�◊(G1, G2) = Aut�(G1)Ï where Ï œ Iso(G1, G2) is an arbitrary isomorphism from G1

to G2.

I Theorem 2.5 ([3, Corollary 3.6]). Let G1 = (V1, E1,⁄1) and G1 = (V2, E2,⁄2) be two
arc-colored directed graphs. Also let � Æ Sym(V1) be a solvable group and ◊ : V1 æ V2 a
bijection. Then Iso�◊(G1, G2) can be computed in polynomial time.

3 Small Degree Partition Sequences

In the following, we design an isomorphism test for tournaments of twin width k which runs
in time kO(log k)nO(1). On a high level, the algorithm essentially proceeds in three phases.
First, we use well-established group-theoretic methods going back to [3, 33] to reduce to
the case where both input tournaments are 2-WL-homogeneous (without increasing the
twin width). In the second step, we identify a substructure of an input tournament T (that
is 2-WL-homogeneous) that has some kind of bounded-degree property. More concretely,
we apply the 2-dimensional Weisfeiler-Leman algorithm and compute a sequence of colors
c1, . . . , c¸ in the image of the 2-WL coloring ‰2,T so that the subgraph induced by all edges
with a color from c1, . . . , c¸ has a certain type of bounded-degree property. After that, we
rely on the computed bounded-degree structure to determine isomorphisms based on the
group-theoretic graph isomorphism machinery. Similar tools have also been used in [1] to solve
isomorphism of k-spanning tournaments. However, as we shall see below, the bounded-degree
property guaranteed by the second step is weaker than the notion of k-spanning tournaments,
which requires us to further extend the methods from [1].

In this section, we implement the second phase and prove the key combinatorial lemma
(Lemma 3.6) underlying our isomorphism algorithm. Our arguments rely on the notion of
mixed neighbors for a pair of vertices. For a pair v, w œ V (T ) of vertices we let

M(v, w) :=
1
N≠(v) fl N+(w)

2
fi

1
N+(v) fl N≠(w)

2
. (1)

We call the elements of M(v, w) the mixed neighbors of (v, w), and we call md(v, w) :=
|M(v, w)| the mixed degree of (v, w). The following simple observation links the mixed degree
to twin width.

I Observation 3.1. There is an edge (v, w) œ E(T ) such that md(v, w) Æ tww(T ).

Proof. Let k := tww(T ) and let P1, . . . ,Pn be a contraction sequence of T of width k. Let
{v, w} be the unique 2-element part in P2. Then md(v, w) = md(w, v) Æ k, and either
(v, w) œ E(T ) or (w, v) œ E(T ). J

In the following, let GT be the directed graph with vertex set V (GT ) := V (T ) and edge
set E(GT ) := {(v, w) œ E(T ) | md(v, w) Æ tww(T )}. The next lemma implies that GT has
maximum out-degree at most 2 · tww(T ) + 1.

I Lemma 3.2. Suppose k Ø 1. Let T be a tournament and let v œ V (T ). Also let

W := {w œ N+(v) | md(v, w) Æ k}.

Then |W | Æ 2k + 1.
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Proof. Let ¸ := |W |. The induced subtournament T [W ] has a vertex w of in-degree at least
(¸ ≠ 1)/2. Since md(v, w) Æ k and (v, wÕ) œ E(T ) for all wÕ œ W , we have

|{wÕ œ W | (wÕ, w) œ E(T )}| Æ k.

Thus ¸≠1

2
Æ k, which implies that |W | = ¸ Æ 2k + 1. J

So GT is a subgraph of T of maximum out-degree d := 2 · tww(T ) + 1. We remark that
similar arguments also show that GT has maximum in-degree at most d (technically, this
property is not required by our algorithm, but it is helpful for the following explanations).
Now, first suppose that GT is strongly connected. Then the edges of GT define a (strongly)
connected spanning subgraph of maximum degree 2d (in-degree plus out-degree). In this
situation, we can directly use the algorithm from [1] to test isomorphism in time dO(log d)nO(1).

So suppose GT is not strongly connected. If T is 2-WL-homogeneous, then GT is also
not weakly connected (i.e., the undirected version of GT is not connected). In this case,
the basic idea is to identify further edges to be added to decrease the number of connected
components while keeping some kind of bounded-degree property.

In the following, let Q be a partition of V (T ) that is non-trivial, that is, has at least two
parts. The reader is encouraged to think of Q as the partition into the (weakly) connected
components of GT , but the following results hold for any non-trivial partition Q. We call an
edge (v, vÕ) œ E(T ) cross-cluster with respect to Q if it connects distinct Q,QÕ œ Q. For a
cross-cluster edge (v, vÕ) with Q – v,QÕ – vÕ, we let

MQ(v, vÕ) :=
)
QÕÕ œ Q \ {Q,QÕ}

-- QÕÕ fl M(v, vÕ) ”= ÿ
*

and mdQ(v, vÕ) := |MQ(v, vÕ)|.
The next two lemmas generalize Observation 3.1 and Lemma 3.2.

I Lemma 3.3. Let T be a tournament and suppose Q is a non-trivial partition of V (T ).
Then there is a cross-cluster edge (v, w) œ E(T ) such that mdQ(v, w) Æ tww(T ).
Proof. Let k := tww(T ) and let P1, . . . ,Pn be a contraction sequence of T of width k. Note
that P1 refines Q and Pn does not refine Q, because Q is nontrivial. Let i Ø 1 be minimal
such that Pi+1 does not refine Q.

Let P, P Õ œ Pi denote the parts merged in the step from Pi to Pi+1. Since Pi refines
Q, there are Q,QÕ œ Q such that P ™ Q and P Õ ™ QÕ. Moreover, Q ”= QÕ, because Pi+1

does not refine Q. We pick arbitrary elements v œ P and w œ P Õ such that (v, w) œ E(T )
(if (w, v) œ E(T ), we swap the roles of P and P Õ). Then (v, w) is a cross-cluster edge with
respect to Q.

Let P1, . . . , PkÕ be a list of all P ÕÕ œ Pi+1 \ {P fiP Õ} such that the pair (P fiP Õ, P ÕÕ) is not
homogeneous. Then kÕ Æ k by the definition of twin width. Since Pi\{P, P Õ} = Pi+1\{PfiP Õ}
and Pi refines Q, there are Q1, . . . , QkÕ œ Q such that Pi ™ Qi for all i œ [kÕ].

Now let QÕÕ œ Q\{Q,QÕ, Q1, . . . , QkÕ}. Suppose for contradiction that QÕÕ flM(v, w) ”= ÿ,
and pick an element wÕ œ QÕÕflM(v, w). Then there is a P ÕÕ œ Pi\{P, P Õ, P1, . . . , PkÕ} = Pi+1\
{P fiP Õ, P1, . . . , PkÕ} such that wÕ œ P ÕÕ. But then the pair (P fiP Õ, P ÕÕ) is not homogeneous,
which is a contradiction. So QÕÕ flM(v, w) = ÿ. This implies that MQ(v, w) ™ {Q1, . . . , QkÕ}.
In particular, mdQ(v, w) Æ kÕ Æ k. J

I Lemma 3.4. Suppose k Ø 1. Let T be a tournament and let Q be a non-trivial partition
of V (T ). Also let Q œ Q and v œ Q. Let

W := {QÕ œ Q \ {Q} | ÷w œ QÕ : (v, w) œ E(T ) · mdQ(v, w) Æ k}.

Then |W| Æ 2k + 1.
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. . .

Figure 1 The figure shows part of a tournament T . The colors c1 and c2 are shown in blue and
green, respectively. Also, the parts of the partition Q1 are highlighted in gray. Note that only green
edges, which are outgoing from the middle part, are shown.

The proof is very similar to the proof of Lemma 3.2.

Proof. Let ¸ := |W| and suppose W = {Q1, . . . , Q¸}. For every i œ [¸] pick an element
wi œ Qi such that (v, wi) œ E(T ) and mdQ(v, wi) Æ k. We define W := {w1, . . . , w¸}. Then
there is some w œ W such that

|{wÕ œ W | (wÕ, w) œ E(T )}| Ø ¸ ≠ 1
2 ,

because the induced subtournament T [W ] has a vertex of in-degree at least (¸ ≠ 1)/2.
Since mdQ(v, w) Æ k and (v, wÕ) œ E(T ) for all wÕ œ W , it follows that

|{wÕ œ W | (wÕ, w) œ E(T )}| Æ k.

Thus ¸≠1

2
Æ k, which implies that |W| = ¸ Æ 2k + 1. J

Now, suppose we color all edges (v, w) of T with md(v, w) Æ tww(T ) using the color
c1 = blue (see Figure 1). Let Q1 be the partition into the (weakly) connected components of
the graph induced by the blue edges and suppose that Q1 is non-trivial. We can compute
isomorphisms between the di�erent parts of Q1 using the algorithm from [1]. Next, let
us color all cross-cluster edges (v, w) œ E(T ) with mdQ(v, w) Æ tww(T ) using the color
c2 = green. Then every vertex has outgoing green edges to at most 2 tww(T ) + 1 other
parts of Q1 (see Lemma 3.4). However, since a vertex may have an unbounded number of
green neighbors in a single part, the out-degree of the graph induced by the green edges
may be unbounded. So it is not possible to use the algorithm from [1] as a black-box on
the components induced by blue and green edges. Luckily, the methods used in [1] can be
extended to work even in this more general setting (see Section 4). So if the graph induced
by the blue and green edges is connected, then we are again done. Otherwise, we let Q2

denote the partition into (weakly) connected components of the graph induced by the blue
and green edges. Now, we can continue in the same fashion identifying colors c3, c4, . . . and
corresponding partitions Q3,Q4, . . . until the graph induced by all edges of colors c1, . . . , c¸

is eventually connected.
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Below, we provide a lemma that computes the corresponding sequence of partitions and
edge colors using 2-WL. To state the lemma in its cleanest form, we restrict our attention to
tournaments that are 2-WL-homogeneous. Recall that a tournament T is 2-WL-homogeneous
if for all v, w œ V (T ) is holds that ‰2,T (v, v) = ‰2,T (w,w).

We also require another piece of notation. For a directed graph G and a set of colors
C ™ {‰2,G(v, w) | (v, w) œ E(G)} we write G[C] for the directed graph with vertex set
V (G[C]) := V (G) and edge set

E(G[C]) := {(v, w) œ E(G) | ‰2,G œ C}.

To prove Lemma 3.6 we need the following lemma about the connected components of the
graphs G[C].

I Lemma 3.5. Let G be a 2-WL-homogeneous graph, and let C a set of colors in the range of
‰2,G. Then the weakly connected components of G[C] equal the strongly connected components
of G[C].

I Lemma 3.6. Let T be a 2-WL-homogeneous tournament of twin width tww(T ) Æ k. Then
there is a sequence of partitions {{v} | v œ V (T )} = Q0, . . . ,Q¸ = {V (T )} of V (T ) where
Qi≠1 refines Qi for all i, and a sequence of colors c1, . . . , c¸ in the range of ‰2,T such that
(1) Qi is the partition into the strongly connected components of T [{c1, . . . , ci}] for every

i œ [¸], and
(2) for every i œ [¸] and every v œ V (T ) it holds that

--)Q œ Qi≠1

-- ÷w œ Q : ‰2,T (v, w) = ci
*-- Æ 2k + 1.

Moreover, there is a polynomial-time algorithm that, given a tournament T and an integer
k Ø 1, computes the desired sequences Q0, . . . ,Q¸ and c1, . . . , c¸ or concludes that tww(T ) >
k.

Proof. We set Q0 = {{v} | v œ V (T )} and inductively define a sequence of partitions and
colors as follows. Let i Ø 0 and suppose we already defined partitions Q0 ª · · · ª Qi and
colors c1, . . . , ci. If Qi = {V (T )}, we set ¸ := i and complete both sequences. Otherwise,
there is a cross-cluster edge (vi+1, wi+1) with respect to Qi such that mdQi(vi+1, wi+1) Æ k
by Lemma 3.3. We set ci+1 := ‰2,T (vi+1, wi+1) and define Qi+1 to be the set of weakly
connected components of T [c1, . . . , ci+1]. By Lemma 3.5, these are also the strongly connected
components.

First observe that Qi ª Qi+1 since (vi+1, wi+1) is a cross-cluster edge with respect to
Qi, and vi+1, wi+1 are contained in the same part of Qi+1 by Lemma 3.5. Also, Property
1 is satisfied by definition. For Property 2 note that every edge (v, w) œ E(T ) such that
‰2,G(v, w) = ci+1 is a cross-cluster edge with respect to Qi. So Property 2 follows directly
from Lemma 3.4.

Finally, it is clear from the description above that Q0 ª · · · ª Q¸ and c1, . . . , c¸ can be
computed in polynomial time, or we conclude that tww(T ) > k. J

4 The Isomorphism Algorithm

Based on the structural insights summarized in Lemma 3.6, we now design an isomorphism
test for tournaments of small twin width.

The strategy of our algorithm is the following. We are given two tournaments T1 and T2,
and we want to compute Iso(T1, T2). First, we reduce to the case where both T1 and T2 are
2-WL-homogeneous.



M. Grohe and D. Neuen 78:11

Towards this end, we start by applying 2-WL and, for j = 1, 2, compute the coloring
‰2,Tj . If 2-WL distinguishes the two tournaments, we can immediately conclude that they
are non-isomorphic and return Iso(T1, T2) = ÿ.

So suppose that 2-WL does not distinguish the tournaments. Then T1 is 2-WL-
homogeneous if and only if T2 is 2-WL-homogeneous.

If the Tj are not 2-WL-homogeneous, we rely on the following standard argument. Let
c1, . . . , cp be the vertex colors. For i œ [p] and j = 1, 2, let Pj,i be the set of all v œ V (Tj)
such that ‰2,Tj (v, v) = ci. We recursively compute the sets �i := Iso(T1[P1,i], T2[P2,i]) for all
i œ [p]. Note that this is possible since tww(T1[P1,i]) Æ tww(T1) and tww(T2[P2,i]) Æ tww(T2)
for all i œ [p] by Lemma 2.1. If there is some i œ [p] such that �i = ÿ, then T1 and T2

are non-isomorphic, and we return Iso(T1, T2) = ÿ. Otherwise, the set �i is a coset of
�i := Aut(T1[P1,i]) for all i œ [p], i.e., �i = �i◊i for some bijection ◊i : P1,i æ P2,i. As
the automorphism group of a tournament, �i is solvable (see Theorem 2.3). Moreover,
since the color classes P1,i are invariant under automorphisms of T1, the automorphism
group � := Aut(T1) is a subgroup of the direct product

r
i �i, which is also a solvable

group. Also, Iso(T1, T2) ™ �◊ where ◊ : V (T1) æ V (T2) is the unique bijection defined via
◊(v) := ◊i(v) for all v œ V (T1), where i œ [p] is the unique index such that v œ P1,i. So
Iso(T1, T2) = Iso�◊(T1, T2) can be computed in polynomial time using Theorem 2.5.

So we may assume that T1 and T2 are 2-WL-homogeneous. In this case, we apply
Lemma 3.6 and obtain colors c1, . . . , c¸ and, for j = 1, 2, a partition sequence {{v} | v œ
V (Tj)} = Qj,0, . . . ,Qj,¸ = {V (Tj)} where Qj,i≠1 refines Qj,i for all i œ [¸].

Now, we iteratively compute for i = 0, . . . , ¸ the sets Iso(Tj [Q], TjÕ [QÕ]) for all j, jÕ œ {1, 2}
and all Q œ Qj,i and QÕ œ QjÕ,i. For i = 0 this is trivial since all parts have size 1. So suppose
i > 0 and consider some elements j, jÕ œ {1, 2} and Q œ Qj,i, QÕ œ QjÕ,i. For simplicity,
let us assume that j = 1 and jÕ = 2. Our goal is to compute Iso(T1[Q], T2[QÕ]). To do so,
we exploit that we already computed all isomorphisms between all pairs of subgraphs of
T1[Q] and T2[QÕ] induced by sets R œ Q1,i≠1 fi Q2,i≠1 and for which R ™ Q or R ™ QÕ. The
next lemma describes the key subroutine of the main algorithm which achieves this goal.
Note that, on the last level ¸, we compute the set Iso(T1, T2) since Qj,¸ = {V (Tj)} for both
j œ {1, 2}.

To state the lemma, we need additional terminology. Let T = (V,E,⁄) be an arc-colored
tournament. A partition Q of V is ⁄-definable if there is a set of colors C ™ {⁄(v, w) | v =
w ‚ (v, w) œ E} such that

v ≥Q w ≈∆ ⁄(v, w) œ C

for all v, w œ V such that v = w or (v, w) œ E. We also say that Q is ⁄-defined by C. If Q
is ⁄-defined by C then we can partition the colors in the range of ⁄ into the colors in C,
which we call intra-cluster colors, and the remaining colors, which we call cross-cluster colors.
Note that if a color c is intra-cluster, then for all (v, w) œ E with ⁄(v, w) = c it holds that
v, w œ Q for some Q œ Q, and if c is cross-cluster, then for all (v, w) œ E with ⁄(v, w) = c it
holds that (v, w) is a cross-cluster edge, that is, v œ Q and w œ QÕ for distinct Q,QÕ œ Q.

I Lemma 4.1. There is an algorithm that, given
(A) an integer d Ø 1;
(B) two arc-colored tournaments T1 = (V1, E1,⁄1) and T2 = (V2, E2,⁄2);
(C) a set of colors C and for j = 1, 2 a partition Qj of Vj that is ⁄j-defined by C;
(D) a color cú that is cross-cluster with respect to Qj for j = 1, 2 and

for every v œ Vj it holds that
--)Q œ Qj

-- ÷w œ Q : (v, w) œ Ej · ⁄j(v, w) = cú*-- Æ d;
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for

Fj :=
)
(Q,QÕ) œ Q2

j

-- Q ”= QÕ,÷w œ Q,wÕ œ QÕ : (w,wÕ) œ Ej · ⁄j(w,wÕ) = cú*

the directed graph Gj = (Qj , Fj) is strongly connected;
(E) Iso

!
Tj [Q], TjÕ [QÕ]

"
for every j, jÕ œ {1, 2} and every Q œ Qj, QÕ œ QjÕ ,

computes Iso(T1, T2) in time dO(log d) · nO(1).

The proof builds on the algorithmic ideas presented in [1]. Since it is quite lengthy and
technical, we only present a rough idea of the proof; the details can be found in the full
version.

Proof Idea. The algorithm fixes an arbitrary vertex r1 œ V1 and for every r2 œ V2 computes
the set Iso((T1, r1), (T2, r2)) of all isomorphisms Ï œ Iso(T1, T2) such that Ï(r1) = r2. Observe
that Iso(T1, T2) is the union over all these sets.

The central idea is to iteratively compute larger and larger sets W1,i ™ V1 and W2,i ™ V2

such that
(I.1) there is some Wj,i ™ Qj such that Wj,i =

t
QœWj,i

Q, and
(I.2) Ï(W1,i) = W2,i for every Ï œ Iso((T1, r1), (T2, r2))
and compute the set Iso((T1[W1,i], r1), (T2[W2,i], r2)). Initially, we set W1,0 := R1 and
W2,0 := R2 where R1 and R2 are the unique parts of Q1 and Q2 containing r1 and r2,
respectively. Note that the set Iso((T1[W1,0], r1), (T2[W2,0], r2)) can easily be computed from
Item E.

Now suppose we already computed Iso((T1[W1,i], r1), (T2[W2,i], r2)) for some W1,i ™ V1

and W2,i ™ V2 satisfying (I.1) and (I.2). Consider a vertex u œ W1,i that has an outgoing
edge of color cú to a vertex outside of W1,i. Note that, if W1,i ”= V1, such a vertex exists by
the second part of Item D. We call such a vertex a boundary vertex. Let U1,i denote the
set of boundary vertices. For a boundary vertex u œ U1,i let Lu

1,i+1
denote the set of all

parts Q œ Q1 that are outside of W1,i and contain a vertex v œ Q such that (u, v) œ E1 and
⁄1(u, v) = cú. Also, we define Lu

1,i+1
:=

t
QœLu

1,i+1
Q. A visualization is given in Figure 2.

Note that |Lu
1,i+1

| Æ d by the first part of Item D.
For every boundary vertex u œ U1,i we construct an isomorphism-invariant tournament

ÂTu
1,i+1

with vertex set Lu
1,i+1

. Roughly speaking, for two distinct Q,QÕ œ Lu
1,i+1

, in order to
decide whether to add (Q,QÕ) or (QÕ, Q) to the edge set of ÂTu

1,i+1
, we take a majority vote

on the edges between Q and QÕ in T1 (if there is a tie, we need to invoke further rules; see
the full version for details).

Since |Lu
1,i+1

| Æ d, the automorphism group of ÂTu
1,i+1

can be computed in time dO(log d)

by Theorem 2.4. Also, for each Q œ Lu
1,i+1

, the automorphism group of T [Q] is given as part
of the input (see Item E). By taking a wreath product, we obtain a solvable permutation
group � Æ Sym(Lu

1,i+1
) such that Aut(T1[Lu

1,i+1
]) Æ �. Using Theorem 2.5, this allows us to

compute Aut(T1[Lu
1,i+1

]) and, more generally, compute the isomorphism sets between the
corresponding subgraphs for di�erent boundary vertices u, uÕ œ V1 fi V2.

Now, we extend W1,i by all sets Lu
1,i+1

, u œ U1,i, to obtain the next layer W1,i+1

(actually, for technical reasons, the final proof proceeds in a slightly di�erent manner); the
set W2,i+1 is defined analogously. To compute the desired isomorphism set, we proceed
as follows. For simplicity, first suppose that all sets Lu

1,i+1
, u œ U1,i, are pairwise disjoint.

Then, we can again take a wreath product to obtain a solvable permutation group � Æ
Sym(W1,i+1 \W1,i) such that Aut(T1[W1,i+1], r1) Æ Aut(T1[W1,i], r1) ◊ �. Using Theorem
2.5, this allows us to compute Aut(T1[W1,i+1], r1). Similarly, we can also compute the set
Iso((T1[W1,i+1], r1), (T2[W2,i+1], r2)).
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r1

u

uÕ

Lu

1,i+1

Lu
Õ

1,i+1

...

...

Figure 2 The figure shows the sets W1,i (orange), U1,i (blue) and Lu

1,i+1 computed in the proof
sketch of Lemme 4.1. The color cú is shown in green and gray regions depict parts of the partition Q1.

To cover the case that not all sets Lu
1,i+1

, u œ U1,i, are pairwise disjoint, we use the
following trick. For each vertex v œ W1,i+1 \W1,i let µ(v) denote the number of boundary
vertices u œ U1,i such that v œ Lu

1,i+1
. We replace each v œ W1,i+1 \W1,i with µ(v) copies of

the vertex; each copy is associated with one of the corresponding boundary vertices. Now,
we can proceed as in the previous case to compute the set of isomorphisms. Afterwards,
we rely on group-theoretic algorithms from [35] to “merge” the di�erent copies of the same
vertex again to finally obtain the group Iso((T1[W1,i+1], r1), (T2[W2,i+1], r2)).

Note that the second part of Item D guarantees that we can continue this process until
eventually W1,i = V1 and W2,i = V2, at which point we have computed the desired set
Iso((T1, r1), (T2, r2)). J

Building on the subroutine from Lemma 4.1, we can now design an isomorphism test for
tournaments of bounded twin width following the outline given above.

I Theorem 4.2. There is an algorithm that, given two tournaments T1 and T2 and an integer
k Ø 1, either concludes that tww(T1) > k or computes Iso(T1, T2) in time kO(log k) · nO(1).

5 The WL-Dimension of Tournaments of Bounded Twin Width

In this section, we prove Theorem 1.2. To prove that the WL algorithm on its own is
unable to determine isomorphisms between tournaments of bounded twin width, we adapt
a construction of Cai, Fürer and Immerman [12]. Towards this end, we first describe a
construction of directed graphs with large WL dimension, and then argue how to translate
those graphs into tournaments while preserving their WL dimension.

In the following, let G be a connected, 3-regular (undirected) graph. Let Gred denote the
structure obtained from G be replacing every edge with a red edge and let t := tww(Gred).

Let us remark at this point that the Cai-Fürer-Immerman construction [12] replaces each
vertex in G with a certain gadget, and those gadgets are connected along the edges of G. In
order to bound the twin width of the resulting graph, we start with a graph G for which the
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twin width of Gred is bounded.1 This is because the connections between gadgets are not
homogeneous, so when contracting all gadgets in a contraction sequence, we obtain precisely
the graph Gred which allows to “complete” the contraction sequence using that Gred has
bounded twin width.

Now, let us formally describe the construction of tournaments with large WL dimension.
By Lemma 2.2 there is some linear order < on V (G) such that tww(Gred, <) = t. Also, let G̨
be an arbitrary orientation of G.

Recall that for every v œ V (G) we denote by E+(v) the set of outgoing edges and E≠(v)
the set of incoming edges in G̨. Also, we write E(v) to denote the set of incident (undirected)
edges in G. For a œ Z3 we define

Ma(v) :=
Ó
f : E(v) æ Z3

---
ÿ

(v,w)œE+(v)

f({v, w}) ≠
ÿ

(w,v)œE≠(v)

f({v, w}) = a (mod 3)
Ô

We also define Fa(v) to contain all pairs (f, g) œ (Ma(v))2 such that, for the minimal element
w œ NG(v) (with respect to <) such that f(vw) ”= g(vw), it holds that

f(vw) + 1 = g(vw) (mod 3).

Observe that, for every distinct f, g œ Ma(v), either (f, g) œ Fa(v) or (g, f) œ Fa(v).
Let – : V (G) æ Z3 be a function. We define the graph CFI3(G̨, <,–) with vertex set

V (CFI3(G̨, <,–)) :=
€

vœV (G)

{v} ◊ M–(v)(v)

and edge set

E(CFI3(G̨, <,–)) :=
Ó
{(v, f)(w, g)}

--- vw œ E(G) · f(vw) = g(vw)
Ô

fi
Ó
((v, f)(v, g))

--- (f, g) œ F–(v)(v)
Ô
.

Observe that CFI3(G̨, <,–) is a mixed graph, i.e., it contains both directed and undirected
edges. Also, we color the vertices of CFI3(G̨, <,–) using the coloring ⁄ : V (CFI3(G̨, <,–)) æ C
defined via ⁄(v, f) := v for all (v, f) œ V (CFI3(G̨,–)), i.e., each set M–(v)(v) forms a color
class under ⁄.

Now fix an arbitrary vertex u0 œ V (G). For every i œ Z3 we define the mapping
–i : V (G) æ Z3 via –i(u0) := i and –i(w) := 0 for all w œ V (G) \ {u0}.

I Lemma 5.1. CFI3(G̨, <,–0) ”≥= CFI3(G̨, <,–1).

Now, we analyse the WL algorithm on the graphs CFI3(G̨, <,–) for di�erent functions
– : V (G) æ Z3. We write tw(G) to denote the tree width of G.

I Lemma 5.2. Let k be an integer such that tw(G) Ø k + 1. Also let –,— : V (G) æ Z3 be
two functions. Then CFI3(G̨, <,–) ƒk CFI3(G̨, <,—).

Together, Lemmas 5.1 and 5.2 provide pairs of non-isomorphic graphs that are not
distinguished by k-WL assuming tw(G) > k. Next, we argue how to turn these graphs into
tournaments.

1 We remark that, since G has maximum degree 3, the twin width of Gred is actually bounded in the twin
width of G. However, we feel it is more convenient to directly bound the twin width of Gred.
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We define the tournament T = T (G̨, <,–) with vertex set

V (T ) := V (CFI3(G̨, <,–)) =
€

vœV (G)

{v} ◊ M–(v)(v)

and edge set

E(T ) :=
Ó
((v, f)(v, g))

--- (f, g) œ F–(v)(v)
Ô

fi
Ó
((v, f)(w, g))

--- v < w · {(v, f)(w, g)} /œ E(CFI3(G̨, <,–))
Ô

fi
Ó
((w, g)(v, f))

--- v < w · {(v, f)(w, g)} œ E(CFI3(G̨, <,–))
Ô
.

It can be shown that the relevant properties are preserved by this translation.

I Lemma 5.3. Let –,— : V (G) æ Z3 be two functions. Then T (G̨, <,–) ≥= T (G̨, <,—) if and
only if CFI3(G̨, <,–) ≥= CFI3(G̨, <,—).

I Lemma 5.4. Let k Ø 2 be an integer such that tw(G) Ø k + 1. Also let –,— : V (G) æ Z3

be two functions. Then T (G̨, <,–) ƒk T (G̨, <,—).

To prove Theorem 1.2, we also need to bound the twin width of the resulting graph.
Recall that t := tww(Gred) where Gred denotes the version of G where every edge is red.

I Lemma 5.5. For every function – : V (G) æ Z3 it holds that tww(T (G̨, <,–)) Æ max(35, t).

Proof. Throughout the proof, we define M(v) := M–(v)(v) for every v œ V (G). Since G is
3-regular, we have that |M(v)| = 9 for every v œ V (G). So |V (T (G̨, <,–))| = 9 · |V (G)|. Also
note that (M(v),M(w)) is homogeneous for all distinct v, w œ V (G) such that {v, w} /œ E(G).

We construct a partial contraction sequence as follows. Let n := |V (G)|. We define
P1, . . . ,P8n+1 arbitrarily such that P8n+1 = {M(v) | v œ V (G)}. Since G is 3-regular and
|M(v)| = 9 for every v œ V (G), we conclude that (T (G̨, <,–))/Pi has red degree at most
4 · 9 ≠ 1 = 35 for every i œ [8n+ 1]. Now observe that

tww((T (G̨, <,–))/P8n+1) Æ tww(Gred, <) = t.

It follows that tww(T (G̨, <,–)) Æ max(35, t) as desired. J

With Lemma 5.5 in hand, we apply the construction T (G̨, <,–) to a 3-regular base
graph G which has tree width linear in the number of vertices, but the twin width of Gred

is bounded. The existence of such graphs has already been observed in [5]. More precisely,
the following theorem follows from combining the arguments from [5, Lemma 5.1] and the
results from [4, 34].

I Theorem 5.6. There is a family of 3-regular graphs (Gn)nØ1 such that |V (Gn)| = O(n),
tww(Gred

n ) Æ 6 (where Gred
n denotes the version of Gn where all edges are turned into red

edges), and tw(Gn) Ø n for every n Ø 1.

Now, we are ready to give a proof for Theorem 1.2.

I Theorem 5.7. For every k Ø 2 there are non-isomorphic tournaments Tk and T Õ
k such that

(1) |V (Tk)| = |V (T Õ
k)| = O(k),

(2) tww(Tk) Æ 35 and tww(T Õ
k) Æ 35, and

(3) Tk ƒk T Õ
k.

ICALP 2024
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Proof. Let k Ø 2. Let Gk+1 be the 3-regular graph obtained from Theorem 5.6. Note that
tw(Gk+1) Ø k + 1.

We also fix an arbitrary orientation G̨k+1 of Gk+1 and let Gred
k+1

denote the version of Gk+1

where every edge is replaced by a red edge. We have t := tww(Gred
k+1

) Æ 6 by Theorem 5.6.
By Lemma 2.2 there is some linear order < on V (Gk+1) such that tww(Gred

k+1
, <) Æ t Æ 6.

Now fix an arbitrary u0 œ V (Gk+1). For p œ Z3 we define the mapping –p : V (Gk+1) æ Z3

via –p(u0) = p and –p(w) = 0 for all w œ V (Gk+1) \ {u0}. We define Tk := T (G̨k+1, <,–0)
and T Õ

k := T (G̨k+1, <,–1). We have |V (Tk)| = |V (T Õ
k)| = 9 · |V (Gk+1)| = O(k). Also,

tww(Tk) Æ 35 and tww(T Õ
k) Æ 35 by Lemma 5.5. Finally, Tk ”≥= T Õ

k by Lemmas 5.1 and 5.3,
and Tk ƒk T Õ

k by Lemma 5.4. J

6 Twin Width is Smaller Than Other Widths

In this section, we compare twin width with other natural width parameters of tournaments. If
f, g are mappings from (directed) graphs to the natural numbers, we say that f is functionally
smaller than g on a class C of graphs if for every k there is a kÕ such that for all graphs
G œ C, if g(G) Æ k then f(G) Æ kÕ. We write f -C g to denote that f is functionally smaller
than g on C. We omit the subscript C if C is the class of all digraphs.

Natural width measures for directed graphs are cut width, directed path width, directed tree
width, and clique width. On the class of tournaments twin width turns out to be functionally
smaller than all of these. For clique width, it has already been shown in [11] that twin width
is functionally smaller than clique width on undirected graphs; the proof easily extends to
arbitrary binary relational structures and hence to tournaments.

We start by giving definitions for the other width measures. Let G be a digraph. For a
linear order Æ on V (G) and a vertex v œ V (G), we let SÆ(v) := {w œ V (G) | w Æ v} be the
set of all vertices smaller than or equal to v in Æ. Let sÆ(v) := |EG(SÆ(v), V (G) \ SÆ(v))|
be the number of edges from SÆ(v) to its complements. The width of Æ is maxvœV (G) sÆ(v),
and the cut width ctw(G) is the minimum over the width of all linear orders of V (G).

A directed path decomposition of a digraph G is a mapping — : [p] æ 2V (G), for some p œ N,
such that for every vertex v œ V (G) there are ¸, r œ [p] such that v œ —(t) ≈∆ ¸ Æ t Æ r,
and for all edges (v, w) œ E(G) there are ¸, r œ [p] with ¸ Æ r such that v œ —(r) and w œ —(¸).
The sets —(t), t œ [p], are the bags of the decomposition. The width of the decomposition is
maxtœ[p] |—(t)| ≠ 1, and the directed path width dpw(G) is the minimum width of a directed
path decomposition of G.

A digraph R is a rooted directed tree if there is a vertex r0 œ V (R) such that for every
t œ V (R) there is a unique directed walk from r0 to t. Note that every rooted directed tree
can be obtained from an undirected tree by selecting a root r0 and directing all edges away
from the root. For t œ V (R) we denote by Rt the unique induced subgraph of R rooted at t.

Let G be a digraph. A directed tree decomposition of G is a triple (R,—, “) where R is a
rooted directed tree, — : V (R) æ 2V (G) and “ : E(R) æ 2V (G) such that
(D.1) {—(t) | t œ V (R)} is a partition of V (G), and
(D.2) for every (s, t) œ E(R) the set “(s, t) is a hitting set for all directed walks that start

and end in —(Rt) :=
t

tÕœV (Rt)
—(tÕ) and contain a vertex outside of —(Rt).

For t œ V (R) we define �(t) := —(t)fi
t

(s,sÕ)œE(t) “(s, sÕ) where E(t) denotes the set of edges
incident to t. The width of (R,—, “) is defined as

width(R,—, “) := max
tœV (R)

|�(t)| ≠ 1.

The directed tree width dtw(G) is the minimum width of a directed tree decomposition of G.
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Let us first recall the following well-known inequalities.

I Proposition 6.1. For all digraphs G, it holds that dtw(G) Æ dpw(G) Æ ctw(G).

The proposition implies that dtw - dpw - ctw. It can be shown that tww ”- ctw and
hence tww ”- dpw and tww ”- dtw on the class of all digraphs. In contrast, it turns out
that on the class of tournaments, twin width is functionally smaller than directed tree
width. Actually, this even holds for the larger class of semi-complete graphs. A digraph G is
semi-complete if for all distinct v, w œ V (G) at least one of the pairs (v, w), (w, v) is an edge.
Note that every tournament is semi-complete.

I Theorem 6.2 ([28, Proposition 5]). Let G be a semi-complete graph. Then

dpw(G) Æ 4(dtw(G) + 2)2 + 7(dtw(G) + 2) ≠ 1.

I Theorem 6.3. Let G be a semi-complete graph. Then tww(G) Æ dpw(G).

In combination, we get that tww(G) Æ 4(dtw(G) + 2)2 + 7(dtw(G) + 2) ≠ 1 for every
semi-complete graph G. In particular

tww -S dtw, (2)

where S denotes the class of all semi-complete digraphs. This inequality is strict even on
tournaments, that is, dtw ”-T tww where T denotes the class of all tournaments.

7 Conclusion

We prove that the isomorphism problem for classes of tournaments of bounded (or slowly
growing) twin width is in polynomial time. Many algorithmic problems that can be solved
e�ciently on (classes of) tournaments can also be solved e�ciently on (corresponding classes
of) semi-complete graphs, that is, directed graphs where for every pair (v, w) of vertices at
least one of the pairs (v, w), (w, v) is an edge (see, e.g., [39]). Contrary to this, we remark
that isomorphism of semi-complete graphs of bounded twin width is GI-complete: we can
reduce isomorphism of oriented graphs to isomorphism of semi-complete graphs by replacing
each non-edge by a bidirectional edge. This reduction preserves twin with.

Classes of tournaments of bounded twin width are precisely the classes that are considered
to be structurally sparse. Formally, these are the classes that are monadically dependent,
which means that all set systems definable over the tournaments in such a class have
bounded VC dimension. The most natural set systems definable within a tournament are
those consisting of the in-neighbors of the vertices and of the out-neighbors of the vertices.
Bounded twin width implies that the VC dimension of these two set systems is bounded, but
the converse does not hold. It is easy to see that the VC dimensions of the in-neighbors and
out-neighbors systems as well as the set system consisting of the mixed neighbors of all edges
are within a linear factor of one another. As a natural next step, we may ask if isomorphism
of tournaments where the VC-dimension of these systems is bounded is in polynomial time.

References

1 Vikraman Arvind, Ilia N. Ponomarenko, and Grigory Ryabov. Isomorphism testing of k-
spanning tournaments is fixed parameter tractable. CoRR, abs/2201.12312, 2022. arXiv:

2201.12312.

ICALP 2024

https://arxiv.org/abs/2201.12312
https://arxiv.org/abs/2201.12312


78:18 Isomorphism for Tournaments of Small Twin Width

2 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697.
ACM, 2016. doi:10.1145/2897518.2897542.

3 László Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald
Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H.
Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 171–183. ACM, 1983. doi:10.1145/800061.808746.

4 Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap. Comb.,
26(5):495–519, 2006. doi:10.1007/s00493-006-0029-7.

5 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 1977–1996. SIAM, 2021. doi:10.1137/1.9781611976465.118.

6 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

7 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022. doi:10.1145/

3519935.3520037.
8 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-

width V: linear minors, modular counting, and matrix multiplication. In Petra Berenbrink,
Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International
Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023,
Hamburg, Germany, volume 254 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.15.

9 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width
VI: the lens of contraction sequences. In Joseph (Se�) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036–1056. SIAM, 2022.
doi:10.1137/1.9781611977073.45.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337, 2022. doi:10.1007/

s00453-022-00965-5.
11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:

tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.
12 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of

variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.
13 Maria Chudnovsky, Alexandra Ovetsky Fradkin, and Paul D. Seymour. Tournament immersion

and cutwidth. J. Comb. Theory, Ser. B, 102(1):93–101, 2012. doi:10.1016/j.jctb.2011.05.
001.

14 Maria Chudnovsky, Ringi Kim, Chun-Hung Liu, Paul D. Seymour, and Stéphan Thomassé.
Domination in tournaments. J. Comb. Theory, Ser. B, 130:98–113, 2018. doi:10.1016/j.

jctb.2017.10.001.
15 Maria Chudnovsky, Alex Scott, and Paul D. Seymour. Disjoint paths in unions of tournaments.

J. Comb. Theory, Ser. B, 135:238–255, 2019. doi:10.1016/j.jctb.2018.08.007.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.4230/LIPIcs.STACS.2023.15
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1145/3486655
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/j.jctb.2011.05.001
https://doi.org/10.1016/j.jctb.2011.05.001
https://doi.org/10.1016/j.jctb.2017.10.001
https://doi.org/10.1016/j.jctb.2017.10.001
https://doi.org/10.1016/j.jctb.2018.08.007


M. Grohe and D. Neuen 78:19

16 Maria Chudnovsky and Paul D. Seymour. A well-quasi-order for tournaments. J. Comb.
Theory, Ser. B, 101(1):47–53, 2011. doi:10.1016/j.jctb.2010.10.003.

17 John D. Dixon and Brian Mortimer. Permutation Groups, volume 163 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-0731-3.

18 Walter Feit and John G. Thompson. Solvability of groups of odd order. Pacific J. Math.,
13:775–1029, 1963.

19 Fedor V. Fomin and Michal Pilipczuk. On width measures and topological problems on
semi-complete digraphs. J. Comb. Theory, Ser. B, 138:78–165, 2019. doi:10.1016/j.jctb.
2019.01.006.

20 Jakub Gajarsk˝, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal
Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-order interpretations of bounded
expansion classes. ACM Trans. Comput. Log., 21(4):29:1–29:41, 2020. doi:10.1145/3382093.

21 Jakub Gajarsk˝, Michal Pilipczuk, and Szymon Torunczyk. Stable graphs of bounded twin-
width. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 39:1–39:12.
ACM, 2022. doi:10.1145/3531130.3533356.

22 Robert Ganian, Filip Pokr˝vka, André Schidler, Kirill Simonov, and Stefan Szeider. Weighted
model counting with twin-width. In Kuldeep S. Meel and Ofer Strichman, editors, 25th
International Conference on Theory and Applications of Satisfiability Testing, SAT 2022,
August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.15.

23 Colin Geniet and Stéphan Thomassé. First order logic and twin-width in tournaments. In
Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st
Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam,
The Netherlands, volume 274 of LIPIcs, pages 53:1–53:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.53.

24 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory,
volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/

9781139028868.
25 Martin Grohe and Daniel Neuen. Recent advances on the graph isomorphism problem. In

Konrad K. Dabrowski, Maximilien Gadouleau, Nicholas Georgiou, Matthew Johnson, George B.
Mertzios, and Daniël Paulusma, editors, Surveys in Combinatorics, 2021: Invited lectures
from the 28th British Combinatorial Conference, Durham, UK, July 5-9, 2021, pages 187–234.
Cambridge University Press, 2021. doi:10.1017/9781009036214.006.

26 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank
width. ACM Trans. Comput. Log., 24(1):6:1–6:31, 2023. doi:10.1145/3568025.

27 Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of
small degree. SIAM J. Comput., 52(6):S18–1, 2023. doi:10.1137/19m1245293.

28 Frank Gurski, Dominique Komander, Carolin Rehs, and Sebastian Wiederrecht. Directed
width parameters on semicomplete digraphs. In Ding-Zhu Du, Donglei Du, Chenchen Wu,
and Dachuan Xu, editors, Combinatorial Optimization and Applications - 15th International
Conference, COCOA 2021, Tianjin, China, December 17-19, 2021, Proceedings, volume
13135 of Lecture Notes in Computer Science, pages 615–628. Springer, 2021. doi:10.1007/

978-3-030-92681-6_48.
29 Petr Hlinen˝ and Jan Jedelsk˝. Twin-width of planar graphs is at most 8, and at most 6

when bipartite planar. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 75:1–75:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.75.

30 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph can-
onization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New
York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.

ICALP 2024

https://doi.org/10.1016/j.jctb.2010.10.003
https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1016/j.jctb.2019.01.006
https://doi.org/10.1016/j.jctb.2019.01.006
https://doi.org/10.1145/3382093
https://doi.org/10.1145/3531130.3533356
https://doi.org/10.4230/LIPIcs.SAT.2022.15
https://doi.org/10.4230/LIPIcs.ESA.2023.53
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781009036214.006
https://doi.org/10.1145/3568025
https://doi.org/10.1137/19m1245293
https://doi.org/10.1007/978-3-030-92681-6_48
https://doi.org/10.1007/978-3-030-92681-6_48
https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://doi.org/10.1007/978-1-4612-4478-3_5


78:20 Isomorphism for Tournaments of Small Twin Width

31 Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed tree-width. J.
Comb. Theory, Ser. B, 82(1):138–154, 2001. doi:10.1006/jctb.2000.2031.

32 Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM SIGLOG
News, 7(3):5–27, 2020. doi:10.1145/3436980.3436982.

33 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

34 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite
Ramanujan graphs of all degrees. Ann. of Math. (2), 182(1):307–325, 2015. doi:10.4007/

annals.2015.182.1.7.
35 Gary L. Miller. Isomorphism of graphs which are pairwise k-separable. Inf. Control., 56(1/2):21–

33, 1983. doi:10.1016/S0019-9958(83)80048-5.
36 Jaroslav Nesetril and Patrice Ossona de Mendez. Structural sparsity. Russian Math. Surveys,

71(1):79–107, 2016. doi:10.4213/rm9688.
37 Jaroslav Nesetril, Patrice Ossona de Mendez, and Sebastian Siebertz. Structural properties

of the first-order transduction quasiorder. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022,
Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 31:1–31:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.31.

38 Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. ACM
Trans. Algorithms, 18(3):27:1–27:50, 2022. doi:10.1145/3527667.

39 Michal Pilipczuk. Tournaments and Optimality: New Results in Parameterized Complexity.
PhD thesis, University of Bergen, 2013.

40 Ilia N. Ponomarenko. Polynomial time algorithms for recognizing and isomorphism testing of
cyclic tournaments. Acta Appl. Math., 29(1-2):139–160, 1992. doi:10.1007/BF00053383.

41 Joseph J. Rotman. An Introduction to the Theory of Groups, volume 148 of Graduate
Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995. doi:10.1007/

978-1-4612-4176-8.
42 Pascal Schweitzer. A polynomial-time randomized reduction from tournament isomorphism to

tournament asymmetry. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 66:1–66:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.66.

43 Ákos Seress. Permutation Group Algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546549.

44 Stéphan Thomassé. A brief tour in twin-width (invited talk). In Mikolaj Bojanczyk,
Emanuela Merelli, and David P. Woodru�, editors, 49th International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume
229 of LIPIcs, pages 6:1–6:5. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICALP.2022.6.

45 Boris Weisfeiler. On Construction and Identification of Graphs, volume 558 of Lecture Notes
in Mathematics. Springer-Verlag, 1976.

46 Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series 2, 1968. English translation by Grigory Ryabov
available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1145/3436980.3436982
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.1016/S0019-9958(83)80048-5
https://doi.org/10.4213/rm9688
https://doi.org/10.4230/LIPIcs.CSL.2022.31
https://doi.org/10.1145/3527667
https://doi.org/10.1007/BF00053383
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.4230/LIPIcs.ICALP.2017.66
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.4230/LIPIcs.ICALP.2022.6
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf


From Trees to Polynomials and Back Again:

New Capacity Bounds with Applications to TSP

Leonid Gurvits �

City College New York, NY, USA

Nathan Klein �

Institute for Advanced Study, Princeton, NJ, USA

Jonathan Leake �

University of Waterloo, Canada

Abstract

We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution,
depending only on its expectation. This resolves a weak version of a problem left open by Karlin-
Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a
minor improvement of their approximation factor for metric TSP. Our results also allow for a more
streamlined analysis of the algorithm.

To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the
productization technique for bounding the capacity of a real stable polynomial. This technique
allows one to reduce certain inequalities for real stable polynomials to products of a�ne linear
forms, which have an underlying matrix structure. In this paper, we push this technique further
by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial
structure yields a clean induction argument, which implies our stronger bounds.

In general, we believe the results of this paper will lead to further improvement and simplification
of the analysis of various combinatorial and probabilistic bounds and algorithms.
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1 Introduction

The theory of real stable and log-concave polynomials has seen numerous applications in
combinatorics and theoretical computer science (TCS). This includes bounds and approx-
imation algorithms for various combinatorial quantities [18, 11, 7, 28, 5, 8, 2, 15], proofs of
long-standing log-concavity and sampling conjectures related to matroids [1, 3, 4, 14], proofs
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of the Kadison-Singer conjecture and generalizations [26, 6, 13], an improved approximation
factor for the traveling salesperson problem (TSP) [27, 24, 25], and many more. The power
of these polynomial classes comes from two features: (1) their robustness, shown in the
fact that many natural operations preserve these log-concavity properties, and (2) their
convex analytic properties, which can be used to prove bounds and other analytic statements.
The typical way these polynomials are utilized is by encoding combinatorial objects as real
stable and log-concave polynomials, which essentially allows these operations and convexity
properties to automatically transfer to the combinatorial objects. This idea, while simple,
has led to important breakthroughs in combinatorics, TCS, and beyond.

For example, [18] utilized real stable polynomials to give a new proof of the Van der
Waerden conjecture on the permanent of a doubly stochastic matrix (originally due to [16,
17]). This proof led to a vast generalization of Van der Waerden bound, including an
improved Schrijver’s bound for regular bipartite graphs [18], an analogous bound for mixed
discriminants [19], and an analogous bound for mixed volumes that led to the development of
strongly log-concave polynomials [21, 20]. One reason the original bound was historically so
di�cult to prove is a lack of a usable inductive structure coming from the matrices themselves.
One of the key insights of the new proof was to use the simple inductive structure of real
stable polynomials given by partial derivatives. By encoding the matrices as polynomials,
the correct induction becomes straightforward, and the bound follows from a simple calculus
argument.

More recently, the approximation factor improvement for the metric traveling salesperson
problem (TSP) crucially utilized real stable polynomials [24, 25]. The idea is to encode
certain discrete probability distributions related to spanning trees as real stable polynomials.
The coe�cients of these polynomials give probabilities of certain graph-theoretic events (e.g.,
the number of edges in a given spanning tree incident on a particular vertex), and analytic
properties of real stable polynomials allow one to lower bound these probabilities. This in
turn implies bounds on the expected cost of the output of a randomized algorithm for metric
TSP.

In this paper, we improve upon the polynomial capacity bounds of [22], and our applica-
tions touch on the two problems discussed above. Specifically, we give:

1. robust coe�cient lower bounds for all (not necessarily homogeneous) real stable polyno-
mials,

2. simply exponential lower bounds on probabilities of strongly Rayleigh distributions
(solving a weak version of an open problem of [24]), and

3. a further improvement to the approximation factor for metric TSP (predicted by [22]).
Interestingly, our approach goes in the opposite direction to that discussed above. Our
technical results answer questions regarding real stable polynomials, but to prove these
results we use various graph and matrix structures inherent to the polynomials. In [22],
this was seen in the “productization” technique: bounds on real stable polynomials were
achieved by showing that the worst-case bounds come from polynomials associated to certain
matrices. In this paper, we push this idea further by showing that these worst-case matrices
are bipartite adjacency matrices of forests. This very rigid structure enables a clean induction
argument, which implies stronger polynomial capacity bounds. These new bounds lead
to the applications discussed above, with the strongest bounds implying the metric TSP
improvement.
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2 Main Results

We first state here our main technical results; see Section 3 for any undefined notation.
Our first main result is a non-homogeneous version of Theorem 2.1 of [22] which implies

robust coe�cient lower bounds for all real stable polynomials as a direct corollary. Crucially,
these bounds do not depend on the total degree of the polynomial. This was one of the main
barriers to applying the results of [22] to metric TSP.

I Theorem 1 (Main non-homogeneous capacity bound). Let p œ RØ0[x1, . . . , xn] be a real
stable polynomial in n variables, and fix any Ÿ œ Zn with non-negative entries. If p(1) = 1
and ÎŸ ≠ Òp(1)Î1 < 1, then

inf
x1,...,xn>0

p(x)
xŸ1
1 · · ·xŸn

n
Ø (1 ≠ ÎŸ ≠ Òp(1)Î1)n .

This bound is tight for any fixed Ÿ with strictly positive entries.

I Corollary 2 (Main non-homogeneous coe�cient bound). Let p œ RØ0[x1, . . . , xn] be a real
stable polynomial in n variables, and fix any Ÿ œ Zn with non-negative entries. If p(1) = 1
and ÎŸ ≠ Òp(1)Î1 < 1, then

pŸ Ø
A

nŸ

i=1

ŸŸi
i e≠Ÿi

Ÿi!

B
(1 ≠ ÎŸ ≠ Òp(1)Î1)n,

where pŸ is the coe�cient of xŸ in p. The dependence on (1 ≠ ÎŸ ≠ Òp(1)Î1) is tight for
any fixed Ÿ with strictly positive entries.

The above results1 are robust (i.e., resilient to ¸1 perturbations) versions of the results
utilized to bound various combinatorial and probabilistic quantities, as discussed above.
That said, they are still not quite strong enough to imply an improvement to the metric TSP
approximation factor. To obtain this improvement, we resolve a weak version of an open
problem from [24], which we discuss below. Stronger versions of Theorem 1 and Corollary 2
which imply this result can be found in Section 5.

2.1 Application: Minimum Permanent

Before discussing the application to TSP, we first describe a di�erent application of our
bounds as a sort of prelude. It is at this point well-known that the permanent of any n ◊ n
doubly stochastic matrix is at least n!

nn , and that 1
n1 · 1€ is the unique minimizer of the

permanent over all doubly stochastic matrices. On the other hand, a similar tight lower
bound with explicit minimizer is not known for sets of matrices with di�erent row and column
sums. The following then slightly extends what is known in the doubly stochastic case. See
Section 6 for further details.

Given c œ Rn
Ø0, let Matn(c) denote the set of n ◊ n matrices with non-negative entries,

row sums equal to 1, and columns sums equal to c.

I Theorem 3. For all n Ø 1, there exists ‘n > 0 such that if Îc ≠ 1Î1 < ‘n then 1
n1 · c€ is

the unique minimizer of the permanent over Matn(c). Specifically, this holds if c1c2···cn
L(c) <

(n≠2)n≠2nn≠1

(n≠1)2n≠3 , where L(c) is any lower bound on the capacity.

1 Note that these bounds already appear in the arXiv version of [22], but not in the STOC version.
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79:4 New Capacity Bounds with Applications to TSP

The proof utilizes Theorem 1 or results of [22] to guarantee all minimizers of the permanent
lie in the relative interior of Matn(c). The symmetry and multilinearity of the permanent
then imply the minimizer must be the rank-one matrix of Matn(c) described above. See
Section Section 6 for the explicit value of ‘n and the details of the proof. It should be noted
that in proving uniqueness, we were able to avoid usage of the conditions for equality in the
Alexandrov-Fenchel inequalities.

On the other hand, when c is far from 1, the above result can be far from correct. Recall
from [22] that per(M) > 0 for all M œ Matn(c) if and only if Îc ≠ 1Î1 < 2.

I Proposition 4. For all n large enough, there exists c such that Îc ≠ 1Î1 < 2 and a sparse
matrix M œ Matn(c) (with linearly many non-zero entries) which has smaller permanent
than that of 1

n1 · c€.

These two results suggest the complexity of the minimizer of the permanent, given the
column sums c. The coe�cient bound given above in Corollary 2 is then a lower bound
which generalizes that of the permanent to coe�cients of real stable polynomials. (Consider
the coe�cient p1 of p(x) =

rn
i=1

qn
j=1 mijxj .) Thus Corollary 2 can be seen as a sort

of “smoothing” of the complexities that can occur for minima of the permanent and its
generalizations.

Further, Theorem 3 can generalized to a permanent-like function on rectangular matrices
using Theorem 1, and even beyond that to the mixed discriminant. (For the mixed discrim-
inant, the row sum condition becomes a trace condition, and the column sum condition
becomes an eigenvalue condition.) On the other hand, we can generalize the statement of
Theorem 3 to coe�cients of real stable polynomials in general, but we do not yet know how
to prove it.

2.2 Application: Metric TSP

We first recall an important probabilistic bound from [24] used in the analysis of their metric
TSP approximation algorithm (which is a slight modification of the max entropy algorithm
from [27] first studied by [9]). In what follows, we let AS :=

q
iœS Ai and ŸS :=

q
iœS Ÿi.

See Section 3 for any undefined notation.

I Theorem 5 (Prop. 5.1 of [24]). Let µ be a strongly Rayleigh distribution on [m], let
A1, . . . , An be random variables counting the number of elements contained in disjoint subsets
of [m], and fix Ÿ œ Zn with non-negative entries. Suppose for all S ™ [n] we have

Pµ [AS Ø ŸS ] Ø ‘ and Pµ [AS Æ ŸS ] Ø ‘.

Then we have

Pµ [A1 = Ÿ1, . . . , An = Ÿn] Ø f(‘) · Pµ

#
A[n] = Ÿ[n]

$
,

where f(‘) Ø ‘2
n rn

i=2
1

max{Ÿi,Ÿ[i≠1]}+1 .

In [24], the authors note two things about this bound. First, they note that to apply the
bound it is su�cient to have

--Eµ [AS ] ≠ ŸS

-- < 1 ’S ™ [n], (1)

since this implies a lower bound on Pµ [AS = ŸS ] for all S ™ [n] for strongly Rayleigh
distributions. Second, they note that the bound on f(‘) is doubly exponential in n, but they
expect the true dependency to only be simply exponential. They leave it as an open problem
to determine a tight lower bound on f(‘).
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In this paper, we further improve the metric TSP approximation factor by resolving a
weak version of this open problem: we give a simply exponential lower bound which depends
tightly on ‘, under the stronger condition of (1). Concretely, we prove the following.

I Theorem 6 (Improved probability lower bound). Let µ be a strongly Rayleigh distribution
on [m], let A1, . . . , An be random variables counting the number of elements contained in
disjoint subsets of [m], and fix Ÿ œ Zn with non-negative entries. Suppose for all S ™ [n] we
have

--Eµ [AS ] ≠ ŸS

-- Æ 1 ≠ ‘.

Then we have

Pµ [A1 = Ÿ1, . . . , An = Ÿn] Ø ‘n
Ÿ

Ÿi>0

1
e
Ô

Ÿi
.

The dependence on ‘ is tight for any fixed Ÿ with strictly positive entries.

In fact, we prove stronger versions of this result which more directly depend on the
specific values of (Eµ [AS ] ≠ ŸS) for all S ™ [n]; see Theorem 9 and Corollary 10. These
results are analogous to our main coe�cient bound Corollary 2 because the coe�cients and
the gradient of probability generating polynomials can be interpreted as the probabilities and
the expectation of the associated distribution. That said, our stronger probabilistic results
require a more delicate analysis of the expectations (gradient) beyond what is required for
Corollary 2. In particular, note that the conditions on the expectations in Theorem 6 are
more general than a bound on the ¸1 norm of (Eµ [Ai] ≠ Ÿi)ni=1. See Section 4 for further
details.

Using Theorem 6, we improve the metric TSP approximation factor for the algorithm
given in [24].

I Theorem 7. There exists a randomized algorithm for metric TSP with approximation
factor 3

2 ≠ ‘ for some ‘ > 10≠34.

This is about a 100 times improvement over the result of [23]. Thus our improvement
in terms of the approximation factor itself may be smaller than anticipated, given that
we were able to improve the probability bound in Theorem 6 from doubly exponential to
simply exponential. The reason for this is that while Theorem 5 was useful in [24] to quickly
determine which events occurred with constant probability (and indeed provided a single
unifying explanation for why one should expect many of their probabilistic bounds to hold),
it gave such small guarantees that [24] resorted to ad hoc arguments instead to give their
final probabilistic bounds.

We show that Theorem 6 alone can be used to give bounds that are comparable to the
ad hod methods of [24] (and, in several important cases, much better) whenever the bounds
came purely from information on the expectations as in (1). Thus, we believe our main
contribution to work on metric TSP is a version of Theorem 5 that is “reasonable” to use,
allowing one to show a similar approximation factor but with a more streamlined proof.

Unfortunately, not all of the bounds in [24] follow from expectation information, and two
of them become bottlenecks for improving the approximation factor after applying Theorem 6
to the other statements. Thus, to demonstrate Theorem 7 we need to sharpen these bounds
using other techniques. For one of these lemmas we show that the existing proof in [24] was
far from tight, and in the other we refine their proof. In particular, using Theorem 6, we
show we can reduce this second lemma to a special case that is possible to analyze more
carefully. See Section 4 for further details.

ICALP 2024
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3 Technical Overview

In this section we discuss the proof strategy of our main capacity and coe�cient bounds,
Theorem 1 and Corollary 2, and their stronger forms.

Notation

Given a vector z œ RE and a subset S of E, let zS :=
r

eœS ze. Let µ : {0, 1}E æ R be a
probability distribution over subsets of E. The generating polynomial gµ œ RØ0[{ze}eœE ] of
µ is defined as

gµ(z) :=
ÿ

S™E

µ(S) · zS .

The distribution µ is strongly Rayleigh if gµ is real stable, where a polynomial p œ
R[z1, . . . , zn] is real stable if p(z) ”= 0 whenever ⁄(zi) > 0 for all i œ [n] (i.e., when all
inputs are in the complex upper half-plane). See [12] for much more on strongly Rayleigh
measures. Further, given a polynomial p œ RØ0[x1, . . . , xn] and Ÿ œ Zn

Ø0, the capacity of p
is defined as

CapŸ(p) := inf
x>0

p(x)
xŸ

.

Finally, we let pŸ denote the coe�cient of xŸ in p.

Conceptual strategy

We first give an overarching view of the strategy used to prove our main results, as well as
the key similarities and di�erences compared to that of [22]. The general idea for proving
our bounds is to find a simple and sparse underlying structure for the worst-case inputs. The
space of all real stable polynomials can be complicated, but we show that the worst-case
polynomials for our bounds are far simpler: they are “sparse” products of a�ne linear
forms. More concretely, we reduce the space of input polynomials (and the corresponding
combinatorial structures) as follows:

real stable polynomials =∆ products of linears =∆ sparse products of linears
matroids =∆ matrices =∆ forests

The first reduction step uses the idea of productization which was the key idea from [22].
This allows for one to utilize the matrix structure inherent to products of a�ne linear forms.

The second reduction step is then new to this paper. We first show that we may restrict
to the extreme points of the set of matrices corresponding to products of a�ne linear forms,
and then we show that these extreme matrices are supported on the edges of forests. This
implies a significant decrease in density of the matrices: general graphs can have quadratically
many edges, whereas forests can only have linearly many. This allows for an intricate but
clean induction on the leaf vertices of these forests, which yields the strongest bounds of this
paper. Additionally, it is this step that allows for bounds which do not depend on the total
degree of the polynomial, and this was a crucial barrier to applying the bounds of [22] to
metric TSP.

3.1 Conceptual Strategy, in More Detail

We now go through the steps of the conceptual strategy described above in more detail. Let
us first restate our main capacity and coe�cient bounds.
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I Theorem 8 (= Theorem 1 and Corollary 2). Let p œ RØ0[x1, . . . , xn] be a real stable
polynomial in n variables, and fix any Ÿ œ Zn with non-negative entries. If p(1) = 1 and
ÎŸ ≠ Òp(1)Î1 < 1, then

CapŸ(p) Ø (1 ≠ ÎŸ ≠ Òp(1)Î1)n

and

pŸ Ø
A

nŸ

i=1

ŸŸi
i e≠Ÿi

Ÿi!

B
(1 ≠ ÎŸ ≠ Òp(1)Î1)n ,

where CapŸ(p) := infx>0
p(x)
xŸ is the capacity of p and pŸ is the coe�cient of xŸ in p. The

dependence on (1≠ÎŸ≠Òp(1)Î1) in these bounds is tight for any fixed Ÿ with strictly positive
entries.

Analogous bounds required for the metric TSP application then follow from interpreting
desired quantities as the coe�cients and gradient of certain real stable polynomials. Spe-
cifically, the strongly Rayleigh probabilities we wish to lower bound are the coe�cients of
the corresponding real stable generating polynomial, and the expectations of the associated
random variables are given by the gradient of that polynomial. We leave further details to
Section 4.

We now discuss the proof of Theorem 8. First note that the coe�cient bound follows
from the capacity bound. This immediately follows from Corollary 3.6 of [20], which implies

pŸ Ø
A

nŸ

i=1

ŸŸi
i e≠Ÿi

Ÿi!

B
CapŸ(p). (2)

Thus what remains to be proven is the capacity bound

CapŸ(p) Ø (1 ≠ ÎŸ ≠ Òp(1)Î1)n ,

which is precisely the bound of Theorem 1, as well as its tightness, which follows from
considering a particular example of p (see Lemma 28).

The remainder of the proof then has four main steps. We also note here that these
proof steps actually imply stronger bounds than Theorem 1, see Corollary 27 for the formal
statement. These stronger bounds are required for the metric TSP application.

Step 1: Reduce to products of a�ne linear forms via productization

We first generalize the productization technique of [22] to non-homogeneous real stable
polynomials. The upshot of this technique is that it implies it is su�cient to prove Theorem 1
for products of a�ne linear forms with non-negative coe�cients (see Corollary 18). Such
polynomials correspond to d ◊ (n+ 1) RØ0-valued matrices with row sums 1 and column
sums – equal the entries of the gradient of the polynomial, via

„ : A ‘æ
dŸ

i=1

Q

aai,n+1 +
nÿ

j=1
ai,jxj

R

b .

This gives far more structure to work with, beyond that of real stable polynomials in general.
This part is a straightforward generalization of the analogous result of [22].

ICALP 2024
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Step 2: Reduce to extreme points

The set of RØ0-valued matrices with row sums 1 and column sums – forms a convex polytope
P d

–, and thus the polynomials we now must consider correspond to the points of this polytope
via the map „ defined above. Inspired by a result of Barvinok (see Lemma 19), we next show
that the function

A ‘æ CapŸ(„(A))

is log-concave on the above described polytope. Since we want to minimize the capacity, this
implies we may further restrict to the polynomials associated to the extreme points of the
polytope.

Step 3: Extreme points correspond to bipartitioned forests

Any RØ0-valued matrix A can be interpreted as the weighted bipartite adjacency matrix of
a bipartite graph, where the left vertices correspond to the rows of A and the right vertices
correspond to the columns of A. A matrix A œ P d

– being extreme implies the associated
bipartite graph has no cycles. This implies the associated bipartite graph is a forest (see
Lemma 20). The sparsity properties of such matrices implies a simple structure for the
associated polynomials, which is particularly amenable to an intricate but clean induction.2

Step 4: Induction on leaf vertices of the bipartitioned forests

Leaf vertices in the forest corresponding to a given matrix A œ P d
– indicate rows or columns

of the matrix A which have exactly one non-zero entry. If a row of A has exactly one
non-zero entry, the induction proceeds in a straightforward fashion, by simply removing the
corresponding row of A and recalculating the column sums (see the d Ø n+ 1 case of the
proof of Theorem 25).

If a column of A (say column i) has exactly one non-zero entry, then the induction is
more complicated. We prove lemmas showing how much the capacity can change after
applying the partial derivative ˆxi (when Ÿi Ø –i, see Lemma 24) or setting xi to 0 (when
Ÿi < –i, see Lemma 23). Since column i has only one entry, applying ˆxi corresponds to
removing column i and the row of A which contains the non-zero entry, and setting xi to
0 corresponds to removing column i. After renormalizing the row sums and recalculating
the column sums, the proof again proceeds by induction. (See the proof of Theorem 25 to
see the above arguments presented formally.) Example 29 and Example 30 show that the
distinction between the Ÿi Ø –i and Ÿi < –i cases is not an artifact of the proof.

Some comments on tightness of the bounds

The main coe�cient bound of Corollary 2 is proven via two di�erent bounds, as discussed
at the beginning of this section. That is, one first bounds the coe�cient in terms of the
capacity (2) via Corollary 3.6 of [20], and then one bounds the capacity via the steps outlined
above. Thus while the capacity bound (Theorem 1) is tight for Ÿ > 0, the coe�cient bound

2 Note that it is already mentioned in [22] that the supports of the extreme points correspond to forests,
but the application of this observation in [22] is somewhat “naive” and kind of brute-force: it was
mainly used to describe an (ine�cient) algorithm to compute the capacity lower bound for products of
linear forms, which is not related to main lower bound in this paper. Additionally, its use in [22] is
quite conceputally far from how it could actually be used to improve the TSP approximation factor.
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(Corollary 2) may not be. We note that the coe�cient bound is likely close to tight in
the case that (1 ≠ ÎŸ ≠ Òp(1)Î1) is close to 1, but it seems this tightness deteriorates as
(1 ≠ ÎŸ ≠ Òp(1)Î1) gets close to 0. That said, the dependence on (1 ≠ ÎŸ ≠ Òp(1)Î1) in
Theorem 1 and Corollary 2 is tight for Ÿ > 0 by Lemma 28, though there is still potential
for improvement in the more refined capacity bounds; see Section 5.5.

That said, tight coe�cient lower bounds in the univariate case can be achieved by directly
applying a bound of Hoe�ding, and these lower bounds resemble the coe�cient lower bound
of Corollary 2. Thus one can view Corollary 2 as a step towards a multivariate generalization
of Hoe�ding’s theorem. It is an interesting question whether or not the techniques used here
can be extended to a full multivariate generalization of Hoe�ding’s theorem.

3.2 Example: The Univariate Case

In this section, we demonstrate the proof of Theorem 1 in the univariate case. This will
serve as a sort of proof of concept for the more general proof.

Here we consider real stable non-homogeneous polynomials p œ RØ0[x1] such that p(1) = 1
and Òp(1) = –1, and we define ‘ := 1 ≠ |–1 ≠ Ÿ1| > 0. By Step 1 above, we may assume
that p is of the form

p(x1) =
dŸ

i=1
(ai,1x1 + a1,2),

where A is an RØ0-valued d ◊ 2 matrix with row sums 1 and column sums (–1, d ≠ –1). By
Steps 2-3, we may further assume A is the weighted bipartite adjacency matrix of a forest. If
every row of A contains exactly one non-zero entry then p(x1) = xk1

1 , and the result is trivial
in this case. Otherwise, d ≠ 1 rows of M have exactly one non-zero entry (see Lemma 21).
Thus for some k Æ d ≠ 1 we have

p(x1) = xk
1(ax1 + b),

where a+ b = 1 and a+ k = –1. Since Ÿ1 œ ZØ0 and

‘ = 1 ≠ |–1 ≠ Ÿ1| = 1 ≠ |a+ k ≠ Ÿ1|,

we have that k is equal to either Ÿ1 or Ÿ1 ≠ 1. If k = Ÿ1, then

CapŸ1(p) = inf
x1>0

xk
1(ax1 + b)

xk
1

= b and ‘ = 1 ≠ |a+ k ≠ Ÿ1| = 1 ≠ a = b.

If k = Ÿ1 ≠ 1, then

CapŸ1(p) = inf
x1>0

xk
1(ax1 + b)
xk+1
1

= a and ‘ = 1 ≠ |a+ k ≠ Ÿ1| = 1 ≠ (1 ≠ a) = a.

Therefore in both cases we have

CapŸ1(p) = ‘ = (1 ≠ |–1 ≠ Ÿ1|),

which proves Theorem 1 in the univariate case and demonstrates the tight dependence on
(1 ≠ ÎŸ ≠ Òp(1)Î1) in this case.
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4 Proof of Application: Metric TSP

The following is the strongest probability lower bound, which we will use for the metric TSP
application. In what follows, we let AS :=

q
iœS Ai and ŸS :=

q
iœS Ÿi. Note that if

--Eµ [AS ] ≠ ŸS

-- Æ 1 ≠ ‘,

then Theorem 6 immediately follows from Theorem 9, Lemma 28, and a standard computation.

I Theorem 9 (Strongest form of the probability bound). Let µ be a strongly Rayleigh distribu-
tion on [m], let A1, . . . , An be random variables counting the number of elements contained
in some associated disjoint subsets of [m], and fix Ÿ œ Zn

Ø0. Suppose for all S ™ [n] we have
|Eµ [AS ] ≠ ŸS | < 1. Define ‘, ” œ Rn

>0 via

”k := 1 + min
Sœ([n]

k )
(Eµ [AS ] ≠ ŸS) and ‘k := 1 ≠ max

Sœ([n]
k )

(Eµ [AS ] ≠ ŸS) .

Then we have

Pµ [A1 = Ÿ1, . . . , An = Ÿn] Ø
nŸ

i=1

ŸŸi
i e≠Ÿi

Ÿi!
· min
0Æ¸Æn

Ÿ̧

k=1
‘k

n≠Ÿ̧

k=1
”k.

Proof. Let q be the probability generating polynomial of µ, and let p be the polynomial
obtained by setting the variables of q associated to Ai to xi for all i œ [n], and setting all
other variables to equal 1. Since µ is strongly Rayleigh, p is real stable. Further, p(1) = 1,
Òp(1) = (Eµ [Ai])ni=1, and Pµ [A1 = Ÿ1, . . . , An = Ÿn] is the xŸ coe�cient of p. Thus Gurvits’
capacity inequality (2) and Corollary 27 imply the desired result. J

We also give a slightly weaker bound which is a bit easier to use in practice. Note that
Theorem 6 also follows from Corollary 10.

I Corollary 10. Let µ be a strongly Rayleigh distribution on [m], let A1, . . . , An be random
variables counting the number of elements contained in some associated disjoint subsets of
[m], and fix Ÿ œ Zn

Ø0. Suppose for all S ™ [n] we have |Eµ [AS ] ≠ ŸS | < 1. Define ‘ œ Rn
>0

via

‘k := 1 ≠ max
S™[n]
|S|Æk

--Eµ [AS ] ≠ ŸS

--

Then we have

Pµ [A1 = Ÿ1, . . . , An = Ÿn] Ø
nŸ

i=1

ŸŸi
i e≠Ÿi

Ÿi!
·

nŸ

k=1
‘k.

Proof. Follows from Theorem 9; see the proof of Corollary 26 for more details. J

The remainder of this section is devoted to demonstrating how one can use the above
results to improve the approximation factor for metric TSP.
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4.1 A Simple Application

We recall some definitions from [24]. There, we have a graph G = (V,E) and a strongly
Rayleigh (SR) distribution µ : 2E æ RØ0 supported on spanning trees of G. We let
xe = PT≥µ [e œ T ] and for a set of edges F let x(F ) =

q
eœF xe. Furthermore we let

”(S) = {e = {u, v} | |e fl S| = 1}. The guarantee on x is that x œ PSub,3 where

PSub :=

Y
__]

__[

x(”(S)) Ø 2 ’S ( V

x(”(v)) = 2 ’v œ V

x{u,v} Ø 0 ’u, v œ V

(3)

In the algorithm they analyze, one first samples a spanning tree T from µ and then add
the minimum cost matching on the odd vertices of T . Their work involves analyzing the
expected cost of this matching over the randomness of the sampled tree T . Unsurprisingly,
the parity of vertices is therefore very important, as it determines which vertices are involved
in the matching.

In this section, to give some sense of the utility of Theorem 9, we show an application in a
simplified setting. Namely, we show that for any two vertices u, v, except in the special case
that x{u,v} ¥ 1

2 , we have PT≥µ [|”(u) fl T | = |”(v) fl T | = 2] Ø �(1), i.e. for any two vertices
that do not share an edge of value 1

2 there is a constant probability that they have even
parity simultaneously. This is helpful because (under some conditions on the point x œ PSub)
the event that u, v are even simultaneously indicates one can strictly decrease the cost of the
matching proportional to the cost of the edge e.

We now prove PT≥µ [|”(u) fl T | = |”(v) fl T | = 2] Ø �(1) whenever x{u,v} ”¥ 1
2 . To do

this, we split into two cases: when x{u,v} Ø 1
2 + ‘ and when x{u,v} Æ 1

2 ≠ ‘.

I Lemma 11. Let u, v be two vertices such that x{u,v} Ø 1
2 + ‘ for some ‘ > 0. Then,

PT≥µ [|”(u) fl T | = |”(v) fl T | = 2] Ø ‘

2e3 .

Proof. Let e = (u, v). For T ≥ µ, let A1 = I[e œ T ], A2 = |(”(u) r {e}) fl T |, A3 =
|(”(v)r {e}) fl T |. We are now interested in the event Ai = Ÿi,’i for the vector Ÿ = (1, 1, 1)
as this implies |”(u) fl T | = |”(v) fl T | = 2. We have E[A1] = xe, E[A2] = E[A3] = 2 ≠ xe.
Therefore, to apply Theorem 9 we can set:

”1 = xe, ”2 = 1, ”3 = 2 ≠ xe, ‘1 = xe, ‘2 = 2xe ≠ 1, ‘3 = xe

In this case the worst case is using all of the ‘ terms in the bound, giving e≠3x2
e(2xe≠1) Ø ‘

2e3
as desired. J

I Lemma 12. Let u, v be two vertices such that x{u,v} Æ 1
2 ≠ ‘ for some ‘ > 0. Then,

PT≥µ [|”(u) fl T | = |”(v) fl T | = 2] Ø 2‘

e4
.

Proof. As above, e = (u, v), and for T ≥ µ, let A1 = I[e œ T ], A2 = |(”(u)r {e})fl T |, A3 =
|(”(v)r {e}) fl T |. We are now interested in the event Ai = Ÿi,’i for the vector Ÿ = (0, 2, 2)
as this implies |”(u) fl T | = |”(v) fl T | = 2. We have E[A1] = xe, E[A2] = E[A3] = 2 ≠ xe.
Therefore, to apply Theorem 9 we can set:

”1 = 1 ≠ xe, ”2 = 1 ≠ 2xe, ”3 = 1 ≠ xe, ‘1 = 1 ≠ xe, ‘2 = 1, ‘3 = 1 + xe

In this case the worst case is using all of the ” terms in the bound, giving 4e≠4(1 ≠ xe)2(1 ≠
2xe) Ø 2‘

e4 . J

3 Technically, a spanning tree plus an edge is sampled, as otherwise one cannot exactly have x œ PSub,
but we ignore that here.
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We leave further background about TSP and the proofs of our improved probabilistic
statements to the full version of the paper, as understanding their importance requires some
knowledge of the (highly technical) proof in [24]. However, in the next section we summarize
the new probabilistic bounds we get and their consequences.

4.2 Summary of Probabilistic Bounds and New Approximation Factor

The current bound on the performance of the max entropy algorithm is 3
2 ≠ 4.11 · 10≠36.

This is primarily governed by a constant p that is determined by the minimum probability
over a number of events. In [24], p was equal to 2 · 10≠10, and these events are described by
the following statements in [24]:
1. Corollary 5.9, which gives a bound of 1.5·10≠9. We do not modify this bound, although we

note that Lemma 5.7 can be slightly improved which would lead to a small improvement
here.

2. Lemma 5.21, which gives a bound of 0.005‘21/2 = 2 ·10≠10. We improve this to 0.039‘21/2 =
1.56 · 10≠9.

3. Lemma 5.22, which gives a bound of 0.006‘21/2 = 2.4 · 10≠10. We improve this to
0.038‘21/2 = 1.52 · 10≠9.

4. Lemma 5.23, which gives a bound of 0.005 · ‘1/2 = 2 · 10≠10. We observe here that
arguments already in [24] can be used to give 0.0498‘21/2 Ø 1.9 · 10≠9.

5. Lemma 5.24, which gives a bound of 0.02‘21/2 = 8 ·10≠10. We improve this to 0.0485‘21/2 Ø
1.9 · 10≠9.

6. Lemma 5.27, which gives a bound of 0.01. This lemma actually uses that the threshold p
is small, and therefore this bound decreases slightly upon raising p. However, as it is quite
far from being the bottleneck in these bounds, we omit the proof that the probability
remains above 1.5 · 10≠9.

Therefore, we may increase p to the minimum of all these probabilities, 1.5 · 10≠9. Using
statements from [24, 23], the following then holds:

I Lemma 13. Let p be a lower bound on the probabilities guaranteed by (1) - (6) for
‘1/2 Æ 0.0002, and suppose p Æ 10≠4. Then given x œ PSub, the max entropy algorithm
returns a solution of expected cost at most ( 32 ≠ 9.7p2 · 10≠17) · c(x).

As we improve the bounds on p to 1.5 · 10≠9, an immediate corollary is the following:

I Corollary 14. The max entropy algorithm is a 3
2 ≠ 2.18 · 10≠34 approximation algorithm

for metric TSP.

Using [25] this guarantee can be made deterministic, as we do not require any modifications
to the algorithm.

In the full version of the paper, we also observe a lower bound on Lemma 5.21 for strongly
Rayleigh distributions of �(‘21/2). The fact that ‘1/2 Æ 0.0002 is used in many places in [24]
and thus decreasing it may require more e�ort. Thus without modifying other parts of the
argument, it may not be possible to improve the bound below 1.5 · 10≠31.

In the rest of the paper we prove our main capacity bound.

5 Proofs of the Main Capacity Bounds

In this section we prove the strongest forms of the main capacity bounds, which give Theorem 1
and Corollary 2 as corollaries. See the full version of the paper for any missing proofs. For
this section, we utilize the following notation.
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I Definition 15. For n, d œ N and – œ Rn
Ø0, we define the following:

1. NHMatdn(–) is the set of all RØ0-valued d ◊ (n+ 1) matrices with row sums all equal to
1 and column sums equal to –1, . . . ,–n, d ≠ Î–Î1.

2. NHProddn(–) is the set of all polynomials of the form

p(x) =
dŸ

i=1

Q

aai,n+1 +
nÿ

j=1
ai,jxj

R

b ,

where A œ NHMatdn(–). In this case, we call p the polynomial associated to A. Note
that p(1) = 1 and Òp(1) = – for all such polynomials.

3. NHStabdn(–) is the set of all real stable polynomials in RØ0[x1, . . . , xn] of degree at most
d for which p(1) = 1 and Òp(1) = –. (Recall that a polynomial is stable if it is never
zero when all inputs are in the open complex upper half-plane.)

We also define the following for n œ N, – œ Rn
Ø0, and Ÿ œ Zn

Ø0:

LNHProd
n (–;Ÿ) := min

dœN
min

pœNHProdd
n(–)

CapŸ(p).

We now follow the steps of the proof given in Section 3.

5.1 Productization for Non-homogeneous Stable Polynomials

We first show how we can reduce the problem of bounding the capacity to products of
a�ne linear forms. We recall the main productization result from [22], which gives the
non-homogeneous productization result as an immediate corollary.

I Theorem 16 (Thm. 6.2, [22]). Fix n, d œ N, u,– œ Rn
Ø0, and p œ RØ0[x1, . . . , xn] of

homogeneous degree d, such that p(1) = 1 and Òp(1) = –. There exists an RØ0-valued d ◊ n
matrix A such that the rows sums of A are all equal to 1, the column sums of A are given by
–, and p(u) =

rd
i=1(Au)i.

I Corollary 17. Fix n, d œ N, u,– œ Rn
Ø0, and p œ NHStabdn(–). There exists f œ

NHProddn(–) such that p(u) = f(u).

Proof. Let q(x) = xd
n+1 · p

1
x1

xn+1
, . . . , xn

xn+1

2
be the homogenization of p, and define — :=

Òq(1). So q œ RØ0[x1, . . . , xn+1] of homogeneous degree d such that q(1) = 1 and
Òq(1) = — = (–1, . . . ,–n, d ≠ Î–Î1). Define un+1 := 1, apply Theorem 16 to q and u,
and dehomogenize to obtain the desired result. J

We now use this result to reduce the problem of bounding the capacity to products of
a�ne linear forms.

I Corollary 18. For p œ NHStabdn(–), we have

CapŸ(p) Ø LNHProd
n (–;Ÿ).

Proof. For any x œ Rn
Ø0, let f œ NHProddn(–) be such that p(x) = f(x) according to

Corollary 17. With this, we have

CapŸ(p) = inf
x>0

p(x)
xŸ

Ø inf
x>0

min
dœN

min
fœNHProdd

n(–)

f(x)
xŸ

= LNHProd
n (–;Ÿ). J
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5.2 The Extreme Points of NHMat
d
n(–)

The next result implies we can reduce to the extreme points of NHMatdn(–) to lower bound
LNHProd
n (–;Ÿ).

I Lemma 19 (See Thm. 3.1 of [10]). Given Ÿ œ Zn
Ø0 and – œ Rn

Ø0, let „ : NHMatdn(–) æ
RØ0 be the function which maps M to CapŸ(p) where p is the polynomial associated to M .
Then „ is log-concave on NHMatdn(–).

We next describe the extreme points of NHMatdn(–) via bipartitioned forests.

I Lemma 20. Any extreme point of NHMatdn(–) has support given by a bipartite forest on
d left vertices and n+ 1 right vertices.

Proof. Let M be an extreme point of NHMatdn(–), and suppose its bipartite support graph
G does not give a forest. Then G must contain an even simple cycle. Group the edges of
this cycle into two groups such that the odd edges make up one group, and the even edges
make up the other (with any starting point). Add ‘ > 0 to all matrix entries corresponding
to even edges and subtract ‘ to all matrix entries corresponding to odd edges, to construct
M+ œ NHMatdn(–). Do the same thing, but reverse the signs, to constructM≠ œ NHMatdn(–).
Thus M = M++M≠

2 , contradicting the fact that M is an extreme point. J

In what follows, we will also need the following basic graph theoretic result.

I Lemma 21. Let G be a bipartite forest on m left vertices and n right vertices such that G
has no vertices of degree 0. Then G has at least m ≠ n+ 1 left leaves.

5.3 Capacity Bounds via Induction

Here we complete the proof of Theorem 1. We first give a simple lemma, which bears some
resemblance to the probabilistic union bound.

I Lemma 22. Given c œ Rd
Ø0 such that ci < 1 for all i œ [d], we have 1 ≠

qd
i=1 ci Æ

rd
i=1(1 ≠ ci).

The next lemma handles the case from Step 4 in Section 3 of setting some variable equal
to 0. To see how these next two lemmas actually are actually used, see Theorem 25 below.

I Lemma 23. For n Ø 1, let p œ NHProddn(–) be the polynomial associated to a d ◊ (n+ 1)
matrix M , and suppose Ÿ œ Zn

Ø0 such that Ÿn = 0 and –n ≠ Ÿn Æ 1≠ ‘ for some ‘ > 0. Then
there exists q œ NHProddn≠1(—) such that

CapŸ(p) Ø ‘ · Cap“(q),

where “ = (Ÿ1, . . . ,Ÿn≠1) œ Zn≠1
Ø0 and — œ Rn≠1

Ø0 is such that for all S ™ [n ≠ 1] we have
ÿ

jœS

(–j ≠ Ÿj) Æ
ÿ

jœS

(—j ≠ “j) Æ (–n ≠ Ÿn) +
ÿ

jœS

(–j ≠ Ÿj).

The next lemma handles the case from Step 4 in Section 3 of taking the partial derivative
with respect to some variable.
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I Lemma 24. For n Ø 1, let p œ NHProddn(–) be the polynomial associated to a d ◊ (n+ 1)
matrix M such that column n has exactly one non-zero entry, and suppose Ÿ œ Zn

Ø0 is such
that Ÿn = 1 and Ÿn ≠ –n Æ 1 ≠ ‘ for some ‘ > 0. Then there exists q œ NHProdd≠1

n≠1(—) such
that

CapŸ(p) Ø ‘ · Cap“(q),

where “ = (Ÿ1, . . . ,Ÿn≠1) œ Zn≠1
Ø0 and — œ Rn≠1

Ø0 is such that for all S ™ [n ≠ 1] we have
ÿ

jœS

(Ÿj ≠ –j) Æ
ÿ

jœS

(“j ≠ —j) Æ (Ÿn ≠ –n) +
ÿ

jœS

(Ÿj ≠ –j).

We now combine the lemmas above to prove our strongest capacity lower bound for
polynomials in NHProddn(–).

I Theorem 25. Fix any Ÿ œ Zn
Ø0, – œ Rn

Ø0, and ‘, ” œ Rn
>0 such that

max
Sœ([n]

k )

ÿ

jœS

(–j ≠ Ÿj) Æ 1 ≠ ‘k and max
Sœ([n]

k )

ÿ

jœS

(Ÿj ≠ –j) Æ 1 ≠ ”k

for all k œ [n]. Then

CapŸ(p) Ø min
0Æ¸Æn

Ÿ̧

k=1
‘k

n≠Ÿ̧

k=1
”k

for every p œ NHProddn(–).

The next result gives the bound which we will use in Section 4 to prove Theorem 6,
the simply exponential improvement to the probability bound used for the metric TSP
application.

I Corollary 26. Fix any Ÿ œ Zn
Ø0 and – œ Rn

Ø0 such that ‘ œ Rn
>0 can be defined via

‘k := 1 ≠ max
S™[n]
|S|Æk

------

ÿ

jœS

(Ÿj ≠ –j)

------

for all k œ [n]. Then CapŸ(p) Ø
rn

k=1 ‘k for every p œ NHProddn(–).

By Corollary 18, the above results hold for all p œ NHStabdn(–), and we state this formally
now.

I Corollary 27. Theorem 25 and Corollary 26 hold for all p œ NHStabdn(–).

5.4 Proving Theorem 1 and Theorem 2

We now complete the proof of Theorem 1, and thus also of Corollary 2. Fix p œ NHStabdn(–).
Thus

1 ≠ max
S™[n]
|S|Æk

------

ÿ

jœS

(Ÿj ≠ –j)

------
Ø 1 ≠ ÎŸ ≠ –Î1

and Corollary 27 (via Corollary 26) imply

CapŸ(p) Ø (1 ≠ ÎŸ ≠ –Î1)n,

which completes the proof. The tightness claim follows from Lemma 28.
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5.5 Examples and Tightness

The ” parameters in Theorem 25 are tight, and this is shown in Example 29. However, the ‘
parameters are not, as shown in Example 30. Example 29 also demonstrates tightness of the
dependence on the error parameter for some of our results, and we state this formally now.

I Lemma 28. The dependence on (1 ≠ ÎŸ ≠ Òp(1)Î1) in Theorem 1 and Corollary 2 and
the dependence on ‘ in Theorem 6 are all tight for any fixed Ÿ > 0.

Proof. Define –1 := Ÿ1 ≠ (1 ≠ ‘) > 0 and –i := Ÿi Ø 1 for all i Ø 2. Let p be the polynomial
described by Example 29, given explicitly by

p(x) =
A

nŸ

i=1
xŸi≠1
i

B
·
A

n≠1Ÿ

i=1
(‘xi + (1 ≠ ‘)xi+1)

B
· (‘xn + (1 ≠ ‘)).

Then Ÿ is a vertex of of the Newton polytope of p. Thus

pŸ = CapŸ(p) =
nŸ

k=1

Q

a1 ≠
kÿ

j=1
(Ÿj ≠ –j)

R

b = ‘n = (1 ≠ ÎŸ ≠ Òp(1)Î1)n.

To see that p can be the probability generating polynomial for some random variables
associated to a strongly Rayleigh distribution (as in Theorem 6), note that the polarization of
p is real stable and gives the probability generating polynomial for such a strongly Rayleigh
distribution. J

I Example 29. Fix any Ÿ œ Zn
Ø0 and – œ Rn

Ø0 such that Ÿj ≠ –j Ø 0 for all j œ [n] and
ÎŸ ≠ –Î1 < 1. Thus Ÿj Ø 1 for all j œ [n]. For d = ÎŸÎ1, consider the matrix M = [ AB ],
where A is the (ÎŸÎ ≠ n) ◊ (n+ 1) matrix given by

A =

S

WWWU

1Ÿ1≠1e€
1

1Ÿ2≠1e€
2

...
1Ÿn≠1e€

n

T

XXXV
,

and B is the n ◊ (n+ 1) matrix for which

bkk = 1 ≠
kÿ

j=1
(Ÿj ≠ –j), bk,k+1 =

kÿ

j=1
(Ÿj ≠ –j),

for all k œ [n] and bij = 0 otherwise. Note that every row sum of A is equal to 1, and the
row sums of B are given by

nÿ

j=1
bkj = 1 ≠

kÿ

j=1
(Ÿj ≠ –j) +

kÿ

j=1
(Ÿj ≠ –j) = 1

for all k œ [n]. The column sums of M are then given by

dÿ

i=1
mik = (Ÿk ≠ 1) + 1 ≠

kÿ

j=1
(Ÿj ≠ –j) +

k≠1ÿ

j=1
(Ÿj ≠ –j) = Ÿk ≠ (Ÿk ≠ –k) = –k
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for all k œ [n]. Thus M œ NHMatdn(–). Let p be the polynomial associated to M , and let
q be the polynomial associated to B. We then have CapŸ(p) = Cap1(q). Note that 1 is a
vertex of the Newton polytope of q, and thus

CapŸ(p) = Cap1(q) =
nŸ

k=1
bkk =

nŸ

k=1

Q

a1 ≠
kÿ

j=1
(Ÿj ≠ –j)

R

b .

By possibly permuting the variables to put Ÿj ≠ –j in non-increasing order, this is precisely
the lower bound guaranteed by Theorem 25.

I Example 30. Consider the case that Ÿ = 0 and Î–Î1 < 1. Given any d, let M be any
extreme point of NHMatdn(–). Then the column sum of column n + 1 of M is equal to
d ≠

qn
j=1 –j > d ≠ 1. Since every row sum equals 1, all entries of column n+ 1 of M are

strictly positive. Since M is an extreme point, this further implies that each column of M
has at most 1 positive entry except column n+ 1. Letting p be the polynomial associated to
M , there exists a partition S1 Û · · · Û Sk = [n] such that

p(x) =
kŸ

i=1

Q

a

Q

a
ÿ

jœSi

–jxj

R

b +

Q

a1 ≠
ÿ

jœSi

–j

R

b

R

b .

Thus by Lemma 22,

Cap0(p) = p0 =
kŸ

i=1

Q

a1 ≠
ÿ

jœSi

–j

R

b Ø 1 ≠
nÿ

j=1
–j .

By Lemma 19, this gives a lower bound on the capacity of every p œ NHProddn(–). However,
this lower bound is strictly better than the one guaranteed by Theorem 25.

As a note, this can be partially remedied by removing all Ÿj = 0 columns at the same
time (i.e., adjusting Lemma 23 to remove many columns at once). However, it is currently
unclear how to inductively do this correctly.

6 Uniqueness of Permanent Minimizers

In this section, let Matn(c) be the set of n ◊ n matrices with non-negative entries and rows
sums 1 and column sums c > 0, let pM (x) :=

rn
i=1

qn
j=1 mijxj be the real stable polynomial

associated to a given M œ Matn(c), and let L(c) be any lower bound on Cap1(pM ) over all
M œ Matn(c) (e.g., as given by Theorem 1 above or the results of [22]).

We now prove Theorem 3 via Theorem 32 below. We note that the argument in the
proof of Theorem 32 given below can be made into a general statement about minimizers of
quadratic forms. And further, the same argument given here applies to mixed discriminants,
as mentioned in Section 2.

I Lemma 31. If (n≠2)n≠2nn≠1

(n≠1)2n≠3 > c1c2···cn
L(c) , then all minimizers of the permanent over over

Matn(c) have all strictly positive entries.
Proof. Note that the rank-one matrix 1

n1 · c€ has all strictly positive entries and permanent
equal to n!

nn

rn
i=1 ci. Thus, to obtain a contradiction, let us assume that there exists

M œ Matn(c) with at least one zero entry such that per(M) Æ n!
nn

rn
i=1 ci. By the main

result of [18], we have

n!
nn

nŸ

i=1
ci Ø per(M) Ø

3
n ≠ 2
n ≠ 1

4n≠2 (n ≠ 1)!
(n ≠ 1)n≠1 · L(c),
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which after rearranging implies

(n ≠ 2)n≠2nn≠1

(n ≠ 1)2n≠3 >

3
n ≠ 2
n ≠ 1

4n≠2 nn≠1

(n ≠ 1)n≠1 ,

which is a contradiction. J

I Theorem 32. If (n≠2)n≠2nn≠1

(n≠1)2n≠3 > c1c2···cn
L(c) , then the rank-one matrix 1

n1 · c€ is the unique
minimizer of the permanent over Matn(c).

Proof. Let M be a minimizer of the permanent over Matn(c). Thus every entry of M is
positive by Lemma 31. We will show that every pair of rows of M must be equal, which
immediately implies M = 1

n1 · c€.
Let P µ R2◊n be the convex polytope given by the first two rows of all matrices in

Matn(c) with rows 3 through n equal to those of M . Thus by positivity, (m1,m2) is in the
relative interior of P where mi is the ith row of M . Let f(u,v) be defined as the permanent
of the matrix M with the first two rows replaced by (u,v). Since M minimizes the permanent
and (m1,m2) is contained in the relative interior of P , the necessary conditions on the
minimum given by Lagrange multipliers implies

Òf(m1,m2) =
!
per(M(i,j))

"
iœ[2],jœ[n] = (ai + bj)iœ[2],jœ[n]

for some ai, bj , where M(i,j) is the matrix M with row i and column j deleted. That is, the
gradient of f points in a direction orthogonal to P at (m1,m2).

By row symmetry of the permanent, we also have that Òf(m2,m1) = (aÕ
i + bj)iœ[2],jœ[n],

where aÕ
1 = a2 and aÕ

2 = a1. By row multilinearity of the permanent, we thus have

Òf(t ·m1 + (1 ≠ t) ·m2, (1 ≠ t) ·m1 + t ·m2) = (t · ai + (1 ≠ t) · aÕ
i + bj)iœ[2],jœ[n]

for all t œ R. If m1 ”= m2 then the gradient of f is orthogonal to P at all points on a line in
P through M , and thus the permanent is minimized at all these points. At least one such
point (on the boundary of P ) has a zero entry, which contradicts Lemma 31. Therefore it
must be that m1 = m2. Applying this argument to every pair of rows of M implies the
desired result. J

We now give the example which proves Proposition 4.

I Example 33. Fix t > 0 and n œ N, and define ‘ := 1
n1+t . Further define – œ Rn

>0 and
c œ Rn+1

>0 via

– :=
!
1≠‘, 1≠‘, . . . , 1≠‘) œ Rn

>0 and c :=
!
1+–1,–2,–3, . . . ,–n,

nÿ

j=1
(1≠–j)

"
œ Rn+1

>0 .

Note that Îc ≠ 1Î1 = 1 + (n ≠ 2)‘ + 1 ≠ n‘ = 2(1 ≠ ‘) < 2. We first have

per
3

1
n+ 11 · c€

4
= (n+ 1)!

(n+ 1)n+1 (2≠ ‘)(1≠ ‘)n≠1n‘ = n!
n(1+t)n · 2 ≠ n≠1≠t

1 ≠ n≠1≠t
· (n

1+t ≠ 1)n
nt(n+ 1)n .

Now consider the (n+ 1) ◊ (n+ 1) matrix with diagonal entries

1,
1ÿ

j=1
(1 ≠ –j),

2ÿ

j=1
(1 ≠ –j), · · · ,

nÿ

j=1
(1 ≠ –j),
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subdiagonal entries to obtain row sums 1 and column sums c, and zero entries elsewhere.
Note that M œ Matn+1(c). The matrix M is upper-triangular, and thus we have

per(M) =
nŸ

k=1

kÿ

j=1
(1 ≠ –j) =

nŸ

k=1
(k‘) = n! · ‘n = n!

n(1+t)n .

We then further have

2 ≠ n≠1≠t

1 ≠ n≠1≠t
· (n

1+t ≠ 1)n
nt(n+ 1)n ¥ 2n(n≠1)t · (n ≠ n≠t)n

(n+ 1)n Ø 2n(n≠1)t · (n ≠ 1)n
(n+ 1)n > 1,

which implies per(M) < per
1

1
n+11 · c€

2
for large enough n.
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Abstract
Fault-tolerant Consensus is about reaching agreement on some of the input values in a limited time
by non-faulty autonomous processes, despite of failures of processes or communication medium. This
problem is particularly challenging and costly against an adaptive adversary with full information.
Bar-Joseph and Ben-Or (PODC’98) were the first who proved an absolute lower bound �(


n/ logn)

on expected time complexity of Consensus in any classical (i.e., randomized or deterministic) message-
passing network with n processes succeeding with probability 1 against such a strong adaptive
adversary crashing processes.

Seminal work of Ben-Or and Hassidim (STOC’05) broke the �(


n/ logn) barrier for consensus
in the classical (deterministic and randomized) networks by enhancing the model with quantum
channels. In such networks, quantum communication between every pair of processes participating
in the protocol is also allowed. They showed an (expected) constant-time quantum algorithm for a
linear number of crashes t < n/3.

In this paper, we improve upon that seminal work by reducing the number of quantum and
communication bits to an arbitrarily small polynomial, and even more, to a polylogarithmic number
– though, the latter in the cost of a slightly larger polylogarithmic time (still exponentially smaller
than the time lower bound �(


n/ logn) for the classical computation models).
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1 Introduction

Consensus is about making a common decision among the processes’ initial input values in a
limited time by every non-faulty process, despite the faulty behaviour of some of the players.
Since its introduction by Pease, Shostak and Lamport [31] (JACM’80), who ruled out trivial
solutions (such as always deciding on the same bit), fault-tolerant Consensus has constantly
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been among foundation problems in distributed computing. This problem has been studied
in synchronous/asynchronous and deterministic/randomized computation models and under
various fault-tolerant or adversarial models: Fail-Stop (crashes) and Byzantine, Static and
Adaptive, Computationally Bounded and Unbounded Adversaries - just to name a few (see
Section 2.1 for related work).

While the landscape of Consensus problem under the classic model of computation is
well-developed, much less is known if we allow for quantum computation. The seminal work
of Ben-Or and Hassidim [9] (albeit a short 5-pager in STOC’05) broke the �(


n/ logn)

rounds time barrier for classic computing by employing quantum computing to further use
the power of randomization in distributed computing. They showed an (expected) constant-
time quantum algorithm for a linear number of crashes t < n/3, however, the algorithm is
ine�cient in terms of communication bits and, even more importantly, in terms of the number
of quantum bits (qubits), as it uses �(n) of them per process. Since then no algorithm has
managed to reduce the quantum resources needed to solve Consensus. Because generating,
maintaining and sending quantum bits is extremely costly (today’s quantum devices use less
than 500 qubits), thus the main question of our paper emerges naturally:

Could the number of qubits be substantially reduced without harming the time complexity?

1.1 Distributed setting
We consider a quantum synchronous message-passing model (c.f., [6]), consisting of n syn-
chronous processes (also called players), each with common clock (a clock tick is called a
round or a step) and unique id from the known set P = [n] = {1, . . . , n}.

Between any pair of processes we assume the existence of a quantum channel being able
to transmit reliable1 messages caring quantum bits, qubits. For the sake of completeness, we
also augment the model by classic point-to-point channels between any pair of processes. In
each round, a process can send (personalized) quantum and classic messages to any selected
subset of other processes. After multicasting messages, in the same round a process receives
messages that were just sent to it by other processes, and performs local computation, which
involves both quantum and classic bits.2

Processes are prone to crash failures, also called fail-stops. A crashed process permanently
stops any activity, including sending and receiving messages.

We model crashes as incurred by a full-information adversary (the same as in [7, 9]) that
knows the algorithm, the exact pure quantum state (see Section 3) and the classic state of
the system at any point of an execution, and has an unbounded computational power. The
adversary decides which processes to fail and when. The adversary is also adaptive – it can
make a decision on-line based on its current full-knowledge of the system. However, the
adversary does not know the future computation, which means that it does not know future
random bits drawn by processes.

As for the quantum part, the adversary can apply no quantum operation to the system, but
it is aware of all quantum and classic changes of state that the network undergoes. If a process
is crashed by the adversary, we assume that its quantum bits are not destroyed (in particular,
entangled qubits in other processes do not collapse but maintain their entanglement), however
they cannot be used in further computation.

1 Messages are not lost nor corrupted while in transit.
2 Local computation also decides what messages to send in the next round and to whom.
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Failures are not clean – when a process crashes when attempting to multicast a message,
then some of the recipients may receive the message and some may not; this aspect is
controlled by the adversary. A t-adversary is additionally restricted by the the number
of crashed processes being smaller than t; if t = n then the n-adversary is also called an
unbounded adversary (note that even in such case, at least one process must survive for
Consensus to make sense). Throughout the paper, we will be calling the adversary described
above “adaptive”, for short.

Consensus problem. each process p has its own initial value inputp and has to output a
(common) decision value, so that the following conditions hold: validity – decision must be
on an input value of some process; agreement – no two processes decide on di�erent values;
and termination – each process eventually decides on some value, unless it is faulty. All those
three requirements must hold with probability 1. We focus on binary Consensus, in which
initial values are in {0, 1}.

Correctness and complexity – in terms of time (the number of rounds needed for all
processes to terminate) and the number of quantum bits (qubits) and communication bits –
are analyzed and maximized (worst-case) against an adaptive adversary.

We say that a random event occurs with high probability (whp for short), if its probability
could be made 1 ≠ O(n≠c) for any su�ciently large positive constant c by linear scaling of
parameters.

2 Our Results

In this work, we focus on improving quantum bits’ and communication complexities (without
harming time complexity) of quantum algorithms solving Consensus problem with probability
1 against an adaptive full-information adversary capable of causing processes’ crashes. We
observe that the maximum, per process, number of communication bits in Consensus problem
is �(n), therefore one can only hope to improve amortized communication complexity (per
process), see the full version of the paper.3

Our first main result is a quantum algorithm that solves Consensus in expected constant
number of rounds and amortized number of qubits and classical communication bits per
process being an arbitrarily low polynomial. This directly improves, by a polynomial factor,
on the result of Ben-Or and Hassidim [9], which required �(n) qubits and communication
bits, amortized per process. The detailed description of the algorithm and the proof of its
correctness is presented in Section 4.

I Theorem 1. For any ‘ > 0, there is an algorithm solving consensus against an adaptive
n/3-adversary in expected O(1) rounds while using O(n‘) qubits and communication bits
(amortized) per process, w.h.p.

To achieve this result, we give improved protocols for several existing tools that have been
historically used in consensus algorithms. Combining all our advancements together provides
a tighter approach to the general problem of consensus.

Our first technique is a new quantum implementation of a weak global coin.

I Definition 2 ([9]). Let C be a protocol for n players (with no input), where each player i

outputs a (classical) bit vi œ {0, 1}. We say that the protocol C is a t-resilient weak global coin
protocol (or computes a weak global coin, for short) with fairness fl > 0, if for any adaptive
t-adversary and any value b œ {0, 1}, with probability at least fl, vi = b for all good players i.

3 All omitted proofs and materials can be found in the full version of the paper, under the link given in
“Related Version” on page 1.
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We show a 1
3 -resilient weak global coin that works in constant, O

! 1
‘

"
, time, uses an arbitrarily

small polynomial number of bits O(n‘), amortized per process (for any chosen constant
‘ > 0), and results in all non-faulty processes returning the same value with a non-zero
constant probability, c.f., Theorem 12. The main idea behind our improvement is to couple a
quantum protocol for selecting a leader in the system, proposed in [9], with generalized sparse
patterns of fault-tolerant communication induced on random graphs, which in a classical
version (i.e., non-quantum) was firstly used in [23].

Our second technical result is a deterministic algorithm for counting, which returns, in
constant time, a count of the number of input 1 (or 0, resp.) among the processes. Specifically,
our algorithm solves the following problem.

I Definition 3 (Fuzzy Counting [23]). A Fuzzy Counting is a distributed problem in which
every active process is required a number between the initial and the final number of active
processes. The notion of “being active” usually depends on the goal of the counting, e.g., all
non-faulty processes, non-faulty processes with initial value 1, etc.

The authors of [23] provided an algorithm to this problem that works in O(log3 n) rounds
and uses O(log7 n) communication bits per process. By employing random graphs of
asymptotically larger degree than those in [23], we generalize this result by showing a solution
that works in constant time. As consequence of this improvement a tradeo� between the
number of rounds and the communication complexity arises. Our protocol is faster than
the one in [23], but on the other hand it uses a polynomial, yet of an arbitrarily small
degree, number of communication bits, amortized per process. On the way to achieve this
result, we also propose a new solution to Gossip – a distributed problem in which every
non-faulty process, despite the presences of the adversary, have to collect inputs of every
other non-faulty processes.4 The novelty in this approach is that our solution, by exploiting
similar properties of random graphs to the approach used for generating a weak global coin,
we can solve Gossip in constant time O

! 1
‘

"
while using only O(n‘) bits per processes, for any

constant 1 > ‘ > 0. The formal statement of the Gossip algorithm is provided in Theorem 13
and the analysis of our implementation of a weak global coin can be found in the Section 5
and the analysis of our implementation of Fuzzy Counting in Section 6.

Although constant-time algorithms cannot low (sub-polynomial) amortized communication
complexity, we show that our main algorithm could be re-instantiated in such a way that
it uses only a polylogarithmic number of qubits and classical communication bits to solve
consensus in just a polylogarithmically larger number of rounds (see Section 4, and technical
counterpart Theorem 7 for more details).

I Theorem 4. There is an algorithm solving consensus against an unbounded adaptive
adversary in polylogarithmic number of rounds, in expectation, while using a polylogarithmic
number of qubits and communication bits (amortized) per process, whp.

We believe that the newly developed techniques could be also applied to other types of
failures, after failure-specific modifications. For example, although message omission failures
require linear amortized communication per process (c.f., [22]), one could still use a small
polynomial or even a polylogarithmic number of qubits (together with a linear number of
classic communication bits) per process, if qubits are handled according to our techniques
while some additional classic communication bits are introduced to handle message omissions.
We leave details to follow-up work.

4 The main di�erence between Gossip and Fuzzy Counting is that the latter allows for aggregating
information, i.e. counting the number of 1’s in the system vs collecting a set of identifiers of these active
processes that start with 1.
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2.1 Previous and Related Work

Consensus in the classic (non-quantum) model. Bar-Joseph and Ben-Or [7] (see also
their extended version [8]) proved a lower bound O(

Ò
n

logn ) on expected time complexity
of consensus against an adaptive adversary. They also complemented it by time-optimal
randomized algorithm. Their algorithm uses expected O( n

3/2

logn ) number of communications
bits, amortized per process, which has been recently improved by Hajiaghayi et al [23] to
O(

Ô
n) (while maintaining the almost-optimal round complexity O(

Ô
n logn)).

Fisher and Lynch [19] proved a lower bound f + 1 on deterministic consensus with f

crashes (that actually occurred, i.e., f < t), thus separating deterministic solutions from
randomized. Regarding communication complexity, Amdur, Weber and Hadzilacos [3] showed
that the amortized number of messages per process is at least constant, even in some failure-
free execution. Dwork, Halpern and Waarts [18] found a solution with O(logn) messages per
process, but requiring an exponential time, and later Galil, Mayer and Yung [20] developed
a message-optimal algorithm working in super-linear O(n1+Á) time, for any 0 < Á < 1
and any f < n. They also improved the communication further to a constant number
of communication bits per process, but the resulting algorithm was exponential in the
number of rounds. Chlebus and Kowalski [11] showed that consensus can be solved in
O(f +1) time and with O(log2 f) messages if only the number n≠ f of non-faulty processors
satisfies n ≠ f = �(n). It was later improved in [12] to O(f + 1) time and O(polylog n)
number of communication bits. All the abovementioned communication complexities are
amortized per process.

Quantum consensus. To the best of our knowledge, almost all previous papers on quantum
consensus concentrated on assuring feasibility of the problem against strong Byzantine
adversaries, c.f., [14, 24, 26], or on optimizing time complexity, including the work of Ben-Or
and Hassidim [9] achieving constant time against an adaptive adversary.

In recent years, the primary application of (classical) consensus has been in the synchron-
ization of distributed blockchains. A blockchain algorithm based on asymmetric quantum
encryption was proposed in [34]. Blockchain algorithms often use leader election as an
important subroutine. Quantum algorithms for leader election in anonymous networks, a
problem intrinsically unsolved in the classical setting, has been considered in [32, 29]. [36]
implemented the first algorithm for the anonymous leader election problem on a quantum
computer. A more thorough study of challenges arising from practical implementations of
quantum distributed networks is a pending, but unresolved issue [17]. The dynamics of
quantum consensus and gossip over a contiguous space was studied in [28].

Sparse quantum communication has been considered by Chlebus, Kowalski and Stro-
jnowski in [13], in the context of solving some version of consensus, but their protocols work
correctly only with some probability smaller than 1 and for a specific number of failures
corresponding to the probability of success. Another di�erence is that they used quantum
operations to encode the classical inputs in quantum registers and used it to directly solve
consensus. In this paper, we show another, more-e�cient approach, in which we first create
a quantum, weak global coin and later employ this tool to the state-of-the-art framework of
solving consensus based on the common coin. Other distributed computing problems, not
necessarily fault-prone, were also analyzed in quantum models, c.f., [10, 33, 35]. Finally, the
readers interested in more broad treatment of quantum consensus are referenced to a recent
survey [27].
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More e�cient classic randomized solutions against weak adversaries. Whenever weaker
oblivious adversaries are considered, randomness itself proved to be enough in reducing
time complexity to a constant. Chor, Merritt and Shmoys [15] developed constant-time
algorithms for consensus against an oblivious adversary – that is, the adversary who knows the
algorithm but has to decide which process fails and when before the execution starts. Their
solution, however, requires a linear number of communication bits per process. Gilbert and
Kowalski [21] gave a randomized consensus algorithm that achieves optimal communication
complexity of O(1) amortized communication bits per process while terminating in O(logn)
time w.h.p., as long as the number of crashes f < n/2.

Classic consensus in more demanding models. Dolev and Reischuk [16] and Hadzilacos
and Halpern [22] proved the �(f + 1) lower bound on the amortized message complexity
per process of deterministic consensus for omission or (authenticated) Byzantine failures.
However, under some limitation on the adversary and requiring termination only whp, the
sublinear expected communication complexity O(

Ô
n polylog n) per process can be achieved

even in case of Byzantine failures, as proved by King and Saia [25]. Such limitations are
apparently necessary to achieve subquadratic time complexity for Byzantine failures, c.f.,
Abraham et al. [1]. Asynchrony also implies large communication – Aspnes [4] proved a lower
bound �(n/ log2 n) on communication complexity per process. The complexity bounds in
this setting have been later improved, see e.g., [5, 2].

3 Technical Preliminaries

Quantum model of computation. We provide a short review of those parts of the quantum
model of computing that are relevant to our results. The reader can find a comprehensive
introduction to quantum computing in e.g. [30]. We use only the pure state of qubits. A pure
state of a single qubit is a vector in a 2-dimensional Hilbert space H. A pure quantum state
of d qubits, denoted |xÍ, is a vector of 2d-dimensional Hilbert space H

¢d = H ¢ . . . ¢ H. In
our paper, we use only the standard computational basis of the Hilbert space, which consists
of vectors {|b1 . . . bdÍ : b1 . . . , bd œ {0, 1}d}, to describe the system. Therefore, any state |xÍ

can be expressed as |xÍ =
q2d≠1

i=0 –i |iÍ, with the condition that
q

i |–i|
2 = 1, since quantum

states can be only normalized vectors.
Transitions, or equivalently – changes of states of a quantum system, are given by

unitary transformations on the Hilbert space of d qubits. These unitary transformations
are called quantum gates. These operations are exhaustive in the sense that any quantum
computation can be expressed as a unitary operator on some Hilbert space. There are
small-size sets of quantum gates working on two-dimensional space that are universal – any
unitary transformation on a 2d-dimensional quantum space can be approximated by a finite
collection of these universal gates. In our applications, any quantum algorithm computation
run by a process requires a polynomial (in n) number of universal gates.

Finally, an important part of quantum computation is also a quantum measurement.
Measurements are performed with respect to a basis of the Hilbert space – in our case, this
is always the computational basis. A complete measurement in the computational basis
executed on a state |xÍ =

q2d≠1
i=0 –i |iÍ leaves the state in one of the basis vectors, |iÍ, for

i œ {0, 1}d, with probability –
2
i . The outcome of the measurement is a classic register of d bits,

informing to which vector the state has been transformed. It is also possible to measure only
some qubits of the system, which is called a partial measurement. If A describes the subset of
qubits that we want to measure and B is the remaining part of the system, then the partial
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measurement is defined by the set of projectors {�i = |iÍA Èi|A ¢ IB | for i œ {0, 1}d}.5 In
the former, a subscript refers to the part of the system on which the object exists, I denotes
the identity function, while Èi| is a functional of the dual space to the original Hilbert space
(its matrix representation is the conjugate transpose of the matrix representation of |iÍ). If
before the measurement the system was in a state |xÍAB then, after the measurement, it
is in one of the states {�i |xÍAB | for i œ {0, 1}d}, where state �i |xÍAB is achieved with
probability Èx|AB �i |xÍAB.6 We would like to note that, similarly to all other quantum
operations, measurements are local in our model. The result of a measurement is visible only
to the process that performed this measurement; however, any quantum operation in some
process may a�ect quantum bits stored in some other process.

Graph notations. Let G = (V,E) denote an undirected graph. Let W ™ V be a set of
nodes of G. We say that an edge (v, w) of G is internal for W if v and w are both in W .
We say that an edge (v, w) of G connects the sets W1 and W2, or is between W1 and W2,
for any disjoint subsets W1 and W2 of V , if one of its ends is in W1 and the other in W2.
The subgraph of G induced by W , denoted G|W , is the subgraph of G containing the nodes
in W and all the edges internal for W in G. A node adjacent to a node v is a neighbor of v
and the set of all the neighbors of a node v is the neighborhood of v. N i

G(W ) denotes the set
of all the nodes in V that are of distance at most i from some node in W in graph G. In
particular, the (direct) neighborhood of v is denoted NG(v) = N

1
G(v).

The following combinatorial properties are of utter importance in the analysis of our
algorithms. Graph G is said to be ¸-expanding, or to be an ¸-expander, if any two subsets
of ¸ nodes each are connected by an edge. Graph G is said to be (¸,–,—)-edge-dense if, for
any set X ™ V of at least ¸ nodes, there are at least –|X| edges internal for X, and for any
set Y ™ V of at most ¸ nodes, there are at most —|Y | edges internal for Y . Graph G is said
to be (¸, Á, ”)-compact if, for any set B ™ V of at least ¸ nodes, there is a subset C ™ B of at
least Á¸ nodes such that each node’s degree in G|C is at least ”. We call any such set C a
survival set for B.

4 Consensus Algorithm

The very high-level description of our consensus algorithm CheapQuantumConsensus
is as follows. Each process starts by setting its preferred value (the value which it would
like to decide for now) to the input bit. Then, the processes repeatedly use the counting
procedure FastCounting, specified in Section 6, to compute the number of preferred 0’s
and 1’s stored by processes that have not crashed yet, see line 3. Due to the definition of
Fuzzy Counting, the outcomes of FastCounting can be slightly di�erent across processes,
but by no more than the number of crashes. Depending on the outcome, each process may
change its preferred value to the dominating one (among the received preferred values),
decide if the domination is substantial, or run the quantum common coin procedure, if
the number of preferred 0’s and 1’s are very close to each other – see lines 14-17 in the
pseudocode of CheapQuantumConsensus in Figure 1; all lines involving communication
are underlined. Repeating the entire process (i.e., counting) for a constant number of rounds
and then calculating the weak global coin and updating the decision either deterministically
or based on the global coin, guarantees to produce one preferred value in all correct processes
with probability 1, provided strong enough protocol for computing the global coin.

5 We follow the standard notation in quantum computing and skip writing normalizing factors.
6 �i |xÍAB and Èx|AB �i |xÍAB are simply linear operations on matrices and vectors.
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In general, this type of framework is well-known for solving consensus and was proposed
first by Bar-Joseph and Ben-Or [8] in the context of classical randomized computation against
an adaptive adversary. However, for classical randomized computation the limitation of
this approach is in the fact that any weak global coin obtained so far can tolerate at most
O(

Ô
n) crashes to guarantee constant fairness of the coin. In contrast, by employing quantum

communication we propose a new quantum protocol that computes a weak global coin with
constant fairness even when a linear number of processes crash.

Besides this improvement, we also propose two new techniques for sparse classical and
quantum communication, employed in lines 3 and 18 of the pseudocode in Figure 1: fast and
communication-e�cient counting and, as mentioned before, fast and quantum-communication-
e�cient weak global coin, respectively. Both these techniques use parameters x, d,–, which,
roughly speaking, correspond to the density of random communication graphs used in these
algorithms. The detailed performance formulas of these algorithms, with respect to those
parameters, are stated in Theorems 12 and 14.

In the heart of these two techniques lies a crucial observation: consensus (as well as
common coin and counting) could be achieved quickly even if many processes do not directly
exchange messages, but use some carefully selected sparse set of communication links instead.
This way, instead of creating qubits for each pair of processes, we could do it only per some
pairs corresponding to some communication links to be used. This set of links, modeled
as an evolving communication graph, needs to be maintained adaptively and locally by
processes throughout the execution – otherwise, an adaptive adversary would learn it and
design crashes to separate processes and prevent consensus.

Algorithm’s description. Each process p stores its current choice in bp (which is initialized
to p’s input). The value bp at the end of the algorithm indicates p’s decision. Now, processes
use O(1) (in expectation) phases to update their values bp such that eventually every process
keeps the same decision. To do so, in a round r every process p calculates the number of
processes whose current choice is 1 and the number of processes whose current choice is 0,
denoted O

r
p and Z

r
p respectively. Based on these numbers, process p: either sets bp to 1, if

the number Or
p is large enough; or it sets bp to 0 if the number Zr

p is large; or it replaces bp
with a random bit if the numbers of zeros and ones are close to each other. If for generating
the random bit, in line 18, processes use a quantum implementation of a weak global coin
(implemented with CheapQuantumCoin algorithm, specified in Section 5), they will all
have the same value bp with constant probability unless more than third of alive processes
crash. Assuming the presence of the adaptive adversary, this could not be achieved quickly if
using classical communication only. Once it happens with the help of the quantum weak
global coin, the conditional statements in lines 14-17, run in the next iteration of the “while”
loop, guarantee that once the majority of processes have the same value bp, the system
converges to this value in at most 2 phases. Since the probability of this event is constant
(guaranteed by the quantum weak global coin combined), the expected number of phases
before the consensus algorithm terminates is constant. That reasoning holds, assuming that
at most 1/3 fraction of processes crashed (we will generalize it to any t Æ n at the end of
this section).

As mentioned earlier, the major improvement in the above protocol comes from using novel
techniques for counting and weak global coin. For the former, we use the FastCounting
algorithm (Theorem 14), which, with the choice of parameters given in line 3, works in
O

1! 1
‘

"42
rounds and uses O

!
n
1+3‘ log2 n

"
(classic) communication bits in total. Similarly,

the CheapQuantumCoin algorithm (Theorem 12), executed in line 18, terminates in
O

1! 1
‘

"32
rounds and uses O

1
n
1+2‘ log2 n

2
both quantum and classical bits; we need to

divide the communication formulas by n to obtain the complexity amortized per process.
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Algorithm 1 CheapQuantumConsensus for process p.
input: P, p, inputp

1 bp Ω inputp ; r Ω 1 ; decided Ω FALSE ;
2 while TRUE do
3 participate in FastCounting(P, p, bp) (run with parameters

x = n
‘
, d = logn,– = n

‘) that counts the processes who have bp = 1 and the
processes who have bp = 0; let Or

p, Zr
p be the numbers of ones and zeros (resp.)

returned by FastCounting;
4 N

r
p Ω Z

r
p +O

r
p;

5 if (Nr
p <


n/ logn) then

6 1) send bp to all processes; 2) receive all messages sent to p in round r + 1;
7 3) implement a deterministic protocol for


n/ logn rounds;

8 end
9 if decided = TRUE then

10 diff Ω N
r≠3
p - Nr

p ;
11 if (diff Æ N

r≠2
p /10) then STOP;

12 else decided Ω FALSE;
13 end
14 if O

r
p > (7Nr

p ≠ 1)/10 then bp Ω 1, decided Ω TRUE;
15 else if O

r
p > (6Nr

p ≠ 1)/10 then bp Ω 1;
16 else if O

r
p < (4Nr

p ≠ 1)/10 then bp Ω 0, decided Ω TRUE;
17 else if O

r
p < (5Nr

p ≠ 1)/10 then bp Ω 0;
18 else set bp to the output of CheapQuantumCoin(P, p) executed with

parameters d = logn, – = n
‘ ;

19 r Ω r + 1;
20 end
21 return bp ; /* p outputs final decision */

Algorithm’s analysis. To analyze the CheapQuantumConsensus algorithm we first recall
a combinations of lemmas from [8].

I Lemma 5 (Lemmas 4.1, 4.2, 4.3 in [8]). If all processes have the same value at the beginning
of an iteration of the main while loop, then the algorithm returns the decision after at most
two iterations.

I Theorem 6. For any ‘ > 0, the CheapQuantumConsensus algorithm solves Consensus
against n/3-adversary in O

1! 1
‘

"42
rounds in expectation while using O(n3‘) qubits and

communication bits per process (amortized), whp.

Proof. First, we argue for correctness. Compared to the protocol of Bar-Joseph and Ben-
Or [8], which works for an arbitrary number of failures t Æ n, we changed the method of
deriving random coin, c.f., line 18. Observe that even if CheapQuantumCoin fails to meet
conditions of t-resilient coin flip, it always outputs some bit in every non-faulty process. Thus,
regardless of the number of crashes the output could be an output of local coin flips with a
non-zero probability. Since Bar-Josephs’s and Ben-Or’s algorithm works with probability
1 (see Theorem 3 in [8]), thus CheapQuantumConsensus also achieves correctness with
probability 1.
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Next, we estimate the expected number of phases (i.e. the number of iterations of the
main while loop). We consider only good phases, i.e. phases in which the adversary crashed at
most 1

10 fraction of processes that were correct at the beginning of this iteration. Note, that
there can be at most 1

3/
1
10 < 4 ”bad” phases. Let x be the number of non-faulty processes

at the beginning of some good phase. We consider the following cases:
Case a) There exists a process that in this iteration executes line 15 or line 14. In this case,
all other processes have to execute line 14, 15 or line 18, since the number of ones counted
in di�erent processes may di�er by x

10 at most. All processes that in this iteration execute
CheapQuantumCoin will set bp to 1 with probability 1

4 at least. What follows, in the next
iteration all processes will start with bp set to 1, and by Lemma 5 the algorithms will decide
within two next phases.
Case b) There exists a process that in this phase executes line 16 or line 17. Similarly to the
previous case, we observe that all other processes have to execute line 17 or line 18, since,
again, the number of ones counted in di�erent processes may di�er by x

10 at most. Therefore
the same arguments apply but know the final decision will be 0.
Case c) None of processes executes one of lines 14, 15, 16, or 17. Thus, all processes
participated in CheapQuantumCoin in line 18. By Theorem 12, with probability at least
1
4 , all processes will set value bp to the same value. Thus, again by applying Lemma 5, we
get that the algorithms will decide within the two next phases.

We showed that if a good phase happens, then the algorithm terminates within 2 next
iterations with probability at least 1

4 . Since there can be at most 4 bad iterations, thus we can
calculate the expected number of iterations as follows: E(#iterations) =

qŒ
i=4 i

! 1
4
"i = O(1).

Executing a single phase takes O
1! 1

‘

"42
rounds, which is the round complexity of the

FastCounting algorithm and an upper bound of the time complexity of the CheapQuan-
tumCoin algorithm, therefore the algorithm terminates in O

1! 1
‘

"42
rounds in expectation.

Similarly, by taking the upper bounds on the communication complexity of the algorithms
FastCounting and CheapQuantumCoin we get that the expected number of amortized
communication bits used by the algorithm is O(n3‘). J

Handling arbitrary number of crashes. Consider O(logn) repetitions of the main loop
(phases) of the CheapQuantumConsensus algorithm. If during these phases, the processes
with value bp = 1 become a large majority (at least 6

10 fraction of alive processes), then, as
discussed before, every process will decide within the next two rounds. The same holds if
processes with value bp = 0 start to overpopulate by a ratio of 6

10 all non-faulty processes.
On the other hand, if the cardinalities of the two groups with di�erent values bp are close to
each other, then the processes execute the CheapQuantumCoin algorithm. It outputs a
random bit (the same in every participating process), under the assumption that at least a 2

3
fraction of processes that started this phase as non-faulty have not crashed during this phase.
However, in these O(logn) phases there must be at least one phase in which the property of
a 2

3 fraction of processes survive holds. In what follows, we argue that if the adversary can
crash arbitrarily many processes, but smaller than n, then the expected number of phases
should still be O(logn). Now, to obtain the algorithm stated in Theorem 4, we make two
more adjustments to the original CheapQuantumConsensus algorithm. In lines 3 and 18,
processes execute the algorithms FastCounting and CheapQuantumCoin, respectively,
with parameters x, d,– set as follows: x = 2, d = logn,– = logn. This corresponds to the use
of a sparse graph for communication (of degree roughly O(logn)). In consequence, the time
complexity of the FastCounting algorithm increases to O(log4 n), but the communication
complexity decreases to O(log8 n) amortized per process. The details of the implementation
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of the FastCounting algorithm are presented in Section 6, and performance follows from
putting the aforementioned parameters to the formulas in Theorem 14. Similarly, the
time complexity of the CheapQuantumCoin algorithm increases to O(log3 n), but the
communication complexity (both quantum and classical) decreases to O(log7 n) amortized
per process. Formally:

I Theorem 7. The modified version of the CheapQuantumConsensus algorithm solves
Consensus against any adversary in O(log5 n) rounds in expectation while using O(log8 n)
qubits and communication bits per process (amortized), whp.
Proof. For correctness, we argue exactly the same as in the proof of the previous Theorem.
We also define good and bad phases, with only this di�erence that now the number of bad
phases is at most O(logn) since the adversary has the full power of crashing an arbitrary
number of processes. This being said we get that, by the very same reasoning, the expected
number of phases is

E(ITE) =
Œÿ

i=logn

i

3
1
4

4i

= �(logn) .

By examining the time and bits complexity of the algorithms FastCounting and
CheapQuantumCoin (c.f. Theorems 14, 12) with parameters x = 2, d = logn,– = logn,
we get a single phase lasts O(log4 n) rounds and contributes O(n log7 n) bits to the total
communication complexity. The latter, after dividing by n, gives the sought complexity
amortized per process. Thus, the theorem follows. J

5 Qubit-and-Communication E�cient Quantum Common Coin

In this section, we design a new t-resilient weak global coin, for t < n, with the help of
quantum communication and computation.

On a high level, our protocol CheapQuantumCoin chooses a leader process uniformly
at random and all other processes agree on the random bit proposed by the leader. Quantum
phenomena are used to hide the random choices of the leader and its output from the adaptive
adversary when processes communicate with each other. The idea was first proposed in [9],
yet there are key di�erences between that work and our algorithm. Instead of all-to-all
communication, which required large number of qubits, we use a sequence of random graphs
of node degrees d, d–

1
, . . . , d–

k, respectively, where d,– œ �(logn) and k = Álogn/ log–Ë

are some integer parameters. The vertices of these graphs correspond to processes and edges
correspond to communication links – each process communicates with neighbors in one of
the graphs at a time. If the graph is chosen properly (i.e., so that there is no situation in
which too many processes use denser graphs), it reduces the communication complexity but
simultaneously imposes a new challenge. Mainly, the communication procedure has to now
assure the delivery of quantum bits between every two non-faulty processes regardless of
the pattern of crashes. For instance, if only one random graph of degree d was used then
the adversary could easily isolate any vertex using only O(d) crashes (i.e., by crashing all
its neighbors). Hence, strictly speaking, assuring such delivery is not possible while using a
sparse communication graph as relays, but we show that a certain majority could still come up
with a common coin value based only on their exchanges with neighbors in the communication
graphs; they could later propagate their common value to other processes by adaptively
controlling their (increasing) set of neighbors, taken from subsequent communication graphs
of increasing density. A thorough analysis shows that in this way it is possible to achieve the
same quantum properties that are guaranteed by Ben-Or’s and Hassidim’s global coin [9],
and at the same time reducing the quantum communication by a polynomial factor.
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Algorithm’s description. We now describe the CheapQuantumCoin algorithm. Its
pseudocode is presented in Figure 2. It takes as input: a process name p and two integers, d
and –. The two latter parameters are used to determine communication patterns between
non-faulty processes, and their choice determines the complexity of the algorithm.

As mentioned before, processes use the quantum equivalent of a procedure in which
processes draw random names from the range [1, . . . , n3] and decide on a random bit proposed
by the process with the largest name.7 We view the quantum part of the algorithm as a
quantum circuit on the joint space of all qubits ever used by di�erent processes. Due to the
distributed nature of the system, not all quantum operations are allowed by the quantum
circuit. That is, (i) any process can perform arbitrary unitary gates on its part of the system,
(ii) unitary gates on qubits of di�erent processes might be performed but must be preceded
by quantum communication that sends qubits involved in the operation to a single process.
The communication can be either direct or via relays. We use the following unitary gates to
simulate the classical algorithm of the leader election in the quantum distributed setting:
Hadamard gate, CNOT and Pairwise_CNOT gates, and F_CNOT and Controlled_Swap gates.
(Although they are all standard quantum gates, a thorough description of these gates can be
found in the full version.)

Let us now explain how all the gates listed above work together. As mentioned in the
description of the Hadamard gate, after line 2 ends, the main registers of the system are in
the state of being a uniform superposition of all vectors of the computational basis. Starting
from this point, the composition of all gates applied to di�erent registers along the execution
can be viewed as a single unitary gate on the entire system, consisting of the qubits that any
process ever created. Note that the unitary transformation might be di�erent depending on
the failure in communication, i.e., a failure in the delivery of some block of qubits between
two processes may result in abandoning gates involving these qubits, but for a moment
let us assume that the links are reliable. Since the unitary transformation is linear, it is
enough to consider how it a�ects the vectors of the computational basis. However, all the
gates described above behave on the computational basis as their classical equivalents. More
precisely, let |xÍ be a vector from the computational basis spanning the whole circuit. Let p
be the process whose main register has the largest8 value in the state |xÍ. From the point
of view of this register, the following happens in the algorithm. In each round, p creates
an entangled state on 6 logn + 2 qubits (see point (2)) that has the same qubits on its
new block of 3 logn+ 1 qubits as it has on the main register. Then, it propagates the new
block to its neighbors (lines 9- 12). The neighbors compare the content of received qubits
and exchange them with their main register if their content is smaller (gates F_CNOT and
Controlled_Swap in lines 16- 17). This operation is then repeated (k + 2)2(“– + 1) times
on the set of links defined by some random evolving graphs, see the later paragraph about
adaptive communication pattern. In the end, the processes who, either directly or via relays,
received the content of the largest main register, have the same value in their main register.
Therefore, the result of the measurement in line 27 must be the same in all these processes.

Assume now that we are able to achieve bidirectional quantum communication between
any pair of processes of an · fraction of the entire system, regardless of the (dynamic) actions
of the adversary, for some constant 0 Æ · Æ 1. From the above, the algorithm transforms any
vector whose largest main register is one of the registers of the · fraction of the processes to a

7 Note that the latter procedure cannot be used against an adaptive adversary, as it could crash such a
leader.

8 The probability of a tie is polynomially small.
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vector such that the processes from the · fraction have the same values in the main registers.
The initial state of the system is a uniform superposition which is a linear combination of
all vectors from the computational basis. From this perspective, the normalized sum of
coe�cients of these vectors of the superposition that have the property that the largest
register is one of the registers of the · fraction is · ≠ o(1).9 Thus, we get that the probability
of measuring the same values in the processes of the · fraction is at least · ≠ o(1) and we
can claim the following lemma.

I Lemma 8. Let A be a set of correct processes such that any pair of them was connected by
quantum communication either directly or by relays. Then the probability that all processes
from A output the same bit from the algorithm CheapQuantumConsensus is at least
|A|
n ≠ o(1).

Adaptive communication pattern. As explained, we not only need that communication
should be e�cient in terms of the number of qubits and classical bits, but also it should be
such that any two correct processes of a large fraction of the entire system are connected by
a short path of the correct process so that quantum registers can be relayed. Let d,– be
two integer parameters. We define k =

Ï
log(n/d)
log –

Ì
, “– = logn

log – , and ”– = 2
3–. Initially, each

process p draws independently k+ 1 sets Np(d),Np(d–
1), . . . ,Np(d–

k), where a set Np(d–
i),

for 0 Æ i Æ k, includes each process from P with probability d–i

n .
Communication is structured into (k + 2)2 epochs, see line 4. Each epoch consists of

2(“– + 1) communication rounds, also called testing rounds. They are scheduled in “– + 1
iterations within the loop “for” in line 7, each iteration containing two communication rounds
(underlined in the pseudocode): sending/receiving inquiries in line 9 and sending/receiving
responses in line 12. In the testing rounds of the first epoch, a process p sends inquiries
to processes in set Np(d). The inquired processes respond by sending in the next round
(line 12) their current classical state and specially prepared, in line 6, quantum register.
However, if in a result of crashes p starts receiving less than ”– responses per round, it
switches its communication neighborhood from Np(d) to the next, larger set, Np(d · –). A
similar adaptation to a crash pattern is continued in the remaining epochs.

Process p stores the cardinally of the set being inquired in an epoch in the variable
degreep (initialized to d in line 2). For the purpose of testing rounds, p copies the value
degreep to a variable adaptive_degreep (line 6). In every testing round, p adapts its
variable adaptive_degreep to the largest value x Æ adaptive_degreep such that it received
at least ”a responses from processes that have their variable adaptive_degree at least x

(loop “while” in line 19). If p had to decrease the value adaptive_degreep in testing rounds
of an epoch, it then increases the main variable degreep by the factor – before the next
epoch, see line 24. The latter operation formally encodes the intuition that the process p
expected to have ”– non-faulty neighbors with their values of degree at least as big as its
own, but due to crashes it did not happen; Therefore, p increases the number of inquired
processes, by adopting the next, larger neighborhood set Np(·), randomly selected, in order
to increase the chance of communication with the majority of non-faulty processes in the
next epoch. On the other hand, the adaptive procedure of reducing adaptive_degree in
testing rounds of a single epoch helps neighbors of p to estimate correctly the size of the

9 The o(1) part contributes to the normalized sum of these vectors that correspond to having more than
one largest register.
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Algorithm 2 CheapQuantumCoin for process p.
input: p, two parameters: d,–

1 For 0 Æ i Æ
' log(n/d)

log –

(
: Np(d–i) Ω a set of processes such that each process is chosen

independently with probability d–i

n ;
2 degreep Ω d, “– Ω logn

log – , ”– Ω 2
3 logn ;

3 |LeaderÍp |CoinÍp Ω H¢3 logn+1 |00 . . . 0Í (a gate on 3 logn+ 1 qubits) ;
4 for i = 1 to (k + 2)2 ; /* iter. of epochs */

5 do
6 adaptive_degree Ω degreep ;
7 for j = 1 to “– + 1 ; /* iter. of testing rounds */

8 do
9 send to each process in Np(degreep): an inquire bit 1 ;

10 I Ω the set of processes who sent an inquire bit to p ;
11 ’qœI : |BÍq Ω Pairwise_CNOT

!
|LeaderCoinÍp , |0 . . . 0Í

"
;

12 send to each process q œ I: a quantum message containing first 3 logn+1 bits of |BqÍ,
and a classical message containing adaptive_degreep ;

13 R Ω the set of processes who responded to p’s inquires ;
14 foreach q œ R do
15 |CLeaderÍq |CCoinÍq Ω received quantum bits from q, |SÍ Ω |0Í;
16 F_CNOT|LeaderÍp>|CLeaderÍq

!
|LeaderÍp , |CLeaderÍq , |SÍ

"
;

17 Controlled_Swap

!
|LeaderCoinÍp , |CLeaderCCoinÍq , |SÍ

"
;

18 end

19 while |{q œ R : adaptive_degreeq Ø adaptive_degreep}| < ”– and
adaptive_degreep Ø d ; /* adapting #neighbors during testing */

20 do
21 adaptive_degreep Ω 1

–adaptive_degreep ;
22 end
23 end
24 if adaptive_degreep < degreep then
25 degreep Ω min{degreep · –, d–k} ; /* neighborhood for next epoch grows */

26 end
27 bp Ω be the last bit of the result of measuring |LeaderÍp |CoinÍp in the computational basis;
28 return bp ; /* p outputs random bit */

neighborhood that process p is using in the current testing round, which might be much
smaller than the value degreep from the beginning of the epoch. This, in turn, calibrate the
value of adaptive_degree of the neighbors of p, and this calibration can propagate to other
processes of distance up to “– from p in the next iterations of testing rounds.

Analysis. Let us define graphs G(d–
i), for 0 Æ i Æ k, as the union of random sets

fipœPNp(d–
i). The probability distribution of the graph G(d–

i) is the same as the ran-
dom graph G(n, y) for y = d–i

n . Chlebus, Kowalski and Strojnowski [12] showed in their
Theorem 2, applied for k = 64n

d–i≠1 , that the graph G(d–
i) has the following properties, whp:

(i) it is ( n
d–i≠1 )-expanding, which follows from ( n

d–i≠1 ,
2
3

n
d–i≠2 ,

4
3

n
d–i≠2 )-edge-expanding

property,
(ii) it is ( n

d–i≠1 ,
1
3–,

2
3–)-edge-dense,

(iii) it is (16 n
d–i≠1 , 3/4, 2

3–)-compact,
(iv) the degree of each node is at most 21

20d–
i.
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Since the variable degreep takes values in the set {d, d–
1
, . . . , d–

k
}, the pigeonhole

principle assures that eventually p will participate in an epoch in which degreep has not
been increased. In the most severe scenario, p will use the set Np(d–

k), which consists of all
other processes – because it contains each process, as a neighbor of p, with probability 1.
The (“–, ”–)-dense-neighborhood property of random graphs composed from neighborhoods
N (degreep) implies that p will then contact a majority of other non-faulty processes via at
most “– + 1 intermediate processes (during testing rounds). Formally, the following holds:

I Lemma 9. If a process p does not change its variable degreep at the end of an epoch i,
then at the beginning of epoch i there exists a (“–, ”–)-dense-neighborhood of p in the graph
G(degreep) consisting of non-faulty processes with variable degree being at least degreep in
the epoch i, whp.

On the other hand, (16n/d–
i≠1

, 3/4, 2–/3)-compactness of the (random) graph composed
of processes that have the variable degree at least d–

i, guarantees that the total number
of processes that use sets N (d–

i) during the epoch i is at most n
–i≠2 , which amortizes

communication complexity.

I Lemma 10. For any integer i, such that 0 Æ i Æ k, at the beginning of each epoch there is
at most 16n

d–i≠2 processes with the variable degree greater than d–
i, whp.

In the above proof of Lemma 10, we use the fact that a suitable set C of processes that
have been correct throughout the whole epoch exists. We may choose this set and argue
about it after the epoch, as the communication pattern in the algorithm is deterministic.
Hence, in any round of the epoch, processes in C have at least as many non-faulty neighbors
in the communication graph as they have neighbors from set C. We use this number of
neighbors in C as a lower bound to argue about the behavior of variables degree; therefore,
our arguments do not depend on the behavior of processes outside of C and whether/when
some of them fail during the epoch.

I Lemma 11. Any two non-faulty processes p and q were connected by a quantum path of
communication during the run of the algorithm.

The above lemmas yield the following result.

I Theorem 12. For two integer parameters d,– œ �(logn), the algorithm QuantumCoin-
Flip generates a weak global coin, provided that at most 1

3 -fraction of initially non-faulty
processes have crashed. It terminates in O

1! logn
log –

"32
rounds and with high probability uses

O

1! logn
log –

"4
d–

2 logn
2
both quantum and classical communication bits (amortized) per process.

Proof of Theorem 12. Let H ™ P be the set of initially non-faulty processes. Assume
that at least 2

3 |H| of them remains non-faulty during the execution of the algorithm. By
Lemma 11, any pair of processes from H is connected by quantum communication, therefore
applying Lemma 8 to this set, give that there is at least 2

3 ≠ o(1) (which is greater than 1
2

for su�ciently large n) probability that all non-faulty processes return the same output bit.
Since 0 and 1 are equally likely, thus the probabilistic guarantee on the weak global coin
follows.

The number of rounds is deterministic and upper bounded by O(k2 · “–) =
O

1! log(n/d)
log –

"2 logn
log –

2
= O

1! logn
log –

"32
. To bound the communication complexity, assume that

each graph G(d–
i), for 0 Æ i Æ k, satisfies the desired expanding properties listed in the

description of the algorithm. This, by the union bound argument, holds whp. By Lemma 10

ICALP 2024
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at the beginning of each epoch there are at most 16n
d–i≠2 processes that inquire more than

d–
i other processes in testing rounds of this epoch, for each 0 Æ i Æ k. Since each message

uses at most O(logn) bits and qubits, thus a single testing round in an epoch adds at mostqk
i=0

16n
d–i≠2 ·d–

i
Æ 16kd–

2
·n logn qubits and bits to communication complexity. Since there

is exactly O

1! logn
log –

"32
testing rounds, thus the O

1! logn
log –

"4
d–

2
· n logn

2
upper bound on the

total communication complexity of the algorithm follows. Dividing the latter by n we receive
amortized formula per process. J

6 Constant-Time Communication-E�cient Fuzzy Counting

Although generating a weak global coin in a constant number of rounds against an adaptive
adversary requires quantum communication (due to the lower bound by Ben-Or and Bar-
Joseph [7]), the CheapQuantumCoin algorithm, even without quantum communication,
achieves few other goals. As discussed in the previous section, its random communication
pattern guarantees, whp, that any additional classical message, also called a rumor, of a
non-faulty process can be conveyed to any other non-faulty process if added to every classical
message sent/received in line 12. Even more, assume that there is a set of x messages/rumors
M = {m1, . . . ,mx}, distributed as inputs among some subset of processes (one message
from M per process). If processes always convey all the known rumors from set M when
using classical communication (avoiding repetition), then they solve a Gossip problem, whp,
i.e., every rumor mi given to a non-faulty process, for 1 Æ i Æ x, is known at the end
of the protocol to every other non-faulty process. Observe that processes resign from the
quantum content of communication for this purpose, and instead of logn bits (or qubits)
per message, they use |M | bits, where |M | denotes the number of bits needed to encode all
rumors from M . Finally, if processes work in a model where the names of other processes
are commonly known, they can withdraw from using random communication. Instead, they
can use a deterministic family of graphs G(d–

i), for the same choice of parameters d and
–. The proof of existence of such graphs, using the probabilistic argument, was described
in [12] (Theorem 2). In such case, the set Np(d–

i) is the neighborhood of process p in the
deterministic graph G(d–

i). (Processes compute the same copies of graphs G locally in the
beginning of the algorithm.) The above augmentation of the algorithm, together with the
proof of Theorem 12, from which we take the upper bound on the number of messages send
and the upper bound on the number of rounds, gives:

I Theorem 13. For integer parameters d,– œ �(logn), there is a deterministic algorithm
that solves the gossip problem in O

31
logn
log –

23
4

rounds using O
31

logn
log –

24
d–

2
· (|M |+ logn)

4

communication bits per process (amortized), where |M | is the number of bits needed to encode
all rumors in M .

Generalized Fuzzy Counting. In this part, we refine the state-of-art method of solving
the Fuzzy Counting problem (c.f. Definition 3), even deterministically, and propose a new
recursive algorithm with any branching factor x, called FastCounting. We prove the
following:

I Theorem 14. For any 2 Æ x Æ n and ”,– œ �(n), the FastCounting determ-
inistic algorithm solves the Fuzzy Counting problem in O

1
logn
log x

! logn
log –

"32
rounds, using

O

1
logn
log x

! logn
log –

"4
d–

2
· x logn

2
communication bits (amortized) per process.
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Obviously, the constant-time is achieved in Theorem 14 when x,– = n
‘, for a constant

‘ œ (0, 1). In this case, the number of rounds is O

1! 1
‘

"42
, while the communication

complexity is O(n3‘ log2 n) (amortized) per process. In our approach, we generalize the
method of Hajiaghayi et al. [23] to denser communication graphs of certain properties, which
allows us to achieve constant running time. The constant running time is the key feature of
the algorithm, since it is used in the implementation of (expected) constant-round quantum
consensus protocol CheapQuantumConsensus. The main di�erence between ours and the
state-of-art approach is a di�erent Gossip protocol used in the divide-and-conquer method.

The FastCounting algorithm is recurrent. It takes as an input the following values: P
is the set of processes on which the algorithm is executed; p is the name of a process which
executes the algorithm; ap œ {0, 1} denotes if p is active (ap = 1) or not; and parameters
x, d,–, where x is the branching factor and d,– steer the density of the communication
graph in the execution. Knowing the set P of n processes, FastCounting splits the set
into x disjoint groups of processes, each of size between

%
n
x

&
and

'
n
x

(
. Name these groups

P1, . . . ,Px. The groups are known to each participating process. The algorithm then makes
x parallel recursive calls on each of these groups. As a result, a process p from a group
Pi, for 1 Æ i Æ x, gets the number of the active processes in its group Pi. In the merging
step, all processes execute Gossip algorithm, proposed in Theorem 13, with parameters
d,–, where the input rumors are the numbers calculated in the recursive calls. To keep the
communication small, when processes learn new rumors they always store at most one rumor
corresponding to each of the x groups. This way, the number of bits needed to encode all
rumors is O(x logn). Let r1, . . . , r¸ be the rumors learned by process p from the execution
of the Gossip algorithm. The final output of p is the sum

q¸
i=1 ri. The pseudocode of the

algorithm can be found in the full version.

7 Future Work

We believe that the outcome of our work e�ectively establishes the foundation for the e�cient
integration of classical fault-tolerant distributed and quantum computing. We show that
in the basic model of failures, crash failures, a fundamental problem of reaching consensus
fast is feasible with only polylog n qubit communication. An immediate open question
arises whether such performance improvement is possible in the case of more severe failures,
such as omissions, authenticated Byzantine, or even full Byzantine. Another interesting
idea is to approach the communication bound from the lower bound side. We believe that
investigating even conditional lower bounds on the minimal quantum communication needed
to solve various distributed problems, foremost the Consensus problem, could lead to many
breakthroughs in both distributed and quantum realms.
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Abstract
In the classical prophet inequality setting, a gambler is given a sequence of n random variables
X1, . . . , Xn, taken from known distributions, observes their values in adversarial order and selects
one of them, immediately after it is being observed, aiming to select a value that is as high as
possible. The classical prophet inequality shows a strategy that guarantees a value at least half of
the value of an omniscience prophet that always picks the maximum, and this ratio is optimal.

Here, we generalize the prophet inequality, allowing the gambler some additional information
about the future that is otherwise privy only to the prophet. Specifically, at any point in the process,
the gambler is allowed to query an oracle O. The oracle responds with a single bit answer: YES
if the current realization is greater than the remaining realizations, and NO otherwise. We show
that the oracle model with m oracle calls is equivalent to the Top-1-of-(m+ 1) model when the
objective is maximizing the probability of selecting the maximum. This equivalence fails to hold
when the objective is maximizing the competitive ratio, but we still show that any algorithm for the
oracle model implies an equivalent competitive ratio for the Top-1-of-(m+ 1) model.

We resolve the oracle model for any m, giving tight lower and upper bound on the best possible
competitive ratio compared to an almighty adversary. As a consequence, we provide new results as
well as improvements on known results for the Top-1-of-m model.
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1 Introduction

The field of optimal stopping theory concerns optimization settings where one makes decisions
in a sequential manner, given imperfect information about the future, in a bid to maximize
a reward or minimize a cost. A canonical setting in this area is the prophet inequality
[18, 19]. In these settings, a gambler is presented with rewards X1, . . . ,Xn, one after the
other, drawn independently from known distributions. Upon seeing a reward Xi, the gambler
must immediately make an irrevocable decision to either accept Xi, in which case the process
ends, or to reject Xi and continue, losing the option to select Xi in the future. The goal of
the gambler is to maximize the selected reward comparing against a prophet who knows all
realizations in advance and selects the maximum realized reward. Throughout, we assume,
without loss of generality, that X1, . . . ,Xn are continuous random variables.
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The performance of the gambler can be measured in terms of several objectives. A
common metric used in the literature is the competitive ratio, which is also known as the
Ratio of Expectations (RoE) (see Definition 1.1). Another common distinction is between the
case in which the given distributions are di�erent and the case in which they are identical.
For the former, Krengel et al. [18, 19] showed an optimal strategy that is 1/2-competitive.
In this setting, the optimal competitive ratio can be achieved by simple, single-threshold
algorithms [21, 17]. For IID and non-IID random variables, Hill and Kertz [15] initially gave
a (1 ≠ 1/e)-competitive algorithm. This was improved to ¥ 0.738 [1] and later ¥ 0.745 [7],
which is tight, due to a matching upper bound [15, 16].

Another relevant metric, introduced by Gilbert and Mosteller [12] for IID random vari-
ables, is that of maximizing the Probability of selecting the Maximum realization (Pmax) -
see Definition 1.2. For this objective and IID random variables, Gilbert and Mosteller [12]
gave an algorithm that achieves a probability of ¥ 0.58, which is the best possible. Later,
Esfandiari, Hajiaghayi, Lucier and Mitzenmacher [9] studied the same objective for general
random variables, obtaining a tight probability equal to 1/e when the random variables arrive
in adversarial order and 0.517 when the random variables arrive in random order. The latter
case was recently improved to the tight ¥ 0.58 by Nuti [20], showing that the IID setting is
not easier than the non-IID setting with random order. In this paper, we introduce a new
model as a means to study variations of both the IID and the general settings, for both the
RoE and Pmax objectives.

A setting that is related to ours is the Top-1-of-m model, formally introduced by Assaf
and Samuel-Cahn [3] for IID random variables, although it had been studied initially by
Gilbert and Mosteller [12]. In this setting, the algorithm is allowed to select m Ø 1 values,
but the value it gets judged by is the maximum selected value. Gilbert and Mosteller
[12] gave numerical approximations of the Pmax objective for 2 Æ m Æ 10, using a simple,
single-threshold algorithm. Later, Assaf and Samuel-Cahn [3] studied the RoE objective for
general distributions and gave an elegant and simple (1 ≠ 1/m+1)-competitive algorithm. This
was improved [2] by bounding the competitive ratio of the optimal algorithm by a recursive
di�erential equation. They gave numerical approximations for 2 Æ m Æ 5, but studying the
asymptotic nature of the constants for large m turned out to be di�cult. Ezra et al. [11] later
revisited the problem and gave a new algorithm for large m that is 1≠O

!
e≠m/6

"
-competitive

for the same problem. This improves the error term from [2] from linear in m to exponential
in m. Harb [14] recently improved this into a 1 ≠ e

≠mW0
! mÔ

m!
m

"
-competitive algorithm,

where W0 is the Lambert-W function1, and improved the lower bound for m = 2 separately.
However, the asymptotic nature of this function is di�cult to analyze.

Model

We introduce a new model that generalizes the standard prophet inequality setting, and
analyze it as a means to obtain new results and improvements in the Top-1-of-m model. Our
model allows the algorithm some information about the future that is otherwise privy only to
the prophet. Specifically, at any point in the process, upon seeing a reward Xi, the algorithm
is allowed to query an oracle O. The oracle O responds with a single bit answer: YES if
the current realization is larger than the remaining realizations, i.e., Xi > maxnj=i+1 Xj and
NO otherwise. In other words, the oracle O informs the algorithm it should select Xi, or
reject it, because there is a reward coming up that is at least as good. Clearly, with no

1 The Lambert-W function is W0(x) defined as the solution y to the equation yey = x.
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queries available, one recovers the classical prophet inequality setting, whereas with n ≠ 1
queries, the strategy of using a query on every Xi, for i = 1, . . . , n≠ 1, leads to the algorithm
selecting the highest realization always. Thus, this model interpolates nicely between the
two extremes of full or no information about the future.

In this paper, we consider the following di�erent settings.

I Definition 1.1 (Competitive Ratio). The competitive ratio or Ratio of Expectations is
denoted by RoE. Specifically, for an instance I of a prophet inequality setting, we denote
by RoE(x, I) the competitive ratio of an optimal algorithm for I. An algorithm ALG is
–-competitive, for – œ [0, 1], if E[ALG] Ø – · E[maxi Xi], and – is called the competitive
ratio.

I Definition 1.2 (Probability of Selecting the Maximum). The Probability of selecting the
Maximum realization is denoted by Pmax. An algorithm ALG achieves a Pmax of – if it
returns a value v such that P[v = Z] Ø –, where Z = max {X1, . . . ,Xn}. In some works (for
example [12]), the notation PbM has also been used.

I Definition 1.3 (IID Setting). We use the term IID to refer to the setting where X1, . . . ,Xn

are independent and identically distributed random variables. We use non-IID to refer to the
more general setting where X1, . . . ,Xn are independent, but not necessarily identical.

I Definition 1.4 (Prophm). We use Prophm to refer to the Top-1-of-m model, in which
the algorithm can choose up to m values, and its payo� is the maximum of the chosen values.
We use Om refers to our oracle model where the algorithm has access to m oracle calls, and
can only select one value.

Note that the model Prophm+1 is comparable to Om, since in the former the algorithm
can choose m+ 1 values, where as the later can ask the oracle m times and then choose an
item. To help distinguish between the di�erent settings, we denote each model as M(x, y, z),
where

x is either Prophm or Om with m œ N,
y is either IID or non-IID, and
z is either Pmax or RoE.

Our Contributions
In this paper, we study the oracle model for independent random variables following identical
or general distributions with the Pmax and RoE objectives and make the following contribu-
tions:

(I) We establish an equivalence between the oracle model and the Top-1-of-m model for
the Pmax objective.

(II) We show that this equivalence fails to hold for the RoE objective. However, we show
that guarantees for RoE in the oracle model translate to guarantees in the Top-1-of-m
model, thus further motivating our study of the oracle model.

(III) We resolve the oracle model M(Om, non-IID,RoE) by presenting a single-threshold
algorithm. Our algorithm achieves a competitive ratio of 1 ≠ e≠›m = 1 ≠ Oe≠m/e

for general m, where ›m is the unique positive solution2 to the equation 1 ≠ e≠›m =

2 In Section 3, we prove that there is indeed a unique positive solution.
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�(m+1,›m)
m!

3. Furthermore, we show that this lower bound is optimal by showing a
construction that yields an equal upper bound. Since we showed that lower bound
guarantees for M(Om, non-IID,RoE) also hold for the M(Prophm+1, non-IID,RoE)
setting, this strictly improves the current state of the art bounds of [14], even though
the guarantees are obtained in the weaker oracle model.

(IV) We give a single-threshold algorithm for the M(Om, IID,Pmax) model that achieves a
1 ≠ O(m≠m/5) probability of selecting the maximum, as well as providing an upper
bound that is asymptotically (almost) tight. To the best of our knowledge, this is
the first result for the Pmax objective and general m in the well studied Top-1-of-m
model. Our algorithm achieves a probability of ¥ 0.797 even with m = 1 calls to the
oracle, a significant improvement on the ¥ 0.58 achieved without oracle calls [12].

As discussed earlier, the main motivation behind our oracle model comes from our first two
results which relate it to the Top-1-of-m model.

Equivalence of Models for Pmax

I Theorem 1.5. The M(Om, y,Pmax) model is equivalent to the M(Prophm+1, y,Pmax)
model, where y = IID or non-IID. In other words, for every prophet inequality instance, the
probability achieved by the best-possible algorithm in the M(Om, y,Pmax) model is the same
as the one achieved by the best-possible algorithm in the M(Prophm+1, y,Pmax) model.

In Section 2 and Theorem 1.5, we establish the equivalence between the M(Om, y,Pmax)
and M(Prophm+1, y,Pmax) models, for y = IID or non-IID. In other words, the best
algorithms in these models achieve the same probability of selecting the maximum.

This result might not seem that surprising due to the apparent similarity of the two
models. However, thinking about the Top-1-of-m setting from the viewpoint of oracle calls
allows for a di�erent perspective that we exploit in our analysis. Furthermore, such intuition
can sometimes be wrong, as our next result shows.

Di�erence of Models for RoE

I Theorem 1.6. For every m Ø 1, and for all input instances J (of IID or non-IID

variables), we have RoE(Om,J ) Æ RoE(Prophm+1,J ), Furthermore, for every m Ø 1, there
exists an input instance I with m + 2 non-IID random variables, such that RoE(Om, I) Æ

(1 ≠ 1/2m+1)RoE(Proph2, I).

Perhaps more surprisingly, our oracle model and the Top-1-of-m model stop being
equivalent when one considers the RoE objective, with the oracle model being strictly weaker.

In Section 2, we show Theorem 1.6, which gives a prophet inequality instance, and an al-
gorithm A for M(Prophm+1, non-IID,RoE), such that no algorithm for M(Om, non-IID,RoE)
can achieve the same competitive ratio as that of A. Furthermore, we show that any algorithm
for M(Om, y,RoE) can be modified to an algorithm for M(Prophm+1, y,RoE) that achieves
an equal or greater competitive ratio.

Bounding the Performance of the Oracle Model

I Theorem 1.7. For every m Ø 1, let –m = 1 ≠ e≠›m , where ›m is the unique positive
solution to the equation 1≠e≠›m = �(m+1,›m)

m! . For any finite sequence X of non-IID variables,
one can compute a value · , such that the single-threshold algorithm (with initial threshold ·)
has competitive ratio Ø –m.

3 �(n, x) =
s Œ
x

tn≠1e≠t dt denotes the upper incomplete gamma function.
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m 1 ≠ e≠›m m 1 ≠ e≠›m

1 0.682 9 0.986
2 0.791 10 0.990
3 0.861 11 0.993
4 0.907 12 0.995
5 0.937 13 0.997
6 0.957 14 0.998
7 0.971 15 0.998
8 0.980

Figure 1.1 The value of 1 ≠ e≠›m , for m = 1, . . . , 15.

After establishing the relationship between our oracle model and the Top-1-of-m model,
we turn our attention to upper and lower bounds for the oracle model. First, for the
non-IID setting and the RoE objective, we present a simple, single-threshold algorithm
achieving a competitive ratio that approaches 1 exponentially fast with respect to m. Even
though our algorithm is for the oracle model, for which weaker guarantees are expected due
to Theorem 1.6, it improves upon the best-known guarantee for the Top-1-of-m setting,
due to Harb [14]. Our algorithm relies on two techniques; sharding and Poissonization,
introduced by [14] for the analysis of threshold-based algorithms for prophet inequalities. As
an added benefit, the algorithm’s analysis is easy to understand.

Specifically, in Section 3, Theorem 1.7, we show that there is a constant ›m, such that for
the oracle model M(Om, non-IID,RoE), there exists an algorithm with competitive ratio at
least 1 ≠ e≠›m . As m æ +Œ, this behaves as 1 ≠ e≠m/e+o(m). The competitive ratio plot for
m = 1, . . . 15 is shown in Figure 1.1.

Matching Upper Bound

I Theorem 1.8. For any m Ø 1 and ” > 0, there exists an input instance I such that for
any algorithm, we have RoE(A) Æ 1 ≠ e≠›m + ”.

In addition, we provide a construction for every m that gives a matching upper bound
to the competitive ratio, thus resolving the problem for the case of general distributions
and the RoE objective. The construction we have is perhaps of independent interest in
the design of counterexamples for other settings, as it combines and generalizes standard
counterexamples of prophet inequalities.

In Section 3 and Theorem 1.8, we show that for any ” > 0, there exists an instance
of M(Om, non-IID, z), where z = RoE or Pmax, in which no single-threshold algorithm can
achieve a

!
1 ≠ e≠›m + ”

"
-competitive ratio or select the maximum realization with probability

at least
!
1 ≠ e≠›m + ”

"
.

Intuitively, the above follows since an algorithm for the oracle model performs poorly
when, every time it uses an oracle call and gets a YES answer, the next value it sees that is
at least the queried value is roughly equal, and thus the oracle call was used without any real
gain. The idea behind the worst-case for this setting is to have what is essentially a Poisson
random variable with rate ›m, providing the algorithm with several non-zero values, each
roughly the same. By carefully selecting ›m in order to equate the probability of having no
non-zero values and the probability of having more than m non-zero values, we are forcing
the algorithm to use a query for every non-zero realization, thus rendering the oracle calls as
useless as possible.
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Model Lower Bound Upper Bound
Prev. Best Current Best Prev. Current Best

RoE, General Setting 1 ≠ O
!
e≠m/6

"
[11] 1 ≠ e≠m/e+o(m) - 1 ≠ e≠m/e+o(m)

single-threshold

Pmax, IID Setting ¥ 0.58 [12] ¥ 0.797 (m = 1)
1 ≠ O

!
m≠m/5

" - 1 ≠ O
!
m≠m

"

Figure 1.2 State of the art.

The IID Setting

I Theorem 1.9 (see [13] for proof). For su�ciently large m,n, there exists an algorithm for
the M(Om, IID,Pmax) model that selects the maximum realization with probability at least
1 ≠ O

!
m≠m/5

"
.

Next, we turn our attention to the IID setting with m oracles calls and the Pmax objective.
We present a simple, single-threshold algorithm that selects the maximum realization with
probability that approaches 1 in a super-exponential fashion. As a warm-up, we first present
the analysis for m = 1 before generalizing it to all m.

Specifically, in Section 4, Theorem 1.9, we show that for M(Om, IID,Pmax), one can select
the maximum realization with probability at least 1 ≠ O

!
m≠m/5

"
.

I Theorem 1.10 (see [13] for proof). There exists an instance of M(Om, IID,Pmax) for which
no algorithm can select the maximum realization with probability greater than 1 ≠ O(m≠m).

We also present, in Section 4, Theorem 1.10, an upper bound on the probability of success
that is asymptotically tight, up to small multiplicative constants in the exponent. Because
of Theorem 1.5, both upper and lower bounds on the probability of success carry over in the
Top-1-of-m settings as well. Figure 1.2 contains a summary of our results for the oracle
model in the di�erent settings.

1.1 Additional related work

We have already mentioned the works of Gilbert and Mosteller [12], Esfandiari, Hajiaghayi,
Lucier and Mitzenmacher [9] and Nuti [20] for the Pmax objective. Related work includes
the study of order-aware algorithms by Ezra, Feldman et al. [10], algorithms with fairness
guarantees by Correa et al. [6] and algorithms with a-priori information of some of the
values by Correa et al. [4]. In addition to these, Esfandiari et al. [9] study a related but
distinct variant to ours. They relax the objective to allow the return of one out of the top
k realizations, and show exponential upper and lower bounds. Their model, however, is
incomparable to ours.

Organization

In Section 2 we relate our model to Top-1-of-m model of Assaf and Samuel-Cahn [3]
and prove the reductions. In Section 3 we present our tight algorithm for the non-IID

setting. Section 4 contains our algorithms and upper bounds for the IID setting. Due to
space constraints, some of the proofs as well as background information on concentration
inequalities that we use for our results can be found in the full version [13].
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2 Reductions

To motivate our oracle model, we start by establishing an equivalence betweenM(Om, y,Pmax)
and M(Prophm+1, y,Pmax), for both the y = IID and y = non-IID case (see Theorem
1.5 below). We also show that, perhaps surprisingly, this equivalence does not hold for
the RoE objective; lower bound guarantees for M(Om, y,RoE) translate to guarantees for
M(Prophm+1, y,RoE) (Theorem 1.6), but not the converse. Later, we use this result to
improve the best-known lower bound guarantees on M(Prophm+1, y,RoE).

2.1 The Pmax objective

I Lemma 2.1. Fix an instance of the prophet problem. Let A be an algorithm for this
instance in M(Om, y,Pmax), where y = IID or non-IID. Then, there exists an algorithm
B for tor this instance in M(Prophm+1, y,Pmax), with black-box access to A, such that
Pmax(B) Ø Pmax(A).

Proof. The idea is for B to simulate A’s behavior by selecting each realization that A decides
to query. Initially, B starts with an empty set S of selected values. Whenever B is presented
with a realization Xi, it feeds it to A. If A decides to select Xi or expend a query for Xi,
regardless of the outcome of the query, B always selects Xi into S, otherwise B decides not
to select Xi. By induction, S contains exactly all the realizations that were queried by A

as well as at most one more realization that might have been selected by A if it run out of
queries. Therefore, |S| Æ m+ 1.

Observe that A succeeds if and only if it selects the maximum, and it only selects a
realization Xi if (i) it chose to expend a query on Xi, or (ii) when it observed Xi it run
out of queries. In both cases, by the description of B, we know that Xi œ S, and thus the
probability that B succeeds is at least Pmax(A). J

I Lemma 2.2 (see [13] for proof). Fix an input instance of the prophet problem. Fix an
algorithm B for M(Prophm+1, y,Pmax), where y = IID or non-IID. Then, there exists an
algorithm A for M(Om, y,Pmax), with black-box access to B, such that such that Pmax(A) Ø

Pmax(B).

Combining the above two lemmas, we get the following result.

I Theorem 1.5. The M(Om, y,Pmax) model is equivalent to the M(Prophm+1, y,Pmax)
model, where y = IID or non-IID. In other words, for every prophet inequality instance, the
probability achieved by the best-possible algorithm in the M(Om, y,Pmax) model is the same
as the one achieved by the best-possible algorithm in the M(Prophm+1, y,Pmax) model.

2.2 For the RoE objective Om Æ Prophm+1

We demonstrate that the Prophm model strictly surpasses the Om for non-IID random
variables.

I Definition 2.3. For two integers i Æ j, let Ji : jK = {i, i+ 1, . . . , j}.

I Lemma 2.4. For m = 1, there exists an input instance I with 3 non-IID random variables,
such that RoE(O1, I) Æ

3
4RoE(Proph2, I).
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Proof. For a fixed Á > 0, consider the input instance I of three independent random variables
X1, X2, X3, where

X1 = 1 w.p. 1, X2 =
I
1 + Á w.p. 1

2 ≠ Á

0 otherwise
, and X3 =

I
1
Á w.p. Á

0 otherwise
.

We have that

E
Ë
max {X1, X2, X3}

È
= 1

Á
Á + (1 + Á)(1 ≠ Á)

3
1
2 ≠ Á

4
+ 1(1 ≠ Á)

3
1
2 + Á

4
= 2 ≠ O(Á).

For small Á, an algorithm B that is optimal for the Proph2 model in this instance is to select
X1, ignore X2 and then select X3 if it is non-zero. This yields

E[B] = 1(1 ≠ Á) + 1/Á · Á = 2 ≠ Á.

However, the optimal A for the oracle model queries O at X1. With probability
(1 ≠ Á)(1/2 + Á), it stops and select X1, getting a value of 1. Otherwise, it continues, with no
oracle calls left. It ignores X2 and select X3. Thus,

E[A] = 1
3
1
2 + Á

4
(1 ≠ Á) + 1

Á
Á = 3

2 + Á

2 ≠ Á2.

The competitive ratios of A is RoE(O1, I) =
3
2 + Á

2 ≠ Á2

2 ≠ O(Á) = 3
4 +O(Á) æ

3
4 , as Á æ 0, whereas

the competitive ratio of B, as Á æ 0, is

RoE(Proph2, I) =
2 ≠ Á

2 +O(Á) = 1 ≠ O(Á) æ 1. J

The above example, appropriately generalized for m > 1 by having random variables

X1 = 1 w.p. 1, Xi =
I
1 + (i ≠ 1)Á w.p. 1

2 ≠ Á

0 w.p. 1
2 + Á

, for i = 2, . . . ,m+ 1, and

Xm+2 =
I

1
Á w.p. Á

0 w.p. 1 ≠ Á
,

shows that the gap between RoE(Om, I)) and RoE(Prophm+1, I)) is at most 1≠ 1/2m+1 for
general m. The analysis of this example for general m is similar to the m = 1 case. We do
not present it here as, even though this example is very simple, this gap is not the tightest
possible. For a tighter gap between the competitive ratio of the two models, see the example
in the proof of Theorem 1.8.

I Lemma 2.5. For any input instance I, we have RoE(Prophm+1, I) Ø RoE(Om, I), for
IID or non-IID variables.

Proof. Let A be the algorithm in M(Om,RoE, I) realizing the maximum RoE for I. We
construct an algorithm B œ M(Om,RoE, I).

The algorithm B simulates A’s behavior by selecting each realization that A decides to
query. Initially, B starts with an empty set S. Whenever B is presented with a realization Xi,
it feeds it to A. If A decides to return Xi, or performs an oracle query for Xi, the algorithm
B adds Xi to S.
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Observe that the algorithm A stops as soon as an oracle query returns NO. Thus, the
simulation B of A, assumes the oracle always answers YES (i.e., a larger value is coming up
in the future). (i.e., the simulation replaces a call to the oracle by a function that always
returns YES), as this enables it (potentially) to save more values into the available slots, thus
increasing its RoE.

The set S contains exactly all the realizations that were queried by A, as well as at most
one additional realization returned by A. Therefore, |S| Æ m+ 1.

Every possible sequence of realizationsA queried (or selected to return) are in S. Therefore,
if VA is the value returned by A and VB is the value returned by B, we have VB Ø VA, which
readily implies that RoE(B) Ø RoE(A). J

I Theorem 1.6. For every m Ø 1, and for all input instances J (of IID or non-IID

variables), we have RoE(Om,J ) Æ RoE(Prophm+1,J ), Furthermore, for every m Ø 1, there
exists an input instance I with m + 2 non-IID random variables, such that RoE(Om, I) Æ

(1 ≠ 1/2m+1)RoE(Proph2, I).

3 The non-IID settings

By Theorem 1.6, any guarantees we provide for the oracle model with the RoE objective
can be directly translated to guarantees for the Top-1-of-m model, improving upon the
previous work on this model [3, 2, 11, 14]. We provide a simple, single-threshold algorithm
that resolves the RoE objective in the oracle model.

3.1 The exponent sequence
I Definition 3.1 (Exponent Sequence). For every m Ø 1, let ›m denote the unique positive
solution to the following equation:

1 ≠ e≠›m = �(m+ 1, ›m)
m! ,

where �(m+ 1, x) =
s Œ
t=x t

me≠t dt denotes the upper incomplete gamma function. We call
the sequence {›m}mœN the exponent sequence.

We show below that the optimal competitive ratio of M(Om, non-IID,RoE) is exactly 1≠e≠›m .
It is known that, for x Ø 0 and an integer m+ 1 > 0, we have

�(m+ 1, x) = m! e≠x
mÿ

k=0

xk

k! Æ m!e≠xex Æ m!. (3.1)

As such, the above equation on the value of ›m, becomes

1 ≠ e≠›m = e≠›m

mÿ

k=0

(›m)k

k! ≈∆

Œÿ

k=m+1

(›m)k

k! = 1.

This readily implies that the exponent sequence is monotonically increasing, and m/e2 Æ

›m Æ m.

I Definition 3.2. Let qk+1(x) = �(k+1,x)
k! = e≠x

qk
j=0

xj

j! . This implies qm+1(›m) = 1≠e≠›m .

I Lemma 3.3. q
Õ
m+1(x) = ≠e≠x xm

m! .
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Proof. As (e≠x)Õ = ≠e≠x, we have q
Õ
m+1(x) = ≠e≠x +

qm
j=1

1
e≠x xj≠1

(j≠1)! ≠ e≠x xj

j!

2
= ≠e≠x +

e≠x
≠ e≠x xm

m! = ≠e≠x xm

m! . J

I Lemma 3.4 (see [13] for proof). For all m Ø 1, we have (m!)1/m < ›m < ((m+ 1)!)1/m+1.

I Remark 3.5. Setting ‹(x) = ‹(m,x) = �(m+1,x)
m! , and arguing as in Lemma 3.4, we have

‹Õ(x) < 0, which readily implies that ‹(x) is monotonically decreasing.

Stirling’s formula applied to Lemma 3.4 readily implies the following.

I Lemma 3.6. We have lim
mæŒ

›m
m

= 1
e
.

I Lemma 3.7 (see [13] for proof). For all k,m Ø 0 integers, we have

f(k,m) =
kÿ

j=1

›jm
j! ≠

m+kÿ

j=m+1

›jm
j! Ø 0.

3.2 Background: Sharding, poissonization, and stochastic dominance
For a sequence of random variables X = X1, . . . ,Xn, let |– Æ X Æ —| = |{i | – Æ Xi Æ —}|
denote the number of realizations in this sequence falling in the interval [–,—].

3.2.1 Sharding
For the lower bound, we use poissonization and sharding [14]. Given random variables
X1, . . . ,Xn with cdfs F1, . . . , Fn, instead of sampling Xi from Fi, we instead replace it with
a sequence of K independent random variables Hi = Yi,1, . . . , Yi,K , such that maxj Yi,j

has the same distribution as Xi. Specifically, the cdf of Yi,j , for all j, is F
1/K
i . Thus, the

distribution of max {Yi,1, . . . , Yi,K} is the same as Xi. This creates a new sequence of Kn
samples S = H1 ·H2 · · · · ·Hn, where · is the concatenation operator. Observe that for any
– Ø 0 and integer t, we have

P[|X Ø –| > t] < P[|S Ø –| > t].

Intuitively, this implies that, for threshold algorithms, an instance consisting of S instead of
X can only generate worse results. We emphasize that this sharding technique is done only
for analysis purposes.

3.2.2 Poissonization
I Definition 3.8 (Poisson Distribution). A random variable X has Poisson distribution with
rate ⁄, denoted by X ≥ Pois(⁄), if P[X = i] = ⁄ke≠⁄/k!. Conveniently, E[X] = V[X] = ⁄.

The purpose of the sharding is to be able to bound quantities of the form P[|— Æ S Æ · | = t].
As K grows, the underlying random variable |— Æ S Æ · | has a binomial distribution that
converges to a Poisson distribution.

I Observation 3.9. For c œ (0, 1], we have, using L’Hôpital’s rule, that limxæŒ x(1≠c1/x) =
limxæŒ

1≠exp(log(c)/x)
1/x = limxæŒ

log(c) exp(log(c)/x)/x2

≠1/x2 = ≠ log c, where log = loge.



S. Har-Peled, E. Harb, and V. Livanos 81:11

Let · be a threshold such that
qn

i=1
qK

j=1 P[Yi,j Ø · ] = c for some constant c to be
determined shortly. We can rewrite this into the following.

nÿ

i=1
K

1
1 ≠ P[Xi Æ · ]1/K

2
= c. (3.2)

The limit of Eq. (3.2), as K æ +Œ, is
qn

i=1 ≠ logP[Xi Æ · ] = c, by Observation 3.9.
Equivalently, for Z = max {X1, . . . ,Xn}, we have

e≠c = exp
1 nÿ

i=1
logP[Xi Æ · ]

2
=

nŸ

i=1
P[Xi Æ · ] = P[X1, . . . ,Xn Æ · ] = P[Z Æ · ].

In particular, the distribution of the number of indices j, such that Yi,j Ø · can be well
approximated with a Poisson distribution. Specifically, let Vi,j = 1 ≈∆ Yi,j Ø · , and
consider the sum Vi =

qK
j=1 Vi,j . The variable Vi ≥ bin(K,Âi), where Âi = 1≠P[Xi Æ · ]1/K .

Let ⁄i = ÂiK, and consider the random variable Ui ≥ Pois(⁄i) (i.e., Ui has a Poisson
distribution with rate ⁄i). Intuitively, Vi and Ui have similar distributions. Formally, Le
Cam theorem implies that for any set T ™ {0, 1, . . . ,K}, we have |P[Vi œ T ] ≠ P[Ui œ T ]| Æ

2KÂ2
i = 2⁄2

i /K Æ 2c2/K, by Eq. (3.2). The later quantity goes to zero as K increases.
Thus, we get a variable Ui with a Poisson distribution for each shard sequence Hi, with

rate ⁄i, where Ui models the number of times we encounter in Hi values larger than · .
Thus, U· =

q
i Ui models the total number of times in the splintered sequence S that

values encountered are larger than · . The variable U· has a Poisson distribution with rate
⁄· =

qn
i=1 ⁄i.

3.2.3 The distribution in a range
Repeating the same process with a bigger threshold — > · , would yield a similar Poisson
random variable U— with a lower rate ⁄— . The quantity � = U· ≠ U— is the number of
values in S in the range [·,—]. Furthermore, � has a Poisson distribution with rate ⁄· ≠ ⁄— .
Specifically, P[|— Æ S Æ · | = t] = P[� = t].

The key to our analysis is that the variables � and U— are independent (in the limit as
K increases).

3.2.4 Stochastic dominance
A standard observation is that for a non-negative random variable X, we have that E[X] =s Œ
x=0 P[X Ø x] dx. Thus, for Z = max {X1, . . . ,Xn}, and for an algorithm A, if one can
guarantee that there is c œ [0, 1], such that for all ‹ Ø 0, P[A Ø ‹] Ø cP[Z Ø ‹], then

E[A] =
⁄ Œ

0
P[A Ø x] dx Ø c

⁄ Œ

0
P[Z Ø x] dx Ø cE[Z] ,

and thus c is a lower bound on the competitive ratio of A. This argument is used in several
results on prophet inequalities and is often referred to as majorizing A with Z.

3.3 An optimal single-threshold algorithm
Here, we describe a single-threshold algorithm that achieves the optimal competitive ratio in
the oracle model.
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I Definition 3.10 (Single-Threshold Algorithm). A single threshold algorithm for Om sets a
threshold · , and starts observing the sequence. Whenever it encounters a realization > · , the
algorithm stops and queries the oracle whether all the values remaining in the su�x of the
sequence are of value Æ · . If the oracle returns YES, the algorithm accepts the current value
and stops. Otherwise, it raises its threshold to · = Xi and continues. If the oracle runs out
of oracle calls, it selects the first value encountered after the last oracle call that is bigger
than · (which exists, since all oracle calls returned NO).

While technically, the querying threshold of the algorithm might change during its execution,
we call the algorithm a single-threshold algorithm since it uses a single-threshold to decide
whether to query the oracle or not, and this threshold does not change with i, unlike for
example the optimal DP for the IID prophet inequality or the prophet secretary model. Our
oracle model is quite di�erent than most other prophet inequality models in the sense that
the algorithm has some knowledge of the (true) future. Of course, any algorithm that knows
that the maximum of Xi+1, . . . ,Xn is larger than Xi would be wasting queries if it expended
them on some Xj < Xi for j > i, and thus the spirit of it being a single-threshold algorithm
to decide whether to query the oracle or not remains.

I Theorem 1.7. For every m Ø 1, let –m = 1 ≠ e≠›m , where ›m is the unique positive
solution to the equation 1≠e≠›m = �(m+1,›m)

m! . For any finite sequence X of non-IID variables,
one can compute a value · , such that the single-threshold algorithm (with initial threshold ·)
has competitive ratio Ø –m.

Proof. Let X = X1, . . . ,Xn, and Z = maxi Xi. The threshold · is the e≠›m quantile of the
maximum, i.e. P[Z Æ · ] = e≠›m . We use A(X) to denote the result of running the algorithm
on X.

As suggested in Section 3.2.1 (for the analysis), we imagine running the algorithm on
the splintered sequence S. Somewhat counterintuitively, imagine first generating S, and
computing Xi = maxj Yi,j , see Section 3.2.1. Thus, maxS = maxX. For the sequence S, let
SØ· denote the subsequence of elements of S that their values are above · . Observe that
XØ· is a subsequence of SØ· . Thus, we analyze the algorithm performance on S.

Let — œ [0, · ]. The probability the algorithm selects a value above — is equal to the
probability it selects any value. Thus,

P[A(X) Ø —] = P[A Ø · ] = P[Z Ø · ] = 1 ≠ e≠›m Ø
!
1 ≠ e≠›m

"
P[Z Ø —]. (3.3)

For — œ [·,+Œ), let P[Z Æ —] = e≠q > e≠›m , implying P[Z Ø —] = 1 ≠ e≠q. By sharding
and Poissonization, the number of shards in the range [·,—] (resp. Ø —) is a Poisson random
variable � (resp. U—) with rate ›m ≠ q (resp. q), see Section 3.2.3. Critically, U— and � are
independent. Consider the event of there being at most m values in the range [·,—], and
there being at least one value in [—,+Œ). The value A(X) Ø — in that case. Hence, by the
independence of � and U— , we have

P[A(X) Ø —]
P[Z Ø —] Ø

P[(U— Ø 1) fl (0 Æ � Æ m)]
P[Z Ø —] = P[U— Ø 1]

P[Z Ø —] P[0 Æ � Æ m] = P[0 Æ � Æ m].

Now, we have

P[0 Æ � Æ m] =
mÿ

i=0
e≠(›m≠q) (›m ≠ q)i

i! = �(m+ 1, ›m ≠ q)
m! Ø

�(m+ 1, ›m)
m! = 1≠ e≠›m .

by Eq. (3.1), Remark 3.5 and Definition 3.1.
The above implies that, for any — Ø 0, we have P[A(X) Ø —] Ø (1 ≠ e≠›m)P[Z Ø —],

Namely, RoE(A) Ø 1 ≠ e≠›m . J
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3.4 A matching upper bound for single-threshold algorithms
To this end, we present an input sequence for which no algorithm can do better for the
oracle that answers if Xi > maxnj=i+1 Xj . Our upper bound is with respect to the strongest
possible form of adversary, the almighty adversary, who knows from the beginning all possible
realizations as well as the outcome of any random coins tossed by the algorithm.

Input instance

The input instance I consists of n+2 random variables, for su�ciently large n. Each of these
random variables can have only two values – either zero or some positive value. Specifically,
for Á > 0 su�ciently small, let

X1 = 1, Xi =
I
1 + Á(i ≠ 1) w.p. ›m

n

0 otherwise
, for i œ J2 : n+ 1K , and

Xn+2 =
I

1
Á w.p. Á

0 otherwise
.

By Lemma 3.6, we have ›m ¥ m/e and as such, the expected number of non-zero entries in
this sequence is (roughly) m/e+ 1.

I Lemma 3.11. For Z = maxi Xi, we have E[Z] = 2 as Á æ 0.

Proof. Let Z Õ = maxiœJn+1K Xi. Observe that Z Õ = 1. As such, for Z = max(Z Õ, Xn+2), we
have E[Z] = E[maxi Xi] = (1/Á)Á + (1 ≠ Á)E[Z Õ] ≠≠≠æ

Áæ0
2. J

Next, we will need the following result on the approximation of a binomial distribution
by a Poisson distribution, known as Le Cam’s theorem ([5, 8]).

I Theorem 3.12 (Le Cam’s theorem). Let X1, . . . ,Xn be independent Bernoulli random
variables, with pi = P[Xi = 1], for i œ JnK. Let S =

q
i Xi and ⁄ =

q
i pi. Then S has a

Poisson binomial distribution with expectation ⁄. Furthermore, let Y ≥ Pois⁄. Then we have
nÿ

i=0
|P[S = i] ≠ P[Y = i]| =

nÿ

i=0

----P[S = i] ≠ e≠⁄ ⁄i

i!

---- Æ 2
nÿ

i=1
p2i .

I Observation 3.13. Let ‚Xi be an indicator variable for the event that Xi = 1. For su�ciently
large n, Ò =

qn+1
i=2

‚Xi has a binomial distribution that can be well approximated by a Poisson

distribution (Theorem 3.12) with rate ›m. That is, lim
næŒ

P
#
Ò = k

$
= e≠›m

(›m)k

k! .

Observe that limnæŒ P[Ò Æ k] =
qk

i=0 e
≠›m (›m)i

i! = qk+1(›m). In the analysis to follow,
we assume n æ Œ.

I Theorem 1.8. For any m Ø 1 and ” > 0, there exists an input instance I such that for
any algorithm, we have RoE(A) Æ 1 ≠ e≠›m + ”.

Proof. First, we discuss the strategy that the adversary adopts: the adversary first observes
all values. Suppose k nonzero values show up from X2, ...,Xn at indices U = {i1, ..., ik}, and
all other n ≠ k values from X2, . . . ,Xn+1 at indices B = {̂i1, . . . , în≠k} are zero. One can
easily see that it is optimal for the adversary to provide the random variables in the order
X‡(1), . . . ,X‡(n+2) where ‡ is defined as ‡(1) = 1, ‡(j) = ij , j = 2, . . . , k + 1, ‡(j) = îj and
finally ‡(n+ 2) = n+ 2. In other words, the adversary stacks all the k non zero values from
X2, . . . ,Xn+1 starting from index 2 to index k + 1.
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Now we consider an algorithm for this setting. The algorithm is aware of the adversary’s
strategy and thus knows that it will observe X‡(1) = X1, then a stream of k ones (where
k is unknown), then n ≠ k zeros, and finally X‡(n+2) = Xn+2. The algorithm has a simple
decision to make in the beginning; it either queries at X1 and if the answer is NO it continues
to X‡(2), . . . X‡(n+1) with m ≠ 1 oracle calls, or it can just proceed to X‡(2), . . . X‡(n+1)
with m oracle calls. Thus, the only di�erence in the two cases is that in the former, it
has only m ≠ 1 oracle calls for X‡(2), . . . ,X‡(n+1) but it gets an expected reward of 1 if
X‡(2) = · · · = X‡(n+2) = 0, and in the later case, it has m oracle calls for X‡(2), . . . ,X‡(n+1),
but it gets 0 reward if X‡(2) = · · · = X‡(n+2) = 0.

Let k be the number of non-zeros in X2, . . . ,Xn+1 (i.e., X‡(k+1) is the last 1). When
the algorithm observes the stream of approximate ones from X‡(2), ...,X‡(n+1), it needs to
decide indices S ™ J2 : n+ 1K , |S| Æ m where it will expend the oracle call. Clearly, it is
suboptimal to use the oracle at a 0 value, since regardless, the algorithm will receive a value
of 0 in the end if it fails. Consider what happens if the algorithm decides to query at index
i œ J2 : n+ 1K with X‡(i) = 1. If X‡(i+1) = . . . X‡(n+1) = 0, then the algorithm gets on
expectation 1/Á · Á + (1 ≠ Á) · 1 ≠≠≠æ

Áæ0
2 reward on expectation. However, if X‡(i+1) > 0, then

the oracle will return NO because X‡(i) ”> max(X‡(i+1), . . . ,X‡(n+2)). On the other hand, if
the algorithm does not query at index k + 1 (i.e., (k + 1) ”œ S), then the algorithm gets on
expectation E

#
X‡(n+2)

$
= E[Xn+2] = 1/Á · Á = 1.

Hence, the crucial observation is that an algorithm starting at X‡(2) that uses its query
calls at indices S ™ J2 : n+ 1K gets on expectation 2 if and only if (k + 1) œ S, and 1
otherwise. Thus, for algorithm A1 that skips X‡(1) and uses its oracles at indices S, |S| = m,
it satisfies

E[A1] = 2 ·
ÿ

iØ0,(i+1)œS

e≠›m
›im
i! + 1 ·

ÿ

iØ0,(i+1)/œS

e≠›m
›im
i!

=
ÿ

iØ0
e≠›m

›im
i! +

ÿ

iØ0,(i+1)œS

e≠›m
›im
i!

= 1 +
ÿ

(i+1)œS

e≠›m
›im
i!

On the other hand, for algorithm A2 that uses its oracle at X‡(1) and uses its remaining
oracles at indices SÕ

œ J2 : n+ 1K , |SÕ
| = m ≠ 1, it gets an extra benefit of getting a reward

with expected value 2 (as Á æ 0) if X‡(2) = · · · = X‡(n+1) = 0. Hence, it satisfies

E[A2] =
!
e≠›m · 2

"
+

Q

a2 ·
ÿ

iØ0,(i+1)œSÕ

e≠›m
›im
i!

R

b +

Q

a1 ·
ÿ

iØ1,(i+1)/œSÕ

e≠›m
›im
i!

R

b

=

Q

a
ÿ

iØ0
e≠›m

›im
i!

R

b + e≠›m +
ÿ

(i+1)œSÕ

e≠›m
›im
i!

= 1 + e≠›m +
ÿ

(i+1)œSÕ

e≠›m
›im
i! .

First, we show that the expression
q

(i+1)œS e≠›m ›i
m
i! subject to S ™ J2 : n+ 1K , |S| = m

is maximized for Sú = J2 : m+ 1K. Note that it is easy to verify that for a Poisson distribution
with rate ⁄, its probability mass function e≠⁄⁄i/i! is increasing for i < ⁄, and decreasing
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after i > ⁄. Hence, the optimal Sú = Jk : k +m ≠ 1K for some k Ø 2 that “covers” the rate
›m (this is the region with the most mass for a Poisson distribution). The optimal choice of
k is k = 2 because

mÿ

i=1
e≠›m

›im
i! ≠

k+m≠2ÿ

i=k≠1
e≠›m

›im
i! =

k≠2ÿ

i=1
e≠›m

›im
i! ≠

m+k≠2ÿ

i=m+1
e≠›m

›im
i! Ø 0,

where the last inequality holds by Lemma 3.7. Similarly, k = 2 is optimal for when |S| = m≠1.
Hence, we get the inequalities

E[A1] Æ 1 +
mÿ

i=1
e≠›m

›im
i! = 1 + qm+1(›m) ≠ e≠›m ,

E[A2] Æ 1 + e≠›m +
m≠1ÿ

i=1
e≠›m

›im
i! = 1 + qm(›m).

Thus, we have

max(E[A1] ,E[A2]) Æ 1 ≠ e≠›m + qm(›m) + e≠›m max
;
1, ›mm

m!

<

But recall from Lemma 3.4 that ›mm Ø m!, thus

max(E[A1] ,E[A2]) Æ 1 ≠ e≠›m + qm(›m) + e≠›m ·
›mm
m!

= 1 ≠ e≠›m + qm+1(›m)
= 2

!
1 ≠ e≠›m

"
.

Therefore, the competitive ratio of every algorithm is

RoE Æ
2
!
1 ≠ e≠›m

"

2 = 1 ≠ e≠›m . J

4 The IID settings

Motivated by the early work of [12] for the Top-1-of-m model, in this section we study the
IID setting and the Pmax objective. As a warm-up, we take a look at the IID setting with the
Pmax objective and the case of m = 1, providing a simple, single-threshold algorithm.

4.1 A single-threshold algorithm for m = 1

Our single-threshold algorithm Ap for M(O1, IID,Pmax) selects a threshold · equal to the
pth quantile of the given distribution D, for some p œ [0, 1]. In other words, · is set such
that p = P[Xi Ø · ]. The first time the algorithm observes a realization above · , it queries
the oracle to see whether the realization should be selected or not. If it continues, it simply
accepts the first value encountered above the observed realization on which it queried O.

I Lemma 4.1. There exists p œ [0, 1] such that Ap selects the maximum realization with
probability at least 0.797 in the M(O1, IID,Pmax) model for large n.

Proof. Let Y be the total number of realizations above · , and i1 < i2 < · · · < iY be the
indices of the random variables above · , i.e. Xit > · , for t = 1, . . . , Y . Furthermore, let rt
be the rank of Xit in X = {Xi1 , . . . ,XiY }, i.e. the number k such that Xit is the kth largest
number in X , and Z be the maximum realization of X1, . . . ,Xn.
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Xi1 is the first realization we observe above · . Notice that if r1 = 1 or r1 = 2 then the
algorithm always selects the maximum realization Z. In other words, given that Y = 1 or
Y = 2, the algorithm selects Z with probability 1. Consider the case Y > 2. Again, if r1 Æ 2,
the algorithm selects Z with probability 1. Otherwise, if r1 > 2, the algorithm returns Z if
and only if for all realizations above · that appear after Xi1 and are also larger than Xi1 ,
the first to encounter is Z. In other words, for the algorithm to succeed in this case, it must
be that among the r1 ≠ 1 values of rank smaller than r1, the first one in the arrival order is
the element of rank 1. Since the random variables are IID, the probability of this event is
exactly 1/r1≠1.

Let j be the first index such that Xij > Xi1 , and –(Y ) = P[A selects Z | Y ]. Conditioned
on Y Ø 3, the probability that the algorithm selects Z is

–(Y | Y Ø 3) = P[r1 = 1] + P[r1 = 2] +
Yÿ

t=3
P[r1 = t]P[rj = 1 | r1 = t]

= 2
Y

+
Yÿ

t=3

P[rz = 1 | r1 = t]
Y

= 1
Y

A
2 +

Yÿ

t=3
P[rz = 1 | r1 = t]

B

= 1
Y

A
2 +

Yÿ

t=3

1
t ≠ 1

B
= 1

Y

A
1 +

Y ≠1ÿ

t=1

1
t

B

= 1
Y
(1 +HY ≠1),

whereHn denotes the nth harmonic number. Recall also that –(Y | Y = 1) = –(Y | Y = 2) =
1.

Next, we estimate P[Y = i], by approximating Y with a Poisson distribution via Le Cam’s
theorem. Let ”i =

---
!n
i

"
pi(1 ≠ p)n≠i

≠ e≠np (np)i
i!

---. The idea is to set p such that np = q,
where q Ø 1 is a fixed constant. We know that P[Y = i] =

!n
i

"
pi(1 ≠ p)n≠i, and thus, by

Theorem 3.12, we have
Œÿ

i=0
”i =

Œÿ

i=0

-----P[Y = i] ≠ e≠np (np)
i

i!

----- =
Œÿ

i=0

-----P[Y = i] ≠ e≠q (q)
i

i!

----- Æ
2qp

max {1, q} Æ 2p = 2q
n
.

Overall, the probability that A selects Z is

–(Y ) =
nÿ

i=0
P[Y = i] · –(Y | Y = i)

= P[Y = 1] +
nÿ

i=2
P[Y = i] · –(Y | Y = i)

Ø np(1 ≠ p)(n≠1) +
nÿ

i=2

3
e≠q q

i

i! ≠ ”i

4
· –(Y | Y = i),

where the last inequality follows by the definition of ”i. Thus,

–(Y ) = q(1 ≠ q/n)(n≠1) +
nÿ

i=2
e≠q q

i

i! · –(Y | Y = i) ≠

nÿ

i=2
”i · –(Y | Y = i)

Ø q(1 ≠ q/n)(n≠1) +
nÿ

i=2
e≠q q

i

i!
1 +Hi≠1

i
≠

nÿ

i=2
”i

Ø q(1 ≠ q/n)(n≠1) + e≠q
nÿ

i=2

qi(1 +Hi≠1)
i! · i ≠

2q
n
. (4.1)

J
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It is easy to see that simply setting q = 2, which corresponds to p = 2/n and · being the
2/nth quantile of D, yields –(Y ) > 0.5801 for all n Ø 20. Thus, our simple single-threshold
algorithm, augmented with a single oracle call, beats, even for small n, the optimal algorithm
for the IID prophet inequality which uses di�erent thresholds per distribution and achieves a
probability of success approximately 0.5801 [12].

Since the worst-case probability of ¥ 0.5801 by [12] is achieved for n æ Œ, one might be
interested in the asymptotic behavior of the probability of our algorithm, –(Y ), for large n.
It is not too di�cult to see after some calculations that, as n æ Œ, Eq. (4.1) is maximized
for q ¥ 2.435, yielding –(Y ) ¥ 0.798.

4.2 A single-threshold algorithm for general m
As we saw in the previous section, even for a simple, single-threshold algorithm, the analysis
of the winning probability gets tedious quickly. In this section, we generalize our single-
threshold algorithm to the case of general m, and use the fact that the maximum of a
uniformly random permutation of n values changes O(logn) times with high probability to
obtain a guarantee on the winning probability that is super-exponential with respect to m.

As before, our algorithm selects a threshold · such that p = P[X Ø · ] and every time the
algorithm observes a realization above · , it uses an oracle query and asks O if the realization
should be selected or not. If not, then it updates the threshold to the new higher value. If
the algorithm runs out of oracle calls, then it selects the first element above the current
threshold · that is encounters, if any. In other words, the algorithm uses the oracle calls
greedily for all realizations above · .

I Theorem 1.9 (see [13] for proof). For su�ciently large m,n, there exists an algorithm for
the M(Om, IID,Pmax) model that selects the maximum realization with probability at least
1 ≠ O

!
m≠m/5

"
.

4.3 An (almost) tight upper bound
Given that we have a simple, single-threshold algorithm for the M(Om, IID,Pmax) setting, a
reasonable question to ask is how far it is from being optimal. As we show in this section,
the algorithm is asymptotically almost optimal.

I Theorem 1.10 (see [13] for proof). There exists an instance of M(Om, IID,Pmax) for which
no algorithm can select the maximum realization with probability greater than 1 ≠ O(m≠m).

5 Conclusion

In this work, we improved on the known results for the Top-1-of-m model, for both the RoE
and Pmax objectives, via the lens of a simple prophet inequality augmented with oracle calls.
All our results hold with respect to the strongest possible adversary, the almighty adversary.
A weaker, o�ine, adversary is forced to select the order of distributions upfront, given only
access to the same information as the algorithm. For such an adversary, one can do very
slightly better than Theorem 1.8 – see the full version [13] for more details.

Our oracle choice was motivated by our e�orts to reformulate the Top-1-of-m model in
order to improve upon the current known bounds. We mention a few other oracle models
that are interesting and could potentially be useful in analyzing other prophet inequality
settings: (i) the oracle can predict a range for the maximum value, but formalizing this
in a more general setting turns out to be di�cult without assuming something about the
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support of each random variable, (ii) the algorithm can ask the oracle if there is a value that
is greater than c ·Xi, for some constant c. This latter oracle is more powerful, as it doesn’t
exhibit the same limitations that our oracle model has in the example of Theorem 1.8. We
leave exploring more complex oracle models for future work.

Finally, there are subtle di�erences between an oracle that answers queries of the formXi >
max {Xi+1, . . . ,Xn} and one that answers queries of the form Xi Ø max {Xi+1, . . . ,Xn};
in particular, the > oracle is weaker than the Ø oracle. We refer the reader to the full
version [13] for a discussion on this topic.
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Abstract
The log-rank conjecture, a longstanding problem in communication complexity, has persistently
eluded resolution for decades. Consequently, some recent e�orts have focused on potential approaches
for establishing the conjecture in the special case of XOR functions, where the communication
matrix is lifted from a boolean function, and the rank of the matrix equals the Fourier sparsity of
the function, which is the number of its nonzero Fourier coe�cients.

In this note, we refute two conjectures. The first has origins in Montanaro and Osborne (arXiv’09)
and is considered in Tsang, Wong, Xie, and Zhang (FOCS’13), and the second is due to Mande and
Sanyal (FSTTCS’20). These conjectures were proposed in order to improve the best-known bound
of Lovett (STOC’14) regarding the log-rank conjecture in the special case of XOR functions. Both
conjectures speculate that the set of nonzero Fourier coe�cients of the boolean function has some
strong additive structure. We refute these conjectures by constructing two specific boolean functions
tailored to each.
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1 Introduction

The study of communication complexity seeks to determine the inherent amount of commu-
nication between multiple parties required to complete a computational task. Arguably, the
most outstanding conjecture in the field is the log-rank conjecture of Lovász and Saks [4].
They suggest that the (deterministic) communication complexity of a two-party boolean
function is upper bounded by the matrix rank over R. More precisely,
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I Conjecture 1 (Log-rank conjecture [4]). Let f : X ◊Y æ {≠1, 1} be an arbitrary two-party

boolean function. Then,

CC(f) Æ polylog(rank(f)),

where CC(f) is the communication complexity of f and rank(f) is the rank over R of the

corresponding boolean matrix.

It is well-known that log(rank(f)) Æ CC(f) [7], so a positive resolution to Conjecture 1 would
imply that the communication complexity of two-party boolean functions is determined by
rank, up to polynomial factors.

To date, the best known bound is still exponentially far from that in Conjecture 1. Con-
cretely, Lovett [5] showed that CC(f) Æ O(


rank(f) log rank(f)). Very recently, Sudakov

and Tomon posted a preprint improving the bound to O(


rank(f)) [13]. In hopes of gaining
further insight, many researchers have considered the special case of XOR functions, where
fü(x, y) := f(x+ y) for a boolean function f : Fn

2 æ {≠1, 1} [8, 15, 14, 12, 2, 6].
The XOR setting has several convenient properties. For example, the eigenvalues of

fü correspond to the Fourier coe�cients of f . Thus, rank(fü) = |supp( ‚f)|, the number of
nonzero coe�cients in f ’s Fourier expansion (also known as the Fourier sparsity). Additionally,
Hatami, Hosseini, and Lovett [2] proved a polynomial equivalence between CC(fü) and the
parity decision tree complexity of f , denoted PDT(f). Parity decision trees are defined
similarly to standard decision trees, with the extra power that each node can query an
arbitrary parity of input bits. These facts together imply that the log-rank conjecture for
XOR functions can be restated as follows:

I Conjecture 2 (XOR log-rank conjecture). Let f : Fn
2 æ {≠1, 1}. Then,

PDT(f) Æ polylog(|supp( ‚f)|).

The best known bound, due to [14, 12], is PDT(f) Æ O(
Ò
|supp( ‚f)|), a mere log-factor

improvement on the general case bound by Lovett [5], and matched by the recent bound of
Sudakov and Tomon [13].

1.1 Folding
Folding is a fundamental concept in the analysis of the additive structure of a function’s
Fourier support. Let

S = supp( ‚f) = {“ œ Fn
2 : ‚f(“) ”= 0} and S + “ = {s+ “ : s œ S}.

If (s1, s2), (s3, s4) œ
!S
2
"
satisfy s1 + s2 = s3 + s4 = “, we say the pairs (s1, s2) and (s3, s4)

fold in the direction “.
Analyzing folding directions is useful in constructing e�cient PDTs in the context of

Conjecture 2. In particular, when a function f is restricted according to the result of some
parity query “, all pairs of elements in S that fold in the direction “ collapse to a single term
in the restricted function f |“ ’s Fourier support. Iterating this process until the restricted
function is constant yields a PDT whose depth depends on the number of iterations performed
and, thus, on the size of the folding directions queried. Indeed, this is the general strategy
used to prove the aforementioned closest result to Conjecture 2 [14, 12].
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1.2 Refuting a greedy approach
An approach dating back to [8] seeks to prove Conjecture 2 through the existence of a
single large folding direction. They conjectured that there always exists “1, “2 such that
|(S + “1) fl (S + “2)| Ø |S|/K for some constant K > 1. This yields the following O(log |S|)-
rounds greedy approach: query “1 + “2 and consider the function restricted to the query
response. This restriction decreases the Fourier sparsity by a constant factor, so the function
must become constant in O(log |S|) rounds. This implies the strong upper bound of

PDT(f) Æ O (log |S|) .

However, O’Donnell, Wright, Zhao, Sun, and Tan [10] constructed a function with
communication complexity �(log(|S|)log3(6)); hence one can not take K to be a constant.
Yet to prove the log-rank conjecture, it su�ces to take K = O(polylog(|S|)), and this choice
of K remained plausible up to date. Such an approach is mentioned in both [14] and [6], and
a similar approach was used to verify the log-rank conjecture for many cases of functions
lifted with AND (rather than XOR) gadgets [3]. We strongly refute this conjecture.

I Theorem 3 (Informal version of Theorem 8). For infinitely many n, there is a function

f : Fn
2 æ {≠1, 1} such that for S = supp( ‚f), it holds

|(S + “1) fl (S + “2)| Æ O

1
|S|5/6

2

for all distinct “1, “2 œ Fn
2 .

I Remark 4. Observe that this theorem implies the greedy method cannot obtain a bound
better than PDT(f) = ÂO(|S|1/6). In fact, a more careful analysis can rule out bounds better
than PDT(f) = ÂO(|S|1/5) (see Remark 15).

The functions used in Theorem 3 are a variant of the addressing function using disjoint
(a�ne) subspaces. While we believe the specific construction is novel, the concept of using
functions defined with disjoint subspaces has previously appeared in the literature in this
context. Most notably, Chattopadhyay, Garg, and Sherif used XOR functions based on this
idea in the pursuit of stronger counterexamples to a more general version of the log-rank
conjecture [1].

1.3 Refuting a randomized approach
Rather than simply looking for a large folding direction, a recent work of Mande and Sanyal
[6] attempts to address Conjecture 2 through a deeper understanding of the additive structure
of the spectrum of boolean functions. They proposed the following conjecture on the number
of nontrivial folding directions, and showed it would yield a polynomial improvement to the
state-of-the-art upper bound for the XOR log-rank conjecture via a randomized approach.

I Conjecture 5 ([6]). There are constants –,— œ (0, 1) such that for every boolean function

f : Fn
2 æ {≠1, 1}, for S = supp( ‚f), it holds

Pr
“1,“2œS

#
|(S + “1) fl (S + “2)| > |S|—

$
Ø –.

In fact, Mande and Sanyal conjectured that one can take — = 1
2 ≠ o(1). The conjecture

might seem plausible given the numerous results on the additive structure of the spectrum of
boolean functions. However, we strongly refute it, as well:

ICALP 2024
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I Theorem 6 (Informal version of Theorem 16). For infinitely many n, there is a function

f : Fn
2 æ {≠1, 1} such that for S = supp( ‚f), it holds

Pr
“1,“2œS

[|(S + “1) fl (S + “2)| > k] = O(1/k) ’k Ø 1.

Overview

Some preliminary material is reviewed in Section 2. We prove more precise versions of
Theorem 3 in Section 3 and Theorem 6 in Section 4. Section 5 contains some final thoughts.

2 Preliminaries

Communication complexity

Let f : X ◊ Y æ {≠1, 1} be an arbitrary function. Additionally, assume two parties are
given an element x œ X and y œ Y , respectively, which the other party cannot see. The
(deterministic) communication complexity of f , denoted CC(f), is the minimum number of
bits over all assignments (x, y) needed to be exchanged in order to evaluate f , where the
parties may decide on a strategy prior to receiving their inputs.

One can view such a function as an X ◊ Y matrix, where the (x, y) entry takes the value
f(x, y). Thus, it is natural to consider the relationship between linear algebraic measures,
such as matrix rank, and communication complexity, as in Conjecture 1. For a more thorough
treatment of communication complexity, see the excellent book [11].

Decision trees

Decision trees are simple models of computation. The (deterministic) decision tree depth of
a function f : Fn

2 æ {≠1, 1} is the maximum over all inputs x œ Fn
2 of the fewest number of

input bits one must query to correctly evaluate f(x).
Parity decision trees (PDTs) extend the power of “traditional” decision trees by allowing

queries to return the sum modulo two of an arbitrary subset of the bits. They are particularly
relevant in the study of communication complexity, since for functions of the form fü(x, y) =
f(x+ y) for f : Fn

2 æ {≠1, 1}, the parity decision tree depth and communication complexity
are equivalent (up to polynomial factors) [2].

Boolean analysis

Every function f : Fn
2 æ R has a unique Fourier expansion

f =
ÿ

–œFn
2

‚f(–)‰–,

where

‰–(x) = (≠1)Èx,–Í and ‚f(–) = Èf,‰–Í = ExœFn
2
[f(x)‰–(x)].

The set supp( ‚f) = {– œ Fn
2 : ‚f(–) ”= 0} is the Fourier support, occasionally denoted S. Its

size |supp( ‚f)| is the Fourier sparsity. In light of Conjecture 2, we are primarily interested in
the relationship between a function’s Fourier sparsity and parity decision tree depth.

In general, a vast array of information about a function can be learned from its Fourier
expansion, and we direct readers to the standard text [9] for additional background. For our
purposes, we will only require the following simple fact. Let V ‹ = {w : Èw, vÍ = 0 for all v œ
V } be the orthogonal complement of a subspace V .
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I Proposition 7 (See e.g., [9, Proposition 3.12]). If A = V + v ™ Fn
2 is an a�ne subspace of

codimension k, then

A =
ÿ

–œV ‹

2≠k
‰–(v)‰–.

3 One excellent folding direction

A large folding direction implies the existence of a parity query whose answer substantially
simplifies the resulting restricted function. This suggests the following greedy approach
to resolve the XOR log-rank conjecture: if we can always find distinct “1, “2 such that
|(S + “1) fl (S + “2)| Ø �(|S| /polylog(|S|)), then querying “1 + “2 and recursing on the
appropriate restriction of f will force f to be constant in polylog(|S|) rounds.

We refute this strategy by proving a precise version of Theorem 3.

I Theorem 8. For n = 2k + 7k with k œ NØ3
, there is a function f : Fn

2 æ {≠1, 1} such

that for S = supp( ‚f), it holds |S| Ø 26k, and yet |(S + “1)fl (S + “2)| Æ 25k+4
for all distinct

“1, “2 œ Fn
2 .

To build intuition for our construction, we first consider the standard addressing function.

I Example 9 (Addressing). Define f : Fk+2k
2 æ {≠1, 1} by

f(x, y) = (≠1)yx =
ÿ

zœFk
2

z(x) · (≠1)yz ,

where x œ Fk
2 and y œ F2k

2 (and slightly abusing notation by indexing y with vectors).

A greedy approach is su�cient for a PDT to evaluate this function. Simply query
each address bit, then the corresponding addressed bit. Each query eliminates half of the
remaining possible address values, so the PDT has depth k + 1, while the function’s sparsity
is exponential in k. To modify the function to prevent this approach, we encode the address
using subspaces to obfuscate it while maintaining Fourier sparsity.

I Example 10 (Subspace addressing). Let A1, . . . , A2k µ F7k
2 be disjoint a�ne subspaces of

dimension 2k. Define f : F7k+2k
2 æ {≠1, 1} by

f(x, y) =
I
(≠1)yi x œ Ai

1 x ”œ A1 fi · · · fi A2k
,

where x œ F7k
2 and y œ F2k

2 .

We choose Ai’s randomly and show that the resulting function f has the suitable properties
we need with high probability.

I Lemma 11. Suppose the random function f is constructed by picking random a�ne

subspaces A1, · · · , A2k µ F7k
2 as follows: for each i œ [2k], choose vectors ai, v

1
i , · · · , v2ki œ F7k

2
uniformly and independently, and let Vi = Èv1i , · · · , v2ki Í and Ai = Vi + ai. Then with

probability 1 ≠ 2≠k+2
, all of the following hold:

(a) ’i, dim(Vi) = 2k.
(b) ’i ”= j, Ai fl Aj = ÿ.
(c) ’i ”= j, Vi fl Vj = {0}.
(d) For all nonzero v œ F7k

2 , |{i : v œ V
‹
i }| Æ 7.

ICALP 2024
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Proof. For brevity, let m = 7k.
(a) Fix i œ [2k]. The probability that vectors v1i , · · · , v2ki are linearly independent is at least

2m ≠ 1
2m · 2

m ≠ 2
2m · 2

m ≠ 22
2m · · · · · 2

m ≠ 22k≠1

2m Ø (1 ≠ 22k≠m)m Ø 1 ≠ m22k≠m
.

Hence the probability that there is i œ [2k] for which v
1
i , · · · , v2ki are not linearly

independent is at most m23k≠m = 7k2≠4k Æ 2≠k.
(b) Fix i ”= j. The probability that Ai fl Aj ”= ÿ is at most 22k22k≠m = 24k≠m. Hence, the

probability that there are i ”= j with Ai fl Aj ”= ÿ is at most 22k24k≠m = 2≠k.
(c) Fix i ”= j. The probability that Vi flVj ”= {0} is at most (22k ≠ 1)22k≠m Æ 24k≠m. Hence,

the probability that there are i ”= j with Vi fl Vj ”= ÿ is at most 22k24k≠m = 2≠k.
(d) The probability that a fixed nonzero vector v œ F7k

2 is orthogonal to at least t subspaces
among V1, · · · , V2k is at most

!2k
t

"
2≠2tk Æ 2≠tk. Taking t = 8 and union bounding over all

27k≠1 options for v shows that the probability that there is v for which |{i : v œ V
‹
i }| Ø 8

is at most 2≠k.

By the union bound, the probability that any of items (a) to (d) are not satisfied is at
most 4 · 2≠k = 2≠k+2. J

We will assume from now on that f is chosen randomly so that Lemma 11 holds, and set
S = supp( ‚f). It remains to prove there is no large folding direction. First, we give a lower
bound on the size of Fourier support of f .

B Claim 12. |S| Ø 26k.

Proof. We can express f as

f(x, y) = (A1fi···fiA2k )c(x) +
2kÿ

i=1
Ai(x) · (≠1)yi

= 1 ≠
2kÿ

i=1
Ai(x) +

2kÿ

i=1
Ai(x) · (≠1)yi

= 1 +
2kÿ

i=1
Ai(x) · ((≠1)yi ≠ 1).

By Proposition 7, the Fourier support of the function Ai(x) is V
‹
i µ F7k

2 , and of
Ai(x) · (≠1)yi is V

‹
i + ei, where ei is the i-th basis vector in the standard basis for F2k

2
embedded in the space F7k

2 ◊ F2k
2 . Since the a�ne subspaces V ‹

i + ei are disjoint and also!
V

‹
i + ei

"
fl

!
V

‹
i

"
= ÿ the coe�cients of characters in V

‹
i + ei will not be canceled. Hence,

we get that

2k€

i=1

!
V

‹
i + ei

"
µ S

and so |S| Ø 2k · 27k≠2k = 26k. C

We also need the following claim.

B Claim 13. Suppose W1,W2 µ Fn
2 are two linear subspaces such that W1 fl W2 = {0}.

Then for all x œ Fn
2 ,

|W‹
1 fl (W‹

2 + x)| = 2n≠dimW1≠dimW2 .
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Proof. Suppose dim(W1) = d1 and dim(W2) = d2. Without loss of generality, assume
that W1 = Fd1

2 ◊ 0d2 ◊ 0n≠d1≠d2 and W2 = 0d1 ◊ Fd2
2 ◊ 0n≠d1≠d2 . Note that W

‹
1 =

0d1 ◊ Fd2
2 ◊ Fn≠d1≠d2

2 and W
‹
2 = Fd1

2 ◊ 0d2 ◊ Fn≠d1≠d2
2 . Pick an arbitrary x = (x1, x2, x3) œ

Fd1
2 ◊Fd2

2 ◊Fn≠d1≠d2
2 . Then W

‹
2 +(x1, x2, x3) = Fd1

2 ◊{x2}◊Fn≠d1≠d2
2 and W

‹
1 fl(W‹

2 +x) =
0d1 ◊ {x2} ◊ Fn≠d1≠d2

2 has the claimed size. C

Finally, Theorem 8 follows from claim below.

B Claim 14. For all distinct “1, “2 œ F7k+2k
2 , we have

|(S + “1) fl (S + “2)| Æ 25k+4
.

Proof. First, note that it su�ces to prove the claim for all distinct “1, “2 œ S, since if
s1 + “1 = s2 + “2 for s1, s2 œ S, it must be that “1 + “2 = s1 + s2 œ S + S. Pick an arbitrary
non-zero “ = “1 + “2 for “1, “2 œ S. Remember that

|(S + “1) fl (S + “2)| = |S fl (S + “)| and S ™

Q

a
2k€

i=1
V

‹
i

R

b fi

Q

a
2k€

i=1
(V ‹

i + ei)

R

b .

Hence S fl (S + “) ™ A fi B fi C, where

A =
€

i,j

!
V

‹
i fl (V ‹

j + “)
"

B =
€

i,j

!
V

‹
i fl (V ‹

j + ej + “)
"

C =
€

i,j

!
(V ‹

i + ei) fl (V ‹
j + ej + “)

"
.

Let | · | denote the Hamming weight of a vector. Decompose “ = (“x, “y) where “x œ F7k
2

and “y œ F2k
2 . Observe that |“y| Æ 2, since (as noted above) we may assume “ œ S + S

without loss of generality.
Case 1: |“y| = 0.

Note that in this case B = ÿ and C =
t

i

!
(V ‹

i + ei) fl (V ‹
i + ei + “x)

"
. Overall, we get

|S fl (S + “x)| Æ

------

€

i,j

!
V

‹
i fl (V ‹

j + “x)
"
------
+

-----
€

i

!
(V ‹

i + ei) fl (V ‹
i + ei + “x)

"
-----

=

------

€

i,j

!
V

‹
i fl (V ‹

j + “x)
"
------
+

-----
€

i

!
V

‹
i fl (V ‹

i + “x)
"
-----

Æ
ÿ

i ”=j

|V ‹
i fl (V ‹

j + “x)|+ 2
ÿ

i

|V ‹
i fl (V ‹

i + “x)|

Æ
ÿ

i ”=j

|V ‹
i fl (V ‹

j + “x)|+ 2 · 25k · |{i : “x œ V
‹
i }|.

To bound the first term, note that Vi fl Vj = {0} for all i ”= j (by item (c) of Lemma 11).
Using Claim 13 we have that |V ‹

i fl (V ‹
j + “x)| = 27k≠dim(Vi)≠dim(Vj) = 27k≠2k≠2k = 23k.

To bound the second term, by item (d) of Lemma 11, we have that |{i : “x œ V
‹
i }| Æ 7.

Overall, we get that

|S fl (S + “)| Æ 22k · 23k + 7 · 25k+1 Æ 25k+4
.

ICALP 2024
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Case 2: |“y| = 1. Suppose “y = ei for some i.
In this case, A = C = ÿ and B = V

‹
i fl (V ‹

i + ei + “y). Hence,

|S fl (S + “)| Æ |V ‹
i fl (V ‹

i + ei + “y)| Æ |V ‹
i | = 25k,

Case 3: |“y| = 2. This is similar to Case 2. J
I Remark 15. We have chosen parameters for simplicity of exhibition; however, by choosing
the original disjoint a�ne subspaces from F(6+Á)k

2 rather than F7k
2 , a similar analysis rules

out any bounds stronger than PDT(f) = ÂO(|S|1/5) resulting from this greedy method.

4 Many good folding directions

Rather than hoping for one large folding direction, [6] sought many nontrivial ones. In this
section, we refute their conjecture (Conjecture 5) with the following quantified version of
Theorem 6.

I Theorem 16. For n = 2d ≠ 1 with d œ N, there is a function f : Fn
2 æ {≠1, 1} such that

for S = supp( ‚f), it holds

Pr
“1,“2œS

#
|(S + “1) fl (S + “2)| Ø 2k+2$

Æ 2≠k + 21≠d ’k Ø 1.

In our construction, |S| = poly(n), which is the primary regime of interest. For larger S, say
of size |S| = exp(nc) for some constant c > 0, the log-rank conjecture is trivially true, since
n < polylog(|S|).

Let T be a full binary decision tree of depth d. There are n = 2d ≠ 1 internal nodes
indexed by [2d ≠ 1], where we query (distinct) xi at node i. Each of the largest depth internal
nodes v is adjacent to two leaves: -1 and 1, corresponding to v = 0 and v = 1, respectively.
Let f : Fn

2 æ {≠1, 1} be the resulting function. For example, the following decision tree
corresponds to f for n = 7.

x1

x2

x4

-1 1

x5

-1 1

x3

x6

-1 1

x7

-1 1

0 1

As we will soon show, the Fourier support of f corresponds to (subsets of) paths down
the tree, where |(S + “1) fl (S + “2)| is determined by the lowest common ancestor of the
paths of “1 and “2. Since it is overwhelmingly likely the two paths will quickly diverge, we
find |(S + “1) fl (S + “2)| is typically small.

Suppose the leaves are indexed by [2d]. Then f can be written as
ÿ

iœ[2d]

sign(Li) · Li , (1)

where Li denotes the indicator function of the inputs that result in leaf i, and sign(Li) œ
{≠1, 1} is the output at leaf i. Let Pi be the ordered set of coordinates that are queried to
reach the leaf i. Then for input x = (x1, . . . , xn) œ Fn

2 , we can write
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Li(x) =
Ÿ

tœPi

3
1 + (≠1)at+xt

2

4
= 1

2d

Q

a
ÿ

P™Pi

(≠1)
q

jœP
aj · (≠1)

q
jœP

xj

R

b ,

where at œ F2 is the output of node t on the path Pi.
To find the Fourier support S = supp( ‚f), it remains to determine which terms “survive”

cancellation in Equation (1). Let N (i) be the index of the internal node adjacent to leaf i.
Observe that when N (i) = N (j) for i ”= j (so sign(Li) = ≠sign(Lj)),

2d(sign(Li) · Li(x) + sign(Lj) · Lj (x)) = sign(Li)
ÿ

P™Pi

(≠1)
q

tœP
at · (≠1)

q
tœP

xt

≠ sign(Li)
ÿ

P™Pj

(≠1)
q

tœP
at · (≠1)

q
tœP

xt

= 2 · sign(Li) ·
ÿ

P™Pi : N (i)œP

(≠1)
q

tœP
at · (≠1)

q
tœP

xt ,

since xN (i) is the only x value that Pi and Pj disagree on. That is, each term in f ’s expansion
must contain N (i) for some i. Moreover, once these cancellations are made, Li does not
interact with Lj for N (i) ”= N (j), since no term can contain both N (i) and N (j). In
summary,

S =
€

iœ[2d]

{s : s ™ Pi and N (i) œ s}.

Let “1, “2 œ S. By our observation on the structure of S, they have the form “1 =
–1fi̇{N (i)} and “2 = –2fi̇{N (j)} for some i, j œ [2d]. We are interested in the number of
pairs (—1,—2) œ S ◊ S such that “1 + “2 = —1 + —2. It will su�ce to focus on the setting
N (i) ”= N (j) since this occurs with overwhelming probability. In this case, the quantity
|(S+“1)fl (S+“2)| depends only on the depth of the lowest common ancestor of Pi and Pj .

B Claim 17. If |(S + “1) fl (S + “2)| Ø 2k+2, then the lowest common ancestor of Pi and Pj

is at depth at least k.

Proof. We will show the contrapositive. Suppose the lowest common ancestor a of Pi and Pj

is at depth ¸ < k, and suppose —1,—2 œ S satisfy —1+“1 = —2+“2. Without loss of generality,
assume N (i) œ —1 and N (j) œ —2. Then —1 and —2 must be a subset of the elements in the
paths Pi and Pj , respectively.

First, consider each element E œ Pi fl Pj , which is all those above (and including) a. If
E œ “1 + “2, then E œ —1 + —2 only if E is in precisely one of —1,—2. Likewise, if E ”œ “1 + “2,
then E ”œ —1 + —2 only if E is in neither or both of —1,—2. In either case, we have two options
for each E.

Now consider each element E œ Pi below a. By assumption, E ”œ Pj . Thus, if E œ “1+“2,
it must be that E œ “1 and E ”œ “2. For —1 + —2 to contain E, we must likewise have E œ —1
and E ”œ —2. Similarly, if E ”œ “1 + “2, it cannot be in “1 or “2. Thus, it is not in —1 or —2
either. An identical argument for E œ Pj shows that we only have one way to account for
elements in the paths Pi or Pj below a.

Doubling to compensate for the cases where N (j) œ —1 and N (i) œ —2, we find
the number of options for (—1,—2) œ S ◊ S such that —1 + “1 = —2 + “2 is at most
2¸+2

< 2k+2. C
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Theorem 16 follows quickly from the claim. The probability that Pi and Pj have a
common ancestor at depth at least k is at most 2≠k, so

Pr
“1,“2œS

#
|(S + “1) fl (S + “2)| Ø 2k+2$

Æ Pr
“1,“2œS

#
|(S + “1) fl (S + “2)| Ø 2k+2 -- N (“1) ”= N (“2)

$
+ 21≠d

Æ 2≠k + 21≠d
,

where we overload notation by letting N (“) = N (i) œ “.

5 Conclusion

While the provided functions rule out specific approaches, it is worth noting that neither are
a counterexample to the log-rank conjecture. The subspace addressing function (Section 3)
has a simple PDT: first individually query all 7k address bits, then query the bit to the
corresponding subspace. Since the Fourier sparsity is at least 26k, this is certainly a�ordable.
While this example refutes a general greedy approach, such an approach works for the decision
tree function (Section 4). Each query of the root variable eliminates half the paths (and thus
reduces the sparsity by two), so iterating this process quickly makes the function constant.
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Abstract
This paper focuses on kernelization algorithms for the fundamental Knapsack problem. A kerneli-
zation algorithm (or kernel) is a polynomial-time reduction from a problem onto itself, where the
output size is bounded by a function of some problem-specific parameter. Such algorithms provide a
theoretical model for data reduction and preprocessing and are central in the area of parameterized
complexity. In this way, a kernel for Knapsack for some parameter k reduces any instance of
Knapsack to an equivalent instance of size at most f(k) in polynomial time, for some computable
function f . When f(k) = k

O(1) then we call such a reduction a polynomial kernel.
Our study focuses on two natural parameters for Knapsack: The number w# of di�erent item

weights, and the number p# of di�erent item profits. Our main technical contribution is a proof
showing that Knapsack does not admit a polynomial kernel for any of these two parameters under
standard complexity-theoretic assumptions. Our proof discovers an elaborate application of the
standard kernelization lower bound framework, and develops along the way novel ideas that should
be useful for other problems as well. We complement our lower bounds by showing that Knapsack
admits a polynomial kernel for the combined parameter w# · p#.
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1 Introduction

This paper proves a new complexity-theoretic barrier for the classic Knapsack problem.
Namely, we prove that Knapsack has no polynomial kernels when parameterized by either
the number w# of di�erent weights, or the number p# of di�erent profits. Our results
hold under the standard complexity-theoretic assumption NP ”™ coNP/poly. We also show
that when both w# and p# are taken as a combined parameter, Knapsack does admit
a polynomial kernel. Below we give a brief review of recent algorithmic progress for the
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Knapsack problem, as well as a quick survey through kernelization and parameterized
complexity. We then describe how our results fit into the current state of the art, and give an
overview of the main techniques used for obtaining our new hardness result for Knapsack.

The Knapsack problem. Knapsack (also known as 0/1 Knapsack) is one the most fun-
damental and well studied problems in combinatorial optimization and theoretical computer
science. In its most basic form, it is defined as follows:

Knapsack
Input: A set X = {x1, . . . , xn} of n items, a weight function w : X æ N, a profit

function p : X æ N, and two integers W and P .
Question: Is there a subset S ™ X with total weight w(S) =

q
xœS w(x) Æ W and

total profit p(S) =
q

xœS p(x) Ø P?

Knapsack enjoys a key status in algorithmic design due to numerous reasons. First,
it has many natural applications, in various practical areas such as resource allocation
and scheduling. Second, it has immense educational value: Karp’s NP-hardness proof
(from his seminal paper [35]) is the first example of a reduction to a problem involving
numbers, while the O(Wn)-time (or O(Pn)-time) algorithm by Bellman [4] from 1957 is one
of the first dynamic programming algorithms, and it is still taught in most undergraduate
algorithms courses to this day. And third, Knapsack has deep connections to other areas of
computation: For example, one of the earliest cryptosystems by Merkle and Hellman [41]
was based on Knapsack, and this was later extended to a host of other Knapsack-type

cryptosystems [7, 14, 30, 42].
Knapsack is also important since it is both a generalization and a special case of a

few other classic problems. For instance, it is a special case of the fundamental scheduling
problem of minimizing the weighted number of tardy jobs on a single machine, the so-called
1||

q
wjUj problem [43, p. 19]. The variant of Knapsack where W = P and w(x) = p(x)

for each item x œ X is precisely the Subset Sum problem:

Subset Sum
Input: A set A = {a1, . . . , an} of n non-negative integers and a target integer B.
Question: Is there a subset Aú ™ A with

q
aœAú a = B?

Entire books [37, 40] are dedicated to algorithmics for Knapsack. Quite surprisingly,
major algorithmic advances are still being discovered in recent years. These typically involve
improvements on Bellman’s classic O(min{W,P} · n)-time algorithm in cases where the
maximum weight wmax = maxx w(x) or the maximum profit pmax = maxx p(x) (or both) are
relatively small. Furthermore, they may result in faster approximation schemes. Currently,
the fastest known approximation scheme runs – after a series of improvements in recent
years [9, 12, 32] – in ÂO(n+ (1/Á)2.2) time [19]. Pisinger [44] was the first to present such an
improvement with his O(wmax · pmax · n)-time algorithm. Later followed a series of papers
with further improvements [2, 3, 36], culminating in an ÂO(min{w3

max, p
3
max} + n)-time1

algorithm by Polak et al. [45], and an ÂO(min{w2/3
max · pmax, wmax · p2/3max} · n)-time algorithm

by Bringmann and Cassis [10]. Very recently, Chen et al. [13] gave an O(n + w
2.4
max)-

time algorithm. Subsequently, Bringmann [8] as well as Jin [33] announced ÂO(n+ w
2
max)-

time algorithms (and also ÂO(n+ p
2
max)-time algorithms) for Knapsack. Cygan et al. [17]

1 We use ÂO(·) to suppress polylogarithmic factors.
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and independently Künnemann et al. [38] showed that there are no O((W + n)2≠Á)-time
algorithms for Knapsack, for any Á > 0, unless (min,+)-convolutions can be solved in truly
subquadratic time. An easy modification of their argument shows also that there are also no
O((P + n)2≠Á)-time algorithms under the same hypothesis. However, interestingly enough,
these two lower bounds do not hold simultaneously together as shown by Bringmann and
Cassis [9], who showed that Knapsack can be solved in O((W + P )1.5 + n) time.

Parameters w# and p#. As discussed above, the time complexity of Knapsack with
respect to wmax and pmax is well understood. Thus, it makes sense to consider other natural
parameters. Let w# = |{w(xi) : i œ {1, . . . , n}}| denote the number of di�erent weights in
a given Knapsack instance, and let p# = |{p(xi) : i œ {1, . . . , n}| denote the number of
di�erent profits. These parameters can be expected to be small in several natural applications
(for example, the first step of many approximation schemes is to round the profits of the
items such that only f(Á) many di�erent profits remain; see, e.g., the approximation scheme
by Deng et al. [19]) and have been initially studied for Subset Sum (i.e., when w(xi) = p(xi)
for all items xi) by Fellows et al. [23] in the context of the more general small number of

numbers paradigm. Clearly, w# Æ wmax and p# Æ pmax, and so designing algorithms which
are e�cient in terms of w# or p# is more challenging than for wmax and pmax. In particular,
since Knapsack is NP-hard and w#, p# Æ n, we cannot expect algorithms with running
times of the form (w# · n)O(1), (p# · n)O(1), or even (w# · p# · n)O(1).

Since polynomial-time algorithms with respect to w# and p# are unlikely to exist, it is
natural to consider these two parameters in the context of parameterized complexity [16]. In
this context, it is not di�cult to show that Knapsack can be formulated as an Integer Linear
Program (ILP) with either O(w#) or O(p#) variables [22]. Using one of several solvers for
ILP with few variables, such as Lenstra’s famous algorithm [39, 34], gives us algorithms with
running times of 2ÂO(w#) · |I| and 2ÂO(p#) · |I| for Knapsack, where |I| is the total encoding
length of the input (see Hermelin et al. [29] for algorithms with similar running times for the
more general 1||

q
wjUj problem). Such algorithms are known as fixed-parameter algorithms

(FPT) in the terminology of parameterized complexity.
Note that both of these algorithms cannot be significantly improved assuming the

Exponential Time Hypothesis (ETH). Indeed, it is known that assuming ETH, there are
no 2o(n)-time algorithms for Subset Sum [11, 31]. As both w# and p# are bounded by n,
and Subset Sum is a special case of Knapsack, this implies that, most likely, there are no
2o(w#) · n-time or 2o(p#) · n-time algorithms for Knapsack. Using the Strong Exponential
Time Hypothesis (SETH) instead of ETH, Abboud et al. [1] showed a stronger lower bound
for Subset Sum, excluding B

1≠Á · 2o(n)-time algorithms for any Á > 0 (which excludes
(W + P )1≠Á · 2o(w#+p#)-time algorithms for Knapsack). Once fixed-parameter algorithms
for a particular problem – in this case, Knapsack – have been devised, the next step is to
understand the kernelization complexity of the problem at hand.

Kernelization. One of the most fundamental and important techniques in parameterized
complexity is kernelization [24]:

I Definition 1. A kernelization algorithm (or kernel) for a parameterized problem � is

an algorithm that receives as input an instance I of � with parameter k and outputs in

polynomial time an instance J of � with parameter ¸ such that

(I, k) is a “yes”-instance for � if and only if (J, ¸) is a “yes”-instance for �, and

|J |+ ¸ Æ f(k) for some computable function f .

The expression f(k) is referred to as the size of the kernel.

ICALP 2024
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Thus, a kernel is a self-reduction from a problem onto itself that produces an equivalent
instance with size bounded by the input parameter. In this way, kernelization may be thought
of as preprocessing that aims to simplify or “kernelize” a problem instance by reducing its size
while preserving some solution. Following this line of thought, problems that admit kernels
of small sizes may be thought of as problems that allow e�cient and e�ective preprocessing.
For this reason, research into kernelization algorithms has seen a significant surge in recent
years, and has become one of the central topics in parameterized complexity (see e.g. the
monograph by Fomin et al. [24] and the numerous references within).

In the context of Knapsack, a kernelization algorithm for say parameter w# transforms
any Knapsack instance in polynomial time into an equivalent instance where the total
encoding length of item weights and profits are bounded by f(w#), for some function f .
Observe that the 2ÂO(w#) ·n-time algorithm for Knapsack implies a kernel of size 2ÂO(w#) [22]:
Indeed, let |I| denote the total encoding length of item weights and profits in a given
Knapsack instance I with n items and observe that n Æ |I|. The kernelization algorithm can
first check whether |I| = 2ÂO(w#). If this is the case, then the instance already has size bounded
by 2ÂO(w#), and otherwise it is solvable in polynomial time by the 2ÂO(w#) ·n = 2ÂO(w#) · |I|-time
algorithm. A similar argument shows that Knapsack has a kernel of size 2ÂO(p#).

The obvious question to ask is whether we can obtain smaller kernels with respect to
either w# or p#. Here, the gold standard in parameterized complexity are polynomial kernels,
kernels with size f(k) = k

O(1). By now we know of countless fixed-parameter tractable
(NP-hard) problems that also admit polynomial kernels [24]; yet, at the same time, for many
other problems polynomial kernels were shown to be unlikely to exist. Thus, the central
question this paper addresses is:

Does Knapsack admit a polynomial kernel with respect to either w# or p#?

Note that there are results that give encouraging indications to the question above. Etscheid
et al. [22] show that Subset Sum admits a polynomial kernel with respect to a#, the number
of di�erent numbers in the instance (i.e, a# = |{ai : i œ {1, . . . , n}}|). Can this result be
generalized to hold also for the Knapsack problem?

1.1 Our results
Our main technical result of the paper is a negative answer to the question above. We use
the by now standard framework for excluding polynomial kernels [5] based on the assumption
NP ”™ coNP/poly (whose negation implies that the polynomial hierarchy collapses) to show
the following:

I Theorem 2. Assuming NP ”™ coNP/poly, there is no polynomial kernel for Knapsack
parameterized by the number w# of di�erent weights, nor by the number p# of di�erent

profits.

The proof of the theorem above is obtained through a rather involved construction of what
is known as a composition algorithm (see Definition 4). This algorithm composes several
instances of a specialized variant of Subset Sum into a single Knapsack instance where
either w# or p# is kept relatively small. We give an overview of this algorithm in Section 1.2.

Complementing the negative result of Theorem 2, we show that when both w# and p#
are taken as a combined parameter, the polynomial kernel for Subset Sum [22] can be
extended to a polynomial kernel for Knapsack.

I Theorem 3. Knapsack parameterized by w# · p# admits a polynomial kernel.
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Thus, the lower bounds for w# and p# cannot be combined. This is somewhat reminiscent
to the situation mentioned above, where Knapsack is unlikely to have algorithms with
subquadratic running times in either (W + n) or (P + n) [17], but admits an algorithm with
subquadratic running time in (W + P + n) [9].

1.2 Technical overview
We prove Theorem 2 for the parameter w#; the statement for parameter p# then follows
by a reduction from Polak et al. [45, Chapter 4]. In broad terms, our proof follows the
standard framework for showing kernelization lower bounds that has been developed over the
years [5, 6, 18, 21]. In this framework, to exclude a polynomial kernel for a given problem �1
parameterized by some parameter k, one shows what is called an OR-composition algorithm

(see Definition 4 for a formal definition) from some known NP-hard problem �2 to �1. This
algorithm takes as input t instances of �2 of size n each, and converts these instances in
polynomial time to an equivalent instance of �1 such that k = (n lg t)O(1). Here, equivalence
means that at least one of the t input instances is a “yes”-instance for �2 if and only if
the output instance of the composition is a “yes”-instance for �1. Such a composition
algorithm then directly implies that �2 has no polynomial kernel with respect to k under
the assumption NP ”™ coNP/poly [5, 6].

We show an OR-composition algorithm from a restricted version of Subset Sum which we
call Restricted Subset Sum. In this restricted version, any instance of size n is restricted
to include only numbers from a known set ÂAn of size O(n3). This allows us to bound the
number of di�erent numbers in any t instances of Restricted Subset Sum of the same size.
Our composition algorithm then proceeds as follows: Given any t instances A0, . . . ,At≠1 of
Restricted Subset Sum, the algorithm converts any integer a œ Ai, i œ {0, . . . , t ≠ 1}, to
a Knapsack item xa (which we refer to as an encoding item) with weight w(xa) = a. We
then assign a higher profit to items corresponding to Restricted Subset Sum instances of
higher index, meaning that it is always less profitable to choose an item corresponding to
some integer a œ Ai than choosing an item corresponding to some integer a œ Ai0 for i0 > i.
This allows us to encode any solution Aú

i
™ Ai to the i’th Restricted Subset Sum instance

by a solution X (Aú
i
) to our Knapsack instance which includes all items xa for a œ Aú

i
, and

all items xa for a œ Ai0 for i0 > i. Thus, if we knew index i in advance, our composition
would be complete.

However, we do not have a priori knowledge of index i. To circumvent this, we use index

items that encode the selection of i œ {0, . . . , t ≠ 1}. These are 2 lg t items that encode the
selection of t binary values i(0), . . . , i(lg t ≠ 1) that correspond to the base-2 representation
of i, i.e., i =

q
k
i(k) · 2k. This is somewhat akin to the “colors and IDs” technique for

composition algorithms which was introduced by Dom et al. [20]. The goal of these index
items is to ensure that choosing a solution X (Aú

i
), for any value of i, allows adding a subset

of index items to the knapsack such that any such selection has the same weight and profit.
However, just adding the O(lg t) index items is not su�cient: As the composed instance shall
achieve the same profit for any solution X (Aú

i
), we need to compensate for this di�erence

in profit between X (Aú
i
) and At≠1. The di�erence in profit between solution X (Aú

i
) which

includes all items from instances Ai0 for i0 > i, and solution X (Aú
t≠1) which includes only

items corresponding to instance At≠1, is quadratic in i. Hence, we cannot compensate for
this di�erence using only the O(lg t) index items.

We therefore introduce additional O(lg2 t) items which we refer to as quadratization items.
These encode the selection of binary pair values i(k)i(¸) in i

2 =
q

k

q
¸
i(k)i(¸)·2k+¸, and allow

us to encode the quadratic compensation mentioned above. Unfortunately, this introduces
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additional technical di�culties, such as ensuring compatibility between the selection of the
index and quadratization items. Meanwhile, we still need to maintain the compatibility
between the encoding and index items as well. These di�culties are overcome using various
applications of a basic algebraic lemma that we prove in Section 2. In the end, we obtain an
instance with w# = O(n3 · lg2 t) many di�erent weights, which by previously known results
(Theorem 5) implies that a polynomial kernel would imply NP ”™ coNP/poly. The full details
of the entire composition are given in Section 3.

In Section 4, we derive a polynomial kernel by first modeling Knapsack by an ILP with
w# · p# many variables, and then reducing the size of the numbers occurring in the ILP by a
well-known result by Frank and Tardos [26].

Theorems whose proof is omitted (and can be found in the full version [28]) are marked
by ı.

2 Preliminaries

We next quickly review the kernelization lower bounds framework, introduced by Bodlaender
et al. [5] and further developed by [6, 18, 21], that will be used for proving Theorem 2. At
the heart of the framework lies the notion of a composition.

I Definition 4. A composition algorithm from a problem �1 to a parameterized problem �2
is an algorithm that receives as input t instances I0, . . . , It≠1 of size n of �1, and computes

in polynomial time an instance (J, k) of �2 such that

J is a “yes”-instance of �2 if and only if Ii is a “yes”-instance of �1 for some i œ
{0, . . . , t ≠ 1},
and k Æ (n+ lg t)O(1)

.

The main connection between composition algorithms and the exclusion of polynomial
kernels is given in the theorem below, whose proof relies on a complexity-theoretic lemma by
Fortnow and Santhanam [25].

I Theorem 5 ([5, 6]). Let �1 be an NP-hard problem, and �2 be a parameterized problem

with a composition algorithm from �1 to �2. Then �2 does not admit a polynomial kernel,

assuming NP ”™ coNP/poly.

Note that NP ”™ coNP/poly is a widely believed assumption in complexity theory, and if it
were false then the polynomial hierarchy would collapse to its third level [47].

As a final point, we will also make use of the following basic algebraic lemma throughout
our proof. Below we provide a proof for the sake of completeness.

I Lemma 6. Let b > 1 and k be positive integers. Then there exists a unique integer solution

to the equation

x0b
0 + x1b

1 + · · ·+ xk≠1b
k≠1 =

k≠1ÿ

i=0
b
i

constrained by xi œ {0, 1, . . . , b} for each i œ {0, . . . , k ≠ 1}. Namely, the solution is

x0 = x1 = · · · = xk≠1 = 1 .

Proof. We show the statement by induction on k. For k = 1, the statement is obvious. So
fix k > 1. Note that

q
k≠1
i=0 b

i = b
k≠1 +

q
k≠2
i=0 b

i = b
k≠1 + b

k≠1

b≠1 < 2bk≠1, so we have that
xk≠1 œ {0, 1}. Further, we have

q
k≠2
i=0 xib

i Æ
q

k≠2
i=0 b·bi =

q
k≠1
i=1 b

i
<

q
k≠1
i=0 b

i, implying that
xk > 0. Thus, we have xk≠1 = 1 and xi = 1 for i œ {0, . . . , k ≠ 2} follows by induction. J

Further, for any function f : S æ R, we define f(SÕ) :=
q

sœSÕ f(s) for any S
Õ ™ S.
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3 No Polynomial Kernel for Parameter w#

In the following, we present the proof of Theorem 2 for parameter w#, the total number of
di�erent weights in a Knapsack instance. As mentioned above, in our proof we construct a
composition from a restricted version of Subset Sum to Knapsack parameterized by w#.
The proof is divided into four parts: In the first part, we introduce the Restricted Subset
Sum problem, and prove that it is NP-hard. In the second part we begin to describe our
composition by showing how to encode t instances A0, . . . ,At≠1 of Restricted Subset
Sum into a single set X of encoding items. In the third part we describe the set Y of
quadratization items, and the set Z of index items, which together form the instance selection
gadget of the composition. The final part is devoted to finishing details, and to proving the
correctness of the composition.

3.1 Restricted Subset Sum
We start with a restricted version of Subset Sum which allows us to bound the number of
di�erent numbers appearing in any set of t Subset Sum instances. Namely, in our restricted
version of Subset Sum, any instance of size n contains numbers from a restricted set of
O(n3) numbers. Apart from this, its useful properties are that the target value only depends
on the number of input numbers, and that any solution must have the same cardinality.
For this, we define the set of possible numbers which may be contained in a Restricted
Subset Sum instance of size n as

ÂAn :=
)
(3n+ 1)j1 + (3n+ 1)j2 + (3n+ 1)j3 : j1, j2, j3 œ {1, . . . , 3n}

*
.

Note that ÂAn contains 27n3 = O(n3) integers. Furthermore, we also define a global target
for all instances of size n by Bn :=

q3n
j=1(3n+ 1)j .

Restricted Subset Sum
Input: A set A = {a1, . . . , a3n} of 3n integers from ÂAn with

q3n
j=1 aj = 3Bn.

Question: Is there a subset Aú ™ A with |Aú| = n such that
q

aœAú a = Bn?

I Lemma 7. Restricted Subset Sum is NP-complete.

Proof. We present a reduction from a variant of Restricted Exact Cover by 3-Sets
where each element appears in exactly three sets. Recall that in Restricted Exact Cover
by 3-Sets, the input consists of a set T consisting of 3-element subsets of {1, . . . , 3n} such
that each j œ {1, . . . , 3n} appears in exactly three sets from T , and the question is whether
there exists a subset T Õ ™ T such that each element from {1, . . . , 3n} appears in exactly one
set from T Õ. This variant of Restricted Exact Cover by 3-Sets is well-known to be
NP-hard [27].

Our reduction is almost identical to the original hardness reduction for Subset Sum by
Karp [35], only that we reduce from Restricted Exact Cover by 3-Sets instead of the
more general Exact Cover: Let T be an instance of Restricted Exact Cover by 3-Sets.
For each 3-element set T œ T , a number aT :=

q
jœT

(3n+ 1)j is added to the Restricted
Subset Sum instance. In this way, the constructed instance of Restricted Subset Sum is
A := {aT : T œ T }. Note that aT œ ÂAn for every T œ T . Further, since each j œ {1, . . . , 3n}
appears in exactly three sets from T , we have

q
TœT aT = 3

q3n
j=1(3n+ 1)j = 3Bn. Below

we prove the correctness of this construction.
Suppose there is a solution T Õ ™ T for the Restricted Exact Cover by 3-Sets

instance. Then |T Õ| = n and we have
q

TœT aT =
q3n

¸=1(3n+1)¸ = Bn. Conversely, suppose
there is a solution Aú ™ A with |Aú| = n for the Restricted Subset Sum instance. Let
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T ú := {T : aT œ Aú}. Since each term (3n+ 1)j appears only 3 < 3n+ 1 times, Lemma 6
implies that the only way for some numbers from A to add up to Bn =

q3n
j=1(3n+1)j is that

each term (3n+1)j appears in exactly one aT œ Aú. In other words, for each j œ {1, . . . , 3n},
there is exactly one T œ T ú with j œ T . J

3.2 Encoding Gadget
In the following, we show how to encode t instances of Restricted Subset Sum into a single
Knapsack instance. Throughout the remainder of the section, we use A0, . . . ,At≠1 to denote
the t input instances of Restricted Subset Sum to our composition, where |Ai| = 3n for
each i œ {0, . . . , t≠1}. By copying instances, we may assume without loss of generality that t
is a power of 2, i.e., t = 2s for some s œ N. Furthermore, we let Ai = {ai1, . . . , ai3n} denote
the i’th instance for each i œ {0, . . . , t ≠ 1}. By the definition of Restricted Subset Sum,
we have a

i

j
œ ÂAn for each each i œ {0, . . . , t ≠ 1} and j œ {1, . . . , 3n}, and

q
j
a
i

j
= 3Bn for

each i œ {0, . . . , t ≠ 1}.
Recall that Subset Sum can be seen as a special case of Knapsack where the profit

of each item equals its weight. This yields an easy reduction from each single Restricted
Subset Sum instance Ai to Knapsack. We apply this reduction with a slight modification:
To capture the condition that each solution of Restricted Subset Sum shall contain
exactly n numbers, we add a large number X = 3tnBn to each number in a Restricted
Subset Sum instance, and set B := Bn + n ·X. We also increase the profit of each item
corresponding to the i’th Restricted Subset Sum instance by adding i · 3B to its profit.
More precisely, for each i œ {0, . . . , t ≠ 1} and j œ {1, . . . , 3n}, we construct an encoding

item x
i

j
with

w(xi

j
) = X + a

i

j
, and

p(xi

j
) = X + a

i

j
+ i · 3B.

Intuitvely, adding the constant X to the weights ensures that all encoding items have
roughly the same size, so for any weight budget W ú, the set of maximum profit will always
have size ÂW ú

/XÊ or ÂW ú
/XÊ ≠ 1. Adding the constant X to the profits of xi

j
ensures

that for any two sets of encoding items with di�erent cardinalities, the larger one will
always have the larger profit. Further, adding i · 3B to the profits will ensure that it
will be always more profitable to pick an item x

i1
j1

over item x
i0
j0

for any i1 > i0. We use
X = {xi

j
: i œ {0, . . . , t ≠ 1}, j œ {1, . . . , 3n}} to denote the set of all encoding items.

Let Xi denote the set of encoding items corresponding to instance Ai of Restricted
Subset Sum, i.e., Xi = {xi

j
: j œ {1, . . . , 3n}}. Note that w(Xi) = 3B and p(Xi) =

3B+9nB · i. Now suppose Ai has a solution Aú
i

µ Ai. We would like to encode this solution
using the following set of encoding items

X (Aú
i
) = X ú

i
fi Xi+1 fi Xi+2 fi · · · fi Xt≠1,

where X ú
i
:= {xj

i
: aj

i
œ Aú

i
} is the set of items corresponding to Aú

i
. An easy calculation

shows that if the elements of Aú
i
sum up to B (i.e., Aú

i
is indeed a solution), then w(X (Aú

i
)) =

(3t ≠ 3i ≠ 2) ·B and p(X (Aú
i
)) = (3t ≠ 3i ≠ 2) ·B + (

!
t

2
"

≠
!
i+1
2

"
+ i

3 ) · 9nB. The next lemma
shows that the converse is also true; namely, that if there is a subset of encoding items with
the above weight and profit, then there must be a solution to the i’th Restricted Subset
Sum instance.

I Lemma 8 (ı). Let i œ {0, . . . , t≠ 1}. There exists a subset X ú ™ X of encoding items with

total weight

w(X ú) Æ (3t ≠ 3i ≠ 2) ·B
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and total profit

p(X ú) Ø (3t ≠ 3i ≠ 2) ·B +
33

t

2

4
≠

3
i+ 1
2

4
+ i

3

4
· 9nB

for our Knapsack instance if and only if there exist a solution Aú
i

™ Ai to the i’th

Restricted Subset Sum instance.

Lemma 8 implies that if we knew which Restricted Subset Sum instance Ai has
a solution, then we could easily set the weight and profit of our composed Knapsack
instance to encode this solution. However, we do not have prior information about index i.
Furthermore, observe that as the value of i increases, both the profit and weight of the
required solution decrease. Since we do not know the value of i, it would be beneficial to
balance all possible choices of i in terms of weight and profit.

Thus, the remaining construction focuses on ensuring that solutions to the Knapsack
instance corresponding to di�erent Ai’s all have the same weight and profit. In particular, the
construction guarantees that any choice of i can obtain a profit of (3t≠ 2) ·B+9 ·

!
t

2
"
·nB, in

addition to some large constant. Considering the profit guaranteed by solutions of Lemma 8,
we need to compensate for the loss of the quadratic term

33
i+ 1
2

4
≠ i

3

4
· 9nB . (1)

We call the term above the compensation term of i. It will play an important role in the
remainder of our construction.

3.3 Instance Selection Gadget
We next add additional items to our Knapsack instance that will serve as an instance
selection gadget. This gadget selects an instance of Restricted Subset Sum for which
presumably there is a solution. The gadget consists of two types of items: The index items

which encode an index of an Restricted Subset Sum instance i œ {0, . . . , t ≠ 1}, and
quadratization items that help to encode the compensation term of i given in Equation 1.

Quadratization items. The main idea behind the quadratization items is as follows: Any
integer i œ {0, . . . , t ≠ 1} can be written as the sum

i =
lg t≠1ÿ

k=0
i(k) · 2k,

for some binary values i(0), . . . , i(lg t≠ 1) œ {0, 1}. Thus, using these same lg t binary values,
we can write the compensation term of i as

33
i+ 1
2

4
≠ i

3

4
· 9nB =

3
0.5 · i2 + 1

6 · i
4
· 9nB

=
A
0.5 ·

lg t≠1ÿ

k=0

lg t≠1ÿ

¸=0
i(k) · i(¸) · 2k+¸ + 1

6

lg t≠1ÿ

k=0
i(k) · 2k

B
· 9nB

=
1
9 ·

ÿ

i(k)=1,
i(¸)=1,
k<¸

2k+¸ + 4.5 ·
ÿ

i(k)=1

2k+k + 1.5 ·
ÿ

i(k)=1

2k
2
· nB .
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(2)

Thus, we construct 3·
!lg t

2
"
+lg t di�erent quadratization items, each modeling the contribution

of all possible values of i(k) and i(¸), k Æ ¸ œ {0, . . . , lg t≠1}, in the last equality of Equation 2
above.

Let Y = t
2 · 3nB, and observe that Y is larger than the total profit of all encoding items.

Furthermore, let f : {0, . . . , lg t≠ 1}2 æ {0, . . . , lg2 t≠ 1} be any bijective function. For each
pair of indices k and ¸ with 0 Æ k < ¸ Æ lg t≠ 1, we add three quadratization items y1,0

k,¸
, y0,1

k,¸
,

and y
1,1
k,¸

with the following weight and profit:
w(y1,0

k,¸
) = p(y1,0

k,¸
) = 3f(k,¸) · Y .

w(y0,1
k,¸

) = p(y0,1
k,¸

) = 3f(¸,k) · Y .
w(y1,1

k,¸
) = (3f(k,¸) + 3f(¸,k)) · Y and p(y1,1

k,¸
) = (3f(k,¸) + 3f(¸,k)) · Y + 2k+¸ · 9nB.

Furthermore, for each k œ {0, . . . , lg t ≠ 1}, we add a single quadratization item y
1,1
k,k

with:
w(y1,1

k,k
) = 3f(k,k) · Y and p(y1,1

k,k
) = 3f(k,k) · Y + 2k+k · 4.5nB + 2k · 1.5nB.

We use Y = {y1,0
k,¸

, y
0,1
k,¸

, y
1,1
k,¸

: 0 Æ k < ¸ Æ lg t ≠ 1} fi {y1,1
k,k

: 0 Æ k Æ lg t ≠ 1} to denote the
set of all quadratization items.

The role of the additional terms that depend on Y will become clearer when we introduce
the index items. But for now, one can observe that the smaller terms used in the profits
of y1,1

k,¸
and y

1,1
k,k

allow us to encode the compensation term of i. In particular, an easy
calculation using Equation 2 gives us the following useful lemma:

I Lemma 9. Let i œ {0, . . . , t ≠ 1}, and let i(0), . . . , i(t ≠ 1) œ {0, 1} be binary values such

that i =
q

k
i(k) · 2k. Moreover, let Yi denote the set of quadratization items defined by

Yi = {yi(k),i(¸)
k,¸

: 0 Æ k Æ ¸ Æ lg t ≠ 1},

where y
i(k),i(¸)
k,¸

is the empty item (i.e., an item with weight and profit 0) if i(k) = i(¸) = 0.
Then

p(Yi) = w(Yi) +
13

i+ 1
2

4
≠ i

3

2
· 9nB .

Index items. The index items ensure that only quadratization items that correspond to
subsets Yi as in Lemma 9 above can be picked into any solution of our Knapsack instance.
In particular, the index items will encode the selection of an index i œ {0, . . . , lg t ≠ 1} that
will be compatible with the selection of a subset Yi of quadratization items.

Let Z = lg2 tY 2 · 3lg2
t, and observe that Z is larger than the profit of all encoding and

quadratization items in total. For each k œ {0, . . . , lg t ≠ 1}, we construct two index items z
0
k

and z
1
k
corresponding to selecting either i(k) = 0 or i(k) = 1 in the binary representation

i(0), . . . , i(lg t ≠ 1) of i. The weight and profit of these two items are defined by:
w(z0

k
) = p(z0

k
) = 2k · Z +

qlg t≠1
¸=0 3f(k,¸) · Y .

w(z1
k
) = p(z1

k
) = 2k · Z + 2k · 3B.

We use Z = {z0
k
, z

1
k
: 0 Æ k Æ lg t ≠ 1} to denote the set of all index items.

Let i œ {0, . . . , t ≠ 1}, and let i(0), . . . , i(t ≠ 1) œ {0, 1} be binary values such that
i =

q
k
i(k) · 2k. Observe that the set of index items Zi defined by

Zi = {zi(k)
k

: 0 Æ k Æ lg t ≠ 1}

naturally corresponds to index i. In the lemma below, we show that due to our selection of
the large value Z, any set of items of su�ciently small weight and su�ciently large profit
contains a subset of index items that corresponds precisely to some index i œ {0, . . . , t ≠ 1}.
We let wZ denote the weight function wZ(x) = Âw(x)/ZÊ, and pZ denote the profit function
pZ(x) = Âp(x)/ZÊ.
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I Lemma 10 (ı). Let S ™ X fiY fiZ be a set of items with wZ(S) Æ t≠1 and pZ(S) Ø t≠1.
Then there exists some i œ {0, . . . , t ≠ 1} for which S fl Z = Zi.

Now let us address the terms that depend on Y in the profit and weight of the in-
stance selection items. Define T to be the constant T :=

qlg2
t≠1

k=0 3k. Now consider some
set Zi of index items corresponding to index i œ {0, . . . , t ≠ 1}. Let wY denote the weight
function wY (x) = Â(w(x) ≠ Z · wZ(x))/Y Ê, and similarly define the profit function pY

as pY (x) = Â(p(x) ≠ Z · pZ(x))/Y Ê. Then one can observe that, by construction of the
weights and profits above, we have that both wY (Zi) + wY (Yi) and pY (Zi)+pY (Yi) equal T .
Moreover, any other set of items with wY -weight at most T has lesser profit. This ensures a
compatible selection of the index items and the quadratization items, formally proven in the
lemma below.

I Lemma 11. Let S ™ X fiY fiZ be a set of items with weight wZ(S) Æ (t≠ 1), wY (S) Æ T ,

pZ(S) Ø (t ≠ 1), pY (S) Ø T , and there is no set S Õ ™ X fi Y fi Z with w(S Õ) Æ w(S) and

p(S Õ) > p(S). Then S fl Y = Yi and S fl Z = Zi for some i œ {0, . . . , t ≠ 1}.

Proof. Let Zú = S fl Z and Yú = S fl Y. As wZ(S) Æ (t ≠ 1) and pZ(S) Ø (t ≠ 1), by
Lemma 10 we have that Zú = Zi for some i œ {0, . . . , t≠ 1}. Thus, to complete the proof, we
focus on showing that Yú = Yi. Let i(0), . . . , i(lg t≠ 1) œ {0, 1} be such that i =

q
k
i(k) · 2k.

Observe that by the construction of the weights and profits of the index items, we have
wY (Zi) = pY (Zi) =

q
–(k)=0

q
¸
3f(k,¸). From this, one can see that both wY (Zi) + wY (Yú)

and wY (Zi) + pY (Yú) equal
1 ÿ

i(k)=0,
0Æ¸Ælg t≠1

3f(k,¸)
2
+

1 ÿ

y
1,0
k,¸

œYi

3f(k,¸) +
ÿ

y
0,1
k,¸

œYi

3f(¸,k) +
ÿ

y
1,1
k,¸

œYi

(3f(k,¸) + 3f(¸,k)) +
ÿ

y
1,1
k,k

œYi

3f(k,k)
2
=

1 ÿ

i(k)=0,
0Æ¸Ælg t≠1

3f(k,¸)
2
+

1 ÿ

i(k)=1,
i(¸)=0,
k<¸

3f(k,¸) +
ÿ

i(k)=1,
i(¸)=0,
k>¸

3f(k,¸) +
ÿ

i(k)=1,
i(¸)=1,
k ”=¸

3f(k,¸) +
ÿ

i(k)=1

3f(k,k)
2

.

Note that as wY (Zi) + wY (Yú) = wY (S) Æ T , the sum above is bounded from above by T .
Moreover, by Lemma 6, the only way this reaches the bound with equality is if we have

wY (Yú) =
ÿ

i(k)=1,
i(¸)=0,
k<¸

3f(k,¸) +
ÿ

i(k)=1,
i(¸)=0,
k>¸

3f(k,¸) +
ÿ

i(k)=1,
i(¸)=1,
k ”=¸

3f(k,¸) +
ÿ

i(k)=1

3f(k,k) =
ÿ

i(k)=0,
0Æ¸Ælg t≠1

3f(k,¸) ,

which then gives us

wY (Zi) + wY (Yú) =
ÿ

i(k)=0,
0Æ¸Ælg t≠1

3f(k,¸) +
ÿ

i(k)=1,
0Æ¸Ælg t≠1

3f(k,¸) =
lg2

t≠1ÿ

k=0
3k = T .

(Here, the penultimate equality follows because f(·, ·) is bijective.)
Note that by construction and Lemma 6, the only sets of quadratization items Yú with

wY (Yú) = pY (Yú) =
q

–(k)=1
q

¸
3f(k,¸) are either Yi, or any set of quadratization items

obtained from Yi by replacing some y1,1
k,¸

œ Yi with y
1,0
k,¸

and y
0,1
k,¸

. If S contained y
1,0
k,¸

and y
0,1
¸,k

for some 0 Æ k < ¸ Æ lg t ≠ 1, then S Õ := (S \ {y1,0
k,¸

, y
0,1
k,¸

}) fi {y1,1
k,¸

} satisfies w(S Õ) = w(S)
and p(S Õ) > p(S), a contradiction to the definition of S. Thus, we conclude that Yú = Yi

and the lemma is proven. J
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Table 1 The weights and profits of the items used in the proof of Theorem 2 for parameter w#.
The three large constants used in the proof are X = 3tn ·Bn, Y = t

2 · 3nB, and Z = lg2 tY 2 · 3lg
2
t.

Item Weight Profit Index Range

z
1
k 2k · Z + 2k · 3B 2k · Z + 2k · 3B 0 Æ k Æ lg t ≠ 1

z
0
k 2k · Z +

q
¸
3f(k,¸) · Y 2k · Z +

q
¸
3f(k,¸) · Y 0 Æ k Æ lg t ≠ 1

y
1,0
k,¸

3f(k,¸) · Y 3f(k,¸) · Y 0 Æ k < ¸ Æ lg t ≠ 1

y
0,1
k,¸

3f(¸,k) · Y 3f(¸,k) · Y 0 Æ k < ¸ Æ lg t ≠ 1

y
1,1
k,¸

(3f(k,¸) + 3f(¸,k)) · Y (3f(k,¸) + 3f(¸,k)) · Y + 2k+¸ · 9nB 0 Æ k < ¸ Æ lg t ≠ 1

y
1,1
k,k

3f(k,k) · Y 3f(k,k) · Y + 2k+k · 4.5nB + 2k · 1.5nB 0 Æ k Æ lg t ≠ 1

x
i

j X + a
i

j X + a
i

j + i · 3B 0 Æ i Æ t ≠ 1,
1 Æ j Æ 3n

3.4 Correctness
Our entire Knapsack instance consists of all items X fi Y fi Z. An overview of the weight
and profit of each item can be found in Table 1. We set the weight W of the Knapsack
instance to

W := (t ≠ 1) · Z + T · Y + (3t ≠ 2) ·B

and the desired profit P to

P := W +
3
t

2

4
· 9nB

= (t ≠ 1) · Z + T · Y + (3t ≠ 2) ·B +
3
t

2

4
· 9nB .

In the next two lemmas below we prove the correctness of our constructed composition.

I Lemma 12. If Ai is a “yes”-instance of Restricted Subset Sum for some i œ
{0, . . . , t ≠ 1} then there exists a subset of items S ™ X fi Y fi Z with w(S) Æ W and

p(S) Ø P .

Proof. SupposeAi is a “yes”-instance of Restricted Subset Sum for some i œ {0, . . . , t≠1},
and let i(0), . . . , i(lg t ≠ 1) œ {0, 1} be such that i =

q
k
i(k) · 2k. Then w(X (Ai)) =

(3t≠3i≠2)·B as discussed in Section 3.2. Furthermore, w(Yi) = wY (Yi)·Y = (T≠wY (Zi))·Y
as is shown in the proof of Lemma 11. Finally, we have wZ(Zi) = (t ≠ 1) · Z, and

w(Zi) = wZ(Zi) + wY (Zi) +
ÿ

i(k)=1

2k · 3B = (t ≠ 1) · Z + wY (Zi) · Y + i · 3B .

So altogether we have

w(X (Ai) fi Yi fi Zi) = (3t ≠ 3i ≠ 2) ·B + (T ≠ wY (Zi)) · Y
+ (t ≠ 1) · Z + wY (Zi) · Y + i · 3B

= (t ≠ 1) · Z + T · Y + (3t ≠ 2) ·B = W .
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Let us next calculate the profit of X (Ai) fi Yi fi Zi. Recall that p(X (Ai)) = w(X (Ai)) +
(
!
t

2
"

≠
!
i+1
2

"
+ i

3 ) · 9nB as discussed in Section 3.2. By Lemma 9 we have p(Yi) = w(Yi) +
(
!
i+1
2

"
≠ i

3 ) · 9nB, and by construction we have p(Zi) = w(Zi). Thus, altogether we have

p(X (Ai) fi Yi fi Zi) = w(X (Ai)) + (
3
t

2

4
≠

3
i+ 1
2

4
+ i

3) · 9nB

+ w(Yi) + (
3
i+ 1
2

4
≠ i

3) · 9nB + w(Zi)

= w(X (Ai) fi Yi fi Zi) +
3
t

2

4
· 9nB = P .

Thus the set of items S = X (Ai) fi Yi fi Zi is a solution for our Knapsack instance, and the
lemma is proven. J

I Lemma 13. If there exists a subset of items S ™ X fiY fiZ with w(S) Æ W and p(S) Ø P

then there is some i œ {0, . . . , t≠1} for which Ai is a “yes”-instance of Restricted Subset
Sum.

Proof. Let S be a solution with w(S) Æ W and p(S) Ø P . Let X ú = S fl X , Yú = S fl Y,
and Zú = S fl Z. Then as w(S) Æ W < t · Z and p(S) Æ P < t · Z, we have by Lemma 10
that Zú = Zi for some i œ {0, . . . , t ≠ 1}. Assume, without loss of generality, that S is of
maximal profit among all solutions with weight at most w(S) (i.e., there is no set S Õ with
w(S Õ) Æ w(S) and p(S Õ) > p(S). Then, by Lemma 11, we have Yú = Yi. As shown in the
proof of Lemma 12, we have w(Zi) + w(Yi) = (t ≠ 1) · Z + T · Y + i · 3B. Thus,

w(X ú) Æ W ≠ w(Zi) ≠ w(Yi) = (3t ≠ 3i ≠ 2) ·B .

Moreover, by Lemma 9 we have p(Yi) = w(Yi) + (
!
i+1
2

"
≠ i

3 ) · 9nB, and by construction we
have p(Zi) = w(Zi). Thus,

p(X ú) Ø P ≠ p(Zi) ≠ p(Yi)

= P ≠ w(Zi) ≠ w(Yi) ≠
13

i+ 1
2

4
≠ i

3

2
· 9nB

= P ≠ (t ≠ 1) · Z ≠ T · Y ≠ i · 3B ≠
13

i+ 1
2

4
≠ i

3

2
· 9nB

= (3t ≠ 3i ≠ 2) ·B+
13

t

2

4
≠

3
i+ 1
2

4
+ i

3

2
· 9nB .

It therefore follows by Lemma 8 that instance Ai is indeed a “yes”-instance of Restricted
Subset Sum, and the lemma follows. J

Proof of Theorem 2. We presented above an algorithm that composes any t instances
A0, . . . ,At≠1 of Restricted Subset Sum into a single instance of Knapsack in polynomial-
time. By Lemmas 12 and 13, the constructed Knapsack instance is a “yes”-instance if
and only if Ai is “yes”-instance of Restricted Subset Sum for some i œ {0, . . . , t ≠ 1}.
Observe that total number of di�erent weights in our constructed Knapsack instance is

w# Æ | ÂAn|+ |Y|+ |Z| = O(n3 + lg2 t) .

Thus our algorithm fulfills all requirements of a composition algorithm, as given in Definition 4.
The proof for w# then follows by a direct application of Theorem 5. The statement for p#
follows by applying the reduction from Polak et al. [45, Chapter 4] which reduces an instance
with w# = k di�erent item weights to an instance with p# = k di�erent item profits. J
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4 Polynomial Kernel for Parameter w# · p#

In this section we present a polynomial kernel for Knapsack parameterized by w# + p#,
thereby proving Theorem 3. Our kernel is a direct generalization of the polynomial kernel
for Subset Sum parameterized by a# of Etscheid et al. [22].

The presented kernel utilizes two classic results: First, we use the fact that integer
programming is fixed-parameter tractable with respect to the number of variables (this was
first shown by Lenstra [39], and the currently best known running time with respect to the
number of variable is due to Reis and Rothvoss [46]):

I Theorem 14 ([46]). Integer Linear Programming with input size s (i.e., the number

of bits needed to encode the instance) and n variables can be solved in 2O(n lg lgn) · sO(1)
time.

Second, we use the following theorem by Frank and Tardos [26]:

I Theorem 15 ([26]). There is an algorithm that, given a vector w œ Qr
and a natural

number N , computes in polynomial time a vector w œ Qr
with ÎwÎŒ Æ 24r3 ·Nr

2+2r
and

sign(w · b) = sign(w · b) for every b œ Zr
with ÎbÎ1 Æ N .

Proof of Theorem 3. Let w1, . . . , ww# be the di�erent weights and p1, . . . , pp# be the di�er-
ent profits in a given Knapsack instance with n items. We denote by ni,j for i œ {1, . . . , w#}
and j œ {1, . . . , p#} the number of items with weight wi and profit pj . First note that the
following is an ILP formulation of Knapsack with w# · p# many variables xi,j , one for each
i œ {1, . . . , w#} and j œ {1, . . . , p#}, and two inequalities:

w#ÿ

i=1

p#ÿ

j=1
xi,j · wi Æ W

w#ÿ

i=1

p#ÿ

j=1
xi,j · pj Ø P

xi,j œ {0, 1, . . . , ni,j}.

(3)

By Theorem 14, if w# · p# · lg lg(w# · p#) Æ lgn (recall that n denotes the total number
of items of the Knapsack instance), then the instance can be solved in polynomial time
using ILP (3). Thus, devising a polynomial kernel in this case is trivial. So assume that
w# · p# · lg(w# · p#) > lgn. To reduce the encoding length of ILP (3), we apply Theorem 15
to the first two inequalities of ILP (3) as follows: let w

ú be a w# · p#-dimensional vector
whose (p# · (i≠ 1)+ j)’th component equals wi, for each i œ {1, . . . , w#} and j œ {1, . . . , p#}.
We apply Theorem 15 to the (w# ·p#+1)-dimensional vector w := (wú

,≠W ) and N := n+1,
resulting in a vector (wú

,≠W ). Similarly, let p
ú be a w# · p#-dimensional vector whose

(p# · (i ≠ 1) + j)’th component equals pj , for i œ {1, . . . , w#} and j œ {1, . . . , p#}. We apply
Theorem 15 to the vector w := (≠p

ú
, P ) and N := n+ 1, resulting in a vector (≠p

ú
, P ). By

Theorem 15, ILP (3) is equivalent to the following ILP (4):

w
ú · x Æ W

p
ú · x Ø P

xi,j œ {0, 1, . . . , ni,j}
(4)

By Theorem 15, each number from ILP (4) has encoding length O(r3+r
2 lgn) for r = w# ·p#.

Since lgn Æ r · lg r, it follows that the size of ILP (4) is O(r4 · lg r). As Knapsack is NP-
complete, and Integer Linear Programming is in NP (see e.g. [15]), we can reduce
ILP (4) in polynomial time to an instance of Knapsack. The resulting Knapsack instance
is equivalent to the original instance, and has size polynomial in r = w# · p#. J
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Using the reduction from Unbounded Knapsack (i.e., the variation of Knapsack where a
solution is a multiset of items instead of a regular set) to Knapsack (essentially also used
e.g. by Etscheid et al. [22, Theorem 12]), one can also make the reduction from ILP (4) to
Knapsack explicit, resulting in a kernel of size ÂO((w# · p#)5); see the full version [28] for
details.
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Abstract
The k-Opt algorithm is a local search algorithm for the Traveling Salesman Problem. Starting with
an initial tour, it iteratively replaces at most k edges in the tour with the same number of edges
to obtain a better tour. Krentel (FOCS 1989) showed that the Traveling Salesman Problem with
the k-Opt neighborhood is complete for the class PLS (polynomial time local search) and that the
k-Opt algorithm can have exponential running time for any pivot rule. However, his proof requires
k ∫ 1000 and has a substantial gap. We show the two properties above for a much smaller value of
k, addressing an open question by Monien, Dumrauf, and Tscheuschner (ICALP 2010). In particular,
we prove the PLS-completeness for k Ø 17 and the exponential running time for k Ø 5.
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1 Introduction

The well-known Traveling Salesman Problem (TSP) consists of finding a spanning cycle
of an edge weighted complete graph, such that the total edge weight of the cycle is the
smallest possible. A popular heuristic for this problem is a local search algorithm called
k-Opt. Starting with an arbitrary tour, it iteratively replaces at most k edges in the tour
with the same number of edges, as long as the resulting tour has smaller total edge weight.
We define TSP/k-Opt to be the problem of finding a local optimum for a TSP instance with
the k-Opt algorithm.

A fundamental question in the area of local search algorithms is to determine the number
of iterations a given local search algorithm may need in the worst case. A local search
algorithm with a specified pivot rule has the is-exp property if there exist problem instances
and initial solutions for which the local search algorithm requires an exponential number of
iterations. For example, it is well known that the Simplex algorithm for linear programming
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has the is-exp property for many di�erent pivot rules [12, 9, 1, 6]. For TSP, Chandra, Karlo�,
and Tovey [2] showed that TSP/k-Opt has the is-exp property. This even holds for Euclidean
TSP with the 2-Opt neighborhood [5].

For the Simplex algorithm it is not known whether there exists a pivot rule that guarantees
a polynomial number of iterations. This is one of the most important open problems in the
area of linear programming. Contrary to this Krentel [13] proved in 1989 that for su�ciently
large values of k, TSP/k-Opt exhibits the all-exp property, that is, the k-Opt algorithm
requires an exponential number of iterations to find a local optimum, for all possible pivot
rules and for infinitely many pairs of a TSP instance and an initial tour. Krentel estimated
that his proof yields a value for k between 1,000 and 10,000. By using a straight forward way
to implement some missing details in Krentel’s proof it was recently shown that his proof
yields the value 14,208 for k [8].

Following Krentel’s paper there have been claims in other papers [10, 22] through private
communication with Krentel that a careful analysis of the original proof can bring down the
value to k = 8 and conceivably to k = 6. However, there has been no available written proof
for these claims. In fact, up to date, the 1989 paper of Krentel [13] is the only paper on the
topic. Consequently, Monien, Dumrauf, and Tscheuschner [16] posed an open question on
the complexity of TSP/k-Opt for k π 1000.

In this paper, we show that TSP/k-Opt has the all-exp property for much smaller k:

I Theorem 1. TSP/k-Opt has the all-exp property for k Ø 5.

Our proof of Theorem 1 is based on a new reduction from the bounded degree Max-Cut
problem to TSP (see Section 3) which involves the construction of so called parity gadgets
(see Section 3.1). With a first such approach we are able to prove the all-exp property
of TSP/k-Opt for k Ø 13 (see Section 4). To lower the value of k additional ideas are
required. First, we exploit the structure of a recent construction of Michel and Scott [15] of a
degree-four bounded Max-Cut instance with the all-exp property under the flip neighborhood.
Second, we show how to use global properties of our overall reduction to relax some local
conditions on our parity gadgets. Combining these two ideas we achieve the value k Ø 9
(see Section 5). To arrive at our final result for k Ø 5 we have to modify the construction
of Michel and Scott [15]. Moreover, we have to combine our parity gadgets with so called
double gadgets and use a labeling scheme to assign di�erent gadgets at di�erent places in the
reduction. These results we present in Section 6.

The second main contribution of our paper is a proof of the following result:

I Theorem 2. TSP/k-Opt is PLS-complete for k Ø 17.

The complexity class PLS and the notion of PLS-completeness (for definitions see Section 2)
were introduced in 1988 by Johnson, Papdimitriou, and Yannakakis [11] to capture the
observation that for many NP-hard problems it is not only di�cult to compute a global
optimum but even computing a local optimum is also hard. Examples of such problems
are the Maximum Satisfiability problem [14], Max-Cut [21], and Set Cover [3]. The PLS-
completeness of a problem means that a polynomial time algorithm to find a local optimum
for that problem would imply polynomial time algorithms for finding a local optimum for all
problems in PLS.

The PLS-completeness of TSP/k-Opt was proved by Krentel [13] for k ∫ 1000. However,
his proof has a substantial gap as he assumes that edges of weight infinity cannot occur in a
local optimum. We present in Section 7 the first rigorous proof for the PLS-completeness of
TSP/k-Opt and at the same time drastically lower the value of k from Krentel’s k ∫ 1000 [13]
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to k Ø 17. Our proof uses several of the ideas used in our proof for Theorem 1. But in this
case we need to take more care on the order in which the parity gadgets are plugged together
in our construction. In addition, we show in Lemma 14 how to assign specific weights to the
non-edges in our construction to prove that no local optimum can contain such an edge. We
achieve this by defining a weight assignment that exploits the special structure of the TSP
instance resulting from our PLS-reduction. This is the first rigorous proof of such a result
for the k-Opt algorithm and there seems not to be a generic way to prove it for arbitrary
TSP instances (as for example those constructed by Krentel [13]).

2 Preliminaries

2.1 Local search problems and the class PLS
A local search problem P is an optimization problem that consists of a set of instances DP ,
a finite set of (feasible) solutions FP (I) for each instance I œ DP , an objective function
fP that assigns an integer value to each instance I œ DP and solution s œ FP (I), and a
neighborhood NP (s, I) ™ FP (I) for each solution s œ FP (I). The size of every solution
s œ FP (I) is bounded by a polynomial in the size of I. The goal is to find a locally
optimal solution for a given instance I; that is, a solution s œ FP (I), such that no solution
s

Õ œ NP (s, I) yields a better objective value than fP (s, I). Formally, this means, for all
s

Õ œ NP (s, I), fP (s, I) Æ fP (sÕ
, I) if P is a minimization problem, and fP (s, I) Ø fP (sÕ

, I) if
P is a maximization problem.

A standard local search algorithm for an instance I proceeds as follows. It starts with
some initial solution s œ FP (I). Then it iteratively visits a neighbor with better objective
value, until it reaches a local optimum. If a solution has more than one better neighbor, the
algorithm has to choose one by some prespecified rule, often referred as a pivot rule.

A local search problem P has the all-exp property, if there are infinitely many pairs of
an instance I of DP and an initial solution s œ FP (I), for which the standard local search
algorithm always needs an exponential number of iterations for all possible pivot rules.

A local search problem P is in the class PLS [11], if there are three polynomial time
algorithms AP , BP , CP such that

Given an instance I œ DP , AP returns a solution s œ FP (I);
Given an instance I œ DP and a solution s œ FP (I), BP computes the objective value
fP (s, I) of s; and
Given an instance I œ DP and a solution s œ FP (I), CP returns a neighbor of s with
strictly better objective value, if it exists, and “locally optimal”, otherwise.

A PLS-reduction from a problem P œ PLS to a problem Q œ PLS is a pair of polynomial-time
computable functions h and g that satisfy:
1. Given an instance I œ DP , h computes an instance h(I) œ DQ; and
2. Given an instance I œ DP and a solution sq œ FQ(h(I)), g returns a solution sp œ FP (I)

such that if sq is a local optimum for h(I), then sp is a local optimum for I.
A problem Q œ PLS is PLS-complete [11] if for every problem P œ PLS, there exists a PLS
reduction from P to Q.

2.2 TSP/k-Opt
A spanning cycle, a Hamiltonian cycle, or a tour of an undirected graph is a cycle that
contains all vertices of the graph.

ICALP 2024
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A TSP instance is a tuple (G,w), where G is a complete undirected graph (V,E), and
w : E æ RØ0 is a function that assigns a nonnegative weight to each edge of G. The goal
is to find a tour of G that minimizes the sum of edge weights in the tour. The definition
of the class PLS requires that we have a polynomial time algorithm to find some solution.
For complete graphs such an algorithm certainly exists. If the graph is not complete then
because of the NP-completeness of the Hamiltonian cycle problem we do not know such an
algorithm.

A swap is a tuple (E1, E2) of subsets E1, E2 ™ E, |E1| = |E2|. We say that it is a swap
of |E1| edges. If |E1| Æ k for some k, then we call it a k-swap. Performing a swap (E1, E2)
from a subgraph G

Õ of G refers to the act of removing E1 from G
Õ and adding E2 to G

Õ. We
also call it swapping E1 for E2 in G

Õ. Given a tour · , a swap (E1, E2) is improving for · , if
after swapping E1 for E2 in · , we obtain a tour with lower total edge weight.

A (k-)swap sequence is a sequence L = (S1, . . . , S¸), such that each Si is a (k-)swap. For
a tour · , we denote by ·

L the subgraph obtained from · by performing S1, . . . , S¸ in their
order in L. L is improving for a tour · if each Si is an improving (k-)swap for ·

(S1,...,Si≠1).
The local search problem TSP/k-Opt corresponds to TSP with the k-Opt neighborhood

(that is, the neighbors of a tour · are those that can be obtained from · by an improving
k-swap). The k-Opt algorithm is then the standard local search algorithm for this problem,
and an execution of the algorithm corresponds to an improving k-swap sequence.

2.3 Max-Cut/Flip
A Max-Cut instance is a tuple (G,w), where G is an undirected graph (V,E) and w : E æ R
is a function assigning weights to the edges of G. A cut (V1, V2) of G is a partition of the
vertices of G into two disjoint sets V1 and V2. The cut-set of a cut (V1, V2) is the set of
edges xy œ E such that x œ V1 and y œ V2. The goal of Max-Cut is to find a cut that
maximizes the value of the cut, that is the total weight of the edges in the cut-set.

Given a Max-Cut instance and an initial cut, the flip of a vertex is a move of that vertex
from a set of the cut to the other. The flip of a vertex is improving, if it results in an increase
in the value of the cut. For a cut ‡, its flip neighborhood is the set of all cuts obtained
from ‡ by an improving flip. The Max-Cut/Flip problem is the local search problem that
corresponds to the Max-Cut problem with the flip neighborhood. We call its standard local
search algorithm the Flip algorithm. A flip sequence is a sequence (v1, . . . , v¸) of vertices of
G. A flip sequence is improving, if flipping the vertices in the order in the sequence increases
the value of the cut at every step. In other words, an improving flip sequence corresponds to
an execution of the Flip algorithm.

Monien and Tscheuschner [17] showed the all-exp property for Max-Cut/Flip even for
graphs with bounded degree.

I Theorem 3 ([17, 15]). Max-Cut/Flip has the all-exp property, even when restricted to
instances where all vertices have degree at most four.

Michel and Scott [15] recently presented an alternative proof for Theorem 3. Interestingly,
their construction is highly structured and exhibits a unique property: With a suitable initial
cut, there is exactly one (maximal) improving flip sequence, and this sequence has exponential
length. We rely on this particular construction and especially the unique property to achieve
the low value of k in Theorem 1.

Note that Theorem 3 is tight with respect to the maximum degree, since the Flip algorithm
on graphs with maximum degree at most three always terminates after a polynomial number
of iterations [20].
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3 The main reduction

In this section, we describe the main reduction to TSP/k-Opt from Max-Cut/Flip.
Let (H,w) be a Max-Cut instance. In order to avoid confusion with the vertices and

edges in the TSP instance later on, we use H-vertices and H-edges for the vertices and edges
of H. We denote by n and m the number of H-vertices and H-edges, respectively.

We construct from H the corresponding TSP instance as follows. We start with a cycle
of 3(n+m) edges. We assign n+m edges of this cycle to each of the n H-vertices and the
m H-edges, such that any two assigned edges have distance at least two on the cycle.

x` xr

x1 x0
1 x2 x0

2 x3 x0
3

Figure 1 The first-set edge x¸xr and the second-set path (x¸, x1, x
Õ
1, x2, x

Õ
2, x3, x

Õ
3, xr) of an

H-vertex x of degree three. The dashed edges are gateways. The other edges of the second-set path
are doors.

Next, in the cycle consider an edge that is assigned to an H-vertex x. (Refer to Figure 1
for an illustration of the following concepts.) We label the two incident vertices of this edge
x¸ and xr, representing the left and the right vertex of the edge. Let d(x) be the degree of x
in H. We add a new path of length 2d(x) + 1 to connect x¸ and xr. We call this new path
the second-set path of x, while we call the original edge that was assigned to x the first-set
edge of x. The idea is that the tour can connect x¸ and xr either via the first-set edge or via
the second-set path. This simulates whether the H-vertex x is in the first set or second set
of the cut for the Max-Cut problem. Let x¸, x1, x

Õ
1, . . . , xd(x), x

Õ
d(x), xr be the labels of the

vertices along the second-set path. For i œ {1, . . . , d(x)}, we call the edge xix
Õ
i
a gateway

of x. The other edges of the second-set path are called the doors of x. In other words, we
have alternating doors and gateways along the path, with doors at both ends of the path.

For each H-edge xy, we call the edge in the cycle of length 3(n+m) assigned to xy the
xy-edge. We remove a gateway of x, a gateway of y, and the xy-edge, and we connect the six
incident vertices of the three removed edges by a parity gadget.

The purpose of this parity gadget is to simulate the contribution of the weight of edge xy

to the objective of the Max-Cut problem, based on whether x and y are in the same set. We
will formally define the parity gadget in Section 3.1.

Finally, for each H-vertex x, we assign an XOR gadget to the first-set edge of x and
the door of x incident to xr. The purpose of the XOR gadget is to make sure that we can
simulate only one flip in H by a k-swap in the new graph. The formal definition of the XOR
gadget and its assignment are discussed in Section 3.2.

Let G be the resulting graph after all the operations above (see Figure 2 for an example).
Except for certain edges in the parity gadgets, which we will specify later, the other edges
have weight zero, including the edges in the XOR gadgets, the initial cycle, and the doors.
As a TSP instance requires a complete graph, we add the remaining edges with weight Œ
to obtain the final graph GŒ. However, if we start with a tour with a finite total weight,
the k-Opt algorithm will never visit a tour that uses an edge with weight Œ. Hence, for the
remaining of the reduction, we will argue based only on G.

ICALP 2024
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4

3

1 2

d

bc

a

a b c d

1

2 3

4

Figure 2 An example of our reduction from a Max-Cut instance (left figure) to a TSP instance
(right figure). The parity gadgets are indicated by the blue circles attached to three edges each. The
XOR gadgets are indicated by red boxes attached to two edges each.

3.1 Parity gadgets
In this section, we specify the parity gadgets, formally defined as follows.

I Definition 4 (Parity Gadget). A parity gadget is an edge weighted graph containing at least
six distinct vertices labeled X,X

Õ
, Y, Y

Õ
, Z, Z

Õ that satisfies the following two properties. First
there exist at least the following four possibilities to cover the vertices of the parity gadget by
vertex disjoint paths with endpoints in the set {X,X

Õ
, Y, Y

Õ
, Z, Z

Õ}:
(1) A {Z,Z Õ}-path;
(2) An {X,X

Õ}-path and a {Z,Z Õ}-path;
(3) A {Y, Y Õ}-path and a {Z,Z Õ}-path; or
(4) An {X,X

Õ}-path, a {Y, Y Õ}-path and a {Z,Z Õ}-path.
The four possibilities are called subtour (1), subtour (2), subtour (3), and subtour (4)
(see Figure 3 for an example). We require that in these four cases the cover is unique. A
parity gadget may allow more than these four possibilities to cover the vertices by vertex
disjoint paths with all endpoints in the set {X,X

Õ
, Y, Y

Õ
, Z, Z

Õ}. Any such cover is called a
subtour as long as Z and Z

Õ are endpoints of some path(s) in this cover.
We require in addition if X and X

Õ are in the set of endpoints, then there must exist an
{X,X

Õ}-path in the cover. We require the same for the vertices Y and Y
Õ.

Second, the edges of a parity gadget must allow a partition into three subsets, the same-set
edges, the di�erent-set edges, and the remaining edges. The same-set edges have the same
weight, which we call the same-set weight. Similarly, the di�erent-set edges have the same
di�erent-set weight. The remaining edges have weight zero.

We require that subtours (1) and (4) contain exactly one same-set edge and no di�erent-set
edge, and that subtours (2) and (3) contain exactly one di�erent-set edge and no same-set
edge. See Figure 3 for an example.

As explained before, a parity gadget is used to replace a gateway XX
Õ of an H-vertex x,

a gateway Y Y
Õ of an H-vertex y, and the xy-edge ZZ

Õ. The vertices X, X Õ, Y , Y Õ, Z, and
Z

Õ are part of the parity gadget, and the gadget is connected with the rest of G via exactly
one incident edge to each of these vertices. We call these six incident edges the external edges
of the gadget. We define the internal edges as the edges within the parity gadget. Further,
we say that the gadget is related to the H-vertices x and y.
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X

Y

Z X
Õ

Y
Õ

Z
Õ

X

Y

Z X
Õ

Y
Õ

Z
Õ

(1)

X

Y

Z X
Õ

Y
Õ

Z
Õ

(2)

X

Y

Z X
Õ

Y
Õ

Z
Õ

(3)

X

Y

Z X
Õ

Y
Õ

Z
Õ

(4)

X

Y

Z X
Õ

Y
Õ

Z
Õ

X

Y

Z X
Õ

Y
Õ

Z
Õ

X

Y

Z X
Õ

Y
Õ

Z
Õ

Figure 3 An example of a parity gadget (left figure). The next four figures show the four
possibilities, subtour (1)–(4), to cover the vertices of the parity gadget by disjoint paths (red edges
and red endpoints). The right three figures show additional subtours. The dashed edges are the
same-set edges, the dotted edges are the di�erent-set edges, and the solid edges are the remaining
edges.

By construction, the removed edge ZZ
Õ was originally part of a path of length five,

say (Z1, Z2, Z, Z
Õ
, Z3, Z4). Since Z2 and Z3 have degree two in G, any tour of G has to

contain Z2Z and Z
Õ
Z3. Therefore, the tour can only contain exactly one internal edge

incident to Z and one incident to Z
Õ (which may coincide). This is the reason why in the

definition of a parity gadget the set {Z,Z Õ} appears in all four cases.
A subtour containing an {X,X

Õ}-path (i.e., subtour (2) or subtour (4)) represents that
the corresponding H-vertex x is in the second set of the cut; otherwise, x is in the first set.
When such a subtour occurs in the gadget, we say the gadget uses an {X,X

Õ}-path. We
have a similar representation and notation for the {Y, Y Õ}-path.

By definition of a parity gadget the total weight of the tour edges within a parity gadget
is the same-set weight, when x and y are in the same set of the cut, and it is the di�erent-set
weight, when they are in di�erent sets.

Next, a parity gadget is an (rx, ry)-parity gadget, if
We need to remove exactly rx internal edges and add exactly rx ≠ 1 internal edges to
change from subtour (1) to subtour (2) or from subtour (3) to subtour (4);
We need to remove exactly ry internal edges and add exactly ry ≠ 1 internal edges to
change from subtour (1) to subtour (3) or from subtour (2) to subtour (4);
In order to change from subtour (1) to subtour (4) or between subtour (2) and subtour (3),
we need to remove at least max{rx, ry} internal edges and add at least max{rx, ry} ≠ 1
internal edges.

We call the changes in the first two conditions above and their reverses the standard
subtour changes.

By definition, a parity gadget may allow more than the four subtours (1)–(4) as possibilities
to cover the vertices by disjoint paths with end vertices in the set {X,X

Õ
, Y, Y

Õ
, Z, Z

Õ}. The
parity gadget shown in Figure 3 allows for example to cover the vertices by a {Z,X Õ}-path
and a {Z Õ

, Y
Õ}-path. We say that a parity gadget is a strict parity gadget, or simply a strict

gadget, if subtours (1)–(4) are the only possible subtours for the gadget in G, after we equip
all gadgets (details are given in Section 3.3) used in the reduction. Thus the property of
being strict may depend on the other gadgets used in the reduction.

3.2 XOR gadgets
The remaining gadgets used in the reduction are the XOR gadgets. We generalize these
gadgets from the XOR gadget by [18]. See Figure 4(a)–(c) for an illustration for the definition
below.

ICALP 2024
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(a) (b) (c) (d) (e) (f)

a1

b1 bp

ap x`

v
xr

x`

v
xr

x`

v
xr

ax1

bx1 bx1

ax1 ax2

bx2

Figure 4 The XOR gadget of order four (a) and its two subtours ((b) and (c)). (d)–(f) are
examples of assigning the XOR gadgets of order from zero to two to the H-vertex x, where dashed
edges, dotted edges, and bold edges represent the left first-set edge, the door closest to xr, and the
right first-set edge, respectively.

I Definition 5 (XOR Gadget). Let p be a nonnegative integer. The XOR gadget of order p

is a graph containing two paths (a1, . . . , ap) and (b1, . . . , bp), and for i œ {1, . . . , p}, there is
a path of length two with ai and bi as endpoints. A subtour of the XOR gadget is a spanning
path with two endpoints in the set {a1, ap, b1, bp}. For convenience, when p = 0, both the
XOR gadget of order zero and its only subtour are defined to be the empty graph.

It is easy to see that an XOR gadget has two subtours, except when p Æ 1, in which case,
it has only one subtour. Further, for p Ø 2, changing from one subtour to the other requires
a swap of p ≠ 1 edges.

We define the assigning of the XOR gadget of some order p to an H-vertex x as follows.
(See Figure 4(d)–(f) for an illustration.) Recall that x¸xr is the first-set edge of x, and let vxr

be the incident door of x to xr. We subdivide the two edges above into paths of length p+1,
(x¸, a

x

1 , . . . , a
x

p
, xr) and (v, bx1 , . . . , bxp , xr). Then for i œ {1, . . . , p}, we connect ax

i
and b

x

i
with

a path of length two. Note that when p = 0, we do nothing. Further note that when we
remove the edges incident to x¸, xr, and v in the construction above, we obtain the XOR
gadget of order p as defined in Definition 5.

We call these incident edges to x¸, xr, and v the external edges of the XOR gadget, and
we call the other edges in the construction the internal edges of the gadget. For convenience,
we still refer to the external edge incident to v (i.e., vbx1 for p Ø 1 and vxr for p = 0) as a
door of x. Additionally, we call it the closest door to xr. We call the external edge incident
to x¸ (i.e., x¸a

x

1 for p Ø 1 and x¸xr for p = 0) the left first-set edge of x. We define the right
first-set edge of x as xrx¸ if p = 0, xra

x

p
if p is positive and even, and xrb

x

p
if p is odd. Lastly,

we call the other external edge incident to xr the right second-set edge of x.
We define an incident edge of a nonempty subtour of the XOR gadget to be an external

edge incident to an endpoint of the subtour. The incident edge of an empty subtour (i.e.,
when p = 0) is defined to be simply an external edge of the XOR gadget.

Based on the definitions above, it is easy to verify the following.

I Observation 6. For the XOR gadget assigned to an H-vertex x, one subtour of the gadget
is incident to the left and right first-set edges of x, and another subtour of the gadget is
incident to the closest door to xr and the right second-set edge of x. The two subtours above
are identical, if the order of the gadget is at most one. Otherwise, they are distinct.

3.3 Equipping gadgets
Within our reduction we will use di�erent parity gadgets at di�erent places and XOR gadgets
of di�erent orders. The exact specification of which parity gadget we use at what place and
the XOR gadget of which order is used for which H-vertex will be called the equipping of
gadgets. We equip the gadgets through a labeling scheme. Specifically, for an H-vertex x



S. Heimann, H. P. Hoang, and S. Hougardy 84:9

and an incident H-edge z, a labeling L assigns an integer label to the pair (x, z). We say the
label is incident to x and to z. Additionally, L also assigns an integer label to each H-vertex.
We also say this label is incident to x. We call a labeling L valid, if for every H-edge xy,
there exists a (L(x, xy), L(y, xy))-parity gadget, and for every H-vertex x, L(x) Ø 0.

Then we equip the gadgets based on a valid labeling L as follows. For an H-edge xy,
we equip the (L(x, xy), L(y, xy))-parity gadget to xy. Recall that w(xy) is the weight of
xy. If w(xy) Ø 0, the same-set weight of the gadget is w(xy), and its di�erent-set weight
is zero. Otherwise, the same-set weight of the gadget is zero, and its di�erent-set weight
is ≠w(xy). Finally, for an H-vertex x, we assign the XOR gadget of order L(x) to x, and
all edges involved in this assignment have weight zero. We call this a gadget arrangement
corresponding to L. Note that this construction implies that edge weights in the TSP instance
are nonnegative.

For each H-vertex x, we define the label sum of x to be the sum of the labels incident to
x, i.e., L(x) +

q
y:xyœE(H) L(x, xy). We say a labeling is an s-labeling, if each H-vertex has

label sum s.

3.4 Initial tour
To complete the description of the TSP/k-Opt instance, we specify the initial tour of G. We
obtain this tour from the initial cut of H as follows. The tour contains all incident edges of
degree-two vertices. For an H-vertex x, if x is in the first set, we include the left and right
first-set edges of x in the tour. Further, we use the subtour of the XOR gadget assigned to
x, such that this subtour is incident to the left and right first-set edges of x. If x is in the
second set, we include all the doors and the right second-set edge of x in the tour. Moreover,
we use the subtour of the XOR gadget assigned to x, such that this subtour is incident to
the right second-set edge of x and the closest door to xr.

For an H-edge xy, in the corresponding gadget, we use the subtour (1) if x and y are in
the first set, subtour (2) if x is in the second set and y in the first set, subtour (3) if x is in
the first set and y in the second set, and subtour (4) if x and y are in the second set.

By the construction of G and the definition of the subtours, it can be verified that we
obtain a tour of G.

3.5 Correspondence between flip sequences and swap sequences
Let us assume that we have a valid s-labeling L, and that the parity gadgets in the
corresponding gadget arrangement are strict. Then we have the following correspondence
(for a proof see [7]).

I Lemma 7. Let I be a Max-Cut/Flip instance and ‡ be an initial cut for I. Suppose for
some s, there is a valid s-labeling L for I such that all gadgets in the gadget arrangement in
L are strict. Then we can reduce I to a TSP/k-Opt instance I

Õ, for k = s+ 1, and obtain an
initial tour · from ‡, such that there is a one-to-one correspondence between improving flip
sequences for I and ‡ and improving k-swap sequences for I

Õ and · .

4 All-exp property for k Ø 13

In this section, we prove the following statement.

I Lemma 8. TSP/k-Opt has the all-exp property for k Ø 13.
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Figure 5 (a) A (4,2)-simple gadget. Bold red edges are incident to degree-two vertices. Dashed
edges are external edges. Y Õ

a and ZZ
Õ are same-set edges with same-set weight ‡, while Z

Õ
a and

Y
Õ
Z are di�erent-set edges with di�erent-set weight ”. (b)–(e) show the subtours (1)–(4).

We start with the parity gadgets. We call a parity gadget a simple gadget, if the parity
gadget only allows subtours (1)–(4) (and no other subtours), independent of other gadgets
equipped in the graph G. If a simple gadget is an (rx, ry)-parity gadget we call it an
(rx, ry)-simple gadget. Note that a simple gadget is a strict gadget. The next result shows
that a (4, 2)-simple gadget exists (and by symmetry, we also have a (2, 4)-simple gadget).
The proof is given in [7].

I Lemma 9. The gadget as depicted in Figure 5 is a (4, 2)-simple gadget.

We can now prove Lemma 8. We use the reduction from Max-Cut/Flip to TSP/k-Opt as
described in Section 3. By Theorem 3 we may assume H to have maximum degree four.

We now construct a valid (k≠1)-labeling. Firstly, we assign an orientation on the H-edges,
such that every degree-four H-vertex has exactly two incoming edges and two outgoing edges.
Specifically, we repeat the following procedure: Until all H-edges have an orientation, we
take a maximal (possibly closed) walk in the subgraph of unoriented H-edges, and we orient
the edges along the walk. It is easy to see that the orientation is as desired.

Next, for every directed H-edge z with head x and tail y, we label (x, z) and (y, z) with
four and two, respectively. By Lemma 9, there exists a simple gadget corresponding to these
labels. Our construction guarantees that up to this point the label sum of every H-vertex is
at most 12. Next, for each H-vertex, we assign a nonnegative label to the H-vertex, such
that the label sum at the H-vertex is exactly k ≠ 1. This is possible because k Ø 13. Hence,
we obtain a valid (k ≠ 1)-labeling.

Further, since we use only simple gadgets, the labeling above satisfies the condition of
Lemma 7. Then by Theorem 3 and Lemma 7, we obtain Lemma 8.

5 All-exp property for k Ø 9

In this section, we prove the following statement.

I Lemma 10. TSP/k-Opt has the all-exp property for k Ø 9.
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We use the reduction in Section 3, with two extra ingredients. Firstly, we look into the
construction by Michel and Scott [15]. The graph for the instance is constructed inductively
as follows (see Figure 6 for an illustration):

The base graph F0 consists of a single edge v0,1v0,8 with weight 7.
The graph Fn contains a path of eight new vertices vn,1, vn,2, vn,3, vn,4, vn,5, vn,6, vn,7,

vn,8 that appear in the path in that order. The weights of the edges along the path from
vn,1 to vn,8 are 7 · 8n, 5 · 8n, 5 · 8n, 3 · 8n, 3 · 8n, 8n, 8n. Next, we connect Fn to Fn≠1 as
follows: We add edges connecting vn≠1,1 to vn,2, vn,4, and vn,6, with weights 8n,≠8n,
and 8n, respectively. Finally, we add edges connecting vn≠1,8 to vn,3, vn,5, and vn,7, with
weights 1, -1, and 1, respectively.

. . .

. . .

v0,8

v0,1

vn,8

vn,1 v01

v02

vn�1,8

vn�1,1

vn,8 vn,6 vn,4 vn,2

vn,7 vn,5 vn,3 vn,1
vn�1,7

vn,2

4 4 4

4 4 4
4

44
Fn

Fn�1

F0

4
4

Figure 6 Michel-Scott construction of a Max-Cut instance that has an exponentially long
improving flip sequence. Vertices on one side of the horizontal line are in the same set of the initial
cut. We show here a valid (k≠1)-labeling L and its gadget arrangement, for k Ø 9. Only labels L(·, ·)
with value other than two are specified. All labels to vertices have suitable values to ensure the
label sum at each vertex is k ≠ 1. Bold edges indicate simple gadgets, and the directed edges are
flexible gadgets. The arrows indicate the direction of the forcing rule (i.e., if the gadget equipped to
a directed edge is strict at the tail, then it is forced to be strict at the head).

The final graph Hn consists of all the graphs F0, . . . , Fn and the connecting edges, as
well as two new vertices vÕ

1 and v
Õ
2 and two new edges vn,1vÕ

1 and v
Õ
1v

Õ
2 with weights 8n+1 and

2 · 8n+1, respectively. The initial cut of Hn is as follows: One set of the cut contains exactly
v

Õ
1 and all vertices vi,j such that j is odd. The other set contains the remaining vertices.
Michel and Scott [15] showed that there exists a unique maximal improving flip se-

quence Ln from the aforementioned cut of Hn. The sequence is described recursively as
follows: L0 = v0,1v0,8, and Ln = vn,1vn,2Ln≠1vn,3vn,4Ln≠1vn,5vn,6Ln≠1vn,7vn,8.

Secondly, we introduce the flexible gadget, a (2, 2)-parity gadget as depicted in Figure 3.
Note that it is not a simple gadget, because besides the subtours (1)–(4), there are other
subtours, as shown in Figure 3. However, the following lemma (for a proof see [7]) shows
that a suitable equipping of the flexible and simple gadgets can force the flexible gadgets to
use only the subtours (1)–(4), and hence, they are strict:

I Lemma 11. Suppose in the reduction in Section 3, we only equip simple, flexible, and
XOR gadgets. If the H-edges corresponding to the flexible gadgets form a forest in H, then
all parity gadgets are strict.
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To prove Lemma 10 we use the reduction from Section 3, with some specialization. Firstly,
for the Max-Cut/Flip instance, we use the graph Hn as the graph H, for n Ø 1, and we use
the corresponding weight and initial cut as described above. Secondly, we use the following
labeling L: (See Figure 6 for a depiction of the labeling and gadget assignment.)

For i œ {1, . . . , n} and q œ {3, 5, 7}, we have L(vi,q, vi,qvi≠1,8) = 4;
For i œ {1, . . . , n} and q œ {2, 4, 6}, we have L(vi,q, vi,qvi,q+1) = 4;
L(vn,8, vn,8vn,7) = 4;
L(vÕ

1, vn,1v
Õ
1) = L(vÕ

1, v
Õ
1v

Õ
2) = 4;

L(x, z) = 2, for all other pairs of an H-vertex x and an H-edge z not mentioned above
and
L(vn,8) = L(vn,1) = k ≠ 5; L(vÕ

2) = k ≠ 3; for other H-vertex x, we have L(x) = k ≠ 9.
(As k Ø 9, these labels are nonnegative.)

For everyH-edge xy, if L(x, xy) = L(y, xy) = 2, we equip the flexible gadget to xy. Otherwise,
we use the (4, 2)-simple gadget as described in Lemma 9 instead.

Observe that the labeling above is a valid (k≠1)-labeling. Further, consider the subgraph
of H containing all H-edges corresponding to the flexible gadgets. This subgraph is a forest
with the leaves: v0,8, vn,1, vn,3, vn,5, vj,3, vj,5, vj,7, and vj,8 for j œ {1, . . . , n ≠ 1}. By
Lemma 11, all parity gadgets are strict.

Then Lemma 10 follows from Theorem 3 and Lemma 7.

6 All-exp property for k Ø 5

In this section, we prove Theorem 1 that asserts the all-exp property of TSP/k-Opt for
k Ø 5. This proof is similar to that of Lemma 10 with a few changes. Firstly, we modify the
Michel-Scott construction for the Max-Cut/Flip instance. In particular, we replace certain
edges by paths of odd length. Secondly, we introduce a new gadget, called the double gadget
that simulates two adjacent edges simultaneously. Lastly, we do not insist that all gadgets are
strict. However, we argue that with our chosen initial tour, we cannot encounter a subtour
other than subtours (1)–(4) in any parity gadget by a k-swap sequence.

6.1 Modified Michel-Scott construction
See Figure 7 for a depiction of the modification explained in this section. Recall the
construction by Michel and Scott [15] and the unique maximal improving flip sequence Ln

in Section 5. Let p be an odd number that is at least three. We observe that for any
consecutive pair (v, vÕ) in the sequence Ln, vvÕ is an edge in Hn and (vÕ

, v) is not a contiguous
subsequence of Ln. In that case, for such consecutive pair (v, vÕ), we orient the edge vv

Õ in
Hn from v to v

Õ. Then we obtain a partial orientation ≠æ
Hn of Hn.

For i œ {0, . . . , n} and q œ {1, . . . , 7}, note that the vertex vi,q only has one out-
neighbor viÕ,qÕ in ≠æ

Hn, for some i
Õ
, q

Õ. We replace the edge vi,qviÕ,qÕ by a path of length p

(vi,q, u1
i,q,qÕ , . . . , u

p≠1
i,q,qÕ , viÕ,qÕ), with p ≠ 1 new vertices u

1
i,q,qÕ , . . . , u

p≠1
i,q,qÕ . The weights of the

new edges and which set of the cut the new vertices belong to depend on the sign of the
weight of the original edges. In particular, let Ê be the original weight of vi,qviÕ,qÕ and Á be a
very small number (say, 2≠n), and define u

0
i,q,qÕ := vi,q and u

p

i,q,qÕ := viÕ,qÕ . If Ê > 0, then
we assign the weights for the edges along the path in decreasing order: for j = 0, . . . , p ≠ 1,
the edge u

j

i,q,qÕu
j+1
i,q,qÕ has weight Ê ≠ jÁ. Further, we assign u

j

i,q,qÕ to the same set of the cut
as vi,q for j even, and to that as viÕ,qÕ for j odd. If Ê < 0, we assign the weights for the
edges along the path in increasing order: for j = 0, . . . , p≠ 1, the edge uj

i,q,qÕu
j+1
i,q,qÕ has weight
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Figure 7 Modified Michel-Scott construction, where we replace certain edges in Figure 6 with
paths of length p. Here, we indicate the sets of the initial cut by the colors of the vertices.

Ê + jÁ. Further, we assign u
j

i,q,qÕ to the same set of the cut as vi,q, for all j œ [p ≠ 1]. The
resulting (undirected) graph, weight, and cut after all replacements are the graph H, the
weight w, and the initial cut ‰0 that we will use for the reduction.

We can show (for a proof see [7]) that the uniqueness property carries over to the new
instance.

I Lemma 12. There is a unique maximal improving flip sequence L
Õ
n
from the cut ‰0 of H,

and this sequence is exponentially long.

6.2 Double gadget
Let xy and xt be two H-edges. Denote z := xy. A double gadget replaces a gateway Y Y

Õ of
y, a gateway TT

Õ of t, the z-edge ZZ
Õ, and a subpath (X,X1, X2, X

Õ) of the second-set path
of x, where XX1 and X2X

Õ are two gateways of x. Note that the vertices X1 and X2 are
removed from the graph G, when we equip the double gadget to the pair xy and xt. Further,
the xt-edge is not replaced by any gadget. As the third edge in a path of length five in G,
the xt-edge is then used in every tour of G. We define the external and internal edges of the
double gadget similar to those of parity gadgets.

A double gadget has to guarantee at least eight possible subtours (with subtours defined
analogously to subtours defined in Definition 4). A {Z,Z Õ}-path is always present in these
subtours. The eight subtours corresponds to all possibilities of containing an {X,X

Õ}-path,
a {Y, Y Õ}-path, or a {T, T Õ}-path.

Let ‡(x, y) and ”(x, y) be the same-set and di�erent-set weights for the edge xy, respect-
ively (i.e., they correspond to the weights when x and y are in the same set and in di�erent
sets). The numbers ‡(x, t) and ”(x, t) are defined analogously. For each of the eight subtours,
the total weight of the internal edges in the subtour is the sum of two numbers, axy and
axt. axy takes value ‡(x, y) if an {X,X

Õ}-path and a {Y, Y Õ}-path are both present or both
absent; and it takes value ”(x, y) if exactly one of these paths is present. axt is defined
analogously.
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Figure 8 A (2,2,2)-double gadget (a) and the listing of edges with nonzero weights (b). The
other panels show the eight subtours when the gadget is locally strict, including the nonzero weights
of the edges in the subtours.

We extend the definition of an (rx, ry)-parity gadget to an (rx, ry, rt)-double gadget in
the obvious way, e.g., rx is the number of internal edges that have to be removed if in a
subtour an {X,X

Õ}-path is added.
In the following proof, we use the (2,2,2)-double gadget as depicted in Figure 8. One

can easily verify that the graph is indeed a (2,2,2)-double gadget. Note that the gadget also
allows subtours other than those shown in the figure. However, we will show later that these
other subtours do not appear in the improving swap sequence of concern.

6.3 Proof of Theorem 1

We use the reduction described in Section 3, from the Max-Cut instance (H,w) and the
initial cut ‰0 indicated in Section 6.1. In the construction of the Max-Cut instance, we use a
constant p which is odd and more than 2k, where we recall that p is the length of the paths
that replace certain edges.

We then define a suitable labeling by using the (2, 2, 2)-double gadgets, the flexible
gadgets, the (4, 2)-simple gadgets, and the XOR-gadgets. The crucial idea here is that a
double gadget can be used to label two incident edges. As a result, each H-vertex can now
be incident to at most three labels, including one label corresponding to the XOR gadget.
Accordingly, we can bring the label sum down to as low as four.
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Next, we argue that although the flexible gadget and the (2, 2, 2)-double gadget allow
many subtours, we only encounter a limited subset of these subtours. For this we introduce
the notion of local strictness and show that we can get a result similar to Lemma 7. With
this we can prove Theorem 1. See [7] for the details of this proof.

7 PLS-Completeness for k Ø 17

In this section, we prove the PLS-completeness of TSP/k-Opt for k Ø 17. With this result
we not only improve the value k Ø 14, 208 from Krentel [13, 8]. We also present the first
rigorous PLS-completeness proof for TSP/k-Opt as Krentel’s proof has a substantial gap. He
assumes without proof that no edges of infinite weight can appear in a local optimum. The
definition of PLS-completeness requires that the function g maps local optima to local optima.
Therefore, either one has to show that a local optimum cannot contain edges of infinite
weight, or one has to show how to extend the definition of the function g to local optima that
contain edges of infinite weight. Both are not done in the paper of Krentel [13], and there
is no obvious way how to fill this gap. For our reduction we can prove in Lemma 14 below
that local optima cannot contain edges of infinite weight. There seems not to be a generic
way to prove such a result for arbitrary TSP instances as for example those constructed
by Krentel [13]. A result similar to Lemma 14 was obtained by Papadimitriou [19] for the
Lin-Kernighan heuristic.

I Theorem 2. TSP/k-Opt is PLS-complete for k Ø 17.

Our proof of Theorem 2 follows closely the proof of Lemma 8. However, there are three
key di�erences. Firstly, while the all-exp property is known to hold for Max-Cut instances
with maximum degree four (Theorem 3), the PLS-completeness of Max-Cut/Flip is only
known for maximum degree five:

I Theorem 13 ([4]). Max-Cut/Flip is PLS-complete, even when restricted to graphs of
maximum degree five.

Secondly, we impose certain structure on the graph G in the reduction. Particularly, we
specify which gateways a parity gadget can replace.

Lastly, recall that the TSP instance requires a complete graph GŒ, which we obtain
from G by adding the missing edges, which we also call the non-edges. By choosing suitable
weights for the non-edges we will be able to prove in Lemma 14 that no locally optimal tour
of GŒ can contain a non-edge.

Proof of Theorem 2. We use the reduction from Max-Cut to TSP as described in Section 3.
By Theorem 13, we can assume in the Max-Cut instance (H,w), that H is a graph of
maximum degree five.

We assign an orientation on the H-edges such that each degree-five vertex has in-degree
at most three. We can get such an orientation by repeating the following procedure: Until
all H-edges have an orientation, we take a maximal (possibly closed) walk in the subgraph
of unoriented H-edges, and we orient the edges along the walk. For every directed H-edge
z with head x and tail y, we label (x, z) and (y, z) with four and two, respectively. Next,
for each H-vertex x, we assign an integer label to x, such that the label sum at x is k ≠ 1.
This label is nonnegative, as k Ø 17. Corresponding to these labels we use the (4, 2)-simple
gadgets from Lemma 9 and the XOR-gadgets. Hence, this is a valid (k ≠ 1)-labeling. We
denote it by L.
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Next, we specify the gadget arrangement corresponding to L as follows. Recall that n
is the number of H-vertices. Let x

1
, . . . , x

n be the H-vertices. For every H-vertex x, we
assign the XOR gadget of order L(x) to x. Let Â be the increasing lexicographical order
of the H-edges with respect to the H-vertex indices. That is, for i < i

Õ and j < j
Õ, the

H-edge x
i
x
i

Õ precedes the H-edge x
j
x
j

Õ in the order Â, if either i < j or i = j and i
Õ
< j

Õ.
Then we equip the parity gadgets according to the labeling L, such that when we go along
the second-set path for each H-vertex x from x¸ to xr, the H-edges corresponding to the
related gadgets appear in their order in Â. We equip the gadgets such that for a (4,2)-simple
gadget g related to an H-vertex t, either the vertex X or Y in g is adjacent to either t¸ or a
vertex in a gadget that is also related to t and precedes g in Â.

Let G and w be the resulting graph and edge weight function. We have the following
lemma (for a proof see [7]).

I Lemma 14. For k Ø 3 there exists a complete graph GŒ with a corresponding edge weight
function w

Õ obtained from G and w by adding the missing edges with suitable weights, such
that for the TSP/k-Opt instance consisting of (GŒ, w

Õ), all locally optimal tours only contain
edges of G.

For a given tour · we can map it to a cut ‡ as follows: For each H-vertex x we put x into
the first set if · uses the left first-set edge. Otherwise we put x into the second set. Assume
we have a tour · that is a local optimum but the corresponding cut is not a local optimum.
By Lemma 14 the tour · contains only edges from G. By using arguments similar to those
used in the proof of Lemma 7 we can conclude that · is not a local optimum, a contradiction.

Then Theorem 2 follows from Theorem 13. J

8 Conclusion

We have shown that for k Ø 5 the k-Opt algorithm for TSP has the all-exp property, i.e. it
has exponential running time for all possible pivot rules (Theorem 1). Moreover, we proved
that TSP/k-Opt is PLS-complete for k Ø 17 (Theorem 2). In both cases we drastically
lowered the so far best known value for k which was ∫ 1000. It was mentioned (without
explaining the details) in [13] that there is a connection between the PLS-completeness of
a problem and the all-exp property. This connection was made precise by Schä�er and
Yannakakis [21] who introduced the notion of tight PLS-completeness. They proved that the
tight PLS-completeness of a problem implies the all-exp property. Our PLS-completeness
result for TSP/k-Opt relies on the PLS-completeness of Max-Cut/Flip for graphs with
maximum degree five [4]. As for the latter the tight PLS-completeness is not known we do
not get tight PLS-completeness for TSP/k-Opt.

We put some e�ort into getting the constant in Theorem 1 as small as possible. In
contrast, the constant in Theorem 2 very likely can be lowered to 15 by using our techniques
from Section 6. However, this would require substantially more involved proofs. Finally we
would like to mention (as already observed by Krentel [13]) that our results also hold for
metric TSP as one can add a su�ciently large constant to all edge weights.
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Abstract
In the Minmax Set Cover Reconfiguration problem, given a set system F over a universe U
and its two covers Cstart and Cgoal of size k, we wish to transform Cstart into Cgoal by repeatedly adding
or removing a single set of F while covering the universe U in any intermediate state. Then, the
objective is to minimize the maximum size of any intermediate cover during transformation. We prove
that Minmax Set Cover Reconfiguration and Minmax Dominating Set Reconfiguration

are PSPACE-hard to approximate within a factor of 2≠ 1
polyloglogN , where N is the size of the universe

and the number of vertices in a graph, respectively, improving upon Ohsaka (SODA 2024) [32] and
Karthik C. S. and Manurangsi (2023) [26]. This is the first result that exhibits a sharp threshold for
the approximation factor of any reconfiguration problem because both problems admit a 2-factor
approximation algorithm as per Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno
(Theor. Comput. Sci., 2011) [23]. Our proof is based on a reconfiguration analogue of the FGLSS
reduction [12] from Probabilistically Checkable Reconfiguration Proofs of Hirahara and Ohsaka (STOC
2024) [19]. We also prove that for any constant Á œ (0, 1), Minmax Hypergraph Vertex Cover

Reconfiguration on poly(Á≠1)-uniform hypergraphs is PSPACE-hard to approximate within a
factor of 2 ≠ Á.
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1 Introduction

1.1 Background
In the field of reconfiguration, we study the reachability and connectivity over the space
of feasible solutions under an adjacency relation. Given a source problem that asks the
existence of a feasible solution, its reconfiguration problem requires to decide if there exists a
reconfiguration sequence, namely, a step-by-step transformation between a pair of feasible
solutions while always preserving the feasibility of any intermediate solution. One of the
reconfiguration problems we study in this paper is Set Cover Reconfiguration [23],
whose source problem is Set Cover. In the Set Cover Reconfiguration problem,
for a set system F over a universe U and its two covers C

start and C
goal of size k, we

seek a reconfiguration sequence from C
start to C

goal consisting only of covers of size at
most k + 1, each of which is obtained from the previous one by adding or removing a
single set of F . Countless reconfiguration problems have been defined from a variety of
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source problems, including Boolean satisfiability, constraint satisfaction problems, and graph
problems. Studying reconfiguration problems may help elucidate the structure of the solution
space of combinatorial problems [13].

The computational complexity of reconfiguration problems has the following trend: a
reconfiguration problem is likely to be PSPACE-complete if its source problem is intractable
(say, NP-complete); e.g., Set Cover [23], 3SAT [13], and Independent Set [16, 17]; a
source problem in P frequently induces a reconfiguration problem in P; e.g., Spanning
Tree [23] and 2SAT [13]. Some exception are however known; e.g., 3Coloring [7] and
Shortest Path [6]. We refer the readers to the surveys by Nishimura [30] and van den
Heuvel [35] and the Combinatorial Reconfiguration wiki [20] for more algorithmic and
hardness results of reconfiguration problems.

To overcome the computational hardness of a reconfiguration problem, we consider its
optimization version, which a�ords to relax the feasibility of intermediate solutions. For
example, Minmax Set Cover Reconfiguration [23] is an optimization version of Set
Cover Reconfiguration, where we are allowed to use any cover of size greater than k+1,
but required to minimize the maximum size of any covers in the reconfiguration sequence
(see Section 4.1 for the formal definition). Solving this problem approximately, we may be
able to find a “reasonable” reconfiguration sequence for Set Cover Reconfiguration that
consists of covers of size at most, say, 1% larger than k + 1. Unlike Set Cover, which is
NP-hard to approximate within a factor smaller than lnn [10, 11, 27], Minmax Set Cover

Reconfiguration admits a 2-factor approximation algorithm due to Ito, Demaine, Harvey,
Papadimitriou, Sideri, Uehara, and Uno [23, Theorem 6]. An immediate question is: Is this

the best possible?

Here, we summarize known hardness-of-approximation results on Minmax Set Cover

Reconfiguration. Ohsaka [32] showed that Minmax Set Cover Reconfiguration

is PSPACE-hard to approximate within a factor of 1.0029 assuming the Reconfiguration
Inapproximability Hypothesis [31], which was recently proved [19, 26]. Karthik C. S. and
Manurangsi [26] proved NP-hardness of the (2 ≠ Á)-factor approximation for any constant
Á œ (0, 1). Both results are not optimal: Ohsaka’s factor 1.0029 is far smaller than 2, while
Karthik C. S. and Manurangsi’s result is not PSPACE-hardness. This leaves a tantalizing
possibility that there may exist a polynomial-length reconfiguration sequence that achieves a
1.0030-factor approximation for Minmax Set Cover Reconfiguration, and hence the
approximation problem may be in NP. Note that the PSPACE-hardness result of Ohsaka [32]
disproves the existence of a polynomial-length witness (in particular, a polynomial-length
reconfiguration sequence) for the 1.0029-factor approximation under the assumption that
NP ”= PSPACE.

1.2 Our Results
We present optimal results of PSPACE-hardness of approximation for three reconfiguration
problems. Our first result is that Minmax Set Cover Reconfiguration is PSPACE-hard
to approximate within a factor smaller than 2, improving upon Ohsaka [32, Corollary 4.2]
and Karthik C. S. and Manurangsi [26, Theorem 4]. This is the first result that exhibits a
sharp threshold for the approximation factor of any reconfiguration problem: approximating
within any factor below 2 is PSPACE-complete and within a 2-factor is in P [23].

I Theorem 1.1 (informal; see Theorem 4.1). For a set system F of universe size N and

its two covers C
start

and C
goal

of size k, it is PSPACE-complete to distinguish between the

following cases:
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(Completeness) There exists a reconfiguration sequence from C
start

to C
goal

consisting only

of covers of size at most k + 1.
(Soundness) Every reconfiguration sequence contains a cover of size greater than (2 ≠

Á(N))(k + 1), where Á(N) := (polyloglogN)≠1
.

In particular, Minmax Set Cover Reconfiguration is PSPACE-hard to approximate

within a factor of 2 ≠ Á(N).

As a corollary of Theorem 4.1 along with [32], the following PSPACE-hardness of approx-
imation holds for Dominating Set Reconfiguration, which also admits a 2-factor
approximation [23] (please refer to [32] for the problem definition).

I Corollary 1.2 (from Theorem 4.1 and [32, Corollary 4.3]). Minmax Dominating Set

Reconfiguration is PSPACE-hard to approximate within a factor of 2≠
1

polyloglogN , where

N is the number of vertices in a graph.

Our third result is a similar inapproximability result for Hypergraph Vertex Cover

Reconfiguration, which is defined analogously to Set Cover Reconfiguration. Min-

max Hypergraph Vertex Cover Reconfiguration is easily shown to be 2-factor
approximable [23]; we prove that this is optimal.

I Theorem 1.3 (informal; see Theorem 4.3). For any constant Á œ (0, 1), a poly(Á≠1)-uniform
hypergraph, and its two vertex covers C

start
and C

goal
of size k, it is PSPACE-complete to

distinguish between the following cases:
(Completeness) There exists a reconfiguration sequence from C

start
to C

goal
consisting only

of vertex covers of size at most k + 1.
(Soundness) Every reconfiguration sequence contains a vertex cover of size greater than

(2 ≠ Á)(k + 1).
In particular, Minmax Hypergraph Vertex Cover Reconfiguration on poly(Á≠1)-
uniform hypergraphs is PSPACE-hard to approximate within a factor of 2 ≠ Á.

We highlight here that the size of hyperedges in a Hypergraph Vertex Cover Reconfig-

uration instance of Theorem 4.3 depends (polynomially) only on the value of Á≠1, whereas
the size of subsets in a Set Cover Reconfiguration instance of Theorem 4.1 may depend
on the universe size N .

Proofs marked with ú are omitted and can be found in the full version of this paper [18].

1.3 Proof Overview
At a high level, our proofs of Theorems 1.1 and 1.3 are given by combining the ideas developed
in [19, 31, 32, 26]. Karthik C. S. and Manurangsi [26] proved NP-hardness of the (2≠Á)-factor
approximation of Minmax Set Cover Reconfiguration as follows.
1. Starting from the PCP theorem for NP [3, 4], they applied the FGLSS reduction [12]

to prove NP-hardness of the O(Á≠1)-factor approximation of an intermediate problem,
which we call Max Partial 2CSP.

2. The O(Á≠1)-factor approximation of Max Partial 2CSP is reduced to the (2≠ Á)-factor
approximation of a reconfiguration problem, which we call Label Cover Reconfigu-

ration (Problem 2.3).
3. Label Cover Reconfiguration can be reduced to Minmax Set Cover Recon-

figuration via approximation-preserving reductions of Lund and Yannakakis [27] and
Ohsaka [32].

ICALP 2024
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Here, Max Partial 2CSP is defined as follows. The input consists of a graph G = (V, E), a
finite alphabet �, and constraints Âe : �2

æ {0, 1} for each edge e œ E . A partial assignment

is a function f : V æ � fi {‹}, where the symbol ‹ indicates “unassigned.” The task is to
maximize the fraction of assigned vertices in a partial assignment f that satisfies Âe for every
e = (v, w) œ E ; i.e., Âe(f(v), f(w)) = 1 if f(v) ”= ‹ and f(w) ”= ‹.

To improve this NP-hardness result to PSPACE-hardness, we replace the starting point
with the PCRP (Probabilistically Checkable Reconfiguration Proof) system of Hirahara
and Ohsaka [19], which is a reconfiguration analogue of the PCP theorem. We also replace
Max Partial 2CSP with its reconfiguration analogue, which we call Partial 2CSP

Reconfiguration (Problem 2.2). The proof of PSPACE-hardness is outlined as follows.
1. Starting from the PCRP theorem for PSPACE [19], we apply the FGLSS reduction [12] to

prove PSPACE-hardness of Partial 2CSP Reconfiguration (Sections 3.1 and 3.2).
2. We reduce Partial 2CSP Reconfiguration to Label Cover Reconfiguration

(Section 3.3).
3. We reduce Label Cover Reconfiguration to Minmax Set Cover Reconfigura-

tion by the reductions of [32, 27] (Section 4.1).
The second and third steps are similar to the previous work [26]. Our main technical
contribution lies in the first step, which we explain below.

Roughly speaking, the PCRP theorem [19] shows that any PSPACE computation on inputs
of length n can be encoded into a sequence fi(1), · · · ,fi(T )

œ {0, 1}poly(n) of exponentially
many proofs such that any adjacent pair of proofs fi(t) and fi(t+1) di�ers in at most one bit,
and each proof fi(t) can be probabilistically checked by reading q(n) bits of the proof and
using r(n) random bits, where q(n) = O(1) and r(n) = O(logn). The FGLSS reduction [12]
transforms such a proof system into a graph G = (V, E), an alphabet �, and constraints
(Âe)eœE such that each vertex v œ V := {0, 1}r(n) corresponds to a coin flip sequence of a
verifier, each value – œ � = {0, 1}q(n) corresponds to a local view of the verifier, and the
constraints Âe check the consistency of two local views of the verifier. This reduction works in
the case of the PCP theorem and proves NP-hardness of Max Partial 2CSP [26]. However,
the reduction does not work in the case of the PCRP theorem: We need to ensure that the
reconfiguration sequence of proofs fi(1), · · · ,fi(T ) is transformed into a sequence of partial
assignments f (1), · · · , f (T ), each adjacent pair of which di�ers in at most one vertex. The
issue is that changing one bit in the original proof fi(t) may result in changing the assignments
of many vertices in a partial assignment f (t) : V æ � fi {‹}.

To address this issue, we employ the ideas developed in [31, 32], called the alphabet

squaring trick, and modify the FGLSS reduction as follows. Given a verifier that reads q(n)
bits of a proof, we define the alphabet as � = {0, 1, 01}q(n). Intuitively, the symbol “01” means
that we are taking 0 and 1 simultaneously. This enables us to construct a reconfiguration
sequence of partial assignments f (1), · · · , f (T ) from a reconfiguration sequence of proofs
fi(1), · · · ,fi(T ). Details can be found in Section 3.2.

1.4 Related Work
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [23] showed that optimization
versions of SAT Reconfiguration and Clique Reconfiguration are NP-hard to ap-
proximate, relying on NP-hardness of approximating Max SAT [15] and Max Clique [14],
respectively. Note that their NP-hardness results are not optimal since SAT Reconfigu-

ration and Clique Reconfiguration are PSPACE-complete. Toward PSPACE-hardness
of approximation for reconfiguration problems, Ohsaka [31] proposed the Reconfiguration

Inapproximability Hypothesis (RIH), which postulates that a reconfiguration analogue of
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Constraint Satisfaction Problem is PSPACE-hard to approximate, and demonstrated
PSPACE-hardness of approximation for many popular reconfiguration problems, including
those of 3SAT, Independent Set, Vertex Cover, Clique, Dominating Set, and Set

Cover. Ohsaka [32] adapted Dinur’s gap amplification [9] to demonstrate that under RIH,
optimization versions of 2CSP Reconfiguration and Set Cover Reconfiguration are
PSPACE-hard to approximate within a factor of 0.9942 and 1.0029, respectively.

Very recently, Hirahara and Ohsaka [19] and Karthik C. S. and Manurangsi [26] announced
the proof of RIH independently, implying that the above PSPACE-hardness results hold
unconditionally. Karthik C. S. and Manurangsi [26] further proved that (optimization
versions of) 2CSP Reconfiguration and Set Cover Reconfiguration are NP-hard to
approximate within a factor smaller than 2, which is numerically tight because both problems
are (nearly) 2-factor approximable. Our result partially resolves an open question of [26,
Section 6]: “Can we prove tight PSPACE-hardness of approximation results for GapMaxMin-

2-CSPq and Set Cover Reconfiguration?”
Other reconfiguration problems whose approximability was investigated include those of

Set Cover [23], Subset Sum [22], and Submodular Maximization [33]. We note that
optimization variants of reconfiguration problems frequently refer to those of the shortest

reconfiguration sequence [29, 5, 24, 25], which are orthogonal to this study.

2 Preliminaries

2.1 Notations
For a nonnegative integer n œ N, let [n] := {1, 2, . . . , n}. Unless otherwise specified, the base
of logarithms is 2. A sequence S of a finite number of objects S(1), . . . , S(T ) is denoted by
(S(1), . . . , S(T )), and we write S(t)

œ S to indicate that S(t) appears in S . Let � be a finite
set called alphabet. For a length-n string fi œ �n and a finite sequence of indices I ™ [n]ú, we
use fi|I := (fii)iœI to denote the restriction of fi to I. The Hamming distance between two
strings f, g œ �n, denoted by �(f, g), is defined as the number of positions on which f and
g di�er; namely,

�(f, g) :=
---
Ó
i œ [n]

--- fi ”= gi
Ô--- . (2.1)

2.2 Reconfiguration Problems on Constraint Graphs
Constraint Graphs. In this section, we formulate reconfiguration problems on constraint
graphs. The notion of constraint graph is defined as follows.

I Definition 2.1. A q-ary constraint graph is defined as a tuple G = (V, E ,�,�) such that
(V, E) is a q-uniform1 hypergraph called the underlying graph,
� is a finite set called the alphabet, and
� = (Âe)eœE is a collection of q-ary constraints, where each Âe : �e

æ {0, 1} is a circuit.
A binary constraint graph is simply referred to as a constraint graph. y

For an assignment f : V æ �, we say that f satisfies a hyperedge e = {v1, . . . , vq} œ E (or a
constraint Âe) if Âe(f(e)) = 1, where f(e) := (f(v1), . . . , f(vq)), and f satisfies G if it satisfies
all the hyperedges of G. In the qCSP Reconfiguration problem, for a q-ary constraint

1 A hypergraph is said to be q-uniform if each of its hyperedges has size exactly q.

ICALP 2024
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graph G and its two satisfying assignments f start and fgoal, we are required to decide if there
exists a reconfiguration sequence from f start to fgoal consisting only of satisfying assignments
for G, each adjacent pair of which di�ers in at most one vertex. qCSP Reconfiguration

is PSPACE-complete in general [13, 23]; thus, we formulate its two optimization versions.

Partial 2CSP Reconfiguration. For a constraint graph G = (V, E ,�,� = (Âe)eœE), a
partial assignment is defined as a function f : V æ � fi {‹}, where the symbol ‹ indicates
“unassigned.” We say that a partial assignment f : V æ � fi {‹} satisfies edge e = (v, w) œ E

if Âe(f(v), f(w)) = 1 whenever f(v) ”= ‹ and f(w) ”= ‹. The size of f , denoted by ÎfÎ, is
defined as the number of vertices whose value is assigned; namely,

ÎfÎ :=
---
Ó
v œ V

--- f(v) ”= ‹

Ô--- . (2.2)

For two satisfying partial assignments f start and fgoal for G, a reconfiguration partial as-

signment sequence from f start
to fgoal is a sequence F = (f (1), . . . f (T )) of satisfying partial

assignments such that f (1) = f start, f (T ) = fgoal, and �(f (t), f (t+1)) 6 1 (i.e., f (t) and f (t+1)

di�er in at most one vertex) for all t. For any reconfiguration partial assignment sequence
F = (f (1), . . . , f (T )), we define ÎFÎmin as

ÎFÎmin := min
16t6T

Îf (t)
Î. (2.3)

Partial 2CSP Reconfiguration is formally defined as follows:

I Problem 2.2 (Partial 2CSP Reconfiguration). For a constraint graphG = (V, E ,�,�)
and its two satisfying partial assignments f start, fgoal : V æ � fi {‹}, we are required to find
a reconfiguration partial assignment sequence F from f start to fgoal such that ÎFÎmin is
maximized. y
Let MaxParG(f start ! fgoal) denote the maximum value of ÎFÎmin

|V|
over all possible reconfig-

uration sequences F from f start to fgoal; namely,

MaxParG(f start ! fgoal) := max
F=(f start,...,fgoal)

ÎFÎmin
|V|

. (2.4)

Note that 0 6 MaxParG(f start ! fgoal) 6 1. For every numbers 0 6 s 6 c 6 1, Gapc,s

Partial 2CSP Reconfiguration requests to determine for a constraint graph G and its
two satisfying partial assignments f start and fgoal, whether MaxParG(f start ! fgoal) > c or
MaxParG(f start ! fgoal) < s. Note that we can assume Îf start

Î = Îfgoal
Î = |V| when c = 1.

Label Cover Reconfiguration. For a constraint graph G = (V, E ,�,� = (Âe)eœE), a multi-

assignment is defined as a function f : V æ 2�. We say that a multi-assignment f satisfies

edge e = (v, w) œ E if there exists a pair (–,—) œ f(v) ◊ f(w) such that Âe(–,—) = 1. The
size of f , denoted by ÎfÎ, is defined as the sum of |f(v)| over all v œ V; namely,

ÎfÎ :=
ÿ

vœV

|f(v)|. (2.5)

For two satisfying multi-assignments f start and fgoal for G, a reconfiguration multi-assignment

sequence from f start
to fgoal is a sequence F = (f (1), . . . , f (T )) of satisfying multi-assignments

such that f (1) = f start, f (T ) = fgoal, and
ÿ

vœV

---f (t)(v)—f (t+1)(v)
--- 6 1 for all t. (2.6)
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For any reconfiguration multi-assignment sequence F = (f (1), . . . , f (T )), we define ÎFÎmax as

ÎFÎmax := max
16t6T

Îf (t)
Î. (2.7)

Label Cover Reconfiguration is formally defined as follows.2

I Problem 2.3 (Label Cover Reconfiguration). For a constraint graph G = (V, E ,�,�)
and its two satisfying multi-assignments f start, fgoal : V æ 2�, we are required to find a recon-
figuration multi-assignment sequence F from f start to fgoal such that ÎFÎmax is minimized. y

Let MinLabG(f start ! fgoal) denote the minimum value of ÎFÎmax
|V|+1 over all possible reconfigu-

ration multi-assignment sequences F from f start to fgoal; namely,

MinLabG(f start ! fgoal) := min
F=(f start,...,fgoal)

ÎFÎmax
|V|+ 1 . (2.8)

Note that MinLabG(f start ! fgoal) > |V|

|V|+1 . For every numbers 1 6 c 6 s, Gapc,s Label

Cover Reconfiguration requests to determine whether MinLabG(f start ! fgoal) 6 c or
MinLabG(f start ! fgoal) > s for a constraint graph G and its two satisfying multi-assignments
f start and fgoal. Note that we can assume Îf start

Î

|V|+1 = Îfgoal
Î

|V|+1 6 1 when c = 1.

2.3 Probabilistically Checkable Reconfiguration Proof Systems
First, we formally define the notion of verifier.

I Definition 2.4. A verifier with randomness complexity r : N æ N and query complexity

q : N æ N is a probabilistic polynomial-time algorithm V that given an input x œ {0, 1}ú,
tosses r = r(|x|) random bits R and uses R to generate a sequence of q = q(|x|) queries
I = (i1, . . . , iq) and a circuit D : {0, 1}q æ {0, 1}. We write (I,D) ≥ V (x) to denote the
random variable for a pair of the query sequence and circuit generated by V on input
x œ {0, 1}ú and r random bits, and write (I,D) = V (x,R) when we wish to fix the random
bits R. Denote by V fi(x) := D(fi|I), where (I,D) = V (x,R) for R ≥ {0, 1}r, the random
variable for the output of V on input x given oracle access to a proof fi œ {0, 1}ú. We say
that V (x) accepts a proof fi if V fi(x) = 1; i.e., D(fi|I) = 1 for (I,D) ≥ V (x). y

We proceed to the definition of Probabilistically Checkable Reconfiguration Proofs (PCRPs)
due to Hirahara and Ohsaka [19], which o�er a PCP-type characterization of PSPACE. For any
pair of proofs fistart,figoal

œ {0, 1}¸, a reconfiguration sequence from fistart
to figoal is a sequence

(fi(1), . . . ,fi(T )) œ ({0, 1}¸)ú such that fi(1) = fistart, fi(T ) = figoal, and �(fi(t),fi(t+1)) 6 1 (i.e.,
fi(t) and fi(t+1) di�er in at most one bit) for all t.

I Theorem 2.5 (PCRP theorem [19, Theorem 5.1]). For any language L in PSPACE, there

exists a verifier V with randomness complexity r(n) = O(logn) and query complexity q(n) =
O(1), coupled with polynomial-time computable functions fistart,figoal : {0, 1}ú

æ {0, 1}ú
, such

that the following hold for any input x œ {0, 1}ú:
(Completeness) If x œ L, there exists a reconfiguration sequence � = (fi(1), . . . ,fi(T )) from
fistart(x) to figoal(x) over {0, 1}poly(|x|) such that V (x) accepts every proof with probability

1; namely,

’t œ [T ], P
Ë
V (x) accepts fi(t)

È
= 1. (2.9)

2 This problem can be thought of as a reconfiguration analogue of Min Rep [8].
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(Soundness) If x /œ L, every reconfiguration sequence � = (fi(1), . . . ,fi(T )) from fistart(x)
to figoal(x) over {0, 1}poly(|x|) includes a proof that is rejected by V (x) with probability

more than
1
2 ; namely,

÷t œ [T ], P
Ë
V (x) accepts fi(t)

È
<

1
2 . (2.10)

We further introduce the notion of regular verifier. We say that a verifier is regular if
each position in its proof is equally likely to be queried.3

I Definition 2.6. For a verifier V and an input x œ {0, 1}ú, the degree of a position i of a
proof is defined as the number of times i is queried by V (x) over r(|x|) random bits; namely,

---
Ó
R œ {0, 1}r(|x|)

--- i œ IR
Ô--- = P

(I,D)≥V (x)

Ë
i œ I

È
· 2r(|x|), (2.11)

where r is the randomness complexity of V and IR is the query sequence generated by
V (x,R). A verifier V is said to be �-regular if the degree of every position is exactly equal
to �. y

3 Subconstant Error PCRP Systems and FGLSS Reduction

We construct a bounded-degree PCRP verifier with subconstant error using Theorem 2.5 in
Section 3.1, and prove PSPACE-hardness of approximation for Partial 2CSP Reconfigu-

ration and Label Cover Reconfiguration by the FGLSS reduction [12] in Sections 3.2
and 3.3, respectively.

3.1 Bounded-degree PCRP Systems with Subconstant Error
Starting from Theorem 2.5, we first obtain a regular PCRP verifier for any PSPACE language,
whose proof uses the degree reduction technique due to Ohsaka [31].

I Proposition 3.1 (ú). For any language L in PSPACE, there exists a �-regular PCRP

verifier V with randomness complexity r(n) = O(logn), query complexity q(n) = O(1),
perfect completeness, and soundness 1 ≠ Á, for some constant � œ N and Á œ (0, 1).

Subsequently, using a randomness-e�cient sampler over expander graphs (e.g., [21,
Section 3]), we construct a bounded-degree PCRP verifier with subconstant error.

I Proposition 3.2. For any language L in PSPACE and any function ” : N æ R with

”(n) = �(n≠1), there exists a bounded-degree PCRP verifier V with randomness complexity

r(n) = O(log ”(n)≠1 + logn), query complexity q(n) = O(log ”(n)≠1), perfect completeness,

and soundness ”(n). Moreover, for any input x œ {0, 1}ú
, the degree of any position is

poly(”(|x|)≠1).

Verifier Description. Our PCRP verifier is described as follows. By Proposition 3.1, let V
be a �-regular PCRP verifier for a PSPACE-complete language L with randomness complexity
r(n) = O(logn), query complexity q(n) = q œ N, perfect completeness, and soundness 1 ≠ Á,
where � œ N and Á œ (0, 1). The proof length, denoted by ¸(n), is polynomially bounded

3 Note that regular verifiers are sometimes called smooth verifiers, e.g., [34]. Since the term “regularity”
is compatible with that of (hyper)graphs, we do not use the term “smoothness” but “regularity.”
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since ¸(n) 6 q(n)2r(n) = poly(n). Hereafter, for any r(n) random bit sequence R, let IR
and DR respectively denote the query sequence and circuit generated by V (x,R). Given a
function ” : N æ R with ”(n) = �(n≠1), we construct the following verifier ÂV :

Bounded-degree verifier ÂV with subconstant error.

Input: a �-regular verifier V with soundness 1 ≠ Á, a function ” : N æ R, and an input
x œ {0, 1}n.

Oracle access: a proof fi œ {0, 1}¸(n).
1: construct a (d,⁄)-expander graph X over vertex set {0, 1}r(n) with ⁄

d < Á
4 .

2: let fl :=
' 2

Á ln ”(n)≠1(
= O(log ”(n)≠1).

3: uniformly sample a (fl ≠ 1)-length random walk R = (R1, . . . , Rfl) over X using
r(n) + fl · log d random bits.

4: for each 1 6 k 6 fl do

5: execute V (x) on Rk to generate a query sequence IRk = (i1, . . . , iq) and a circuit
DRk : {0, 1}q æ {0, 1}.

6: if DRk(fi|IRk
) = 0 then

7: declare reject.
8: declare accept.

Correctness. The perfect completeness and soundness for a fixed proof fi œ {0, 1}¸(n) are
shown below, whose proof relies on the property about random walks over expander graphs
due to Alon, Feige, Wigderson, and Zuckerman [2].

B Claim 3.3 (ú). If V (x) accepts fi with probability 1, then ÂV (x) accepts fi with probability
1. If V (x) accepts fi with probability less than 1 ≠ Á, then ÂV (x) accepts fi with probability
less than ”(n).

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. We first show the perfect completeness and soundness. Suppose
x œ L, then there exists a reconfiguration sequence � = (fi(1), . . . ,fi(T )) from fistart(x)
to figoal(x) such that P[V (x) accepts fi(t)] = 1 for all t. By Claim 3.3, we have that
P[ÂV (x) accepts fi(t)] = 1 for all t. Suppose x /œ L, then for every reconfiguration sequence
� = (fi(1), . . . ,fi(T )) from fistart(x) to figoal(x), it holds that P[V (x) accepts fi(t)] < 1 ≠ Á for
some t. By Claim 3.3, we have P[ÂV (x) accepts fi(t)] < ”(n) for such t.

Since fl = O(log ”(n)≠1), the randomness complexity of ÂV is equal to Âr(n) = r(n) + fl ·

log d = O(log ”(n)≠1 + logn), and the query complexity is Âq(n) = q(n) · fl = O(log ”(n)≠1).
Note that d and ⁄ may depend only on Á, and a (d,⁄)-expander graph X over {0, 1}r(n) can
be constructed in polynomial time in 2r(n) = poly(n), e.g., by using an explicit construction
of near-Ramanujan graphs [28, 1].

Observe finally that ÂV queries each position i œ [¸(n)] of a proof with probability equal to

P
R

S

U
fl

16k6fl

1
i œ IRk

2
T

V . (3.1)

Since V is �-regular, it holds that

P
R≥{0,1}r(n)

Ë
i œ IR

È
= �

2r(n)
. (3.2)
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Using the fact that each Rk is uniformly distributed over {0, 1}r(n), we bound Eq. (3.1) as
follows:

P
R

S

U
fl

16k6fl

1
i œ IRk

2
T

V 6¸˚˙˝
union bound

ÿ

kœ[fl]

P
R

Ë
i œ IRk

È
= fl · �

2r(n)
= O

3
log ”(n)≠1

2r(n)

4
. (3.3)

Consequently, the degree of each position i with respect to ÂV is at most

P
R

S

U
fl

16k6fl

1
i œ IRk

2
T

V · 2Âr(n) = O

3
log ”(n)≠1

2r(n)

4
· 2r(n)+fl·log d

= O(log ”(n)≠1) · 2O(log ”(n)≠1)

= poly(”(n)≠1),

(3.4)

which completes the proof. J

3.2 FGLSS Reduction and PSPACE-hardness of Approximation for
Partial 2CSP Reconfiguration

We now establish the FGLSS reduction from Proposition 3.2 and show that Partial 2CSP

Reconfiguration is PSPACE-hard to approximate within a factor arbitrarily close to 0.

I Theorem 3.4. For any function Á : N æ R with Á(n) = �
1

1
polylogn

2
, Gap1,Á(N) Partial

2CSP Reconfiguration with alphabet size poly(Á(N)≠1) is PSPACE-complete, where N is

the number of vertices.

Reduction. We describe a reduction from a bounded-degree PCRP verifier to Partial

2CSP Reconfiguration. Define ”(n) := Á(poly(n))
2 , whose precise expression is given

later. For any PSPACE-complete language L, let V be a bounded-degree PCRP verifier of
Proposition 3.2 with randomness complexity r(n) = O(log ”(n)≠1 + logn), query complexity
q(n) = O(log ”(n)≠1), perfect completeness, and soundness ”(n). The proof length ¸(n) is
polynomially bounded. Suppose we are given an input x œ {0, 1}n. Let fistart,figoal

œ {0, 1}¸(n)

be the two proofs associated with V (x). Because the degree of V is bounded by poly(”(n)≠1),
for some constant Ÿ œ N, we have

P
(I,D)≥V (x)

Ë
i œ I

È
6 ”(n)≠Ÿ

2r(n)
for any i œ [¸(n)]. (3.5)

Hereafter, for any r(n) random bit sequence R, let IR and DR denote the query sequence and
the circuit generated by V (x,R), respectively. Construct a constraint graph G = (V, E ,�,�)
as follows:

V := {0, 1}r(n), (3.6)

E :=
Ó
(R1, R2) œ V ◊ V

--- IR1 fl IR2 ”= ÿ

Ô
, (3.7)

� :=
Ó
{0}, {1}, {0, 1}

Ôq(n)
, (3.8)

� := {Âe}eœE , (3.9)
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where we define ÂR1,R2 : �◊� æ {0, 1} for edge (R1, R2) œ E so that ÂR1,R2(f(R1), f(R2)) =
1 for an assignment f : V æ � if and only if the following three conditions are satisfied:

’– œ

Ÿ

iœIR

f(R1)i, DR1(–) = 1, (3.10)

’— œ

Ÿ

iœIR

f(R2)i, DR2(—) = 1, (3.11)

’i œ IR1 fl IR2 , f(R1)i ™ f(R2)i or f(R1)i ´ f(R2)i. (3.12)

Here, for the sake of notation simplicity, we consider f(R) as if it were indexed by IR (rather
than [q(n)]); namely, f(R) œ {{0}, {1}, {0, 1}}IR . Thus, f(R) for each R œ V corresponds
the local view of V (x,R).

For any proof fi œ {0, 1}¸(n), we associate it with an assignment ffi : V æ � such that

ffi(R) :=
1
{fii}

2

iœIR
for all R œ V. (3.13)

Note that ffi(R) œ {{0}, {1}}IR . Constructing two assignments f start from fistart and fgoal

from figoal by Eq. (3.13), we obtain an instance (G, f start, fgoal) of Partial 2CSP Recon-

figuration. Observe that f start and fgoal satisfy G and Îf start
Î = Îfgoal

Î = |V|. Note that
N := |V| 6 nc for some constant c œ N. Letting ”(n) := Á(nc)

2 = �
1

1
polylogn

2
ensures that

the alphabet size is |�| = O(3q(n)) = poly(Á(N)≠1). This completes the description of the
reduction.

Correctness. We first prove the completeness.

I Lemma 3.5 (Completeness). If x œ L, then MaxParG(f start ! fgoal) = 1.

Proof. It is su�cient to consider the case that fistart and figoal di�er in exactly one position,
say, iı œ [¸(n)]; namely, fistart

iı ”= figoal
iı and fistart

i = figoal
i for all i ”= iı. Note that f start and fgoal

may di�er in two or more vertices. Consider a reconfiguration partial assignment sequence F
from f start to fgoal obtained by the following procedure:

Reconfiguration sequence F from f start
to fgoal

.

1: for each R œ V such that iı œ IR do

2: change the iıth entry of R’s current value from f start(R)iı = {fistart
iı } to {0, 1}.

3: for each R œ V such that iı œ IR do

4: change the iıth entry of R’s current value from {0, 1} to fgoal(R)iı = {figoal
iı }.

Observe that any partial assignment f¶ of F satisfies G for the following reasons:
Since f¶(R)iı ™ {0, 1} = {fistart

iı ,figoal
iı } = f start(R)iı fifgoal(R)iı when iı œ IR, f¶ satisfies

Eqs. (3.10) and (3.11).
Letting K := {f¶(R)iı | iı œ IR}, we find K to be either {{0}}, {{1}}, {{0, 1}},
{{0}, {0, 1}}, or {{1}, {0, 1}} by construction; i.e., f¶ satisfies Eq. (3.12).

Since Îf¶
Î = |V|, it holds that MaxParG(f start ! fgoal) > ÎFÎmax

|V|
= 1, completing the

proof. J

I Lemma 3.6 (Soundness). If x /œ L, then

MaxParG(f start ! fgoal) < ”(n) + q(n) · ”(n)≠Ÿ

2r(n)
. (3.14)
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The proof of Theorem 3.4 follows from Lemmas 3.5 and 3.6 because for any su�ciently
large n such that q(n)·”(n)≠Ÿ

2r(n) 6 ”(n) (note that ”(n) = �
1

1
polylogn

2
), the following hold:

(Perfect completeness) If x œ L, then MaxParG(f start ! fgoal) = 1;
(Soundness) If x /œ L, then MaxParG(f start ! fgoal) < 2”(n) = Á(N).

Proof of Lemma 3.6. We prove the contrapositive. Suppose MaxParG(f start ! fgoal) >
� for some � œ (0, 1), and there is a reconfiguration partial assignment sequence F =
(f (1), . . . , f (T )) from f start to fgoal such that ÎFÎmin = MaxParG(f start ! fgoal). Define then
a (not necessarily reconfiguration) sequence � = (fi(1), . . . ,fi(T )) over {0, 1}¸(n) such that
each proof fi(t) is determined based on the plurality vote over f (t); namely,

fi(t)
i := argmax

bœ{0,1}

---
Ó
R œ V

--- i œ IR and b œ f (t)(R)i
Ô--- for all i œ [¸(n)], (3.15)

where ties are broken so that 0 is chosen. In particular, fi(1) = fistart and fi(T ) = figoal.
Observe the following:

I Observation 3.7. For any t œ [T ] and R œ V, it holds that

f (t)(R) ”= ‹ =∆ DR(fi(t)
|IR) = 1. (3.16)

Since PR≥V [f (t)(R) ”= ‹] = Îf (t)
Î > �, by Observation 3.7, we have that for all t,

P
Ë
V (x) accepts fi(t)

È
= P

R≥{0,1}r(n)

Ë
DR(fi(t)

|IR) = 1
È
> P

R≥V

Ë
f (t)(R) ”= ‹

È
> �. (3.17)

Unfortunately, � is not a reconfiguration sequence because fi(t) and fi(t+1) may di�er in two
or more positions. Since f (t) and f (t+1) di�er in a single vertex R œ V , we have fi(t)

i ”= fi(t+1)
i

only if i œ IR, implying �(fi(t),fi(t+1)) 6 |IR| = q(n). Using this fact, we interpolate between
fi(t) and fi(t+1) to find a valid reconfiguration sequence �(t) such that V (x) accepts every
proof of �(t) with probability � ≠ o(1).

B Claim 3.8. There exists a reconfiguration sequence �(t) from fi(t) to fi(t+1) such that for
every proof fi¶ of �(t),

P
Ë
V (x) accepts fi¶

È
> � ≠

q(n) · ”(n)≠Ÿ

2r(n)
. (3.18)

Concatenating �(t)’s of Claim 3.8 for all t, we obtain a valid reconfiguration sequence �
from fistart to figoal such that

min
16t6T

P
Ë
V (x) accepts fi(t)

È
> � ≠

q(n) · ”(n)≠Ÿ

2r(n)
. (3.19)

Substituting ”(n) + q(n)·”(n)≠Ÿ

2r(n) for �, we have that if MaxParG(f start ! fgoal) > ”(n) +
q(n)·”(n)≠Ÿ

2r(n) , then V (x) accepts every proof fi(t) of � with probability at least ”(n); i.e., x œ L.
This completes the proof of Lemma 3.6. J

What remains to be done is to prove Observation 3.7 and Claim 3.8.

Proof of Observation 3.7. Suppose f (t)(R) ”= ‹ for some t œ [T ] and R œ V. We will show
that fi(t)

i œ f (t)(R)i for every i œ IR. Define

K :=
Ó
f (t)(RÕ)i

--- ÷RÕ
œ V s.t. i œ IRÕ and f (t)(RÕ) ”= ‹

Ô
. (3.20)
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Then, any pair –,— œ K must satisfy that – ™ — or – ´ — because otherwise, f (t) would
violate Eq. (3.12) at edge (R1, R2) such that i œ R1 fl R2, f (t)(R1)i = –, and f (t)(R2)i = —,
which is a contradiction. For each possible case of K, the result of the plurality vote fi(t)

i is
shown below, implying that fi(t)

i œ f (t)(R)i.

K {} {{0}} {{1}} {{0, 1}} {{0}, {0, 1}} {{1}, {0, 1}}

fi(t)
i 0 0 1 0 0 1

Since f (t)(R) must satisfy a self-loop (R,R) œ E , by the definition of ÂR,R, we have

’– œ

Ÿ

iœIR

f (t)(R)i, DR(–) = 1, (3.21)

On the other hand, it holds that

fi(t)
|IR œ

Ÿ

iœIR

f (t)(R)i, (3.22)

implying DR(fi(t)
|IR) = 1, as desired. J

Proof of Claim 3.8. Recall that fi(t) and fi(t+1) may di�er in at most q(n) positions. Consider
any trivial reconfiguration sequence �(t) from fi(t) to fi(t+1) by simply changing at most q(n)
positions on which fi(t) and fi(t+1) di�er. By construction, any proof fi¶ of �(t) di�ers from
fi(t) in at most q(n) positions, say, I¶

œ
! [¸(n)]
6q(n)

"
. Then, we derive the following:

P
Ë
V (x) accepts fi¶

È

= P
(I,D)≥V (x)

Ë
D(fi¶

|I) = 1
È
> P

(I,D)≥V (x)

Ë
D(fi¶

|I) = 1 and I fl I¶ = ÿ

È

= P
(I,D)≥V (x)

Ë
D(fi(t)

|I) = 1 and I fl I¶ = ÿ

È

= P
(I,D)≥V (x)

Ë
D(fi(t)

|I) = 1
È

¸ ˚˙ ˝
=P[V (x) accepts fi(t)]>�

≠ P
(I,D)≥V (x)

Ë
D(fi(t)

|I) = 1 and I fl I¶
”= ÿ

È

> � ≠ P
(I,D)≥V (x)

Ë
I fl I¶

”= ÿ

È
.

(3.23)

Recall that P(I,D)≥V (x)[i œ I] 6 ”(n)≠Ÿ

2r(n) for any i œ [¸(n)] by assumption. Since |I¶
| 6 q(n),

taking a union bound, we have

P
(I,D)≥V (x)

Ë
I fl I¶

”= ÿ

È
6

ÿ

iœI¶

P
(I,D)≥V (x)

Ë
i œ I

È
6 q(n) · ”(n)≠Ÿ

2r(n)
, (3.24)

implying that

P
Ë
V (x) accepts fi¶

È
> � ≠

q(n) · ”(n)≠Ÿ

2r(n)
. (3.25)

This completes the proof. C
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3.3 Reducing Partial 2CSP Reconfiguration to Label Cover
Reconfiguration

Subsequently, we show PSPACE-hardness of approximation for Label Cover Reconfigu-

ration by reducing from Partial 2CSP Reconfiguration, whose proof is similar to [26].
Note that Label Cover Reconfiguration admits a 2-factor approximation, similarly to
Minmax Set Cover Reconfiguration (see Section 4.1).

I Theorem 3.9 (ú). For any function Á : N æ R with Á(n) = �
1

1
polylogn

2
, Gap1,2≠Á(N)

Label Cover Reconfiguration with alphabet size poly(Á(N)≠1) is PSPACE-complete,

where N is the number of vertices. In particular,

for any constant Á œ (0, 1), Gap1,2≠Á Label Cover Reconfiguration with constant

alphabet size is PSPACE-complete, and

Gap1,2≠
1

polyloglogN
Label Cover Reconfiguration with alphabet size polyloglogN is

PSPACE-complete.

4 Applications

In this section, we apply Theorem 3.9 to show optimal PSPACE-hardness of approxima-
tion results for Minmax Set Cover Reconfiguration (Theorem 4.1) and Minmax

Hypergraph Vertex Cover Reconfiguration (Theorem 4.3).

4.1 PSPACE-hardness of Approximation for Set Cover Reconfiguration
We first prove that Minmax Set Cover Reconfiguration is PSPACE-hard to approximate
within a factor smaller than 2. Let U be a finite set called the universe and F = {S1, . . . , Sm}

be a family of m subsets of U . A cover for a set system (U ,F) is a subfamily of F whose
union is equal to U . For any pair of covers C

start and C
goal for (U ,F), a reconfiguration

sequence from C
start

to C
goal is a sequence C = (C(1), . . . , C(T )) of covers such that C(1) = C

start,
C
(T ) = C

goal, and |C
(t)

—C
(t+1)

| 6 1 (i.e., C(t+1) is obtained from C
(t) by adding or removing

a single set of F) for all t. In Set Cover Reconfiguration [23], for a set system (U ,F)
and its two covers Cstart and C

goal of size k, we are asked to decide if there is a reconfiguration
sequence from C

start to C
goal consisting only of covers of size at most k+1. Next, we formulate

its optimization version. Denote by opt(F) the size of the minimum cover of (U ,F). For any
reconfiguration sequence C = (C(1), . . . , C(T )), its cost is defined as the maximum value of

|C
(t)

|

opt(F)+1 over all C(t)’s in C ; namely,4

costF (C ) := max
C(t)œC

|C
(t)
|

opt(F) + 1 , (4.1)

In Minmax Set Cover Reconfiguration, we wish to minimize costF (C ) subject to
C = (Cstart, . . . , Cgoal). For a pair of covers Cstart and C

goal for (U ,F), let costF (Cstart ! C
goal)

denote the minimum value of costF (C ) over all possible reconfiguration sequences C from
C
start to C

goal; namely,

costF (Cstart ! C
goal) := min

C=(Cstart,...,Cgoal)
costF (C ). (4.2)

For every 1 6 c 6 s, Gapc,s Set Cover Reconfiguration requests to distinguish whether
costF (Cstart ! C

goal) 6 c or costF (Cstart ! C
goal) > s.

4 Here, division by opt(F) + 1 is derived from the nature that we must first add at least one set whenever
|Cstart| = |Cgoal| = opt(F) and Cstart ”= Cgoal.
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For the sake of completeness, we here present a 2-factor approximation algorithm for
Minmax Set Cover Reconfiguration of [23]:5

2-factor approximation for Minmax Set Cover Reconfiguration.

1: Û start from C
start

. Ù
2: insert each set of Cgoal

\ C
start into the current cover in any order.

3: discard each set of Cstart
\ C

goal from the current cover in any order.
4: Û end with C

goal
. Ù

Our main result is stated below, whose proof uses a gap-preserving reduction from Label

Cover Reconfiguration to Minmax Set Cover Reconfiguration [32, 27].

I Theorem 4.1. Gap1,2≠
1

polyloglogN
Set Cover Reconfiguration is PSPACE-complete,

where N is the universe size. In particular, Minmax Set Cover Reconfiguration is

PSPACE-hard to approximate within a factor of 2 ≠
1

polyloglogN .

Theorem 4.1 along with [32] implies that Minmax Dominating Set Reconfiguration

is PSPACE-hard to approximate within a factor of 2 ≠
1

polyloglogN , where N is the number of
vertices (see Corollary 1.2).

Proof of Theorem 4.1. The reduction from Label Cover Reconfiguration to Minmax

Set Cover Reconfiguration is almost the same as that due to Lund and Yannakakis [27]
and Ohsaka [32]. Let (G = (V, E ,�,�), f start, fgoal) be an instance of Label Cover

Reconfiguration with N vertices and alphabet size |�| = polyloglogN , where Îf start
Î =

Îfgoal
Î = |V|. Define B := {0, 1}�. For each – œ � and S ™ �, we construct Q– µ B and

QS µ B according to [32] in 2O(|�|) time. Let ª be an arbitrary order over V . Create an
instance of Minmax Set Cover Reconfiguration as follows. For each vertex v œ V and
each value – œ �, we define Sv,– µ E ◊ B as

Sv,– :=

Q

a
€

e=(v,w)œE:vªw

{e} ◊ Q–

R

b fi

Q

a
€

e=(v,w)œE:vºw

{e} ◊ Qfie(–)

R

b , (4.3)

where fie(–) := {— œ � | Âe(–,—) = 1}. Then, a set system (U ,F) is defined as

U := E ◊ B and F :=
Ó
Sv,–

--- v œ V,– œ �
Ô
. (4.4)

For a satisfying multi-assignment f : V æ 2� for G with ÎfÎ = |V|,6 we associate it with a
subfamily Cf µ F such that

Cf :=
Ó
Sv,–

--- v œ V,– œ f(v)
Ô
, (4.5)

which is a minimum cover for (U ,F) [32]; i.e., |Cf | = |V| = opt(F). Constructing min-
imum covers C

start from f start and C
goal from fgoal by Eq. (4.5), we obtain an instance

((U ,F), Cstart, Cgoal) of Minmax Set Cover Reconfiguration. This completes the de-
scription of the reduction.

5 Similarly, a 2-factor approximation algorithm can be obtained for Minmax Dominating Set Recon-

figuration and Minmax Hypergraph Vertex Cover Reconfiguration.
6 In other words, each f(v) is a singleton.
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Here, we will show that

MinLabG(f start ! fgoal) = costF (Cstart ! C
goal), (4.6)

which implies the completeness and soundness; for this, we use the following lemma [32].

I Lemma 4.2 ([32, Observation 4.4; Claim 4.7]). Let f : V æ 2�
be a multi-assignment and

C ™ F be a subfamily such that for any v œ V and – œ �, – œ f(v) if and only if Sv,– œ C.

Then, f satisfies an edge e = (v, w) œ E if and only if C covers {e} ◊ B. In particular, f
satisfies G if and only if C covers E ◊ B. Moreover, it holds that ÎfÎ = |C|.

We first show that MinLabG(f start ! fgoal) > costF (Cstart ! C
goal). For any reconfiguration

multi-assignment sequence F = (f (1), . . . , f (T )) from f start to fgoal such that ÎFÎmax =
MinLabG(f start ! fgoal), we can construct a reconfiguration sequence C = (Cf(1) , . . . , Cf(T ))
from C

start to C
goal by Eq. (4.5). By Lemma 4.2, each Cf(t) covers U ; thus, C is a valid

reconfiguration sequence from C
start to C

goal. Moreover, costF (Cstart ! C
goal) 6 costF (C ) =

ÎFÎmax = MinLabG(f start ! fgoal), as desired. We then show that MinLabG(f start !
fgoal) 6 costF (Cstart ! C

goal). For any reconfiguration sequence C = (C(1), . . . , C(T )) from
C
start to C

goal such that costF (C ) = costF (Cstart ! C
goal), we can construct a sequence

F = (f (1), . . . , f (t)) of multi-assignments such that f (t) : V æ 2� is defined as follows:

f (t)(v) :=
Ó

– œ �
--- Sv,– œ C

(t)
Ô
for all v œ V. (4.7)

By Lemma 4.2, each f (t) satisfies G; thus, F is a valid reconfiguration multi-assignment
sequence from f start to fgoal. Moreover, MinLabG(f start ! fgoal) 6 ÎFÎmax = costF (C ) =
costF (Cstart ! C

goal), which completes the proof of Eq. (4.6).
Since |�| = polyloglogN , the reduction takes polynomial time in N , and it holds that

|U| = |E ◊ B| = O(N2
· 2polyloglogN ) = O(N3); i.e., N = �(|U| 13 ). By Theorem 3.9,

Gap1,2≠
1

polyloglogN
Label Cover Reconfiguration with alphabet size polyloglogN is

PSPACE-complete; thus, Gap1,2≠
1

polyloglog |U|
Set Cover Reconfiguration is PSPACE-

complete as well, accomplishing the proof. J

4.2 PSPACE-hardness of Approximation for Hypergraph Vertex Cover
Reconfiguration

We conclude this section with a similar inapproximability result for Minmax Hypergraph

Vertex Cover Reconfiguration on O(1)-uniform hypergraphs. Minmax Hypergraph

Vertex Cover Reconfiguration is defined analogously to Minmax Set Cover Recon-

figuration; refer to the full version [18] for the formal definition. Our inapproximability
result is shown below, whose proof reuses the reduction of Theorem 4.1.

I Theorem 4.3 (ú). For any constant Á œ (0, 1), Gap1,2≠Á Hypergraph Vertex Cover

Reconfiguration on poly(Á≠1)-uniform hypergraphs is PSPACE-complete. In particu-

lar, Minmax Hypergraph Vertex Cover Reconfiguration on poly(Á≠1)-uniform
hypergraphs is PSPACE-hard to approximate within a factor of 2 ≠ Á.
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Abstract
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the
label of a subset of the ground set as the sum of the labels of its elements. We study a collection
of problems on finding bases and common bases of matroids with restrictions on their labels. For
zero bases and zero common bases, the results are mostly negative. While finding a non-zero basis
of a matroid is not di�cult, it turns out that the complexity of finding a non-zero common basis
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we verify a relaxed version of the conjecture for these matroids. As a consequence, we obtain a
polynomial-time algorithm in these special cases for finding an F -avoiding basis when |F | is fixed.
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1 Introduction

Several combinatorial optimization problems involve additional constraints, such as parity,
congruency, and exact-weight constraints [35, 41, 42, 43, 44]. These constraints are subsumed
by group-label constraints defined as follows: the ground set E is equipped with a labeling
Â : E æ � to an abelian group � and a solution X ™ E must ensure that the sum of the
labels of its entries is not in a prescribed forbidden set F ™ �, i.e., Â(X) :=

q
eœX

Â(e) /œ F .
We call such a solution F -avoiding.

Particularly important special cases of group-label constraints include the non-zero
(F = {0}) and zero (F = � \ {0}) constraints, where F -avoiding sets are referred to as
non-zero and zero, respectively. The non-zero constraint has been extensively studied for
path problems on graphs as it generalizes constraints on parity and topology. This line
of research includes packing non-zero A-paths [12] as well as finding a shortest odd s–t
path [46, Section 29.11e], a shortest non-zero s–t path [25], and an F -avoiding s–t path
with |F | Æ 2 [28]. For these problems, some literature allows � to be non-abelian since the
order of operations can be naturally defined for paths. Problems related to non-zero perfect
bipartite matchings in Z2 have also been dealt with, see [1, 18, 26]. The zero constraint,
or, slightly more generally, the group-label constraint with |� \ F | = 1, can encode the
congruency and exact-weight constraints by setting � to be a cyclic group Zm and the
integers Z, respectively. Examples of problems whose congruency-constrained versions have
been studied include submodular function minimization [42], minimum cut [43], and integer
linear programming with totally unimodular coe�cients [41]. For the last problem, Nägele,
Santiago, and Zenklusen [41] gave a randomized strongly polynomial-time algorithm to test
the existence of an F -avoiding feasible solution, where the group is Zm with prime m and
|F | Æ 2, implying the congruency constraint if m = 3.

The exact-weight constraint was first considered for the matching problem by Papadim-
itriou and Yannakakis [44]. Mulmuley, Vazirani, and Vazirani [40] gave a randomized
polynomial-time algorithm for solving the problem using an algebraic technique. Derandom-
izing this algorithm is a major open problem and there is a collection of partial results for it,
see e.g. [6, 18, 22, 49, 52]. Other exact problems include arborescences, matchings, cycles [2],
and independent sets or bases in a matroid [11, 16, 45].

In this work, we explore group-label constraints for matroid bases and matroid intersection.
Throughout the paper, we assume that any group � is abelian without mentioning it. In the
problems Non-Zero Basis and Zero Basis, we are given a matroid M on a ground set E
and a group labeling Â : E æ �, and we are to find a non-zero or zero basis, respectively, or
to correctly report that no such basis exists. In F -avoiding Basis, along with the matroid
M and labeling Â, we are also given a forbidden label set F ™ �, and we need to find
an F -avoiding basis, that is, a basis B with Â(B) ”œ F . In Non-Zero Common Basis,
Zero Common Basis, and F -avoiding Common Basis, instead of a single matroid, we
are given two matroids M1 and M2 on a common ground set E and seek a non-zero, zero,
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and F -avoiding common basis, respectively. We also tackle the weighted variants of these
problems, referred to as Weighted Non-Zero Basis for example, where we are to find a
feasible solution minimizing a given weight function w : E æ R.

We note that the target label 0 in the non-zero and zero problems can be changed to
an arbitrary group element g œ � by appending a coloop to the ground set with label ≠g.
Regarding the input of the group, we consider the following three types: (i) operation and
zero-test oracle, (ii) operation table of a finite group, and (iii) a fixed finite group. Unless
otherwise stated, we assume that a group is given as the oracles and the matroids are given
as independence oracles. In this case, by a polynomial-time algorithm, we mean an algorithm
making polynomially many elementary steps, group operations, and independence oracle
calls. If the group is finite and is given by its operation table, then the running time of a
polynomial-time algorithm can depend polynomially on the group size.

Our research follows the recent initiative by Liu and Xu [35], who addressed Zero Basis1.
They conjectured that, given the existence of a zero basis, for any non-zero basis B, there is
a zero basis Bú such that |Bú \B| Æ D(�) ≠ 1, where D(�) denotes the Davenport constant
of � (see Section 6.3 for definition), which is upper-bounded by |�|. Liu and Xu proved the
conjecture for cyclic groups � = Zm with the order m being a prime power or the product of
two primes, with the aid of an additive combinatorics result by Schrijver and Seymour [47],
deriving an FPT algorithm parameterized by |�| = m for Zero Basis. In Theorem 6.6, we
give a counterexample to this conjecture for groups with Zd

2 with d Ø 4.
The non-zero constraint is closely related to lattices studied by Lovász [37]. The lattice

generated by vectors {v1, . . . , vn} ™ Rn is the set {
q

n

i=1 ⁄ivi | ⁄1, . . . ,⁄n œ Z }. For a set
family F ™ 2E , let lat(F) denote the lattice generated by the characteristic vectors of F .
Every lattice has a lattice basis A = {a1, . . . , an} ™ ZE , which is a set of linearly independent
vectors generating it. Since F and its lattice basis A generate the same lattice, F has a
non-zero member if and only if A has a non-zero member, i.e., Â(ai) :=

q
eœE

ai(e)Â(e) ”= 0
for some i. This implies that if a basis of lat(F) can be computed in polynomial time, then
the existence of a non-zero member of F can be decided in polynomial time. Such set families
F include matroid bases [45], common bases of a matroid and a partition matroid having
two classes [45], and perfect matchings [37, 38].

Below, we summarize our results for each problem.

Non-Zero Basis. The tractability of Non-Zero Basis can be derived from the above lattice
argument together with a characterization of base lattices [45]. We observe that for any
zero basis B, there exists a non-zero basis Bú such that |Bú \B| Æ 1, provided that at
least one non-zero basis exists. A weighted variant of this statement is shown in the same
way. This result generalizes an algorithm for Weighted Zero Basis with � = Z2 by
Liu and Xu [35].

Non-Zero Common Basis. We show in Theorems 3.7 and 6.1 that Non-Zero Common
Basis is polynomially solvable if and only if � does not contain Z2 as a subgroup. Our
hardness proof for � = Z2 is based on an information-theoretic argument using sparse
paving matroids, which is independent of the P ”= NP conjecture. The polynomial-time
algorithm for � ”Ø Z2 is a modification of the negatively directed cycle elimination
algorithm for weighted matroid intersection [9]. In Theorem 3.9, we also give a 2-
approximation algorithm for Weighted Non-Zero Common Basis if � ”Ø Z2 and the
weight function is nonnegative. Finally, in Theorems 3.11 and 3.12, we solve Weighted

1 Called Group-Constrained Matroid Base (GCMB) in [35].

ICALP 2024



86:4 Problems on Group-Labeled Matroid Bases

Non-Zero Common Basis for an arbitrary group when both matroids are partition
matroids or one of the matroids is a partition matroid defined by a partition having two
classes.

F -avoiding Basis and Common Basis. If the group is fixed and finite, (Weighted) F -
avoiding Basis reduces to polynomially many instances of (weighted) matroid inter-
section [35]. On the other hand, it follows from the results of [16] that F -avoiding
Basis requires exponentially many independence oracle queries if F is part of the input
and the group is finite and is given as an operation table, while the same hardness of
F -avoiding Common Basis follows from our Theorem 6.1 even if the group is fixed and
finite. Regarding positive results for F -avoiding problems, our contribution is twofold.
First, using similar ideas as in [11, 51], in Theorem 4.2 we give a randomized algebraic
algorithm for F -avoiding Common Basis in case where the matroids are represented
over the same field and the group is finite and is given as an operation table. We observe
in Theorem 4.3 that the algorithm can be derandomized in certain cases, including
F -avoiding Basis for graphic matroids. Second, we turn to the study of F -avoiding
Basis for cases where |F | is fixed and the group is given by an oracle. Motivated by the
work of Liu and Xu [35], we propose Conjecture 5.1 stating that if at least one F -avoiding
basis exists, then each basis can be turned into an F -avoiding basis by exchanging at
most |F | elements. The validity of the conjecture follows from the results of [35] for
groups of prime order. We show that the conjecture also holds if � is an ordered group
(Theorem 5.6) or if |F | Æ 2 (Theorem 5.18). By introducing a novel relaxation of strong
base orderability, in Theorem 5.11 we show that a relaxation of the conjecture holds for
GF(q)-representable matroids for every fixed prime power q. In Theorem 5.17, we prove
a somewhat stronger version of this result for graphic matroids. In each of these special
cases, we obtain the polynomial solvability of F -avoiding Basis for fixed F .

Zero Basis and Zero Common Basis. The zero constraint for � = Z corresponds to the
exact-weight constraint, implying that many problems are NP-hard, in particular, Zero
Basis is NP-hard even for uniform matroids (Theorem 6.2). It follows from the results
of [16] that Zero Basis requires exponentially many independence oracle queries for a
finite group given by operation table. We show the same hardness of Zero Common
Basis for any fixed nontrivial group (Theorem 6.4). On the other hand, we obtain
positive results from the aforementioned results on F -avoiding problems. In particular,
Zero Basis is polynomially solvable if the group is fixed and finite [35], Theorem 4.2
implies a randomized polynomial-time algorithm for Zero Common Basis for matroids
represented over the same field if � is finite and is given as an operation table, and
using the results of [35], Theorem 5.11 implies an FPT algorithm for Zero Basis when
parameterized by |�| if the matroids are representable over a fixed, finite field.

Other work related to group-labeled matroids

Bérczi and Schwarcz [5] showed the hardness of partitioning into common bases, see also
[4, 24] for later results. A natural relaxation of that problem gives rise to problems related to
Non-Zero Common Basis for the group R/Z. This relation is explained in the full version.

It is straightforward to verify that the family of non-zero subsets of a set satisfies the
axiom of delta-matroids, which are a generalization of matroids introduced by Bouchet [8].
From this viewpoint, Non-Zero Basis o�ers a tractable special case of the intersection of a
matroid and a delta-matroid. We note that the intersection of a matroid and a delta-matroid
is intractable in general, as it encompasses matroid parity. Kim, Lee, and Oum [29] defined
a delta-matroid, called a �-graphic delta-matroid, from a graph equipped with a labeling of
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vertices to an abelian group �. In the definition, they employ a constraint similar to but
di�erent from non-zero. Exploring the relationship between �-graphic delta-matroids and
our findings is left for future work.

Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries on groups and
matroids. Section 3 deals with non-zero problems. Section 4 provides an algebraic algorithm
for F -avoiding Common Basis for represented matroids. Section 5 studies F -avoiding
Basis if |F | is fixed. Section 6 includes our hardness results for each of the problems. Finally,
Section 7 concludes this paper enumerating open problems.

2 Preliminaries

Let N, ZØ0, Z, Q, RØ0, and R denote the set of positive integers, nonnegative integers,
integers, rationals, nonnegative reals, and reals, respectively. We let [n] := {1, . . . , n} for
n œ ZØ0. For a set S, we simply write S \ {x} as S ≠ x for x œ S and S fi {y} as S + y for
y /œ S. For a set E and r œ ZØ0, we let

!
E

r

"
:= {S ™ E | |S| = r }.

In this paper, all groups are implicitly assumed to be abelian. We use the additive notation
for the operations of groups except in Section 4. For m œ N, let Zm = {0, . . . ,m ≠ 1} denote
the cyclic group of order m. For groups �1 and �2, we mean by �1 Æ �2 that �1 is a subgroup
of �2. A group � is said to be ordered if � is equipped with a total order Æ compatible with
the operation of � in the sense that a Æ b implies a+ c Æ b+ c for all a, b, c œ �. A labeling
is a function Â : E æ � from a set E to a group �, and we let Â(S) :=

q
xœS

Â(x) for S ™ E.
Let GF(q) denote the finite field of q elements for a prime power q.

We follow [14] for basic terminologies on graphs such as paths and cycles. The vertex and
edge sets of a graph G are denoted by V (G) and E(G), respectively. Similarly, V (D) denotes
the vertex set of a directed graph D, and A(D) denotes its arc set. Given a weight function
w : A(D) æ R and a subgraph C of D, the weight of C is defined as w(C) := w(A(C)). A
weight function w is said to be conservative if D does not contain a directed cycle of negative
weight.

We refer the reader to [20, 46] for basics on matroid optimization. A matroid M consists
of a finite ground set E(M) and a nonempty set family B(M) ™ 2E(M) such that for any
B1, B2 œ B(M) and x œ B1 \ B2, there exists y œ B2 \ B1 such that B1 ≠ x + y œ B(M).
Elements in B(M) are called bases. The next basis exchange property was proved by
Brualdi [10], see also [46, Theorem 39.12].

I Lemma 2.1 (Brualdi [10]). If B and B
Õ are bases of a matroid M , then there exists a

bijection „ : B \BÕ æ B
Õ \B such that B ≠ e+ „(e) is a basis for each e œ B \BÕ.

Following [20], we define a partition matroid as a direct sum of uniform matroids and a
unitary partition matroid as a direct sum of rank-1 uniform matroids. We note that several
authors refer to the latter object as partition matroids. Given a matrix A over some field,
we denote by M(A) the matroid defined on the column indices of A where a set is a basis of
M(A) if the corresponding columns form a basis of the vector space spanned by the columns
of A. Given a connected graph G, its cycle matroid M(G) is the matroid whose ground
set is E(G) and whose bases are the edge sets of the spanning trees of G. If M = M(A)
for a matrix A over a field F or a graph A, we say that M is F-representable or graphic,
respectively.
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3 Non-Zero Basis and Common Basis

3.1 Non-Zero Basis
In this section, we consider (Weighted) Non-Zero Basis. The following theorem can be
derived from the description of the lattices of matroid bases by Rieder [45]. In what follows
we give a direct proof of the result.

I Theorem 3.1. Let M be a matroid and Â : E(M) æ � a group labeling. The following are
equivalent:
(i) all bases of M have the same label,
(ii) M has a basis B such that Â(BÕ) = Â(B) holds for each basis BÕ with |B \BÕ| Æ 1, and
(iii) Â is constant on each component of M .

Proof. It is clear that (i) implies (ii) and (iii) implies (i). In what follows, we show that
(ii) implies (iii). Let B be a basis such that Â(BÕ) = Â(B) holds for each basis B

Õ with
|B \BÕ| Æ 1. Let GB denote the bipartite graph with bipartition (B,E(M) \B) and edge
set {xy | x œ B, y œ E(M) \ B,B ≠ x + y œ B(M) }. By the assumption on B, it follows
that Â(x) = Â(y) for each edge xy of GB . Then, Â is constant on each connected component
of the graph GB , and thus (iii) follows by using that the connected components of the graph
GB coincide with the components of the matroid M [32]. J

Note that Theorem 3.1(iii) provides a characterization for “NO” instances of Non-Zero
Basis, while Theorem 3.1(ii) provides a simple algorithm for this problem. Liu and Xu [35]
gave the following simple and constructive algorithm for Weighted Zero Basis with
� = Z2, for which the zero and non-zero constraints are equivalent, without decomposing the
matroid into components. First, find a minimum weight basis B œ B(M), and if Â(B) ”= 0,
then we are done. Otherwise, consider all the bases of the form B ≠ x+ y with x œ B and
y œ E(M) \B. Among these bases, if there is none with a non-zero label, then there does
not exist a non-zero basis, otherwise, choose a non-zero basis of minimum weight among the
considered ones. Actually, this algorithm works correctly for Weighted Non-Zero Basis
for any group, and the proof of [35, Proposition 1] can be modified to show its correctness.
In what follows, we give a di�erent proof of this fact.

I Lemma 3.2. Let M be a matroid, Â : E(M) æ � a group labeling, and w : E(M) æ R a
weight function. Then, for any minimum-weight basis B, there exists a minimum-weight
non-zero basis B

ú such that |B \Bú| Æ 1, provided that at least one non-zero basis exists.

Proof. Let BÕ be a minimum-weight non-zero basis with |B \BÕ| being minimal. If B = B
Õ

then we are done, otherwise Â(B) = 0. According to the symmetric exchange axiom, we can
choose x œ B \ BÕ and y œ B

Õ \ B such that B ≠ x+ y and B
Õ + x ≠ y are both bases. As

0 ”= Â(B)+Â(BÕ) = Â(B≠x+y)+Â(BÕ+x≠y), one of B≠x+y and B
Õ+x≠y must be non-

zero. Suppose Â(B≠x+y) ”= 0. Since w(B)+w(BÕ) = w(B≠x+y)+w(BÕ+x≠y) and w(B)
has the minimum weight, we have w(B≠x+y) Æ w(BÕ), which implies w(B≠x+y) = w(BÕ)
by Â(B ≠ x+ y) ”= 0. Thus, we can take B

ú = B ≠ x+ y. If Â(BÕ + x ≠ y) ”= 0, then it can
be shown in the same way that BÕ + x≠ y is a minimum-weight non-zero basis, contradicting
the assumption that BÕ is a minimum-weight non-zero basis closest to B. J

We obtain the following from Lemma 3.2.

I Theorem 3.3. Weighted Non-Zero Basis can be solved in polynomial time.
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3.2 Non-Zero Common Basis
3.2.1 Polynomial-time Algorithm with Z2 ”Æ �
In this section, we show the polynomial solvability of Non-Zero Common Basis when
Z2 ”Æ �, that is, � does not contain any element of order two. Later, we will show in
Theorem 6.1 that the problem is hard if Z2 Æ �. Our algorithm is a modification of the
weighted matroid intersection algorithm given by Krogdahl [30, 31, 32] and independently
by Brezovec, Cornuéjols, and Glover [9].

We will use the following result on directed graphs. While several works concentrated
on finding non-zero paths and cycles in group-labeled graphs [25], their setting does not
seem to include group-labeled digraphs. Therefore, we give a proof of the next result in the
full version. While this result may be of independent interest, it will later be applied as a
subroutine.

I Theorem 3.4. Let D be a digraph, Â : A(D) æ � a group labeling, and w : A(D) æ R
a conservative weight function. Then, there is a polynomial-time algorithm that returns a
non-zero directed cycle in D which is shortest with respect to w or correctly reports that D
contains no non-zero directed cycle.

We note that the problem of finding an odd directed path is NP-hard even in the
unweighted case [33]. In contrast to Theorem 3.4, the key distinction here lies between walks
and paths: while a walk can include a directed cycle to change a group label, a path cannot.
Consequently, a Dijkstra-style algorithm for finding an odd directed path must track not
only the last vertex but also all intermediate vertices, leading to an exponential increase in
running time.

Let M1 and M2 be matroids on a common ground set E and Â : E æ � a group labeling.
Given a common basis B, we define the digraph DM1,M2(B) on the vertex set E and the
labeling Â

Õ on its arcs as follows. For each x œ B and y œ E \B such that B≠x+y œ B(M1),
we add an arc xy to DM1,M2(B) with label Â

Õ(xy) := Â(y). Similarly, for each x œ B and
y œ E \B such that B ≠ x+ y œ B(M2), we add an arc yx and with label Â

Õ(yx) := ≠Â(x).

I Lemma 3.5. Let M1 and M2 be matroids on a common ground set E and Â : E æ �
a group labeling. Let B and B

Õ be common bases of M1 and M2 such that Â(B) = 0 and
Â(BÕ) ”= 0. Then, DM1,M2(B) contains a non-zero directed cycle C with V (C) ™ B — B

Õ.

Proof. By Lemma 2.1, DM1,M2(B) contains a collection P1 of |B\BÕ| pairwise vertex-disjoint
arcs from B\BÕ to BÕ\B and a collection P2 of |B\BÕ| pairwise vertex-disjoint arcs from B

Õ\B
to B\BÕ. The union of P1 and P2 has label Â(BÕ\B)≠Â(B\BÕ) = Â(BÕ)≠Â(B) = Â(BÕ) ”= 0
and consists of pairwise vertex-disjoint directed cycles in DM1,M2(B), hence it contains a
non-zero directed cycle. J

The following result and proof are analogous to that of [9, Theorem 2]. In that result, a
weight function is given instead of a labeling, and the constraint “non-zero” is replaced by
“negative”. In our setting, the proof only works if we assume Z2 ”Æ �, as we need to guarantee
that if we decompose an arc set having label 2Â

Õ(C) for some non-zero directed cycle C, then
at least one member of the decomposition has non-zero label. We give the proof in the full
version.

I Lemma 3.6. Let � be a group such that Z2 ”Æ �. Let M1 and M2 be matroids on a common
ground set E, Â : E æ � a group labeling, and B a common basis. If C is a non-zero directed
cycle of DM1,M2(B) whose vertex set is inclusion-wise minimal among non-zero directed
cycles, then B — V (C) is a common basis.

Combining Lemmas 3.5 and 3.6, we obtain the main result of the section.
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I Theorem 3.7. Let � be a group such that Z2 ”Æ �. Let M1 and M2 be matroids on a
common ground set E, Â : E æ � a group labeling, and B0 a zero common basis. Then,
M1 and M2 have a non-zero common basis if and only if DM1,M2(B0) contains a non-zero
directed cycle. Moreover, Non-Zero Common Basis is polynomially solvable.

Proof. If there exists a non-zero common basis Bú, then DM1,M2(B0) contains a non-zero
directed cycle by Lemma 3.5. Conversely, if DM1,M2(B0) contains a non-zero directed cycle,
then let C be a minimum length non-zero directed cycle. Then, Lemma 3.6 implies that
B

ú := B — V (C) is a common basis, and we have Â(Bú) = Â(B0) + Â
Õ(C) = Â

Õ(C) ”= 0.
This provides the following algorithm for Non-Zero Common Basis. First, we find a

common basis B0. If no common basis exists or B0 is non-zero, we are done. Otherwise,
we find a minimum length non-zero directed cycle C in DM1,M2(B0) using Theorem 3.4. If
no non-zero directed cycle exists then we report that there is no non-zero common basis,
otherwise we output B0 — V (C). J

We turn to the study of Weighted Non-Zero Common Basis. Given two matroids M1
and M2 on a common ground set E, a common basis B, and a weight function w : E æ R,
we define the weight function w

Õ on the arcs of DM1,M2(B) as follows. For each arc xy such
that x œ B, y œ E \ B and B ≠ x + y œ B(M1) we define w

Õ(xy) := w(y), and for each
arc yx such that x œ B, y œ E \ B and B ≠ x + y œ B(M2) we define w

Õ(yx) := ≠w(x).
Then, B is a minimum-weight common basis if and only if wÕ is conservative [31, 21, 9],
see also [46, Theorem 41.5]. We observe the following relationship between the weight of a
shortest non-zero directed cycle in DM1,M2(B) and the weights of non-zero common bases of
M1 and M2. Its simple proof can be found in the full version.

I Lemma 3.8. Let M1 and M2 be matroids on a common ground set E, Â : E æ � a group
labeling, and w : E æ R a weight function. Let B0 be a minimum-weight common basis and
assume that Â(B0) = 0. Let C be a shortest non-zero directed cycle in DM1,M2(B0) with
respect to w

Õ. Then, w(B0 — V (C)) Æ w(Bú) holds for each non-zero common basis B
ú.

We note that Lemma 3.8 generalizes Lemma 3.2, as in the special case M1 = M2 each
arc of DM1,M2(B0) is bidirectional, thus a shortest non-zero directed cycle consists of two
vertices.

In Lemma 3.8, the weight of C is measured by w
Õ (which takes negative values on some

arcs), so V (C) is not necessarily inclusion-wise minimal among the vertex sets of non-zero
directed cycles. Thus, it does not yield an algorithm for Weighted Non-Zero Common
Basis. In fact, the complexity of the problem remains open for a group � with Z2 ”Æ �.
Nevertheless, we use Lemma 3.8 to give a 2-approximation if the weight function w is
nonnegative. The proof of the result is given in the full version.

I Theorem 3.9. Let � be a group with Z2 ”Æ �. Let M1 and M2 be matroids on a common
ground set E, Â : E æ � a group labeling, and w : E æ RØ0 a weight function. Then, there
exists a polynomial-time algorithm that computes a non-zero common basis B that satisfies
w(B) Æ 2w(Bú) for every non-zero common basis B

ú or correctly outputs that there exists
no non-zero common basis.

3.2.2 Certificate for All Common Bases Being Zero
Given a strongly connected digraph having labels on its arcs, the fact that all directed
cycles have label zero can be certified by a certain labeling of its vertices. Using this
result and assuming a property of the matroid pair ensuring strong connectivity, we get a
characterization for all directed cycles of DM1,M2(B) having label zero, which is analogous
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to the weight-splitting theorem of Frank [19]. By Theorem 3.7, this provides the following
certificate for the “NO” instances of Non-Zero Common Basis if Z2 ”Æ �. We give details
in the full paper.

I Theorem 3.10. Let M1 and M2 be matroids on a common ground set E and the same rank
r. Assume that rM1(X) + rM2(E \X) > r holds for every ÿ ”= X ( E. Let B be a common
basis of M1 and M2, and Â : E æ � a group labeling. Then, DM1,M2(B) contains no non-zero
directed cycle if and only if there exist labelings Â1,Â2 : E æ � such that Â = Â1 + Â2 and
Âi is constant on each connected component of Mi for i = 1, 2.

3.2.3 Partition matroids
When both matroids are partition matroids, we can drop the assumption Z2 ”Æ � from
Theorem 3.7 and extend it to the weighted setting. The proof of the next result is given in
the full version.

I Theorem 3.11. Weighted Non-Zero Common Basis is polynomially solvable if M1
and M2 are partition matroids.

Given a graph G and a function b : V (G) æ ZØ0, a perfect b-matching is an edge set F ™
E(G) such that dF (v) = b(v) for each v œ V . If G is bipartite, then its perfect b-matchings
form the family of common bases of two partition matroids. Therefore, Theorem 3.11 can be
formulated as having a polynomial-time algorithm for finding a minimum weight non-zero
perfect b-matching in a bipartite graph with weights and labels on its edges. For perfect
matchings and the group Z2, the idea of essentially the same algorithm as ours was briefly
mentioned in [26], where the authors noted that it can also be derived from results of [1]. A
formal description of the algorithm and a proof of its correctness were given in [18] for a
special weight function.

Next, we consider the special case of Weighted Non-Zero Common Basis when we
only assume that one of the matroids is a partition matroid. Without further assumptions,
this problem is not easier than the general one: a construction similar to that of Harvey,
Király and Lau [23] shows that the general problem can be reduced to the special case when
one of the matroids is a unitary partition matroid and all partition classes have size two. In
what follows, we will consider the case when the partition matroid is defined by a partition
having two classes. In this special case, the polynomial solvability of Non-Zero Common
Basis follows from the corresponding lattice basis characterization of Rieder [45]. We extend
this result by solving the weighted version of the problem.

I Theorem 3.12. Weighted Non-Zero Common Basis is polynomially solvable if M2 is
a partition matroid defined by a partition having two classes.

The proof of the theorem is given in the full version. The proof of both Theorem 3.11 and
Theorem 3.12 relies on Lemma 3.8 by observing that the special property of the matroid pair
guarantees that B0 — V (C) is a common basis whenever B0 is a minimum-weight common
basis having label zero and C is a shortest non-zero directed cycle in DM1,M2(B).

4 Algebraic Algorithm for F -avoiding Basis and Common Basis

We present a randomized polynomial-time algorithm for F -avoiding Common Basis for
representable matroids given as matrices over a field F and a finite group � given as an
operation table. Our algorithm is a generalization of the exact-weight matroid intersection
algorithm for representable matroids by Camerini, Galtiati, and Ma�oli [11]. A similar
algebraic algorithm has also been considered by Webb [51, Section 3.7].
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Before describing the algorithm, we introduce needed algebraic notions and results.
We assume that the arithmetic operations and the zero test over F can be performed in
constant time. In this section, we use the multiplicative notation for the operation of �,
and let e denote the group unit (zero) of � instead of 0. The group ring K[�] of � over
a field K is the set of formal K-coe�cient linear combinations of the elements in �, i.e.,
K[�] := {

q
gœ� agg | ag œ K (g œ �) }. The addition and multiplication of f =

q
gœ� agg œ

K[�] and h =
q

gœ� bgg œ K[�] are naturally defined as f + h =
q

gœ�(ag + bg)g and
fh =

q
g,gÕœ� agbgÕgg

Õ. With these operations, K[�] forms a commutative ring, containing K

as a subring under the natural identification K – a ‘æ ae œ K[�]. Note that the operations
of K[�] and the zero test can be performed in polynomially many operations of K and �.

For finite sets R and C, we mean by an R ◊ C matrix a matrix of size |R| ◊ |C| whose
rows and columns are identified with R and C, respectively. We simply write [r] ◊ C as
r ◊ C for r œ ZØ0. Given a ground set E and a labeling Â : E æ �, we define an E ◊ E

diagonal matrix DÂ as follows: for every j œ E, we set the (j, j) diagonal entry of DÂ as
xjÂ(j), where xj is an indeterminate (variable) whose actual value comes from F. Then, DÂ

is regarded as a matrix over the group ring F({xe}eœE)[�], where F({xe}eœE) denotes the
rational function field over F in |E| indeterminates {xe}eœE .

The following is a modification of a claim of Tomizawa and Iri [50], who first used the
Cauchy–Binet formula in the context of linear matroid intersection.

I Lemma 4.1. Let F be a field, M1 and M2 F-representable matroids with the common
ground set E and the same rank r, Ak an r ◊ E matrix representing Mk for k = 1, 2, and
Â : E æ � a labeling. Let � = A1DÂA

€
2 . Then, the coe�cient of g œ � in det(�) is a

non-zero polynomial in {xj}jœE if and only if a common basis with label g exists.

Proof. By the Cauchy–Binet formula, we can expand det(�) as

det(�) =
ÿ

Bœ(Er)
det(A1[B]) det(A2[B])

Ÿ

jœB

xj · Â(B), (1)

where Ak[B] denotes the submatrix of Ak obtained by extracting the columns in B for
k = 1, 2. Observe that det(A1[B]) det(A2[B]) is non-zero if and only if B is a common basis
of M1 and M2, and the terms coming from di�erent common bases do not cancel out thanks
to the factor

r
jœB

xj , proving the claim. J

Lemma 4.1 together with the Schwartz–Zippel lemma [36, 48, 53], division-free determinant
algorithm [27], search-to-decision reduction, and the field extension for small fields give rise
to a randomized algebraic algorithm for F -avoiding Common Basis. The proof of the
result is given in the full version.

I Theorem 4.2. Let F be a field and M1 and M2 F-representable matroids with the common
ground set E. There is a randomized algorithm that, given matrices A1 and A2 over F
representing M1 and M2, respectively, the operation table of a finite abelian group �, a group
labeling Â : E æ �, and a forbidden label set F ™ �, solves F -avoiding Common Basis in
expected polynomial time.

A Pfa�an pair is a pair of r ◊ n matrices A1, A2 such that det(A1[B]) det(A2[B]) is a
non-zero constant for any common basis B [51]. This property implies that if F = Q and
matroids are given as a Pfa�an pair, then no cancel-out occurs in the summands of det(�)
in the equation (1) even if we substitute 1 for all xi. Therefore, we can derandomize the
algorithm given in Theorem 4.2. Examples of common bases of matroid pairs representable by
Pfa�an pairs include spanning trees, regular matroid bases, arborescences, perfect matchings
in Pfa�an-orientable bipartite graphs, and node-disjoint S–T paths in planar graphs [39].
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I Theorem 4.3. F -avoiding Common Basis is polynomially solvable for Q-representable
matroids if matroids are given as a Pfa�an pair and a group is given as the operation table.

We can also generalize Theorem 4.2 to a randomized pseudo-polynomial-time algorithm
for the weighted problem as follows. See the full version for the proof.

I Theorem 4.4. Let F be a field and M1 and M2 F-representable matroids on a common
ground set E. There is a randomized algorithm that, given matrices A1 and A2 over F
representing M1 and M2, respectively, the operation table of a finite abelian group �, a group
labeling Â : E æ �, a forbidden label set F ™ �, and a weight function w : E æ Z, solves
Weighted F -avoiding Common Basis in pseudo-polynomial time in expectation. The
algorithm can be derandomized if F = Q and (A1, A2) is a Pfa�an pair.

5 F -avoiding Basis with Fixed |F |

As we will see in Theorem 6.3, Zero Basis is hard for groups given by operation tables.
This implies the hardness of F -avoiding Basis if the set F of forbidden labels is part of the
input. In this section, we study the problem when F has a fixed size. Note that in contrast
to the setting of Section 4, we assume that � is given as an operation oracle (and it is not
necessarily finite).

Related to the notion of k-closeness recently introduced by Liu and Xu [35], we propose
the following conjecture.

I Conjecture 5.1. Let M be a matroid, Â : E(M) æ � a labeling, and F ™ � a finite
collection of forbidden labels. Then, for any basis B, there exists an F -avoiding basis B

ú

with |B \Bú| Æ |F |, provided that at least one F -avoiding basis exists.

Note that Lemma 3.2 (applied with a constant weight function) implies that Conjecture 5.1
holds for |F | = 1. A tightness example for Conjecture 5.1 can be found in the full version.
We can relax Conjecture 5.1 as follows.

I Conjecture 5.2. There exists a function f : N æ N with the following property: If M is
a matroid, Â : E(M) æ � is a group labeling, and F ™ � is a finite collection of forbidden
labels, then, for any basis B, there exists an F -avoiding basis B

ú with |B \ B
ú| Æ f(|F |),

provided that at least one F -avoiding basis exists.

Conjectures 5.1 and 5.2 have algorithmic implications due to the following simple observation.

I Lemma 5.3. Let – be a fixed positive integer. Further, let M be a matroid, Â : E(M) æ �
a group labeling, and F ™ � a finite collection of forbidden labels, such that, for any basis B,
there exists an F -avoiding basis B

ú with |B \Bú| Æ –, provided that at least one F -avoiding
basis exists. Then, an F -avoiding basis of M can be found in polynomial time, if one exists.

Proof. We first compute an arbitrary basis B of M . Then, for every X ™ B and every
Y ™ E(M) \ B with |X| = |Y | Æ –, we test whether (B \ X) fi Y is an F -avoiding basis
of M . As there are at most 1 + n

– choices for each of X and Y , the desired running time
follows. If we find an F -avoiding basis during this procedure, we return it. Otherwise, no
F -avoiding basis exists by assumption. J

The following is an immediate consequence of Lemma 5.3.

I Corollary 5.4. If Conjecture 5.2 holds, then F -avoiding Basis is solvable in polynomial
time if |F | is fixed.
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Liu and Xu [35] defined a finite group � to be k-close for an integer k Ø 1, if for any
matroid M , group labeling Â : E(M) æ �, element g œ � and basis B, there exists a basis
B

ú with |B \Bú| Æ k and Â(Bú) = g, provided that M has at least one basis with label g.
Observe that Conjecture 5.1 would imply (|�|≠ 1)-closeness, and Conjecture 5.2 would imply
f(|�| ≠ 1)-closeness of each finite group � for some function f : N æ N. This would imply an
FPT algorithm for Zero Basis when parameterized with |�| due to the following result,
which is a consequence of [35, Theorem 1].

I Theorem 5.5 (see Liu–Xu [35]). Assume that for each finite group �, there exists an integer
k such that � is k-close. Then, Zero Basis is in FPT for finite groups when parameterized
by |�|.

Liu and Xu [35] observed that if all subgroups of � satisfy a conjecture by Schrijver and
Seymour [47], then � is (|�|≠1)-close. By the results of DeVos, Goddyn, and Mohar [13], this
implies that any cyclic group � is (|�|≠ 1)-close whose order is a prime power or the product
of two primes. The proof of [35, Theorem 4] does not seem to generalize to our setting. Thus,
it is not clear whether the conjecture of Schrijver and Seymour implies Conjecture 5.1. If �
has prime order, then Liu and Xu [35, Theorem 3] gave a simpler proof of (|�| ≠ 1)-closeness.
That proof also generalizes to show that Conjecture 5.1 holds for such groups.

Using the results of Lemos [34], we can also prove that Conjecture 5.1 holds for ordered
groups, which is a group � equipped with a total order Æ on � such that a Æ b implies
a+ c Æ b+ c for all a, b, c œ �. The result is restated in the following theorem, whose proof
can be found in the full version.

I Theorem 5.6. Let M be a matroid, Â : E(M) æ � a labeling to an ordered group �, F ™ �
a finite collection of forbidden labels, B a basis of M , and suppose that M has an F -avoiding
basis. Then, there exists an F -avoiding basis B

ú of M with |Bú \B| Æ |F |.

5.1 Strongly Base Orderable Matroids and Relaxations
In this section, we introduce a relaxed notion of strong base-orderability, called (–, k)-weak
base orderability, where – and k are positive integers. In Section 5.1.1, we define this notion
and show its relation to strong base-orderability and group-restricted bases. In Section 5.1.2
and Section 5.1.3, we conclude results for matroids representable over fixed finite fields and
graphic matroids, respectively.

5.1.1 (–, k)-Weakly Base Orderable Matroids
A matroid is called strongly base orderable if for any two bases B1, B2, there exists a bijection
Ï : B1 \B2 æ B2 \B1 such that (B1 \ Z) fi Ï(Z) is a basis for each Z ™ B1 \B2. For some
positive integer k, we say that the ordered basis pair (B1, B2) has the k-exchange property if
there exist pairwise disjoint nonempty subsets X1, . . . ,Xk ™ B1\B2 and Y1, . . . , Yk ™ B2\B1
such that

!
B1 \

t
iœZ

Xi

"
fi

t
iœZ

Yi is a basis for each Z ™ [k]. For positive integers – and
k, we define a matroid M to be weakly (–, k)-base orderable if the ordered pair (B1, B2)
has the k-exchange property for any two bases B1, B2 of M with |B1 \ B2| Ø –. We note
that (–, k)-weak base orderability is a relaxation of k-base orderability defined by Bonin
and Savitsky [7], and our definition of the k-exchange property di�ers from their definition
of k-exchange-ordering. Observe that strongly base orderable matroids are precisely the
matroids that are (k, k)-weakly base orderable for each k Ø 1.
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For a matroid M and two disjoint bases B1, B2 of M with B1 fi B2 = E(M), we say that
(B1, B2) is a basis partition of M . For a basis B of a matroid M , we say that a minor M Õ

of M is a B-minor if it is obtained by contracting some elements of B and deleting some
elements of E(M) \B. We use the following simple observation later, whose proof can be
found in the full version.

I Lemma 5.7. Let B1 and B2 be two bases of a matroid M . Further, let M Õ be a B1-minor
of M such that (BÕ

1, B
Õ
2) is a basis partition of M Õ and has the k-exchange property for some

k œ N, where B
Õ
i
:= Bi fl E(M Õ) for i = 1, 2. Then (B1, B2) has the k-exchange property

in M .

The following result is our main motivation to consider weak base orderability. It
establishes a connection between weak base orderability and Conjecture 5.2.

I Theorem 5.8. Let M be a matroid, Â : E(M) æ � a group labeling, and F ™ � a finite
collection of forbidden labels. If M is (–, |F |+ 1)-weakly base orderable, then for each basis
B, there exists an F -avoiding basis B

ú with |B \ B
ú| Æ – ≠ 1, provided that at least one

F -avoiding basis exists.

For the proof, we need the following result, which is most likely routine; see the full version
for the proof.

I Proposition 5.9. Let S be a finite set, Â : S æ � a group labeling, and 0 /œ F ™ � satisfying
|F | Æ |S| ≠ 1. Then, there exists some nonempty S

Õ ™ S with Â(SÕ) /œ F .

Proof of Theorem 5.8. Let k := |F | and let B be a basis and B
Õ an F -avoiding basis

minimizing |BÕ \B|. If |BÕ \B| Æ – ≠ 1, there is nothing to prove. We may hence suppose
that |BÕ \ B| Ø –. Then, as M is (–, k + 1)-weakly base orderable, there exist pairwise
disjoint nonempty subsets X1, . . . ,Xk+1 ™ B

Õ \ B and Y1, . . . , Yk+1 ™ B \ B
Õ such that!

B
Õ \

t
iœZ

Xi

"
fi

t
iœZ

Yi is a basis for each Z ™ [k + 1]. We define Â
Õ : [k + 1] æ � by

Â
Õ(i) = Â(Yi) ≠ Â(Xi) for all i œ [k + 1]. Observe that 0 /œ F

Õ := { f ≠ Â(BÕ) | f œ F },
as BÕ is an F -avoiding basis. It hence follows from Proposition 5.9 that there exists some
nonempty Z ™ [k + 1] with Â

Õ(Z) /œ F
Õ. Let B

ÕÕ :=
!
B

Õ \
t

iœZ
Xi

"
fi

t
iœZ

Yi. By the
definition of X1, . . . ,Xk+1 and Y1, . . . , Yk+1, we obtain that BÕÕ is a basis of M . Further, we
have Â(BÕÕ) = Â(BÕ) + Â

Õ(Z) /œ F . Finally, we have |BÕÕ \B| < |BÕ \B| since Z is nonempty.
This contradicts the choice of BÕ. J

As strongly base orderable matroids are (k, k)-weakly base orderable for any k Ø 1, we
also get the following.

I Corollary 5.10. Strongly base orderable matroids satisfy Conjecture 5.1.

A connection of the results obtained in this section with certain orderings of elements of
matroids introduced by Baumgart [3] can be found in the full version.

5.1.2 Matroids Representable over Finite Fields
In this section, we prove that the concept of weakly base orderability allows us to deal with
a large class of matroids, namely all those which are representable over a fixed finite field.
More precisely, we prove the following result.

I Theorem 5.11. There is a function f : N ◊ N æ N such that for every prime power q,
every GF(q)-representable matroid is weakly (f(q, k), k)-orderable for any positive integer k.
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On a high level, the proof works in the following way. First, relying on results of [15] on
the existence of certain submatrices of large matrices over finite fields, we show that every
GF(q)-representable matroid has a certain substructure. We then show that this substructure
has the desired property. From this, we can conclude the theorem.

In order to find this substructure, we deal with the matrices representing the matroids in
consideration. We first need some notation for these matrices. For two matrices A and A

Õ,
we say that A contains AÕ as a permuted submatrix if AÕ can be obtained from A by deleting
and permuting rows and columns. For a square matrix, we refer by its size to its number of
rows. Let q be a prime power. We say that a triple (–,—, “) of elements of GF(q) is feasible
if – ”= — and at least one of — ”= 0 and “ ”= 0 hold. For a triple (–,—, “) and a positive
integer t, the (–,—, “)-diagonal matrix of size t is the t ◊ t matrix A = (Aij) such that for
i, j œ [t], we have Aij = – if i < j, Aii = — if i = j, and Aij = “ if i > j. We now collect
some properties of (–,—, “)-diagonal matrices. We first need the following result showing
that (–,—, “)-diagonal matrices can always be found in su�ciently large matrices over a fixed
finite field. The following result can easily be concluded from a slightly weaker result due
to Ding, Oporowski, Oxley, and Vertigan [15]. Its detailed proof can be found in the full
version.

I Proposition 5.12. There is a computable function f1 : N ◊ N æ N with the following
property: Let q be a prime power, t a positive integer, and A a matrix over GF(q) having
at least f1(q, t) columns no two of which are identical. Then, A contains a permuted square
submatrix A

Õ of size t which is (–,—, “)-diagonal for a feasible triple (–,—, “).

We are now ready to give the following result showing that every su�ciently large matroid
that is representable over a fixed finite field has a certain substructure. The approach is to
choose a matrix representing the matroid and find a particular submatrix in this matrix using
Proposition 5.12. After, we show that a minor represented by this matrix can be obtained
by applying certain deletions and contractions. The detailed proof can be found in the full
version.

I Lemma 5.13. There is a computable function f1 : N◊N æ N with the following properties:
Let q be a prime power, k a positive integer, M a GF(q)-representable matroid of rank at
least f1(q, k) and (B1, B2) a basis partition of M . Then, there exists a B1-minor M

Õ of M
that can be represented by a matrix of the form [Ik A], where Ik is the identity matrix of size
k and A is an (–,—, “)-diagonal matrix for a feasible triple (–,—, “), and the columns of Ik
correspond to the elements of BÕ

1 and those of A correspond to the elements of BÕ
2, where

B
Õ
i
:= Bi fl E(M Õ) for i = 1, 2.

We will prove Theorem 5.11 by showing that matroids representable by a very specific
class of matrices satisfy its conclusion. For this, we need a statement showing that certain
matrices are nonsingular, which we derive from an explicit formula for the determinants of
(–,—, “)-triangular matrices due to Efimov [17]. The detailed proof can be found in the full
version.

I Proposition 5.14. Let q be a prime power, (–,—, “) a feasible triple, t a multiple of q(q≠1),
and A the (–,—, “)-diagonal matrix of size t. Then, A is nonsingular.

We are now ready to conclude the result for the specific class of matroids.

I Lemma 5.15. There is a computable function f2 : N◊N æ N with the following properties:
Let q be a prime power, k a positive integer, and M a matroid that can be represented by
[I A] over GF(q), where I is an identity matrix of size f2(q, k) and A is an (–,—, “)-diagonal
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matrix of the same size for a feasible triple (–,—, “). Next, let B1 and B2 be the subsets of
E(M) corresponding to I and A, respectively. Then, (B1, B2) is a basis partition of M and
has the k-exchange property.

Proof. Let f2 be the function defined by f2(q, k) := q(q ≠ 1)k for all positive integers q

and k. By Proposition 5.14, we have that A is nonsingular and hence (B1, B2) is a basis
partition of M . For i œ [k], let Xi be the subset of B1 and Yi be the subset of B2 that
corresponds to the columns of indices q(q ≠ 1)(i≠ 1) + 1 to q(q ≠ 1)i of I and A, respectively.
For Z ™ [k], let BZ :=

!
B1 \

t
iœZ

Xi

"
fi

t
iœZ

Yi. It su�ces to prove that BZ is a basis of
M for every Z ™ [k]. To this end, consider some fixed Z ™ [k]. Observe that the matrix
obtained from restricting [I A] to the columns corresponding to BZ can be transformed into
a matrix of the form A

ú =
Ë
I

Õ
A1

O A
Õ

È
by exchanging rows and columns. Here, I Õ is the identity

matrix of size q(q ≠ 1)(k ≠ |Z|), O is a zero matrix, AÕ is an (–,—, “)-diagonal matrix of size
q(q ≠ 1)|Z|, and A1 is an arbitrary matrix. As the size of AÕ is divisible by q(q ≠ 1), we
obtain by Proposition 5.14 that A

Õ is nonsingular. It follows that A
ú is nonsingular, and

hence BZ is independent. As |BZ | = |B1| by construction, we obtain that BZ is a basis of
M . This finishes the proof. J

Finally, we combine Lemmas 5.7, 5.13, and 5.15 to conclude Theorem 5.11.

Proof of Theorem 5.11. We prove the statement for the function f : N ◊ N æ N defined by
f(q, k) := f1(q, f2(q, k)) for each k œ N and prime power q. Let B1 and B2 be bases of a
GF(q)-representable matroid M with |B1 \B2| Ø f(q, k). We need to prove that (B1, B2) has
the k-exchange property. Let M Õ := M/ (B1 flB2)\ (E(M)\ (B1 fiB2)). Further, for i = 1, 2,
let BÕ

i
:= Bi fl E(M Õ) and observe that (BÕ

1, B
Õ
2) is a basis partition of M Õ. It follows from

Lemma 5.13 that there exists a B
Õ
1-minor M ÕÕ of M Õ that can be represented by a matrix

of the form [I A], where I is the identity matrix of size f2(q, k), A is an (–,—, “)-diagonal
matrix of size f2(q, k) for a feasible triple (–,—, “) and the columns of I and A correspond
to the elements of BÕÕ

1 and B
ÕÕ
2 , respectively, where B

ÕÕ
i
:= B

Õ
i
fl E(M ÕÕ) for i = 1, 2. We now

obtain from Lemma 5.15 that (BÕÕ
1 , B

ÕÕ
2 ) is a basis partition of M ÕÕ and has the k-exchange

property in M
ÕÕ. As M ÕÕ is a B1-minor of M , we now obtain from Lemma 5.7 that (B1, B2)

has the k-exchange property in M . J

Combining Theorems 5.8 and 5.11, Lemma 5.3, and Theorem 5.5, we get the following.

I Corollary 5.16. Let q be a prime power, M a GF(q)-representable matroid, Â : E æ � a
group labeling and F ™ � a finite set of forbidden labels. When |F | is fixed, F -avoiding
Basis is solvable in polynomial time. Moreover, if |�| is finite, then Zero Basis is in FPT
when parameterized by |�|.

We note that Corollary 5.16 is not implied by Theorem 4.2. The former applies to
arbitrary groups, while the latter is limited to finite groups given by an operation table.
Furthermore, Corollary 5.16 gives a deterministic polynomial-time algorithm, in contrast to
the randomized algorithm in Theorem 4.2.

5.1.3 Graphic matroids
As a strengthening of the k-exchange property, we say that the basis pair (B1, B2) of a
matroid has the elementary k-exchange property if there exist k-element subsets X ™ B1 \B2
and Y ™ B2 \ B1 and a bijection Ï : X æ Y such that (B1 \ Z) fi Ï(Z) is a basis for each
Z ™ X. Note that this is equivalent to requiring |Xi| = |Yi| = 1 for each i œ [k] in the

ICALP 2024



86:16 Problems on Group-Labeled Matroid Bases

definition of the k-exchange property. We define a matroid M to be elementarily (–, k)-weakly
base orderable if (B1, B2) has the elementary k-exchange property for any pair of basis B1
and B2 with |B1 \B2| Ø –.

It turns out that all regular matroids are elementarily (f(k), k)-weakly base orderable for
some large function f : N æ N, while the same is not true for binary matroids. The proofs
of these results can be found in the full version. As graphic matroids are regular, they are
elementarily (f(k), k)-weakly base orderable for some large function f : N æ N. We give a
proof in the full version, independent from the proof of Theorem 5.11, which shows that for
graphic matroids, there exists such a function f satisfying f(k) = O(k3).

I Theorem 5.17. Graphic matroids are elementarily (3k3, k)-weakly base orderable for any
k Ø 1.

5.2 Two forbidden labels
The objective of this section is to prove the following restatement of the case |F | = 2 of
Conjecture 5.1. Its proof can be found in the full version. Vaguely speaking, we first reduce
the problem to matroids on six elements and then combine some earlier results with a
particular treatment for the cycle matroid of K4.

I Theorem 5.18. Let M be a matroid, Â : E(M) æ � a group labeling, and let F be a
2-element subset of �. For any basis B, there exists an F -avoiding basis B

ú such that
|B \Bú| Æ 2, provided that there exists at least one F -avoiding basis.

6 Hardness and Negative Results

In this section, we give the algorithmic hardness results and counterexamples contained in
this work. Sections 6.1 and 6.2 contain algorithmic intractability results and Section 6.3
contains a counterexample to a conjecture of Liu and Xu [35]. All proofs can be found in the
full version.

6.1 Hardness of Non-zero Common Basis with Z2 Æ �
We here show that Non-Zero Common Basis is intractable for any group � such that
Z2 Æ �. This implies that the condition on � in Theorem 3.7 is crucial indeed.

I Theorem 6.1. Non-Zero Common Basis requires an exponential number of independence
queries for any fixed group � such that Z2 Æ �.

Our proof of Theorem 6.1 provides a new and simpler proof of the result of Bérczi and
Schwarcz [5] showing that the problem of partitioning the ground set into common bases
is hard. In addition to this new proof, we also describe the relation of a relaxation of that
problem to a problem on non-zero common bases via dual lattices in the full version.

6.2 Hardness of Zero Basis
In this section, we show two hardness results for Zero Basis. The first one shows that the
problem is hard even for uniform matroids by using the hardness of the well-known Subset
Sum problem.

I Theorem 6.2. Zero Basis is NP-hard for a uniform matroid and � = Z.
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It can be derived from [16, Theorem 1.3] that Zero Basis is also hard for finite groups
given as operation tables.

I Theorem 6.3 (see Doron-Arad–Kulik–Shachnai [16, Theorem 1.3]). Zero Basis requires an
exponential number of independence queries for a finite group � given as an operation table.

Recall that (Weighted) Zero Basis is solvable if � is a fixed, finite group [35]. In
contrast, Theorem 6.1 implies that Non-Zero Common Basis is hard for any fixed group �
such that Z2 Æ �. By modifying that proof, the hardness of Zero Common Basis follows
even when the assumption Z2 Æ � is dropped.

I Theorem 6.4. Zero Common Basis requires an exponential number of independence
queries for any nontrivial fixed group �.

6.3 Counterexample to a Conjecture of Liu and Xu
Liu and Xu [35] proposed a conjecture which is even stronger than the implications from
Conjectures 5.1 and 5.2. In order to state their conjecture, we need the following definition.
For a finite abelian group � its Davenport constant D(�) is defined as the minimum value
such that every sequence of elements from � of length D(�) contains a nonempty subsequence
with sum 0. Liu and Xu proposed the following conjecture.

I Conjecture 6.5 (Liu–Xu [35]). Let � be a finite abelian group. Then, � is (D(�)≠ 1)-close.

We provide a counterexample for Conjecture 6.5. More precisely, we prove the following
result.

I Theorem 6.6. Let � = Zd
2 for some d Ø 4. Then, � is not (D(�) ≠ 1)-close.

7 Conclusion

In this work, we have treated several problem settings on finding bases of group-labeled
matroids whose labels satisfy certain conditions. Many questions remain open. In Section 3.2,
we deal with Weighted Non-Zero Common Basis for groups � with Z2 ”Æ � and give
an approximation algorithm and exact algorithms for some special cases. However, the
general complexity of Weighted Non-Zero Basis for Z2 ”Æ � remains open. In Section 4,
randomized algebraic algorithms turn out to be a powerful tool for finding bases and common
bases of certain labels. It would be interesting to see whether more of the problems that can
be solved by these randomized algorithms can also be solved deterministically. For example,
one could consider Non-Zero Common Basis for arbitrary groups when one of the matroids
is graphic, and the other one is a partition matroid. Finally, while Conjectures 5.1 and 5.2
remain wide open, the following stronger conjecture can be formulated analogously to the
notion of strongly k-closeness introduced by Liu and Xu [35]. Note that the conjecture holds
for |F | = 1 by Lemma 3.2, and it can also be shown that it holds for strongly base orderable
matroids.

I Conjecture 7.1. Let M be a matroid on a ground set E, Â : E æ � a group labeling,
F ™ � a finite subset, and w : E æ R a weight function. Suppose that M has an F -avoiding
basis. Then, for any minimum weight basis B, there exists a minimum weight F -avoiding
basis B

ú such that |B \Bú| Æ |F |.
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Abstract
We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of
polylogarithmic size that separate the graph into at least three connected components (also known as
shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected
components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC’96)
for both problems that has been unimproved for more than two decades. Our work also removes
an important bottleneck to near-linear time algorithms for the vertex connectivity augmentation
problem (Jordan ’95) and finding an even-length directed cycle in a graph, a problem shown to be
equivalent to many other fundamental problems (Vazirani and Yannakakis ’90, Robertson et al. ’99).
Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three
components because there can be an exponential number of minimum vertex cuts in general.

To obtain a near-linear time algorithm, we have extended techniques in local flow algorithms
developed by Forster et al. (SODA’20) to list shredders on a local scale. We also exploit fast queries
to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS’22,
Kosinas ESA’23). This is the first application of using connectivity oracles subject to vertex failures
to speed up a static graph algorithm.
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1 Introduction

Given an undirected graph G with n vertices and m edges, a minimum vertex cut is a smallest
set of vertices whose removal disconnects G. The vertex connectivity of G is the size of any
minimum vertex. The problem of e�ciently computing vertex connectivity and finding a
corresponding minimum vertex cut has been extensively studied for more than half a century
[16, 25, 9, 8, 12, 7, 21, 1, 19, 5, 22, 4, 13, 14, 11, 2]. Let k denote the vertex connectivity
of G. Recently, a Õ(m+ nk

3)-time algorithm was shown in [10], which is near-linear when
k = O(polylog(n)). Then, an almost-linear O(m1+o(1))-time algorithm for the general case
was finally discovered [18, 3]. In this paper, we show new algorithms for two closely related
problems:
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1. Find a most-shattering minimum vertex cut, i.e., a minimum vertex cut S such that the
number of (connected) components of G \ S is maximized over all minimum vertex cuts.

2. List all minimum vertex cuts S such that G \ S has at least three components.
In the latter problem, the restriction to at least three components is natural for polynomial-
time algorithms. This is because there are at most n many minimum vertex cuts whose
removal results in at least three components [15], but the total number of minimum vertex
cuts can be exponential or, more specifically, at least 2k(n/k)2 [24]1. We say that a vertex
set S is a separator if G \ S is not connected and a shredder if G \ S has at least three
components. An s-separator (s-shredder) is a separator (shredder) of size s. In other words,
the second problem is to list all k-shredders2.

The state-of-the-art algorithm for both Problems 1 and 2 was discovered by Cheriyan and
Thurimella [6] and runs in O(k2n2 + k

3
n

Ô
n) time. This bound has remained unimproved for

over two decades. Their approach inherently requires quadratic time because their algorithm
makes �(n+ k

2) max flow calls. Naturally, one may ask whether a subquadratic algorithm
exists.

Our Contribution

We answer the above question in the a�rmative by showing a randomized algorithm for
listing all k-shredders and computing a most shattering min-cut in near-linear time for all
k = O(polylog(n)). Our main results are stated below.

I Theorem 1.1. Let G = (V,E) be an n-vertex m-edge undirected graph with vertex

connectivity k. There exists an algorithm that takes G as input and correctly lists all

k-shredders of G with probability 1 ≠ n
≠97

in O(m+ k
5
n log4 n) time.

I Theorem 1.2. Let G = (V,E) be an n-vertex m-edge undirected graph with vertex

connectivity k. There exists a randomized algorithm that takes G as input and returns

a most shattering minimum-cut (if one exists) with probability 1 ≠ n
≠97

. The algorithm runs

in O(m+ k
5
n log4 n) time.

I Remark 1.3. The k
5
n log4 n term in both theorems can be improved to k

3
n
1+o(1) using a

pairwise vertex connectivity oracle developed by Long and Saranurak in [20], which is faster
for large values of k.

Given recent developments in fast algorithms for computing vertex connectivity, one
might expect that some of these modern techniques (e.g. local flow [23, 10], sketching [18],
expander decomposition [26]) will be useful for listing shredders and finding most shattering
min-cuts. It turns out that they are indeed useful, but not enough.

We have extended the techniques developed for local flow algorithms [10] to list k-shredders
and compute the number of components that they separate. Specifically, our local algorithm
lists k-shredders that separate the graph in an unbalanced way in time proportional to the

smaller side of the cut. To this end, we generalize the structural results related to shredders
from [6] to the local setting. To carry out this approach, we bring a new tool into the
area – our algorithm queries a pairwise connectivity oracle subject to vertex failures [20, 17].
Surprisingly, this is the first application of using connectivity oracles subject to vertex failures
to speed up a static graph algorithm.

1 Both problems are specific to vertex cuts; recall that every minimum edge cut always separates a graph
into two components.

2 E.g. in a tree, vertices with degree at least three are 1-shredders. In the complete bipartite graph Kk,k

with k Ø 3, both the left and right halves of the bipartition are k-shredders.
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2 Technical Overview

Let G = (V,E) be an n-vertex m-edge undirected graph with vertex connectivity k. Cheriyan
and Thurimella developed a deterministic algorithm called All-k-shredders(·) that takes G
as input and lists all k-shredders of G in O(knm+ k

2Ô
nm) time. They improved this bound

by using the sparsification routine developed in [22] as a preprocessing step. Specifically,
there exists an algorithm that takes G as input and produces an edge subgraph G

Õ on O(kn)
edges such that all k-shredders of G are k-shredders of GÕ and vice versa. The algorithm
runs in O(m) time. Using this preprocessing step, they obtained the bound for listing all
k-shredders in O(m) +O(k(kn)n+ k

2Ô
n(kn)) = O(k2n2 + k

3
n

Ô
n) time.

In this paper, we resolve a bottleneck of All-k-shredders(·), improving the time com-
plexity of listing all k-shredders from O(knm+ k

2Ô
nm) to O(k4m log4 n). Using the same

sparsification routine, our algorithm runs in O(m + k
5
n log4 n) time. The proofs of the

theorems and lemmas presented here have been omitted to the full version of the paper.

2.1 The Bottleneck
A key subroutine of All-k-shredders(·) is a subroutine called Shredders(·, ·) that takes
a pair of vertices (x, y) as input and lists all k-shredders that separate x and y. This
subroutine takes O(m) time plus the time to compute a flow of size k, which is at most
O(mk) time. The idea behind All-k-shredders(·) is to call Shredders(·, ·) multiple times
to list all k-shredders. All-k-shredders(·) works as follows. Let Y be an arbitrary set of
k + 1 vertices. Any k-shredder S will either separate a pair of vertices in Y , or separate a
component containing Y \ S from the rest of the graph.

For the first case, they call Shredders(u, v) for all pairs of vertices (u, v) œ Y ◊ Y . This
takes O(k2) calls to Shredders(·, ·), which in total runs in O(k3m) time. For the second case,
we can add a dummy vertex z and connect z to all vertices in Y . Notice that any k-shredder
S separating a component containing Y \ S from the rest of the graph must separate z and
a vertex v œ V \ (Y fi S). We can find these k-shredders by calling Shredders(z, v) for all
v œ V \ Y . The bottleneck of Cheriyan’s algorithm is listing k-shredders that fall into the
second case. They call Shredders(·, ·) �(n) times as |V \ Y | = n ≠ O(k) = �(n) for small
values of k. This step is precisely where the quadratic O(knm) factor comes from. To bypass
this bottleneck, we categorize the problem into di�erent cases and employ randomization.

2.2 Quantifying a Notion of Balance
Let S be a k-shredder of G. A useful observation is that if we obtain vertices x and y in
di�erent components of G \S, then Shredders(x, y) will list S. To build on this observation,
one can reason about the relative sizes of the components of G \ S and employ a random
sampling approach. Let C denote the “largest” component of G \ S. If C does not greatly
outsize the remaining components, we can obtain two vertices in di�erent components of
G \ S without too much di�culty. To capture the idea of relative size between components
of G \ S, we define a quantity called volume. This definition is used commonly throughout
the literature, but we have slightly altered it here.

I Definition 2.1 (Volume). For a vertex set Q, we refer to the volume of Q, denoted by

vol(Q), to denote the quantity

vol(Q) = |{(u, v) œ E | u œ Q}|.
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If Q is a collection of disjoint vertex sets, then we define the volume of Q as the quantity

vol(Q) = vol

Q

a
€

QœQ
Q

R

b .

For convenience, we will say that a k-shredder S admits partition (C,R) to signify that C is
the largest component of G \ S by volume and R is the set of remaining components. We
will also say x œ R to denote a vertex in a component of R. We can categorize a k-shredder
S by comparing the volume ratio between the largest component of G \ S and the union of
remaining components (the ratio between vol(C) and vol(R)).

I Definition 2.2 (Balanced/Unbalanced k-Shredders). Let S be a k-shredder of G with partition

(C,R). We say S is balanced if vol(R) Ø m/k. Conversely, we say S is unbalanced if

vol(R) < m/k.

Suppose that S is a k-shredder with partition (C,R). Building on our discussion above,
if S is balanced, then C does not greatly outsize the rest of the graph (by a factor of k at
most). Conversely, if S is unbalanced, then C greatly outsizes the rest of the graph.

2.3 Listing Balanced k-Shredders via Edge Sampling
Listing all balanced k-shredders turns out to be straightforward via random edge sampling.
Let S be a k-shredder that admits partition (C,R). Suppose that S is balanced. The idea
is to sample an edges (x, xÕ) and (y, yÕ) such that x and y are in di�erent components of
G \ S. Then, Shredders(x, y) will list S. Intuitively, this approach works because we know
that each component of G \ S cannot be too large, as S is a balanced k-shredder. Hence,
if we sample two edges (x, xÕ) and (y, yÕ) at random, the probability that x and y live in
di�erent components of G \ S is some constant. We can then boost the success probability
by repeating the procedure for a polylogarithmic number of times. The formal statement is
given below.

I Lemma 2.3. Let G = (V,E) be an n-vertex m-edge undirected graph with vertex connectivity

k. There exists a randomized algorithm that takes G as input and returns a list L that satisfies

the following. If S is a balanced k-shredder of G, then S œ L with probability 1 ≠ n
≠100

.

Additionally, every set in L is a k-shredder of G. The algorithm runs in O(k2m logn) time.

Because handling balanced k-shredders is simple, we omit the algorithm for listing
balanced k-shredders and its analysis. We will primarily focus on our methods of listing
unbalanced k-shredders.

2.4 Listing Unbalanced k-Shredders via Local Flow
Unbalanced k-shredders are more di�cult to list than balanced k-shredders. For balanced
k-shredders S with partition (C,R), we can obtain two vertices in di�erent components of
G \ S without much di�culty. This is no longer the case for unbalanced k-shredders, mainly
because vol(R) may be arbitrarily small. Hence, most sampled edges will be incident to C.
To handle unbalanced k-shredders, we introduce a new structural definition.

I Definition 2.4 (Capture). Let S be an unbalanced k-shredder of a graph G = (V,E) with
partition (C,R). Consider an arbitrary tuple (x, ‹,�), where x is a vertex in V , ‹ is a

positive integer, and � is a set of paths. We say that the tuple (x, ‹,�) captures S if the

following holds.
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1. x is in a component of R.

2. 1
2‹ < vol(R) Æ ‹.

3. � is a set of k openly-disjoint simple paths, each starting from x and ending at a vertex

in C, such that the sum of lengths over all paths is at most k
2
‹.

At a high level, we will spend some time constructing random tuples (x, ‹,�) in the hopes
that one of the tuples captures S. The main result is stated below.

I Lemma 2.5. Let G be a graph with vertex connectivity k. Let (x, ‹,�) be a tuple where

x is a vertex, ‹ is a positive integer, and � is a set of paths. There exists a deterministic

algorithm that takes (x, ‹,�) as input and outputs a list L of k-shredders and one set U such

that the following holds. If S is a k-shredder that is captured by (x, ‹,�), then S œ L or

S = U . The algorithm runs in O(k2‹ log ‹) time.

What is most important about this result is that we have constructed an algorithm that
can identify k-shredders on a local scale. This means it spends time proportional to an input
volume parameter ‹ instead of a global quantity like n or m. The idea behind Lemma 2.5 is
to modify Shredders(·, ·) using recent advancements in local flow algorithms.

2.5 Verification via Pairwise Connectivity Oracles
In our algorithm, we will obtain a list of k-shredders and a list of unverified sets. The union
of these two sets will include all k-shredders of G with high probability. However, within the
list of unverified sets, there may be some false k-shredders. To filter out the false k-shredders,
we utilize a pairwise connectivity oracle subject to vertex failures developed by Kosinas
in [17]. To determine whether an unverified set S is a k-shredder, we will make some pairwise
connectivity queries between vertex pairs (u, v) to determine whether u, v are disconnected
in G \ S. These local queries, along with some more structural observations, will help us
determine whether G \ S contains at least three components.

3 Preliminaries

This paper concerns finite, undirected, and unweighted graphs with vertex connectivity k. We
use standard graph-theoretic definitions. Let G = (V,E) be a graph with vertex connectivity
k. For a vertex subset S ™ V , we use G\S to denote the subgraph of G induced by removing
all vertices in S. A connected component (component for short) of a graph refers to any
maximally-connected subgraph, or the vertex set of such a subgraph. Suppose that S is a
k-shredder of G. The largest component of G \ S is the component with the greatest volume,
where volume is defined in Definition 2.1. We break ties arbitrarily. For convenience, we will
say that a k-shredder S admits partition (C,R) to signify that C is the largest component
of G \ S and R is the set of remaining components. We will also write x œ R to indicate a
vertex in a component of R.

For a vertex subset Q ™ V , we define the set of neighbors of Q as the set N(Q) = {v œ

V \Q | (u, v) œ E, u œ Q}. For vertex subsets Q1, Q2 ™ V , we define E(Q1, Q2) = {(u, v) œ

E | u œ Q1, v œ Q2}.
Let fi be a simple path in G. We refer to the length of fi as the number of edges in fi.

Suppose fi starts at a vertex x œ V . We say the far-most endpoint of fi to denote the other
endpoint of fi. Although all paths we refer to are undirected, our usage of the far-most
endpoint will be unambiguous. Let x and y be two arbitrary vertices in fi. We denote fi[x y]
as the subpath of fi from x to y. We denote fi(x y) as the subpath fi[x y] excluding the

ICALP 2024



87:6 Finding Most-Shattering Min-Cuts of Polylogarithmic Size in Near-Linear Time

vertices x and y. We say two paths fi,fi
Õ are openly-disjoint if they share no vertices except

their endpoints. Let � be a set of paths. Then, � is openly disjoint if all pairs of paths in
� are openly disjoint. We say v œ � to denote a vertex among one of the paths in � and
(u, v) œ � to denote an edge used by one of the paths in �.

4 Cheriyan and Thurimella’s Algorithm

We will use Shredders(·, ·) as a subroutine and extend it to a localized setting. To do this,
we need to review the terminology and ideas presented in [6].

I Theorem 4.1 ([6, Algorithm 2]). Let G be an n-vertex m-edge undirected graph with vertex

connectivity k. Let x and y be two distinct vertices. There exists a deterministic algorithm

Shredders(·, ·) that takes (x, y) as input and returns all k-shredders of G separating x and y

in O(km) time.

At a high level, Shredders(·, ·) works as follows. Let x and y be two vertices in a k-vertex-
connected graph G. Firstly, we use a flow algorithm to obtain a set � of k openly-disjoint
simple paths from x to y. Observe that any k-shredder S of G separating x and y must
contain exactly one vertex from each path of �. More crucially, at least one component of
G \ S must also be a component of G \ �. That is, for some component Q of G \ �, we
have N(Q) = S. This is the main property that Shredders(·, ·) exploits. It lists potential
k-shredders by finding components Q of G \ � such that |N(Q)| = k and N(Q) consists of
exactly one vertex from each path in � (see Figure 1).

Figure 1 Let � be the set of three openly-disjoint simple paths from x to y. A call to
Shredders(x, y) will identify N(Q1) = N(Q2) as potential 3-shredders.

We can state these facts formally with the following definitions.

I Definition 4.2 (Bridge). A bridge � of � is a component of G \ � or an edge (u, v) œ E

such that (u, v) /œ �, but u œ � and v œ �.

If � is an edge, we define vol(�) = 1. Otherwise, vol(�) is defined according to Defini-
tion 2.1.

I Definition 4.3 (Attachments). Let � be a bridge of �. If � is a component of G \ �, then

the set of attachments of � is the vertex set N(�). Otherwise, if � is an edge (u, v) œ E, the

set of attachments of � is the vertex set {u, v}.
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For convenience, we refer to a single vertex among the attachments of � as an attachment
of �. For a path fi œ �, we denote fi(�) as the set of attachments of � that are in fi. If Q is
an arbitrary vertex set, then we use fi(Q) to denote the set Q fl fi. If fi(Q) is a singleton set,
then we may use fi(Q) to represent the unique vertex in Q fl fi. In all contexts, it will be
clear what object the notation is referring to.

I Definition 4.4 (k-Tuple). A set S is called a k-tuple with respect to � if |S| = k and for

all fi œ �, we have |S fl fi| = 1.

We adopt the following notation as in Shredders(·, ·). If a component � of G \ � is such
that N(�) forms a k-tuple with respect to �, then N(�) is called a candidate k-shredder

or candidate for short. In general, not all candidates are true k-shredders. To handle this,
Shredders(·, ·) performs a pruning phase by identifying fundamental characteristics of false
candidates. To identify false candidates, we formalize some of the key definitions in [6].

I Definition 4.5 (”fi). Let fi be a path starting from a vertex x. For a vertex v œ fi, we

define ”fi(v) as the distance between x and v along path fi.

I Definition 4.6 (Straddle). Let �1,�2 be two bridges of �. We say �1 straddles �2 (or �2
straddles �1) if there exist paths fi,fi

Õ
œ � such that there exist vertex pairs (v1, v2) œ fi(�1)◊

fi(�2) satisfying ”fi(v1) < ”fi(v2) and (u1, u2) œ fi
Õ(�1) ◊ fi

Õ(�2) satisfying ”fiÕ(u1) > ”fiÕ(u2).

See figure Figure 2 for an example.

Figure 2 Here we have � = {fi1,fi2}. The candidate k-shredder {s1, s2} is straddled by the edge
(u, v) because ”fi2(u) < ”fi2(s2) and ”fi1(v) > ”fi1(s1).

It is useful to note that Definition 4.6 is still well-defined even for candidates (i.e. we can
use the ∞,≤ operators to compare bridges to candidates and candidates to candidates).

Candidate Pruning

The crucial observation is that a candidate S reported by Shredders(x, y) is a k-shredder of
G if and only if no bridge of � straddles S. Hence, to prune false candidates, Shredders(x, y)
finds all bridges of � that are straddled using standard sorting and interval merging. These
notions are formalized in the following two lemmas.
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I Lemma 4.7. Let x and y be two distinct vertices and let � denote a set of k openly disjoint

simple paths from x to y. Let S be a candidate with respect to �. Then, S is a k-shredder

separating x and y if and only if no bridge of � straddles S.

I Lemma 4.8. Let x be a vertex in G and let � denote a set of k openly disjoint simple

paths starting from x whose sum of lengths over all paths is at most ¸. Let C,B be a set of

candidates and a set of bridges of �, respectively. There exists a deterministic algorithm that,

given (C,B,�) as input, lists all candidates S œ C such that S is not straddled by another

candidate in C nor by any bridge in B. The algorithm runs in O(k|C| log |C| + ¸ + vol(B))
time.

Challenges

Fix an unbalanced k-shredder S with partition (C,R). Unfortunately, the same probabilistic
approach we used for listing balanced k-shredders does not work here. Specifically, if we
sample two edges (x, xÕ), (y, yÕ), the probability that x and y are in di�erent components of
G \ S can be arbitrarily small. What this dilemma implies is that we must spend at least a
linear amount of time just to collect samples. More critically, we must spend a sublinear
amount of time processing an individual sample to make any meaningful improvement. This
time constraint rules out the possibility of calling Shredders(·, ·) per sample. Instead, we
must develop a localized version of Shredders(·, ·) that spends time relative to a parameter
of our choice, instead of a global value such as m or n.

In detail, consider an unbalanced k-shredder S with partition (C,R). Observe that there
must exist a power of two 2i such that 2i≠1

< vol(R) Æ 2i. If we sample Õ(m/2i) edges
(x, y), we will sample a vertex x œ R with high probability due to the classic hitting set
lemmas. The goal is to spend only Õ(poly(k) · 2i) time processing each sample to list S.
Suppose that such a local algorithm exists. Although we do not know the exact power of two
2i, we know that vol(R) < m

k . Hence, we can simply try all powers of two up to m
k . This

gives us the near-linear runtime bound:

Álog m
k Ëÿ

i=0
Õ

1
m

2i
2
· Õ(poly(k) · 2i) =

Álog m
k Ëÿ

i=0
Õ(poly(k) ·m)

= Õ(poly(k) ·m).

5 Local Techniques

Let S be an unbalanced k-shredder with partition (C,R). Our challenge is to list S in time
relative to a parameter of our choice rather than the size of the entire graph. To achieve
this, we will implement a local search procedure from a sampled vertex. To formalize the
procedure, recall Definition 2.4.

Suppose that we have obtained a tuple (x, ‹,�) that captures S. Let Q denote the
component in R containing x. It is straightforward to see that all remaining components of
R \ {Q} will also be components of G \ �. Thus, we may attempt to explore components
of G \ � and apply Lemma 5.3 (a local version of Lemma 4.7) and Lemma 4.8 to list S.
An important distinction from Shredders(·, ·) is that in this case, � is no longer a set of k
openly-disjoint simple paths from x to a single vertex y, but rather from x to some vertices
in C.
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I Lemma 2.5. Let G be a graph with vertex connectivity k. Let (x, ‹,�) be a tuple where

x is a vertex, ‹ is a positive integer, and � is a set of paths. There exists a deterministic

algorithm that takes (x, ‹,�) as input and outputs a list L of k-shredders and one set U such

that the following holds. If S is a k-shredder that is captured by (x, ‹,�), then S œ L or

S = U . The algorithm runs in O(k2‹ log ‹) time.

Our goal is to show that the inner workings of Shredders(·, ·) can be e�ciently translated
to our localized setting. We show how to implement this in Algorithm 1. A major caveat
concerns the set U . We can think of U as an unverified set. Why U exists is a consequence
of locality. Essentially, because the algorithm in Lemma 2.5 is time-limited by a volume
parameter ‹, we may discover a set U but not have enough time to verify whether U is a
k-shredder. We first state two helpful lemmas that will provide some understanding of how
Algorithm 1 works. These lemmas summarize and translate a large portion of Section 4 in
terms of our new setting.

I Fact 5.1. Let S be a k-shredder with partition (C,R) captured by (x, ‹,�). For every path

fi œ �, we have |S fl fi| = 1.

I Lemma 5.2. Let S be a k-shredder with partition (C,R) captured by (x, ‹,�). Let Q

denote the component in R containing x. Every component in R \ {Q} is a component of

G \ �.

I Lemma 5.3. Let S be a k-shredder with partition (C,R) captured by (x, ‹,�). Then, no

bridge of � straddles S.

Algorithm Outline

Consider Algorithm 1. At a high level, Algorithm 1 works as follows. Let (x, ‹,�) be a tuple
given as input to the algorithm. For each path fi œ �, we can traverse the path from x to the
far-most endpoint of fi. At a given vertex u œ fi, we can explore the bridges of � attached to
u using a breadth-first search (BFS). While doing so, we maintain a list of bridges of �. We
also maintain a list of candidate k-shredders of � by checking whether the attachment set of
a bridge forms a k-tuple. Among the list of candidate k-shredders, false candidates are then
pruned correctly and e�ciently via Lemma 5.3 and Lemma 4.8. So far, we have not deviated
from Shredders(·, ·).

The key modification is to impose a restriction on the number of edges we are allowed to
explore via BFS. We can explore at most ‹ edges along each path. Suppose we are processing
a vertex u along path fi. If the number of edges explored for this path exceeds ‹ while
exploring bridges of � attached to u, we terminate early and mark u as an unverified vertex.
Intuitively, the unverified vertex u serves as a boundary of exploration. It signifies that
bridges attached to u were not fully explored, so we flag u and treat it with extra caution
during a later step. While this may seem dubious, the key is that we are concerned only
with k-shredders that are captured by (x, ‹,�). Let S be a k-shredder with partition (C,R).
For each path fi œ �, if we walk in increasing distance from x and explore attached bridges
of �, observe that it is impossible to visit more than vol(R) edges prior to reaching a vertex
in S. Since vol(R) Æ ‹, this implies we must either identify S as a candidate k-shredder, or
as the unverified set U .

At the end of processing all the paths in �, we will have obtained a list of bridges of �,
a list of candidate k-shredders of �, and an unverified set consisting of all the unverified
vertices. The final step is to black box Lemma 4.8 to prune false candidates among the list
of candidate k-shredders.
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Algorithm 1 Finding the unbalanced k-shredders with small components containing x.

Input: x - a sample vertex
‹ - volume parameter
� - a set of k openly disjoint paths starting from x

Output: L - a list of k-shredders captured by (x, ‹,�)
U - an unverified set

1: L Ω ?
2: U Ω ?
3: for each path fi œ � do

4: reset explored edges and vertices to null
5: for each vertex u œ fi in increasing distance from x do

6: if u is the far-most endpoint of fi then

7: U Ω U fi {u}

8: break

9: explore all unexplored bridges of � attached to u with BFS:
terminate early the moment more than ‹ edges are explored

10: if BFS terminated early then

11: U Ω U fi {u}

12: break

13: else

14: for each bridge � explored by BFS do

15: if the attachment set A of � forms a k-tuple of � then

16: L Ω L fi {A}

17: if x œ U then

18: return (?,?)

19: prune false k-shredders in L fi {U} using Lemma 4.8
20: F Ω the set of far-most endpoints of all paths in �
21: if U was not pruned U fl F = ? then

22: return (L, U)
23: else

24: return (L,?)

We state two more lemmas that will be useful in the later sections.

I Lemma 5.4. Suppose that Algorithm 1 on input (x, ‹,�) returns an unverified set U such

that U ”= ?. Then, U is a k-separator. Specifically, let z be the far-most endpoint of an

arbitrary path fi œ �. Then, x and z are not connected in G \ U .

I Lemma 5.5. Suppose that Algorithm 1 returns a nonempty unverified set U on input

(x, ‹,�). Let Q denote the component of G \U containing x. There exists a modified version

of Algorithm 1 that also computes vol(Q) in O(k‹) time.

6 Resolving Unverified Sets

We now address the case where Algorithm 1 returns an unverified set U on input (x, ‹,�).
The di�erence between U and the list of returned k-shredders L is that the algorithm did
not find a component Q of G \ � such that N(Q) = U . In some sense, this means that
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we “lose” a component of G \ U . The danger in guessing that U is a k-shredder is that U
might only be a k-separator. Imagine that G \ U has exactly two components: C1 and C2.
If vol(C2) ∫ vol(C1), then it becomes quite challenging to determine whether there exists
a third component of G \ U in O(vol(C1)) time. To cope with this uncertainty, we make
another structural classification.

I Definition 6.1 (Low-Degree, High-Degree). Let S be a k-shredder with partition (C,R).
Let ‹ be the unique power of two satisfying

1
2‹ < vol(R) Æ ‹. We say that S has low-degree

if there exists a vertex s œ S such that deg(s) Æ ‹. Otherwise, we say S has high-degree.

One aspect of this definition may seem strange: we have specifically described ‹ as
a power of two. This is because in the later sections, we will use geometric sampling to
capture k-shredders. The sampling parameters we use will be powers of two. Hence, we have
imposed this slightly arbitrary detail on Definition 6.1. For now, all that matters is that
1
2‹ < vol(R) Æ ‹.

Organization

There are two main lemmas for this section. Lemma 6.3 handles low-degree unverified
sets and is presented in Section 6.1. Lemma 6.7 handles high-degree unverified sets and is
presented in Section 6.2. The idea is that after Algorithm 1 returns an unverified set U , we
will use Lemma 6.3 to test whether U is a low-degree k-shredder. If not, we will leave keep
U as a potential high-degree k-shredder. After all unverified sets have been returned, we use
Algorithm 3 to extract all high-degree k-shredders from the remaining unverified sets.

6.1 Low-Degree
Suppose that U is a low-degree k-shredder with partition (C,R). Suppose that the tuple
(x, ‹,�) captures U and Algorithm 1 reports U as an unverified set. Our goal is to design an
algorithm that confirms U is a k-shredder in the same time complexity as Algorithm 1 up to
polylog(n) and poly(k) factors.

Lemma 5.4 gives us two vertices in di�erent components of G \ U : x and z (where z

is the far-most endpoint of any path in �). Since U is a k-shredder, there must exist a
third component of G \ U and every vertex in U must be adjacent to a vertex in this third
component. Because U is low-degree, there must exist a vertex u œ U with deg(u) Æ ‹. The
idea is to scan through the edges adjacent to this low-degree vertex u and find an edge (u, y)
such that y is neither connected to x nor z in G \U . To make the scanning procedure viable,
we need to e�ciently answer pairwise connectivity queries in G \ U . The key ingredient is a
result obtained by Kosinas in [17]. Specifically, the following holds.

I Theorem 6.2. There exists a deterministic data structure for an undirected graph G

on n vertices and m edges with O(km logn) preprocessing time that supports the following

operations.

1. Given a set F of k vertices, perform a data structure update in time O(k4 logn).
2. Given a pair of vertices (x, y) return true if x is connected to y in G \ F in time O(k).

We defer the method of capturing k-shredders for later. For now, let us assume that the
tuple (x, ‹,�) captures a k-shredder U and U is reported as an unverified set by Algorithm 1.
We show an auxiliary algorithm that will be helpful in listing low-degree k-shredders.

I Lemma 6.3. After preprocessing the input graph using the data structure from Theorem 6.2,

there exists a deterministic algorithm that takes in as input (x, ‹,�, U), where U is an

unverified set returned by Algorithm 1 on input (x, ‹,�). The algorithm outputs true if U is

a k-shredder and there exists a vertex u œ U such that deg(u) Æ ‹ in O(k4 logn+ k‹) time.
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I Remark 6.4. In [20], Long and Saranurak showed the existence of a pairwise connectivity
oracle subject to vertex failures with O(k2no(1)) update time and O(k) query time. Our
usage of Kosinas’s oracle involves making one update operation with a set of size k and
O(‹) many connectivity queries. Using Long and Saranurak’s version, we can improve the
dependency on k in the time complexity of Algorithm 2 to O(k2no(1) + k‹) time.

Algorithm Outline

As mentioned above, the idea is to scan through the edges adjacent to u in order to find a
vertex y such that y is neither connected to x nor z in G\U . We will be utilizing Theorem 6.2
to determine whether a pair of vertices (x, y) are connected in G \U . Pseudocode is given in
Algorithm 2.

Figure 3 Here the set U = {u1, . . . , uk} was reported as an unverified set. Suppose there exist a
vertex v1 without loss of generality such that deg(u1) Æ ‹. Then, we can simply scan through the
neighbors of u1 in O(‹) iterations to obtain an edge incident to a component of G \ U that is not
Qx nor C.

6.2 High-Degree
It is quite di�cult to determine locally whether U is a high-degree k-shredder. We can
no longer hope for a low-degree vertex u œ U and scan through its edges to find a third
component of G \ U . To tackle high-degree k-shredders reported as unverified sets, our idea
is to ignore them as they are reported and filter them later using one subroutine. Let U

be a high-degree k-shredder with partition (C,R). Let ‹ be the power of two satisfying
1
2‹ < vol(R) Æ ‹. Every vertex x œ R has deg(x) Æ ‹ because vol(R) Æ ‹. Furthermore,
every vertex u œ U has deg(u) > ‹ because U is high-degree. We can exploit this structure
by noticing that U forms a “wall” of high-degree vertices. That is, if we obtain a vertex
x œ R, we can use BFS seeded at x to explore a small area of vertices with degree at
most ‹. The high degree vertices of U would prevent the graph traversal from escaping the
component of G \ U containing x. At the end of the traversal, the set of explored vertices
would compose a component Q of G \ U and we can report that N(Q) = U might be a
high-degree k-shredder. To obtain a vertex x œ R, we can use the classic hitting set lemmas
via random edge sampling.
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Algorithm 2 Auxiliary algorithm for low-degree k-shredders.

Input: x - a sample vertex
‹ - volume parameter
� - a set of k openly-disjoint paths starting from x

U - unverified set returned by Algorithm 1 on (x, ‹,�)
Output: true if (1) and (2) are satisfied, false otherwise

(1) U is a k-shredder
(2) there exists a vertex u œ U such that deg(u) Æ ‹

1: if all vertices in U have degree greater than ‹ then

2: return false
3: u Ω a vertex in U with deg(u) Æ ‹

4: fi Ω the path in � containing u

5: z Ω the far-most endpoint of fi

6: � Ω the pairwise connectivity oracle from Theorem 6.2 (already preprocessed)
7: update � on vertex failure set U
8: for each edge (u, y) adjacent to u such that y /œ U do

9: qx,y Ω connectivity query between x and y in G \ U

10: qy,z Ω connectivity query between y and z in G \ U

11: if qx,y is false and qy,z is false then

12: return true
13: return false

I Lemma 6.5 (Hitting Set Lemma). Let Q be a set of vertices. Let ‹ be a positive integer

satisfying
1
2‹ < vol(Q) Æ ‹. If we independently sample 400m

‹ logn edges (u, v) uniformly at

random, we will obtain an edge (u, v) such that u œ Q with probability 1 ≠ n
≠100

.

We are not finished yet, as we need to connect this idea with the unverified sets reported
by Algorithm 1. Suppose that U was reported by Algorithm 1 on input (x, ‹,�). We have
that x is in some component Q of G \ U . Our goal is to sample a vertex y in a di�erent

component QÕ of G \ U . As described above, we can exploit the fact that U is a high-degree
k-shredder by exploring low-degree vertices in the neighborhood of y to recover QÕ. At this
point, we have essentially recovered two components of G \ U : Q and Q

Õ. To make further
progress, we present a short, intuitive lemma.

I Lemma 6.6. Let U be a k-separator. Let Q,Q
Õ
be two distinct components of G \U . Then

U is a k-shredder if and only if vol(Q) + vol(QÕ) + |E(U,U)| < m.

We are finally ready to handle high-degree k-shredders reported as unverified sets. We
present the main result.

I Lemma 6.7. There exists a randomized Monte Carlo algorithm that takes as input a list

U of tuples of the form (x, ‹,�, U), where U is an unverified set returned by Algorithm 1

on (x, ‹,�). The algorithm returns a list of k-shredders L that satisfies the following. If

(x, ‹,�, U) œ U is a k-tuple such that U is a high-degree k-shredder, then U œ L with

probability 1 ≠ n
≠100

. The algorithm runs in O(k2m log2 n) time.

Algorithm Outline

We summarize the argument made above. Fix a tuple (x, ‹,�, U) in U such that U is a
high-degree k-shredder with partition (C,R). Let ‹ denote the unique power of two satisfying
1
2‹ < vol(R) Æ ‹. Because U is high-degree, we have for all u œ U , deg(u) > ‹. Let Q
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denote the component of G \ U containing x. Suppose we have obtained a vertex y in a
component Q

Õ
œ R \ {Q}. Since all vertices in Q

Õ have degree at most ‹, the idea is to
explore all vertices connected to y that have degree at most ‹. Because N(QÕ) = U and each
vertex in U has degree greater than ‹, we will compute Q

Õ as the set of explored vertices.
After computing Q

Õ, we will have obtained two components of G \ U : Q and Q
Õ. In order

to confirm that U is a k-shredder, all that is left to do is to make sure that Q and Q
Õ are

not the only components of G \ U . Lemma 6.6 implies this can be done by verifying that
vol(Q) + vol(QÕ) + |E(U,U)| < m. Now, the final step is to find such a vertex y. We use
a random sampling procedure for this task. Consider Algorithm 3. We omit the proofs of
correctness and time complexity.

Algorithm 3 Extracting all high-degree k-shredders from unverified sets.

Input: U - a list of tuples of the form (x, ‹,�, U)
Output: L - a list of k-shredders that satisfies the following:

if (x, ‹,�, U) œ U is such that U is a high-degree k-shredder,
then U œ L with probability 1 ≠ n

≠100

1: L Ω ?
2: for i Ω 0 to Álog

!
m
k

"
Ë do

3: ‹
Õ
Ω 2i

4: for 400m
‹Õ logn times do

5: independently sample an edge (y, z) uniformly at random
6: Q

Õ
Ω set of vertices explored by BFS seeded at y:
ignore vertices v such that deg(v) > ‹

Õ

terminate early the moment more than ‹
Õ edges are explored

7: if BFS terminated early then

8: skip to next sample
9: else if there exists a tuple (x, ‹,�, U) œ U such that N(QÕ) = U then

10: Q Ω component of G \ U containing x

11: if x /œ Q
Õ
and vol(Q) + vol(QÕ) + |E(U,U)| < m then

12: L Ω L fi {U}

13: return L

7 Capturing and Listing Unbalanced k-Shredders

In the previous sections, we showed an algorithm that takes as input a tuple (x, ‹,�), and
lists all k-shredders that are captured by (x, ‹,�) as well as an unverified set. We then showed
how to resolve unverified sets using casework on the structural properties of k-shredders.
There is one piece of the puzzle left: the method for capturing unbalanced k-shredders. For
this, we will leverage random sampling and recent developments in local flow algorithms as
in [10].

7.1 Leveraging Local Flow Algorithms
Let S be an unbalanced k-shredder with partition (C,R). At a high level, we use geometric
sampling to obtain a seed vertex x œ R and a volume parameter ‹ satisfying 1

2‹ < vol(R) Æ ‹.
This obtains two items necessary for capturing S. We are still missing a set of k openly-
disjoint paths �, each starting from x and ending at a vertex in C such that the sum of
lengths over all paths is at most k2‹. This is precisely a core tool developed in [10].
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I Definition 7.1 (Vertex Cut). A vertex cut (L, S,R) of a graph G = (V,E) is a partition of

V such that for all vertex pairs (u, v) œ L ◊ R, u is not connected to v in G \ S.

I Theorem 7.2 ([10, implicit in Theorem 4.1]). Let G = (V,E) be an undirected n-vertex m-

edge graph with vertex connectivity k. Let (L, S,R) be a vertex cut of G such that vol(R) < m
k .

There exists a randomized algorithm LocalVC(·, ·) that takes as input a pair (x, ‹) where x is

a vertex in R and ‹ is a positive integer satisfying
1
2‹ < vol(R) Æ ‹. The algorithm outputs

a set � of k openly-disjoint paths such that each path satisfies the following.

1. The sum of lengths over all paths in � is at most k
2
‹.

2. The path starts from x and ends at a vertex in L.

The algorithm outputs � with probability 1/4 in O(k2‹) time.

Theorem 4.1 of [10] only states that their algorithm returns a vertex cut. But they also
construct the set of paths �. Their algorithm is simple, and we will briefly explain it here.
First, we perform the standard vertex-splitting reduction and reduce the problem to finding
directed edge-disjoint paths instead. To find the first path, we perform any graph search,
says DFS, from a vertex x to explore k‹ volume and sample a random endpoint y1 among
all explored edges. Note that y1 is in L with probability at least 1 ≠ 1/k since vol(R) Æ ‹.
Then, we reverse the direction of edges on the path from x to y1 in the DFS tree and obtain
a “residual” graph. Then, we repeat the process in the residual graph to construct the next
path from x to y2. After k iterations, the endpoints y1, . . . , yk of these k paths are in L with
probability (1 ≠ 1/k)k Ø 1/4. These paths in the residual graphs can be decomposed (like
the flow-decomposition) into k directed edge-disjoint paths in the original graph whose total
length is k

2
‹. These, in turn, correspond k openly vertex-disjoint paths by the standard

reduction in the beginning.
Notice how the output of the algorithm described in Theorem 7.2 directly corresponds to

Definition 2.4. Let R denote the union of all components in R. Notice that (C, S,R) forms a
vertex cut such that vol(R) < m

k . The idea is to obtain a seed vertex x œ R using a linear
amount of random samples. For each sample, we can directly apply LocalVC(·, ·) to obtain
the desired set of paths. Furthermore, we can boost the success rate of the algorithm by
repeating it a polylogarithmic number of times. In the following section, we formalize this
idea.

7.2 The Algorithm for Unbalanced k-Shredders
The main result is stated below.
I Lemma 7.3. There exists a randomized algorithm that takes as input G = (V,E), an
n-vertex m-edge undirected graph with vertex connectivity k. The algorithm correctly lists all

unbalanced k-shredders of G with probability 1 ≠ n
≠98

in O(k4m log4 n) time.

We first give a high level outline for listing unbalanced k-shredders. Let S be an unbalanced
k-shredder with partition (C,R). With geometric sampling, by the hitting set lemma we
will sample a vertex x œ R with a volume parameter ‹ that satisfies 1

2‹ < vol(R) Æ ‹.
Then, we use Theorem 7.2 to obtain a set of k openly-disjoint paths �, each starting from
x and ending at a vertex in C such that the sum of lengths over all paths is at most k2‹.
We now have a tuple (x, ‹,�) that captures S. After capturing S, we call Algorithm 1
to list S as a k-shredder or an unverified set. In the latter case, we can verify whether S

is a low-degree k-shredder using Algorithm 2. If this verification step fails, S must be a
high-degree k-shredder. In this case, we can add S to a global list of unverified sets. This list
will be processed after all unbalanced k-shredders have been captured. Lastly, we can extract
all high-degree k-shredders from the list of unverified sets using Algorithm 3. Pseudocode
describing this process is given in Algorithm 4.
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Algorithm 4 Listing all unbalanced k-shredders of a graph.

Input: G = (V,E) - an undirected k-vertex-connected graph
Output: L - a list containing all unbalanced k-shredders of G
1: L Ω ? Û list of k-shredders

2: U Ω ? Û unverified sets

3: � Ω initialize a pairwise connectivity oracle as in [17]

4: for i Ω 0 to Álog
!
m
k

"
Ë do

5: ‹ Ω 2i
6: for 400m

‹ logn times do
7: independently sample an edge (x, y) uniformly at random
8: for 100 logn times do
9: � Ω LocalVC(x, ‹) as in [10]

10: (Llocal, U) Ω call Algorithm 1 on input (x, ‹,�)
11: L Ω L fi Llocal

12: if U ”= ? then

13: call Algorithm 2 on input (x, ‹,�, U)
14: if Algorithm 2 returned true then

15: L Ω L fi {U}

16: else

17: U Ω U fi {(x, ‹,�, U)}

18: Lhigh≠degree Ω call Algorithm 3 on input U
19: L Ω L fi Lhigh≠degree

20: return L

8 Listing All k-Shredders

At last, we are ready to present the algorithm for listing all k-shredders. See Algorithm 5.

I Lemma 8.1. Let G = (V,E) be an n-vertex m-edge undirected graph with vertex connectivity

k. There exists a randomized algorithm that takes G as input and correctly lists all k-shredders

of G with probability 1 ≠ n
≠97

in O(k4m log4 n) time.

The idea is that we can classify any k-shredder as either balanced or unbalanced. We
have described how to use random edge sampling to handle the former case, and Algorithm 4
handles the latter case. Because the algorithm for listing balanced k-shredders is quite trivial,
we have omitted its pseudocode. Given Lemma 8.1, Theorem 1.1 follows by the standard
sparsification [22].

9 Most Shattering Min-Cut

We have presented a randomized near-linear time algorithm that lists all k-shredders with
high probability, but we have not yet shown how to count the number of components each
k-shredder separates. Counting components proves to be a bit trickier than it was in [6].
What we will do is modify our algorithms such that whenever we list a k-shredder S, we also
return the number of components of G\S. We will do this for Algorithm 1, Algorithm 2, and
Algorithm 3. Note that if there are no k-shredders of G, we can simply return a k-separator
of G. This can be done in Õ(m+ nk

3) time as shown in [10].
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Algorithm 5 Listing all k-shredders of a graph.

Input: G = (V,E) - an undirected k-vertex-connected graph
Output: L - a list of all k-shredders of G
1: L Ω ?

2: Lbalanced Ω edge sampling and Shredders(·, ·)
3: L Ω L fi Lbalanced

4: Lunbalanced Ω call Algorithm 4 on input G
5: L Ω L fi Lunbalanced

6: return L

9.1 Counting Components in the Local Algorithm
At a high level, we can modify Algorithm 1 as follows. Suppose Algorithm 1 identifies a
candidate k-shredder S on line 16. By line 13, all bridges of � attached to some vertex
s œ S must have been explored. The modification is as follows. We can keep a dictionary
M whose keys are candidate k-shredders (in k-tuple form) mapped to nonnegative integers
initialized to zero. For each bridge � of � attached to s, if � is a component of G \ � such
that N(�) = S, then we increment M [S]. We claim that if S œ L is a k-shredder captured
by (x, ‹,�), then M [S] + 2 is the number of components of G \ S.

I Lemma 9.1. Suppose that Algorithm 1 returns (L, U) on input (x, ‹,�). There exists

a modified version of Algorithm 1 such that for each k-shredder S œ L that is captured

by (x, ‹,�), the modified version also computes the number of components of G \ S. The

modification requires O(k2‹) additional time, subsumed by the running time of Algorithm 1.

9.2 Counting Components for Low-Degree Unverified Sets
If Algorithm 2 returned true on input (x, ‹,�, U), then U is a k-shredder with a vertex
u œ U such that deg(u) Æ ‹. Notice that all components of G \ U must contain a vertex
that is adjacent to u. Immediately, we have that the number of components of G \ U is
upper bounded by ‹, as deg(u) Æ ‹. However, looking at two arbitrary edges (u, v1), (u, v2)
adjacent to u, it is unclear whether v1 and v2 are in the same component of G \U . Although
we can query whether v1 and v2 are connected in G \ U in O(k) time, we cannot a�ord
to make these queries for all pairs of vertices in N(u). Such a procedure would require us
to make O(‹2) many queries, which is too costly. To solve this issue, we use a convenient
property of DFS trees to bypass making O(‹2) connectivity queries. Much of the machinery
was inspired by [17], so we omit the details.

I Lemma 9.2. Suppose that Algorithm 2 returns true on input (x, ‹,�, U). There exists a

modified version of Algorithm 2 that also computes the number of components of G \ U . The

modification requires O(k2‹) additional time, subsumed by the running time of Algorithm 2.

9.3 Counting Components for High-Degree Unverified Sets
Recall from Section 6.2 that the key observation is that S forms a wall of high-degree vertices.
We exploited this by sampling vertices in R and exploring regions of vertices with low degree.
The idea is that S will restrict the graph exploration within one component of R, and we can
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recover that component. We can actually extend this idea a bit further to count the number
of components in R. For all components Q œ R, our algorithm will eventually sample a
vertex x œ Q. By exploring low-degree vertices, we will recover Q. We can verify that N(Q)
is a k-shredder as by now we have listed all of them. Hence, we will eventually count all
components of G \ S throughout the sampling and exploring procedure.

I Lemma 9.3. Suppose that Algorithm 3 returns a list L of k-shredders on input U . There

exists a modified version of Algorithm 3 such that for each k-shredder S œ L, the modi-

fied version also computes the number of components of G \ S. The modification requires

O(m log2 n) additional time, subsumed by the time complexity of Algorithm 3.

Given Lemmas 9.1–9.3, we can compute a most shattering minimum-cut with high
probability in O(k4m log4 n) time and, hence, Theorem 1.2 follows by the standard sparsifi-
cation [22].
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Abstract
In the MaxSAT with Cardinality Constraint problem (CC-MaxSAT), we are given a CNF-formula
�, and a positive integer k, and the goal is to find an assignment — with at most k variables
set to true (also called a weight k-assignment) such that the number of clauses satisfied by — is
maximized. Maximum Coverage can be seen as a special case of CC-MaxSat, where the formula
� is monotone, i.e., does not contain any negative literals. CC-MaxSat and Maximum Coverage
are extremely well-studied problems in the approximation algorithms as well as the parameterized
complexity literature.

Our first conceptual contribution is that CC-MaxSat and Maximum Coverage are equivalent
to each other in the context of FPT-Approximation parameterized by k (here, the approximation is
in terms of the number of clauses satisfied/elements covered). In particular, we give a randomized
reduction from CC-MaxSat to Maximum Coverage running in time O(1/‘)k · (m+ n)O(1) that
preserves the approximation guarantee up to a factor of (1 ≠ ‘). Furthermore, this reduction also
works in the presence of “fairness” constraints on the satisfied clauses, as well as matroid constraints
on the set of variables that are assigned true. Here, the “fairness” constraints are modeled by
partitioning the clauses of the formula � into r di�erent colors, and the goal is to find an assignment
that satisfies at least tj clauses of each color 1 Æ j Æ r.

Armed with this reduction, we focus on designing FPT-Approximation schemes (FPT-ASes) for
Maximum Coverage and its generalizations. Our algorithms are based on a novel combination of a
variety of ideas, including a carefully designed probability distribution that exploits sparse coverage
functions. These algorithms substantially generalize the results in Jain et al. [SODA 2023] for
CC-MaxSat and Maximum Coverage for Kd,d-free set systems (i.e., no d sets share d elements),
as well as a recent FPT-AS for Matroid Constrained Maximum Coverage by Sellier [ESA 2023]
for frequency-d set systems.
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1 Introduction

Two problems that have gained considerable attention from the perspective of Parameterized
Approximation [11] are the classical MaxSAT with cardinality constraint (CC-MaxSat)
problem and its monotone version, the Maximum Coverage problem. In the CC-MaxSat
problem, we are given a CNF-formula � over m clauses and n variables, and a positive
integer k, and the objective is to find a weight k assignment that maximizes the number
of satisfied clauses. We use var(�) and cla(�) to denote the set of variables and clauses in
�, respectively. An assignment to a CNF-formula � is a function — : var(�) æ {0, 1}. The
weight of an assignment — is the number of variables that have been assigned 1.

The classical Maximum Coverage problem is a special case of the CC-MaxSat problem.
Indeed, it is a monotone variant of CC-MaxSat, where negated literals are not allowed. An
input to the Maximum Coverage problem consists of a family of m sets, F , over a universe
U of size n, and an integer k, and the goal is to find a subfamily F Õ ™ F of size k such that
the number of elements covered (belongs to some set in F Õ) by F Õ is maximized. Observe
that when the goal is to cover every element in U , the Maximum Coverage problem
corresponds to Set Cover. A natural question that has guided research on these problems
is whether CC-MaxSat or Maximum Coverage admits an algorithm with running time
f(k)nO(1)? That is, whether CC-MaxSat or Maximum Coverage is fixed parameter
tractable (FPT) with solution size k? Unfortunately, these problems are W[2]-hard [9]. That
is, we do not expect these problems to admit an algorithm with running time f(k)nO(1).
This negative result sets the platform for studying these problems from the viewpoint of
Parameterized Approximation [11]. It is well known that both CC-MaxSat and Maximum
Coverage admit a polynomial time (1 ≠ 1

e )-approximation algorithm [26], which is in fact
optimal. [10]. So, in the realm of Parameterized Approximation, we ask does there exist an
‘ > 0, such that CC-MaxSat or Maximum Coverage admits an approximation algorithm
with factor (1 ≠ 1

e + ‘) and runs in time f(k, ‘)nO(1). While there has been a lot of work on
Maximum Coverage [17, 20, 25, 15, 24], Jain et al. [17] studied CC-MaxSat and designed
a standalone algorithm for the problem. Our first result, a bit of a surprise to us, shows that
in the world of Parameterized Approximation, CC-MaxSat and Maximum Coverage are
“equivalent”.

I Theorem 1.1 (Informal). Let ‘ > 0. There is a polynomial time randomized algorithm

that given an instance (�, k) of CC-MaxSat produces an instance (U,F , k) of Maximum
Coverage such that the following holds with probability

1

2
( ‘
2
)k. Given a (1 ≠ ‘)OPTcov

solution to (U,F , k) we can obtain a (1≠‘)OPTsat solution to (�, k) in polynomial time. Here,

OPTcov (OPTsat) denotes the value of the maximum number of covered elements (satisfied

clauses) by a k-sized family of subsets (weight k assignment).

https://arxiv.org/abs/2403.07328
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Theorem 1.1 allows us to focus onMaximum Coverage, rather than CC-MaxSat, at the
expense of ‘≠O(k) in the running time. Further, there is no assumption on the input formulas
in Theorem 1.1. This reduction immediately implies faster algorithms for CC-MaxSat by
utilizing the known good algorithms for Maximum Coverage [17, 20, 25, 15, 24]. The
Maximum Coverage problem has been generalized in several directions by adding either
fairness constraints or asking our solution to be an independent set of a matroid. In what
follows, we take a closer look at progresses on Maximum Coverage and its generalizations
and then design algorithms that generalize and unify all the known results for CC-MaxSat
and Maximum Coverage.

1.1 Tractability Boundaries for Maximum Coverage
Cohen-Addad et al. [8] studied Maximum Coverage and showed that there is no ‘ > 0,
such that Maximum Coverage admits an approximation algorithm with factor (1 ≠ 1

e + ‘)
and runs in time f(k, ‘)(m + n)O(1) 2. Later, this was also studied by Manurangsi [20],
who obtained the following strengthening over [8]: for any constant ‘ > 0 and any function
h, assuming Gap-ETH, no h(k)(n + m)o(k) time algorithm can approximate Maximum
Coverage with n elements and m sets to within a factor (1 ≠ 1

e + ‘), even with a promise
that there exist k sets that fully cover the whole universe. This negative result sets the
contour for possible positive results. In particular, if we hope for an FPT algorithm that
improves over a factor (1 ≠ 1

e ) then we must assume some additional structure on the input
families. This automatically leads to the families wherein each set has bounded size, or each
element appears in bounded sets which was considered earlier.

Skowron and Faliszewski [25] showed that, if we are working on set families, such that each
element in U appears in at most p sets, then there exists an algorithm, that given an ‘ > 0,
runs in time (p‘ )

O(k)nO(1) and returns a subfamily F Õ of size k that is a (1≠ ‘)-approximation.
These kind of FPT-approximation algorithms are called FPT-approximation Schemes (FPT-
ASes). For p = 2, Manurangsi [20] independently obtained a similar result. Jain et al. [17]
generalized these two settings by looking at Kd,d-free set systems (i.e., no d sets share d
elements). They also considered Kd,d-free formulas (that is, the clause-variable incidence
bipartite graph of the formula excludes Kd,d as an induced subgraph). They showed that
for every ‘ > 0, there exists an algorithm for Kd,d-free formulas with approximation ratio
(1 ≠ ‘) and running in time 2O((

dk
‘ )

d
)(n+m)O(1). For, Maximum Coverage on Kd,d-free

set families, they obtain an FPT-AS with running time (dk‘ )O(dk)nO(1). Using these results
together with Theorem 1.1 we get the following.

I Corollary 1.2. Let ‘ > 0. Then, CC-MaxSat admits a randomized FPT-AS with running

time (dk‘ )O(dk)nO(1)
on Kd,d-free formulas. Furthermore, if the size of clauses is bounded

by p or every variable appears in at most p clauses then CC-MaxSat admits randomized

FPT-AS with running time (p‘ )
O(k)nO(1)

. Both results hold with constant probability.

We note that the deterministic version of the first result in the corollary was given in [21] in
a recent independent work.

Corollary 1.2 follows by utilizing Theorem 1.1 and repurposing the known results about
Maximum Coverage ([17, 5, 25, 20]). We will return to the case of Kd,d-free set systems
later. Apart from extending the classes of set families where Maximum Coverage admits
FPT-ASes, the study on the Maximum Coverage problem has been extended in many
directions.

2 Throughout the paper, the approximation factor will refer to the number of elements covered/number
of satisfied clauses, unless explicitly stated otherwise
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1.1.1 Matroid Constraints
Note that Maximum Coverage is a special case of submodular function maximization
subject to a cardinality constraint. In the latter problem, we are given (an oracle access
to) a submodular function f : 2V æ RØ0

3, and the goal is to find a subset U ™ V
that maximizes f(U) over all subsets of size at most k. Indeed, coverage functions are
submodular and monotone (i.e., adding more sets cannot decrease the number of elements
covered). There has been a plethora of work on monotone submodular maximization subject
to cardinality constraints, starting from Wolsey [27]. In a further generalization, we are
interested in monotone submodular maximization subject to a matroid constraint – in this
setting, we are given a matroid M = (U, I) 4 via an independence oracle, i.e., an algorithm
that answers queries of the form “Is P œ I?” for any P ™ U in one step, and we want to
find an independent set S œ I that maximizes f(S). Note here that a uniform matroid of
rank k 5 exactly captures the cardinality constraint. Calinescu et al. [6] gave an optimal
(1 ≠ 1/e)-approximation.

More recently, Huang and Sellier [15] and Sellier [24] studied the problem of maximizing a
coverage function subject to a matroid constraint, called Matroid Constrained Maximum
Coverage. In this problem, which we call M-MaxCov (M for “matroid” constraint),
we are given a set system (U,F) and a matroid M = (F , I) of rank k, and the goal is to
find a subset F Õ ™ F such that F Õ œ I and F Õ maximizes the number of elements covered.
Note that M-MaxCov is a generalization of Maximum Coverage. In the latter paper,
Sellier [24] designed an FPT-AS for M-MaxCov, running in time (d/‘)O(k) · (m+ n)O(1) for
frequency-d set systems. Note that this result generalizes that of [25, 20] from a uniform
matroid consraint to an arbitrary matroid constraint of rank k.

Analogous to M-MaxCov, one can define a matroid constrained version of CC-MaxSat,
called M-MaxSAT. In this problem, we are given a CNF-SAT formula � and a matroid
M of rank k on the set of variables. The goal is to find an assignment that satisfies the
maximum number of clauses, with the restriction that, the set of variables assigned 1 must
be an independent set in M. Note that M-MaxSAT generalizes M-MaxCov as well as
CC-MaxSat. We obtain the following result for M-MaxSAT, by combining the results on
a variant of Theorem 1.1 with the corresponding result on M-MaxCov.

I Theorem 1.3. There exists an FPT-AS for M-MaxSAT parameterized by k, d, and ‘, on
d-CNF formulas, where k denotes the rank of the given matroid.

1.1.2 Fairness or Multiple Coverage Constraints
Now we consider an orthogonal generalization of Maximum Coverage. Note that an
optimal solution for Maximum Coverage may leave many elements uncovered. However,
such a solution may be deemed unfair if the elements are divided into multiple colors
(representing, say, people of di�erent demographic groups), and the set uncovered elements
are biased against a specific color. To address these constraints, the following generalization
of Maximum Coverage, which we call F-MaxCov (F stands for “fair”), has been studied
in the literature. Here, we are given a set system (U,F), a coloring function ‰ : U æ [r], a

3 f : 2V æ R is submodular if it satisfies f(A) + f(B) Ø f(A fi B) + f(A fl B) for all A,B ™ V
4 Recall that a matroid is a pair M = (U, I), where U is the ground set, and I is a family of subsets of U

satisfying the following three axioms: (i) ÿ œ I, (ii) If A œ I, then B œ I for all subsets B ™ A, and
(iii) for any A,B œ I with |B| > |A|, then there exists an element e œ B \A such that A fi {e} œ I.

5 Rank of a matroid is equal to the maximum size of any independent set in the matroid.
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coverage requirement function t : [r] æ N, and an integer k; and the goal is to find a subset
F Õ ™ F of size at most k such that, for each i œ [r], the union of elements in F Õ is at least
t(i) (or ti).

Since F-MaxCov is a generalisation of Maximum Coverage, it inherits all the lower
bounds known for Maximum Coverage. Furthermore, we can mimic the algorithm for
Maximum Coverage (Partial Set Cover) parameterized by t (where you want to
cover at least t elements with k sets) [5] to obtain an algorithm for Partition Maximum
Coverage parameterized by

q
jœ[r] tj . However, the problem is NP-hard even when tj Æ 1,

j œ [r], via a simple reduction from Set Cover.
F-MaxCov has been studied under multiple names in the approximation algorithms

literature; however much of the focus has been on approximating the size of the solution,
rather than the coverage. Notable exception include Chekuri et al. [7] who gave a “bicriteria”
approximation, that outputs a solution of size at most O(log r/‘) times the optimal size, and
covers at least (1 ≠ 1/e ≠ ‘) fraction of the required coverage of each color. Very recently,
Bandyapadhyay et al. [3] recently designed an FPT-AS for F-MaxCov for the set systems
of frequency 2, running in time 2O(

rk2 log k
‘ ) · (m+ n)O(1). We obtain the following result on

F-MaxCov.

I Theorem 1.4. There exists a randomized FPT-AS for F-MaxCov running in time1
dr

1
log k

‘

2r2O(k)

· (m+ n)O(1)
, on set systems with frequency bounded by d.

Note that this result generalizes the result of [3] to frequency-d set systems, and in the
case of d = 2, our running time is faster than that of [3] (albeit our algorithm is randomized).

One can also define fair version of CC-MaxSat in an analogous way, which we call F-
MaxSAT. In this problem, we are given a CNF-formula �, a coloring function ‰ : cla(�) æ [r],
a coverage demand function t : [r] æ N, and an integer k. The goal is to find a weight-k
assignment that satisfies at least t(j) (also denoted as tj) clauses of each color j œ [r].
By combining Theorem 1.4 with a slightly more general version of the reduction theorem
(Theorem 1.1) also yields FPT-AS for F-MaxSAT with a similar running time.

1.2 Our New Problem: Combining Matroid and Fairness Constraints

As discussed in the previous subsections, Maximum Coverage has been generalized in two
orthogonal directions, namely, matroid constraints on the sets chosen in the solution, and
fairness constraints on the elements covered by the solution. Although the corresponding
variants of CC-MaxSat have not been studied in the literature, we mentioned that our
techniques readily imply FPT-ASes for these problems for many “sparse” formulas. Given
this, the following natural question arises.

Can we find good approximations for the variants of CC-MaxSat (resp. Maximum
Coverage) that combines the two orthogonal generalizations, namely, matroid
constraint on the variables assigned 1, and fairness constraints on the satisfied clauses
(resp. matroid constraint on the sets chosen in the solution, and fairness constraints
on the elements covered)?

In the following, we formally define the common generalization of M-MaxSAT and
F-MaxSAT, which we call (M, F)-MaxSAT.
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(M, F)-MaxSAT

M-MaxSAT F-MaxSAT (M, F)-MaxCov

CC-MaxSAT

M-MaxCov

F-MaxCov

Maximum Coverage

we improve
running time
from [18]

We generalize
results from [16, 26] we improve

running time
from [3]

[18,22,27]

Figure 1 If there is an arrow of the form A æ B, then problem B generalizes problem A.
FPT-ASes for the problems in red bubbles are not known in the literature, and we study in this
paper. For all the other problems FPT-ASes are known in the literature for some cases. This paper
improves the results in cyan and blue.

(M, F)-MaxSAT
Input. A CNF-SAT formula � where the clauses cla(�) of � are partitioned into r
colors. Each color j œ [r] has an associated demand tj . Additionally, we are provided
the independence oracle to a matroid M = (var(�), I) of rank k.
Question. Does there exist an assignment � : var(�) æ {0, 1}, such that

The number of clauses satisfied by � of color j is at least tj , for each j œ [r],
The set of variables assigned 1 must be independent in M, i.e., �≠1(1) œ I.

In the special case where the CNF-SAT formula is monotone (i.e., does not contain
negated literals), we obtain (M, F)-MaxCov, which generalizes all the variants of Maximum
Coverage discussed earlier. We obtain the following result for (M, F)-MaxCov.

I Theorem 1.5. There exists a randomized FPT-AS for (M, F)-MaxCov on set systems

with maximum frequency d, that runs in time

1
d log k

‘

2O(kr)
· (m + n)O(1)

and returns a

(1 ≠ ‘)-approximation with at least a constant probability.

Finally, by reducing (M, F)-MaxSAT on d-CNF formulas to (M, F)-MaxCov with
frequency d set systems, using the randomized reduction, and then using the results of
Theorem 1.5, we obtain our most general result, as follows.

I Theorem 1.6. There exists a randomized FPT-AS for (M, F)-MaxSAT on d-CNF

formulas, that runs in time

1
d log k

‘

2O(kr)
· (m+ n)O(1)

and returns a (1 ≠ ‘)-approximation

with at least a constant probability.

We give a summary of how the various problems are related to each other, and a
comparison of our results with the literature in Figure 1.
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1.3 Related Results
Max k-VC or Partial Vertex Cover has been extensively studied in Parameterized
Complexity. In this problem we are given a graph and the task is to select a subset of k
vertices covering as many of the edges as possible. The problem is known to be approximable
within 0.929 and is hard to approximate within 0.944, assuming UGC [20]. Max k-VC
is known to be W[1]-hard [14], parameterized by k, but admits FPT algorithms on planar
graphs, graphs of bounded degeneracy, Kd,d-free graphs, and bipartite graphs, parameterized
by k [1, 13, 18]. Indeed, it is among the first problems to admit FPT-AS [23, 20, 25]. It is
also known to have “lossy kernels” [23, 19], a lossy version of classical kernelization.

Bera et al. [4] considered the special case of Partition Vertex Cover, where the set
of edges of a graph are divided into r colors, and we want to find a subset of vertices that
covers at least a certain number of edges from each color class. For this problem, they gave
a polynomial-time O(log r)-approximation algorithm. Hung and Kao [16] generalized this
to F-MaxCov, and gave a O(d log r)-approximation, where each element of the universe is
contained in at most d sets (i.e., d is the maximum frequency). Bandyapadhyay et al. [2]
studied this problem under the name of Fair Covering, and designed a O(d)-approximation,
but their running time is XP in the number of colors. Chekuri et al. [7] designed a general
framework for F-MaxCov, yielding tight approximation guarantees for a variety of set
systems satisfying certain property; in particular, they improve the approximation guarantee
for frequency-d set systems to O(d+ log r), which is tight in polynomial time.

2 Overview of Our Results and Techniques

2.1 Reduction from CC-MaxSat to Maximum Coverage: An overview of
Theorem 1.1

This theorem is essentially a randomized approximation-preserving reduction from CC-
MaxSat to Maximum Coverage. Given an instance I = (�, k) of CC-MaxSat, we
first compute a random assignment � that assigns a variable independently to be 1 with
probability p = ‘/2 and 0 with probability 1≠ p. Let V ú be the set of at most k variables set
to be 1 by an optimal assignment �ú. It is straightforward to see that, the probability that
all the variables in V ú are set to be 1 by the random assignment � is pk – we say that this is
the good event G. Now, consider a clause that is satisfied negatively by �ú, i.e., a clause C
that contains a negative literal ¬x and �ú(x) = 0. It is also easy to see that, conditioned
on the good event G, the probability that such a clause C is also satisfied negatively by �
is at least 1 ≠ p. Thus, the expected number of clauses that are satisfied negatively by �,
conditioned on G, is at least 1 ≠ p times the number of clauses satisfied negatively by �ú.
Markov’s inequality implies that, with probability at least 1/2, the actual number of such
clauses is close to its expected value. Thus, conditioned on G, and the previous event, we can
focus on the positively satisfied clauses (note that the probability that both of these events
occur is at least 1/2 · (‘/2)k. To this end, we can eliminate all the negatively satisfied clauses,
and we can also prune the remaining clauses by eliminating any negative literals and the
variables that are set to 0 by �. Thus, all the remaining clauses only contain positive literals,
which can be seen as an instance I Õ of Maximum Coverage. Furthermore, conditioned on
G, the variables set to 1 by �ú correspond to a family Fú of size k, and the elements covered
by Fú correspond to the set of clauses satisfied only positively by �ú. Thus, if we find a
(1 ≠ ‘)-approximate solution to I Õ, and set the corresponding variables to 1, and the rest of
the variables to 0, then we get a weight-k assignment that satisfies at least (1 ≠ ‘) · OPTsat

clauses. Note that this reduction, combined with the algorithm of [17] gives the proof of
Corollary 1.2.
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Furthermore, this reduction is robust enough that it can accommodate the fairness
constraints on the clauses, as defined above. To be precise, one can give a similar reduction
from C-MaxSAT to C-MaxCov, where C œ {M, F, (M, F)} – note that when we have
fairness constraints, the success probability now becomes (r/‘)O(k). Essentially, these
reductions translate a constraint on the variables set to 1 (for CC-MaxSat and variants),
to the corresponding family of sets (for Maximum Coverage and variants). Thus, at the
expense of a multiplicative (r/‘)O(k) factor in the running time, we can focus on Maximum
Coverage and its variants, which is what we do in this section, as well as in the paper. As
a warm-up, we start in Section 2.2 with the vanilla Maximum Coverage on frequency-d set
systems (where our algorithms do not improve over the known algorithms in the literature),
and give a complete formal proof. Then, we will gradually introduce the ideas required to
handle fairness (Section 2.3) and matroid (Section 2.4) constraints – first separately, and
then together. Finally, in Section 2.5, we briefly discuss the ideas required to these results to
Kd,d-free set systems and multiple matroid constraints.

2.2 Deterministic and Randomized Branching using a Largest Set

To introduce our ideas in a clean and gradual way, we start with the simplest setting of
Maximum Coverage where the maximum frequency of the elements is bounded by d.
Recall that we are given an instance (U,F , k) and the goal is to find a sub-family of F of
size k that covers the maximum number of elements. For any sub-family R ™ F , let U(R)
denote the subset of elements covered by R, and OPTk(R) denote the maximum number of
elements that can be covered by a subset of R of size k. Further, for a set S œ F , we denote
by F ≠ S, the family obtained by removing S, as well as the elements of S from each of the
remaining sets. Our approach is inspired by the approaches of Skowron and Faliszewski [25]
and Manurangsi [20] who show that O(kd/‘) sets of the largest size is guaranteed to contain
a (1 ≠ ‘)-approximate solution. This naturally begs the question, “why not start by adding

the largest set into the solution?” (in a sense, the following presentation is closer in spirit
to Jain et al. [17].) Let us inspect this question more closely. Let L be a largest set in F .
By looking at the contribution of coverage of each set in an optimal solution, say O, we can
easily see that |L| Ø OPTk(F)

k . We say that a set S œ F is heavy w.r.t. L if |L fl S| Ø ‘|L|

k

(note that L is heavy w.r.t. itself). However, since the frequency of each element is bounded
by d, each element in L can appear in at most d (in fact, d≠1) sets LflS for di�erent R œ F .
This implies that at most kd

‘ sets in F are heavy w.r.t. L.

Algorithm. Our algorithm simply branches on the sets in H(L), which is the family of heavy
sets w.r.t. L. Specifically, in the branch corresponding to a heavy set S œ H(L), we include it
in the solution, and recursively call the algorithm on the residual instance (U \S,F ≠S, k≠1).
If any of the sets in O is heavy w.r.t. L, then in the branch corresponding to such a set
yields an approximate solution via induction. The main idea is that, if no set in O is heavy
w.r.t. L, then the branch corresponding to L yields a good solution. This is justified as the
e�ect of any of the k ≠ 1 sets in O is too small. For the sake of clarity, we formally analyze
this algorithm below via induction.

We want to show that, for a given input (U Õ,F Õ, kÕ) the recursive algorithm returns a
family R ™ F Õ of size kÕ such that |U Õ(R)| Ø (1 ≠ ‘) · OPTkÕ(F Õ). The base case for kÕ = 0
is trivial, since the algorithm returns an empty set. Suppose that the claim is true for all
inputs with budget k ≠ 1, and we want to prove it for (U,F , k). Let O denote an optimal
solution of size k with |OPTk(F)| = |U(O)|.
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Approximation Ratio in the Easy Case. If O fl H(L) ”= ÿ, then there exists a branch
corresponding to a set S œ O fl H(L). This is the easy case (for the analysis). In this case,
OPTk≠1(F ≠ S) = OPTk(F) ≠ |S|, and hence the approximation ratio is:

|S|+ (1 ≠ ‘)OPTk≠1(F \ S)
OPTk(F) = |S|+ (1 ≠ ‘)(OPTk(F) ≠ |S|)

OPTk(F)

Ø (1 ≠ ‘)(OPTk(F)
OPTk(F) = (1 ≠ ‘)

Approximation Ratio in the Hard Case. The more hard case (for analysis) is when
O fl H(S) = ÿ. In this case, we argue that the branch that includes the element L is
good enough. As in the easy case, we first lower bound the value of OPTk≠1(F ≠ L). By
counting the unique contributions to the solution, there exists a light set Sl œ O such that
for OÕ = O \ {Sl}, it holds |U Õ(OÕ)| Ø k≠1

k · OPTk(F). Because no set in O is heavy w.r.t.
L, it follows that for each R œ OÕ, it holds that |R fl L| < ‘|L|

k , and therefore by counting it
holds that |U(OÕ) fl L| < ‘ · |L|. Therefore,

OPTk≠1(F \ L) Ø |U Õ(OÕ) \ L| Ø |U(OÕ)| ≠ |U(OÕ) fl L| Ø k ≠ 1
k

· OPTk(F) ≠ ‘ · |L|.

Therefore, the approximation ratio of the branch that includes L is as follows.

|L|+ (1 ≠ ‘)OPTk≠1(F ≠ L)
OPTk(F) =

|L|+ (1 ≠ ‘)
!
k≠1

k · OPTk(F) ≠ ‘ · |L|
"

OPTk(F)

Ø
|L|+ (1 ≠ ‘)

!
k≠1

k · OPTk(F)
"

≠ ‘|L|
OPTk(F)

=
(1 ≠ ‘)|L|+ (1 ≠ ‘)

!
k≠1

k · OPTk(F)
"

OPTk(F)

Ø (1 ≠ ‘)(OPTk(F)
OPTk(F) = (1 ≠ ‘)

The second last inequality holds from the fact that |L| Ø OPTk(F)

k .
This leads to a deterministic (1≠ ‘)-approximation algorithm with running time ((kd‘ )k) ·

(n+m)O(1).

Insight into the probabilistic branching

A closer inspection of the analysis reveals that the reason L may not a good choice is that
the sets of O together cover more than a certain threshold fraction of elements covered
by L. We utilize this idea through a smoothening process that captures the e�ect of the
size of the intersection of a set S with L in a more nuanced manner. Let us define the
weight hL(S) of a set S œ F \ {L} as hL(S) = |SflL|

|L|
. Our algorithm now instead does

“randomized branching”, i.e., it samples one set to be included in the solution according to
some probability distribution, and then continues recursively. Note that the single run of the
algorithm finishes in polynomial time. The probability distribution used by the algorithm
is as follows: the set L is sampled with probability 1/2, and any other set S œ F \ {L} is
sampled with probability proportional to its weight h(S) (the constant of proportionality
is chosen such that this is a valid probability distribution, that is, the probabilities sum
up to 1). In particular, observe that

q
SœF\{L}

hL(S) Æ d|L|

|L|
= d. Thus, the probability of

selecting S is at least hL(S)

2d . Note that due to the way the weights hL(S) are defined, the
sets with a large intersection with L have a greater chance of being sampled, as compared to
the sets with a small intersection with L.
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We will show that the algorithm returns a (1 ≠ ‘)-approximate solution with probability
at least ( ‘

2d )
k, and runs in polynomial time. This implies that by repeating the algorithm

( 2d‘ )k times, we obtain a (1 ≠ ‘)-approximation with probability at least a positive constant.
This leads to a randomized algorithm with running time Oú(( 2d‘ )k).

The proof is again by induction. We want to show that, for any input (U Õ,F Õ, kÕ), the
algorithm returns a solution R ™ F Õ of size kÕ such that |U Õ(R)| Ø (1 ≠ ‘) · OPTkÕ(F Õ),
with probability at least ( ‘

2d )
kÕ . We reuse much of the notation from the previous analysis.

Let O be an optimal solution of size k. First, the case when L œ O, since our algorithm
samples and includes L in the solution with probability 1/2. Then, conditioned on this
event (that is, L being sampled), the approximation ratio analysis proceeds similarly to
the easy case of the previous analysis. By induction, the recursive algorithm returns a
(1 ≠ ‘)-approximate solution with probability at least ( ‘

2d )
k≠1. Thus, overall, the algorithm

returns a (1 ≠ ‘)-approximation with probability at least 1

2
( ‘
2d )

k≠1 Ø ( ‘
2d )

k.
Now suppose L ”œ O. As before, let Sl œ O be a light set as defined earlier, and

OÕ = O\{Sl}. We analyze by considering the following two cases: either (i) |U(OÕ)flL| Æ ‘·|L|,
or (ii) |U(OÕ) fl L| > ‘ · |L|.

In case (i), we are e�ectively in the same situation as the hard case of the previous analysis
– as before, the algorithm samples L with probability at least 1/2, and as argued in the hard

case, conditioned on the previous event, the branch corresponding to L returns a (1 ≠ ‘)-
approximate solution, but now with probability at least ( ‘

2d )
k≠1 by induction. Therefore, we

obtain an (1 ≠ ‘)-approximate solution with probability at least 1

2
( ‘
2d )

k≠1 Ø ( ‘
2d )

k.
In case (ii), we have that |U(OÕ) fl L| > ‘ · |L|. Notice that,
ÿ

SœOÕ

|S fl L| > ‘.

This implies that
ÿ

SœOÕ

hL(S) =
ÿ

SœOÕ

|S fl L|
|L| Ø |U(OÕ) fl L| > ‘|L|.

Therefore, the total weight of the sets in OÕ is at least ‘. Therefore, the probability
that the algorithm samples a set from OÕ is at least ‘

2d . Conditioned on this event, the
approximation ratio analysis now proceeds as in the easy case, and the algorithm returns a
(1 ≠ ‘)-approximate solution with probability at least ‘

2d (
‘
2d )

k≠1 = ( ‘
2d )

k.

2.3 Handling fairness constraints via the Bucketing trick
The aforementioned idea of prioritizing the largest set L, or sets that are heavy w.r.t. it,
fails to generalize when we have multiple coverage constraints in F-MaxCov. This is simply
because there is no notion of “the largest set” even when we want to cover elements of two
di�erent colors, each with di�erent coverage requirements. To handle such multiple coverage
constraints, our idea is to use multidimensional-knapsack-style bucketing technique to group
the sets of F into approximate equivalence classes, called bags for short. At a high level, all
the vertices belonging to a particular bag contain approximately equal (i.e., within a factor
of (1 + ‘)) number of elements of all of the r colors. Thus, in isolation, any two sets L1 and
L2 belonging to the same bag are interchangeable, since we tolerate an ‘-factor loss in the
coverage. Since the total number of bags can be shown to be

1
log k

‘

2O(rk)
, and hence we

can “guess” a bag B containing a set from a solution O. However, due to di�erent amount
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of overlap with an optimal solution O, two sets L1, L2 œ B may not be interchangeable
w.r.t. O. That is, if L1 œ O, then O \ {L1} fi {L2} may not be a good solution. However,
assuming that we have correctly guessed a bag that intersects with O, we can then select a
set L œ B, and define the heavy sets (for deterministic algorithm) or weights hL(·) (for the
randomized algorithm) w.r.t. L. Note that, since we have multiple coverage constraints, we
cannot simply look at the total size of the intersection |S fl L|. Instead, we need to tweak
the notion of heaviness that takes into account the number of elements of each color in the
intersection S fl L. To summarize, we need two additional ideas to handle multiple colors in
F-MaxCov: (1) “guessing” over buckets, and (2) a suitable generalization of the notion of
heaviness. Modulo this, the rest of the analysis is again similar to the easy and hard cases as
before. Using these ideas, we can prove the first part of Theorem 1.4.

2.4 Handling Matroid Constraints
First, we consider M-MaxCov (note that this is an orthogonal generalization of Maximum
Coverage, without multiple coverage constraints), where the solution is required to be an
independent set in the given matroid M = (F , I) of rank k. We assume that we are given
an oracle access to M in the form of an algorithm that answers the queries of the form
“Is R an independent set?” for any subset R ™ F . Let us revisit the initial deterministic
FPT-AS for Maximum Coverage and try to generalize it to M-MaxCov. Recall that this
algorithm branches on each set S œ H(L), where L is a largest set. The analysis of easy case
goes through even in presence of the matroid constraint, since we branch on a set from an
optimal solution O. However, in the hard case, our analysis replaces a Sl œ O with L, and
argues that the branch corresponding to L returns a (1 ≠ ‘)-approximate solution. However,
this does not work for M-MaxCov, since (O \ {Sl}) fi {L} may not be an independent set
in M. To summarize, although L handles the coverage constraints (approximately), it may
fail to handle the matroid constraint. In fact, it may just so happen that L is not a good set
at all, in the sense that, for any set S œ O, (O \ {S}) fi {L} is not independent in M, which
is crucial for the induction to go through.

To solve this issue, we resort to the bucketing idea as in the fair coverage case (thus, the
subsequent arguments generalize to (M, F)-MaxCov in a straightforward manner; although
let us stick to the special case of M-MaxCov for now). Indeed, branching w.r.t. the largest
set L is an overkill – it su�ces to pin down a bag B containing a set in O (it does not even
have to be the largest set), by “guessing” from O

1
log k

‘

2
bags. However, we again cannot

select an arbitrary set S œ B and define heavy sets w.r.t. S, precisely due to the matroid
compatibility issues mentioned earlier. Therefore, we resort to the idea of representative sets

from matroid theory [22] 6 Assuming our guess for B is correct, there exists some S œ B fl O.
However, we cannot further “guess” S, since the size of the bag may be too large. Instead,
we compute a inclusion-wise maximal independent set BÕ ™ B. Note that the size of BÕ is at
most k, and it can be computed using polynomially many queries to the independence oracle.
However, it may very well happen that S ”œ BÕ. Nevertheless, using matroid properties, we can
argue that, there exists a set SÕ œ BÕ, such that (O\{S})fi {SÕ} is an independent set. Thus,
BÕ is a representative set of B. Furthermore, since both S and SÕ come from the same bag,
they cover approximately the same number of elements. Thus, our modified deterministic

6 Although this is a powerful hammer in its full generality – which we do use to handle multiple matroid
constraints – our specialized setting lets us use much simpler arguments to handle single matroid
constraint in M-MaxCov/(M, F)-MaxCov.
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algorithm works as follows. First, it computes maximal independent set BÕ ™ B, and for each
SÕ œ BÕ, it computes the heavy family H(SÕ). Then, it branches over all sets in

t
SÕœBÕ H(SÕ).

If one of the branches corresponds to branching on a set from O, then the analysis is similar
to the easy case. Otherwise, we know that (O\{S})fi{SÕ} is an (1≠ ‘)-approximate solution
that is also an independent set. Therefore, the branch corresponding to SÕ yields the required
(1 ≠ ‘)-approximation. We can improve the running time via doing a randomized branching
in two steps: first we pick a set SÕÕ œ BÕ uniformly at random, and then we perform the
probabilistic branching using the weights hSÕÕ(·).

Both deterministic and randomized variants incur a further multiplicative overhead of
(k log k

‘ )k due to first guessing a bag, and then computing a representative set BÕ ™ B of
the bag, and thus do not improve over the results of Sellier [24] in terms of running time
for M-MaxCov. However, this idea naturally generalizes to (M, F)-MaxCov, with the
appropriate modifications in bucketing (as mentioned in the previous paragraph) to handle
the multiple coverage requirements of di�erent colors. This leads to the proof of Theorem 1.5.

2.5 Further Extensions

The ideas mentioned in the previous subsections can be extended to even more general
settings in a couple of ways. First, we describe how to extend the ideas from frequency-d set
systems for Maximum Coverage to Kd,d-free set systems, i.e., set system (U,F), where
no d sets in F contain d elements of U in common. Note that frequency-d set systems are
Kd+1,d+1-free. Then, we describe how the linear algebraic toolkit of representative sets can
be used to handle multiple (linear) matroid constraints.

Kd,d-free Set Systems

Next, we consider Kd,d-free set systems (U,F), where no d sets of F contain d common
elements of U . To design the FPT-AS on Kd,d-free set systems, we combine the bucketing
idea along with the combinatorial properties of Kd,d-free graphs to bound the number of
heavy neighbors of a set. To this end, however, we need to modify the precise definition of
heaviness (as in Jain et al. [17]). This leads to a somewhat cumbersome branching algorithm
that handles colors di�erently based on their coverage requirement. For colors with small
coverage requirement, we highlight the covered vertices using the standard technique of label
coding

7. Now, vertices in a bag cover the elements with the same label and for colors with
high coverage requirements, the sizes of the sets in the same bag are “almost” the same.
Then, we pick an arbitrary set L from the bag B, and we branch on (suitably defined) heavy
sets w.r.t. S. Since the number of heavy sets is bounded by a function of k, d, and ‘, this
leads to a deterministic version of Theorem 1.4 to Kd,d-free set systems. Note that since
frequency-d set systems is a special case of this, this implies a deterministic FPT-AS in this
case; however with a much worse running time compared to Theorem 1.4. This leads to the
proof of Theorem 1.5.

7 The technique is better known as color coding. However, this creates an unfortunate clash of termino-
logy – these colors have nothing to do with the original colors corresponding to coverage constraints.
Bandyapadhyay et al. [3] instead use the term “label coding”, and we also adopt the same terminology
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Handling Multiple Matroid Constraints

Our results on M-MaxCov and (M, F)-MaxCov can be generalized to handle multiple
matroid constraints on the solution, in the case when the matroids are linear or representable8.
In this more general problem, we are given q linear matroids M1,M2, . . . ,Mq, where
Mi = (F , Ii), each of rank at most k, and the solution S is required to be independent in
all q matroids, i.e., S œ

u
iœ[q] Ii. In this case, we can use linear algebraic tools ([22, 12]) to

compute a representative set of size qk instead of k, and the computation requires 2O(qk) ·nO(1)

time. Thus, FPT-ASes for this problem now have a factor of q in the exponent.
Note that our FPT-AS improves upon the polynomial-time approximation guarantee of

1 ≠ 1/e of Calinescu et al. [6] for monotone submodular maximization subject to a matroid
constraint, in the special case of Kd,d-free coverage functions. To the best of our knowledge,
this is the largest class of monotone submodular functions and matroid constraints for which
the lower bound of 1 ≠ 1/e can be overcome, even in FPT time. Further, the analogous
results to (M, F)-MaxSAT generalize these results to maximization of non-monotone/non-
submodular functions.

3 Preliminaries

For a positive integer q, let [q] := {1, 2, . . . , q}.

Convention. We consistently use index j to refer to a color from the range [r], and may
often write “for a color j” instead of “for a color j œ [r]”. Finally, for a coverage requirement
function t (resp. variations such as tÕ,Ât), and a color j, we shorten t(j) to tj (resp. tÕj ,Âtj).

4 Reduction from (M, F)-MaxSAT to (M, F)-MaxCov

In this section, we begin with a polynomial time approximate preserving randomized reduction
from F-MaxSAT to F-MaxCov. The success probability of the reduction is O((‘/r)k).
Recall that in the F-MaxSAT problem, given a CNF-formula � with ‰ : cla(�) æ [r], a
coverage demand function t : [r] æ N and an integer k, the goal is to find an assignment of
weight at most k that satisfies at least t(i) (also denoted as ti) clauses of color class i (an
assignment � satisfying these properties is called optimal weight k assignment).

We begin with some basic definitions. Let � be a CNF-formula. By var(�) and cla(�),
we denote the set of variables and clauses in the formula �, respectively. An assignment to a
CNF-formula � is a function � : var(�) æ {0, 1}. The weight of an assignment is the number
of variables that have been assigned 1. By T (�) and F (�), we denote the set of variables
assigned 1 and 0 by the assignment �, respectively. For a clause c œ cla(�), var(c) is the set
of variables that occur in the clause c as a positive or negative literal. Similarly, for a set of
clauses C œ cla(�), var(C) is the set of variables that occur as a positive or negative literal
in a clause c œ C.

Our reduction (Algorithm 1) takes an instance (�,‰, t, k) of F-MaxSAT as input. It
constructs a random assignment � by setting each variable to 1 with probability p and 0 with
probability 1 ≠ p. It constructs a new formula by first removing the set of clauses that are

8 A matroid M = (E, I) is representable over a field F if there exists a matrix M such that there exists a
bijection between E and the columns on M with the property that, a subset EÕ

™ E is independent in
M i� the corresponding set of columns are linearly independent over F.

ICALP 2024



88:14 Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints

Algorithm 1 Reduction Algorithm(I = (�,‰, t, k) of F-MaxSAT ).

1: Construct a random assignment � as follows. For each variable x œ var(�), independently
set �(x) to 1 with probability p and 0 with probability 1 ≠ p. Û We will later set
p = ‘

2r.
2: Construct a new formula �Õ as follows:

Let N ™ cla(�) be the set of clauses that are satisfied negatively by �. Then,
cla(�Õ) = cla(�) \N .
For each c œ cla(�Õ), remove all the variables in c that occur either as a negative literal
or set to 0 by �.
For each c œ cla(�Õ), add var(c) to var(�Õ).

3: Construct an instance J� = (U ,F ,‰Õ, tÕ, kÕ) of F-MaxCov as follows:
Set U = cla(�Õ).
For each v œ var(�Õ), add a set fv to F where fv = {c œ cla(�Õ) : v œ var(c)}.
For each c œ cla(�Õ), if the corresponding element in U is ec, set ‰Õ(ec) = ‰(c).
Set tÕ(i) = t(i) ≠ |Nfl‰≠1

(i)|
1≠‘ for each i œ [r].

Set kÕ = k.

satisfied negatively by �, followed by removing negative literals from the remaining clauses.
It reduces the formula to an instance (U ,F ,‰Õ, tÕ, kÕ) of F-MaxCov as described in Step 3
of Algorithm 1. Clearly, this reduction takes polynomial time.

Next, we prove the correctness of our reduction. For a Yes-instance I of F-MaxSAT, let
�ı be an optimal weight k assignment. Let Nı be the set of clauses satisfied negatively by
�ı, i.e., every clause in Nı contains a negative literal that is set to 1, and let P ı be the set
of clauses satisfied only positively by �ı, i.e., every clause in P ı contains a positive literal
that is set to 1 and no negative literal in this clause is set to 1. By Nı

i , we mean the set of
clauses in color class i satisfied negatively by �ı and by P ı

i , we mean the set of clauses in
color class i satisfied only positively by �ı. We call a random assignment, constructed in
Algorithm 1, good if each variable in T (�ı) (positive variables under �ı) is assigned 1 by �,
i.e., T (�ı) ™ T (�), which occurs with probability at least pk. For a good assignment �, let
Ni denote the set of clauses in color class i satisfied negatively by � and Pi denote the set of
clauses in color class i satisfied only positively by �. We say that an event G is good if a
good assignment � is generated in Algorithm 1. We begin with the following claim.

B Claim 4.1. Given a Yes-instance I of F-MaxSAT, with probability at least 1/2, a good
assignment � satisfies at least (1 ≠ ‘)|Nı

i | clauses negatively, for each i œ [r].

Proof. Let (�,‰, t, k) be a Yes-instance of F-MaxSAT. Let � be a good assignment, which
occurs with probability at least pk. We show that � satisfies at least (1 ≠ ‘)|Nı| clauses
negatively, with probability at least 1/2. Let Xi be the number of clauses in Nı

i that are
satisfied negatively by �. We define an indicator random variable xj , for each j œ [|Nı

i |], as
follows.

xj =
I
1 clause cj œ Nı

i is satisfied negatively by �
0 otherwise

Pr(xj |G) = Pr(clause cj œ Nı
i is satisfied negatively by �|G) Ø (1 ≠ p)

E[Xi|G] =
ÿ

jœ[|Nı
i |]

xj ◊ Pr(xj |G) Ø (1 ≠ p)|Nı
i |
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Let Yi = |Nı
i | ≠ |Ni|, where Ni is the set of clauses satisfied negatively by �. Note that,

Yi = |Nı
i | ≠ |Ni| Æ |Nı

i \Ni| = |Nı
i | ≠ Xi

Thus,

E[Yi|G] Æ |Nı
i | ≠ E[Xi|G] Æ p|Nı

i |

Since Yi Ø 0, we can use Markov’s inequality and get

Pr(Yi Ø 2rp|Nı
i ||G) Æ E[Yi]

2rp|Nı
i |

Æ 1
2r

Since Yi = |Nı
i | ≠ |Ni|, we get

Pr(|Ni| Æ (1 ≠ 2rp)|Nı
i ||G) Æ 1

2r

By union bound,

Pr (÷i œ [r], |Ni| Æ (1 ≠ 2rp)|Nı
i ||G) Æ

ÿ

iœ[r]

Pr(|Ni| Æ (1 ≠ 2rp)|Nı
i ||G) Æ 1

2

This implies that

Pr (’i œ [r], |Ni| > (1 ≠ 2rp)|Nı
i ||G) Ø 1

2

Setting p = ‘
2r gives us the required result, i.e., with probability at least 1/2, for all colors

i œ [r], |Ni| > (1 ≠ ‘)|Nı
i |. C

I Lemma 4.2. If I = (�,‰, t, k) is a yes-instance of F-MaxSAT, then with probability at

least ( ‘
2r )

k
, the reduced instance J� = (U ,F ,‰Õ, tÕ, kÕ) is a yes-instance of F-MaxCov.

Proof. Let I be a Yes-instance of F-MaxSAT and let �ı be an optimal weight k assignment.
Further, let Nı be the set of clauses satisfied negatively by �ı, i.e., every clause in Nı

contains a negative literal that is set to 1, and let P ı be the set of clauses satisfied only
positively by �ı, i.e., every clause in P ı contains a positive literal that is set to 1 and no
negative literal in this clause is set to 1. Then, there exists a set VPı ™ var(P ı) of size at
most k that satisfies all the clauses in P ı positively, i.e., for each clause in P ı, there is a
variable in VPı that occurs as a positive literal in it and is assigned 1 under �ı. Let � be
a good assignment which is generated with probability at least ( ‘

2r )
k. Since � is a good

assignment, T (�ı) ™ T (�) and F (�) ™ F (�ı). Hence, P ı ™ P . Thus, P ı ™ U and for each
variable in var(P ı), we have a set in the family F . Let Z = {fv œ F : v œ VPı}. We claim
that Z is a solution to J�. Clearly, Z covers at least |P ı

i | elements in U , for each i œ [r]. We
claim that tÕi Æ |P ı

i |. Since �ı is a solution to I, it satisfies ti clauses for each i œ [r]. Since
ti = |P ı

i | + |Nı
i |, due to Claim 4.1, we know that ti Æ |P ı

i | +
|Ni|

1≠‘ . Thus, |P ı
i | Ø ti ≠ |Ni|

1≠‘ .
Since tÕi = ti ≠ |Ni|

1≠‘ , t
Õ

i Æ |P ı
i |. This completes the proof. J

I Lemma 4.3. Assume that I = (�,‰, t, k) is a yes-instance of F-MaxSAT. If there exists

(1 ≠ ‘)-approximate solution for J� = (U ,F ,‰Õ, tÕ, kÕ), where � is a good assignment, then

there exists (1 ≠ ‘)-approximate solution for I with probability at least
1

2
.
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Proof. Let �ı be an optimal assignment. Due to Claim 4.1, � satisfies at least (1 ≠ ‘)|Nı
i |

clauses negatively, for each i œ [r], with probability at least 1/2. Let S be a (1≠‘)-approximate
solution to J�. We construct an assignment ‡ as follows: if fx œ S, then ‡(x) = 1, otherwise
0. We claim that ‡ is a (1 ≠ ‘)-approximate solution to I. Due to the construction of J�,
note that F does not contain a set corresponding to the variable that is set to 0 by �. Thus,
if �(x) = 0, then ‡(x) = 0. Hence, ‡ satisfies at least (1 ≠ ‘)|Nı

i | clauses negatively, for each
i œ [r], with probability at least 1/2. Next, we argue that ‡ satisfies at least (1≠‘)|P ı

i | clauses
only positively, for each i œ [r]. Since S is a (1 ≠ ‘)-approximate solution to J�, for each
i œ [r], S covers at least (1 ≠ ‘)tÕi elements. Recall that U contains an element corresponding
to each clause in fiiœ[r]Pi. Thus, ‡ satisfies at least (1 ≠ ‘)tÕi clauses only positively for each
i œ [r]. Recall that tÕi = ti ≠ |Ni|

1≠‘ . Thus, |Pi| + |Ni| Ø (1 ≠ ‘)(ti ≠ |Ni|

1≠‘ ) + |Ni| = (1 ≠ ‘)ti.
Hence, ‡ is a factor (1 ≠ ‘)-approximate solution for I. J

Due to Lemma 4.2 and 4.3, we have the following result.

I Theorem 4.4. There exists a polynomial time randomized algorithm that given a Yes-

instance I of F-MaxSAT generates a Yes-instance J of F-MaxCov with probability at least

( ‘
2r )

k
. Furthermore, given a factor (1 ≠ ‘)-approximate solution of J , it can be extended to a

(1 ≠ ‘)-approximate solution of I with probability at least 1/2.

Note that if the variable-clause incidence graph of the input formula belongs to a subgraph
closed family H, then the incidence graph of the resulting instance of F-MaxCov will also
belong to H. Thus, due to Theorem 4.4 and Theorem 1.2 in [17], we have the following
result, which is an improvement over Theorem 1.1 in [17].

I Theorem 4.5. There is a randomized algorithm that given a Yes-instance I of CC-
Max-SAT, where the variable-clause incidence graph is Kd,d-free, returns a factor (1 ≠ ‘)-
approximate solution with probability at least (1≠ 1

e ), and runs in time ( rdk‘ )O(dk)(n+m)O(1)
.

The ( r‘ )
O(k) factor in the running time of the algorithm in Theorem 4.5 comes by repeating

the algorithm in Theorem 4.4, followed by Theorem 1.2 in [17], independently ( r‘ )
O(k) many

times. This also boosts the success probabilty to at least (1 ≠ 1

e ).
I Remark 4.6. Note that the reduction from F-MaxSAT to F-MaxCov also works in
presence of matroid constraint(s) on the set of variables assigned 1. Recall that in the former
(resp. latter) problem, we are given a matroid M on the set of variables (resp. sets), and the
set of at most k variables assigned 1 (resp. at most k sets chosen in the solution) is required
to be an independent set in M. This follows from the fact that the randomized algorithm
preserves the optimal independent set in the set cover instance with good probability.

5 Conclusion

In this paper, we designed FPT-approximation schemes for (M, F)-MaxSAT, which is
a generalization of the CC-MaxSat problem with fairness and matroid constraints. In
particular, we designed FPT-AS for the classes of formulas where the maximum frequency of
a variable in the clause is bounded by d, and more generally, for Kd,d-free formulas. Our
algorithm for F-MaxCov on the set systems of frequency bounded by d is substantially
faster compared to the recent result of Bandyapadhyay et al. [3], even for the special case of
d = 2. We use a novel combination of the bucketing trick and a carefully designed probability
distribution in order to obtain this faster FPT-AS.

Our work naturally leads to the following intriguing questions. Firstly, our approximation-
preserving reduction from CC-MaxSat (and variants) to Maximum Coverage (and
variants) is inherently randomized. Is it possible to derandomize this reduction? A similar
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question of derandomization is also interesting for our aforementioned algorithm for F-
MaxCov on bounded-frequency set systems. In this case, can we design an FPT-AS for the
problem running in time single-exponential in k?
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Abstract
A parameterized string (p-string) is a string over an alphabet (�s fi�p), where �s and �p are disjoint
alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols), respectively. Two
p-strings x and y are said to parameterized match (p-match) if and only if x can be transformed into
y by applying a bijection on �p to every occurrence of p-symbols in x. The indexing problem for
p-matching is to preprocess a p-string T of length n so that we can e�ciently find the occurrences
of substrings of T that p-match with a given pattern. Let ‡s and respectively ‡p be the numbers of
distinct s-symbols and p-symbols that appear in T and ‡ = ‡s+‡p. Extending the Burrows-Wheeler
Transform (BWT) based index for exact string pattern matching, Ganguly et al. [SODA 2017]
proposed parameterized BWTs (pBWTs) to design the first compact index for p-matching, and
posed an open problem on how to construct the pBWT-based index in compact space, i.e., in
O(n lg |�s fi �p|) bits of space. Hashimoto et al. [SPIRE 2022] showed how to construct the pBWT
for T , under the assumption that �s fi �p = [0..O(‡)], in O(n lg ‡) bits of space and O(n‡p lgn

lg lgn
)

time in an online manner while reading the symbols of T from right to left. In this paper, we
refine Hashimoto et al.’s algorithm to work in O(n lg ‡) bits of space and O(n lg ‡p lgn

lg lgn
) time in a

more general assumption that �s fi �p = [0..nO(1)]. Our result has an immediate application to
constructing parameterized su�x arrays in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits of working space.

We also show that our data structure can support backward search, a core procedure of BWT-based
indexes, at any stage of the online construction, making it the first compact index for p-matching
that can be constructed in compact space and even in an online manner.
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1 Introduction

A parameterized string (p-string) is a string over an alphabet (�s fi �p), where �s and �p

are disjoint alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols),
respectively. Two p-strings x and y are said to parameterized match (p-match) if and only if x
can be transformed into y by applying a bijection on �p to every occurrence of p-symbols in
x. For example with �s = {a, b} and �p = {X, Y, Z}, two p-strings aXYbZXaY and aZYbXZaY
p-match because aXYbZXaY can be transformed into aZYbXZaY by replacing X, Y and Z with
Z, Y and X, respectively. The concept of p-matching was introduced by Baker aiming at
software maintenance and plagiarism detection [1, 2, 3], and has been extensively studied in
the last decades (see a recent survey [28] and references therein).

The indexing problem for p-matching is to preprocess a p-string T of length n so that
we can e�ciently find the occurrences of substrings of T that p-match with a given pattern.
Solutions proposed for this problem adapt and extend indexes initially devised for exact
string pattern matching, e.g., parameterized su�x trees [1, 25, 2, 3], parameterized su�x
arrays [8, 20, 4, 12], parameterized su�x trays [14], parameterized DAWGs [31], parameterized
position heaps [9, 11, 13] and parameterized Burrows-Wheeler transforms (pBWTs) based
indexes [16, 24, 18].

Among these indexes, pBWT-based indexes are the most space economic, consuming
n lg |�s fi �p|+ O(n) bits [16] or 2n lg |�s fi �p|+ 2n+ o(n) bits with a simplified version
proposed in [24]. Let ‡s and respectively ‡p be the numbers of distinct s-symbols and p-
symbols that appear in T and ‡ = ‡s + ‡p. The pBWT-based index of T can be constructed
via the parameterized su�x tree of T for which O(n(lg ‡s + lg ‡p))-time or randomized O(n)-
time construction algorithms are known [25, 7, 26], but the intermediate memory footprint
of O(n lgn) bits could be intolerable when it is significantly larger than the resulting index.
Hashimoto et al. [19] showed how to compute the pBWT of [24] for T , under the assumption
that �s fi �p = [0..O(‡)], in O(n lg ‡) bits and O(n‡p lgn

lg lgn
) time in an online manner while

reading the symbols of T from right to left. Here we note that the work of [19] lacks details in
terms of pBWT-based index construction because any pBWT-based index to date [16, 24, 18]
requires additional data structures other than the pBWT, and the pBWTs alone does not
seem to be enough to support p-matching queries e�ciently.

In this paper, we refine the algorithm of [19] to work in O(n lg ‡) bits and O(n lg ‡p lgn

lg lgn
)

time in a more general assumption that �s fi �p = [0..nO(1)]. While working in compact
space, i.e., O(n lg ‡) bits, it achieves o(n‡p) time when ‡p = Ê(lgn). This is of great
interest because the time complexity of o(n‡p) has not been achieved in the construction
for p-matching indexes even in the o�ine setting unless we resort to a fast construction
algorithm for parameterized su�x trees using O(n lgn) bits. In particular, the currently
best worst-case result for the direct construction of parameterized su�x arrays is O(n‡p)
time and O(n lgn) bits of working space [12]. Since our online-built data structure for T can
be used to compute the parameterized su�x array of T in O(n lg ‡p lgn

lg lgn
) time, we obtain a

new way to construct parameterized su�x arrays in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits of

working space.
We also show that our data structure can support backward search, a core procedure of

BWT-based indexes, at any stage of the online construction, making it the first compact
index for p-matching that can be constructed in compact space and even in an online manner.
This cannot likely be achieved with the previous work [19] due to the lack of support for 2D
range counting queries in the data structure it uses.
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Our computational assumptions are as follows:
We assume a standard Word-RAM model with word size �(lgn).
Each symbol in (�s fi �p) is represented by O(lgn) bits, namely, a symbol is from the
universe [0..nO(1)].
We can check membership for a given symbol (œ �s fi �p) in �s and �p in O(1) time,
e.g., by having some flag bits or thresholds separating both alphabet sets.
The order of two s-symbols can be determined in O(1) time based on their bit representa-
tions.

An index of a p-string T for p-matching is to support, given a pattern w,
1. the counting query that asks to compute the number of occurrences of substrings in T

that p-match with w and
2. the locating query that asks to compute the positions of these counted occurrences in T .
The number of occurrences returned for a locating query of w is the answer to the counting
query of w. Since these occurrences can be at arbitrary positions of T in general, the time
complexity for the locating query depends usually on the number of these occurrences. In
contrast, most indexes based on the BWT can answer counting queries in time independent
to this number, by levering the so-called backward search. By using backward search, our
time complexities for both queries resemble those of other BWT-based indexes, with some
additional logarithmic terms. In detail, our main result is as follows:

I Theorem 1. For a p-string T of length n over an alphabet (�s fi �p) of size n
O(1)

, an

index of T for p-matching can be constructed online in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits

of space, where ‡s and respectively ‡p are the numbers of distinct s-symbols and p-symbols

used in the p-string and ‡ = ‡s + ‡p. At any stage of the online construction, it can support

the counting queries in O(m lg ‡p lgn

lg lgn
) time, where m is the length of a given pattern for

queries. By building an additional data structure of O( n

� lgn) bits of space for a chosen

parameter � œ {1, 2, . . . , n} the locating queries can be supported in O(m lg ‡p lgn

lg lgn
+ occ� lgn

lg lgn
)

time, where occ is the number of occurrences to be reported.

We also obtain the following result for constructing the parameterized su�x array:

I Theorem 2. For a p-string T of length n over an alphabet (�s fi �p) of size n
O(1)

, the

parameterized su�x array of T can be constructed in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits of

space, where ‡s and respectively ‡p are the numbers of distinct s-symbols and p-symbols used

in the p-string and ‡ = ‡s + ‡p.

2 Preliminaries

2.1 Basic notations and tools
We denote with lg = log2 the logarithm with base two. An integer interval {i, i+ 1, . . . , j} is
denoted by [i..j], where [i..j] represents the empty interval if i > j.

Let � be an ordered finite alphabet. An element of �ú is called a string over �. The
length of a string w is denoted by |w|. The empty string Á is the string of length 0, that is,
|Á| = 0. Let �+ = �ú ≠ {Á} and �k = {x œ �ú | |x| = k} for any non-negative integer k. The
concatenation of two strings x and y is denoted by x · y or simply xy. When a string w is
represented by the concatenation of strings x, y and z (i.e., w = xyz), then x, y and z are
called a prefix, substring, and su�x of w, respectively. A substring x of w is called proper if
x ”= w.

ICALP 2024
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The i-th symbol of a string w is denoted by w[i] for 1 Æ i Æ |w|, and the substring
of a string w that begins at position i and ends at position j is denoted by w[i..j] for
1 Æ i Æ j Æ |w|, i.e., w[i..j] = w[i]w[i + 1] · · ·w[j]. For convenience, let w[i..j] = Á if
j < i; further let w[..i] = w[1..i] and w[i..] = w[i..|w|] denote abbreviations for the prefix
of length i and the su�x starting at position i, respectively. For two strings x and y, let
lcp(x, y) denote the length of the longest common prefix between x and y. We consider
the lexicographic order over �ú by extending the strict total order < defined on �: x is
lexicographically smaller than y (denoted as x < y) if and only if either x is a proper prefix
of y or x[lcp(x, y) + 1] < y[lcp(x, y) + 1] holds. In this paper, we will ignore the former case
since we mainly consider the lexicographic order between distinct strings that have a sentinel
(end-marker) at the end of the strings so that x cannot be a proper prefix of y.

For any string w, character c, and position i (1 Æ i Æ |w|), rankc(w, i) returns the
number of occurrences of c in w[..i] and selectc(w, i) returns the i-th occurrence of c in w.
For 1 Æ i Æ j Æ |w|, a range minimum query RmQw(i, j) asks for argminiÆkÆj{w[k]}. We
also consider find previous/next queries FPQp(w, i) and FNQp(w, i), where p is a predicate
either in the form of “c” (equal to c), “< c” (less than c) or “Ø c” (larger than or equal
to c): FPQp(w, i) returns the largest position j Æ i at which w[j] satisfies the predicate p.
Symmetrically, FNQp(w, i) returns the smallest position j Ø i at which w[j] satisfies the
predicate p. For example with the integer string w = [2, 5, 10, 6, 8, 3, 14, 5], FNQ5(w, 4) = 8,
FNQ6(w, 4) = 4, FPQ5(w, 4) = 2, FNQ<5(w, 4) = 6, FPQ<5(w, 4) = 1, FNQØ9(w, 4) = 7 and
FPQØ9(w, 4) = 3.

If the answer of selectc(w, i), FPQp(w, i) or FNQp(w, i) does not exist, it is just ignored.
To handle this case of non-existence, we would use them in an expression with min or max:
For example, max{1,FPQp(w, i)} returns 1 if FPQp(w, i) does not exist.

Dynamic strings should support insertion/deletion of a symbol to/from any position as
well as fast random access. We use the following result:

I Lemma 3 ([29]). A dynamic string of length n over an alphabet [0..U ] can be implemented

while supporting random access, insertion, deletion, rank and select queries in (n+ o(n)) lgU
bits of space and O( lgn

lg lgn
) query and update times.

Dynamic binary strings equipped with rank and select queries can be used as a building
block for the dynamic wavelet matrix [6] of a string over an alphabet [0..U ] to support
queries beyond rank and select. The idea is that each of the other queries can be simulated
by performing one of the building block queries on every level of the wavelet matrix, which
has ÁlgUË levels, cf. [32, Section 6.2.].

I Lemma 4. A dynamic string of length n over an alphabet [0..U ] with U = O(n) can be

implemented while supporting random access, insertion, deletion, rank, select, RmQ, FPQ
and FNQ queries in (n+ o(n))ÁlgUË bits of space and O( lgU lgn

lg lgn
) query and update times.

2.2 Parameterized strings
Let �s and �p denote two disjoint sets of symbols. We call a symbol in �s a static symbol

(s-symbol) and a symbol in �p a parameter symbol (p-symbol). A parameterized string

(p-string) is a string over (�s fi �p). Let $ be the smallest s-symbol, which will be used as an
end-marker of p-strings. Let Œ represent a symbol that is larger than any integer, and let
NŒ = N+ fi {Œ} be the set of positive integers N+ including infinity (Œ). Logically we
assume that NŒ fl �s = ÿ and (NŒ fi �s) is an ordered alphabet such that all s-symbols are
smaller than any element in NŒ. For practical implementations, we require that s-symbols
and integers can be distinguished in constant time (e.g., by shifting the ranges of the domains).
Also, the conceptual symbol Œ can be treated as the finite value ‡p + 1.
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For any p-string w the p-encoded string ÈwÍ of w, also proposed as prevŒ(w) in [24], is
the string in (NŒ fi �s)|w| such that

ÈwÍ[i] =

Y
__]

__[

w[i] if w[i] œ �s,

Œ if w[i] œ �p and w[i] does not appear in w[..i ≠ 1],
i ≠ j otherwise,

where j is the largest position in [1..i≠ 1] with w[i] = w[j]. To put in words, we transformed
each occurrence of a p-symbol into the distance to the previous occurrence of the same
p-symbol, or Œ if it is the leftmost occurrence. Two p-strings x and y p-match if and
only if ÈxÍ = ÈyÍ. On the one hand, the transformation from w to ÈwÍ is prefix-consistent,
i.e., ÈwÍ = ÈwcÍ[..|w|] for any symbol c œ (�s fi �p). On the other hand, ÈwÍ and ÈcwÍ[2..]
di�er if and only if c œ �p occurs in w. If it is the case, the leftmost occurrence h of
c in w is the unique position such that ÈwÍ and ÈcwÍ[2..] di�er with ÈwÍ[h] = Œ and
(ÈcwÍ[2..])[h] = ÈcwÍ[h+ 1] = h, i.e., h = selectc(w, 1) and h+ 1 = selectc(cw, 2).

For any p-string w, let |w|p denote the number of distinct p-symbols in w, i.e., |w|p =
rankŒ(ÈwÍ, |w|). We define a function fi that maps a non-empty p-string w œ (�s fi �p)+ to
an element in (�s fi [1..|w|p]) such that fi(w) is w[1] if w[1] is an s-symbol; otherwise fi(w)
is the number of distinct p-symbols in w[..h+ 1], where h+ 1 is either the position of the
second occurrence of w[1] in w or |w| if w[1] is unique in w. More formally,

fi(w) =
I
w[1] if w[1] œ �s,

|w[..h+ 1]|p otherwise,

where h+ 1 = min{|w|, selectw[1](w, 2)}. In the second case, fi(w) is considered to represent
the rank of p-symbol w[1] when p-symbols are sorted in increasing order of the leftmost
positions they appear in w[2..], considering the rank of p-symbols not in w[2..] to be |w|p. If
selectw[1](w, 2) exists, it holds that h = selectŒ(Èw[2..]Í,fi(w)). For convenience, we extend
the domain of fi to handle the empty string with fi(Á) = $.

For two p-strings x and y, lcpŒ(ÈxÍ, ÈyÍ) denotes the number of Œ’s in the longest
common prefix of ÈxÍ and ÈyÍ.

Our algorithm heavily relies on the properties of the p-string encoding and fi. For any
p-strings x and y, Table 1 shows a complete list of cases for lcp(ÈxÍ, ÈyÍ), lcpŒ(ÈxÍ, ÈyÍ) and
the lexicographic order between ÈxÍ and ÈyÍ. The correctness immediately follows from
the definition of the p-string encoding and fi (see Figure 1 for illustrations). It is worth
noting that Case (B3) is the only case in Cases (B1)-(B4) where we have ÈyÍ < ÈxÍ, i.e., the
lexicographic order is changed after extension.

By Table 1, we have the following corollaries:

I Corollary 5. For any p-strings x and y, lcpŒ(ÈxÍ, ÈyÍ) Æ lcpŒ(Èx[2..]Í, Èy[2..]Í) + 1.

I Corollary 6. For any p-strings x and y with fi(x) = fi(y), ÈxÍ < ÈyÍ if and only if

Èx[2..]Í < Èy[2..]Í.

I Corollary 7. For any p-strings x and y (whether Èx[2..]Í < Èy[2..]Í or Èx[2..]Í > Èy[2..]Í)
with fi(x) Æ lcpŒ(Èx[2..]Í, Èy[2..]Í) and fi(x) < fi(y), it holds that ÈxÍ < ÈyÍ. Note that fi(x)
and/or fi(y) can be s-symbols.

ICALP 2024
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Table 1 All cases for lcp(ÈxÍ, ÈyÍ), lcpŒ(ÈxÍ, ÈyÍ) and the lexicographic order between ÈxÍ
and ÈyÍ for p-strings x and y over (�s fi �p) with ⁄ = lcp(Èx[2..]Í, Èy[2..]Í) < min{|x|, |y|},
e = lcpŒ(Èx[2..]Í, Èy[2..]Í) and Èx[2..]Í < Èy[2..]Í. On the one hand, a case starting with letter A
assumes that at least one of fi(x) and fi(y) is in �s, while on the other hand, a case starting with
letter B assumes that none of fi(x) and fi(y) is in �s. We let h = selectx[1](x, 2) ≠ 1 in Case (B2)
and h

Õ = selecty[1](y, 2) ≠ 1 in Case (B3), both of which always exist because the conditions of Cases
(B2) and (B3) imply that fi(x) ”= Œ and fi(y) ”= Œ, respectively.

cases additional conditions lcp(ÈxÍ, ÈyÍ) lcpŒ(ÈxÍ, ÈyÍ) lexicographic order
(A1) fi(x) ”= fi(y) 0 0 ÈxÍ < ÈyÍ i� fi(x) < fi(y)
(A2) fi(x) = fi(y) ⁄ + 1 e ÈxÍ < ÈyÍ
(B1) fi(x) = fi(y) Æ e ⁄ + 1 e ÈxÍ < ÈyÍ
(B2) fi(x) Æ e and fi(x) < fi(y) h fi(x) ÈxÍ < ÈyÍ
(B3) fi(y) Æ e and fi(y) < fi(x) h

Õ
fi(y) ÈyÍ < ÈxÍ

(B4) e < min{fi(x),fi(y)} ⁄ + 1 e+ 1 ÈxÍ < ÈyÍ

Table 2 An example of R≠1
T

(i), LCPŒ
T , LT and FT for a p-string T = XYaZYXaZXZa$ with �s = {a}

and �p = {X, Y, Z}.

i T [i..] ÈT [i..]Í R≠1
T

(i) LCPŒ
T [i] LT [i] FT [i] ÈT [R≠1

T
(i)..]Í

1 XYaZYXaZXZa$ ŒŒaŒ35a432a$ 12 0 a $ $
2 YaZYXaZXZa$ ŒaŒ3Œa432a$ 11 0 1 a a$
3 aZYXaZXZa$ aŒŒŒa432a$ 7 0 2 a aŒŒ2a$
4 ZYXaZXZa$ ŒŒŒa432a$ 3 2 2 a aŒŒŒa432a$
5 YXaZXZa$ ŒŒaŒ32a$ 10 0 2 1 Œa$
6 XaZXZa$ ŒaŒ32a$ 6 1 3 2 ŒaŒ32a$
7 aZXZa$ aŒŒ2a$ 2 2 3 2 ŒaŒ3Œa432a$
8 ZXZa$ ŒŒ2a$ 9 1 2 2 ŒŒa$
9 XZa$ ŒŒa$ 5 2 3 3 ŒŒaŒ32a$
10 Za$ Œa$ 1 3 $ 3 ŒŒaŒ35a432a$
11 a$ a$ 8 2 a 2 ŒŒ2a$
12 $ $ 4 2 a 3 ŒŒŒa432a$

Let T be a p-string that has the smallest s-symbol $ as its end-marker, i.e., T [|T |] = $ and
$ does not appear anywhere else in T . The su�x rank function RT : [1..|T |] æ [1..|T |] for T
maps a position i (1 Æ i Æ |T |) to the lexicographic rank of ÈT [i..]Í in {ÈT [j..]Í | 1 Æ j Æ |T |}.
Its inverse function R≠1

T
(i) returns the starting position of the lexicographically i-th p-encoded

su�x of T . 1

The parameterized Burrows-Wheeler Transform (pBWT) of T is the string LT of length
|T | over (�s fi [1..|T |p]) such that LT [i] = fi(T [R≠1

T
(i)≠1..])), where we assume that T [0..] = $.

Another string FT of length |T | is defined as FT [i] = fi(T [R≠1
T

(i)..]). 2 Since {T [R≠1
T

(i)..] |
1 Æ i Æ |T |} = {T [R≠1

T
(i)≠1..] | 1 Æ i Æ |T |} is equivalent to the set of all non-empty su�xes

of T , FT is a permutation of LT .

1 R≠1
T

and RT are essentially equivalent to parameterized su�x arrays and inverse parameterized su�x
arrays, respectively.

2 Previous studies [16, 24, 19] define pBWTs based on sorted cyclic rotations, but our su�x-based
definition is more suitable for online construction to prevent unnecessary updates on FT and LT .
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Figure 1 Illustrations for the cases of Table 1. The two bold diagonal arrows on the top separate
the cases starting with letter A (left side) from the others, starting with B (right side). Each
horizontal right-facing arrow represents the longest common prefix of two p-encoded strings, and the
lexicographic order between them is determined by the following p-encoded symbols. Particularly,
we let a = Èx[2..]Í[⁄ + 1] and b = Èy[2..]Í[⁄ + 1], where ⁄ = lcp(Èx[2..]Í, Èy[2..]Í). Since a < b, it holds
that a Æ ⁄ while b Æ ⁄ or b = Œ. For Case (B1), h = selectx[1](x, 2) ≠ 1 = selecty[1](y, 2) ≠ 1. For
Case (B2)-(B4) and (B4)’, h = selectx[1](x, 2) ≠ 1 and h

Õ = selecty[1](y, 2) ≠ 1, some of which are not
necessarily defined (when fi(x) or fi(y) is Œ) but assumed to be present in illustrations. Case (B4)’
illustrates the case with b = Œ and h

Õ = ⁄ + 1, which is included in Case (B4).

The so-called LF-mapping LFT maps a position i to RT (R≠1
T

(i) ≠ 1) if R≠1
T

(i) > 1, and
otherwise RT (|T |) = 1. By definition and Corollary 6, we have:

I Corollary 8. For any p-string T and any integers i, j with 1 Æ i < j Æ |T |, LFT (i) < LFT (j)
if LT [i] = LT [j].

Thanks to Corollary 8, it holds that LFT (i) = selectc(FT , rankc(LT , i)), where c = LT [i]. The
inverse function FLT of LFT can be computed by FLT (i) = selectc(LT , rankc(FT , i)), where
c = FT [i].

Let LCPŒ
T

be the string of length |T | such that LCPŒ
T
[1] = 0 and LCPŒ

T
[i] =

lcpŒ(ÈT [R≠1
T

(i ≠ 1)..]Í, ÈT [R≠1
T

(i)..]Í) for every 1 < i Æ |T |. An example of all explained
arrays is given in Table 2.
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3 Online construction algorithm

To construct our index for p-matching online, we maintain FT , LT , and LCPŒ
T

with dynamic
data structures while prepending a symbol to the current p-string T . The details of the
data structures will be presented in Subsection 3.3. In what follows, we focus on a single
step of updating T to T̂ = cT for some symbol c in �s fi �p. Note that FT , LT and LCPŒ

T

are strongly related to the sorted p-encoded su�xes of a p-string and T̂ = cT is the only
su�x that was not in the su�xes of T . Let k = RT (1) and k̂ = R

T̂
(1). In order to deal

with the new emerging su�x T̂ , we compute the lexicographic rank k̂ of ÈT̂ Í among the
non-empty p-encoded su�xes of T̂ . Then F

T̂
and L

T̂
can be obtained by replacing $ in LT at

k by fi(T̂ ) and inserting $ and fi(T̂ ) into the k̂-th position of LT and FT , respectively. In
Subsection 3.1, we propose our algorithm to compute k̂. For updating LCPŒ, we have to
compute the lcpŒ-values for ÈT̂ Í with its lexicographically adjacent p-encoded su�xes, which
will be treated in Subsection 3.2.

3.1 How to compute k̂

Unlike previous work [19] that computes k̂ by counting the number of p-encoded su�xes
that are lexicographically smaller than ÈT̂ Í, we get k̂ indirectly by computing the rank of a
lexicographically closest (smaller or larger) p-encoded su�x to ÈT̂ Í. The lexicographically
smaller (resp. larger) closest element in {ÈT [i..]Í | 1 Æ i Æ |T |} to ÈT̂ Í is called the p-pred

(resp. p-succ) of ÈT̂ Í. If the lexicographic rank of the p-pred (resp. p-succ) of ÈT̂ Í is k≠ (resp.
k+), then it holds that k̂ = k+ = k≠ + 1.

We start with the easy case that the prepended symbol c is an s-symbol.

I Lemma 9. Let T̂ = cT be a p-string with c œ �s. If p := FPQc(LT , k) exists, the rank

k≠ of the p-pred of T̂ is LFT (p). Otherwise, k≠ = selectb(FT , rankb(FT , |T |)), where b is the

largest s-symbol that appears in T and is smaller than c.

Proof. By Case (A2) of Table 1, the lexicographic order of p-encoded su�xes starting
with c does not change by removing their first characters, which are all c. If p exists,
ÈT [R≠1

T
(p)..]Í is the lexicographically smaller closest p-encoded su�x to ÈT Í that is preceded

by c. Hence, ÈT [R≠1
T

(LFT (p))..]Í = Èc(T [R≠1
T

(p)..])Í is the p-pred of ÈcT Í = ÈT̂ Í, which means
that k≠ = LFT (p).

If p does not exist, it implies that ÈT̂ Í is the lexicographically smallest p-encoded su�x
that starts with c. Since ÈT̂ Í lexicographically comes right after the p-encoded su�xes
starting with an s-symbol smaller than c, k≠ is the last occurrence of b in FT , that is,
k≠ = selectb(FT , rankb(FT , |T |)). J

In the rest of this subsection, we consider the case that c is a p-symbol. If T contains
no p-symbol, it is clear that k≠ = |T |. Hence, in what follows, we assume that there is a
p-symbol in T .

Since ÈT̂ Í has the longest lcp-value with its p-pred or p-succ among all the su�xes of
T , we search for such p-encoded su�xes of T using the following lemmas to leverage the
information stored in LCPŒ

T
.

I Lemma 10. Given two positions i and j with 1 Æ i < j Æ |T |,

lcpŒ(ÈT [R≠1
T

(i)..]Í, ÈT [R≠1
T

(j)..]Í) = RmQLCPŒ
T
(i+ 1, j).
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Algorithm 1 Algorithm to compute the maximal interval [l..r] such that
lcpŒ(ÈT [R≠1

T
(i)..]Í, ÈT [R≠1

T
(j)..]Í) Ø e for any j œ [l..r]. It returns [i..i] if e > |T [R≠1

T
(i)..]|p.

1 Function GetMI(i, e):
2 l Ω max{1,FPQ<e(LCPŒ

T
, i)};

3 r Ω min{|T |,FNQ<e(LCPŒ
T
, i+ 1) ≠ 1};

4 return [l..r];

Proof. By Lemma 1 of [22], lcp(x, z) = min{lcp(x, y), lcp(y, z)} for any strings x < y < z,
and thus, lcpŒ(x, z) = min{lcpŒ(x, y), lcpŒ(y, z)}. Since LCPŒ

T
holds the lcpŒ-values

of lexicographically adjacent p-encoded su�xes, we get lcpŒ(ÈT [R≠1
T

(i)..]Í, ÈT [R≠1
T

(j)..]Í) =
min{LCPŒ

T
[g]}j

g=i+1 = RmQLCPŒ
T
(i+1, j) by applying the previous argument successively. J

I Lemma 11. For given i, e œ [1..n], if e Æ |T [R≠1
T

(i)..]|p, then Algorithm 1 computes the

maximal interval [l..r] such that lcpŒ(ÈT [R≠1
T

(i)..]Í, ÈT [R≠1
T

(j)..]Í) Ø e for any j œ [l..r]. If

e > |T [R≠1
T

(i)..]|p, then Algorithm 1 returns [i..i].

I Lemma 12. Algorithm 2 correctly returns k̂.

Proof.
Outline. Let hi = selectŒ(ÈT Í, i) for any 1 Æ i Æ min{|T |p,fi(T̂ )}, and hi = |T | + 1 for
any i > min{|T |p,fi(T̂ )}. Also let ⁄ = max{lcp(ÈT̂ Í, ÈT [i..]Í) | 1 Æ i Æ |T |}. Although
Algorithm 2 does not intend to compute the exact value of ⁄, it checks if ⁄ falls in [he..he+1]
in decreasing order of e starting from min{fi(T̂ ),max{LCPŒ

T
[k], LCPŒ

T
[k + 1]}}. One of the

necessary conditions to have lcp(ÈT̂ Í, ÈT [i..]Í) > he is that lcp(ÈT Í, ÈT [i + 1..]Í) Ø he, or
equivalently lcpŒ(ÈT Í, ÈT [i + 1..]Í) Ø e. Line 2 computes the maximal interval [l..r] that
represents the ranks of the p-encoded su�xes having an lcpŒ-value larger than or equal to e.
The basic idea is to find a p-encoded su�x in {ÈT [R≠1

T
(p)..]Í}r

p=l
that comes closest to ÈT̂ Í

when extended by adding its preceding symbol. Here let us call ÈT [R≠1
T

(p)≠1..]Í the extended
su�x of ÈT [R≠1

T
(p)..]Í. When Algorithm 2 decreases e to the value with ⁄ œ [he + 1..he+1], k̂

is returned in one of the if-then-blocks at Lines 4, 5, 8 and 13.
If lcp(ÈT̂ Í, ÈT [i..]Í) = hê for an integer ê, there are two possible scenarios (see Figure 2

for an illustration):
(H1) lcpŒ(ÈT Í, ÈT [i+ 1..]Í) Ø ê and either fi(T̂ ) > fi(T [i..]) = ê or fi(T [i..]) > fi(T̂ ) = ê, and
(H2) lcp(ÈT Í, ÈT [i+ 1..]Í) = hê ≠ 1 and both fi(T̂ ) and fi(T [i..]) are at least ê.
Case (H1) is processed in one of the if-then-blocks at Lines 6 and 18 when e = ê. while Case
(H2) at Lines 4, 5, 8 and 13 when e = ê≠ 1. Note that p-encoded su�x of Case (H1) is never
farther from ÈT̂ Í than that of Case (H2) because the lexicographic order between ÈT̂ Í and
ÈT [i..]Í is determined by Œ and hê at hê + 1 in Case (H1), while it is by Œ and something
smaller than hê in Case (H2). Since Algorithm 2 processes Case (H1) first, it guarantees
that the algorithm finds the closer one first.

In what follows, we delve into the details of each code block.
If-then-block at Line 3. The case with e = fi(T̂ ) is treated di�erently than other cases in
the if-then-block at Line 3 since h

fi(T̂ ) is the unique position where ÈT Í[h
fi(T̂ )] = Œ turns into

ÈT̂ Í[h
fi(T̂ ) + 1] = h

fi(T̂ ). For a p-encoded su�x ÈT [R≠1
T

(qÕ)..]Í œ {ÈT [R≠1
T

(p)..]Í}r
p=l

, having
LT [qÕ] = fi(T̂ ) is necessary and su�cient for its extended su�x ÈT [R≠1

T
(qÕ)≠1..]Í to have an lcp-

value larger than h
fi(T̂ ) with ÈT̂ Í. By Corollary 6, p-encoded su�xes satisfying this condition

must preserve their lexicographic order after extension, and hence, it is enough to search for
the closest one (q Ω FPQe(LT , k) or q Ω FNQe(LT , k)) to ÈT Í and compute the rank of its
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extended su�x by LFT (q). If Lines 4 and 5 do not return a value, we know that ⁄ Æ h
fi(T̂ ). The

if-block at Line 6 checks if there exists a p-encoded su�x ÈT [i+1..]Í that satisfies the condition
of Case (H1) to be lcp(ÈT̂ Í, ÈT [i..]Í) = h

fi(T̂ ). It is enough to find one ÈT [R≠1
T

(q)..]Í with
LT [q] > fi(T̂ ) because it is necessary and su�cient to have lcp(ÈT̂ Í, ÈT [R≠1

T
(q)≠ 1..]Í) = h

fi(T̂ )

and ÈT̂ Í[h
fi(T̂ ) + 1] = Œ ”= h

fi(T̂ ) = ÈT [R≠1
T

(q) ≠ 1..]Í[h
fi(T̂ ) + 1]. Note that there could be

two or more p-encoded su�xes that satisfy the condition and their lexicographic order may
change by extension. In the then-block at Line 6, the algorithm computes the rank of the
lexicographically smallest p-encoded su�x that has an lcpŒ-value larger than fi(T̂ ) with
ÈT [R≠1

T
(q) ≠ 1..]Í = ÈT [R≠1

T
(LFT (q))..]Í, which is the p-succ of ÈT̂ Í in this case.

Precondition to enter Line 7. The case with e ”= fi(T̂ ) is processed in the else-block at Line 7.
Here, it is good to keep in mind that when we enter this else-block, lcpŒ(ÈT Í, ÈT [i..]Í) Æ e or
fi(T [i ≠ 1..]) Æ e holds for any proper su�x T [i..] of T , since otherwise k̂ must be reported
in a previous round of the foreach loop.
If-then-block at Line 8. When the if-condition at Line 8 holds, ÈT [R≠1

T
(q)..]Í is the lexico-

graphically smaller closest p-encoded su�x to ÈT Í such that lcpŒ(ÈT̂ Í, ÈT [R≠1
T

(q) ≠ 1..]Í) Ø
e + 1, or equivalently lcp(ÈT̂ Í, ÈT [R≠1

T
(q) ≠ 1..]Í) > he. Note that ÈT [R≠1

T
(q) ≠ 1..]Í < ÈT̂ Í

must hold, since otherwise, T [R≠1
T

(q) ≠ 1..] and ÈT̂ Í would fall into Case (B3) with
lcpŒ(ÈT [R≠1

T
(q) ≠ 1..]Í, ÈT̂ Í) = fi(T̂ ), and k̂ should be reported at Line 6 in a previous

round. For any p-encoded su�x in {ÈT [R≠1
T

(p)..]Í}k≠1
p=q+1 its extended su�x is lexicograph-

ically smaller than ÈT [R≠1
T

(q) ≠ 1..]Í due to Corollary 7, and never closer to ÈT̂ Í than
ÈT [R≠1

T
(q) ≠ 1..]Í. If |T [R≠1

T
(q)..]|p Ø e + 1, the interval [lÕ..rÕ] computed at Line 9 is the

maximal interval such that every p-encoded su�x in {ÈT [R≠1
T

(p)..]Í}rÕ

p=lÕ shares the common
prefix of length h

Õ := selectŒ(ÈT [R≠1
T

(q)..]Í, e + 1) with ÈT [R≠1
T

(q)..]Í. In the case with
|T [R≠1

T
(q)..]|p = e, GetMI(q, e+ 1) returns [q..q] and let us define h

Õ to be |T [R≠1
T

(q)..]|.
Since any ÈT [i..]Í œ {ÈT [R≠1

T
(p)..]Í}l

Õ≠1
p=1 has an lcp-value smaller than h

Õ with ÈT [R≠1
T

(q)..]Í,
it follows from Table 1 that ÈT [i ≠ 1..]Í < ÈT [R≠1

T
(q) ≠ 1..]Í. Also, for any ÈT [i..]Í œ

{ÈT [R≠1
T

(p)..]Í}|T |
p=k+1, the aforementioned precondition to enter the else-block at Line 7

implies that ÈT [R≠1
T

(q) ≠ 1..]Í < ÈT [i ≠ 1..]Í < ÈT̂ Í cannot happen: If lcpŒ(ÈT Í, ÈT [i..]Í) < e

or fi(T [i ≠ 1..]) Æ e, then lcp(ÈT̂ Í, ÈT [i ≠ 1..]Í) Æ he < lcp(ÈT̂ Í, ÈT [R≠1
T

(q) ≠ 1..]Í) leads to the
conclusion. For the remaining case with lcpŒ(ÈT Í, ÈT [i..]Í) = e and fi(T [i≠ 1..]) > e, it holds
that ÈT̂ Í < ÈT [i ≠ 1..]Í due to Case (B4) of Table 1.

In the previous paragraph we have confirmed that the lcp-value between ÈT̂ Í and its p-pred
is at most hÕ, which implies that the p-pred is the largest p-encoded su�x that is prefixed
by x := ÈT [R≠1

T
(q) ≠ 1..]Í[..hÕ]. If qÕ Ω FPQØe+2(LT , rÕ) computed at Line 10 is in [lÕ..rÕ],

ÈT [R≠1
T

(qÕ)≠1..]Í = ÈT [LFT (qÕ)..]Í is prefixed by x ·Œ and the p-pred is the largest p-encoded
su�x that is prefixed by x ·Œ, which can be computed by max GetMI(LFT (qÕ), e+2) because
ÈT [R≠1

T
(qÕ) ≠ 1..]Í[..hÕ + 1] = ÈT [R≠1

T
(LFT (qÕ)..]Í[..hÕ + 1] = x · Œ contains exactly e+ 2 Œ’s.

If qÕ
/œ [lÕ..rÕ], the p-pred is the largest p-encoded su�x that is prefixed by x · hÕ (or x · $ for

the case with |T [R≠1
T

(q)..]|p = e), which is ÈT [R≠1
T

(LFT (q))..]Í.
If-then-block at Line 13. When the if-condition at Line 13 holds, ÈT [R≠1

T
(q)..]Í is the

lexicographically larger closest p-encoded su�x to ÈT Í such that lcpŒ(ÈT̂ Í, ÈT [R≠1
T

(q)≠1..]Í) Ø
e + 1, or equivalently lcp(ÈT̂ Í, ÈT [R≠1

T
(q) ≠ 1..]Í) > he. Note that ÈT̂ Í < ÈT [R≠1

T
(q) ≠

1..]Í must hold, since otherwise, ÈT̂ Í and T [R≠1
T

(q) ≠ 1..] would fall into Case (B3) with
lcp(ÈT̂ Í, ÈT [R≠1

T
(q) ≠ 1..]Í) = hê for some ê > e, and k̂ should be reported at Line 18 of

a previous round. For any p-encoded su�x in {ÈT [R≠1
T

(p)..]Í}q≠1
p=k+1 its extended su�x is

lexicographically smaller than ÈT̂ Í due to Corollary 7, and never come lexicographically
between ÈT̂ Í and ÈT [R≠1

T
(q) ≠ 1..]Í. If |T [R≠1

T
(q)..]|p Ø e+ 1, the interval [lÕ..rÕ] computed
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Figure 2 Illustration for Cases (H1) and (H2) in which lcp(ÈT̂ Í, ÈT [i..]Í) = hê for an integer
ê. The left part shows one of the situations for Case (H1) where lcpŒ(ÈT Í, ÈT [i + 1..]Í) Ø ê

and fi(T̂ ) > fi(T [i..]) = ê. The right part shows one of the situations for Case (H2) where
lcp(ÈT Í, ÈT [i+ 1..]Í) = hê ≠ 1, fi(T̂ ) > hê and fi(T [i..]) > hê.

at Line 14 is the maximal interval such that every p-encoded su�x in {ÈT [R≠1
T

(p)..]Í}rÕ

p=lÕ

shares the common prefix of length h
Õ := selectŒ(ÈT [R≠1

T
(q)..]Í, e+ 1) with ÈT [R≠1

T
(q)..]Í. In

the case with |T [R≠1
T

(q)..]|p = e, GetMI(q, e+ 1) returns [q..q] and let us define h
Õ to be

|T [R≠1
T

(q)..]|.
For any ÈT [i..]Í œ {ÈT [R≠1

T
(p)..]Í}k≠1

p=1 , the aforementioned precondition to enter the
else-block at Line 7 implies that ÈT [i ≠ 1..]Í < ÈT̂ Í because Case (B3) of Table 1 cannot
hold under the condition of lcpŒ(ÈT Í, ÈT [i..]Í) Æ e or fi(T [i ≠ 1..]) Æ e. For any ÈT [i..]Í œ
{ÈT [R≠1

T
(p)..]Í}|T |

p=rÕ+1, we show that ÈT̂ Í < ÈT [i ≠ 1..]Í < ÈT [R≠1
T

(q) ≠ 1..]Í cannot happen:
Note that lcpŒ(ÈT [R≠1

T
(q)..]Í, ÈT [i..]Í) Æ e by definition, and lcpŒ(ÈT [R≠1

T
(q)..]Í, ÈT [i..]Í) < e

implies lcpŒ(ÈT Í, ÈT [i..]Í) = lcpŒ(ÈT [R≠1
T

(q)..]Í, ÈT [i..]Í). If lcpŒ(ÈT [i..]Í, ÈT [R≠1
T

(q)..]Í) < e

or fi(T [i ≠ 1..]) Æ e, lcp(ÈT̂ Í, ÈT [i ≠ 1..]Í) Æ he < lcp(ÈT̂ Í, ÈT [R≠1
T

(q) ≠ 1..]Í) leads to the
conclusion. For the remaining case with lcpŒ(ÈT [i..]Í, ÈT [R≠1

T
(q)..]Í) = e and fi(T [i≠1..]) > e,

it holds that ÈT [R≠1
T

(q) ≠ 1..]Í < ÈT [i ≠ 1..]Í due to Case (B4) of Table 1.
In the previous paragraph we have confirmed that the lcp-value between ÈT̂ Í and its p-succ

is at most hÕ, which implies that the p-succ is the smallest p-encoded su�x that is prefixed
by x := ÈT [R≠1

T
(q) ≠ 1..]Í[..hÕ]. If qÕ Ω FNQe+1(LT , lÕ) computed at Line 15 is in [lÕ..rÕ], the

p-succ is the smallest p-encoded su�x that is prefixed by x · hÕ (or x · $ for the case with
|T [R≠1

T
(q)..]|p = e), which is ÈT [R≠1

T
(LFT (qÕ))..]Í. If qÕ

/œ [lÕ..rÕ], the p-succ is the smallest
p-encoded su�x that is prefixed by x ·Œ, which can be computed by min GetMI(LFT (q), e+2)
because ÈT [R≠1

T
(q) ≠ 1..]Í[..hÕ + 1] = ÈT [R≠1

T
(LFT (q))..]Í[..hÕ + 1] = x · Œ contains exactly

e+ 2 Œ’s.

If-then-block at Line 18. When we enter the if-then-block at Line 18, it is guaranteed
that ⁄ Æ he. In order to check if there exists a p-encoded su�x ÈT [i+ 1..]Í that satisfies the
condition of Case (H1) to be lcp(ÈT̂ Í, ÈT [i..]Í) = he, the algorithm computes q Ω FPQe(LT , r).
If q œ [l..r], ÈT [R≠1

T
(q)..]Í is the lexicographically largest p-encoded su�x that satisfies the

condition, and by Corollary 6, its extended su�x ÈT [R≠1
T

(q) ≠ 1..]Í must be the largest one
to have lcp(ÈT̂ Í, ÈT [R≠1

T
(q) ≠ 1..]Í) = he. Therefore, ÈT [R≠1

T
(q) ≠ 1..]Í is the p-pred of ÈT̂ Í,

and k̂ = 1 + LFT (q). J
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Algorithm 2 Algorithm to compute k̂.

1 foreach e Ω min{fi(T̂ ),max{LCPŒ
T
[k], LCPŒ

T
[k + 1]}} down to 1 do

2 [l..r] Ω GetMI(k, e);
3 if e = fi(T̂ ) then
4 if (q Ω FPQe(LT , k)) œ [l..r] then return 1 + LFT (q) ;
5 if (q Ω FNQe(LT , k)) œ [l..r] then return LFT (q) ;
6 if (q Ω FNQØe+1(LT , l)) œ [l..r] then return min GetMI(LFT (q), e+ 1) ;
7 else
8 if (q Ω FPQØe+1(LT , k)) œ [l..r] then
9 [lÕ..rÕ] Ω GetMI(q, e+ 1);

10 q
Õ Ω FPQØe+2(LT , rÕ);

11 if q
Õ œ [lÕ..rÕ] then return 1 + max GetMI(LFT (qÕ), e+ 2) ;

12 else return 1 + LFT (q) ;
13 if (q Ω FNQØe+1(LT , k)) œ [l..r] then
14 [lÕ..rÕ] Ω GetMI(q, e+ 1);
15 q

Õ Ω FNQe+1(LT , lÕ);
16 if q

Õ œ [lÕ..rÕ] then return LFT (qÕ) ;
17 else return min GetMI(LFT (q), e+ 2) ;
18 if (q Ω FPQe(LT , r)) œ [l..r] then return 1 + LFT (q) ;

3.2 How to maintain LCPŒ
T

Suppose that we have k = RT (1), k̂ = R
T̂
(1), LT , FT . We show how to compute the

lcpŒ-values of ÈT̂ Í with its p-pred ÈT [R≠1
T

(k̂) ≠ 1..]Í and p-succ ÈT [R≠1
T

(k̂)..]Í to maintain
LCPŒ

T
.

We focus on lcpŒ(ÈT̂ Í, ÈT [R≠1
T

(k̂)..]Í) because the other one can be treated similarly.
We apply Table 1 by setting x = T̂ and y = T [R≠1

T
(k̂)..] if k < FLT (k̂) (otherwise we

swap their roles for x and y). In order to get lcpŒ(ÈxÍ, ÈyÍ), all we need are fi(x) = fi(T̂ ),
fi(y) = F[k̂] and e = lcpŒ(Èx[2..]Í, Èy[2..]Í). For the computation of e we use Lemma 10, i.e.,
e = lcpŒ(Èx[2..]Í, Èy[2..]Í) = RmQLCPŒ

T
(k + 1,FLT (k̂)).

3.3 Dynamic data structures and analysis
Let ‡s and respectively ‡p := |T |p be the numbers of distinct s-symbols and p-symbols that
appear in T and ‡ = ‡s + ‡p. We consider constructing FT , LT and LCPŒ

T
online for a

p-string T of length n over an alphabet (�sfi�p) of size nO(1). To this end, we introduce data
structures for implementing our algorithm, which we presented in the previous subsections.

To obtain our claimed space bounds of O(n lg ‡) bits, we maintain a naming function
that maps the set of distinct s-symbols indexed in the pBWT from �s to the range of ranks
[1..‡s]. By doing so, we can represent and store each s-symbol in the pBWT by its rank.
Thus, each s-symbol in FT and LT consumes O(lg ‡s) bits instead of O(lgn) bits.

In the following we present two alternative implementations for the naming function. The
first one imposes a new order on the s-symbols such that the computed FT and LT arrays
may arrange s-symbols di�erently than the standard pBWT built on the plain s-symbols.
The second one keeps the order of the s-symbols, but needs an additional scan of the input
text T to determine the order prior to the computation of the pBWT.
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1. Our first approach updates the naming function in the same online fashion as computing
the pBWT. To this end, we represent the naming function by a dynamic associative
array using O(‡s lgn) = O(n lg ‡s) bits of space and taking O( lg ‡s

lg lg ‡s
) operation time

like [21]. Setting initially ‡s = 0, we update ‡s and the naming function whenever we
read a new s-symbol. In detail, when we read a new s-symbol with integer representation
x with a yet-undefined rank (meaning it is not yet stored in the associative array), we
increment ‡s by one, and insert the integer key x associated with the value ‡s into the
associative array. The assignment of the ranks is done in a first come first served order,
meaning that the order of two s-symbols is determined by whose rightmost occurrence in
the text has the larger text position (since we build the pBWT online reading symbols
from the right end). Changing the alphabet order neither invalidates the LF-mapping
nor the backward search.3 However, there is a subtle caveat in that this approach needs
to know ‡s in advance (or at least a close upper bound ‡

Õ
s
with ‡

Õ
s
= c‡ for a constant

c Ø 1). Otherwise, we need to spend some extra time on reconstructing all dynamic
data structures working with s-symbols. That is because, for steady increases of ‡s,
there is point where we no longer can represent a s-symbol rank in just Álg ‡sË bits, but
need 1 + Álg ‡sË bits instead. Instead of rebuilding all data structures storing s-symbol
ranks on every increase of Álg ‡sË, we initially accommodate each s-symbol with 2Álg ‡sË
bits, and double this space whenever necessary.4 By doing so, the number of bits per
s-symbol increases from constant to �(lg ‡s) exponentially, and thus the number of total
rebuilding steps is bounded by O(lg lg ‡s), where ‡s denotes the final number of distinct
s-symbols indexed by the pBWT. Thus the final construction time stated in Theorem 1
becomes O(n (lg ‡p+lg lg ‡s) lgn

lg lgn
), based on the fact that querying or updating the dynamic

data structures representing FT and LT needs O( lgn

lg lgn
) time per entry, as we will later

see in Lemma 13.
For computing b in Lemma 9 for a given s-symbol c, we process as follows. Given c has
been assigned the rank r, then b = r ≠ 1. Otherwise, c has not been ranked, and thus
b = ‡s since c will receive a rank larger than all other s-symbols indexed in the pBWT.

2. However, if this imposed order is not desirable in some setting, it is possible to assign
ranks reflecting the initial order of �s. For that, we note that the aforementioned
implementation [21] also supports a sorted traversal of the keys. Thus, it is su�cient to
(a) build this associative array while scanning the entire text T , (b) reassign each key a
new rank determined by a sorted traversal of the associative array, and finally (c) start
the pBWT computation. This, of course, needs to read T twice instead of once.
Unfortunately, since we keep the initial alphabet order of the s-symbols, determining b

in Lemma 9 becomes nontrivial. For computing the value of b, we maintain the set of
s-symbols used in the currently computed pBWT by a dynamic fusion tree [34] taking
O(‡s lgn) = O(n lg ‡s) bits. The fusion tree allows us then to compute b in O( lg ‡s

lg lg ‡s
)

time.
Next, we maintain FT by a dynamic string of Lemma 3 supporting random access,

insertion, rank and select queries in O( lgn

lg lgn
) time and O(n lg ‡) bits of space. For LCPŒ

T
we

maintain a dynamic string of Lemma 4 to support random access, insertion, RmQ, FPQ and
FNQ queries in O( lg ‡p lgn

lg lgn
) time and O(n lg ‡p) bits of space.

3 Changing the alphabet order for optimizing the compressibility of the BWT is actually an actively
researched topic [5].

4 While this seems like a standard trick for amortizing the costs of dynamic arrays, the amortization
argument does not hold here in general because the cost parameter ‡s and the array length n can be
independent. For instance, imagine that we first read n/2 times the same s-symbol from the input, and
then start to read only distinct s-symbols.
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If we build a dynamic string of Lemma 4 for LT , the query time would be O( lg ‡ lgn

lg lgn
).

Since our algorithm does not use RmQ, FPQ and FNQ queries for s-symbols, we can reduce
the query time to O( lg ‡p lgn

lg lgn
) as follows. We represent LT with one level of a wavelet tree,

where a bit vector partitions the alphabet into �s and [1..|T |p] and thus has pointers to XT

and YT storing respectively the sequence over �s and that over [1..|T |p] of LT . We represent
the former and the latter by the data structures described in Lemmas 3 and 4, respectively,
since we only need the aforementioned queries such as RmQ on YT . Then, queries on LT can
be answered in O( lg ‡p lgn

lg lgn
) time using O(n lg ‡) bits of space.

In addition to these dynamic strings for FT , LT and LCPŒ
T
, we consider maintaining

another dynamic string ZT , a string that is obtained by extracting the leftmost occurrence
of every p-symbol in T . Note that |ZT | = ‡p Æ n. A dynamic string ZT of Lemma 3 enables
us to compute fi(cT ) for a p-symbol c by fi(cT ) = min{Œ, selectc(ZT , 1)} in O( lg ‡p

lg lg ‡p
) time

and O(‡p lg ‡p) bits of space.
We are now ready to prove the following lemma.

I Lemma 13. FT , LT and LCPŒ
T

for a p-string of length n over an alphabet (�s fi �p) of size
n
O(1)

can be constructed online in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits of space, where ‡s

and respectively ‡p are the numbers of distinct s-symbols and p-symbols used in the p-string

and ‡ = ‡s + ‡p.

Proof. We maintain the dynamic data structures of O(n lg ‡) bits described in this subsection
while prepending a symbol to the current p-string. For a single step of updating T to T̂ = cT

with c œ (�s fi �p), we compute k̂ = R
T̂
(1) as described in Subsection 3.1 and obtain F

T̂

and L
T̂
by replacing $ in LT at k = RT (1) by fi(T̂ ) and inserting $ and fi(T̂ ) into the k̂-th

position of LT and FT , respectively. LCPŒ
T

is updated as described in Subsection 3.2.
If c œ �s, the computation of k̂ based on Lemma 9 requires a constant number of

queries. If c œ �p, Algorithm 2 computes k̂ invoking O(2 + e ≠ ê) queries, where e =
max{LCPŒ

T
[k], LCPŒ

T
[k+1]} and ê = max{LCPŒ

T̂
[k̂], LCPŒ

T̂
[k̂+1]}. The value e can be seen

as a potential held by the current string T , which upper bounds the number of queries. The
number of queries in a single step can be O(‡p) in the worst case when e and ê are close to ‡p

and respectively 0, but this will reduce the potential for later steps, which allows us to give
an amortized analysis. Since a single step increases the potential at most 1 by Corollary 5,
the total number of queries can be bounded by O(n).

Since we invoke O(n) queries that take O( lg ‡p lgn

lg lgn
) time each, the overall time complexity

is O(n lg ‡p lgn

lg lgn
). J

4 Extendable compact index for p-matching

In this section, we show that LT , FT and LCPŒ
T

can serve as an index for p-matching.
First we show that we can support backward search, a core procedure of BWT-based

indexes, with the data structures for LT , FT and LCPŒ
T

described in Subsection 3.3. For any
p-string w, let w-interval be the maximal interval [l..r] such that ÈT [R≠1

T
(p)..]Í is prefixed

by ÈwÍ for any p œ [l..r]. We show the next lemma for a single step of the backward search,
which computes cw-interval from w-interval.

I Lemma 14. Suppose that we have data structures for LT , FT and LCPŒ
T

described in

Subsection 3.3. Given w-interval [l..r] and c œ (�s fi �p), we can compute cw-interval [lÕ..rÕ]
in O( lg ‡p lgn

lg lgn
) time.

Proof. We show that we can compute cw-interval from w-interval using a constant number
of queries supported on LT , FT and ÈT̂ Í, which takes O( lg ‡p lgn

lg lgn
) time each.
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When c is in �s: A p-encoded su�x ÈT [R≠1
T

(p)≠ 1..]Í = ÈT [R≠1
T

(LFT (p))..]Í is prefixed by
ÈcwÍ if and only if ÈT [R≠1

T
(p)..]Í is prefixed by ÈwÍ and LT [p] = c. In other words, LFT (p) œ

[lÕ..rÕ] if and only if p œ [l..r] and LT [p] = c. Then it holds that l
Õ = LFT (FNQc(LT , l))

and r
Õ = LFT (FPQc(LT , r)) due to Corollary 6.

When c is a p-symbol that appears in w: Similar to the previous case, LFT (p) œ [lÕ..rÕ] if
and only if p œ [l..r] and LT [p] = fi(cw). Then it holds that l

Õ = LFT (FNQfi(cw)(LT , l))
and r

Õ = LFT (FPQfi(cw)(LT , r)) due to Corollary 6.
When c is a p-symbol that does not appear in w: Let e = |w|p. Since p œ [l..r] and
LT [p] > e are necessary and su�cient conditions for LFT (p) to be in [lÕ..rÕ], we can
compute r

Õ ≠ l
Õ + 1, the width of [lÕ..rÕ], by counting the number of positions p such that

LT [p] > e with p œ [l..r]. This can be done with 2D range counting queries, which can
also be supported with the wavelet matrix of Lemma 4. If s = FNQØe+1(LT , l) is in [l..r],
it holds that r

Õ ≠ l
Õ + 1 ”= 0 and LFT (s) œ [lÕ..rÕ]. Note that LFT (s) is not necessarily

l
Õ because p-encoded su�xes ÈT [R≠1

T
(p)..]Í with LT [p] > e in [l..r] do not necessarily

preserve the lexicographic order when they are extended by one symbol to the left, making
it non-straightforward to identify the position l

Õ.
To tackle this problem, we consider

[le..re] = GetMI(s, e) and [lÕ
e+1..r

Õ
e+1] = GetMI(LFT (s), e+ 1),

and show that lÕ = l
Õ
e+1+x, where x is the number of positions p in [le..l≠1] with LT [p] > e.

Observe that [l..r] ™ [le..re] and [lÕ..rÕ] ™ [lÕ
e+1..r

Õ
e+1] by definition, and that LFT (p) œ

[lÕ
e+1..r

Õ
e+1] if and only if p œ [le..re] and LT [p] > e (see Figure 3 for an illustration). Also,

it holds that ÈT [R≠1
T

(LFT (p))..]Í < ÈT [R≠1
T

(LFT (q))..]Í for any p œ [le..l ≠ 1] and q œ [l..r]
satisfying LT [p] > e and LT [q] > e because lcpŒ(ÈT [R≠1

T
(p)..]Í, ÈT [R≠1

T
(q)..]Í) = e, and

they fall into Case (B4) of Table 1. Similarly for any p œ [l..r] and q œ [r + 1..re]
satisfying LT [p] > e and LT [q] > e, we have ÈT [R≠1

T
(LFT (p))..]Í < ÈT [R≠1

T
(LFT (q))..]Í.

Hence, lÕ = l
Õ
e+1 + x holds.

This concludes the proof. J

We are now ready to prove Theorem 1, which we restate here:

I Theorem 1. For a p-string T of length n over an alphabet (�s fi �p) of size n
O(1)

, an

index of T for p-matching can be constructed online in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits

of space, where ‡s and respectively ‡p are the numbers of distinct s-symbols and p-symbols

used in the p-string and ‡ = ‡s + ‡p. At any stage of the online construction, it can support

the counting queries in O(m lg ‡p lgn

lg lgn
) time, where m is the length of a given pattern for

queries. By building an additional data structure of O( n

� lgn) bits of space for a chosen

parameter � œ {1, 2, . . . , n} the locating queries can be supported in O(m lg ‡p lgn

lg lgn
+ occ� lgn

lg lgn
)

time, where occ is the number of occurrences to be reported.

Proof of Theorem 1. If we only need counting queries, Lemmas 13 and 14 are enough:
While we build LT , FT and LCPŒ

T
online, we can compute w-interval [l..r] for a given pattern

w of length m using Lemma 14 successively m times, spending O(m lg ‡p lgn

lg lgn
) time in total.

Since {R≠1
T

(i) | i œ [l..r]} is the set of occurrences of w in T , we consider how to access
R≠1
T

(i) in O(� lgn

lg lgn
) time to support locating queries. As is common in BWT-based indexes,

we employ a sampling technique (e.g., see [10]): For every �(�) text positions we store the
values so that if we apply LF/FL-mapping to i successively at most �(�) times we hit one
of the sampled text positions. A minor remark is that since our online construction proceeds
from right to left, it is convenient to start sampling from the right-end of T and store the
distance to the right-end instead of the text position counted from the left-end of T .
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Figure 3 Illustration for the computation of cw-interval [lÕ..rÕ] from w-interval [l..r] for the case
when c is a p-symbol that does not appear in w with e = |w|p = 3. The left (resp. right) part shows
sorted p-encoded su�xes around [l..r] (resp. [lÕ..rÕ]) with grayed areas representing the longest
common prefix between w (resp. cw) and each p-encoded su�x. The figure illustrates that each
position p œ [le..l ≠ 1] with LT [p] > e is mapped to [lÕe+1..l

Õ ≠ 1] by the LF-mapping.

During the online construction of the data structures for LT , FT and LCPŒ
T
, we additionally

maintain a dynamic bit vector of length n and a dynamic integer string VT of length O(n/�),
which marks the sampled positions and stores sampled values, respectively. We implement
VT with the dynamic string of Lemma 3 in O( n

� lgn) bits with O( lgn

lg lgn
) query times. In

order to support LF/FL-mapping in O( lgn

lg lgn
) time, we also maintain LT by an instance

of the dynamic string of Lemma 3. Using these data structures, we can access R≠1
T

(i) in
O(� lgn

lg lgn
) time as we use LF/FL-mapping at most O(�) times. This leads to the claimed

time bound for locating queries. J

5 Constructing parameterized su�x arrays in compact space

The parameterized su�x array of a p-string T of length n is the n-length integer array PSAT

with PSAT [i] = R≠1
T

(i) for any 1 Æ i Æ n. We now prove Theorem 2:

I Theorem 2. For a p-string T of length n over an alphabet (�s fi �p) of size n
O(1)

, the

parameterized su�x array of T can be constructed in O(n lg ‡p lgn

lg lgn
) time and O(n lg ‡) bits of

space, where ‡s and respectively ‡p are the numbers of distinct s-symbols and p-symbols used

in the p-string and ‡ = ‡s + ‡p.

Proof of Theorem 2. Using Lemma 13, we can build FT and LT in O(n lg ‡p lgn

lg lgn
) time and

O(n lg ‡) bits of working space, which supports the LF-mapping in O( lg ‡p lgn

lg lgn
) time. After

reserving n lgn bits space for the array PSAT , we fill PSAT in decreasing order of its values
starting from PSAT [1] = n. By definition of the LF-mapping, given a position i with
PSAT [i] = x > 1, the position i

Õ with PSAT [iÕ] = x ≠ 1 can be computed by i
Õ = LFT (i).

Therefore, all values of PSAT can be filled with n applications of the LF-mappings, leading
to O(n lg ‡p lgn

lg lgn
) time in total. J
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6 Concluding remarks

We have proposed a construction of a BWT-based compact index for p-matching, which
works in compact space and in an online manner. BWT-based indexes have been proposed
for other generalized pattern matching like structural pattern matching [17], order preserving
matching [15], Cartesian tree matching [23], palindrome pattern matching [30] and circular
parameterized pattern matching [33]. Generalized pattern matching listed above has a
common feature that their underlying equivalent relations are substring consistent [27].
Since previous work has shown that similar techniques can often be applied to this class of
generalized pattern matching, it is of great interest to see if the techniques presented in this
paper can also be used for constructing other BWT-based indexes.
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Abstract

We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain
an approximate PageRank vector fi œ Rn for a graph under a sequence of edge insertions and
deletions. Our main result is a complete characterization of the complexity of dynamic PageRank
maintenance for both multiplicative and additive (L1) approximations.

First, we establish matching lower and upper bounds for maintaining additive approximate
PageRank in both incremental and decremental settings. In particular, we demonstrate that in the
worst-case (1/–)�(log logn) update time is necessary and su�cient for this problem, where – is the
desired additive approximation. On the other hand, we demonstrate that the commonly employed
ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we
show that ForwardPush requires �(n1≠”) time per update on average, for any ” > 0, even in the
incremental setting.

For multiplicative approximations, however, we demonstrate that the situation is significantly
more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant
factor multiplicative approximation of the PageRank vector of a directed graph must have amortized
update time �(n1≠”), for any ” > 0, even in the incremental setting, thereby resolving a 13-year
old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected
setting, where we show that poly logn update time is feasible, even in the fully dynamic setting
under oblivious adversary.
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1 Introduction

The notion of PageRank was introduced by Brin and Page 25 years ago to rank web search
results [7]. Since then, computing the PageRank of a network has become a fundamental task
in data mining [23]. At a high level, PageRank is a probability distribution over the vertices
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of a directed graph which assigns higher probability to more “central” vertices; see Section 2
for a formal definition. We write fi œ Rn to denote PageRank probability vector, where
fii is the probability mass on the i-th vertex. Due to its importance, it has been studied
extensively in a number of computational models. In this paper, we consider the PageRank
problem in the dynamic setting, in which the goal is to maintain an approximate PageRank
vector fĩ œ Rn of a graph undergoing a sequence of edge insertions and deletions. We focus
primarily on explicit maintainance of the PageRanks, meaning that the algorithm explicitly
maintains fĩ in its memory contents at all time steps; we remark that all prior algoriths for
the problem of maintaining all PageRanks in the dynamic setting have been of this form.

We consider three di�erent settings, which di�er in the allowed sets of operations. In the
incremental setting, edges can only be added to the graph. Analogously, in the decremental
setting, edges can only be deleted. The most general setting is the fully dynamic setting in
which we allow both types of updates. We also consider two notions of approximation. A
1 + – multiplicative approximation to the PageRank vector fi is a vector fĩ, such that for
every vertex v it holds fĩv œ [(1 ≠ –)fiv, (1 + –)fiv]. An additive – approximation is a vector
fĩ such that Îfĩ ≠ fiÎ1 Æ –.1 We note that a multiplicative guarantee is strictly stronger, as a
multiplicative 1 + – approximation implies an additive – approximation.

Previous work on dynamic PageRank [4, 11, 24, 5, 10] resulted in two main approaches to
the problem. The first one is based on sampling random walks. Specifically, it is well-known
that one can approximate PageRank by sampling O(logn) random walks of length O(logn)
from each vertex in the graph (see Algorithm 1).

In a seminal paper, Bahmani et al. [4] showed that this approach can be made dynamic.
Specifically, the algorithm of Bahmani et al. maintains a multiplicative 1 + – approximation
of incremental (or decremental) PageRank when the updates arrive in a random order.
However, their analysis crucially relies on the random arrival of updates, and it was not clear
whether this assumption could be removed. The authors of [4] explicitly posed the question
of whether it is possible to extend their results for multiplicative approximations to the case
of adversarially ordered updates; to date, this question has remained open.

The second approach to computing dynamic PageRank is a dynamic version of the
ForwardPush algorithm [25, 1, 9], which is a variant of a classical local push approach
proposed by [3]. This algorithm was developed for the problem of maintaining Personalized
PageRank, but can also be naturally used to maintain an additive PageRank approximation.
While this approach is highly e�ective in practice, no running time bounds faster than running
a static algorithm from scratch after each update have been developed for maintaining
PageRank using the dynamic ForwardPush method.2

Thus, despite the above line of work, many fundamental questions regarding the computa-
tional cost of maintaining PageRank in a dynamic setting remain open. Specifically, it is still
open whether there exists an algorithm for maintaining a approximation to PageRank in o(n)
time per update. This question is open even if one considers only incremental or decremental
updates, or if one allows additive approximation. In this paper, we answer each of these open
questions. More precisely, we characterize the complexity of solving the dynamic PageRank
problem in each of these settings by providing new upper and lower bounds.

1 Note that this coincides with the total variational distance between distributions.
2 We note that the paper introducing the dynamic ForwardPush algorithm gives a good running time

bound for running the algorithm in undirected graphs. However, this bound only holds for computing
Personalized PageRank from a uniformly random source vertex. Even though PageRank can be reduced
to Personalized PageRank, the reduction requires computing Personalized PageRank from a fixed vertex,
and so the bound does not carry over.
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1.1 Our contributions

We provide new lower and upper bounds on the complexity of explicitly maintaining an approx-
imate PageRank vector both under additive and multiplicative approximation. Throughout
this section, we use n to denote the number of vertices in a graph, m to denote the number
of edges and ‘ to denote the jumping probability used to define PageRank.3

1.1.1 Additive Approximation

We provide (essentially) matching lower and upper bounds for explicitly maintaining additive
approximation of PageRank in both incremental and decremental setting.

I Theorem 1. Fix ‘ œ (0.01, 0.99). For any su�ciently large n Ø 1 and any – such that
1/– = no(1/ log logn), any algorithm which explicitly maintains –-additive approximation of
PageRank must run in n · (1/–)�(log logn) total time.

Our lower bound, which we prove in Section 3.1, is obtained by constructing a graph and
an update sequence for which the PageRank vector undergoes a large number of significant
changes. The changes to the vector are large to the point that even an approximate PageRank
vector must be often updated in linear time. We note that the lower bound, and all other
lower bounds that we state, applies to the setting when the PageRank vector is maintained
explicitly, i.e., after each update algorithm outputs the changes that the PageRank vector
undergoes.

We note that it is easy to come up with an example in which a single edge update
significantly changes the PageRanks of a large fraction of vertices (see Figure 1). This
immediately rules out e�cient incremental and decremental algorithms that maintain approx-
imate PageRank with worst-case update time guarantees. This also rules out fully dynamic
algorithms with amortized update time guarantees. However, proving a strong lower bound
for the amortized update time bound in the incremental or decremental setting is far more
involved, as it requires showing a long sequence of updates in which, on average, every edge
insertion (or deletion) changes the PageRank of many vertices.

We complement our lower bound with the following algorithmic result proved in Section 5.

I Theorem 2. For any ‘ œ (0, 1), there is an algorithm that with high probability explicitly
maintains an – additive approximation of PageRank of any graph G in either incremental or
decremental setting. The algorithm processes the entire sequence of updates in O(m) + n ·
(1/–)O‘(log logn) total time and works correctly against an oblivious adversary.

Furthermore, we study the complexity of the dynamic ForwardPush algorithm [25].
This algorithm, when run with parameter –̃ maintains an –̃ ·m additive approximation to
PageRank (and so to obtain – additive approximation, one needs to use –̃ = –/m). By using
a similar construction of a hard instance, we show that the algorithm takes �(n2≠”) time,
for any ” > 0, to handle a sequence of O(n) operations, even in incremental or decremental
settings (see Theorem 9).

3 The probability of not-jumping (in our notation, 1 ≠ ‘) is sometimes called the damping factor of
PageRank.
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1.1.2 Multiplicative Approximation

Our next result is a lower bound showing that any algorithm explicitly maintaining a constant
multiplicative approximation to PageRank, even in the incremental or decremental setting,
must in the worst case take �(n2≠”) total time, for any ” > 0, to process a sequence of n
updates to an n-vertex graph. Specifically, we prove the following in Section 3.2:

I Theorem 3. There exists a sequence of �(n) edge insertions applied to an initially empty
graph on n vertices for which the following holds. For any constant ” > 0, any algorithm
that maintains a vector fĩ œ Rn such that (1/2)fiv < fĩv Æ 2fiv at all time steps, must take
time �(n2≠”) to process the sequence. In particular, the amortized update time of any such
algorithm is �(n1≠”).

We note that, by symmetry, the above theorem also applies to the decremental setting.
Theorem 3 gives a negative resolution to the 13-year-old open question of Bahmani

et al. [4], who asked whether their polylogarithmic update time bounds for maintaining
PageRank under a sequence of updates coming in random order can be extended to the
general case. Previously, the only negative results for this problem were given by Lofgren [12]
who showed that the specific algorithm of Bahmani et al. requires �(nc) update time for
some c œ (0, 1), but this did not rule out the existence of a better algorithm. We extend this
lower bound to every algorithm which explicitly maintains an approximate PageRank vector,
and strengthen the bound from �(nc) to �(n1≠”) for any ” > 0.

To complement the above lower bound, in Section 6, we give a simple analysis of the
Bahmani et al. algorithm in undirected graphs, and show that in this case maintaining
multiplicative approximation can be done in polylogarithmic time per update even in the
fully dynamic setting. This algorithm also assumes an oblivious adversary. While the analysis
is based on a simple observation, to the best of our knowledge it has not been explicitly
given before.

I Theorem 4. For any ‘ œ (0, 1), there is an algorithm that with high probability explicitly
maintains a 1 + – multiplicative approximation of PageRank of any undirected graph G in
the fully dynamic setting. The algorithm handles each update in O(log5 n/(‘2–2)) time and
works correctly against an oblivious adversary.

It is an open question whether it is possible to design dynamic PageRank algorithms that
bypass our lower bounds, for example, by not maintaining PageRank explicitly or looking
beyond worst-case bounds and studying restricted graph classes.

1.2 Related Work

The dynamic PageRank problem has been studied in a number of recent works [4, 5, 11, 24, 8,
17, 18, 13, 19, 20, 9] studying both the theoretical and empirical aspects of the problem. One
line of study considered the incremental and decremental settings with updates performed in
random order [4, 24] and obtained algorithms that achieve O(logn/‘) update time. The result
of [24] is applicable in a non-random order as well, although in that case it requires �(dv)
running time per update done on a vertex v of degree dv. Bahmani et al. [5] analyze their
algorithm in a random graph model in which high PageRank vertices are more likely to receive
new neighbors. We note that attempts at designing faster algorithms have been undertaken
in [11] as well as [24]. However, these algorithms come with no provable approximation
guarantees.
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Figure 1 An example illustrating that maintaining multiplicative approximation or even an L1

approximation of PageRank in the worst case requires �(n/ logn) running time even after a single
deletion/insertion of edge uv. For details, see Section 1.3.

Another line of work [2, 14, 15, 25, 21] focuses on computing Personalized PageRank,
which is PageRank computed from the point of view of a single vertex. For instance, [15] show
that if each entry of a Personalized PageRank is lower-bounded by ”, then the Personalized
PageRank of a vertex can be approximated in time O(


d/”), where d is the average graph

degree.
Finally, PageRank was also studied in the context of sublinear algorithms [6, 22]. For

instance, for a graph on m edges and omitting poly dependence on logm and –≠1, the
very recent algorithm presented in [22] requires O(n1/2 ·min{m1/4,�1/2}) running time for
approximating the PageRank of a single vertex, where � is the maximum degree in the
graph.

1.3 Impossibility of Non-Trivial Worst-Case Bounds

A wealth of literature on designing dynamic algorithms for approximate PageRank, including
our results, focuses on amortized running time complexity. It is natural to wonder whether
non-trivial worst-case update running times do not exists due to lack of techniques or due
to fundamental reasons. As our example in Figure 1 illustrates, non-trivial update running
times are not possible even on very sparse graphs and even if one’s goal is to maintain an
L1-approximate PageRank vector.

Namely, on the one hand, for the graph G in Figure 1, it can be shown that fiu,fiv œ �(‘)
and fix œ �((logn)/n) for each vertex x œ R. On the other hand, consider graph GÕ obtained
from G, i.e., from the graph in Figure 1, by removing the red-dashed (u, v) edge, and let fiÕ

be the PageRank of GÕ. It is not hard to show that fiÕ
u œ �(1), fiÕ

v œ O(‘/n) and fiÕ
x œ O(1/n)

for each x œ R. This example illustrates the following: there exists a directed graph in which
after a single edge removal one has to update �(n/ logn) vertices if the goal is to maintain a
multiplicative and even an L1 approximation of the PageRank for su�ciently small constant
‘. Moreover, if random walks are used to estimate the PageRank – which to the best of
our knowledge is the only other used approach than Power method – then maintaining
an additive or multiplicative approximate PageRank of a single vertex still requires �(n)
worst-case time. To see that, observe that there are �(n) times more random walks passing
through v in G than in GÕ.
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Algorithm 1 An algorithm for computing approximate PageRank using random walks.
Input: A graph G, and parameters ‘, – and ¸.

1: Sample a set W of R =
'
9 lnn
‘–2

(
random walks starting from each vertex of G.

Each walk length is chosen from geometric distribution with parameter 1 ≠ ‘.
2: Remove from W all walks longer than ¸.
3: for v œ V do
4: Xv Ω the number of times the walks from W visit v.
5: fĩ(v) Ω Xv

|W |/‘ .
6: end for
7: Return fĩ

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we formally define PageRank
and review a random-walk based algorithm for approximating it in the static setting. In
Section 3 we give the lower bounds on the time required to explicitly maintain PageRank
and on the running time of the dynamic ForwardPush algorithm. Section 4 reviews the
algorithm for approximating PageRank by maintaining random walks. While the algorithm
is essentially the same as the algorithm by Bahmani et al. [4], we present a full analysis, since
the previous papers on dynamic PageRank did not prove the correctness of this approach.
In the following two sections we analyze this algorithm in two settings. First, in Section 5
we show that this algorithm achieves near-optimal update time while maintaining additive
approximation to PageRank. Second, in Section 6 we present a simple analysis showing that
in undirected graphs maintaining even a constant multiplicative approximation to PageRank
in the fully dynamic setting is possible with polylogarithmic update time.

2 Preliminaries

We begin by defining the PageRank of a directed graph G = (V,E). Formally, the PageRank
of G, denoted by fi œ Rn

Ø0
, is the stationary distribution of a random walk on G, where at

each step the walk jumps to another uniformly random vertex with probability ‘ œ (0, 1).
The jump probability ‘ is a parameter, which we will fix for the remainder. If deg(i) is the
out-degree of the i-th vertex in V , then the corresponding non-symmetric transition matrix
M œ Rn◊n has entries Mi,j = ‘

n + (1 ≠ ‘) 1

deg(i) if (i, j) œ E, and Mi,j = ‘/n otherwise. We
make the standard assumption (required for PageRank to be well-defined) that each vertex
has deg(i) Ø 1, which can be accomplished by adding self-loops.

PageRank can be approximated by sampling O(logn/‘) relatively short random walks
from each vertex. One such approach is provided as Algorithm 1, for which the following can
be shown.

I Proposition 5 ([4, 16]). Let fi be the PageRank vector of a graph G. The estimate fĩ
computed by Algorithm 1 (with ¸ = Œ) satisfies (a) for all v œ V we have E [fĩv] = fiv, and
(b) with probability 1 ≠ 1/poly(n), simultaneously for all v œ V , we have fĩv = (1± –)fiv.

3 Lower Bounds

In this section we present our lower bounds for maintaining explicit approximation to
PageRank and for the running time of the dynamic ForwardPush algorithm [25]. We now
describe a generic construction of a hard instance, which we instantiate with di�erent
parameters in each of the individual lower bounds. Throughout the section, we consider the
case of ‘ œ (0.01, 0.99), which is the usual case in the applications of PageRank.
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The Graph. The graph G is a union of the graphs H,R, S0, S1. First, H is a directed
tree. Each non-leaf vertex v has exactly t children, with pi parallel directed edges from v
to the i-th child of v (where i is 0-based). We require that p Ø max(1/‘, 2). Hence, the
total-out degree of each internal vertex in H is O(pt). The depth of H is d, and so H has
�(td) vertices and �(td · pt) edges.

The graph R consists of n/4 vertices v, each with no in-edges, and each with a single out
edge vr where r is the root of the directed tree H. Finally, the sets S0, S1 are both directed
star graphs on s + 1 vertices (with the edges directed away from the center of the star),
where Si has the center ci for i œ {0, 1}. Additionally, each leaf of S0 and S1 has a single
outgoing edge, which is a self-loop. We then order the leaf vertices of H as ¸1, ¸2, . . . , and
create a directed edge from ¸i to ci mod 2. We will set the parameters, such that the total
number of vertices in H, R, S0, and S1 is less than n. One can then add an additional O(n)
isolated vertices (with self-loops), so that the total number of vertices is precisely n.

Update Sequence The initial graph has all vertices and edges of H,R, S0, S1, except that
each non-leaf vertex of H only has an edge to its leftmost child (i.e., one with index 0).
Observe that each vertex has at least one outgoing edge, and so PageRank is well-defined.

The update sequence is as follows. Let v1, . . . , v|H| be the sequence of vertices visited on
a pre-order traversal of H, such that ¸1, ¸2, . . . is a subsequence of v1, . . . , v|H|. We insert
the edges of H in |H| rounds: in the ith round we insert all incoming edges of vi (unless
they have already been in the graph from the beginning).

To prove the lower bounds, we use the following way of interpreting PageRank, which is
a continuous version of Algorithm 1 and follows from Proposition 5. Each vertex has some
probability mass, which it either generates or receives from its in-neighbors. Specifically, each
vertex of the graph generates a probability mass of 1/n. A 1 ≠ ‘ fraction of the probability
mass of a vertex v (either generated by v or incoming to v from other vertices) is divided
uniformly among the outgoing edges of v and sent to the neighbors of v. The PageRank of
each vertex is exactly ‘ fraction of its probability mass.

Note that if a vertex is on a cycle, some probability mass enters it multiple times. In
this case, each time the mass enters the vertex, it increases the total probability mass. In
particular, we have the following.

I Observation 6. Let v be a vertex, whose only outgoing edge is a self loop. Assume that v
receives a probability mass of p along its incoming edges other than the self-loop. Then, the
PageRank of v is p+ 1/n.

I Lemma 7. Consider the graph G· obtained right after inserting all edges on the path from R
to ¸i. Let mi be the probability mass that reaches ¸i from R in G· . Then mi Ø (1≠ ‘)2d+2/4.

Moreover, out of the probability mass that reaches the leaves of H from R, at least
(1 ≠ 1/p)d fraction reaches ¸i.

Proof. Observe that a path from any vertex u œ R to ¸i first follows the edge to r, which is
the only outgoing edge of u, and then, thanks to the order of adding edges of H, at each
step uses the rightmost edge of each vertex in H. Consider an internal vertex w œ H. By
the construction it has pi edges to the ith child (0-based). Assuming that we have added
edges to j children so far, we have that there are pj≠1 edges to the rightmost child and so
the fraction of outgoing edges of w that go to the rightmost child is:

pj≠1/

A
j≠1ÿ

k=0

pk
B

= pj≠1 · p ≠ 1
pj ≠ 1 Ø pj≠1 · p ≠ 1

pj
= 1 ≠ 1/p. (1)
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The path from w to ¸i has d+ 1 edges. At each step 1 ≠ ‘ fraction of the probability mass is
forwarded to the children, out of which, as shown above, at least 1 ≠ 1/p Ø 1 ≠ ‘ fraction
follows the path to ¸i. Hence, the fraction of probability mass that reaches ¸i from w is
(1 ≠ ‘)2d+2. Since vertices of R generate a total probability mass of 1/4, we get the desired.

The second claim follows directly from Equation (1) and the fact that H has depth d. J

3.1 Lower Bound for Maintaining Additive Approximation

We first show the following auxiliary lemma which we will use to argue when an additive
–-approximate PageRank vectors must be updated in linear time.

I Lemma 8. Consider four vectors v1, ṽ1, v2, ṽ2 œ Rn, such that Îv1≠ṽ1Î1 Æ –, Îv2≠ṽ2Î1 Æ
– and v1 and v2 di�er by at least 100 · –/n on at least n/4 coordinates. Then ṽ1 and ṽ2

di�er on �(n) coordinates.

Proof. The proof goes by contradiction. Assume that ṽ1 and ṽ2 di�er on at most n/1000
coordinates. Thus, they have at least 0.999·n coordinates in common. Moreover, Îv1≠ṽ1Î1 Æ
– implies that v1, and ṽ1 di�er by more than 10 ·–/n on less than 0.1 ·n coordinates. Clearly,
a similar property is satisfied by v2, and ṽ2.

Let I be the set of coordinates where
1. ṽ1 and ṽ2 are equal (there are at least 0.999 · n such coordinates),
2. v1 and v2 di�er by at least 100 · –/n (at least n/4 such coordinates),
3. v1 and ṽ1 di�er by at most 10 · –/n (at least 0.9 · n coordinates),
4. v2 and ṽ2 di�er by at most 10 · –/n (at least 0.9 · n coordinates).

Observe that since the vectors have n coordinates, I is nonempty. By using first the
triangle inequality, and then items 2-4 above, for any coordinate i œ I we have

|ṽ1i ≠ ṽ2i | Ø |v1i ≠ v2i | ≠ |v1i ≠ ṽ1i | ≠ |v2i ≠ ṽ2i |
Ø 100 · –/n ≠ 10 · –/n ≠ 10 · –/n

= 80 · –/n.

which contradicts item 1. The lemma follows. J

I Theorem 1. Fix ‘ œ (0.01, 0.99). For any su�ciently large n Ø 1 and any – such that
1/– = no(1/ log logn), any algorithm which explicitly maintains –-additive approximation of
PageRank must run in n · (1/–)�(log logn) total time.

Proof. We instantiate our construction using the following parameters. The number of edges
from a vertex to its ith child is (1/‘)i (p = 1/‘). Each vertex of H has t = 1/2 · logp n
children. The tree H has depth d = log(101–)

2 log(1≠‘) ≠ 2 Ø 1. Note that d = �(log(1/–)). Finally,
S0, S1 have s = n/4 leaves.

Let us now bound the size of the graph. The number of leaves of H is

td = (1/2 · log1/‘ n)d =
3

logn
2 log 1/‘

4�(log(1/–))

= log�(log(1/–)) n = (1/–)�(log logn), (2)

where in the third step we use the fact that logn
2 log 1/‘ = log�(1) n for su�ciently large n.

R,S0 and S1 have n/4 vertices each. By Equation (2) and the assumption on –, H has
o(n) vertices, and so with the additional isolated vertices, the graph has exactly n vertices.

The number of edges incident to R,S0 and S1 is O(n). The number of children of each
internal vertex of H is

�(pt) = �(p1/2·logp n) = �(n1/2).
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Thus, the total number of edges in H is (1/–)�(log logn) · n1/2 = no(1) · �(n1/2). Hence, we
conclude that the graph has n vertices and O(n) edges.

Observe that as we add edges, leaves ¸1, ¸2, . . . become reachable from R exactly in the
order of their indices. Fix any leaf ¸j of H. Denote by fib and fia, respectively, the PageRank
vectors just before ¸j is reachable from R and just after all edges on the path from R to ¸j
are added.

We use the interpretation of PageRank based on probability mass. Before ¸j is reachable
from R, it may receive probability mass only from its ancestors in H. Hence,

fib
¸j Æ (d+ 1)/n = �(log(1/–))/n = o(logn)/n.

Moreover, since PageRank is a ‘ fraction of the probability mass entering each vertex, by
Lemma 7,

fia
¸j Ø ‘ · (1 ≠ ‘)2d+2/4 = ‘ · (1 ≠ ‘)

log(101–)
log(1≠‘) ≠2/4 = 101 · ‘ · – · (1 ≠ ‘)≠2.

The increase to PageRank of ¸j is thus at least fia
¸j

≠ fib
¸j

Ø 100 · ‘ · –(1 ≠ ‘)≠2. Hence,
after the insertion there is at least 100–(1≠ ‘)≠2/4 “new” probability mass at ¸j . Since every
two hop path from j leads to a leaf in Sj mod 2, each of these leaves will receive a least

100 · – · (1 ≠ ‘)≠2/4 · (1 ≠ ‘)2/s = 100 · –/(4s).

new probability mass (since only (1 ≠ ‘) fraction of the probability mass is transferred
along each hop). By Observation 6 all of that probability mass ends up increasing the
PageRank of the leaf. Therefore the PageRank of each of these s leaves increases by
100 · –/(4s) = 100 · –/(4 · n/4) = 100 · –/n.

We now use Lemma 8 with v1 = fib, v2 = fia and ṽ1 and ṽ2 being any PageRank
vectors giving –-additive approximation and infer that �(n) coordinates of any approximate
PageRank vector must be updated in order to maintain –-additive approximation. This
happens for each leaf of H, and so by Equation (2) the Lemma follows. J

3.2 Lower Bound for Maintaining Multiplicative Approximation

I Theorem 3. There exists a sequence of �(n) edge insertions applied to an initially empty
graph on n vertices for which the following holds. For any constant ” > 0, any algorithm
that maintains a vector fĩ œ Rn such that (1/2)fiv < fĩv Æ 2fiv at all time steps, must take
time �(n2≠”) to process the sequence. In particular, the amortized update time of any such
algorithm is �(n1≠”).

Proof. We instantiate our construction as follows. Each non-leaf vertex v of H has exactly
t = ”/2 logn/ log logn children, with (log2 n)i parallel directed edges from v to the i-th
child of v (p = log2 n). It follows that the total outdegree of each internal vertex in H is
O(n”). The depth of H is set to be d = logt(n1≠2”) = �(logn/ log logn), so that H has
n1≠2” vertices, and the total number of edges in H is O(n1≠”). Finally, both S0 and S1 have
s = n1≠2” vertices.

Fix a leaf ¸j of H and consider the state of the algorithm right after all on the path from
the root of H to ¸j have been added. By Lemma 7, the probability mass entering ¸j is at
least.

(1 ≠ ‘)2d+2/4 = (1 ≠ ‘)�(logn/ log logn) = n�(≠1/ log logn).
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Out of this probability mass a constant fraction reaches the leaves of Sj mod 2. In particular,
the PageRank of each such leaf is at least ‘ · n�(≠1/ log logn)/n1≠2” Ø n≠”.

Moreover, out of the probability mass from R the fraction that reaches ¸j is at least

(1 ≠ 1/p)d = (1 ≠ 1/ log2 n)�(logn/ log logn) Ø 1 ≠ 1/ logn.

out of all probability mass that reaches the leaves of H from R. Observe that compared
to this probability mass (which is a constant), the total probability mass generated by all
vertices of H is negligible. As a result, the ratio of probability mass that reaches Sj mod 2 to
the probability mass that reaches S(j+1) mod 2 is

1 ≠ 1/ logn
1/ logn = �(logn).

This implies that when we add all edges on a path from R to ¸j , the PageRanks of leaves of
Sj mod 2 increase by a factor of �(logn) and so the PageRank estimates of all these �(n1≠2”)
vertices must be changed. Since a total of m = O(n) edges are added, and since this occurs
once for each of the �(n1≠”) leaf vertices in H, we obtain a total of �(n2≠3”) PageRank
estimate updates, which is the desired result after rescaling ” by a constant. J

3.3 Lower bound for the ForwardPush algorithm

I Theorem 9. Consider running the ForwardPush [25] algorithm whose error parameter is
set to ensure that the algorithm maintains additive – approximation of PageRank. For any
” > 0, each su�ciently large n Ø 1 and ‘ œ (0.01, 0.99) there exists a graph on n vertices and
a sequence of O(n) edge insertions, such that the algorithm runs in �(n2≠”) time.

Proof. We use our construction with the same settings as in the proof of Theorem 3.
Specifically, t = ”/2 logn/ log logn, p = log2 n, d = logt(n1≠2”) = �(logn/ log logn) and
s = n1≠2”.

The ForwardPush algorithm can be explained using the probability mass interpretation.
The algorithm maintains a residual on each vertex u, denoted by Ru. This residual can be
positive or negative. Initially, the residual of each vertex is 1/n.

The residual is a probability mass that still has to be pushed to the neighbors of u. The
algorithm maintains two invariants
1. |Ru| Æ “ deg(u) for each vertex u œ V , where “ is an accuracy parameter.
2. If we keep pushing the residuals, the PageRank estimates converge to the exact PageRank

values.

For any vertex u that violates the invariant, that is satisfies |Ru|/deg(u) > “, the
algorithm executes a push operation, which takes time �(deg(u)) and pushes a 1≠ ‘ fraction
of the residual to the outneighbors of u and uses a ‘ fraction of the residual to increase the
PageRank of u. The residual of u is then set to 0. Upon an insertion of an edge uv, the
algorithm decreases Ru by � = �(fiu)/deg(u) and increases Rv by �. Then, it restores the
invariant by executing push operations.

In the following part of the proof we use the following observation, which follows from
the second algorithm invariant.

I Observation 10. Fix a vertex v and denote by Dv the set of vertices that have a directed
path to v. We assume v œ Dv. Then, the total additive error of the PageRank estimate
maintained by the ForwardPush algorithm is at most

q
uœDv

|Ru|.
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By using the second algorithm invariant, we get that ForwardPush ensures that the total
additive error is

q
uœV |Ru| Æ

q
uœV “ deg(u) = “m. Therefore, to ensure an additive –

approximation of PageRank, we set “m Æ –, implying “ Æ –/m. We note that it is easy to
come up with an example where this analysis is tight up to a constant factor.

We now analyze ForwardPush algorithm on our hard instance. Since the number of edges
in our graph is �(n), we invoke ForwardPush with the approximation parameter “ = �(1/n).
We claim that with this value of “, the residual values are propagated often enough so that
over �(n) edge insertions described above, ForwardPush makes �(n2≠”) updates.

We use the observations from the proof of Theorem 3 that the PageRank of a vertex ci
(i œ {0, 1}) is n�(≠1/ log logn) and, as we add edges, increases by a �(logn) factor each time
we fully add a path from R to a leaf ¸j , such that i = j mod 2.

We now use Observation 10 to show that the ForwardPush maintains a constant factor
approximate of the PageRank estimates of c0 and c1. Indeed, these vertices can only be reached
from R, H or from themselves. We now bound the residuals of these vertices. The residuals of
the vertices ofR are set to 0 the moment each of these vertices performs the first push operation
and are then never updated. The residual of each vertex v of H satisfies |Rv|/deg(v) Æ –/m
which implies |Rv| Æ �(deg(v))/m = �(n”≠1). Finally, the residual of c0 (and, similarly c1)
satisfies |Rc0 |/deg(c0) Æ –/m, which gives |Rc0 | Æ �(n1≠2”)/m = �(n≠2”). By applying
Observation 10 we have that the additive error the PageRank estimates of c0 and c1 is at
most

�(n”≠1) · �(n1≠2”) + �(n≠2”) = �(n≠”).

These additive errors are negligible comared to the PageRanks of these vertices, which is
n�(≠1/ log logn). Hence, the algorithm maintains constant-factor estimates of the PageRanks
of c0 and c1. As a result, when the exact PageRank values change by a factor of �(logn),
the algorithm updates their estimates. However, the ForwardPush algorithm only updates
a PageRank estimate of a vertex u when either it executes a push operation on u or adds
an outgoing edge from u. Since all outgoing edges of c0 and c1 have been added in the
beginning, we get that the algorithm executes a push operation on c0 for half of leaves of H.
Each such operation takes �(deg(c0)) = �(n1≠2”) time and so the overall running time of
the algorithm is �(n1≠2” · n1≠2”) = �(n2≠4”) which, after tweaking ” by a constant factor,
gives the desired. J

4 Approximating PageRank by Maintaining Dynamic Random Walks

In this section we review the algorithm for approximating PageRank by maintaining random
walks. This algorithm is a dynamic version of Algorithm 1 and has been previously described
by Bahmani et al. [4]. We provide a detailed proof of correctness of the algorithm, which to
the best of our knowledge has not been included in any prior work.

The algorithm relies on maintaining O‘(n logn) random walks and re-sampling their parts
as necessary. In this section, we present data structures that we use to e�ciently maintain
and re-sample those random walks. Section 4.1 presents our approach on an edge insertion,
while Section 4.2 describes how our algorithms handle edge deletions. We being by describing
the problem setup.

Setup. Following Proposition 5, to approximate the PageRank it su�ces to sample R =
O(logn/(‘–2)) PageRank walks from each vertex. A PageRank walk is a random walk w,
whose length ¸w is sampled from geometric distribution with parameter 1≠ ‘. Even though a
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given walk may get re-routed after edge insertions or deletions, it is crucial that the the length
of each walk remains fixed throughout the entire execution of the algorithm. Otherwise, it
is easy to construct examples where the lengths of the maintained walks no longer follow the
right distribution.

We maintain two types of data structures. For each each vertex v and t = 0 . . . O(logn/‘),
we maintain a binary search tree Sv,t which stores all the walks whose t-th vertex if v. For
each edge e, we maintain the binary search tree We consisting of the walks passing through e.

4.1 Edge Insertion

When an edge (u, v) is inserted, we re-sample some of the walks passing through u. This
re-sampling is done by first performing rejection sampling on each walk and, second, by
choosing an appropriate position where each of the rejected walks should be re-sampled.
Choosing an appropriate position from where to re-sample w is trivial in case when w passes
through u once. However, it might be the case that w passes through that vertex multiple
times, and a more careful consideration is required. At a high level, we iterate through all
segments of w and for each segment of w that leaves u we toss a coin. Then, with probability
1/du, where du is the degree of u after the update, we reroute w starting from the considered
segment, and terminate the update procedure for w.

Each walk has a unique ID associated with it. These IDs are integers ranging from 1
through the number of walks we maintain. Each vertex and each edge keeps track of which
walks are passing through them.

Given a vertex v and integers i and t, it will be convenient to be able to sample the i-th
walk whose t-th vertex is v. It will become clear why such operation is needed when we
describe how to handle edge insertions. To be able to implement this operation e�ciently,
we store the IDs of walks whose t-th vertex is v in a binary tree; we use Sv,t to refer to this
binary tree. Then, the i-th walk can be easily fetched via a search within that tree. The
maximum value of t to consider is upper-bounded by the maximum length of the walks.

Assume that we insert an edge e = (u, v). Let du be the out-degree of u after adding
e. Consider a walk w that at some point got to u and continued to u’s neighbors. If e was
present in the graph at that point, with probability 1/du the walk w would have continued
along e, and with probability 1≠ 1/du the walk w would have chosen some other neighbor of
u. However, w was sampled before e was in the graph, and our aim now is to correct this
distribution and account for the insertion of e. The idea is to use rejection sampling, which
we provide as Algorithm 2.

The for-loop on Line 3 of Algorithm 2 is in an e�cient way of selecting walks passing
through u and v that need to be re-sampled. Since the length of each walk follows a geometirc
distribution with parameter 1 ≠ ‘, it is easy to see that with high probability the walks have
length O(logn/‘), and hence ¸ œ O(logn/‘).

Remark: To the best of our understanding, on an insertion of an edge (u, v), the prior
work [24] re-samples a walk passing through u from the first occurrence of u in the walk, if
there is any such occurrence (for details, see [24]). Such re-sampling does not account for
the case when a walk passes through u multiple times and leads to biases in randomness.

4.2 Edge Deletions

Algorithm 3 presents our procedure executed after deleting an edge.
Let e be a deleted edge, and let We ™ W be the list of walks passing through e. Clearly

each w œ We needs to be rerouted. The following lemma states that W updated by executing
Algorithm 3 is a set of independent random walks.
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Algorithm 2 A procedure executed after edge e = (u, v) is inserted.

1: W Ω ÿ
2: Let ¸ be the length of longest generated walk.
3: for t = 1 . . . ¸ do
4: Sample each walk from Su,t with probability 1/du in the following way. First,

select an integer ru,t from the binomial distribution with parameters |Su,t| and
1/du. Second, select ru,t integers uniformly at random and without repetition
from [1, |Su,t|]. Then, for each of those integers i select the i-th walk from Su,t.
If e is an undirected edge, apply the same steps for Sv,t.

5: For each walk w selected in the last step such that w /œ W , add w to W and
label w by t.

6: end for
7: for each w œ W do
8: Let j be the label remembered for w on Line 5.
9: Generate walk wÕ with the following properties:

The walks w and wÕ have the same length.
The vertex-prefixes of length j of w and wÕ are the same.
After that prefix, if w has more than j vertices, wÕ walks along e.
The remaining edges of wÕ are chosen randomly, i.e., the rest of wÕ is a newly
generated random walk.

10: Update the data structures by removing w and inserting wÕ.
11: end for

Algorithm 3 A procedure executed after edge e is deleted.
1: Let We ™ W be the list of walks passing through e.
2: for w œ We do
3: Let wp be the longest prefix of w not containing e.
4: Let wÕ be a walk of length |w| such that wÕ has wp as its prefix, and the

remainder of wÕ is a random walk.
5: To update W , remove w from W and the corresponding data structures, and

insert wÕ.
6: end for

I Lemma 11. Let W be the set of walks that our algorithm maintains. Assume that e gets
deleted, and let W Õ be the updated list of walks as described in Algorithm 3. If W consists
of random walks sampled independently, then W Õ is also a set of random walks sampled
independently.

Proof. The edges of walks throughout the algorithm are sampled independently of each
other, so walks are independent by construction. We focus on showing how deletion of an
edge a�ects randomness of a single walk.

Consider a walk w œ W originating at vertex w1. Let wi be the i-th vertex of w, w1...i

be the prefix of length i of w, and k be the length of w. Walk w is random i� for each i Ø 2
and each u œ N(wi≠1) it holds

Pr [wi = u | w1...i≠1] =
1

d(wi≠1)
. (3)
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Let wÕ be the updated walk w, dÕ(v) be the updated degree of vertices after e gets deleted and
uÕ be a neighbor of wÕ

i≠1
after deletion of e. Note: we are not assuming that w contains e, so

it might be the case that w = wÕ. We want to show that Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

$
= 1/dÕ(wÕ

i≠1
).

We have

Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

$
(4)

=Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

, e œ w1...i

$
· Pr [e œ w1...i] (5)

+ Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

, e /œ w1...i

$
· Pr [e /œ w1...i] . (6)

Analyzing (5). We first handle (5). Recall that wÕ is constructed by keeping only the prefix
of w up to the first occurrence of e, and the rest of the walk of wÕ is random and independent
of any other state of the algorithm (see Algorithm 3). Hence, we have

Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

, e œ w1...i

$
= 1

dÕ(wÕ
i≠1

) .

Analyzing (6). Now consider term (6). If w1...i does not contain e, then wÕ
1...i = w1...i and

we have

Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

, e /œ w1...i

$

=Pr [wi = uÕ | w1...i≠1, e /œ w1...i≠1, e ”= {wi≠1, wi}] .

There are two cases:
(a) Case wi≠1 /œ e: from (3) we have

Pr [wi = uÕ | w1...i≠1, e /œ w1...i≠1, e ”= {wi≠1, wi}, wi≠1 /œ e]
=Pr [wi = uÕ | w1...i≠1, e ”= {wi≠1, wi}, wi≠1 /œ e]

= 1
d(wi≠1)

= 1
dÕ(wi≠1)

= 1
dÕ(wÕ

i≠1
) .

In the last chain of equalities we used that once we condition on w1...i≠1, then (3) is a
function of only wi≠1 and not on any other content of w1...i≠1, e.g., whether e œ w1...i≠1

or not.
Note: The choice of e is independent of our data structures and the randomness the
algorithm uses. However, in the case of non-oblivious adversary, i.e., in case of the
adversary who sees the state of our algorithm, the updated edge e could be chosen based
on the randomness used to generate w, and hence the above sequence of equalities would
not hold.

(b) Case wi≠1 œ e: we have the following

Pr [wi = uÕ | w1...i≠1, e /œ w1...i≠1, e ”= {wi≠1, wi}, wi≠1 œ e]

=Pr [wi = uÕ · e ”= {wi≠1, wi} | w1...i≠1, e /œ w1...i≠1, wi≠1 œ e]
Pr [e ”= {wi≠1, wi} | w1...i≠1, e /œ w1...i≠1, wi≠1 œ e]

= 1/d(wi≠1)
(d(wi≠1) ≠ 1)/d(wi≠1)

= 1
d(wi≠1) ≠ 1 = 1

dÕ(wÕ
i≠1

) .
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Showing (3) for wÕ
. The analysis of (5) and (6) together with (4) implies

Pr
#
wÕ

i = uÕ | wÕ
1...i≠1

$

= 1
dÕ(wÕ

i≠1
) · Pr [e œ w1...i] +

1
dÕ(wÕ

i≠1
) · Pr [e /œ w1...i]

= 1
dÕ(wÕ

i≠1
) . J

4.2.1 Re-sampling Walks from Scratch

We now give a simple example that shows why re-sampling a�ected walks from scratch after
a deletion would not properly maintain random walks. We note that this approach was
suggested as a valid alternative by Bahmani et al. [4].

Consider a path graph on 5 vertices; let the graph be 1≠2≠3≠4≠5. Consider a random
walk w of length 2 originating at vertex 3 and visiting vertices w1, w2, w3, i.e., w1 = 3. Next,
a deletion of e = {4, 5} occurs. Let wÕ be obtained from w as follows: if w contains e, then
wÕ is a new random walk of length 2 originating at 3; otherwise, wÕ equals w. Now, if we
denote the vertices on wÕ by wÕ

1
, wÕ

2
, wÕ

3
, we have

Pr [wÕ
2
= 4] =Pr [wÕ

2
= 4 | {4, 5} /œ w] Pr [{4, 5} /œ w]

+ Pr [wÕ
2
= 4 | {4, 5} œ w] Pr [{4, 5} œ w]

=Pr [w2 = 4 | {4, 5} /œ w] Pr [{4, 5} /œ w]
+ Pr [wÕ

2
= 4 | {4, 5} œ w] Pr [{4, 5} œ w]

=Pr [w2 = 4 and {4, 5} /œ w] + 1
2 · 14

=1
4 + 1

8 .

However, for wÕ to be random it should hold Pr [wÕ
2
= 4] = 1/2.

5 Near-Optimal Additive Approximation Algorithm

In this section, we analyze the algorithm from Section 4 in the context of dynamically
maintaining additive approximation of PageRank. Namely, we show that when considering the
incremental or decremental setting for directed graphs, an – additive PageRank approximation
can be maintained in (1/–)O‘(log logn) amortized update time, even for an adversarially chosen
graph and a sequence of edge updates. Perhaps surprisingly, Theorem 1 shows that, for a
constant ‘, this running time complexity is essentially tight.

I Theorem 2. For any ‘ œ (0, 1), there is an algorithm that with high probability explicitly
maintains an – additive approximation of PageRank of any graph G in either incremental or
decremental setting. The algorithm processes the entire sequence of updates in O(m) + n ·
(1/–)O‘(log logn) total time and works correctly against an oblivious adversary.

Our new analysis is based on two ideas. First, we show that if we limit the lengths of
walks in Algorithm 1 to a constant, we obtain a constant additive approximation of the
PageRank vector. This is thanks to the fact that a constant fraction of all walks have length
O(1/‘), and so this truncation only a�ects a constant factor of the walks.

I Lemma 12. Let fi be the PageRank of a directed graph G. Then, with high probability,
Algorithm 1 for ¸ = Á2/‘ · log (2/(–‘))Ë outputs a vector fiadd such that Îfi ≠ fiaddÎ1 Æ 5 –

1≠‘ .
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To keep the flow of high-level ideas uninterrupted, the proof of Lemma 12 is given in
Section 5.1.

The second idea is an observation which bounds the maximum number of times a walk
can be a�ected by adding edges (edge deletions can use a symmetric argument). To explain
the idea let us see what happens when we want to maintain a random outgoing edge e of a
vertex undergoing insertions of outgoing edges. Clearly when we insert the d-th outgoing edge
we need to update e to be equal to d with probability 1/d. By a harmonic sum argument,
the expected number of times e needs to be updated in the course if k insertions is only
O(log k). We generalize this argument to walks of length ¸ as follows.

I Lemma 13. Let G be a directed graph undergoing edge insertions (or deletions). The total
number of times a random walk of length ¸ is being regenerated is bounded by O(log¸ n) in
expectation.

Proof. We are going to prove this bound by induction, i.e., let us denote by f(i) the upper
bound on expected number of times the walk of length i is regenerated. Consider a random
walk w of length 1 starting in a vertex v. Consider insertion of an edge incident to v. The
probability that w is regenerated at this moment is 1/dv. As we consider incremental setting
the expected number of times w is regenerated is bounded by

f(1) =
nÿ

i=1

1
i

Æ lnn.

Now consider a walk w of length ¸ starting at v. Similarly as above we can bound the number
of changes to w as

f(¸) =
nÿ

i=1

1
i
· f(¸ ≠ 1) Æ lnn · f(¸ ≠ 1) = ln¸ n,

what finishes the proof. Symmetric argument can be applied in the decremental case. J

The above lemma implies that for ¸ = Á2/‘·log (2/(–‘))Ë the amortized cost of maintaining
each walk is (1/–)O(log logn) for a constant ‘. As we generate O(n logn) walks in Algorithm 1
the total cost of maintaining 5–/(1≠ ‘)-approximation in incremental or decremental setting
is O(m+ n · (1/–)O(log logn)).

5.1 Proof of Lemma 12

Define ˆ̧ = Á2/‘ · log (2/(–‘))Ë. Let fĩ be the output of Algorithm 1 for ¸ = Œ, and fiadd
the output for ¸ = ˆ̧. As discussed, it is known, e.g., see [4, 16], that |fiv ≠ fĩv| Æ –fiv. Asq

v fiv = 1, this further implies Îfi ≠ fĩÎ1 Æ –.
Next, we compare fiadd and fĩ. Di�erence between these two vectors can be expressed by

the following two quantities: (1) |W |, which in turn a�ects the scaling on Line 5; and (2) the
value of Xv, which a�ects the numerator on Line 5. We analyze both of these quantities.

Analysis for |W |. For ¸ = ˆ̧, a walk has length at most ˆ̧with probability ‘
qˆ̧

j=0
(1≠ ‘)j =

1 ≠ (1 ≠ ‘)ˆ̧+1 Ø 1 ≠ ‘/2, where we used that 1 ≠ x Æ e≠x for x œ [0, 1/2]. Hence,
E [|W |] Ø nR(1 ≠ ‘/2). By using a Cherno� bound we can prove that with high probability
it holds |W | Ø nR(1 ≠ ‘). The proof proceeds as follows. In the summation above, there are
only ¸ di�erent values of j that a�ect E [|W |]. For a fixed j, the contribution to |W | can be
expressed as a sum of independent 0/1 random variables – a random variable per each
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of the nR walks, denoting whether the given walk has length length j or not. Hence, for a
fixed j we apply the Cherno� bound to show it concentrates well, and then by the union
bound over all ¸ values of j we get the desired concentration for |W |.

Analysis for Xv. By definition, fiadd only accounts for the contribution to Xv by the
appearances of v which are within walks of length at most ¸; Xv is defined in Algorithm 1.
Let Yv be the appearances of v for which fiadd does not but fĩ does account for.

Now, we upper-bound
q

v Yv:

E
C

ÿ

v

Yv

D
=nR(1 ≠ ‘)ˆ̧+1 · (ˆ̧+ 1) +

Œÿ

j=ˆ̧+2

nR(1 ≠ ‘)j

Æ2nR– + nR(1 ≠ ‘)ˆ̧+2

Œÿ

j=0

(1 ≠ ‘)j

=2nR– + nR

‘
(1 ≠ ‘)¸+2

Æ2nR– + nR‘–2/4
Æ3nR–.

In the derivation above, we used (1≠‘)ˆ̧+1(ˆ̧+1) Æ (–‘/2)2(ˆ̧+1) Æ (–‘/2)22ˆ̧Æ 2–. To prove
that

q
v Yv Æ 4nR– with high probability, it su�ces to proceed the same way as for our

analysis of E [|W |]. In the analysis, we need the observation that
q

j>c logn/‘ nR(1≠‘)j < 1/n
for a su�ciently large constant c. In other words, there are only O(logn) di�erent values of
j that substantially contribute to

q
v Yv and over which is needed to take the union bound.

Our analysis now implies that additive approximation of Algorithm 1 for ¸ = ˆ̧ is with
high probability upper-bounded by –

1≠‘ + 4 –‘
1≠‘ Æ 5 –

1≠‘ . The first term is coming from the
fact that fiadd is computed by rescaling Xv by |W |/‘ Ø (1 ≠ ‘)nR/‘ as opposed to rescaling
by nR/‘, as it is done when computing fĩ. The second term is coming from the fact that the
loss between fĩ and fiadd in the numerator of Line 5 is at most 4nR– with high probability,
which is divided by |W |/‘ Ø nR(1 ≠ ‘)/‘.

6 E�cient Multiplicative Approximation in Undirected Graphs

In this section, we describe how to maintain approximate PageRank of undirected graphs under
edge deletions and insertions even if the goal is to maintain a multiplicative approximation.
Our approach takes polylogn time per update and is also based on the algorithm from
Section 4.

I Theorem 4. For any ‘ œ (0, 1), there is an algorithm that with high probability explicitly
maintains a 1 + – multiplicative approximation of PageRank of any undirected graph G in
the fully dynamic setting. The algorithm handles each update in O(log5 n/(‘2–2)) time and
works correctly against an oblivious adversary.

Our analysis relies on the following (folklore) claim, which states that the number of the
walks passing through an edge is fairly small.

I Lemma 14 (Folklore). Let G be an undirected graph. Consider a set of random walks W
of length ¸ < n each, such that there are dv walks originating at vertex v. Then, with high
probability an edge e is contained in O(¸ · logn) of those walks.
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Proof. Observe that the number of walks in W originating at each vertex v is proportional
to the stationary distribution of v. Hence, the number of walks of W whose i-th vertex is v
in expectation equals dv, for each 1 Æ i Æ ¸. Therefore, the number of walks of W whose
i-th edge is e = {u, v} (either as u æ v or v æ v) in expectation equals 2, for each 1 Æ i Æ ¸.

LetXe,i be the number of walks whose i-th edge equals i. From our discussion, E [Xe,i] = 2.
Also, Xe,i is a sum of 0/1 independent random variables Yv,j,i, where Yv,j,i means that the
i-th edge of the j-th walk originating at v equals e. Hence, by applying the Cherno� bound,
we obtain that with high probability it holds that Xe,i œ O(logn). By taking the union
bound over all 1 Æ i Æ ¸ and over all the vertices, we prove the desired claim. J

As a direct consequence of Lemma 14 we obtain the following claim.

I Corollary 15. Consider n · t independent random walks of length ¸ œ O(logn/‘) such
that from each vertex there are t walks originating. Then, with high probability an edge e is
contained in O(t log2 n/‘) of those walks.

In Section 4, we describe how to update our data structures in O(¸ · logn) time per an
update of an ¸-length walk. Since Algorithm 1 runs t = R = O(logn/(‘–2)) random walks
per vertex, by Corollary 15 there are O(log3 n/(‘–2)) walks passing through each edge. Thus
by the fact that walks have lengths O(logn/‘) with high probability, the dynamic algorithm
requires O(log5 n/(‘2–2)) time for each update, which yields Theorem 4.
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Abstract

One natural question in the area of sublinear time algorithms asks whether we can distinguish
between graphs with max-cut value at least 1 ≠ Á from graphs with max-cut value at most 1/2 + Á

in the adjacency list model where we can make degree queries and neighbor queries. Chiplunkar,
Kapralov, Khanna, Mousavifar, and Peres (FOCS’ 18) showed that in graphs of bounded degree, one
cannot hope for a factor 1/2 + Á approximation to the max-cut value in time n1/2+o(Á). Recently,
Peng and Yoshida (SODA ’23) obtained o(n) time algorithms which can distinguish expanders
with max-cut value at least 1 ≠ Á from expanders with small max-cut value (their running time
is n1/2+O(Á)). In this paper, going beyond the results of Peng-Yoshida, we develop sublinear time
algorithms for this problem on clusterable graphs (which is a graph class with a good community
structure). Our algorithms run in ¥ n0.5001+O(Á) time.

A natural extension of Peng-Yoshida approach does not seem to work for clusterable graphs.
Indeed, their random walk based technique tracks the ¸2 length of random walk vectors and they
exploit the di�erence in the length of these vectors to tell apart expanders with large cut value
from expanders with small cut-value. Such approaches fail to be reliable when graph has loosely
connected clusters. Taking inspiration from [4], we exploit the more refined geometry of spectra of
clusterable graphs which leads to our sublinear time implementation. We prove a novel spectral
lemma which shows that in a spectral expander 2 ≠ ⁄n≠1 Ø �(⁄2). This lemma is leveraged to show
that there is a suitable di�erence between spectra of clusterable graphs with large cut value and
spectra of clusterable graphs with small cut value. We use this gap to obtain our sublinear time
implementation. To do this, we obtain a nuanced understanding of the eigenvector structure of
clusterable graphs and in particular, we show that the eigenvectors of the normalized Laplacian of a
clusterable graph, corresponding to eigenvalues which are close to 2 have a small infinity norm.
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1 Introduction

Max-Cut is a fundamental algorithmic problem and has several applications in computer
science. In this problem, we are given a graph G = (V,E) as input and we are asked to find
a bipartition (S, S) of vertices which has the maximum number of edges going across. Let
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Max-Cut(G) denote the fraction of edges cut by the maximizing bipartition. The decision
version of Max-Cut was shown to be NP-Complete by Karp in his famous list of 21 problems
in [11]. A 0.878 approximation algorithm for Max-Cut was achieved in the seminal work
of [8] which was shown to be tight assuming the unique games conjecture.

While Max-Cut is interesting on general graphs, it is also intriguing when restricted to
important graph classes. For instance, [2] provided algorithms for finding cuts in expanders
with Max-Cut(G) Ø 1 ≠ “ (for some su�ciently small “ > 0) that are crossed by at least
(1 ≠ O(“)) fraction of the edges, which improves (in small “ regime) upon the Goemans-
Williamson bound of (1 ≠ O(Ô“)) fraction of edges. In another direction, more relevant to
this paper, a crucially important step was taken by [9] who presented algorithms for testing
bipartiteness in bounded-degree graphs, assuming query access to the adjacency list of the
input. This algorithm decides in sublinear time whether the input bounded-degree graph has
Max-Cut(G) = 1 or whether has Max-Cut(G) < 1 ≠ “. The authors also proposed a two-step
rule of thumb for approaching a wide variety of property testing problems in bounded-degree
graphs, which involves developing property testing algorithms assuming the input graph is
an expander, and then using tools from expander decompositions to break the graph into a
collection of expanding components with inverse-polylogarithmic expansion.

Until recently however, no sublinear time algorithms were known for approximating
Max-Cut even on expanding graphs which approximate the cut-value to within a factor
better than 1/2. This was remedied by [13] who gave sublinear algorithms for approximating
Max-Cut on expanders in the adjacency list model. In this work, we focus on the adjacency
list model and provide sublinear time algorithms for Max-Cut on a natural relaxation of
expanders, namely, the family of (k,Ï, Á)-clusterable graphs. Briefly, a degree d-bounded
graph G = (V,E) is (k,Ï, Á)-clusterable if the vertex set can be partitioned into k sets, each
with inner conductance at least Ï and outer conductance at most Á. This graph class has
been considered in several recent works on property testing [5, 4, 7]. Our main theorem
(informal version below) concerns this graph class and asserts the following:

I Theorem 1. Fix k œ N,Ï < 1 and 0 < Á, “ < ”Ï
2 where ” = 10≠5. Then there exists an

algorithm which on input a (k,Ï, Á)-clusterable graph runs in time ¥ n
1/2+100”+O(Á/Ï

2
) and

returns
Yes, if Max-Cut(G) Ø 1 ≠ “

No, if Max-Cut(G) Æ 1/2 + “

Broadly speaking, this problem of distinguishing clusterable graphs with large max-cut
value from clusterable graphs with small max-cut value is a special sub-problem of the
more general question which seeks to develop tolerant testers for max-cut. Some complexity
considerations related to the Unique Games Conjecture seem to suggest that this problem
does not admit a (1 ≠ “, 1 ≠ Ô

“) tolerant tester in the adjacency list query model. [3] even
showed that there is no sublinear time algorithm for the Max-Cut problem with approximation
ratio better than 16/17. It is an open question to chase down the parameter range for which
one might expect a sublinear time algorithm for a better than one-half approximation of
Max-Cut on a class of graphs richer than expanders. Our results can be viewed as taking
the first step in this direction.

2 Preliminaries

In the following, we will let G = (V,E) denote a graph.

I Definition 2. The normalized adjacency matrix Ā is D≠1/2AD≠1/2, where D is the
diagonal of degrees. The normalized Laplacian is L̄ = I ≠ Ā.
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The random walk associated with G is defined to be the random walk with transition
matrix AD≠1. Note that, unlike the previous works in property-testing, we do a non-lazy
walk over G.

I Definition 3 ([10], Rayleigh Quotient). Let A be a matrix in Rn◊n and let x be a non-zero
vector in Rn. Then, the Rayleigh quotient of x with respect to A is defined as:

RA(x) = xTAx

xTx
.

For any arbitrary matrix B in Rn◊n, we use µ1 Æ µ2 Æ . . . Æ µn to denote its eigenvalues
in ascending order, and ‹1 Ø ‹2 Ø . . . Ø ‹n to denote its eigenvalues in descending order.
Given a graph G = (V,E), we let 1x œ RV to denote the indicator vector for a vertex x

in V . For a multi-set of vertices {x1, x2, . . . xk}, we let S œ Rn◊k denote the matrix of
indicators, where the j

th column of S is the vector 1xj for 1 Æ j Æ k.
(Informal) Given a graph G = (V,E), and its normalized Laplacian L̄, we will refer to
the eigenvectors with corresponding eigenvalues close to 0 (resp. eigenvalues close to 2)
as the clusterability eigenvectors (resp. Max-Cut eigenvectors). The notion of close to 0
(resp. close to 2) will be made clear in the context.

I Theorem 4 ([10], Spectral Theorem). Let A be a real symmetric matrix. Then, there exists
an orthonormal basis of Rn consisting of eigenvectors of A and all the eigenvalues of A are
real.

I Theorem 5 ([10], Courant-Fischer). Let A be a real symmetric matrix in Rn◊n, let
⁄1 Æ ⁄2 Æ . . . Æ ⁄n be its eigenvalues. Then, for any 1 Æ k Æ n,

⁄k = min
U

max
x”=0

{{RA(x) | x œ U} | dim U = k},

and

⁄n≠k+1 = max
U

min
x ”=0

{{RA(x) | x œ U} | dim U = k}.

I Lemma 6 ([10], Weyl’s Inequality). Let A and E be real symmetric matrices in Rn◊n.
Then, for all i œ {1, 2, . . . , n},

⁄i(A) + ⁄min(E) Æ ⁄i (A+E) Æ ⁄i(A) + ⁄max(E).

I Lemma 7 ([10]). For any m ◊ n matrix A and n ◊ m matrix B, the multisets of nonzero
eigenvalues of AB and BA are the same. In particular, if one of AB and BA is positive
semi-definite, then µh (AB) = µh (BA).

I Lemma 8 (Folklore). Let A and B denote two positive semidefinite matrices in Rn◊n.
Then ‹max (AB) Æ ‹max (A) ‹max (B).

I Definition 9. Given a graph G = (V,E) and a set S ™ V , we define vol(S) =
q

iœS
deg(i).

I Definition 10 (Inner and Outer Conductance). Let G = (V,E) be a graph. For a set
S ™ C ™ V , we define the conductance of S within C as Ï

C
in(S) =

|E(S,C\S)|q
iœS

deg(i)
= |E(S,C\S)|

vol(S)
.

The inner conductance of a set C ™ V is defined as

Ïin(C) = min
S™C

0<vol(S)Ævol(C)/2

Ï
C

in(S).

We define the outer conductance of a set C ™ V to be Ïout(C) = |E(C,V \C)|
vol(C)

.
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I Theorem 11 (Cheeger’s Inequality, Folklore). Let G be a graph. Let L̄ denote its normalized
Laplacian. Then,

„
2(G)
2 Æ ⁄2 Æ 2„(G),

where ⁄2 denotes the second smallest eigenvalue of the normalized Laplacian of G.

I Definition 12 ((k,Ï, Á)-clusterable graphs). A graph G = (V,E) is said to admit a (k,Ï, Á)-
clustering if there exists a partition of V into k sets C1, C2, . . . Ck such that each Ci satisfies
Ïin(Ci) Ø Ï and Ïout(Ci) Æ Á and for all i, j œ [k] it holds that |Ci|

|Cj | = O(1).
When the parameters Ï and Á are clear from the context, we will often refer to these

graphs as k-clusterable graphs and sometimes even as clusterable graphs when the parameter
k is also clear from the context. [7] consider clusterable graphs where Á/Ï

2 Æ ” := 10≠5. We
also consider a similar parameter regime.

I Theorem 13 ([7], Clusterability Eigengap). Let G be a graph that admits a (k,Ï, Á)-clustering.
Let 0 Æ ⁄1 Æ ⁄2 Æ . . .⁄n denote the spectrum of its normalized Laplacian. Then, ⁄k Æ 2Á

and ⁄k+1 Ø Ï
2
/2.

3 Technical Overview

The algorithmic problem of getting a better than 1/2 approximation algorithm for the max-
cut-value of a degree bounded graph was ushered to the frontlines of research in sublinear-time
algorithms in the work of [4]. This paper shows that any algorithm that returns an estimate
to the max-cut-value that is at least 1/2 + Á must make an n

1/2+�(Á) number of queries to
the adjacency list of G. After this work, one natural next step is to ask whether there are
algorithms that approximate max-cut to within some approximation factor better than 1/2
on some rich enough class of interesting graphs. A progress was reported on this endeavor
in the work of [13] who obtained a such an estimate to the max-cut-value on expanders of
bounded degree.

As our starting point, we describe at a high level, the approach used in [13] for deciding
whether the max-cut value of an input expander is large or whether it is small. The starting
point of this work adapts the techniques used in the pioneering work of [9] to obtain a
tester for deciding whether Max-Cut(G) is close to 1 or bounded away from 1 on expanders.
One can think of a Ï-expander as a (k,Ï, Á)-clusterable graph with k = 1 and Á = 0 (see
Definition 12). Let us now describe the high level ideas that underlie Peng-Yoshida algorithm.
In particular, [13] note that on an expanding instance with large max-cut value, the following
distributions over end-points of ¸ length lazy walks are fairly far:

Dv,e: The end-point distribution supported over vertices reached in an ¸-step walk with
the e�ective length (that is, number of steps left after deleting all loops) being an even
number.
Dv,o: The end-point distribution supported over vertices reached in an ¸-step walk with
the e�ective length being an odd number.

As mentioned ealier, the intuition behind this argument comes from [9] which considers
the case where Max-Cut(G) = 1. In this case, note that the distributions are disjointly
supported and thus indeed the ¸

2
2
distance between the distributions is large.

While the Peng-Yoshida algorithm extends the Goldreich-Ron bipartiteness testing
algorithm in a very elegant way, unfortunately, this algorithm does not extend to the (k,Ï, Á)-
clusterable case even for k = 2. To see this, let us take the following graph. It contains two
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disjoint isomorphic (1/Á ≠ 2)-regular2 bipartite Ï-expanders which are sparsely connected
(and we will describe what these corss-edges are momentarily). We denote the first bipartite
graph as (A1, B1) and the other one as (A2, B2) where |A1| = |B1| = |A2| = |B2| = n/4.
Next, we connect A1 and A2 with a perfect matching and we also connect A1 and B2 with
another perfect matching. We also add a perfect matching between B1 and A2 and another
one between B1 and B2. In all, this gives us a 1/Á-regular (2,Ï, Á)-clusreable graph which
has Max-Cut(G) = 1 ≠ O(Á). Now, consider performing a lazy walk of logarithmic length
from any start vertex in this instance. Note that the walk reveses its “polarity” once every
2/Á steps in expectation. In particular, this means that the distributions Dv,o and Dv,e are
fairly close and one can no longer use the distance between these distributions as a reliable
indicator for whether the max-cut-value is large or whether it is small.

We want to circumvent this obstacle and obtain a better than 1/2-approximation to max-
cut-value in sublinear time for k-clusterable graphs. To this end, for the ease of presentation
in this overview, it will be convenient to make the following simplications listed in the remark
below.
I Remark 14. We emphasize that all the simplifications made in this remark are only for the
ease of presentation in this overview. Our main result (Theorem16) and its proof does not
rely on these simplifications.
1. We will assume that graph is d-regular.
2. We will assume that all clusters in the input k-clusterable graph have the same size.
3. Recall we are trying to distinguish (k,Ï, Á)-clusterable graphs with max-cut-value at least

1 ≠ “ from graphs with max-cut-value at most 1/2 + “. It will additionally be convenient
to assume that Ï = �(1) and that Á and “ are su�ciently small constants with “ = �(Á).
As stated in Theorem16, we only need to have both Á and “ being at most ”Ï

2.

Now, towards getting a better than 1/2 approximation to the max-cut-value, let us
consider the following intuition: Suppose we are given a k-clusterable graph G with high
max-cut-value. That is, we are told that Max-Cut(G) Ø 1 ≠ “. In this case, by averaging,
one notices that G has at least ¸ := 2k/3 clusters which have induced max-cut-value at least
1 ≠ O(“). Now consider the graph that one gets after doing a two-step non-lazy walk on
G. This is the graph G

2 where one puts a (parallel) edge between every pair of vertices
between which there is a path of length two. Consider what this process does to a component
with high induced max-cut-value. Intuitively, since (almost) all the edges run between the
maximizing bipartition in this component, we get two sparsely connected components – one
induced on each bipartition. And both of these bipartitions induce expanders as well. This
way, we get one additional sparse cut in G

2 corresponding to every component with large
induced max-cut-value. In particular, this means the (k + ¸)-th smallest eigenvalue of the
Normalized Laplacian of G2 is close to zero. Thus, this intuition suggests that one can track
the (k+ ¸)-th smallest eigenvalue of the normalized Laplacian of the graph which results after
a non-lazy walk of some even length. Indeed, our algorithms are built o� on this intuition.

Towards showing that this algorithm can reliably distinguish between k-clusterable graphs
G with Max-Cut(G) Ø 1 ≠ “ and k-clusterable graphs with Max-Cut(G) Æ 1/2 + “ (recall
we assumed “ = �(Á) in Remark 14), we need to understand the spectra of instances in
both of these regimes. Additionally, we need to show that the graph spectra in these two
cases are appreciably di�erent that a non-lazy random walk based algorithm can detect this
di�erence. We now outline our algorithm. The algorithm proceeds by taking a multiset

2 We ignore the integrality issues.
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S ™ V of samples with |S| = poly(k) ·nO(Á) in the hope of getting enough vertices from every
cluster. Next up, setting the length of the walk to be t = C logn

Ï2 , the algorithm computes the
Gram Matrix of collision probabilities W S = (M tIS)T (M tIS) œ R|S|◊|S| (here IS denotes
the identity matrix restricted to vertices of S). Finally, the algorithm just checks whether the
(k+ ¸)-th largest eigenvalue of n/s ·W S is at least n≠O(Á). If yes, the algorithm reports that
the graph had max-cut-value close to 1 otherwise it reports that the graph had max-cut-value
close to 1/2. In the following remark, we collect the remaining ingredients our analysis relies
upon. In the remainder of the tech-overview we elaborate upon the ideas stressed in this
remark.
I Remark 15. The intuition here comes from considering the matrix W = (M t)T (M) = M2t.
For a set S ™ V , we let W S denote the matrix we obtain when we restrict the matrix W to
rows and columns indexed by S.

1. In Theorem20, we show the following two items.
a. If Max-Cut(G) Ø 1≠ “, then the (k+ ¸)-th eigenvalue of M2t is at least (1≠ Á)2t which

by the choice of t = C logn

Ï2 means we get a lower bound of n≠O(Á) on the (k + ¸)-th
largest eigenvalue of W .

b. If Max-Cut(G) Æ 1/2 + “, we show the (k + ¸)-th largest eigenvalue of W is at most
(1 ≠ O(Ï2))2t which by the choice of t can be shown to be at most n≠C .

2. Finally, one shows that the eigenvalues of W are very close to the corresponding eigenval-
ues of n/s ·W S. This goes via an application of Matrix Bernstein Bounds. Using these
bounds requires a little more understanding of the eigenvector structure of the Laplacian
of Clusterable instances with high max-cut-value which we also develop.

Towards showing Item 1.(a) and Item 1.(b) mentioned in Remark 15, it is helpful to introduce
a little notation. Let ‹1 Ø ‹2 Ø · · · Ø ‹n denote the eigenvalues of the random walk matrix
M . For showing item 1.(a), note that using the easy direction of higher order Cheeger,
we already have ‹k(M) Ø 1 ≠ 2Á. In case 1.(a), we also know Max-Cut(G) Ø 1 ≠ Á which
additionally means that the last ¸ eigenvalues of M are close to ≠1 (and in particular we have
‹n≠¸+1 Æ ≠1 +O(Á)). This is because G has ¸ nearly bipartite components and therefore,
we have ¸ disjointly supported vectors all of which have Rayleigh Quotient close to ≠1. In
all, this means that (k + ¸)-th largest eigenvalue of M2t is at least (1 ≠ O(Á))2t as desired.

Towards showing Item 1.(b), we prove an important eigengap transportation lemma
(Lemma 21) in spectral graph theory which asserts that for any expander graph on n vertices
we have ⁄n≠1 < 2≠�(⁄2) (recall that ⁄’s denote the eigenvalues of the Normalized Laplacian).
Although, fairly intuitive, this seems to be a novel result. Indeed, a direct adaptation of
techniques from [14] produces a bound saying ⁄n≠1 Æ 2≠ �(⁄2

2
) as obtained in [12]. One can

use this lemma to conclude that in case 1.(b), where Max-Cut(G) Æ 1/2 + Á, ‹n≠k+1 ∫ ≠1.
Additionally, since G has such a small max-cut-value, we can show that there at least
¸ := 2k/3 clusters in G which have induced max-cut-value close to 1/2. It can be shown that
corresponding to every one of these ¸ components, we have an additional eigenvalue of M
which is bounded away from ≠1. In all, using Lemma 21, we get ‹k+¸(M2t) Æ (1 ≠ O(Ï2)2t
as desired.

Finally, we turn to item 2 in Remark 15. Towards relating eigenvalues of W and n/s ·W S

using Matrix Bernstein, we need to control the Euclidean length of columns of M2t. Thus,
we want to understand collision statistics of random walks performed from all start vertices in
G. We do this by following techniques used in [4, 7] which encounters a similar situation. The
main goal in [4] was to test k-clusterability and lazy walks were fine for this objective. The
main idea there was to show that the eigenvectors of the random walk matrix corresponding to
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eigenvalues close to 1 (that is, eigenvectors which reveal clusterability information) are mostly
uniform, in absolute value, over the corresponding cluster. [7] formalize this by proving an ¸Œ
norm bound on such eigenvectors which is later leveraged towards understanding the collision
statistics of random walk behaviors from an arbitrary pair a, b of vertices. Oversimplifying a
little, this allows them to approximate powers of random walk matrices which can then be
used to test for an eigengap which in turn allows us to test clusterability. However, bounding
this Euclidean length in our situation requires a more nuanced adaptation of techniques from
[4] since our walks are non-lazy and we need to track eigenvectors of the random walk matrix
with corresponding eigenvalue close to ≠1.

Indeed, we show a similar statement for such eigenvectors. This is done by proving ¸Œ
norm bounds on these eigenvectors which we later use to approximate appropriate powers of
random walk matrices. Again, using the same oversimplification as above, this allows us to
approximate powers of random walk matrices which we then use to distinguish clusterable
graphs with large max-cut value from clusterable graphs with small max-cut value. More
precisely, what we show that the eigengaps between the original clusterable graphs (one
with large max-cut value and the other one with a small max-cut value) are preserved under
sampling. And this finishes the high level description of our approach. As a final aside,
there are a few additional technical challenges/interesting features of this work which we
enumerate below.

Challenges in Bounding Euclidean Length of Random Walk Vectors: Recall that
in [4], the goal was to test k-clusterability. To this end, [4] exploits that for a k-clusterable
graph, there is a large gap between the k-th largest eigenvalue (which is at least 1 ≠ 2Á)
and (k + 1)-st largest eigenvalue (at most 1 ≠ Ï

2
/2)) of the random walk matrix, M . On

the other hand, in graphs which are far from being k-clusterable, the (k+1)-st eigenvalue
of the random walk matrix is also reasonably large and this can be used a reliable
estimator to distinguish between the two cases. However, in our setup, there is no such
sharp threshold after which we necessarily witness any sharp drop between two successive
eigenvalues of M . And therefore, this non-existence of an eigengap between successive
eigenvalues remains a problem with M2t as well. Indeed, if Max-Cut(G) is large, we can
have more than ¸ clusters with relatively large induced max-cut-value (say with value at
least (1 ≠ 1000Á)) – and each of these clusters implies a yet another large eigenvalue of
M . To allay this, we consider all eigenvectors with eigenvalue at least 1 ≠ ”Ï

2 and we
leverage our ¸Œ bounds on the eigenvectors to upperbound the contribution to ÎM t1xÎ2

2

from such eigenvectors. For other eigenvectors, the contribution to the walk length can
be handled by choosing walk length suitably (which depends inversely on the ” value we
choose). This also explains why our analysis carries the parameter ” around.
Showing an Eigengap in Presence of Crossedges: Remark 15 emphasizes that we
have an eigenvalue gap between the two cases, 1(a) and 1(b). However, recall that we
wanted to consider instances with outer conductance Á and the instance just described
had outer conductance 0. Two problems emerge when we consider instances with large
outer conductance. All of the argument so far assumes there are no cross edges running
between these k components. We show when an Á fraction of cross edges between various
components are added, the (k + ¸)-th eigenvalue of M2t still remains a reliable indicator
for the max-cut-value. This does not follow immediately from Frobenius norm bounds on
the Laplacian corresponding to the cut edges.
Necessity of Non-Lazy Walks: An essential feature of our algorithm is that it crucially
involves performing non-lazy random walks. To the best of our knowledge, there is
no other work in sublinear algorithms where analyzing non-lazy walks is tied with the
algorithmic guarantees in such a fundamental way. Classic results in property testing
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Algorithm 1 TestMaxCut(G, k,Ï, Á, d) Û Need: Á/Ï2 Æ ” = 1
105 , a constant ‰ ∫ 1.

Û Set constants a = 2000·‰·d4
”

, b = 4000·‰2
d
8

”2 .

1 ¸ = Á2k/3Ë
2 › = n

≠a·Á/Ï
2 .

3 s = 1020k4d6 · n80”+b·Á2
/Ï

4

4 t = 10/” · 1/Ï
2 · ‰d

3 logn.
5 Sample s vertices from V uniformly at random. Let S be the multiset of sampled

vertices.
6 Compute Z = (n/s)

1
D≠1/2M tS

2T 1
D≠1/2M tS

2
using the oracle.

7 µthres = 0.99

d
· n≠2000·Á·‰d

4
”

≠1
Ï

≠2 .
8 if ‹k+¸ (Z) Ø µthres then
9 Accept G.

10 else
11 Reject G.

on bounded degree graphs often make the simplification of making the graph regular
by adding loops (which again makes any random walks considered lazy). However, we
unfortunately cannot use this simplification of adding loops as this again risks shrinking
the eigengap our approach hopes to exploit. Thus, for non-regular input graphs, our
analysis can not even assume the random walk Matrix M to be symmetric (a common
assumption which can be made if G could be made regular by adding loops).

4 Algorithm Under the Oracle Assumption

The goal of this section is to present an algorithm for testing Max-Cut(G) under a simplifying
assumption. We assume that we have the following oracle at our disposal: the oracle takes a
vertex v as input, and returns D≠1/2M t1v.

5 Proof Under the Oracle Assumption

We state below the main theorem which asserts that the above algorithm is a bonafide
distinguisher which reliably tells apart graphs with large max-cut-value from graphs with
small max-cut-value. This provides the proof of correctness for the algorithm described in
Section 4.

I Theorem 16. Let G = (V,E) be a (k,Ï, Á)-clusterable graph where
The maximum degree of G is at most some constant, d.
Á Æ ”·Ï2

104·d4·‰ .
Here ” = 10≠5 and ‰ > 1 is su�ciently large.

Then the algorithm TestMaxCut(G, k,Ï, Á, d) runs in time ‰·d3·logn

Ï2 n
1/2+100”+O(Á/Ï

2
) and

with probability at least 2/3, returns
Accept if Max-Cut(G) Ø 1 ≠ Á.
Reject if Max-Cut(G) Æ 1/2 + Á.

I Remark 17. As noted in item 3 of Remark 14, one can show Theorem16 assuming both
Á, “ π ”Ï

2 (where ” = 10≠5). It is more easily shown assuming “ Æ Á which is what the
theorem above assumes.
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Towards proving this, we first prove the following theorem:

I Theorem 18. Let G = (V,E) be a (k,Ï, Á)-clusterable graph where
The maximum degree of G is at most some constant, d.
Á Æ ”·Ï2

104·d4·‰ . Here ” = 10≠5 and ‰ > 1 is su�ciently large.
Then with probability taken over its internal randomness, 1 satisfies the following.

If Max-Cut(G) Ø 1≠Á, ‹k+¸

31
D≠1/2M tS

2T 1
D≠1/2M tS

24
Ø 0.99

d
·n≠2000·Á·‰d

4
”

≠1
Ï

≠2

with probability at least 2/3,

If Max-Cut(G) Æ 1/2 + Á, ‹k+¸

31
D≠1/2M tS

2T 1
D≠1/2M tS

24
Æ n

≠100,

The proof of Theorem16 is immediate by Theorem18.

Proof of Theorem16. As Á is upper bounded by 10≠4
”Ï

2
‰

≠1
d

≠4, in the YES case our
estimator is lower bounded by 0.99d≠1 · n≠2000·Á·‰d

4
”

≠1
Ï

≠2 with probability at least 2/3.
While in the NO case, our estimator is upper bounded by n

≠100 with probability 1. J

We begin by stating the following proposition:

I Proposition 19. Let G = (V,E) be a bounded degree (k,Ï, Á)-clusterable graph with Á at
most 10≠4

”Ï
2
‰

≠1
d

≠4 where ” = 10≠5 and d is the degree bound. Then,
1. If Max-Cut(G) Ø 1 ≠ Á, then at least Á2k/3Ë of the clusters have induced Max-Cut value

at least (1 ≠ 10Ád).
2. If Max-Cut(G) Æ 1/2 + Á, then at least Á2k/3Ë of the clusters have induced Max-Cut value

at most (1/2 + 10Ád).
N.B. In the following, we will denote Á2k/3Ë by ¸ for simplicity.
A simple markov argument shows that in the case with large max-cut value, most of the

clusters are nearly bipartite (far from bipartite in the case with small max-cut value resp.).

5.1 Eigengaps in the Spectrum of Random Walk Matrix

For simplicity of the reader, we collect all the parameters we use throughout the paper.
” = 10≠5.
‰ > 1. a su�ciently large constant.
A degree bound, d.
k œ N, the number of clusters in our (k,Ï, Á) clusterable graph.
¸ = Á2k/3Ë.
A bound on Á, namely Á Æ ”Ï

2
/(104d4‰).

We state the main result of this section below. The proof is given in the appendix. In
this section, we will prove one key lemma (Lemma 21) which is crucially used in proving the
theorem below.

I Theorem 20. Let G be a bounded degree graph that admits a (k,Ï, Á)-clustering such that
Á Æ ” · Ï

2
/

!
104‰d

4
"
where d is the degree bound (and ” = 10≠5). Then,

1. If Max-Cut(G) Ø 1 ≠ Á, then ‹k+¸

31
D≠1/2M t

2T 1
D≠1/2M t

24
Ø (1 ≠ 100Ád)2t /d,

2. If Max-Cut(G) Æ 1/2 + Á, then

‹k+¸

31
D≠1/2M t

2T 1
D≠1/2M t

24
Æ

!
1 ≠ Ï

2
/

!
100‰d

3
""2t,

where t is any even number.

We begin by proving the key technical lemma required in the proof of Theorem20.
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I Lemma 21 (Eigengap Transportation). Let G = (V,E) be a bounded degree graph, and
0 Æ ⁄1 Æ ⁄2 Æ . . .⁄n Æ 2 denote the spectrum of LG. Then ⁄n≠1 Æ 2 ≠ ⁄2

‰·d2 , where d is the
degree bound and ‰ is an absolute constant.

Let us do a little setup before we prove Lemma 21. Suppose vn≠1,vn denote the last
two eigenvectors of L̄ = I ≠ D≠1/2AD≠1/2. Suppose for a su�ciently small “ > 0, we have
for every x œ span(vn≠1,vn), R(x) Ø 2 ≠ “. We will show that in this case we also have
⁄2 Æ O(“d2) where d is the maximum degree in the graph G. Before we prove this result,
we first develop some intuition which will help with the formal proof which is presented in
Section Subsubsection 5.1.2.

5.1.1 Intuition for Proving Lemma 21

Towards getting some intuition, it will be helpful to assume that the graph is d-regular.
Denote the eigenvectors corresponding to ⁄n≠1 (resp ⁄n) as vn≠1 (resp vn). Recall that in
this (d-regular) case the eigenvector corresponding to ⁄1 is given v1 = 1/Ô

n. As mentioned
above, we would like to produce a vector x ‹ v1 with small Rayleigh Quotient. Consider
a d-regular graph with two disjoint bipartite components each on n vertices – denoted
G1 = (L1, R1, E1) and G2 = (L2, R2, E2). The eigenvectors vn≠1,vn satisfy:

vn≠1(u) =

Y
__]

__[

+1/
Ô
n if u œ L2

≠1/
Ô
n if u œ R2

0 Otherwise.
and vn(u) =

Y
__]

__[

+1/
Ô
n if u œ L1

≠1/
Ô
n if u œ R1

0 Otherwise.
(1)

Now consider the vector x (resp y) obtained by reversing the signs of all entries in
the vector vn (resp vn≠1). Thus, the vector x equals a copy of the all-ones vector over
G1 and y equals a copy of all-ones vector over G2 where x and y have disjoint supports
and thus Èx,yÍ = 0. This gives a two-dimensional space of vectors with small Rayleigh
Quotient which in turn means ⁄2 = 0. While taking the absolute values gives a vector with
small Rayleigh Quotient, in general, we cannot expect this to produce vectors with disjoint
supports. Suppose we only have the vector y we obtained above by taking the absolute
values of every entry in vn≠1. Suppose we want to use only this vector towards bounding ⁄2.
The di�culty is this vector is not orthogonal to v1 as all coordinates in both of these vectors
are all positive. To fix this, we subtract o� a multiple of the projection of the y along the
all-ones vector to obtain a vector z ‹ 1. We would like to bound the Rayleigh Quotient of
z. Since all the coordinates in z are a shift of corresponding coordinates in y (by the same
additive amount) the numerator of the corresponding Rayleigh Quotients of the two vectors
are equal. Towards bounding the Rayleigh Quotient, the main idea is to lower bound the
length of z after this shift. This is precisely what we achieve in Lemma 27. Details follow.

5.1.2 Proof of Lemma 21

The high-level idea in the argument is to exhibit a two-dimensional subspace all vectors in
which have a small Rayleigh Quotient with respect to the Laplacian. We already know D1/21
is one such vector. So, it su�ces to produce a vector t ‹ D1/21 which has a small Rayleigh
Quotient. At a high-level, our proof uses the following strategy. If a suitable non-linear
transform applied to vectors vn≠1 or vn does not give us the desired vector t, then that
same transform applied to an equal weight linear combination of D≠1/2vn≠1 and D≠1/2vn

gives us the desired vector t.
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Let R(x) = RL̄(x). Note that the map x æ D1/2x is a bijection and as noted in [15],
this means

⁄n≠1 = max
S™Rn

S 2-dimensional

min
xœS\0

RL̄(x) (2)

= max
S™Rn

S 2-dimensional

min
xœS\0

RL̄(D
1/2x) (3)

=
q

(u,v)œE
(xu ≠ xv)2q
dvx2

v

. (4)

The following observation is immediate.

I Observation 22. Suppose ⁄n≠i+1(L̄) Ø 2 ≠ “. Let S = span(vn≠i+1,vn≠i+2, . . . ,vn).
Consider a i-dimensional subspace S

Õ = span(D≠1/2vn≠i+1,D
≠1/2vn≠i+2, . . .D

≠1/2vn) ™
Rn. Then, for all non-zero vectors x œ S

Õ, we have R(D1/2x) Ø 2 ≠ “.

B Claim 23. Let x œ span(D≠1/2vn≠1,D
≠1/2vn). Now consider the vector xÕ = |x|

obtained by letting xÕ(u) = |x(u)| for each u œ V . Then, R(D1/2xÕ) Æ “.

Proof. Since x œ S
def= span(D≠1/2vn≠1,D

≠1/2vn), by Observation 22, it holds that
R(D1/2x) Ø 2≠“. This means

q
(u,v)œE

(x(u)+x(v))2 Æ “
q

dvx2
v
. Note that ÎD1/2xÕÎ2 =

ÎD1/2xÎ2 as the two vectors have same absolute value in each coordinate. We will show

that R(D1/2xÕ) =
q

(u,v)œE
(xÕ

(u)≠xÕ
(v))2q

dvxÕ(v)2
Æ “ which will settle the claim. To do this, pick an

edge (u, v) œ E and note that we have the following cases.
1. Case 1: xÕ(u) = x(u),xÕ(v) = x(v). In this case, we note that (xÕ(u) ≠ xÕ(v))2 Æ

(x(u) + x(v))2.
2. Case 2: xÕ(u) = ≠x(u),xÕ(v) = ≠x(v).

In this case as well, it holds that (xÕ(u) ≠ xÕ(v))2 Æ (x(u) + x(v))2.
3. Case 3 and 4: xÕ(u) = ≠x(u),xÕ(v) = x(v) and vice versa. In this case it holds that

(xÕ(u) ≠ xÕ(v))2 = (x(u) + x(v))2.

Thus, it follows that in all, we have R(D1/2xÕ) =
q

(u,v)œE
(xÕ

(u)≠xÕ
(v))2q

dvxÕ(v)2
Æ “ which settles

the claim. C

Thus, given any vector x œ S
def= span(D≠1/2vn≠1,D

≠1/2vn) we can produce a vector
xÕ for which D1/2xÕ has small Rayleigh Quotient. However, this vector is not orthogonal to
the trivial eigenvector D1/21 of L. To fix this, we obtain a vector t in two steps. As a first
step, consider the following vector obtained by shifting xÕ around which is orthogonal to the
all ones vector, 1:

s = xÕ ≠ ÎxÎ
1
· 1
n
.

To obtain a vector orthogonal to D1/21, consider the vector t = D≠1s. Observation 26
shows that this vector is orthogonal to D1/21. One notes that t does not necessarily have
small length and this is an obstacle to upperbound R(D1/2t). To handle this, we make the
following definition.
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I Definition 24. Let – > 0 be a su�ciently small constant. Take a unit vector x œ Rn.
Consider the vector s obtained by taking absolute values in each coordinate and then shifting
it to obtain a vector orthogonal to all 1’s vector. That is,

s(i) = |x(i)| ≠
ÎxÎ

1

n
.

Let t = D≠1s. The vector x is called (–, d)-bad if ÎtÎ
2
< –/d. If ÎtÎ

2
Ø –/d, then the

vector x is not (–, d)-bad and is called (–, d)-good. If the parameter d is clear from context,
we will call such these vectors –-good or –-bad.

We make the following observations about (–, d)-good vectors.

I Observation 25. Let x œ Rn be a unit vector. Obtain the vector s = |x| ≠ ÎxÎ1 · 1
n
and

the vector t = D≠1s. If ÎtÎ Ø —, then ÎsÎ2 Ø —. Also, if ÎsÎ Ø –, then t is –-good.

Proof. Note that ÎtÎ2
2
=

q
s2
i
/di Æ

q
s2
i
= ÎsÎ2

2
. Thus, if ÎtÎ2 Ø —, ÎsÎ2 Ø ÎtÎ2 Ø —. In

the other direction, we are told ÎsÎ2
2
=

q
s2
i

Ø –
2. Note that ÎtÎ2

2
=

q
s2
i
/d

2

i
Ø ÎsÎ2

2
/d

2

and the result follows. J

I Observation 26. Let x œ Rn be a unit vector. Let t be a vector obtained as above. We
have D1/2t ‹ D1/21.

Proof. Note

ÈD1/2t,D1/21Í = Èt,D1Í =
ÿ

tidi =
ÿ

si = 0. J

In the rest of this section, we will prove the following lemma.

I Lemma 27. Let – > 0 be a su�ciently small constant. Then there exists a vector
x œ span(D≠1/2vn≠1,D

≠1/2vn) which is –-good.

With this lemma in hand, Lemma 21 follows as an immediate corollary.

Proof of Lemma 21. By Lemma 27, there exists a vector x œ span(D≠1/2vn≠1,D
≠1/2vn)

which is –-good. As before, define the vectors s and t. Recall from Observation 26 that
D1/2t ‹ D1/21. Towards showing that ⁄2 Æ O(“d2), it su�ces to show that R(D1/2t) Æ
O(“d2). First, let us note that x being –-good, we have ÎtÎ

2
=

..D≠1s
..
2

Ø –/d. Letting
xÕ = |x|, by Claim 23, we know

q
(u,v)œE

(xÕ(u) ≠ xÕ(v))2 Æ “
q

dvxÕ(v)2. And since s is
obtained by shifting each coordinate in xÕ by the same amount, it follows that

ÿ

(u,v)œE

(s(u) ≠ s(v))2 =
ÿ

(u,v)œE

(xÕ(u) ≠ xÕ(v))2 .

Next, write

R(D1/2t) =
q

(u,v)œE
(tu ≠ tv)2

q
dvt

2

v

.

We observe that for each edge (u, v) œ E, (tu ≠ tv)2 Æ (su ≠ sv)2. Finally, note
q

dvt
2

v
Øq

t2
v
= ÎtÎ2

2
Ø –

2
/d

2. Thus, it follows that R(D1/2t) Æ “d
2
/–

2. This means that ⁄2 Æ
R(D1/2t) Æ “ · d2/–

2. J

Now, in the rest of this document, we will prove Lemma 27. The following claim will be
useful.
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B Claim 28. Suppose x is an –-bad vector of unit length (in l2). Let

s = |x| ≠ ÎxÎ
1
· 1
n

(where |x| is a vector with |x|(u) = |x(u)|’u œ V .) Then ÎsÎ
1

Ø
!
1 ≠ –

2
/4

" Ô
n.

Proof. By the definition of bad vectors and Observation 25, we have ÎsÎ
2

Æ –. On expanding
out,

ÎsÎ2
2
=

ÿ

iœV

A
x(i)2 + ÎxÎ2

1

n2
≠

2|x(i)| · ÎxÎ
1

n

B
=

A
ÎxÎ2

2
≠

ÎxÎ2
1

n

B
=

A
1 ≠

ÎxÎ2
1

n

B
Æ –

2
.

Rearranging, this gives ÎxÎ
1

Ø
Ô
n ·

Ô
1 ≠ –2. For su�ciently small –, and taking Taylor

expansion, this gives

ÎxÎ
1

Ø
3
1 ≠ –

2

4

4
·
Ô
n (5)

C

Now suppose x is indeed an –-bad vector. Since, x is a unit vector with ÎxÎ
1
pretty

close to
Ô
n, it follows that the absolute value of x in each coordinate is almost 1/

Ô
n. This

is shown below.

B Claim 29. Suppose x is an –-bad vector with ÎxÎ2 = 1. Let — > 0 be su�ciently small.
Then for at least

!
1 ≠ –

2
/2—

2
"
· n coordinates in i œ [n], it holds that

1 ≠ —Ô
n

Æ |x(i)| Æ 1 + —Ô
n

.

Proof. From Claim 28, it follows that ÎxÎ
1

Ø (1 ≠ –
2
/4)

Ô
n. This means

ÎxÎ
1Ô
n

=
ÿ

iœ[n]

|x(i)| · 1Ô
n

Ø (1 ≠ –
2
/4)

=∆ 1/2 + 1/2 ≠
ÿ

iœ[n]

|x(i)|/
Ô
n Æ –

2
/4 (6)

=∆ 1
2 ·

ÿ

iœ[n]

|x(i)2|+ 1
2 ·

ÿ

iœ[n]

3
1Ô
n

42

≠
ÿ

iœ[n]

|x(i)|/
Ô
n Æ –

2
/4 (7)

=∆
ÿ

iœ[n]

3
|x(i)| ≠ 1Ô

n

42

Æ –
2

2 (8)

Now let

Bx = {i œ [n] : |x(i)| Ø 1 + —Ô
n

} fi {i œ [n] : |x(i)| Æ 1 ≠ —Ô
n

}.

Note that for each such i œ Bx, we have that (|x(i)| ≠ 1/
Ô
n)2 Ø —

2
/n. Together with (8),

this means that |Bx| Æ 1

2
·
1

–

—

22

n which settles the claim. C

Thus, Claim 28 means that if a vector x is –-bad, it would have a pretty large l1 mass
which as shown in Claim 29 means that x takes on values close to ± 1Ô

n
almost everywhere in

the support. This gives us all the ammunition we need to prove Lemma 27. We will proceed
by contradiction. That is, we will produce a vector x œ S

def= span(D≠1/2vn≠1,D
≠1/2vn)

with small l1 norm. And this means this vector is –-good. Details follow.

ICALP 2024



91:14 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Proof of Lemma 27. For ease of indexing, let z1 = D≠1/2vn,z2 = D≠1/2vn≠1. If either of
z1,z2 is –-good, we choose that vector and the proof is finished. So, suppose both z1,z2

are –-bad. In this case, let S denote the span(z1,z2) = span(D≠1/2vn,D
≠1/2vn≠1). We

normalize all non-zero vectors in S to have length 1. We will show that the unit vector
x = 1Ô

2
(z1 + z2) œ S is in fact –-good. By way of contradiction, suppose x is –-bad and

thus by Claim 28 ÎxÎ1 is close to
Ô
n. We will obtain a contradiction to this. Set a parameter

— =
Ô

– and define the set of “bad” coordinates in z1 as

B1 =
;
i œ [n] : |z1(i)| Ø (1 + —)Ô

n
OR |z1(i)| Æ (1 ≠ —)Ô

n

<
.

Similarly, define B2 as the set of bad coordinates in z2. By Claim 29, note that |B1|, |B2|
both have size at most –/2n. Let B = B1 fi B2 and set G = [n] \B. Note that z1 ‹ z2 and
thus

Èz1,z2Í = 0 =
ÿ

iœ[n]

z1(i)z2(i) =
ÿ

iœB

z1(i)z2(i) +
ÿ

iœG

z1(i)z2(i) (9)

We will show that the first term above is small in absolute value (and therefore, so is the
second term). For notational convenience, denote the restriction of z1 on B as z1,B œ R|B|.
Similarly, define z1,G,z2,B , and z2,G. By Cauchy Schwartz,

-----
ÿ

iœB

z1(i)z2(i)

----- Æ Îz1,BÎ2Îz2,BÎ2 (10)

We now upperbound the right hand side by upperbounding each of the two norms above.
We do this, for instance for z1,B by noting 1 = Îz1Î2

2
= Îz1,GÎ2

2
+ Îz1,BÎ2

2
and noting that

for each i œ G, z1(i)2 Ø (1≠—)
2

n
. This way, we get

Îz1,BÎ2
2

Æ 1≠ (1 ≠ —)2
n

· |G| Æ 1≠ (1 ≠
Ô

–)2
n

· (1≠ –)n Æ 1≠ (1≠ –) · (1≠ 2
Ô

–) Æ 3
Ô

–.

The second inequality uses that — =
Ô

–. Similarly, Îz2,BÎ2
2

Æ 3
Ô

– as well. This means
Èz1,B ,z2,BÍ Æ 3

Ô
–. Thus, the inner product of z1,B and z2,B is indeed small in magnitude

and the same holds for the inner product of z1,G and z2,G which means the restrictions to
the good parts of z1 and z2 are nearly orthogonal. We will now show that ÎxÎ is small and
thus, by Claim 28, x cannot be –-bad. To this end, write

ÎxÎ1 = 1Ô
2
·
ÿ

iœG

|z1(i) + z2(i)|+
ÿ

iœB

|z1(i) + z2(i)|.

Let P = {i œ G : z1(i),z2(i) have the same sign.} and let N = G \ P . We have

ÎxÎ1 = 1Ô
2
·
ÿ

iœP

|z1(i) + z2(i)|+
ÿ

iœN

|z1(i) + z2(i)|+
ÿ

iœB

|z1(i) + z2(i)|

Æ 1Ô
2

3
2 + 2—Ô

n

4
· |P |+ 1Ô

2
· 2— · |N |+

ÿ

iœB

|z1(i) + z2(i)|

We now bound the RHS above. For the last term, note that by triangle inequality and
Cauchy Schwatrz,

ÿ

iœB

|z1(i)|+ z2(i)| Æ Îz1,BÎ1 + Îz2,BÎ1 Æ (Îz1,BÎ2 + Îz2,BÎ2) ·

|B|
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which is at most 2
Ô
3 · 4

Ô
– ·

Ô
n Æ 4 4

Ô
– ·

Ô
n. Finally, we will show that |P | ¥ |N | ¥ n/2 from

which it will follow that ÎxÎ1 ¥
!
1/

Ô
2 +O( 4

Ô
–)

"
·
Ô
n which is multiplicatively bounded

away from
Ô
n (and thus implies x cannot be –-bad).

To see this, recall — =
Ô

– and that

3— Ø

-----
ÿ

iœG

z1(i)z2(i)

----- Ø

-----

-----
ÿ

iœP

z1(i)z2(i)

----- ≠

-----
ÿ

iœN

z1(i)z2(i)

-----

----- .

We will show if |P | ”œ [n/2± 10— · n] then the absolute inner product restricted to the good
coordinates is much larger than 3— which means that both |P | and |N | have size around n/2.

Suppose |P | Ø n/2 + ”n. Note
-----
ÿ

iœP

z1(i)z2(i)

----- Ø (1 ≠ —)2
n

|P | Ø (1 + —
2 ≠ 2—)
n

·
1
n

2 + ”n

2
Ø (1 ≠ 2—)

3
1
2 + ”

4
.

The last term can be expanded as (1/2) ≠ — + ” ≠ 2”—.
Also, note
-----
ÿ

iœN

z1(i)z2(i)

----- Æ (1 + —)2
n

· |N | Æ (1 + —
2 + 2—)
n

·
1
n

2 ≠ ”n

2
Æ (1 + 3—)

3
1
2 ≠ ”

4
.

The last term can be expanded as (1/2) + 3—/2 ≠ ” ≠ 3”—.
For ” = 10—, using
|
q

iœG
z1(i)z2(i)| Ø |

q
iœP

z1(i)z2(i)| ≠ |
q

iœN
z1(i)z2(i)|.

The above lowerbound on |
q

iœP
z1(i)z2(i)|, and

The above upperbound on |
q

iœN
z1(i)z2(i)|

we conclude |
q

iœG
z1(i)z2(i)| Ø 15— which is a contradiction. A similar contradiction is

reached when |P | Æ n/2 ≠ ”n (for ” = 10—). Thus, overall we have n/2 ≠ 10—n Æ |P |, |N | Æ
n/2 + 10—n. Plugging back the upperbounds on |P | and |N | in

ÎxÎ1 Æ
Ô
nÔ
2
((2 + 2—) · (1/2 + 10—) + 2— · (1/2 + 10—)) + 4 4

Ô
–n Æ

Ô
nÔ
2
· (1 + 8 4

Ô
–).

The last inequality uses that — =
Ô

–. This confirms that x is –-good as desired. J

6 Discussion and Concluding Remarks

As mentioned in the tech-overview, the remainder of the proof is deferred to the arXiv version.
In this last section, we want to explain why exploring the better than 1/2 approximability
of max-cut over clusterable graphs seems to be an important step. Indeed, as one might
already see, the current paper only presents an algorithm achieving better than a factor 1/2
approximation for clusterable graphs. After the seminal work of Goldreich and Ron ([9]),
and the recent work of Peng and Yoshida ([13]), the question of obtaining a better than
1/2 approximation algorithms for max-cut in sublinear time got ushered to the frontiers of
research. Perhaps the most natural graph class to extend a better than 1/2 approximation
guarantee on, is the class of low threshold rank graphs as defined in the seminal work of [1].

However, it is important to consider the nuances of the problem: the problem asks
–given a graph with small threshold rank, is its max-cut value close to 1 or is it close to 1/2.
Approaching this problem in the sublinear time regime appears highly non-trivial and it seems
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the current techniques have some limitations. For instance, one might try a Peng-Yoshida
style approach which leverages the ¸2 distance between distributions induced by walks of
odd-lengths and even-lengths. However, as we described in our tech-overview, this technique
does not even extend to the case of graphs with threshold rank 2 (since clusterable graphs
form a sub-class of low-threshold rank graphs). The spectral approach pioneered in the work
of Chinplunkar et al. in FOCS 18, (which was refined in our submission), attempts to relate
the cut-value of the graph to an appropriate eigenvalue close to ≠1. This approach fails
for low-threshold rank graphs. Since, even for graphs with threshold rank 2, there could
be 2 small bipartite components, which would lead to 2 eigenvalues being ≠1. Thus, it is
not immediately clear, if there is an appropriate eigenvalue which is a good indicator of the
actual max-cut value.

Taking inspiration from the celebrated work of [6], [5] defined the notion of a (k,Ï)-
clusterable graphs which has more immediate relevance for the property-testing community.
With all of this in mind, we think this is an important stepping stone towards obtaining better
than 1/2 approximation algorithms for max-cut on low threshold rank graphs. In particular,
getting a handle on the “combinatorics of low-threshold rank graphs” and understanding the
structure of small non-expanding sets therein appears quite hard. Clusterable graphs help
us leverage a much neater structure and improve our understanding of how random walks
might behave in non-expanding graphs, without making the problem of testing max-cut on
them trivial.
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Abstract
We consider a generalized poset sorting problem (GPS), in which we are given a query graph
G = (V,E) and an unknown poset P(V,ª) that is defined on the same vertex set V , and the goal is
to make as few queries as possible to edges in G in order to fully recover P, where each query (u, v)
returns the relation between u, v, i.e., u ª v, v ª u or u ”≥ v. This generalizes both the poset sorting
problem [Faigle et al., SICOMP 88] and the generalized sorting problem [Huang et al., FOCS 11].

We give algorithms with Õ(npoly(k)) query complexity when G is a complete bipartite graph or
G is stochastic under the Erd�s-Rényi model, where k is the width of the poset, and these generalize
[Daskalakis et al., SICOMP 11] which only studies complete graph G. Both results are based on a
unified framework that reduces the poset sorting to partitioning the vertices with respect to a given
pivot element, which may be of independent interest. Moreover, we also propose novel algorithms to
implement this partition oracle. Notably, we suggest a randomized BFS with vertex skipping for the
stochastic G, and it yields a nearly-tight bound even for the special case of generalized sorting (for
stochastic G) which is comparable to the main result of a recent work [Kuszmaul et al., FOCS 21]
but is conceptually di�erent and simplified.

Our study of GPS also leads to a new Õ(n1≠1/(2W )) competitive ratio for the so-called weighted
generalized sorting problem where W is the number of distinct weights in the query graph. This
problem was considered as an open question in [Charikar et al., JCSS 02], and our result makes
important progress as it yields the first nontrivial sublinear ratio for general weighted query graphs
(for any bounded W ). We obtain this via an Õ(nk + n

1.5) query complexity algorithm for the case
where every edge in G is guaranteed to be comparable in the poset, which generalizes a Õ(n1.5)
bound for generalized sorting [Huang et al., FOCS 11].
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1 Introduction

We consider a generalized poset sorting problem and obtain various new algorithmic results.
In the generalized poset sorting problem (GPS), we are given an undirected query graph
G = (V,E) and an unknown poset P = (V,ª). The goal is to fully recover the poset P , that
is, to figure out the relation between all x, y œ V , through the smallest number of queries to
the edges in G. Here, when the algorithm makes a query (u, v) œ E, the relation of u and v

in the poset, i.e., u ª v, v ª u or u ”≥ v (which stands for u and v are not comparable), is
returned. 1

When the comparison graph G is a complete graph, GPS reduces to a special case called
the poset sorting problem which was suggested by [11]. This poset sorting is a fundamental
problem since it captures the presence of incomparable elements in a partially ordered
set which does not have a linear ordering. For this problem, an algorithm with optimal
�(nk + n logn) query complexity was given in [10] where k is the width of the poset (the
width of a poset is defined as the size of its largest antichain).2 However, this Õ(nk) bound
heavily relies on the fact that G is complete, and does not work for our general case where the
query graph G can have missing edges (u, v) which forbid the query of the relation between
u and v (we shall provide a more detailed technical discussion later).

In fact, the missing edges in the query graph already introduce significant challenges
even when the poset P is a total order (where every two elements are comparable). This
special case (general graph G and total order) is called generalized sorting whose study was
initiated by [18]. The state-of-the-art algorithm for this generalized sorting needs to use
Õ(

Ô
mn) queries [22] for general graphs G, far from matching the �(n logn) bound for the

classic sorting. On the other hand, a parallel research theme aims to explore whether Õ(n)
query complexity can be obtained for generalized sorting on special graph families. Notably,
such algorithms were obtained for complete bipartite graphs [1, 7, 2, 21] and Erd�s-Rényi
stochastic graphs [18, 22].

Our focus. Thus, a fundamental question is to figure out which families of query graphs G
admit algorithms with the optimal Õ(nk) queries (to match that for the complete graphs [10])
for GPS, where k is the width of the poset. An ideal goal is to achieve this Õ(nk) bound for
general query graphs, but as we mentioned, even for the total order case it is already di�cult
to improve over

Ô
mn. Therefore, we instead focus on complete bipartite and Erd�s-Rényi

stochastic query graphs, which are fundamental cases and were very well studied in the
special case of generalized sorting. Moreover, we also study how GPS connects to other
settings, especially its implications for variants of generalized sorting. This connection is
plausible since a natural way for sorting is to build a partially sorted solution and then solve
the remaining sub-problem, and this sub-problem may often be modeled as a poset sorting
problem.

Technical challenges. However, designing algorithms for GPS turns out to be nontrivial
and requires new approaches. Below, we briefly discuss why the existing techniques from
tightly related problems, including poset sorting and generalized sorting problems, cannot be
readily applied.

1 To make sure the problem is well-defined, we need to define the correspondence between P and query
results of G, see Section 3 for more details.

2 Throughout, Õ(f) := O(f poly log f).
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Techniques from poset sorting. The missing edges in G can increase the query complexity
of existing algorithms for poset sorting [11, 10]. In these algorithms, the overall framework
is to incrementally add elements to the current sorting, and when an element x is to
be added, a binary search is used to figure out the relation between x and every other
element added so far. A crucial step to bound the query complexity is that there always
exists a path cover of size k (which is the width) in the induced subgraph of the added
elements, and this ensures only k binary search su�ces. While this is true for complete
graphs, the width k can no longer upper bound the size of the path cover only by using
edges in an induced subgraph of a general G.
Techniques from generalized sorting. Incomparable edges (u, v) œ E (u ”≥ v) reveal very
little information about ordering, hence algorithms for generalized sorting should avoid
querying these edges. However, existing algorithms [18, 23, 22] for generalized sorting
(designed for general query graph G) relies on a rough estimation of the relation between
elements, and “useful” edges may be wrongly classified as incomparable edges. If this
happens, then it is very di�cult to detect the “useful” edge without querying a lot of
incomparable edges, making existing algorithms less e�cient.

1.1 Our Results

We give e�cient algorithms for GPS that make Õ(n poly(k)) queries for Erd�s-Rényi stochastic
query graphs (Theorem 1.1) and complete bipartite query graphs (Theorem 1.2), where k is
the width of the poset throughout (see Section 3 for formal definitions of these query graph
models). These are the first results for GPS parameterized by the width of the poset k, and
the query complexity bound is nearly-optimal in n (and up to a factor of k). We obtain our
results via a unified framework and it may be of independent interest (will be discussed in
Section 4). These results are our main technical contributions.

I Theorem 1.1 (Erd�s-Rényi Stochastic Graphs). There exists an algorithm that solves GPS
on Erd�s-Rényi stochastic query graphs and width-k posets using Õ(nk2) queries with high
probability. This holds regardless of the probability parameter 0 < p Æ 1 in Erd�s-Rényi
G(n, p).

Roughly, the Erd�s-Rényi stochastic query graph is a union of an adversarily choosen base
graph and an Erd�s-Rényi graph G(n, p). Although our bound for Erd�s-Rényi stochastic
query graph does not depend on p, it still relies on the structural property of the Erd�s-Rényi
graph where edges are i.i.d. generated. This case of Erd�s-Rényi query graph has been well
studied in (total order) generalized sorting (i.e., k = 1), where [18] and [22] are milestones.
Compared with [18], our result is significantly better than their min{np≠2

, n
1.5Ô

p}, especially
that our algorithm is Õ(n) regardless of p and theirs can obtain near-linear query complexity
only for a very limited range of p. On the other hand, compared to the more recent work [22]
whose bound is O(n log(np)), our result is worse by a poly logn factor. However, our slightly
worse bound generalizes to poset sorting and is also technically di�erent. See Section 4 for a
more detailed discussion. Finally, we remark that a unique feature of [22] is that when p is
very small, say p = 1/n, then the complexity of sorting can even be better than O(n logn)
which is the well-known lower bound for classic sorting. We leave it as an open question to
figure out if one can achieve a similar bound for GPS with Erd�s-Rényi query graphs.

I Theorem 1.2 (Complete Bipartite Graphs). There exists an algorithm that solves GPS on
complete bipartite query graphs and width-k posets using Õ(nk) queries with high probability.

ICALP 2024
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This result for complete bipartite graphs is tight up to poly(logn) factors, since the
�(nk) lower bound for complete query graph in [10] still holds in the complete bipartite case.
Our result is also a generalization of a series work of nuts-and-bolts problems [1, 7, 2, 21],
and our bound for k = 1 nearly matches the state-of-the-art bound for this problem (up to
poly log factors, compared to the best O(n logn) result in (total order) generalized sorting
problem on complete bipartite graphs by [21]). Note that there is a di�erence between the
nuts-and-bolts problem and the generalized sorting problem on complete bipartite graphs,
where the nuts-and-bolts problem has an additional assumption that every node is assigned an
edge with the query result “equal”. With the help of the “equal” edge, a natural randomized
quicksort-like algorithm achieves the query complexity O(n logn), by an O(n) partition
algorithm to partition nodes based on a randomly selected pivot. However, if the “equal”
edge is not provided, it is already a non-trivial task to design a partition algorithm. This
is also noted by [21], and they resolve the missing “equal” edges and design an O(n logn)
sorting algorithm with some other indirect methods. However, this indirect method does
not yield a partition algorithm, and we find it hard to generalize these indirect methods to
the setting of poset. In our result, we devised a partition algorithm for complete bipartite
graphs without “equal” edges, and this type of partiton algorithm was unknown even for the
total order setting. This partition step turns out to be useful and naturally generalizable to
posets.

Weighted generalized sorting. Apart from the significance in its own right, another
important implication of GPS is that it can be used as an intermediate step for other (total
order) sorting problems. We showcase this idea by presenting new results for the weighted
generalized sorting problem.

In the weighted (total order) generalized sorting problem, the query graph is weighted
(with weight function w : E æ RØ0), and each query (u, v) œ E incurs a weighted cost
w(u, v) instead of a unit cost. Since the objective is weighted, we measure the performance
of the algorithm using the competitive ratio [16], defined as the total cost incurred by the
algorithm divided by

q
i w(vi, vi+1) (v1 ª . . . ª vn is the total order), which is the cost of

cheapest proof, i.e. comparing every consecutive elements in the sorted order. We obtain the
following result for weighted generalized sorting.

I Theorem 1.3. There exists an algorithm that solves the weighted (total order) generalized
sorting problem with competitive ratio Õ(n1≠1/(2W )), where W is the number of distinct
weights in the graph.

Indeed, obtaining nontrivial bounds for this weighted generalized sorting has been
suggested as an open question by [9], and it received significant attention in various subsequent
works [16, 3, 4, 13, 14]. However, these existing works mostly focus on understanding
certain special cases of weights, such as bounded number of distinct weights [4, 13, 14] or
structured/random weights [16, 17, 3]. For the general case, we are only aware of an O(n)
ratio [16], which is trivial in the unweighted case since one can query all edges, but is already
nontrivial in the weighted setting.

Our result makes progress on the weighted generalized sorting problem, and our bound
implies a strictly sublinear ratio when the number of distinct weights is bounded (and the
weights can take any non-negative values). This improves over the known O(n) ratio in [16],
and our ratio also matches ratios for several notable special cases. When W = 1 which
reduces to (total order) generalized sorting, our bound matches the Õ(n1.5) query complexity
in [18] which is the state-of-the-art for dense graphs (for sparse graphs a

Ô
mn bound was
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obtained in [22], where m is the number of edges in the query graph). Moreover, we give an
improved analysis of our algorithm for the case when the weights are well-separated, and this
result matches an Õ(n3/4) ratio, obtained in a recent work [13, 14], for the case when the
weights are picked from {0, 1, n,Œ} (where Œ weight can be interpreted as “missing edge”
in the query graph in our case).

I Remark 1.4. In several previous works [16, 18, 22] it has been mentioned that the ratio for
finding a maximum element in a weighted query graph is �(n), and this seems to suggest
that �(n) is also a lower bound for sorting (since sorting implies finding the maximum).
However, this is not true, for two reasons. One is that the ratio in the maximum-finding
problem is defined with respect to the cost of a minimum-weight certificate for the maximum,
which can be much smaller than the

q
i w(vi, vi+1) cost for identifying total order in sorting.

Secondly, the hard instance in the lower bound of maximum-finding [16] only uses three
types of weights, and by our upper bound, this type of instance cannot be hard for sorting.
A similar discussion of this gap was also made in [13, 14]. In fact, a further implication of
our result is that, in order to prove �(n) lower bound for weighted generalized sorting, one
must use at least �(logn) distinct weights in the hard instance.

Auxiliary problem: GPS with comparable edges (GPSC). As we mentioned, GPS is used
as an important intermediate step for obtaining Theorem 1.3. In particular, we consider a
special case of GPS whose query graph consists of comparable edges only, i.e., (u, v) œ E

only if u ª v or v ª u, and we call this special case the GPS with comparable edges (GPSC).
Due to the fact that GPSC is in between GPS and (total order) generalized sorting, and
that it may be useful for other sorting problems, the result of this problem, stated below,
may be of independent interest.

I Theorem 1.5 (GPSC). There exists an algorithm that solves GPSC on general query
graphs and width-k posets using Õ(nk + n

1.5) queries with high probability.3

As mentioned, Theorem 1.5 is a crucial subroutine for Theorem 1.3, but to obtain a
sublinear ratio for weighted generalized sorting (provided that the number of distinct weights
is bounded), any n

2≠‘ query bound for GPSC su�ces, although it may lead to a worse
constant in the exponent of n in the ratio (i.e., worse than O(n1≠1/(2W )) but still o(n)). We
give a detailed overview on how this can be used to obtain Theorem 1.3 in Section 4.

I Remark 1.6 (Comparison to [13, 14]). A recent work [13] independently studies similar
problems that are relevant to our results.4 The meta problem suggested in their paper is a
weighted version of the GPSC problem, which they call universal sorting. This weighted GPSC
model is more general than the unweighted GPSC (which is the model of our Theorem 1.5),
but is incomparable with GPS which we focus on. However, due to a lower bound of �(n) for
the universal sorting model, their concrete results/upper bounds only deal with special cases.
We compare with each of their main results in the following; in short, all their results concern
problems that are either special cases or immediate extensions of ours, but the bounds may
not be comparable (i.e., they may obtain better bounds for special cases or use a di�erent
measure of complexity).

3 This algorithm may run in exponential time.
4 [14] is another version of [13] and is to appear in ITCS’24. We focus on [13] since [14] only contains a

subset of results of [13].
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Weighted generalized sorting with special weights [13, Theorem 1]. They study a special
case of weighted generalized sorting, where all weights are among {0, 1, F} (F > n

3/4),
and they achieve a Õ(n3/4) competitive ratio. Our algorithm for general weights achieves
the same competitive ratio for this special case.
Bichromatic sorting [13, Theorem 2]. They study a special case of weighted generalized
sorting, where the comparison costs are among {1,–,—} and are assigned to query graph
in a structured way. They achieve a nearly optimal ratio of O(log3 n) for this special
case, and our general algorithm for weighted generalized sorting (our Theorem 1.3) can
also be applied which yields a ratio of O(n5/6).
GPSC with weight-0 edges [13, Theorem 6]. They propose an algorithm for GPSC that
additionally allows weight-0 edges. This algorithm is used as a subroutine in their sorting
algorithm. Our algorithm for GPSC (our Theorem 1.5), even though not explicitly stated
to be able to handle the weight-0 edges, can still be applied by treating all weight-0 edges
as weight-1. Hence, we still obtain the same bound of Õ(nk + n

1.5) as in no weight-0
edges, and this is actually better than their O(n1.5

k logn) bound.
GPSC on complete bipartite graphs [13, Theorem 22]. They study GPSC problem on
complete bipartite graphs. They measure the performance by instance optimality instead
of query complexity, and their algorithm is O(log3 n) instance optimal. Since GPSC is
a special case of GPS problem, our algorithm for GPS problem on complete bipartite
graphs (our Theorem 1.2) can be applied which yields a query complexity of Õ(nk). This
is also a near optimal result because optimal solution requires �(nk) queries in the worst
case.

1.2 Technical Contribution
We give a highlight of technical challenges and our technical contributions. A more detailed
overview of the proof can be found in Section 4.

A general framework for GPS. Previous algorithms for generalized sorting [18, 23, 22] use
an incremental method to iteratively discover the (nearly-)minimum element, but this does
not work directly in GPS due to incomparable edges and non-unique minimal elements. We
develop a general framework for GPS, which reduces GPS to finding a linear extension, and
we further show this linear extension can be found by a quicksort-like algorithm proposed by
[18, 10]. The quicksort-like algorithm relies on a partition algorithm that receives as input
a subgraph and a pivot, and it partitions the subgraph into three parts: less than, larger
than, and incomparable to the pivot. We require the partition algorithm to have a refined
query complexity that only depends on the width of the part of the input subgraph (to
the partition algorithm) that is comparable to the pivot. This refined property of partition
algorithms enables us to obtain Õ(nk) query complexity for the quicksort-like algorithm.
Hence, this framework is capable of obtaining (nearly) tight bounds when combined with
carefully designed partition algorithms (for instance, for Erd�s-Rényi query graphs and
complete bipartite graphs), which may be of independent interest.

Novel partition algorithms for Erd�s-Rényi graphs based on stochastic BFS. Our partition
algorithm for Erd�s-Rényi graphs is based on a stochastic BFS, where the key idea is to skip a
vertex from the BFS queue if that vertex has been visited by su�ciently many other vertices.
This still guarantees the correctness with high probability due to the property of Erd�s-Rényi
graph. To make sure we trim most vertices in a few iterations, we also run the BFS in a
random order of vertices. Previously, algorithms for Erd�s-Rényi graphs were only known
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for generalized sorting (without considering a poset), and the techniques are not readily
applicable. In particular, the framework of [18] requires an algorithm with a subquadratic
query complexity for general query graph, which is not available in GPS. Another recent
work [22] uses a very di�erent approach, but the e�ciency of one of its subroutines relies
on the uniqueness of the minimal element. Hence it is highly nontrivial to generalize to the
poset setting while achieving subquadratic complexity.

Weighted generalized sorting via new algorithms for GPSC. To achieve the Õ(n1≠ 1
2W )

competitive ratio, we partition the edge set into cheap and expensive edges according to a
threshold, and the two cases are balanced and solved by one of the following two algorithms:
a) a new sorting algorithm that may receive a partially sorted graph (i.e. a partial order)
as extra input and the competitive ratio depends on the width of the input partial order;
and b) a new GPSC algorithm as in Theorem 1.5. In our new GPSC algorithm, we employ
the framework of sorting with predictions [18, 23, 22] (which was proposed for generalized
sorting), where we construct a prediction graph that “guesses” the direction of the edges,
and make decisions and refine the prediction in an iterative manner. To achieve better query
complexity, we devise a stronger predictor that has an “everywhere” guarantee for each
vertex, as opposed to having a collective bound on the total number of wrongly predicted
edges, as considered in [23, 22].

1.3 Related Work
Parameterization other than the width of the poset which we use was also considered in
the literature, and they are generally not comparable to our results. In [5, 6], the GPS is
parameterized by the number of missing edges q =

!n
2
"

≠ m (where m is the number of edges
in the query graph) while there is no restriction on the poset, and nearly-tight bounds were
obtained with respect to q. In a recent work [24], the query graph can be general but the
poset is assumed to be a tree and is parameterized by the maximum degree d, and they also
obtained nearly tight query complexity bounds.

In addition to generalized sorting problems, other related problems were also considered.
Examples include noisy sorting/selection [12, 8, 15] and generalized/weighted selection [16,
20, 3, 10].

2 Preliminaries

Throughout, we use P = (V,ª) to denote a poset, and we let kP denote the width of
P. By Dilworth’s Theorem, a poset of width k can be decomposed to k chains, say
C = {C1, C2, . . . , Ck}, where the elements are comparable to each other on each chain.
Suppose P = (V,ª) is the underlying poset of GPS problem, we directly use k to denote
kP . For every X ™ V , let kX denote the width of poset (X,ª). For every X ™ V, v œ X, let
Xªv, X⌧v, Xºv denote the elements of X that are smaller than v, incomparable with v and
larger than v respectively. Recall that x ⌧ y denotes “x is incomparable with y”. For some
set X, denote the set of permutations of X by perm(X). For every set X with a total order
(X,ª) and every x œ X, define rankX(x) = |{y œ X | y ª x}|+1 as the rank of x. Similarly,
let rankp(x) be the rank of x in permutation p.

For a graph G = (V,E) and a vertex subset S ™ V , denote G[S] as the induced subgraph
of G on S, whose vertex set is S and the edge set is {(u, v) œ E : u, v œ S}. Given a directed
acyclic graph (DAG) G̨(V, Ę), let P(G̨), which stands for induced poset of G̨, be a poset
P Õ(V,ª), such that ’u, v œ V , u ª v if and only if there is a directed path from u to v in
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G̨. This implies that u ”≥ v if and only if u cannot reach v and v cannot reach u in G̨. By
Dilworth’s Theorem, a DAG can be covered by k paths, and these paths form a path cover
of G̨, where k is the width of P(G̨), i.e., every vertex is contained in at least one path (and
may be contained in multiple paths).

3 Models

Generalized poset sorting (GPS). Formally, in the GPS problem, we are given an n-element
underlying (unknown) poset P = (V,ª) and a graph G = (V,E). An oracle receives queries
of the form (u, v) œ E, and returns the relation of u, v in P. The goal of GPS is to use
the minimum number of queries to fully recover P, i.e., ’u, v œ V , correctly determine the
relation of u, v in P.

Model of query graphs in GPS. To make sure the problem is well-defined, e.g., G has
su�cient edges to recover P, we need to add some further constraints on the query graph G.
Specifically, we enforce the following: let Ę := {(u, v) œ E : u ª v} and G̨ = (V, Ę) (noting
that G̨ is defined with respect to both G and P) then

P = P(G̨). (1)

This is well-defined if G is deterministic (for instance G is a complete bipartite graph), but
for stochastic case enforcing this directly may cause randomness issues. Hence, we discuss
how we define the Erd�s-Rényi stochastic query graph in more detail in the following.

Model of query graphs in GPS: Erd�s-Rényi stochastic case. Let G(n, p) denote the
Erd�s-Rényi random graph with n vertices and probability parameter 0 Æ p Æ 1. Specifically,
this G(n, p) is generated by independently adding an undirected edge (u, v) with probability
p for every vertex pair u ”= v. Clearly, this random graph is unlikely to be able to uniquely
identify P . Hence, we still wish to enforce the property stated in (1). Specifically, we need to
add to the Erd�s-Rényi graph a minimal DAG Gbase which is a “base graph”. Here, we say a
DAG G̨ is minimal if there is no redundant edge in G̨, where we call an edge u æ v redundant
if we have ÷x /œ {u, v}, u æ x and x æ v. Formally, we have the following definition, and it
indeed satisfies (1) (stated in Fact 3.2).

I Definition 3.1. Fix some minimal DAG G̨base such that P = P(G̨base), denoting its
underlying undirected graph as Gbase, the Erd�s-Rényi stochastic query graph G is a union
of Gbase and G(n, p).

I Fact 3.2. The random query graph G = (V,E) defined in Definition 3.1 satisfies (1) with
probability 1, namely, Pr[P = P(G̨)] = 1 where G̨ := {(u, v) œ E | u ª v}.

Indeed, this definition can be viewed as a generalization of the stochastic setting in the (total
order) generalized sorting [18, 22], here they use a directed Hamiltonian Path as a base graph
(which is the only minimal choice in the total order setting).

Generalized poset sorting with comparable edges (GPSC). In this model, all edges in G

are comparable edges. Specifically, when an edge in E is queried, the answer will only be
v ª u or u ª v, corresponding to P. We remark that when P is a total order set, then the
model draws back to the generalized sorting model, so GPSC is already a generalization of
generalized sorting.
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Weighted generalized (total order) sorting. In this model, the poset is total order, and
the query graph is weighted by a weight function w : E æ RØ0. We aim to minimize the
sum of costs we pay to solve the GPS under this setting. We evaluate our algorithms by
the competitive ratio, which is the maximum ratio taken over all possible inputs, measured
by the cost of the algorithm, denoted as ALG, divided by OPT which is the sum of costsq

i w(vi, vi+1) where (v1, . . . , vn) is the total order defined by P.

4 Proof Overview

Due to space limit, we give a sketch for the proofs of main results in this section, and the
full proof, except for a more detailed presentation of our main framework (in Section 5), can
be found in the full version.

A general framework for generalized poset sorting. As mentioned, we obtain algorithms
for GPS via a new unified framework. In this framework, we first reduce the GPS to finding
a linear extension (Lemma 5.1). A linear extension for the poset P = (V,ª) is a total order
such that ’x, y œ V , if x ª y then x appears before y in the total order. Finding a linear
extension is an interesting problem in its own right, and it has also been studied in [18, 10].
However, previous studies did not establish the connection between GPS and linear extension,
which we do in our framework.

To find the linear extension, we employ a quicksort-like algorithm to randomly select
a pivot element v œ V and partition the elements into three parts, elements smaller than
v, elements incomparable with v and elements larger than v. Given this partition, one can
compute the linear extension of these three parts recursively and combine them in the order
of smaller-incomparable-larger to obtain the linear extension of P.

This quicksort-like algorithm was also used in [10] to find a linear extension for complete
query graphs. While their analysis may be adapted to the general query graph case, it only
leads to sub-optimal bounds with respect to k. We give new analysis to this quicksort-like
algorithm, and we are able to obtain an improved dependence in k, provided that the partition
algorithm have a refined query complexity that only depends on the width of the part of the
input subgraph (to the partition algorithm) that is comparable to the pivot (see Lemmas 5.3
and 5.4 for more details). We manage to design partition algorithms with refined query
complexity for both Erd�s-Rényi and complete bipartite query graphs.

Now we explain our new steps in the analysis to the quicksort-like algorithm. In [10], it
is observed that the depth of the recursion tree is O(k + logn). This is good enough for
complete query graphs, since the partition step can be done in O(n), and this, combined
with the depth of the recursion tree, translates to an O(nk + n logn) bound. However, when
G is not a complete graph, the partition problem often requires �(n) queries, say O(nkc)
queries, then the analysis in [10] leads to an Õ(nkc+1) bound, which introduces an additional
k factor. In order to avoid this additional k factor, we require partition algorithms to use
O(nkcv) queries that depend on kv, which denotes the width of elements comparable with
pivot vertex v. A crucial observation is that, if kv is small, then the partition algorithm uses
few queries, and if kv is large, then the next pivot vÕ (in the incomparable part) is likely to
have a small kvÕ .

Partition algorithms. For the partition step, if it were the complete graph case, we could
directly query the relations between the pivot and every other element using n ≠ 1 queries.
However, this simple but e�cient bound is no longer easily obtainable when the query graph
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is not complete. Nonetheless, we introduce novel ideas for this partition step, and we manage
to obtain algorithms that use Õ(nk2) queries for Erd�s-Rényi query graphs and Õ(nk) queries
for complete bipartite query graphs.

Partition algorithms: Erd�s-Rényi graphs. It is helpful to interpret the problem as a graph
problem. We define a directed graph G̨ from G, by defining the direction of every edge
(u, v) œ E according to the relation between u, v, i.e. the direction is u æ v if and only if
u ª v. Then for every vertex u, u is smaller than the pivot vertex if and only if there exists a
path from u to pivot in G̨. Hence, the partition problem reduces to finding all vertices that
can be reached from the pivot vertex. This graph problem may be solved using BFS, but a
vanilla BFS needs to query all edges, which is too costly. To resolve this issue, we design a
variant of BFS that can make use of the structure of Erd�s-Rényi graphs, called Skip-BFS.

We start by giving the overall intuition by assuming we are given a chain decomposition of
the poset (which is of size k, guaranteed by Dilworth’s Theorem). An important property of
Erd�s-Rényi G(n, p) is that, if we select O(p≠1 logn) arbitrary vertices, then every vertex is
adjacent to at least one selected vertex5. Hence, if we select the O(p≠1 logn)-largest vertices
from each chain in the chain decomposition of the poset then every vertex has outgoing edges
to at least one selected vertex. Exploring (the neighbors of) these selected vertices only takes
Õ(kp≠1 · np) = Õ(nk) queries, and this finishes the partition.

However, the chain decomposition is not known to our algorithm a priori. Thus, we
need a method to gauge whether a vertex is worth exploring, i.e., it is su�ciently large
in its chain. To this end, Skip-BFS maintains a counter c[v] for each vertex v, which is
initialized as some parameter R = �(logn). Then, if some vertex v becomes the current
vertex for which we start to explore its neighbors, we decrease the counter c[u] by 1 for
every v’s neighbor u such that u is smaller than v. When the counter of some vertex u is
decreased to 0, we skip this vertex u by removing it from the BFS queue. Such u can be
safely skipped since Skip-BFS has already explored R Ø �(logn) vertices that are larger
than u, and these vertices are likely to cover all incoming vertices of u. To see this, since
u’s counter is decreased R Ø �(logn) times, we already visited O(p≠1 logn) vertices that
are larger than u, and that each such vertex connects to p fraction of vertices smaller than
u. Hence, these already-visited O(p≠1 logn) vertices connect to/cover all vertices that are
smaller than u. Finally, to guarantee the e�ciency of this process, we need to explore vertices
in a random order for each BFS step (in step i we explore all vertices with distance i from
the starting vertex), in order to trim most u’s in only a few steps. This eventually leads to
an Õ(nk2) time partition algorithm for Erd�s-Rényi query graphs.

Compared with the approach in [22] who gave an algorithm for the total order case
that uses O(n log(np)) queries which is tight, our bound is comparable, but our approach is
conceptually di�erent. In fact, it is unclear if their approach can be e�ciently generalized to
the poset case. In their algorithm, they repeatedly find the minimum vertex of the current
graph and remove it. To find the minimum vertex, they identify a set of candidate vertices
and then trim the wrong ones by testing if there is an incoming edge, which requires querying
the edges between the candidates and other vertices. However, in GPS, there are multiple
minimal vertices, and it is nontrivial to bound the number of candidates and the adjacent
edges to query since one cannot stop before one is certain that the surviving candidates are
minimal. Hence, it is nontrivial to generalize their approach to GPS using even subquadratic
queries.

5 This does not always happen and only with high probability, but in the following discussions we ignore
this and talk about the typical behavior.
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Partition algorithm: complete bipartite graphs. Suppose the two parts of the bipartite
graph are A and B, and suppose the pivot is b œ B. Let Aºb and Bºb be the elements in A

and B that are greater than b, respectively. We focus the discussion on finding the elements
that are larger than b, i.e., Aºb fi Bºb. Since the graph is complete bipartite, it is easy to
obtain Aºb, but it is nontrivial to obtain Bºb since one cannot directly compare any other
point in B with the pivot b. A natural idea to deal with this is to find the minimal elements
in Aºb so that one can figure out Bºb from these elements. However, finding the minimal
element is technically nontrivial even in the total order setting (whose minimal is unique), let
alone there may be multiple minimal elements in posets. Indeed, the existing algorithm for
the total order setting does not seem to make progress on this simple and fundamental task,
and they solved the problem via other indirect methods [1, 7, 2, 21]. We provide a completely
new algorithm to find the minimal elements for poset in bipartite complete graphs, which is
a technical contribution to the study of sorting and selection for bipartite graphs.

We first devise a FindMin procedure that finds a “local” minimal element in Aºb (the
“local” is due to the fact that we may make iterative calls and only run the procedure on
an induced subgraph). Then, we apply this FindMin iteratively to both find the minimal
elements of Aºb and construct Bºb. In particular, every time we run FindMin to obtain a
vertex a, we try to find Bºa and expand the currently found Bºb, and remove a from A to
continue. Each iteration takes Õ(n) queries. Then, using the property and the randomness of
FindMin, the new element aÕ that we find must be smaller than a if they are comparable, and
this also shrinks the distance from a to the pivot by a constant factor with good probability.
Finally, if one takes one chain in a chain decomposition, this entire process would typically
run on a vertex from this chain for O(logn) iterations. Summing over k chains, the total
query time is Õ(nk) in the typical case.

GPSC. Recall that there are no incomparable edges in the query graph (which means every
edge (u, v) œ E satisfies either u ª v or v ª u) of the GPSC problem. This conceptually
simplifies the problem since this avoids the issue of gaining essentially no information from
querying an incomparable edge. Technically, this allows us to apply techniques/frameworks
developed for generalized sorting problems, which crucially relies on the information gained
from querying an edge. Specifically, we use an idea proposed in [18] and further developed
in [22], where one first constructs a prediction graph which “guesses” the direction/relation
of all edges in the query graph. Then, an incremental algorithm that iteratively adds a
currently “minimal” element, i.e., an element u with a small number of “incoming edges”
(which are the edges (v, u) such that v ª u) in the prediction, is employed to generate the
sorting.

To apply this framework to GPSC, especially to achieve a linear dependence in k, we
cannot use [18, 22] in a black-box way, since we need a stronger predictor such that it has
a bounded number of wrongly predicted edges everywhere: ’v, there are Õ(

Ô
n) wrongly

predicted edges among all adjacent edges to v. This is stronger than the previously designed
predictors [18, 22], since [18] only guarantees an Õ(

Ô
n) absolute error for the in-degree of

every vertex (instead of the edge predictions), and [22] only guarantees an overall number of
wrong edges (instead of our “everywhere” guarantee). We manage to obtain such a stronger
predictor.

Then, with this predictor, we iteratively maintain a current set A of sorted vertices, and
we show it is possible to identify a key vertex v œ A, whose incoming vertices (with respect to
the prediction) can be partitioned into Xv ™ A and Yv ™ V \A, such that the poset induced
by Xv still has width k, and that |Yv| = O(

Ô
n) (by the stronger guarantee of the predictor).
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This, together with the fact that Xv can be decomposed into k chains, implies that one can
verify/discover all incoming edges (from the predictor) to v using O(k logn+

Ô
n) queries.

In total, this entire iterative process of updating A happens O(n) times, which leads to our
final query bound Õ(nk + n

1.5).

Weighted generalized sorting. We start with designing an O(k poly logn)-competitive
algorithm A, whose input consists of a chain decomposition (of the total order) of size k

in addition to the weighted query graph (and the underlying total order), for weighted
generalized sorting. Notice that one can always feed a trivial chain decomposition of size
n to A and obtain Õ(n) competitive ratio, which is already nontrivial as we mention in
Section 1.1. Although the algorithm by [16] can also achieve an O(n) ratio for weighted
generalized sorting, it only works for the case when all chains are single nodes (i.e., k = n),
hence it is not useful for obtaining a sublinear ratio.

Next, we employ a threshold algorithm to “combine” A with Theorem 1.5 to obtain a
sublinear ratio when the number of distinct weights is bounded. Suppose the weights are
w1 < . . . < wW . We use a threshold parameter 1 Æ · Æ W , and define G· as the subgraph
of the query graph with edge weights at most w· . We also consider the poset P· induced
by G· , and let k· denote its width. We start with running Theorem 1.5 on (G· ,P· ) and
ignoring the weight, which takes Õ(nk· ) queries (assuming k· Ø

Ô
n in this discussion), and

it generates a chain decomposition of P· . Notice that this chain decomposition of P· is also
a chain decomposition of P since they are supported on the same element set. Then, we feed
this chain decomposition to A, and use the output of A as the result. The entire algorithm
achieves an Õ(nk· ·w·

OPT + k· ) ratio, and we can further show this ratio is at most O( nw·
w·+1

)
(assuming that k· is not the dominating factor), which depends on the “gap” between two
adjacent weights. The final result can be achieved by fine-tuning of · to minimize this
ratio: if all weights are of a small gap, then one can view it as the unweighted case and run
Theorem 1.5 directly, and otherwise, we have a significant gap which still allows a sublinear
ratio.

5 A General Framework for Generalized Poset Sorting

In this section, we present our framework for GPS. As mentioned, this framework consists of
two steps: it first reduces GPS to finding a linear extension, and eventually reducing the
task of finding a linear extension to constructing a partition oracle. We start with formally
defining the mentioned linear extension problem and the partition problem. We establish two
sets of technical lemmas that relate GPS with linear extension Lemma 5.1 and the partition
problem Lemmas 5.3 and 5.4, respectively.

Linear extension problem. In linear extension problem, there is an underlying poset
P = (V,ª) and query graph G = (V,E). The algorithm receives G as input and has access
to an oracle, which accepts queries u, v such that (u, v) œ E and answers the relation of u, v
in P. The algorithm needs to compute a linear extension of P by making as few queries as
possible. We call p1, p2, . . . , pn œ perm(V ) a linear extension of P if and only if for every
1 Æ i < j Æ n, pi ⌥ pj (i.e. either pi ª pj or pi ⌧ pj).

I Lemma 5.1 (Linear Extension to Poset). There exists an algorithm that given a linear
extension of the underlying width-k poset P solves GPS in Õ(nk) queries.

Lemma 5.1 shows that given any linear extension of P, we can solve P using Õ(nk) queries.
Specifically, our algorithm maintains a vertex set X such that all directions of edges in G[X]
is determined. Initially, X is empty. The vertices are added to X by their order in the linear
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extension. When vertex v is added to X, our algorithm needs to determine all directions
of edges between X and v. In the proof of Lemma 5.1, we show that X can always be
decomposed into at most k paths. For every vertex v and every path P = p1 ª p2 ª . . . ª ps,
there exists a, b such that

For every 1 Æ i Æ a, pi ª v.
For every a < i < b, pi ⌧ v.
For every b Æ i Æ s, pi º v.

a, b can be found by binary search. Hence the directions of edges between X and v can
be determined in O(k logn) queries. Our algorithm is shown as Algorithm 1.

Algorithm 1 Constructing GPS using Linear Extension.

1: procedure GPS(p)
2: input: p, a linear extension of P
3: for i Ω 1, 2, . . . , n ≠ 1 do
4: let Xi be {p1, p2, . . . , pi}
5: compute a path cover of induced subgraph G̨[Xi], denoted by P1, P2, . . . , Pwi (wi

denotes the width of poset P(G̨[Xi]))
6: determine the directions of edges between Xi and pi+1 by applying binary search

between Pj and pi+1 for every 1 Æ j Æ wi

7: end for
8: end procedure

I Lemma 5.2. For every linear extension p1, p2, . . . , pn of P and every 1 Æ i Æ n, we have
P(G̨[Xi]) = (Xi,ª) where Xi = {p1, p2, . . . , pi}.

Proof. To prove P(G̨[Xi]) = (Xi,ª), we show that for every u, v œ Xi, u ª v if and only if
u can reach v in G̨[Xi].

If u can reach v in G̨[Xi], then u can also reach v in G̨, which implies u ª v.
If u ª v, then there exists a path u æ q1 æ q2 æ . . . æ q¸ æ v in G̨. For every 1 Æ j Æ ¸,
suppose qj /œ Xi, let qj = pa, v = pb, we have pa ª pb and b Æ j < a, which contradicts
the definition of linear extension. Hence we have q1, q2, . . . , q¸ œ Xi, which implies u can
reach v in G̨[Xi]. J

Proof of Lemma 5.1. By Lemma 5.2, for every 1 Æ i < n, P(G̨[Xi]) = (Xi,ª). The width
of poset (Xi,ª) is no more than k since Xi ™ V . Hence, for every i, all directions of edges
between p1, p2, . . . , pi and pi+1 can be determined by applying at most k binary searches on
the path cover of G̨[Xi]. Clearly, this entire process takes O(nk logn) queries in total, which
finishes the proof. J

Partition problem. The partition algorithm is defined on an underlying DAG G̨ = (V, Ę)
and a query graph G = (V,E). Notice that partition algorithm is a pure graph problem
(there is no poset in the problem definition). The algorithm receives G and vertex p œ V as
input and has access to an oracle, which accepts queries u, v such that (u, v) œ E and answers
the relation of u, v in G̨. There are three possible relations, u can reach v, v can reach u,
neither u nor v can reach each other. The algorithm needs to compute Væp, V=p, VΩp by
making as few queries as possible, where

Væp = {u œ V | u ”= p, u can reach p}
VΩp = {u œ V | u ”= p, p can reach u}
V=p = {u œ V | u ”= p,neither u nor p can reach each other}
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The following two lemmas reduce the problem of finding linear extensions to finding a
partition of the elements with respect to a given pivot. These two versions of lemmas are
essentially the same, except that one allows the partition oracle to make mistakes and with a
randomized query complexity (but needs to succeed with high probability), and the other
requires the correctness (with probability 1) and a good query complexity in expectation. We
need these two since we find it is not trivial to convert one to the other, and our downstream
algorithms may need both of them.

I Lemma 5.3. If for every X ™ V and p œ X, Partition(G[X], p) correctly outputs
Xæp, X=p, XΩp within O(|X|(kXªv +kXºv )f(n, k)) queries with probability 1≠Á (f is some
function of n, k), then Part-to-LE(V ) outputs a linear extension of P in O(nkf(n, k) log2 n)
queries with probability of at least 1 ≠ nÁ ≠ 2n≠6.

I Lemma 5.4. If for every X ™ V and p œ X, Partition(G[X], p) always correctly
outputs Xæp, X=p, XΩp and uses O(|X|(kXªv + kXºv )f(n, k)) queries in expectation, then
Part-to-LE(V ) outputs a linear extension of P in O(nkf(n, k) log2 n) queries in expectation.
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Abstract

We study the k-connectivity augmentation problem (k-CAP) in the single-pass streaming model.
Given a (k≠ 1)-edge connected graph G = (V,E) that is stored in memory, and a stream of weighted
edges (also called links) L with weights in {0, 1, . . . ,W}, the goal is to choose a minimum weight
subset LÕ ™ L of the links such that GÕ = (V,E fi LÕ) is k-edge connected. We give a (2 + ‘)-
approximation algorithm for this problem which requires to store O(‘≠1n logn) words. Moreover,
we show the tightness of our result: Any algorithm with better than 2-approximation for the
problem requires �(n2) bits of space even when k = 2. This establishes a gap between the optimal
approximation factor one can obtain in the streaming vs the o�ine setting for k-CAP.

We further consider a natural generalization to the fully streaming model where both E and
L arrive in the stream in an arbitrary order. We show that this problem has a space lower bound
that matches the best possible size of a spanner of the same approximation ratio. Following this, we
give improved results for spanners on weighted graphs: We show a streaming algorithm that finds a
(2t ≠ 1 + ‘)-approximate weighted spanner of size at most O(‘≠1n1+1/t logn) for integer t, whereas
the best prior streaming algorithm for spanner on weighted graphs had size depending on logW . We
believe that this result is of independent interest. Using our spanner result, we provide an optimal
O(t)-approximation for k-CAP in the fully streaming model with O(nk + n1+1/t) words of space.

Finally we apply our results to network design problems such as Steiner tree augmentation
problem (STAP), k-edge connected spanning subgraph (k-ECSS) and the general Survivable Network
Design problem (SNDP). In particular, we show a single-pass O(t log k)-approximation for SNDP
using O(kn1+1/t) words of space, where k is the maximum connectivity requirement.
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1 Introduction
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w : L æ {0, 1, . . . ,W}, the goal is to find a minimum weight subset S ™ L of the links such
that (V,E fi S) is k-edge-connected. Augmenting connectivity is a crucial task for enhancing
network reliability which can be used for strengthening the resilience of a network and
ensuring uninterrupted access for all users. k-CAP is among the most elementary questions in
Network Design, which is an important area of discrete optimization. The iterative rounding
method of [29] provides a 2-approximation for a more general problem of survivable network
design problem (SNDP). Untill very recently, nothing better than 2 approximation was known
even for weighted tree augmentation problem (TAP). In a recent development, weighted
k-CAP has witnessed breakthroughs with approximation factors below 2 [48, 49, 50]. The
state-of-the-art for weighted k-CAP is 1.5 + ‘ approximation.

In this work, we consider weighted k-CAP in the streaming model, which is one of the
most common models for processing real-time and large-scale data. A graph streaming
algorithm operates by processing a sequence of graph edges presented in any order (or in
some applications in random order), reading them one by one. The primary objective is to
design algorithms that can process the entire edge sequence and output an approximately
e�cient solution, making just one (or a few passes), while utilizing limited memory resources.
Ideally, the space usage of the algorithm should be significantly smaller than the size of
the n-vertex input graph (with possibly O(n2) edges), preferably O(n · polylog(n)) memory,
which is referred to as the semi-streaming model [18].

While graph problems such as minimum spanning tree [2, 47, 42], matching [39, 25, 5,
4, 30], spanners, sparsifiers and shortest paths [19, 7, 15, 2, 33, 28, 20, 21] have received
significant attention in the streaming model, the connectivity augmentation problem, has
received comparatively very limited study in this context. Prior to our result, only testing
k-connectivity in streaming was studied [52, 13, 47], which showed that testing k-edge-
connectivity in streaming requires �̃(nk) space in one pass, and �̃(n) space in two passes
[46, 3]. See Appendix C for more discussion on related work.

1.1 Our Computational Models

In this work, we study graph augmentation problems in the streaming model of computation.
The input to the k-CAP problem consists of two pieces of information, namely the (k ≠ 1)-
connected network G and the set of links that can be used to augment connectivity.

Link arrival streaming. In the link arrival streaming model the graph G is presented to the
algorithm first, and the cost of storing it does not count towards the space complexity of
the algorithm. This is akin to the oracle model that is routinely used to study submodular
function maximization in the streaming model (e.g., in [6, 43]): One thinks of having an
oracle for the function being maximized. For submodular function maximization it is not
always clear how to implement this oracle in small space, but in our case the actual cost of
storing a su�cient representation of the graph G can be easily made O(nk), and, with some
work, even O(n), as we now explain.

Note that a minimally k-connected graph has size O(nk). So if the graph has larger size,
one can process the edges of G (even in a streaming fashion) using a k-connectivity certificate
of G that preserves all cuts of value at most k, and store this compact representation in O(nk)
space. Finally, one can apply even a more e�cient preprocessing that preserves a similar
information via a cactus graph with O(n) edges. Then the problem becomes streaming cactus
augmentation. The cactus augmentation problem itself is a well-studied problem in particular
for designing approximation algorithms for k-CAP. To simplify the notation, throughout the
paper, we assume the latter compact representation of size O(n).
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Fully streaming. Besides the most natural link arrival model defined above, we study the
more general model where the edges of G and the links that can be used for augmentation
may arrive in an interleaved fashion. This model is quite general: in particular, it allows
for the edges of G to arrive after the links, in which case the algorithm must maintain a
compressed representation of the stream of links that allows augmenting any given graph G
presented later!

For the other graph problems studied in this paper, namely spanner, SNDP and k-edge
connected spanning subgraph (k-ECSS), we consider the standard edge arrival streams in
which edges of the input graph arrives one by one in an arbitrary order stream.

1.2 Our Results

In this paper, we focus on insertion-only streams, and provide the first streaming algorithms
for k-CAP in link arrival streams and fully streaming. Table 1 summarizes our results.

Graph augmentation in link arrival. We show tight results for weighted k-CAP in link
arrival streams (see first row in Table 1). Note that, while we can achieve a factor 2 + ‘
approximation in O(n

‘
logn) words of space, our lower bound shows that getting better than

2 approximation requires �(n2) bits of memory. This establishes a gap between the streaming
setting and the o�ine setting where strictly better than 2 approximation algorithms are
known (e.g., see [50]). An easy argument shows that �(n) bits of space is necessary for
achieving any approximation for k-CAP in link arrival streams (Proposition 2.12 in the full
versoin), so our algorithm has nearly-tight space complexity. If one picks a k-connectivity
certificate as the compact representation of G, the space complexity of the upper bound
becomes O(nk + n

‘
logn).

Further, we study the Steiner tree augmentation problem (STAP) which is a generalization
of the tree augmentation problem (TAP) in link arrival streams and provide matching upper
and lower bounds (See the second row in Table 1). While our lower bound holds for link
arrival streams, our algorithm works even in the more general fully streaming too. We remark
that, while in the o�ine setting TAP and STAP admit similar approximations [45], there is
a gap in their complexities in the streaming model.

Graph augmentation in fully streaming. We further show matching upper and lower bounds
(up to a polylog(n) factor) for k-CAP in the fully streaming setting (see the lower section in
the first row of Table 1). The main component in our algorithm for solving k-CAP is an
improved streaming algorithm for constructing spanners on weighted graphs. In particular,
our upperbound implies that spanner is an optimal “universal” augmentation set for k-CAP.

Improved streaming spanner in weighted graphs. Given an n-vertex graph G = (V,E)
with a weight function w : E æ {0, . . . ,W}, a subgraph H ™ G is a t-spanner of G if for
every (u, v) œ E, the shortest uv-path in H has weight at most t · w(uv). In streaming
spanner, which is a well-studied problem [7, 15, 2, 33, 20], edges of E arrive in an arbitrary
order stream. While by using the standard weight-based partitioning trick, constructing an
O(t)-spanner in O(n1+1/t ·logW ) words of space in one pass over the stream is straightforward
(e.g., mentioned in [21]), it was not known whether the dependence on logW is crucial.2

2 We remark that our contribution in removing the dependence on logW from the number of edges in
spanner (and consequently from k-CAP) is conceptually interesting, as most graph streaming algorithms
are mainly designed for unweighted graphs, and extending them to the weighted case typically incurs a
logW loss.

ICALP 2024
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Table 1 Summary of our results for k-CAP, STAP, Spanner and SNDP in steaming models.
All our problems are weighted. The space upper bounds are measured in words, while the lower
bounds are in bits. We use Õ(f) to mean O(f · polylogf) (it does not hide logW factors). All our
algorithms are deterministic, whereas all lower bounds hold for randomized algorithms with constant
success probability.

Problem Pass Approx. Space Stream Notes

k-CAP 1

2 + ‘ O(n‘ logn)
link arrival

Theorem 1
2 ≠ ‘ �(n2) bits Theorem 10

O(t)
Õ(kn+ n1+ 1

t )
fully streaming

Theorem 15
�(kn+ n1+ 1

t ) bits Theorem 11

STAP 1 O(t)
Õ(n1+ 1

t ) fully streaming Corollary 20
�(n1+ 1

t ) bits link arrival Corollary 21

Spanner 1 O(t)
Õ(n1+ 1

t )
edge arrival

Theorem 16
�(n1+ 1

t ) bits Erd�s’ girth conjecture

SNDP 1
O(t log k) Õ(kn1+ 1

t )
edge arrival

Theorem 25
O(t) �(n1+ 1

t ) bits Corollary 21

k-ECSS k O(log k) O(kn logn) edge arrival Corollary 26

Exploiting an even-odd bucketing approach, we provide a streaming algorithm with space
complexity O(n1+1/t · logmin(W,n)) words which by the well-known Erd�s girth conjecture is
basically the best one can hope for up to logarithmic factors. We further apply this even-odd
bucketing to the k-CAP problem in the link arrival setting, and obtain a (more technical)
algorithm (Theorem 1) with no dependence on logW in its space complexity.

Streaming SNDP. Finally, we describe an application of our results for designing the first
one-pass streaming algorithms for the problem in insertion only edge arrival streams, where
the edges of the input graph arrive in an arbitrary order stream.

In SNDP, given a graph G = (V,E) with a weight function w : E æ {0, 1, . . . ,W}
together with a connectivity requirement r : V ◊ V æ ZØ0, the goal is to find a minimum
weight subgraph H ™ G so that for every s, t œ V , H contains r(st) edge-disjoint paths
connecting s and t. A parameter of interest in SNDP is the maximum connectivity requirement
k = maxst r(st). SNDP is a classic problem in combinatorial optimization and generalizes
several well-studied problems such as MST, Steiner tree, k-edge connected spanning subgraph
(k-ECSS), and k-CAP.

The fourth row of Table 1 shows our results for SNDP in edge arrival streams. In fact, our
streaming algorithm works even for the more general problem of covering proper functions
of the form f : 2V æ {0, 1, . . . , k} using the edges of G (see Section B.2 for more details).
k-ECSS, which itself is a basic problem in discrete optimization, is a variant of SNDP in
which for every s, t œ V , r(st) = k. As a straightforward application of our algorithm for
k-CAP in link arrival streams, we get a k-pass, O(log k)-approximation for k-ECSS using
O(kn logn) words of space. (See last row of Table 1).
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Unweighted variant. We remark that while we get tight algorithms for weighted k-CAP
in both link arrival and fully streaming models, our lower bounds for link arrival does not
hold for unweighted graphs. By a reduction from bipartite matching and invoking the result
of [30], we observe a weaker lower bound that no streaming algorithm with npolylogn space
can achieve an approximation factor better than 1.409. Therefore, it remains an interesting
open question to close the gap between 1.409 and 2 for unweighted k-CAP. Again, given that
this lower bound is for tree augmentation, and the best known algorithm for (o�ine) TAP in
unweighted graphs achieves an approximation factor of 1.326 [24], this again shows a gap
between the two models for the problem in the unweighted variant.

1.3 Our Techniques

Given a streaming algorithm for the unweighted variants of both k-CAP and the spanner
problems, an easy generalization to the weighted graphs is by partitioning the set of weights
into log1+‘

W number of classes and roughly running the unweighted sparsification on each
class, resulting in ‘≠1 logW blow up in the space usage. To remove the dependency on logW
from the number of words, we follow an even-odd bucketing approach. More precisely, we
partition the weights into much larger classes (i.e., buckets), such that the minimum and
maximum weight in each class di�er by poly(n)/‘. This ensures that first, inside each class
one can perform the weight-based partitioning to solve the problem while having only logn
dependence in the space. Second, even picking all the edges from the (i ≠ 2)-th class Ei≠2 is
cheaper than picking any edge in the i-th class Ei (i.e., it only introduces an extra (1 + ‘)
multiplicative factor). This assumption allows us to infer additional properties about the
graph once we are processing the edges in the class Ei, and shrink the problem significantly
from each level Ei≠2 to Ei. Thus our algorithm proceeds by separating the sparsification for
the even-indexed buckets E2i and the odd-indexed buckets E2i≠1, and processes the buckets
from smallest to largest weights.

Spanner. First, consider the spanner problem, and let C = {C1, . . . , Cr} be the set of
connected components created by the edges from the classes upto Ei≠2. The even-odd
bucketing ensures that we only need to consider the edges from Ei that are between two
di�erent components of C. Thus, we shrink each connected component into a super-node and
use the standard spanner algorithm with weight-based partitioning on this reduced graph.
Note that the space usage of the algorithm is proportional to the number of super-nodes
with non-zero degree. However, all such super-nodes will merge into bigger components for
the next bucket Ei+2. Therefore the space usage of the algorithm for processing Ei can be
charged to the reduction in the number of super-nodes. Since the number of super-nodes
starts from n and goes down to 1, the total space usage of the algorithm can be bounded as
a function of n. Finally, we need to perform the above process in a streaming setting: As we
receive more edges in the stream, the components in Ci change but it is easy to maintain all
required information in a streaming fashion.

Link arrival k-CAP. Our algorithm for k-CAP is more involved. First, by standard results
in the literature, the problem reduces to cycle augmentation: given a cycle C, the goal
is to augment it with a subset of edges from L such that the resulting graph becomes
3-edge-connected. Let the nodes on the cycle be indexed 1 to n in this order with vertex 1
being called the root. Now every cut of size 2 corresponds to two edges on the cycle. We
specify such a cut with the interval [i, j] with 1 < i Æ j Æ n that does not include the root.
The goal is to cover all such cuts specified by these intervals.
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1
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[i, j]

First, using known ideas from [35, 36], we present a simple streaming algorithm for the
unweighted variant of the problem as follows. We replace every link uv by two directed links
ųv and v̨u, (this is where the factor 2 in the approximation comes from), and we say that ųv
covers a cut [i, j] if v œ [i, j] and u /œ [i, j]. Now one can show that for 1 Æ u < uÕ < v, it is
always better to keep the edge ųv than ųÕv. Similarly, for v < uÕ < u Æ n, it is always better
to keep the edge ųv than ųÕv. As a result, for each vertex, we keep at most two incoming
edges. Therefore, the total space usage of the algorithm is only O(n) in this case. Again
this algorithm can be generalized to the weighted graphs using a weight-based partitioning,
introducing a factor logW .

To remove the dependency on logW , again we consider the even-odd bucketing. This
time, for each weight class Ei, we consider the 3-edge-connected components C1, . . . , Cr

formed by the edges in buckets upto Ei≠2. Again using the even-odd bucketing plus the
fact that the cycle is already 2-edge-connected, we can show that shrinking each of the
3-connected components into a super-node still works. The main challenge is that as opposed
to the spanner setting, the problem on the super-node does not reduce to the same problem
of cycle augmentation. This is because a single super-node does not necessarily span a
consecutive set of vertices on the cycle. However, we note that in this case, the min-cuts on
the cycle that do not fully include or fully exclude the vertices in a single super-node do not
need to be considered. This allows us to reduce the space usage of the algorithm again to
be proportional to the number of super-nodes and thus bound the total space usage of the
algorithm as a function of n.

Fully streaming k-CAP. Our algorithm in this setting maintains two sketches. First, it
keeps a k-connectivity certificate on the set of edges E using a folklore streaming algorithm
that keeps k disjoint forests, which contains the information of all min-cuts of E that
need to be augmented in k-CAP. Second, employing our results on weighted spanners, the
algorithm maintains a spanner for the set of (weighted) links. This means that every link ¸
of weight/length w that we miss, can be replaced with a path of weight at most O(t) · w,
thus covering all the min-cuts originally covered by ¸. We show that this is a near-optimal
algorithm one can get in this setting.

Lower bounds. Most of our lower bounds are via simple reductions from the INDEX
problem in a two-party communication model, where we embed the bit-string held by Alice
into edges of a graph, where by asking augmentation queries, Bob is able to tell whether edge
(u, v) exists in Alice’s graph for any pair of vertices u, v. The most interesting one of our
lower bounds (Theorem 12) shows that, in the fully streaming model, the space complexity
for storing a spanner is essentially necessary. In the proof we let Alice hold a subgraph of a
high-girth graph, and Bob wants to estimate the distance in this graph between u, v (which
is su�cient for telling whether (u, v) is an edge, due to the high girth). Our proof reduces



C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:7

this problem of estimating the distance between u, v to the problem of augmenting a chain
with end points u, v into a 2-edge-connected graph. However, we also need rule out potential
augmentation solutions that do not correspond to a uv-path.

Applications. Our algorithms for streaming connectivity augmentation also imply streaming
algorithms for problems such as STAP, k-ECSS and SNDP. In particular, our one-pass
algorithm for SNDP works by running k instances of our streaming spanner algorithm in
parallel, which store k disjoint sparse subgraphs of the input graph that satisfy certain
approximation guarantee. In particular, we show these k disjoint “spanner-like” objects
forms a coreset for SNDP instances with maximum connectivity requirement at most k.3
Our approach follows the augmentation framework of [51, 26] to show the existence of an
approximately good solution using edges from these k sparse subgraphs.

1.4 Organization

In Section 2, we present our (2 + ‘)-approximate algorithms for k-CAP in the link arrival
model, and present a lower bound showing our approximation ratio is close to optimal. In
Section 3, we study k-CAP in the fully streaming model, and present matching space lower
bounds and upper bounds assuming our weighted spanner result. In Appendix A, we present
our weighed spanner algorithm in the streaming model with better logW dependence. Finally
in Appendix B we present further applications to other network design problems such as
k-ECSS and SNDP. All missing proofs are deferred to the full version of the paper.

2 Connectivity Augmentation in Link Arrival Streams

In this section, we consider k-CAP, the problem of augmenting the connectivity of a given
graph G = (V,E) from k ≠ 1 to k using a subset of weighted links L ™

!
V

2

"
in link arrival

streams. To recall, in the link arrival model, a cactus representation of the graph G, which is
of size O(n) (see Definition 2 for the formal definition of cactus), is given to us in advance
and the set L arrives in the stream (see Section 1.1).

I Theorem 1. The k-connectivity augmentation problem (k-CAP) on (G = (V,E), L) in
the link arrival model admits a one-pass (2 + ‘)-approximation algorithm with total memory
space O(n

‘
logmin(n,W )) words, where W = maxeœE w(e).

Note that the augmentation set itself may have size �(n)4, so any algorithm that explicitly
stores a solution must consume �(n) space. Moreover, we will show that just approximating
the optimal total weight of the augmentation solution to any factor already requires �(n)
bits of space. Hence, the space of our algorithm is tight up to a poly-logarithmic factor.

2.1 Preliminaries

Cactus representation of min-cuts. To increase the edge-connectivity of a (k≠1)-connected
graph G to k, we need to add links to cover all min-cuts of size k ≠ 1. That is, for each cut
S of size k ≠ 1 (i.e., |”G(S)| = k ≠ 1), we must add a link e œ L such that e œ ”(S). Dinits,
Karzanov, and Lomonosov [14] showed there is a compact representation of all min-cuts of
an undirected graph by a cactus graph.

3 In fact, the coreset guarantee holds even for the more general covering proper functions of the form
f : 2V æ {0, 1, . . . , k}.

4 As an example, consider a graph G = (V,E) where V = {0, 1, . . . , n ≠ 1} and E = {(i, j) : j ≠
i œ {1, 2, . . . , k}} (where indices are modulo n), which has edge connectivity 2k. If the link set is
L = {(i, i+1) : i œ [n]}, then at least Án/2Ë links are necessary to increase the edge connectivity by one.

ICALP 2024
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I Definition 2 (Cactus Graph). A cactus graph is a 2-edge-connected graph C = (VC , EC)
where each edge in EC belongs to exactly one simple cycle. Note that we allow cycles of
length 1 or 2 too.

I Lemma 3 ([14]). Let G = (V,E) be an undirected graph. There is a loopless cactus
C = (VC , EC) of size at most 2n ≠ 1 and a mapping Ï : V æ VC so that a subset S œ V is a
min-cut of G if and only if Ï(S) is a min-cut of C.

Moreover, when the min-cut size of G is an odd integer, the cactus representation of G is
a spanning tree (we may still treat it as a cactus by duplicating each tree edge).

The cactus representation is particularly useful for connectivity augmentation problems:

I Corollary 4. Let G = (V,E) be an undirected graph. Let C denote the cactus representation
of min-cuts in G. Then a link (u, v) œ E \ EH crosses a min-cut S in G if and only if the
corresponding link (Ï(u),Ï(v)) crosses Ï(S) in C.

I Remark 5. We remark that there is a simple streaming algorithm for constructing the cactus
representation with space complexity Õ(kn): First, construct a k-connectivity certificate
H of G (recall that a k-connectivity certificate for a graph G is a subgraph H of G that
contains all edges crossing cuts of size k or less in G, and at least k edges from each cut
of size more than k) with O(kn) edges with space complexity O(kn) words in polynomial
time, using a simple algorithm by [41]. Then, we apply the algorithm of [34] for computing
the cactus representation of the subgraph H in Õ(|E(H)|) = Õ(kn) time and space. It is
straightforward to verify that the constructed cactus is a cactus representation of G, given G
is a (k ≠ 1)-connected graph.

We then get the following as a corollary of Theorem 1: If the algorithm receives a
k-connectivity certificate as a representation of G or the edges of G arrive in the stream
before any link arrives, we can construct a cactus representation of G in O(kn) space first
and then run our algorithm in this section for cactus augmentation and the overall space
complexity will be O(nk + n

‘
logn).

Transforming cactus to cycle. In the (weighted) cactus augmentation problem, without
loss of generality, we can assume the cactus is a single cycle. The latter problem is known
as weighted cycle augmentation. To reduce an instance on a general cactus to the single
cycle case (without losing approximation factor), we apply the technique observed in [23, 50]:
Unfold the cactus into its Eulerian circuit, then add additional zero-weight edges (which we
can use to augment at no cost) to connect the nodes corresponding to the same junction
node in the cactus. See Section 3 in [50] for a detailed description.

I Lemma 6 (Theorem 3 in [23]; see also Lemma 2.2 in [50]). Let – > 1. If there is an
–-approximation algorithm for the weighted cycle augmentation problem, then the weighted
cactus augmentation problem admits an –-approximation.

Note that this reduction only produces O(n) extra zero-weight edges, so it does not a�ect the
space complexity of the streaming algorithm. We can apply the unfolding technique in the
preprocessing step and in the rest of this section, we assume that the cactus is a single cycle.

2.2 Main Step: Cycle Augmentation in Link Arrival Streams

We arbitrarily assign a root node on the cycle, and let its index be 0. Then let the vertices
of the cycle be V = {0, 1, . . . , n ≠ 1}, with edges C = {e1, e2, . . . , en} where ei = (i ≠ 1, i)
(with indices modulo n). We first describe a 2-approximation for the unweighted case, using
an idea from [35, 36].
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I Theorem 7. There exists a one-pass 2-approximation algorithm for the cycle augmentation
problem on unweighted graphs with total memory space O(n) edges.

Proof. Following [35, 36], we consider a directed version of the problem defined as follows:
given a set E of directed edges, augment a minimum size subset EÕ ™ E to the cycle, such
that for every 2-cut (L, V \ L) of the cycle where 0 œ V \ L (i.e., L = {l, l + 1, . . . , r} for
some 1 Æ l Æ r Æ n ≠ 1), there exists x̨y œ EÕ with y œ L and x œ V \ L (we say x̨y
covers L in this case). To reduce the original (undirected) cycle augmentation instance to
this directed problem, simply replace each input edge (u, v) by two arcs ųv, v̨u, incurring a
2-factor approximation: any directed solution {x̨y} implies an undirected solution {(x, y)} of
the same cost, and any undirected solution {(x, y)} implies a directed solution {x̨y} fi {y̨x}
of twice the cost.

Now we solve the directed instance exactly by an O(n)-space streaming algorithm. For
each v œ V , we only need to keep the input arc ųv with minimum indexed u, and keep
the input arc ųv with maximum indexed u. In this way we store only O(n) arcs in total,
and finally we run an o�ine exact algorithm (e.g., [22], which was also used by [36]) for
the directed problem on these stored arcs. This does not a�ect optimality, because when
0 Æ u < uÕ < v, any 2-cut, U = {l, l + 1, . . . , r} covered by ųÕv is also covered by ųv, so we
can discard ųÕv if we already have ųv (a similar argument applies to the v < uÕ < u Æ n ≠ 1
case). J

By a simple scaling, this algorithm can be modified into a (2 + ‘)-approximate algorithm for
the weighted case with total space O(n

‘
logW ) edges. Now we improve this logW dependency.

I Theorem 8. The cycle augmentation problem on weighted graphs admits a one-pass
(2+ Á)-approximation streaming algorithm with total memory space O(n

‘
logmin(W,n)) edges.

Proof. We assume ‘ > 1/n; otherwise use the trivial O(n2)-space algorithm that stores the
cheapest edge between every pair of vertices.

Define weight intervals Ik = [(n/‘)k, (n/‘)k+1). Let Ek be the set of input edges e that
have arrived so far with weights w(e) œ Ik. Note that5

mineœEk+2 w(e)
maxeœEk w(e)

> n/‘. (1)

These weight intervals do not contain zero, so we separately use a zero-weight class E≠1 to
hold edges of zero weight. But for notational simplicity, we will not specially mention this
zero weight class in later description. One can check that this does not a�ect the correctness
of the algorithm.

Recall C is the base cycle of length n. For each k œ {0, 1, . . . , Álog
n/‘

W Ë}, define graph

Gk := C fi
€

iØ0

Ek≠2i. (2)

Let Qk denote the collection of 3-edge-connected components of Gk, which form a partition
of the n vertices. See Figure 1 for an illustration. Let 1 Æ |Qk| Æ n denote the number of
components. Since Gk ™ Gk+2, Qk refines Qk+2, and |Qk| Ø |Qk+2|.

5 This inequality is meaningful only if both Ek and Ek+2 are nonempty. This issue does not a�ect our
overall argument since our algorithm can simply ignore the empty weight classes.
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Figure 1 An example of 3-edge-connected components Qk of the graph Gk. Thin black edges
denote the base cycle, and thick blue edges denote the links from the set

t
iØ0 Ek≠2i; together they

form Gk. The dashed green lines describe the 3-edge-connected components of graph Gk.

Algorithm description. At any point, our streaming algorithm always stores a subset of
the input edges E =

t
k
Ek, which includes the following:

1. Undirected edges Fk: We store edge subsets Fk ™ Ek, such that for all k the subgraph
C fi

t
iØ0

Fk≠2i ™ Gk has the same 3-edge-connected components as Qk.
2. Directed arcs Sk: For each k and 3-edge-connected component U œ Qk, and every

weight interval Ji = [(1 + ‘)i, (1 + ‘)i+1) ™ Ik+2, we store the arc x̨y with minimum (and
maximum) indexed x where (x, y) œ Ek+2, y œ U, x /œ U , and w(x, y) œ Ji. The set of
these arcs is denoted by Sk.

Now we describe how to maintain this information when a new edge (u, v) œ EkÕ arrives.
Maintain Item 1: Note that adding this edge could potentially cause the components
in QkÕ+2i (i = 0, 1, 2, . . . ) to merge. To maintain Item 1 (and hence the knowledge of
all Qk), we insert (u, v) into the current FkÕ , and then run a clean up procedure to
remove redundant edges: Start from the graph H Ω C fi

t
jØ1

FkÕ≠2j which encodes the
3-connectivity information of the graph formed using edges prior to EkÕ , and iterate over
the edges e œ FkÕ+2i (in increasing order of i = 0, 1, 2, . . . ). If adding e to H does not
change the 3-edge-connected components of H, then remove e from FkÕ+2i. Otherwise
add e to H. It is clear that this clean up procedure preserves all the 3-connectivity
information, since we start from the base graph C which is already 2-edge-connected.
Maintain Item 2: To maintain Item 2, we simply use arcs ųv and v̨u to replace
the existing ones that become dominated. When two 3-edge-connected components
U,U Õ œ Qk merge, we also merge the stored information for U,U Õ (compare the best arcs
stored for these two components and keep the better one).
O�ine step: In the end, we run an o�ine exact algorithm (such as [22]) that solves
the directed problem (see proof of Theorem 7) on the stored arcs in Item 2 and directed
versions of the stored edges in Item 1.

Space complexity. For Item 1 the total space is
q

k
|Fk| =

q
j
|F2j |+

q
j
|F2j+1| edges. We

bound both terms separately. Due to our clean up procedure, there should be no redundant
edges in Feven =

t
j
F2j : starting from the base cycle H Ω C, we can iterate over the edges

e œ Feven in certain order so that adding edge e to H always strictly decreases the number of
3-edge-connected components of H. Hence |Feven| Æ n ≠ 1, and similarly |Fodd| Æ n ≠ 1, so

ÿ

k

|Fk| Æ 2(n ≠ 1). (3)
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Define ck+2 to be the number of 3-edge-connected components U œ Qk for which there
exists (u, v) œ Ek+2 with u œ U and v /œ U . Then the space for Item 2 is

q
k
2ck+2 ·

log1+‘

maxeœEk+2 w(e)

mineœEk+2 w(e)
Æ

q
k
ck+2 ·O(log(n/‘)/‘) Æ

q
k
ck+2 ·O(log(n)/‘) edges. We need the

following lemma.

I Lemma 9. ck+2 Æ 2(|Qk| ≠ |Qk+2|).

Using this lemma, the space complexity for Item 2 is

O( logn
‘

)
ÿ

k

ck+2 Æ O( logn
‘

)
ÿ

k

(|Qk| ≠ |Qk+2|)

Æ O( logn
‘

) · 2(n ≠ 1)

Æ O(n logn
‘

) B by summing over even and odd k separately

So the total space complexity is O(‘≠1n logn) edges.

Proof of Lemma 9. We first shrink the graph Gk = C fi
t

iØ0
Ek≠2i into graph Hk. Let

each node of Hk represent a 3-edge-connected component U œ Qk, and for every (u, v) œ C
(recall C is the set of edges on the base cycle) with u œ U œ Qk and v œ V œ Qk, we connect
U, V in Hk by an edge (allowing self-loops and parallel edges). As a standard fact, Hk is a
cactus (allowing self loops), and C corresponds to an Eulerian circuit of Hk.

Let Ck denote the collection of simple cycles (cycles with distinct vertices; we view a self
loop as a simple cycle as well) of the cactus Hk. Then Ck can be viewed as a partition of
the n edges on the base cycle C, where e, eÕ œ C belong to the same partition if and only if
{e, eÕ} is a 2-cut of Gk. Observe that |Ck| = n+ 1 ≠ |Qk|.6 Hence, in the following it su�ces
to prove ck+2 Æ 2 · (|Ck+2| ≠ |Ck|). Note that Ck+2 is a finer partition of C than Ck.
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Figure 2 A picture of the cactus Hk (middle) produced by shrinking Gk (left). The tree Tk

(right) is produced from cactus Hk.

We now consider how adding edges Ek+2 into Gk can refine Ck. Convert the cactus Hk

into a tree Tk as follows. Let Tk be a bipartite graph with vertex bipartition (Ck, Qk), in
which D œ Ck is connected to every U œ Qk that lies on the simple cycle D in cactus Hk.
Observe this bipartite graph Tk is indeed a tree. For each (u, v) œ Ek+2, let u œ U œ Qk and
v œ V œ Qk, and we mark all the tree-edges on the unique path connecting U and V in Tk.

6 To see this equality, consider removing one arbitrary edge from each simple cycle of the cactus, and the
remaining edges should form a tree. As there are |Qk| vertices, the number of edges in the remaining
tree is |Qk|≠ 1, so the number of edges n in the original cactus equals |Qk|≠ 1+ |Ck|, since we removed
|Ck| edges in the removal step.
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Figure 3 After adding an edge from Ek+2 (depicted in red), the partition Ck+2 refines the old
partition Ck: {1, 3, 9} breaks into {1} and {3, 9}.

For each D œ Ck, let d(D) denote the number of marked tree-edges incident to the tree-node
D in Tk. Then, observe that d(D) œ {0} fi {2, 3, 4, . . . }, and D œ Ck (viewed as a subset of
C) breaks into max{d(D), 1} subsets in the partition Ck+2.

By assumption, there are at least ck+2 many tree-nodes U œ Qk that are incident to at
least one marked tree-edge in Tk, so Tk contains at least ck+2 marked tree-edges. Hence,

|Ck+2| =
ÿ

DœCk

max{d(D), 1} Ø
ÿ

DœCk

(1 + d(D)/2) B since d(D) œ {0} fi {2, 3, 4, . . . }

= |Ck|+
1
2

ÿ

DœCk

d(D) Ø |Ck|+
1
2ck+2,

which completes the proof. J

Approximation factor. Let OPT ™ E =
t

+Œ
k=≠Œ Ek denote the optimal solution for the

(undirected) cycle augmentation problem. Let kú be the maximum kú such that OPTflEkú ”=
?. Then by (1) we have

w(OPT) > (n/‘) · max
eœEkú≠2

w(e). (4)

Bidirecting OPT gives a solution OPTÕ for the directed problem with total cost w(OPTÕ) =
2w(OPT). In the following we convert OPTÕ into a solution SOL for the directed problem
that only uses arcs stored by the streaming algorithm, with total cost w(SOL) Æ (1 +
O(‘))w(OPTÕ) Æ (2 +O(‘))w(OPT). This establishes that our streaming algorithm achieves
2 +O(‘) approximation ratio for the (undirected) cycle augmentation problem.

In SOL we first include both directed versions of all (u, v) œ
t

kÆkú≠2
Fk, with total cost

at most
ÿ

kÆkú≠2

2|Fk| ·max
eœFk

w(e) Æ
ÿ

k

2|Fk| · max
eœEkú≠2

w(e)

Æ 4(n ≠ 1) · ‘

n
w(OPT) B by (3) and (4)

Æ 4‘w(OPT).

Then, for every arc x̨y œ OPTÕ with weight w(x̨y) œ Ik where k œ {kú ≠ 1, kú}, we will find
a replacement arc ˛xÕyÕ œ Sk stored by Item 2: Let y œ U œ Qk. If x /œ U , then by Item 2 we
can pick a stored arc ˛xÕyÕ œ Sk with yÕ œ U and w( ˛xÕyÕ) < (1 + ‘)w(x̨y), such that xÕ Æ x (if
x < y) or xÕ Ø x (if x > y). We include ˛xÕyÕ in SOL. (in the case of x œ U we do not need
to do anything)
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By definition we immediately have w(SOL) Æ 4‘w(OPT) + (1 + ‘)w(OPTÕ) = (2 +
6‘)w(OPT). To show SOL is a feasible solution for the directed problem, we verify that each
2-cut L = {l, l + 1, . . . , r} (where 1 Æ l Æ r Æ n ≠ 1) is covered. There are three cases:

Case 1: (L, V \ L) is not a 2-cut of Gkú≠2. By Item 1, Gkú≠2 and C fi
t

iØ0
Fkú≠2≠2i

have the same 3-edge-connected components, and hence have the same 2-cuts, so (L, V \L)
is also not a 2-cut of C fi

t
iØ0

Fkú≠2≠2i. Hence, there exists (uÕ, vÕ) œ
t

iØ0
Fkú≠2≠2i such

that uÕ œ V \ L, vÕ œ L. Then, ˛uÕvÕ covers L, and by construction we have ˛uÕvÕ œ SOL.
Case 2: (L, V \ L) is not a 2-cut of Gkú≠3. This case is similar to case 1.
Case 3: Otherwise. In this case, (L, V \ L) is a 2-cut of both Gkú≠2 and Gkú≠3. From
the feasibility of OPT, we know there must exist arc x̨y œ OPTÕ that covers L (i.e.,
y œ L, x œ V \ L) with weight w(x̨y) œ Ik where k œ {kú ≠ 1, kú}. Let y œ U œ Qk≠2.
Since (L, V \L) is a 2-cut of Gk≠2, we know x, y cannot be in the same 3-edge-connected
component of Gk≠2, so x /œ U . Now let ˛xÕyÕ œ SOL be the replacement arc we found
for x̨y. By definition, yÕ œ U . We consider the case of x < y (the other case y < x is
similar), and hence xÕ Æ x. In this case we must have x < l Æ y Æ r, so xÕ < l and hence
xÕ /œ L. Suppose for contradiction that ˛xÕyÕ does not cover L. Then we must have yÕ /œ L.
But this would mean (L, V \ L) is a 2-cut in Gk≠2 separating y and yÕ, contradicting
the assumption that y, yÕ œ U belong to the same 3-edge-connected component of Gk≠2.
This proves that the replacement arc ˛xÕyÕ œ SOL indeed covers L. J

The following shows that the approximation factor of our algorithm is close to optimal.

I Theorem 10. Any streaming algorithm that solves the weighted TAP in the link arrival
model with better than 2-approximation needs �(n2) bits of space.

3 Connectivity Augmentation in the Fully Streaming Setting

In this section, we first prove a space lower bound for k-CAP in the fully streaming model.
Then, we show a streaming algorithm with nearly matching space complexity.

3.1 Lowerbound for Estimating Connectivity Augmentation Cost

Our main lower bound statement is the following.

I Theorem 11. For any constant integer t Ø 1, the (unweighted) k-CAP (even when k is
known) in the fully streaming model requires space complexity �(kn+ n1+1/t) bits (assuming
the Erd�s’s girth conjecture) to approximate the solution size to a factor better than 2t+ 1.

It follows from combining two lower bound results Theorem 12 and Theorem 13.

Lower bound in terms of approximation factor (t). We first describe the space lower bound
in terms of the approximation factor. As is standard in the spanner literature, the proof is
based on high-girth graphs, but here we need to be more careful to make the connection
between tree-augmentation and shortest paths.

I Theorem 12. Consider the (unweighted) TAP where E is the base tree and L is the set of
edges to augment, and E fi L arrive as a stream in an arbitrary order.

For any constant integer t Ø 1, any (randomized) streaming algorithm A that can output
the size of a better than (2t+ 1)-approximate solution requires �(“(n, 2t+ 1)) bits of space,
where “(n, 2t+ 1) denotes the maximum possible number of edges in an n–vertex graph with
girth > 2t+ 1.
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We remark that the same lower bound of Theorem 12 also generalizes to k-CAP for higher
values of k > 2, provided that we allow the base graph E to have parallel edges.

Lower bound in terms of connectivity parameter (k). Zelke [53] gave a simple proof
that computing the size of the minimum cut of an (unweighted) undirected graph requires
�(n2) bits of space for any one-pass streaming algorithm. In Zelke’s construction the input
graph has minimum cut size as large as �(n). Here we observe that Zelke’s proof can be
adapted to graphs with minimum cut size �(k), and show lower bounds for the connectivity
augmentation problem.

We remark that [47] also obtained an �(kn)-bit randomized lower bound and an
�(kn logn)-bit deterministic lower bound for the k-CAP using a di�erent proof.

I Theorem 13. The k-CAP (where k is known) in the fully streaming model (with unweighted
links) requires �(nk) bits of space to approximate to any finite factor.

I Remark 14. We remark that the same �(nk) lower bound also holds for the task of con-
structing a cactus representation of a graph (Lemma 3), even assuming the edge connectivity
value k is known. This is because the cactus representation immediately allows to distinguish
between the cases of having two minimum cuts C1, C2 or one minimum cut C2, and thus the
proof above still applies.

3.2 Tight Algorithm

The main result of this section, whose details are deferred to the full version of the paper, is a
single-pass algorithm that outputs a (2t≠1+‘)-approximate solution inO(nk+‘≠1n1+1/t logn)
space, nearly matching the lower bounds of Theorem 12 and 13.

I Theorem 15. The k-CAP in the fully-streaming model can be solved by a single-pass
streaming algorithm with approximation ratio (2t ≠ 1 + ‘) in O(nk + ‘≠1n1+1/t logn) space.
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A Streaming Algorithm for Spanners on Weighted Graphs

In this section, we prove the following theorem on computing spanners for weighted graphs
in the streaming model.

I Theorem 16. For any integer t Ø 1, there is a one-pass streaming algorithm for computing
a (2t ≠ 1 + ‘)-spanner of size O(‘≠1n1+1/t logn) of a weighted graph, with space complexity
O(‘≠1n1+1/t logn) words.

Let G = (V,E) be a weighted graph. We denote the weight function by w : E æ R+.
Moreover, We normalize the weights so that w(e) œ {0}fi [1,W ]. For each j œ [0, Álog1+‘

W Ë],
our algorithm stores Ej , a subset of edges of G that have weights in [(1 + ‘)j , (1 + ‘)j+1).
(These intervals do not contain zero, so we separately use a zero-weight class E≠1 to hold
edges of zero weight. For notational simplicity, we will not mention this zero weight class in
later description. One can check that this does not a�ect the correctness of the algorithm.)

Our algorithm is as follows (see Algorithm 2). As an edge e arrives, round its weight to
the nearest power of (1 + ‘) and place it in the corresponding weight class Ej . As usual,
we keep the edge e i� it does not close a cycle of length at most 2t in Ej , for some given
parameter t. After processing the edge, we run the Sparsify subroutine described below in
Algorithm 1.

Sparsify subroutine. Let C > 0 be a su�ciently large constant. Define intervals Ik =
[k · (C/‘) logn, (k + 1) · (C/‘) logn]. For all k let Ẽk :=

t
jœIk

Ej . For each k let Eeven

Æk
=

t
k

j=≠Œ Ẽ2j and Eodd

Æk
=

t
k

j=≠Œ Ẽ2j+1. Let Eeven =
t

j
Ẽ2j , and we define Eodd similarly.

Our Sparsify procedure operates independently on these two sets. We will ensure that each
set contains O(‘≠1n1+1/t logn) edges, independent of the weight bound W . We now describe
how Sparsify operates on Eeven (the operations are the same for Eodd).

B Claim 17. Let the constant C in the definition of the sets Ẽk be chosen su�ciently large.
Let k be an integer. Let H = (V,Eeven

Æk≠1
). Then for any edge e = (u, v) œ Ẽ2k such that u

and v belong to the same connected component in H, one has we Ø distH(u, v).

Our procedure Sparsify(k) performs the following step for each k from kmax down to
kmin. Collapse the connected components induced by Eeven

Æk≠1
into supernodes, and consider

the multigraph with edges Ẽ2k on this set of supernodes. We convert this multigraph into a
simple graph in the following natural way. For each edge e = (u, v) œ Ẽ2k,

delete e if it is a self loop in this graph (i.e. u, v belong to the same connected component)
delete e if there is a shorter edge that is parallel to e.

This is summarized in Algorithm 1. The algorithm is summarized in Algorithm 2.

I Lemma 18. The edges stored by Algorithm 2 form a (2t ≠ 1) · (1 + ‘)-spanner of G.

I Lemma 19. Throughout the algorithm, the total number of edges stored by Algorithm 2 is
always at most O(‘≠1n1+1/t logn).
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Algorithm 1 Sparsify.

1: procedure Sparsify
2: for k = kmax down to kmin do B The same procedure for the set Eodd

3: Let H = (V,Eeven

Æk≠1
) and let C1, . . . , Cr be the connected components of H.

4: for e = (u, v) œ Ẽ2k do

5: if u, v œ Ci for some i then
6: delete e from Ẽ2k

7: end if

8: if ÷(uÕ, vÕ) œ Ẽ2k s.t. w(uÕ,vÕ) Æ we, and u, uÕ œ Ci, v, vÕ œ Cj for some i, j
then

9: delete e from Ẽ2k

10: end if

11: end for

12: end for

13: end procedure

Algorithm 2 Overall algorithm.

1: procedure Spanner
2: for each edge e = (u, v) in the stream do

3: Round weight of e to power of 1 + ‘. Let j be the weight class of e.
4: Add e to Ej i� distEj (u, v) > (2t ≠ 1) · we.
5: Call Sparsify
6: end for

7: end procedure

B Further Applications of Streaming Connectivity Augmentation

In this section, we show applications of our streaming algorithms for k-CAP for following
well-studied network design problems: STAP, SNDP and k-ECSS.

B.1 Steiner Tree Augmentation Problem (STAP) in Streaming

In STAP, we are given a set of vertices V partitioned into terminal nodes (R) and Steiner
nodes (V \ R), and a Steiner tree T spanning the terminal set R. Then given a set of
weighted links L ™

!
V

2

"
, the goal is to find a minimum weight set of links S ™ L such that

H = (V,E(T ) fi S) has 2 edge-disjoint paths between any pair of terminals. The problem is
a special case of SNDP and can be approximate within a factor of 2 by iterative rounding
method of Jain [29]. In light of recent developments for approximating tree augmentation
and connectivity augmentation problems [49], Ravi, Zhang, and Zlatin [45] provided a
(1.5 + ‘)-approximation for Steiner tree augmentation problem in polynomial time.

Algorithm in fully streaming setting. First, we observe that our results imply an algorithm
for STAP in the fully streaming setting.

I Corollary 20. STAP in the fully streaming model can be solved by a single-pass streaming
algorithm with approximation ratio (2t≠1+‘) and space complexity O(‘≠1n1+1/t logn) words.

Note that the same fully streaming algorithm from Corollary 20 can also be used to solve
STAP in the easier link arrival streams.
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Lower bound in link arrival streams. Now we show that STAP has a lower bound nearly
matching Corollary 20 even in link arrival streams. This shows a separation of STAP from
the easier TAP: the latter problem has a better streaming algorithm in link arrival streams
than in the fully streaming setting, whereas the former problem does not.

I Corollary 21. For any constant integer t Ø 1, weighted STAP in link arrival streams requires
space complexity �(n1+1/t) bits (assuming the Erd�s’s girth conjecture) to approximate the
solution cost to a factor better than 2t+ 1.

B.2 SNDP in Edge Arrival Streams

In this section, using our results and techniques from k-CAP and weighted spanners, we
present a streaming algorithm for the general SNDP problem in edge arrival streams. We
remark that our result in this section provide coresets for covering functions defined on cuts.

I Lemma 22. Consider a weighted graph G = (V,E) in an edge arrival stream. For
integer k Ø 1 there is a one-pass streaming algorithm that computes k disjoint edge subsets
S1‡S2‡· · ·‡Sk ™ E each of size |Si| Æ O(‘≠1n1+1/t logn), in total space O(k‘≠1n1+1/t logn)
words such that, for every i œ [k] and every e = (u, v) œ E \ (S1 fi S2 fi · · ·fi Si), there is be a
path P ™ Si connecting u, v with total length w(P ) Æ (2t ≠ 1 + ‘)w(e).

One of the main algorithmic approaches for SNDP is the augmentation framework
pioneered by [51]. In this approach, the solution is constructed in k phases and by the end
of the phase ¸, the connectivity of every pair u, v in the so-far-constructed solution is at
least min{¸, r(st)}. So, the optimization problem of each phase is to increase connectivity of
subset of pairs by one. More precisely, in each phase ¸, we need to pick a minimum-weight
subgraph H to cover a function f¸ : 2V æ {0, 1}. We say that a subgraph H covers f i� for
every U µ V , ”H(U) Ø f(s). In the case of SNDP, for every ¸ Æ k, f¸ is a skew-supermodular
function and admits a 2-approximation via a primal-dual algorithm [51].

Next, We use Lemma 22 to show a coreset for covering {0, 1} functions f : 2V æ {0, 1}:

I Definition 23. Given a weighted graph G = (V,E), and a function f : 2V æ {0, 1, . . . , k},
find an edge subset H ™ E with minimum total weight such that for all U ™ V it holds
that |”H(U)| Ø f(U). Throughout this section, we consider the functions f arising from an
instance of SNDP on G with connectivity requirement function r with maximum requirement
k. Then, for every U µ V , f(U) := maxsœU,tœV \U r(st).7

I Lemma 24. Given a weighted graph G = (V,E), let S = S1 fi · · · fi Sk be the set of edges
returned by the algorithm of Lemma 22. Then, the optimal solution for covering a function
f : 2V æ {0, 1, · · · , k} (arising from a SNDP instance on G) on graph GÕ = (V, S) is an
O(t log k)-approximation of the optimal solution for covering f on G = (V,E).

I Theorem 25. SNDP with maximum connectivity requirement k on a weighted graph
G = (V,E) admits a single-pass streaming algorithm with space complexity O(kn1+1/t) words
and approximation ratio O(t log k).

Note that SNDP generalizes STAP, so the same lower bound for STAP from Corollary 21
also applies to SNDP. Specifically, for any constant integer t Ø 1, weighted SNDP requires
space complexity �(n1+1/t) bits (assuming the Erd�s’s girth conjecture) to approximate the
solution cost to a factor better than 2t+ 1.

7 All results hold for a more general class of proper functions too. The function f is called proper if
f(V ) = 0, f(U) = f(V \ U) for every U µ V (symmetry), and f(U1 fi U2) Æ max{f(U1), f(U2)}
whenever U1 and U2 are disjoint (maximality).
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Min-Weight k-ECSS. As a corollary of Theorem 1 for CAP in link arrival streams, we
have the following guarantee for the problem of finding minimum-weight k-edge-connected
spanning subgraph (k-ECSS), where given a graph G = (V,E) with a weight function
w : E æ RØ0, the goal is to find a minimum-weight k-edge-connected subgraph H ™ G.

I Corollary 26. There exists a k-pass O(log k)-approximation algorithm for minimum-weight
k-ECSS with total memory space O(nk + n logmin(n,W )) where W = maxeœE w(e).

C Related Work

Approximation algorithms of k-CAP. The edge-connectivity of a graph plays a central role
in a wide range of network design problems, spanning both classical and modern problems.
While the celebrated iterative rounding technique of [29] provides a 2-approximation for most
of these problems, any better than 2-approximation for them are among main open problems
within the field of approximation algorithms.

Significant progress has been made in achieving better than a 2-approximation for specific
instances of the weighted k-CAP.Notably, extensive research focusing on the well-studied
unweighted TAP has led to breakthroughs [40, 16, 38, 27, 9], culminating in an approximation
factor of 1.326 [24]. Remarkably, this same factor has also been achieved for the unweighted k-
CAP [9], a problem that recently saw significant advancements surpassing the 2-approximation
barrier [8]. Moreover, in a recent development, the weighted TAP and k-CAP have witnessed
breakthroughs with approximation factors below 2 [48, 49, 50]. It is noteworthy that these
advancements in the weighted variants are relatively recent in the research landscape.

The Steiner tree augmentation problem, in which given a Steiner tree T µ G = (V,E)
over terminals R µ V the goal is to find a minimum weight set of edges H ™ G \ T that
increases the connectivity of the set R to 2, has also been studied and recently [45] provides
(1.5 + ‘)-approximation generalizing some of the techniques in [49].

SNDP. Similarly to k-ECSS, the augmentation variant of SNDP has been extensively studied
and is significant in the development of approximation algorithms for di�erent variations of
SNDP. Notably, the augmentation variant of SNDP generalizes well-studied problems such as
TAP, STAP and k-CAP. The augmentation variant of SNDP was originally studied to analyze
the primal-dual methods for SNDP, leading to k and log k approximations [51, 26], and
compared to the state-of-the-art 2-approximation iterative rounding technique of [29] has the
advantage of applicability to other variants of SNDP such as node-weighted SNDP [44, 11, 10]
or vertex-connectivity SNDP [37, 17, 12].

Spanners and sparsifiers. Graph spanners are important tools for graph compression in
which the distances between the nodes are preserved. See [1] for a survey on graph spanners
in general. Spanners have also been studied extensively in the streaming setting, see e.g.,
[7, 2, 15, 33, 21]. For other notions of graph sparsifiers in the streaming model, see e.g.,
[31, 32].
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Abstract
An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than
meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed by
Papadimitriou (1994): given n positive integers w1, . . . , wn of total sum

qn

i=1 wi < 2n ≠ 1, the task
is to find two distinct subsets A,B ™ [n] such that

q
iœA

wi =
q

iœB
wi.

Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole Equal
Sums runs in O

ú(2n/2) time, via either meet-in-middle or dynamic programming (Allcock, Hamoudi,
Joux, Klingelhöfer, and Santha, 2022).

Our main result is an improved algorithm for Pigeonhole Equal Sums in O
ú(20.4n) time. We

also give a polynomial-space algorithm in O
ú(20.75n) time. Unlike many previous works in this

area, our approach does not use the representation method, but rather exploits a simple structural
characterization of input instances with few solutions.
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1 Introduction

The Subset Sum problem is an important NP-hard problem in computer science: given
positive integers w1, w2, . . . , wn and a target integer t, find a subset A ™ [n] such thatq

iœA wi = t. Subset Sum can be solved in O(2n/2) time by a simple meet-in-middle
algorithm [14], and an important open problem is to improve it to O(2(1/2≠Á)n). A long
line of research attempts to solve Subset Sum faster using the representation method [15]
and connections to uniquely decodable code pairs [3, 4, 22], but these techniques have so
far only succeeded on average-case inputs [15, 8, 9] or restricted classes of inputs [2, 3].
Nevertheless, significant progress has been made for other variants of Subset Sum, including
Equal Sums [17], 2-Subset Sum and Shifted Sums [1] and more general subset balancing
problems [12], as well as Subset Sum in other computational settings such as Merlin–Arthur
protocols [18], low-space algorithms [6, 19], quantum algorithms [1], and algorithms with
lower-order run time improvements [13]. The general hope is that the tools developed for
solving these variant problems might one day help solve the original Subset Sum problem.
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In this paper we study an interesting variant of Subset Sum called Pigeonhole Equal
Sums:

Pigeonhole Equal Sums [20]
Input: positive integers w1, w2, . . . , wn, with promise

qn
i=1 wi < 2n ≠ 1.

Output: two di�erent subsets A,B ™ [n] such that
q

iœA wi =
q

iœB wi.

Since there are 2n subsets S ™ [n] with only 2n ≠ 1 possible subset sums
q

iœS wi œ
{0, 1, . . . , 2n ≠ 2} due to the promise, the pigeonhole principle guarantees that there exists a
pair of subsets with the same subset sum.

Pigeonhole Equal Sums was introduced by Papadimitriou [20] as a natural example
problem in the total search complexity class PPP. This problem has received attention in
the TFNP literature [5, 21], and is conjectured to be PPP-complete [20].

From the algorithmic point of view, the current status of Pigeonhole Equal Sums is quite
similar to that of the Subset Sum problem: a simple binary search with meet-in-middle
solves Pigeonhole Equal Sums in O

ú(2n/2) time (see Section 2).1 Allcock, Hamoudi, Joux,
Klingelhöfer, and Santha [1, Theorem 6.2] gave another Oú(2n/2)-time algorithm based on
dynamic programming (which is analogous to the alternative O

ú(2n/2)-time Subset Sum
algorithm from [3]2). It remains open whether O(2(1/2≠Á)n) time is possible for Pigeonhole
Equal Sums. Improvement of such type was achieved for the Equal Sums problem (without the
pigeonhole promise) by Mucha, Nederlof, Pawlewicz, and WÍgrzycki [17] via the representation
method withO(3(1/2≠Á)n) run time for some Á > 0.01, but this result has no direct implications
for Pigeonhole Equal Sums (for which the known O

ú(2n/2) time bound is already much
better than O(3n/2)).

1.1 Our results
We give an algorithm that solves Pigeonhole Equal Sums faster than the previous Oú(2n/2)
running time [1].

I Theorem 1 (Main). Pigeonhole Equal Sums can be solved by a randomized algorithm in
O

ú(20.4n) time.

Surprisingly, unlike previous works on other variants of Subset Sum, our algorithm does not
use the representation method [15] or tools from coding theory [3, 4, 22]. Instead, our main
insight is a simple structural characterization of Pigeonhole Equal Sums instances with few
solutions.

Our techniques also yield a fast polynomial-space algorithm for Pigeonhole Equal Sums,
in an analogous way to the previous O(3(1≠Á)n)-time polynomial-space algorithm for Equal
Sums [17].

I Theorem 2. Pigeonhole Equal Sums can be solved by a randomized algorithm in O
ú(20.75n)

time and poly(n) space.

For comparison, a straightforward algorithm based on binary search solves Pigeonhole Equal
Sums in poly(n) space and O

ú(2n) time (see the beginning of Section 4).
Theorem 1 and Theorem 2 will be proved in Section 3 and Section 4 respectively.

1 We use O
ú(·) to hide poly(n) factors.

2 See also https://youtu.be/cHimhXXIwcg?t=454.

https://youtu.be/cHimhXXIwcg?t=454
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2 Preliminaries

Denote [n] = {1, . . . , n}. Let O
ú(·),�ú(·) hide poly(n) factors, where n is the number of

input integers in the Pigeonhole Equal Sums problem.
Denote w(A) =

q
iœA wi for A ™ [n]. The pigeonhole promise states w([n]) < 2n ≠ 1.

For a predicate p we define 1[p] = 1 if p is true and 1[p] = 0 if p is false.
We need the following well-known lemma.

I Lemma 3 (Counting subset sums via meet-in-middle [14]). Given integers w1, . . . , wn and
t, we can compute #{S ™ [n] : w(S) Æ t} in O

ú(2n/2) time. Moreover, we can list S ™ [n]
such that w(S) Æ t in O

ú(1) additional time per S.
Proof. Divide [n] into S1 = {1, . . . , Ân/2Ê} and S2 = [n] \ S1, and every subset S ™ [n] can
be represented as X ‡ Y,X ™ S1, Y ™ S2. Compute and sort the two lists A = {w(X)}X™S1

and B = {w(Y )}Y ™S2 of length O(2n/2) each. Then for each w(X) œ A we accumulate
|Bfl(≠Œ, t≠w(X)]| to the answer. It is easy to augment this algorithm to support listing. J

Pigeonhole Equal Sums via binary search

The following simple binary-search algorithm (described in [1, Remark 6.9 of arXiv version]
and attributed to an anonymous referee) solves Pigeonhole Equal Sums in O

ú(2n/2) time:
Maintain an interval {¸, ¸ + 1, . . . , r} (initialized to ¸ = 0, r = 2n ≠ 2) that satisfies the
pigeonhole invariant r ≠ ¸ + 1 < #{S ™ [n] : ¸ Æ w(S) Æ r}. Initially this invariant
is satisfied due to w([n]) Æ 2n ≠ 2. While r > ¸, pick the middle point m = Â ¸+r

2 Ê,
and use meet-in-middle (Lemma 3) to compute c1 = #{S ™ [n] : ¸ Æ w(S) Æ m} and
c2 = #{S ™ [n] : m + 1 Æ w(S) Æ r} in O

ú(2n/2) time. Then we shrink the interval to
{¸, . . . ,m} if m ≠ ¸ + 1 < c1, or to {m + 1, . . . , r} if r ≠ m < c2 (the invariant guarantees
that at least one holds). After Álog2(2n ≠ 1)Ë = n iterations we shrink to a singleton interval
¸ = r. By the invariant, there exist two di�erent S1, S2 ™ [n] such that w(S1) = w(S2) = ¸,
and we can report such S1, S2 using meet-in-middle (Lemma 3).

This binary-search strategy will be used in our improved algorithms as well.

3 The improved algorithm

Let the n input integers be sorted as 0 < w1 < w2 < · · · < wn (assuming no trivial solution
wi = wj exists).

An assumption on prefix sums

If any proper prefix {w1, . . . , wi} (i Æ n ≠ 1) already satisfies the pigeonhole promise
w([i]) < 2i ≠ 1, then we can instead solve the smaller Pigeonhole Equal Sums instance
{w1, . . . , wi} and obtain A,B ™ [i], A ”= B with w(A) = w(B). Hence, without loss of
generality we assume such prefix does not exist, i.e.,

w([i]) Ø 2i ≠ 1 for all i œ [n ≠ 1]. (1)

Frequencies ft and parameter d

The frequency (also called bin size) of t œ N is the number of input subsets achieving sum t,
denoted as ft = #{S ™ [n] : w(S) = t}. Since w([n]) < 2n ≠ 1, we know ft = 0 for all
t Ø 2n ≠ 1, and

ÿ

0Æt<2n
ft = 2n. (2)
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Two di�erent subsets achieving equal subset sum t imply ft > 1. This motivates the
following parameter,

d =
ÿ

0Æt<2n
max{0, ft ≠ 1}, (3)

which counts the (non-trivial) equality relations among all the 2n subset sums. Using Equa-
tion (2), we can rewrite Equation (3) as d =

q
0Æt<2n(ft≠1[ft Ø 1]) = 2n≠

q
0Æt<2n 1[ft Ø 1],

and thus obtain

d = #{0 Æ t < 2n : ft = 0}, (4)

which counts the non-subset-sums in {0, 1, . . . , 2n ≠ 1}. In particular, d < 2n.
The equivalence between Equation (3) and Equation (4) is powerful. In the following we

will give two di�erent algorithms for Pigeonhole Equal Sums. The first one works for small d
by analyzing the structure of input instances with few non-subset-sums (by Equation (4)).
The second one works when d is large and hence there are many solutions (by Equation (3))
which allow a subsampling approach. These two algorithms are summarized as follows:

I Lemma 4. Given parameter � Æ 2n/(3n2), Pigeonhole Equal Sums with d Æ � can be
solved deterministically in O

ú(
Ô

�) time.

I Lemma 5. Given parameter 2n/2 Æ � < 2n, Pigeonhole Equal Sums with d Ø � can be
solved in O

ú((22n/�)1/3) time by a randomized algorithm.

Combining these two lemmas implies our main result:

Proof of Theorem 1. Set � = 20.8n so that the two time bounds in Lemma 4 and Lemma 5
are balanced to O

ú(20.4n). Given an instance of Pigeonhole Equal Sums (with unknown d),
we run both algorithms in parallel, and return the answer of whichever terminates first. J

3.1 Small d case via structural characterization
In this section we prove Lemma 4. Assume d Æ � Æ 2n/(3n2) and � is known.

Since ft = 0 for all w([n]) < t < 2n, from Equation (4) we know d Ø 2n ≠ 1 ≠ w([n]), and
hence w([n]) Ø 2n ≠ 1 ≠ d Ø 2n ≠ 1 ≠ �. Combined with Equation (1) for i œ [n ≠ 1], we get
the following lower bound

w([i]) Ø 2i ≠ 1 ≠ � for all i œ [n]. (5)

The key step is to complement Equation (5) with a nearly matching upper bound:

I Lemma 6. For all i œ [n],

wi Æ 2i≠1 + �. (6)

Summing Equation (6) over i gives

w([i]) Æ 2i ≠ 1 + i� (7)

for all i œ [n].

Proof. Fix i œ [n]. Let M be the number of subsets S ™ [n] with w(S) < wi. Since
wi < wi+1 < · · · < wn, any such S must be contained in [i ≠ 1], and thus M Æ 2i≠1. On the
other hand, M =

qwi≠1
t=0 ft Ø wi ≠ #{0 Æ t < wi : ft = 0} Ø wi ≠ d by Equation (4). Hence,

wi Æ M + d Æ 2i≠1 + �. J
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Comparing Equation (5) with Equation (7) gives the lower bound

wi = w([i]) ≠ w([i ≠ 1]) Ø (2i ≠ 1 ≠ �) ≠ (2i≠1 ≠ 1 + (i ≠ 1)�) = 2i≠1 ≠ i�,

which is very close to the upper bound from Equation (6). Together we get

wi ≠ 2i≠1 œ [≠i�,�] (8)

for all i œ [n].
Equation (8) gives a very rigid structure of the large input numbers. In the next lemma

we exploit this structure to improve the naive meet-in-middle subset sum counting algorithm
from Lemma 3.

I Lemma 7. For any given T < 2n, we can compute
qT

t=0 ft in O
ú(

Ô
�) time.

Proof. Let iú be the minimum i
ú œ [n] such that 2iú Ø 3n2�, which exists by our assumption

� Æ 2n/(3n2). Let A = {1, 2, . . . , iú} and B = {iú + 1, . . . , n}.
By Equation (7), w(A) < 2iú + n�.
For every B

Õ ™ B, by Equation (8) we have
--w(BÕ) ≠

ÿ

jœBÕ

2j≠1-- Æ
ÿ

jœBÕ

|wj ≠ 2j≠1| Æ
ÿ

jœBÕ

j� Æ n
2�.

In other words, the subset sums of {wj}jœB are n
2�-additively approximated by the subset

sums of {2j≠1}jœB. The subset sums of the latter set form an arithmetic progression
{k · 2iú : 0 Æ k < 2n≠iú}, namely all n-bit binary numbers whose lowest i

ú bits are zeros.
Notably, this arithmetic progression is very sparse: its di�erence 2iú is large enough compared
to w(A) < 2iú + n�.

Given query T , we want to count the number of pairs (AÕ
, B

Õ) (AÕ ™ A,B
Õ ™ B) such

that w(AÕ) + w(BÕ) Æ T . To do this, we enumerate B
Õ ™ B, and consider three cases (the

non-trivial case is Case 3, where w(BÕ) and
q

jœBÕ 2j≠1 are close to T ):
Case 1:

q
jœBÕ 2j≠1 Æ T ≠ 2iú ≠ (n+ n

2)�.
Then, for all AÕ ™ A, we have w(AÕ) + w(BÕ) Æ w(A) + w(BÕ) Æ (2iú + n�) + (n2� +q

jœBÕ 2j≠1) Æ T . Hence B
Õ contributes 2|A| many pairs (AÕ

, B
Õ).

Case 2:
q

jœBÕ 2j≠1
> T + n

2�.
Then, for all AÕ ™ A, we have w(AÕ) + w(BÕ) Ø w(BÕ) Ø

q
jœBÕ 2j≠1 ≠ n

2� > T . Hence
B

Õ does not contribute any pairs (AÕ
, B

Õ).
Case 3: otherwise,

q
jœBÕ 2j≠1 œ (T ≠ 2iú ≠ (n+ n

2)�, T + n
2�].

This interval has length 2iú + (n + n
2)� + n

2� Æ 2 · 2iú by our choice of iú. Sinceq
jœBÕ 2j≠1 is a multiple of 2iú in this interval, it has at most two possibilities, namely

2iú · ÂT≠(n+n2)�
2iú Ê and 2iú ·

1
ÂT≠(n+n2)�

2iú Ê + 1
2
, and then B

Õ is uniquely determined by
the binary decomposition of

q
jœBÕ 2j≠1. For each possible B

Õ, we count the number
of AÕ ™ A such that w(AÕ) Æ T ≠ w(BÕ) using meet-in-middle (Lemma 3) with time
complexity O

ú(2|A|/2) = O
ú(2iú/2) = O

ú(
Ô

�) by the definition of iú.

Note that in O
ú(1) time we can easily find the (at most two) subsets B

Õ satisfying
Case 3, and also count the total contribution of Case 1. Hence the overall time complexity is
O

ú(
Ô

�). J

Using Lemma 7 we can solve Pigeonhole Equal Sums using binary search, in the same way
as described in the last paragraph of Section 2. The running time is Oú(

Ô
�). This finishes

the proof of Lemma 4.
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3.2 Large d case via subsampling

In this section we prove Lemma 5. Assume 2n/2 Æ � Æ d < 2n, and � is known. We first
use d =

q
0Æt<2n max{0, ft ≠ 1} (Equation (3)) to show that many subset sums t have large

ft, which then allows us to use subsampling to speed up the modular dynamic programming
approach of [1, 3].

I Lemma 8. There exists a j œ {0, 1, . . . , n ≠ 1} such that #{t : ft > 2j} >
�

2j+1n .

Proof. By definition of d in Equation (3),

� Æ d =
ÿ

t:ft>1
(ft ≠ 1) Æ

ÿ

0Æj<n

#{t : 2j < ft Æ 2j+1} · (2j+1 ≠ 1). (9)

If the claimed inequality fails for all j, then

[RHS of Equation (9)] Æ
ÿ

0Æj<n

�
2j+1n

· (2j+1 ≠ 1) < �,

a contradiction. J

Our algorithm enumerates all j œ {0, 1, . . . , n ≠ 1} (increasing the time complexity by
a factor of n = O

ú(1)), and from now on we assume j satisfies the inequality in Lemma 8.
Define

h := 2j + 1 Ø 2, m :=
9

�
2j+1n

:
>

�
2hn, and X := {t œ [2n] : ft Ø h}. (10)

Here we defined the set X of frequent subset sums only for the sake of analysis. By Lemma 8,

|X| Ø m. (11)

Readers are encouraged to focus on the case of h = 2 and m Ø �ú(�) (which is the hardest
case for our algorithm) at first read.

We first describe the behavior of our algorithm: Let p œ [P, 2P ] be a uniformly random
prime (for some parameter 2 Æ P Æ 2m to be determined later in the “Time complexity”
paragraph). For each r œ Zp, define bin Br := {S ™ [n] : w(S) © r (mod p)}. The algorithm
picks a random bin index r

ú œ Zp, and subsamples C ™ Brú by keeping each S œ Brú with
probability – independently (for some 0 < – Æ 1

2h to be determined later in the “Success
probability” paragraph). Finally, a pair of distinct S, SÕ œ C with w(S) = w(SÕ) is reported
(if exists).

Now we explain how to implement the algorithm above via dynamic programming (DP)
similarly to [1, 3]. Build the DP table Di,r = #{S ™ [i] : w(S) © r (mod p)} (where 0 Æ
i Æ n and r œ Zp) in O

ú(p) overall time via the transition Di,r = Di≠1,r +Di≠1,(r≠wi) mod p

with initial values D0,r = 1[r = 0]. This DP computes the size of every bin |Br| = Dn,r.
Furthermore, for any bin Br and integer k œ [|Br|], we can report the rank-k set S in Br

(in lexicographical order, where larger indices are compared first) by backtracing in the DP
table in O

ú(1) time. Then, in order to subsample a collection of sets C ™ Brú at rate –,
we can first subsample their ranks in [|Brú |] (in near-linear time in the output size, see e.g.,
[10]), and then recover the actual sets by backtracing.
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Success probability

We study how the frequent subset sums, X = {t : ft Ø h}, are distributed to the bins modulo
a random prime p, using an argument similar to [3]. Setting

k :=
' m

4P
(
, (12)

the following lemma shows that the bin Brú receives at least k frequent subset sums, with
�ú(1) probability.

I Lemma 9. With at least �(1/n) probability over the choice of prime p œ [P, 2P ] and
r

ú œ Zp, there are at least k integers t œ N such that #{S œ Brú : w(S) = t} Ø h.

Proof. Since |X| Ø m by Equation (11), we arbitrarily pick X
Õ ™ X with |X Õ| = m for the

sake of analysis. Let cr,p := {t œ X
Õ : t © r (mod p)}. Then,

E
pœ[P,2P ]

# ÿ

rœZp

c
2
r,p

$
=

ÿ

xœXÕ,yœXÕ

Pr
pœ[P,2P ]

[p | x ≠ y]

Æ m+m
2 · logP 2n

�(P/ lnP ) (by |x ≠ y| Æ 2n and the density of primes)

Æ O(n ·m2
/P ). (by the assumption that P Æ 2m)

Then by Markov’s inequality, with 0.9 success probability over the choice of p, we haveq
rœZp

c
2
r,p Æ O(n ·m2

/P ). Conditioned on this happening, by Cauchy–Schwarz inequality
we have

ÿ

rœZp

1[cr,p Ø m
2p ] Ø

1q
rœZp

1[cr,p Ø m
2p ] · cr,p

22

q
rœZp

c2r,p

Ø

!
(
q

rœZp
cr,p) ≠ p · m

2p
"2

O(n ·m2/P ) = (|X Õ| ≠ m/2)2

O(n ·m2/P ) = (m/2)2

O(n ·m2/P ) = �(P/n),

and hence, by our choice of k =
'

m
4P

(
Æ

'
m
2p

(
,

Pr
rúœZp

[crú,p Ø k] Ø Pr
rúœZp

[crú,p Ø m
2p ] Ø �(P/n)

p
= �(1/n).

Conditioned on crú,p Ø k happening, we have at least k integers t œ X
Õ ™ X such that

t © r
ú (mod p). By definitions of Brú and X, this implies that there are at least k integers

t œ N such that #{S œ Brú : w(S) = t} Ø h, with overall success probability at least
0.9 · �(1/n) = �(1/n) over the choice of p and r

ú. J

Recall our algorithm subsamples C ™ Brú at rate – œ (0, 1
2h ], and fails i� w(S) are

distinct for all S œ C. The failure probability of this step can be derived from the following
lemma:

I Lemma 10. Let BÕ be a collection of kh colored balls (h Ø 2, k Ø 1), with exactly h balls
of color i for each color i œ [k]. Let C Õ ™ B

Õ be an i.i.d. subsample at rate – œ [0, 1
2h ]. Then

C
Õ contains distinct colors with at most exp(≠kh(h ≠ 1)–2

/4) probability.

Proof. For each color i œ [k], by Bernoulli’s inequality, the probability that C
Õ includes

exactly two balls of color i is
!h
2
"
–
2(1 ≠ –)h≠2 Ø

!h
2
"
–
2!
1 ≠ (h ≠ 2)–

"
Ø

!h
2
"
–
2
/2. Hence, the

probability that C Õ includes at most one ball of every color i œ [k] is at most
!
1≠

!h
2
"
–
2
/2

"k Æ
exp

!
≠ k

!h
2
"
–
2
/2

"
= exp(≠kh(h ≠ 1)–2

/4). J
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We think of each set S œ Brú as a ball of color w(S), and apply Lemma 10 to the k integers
(colors) t œ N ensured by Lemma 9, each having at least h sets (balls) S œ Brú with w(S) = t.
We set the sample rate to be

– := 1
2h

Ô
k

Æ 1
2h. (13)

Then the failure probability of the subsampling step is at most

exp(≠kh(h ≠ 1)–2
/4) = exp(≠h≠1

16h ) Æ exp(≠1/32).

Overall, the probability that the algorithm successfully finds a solution is at least �(1/n) ·
(1 ≠ exp(≠1/32)) Ø �(n≠1).

Time complexity

The mod-p DP runs in O
ú(p) Æ O

ú(P ) time. Since the bins have total size
q

rœZp
|Br| =

2n, the chosen bin Brú has expected size ErúœZp [|Brú |] = 2n/p Æ 2n/P , and hence the
subsample C ™ Brú has expected size E[|C|] Æ –2n/P . To detect a solution S, S

Õ œ C with
w(S) = w(SÕ), we simply sort C in near-linear time. Hence the total expected running time
is Oú(P +–2n/P ). By Markov’s inequality, with probability at least 1≠ n

≠10, the algorithm
terminates in O

ú(P + –2n/P ) time. By a union bound, the algorithm successfully finds a
solution in time O

ú(P + –2n/P ) with probability at least �(n≠1) ≠ n
≠10 Ø �(n≠1). This

success probability can be boosted to 0.99 by repeating the algorithm O(n) times.
Recall from Equations (12) and (13) that – = 1

2h
Ô
k
= 1

2h
Ô

Ám/4PË
Æ

Ô
P

h
Ô
m
, so the run

time is (ignoring poly(n) factors)

P + –2n/P Æ P + 2n

h
Ô
mP

.

Recall h = 2j+1 (where 0 Æ j Æ n≠1) and m = Á �
2j+1nË, and hence hm < h(1+ �

2j+1n ) Æ
h+ �

n < (2n≠1 + 1) + 2n
n Æ 2n (assuming n Ø 3). Now we set

P := 2m ·min
;
1,

! 2n
hm2

"2/3
<
,

and we first need to verify the requirement 2 Æ P Æ 2m introduced earlier: The upper bound
is obvious. To see the lower bound, note that 2m Ø 2 and 2m ·

! 2n
hm2

"2/3 = 2
1

22n
h2m

21/3
Ø

2
1

22n
(hm)2

21/3
Ø 2 (using the inequality hm Æ 2n we just showed).

Hence, the overall running time is at most (ignoring poly(n) factors)

P + 2n

h
Ô
mP

Æ 2m
3

2n
hm2

42/3
+ 2n

h
Ô
m · 2m

·max
I
1,

3
hm

2

2n

41/3J

= 2 · 22n/3

h2/3m1/3 + 1Ô
2
max

;
2n
hm

,
22n/3

h2/3m1/3

<

Æ O

3
22n/3

h2/3m1/3 + 2n
hm

4

Æ O
ú

3
22n/3

h1/3�1/3 + 2n
�

4
(by hm >

�
2n from Equation (10))

Æ O
ú

3
22n/3

�1/3

4
. (by h > 1 and the assumption that � Ø 2n/2)

This finishes the proof of Lemma 5.
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4 A polynomial-space algorithm

We now consider poly(n)-space algorithms for Pigeonhole Equal Sums. The straightforward
binary search approach (described at the end of Section 2) can be adapted to run in O

ú(2n)
time and poly(n) space: instead of using meet-in-middle (Lemma 3, which requires large
space), we count the number of valid subsets S ™ [n] by brute force in O

ú(2n) time and only
poly(n) space.

We improve this O
ú(2n) running time using the ideas from earlier sections. Again,

consider two cases depending on whether parameter d from Equation (3) is small or large.

I Lemma 11. Given parameter � Æ 2n/(3n2), Pigeonhole Equal Sums with d Æ � can be
solved deterministically in poly(n) space and O

ú(�) time.

Proof Sketch. The proof is almost the same as Lemma 4 (see Section 3.1), with the only
di�erence in Case 3 from the proof of Lemma 7: instead of using meet-in-middle, here we
count the valid subsets AÕ ™ A by brute force in O

ú(2|A|) = O
ú(2iú) = O

ú(�) time and only
poly(n) space. J

To solve the large d case, we need the low-space element distinctness algorithm by Beame,
Cli�ord, and Machmouchi [7] (generalized in [6], and with a non-standard assumption removed
by [11, 16]). This algorithm was also previously used for Subset Sum [6] and Equal Sums [17].
The following statement can be inferred from [11, Section 4.2 (proof of Theorem 1.1)].

I Theorem 12 (Low-space Element Distinctness, [7, 6, 11]). Given random access to an
integer list a1, . . . , aN (where ai œ [poly(N)]) that contains at least one pair (i, j) œ [N ]◊ [N ]
with ai = aj , i ”= j, there is a randomized algorithm that reports such a pair using poly logN
working memory and

O

3
N

Ô
F2

F2 ≠ N
· poly logN

4

time, where F2 =
qN

i=1
qN

j=1 1[ai = aj ] œ [N + 2, N2].3

I Lemma 13. Given parameter 1 Æ � Æ 2n, Pigeonhole Equal Sums with d Ø � can be
solved in O

ú(21.5n/�) time and poly(n) space by a randomized algorithm.

Proof. Apply Theorem 12 to the list {w(A)}A™[n] of length N = 2n and we obtain a
pair of distinct A,A

Õ ™ [n] with w(A) = w(AÕ) as desired. The space complexity is
poly log(2n) = poly(n). To analyze the time complexity, note that

F2 ≠ 2n =
ÿ

A™[n]

ÿ

B™[n]
B ”=A

1[w(A) = w(B)] =
ÿ

0Æt<2n
ft(ft ≠ 1) Ø

ÿ

0Æt<2n
max{0, ft ≠ 1} Eq. (3)= d Ø �,

so the time bound is (ignoring poly(n) factors)

2n
Ô
F2

F2 ≠ 2n <
20.5nF2
F2 ≠ 2n = 20.5n

3
1 + 2n

F2 ≠ 2n

4
Æ 20.5n

3
1 + 2n

�

4
Æ 2 · 21.5n

�

as claimed. J

3 We have F2 Ø N + 2 due to the following (N + 2) pairs: (1, 1), (2, 2), . . . , (N,N) and (i, j), (j, i), where
ai = aj (i ”= j).
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Combining the two lemmas gives the desired result.

Proof of Theorem 2. Set � = 20.75n so that the two time bounds in Lemma 11 and
Lemma 13 are balanced to O

ú(20.75n). Given an instance of Pigeonhole Equal Sums (with
unknown d), we run both algorithms in parallel, and return the answer of whichever terminates
first. J

5 Open problems

Allcock et al. [1] proposed a modular variant of the Pigeonhole Equal Sums problem: given
integers w1, . . . , wn and a modulus m Æ 2n ≠1, find two distinct subsets A,B ™ [n] such thatq

iœA wi ©
q

iœB wi (mod m). They obtained a O
ú(2n/2)-time algorithm for this problem.

Can this result be improved as well?
Can we obtain faster algorithms for other problems in PPP (e.g., [5, 21])?

References
1 Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and Miklos Santha.

Classical and quantum algorithms for variants of subset-sum via dynamic programming. In 30th
Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam,
Germany, volume 244 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.6.

2 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the absence of
concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 48–61. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.48.

3 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset sum may
be the hardest. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer
Science (STACS), volume 47 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.13.

4 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Sharper upper bounds for
unbalanced uniquely decodable code pairs. IEEE Trans. Inf. Theory, 64(2):1368–1373, 2018.
doi:10.1109/TIT.2017.2688378.

5 Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros Psomas, and Aviad
Rubinstein. Reductions in PPP. Inf. Process. Lett., 145:48–52, 2019. doi:10.1016/j.ipl.
2018.12.009.

6 Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-e�cient
algorithms for subset sum, k-sum, and related problems. SIAM J. Comput., 47(5):1755–1777,
2018. doi:10.1137/17M1158203.

7 Paul Beame, Raphaël Cli�ord, and Widad Machmouchi. Element distinctness, frequency
moments, and sliding windows. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 290–299, 2013. doi:10.1109/FOCS.2013.39.

8 Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard
knapsacks. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
364–385. Springer, 2011. doi:10.1007/978-3-642-20465-4_21.

9 Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Improved classical
and quantum algorithms for subset-sum. In Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492 of Lecture
Notes in Computer Science, pages 633–666. Springer, 2020. doi:10.1007/978-3-030-64834-3_
22.

https://doi.org/10.4230/LIPIcs.ESA.2022.6
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.4230/LIPIcs.STACS.2016.13
https://doi.org/10.1109/TIT.2017.2688378
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.1137/17M1158203
https://doi.org/10.1109/FOCS.2013.39
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22


C. Jin and H. Wu 94:11

10 Karl Bringmann and Konstantinos Panagiotou. E�cient sampling methods for discrete
distributions. Algorithmica, 79(2):484–508, 2017. doi:10.1007/S00453-016-0205-0.

11 Lijie Chen, Ce Jin, R. Ryan Williams, and Hongxun Wu. Truly low-space element dis-
tinctness and subset sum via pseudorandom hash functions. In Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1661–1678, 2022. doi:
10.1137/1.9781611977073.67.

12 Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Average-case subset balancing
problems. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 743–778. SIAM,
2022. doi:10.1137/1.9781611977073.33.

13 Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset sum in time 2n/2 /
poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA,
volume 275 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.39.

14 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.

15 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 235–256.
Springer, 2010. doi:10.1007/978-3-642-13190-5_12.

16 Xin Lyu and Weihao Zhu. Time-space tradeo�s for element distinctness and set intersection
via pseudorandomness. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 5243–5281. SIAM, 2023.
doi:10.1137/1.9781611977554.ch190.

17 Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol WÍgrzycki. Equal-subset-sum
faster than the meet-in-the-middle. In 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages
73:1–73:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ESA.2019.73.

18 Jesper Nederlof. A short note on merlin-arthur protocols for subset sum. Inf. Process. Lett.,
118:15–16, 2017. doi:10.1016/j.ipl.2016.09.002.

19 Jesper Nederlof and Karol WÍgrzycki. Improving Schroeppel and Shamir’s algorithm for
subset sum via orthogonal vectors. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1670–1683. ACM, 2021.
doi:10.1145/3406325.3451024.

20 Christos H. Papadimitriou. On the complexity of the parity argument and other ine�cient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

21 Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connec-
tions to cryptography. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00023.

22 Henk C. A. van Tilborg. An upper bound for codes in a two-access binary erasure channel
(corresp.). IEEE Trans. Inf. Theory, 24(1):112–116, 1978. doi:10.1109/TIT.1978.1055814.

ICALP 2024

https://doi.org/10.1007/S00453-016-0205-0
https://doi.org/10.1137/1.9781611977073.67
https://doi.org/10.1137/1.9781611977073.67
https://doi.org/10.1137/1.9781611977073.33
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.39
https://doi.org/10.1145/321812.321823
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1137/1.9781611977554.ch190
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.1016/j.ipl.2016.09.002
https://doi.org/10.1145/3406325.3451024
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1109/TIT.1978.1055814




Fully Dynamic Strongly Connected Components in

Planar Digraphs

Adam Karczmarz �

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Marcin Smulewicz �

University of Warsaw, Poland

Abstract

In this paper we consider maintaining strongly connected components (SCCs) of a directed planar
graph subject to edge insertions and deletions. We show a data structure maintaining an implicit
representation of the SCCs within ÂO(n6/7) worst-case time per update. The data structure supports,
in O(log2 n) time, reporting vertices of any specified SCC (with constant overhead per reported
vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices
of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as
the number of SCCs, or the size of the largest SCC.

To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time
have been previously known for any major subclass of digraphs. Our result should be contrasted
with the n

1≠o(1) amortized update time lower bound conditional on SETH, which holds even for
dynamically maintaining whether a general digraph has more than two SCCs.
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1 Introduction

Two vertices of a directed graph G = (V,E) are called strongly connected if they can reach
each other using paths in G. Pairwise strong connectivity is an equivalence relation and
the strongly connected components (SCCs) of G are its equivalence classes. Computing
the SCCs is among the most classical and fundamental algorithmic problems on digraphs
and there exists a number of linear-time algorithms for that [14, 33, 35]. Therefore, it is
no surprise that maintaining SCCs has been one of the most actively studied problems on
dynamic directed graphs [1, 2, 3, 4, 5, 7, 8, 18, 23, 25, 30, 31].

When maintaining the strongly connected components, the information we care about may
vary. First, we could be interested in e�ciently answering pairwise strong connectivity queries:
given u, v œ V , decide whether u and v are strongly connected. Pairwise strong connectivity
queries, however, cannot easily provide any information about the global structure of SCCs
(such as the number of SCCs, the size of the largest SCC). Neither they enable, e.g., listing
the vertices strongly connected to some u œ V . This is why, in the following, we distinguish
between dynamic pairwise strong connectivity and dynamic SCCs data structures which
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provide a more global view. In particular, all the data about the SCCs can be easily accessed
if the SCCs are maintained explicitly, e.g., if the SCC identifier of every vertex is stored at
all times and explicitly updated.

1.1 Previous work

In the following, let n = |V | and m = |E|. Dynamic graph data structures are traditionally
studies in incremental, decremental or fully dynamic settings, which permit the graph to
evolve by either only edge insertions, only deletions, or both, respectively. A decremental
data structure maintaining SCCs with near-optimal total update time is known [5]. Very
recently, a deterministic data structure with m1+o(1) total update time has been obtained
also for the incremental setting [8]. Both these state-of-the art data structures maintain the
SCCs explicitly.

The fully dynamic variant – which is our focus in this paper – although the most natural,
has been studied the least. First of all, there is strong evidence that a non-trivial dynamic
SCCs data structure for sparse graphs cannot exist. If the SCCs have to be maintained
explicitly, then a single update can cause a rather dramatic �(n)-sized amortized change
in the set of SCCs1. As a result, an explicit update may be asymptotically as costly as
recomputing SCCs from scratch. This argument – applicable also for maintaining connected

components of an undirected graph – does not exclude the possibility of maintaining an implicit

representation of the SCCs in sublinear time, though. After all, there exist very e�cient fully
dynamic connectivity data structures, e.g., [20, 21, 38], typically maintaining also an explicit
spanning forest which allows retrieving any “global” component-wise information one can
think of rather easily. However, Abboud and Vassilevska Williams [1] showed that even for
maintaining a single-bit information whether G has more than two SCCs, a data structure
with O(n1≠‘) amortized time is unlikely, as it would break the Orthogonal Vectors conjecture
implied by the SETH [22, 37].2 This considerably limits the possible global information
about the SCCs that can be maintained within sublinear time per update.

For denser graphs, Abboud and Vassilevska Williams [1] also proved that maintaining
essentially any (even pairwise) information about SCCs dynamically within truly subquadratic
update time has to rely on fast matrix multiplication. And indeed, that pairwise strong
connectivity can be maintained this way follows easily from the dynamic matrix inverse-based
dynamic st-reachability data structures [36, 32]. More recently, we [25] showed that in
fact SCCs can be maintained explicitly in O(n1.529) worst-case time per update. They also
proved that maintaining whether G has just a single SCC (dynamic SC ) is easier3 and
can be achieved within O(n1.406) worst-case time per update. Both these bounds are tight
conditional on the appropriate variants [36] of the OMv conjecture [19].

In summary, the complexity of maintaining SCCs in general directed graphs is rather
well-understood now. In partially dynamic settings, the known bounds are near optimal
unconditionally, whereas in the fully dynamic setting, the picture appears complete unless
some popular hardness conjectures are proven wrong. In particular, for general sparse
digraphs, no (asymptotically) non-trivial fully dynamic SCCs data structure can exist.

1 Consider a directed cycle and switching its arbitrary single edge on and o�.
2 In [1], a conditional lower bound of the same strength is also derived for the dynamic #SSR problem

where the goal is to dynamically count vertices reachable from a source s œ V .
3 Interestingly, the SETH-based lower bound of [1] does not apply to the dynamic SC problem.
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Planar graphs. It is thus natural to ask whether non-trivial dynamic SCCs data structures
are possible if we limit our attention to some significant class of sparse digraphs. And indeed,
this question has been partially addressed for planar digraphs in the past. Since pairwise
s, t-strong connectivity queries reduce to two s, t-reachability queries, the known planar
dynamic reachability data structures [9, 34] imply that sublinear ( ÂO(n2/3) or ÂO(

Ô
n)-time,

depending on whether embedding-respecting insertions are required) updates/queries are
possible for pairwise strong connectivity. Another trade-o� for dynamic pairwise strong
connectivity has been showed by Charalampopoulos and Karczmarz [6]. Namely, they showed
a fully dynamic data structure for planar graphs with ÂO(n4/5) worst-case update time that
can produce an identifier sv of an SCC of a given query vertex v in O(log2 n) time. Whereas
this is slightly more general4, it still not powerful enough to enable e�ciently maintaining
any of the global data about the SCCs of a dynamic planar digraph such as the SCCs count.

To the best of our knowledge, the question whether a more robust – that is, giving a more
“global” perspective on the SCCs beyond only supporting pairwise queries – fully dynamic
SCCs data structure for planar digraphs (or digraphs from any other interesting class) with
sublinear update time is possible has not been addressed before.

1.2 Our results

In this paper, we address the posed question in the case of planar directed graphs. Specifically,
our main result is a dynamic SCCs data structure summarized by the following theorem.

I Theorem 1. Let G be a planar digraph subject to planarity-preserving edge insertions and

deletions. There exists a data structure maintaining the strongly connected components of G
implicitly in ÂO(n6/7) worst-case time per update. Specifically:

The data structure maintains the number of SCCs and the size of the largest SCC in G.

For any query vertex v, in O(log2 n) time the data structure can compute the size of the

SCC of v, and enable reporting the elements of the SCC of v in O(1) worst-case time per

element.

In particular, Theorem 1 constitutes the first known fully dynamic SCCs data structure
with sublinear update time for any significant class of sparse digraphs. It also shows that the
conditional lower bound of [1] does not hold in planar digraphs.

The data structure of Theorem 1 is deterministic and does not require the edge insertions
to respect any fixed embedding of the graph (this also applies to side results discussed below).
Obtaining more e�cient data structures for fully dynamic embedding-respecting updates is
an interesting direction (see, e.g., [9]) that is beyond the scope of this paper.

Related problems. Motivated by the discrepancies between the known bounds for dynamic
SCCs and dynamic SC in general digraphs (both from the lower- [1] and upper bounds [25]
perspective), we also complement Theorem 1 with a significantly simpler and faster data
structure suggesting that the dynamic SC might be easier (than dynamic SCCs) in planar
digraphs as well.5

4 Than answering pairwise strong connectivity queries. Using the SCC-identifiers, one can, e.g., partition
any k vertices of G into strongly connected classes in ÂO(k) time, whereas using pairwise queries this
requires �(k2) queries.

5 Clearly, one could use Theorem 1 for dynamic SC as well.

ICALP 2024
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I Lemma 2. Let G be a planar digraph subject to planarity-preserving edge insertions and

deletions. One can maintain whether G has a single SCC in ÂO(n2/3) worst-case time per

update.

Similarly, one could ask how dynamic #SSR (i.e., counting vertices reachable from a
single source) relates to dynamic SCCs in planar digraphs. Especially since:
(1) in general directed graphs, dynamic SCCs and dynamic #SSR currently have matching

lower- [1, 36] and upper bounds [25, 32] (up to polylogarithmic factors);
(2) the former problem is at least as hard as the latter in the sense that dynamic #SSR

reduces to dynamic SCCs in general graphs easily6, whereas an opposite reduction is not
known.

Unfortunately, the aforementioned reduction of dynamic #SSR to dynamic SCCs breaks
planarity rather badly. Interestingly, the path net technique we develop to obtain Theorem 1
does not seem to work for counting “asymmetric” reachabilities from a single source.

Nevertheless, the Voronoi diagram machinery developed for computing the diameter of a
planar graph [15] almost immediately yields a more e�cient data structure for dynamic #SSR
in planar digraphs with ÂO(n4/5) update time. We provide the details of that construction in
the full version of this extended abstract.

It is worth noting that Voronoi diagrams-based techniques (as developed for distance
oracles [16]) have been used in the pairwise strong connectivity data structure [6]. However,
as we discuss later on, it is not clear how to apply those for the dynamic SCCs problem. This
is why Theorem 1 relies on a completely di�erent path net approach developed in this paper.

1.3 Organization

We review some standard planar graph tools in Section 2. Then, as a warm-up, we show the
data structure for dynamic SC in Section 3. In Section 4 we define a path net data structure
and show how it can be used to obtain a dynamic SCCs data structure. Finally, in Section 5
we describe the path net data structure. Due to space limit, some details and proofs are
deferred to the full version.

2 Preliminaries

In this paper we deal with directed graphs. We write V (G) and E(G) to denote the sets
of vertices and edges of G, respectively. We omit G when the graph in consideration is
clear from the context. A graph H is a subgraph of G, which we denote by H ™ G, i�
V (H) ™ V (G) and E(H) ™ E(G). We write e = uv œ E(G) when referring to edges of G.
By GR we denote G with edges reversed.

A sequence of vertices P = v1 . . . vk, where k Ø 1, is called an s æ t path in G if s = v1,
vk = t and there is an edge vivi+1 in G for each i = 1, . . . , k ≠ 1. We sometimes view a path
P as a subgraph of G with vertices {v1, . . . , vk} and (possibly zero) edges {v1v2, . . . , vk≠1vk}.
For convenience, we sometimes consider a single edge uv a path. If P1 is a u æ v path and
P2 is a v æ w path, we denote by P1 ·P2 (or simply P1P2) a path obtained by concatenating
P1 with P2. A vertex t œ V (G) is reachable from s œ V (G) if there is an s æ t path in G.

6 Consider the graph G
Õ obtained from G by adding a supersink t with a single outgoing edge ts and

incoming edges vt for all v œ V . Then v œ V is reachable from s in G i� s and v are strongly connected
in G

Õ. See also [36].
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Planar graph toolbox. An r-division [13] R of a planar graph, for r œ [1, n], is a decom-
position of the graph into a union of O(n/r) pieces P , each of size O(r) and with O(

Ô
r)

boundary vertices (denoted ˆP ), i.e., vertices shared with some other piece of R. We denote
by ˆR the set

t
PœR ˆP . If additionally G is plane-embedded, all pieces are connected, and

the boundary vertices of each piece P of the r-division R are distributed among O(1) faces
of P that contain the vertices from ˆP exclusively (also called holes of P ), we call R an
r-division with few holes. Klein [27] showed that an r-division with few holes of a triangulated
graph can be computed in linear time.

Fully dynamic r-divisions. Many dynamic algorithms for planar graphs maintain r-divisions
and useful piecewise auxiliary data structures under dynamic updates. Let us slightly
generalize the definition of an r-division with few holes to non-planar graphs by dropping
the requirement that G as a whole is planar but retaining all the other requirements (in
particular, the individual pieces are plane-embedded).

I Theorem 3 ([6, 28, 34]). Let G = (V,E) be a weighted planar graph that undergoes edge

deletions and edge insertions (assumed to preserve the planarity of G). Let r œ [1, n].
There is a data structure maintaining an r-division with few holes R of some G+

, where G+

can be obtained from G by adding edges
7
, such that each piece P œ R is accompanied with

some auxiliary data structures that can be constructed in T (r) time given P and use S(r)
space.

The data structure uses O
!
n+ n

r
· S(r)

"
space and can be initialized in O

!
n+ n

r
· T (r)

"

time. After each edge insertion/deletion, it can be updated in O(r + T (r)) worst-case time.

3 Fully dynamic SC data structure

To illustrate the general approach and introduce some of the concepts used for obtaining
Theorem 1, in this section we first prove Lemma 2. That is, we show that the information
whether a planar graph G is strongly connected can be maintained in ÂO(n2/3) time per
update.

We build upon the following general template used previously for designing fully dynamic
data structures supporting reachability, strong connectivity, and shortest paths queries in
planar graphs, e.g., [34, 28, 11, 6, 24]. As a base, we will maintain dynamically an r-division
with few holes R of G using Theorem 3 with auxiliary piecewise data structures to be fixed
later. Intuitively, as long as the piecewise data structures are powerful enough to allow
recomputing the requested graph property (e.g., strong connectivity, shortest path between
a fixed source/target pair) while spending r1≠‘ time per piece, for some choice of r we get a
sublinear update bound of ÂO(n/r‘ + r + T (r)). For example, if T (r) = O(r9.9) and ‘ = 0.1,
for r = n0.1 we get ÂO(n0.99) worst-case update time bound.

Reachability certificates. Subramanian [34] described reachability certificates that sparsify
reachability between a subset of vertices lying on O(1) faces of a plane digraph G into a
(non-necessarily planar) digraph of size near-linear in the size of the subset in question.
Formally, we have the following.

7 Note that G+ need not be planar.
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I Lemma 4 ([34]). Let H be a plane digraph with a distinguished set ˆH ™ V (H) lying

on some O(1) faces of H. There exists a directed graph XH , where ˆH ™ V (XH), of size
ÂO(|ˆH|) satisfying the following property: for any u, v œ ˆH, a path u æ v exists in H if

and only if there exists a u æ v path in XH . The graph XH can be computed in ÂO(|H|) time.

I Remark 5. For Lemma 4 to hold, it is enough that ˆH lies on O(1) Jordan curves in the
plane, each of them having the embedding of H entirely (but not strictly) on one side of the
curve. In particular, it is enough that ˆH lies on O(1) faces of some plane supergraph H Õ

with H ™ H Õ.
Roughly speaking, Subramanian [34] uses reachability certificates as auxiliary data

structures in Theorem 3 in order to obtain a fully dynamic reachability data structure.
Crucially, the union of the piecewise certificates preserves pairwise reachability between the
boundary vertices ˆR, or more formally (see e.g. [6] for a proof):

I Lemma 6. For any u, v œ ˆR, u can reach v in G if and only if u can reach v in

X =
t

PœR XP .

Strong connectivity data structure. The union of certificates X preserves reachability, and
thus strong connectivity between the vertices ˆR :=

t
PœR ˆP . As a result, if G is strongly

connected, then so is ˆR in X. But the reverse implication might not hold. It turns out that
for connected graphs, to have an equivalence, it is enough to additionally maintain, for each
piece P , whether P is strongly connected conditioned on whether ˆP is strongly connected
in G.

In the following, we give a formal description of the data structure. As already said, the
data structure maintains a dynamic r-division R+ of a supergraph G+ of G (i.e., the input
graph), as given by Theorem 3. Since G ™ G+, the pieces {P+ fl G : P+ œ R+} induce an
r-division R of G; however, the boundary ˆP of a piece P œ R does not necessarily lie on
O(1) faces of P , so R is not technically an r-division with few holes. Nevertheless, ˆP still
lies on O(1) faces of a plane supergraph P+ of P that do not contain vertices outside ˆP .
Consequently, by Remark 5, we can still use Lemma 4 to construct a sparse reachability
certificate for the piece P œ R. For obtaining Lemma 2, we do not require anything besides
beyond that, so for simplicity and wlog. we can assume we work with R instead of R+.

While R evolves, each piece P is accompanied with a reachability certificate XP of
Lemma 4. Note that since |ˆP | = O(

Ô
r), XP has size ÂO(

Ô
r) and can be constructed in

ÂO(r) time. Moreover, for each P , let CˆP be a directed simple cycle on the vertices ˆP . We
additionally store the (1-bit) information whether the graph P fi CˆP is strongly connected.
Clearly, this can be computed in O(|P |) = O(r) time. All the accompanying data structures
of a piece P œ R can be thus constructed in ÂO(r) time. Therefore, by Theorem 3, they are
maintained in ÂO(r) time per update.

Finally, in a separate data structure, we maintain whether G is connected (in the undi-
rected sense). This can be maintained within no(1) worst-case update time deterministically
even in general graphs [17]; in our case, also a less involved data structure such as [12] would
su�ce.

After R and the accompanying data structures are updated, strong connectivity of G
can be verified as follows. First of all, the union X of all XP , P œ R, is formed. Note that
we can test whether the vertices ˆR are strongly connected in X in O(|X|) = ÂO(n/

Ô
r)

time by computing the strongly connected components SX of X using any classical linear
time algorithm. If G is not connected, or ˆR is not strongly connected in X, we declare G
not strongly connected. If, on the other hand, ˆR is strongly connected in X, we simply
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check whether P fi CˆP is strongly connected for each P œ R and if so, declare G strongly
connected. This takes O(n/r) time. Thus, testing strong connectivity takes ÂO(n/

Ô
r) time.

The following lemma establishes the correctness.
I Lemma 7. G is strongly connected if and only if G is connected, the vertices ˆR are

strongly connected in X, and for all P œ R, P fi CˆP is strongly connected.

Proof. First suppose that G is strongly connected. Then, G is clearly connected. Moreover,
by Lemma 6, ˆR is strongly connected in X. For contradiction, suppose that for some P œ R
and u, v œ V (P ), u cannot reach v in P fi CˆP . By strong connectivity of G, there exists
some path Q = u æ v in G. Since u cannot reach v in P , Q is not fully contained in P .
As a result, Q can be expressed as Q1 · R · Q2, where Q1 = u æ a,Q2 = b æ v are fully
contained in P , and a, b œ ˆP . But there is a path Z = a æ b in CˆP , so there is a u æ v
path Q1 · Z ·Q2 in P fi CˆP , a contradiction.

Now consider the “ ≈= ” direction. Suppose G is connected, the vertices ˆR are strongly
connected in X, and for all P œ R, P fi CˆP is strongly connected. By Lemma 6, ˆR is
strongly connected in G. Consider any P œ R and let x, y œ V (P ). We first prove that there
exists a path x æ y in G. Indeed, if an x æ y path exists in P , it also exists in G. Otherwise,
since P fi CˆP is strongly connected, there exists a path Q = x æ y in P fi CˆP that can be
expressed as Q1 ·R ·Q2, where Q1 = x æ a and Q2 = b æ y are fully contained in P and
a, b œ ˆP . But since a, b œ ˆR, by strong connectivity of ˆR, there exists a path RÕ = a æ b
in G. Since Q1, Q2 ™ G, Q1 ·RÕ ·Q2 is an x æ y path in G.

Now take arbitrary u, v œ V (G). If there exists a piece in R containing both u and v,
then we have already proved that there exists a path u æ v in G. Otherwise, let Pu, Pv,
Pu ”= Pv, be some pieces of R containing u, v, respectively. We have Pu ”= G and Pv ”= G.
Since G is connected, Pu has at least one boundary vertex a œ ˆPu. Similarly, Pv has at
least one boundary vertex b œ ˆPv. We have proved that there exist paths u æ a and b æ v
in G. But also a, b œ ˆR, by the strong connectivity of ˆR, there exists a path a æ b in G
as well. We conclude that there exists a path u æ v in G. Since u, v were arbitrary, G is
indeed strongly connected. J

The worst-case update time of the data structure is ÂO(r+n/
Ô
r)+no(1). By setting r = n2/3,

we obtain Lemma 2.

4 Dynamic strongly connected components

The approach we take for maintaining strong connectivity in planar graphs does not easily
generalize even to dynamic SCCs counting. This is the case for the following reason. Even
if the piece P is fixed (static), there can be possibly an exponential number of di�erent
assignments of the vertices ˆP to the SCCs in G (when the other pieces are subject to
changes), whereas for dynamic SC, a non-trivial situation arises only when all of ˆP lies
within a single SCC. In order to achieve sublinear update time, for any assignment we need
to be able to count the SCCs fully contained in P in time sublinear in r after preprocessing P
in only polynomial (and not exponential) time.

The following notion will be crucial for all our developments.
I Definition 8. Let P œ R, and let A ™ ˆP . A path net �P (A) induced by A is the set of

vertices of P that lie on some directed path in P connecting some two elements of A.

In other words, the path net �P (A) contains vertices v œ V (P ) such that v can reach A and
can be reached from A in P . We call a path net �P (A) closed if A = �P (A) fl ˆP , that is,
there are no boundary vertices of P outside A that can reach and can be reached from A.

ICALP 2024
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The following key lemma relates a piece’s path net to the SCCs of G.

I Lemma 9. Let S be an SCC of G containing at least one boundary vertex of P , i.e.,

S fl ˆP ”= ÿ. Then the path net �P (S fl ˆP ) is closed and equals S fl V (P ).

Proof. Let us first argue that �P (SflˆP ) is closed. If it was not, there would exist b œ ˆP \S
such that there exist paths b æ (S fl ˆP ) and (S fl ˆP ) æ b in P . It follows that b can
reach and be reached from S in G, i.e., b is strongly connected with S. Hence, b œ S, a
contradiction.

Let v œ �P (S fl ˆP ). Since v can reach and can be reached from S fl ˆP in P , then it is
indeed strongly connected with S in G, since the vertices S are strongly connected in G. So
v œ S fl V (P ).

Now let v œ S fl V (P ). Pick any b œ S fl ˆP (possibly b = v if v œ ˆP ). There exists
paths R = v æ b and Q = b æ v in G. Note that R has some prefix R1 = v æ a that is fully
contained in P and a œ ˆP . Similarly, Q has a su�x Q1 = c æ v that is fully contained in
P and c œ ˆP . Since there exists paths v æ a, a æ b, b æ c, c æ v in G, vertices a, b, c are
strongly connected in G. So a, c œ S fl ˆP . The paths R1, Q1 certify that v can be reached
from and can reach S fl ˆP in P . Therefore, v œ �P (S fl ˆP ) as desired. J

If an SCC S is as in Lemma 9, then since the vertices ˆP might be shared with other
pieces of R, �P (S fl ˆP ) \ ˆP constitutes the vertices of S contained exclusively in the

piece P . As there are only ÂO(n/
Ô
r) boundary vertices through all pieces, their a�liation

to the SCCs of G can be derived from the (SCCs of the) certificate graph X =
t

PœR XP

(defined and maintained as in Section 3), i.e., they may be handled e�ciently separately.
Consequently, being able to e�ciently aggregate labels, or report the elements, of the sets of
the form �P (A) \ ˆP (where �P (A) is closed) is the key to obtaining an e�cient implicit
representation of the SCCs of G, as claimed in Theorem 1. Our main technical contribution
(Theorem 10) is a path net data structure enabling precisely that. The data structure requires
a rather large ÂO(r3) preprocessing time but achieves the goal by supporting queries about
A ™ ˆP in near-optimal ÂO(|A|) time. Formally, we show:

I Theorem 10. Let P œ R and let – : V (P ) æ R be a weight function. In ÂO(r3) time one

can construct a data structure supporting the following queries. Given a subset A ™ ˆP , such

that �P (A) is closed, in ÂO(|A|) time one can:

create an iterator that enables listing elements of �P (A) \ ˆP in O(1) time per element,

aggregate weights over �P (A) \ ˆP , i.e., compute
q

vœ�P (A)\ˆP
–(v).

I Remark 11. We do not require using subtractions to compute the aggregate weights. In
fact, the data structure of Theorem 10 can be easily modified to aggregate weights coming
from any semigroup, e.g., one can compute the max/min weight in �P (A) \ ˆP within these
bounds.

Our high-level strategy is to maintain the certificates and path net data structures
accompanying individual pieces along with the r-division. Roughly speaking, to obtain the
information about the SCCs of G beyond how the partition of ˆR into SCCs looks like, we
will query the path net data structures for each piece P with the sets A equal to the SCCs
of X having non-empty intersection with ˆP . We prove Theorem 10 later on, in Section 5.

In the remaining part of the section, we explain in detail how, equipped with Theorem 10,
a dynamic (implicit) strongly connected components data structure can be obtained. As
in Section 3, we maintain an r-division R dynamically, and maintain sparse reachability
certificates XP , along with the set SX of SCCs of X =

t
PœR XP . Moreover, for each P



A. Karczmarz and M. Smulewicz 95:9

we store the strongly connected components SP of P . Let SˆP be the elements of SP that
contain a boundary vertex, and SP\ˆP the elements of SP that do not. Clearly, we have
SP = SˆP fi SP\ˆP and (

t
SP ) fl

!t
SP\ˆP

"
= ÿ.

For each piece P œ R, we additionally store a path net data structure DP of Theorem 10
with an appropriately defined weight function (to be picked depending on the application
later). Note that for a piece P , all the auxiliary data structures accompanying P that we
have defined can be computed in ÂO(r3) time. We now consider the specific goals that can be
achieved this way.

Finding the largest SCC. Denote by Sú the largest SCC of G. To be able to identify Sú,
and e.g., compute its size, we additionally store and maintain the following. For each piece P ,
we also maintain the largest SCC Sú

P
of P . The sizes of all the SCCs of P , in particular the

size of Sú
P
, can be easily found and stored after computing SP .

Note that if the largest SCC Sú of G is not contained entirely in any individual piece P
(and thus is larger than maxPœR |Sú

P
|), it has to intersect ˆR. More specifically, in this case

for each piece P such that Sú fl V (P ) ”= ÿ, we have Sú fl ˆP ”= ÿ.
Recall that by Lemma 6, X =

t
PœR XP preserves the strong connectivity relation on

the vertices ˆR. Therefore, if Sú intersects ˆR, it has to contain B fl ˆR for some SCC B
of X. For any such B, we can compute the size of the SCC SB of G satisfying B fl ˆR ™ SB

as follows. First of all, |SB fl ˆR| = |B fl ˆR| since B is an SCC of X. It is thus enough to
compute, for all P œ R, |SB fl (V (P ) \ ˆP )|. Since the sets V (P ) \ ˆP are pairwise disjoint
across the pieces, by adding these values, we will get the desired size |SB |.

We have already argued that if B fl ˆP = ÿ, then SB fl V (P ) = ÿ. If, on the other hand,
BflˆP is non-empty, by Lemma 9, if we use the weight function –(v) © 1 in the piecewise data
structures DP of Theorem 10, we can compute |SB fl (V (P ) \ ˆP )| =

q
vœ�P (BflˆP )\ˆP

–(v)
in ÂO(|B fl ˆP |) time using the input set A := B fl ˆP . We conclude that the sizes SB for all
B œ SX can be computed in time

ÂO

Q

cca
ÿ

BœSX

ÿ

PœR
BflˆP ”=ÿ

|B fl ˆP |

R

ddb = ÂO

Q

cca
ÿ

PœR

ÿ

BœSX
BflˆP ”=ÿ

|B fl ˆP |

R

ddb = ÂO
A

ÿ

PœR
|ˆP |

B
= ÂO(n/

Ô
r).

(1)

Finally, Sú is either equal to the largest SB for B œ SX , or the largest Sú
P

(through P œ R).
The latter is the case if maxBœSX |SB | < maxPœR |Sú

P
|. Which case we fall into is easily

decided once all the O(n/
Ô
r) sizes |SB | are computed.

Accessing the SCC of a specified vertex. Suppose first that we know the SCC Sv of G
containing a query vertex v, and additionally whether Sv intersects ˆR. If Sv fl ˆR = ÿ,
then v is a vertex of a unique piece P , and Sv œ SP\ˆP . In this case, we can clearly compute
the size of Sv and report the elements of Sv in O(1) time since Sv œ SP is stored explicitly.

Otherwise, if Sv fl ˆR ”= ÿ, we reuse the information that we have computed for finding
the largest SCC. We have already described how to compute the sizes of all the SCCs S of G
intersecting ˆR (in particular Sv) along with these respective intersections in ÂO(n/

Ô
r) time

upon update. Moreover, for all P œ R we have computed |S fl (V (P ) \ ˆP )| using the data
structure DP of Theorem 10. As a result, we can store, for each such S, a subset L(S) ™ R
of pieces P such that S fl (V (P ) \ ˆP ) ”= ÿ. Recall that for all P œ L(S), we can also use
DP to create an iterator for reporting the elements of S fl (V (P ) \ ˆP ) in O(1) time per
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element. So, in order to e�ciently report elements of any such S, we first report the vertices
of S fl ˆR, and then the elements of each S fl (V (P ) \ ˆP ) for subsequent pieces P œ L(S).
Indeed, one needs only O(1) worst-case time to find each subsequent vertex of S.

Finally, we are left with the task of of finding the SCC Sv of a query vertex v œ V . It is
not clear how to leverage path net data structures for that in the case when Sv intersects ˆR.
Instead, we use the data structure of [6] in a black-box way. That data structure handles
fully dynamic edge updates in ÂO(n4/5) worst-case time, and provides O(log2 n) worst-case
time access to consistent (for queries issued between any two subsequent updates) SCC
identifiers of individual vertices8. Using [6], after every update we find the identifiers I of the
SCCs of vertices ˆR in G in ÂO(n/

Ô
r) time. Now, to find the SCC of v upon query, we find

the identifier iv of the SCC containing v in O(log2 n) time. If iv œ I (which can be tested
in O(logn) time), we obtain that v is in an SCC of G intersecting ˆR and some vertex bv
from the intersection. bv can be in turn used to access L(Sv) and thus enable reporting the
elements of Sv. Otherwise, if iv /œ I, S fl ˆR = ÿ and thus S equals the unique SCC from
SP\ˆP containing v in the unique piece P containing v.

Counting strongly connected components. Let us separately count SCCs SˆR that intersect
ˆR and those that do not. The former can be counted in ÂO(n/

Ô
r) time by counting the

SCCs of X that intersect ˆR (that we maintain). The latter can be computed as follows.
Consider the sum � =

q
PœR |SP\ˆP |. If we wanted the sum � to count the SCCs not

intersecting ˆR, then an SCC S œ SP\ˆP contributes to the sum unnecessarily precisely
when S is not an SCC of G. To see that, note that if an SCC S of P is not an SCC of G, it
has to be a part of another SCC SÕ of G that also contains vertices of other pieces, i.e., SÕ

intersects ˆR. From Lemma 9, we conclude:

I Corollary 12. An SCC S œ SP\ˆP is not an SCC of G i� there exists (precisely one) SCC

B of X such that S ™ �P (B fl ˆP ) (or equivalently, such that S fl �P (B fl ˆP ) ”= ÿ).

As a result, we can count the number of SCCs in G that do not intersect ˆR by subtracting
from �, for each P œ R, and each B œ SX the number cP,B of SCCs in SP\ˆP that intersect
�P (BflˆP ). To this end, we can use the data structure DP of Theorem 10 built upon P (and
maintained as described before) with a weight function – on V (P ) assigning 1 to an arbitrary
single vertex vS of each SCC S œ SP\ˆP , and 0 to all other vertices. By Corollary 12, with
such a weight function, cP,B =

q
vœ�P (BflˆP )\ˆP

–(v) can be computed in ÂO(|B fl ˆP |) time
using DP . Consequently, similarly as in (1), over all B œ SX , and P œ R, computing all the
values cP,B will take ÂO(n/

Ô
r) time. As mentioned before, the SCC count is obtained by

subtracting those from � and adding the result to the count of SˆR.
Depending on the application, the worst-case update time of the data structure is

ÂO(n/
Ô
r + r3) or ÂO(n/

Ô
r + r3 + n4/5). The bound is optimized for r = n2/7 and this yields

Theorem 1.

5 The path net data structure

This section is devoted to describing the below key component of our dynamic SCCs data
structure.

8 The query time of that data structure can be easily reduced to O(logn · log logn) without a�ecting the
ÂO(n4/5) update bound if one simply replaces the classical MSSP data structure [26] used internally for
performing point location queries in additively weighted Voronoi diagrams [16] with the MSSP data
structure of [29].
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I Theorem 10. Let P œ R and let – : V (P ) æ R be a weight function. In ÂO(r3) time one

can construct a data structure supporting the following queries. Given a subset A ™ ˆP , such

that �P (A) is closed, in ÂO(|A|) time one can:

create an iterator that enables listing elements of �P (A) \ ˆP in O(1) time per element,

aggregate weights over �P (A) \ ˆP , i.e., compute
q

vœ�P (A)\ˆP
–(v).

5.1 Overview

Charalampopoulos and Karczmarz [6] showed that for any SCC S of G, V (P ) fl S forms an
intersection of two cells coming from two carefully prepared additively weighted Voronoi
diagrams on P with sites ˆP . As a result, they could use Voronoi diagram point location
mechanism [16, 29] for testing in O(polylogn) time whether a query vertex lies in such an
intersection. If we tried to follow this approach, we would need to be able to aggregate/report
vertices in such intersections of cells coming from two seemingly unrelated Voronoi diagrams.
This is very di�erent from just testing membership, and it is not clear whether this can be
done e�ciently.

Instead, in order to prove Theorem 10, we take a more direct approach. As is done
typically, we first consider the situation when A lies on a single face of P . In the single-hole
case, the first step is to reduce to the case when the input piece P is acyclic; note that if
a vertex lies in the path net �P (A), its entire SCC in P does. Acyclicity and appropriate
perturbation [10] allows us to pick a collection of paths fiu,v, for all u, v œ ˆP , such that every
two paths in the collection are either disjoint or their intersection forms a single subpath
of both. This property makes the paths fiu,v particularly convenient to use for cutting the
piece P into smaller non-overlapping parts.

More specifically, the paths fiu,v are used to partition – using a polygon triangulation-like
procedure – a queried net �P (A) into regions in the plane with vertices B ™ A bounded by
either fragments of the face of P containing ˆP or some paths fiu,v for u, v œ B (so-called
base instances). A base instance has a very special structure guaranteeing that for a given
vertex v œ V (P ) \ ˆP , there are only O(1) pairs s, t œ B such that an s æ v æ t path exists
in P . At the end, this crucial property can be used to reduce a base instance query B even
further to looking up ÂO(|B|) preprocessed answers for base instances with at most 5 vertices
from ˆP , of which there are at most ÂO(|ˆP |5) = ÂO(r5/2). The precomputation of small base
instances can be done in ÂO(r3) time.

For e�ciently implementing the polygon triangulation-like partition procedure – which
repeatedly cuts o� base instances from the “core” part of the problem – we develop a
dynamic data structure for existential reachability queries on a single face of a plane digraph
(Lemma 15). To this end, we leverage the single-face reachability characterization of [23].

As the final step, we show a reduction from the case when A can lie on k faces on P , to
the case when A lies on k ≠ 1 faces. The reduction – which eventually reduces the problem
to the single-hole case – can blow up the piece’s size by a constant factor. However, since
there are only O(1) holes initially, the general case can still be solved only constant factor
slower than the single-hole case.

5.2 Reducing to the acyclic case

Recall that P is a piece of an r-division with few holes R and thus has size O(r). Moreover,
ˆP lies on O(1) faces (holes) of some supergraph P+ of P and |ˆP | = O(

Ô
r). For simplicity

we will not di�erentiate between the faces/holes of P and P+. Whenever we refer to a hole h
of P , we mean a closed curve h in the plane such that whole embedding of P lies weakly on
a single side of h, and only vertices ˆP may lie on the curve h.
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First of all, we compute the strongly connected components SP of P . Observe that from
the point of view of supported queries, all vertices of a single SCC S œ SP are treated exactly
the same: when a single vertex v œ S \ ˆP is reported (or its weight –(v) is aggregated), all
other vertices from S \ ˆP are as well. For each S œ SP we precompute the aggregate weight
–(S) =

q
vœS\ˆP

–(v) in O(r) time. We then contract each strongly connected component
S œ SP into a single vertex vS . Crucially, since each subgraph P [S] is connected in the
undirected sense, contractions can be performed in an embedding preserving way (via a
sequence of single-edge contractions), so that:

The obtained graph P Õ is acyclic.
The vertices ˆP Õ := {vS : S œ SP , S fl ˆP ”= ÿ} lie on O(1) faces of (a supergraph of) P Õ.

Indeed, to see the latter property, label each b œ ˆP initially each with hole that b lies on
and make non-boundary vertices unlabeled. When the vertices merge, label the resulting
vertex using one of the involved vertices’ labels, if any of them has one. At the end there
will be still O(1) labels, each vertex of ˆP Õ will have one of these labels, and for each label,
all the vertices holding that label will be incident to a single face of P Õ. Clearly, |P Õ| = O(r)
and |ˆP Õ| = O(

Ô
r).

The proof of the below lemma can be found in the full version.

I Lemma 13. Suppose a data structure DÕ
of Theorem 10 is built for the acyclic graph P Õ

with the weight function –Õ(vS) := –(S) =
q

vœS\ˆP
–(v). Then, a query A ™ ˆP from

Theorem 10 can be reduced, in O(|A|) time, to a query about AÕ = {vS : S œ SP , S fl A ”= ÿ}
issued to DÕ

.

In the following we will assume that P is an acyclic graph. We will no longer need
the assumption �P (A) fl ˆP = A; this was only needed for the e�cient reduction to the
acyclic case. Consequently, we will design a data structure with query time ÂO(|A|) even if
A ( �P (A) fl ˆP .

The single-hole assumption. In the remaining part of this section, we assume we only want
to handle queries where the query set A lies on a single hole h of an acyclic piece P . Due to
space constraints, we present the reduction of the general case to the single-hole case in the
full version. Our strategy for the single-hole case will be to e�ciently break the problem into
subproblems for which we have the answer precomputed.

5.3 Picking non-crossing paths

We first fix, for any u, v œ V (P ) such that u can reach v, one particular u æ v path fiu,v ™ P .
We apply the perturbation scheme of [10] to P , so that the shortest paths in P become
unique. For any u, v œ V (P ) such that u can reach v in P , we define fiu,v to be the unique
shortest u æ v path in P . Note that each fiu,v is a simple path in P . We have the following
crucial property.

I Lemma 14. Let u, v, x, y œ V (P ) be such that u can reach v and x can reach y in P . If

V (fiu,v) fl V (fix,y) ”= ÿ, then fiu,v and fix,y share a single (possibly zero-edge) subpath.

Proof. Let a (b) be the first (last, resp.) vertex on fiu,v that is also a vertex of fix,y. fiu,v

can be expressed as Q1 · T ·Q2, where T = a æ b. Moreover, V (fiu,v) fl V (fix,y) ™ V (T ). If
a ”= b, the vertex b cannot appear before a on fix,y, because then a and b would lie on a cycle
in P , contradicting acyclicity of P . As a result, fix,y has an a æ b subpath as well. Since
shortest paths in P are unique and shortest paths have optimal substructure, the a æ b
subpath of fix,y equals T . So, fix,y can be expressed as R1 · T ·R2. Since fix,y is simple, and
V (fiu,v) fl V (fix,y) ™ V (T ), we indeed have fiu,v fl fix,y = T . J
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Observe that since P is a DAG, for u, v œ V (P ), u ”= v, fiu,v and fiv,u cannot both exist.
When one of them exists, we will sometimes write fi{u,v} to denote the one that exists.

5.4 Generalization

Before we proceed, we need to state our problem in a more general way that will enable
decomposition into smaller subproblems of similar kind. Let us first fix a counterclockwise
order of V (h), as follows. Let u1, e1, u2, e2, . . . , ur, er be the sequence of vertices and edges
on a counterclockwise bounding walk of h with an arbitrary starting point. The encountered
vertices ui might not be all distinct since h can be a non-simple face in general. The order ªh

of V (h) that we use is obtained by removing duplicate vertices from the sequence in an
arbitrary way, i.e., for each v œ V (h) we pick one index iv such that uiv = v. If x, y œ V (h)
and ix < iy, then we define Cx,y to be the curve eixeix+1 . . . eiy≠1. Otherwise, if ix > iy,
then Cx,y = eixeix+1 . . . ere1e2 . . . eiy≠1. If h is simple, then Cx,y is a simple curve. However,
in general, Cx,y can be self-touching but it does not cross itself.

Suppose B ™ ˆP fl V (h) is given in the counterclockwise order on h. Moreover, for
each pair of neighboring (i.e., appearing consecutively in the cyclic order of B given by ªh)
vertices x, y of B, a curve �x,y connecting x to y is given. The curve �x,y equals either fi{x,y}
or Cx,y. Let � be the closed curve formed by concatenating the subsequent curves �x,y for
all neighboring x, y œ B. For brevity, we also extend the notation �a,b to non-neighboring
vertices a, b of B, and define �a,b to be a concatenation of the curves �x,y for all neighboring
pairs (x, y) between a and b on �. We don’t require � to be a simple (Jordan) curve; parts
of it may be overlapping. Whereas � is allowed to be self-touching, it does not cross itself,
like e.g., the cycle bounding a non-simple face of a plane graph. Let P [�] denote the region
of P that lies weakly inside the curve �.

The objective of the problem (B,�) is to aggregate weights of (or report) the vertices of
�P (B) \ ˆP that lie strictly inside �. More formally, we want to aggregate vertices v that lie,
at the same time, strictly on the left side of each of the curves �x,y (seen as a curve directed
from x to y) where x, y œ B are neighboring in the counterclockwise order on h.9 Note that
with such a defined problem, the original goal of the query procedure can be rephrased as
(A, h) since all the vertices of �P (A) \ ˆP indeed lie strictly inside h.

5.5 Preprocessing

Preprocessing for small instances and subproblems.

For any tuple B = (b1, . . . , bq) of at most 4 vertices of ˆP appearing in that order on
in ªh, and any out of at most 2q = O(1) possible curves � that might constitute the
problem (B,�), we precompute the aggregate weight and the list of vertices in �P (B)\ˆP
that lie strictly inside �. This can clearly be done in ÂO(|ˆP |4 · |P |) = ÂO(r3) time.
For any 5-tuple · = (b0, . . . , b4) ordered by ªh, and any out of at most 24 possible curves
�bi,bi+1 œ {fi{bi,bi+1}, Cbi,bi+1}, where i œ {0, . . . , 3}, we precompute and store the set X·

of vertices x œ V (P ) \ ˆP such that:
1. x lies on some path connecting b1 and b2 in P ,
2. x does not lie on any path connecting b0 and b1 in P ,
3. x lies strictly to the left of each �bi,bi+1 for i = {0, . . . , 3}.

9 Even more formally, assuming P is embedded in such a way that h is the infinite face of a supergraph
of P , we are interested in the vertices lying in the intersection of the regions strictly inside closed curves
�x,y · Cy,x for all neighboring x, y in B.
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We also store the aggregate weight w(X· ). This preprocessing can be performed in a
brute-force way in ÂO(|ˆP |5 · |P |) = ÂO(r7/2) time. It can be also optimized fairly easily to
ÂO(r3) time and space, as shown in the full version.
For any u, v œ ˆP , we store the path fi{u,v} itself, along with aggregate weights of all its
subpaths. This data can be computed in ÂO(|ˆP |2 · |P |2) = ÂO(r3) time in a brute-force
way.
Finally, for any two pairs (u, v), (x, y) œ ˆP ◊ ˆP , we compute the intersection of the
paths fi{u,v} and fi{x,y}. By Lemma 14, that intersection is either empty or is a subpath
of both these paths. Hence, it is enough to store the two endpoints of the intersection
subpath only. The desired intersections can be found in ÂO(|ˆP |4 · |P |) = ÂO(r3) time in a
brute-force way.

Existential reachability data structure. We also build data structures L,LR of the following
lemma for P and PR, respectively.

I Lemma 15. In ÂO(r) time one can construct a data structure maintaining an (initially

empty) set Z ™ ˆP fl V (h) and supporting the following operations in O(polylogn) time:

insert or delete a single b œ ˆP fl V (h) either to or from Z.

for any query vertex v œ (ˆP fl V (h)) \ Z, find any z œ Z (if exists) that v can reach

in P .

Due to space constraints, the proof of Lemma 15 is deferred to the full version.

5.6 Answering queries

We now proceed with the description of our algorithm solving the general problem (B,�).

Base case. Let the elements of B = {b1, . . . , bk} be sorted according to their order ªh

on �. For convenience, identify bk+l with bl for any integer l.
We first consider the easier base case, with the following additional requirement:

For any 1 Æ i < j Æ k, if bi can reach bj or can be reached from bj in P , then either

j = i+ 1 or (i, j) = (1, k).

If k Æ 4, we will simply return the precomputed aggregate weight, or an iterator to a list
of vertices in �P (B) \ ˆP strictly inside �. So suppose k Ø 5. We start with the following
lemma.

I Lemma 16. Let v œ �P (B) \ ˆP lie strictly inside �. Then:

There exists such i that v lies on some bi æ bi+1 or on some bi+1 æ bi path in P .

Moreover, there is at most one more pair {x, y} ™ B, {x, y} ”= {bi, bi+1} such that v lies on

some x æ y or y æ x path in P , and either {x, y} = {bi≠1, bi}, or {x, y} = {bi+1, bi+2}.

Proof. Item (1) follows easily by the additional requirement of the base case. Let v lie on
some bj æ c path in P , where c œ B. Since P is acyclic, we have that bj ”= c and thus
c œ {bj≠1, bj+1}. If c = bj+1, we put i = j and if c = bj≠1, we put i = j ≠ 1.

For item (2), consider the case when v lies on some bi æ bi+1; the case when v lies
on a bi+1 æ bi path is symmetric. Suppose v also lies on some x æ y path in P , where
x, y œ B, x ”= y, {x, y} ”= {bi, bi+1}. Since bi can reach y through v, y œ {bi≠1, bi+1} by
the base case requirement. Similarly, since x can reach bi+1 through v, x œ {bi, bi+2}. We
cannot have x = bi+2 and y = bi≠1 since bi+2 reaching bi≠1 is a contradiction with the first
base case requirement for k Ø 5. As a result, (x, y) ”= (bi, bi+1) implies (x, y) = (bi, bi≠1)
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or (x, y) = (bi+2, bi+1). Moreover, v cannot lie on both some bi æ bi≠1 path and some
bi+2 æ bi+1 path, since then bi+2 could reach bi≠1, which is again a contradiction for
k Ø 5. J

By Lemma 16, each v œ �P (B)\ˆP falls into exactly one of the k sets Yi, for i = 1, . . . , k,
such that Yi contains those v in V (P ) \ ˆP that lie on a path in P connecting bi and bi+1 (in
any direction), but at the same time do not lie on any path connecting bi≠1 and bi in P (in
any direction). Indeed, if v appears only on paths connecting bi and bi+1, it will be included
in Yi. On the other hand, if v appears both on paths connecting bi and bi+1 and on paths
connecting bi+1 and bi+2, it will be included only in Yi, but not in Yi+1.

I Lemma 17. Suppose v œ Yi. Then v lies strictly inside � if and only if v lies strictly on

the left side of �bi≠1,bi , �bi,bi+1 , �bi+1,bi+2 , and �bi+2,bi+3 .

Proof. Since strictly inside � means strictly to the left of all �bj ,bj+1 , the “ =∆ ” direction
is trivial.

Consider the “ ≈= ” direction. For contradiction, suppose v does not lie strictly inside �.
Then, for some j /œ {i ≠ 1, i, i + 1, i + 2}, v lies weakly to the right of �bj ,bj+1 . Since v œ
V (P ) \ ˆP and the hole h contains only vertices of ˆP , this means that �bj ,bj+1 = fi{bj ,bj+1}.
Since bj and bj+1 are consecutive in B, and i /œ {j, j + 1}, bi lies weakly to the left of
fi{bj ,bj+1}.

By v œ Yi, the vertex v lies on a path Q connecting bi and bi+1 in P . Since v and bi
lie weakly on di�erent sides of fi{bj ,bj+1}, the path Q has to cross fi{bj ,bj+1} at a vertex w
appearing not later than v on Q (possibly v = w). If Q = bi æ bi+1, the existence of w
implies that there exists an s æ bi+1 path in P going through v such that s œ {bj , bj+1}.
By v œ Yi, this implies s œ {bi, bi+2}. As a result, j œ {i ≠ 1, i, i+ 1, i+ 2}, a contradiction.
Similarly, if Q = bi+1 æ bi, there exists an s æ bi path in P going through v such that
s œ {bj , bj+1}. But on the other hand by v œ Yi we have s = bi+1 so j œ {i, i + 1}, a
contradiction. J

As a result, we can equivalently aggregate vertices v in each Yi under a (seemingly) weaker
requirement that v lies strictly on the left side of �bi≠1,bi , �bi,bi+1 , �bi+1,bi+2 , and �bi+2,bi+3 .
But this is, again, part of the precomputed data for the tuple (bi≠1, bi, bi+1, bi+2, bi+3).

Consequently, there are k disjoint sets Yi to consider. We can thus aggregate weights or
construct a list for reporting vertices from v œ �P (B) \ ˆP strictly inside � in O(k) time.
We thus obtain:

I Lemma 18. The base case can be handled in O(|B|) time.

General case. To solve the general case, we reduce it to a number of base case instances.
To this end, we maintain a partition of B = S fi T such that S precedes T on �. Let
S = {s1, . . . , sp} and T = {t1, . . . , tq}. We will gradually simplify the problem while
maintaining the following invariants:
(1) For any u, v œ B, if u can reach v in P , then fiu,v ™ P [�].
(2) For any 1 Æ i < j Æ p, if si can reach sj or can be reached from sj , then j = i+ 1.
(3) If x, y œ B are neighbors in the counterclockwise order ªh on � and �x,y = fi{x,y}, then

x, y œ S.
(4) In the data structures L,LR of Lemma 15, the set Z satisfies Z = S \ {sp}.

The algorithm will gradually modify B,S, T,� until we have S = B and T = ÿ. Note
that when T = ÿ, (B,�) = (S,�) satisfies the requirement of the base case and can be solved
in ÂO(|B|) time.
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Initially we put � = h, S = {b1, b2}, and insert b1 to Z to satisfy the invariants.
The main loop of the procedure runs while T ”= ÿ and does the following. Using L and LR,

in O(polylogn) time we test whether t1 can reach Z or can be reached from Z in P . If this
is not the case, we simply move t1 to the end of S, an update Z accordingly. Note that |T |
decreases then.

Otherwise, we can find all vertices X = {x1, . . . , xl} ™ Z that t1 can reach or can
be reached from in ÂO(|X|) by repeatedly extracting them from the data structures L,LR.
Additionally we sort X so that the order x1, . . . , xl matches the order of S on �. Let fii

denote the path fi{t1,xi} possibly reversed to go from t1 to xi, and fiR

i
denote the reverse fii

going from xi to t1. The vertices X are used to “cut o�” l base case instances, as follows.
For i = 0, . . . , l, let Si denote the vertices of S between xi and xi+1 on � (inclusive), where
we set xl+1 := sp, x0 := s1. We split the problem (B,�) into the following subproblems (see
Figure 1 for better understanding):
1. For each i = 1, . . . , l ≠ 1, an instance (Si fi {t1},�xi,xi+1 · fiR

i+1
· fii).

2. An instance (Sl fi {t1},�xl,t1 · fil).
3. An instance (S0 fi T,�s1,x1 · fiR

1
· �t1,s1).

I Lemma 19. For each of the above subproblems (BÕ,�Õ), and u, v œ BÕ
, if u can reach v

in P , then fiu,v ™ P [�Õ].

Proof. Note that (BÕ,�Õ) is obtained from (B,�) by cutting it out of (B,�) with at most
two paths fi{t1,a},fi{t1,b}, for some t1, a, b œ BÕ ™ B. By our assumption, fiu,v ™ P [�]. As
a result, if fiu,v was not contained in P [�Õ], then fiu,v would need to cross either fi{t1,a} or
fi{t1,b}. However, this is impossible by Lemma 14 and since u, v œ V (P [�Õ]). J

I Lemma 20. The obtained instances of types 1 and 2 above fall into the base case.

Proof. To see that the base case requirement is satisfied, recall that by the invariant posed
on S, if two elements of Si, where i œ {1, . . . , l}, are related (wrt. reachability in P ), they are
neighboring in Si. By construction, t1 can be only related to the first and the last element
of Si. J

Since the cutting is performed using non-crossing paths in P , the regions P [�Õ] for the
obtained subproblems can only share their boundaries, that is, if some v is strictly inside
one of the curves �Õ, then it it is not strictly inside another obtained curve �ÕÕ. Therefore,
if we proceeded with the above subproblems recursively, we would not aggregate or report
any vertex of v œ �P (B) \ ˆP twice. However, we still need to report/aggregate vertices
that lie on paths fi1, . . . ,fil strictly inside the curve �. We now discuss how this strategy
is implemented. Let us first consider solving the subproblems recursively. We handle all
the obtained base case instance of types 1 and 2 as explained before. If x1 = sg, then by
Lemma 18, the total time required for this is O

1q
l

i=1
(|Si|+ 1)

2
= O((p≠ g) + l). But note

that l Æ p ≠ g, so in fact the bound is O(p ≠ g).
To handle the instance (S0 fi T,�s1,x1 · fiR

1
· �t1,s1), we simply replace (B,�) with it

and proceed with solving it using the algorithm for the general case. To this end, we set
S := S0 fi {t1}, T := {t2, . . . , tq} and update Z in the data structures L,LR to S0 by
removing elements. Then, invariant (1) is satisfied by Lemma 19, and invariants (2), (3)
and (4) are satisfied by construction. This way, in ÂO(�) time we reduce the instance (B,�)
by � = |S|≠ |S0| = p≠ g vertices. Recall that Z = S \ {sp} implies that g < p. Thus, � Ø 1
and the sizes of B and T strictly decrease.
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s1

s2

x1 = sg

x2

x3

x4

sp

t1

t2

tq

fi1 = fit1,x1

fi2 = fit1,x2

fi3 = fit1,x3

fi4

Figure 1 Splitting the instance (B,�), where B = S fi T , into 5 smaller instances with paths
fi1, . . . ,fil (either originating or ending in t1) for l = 4. The vertices S = {s1, . . . , sp} are shown in
blue, whereas the vertices T = {t1, . . . , tq} in red. The black arrows and dashed lines represent the
individual parts of the curve �: paths of the form fiu,v or parts of the curve h, respectively. Note
that the black arrows appear only on the �s1,sp part of �. The vertices x1, . . . , x4, marked green,
are precisely all the vertices of S \ {sp} that t1 can reach or can be reached from. The obtained
smaller instances are marked with distinct patterns. The instances marked with line patterns (types
1 or 2) are base instances. The instance marked using a dotted pattern (type 3) might constitute
the only obtained instance that is not a base instance (for which the algorithm continues).

Let us now discuss how to aggregate/report the vertices of �P (B) \ ˆP that lie on any
of the paths fi1, . . . ,fil (that are not handled in any of the subproblems), but at the same
time lie strictly inside � (before altering (B,�)). Since � is formed of either the edges of the
hole h, or from the paths fi{u,v}, and each fii is contained in P [�], equivalently we need to
aggregate the vertices of �P (B) \ ˆP on the paths fi1, . . . ,fil that do not lie on �.

Observe that since x1, . . . , xl lie on � in that order, and the paths fi1, . . . ,fil all lie in P [�]
and are non-crossing by Lemma 14, for any three i < j < k, we have V (fii) fl V (fik) ™ V (fij).
As a result, any vertex on these paths is included in precisely one of the sets V (fii) \V (fii≠1),
for i = 1, . . . , l and V (fi0) := ÿ. Moreover, in Lemma 21 we will show that each fii can
possibly have a non-empty intersection with O(1) parts (between neighboring elements of B)
of �, that we can also identify in O(1) time. Since, by Lemma 14, for every path fi{u,v},
the intersection of fi{u,v} with fii is either empty or forms a subpath of fii, aggregating or
reporting the required vertices of fii boils down to aggregating or reporting the vertices of
V (P ) \ ˆP on some O(1) subpaths of fii that form what remains from fii after removing O(1)
of its intersections with other paths fiu,v.
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I Lemma 21. Consider the moment when the split into subproblems happens. Suppose

xi = sj. Let u, v œ B be neighboring on �, so that u comes before v in the counterclockwise

order ªh on �. Then (V (fii)flV (�u,v))\ˆP ”= ÿ implies that u = sjÕ for some jÕ œ {1, . . . , p}
such that |j ≠ jÕ| Æ 2.

Proof. Recall that the curve is fii is either the path fi{xi,t1} or its reverse. Let us only
consider the case when fi{xi,t1} = fixi,t1 ; the case when fi{xi,t1} = fit1,xi is analogous.

By invariant (3), we have that u, v œ S since otherwise �u,v is a part of the curve h and
therefore does not contain any vertices from outside V (h). So {u, v} = {sjÕ , sjÕ+1} for some
jÕ œ {1, . . . , p ≠ 1}. Let z œ (V (fii) fl V (�u,v)) \ ˆP . If �u,v = fisjÕ ,sjÕ+1 , then the z æ v
subpath of �u,v and the xi æ z subpath of fii together form an sj æ sjÕ+1 path in P , which
by invariant (2) implies jÕ + 1 œ {j ≠ 1, j, j + 1}, and thus jÕ œ [j ≠ 2, j]. If �u,v = fisjÕ+1,sjÕ ,
then, analogously, there exists an sj æ sjÕ path in P , so jÕ œ [j ≠ 1, j + 1]. J

By Lemma 21, for each fii, we need to report all vertices of fii from outside ˆP , except
those on the union of at most 6 subpaths of fii. Since the subpaths are always intersections
of some two paths fiu,v, we can identify these subpaths using precomputed data in O(1)
time. Aggregating vertex weights not on at most 6 subpaths of fii is the same as aggregating
weights on at most 7 disjoint subpaths of fii. Recall that we have precomputed the aggregate
weights for all the subpaths of all the possible fiu,v. As a result, aggregating or reporting
vertices �P (B) \ ˆP that lie on any of the paths fi1, . . . ,fil takes O(l) = O(p ≠ g) time.

I Lemma 22. The general case can be handled in ÂO(|B|) time.

Proof. Recall that when T = ÿ, we have a base instance that can be solved in O(|B|) time.
Every iteration of the main loop that does not involve changing B takes O(polylogn)

time and reduces the size of T by one. But the set T can shrink at most |B| times, so such
iterations cost ÂO(|B|) time in total. Every other iteration of the main loop involves reducing
the size of B by some � > 0 in ÂO(�) time. Such iterations clearly cost ÂO(|B|) time in total
as well. J
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Abstract
We study the problem of minimizing a given symmetric strictly convex function over the Minkowski
sum of an integral base-polyhedron and an M-convex set. This problem has a hybrid of continuous
and discrete structures. This emerges from the problem of allocating mixed goods, consisting of both
divisible and indivisible goods, to agents with binary valuations so that the fairness measure, such as
the Nash welfare, is maximized. It is known that both an integral base-polyhedron and an M-convex
set have similar and nice properties, and the non-hybrid case can be solved in polynomial time.
While the hybrid case lacks some of these properties, we show the structure of an optimal solution.
Moreover, we exploit a proximity inherent in the problem. Through our findings, we demonstrate
that our problem is NP-hard even in the fair allocation setting where all indivisible goods are
identical. Moreover, we provide a polynomial-time algorithm for the fair allocation problem when
all divisible goods are identical.
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1 Introduction

In this paper, we study the hybrid problem of discrete and continuous structures. We are
given a finite set N , a symmetric strictly convex function � : RN æ R and two supermodular
functions fC , fM : 2N æ Z+. We assume that function values can be accessed by an oracle.
For a supermodular function f , we call

B =
)
x œ RN : x(N) = f(N) and x(X) Ø f(X) (’X ™ N)

*

the integral base-polyhedron of f , and B̈ = B fl ZN the M-convex set. Let BC , BM be the
integral base-polyhedra of fC , fM , respectively, and let B̈M = BM fl ZN . In addition, let
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96:2 Hybrid of Continuous and Discrete Convex Sets

BE be the Minkowski sum of B̈M and BC , i.e., BE = {x+ y : x œ B̈M , y œ BC}. The goal
of the problem is to find a vector z that attains

minzœBE �(z) (= minxœB̈M
minyœBC

�(x+ y)). (1)

An optimal solution of this problem is called �-minimizer (on BE).
When fM = 0 (i.e., BE = BC), it is known that an integral base-polyhedron has a

common unique minimizer independent of �, and the minimizer can be characterized by
a structure called the principal partition [18, 34] (see Section 2.2 for the definition and
details). By this structure, the problem (1) can be solved in polynomial time [38]. When
fC = 0, it is known that a �-minimizer on an M-convex set can be characterized by the
canonical partition [15], which is an aggregation of the principal partition. Additionally,
the set of �-minimizers does not depend on � [15] and a �-minimizer can be found in
polynomial time [16]. Furthermore, a proximity theorem has been established [17]. This
theorem states that a �-minimizer in an M-convex set lies within a unit hypercube that
contains the �-minimizer in the corresponding integral base-polyhedron.

The hybrid problem (1) appears in the fair allocation of a mix of divisible and indivisible
goods, which has recently been attracting attention [5,7,10,31,32,33,40]. LetN = {1, 2, . . . , n}
be the set of agents. Let C and M be the sets of divisible and indivisible goods, respectively,
and let also E = C fi M . Each agent i has a binary valuation vie œ {0, 1} for each good
e. An allocation is a matrix fi œ [0, 1]N◊E such that fiie œ {0, 1} for all i œ N and e œ M .
The entry fiie means the allocated amount of good e to agent i. Throughout this paper, we
only consider utilitarian optimum allocations, that is, fiie > 0 only if vie = 1. Agents have
additive utility, and the utility of agent i in allocation fi is fii(E) =

q
eœE viefiie. For an

allocation fi, a vector z = (fi1(E), . . . ,fin(E)) is called a utility vector of fi.
The problem of finding a utility vector with the maximum Nash welfare (MNW), which is

a prominent fairness measure, can be reduced to our problem (1). Roughly speaking, the set
of possible utility vectors by divisible goods C forms an integral base-polyhedron BC , and
the set by indivisible goods M forms an M-convex set B̈M , which is the set of integral vectors
in an integral base-polyhedron. Maximizing the Nash welfare corresponds to minimizing a
symmetric strictly convex function �(z) = ≠

q
iœN log(zi + Á) for su�ciently small Á > 0

(depending on the instance). Another standard fairness measure called egalitarian social

welfare (max-min fairness) also can be represented by a symmetric strictly convex function.
For a given symmetric strictly convex function �, we call an allocation fi �-fair if its utility
vector z = (fi1(E), . . . ,fin(E)) is a �-minimizer. We will detail these in Section 2.

Unfortunately, the hybrid case does not inherit nice properties of continuous or discrete
cases even in the fair allocation case. The setBE is not necessarily an integral base-polyhedron
or an M-convex set. It also does not work to find allocations of divisible and indivisible
goods separately and combine them. We can observe these from the following example.

I Example 1. Suppose that there are one indivisible good g, one divisible good c, and three
agents who desire both goods. Let �(z) = ≠z1 · z2 · z3. In this case, allocating c equally to
the three agents minimizes � when considering only c. However, allocating g to agent 1 and
c to agents 2 and 3 equally minimizes � for mixed goods. In addition, the set of possible
utility vectors is not an M-convex set since it contains fractional utility vectors and not an
integral base-polyhedron since it is not convex (see Figure 1).

In addition, we will see that the uniqueness of a �-minimizer set no longer holds (Example 7).
Therefore, existing results are not applicable to our problem.
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z1

z2

z3

(1/2,1,1/2)
(1,1/2,1/2)

(1/2,1/2,1)

Figure 1 The set of possible utility vectors in Example 1. The blue points are minimizers of �.

1.1 Our contribution
First, we investigate the structure of the problem (1). Fortunately, we show that the hybrid
problem still retains a structure of the canonical partition (Lemma 28), which is originally
defined for the discrete case [15]. Namely, there exists integers —1 > · · · > —q and a partition
N1, . . . , Nq of N such that —j ≠ 1 Æ zú

i Æ —j for any �-minimizer zú, each j = 1, . . . , q and
i œ Nj . The proof is based on exchanging element values of a solution. Since existing exchange
properties in the discrete case are insu�cient to deal with the hybrid problem, we need to
introduce new exchange properties. Moreover, we discuss an optimality criterion in terms of
an exchange graph, and unlike the discrete case, elaborate analysis of the graph is required.
By this result, we can see that an optimal integral solution (i.e., argminzœB̈M+B̈C

�(z)) is
a good approximation solution for (1) in the sense that the ¸Œ distance from the optimal
solution is at most 1. We remark that the canonical partition together can be found in
polynomial time, and an optimal integral solution can be easily obtained from it.

In addition, by using the canonical partition, we can demonstrate a proximity theorem
(Theorem 2). Namely, �-minimizer on BE lies within a unit box containing the �-minimizer
on an integral base-polyhedron BE of fE = fM + fC . This generalizes a proximity theorem
for the discrete case [17].

I Theorem 2. Let � be a symmetric strictly convex function. For any zú œ argminzœBE
�(z)

and z œ argminzœBE
�(z), we have ÂziÊ Æ zú

i Æ ÁziË for all i œ N .

Second, by applying the above results, we analyze the computational complexity of the
problem (1) where BC and B̈M arise from fair allocation. As a negative result, we show
that the problem is NP-hard even when indivisible goods are identical, i.e., for each agent i,
either vie = 1 (’e œ M) or vie = 0 (’e œ M).

I Theorem 3. For any fixed symmetric strictly convex function �, finding a �-fair allocation

is NP-hard even when indivisible goods are identical.

We also prove that computing an MNW allocation and an optimal egalitarian allocation
are both NP-hard. These results highlight the di�culty of the mixed goods case because
the problems can be solved in polynomial time when there are only divisible goods or only
indivisible goods.

As a positive result, we show the following tractability when divisible goods are identical.
This class includes the case when the divisible goods are money.
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96:4 Hybrid of Continuous and Discrete Convex Sets

I Theorem 4. Let � be a symmetric strictly convex function. There exists a polynomial-time

algorithm that finds a �-fair allocation if all the divisible goods are identical.

This result may be interesting, because in fact, finding an allocation that attains a given
utility vector is NP-hard (see Appendix B in the full version [29]). Nevertheless, Theorem 4
says that we can obtain not only a �-minimizer (utility vector) but also an allocation that
attains the utility vector.

A key tool to construct our algorithm is the canonical partition for the mixed goods. By
applying it, we can partition goods as E1, . . . , Eq and agents as N1, . . . , Nq so that goods
in Ej are allocated to agents in Nj in a �-fair allocation (Theorem 29). Thanks to this
structure, a �-minimizer can be found by independently solving the subproblems of assigning
Ej to Nj for j = 1, 2, . . . , q. In each subproblem, the utility of every agent is almost the
same. However, unlike the continuous or discrete case, an optimal allocation depends on
� (see Examples 6 and 7). Thus, it is not easy to obtain a full characterization of minimizers.

Due to the space limitation, some proofs are omitted. They can be found in the full
version [29].

1.2 Related work
The (integral) base-polyhedron has been studied in the theory of matroids and submodular
functions [19]. The concept of M-convex sets [36] is defined as a set of integral vectors
satisfying certain exchange axioms. Discrete convex analysis [37] is a framework of convex
analysis in discrete settings, including M-convexity.

The concepts of continuous/discrete hybrid convexity have been proposed previously [35,
44]. In particular, an optimality criterion for an integral polyhedral hybrid M-convex function
minimization is known [35]. However, the functions treated in the present paper are hybrid
M-convex functions that are not necessarily integral polyhedral.

For the fair allocation of divisible homogeneous goods with additive valuations (not
restricted to binary), an MNW allocation corresponds to a market equilibrium of a special
case of the Fisher’s market model (see, e.g., [39]). Moreover, an MNW allocation is envy-free
(EF) [43,45], that is, no agent envies any other agent. It is known that this problem can be
solved in strongly polynomial time [41,46].

For the fair allocation of indivisible goods with additive valuations, Caragiannis et al. [10]
proved that an MNW allocation is envy-free up to one good (EF1), that is, each agent i does
not envy another agent j if some indivisible good is removed from the bundle of agent j.
Since computing an MNW allocation is hard in general [30], there is a series of research to
design an approximation algorithm [1, 11, 12, 13, 22]. Benabbou et al. [6] proved that the
set of MNW allocations coincides with that of minimizers of any symmetric strictly convex
function, even when the utility of each agent is represented by a matroid rank function.1
Harvey et al. [26] proposed e�cient algorithms for computing an allocation that minimizes a
certain symmetric strictly convex function. When agents have binary additive valuations, an
MNW allocation can be computed in polynomial time [4, 14]. Truthful mechanisms to find
an MNW allocation are also proposed [2, 24].

Fair allocation with a mixture of divisible and indivisible goods has recently gained
attention. Bei et al. [5] introduced a fairness notion called envy-freeness for mixed goods

(EFM) as a generalization of EF and EF1 notions. Very recently, Li et al. [31] proposed a
truthful mechanism that outputs an EFM allocation for the case where agents have binary

1 Note that Theorem 2 is an extension of this result. Specifically, we construct an “augmenting” path of
[6, Section 3.2] for a hybrid situation.
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additive valuations on indivisible goods and a common valuation on a single divisible good
(e.g., money). They also showed that their mechanism runs in polynomial time, and its
output achieves MNW. We remark that their algorithm does not work in our problem even
when divisible goods are identical because we allow some agents to have value 0 on them. In
addition, fair allocation of indivisible goods with subsidy [3,8, 9,23,25,28] is related to the
problem since subsidy could be viewed as a divisible good. For more details, see a survey
paper by Liu et al. [32].

2 Preliminaries

In this section, we explain the relationship between fair allocation of mixed goods and the
hybrid problem (1). Then we introduce the canonical partition for the discrete case.

For k œ N, we denote [k] = {1, 2, . . . , k}. Let N = [n] be a finite set. A set function f
over N is called supermodular if

f(X) + f(Y ) Æ f(X fi Y ) + f(X fl Y ) (’X,Y ™ N)

and submodular if ≠f is supermodular. For a subset X ™ N and a vector x œ RN , we
denote x(X) =

q
iœX xi. For an integer-valued supermodular set function f on N for which

f(ÿ) = 0 (normalized), the integral base-polyhedron B of f is defined as

B =
)
x œ RN : x(N) = f(N) and x(X) Ø f(X) (’X ™ N)

*
.

In addition, we call the set B̈ of the integer vectors in an integral base-polyhedron B an
M-convex set. Note that an M-convex set B̈ induces an integral base-polyhedron B as its
convex hull.

We say that a function � : RN æ R is symmetric if

�(z1, z2, . . . , zn) = �(z‡(1), z‡(2), . . . , z‡(n))

for all permutations ‡ over [n]. We say that a function � : RN æ R is strictly convex if

⁄�(z) + (1 ≠ ⁄)�(zÕ) > �(⁄z + (1 ≠ ⁄)zÕ)

for all z, zÕ œ RN and ⁄ œ (0, 1). A typical example of symmetric strictly convex functions is
the square-sum �(z) =

q
iœN z2i .

In general, for z œ RN and i, j œ N with zi > zj , we have �(z ≠ Á(‰i ≠ ‰j)) < �(z) for
any Á œ (0, zi ≠ zj) because

�(z) = ⁄�(z ≠ (zi ≠ zj)(‰i ≠ ‰j)) + (1 ≠ ⁄)�(z)
> �(⁄(z ≠ (zi ≠ zj)(‰i ≠ ‰j)) + (1 ≠ ⁄)z) = �(z ≠ ⁄(zi ≠ zj)(‰i ≠ ‰j)) (2)

for any ⁄ œ (0, 1). Here, ‰i represents a unit vector where only the ith component is equal
to 1, while all other components are equal to 0.

2.1 Relationship to fair allocation
Let N = [n] represent the set of n agents. We have two types of goods: M = {g1, g2, . . . , gm}
represents the set of indivisible goods, and C = {c1, c2, . . . , cr} denotes the set of homogeneous
divisible goods, that is, the valuation for a piece of a good is proportional to its fraction.
The set of all goods is denoted by E = M fi C. Let vie be the valuation of good e œ E for

ICALP 2024



96:6 Hybrid of Continuous and Discrete Convex Sets

agent i œ N . We assume that agents have binary valuations, that is, the valuation vie for the
whole of good e is either 0 or 1 for all i œ N and e œ E. An instance of the fair allocation we
deal with in this paper is described as (N,M,C, v). Without loss of generality, we assume
that, for any e œ E, there exists i œ N such that vie = 1.

A relaxed allocation is defined as a matrix fi œ [0, 1]N◊E that satisfies (i)
q

iœN fiie = 1
for all e œ E and (ii) fiie = 0 for any i œ N and e œ E with vie = 0. In a relaxed allocation
fi, each agent i receives each good e in the proportion of fiie. Relaxed allocations treat
indivisible goods as divisible. A relaxed allocation fi is an allocation if it additionally satisfies
fiie œ {0, 1} for all i œ N and e œ M . A relaxed allocation fi is an integral allocation if it
additionally satisfies fiie œ {0, 1} for all i œ N and e œ E. For an allocation fi, an agent
i œ N , and a subset of goods EÕ ™ E, let fii(EÕ) =

q
eœEÕ fiie, which is the valuation of agent

i’s bundle from EÕ. For an allocation fi, the utility of agent i œ N is defined as fii(E). For
an allocation fi, let fi(E) be the utility vector (fi1(E), . . . ,fin(E)).

Here we rewrite the set of possible utility vectors in terms of an integral base-polyhedron.
We define fM , fC , fE : 2N æ Z+ as follows: for a subset X ™ N of agents,

fM (X) = |{g œ M : vig = 0 (’i ”œ X)}| is the number of indivisible goods that must be
allocated to agents in X,
fC(X) = |{c œ C : vic = 0 (’i ”œ X)}| is the number of divisible goods that must be
allocated to agents in X, and
fE(X) = fM (X) + fC(X) is the number of goods that must be allocated to agents in X.

It is not di�cult to see that the functions fM , fC , fE are normalized integer-valued supermod-
ular.2 Let B̈M and BC be the M-convex set of fM and the integral base-polyhedron
of fC , respectively. In addition, let BE be the Minkowski sum of B̈M and BC , i.e.,
BE = {x+ y : x œ B̈M , y œ BC}. Then, BE is the set of possible utility vectors.

Recall that BM = conv(B̈M ) and B̈C = BC fl ZN . We denote BE = conv(BE), and
B̈E = BE fl ZN . Note that BE is not necessarily an M-convex set or an integral base-
polyhedron as we have seen in Example 1.

For a symmetric strictly convex function �, an allocation fi is called �-fair if the utility
vector (fi1(E), . . . ,fin(E)) minimizes � among allocations.

Some prominent fairness notions are naturally represented as �-fairness for some �. An
allocation fi is said to achieve the maximum Nash welfare (MNW) if the number of agents with
positive utilities is maximized, and subject to that, the Nash welfare (

r
iœN :fii(E)>0 fii(E))1/n

is maximized. Finding a utility vector of an MNW allocation is equivalent to minimizing
≠

r
iœN :zi>0(zi+ Á) for some su�ciently small Á > 0 (see Appendix A in the full version [29]).

The egalitarian social welfare is defined by the smallest utility among agents. Maximizing
the egalitarian social welfare is a weaker notion of increasingly maximal (inc-max, for short)
allocations; an allocation is inc-max if its smallest utility is as large as possible, within
this, its second smallest utility is as large as possible, and so on. Similarly, we say that an
allocation is decreasingly minimal (dec-min, for short) if its largest utility is as small as
possible, within this, its second largest utility is as small as possible, and so on. We show
that a certain symmetric strictly convex function � induces the dec-min and inc-max solution
as a �-fair allocation.

2 Most of our results can be extended to the case when each agent evaluates indivisible goods with a
matroid rank function and divisible goods with the concave closure of a matroid rank function because
the functions fM , fC , fE continue to be normalized integer-valued supermodular in this scenario.
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I Proposition 5. Let (N,M,C, v) be a fair allocation instance. There exists a symmetric

strictly convex function � such that a dec-min allocation is �-fair. In addition, there exists

a symmetric strictly convex function �Õ
such that an inc-max allocation is �Õ

-fair.

Then for a symmetric strictly convex function � : RN æ R, we can rewrite finding a
utility vector zú of a �-fair allocation as the hybrid problem (1). If M = ÿ or C = ÿ, the
problem (1) can be solved in polynomial time [15,16,17,18,34].

When there are only divisible goods or only indivisible goods, once we obtain a �-mimizer
zú of (1), a �-fair allocation fi is obtained by using the maximum flow problem. Since we can
find an integral maximum flow in the indivisible goods case, fi can be an integral allocation.
However, when both types of goods exist, it is not straightforward to construct an allocation
from a given utility vector. Indeed, given a vector u (not necessarily in BE), checking the
existence of an allocation whose utility vector is u is NP-hard (see Appendix B in the full
version [29]).

As mentioned in Introduction, when BE = BC (continuous case) or BE = B̈M (discrete
case), the set of �-minimizers is independent of �. However, this is not the case in general
even in fair allocation with both types of goods (i.e., M ”= ÿ and C ”= ÿ). Thus, our problem
is challenging.

I Example 6. Consider an instance with five agents N = {1, 2, 3, 4, 5}, five indivisible
goods M = {g1, g2, g3, g4, g5}, and three divisible goods C = {c1, c2, c3}. Suppose that
agents 1, 2, 3, and 4 desire all the goods, but agent 5 desires only the indivisible goods (see
Table 1). Then, an allocation fi with fi(E) = (7/4, 7/4, 7/4, 7/4, 1) is dec-min. However, an
allocation fl with fl(E) = (6/4, 6/4, 6/4, 6/4, 2) is inc-max and square-sum minimizer. Indeed,q

iœN fii(E)2 = 13.25 and
q

iœN fli(E)2 = 13.

I Example 7. Consider an instance with five agents N = {1, 2, 3, 4, 5}, five indivisible goods
M = {g1, g2, g3, g4, g5}, and two divisible goods C = {c1, c2}. Suppose that agents 1, 2, 3,
and 4 desire all the goods, but agent 5 desires only the indivisible goods. Then, an allocation
fi with fi(E) = ( 64 ,

6
4 ,

6
4 ,

6
4 , 1) is dec-min and square-sum minimizer. However, an allocation fl

with fl(E) = ( 54 ,
5
4 ,

5
4 ,

5
4 , 2) is inc-max. Indeed,

q
iœN fii(E)2 = 10 and

q
iœN fli(E)2 = 10.25.

Table 1 Valuations in Example 6.

agents g1 g2 g3 g4 g5 c1 c2 c3

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0 0

Table 2 Valuations in Example 7.

agents g1 g2 g3 g4 g5 c1 c2

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0

2.2 Principal Partition and Canonical Partition
Consider the integral base-polyhedron B and the M-convex set B̈ of a supermodular function
f : 2N æ Z+. For any real number ⁄, let L(⁄) be the set of all maximizers of f(X) ≠ ⁄|X|,
i.e., L(⁄) = argmaxX™N (f(X) ≠ ⁄|X|). Note that L has a lattice structure, i.e., L is closed
under union and intersection. Let L(⁄) be the smallest member in L(⁄). It is known that
L(⁄) ™ L(⁄Õ) for any ⁄ > ⁄Õ (see, e.g., [17, Proposition 3.1]).

Fujishige [18] characterized the optimal utility vectors by the principal partition of N .
There are at most |N | number of ⁄ for which |L(⁄)| Ø 2. Let us denote such numbers
as ⁄1 > ⁄2 > · · · > ⁄r, which are called the critical values. The principal partition
N̂1, N̂2, . . . , N̂r is a partition of N defined by

ICALP 2024
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N̂j = L(⁄Õ
j) ≠ L(⁄j) (j = 1, 2, . . . , r),

where ⁄Õ
j is an arbitrary real satisfying ⁄j > ⁄Õ

j > ⁄j+1 (assuming that ⁄r+1 = ≠Œ).

I Theorem 8 (Fujishige [18] and Maruyama [34]). The unique minimizer xú
of minxœB �(x)

satisfies xú
i = ⁄j for each i œ N̂j and j œ [r].

The principal partition and critical values can be found in strongly polynomial time by using
the submodular function minimization [27,42]; see also [38]. For more details of the principal
partition, see a book and a survey of Fujishige [19,20].

Frank and Murota [15] characterized the optimal utility vectors of minyœB̈ �(y) by the
canonical partition of N . There are at most |N | number of — œ Z for which L(—) ”= L(— ≠ 1).
Let us denote such numbers as —1 > —2 > · · · > —q, which are called the essential values.
The canonical partition N1, N2, . . . , Nq is a partition of N defined by

Ni = L(—i ≠ 1) ≠ L(—i) (i = 1, 2, . . . , q).

Alternatively, the canonical partition and the essential values can be obtained by the following
procedure [17, Section 3]: for j = 1, 2, . . . , q, define

—j = maxÿ”=X™N\
tj≠1

jÕ=1
NjÕ

Ï
(f(X fi

tj≠1
jÕ=1 NjÕ) ≠ f(

tj≠1
jÕ=1 NjÕ))/|X|

Ì
, (3)

hj(X) = f(X fi
tj≠1

jÕ=1 NjÕ) ≠ (—j ≠ 1)|X| ≠ f(
tj≠1

jÕ=1 NjÕ) (’X ™ N \
tj≠1

jÕ=1 NjÕ),

Nj = smallest subset of N \
tj≠1

jÕ=1 NjÕ maximizing hj .

They provided a strongly polynomial-time algorithm to compute the canonical partition and
the essential values by using this structure and a strongly polynomial-time algorithm for the
submodular function minimization [27,42].

I Theorem 9 (Frank and Murota [15,16,17]). The essential values —1 > —2 > · · · > —q are

obtained from the critical values ⁄1 > ⁄2 > · · · > ⁄r as the distinct members of the rounded-up

integers Á⁄1Ë Ø Á⁄2Ë Ø · · · Ø Á⁄rË. Moreover, the canonical partition is an aggregation of the

principal partition as Ni =
t

j: Á⁄jË=—i
N̂j for each i œ [q]. Any minimizer yú

of minyœB̈ �(y)
satisfies —j ≠ 1 Æ yú

i Æ —j for each i œ Nj and j œ [q]. The minimizer yú
, the canonical

partition, and essential values can be found in strongly polynomial time with respect to |N |.

3 Exchange properties of integral base-polyhedra and M-convex sets

In this section, we review exchange properties of an integral base-polyhedron and an M-convex
set. We also add new exchange properties for our hybrid case.

Let f : 2N æ Z be a supermodular function. Let B be an integral base-polyhedra and let
B̈ be an M-convex set defined by f . It is known that the M-convex set B̈ and the integral
base-polyhedron B satisfy the exchange properties, respectively. For a vector z œ RN , define
supp+(z) := {i œ N : zi > 0} and supp≠(z) := {i œ N : zi < 0}.

I Proposition 10 ([37]). For any x, y œ B̈ and i œ supp+(x ≠ y), there exists some

j œ supp≠(x ≠ y) such that x ≠ ‰i + ‰j œ B̈ and y + ‰i ≠ ‰j œ B̈.

I Proposition 11 ([37]). For any x, y œ B and i œ supp+(x ≠ y), there exists some

j œ supp≠(x≠ y) and a positive real –0 such that x≠ –(‰i ≠ ‰j) œ B and y+–(‰i ≠ ‰j) œ B
for all – œ [0,–0].
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In addition, we show the following variants of exchange properties.

I Proposition 12. For any x, y œ B̈ and X ™ N with x(X) > y(X), there exist i œ X and

j œ N \X such that x ≠ ‰i + ‰j œ B̈. Moreover, if x(X) > f(X), there exist i œ X and

j œ N \X such that x ≠ ‰i + ‰j œ B̈.

I Proposition 13. For any x, y œ B and X ™ N with x(X) > y(X), there exist i œ X,

j œ N \X, and Á > 0 such that x ≠ Á(‰i ≠ ‰j) œ B. Moreover, if x(X) > f(X), there exist

i œ X, j œ N \X, and Á > 0 such that x ≠ Á(‰i ≠ ‰j) œ B.

I Proposition 14. For any x œ B̈ and disjoint subsets I, J ™ N such that x(J) < f(I fi
J) ≠ f(I), there exist i œ I and j œ J such that x ≠ ‰i + ‰j œ B̈.

Then we show an exchange property for the hybrid situation.

I Proposition 15. For any x œ B̈ and y œ B, and i œ supp+(x ≠ y), there exists j œ
supp≠(x≠y) such that x≠‰i+‰j œ B̈. Also, for any x œ B̈ and y œ B, and i œ supp≠(x≠y),
there exists j œ supp+(x ≠ y) such that x+ ‰i ≠ ‰j œ B̈.

Proof. We only provide a proof for the former part, as the latter part can be demonstrated
in a similar manner. By Proposition 11, there exists some j œ supp≠(x ≠ y) and a positive
real –0 such that xÕ := x≠ –0(‰i ≠ ‰j) œ B. For any X ™ N with i œ X and j ”œ X, we have
xÕ(X) = x(X) ≠ –0 Ø f(X), and hence x(X) ≠ 1 Ø f(X) since x(X) and f(X) are integers.
Therefore, x ≠ ‰i + ‰j œ B̈ holds. J

4 Structure of �-minimizers

In this section, we prove a proximity theorem (Theorem 2) by using the structure (Lemma 28)
based on the canonical partition. Moreover, in the case of fair allocation, we also show that
the problem has a canonical partition of goods (Theorem 29).

Let fM and fC be two supermodular functions over M and C, respectively. Let also
fE = fM + fC . Recall that B̈M and BC are a corresponding M-convex set and integral
base-polyhedron, respectively. In addition, BE is the Minkowski sum of B̈M and BC .

It should be noted that, for the integral base-polyhedron B and the M-convex set B̈ of a
common supermodular function, the following proximity theorem has been shown by Frank
and Murota [17].

I Theorem 16 ([17, Theorem 4.1]). Let � be a symmetric strictly convex function. For any

xú œ argminxœB̈ �(x) and yú œ argminyœB �(y), we have Âyú
i Ê Æ xú

i Æ Áyú
i Ë for all i œ N .

Note that this is a special case of our Theorem 2 when fC(X) = 0 (’X ™ N). We prove
Theorem 2 following the same approach as for Theorem 16. However, we need to conduct a
more detailed analysis to handle BC .

Throughout this section, we fix a symmetric strictly convex function � : RN æ R and
its minimizer zú œ argminzœBE

�(z). By definition, zú can be represented as xú + yú by
xú œ B̈M and yú œ BC . Moreover, let N1, . . . , Nq and —1, . . . ,—q be the canonical partition
and the essential values of the M-convex set B̈E .

In subsequent subsections, we prove Theorem 2 through the following steps. First, in
Section 4.1, we demonstrate that zú

i lies within the interval [—1 ≠ 1, —1] for i œ N1. Then, in
Section 4.2, we decompose the problem of finding zú into two independent problems on N1
and N \N1. By iteratively applying the same procedure, we obtain the desired structure. In
Section 4.3, we show an additional result when BE emerges from the fair allocation.
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4.1 The peak-set N1

In this subsection, we prove that —1 ≠ 1 Æ zú
i Æ —1 (’i œ N1) and zú(N1) = fE(N1). The

main idea to prove these is to transfer some amounts from elements with high value to those
with low value, which improves the objective value. Here, we need to be careful about the
constraint.

We first introduce the basic properties for an M-convex set B̈ and an integral base-
polyhedron B.

I Proposition 17. For any x œ B̈, if x ≠ ‰i + ‰j œ B̈ and x ≠ ‰j + ‰k œ B̈, then it holds

that x ≠ ‰i + ‰k œ B̈.

I Proposition 18 ([19, Lemma 4.5]). Let x œ B̈. Suppose that there exist a sequence

i1, j1, . . . , ir, jr of 2r distinct elements in N such that x ≠ ‰ih + ‰jk œ B̈ if h = k and

x ≠ ‰ih + ‰jk ”œ B̈ if h > k for h, k œ [r]. Then, it holds that x ≠
q

kœ[r](‰ik ≠ ‰jk) œ B̈.

I Proposition 19 ([37]). For any x œ B, we have x œ conv(B fl {y œ ZN : Îx ≠ yÎŒ < 1}).

I Lemma 20. If yú + Á(‰i ≠ ‰j) œ BC for some i, j œ N and Á > 0, then zú
i = xú

i +
yú
i Ø xú

j + yú
j = zú

j . In addition, for any — œ R, it holds that yú(N Õ) = fC(N Õ) with

N Õ = {i œ N : zú
i Ø —}.

Proof. For the former statement, suppose to the contrary that yú +Á(‰i ≠‰j) œ BC for some
i, j œ N such that xú

i +yú
i < xú

j+yú
j and Á > 0. Then, y = yú+min{Á, (yú

j ≠yú
i )/2}·(‰i≠‰j) œ

BC and �(xú + y) < �(xú + yú) by (2). This contradicts the assumption that zú = xú + yú

is a �-minimizer.
For the latter statement, suppose that yú(N Õ) > fC(N Õ) for some N Õ = {i œ N : zú

i Ø —}
with — œ R. Then, by Proposition 13, there exist i œ N Õ, j œ N \ N Õ, and Á > 0 such
that yú + Á(‰j ≠ ‰i) œ BC . By the former statement, this implies zú

j Ø zú
i , contradicting

j ”œ N Õ. J

We define a graph whose edge represents that transferring a unit amount of elements
does not violate the constraints. Then we show that transferring a unit amount along a path
will improve the objective value.

I Lemma 21. Let — be an integer and N Õ ™ N . Define N> = {i œ N : zú
i > —},

N= = {i œ N : zú
i = —}, and N< = {i œ N : zú

i < —}. Construct a graph

G =
!
N Õ,

)
(i, j) œ N Õ ◊ N Õ : xú ≠ ‰i + ‰j œ B̈M or yú ≠ ‰i + ‰j œ BC

*"
.

If G has a path from some i œ N Õ fl N>
to some j œ N Õ fl N>

with i ”= j, then there exists a

vector zÕÕ
such that �(zÕÕ) < �(zú).

Proof. We first observe that Lemma 20 implies yú(N>) = fC(N>) and yú(N> fi N=) =
fC(N> fi N=).

Let P = (i1, i2, . . . , ik) be a shortest path from some i1 œ N Õ flN> to some ik œ N Õ flN<.
Then we have i1 œ N>, i2, . . . , ik≠1 œ N=, and ik œ N<. Since zú

i2 < zú
i1 , Lemma 20 implies

that yú ≠ ‰i1 + ‰i2 /œ BC , and thus xú ≠ ‰i1 + ‰i2 œ B̈M . If xú ≠ ‰i2 + ‰i3 œ B̈M , then
xú ≠ ‰i1 + ‰i3 œ B̈M by Proposition 17, which leads to a shortcut of P . Thus, we have
xú ≠ ‰i2 + ‰i3 /œ B̈M and instead, yú ≠ ‰i2 + ‰i3 œ BC holds. Next, let us assume that
yú ≠ ‰i3 + ‰i4 œ BC and i4 œ N=, and derive a contradiction. Consider

B= =
;
ỹ œ RN=

: ỹ(N=) = fC(N= fi N>) ≠ fC(N>),
ỹ(X) Ø fC(X fi N>) ≠ fC(N>) (’X ™ N=)

<
,
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which is also an integral base-polyhedron of a supermodular function. Since — is an integer,
yú
N= is also integral. Thus, the vectors yú

N= ≠ ‰i2 + ‰i3 and yú
N= ≠ ‰i3 + ‰i4 are contained in

B̈=, since yú(N>) = fC(N>) and i2, i3, i4 œ N=. Then yú
N= ≠ ‰i2 + ‰i4 œ B̈= follows from

Proposition 17, which means that yú ≠ ‰i2 + ‰i4 œ BC
3. However, this implies a shortcut

of P . Therefore, if i4 œ N=, then yú ≠ ‰i3 + ‰i4 /œ BC , and hence xú ≠ ‰i3 + ‰i4 œ B̈M . By
the same argument, we have xú ≠ ‰i¸ + ‰i¸+1 œ B̈M if ¸ is an odd number and i¸+1 œ N=,
and yú ≠ ‰i¸ + ‰i¸+1 œ BC if ¸ is an even number. Note that k must be an even number,
because yú ≠ ‰ik≠1 + ‰ik /œ BC follows from Lemma 20 and zú

ik < zú
ik≠1 . Moreover, for any

integers ¸ and h with ¸ Ø h + 2, we have xú ≠ ‰i¸ + ‰ih ”œ B̈M and yú ≠ ‰i¸ + ‰ih ”œ BC .
Let xÕ = xú ≠

q
¸: odd(‰i¸ ≠ ‰i¸+1), yÕ = yú ≠

q
¸: even(‰i¸ ≠ ‰i¸+1), and zÕ = xÕ + yÕ. By

Proposition 18, we have xÕ œ B̈M , yÕ œ BC , and zÕ œ BE . Note that zÕ = zú ≠ ‰i1 + ‰ik ,
yÕ(N>) = yú(N>) (= fC(N>)) and yÕ(N> fiN=) = yú(N> fiN=) (= fC(N> fiN=)) by the
construction. For notational convenience, we denote iú = i1 and jú = ik in the following.

If zú
iú > zú

jú + 1, then �(zÕ) < �(zú). Thus, suppose that zú
iú Æ zú

jú + 1 (< — + 1). In
this case, — ≠ 1 < zÕ

iú < — and — < zÕ
jú < — + 1. By Proposition 19, yÕ can be represented

by a convex combination of its integral neighbors in BC . Let yÕ =
qr

t=1 ⁄(t) · y(t), where
y(t) œ B̈C fl {y œ ZN : Îy ≠ yÕÎ < 1} (’t œ [r]),

qr
t=1 ⁄(t) = 1, and ⁄(t) Ø 0 (’t œ [r]).

Define z(t) = xÕ + y(t) for each t. Thus, we also obtain zÕ =
qr

t=1 ⁄(t) · z(t). Note that
z(t)iú œ {— ≠ 1,—} and z(t)jú œ {—,— + 1} for each t. In addition, for each t, it holds that
y(t)(N>) = fC(N>) because

qr
t=1 ⁄(t) · y(t)(N>) = yÕ(N>) = yú(N>) = fC(N>) and

y(t)(N>) Ø fC(N>). Similarly, we can see that y(t)(N> fi N=) = fC(N> fi N=) for each t.
Let us choose an arbitrary t with z(t)iú = — ≠ 1. Let

B> = {ỹ œ RN>

: ỹ(N>) = fC(N>) and ỹ(X) Ø fC(X) (’X ™ N>)}

(the restriction of BC to N>), and B̈> be the M-convex set induced from B>. Then it holds
that y(t)N> œ B̈>, yÕ

N> œ B> and iú œ supp≠(y(t)N> ≠ yÕ
N>). We apply Proposition 15 to them.

Then we can choose an index i(t) œ supp+(y(t)N> ≠ yÕ
N>) such that y(t)N> + ‰iú ≠ ‰i(t) œ B>.

We show that this implies ŷ(t) := y(t) + ‰iú ≠ ‰i(t) œ BC . Indeed, for any X with iú /œ X
and i(t) œ X (the other cases are trivial), since y(t)(X fl N>) ≠ 1 Ø fC(X fl N>), we have

y(t)(X) = y(t)(X fl N>) + y(t)(X fi N>) ≠ y(t)(N>)
> fC(X fl N>) + fC(X fi N>) ≠ fC(N>) Ø fC(X),

which implies that ŷ(t)(X) Ø fC(X). In addition, we observe that z(t)
i(t)

= y(t)
i(t)

+ xÕ
i(t) >

yÕ
i(t) + xÕ

i(t) = zÕ
i(t) = zi(t) > —. Thus, since z(t)

i(t)
is an integer,

ŷ(t)
i(t)

+ xÕ
i(t) = z(t)

i(t)
≠ 1 Ø —. (4)

On the other hand, for each t with z(t)iú = —, we denote ŷ(t) = y(t). We also remark that
ŷ(t)(N> fi N=) = y(t)(N> fi N=) and ŷ(t)i = y(t)i for each t and i œ N \N>.

We will do similar operations for indices in N<. Let us choose an arbitrary t with
z(t)jú = —1 + 1. We show that we can choose j(t) œ N< with z(t)

j(t)
Æ —1 ≠ 1 such that

ŷ(t) ≠ ‰jú + ‰j(t) œ BC by applying Proposition 15. We denote NØ = N> fi N=. Let also

B< =
;
ỹ œ RN<

: ỹ(N<) = fC(N) ≠ fC(NØ),
ỹ(X) Ø fC(X fi NØ) ≠ fC(NØ) (’X ™ N<)

<
.

3 We need to check for each X such that i2 œ X but i4 /œ X. The case when X ´ {i2, i3} follows by
yú ≠ ‰i3 + ‰i4 œ BC , and the case when i2 œ X but i3 /œ X follows by yú ≠ ‰i2 + ‰i3 œ BC .
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(the contraction of BC by NØ), and B̈< be the M-convex set induced from B<. Then it holds
that ŷ(t)N< œ B̈<, yÕ

N< œ B< and jú œ supp+(ŷ(t)N< ≠ yÕ
N<). We apply Proposition 15 to them.

Then we can choose an index j(t) œ supp≠(ŷ(t)N< ≠ yÕ
N<) such that ŷ(t)N< ≠ ‰jú + ‰j(t) œ B<.

Then we can observe that ŷ(t)≠‰jú +‰j(t) œ BC . Indeed, for any X with jú œ X and j(t) /œ X,
since y(t)(X fl N<) ≠ 1 Ø fC((X fl N<) fi NØ) ≠ fC(NØ) and y(t)(X fl NØ) Ø fC(X fl NØ),
we have

y(t)(X) = y(t)(X fl N<) + y(t)(X fl NØ)
> fC(X fl N<) ≠ fC(NØ) + fC(X fi NØ) Ø fC(X).

Moreover, z(t)
j(t)

< yÕ
j(t) + xÕ

j(t) = zÕ
j(t) = zj(t) < —, which implies that

ŷ(t)
j(t)

+ 1 + xÕ
j(t) = z(t)

j(t)
+ 1 Æ —. (5)

For simplicity, let j(t) = jú for each t with z(t)jú = —. Then, yÕÕ :=
qr

t=1 ⁄(t)·(ŷ(t)≠‰jú+‰j(t)) œ
BC .

Let zÕÕ = xÕ + yÕÕ. Note that this operation to produce zÕÕ first reduces the value of
elements more than — while keeping them at least — by (4), and then increases the value of
elements less than — while keeping them at most — by (5). In other words, —1 Æ zÕÕ

i Æ zú
i for

i œ N>, zÕÕ
i = zú

i for i œ N=, and zú
i Æ zÕÕ

i Æ —1 for i œ N<. Therefore, �(zÕÕ) < �(zú) holds.
This contradicts to the optimality of zú. J

To prove —1 ≠ 1 Æ zú
i Æ —1, we find a path on the graph by supposing the contrary. While

it is easy for the continuous or discrete case, elaborate analysis is required in the hybrid case.
Recall that —1 = max{ÁfE(X)/|X|Ë : ÿ ”= X ™ N} by (3).

I Lemma 22. zú
i Æ —1 for all i œ N .

Proof. Define the sets N> = {i œ N : zú
i > —1}, N= = {i œ N : zú

i = —1}, and N< = {i œ
N : zú

i < —1}. By Lemma 20, yú(N>) = fC(N>) and yú(N> fi N=) = fC(N> fi N=).
Suppose to the contrary that N> is nonempty. We construct a graph

G =
!
N,

)
(i, j) œ N2 : xú ≠ ‰i + ‰j œ B̈M or yú ≠ ‰i + ‰j œ BC

*"
.

We observe that for any Z with N> ™ Z ™ N> fi N=, it holds that

zú(Z) > fE(Z) (6)

because fM (Z) + fC(Z) = xú(Z) + yú(Z) = zú(Z) > —1 · |Z| Ø fE(Z) = fM (Z) + fC(Z),
where the last inequality holds by the definition of —1. This implies the following claim.

B Claim 23. For any Z satisfying (6), there exists an edge (i, j) œ Z ◊ (N \ Z).

B Claim 24. There exist paths in G from some vertex in N> to some vertex in N<.

By the above claim and Lemma 21 with N Õ = N and — = —1, there exists a vector z
with �(z) < „(zú), which contradicts to the optimality of zú. This completes the proof of
Lemma 22. J

We then prove that zú
i is at least —1 ≠1 for all i œ N1 by a similar technique to Lemma 22.

Recall that N1 is the smallest subset of N maximizing fE(X) ≠ (—1 ≠ 1)|X|.

I Lemma 25. zú
i Ø —1 ≠ 1 for all i œ N1.
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We then show that we cannot decrease the values of elements in N1 (which have high
values) anymore. In the words of fair allocation, this means that goods not required to be
assigned to N1 are not assigned to N1.

I Lemma 26. xú(N1) = fM (N1), yú(N1) = fC(N1), and zú(N1) = fE(N1).

Proof. It is su�cient to prove that zú(N1) = fE(N1). Let N> := {i œ N : zú
i > —1 ≠ 1},

N= := {i œ N : zú
i = —1 ≠ 1}, and N< := {i œ N : zú

i < —1 ≠ 1}.
Suppose to the contrary that zú(N1) > fE(N1). We construct a graph

G =
!
N,

)
(i, j) œ N ◊ N : xú ≠ ‰i + ‰j œ B̈M or yú ≠ ‰i + ‰j œ BC

*"
.

Since N1 œ argmaxS™N fE(S)≠ (—1 ≠1)|S|, we have fE(N1)≠ (—1 ≠1)|N1| Ø fE(X)≠ (—1 ≠
1)|X| for any X ™ N . For any X with N> ™ X ™ N> fi N=, it holds that

zú(X) = zú(N>) + zú(X \N>) = zú(N>) + (—1 ≠ 1) · (|X| ≠ |N>|)
Ø zú(N> fl N1) + (—1 ≠ 1) · (|X| ≠ |N> fl N1|)
= zú(N1) ≠ (—1 ≠ 1) · (|N1| ≠ |N> fl N1|) + (—1 ≠ 1) · (|X| ≠ |N> fl N1|)

(by Lemma 25)
= zú(N1) ≠ (—1 ≠ 1)|N1|+ (—1 ≠ 1)|X|
> fE(N1) ≠ (—1 ≠ 1)|N1|+ (—1 ≠ 1)|X| (by assumption)
Ø fE(X) ≠ (—1 ≠ 1)|X|+ (—1 ≠ 1)|X| = fE(X).

Hence, by the same proofs of Claims 23 and 24, there exist paths in G from an agent in N>

to an agent in N<. Then, by applying Lemma 21 with N Õ = N and — = —1 ≠ 1, we can
decrease the value of �, which is a contradiction. Hence, we obtain zú(N1) = fE(N1). This
implies that xú(N1) = fM (N1) and yú(N1) = fC(N1). J

4.2 Decomposition
We describe that we can derive a similar result for N2, . . . , Nq.

Let N Õ
1 = N \N1. For a supermodular function f , we denote f (1) : 2N Õ

1 æ Z to be the
supermodular function obtained from f by contracting N1, i.e., f (1)(X) = f(X fiN1)≠f(N1)
for each X ™ N Õ

1. We consider the M-convex set B̈(1)
M of f (1)

M , integral base-polyhedra B(1)
C

of f (1)
C , and B(1)

E = B̈(1)
M +B(1)

C .
By Lemma 26, we have zú

N Õ
1

œ B(1)
E . In addition, for any zN Õ

1
œ B(1)

E , an extended
vector z = (zú

N1
, zN Õ

1
) is contained in BE because z(X) Ø fE(X fl N1) + f (1)

E (X fl N Õ
1) =

fE(X fl N1) + fE(X fi N1) ≠ f(N1) Ø fE(X) for all X ™ N by the supermodularity of fE .
Hence, we obtain the following lemma. Let �Õ : RN Õ

1 æ R be the symmetric strictly convex
function such that �Õ(zN Õ

1
) = �(zú

N1
, zN Õ

1
).

I Lemma 27. For any zN Õ
1

œ B(1)
E , a vector z = (zú

N1
, zN Õ

1
) is a �-minimizer of BE if and

only if zN Õ
1
is a �Õ

-minimizer of B(1)
E .

Therefore, we can apply the results in Section 4.1 to N Õ
1, f

(1)
M , f (1)

C and f (1)
E , and repeat the

same procedure. By the definition of the canonical partition and the essential values, we
obtain the following lemma.

I Lemma 28. For each j = 1, . . . , q, it holds that —j ≠ 1 Æ zú
i Æ —j for every i œ Nj.
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We can prove Theorem 2 by using Theorem 9 and Lemma 28, and basic results for the
integral base-polyhedra.

Proof of Theorem 2. Recall that the partition N1, . . . , Nq is the canonical partition of
B̈E , and —1, . . . ,—q are the corresponding essential values. Let N̂1, . . . , N̂r be the principal
partition of BE , and let ⁄1, . . . ,⁄r be the critical values. We fix i œ N arbitrarily. Let
j œ [q] and k œ [r] be the unique indices such that i œ Nj and i œ N̂k. By invoking
Theorem 9, we have —j = Á⁄kË. Consequently, by Theorem 8 and Lemma 28, we obtain
zú
i Æ —j = Á⁄kË = ÁziË.
To show the other inequality, let �Õ : RN æ R be a symmetric strictly convex function

such that �Õ(z) = �(≠z) for z œ RN . Let BÕ
E = ≠BE and BÕ

E = ≠BE . Then, ≠zú and ≠z
are �Õ-minimizers of BÕ

E and BÕ
E , respectively. By applying the same argument as above, we

obtain ≠zú
i Æ Á≠ziË, which is equivalent to zú

i Ø ÂziÊ. J

4.3 Structures in Fair Allocation
We establish the structure in the case of fair allocations. We partition the goods according to
the canonical partition as follows. Let M1 and C1 denote the subset of indivisible goods M
and divisible goods C, respectively, that must be allocated to agents in N1. We iteratively
define Mj and Cj as the subset of M \

tj≠1
jÕ=1 MjÕ and C \

tj≠1
jÕ=1 CjÕ , respectively, that must

be allocated to agents in
tj

jÕ=1 NjÕ . In other words, Mj and Cj (j = 1, . . . , q) is defined as

Mj =
)
g œ M \

tj≠1
jÕ=1 MjÕ : vig = 0 (’i œ N \

tj
jÕ=1 NjÕ)

*
, (7)

Cj =
)
c œ C \

tj≠1
jÕ=1 CjÕ : vic = 0 (’i œ N \

tj
jÕ=1 NjÕ)

*
. (8)

We refer M1, . . . ,Mq and C1, . . . , Cq as the canonical partitions of the indivisible goods and
the divisible goods, respectively. By Lemmas 26 and 27, we show the following.

I Theorem 29. For any allocation fiú
whose utility vector is a �-minimizer over BE, it

holds that
q

iœNj
fiú
ie = 1 for every good e œ Mj fi Cj and j = 1, 2, . . . , q.

Proof. Let zú be the utility vector of fiú. Let xú and yú be the utility vectors for indivisible
and divisible goods in fiú, respectively. Thus, zú = xú + yú.

First, since fM (N1) = |M1| and fC(N1) = |C1|, we have zú(N1) = |M1 fi C1| by
Lemma 26. Next, let N Õ

j = N \
tj

jÕ=1 NjÕ for j = 1, . . . , q ≠ 1. By Lemma 27, zú
N Õ

1
is a

�Õ-minimizer, where �Õ(z) = „(zú
N1

, z). Thus by the definition of N2 and Lemma 26 again,
xú
N Õ

1
(N2) = f (1)

M (N2) = fM (N1 fi N2) ≠ fM (N1) = |M2| and yú
N Õ

1
(N2) = f (1)

C (N2) = |C2|. By
iteratively applying this argument, we observe that zú(Nj) = |Mj fi Cj | for j = 2, . . . , q.

Because agents in Nq want only the goods in Mq fi Cq, these goods are allocated to the
agents in Nq. Then, for each j = q ≠ 1, . . . , 1, since agents in Nj want only the goods intq

jÕ=j(MjÕ fiCjÕ) but the goods in
tq

jÕ=j+1(MjÕ fiCjÕ) are allocated to agents in Nj+1fi· · ·fiNq,
the goods in Mj fi Cj are allocated to agents in Nj . Therefore, the theorem holds. J

5 Tractability for Identical Divisible Goods

In this section, we focus on the setting where all the divisible goods are identical, i.e.,
vic = vicÕ for any c, cÕ œ C and i œ N . Let � be a symmetric strictly convex function. The
main result of this section is Theorem 4, i.e., a polynomial-time algorithm to find a �-fair
allocation. As a corollary, an MNW allocation for mixed goods can be found in polynomial
time when the divisible goods are identical.
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Our algorithm utilizes structures discussed in the previous section. Namely, we seek
allocations whose utility vectors satisfy the statements in Lemma 28 and Theorem 29, which
are necessary conditions to be optimal. The high-level idea of our algorithm is described as
follows.

First, we find a discrete �-minimizer z̈ú œ argminzœB̈E
�(z), the canonical partition

N1, . . . , Nq, and the essential values —1, . . . ,—q of B̈E . These can be found in polynomial
time by Theorem 9. Note that z̈ú is an optimal utility vector if every good is assumed to be
indivisible. We also compute the canonical partition of the indivisible goods M1, . . . ,Mq and
that of the divisible ones C1, . . . , Cq by (7) and (8). Since all divisible goods are identical,
only one of C1, . . . , Cq can be non-empty. Let jú be the index such that Cjú = C.

Next, we decide on an allocation for agents in Nj for each j ”= jú. Let us fix j ”= jú.
Theorem 29 implies that in an optimal allocation, the agents in Nj receive only the indivisible
goods in Mj . Moreover, by Lemma 28, some agents in Nj must receive —j goods and the
others must receive —j ≠ 1. Because —j ≠ 1 Æ z̈ú

i Æ —j holds by Theorem 9, we allocate
goods in Mj so that each agent i œ N \Njú receives z̈ú

i goods. Such an allocation can be
computed by solving a bipartite matching problem.4 For agents in Nj , the utility vector of
this allocation is the same as an optimal one up to arrangement of elements. Thus, we have
found an optimal allocation for agents in Nj .

The remaining task is to determine the allocation of Mjú fi C to agents Njú . Since the
optimal allocation of Mjú fi C depends on �, we conduct an enumeration-based approach
rather than performing a full characterization.

Let fiú be an optimal allocation. Let N+
jú be the set of agents in Njú who desire the

divisible goods, i.e., N+
jú = {i œ Njú : vi(c) = 1 (’c œ C)}. Let N≠

jú = Njú \ N+
jú . The

following lemma indicates that there are a finite number of candidates for a �-minimizer.

I Lemma 30. All the agents receiving divisible goods (i.e., fiú
i (C) > 0) have the same utility.

Let k be the number of agents in N+
jú who receive —jú indivisible goods and let ¸ be the

total number of indivisible goods received by agents in N+
jú . Note that k < |N+

jú |. The key
observation is the following lemma.

I Lemma 31. The following properties hold:

1. |N+
jú | · (—jú ≠ 1) + k Æ ¸ + |C| Æ |N+

jú | · —jú ;

2. there exist X ™ N+
jú such that |X| = k and

a. for each i œ X: fiú
i (Mjú) = —jú and fiú

i (C) = 0;
b. for each i œ N+

jú \ X: fiú
i (Mjú) Æ —jú ≠ 1 and fiú

i (E) = —jú ≠ (|N+
jú | · —jú ≠ ¸ ≠

|C|)/(|N+
jú | ≠ k);

3. fiú
i (Mjú) œ {—jú ,—jú ≠ 1} and fiú

i (C) = 0 for each i œ N≠
jú .

Since Lemma 31 specifies the utility vector (i.e., fiú
i (E) for each i œ Njú) of an optimal

allocation up to arrangement, it su�ces to find an allocation whose utility vector satisfies the
statement in Lemma 31. In fact, if we are given ¸, an optimal allocation can be computed as
follows. For each k = 0, . . . , |N+

jú | such that property 1 in Lemma 31 is satisfied,
1. find an allocation fik,¸ œ {0, 1}Njú ◊Mjú of indivisible goods in Mjú such that (a) |{i œ

N+
jú : fii(Mjú) = —jú}| Æ k, (b) fii(Mjú) Æ —jú for each i œ N+

jú , (c)
q

iœN+
jú

fii(Mjú) = ¸,
(d) fii(Mjú) œ {—jú ,—jú ≠ 1} for each i œ N≠

jú ;

4 It can also be calculated directly with a method of Harvey et al. [26].
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2. if fik,¸ exists, let fîk,¸ be the allocation by allocating indivisible goods according to fik,¸,
and allocating divisible goods by a water-filling policy so that

fîk,¸
i (c) = 1

|C| ·
A

—jú ≠
|N+

jú | · —jú ≠ ¸ ≠ |C|
|N+

jú | ≠ k
≠ fik,¸

i (M)
B

for each i œ N+
jú such that fik,¸

i (M) < —jú and c œ C.
Let us see that this indeed works. Since �(fîk,¸) Æ �(fîk+1,¸) holds (if fik,¸ exists), the
smallest k such that fik,¸ exists is the number in Lemma 31. For such an integer k, we have
|{i œ N+

jú : fii(Mjú) = —jú}| = k, and the properties in Lemma 31 are satisfied except the
allocation of divisible goods. Once we have decided on an allocation of indivisible goods, an
optimal allocation of divisible goods is found by the water-filling policy.

Now, we explain how to find an allocation fik,¸ at step 1 in polynomial time. We reduce
this problem to the submodular flow problem. Let G = (V,A) be a directed graph constructed
as follows. The set of vertices V is Mjú fi Njú fi N Õ

jú where N Õ
jú is a set of copy iÕ of each

i œ Njú . The set of edges A is A1 fi A2 fi A3 where A1 = {(g, iÕ) œ Mjú ◊ N Õ
jú : vi(g) = 1},

A2 = {(iÕ, i) : i œ N+
jú}, and A3 = {(iÕ, i) : i œ N≠

jú}. We define c, c : A æ Z as c(a) = 0
and c(a) = 1 for each a œ A1; c(a) = 0 and c(a) = —jú for each a œ A2; c(a) = —jú ≠ 1 and
c(a) = —jú for each a œ A3. In addition, let fk,¸ : 2V æ Z be a function such that

fk,¸(X) = Ïk,¸(|X fl N+
jú |) + (|Mjú | ≠ ¸)1XflN≠

jú ”=ÿ ≠ |X fl Mjú | (’X ™ V ), (9)

where Ïk,¸(h) = min{—júh, (—jú ≠1)h+k, ¸}, and 1XflN≠
jú ”=ÿ takes the value 1 if X flN≠

jú ”= ÿ
and 0 otherwise. We remark that fk,¸ is a submodular function, and fk,¸(V ) = 0 since
¸ Æ

q
iœN+

jú
fiú
i (Mjú) Æ (—jú ≠ 1)|N+

jú |+ k Æ —jú |N+
jú |.

I Lemma 32. There exists an allocation fi œ {0, 1}Njú ◊Mjú
satisfying (a)–(d) if and only if

there exists an integral flow › : A æ Z satisfying c(a) Æ ›(a) Æ c(a) (capacity constraints)

and a constraint (called supply specification) that the boundary ˆ› œ ZV
of the flow ›, which

is defined by ˆ›(v) =
q

a=(v,u)œA ›(a) ≠
q

a=(u,v)œA ›(a), is in the M-convex set B̈ of fk,¸.

Since the feasibility of the submodular flow problem can be determined in polynomial
time [19], the existence of an allocation satisfying conditions (a)–(d) can be determined in
polynomial time by Lemma 32. Moreover, if such an allocation exists, we can find one of
such allocations in polynomial time.

Finally, because we do not know ¸ in advance, we enumerate all possibilities. That is,
find a best allocation fik,¸ for each ¸ = 0, 1, . . . , |Mjú | by the above procedure, and choose
the best one. Then the resulting allocation is as good as an optimal allocation fiú.

We give the formal description of our algorithm in Algorithm 1. By summarizing the
discussions thus far, we can prove Theorem 4.

6 Hardness for Identical Indivisible Goods

In this section, we show a hardness result on the fair allocation setting when divisible goods
are non-identical but indivisible goods are identical. By using Theorem 2, we prove the
NP-hardness of finding a �-fair allocation by using the 3-dimensional matching (3DM)
problem, which is known to be NP-hard [21].

I Theorem 33 (restatement of Theorem 3). For any fixed symmetric strictly convex function

�, the problem (1) is NP-hard even in the fair allocation setting with identical indivisible

goods. Hence, finding a �-fair allocation is NP-hard.
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Algorithm 1 Allocation algorithm when the divisible goods are identical.

input :A fair allocation instance (N,M,C, v) and a symmetric strictly convex
function �

output :A �-fair allocation
1 Compute the canonical partition N1, . . . , Nq, the essential values —1, . . . ,—q, the

canonical partition of the indivisible goods M1, . . . ,Mq, and the canonical partition
of the divisible goods C1, . . . , Cq;

2 Let jú be the index such that Cjú = C;
3 for j Ω 1, . . . , jú ≠ 1, jú + 1, . . . , q do
4 Allocate Mj to Nj so that each agent receives —j or —j ≠ 1;
5 Let N+

jú Ω {j œ Njú : vi(c) = 1 (’c œ C)} and N≠
jú Ω {j œ Njú : vi(c) = 0 (’c œ C)};

6 Let � Ω ÿ be a set of candidate allocations;
7 for k Ω 0, 1, . . . , |N+

jú | and ¸ Ω 0, 1, . . . , |Mjú | do
8 if |N+

jú | · (—jú ≠ 1) + k Æ ¸ + |C| Æ |N+
jú | · —jú then

9 Determine the existence an allocation fik,¸ œ {0, 1}Njú ◊Mjú satisfying the
following conditions via the submodular flow problem:
|{i œ N+

jú : fii(Mjú) = —jú}| Æ k, fii(Mjú) Æ —jú for each i œ N+
jú ,q

iœN+
jú

fii(Mjú) = ¸, fii(Mjú) œ {—jú ,—jú ≠ 1} for each i œ N≠
jú ;

10 if Such an allocation fik,¸
exists then

11 Let fi be an allocation such that indivisible goods are allocated according
to Algorithm 1 and fik,¸, and the divisible goods are allocated to agents
in N+

jú by a water-filling policy;
12 � Ω � fi {fi};

13 return fiú œ argminfiœ� �(fi(E));

We can also prove the following from the same proof of this theorem.

I Corollary 34. The problems of finding an MNW allocation and an optimal egalitarian

allocation are both NP-hard, even when indivisible goods are identical.
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Abstract
In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1± ‘ factor by
a small hypergraph H Õ. This widely applied method was generalized recently to a setting where the
cost of cutting each hyperedge e is provided by a splitting function ge : 2e æ R+. This generalization
is called a submodular hypergraph when the functions {ge}eœE are submodular, and it arises in
machine learning, combinatorial optimization, and algorithmic game theory.

Previous work studied the setting where H Õ is a reweighted sub-hypergraph of H, and measured
the size of H Õ by the number of hyperedges in it. In this setting, we present two results: (i) all
submodular hypergraphs admit sparsifiers of size polynomial in n = |V | and ‘≠1; (ii) we propose a
new parameter, called spread, and use it to obtain smaller sparsifiers in some cases.

We also show that for a natural family of splitting functions, relaxing the requirement that H Õ be
a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a
factor n in the number of bits). This is in contrast to graphs, where the most succinct representation
is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the
notion of deformation, where a splitting function ge is decomposed into a sum of functions of small
description, and we provide upper and lower bounds for deformation of common splitting functions.
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1 Introduction

A powerful tool for many graph problems is sparsification, where an input graph is replaced
by a small graph that preserves (perhaps approximately) certain properties, for example all
the input graph’s cuts [7] or its spectrum [42, 6, 26]. Downstream applications can then be
executed on the small graph, which improves the overall running time, and the small graph
can also be stored (or sent to another site) instead of the input graph, which improves the
memory (or communication) requirements. The extensive research on cut sparsification has
started with the seminal work of Benczúr and Karger on cuts in graphs [7], and was later
extended to hypergraphs [29, 5, 10] and to directed hypergraphs [40, 9, 27, 36]. In recent
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months the study of sparsification has been extended to even more general objects such as
semi-norms [25], matroid quotients [38], and linear codes [28]. We focus on sparsifying a
generalized form of hypergraphs, as explained next.

In recent years, the notion of cuts in a weighted hypergraph H = (V,E,w) has been
generalized to a setting where each hyperedge e œ E has a splitting function ge : 2e æ R+,
such that ge(ÿ) = 0, and the value of a cut S ™ V is defined as

cutH(S) :=
ÿ

eœE

ge(S fl e). (1)

Associating every e œ E with the all-or-nothing splitting function, given by gaon
e

: S ‘æ
we · 1{S ”=ÿ,e}, clearly models an ordinary hypergraph H = (V,E,w), where the value of a
cut is the total weight of hyperedges that intersect both sides; in fact, a simple extension
can model a directed hypergraph. Such a generalized hypergraph H = (V,E, g), where
g = {ge}eœE

, is called a submodular hypergraph if all its splitting functions ge are submodular.
Recall that a set function g : 2e æ R+ is submodular if

’S, T ™ e, g(S fi T ) + g(S fl T ) Æ g(S) + g(T ).

Submodular hypergraphs are useful in clustering data with higher-order relations that are
not captured by ordinary hyperedges [31, 32, 44, 34, 45, 48]. For example, the small-side
splitting function, given by gsml

e
: S ‘æ min(|S|, |e \ S|), is employed when unbalanced cuts

are preferable. Cut functions of submodular hypergraphs were studied also under a di�erent
name of decomposable submodular functions. A submodular function f : 2V æ R+ is called
decomposable if it can be written as f =

q
i
fi, where each fi : 2V æ R+ is submodular. This

notion is widely applied in data summarization [23, 33, 43], where each fi is a submodular
similarity function, and the task of summarizing the data under a given budget k is modeled
by maximizing f(S) over all S µ V of size |S| Æ k. Decomposable submodular functions
arise also in welfare maximization, where each agent has a submodular utility function, for
instance in approximation algorithms [16, 17] and in truthful mechanisms [15, 4].

We study how to succinctly represent all the cuts of a submodular hypergraph H up to
1± ‘ factor. We examine two complementary approaches: (1) sparsification, which reduces
the number of hyperedges, i.e., H is represented using a sparse H Õ; and (2) deformation,
which replaces large hyperedges or complicated splitting functions by new ones of low space
complexity, i.e., H is represented using H Õ whose hyperedges can be stored succinctly. These
approaches can yield (separately and/or together) a sparsifier H Õ that can be encoded using
a small number of bits. More generally, we may consider a general encoding that need not
rely on a sparsifier H Õ, e.g., an explicit list of all the 2|V | cut values.

Let us introduce some basic notation to make the discussion more precise. Throughout,
let n := |V |; we write Õ(t) or �̃(t) to suppress a polylogarithmic factor in t, and O–(t) or
�–(t) to hide a factor that depends only on –.

I Definition 1.1 (Sparsifier). A cut sparsifier of quality 1 + ‘ for H = (V,E, g), or in short
a (1 + ‘)-sparsifier, is a submodular hypergraph H Õ = (V,EÕ, gÕ) such that

’S ™ V, cutHÕ(S) œ (1± ‘) · cutH(S). (2)

The size of the sparsifier is |EÕ|. We call H Õ a reweighted subgraph of H if EÕ ™ E and each
function gÕ

e
for e œ EÕ is a scaling of ge (i.e., gÕ

e
© sege for some se > 0).

I Question 1.2 (Sparsification). Do all submodular hypergraphs admit a reweighted-subgraph
sparsifier with few hyperedges, say poly(‘≠1n)? And which families of splitting functions
admit even smaller sparsifiers, like Õ‘(n2) or even Õ‘(n)?
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The first question (about a polynomial bound) was previously answered for several families
of splitting functions (see Section 1.1 for a detailed account), but despite this significant
progress, the case of general submodular splitting was left open in [39], where the bound on
the sparsifier size depends on g and is exponential in n in the worst case. We answer this
first question in the a�rmative, and also address the second question by showing families of
splitting functions that admit even smaller sparsifiers.

We further ask about a more general notion, of encoding an approximation of all the cuts
of H, which can potentially be more succinct than a sparsifier.

I Question 1.3 (Succinct Representation). What is the smallest encoding (in bits of space)
that stores a submodular hypergraph H so as to report (1 + ‘)-approximation to every cut
value? In particular, what is the smallest number of bits s = s(‘, n) that su�ces to store a
sparsifier for H?

For simplicity, we ask above only about the existence of a sparsifier or an encoding, but
we are of course interested also in fast algorithms to build them. Fortunately, an algorithmic
solution follows from the existential ones because our proofs are constructive. Furthermore,
the running times are polynomial under the assumption that every ge takes integral values
and maxS™e ge(S) Æ poly(n).1

1.1 Sparsification: All Submodular Hypergraphs
We start with addressing Question 1.2. Our first result (proved in Section 2) provides the
first polynomial (in n) bound for all submodular splitting functions; the previous bound,
due to [39], was O‘(n2BH), where BH := maxeœE |B(ge)| and B(ge) is the set of extreme
points in the polytope of ge.2 In general, BH can be exponential in n, for example small-side
splitting gsml

e
has |B(gsml

e
)| = 2�(|e|).

I Theorem 1.4. Every submodular hypergraph admits a (1 + ‘)-sparsifier of size O(‘≠2n3),
which is in fact a reweighted sub-hypergraph.

This bound is within factor O‘(n) of the �(n2/‘) lower bound known for cut sparsification of
directed hypergraphs [36]. We also show that if all the splitting functions are monotone (i.e.,
ge(S) Æ ge(T ) for all S ™ T ), then the sparsifier size can be improved to O‘(n2). Monotone
submodular functions arise in many applications, however no sparsification bound was
previously known for this family.3 The formal statement and its proof appear in Section 2.

Related Work. Previous work on sparsification focused mostly on specific splitting functions.
The study of this problem began with sparsifiers for undirected graph cut; the current
size bound is O(‘≠2n) edges [6], which improves over [7] and is known to be tight [2, 8].
Furthermore, sparsifiers of size Õ‘(n) are known for all-or-nothing splitting gaon

e
[10] (see

also [38]) and for product splitting, given by gprd
e

: S ‘æ |S| · |e \ S| [13]. In contrast, for
the splitting that models cuts in a directed hypergraph, the best construction known has
size Õ‘(n2) [36], which is near-tight with an �(n2/‘) lower bound [36]; this function, called

1 The running times of Theorem 1.4 and Theorem 1.9 are polynomial in general. Theorem 1.6 is polynomial
under the stated assumption.

2 A recent manuscript [30] claims that the proof in [39] has a flaw and holds only for monotone submodular
hypergraphs.

3 The running time of [39] was improved in [30], where a sparsifier of size O(‘≠2n2B) for monotone
functions with low curvature is constructed in polynomial time.
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directed all-or-nothing splitting, is given by gd-aon
e

: S ‘æ 1{eT flS ”=ÿ · eH ”™S}, where eH , eT ™ e
are the hyperedge’s head and tail, respectively. A recent result is more general and shows
that the entire family of symmetric splitting functions admits sparsifiers of size Õ‘(n) [25].

Figure 1 depicts several families of splitting functions and the sparsification bounds known
for them, including our results from above and from Section 1.2.

Techniques. Our sparsification method follows the importance-sampling approach, which
has been used extensively in the literature. Every hyperedge e œ E is assigned an importance
‡e, and sampled with probability pe that is (at least) proportional to ‡e, and the splitting
function of every sampled e is scaled by 1/pe. The expected sparsifier size is clearly
proportional to

q
eœE

‡e.
A standard method to set the importance of a hyperedge e œ E, is to consider all its

possible cuts, namely, ‡e := maxS™V ge(S fl e)/cutH(S), and this method was indeed used
in [39]. Bounding

q
eœE

‡e naively by replacing the maximization over S ™ V by summation
yields an exponential size bound. An improved bound was given in [39] based on a quantity
BH related to the polytopes of the splitting functions. Unfortunately, this improved bound
is still exponential for many families of splitting functions.

Our main contribution is to identify a set of “basic” quantities for each hyperedge e that
can serve as coarse approximations of its splitting function ge. These approximations allow
us to define new sampling probabilities and achieve an improved size bound: Given e œ E,
define the minimum directed cut between u, v œ V to be guæv

e
:= minS™V :uœS,v ”œS ge(S fl e);4

then our main technical lemma bounds ge(·) from below and from above by

’S ™ V, max
uœS,vœV \S

guæv

e
Æ ge(S fl e) Æ

ÿ

uœS,vœV \S

guæv

e
. (3)

The lower bound holds by definition, and the upper bound is analogous to bounding the
value of a graph cut by the sum of the maximum flows between all pairs of vertices across the
cut. It is well-known that importance sampling will produce a sparsifier even if ‡e is replaced
with an over-estimate for it. We replace ‡e with fle :=

q
(u,v)œV ◊V

guæv

e
/

q
fœE

guæv

f
, which

we can easily see is an over-estimate, i.e., fle Ø ‡e, by using the two bounds from (3) to verify
that

’S ™ V,
ge(S fl e)
cutH(S) = ge(S fl e)q

fœE
gf (S fl f) Æ

ÿ

uœS,vœV \S

guæv

eq
fœE

guæv

f

Æ fle.

The expected number of hyperedges in the sparsifier H Õ equals to
q

eœE
fle times an amp-

lification factor M , where M = O(‘≠2n) is su�cient by standard arguments (combining
a concentration bound and a union bound). The crux here is that it is easy to boundq

eœE
fle Æ O(n2), basically swapping the order of a double summation. Another advantage

of fle is that it can be computed in polynomial time, while computing ‡e requires maximizing
the ratio of two submodular functions, which is NP-hard in general.

In the monotone case, we follow the same approach but employ a simpler over-estimate
flÕ
e
:=

q
vœe

ge({v})/cutH({v}). The proof is similar to the general case, except that instead
of (3) we use the straightforward bound

’S ™ V, max
vœS

ge({v} fl e) Æ ge(S fl e) Æ
ÿ

vœS

ge({v} fl e).

4 The most natural case is u, v œ e, but considering all u, v œ V streamlines the presentation.
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finite-spread submodular
|EÕ| = min(µn,n3

, n
2
BH )

symmetric
|EÕ| = n

hypergraph cuts
cardinality based

|EÕ| = min(n2
, µn)

monotone
|EÕ| = min(µn,n2)

graph cuts

submodular functions
|EÕ| = min(n3

, n
2
BH )

matroid rank
|EÕ| = min(n2

, µn)

directed hypergraphs
|EÕ| = n

2

Figure 1 Sparsification bounds for various families of submodular functions, omitting for simplicity
poly(‘≠1 logn) factors.

1.2 Sparsification: Parameterized by Spread
We already know that submodular splitting functions can have very di�erent optimal
sparsification bounds, see e.g. the bounds �̃‘(n) and �̃‘(n2) mentioned above. However,
there are too many submodular functions to analyze each one separately, and we thus seek
a parameter that can control the sparsifier size. Our approach is inspired by the notion of
imbalance in a directed graph G = (V,E,w), defined as the worst ratio between antiparallel
edge weights, i.e., —G := max{w(i, j)/w(j, i) : i, j œ V }. This parameter can be used to show
that every directed graph admits a sparsifier of size Õ‘(—Gn).5 For submodular hypergraphs,
we propose an analogous parameter, which is basically the ratio between the maximum and
minimum values of the splitting function, excluding certain trivial cuts.

I Definition 1.5 (Spread). For hyperedge e œ E with splitting function ge, let We := {ÿ},
unless ge(e) = 0 in which case We := {ÿ, e}. The spread of e is

µe :=
maxT™e ge(T )

minS™e:S/œWe
ge(S)

. (4)

Our third result (proved in the full version) constructs a sparsifier whose size depends
on the spread of the input H, defined as µH := maxeœE µe. By convention, the spread µe

is called finite if it is well-defined (the denominator in (4) is non-zero), and similarly µH is
called finite if it is well-defined (all the terms µe are finite).

I Theorem 1.6 (Sparsifier Parameterized by Spread). Every submodular hypergraph H =
(V,E, g) with finite spread admits a (1 + ‘)-sparsifier of size Õ(‘≠2µHn), which is a sub
reweighted-subgraph.

Many natural submodular functions have finite spread, and in many common cases
even µH Æ n. This can be seen, for example, in an easy application of Theorem 1.6 to
approximation of coverage functions, see the full version for details. Another example is the

5 This condition can actually be relaxed significantly to —G := max{cutG(S)/cutG(S̄) : S µ V }, and the
same sparsification bound still holds [9].
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sparsification of the capped version of small-side splitting, given by ge : S ‘æ min(|S|, |e\S|,K)
for K > 0, which clearly has spread µe Æ K. This function is part of a much larger family,
cardinality-based splitting functions, a notion formalized in [46] as follows: A submodular
function ge : 2e æ R+ is called cardinality-based if there exists a function fe : [|e|] æ R+ such
that ge : S ‘æ fe(|S|). Cardinality-based functions, which are commonly used in submodular
hypergraph clustering, all have spread µe Æ n, which is an easy consequence of the symmetry
and subadditivity of ge. By Theorem 1.6, these splitting function admit a (1 + ‘)-sparsifier
of size Õ(‘≠2n2), which is the first bound for this family.

It is easily verified that for monotone splitting functions, the spread is approximately
equal to the imbalance, when we generalize the imbalance from above to hyperedges by
—e := max{ge(S)/ge(e \ S) : S µ V }.6 Hence, we immediately obtain the following.

I Corollary 1.7. Every finite-spread monotone splitting function admits a (1 + ‘)-sparsisfier
of size Õ(‘≠2—Hn).

Two other examples of commonly used monotone functions with finite spread are set-
coverage functions (defined in the full version) and the matroid-rank functions,7 which have
µe = r where r is the rank of the matroid.

We remark that spread does not fully characterize the sparsifier size. Indeed, symmetric
functions can have a large spread µe but still admit Õ‘(n) sparsifier due to [25], consider e.g.
product splitting gprd

e
which has µe = O(n). Furthermore, directed all-or-nothing splitting

gd-aon
e

does not have finite spread, and nevertheless admits a sparsifier of size Õ‘(n2) [36].
Figure 1 depicts di�erent families of splitting functions including that of finite spread, and
the sparsification bounds known for them.

Techniques. Our technique is based on approximate H as an undirected hypergraph and
use the sampling probabilities of [10] but amplified by µe for each hyperedge. This is a
known technique in generalizing sampling mechanisms. Our main contribution is to identify
the spread as a relevant and useful parameter. We remark that the generalization of balance,
which is known to control the size of sparsifier in directed graphs, to submodular hypergraphs
does not su�ce for sparsification. Furthermore, we prove that the spread also characterizes
other traits of splitting function, such as the deformation lower bound.

1.3 Succinct Representation
We provide the first example of submodular splitting functions for which sparsifiers that
are not subgraphs are provably (much) more succinct than sparsifiers that are reweighted
subgraphs.8 To be more precise, we exhibit a natural family of splitting functions, where
the former (1 + ‘)-sparsifiers take only Õ‘(n) bits (Corollary 1.10), while the latter (1 + ‘)-
sparsifiers require �̃‘(n2) bits (Theorem 1.11). It follows that a reweighted subgraph need
not be the smallest encoding that stores a (1 + ‘)-approximation of the cuts values, and by a
wide margin!

6 For a monotone ge, the spread is µe = ge(V )/minvœV ge({v}) and the imbalance is —e = maxvœV ge(V \
{v})/ge({v}), and they di�er by at most a constant factor by the subadditivity of ge.

7 For a matroid with ground set e and independent sets I, the rank function is given by ge : S ‘æ
maxT™S:TœI |T |. This rank function is submodular and monotone.

8 Previously, a non-subgraph sparsifier was shown in [1] for small-side splitting, however it optimizes the
number of hyperedges and not the encoding size.
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Our plan for constructing a succinct representation has two stages. The first stage creates
a (1 + ‘)-sparsifier H Õ, by deforming each e œ E into multiple small hyperedges. The second
stage computes for this H Õ a (1 + ‘)-sparsifier H ÕÕ that is a reweighted subgraph. It then
follows that H ÕÕ is a (1 + ‘)2-sparsifier, and has a few hyperedges that are all small.

I Definition 1.8. A splitting function ge : 2e æ R+ on hyperedge e is called (1 + ‘)-
approximable with support size p if there are submodular functions gei : 2ei æ R+ for
i = 1, . . . , r, each on a hyperedge ei ™ e of size |ei| Æ p, such that

’S ™ e,
rÿ

i=1

gei(S fl ei) œ (1± ‘)ge(S).

Our example is the family of additive splitting functions, defined as functions ge that can
be written as either ge : S ‘æ min(|S|,K) or ge : S ‘æ min(|S|, |e \ S|,K) for some K > 0.
The next theorem (proved in the full version) achieves the first stage in our plan above; it
shows that additive functions can be (1 + ‘)-approximated by creating several copies of e
and sampling the vertices.

I Theorem 1.9 (Deformation of Additive Functions). Let ge be an additive splitting function
on hyperedge e. Then ge can be (1 + ‘)-approximated with support size O(‘≠2(|e|/K) log |e|).

Following our plan, suppose that given an input H, we first apply Theorem 1.9 to obtain
a sparsifier H Õ with small support size. The construction of H Õ also implies that it has small
spread, µHÕ Æ O(‘≠2 logn). Applying Theorem 1.6 on H Õ we obtain a succinct representation
H ÕÕ. A straightforward encoding of H ÕÕ then proves the following corollary (see the full
version for details).

I Corollary 1.10 (Additive Functions admit Small Representation). Let H = (V,E, {ge}) be
a submodular hypergraph such that every ge is additive with parameter Ke > 0, and let
K̂ := mineœE Ke/|e| be a normalized bound on Ke over all hyperedges. Then H admits a
(1 + ‘)-sparsifier with encoding size O(‘≠6K̂≠1n log4 n) bits.

The next theorem (proved in the full version) shows that reweighted-subgraph sparsifiers
of additive functions require �(n2) bits in the worst-case. Putting this together with our
succinct representation from Corollary 1.10, we conclude that relaxing the (natural) restriction
to reweighted subgraphs improves the space complexity by a factor of �̃‘(nK̂), observe that
this can be �̃‘(n) when K̂ œ �(1).

I Theorem 1.11 (Reweighted Sparsifiers Require �(n2) Bits). There exists a family H of
hypergraphs with additive splitting functions with parameter 1 Æ K Æ n/3, such that encoding
a reweighted-subgraph (1 + ‘)-sparsifier for an input H œ H requires �(n2) bits.

This lower bound is surprising because in the case of undirected graphs, the best encoding
size is achieved by a reweighted-subgraph sparsifier [6, 2, 8]. Our proof is based on a technical
lemma that can be applied to many cardinality-based splitting functions. Furthermore,
Theorem 1.11 can be extended to the directed all-or-nothing splitting function gd-aon

e
, to

show a lower bound of �(n3/‘) bits. For details see the full version.
Finally, we can also prove a space lower bound for an arbitrary encoding of cuts in a

directed hypergraph (arbitrary means that it need not represent a reweighted-subgraph
sparsifier, see the full version for details). This proof provides an ‘≠1 factor improvement over
the trivial lower bound of �

!
n2

"
bits. The proof combines the techniques from Theorem 1.11

with a lower bound from [36] on the number of edges in a reweighted-subgraph sparsifier.

I Theorem 1.12. There exists a family of directed hypergraphs H such that encoding a
(1 + ‘)-approximation of their cuts requires �(n2/‘) bits.
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Techniques. Our lower bound for the encoding size of reweighted-subgraph sparsifiers
(Theorem 1.11) boils down to a counting argument on a large family of hypergraphs H,
that have su�ciently di�erent cut values and thus require distinct encodings. We construct
hypergraphs in this family H by partitioning the vertices into three parts V,U,W , and adding
hyperedges that contain vertices from all three parts. We first create hyperedges consisting
of a large random subset of vertices from V ; this adds entropy that will di�erentiate between
hypergraphs in H. We then augment each hyperedge with vertices from U , where each
hyperedge is defined by a word in the Hadamard code. We use the structure of this code to
show that by making cut queries to a hypergraph H œ H, one can recover the random bits
encoded in the adjacency matrix of H induced on V . We use W to create an unsparsifiable
hypergraph, i.e., one where removing any hyperedge will violate the approximation guarantee.
Finally, every hyperedge on V fi U is combined with a hyperedge on W .

1.4 Deformation Lower Bounds
Our success in finding a small succinct representation for additive functions motivates
searching for deformations of other splitting functions.

A similar problem, of approximating a submodular function by functions of small support
but over the uniform distribution (i.e., in average-case rather than worst-case), has received
significant attention [19, 11, 24, 18, 20], and it is known that every submodular function
f : 2V æ [0, 1] can be approximated within additive error ‘ using support size O(‘≠2 log ‘≠1)
[20]. We show (see the full version) that a similar result is unfortunately not possible in our
setting (multiplicative error for worst-case approximation).

I Theorem 1.13 (Approximation Requires Large Support Size). Let ge be an additive splitting
function on a hyperedge e. Then every 1.1-approximation of ge must have support size
p Ø �(|e|/K).

Techniques. The proof of Theorem 1.13 is based on a technical lemma that can be applied
to many splitting functions. The main idea is to examine a certain quantity ”t, which is
related the notion of curvature (of a submodular function). The curvature is often used to
parameterize approximation guarantees in maximization of submodular optimization [12, 47].
Intuitively, both the curvature and ”t characterize the locality of the function, i.e., how
much error is introduced by decomposing the function into smaller parts and summing
them. The main di�erence between the two quantities is that the curvature looks at the
marginal contributions and ”t characterizes the curvature of the union of two sets of size
t. Furthermore, in the approximation setting, a low worst-case curvature is desirable while
for our proof it su�ces that ”t is high for many sets of size t. Specifically, we show that if a
constant fraction of pairs of subsets of size t have constant positive ”t, then ge cannot be
approximated with support size smaller than O(”2

t
n/t).

By applying the technical lemma, we obtain lower bounds on the support size required to
approximate several natural splitting functions, as presented in Table 1.

1.5 Related Work
Submodular functions appear in many applications, and have been studied extensively in
the literature. In particular, the problem of finding a simple representation for submodular
functions has been studied in several works. An O(

Ô
n logn)-approximation for monotone

submodular functions by functions of the form f(S) =
q

vœS
cv, where cv > 0 are weights

for all v œ V , was obtained in [22]. A later result [14] showed the same approximation using
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Table 1 Our lower bounds on the support size for several families of splitting functions. They
are all obtained by applying the technical lemma, stated for simplicity for su�ciently small fixed
‘ > 0 and |e| = n.

Function Family Example Support Size See
additive functions ge(S) = min(|S|,K) � (n/K) Lemma 1.13
polynomial ge(S) = |S|– for – œ (0, 1) � (n) The full version
logarithmic ge(S) = log(|S|+ 1) � (n) The full version
cardinality based ge(S) = f (|S|) for concave f �

!
n/µ1.5

e

"
The full version

unweighted ge(v) = 1 for all v œ V �
!
n/µ3

e

"
The full version

coverage and budget-additive functions. The same paper also provided a lower bound of
�(n1/3 log≠2 n) for approximating monotone submodular functions by coverage and budget
additive. Approximating the all-or-nothing splitting function on n vertices using hyperedges
with the all-or-nothing function and with support size r must incur approximation factor
�(n/r) [37, Section 2.3].

It was previously shown that every symmetric cardinality-based splitting functions can
be deformed into a sum of |e|/2 hyperedges with capped small-side splitting function, while
preserving the value of ge exactly [46]. Subsequent work by the same authors [45], achieves a
similar deformation but with (1 + ‘)-approximation and using only O(‘≠1 log |e|) hyperedges.
Notice the di�erence from our work, which focuses on an approximation with small support
size.

1.6 Concluding Remarks
Our work provides several promising directions for future work. We prove that all submodular
hypergraph admit sparsifiers of polynomial size (Theorem 1.4), leaving a gap of �̃‘(n) between
the upper and lower bounds. We conjecture that submodular hypergraphs admit the same
sparsification bounds as (the special case of) directed hypergraphs.

I Conjecture 1.14. Every submodular hypergraph admits a (1+‘)-sparsifier of size O(‘≠2n2),
which is in fact a reweighted sub-hypergraph.

Notice that the known lower bound of �(n2/‘) is not tight with this conjecture, and
improving it is an interesting open problem. The main challenge in bridging the gap between
our upper bound in Theorem 1.4 and the conjecture is the use of a union bound over all
2n cuts. This challenge was overcome in graph and hypergraph sparsification by di�erent
methods, such as cut counting [7, 21, 10, 28], a matrix Cherno� bound [41], and chaining
which uses progressively finer discretizations [5, 27, 36, 25]. Unfortunately, the matrix
Cherno� bound is based on linear-algebra tools that are clearly inapplicable to hypergraphs.
The cut-counting methods partition the cuts so that a union bound can be applied separately
on each part; however these partitions rely on the binary nature of the all-or-nothing splitting
function, which seems challenging in the submodular hypergraph setting, because the same
ge can contribute very di�erent values to di�erent cuts S ™ V . The chaining methods seem
more promising, especially the recent one [25] for all symmetric submodular functions, in
which the contribution of a single ge is not binary, although it seems to rely on the splitting
functions being symmetric.

In the sparsification setting, we obtain smaller sparsifiers for several families (monotone
and finite-spread), however characterizing the optimal sparsifier size for each family remains
open. In the succinct-representation setting, we found a useful deformation only for additive
splitting functions (Theorem 1.9), and it would be desirable to find deformations for more
families.
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Another interesting avenue is to find applications or connections to other problems. For
example, we show that Theorem 1.6 can be used to approximate a set-coverage function using
a small ground set. Another potential application is constructing succinct representations
for terminal cuts in a graph, see the full version for details on both applications.

2 Polynomial-Size Sparsifiers for Submodular Hypergraphs

This section proves Theorem 1.4 and its improvement in the monotone case. Our sparsification
method is based on importance sampling, where hyperedges are sampled with probability
that is (at least) proportional to their maximum relative contribution to any cut. A standard
choice, that was indeed used in [39], is to sample every e œ E with probability exactly
proportional to its importance, defined as

‡e := max
S™V

ge(S fl e)q
fœE

gf (S fl f) .

The expected size of this sparsifier is proportional to the total importance
q

eœE
‡e, which is

non-trivial to bound (e.g., naively replacing the maximization over S ™ V by summation
yields an exponential size bound). An improved bound on the size of a sparsifier constructed
in this manner is given in [39], based on a quantity BH related to the polytopes of the
splitting functions. Unfortunately, this improved bound is still exponential for many families
of splitting functions.

Our approach achieves a polynomial bound by using a di�erent set of sampling probabilities
and a di�erent analysis. Our main insight is that it su�ces to consider only a few cuts.
Formally, define the minimum directed cut of ge between (u, v) œ V ◊ V as

guæv

e
:= min

S™V :uœS,v ”œS

ge(S fl e). (5)

Notice that we do not require u, v œ e; clearly, guæv

e
= 0 if u ”œ e, but guæv

e
can be positive

if v ”œ e. Our sampling probabilities are proportional to

fle :=
ÿ

(u,v)œV ◊V

guæv

eq
fœE

guæv

f

,

where by convention the fraction is equal to zero if the denominator (and thus also the
numerator) is zero. The proof follows by showing that fle Ø ‡e, hence sampling every e œ E
with probability proportional to fle su�ces to approximate the cuts, and that the expected
number of hyperedges in the sparsifier O(‘≠2n3). Since fle Ø ‡e, our analysis implies that
the same size bound holds also for sampling with probabilities proportional to ‡e, i.e., for
the sparsifier of [39] but with our amplification factor M = O(‘≠2n).

Finally, observe that the directed minimum cuts guæv

e
can be computed in polynomial

time using standard submodular minimization techniques [35].9 In contrast, calculating
‡e requires maximizing the ratio of two submodular functions, which is NP-hard. In the
monotone case, previous work had achieved a polynomial running time [39, 30].

Proof of Theorem 1.4. Our construction of a quality (1 + ‘)-sparsifier for H utilizes the
importance sampling method, where each hyperedge is sampled independently with probability
pe that is defined below, and the splitting functions of every sampled hyperedge d is scaled
by factor 1/pe.

9 In fact, computing an O(1)-approximation to fle would su�ce, and this may be used to speed up the
computation, at the cost of increasing the sparsifier size only by a constant factor.
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We will use the following claim to bound cuts ofH by minimum directed cuts. Throughout,
we denote S̄ = V \ S.

B Claim 2.1. For every e œ E and S µ V ,

max
uœS,vœS̄

guæv

e
Æ ge(S fl e) Æ

ÿ

uœS

ÿ

vœS̄

guæv

e
.

The proof of Claim 2.1 appears later. Intuitively, it is similar to bounding the capacity of a
cut in a graph by the sum of maximum flows between each vertex from S and each vertex
from S̄. We proceed assuming this claim, to show that fle Ø ‡e.

I Corollary 2.2. For every e œ E and S ™ V , we have fle Ø ge(S fl e)/cutH(S).

Proof. By Claim 2.1, using both the upper bound and the lower bound on ge(·),

ge(S fl e)
cutH(S) = ge(S fl e)q

fœE
gf (S fl f) Æ

ÿ

uœS,vœS̄

guæv

eq
fœE

guæv

f

Æ fle.

Note that the first inequality holds even if cutH(S) = 0, by our convention that if the
denominator (and thus also numerator) is zero then the fraction is zero. J

For every hyperedge e œ E, set flÕ
e
:= ge(e)/

q
fœE

gf (f) as the importance of the cuts
that contain the entire hyperedge (the case S = V ), and let pe := min(1,M(fle + flÕ

e
)) for a

suitable parameter M = O(‘≠2n). Now sample every hyperedge e œ E independently with
probability pe and rescale the splitting functions of every sampled hyperedge by factor 1/pe.
Let H Õ be the resulting hypergraph.

We first prove that the number of hyperedges in the sparsifier H Õ is O(Mn2), which
satisfies the claimed size bound by our choice of M = O(‘≠2n). Let Ie be an indicator
for the event that the hyperedge e is sampled into H Õ. The expected number of sampled
hyperedges is

E
C

ÿ

eœE

Ie

D
=

ÿ

eœE

pe Æ M
ÿ

eœE

Q

a ge(e)q
fœE

gf (f)
+

ÿ

(u,v)œV ◊V

guæv

eq
fœE

guæv

f

R

b

Æ M

Q

a1 +
ÿ

(u,v)œV ◊V

q
eœE

guæv

eq
fœE

guæv

f

R

b Æ Mn2,

where the second inequality follows by changing the order of summation and the last one
is because |V ◊ V | = n2, but we can exclude from the summation the case u = v (as it
contributes 0 by our convention). By Markov’s inequality, with high constant probability the
sparsifier has at most O(Mn2) hyperedges.

Let us prove that the sparsifier H Õ indeed approximates the cuts of H. Fix some S ™ V
and notice that

E [cutHÕ(S)] = E
C

ÿ

eœE

Ie ·
1
pe

ge(S fl e)
D
=

ÿ

eœE

ge(S fl e)
pe

· E [Ie]

=
ÿ

eœE

ge(S fl e) = cutH(S).

ICALP 2024



97:12 Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Hence, the cut is preserved in expectation. We shall now prove that the value of the cut is
concentrated around its expectation. Let QS = {e œ E : pe œ (0, 1) · ge(S fl e) > 0} be the
set of all hyperedges whose contribution to cutHÕ(S) is random. Furthermore, denote the
maximum contribution of any such hyperedge to cutHÕ(S) by b := maxeœQS

p≠1
e

ge(S fl e).
By the Cherno� bound for bounded variables (Theorem A.1),

Pr [cutHÕ(S) ”œ (1± ‘) · cutH(S)] Æ 2 · exp
3

≠‘2 · cutH(S)
b

4
. (6)

We first analyze the special case S = V . Observe that if cutH(V ) = 0 then the cut is
preserved trivially. Otherwise, note that pe Ø MflÕ

e
= Mge(e)q

fœE
gf (f)

and hence

b = max
eœQV

ge(e)
pe

Æ max
eœQV

ge(e)
q

fœE
gf (f)

Mge(e)
= cutH(V )

M
.

Plugging this into Equation (6), we find Pr [cutHÕ(V ) ”œ (1± ‘) · cutH(V )] Æ 2 · exp
!
≠‘2M

"
.

Now turning to the general case S µ V , observe that by Corollary 2.2, pe Ø Mge(S fl
e)/cutH(S). Hence, we again obtain that

b Æ max
eœE

ge(S fl e) · cutH(S)
Mge(S fl e) = cutH(S)

M
. (7)

Plugging this back into our concentration bound, Equation (6), we get

Pr [cutHÕ(S) ”œ (1± ‘) · cutH(S)] Æ 2 · exp
!
≠‘2M

"
.

Notice that this is the same probability as the case S = V . Setting M := c · ‘≠2n for
large enough but fixed c > 0, we get that cutHÕ(S) approximates cutH(S) up to a 1 ± ‘
factor with probability at least 1 ≠ 2 exp(≠cn). Applying a union bound over all S ™ V
we get that the sparsifier approximates all cuts simultaneously with probability at least
1 ≠ 2 exp(≠cn) · 2n Ø 1 ≠ 2 exp(≠n). This completes the construction of a quality 1 + ‘
sparsifier for H with O(‘≠2n3) hyperedges.

We now turn back to proving Claim 2.1.

Proof of Claim 2.1. Fix some e œ E and S µ V . For each directed minimum cut, let
Puæv

e
:= argminS™V :Sfl{u,v}={u} ge(S) be some set S ™ V attaining the minimum cut value

(breaking ties arbitrarily). We need to show that

max
uœS,vœS̄

ge(Puæv

e
) Æ ge(S fl e) Æ

ÿ

uœS

ÿ

vœS̄

ge(Puæv

e
). (8)

The lower bound is immediate because ge(Puæv

e
) is a minimizer over the cuts separating u

from v. For the upper bound, since ge is submodular and non-negative,

’A,B ™ e, ge(A) + ge(B) Ø ge(A fl B) + ge(A fi B) Ø ge(A fl B),

and similarly, ge(A) + ge(B) Ø ge(AfiB). Using these two inequalities and summing over all
v œ S and u œ S, we get

ÿ

uœS

ÿ

vœS

ge(Puæv

e
) Ø

ÿ

uœS

ge

Q

a
‹

vœS

Puæv

e

R

b Ø ge

Q

a
€

uœS

‹

vœS

Puæv

e

R

b .

To conclude the proof we show that S fl e =
t

uœS

u
vœS

Puæv

e
. For all u œ S fl e we have

{u} ™
u

vœS̄
Puæv

e
, therefore S fl e ™

t
uœS

u
vœS

Puæv

e
. In addition, for all u œ S we haveu

vœS
Puæv

e
™ S fl e if u œ e and Puæv

e
= ÿ otherwise, therefore S fl e =

t
uœS

u
vœS

Puæv

e
.

We conclude that Equation (8) holds. C
This completes the proof of Theorem 1.4. J
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2.1 Monotone Submodular Hypergraphs
This section proves that every monotone submodular hypergraph admits a quality (1 + ‘)-
sparsifier of size O(‘≠2n2).

I Theorem 2.3. Every hypergraph with monotone splitting functions admits a quality (1+ ‘)-
sparsifier of size O(‘≠2n2), which is a reweighted sub-hypergraph.

The proof for the monotone case is similar to the general case. However, since monotone
splitting functions are more structured it su�ces to examine the importance of all the
singleton cuts for each hyperedge. This results in smaller sampling probabilities and a better
bound on the number of hyperedges in the sparsifier. The proof utilizes the following well
known property of monotone submodular functions.

B Claim 2.4. Let ge : 2e æ R+ be a monotone submodular splitting function. Then

’S ™ V, max
vœS

ge({v} fl e) Æ ge(S fl e) Æ
ÿ

vœS

ge({v} fl e).

Proof. The lower bound holds as ge is monotone. For the upper bound, since ge is submodular
and non-negative,

ÿ

vœS

ge({v} fl e) Ø ge

A
€

vœS

{v} fl e

B
= ge(S fl e). J

Similarly to the general case, our over sampling probabilities are proportional to

fle =
ÿ

vœV

ge({v} fl e)q
fœE

gf ({v} fl f) .

The following corollary shows that fle Ø ‡e. This implies that sampling every e œ E with
probability proportional to fle su�ces to approximate the cuts of H, in the same manner as
in the general case.

I Corollary 2.5. For every e œ E and S ™ V , we have fle Ø ge(S fl e)/cutH(S).
Proof. Observe that by Claim 2.4,

ge(S fl e)
cutH(S) = ge(S fl e)q

fœE
gf (S fl f) Æ

ÿ

vœS

ge({v} fl e)q
fœE

gf ({v} fl f) Æ fle.

Notice that the first inequality is well-defined by the convention that if the denominator (and
thus also the numerator) is zero then the fraction is zero. J

We now turn to proving Theorem 2.3

Proof of Theorem 2.3. To construct H Õ, sample each hyperedge with probability pe =
min(1,M · fle) for a suitable parameter M = O(‘≠2n). Then, reweigh every sampled
hyperedge by factor p≠1

e
. The proof that H Õ is with high probability a (1 + ‘)-sparsifier is

similar to the general case because fle Ø ‡e, and we omit it.
To bound the number of hyperedges in the sparsifier, let Ie be an indicator for the event

that the hyperedge e is sampled into H Õ. Then the expected number of sampled hyperedges
is,

E
C

ÿ

eœE

Ie

D
=

ÿ

eœE

pe Æ M
ÿ

eœE

ÿ

vœV

ge({v} fl e)q
fœE

gf ({v} fl f)

Æ M
ÿ

vœV

ÿ

eœE

ge({v} fl e)q
fœE

gf ({v} fl f) Æ Mn,
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where the second inequality is from changing the order of summation. Hence, by Markov’s
inequality we find that with high constant probability the size of the sparsifier is at most
O(Mn) = O(‘≠2n2). This concludes the proof. J
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A Cherno� Bounds

We use the following version of the Cherno� bound throughout the paper.

I Theorem A.1 (Cherno� bound for bounded random variables, Theorem 6.1 in [3]). Let
X1, . . . ,Xm Ø 0 be independent random variables such that either Xi is deterministic or
Xi œ [0, b]. Let X denote their sum and µ = E [X], then,

’” > 0, Pr [X ≠ µ Ø ”µ] Æ 2 · exp
3

≠ ”2µ

(2 + ”)b

4
.

Additionally,

’” œ [0, 1], Pr [|X ≠ µ| Ø ”µ] Æ 2 · exp
3

≠”2µ

3b

4
.
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Abstract
Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been
studied in the literature. These variants include directed hypergraph sparsification, submodular
hypergraph sparsification, general notions of approximation including spectral approximations,
and more general notions like sketching that can answer cut queries using more general data
structures than just sparsifiers. In this work, we provide reductions between these di�erent variants
of hypergraph sparsification and establish new upper and lower bounds on the space complexity of
preserving their cuts. Specifically, we show that:

1. (1 ± ‘) directed hypergraph spectral (respectively cut) sparsification on n vertices e�ciently
reduces to (1±‘) undirected hypergraph spectral (respectively cut) sparsification on n

2+1 vertices.
Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed
hypergraph spectral sparsifiers with O(n2 log2(n)/‘

2) hyperedges and directed hypergraph cut
sparsifiers with O(n2 log(n)/‘

2) hyperedges by using the work of Chen, Khanna, and Nagda
(FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP
2023).

2. Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a
(1± ‘) factor (for ‘ = 1

2O(
Ô

log(n)) ) must have worst-case bit complexity n
3≠o(1). Because directed

hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching
lower bound of n3≠o(1) bits for sketching cuts in general submodular hypergraphs.

3. (1± ‘) monotone submodular hypergraph cut sparsification on n vertices e�ciently reduces to
(1± ‘) symmetric submodular hypergraph sparsification on n+ 1 vertices. Using the work of
Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with
ÂO(n/‘

2) hyperedges, improving on the O(n3
/‘

2) hyperedge bound of Kenneth and Krauthgamer
(arxiv 2023).

At a high level, our results use the same general principle, namely, by showing that cuts in one
class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage
sparsification results for the simpler class of hypergraphs.
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1 Introduction

Sparsification deals with the following natural question: given a large object, how much
can we compress it while still retaining some of its key properties? In the realm of graphs,
this has been a well-studied notion spanning decades of research. Starting with the work
of Karger [9], the question of how sparse we can make a graph while still preserving the
approximate sizes of every cut has been a central topic of research. Since then, numerous
works by many authors have resolved this question (starting with the work of Benczúr and
Karger [2]) and pushed the boundaries of this research beyond just graph cuts [1, 21, 12, 3].

More rigorously, for a weighted graph G = (V,E) on n vertices, we can define a cut in the
graph corresponding to each set S ™ V . For such a set S, we define the vector 1S œ {0, 1}|V |

as the indicator vector of whether the ith vertex is in S. Using this vector, we say that
cutG(S) =

q
(u,v)œE w(u,v)(1Su ≠ 1Sv)2, i.e., the weight of the edges crossing between S and

V ≠ S. A cut-sparsifier asks for a reweighted subset of edges Ê ™ E such that in the graph
G = (V, Ê), with the corresponding new weights ŵ, for every S ™ V

(1 ≠ Á)cutG(S) Æ cutĜ(S) Æ (1 + Á)cutG(S).

The seminal work of [2] was the first to show the existence of such sparsifiers Ĝ for any graph
G such that |Ê| = ÂO(n/Á2). Subsequent work in the spectral regime asked whether such
sparsifiers still exist when we consider real-valued vectors as opposed to cut-vectors. In this
setting, we define a Laplacian LG for our graph G. We say that for x œ R|V |

xTLGx =
ÿ

(u,v)œE

w(u,v)(xu ≠ xv)2.

The goal in this regime instead becomes finding a reweighted subgraph Ĝ such that for every
x œ R|V |,

(1 ≠ Á)xTLĜx Æ xTLGx Æ (1 + Á)xTLĜx.

Work by Batson, Spielman, and Srivastava, and Spielman and Teng [1, 21] settled the
size complexity of spectral sparsifiers for ordinary graphs by showing the existence of such
sparsifiers of size O(n/Á2).

Recently, starting with the work of Kogan and Krauthgamer [12], a natural extension
to the study of graph sparsification has been the study of sparsifying hypergraphs. In this
setting, one is given a hypergraph H = (V,E), and asked to preserve to a (1± Á) factor the
weight of all hyperedges crossing a particular cut. A cut is given by a bichromatic coloring
of the vertices and a hyperedge is considered cut if it is not monochromatic. Work by Chen,
Khanna, and Nagda [3] was the first to completely characterize the cut-sparsifiability of
hypergraphs, which showed that there exist (1± Á)-cut-sparsifiers for any hypergraph on n
vertices of size O(n log(n)/Á2). As in the graph setting, where the natural next step from
cut-sparsifiers was spectral-sparsifiers, Soma and Yoshida [20] later introduced this notion
of spectral hypergraph sparsification. More explicitly, the “energy function” (also called the
Laplacian) of an undirected hypergraph H = (V,E) is as follows:

LH(x) = cutH(x) =
ÿ

eœE

we max
u,vœe

(xu ≠ xv)2.

A (1± Á)-spectral sparsifier for an undirected hypergraph then corresponds to a reweighted
subhypergraph of H, denoted by Ĥ such that for any x œ R|V |,

(1 ≠ Á)LH(x) Æ LĤ(x) Æ (1 + Á)LH(x).
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This question of whether one could preserve the Laplacian of undirected hypergraphs with only
a near-linear number of hyperedges was then resolved by Kapralov et. al. [7], Jambulapati,
Liu, and Sidford [6], and Lee [14] in the a�rmative.

More recently however, work has sought to generalize hypergraph sparsification even
further. Indeed, given a hypergraph H = (V,E), instead of viewing edge-cuts in the
traditional way (i.e., for a bichromatic coloring of the vertices counting how many hyperedges
are not one color), a more general splitting function is assigned to each hyperedge e ™ V .
This splitting function is a set function ge : 2e æ RØ0. One natural extension to the case
of ordinary hypergraphs that has received particular attention is the case in which these
splitting functions ge are also required to be submodular [10, 13] (though there has also
been work on the regime where these functions are not submodular, for instance with parity
functions in [11]). Such submodular hypergraphs appear in numerous contexts, for instance in
clustering data points with complex relationships [15, 16, 22, 23] and summarizing data [17].
For such a submodular hypergraph H = (V,E), the value on any cut S µ V is

cutH(S) =
ÿ

eœE

ge(S fl e).

Recall that a function g : 2V æ RØ0 is said to be submodular if it has the property of
diminishing returns. That is, for any S µ T µ V , and any element x œ V, x /œ T ,

g(S fi {x}) ≠ g(S) Ø g(T fi {x}) ≠ g(T ).

Under this definition, one type of submodular hypergraph is a directed hypergraph. In a
directed hypergraph, one can view each directed hyperedge instead as a tuple (etail, ehead)
of subsets of V . The cut function of a directed hyperedge e on cut S is 1 if and only if
an element from S is in etail and an element from V ≠ S is in ehead. More explicitly, for a
directed hypergraph G = (V,E,w) on n vertices, and a vector x œ Rn, we can define the
Laplacian for G as

LG(x) =
ÿ

eœE

max
uœL(e),vœR(e)

(xu ≠ xv)2+.

In this context, (xu ≠ xv)+ = max((xu ≠ xv), 0), and directed hypergraph cuts are simply
the restriction of the vector x to be in {0, 1}|V | (seen as the indicator vector for a set S ™ V ).
A non-zero contribution from a hyperedge occurs only if a tail vertex of the hyperedge has a
larger value than a head vertex of the hyperedge.

One can check that in the cut regime (i.e. x œ {0, 1}n), each directed hyperedge cut yields
a submodular function ge : 2eheadfietail æ RØ0. In what follows, we describe our contributions
to various problems in this area.

1.1 Improved Bounds for Directed Hypergraph Sparsification
In the graph case, it is known that directed graph cut-sparsifiers for graphs with n vertices
can require as many as �(n2) edges to preserve cuts to a (1 ± Á) factor. In this sense,
directed graph cut-sparsification is a trivial task, as any graph has at most O(n2) edges
to begin with. Contrary to this however, directed hypergraph sparsification is non-trivial.
While the same �(n2) lower bound exists, a directed hypergraph can have as many as 4n
directed hyperedges to start with, so a sparsifier with O(n2) directed hyperedges is a vast
improvement. This observation has led to a rich line of research studying the feasibility of
sparsifying directed hypergraphs. The first work on this front was the work of [20] which
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showed the existence of directed hypergraph sparsifiers with O(n3/Á2) directed hyperedges
and gave a polynomial time algorithm for computing them. Later work by [7] presented a
proof of sparsifiers with ÂO(nr/Á2) (where r is the maximum size of any hyperedge) hyperedges
for undirected hypergraph spectral sparsification, and with ÂO(n2r3/Á2) directed hyperedges
for directed hypergraph spectral sparsification by tuning their algorithm and performing a
di�erent analysis. In particular, this improved upon the result of [20] in the regime where r
is constant. Note that as with graphs, spectral sparsification is a stronger notion than cut
sparsification, so in particular, these proofs imply the existence of cut-sparsifiers of the same
complexity.

Ultimately however, the complexity of directed spectral hypergraph sparsification was
nearly settled by the work of Oko, Sakaue, and Tanigawa [18], who showed (1± Á) spectral-
sparsifiers with O(n2 log3(n/Á)/Á2) directed hyperedges exist for directed hypergraphs on n
vertices.

Continuing this line of research, we show that fundamentally, the task of directed
hypergraph sparsification can be reduced in a black-box manner to undirected hypergraph
spectral sparsification.

More specifically, we show there is a lifting from a directed hypergraph on n vertices to
an undirected hypergraph on n2 + 1 vertices such that the Laplacian of every individual
hyperedge is simultaneously preserved. That is, we show the following theorem:

I Theorem 1. For H = (V,E) an a directed hypergraph on n vertices, one can compute
an undirected hypergraph Â(H) on n2 + 1 vertices in time O(mr2) (where m is the number
of hyperedges in H, and r is the maximum size of any hyperedge in H), such that for any
x œ Rn, one can also compute Ë(x) œ Rn2

+1 in time O(n2) such that

LH(x) = LÂ(H)(Ë(x)).

Moreover, for any hyperedge e œ H, there is a single corresponding hyperedge Â(e) in
Â(H) such that

Le(x) = LÂ(e)(Ë(x)).

The size of Â(e) is at most |e|2. Further, for x œ {0, 1}n, i.e. corresponding to a cut, Ë(x)
will be in {0, 1}n2

+1, i.e. also corresponding to a cut.
We can then use the existing state of the art literature of undirected spectral hypergraph

sparsification [6, 14] to conclude the existence of directed spectral hypergraph sparsifiers
with only O(n2 log(n) log(r)/Á2) hyperedges which can be found in time ÂO(mr2), where m
is the original number of hyperedges and r is the maximum size of any hyperedge. Note
that this bound on the size of sparsifiers improves on the result of [18], and in particular,
makes the dependence on Á exactly O(1/Á2), which now matches the literature for undirected
sparsification. That is, we show the following:

I Theorem 2. For any directed hypergraph H = (V,E) on n vertices, and any 0 < Á < 1
there exists a weighted sub-hypergraph Ĥ such that for all x œ Rn:

(1 ≠ Á)LH(x) Æ LĤ(x) Æ (1 + Á)LH(x),

and Ĥ only has O(n2 log(n) log(r)/Á2) hyperedges, where r is the maximum size of any
hyperedge of H.

As an additional benefit, because the reduction of Theorem 1 preserves cut vectors, we can
also invoke the result of [3] to conclude the existence of directed hypergraph cut-sparsifiers
with O(n2 log(n)/Á2) hyperedges.
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1.2 Lower Bounds for Sketching Cuts in Directed Hypergraphs
We next focus on the bit complexity of creating cut-sparsifiers for directed hypergraphs. This
is done in hopes of answering an open question from [10] regarding the bit-complexity of
arbitrary sketching schemes for submodular hypergraphs. In prior work [18, 10], a lower
bound of size �(n3) (ignoring Á) was established for the bit complexity of any directed
hypergraph cut-sparsifier. However, lower bounds for sparsifiers explicitly take advantage of
the sparsifier structure by starting with known examples of sparsifiers that require �(n2)
hyperedges, and then padding these hyperedges with random vertices in their tail such
that the bit complexity of each hyperedge becomes �(n). One can trivially show that
this padding does not change the requirement of preserving �(n2) hyperedges. Because
sparsifiers are limited to storing only hyperedges that were originally present, this then forces
a bit complexity lower bound of �(n3). However, this same technique is not amenable to a
sketching lower bound as the padding procedure only adds complexity to each hyperedge,
and not necessarily to the cut function as a whole. Thus, the di�culty is in showing that the
cut function itself requires a large description size, regardless of how we choose to represent
it. This marks a fundamental di�erence.

Addressing this, we show the following theorem:

I Theorem 3. Any (1± Á) cut-sketching scheme for directed hypergraphs on n vertices must
have worst-case space n3

2
O(

Ô
log(n)) bits (for Á = 1

2
O(

Ô
log(n)) ).

At a high level, our proof takes advantage of a result of Kapralov et. al. [8]. In this
work, the authors show that there exists a family of undirected hypergraphs on n vertices,
each with at most n hyperedges, such that any sketching scheme which can sketch cuts in
any of the hypergraphs in this family to an additive error of Án (for Á = 1

2
O(

Ô
log(n)) ) must

have worst-case size at least n2

2
O(

Ô
log(n)) . We show that by using a specific construction of a

directed hypergraph, along with a specific reconstruction procedure, we can actually store an
additive cut-approximation to n distinct undirected hypergraphs in a single cut-sketch of a
directed hypergraph. That is, we show the following theorem:

I Theorem 4. For any undirected hypergraphs H1, . . . Hn, each on vertex set V , with |V | = n,
there exists a directed hypergraph G on 2n vertices, such that given a (1± Á) cut-sketch for
G, for any of the undirected hypergraphs Hi = (V,Ei), one can recover cutHi

(S) to within
additive error 3Á|Ei|.

Now, by sampling these undirected hypergraphs H1, . . . Hn from a specific family of
hypergraphs, we can argue that simultaneously preserving the cut-values in all of these
hypergraphs (even to an additive error) requires a data structure of size n2

2
O(

Ô
log(n)) · n =

n3

2
O(

Ô
log(n)) . In particular, by the previous reduction, any general scheme for sketching directed

hypergraphs or submodular hypergraphs would be such a scheme, and therefore must have
worst-case size at least �(n3≠o(1)) (for Á = 1

2
O(

Ô
log(n)) ).

Prior to our work, there was no known super-quadratic (in n) lower bound on the sketching
complexity of cuts in directed hypergraphs. In conjunction with our positive results on the
sparsifiability of directed hypergraphs, this shows that directed hypergraph sparsification
is almost-optimal even among all possible sketches for preserving cut values. That is, from
the previous section, we know that directed hypergraph sparsifiers approximately preserve
the sizes of all cuts in a directed hypergraph to a factor (1 ± Á) using ÂO(n3/Á2) bits. In
conjunction with our lower bound, we can conclude that this is almost the best possible
(among any sketching scheme) in the regime where Á = 1

2
O(

Ô
log(n)) . Thus, we show that for

approximately storing cuts in directed hypergraphs using as few bits as possible, using a
sparsifier is almost optimal. We view this as an important contribution of our work.
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1.3 Cut Sparsifiers for Monotone Submodular Hypergraphs
Finally, we show that one can simulate cuts in monotone submodular hypergraphs with
cuts in symmetric submodular hypergraphs. Recall that a set function is monotone if
f(S fi {t}) Ø f(S), and we say that a submodular hypergraph is monotone if every splitting
function is also monotone. This model of hypergraphs was specifically studied in the work
of [10], where their sparsifiers ultimately achieved a complexity of O(n3/Á2) hyperedges. In
particular, monotone submodular functions capture a wide variety of natural and common
functions such as matroid rank and entropy of random variables.

With respect to this, we show the following theorem:

I Theorem 5. Suppose f : 2V æ RØ0 is a monotone, submodular function. Then, f Õ :
2V fi{ú} æ RØ0 defined as ’S ™ V

f Õ(S) = f(S) = f Õ(V ≠ S fi {ú})

is submodular and symmetric.
Next, we show that given an arbitrary monotone, submodular hypergraph on n vertices,

we can lift this to a symmetric submodular hypergraph on n+ 1 vertices, where the single
extra vertex is the {ú} vertex from the preceding theorem. Next, for each individual splitting
function ge : 2e æ R+ in the monotone, submodular hypergraph, we replace ge with gÕ

e,
again using the preceding theorem.

Note that for each monotone submodular function, we re-use the same {ú} vertex. Thus,
the increase in the size of the vertex set is only 1. Finally, we can then invoke a result from
[5], which states that for any submodular hypergraph H where each splitting function is
symmetric, one can calculate a sparsifier for H with only ÂO(n/Á2) hyperedges.

We then get the following:

I Theorem 6. Let H = (V,E) be a hypergraph, such that ’e œ E, the corresponding splitting
function ge : 2e æ RØ0 is submodular and monotone. Then there exists a (1±Á) cut-sparsifier
for H retaining only ÂO(n/Á2) hyperedges.

Prior to this work, the best known upper bound for the size complexity (in hyperedges) for
(1± Á)-sparsifying any monotone submodular hypergraph was O(n3/Á2) hyperedges, proved
in the work of [10]. Our result essentially improves this to the best possible, where we now
only have a near-linear dependence on the size of the vertex set. We view it as an interesting
open question if one can extend our proof method used here to general submodular functions
(although this case will necessarily require a blow-up of at least quadratic size).

1.4 Overview
At a high level, all of our results use the same general principle, namely, by showing that
cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs,
we can leverage sparsification results for the simpler class of hypergraphs. This leads to our
proofs being quite simple despite the fact that the results improve upon the state-of-the-art
knowledge in hypergraph sparsification.

In Section 2 we introduce formal definitions and other preliminaries. In Section 3
we present the algorithms for sparsifying directed hypergraphs by reducing to undirected
hypergraph sparsification. Next, in Section 4, we show how to simultaneously simulate cuts
in many di�erent undirected graphs thereby leading to new lower bounds for the worst case
size of sketching cuts in directed hypergraphs. Finally, in Section 5, we show how to sparsify
arbitrary monotone, submodular hypergraphs to near-optimal size.
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2 Preliminaries

First, we introduce the definitions of undirected and directed hypergraphs.

I Definition 7. An undirected hypergraph G = (V,E) is a collection of vertices V , with
associated hyperedges e œ E, where e ™ V can be of arbitrary size.

I Definition 8. A directed hypergraph H = (V,E) is a collection of vertices V along
with directed hyperedges e œ E. Each directed hyperedge is of the form e = (etail, ehead),
where ehead, etail ™ V . We will use L(e) = etail, R(e) = ehead. Note that ehead, etail are not
necessarily disjoint.

Next, we introduce the definition of spectral sparsifiers for both undirected and directed
hypergraphs.

I Definition 9. For an undirected hypergraph G = (V,E,w) on n vertices, and a vector
x œ Rn, the quadratic form of the Laplacian of G is

LG(x) =
ÿ

eœE

max
u,vœe

(xu ≠ xv)2.

I Definition 10. For a directed hypergraph G = (V,E,w) on n vertices, and a vector x œ Rn,
the directed quadratic form of the Laplacian of G is

LG(x) =
ÿ

eœE

max
uœL(e),vœR(e)

(xu ≠ xv)2+.

In this context, (xu ≠ xv)+ = max((xu ≠ xv), 0). A non-zero contribution from a hyperedge
occurs only if a tail vertex of the hyperedge has a larger value than a head vertex of the
hyperedge. Note that the head set and tail set of a directed hyperedge are not necessarily
disjoint.

I Definition 11. For a (directed or undirected) hypergraph G = (V,E) on n vertices, a
(1 ± Á)-spectral sparsifier for G is a weighted (directed or undirected) sub-hypergraph H
such that for every x œ Rn,

(1 ≠ Á)LG(x) Æ LH(x) Æ (1 + Á)LG(x).

Further, we require that the hyperedges of H are a subset of the hyperedges of G.

I Remark 12. For all the above definitions, if a reweighted sub-hypergraph H of G preserves
the quadratic form for vectors x œ {0, 1}n to (1± Á) multiplicative error, we say that H is a
cut-sparsifiers. Note that all spectral sparsifiers are cut-sparsifiers, while the converse is
not necessarily true.

We also refer to cut-sizes in hypergraphs. A cut is specified by a set S ™ V , and we say
the size of the cut S in G (denoted |cutG(S)|) is LG(1S)T , where 1S is the indicator vector
in {0, 1}n for the set S. Combinatorially, this refers to the weight of the hyperedges that are
“leaving” the set S.

Next we define submodular functions and submodular hypergraphs.

I Definition 13. A function g : 2V æ RØ0 is said to be submodular if for any S µ T µ V ,
and any x œ V ≠ T ,

g(S fi {x}) ≠ g(S) Ø g(T fi {x}) ≠ g(T ).
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Using this, we can define a submodular hypergraph.

I Definition 14. A submodular hypergraph H = (V,E) is a set of n vertices along with a set
of hyperedges E. For each hyperedge e œ E, there is a corresponding submodular splitting
function ge : 2e æ RØ0. For any subset S ™ V , the corresponding cut of the submodular
hypergraph is

cutH(S) =
ÿ

eœE

ge(S fl e).

I Definition 15. We say that a data structure G is a (1 ± Á)-cut sketch of a submodular
hypergraph H = (V,E), if for any S ™ V one can deterministically recover cutH(S) to within
a (1± Á) factor using only the data structure G, and the set S.

We will use the following result from [5] regarding the sparsifiability of symmetric,
submodular hypergraphs. Note that a submodular function f : 2V æ R+ is said to be
symmetric if ’S ™ V, f(S) = f(V ≠ S).

I Theorem 16 (Corollary 1.2 of [5]). For any symmetric submodular hypergraph H on n
vertices, there is a (1± Á)-sparsifier for H with ÂO(n/Á2) hyperedges.

3 Directed to Undirected Hypergraph Sparsification

In this section, we will show that any algorithm that produces an undirected spectral
hypergraph sparsifier with f(n, r) hyperedges (for a vertex set of size n, and maximum
hyperedge size r), can be used in a black-box manner to create a spectral sparsifier with
f(n2 + 1, r2) hyperedges for any n-vertex directed hypergraph.

To this end, we first have to define the “lifting” operation from a directed hypergraph on
n vertices to an undirected hypergraph on n2 + 1 vertices.

I Definition 17. For a directed hypergraph H = (V,E) on n vertices, let Â(H) be an
undirected hypergraph on n2 + 1 vertices defined as follows. For the first n2 vertices of
Â(H), associate these vertices with tuples of vertices from H, that is, each of these vertices
is associated with an element from the set V ◊ V . The final vertex in Â(H) will be a special
vertex we denote by ú. Now, for each hyperedge e œ E of H, define a corresponding hyperedge
Ï(e) in Â(H) as follows: let the vertices in L(e) be u1, . . . u¸, and let the vertices in R(e) be
v1, . . . vr. Let Ï(e) contain

L(e) ◊ R(e) fi {ú} = {(u1, v1), (u1, v2), . . . (u1, vr), (u2, v1), . . . (u2, vr), . . . (u3, v1), . . . (u¸, vr), ú}.

Note that this transformation is invertible. If we are given an undirected hyperedge of
the form Ï(e) = L(e) ◊ R(e) fi {ú}, we can invert this transformation to recover the directed
hyperedge e = (L(e), R(e)). Additionally, note that this transformation and its inverse are
e�ciently computable (running in time O(r2), where r is the size of the undirected hyperedge).

Next, we define the lifting of a test vector.

I Definition 18. For a vector x œ Rn, we define the lifting of x denoted as Ë(x). Ë(x) is in
Rn2

+1, and in particular, for the first n2 entries, we associate these with the set [n] ◊ [n].
We say that (Ë(x))u,v = max(xu ≠ xv, 0). For the final entry, which we associate with the
special vertex ú in the lifted H, we let Ë(x)ú = 0.

Note again that Ë(x) is e�ciently computable in time O(n2) where n is the dimension
of x.
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I Theorem 19. Let H = (V,E) be a directed hypergraph on n vertices. Then, for any
x œ Rn,

LH(x) = LÂ(H)(Ë(x)).

Proof. It su�ces to show that for a single hyperedge e œ E,

max
uœL(e),vœR(e)

(xu ≠ xv)2+ = max
(y,z)œÏ(e)

(Ë(x)y ≠ Ë(x)z)2.

The reason this su�ces is that there is one Ï(e) for each corresponding hyperedge e œ E. So,
we are in e�ect showing that every term in the sum of the quadratic form of the Laplacians
is the same.

To see why this equality is true, let some ‚u œ L(e), ‚v œ R(e) be the maximizers for the
expression on the left. Then, note that the corresponding entry Ë(x)‚u,‚v is exactly (x‚u ≠x‚v)+.
Now, because ‚u œ L(e) and ‚v œ R(e), it follows that (‚u, ‚v) œ Ï(e). Because the special vertex
ú œ Ï(e), it follows that in the above expression

max
(y,z)œÏ(e)

(Ë(x)y ≠ Ë(x)z)2 Ø (Ë(x)
(‚u,‚v) ≠ Ë(x)ú)2 = (x‚u ≠ x‚v)

2

+
= max

uœL(e),vœR(e)
(xu ≠ xv)2+.

Now, we will show the opposite direction. Indeed, suppose that some elements ‚y, ‚z are
maximizers for max(y,z)œÏ(e)(Ë(x)y ≠ Ë(x)z)2. Note that by construction, every entry in Ë(x)
is Ø 0. This means that without loss of generality, we can assume that ‚z = ú (the special
vertex), as this vertex attains the smallest possible value 0. This means that the maximizing
value of the expression is exactly Ë(x)2‚y, where ‚y is one of the first n2 vertices in Â(H). So,

let us write ‚y = (‚a,‚b), where ‚a,‚b are both vertices in G. By construction, because ‚y œ ‚e, it
follows that ‚a œ L(e), and ‚b œ R(e). As such it follows that

max
uœL(e),vœR(e)

(xu ≠ xv)2+ Ø (x‚a ≠ x‚b)
2

+
= Ë(x)2‚y = max

(y,z)œ‚e
(Ë(x)y ≠ Ë(x)z)2.

Thus, it follows that

max
uœL(e),vœR(e)

(xu ≠ xv)2+ = max
(y,z)œÏ(e)

(Ë(x)y ≠ Ë(x)z)2,

as claimed. J

I Corollary 20. Let H be a directed hypergraph on n vertices. Suppose that \Â(H) is a (1± Á)
undirected hypergraph spectral sparsifier to Â(H). Then, it follows that the unlifted graph ‚H
which is calculated by applying Ï≠1 to each hyperedge in \Â(H), is a (1±Á) directed hypergraph
spectral sparsifier to H.

Proof. Indeed, suppose H,Â(H), ‚H,\Â(H) are as specified above, and let x œ Rn. It follows
that

(1 ≠ Á)LH(x) = (1 ≠ Á)LÂ(H)(Ë(x)) Æ L\Â(H)
(Ë(x)) = L‚H(x)

= L\Â(H)
(Ë(x)) Æ (1 + Á)LÂ(H)(Ë(x)) = (1 + Á)LH(x).

To conclude, this implies that for ‚H,H as above,

(1 ≠ Á)LH(x) Æ L‚H(x) Æ (1 + Á)LH(x). J
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I Theorem 21. For a directed hypergraph H on n vertices, one can find a directed hypergraph
spectral sparsifier ‚H of H, with O(n2 log(n) log(r)/Á2) hyperedges in time ÂO(mr2), where m
is the number of directed hyperedges in H and r is the maximum size of a hyperedge in H.

Proof. If the number of hyperedges in H is less than n2, simply return H. Otherwise, lift
H to Â(H), and spectrally sparsify Â(H) using [6]. This will result in a (1 ± Á) spectral
sparsifier \Â(H) to Â(H), with at most O(n2 log(n2) log(r2)/Á2) hyperedges, as we desire.
Here, we have used that the maximum rank of a hyperedge in ‚G is at most the squared rank
of a hyperedge in G. Further, the running time of this algorithm is ÂO(mr2), as the number
of hyperedges in ‚G is the same as the number of hyperedges in G, and the rank, again, is at
most r2. Now, we can unlift \Â(H) to ‚H by applying Ï≠1 to each hyperedge, and use the
previous corollary to conclude our theorem. J

I Remark 22. Note that if we restrict our original vector x to be in {0, 1}n, it follows that
Ë(x) œ {0, 1}n2

+1. By repeating the exact same steps above, this means that we can use
the same reduction from above to get directed hypergraph cut sparsifiers, by only using
algorithms from undirected hypergraph cut sparsifiers.

I Corollary 23. For a directed hypergraph H on n vertices, one can find a directed hypergraph
cut sparsifier ‚H of H, with O(n2 log(n)/Á2) hyperedges in time ÂO(mr2/Á2), where m is the
number of directed hyperedges in H, and r the maximum size of any hyperedge.

Proof. Simply perform the reduction from above, and invoke the algorithm for undirected
hypergraph cut-sparsification from Theorem 1.3 of [19]. Specifically, for an undirected
hypergraph G, Quanrud presents an algorithm running in time ÂO(p(G)) which constructs
(1± Á) k-cut sparsifiers (a stronger requirement than the cut-sparsifiers required here), where
p(G) =

q
eœG |e|. In our setting, for a directed hypergraph H, when we construct the

undirected lifting Â(H), it will be the case that p(Â(H)) =
q

eœÂ(H)
|e| Æ

q
eœH |e|2 Æ mr2,

yielding the desired runtime. J

4 Space Lower-bounds for Sketching Cuts in Directed Hypergraphs

In this section, we will establish an �(n3≠o(1)) lower-bound for worst-case sketching of the
cuts in a directed hypergraph on n vertices to a (1 ± Á) factor for Á being 1

2
O(

Ô
log(n)) . As

mentioned in the introduction, this improves upon a result of [10] who showed a lower bound
of size �(n3) for the bit complexity of any sparsifier. However, their lower bound explicitly
takes advantage of the sparsifier structure by starting with known examples of sparsifiers
that require �(n2) hyperedges, and then padding these hyperedges with random vertices in
their tail such that the bit complexity is �(n). One can trivially show that this padding does
not change the requirement of preserving �(n2) hyperedges. Because sparsifiers are limited
to storing only hyperedges that were originally present, this then forces a bit complexity
lower bound of �(n3). However, this same technique is not amenable to a sketching lower
bound as the padding procedure only adds complexity to each hyperedge, and not necessarily
to the cut function as a whole.

To overcome this, we take advantage of a result of [8] who showed that, in general, any
(1± Á) cut-sketching scheme for undirected hypergraphs on n vertices, with Á = 1

2
O(

Ô
log(n))

must have worst case bit complexity n2

2
O(

Ô
log(n)) . This result uses encodings of Rusza-Szemerédi

graphs into undirected hypergraphs, along with a reconstruction argument to show that
general (1± Á) cut-sketching schemes in undirected hypergraphs give very non-trivial string
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compression schemes. Then, by invoking known results on size lower bounds for string
compression schemes, they are able to conclude worst-case lower bounds of n2

2
O(

Ô
log(n)) for the

bit complexity of sketching cuts in undirected hypergraphs. To this end, we first reintroduce
their notion of a string compression scheme:

I Definition 24 ([4]). Let ¸, k be positive integers, and let Á, g > 0. We say that a pair of
functions Encode : {0, 1}¸ æ {0, 1}k and Decode : {0, 1}k ◊ 2[¸] æ N is an (¸, k, Á, g) string
compression scheme (SCS) if there exists a set of strings G ™ {0, 1}¸ such that:
1. |G| Ø g · 2¸.
2. For every string s œ G, and every query q œ 2[¸],

|Decode(Encode(s), q) ≠ |s fl q|| Æ Á¸/2.

The work of [8] takes advantage of the following theorem, which is proved in [4]:

I Theorem 25 ([4]). Suppose (Encode,Decode) is an (¸, k, Á, g)-SCS, where Á Æ 1/10. Then,

k Ø log(g) + 3¸/50
log 2 ≠ 1.

Qualitatively, [8] shows that for a specific family of undirected hypergraphs with n
vertices, for some Á = 1

2
O(

Ô
log(n)) any (1 ± Á) cut-sketching scheme for these hypergraphs

using Æ k bits implicitly gives an
1

n2

2
O(

Ô
log(n)) , k, 1/10, 1/2

2
-SCS. Thus, by invoking the

previous theorem, these sparsifiers must have bit complexity n2

2
O(

Ô
log(n)) . However, their

proof actually provides a stronger result than stated. Although the sparsifiers they use give
(1± Á) multiplicative approximations to cut-sizes, their argument makes uses of an additive
error bound of Á · (# of hyperedges). We take advantage of this in our method by showing
that a (1 ± Á) cut-sketch for a directed hypergraph can be used to retrieve cut sizes in n
distinct undirected hypergraphs with only additive error Á (with respect to each of these
undirected hypergraphs). We first state the result of [8] more succinctly, and then describe
our construction in more detail.

I Theorem 26 ([8]). For any n, and some ¸ = n2

2
O(

Ô
log(n)) , for at least 2¸/2 strings s œ {0, 1}¸,

there exists an undirected hypergraph Hs = (V,Es) on n vertices, with Æ n hyperedges,
such that any data structure which can approximate cuts in Hs to within additive error
|Es|/2O(

Ô
log(n)) can for any query q ™ [¸], answer the subset sum |q fl s| to within additive

error ¸/20.

Now, we will prove our theorem regarding capability of directed hypergraphs to simulate
cuts in undirected hypergraphs with only additive error.

I Theorem 27. Given any undirected hypergraphs H1, . . . Hn, each on vertex set V , with
|V | = n, there exists a directed hypergraph G on 2n vertices, such that given a (1 ± Á)
cut-sketch for G, for any of the undirected hypergraphs Hi = (V,Ei) and any set S ™ V , one
can recover |cutHi

(S)| to within additive error 3Á|Ei|.

Proof. As stated, each of the undirected hypergraphs H1, . . . Hn are on a vertex set of size
n, which we denote by V . We also create a vertex set W of size n, which we associate
with w1, . . . wn. Now, we create the directed hypergraph G, which lives on the vertex set
V fiW as follows: for each undirected hypergraph Hi for i = 1, . . . n, and for each undirected
hyperedge e in Hi, we add the corresponding directed hyperedge (e, wi). That is, the head
of the directed hyperedge has the vertices from V corresponding to e, and the tail of the
directed hyperedge has only vertex wi.
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Clearly, G has 2n vertices, so now it su�ces to argue that for any Hi = (V,Ei), and for
any cut S ™ V , we can recover cutHi

(S) within additive error Á|Ei|. Indeed, let any such Hi

be given, and let S ™ V be given as well. Then, suppose we have a (1± Á) cut-sketch for
G, which we denote by ÂG. Let us consider the query to ÂG with the set S fi W ≠ {wi}. A
directed hyperedge e œ G is crossing this cut if and only if ehead fl (S fi W ≠ {wi}) ”= ÿ and
etail fl ((V fi W ) ≠ (S fi W ≠ {wi})) ”= ÿ. In particular, note that by construction, ehead is a
subset of V and etail is a subset of W . This means that a directed hyperedge e is crossing the
cut if and only if ehead flS ”= ÿ and etail fl{wi} ”= ÿ. The only directed hyperedges in G which
satisfy this second condition are exactly those directed hyperedges in G which correspond
to Hi. By construction, this means that the number of directed hyperedges crossing this
cut S fi W ≠ {wi} in G is exactly the number of undirected hyperedges e œ Ei such that
e fl S ”= ÿ. Thus this query to ÂG returns a (1 ± Á) approximation to |{e œ Ei|S fl e ”= ÿ}|.
Note that the actual size of the cut S in Hi is |{e œ Ei|S fl e ”= ÿ · S fl e ”= e}|.

However, note that by symmetry, we can also query ÂG with (V ≠ S) fi (W ≠ {wi}). By
symmetry, this query to ÂG returns a (1± Á) approximation to |{e œ Ei|(V ≠ S) fl e ”= ÿ}|,
which is the same as |{e œ Ei|S fl e ”= e}|. Lastly, we can query ÂG with V fi (W ≠ {wi}).
This query to ÂG returns a (1± Á) approximation to |{e œ Ei|V fl e ”= ÿ}|, which is exactly
|{e œ Ei}|.

Now, we operate by the principle of inclusion-exclusion (PIE). Let A be the event that a
hyperedge e œ Ei satisfies e fl S ”= ÿ, and let B be the event that e satisfies e fl S ”= e. By
PIE,

|{e œ Ei|e satisfies A · satisfies B}| =|{e œ Ei|e satisfies A}|+ |{e œ Ei|e satisfies B}|
≠ |{e œ Ei|e satisfies A ‚ satisfies B}|.

Note that this final expression is trivially satisfied, i.e. |{e œ Ei|e satisfies A ‚
satisfies B}| = |{e œ Ei}| as a hyperedge cannot simultaneously have an empty and a
non-trivial intersection. Thus, we get that

cutHi
(S) =|{e œ Ei|e satisfies A · satisfies B}|

=|{e œ Ei|e satisfies A}|+ |{e œ Ei|e satisfies B}| ≠ |{e œ Ei}|.

Now, note that our query to ÂG with the set S fiW ≠{wi} gave us a (1± Á) approximation
to |{e œ Ei|e satisfies A}|, our query with (V ≠S)fiW ≠{wi} gave us a (1±Á) approximation
to |{e œ Ei|e satisfies B}|, and our query with V fiW ≠{wi} gave us a (1± Á) approximation
to |{e œ Ei}|. Because each of these has additive error at most Á|Ei| (as the error from ÂG is
a multiplicative guarantee), in total, the expression

cutÂG(S fi W ≠ {wi}) + cutÂG((V ≠ S) fi W ≠ {wi}) ≠ cutÂG(V fi W ≠ {wi})

gives us a (3Á|Ei|)-additive approximation to cutHi
(S), as we desire. J

Now, we will show how we can use the above construction to argue a lower bound of
size n3

2
O(

Ô
log(n)) on the bit complexity of directed hypergraph cut-sketching. We will do

this by showing that we can use a directed hypergraph cut-sketch of size k to create a
(¸, k, 1/10, 2≠n)-SCS, for ¸ = �

1
n3

2
O(

Ô
log(n))

2
.

I Theorem 28. A general unweighted directed hypergraph (1 ± 1

2
O(

Ô
log(n)) ) cut-sketching

scheme on n vertices with maximum sketch size of k bits yields an (n · ¸, k, 1/10, 2≠n)-SCS
for ¸ = n2

2
O(

Ô
log(n)) .
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Proof. First, we will define the set G of size 2
n·¸

2n
. Indeed, from Theorem 26, let L be the

strings of length ¸ which are able to be compressed and still allow for estimating subset sum
queries. Now, let G = L ¶ L ¶ L ¶ · · · ¶ L (n times), where the S1 ¶ S2 operation takes every
string in S1 and prepends it to every string in S2 (resulting in a new set of size |S1| · |S2|).
Note that this means that strings in G will be of length n · n2

2
O(

Ô
log(n)) = n3

2
O(

Ô
log(n)) and G

obtains the stated size bound.
Now we describe our string compression scheme. Indeed, for any string s œ G, decompose

s into s1, . . . sn such that each si œ L. Now, because each si œ L, we know there exists a
corresponding undirected hypergraph Hsi = (V,Esi) on n vertices such that preserving cuts
in Hsi to within additive error |Esi |/2O(

Ô
log(n)) allows us to answer subset sum queries in

Hsi to within additive error ¸/20. Now let G be the directed hypergraph on 2n vertices,
built with hypergraphs Hs1 , Hs2 , . . . Hsn as guaranteed by Theorem 27. It follows that G is
an unweighted directed hypergraph on 2n vertices.

Now, suppose there exists a general, unweighted, directed hypergraph cut-sketching scheme
on n vertices with maximum sketch size of k bits which preserves cuts to a (1± 1

2
O(

Ô
log(n)) )

multiplicative factor. Then, we can invoke such a scheme on the directed hypergraph G as
specified by Theorem 27 to conclude that such a scheme allows us to recover cutHsi

(S) for
any S ™ V to within additive error |Esi/2O(

Ô
log(n))|. As a result, this means that for any

si, and any query to si, denoted by qi œ [¸], we can recover |qi fl si| to within additive error
¸/20.

Finally, suppose we are given any subset query q ™ [n · ¸]. We want to show that we
can compute the size of |s fl q| (i.e. the sum of the bits of s on the positions indicated by
q) to within additive error n¸

20
. For convenience, we view q as a bit string of length n · ¸,

where a bit is 1 if and only if the corresponding element of [n · ¸] was in the subset. Then,
we break q into q1, . . . qn such that each qi is of length ¸. Now, we use the aforementioned
sketch to compute |si fl qi| to within additive error ¸/20 for every i. Adding these together,
we get an estimate to |s fl q| with additive error at most n¸/20. Thus, a general directed
hypergraph cut-sketching scheme of size k bits to multiplicative error (1± 1

2
O(

Ô
log(n)) ) yields

a (n · ¸, k, 1/10, 2≠n)-SCS. J

I Theorem 29. Any cut-sketching scheme for directed hypergraphs on 2n vertices which
preserves cuts to a (1 ± Á) factor, for Á = 1

2
O(

Ô
log(n)) must have worst case bit complexity

n3

2
O(

Ô
log(n)) .

Proof. Indeed, by the preceding theorem (Theorem 28), any such scheme for Á = 1

2
O(

Ô
log(n)) ,

with bit complexity k implies a (n·¸, k, 1/10, 2≠n)-SCS, for ¸ = n2

2
O(

Ô
log(n)) . By Theorem 25 [4],

this means that

k Ø log(2≠n) + 3n · ¸

log 2 ≠ 1 Ø n3

2O(

Ô
log(n))

. J

I Corollary 30. Any cut-sketching scheme for submodular hypergraphs on 2n vertices which
preserves cuts to a (1± Á) factor, for Á = 1

2
O(

Ô
log(n)) must have bit complexity n3

2
O(

Ô
log(n)) .

Proof. This follows simply by noting that directed hypergraphs are a subclass of submodular
hypergraphs, so in particular the lower bound from Theorem 29 must extend to this case. J
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5 Monotone Hypergraph Sparsifiers

In this section, we show how to reduce sparsifying monotone submodular hypergraphs to
sparsifying symmetric submodular hypergraphs. At this point, we then invoke the result
of [5] to conclude. First, we detail the reduction:

I Theorem 31. Suppose f : 2V æ RØ0 is a monotone, submodular function. Then,
f Õ : 2V fi{ú} æ RØ0 defined as ’S ™ V

f Õ(S) = f(S) = f Õ(V ≠ S fi {ú})

is submodular and symmetric.
Proof. First, the symmetry of f Õ is easy to see. Indeed, for any set S ™ V fi {ú}, it follows
that f Õ(S) = f Õ(V fi {ú} ≠ S). So, all that remains to be shown is that f Õ is submodular. To
do this, we will show that f Õ has decreasing marginals. So consider any T µ U µ V fi {ú}.
We will show that for any x /œ U that

f Õ(T fi {x}) ≠ f Õ(T ) Ø f Õ(U fi {x}) ≠ f Õ(U).

We will do this by cases.

1. Suppose that x = ú. Then, it must be the case that x /œ U, T . So, f Õ(U) = f(U), f Õ(T ) =
f(T ). Because T µ U , it must also therefore be the case that f Õ(T ) Æ f Õ(U) (by
the monotonicity of f). Next, we note that because x = ú, f Õ(T fi {x}) = f(V ≠
T ), f Õ(U fi {x}) = f(V ≠U). Because T µ U and f is monotone, it must be the case that
f Õ(T fi {x}) = f(V ≠ T ) Ø f Õ(U fi {x}) = f(V ≠U). Putting this together, we get that it
must be the case that

f Õ(T fi {x}) ≠ f Õ(T ) Ø f Õ(U fi {x}) ≠ f Õ(U),

as we desire.
2. Suppose that x ”= ú, and that neither U, T contain ú. Then the submodularity of f Õ

follows by the submodularity of f .
3. Suppose that x ”= ú, and that both U, T contain ú. Then, let Û , T̂ be U ≠ {ú}, T ≠ {ú}

respectively. It follows that T̂ µ Û . Further, f Õ(T fi{x}) = f(V ≠(T̂ fi{x})), f Õ(Ufi{x}) =
f(V ≠ (Û fi {x})), and likewise f Õ(T ) = f(V ≠ T̂ ), f Õ(U) = f(V ≠ Û). It follows that

f Õ(T fi {x}) ≠ f Õ(T ) = f(V ≠ (T̂ fi {x})) ≠ f(V ≠ T̂ )
= f(V ≠ (T̂ fi {x})) ≠ f(V ≠ (T̂ fi {x}) fi {x})
Ø f(V ≠ (Û fi {x})) ≠ f(V ≠ (Û fi {x}) fi {x})
= f Õ(U fi {x}) ≠ f Õ(U).

The inequality in the middle holds because V ≠ (Û fi {x}) µ V ≠ (T̂ fi {x}). Thus, the
marginal gain from adding x to V ≠ (Û fi {x}) is larger than the marginal gain from
adding x to V ≠ (T̂ fi {x}) by the submodularity of f .

4. Suppose that x ”= ú, but that ú /œ T, ú œ U . Then, by the monotonicity of f , f Õ(T fi
{x}) ≠ f Õ(T ) = f(T fi {x}) ≠ f(T ) Ø 0. Likewise,

f Õ(U fi {x}) ≠ f Õ(U) = f(V ≠ (Û fi {x})) ≠ f(V ≠ Û) Æ 0,

again using the monotonicity of f . Therefore, it must be the case that

f Õ(T fi {x}) ≠ f Õ(T ) Ø f Õ(U fi {x}) ≠ f Õ(U),

as we desire. J
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Next, we show how to use this reduction to create sparsifiers.

I Corollary 32. Let H = (V,E) be a hypergraph, such that ’e œ E, the corresponding
splitting function ge : 2e æ RØ0 is submodular and monotone. Then there exists a (1± Á)
cut-sparsifier for H with ÂO(|V |/Á2) hyperedges.

Proof. We first define the lifting of a monotone, submodular hypergraph into a symmetric
submodular hypergraph.

I Definition 33. Let H = (V,E) be a monotone submodular hypergraph. Then, define H Õ to
be the corresponding hypergraph defined on vertex set V fi {ú}, where for each edge e œ E,
we replace it with a hyperedge eÕ = e fi {ú}, and replace the function ge with the symmetric,
submodular splitting function gÕ

e : 2e
Õ æ RØ0 defined in accordance with Theorem 31.

Now, we construct this hypergraph H Õ. Because each gÕ
e is symmetric and submodular, we

can invoke Theorem 16 to conclude the existence of a hypergraph Ĥ Õ such that ’S ™ V fi {ú}

(1 ≠ Á)cutHÕ(S) Æ cutĤÕ(S) Æ (1 + Á)cutHÕ(S),

and Ĥ Õ only has ÂO(|V |/Á2) hyperedges remaining.
It follows that because ’S ™ V , gÕ

e(S) = ge(S), the corresponding hyperedges chosen
to create a (1 ± Á) cut-sparsifier for H Õ also create a (1 ± Á) cut-sparsifier for H. That is,
if we create the hypergraph Ĥ by replacing eÕ œ Ĥ Õ with e œ H (but keeping the same
corresponding weights that Ĥ Õ assigns), it will be the case that ’S ™ V

(1≠Á)cutHÕ(S) = (1≠Á)cutH(S) Æ cutĤÕ(S) = cutĤ(S) Æ (1+Á)cutHÕ(S) = (1+Á)cutH(S).

Thus, Ĥ will be a (1±Á)-sparsifier for H, and Ĥ will only keep ÂO(|V |/Á2) hyperedges. J
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Abstract

The problem Level Planarity asks for a crossing-free drawing of a graph in the plane such that
vertices are placed at prescribed y-coordinates (called levels) and such that every edge is realized
as a y-monotone curve. In the variant Constrained Level Planarity, each level y is equipped
with a partial order ªy on its vertices and in the desired drawing the left-to-right order of vertices
on level y has to be a linear extension of ªy. Constrained Level Planarity is known to be a
remarkably di�cult problem: previous results by Klemz and Rote [ACM Trans. Alg.’19] and by
Brückner and Rutter [SODA’17] imply that it remains NP-hard even when restricted to graphs
whose tree-depth and feedback vertex set number are bounded by a constant and even when the
instances are additionally required to be either proper, meaning that each edge spans two consecutive
levels, or ordered, meaning that all given partial orders are total orders. In particular, these results
rule out the existence of FPT-time (even XP-time) algorithms with respect to these and related
graph parameters (unless P=NP). However, the parameterized complexity of Constrained Level

Planarity with respect to the vertex cover number of the input graph remained open.
In this paper, we show that Constrained Level Planarity can be solved in FPT-time when

parameterized by the vertex cover number. In view of the previous intractability statements, our
result is best-possible in several regards: a speed-up to polynomial time or a generalization to the
aforementioned smaller graph parameters is not possible, even if restricting to proper or ordered
instances.
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1 Introduction

A large body of literature related to graph drawing is dedicated to so-called upward planar
drawings, which provide a natural way of visualizing a partial order on a set of items. An
upward planar drawing of a directed graph is a crossing-free drawing in the plane where
every edge e = (u, v) is realized as a y-monotone curve that goes upwards from u to v, i.e.,
the y-coordinate strictly increases when traversing e from u towards v. The most classical
computational problem in this context is Upward Planarity: given a directed graph,
decide whether it admits an upward planar drawing. The standard version of this problem
is NP-hard [18], but, if the y-coordinate of each vertex is prescribed, it can be solved in
polynomial time [13, 21, 25], which suggests that a large part of the challenge of Upward
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Planarity comes from choosing an appropriate y-coordinate for each vertex. However,
when both the y-coordinate and the x-coordinate of each vertex are prescribed, the problem is
yet again NP-hard [27], indicating that another part of the challenge comes from drawing the
edges in a y-monotone non-crossing fashion while respecting the given or chosen coordinates
of their endpoints. The paper at hand is concerned with the parameterized complexity of a
generalization of the latter of these two variants of Upward Planarity, which is known as
Constrained Level Planarity. It is expressed in terms of so-called level graphs, which
are defined next; we adopt the notation and terminology used in [27].

Level Planarity. A level graph G = (G, “) is a directed graph G = (V,E) together with a
level assignment, which is a function1 “ : V æ R where “(u) < “(v) for every edge (u, v) œ E.
For every i œ R where Vi = {v œ V | “(v) = i} is non-empty, the set Vi is called a (the i-th)
level of G. The width of level Vi is |Vi|. The level-width of G is the maximum width of any
level in G and the height of G is the number of (non-empty) levels. A level planar drawing
of G is an upward planar drawing of G where the y-coordinate of each vertex v is “(v). We
use Li to denote the horizontal line with y-coordinate i. The level graph G is called proper if
every edge spans two consecutive levels, that is, for every edge (u, v) œ E there is no level Vj

with “(u) < j < “(v). The problem Level Planarity asks whether a given level graph
admits a level planar drawing. In a series of papers [13, 21, 24, 25], it was shown that Level
Planarity can be solved in linear1 time; we refer to [16] for a more detailed discussion of
the history of the corresponding algorithm and of alternative approaches to solve Level

Planarity.

Constrained Level Planarity. In 2017, Brückner and Rutter [8] and Klemz and Rote [27]
independently introduced and studied two closely related variants of Level Planarity,
which are defined in the following. A constrained level graph G = (G, “, (ªi)i) is a triple
corresponding to a level graph (G, “) equipped with a family (ªi)i containing, for each
level Vi, a partial order ªi on the vertices Vi. A constrained level planar drawing of G is a
level planar drawing of (G, “) where, for each level Vi, the left-to-right order of the vertices Vi

corresponds to a linear extension of ªi. For a pair of vertices u, v œ Vi with u ªi v, we refer
to u ªi v as a constraint on u and v. The problem Constrained Level Planarity (CLP)
asks whether a given constrained level graph admits a constrained level planar drawing.
Ordered Level Planarity (OLP) corresponds to the special case of CLP where the
given partial orders are total orders, which is polynomial time equivalent to prescribing the
x-coordinate (in addition to the y-coordinate) of each vertex.

Klemz and Rote [27] established a complexity dichotomy for OLP with respect to both
the maximum degree and the level-width. In particular, they showed that OLP is NP-hard
even when restricted to the case where G has a level-width of 2 and the underlying undirected
graph of G is a disjoint union of paths, i.e., a graph of maximum degree 2, path-width (and
tree-width) 1, and feedback vertex/edge set number 0. In fact, with a simple modification2

1 Traditionally, in the literature, the level assignment “ is defined as a surjective function that maps to
an integer interval {1, 2, . . . , h}; it merely acts as a convenient way to encode a total preorder on V . It
is well known that the traditional and our (more general) definition are polynomial-time equivalent:
algorithms designed assuming the classical definition can also be applied in the more general context:
one simple has to first sort the vertices by y-coordinates and then apply the traditional algorithm using
the sorting-ranks as y-coordinates. We are using the given general definition as it eases the description
of our algorithms; though, specific polynomial runtimes obtained in previous work that are stated in
our introduction assume the classical definition.

2 In the variable gadget of every variable uj , one can remove the subdivision vertices of the tunnels with
index larger than j. This modification does not influence the realizability of the instance since the
left-to-right order of all tunnels is already fixed due to the subdivision vertices on level ¸0.
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to their construction, the underlying undirected graph produced by the reduction becomes a
disjoint union of paths with constant length, implying that even the tree-depth is bounded.
(The definitions of all these classical graph parameters can be found, e.g., in [10].) It follows
that CLP is NP-hard in the same scenario and when, additionally, each of the prescribed
partial orders ªi is a total order. OLP is (trivially) solvable in linear1 time when restricted
to proper instances [27]. In contrast, an instance of CLP can always be turned into an
equivalent proper instance by subdividing each edge on each level it passes through without
introducing any constraints on the resulting subdivision vertices [8]. Hence, CLP is NP-hard
even in the proper case. Independently, Brückner and Rutter [8] also presented a proof
for the NP-hardness of CLP, which relies on a very di�erent strategy. It is not obvious
whether the graphs produced by their construction have bounded tree-width, however, it is
not di�cult to see3 that the socket/plug gadget used in their reduction can be utilized in the
context of a reduction from 3-Partition to show that CLP remains NP-hard for proper
instances whose underlying undirected graph is a single (rooted) tree of constant depth. In
fact, the unpublished full version of [8] features such a construction [29].

On the positive side, Brückner and Rutter [8] presented a polynomial time algorithm for
the special case of CLP where the input graph G has a single source. They further improved
the runtime of this algorithm in [9]. Very recently, Blaûej, Klemz, Klesen, Sieper, Wol�, and
Zink studied the parameterized complexity of CLP and OLP with respect to the height of
the input graph [7]. They showed that OLP parameterized by height is XNLP-complete
(implying that it is in XP, but W [t]-hard for every t Ø 1). In contrast, CLP is NP-hard even
if restricted to instances of height 4, but it can be solved in polynomial time if restricted to
instances of height at most 3.

Other related work. Several other restricted variants of Level Planarity have been
studied, e.g., Clustered Level Planarity [15, 2, 27], T-Level Planarity [30, 2, 27],
and Partial Level Planarity [8]. In particular, in Partial Level Planarity, a given
level planar drawing of a subgraph of the input graph G has to be extended to a full drawing
of G, which can be seen as a generalization of OLP and, in the proper case, a specialization
of CLP. Level Planarity has been extended to surfaces di�erent from the plane [4, 1, 5].
There are also related problems with a more geometric flavor, e.g., finding a level planar
straight-line drawing where each face is bounded by a convex polygon [23, 26], and problems
where the input is an undirected graph without a level assignment and the task is to find a
crossing-free drawing with y-monotone edges that, if interpreted as a level planar drawing,
satisfies or optimizes certain criteria, e.g., being proper or having minimum height [6, 14, 22].

Contribution. As discussed above, the previous results of Brückner and Rutter [8] and
Klemz and Rote [27] rule out the existence of FPT-time (even XP-time) algorithms for CLP

when considering the tree-width, path-width, tree-depth, or feedback vertex set number as a
parameter, even when restricted to OLP or proper CLP instances (unless P=NP). As all
of these parameters are bounded4 by the vertex cover number, it is natural to study the
parameterized complexity of CLP with respect to this parameter. We prove the following
main result:

3 In the strongly NP-hard 3-Partition problem [17], one has to partition 3n positive integers B/4 <
a1, a2, . . . , a3n < B/2 of total sum nB into n triples (or buckets) of sum (or size) B. To reduce to CLP,
one can simulate a bucket of size B as a sequence of B consecutive sockets and a number ai as ai plugs
that are connected in a star-like fashion to a common ancestor vi located above all these plugs. Finally,
all ancestors vi and all sockets are connected in a star-like fashion to a common root vertex.

4 More precisely, tw(G) Æ pw(G) Æ td(G) ≠ 1 Æ vc(G) and fvs(G) Æ vc(G).
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I Theorem 1. CLP parameterized by the vertex cover number is FPT.

In view of the previous intractability statements, Theorem 1 is best-possible in several
regards: a speed-up to polynomial time or a generalization to the aforementioned smaller
graph parameters is not possible, even if restricting to OLP or proper CLP instances.

Organization. The proof of Theorem 1 and the remainder of this paper are organized as
follows. We begin by introducing some basic notation, terminology, and other preliminaries
in Section 2. In particular, we describe a partition of the vertex set of a given constrained
level graph G into di�erent categories with respect to a given vertex cover C and we show
that the vertices of two of these categories are, in some sense, easy to handle. In Section 3,
we introduce cores and (refined) visibility extensions of level planar drawings with respect
to a fixed vertex cover C. Intuitively, the core-induced subdrawing of a (refined) visibility
extension of a constrained level planar drawing �ú of G with respect to C is a drawing �core

that captures crucial structural properties of �ú and whose total complexity is bounded
in |C|. The latter allows us to e�ciently obtain such a core-induced subdrawing via the
process of exhaustive enumeration. This is the first main step of the algorithm corresponding
to the proof of Theorem 1, which is described in Section 4. Due to the properties of the
core-induced subdrawing, it is then possible to place the remaining vertices in the subsequent
main steps of the algorithm, each of which is concerned with the placement of the vertices of
a particular vertex category. We conclude with a discussion of an open problem in Section 5.
Proofs of statements marked with a ı can be found in the appendix of the full preprint
version [28].

2 Preliminaries

Conventions. Recall that in a level graph G = (G = (V,E), “), the graph G is directed by
definition. However, when it comes to vertex-adjacencies, we always refer to the underlying
undirected graph of G, that is, the neighborhood of v œ V is NG(v) = {u œ V | (u, v) œ E
‚(v, u) œ E}, the degree of v is |NG(v)|, and “a vertex cover of G” refers to a vertex cover5 of
the underlying undirected graph of G. The level planar embedding of a level planar drawing
of G lists, for each level Vi, the left-to-right sequence of vertices and edges intersected by the
line Li in the drawing. Note that this corresponds to an equivalence class of drawings from
which an actual drawing is easily derived, which is why algorithms for constructing level
planar drawings (including our algorithms) usually just determine a level planar embedding.
For brevity, we often use the term “drawing” as a synonym for “embedding of a drawing”.

Vertex categories & notation. For m œ N, we use [m] to denote the set {1, 2, . . . ,m}.
Let G = (G = (V,E), “) be a (constrained) level graph and let C be a vertex cover ofG. An ear
of G with respect to C is a degree-2 vertex of V \C that is a source or sink. For a subsetX ™ C,
we define VX(C) = {v œ V \C | NG(v) = X}. We partition the vertices V \C of the graph G
into four sets V=0(C), V=1(C), V=2(C), VØ3(C) where V=0(C) = {v œ V \ C | deg(v) = 0},
V=1(C) = {v œ V \ C | deg(v) = 1} (the leaves), V=2(C) = {v œ V \ C | deg(v) = 2}, and
VØ3(C) = {v œ V \ C | deg(v) Ø 3}. The set V=2(C) is further partitioned into two sets
V e
=2

(C), V t
=2

(C) where V e
=2

(C) contains the ears and V t
=2

(C) the non-ears, called transition

5 A vertex cover of an undirected graph G = (V,E) is a vertex set C ™ V such that every edge in E is
incident to at least one vertex in C. The vertex cover number of G is the size of a smallest vertex cover
of G.
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vertices. Let v œ V=1(C) and let c œ C denote its (unique) neighbor. We say that v is a leaf
of c. Similarly, let u œ V=2(C) and let ca, cb œ C denote its (unique) two neighbors. We say
that u is a transition vertex (ear) of ca and cb if u œ V t

=2
(C) (if u œ V e

=2
(C)). We often omit

C if it is clear from the context.
Let G = (G = (V,E), “, (ªi)i) be a constrained level graph and let C be a vertex cover

of G. The main challenge when constructing a constrained level planar drawing of G is the
placement of the leaves, ears, and transition vertices (along with their incident edges). Indeed,
it is not di�cult to insert the isolated vertices (which include V=0) in a post-processing
step (performing a topological sort on each level), see Lemma 4. Moreover, since we may
assume G to be planar, the size of VØ3(C) is linear in |C|. This well known bound can be
derived, e.g., by combining the fact that the complement of a vertex cover is an independent
set with the following statement (setting A = C).

I Lemma 2 ([10, Corollary 9.25]). Let G = (V,E) be a planar graph and A ™ V . Then
there are at most 2|A| connected components in the subgraph of G induced by V \A that are
adjacent to more than two vertices of A.

I Corollary 3 (Folklore). Let G be a planar graph and let C be a vertex cover of G. Then
|VØ3(C)| Æ 2k, where k = |C|.

I Lemma 4 (ı). Let G = (G, “, (ªi)i) be a constrained level graph, let GÕ be the subgraph
of G induced by the non-isolated vertices V Õ, and let “Õ and (ªÕ

i)i be the restrictions of “
and (ªi)i to V Õ, respectively. There is an algorithm that, given G and a constrained level
planar drawing �Õ of GÕ = (GÕ, “Õ, (ªÕ

i)i), constructs a constrained level-planar drawing of G
in polynomial time.

Our main algorithm will exploit the fact that only few ears may share a common level:

I Lemma 5 (ı). Let G = (G, “) be a level graph, let � be a level planar drawing of G, let C
be a vertex cover of G. Then there are at most 2|C| ears with respect to C per level.

Compatible edge orderings. Let � be a level planar drawing of a (possibly constrained)
level graph G = (G = (V,E), “) without isolated vertices. We will now define a useful (not
necessarily unique) linear order ª

e on the edges E with respect to �. We refer to ª
e as an

edge ordering of E that is compatible with �. Compatible edge orderings can be seen as a
generalization of a linear order described in [27, Proof of Lemma 4.4] for a set of pairwise
disjoint y-monotone paths, which in turn follows considerations about horizontal separability
of y-monotone sets by translations [12, 3, 19, 20]. Intuitively, ª

e is a linear extension of a
partial order in which e œ E precedes f œ E if it is possible to shoot a horizontal rightwards
ray from e to f in � without crossing other edges before reaching f . Formally, we say that
a vertex v is visible from the left in � if the horizontal ray rv emanating from v to the left
intersects � only in v. We say that an edge e = (u, v) is visible from the left in � if the
closed (unbounded) region that is to the left of e and whose boundary is described by e, ru, rv
intersects � only in e. The order ª

e is now constructed as follows: the minimum of ª
e is an

edge e1 of E that is visible from the left in �. Such an edge always exists [27, 19, 20]: among
the edges whose lower endpoint is visible from the left, the edge with the topmost lower
endpoint is visible from the left. Let �Õ denote the drawing derived from � by removing e1
and any isolated vertices created by the removal of e1. The restriction of ª

e to the remaining
edges E \ e1 corresponds to an edge ordering compatible with �Õ, which is constructed
recursively. Note that G and ª

e uniquely describe the drawing � and, given G and ª
e, it is

possible to construct � in polynomial time (by traversing ª
e in reverse).
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3 Visibility extensions and cores

In this section, we introduce and study (refined) visibility extensions and cores of level planar
drawings. We will see that the core-induced subdrawing of a (refined) visibility extension
of a level planar drawing � with respect to some vertex cover C captures crucial structural
properties of � while having a size that is bounded in |C|.

Visibility extensions. Let � be a level planar drawing of a level graph G = (G = (V,E), “).
A visibility edge e for � is (1) a y-monotone curve that joins two vertices of � and can be
inserted into � without creating any crossings (but possibly a pair of parallel edges); or (2) a
horizontal segment that joins two consecutive vertices on a common level of � and can be
inserted into � without creating any crossings. A visibility extension of � with respect to
a vertex set V Õ

™ V is a drawing � derived from � by inserting a maximal set of pairwise
non-crossing visibility edges incident only to vertices of V Õ such that for each pair e, eÕ of
parallel edges in � there is at least one vertex of V Õ in the interior of the simple closed curve
formed by e and eÕ; for an illustration see Figure 1(a). We remark that if V Õ = V , then � is
essentially an interior triangulation containing �. However, we will always choose V Õ to be a
(small) vertex cover, resulting in a much sparser yet still connected augmentation:

I Lemma 6 (ı). Let G = (G = (V,E), “) be a level graph without isolated vertices, let C
be a vertex cover of G, let � be a level planar drawing of G, let � be a visibility extension
of � with respect to C, and let �C be the subdrawing of � that is induced by C. Then �C is
connected and has O(k) edges, where k = |C|.

Cores and refined visibility extensions. Intuitively, the core of a level planar drawing is a
subset of the vertex set with certain crucial properties. To define it formally, we will first
classify the ears of the drawing according to several categories. The concepts introduced
in this paragraph are illustrated in Figure 1(b). Let G = (G = (V,E), “) be a level graph,
let C be a vertex cover of G, and let � be a level planar drawing of G. Consider an ear
v œ V e

=2
(C) with neighbors ca, cb where “(ca) Ø “(cb). If “(v) > “(ca), we say that v is a top

ear. Otherwise (if “(v) < “(cb)), we say that v is a bottom ear. Assume that “(ca) > “(cb)
and that v is a top ear. If in � the edge cbv is drawn to the left (right) of ca, we say that v is
a left (right) ear in �. The terms “left” and “right” are defined analogously for bottom ears.
If “(ca) = “(cb), we consider v to be a left ear if it is a top ear; otherwise it is a right ear.
Consider a pair ca, cb œ C with at least one left ear in � and let �Õ denote the subdrawing
of � induced by the set of edges that are incident to at least one left ear of ca, cb in �. Note
that either all these ears are top ears or all these ears are bottom ears in �, and they are
arranged in a nested fashion. In case of top (bottom) ears, we refer to the unique one with
the largest (smallest) y-coordinate as the outermost left ear of ca, cb. The innermost left ear
of ca, cb is defined symmetrically. If �Õ has an interior (i.e., bounded) face f such that the
open region enclosed by the boundary of f contains a vertex of C in �, then we say that
the two ears v1, v2 on the boundary of f are bounding ears of ca, cb in � with respect to C.
Moreover, we say that v1, v2 are a pair of matching bounding ears whose region corresponds
to f . The terms “outermost”, “innermost” and “(region of matching pair of) bounding ears”
are analogously defined for the right ears of ca, cb. Every vertex of � that is an outermost,
innermost, or bounding ear (with respect to some pair ca, cb œ C) is called crucial with
respect to C.

The core of � with respect to C is the (unique) subset of V that contains C, VØ3(C), as
well as all crucial ears of � with respect to C. The subdrawing �core of a visibility extension �
of � with respect C that is induced by the core of � with respect to C captures crucial

https://arxiv.org/abs/2404.16723
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structural properties of �, which we will exploit in our main algorithm for constructing
constrained level planar drawings in FPT-time. Due to the fact that �core has only O(|C|)
vertices and edges, it is not di�cult to “guess” �core in XP-time (via the process of exhaustive
enumeration) when given G and C. The main bottleneck is the enumeration of all possible
sets of crucial ears. To improve the runtime of this step to FPT -time, we will now describe
a variant of visibility extensions that contains some additional ears, which take over the
role of the original crucial vertices. Loosely speaking, one can create such a drawing by
placing one or two new ears near each crucial ear in a visibility extension. The resulting
augmentation retains the helpful structural properties of its underlying visibility extension
and we will see that the (positions of the) crucial vertices of some such augmentation can
be guessed more e�ciently since we can restrict the possible levels of these new vertices
to a small set. Formally, a refined visibilty extension �Õ of � is a crossing-free drawing of
a level graph G

Õ = (GÕ = (V Õ, EÕ), “Õ) such that G is a subgraph of GÕ, C is a vertex cover
of GÕ, every vertex in V Õ

\ V is an ear with respect to C and its incident edges are drawn as
y-monotone curves, the subdrawing of �Õ induced by V is a visibility extension � of �, the
crucial ears of �Õ are precisely the vertices in V Õ

\ V , and |V Õ
\ V | œ O(|C|).

(b)(a)

a

b

c d
ca

cb

Figure 1 In this (and all other) figure(s), filled square vertices belong to a vertex cover C of the
depicted graph and filled (round or square) vertices belong to the core of the shown drawing with
respect to C. (a) A drawing � (non-dashed edges) is augmented with visibility edges (dashed) to
obtain a visbility extension � with respect to C (note that this augmentation is not unique). The
thick (non-dashed or dashed) edges and filled vertices represent �core. (b) All filled round vertices
are top crucial ears of ca and cb. All of them are bounding ears except for b and c. The vertex a / b
/ c / d is an outermost left / outermost right / innermost left / innermost right ear.

I Lemma 7 (ı). Let G = (G = (V,E), “) be a level graph without isolated vertices, let C be
a vertex cover of G, let � be a level planar drawing of G, let � be a refined or non-refined
visibility extension of � with respect to C, and let �core the subdrawing of � induced by the
core of � with respect to C. Then �core is connected and has O(k) vertices and O(k) edges,
where k = |C|.

4 Algorithm

In this section, we describe the algorithm corresponding to the proof of Theorem 1. Let
G = (G = (V,E), “, (ªi)i) be a constrained level graph and let C be a vertex cover of G. Our
goal is to construct a constrained level planar drawing of G or correctly report that such a
drawing does not exist. In view of Lemma 4, we may assume that G has no isolated vertices.
To construct the desired drawing, we proceed in three main steps. In Step 1, we “guess” a
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core-induced subdrawing of a refined visibility extension of a constrained level planar drawing
of G with respect to C (via the process of exhaustive enumeration). In Step 2, we augment
our drawing by inserting the transition vertices of G with respect to C. In Step 3, we finalize
our drawing by inserting the leaves and ears of G with respect to C.

Step 1: Guessing a core-induced subdrawing. Assume that there is a constrained level
planar drawing �ú of G, let �ú be a refined visibility extension of �ú with respect to C,
and let �core be the subdrawing of �ú induced by the core of �ú with respect to C. The
procedures corresponding to Steps 2 and 3 of our algorithm are guaranteed to produce a
constrained level planar drawing (not necessarily �ú) of G when given �core. Hence, the goal
of Step 1 is to determine (or, rather, guess) �core, given G and C. More precisely, we will
construct a set F of drawings such that �core œ F and the number |F| of drawings in F

is su�ciently small. For each drawing in F , we then apply Steps 2 and 3 of the algorithm
(incurring a factor of |F| in the total running time). Given that �core œ F , one of the
iterations is guaranteed to terminate with a constrained level planar drawing of G.

I Lemma 8 (ı). Let G = (G = (V,E), “, (ªi)i) be a constrained level graph without isolated
vertices, let C be a vertex cover of G, and let �ú be a constrained level planar drawing of G.
There is an algorithm that, given G and C, constructs a set F of 2O(k log k) drawings in
2O(k log k)

·nO(1) time, where n = |V | and k = |C|, such that all drawings in F have size O(k)
and are level planar drawings of subgraphs of G induced by C and VØ3(C) that respect “
and the orderings ªi and are augmented by some visibility edges and additional ears (with
respect to C). Further, there exists a refined visibility extension �ú of �ú such that the
subdrawing �core of �ú induced by the core of �ú with respect to C is contained in F .

Proof sketch. We introduce the following terminology: let x be a vertex in a level planar
drawing (possibly augmented by some horizontal edges). Let ¸ be the y-coordinate of x
and let ¸Õ be the largest y-coordinate of a vertex below x (if there no such vertex, we
set ¸Õ = ¸ ≠ 1). We say that the line L(¸+¸Õ)/2 is directly below x. The line directly above x is
defined symmetrically.

We proceed in two main steps. In the first main step, we show that there exists a refined
visibility extension �ú of �ú. To this end, we start with a visibility extension � of �ú and
describe an incremental strategy that performs a total of O(k) augmentation steps, in each
of which a new ear is added that takes over the role of a crucial ear in �ú. (The description
of this first main step is deferred to the appendix of the full preprint version [28].) In the
second main step, we discuss the construction of the desired family F . To this end, let �core

be the subdrawing of �ú induced by the core of �ú with respect to C. The drawing �core is
uniquely described by G, C, the set of visibility edges of �core (and �ú), the set of crucial
ears of �core (and �ú) together with their level assignments and their incident edges, and a
compatible edge ordering of the nonhorizontal edges of �core. The graph G, as well as the
vertex cover C are given, so it su�ces to enumerate all possible options for the remaining
elements.

There are mvis œ O(k) visibility edges by Lemma 7 and each of these visibility edges joins
a pair of vertices in C. Hence, there are at most

!k
2

"mvis
™ kO(k)

™ 2O(k log k) possible options
for choosing the set of visibility edges. To enumerate the set of crucial ears along with their
level assignments, we mimic the aforementioned incremental strategy for constructing �ú: we
first enumerate all options to pick the pair of neighbors of the first new vertex along with its
level, then, for each of these options, we enumerate all options to pick the pair of neighbors
of the the second vertex along with its level, etc., until we have obtained all options to pick

https://arxiv.org/abs/2404.16723
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the desired O(k) vertices together with their levels. More precisely, suppose we have already
enumerated all options to pick the first i vertices together with their neighbors and levels.
For each of these options, to enumerate all options to pick the next vertex vÕ, we go through
all ways to pick its two neighbors u,w œ C and through all ways to pick the level of vÕ.
There are O(k) pairs of vertices in C with ears (by Lemma 7). To bound the number of ways
to pick the level of vÕ, we make use of the fact that whenever the incremental strategy for
constructing �ú places a new vertex vÕ, it is assigned to a new level directly above or below
a level of one of the following categories:

a level with a vertex in C (O(k) possibilities),
a level with a vertex in VØ3(C) (O(k) possibilities by Corollary 3),
a level of a vertex that does not belong to G, i.e., a level used for one of the already
placed vertices (O(i) ™ O(k) possibilities),
a level with a top-most or bottom-most vertex of G (O(1) possibilities),
a level with a top-most top ear, a top-most bottom ear, a bottom-most top ear, or a
bottom-most bottom ear of some pair of vertices in C (O(k) possibilities by Lemma 7),
a level with a top-most or bottom-most vertex of a connected component that contains
a vertex of C in the graph obtained by removing u and w from the current graph (G
together with the visbility edges and the already added vertices) (O(k) possibilities).

In total, for a fixed pair of neighbors u,w, there are thus O(k) options to pick a level for vÕ.
We immediately discard level assignments for which vÕ is no ear. By multiplying with the
number of ways to choose the neighbors, we obtain O(k2) options to choose vÕ and its level.
Multiplying the number of options for all O(k) steps together, we obtain a total number of
kO(k)

™ 2O(k log k) ways to create the set of crucial ears along with their levels. By multiplying
with the number of ways to choose the visibility edges, we obtain a total of 2O(k log k) options
to choose the graph that corresponds to �core. For each of these options we enumerate
all kO(k)

™ 2O(k log k) permutations of the set of non-horizontal edges and, interpreting the
permutation as a compatible edge order, try to construct a level planar drawing for which
this order is compatible (cf. Section 2). If we succeed, we check whether the drawing is
conform with (ªi)i and can be augmented with the horizontal visibility edges. If so, we
include the drawing in the set F of reported drawings. The size of the thereby constructed
set F is bounded by 2O(k log k) and it is guaranteed to contain �core by construction. J

Step 2: Inserting transition vertices. We now describe how to insert the transition vertices
into the core-induced subdrawing �core of the (refined) visibility extension �ú. Our plan
is to first show that in �ú, every transition vertex is placed “very close to” some visibility
edge. Intuitively, this means that the visibility edges of �core act as placeholders near which
the transition vertices have to be placed. We will describe a procedure that does so while
carefully taking into account the given partial orderings ªi and prove its correctness by
means of an (somewhat technical) exchange argument. To formalize the notion of “very
close to”, let e be an edge of a level planar drawing joining two vertices a, b such that there
is a degree-2 vertex t with neighbors a, b and “Õ(b) < “Õ(t) < “Õ(a) where “Õ is the level
assignment. We say that t is drawn in the vicinity of e with respect to a vertex set V Õ if the
simple closed curve formed by e and the two edges incident to t does not contain a vertex
of V Õ in its interior.

I Lemma 9 (ı). Let G = (G = (V,E), “, (ªi)i) be a constrained level graph without isolated
vertices, let C be a vertex cover of G, let �ú be a constrained level planar drawing of G,
let �ú be a refined or non-refined visibility extension of �ú with respect to C, and let �core

the subdrawing of �ú induced by the core of �ú with respect to C. There is an algorithm
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that, given G, C and �core, inserts all transition vertices V t
=2

(C) (and their incident edges)
into vicinities (with respect to C) of visibility edges in �core in polynomial time such that the
resulting drawing �t

core
can be extended to a drawing whose restriction to G is a constrained

level planar drawing of G.

Step 3: Inserting leaves and ears. In this step, we start with the output of Step 2 and
finalize our drawing by placing all the vertices that are still missing.

I Lemma 10. Let G = (G = (V,E), “, (ªi)i) be a constrained level graph without isolated
vertices, let C be a vertex cover of G, let �ú be a constrained level planar drawing of G, let �ú

be a refined or non-refined visibility extension of �ú with respect to C in which each transition
vertex is placed in the vicinity of some visibility edge with respect to C, and let �core (�t

core
)

be the subdrawing of �ú induced by the core (and the transition vertices) of �ú with respect
to C. There is an algorithm that, given G, C, �core and �t

core
, extends �core to a drawing �

whose restriction to G is a constrained level planar drawing of G in 2O(k2
log k)nO(1) time,

where n = |V |, k = |C|.
Proof. The only vertices of G that are missing in �t

core
are the leaves and the non-crucial

ears with respect to C (in case �ú is a refined visibility extension, the non-crucial ears are
exactly the ears of G). Our plan to insert them into our drawing is as follows. We begin by
introducing more structure in �t

core
and �ú by adding some additional visibility edges and

making some normalizing assumptions, which will simplify the description of the upcoming
steps. In particular, this step will ensure that for each missing ear, there are essentially
only (up to) two possible placements, which will allow us to enumerate all possible ear
placements (so-called ear orientations) on a given level in FPT-time. We then describe a
partition of the plane into so-called cells in a way that is very reminiscent of the well-known
trapezoidal decomposition from the field of computational geometry, cf. [11]. We merge some
cells into so-called channels, which correspond to connected y-monotone regions in which
the missing leaves along with their incident edges will be drawn (a region is y-monotone if
its intersection with every horizontal line is connected). We then introduce (and describe
an enumerative process that constructs in FPT-time) a so-called traversal sequence that is
compatible with �ú, which is a sequence of sets of channels with several useful structural
properties related to �ú. In particular, this sequence, in some sense, sweeps the plane from
left to right in a way where for each edge incident to a leaf in �ú, at some point there is
a channel that contains it. Exploiting the properties of the traversal sequence, we then
describe how to construct a so-called insertion sequence for the leaves on a given level with
respect to a given placement of the ears of that level in polynomial time. Such an insertion
sequence does not necessarily exist for every placement of ears, but we are guaranteed to find
one by enumerating all possible ear placements of the level. This computation is performed
independently for each level. Finally, we show how to construct in polynomial time the
desired drawing � when given an insertion sequence along with its ear placement for each
level. Notably, the final step can be executed even if some of the ear placements are di�erent
from the ones used in �ú. Let us proceed to formalize these ideas.

Augmenting and normalizing �core, �t
core, and �ú

. Let e = (u, v) be a visibility edge of
�ú (and �t

core
) that has at least one transition vertex in its vicinity. In both �t

core
and �ú,

we add two copies of e; one directly to the left of the leftmost transition vertex and the other
directly to the right of the rightmost transition vertex in the vicinity of e, which is possible
to do in a y-monotone fashion and without introducing any crossings; see Figure 2(a). Note
that the region enclosed by these two edges only contains transitions vertices of u and v, as
well as leaves of u or v. We repeat this operation for all visibility edges e.
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The following steps are illustrated in Figure 2(b). Let f be a face of �t
core

that is bounded
by four vertices v1, v2, u1, u2 where v1, v2 œ C and u1, u2 œ V{v1,v2} are either both left
ears or both right ears. Without loss of generality, assume they are both left ears with
“(v1) Æ “(v2) < “(u1) < “(u2). We add copies of the edges (v1, u2) and (v2, u2) in f in both
�t
core

and �ú, which can be done without introducing crossings. These edges partition f into
three regions. Note that in �ú these regions only contain leaves and non-crucial ears. Without
loss of generality, we will assume that each leaf in f is either placed in the region bounded
by (v1, u2) and its copy or the region bounded by (v2, u2) and its copy (note that a leaf v
that is adjacent to v1 cannot have a constraint of the form w ªi v, where w is a non-crucial
ear in f ; the situation for leaves adjacent to v2 is symmetric). Thus, the remaining (central)
third region only contains non-crucial ears and is henceforth called an ear-face of �t

core
. We

repeat this modification for all faces such as f .
For the remainder of the proof, �t

core
and �ú are used to refer to the thusly augmented

and normalized drawings. We also add all the new edges to �core and use �core to refer to
this augmentation. Note that this implies that it now su�ces to search for a drawing of G in
which every non-crucial ear is placed in an ear-face, whereas no leaf is placed in an ear-face.

(a)

(b)

(c)

v

r

u

v

e

u

v

e

v1
v2

u1

u2

v1
v2

u1

u2

Figure 2 Like in all figures, filled square vertices belong to a vertex cover C of the depicted
graph and filled (round or square) vertices belong to the core of the shown drawing with respect
to C. Figures (a) and (b) visualize how �core, �t

core, and �ú are augmented by (a) enclosing
transition vertices and (b) creating ear-faces with visibility edges (dashed). Moreover, (b) illustrates
our normalizing assumption, i.e., the leaf can be moved to the exterior of the ear-face without
violating any constraints. (c) The drawing �t

core with its additional visibility edges (dashed) from
the augmentation step and the horizontal rays and segments (thick, red) from the cell decomposition.
The shaded region corresponds to a channel (v, r, R) from v œ C to the cell r with |R| = 2.

Decomposition into cells. We will now describe a partition of the plane that essentially
corresponds to a trapezoidal decomposition (cf. [11]) of �core; for illustrations refer to
Figure 2(c): for each vertex v in �core, shoot a horizontal ray from v to the left until hitting
an edge or vertex of �core, then add the corresponding segment to �core. In case the ray does
not intersect any part of �core, add the ray itself to �core. Perform a symmetric augmentation
by shooting a horizontal ray from v to the right. The maximal connected regions of the
resulting partition of the plane are henceforth called cells. We consider the cells to be closed.
Note that each cell is y-monotone and bounded by up to two horizontal segments or rays
and up to two y-monotone curves. By Lemma 7, �core has O(k) vertices and edges (note
that the augmentation step copies each edge at most twice) and, hence, it has O(k) faces.
Consequently, the number of cells is also O(k) since the insertion of a single segment or ray
can only increase the number of faces (or, rather, maximal connected regions) by one.
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Channels. Let v œ C, let R be a set of cells that do not belong to ear-faces, and let r œ R.
Further, assume that R contains a cell that is incident to v. The triple c = (v, r,R) is a
channel from v to r if it is possible to draw a y-monotone curve in �t

core
in the interior of the

union of R that intersects each cell in R and does not cross any edge of �t
core

; as illustrated
in Figure 2(c). We say that c can be used by a leaf w œ V{v} and that the edge ew incident
to w can be drawn in c if ew can be drawn in �t

core
in the union of R without any crossings

and there is no channel (v, rÕ, RÕ) with this property for which RÕ
µ R. Further, we say that

c is used by w if it can be used by w and the edge incident to w is drawn in the union of
R in �ú. We use U to denote the set of all channels and Uused ™ U to denote the set of all
channels that are used. The connectivity of �t

core
(cf. Lemma 7) can be used to show:

B Claim 11 (ı). |Uused| Æ |U | œ O(k2).

Traversal sequences. Let U = (U1,U2, . . . ,Um) be a sequence of sets of channels. We say U

is a traversal sequence if the following properties are fulfilled (see Figure 3 for illustrations):
(T1) Let i œ [m] and let (v, r,R) œ Ui and (vÕ, rÕ, RÕ) œ Ui with v ”= vÕ. Then the intersection

of the line L“(v) with the interior of the union of RÕ is empty.
(T2) Let c be a channel and let a Æ b be two indices such that c œ Ua and c œ Ub. Then for

every a Æ i Æ b, c œ Ui.
We say a channel u is active in Ui if it is contained in it, and otherwise it is inactive in
it. We say a traversal sequence U = (U1,U2, . . . ,Um) is compatible with �ú if the following
conditions are satisfied (refer again to Figure 3 for illustrations):
(C1) For every channel c, there exists an i œ [m] such that c œ Ui if and only if c is used.
(C2) There exists a compatible edge ordering ª

e for the restriction of �ú to its nonhorizontal
edges (recall that some visibility edges are horizontal) such that:
a. Let e, eÕ be two edges that are incident to leaves and where e ª

e eÕ, let c be the
channel used by e, and let cÕ be the channel used by eÕ. Then there exist indices i, iÕ
such that i Æ iÕ and c œ Ui, cÕ

œ UiÕ .
b. Let c1, c2 œ Uused such that for every edge e1 using c1 and for every edge e2 using c2

we have e1 ª
e e2. Then there is no index i œ [m] such that Ui contains both c1 and

c2 (and every index for which c1 is active is smaller than every index where c2 is
active).

c. For every pair of used channels c1, c2 such that c2 is being used by an edge e that
succeeds all edges that use c1 in ª

e there exists an index i such that c2 œ Ui and
c1 /œ Ui (and c1 is active for some index smaller than i).

B Claim 12 (ı). There exists a traversal sequence U = (U1,U2, . . . ,Um) that is compatible
with �ú and whose length is m œ O(k2). Moreover, there is an algorithm that, given G, C
and �t

core
, computes a set of 2O(k2

log k) traversal sequences that contains U in 2O(k2
log k)nO(1)

time.

B Claim 13 (ı). Let U = (U1,U2, . . . ,Um) be a traversal sequence that is compatible with �ú,
let i œ [m], and let v be a leaf. Then Ui contains at most channel that can be used by v.

Ear orientations. Let i œ [h] and let V e

i ™ Vi be all non-crucial ears on the ith level. Further,
consider a mapping s : V e

i æ {left, right}. We say that s is an ear orientation of level i. We
say that s is valid if it is possible to insert the ears V e

i (on the line Li) along with their
incident edges into �t

core
such that the resulting drawing � is crossing-free, no constraint is

violated (i.e., if u ªi v, then u is placed to the left of v), and for every v œ V e

i , we have that
v is a left ear if and only if s(v) = left. We say that � is induced by s. Note that for any ear
v œ V e

i there is at most one left ear-face and at most one right ear-face into which it can be
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c2
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U1 U2 U3 U4 U5 U6 U7 U8 U9

(a) (b)

(c)

Figure 3 Like in all figures, filled square vertices belong to a vertex cover C of the depicted graph.
(a) The drawing �ú together with its cell decomposition. (b) The dashed (green) “edges” represent
the used channels c1 . . . , c6 of �ú leading from vertices of C to cells in R, which are represented
by unfilled (red) squares. (c) A traversal sequence compatible with �ú for which Property (C2) is
satisfied for any compatible edge ordering that contains the edges of v1, v2, . . . , v9 in this order.

inserted without introducing crossings. Hence, a valid ear orientation uniquely describes the
ear-face in which each ear is placed. Further, note that no two ears of V e

i can be placed in
the same ear-face without introducing crossings. In contrast, whenever an ear orientation
assigns only one ear to a given ear-face, it is possible to place the ear without introducing
crossings. These properties make it easy to test whether a given ear orientation is valid and,
if so, construct the (unique) induced drawing in polynomial time. In view of Lemma 5, this
means we can enumerate all valid ear orientations of a given level in 22knO(1) time.

Insertion sequences. Let U = (U1,U2, . . . ,Um) be a traversal sequence that is compatible
with �ú. Further, let i œ [h], let s be a valid ear orientation of level i, and let � be its induced
drawing. Finally, let Q = (Q1, Q2, . . . , Qq) be a sequence with Qt = (v, j), v œ Vi fl V=1, and
1 Æ j Æ m for all 1 Æ t Æ q. We say Q is an insertion sequence for i, s, and U if the following
conditions are fulfilled (for an example, see Figure 4):
(I1) Let v œ Vi fl V=1. Then there exists at most one index t such that v œ Qt.
(I2) Let Qx = (vx, jx) œ Q and Qy = (vy, jy) œ Q with x < y. Then jx Æ jy.
(I3) Let Qx = (v, j) œ Q. Then there exists a channel c œ Uj that can be used by v.
(I4) Let Qx = (v, j) œ Q. Then for every w œ Vi fl V=1 with w ªi v, there exists an index

xÕ < x such that w œ QxÕ .
(I5) Let Qx = (v, j) œ Q and let (v, r,R) œ Uj be the (unique, by Claim 13) channel usable

by v in Uj . Then for every w œ Vi \ V=1 that is not a transition vertex in r and where
v ªi w, w is to the right of r or on the right boundary of r. Symmetrically, for every
w œ Vi \ V=1 that is not a transition vertex in r and where w ªi v, w is to the left of r
or on the left boundary of r.
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Let Q = (Q1, Q2, . . . , Qq) be an insertion sequence for i, s, and U . We say a leaf v œ Vi flV=1

is choosable with regard to Q if (i) there exists an index j, such that (Q1, Q2, . . . , Qq, (v, j))
is an insertion sequence for i, s, and U as well and (ii) there exists no pair vÕ, jÕ, with
vÕ

œ Vi fl V=1 and jÕ < j such that Q = (Q1, Q2, . . . , Qq, (vÕ, jÕ)) is an insertion sequence.

v1
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v3
v4

v5
v6 v7 v8 v9 v10 v11

v12

c1
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c3

c4
c5

c6

c7 c8
c9

c10
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v3

v4

v10

v11

v12
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v5
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v7

v8

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

c1
c2
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c4
c5
c6
c7
c8
c9
c10

v1

v2

v3 v5

v4

v6 v7 v8

v9 v12

v11 v10

(a) (b)

(c) (d)

Figure 4 Like in all figures, filled square vertices belong to a vertex cover C of the de-
picted graph. (a) The drawing �ú together with its cell decomposition. (b) The dashed
(green) “edges” represent the used channels c1, . . . , c10 of �ú leading from vertices of C to
cells in R represented by unfilled (red) squares. Figure (c) shows the constraints between the
vertices of the third level depicted in (a) and Figure (d) illustrates the insertion sequences
Q = ((v1, 1), (v2, 2), (v3, 3), (v4, 4), (v5, 4), (v6, 6), (v7, 6), (v8, 6), (v9, 9), (v12, 9), (v11, 10), (v10, 10)) for
this level and the depicted traversal sequence U = (U1, . . . ,U12). Note that the order of the vertices
in Q is di�erent from the one in �ú.

B Claim 14 (ı). Let U = (U1,U2, . . . ,Um) be a traversal sequence that is compatible with �ú

and let ª
e be a compatible edge ordering for the restriction of �ú to its nonhorizontal edges,

for which Property (C2) is fulfilled for U . Further, let i œ [h] and let s be the valid ear
orientation of level i that is used in �ú. For every q œ {0, 1, . . . , |Vi fl V=1|}, there exists
an insertion sequence Qq = (Q1, Q2, . . . , Qq) for i, s, and U such that the following two
properties are satisfied (for an example, see Figure 4):
Interval property: For every vertex v œ Vi fl V=1 there exists at most one nonempty maximal
interval [a, b] where 0 Æ a Æ b Æ q such that v is choosable with regard to Qj if and only if
a Æ j Æ b. If such an interval [a, b] exists, then b = q or v œ Qb+1. Conversely, if v occurs in
some entry of Qq, then the interval exists.
Dominance property: Let ª

l
i be the restriction of ª

e to edges incident to leaves on level i.
Further, let Q¸ = (v¸, j¸) œ Qq, let v¸Õ œ Vi fi V=1, and let e¸ (e¸Õ) be the edge incident to v¸

(v¸Õ). Then, if e¸ ª
l
i e¸Õ or v¸ = v¸Õ , we have j¸ Æ jÕ, where jÕ is the maximum index such

that the channel cÕ used by v¸Õ (in �ú) is in UjÕ .
Moreover, Qk is a prefix of Qk+1 for all 0 Æ k Æ |Vi flV=1|≠ 1. Finally, there is an algorithm
that, given G, C, �t

core
, U , i and s, computes Q|ViflV=1| in polynomial time.
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Computing the drawing. When given a traversal sequence that is compatible with �ú, we
can utilize Claim 14 to obtain a valid ear orientation together with an insertion sequence for
a given level by simply trying to apply the algorithm corresponding to Claim 14 for all valid
ear orientations of that level. We do so for each level and then use the gathered information
to construct the desired drawing by means of the following claim. We remark that when the
algorithm corresponding to Claim 14 successfully terminates, it is guaranteed to return an
insertion sequence for the given valid ear orientation. It might output an insertion sequence
even if the given valid ear orientation is not the one used in �ú. However, this does not
invalidate our strategy as the following claim does not require that the given ear orientations
are the ones used in �ú.

B Claim 15 (ı). There is an algorithm that, given G, C, �core, �t
core

, a traversal sequence
U = (U1,U2, . . . ,Um) that is compatible with �ú, and, for each level i œ [h], a valid ear
orientation si, as well as an insertion sequence Q

i = (Qi
1
, Qi

2
, . . . , Qi

qi) for i, si, and U such
that qi = |Vi fl V=1| (that is, Qi contains all leaves of level i), computes an extension of �core

whose restriction to G is a constrained level planar drawing of G in polynomial time.

Wrap-up. In the beginning of (and throughout the) proof of Lemma 10, we have already
sketched how the individual pieces of the proof fit together. We formally summarize our
strategy in the proof of the following claim.

B Claim 16 (ı). There is an algorithm that, given G, C, �core and �t
core

, extends �core to a
drawing � whose restriction to G is a constrained level planar drawing of G in 2O(k2

log k)nO(1)

time.

This concludes the proof of Lemma 10. J

Summary. In the beginning of Section 4, we have already sketched how Lemmas 4 and 8–10
can be combined to obtain Theorem 1. We formally summarize:

I Theorem 17 (ı). There is an algorithm that, given a constrained level graph G = (G =
(V,E), “, (ªi)i) and a vertex cover C of G, either constructs a constrained level planar
drawing of G or correctly reports that such a drawing does not exist in time 2O(k2

log k)
·nO(1),

where n = |V | and k = |C|.
Given that a smallest vertex cover can be obtained in FPT-time with respect to its

size [10], our main result (Theorem 1) follows from Theorem 17.

5 Discussion

We have shown that CLP is FPT when parameterized by the vertex cover number. A speed-
up to polynomial time or a generalization to the smaller graph parameters (in particular,
tree-depth, path-width, tree-width, and feedback vertex set number) is not possible, even if
restricting to OLP or proper CLP instances.

Recall from Section 1 that in the Level Planarity variant Partial Level Planarity

(PLP), a given level planar drawing of a subgraph of the input graph G has to be extended
to a full drawing of G, which can be seen as a generalization of OLP and, in the proper
case, a specialization of CLP. An instance of PLP can always be turned into an equivalent
proper instance (and, thus, a CLP instance) by subdividing each edge on each level it passes
through. However, in general this operation will (dramatically) increase the vertex cover
number of the instance. Hence, our techniques cannot (directly) be applied. It thus is an
interesting problem to study the parameterized complexity of PLP with respect to the vertex
cover number.
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Abstract

We consider fast algorithms for monotone submodular maximization with a general matroid constraint.
We present a randomized (1≠1/e≠ ‘)-approximation algorithm that requires Õ‘(

Ô
rn) independence

oracle and value oracle queries, where n is the number of elements in the matroid and r Æ n is the rank
of the matroid. This improves upon the previously best algorithm by Buchbinder-Feldman-Schwartz
[Mathematics of Operations Research 2017] that requires Õ‘(r2 +

Ô
rn) queries.

Our algorithm is based on continuous relaxation, as with other submodular maximization
algorithms in the literature. To achieve subquadratic query complexity, we develop a new rounding
algorithm, which is our main technical contribution. The rounding algorithm takes as input a point
represented as a convex combination of t bases of a matroid and rounds it to an integral solution.
Our rounding algorithm requires Õ(r3/2t) independence oracle queries, while the previously best
rounding algorithm by Chekuri-Vondrák-Zenklusen [FOCS 2010] requires O(r2t) independence oracle
queries. A key idea in our rounding algorithm is to use a directed cycle of arbitrary length in an
auxiliary graph, while the algorithm of Chekuri-Vondrák-Zenklusen focused on directed cycles of
length two.
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1 Introduction

1.1 Submodular Maximization

Submodular maximization is a fundamental and well-studied problem in theoretical computer
science and combinatorial optimization. This is because a number of important problems
can be regarded as special cases of submodular maximization, including maximum coverage,
generalized assignment, and facility location. Furthermore, submodular maximization has
many practical applications in machine learning, economics, and many other areas. In
the submodular maximization problem, the input consists of a (monotone) submodular set
function f : 2V æ R+ and a feasible region F ™ 2V specified by some constraints, and the
aim is to find a set S œ F maximizing f(S).
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100:2 Subquadratic Submodular Maximization with a General Matroid Constraint

The study of submodular maximization was initiated by a seminal work of Fisher,
Nemhauser, and Wolsey in the 1970’s [26,34,35]. They showed that, for monotone submodular
maximization, the greedy algorithm achieves (1 ≠ 1/e)-approximation for a cardinality
constraint and 1

2
-approximation for a matroid constraint. The advantage of their algorithm

is that it is very simple and fast, indeed, it runs in quadratic time. It is known that unless
P = NP, for any Á > 0, there is no (1 ≠ 1/e+ Á)-approximation algorithm for the maximum
coverage problem [24], which is a special case of monotone submodular maximization with
a cardinality constraint or a matroid constraint. Thus, the factor 1 ≠ 1/e is optimal for a
cardinality constraint.

To obtain an optimal (1 ≠ 1/e)-approximation algorithm for a matroid constraint,
Calinescu-Chekuri-Pál-Vondrák [13] developed a framework based on continuous optimization
and rounding technique. In their algorithm, they first solve the continuous optimization
problem of maximizing the multilinear extension F of f , a natural continuous extension of f .
By using a continuous greedy algorithm, they obtain a (1 ≠ 1/e)-approximation solution for
the continuous optimization problem. In order to round the obtained fractional solution to
an integral one, they use a variant of the pipage rounding technique of Ageev-Sviridenko [1].
Consequently, their algorithm achieves the optimal (1 ≠ 1/e)-approximation. Note that,
although their algorithm runs in polynomial time, its running time is very high.

Since submodular maximization has a number of applications, providing e�cient ap-
proximation algorithms is a fundamental task both in theory and in practice. Thus, it has
received considerable attention to develop fast submodular maximization algorithms that
achieve an approximation close to the optimal factor, typically with an approximation factor
of 1 ≠ 1/e ≠ Á for any Á > 0.

In the submodular maximization problem with a general matroid constraint, it is standard
to suppose that the objective function f is given as a value oracle, and the feasible region
F ™ 2V is given as an independence oracle of a matroid. In such a case, the e�ciency of an
algorithm is usually measured by the number of value and independence oracle queries used
in it.

Badanidiyuru-Vondrák [3] presented a fast algorithm that achieves an almost optimal
approximation factor 1≠1/e≠Á, for any Á > 0, for a matroid constraint. Their algorithm uses
O

!
rn

Á4 log2
!
n

Á

""
value oracle queries and O

1
n

Á2 log
!
n

Á

"
+ r

2

Á

2
independence oracle queries,

where n is the number of elements in the matroid and r is the rank of the matroid. To
achieve this query complexity, they developed a fast implementation of the continuous greedy
algorithm that uses ÕÁ(rn) value oracle queries and ÕÁ(n) independence oracle queries.1
The output of their continuous greedy algorithm is a fractional solution represented as a
convex combination of 1/Á bases. Then, they apply the swap rounding algorithm of Chekuri-
Vondrák-Zenklusen [18] to round the obtained fractional solution to an integral solution,
which requires O(r2/Á) independence oracle queries.

Buchbinder-Feldman-Schwartz [12] presented a (1≠1/e≠Á)-approximation algorithm that
has a trade-o� between the number of value oracle queries and the number of independence
oracle queries used in the algorithm. In their algorithm, they combine a variant of the residual
random greedy algorithm of Buchbinder-Feldman-Naor-Schwartz [11] and the fast continuous
greedy algorithm of Badanidiyuru-Vondrák described above. Then, for a parameter ⁄ œ [1, r],
their algorithm uses ÕÁ(r⁄ + rn

⁄
) value oracle queries and ÕÁ(⁄n+ r

2) independence oracle
queries. We note that the ÕÁ(r2) term in the independence query complexity is due to

1 The ÕÁ notation hides polylogarithmic factors in n and polynomial factors in Á
≠1.
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the rounding algorithm in the same way as the algorithm of Badanidiyuru-Vondrák. If
we evaluate the algorithm by the total number of queries regardless of their types, then
the query complexity is minimized when ⁄ = �(

Ô
r). In this case, their algorithm uses

ÕÁ(r2 +
Ô
rn) value and independence oracle queries. This query complexity is better than

that of Badanidiyuru-Vondrák [3] when r = o(n), but a quadratic number of queries is still
required when r is large.

Recently, for several important classes of matroids, faster algorithms for monotone
submodular maximization with a matroid constraint have been investigated. Ene-Nguy˜̂en [22]
presented a (1≠ 1/e≠ Á)-approximation algorithm for graphic matroid and partition matroid
constraints in time nearly-linear in the size of their representation. Henzinger-Liu-Vondrák-
Zheng [27] presented a (1 ≠ 1/e ≠ Á)-approximation algorithm for laminar matroid and
transversal matroid constraints in nearly-linear time. A key ingredient in these algorithms is
a fast dynamic data structure for maintaining an (approximate) maximum weight basis of
the matroid.

1.2 Our Results

This paper focuses on the monotone submodular maximization problem with a general
matroid constraint. In the problem, this input consists of a monotone submodular set
function f : 2V æ R+ given as a value oracle, and a matroid M = (V, I) given as an
independence oracle. The objective is to find an independent set S œ I that maximizes
f(S). For – œ [0, 1], a randomized algorithm is said to be an –-approximation algorithm if it
returns a solution S œ I with E[f(S)] Ø – ·max{f(T ) | T œ I}. A randomized algorithm is
often called simply an algorithm throughout the paper. Our main result is to give a first
(1 ≠ 1/e ≠ Á)-approximation algorithm for this problem that requires a subquadratic number
of queries. Recall that n = |V | and r is the rank of M.

I Theorem 1. For any Á > 0, there is a randomized algorithm that achieves (1 ≠ 1/e ≠ Á)-
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O(

Ô
rn poly(1/Á, logn)) value and independence oracle queries.

It is worth mentioning that, for the case of r = �(n), our algorithm uses ÕÁ(n3/2) oracle
queries, whereas the algorithm of Buchbinder-Feldman-Schwartz [12] uses ÕÁ(n2) oracle
queries.

Our algorithm is based on continuous relaxation and rounding technique in the same
way as previous algorithms [3, 12, 13]. In this framework, currently, the bottleneck of the
query complexity comes from the rounding algorithm. Indeed, the swap rounding algorithm
by Chekuri-Vondrák-Zenklusen [18] requires O(r2t) independence oracle queries if the input
point is represented as a convex combination of t bases of the matroid. Then, this rounding
algorithm requires a quadratic number of independence oracle queries even when t is small.
Therefore, in order to break the quadratic-independence-query barrier in this framework, it
is necessary to devise a faster rounding algorithm.

The key technical contribution of this paper is to develop a new rounding algorithm that
uses o(r2t) independence oracle queries.

I Theorem 2. For any Á > 0, there is a randomized algorithm satisfying the following
conditions:

the input consists of a matroid M = (V, I) given as an independence oracle and a point
x in the base polytope of M that is represented as a convex combination of t bases,
the output is a basis S of M such that E[f(S)] Ø (1≠Á)F (x) for any submodular function
f : 2V æ R and its multilinear extension F , and
it uses O(r3/2t log3/2( rt

Á
)) independence oracle queries.

ICALP 2024



100:4 Subquadratic Submodular Maximization with a General Matroid Constraint

By combining this theorem with the submodular maximization algorithm by Buchbinder-
Feldman-Schwartz [12], we obtain Theorem 1; see Section 3 for details.

We also show that if the matroid is given as a rank oracle instead of an independence
oracle, then we obtain a (1 ≠ 1/e≠ Á)-approximation algorithm using ÕÁ(n+ r

3/2) value and
rank oracle queries.

I Theorem 3. For any Á > 0, there is a randomized algorithm that achieves (1 ≠ 1/e ≠ Á)–
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O((n+ r

3/2) poly(1/Á, logn)) value and rank oracle queries.

1.3 Overview of Our Rounding Algorithm

In this subsection, we give a technical overview of our new rounding algorithm. Since our
rounding algorithm is based on that of Chekuri-Vondrák-Zenklusen [18], we first review their
algorithm and then explain the key ideas behind ours.

Swap Rounding Algorithm of Chekuri-Vondrák-Zenklusen. The rounding algorithm by
Chekuri-Vondrák-Zenklusen is called the swap rounding algorithm. Their algorithm takes as
input a point x represented as a convex combination of t bases of M and returns an integral
solution S such that E[f(S)] Ø F (x) for any submodular function f and its multilinear
extension F . In each phase of the algorithm, we pick up two bases in the representation of
x and merge them into a single basis. By applying this procedure t ≠ 1 times, we obtain a
single basis of M.

In order to merge two bases, say B1 and B2, their swap rounding algorithm uses a strongly
exchangeable pair of elements, that is, a pair of elements u œ B1 \B2 and v œ B2 \B1 such
that B1 + v ≠ u œ I and B2 + u ≠ v œ I. Since we can find a strongly exchangeable pair
using O(r) independence oracle queries and we need to find such a pair O(rt) times in the
algorithm, the total number of queries is O(r2t). It is still not clear whether we can develop
an algorithm for finding a strongly exchangeable pair using o(r) independence oracle queries,
and hence their algorithm is now stuck at �(r2t) independence oracle queries.

See Section 4 for details of the swap rounding algorithm of Chekuri-Vondrák-Zenklusen.

Our Faster Rounding Algorithm. We develop a new rounding algorithm that requires
Õ(r3/2t) independence oracle queries with high probability. Our rounding algorithm is based
on that of Chekuri-Vondrák-Zenklusen in a sense that we update bases by swapping a pair of
elements O(rt) times. Therefore, in each step of our algorithm, we need to update some basis
by using only Õ(

Ô
r) independence oracle queries. To achieve this, we need substantially new

ideas.
First, we introduce a digraph that represents exchangeability of the elements in the

matroid (see Definition 8), and provide a new interpretation of the swap rounding algorithm
of Chekuri-Vondrák-Zenklusen using this auxiliary graph. Indeed, each step of their algorithm
can be seen as an update using a directed cycle of length two in the auxiliary graph. This
interpretation motivates us to focus on a directed cycle of arbitrary length in the auxiliary
graph instead of a directed cycle of length two. By extending the argument of Chekuri-
Vondrák-Zenklusen, we show that we can appropriately update bases using a directed cycle
of arbitrary length in the auxiliary graph.

Second, we show that we can find a directed cycle in the auxiliary graph using o(r)
independence oracle queries with high probability, which is the most technical part in our
argument. To achieve this, we combine sampling technique and binary search technique.
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In our algorithm for finding a directed cycle in the auxiliary graph, we first sample Õ(
Ô
r)

vertices, and define D
Õ as the subgraph induced by the sampled vertex set. If every vertex in

D
Õ has an incoming edge, then we can easily find a directed cycle in D

Õ by traversing such
directed edges in the opposite direction. Otherwise, by using a vertex with no incoming
edge, we find a directed cycle of length two using Õ(

Ô
r) independence oracle queries with

high probability. We can check whether each vertex in D
Õ has an incoming edge or not using

Õ(1) independence oracle queries with the aid of the binary search technique proposed by
Nguyễn [36] and Chakrabarty-Lee-Sidford-Singla-Wong [14]; see Lemma 4 for details. Note
that this technique was used in recent studies on fast matroid intersection [8,10,14,36,39] and
matroid partition [38] algorithms. Therefore, we obtain an algorithm that finds a directed
cycle using Õ(

Ô
r) independence oracle queries with high probability.

In our rounding algorithm, we update bases using a directed cycle in the auxiliary
graph repeatedly. Since we update bases O(rt) times and each update requires Õ(

Ô
r)

independence oracle queries, the total number of independence oracle queries is Õ(r3/2t)
with high probability.

1.4 Related Work

We have mentioned several recent studies on fast submodular maximization with matroid
constraints in Section 1.1. Other than these, there are a lot of studies on fast submodular
maximization algorithms in the literature [2, 3, 15,20,25,30,32].

Badanidiyuru-Vondrák [3] developed a (1 ≠ 1/e ≠ Á)-approximation algorithm using
O(n

Á
log(n

Á
)) value oracle queries for the cardinality constraint. Mirzasoleiman-Badanidiyuru-

Ashwinkumar-Karbasi-Vondrák-Krause [32] developed a (1≠1/e≠Á)-approximation algorithm
using O(n log(1/Á)) value oracle queries for the cardinality constraint. Ene-Nguy˜̂en [20]
developed a (1 ≠ 1/e ≠ Á)-approximation algorithm using (1/Á)O(1/Á

4
)
n log2 n value oracle

queries for the knapsack constraint. Filmus-Ward [25] presented a combinatorial (1 ≠ 1/e)-
approximation algorithm for monotone submodular maximization with a matroid constraint,
which uses O(n7

r
2) oracle queries. They also obtain a (1 ≠ 1/e ≠ O(Á))-approximation

algorithm that uses O(Á≠3
n
4
r) value oracle queries and O(Á≠1

n
2
r logn) independence oracle

queries.
Studies on fast submodular maximization algorithms have developed also in the direction

of parallelized settings [4, 5, 16, 21, 23], distributed settings [7, 31], and dynamic settings
[6, 19,29,33].

Chekuri-Quanrud-Torres [17] developed a fast swap rounding algorithm for graphic
matroid constraints to obtain fast approximation algorithms for the Bounded Degree MST
problem and the Crossing Spanning Tree problem.

1.5 Paper Organization

The remaining of this paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we show how to derive Theorem 1 from our fast rounding algorithm in Theorem 2.
In Section 4, we describe the swap rounding algorithm by Chekuri-Vondrák-Zenklusen [18]
in detail, because it is the basis of our rounding algorithm. In Section 5, we describe our fast
rounding algorithm and prove Theorem 2, which is the main technical part of this paper. In
Section 6, we discuss the rank oracle setting and prove Theorem 3.

ICALP 2024



100:6 Subquadratic Submodular Maximization with a General Matroid Constraint

2 Preliminaries

Basic Notation. Let R+ denote the set of non-negative real numbers. Throughout this
paper, let V be a finite set and let n denote its cardinality. For a set A ™ V and an element
v œ V , we will often write A+v := Afi{v} and A≠v := A\{v}. For two sets A,B ™ V , their
symmetric di�erence is denoted by A—B := (A \B)fi (B \A). For A ™ V , the characteristic
vector of A is defined as the vector x œ {0, 1}V with xv = 1 for v œ A and xv = 0 for
v œ V \ A. We will denote by 1A the characteristic vector of A. For v œ V , we will write
1v := 1{v}.

Submodular Functions and Multilinear Extension. Let f : 2V æ R+ be a set function on a
finite ground set V of size n. The function is submodular if f(A)+f(B) Ø f(AfiB)+f(AflB)
for any two subsets A,B ™ V . The function is monotone if f(A) Æ f(B) for any subsets
A ™ B ™ V . In this paper, we only consider monotone submodular functions.

For a function f : 2V æ R+, we define its multilinear extension F : [0, 1]V æ R+ by

F (x) =
ÿ

S™V

f(S)
Ÿ

vœS

xv

Ÿ

vœV \S

(1 ≠ xv)

for x œ [0, 1]V . Note that this value is equal to E[f(R(x))], where R(x) is a random set that
contains each element v œ V independently with probability xv. In particular, F (1S) = f(S)
for any S ™ V .

Matroids. A pair M = (V, I) of a finite set V and a non-empty set family I ™ 2V is called
a matroid if the following properties are satisfied.

(Downward closure property) if S œ I and S
Õ ™ S, then S

Õ œ I.
(Augmentation property) if S, SÕ œ I and |SÕ| < |S|, then there exists v œ S \ SÕ such that

S
Õ + v œ I.

A set S ™ V is called independent if S œ I and dependent otherwise. The rank of M
is defined as the size of a largest independent set. In addition, for a subset S ™ V , the
rank of S is defined as the size of a largest independent set contained in S. Inclusionwise
maximal independent sets are called bases. Note that every basis has the same size. For an
independent set S œ I, let M/S = (V \ S, I Õ) be the matroid obtained by contracting S in
M, that is, SÕ œ I Õ if and only if SÕ fi S œ I.

Let B be the set of all bases of a matroid M = (V, I) and let B,B
Õ œ B be two bases. It

is well-known that, for any u œ B \BÕ, there exists v œ B
Õ \B such that B ≠ u+ v œ B and

B
Õ ≠ v + u œ B (see e.g., [37, Theorem 39.12]). This property is called strong basis exchange

property of matroids.
Let M = (V, I) be a matroid whose rank function and basis family are denoted by

rM and B, respectively. The matroid polytope P (M) is defined as the convex hull of the
characteristic vectors of all the independent sets of M. The matroid base polytope B(M) is
defined as the convex hull of the characteristic vectors of all the bases of M. It is well-known
that P (M) and B(M) are described as follows (see e.g., [37, Section 40.2]):

P (M) := conv{1I | I œ I} =
I
x œ RV

+

-----
ÿ

vœS

xv Æ rM(S) for any S ™ V

J
,

B(M) := conv{1B | B œ B} =
I
x œ P (M)

-----
ÿ

vœV

xv = rM(V )
J
.
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Oracles. When we consider the submodular maximization problem, we assume that the
submodular function f is given as a value oracle, which takes as input any subset S ™ V

and outputs f(S). We also assume that we access a matroid M through an oracle. Given a
subset S ™ V , an independence oracle outputs whether S œ I or not. Given a subset S ™ V ,
a rank oracle outputs the rank of S, i.e., the size of a largest independent set contained in S.
Note that the rank oracle is more powerful than the independence oracle, since one query of
the rank oracle can determine whether a given subset is independent or not.

Binary Search Technique. For a matroid M = (V, I), an independent set S œ I, an
element u œ V \ S, and T ™ S, we consider a procedure that finds an element v œ T with
S + u ≠ v œ I if one exists. Chakrabarty et al. [14] and Nguyễn [36] independently proved
that this procedure can be implemented e�ciently by using the binary search technique in
the independence oracle model. Their result is formally described as follows.

I Lemma 4 ( [14,36]). There is an algorithm FindExchangeElement which, given a matroid
M = (V, I), an independent set S œ I, an element u œ V \ S, and T ™ S, finds an element
v œ T such that S + u ≠ v œ I or otherwise determines that no such element exists, and uses
O(log |T |) independence oracle queries.

3 Submodular Maxmization Algorithm (Proof of Theorem 1)

In this section, we give a proof of Theorem 1 by combining the algorithm of Buchbinder-
Feldman-Schwartz [12] and our rounding algorithm in Theorem 2. Note that a proof of
Theorem 2 is given in Section 5 later.

For monotone submodular maximization with a matroid constraint, Buchbinder-Feldman-
Schwartz presented a (1 ≠ 1/e ≠ Á)-approximation algorithm that has a trade-o� between
the number of value oracle queries and the number of independence oracle queries used in
the algorithm. The main part of their algorithm is to solve the continuous relaxation of the
submodular maximization problem e�ciently.

Let ⁄ œ [1, r] be a parameter that controls the trade-o�. In their algorithm for solving
the continuous relaxation problem, they first apply a variant of the residual random greedy
algorithm of Buchbinder-Feldman-Naor-Schwartz [11]. This residual random greedy algorithm
outputs S ™ V and uses ÕÁ(r⁄ + n) value oracle queries and ÕÁ(⁄n) independence oracle
queries; see [12, Lemma 3.3]. Then they apply a variant of the fast continuous greedy
algorithm of Badanidiyuru-Vondrák [3]. This continuous greedy algorithm outputs a point
x

Õ represented as a convex combination of 1/Á bases of M/S and uses ÕÁ( rn⁄ ) value oracle
queries and ÕÁ(n) independence oracle queries; see [12, Corollary 3.1]. Then x = 1S ‚ x

Õ is
an approximate solution for the continuous relaxation problem, which can be represented
as a convex combination of 1/Á bases of M. Here, for vectors y and z, let y ‚ z denote the
vector such that (y ‚ z)i = max{yi, zi} for all i.

Overall, Buchbinder-Feldman-Schwartz [12] presented an e�cient algorithm for solving
the continuous relaxation problem, which is formally stated as follows.

I Theorem 5 (follows from [12, Corollary 3.1] and [12, Lemma 3.3]). Given a non-negative
monotone submodular function f : 2V æ R+, a matroid M = (V, I) of rank r, and parameters
Á > 0 and ⁄ œ [1, r], there is an algorithm satisfying the following conditions:

the algorithm outputs a point x œ B(M) represented as a convex combination of 1/Á bases
such that E[F (x)] Ø (1 ≠ 1/e ≠ Á) ·max{f(T ) | T œ I} holds, where F : [0, 1]V æ R+ is
the multilinear extension of f ,
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100:8 Subquadratic Submodular Maximization with a General Matroid Constraint

it uses O

1
r⁄ + rn

⁄Á5
log2

1
n

Á

22
value oracle queries, and

it uses O

3
⁄n

Á2
log

1
n

Á

24
independence oracle queries.

Suppose that x œ B(M) is a point as in Theorem 5. In the submodular maximization
algorithm of Buchbinder-Feldman-Schwartz, they round x to an integral solution with
the aid of the swap rounding algorithm of Chekuri-Vondrák-Zenklusen [18] using O(r2/Á)
independence oracle queries. Therefore, their entire algorithm requires ÕÁ(r⁄ + rn

⁄
) value

oracle queries and ÕÁ(⁄n+ r
2) independence oracle queries.

I Remark 6. Theorem 5 is not explicitly stated in the paper by Buchbinder-Feldman-
Schwartz [12], because they do not separately evaluate the query complexity for solving the
continuous relaxation problem and for the rounding algorithm. Indeed, they just state that the
entire algorithm requires O( r

2

Á
+⁄n

Á2 log
!
n

Á

"
) independence oracle queries; see [12, Theorem 1.1].

The O( r
2

Á
) term in this query complexity comes from [12, Corollary 3.1], which states that the

continuous greedy algorithm together with the rounding algorithm requires O( n

Á2 log(nÁ )+
r
2

Á
)

independence oracle queries. This corollary is a direct consequence of [3, Claim 4.4], whose
proof shows that the O( r

2

Á
) term comes from the rounding algorithm, while the O( n

Á2 log(nÁ ))
term comes from the continuous greedy algorithm. Therefore, the O( r

2

Á
) term is not needed

to solve the continuous relaxation problem.

We now show that our submodular maximization algorithm with subquadratic query
complexity is derived from Theorems 2 and 5.

Proof of Theorem 1. Let ⁄ = �(
Ô
r) and let Á

Õ = Á/2. Note that we can compute r

using O(n) independence oracle queries by a greedy algorithm. We first run the algorithm
in Theorem 5 with parameters ⁄ and Á

Õ to obtain a point x œ B(M), in which we use
O(

Ô
rn poly(1/Á, logn)) value and independence oracle queries. For the obtained point x,

we apply our fast rounding algorithm in Theorem 2 with an error parameter Á
Õ. Then, we

obtain a basis S of M such that

E[f(S)] Ø (1 ≠ Á
Õ) · E[F (x)]

Ø (1 ≠ Á
Õ) · (1 ≠ 1/e ≠ Á

Õ) ·max{f(T ) | T œ I}
Ø (1 ≠ 1/e ≠ Á) ·max{f(T ) | T œ I}.

Since x is represented as a convex combination of 1/Á
Õ bases of M by Theorem 5, our rounding

algorithm requires O(r3/2 poly(1/Á, logn)) independence oracle queries by Theorem 2. There-
fore, we obtain a (1 ≠ 1/e ≠ Á)-approximation algorithm that uses O(

Ô
rn poly(1/Á, logn))

value and independence oracle queries, which completes the proof. J

4 Swap Rounding Algorithm in Previous Work

In this section, we describe the swap rounding algorithm of Chekuri-Vondrák-Zenklusen [18]
for a matroid base polytope, which we denote SwapRound. As described in Section 1.3,
our new rounding algorithm is based on SwapRound. In SwapRound, we are given a point
x œ B(M) that is represented as a convex combination of the characteristic vectors of t bases
of M. The output is a single basis S of M such that E[f(S)] Ø F (x) for any submodular
function f : 2V æ R and its multilinear extension F . In each phase of SwapRound, we pick up
two bases in the representation of x and merge them into a basis. By applying this procedure
t ≠ 1 times, SwapRound finally returns a single basis of M; see Algorithm 1.
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The procedure for merging two bases is denoted by MergeBases (Algorithm 2). The
input of MergeBases consists of two bases B1 and B2 together with their coe�cients —1

and —2. In the procedure, until B1 and B2 coincide, we repeatedly update B1 and B2 so
that |B1 \ B2| decreases monotonically. In each update of B1 and B2, we need a strongly
exchangeable pair of elements, that is, a pair of elements u œ B1 \B2 and v œ B2 \B1 such
that B1 + v ≠ u œ I and B2 + u ≠ v œ I. As described in UpdateViaStrongBasisExchange

(Algorithm 3), for a strongly exchangeable pair u and v, we apply B1 Ω B1 + v ≠ u

with probability —2
—1+—2

and apply B2 Ω B2 + u ≠ v with the remaining probability. Note
that, in UpdateViaStrongBasisExchange, B1 and B2 are updated to B

Õ
1
and B

Õ
2
so that

E[—11BÕ
1
+ —21BÕ

2
] = —11B1 + —21B2 , which is a key property to show the validity of the

algorithm.
The most time consuming part in MergeBases is to find a strongly exchangeable pair.

By the strong basis exchange property of matroids, we can find such a pair of elements using
O(r) independence oracle queries in the following way: fix an element u œ B1 \B2 arbitrarily
and check the conditions for each element v œ B2 \ B1 one by one. Since we update the
bases |B1 \ B2| = O(r) times, MergeBases requires O(r2) independence oracle queries in
total. Hence, SwapRound requires O(r2t) independence oracle queries.

It is not clear whether we can develop an algorithm that finds a strongly exchangeable
pair using o(r) independence oracle queries. Therefore, their implementation of SwapRound
is now stuck at �(r2t) independence oracle queries.

Algorithm 1 SwapRound(x =
qt

i=1 —i1Bi).

1 C1 Ω B1

2 “1 Ω —1

3 for i = 1 to t ≠ 1 do
4 Ci+1 Ω MergeBases(“i, Ci,—i+1, Bi+1)
5 “i+1 Ω “i + —i+1

6 return Ct

Algorithm 2 MergeBases(—1, B1,—2, B2).

1 while B1 ”= B2 do
2 Pick arbitrary u œ B1 \B2

3 Find v œ B2 \B1 such that B1 + v ≠ u œ I and B2 + u ≠ v œ I
4 UpdateViaStrongBasisExchange(—1, B1,—2, B2, v, u)
5 return B1

5 Faster Rounding Algorithm

In this section, we present our fast rounding algorithm. We first show the following theorem,
and then prove Theorem 2 using this theorem.

I Theorem 7. There is a randomized algorithm satisfying the following conditions:
the input consists of a matroid M = (V, I) given as an independence oracle and a point
x œ B(M) represented as a convex combination of t bases,
the output is a basis S of M such that E[f(S)] Ø F (x) for any submodular function
f : 2V æ R and its multilinear extension F , and
it uses O(r3/2t log3/2(rt)) independence oracle queries with probability at least 1 ≠ (rt)≠1.
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Algorithm 3 UpdateViaStrongBasisExchange(—1, B1,—2, B2, v, u).

Input: —1,—2 œ R+, two bases B1, B2, and elements v œ B2 \B1 and u œ B1 \B2

such that B1 + v ≠ u œ I and B2 + u ≠ v œ I
1 Flip a coin with Heads probability —2

—1 + —2

2 if coin flipped Heads then
3 B1 Ω B1 + v ≠ u

4 else
5 B2 Ω B2 + u ≠ v

To show this theorem, we propose an algorithm that merges the bases one by one in
the same way as SwapRound. Our contribution is to improve MergeBases, that is, we give
a faster algorithm for merging two bases into a single basis. The following auxiliary graph
plays an important role in our algorithm.

I Definition 8. Let M = (V, I) be a matroid, and let B1, B2 be two bases of M. Then we
define the bipartite directed graph DM(B1, B2) whose vertex set and edge set are B1—B2 and
E1(B1, B2) fi E2(B1, B2), respectively, where

E1(B1, B2) = {(u, v) | u œ B1 \B2, v œ B2 \B1, B1 + v ≠ u œ I},
E2(B1, B2) = {(v, u) | u œ B1 \B2, v œ B2 \B1, B2 + u ≠ v œ I}.

In terms of this auxiliary graph, each step of MergeBases can be interpreted as follows:
it finds a directed cycle of length two (or a bidirected edge) in DM(B1, B2) and updates
the bases B1 and B2 using this directed cycle as in UpdateViaStrongBasisExchange. Note
that we use O(r) independence oracle queries to find a directed cycle of length two.

A key idea in our algorithm is to focus on a directed cycle of arbitrary length inDM(B1, B2)
instead of a directed cycle of length two. More precisely, our contribution consists of the
following two technical results.
1. We can find a directed cycle in DM(B1, B2) using o(r) independence oracle queries with

high probability.
2. We can appropriately update the bases using a directed cycle of arbitrary length in

DM(B1, B2).
We discuss the first and second technical results in Sections 5.1 and 5.2, respectively. Then,
we describe the entire algorithm and give proofs for Theorems 2 and 7 in Section 5.3.

5.1 Finding a Directed Cycle

The objective of this subsection is to show the following proposition, which states that we
can find a directed cycle in DM(B1, B2) using o(r) independence oracle queries with high
probability.

I Proposition 9. Suppose we are given two bases B1 and B2 of a matroid M and an
integer t Ø 2. Then, we can find a directed cycle in DM(B1, B2) using O(

Ô
r log3/2(rt))

independence oracle queries with probability at least 1 ≠ (rt)≠2.

To show this proposition, we first show that a directed cycle of length two can be found
e�ciently if we have an element whose indegree is small in DM(B1, B2).
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I Lemma 10. Suppose we are given two bases B1 and B2 of a matroid M, and an element
a œ B1—B2 whose indegree is d in DM(B1, B2). Then, we can find a directed cycle of length
two in DM(B1, B2) using O(d log r) independence oracle queries.

Proof. By symmetry, it su�ces to consider the case when a œ B1 \B2.
We give an algorithm that finds an element v œ B2 \ B1 such that B1 + v ≠ a œ I and

B2 + a ≠ v œ I. In our algorithm, let A ™ B2 \B1 denote the set of elements v such that we
have already checked that B1 + v ≠ a ”œ I. We initialize A = ÿ.

In each step of our algorithm, by applying Lemma 4 in which u = a, S = B2, and
T = B2 \ (B1 fi A), we can find an element v œ T such that B2 + a ≠ v œ I if it exists. For
such v, we check whether B1 + v ≠ a œ I holds or not. If B1 + v ≠ a œ I holds, then a and v

induce a desired directed cycle. Otherwise, we add v to A, and repeat the procedure.
This algorithm finds a directed cycle correctly by the strong basis exchange property. Since

we apply Lemma 4 at most d times and |T | Æ r, this algorithm uses O(d log r) independence
oracle queries. J

We now describe our algorithm for finding a directed cycle in DM(B1, B2). In our
algorithm, we first sample 2


r log(rt) elements from B1 \B2 (resp. B2 \B1) uniformly at

random with replacement, where the base of the logarithm is e, and let L (resp. R) be
the sampled vertex set, ignoring the multiplicity. Note that 1 Æ |L| Æ 2


r log(rt) and

1 Æ |R| Æ 2

r log(rt) as we ignore the multiplicity. Let DÕ be the subgraph of DM(B1, B2)

induced by L fi R.
For each vertex u in D

Õ, we find a directed edge in D
Õ that enters u or conclude that

such a directed edge does not exist. This can be done by calling FindExchangeElement

exactly once for each u. If every vertex in D
Õ has an incoming edge, then we can easily find

a directed cycle in D
Õ by traversing such directed edges in the opposite direction. Otherwise,

we pick up a vertex a in L fi R that has no incoming edge in D
Õ, and then apply Lemma 10

with this vertex a to find a directed cycle of length two.
Since the correctness of this algorithm is clear, it su�ces to analyze the independence

query complexity. We use the following lemma in our analysis.

I Lemma 11. Let u œ B1—B2 be an element whose indegree in DM(B1, B2) is at least
2

r log(rt). Then, the probability that DM(B1, B2) has no directed edge from L fi R to u is

at most (rt)≠4.

Proof. By symmetry, it su�ces to consider the case when u œ B1 \ B2. Let N = {v œ
B2 \ B1 | (v, u) œ E(B1, B2)}. Since R is obtained by sampling 2


r log(rt) vertices from

B2 \B1 and r Ø |B2 \B1| Ø |N | Ø 2

r log(rt), we have the following:

Pr [{v œ R | (v, u) œ E(B1, B2)} = ÿ] = Pr [N fl R = ÿ]

=
3
1 ≠ |N |

|B2 \B1|

42

Ô
r log(rt)

Æ
A
1 ≠

2

r log(rt)
r

B2

Ô
r log(rt)

Æ
!
e

≠1
"4 log(rt)

= (rt)≠4
,

which completes the proof. J
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We are now ready to prove Proposition 9.

Proof of Proposition 9. We analyze the independence query complexity of the algorithm
described above. First, since we call FindExchangeElement for each vertex u œ L fi R

exactly once to find an incoming edge in D
Õ, the number of calls of FindExchangeElement

is |L fi R| = O(

r log(rt)). Hence, by Lemma 4, the number of independence oracle queries

used in this part is O(

r log(rt) log r).

We next analyze the number of independence oracle queries when there exists a vertex
a œ L fi R that has no incoming edge in D

Õ.
We call a vertex u œ LfiR bad if DÕ has no directed edge entering u and DM(B1, B2) has

at least 2

r log(rt) directed edges entering u. By Lemma 11, for each u œ L fi R, the vertex

u is bad with probability at most (rt)≠4. Thus, by taking the union bound over all vertices
in L fi R, we see that there exists a bad vertex in L fi R with probability at most (rt)≠2.

We now consider the case where there is no bad vertex in L fi R. Suppose that there
exists a vertex a œ L fi R that has no incoming edge in D

Õ. Then, since a is not bad, the
indegree of a is at most 2


r log(rt) in DM(B1, B2). Therefore, we can apply Lemma 10

with a using O(

r log(rt) log r) independence oracle queries.

Therefore, the total number of independence oracle queries used in the algorithm is
O(


r log(rt) log r) with probability at least 1 ≠ (rt)≠2, which completes the proof. J

5.2 Update with a Directed Cycle

In this subsection, we describe how to update the bases using a directed cycle in DM(B1, B2).
Let C be a directed cycle in DM(B1, B2) that traverses u0, v0, u1, v1, . . . , vl≠1 in this order,
where ui œ B1 \B2 and vi œ B2 \B1 for each i. In our algorithm, we first choose B1 with
probability —2

—1+—2
and choose B2 with the remaining probability. If we choose B1, then we pick

up an index i uniformly at random from {0, . . . , l≠1} and update B1 by B1 Ω B1+vi≠ui. If
we choose B2, then we pick up an index i uniformly at random from {0, . . . , l≠1} and update
B2 by B2 Ω B2 + ui+1 ≠ vi, where we denote ul = u0. The pseudocode of this algorithm is
shown in UpdateWithCycle (Algorithm 4). We note that, if the length of the directed cycle
is two, then UpdateWithCycle coincides with UpdateViaStrongBasisExchange.

Algorithm 4 UpdateWithCycle(—1, B1,—2, B2, C).

Input: —1,—2 œ R+, two bases B1, B2, and a directed cycle C in the bipartite
directed graph DM(B1, B2)

1 Denote by V (C) = {u0, v0, u1, v1, . . . , vl≠1} the vertices in C in this order (with
ui œ B1 \B2 and vi œ B2 \B1 for each i)

2 Flip a coin with Heads probability —2

—1 + —2

3 if coin flipped Heads then
4 Pick an index i uniformly at random from {0, . . . , l ≠ 1}
5 B1 Ω B1 + vi ≠ ui

6 else
7 Pick an index i uniformly at random from {0, . . . , l ≠ 1}
8 B2 Ω B2 + ui+1 ≠ vi // We define ul = u0.

In order to show the validity of the algorithm, we use the following two lemmas.
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I Lemma 12. Given two bases B1 and B2 and a directed cycle C in the bipartite directed graph
DM(B1, B2), the procedure UpdateWithCycle updates B1 and B2 to B

Õ
1
and B

Õ
2
, respectively,

so that E[—11BÕ
1
+ —21BÕ

2
] = —11B1 + —21B2 .

Proof. Recall that C traverses u0, v0, u1, v1, . . . , vl≠1 in this order, where ui œ B1 \B2 and
vi œ B2 \B1 for each i. In the procedure UpdateWithCycle, we obtain B

Õ
1
= B1 + vi ≠ ui for

some i œ {0, . . . , l ≠ 1} and B
Õ
2
= B2 with probability —2/(—1 + —2), and we obtain B

Õ
1
= B1

and B
Õ
2
= B2 + ui+1 ≠ vi for some i œ {0, . . . , l ≠ 1} with probability —1/(—1 + —2). Thus, we

have the following equation:

E[—11BÕ
1
+ —21BÕ

2
] = —2

—1 + —2

A
—1

A
1B1 +

1
l

l≠1ÿ

i=0

(1vi ≠ 1ui)
B

+ —21B2

B

+ —1

—1 + —2

A
—11B1 + —2

A
1B2 +

1
l

l≠1ÿ

i=0

!
1ui+1 ≠ 1vi

"
BB

=—11B1 + —21B2 .

This completes the proof. J

I Lemma 13 ( [18, Lemma VI.2]). Let x œ Rn
+
be a non-negative vector and X = (X1, . . . ,Xn)

be a non-negative vector-valued random variable satisfying the following properties:
E[X] = x, and
X ≠ x has at most one positive coordinate and at most one negative coordinate.

Then, we have E[F (X)] Ø F (x) for any function F that is a multilinear extension of some
submodular function.

By combining these lemmas, we obtain the following proposition, which shows the validity
of UpdateWithCycle.

I Proposition 14. Let x =
q

t

i=1
—i1Bi be a point represented by a convex combination of the

characteristic vectors of t bases of a matroid M. Suppose that the procedure UpdateWithCycle

updates B1 and B2 to B
Õ
1
and B

Õ
2
using a directed cycle in DM(B1, B2). Let BÕ

i
= Bi for

i œ {3, . . . , t} and let xÕ =
q

t

i=1
—i1BÕ

i
. Then, we obtain E[F (xÕ)] Ø F (x) for any function

F that is a multilinear extension of some submodular function.

Proof. It is obvious that xÕ ≠x has at most one positive coordinate and at most one negative
coordinate, since only two coordinate are involved in UpdateWithCycle, and exactly one
of them increases and the other decreases. We also see that E[xÕ] = x holds by Lemma 12.
Therefore, Lemma 13 shows that E[F (xÕ)] Ø F (x) for any function F that is a multilinear
extension of some submodular function. J

5.3 Whole Algorithm

We now prove Theorem 7 by giving our fast swap rounding algorithm. See FastMergeBases

(Algorithm 5) for the pseudocode of our algorithm.

Proof of Theorem 7. Suppose that x =
q

t

i=1
—i1Bi is a point represented by a convex

combination of the characteristic vectors of t bases of a matroid M. We pick up two bases,
say B1 and B2, in the representation and merge them into a single basis in the following way:
until B1 and B2 coincide, we find a directed cycle C in DM(B1, B2) using Proposition 9,
and update B1 and B2 by UpdateWithCycle using C. Our algorithm repeats this process
t ≠ 1 times so that all the bases are merged into a single basis.
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Since the correctness of this algorithm is shown by Proposition 14, it remains to analyze
the independence query complexity of this rounding algorithm.

For merging two bases into a single basis, since we apply Proposition 9 at most r times,
we require O(r3/2 log3/2(rt)) independence oracle queries with probability at least 1≠ r

≠1
t
≠2.

Furthermore, since we apply this procedure t ≠ 1 times in our swap rounding algorithm, the
entire algorithm requires O(tr3/2 log3/2(rt)) independence oracle queries with probability at
least 1 ≠ (rt)≠1. This completes the proof of Theorem 7. J

We can remove the condition “with probability at least 1≠ (rt)≠1” by losing a su�ciently
small approximation factor Á > 0. That is, we obtain Theorem 2, which we restate here.

I Theorem 2. For any Á > 0, there is a randomized algorithm satisfying the following
conditions:

the input consists of a matroid M = (V, I) given as an independence oracle and a point
x in the base polytope of M that is represented as a convex combination of t bases,
the output is a basis S of M such that E[f(S)] Ø (1≠ Á)F (x) for any submodular function
f : 2V æ R and its multilinear extension F , and
it uses O(r3/2t log3/2( rt

Á
)) independence oracle queries.

Proof. Recall that the algorithm in Theorem 7 (Algorithm 5) uses O(r3/2t log3/2(rt)) in-
dependence oracle queries with probability at least 1 ≠ (rt)≠1. If Algorithm 5 returns a
basis using O(r3/2t log3/2(rt)) independence oracle queries, then we say that it succeeds.
Otherwise, we say that it fails. By a slight modification, when the algorithm fails, we suppose
that it uses O(r3/2t log3/2(rt)) independence oracle queries and terminates without returning
a basis. This modified algorithm is denoted by Algorithm 5’. Note that Algorithm 5’ fails
with probability at most (rt)≠1.

Let q := Álog(rt)≠1 ÁË = Á log(1/Á)

log rt
Ë = O

1
log(rt/Á)

log rt

2
. In our algorithm, we run Algorithm 5’

q times. If at least one execution of Algorithm 5’ succeeds, then our algorithm returns
a basis that is obtained in the first successful execution of Algorithm 5’. If all the execu-
tions of Algorithm 5’ fail, then our algorithm returns an arbitrary basis. Then, we use
O(r3/2t log3/2( rt

Á
)) independence oracle queries in total. Furthermore, the probability that

all the executions of Algorithm 5’ fail is at most (rt)≠q Æ Á. Therefore, the output S satisfies
E[f(S)] Ø (1 ≠ Á)F (x) for any submodular function f and its multilinear extension F . This
completes the proof. J

6 Submodular Maximization with Rank Oracle

In this section, we present a fast submodular maximization algorithm in the rank oracle
model and prove Theorem 3. In the rank oracle setting, the input consists of a monotone
submodular set function f : 2V æ R+ given as a value oracle, and a matroid M = (V, I)
given as a rank oracle. The objective is to maximize f(S) subject to S œ I. We restate
Theorem 3 here.

I Theorem 3. For any Á > 0, there is a randomized algorithm that achieves (1 ≠ 1/e ≠ Á)–
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O((n+ r

3/2) poly(1/Á, logn)) value and rank oracle queries.

In the same way as the independence oracle setting, our algorithm is based on continuous
relaxation and rounding technique.
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Algorithm 5 FastMergeBases(—1, B1,—2, B2).

1 while B1 ”= B2 do
2 Sample a set L of 2


r log(rt) elements drawn uniformly and independently from

B1 \B2 with replacement.
3 Sample a set R of 2


r log(rt) elements drawn uniformly and independently from

B2 \B1 with replacement.
4 a Ω ÿ
5 E Ω ÿ
6 for u œ L do
7 v Ω FindExchangeElement(M, B2, u,R)
8 if v = ÿ then
9 a Ω u

10 else
11 E Ω E fi {(u, v)}
12 for v œ R do
13 u Ω FindExchangeElement(M, B1, v, L)
14 if u = ÿ then
15 a Ω v

16 else
17 E Ω E fi {(v, u)}
18 if a = ÿ then
19 Find a directed cycle C in the bipartite directed graph (L fi R,E)
20 UpdateWithCycle(—1, B1,—2, B2, C)
21 else
22 if a œ B1 \B2 then
23 A Ω ÿ
24 while v = FindExchangeElement(M, B2, a, B2 \ (B1 fi A)) satisfies v ”= ÿ

do
25 if B1 + v ≠ a œ I then
26 UpdateViaStrongBasisExchange(—1, B1,—2, B2, v, a)
27 break
28 A Ω A+ v

29 else
30 A Ω ÿ
31 while u = FindExchangeElement(M, B1, a, B1 \ (B2 fi A)) satisfies u ”= ÿ

do
32 if B2 + u ≠ a œ I then
33 UpdateViaStrongBasisExchange(—1, B1,—2, B2, a, u)
34 break
35 A Ω A+ u

36 return B1
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Algorithm for the Continuous Relaxation Problem. Let F be the multilinear extension of
f and let P (M) be the matroid polytope of M. Ene-Nguy˜̂en [22] presented a framework to
solve the continuous optimization problem maxxœP (M) F (x) in near-linear time for several
important classes of matroids. In their algorithm, they use a data structure for maintaining
a maximum weight basis of the matroid, where each element has a weight and the weights
are updated. In each update, the weight of exactly one element decreases, while all the other
weights do not change. The data structure supports an operation that decreases the weight
of an element and updates the current basis to a maximum weight basis with respect to the
updated weights. This operation is called the maximum weight basis data structure operation.
With this terminology, their result is stated as follows.

I Lemma 15 (follows from Lemmas 8 and 9 in the arXiv version of [22]). Given a non-
negative monotone submodular function f : 2V æ R+, a matroid M = (V, I) of rank r, and
a parameter Á > 0, there is a randomized algorithm satisfying the following conditions:

the algorithm finds a point x œ P (M) represented as a convex combination of 1/Á bases
such that E[F (x)] Ø (1 ≠ 1/e ≠ Á) · max{f(T ) | T œ I}, where F : [0, 1]V æ R+ is the
multilinear extension of f ,
it uses O

1
n

Á5
log2

1
n

Á

22
value oracle queries,

it uses O

1
n

Á
log

1
n

Á

22
independence oracle queries, and

it uses O

1
r

Á
log2

1
n

Á

22
maximum weight basis data structure operations.

Maximum Weight Basis Data Structure Operation. To implement a maximum weight
basis data structure operation by using rank oracle queries e�ciently, we use the following
lemma obtained by the binary search technique of Nguy˜̂en [36] and Chakrabarty et al. [14];
see also [39, Lemma 2].

I Lemma 16 ([14, Lemma 10]; see also [39, Lemma 2] and [10]). There is an algorithm
FindFreeElement which, given a matroid M = (V, I), a weight function w : V æ R, an
independent set S œ I, and T ™ V \ S, finds an element u œ T maximizing w(u) such that
S + u œ I or otherwise determines that no such element exists, and uses O(log |T |) rank
oracle queries.

This lemma shows that the maximum weight basis data structure operation can be easily
implemented in the rank oracle model as follows.

I Lemma 17. Let M = (V, I) be a matroid given as a rank oracle and let w : V æ R be a
weight function. Let wÕ : V æ R be a weight function such that wÕ(v) < w(v) for some v œ V

and w
Õ(u) = w(u) for any u œ V ≠ v. Given a maximum weight basis B of M with respect

to w, we can compute a maximum weight basis B
Õ of M with respect to w

Õ using Õ(1) rank
oracle queries.

Proof. If v ”œ B, then B
Õ := B is a desired basis, because wÕ(v) < w(v). Otherwise, we apply

FindFreeElement with the weight function w
Õ in which S = B≠v and T = (V \B)fi{v}. Let

u be the element found by the procedure (possibly, u = v). Then our algorithm returns a basis
B

Õ := B ≠ v + u, which is a maximum weight basis with respect to w
Õ (see e.g., [28, Lemma

3.1] and Section 6 of the arXiv version of [9]). By Lemma 16, this algorithm requires Õ(1)
rank oracle queries. J
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Putting Them Together (Proof of Theorem 3). We now prove Theorem 3. Lemma 17
shows that we can execute the maximum weight basis data structure operation using Õ(1)
rank oracle queries without a sophisticated data structure. Hence, by Lemma 15, we can
solve the continuous optimization problem maxxœP (M) F (x) using ÕÁ(n) value and rank
oracle queries, where we note that the rank oracle is more powerful than the independence
oracle.

For the obtained point x, we apply our fast rounding algorithm given in Theorem 2
to obtain an integral solution. Note again that the rank oracle is more powerful than the
independence oracle, and hence this rounding algorithm requires ÕÁ(r3/2) value and rank
oracle queries.

By replacing Á with Á/2 in the same way as in the proof of Theorem 1, we obtain a
(1 ≠ 1/e ≠ Á)-approximation algorithm that uses ÕÁ(n+ r

3/2) value and rank oracle queries,
which completes the proof. J
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Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u, v) denote the
distance from u œ V to v œ V in G. An (–,—)-stretch approximate distance oracle (ADO) for G is a
data structure that given u, v œ V returns in constant (or near constant) time a value d̂(u, v) such
that d(u, v) Æ d̂(u, v) Æ – · d(u, v) + —, for some reals – > 1,—.

Thorup and Zwick [34] showed that one cannot beat stretch 3 with subquadratic space (in terms
of n) for general graphs. Pǎtra�cu and Roditty [27] showed that one can obtain stretch 2 using
O(m1/3

n
4/3) space, and so if m is subquadratic in n then the space usage is also subquadratic.

Moreover, Pǎtra�cu and Roditty [27] showed that one cannot beat stretch 2 with subquadratic space
even for graphs where m = Õ(n), based on the set-intersection hypothesis.

In this paper we explore the conditions for which an ADO can beat stretch 2 while using
subquadratic space. In particular, we show that if the maximum degree in G is �G Æ O(n1/k≠Á)
for some 0 < Á Æ 1/k, then there exists an ADO for G that uses Õ(n2≠ kÁ

3 ) space and has a
(2, 1 ≠ k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with
�G Æ O(n1/2≠Á).

Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which
states that for any positive integer k Æ logn, obtaining a sub- k+2

k stretch for graphs with �G =
�(n1/k) requires �̃(n2) space. Thus, for graphs with maximum degree �(n1/2), obtaining a sub-2
stretch requires �̃(n2) space.
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1 Introduction

One of the most fundamental and classic problems in algorithmic research is the task of
computing distances in graphs. Formally, given an undirected unweighted graph G = (V,E),
|V | = n and |E| = m, the distance between two vertices u, v œ V , denoted d(u, v), is the
length of a shortest path between u and v. A central problem in distance computations is
the all-pairs shortest paths (APSP) problem [18, 10, 20, 16, 37, 12, 22] where the objective is
to compute the distances between every pair of vertices in the graph. A main disadvantage
in handling the output of the APSP problem is that storing the distances between every
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pair of vertices in the graph requires �(n2) space. As in many other problems in computer
science, the lack of space e�ciency in solving the APSP problem has motivated researchers
to search for a tradeo� between space and accuracy. As a result, one central form of the
APSP problem emerging from this line of research is constructing an approximate distance
oracle where we sacrifice accuracy for space e�ciency.

Approximate Distance Oracles. An approximate distance oracle (ADO) is a space e�cient
data structure that produces distance estimations between any two vertices in the graph in
constant or near-constant time. Formally, given two vertices, u, v œ V , an ADO returns an
estimation d̂(u, v) for the distance between u and v that satisfies: d(u, v) Æ d̂(u, v) Æ –·d(u, v),
for some real – > 1 which is called the stretch of the ADO. If the estimation of the ADO
satisfies d(u, v) Æ d̂(u, v) Æ max{d(u, v), – · d(u, v) + —} for some reals – > 1 and — (which
can be negative), we say that the stretch of the ADO is an (–,—)-stretch.

ADO for general graphs. ADOs were originally presented by Thorup and Zwick [34] who
designed a randomized algorithm that for any positive integer k constructs an ADO for
weighted undirected graphs in O(kmn

1/k) time that uses O(kn1+1/k) space and returns a
2k ≠ 1-stretch in O(k) query time.

Thorup and Zwick [34] showed that the space usage of their ADO construction for their
given stretch is optimal for general graphs based on the girth conjecture of Erd�s. Moreover,
for stretch 3 (when k = 2), the appropriate case of the girth conjecture is known to be true
(due to complete bipartite graphs), and so the quadratic (in n) space lower bound for this
case is unconditional. Notice that constructing an exact distance oracle in quadratic space is
trivial.

In the case where one allows for an additive error, Pǎtra�cu and Roditty [27] designed an
algorithm which constructs a (2, 1)-stretch ADO for unweighted graphs using O(n5/3) space
and O(1) query time. Their result demonstrates that in such a case the multiplicative error
can be reduced while still using subquadratic space.

ADO for sparse graphs. The (conditional) lower bound of Thorup and Zwick [34] does
not apply to sparser graphs with m = o(n1+1/k), and indeed additional results show that it
is possible to use subquadratic space and return a sub-3 stretch in such cases. Specifically,
Pǎtra�cu and Roditty [27], designed an algorithm that constructs a 2-stretch ADO using
O(m1/3

n
4/3) space, and so for subquadratic m the space usage is subquadratic. Pǎtra�cu,

Roditty and Thorup [28] presented additional tradeo�s for sub-3 stretch using subquadratic
space for graphs where m = Õ(n)1. Roditty and Tov [30] improved the stretch of the ADO
presented by Thorup and Zwick [34] while using the same space for graphs with m = Õ(n).

Conditional lower bounds and set-intersection. Pǎtra�cu and Roditty [27] proved a lower
bound for the space usage of sub-2 stretch ADOs (i.e., ADOs which satisfy d(u, v) Æ
d̂(u, v) < 2d(u, v)) that holds (even) for sparse graphs, conditioned on the space usage for
data structures that solve the following set intersection problem.

I Problem 1. Let X = logc N for a large enough constant c. Construct a data structure
that preprocesses sets S1, . . . , SN ™ [X], and answers queries of the form “does Si intersect
Sj?” in constant time.

1 Throughout this paper we use ≥ when suppressing poly-logarithmic factors in asymptotic complexities.
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The lower bound proof by Pǎtra�cu and Roditty [27] is based on the following hypothesis.

I Hypothesis 2 ([27, 31, 17]). A data structure that solves Problem 1 requires �̃(N2) space.
Since understanding the reduction by Pǎtra�cu and Roditty [27] is useful for our results,

we provide an overview of their reduction tailored to our needs. Given an instance of
Problem 1, we construct a 3 layered graph, where edges are only between adjacent layers,
as follows. The first layer is VL = {v1, . . . , vN}, the second layer is VM = X, and the third
layer is VR = {u1, . . . , uN}. Vertices vi and ui represent Si, and so for each set Si and each
x œ Si, we add edges (vi, x) and (x, ui). Notice that the graph contains �(N) vertices. It is
straightforward to observe that Si fl Sj ”= ÿ if and only if there is a path of length 2 between
vi and uj . Moreover, since the graph is a 3 layered graph and the representatives of the sets
are at the outer layers, there are no paths of length 3 between representatives of sets. Thus,
one can solve Problem 1 using a solution to the following problem (for a = 2 and b = 4).
I Problem 3. For positive integers a and b, an (a, b)-distinguisher oracle for a graph
G = (V,E), is a data structure that, given u, v œ V establishes in constant time whether
d(u, v) Æ a or d(u, v) Ø b. If a < d(u, v) < b then the data structure can return any arbitrary
answer.

We conclude that a (2, 4)-distinguisher oracle that uses f(n) space can be used to solve
Problem 1 using f(N) space by applying the oracle onto the 3 layered graph. Finally, since
a sub-2 stretch ADO is a (2, 4)-distinguisher oracle, any sub-2 stretch ADO must use at least
�(n2) space.

1.1 Main results: When can we beat stretch 2 with subquadratic space?
The line of work by [27, 28, 30] is a natural research path given the observation that the
(conditional) lower bounds of [34] apply only to graphs with m = �(n1+1/k). Similarly, a
natural goal, which we address in this paper, is to understand for which families of graphs
can an ADO beat stretch 2 using subquadratic space. In particular, the conditional lower
bound proof of Pǎtra�cu and Roditty [27] does not apply to graphs with maximum degree of
n

1
2 ≠�(1), since in such graphs the number of paths of length 2 is n2≠�(1), and so constructing

a subquadratic space (2, 4)-distinguisher oracle is straightforward (by explicitly storing all
length 2 paths).

Thus, a natural goal, which we investigate in this paper, is to understand the relationship
between the maximum degree of G, denoted by �G, and the best possible stretch obtainable
for an ADO using subquadratic space. To address this question, we present two main results.
The first result is an upper bound for �G = n

1
k ≠�(1) which is summarized in the following

Theorem.
I Theorem 4. For any graph G, positive real constant c, and positive integer k for which
�G Æ cn

1
k ≠Á for some real 0 < Á Æ 1/k, there exists an ADO for G that uses Õ(ckn2≠ kÁ

3 )
space and has a (2, 1 ≠ k)-stretch.

For k = 2, Theorem 4 implies a subquadratic sub-2 stretch ADO for graphs for which
�G Æ n

1
2 ≠�(1).

The second result is a conditional lower bound, conditioned on Hypothesis 2, that applies
when �G = �(n1/k), for all integers k Ø 1 2. The conditional lower bound is summarized in
the following Theorem.

2 The case k = 1 was proven by Thorup and Zwick [34] to hold unconditionally. Thus, Theorem 5 focuses
on k Ø 2.
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k

stretch

1

2

1 2 3 d(u, v) ≠ 1d(u, v) ≠ 2,

yLB = k+2
k

yUB = 2d(u,v)+1≠k
d(u,v)

Figure 1 A comparison between the upper bound for graphs with �G Æ O(n 1
k ≠Á) (Theorem 4)

and the lower bound for graphs with �G = �(n 1
k ) (Theorem 5). The figure demonstrates the stretch

as a function of k for a fixed (su�ciently large) value of d(u, v). The curves intersect at 2 < k1 < 3
and at d(u, v) ≠ 2 < k2 < d(u, v) ≠ 1 which implies that for k = 1, 2 the ADO from Theorem 4 for
graphs with �G Æ O(n 1

k ≠Á) produces a better stretch than the best possible stretch for graphs with
�G = �(n 1

k ). On the other hand, the intersection point k2 does not provide strong enough results;
see the discussion following the statement of Theorem 5.

I Theorem 5. Let 2 Æ k Æ logn. Assuming Hypothesis 2, a sub-k+2

k stretch ADO for graphs
with n vertices and maximum degree �(n1/k) must use �̃(n2) space.

When k = 2, the lower bound of Theorem 5 implies that Theorem 4 is essentially optimal, in
the sense that there is no ADO for graphs with a maximum degree of �(n1/2) that still uses
subquadratic space and has a sub-2 stretch.

For larger values of k, although the upper and lower bounds are defined only for integer
values of k, the values lie on two curves: yUB = 2d(u,v)+1≠k

d(u,v) for the upper bound and
yLB = k+2

k for the lower bound. See Figure 1 for a depiction and comparison of the two
curves for a fixed value of d(u, v). When d(u, v) Æ 6 (which is not the case shown in Figure 1),
the upper bound will always produce a stretch which is equal or smaller to the lower bound.
Otherwise, the curves intersect at 2 < k1 < 3 and d(u, v) ≠ 2 < k2 < d(u, v) ≠ 1. We
emphasize that the bounds on k1 are independent of d(u, v), and so for k = 1, 2, the fact that
the upper bound curve is beneath the lower bound curve is relevant for all for all possible
distances. On the other hand, the bounds on k2 depend on d(u, v), and so while it is true
that for a fixed value of large enough d(u, v) there are many values of k for which the ADO
of Theorem 4 provides an approximation which beats the lower bound, it is also true that for
any integer value of k Ø 3 there will always exist some distances for which the upper bound is
above the lower bound. Thus, the intersection at k2 is unfortunately not meaningful enough.

1.2 Organization
The rest of this paper is organized as follows. In Section 1.3 we provide an overview of
the main ideas used in this paper. In Section 1.4 we survey some additional related work.
In Section 2 we provide some definitions that are used in the more technical parts of the
paper. In Section 3 we prove some useful lemmas that are used in the proof of Theorem 4,
which is described in Section 4 together with the construction of our new ADO. In Section 5
we prove Theorem 5. Finally, in Section 6 we provide some conclusions and describe a natural
open problem.
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1.3 Overview of Results and Techniques
In this section we describe an overview of the intuition and techniques used to obtain our
main results.

1.3.1 Upper Bound: A New ADO
Since our new ADO is based on the ADO of Agarwal and Godfrey [4], that has a (2, 1)-stretch
and uses Õ(n5/3) space (which simplifies the ADO of [27]), we provide an overview of the
construction of their ADO.

The ADO constructed by Agarwal and Godfrey [4] uses the concept of bunches and
clusters introduced by Thorup and Zwick [33]. Following the conventions of Thorup and
Zwick [33, 34], for a vertex v œ V and set A ™ V , let pA(v) be the vertex in A which is
closest to v (breaking ties arbitrarily). The bunch BA(v) of v with respect to A is defined
as BA(v) = {w œ V | d(v, w) < d(v, pA(v))}. The cluster CA(w) of w with respect to A is
defined as CA(w) = {v œ V | d(w, v) < d(v, pA(v))}. We omit A from the notation when
it is clear from context. Thorup and Zwick [33] presented an algorithm that computes
a set A of size Õ(s) such that |B(v)|, |C(v)| Æ 4n/s, for every v œ V . The ADO of
Agarwal and Godfrey [4] uses a hitting set A of size Õ(n2/3) such that for every v œ V ,
|B(v)|, |C(v)| Æ O(n1/3).

Given two vertices u, v œ V , the ADO first tests whether B(u) fl B(v) ”= ÿ, and, if so,
then the ADO returns the exact distance d(u, v). The method for testing whether the two
bunches intersect is based on the observation (which follows from the definitions of bunch
and cluster) that B(u) fl B(v) ”= ÿ if and only if u œ C(B(v))3. Thus, each vertex v œ V

stores the exact distances to all vertices in C(B(v)), and now, the case of B(u) fl B(v) ”= ÿ
costs constant time and returns an exact distance. To deal with the case of B(u) fl B(v) = ÿ,
the oracle stores the distances of pairs in V ◊A, and the ADO returns the minimum of either
the length of the shortest path between u and v passing through p(u) or the length of the
shortest path between u and v passing through p(v). The space usage is O(n5/3) for storing
C(B(v)) for every v œ V , and Õ(n|A|) = Õ(n5/3) for storing the distances for all pairs in
V ◊ A.

Intuition for the new ADO. Our new ADO construction is based on the following intuition
regarding the ADO construction of Agarwal and Godfrey [4]. If we enlarge B(u) by moving
p(u) to a further vertex (from u), then we would increase the likelihood of B(u) fl B(v) ”= ÿ,
and so the ADO would return exact distances for more pairs of vertices. However, in such
a case, the quality guarantee on the stretch obtained by approximating d(u, v) with the
shortest path from u to v that passes through p(u) becomes worse. Part of the challenge is
to balance the size of B(u) which a�ects the usefulness of the intersections and the role of
p(u) when approximating the distances.

Our approach, intuitively, is to separate the definition of p(u) used for the approximations
and the set chosen for the intersections. Specifically, the definition of p(u) remains unchanged
relative to A (we do however change the size of A), but instead of testing whether B(u) fl
B(v) ”= ÿ, we use a larger set N(u) (which contains B(u)), and test whether N(u)flB(v) ”= ÿ
(or B(u) fl N(v) ”= ÿ). Testing whether N(u) fl B(v) ”= ÿ is implemented by storing all of
the distances between u and vertices in C(N(u)). We remark that one may consider the
possibility of testing whether N(u) fl N(v) ”= ÿ instead of testing whether N(u) fl B(v) ”= ÿ,
however, such an approach seems to require too much space.

3 For S ™ V , let C(S) =
t
uœS

C(u).
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Recall that Agarwal and Godfrey [4] obtained a (2, 1)-stretch. In our algorithm, we
choose N(u) in such a way that when N(u) fl B(v) = ÿ then minxœB(u),yœB(v){d(x, y)} > k

if �G Æ n
1
k ≠�(1), which ends up reducing the additive component of the stretch by at least

k (see Claim 13). Thus, the approximation of the ADO is always at most (2, 1 ≠ k), which is
less than stretch 2 for k Ø 2.

1.3.2 Conditional Lower bound
In Section 5 we prove the following lemma, which directly implies Theorem 5 since a sub-k+2

k

stretch ADO is also a (k, k + 2)-distinguisher oracle.

I Lemma 6. Let 2 Æ k Æ logn. Assuming Hypothesis 2, any (k, k + 2)-distinguisher oracle
for graphs with n vertices and maximum degree �(n1/k) must use �̃(n2) space.

Notice that it is straightforward to construct a (k, k + 2)-distinguisher oracle for graphs
with n vertices and maximum degree �(n 1

k ≠Á) in O(n2≠kÁ) space by storing all pairs of
vertices at distance exactly k. Thus, Lemma 6 shows that such a construction is essentially
optimal.

The challenges. There are two issues that need to be addressed in order to extend the
reduction by Pǎtra�cu and Roditty [27] in a way that proves Lemma 6. The first is to adjust
the distances so that Si fl Sj ”= ÿ if and only if d(vi, uj) = k, and otherwise, d(vi, uj) Ø k+ 2.
The second issue is that the degrees of vertices in VM need to be adjusted to be at most
Õ(N1/k). In order to simplify our intuitive explanation, we focus our attention to the special
case where X = {x} has only one element.

One straightforward way of dealing with the first issue is to replace vertex x œ VM with
a path Px = (w1, . . . , wk≠1) of length k ≠ 2, and for each Si that contains x we add edges
(vi, w1) and (wk≠1, ui). Thus, the constructed graph would be a k + 1 layered graph. The
number of vertices in such a graph is O(k+N) = O(N), and the distance between vertices in
the first and last layers are k + 2q for some integer q Ø 0. However, we still need to address
the second issue of bounding the maximum degree, since w1 and wk≠1 may have a very high
degree corresponding to the number of sets containing x.

On the other hand, one initial idea (that does not work) for dealing with the second issue
is to replace x œ VM (in the original 3 layered graph) with N vertices y1, y2, . . . , yN , and for
each Si that contains x we add edges (vi, yi) and (yi, ui). Now the maximum degree of each
node is constant, however, for i ”= j such that x œ Si fl Sj , there is no path from vi to uj .
This idea is missing the functionality of the path Px which allows us to connect more than
one pair of vertices from VL ◊ VR.

Combining approaches. Our reduction makes use of an underlying k+1 layered infrastruc-
ture graph L, commonly known as the butterfly graph (see [26, 28]), which has the following
three properties: (i) each layer contains N vertices, (ii) there is a path of length k from
every vertex in the first layer to every vertex in the last layer, and (iii) the degree of every
vertex is at most 2N1/k. The layers of L are numbered 0 to k. The vertices in each layer
are (separately) indexed with integers from 1 to N , and the construction of L is based on
the base N

1/k representation of the these indices: for 1 Æ t Æ k, vertices from layer t ≠ 1
are connected with vertices from layer t if and only if the base N

1/k representation of their
corresponding indices are the same, except for possibly the t’th digit. Similar to before, we
denote the first layer of L by VL = {v1, . . . , vN} and the last layer by VR = {u1, . . . , uN}.
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Finally, we construct a k + 1 layered graph Gx which is intuitively obtained by removing
from L edges touching either vi or ui for every Si that does not contain x. Thus, in Gx, if
x œ Si fl Sj then there is a path of length k from vi to uj in Gx, and otherwise, there is no
path from vi to uj in Gx.

We remark that in the general case, where |X| may be larger than 1, we combine Gx

for di�erent x œ X in a special way, and so we may introduce paths from vi to uj even if
Si fl Sj = ÿ. However, since the resulting graph is still a k + 1 layered graph, and we are
interested in paths between vertices in the first layer and vertices in the last layer, the lengths
of such paths must be at least k + 2. Thus, a (k, k + 2)-distinguisher oracle on the combined
graph su�ces for solving Problem 1. See Section 5 for more details.

1.4 Additional related work
Di�erent aspects of Thorup and Zwick [34] ADOs were studied since they were introduced
for the first time. Chechik [14, 13] reduced the query time from O(k) to O(1), while keeping
the stretch and the space unchanged. (See also [36, 23].) Roditty, Thorup, and Zwick [29]
presented a deterministic algorithm that constructs an ADO in Õ(mn

1/k) time while keeping
the stretch and the space unchanged. Baswana and Kavitha [9] presented an algorithm
with O(n2 logn) running time4. Baswana, Goyaland and Sen [8] presented an Õ(n2) time
algorithm that computes a (2, 3)-distance oracle with Õ(n5/3) space. Sommer [32] presented
an Õ(n2) time algorithm that computes a (2, 1)-distance oracle with Õ(n5/3) space. Akav
and Roditty [7] presented the first sub-quadratic time algorithm that constructs an ADO
with stretch better than 3. They presented an O(n2≠‘)-time algorithm that constructs a
ADO with O(n11/6) space and (2 + ‘, 5)-stretch. Chechik and Zhang [15] improved the
result of Akav and Roditty [7]. Among their results is an O(m+ n

1.987) time algorithm that
constructs an ADO with (2, 3)-stretch and Õ(n5/3) space. Following the work by Pǎtra�cu
and Roditty [27] who constructed an ADO for unweighted graphs that uses O(n5/3) space
and returns a (2, 1)-stretch in O(1) time, Abraham and Gavoille [2] extended the ADO by
Pǎtra�cu and Roditty [27] for all even stretch values, by constructing for any integer k Ø 2,
an ADO of size Õ(n1+2/(2k≠1)) with a (2k ≠ 2, 1)-stretch returned in O(k) time. Pǎtra�cu,
Roditty and Thorup [28] focused on analyzing sparse graphs where m = Õ(n) and noted
that both the ADOs by Thorup and Zwick [34], and the ADOs by Abraham and Gavoille [2]
use a space complexity that can be described by the curve S(–,m) = Õ(m1+2/(–+1)) where
– is the stretch of the ADO and m is the number of edges in the graph. Pǎtra�cu, Roditty
and Thorup [28] extended the curve S(–,m) to work for non integer stretch values – > 2.
Although our research focuses on constant query time ADOs, another branch of research
includes ADOs that have non constant query time [6, 24, 5, 3, 11].

In the lower bound regime, the problem of constructing a (2, 4)-distinguisher oracle
was analyzed from the perspective of time complexity as well. For graphs with degree
of at most n

1/2, the problem of determining for each edge in the graph whether it is
in a triangle in O(n2≠Á) time for some Á > 0 was shown to be hard under either the
3SUM [25, 21] or APSP [35] hypotheses. Since there exists a standard reduction from the
problem of determining for each edge in the graph whether it is in a triangle to the problem
of constructing a (2, 4)-distinguisher oracle (see [1]), a (2, 4)-distinguisher oracle is also hard
to construct in subquadratic time for graphs with degree of at most n1/2 under either the
3SUM or APSP hypotheses.

4 For k = 2 the query time is O(logn). For k > 2 the query time is O(k).
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The problem of constructing a (k, k + 2)-distinguisher oracle for a general integer k Ø 2
was also studied in the past in terms of time complexity. Dor, Halperin and Zwick [19]
showed that if all distances in an undirected n vertex graph can be approximated with an
additive error of at most 1 in O(A(n)) time, then Boolean matrix multiplication on matrices
of size n ◊ n can also be performed in O(A(n)) time. Dor, Halperin and Zwick [19] conclude
that constructing a (k, k + 2)-distinguisher oracle for an integer k Ø 2 is at least as hard as
multiplying two Boolean matrices.

2 Preliminaries

Let dG(u, v) be the distance between vertices u and v in the graph G. The eccentricity of a
vertex v œ V in a graph G, denoted by eccG(v), is defined as eccG(v) = maxuœV {dG(v, u)}.
The diameter of G is defined as diamG = maxvœV {eccG(v)} and the radius of G is defined
as radG = minvœV {eccG(v)}.

The eccentricity of a vertex v can be thought of as the distance between v and the last
vertex met during a Breadth First Search (BFS) of the graph starting at v. Since our goal
is to construct an ADO that uses subquadratic space, we cannot a�ord to store a separate
BFS tree for each vertex. Instead, the construction algorithm of the ADO from Theorem 4
will store only a partial BFS tree for each vertex by truncating the BFS scan after some
number of vertices. Motivated by this notion of a truncated scan, we introduce the following
generalization of eccentricity which turns out to be useful for our purposes.

Let NG(v, s) be the first s vertices met during a BFS5 starting from v in the graph G, i.e.,
the s closest vertices to v (excluding v). If s is not an integer, then let N(v, s) = N(v, ÂsÊ).
For an integer r Ø 0, define LG(v, r) = {u œ V \ {v} | dG(u, v) = r} and TG(v, r) = {u œ
V | 0 < dG(u, v) Æ r}. Notice that TG(v, r) =

rt
i=1

LG(v, i). For any real 1 Æ s Æ n ≠ 1,

define eccG(v, s) to be the maximum integer k œ [0, eccG(v)] for which TG(v, k) ™ NG(v, s).
Notice that eccG(v, n ≠ 1) = eccG(v). Define radG(s) = minvœV {eccG(v, s)}. Notice that
radG(n ≠ 1) = radG. We omit the subscript G when using the definitions above whenever G
is clear from context.

3 Useful Lemmas

In this section we prove several useful properties of the graph attributes defined in Section 2
which will be used throughout the paper.

The following observation and corollary address the relationship between T (v, r) and
N(v, s), and follow from the definition of BFS.

I Observation 7. Let G = (V,E) be an unweighted undirected graph, with |V | = n. For
any v œ V and integers s and r such that 1 Æ s < n and 1 Æ r Æ diamG, either (i)
T (v, r) µ N(v, s), (ii) N(v, s) µ T (v, r), or (iii) N(v, s) = T (v, r)

I Corollary 8. Let G = (V,E) be an unweighted undirected graph, with |V | = n. For any
v œ V and integers s and r such that 1 Æ s < n and 1 Æ r Æ diamG, (i) if |T (v, r)| < |N(v, s)|
then T (v, r) µ N(v, s), (ii) if |N(v, s)| < |T (v, r)| then N(v, s) µ T (v, r), and (iii) if
|N(v, s)| = |T (v, r)| then N(v, s) = T (v, r).

The following useful property addresses the relationship between T (v, r) and N(v, s) for
the special cases where either r = ecc(v, s) or r = ecc(v, s) + 1.

5 The traversal order of vertices in the same layer during the BFS execution does not matter as long as
the order is consistent.
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I Property 9. Let G = (V,E) be an unweighted undirected graph, with |V | = n. For any
v œ V and integer s such that 1 Æ s < n, we have: (i) T (v, ecc(v, s)) ™ N(v, s), and (ii) if
s < n ≠ 1, then T (v, ecc(v, s) + 1) ”™ N(v, s) .

Proof. By definition, ecc(v, s) is the largest integer k œ [0, ecc(v)] for which T (v, k) ™ N(v, s).
Thus, (i) T (v, ecc(v, s)) ™ N(v, s), and (ii) if ecc(v, s) < ecc(v) then T (v, ecc(v, s) + 1) ”™
N(v, s). If s < n ≠ 1, it must be that ecc(v, s) < ecc(v), since if we assume towards a
contradiction that ecc(v, s) = ecc(v) for some s < n ≠ 1 then T (v, ecc(v, s)) = T (v, ecc(v)) =
V \{v} = N(v, n≠1) but on the other hand, by definition of ecc(v, s), we have T (v, ecc(v, s)) ™
N(v, s) µ N(v, n ≠ 1), which is a contradiction. J

The following lemma states that eccG(v, s) exhibits a behavior that is similar to the
behavior of the distance function which cannot decrease when removing edges and vertices
from G.

I Lemma 10. Let G = (V,E) be an unweighted undirected graph, V Õ ™ V , and let GÕ be the
subgraph of G induced by the vertices in V

Õ. For any vertex v œ V
Õ and for any integer s

such that 1 Æ s < |V Õ|, it holds that eccG(v, s) Æ eccGÕ(v, s).

Proof. Given an integer 1 Æ s < |V Õ|, let r = eccG(v, s) and r
Õ = eccGÕ(v, s). We want

to show that r Æ r
Õ. By definition of eccGÕ(v, s), rÕ = eccGÕ(v, s) is the largest value for

which TGÕ(v, rÕ) ™ NGÕ(v, s). Thus, in order to show that r Æ r
Õ, it su�ces to show that

TGÕ(v, r) ™ NGÕ(v, s).
For any vertex pair u,w œ V

Õ, we have dG(u,w) Æ dGÕ(u,w) since G
Õ is a subgraph of G.

Thus,

TGÕ(v, r) = {u œ V
Õ | 0 < dGÕ(v, u) Æ r}

™ {u œ V | 0 < dG(v, u) Æ r}
= TG(v, r)
™
ø

Property 9

NG(v, s).

This implies that |TGÕ(v, r)| Æ |NG(v, s)| = s = |NGÕ(v, s)|. By Corollary 8, since |TGÕ(v, r)| Æ
|NGÕ(v, s)| then TGÕ(v, r) ™ NGÕ(v, s), as required. J

3.1 The Logarithmic-Like Behavior of Eccentricity
In the following lemma, which is an important ingredient in the analysis of our new ADO, we
show that ecc(v, s) satisfies a logarithmic-like behavior. Specifically, log(xy) = log x+ log y.
The reason for this behavior is that the number of vertices in each layer of a BFS tree expands
in a similar way to an exponential function. For a tree-graph G with minimum degree ” rooted
at a vertex v, for integers 0 Æ i < t < ecc(v) it holds that |L(v, t)| Ø ”

i · |L(v, t ≠ i)|. Since
the number of vertices in every layer of the rooted tree grows exponentially, the eccentricity
ecc(v, s) grows logarithmically (in relation to s). Unlike in trees where the expansion of the
number of vertices in every layer of a BFS can be analyzed using ”, for general graphs, in
order to achieve a lower bound for the expansion rate of the eccentricity of the vertices, we
use radG(s) instead.

I Lemma 11. Let G = (V,E) be an unweighted undirected graph, with |V | = n. For
any vertex v œ V and integers s1, s2 Ø 1 such that s1(s2 + 1) < n ≠ 1, it holds that
eccG(v, s1(s2 + 1)) Ø eccG(v, s1) + radG(s2).
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Proof. Assume towards a contradiction that eccG(v, s1(s2 + 1)) < eccG(v, s1) + radG(s2).
Thus, eccG(v, s1(s2 + 1)) + 1 Æ eccG(v, s1) + radG(s2).

Let TBFS be a BFS tree rooted at v in graph G. Let ¸ = |L(v, eccG(v, s1))| and let
u1, u2, . . . , u¸ be the vertices in L(v, eccG(v, s1)). For any i, where 1 Æ i Æ ¸, let Vi be the
set of descendant of ui in TBFS and let Gi be the graph induced by Vi in G

6.
Let µ = miniœ[1,¸]{eccGi(ui, s2)}. We will show that:

{u œ V | eccG(v, s1) < dG(v, u) Æ eccG(v, s1) + µ} ™
€̧

i=1

NGi(ui, s2). (1)

Let w œ {u œ V | eccG(v, s1) < dG(v, u) Æ eccG(v, s1) + µ}. By the definition of BFS, since
dG(v, w) > eccG(v, s1), w must be a descendant of some vertex uj , and so w œ Vj . Since
TBFS is a shortest path tree rooted at v and since w œ Vj , it must be that dG(v, w) =
dG(v, uj)+dG(uj , w) = eccG(v, s1)+dG(uj , w). By definition of w, dG(v, w) Æ eccG(v, s1)+µ.
Thus, eccG(v, s1) + dG(uj , w) Æ eccG(v, s1) + µ and so dG(uj , w) Æ µ.

By definition, TGj (uj , eccGj (uj , s2)) = {x | x œ Vj · 0 < dGj (uj , x) Æ eccGj (uj , s2)}.
Since TBFS is a shortest path tree, for any y œ Vj it must be that dGj (uj , y) = dG(uj , y).
Thus, TGj (uj , eccGj (uj , s2)) = {x | x œ Vj · 0 < dG(uj , x) Æ eccGj (uj , s2)}.

Since w œ Vj , and since dG(uj , w) Æ µ Æ eccGj (uj , s2), then w œ TGj (uj , eccGj (uj , s2)).
By Property 9, TGj (uj , eccGj (uj , s2)) ™ NGj (uj , s2). It follows that every vertex in {u œ V |
eccG(v, s1) < dG(v, u) Æ eccG(v, s1) + µ} must be included in NGi(ui, s2) for some i, thus
confirming Equation (1).

By Property 9, {u œ V | 0 < dG(v, u) Æ eccG(v, s1)} = T (v, eccG(v, s1)) ™ N(v, s1).
Combining with Equation (1) we have that {u œ V | 0 < dG(v, u) Æ eccG(v, s1)} fi {u œ V |

eccG(v, s1) < dG(v, u) Æ eccG(v, s1) + µ} ™ N(v, s1) fi
3 ţ

i=1

NGi(ui, s2)
4
, and so:

{u œ V | 0 < dG(v, u) Æ eccG(v, s1) + µ} = T (v, eccG(v, s1) + µ)

™ N(v, s1) fi
A

€̧

i=1

NGi(ui, s2)
B
.

Now,

eccG(v, s1) + µ =
ø

definition of µ

eccG(v, s1) + min
iœ[1,¸]

{eccGi(ui, s2)}

Ø
ø

by Lemma 10

eccG(v, s1) + min
iœ[1,¸]

{eccG(ui, s2)}

Ø eccG(v, s1) + min
uœV

{eccG(u, s2)}

=
ø

definition of radG(s2)

eccG(v, s1) + radG(s2)

Ø
ø

assumption

eccG(v, s1(s2 + 1)) + 1.

6 It is important to note that for all scans referenced in this proof, which include a BFS procedure of G
starting at v and BFS procedures of Gi starting at ui for 1 Æ i Æ ¸, we require a consistent order of
scanning, i.e., that for a given 1 Æ i Æ ¸, and vertices x, xÕ œ Vi ™ V , if x is scanned before x

Õ in G then
x should also be scanned before x

Õ in Gi (and vice versa). This is a valid requirement since for any
vertices y, yÕ œ Vi ™ V , dG(v, y) Æ dG(v, yÕ) if and only if dGi(ui, y) Æ dGi(ui, y

Õ).
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Thus, T (v, eccG(v, s1(s2+1))+1) ™ T (v, eccG(v, s1)+µ) ™ N(v, s1)fi
3 ţ

i=1

NGi(ui, s2)
4
.

Notice that ¸ Æ s1, since, by Property 9, ¸ = |L(v, eccG(v, s1))| Æ |T (v, eccG(v, s1))| Æ
N(v, s1) = s1. Therefore,

|T (v, eccG(v, s1(s2 + 1)) + 1)| Æ |N(v, s1) fi
A

€̧

i=1

NGi(ui, s2)
B
|

Æ |N(v, s1)|+
ÿ̧

i=1

|NGi(ui, s2)|

Æ s1 + ¸ · s2
Æ s1 + s1 · s2
= s1(1 + s2)
= |N(v, s1(s2 + 1))|.

By Corollary 8, it follows that T (v, eccG(v, s1(s2 + 1)) + 1) ™ N(v, s1(s2 + 1)), which
contradicts Property 9. J

4 The new ADO

In this section we prove Theorem 4 by introducing a new ADO which uses subquadratic space
and produces a (2, 1 ≠ k)-stretch for graphs for which �G Æ O(n1/k≠Á) for a positive integer
k and real constant 0 < Á Æ 1/k. The ADO is parameterized by a parameter 0 Æ – < 1/3
which quantifies the tradeo� between the space and the stretch of the ADO. When – = 0 the
ADO is very similar to the ADO of Agarwal and Godfrey [4] which uses Õ(n5/3) space and
has a (2, 1)-stretch. For 0 < – < 1/3, the ADO uses additional space and is able to improve
the stretch of the ADO for the family of graphs for which �G Æ O(n3–/k) .

4.1 The Construction Algorithm
The description of our construction algorithm follows the notations and definitions described
in Section 1.3.1. The construction begins with an algorithm of Thorup and Zwick [33] that
computes a set A of size Õ(s) such that |B(v)|, |C(v)| Æ 4n/s, for every v œ V . In our case
we set s = n

2/3+–, thus |A| = Õ(n2/3+–) and |B(v)|, |C(v)| Æ 4n1/3≠–, for every v œ V .
For every vertex v œ V , the ADO explicitly stores the distances between v and every

vertex in C(N(v, 16ĉ n1/3+2–)) for some constant ĉ to be decided later. In addition, for every
vertex v œ V the ADO stores p(v), d(v, p(v)) and the distances between v and every vertex
in A.

A distance query between vertices u and v is answered as follows. If one of the
following conditions holds (i) u œ A or v œ A, (ii) u œ C(N(v, 16ĉ n1/3+2–)) or v œ
C(N(u, 16ĉ n1/3+2–)) , then the exact distance is returned. Otherwise, the ADO returns
d̂(u, v) = min{d(u, p(u)) + d(p(u), v), d(u, p(v)) + d(p(v), v)}. Notice that the query time is
constant.

In Claim 12, we show that the space complexity of the ADO is Õ(ĉn5/3+–) and in
Claim 13, we show that the ADO satisfies a (2, 1 ≠ rad(ĉn3–))-stretch.

B Claim 12. The space complexity of the ADO is Õ(ĉn5/3+–).
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a bu v

B(u) B(v)

N
!
u, 16n 1/3 + 2– "

1 d(u, a) d(v, b)2 3 3 2 1

x

d(u, x)

P (u, v)

Figure 2 A query for u, v œ V in the case that N(u, 16ĉ n1/3+2–) fl B(v) = ÿ. Since x œ
N(u, 16ĉ n1/3+2–), b œ B(v) and x and b are both on a shortest path between u and v, it must be
that d(u, x) Æ d(u, b) ≠ 1.

Proof. Storing p(v), d(v, p(v)) and the distances between v and every vertex in A, for all
vertices v œ V , uses Õ(n · n2/3+–) = Õ(n5/3+–) space. As mentioned in the construction
phase, |B(v)|, |C(v)| Æ O(n1/3≠–) for every v œ V . Thus, storing the distances between
every vertex v and C(N(v, 16ĉ n1/3+2–)) requires O(n · n1/3≠– · 16ĉ n1/3+2–) = Õ(ĉn5/3+–)
space as well, leading to an overall space complexity of Õ(ĉn5/3+–). C

B Claim 13. The distance estimation d̂(u, v) returned by the ADO satisfies d(u, v) Æ
d̂(u, v) Æ 2d(u, v) + 1 ≠ rad(ĉn3–).

Proof. Notice that d(u, v) Æ d̂(u, v) since the ADO always returns a length of some path in
the graph between u and v. It is left to show that d̂(u, v) Æ 2d(u, v) + 1 ≠ rad(ĉn3–).

If the exact distance is stored in the ADO then d̂(u, v) = d(u, v) and the claim follows.
Consider the case that the exact distance is not stored. This implies that u, v /œ A and
v /œ C(N(u, 16ĉ n1/3+2–)). Assume towards a contradiction that N(u, 16ĉ n1/3+2–)flB(v) ”= ÿ
and let w be a vertex such that w œ N(u, 16ĉ n1/3+2–)flB(v). From the definitions of bunch
and cluster, we have that w œ B(v) if and only if v œ C(w). Thus, v œ C(w), and since
w œ N(u, 16ĉ n1/3+2–), it must be that v œ C(N(u, 16ĉ n1/3+2–)) which is a contradiction.
Thus, we have that N(u, 16ĉ n1/3+2–) fl B(v) = ÿ.

Let P (u, v) be a shortest path between u and v. Let a be the furthest vertex from u in
B(u) fl P (u, v), let x be the furthest vertex from u in N(u, 16ĉ n1/3+2–) fl P (u, v) and let b
be the furthest vertex from v in B(v) fl P (u, v) (see Figure 2). Notice that, by definition of
x and ecc(v, s), if T (u, d(u, x)) ™ N(u, 16ĉ n1/3+2–) then d(u, x) = ecc(u, 16ĉ n1/3+2–) and if
T (u, d(u, x)) ”™ N(u, 16ĉ n1/3+2–) then d(u, x) = ecc(u, 16ĉ n1/3+2–) + 1. Thus, we get that
d(u, x) Ø ecc(u, 16ĉ n1/3+2–).

Since N(u, 16ĉ n1/3+2–) fl B(v) = ÿ, x œ N(u, 16ĉ n1/3+2–), b œ B(v) and x and b are
both on a shortest path between u and v, it must be that d(u, x) Æ d(u, b) ≠ 1. Since
b is on a shortest path between u and v, it holds that d(u, b) = d(u, v) ≠ d(v, b), and so
d(u, x) Æ d(u, v) ≠ d(v, b) ≠ 1. Since d(u, x) Ø ecc(u, 16ĉ n1/3+2–), it follows that:

ecc(u, 16ĉ n1/3+2–) Æ d(u, v) ≠ d(v, b) ≠ 1. (2)

By Lemma 11, ecc(u,
'
4n1/3≠–

(
) + rad(

'
ĉn

3–
(
) Æ ecc(u, (4n1/3≠– + 1)(ĉn3– + 2)). Since

a œ B(u) and |B(u)| Æ 4n1/3≠–, it follows from the definitions of ecc(v, s) and bunch that
d(u, a) Æ ecc(u, 4n1/3≠–). We have that:
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d(u, a) + rad(ĉn3–) Æ ecc(u, 4n1/3≠–) + rad(ĉn3–)

Æ ecc(u,
Ï
4n1/3≠–

Ì
) + rad(

'
ĉn

3–
(
)

Æ ecc(u, (4n1/3≠– + 1)(ĉn3– + 2))
Æ ecc(u, 16ĉ n1/3+2–)
Æ
ø

Equation (2)

d(u, v) ≠ d(v, b) ≠ 1.

Thus, d(u, a) + d(b, v) Æ d(u, v) ≠ rad(ĉn3–) ≠ 1. It follows that:

2 min{d(u, a), d(b, v)} Æ d(u, v) ≠ rad(ĉn3–) ≠ 1. (3)

Notice that by the definitions of bunch, a and p(u), it holds that d(u, p(u)) = d(u, a) + 1.
Similarly, d(v, p(v)) = d(v, b) + 1. Thus:

d̂(u, v) Æ min{d(u, p(u)) + d(p(u), v), d(u, p(v)) + d(p(v), v)}
Æ
ø

triangle inequallity

min{2d(u, p(u)) + d(u, v), 2d(v, p(v)) + d(u, v)}

=
ø

d(u, p(u)) = d(u, a) + 1 and d(v, p(v)) = d(v, b) + 1

min{2(d(u, a) + 1) + d(u, v), 2(d(v, b) + 1) + d(u, v)}

Æ 2min{d(u, a), d(v, b)}+ 2 + d(u, v) (4)
Æ
ø

Equation (3)

d(u, v) ≠ rad(ĉn3–) + 1 + d(u, v)

= 2d(u, v) + 1 ≠ rad(ĉn3–). (5)

C

By combining our ADO construction with Claims 12 and 13 we have proven the following
lemma.

I Lemma 14. For any graph G with n vertices, real 0 Æ – <
1

3
and constant ĉ Ø 1, it is

possible to construct an ADO that uses Õ(ĉn 5
3+–) space and has a (2, 1 ≠ rad(ĉn3–))-stretch.

4.2 Proof of Main Upper Bound Theorem
The following lemma connects �G and rad(s), which is the last ingredient needed for proving
Theorem 4.

I Lemma 15. Let G = (V,E) be an unweighted undirected graph, with |V | = n. For any
real s such that 1 Æ s < n, it holds that radG(s) Ø Âlog�G

(s/2)Ê.

Proof. For any vertex v and integer t Ø 1, T (v, t) cannot include more than �G ·
qt≠1

i=0
(�G ≠

1)i vertices. Since �G, t Ø 1 we have that �G ·
qt≠1

i=0
(�G ≠ 1)i Æ 2 · �t

G and so for any
integer t Ø 1 such that 2 · �t

G < n it must be that T (v, t) ™ N(v, 2 · �t
G). By definition,

ecc(v, s) is equal to the largest integer x œ [0, ecc(v)] for which T (v, x) ™ N(v, s). Thus,
t Æ ecc(v, 2 · �t

G). Since t Æ ecc(v, 2 · �t
G) for any vertex v, it follows from the definition of

rad(s) = minvœV {ecc(v, s)} that t Æ rad(2 · �t
G). Setting s Ø 2 · �t

G, or t Æ log�G
(s/2), it

follows that for any integer t such that t Æ log�G
(s/2) it must be that t Æ rad(2·�t

G) Æ rad(s).
Thus, Âlog�G

(s/2)Ê Æ rad(s). J
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Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. It holds that k = Âlog�G
(�k

G)Ê Æ Âlog�G
(ckn1≠kÁ)Ê, and by Lemma

15, Âlog�G
(ckn1≠kÁ)Ê Æ radG(2ckn1≠kÁ). Thus, the ADO from Lemma 14 constructed

for G using – = 1≠kÁ
3

and ĉ = 2ck uses Õ(ckn2≠ kÁ
3 ) space and produces a distance es-

timation that satisfies d(u, v) Æ d̂(u, v) Æ max{d(u, v), 2d(u, v) + 1 ≠ radG(2ckn1≠kÁ)} Æ
max{d(u, v), 2d(u, v) + 1 ≠ k}. J

5 Reduction from the Set Intersection Problem

Proof of Lemma 6. Given an instance of Problem 1, we construct a graph G with n = Õ(N)
vertices and �G = O(n1/k), such that a (k, k + 2)-distinguisher oracle for G solves the
instance of Problem 1.

We begin by focusing on a k+1 layered graph L = (VL, EL), which we call the infrastruc-
ture graph. The infrastructure graph has three important properties: (i) each layer contains
N vertices, (ii) there is a path of length k from every vertex in the first layer to every vertex
in the last layer, and (iii) the degree of every vertex is at most 2N1/k.

We then construct for each x œ X a graph Gx = (Vx, Ex), which is a subgraph of (a
copy of) L, by removing some of the edges between the first (last) and second (second to
last) layers of L in a way that expresses which sets contain x and which do not. Finally, we
construct the graph G which is specialized union of all of the graphs Gx for all x œ X, and
enables solving the instance of Problem 1 by using a (k, k + 2)-distinguisher oracle on G.

The infrastructure graph. The infrastructure graph L is a k + 1 layered graph where each
layer contains N vertices, and each layer of N vertices is locally indexed from 1 to N . The
layers are numbered 0 to k.

The edges of L are defined using the following labels. Assign a label ¸(v) to every vertex v

in L which is the k digit representation in base7 N
1/k of the local index (an integer between

1 and N) of v. Then, for every 1 Æ t Æ k, connect u from layer t ≠ 1 with v from layer t if
and only if the digits of ¸(u) and the digits of ¸(v) all match, except for possibly the t’th
digit. It is straightforward to observe (since each digit has N1/k options) that the degree
of every vertex in L is 2N1/k, except for the vertices in the first and last layers which have
degree N

1/k. The following claim shows that there is a path of length k from every vertex in
the first layer and every vertex in the last layer.

B Claim 16. Let v be a vertex in the first layer of L and let u be a vertex in the last layer
of L. Then there exists a path of length k from u to v in L.

Proof. We describe the path of length k between u and v. For any 0 Æ t Æ k, consider the
vertex wt in layer t of L with the label of the following form: the first t digits are the first t
digits of ¸(u), and the last k≠ t digits are the last k≠ t digits of ¸(v). Thus, for 0 Æ t Æ k≠ 1,
the edge (wt, wt+1) is in L since ¸(wt) and ¸(wt+1) are the same, except for possibly the
(t + 1)-th digit. The set of edges which we described form a path of length k between
v and u. C

7 We assume for convenience that N1/k is an integer, since otherwise, one can increase N slightly without
a�ecting the asymptotic complexities.
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Constructing Gx. We construct Vx by making copies of each vertex in VL. Denote
the first layer of L by VL = {v1, . . . , vN} and the last layer by VR = {u1, . . . , uN}. Let
Êx = {(vi, w)|x /œ Si · (vi, w) œ EL}fi {(ui, w)|x /œ Si · (ui, w) œ EL}. Thus, Êx is the set of
edges in L that touch vertices in the first or last layers whose index corresponds to the index
of sets that do not contain x. We construct Ex by making copies of all edges in EL \ Êx.
The reason for removing the edges in Êx is so that vertices in the first and last layers of Gx

whose edges are in Êx are not connected to any other vertex in Gx. Thus, for each vi (uj)
in the first (last) layer of Gx, x œ Si if and only if there are edges between vi (uj) and the
second (second to last) layer in Gx. By Claim 16, if Si fl Sj ”= ÿ then there exists a path
of length k between vi and uj , and otherwise, there is no path in Gx between vi and uj .
Finally, since Gx is a partial copy of L, the maximum degree in Gx is 2N1/k.

Constructing G. We construct the k + 1 layered graph G by performing the following
special union of Gx for all x: for 1 Æ t Æ k≠1 the t’th layer of G is the union of the t’th layer
of all of the Gx graphs taken over all x œ X. Thus, each of the k ≠ 1 inner layers (excluding
the first and last layer of G) has |X|N vertices. For the first (last) layer G, instead of taking
the union of all of the first (last) layers from all of the Gx graphs, we merge them all into
one layer of N vertices. So the i’th vertex in the first (last) layer of G is a vertex obtained
by merging the i’th vertex in the first (last) layer of every Gx, for all x œ X. Thus, the first
and last layers of Gx contain N vertices each. Since the vertices in the first and last layer of
G correspond directly to the vertices VL and VR in L, respectively, we treat the first layer
of G as VL = {v1, . . . vn} and the last layer of G by VR = {u1, . . . , uN}. Thus, each node in
VL fi VR has maximum degree at most |X|N1/k = Õ(N1/k).

Answering a set intersection query. Notice that for a set intersection query between Si

and Sj , if Si fl Sj ”= ÿ, then there exists some x œ Si fl Sj , and since G contains Gx as a
subgraph, the distance between vi and uj is at most (and actually exactly) k. On the other
hand, if there exists a path P of length k between vi and uj , then by the construction of
G, P must be completely contained within some Gx for some x œ X. By the construction
of Gx, and specifically Ex, the existence of P in Gx implies that x œ Si and x œ Sj . So, in
such a case Si fl Sj ”= ÿ.

Notice that, since G is a k + 1 layered graph, any path between a vertex in the first layer
and a vertex in the last layer must be of length k + 2q for some integer q Ø 0. Thus, to
answer a set intersection query, it su�ces to establish whether the distance in G between
vi and uj is either k or at least k + 2, which the (k, k + 2)-distinguisher oracle returns in
constant time.

Analysis. We conclude that a (k, k + 2)-distinguisher oracle for graphs with n = Õ(N)
vertices and maximum degree Õ(n1/k) also solves the instance of Problem 1 (of size N).
Thus, according to Hypothesis 2, an ADO for graphs with n = Õ(N) vertices, for which the
maximum degree is Õ(n1/k), must use Õ(N2) = Õ(n2) space. We note that the maximum
degree can be reduced to O(n1/k) by artificially adding Õ(n) = Õ(N) isolated vertices
to G. J

6 Conclusions and Open Problems

In this paper we provide an algorithm (Theorem 4) and a conditional lower bound (Theorem 5)
for subquadratic space ADOs as a function of the maximum degree. As mentioned in Section 1,
the case of k = 2 in Theorem 5 essentially matches the upper bound of Theorem 4. Although
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the upper bound from Theorem 4 improves the additive approximation of the ADO for larger
values of k, a natural remaining open problem is whether it is also possible to reduce the
multiplicative approximation of the ADO and design a sub-k+2

k stretch ADO for graphs with
maximum degree �(n 1

k ≠�(1)) while using subquadratic space for integers k Ø 3.
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Abstract

In cooperative game theory, the primary focus is the equitable allocation of payo�s or costs among
agents. However, in the practical applications of cooperative games, accurately representing games
is challenging. In such cases, using an allocation method sensitive to small perturbations in the
game can lead to various problems, including dissatisfaction among agents and the potential for
manipulation by agents seeking to maximize their own benefits. Therefore, the allocation method
must be robust against game perturbations.

In this study, we explore optimization games, in which the value of the characteristic function
is provided as the optimal value of an optimization problem. To assess the robustness of the
allocation methods, we use the Lipschitz constant, which quantifies the extent of change in the
allocation vector in response to a unit perturbation in the weight vector of the underlying problem.
Thereafter, we provide an algorithm for the matching game that returns an allocation belonging to
the

! 1
2 ≠ ‘

"
-approximate core with Lipschitz constant O(‘≠1). Additionally, we provide an algorithm

for a minimum spanning tree game that returns an allocation belonging to the 4-approximate core
with a constant Lipschitz constant.

The Shapley value is a popular allocation that satisfies several desirable properties. Therefore,
we investigate the robustness of the Shapley value. We demonstrate that the Lipschitz constant of
the Shapley value for the minimum spanning tree is constant, whereas that for the matching game
is �(logn), where n denotes the number of vertices.
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1 Introduction

1.1 Background and Motivation

Cooperative games model decision-making scenarios in which multiple agents can achieve
greater benefits through cooperation. A primary concern in cooperative game theory is the
allocation of payo�s or costs provided by the grand coalition in an acceptable manner to each
agent. Among the cooperative games, those defined by optimization problems corresponding
to the set of agents involved are known as optimization games [8].

Consider the following well-known examples formulated by the matching game (MG) [9, 3]
and the minimum spanning tree game (MSTG) [6]:
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MG: Members of a tennis club form pairs for a doubles tournament. Each pair of players
has a predicted value for the prize money they would win if they teamed up. How should
the total prize money won by all pairs be distributed among members?

MSTG: Multiple facilities cooperate to construct a power grid to receive electricity from
a power plant. Each potential power line has a predetermined installation cost. When
constructing a power grid that ensures electricity distribution to all facilities, what cost
should each facility bear?

In these examples, the characteristic function of the game often contains errors, or can be
manipulated through deliberate misreporting. For instance,
MG: It is challenging to accurately predict the compatibility of pairs who have never teamed

up before. Moreover, pairs known to work well may hide this fact.
MSTG: Costs for power line installation might be misestimated owing to unforeseen terrain

or geological conditions caused by natural disasters or inadequate surveys, land rights, or
landscape regulations. Facilities may conceal these issues.

In such uncertain situations, allocations that drastically change with slight perturbations in
the game can lead to problems, such as
MG: If minor estimation errors in predicted prize money significantly change the benefits

for each player, players might not be satisfied with the allocation. In addition, when
someone falsely reports a substantial increase in their gain, it becomes di�cult to prove
the intent of the manipulation if the degree of falsehood is small.

MSTG: Facilities might not accept the allocation if trivial issues in power line construction
significantly increase their cost burden. Moreover, if such issues are used to significantly
reduce their own costs or increase those of competing facilities, several minor construction
issues may be concealed, leading to risk management problems.

To avoid these issues, it is desirable to use allocations that are robust against perturbations
in real-world cooperative games.

Before proceeding, we define some terms in cooperative game theory. The cooperative
game (V, ‹) is defined as a pair consisting of a set of agents V and a characteristic function
‹ : 2V æ RØ0 representing the payo� or cost obtained when subsets of agents cooperate. An
optimization game is defined by the optimization problem P in a discrete structure. The
P-game (G,w) is defined from a pair of structures G consisting of agent set V , edge set
E, and a weight vector w œ RE

Ø0
. In several games, G is a graph (V,E). For each subset

S ™ V , the characteristic function value ‹(S) is defined as the optimum value of P on the
substructure corresponding to S (e.g., the subgraph induced by S) with respect to weight
vector w. An optimization game is a welfare allocation game (resp., cost allocation game) if
each agent intends to maximize (resp., minimize) the value allocated to it.

Now, we formally introduce matching games and minimum spanning tree games, as
discussed in previous examples.

I Definition 1 (Matching game [3, 8]). Let G = (V,E) be an undirected graph. For a
vertex set S ™ V and an edge weight vector w œ RE

Ø0
, let OPT(S,w) denote the maximum

matching weight in G[S] with respect to weight w, where G[S] represents the subgraph of G
induced by S. The matching game of G with respect to weight w is defined as (V, ‹), where
‹(S) = OPT(S,w). The matching game is a welfare-allocation game.
I Definition 2 (Minimum spanning tree game [4, 6]). Let G = (V fi {r}, E) be an undirected
graph. For a vertex set S ™ V and edge weight vector w œ RE

Ø0
, let OPT(S,w) denote the

minimum weight of a spanning tree in G[S fi {r}] with respect to weight w. Notably, vertex r

does not correspond to the agent. To ensure that the characteristic function has finite values,
we assume that edge (r, v) exists for all v œ V . The minimum spanning tree game of G with
respect to weight w is defined as (V, ‹), where ‹(S) = OPT(S,w). The minimum spanning
tree game is a cost-allocation game.
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Let us return to the discussion of the robustness of the allocation. To measure the
robustness of the allocation, we introduce the concept of Lipschitz continuity in the allocation
of these games, analogous to the introduction of Kumabe and Yoshida [23] for discrete
optimization problems under the same name. Algorithm A that takes a weight vector
w œ RE and returns an allocation x œ RV

Ø0
is L-Lipschitz or has Lipschitz constant L if:

sup
w,wÕœRE

Ø0
w ”=wÕ

ÎA(w) ≠ A(wÕ)Î1
Îw ≠ wÕÎ1

Æ L. (1)

If the Lipschitz constant of the allocation method is small, the change in the allocation in
response to a unit change in the weight vector is guaranteed to be small. Employing such an
allocation method can resolve these problems as follows:
MG: Minor mistakes in estimating the compatibility of pairs will not significantly a�ect the

overall distribution of prize money, making it easier for agents to accept the allocation.
Additionally, substantial misreporting is necessary to increase benefits significantly through
declaration adjustments, making schemes more likely to be exposed.

MSTG: Minor issues related to the installation of power lines will not cause significant
fluctuations in the cost burden for each facility, making it easier for them to accept their
share of the costs. Additionally, because the loss incurred by reporting such issues is
small, the likelihood of these issues being concealed is reduced.

1.1.1 The core

The core is the most fundamental solution concept in cooperative game theory. An allocation
vector x œ RV is in the core of (welfare allocation) cooperative game (V, ‹) if:

ÿ

vœS

xv Ø ‹(S) (S ( V ),
ÿ

vœV

xv = ‹(V ). (2)

Similarly, an allocation vector x œ RV is in the core of (cost allocation) cooperative game
(V, ‹) if:

ÿ

vœS

xv Æ ‹(S) (S ( V ),
ÿ

vœV

xv = ‹(V ). (3)

Because the core is one of the most fundamental solution concepts, it is natural to desire
a Lipschitz continuous algorithm A that takes a weight vector as the input and returns an
allocation belonging to the core. However, this can only be achieved in a limited number of
situations for two reasons. First, a non-empty core does not necessarily exist in all games.
Second, even for games in which the core exists in all instances, there is no guarantee that a
vector from the core can be selected such that the Lipschitz constant of A remains small.

To examine the second reason, we consider the assignment game introduced by Shapley
and Shubik [29], which is a special case of the matching game in which the underlying graph
is bipartite and known to have a non-empty core [8, 29].

I Example 3. Let n be an odd number greater than or equal to 5. Let us consider a path
G = (V,E) consisting of n vertices labeled sequentially as v1, . . . , vn. The weight vectors
w,w

Õ œ RE
Ø0

are defined as follows:

w(vi,vi+1) = 1 (i = 1, . . . , n ≠ 1), w
Õ
(vi,vi+1) =

I
1 if 2 Æ i Æ n ≠ 2
0 otherwise

ICALP 2024
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In this case, the allocations x, xÕ belonging to the core of the assignment game for w and w
Õ

are both unique and obtained as follows:

xi =
I
1 if i is even
0 otherwise

x
Õ
i =

I
1 if i is odd and i ”œ {1, n}
0 otherwise

If A is an algorithm that takes a weight vector and returns a vector in the core of the game,
then it must satisfy:

ÎA(w) ≠ A(wÕ)Î1
Îw ≠ wÕÎ1

= n ≠ 2
2 = �(n)

Thus, algorithm A must have a large Lipschitz constant, �(n).

Therefore, we consider providing a Lipschitz continuous algorithm that outputs allocations
that satisfy some looser solution concepts. The least core [28] is one such solution concept
that can be defined even for games in which a core does not exist. However, this does not
resolve the problem of a large Lipschitz constant (for instance, in the game in Example 3,
the core and the least core coincide, resulting in a Lipschitz constant of �(n)). Instead, we
consider the approximate core, which is a solution concept that multiplicatively relaxes the
constraints of partial coalitions.

1.1.2 Approximate Core

The approximate core was introduced by Faigle and Kern [11] as a useful solution concept for
games where the core is empty. Intuitively, the approximate core represents the core when
the constraints for partial coalitions are relaxed by a factor –. For – Æ 1, the allocation
vector x œ RV is in the –-(approximate) core of the (welfare allocation) cooperative game
(V, ‹) if:

ÿ

vœS

xv Ø –‹(S) (S ( V ),
ÿ

vœV

xv = ‹(V ).

Similarly, for – Ø 1, the allocation vector x œ RV is in the –-(approximate) core of the (cost
allocation) cooperative game (V, ‹) if:

ÿ

vœS

xv Æ –‹(S) (S ( V ),
ÿ

vœV

xv = ‹(V ).

In this study, we provide algorithms with small Lipschitz constants that return an –-
approximate core for some constant – in several optimization games. For the matching game,
we obtain the following:

I Theorem 4. Let ‘ œ
!
0, 1

2

$
. For the matching game, there is a polynomial-time algorithm

with a Lipschitz constant O(‘≠1) that returns
!
1

2
≠ ‘

"
-approximate core allocation.

Note that Faigle and Kern [11] and Vazirani [32] showed that the 2

3
-approximate core of the

matching game is non-empty, and that this is also a tight bound. However, their allocation,
which is constructed using the optimal solution of the matching LP, is not Lipschitz continuous.
Our allocation compromises the core approximability by 1

6
+ ‘ to ensure Lipschitz continuity.

Our allocation was inspired by the Lipschitz continuous algorithm for the maximum
weight-matching problem proposed by Kumabe and Yoshida [23]. Similarly, the proposed
algorithm is based on the greedy method. We emphasize our results because their algorithm



S. Kumabe and Y. Yoshida 102:5

reduces the approximation ratio to 1

8
≠ ‘ to obtain a Lipschitz constant of O(‘≠1). Although

the definitions of Lipschitz continuity and the approximation ratio for discrete algorithms
di�er from those for allocations, making a simple comparison infeasible, our analysis is
simpler and o�ers better approximation guarantees.

For the minimum spanning tree game, we have the following.

I Theorem 5. For the minimum spanning tree game, there is a polynomial-time algorithm
with Lipschitz constant O(1) that returns 4-approximate core allocation.

The core of the minimum spanning tree game is non-empty; an allocation by Bird [4] is known
to belong to the core and can be computed in polynomial time. However, it is not Lipschitz
continuous. As in the matching game, our allocation compromises the core approximability
to ensure Lipschitz continuity.

The original motivation for the approximate core was to provide useful solution concepts for
games with non-empty cores. Therefore, no studies have been conducted on the approximate
core of the minimum spanning tree game. In this regard, our setting demonstrates the
usefulness of considering an approximate core, even for games with a non-empty core.

1.1.3 Shapley Value

Let SV be the set of all permutations over V . For ‡ œ SV and v œ V , let x‡,v =
‹({‡(1), . . . ,‡(k)}) ≠ ‹({‡(1), . . . ,‡(k ≠ 1)}), where k is the integer with ‡(k) = v. The
Shapley value [27] of game (V, ‹) is the vector s defined by:

sv = 1
|V |!

ÿ

‡œSV

x‡,v.

The Shapley value does not necessarily belong to the core, even if it exists, and the
computation is #P-hard in most optimization games. However, they exhibit various desirable
properties and have a wide range of applications [16]. Therefore, investigating the Lipschitz
continuity of Shapley values is a natural task.

Considering its various properties, it is natural to expect the Shapley value to always have
a small Lipschitz constant for general optimization games. Conversely, given the di�culty in
computing it, it is natural to anticipate that it may not have a bounded Lipschitz constant.
However, neither was accurate. Specifically, we demonstrate that whether the Shapley value
in optimization games has a small Lipschitz constant depends on the game.

I Theorem 6. There is a graph G such that the Shapley value of the matching game on G

has a Lipschitz constant �(logn).

I Theorem 7. The Shapley value of the minimum spanning tree game has a Lipschitz
constant of 2.

Notably, the computation of the Shapley value for the minimum spanning tree game is
#P-hard [1]. The result of Theorem 7 is particularly interesting because it shows a value
that is computationally di�cult to calculate may still have a small Lipschitz constant.

1.2 Related Work

1.2.1 Optimization Games

The history of optimization games begins with the assignment game proposed by Shapley
and Shubik [29]. They showed that the core of the assignment game is represented by the
optimal solution of dual linear programming and is always non-empty. Deng, Ibaraki, and

ICALP 2024
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Nagamochi [8] defined a class of games in which the characteristic function is represented
by integer programming, and discussed the core structures of such games. In particular, for
the matching game, they proved that the core is not always non-empty, but that the core
non-emptiness problem, core membership problem, and that of generating a vector in the
core if it is non-empty are solvable in polynomial time. Aziz and de Keijzer [2] proved that
computing the Shapley value of the matching game is #P-hard. Additionally, studies on
the generalization of matching games such as the hypergraph matching game [7, 8, 20] and
b-matching game [5, 19, 30, 34], are being conducted. For a more detailed survey of the
algorithmic aspects of matching games, see [3].

The minimum spanning tree game was proposed by Claus and Kleitman [6]. Bird [4] later
proposed an allocation defined as follows: Regarding the minimum spanning tree of a given
graph as a rooted tree rooted at r, each agent corresponding to a vertex v is allocated a cost
equal to the weight of the edge from v to its parent. Granot and Huberman [14] proved this
allocation is in the core. Unfortunately, it is not (Lipschitz) continuous. Faigle et al. [13]
proved that the core membership problem for the minimum spanning tree game is coNP-hard.
Ando [1] proved that the Shapley value of the minimum spanning tree game is #P-hard.

The concept of an approximate core was introduced by Faigle and Kern [11] as a useful
solution for games where the core is empty. Their work discussed the approximate core
allocations for several optimization games, including the matching game. In particular, for the
matching game, they constructed a 2

3
-core allocation based on LP relaxation. Subsequently,

extensive studies have been conducted to determine the best – for which the –-core is
always non-empty in various optimization games in which the core can be empty, such as the
traveling salesman game [10, 11] and bin-packing games [11, 12, 17, 18, 26, 33]. Recently,
following the rediscovery of Faigle and Kern’s results by Vazirani [32], approximate cores
have been derived for several optimization games such as the b-matching game [34] and the
edge cover game [24].

Notably, in the definition by Faigle and Kern [11] and in subsequent papers, the right-hand
side of Equations (2) or (3) being (1± ‘)‹(S) is referred to as the ‘-core. However, following
the conventions in the field of discrete optimization and the study by Vazirani [32] and
subsequent studies [24, 34], we adopt the definitions of Equations (2) and (3). An ‘-core in
our definition corresponds to a |1 ≠ ‘|-core in Faigle and Kern’s definition.

1.2.2 Lipschitz Continuity of Discrete Algorithms

Inspired by recent studies on the average sensitivity [15, 21, 25, 31, 35] for unweighted discrete
optimization problems, Kumabe and Yoshida [23] introduced the Lipschitz continuity of a
randomized algorithm A for weighted discrete optimization problems as follows:

sup
w,wÕœRV

Ø0,

w ”=wÕ

minDœ�(A(G,w),A(G,wÕ)) E(S,SÕ)≥D [dw ((S,w), (SÕ
, w

Õ))]
Îw ≠ wÕÎ1

, (4)

where A(G,w) represents the output distribution of algorithm A for input G with weight
vector w œ RV

Ø0
, �(X,X

Õ) denotes the set of all joint distributions for random variables X
and X

Õ, and

dw((S,w), (SÕ
, w

Õ)) =

.....
ÿ

vœS

wv1v ≠
ÿ

vœSÕ

w
Õ
v1v

.....
1

=
ÿ

vœSflSÕ

|wv ≠ w
Õ
v|+

ÿ

vœS\SÕ

wv +
ÿ

vœSÕ\S

w
Õ
v.
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They also proposed algorithms with small Lipschitz constants for the minimum spanning
tree, shortest path, and maximum weight matching problems. In a subsequent study [22],
the authors obtained algorithms with small Lipschitz constants for the minimum weight
vertex cover, minimum weight set cover, and feedback vertex set problems.

In discrete optimization, the outputs of the algorithms are discrete sets. Thus, determ-
inistic algorithms cannot be Lipschitz continuous; they consider randomized algorithms
and adopt the earth mover’s distance in the numerator of (4). In contrast, the outputs
of our algorithms are allocations of continuous values, allowing deterministic algorithms
to be Lipschitz continuous and randomized algorithms to be derandomized by taking the
expectation. Therefore, in our setting, we can use a simple definition of the deterministic
algorithms expressed in Equation (1).

1.3 Organization

The remainder of this paper is organized as follows: In Section 2, we provide several useful
lemmas to analyze Lipschitz continuity of allocations. In Section 3, we prove Theorem 4 by
providing a Lipschitz continuous polynomial-time algorithm that returns an approximate
core allocation to the matching game. In Section 4, we prove Theorem 5 by providing a
Lipschitz continuous polynomial-time algorithm that returns an approximate core allocation
for the minimum spanning tree game. The proofs of Theorem 6 and Theorem 7 are given in
the full version.

2 Basic Facts

In this section, we provide useful lemmas to analyze the core approximability and Lipschitz
continuity of our allocations. The following lemma is useful for obtaining the Lipschitz
constant: We omit this proof because it is similar to Lemma 1.7 of [23].

I Lemma 8. Let (G = (V,E), w) be an optimization game and A be an algorithm that takes
a pair (G,w) and outputs an allocation. Suppose that there exist some c > 0 and L > 0 such
that

Î(A(G,w),A(G,w + ”1e)Î1 Æ ”L

holds for any e œ E, w œ RE
Ø0

, and ” > 0 with either ” Æ c ·we or we = 0, where 1e represents
the characteristic vector of e. Then, A has a Lipschitz constant L.

In the analysis of the core approximability and Lipschitz continuity of allocations, we
can simplify the discussion by ignoring the constraint

q
vœV xv = ‹(V ) for a grand coalition.

Therefore, we require a method to obtain an allocation with a bounded Lipschitz constant
from vectors that satisfy only the constraints for partial coalitions with a bounded Lipschitz
constant. To achieve this, we require a mild assumption in the game. An optimization game
(G = (V,E), w) is said to be reasonable if the inequality |‹(V,w) ≠ ‹(V,wÕ)| Æ Îw ≠ w

ÕÎ1
holds for all w,wÕ œ RØ 0E . Notably, this is a fair assumption. For instance, games defined
for optimization problems in the form of

max or min
ÿ

eœX

we, subject to X œ F

for F ™ 2E are all reasonable. The next lemma applies to welfare allocation games, such as
the matching game. Due to the space limit, the proofs of the next two lemmas are given in
the full version.

ICALP 2024
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Algorithm 1 Lipschitz continuous allocation for the matching game.

1 Procedure MatchingGame(G,w, b,–)
Input: A graph G = (V,E), where the edge set is indexed with integers in

{1, 2, . . . , |E|}, a weight vector w œ RE
Ø0

, b œ [0, 1], and – œ (1, 2].
2 For each e œ E with we > 0, let ‚we Ω –

ie+1+b, where ie is the unique integer
such that –

ie+b Æ we < –
ie+1+b;

3 z Ω 0V , M Ω ÿ;
4 for e œ E in descending order of we, where ties are broken according to their

indices do
5 if none of the two endpoints of e are covered by M then
6 Add e to M ;
7 zv Ω ‚we for each endpoint v of e;

8 return z;

I Lemma 9. Let D Ø 1. Let A be an algorithm that takes a weight vector w œ RE
Ø0

and
returns an allocation A(w) œ RV

Ø0
for a reasonable welfare allocation game. Assume A

satisfies ÎA(w)Î1 Æ D‹(V,w),
q

vœS A(w)v Ø ‹(S,w) for all weight vector w and S ™ V ,
and ÎA(w) ≠ A(wÕ)Î1 Æ LÎw ≠ w

ÕÎ1 for all two weight vectors w and w
Õ. Then, there is an

algorithm that returns 1

D -approximate core allocation with Lipschitz constant 2L+ 1.

The next lemma applies to cost allocation games, such as the minimum spanning tree game.

I Lemma 10. Let D Ø 1. Let A be an algorithm that takes a weight vector w œ RE
Ø0

and returns an allocation A(w) œ RV
Ø0

for a reasonable cost allocation game. Assume
A satisfies ÎA(w)Î1 Ø ‹(V,w),

q
vœS A(w)v Æ D‹(S,w) for all weight vector w, and

ÎA(w) ≠ A(wÕ)Î1 Æ LÎw ≠ w
ÕÎ1 for all two weight vectors w and w

Õ. Then, there is an
algorithm that returns D-approximate core allocation with Lipschitz constant 2L+ 1.

3 Matching Game

In this section, we prove Theorem 4 by giving a Lipschitz continuous algorithm that returns
an approximate core allocation of the matching game. We obtain the proof by constructing
an algorithm that satisfies the assumptions in Lemma 9. Specifically, we prove that an
algorithm that returns a vector represented by

⁄
1

0

MatchingGame(G,w, b,–)db (5)

satisfies the assumptions of Lemma 9, where the procedure MatchingGame is provided in
Algorithm 1. We give a deterministic algorithm to compute this integral in Section 3.3.

MatchingGame(G,w, b,–) first rounds each edge weight we to a value ‚we that is pro-
portional to a power of –, where the proportionality constant is determined by b. Thereafter,
it sorts the edges in descending order of ‚we and greedily selects them to form maximal
matching M . Finally, for each edge e œ M , the algorithm allocates ‚we to both endpoints of
the edges in M .
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3.1 Core Approximability

The proofs of the following two lemmas for the core approximability analysis of Algorithm 1
are relatively straightforward.

I Lemma 11. We have ÎzÎ1 Æ 2–OPT(V,w).

Proof. Because M is a matching of G, we have
q

eœM we Æ OPT(V,w). Because the
modified weight ‚we of each edge e in M contributes twice to ÎzÎ1, we obtain

ÎzÎ1 = 2
ÿ

eœM

‚we Æ 2–

ÿ

eœM

we Æ 2–OPT(V,w). J

I Lemma 12. Let S ™ V . Then, we have
q

vœS zv Ø OPT(S,w).

Proof. Let e = (u, v) œ E. When edge e begins to be examined in the loop starting from
Line 4, if at least one of u or v (say, u) is already covered by M , then we have ‚we Æ zu. If
neither u nor v are covered, then edge e is added to M , resulting in ‚we = zu = zv. Therefore,
‚we Æ max{zu, zv} Æ zu + zv. Let M Õ be the maximum matching of G[S]. Then, we have

ÿ

vœS

zv Ø
ÿ

(u,v)œM Õ

(zu + zv) Ø
ÿ

eœM Õ

‚we Ø
ÿ

eœM Õ

we = OPT(S,w). J

3.2 Lipschitz Continuity

Let G = (V,E) be a graph, f œ E, ” > 0, b œ [0, 1], and – > 1. We will bound

1
”

⁄
1

0

ÎMatchingGame(G,w, b,–) ≠ MatchingGame(G,w + ”1f , b,–)Î1 db, (6)

which is an upper bound on

1
”

....
⁄

1

0

MatchingGame(G,w, b,–)db ≠
⁄

1

0

MatchingGame(G,w + ”1f , b,–)db
....
1

.

From Lemma 8, bounding (6) for ” Æ wf or wf = 0 is su�cient to prove Lipschitz continuity.
We denote the value of ‚w, M , and z in MatchingGame(G,w, b,–) (resp., Matching-
Game(G,w + ”1f , b,–)) as ‚w, M , and z (resp., ‚wÕ, M Õ, and z

Õ).
When ‚wf = ‚wÕ

f , MatchingGame(G,w, b,–) and MatchingGame(G,w + ”1f , b,–)
output the same vector. Assume otherwise. In MatchingGame(G,w, b), edge e1 coming
before edge e2 refers to e1 being considered before e2 in the loop starting from Line 4, and
is denoted as e1 ª‚w e2. In other words, either ‚we1 > ‚we2 or ‚we1 = ‚we2 and the index of e1
comes earlier than that of e2. For e1 ”= f ”= e2, the relations e1 ª‚w e2 and e1 ª‚wÕ e2 are
equivalent. Thus, we simply denote this as e1 ª e2. The following lemma forms the core of
our Lipschitzness analysis:

I Lemma 13. Assume ‚wf ”= ‚wÕ
f . Then, we have Îz ≠ z

ÕÎ1 Æ 2 ‚wÕ
f .

Proof. For each edge e ”= f such that e œ M
Õ \M (resp., e œ M \M Õ), edge g is a witness of

e if it is adjacent to e in M (resp., M Õ) and g ª‚w e (resp., g ª‚wÕ e). Intuitively, a witness of
e is the edge that directly causes e to be excluded from M or M Õ.

From this definition, the witness of e œ M
Õ \ M belongs to M \ M

Õ and vice versa.
Because ª is an ordering on E \ {f}, by tracing the witnesses from any edge in M—M

Õ, we
will consequently arrive at f . This implies that as long as M ”= M

Õ, the edges in M—M
Õ
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form a single path or cycle including f . Moreover, in this case, we have f œ M
Õ \ M ,

because if we can add f to M in MatchingGame(G,w, b,–), we could also add f to M
Õ in

MatchingGame(G,w + ”1f , b,–).
Let us now complete the proof. When M = M

Õ, we have Îz ≠ z
ÕÎ1 Æ 2( ‚wÕ

f ≠ ‚wf ) Æ 2 ‚wÕ
f .

Otherwise, we let f = (u0, v0). Then, there exists a unique maximal sequence of vertices
(u0, . . . , uk) such that (ui, ui+1) œ M—M

Õ for all i and f ª‚wÕ (u0, u1) ª (u1, u2) ª · · · ª
(uk≠1, uk), and a unique maximal sequence of vertices (v0, . . . , vl) such that (vi, vi+1) œ
M—M

Õ for all i and f ª‚wÕ (v0, v1) ª (v1, v2) ª · · · ª (vl≠1, vl) (if M—M
Õ forms a cycle,

then (uk≠1, uk) = (vl, vl≠1)). Now, we have

Îz ≠ z
ÕÎ1 Æ

kÿ

i=0

|zui ≠ z
Õ
ui
|+

lÿ

i=0

|zvi ≠ z
Õ
vi |

=
A
| ‚wÕ

f ≠ ‚w(u0,u1)|+
kÿ

i=1

| ‚w(ui≠1,ui)
≠ ‚w(ui,ui+1)|

B
+

A
| ‚wÕ

f ≠ ‚w(v0,v1)|+
lÿ

i=1

| ‚w(vi≠1,vi) ≠ ‚w(vi,vi+1)|
B

Æ 2 ‚wÕ
f ,

where the last inequality is from the fact that the sequences defined by1
‚wÕ
f , ‚w(u0,u1), . . . , ‚w(uk≠1,uk)

2
and

1
‚wÕ
f , ‚w(v0,v1), . . . , ‚w(vl≠1,vl)

2
are both decreasing. J

The following lemma analyzes the probability that ‚wf ”= ‚wÕ
f happens.

I Lemma 14. If b is sampled uniformly from [0, 1], ‚wf ”= ‚wÕ
f happens with a probability of

at most ”
wf ln – .

Proof. ‚wf ”= ‚wÕ
f happens when there exists an integer i with wf < –

i+b Æ wf + ”, indicating
that Âlog– wf ≠ bÊ ”= Âlog– wf + ” ≠ bÊ. This happens with probability

log–(wf + ”) ≠ log– wf = log–

3
1 + ”

wf

4
Æ 1

ln–
· ”

wf
= ”

wf ln–
. J

Now, we complete our Lipschitzness analysis.

I Lemma 15. We have
⁄

1

0

ÎMatchingGame(G,w, b,–) ≠ MatchingGame(G,w + ”1f , b,–)Î1 db Æ 12
– ≠ 1”.

Proof. If wf = 0, we have
⁄

1

0

ÎMatchingGame(G,w, b,–) ≠ MatchingGame(G,w + ”1f , b,–)Î1 db

Æ 2 ‚wÕ
f Æ 2–(wf + ”) = 2–” Æ 12

– ≠ 1”,

where the last inequality is from – Æ 2. Otherwise, we have
⁄

1

0

ÎMatchingGame(G,w, b,–) ≠ MatchingGame(G,w + ”1f , b,–)Î1 db

Æ ”

wf ln–
· 2 ‚wÕ

f Æ ”

wf ln–
· 2–(wf + ”) Æ ”

wf ln–
· 4–wf = 4–”

ln–
Æ 12

– ≠ 1”,

where the third inequality is from ” Æ wf and the last inequality is from the fact that
–

ln – Æ 3

–≠1
holds for – œ (1, 2]. J
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3.3 Proof of Theorem 4

Combining Lemmas 11, 12, and 15 and applying Lemma 9 yields the following:

I Lemma 16. Let ‘ œ
!
0, 1

2

$
. For the matching game, an algorithm that returns

!
1

2
≠ ‘

"
-

approximate core allocation with Lipschitz constant O(‘≠1) exists.

Proof. Let – = 1 + 2‘. By combining Lemmas 11, 12, 15, and 9, we obtain an algorithm
that returns 1

2– -approximate core allocation for the matching game with Lipschitz constant
24

–≠1
+ 1. As 1

2(1+2‘) Ø 1

2
≠ ‘ and 24

2‘ + 1 Æ O(‘≠1), this algorithm satisfies the claims of the
lemma. J

Proof of Theorem 4. It is su�cient to prove that the allocation defined by Lemma 16 can
be computed in polynomial time. For each edge e œ E, let be = log– we ≠ Âlog– weÊ, and
sort the be values in ascending order to obtain a sequence t1, . . . , t|E|. For convenience, we
set t0 = 0 and t|E|+1 = 1. For each i = 0, . . . , |E|, the behavior of Algorithm 1 for any
b œ [ti, ti+1) is identical, except for the constant multiplier on ‚w. Therefore, by running
Algorithm 1 for b = ti and appropriately scaling the result, and thereafter summing these
results for each i, we can compute the integral in Equation (5) in polynomial time. J

4 Minimum Spanning Tree Game

In this section, we prove Theorem 5 by giving a Lipschitz continuous algorithm that returns
an approximate core allocation for the minimum spanning tree game. The proof is obtained
by constructing an algorithm that satisfies the assumption of Lemma 10. Specifically, we
prove that an algorithm that returns a vector represented by

⁄
1

0

MSTGame(G,w, b)db

satisfies the assumptions of Lemma 10, where the procedure MSTGame is provided in
Algorithm 3. We give a deterministic algorithm to compute this integral in Section 4.3.

To derive our allocation, we use an auxiliary tree that simulates Kruskal’s algorithm,
constructed as in Algorithm 2. The auxiliary tree is a rooted tree such that each leaf
corresponds to a vertex in V fi {r}. We provide an overview of Algorithm 2. Initially, for
each vertex v œ V fi {r}, the algorithm prepares a vertex u{v} and sets its height hu{v} to 0.
The auxiliary tree is constructed by adding the edges of E in ascending order of weight to
graph (V fi {r}, ÿ). Edges of the same weight are added simultaneously. When adding the
edges of a certain weight results in merging multiple connected components C1, . . . , Ck into
a single connected component C, the algorithm creates a vertex uC corresponding to C in
the auxiliary tree. The height of uC is set as the weight of the edges at that time, and the
edges are added to the auxiliary tree from uC to uC1 , . . . , uCk .

For x œ RØ0 and a weight vector ‚w, let C‚w,<x
and C‚w,Æx

be the families of connected
components of graphs whose vertex sets are V fi{r} and edge sets consist of edges e œ E with
‚we < x and ‚we Æ x, respectively. For the auxiliary tree T , we denote the subtree rooted at
vertex u by Tu. When the edges of an auxiliary tree are referred to as (u, uÕ), u is the parent
of uÕ. For an edge e = (u, uÕ), we denote Te = TuÕ . For simplicity, for e = (u, uÕ) œ E(T ), we
define he := hu.

MSTGame(G,w, b) first rounds each edge weight we to a value ‚we that is proportional to
a power of 2, where the proportionality constant is determined by b. Let T be the auxiliary
tree derived from (G, ‚w). Then, for each edge e in T such that Te does not have r as a
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Algorithm 2 Construction of the auxiliary tree.

1 Procedure AuxiliaryTree(G, ‚w)
Input: A graph G = (V fi {r}, E) and a weight vector ‚w œ RE

Ø0
.

2 U Ω {u{v} | v œ V fi {r}}, F Ω ÿ;
3 hu Ω 0 for each u œ U ;
4 for x œ RØ0 such that C‚w,<x

”= C‚w,Æx
, in ascending order do

5 for C œ C‚w,Æx
\ C‚w,<x

do
6 Add a new vertex uC to U ;
7 huC Ω x;
8 for C

Õ œ C‚w,<x
such that C Õ ™ C do

9 Add a new edge (uC , uCÕ) to F ;

10 return (U,F, h);

Algorithm 3 Lipschitz continuous allocation for the minimum spanning tree game.

1 Procedure MSTGame(G,w, b)
Input: A graph G = (V fi {r}, E), a weight vector w œ RE

Ø0
, and b œ [0, 1].

2 For each e œ E with we > 0, let ‚we Ω 2ie+1+b, where ie be the unique integer
such that 2ie+b Æ we < 2ie+1+b;

3 T Ω AuxiliaryTree(G, ‚w) and identify the vertices of G with the
corresponding leaves of T ;

4 for e œ E(T ) such that r ”œ Te do
5 Let Xe be the set of leaves in Te;
6 Let ze Ω he

|Xe|1Xe ;

7 return
q

eœE ze;

leaf, the value he is evenly distributed among the agents corresponding to the leaves of Te.
At first glance, the total value distributed may seem unrelated to the value of the grand
coalition. However, it can be proved in Lemmas 18 and 19 that the total value distributed
by this method is at least OPT(G, ‚w) and at most 2OPT(G, ‚w).

4.1 Core Approximability

We begin by analyzing the core approximability. Let T be the auxiliary tree for (G, ‚w). For
X ™ V fi {r}, the connector conn(X) of X is the minimal connected subgraph of T that
contains all leaves of T corresponding to X. The following lemma bounds the value of the
characteristic function for a subset S of V using values that can be computed from connector
conn(S fi {r}). Due to the space limit, proofs in this section are given in the full version.

I Lemma 17. Let S ™ V . Then, we have
ÿ

(u,uÕ
)œE(conn(Sfi{r}))

r ”œTuÕ

(hu ≠ huÕ) Æ OPT(G[S fi {r}], ‚w).

When V = S, the equality holds.

Now, we have the following.
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I Lemma 18. Let S ™ V . Then, we have
ÿ

vœS

ÿ

eœE(T )

ze,v Æ 4OPT(G[S fi {r}], w).

We have the following bound for the grand coalition.

I Lemma 19. We have
ÿ

vœV

ÿ

eœE(T )

ze,v Ø OPT(G,w).

4.2 Lipschitz Continuity

Let f œ E(G). We bound

1
”

⁄
1

0

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1 db,

which is an upper bound on

1
”

....
⁄

1

0

MSTGame(G,w, b)db ≠
⁄

1

0

MSTGame(G,w + ”1f , b)db
....
1

.

Without loss of generality, we can assume ” Æ wf or wf = 0. Now we fix b œ [0, 1]. We
denote the value of T , ‚w, X, and z in MSTGame(G,w, b) (resp., MSTGame(G,w+ ”1f , b))
as T , ‚w, X, and z (resp. T Õ, ‚wÕ, X Õ, and z

Õ).
When ‚wf = ‚wÕ

f , T and T
Õ are the same and MSTGame(G,w, b) and MSTGame(G,w +

”1f , b) output the same vector. Otherwise, let C be the connected component of C‚w,Æ‚wf

that contains both the endpoints of f . If C is still connected even after the removal of f ,
then we have C‚w,Æx

= C‚wÕ,Æx
for all x Ø 0 and thus T = T

Õ. Otherwise, let C1 and C2 be
two connected components of C after the removal of f . Subsequently, T Õ is obtained from T

by the following operation:
(1.1) If no vertex uC1 exists in T , create a vertex uC1 , set huC1

= ‚wf , and for each child
uX of uC with X ™ C1, replace the edge (uC , uX) with (uC1 , uX). Otherwise, delete the
edge (uC , uC1).

(1.2) Do exactly the same for C2.
(2) If uC has a parent uY with huY = ‚wÕ

f , delete the vertex uC and the edge (uY , uC), and
add two new edges (uY , uC1) and (uY , uC2). Otherwise, add two new edges (uC , uC1)
and (uC , uC2) and then change the value of huC from ‚wf to ‚wÕ

f .

We can observe that all edges e of T except for the edges (uC , uC1) deleted in (1.1),
(uC , uC2) deleted in (1.2), and (uY , uC) deleted in (2) naturally correspond to edges in T

Õ

that are not added in (2), and if we identify the edges of T with those of T Õ using that
correspondence, it holds that he = h

Õ
e and Xe = X

Õ
e, which implies ze = z

Õ
e. Therefore, we

have the following.

I Lemma 20. Assume ‚wf ”= ‚wÕ
f . Then, we have

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1 Æ ‚wf + 2 ‚wÕ
f .

Proof. Let

z1 =
I

1

|C1|1C1 if (uC , uC1) is deleted in (1.1) and r ”œ C1

0 otherwise
,

ICALP 2024



102:14 Lipschitz Continuous Allocations for Optimization Games

z2 =
I

1

|C2|1C2 if (uC , uC2) is deleted in (1.2) and r ”œ C2

0 otherwise
,

z3 =
I

1

|C|1C if (uY , uC) is deleted in (1.2) and r ”œ C

0 otherwise
,

z4 =
I

1

|C1|1C1 if r ”œ C1

0 otherwise
,

z5 =
I

1

|C2|1C2 if r ”œ C2

0 otherwise
.

Then, we have

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1
=

..(z1 + z2) ‚wf + (z3 ≠ z4 ≠ z5) ‚wÕ
f

..
1

=
..!

z1 ‚wf + (z3 ¶ 1C1 ≠ z4) ‚wÕ
f

"..
1
+

..!
z2 ‚wf + (z3 ¶ 1C2 ≠ z5) ‚wÕ

f

"..
1

Æ max
3

‚wf + |C1|
|C| ‚wÕ

f , ‚wÕ
f

4
+max

3
‚wf + |C2|

|C| ‚wÕ
f , ‚wÕ

f

4
Æ ‚wf + 2 ‚wÕ

f . J

The following lemma analyzes the probability that ‚wf ”= ‚wÕ
f happens.

I Lemma 21. Assume w
Õ
f Æ 2wf . If b is sampled uniformly from [0, 1], ‚wf ”= ‚wÕ

f happens
with a probability of at most ”

wf log 2
.

Proof. ‚wf ”= ‚wÕ
f happens when there is an integer i with wf < 2i+b Æ wf + ”, implying that

Âlog2 wf ≠ bÊ ”= Âlog2 wf + ” ≠ bÊ. This happens with probability

log2(wf + ”) ≠ log2 wf = log2
3
1 + ”

wf

4
Æ ”

wf log 2
. J

Now, we have the following:

I Lemma 22. We have
1
”

⁄
1

0

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1 db Æ 10”

log 2 .

Proof. If wf = 0, we have

1
”

⁄
1

0

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1 db Æ 2 ‚wÕ
f Æ 4wÕ

f = 4”.

Otherwise, we have
1
”

⁄
1

0

ÎMSTGame(G,w, b) ≠ MSTGame(G,w + ”1f , b)Î1 db

Æ ”

wf log 2
!

‚wf + 2 ‚wÕ
f

"
= ”

wf log 2
· 5 ‚wf Æ ”

wf log 2
· 10wf = 10”

log 2 . J

4.3 Proof of Theorem 5

Combining Lemmas 18, 19, and 22 and applying Lemma 10 yields Theorem 5.

Proof of Theorem 5. Combining Lemmas 18, 19, 22, and 10, we obtain an algorithm that
returns 4-approximate core allocation for the matching game with Lipschitz constant 20

log 2
+1 =

O(1). The fact that the allocation defined by Lemma 16 can be computed in polynomial
time is obtained using the same argument as in the proof of Theorem 4. J
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Abstract
Since 1968, one of the simplest open questions in the theory of hash tables has been to prove anything

nontrivial about the correctness of quadratic probing. We make the first tangible progress towards
this goal, showing that there exists a positive-constant load factor at which quadratic probing
is a constant-expected-time hash table. Our analysis applies more generally to any fixed-o�set
open-addressing hash table, and extends to higher load factors in the case where the hash table
examines blocks of some size B = Ê(1).
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1 Introduction

The field of open-addressed hash tables began with the introduction of linear probing in the
1950s [35, 24, 25]. Although early work [35] conjectured that linear probing should scale well
to high load factors, with an insertion time of O(x) at load factor 1≠1/x, subsequent analyses
by Knuth [24] (unpublished) and by Konheim and Weiss [26] (published in 1966) showed
that this is not the case. Due to clustering e�ects, in which elements group together to form
long continuous runs of occupied slots, the true expected insertion time is asymptotically
larger than researchers had hoped for, evaluating to �(x2).

In the late 1960s, this prompted researchers to propose alternative hashing algorithms
that preserved the simplicity (and in some cases data locality) of linear probing, while
mitigating the clustering e�ects. Two solutions, in particular, emerged as natural alternatives,
double hashing, which was introduced by de Balbine in his 1968 thesis [4] (and proposed
independently by Bell and Kaman in 1970 [7]); and quadratic probing, which was introduced
by Maurer in 1968 [32] and then refined by other sets of authors through the 1970s [5, 22,
16, 36].

Despite their data-structural simplicity, double hashing and quadratic probing proved
far harder to analyze than linear probing. It wasn’t until 1976, in a breakthrough paper
by Guibas and Szemeredi [19], that double hashing was finally partially analyzed: they
proved that, so long as the load factor of the hash table is at most ¥ 0.28, the hash table is
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guaranteed to support constant-expected-time operations. This constant was subsequently
improved to ¥ 0.31 in 1978 [20], which remained the state of the art until 1988, when Lueker
[30, 31] finally extended the analysis to apply to all load factors. In particular, Lueker showed
a coupling between double hashing and uniform probing, proving that the expected insertion
times are within a 1 + o(1) factor of each other.

The coupling techniques [19, 20, 21, 30, 31] that allowed for an analysis of double hashing
do not extend to quadratic probing. It has remained an open question for more than five
decades to prove anything nontrivial about the behavior of quadratic-probing hash tables. It
is not even known, for example, whether quadratic-probing is a constant-time data structure
when used at a load factor of 0.001.

Linear Probing vs Double Hashing vs Quadratic Probing

Let us take a moment to briefly define the three hash-table designs described above. In
each case, elements are stored in an array of some size n, and the load factor of the hash
table is defined to be the fraction of slots that are occupied. To insert an element x, a
sequence p1(x), p2(x), . . . of array positions are examined until an unoccupied spot is found
for x. Where the three hash-table designs di�er is in the choice of probe sequence: linear
probing uses pi(x) = h(x) + i mod n, where h(x) œ [n] is a random hash; double hashing
uses pi(x) = h1(x) + ih2(x) mod n, where h1(x), h2(x) œ [n] are both random hashes; and
quadratic probing uses pi(x) = h(x) + (i ≠ 1)2 mod n, where again h(x) œ [n] is a random
hash.

The analysis of linear probing [24, 26] hinges on the observation that, if an insertion x
takes time k, there must be an array interval of the form I = [h(x) ≠ j, h(x) + k ≠ 1], for
some j Ø 0, such that the number of elements y with hashes h(y) œ I is at least |I| = j + k.
Thus, the analysis of linear probing reduces directly to the analysis of how many elements
hash into each interval in the hash table. The analysis of double hashing [19, 20, 21, 30, 31]
relies on the fact that the probe sequence pi(x) = h1(x) + ih2(x) mod n is in some formal
sense nearly as random as the fully random probe sequence pi(x) = hi(x), where h1, h2, . . .
are all independent hash functions.

Quadratic probing, on the other hand, sits in an unfortunate middle ground. It lacks
the clean interval-based structure of linear probing – if an insertion x collides with another
element y in position pi(x) = h(x) + (i ≠ 1)2 mod n, then there is nothing substantive that
we can say about the array interval [h(x), h(y)]. But it is not comparable to a fully random
probe sequence – indeed, elements x and y with hashes h(x) and h(y) that are close together,
are far more likely to interact than are a random pair of elements. The interactions between
pairs of elements follow an apparently chaotic combinatorial structure: if an insertion x
collides with another element y in position pi(x) = h(x) + (i ≠ 1)2 mod n, then the same
element x would not have interacted with y at all if y’s hash had been 1 smaller; and, similarly,
y might have been in a di�erent position entirely had any of the elements it interacted with
had even slightly di�erent hashes, etc.

Yet, empirically, quadratic probing is an excellent hash table design [38, 32, 11, 15, 12,
6, 18, 23, 39, 40]. It preserves much of the data locality that makes linear probing special
[38] while also empirically eliminating the asymptotic clustering e�ects that make linear
probing bad [32]. It is recommended in textbooks and courses [11, 15, 12, 6, 18, 23, 39, 40],
and is even used as the underlying design (with some modifications we will discuss later) for
Google’s in-house and open-source hash tables [1]. Thus, the problem would truly seem to
be one of algorithm analysis rather than one of algorithm design.
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This Paper: A Partial Analysis of Quadratic Probing

We give the first analysis for quadratic-probing hash tables at low load factors. We show
that, at any load factor less than roughly 0.089, the expected time per operation is O(1).
In fact, our analysis applies not just to quadratic probing, but to any fixed-o�set probing
scheme, i.e., to any hash table that, like linear and quadratic probing, inserts elements via a
probe sequence of the form pi(x) = h(x) + f(i) for some f(i).

I Theorem 1. There exists a positive constant – Ø 0.089 such that all fixed-o�set open
addressing hash tables support constant-time insertions at load factor – and below. Moreover,
the insertion time is bounded above by a geometric random variable with mean O(1).

The proof of Theorem 1 in Section 3 is achieved by a witness argument in which we
construct two objects (a witness set S and a witness transcript T ) that must exist in order
for the insertion time to be large. The witness set S has the property that each individual
option for S has only a very small probability of occurring. The witness transcript T , on the
other hand, has the property there are only a relatively small number of options for what T
can be. Finally, the relationship between the two (and, in particular, the fact T can be used
to recover S), allows us to bound the probability of such a pair (S, T ) existing at all.

The specific constant, 0.089, that we get from Theorem 1 stems from the careful enumer-
ation of a family of strings that we call witness strings (i.e., candidates for the transcript
T ). Through a mixture of algebraic and combinatorial arguments, we obtain tight bounds
on the growth rate for the family – this rate, in turn, dictates the best constant that we can
get in our proof of Theorem 1.

Finally, in Section 4, we turn our attention to chunked fixed-o�set open addressing, in
which the probe sequence used is actually of the form

pi(x) = h(x) +B · f(Âi/BÊ) + (i ≠ 1)

for some chunk size B. The use of chunking is quite common in practice, as it reduces
cache misses and allows for the use of hardware vectorization. A notable example is the hash
table used at Google [1], which uses chunked quadratic probing with chunk size B = 16.

Our final result is an analysis of any chunk fixed-o�set open-addressing scheme. We show
that, when B = Ê(1), such schemes can successfully handle load factors of the form 1 ≠ o(1).

I Theorem 2. There exists a constant – œ (0, 1) such that the following is true. Consider a
chunked fixed-o�set open-addressed hash table with chunk size B. Any insertion of an element
x at a load factor – = 1 ≠ 1/q satisfying q Æ –


B/ logB takes expected time at most O(q2).

Moreover, the insertion time is bounded above by a geometric random variable with mean
O(q2).

We remark that, in general, the time/space tradeo� in Theorem 2 is nearly tight in
the sense that linear probing (which is a trivial example of chunked open addressing) does,
indeed, require �(q2) time per insertion.

Other related work

In the half century since quadratic probing and double hashing were introduced, there
has been a great deal of additional work on hash-table design. Notable examples include
Cuckoo hashing [34], which allows for worst-case bounds on query time (and which has the
interesting feature that, depending on the parameters with which it is implemented, there
are genuine load-factor thresholds above which it cannot be used [34, 17, 14]); Robin-Hood
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hashing [2, 10], which reorders elements in ways that reduce query time; graveyard hashing [9],
which strategically leaves gaps within a linear probing hash table to reduce clustering; and
many others [25]. In addition to these relatively practical designs, there has also been a
great deal of progress on the theoretical extremes of how space/time e�cient a hash table
can be [29, 3, 13, 37]. In fact, recent works by Bender et al. [8] and by Li et al. [27, 28] close
o� the basic theoretical question of how space-e�cient a hash table can be subject to a given
set of time bounds. For a detailed but somewhat out-of-date survey, see Knuth’s [25] 1998
edition of the Art of Computer Programming, Vol. 3.

2 Preliminaries

Let h : U æ [n] be a random hash function, and let r1, r2, . . . , rn≠1 œ N be a permutation of
the numbers 1 through n ≠ 1. Consider an open-addressing hash table with capacity n in
which, to insert an element x œ U , we place it in the first available position from the sequence
h(x), h(x) + r1, h(x) + r2, . . . (the positions wrap around, so position n+ 1 is the same as
position 1). Such a hash table is said to perform fixed-o�set open-addressing with o�set
sequence r1, r2, . . .. The hash table is said to support constant time insertions at load
factor 0 < – Æ 1 and below if, when the hash table is filled to a –-fraction full, each of the
insertions is guaranteed to take constant expected time.

Additionally, a fixed-o�set open-addressing scheme is said to be chunked (with chunk
size B) if the {ri}’s are broken into consecutive blocks of size B. That is, for each i Ø 0,
and j œ {0, . . . , B ≠ 1}, we have riB+j = riB + j.

One subtlety in the definition of fixed-o�set open-addressing is the requirement that
r1, r2, . . . , rn≠1 form a permutation of [n≠ 1]. We will see that, if our analysis is taking place
at load factor 1 ≠ 1/q, the time per insertion is at most a geometric random variable with
mean O(1 + q2) (see Theorems 1 and 2), meaning that with probability 1 ≠ 1/poly(n), the
hash table only ever uses the first O((1+ q2) logn) terms of any probe sequence. Therefore it
is not strictly necessary to require that r1, r2, . . . , rn≠1 are all distinct. It su�ces for the probe
sequence to satisfy the weaker requirement that r1, r2, . . . , rO((1+q2) logn) are distinct, and to
assume that the hash table is rebuilt from scratch if any operation ever takes Ê((1+ q2) logn)
time. This distinction is important since the probe sequence used by quadratic probing is
not a permutation for all table-sizes n [25], but is trivially guaranteed to have distinct entries
for all of its first �(

Ô
n) terms.

Finally, the reader may wonder whether our analyses can be extended to support deletions
in addition to insertions and queries. Here there is a larger issue: quadratic probing does
not natively support deletions. If one tries to implement deletions by simply removing items,
then the query algorithm gets broken (it can no longer terminate when it sees a free slot) [25].
The standard way to implement deletions while preserving the correctness of queries is to
use tombstones [9], which formally reduce the problem to the insertion-only setting.

3 Analysis for Su�ciently Small Constant Load Factors

In this section, we will show that there exists a universal load factor – Ø 0.089 below which
all fixed-o�set open-addressing schemes are guaranteed to achieve O(1)-time operations.

I Theorem 1. There exists a positive constant – Ø 0.089 such that all fixed-o�set open
addressing hash tables support constant-time insertions at load factor – and below. Moreover,
the insertion time is bounded above by a geometric random variable with mean O(1).
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I Corollary 3. There exists a positive constant – Ø 0.089 such that quadratic probing supports
constant-time insertions at load factor – and below.

Let r1, r2, . . . be the o�set sequence used by the hash table, and as a convention set
r0 = 0. Consider a sequence of up to –n insertions, followed by one additional insertion of
an element x. Let D denote the state of the hash table when x is inserted, and for each
element x that was inserted in the past, let index(x,D) be the index i such that x resides in
position h(x) + ri.

Given a set S ™ [n] we say that an element x œ D conflicts with S if h(x) ”œ S and
if h(x) + ri is in S for some i Æ index(x,D). Moreover, if h(x) + rk is the first element
of h(x), h(x) + r1, h(x) + r2, . . . to appear in the set S, then we say that the pair (x, k)
conflicts with S at position j = h(x) + rk. Finally, we define Conflicts(S, j), which is
referred to as a conflict set, to be the set of pairs that conflict with S at position j œ S, i.e.,

Conflicts(S, j) = {(x, k) | x œ D,

1 Æ k = min{i | h(x) + ri œ S}, h(x) + rk = j, k Æ index(x,D)}.

We want to bound the probability that, when insertion x occurs, all of positions h(x), h(x)+
r1, . . . , h(x)+ r¸≠1 are already occupied for some large ¸, i.e., the insertion takes time greater
than ¸. Using the idea of a conflict set, we design a protocol BuildWitnesses (Algorithm 1)
that takes as inputs D, h(x), and ¸, and returns a witness set S along with a witness
transcript T . The witness set S will be a subset of [n], and the witness transcript T will be
a trinary string.

As we shall see, the basic idea is that, if the insertion of h(x) into D takes time at least ¸,
then the BuildWitnesses(D,h(x), ¸) protocol will return a pair (S, T ) such that:

the set S ™ [n] is quite large, satisfying |S| Ø ¸;
there are at least |S| elements x œ D satisfying h(x) œ S;
the set S is fully determined by the triple (h(x), ¸, T );
and the transcript T is a trinary string of length O(|S|).

We will then be able to argue that the probability of such a pair of objects existing is very
small, at most 2≠�(¸). Thus, by analyzing BuildWitnesses, we will be able to indirectly
arrive at a proof of Theorem 1. We emphasize that, although this approach uses an algorithm
(BuildWitnesses) as part of the analysis, it is not an algorithm that actually gets executed
by the hash table – it is simply for the sake of analysis.

Before we can dive into the analysis, we must show that Algorithm 1 terminates.

I Lemma 4. Algorithm 1 terminates within finite time.

Proof. First observe that Line 14 only adds elements to S that are not already in S. Since
elements are never removed from S, it follows that each j œ [n] can also be added to S (and
therefore to Unprocessed) at most once. Since each phase (i.e., each iteration of Line 4)
removes an item from Unprocessed, there can be at most n phases. Furthermore, since each
iteration of Lines 11–15 increases the size of S, there can be at most n total iterations of
lines 11–15. Therefore, the algorithm completes its construction of the witness objects S and
T within O(n) time. J

Next, we turn our attention to establishing the properties of S and T , along with their
relationship to one another. Specifically, we will need the following three lemmas.

I Lemma 5. Suppose the insertion x takes time greater than ¸ (that is, the length of the
probe sequence is greater than ¸). Then the witness set S has size at least ¸, and at least |S|
elements x œ D have hashes h(x) œ S.
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Algorithm 1

1: procedure BuildWitnesses(D,h(x), ¸)
2: Set Unprocessed = {h(x), h(x) + r1, h(x) + r2, . . . , h(x) + r¸≠1}.
3: Set S = Unprocessed and T = (0)¸≠1 ¶ 1.
4: while |Unprocessed| > 0 do Û Each iteration is called a phase.
5: Let j = max{Unprocessed}.
6: Remove j from Unprocessed.
7: Append 2 to T .
8: while true do
9: Let Conflicts(S, j) = {(x, k) | x œ D, 1 Æ k = min{i | h(x) + ri œ S},

10: h(x) + rk = j, k Æ index(x,D)}.
11: if |Conflicts(S, j)| > 0 then
12: Let k = maxk{(x, k) œ Conflicts(S, j) for some x}.
13: Let x be an arbitrary element in {x | (x, k) œ Conflicts(S, j)}.
14: Add h(x), h(x) + r1, h(x) + r2, . . . , h(x) + rk≠1 to Unprocessed and to S.
15: Append (0)k≠1 ¶ 1 to T .
16: else
17: End while loop.
18: return (S, T )

Proof. The fact that S has size at least ¸ is immediate from the initialization of S in
BuildWitnesses. To prove that at least |S| elements x œ D have hashes h(x) œ S, we will
show a stronger claim: that every position in S is occupied by an element x whose hash h(x)
is in S.

First, observe that, by design, every position in S is occupied. Indeed, by the assump-
tion that x’s insertion takes time greater than ¸, we know that h(x), h(x) + r1, h(x) +
r2, . . . , h(x)+r¸≠1 (the positions initially placed in S) are all occupied. And by the definition
of Conflicts(S, j), we know that the positions added by Line 14 are also always occupied.

Now suppose for contradiction that some position s œ S contains an element x whose hash
h(x) is not in S. Then x must conflict with S, and, in particular, x must be part of a pair
(x, k) that conflicts with S at some position j œ S. Now consider the phase that processed
j, and define SÕ to be the state of S at the end of the phase. Because the phase ended, we
must have had Conflicts(SÕ, j) = ÿ. But, because (x, k) conflicts with S at position j, and
since j œ SÕ ™ S, it must be that (x, k) also conflicts with SÕ at position j. This means that
(x, k) œ Conflicts(SÕ, j), which is a contradiction. J

I Lemma 6. Given the witness transcript T , along with h(x) and ¸, one can reconstruct the
witness set S.
Proof. This is accomplished by the WitnessStringToSet protocol (Algorithm 2). The
basic idea is that we can use the witness transcript T to simulate the execution of BuildWit-
nesses. Namely, we can use 2s in T to determine boundaries between phases; and then we
can use runs of 0s in T to determine the value of k that is used in each iteration of the inner
while loop. This allows for us to fully reconstruct the witness set S using just T, h(x), ¸. J

I Lemma 7. The witness transcript T is a trinary string of length 2|S|.
Proof. Each time that we append a 2 to T , we remove an element from Unprocessed. We
do this |S| times, so there are |S| 2s in T . Each time we append a string (0)k≠1 ¶ 1 to T , we
also add k elements to S (and vice-versa). Thus, the total number of 0s and 1s in T is |S|.
It follows that T is a trinary string of length 2|S|. J
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Algorithm 2

1: procedure WitnessStringToSet(h(x), ¸, T )
2: Set Unprocessed = {h(x), h(x) + r1, h(x) + r2, . . . , h(x) + r¸≠1}.
3: Set S = Unprocessed.
4: Remove prefix (0)¸≠1 ¶ 1 from T .
5: while |Unprocessed| > 0 do
6: Let j = maxjœUnprocessed j.
7: Remove j from Unprocessed.
8: while first character of T is not a 2 do
9: Let k ≠ 1 be the number of 0s at the start of T before the first 1.

10: Define g = j ≠ rk.
11: Add g, g + r1, g + r2, . . . , g + rk≠1 to Unprocessed and to S.
12: Remove first k characters of T , which are (0)k≠1 ¶ 1.
13: Remove first character of T , which is a 2.
14: return S

In addition to these structural lemmas, we will need a basic concentration bound on the
probability that |S| elements hash to a set S of some size.

I Lemma 8. Let – = 1/e≠�(1). Consider a set A of –n elements, each with random hashes
in [n]. Let B ™ [n] be a set of some size k. The probability that at least k elements from A

have hashes in B is at most
!
(1 + o(1))–e(1≠–)

"k, where the o-notation is in terms of k.

Proof. By a standard Poisson approximation (see, e.g., Theorem 5.10 in [33]), and because
the event of at least k elements hashing to B is monotone (adding more elements never
undoes the event), we have that the probability of at least k elements hashing to B is at
most 2Pr[Poisson(–k) Ø k]. This, in turn is

2
ÿ

jØk

Pr[Poisson(–k) = j]

= 2
ÿ

jØk

(–k)je≠–k

j!

Æ 2
ÿ

jØk

2o(j)(–k)je≠–k/(jj/ej) (by Stirling’s approximation)

Æ 2
ÿ

jØk

2o(j)–je≠–k+j

= 2e≠–k
ÿ

jØk

(–e · (1 + o(1)))j

= O
!
e≠–k(–e · (1 + o(1)))k

"
(since – = 1/e ≠ �(1))

=
!
(1 + o(1))–e1≠–

"k
. J

Putting these lemmas together, we can now prove a weak version of Theorem 1 in which
we do not seek to optimize the constant –.

I Theorem 9. There exists a positive constant – such that all fixed-o�set open addressing
hash tables support constant-time insertions at load factor – and below. Moreover, the
insertion time is bounded above by a geometric random variable with mean O(1).
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Proof. Let us bound the probability that the insertion of x, which takes place at a load
factor of at most –, takes time greater than ¸ > 0. Let S and T be the witness set and
witness transcript produced by BuildWitnesses(D,h(x), ¸).

Suppose the insertion takes time greater than ¸. Then, by Lemma 5, witness set S has
some size q Ø ¸ and has the property that at least q elements x œ D satisfy h(x) œ S.

Define Sq to be the set of options for what S could be if its size is q, conditioned on
h(x) and ¸. For each R œ Sq, let XR be the event that |{x œ D | h(x) œ R}| Ø q. Then,
in order for the insertion of x to take time greater than ¸, event XR must occur for some
R œ

t
qØ¸

Sq. By a union bound, the probability of this happening is at most
ÿ

qØ¸

ÿ

RœSq

Pr[XR].

By Lemma 8, and assuming that – Æ e≠1 ≠ �(1), this is at most
ÿ

qØ¸

!
|Sq| · ((1 + o(1)) · –e1≠–)q

"
. (1)

To bound |Sq|, observe that by Lemma 6, each set R œ Sq corresponds to a unique witness
transcript T œ [3]2q. Thus |Sq| Æ 9q, which allows us to bound (1) by

ÿ

qØ¸

!
9 · (1 + o(1)) · –e1≠–

"q
. (2)

Supposing that –e1≠– < 1/9, this sum evaluates to e≠�(¸). In other words, the probability
of the insertion x taking time greater than ¸ is exponentially small in ¸. This means that the
insertion takes O(1) expected time. J

To improve upon the constant – and obtain the full version of Theorem 1, we will need a
tighter bound on the number of witness transcripts corresponding to a witness set of size ¸.

We begin by defining an infinite family of strings that contains all possible witness
transcripts. Define a witness phrase to be a string of the form

P = (0)i1 ¶ 1 ¶ (0)i2 ¶ 1 ¶ · · · ¶ (0)ik ¶ 1

where 0 Æ i1 < i2 < · · · < ik. Define a witness string to be a string of the form

W = P1 ¶ 2 ¶ P2 ¶ 2 ¶ P3 ¶ · · · ¶ Pj ¶ 2,

where each of P1, P2, . . . , Pj are witness phrases. The number j is referred to as W ’s phrase
count, and the number of 0s and 1s in W is referred to as W ’s zero/one count.

Let Wa,b be the set of witness strings with zero/one-count a and phrase-count b. Notice,
in particular, that Wm,m contains all witness transcripts that correspond to witness sets of
size m. In Section 3.1, we will prove the following proposition, which characterizes the exact
growth rate of |Wm,m|.

Let u œ (0, 1) minimize the quantity

f(u) = u≠1

ŒŸ

i=1

(1 + ui).

Then,

|Wm,m| = f(u)(1≠o(1))m.
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Note that, since log f(u) = log u≠1 +
q

i
log(1 + ui) is within a constant factor of

log u≠1 +
q

i
ui, we know that f(u) converges for any u œ (0, 1), and that f(u) has a

minimum value (since f(u) æ Œ as either u æ 0 or u æ 1).
A manual calculation shows that f(u) minimizes to slightly smaller than 4.51. It follows

that the number of witness strings corresponding to witness sets of size m is at most O(4.51m).
Plugging this into the proof of Theorem 9, (2) becomes

ÿ

qØ¸

!
4.51 · (1 + o(1)) · –e1≠–

"q
.

In order so that, as before, this sum comes out to e≠�(¸), we need that –e1≠– < 1/4.51.
Another manual calculation tells us that it su�ces to have – Æ 0.089. With this modification
to the proof of Theorem 9, we get Theorem 1.

3.1 Proof of Proposition 3
In this subsection, we complete the final component needed to prove Theorem 1, namely, the
proof of Proposition 3, restated below.

Let u œ (0, 1) minimize the quantity

f(u) = u≠1

ŒŸ

i=1

(1 + ui).

Then,

|Wm,m| = f(u)(1≠o(1))m.

We begin by reinterpreting |Wk,m| as the coe�cient of xk in a certain polynomial G(x).

I Lemma 10. Consider the formal power series

G(x) =
A ŒŸ

i=1

(1 + xi)
Bm

=
ÿ

i

gix
i, (3)

where the gi’s denote the coe�cients of G, and where x is a formal variable. Then, the
coe�cient gk is precisely equal to |Wk,m|.

Proof. The coe�cient of xk in
ŒŸ

i=1

(1 + xi)

is equal to the number of witness phrases with zero/one-count k; and so the coe�cient gk of
xk in

A ŒŸ

i=1

(1 + xi)
Bm

is equal to the number of ways to pick m witness phrases with total one-count k. This, in
turn, is precisely |Wk,m|. J
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Using a simple argument about what happens when we evaluate the polynomial G(x) at
a given value u Ø 0, we can obtain the upper-bound side of Proposition 3.

I Lemma 11. For any u Ø 0, we have

|Wm,m| Æ f(u)m.

Proof. Let G be the formal power series from Lemma 10, and let f(u) be the function
defined in Proposition 3. For any u Ø 0, we have

f(u)m = G(u)/um =
ÿ

i

giu
i/um Ø gmum/um = gm = |Wm,m|. J

The lower bound is a bit more tricky. The main step is to re-interpret G(px)/G(p) (where
p œ (0, 1) and x is a formal variable) as the generating function for a random variable X(p)

(this reinterpretation is a trick of the analysis, since X(p) does not appear anywhere in
the original problem formulation), and then prove a concentration bound on that random
variable.

We begin by establishing some basic conventions for discussing the generating function of
a random variable. Supposing that A is a random variable that takes non-negative integer
values, we define the generating function for A to be the formal power series

f(x) =
ÿ

iØ0

Pr[A = i] · xi.

We will make extensive use of two standard facts:
Fact 1: Given any formal power series f(x) such that f(1) exists, the polynomial
f(x)/f(1) is the generating function for some random variable.
Fact 2: Given two generating functions f(x) and g(x) for random variables A and B,
the polynomial f(x)g(x) is the generating function for the random variable C obtained
by summing independent copies of A and B.

With these properties in mind, we now argue that, for the formal power series G(x) from
Lemma 11, there exists some p œ �(1) fl (1 ≠ �(1)) such that G(px)/G(p) is the generating
function for some well-behaved random variable. We will then be able to obtain our lower
bound by analyzing the properties of this random variable.

I Lemma 12. Consider the formal power series

G(x) =
A ŒŸ

i=1

(1 + xi)
Bm

=
ÿ

i

gix
i.

Then there exists p œ �(1) fl (1 ≠ �(1)) such that

G(p)(x) = G(px)
G(p) =

ÿ

i

g(p)
i

xi

is the generating function for a random variable X with mean m and standard deviation
O(

Ô
m).

Proof. By design, for any p œ (0, 1), we have that
q

i
g(p)
i

= G(p)(1) = 1, so by Fact 1,
G(p)(x) is the generating function for some random variable X(p). We will show that there
exists some p œ (0, 1), satisfying p = �(1) fl (1 ≠ �(1)), such that E[X(p)] = m; and that for
any p = 1 ≠ �(1), the standard deviation of X(p) is �(

Ô
m).
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First observe that

G(p)(x) = G(px)
G(p) =

3rŒ
i=1

(1 + (px)i)rŒ
i=1

(1 + pi)

4m

.

It follows by Facts 1 and 2 that X(p) can be interpreted as the sum of m independent random
variables X(p)

1
, . . . ,X(p)

m where each X(i)

j
has generating function

rŒ
i=1

(1 + (px)i)rŒ
i=1

(1 + pi)
.

Observe that, when p = 0, we have E[X(p)

i
] = 0, and as p æ 1, we have E[X(p)

i
] æ Œ. Thus,

there must exist some p œ (0, 1) such that E[X(p)

i
] = 1. Since this choice of p is oblivious to

m, it must be that p = �(1) fl (1 ≠ �(1)). This value of p gives us E[X(p)] = m, as desired.
Having chosen p, it remains to show that the standard deviation of X(p) is O(

Ô
m),

or equivalently, that the variance of X(p) is O(m). Since X(p) =
q

m

j=1
X(p)

j
is a sum of

independent random variables, it su�ces to show that each X(p)

j
has variance O(1). Notice,

however, that the generating function for X(p)

j
can be written as

ŒŸ

i=1

(1 + (px)i)
(1 + pi) =

ŒŸ

i=1

H(p,i)(x)
H(p,i)(1)

,

where H(p,i)(x) is the formal power series 1 + (px)i. By Facts 1 and 2, it follows that we can
interpret X(p)

j
as a sum of independent random variables Y (p)

j,1
, Y (p)

j,2
, . . . where each Y (p)

j,i
has

generating function (1+(px)
i
)

(1+pi)
. This means that

var(X(p)

j
) =

ÿ

i

var(Y (p)

j,i
) Æ

ÿ

i

E[(Y (p)

j,i
)2] =

ÿ

i

pii2

(1 + pi) = O(1),

where the final equality uses p = 1 ≠ �(1). As noted above, this implies that X(p) has
variance O(m), which completes the proof. J

We will also need a straightforward lemma bounding |Wm±k,m| in terms of |Wm,m|
(multiplicatively) for small k.

I Lemma 13. For any 0 Æ k < m, we have that

|Wm≠k,m| Æ |Wm,m|

and that

|Wm+k,m| Æ 2O(k logm)|Wm,m|.

Proof. Given a string s œ Wm≠k,m, we can obtain a string „(s) œ Wm,m by taking the final
run of 1s in s and extending the length of that run by k. This function is injective, implying
that |Wm≠k,m| Æ |Wm,m|.

Given a string s œ Wm+k,m, it is possible to remove some set of O(k) characters (zeros
and ones) in order to obtain a valid string sÕ œ Wm,m; let Â(s) be the lexicographically
smallest such string sÕ that one can achieve in this way. For a given sÕ œ Wm,m, we can
bound |Â≠1(sÕ)| Æ 2O(k logm), since there are at most 2O(k logm) ways to add O(k) characters
to get a string s œ Wm+k,m. It follows that |Wm+k,m| Æ 2O(k logm)|Wm,m|. J
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Finally, we can put the pieces together in order to get the lower-bound side of Proposition 3.

I Lemma 14. Let

f(u) = u≠1

ŒŸ

i=1

(1 + ui).

Then, there exists p œ (0, 1) such that

f(p)m Æ 2o(m)|Wm,m|.

Proof. Consider the formal power series

G(x) =
A ŒŸ

i=1

(1 + xi)
Bm

=
ÿ

i

gix
i.

By Lemma 12, there exists p œ �(1) fl (1 ≠ �(1)) such that

G(p)(x) = G(px)
G(p) =

ÿ

i

g(p)
i

xi

is the generating function for a random variable X with mean m and standard deviation
O(

Ô
m). By Chebyshev’s inequality, at least half ofX’s probability mass must be concentrated

between m ≠ O(
Ô
m) and m+O(

Ô
m). That is, for some positive constant d,

d
Ô
mÿ

k=≠d
Ô
m

g(p)
m+k

Ø 1
2

Œÿ

i=0

g(p)
i

.

Since g(p)
i

= pigi/G(p), we can multiply both sides by G(p) to get

d
Ô
mÿ

k=≠d
Ô
m

pm+kgm+k Ø 1
2

Œÿ

i=0

pigi.

Since p = �(1) and since gm+k = |Wm+k,m| Æ 2O(|k| logm)|Wm,m| (by Lemmas 10 and 13),
we have that each term pm+kgm+k in the left sum is at most

2O(
Ô
m logm)pm+k|Wm,m| = 2O(

Ô
m logm)pm|Wm,m|.

This means that the entire left sum is at most

O(
Ô
m)2O(

Ô
m logm)|Wm,m| Æ 2o(m)pm|Wm,m|.

Therefore,
Œÿ

i=0

pigi Æ 2o(m)pm|Wm,m|,

which implies that

G(p)/pm Æ 2o(m)|Wm,m|.

Finally, since G(p)/pm = f(p)m, the proof is complete. J
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4 Chunked Fixed-O�set Open Addressing

We now turn our attention to obtaining bounds for chunked fixed-o�set open-addressed hash
tables. Recall that a fixed-o�set open-addressed hash table is said to be chunked with chunk-
size B if, for each i Ø 0 and j œ {0, . . . , B ≠ 1}, we have riB+j = riB + j. As terminology,
for a given element x, we will refer to the sequence h(x) + riB , . . . , h(x) + riB+B≠1 as the
i-th block in x’s probe sequence. Our goal will be to prove the following theorem.

I Theorem 2. There exists a constant – œ (0, 1) such that the following is true. Consider a
chunked fixed-o�set open-addressed hash table with chunk size B. Any insertion of an element
x at a load factor – = 1 ≠ 1/q satisfying q Æ –


B/ logB takes expected time at most O(q2).

Moreover, the insertion time is bounded above by a geometric random variable with mean
O(q2).

The theorem can be interpreted as saying that, whenever B = Ê(1), it is possible to
support load factors of the form – = 1 ≠ q were q = o(1). We remark that the time bound
O(q2) is optimal in general, since linear probing is an example of a chunked open-addressed
hash table that has insertion time �(q2) at load factor 1 ≠ q.

We will prove Theorem 2 with a slightly more intricate analysis of the BuildWitnesses
procedure from Section 3. To do this, we must first define the notion of an analytical run.

In lines 2 and 14 of BuildWitnesses, when we add some sequence Q = h(x), h(x)+r1, . . .
to Unprocessed, we can break the positions that we add into analytical runs, where the
first (up to) B entries of Q form the first analytical run, the next (up to) B entries form the
next analytical run, and so on. The execution of the line creates Á|Q|/BË analytical runs,
and all but the final one have size B.

Say that two analytical runs r1, r2 (not necessarily created by the same iteration of
Line 14) are adjacent if they represent sub-intervals of the form [i, j] and [j + 1, k] for some
i, j, k. Finally, define the adjusted size of an analytical run r to be B if the sequence Q
that added r to S satisfied |Q| Ø B or if the analytical run r was created by Line 2 of the
algorithm, and define the adjusted size to be |r| otherwise.

A critical step in the proof of Theorem 2 is to observe that, whenever two analytical runs
are adjacent, their adjusted sizes must sum to at least B.

I Lemma 15. Consider the execution of BuildWitnesses(D,h(u), ¸) for some ¸ > 0.
Consider two adjacent analytical runs r1, r2 with adjusted sizes s1, s2. Then s1 + s2 Ø B.

Proof. Let x1 and x2 be the elements that created runs r1 and r2. Let t1 and t2 be the
iterations at which x1 and x2 are added to S by BuildWitnesses, let Conflicts1 and
Conflicts2 be the conflict sets that are constructed in the while-loop iterations that add x1

and x2 to S, and let S1 and S2 be the states of S immediately before x1 and x2 are added
to S, respectively.

If either of r1 or r2 have adjusted size B, then the claim is trivial. We can therefore
assume without loss of generality that r1, r2 are the first runs in the probe sequences for x1

and x2 and that |r1|, |r2| < B. Note that, as immediate consequences, we have that r1 and
r2 were created by Line 14 of BuildWitnesses (rather than Line 2); that h(x1) < h(x2);
and that x2 was added to S before x1 (i.e., t2 < t1).

Let ¸ be the right endpoint of r2. We claim that

¸ Ø h(x1) +B ≠ 1. (4)

This would imply that |r1|+ |r2| Ø ¸ ≠ h(x1) + 1 Ø B, completing the proof.
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Suppose for contradiction that (4) does not hold. Let (x2, k2) œ Conflicts2 be the pair
containing x2 in Conflicts2. Then the final position ¸ of run r2 satisfies ¸ + 1 = h(x2) + k2,
and Conflicts2 = Conflicts(S2, ¸ + 1) expands to

{(x, k) | x œ D,

1 Æ k = min{i | h(x) + ri œ S2}, h(x) + rk = ¸ + 1, k Æ index(x,D)}.

We will show that this forces the pair (x1, ¸ ≠ h(x1) + 1) to be in Conflicts2. But the fact
that h(x1) < h(x2) means that BuildWitnesses will rather select (x1, ¸ ≠ h(x1) + 1) than
(x2, ¸ ≠ h(x2) + 1) from Conflicts2 (see Line 12 of BuildWitnesses). This contradicts
the fact that x2 is added to S at iteration t2 in the execution of BuildWitnesses.

It remains to prove that (x1, ¸ ≠ h(x1) + 1) œ Conflicts2. Since ¸ < h(x1) +B ≠ 1 (by
assumption) and since h(x1) < h(x2), we know that ¸+1 = h(x1)+k1 for some k2 < k1 < B.
To prove that (x1, k1) œ Conflicts2, we must show that

k1 = min{i | h(x1) + ri œ S2} (5)

and that

k1 Æ index(x1, D). (6)

We begin by showing (5). The fact that (x2, k2) œ Conflicts2 tells us that k2 =
min{i | h(x2) + ri œ S2}, which implies that h(x2), h(x2) + 1, . . . , ¸ ”œ S2. The fact that
(x1, h(x2) ≠ h(x1)) œ Conflicts1 tells us that h(x2) ≠ h(x1) = min{i | h(x1) + ri œ S1},
which implies that h(x1), h(x1) + 1, . . . , h(x2) ≠ 1 ”œ S1. Since BuildWitnesses always
processes max{Unprocessed}, we know that, between iterations t2 and t1, BuildWitnesses
processes only values of j satisfying j Ø h(x2). Thus S2fl [h(x2)≠1] ™ S1fl [h(x2)≠1]. So the
fact that h(x1), h(x1)+1, . . . , h(x2)≠1 ”œ S1 implies that h(x1), h(x1)+1, . . . , h(x2)≠1 ”œ S2.
Therefore, h(x1), h(x1) + 1, . . . , ¸ ”œ S2, which implies (5).

Finally, we complete the proof by establishing (6). If we had k1 = ¸ + 1 ≠ h(x1) >
index(x1, D), then x1 would have to reside in one of positions h(x1), h(x1) + 1, . . . , ¸. If x1

resides in any of positions h(x2), . . . , ¸ ≠1, then at time t2 < t1, that position must have been
vacant, which implies that x2 could have used it – but this contradicts the fact that x2 created
run r2. On the other hand, if x1 resides in any of positions h(x1), h(x1) + 1, . . . , h(x2) ≠ 1,
then x1 does not conflict with position h(x2), which contradicts the fact that x1 created run
r1. Thus, x1 does not reside in any of positions h(x1), h(x1) + 1, . . . , ¸, which means that
k1 = ¸ + 1 ≠ h(x1) Æ index(x1, D). J

We can build on Lemma 15 to make a claim about the average size of all of the analytical
runs, namely that, if the analytical runs are not all adjacent, then their average (non-
adjusted!) size must be �(B). It may see odd at first glance that we need to separate out
the case where all of the analytical runs are adjacent, but we will see later on that this case
actually behaves very di�erently from the other cases. (Indeed, it is the case that causes the
insertion time to be O(q2) instead of O(1)!)

I Lemma 16. Consider the execution of BuildWitnesses(D,h(u), ¸) for some ¸ > 0. Let
r1, r2, . . . , rj be the analytical runs that we add to Unprocessed during the execution of the
algorithm. If r1, r2, . . . , rj are not all adjacent, then

q
j

i=1
|ri| Ø B and

1
j

jÿ

i=1

|ri| Ø �(B).
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Proof. Define s1, s2, . . . , sj be the sizes of the analytical runs and let sÕ
1
, sÕ

2
, . . . , sÕ

j
to be the

adjusted sizes of the analytical runs. Since r1, r2, . . . , rj are not all adjacent, we know that at
least one ri satisfies |si| = B (namely, the first time we add an ri that is not adjacent with
the other rjs added so far). Therefore, the lemma is immediately true if j = O(1). Suppose
for the rest of the proof that j = Ê(1).

With the possible exception of the first analytical run added by Line 2 (recall analytical
runs created by Line 2 automatically have adjusted size B), we have that for every analytical
run r whose true size si is smaller than its adjusted size sÕ

i
, there is some run with true size

B. Indeed, such a run r must be the final analytical run added by some iteration of Line 14,
and that that iteration of Line 14 must have added at least one analytical run with true size
B. It follows that

B +
jÿ

i=1

si Ø 1
2

jÿ

i=1

sÕ
i
.

Because j = Ê(1), this implies

o(B) + 1
j

jÿ

i=1

si Ø �
A
1
j

jÿ

i=1

sÕ
i

B
.

Thus, to complete the proof, it su�ces to show that the right side is �(B).
Now consider a maximal sequence of adjacent analytical runs ra1 , ra2 , ra3 , . . . , rak . If

k = 1, then the adjusted size of the run ra1 is guaranteed to be B (because either its true
size is B and it was created by Line 14, or it was created by Line 2 which only creates
analytical runs with adjusted sizes of B). If k > 1, then Lemma 15 tells us that the runs
ra1 , ra2 , ra3 , . . . , rak have adjusted sizes summing to at least Âk/2Ê ·B Ø kB/3.

Therefore, the average adjusted size over all analytical runs is at least B/3. This means
that

1
2j

jÿ

i=1

sÕ
i

Ø B/6,

which completes the proof. J

Finally, using the fact that the average analytical run size is �(B), we can obtain a bound
on the number of runs of 0s, 1s, and 2s in the witness transcript T . (Here, we are using the
term “run” in the string sense, e.g., a run of 0s is a maximal sequence of consecutive zeros in
the string.)

I Lemma 17. Consider the execution of BuildWitnesses(D,h(u), ¸) for some ¸ > 0 and
suppose that the analytical runs that are created are not all adjacent. Then the resulting
witness transcript T is a trinary string that has at most O(|T |/B) runs of 0s, 1s, and 2s.

Proof. Let s1, s2, . . . , sj be the sizes of the analytical runs that we add to Unprocessed
during the execution of the algorithm. The total number of 1s and 0s in T is exactly

q
i
sj ,

and the total number of 2s in T is also exactly
q

i
sj , so |T | = 2

q
i
sj . On the other hand,

both the number of 1s in T and the number of runs of 0s in T are bounded by j. It follows
that the total number of runs of 0s and 1s in T is at most 2j, which by Lemma 16 is at most
O(

q
i
si/B) = O(|T |/B). The number of runs of 2s is at most one greater than the number

of runs of 0s and 1s (this is true for any trinary string), so the total number of runs overall
in T is at most O(|T |/B). J
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The fact that the witness transcript T has so few runs will lead to a much smaller bound
on the number of options for T than we had in the non-chunked setting. This is the key insight
that makes it possible to prove Theorem 2. As noted earlier, the proof actually separates into
two cases, the case where the analytical runs are all adjacent (this case contributes O(q2) to
the running time) and the case where they are not (this case contributes only O(1) to the
running time, and is where we make use of the previous lemmas).

Proof of Theorem 2. Suppose the insertion takes time t Ø 0, and let us bound Pr[t > ¸] for
some ¸. Consider the execution of BuildWitnesses(D,h(u), ¸), producing witness set S
and witness transcript T . Let r1, r2, . . . be the analytical runs produced by the algorithm.
Let C be the indicator random variable for the event that r1, r2, . . . are all adjacent, and let
C be the indicator random variable for the event that they are not all adjacent.

We begin by considering the event C = 1. In this case, the witness set S is a contiguous
interval [i, j] containing h(u). By Lemma 5, if t > ¸, then at least |S| Ø ¸ elements y in the
hash table have hashes h(y) œ V . From the standard analysis of linear-probing hash tables
(e.g., Lemma 15 of [9]), we know that the probability of any such interval S existing is at
most 2≠�(¸/q

2
). We have therefore shown that

Pr[tC > ¸] Æ 2≠�(¸/q
2
).

So, E[tC] = O(q2) and for any j Ø 1, Pr[tC > jq2] Æ 2≠�(j).
Now, for the rest of the proof, consider the event C. Define t = tC. We will complete the

proof by showing that E[t] = O(1) and that for any j Ø 1, Pr[t > jq2] Æ 2≠�(j).
Supposing that C occurs, we have by Lemma 16 that |T | Ø B. We also have trivially that

|T | Ø ¸, so |T | Ø max(B, ¸). The fact that we only need to consider |T | Ø max(B, ¸) will be
important through the rest of the proof.

By Lemma 17, T has at most O(|T |/B) runs. By standard counting arguments, the
number of trinary strings of length ¸Õ with O(¸Õ/B) runs is at most BO(¸

Õ
/B). It follows, that

for a given length ¸Õ > max(B, ¸) for T , the number of options for what T could be is at
most BO(¸

Õ
/B). Since the witness set S is fully determined by T , and is exactly half of T ’s

size (Lemma 7), the number of options for S of a given size ¸ÕÕ Ø max(B, ¸)/2 is at most
BO(¸

ÕÕ
/B).

On the other hand, if the insertion took time more than ¸, then, in order for a given
option for S to occur, there would need to be at least |S| elements y in the hash table
satisfying h(y) œ S (Lemma 5). For a given set S, the expected number of elements y
satisfying h(y) œ S is

–|S| Æ (1 ≠ 1/(c

B/ logB))|S| = |S| ≠

Ô
S logBÔ
B–


|S|.

By a Cherno� bound, the probability of a given candidate witness set S of size ¸ÕÕ Ø
max(B, ¸)/2 having ¸ÕÕ elements hash to it is at most

2≠�(|S| logB/(B–
2
)) = B≠�(¸

ÕÕ
/B)/–

2
.

Taking a union bound over all BO(¸
ÕÕ
/B) options for S, the probability that any S of size

¸ÕÕ Ø max(B, ¸)/2 occurs is at most

BO(¸
ÕÕ
/B)B≠�(¸

ÕÕ
/B)/–

2
.

Setting – to be a su�ciently small positive constant, this is at most

1/B10¸
ÕÕ
/B .
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Summing over all ¸ÕÕ Ø max(B, ¸)/2, the probability that BuildWitnesses(D,h(u), ¸)
produces a saturated witness set S of size at least max(B, ¸)/2 is at most

ÿ

¸ÕÕØmax(B,¸)/2

1/B10¸
ÕÕ
/B Æ 1/Bmax(B,¸)/B .

But, the only way that t Ø ¸ can occur is if such a witness set S is produced. Thus

Pr[t Ø ¸] Æ 1/Bmax(B,¸)/B = BB/2+¸/(2B) Æ q≠�(q
2
log q+¸/(q

2
log q)) Æ q≠�(q

2
log q) ·2≠�(¸/q

2
).

It follows that E[t] Æ O(1), and that, for j Ø 1, Pr[t > jq2] Æ 2≠�(j), as desired. J

References
1 Abseil, 2017. Accessed: 2020-11-06. URL: https://abseil.io/.
2 Ole Amble and Donald Ervin Knuth. Ordered hash tables. The Computer Journal, 17(2):135–

142, January 1974. doi:10.1093/comjnl/17.2.135.
3 Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Provable worst-case

performance and experimental results. In Proceedings of the 36th International Colloquium

on Automata, Languages and Programming (ICALP 2009), volume 5555 of Lecture Notes in

Computer Science, pages 107–118, 2009. doi:10.1007/978-3-642-02927-1_11.
4 Guy de Balbine. Computational analysis of the random components induced by a binary

equivalence relation. PhD thesis, California Institute of Technology, 1968.
5 Vladimir Batagelj. The quadratic hash method when the table size is not a prime number.

Communications of the ACM, 18(4):216–217, 1975.
6 Daniel Bauer. Columbia COMS W3134: Data structures in Java — Lecture 12: Introduction

to hashing, October 2015. URL: http://www.cs.columbia.edu/~bauer/cs3134-f15/slides/
w3134-1-lecture12.pdf.

7 James R Bell and Charles H Kaman. The linear quotient hash code. Communications of the

ACM, 13(11):675–676, 1970.
8 Michael A Bender, Martín Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou

Liu. On the optimal time/space tradeo� for hash tables. In Proceedings of the 54th Annual

ACM SIGACT Symposium on Theory of Computing, pages 1284–1297, 2022.
9 Michael A Bender, Bradley C Kuszmaul, and William Kuszmaul. Linear probing revisited:

Tombstones mark the demise of primary clustering. In 2021 IEEE 62nd Annual Symposium

on Foundations of Computer Science (FOCS), pages 1171–1182. IEEE, 2022.
10 Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin Hood hashing (preliminary report).

In 26th Annual Symposium on Foundations of Computer Science (FOCS’85), pages 281–288,
Portland, Oregon, USA, 21–23 October 1985. doi:10.1109/SFCS.1985.48.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. Introduction
to Algorithms. The MIT Press, Cambridge, Massachusetts, USA, 3rd edition, 2009.

12 Lilian de Greef. UW CSE 373: Data structures and algorithims — Lecture 7: Hash table col-
lisions, summer 2017. URL: https://courses.cs.washington.edu/courses/cse373/17su/
lectures/Lecture%2007%20-%20Hash%20Table%20Collisions.pdf.

13 Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Pǎtra�cu. De
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dictionary problem. Our data structure supports storing a set of n key-value pairs from [u] ◊ [u]
using s words of space and answering key lookup queries in t = O(lg(u/n)/ lg(s/n)) non-adaptive
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1 Introduction

The static membership problem is arguably the simplest and most fundamental data structure
problem. In this problem, the input is a set S of n integer keys x1, . . . , xn œ [u] = {0, . . . , u≠1}
and the goal is to store them in a data structure, such that given a query key x œ [u], the
data structure supports reporting whether x œ S.

The classic solution to the membership problem is to use hashing, suggested as early as
by Tarjan-Yao [23]. The textbook hashing-based solution is hashing with chaining, where one
draws a random hash function h : [u] æ [m] and creates an array A with m = O(n) entries.
Each entry A[i] of the array stores a linked list of all keys x œ S such that h(x) = i. To
answer a membership query for x, we compute h(x) and scan the linked list in entry A[h(x)].
If h is drawn from a universal family of hash functions, the time to answer queries is O(1)
in expectation. The expected query time can be made worst case O(1) using e.g. perfect
hashing [11] or (static) Cuckoo hashing [16, 17]. All of the above solutions may also be
easily extended to solve the dictionary problem in which the data to be stored is a set of n
key-value pairs {(xi, yi)}ni=1

. Upon a query x, the data structure must return the value yi

such that xi = x, or report that no such pair exists.

1.1 Adaptivity and Membership
A common feature of all hashing based solutions to the membership and dictionary problem,
is that they are adaptive. That is, the memory locations they access depend heavily on the
random choice of hash functions. In particular, to answer a query we first need to read the
description of the chosen hash function, and only based on that we can compute the next
memory cells we should access. A non-adaptive data structure has the property that the
memory cells to access on a query x are completely determined from x itself. Non-adaptive
data structures are studied for several reasons, a common type being computational settings
in which interaction with memory is either expensive or limited. Non-adaptive data structures
allow retrieving all necessary memory cells in parallel when answering a query, circumventing
any memory-access related latency. This property also allows simpler implementation of
the data structure under cryptographic settings, such as encrypted computation with Fully
Homomorphic Encryption (see [25] for more details on the importance of non-adaptive
querying in cryptography).

In this work, we present a non-adaptive dictionary algorithm in which a query needs
to only access logarithmically many memory cells, and also prove a matching lower bound
(which holds even for the static membership problem).

Unlike the textbook solution of hashing with chaining, which requires many rounds of
adaptivity due to scanning a linked list, other solutions (e.g., cuckoo hashing) only need one
round of adaptivity (i.e., first they read the description of the hash function, and then read
memory cells that are determined only by the query and the hash function). Our results
imply that a single round of adaptivity is necessary and su�cient to reduce the query time
from super-constant to constant.

The Cell Probe Model. The cell probe model by Yao [24] is the de-facto model for proving
data structure lower bounds. In this model, a data structure consists of a memory of s cells
with integer addresses 0, . . . , s ≠ 1, each storing w bits. Computation is free of charge in this
model and only the number of memory cells accessed/probed when answering a query counts
towards the query time. A lower bound in the cell probe model thus applies to any data
structure implementable in the classic word-RAM upper bound model.
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Previous Work. Buhrman, Miltersen, Radhakrishnan and Venkatesh [6] showed that it is
possible to store a data structure of size O(n lg u) bits such that membership queries can be
answered in O(lg u) non-adaptive bit probes (i.e., the cell probe model with w = 1). This
of course implies a membership data structure with O(lg u) probes in the cell probe model,
but it is not clear how to extend it to solve the dictionary problem with the same time and
space complexity. Furthermore, the data structure by Buhrman et al. is non-explicit in the
sense that they give a randomized argument showing existence of an e�cient data structure.
Buhrman et al. also show a lower bound of t = �(lg(u/n)/ lg(s/n)) bit probes. In the setting
where n is polynomially smaller than u and s is O(n) this matches the upper bound up to
constant factors (but it is possible that a tighter analysis can be made). Alon and Feige [1]
as well as Garg and Radhakrishnan [12] studied space lower bounds for dictionary data
structures with three non-adaptive probes in the bit probe model. The best lower bound
shows that space of s = �(

Ô
un) is necessary.

Berger et al. [3] study the non-adaptive dictionary problem, but in the I/O model, i.e.,
a single memory access can retrieve B Ø 1 keys or values. In the Word RAM model this
corresponds to having word size B lg u. This means that their strongest results for the
dictionary problem would require word size �(lg(n) lg(u)) – as we will see later, our results
hold for word size lg u.

Brody et al. [5] present a dynamic non-adaptive data structure for the predecessor search
problem, allowing insertions and deletions of keys while supporting predecessor queries in
O(lg u) probes. A predecessor query for a key x must return the largest xÕ

œ S such that
x

Õ
Æ x. Such a data structure clearly also supports membership queries. However, their data

structure critically uses s = �(2w) = �(u) memory. For the membership problem in this
setting, a bit-vector with constant time operations su�ces. Brody et al. [5] however prove
that for dynamic data structures for predecessor search, this query time is optimal even with
�(u) space. Boninger et al. [4] as well as Ramamoorthy and Rao [21] also study lower bounds
for the non-adaptive dynamic predecessor problem. Relating their results to the non-adaptive
static dictionary problem, the two works show query time must be t = �(lg u/ lgw) and
t = �(lg u/(lg lg u+ lgw)) respectively in the cell probe model. To our knowledge, these are
the highest known lower bounds for the static, non-adaptive dictionary problem.

This still leaves open the problem of obtaining an optimal static and non-adaptive
membership data structure, in both the word-RAM model, and in the cell probe model.

Our Contribution. In this work, we present a simple and optimal non-adaptive cell probe
data structure for the dictionary and membership problem:

I Theorem 1. For any s = �(n), there is a non-adaptive static cell probe data structure for
the dictionary problem, storing n key-value pairs (xi, yi) œ [u] ◊ [u] using s memory cells of
w = �(lg u) bits and answering queries in t = O(lg(u/n)/ lg(s/n)) probes.

As stated in the theorem, our data structure is implemented in the cell probe model,
meaning that we treat computation as free of charge. Implementing the data structure in
the more standard upper bound model, the word-RAM, would require the construction of a
certain type of explicit bipartite expander graph.

Compared to prior works (such as [6, 3]), our construction shows that we may rely on
a significantly weaker expansion argument. Past constructions required an orientability
argument to assign memory to keys that required expanders with a strong unique-neighbors
property. In contrast, our construction utilizes weaker non-contractive expanders to argue
that there is su�cient capacity to accommodate storage of all keys (using Hall’s theorem).

ICALP 2024
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This directly translates to a logarithmic improvement in space usage. Namely, we only
require the existence of t-left-regular bipartite graphs with expansion factor one; however our
bipartite graph is highly imbalanced. Our expansion property corresponds to an imbalanced
disperser, and therefore is well-studied and has other applications (e.g., [13]). Such dispersers
exist by a counting argument, but it remains an open problem to obtain explicit constructions.
A recent work [2] constructs explicit expanders that may be plugged into our construction to
obtain an explicit RAM upper bound. However, this incurs a poly-logarithmic blowup and
obtaining a tight explicit RAM upper bound would require better explicit expanders.

We also present a matching lower bound for the non-adaptive dictionary and membership
problem in the cell probe model:

I Theorem 2. For any non-adaptive static cell probe data structure for the dictionary
problem storing n key-value pairs (xi, yi) œ [u] ◊ [u] using s memory cells of w bits and
answering queries in t probes must satisfy

t = �
3
min

;
n lg(u/n)

w
,

lg(u/n)
lg(sw/(n lg(u/n)))

<4
.

Our lower bound shows that adaptivity is crucial to obtain constant query time. In
particular, non-adaptive data structures require super-constant query time while well-known
constructions with adaptivity (such as cuckoo hashing) can obtain constant query time.

We note that our lower bound peaks higher compared to the prior best lower bounds. For
standard parameters of u = n

1+O(1) and w = �(lg u), our lower bound shows that optimal
space constructions with s = O(n) require query time t = �(lg u) in the cell probe model. In
contrast, prior works [4, 21] obtain lower bounds of t = �(lg u/ lg lg u).

1.2 Hash Functions with High Independence
When using hash functions in the design of data structures and algorithms, it is often
assumed for simplicity of analysis that truly random hash functions are available. Such a
hash function h : [u] æ [m] maps each key independently to a uniform random value in [m].
Or said di�erently, when drawing the random hash function h, we choose a uniform random
function in the family of hash functions H consisting of all (deterministic) functions from [u]
to [m]. Implementing such a hash function in practice is often infeasible as it requires u lgm
random bits and thus the storage requirement may completely dominate that of any data
structure making use of the hash function.

Fortunately, much weaker hash functions su�ce in many applications. The simplest
property of a family of hash functions H ™ [u] æ [m], is that it is universal [7]. A universal
family of hash functions has the property that for a uniform random h œ H, it holds for
every pair of keys x ”= y œ [u] that Pr[h(x) = h(y)] Æ 1/m. Universal hashing for instance
su�ces for implementing hashing with chaining with expected constant time membership
queries, but is not su�cient for implementing Cuckoo hashing [9]. The next step up from
universal hashing is the notion of n-wise independent hashing. A family of hash functions H
is n-wise independent if, for h drawn uniformly from H, it holds for any set of n distinct keys
x1, . . . , xn that h(x1), . . . , h(xn) are independent and uniformly random (or nearly uniformly
random). The prototypical example of an n-wise independent family of hash function (with
nearly uniform hash values) is

H :=
I
h–0,...,–n≠1(x) =

A
n≠1ÿ

i=0

–ix
i mod p

B
mod m | –0, . . . ,–n≠1 œ [p]

J
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where p is any prime greater than or equal to u. That is, to draw a hash function h from H,
we sample –0, . . . ,–n≠1 uniformly and independently in [p] and let h(x) be the evaluation of
the polynomial (

q
i
–ix

i mod p) mod m.1 Clearly, the evaluation time of this hash function
is �(n). Whether it is possible to implement n-wise independent hash functions with faster
evaluation time has been the focus of much research. On the lower bound side, Siegel [22]
proved that any implementation of an n-wise independent hash function h : [u] æ [m] using
s memory cells of w = �(lg u) bits, must probe at least t = �(min{lg(u/n)/ lg(s/n), n})
memory cells to evaluate h. The hash function above matches the second term in the
minimum. For the first term, the result that comes closest is a recursive form of tabulation
hashing by Christiani et al. [8] that gives an n-wise independent family of hash functions
that can be implemented using s = O(nu1/c) space and evaluation time t = O(c lg c)
for any c = O(lg u/ lgn). Rewriting the space bound gives c = lg u/ lg(s/n) and thus
t = O(lg(u) lg(lg(u)/ lg(s/n))/ lg(s/n)). This is about a lg lg u factor away from the lower
bound of Siegel in terms of the query time t. This algorithm is adaptive and requires
s Ø n

1+�(1) as they need lg u/ lg(s/n) = O(lg u/ lgn).

Our Contribution. Designing an optimal n-wise independent family of hash functions thus
remains open, with or without adaptivity. In this work, we show how to implement such a
function in the cell probe model (where computation is free):

I Theorem 3. For any s = �(n) and p = �(u), there is a non-adaptive static cell probe
data structure for storing an n-wise independent hash function h : [u] æ Fp using s memory
cells of w = �(lg p) bits and answering evaluation queries in t = O(lg(u/n)/ lg(s/n)) probes.

We remark that Siegel’s lower bound holds in the cell probe model, and thus our data structure
is optimal. Furthermore, Siegel’s lower bound holds also for adaptive data structures, whereas
ours is even non-adaptive. Compared to the work of Christiani et al., we have a faster
evaluation time and only require s = �(n). The downside is of course that our solution is
only implemented in the cell probe model. Implementing our hash function in the word-RAM
model would require the same type of explicit expander graph as for implementing our
non-adaptive dictionary (and a bit more), further motivating the study of such expanders
(see Section 5).

To compare with previous techniques, we note that the majority of prior works (such
as [15, 10, 8]) consider adaptive constructions. The original work of Siegel [22] did not directly
study non-adaptivity. However, Lemma 2 in [22] can be used to construct a non-adaptive
construction in the cell probe model using a suitable expander graph. Our construction leads
to a better (and tight) upper bound in addition to being simpler by replacing polynomials
with a simple sum of memory cells.

2 Non-Adaptive Dictionaries

We consider the dictionary problem where we are to preprocess a set X of n key-value pairs
from [u] ◊ [u] into a data structure, such that given an x œ [u], we can quickly return the
corresponding value y such that (x, y) œ X or conclude that no such y exists. We assume
that any for any key x, there is at most one value y such that (x, y) œ X.

1 Technically, this hash function is only approximately n-wise independent, in the sense that the hash
values of any n keys are independent, but only approximately uniform random.
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We focus on non-adaptive data structures in the cell probe model. Non-adaptive means
that the memory cells probed on a query depends only on x. We assume u = �(n) and that
the cell size w is �(lg u).

As mentioned in Section 1, we base our data structure on expander graphs. We recall the
standard definitions of bipartite expanders in the following:

I Definition 4. A (u, s, t)-bipartite graph with u left vertices, s right vertices and left degree
t is specified by a function � : [u] ◊ [t] æ [s], where �(x, y) denotes the y

th neighbor of x.
For a set S ™ [u], we write �(S) to denote its neighbors {�(x, y) : x œ S, y œ [t]}.

I Definition 5. A bipartite graph � : [u] ◊ [t] æ [s] is a (K,A)-expander if for every set
S ™ [u] with |S| = K, we have |�(S)| Ø A · K. It is a (Æ Kmax, A)-expander if it is a
(K,A)-expander for every K Æ Kmax.

The literature on bipartite expanders, see e.g. [13], is focused on graphs with near-optimal
expansion A = (1 ≠ Á)t, i.e. very close to the largest possible expansion with degree t.
However, for our non-adaptive dictionaries, we need significantly less expansion. We call
such expanders non-contractive and define them as follows:

I Definition 6. A bipartite graph � : [u] ◊ [t] æ [s] is a (Æ Kmax)-non-contractive expander
if it is a (Æ Kmax, 1)-expander.

Said in words, a bipartite is a (Æ Kmax)-non-contractive expander, if every set of at most
K Æ Kmax left-nodes has at least K neighbors.

Before presenting our dictionary, we present the second ingredient in our dictionary,
namely Hall’s marriage theorem. For a bipartite graph with left-vertices X, right-vertices Y
and edges E, an X-perfect matching is a subset of disjoint edges from E such that every
vertex in X has an edge. Hall’s theorem then gives the following:

I Theorem 7 (Hall’s Marriage Theorem). A bipartite graph with left-vertices X and right-
vertices Y has an X-perfect matching if and only if for every subset S ™ X, the set of
neighbors �(S) satisfies |�(S)| Ø |S|.

With these ingredients, we are ready to present our dictionary.

Dictionary from Non-Contractive Expander. Given a set of n key-value pairs X =
{(xi, yi)}ni=1

µ [u] ◊ [u] and a space budget of s memory cells, we build a data structure as
follows:

Construction. Initialize s memory cells and let � : [u] ◊ [t] æ [s] be a (Æ n)-non-
contractive expander for some t. Construct the bipartite graph G with a left-vertex for each
xi and a right vertex for each of the s memory cells. Add an edge from xi to each of the
nodes �(xi, j) for i = 0, . . . , t ≠ 1. Note that this is a subgraph of the bipartite (Æ n)-non-
contractive expander corresponding to �. It follows that for every subset S ™ {xi}

n

i=1
, we

have |�(S)| Ø |S|. We now invoke Hall’s Marriage Theorem (Theorem 7) to conclude the
existence of an {xi}

n

i=1
-perfect matching on G. Let M = {(xi, vi)}ni=1

denote the edges of
the matching. For each such edge (xi, vi), we store the key-value pair (xi, yi) in the memory
cell of address vi. For all remaining s ≠ n memory cells, we store a special Nil value.

Querying. Given a query x œ [u], we query the t memory cells of address �(x, i) for
i = 0, . . . , t ≠ 1. If any of them stores a pair (x, y), we return y. Otherwise, we return Nil to
indicate that no pair (x, y) exists in X.
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Analysis. Correctness follows immediately from Hall’s Marriage Theorem. The space
usage is s memory cells of w = �(lg u) bits and the query time is t. The required perfect
matching M can be computed in poly(n, s) times after performing O(nt) queries to obtain
the edges of the subgraph induced by the left-vertices {xi}

n

i=1
. We thus have the following

result:

I Lemma 8. Given a bipartite (Æ n)-non-contractive expander � : [u] ◊ [t] æ [s], there is a
non-adaptive dictionary for storing a set of n key-value pairs using s cells of w = �(lg u)
bits and answering queries in t evaluations of � and t memory probes. The dictionary can be
constructed in poly(n, s) time plus O(nt) evaluations of �.

Lemma 8 thus gives us a way of obtaining a non-adaptive dictionary from an expander.
What remains is to give expanders with good parameters. As mentioned, we do not have
optimal explicit constructions of such expanders. However, for the cell probe model where
computation is free of charge, we merely need the existence of � and not that it is e�ciently
computable. Concretely, a probabilistic argument gives the following:

I Lemma 9. For any s Ø 2n and any u Ø n, there exists a (non-explicit) (Æ n)-non-
contractive expander � : [u] ◊ [t] æ [s] with t = lg(u/n)/ lg(s/n) + 5.

Combining Lemma 8 and Lemma 9 implies our Theorem 1.

Non-Explicit Expander. In the following, we prove Lemma 9. For this, consider drawing
� : [u] ◊ [t] æ [s] uniformly among all such functions/expanders. That is, we let �(x, y)
be uniform random and independently chosen in [s] for each x œ [u] and y œ [t]. For each
S ™ [u] with |S| Æ n and each T ™ [s] with |T | = |S| ≠ 1, define an event ES,T that occurs if
�(S) ™ T . We have that � is a (Æ n)-non-contractive expander if none of the events ES,T

occur. For a fixed ES,T , we have Pr[ES,T ] = (|T |/s)t|S| and thus a union bound implies

Pr[� is not a (Æ n)-non-contractive expander] Æ
ÿ

S,T

Pr[ES,T ] =

nÿ

i=1

ÿ

S™[u]:|S|=i

ÿ

T™[s]:|T |=i≠1

Pr[ES,T ] Æ

nÿ

i=1

3
u

i

43
s

i

4
(i/s)ti Æ

nÿ

i=1

(eu/i)i(es/i)i(i/s)ti =

nÿ

i=1

3
e
2
ui

t≠2

st≠1

4i

Æ

nÿ

i=1

!
e
2(u/n)(n/s)t≠1

"i
.

For s Ø 2n and t Ø lg(u/n)/ lg(s/n) + 5, this is at most
q

n

i=1
(e2/16)i < 1 and thus proves

Lemma 9.
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3 Hashing

In this section, we show how to construct a n-wise independent hash function with fast
evaluation in the cell probe model. As a data structure problem, such a data structure has a
query h(x) for each x œ [u]. Upon construction, the data structure draws a random seed
and initializes s memory cells of w bits. The data structure satisfies that the values h(x) are
uniform random in Fp and n-wise independent. Here the randomness is over the choice of
random seed.

Similarly to our dictionary, our hashing data structures makes use of a bipartite expander.
However, we need a (very) slightly stronger expansion property. Concretely, we assume the
availability of a (Æ n, 2)-expander � : [u] ◊ [t] æ [s] (rather than a (Æ n, 1)-expander). The
expander � thus satisfies that for any S ™ [u] with |S| Æ n, we have |�(S)| Ø 2|S|.

In addition to the (Æ n, 2)-expander �, we also need another function assigning weights
to the edges of �. We say that � : [u] ◊ [t] æ Fp makes � useful if the following holds:
Construct from (�,�) the u ◊ s matrix A�,� such that entry (x, y) equals

ÿ

j:�(x,j)=y

�(x, j) mod p

We have that (�,�) is useful if every subset of n rows in A�,� is a linearly independent set
of vector over Fs

p
. We show later that for any (Æ n, 2)-expander �, there exists at least one

� making � useful:

I Lemma 10. If � : [u] ◊ [t] æ [s] is a (Æ n, 2)-expander, then for p Ø 2eu, there exists a
� : [u] ◊ [t] æ Fp such that (�,�) is useful.

In the cell probe model, we may assume that � and � are free to evaluate and are known
to a data structure since computation is free of charge. With such a pair (�,�) we may now
construct our data structure for n-wise independent hashing.

Construction. Initialize the data structure by filling each of the s memory cells by
uniformly and independently chosen values in Fp (the seed). Let z0, . . . , zs≠1 denote the
values in the memory cells.

Querying. To evaluate h(x) for an x œ [u], compute and return the value

t≠1ÿ

j=0

�(x, j)z�(x,j) mod p.

Analysis. Observe that the value returned on the query x equals

t≠1ÿ

j=0

�(x, j)z�(x,j) mod p ©

s≠1ÿ

y=0

ÿ

j:�(x,j)=y

�(x, j)z�(x,j) mod p.

But this is the same as (A�,�z)x, i.e. the inner product of the x’th row of A�,� with the
randomly drawn vector z. Since the rows of A�,� are n-wise independent and z is drawn
uniformly, we conclude that the query values h(0), . . . , h(u ≠ 1) are n-wise independent as
well. The query time is t probes and the space usage is s cells of lg p bits. We thus conclude

I Lemma 11. Given a bipartite (Æ n, 2) expander � : [u] ◊ [t] æ [s] and a p Ø 2eu, there is
a cell probe data structure for evaluating an n-wise independent hash function h : [u] æ Fp

using s cells of w = �(lg p) bits and answering queries in t cell probes.
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An argument similar to the proof of Lemma 9, we show the existence of the desired expanders:

I Lemma 12. For any s Ø 2n and any u Ø n, there exists a (non-explicit) (Æ n, 2) expander
� : [u] ◊ [t] æ [s] with t = 2 lg(u/n)/ lg(s/n) + 4.

Combining Lemma 12, Lemma 10 and Lemma 11 proves Theorem 3.
What remains is to prove Lemma 10 and Lemma 12. We start with Lemma 10.

Proof of Lemma 10. We give a probabilistic argument. Let � : [u] ◊ [t] æ [s] be a (Æ n, 2)-
expander. Draw � : [u] ◊ [t] æ Fp by letting �(x, j) be chosen uniformly and independently
from Fp. Define an event E— for every — œ Fu

p
with 1 Æ Î—Î0 Æ n (Î—Î0 gives the number of

non-zeros) that occurs if —A�,� = 0. We have that (�,�) is useful if none of the events E—

occur.
Consider one of these events E— . Since � is a (Æ n, 2)-expander, we have that the set of

rows in A�,� corresponding to non-zero coe�cients of — have at least 2Î—Î0 distinct columns
containing an entry that is chosen uniformly at random and independently from Fp. We thus
have Pr[E— ] Æ p

≠2Î—Î0 . A union bound finally implies:

Pr[(�,�) is not useful] Æ

nÿ

i=1

ÿ

—œFu
p :Î—Î0=i

Pr[E— ] Æ

nÿ

i=1

3
u

i

4
p
i
p

≠2i
Æ

nÿ

i=1

(eu/(ip))i.

For p Ø 2eu, this is less than 1, which concludes the proof of Lemma 10. J

Lastly, we prove Lemma 12.

Proof of Lemma 12. The proof follows that of Lemma 9 uneventfully. Draw � randomly,
with each �(x, y) uniform and independently chosen in [s]. Again, we define an event ES,T

for each S ™ [u] with |S| Æ n and each T ™ [s] with |T | = 2|S|≠ 1. The event ES,T occurs if
�(S) ™ T . We have

Pr[� is not an (Æ n, 2)-expander] Æ
ÿ

S,T

Pr[ES,T ] Æ

nÿ

i=1

3
u

i

43
s

2i

4
((2i)/s)ti Æ

nÿ

i=1

(eu/i)i(s/(2i))2i((2i)/s)ti =

nÿ

i=1

3
eu(2i)t≠3

st≠2

4i

Æ

nÿ

i=1

!
e(u/n)(2n/s)t≠2

"i

For s Ø 4n and t Ø 2 lg(u/n)/ lg(s/n) + 4 Ø lg(u/n)/ lg(s/(2n)) + 4, this is less than 1,
completing the proof of Lemma 12. J
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4 Lower Bound for Non-Adaptive Dictionaries

In this section, we prove cell probe lower bounds for non-adaptive dictionaries supporting
membership queries (is x in the input set X?).

We adapt the “cell-sampling” technique from [18]. Roughly speaking, this proof technique
shows that there exists a not-too-large subset of cells C ™ [s] such that a large number of
queries will only probe cells in C (we say such queries are resolved by C) assuming that the
query time of the cell probe data structure is impossibly small. For adaptive and static data
structures, it can be observed that the subset of cells C will be di�erent for varying choices
of the n input key-value pairs as the probed cells during queries can depend on the memory
representation.

For our non-adaptive lower bound, we make the critical observation that the subset of
sampled cells C need not depend on the n input key-value pairs. In particular, non-adaptive
queries must choose the probed cells without any knowledge of the memory representation.
As a result, we are able to separate the adaptive and non-adaptive setting for the dictionary
problem and successfully prove a matching lower bound to our constructions as follows:

Proof of Theorem 2. Assume the space usage of a data structure is s cells of w bits each.
We assume for the proof that sw Ø 6n lg(u/n). For smaller space usage, we can always pad
with dummy memory cells.

For a query x œ [u], let p(x) ™ [s] denote the indices of the memory cells probed on
query x.

By averaging, for any q with t Æ q Æ s, there is a set of q memory cells C ™ [s] such that
u

!
s≠t

q≠t

"
/
!
s

q

"
queries x have p(x) ™ C. Fix such a set C. Assume for the sake of contradiction

that

t Æ (1/4)min
;
q,

lg(u/n)
lg(sw/(n lg(u/n)))

<
.

Then we have

u ·

!
s≠t

q≠t

"
!
s

q

" = u ·
q(q ≠ 1) · · · (q ≠ t+ 1)
s(s ≠ 1) · · · (s ≠ t+ 1) Ø u ·

3
(3/4)q

s

4t

.

Letting q = (1/4)n lg(u/n)/w, this is at least u ·

1
(3/16)n lg(u/n)

sw

2t

Ø u ·

1
n lg(u/n)

sw

22t

Ø

u

n/u =

Ô
un.

Let U ™ [u] denote the set of queries x with p(x) ™ C. Notice that the memory cells
in C serve as a membership data structure for the universe U and inputs X ™ U of size n.
Hence the number of bits in C must be at least lg

!|U |
n

"
Ø (1/2)n lg(u/n). But the cells only

have qw = (1/4)n lg(u/n) bits, a contradiction. We thus conclude:

t = �
3
min

;
n lg(u/n)

w
,

lg(u/n)
lg(sw/(n lg(u/n)))

<4
. J

5 Conclusion and Open Problems

In this work, we presented optimal non-adaptive cell probe dictionaries and data structures
for evaluating n-wise independent hash functions. Our upper bounds rely on the existence
of bipartite expanders with quite weak expansion properties, namely (Æ n, 1) and (Æ n, 2)-
bipartite expanders. If e�cient explicit constructions of such expanders were to be developed,
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they would immediately allow us to implement our dictionary in the standard word-RAM
model. They would also go a long way towards a word-RAM implementation of n-wise
independent hashing. We thus view our results as strong motivation for further research
into such expanders. In personal communication with Bruno Bauwens and Marius Zimand,
they have given a preliminary proof that an exciting explicit construction with s = O(n) and
t = (lg u)O(1) exists, thus taking a first step towards an optimal word-RAM implementation.

Next, we remark that our non-explicit constructions of (Æ n, 1) and (Æ n, 2) expanders
are essentially optimal. Concretely, a result of Radhakrishnan and Ta-Shma [20] shows that
any (u, s, t)-bipartite graph with expansion 1 requires t = �(lg(u/n)/ lg(s/n)). In more
detail, Theorem 1.5 (a) of [20] proves that if G is a (u, s, t)-bipartite graph that is an (n, ‘)
disperser (every set of n left-nodes has at least (1 ≠ Á)s right-nodes), then for Á > 1/2, the
left-degree, t, is �(lg(u/n)/ lg(1/(1 ≠ Á))). Since a (Æ n, 1)-non-contractive expander is also
an (n, ‘)-disperser with (1 ≠ ‘) = n/s, the lower bound t = �(lg(u/n)/ lg(s/n)) follows.

Finally, we also observe a near-equivalence between non-adaptive data structures for
evaluating n-wise independent hash functions and non-constructive bipartite expanders.
Concretely, assume we have a word-RAM data structure for evaluating an n-wise independent
hash function from [u] to [u] and assume w = lg u for simplicity. If the data structure uses s
space and answers queries in t time (including memory lookups and computation), then we
may obtain an explicit expander from the data structure. Concretely, we form a right node
for every memory cell, a left node for every query and an edge corresponding to each cell
probed on a query. Now observe that if there was a set of n left nodes S with |�(S)| < n, then
from those |�(S)| memory cells, the data structure has to return n independent and uniform
random values in [u]. But the cells only have |�(S)|w < n lg u bits, i.e. a contradiction.
Hence the resulting expander is non-contractive. If the query time of the data structure was
t, we may obtain the edges incident to a left node simply by running the corresponding query
algorithm. Since the query algorithm runs in t time, it clearly accesses at most t right nodes
and computing the nodes to access can also be done in t time. A similar connection was
observed by [8].
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Maximum Matching

Eunou Lee �

Korea Institute for Advanced Study, Seoul, South Korea

Ojas Parekh �

Sandia National Laboratories, Albuquerque, NM, USA

Abstract

Finding a high (or low) energy state of a given quantum Hamiltonian is a potential area to gain a
provable and practical quantum advantage. A line of recent studies focuses on Quantum Max Cut,
where one is asked to find a high energy state of a given antiferromagnetic Heisenberg Hamiltonian.
In this work, we present a classical approximation algorithm for Quantum Max Cut that achieves an
approximation ratio of 0.595, outperforming the previous best algorithms of Lee [10] (0.562, generic
input graph) and King [8] (0.582, triangle-free input graph). The algorithm is based on finding the
maximum weighted matching of an input graph and outputs a product of at most 2-qubit states,
which is simpler than the fully entangled output states of the previous best algorithms.
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1 Introduction

A quantum optimization problem seeks to compute the maximum (or minimum) of a function
that is defined over the n-qubit Hilbert space. In a restricted case where the function is a
sum of k-qubit Hamiltonians, it is well known that the problems are in general QMA-hard,
i.e. hard to solve to an inverse polynomial precision even with a quantum computer [4]. One
way to cope with the computational hardness is to try to find good approximate solutions.
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Quantum Max Cut (QMC) has served as a benchmark problem to develop ideas for
quantum Hamiltonian approximation. It has a simple definition, has a good physical
motivation, namely the antiferromagnetic Heisenberg model, and extends the well-studied
classical Max Cut problem. The task of QMC, given a positive weighted graph G = (V,E,w),
is to find a (description of a) maximum energy state for the Hamiltonian

H =
ÿ

(i,j)œE

wij(I ≠ XiXj ≠ YiYj ≠ ZiZj)/4,

where Xi is the Pauli matrix X on qubit i and identity on the rest. The matrices, Yi, Zi are
similarly defined.

Most of the existing approximation algorithms for QMC follow the framework of the
seminal Goemans-Williamson algorithm [6]. The problem is first relaxed to a semidefinite
program (SDP), then the SDP is solved in polynomial time, and finally, the SDP solution is
rounded to a feasible solution of the original problem. Since QMC is a maximization problem
over the n-qubit Hilbert space, the rounded solution should be an n-qubit quantum state
instead of an n-bit string as for Max Cut. Assuming that we follow the Goemans-Williamson
framework to approximate QMC, there are still three design choices: 1) which SDP to relax
the original problem to, 2) which subset of quantum states (ansatz) to round the SDP
solution to, and 3) how to round the SDP solution to an ansatz state. For Max Cut, optimal
choices (up to the Unique Games Conjecture) of classical analogues of the above are known;
however, these remain unsettled for QMC.

The Quantum Lasserre SDP hierarchy [9, 11] is a sequence of SDPs that upper bounds
the maximum energy of a given quantum Hamiltonian. The Quantum Lasserre hierarchy
does so by optimizing over pseudo-density operators that are not guaranteed to be positive.
The level-k Lasserre SDP includes all valid linear constraints on moments of subsets of at
most k qubits. It also includes global constraints characterized by polynomials where each
term is tensor product of at most k non-trivial single-qubit Paulis (see e.g., [13]). Hence
the SDPs in the hierarchy become tighter as the level increases, eventually converging to
the given quantum Hamiltonian problem when k = n. The following is a way to view
the SDP construction. Fix a quantum state |„Í. For an n-qubit Pauli matrix P, define
v(P ) := P |„Í. Then the energy of |„Í for an arbitrary Hamiltonian can be expressed as
a sum of inner products of these vectors. For example, È„|I ≠ XiXj ≠ YiYj ≠ ZiZj |„Í =
Èv(I), v(I)Í ≠ Èv(XiXj), v(I)Í ≠ Èv(YiYj), v(I)Í ≠ Èv(ZiZj), v(I)Í. Additionally, it holds that
Îv(P )Î = 1, and Èv(P1), v(Q1)Í = Èv(P2), v(Q2)Í for all n-qubit Pauli matrices P1, P2, Q1, Q2

such that P1Q1 = P2Q2. Now forget about |„Í and maximize the energy expression in terms
of v(P )’s, while satisfying the inner product relations.

In the following definition, Pk(n) is the set of n-qubit Pauli matrices with non-trivial
terms on up to k qubits.

I Definition 1 (Level-k Quantum Lasserre SDP).

Maximize

ÿ

(i,j)œE

wijv(I) · (v(I) ≠ v(XiXj) ≠ v(YiYj) ≠ v(ZiZj))/4 (S)

subject to v(P ) œ R|Pk(n)|, ’P œ Pk(n),
v(P ) · v(P ) = 1, ’P œ Pk(n),
v(P1) · v(Q1) = v(P2) · v(Q2), ’P1, P2, Q1, Q2 œ Pk(n) s.t. P1Q1 = P2Q2,

v(P ) · v(Q) = 0, ’P,Q œ Pk(n) s.t. PQ+QP = 0.
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Every existing QMC approximation algorithm that follows an SDP rounding framework
uses a Quantum Lasserre SDP. The QMC approximation algorithm of Gharibian-Parekh [5]
employs the level-1 Lasserre, and Parekh-Thompson [12], Parekh-Thompson [13], Lee [10],
and King [8] employ the level-2 Lasserre SDP. More sophisticated SDP hierarchies that
are aware of the SU(2) symmetry in the QMC Hamiltonian have also been developed
recently [14, 15], and such hierarchies are implicitly used in existing QMC approximation
algorithms [13].

Once an SDP relaxation is solved, its solution is rounded to a quantum state. Current
algorithms round SDP solutions to a proper subset (ansatz) of the n-qubit Hilbert space.
Gharibian-Parekh [5] and Parekh-Thompson [13] round to product states, and Parekh-
Thompson [12] rounds to a product of 1- and 2-qubit states, inspired by the non-SDP
approximation algorithm of Anshu, Gosset, and Morenz [1]. Lee [10] and King [8] round to
n-qubit entangled states.

In this paper, we introduce a simple classical approximation algorithm that solves the
level-2 Lasserre SDP and rounds to either a product of 1-qubit states or a product of 1- and
2-qubit states. The former is obtained using the Gharibian-Parekh product state rounding
algorithm. The latter is obtained by solving the Maximum Weight Matching problem in the
weighted input graph on which the QMC Hamiltonian is defined, and this does not depend
on the SDP solution at all. This distinguishes and drastically simplifies our algorithm relative
to previous SDP rounding approaches, which crucially use information from a level-2 SDP
solution to produce entangled states.

We show that the approximation ratio of our algorithm is 0.595, which improves the
previous best algorithms for general graphs (Lee [10] with a ratio of 0.562), and triangle-free
graphs (King [8] with a ratio of 0.582).

Quantum optimization

Another issue that we are concerned with is the definition of quantum optimization problems.
A common way to define a quantum optimization problem in the literature is to define an
energy function on n qubits and then seek a maximum-energy state with respect to the
function. What does it mean for a classical algorithm to solve this problem? If we restrict
classical algorithms to outputting basis states, then the above quantum optimization reduces
to a classical one. A more relaxed and common approach is to only ask for a “description”
of a quantum state. This definition accommodates a broader family of algorithms that
output a description of an entangled state, such as our and other previous algorithms for
approximating QMC. Now the issue is that the meaning of the word “description” is vague:
an output state of any quantum algorithm has a classical description, namely the quantum
algorithm itself written on paper. Therefore any quantum algorithm is a classical algorithm
if we accept this definition. We propose the following definition for a more satisfying notion
of a classical algorithm solving a quantum optimization problem.

I Definition 2. Given an objective function f that maps an n-qubit state to a real number,

a pair of polynomial time quantum or classical algorithms (P, V ) maximizes f to a value ‹ if

the following conditions hold:

1. a. If max f Ø ‹: ÷ |wÍ of size polynomial in n such that V (|wÍ) = 1 w.p. Ø 2/3,
b. If max f Æ ‹ ≠ 1/p(n) for some polynomial p: ’ polynomial-sized |wÍ, V (|wÍ) = 1 w.p.

Æ 1/3
2. P outputs |wÕÍ such that V (|wÕÍ) = 1 w.p. Ø 2/3.

ICALP 2024
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Each of P and V can be either classical or quantum; when P or V is classical, it is assumed
that classical states are employed. Therefore according to our definition, we can have a cc-,
qc-, cq-, or qq-optimization algorithm for a quantum optimization problem depending on
whether each of P and V is classical or quantum. Only cc-optimization algorithms for QMC
are known to us so far.

We argue that finding an optimal qq-optimization algorithm for QMC is a viable path
to achieve a provable and practical quantum advantage. Suppose the verifier algorithm V

is fixed to be classical. Then, from the prover P ’s side, the task is to find a bit string to
convince V that there is a high energy state. Assuming there is a tight NP-hard upper bound
for a classical approximation for QMC (for example by the PCP theorem), we cannot find
a quantum prover that provably gives a greater ratio than all classical provers unless we
prove that NP is a proper subset of QMA. However, to the best of our knowledge, there are
no unexpected complexity theoretic consequences of a qq-approximation having a greater
ratio than all cc-approximations. Moreover, we already know how to upper bound classical
approximation ratios in some cases via the PCP theorem and the Unique Games Conjecture,
so we can hope to upper bound the classical ratio for QMC. The current best upper bound
for a cc-approximation of QMC is 0.956 up to plausible conjectures [7].

Approximation algorithm

In all previous algorithms outputting entangled states, the following monogamy of entangle-
ment relation on stars is used crucially.

I Definition 3 (SDP solution values). Let G = (V = [n], E, w) be a weighted graph and let

(v(P ))PœP2(n) be a feasible solution to the level-2 Lasserre SDP. Define, for i, j œ V ,

gij :=
1
4v(I) · (v(I) ≠ v(XiXj) ≠ v(YiYj) ≠ v(ZiZj))

hij :=
1
4v(I) · (v(I) ≠ v(XiXj) ≠ v(YiYj) ≠ v(ZiZj)) ≠ 1

2 .

For x œ R, denote x
+ := max(x, 0). In particular for i, j œ V ,

h
+

ij := max(hij , 0).

The objective function value of the SDP solution is then ‹ :=
q

(i,j)œE wijgij.

I Lemma 4 (Monogamy of entanglement on a star, [12]). Given a feasible solution to the

level-2 Lasserre SDP on a graph G = (V,E), for any vertex i œ V and any S ™ V ,

ÿ

jœS

hij Æ 1
2 .

In particular,

ÿ

jœN(i)

h
+

ij Æ 1
2 , (1)

where N(i) = {j|(i, j) œ E}.

The last statement is obtained by taking the set of edges incident to i with positive hij values
as S.
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A matching in G corresponds naturally to a state that earns maximal energy on the
Hamiltonian terms corresponding to matched edges. Notice that by Equation (1), (2h+

e )eœE

forms a fractional matching in the sense that if all these values were either 0 or 1, then
we would have a matching that would in turn yield a state. We can round this fractional
matching to a true matching, with a loss in objective value. Since a maximum weight
matching has weight at least that of any matching we might round to, we may simply use it
instead. We solve the Maximum Weight Matching problem and assign the best 2-qubit state,
namely the singlet, (|01Í ≠ |10Í)/

Ô
2, to matched edges. To each unmatched qubit, we assign

the maximally mixed 1-qubit state. The resulting n-qubit state has maximal energy on
matched edges but low energy on edges that are not matched. To address this issue, we also
run the product state algorithm of Gharibian-Parekh [5]. Below is the complete algorithm.

I Algorithm 5 (Approximation algorithm for Quantum Max Cut). Given a weighted graph

G = (V,E,w) as an input,

1. Find a product state as follows:

a. Solve SDP (S) for k = 2 to get solution vectors (v(P ))PœP2(n).

b. Sample a random matrix R with dimension 3◊3|P2(n)| with each element independently

drawn from N (0, 1).
c. Perform Gharibian-Parekh rounding on each vi := (v(Xi)Îv(Yi)Îv(Zi))/

Ô
3 to get

ui := Rvi/ÎRviÎ.
d. Let fl1 :=

r
iœV

1

2
(I + ui,1Xi + ui,2Yi + ui,3Zi).

2. Find a matching state as follows:

a. Find the maximum weight matching M : E æ {0, 1} of G, for example via Edmonds

Algorithm [3].

b. Let fl2 :=
r

(i,j):M(i,j)=1
(I ≠ XiXj ≠ YiYj ≠ ZiZj)/4

r
iœU I/2, where U is the set of

qubits unmatched by M .

3. Output whichever of fl1 and fl2 that has greater energy.

Using matchings to find a good QMC state is not a new idea. Anshu, Gosset, and Morenz [1]
introduced the idea of using matchings for QMC approximations, proving that there exists a
product of 1- and 2-qubit states with energy at least 0.55 times the maximum QMC energy.
Parekh and Thompson use a level-2 Lasserre solution to identify [12, 13] a subgraph on which
they find a maximum weight matching; they then output a product state or a product of 1-
and 2-qubit states akin to our algorithm, yielding an approximation ratio of 0.533. To obtain
our improvement, we relate a level-2 SDP solution to the value of a matching on the whole
input graph, whereas Parekh-Thompson do so for a proper subgraph of the input graph that
is obtained from the level-2 SDP solution.

Our algorithm is much simpler than previous algorithms producing entangled states. It
may be surprising that we can establish that this algorithm o�ers a better approximation
guarantee than previous algorithms, including those outputting states with potential global
entanglement. In particular, our algorithm does not even need to solve an SDP to obtain the
entangled solution fl2. We only use the level-2 Lasserre SDP to argue that a maximum weight
matching provides a solution that has reasonably high energy when fl1 has low energy. This
manifests itself when obtaining the product state fl1, which must be done so with respect
to the level-2 SDP. Even though fl1 requires solving the level-2 SDP, it is obtained by only
using the vectors, v(Xi), v(Yi), v(Zi), corresponding to single-qubit Paulis (i.e., the level-1
part of a level-2 solution). In fact, our algorithm is well defined if we solve the level-1 SDP
relaxation instead of the level-2 SDP in Step (1a); however, we do not expect approximation
factors beyond 0.498 using only the level-1 SDP [7].

ICALP 2024
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Figure 1 The solid region represents a feasible area characterized by entanglement convexgamy
whereas the red line represents the boundary of the feasible region by monogamy of entanglement
on a star.

Strengthening monogamy of entanglement on a star

All previous approximation algorithms for QMC outputting entangled states critically rely
on monogamy of entanglement on a star (Lemma 4). The previously best-known algorithms
by Lee [10] and King [8] both start with a good product state and evolve it to an entangled
state while respecting these monogamy of entanglement constraints at each vertex. The key
di�erence in our case is that we directly find a global solution satisfying the monogamy of
entanglement constraints. If our algorithm is the optimal way to exploit these constraints,
stronger inequalities obtained from the SDP are necessary to deliver a QMC approximation
algorithm with a meaningful improvement in approximation ratio.

Even though Monogamy of Entanglement is tight when hij = 1/|N(i)| for all j œ N(i), it
is easy to see that the inequality is far from tight at other points. Suppose hij = 1/2, with
(i, j) being maximally entangled. Then on a neighbouring edge (i, k), the energy is 1/4 and
hik = ≠1/4. In this case, the deviation from the upper bound grows linearly as the number of
connected edges grows. Parekh and Thompson derived nonlinear monogamy of entanglement
inequalities on a triangle to address this issue in obtaining an optimal approximation for
QMC using product states. Their result is captured in Lemma 6.

I Lemma 6 (Monogamy of entanglement on a triangle, Lemma 1 of [13]). Given a feasible

solution to the level-2 Lasserre SDP on a graph G = (V,E), for i, j, k œ V ,

0 Æ gij + gjk + gik Æ 3
2 (2)

g
2

ij + g
2

jk + g
2

ik Æ 2gijgjk + 2gijgik + 2gjkgik. (3)

The presentation of the above lemma is equivalent to that of [13] after a change of
variables. From these relations, we obtain a tighter bound on star graphs with 2 edges as
stated in the lemma below. We denote the relation “convexgamy” to distinguish it from the
linear monogamy relation (Lemma 4), and the resulting relation gives a convex region.
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I Lemma 7 (Entanglement convexgamy on 2 edges). Consider a graph G = (V = {1, 2, 3}, E =
{(1, 2), (2, 3)}). Let x, y be defined by a feasible level-2 Lasserre SDP solution as x := g12 and

y := g23. Then (x, y) is confined in the region defined by the x-axis, y-axis, and the ellipse

touching the x- and y-axis and x+ y = 3/2 as depicted in Figure 1. More specifically, the

ellipse is defined as 3(x+ y ≠ 1)2 + (x ≠ y)2 = 3/4.

Proof. Let z = g13. Then x, y, z Ø 0. By Lemma 6, x2 + y
2 + z

2 Æ 2(xy + yz + zy), and
0 Æ x+ y + z Æ 3/2. The first inequality is equivalent to


x2 + y2 + z2

x+ y + z
Æ 1Ô

2
.

It means that if x + y + z = c Ø 0, then

x2 + y2 + z2 Æ c/

Ô
2. So (x, y, z) lies the

intersection of the plane x+ y + z = c and the sphere of radius c/
Ô
2 centered at the origin,

which is the incircle of the triangle defined by x+ y + z Ø c in the region x, y, z Ø 0. When
the circle is projected to the xy-plane to give a feasible subset of (x, y), we get the ellipse
inscribed in the triangle defined by (0, 0), (c, 0), (0, c). Because 0 Æ c Æ 3/2, we prove that a
feasible point is in the region defined by the x-axis, y-axis, and the ellipse touching the x-
and y-axis and x+ y = 3/2.

The equation of the ellipse follows by solving the inscription condition. J

2 Analysis of the algorithm

In the rest of the paper, we introduce necessary concepts regarding matching theory and
bound the approximation ratio of our algorithm.

I Theorem 8 (Linear program for Maximum Weight Matching, [3]). Given a weighted graph

G = (V,E,w), the following linear program gives the value of a maximum weight matching

in G:

maximize

ÿ

eœE

wexe (M)

subject to

ÿ

jœN(i)

xij Æ 1, for all i œ V, (4)

ÿ

eœE(S)

xe Æ |S| ≠ 1
2 , for all S ™ V : |S| odd, (5)

xe Ø 0, for all e œ E. (6)

where E(S) := {(i, j) œ E | i, j œ S} for all S ™ V .

The above linear program (LP) cannot be e�ciently solved directly since it has an exponential
number of constraints; however, algorithms for Maximum Weight Matching, such as Edmonds
Algorithm [3], obtain the optimal value in polynomial time using insights based on the LP
and its dual. We will need to show that if we are given a solution (x)eœE that only satisfies
some of the constraints, then (–x)eœE satisfies all of the constraints for some – œ (0, 1). This
will allow us to relate the objective value of the level-2 SDP to the weight of an optimal
matching.

I Lemma 9. If (x)eœE satisfies constraints (4), (6), and (5) for |S| = 3, then ( 4
5
x)eœE is

feasible for LP (M).

ICALP 2024
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Proof. Assume the hypothesis and consider the constraints of (5). We bound the value of the
solution x on each such constraint. For S ™ V , define ”(S) := {(i, j) œ E | |{i, j} fl S| = 1}.
Then,

2
ÿ

eœE(S)

xe Æ 2
ÿ

eœE(S)

xe +
ÿ

eœ”(S)

xe =
ÿ

iœS

ÿ

jœN(i)

xij Æ |S|,

where the first inequality follows from (6) and the second from (4). So we have
ÿ

eœE(S)

xe Æ |S|
2 , for all S ™ V ;

however, to satisfy (5), we need a RHS of |S|≠1

2
instead of |S|

2
for sets S of odd size. Since

the |S| = 3 case is satisfied by assumption, (–x)eœE is feasible for LP (M), where

– := min
{sœZ|s odd,s>3}

s ≠ 1
s

= 4
5 . J

In order to appeal to the above lemma, we will need to show that the energy values
arising from the level-2 SDP satisfy the constraints in the hypothesis of the lemma. For this
we will rely on monogamy of entanglement on a star and triangle as established in Lemma 4
and the following corollary of Lemma 6, respectively.

I Corollary 10. Given a feasible solution to the level-2 Lasserre SDP on a graph G = (V,E),
for i, j, k œ V ,

h
+

ij + h
+

jk + h
+

ik Æ 1
2 . (7)

Proof. Let t be the number of (u, v) œ {(i, j), (j, k), (i, k)} with h
+
uv > 0. If t Æ 1 then (7)

holds since h
+

ij Æ 1

2
for all i, j œ V . If t Ø 2 then (7) holds by (2). J

We are now in position to prove our main result.

I Theorem 11 (main). Algorithm 5 gives a 0.595-approximation for any weighted input

graph G = (V,E,w).

Proof. Define

Hij = (I ≠ XiXj ≠ YiYj ≠ ZiZj)/4,

H =
ÿ

(i,j)œE

wijHij .

We bound the expected energy of each case of Steps 1 and 2 of the algorithm. The subroutine
of Step 1 is directly from the main algorithm of [5], where in turn the analysis is borrowed
from [2]. More precisely, the energy of fl1 with respect to Hij is

Trfl1Hij =
1
16Tr[(I ≠ X ¢ X ≠ Y ¢ Y ≠ Z ¢ Z)

((I + ui,1X + ui,3Y + ui,3Z) ¢ (I + uj,1X + uj,3Y + uj,3Z))]

= 1
4(1 ≠ ui · uj),

and its expected value is

Trfl1Hij =
1 ≠ f3(vi · vj)

4 (8)
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where

f3(x) =
2
3

3
�(2)

�(1.5)

42

x2F1

1
1/2,1/2

2
;x2

2
.

The estimation is from Lemma 2.1 of [2].
Now we turn to the analysis of the energy of fl2 from Step 2. Note that if an edge e is

matched, then Trfl2He = 1, and if e is not matched, then Trfl2He = 1/4. More succinctly,
Trfl2He = 1/4 + 3Me/4. Since the SDP values, (h+

e )eœE satisfy monogamy of entanglement
on a star and triangle (Equations (1) and (7)), we have:

ÿ

jœN(i)

2h+

ij Æ 1, for all i œ V,

2h+

ij + 2h+

jk + 2h+

ik Æ 1, for all i, j, k œ V,

where the former correspond to the constraints (4) of the LP (M), and the latter correspond
to the constraints (5) with |S| = 3. Then by Lemma 9, ( 8

5
h
+
e )eœE is feasible for the LP. This

implies that the optimal solution of the LP, namely a maximum weight matching, has weight
at least that of ( 8

5
h
+
e )eœE :

ÿ

eœE

weMe Ø 8
5

ÿ

eœE

weh
+

e .

Therefore,

ÿ

eœE

weTrfl2He =
ÿ

eœE

we

3
1
4 + 3

4Me

4
Ø

ÿ

eœE

we

3
1
4 + 6

5h
+

e

4
. (9)

By definition, v(I) · (v(I)≠v(XiXj)≠v(YiYj)≠v(ZiZj))/4 = (1≠3vi ·vj)/4 = 1/2+hij .

So we have

hij = ≠1 + 3vi · vj
4 . (10)

Let ‡ be the density matrix of the output state of the algorithm. By combining the energy
estimation of the two cases (8) and (9), we get,

ÿ

(i,j)œE

wijTr‡Hij = max

Y
]

[
ÿ

(i,j)œE

wijfl1Hij ,

ÿ

(i,j)œE

wijfl2Hij

Z
^

\

Ø
ÿ

(i,j)œE

wij

C
p
1 ≠ f3(vi · vj)

4 + (1 ≠ p)
A
1
4 + 6

5

3
≠1 + 3vi · vj

4

4+
BD

,

for any p œ [0, 1]. Since ≠1 Æ vi · vj Æ 1/3, it su�ces to find

– := max
pœ[0,1]

min
xœ[≠1,1/3]

C
p
1 ≠ f3(x)

4 + (1 ≠ p)
A
1
4 + 6

5

3
≠1 + 3x

4

4+
BD ?

1 ≠ 3x
4

= 0.595,
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where the maximum occurs at p = 0.674. This proves the theorem since
ÿ

(i,j)œE

wijTr‡Hij

Ø
ÿ

(i,j)œE

wij

C
p0

1 ≠ f3(vi · vj)
4 + (1 ≠ p0)

A
1
4 + 6

5

3
≠1 + 3vi · vj

4

4+
BD

Ø 0.595
ÿ

(i,j)œE

wij
1 ≠ 3vi · vj

4 Ø 0.595⁄max(H). J

I Remark 12. The present approach can be likely be improved by deriving analogues of
Corollary 10 for larger odd-sized sets of qubits. This would enable a stronger version of
Lemma 9 with – >

4

5
. However, the best approximation ratio achievable by such approaches,

corresponding to – = 1, is 0.606. This is also the approximation ratio of our algorithm on
bipartite graphs, since in this case LP (M) gives the value of a maximum weight matching
even when constraints (5) are absent from the LP.

3 Open problems

Understanding the approximability of QMC is likely to bring a deeper understanding of the
more general local Hamiltonian problem, just as resolving the approximability of Max Cut
(up to the Unique Games Conjecture) has had surprising consequences for the theory of
classical constraint satisfaction problems. We list relevant research directions below.

Find a rigorous quantum approximation algorithm for QMC.
Find a heuristic quantum algorithm (e.g. VQE-based) for QMC that outperforms rigorous
classical algorithms.
The approximability of QMC using product states (i.e. tensor products of 1-qubit states)
is well understood [13, 7]. Find the best approximation ratio achievable using a tensor
product of 1- and 2-qubit states. Can this be obtained using matchings? Which level of
the lassere hierarchy is necessary to achieve this?
Find an entanglement convexgamy relation (i.e. tighter non-linear inequalities on star
graphs) from a valid level-k SDP solution on d edges. Does the optimal such relation
(i.e. one precisely describing the feasible space) arise at a constant level k (with respect
to d)?
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Abstract

The paper revisits the Robust s-t Path problem, one of the most fundamental problems in robust
optimization. In the problem, we are given a directed graph with n vertices and k distinct cost
functions (scenarios) defined over edges, and aim to choose an s-t path such that the total cost of
the path is always provable no matter which scenario is realized. Viewing each cost function as an
agent, our goal is to find a fair s-t path, which minimizes the maximum cost among all agents. The
problem is NP-hard to approximate within a factor of o(log k) unless NP ™ DTIME(npoly logn), and
the best-known approximation ratio is ÂO(

Ô
n), which is based on the natural flow linear program.

A longstanding open question is whether we can achieve a polylogarithmic approximation for the
problem; it remains open even if a quasi-polynomial running time is allowed.

Our main result is a O(logn log k) approximation for the Robust s-t Path problem in quasi-
polynomial time, solving the open question in the quasi-polynomial time regime. The algorithm is
built on a novel linear program formulation for a decision-tree-type structure, which enables us to
overcome the �(

Ô
n) integrality gap for the natural flow LP. Furthermore, we show that for graphs

with bounded treewidth, the quasi-polynomial running time can be improved to a polynomial. We
hope our techniques can o�er new insights into this problem and other related problems in robust
optimization.
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1 Introduction

Robust optimization under uncertainty [5, 6, 17, 26] is one of the most important and
challenging computational tasks in the real world. Uncertainty arises in many scenarios. For
instance, the travel time for a road segment might be uncertain due to tra�c jams. The
paper revisits the Robust s-t Path problem [18], a cornerstone problem in the area of robust
optimization. In the problem, there are several edge cost functions for a given graph and the
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goal is to find an s-t path that minimizes the maximum cost across all the cost functions.
Apart from serving a model for handling uncertainty, robustness also o�ers a method to
integrate multiple objectives and fairness requirements.

In a routing network, each link (or edge) typically possesses multiple attributes, such as
usage cost and delay. By representing each attribute as a cost function, we can formulate
the multi-objective routing problem as our model [14, 15, 31]. In the context of fairness
computation, diverse edge cost functions can be interpreted as various perspectives of agents
on the edges. Our objective is to identify a public path that can accommodate these
perspectives under the notion of min-max fairness [1, 27, 30].

The Robust s-t Path problem was initially studied by [18], and since then it has received
widespread attention due to its broad applicability. In [18], the authors demonstrated that
the problem is strongly NP-Hard even when there are only two scenarios. Later, [2] considers
the problem with the constant number of scenarios, and shows that the problem admits a
fully polynomial-time approximation scheme (FPTAS). When the number k of scenarios is
part of the input, simply computing the shortest path w.r.t the summation of the k cost
functions can obtain an approximation ratio of k. Kasperski and Zielinski [20] proved that the
problem is hard to approximate within a factor of o(log k) unless NP ™ DTIME(npoly logn).
Whether a polylogarithmic approximation can be achieved has been open ever since. A
recent breakthrough in the approximation ratio is made by Kasperski and Zielinski [23] in
which they gave a flow-LP-based algorithm that is ÂO(

Ô
n)-approximate, where we use ÂO to

hide a polylogarithmic factor. They further showed that their analysis is nearly tight by
proving an integrality gap of �(

Ô
n) for the flow LP.

It should be noted that Bilò et al. [7] studied the ¸q-norm shortest path problem which is a
generalized version of robust s-t path, i.e., the problem aims to find a s-t path P to minimize
the value of

1q
iœ[k] ci(P)q

21/q
, where ci(P) is agent i’s cost for the selected path P. Their

algorithm [7, Algorithm 2]) extends the classical Dijkstra algorithm by replacing the distance
with the ¸q-norm metric. Our directed graph is a DAG, so the Dijkstra-type algorithm
becomes a dynamic programming-type algorithm, with nodes processed using a topological
order. So, their algorithm just stores the best path in the ¸q-norm for every node. It is
claimed in [7, Theorem 14] that such an algorithm achieves O(min{q, log k})-approximation
for the ¸q-norm shortest path problem. However, unfortunately, there exists a crucial error
in the analysis. In the full version [25], we give a hard instance on a series-parallel graph
for the algorithm and show that the approximation ratio is at least k1≠1/q. In other words,
when q = O(log k), the proposed algorithm [7, Algorithm 2] is O(k)-approximate for the
robust s-t problem.

1.1 Our Contributions

This paper makes significant progress in closing the gap between the known upper and
the lower bound for Robust s-t Path. We show that for two natural graph classes, a
polylogarithmic approximation can be obtained in polynomial time; while for general graphs,
there exists a polylogarithmic approximated algorithm running in a quasi-polynomial time.
The following formalizes the model and summarizes our main results.

The Robust s-t Path Problem. Consider a directed graph G(V,E) with n vertices and m
edges. There are k scenarios (also referred to as “agents” hereafter), where each scenario i œ [k]
has an edge cost function ci : E æ RØ0. Given two specified vertices s and t in the graph,
the goal is to find an s-t path P that minimizes maxiœ[k] ci(P), where ci(P) :=

q
eœP ci(e).



S. Li, C. Xu, and R. Zhang 106:3

Main Result 1 (Theorem 1). There is a randomized polynomial-time O(H log k)-approxi-
mation algorithm for Robust s-t Path for directed series-parallel graphs, where H is the
height of the decomposition tree of the series-parallel graph and k is the number of agents.

Our first result is on the class of series-parallel graphs (Section 2), which are used by [20]
to demonstrate a lower bound of �(log1≠‘ k) (for any ‘ > 0) for the Robust s-t Path problem.
We begin by showing that the natural flow linear program (LP) for this class has integrality
gaps of �(k) and �(

Ô
n). The gaps hold even when we integrate the knowledge of the

optimum cost to the LP to circumvent some obvious gap instances. This result aligns with
the prior findings of [23], but our constructed instance is significantly simpler. It is worth
noting that most prior algorithms in the existing literature rely on the flow LP mentioned
above, and thus, their approximation ratios cannot be better than O(min{k,

Ô
n}).

To overcome the gap, we develop a novel linear program based on the decomposition tree
of series-parallel graphs and demonstrate that a dependent randomized rounding algorithm
for the LP obtains an approximation ratio of O(H log k). Particularly, for the hard instance
that leads to a lower bound �(log1≠‘ k) (for any ‘ > 0) stated in [20], our algorithm can
return a O(log logn log k)-approximate solution, which is nearly tight since there is only a
O(log logn)-gap; the detailed discussion can be found in the full version [25].

Main Result 2 (Theorem 8). Given a directed graph with bounded treewidth, there is a
randomized algorithm that obtains an approximation ratio of O(logn log k) in polynomial
time, where n is the number of vertices and k is the number of agents.

We then consider graphs with bounded treewidth (Section 3). When the treewidth is
2, it becomes the class of series-parallel graphs. Therefore, combining the above two
results gives a O(min{H, logn} · log k)-approximation for series-parallel graphs. Besides
series-parallel graphs, the graph class includes many other common graphs, such as trees,
pseudoforests, Cactus graphs, outerplanar graphs, and Halin graphs. In this part, we employ
the nice properties provided by the treewidth decomposition of these graphs and obtain a
polylogarithmic approximation.

Main Result 3 (Theorem 12). Given any directed graph, there is a randomized algorithm
that obtains a O(logn log k)-approximate solution in quasi-polynomial time, where n is the
number of vertices and k is the number of agents. Moreover, any quasi-polynomial time
algorithm for Robust s-t Path has an approximation lower bound of �(log1≠‘ k) (even on
series-parallel graphs) under the assumption that NP * DTIME(npoly logn).

Finally, we consider general graphs (Section 4). The algorithm is also LP-based, following
a similar framework as the algorithm for series-parallel graphs. The main challenge here is
that we no longer have a simple tree structure for general graphs. To address this issue, we
construct a decision-tree-type tree structure for the given graph and write a linear program
based on it. Our algorithm then builds on this new LP to give the first polylogarithmic
approximation for general graphs. Additionally, we show that the lower bound of �(log1≠‘ k)
can be extended to the algorithms running in quasi-polynomial time, i.e., the problem is still
hard to approximate within o(log k) even if we allow quasi-polynomial time algorithms. This
part is omitted in this version and can be found in the full version [25].

Main Result 4. For the problems of Robust s-t Path, weighted independent set, and
spanning tree under the maximin criteria, it is NP-Hard to determine whether their instances
have zero-cost optimal solutions or not. This implies that these problems do not admit any
polynomial time –-approximate algorithm unless P = NP, where – is an arbitrary function
of the input.

ICALP 2024
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The paper also considers the maximin criteria, where the goal is to maximize the minimum
cost among all agents. By observing that the classic algorithms (e.g., Dijkstra’s algorithm)
that work for the shortest path problem on DAGs (directed acyclic graphs) also work for
the longest path problem on DAGs, one might expect that the maximin criteria is also a
candidate objective to investigate the robustness of the s-t path problem, i.e., finding an
s-t path P such that miniœ[k] ci(P) is maximized. We demonstrate this is not the case by
providing a strong lower bound for the problem under the maximin criteria. Our reduction
builds on a variant of the set cover problem. Employing a similar basic idea of the reduction,
we also show that the maximin weighted independent set problem on trees or interval graphs
is not approximable. This constitutes a strong lower bound for this problem, while the
previous works [24, 28] only show the NP-Hardness. Our reduction idea can further be
extended to the maximin spanning tree problem, which implies that the robust spanning
tree problem is also not approximable under the maximin objective. This part is completely
omitted in this version and can be found in the full version [25].

1.2 Other Related Works

Robust Minimax Combinatorial Optimization. Robust minimax optimization under dif-
ferent combinatorial structures has been extensively studied in the past three decades.
See [3, 22] for a survey. Many problems that are polynomial-time solvable in the normal
setting are shown to be NP-hard in the robust minimax setting: spanning trees, s-t cuts, and
perfect matching on bipartite graphs [22]. Besides these fundamental problems, the minimax
submodular ranking problem was studied in [10] very recently. For the minimax spanning
tree, a O(log k/ log log k)-approximation algorithm is known [9], which is almost tight by the
lower bound of �(log1≠‘ k) (for any ‘ > 0) stated in [21]. The problem of minimax perfect
matching has a lower bound of �(log1≠‘ k) (for any ‘ > 0) [20], while the best upper bound
so far is still O(k) which is trivial. In the case where k is a constant, fully polynomial time
approximation schemes are known for spanning trees, perfect matching, knapsacks, and s-t
paths [3, 4, 22, 29].

Multiobjective s-t Path. Finding an s-t path is a fundamental problem in multi-objective
optimization [15]. An Excellent survey of multiobjective combinatorial optimization, including
multiobjective s-t path, can be found in [11]. Typically, we are given a directed graph
G := (V,E). Each edge e œ E has a positive cost vector c(e) := (c1(e), . . . , ck(e)). For every
s-t path P ™ E, we have a cost vector c(P) = (c1(P), . . . , ck(P)) with ci(P) =

q
eœP ci(e).

The goal is to compute an s-t path P such that P is Pareto optimal. An s-t path is called
Pareto optimal if there is no other s-t path that makes one objective better o� without
making another worse o�. Not surprisingly, this problem has been shown to be NP-hard
even if the cost vector only has two coordinates [32] in which the problem is called the
bi-objective s-t path minimization problem. Bi-objective s-t path minimization has also been
studied extensively [14, 31], in which researchers mainly focus on the exact algorithms with
exponential running time. In addition, a fully polynomial time approximation scheme is
proposed by [29].

Fair Allocation with Public Goods. By observing the minimax objective as a fairness
criterion, our problem shares some similarities with the problem of public goods, which was
first used to distinguish the previous private goods by Conitzer et al. [12] in the field of fair
division. Specifically, there is a multiagent system and di�erent agents hold di�erent opinions
about the same goods. And, they aim to select a feasible set of goods to satisfy the various
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fairness notions, such as propositional share or its generalization [12, 16]. In [16], they study
some constraints of goods, i.e., the selected goods must form a matching or matroid. The
minimax criterion is quite di�erent from other fairness measures in the fair division field,
which leads to di�erent techniques.

1.3 Roadmap

Section 2 and Section 3 present results on series-parallel graphs and bounded-treewidth
graphs, respectively. Subsequently, in Section 4, the general graph case is considered. Section 5
finally concludes the paper. Due to space constraints, all the results on the maximin criteria
are deferred to the full version of the paper.Note that we focus on high-level descriptions
of our methods in the main body. Some formal descriptions and proofs (including lemma
statements) can be found in the corresponding appendices.

2 Series-Parallel Graphs

In this section, we show that there is a randomized algorithm that achieves O(H log k)
approximation for series-parallel graphs, where H is the height of the series-parallel graph’s
decomposition tree; its meaning will be clear later. The algorithm can be viewed as a
warm-up example for the general graph, as the algorithm for the general graph follows a
similar algorithmic framework. Formally, we shall show the following theorem (Theorem 1)
in this section. We only present the LP formulation and the complete algorithm due to space
limits. All proofs can be found in the paper’s full version.

I Theorem 1. Given any series-parallel graph G, there is a polynomial time algorithm that
returns a O(H log k)-approximation solution with probability at least 1 ≠ ( 1k + 1

kH ) for robust
s-t path, where H is the height of G’s decomposition tree and k is the number of agents.

In Section 2.1, we give the basic concepts and properties of the series-parallel graphs,
which we will use later to build our linear programming formulation. In Section 2.2, we
formally present our LP formulation. We give the complete and rounding algorithm in
Section 2.3. Finally, we show the analysis in Section 2.4.

2.1 Basic Concepts

I Definition 2 (Series-Parallel Graph). A directed graph G := (V,E, s, t) with source s and
sink t is called a series-parallel graph, if it contains a single edge from s to t, or it can be
built inductively using the following series and parallel composition operations. The series
composition of two-terminal graphs G1 := (V1, E1, s1, t1) and G2 := (V2, E2, s2, t2) is to
identify t1 and s2, and let s1 and t2 be the new source and sink in the resulting graph. The
parallel composition of two-terminal graphs G1 := (V1, E1, s1, t1) and G2 := (V2, E2, s2, t2)
is to identify s1 with s2 and t1 with t2 respectively, and let s1 = s2 and t1 = t2 be the new
source and sink.

A series-parallel graph can be represented in a natural way by a tree structure that
describes how to assemble some small graphs into a final series-parallel graph through series
and parallel composition. Such a tree structure is commonly called the decomposition tree of
the series-parallel graph in the literature [33]. Formally, a decomposition tree T := (V,E) of
a series-parallel graph G := (V,E) is a tree such that (i) each leaf node u œ V corresponds
an edge in E; (ii) each internal node is either a series or parallel node; (iii) the child nodes of
a parallel (resp. series) node must be leaf nodes or series (resp. parallel) nodes. The series
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(resp. parallel) node corresponds to the series (resp. parallel) composition, and they are used
to indicate how to merge the small subgraphs of its child nodes. The subgraph Gu of a node
u is a subgraph of G such that Gu only contains those edges corresponding to the leaf nodes
in the subtree rooted at u. Let H be the height of T. Given a series-parallel graph, it is
known that its decomposition tree can be built in linear time by the standard series-parallel
graph recognition algorithm [33]. An example can be found in Figure 1.

s t

e1

e2

e9
e17

e18

P

S S

P P P
A B C

e17 e2e1 e9 e18

e3 e5 e4 e6 e13 e15 e14 e16 e7 e10 e11 e8 e12

S S S S S S

G := (V,E)

T := (V,E)

Figure 1 An example of the decomposition tree of a series-parallel graph. The series-parallel
graph G := (V,E) is shown on the left and its decomposition tree T := (V,E) is shown on the right.
Each leaf node in T corresponds to an edge in E. Each internal node is either a series node S or a
parallel node P. And it indicates how to merge the child nodes’ subgraph. For example, consider the
S node and its two child nodes e13 and e15. Then, the subgraph of this S node is e13 æ e15 which
merges its two child nodes’ subgraph via the series composition. And also, the subgraph of this S
node’s parent corresponds to the subgraph B in G, which merges e13 æ e15 and e14 æ e16 via the
parallel composition. An s-t path corresponds to a feasible subtree (Definition 3). For example, the
feasible subtree TÕ can be converted to an s-t path e2 æ e8 æ e12 æ e18.

We remark that the children of a parallel node are unordered, and for a series node, the
children should be considered as ordered. However, for the s-t path problem, the order is not
important, as permuting the children of a series node will lead to an equivalent instance.

We aim to give a linear program based on the decomposition tree T. Clearly, not all
subtrees of T correspond to an s-t path of G. In the following, we introduce the concept of a
special subtree of T called feasible subtree (Definition 3), which is able to be converted into
an s-t path.

I Definition 3 (Feasible Subtree). A subtree T
Õ of T is called a feasible subtree if and only if

(i) T
Õ includes the root node of T; (ii) for every series node s in T

Õ, TÕ includes all child
nodes of s; (iii) for every parallel node p in T

Õ, TÕ includes exactly one child node of p.

It now remains to define a cost function fi : 2V æ RØ0 according to the cost function ci.
Since each edge corresponds to a unique leaf node in T, it is easy to define fi by ci: for each
v œ V, fi(v) := ci(e) if node v corresponds to some edge e; otherwise fi(v) := 0. Formally,
we have the following simple observation (Observation 4).

I Observation 4. Given any series-parallel graph G := (V,E) and its decomposition tree
T := (V,E), fix an arbitrary agent i œ [k], any s-t path P of G with the cost ci(P) corresponds
to a feasible subtree T

Õ of T with the cost fi(TÕ) such that fi(TÕ) = ci(P) and vice versa.
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2.2 LP Formulation

Given any series-parallel graph G := (V,E), we first employ the standard doubling technique
to enhance the linear program. Given a guess of the optimal objective value GS, we discard
those edges e such that there exists an agent i œ [k] with ci(e) > GS. Clearly, these
discarded edges cannot belong to the optimal solution. Then, we run the series-parallel graph
recognition algorithm [33] to construct a decomposition tree T := (V,E) of the series-parallel
graph. See Algorithm 1 for the complete description.

The linear program is shown in (Tree-LP). For an internal node v œ V, use child(v) and
�(v) to denote its children and descendants in the tree, respectively. Let P (T) and S(T) be
the set of parallel and series nodes in T. For each node v, xv is a relaxed indicator variable
denoting whether v is selected or not. The three constraints (2), (3) and (4) correspond to
the three conditions stated in Definition 3 respectively, in order to ensure that the solution
is a feasible subtree. The first constraint type (1) is a bit subtle, and it is the key that
allows us to surpass the pessimistic �(k) and �(

Ô
n) integrality gap. In these constraints,q

uœ�(v) xu · fi(u) denotes the cost of the selected subtree rooted at v with respect to agent
i. Thus, when v = r, the constraint implies that for any agent, the total cost of all the
selected nodes must be at most xr ·OPT = OPT. For the cases that v ”= r, these constraints
do not a�ect the feasible region of integer solutions since xv is either 1 or 0, but they can
reduce the fractional solution’s feasible region dramatically by restricting the contribution of
each subtree �(v). A more detailed discussion is given in the full version of the paper.

(Tree-LP)
ÿ

uœ�(v)
xu · fi(u) Æ xv · GS, ’i œ [k],’v œ V (1)

xr = 1, (2)
ÿ

uœchild(v)
xu = xv, ’v œ P (T) (3)

xu = xv, ’v œ S(T),u œ child(v) (4)
xv Ø 0, ’v œ V (5)

2.3 Algorithms

This section formally describes the complete algorithm (Algorithm 1) for series-parallel
graphs. The main algorithm mainly consists of two steps: the doubling step (lines 2-13 of
Algorithm 1) and the rounding algorithm (Algorithm 2). After finishing the doubling step,
we obtain a fractional solution xú with the value of GS that is close to the optimal solution
OPT (Observation 5). Then, we shall employ a dependent rounding algorithm to obtain a
feasible subtree based on xú. This dependent randomized rounding algorithm selects nodes
level by level, starting from the top of T and proceeding downwards. For parallel nodes,
the algorithm selects one of its child nodes with a probability determined by the optimal
fractional solution xú. For series nodes, the algorithm selects all of its child nodes with a
probability of 1, ensuring that the resulting subtree is always feasible. A formal description
of the algorithm can be found in Algorithm 2.

2.4 Analysis

This section analyzes the performance of our algorithm. We start by describing a simple
observation (Observation 5). Let TÕ be the subtree returned by Algorithm 2. Recall that H
is the height of T.
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Algorithm 1 The Complete Algorithm for Series-Parallel Graphs.

Input: A series-parallel graph G := (V,E) with k cost functions ci : 2E æ RØ0, i œ [k].
Output: An s-t path P ™ E.
1: flag Ω true; GS Ω maxiœ[k]

q
eœE ci(e).

2: while flag = true do

3: EÕ Ω { e œ E | ÷i œ [k] s.t. ci(e) > GS }.
4: E Ω E \ EÕ; G Ω (V,EÕ).
5: Compute the tree decomposition T := (V,E) of G by [33].
6: Solve the linear program (Tree-LP).
7: if (Tree-LP) has a feasible solution then

8: Let xú be a feasible solution to (Tree-LP).
9: GS Ω GS

2
.

10: else

11: flag Ω false.
12: end if

13: end while

14: Run Algorithm 2 with the optimal solution xú to obtain a feasible subtree T
Õ of T.

15: Convert TÕ into an s-t path P.
16: return P.

I Observation 5. Let GSú be the guessing value at the beginning of the last round of the
while-loop (lines 2-13 of Algorithm 1). Then, we have GSú Æ 2 ·OPT2.

To show that the approximation ratio is O(H log k) with a constant probability, a natural
step is to first bound the expectation of our solution. We first state some intuition. According
to the description of the rounding scheme, it is easy to see that for each agent i,

E[fi(TÕ)] =
ÿ

eœE

ci(e) Pr[e œ T
Õ] = GSú.

Then by Markov inequality, we have for each agent i,

Pr[fi(TÕ) Ø H log k · GSú] Æ 1
H log k .

However, the above inequality is not su�cient because proving Theorem 1 needs to show that
Pr[’i œ [k], fi(TÕ) Ø H log k ·GSú] is at most 1

k +
1

kH . To address this issue, we need to employ
an analysis technique called Moment Method, which is widely used in the literature [13, 19].
More formally, we aim to show the following key lemma (Lemma 6); a similar proof can also
be found in [13].

I Lemma 6. For any agent i œ [k], we have E[exp
!
ln(1 + 1

2H ) · fi(TÕ)
"
] Æ 1 + 1

H .

Proof. We prove the theorem inductively. First, consider the case that H = 1, i.e., the
decomposition tree T only contains a root r. Since xr = 1, there is no randomness in selecting
T

Õ. Thus, we have for any z Ø 1,

E
5
z

fi(TÕ)
GSú

6
= z

xr·fi(r)
GSú Æ z,

where the last inequality uses constraint (1) in (Tree-LP).

2 One can get a more accurate lower bound of the optimal solution (e.g., GSú Æ (1 + ‘) ·OPT for any
‘ > 0) by the standard binary search technique.
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Algorithm 2 Dependent Randomized Rounding.

Input: A tree structure T(V,E) rooted at r; a fractional solution xú œ [0, 1]|V|.
Output: A feasible subtree T

Õ.
1: Initially, set TÕ Ω ÿ and a vertex queue Q Ω {r}.
2: while Q ”= ÿ do

3: Use v to represent the front element of Q.
4: T

Õ Ω T
Õ fi {v}, Q Ω Q \ {v}.

5: if v is a parallel node then

6: Pick one node u œ child(v) randomly such that u is chosen with probability xu
xv

.
7: Q Ω Q fi {u}.
8: end if

9: if v is a series node then

10: for each u œ child(v) do
11: Q Ω Q fi {u}.
12: end for

13: end if

14: end while

15: return T
Õ.

To streamline the analysis, we continue considering the case that H = 2. We further
distinguish two subcases: (i) root r is a parallel node; (ii) root r is a series node. For the
first subcase, Algorithm 2 selects exactly one child v œ child(r) with probability xv/xr = xv.
According to the law of total expectation and only leaves in T have non-zero costs, we have

E
5
z

fi(TÕ)
GSú

6
=

ÿ

vœchild(r)
Pr[v œ T

Õ] · E
5
z

fi(�Õ(v))
GSú

----v œ T
Õ
6
,

where �Õ(v) := �(v) fl T
Õ. Observing that once conditioned on v œ T

Õ, the conclusion for
the H = 1 case can be used to bound the expectation, we have

E
5
z

fi(TÕ)
GSú

6
=

ÿ

vœchild(r)
Pr[v œ T

Õ] · E
5
z

fi(�Õ(v))
GSú

----v œ T
Õ
6
,

=
ÿ

vœchild(r)
xv · z

fi(v)
GSú

Æ
ÿ

vœchild(r)
xv ·

3
1 + (z ≠ 1) · fi(v)GSú

4

(Constraint (1) and zr Æ 1 + r(z ≠ 1)’z > 0, r œ [0, 1])

=

Q

a
ÿ

vœchild(r)
xv

R

b + (z ≠ 1) ·
q

vœchild(r) xv · fi(v)
GSú

= 1 + (z ≠ 1) ·
q

vœ�(r) xv · fi(v)
GSú (Constraint (3))

Æ e(z≠1)·

q
vœ�(r)

xv·fi(v)

GSú . (1 + x Æ ex)
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For the second subcase, according to Constraint (4), we have xv = xr = 1 for each
xv œ child(r), and therefore,

E
5
z

fi(TÕ)
GSú

6
= E

C
z

q
vœchild(r)fi(�Õ(v))

GSú

D
Æ z

q
vœ�(r)

xv·fi(v)

GSú .

Since z Æ ez≠1, combing the two subcases, we have that when H = 2,

E
5
z

fi(TÕ)
GSú

6
Æ (e(z≠1))

q
vœ�(r)

xv·fi(v)

GSú .

The above inequality shows that as the height increases by 1, the upper bound of the
expectation grows exponentially. Furthermore, when the height increases from 1 to H, we
can obtain a sequence z1 = z, z2, . . . , zH , where zh = ezh≠1≠1 for each h > 1, and have

E
5
z

fi(TÕ)
GSú

6
Æ z

q
vœ�(r)

xv·fi(v)

GSú
h ,

for any T with height h by almost the same analysis as above. Due to Constraint (1), we
have

q
vœ�(r) xv · fi(v) Æ GSú, and thus, E

Ë
z

fi(TÕ)
GSú

È
is at most zh.

Finally, to obtain the claimed upper bound, we set z = 1 + 1

2H such that zh Æ 1 + 1

H ,
and complete the proof. J

I Lemma 7. Consider an arbitrary agent i, Algorithm 2 returns a feasible subtree T
Õ such

that fi(TÕ) Æ 4H · log k · GS with high probability, where H is the height of the decomposition
tree of the series-parallel graph and GS is a guess of the optimal objective value such that the
corresponding (Tree-LP) admits a feasible solution.

Lemma 7 can be proved by Lemma 6 and Markov bound. Theorem 1 can be proved by
Lemma 7 and union bound. All proofs are deferred to the full version of the paper.

3 Graphs with Bounded Treewidth

This section considers robust s-t path on graphs with bounded treewidth. We mainly show
the following theorem. Noting that any series-parallel graph has a treewidth of 2, this result
improves upon the above O(H log k) ratio for series-parallel graphs with large H.

I Theorem 8. Given any directed graph G with treewidth tw(G) Æ ¸, there is an algorithm
that returns a O(logn log k)-approximate solution in poly(n) · nO(¸2) time with probability
at least 1 ≠ ( 1k + 1

k logn ) for robust s-t path, where n is the number of vertices and k is the
number of agents.

3.1 Algorithmic Framework

The basic idea of the algorithm is to reduce our problem to the tree labeling problem which
was proposed by Dinitz et al. [13] very recently. In their paper, they provided a randomized
algorithm for the tree label problem. Applying the algorithm to our reduced instance can
obtain an s-t path whose expected cost with respect to each agent is bounded. Finally, we
employ the concentration inequalities to show that with high probability, the returned path
is a polylogarithmic approximation solution. To ensure the reduction’s correctness, we also
need to utilize some other tools. The complete description of our algorithm can be found in
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the full version of the paper. Due to space limitations, in the main body, we only focus on
the core of our algorithm – the reduction to tree labeling. Before introducing the reduction,
it is necessary to restate the definition of tree labeling and the result proved in [13].

The Tree-labeling Problem. Consider a binary tree T(V,E) rooted at r œ V. For each
node v œ V, there is a finite set Lv of labels for v. Let L :=

t
vœV Lv be the set of all

possible labels. The output is a label assignment L := (lv œ Lv)vœV of the node set V, that
satisfies the consistency and cost constraints.

(Consistency Constraints) For every internal node v of T with two children u and w

(u or w is possibly empty), we are given a set �(v) ™ Lu ◊ Lv ◊ Lw. A valid labeling
L = (lv œ Lv)vœV must satisfy (lu, lv, lw) œ �(v) for every internal node v.
(Cost Constraints) There are k additive cost functions f1, . . . , fk defined over the
labels, i.e., for each i œ [k], fi : L æ RØ0. For each i œ [k], a valid labeling L needs to
satisfy fi(L) :=

q
vœV fi(lv) Æ 1.

A label assignment L := (lv œ Lv)vœV is called consistent if it satisfies the consistency
constraints; it is valid if it satisfies both the consistency and cost constraints. Let H be the
height of T and let � := maxvœV|Lv| be the maximum size of any label set. Let n be the
number of nodes in T. In [13], they show the following result.

I Lemma 9 ([13]). Given a tree labeling instance such that the instance admits a valid label
assignment. There is a randomized algorithm that in time poly(n) ·�O(H) outputs a consistent
label assignment L such that for every i œ [k], we have E

#
exp

!
ln(1 + 1

2H ) · fi(L)
"$

Æ 1+ 1

H .

3.2 Reduction Intuition

In this section, we give some intuition of our reduction. The formal description and an
example can be found in the next section (Section 3.3). Given any directed graph with
bounded treewidth, we aim to construct a tree-labeling instance such that the solution to
the constructed tree-labeling instance can be converted into an s-t path of the original graph
with some cost-preserved property. Note that the treewidth decomposition T(V,E) of any
input graph G can be computed e�ciently [8]. We directly let the treewidth decomposition
T be the binary tree in the reduced tree-labeling instance. The following shows how to
construct the labels and the corresponding constraints such that a feasible label assignment
can be successfully transformed into an s-t path.

Label Construction. For a graph’s treewidth decomposition, each node v œ T corresponds
to a node subset X(v) of the original graph. Each edge in the original graph is guaranteed to
be covered by some X(v), which is the completeness property of a tree decomposition. Use
C(v) to denote the edges covered by node v œ T. Without loss of generality, we can assume
that s and t are included in any node v œ T and each edge is assigned to a unique C(v).
The label of a node v is a vector of |C(v)|+ |X(v)| · (|X(v)| ≠ 1) dimensions, where the first
|C(v)| dimensions correspond to the edges covered by it and the last |X(v)| · (|X(v)| ≠ 1)
dimensions correspond to all the vertex pairs in X(v). The intuition is the following. To
ensure that a feasible label assignment can be translated to an s-t path, we first need to
assign a “choosing indicator” to each edge to imply whether the edge is selected or not.
However, having the choosing indicators is not enough because we only know some edges
have been picked, but cannot determine whether s and t are connected. Thus, we introduce a
“connectivity indicator” for each vertex pair (a, b) in X(v) to indicate whether a is connected
to b by the selected edges covered in the subtree rooted at node v.
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Constraint Construction. The cost constraints are used to bound the total cost of the
selected edges. They can be obtained easily by letting the normalized cost of the edges
selected by each label assignment be the corresponding cost. For the consistency constraints,
the purpose of designing them is to ensure that s is connected to t, and the connectivity
indicators can truthfully reflect the connectivity of the subgraph formed by the selected
edges. To achieve the former requirement, we define that a label assignment is feasible only
if the connectivity indicator of (s, t) in the root r is 1; while for the latter requirement, the
constraint construction is still natural, but we note that proving such “local3” constraints are
able to capture the global connectivity is non-trivial. Consider an arbitrary node u and its
two children v,w. We can construct a subgraph where the vertex set is X(u)fiX(v)fiX(w).
Add an edge (a, b) in the subgraph if the connectivity indicator of (a, b) is 1 in one of the
two children or the choosing indicator of edge (a, b) in node u is 1. A label is feasible if the
connectivity indicator of node u is consistent with the connectivity in this subgraph. Note
that this subgraph may not contain all nodes that occur in the subtree rooted at u. Thus, to
prove the e�ciency of these constraints, we further need to show that there does not exist a
vertex pair in u that is connected by u’s subtree but not connected in the above subgraph.
We formally show this claim in the paper’s full version. The proof heavily relies on the
connectivity property of a tree decomposition. Briefly speaking, a graph’s tree decomposition
can guarantee that all nodes in the tree containing the same node in the original graph form
a connected subtree. This nice property allows us to show that the connectivity between
vertices can be continuously propagated between nodes in T.

3.3 Tree-labeling Instance Construction

Given an arbitrary node v œ V, we also use v to denote the vertices included in node v, i.e.,
v ™ V . Let Ev ™ E be the set of edges such that, for any edge (a, b) in Ev, node v is the
highest node that contains (a, b). Note that an edge (a, b) may be included in more than one
node in T but the highest node that includes (a, b) is unique. For any node v œ V, we have
two types of labels: choosing label and connectivity label. For each edge (a, b) (or e) in Ev,
the choosing label chng(a, b) = 1 or (or chng(e) = 1) indicates that the edge is chosen in
current label assignment; otherwise, the edge is not chosen. For each pair of vertices (p, q) in
v, the connectivity label conn(p, q) = 1 indicates that there is a P ™ E path from p to q such
that every edge in P is chosen in some nodes of the subtree rooted at node v; otherwise, p
and q are not connected. Note that conn(p, q) and conn(q, p) are two di�erent labels since G
is a directed graph. Let Lv be the set of all possible labels and lv œ Lv be a specific label of
node v. We remark that the size of Lv is related to the treewidth of G. Since the treewidth
of G is a constant, |Lv| is also constant. See the proof of Theorem 8 for details.

To ensure the feasibility of label assignments for obtaining an s-t path in T, arbitrarily
picking labels for each node is not a viable solution. Instead, we define a local constraint
that applies to every adjacent set of three nodes u,v,w in T, where u and w are the child
nodes of v. The purpose of this local constraint is to guarantee that all label assignments
are capable of producing an s-t path. For every node v and its two children u and w, let
CP(v) := Lu ◊Lv ◊Lw be the set of all possible label combinations of these three nodes, i.e.,
CP(v) is the Cartesian product of Lu, Lv, Lw. Note that u or w may not exist. In this case,
we refer to u or w as empty nodes and CP(v) is defined as the Lv ◊ Lw (or Lu ◊ Lv or Lv).

3 Consistency constraints in the tree-labeling problem are “local” constraints because the feasibility of a
node u’s label is only influenced by its child nodes.



S. Li, C. Xu, and R. Zhang 106:13

I Definition 10 (Feasible Label Assignment). A label assignment L := (lv)vœV is a feasible
label assignment if, for each v œ V and its two children u and w (u and w maybe empty
nodes), lv œ CP(v) satisfies the following three constraints:
(C1) (Choosing Constraints) For each edge (a, b) œ Ev, if (a, b) is chosen, then a and b

are connected and vice versa. Namely, chng(a, b) = 1 if and only if conn(a, b) = 1.
(C2) (Connectivity Constraints) For each vertex pair (p, q) in v, vertex p and vertex q

are connected (i.e. conn(p, q) = 1) if and only if the following statement is true: there
is a vertex sequence (p, v1, . . . , vd, q) such that every two adjacent vertices (a, b) in the
sequence are connected in some nodes in u,v,w, i.e., conn(a, b) = 1 in some nodes in
u,v,w for each pair of adjacent vertices.

(C3) (Feasibility Constraints) If v is the root of T, then the source s and sink t are
connected, i.e., conn(s, t) = 1 must be true in the root.

Given a feasible label assignment L, an edge (p, q) œ E is chosen by L if (p, q)’s choosing
label is 1 in L. (C1) defines the connectivity of each edge in E. If an edge (a, b) is chosen by
a label assignment, then vertex a and b are connected. (C2) is the most important constraint
which defines the connectivity of each pair of vertices in v. In the case where v is a leaf
node, u and w would be empty nodes and thus this constraint is equivalent to (C1). In the
case where v is not a leaf node, an arbitrary vertices pair (a, b) in v are connected if the
connected segments in u,v,w can be merged into a path from a to b. In Lemma 11, we show
that such a local constraint is su�cient to describe the connectivity of vertex a and b in the
subtree rooted at v. (C3) ensures that a feasible label assignment must contain an s-t path,
i.e., source s and sink t are connected.

Consider an arbitrary feasible label assignment L, then L has the following crucial
property (Lemma 11) by our definition. We shall use this property later to show that any
feasible label assignment can be converted into an s-t path of the original graph. It is worth
noting that an s-t path corresponds to a unique feasible label assignment, but a feasible label
assignment may contain multiple s-t paths. An example is shown in Figure 2.

I Lemma 11. Given an arbitrary feasible label assignment L := (lv)vœV, consider an
arbitrary node v œ V. For any vertices pair (p, q) in v, there is a path P ™ E from p to q
such that every edge in P is chosen in some nodes in the subtree rooted at v if and only if
(a, b) has a connectivity label of 1 in v.

To complete the instance construction, we also need to define an appropriate label cost
function for each node in T. It shall be used to connect the cost of our problem to the
tree-labeling problem. This part, together with the proofs of Lemma 11 and Theorem 8, are
deferred to the paper’s full version.

4 General Graphs

We shall follow the same algorithmic framework stated in Section 2 and show the following
result (Theorem 12). Namely, we first construct a tree structure and set up a linear program
based on the tree. Then, we employ the same rounding algorithm (Algorithm 2) to obtain a
feasible subtree and convert it back to an s-t path in the original graph. The following states
some intuition to construct such a tree. We defer the formal descriptions of the construction,
the LP formulation, the algorithm, and the analysis to the full version of the paper.

I Theorem 12. Given any directed graph G, there is an algorithm that returns a
O(logn log k)-approximate solution in poly(n) · nO(logn) time with probability at least
1 ≠ ( 1k + 1

k logn ) for robust s-t path, where n is the number of vertices and k is the number of
agents.
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sdet (d, e) (d, e), (d, t), (e, t)
scdt (c, t) (s, d), (c, t)
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sbdt (s, b), (b, d) (s, b), (b, d)
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{(e, h), (h, t)} {(s, b), (b, d)} {(s, a), (a, d)} (iv)

(v)
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Figure 2 An example of the reduction. The subfigure (i) is the given directed graph. Then, we
compute a tree decomposition with the logarithmic depth and add s and t to all nodes, which is
shown in subfigure (ii). The edge set next to each node in subfigure (ii) is its corresponding Ev. For
example, the edge set Er for root node r is { (d, f), (f, t) } since r is the highest node that contains
edge (d, f) and (f, t). Subfigure (iii) is an s-t path of the given directed graph and subfigure (iv) is
the corresponding label assignment of the s-t path in (iii) in which we only list these labels with the
value of 1. The complete label of each node is obtained by merging these single labels, e.g., for the
root r, lr consists of 14 bits (2 choosing labels and 12 connectivity labels). In these 14 bits, only
conn(s, d), conn(s, t), conn(d, t) has a value of 1 and all the remaining 11 labels have a value of 0.
Subfigure (v) shows another example and subfigure (vi) is its corresponding label assignment.

In Section 2, we use a tree-based linear program to break through the �(k) and �(
Ô
n)

integrality gap of the flow LP. However, on general graphs, we no longer have such a natural
tree structure as in series-parallel graphs.To still obtain a polylogarithmic approximation,
we construct a decision-tree-type metatree that maps every s-t path in the graph to a
corresponding subtree in the metatree.

Metatree Construction Intuition. The basic idea of the meta tree construction is to
iteratively guess the possible middle vertex of an s-t path. There are at most n possibilities
for this middle vertex. Once we determine the middle vertex of the s-t path, say it is a, the
whole path can be partitioned into two subpaths – path s-a and path a-t. We then recur
on the obtained subpaths till level O(logn); the su�ciency of O(logn)’s levels will be clear
later. This process gives us a natural tree structure T with O(logn) depth. We define two
types of nodes in T. The first node type is referred to as splitting node. Each splitting node
corresponds to a (sub-)path. It has n children, where each child represents a choice of the
(sub-)path’s middle vertex. The algorithm needs to ensure that only one of these children
can be selected. The second node type is called merging node. A merging node has to be a
child of a splitting node in T and represents a scheme for selecting a middle vertex. Further,
a merging node has two splitting nodes as its children, corresponding to the two obtained
subpaths by this scheme. We can view such a node as being used to merge its two children
(subpaths). The algorithm needs to ensure that both children are selected simultaneously.
See the paper’s full version for more details of the construction.

As one may observe, a splitting (resp. merging) node in our metatree plays the same role
as a parallel (resp. series) node in the decomposition tree of the series-parallel graph. Thus,
the LP for the general graph is similar to (Tree-LP) and we can still use the same rounding
algorithm. Consider an s-t path P of length n. If we write P in the form of a binary tree by
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s-t

s-s-t s-t-ts-a-t

s-s s-t s-a a-t s-t t-t

s-as-s a-t t-ts-s s-s s-s s-t t-t t-tt-ts-t

T1

T2

T3

s t

a

1 1

3

G

Figure 3 An example for the metatree T construction. The given directed graph G is shown
in the up-left corner. Since there are three vertices in G, T will consist of five levels because the
height of T is 2ÁlognË + 1. The dashed subtree T1 corresponds to the path s æ t of G. The dotted
subtree T2 represents the path s æ a æ t of G. The dash-dotted subtree T3 also corresponds to
the path s æ t.

guessing the middle vertex of each subpath, it will have at most ÁlognË levels. Thus, we can
let the recursive tree T terminate at level O(logn), and therefore, its size is quasi-polynomial
O(nlogn) since each node has at most n children. From Section 2, we know that the rounding
algorithm is able to find a O(H log k)-approximate solution where H is the height of the tree.
This also provides the intuition for the approximation ratio O(logn log k) since the height of
T is O(logn) (specifically, H = 2ÁlognË + 1).

We now define a feasible subtree for T. Recalling the feasible subtrees (Definition 3) on
series-parallel graphs, unfortunately, we cannot use the same definition for general graphs.
This is because not all leaf nodes in the constructed tree T correspond to edges in G. We
refer to a subtree that satisfies three conditions in Definition 3 as a consistent subtree. To
ensure that the subtree can be translated to an s-t path, one more condition is needed.

I Definition 13 (Feasible Subtree for General Graphs). A subtree T
Õ ™ T is called feasible if

and only if (i) T
Õ is consistent; (ii) each leaf node corresponds to either an edge or a single

vertex in G.

An example can be found in Figure 3. As one might be concerned, using a di�erent
definition of the feasible subtree may require a di�erent LP formulation for general graphs,
since a natural adaptation of (Tree-LP) can only find a consistent subtree. This issue can
be fixed easily by directly disabling the infeasible leaf nodes in the linear program. See the
paper’s full version for more details of the LP formulation.

5 Conclusion

This paper considers the robust s-t path problem and proposes polylogarithmic approximation
algorithms on di�erent graph classes. For graphs with bounded treewidth, we obtain a
O(logn log k)-approximate polynomial algorithm which partially answers the open question
in [23]. For general graphs, we prove that there is a quasipolynomial algorithm that is
O(logn log k)-approximate which leaves a logarithmic gap. Our approaches are based on a
novel linear program that enables us to get rid of the �(k) and �(

Ô
n) integrality gap from

the natural linear program. We also investigate the robustness of the s-t path, weighted
independent set, and spanning tree under the maximin criteria and show some hardness
results.

ICALP 2024
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There leave several future works. Closing the gap for robust s-t path still remains open.
It is thus interesting to investigate whether there exists a better approximation upper bound
or a tighter lower bound. We can also look at other robust optimization problems, e.g.,
the robust perfect matching problem. The best approximation known to date for robust
matching is still O(k) which can be achieved by a trivial algorithm. Since there exists a
strong connection between s-t path and min-cost perfect matching, it would be intriguing to
explore whether our methods can be applied to improving the upper bound of the robust
matching problem.

References

1 Jacob D. Abernethy, Pranjal Awasthi, Matthaus Kleindessner, Jamie Morgenstern, Chris
Russell, and Jie Zhang. Active sampling for min-max fairness. In ICML, volume 162 of
Proceedings of Machine Learning Research, pages 53–65. PMLR, 2022.

2 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approximation of min-max and
min-max regret versions of some combinatorial optimization problems. Eur. J. Oper. Res.,
179(2):281–290, 2007.

3 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Min–max and min–max regret
versions of combinatorial optimization problems: A survey. European journal of operational
research, 197(2):427–438, 2009.

4 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. General approximation schemes for
min-max (regret) versions of some (pseudo-)polynomial problems. Discret. Optim., 7(3):136–
148, 2010.

5 Yang An and Rui Gao. Generalization bounds for (wasserstein) robust optimization. In
NeurIPS, pages 10382–10392, 2021.

6 Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization, volume 28
of Princeton Series in Applied Mathematics. Princeton University Press, 2009.

7 Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, Michele Flammini, and Gianpiero Monaco.
Simple greedy algorithms for fundamental multidimensional graph problems. In ICALP,
volume 80 of LIPIcs, pages 125:1–125:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

8 Hans L. Bodlaender. Nc-algorithms for graphs with small treewidth. In WG, volume 344 of
Lecture Notes in Computer Science, pages 1–10. Springer, 1988.

9 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In FOCS, pages 575–584. IEEE Computer
Society, 2010.

10 Qingyun Chen, Sungjin Im, Benjamin Moseley, Chenyang Xu, and Ruilong Zhang. Min-max
submodular ranking for multiple agents. AAAI 2023, to appear, 2023.

11 Altannar Chinchuluun and Panos M. Pardalos. A survey of recent developments in multiob-
jective optimization. Ann. Oper. Res., 154(1):29–50, 2007.

12 Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In EC,
pages 629–646. ACM, 2017.

13 Michael Dinitz, Guy Kortsarz, and Shi Li. Degrees and network design: New problems and
approximations. CoRR, abs/2302.11475, 2023. arXiv:2302.11475.

14 Daniel Duque, Leonardo Lozano, and Andrés L. Medaglia. An exact method for the biobjective
shortest path problem for large-scale road networks. Eur. J. Oper. Res., 242(3):788–797, 2015.

15 Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005.
16 Brandon Fain, Kamesh Munagala, and Nisarg Shah. Fair allocation of indivisible public goods.

In EC, pages 575–592. ACM, 2018.
17 Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances in robust optimization:

An overview. Eur. J. Oper. Res., 235(3):471–483, 2014.

https://arxiv.org/abs/2302.11475


S. Li, C. Xu, and R. Zhang 106:17

18 Yu Gang and Yang Jian. On the robust shortest path problem. Comput. Oper. Res., 25(6):457–
468, 1998.

19 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-approximation
algorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In STOC, pages
253–264. ACM, 2019.

20 Adam Kasperski and Pawel Zielinski. On the approximability of minmax (regret) network
optimization problems. Inf. Process. Lett., 109(5):262–266, 2009.

21 Adam Kasperski and Pawel Zielinski. On the approximability of robust spanning tree problems.
Theor. Comput. Sci., 412(4-5):365–374, 2011.

22 Adam Kasperski and Pawe≥ ZieliÒski. Robust discrete optimization under discrete and interval
uncertainty: A survey. Robustness analysis in decision aiding, optimization, and analytics,
pages 113–143, 2016.

23 Adam Kasperski and Pawel Zielinski. Approximating some network problems with scenarios.
CoRR, abs/1806.08936, 2018. arXiv:1806.08936.

24 Ana Klobucar and Robert Manger. Solving robust weighted independent set problems on
trees and under interval uncertainty. Symmetry, 13(12):2259, 2021.

25 Shi Li, Chenyang Xu, and Ruilong Zhang. Polylogarithmic approximation for robust s-t path.
CoRR, abs/2305.16439, 2023. arXiv:2305.16439.

26 Xian Li and Hongyu Gong. Robust optimization for multilingual translation with imbalanced
data. In NeurIPS, pages 25086–25099, 2021.

27 Natalia Martínez, Martín Bertrán, and Guillermo Sapiro. Minimax pareto fairness: A multi
objective perspective. In ICML, volume 119 of Proceedings of Machine Learning Research,
pages 6755–6764. PMLR, 2020.

28 Fabrice Talla Nobibon and Roel Leus. Robust maximum weighted independent-set problems
on interval graphs. Optim. Lett., 8(1):227–235, 2014.

29 Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of trade-o�s and
optimal access of web sources. In FOCS, pages 86–92. IEEE Computer Society, 2000.

30 Bozidar Radunovic and Jean-Yves Le Boudec. A unified framework for max-min and min-max
fairness with applications. IEEE/ACM Trans. Netw., 15(5):1073–1083, 2007.

31 Antonio Sedeño-Noda and Marcos Colebrook. A biobjective dijkstra algorithm. Eur. J. Oper.
Res., 276(1):106–118, 2019.

32 Paolo Serafini. Some considerations about computational complexity for multi objective com-
binatorial problems. In Recent Advances and Historical Development of Vector Optimization:
Proceedings of an International Conference on Vector Optimization, pages 222–232. Springer,
1987.

33 Jacobo Valdes, Robert Endre Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. SIAM J. Comput., 11(2):298–313, 1982.

ICALP 2024

https://arxiv.org/abs/1806.08936
https://arxiv.org/abs/2305.16439




Improved Lower Bounds for Approximating
Parameterized Nearest Codeword and Related
Problems Under ETH
Shuangle Li �

State Key Laboratory for Novel Software Technology, Nanjing University, China

Bingkai Lin �

State Key Laboratory for Novel Software Technology, Nanjing University, China

Yuwei Liu �

BASICS, Shanghai Jiao Tong University, China

Abstract
In this paper we present a new gap-creating randomized self-reduction for the parameterized
Maximum Likelihood Decoding problem over Fp (k-MLDp). The reduction takes a k-MLDp instance
with k · n d-dimensional vectors as input, runs in O(d2O(k)

n
1.01) time for some computable function

f , outputs a (3/2 ≠ Á)-Gap-k
Õ
-MLDp instance for any Á > 0, where k

Õ = O(k2 log k). Using
this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no
algorithms can approximate k-MLDp (and therefore its dual problem k-NCPp) within factor (3/2≠Á)
in f(k) · no(

Ô
k/ log k) time for any Á > 0.

We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to
amplify the (3/2 ≠ Á)-gap to any constant. As a result, we show that assuming ETH, no algorithms
can approximate k-NCPp and k-MDPp within “-factor in f(k) · no(kÁ“ ) time for some constant
Á“ > 0. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and
Ribeiro (STOC 2023), we also obtain similar lower bounds for k-MDPp, k-CVPp and k-SVPp.

These results improve upon the previous f(k) ·n�(poly log k) lower bounds for these problems under
ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).
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1 Introduction

The study of linear error correcting codes has drawn attention to two dual fundamental
computational problems called Nearest Codeword Problem (NCP) and Maximum

Likelihood Decoding (MLD). Given a matrix A œ Fm◊n
p

and a vector t̨ œ Fm
p
, the

Nearest Codeword Problem (NCP) asks for a vector x̨ œ Fn
p
such that ||Ax̨ ≠ t̨||0 is

minimized. Here || · ||0 denotes the Hamming weight. While in the Maximum Likelihood

Decoding (MLD), we are given a matrix A œ Fm◊n
p

and a vector t̨ œ Fm
p
, the goal is to

minimize ||x̨||0 subject to Ax̨ = t̨. Another fundamental problem related to a linear code is
the homogeneous version of NCP, known as Minimum Distance Problem (MDP), where
the task is to find a non-zero vector x̨ such that ||Ax̨||0 is minimized.
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The computational complexity of MLD,NCP andMDP has been studied with great e�ort
throughout the past several decades. It is known that MLD, NCP and MDP are not only NP-
hard [12,48], but also NP-hard to approximate within any constant ratio [6, 7, 18,22,42,47].
Moreover, the variant of MLD that allows the code being preprocessed by unbounded
computational resource is also NP-hard to approximate within a factor of (3 ≠ Á) [24, 44].
Also it is proven that assuming NP ”™ DTIME(npoly(logn)), no polynomial time algorithm
can approximate NCP up to 2log1≠‘

n factor for any ‘ > 0 [6, 43] and no polynomial time
algorithm can approximate MDP up to 2log1≠‘

n for any ‘ > 0 [7, 18, 22, 42]. For some
specific codes, MLD is also shown to be NP-hard, e.g. product code [8], Reed-Solomon
code [28], algebraic geometry code [17]. On the algorithmic side, it is known that NCP can
be approximate to O(n/ logn) in polynomial time [5].

The lattice version of NCP and MDP are known as Closest Vector Problem (CVP)

and Shortest Vector Problem (SVP). In these problems, a lattice L is given instead of
a linear code. For CVP a target t̨ is additionally given and the goal is to find a vector v̨ œ L
such that ||v̨ ≠ t̨||p is minimized, where || · ||p denotes the ¸p-norm. And for SVP the goal
is to find a non-zero vector v̨ œ L with minimum ¸p norm. The study for CVP and SVP

also has long history [4,6,20,25,29,33,40–42,47]. For CVP, it is NP-hard to approximate
within factor nc/ log logn for some constant c > 0 [20]. As for SVP, it was shown that
no polynomial time algorithm can approximate SVP within any constant factor assuming
NP ”™ RP [33], and no polynomial time algorithm can approximate SVP up to 2log1≠‘

n

factor assuming NP ”™ RTIME(npoly(logn)) [29]. Lattice problems have many applications in
cryptography [45, 46]. Due to their importance, lattice problems are also extensively studied
in the fine-grained complexity area, see, e.g., [1–3,11] and a very recent survey by Bennett [9]
for more details on hardness of SVP.

Over the past three decades, parameterized complexity, a new framework to address
NP-hard problems, has been rapidly developed and drawing growing attention. The study
in the field of parameterized complexity focuses on whether a problem can be solved in
f(k) · nO(1) time (FPT time), where k is a parameter given along with the instance. In
the parameterized version of k-MLD, k-NCP, k-MDP, k-CVP and k-SVP, an integer
k is additionally given and the task is to decide whether the optimal value is no greater
than k. Downey, Fellows, Vardy and Whittle [21] showed that k-MLD (and therefore
k-NCP) is W[1]-hard and belongs to W[2]. They asked if k-CVP and k-SVP (in ¸2 norm)
is W[1]-hard. 20 years later in recent breakthroughs [10, 13], the parameterized intractability
of k-NCP, k-MDP, k-CVP and k-SVP are settled. Notably they ruled out not only exact
FPT algorithms, but also FPT approximation algorithms as well. Specifically, [13] first
presented a gap-creating reduction for k-NCP and then showed gap-preserving reductions
from k-NCP towards k-MDP, k-CVP and k-SVP. Soon afterwards, Bennett, Cheraghchi,
Guruswami and Ribeiro [10] improved the gap-preserving reductions for more general cases
(general fields and general ¸p norm). These two works jointly showed that it is W[1]-hard to
approximate k-NCP and k-MDP within any constant factor over any finite field Fp, and
it is W[1]-hard to approximate k-CVP in the ¸p norm within any constant factor for any
p Ø 1. And they showed hardness for k-SVP to approximate within any constant factor in
the ¸p norm for any p > 1, and some constant approaching 2 for p = 1 .

After obtaining FPT-inapproximability results, it is natural to study fine-grained time
lower bounds for parameterized approximability of these problems. Assuming Gap-ETH
[19,39], Manurangsi [38] showed that no f(k) · no(k) time algorithm can approximate k-NCP

and k-CVP to any constant factor. With the gap-preserving reduction in [10], one can
further show that no f(k) · no(k) time algorithm can approximate k-MDP and k-SVP to
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any constant under the randomized Gap-ETH. All these results are based on an assumption
with a gap. This raises the following open question:
(1) Can we establish similar lower bounds for these problems under the weaker and gap-free

assumption of ETH?
We note that the gap-preserving reduction in [10] from Gap-k-NCP (Gap-k-CVP) to
Gap-kÕ

-MDP (Gap-kÕ
-SVP) has kÕ = O(k). So, it su�ces to prove constant Gap-k-NCP

(Gap-k-CVP) has no f(k) · no(k)-time algorithm assuming ETH [30]. Unfortunately, the
gap-creating reduction in [13] causes an exponential growth of the parameter and only gives
an �(n(log k)

1/(2+‘))-time lower bound for constant Gap-k-NCP under ETH (See the analysis
in Section 1.3). Therefore, finding better reductions for Gap-k-NCP and Gap-k-CVP is
the crux of improving lower bounds for Gap-k-MDP and Gap-k-SVP.

1.1 Our Contributions
We take a step forward on closing the gap between results under gap-free assumption (ETH)
and gap assumption (Gap-ETH). Our main result is a new direct gap-creating self reduction
for k-MLD, which is the dual problem of k-NCP, with polynomial growth of the parameter.

I Theorem 1 (informal; See Theorem 20 for a formal statement). For any constant 1 < “ < 3

2

and prime power p > 1, there is a reduction runs in Ok(nO(1)) that on input a k-MLDp

instance (V, t̨), output a Gap-kÕ-MLDp instance (V Õ, t̨Õ) satisfies:
(Completeness) If there exists k vectors in V with their sum 1 being t̨, then there exists
kÕ vectors in V Õ with their sum being t̨Õ.
(Soundness) If for any set S ™ V with size at most k, t̨ /œ Span(S), then for any set
SÕ ™ V Õ with size at most “kÕ, t̨Õ /œ Span(SÕ).
Polynomial parameter growth kÕ = O(k2 log k). (And kÕ = O(k3) if not allowing random-
ness).

Combining this gap-creating reduction with the f(k)n�(k)-time ETH lower bound for k-MLD

in [36, Theorem 11], we obtain improved lower bounds for Gap-k-NCP assuming ETH and
randomized ETH.

I Corollary 2. Assuming randomized ETH, for any prime power p > 1 and real number
“ œ (1, 3

2
), no f(k)no(

Ô
k/ log k) time algorithm can solve “-Gap-k-NCPp.

I Corollary 3. Assuming ETH, for any prime power p > 1 and real number “ œ (1, 3

2
), no

f(k)no(k
1/3

) time algorithm can solve “-Gap-k-NCPp.

By applying the gap amplification procedure in [14] (“ æ �(“2), k æ O(k2), see Theorem
22 for a formal statement) su�ciently many (but still constant) times, we obtain a reduction
for Gap-k-MLD with any constant gap with still polynomial growth of parameter. Therefore
we obtain the following improved ETH lower bound for k-NCP.

I Corollary 4. Assuming ETH, for any prime power p > 1 and real number “ > 1, no
f(k)no(k

‘
) time algorithm can solve “-Gap-k-NCPp where ‘ = 1

polylog(“) is a constant.

Combining our results of Gap-k-NCPp with the gap-preserving reductions in [13] and [10],
we obtain improved ETH lower bounds for constant approximating k-NCP, k-CVP, k-MDP

and k-SVP. The summarize of corollaries are present in Table 1.

1 The definition of k-MLD used in our proof is a slightly di�erent variant, where the vectors directly sum
to the target in the YES case, but they are essentially equivalent, see Section 2.3 for more details.
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Table 1 The f(k)n�(k‘)-time lower bound for k-NCP and k-CVP are based on ETH. The other
lower bounds are based on randomized ETH.

Summarize of Corollaries

Problem Inapprox Factor Lower Bound Dependency Specification

k-NCP any “ œ (1, 3
2 ) f(k)n�(

Ô
k/ log k) any finite field Fp

k-NCP any “ > 1 f(k)n�(k‘)
‘ = 1

polylog(“) any finite field Fp

k-MDP any “ > 1 f(k)n�(k‘)
‘ = 1

p log “·polylog(p) any finite field Fp

k-CVP any “ > 1 f(k)n�(k‘)
‘ = �( 1

polylog(“) ) in any ¸p norm, p Ø 1

k-SVP any “ > 1 f(k)n�(k‘)
‘ = ‘(p, “)2 in any ¸p norm, p > 1

k-SVP any “ œ [1, 2) f(k)n�(k‘)
‘ = ‘(p, “)3 in any ¸p norm, p Ø 1

1.2 Technical Overview of Gap Creation Step
We implicitly use the threshold graph composition method [15, 34, 35, 37] to construct
a (3/2 ≠ Á)-gap producing reduction for the k-MLD problem. This technique was first
introduced in [34] to prove the W[1]-hardness of k-Biclique problem. A threshold graph is a
bipartite graph that has a “threshold property”, meaning that there is a significant gap in the
number of common neighbors between any k vertices and any k + 1 vertices on the left side.
Threshold graph and its variants have been widely used to show hardness of approximation
for various parameterized problems, such as k-DominatingSet [16], k-SetCover [32, 35],
k-SetIntersection [15] or to create gap for subsequent reductions, e.g. [13].

Let fi̇ denotes for union set of multiple disjoint sets. In this paper, we implicitly use
the strong threshold graphs in [37], which are bipartite graphs T = (Afi̇B,ET ) with the
following properties:
(i) A = A1fi̇A2fi̇ · · · fi̇Ak.
(ii) B = B1fi̇B2fi̇ · · · fi̇Bm.
(iii) For any a1 œ A1, . . . , ak œ Ak and i œ [m], a1, . . . , ak have a common neighbor in Bi.
(iv) For any X ™ A and I ™ [m] with |I| Ø Ám, if for every i œ I, there exists bi œ Bi has

k + 1 neighbors in X, then |X| > h.
These strong threshold graphs are constructed from error-correcting codes with large relative
distance (1 ≠ o(1)), and such “threshold” properties essentially come from the following
intuition of ECC: If there is a collection of codewords (X), and a constant fraction of entries
of these codewords (I ™ [m], |I| Ø Ám) such that, for each entry (i œ I), there exists two
distinct codewords in the collection having same content in it. Then, the collection must have
huge size (at least h). To characterize the aforementioned property, previous works [32,37]
introduced the definition of (Á-)Collision Number of an error-correcting code C, ColÁ(C),
which is the minimum size of X mentioned above.

Diving into coding-based threshold graph. Our construction deeply relies on the collision
number of an ECC, so we only use threshold graph as an intuitive illustration for readers,
and we directly use the error-correcting codes in our formal analysis.

Below we illustrate the idea of our reduction. For simplicity, here we consider k-MLD
problem on d-length vectors over binary field. Given k vectors sets V1, . . . , Vk ™ Fd

2
, a target

vector t̨ and a strong threshold graph T = (Afi̇B,ET ), we first identify Vi with Ai for every
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i œ [k]. Our goal is to construct a one-to-one mapping f : A fi B æ FD
2

and a new target
vector t̨Õ œ FD

2
for some D = poly(d, k) such that in order to pick vectors from f(A fi B)4

with their sum being t̨Õ, one has to pick a set f(X) of vectors from f(A) for some X ™ A
with

q
ąœX

ą = t̨ and a set f(Y ) of vectors from f(B) for some Y ™ B such that for every
i œ [m],
(a) either |Y fl Bi| Ø 2,
(b) or |Y fl Bi| = 1 and there exists bi œ Bi with one of following properties:

(b.1) |X| = k and bi is the common neighbors of vertices in X.
(b.2) bi has at least k + 1 neighbors in X.

Then we argue that these properties imply a constant gap between the solution sizes in the
(YES) and (NO) cases of the k-MLD problem.
(YES) Suppose there are a1 œ A1, . . . , ak œ Ak such that

q
iœ[k]

ai = t̨. By the property
(iii) of threshold graphs, a1, . . . , ak have a common neighbor bi œ Bi for every i œ [m].
Then according to (b), the sum of f(a1), . . . , f(ak) and f(b1), . . . , f(bm) is t̨Õ.

(NO) On the other hand, if there are no a1 œ A1, . . . , ak œ Ak such that
q

iœ[k]
ai = t̨, then

one should pick either at least (1 ≠ Á)2m vectors from f(B) and k + 1 vectors from f(A),
or pick a subset of vectors f(X) from f(A) and a subset of vectors f(Y ) from f(B) for
some Y ™ B with |{i œ [m] : |Y fl Bi| = 1}| Ø Ám. Let I = {i œ [m] : |Y fl Bi| = 1}.
According to the property (b.2), each vertex in Y fl Bi (i œ I) has k + 1 neighbors in X.
Since |I| Ø Ám, by the property (iv) of threshold graphs, we have that |X| > h. Thus,
either (1 ≠ Á)2m vectors in f(B) and k + 1 vectors in f(A) or m vectors in f(B) and h
vectors in f(A) must be picked in this case.

To obtain a constant gap, we duplicate each vector in f(A) m/k times and let h = ck where
c is some constant to be chosen. In the (yes) case, there are 2m vectors with their sum being
t̨Õ. In the (no) case, no min{2(1≠ Á)m+m,m+ cm} vectors from f(AfiB) can have sum t̨Õ.

The proof framework above has two problems to be solved.
(P1) How to combine the threshold graph and the k-MLD instance to produce vectors

f(A fi B) with the properties (a) and (b)?
(P2) The smaller parameter blow-up we create in reduction, the tighter running time lower

bound we obtain. So how to construct a threshold graph with h > ck and m as small as
possible?

Our approach to solve Problem (P1). Problem (P1) is related to the composition step in
the threshold graph composition method. For the k-SetCover problem, we can use the
hypercube partition system [23] to solve this problem. Unfortunately, this does not apply
to the k-MLD problem. To solve problem (P1), we exploit an additional property from the
construction of strong threshold graph using error correcting codes. More precisely, we can
assume that there is a encoding function C : A æ �m and each bi œ Bi can be written as
a k-tuple in (bi,1, . . . , bi,k) œ �k such that bi is adjacent to aj œ Aj in the threshold graph
if and only if bi,j = C(aj)[i]. Informally speaking, we choose the target vector t̨Õ and the
one-to-one mapping f : A fi B æ FD

2
such that any subset of vectors in f(A fi B) summing

up to t̨Õ must contains, for each i œ [m], at least one vector f(bi) for some bi œ Bi. And
if it contains exactly only one such vector f(bi), then one need to pick at least k vectors
f(a1) œ f(A1), . . . , f(ak) œ f(Ak) to cancel out the parts corresponding to bi,1, . . . , bi,k in the
vector f(bi). A careful analysis shows that this construction has the properties (a) and (b).

4 Here we let f(X) denote the set {f(x) : x œ X}.
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Our approach to solve Problem (P2). The construction of strong threshold graph in [37]
was based on the idea of Karthik and Navon [32]. Karthik and Navon [32] observed that
the “collision number” of an error-correcting code can be directly used to show the threshold
property. Intuitively speaking, a set C of strings with high Á-collision number indicates that
if there is some mechanism forces us to choose some strings in C that collides on at least Á
fraction of entries, then we must choose at least ColÁ(C) strings.

Known analysis of collision number in [10,32] starts from the distance of an error-correcting
code. For a code with relative distance ”, previous analysis shows that its Á-collision number
is ColÁ(C) =

Ò
2Á

1≠”
. Note that ” = 1 ≠ �( r

m
) for Reed-Solomon codes used in the previous

works. To obtain a gap, we require ColÁ(C) Ø �(k), which leads to m = �(k2)r. In our
reduction, we additionally require �r Ø n to fit the input size, which requires r Ø logn

log |�| , then
we have m Ø k2 logn/ log |�|. On the other hand, our reduction needs to enumerate every
k-tuples in �k, concerning the running time we require |�|k Æ nO(1). Putting all together,
we must have m Ø �(k3). In fact, we showed that the Singleton bound of codes implies such
construction must have parameter growth �(k3).

To obtain a better parameter, we find the analysis by Karthik and Navon [32, Section 3.1]
can be modified to show better lower bound for the Á-collision number of a random code.
Following their idea, we show a random code CR : �r æ �m with superconstant-sized
alphabet and m = �(|�|1/3 log |�|r) would have Á-collision number ColÁ(CR) Ø |�|1/3, with
high probability. Setting |�| = �(k3), we have ColÁ(C) Ø �(k). But now the parameter
m = �(|�|1/3 log |�|r) Ø k logn is too large. Our solution is to consider a new error correcting
code with small dimension by increasing the alphabet size and show that this new code
has the same collision number. More precisely, we partition the m bits into g blocks, each
containing m/g bits and treat the code words as strings in �Õg where �Õ = �m/g. Since
|�Õk| Æ nO(1), we have m/g Æ O( logn

k log |�| ) = O( logn

3k log k
). Thus, g Ø �(mk log k

logn
) Ø �(k2 log k).

This reduces the parameter growth from k3 to k2 log k, and the (randomized) ETH-based
running time lower bound can be improved to nO(

Ô
k/ log k). We hope to see whether some

better construction of threshold graph leads to better lower bound of problems we discuss.

1.3 Previous Work
The parameterized complexity of k-MDP had been open for many years. This problem
was first resolved by [13]. Interestingly, the reduction in [13] also ruled out constant FPT-
approximation algorithm for k-MDP over binary field. In addition, they also ruled out any
constant FPT-approximation algorithm for k-CVP in all ¸p norms. Recent work by Bennett,
Cheraghchi, Guruswami and Ribeiro [10] proved parameterized inapproximability for k-MDP

over all finite fields and k-SVP in all ¸p norms and arbitrary constant gap. These results are
all based on the W[1]-hardness of constant Gap-k-NCP or Gap-k-CVP in [13].

Unfortunately, the gap-creating reduction from k-Clique to constant Gap-kÕ
-NCP or

Gap-kÕ
-CVP in [13] has a long reduction chain and causes a significant increase in the

parameter. For example, the reduction from k-Clique to constant Gap-kÕ
-NCP contains

the following steps (the reduction for Gap-kÕ-CVP is similar):
The first step is to reduce k-Clique to the One-Sided Gap Biclique problem. In
this step, the reduction outputs a bipartite graph H = (L fi R,E) and three integers
s = k(k ≠ 1)/2, ¸ = (k + 1)! and h > ¸ on input a graph G and an integer k such that if
G contains a k-clique, then there are s vertices in L with h common neighbors. On the
other hand, if G contains no k-clique, then every s-vertex set of L has at most ¸ common
neighbors in R.
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The second step is to reduce the One-Sided Gap Biclique problem to Gap-kÕ
-Linear

Dependent Set problem (Gap-kÕ
-LDS)5. On input the bipartite graph H = (LfiR,E)

and three positive integers s, ¸, h œ N, the reduction outputs a set W of vectors and
an integer kÕ = hs such that, if H contains a Ks,h-subgraph, then there are kÕ vectors
in W that are linearly dependent. If every s-vertex set in L has at most ¸ common
neighbors, then any linearly dependent set of W must have size at least (h/¸)1/s. To
create a constant gap, one must choose a large parameter h such that (h/¸)1/s Ø “hs
for some “ > 1. Hence in [13], the authors have to set h = (k + 6)! · (“k2)k2 and
kÕ = hs Ø k�(k

2
) = 2�(k

2
log k).

The next step is to reduce the Gap-kÕ
-Linear Dependent Set problem (Gap-kÕ

-LDS)
to Gap-kÕÕ

-Maximum Likelihood Decoding problem (Gap-kÕÕ
-MLD)6. This reduction

preserves the parameter i.e., kÕÕ = k.
The remaining step gives a reduction from constant Gap-kÕÕ

-MLD to constant Gap-kÕÕ
-

NCP.
Combining this with the f(k) · n�(k)-time lower bound for the k-Clique problem, we only
get a g(k) · n�((log k)

1/(2+‘)
)-time lower bound for Gap-k-NCP using the reduction from [13].

Under a stronger gap assumption (Gap-ETH), Manurangsi [38] showed a tight n�(k) time
lower bound for constant approximating problems discussed in this article. His approach is
to show an n�(k) time lower bound for constant approximating LaberCover, then reduce it
to k-UniqueSetCover, then reduce k-UniqueSetCover to gap problems we discuss using
reduction in [6]. The key step in his proof is to establish hardness result for approximating
k-UniqueSetCover. To our best knowledge, there is no hardness of approximation result
for the parameterized k-UniqueSetCover under gap-free assumptions, e.g. ETH and
W[1] ”= FPT.

Very recently, Guruswami, Ren and Sandeep [26] showed constant FPT-inapproximability
of k-UniqueSetCover under the assumption that Average Baby PIH holds even for 2CSP

instance having rectangular relations. It’s interesting whether their result and method can
shed some light on showing ETH-based n�(k) time lower bound for k-UniqueSetCover.
We remark that the ETH-based n�(k) time lower bound for constant approximating k-
UniqueSetCover is still an open problem, and so does its FPT-inapproximability assuming
W[1] ”= FPT.

1.4 Paper Organization
In Section 2, we give preliminary of this paper. In Section 3, we give a new analysis on
collision number of random code, this section can be skipped if readers wants to see the
reduction directly. In Section 4, we present our gap-creating reduction for k-MLDp. In
Section 5, we show how to apply our reduction to other results and show inapproximability
of other problems. For self-containment, we give a proof of equivalence between k-MLDp

and k-NCPp in Appendix A of our full version.

2 Preliminaries

For integerm > 0, let [m] = {1, 2, · · · ,m}. For prime power p > 1, we let Fp = {0, 1 · · · , p≠1}
denote the p-sized finite field. We denote F+

p
as Fp\{0}. For a vector v̨ œ �m and i œ [m], let

v̨[i] œ � denote the i-th entry of v̨. For two vectors ų, v̨, let ų ¶ v̨ denote their concatenation.

5 In fact, the reduction in [13] from One-Sided Gap Biclique to Gap-k-LDS goes though an intermediate
problem called gap bipartite subgraph with minimum degree (GapBSMD).

6 Again, they introduced a color-coding technique to Gap-k-LDS (Gap-k-Colored-LDS) and used it
as an intermediate problem between Gap-k-LDS and Gap-k-MLD, for details see [13, Lemma 4.8,
Theorem 5.4].
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The symbol fi̇ denotes for the union set of multiple disjoint sets. As a supplement of big-O
notation, we let f(k, n) = Ok(g(n)) denote there exists constant c > 0 and computable
function h : N æ N such that for any fixed k > 0, f(k, n) < c · h(k)g(n) holds for all
su�ciently large n.

For alphabet � and vector ų, v̨ œ �m, the relative distance of them is defined as dist(ų, v̨) =
|{iœ[m]:ų[i] ”=v̨[i]}|

m
. In this article, we sometimes use “distance” as shorthand of relative distance.

For vector v̨ œ Zm and p Ø 1, let the ¸p norm of v̨ be ¸p(v̨) = (�1ÆiÆm|v̨[i]|p)1/p.

2.1 Error-correcting Codes
Error-correcting code plays a fundamental role in computer science and information theory.
The problem we mainly discuss in this article and the construction we use are closely related
to them. We give a general definition of error-correcting code. A detailed and systematic
introduction to coding theory can be found at [27].

I Definition 5 (Error-correcting Codes). Fix an alphabet �, an error-correcting code with
length m and relative distance ” > 0 is a subset C ™ �m satisfying for all x̨, y̨ œ C, if x̨ ”= y̨,
dist(x̨, y̨) Ø ”.

I Definition 6 (Linear Codes). Fix an alphabet � such that �r and �m being linear spaces, a
linear code is an error-correcting code C ™ �m associated with a linear function f : �r æ �m

that for all x œ �r, f(x) œ C.

2.2 Hypothesis
We introduce the Exponential Time Hypothesis in this section.

I Definition 7 (3-SAT). Given a 3-CNF formula (conjunctive formal form, each clause
contains exactly 3 literals) Ï with n variables and m clauses, decide if there exists a boolean
assignment z œ {0, 1}n that satisfies Ï, i.e., Ï(z) = 1.

I Hypothesis 8 (Exponential Time Hypothesis [30,31]). There exists constant ” > 0 such that
3-SAT with n variable and O(n) clauses cannot be solved in time O(2”n).

I Hypothesis 9 (Randomized Exponential Time Hypothesis). There exists constant ” > 0 such
that 3-SAT with n variable and O(n) clauses cannot be solved by randomized algorithm in
time O(2”n).

2.3 Problems
We first give the definition of general parameterized Maximum Likelihood Decoding problem.

“-Gap-k-MLDp

Instance: A vector multi-set V ™ Fd

p with size n and a target vector t̨ œ Fd

p.

Parameter: k.

Problem: Distinguish between the following two cases:

(YES) There exists k distinct vectors (with respect to multi-set),
v̨1, · · · , v̨k œ V and –1, . . . ,–l œ F+

p such that –1v̨1 + · · ·+–kv̨k = t̨.

(NO) Any ¸ Æ “k, l vectors v̨1, . . . , v̨l œ V and –1, . . . ,–l œ F+
p satisfies

–1v̨1 + · · ·+ –lv̨l ”= t̨.
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To fit requirements in our reduction, we start from a special restricted type of parameterized
Maximum Likelihood Decoding problem that vectors are partitioned into k di�erent sets,
and the YES case asks for selecting one vector from each set such that they directly add up
to the target vector.

The other problems we study includes parameterized Nearest Codeword Problem, which
asks if there is a codeword of the given linear code having distance no more than k to a
given target vector; Minimum Distance Problem, which asks if the minimum distance of
given linear code does not exceed k; Closest Vector Problem, asking if there is a vector in
the given linear lattice having ¸p distance no more than k to a given target vector; Shortest
Vector Problem, asking if the shortest non-zero vector of given linear lattice does not exceed
k. Formal definitions of these problems are referred to the full version.

2.4 Probability Inequality
I Theorem 10 (Cherno� Bound). Consider independent random variables X1, . . . ,Xn œ {0, 1}
with X =

q
m

i=1
Xi and µ = E[X]. For any 0 < ” < 1 we have

Pr[X Æ (1 ≠ ”)µ] Æ exp
3

≠µ”2

2

4
.

3 Collision Number of Error Correcting Codes

In this section, we introduce the definition of collision number of a code, which is key to our
gap-creating reductions. Given a collection of strings S ™ �m, we say that S “collides” on
the i-th coordinate if there are distinct x, y œ S such that x[i] = y[i]. Following the work
of [32,37], we define the collision number of a set of strings as follows.

I Definition 11 (Á-Collision Number). For a set C ™ �m and 0 < Á < 1, the Á-collision
number of C, denote as ColÁ(C), is the smallest integer s œ N+ such that there exists S ™ C
with |S| = s and S collides on more than Ám coordinates, i.e.,

|{i œ [m] | ÷x, y œ S, x ”= y s.t. x[i] = y[i]}| > Ám.

To create a gap for the k-MLDp problem, we need to construct codes C ™ �m with collision
number ColÁ(C) Ø �(k) and m depends only on k. We sketch two constructions (Theorem 13
and Lemma 17).

I Lemma 12 ([32], See also Theorem 10 in [37]). For any constant 0 < Á Æ 1, an error
correcting code C : �r æ �m with relative distance 0 < ” < 1 has ColÁ(C) Ø

Ò
2Á

1≠”
.

I Theorem 13 ([32, 37]). Fix any Reed-Solomon code CRS : �r æ �m with r < m Æ |�|.
For any 0 < Á < 1, ColÁ(CRS) Ø

Ò
2Ám

r
.

To fit the requirement in our reduction, i.e., |�|r Ø n, we choose |�| = n1/k and r = �(k).
To fit the requirement that ColÁ(C) = �(k) in Lemma 19, the Reed-Solomon code here must
satisfy m = �(k2r) = �(k3). Seeking for a shorter code with high Á-collision number, we
turn to randomized construction of codes, and we show the following lemma. The proof is
similar to [32, Claim 3.4] by showing each coordinate has collision with low probability in a
small set, then apply Cherno� bound and union bound to show a small set can hardly have
large collision number. Details see the full version.
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I Lemma 14. For any constant 0 < Á < 1 and any random code CR : �r æ �m where each
codeword is selected uniformly at random in �m, if m Ø 16 1

Á2 |�|1/3 ln |�|r and |�| = Ê(1),
then with high probability, ColÁ(CR) > |�|1/3.

By instantiating Lemma 14 with appropriate parameter, we have:

I Lemma 15. For any constant c > 0 and 0 < Á < 1, there is a randomized algorithm that
given integers n, k œ N+, constructs a code C ™ �m with parameters |C| = n, |�| = O(k3)
and m = O(k logn) such that with high probability, ColÁ(C) > ck. Moreover, the running
time of this algorithm is O(nm|�|).

I Remark 16. We remark that using an almost identical argument, Lemma 14 can be extended
to the case that for each integer t Ø 3, if m > �(|�|1/t log |�|r) and |�| = Ê(1), then w.h.p.,
ColÁ(CR) > |�|1/t. For constant t > 3, setting |�| = �(kt), Lemma 15 can be extended to
the case with same parameter but larger code alphabet.

By merging the number of code blocks over small alphabet from Lemma 15, we obtain:

I Lemma 17. For any constant c > 1 and 0 < Á < 1, there is a randomized algorithm that
given integers n, k œ N+, constructs a code C ™ �m with parameters |C| = n, |�| = O(n1/k)
and m = O(k2 log k) such that with high probability ColÁ(C) > ck. Moreover, the running
time of this algorithm is O(k2 log kn1+1/k).

3.1 Limitation of Collision Analysis in [32,37]
We have already shown the a direct collision analysis yields mÕ = O(k2 log k). Below, we
argue that collision analysis from distance must cause a cubic increase in the parameter.

To obtain a constant gap using Lemma 19 in Section 4, we require the collision number of
code C to be ColÁ(C) = �(k). Combining with Lemma 12, we immediately have the relative
distance of code C must satisfy

” Ø 1 ≠ 1/�(k2).

On the other hand, we have the following Singleton bound from coding theory, whose proof
can be found in [27, Section 4.3].

I Theorem 18 (Singleton Bound). For every code C : �r æ �m with relative distance ”
must have r Æ m ≠ ”m+ 1.

We apply the bound to parameter we choose and obtain m ≠ (1 ≠ 1

�(k2) ))m+ 1 Ø r, i.e.,

m Ø �(k2)r.

Our reduction for MLD associates each input vector with a unique codeword, which requires
|C| = |�|r Ø n, leading to

r Ø (logn)/(log |�|).

Since our reduction runs in time �(|�|k), we need |�| Æ nO(1/k). Thus r Ø (logn)/(log |�|) Ø
�(k) and m Ø �(k2)r Ø �(k3). Note that we’ve shown the Reed-Solomon code already
achieves m = O(k3).
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4 Gap-creating Reduction for k-MLDp

In this section we present our gap-creation reduction for k-MLDp. First we present a
construction that illustrates our main idea and is the crux of our reduction. This construction
produces an “unbalanced gap” kÕ

-MLDp instance in the sense that the output instance is
divided into two parts (with di�erent sizes), any solution must contain an amount of vectors
in each part. Further, for the NO case, any solution must contain constant fraction more
vectors in at least one part. This construction still needs to be modified later to convert into
an actual reduction.

I Lemma 19. There is an algorithm which on input k sets of length-d vectors V1, · · · , Vk ™ Fd
p

each of size n, a target vector t̨ œ Fd
p
and a code C ™ |�|m with |C| = n and ColÁ(C) Ø ck

outputs A = A1fi̇ · · · fi̇Ak ™ FD
p

and B = B1fi̇ . . . fi̇Bm ™ FD
p

with D = O(d+ km|�|) and a
target vector t̨Õ œ FD

p
in O(dm2k2|�|(n+ |�|k))-time such that

(i) If there exist v̨1 œ V1, . . . , v̨k œ Vk such that
q

iœ[k]
v̨i = t̨, then there exists ąÕ

1
œ

A1, · · · , ąÕ
k

œ Ak and b̨Õ
1

œ B1, · · · , b̨Õ
m

œ Bm with their sum being t̨Õ.
(ii) If for any v̨1 œ V1, . . . , v̨k œ Vk and –1, . . .–k œ F+

p
it holds that –1v̨1 + · · ·+ –kv̨k ”= t̨,

then any X ™ Afi̇B and ⁄ : X æ F+
p

such that
q

x̨œX
⁄(x̨)x̨ = t̨Õ must satisfy at least

one of the following:
|X fl A| Ø ck and |X fl B| Ø m,
|X fl A| Ø k and |X fl B| Ø 2(1 ≠ Á)m.

Proof. The resulting dimension is D = d+mk|�|+k+m. We break the resulting dimension
into 4 blocks respectively of size d,mk|�|, k and m. To be precise, for any vector x̨ œ FD

p
, let

x̨(1) œ Fd
p
be the first block,

x̨(2) œ Fmk|�|
p be second block,

x̨(3) œ Fk
p
be the third block,

x̨(4) œ Fm
p

be the fourth block.
We further break the second block into m sub-blocks each of size k|�|, i.e., x̨(2) = x̨(2,1) ¶
· · · ¶ x̨(2,m).

We let ęi be the indicator vector of which the i-th entry is 1 and the other entries are 0.
To be convenient, the dimension of ęi depends on the context. Specially we let ÿ : � æ [|�|]
be an arbitrary bijection, and for every ‡ œ � we let

ę‡ = (
ÿ(‡)≠1

˙ ˝¸ ˚
0, . . . , 0, 1, 0 . . . , 0¸ ˚˙ ˝

|�|

).

Construction of A. For every Vi, associate each v̨ œ Vi a distinct codeword of C, denoted
by C(v̨). For every i œ [k] and v̨ œ Vi, introduce a vector ąi,v̨ as

ą(1)
i,v̨

= v̨,

ą(2,j)
i,v̨

= (

(i≠1)

˙ ˝¸ ˚
0̨, . . . , 0̨, ęC(v̨)[j], 0̨, . . . , 0̨¸ ˚˙ ˝

k

), for every j œ [m],

ą(3)
i,v̨

= ęi,
ą(4)
i,v̨

= 0̨m.
And we let Ai = {ąi,v̨ | v̨ œ Vi} and A = A1 fi · · · fi Ak.
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(1,0, … , 0) (0, … , 0)Ԧ𝑣1
(0,1, … , 0) (0, … , 0)Ԧ𝑣2

(0,0, … , 1) (0, … , 0)Ԧ𝑣𝑘

(0, … , 0) (1,0, … , 0)0

(0, … , 0) (0,1, … , 0)0

(0, … , 0) (0,0, … , 1)(− Ԧ𝑒𝐶 𝑣1 [𝑚], … , − Ԧ𝑒𝐶 𝑣𝑘 [𝑚])0

(1,1, … , 1) (1,1, … , 1)Ԧ𝑡

𝐴1 ∋ Ԧ𝑎1,𝑣1 =

𝐴2 ∋ Ԧ𝑎2,𝑣2 =

𝐴𝑘 ∋ Ԧ𝑎𝑘,𝑣𝑘 =

𝐵1 ∋ 𝑏1,𝜎1 =

𝐵2 ∋ 𝑏2,𝜎2 =

𝐵𝑚 ∋ 𝑏𝑚,𝜎𝑚 =

Ԧ𝑡′ =

𝑘 𝑚𝑑

⋮

⋮

(0, … , 0)

(0, … , 0)

(0, … , 0)

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [𝑚]

Ԧ𝑒𝐶 𝑣1 [m], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [𝑚], … , 0

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

(0, … , 0)

(0, … , 0)

(0, … , 0)
(− Ԧ𝑒𝐶 𝑣1 [2], … , − Ԧ𝑒𝐶 𝑣𝑘 [2])

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [2]

Ԧ𝑒𝐶 𝑣1 [2], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [2], … , 0

(0, … , 0)

(0, … , 0)

(− Ԧ𝑒𝐶 𝑣1 [1], … , − Ԧ𝑒𝐶 𝑣𝑘 [1])

(0, … , 0)

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [1]

Ԧ𝑒𝐶 𝑣1 [1], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [1], … , 0

∘

∘

∘

∘

∘

∘

∘

𝑚𝑘|Σ|

Figure 1 Illustration for the vectors of Lemma 19 in the completeness setting. We can choose
each b̨j,‡̨j as ‡̨j = (C(v̨1)[j], · · · , C(v̨k)[j]).

Construction of B. For every j œ [m] and ‡̨ = (‡1, . . . ,‡k) œ �k, introduce a vector b̨j,‡̨ as
b̨(1)
j,‡̨

= 0̨d,
b̨(2,j)
j,‡̨

= (≠ę‡1 , · · · ≠ ę‡k), b̨
(2,j

Õ
)

j,‡̨
= 0̨k for every jÕ œ [m]\{j},

b̨(3)
j,‡̨

= 0̨k,
b̨(4)
j,‡̨

= ęj .
We let Bj = {̨bj,‡̨ | ‡̨ œ �k} and B = B1 fi · · · fi Bm.

Finally we set the target vector t̨Õ as
t̨Õ(1) = t̨,
t̨Õ(2) = 0̨mk|�|,
t̨Õ(3) = 1̨k,
t̨Õ(4) = 1̨m.

Time complexity. Producing each vector in A requires O(d+mk|�|+ km) = O(d+mk|�|)
time, so the total time cost producing A is O(dkn+mk2n|�|). Producing each vector in B also
requires O(d+mk|�|) time, and the total time cost producing B is O(dm|�|k +m2k|�|k+1).
So the total time cost of this reduction is O(dm2k2|�|(n+ |�|k)).

Proof of (i). Suppose there exist v̨1 œ V1, · · · , v̨k œ Vk satisfying
q

iœ[k]
v̨i = t̨. For every

i œ [k] we choose a vector ąi,v̨i œ Ai. And for every j œ [m] we choose a vector b̨j,‡̨j œ Bj ,
where ‡̨j = (C(v̨1)[j], . . . , C(v̨m)[j]) œ �k. We now examine that

q
iœ[k]

ąi,v̨i+
q

jœ[m]
b̨j,‡̨j =

t̨Õ as:
For the first block,

ÿ

iœ[k]

ą(1)
i,v̨i

+
ÿ

jœ[m]

b̨(1)
j,‡̨j

=
ÿ

iœ[k]

v̨i +
ÿ

jœ[m]

0̨d = t̨ = t̨Õ(1).

For every j œ [m] the (2, j)-th block,
ÿ

iœ[k]

ą(2,j)
i,v̨i

+
ÿ

jÕœ[m]

b̨(2,j)
jÕ,‡̨jÕ

=
ÿ

iœ[k]

ą(2,j)
i,v̨i

+ b̨(2,j)
j,‡̨j

=
ÿ

iœ[k]

(

i≠1˙ ˝¸ ˚
0̨, . . . , 0̨, ęC(v̨i)[j]

, 0̨, . . . , 0̨)+(≠ęC(v̨1)[j], . . . ,≠ęC(v̨k)[j]
)

= (ęC(v̨1)[j], . . . , ęC(v̨k)[j]
) + (≠ęC(v̨1)[j], . . . ,≠ęC(v̨k)[j]

)
= 0̨k|�| = t̨Õ(2,j).
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For the third block,
ÿ

iœ[k]

ą(3)
i,v̨i

+
ÿ

jœ[m]

b̨(3)
j,‡̨j

=
ÿ

iœ[k]

ęi +
ÿ

jœ[m]

0̨k = 1̨k = t̨Õ(3).

For the fourth block,
ÿ

iœ[k]

ą(4)
i,v̨i

+
ÿ

jœ[m]

b̨(4)
j,‡̨j

=
ÿ

iœ[k]

0̨m +
ÿ

jœ[m]

ęj = 1̨m = t̨Õ(4).

Proof of (ii). Suppose X ™ Afi̇B and ⁄ : X æ F+
p
such that

q
x̨œX

⁄(x̨)x̨ = t̨Õ. Observe
the third block of the equation:

ÿ

x̨œX

⁄(x̨)x̨(3) =
ÿ

iœ[k]

ÿ

x̨œXflAi

⁄(x̨)ęi = 1̨m = t̨Õ(3).

For every i œ [k], X fl Ai must not be empty since
q

x̨œXflAi
⁄(x̨) = 1. Also similarly

by observing the fourth block it holds that X fl Bj must not be empty for every j œ [m].
Therefore |X fl A| Ø k and |X fl B| Ø m.

Further suppose that any v̨1 œ V1, . . . , v̨k œ Vk and –1, . . .–k œ F+
p
must satisfy –1v̨1 +

· · ·+ –kv̨k ”= t̨, we show that either |X fl A| Ø ck or |X fl B| Ø 2(1 ≠ Á)m.
We let I ™ [m] be the set of indices j that X fl Bj contains only one vector, i.e.,

I = {j œ [m] : |X fl Bj | = 1}.

Since |X fl Bj | Ø 1 for every j œ [m], if |I| Æ Ám then

|X fl B| Ø
ÿ

jœ[m]\I

|X fl Bj | Ø 2(1 ≠ Á)m

as desired. It remains to show that if |I| > Ám then |X fl A| Ø ck.
First we claim that there must be an i œ [k] such that X fl Ai contains more than one

vector. Otherwise suppose that |X fl Ai| = 1 for every i œ [k], let ąi,v̨i œ X fl Ai be the
unique vector in X fl Ai. Recall that in the first block, vectors in X fl B are all zero, so the
sum of vectors in X in the first block is

ÿ

x̨œX

⁄(x̨)x̨(1) =
ÿ

⁄(̨ai,v̨i )̨a
Õ(1)
i,v̨i

=
ÿ

iœ[k]

⁄(̨ai,v̨i)v̨i = t̨ = t̨Õ(1)

This contradicts to our assumption that for all v̨1 œ V1, . . . , v̨k œ Vk and –1, . . . ,–k œ F+
p
,q

iœ[k]
–iv̨i ”= t̨. Therefore, there must be such an index iú œ [k] that |AÕ

iú | > 1.
Let l > 1 be the size of X fl Aiú , we next show that l Ø ck. Suppose that X fl Aiú =

{ąiú,v̨1 , . . . , ąiú,v̨l} where v̨1, . . . v̨l œ Viú . We show in the following that the codeword set
{C(v̨1), . . . , C(v̨l)} must collide on every j œ I. Fix any j œ I, let b̨j,‡̨ be the unique vector
in X fl Bj , where ‡̨ = (‡1, . . . ,‡k). Recall that the (2, j)-th block of the resulting dimension
consists of k|�| coordinates, here we further break it down into k sub-blocks each of size |�|,
and we focus on the (2, j, iú)-th sub-block:

ÿ

x̨œX

⁄(x̨)x̨(2,j,i
ú
) = ⁄(̨aiú,v̨1 )̨a

(2,j,i
ú
)

iú,v̨1
+ · · ·+ ⁄(̨aiú,v̨l )̨a

(2,j,i
ú
)

iú,v̨l
+ ⁄(̨bj,‡̨ )̨b(2,j,i

ú
)

j,‡̨

= ⁄(̨aiú,v̨1)ęC(v̨1)[j] + · · ·+ ⁄(̨aiú,v̨l)ęC(v̨l)[j]
≠ ⁄(̨bj,‡̨)ę‡iú

= 0̨|�| = t̨Õ(2,j,i
ú
).
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If C(v̨1)[j], . . . , C(v̨l)[j] are all distinct, the equation ⁄(̨aiú,v̨1)ęC(v̨1)[j]+· · ·+⁄(̨aiú,v̨l)ęC(v̨l)[j]
≠

⁄(̨bj,‡̨)ę‡iú = 0̨|�| must not be satisfied since l > 1 and the ⁄’s are nonzero. Therefore
{C(v̨1), . . . , C(v̨l)} must collide on the j-th coordinate.

If |I| > Ám then {C(v̨1), . . . , C(v̨l)} collide on more than Ám coordinates, by the definition
of collision number, it holds that |{C(v̨1), . . . , C(v̨l)}| Ø ColÁ(C) Ø ck. And thus |X fl A| Ø
|X fl Aiú | Ø ck. J

Since the codes (with good collision number) we construct has codeword length m =
O(k2 log k) (Lemma 17) much greater than k, the above construction cannot directly lead to
a gap-creating reduction for k-MLD. To settle this, intuitively we further duplicate the vector
sets A1, . . . , Ak several times into m vector sets. This leads to our gap creating reduction as
follows.

I Theorem 20. For any 0 < Á < 1, there is a randomized reduction which on input k
sets of length-d vectors V1, · · · , Vk ™ Fd

p
each of size n and a target vector t̨ œ Fd

p
outputs

kÕ vector sets U1, . . . , UkÕ ™ FD
p

and a target vector t̨Õ œ FD
p

with kÕ = O(k2 log k) and
D = O(kÕd+ kÕ2n1/k) in O(d2O(k)n1.01) time such that
(i) If there exist v̨1 œ V1, . . . , v̨k œ Vk such that

q
iœ[k]

v̨i = t̨, then there exists ų1 œ
U1, . . . , ųkÕ œ UkÕ with their sum being t̨Õ.

(ii) If any v̨1 œ V1, . . . , v̨k œ Vk and –1, . . .–k œ F+
p

must satisfy –1v̨1 + · · · + –kv̨k ”= t̨,
then any X ™

t
iœ[kÕ] Ui and ⁄ : X æ F+

p
such that

q
x̨œX

⁄(x̨)x̨ = t̨Õ must satisfy
|X| Ø ( 3

2
≠ Á)kÕ.

I Remark 21. Consider the k-VectorSumq problem in [36], whose definition is identical to
k-MLDq except that it requires all the coe�cients being 1. A closer look at our reduction
shows that it can directly create a gap of almost (q + 1)/2 for k-VectorSumq rather than
almost 3

2
in the k-MLDq case.

5 Lower Bounds for Gap-k-NCP and Other Problems

In this section, we show the reduction described in the previous sections implies improved
running time lower bounds for various problems under ETH.

5.1 Maximum Likelihood Decoding and Nearest Codeword Problem
In [14], Bhattacharyya, Ghoshal, Karthik and Manurangsi presented a gap amplification
procedure for Gap-k-MLDp. Although they only discussed the procedure on the binary
field, it’s straightforward to see the procedure also works for Gap-k-MLDp instances over
all Fp. Formally,

I Theorem 22 (Generalization of Lemma 4.5 in [14]). For integers k1, k2 > 0, kÕ = k2 + k1k2
and reals “1, “2 > 1, “Õ Ø “1“2(1 ≠ 1

k1
), there is a polynomial time algorithm that on input

2 vector sets U ™ Fm1
p

, V ™ Fm2
p

, |U | = n1, |V | = n2, two target vectors t̨ œ Fm1
p

, s̨ œ Fm2
p

,
outputs a vector set W ™ Fm2+n1m1

p
and a target vector t̨Õ œ Fm2+n1m1

p
satisfies:

If (U, t̨) is a YES instance of “1-Gap-k1-MLDp instance and (V, s̨) is a YES instance of
“2-Gap-k2-MLDp instance, then (W, t̨Õ) is a YES instance of “Õ-Gap-kÕ-MLDp.
If (U, t̨) is a NO instance of “1-Gap-k1-MLDp instance and (V, s̨) is a NO instance of
“2-Gap-k2-MLDp instance, then (W, t̨Õ) is a NO instance of “Õ-Gap-kÕ-MLDp.

Readers seeking for a formal proof is referred to [14, Section 4.2].
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5.1.1 ETH-based Running Time Lower Bound
Taking a closer look at the reduction from 3-SAT to k-VectorSum in [36, Theorem 11], we
observe that by applying a minor modification, their reduction can actually have soundness
condition as:

If „ is not satisfiable, then for any v̨1 œ V1, . . . , v̨k œ Vk and –1, . . . ,–k œ F+
p
, �k

i=1
–iv̨i ”= t̨.

The modification is simply appending a vector (0i≠1 ¶ 1 ¶ 0k≠i) to each vector in Vi, for all
1 Æ i Æ k. Then, the target vector is changed from a zero vector to t̨ = 0d ¶ 1k. Completeness
of their reduction is trivially preserved. For soundness we claim, we note that for any
v̨1 œ V1, · · · , v̨k œ Vk and –1, · · · ,–k œ Fp, if �k

i=1
–iv̨i = t̨, then –1 = · · · = –k = 1.

By strengthening the soundness condition in [36], we obtain exactly the restricted version
of k-MLDp in the previous sections. Combining with their soundness for k-VectorSum,
we obtain the following hardness result for k-MLDp as:

I Theorem 23 (Theorem 11 in [36]). Assuming ETH, for any constant integer p, k-MLDp

has no no(k)-time algorithm.

The parameterized MLD and NCP are equivalent in the sense that there exist reductions
preserving the solution size in both direction. Recall that Theorem 20 showed a reduction
from k-MLDp to (3/2 ≠ Á)-Gap-kÕ

-MLDp with kÕ = k2 log k and Á > 0. Combining running
time lower bound in Theorem 23, we have:

I Theorem 24. Assuming randomized ETH, for any constant integer p, constant 1 < “ < 3

2
,

“-Gap-k-MLDp and “-Gap-k-NCPp has no Ok(no(

Ô
k/ log k))-time algorithm.

By applying Theorem 22 to the gap instance itself O(log log “) times, we can obtain
the ETH-based time lower bound for approximating parameterized MLD and NCP to any
constant factor.

I Corollary 25. Assuming ETH, for any constant integer p and constant “ > 1, “-Gap-
k-MLDp and “-Gap-k-NCPp have no Ok(no(k

‘
)) time algorithm, where ‘ = 1

polylog(“) is a
constant.

5.2 Minimum Distance Problem
The reduction from Gap-k-NCP to Gap-k-MDP in [10] is as follows.

I Theorem 26 ( [10], Theorem 3.1 and 3.3). For any prime power p Ø 2 there is a randomized
reduction from (4p)-Gap-k-NCPp to 4p

4p≠1
-Gap-kÕ-MDPp runs in polynomial time with

kÕ = O(k).

Use our gap-creating reduction for Gap-k-MLD, and apply the gap amplification for a
constant number of times, then use Theorem 26 to reduce to Gap-kÕ

-MDP and self-tensoring
the instance for a constant number of times, we have:

I Corollary 27. Assuming randomized ETH, for any prime power p Ø 2 and real number
“ > 1, “-Gap-k-MDPp has no Ok(no(k

‘
)) time algorithm, where ‘ = �( 1

p log “·polylog(p) ).

5.3 Closest Vector Problem
We need a reduction from (2“)-Gap-k-MLDq to “-Gap-2k-CVPp from [13].
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I Theorem 28 ([13], Theorem 7.2). For any real numbers “, p Ø 1 and a prime number
q > 2“, there is a reduction from (2“)-Gap-k-MLDq to “-Gap-kÕ-CVPp runs in polynomial
time, where kÕ = 2k.

Use our gap-creating reduction for Gap-k-MLD, and apply gap amplification for a constant
number of times to obtain 2“-gap, then use Theorem 28 to reduce to Gap-kÕ

-CVP, we have:

I Corollary 29. Assuming ETH, there exists constant c > 0, for any real numbers p, “ Ø 1,
“-Gap-k-CVPp has no Ok(no(k

‘
)) time algorithm, where ‘ = �( 1

“c ).

5.4 Shortest Vector Problem
Combining our work with [10], we show two ways of obtaining running time lower bound
for “-Gap-k-SVPp. The first way reduces from Gap-k-CVPp, obtaining lower bound for
only a fixed constant ratio and all lp norms where p Ø 1. The second way reduces from
Gap-k-NCPq, obtaining lower bound for all constant ratio and all lp norms except for l1.

5.4.1 Reduction From Gap-k-CVPp

I Theorem 30 ([10], Theorem 4.1 and 4.3, modified). For any real numbers p Ø 1 and
“Õ œ [1, 2) there exist a real number “ Ø 1 7 and a reduction from “-Gap-k-CVPp to
“Õ-Gap-kÕ-SVPp runs in polynomial time, where kÕ Æ “k.

Use Corollary 29 to obtain a “0-gap CVP instance, where “0 fits requirement in Theorem 30,
then use Theorem 30 we have:

I Corollary 31. Assuming randomized ETH, for any real numbers p Ø 1 and “ œ [1, 2),
“-Gap-k-SVPp has no Ok(no(k

‘
)) time algorithm,where 0 < ‘ < 1 is some constant that

depends on p and “.

5.4.2 Reduction From Gap-k-NCP2

I Theorem 32 ([10], Lemma 5.1 and Theorem 5.2, modified). There exists a constant real
µ Ø 1 such that, for any real numbers p > 1 and “Õ Ø 1, there exists a reduction from
µ-Gap-k-NCP2 to “Õ-Gap-kÕ-SVPp runs in polynomial time, where kÕ = O(kc), c > 1 is a
constant only depends on p and “Õ8.

The reduction in Theorem 32 in fact proceeds in two steps: first reduces µ-Gap-k-NCP2 to
“Õ
-Gap-kÕ

-SVPp for some fixed “Õ > 1 with kÕ < µk (while having some additional properties
for the second step), then use a tensor technique to amplify the gap to any constant.

I Corollary 33. Assuming randomized ETH, for any real numbers p > 1 and “ Ø 1, “-Gap-
k-SVPp has no Ok(no(k

‘
)) time algorithm, where 0 < ‘ < 1 is some constant that depends

on p and “.

7
“ = (max

1
12/Á,

1
(1+Á/2)1/p≠1

2
)p where Á = (“Õ)≠1 ≠ 1/2 > 0.

8 There are two problems here about the parameter blow-up, one is that k
Õ Æ (µk)O(1) due to the

Haviv-Regev “tensoring” step of SVP, the other is that to achieve final gap “
Õ, the gap µ of NCP needs

to satisfy µ

2p+1+–µ
> “

Õ for some 1/2 + 2≠p
< – < 1, causing a polynomial blow-up of parameter to

achieve such µ.
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6 Conclusion

We have presented new ETH-based lower bounds for approximating parameterized nearest
codeword problem and its related problems, improving upon the previous results from [10,13].
Our reduction technique is also simpler and more straight forward than the one used in [13].
However, our results still do not match the lower bound for constant Gap-k-NCP based on
Gap-ETH [38]. A natural open problem is to close this gap by proving a stronger lower bound
under an assumption that is weaker than Gap-ETH, such as constant Gap-k-Clique has
no no(k)-time algorithm. This would be a key step towards understanding the fine-grained
complexity of parameterized nearest codeword problem and its variants.

I Open Problem 34. Prove no(k) time lower bound of approximating k-NCPp or its related
problems to any constant factor under assumptions weaker than Gap-ETH.

To show such a result, as pointed out in [38], one might need to come up with a better
“one-shot proof” that gives arbitrary constant factors without tensoring, and with linear
parameter growth.

In this paper, we give a new method of composing threshold graph with vector problems
to yield hardness of approximation results. We showed the limitation of analyzing collision
number of a code from its relative distance in [32,37], and improved the analysis to bypass
the limitation above. It might be interesting to consider whether this result can be further
improved to yield threshold graph with better parameters, or some limitations of our method
can be discovered, formally:

I Open Problem 35. Give a better construction of strong threshold graph in Section 1.2
with h = �(k) and m = O(k), or show that such graphs do not exist.
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Abstract

Non-malleable extractors are generalizations and strengthening of standard randomness extractors,
that are resilient to adversarial tampering. Such extractors have wide applications in cryptography
and have become important cornerstones in recent breakthroughs of explicit constructions of
two-source extractors and a�ne extractors for small entropy. However, explicit constructions of non-
malleable extractors appear to be much harder than standard extractors. Indeed, in the well-studied
models of two-source and a�ne non-malleable extractors, the previous best constructions only work
for entropy rate > 2/3 and 1 ≠ “ for some small constant “ > 0 respectively by Li (FOCS’ 23).

In this paper, we present explicit constructions of two-source and a�ne non-malleable extractors
that match the state-of-the-art constructions of standard ones for small entropy. Our main results
include:

Two-source and a�ne non-malleable extractors (over F2) for sources on n bits with min-entropy
k Ø logC n and polynomially small error, matching the parameters of standard extractors by
Chattopadhyay and Zuckerman (STOC’ 16, Annals of Mathematics’ 19) and Li (FOCS’ 16).
Two-source and a�ne non-malleable extractors (over F2) for sources on n bits with min-entropy
k = O(logn) and constant error, matching the parameters of standard extractors by Li (FOCS’
23).

Our constructions significantly improve previous results, and the parameters (entropy requirement
and error) are the best possible without first improving the constructions of standard extractors. In
addition, our improved a�ne non-malleable extractors give strong lower bounds for a certain kind of
read-once linear branching programs, recently introduced by Gryaznov, Pudlák, and Talebanfard
(CCC’ 22) as a generalization of several well studied computational models. These bounds match
the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC’
23) and Li (FOCS’ 23), where the branching program size lower bounds are close to optimal, but
the explicit functions we use here are di�erent. Our results also suggest a possible deeper connection
between non-malleable extractors and standard ones.

2012 ACM Subject Classification Theory of computation æ Pseudorandomness and derandomization

Keywords and phrases Randomness Extractors, Non-malleable, Two-source, A�ne

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.108

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.17013

Funding Xin Li: Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575.
Yan Zhong: Supported by NSF CAREER Award CCF-1845349.

1 Introduction

Randomness extractors are fundamental objects in the broad area of pseudorandomness.
These objects have been studied extensively and found applications in diverse areas such
as cryptography, complexity theory, combinatorics and graph theory, and many more.
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Informally, randomness extractors are functions that transform imperfect randomness called
weak random sources into almost uniform random bits. Originally, the motivation for
studying these objects comes from the gap between the requirement of high-quality random
bits in various computational and cryptographic applications, and the severe biases in natural
random sources. In practice, weak random sources can arise in several di�erent situations.
For example, the random bits can become biased and correlated due to the natural process
that generates them, or because of the fact that an adversary learns some partial information
about a random string in cryptographic applications.

To measure the amount of randomness in a weak random source (a random variable) X,
we use the standard definition of min-entropy: HŒ(X) = minxœsupp(X) log2(1/Pr[X = x]).
If X œ {0, 1}n, we say X is an (n,HŒ(X))-source, or simply an HŒ(X)-source if n is clear
from context. We also say X has entropy rate HŒ(X)/n. Ideally, one would like to construct
deterministic extractors for all (n, k) sources when k is not too small. However, this is well
known to be impossible, even if one only desires to extract one bit and k is as large as n ≠ 1.
Thus, to allow randomness extraction one has to put additional restrictions on the source.

Historically, many di�erent models of randomness extractors have been studied. For
example, if one gives the extractor an additional independent short uniform random seed,
then there exist extractors that work for any (n, k) source. Such extractors, first introduced
by Nisan and Zuckerman [64], are known as seeded extractors. These extractors have found
wide applications, and by now we have almost optimal constructions (e.g., [62, 42, 35, 34])
after a long line of research.

However, seeded extractors may not be applicable in situations where the short uniform
random seed is either not available (e.g., in cryptography) or cannot be simulated by cycling
over all possible choices. For these applications, one needs deterministic extractors or seedless
extractors, and many di�erent models have also been studied in this setting. These include
for example extractors for independent sources [20, 2, 3, 67, 7, 65, 4, 49, 52, 54, 53, 55, 22, 26,
18, 56, 30, 12, 23, 5, 27, 28, 57, 59, 47, 60], bit fixing sources [21, 46, 39, 66], a�ne sources
[38, 8, 66, 72, 6, 69, 50, 56, 10, 60], samplable sources [70, 71], interleaved sources [68, 18],
and small-space sources [45]. We define deterministic extractors below.

I Definition 1. Let X be a family of distribution over {0, 1}n. A function Ext : {0, 1}n æ
{0, 1}m is a deterministic extractor for X with error Á if for every distribution X œ X , we
have

Ext(X) ¥Á Um,

where Um stands for the uniform distribution over {0, 1}m, and ¥Á means Á-close in statistical
distance. We say Ext is explicit if it is computable by a polynomial-time algorithm.

Among these models, two of the most well-studied are extractors for independent sources
and a�ne sources. This is in part due to their connections to several other areas of interest.
For example, extractors for independent sources are useful in distributed computing and
cryptography with imperfect randomness [44, 43], and give explicit constructions of Ramsey
graphs; while a�ne sources generalize bit-fixing sources, and extractors for a�ne sources
have applications in exposure-resilient cryptography [21, 46] as well as Boolean circuit lower
bounds [31, 37, 48].

Using simple probabilistic arguments, one can show that there exist extractors for two
independent (n, k) sources with k = logn+O(1), which is optimal up to the constant O(1).
The first explicit construction of two-source extractors was given by Chor and Goldreich [20],
which achieves k > n/2. Following a long line of research and several recent breakthroughs,
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we now have explicit constructions of two-source extractors for entropy k ¥ 4n/9 with
error Á = 2≠�(n) [47], for entropy k = polylog(n) with error Á = 1/poly(n) [18], and for
entropy k = O(logn) with constant error [60]. Similarly, for a�ne sources which are uniform
distributions over some unknown a�ne subspace over the vector space F

n
2
, 1 one can show

the existence of extractors for entropy k = O(logn), which is also optimal up to the constant
O(1). Regarding explicit constructions, we have a�ne extractors for entropy k = ”n with
error Á = 2≠�(n) for any constant ” > 0 [8, 72, 50], for entropy k = polylog(n) with error
Á = 1/poly(n) [56], and for entropy k = O(logn) with constant error [60].

In the past decade or so, a new kind of extractors, known as non-malleable extractors, has
gained a lot of attention. These extractors are motivated from cryptographic applications.
Informally, the setting is that an adversary can tamper with the inputs to an extractor in
some way, and the non-malleable extractor guarantees that the output of the extractor is close
to uniform even conditioned on the output of the extractor on the tampered inputs. The most
well-studied non-malleable extractors include seeded non-malleable extractors [33], two-source
non-malleable extractors [19], and a�ne non-malleable extractors [15]. These non-malleable
extractors have wide applications in cryptography, such as privacy amplification with an
active adversary [33] and non-malleable codes [36]. Furthermore, they turn out to have
surprising connections to the constructions of standard extractors. Indeed, starting from
the work of Li [52] which showed a connection between seeded non-malleable extractors and
two-source extractors, these non-malleable extractors have played key roles, and now become
important cornerstones in the recent series of breakthroughs that eventually lead to explicit
constructions of two-source and a�ne extractors for asymptotically optimal entropy. In a
more recent line of work [41, 17, 61], a special case of a�ne non-malleable extractors known
as directional a�ne extractors is also shown to give strong lower bounds for certain read-once
branching programs with linear queries, which generalize both standard read-once branching
programs and parity decision trees. Given these applications, non-malleable extractors have
become important objects that deserve to be studied on their own. We now define tampering
functions and two kinds of non-malleable extractors below.

I Definition 2 (Tampering Function). For any function f : S æ S, We say f has no fixed
points if f(s) ”= s for all s œ S. For any n > 0, let Fn denote the set of all functions
f : {0, 1}n æ {0, 1}n. Any subset of Fn is a family of tampering functions.

I Definition 3 ([19]). A function 2nmExt : ({0, 1}n)2 æ {0, 1}m is a (k1, k2, Á) two source
non-malleable extractor, if it satisfies the following property: Let X,Y be two independent,
(n, k1) and (n, k2) sources, and f, g : {0, 1}n æ {0, 1}n be two arbitrary tampering functions
such that at least one of them has no fixed point,2 then

|2nmExt(X,Y ) ¶ 2nmExt(f(X), g(Y )) ≠ Um ¶ 2nmExt(f(X), g(Y ))| < Á.

I Definition 4 ([15]). A function anmExt : {0, 1}n æ {0, 1}m is a (k, Á) a�ne non-malleable
extractor if for any a�ne source X with entropy at least k and any a�ne function f :
{0, 1}n æ {0, 1}n with no fixed point, we have

|anmExt(X) ¶ anmExt(f(X)) ≠ Um ¶ anmExt(f(X))| Æ Á.

1 In this paper we focus on the case where the field is F2, for larger fields there are a�ne extractors with
better parameters.

2 We say that x is a fixed point of a function f if f(x) = x.
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Using the probabilistic method, one can also prove the existence of these non-malleable
extractors with excellent parameters. For example, [19] showed that two-source non-malleable
extractors exist for (n, k) sources when k Ø m + 3

2
log(1/Á) + O(1) and k Ø logn + O(1).

Similarly, it can be also shown that a�ne non-malleable extractors exist for entropy k Ø
2m+ 2 log(1/Á) + logn+O(1).

However, constructing explicit non-malleable extractors appears to be significantly harder
than constructing standard extractors, despite considerable e�ort. Indeed, even for seeded
non-malleable extractors, the initial explicit constructions [32, 29, 51] only work for sources
with entropy rate > 1/2, and it was not until [11] that explicit seeded non-malleable extractors
for sources with poly-logarithmic entropy are constructed. After a long line of research
[32, 29, 51, 52, 11, 24, 25, 12, 15, 23, 27, 28, 57, 59, 60], an asymptotically optimal seeded
non-malleable extractor is finally constructed in [60]. On the other hand, the situation for
two-source non-malleable extractors and a�ne non-malleable extractors is much worse, where
the best-known constructions in [60] only achieve entropy k > 2n/3 and k Ø (1 ≠ “)n for a
small constant “ > 0. This is in sharp contrast to the constructions of standard two-source
and a�ne extractors, where explicit constructions can work for entropy k = polylog(n) with
polynomially small error [18, 56], and for entropy k = O(logn) with constant error [60].

1.1 Our Results

In this paper, we study two-source and a�ne non-malleable extractors for small entropy.
Our main results give explicit constructions of such non-malleable extractors that essentially
match their standard counterparts in the small entropy regime. Specifically, we give explicit
two-source and a�ne non-malleable extractors for polylog(n) entropy with polynomially
small error and for O(logn) entropy with constant error. We have the following theorems.

I Theorem 5. There exists a constant C > 1 such that for any k Ø logC n, there exists an
explicit construction of a (k, k, n≠�(1)) two-source non-malleable extractor with output length
�(k).

I Theorem 6. There exists a constant C > 1 such that for any k Ø logC n, there exists an
explicit construction of a (k, n≠�(1)) a�ne non-malleable extractor with output length k�(1).

I Theorem 7. There exists a constant c > 1 such that for any k Ø c logn, there exists an
explicit construction of a (k, k,O(1)) two-source non-malleable extractor with output length 1.

I Theorem 8. There exists a constant c > 1 such that for any k Ø c logn, there exists an
explicit construction of a (k,O(1)) a�ne non-malleable extractor with output length 1.

I Remark 9. The output length in the two theorems for entropy k Ø c logn can be extended
to a constant number by using the standard XOR lemma and previous techniques (e.g., those
in [56]). Furthermore, our constructions can also be extended to handle multiple tampering
functions as in [11]. For simplicity, we omit the details here.

The following tables summarize our results compared to some of the best previous
constructions.
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Table 1 Prior and current results on two-source non-malleable extractors.

Two-source Non-malleable Extractor Entropy k1 Entropy k2 Output m Error Á

[11] n ≠ n
“

n ≠ n
“

n
�(1) 2≠n

�(1)

[59] (1 ≠ “)n (1 ≠ “)n �(n) 2≠�(n log logn

logn
)

[1] ( 45 + ”)n logC n �(min {k1, k2}) 2≠ min{k1,k2}�(1)

[60] ( 23 + “)n k = O(logn) �(k) 2≠�(k)

This work (Theorem 5) k Ø polylog(n) k Ø polylog(n) �(k) n
≠�(1)

This work (Theorem 7) O(logn) O(logn) 1 O(1)

Table 2 Prior and current results on a�ne non-malleable extractors.

A�ne Non-malleable Extractor Entropy k Output m Error Á

[15] n ≠ n
” for some constant ” œ (0, 1) n

�(1) 2≠n
�(1)

[60] (1 ≠ “)n, “ < 1/1000 �(n) 2≠�(n)

This work (Theorem 6) polylog(n) k
�(1)

n
≠�(1)

This work (Theorem 8) O(logn) 1 O(1)

Our results thus significantly improve the entropy requirement of previous non-malleable
extractors. As a comparison, we list below the best-known explicit two-source extractors and
a�ne extractors for small entropy.

Table 3 Best-known results on two-source extractors.

Two-source Extractor Entropy k Output m Error Á

[18] polylog(n) 1 n
≠�(1)

[63, 56, 13] polylog(n) k
�(1)

n
≠�(1)

[5] O(logn2O(
Ô

log logn)) 1 O(1)
[27] O(logn(log logn)O(1)) 1 O(1)
[58] O(logn log logn) 1 O(1)
[59] O(logn log logn

log log logn
) 1 O(1)

[60] O(logn) 1 O(1)

Table 4 Best-known results on a�ne extractors.

A�ne Extractor Entropy k Output m Error Á

[56] polylog(n) k
�(1)

n
≠�(1)

[10] O(logn log logn log log log6 n) 1 O(1)
[16] O(logn log logn log log log3 n) 1 O(1)
[60] O(logn) 1 O(1)

It can be seen that the parameters of our two-source and a�ne non-malleable extractors
essentially match those of standard two-source and a�ne extractors for small entropy. We also
point out that the error of our non-malleable extractors is the best one can hope for without
first improving the error of standard two-source and a�ne extractors for small entropy, since
the non-malleable extractors are stronger versions of extractors, and in particular, they are
themselves two-source and a�ne extractors. Finally, given that our constructions use many
of the key components in the constructions of standard extractors, we believe that any future
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techniques that improve the error of standard two-source and a�ne extractors for small
entropy (e.g., to negligible error) are also likely applicable to our constructions to get the
same improvement on the error of two-source and a�ne non-malleable extractors.

1.2 Applications to Lower bounds for Read-Once Linear Branching

Programs

Our a�ne non-malleable extractors have applications in proving average-case hardness
against read-once linear branching programs (ROLBPs). This computational model was
recently introduced by Gryaznov, Pudlák, and Talebanfard [41] as a generalization of several
important and well-studied computational models such as decision trees, parity decision
trees, and standard read-once branching programs. Roughly, a read-once linear branching
program is a branching program that can make linear queries to the input string, while these
queries are linearly independent along any path. Formally, we have the following definition.

I Definition 10 (Linear branching program [41]). A linear branching program on F
n
2
is a

directed acyclic graph P with the following properties:
There is only one source s in P .
There are two sinks in P , labeled with 0 and 1 respectively.
Every non-sink node v is labeled with a linear function ¸v : Fn

2
æ F2. Moreover, there are

exactly two outgoing edges from v, one is labeled with 1 and the other is labeled with 0.
The size of P is the number of non-sink nodes in P . P computes a Boolean function
f : {0, 1}n æ {0, 1} in the following way. For every input x œ F

n
2
, P follows the computation

path by starting from s, and when on a non-sink node v, moves to the next node following
the edge with label ¸v(x) œ {0, 1}. The computation ends when the path ends at a sink, and
f(x) is defined to be the label on this sink.

[41] defines two kinds of read-once linear branching programs (ROLBP for short).

I Definition 11 ([41]). Given any linear branching program P and any node v in P , let Prev
denote the span of all linear queries that appear on any path from the source to v, excluding
the query ¸v. Let Postv denote the span of all linear queries in the subprogram starting at v.

A linear branching program P is weakly read-once if for every inner node v of P , it holds
that ¸v /œ Prev.
A linear branching program P is strongly read-once if for every inner node v of P , it
holds that Prev fl Postv = {0}.

Both kinds of ROLBPs generalize the aforementioned computational models, but weakly
read-once linear branching programs (WROLBPs) are more flexible than strongly read-once
linear branching programs (SROLBPs). As a result, proving lower bounds for WROLBPs
turns out to be much harder than for SROLBPs. Indeed, so far we only have non-trivial
lower bounds for SROLBPs. To state our results, we use the following definition.

I Definition 12 ([17]). For a Boolean function f : {0, 1}n æ {0, 1}, let SROLBP(f) denote
the smallest possible size of a strongly read-once linear branching program that computes f ,
and SROLBPÁ(f) denote the smallest possible size of a strongly read-once linear branching
program P such that

PrxΩUFn

2
[P (x) = f(X)] Ø 1

2 + Á.

The definition can be adapted to ROBPs naturally.
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[41] shows that a stronger version of a�ne extractors known as directional a�ne extractors
give strong average case lower bounds for SROLBPs. They give an explicit construction of
directional a�ne extractors for entropy k Ø 2n

3
+ c with error Á Æ 2≠c for any constant c > 1,

which also implies exponential average-case hardness for SROLBPs of size up to 2n

3 ≠o(n).
In a follow-up work, Chattopadhyay and Liao [17] used another kind of extractors known
as sumset extractors [14] to give an alternative average-case hardness for SROLBPs. In
particular, they gave an explicit function Ext such that SROLBPn≠�(1)(Ext) Ø 2n≠log

O(1)
n.

More recently, Li [60] gave an improved sumset extractor which in turn yields an explicit
function Ext such that SROLBP2≠�(1)(Ext) Ø 2n≠O(logn). In these two constructions, the
branching program size lower bounds become quite close to optimal (the result of [60] is
optimal up to the constant in O(·)), while the correlation becomes polynomially large or a
constant. Another recent work by Li and Zhong [61] gave explicit directional a�ne extractor
for entropy k Ø cn(log log logn)2/ log logn with error Á = 2≠n

�(1) for some constant c > 1,
which implies exponential average-case hardness for SROLBPs of size up to 2n≠o(n).

For simplicity, we do not define directional a�ne extractors here, but just mention that
directional a�ne extractors are a special case of a�ne non-malleable extractors. Hence, our
new constructions of a�ne non-malleable extractors directly imply improved directional
a�ne extractors, which in turn also give average-case hardness for SROLBPs. Specifically,
we have the following theorem.

I Theorem 13. There exist explicit functions anmExt1, anmExt2 such that
SROLBPn≠�(1)(anmExt1) Ø 2n≠log

O(1)
n and SROLBP2≠�(1)(anmExt2) Ø 2n≠O(logn).

These bounds match the previously best-known average-case hardness results for SROLBPs
given in [17] and [60], where the branching program size lower bounds are close to optimal, but
the explicit functions we use here are di�erent. Specifically, here we use a�ne non-malleable
extractors while [17] and [60] use sumset extractors.

2 Technical Overview

Here we outline the main techniques used in this paper, opting for an informal approach at
times for clarity while omitting certain technical details.

We use the standard notation in the literature where a letter with Õ represents a tampered
version. Let f and g denote the tampering functions on X and Y in two-source non-malleable
extractors, respectively, and A be the a�ne tampering function in a�ne non-malleable
extractors.

Since two-source and a�ne non-malleable extractors are themselves two-source and
a�ne extractors, our high-level idea is to adapt the constructions of standard extractors
for polylogarithmic or logarithmic entropy into the stronger, non-malleable version. Clearly,
a direct naive application of standard extractors may not work, since the output on the
tampered inputs may be correlated to the output on the original inputs. Below we start with
two-source extractors to illustrate our main ideas. Let us first briefly review the constructions
of two-source extractors for small entropy. Generally, these extractors are double-layered:
the outer layer is a suitable resilient function, which is designed to be an extractor for non-
oblivious bit-fixing (NOBF) sources with t-wise independent property for some parameter
t. That is, most of the bits are t-wise independently uniform, while the rest of the bits can
depend arbitrarily on these bits. Here, the extractor uses a crucial property that bounded
independence su�ces to work for several resilient functions (or equivalently these functions
are fooled by bounded independence), such as the derandomized Ajtai-Linial function in [18]
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or the Majority function. The inner layer is a transformation that transforms two independent
sources into a single NOBF source with the t-wise independent property. This step itself
utilizes techniques from seeded non-malleable extractors or correlation breakers, which are
functions designed to break correlations between random variables.

To adapt the construction to two-source non-malleable extractors, our first observation
is that there is an easy case. Intuitively, this is the case where one input source has large
entropy conditioned on the tampered version. For instance, say the source X has high entropy
conditioned on every fixing of X Õ = f(X) = xÕ. Then in the analysis, we can first fix X Õ, and
then further fix the tampered output of the extractor, which is now a deterministic function
of Y and can be chosen to have a relatively small size. Conditioned on these fixings, we have
X and Y are still independent and have good entropy, hence any two-source extractor will
give an output that is close to uniform conditioned on the tampered output.

However, it is certainly possible that the above does not hold. For example, the tampering
function f can be an injective function, so that conditioned on any fixing of X Õ = f(X) = xÕ,
we have that X is also fixed. In this case, our observation is that X Õ itself must also have large
entropy (since f injective), therefore we can possibly create structures in the distribution
of the tampered version as well. Specifically, our strategy is to modify the inner layer of
the two-source extractor while essentially using the same outer layer. For simplicity, let us
consider extractors with just one bit of output. A standard approach to show the output bit
is close to uniform conditioned on the tampered output, is to show that the parity of these
two bits is close to uniform. Since the outer extractor is a resilient function, this suggests to
look at the parity of two copies of resilient functions on two correlated distributions.

Now another crucial observation behind our construction is that just like in the construc-
tion of standard two-source extractors, for certain resilient functions, the parity of two copies
of such functions is still fooled by bounded independence. Thus, if in the inner layer, we
can create structures such that the joint distribution of the NOBF source and the tampered
version has the t-wise independent property, then we will be able to show that the extractor
is non-malleable. Note that we are now in the case where the tampered sources also have
high entropy, which works in our favor since achieving t-wise independence requires a certain
amount of entropy. However, we cannot simply use previous techniques since the tampered
sources are correlated with the original sources. Therefore, we appropriately modify previous
constructions of correlation breakers to ensure the t-wise independent property in the joint
distribution.

Finally, in the actual analysis, we are not guaranteed to be in either case; and it may
happen that for some xÕ, conditioned on X Õ = xÕ we have that X has large entropy, while for
others conditioned on X Õ = xÕ we have that X has small entropy. The analysis thus needs a
careful interpolation between di�erent cases in terms of a convex combination of subsources.
We now elaborate with more details on each of these aspects below.

First we give some notation that will help with our presentation.

I Definition 14 (t-non-malleable (k, Á) seeded extractor). A function nmExt : {0, 1}n ◊
{0, 1}d æ {0, 1}m is a t-non-malleable (k, Á) extractor if it satisfies the following property:
if X is a (n, k)-source and Y is uniform on {0, 1}d, and f1, · · · , ft are arbitrary functions
from d bits to d bits with no fixed point, then

(nmExt(X,Y ), nmExt(X, f1(Y )), · · · , nmExt(X, ft(Y )), Y ) ¥Á (Um, nmExt(X, f1(Y )), · · · , Y ).

We say a distribution or a source X on n bits is (q, t, “) independent if there exists a
subset S ™ [n] with |S| Æ q such that if we consider the bits of X in [n] \ S, then every t bits
are “-close to uniform.
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A t-non-malleable (k, Á) seeded extractor nmExt with seed length d can be used to
generate a (q, t, “) source from a source X with entropy at least k in the following way:
cycle over all possible seeds i, and for each one output a bit nmExt(X, i). The output is now
(
Ô

ÁD, t+ 1, t
Ô

Á) independent with D = 2d.

2.1 Taking the parity of two resilient functions

A Boolean function on n variables is a resilient function if it is nearly balanced, and no
small coalition can have a significant influence on the output of the function. Such functions
are equivalent to extractors for NOBF sources. The resilient functions that have played a
key role in the recent advancement of extractors are the derandomized Ajtai-Linial function
in [18] and the Majority function. The former is a monotone AC

0 function, that is fooled by
polylog(n)-wise independence, while the latter is a threshold function that can be fooled by
constant-wise independence.

It is not hard to show that the parity of two independent copies of resilient functions
is still a resilient function. What is left to show is that such a parity can also be fooled by
bounded independence. When the resilient function is in AC

0, we observe that the parity of
two such functions is also in AC

0, because the parity of two bits can be written as a constant
size AC

0 circuit. Therefore, the parity of two derandomized Ajtai-Linial functions is still in
AC

0, and can be fooled by polylog(n)-wise independence by Braverman’s celebrated result [9]
on bounded independence fooling AC

0 circuits, together with some standard techniques.
To show that constant-wise independence fools the parity of two Majority functions, we

use the work of Gopalan, O’Donnell, Wu, and Zuckerman [40], which shows that constant-wise
independence fools any function of halfspaces under product distributions, as long as the
function can be implemented as a constant size circuit. In our case, this clearly holds since
we are just taking the parity of two Majority functions. Using the XOR lemma and previous
techniques (e.g., those in [56], our construction can also be extended to output a constant
number of bits.

2.2 Generating NOBF sources from the inputs and its tampered

counterparts

We want to construct a function such that when the tampered sources have su�cient entropy,
the joint distribution of the generated bits from the input sources and the tampered sources
is (q, t, “) independent for some suitable parameters q, t, and “.

The standard approach for two-source extractors, as introduced in [18], is to first apply
a seeded non-malleable extractor to one source, say Y , and then use another source X to
sample a small number of bits from the output. However, in our case, this black-box approach
does not work since the tampered sources are correlated with the original inputs. Therefore,
we have to create some kind of di�erence between the tampered sources and the original
sources, which will enable us to get the desired (q, t, “) independent property.

To achieve this, we dig into the constructions of seeded non-malleable extractors and
existing two-source non-malleable extractors, which roughly go as follows. First, one uses an
advice generator to create a short string that is di�erent from the tampered version with
high probability. Then, conditioned on the fixing of the advice strings, one can argue that
the two sources are still independent and have su�cient entropy. At this point one uses a
correlation breaker with advice, together with the advice strings to compute the output, which
is guaranteed to have the non-malleable property. However, the steps of generating advice
and subsequent application of correlation breakers require the sources to have very large
entropy (e.g., at least 2/3), which is the main reason that previous two-source non-malleable
extractors can only work for large entropy.
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To get around this barrier, our approach is to first apply a standard seeded extractor to
one source Y , and output say �(k) bits where k is the entropy. By cycling over all possible
seeds, we potentially get a matrix with D = 2d rows where d is the seed length of the seeded
extractor. We then use the other source X to sample a small number (poly(n)) of rows
from the output. Now, again a standard argument implies that most of the rows are close
to uniform. Since we are in the case where the tampered sources X Õ, Y Õ have su�cient
entropy, this is also true for the tampered version. Note that we haven’t achieved the (q, t, “)
independent property yet. Our next step is to generate advice from the original sources
and the tampered sources. However, in the low-entropy regime, it is hard to generate a
single advice for the input sources and the tampered version – the advice generator requires
generating uniform seeds to sample from an encoding of the inputs and it is hard to do so
from a slice of the sources which could have zero entropy. Therefore, we generate advice
from each row. We can then append the index of this row to the advice. This ensures that
the advice strings are both di�erent from the tampered version, and also di�erent between
di�erent rows. Now, we can apply existing constructions of correlation breakers with advice,
which will ensure that for any t rows in the combined matrix from the original sources and the
tampered sources, as long as all these rows have high entropy initially, the joint distribution
of the final outputs from the correlation breaker is “-close to uniform.

However, there are additional tricky issues with this approach. First, the correlation
breaker requires two independent sources to work, while in our case the outputs in the
matrices are already functions of both X and Y . Second, the analysis of the correlation
breaker usually requires fixing the advice strings first and arguing that the sources still
have su�cient entropy, but now since the matrices have poly(n) rows and the entropy of
the sources is just k = polylog(n), or even k = O(logn), if we fix all the advice strings then
conditioned on the fixing the sources may not have any entropy left. Finally, the set of “good”
rows (the rows that are close to uniform after the sampling using X) in the matrices depends
on the source X and Y , and after we fix the advice strings in the analysis, X and Y may
have become di�erent, and this could potentially change the set of “good” rows in the first
place.

To solve these issues, we use an argument similar to that in [55]. The idea is that
since eventually we only need (q, t, “) independence, in the analysis we can just focus on
every subset of t rows from the good rows. In particular, we can set t and the entropy
k appropriately, i.e., t is relatively small compared to k. This is because we only need
t = polylog(n) to apply the derandomized Ajtai-Linial in [18] and t = O(1) to apply the
Majority function. Now in the analysis, notice that the process of sampling using the source
X basically corresponds to Ext(Y,ExtÕ(X, i)) where Ext,ExtÕ are two seeded extractors. Thus
when t is small, for any subset T with |T | = t, we can first fix all ExtÕ(X, i) with i œ T . By
restricting the size of ExtÕ(X, i), X still has su�cient entropy conditioned on these fixings,
and now the t rows of the outputs Ext(Y,ExtÕ(X, i)) are deterministic functions of Y , while
X and Y are still independent. By restricting the size of the advice strings, we can preserve
the above properties when the analysis fixes the advice strings and goes into the correlation
breaker. Finally, as in the analysis in [55], the final error pays a price of a poly(n)t factor
from a union bound on all possible subsets of size t, which is still fine as long as we set
k ∫ t logn and use seeded extractors with error 2≠�(k) in the correlation breaker.

2.3 Convex combination of subsources

In the above two subsections, we dealt with the case where the tampered sources have
su�cient entropy. We now sketch the analysis for the general case.
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Let 2nmExt be the two-source non-malleable extractor which works if both X and X Õ

have entropy at least kx, and both Y and Y Õ have entropy at least ky, with error Á/2 and
output length m. Now assume X has min-entropy 2kx + log(2/Á), and Y has min-entropy
2ky + log(2/Á). Further assume without loss of generality that both X and Y are flat sources,
i.e., uniform distributions over some unknown subset. The analysis goes by considering
the “heavy” elements in the tampered sources X Õ and Y Õ. Specifically, for any xÕ œ {0, 1}n
and yÕ œ {0, 1}n, we consider the pre-image size of X Õ = xÕ and Y Õ = yÕ. If one of them
is large, say without loss of generality that the pre-image size of X Õ = xÕ is at least 2kx ,
then HŒ(X|X Õ = x) Ø kx. We can first fix X Õ = xÕ and then 2nmExt(xÕ, Y Õ), which is a
deterministic function of Y now conditioned on the fixing of X Õ = xÕ. Since 2nmExt(xÕ, Y Õ)
is short compared to HŒ(Y ), conditioned on these fixings we have that X and Y are still
independent and have su�cient entropy, so 2nmExt(X,Y ) is close to uniform because 2nmExt

is itself a two-source extractor. Note that we have already fixed 2nmExt(xÕ, Y Õ), and thus
2nmExt is indeed non-malleable in this case.

Next, consider the set of all the xÕ whose pre-image size under f is at most 2kx , and call
it BADX . If the total probability mass of these xÕ is at most Á/2, then we can just ignore
them (and the corresponding x in the support of X) since this only adds an extra error of
Á/2. Similarly, we can also ignore the set of all the yÕ whose pre-image size under g is at most
2ky (call it BADY ), if the total probability mass of these yÕ is at most Á/2. In either case,
we are done. Otherwise, the subsource of X Õ formed by all the xÕ œ BADX has min-entropy
at least ≠ log(2kx/(Á22kx/Á)) = kx, and the corresponding subsource of X has min-entropy
at least 2kx. Similarly, the subsource of Y Õ formed by all the yÕ œ BADY has min-entropy at
least ky, and the corresponding subsource of Y has min-entropy at least 2ky. In this case,
both sources and their tampered versions have su�cient entropy, thus by the analysis before,
2nmExt is also a non-malleable extractor.

Since X is just a convex combination of subsources (X | X Õ = xÕ œ BADx) and {(X |
X Õ = xÕ /œ BADx)}, and the same is true for Y , the correctness of 2nmExt follows.

Finally, we note that we can modify the two-source non-malleable extractor to output
k�(1) bits, by using a similar approach based on the XOR lemma as in [56]. Then, since
the two-source non-malleable extractor is strong, we can further apply a standard seeded
extractor to increase the output length to �(k).

2.4 A�ne non-malleable extractors

Our construction of a�ne non-malleable extractors roughly follows the same ideas. The
di�erence is that now we do not have access to two independent sources, but the a�ne source
itself has nice structures and the tampering function is a�ne. Thus, by using appropriate
linear seeded extractors as in previous works, certain parts of the a�ne source behave
like independent sources. Therefore, we can suitably adapt our construction of two-source
non-malleable extractors to a�ne non-malleable extractors. One particularly nice property
of a�ne sources is that when applying a strong linear seeded extractor on an a�ne source,
the output on most seeds is uniform. This implies that we can generate from an a�ne source
a somewhere random source with no error. In the two-source case, we cannot analyze the
generation of NOBF source directly from the definition of the correlation breaker (and have
to resort to additional techniques as mentioned in previous paragraph 2.2) due to the error
of the somewhere random source. In the a�ne case, there is no such concern. Therefore, we
can argue that we obtain a NOBF source directly from the definition of a�ne correlation
breaker, as in prior works on a�ne extractors for small entropy (e.g., [10]).
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3 Conclusion and Open Problems

In this paper, we significantly improved constructions of two-source and a�ne non-malleable
extractors, and our constructions essentially match standard extractors in the regime of
small entropy. We note that any future improvement of extractors for NOBF sources (e.g.,
improvement in the error) can also translate into improvements of our two-source and a�ne
non-malleable extractors. Furthermore, our results suggest that there may be a deeper
connection between standard extractors and their non-malleable counterparts, since their
constructions and parameters appear quite similar. In particular, previous works have
extensively used non-malleable extractors to construct standard extractors, but is it possible
that the reverse direction may also be true? That is, can one also use standard extractors to
construct non-malleable extractors?
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Abstract
We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully

dynamic settings. In the fully dynamic setting, we preprocess an n-vertices m-edges undirected
graph G with no� deactivated vertices initially and the others are activated. Then we receive a
single update D ™ V (G) of size |D| = d Æ dı, representing vertices whose states will be switched.
Finally, we get a sequence of queries, each of which asks the connectivity of two given vertices u and
v in the activated subgraph. The decremental setting is a special case when there is no deactivated
vertex initially, and it is also known as the vertex-failure connectivity oracles problem.

We present a better deterministic vertex-failure connectivity oracle with ‚O(dım) preprocessing
time, ÂO(m) space, ÂO(d2) update time and O(d) query time, which improves the update time of the
previous almost-optimal oracle [14] from ‚O(d2) to ÂO(d2).

We also present a better deterministic fully dynamic sensitivity oracle for subgraph connectivity
with ‚O(min{m(no� + dı), nÊ}) preprocessing time, ÂO(min{m(no� + dı), n2}) space, ÂO(d2) update
time and O(d) query time, which significantly improves the update time of the state of the art [9] from
ÂO(d4) to ÂO(d2). Furthermore, our solution is even almost-optimal assuming popular fine-grained
complexity conjectures.
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1 Introduction

We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully
dynamic settings, which is one of the fundamental dynamic graph problems in undirected
graphs. In the fully dynamic setting, this problem has three phases. In the preprocessing
phase, given an integer dı, we preprocess an n-vertices m-edges undirected graph G = (V,E)
in which some vertices are activated, called on-vertices and denoted by Von, while the others
are deactivated, called o�-vertices and denoted by Vo� . We let non = |Von| and no� = |Vo� |
denote the number of initial on-vertices and o�-vertices respectively. In the update phase, we
will receive a set D ™ V with |D| = d Æ dı, representing vertices whose states will be switched,
and we update the oracle. In the subsequent query phase, let Vnew = (Von \D) fi (Vo� fl D)
denote the activated vertices after the update. Each query will give a pair of vertices
u, v œ Vnew and ask the connectivity of u and v in the new activated subgraph G[Vnew]. The
decremental setting is a special case where there is no o�-vertices initially, i.e. Vo� is empty.

The decremental version of this problem is also called the vertex-failure connectivity
oracles problem, which has been studied extensively, e.g. [4, 5, 18, 17, 14, 13], and its
complexity was well-understood up to subpolynomial factors. Specifically, a line of works by
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Duan and Pettie [4, 5] started the study on vertex-failure connectivity oracles for general dı,
and they finally gave a deterministic oracle with ÂO(mn) preprocessing time, ÂO(mdı) space,
ÂO(d3) update time and O(d) query time. Following [4, 5], Long and Saranurak [14] presented
an improved solution with ‚O(m) + ÂO(mdı) preprocessing time, ÂO(m) space, ‚O(d2) update
time and O(d) query time1, which is optimal up to subpolynomial factors because matching
(conditional) lower bounds for all the four complexity measurements were shown in [7, 5, 14].
We refer to Table 1 for more solutions to this problem (for example, Kosinas [13] proposed a
simple and practical algorithm using a conceptually di�erent approach). However, there are
still relatively large subpolynomial overheads on the current almost-optimal upper bounds
(i.e., on the preprocessing time and update time of the LS-oracle), so a natural question is
whether we can improve them:

Can we design an almost-optimal deterministic vertex-failure connectivity oracle with only
polylogarithmic overheads on the update time, or even on all complexity bounds?

The fully dynamic sensitivity oracles problem for subgraph connectivity was studied
by [8, 9]. Henzinger and Neumann [8] showed a black-box reduction from the decremental
setting. Plugging in the almost-optimal decremental algorithm of [14], this reduction leads to
a fully dynamic sensitivity oracle with ‚O(n2

o�
m) + ÂO(dın2

o�
m) preprocessing time, ÂO(n2

o�
m)

space, ‚O(d4) update time and O(d2). Hu, Kosinas and Polak [9] studied this problem from an
equivalent but di�erent perspective called connectivity oracles for predictable vertex failures,
which gave a solution with ÂO((no� + dı)m) preprocessing time, ÂO((no� + dı)m) space, ÂO(d4)
update time and O(d) query time2. Despite the e�orts, there are still gaps between the
upper bounds of the fully dynamic setting and the decremental setting (except the query
time). Naturally, one may have the following question:

Can we match the upper bounds in the fully dynamic and decremental settings
or show separations between them for all the four measurements?

Notably, [9] showed a conditional lower bound ‚�((no� + dı)m) on the preprocessing time3,
which separated two settings at the preprocessing time aspect. However, the right complexity
bounds are still not clear for the space and the update time. In particular, given that
two di�erent approaches [8, 9] both showed upper bounds around d4 for update time, it is
interesting to identify if this is indeed a barrier or it just happened accidentally. Furthermore,
we note that it seems hard to improve the update time following either of these two approaches,
because the black-box reduction by [8] has been plugged in the almost-optimal decremental
oracle, and the fully dynamic oracle by [9] generalizes the decremental oracle by [13], where
the latter already has ÂO(d4) update time.

1.1 Our Results
We give a partially a�rmative answer to the first question and answer the second question
a�rmatively by the following results.

1 Throughout the paper, we use ÂO(·) to hide a polylog(n) factor and use ‚O(·) to hide a n
o(1) factor.

2 In [9], they modeled the problem using slightly di�erent parameters, and here we describe their bounds
using our parameters. Basically, they defined a parameter dÕ (named d in their paper) in the preprocessing
phase and ÷ in the update phase. Their ÷ is equivalent to our d. Besides, fixing dı and no� , our input
instances can be reduced to theirs with d

Õ at most no� + dı. In the other direction, fixing d
Õ, their input

instances can be reduced to ours with dı + no� at most 3dÕ. Furthermore, their space complexity was
not specified, but to our best knowledge, it should be roughly proportional to their preprocessing time.

3 This lower bound is obtained from input instances with no� = �(n) and m is roughly linear to n.
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The Decremental Setting

We show a better vertex-failure connectivity oracle by improving the ‚O(d2) update time of
the current almost-optimal solution [14] to ÂO(d2). See Corollary 8 for a detailed version of
Theorem 1.

I Theorem 1. There exists a deterministic vertex-failure connectivity oracle with ‚O(m) +
ÂO(dım) preprocessing time, ÂO(m) space, ÂO(d2) update time and O(d) query time.

Same as all the previous vertex-failure connectivity oracles, we can substitute all the
m factors in Theorem 1 with m̄ = min{m,n(dı + 1)} using a standard sparsification by
Nagamochi and Ibaraki [15] at a cost of an additional O(m) preprocessing time.

Table 1 Complexity of known vertex-failure connectivity oracles. All the m factors can be
replaced by m̄ = min{m,n(dı + 1)} at a cost of an additional O(m) preprocessing time. The
randomized algorithms are all Monte Carlo. The notation Ō(·) hides a polyloglog(n) factor.

Det./
Rand. Space Preprocessing Update Query

Block trees,
SQRT trees, and
[10]
only when dı Æ 3

Det. O(n) Õ(m) O(1) O(1)

Duan & Pettie
[4] for c Ø 1 Det. linear in

preprocessing time Õ(md
1≠ 2

c
ı n

1
c

≠ 1
c log(2dı) ) Õ(d2c+4) O(d)

Duan & Pettie [5]
Det. O(mdı logn) O(mn logn) O(d3 log3 n) O(d)
Rand. O(m log6 n) O(mn logn) Ō(d2 log3 n) w.h.p. O(d)

Brand &
Saranurak [18]

Rand. O(n2) O(nÊ) O(dÊ) O(d2)

Pilipczuk et al.
[17]

Det. m22
O(dı)

mn
222

O(dı)
22

O(dı)
22

O(dı)

Det. n
2poly(dı) poly(n)2O(dı log dı) poly(dı) poly(dı)

Long &
Saranurak [14]

Det. O(m log3 n) O(mn logn) Ō(d2 log3 n log4 d) O(d)
Det. O(m logú

n) Ô(m) + Õ(dım) Ô(d2) O(d)
Kosinas [13] Det. O(dım logn) O(dım logn) O(d4 logn) O(d)
This paper Det. O(m log3 n) ‚O(m) +O(dım log3 n) O(d2(log7 n+ log5 n log4 d)) O(d)

We emphasize that our result is a strict improvement on [14]. In addition to the
improvement on update time, our algorithm also improves the hidden subpolynomial overheads
on the preprocessing time. We achieve this by giving a new construction algorithm of the
low degree hierarchy, a graph decomposition technique widely used in this area [5, 14, 16].
Roughly speaking, the previous almost-linear-time construction [14] relies on modern graph
techniques including vertex expander decomposition and approximate vertex capacitated
maxflow algorithm, which are highly complicated and will bring relatively large subpolynomial
overheads. Our new construction bypasses the vertex expander decomposition to obtain
improvement on both e�ciency and quality, which is also considerably simpler. Finally, we
point out that the subpolynomial factors in our preprocessing time still comes from the
construction of the low degree hierarchy, which can be traced back to the subpolynomial
overheads of the current approximate vertex capacitated maxflow algorithm [2].

The Fully Dynamic Setting

We also show a better fully dynamic sensitivity oracle for subgraph connectivity, with update
time and query time matching the decremental bounds up to polylogarithmic factors. See
Theorem 17 for a detailed version of Theorem 2. The first upper bound ‚O(m)+ ÂO(m(no�+dı))
is obtained from a combinatorial algorithm4.

4
Combinatorial algorithms [1] are algorithms that do not use fast matrix multiplication.
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I Theorem 2. There exists a deterministic fully dynamic sensitivity oracle for subgraph
connectivity with ‚O(m) + ÂO(min{m(no� + dı), nÊ}) preprocessing time, ÂO(min{m(no� +
dı), n2}) space, ÂO(d2) update time and O(d) query time, where Ê is the exponent of matrix
multiplication.

Table 2 Complexity of known fully dynamic sensitivity oracles for subgraph connectivity.

Det./
Rand. Space Preprocessing Update Query

Henzinger &
Neumann [8] Det. ÂO(n2

o�m) ‚O(n2
o�m) + ÂO(dın

2
o�m) ‚O(d4) O(d2)

Hu, Kosinas &
Polak [9] Det. ÂO((no� + dı)m) ÂO((no� + dı)m) ÂO(d4) O(d)

This paper Det. O(min{(no� + dı)m log2 n, n2})
‚O(m)+

O(min{(no� + dı)m,n
Ê} log2 n)

O(d2 log7 n) O(d)

We also show conditional lower bounds on the preprocessing time and the space, which
separate the fully dynamic and decremental settings. Furthermore, combining our new lower
bounds and the existing ones, our solution in Theorem 2 is optimal up to subpolynomial
factors.

I Theorem 3. Let A be a fully dynamic sensitivity oracle for subgraph connectivity with
S space, tp preprocessing time, tu update time and tq query time upper bounds. Assuming
popular conjectures, we have the following:
1. If tu + tp = f(d) · no(1), then S = ‚�(n2). (See Lemma 7.10 in the full version)
2. If tu + tp = f(d) · no(1), then tu = ‚�((no� + d)m) (See [9])
3. If tu + tp = f(d) · no(1), then tu = ‚�(nÊbool) (See Lemma 7.3 in the full version)
4. If tp = poly(n), then tu + tq = ‚�(d2). (See [14])
5. If tp = poly(n) and tu = poly(dno(1)), then tq = ‚�(d). (See [7])
The f(d) above can be an arbitrary growing function, and Êbool is the exponent of Boolean
matrix multiplication.

We make some additional remarks here. When discussing lower bounds, we assume d = dı

for each update. The lower bound on the space (item 1) holds even when the input graphs
are sparse, so it naturally holds for input graphs with general density. The lower bounds
on the preprocessing time (items 2 and 3) are not contradictory, because item 2 is obtained
from sparse graphs while item 3 is obtained from dense graphs. The lower bounds on the
update time and query time (items 4 and 5) are from those in the decremental setting. See
Section 7 in the full version for the omitted proofs and more discussions.

1.2 Organization

In Section 2, we give an overview of our techniques. In Section 3, we give the preliminaries.
In Section 4, we introduce our new construction of the low degree hierarchy and obtain a
better vertex-failure connectivity oracle as a corollary. In Sections 5 and 6, we describe
the preprocessing, update and query algorithms of our fully dynamic sensitivity oracle for
subgraph connectivity. Due to space constraints, some proofs are omitted and can be found
in the full version. In particular
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2 Technical Overview

Better Vertex-Failure Connectivity Oracles

Our main contribution is a new construction of the low degree hierarchy. Then we obtain a
better vertex-failure connectivity oracle as a corollary by combining the new construction of
the low degree hierarchy and the remaining part in [14].

It is known that the construction of the low degree hierarchy can be reduced to O(logn)
calls to the low-degree Steiner forest decomposition [5, 14]. Basically, for an input graph G
with terminal set U ™ V (G), we say a forest F ™ E(G) is a Steiner forest of U in G if F spans
the whole U (may also span some additional non-U vertices) and for each u, v œ U , u, v are
connected in F if and only if they are connected in G. We propose a new almost-linear time
low-degree Steiner forest decomposition algorithm as shown in Lemma 4, which improves the
degree parameter � from no(1) to O(log2 n) compared to the previous one by [14]. This will
leads to an improvement to the quality of the low degree hierarchy, and finally reflects on
the update time.

I Lemma 4 (Lemma 12, Informal). Let G be an undirected graph with terminals U ™ V (G).
There is an almost-linear-time algorithm that computes a separator |X| ™ V (G) of size
|X| Æ |U |/2, and a low-degree Steiner forest of U \ X in G \ X with maximum degree
� = O(log2 n).

In the following discussion, we assume U = V (G) for simplicity (hence spanning trees/-
forests and Steiner trees/forests are now interchangable). To obtain Lemma 4, our starting
point is that it is not necessary to perform a vertex expander decomposition (which will
bring large no(1) overheads to �) to get a low-degree Steiner forest decomposition. Basically,
in [14], they obtain a fast low-degree Steiner forest decomposition by first proving that any
vertex expander admits a low-degree spanning tree, so then it su�ces to perform the stronger
vertex expander decomposition. The way they prove the former is to argue that for any
vertex expander H, one can embed another expander W into H with low vertex-congestion,
which implies that H has a low-degree subgraph including all vertices in V (H).

The key observation is that, to make the above argument work, W does not need to be
an expander and W can be an arbitrary connected graph. This inspires us to design the
following subroutine Lemma 5. Then Lemma 4 can be shown by invoking Lemma 10 using a
standard divide-and-conquer framework.

I Lemma 5 (Lemma 10, Informal). Let G be an undirected graph. There is an almost-linear-
time algorithm that computes either

a balanced sparse vertex cut (L, S,R) with |R| Ø |L| Ø |V (G)|/12 and |S| Æ 1/(100 logn) ·
|L|.
a large subset V Õ ™ V (G) with |V Õ| Ø 3|U |/4 s.t. we can embed a connected graph W Õ

with V (W Õ) = V Õ into G[V Õ] with vertex congestion O(log2 n), which implies a spanning
tree in G[V Õ] with maximum degree O(log2 n).

We design the algorithm in Lemma 5 using a simplified cut-matching game. The original
cut-matching game [12, 11] can be used to embed an expander into a graph with low
congestion (or produce a balanced sparse cut). To embed a connected graph, consider the
following procedure. Assume a standard matching player (i.e. Lemma 9) which, given a
graph G and a balanced partition (A,B) of V (G), either embeds a large matching between
A and B into G with low vertex-congestion or outputs a balanced sparse vertex cut in
almost-linear time. Start with a graph W with V (W ) = V (G) but no edge and perform
several rounds. At each round, we (as the cut player) partition the connected components
of W into two parts with balanced sizes, and feed the partition to the matching player. If
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the matching player gives a matching, we add it to W and go to the next round. The game
stops once a giant connected component (of size at least 3|V (G)|/4) appears in W , which
will roughly serve as W Õ. Roughly speaking, the game will stop in O(logn) rounds because
at each round, there exists a large fraction of vertices, s.t. for each of them (say vertex v),
the component containing v has its size doubled.

Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Our fully dynamic oracle is actually a generalization of a simplified version of the decremental
oracle in [14].

Initially, we construct a low degree hierarchy on the activated subgraph Gon := G[Von]. As
mentioned in [14], the hierarchy will roughly reduce Gon to the following semi-bipartite form.
First, Von can be partitioned into Lon and Ron, called left on-vertices and right on-vertices
respectively, s.t. there is no edge connecting two vertices in Ron. Second, Lon is spanned by
a known path · . Therefore, we assume the original graph G has a semi-bipartite Gon from
now.

When there is no o�-vertices initially (i.e. the decremental setting), the properties of a
semi-bipartite Gon naturally support the following update and query strategy. In the update
phase, removing vertices in D will break the path · into at most d + 1 intervals, and we
will somehow (we will not explain this in the overview) recompute the connectivity of these
intervals in the graph Gon \D. Then, for each query of u, v œ Von \D, it su�ces to find two
intervals Iu, Iv connecting with u, v in Gon \D respectively. When u, v are left on-vertices,
Iu, Iv can be found trivially. When u, v are right on-vertices, we just need to scan at most
d+ 1 neighbors of each of u, v, which takes O(d) time. Note that removing D will generate
at most d+ 1 intervals is a crucial point to achieve fast update time.

Back to the fully dynamic setting, for an update D, in addition to removing vertices
Don := D fl Von from Gon, we will also add vertices Do� := D fl Vo� and their incident edges.
The key observation is that G[Von fi Do� ] is still roughly a semi-bipartite graph. The first
property will still hold if we put the newly activated vertices Do� into the left side. The
second property may not hold because we do not have a path spanning the new left vertices
Lon fi Do� . However, this will not hurt because we can still partition Lon fi Do� into O(d)
connected parts after removing Don from G[Von fi Do� ], i.e. at most d+ 1 intervals covering
Lon \Don, and at most d vertices in Do� .

Giving this key observation, it is quite natural to adapt the decremental algorithm to the
fully dynamic setting. Using the ideas of adding artificial edges (intuitively, substituting each
right vertex and its incident edges with an artificial clique on its left neighbors) and applying
2D range counting structure, we can design an update algorithm with ÂO(d3) update time [5].
To improve the update time to ÂO(d2), we can use a Bor�vka’s styled update algorithm and
implement it by considering batched adjacency queries on intervals [14].

3 Preliminaries

Throughout the paper, we use the standard graph theoretic notation. For any graph, we
use V (·) and E(·) to denote its vertex set and edge set respectively. If there is no other
specification, we use G to denote the original graph on which we will build the oracle, and
we let n = |V (G)| and m = |E(G)|. Initially, the vertices V (G) in the original graph are
partitioned into on-vertices Von and o�-vertices Vo� , and we let no� = |Vo� |. For a graph H
and any S ™ V (H), we let H[S] denote the subgraph induced by vertices S. Also, for any
S ™ V (H), we use H \ S to denote the graph after removing vertices in S and edges incident
to them. Similarly, for any F ™ E(H), H \ F denote the graph after removing edges in F .
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We also use the notion of multigraphs. For a multigraph H, its edge set E(H) is a
multiset. We use + and

q
to denote the union operation and use ≠ to denote the subtraction

operation on multiset. We let Ê denote the exponent of matrix multiplication and Êbool

denote the exponent of Boolean matrix multiplication. To our best knowledge, currently Ê
and Êbool have the same upper bound.

4 The Low Degree Hierarchy

The low degree hierarchy was first introduced in [5] to design e�cient vertex-failure connectiv-
ity oracles. The construction of this hierarchy in [5] is based on the approximate minimum
degree Steiner forest algorithm of [6], which gives Õ(mn) construction time. Later, an altern-
ative construction algorithm was shown in [14] by exploiting vertex expander decomposition,
which improves the construction time to m1+o(1), at a cost of a small quality loss.

In this section, we will show a new construction algorithm, which still runs in almost-linear
time and gives a hierarchy with quality better than the one in [14] (but still worse than the
one in [5]). To obtain the quality improvement, we basically simplify the construction in [14]
and bypass the vertex expander decomposition.

We define the low degree hierarchy in Definition 6, and the main result of this section is
Theorem 7. It was known that constructing a low degree hierarchy reduces to several rounds
of low-degree Steiner forest decomposition. In Section 4.1, we introduce our key subroutine
Lemma 10, which given an input graph, either computes a balanced sparse vertex cut or a
low-degree Steiner tree covering a large fraction of terminals. In Section 4.2, we show the
low-degree Steiner forest decomposition algorithm Lemma 12 using Lemma 10 in a standard
divide and conquer framework, and then complete the proof of Theorem 7.

I Definition 6 (Low Degree Hierarchy [5], Definition 5.1 in [14]). Let G be a connected
undirected graph. A (p,�)-low degree hierarchy with height p and degree parameter � on
G is a pair (C, T ) of sets, where C is a set of vertex-induced connected subgraphs called
components, and T is a set of Steiner trees with maximum vertex degree at most �.

The set C of components is a laminar set. Concretely, it satisfies the following properties.

(1) Components in C belong to p levels and we denote by Ci the set of components at level
i. In particular, at the top level p, Cp = {G} is a singleton set with the whole G as
the unique component. Furthermore, for each level i œ [1, p], components in Ci are
vertex-disjoint and there is no edge in E(G) connecting two components in Ci.

(2) For each level i œ [1, p ≠ 1] and each component “ œ Ci, there is a unique component
“Õ œ Ci+1 such that V (“) ™ V (“Õ), where we say that “Õ is the parent-component of “
and that “ is a child-component of “Õ.

(3) For each component “ œ C, the terminals of “, denoted by U(“), are vertices in “ but not
in any of “’s child-components. Note that U(“) can be empty. In particular, for each
“ œ C1, U(“) = V (“).

Generally, for each level i œ [1, p], we define the terminals at level i be terminals in all
components in Ci, denoted by Ui =

t
“œCi

U(“).
The set T of low-degree Steiner trees has the following properties.

(4) T can also be partitioned into subsets T1, ..., Tp, where Ti denote trees at level i and trees
in Ti are vertex-disjoint.

(5) For each level i œ [1, p] and tree · œ Ti, the terminals of · is defined by U(·) = Ui flV (·).
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(6) For each level i œ [1, p] and each component “ œ Ci with U(“) ”= ÿ, there is a tree · œ Ti
such that U(“) ™ U(·), denoted by ·(“). We emphasize that two di�erent components “
and “Õ œ Ci may correspond to the same tree · œ Ti.

For better understanding, we note that the terminal sets of component {U(“) | “ œ C},
levels {Ui | 1 Æ i Æ p}, and Steiner trees {U(·) | · œ T } are all partitions of V (G). One
may also get the picture of the hierarchy from the perspective of construction. See the
construction described in Algorithm 2, which invokes Lemma 12 in a black-box way.

I Theorem 7. Let G be an undirected graph. There is a deterministic algorithm that
computes a (p,�)-low degree hierarchy with p = O(logn) and � = O(log2 n). The running
time is m1+o(1).

Corollary 8 is obtained by substituting the construction of low degree hierarchy in [14]
with ours. Formally speaking, it is a corollary of Theorem 7, and Lemma 6.14, Theorem 7.2
and Section 7.3 in [14].

I Corollary 8. There is a deterministic vertex-failure connectivity oracle with ‚O(m) +
O(dım log3 n) preprocessing time, O(m log3 n) space, O(d2(log7 n+ log5 n · log4 d)) update
time and O(d) query time.

4.1 A Balanced Sparse Vertex Cut or a Low-Degree Steiner Tree
The goal of this subsection is to show Lemma 10, a subroutine which given a graph with
terminals, outputs either a balanced sparse vertex cut or a low-degree Steiner tree covering
a large fraction of terminals. In fact, some expander decomposition algorithms (e.g. [3])
exploit a similar subroutine which either computes a balanced sparse cut or certifies that
a large part of the graph is an expander. Our subroutine can be viewed as a weaker and
simplified version, because similar to the notion of expanders, a low-degree Steiner tree is
also an object that certifies some kind of (weaker) well-linkedness.

At a high level, our algorithm uses a simplified cut-matching-game framework. A cut-
matching game is an interactive process between a cut player and a matching player with
several rounds. Start from a graph with no edge. In each round, the cut player will select a cut
and then the matching player is required to add a perfect matching on this cut. It is known
that there exists cut-player strategies against an arbitrary matching player that guarantees
the final graph is an expander after ÂO(1) rounds [12, 11]. In the proof of Lemma 10, we show
a cut-player strategy that only guarantees the final graph is a connected graph. Combining a
classic matching player as shown in Lemma 9, we can either find a balanced sparse vertex cut
or embed a connected graph covering most of the terminals into the original graph with low
vertex congestion. In the latter case, the embedding leads to a low-degree subgraph covering
most of the terminals. Finally, picking an arbitrary spanning tree in this subgraph su�ces.

Given a cut w.r.t. terminals, Lemma 9 will either output a balanced sparse vertex cut
or a large matching between terminals that is embeddable into the original graph with low
vertex congestion. In fact, it is a simplified version of the matching player in [14], and the
proof can be found in Appendix A.1 of the full version.

I Lemma 9. Let G be an undirected graph with a terminal set U . Given a parameter „ and
a partition (A,B) of U , there is a deterministic algorithm that computes either

a vertex cut (L, S,R) with |R fl U | Ø |L fl U | Ø min{|A|, |B|}/3 and |S| Æ „ · |L fl U |, or
a matching M between A and B with size |M | Ø min{|A|, |B|}/3 s.t. there is an embedding
�MæG of M into G with vertex congestion at most Á1/„Ë.

The running time is m1+o(1). If the output is a matching M , the algorithm can further output
the edge set E(�MæG) of the embedding �MæG.
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I Lemma 10. Let G be an undirected graph with a terminal set U . Given parameters
0 < ‘,„ Æ 1/4, there is a deterministic algorithm that computes either

a vertex cut (L, S,R) with |R fl U | Ø |L fl U | Ø ‘|U |/3 and |S| Æ „ · |L fl U |, or
a subset Udrop ™ U of terminals with |Udrop| Æ ‘|U | and a Steiner tree · on G \ Udrop of
terminal set U \ Udrop with maximum degree O(log |U |/„).

Proof. The algorithm is made up of an iteration phase and a postprocessing phase. The
iteration phase will maintain an incremental graph W with V (W ) = U , called the witness
graph, and its embedding �WæG into G. Precisely, instead of storing the embedding �WæG

explicitly, the algorithm will only store its edge set E(�WæG). Initially, the witness graph
W (0) has no edge and E(�W (0)æG) is empty. We use W (i) and E(�W (i)æG) to denote the
witness graph and the edge set of the embedding right after the i-th round.

In the iteration phase, we do the following steps in the i-th round.
1. We compute all the connected components of W (i≠1), which forms a partition Q(i≠1) of

U s.t. each Q œ Q(i≠1) is a subset of |U |, called a cluster. If there is a cluster Qı œ Q(i≠1)

has |Qı| Ø (1≠ ‘)|U |, then we terminate the iteration phase and go to the postprocessing
phase, otherwise we proceed to the next step.

2. Because step 1 guarantees that all clusters in Q(i≠1) have size at most (1 ≠ ‘)|U |, we will
partition Q(i≠1) into two groups QA and QB depending on the following two cases.

(a) If all clusters in Q(i≠1) have size at most |U |/2, then we partition Q(i≠1) into QA

and QB s.t.
q

QœQA
|Q| Ø |U |/4 and

q
QœQB

|Q| Ø |U |/4.
(b) Otherwise, there is a unique cluster Qı s.t. |U |/2 < |Qı| Æ (1 ≠ ‘)|U |, and we let

QA = Q \ {Qı} and QB = {Qı}.

Let Ai =
t

QœQA
Q and Bi =

t
QœQB

Q. Note that by definition, (Ai, Bi) forms a
partition of U . We have |Ai|, |Bi| Ø |U |/4 in case (a) and |Ai|, |Bi| Ø ‘|U | in case (b).

3. We apply Lemma 9 on graph G and terminal U with parameter „ and the partition
(Ai, Bi) of U . If we get a vertex cut (L, S,R), it will satisfy |R fl U | Ø |L fl U | Ø
min{|Ai|, |Bi|}/3 Ø ‘|U |/3 and |S| Æ „ · |L fl U | as desired, so we can terminate the
whole algorithm with (L, S,R) as the output. Otherwise, we get a matching Mi between
Ai and Bi with size |Mi| Ø |Ai|/3, and the edge set E(�MiæG) of some embedding
�MiæG that has vertex congestion O(1/„). Then we let W (i) = W (i≠1) fi Mi and
E(�W (i)æG) = E(�W (i≠1)æG) fi E(�MiæG), and proceed to the next round.

If the algorithm does not end at step 3, it exits the iteration phase at step 1, and then
we perform the following postprocessing phase. Let W denote the final witness graph with
connected components Q and a cluster Qı œ Q s.t. |Qı| Ø (1 ≠ ‘)|U |. Note that Qı ™ U .
Let GÕ be the subgraph of G induced by E(�WæG). By the definition of embedding, vertices
in Qı are also connected in GÕ. In other words, Qı is contained by a connected component of
GÕ. We can take an arbitrary spanning tree · of this component as a Steiner tree of V (·)flU ,
and define Udrop = U \ V (·) be the uncovered terminals.

We now show that Udrop and · have the desire property. The number of uncovered
terminals is bounded by |Udrop| Æ |U | ≠ |V (·) fl U | Æ |U | ≠ |Qı| Æ ‘|U |, and · is a Steiner
tree of U \ Udrop with maximum degree O(log |U |/„) because GÕ has maximum degree at
most the vertex congestion of �WæG, which is at most O(log |U |/„) by Claim 11.

B Claim 11. The number of rounds in the iteration phase is at most O(log |U |), and the
vertex congestion of the final embedding �WæG is at most O(log |U |/„).
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Proof. Note that the early rounds will go into case (a) in step 2, while the late rounds will
go into case (b). We bound the number of case-(a) rounds and case-(b) rounds separately.

The number of case-(a) rounds is at most O(log |U |) by the following reason. We define a
potential function �(W ) of the witness graph by

�(W ) =
ÿ

QœQ

ÿ

vœQ

log |Q| =
ÿ

QœQ
|Q| · log |Q|.

In particular, for each cluster Q œ Q and each vertex v œ Q, we say the potential at v is
log |Q|.

Because initially �(W (0)) = 0 and we always have �(W ) Æ |U | log |U |, it is su�cient to
show that each case-(a) round increases the potential by at least �(|U |). To see this, consider
the i-th case-(a) round. For each matching edge {u, v} œ Mi, let Q(i≠1)

v (resp. Q(i≠1)

u ) be
the connected component of W (i≠1) that contains v (resp. u), and assume without loss of
generality that |Q(i≠1)

v | Æ |Q(i≠1)

u |. Then the connected component Q(i)

v of W (i) that contains
v will have |Q(i)

v | Ø 2|Q(i≠1)

v |, because Q(i)

v ´ Q(i≠1)

u fi Q(i≠1)

v . In other words, this round
will increase the potential at v (from log |Q(i≠1)

v | to log |Q(i)

v |) by at least 1. Summing over
|Mi| matching edges, the total potential �(W ) will be increased by at least |Mi| Ø |U |/12 as
desired, because the potential at any v œ V (W ) will never drop.

It remains to show that the number of case-(b) rounds is at most O(log |U |). This is
simple because in each round, the matching Mi will merge at least |Ai|/3 terminals in |Ai|
into the giant cluster Qı, which means |Qı| will reach the threshold (1 ≠ ‘)|U | in O(log |U |)
many case-(b) rounds and then the iteration phase ends.

The final embedding �WæG has vertex congestion O(log |U |/„) because there are
O(log |U |) rounds and the embedding �MiæG has vertex congestion O(1/„) each round. C

J

4.2 The Low-Degree Steiner Forest Decomposition

Lemma 12 describes the low-degree Steiner forest decomposition algorithm, which invokes
Lemma 10 in a divide-and-conquer fashion. For simplicity, the readers can always assume
‘ = 1/2, which is the value we will choose when constructing the low degree hierarchy. We
introduce this tradeo� parameter ‘ just to show that our algorithm has the same flexibility
as those in [5, 14].

I Lemma 12. Let G be an undirected graph with a terminal set U . Given a parameter
0 < ‘ Æ 1/2, there is a deterministic algorithm that computes

a vertex set X ™ V (G), called the separator, s.t. |X| Æ ‘|U |, and
for each connected component Y of G \ X s.t. U intersects V (Y ), a Steiner tree ·Y
spanning U fl V (Y ) on Y with maximum degree O(log2 |U |/‘).

The running time is m1+o(1)/‘.

We include the algorithm of Lemma 12 in Algorithm 1, and the complete proof can be
founded in the full version.
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Algorithm 1 The low-degree Steiner forest decomposition SFDecomp(G,U).

Input: An undirected graph G with terminals U .
Output: A separator X and a collection T of Steiner trees {·Y }.
1: Let ‘Õ = ‘/2 and „ = ‘Õ/ log |U |
2: Apply Lemma 10 on G and U with parameters ‘Õ and „.
3: if Lemma 10 outputs a vertex cut (L, S,R) then
4: (XL, TL) Ω SFDecomp(G[L], L fl U)
5: (XR, TR) Ω SFDecomp(G[R], R fl U)
6: Return X = XL fi XR fi S and T = TL fi TR.
7: else

8: Otherwise Lemma 10 outputs Udrop ™ U and a Steiner tree · of U \Udrop on G\Udrop.
9: Return X = Udrop and T = {·}.

10: end if

As shown in [5], to construct a low-degree hierarchy (C, T ), it su�ces to invoke the
low-degree Steiner forest decomposition (with ‘ = 1/2) O(logn) times. The algorithm is
shown in Algorithm 2, and the proof of correctness is included in Appendix A.2 in the full
version.

Algorithm 2 The construction of the low-degree hierarchy.

Input: An undirected graph G.
Output: A low-degree hierarchy (C, T ).
1: Initialize i = 1, X1 = V (G).
2: while Xi is not empty do

3: (Xi+1, Ti) Ω SFDecomp(G,Xi) with ‘ = 1/2.
4: i Ω i+ 1.
5: end while

6: p Ω i ≠ 1, which denotes the number of levels.
7: for each level i do
8: U Õ

i
Ω Xi fi ... fi Xp.

9: Ci Ω the connected component of G \ U Õ
i+1

(particularly, U Õ
p+1

= ÿ).
10: Ui Ω U Õ

i
\ U Õ

i+1
, which denotes the terminals of level i.

11: end for

5 The Preprocessing Algorithm

In this section, we will describe the preprocessing algorithm, which basically first computes
the low degree hierarchy on Gon := G[Von], and then constructs some a�liated data structures
on top of the hierarchy.

The low degree hierarchy (C, T ) is computed by applying Theorem 7 on Gon, if Gon is a
connected graph. In the case that Gon is not connected, we simply apply Theorem 7 on each
of the connected components of Gon. To simplify the notations, we use (C, T ) to denote the
union of hierarchies of connected components of Gon, and still say (C, T ) is the low degree
hierarchy of Gon. Note that (C, T ) has all properties in Definition 6, except that the top
level C1 are now made up of connected components of Gon.
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In Section 5.1, we introduce the notions of artificial edges and the artificial graph Ĝ. In
Section 5.2, we define a global order fi based on Euler tour orders of Steiner trees in T , and
then construct a 2D range counting structure which can answer the number of edges in E(Ĝ)
between two intervals on fi. Finally, in Section 5.3, we summarize what we will store, and
analyse the preprocessing time and the space complexity.

5.1 Artificial Edges and the Artificial Graph Ĝ

The artificial graph Ĝ is a multi-graph constructed by adding some artificial edges into
the original graph G in the following way. For each component “ œ C, let A“ collect the
neighbors of V (“) in G, formally defined by A“ = {v | v œ V (G) \ V (“) s.t. ÷{u, v} œ
E(G) with u œ V (“)}. We call A“ the adjacency list of “. Let A“,on = A“ fl Von and
A“,o� = A“ fl Vo� . Next, we let B“,o� = A“,o� and let B“,on be an arbitrary subset of A“,on

with size min{dı + 1, |A“,on|}. Then define B“ = B“,on fi B“,o� .
The artificial edges added by the component “ is then Ê“ = {{u, v} | u œ A“ , v œ B“ , u ”=

v}. Namely, Ê“ consists of a clique on B“ and a biclique between B“ and A“ \B“ . Finally,
the artificial graph Ĝ is defined by Ĝ = G+

q
“œC Ê“ . We emphasize that Ĝ is a multi-graph,

and those edges connecting the same endpoints will have di�erent identifiers.
We show some useful properties in Proposition 13. Item 3 of Proposition 13 basically

says that, if A“ has an on-vertex after update, then B“ also has one.

I Proposition 13. We have the following.
1.

q
“œC |A“ | Æ O(pm).

2. |E(Ĝ)| Æ O(pm(no� + dı)).
3. Given any update D ™ V with |D| Æ dı, if (A“,on \D) fi (A“,o� fl D) ”= ÿ, then we have

(B“,on \D) fi (B“,o� fl D) ”= ÿ.

Proof.
Part 1. For each “ œ C, observe that |A“ | Æ

q
vœV (“)

degG(v). Hence
q

“œC |A“ | Æ O(pm)
because each vertex can appear in at most p components (at most one at each level).

Part 2. By definition, |E(Ĝ)| Æ m+
q

“œC
|Ê“ | Æ m+

q
“œC |A“ | · |B“ |. Note that |B“ | Æ

no� + dı + 1 for all “ œ C by construction. Combining part 1, we have |E(Ĝ)| Æ
O(pm(no� + dı)).

Part 3. If |A“,on| Æ dı + 1, we have A“ = B“ by construction and the proposition trivially
holds. Otherwise, B“ will include dı + 1 vertices in A“,on. Because |D| Æ dı, at least one
of them will survive in B“,on \D, which implies (B“,on \D) fi (B“,o� fl D) ”= ÿ. J

5.2 The Global Order and Range Counting Structures

Next, we define an order, called the global order and denoted by fi, over the whole vertex set
V (G), based on the Euler Tour orders of Steiner trees in T .

For each · œ T , we define its Euler tour order ET(·) as an ordered list of vertices in V (·)
ordered by the time stamps of their first appearances in an Euler tour of · (starting from an
arbitrary root). Intuitively, the Euler tour order ET(·) can be interpreted as a linearization
of · , i.e. after the removal of failed vertices in · , the remaining subtrees will corresponding
to intervals on ET(·), as shown in Lemma 14.
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I Lemma 14 (Lemma 6.3 in [14], Rephrased). Let · be an undirected tree with maximum
vertex degree �. A removal of d failed vertices from · will split · into at most O(�d) subtrees
·̂1, ·̂2, ..., ·̂O(�d), and there exists a set I· of at most O(�d) disjoint intervals on ET(·), such
that each interval is owned by a unique subtree and for each subtree ·i, V (·i) is equal to the
union of intervals it owns.

Furthermore, by preprocessing · in O(|V (·)|) time, we can store ET(·) and some addi-
tional information in O(|V (·)|) space, which supports the following operations.

Given a set D· of d failed vertices, the intervals It can be computed in O(�d log(�d))
update time.
Given a vertex v œ V (·) \D· , it takes O(log d) query time to find an interval I œ It s.t.
vertices in I are connected to v in · \D· .

Given the Euler tour orders of all · œ T , we define the global order fi as follows. We
first concatenate ET(·) fl U(·) (i.e. the restriction of ET(·) on the terminals of ·) of all
· œ T in an arbitrary order, and then append all vertices in Vo� to the end. Recall that
{U(·) | · œ T } partitions Von, so fi is well-defined.

With the global order fi, we will construct a 2D-range counting structure Table, which
can answer the number of edges in E(Ĝ) that connect two disjoint intervals on fi. We first
initialize Tableinit to be an ordinary 2D array on range fi ◊ fi. For each u, v œ fi, we store a
non-negative integer in the entry Tableinit(u, v) representing the number of edges in E(Ĝ)
connecting vertices u and v.

I Lemma 15. Suppose that we can access the lists A“ and B“ for all “ œ C. There is
a combinatorial algorithm that computes Tableinit in O(|E(Ĝ)|) time, or Tableinit can be
computed in O(p · nÊ) time using fast matrix multiplication.

Proof. A trivial construction of Tableinit is to construct the edge sets E(Ĝ) explicitly, and
then scan the edges one by one. Obviously, this takes O(|E(Ĝ)|) time.

When |E(Ĝ)| is large, we can use fast matrix multiplication (FMM) to speed up the
construction of Tableinit. Recall that E(Ĝ) = E(G)+

q
“œC Ê“ . We first add the contribution

of E(G) into Tableinit using the trivial algorithm, which takes O(m) time. Next, we compute
the contribution of artificial edges, i.e.

q
“œC Ê“ , using FMM. We construct a matrix X

with n rows and |C| columns, where rows are indexed by the global order fi and columns are
indexed by components (in an arbitrary order). For each vertex u œ fi and component “ œ C,
the entry X(u, “) = 1 if and only if u œ A“ . Similarly, we define an n-row |C|-column matrix
Y , in which each entry Y (u, “) = 1 if and only if u œ A“ \ B“ . Let Z = X ·X| ≠ Y · Y |.
Observe that, for each pair of distinct vertices u, v œ fi,

Z(u, v) =
ÿ

“œC
(X(u, “) ·X(v, “) ≠ Y (u, “) · Y (v, “))

=
ÿ

“œC
1[u, v œ A“ ] ≠ 1[u, v œ A“ \B“ ]

=
ÿ

“œC
1[{u, v} œ Ê“ ].

Therefore, the matrix Z count the contribution of
q

“
Ê“ correctly and the last step is to

add Z to Tableinit. The construction time is dominated by the computation of Z, which
takes O(p · nÊ) time because it involves multiplying an n ◊ |C| matrix and a |C| ◊ n matrix,
and |C| = O(pn). J
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I Lemma 16. With access to the positive entries of Tableinit, we can construct a data
structure Table that given any disjoint intervals I1 and I2 on fi, answers in O(logn) time
the number of edges in E(Ĝ) with one endpoint in I1 and the other one in I2. The structure
Table can be constructed in O(N logn) time and takes space O(N logn), where N denotes
the number of positive entries in Tableinit.
Proof. We simply construct Table as a standard weighted 2D range counting structure of
Tableinit, By using textbook algorithms such as range trees and persistent segment trees, we
can construct Table in O(N logn) time and it takes space O(N logn). The correctness of
Table follows the definition of Tableinit. J

5.3 Preprocessing Time and Space Analysis
In conclusion, we will compute and store the following in the preprocessing phase.

First, we store the low degree hierarchy (C, T ). Constructing the low degree hierarchy
takes Ô(m) time by Theorem 7. Storing the low degree hierarchy explicitly takes O(pn)
space, because for each level i, the components in Ci are vertex disjoint, also Steiner trees
in Ti.
Next, for each “ œ C, we store the lists A“ and B“ after ordering them by fi. Computing
the lists A“ and B“ takes O(pm) time by checking the incident edges of each vertex in each
component. Storing the lists A“ and B“ takes O(pm) space by Item 1 in Proposition 13.
Additionally, for each “ œ C, store the list A“,on.
For each v œ Vo� and “ œ C, store a binary indicator to indicate whether v œ A“,o� or
not. Computing the indicators takes O(pm) time by scanning all the lists A“ . Storing
the indicators explicitly takes O(|Vo� | · |C|) = O(pn · |Vo� |) space.
We also store the global order fi, which takes O(n) space. For each · œ T , we store ET(·)
and the additional information stated in Lemma 14 in O(|V (·)|) space. Computing the
things above takes totally

q
·œT |V (·)| = O(pn) time by Lemma 14.

Finally, we store the data structure Table. Combining Item 2 in Proposition 13 and
Lemmas 15 and 16, we can compute Table in O(pm(no� + d) logn) time using an combin-
atorial algorithm, or in O(p · nÊ logn) time using fast matrix multiplication. The space
to store Table is min{pm(no� + d) logn, n2}.

In conclusion, the total preprocessing time can be upper bounded by ‚O(m)+O(pm(no� +
d) logn) using an combinatorial algorithm, then tp = �̂(md), or Ô(m) + O(p · nÊ logn)
using fast matrix multiplication. The space complexity is O(min{pm(no� + d) logn, n2}).
Because the low degree hierarchy has p = O(logn) levels, the preprocessing time is ‚O(m) +
O(min{m(no� + d) log2 n, nÊ log2 n}), and the space is O(min{m(no� + d) log2 n, n2}).

6 The Update and Query Algorithms

Let D ™ V (G) be a given update. We use Don = D fl Von to denote the vertices that will be
turned o� in this update and Do� = D fl Vo� to denote the vertices that will be turned on.
Let Vnew = (Von \Don) fi Do� be the on-vertices after updates.

Our update strategy is to recompute the connectivity of a subset of a�ected vertices
Qı ™ Vnew on some a�ected graph Gı. In Section 6.1, we will define Qı and Gı, and prove
that Qı has the same connectivity on the a�ected graph Gı and the updated original graph
G[Vnew]. In Section 6.2, we will partition Gı into a small number of sets s.t. each set forms
an interval on the global order fi and it is certified to be connected by some Steiner tree
in T . Thus, it su�ces to solve the connectivity of intervals on Qı, which is formalized in
Lemma 19.



Y. Long and Y. Wang 109:15

I Theorem 17. There exists a deterministic fully dynamic sensitivity oracle for subgraph
connectivity with O(min{m(no� + dı) log2 n, n2}) space, O(d2 log7 n) update time and O(d)
query time. The preprocessing time is ‚O(m) + O(m(no� + dı) log2 n) by a combinatorial
algorithm, and ‚O(m) +O(nÊ log2 n) using fast matrix multiplication.

We first conclude our fully dynamic sensitivity oracle for subgraph connectivity in
Theorem 17. The bounds on preprocessing time and space are shown in Section 5.3. The
update time is given by Lemma 19. The query algorithm and the query time analysis are
omitted here and they can be founded in the full version.

6.1 A�ected Vertices Qı and the A�ected Graph Gı

For each component “ œ C, we call “ an a�ected component if V (“) intersects Don, otherwise
it is una�ected. Let Ca� denote the set of a�ected components. Let Ta� = {·(“) | “ œ Ca�}
denote the Steiner trees corresponding to a�ected components.

We then define the a�ected vertices to be Qı = Do� fi
t

·œTa�
U(·) \Don. Namely, Qı

collect the newly opened vertices and the open terminals of a�ected components. Note that
Qı ™ Vnew. The a�ected graph Gı is Gı = Ĝ[Qı] ≠

q
“œCa�

Ê“ . In other words, Gı is the
subgraph of the artificial graph Ĝ induced by the a�ected vertices Qı, with the artificial
edges from a�ected components removed.

I Lemma 18. For any two vertices u, v œ Qı, u and v are connected in G[Vnew] if and only
if u and v are connected in Gı.

The proof of Lemma 18 can be founded in the full version. Intuitively, this lemma holds
because those maximal una�ected components in C partition Vnew \Qı, and the artificial
edges will capture the connectivity contributed by these maximal una�ected components.

6.2 Solving Connectivity of Intervals
Although the primary goal of our update algorithm is to compute the connectivity of Qı on
G[Vnew], Lemma 18 tells that it is equivalent to compute the connectivity of Qı on Gı.

I Lemma 19. There is a deterministic algorithm that computes a partition I of Qı s.t.
each set I œ I forms an interval on fi and all vertices in I are connected in Gı, and then
computes a partition R of I s.t. for each group R œ R, the union of intervals in R forms a
(maximal) connected component of Gı. The running time is O(p2d2�2 logn).

Intervals

We first describe how to compute the partition I of Qı. Because we require each set I œ I
forms an interval on the global order fi, we can represent I by the positions of its endpoints
on fi. Recall that Qı = (

t
“œTa�

U(“) \Don) fi Do� .
We first construct the intervals of

t
·œTa�

U(·) \Don by exploiting the Steiner trees. For
each · œ Ta� , by invoking Lemma 14 on · with failed vertices Don, we will obtain a
partition I Õ

·
of V (·) \Don s.t. each I Õ œ I Õ

·
is an interval on ET(·) and it is contained

by a subtree of · \Don. We construct a set It of intervals on ET(·)flU(·) by taking the
restriction of intervals I Õ

t
on U(·). Therefore, intervals in It are indeed intervals on fi

because ET(·)flU(·) is a consecutive sublist of fi. Also, for each interval I œ I· , vertices
in I are connected in G[Vnew] (because · \Don is a subgraph of G[Vnew]), which implies
vertices in I are connected in Gı by Lemma 18.
For each vertex v œ Do� ™ Qı, we construct a singleton interval Iv = {v}.
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Finally, the whole set of intervals is I =
t

·œTa�
I· fi {Iv | v œ Do�}.

I Proposition 20. The total number of intervals is |I| = O(pd�), and computing all intervals
takes O(pd� log(d�)) time.

Proof. By Lemma 14, the number of intervals generated by a tree · œ Ta� is at most
O(|V (·)flDon| ·�), and it takes O(|V (·)flDon| ·� · log(|V (·)flDon| ·�)) time to generate
them. Observe that

q
·œTa�

|V (·) fl Don| = O(p · |Don|) because each vertex in Don can
appear in at most p trees in T (at most one at each level). Furthermore, the trivial intervals
generated by vertices in Do� is obviously |Do� |. Therefore, the total number of intervals in
O(p|Don|�) + |Do� | = O(pd�), and computing all intervals takes O(pd�(d�)) time. J

Bor�vka’s Algorithm

We now discuss how to compute the partition R of I. We will merge the intervals by a
Bor�vka’s styled algorithm. The algorithm has several phases, and each phase j receives
a partition R(j) of I as input. each group R œ R(j) is either active or inactive. Initially,
R(1) = {{I} | I œ I} is the trivial partition of I and all groups in R(1) are active. For each
phase j, we do the following to update R(j) to R(j+1).
1. For each active group R in R(j), we will ask the following adjacency query.

(Q1) Given an active group R œ R(j), find another active group RÕ œ R(j) s.t. there
exists an edge e = {u, v} œ E(Gı) with u œ Iu œ R and v œ Iv œ RÕ, or claim that
there is no such RÕ.

After asking (Q1) for all active groups, for each active group R, if (Q1) tells that no
such RÕ exists, we mark R as an inactive group, otherwise we find an adjacent group-pair
{R,RÕ}.

2. Given the adjacent group-pairs in step 1, we construct a graph K with vertices corres-
ponding to active groups and edges corresponding to adjacent group-pairs. Note that for
each adjacent group-pair {R,RÕ}, R and RÕ must still be active. Then, for each connected
component of K, we merge the groups inside it into a new active group.

The algorithm terminates once it reaches a phase j̄ s.t. all groups in R(j̄) are inactive, and we
let R = R(j̄) be the final output. Obviously, R satisfies the output requirement of Lemma 19.
Furthermore, the number of phases is bounded in Proposition 21. Let R(j)

act
™ R(j) denote

the active groups in R(j) at the moment when phase j starts and let k̄(j) = |R(j)

act
|.

I Proposition 21. For each j Ø 2, k̄(j) Æ k̄(j≠1)/2. The number of phases is O(log |I|).

Proof. At each phase, the number of active groups is halved because we mark all old active
groups without adjacent group inactive in step 1, and each connected component of the graph
K in step 2 contains at least two old active groups. Because initially k̄(0) = |R(0)| = |I|, the
number of phases is O(log |I|). J

Next, we will discuss the implementation of step 1. Basically, for each phase j, we need
an algorithm that answers the adjacency query (Q1) e�ciently. Instead of answering (Q1)
directly, we will reduce (Q1) to the following batched adjacency query (Q2). We give an
arbitrary order to the groups in R(j)

act
, denoted by R(j)

act
= {R(j)

1
, R(j)

2
, ..., R(j)

k̄(j)}.
(Q2) Given a group R(j)

k
œ R(j)

act
and a batch of consecutive groups R(j)

¸
, R(j)

¸+1
, ..., R(j)

r œ R(j)

act

s.t. k /œ [¸, r], decide if there exists R(j)

kÕ s.t. kÕ œ [¸, r] and R(j)

kÕ is adjacent to R(j)

k
.

I Lemma 22. At phase j, one adjacency query can be reduced to O(log k̄(j)) batched adjacency
queries.
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Proof. Consider an adjacency query for some R(j)

k
œ R(j)

act
. We can either find some

R(j)

kÕ œ R(j)

act
s.t. k + 1 Æ kÕ Æ k̄(j) and R(j)

kÕ is adjacent to R(j)

k
or claim there is no such R(j)

kÕ

in the following way: first fix ¸ = k + 1, and then perform a binary search on r in range
[k + 1, k̄(j)], in which each binary search step is guided by a batched adjacency query with
parameters k, ¸, r. Similarly, we can try to find an adjacent group R(j)

kÕ to the left of R(j)

k
by

fixing r = k ≠ 1 and performing a binary search on ¸ in range [1, k ≠ 1]. The total number of
calls to (Q2) is obviously O(log k̄(j)) in these two binary searches. J

To answer batched adjacency queries in each phase, we will first introduce some additional
structures, and then use them to design the algorithm answering (Q2), which is formalized in
Lemma 23.

I Lemma 23. There is a deterministic algorithm that computes some additional structures
in O(p2d2�2 logn) time to support any batched adjacency query in O(pd) time.

We are now ready to analyse the running time of the Bor�vka’s algorithm, which
completes the proof of Lemma 19. At each phase j, the number of adjacency queries is at
most k̄(j) (one for each active group in R(j)), so the number of batched adjacency queries
is O(k̄(j) log k̄(j)) by Lemma 22. Thus the total number of batched adjacency queries isq

jØ1
O(k̄(j) log k̄(j)) = O(|I| log |I|) by Proposition 21. By Lemma 23, the total running

time of step 1 is O(p2d2�2 logn) + O(pd|I| log |I|) = O(p2d2�2 logn). The total running
time of the Bor�vka’s algorithm is asymptotically the same because step 2 takes little time.

In what follows, we prove Lemma 23.

The Additional Structures

We start with introducing some notations. For a group R ™ I, we use V (R) =
t

IœR
I to

denote its vertex set. For two disjoint groups R1, R2 ™ I and a (multi) set E of undirected
edges, let ”E(R1, R2) denote the number of edges in E with one endpoint in V (R1) and
the other one in V (R2). Also, recall that we gave an order to groups in R(j)

act
, denoted by

R(j)

act
= {R(j)

1
, ..., R(j)

k̄(j)}.
For each phase j, we will construct the following data structures.
First, we construct a two-dimensional (k̄(j) ◊ k̄(j))-array CountAll

(j), where for each
1 Æ x, y Æ k̄(j), the entry CountAll

(j)(x, y) = ”
E(Ĝ)

(R(j)

x , R(j)

y ). Furthermore, we store
the 2D-prefix sum of CountAll(j).
For each a�ected component “, we prepare a one-dimensional array CountA

(j)

“
with length

k̄(j), where for each 1 Æ x Æ k̄(j), the entry CountA
(j)

“
(x) = |A“ fl V (R(j)

x )|. Similarly,
we construct an one-dimensional array CountB

(j)

“
with length k̄(j) in which the entry

CountB
(j)

“
(x) = |B“ fl V (R(j)

x )|. Furthermore, we store the prefix sum of CountA(j)

“
and

CountB
(j)

“
.

I Lemma 24. The total construction time of arrays CountAll
(j), CountA(j)

“
and CountB

(j)

“

summing over all phases j and all a�ected components “ is O(p2d2�2 log d).

Proof. We first initialize CountAll
(1),CountA(1)

“
,CountB(1)

“
for phase 1. For each entry

CountAll
(1)(x, y) of CountAll

(1), note that R(1)

x and R(1)

y are both singleton groups. Let
Ix and Iy be the intervals in R(1)

x and R(1)

y . Then CountAll
(1)(x, y) is exactly the number of

E(Ĝ)-edges that connect Ix and Iy, which can be answered by querying Table in O(logn)
time by Lemma 16 because Ix and Iy are intervals on the global order fi. For an entry
CountA

(1)

“
(x) of CountA(1)

“
, let Ix be the single interval in R(1)

x , and we can easily compute

ICALP 2024



109:18 Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

|A“ fl Ix| by binary search in O(logn) time because Ix is an interval on fi and A“ is ordered
consistently with fi. Similarly, we can compute the array CountB

(1)

“
. The construction time

of additional structures at phase 1 is O(((k̄(1))2 + |Ca� | · k̄(1)) logn).
For each phase j Ø 2, we will compute CountAll

(j),CountA(j)

“
,CountB(j)

“
based on the

arrays of phase j ≠ 1. For an entry CountAll
(j)(x, y) of CountAll(j), recall that R(j)

x is the
union of several groups R(j≠1)

x1 , R(j≠1)

x2 , ... inside R(j≠1)

act
, and R(j)

y = R(j≠1)

y1 fi R(j≠1)

y2 fi ....
Furthermore, x1, x2, ..., y1, y2, ... are distinct indexes in [1, k̄(j≠1)]. Therefore,

CountAll
(j)(x, y) =

ÿ

xÕ=x1,x2,...

ÿ

yÕ=y1,y2,..

CountAll
(j≠1)(xÕ, yÕ).

We can compute CountA
(j)

“
and CountB

(j)

“
in a similar way. The construction time of

additional structures at phase j is proportional to the total size of additional structures at
phase j ≠ 1, i.e. O((k̄(j≠1))2 + |Ca� | · k̄(j≠1)).

The overall construction time is

O(((k̄(1))2 + |Ca� | · k̄(1)) logn) +
ÿ

jØ2

O((k̄(j≠1))2 + |Ca� | · k̄(j≠1)) = O(p2d2�2 logn),

because k̄(1) = |I| = O(pd�), |Ca� | = O(pd) and k̄(j) Æ k̄(j≠1)/2 for each phase j. J

Answering Batched Adjacency Queries

Consider a batched adjacency query at phase j with parameters k, ¸, r. It is equivalent to
decide whether the number of Gı-edges connecting R(j)

k
and some R(j)

kÕ where kÕ œ [¸, r] is
greater than zero or not. Namely, it su�ces to decide whether

ÿ

¸ÆkÕÆr

”E(Gı)(R
(j)

k
, R(j)

kÕ ) > 0. (1)

I Lemma 25. For any two disjoint groups R1, R2 ™ I,

”E(Gı)(R1, R2) = ”
E(Ĝ)

(R1, R2) ≠
ÿ

“œCa�

”
Ê“

(R1, R2).

Proof. First the RHS is equal to ”
E(Ĝ)≠

q
“œCa�

Ê“
(R1, R2) because Ê“ of all “ œ Ca� are

disjoint subsets of E(Ĝ) (note that E(Ĝ) is defined to be a multiset).
Recall that Gı = Ĝ[Qı] ≠

q
“œCa�

Ê“ . The LHS is at most the RHS because E(Gı) ™
E(Ĝ)≠

q
“œCa�

Ê“ . On the other direction, each edge in E(Ĝ) connecting V (R1) and V (R2)
is inside Ĝ[Qı] since V (R1), V (R2) ™ Qı, so the RHS is at most the LHS. J

I Lemma 26. For each “ œ Ca� and two disjoint groups R1, R2 ™ I,

”
Ê“

(R1, R2) = |A“ fl V (R1)| · |A“ fl V (R2)| ≠ |(A“ \B“) fl V (R1)| · |(A“ \B“) fl V (R2)|.

Proof. Recall that Ê“ is the union of a clique on B“ and a biclique between A“ \B“ and B“ .
In other words, Ê“ is a clique on A“ with the clique on A“ \B“ removed. Because V (R1)
and V (R2) are disjoint, the equation follows. J
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Using Lemma 25 and Lemma 26, we can rewrite the LHS of inequality 1 as follows.
ÿ

¸ÆkÕÆr

”E(Gı)(R
(j)

k
, R(j)

kÕ ) =
ÿ

¸ÆkÕÆr

”
E(Ĝ)

(R(j)

k
, R(j)

kÕ ) ≠
ÿ

¸ÆkÕÆr

ÿ

“œCa�

”
Ê“

(R(j)

k
, R(j)

kÕ )

=
ÿ

¸ÆkÕÆr

”
E(Ĝ)

(R(j)

k
, R(j)

kÕ )

≠
ÿ

“œCa�

ÿ

¸ÆkÕÆr

|A“ fl V (R(j)

k
)| · |A“ fl V (R(j)

kÕ )|

+
ÿ

“œCa�

ÿ

¸ÆkÕÆr

|(A“ \B“) fl V (R(j)

k
)| · |(A“ \B“) fl V (R(j)

kÕ )|.

For convenience, we denote –(j)

“ (k) = CountA
(j)

“
(k), —(j)

“ (k) = CountB
(j)

“
(k)

Combining the definition of the additional structures, we further have

ÿ

¸ÆkÕÆr

”E(Gı)(R
(j)

k
, R(j)

kÕ ) =
ÿ

¸ÆkÕÆr

CountAll
(j)(k, kÕ) ≠

ÿ

“œCa�

Q

a–(j)

“
(k) ·

ÿ

¸ÆkÕÆr

–(j)

“
(kÕ)

R

b

+
ÿ

“œCa�

Q

a(–(j)

“
(k) ≠ —(j)

“
(k)) ·

ÿ

¸ÆkÕÆr

(–(j)

“
(kÕ) ≠ —(j)

“
(kÕ))

R

b

Because we have stored the prefix sum of the arrays CountAll(j),CountA(j)

“
,CountB(j)

“
, com-

puting the value of the above expression takes O(|Ca� |) = O(pd) time.
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Abstract
We develop new characterizations of Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by
the intractability of conditional Kolmogorov complexity K and conditional probabilistic time-bounded
Kolmogorov complexity pK

t.
In our first set of results, we show that NP ™ BPP i� pK

t(x | y) can be computed e�ciently in
the worst case when t is sublinear in |x|+ |y|; DistNP ™ HeurBPP i� pK

t(x | y) can be computed
e�ciently over all polynomial-time samplable distributions when t is sublinear in |x| + |y|; and
infinitely-often one-way functions fail to exist i� pK

t(x | y) can be computed e�ciently over all
polynomial-time samplable distributions for t a su�ciently large polynomial in |x| + |y|. These
results characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland purely in terms of
the tractability of conditional pKt. Notably, the results imply that Pessiland fails to exist i� the
average-case intractability of conditional pKt is insensitive to the di�erence between sublinear and
polynomially bounded t. As a corollary, while we prove conditional pKt to be NP-hard for sublinear
t, showing NP-hardness for large enough polynomially bounded t would eliminate Pessiland as a
possible world of average-case complexity.

In our second set of results, we characterize Impagliazzo’s worlds Algorithmica, Heuristica
and Pessiland by the distributional tractability of a natural problem, i.e., approximating the
conditional Kolmogorov complexity, that is provably intractable in the worst case. We show
that NP ™ BPP i� conditional Kolmogorov complexity can be approximated in the semi-worst
case; and DistNP ™ HeurBPP i� conditional Kolmogorov complexity can be approximated on
average over all independent polynomial-time samplable distributions. It follows from a result by
Ilango, Ren, and Santhanam (STOC 2022) that infinitely-often one-way functions fail to exist
i� conditional Kolmogorov complexity can be approximated on average over all polynomial-time
samplable distributions. Together, these results yield the claimed characterizations. Our techniques,
combined with previous work, also yield a characterization of auxiliary-input one-way functions and
equivalences between di�erent average-case tractability assumptions for conditional Kolmogorov
complexity and its variants. Our results suggest that novel average-case tractability assumptions such
as tractability in the semi-worst case and over independent polynomial-time samplable distributions
might be worthy of further study.
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1 Introduction

In his influential survey on average-case complexity [12], Impagliazzo described five possible
computational worlds: Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania.
Algorithmica is a world where NP is easy in the worst case; Heuristica a world where NP is
hard in the worst case but easy on average; Pessiland a world where NP is hard on average
but one-way functions do not exist; Minicrypt a world where one-way functions exist but
public-key cryptography does not; and Cryptomania a world where public-key cryptography
exists. The general belief among complexity theorists and cryptographers is that we live
in Cryptomania, but we are very far from a proof, as even ruling out Algorithmica would
involve showing NP ”= P.

There is the possibility, however, that we might be able to unconditionally rule out some
of the intermediate worlds, such as Heuristica, Pessiland and Minicrypt. Until recently, there
was little progress on ruling out these intermediate worlds. All that was known was that
there are various black-box and relativization barriers to ruling out these worlds.

The study of meta-complexity, i.e., the complexity of computational problems that are
themselves about complexity, has enabled new attacks on these questions. Examples of
meta-complexity problems are the Minimum Circuit Size Problem (MCSP), which asks
whether a Boolean function represented by its truth table has circuits of a given size,
and the problem of computing Kolmogorov complexity and its resource-bounded variants
such as Levin’s time-bounded Kolmogorov complexity. The average-case complexity of
meta-complexity problems is of particular interest [9]. Hirahara [5] gave an approach via
meta-complexity to ruling out the analogue of Heuristica for the Polynomial Hierarchy. More
recently, the Polynomial Hierarchy analogue of Pessiland has been ruled out [10], again using
meta-complexity techniques.

There have been several successful e�orts to characterize the existence of one-way func-
tions via meta-complexity. In [23], a conditional characterization was given, based on a
believable but seemingly hard-to-establish conjecture. Liu and Pass [14] unconditionally
characterized one-way functions by the average-case hardness of polynomial-time-bounded
Kolmogorov complexity over the uniform distribution. This characterization was extended to
other meta-complexity problems and notions of one-way function in [15, 21, 1]. A di�erent
characterization of one-way functions via the hardness of approximating Kolmogorov complex-
ity over samplable distributions was given in [11]. More recently, Hirahara [7] introduced a
meta-complexity problem whose NP-hardness and the worst-case hardness of NP characterize
the existence of one-way functions.

These connections between meta-complexity, average-case complexity and one-way func-
tions raise the following question: Can we characterize Impagliazzo’s worlds Algorithmica,
Heuristica and Pessiland by di�erent notions of hardness for a single computational problem?
A positive answer to this question is implicit in [16], who study the problem of conditional
polynomial-time-bounded Kolmogorov complexity. They show that the worst-case hardness
of conditional polynomial-time-bounded Kolmogorov complexity captures worst-case hardness
of NP, and the average-case hardness of conditional polynomial-time-bounded Kolmogorov
complexity over the uniform distribution captures the existence of one-way functions. Their
result on worst-case hardness immediately implies that the average-case hardness of NP is
equivalent to the hardness of conditional polynomial-time-bounded Kolmogorov complexity
over some samplable distribution.

In this work, we give two new characterizations of Impagliazzo’s worlds by di�erent notions
of hardness for a single problem - first for conditional probabilistic time-bounded Kolmogorov
complexity pKt [3], and second for the standard notion of conditional Kolmogorov complexity.
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These new characterizations have some interesting features. The first characterization
implies that ruling out Pessiland corresponds to robustness of the average-case tractability of
conditional pKt over time regimes t that vary from sublinear to polynomial. As a consequence,
while we are able to prove (by building on [6]) that pKt is NP-hard to compute exactly when
t is sublinear, Pessiland would fail to exist if pKt were NP-hard to compute for arbitrary
polynomial t. This could be a promising route to ruling out Pessiland, since pKt is a fairly
powerful complexity measure with nice properties such as the coding theorem which could
potentially be exploited when showing hardness, and the computational version is in (promise)
AM but is not known to be in NP.

The second characterization is for a fundamental problem that is provably intractable in
the worst case, i.e., the problem of approximating conditional Kolmogorov complexity. A
somewhat surprising aspect of our results (which is also present in the main result of [11] on
which we build) is that conditional Kolmogorov complexity is uncomputable, yet natural
average-case hardness assumptions on conditional Kolmogorov complexity capture complexity
worlds related to average-case hardness of NP. What this indicates is that the distinctions
between Impagliazzo’s worlds can be encoded in a natural way into the distributional
assumptions that are made, while considering a single well-understood problem.

As a corollary of our second set of results together with those in [16], we get new
equivalences between hardness assumptions for conditional Kolmogorov complexity and
hardness assumptions for conditional time-bounded Kolmogorov complexity. The proofs of
these equivalences crucially use the various characterizations of Impagliazzo’s worlds, and it
seems tricky to show such equivalences directly.

1.1 Results
We state our results formally in this subsection.

1.1.1 Characterizing Both DistNP ™ HeurBPP and Non-Existence of
One-Way Functions by Average-Case Easiness of Conditional pKt

We present a meta-complexity problem whose average-case tractability over polynomial-
time samplable distributions can be used to characterize both the non-existence of one-way
functions and DistNP ™ HeurBPP, while considering di�erent time regimes in the measure of
time-bounded Kolmogorov complexity. Specifically, we consider the problem of computing
conditional probabilistic t-time-bounded Kolmogorov complexity.

As defined in [3], we let pKt

⁄
(x | y) be the smallest integer k such that, with probability

at least ⁄ over the choice of a random string w ≥ {0, 1}t, there is a (deterministic) program
of size k that, when running on w and given oracle access to y, prints x within t steps (see
[20, Definition 16] for the formal definition).

For · : N ◊ N æ N, let Cond-pK[· ] be the following promise problem (YES,NO):

YES :=
Ó
(x, y, 1s) | pK·(|x|,|y|)

2/3
(x | y) Æ s

Ô
,

NO :=
Ó
(x, y, 1s) | pK·(|x|,|y|)

1/3
(x | y) > s

Ô
.

We will refer to this problem as “computing conditional pKt”.
We will consider two specific settings for the time bound function · . For the purpose

of illustration, let us consider the following simplified problem. For · : N ◊ N æ N, we are
given x, y and s, and the task is to decide whether K·(|x|,|y|)(x | y) Æ s, i.e., whether there is
a program of size at most s such that given oracle access to y, the program outputs x within
time ·(|x|, |y|).

ICALP 2024
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A typical setting of · is ·(n,m) := n
c ·mc, where c > 1 is some constant. For this · , we

want to decide if there is a program of size at most s that, given oracle access to y, outputs
x within time ·(|x|, |y|), and such a program has enough time to read the entire string y.

Now consider another setting of · where ·(n,m) := n
c ·m1≠1/c for a constant c > 1. In

this case, for a string y œ {0, 1}m, where m := n
2c

2 , we have

·(n,m) = n
c ·m1≠1/c = n

2c
2≠c π m.

Again, we want to decide if there is a program of size at most s that, given oracle access to
y, outputs x within time ·(|x|, |y|). However, in this case any such program does not have
time to read the entire string y

We will show that the non-existence of one-way functions corresponds to the average-case
tractability of Cond-pK[· ] over polynomial-time samplable distributions for the “polynomial-
time regime” of · , and that DistNP ™ HeurBPP corresponds to that of the “sublinear-time
regime”.1 We state our results formally next.

For an algorithm A, x, y œ {0, 1}ú, and s œ N, we say that A decides Cond-pK[· ] on
(x, y, 1s) if the following holds:

A(x, y, 1s) =

Y
__]

__[

1 if pK·(|x|,|y|)
2/3

(x | y) Æ s,

0 if pK·(|x|,|y|)
1/3

(x | y) > s,

either 0 or 1 otherwise.

I Theorem 1. The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. (Computing conditional pKt in the polynomial-time regime is easy-on-average

over samplable distributions.)
For every polynomial-time samplable distribution family {DÈn,mÍ}n,m supported over
{0, 1}n ◊ {0, 1}m, every polynomial q, and for all large enough constant c, there exists a
probabilistic polynomial-time algorithm A such that for all n,m, s œ N,

Pr
(x,y)≥DÈn,mÍ

[A decides Cond-pK[· ] on (x, y, 1s)] Ø 1 ≠ 1
q(n,m) ,

where ·(n,m) := n
c ·mc.

I Theorem 2. The following are equivalent.
1. DistNP ™ HeurBPP.
2. (Computing conditional pKt in the sublinear-time regime is easy-on-average

over samplable distributions.)
For every polynomial-time samplable distribution family {DÈn,mÍ}n,m supported over
{0, 1}n ◊ {0, 1}m, every polynomial q, and for all large enough constant c, there exists a
probabilistic polynomial-time algorithm A such that for all n,m, s œ N,

Pr
(x,y)≥DÈn,mÍ

[A decides Cond-pK[· ] on (x, y, 1s)] Ø 1 ≠ 1
q(n,m) ,

where ·(n,m) := n
c ·m1≠1/c.

1 Note that even in the “sublinear-time regime” of · , the program can still run in polynomial time with
respect to the the length of x; the word “sublinear-time” refers to the fact that the program runs in
sublinear time with respect to the length of y.
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In proving Theorem 2, we also show that it is NP-hard to compute conditional pKt in the
sublinear-time regime in the worst case.

I Theorem 3 (Informal). For any constant c > 1, Cond-pK[· ] is NP-hard under randomized
polynomial-time reductions, where ·(n,m) := n

c ·m1≠1/c.

In fact, Theorem 3 holds even if we consider the problem of approximating pKt(x | y)
in the sublinear-time regime within a multiplicative factor of |x|1/ log log |x|O(1) . This also
extends a result by Liu and Pass [16] and Hirahara [6], which showed that the problem of
computing/approximating conditional Kt in the sublinear-time regime is NP-hard.

Theorem 3, Theorem 1 and Theorem 2 together give characterizations of Impagliazzo’s
worlds Algorithmica, Heuristica and Pessiland based on di�erent hardness assumptions for
the computation of conditional pKt.

In particular, Theorem 1 and Theorem 2 imply that the task of ruling out Pessiland2

is equivalent to showing that the problem of computing conditional pKt on average over
polynomial-time samplable distributions is robust with respect to the two di�erent time
regimes.

Also, we get that to rule out Pessiland, it su�ces to show that it is NP-hard to compute
conditional pKt in the polynomial-time regime in the worst case.

I Corollary 4 (Informal. See [20, Corollary 55] for the formal version). If computing conditional
pKt in the polynomial-time regime is NP-hard, then Pessiland does not exist.

A proof sketch of Corollary 4 can be found in [20, Section 4.4].
For comparison, it was observed in [7] that if one can show the NP-hardness of approxim-

ating a certain variant of time-bounded Kolmogorov complexity called qt, then Pessiland does
not exist. It is known that qpoly and pKpoly are equivalent to each other up to an additive
logarithmic factor. This implies that showing the NP-hardness of approximating pKt will
allow us to rule out Pessiland.3 It can also be shown that the problem of approximating pKt is
reducible to that of computing conditional pKt.4 On the other hand, Corollary 4 only requires
showing the NP-hardness of computing conditional pKt, which might be easier. Moreover, we
note that the barrier of [22] to showing NP-hardness of approximating Kolmogorov complexity
and its variants does not seem to apply directly to exact computation.

Equivalences between Average-Case Easiness of Approximating and Computing
(Conditional) pKt

By combining Theorem 1 with existing characterizations of one-way functions, we get that
the average-case easiness of approximating and computing di�erent variants of probabilistic
(conditional) time-bounded Kolmogorov complexity are in fact equivalent. We state this
result more formally below.

We say that “approximating pKt is easy-on-average over samplable distributions” if the
following holds.

2 In this case, we mean basing infinitely-often one-way functions on DistNP ”™ HeurBPP.
3 Here, we refer to the problem called Gap-MINpKT. For a polynomial · , Gap-MINpKT[· ] is the (promise)

problem of deciding, given as input (x, 1s, 1t), whether pKt(x) Æ s or pK·(|x|,t)(x) > s+ log ·(|x|, t).
4 More precisely, if we can solve Cond-pK[· ] for some polynomial · , then we can also solve Gap-MINpKT[· Õ]

for some polynomial · Õ.

ICALP 2024
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For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial · , there is a probabilistic
polynomial-time algorithm A that can decide, given as input (x, 1s, 1t), whether
pKt(x) Æ s or pK·(|x|,t)(x) > s + log ·(|x|, t),5 with probability at least 1 ≠ 1/q(n)
over x ≥ Dn and the internal randomness of A.

The above can be naturally generalized to the conditional setting, where we consider any
samplable distribution family {DÈn,mÍ}n,m supported over {0, 1}n ◊ {0, 1}m, and for all
large enough polynomial · , we can decide whether pKt(x | y) Æ s or pK·(|x|,|y|,t)(x | y) >
s+ log ·(|x|, |y|, t) with high probability over (x, y) sampled from DÈn,mÍ. In this case, we
say that “approximating conditional pKt is easy-on-average over samplable distributions”

Also, we say that “computing pKt is easy-on-average over samplable distributions” if the
following holds.

For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial · , there is a probabil-
istic polynomial-time algorithm A that can decide, given as input (x, 1s), whether
pK·(|x|)

2/3
(x) Æ s or pK·(|x|)

1/3
(x) > s,6 with probability at least 1 ≠ 1/q(n) over x ≥ Dn

and the internal randomness of A.

I Theorem 5 (Informal). The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. Approximating pKt is easy-on-average over samplable distributions.
3. Approximating conditional pKt is easy-on-average over samplable distributions.
4. Computing pKt is easy-on-average over samplable distributions.
5. Computing conditional pKt is easy-on-average over samplable distributions.

A sketch of the proof of Theorem 5 can be found in [20, Section 3.3].

1.1.2 Characterizing Impagliazzo’s Worlds by Tractability of Conditional
Time-Unbounded Kolmogorov Complexity

We present a meta-complexity problem, namely approximating conditional Kolmogorov
complexity up to an O(logn) additive term, that is unconditionally hard (even uncomput-
able) in the worst case, but such that its average-case intractability for di�erent classes of
distributions characterize Algorithmica, Heuristica and Pessiland.

Characterizing DistNP ™ BPP and DistNP ™ HeurBPP by Tractability of
Time-Unbounded Kolmogorov Complexity

To begin, we recall a recent result by Ilango, Ren, and Santhanam [11] characterizing the non-
existence of one-way functions by the tractability of approximating Kolmogorov complexity
over polynomial-time samplable distributions. We consider the following conditional variant
from [8].

5 Note that this is the problem Gap-MINpKT mentioned in Footnote 3.
6 This problem is referred to as MpK

·
P in [17].
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I Theorem 6 ([8, Lemma 27], cf. [11]). The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. (Approximating conditional Kolmogorov complexity is easy-on-average over

polynomial-time samplable distributions.)
For every polynomial-time samplable distribution family {Dn}n, where each Dn is over
{0, 1}n ◊ {0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time
algorithm A and a polynomial p such that for all n œ N,

Pr
(x,y)≥Dn

[K(x | y) Æ A(x, y) Æ K(x | y) + log p(n)] Ø 1 ≠ 1
q(n) .

Note that a one-way function is a function that is e�ciently computable but hard to invert
on average; thus, this notion is based on average-case hardness. Theorem 6 characterizes the
existence of one-way functions by the average-case hardness of approximating (conditional)
Kolmogorov complexity. Then, for NP ”™ BPP, which is a worst-case hardness notion,
one might think that it can be characterized by the worst-case hardness of approximating
(conditional) Kolmogorov complexity. However, it is well known that the task of approximating
the conditional Kolmogorov complexity is provably intractable in the worst case, so such a
characterization would imply NP ”™ BPP unconditionally.

Consider a polynomial-time samplable distribution D over {0, 1}n ◊{0, 1}n. Also, let D(2)

be the marginal distribution of D on the second half, and let D(· | y) denote the conditional
distribution of D on the first half given that the second half is y. Now, observe the following
equivalent way of sampling a pair of strings (x, y) from D: We first sample y from D(2) and
then x from D(· | y).

Note that Theorem 6 essentially says that one-way functions do not exist if and only if,
for every polynomial-time samplable distribution D, one can approximate K(x | y) on average
over (x, y), where we sample y from D(2) and then x from D(· | y). In order to characterize
NP ™ BPP, we consider the tractability of approximating conditional Kolmogorov complexity
in the semi-worst case, meaning that we can approximate K(x | y) on average over x sampled
from D(· | y) for all y œ {0, 1}n (instead of an average y from D(2)). Our first result is a
characterization of NP ™ BPP by the tractability of approximating conditional Kolmogorov
complexity in this semi-worst case. Formally, we show the following.

I Theorem 7. The following are equivalent.
1. NP ™ BPP.
2. (Approximating conditional Kolmogorov complexity is easy in the semi-worst

case.)
For every polynomial-time samplable distribution family {Dn}n, where each Dn is over
{0, 1}n ◊ {0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time
algorithm A and a polynomial p such that for all n œ N and y œ {0, 1}n,

Pr
x≥Dn(·|y)

[K(x | y) Æ A(x, y) Æ K(x | y) + log p(n)] Ø 1 ≠ 1
q(n) .

Theorem 7 shows that NP ™ BPP if and only if for every polynomial-time samplable
distribution D, approximating K(x | y) is easy on average over x sampled from D(· | y)
for every y œ {0, 1}n. Now, instead of considering every y œ {0, 1}n (a worst-case notion),
it is also natural to consider an average y sampled from some polynomial-time samplable
distribution C (an average-case notion). However, the distribution C here can be independent
of D. In particular, it does not necessarily have to be D(2).
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Next, we show that the average-case tractability of approximating conditional Kolmogorov
complexity over such independent polynomial-time samplable distributions, in fact character-
izes the average-case easiness of NP (i.e., DistNP ™ HeurBPP). We first state formally the
definition of independent polynomial-time samplable distributions.

I Definition 8 (Independent Polynomial-Time Samplable [8]). We say that a distribution family
{Dn}n, where each Dn is over {0, 1}n ◊{0, 1}n, is independent polynomial-time samplable if
there exist two polynomial-time samplable distribution families {An}n and {Bn}n, where each
An is over {0, 1}n and each Bn is over {0, 1}n ◊ {0, 1}n, such that Dn can be equivalently
sampled as follows: sample y ≥ An, sample x ≥ Bn(· | y), and then output (x, y).

It is easy to see that every polynomial-time samplable distribution is also independent
polynomial-time samplable, by letting A be the marginal distribution of D on the second half
and letting B be D. However, the converse is not necessarily true. Nevertheless, Theorem 6
and Theorem 9 (which we state below) imply that the task of ruling out Pessiland is equivalent
to showing that the hardness of approximating conditional Kolmogorov complexity remains
unchanged over these two classes of distributions.

I Theorem 9. The following are equivalent.
1. DistNP ™ HeurBPP.
2. (Approximating conditional Kolmogorov complexity is easy-on-average over

independent polynomial-time samplable distributions.)
For every independent polynomial-time samplable distribution family {Dn}n and every
polynomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p
such that for all n œ N,

Pr
(x,y)≥Dn

[K(x | y) Æ A(x, y) Æ K(x | y) + log p(n)] Ø 1 ≠ 1
q(n) .

Finally, we extend Theorem 6 to characterize the non-existence of auxiliary-input one-way
functions by the tractability of approximating conditional Kolmogorov complexity over
P/poly-samplable distributions.

I Theorem 10. The following are equivalent.
1. Auxiliary-input one-way functions do not exist.
2. For every sequence of strings {yn}n where each yn œ {0, 1}n, every distribution family

{Dn}n samplable in polynomial time using {yn}n as advice, where each Dn is over {0, 1}n,
and every polynomial q, there exist a probabilistic polynomial-time algorithm A and a
polynomial p such that for all n œ N,

Pr
x≥Dn

[K(x | yn) Æ A(x, yn) Æ K(x | yn) + log p(n)] Ø 1 ≠ 1
q(n) .

The results above characterize the non-existence of one-way functions, DistNP ™ HeurBPP,
and NP ™ BPP by the distributional tractability of approximating the conditional Kolmogorov
complexity. They imply that the tasks of ruling out Impagliazzo’s certain worlds are equivalent
to showing that the hardness of this problem is the same with respect to di�erent classes
of distributions. For example, Theorem 6 and Theorem 9 imply that basing one-way
functions on DistNP ”™ HeurBPP (a.k.a., ruling out Pessiland) is equivalent to showing that
the hardness of approximating conditional Kolmogorov complexity over polynomial-time
samplable distributions is the same as the hardness over independent polynomial-time
samplable distributions.
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Equivalences between Tractability of Time-Unbounded and Time-Bounded
Kolmogorov Complexity

We first recall the definition of time-bounded Kolmogorov complexity. For x, y œ {0, 1}ú and
t œ N, we define Kt(x | y) to be the minimum length of a program p œ {0, 1}ú such that
U

y(p) outputs x within t steps. Here, U is a fixed time-optimal universal Turing machine
and has oracle access to the string y.

For · : N æ N and Ÿ : N æ N, let McK·P[Ÿ] be the problem where we are given input
x œ {0, 1}n and y œ {0, 1}Ÿ(n), and we are asked to compute K·(|x|)(x | y). Given a polynomial
· and a polynomial Ÿ, we say that:

McK·P[Ÿ] is easy in the worst case if McK·P[Ÿ] can be solved in polynomial time.
McK·P[Ÿ] is easy-on-average over polynomial-time samplable distributions if McK·P[Ÿ]
admits a heuristic scheme. That is for any polynomial-time samplable distribution
D = {Dn}n, where each Dn samples (x, z) with x œ {0, 1}n and y œ {0, 1}Ÿ(n), there
exists a probabilistic polynomial-time algorithm A such that for all n, k œ N,

Pr
x,y≥Dn

Ë
A(x, y; 1n, 1k) = K·(|x|)(x | y)

È
Ø 1 ≠ 1

k
.

McK·P[Ÿ] is easy-on-average over the uniform distribution if for every polynomial p, there
exists a probabilistic polynomial-time algorithm A such that for all n œ N,

Pr
x≥{0,1}n,y≥{0,1}Ÿ(n)

Ë
A(x, y) = K·(|x|)(x | y)

È
Ø 1 ≠ 1

p(n) .

I Theorem 11 (Implicit in [16]). The following hold.
For all polynomial ·(n) Ø n

2, there exists a polynomial Ÿ such that NP ™ BPP if and
only if McK·P[Ÿ] is easy in the worst-case.
For all polynomial ·(n) Ø n

2, there exists a polynomial Ÿ such that DistNP ™ HeurBPP
if and only if McK·P[Ÿ] is easy-on-average over polynomial-time samplable distributions.
For every polynomial ·(n) Ø 1.1n and polynomial Ÿ, infinitely-often one-way functions
do not exist if and only if McK·P[Ÿ] is easy-on-average over the uniform distribution.

As a corollary, we get the following equivalences between the tractability of conditional
Kolmogorov complexity and that of conditional time-bounded Kolmogorov complexity.

I Corollary 12 (Informal). The following hold.
For all polynomial ·(n) Ø n

2, there exists a polynomial Ÿ such that approximating
conditional Kolmogorov complexity is easy in the semi-worst case if and only if McK·P[Ÿ]
is easy in the worst-case case.
For all polynomial ·(n) Ø n

2, there exists a polynomial Ÿ such that approximating
conditional Kolmogorov complexity is easy-on-average over independent polynomial-time
samplable distributions if and only if McK·P[Ÿ] is easy-on-average over polynomial-time
samplable distributions.
For every polynomial ·(n)Ø1.1n and polynomial Ÿ, approximating conditional Kolmogorov
complexity is easy-on-average over polynomial-time samplable distributions if and only if
McK·P[Ÿ] is easy-on-average over the uniform distribution.

Proof. This follows directly from Theorem 6, Theorem 7, Theorem 9, and Theorem 11. J
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1.2 Techniques
In this section, we explain the main ideas behind our proofs.

Characterizing Non-Existence of One-Way Functions by Average-Case Easiness of
Conditional pKt

A recent result by Liu and Pass [17] characterized the non-existence of (infinitely-often)
one-way functions by the average-case easiness of computing pKt over polynomial-time
samplable distributions. Here, we describe a proof of this result that is slightly di�erent than
the original one and show how to generalize it to conditional pKt.

It will be convenient to think of the pKt complexity of a string as its Kt complexity
conditioning on a random string r (see [20, Proposition 17]).

First of all, by employing ideas from [14, 17], one can construct a function, which outputs
the string x produced by a randomly selected (time-bounded) program (resp. conditioning
on a random string r), and show that if this function can be inverted, then we can obtain
a shortest program for x (resp. conditioning on r) “on average”. In particular, it can be
shown that if infinitely-often one-way functions do not exist, then for every time bound
function ·(n) = n

O(1), there exists an e�cient algorithm A (for simplicity, think of it as
being deterministic) such that with high probability over a uniformly random string r,
A(x; r) computes K· (x | r) for an average x sampled from some distribution E·

r
, defined as

E·
r
(x) := 2≠K·

(x|r).
Next, we want to say that, for almost all r, the algorithm A(≠; r), which works for the

distribution E·
r
, also works for a given polynomial-time samplable distribution D (provided

that · is a su�ciently large polynomial). To get this, it su�ces to show that E·
r
dominates7

D, i.e., 2≠K·
(x|r) & D(x) for every x. The observation here is that this follows from the

recently discovered coding theorem for pKpoly [19], which asserts that for every string x,
pK· (x) . log(1/D(x)) (again, provided that · is a su�ciently large polynomial). To see this,
note that by the definition of pKt, we have for a uniform random r, K· (x | r) Æ pK· (x).

Given the above, we have that with high probability over a uniformly random r, A(x; r) =
K· (x | r) for an average x sampled from D. By an averaging argument, we get that with
high probability over x ≥ D, A(x; r) = K· (x | r) with high probability over a uniformly
random r. For any such good x, if pK·

2/3
(x) Æ s (resp. pK·

1/3
(x) > s), which means

Prr[K· (x | r) Æ s] Ø 2/3 (resp. Prr[K· (x | r) > s] Ø 2/3), then A(x, r) Æ s (resp.
A(x, r) > s) with high probability over r. This allows us to solve the problem of computing
pK· on average over the distribution D.

Now we describe how to generalize the above to conditional pKt.
Suppose we want to compute pK· (x | y) over (x, y) sampled from some polynomial-time

distribution D. It will be convenient to consider the following equivalent way of sampling D:
We first sample y ≥ D(2), where D(2) is the marginal distribution of D on the second half,
and then sample x ≥ D(· | y), where D(· | y) is the conditional distribution of Dn on the first
half given that the second half is y. Finally, we output (x, y).

First of all, by modifying the construction of the candidate one-way function described
above (e.g., by incorporating the distribution D(2) into the construction), we can show that
if infinitely-often one-way functions do not exist, then there exists an e�cient algorithm A

such that with high probability over a uniformly random string r and over y sampled from
D(2), A(x; y, r) computes K· (x | y, r) for an average x sampled from some distribution E·

y,r
,

where E·
y,r

(x) := 2≠K·
(x|y,r).

7 Recall that a distribution D dominates another distribution DÕ if D(x) Ø DÕ(x)/poly(n) for every x.



Z. Lu and R. Santhanam 110:11

Now similar to the previous case, we want to say that, with high probability over r and
y ≥ D(2), the algorithm A(≠; y, r), which works for the distribution E·

y,r
, also works for the

distribution D(· | y). Again, it su�ces to show that E·
y,r

(x) = 2≠K·
(x|y,r) & D(x | y) for

every x. However, this would require a conditional version of the coding theorem for pKpoly

applying to the distribution D(· | y) (which is not necessarily e�ciently samplable given y).
Such a coding theorem is not known (in fact, is unlikely to hold).

The key observation is that in order to show that the algorithm A(≠; y, r), which works
on average over the distribution E·

y,r
, also works for D(· | y), it su�ces to have that E·

y,r
(x)

dominates D(x | y) on almost all x, instead of every x. Then this weaker condition can be
obtained from an average-case coding theorem for pKpoly, which has been shown under the
assumption that infinitely-often one-way functions do not exist [8] (see [20, Theorem 29]).

More specifically, [8] showed that if infinitely-often one-way functions do not exist, then
with high probability over y ≥ D(2) and x ≥ D(· | y), it holds that

pK· (x | y) . log 1
D(x | y) .

Again, by the definition of pKt and an averaging argument, this yields that with high
probability over a uniformly random r and y ≥ D(2),

K· (x | y, r) Æ log 1
D(x | y)

holds for almost all x ≥ D(· | y). This allows us to say that with high probability over r and
y ≥ D(2), the distribution E·

y,r
dominates D(· | y) on average, so the algorithm A(≠; y, r),

which works for E·
y,r

, also works for D(· | y).
At this point, we get that with high probability over (x, y) ≥ D and over a uniformly

random r, A(x; y, r) = K· (x | y, r). By the same argument as described above, this allows us
to compute pK· (x | y) on average over (x, y) sampled from D.

The converse direction, i.e., that computing conditional pKt on average allows us to break
one-way functions, follows from the standard observation that computing pKt on average
over samplable distributions allows us to distinguish pseudo-random distributions (which
are supported on strings of low pKt complexity) from random strings (which have high pKt

complexity).

Characterizing DistNP ™ HeurBPP by Average-Case Easiness of Conditional pKt in
Sublinear-Time Regime

To show that the average-case easiness of computing conditional pKt (in the sublinear-time
regime) implies the average-case easiness of NP (both with respect to polynomial-time
samplable distributions), we first show that it is NP-hard to compute conditional pKt (again,
in the sublinear-time regime). Recently, Liu and Pass [16] and Hirahara [6] showed that
the problem of computing the conditional Kt in the sublinear-time regime is NP-hard. We
generalize this result to pKt.

At a high level, our proof follows a similar approach but also requires some crucial
observations to address the more complex notion of pKt and to make it applicable to show
Theorem 2. In particular, we adapt the proof in [6] which relies on the use of a secret
sharing scheme (see [6, Section 2.3] for an exposition). More specifically, it reduces the
problem of approximating the hamming weight of a minimum satisfying assignment of a
given monotone formula, which is known to be NP-hard, to that of computing conditional
Kt in the sublinear-time regime. That is, for every constant c > 1 and time bound function
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·(n,m) := n
c ·m1≠1/c, there is a randomized reduction R such that if a given monotone

formula Â has a satisfying assignment of hamming weight at most ’ (resp. much larger
than ’), then with high probability, R produces a pair of strings (x, y) and fl such that
K·(|x|,|y|)(x | y) Æ fl (resp. K·(|x|,|y|)(x | y) > fl).

Our key observation is that this reduction still works in the presence of any fixed string r.
Roughly put, the reason for this is that a secret sharing scheme remains secure even if an
adversary has access to some fixed string. More specifically, we can show that with respect to
any string r, if a given monotone formula Â has a satisfying assignment of hamming weight
much larger than ’, then with high probability the algorithm R produces a pair of strings
(x, y) and fl such that K·(|x|,|y|)(x | y, r) > fl. This allows us to say that if the minimum
weight of Â is much larger than ’, then with high probability over a random string r and
over the internal randomness of R, K·(|x|,|y|)(x | y, r) > fl. By an averaging argument, this
gives that with high probability over the internal randomness of R, K·(|x|,|y|)(x | y, r) > fl

for more than 2/3 of the r’s, which essentially means pK·(|x|,|y|)
1/3

(x | y) > fl.
Now we have showed that computing conditional pKt (in the sublinear-time regime) is

NP-hard. To solve an NP problem L over a given polynomial-time samplable distribution D,
we can compose D with the reduction R to obtain a new distribution DÕ. Then we can show
that computing conditional pKt on average over DÕ will allow us to solve L on average over
D. However, there is an additional subtle issue here, the original reduction R depends on
the time bound function (i.e., for every sublinear time bound · , there is a reduction R that
will work). On the other hand, to show Theorem 2 (Item 2 =∆ Item 1), it is required that
the reduction works for all time bound functions · of the form ·(n,m) = n

c ·m1≠1/c. We
will then need to further modify the reduction to achieve this. (See [20, Lemma 45] for the
details.)

Now we need to show the other direction saying that the average-case easiness of NP
implies the average-case easiness of computing conditional pKt. Unlike the problem of
computing (conditional) Kt, computing (conditional) pKt is not known to be in NP, so we
can not get the desired implication directly. However, it is not hard to see that the problem
of computing conditional pKt is in fact in (promise) AM.8 If we can solve NP, then we can
also solve AM (in the randomized setting), by a standard trick that combines the instance of
an AM problem with a random string to produce an instance for an NP problem. (See [20,
Lemma 53] for the details.)

Characterizing DistNP ™ BPP and DistNP ™ HeurBPP by Tractability of
Time-Unbounded Kolmogorov Complexity.

First, we recap the proof of Theorem 6 as presented in [11]. We will ignore the issue of
“infinitely often” in this subsection.

To show that the non-existence of one-way functions implies e�cient algorithms for
approximating conditional Kolmogorov complexity on average over polynomial-time samplable
distributions, we use a powerful result from [13], which asserts that if one-way functions
do not exist, then for any polynomial-time samplable distribution D over {0, 1}n ◊ {0, 1}n,
one can e�ciently estimate D(x | y) on average over (x, y) ≥ D. In addition, we combine
two fundamental properties related to time-unbounded Kolmogorov complexity: The first is
called the coding theorem, which roughly says that for every (x, y) œ Support(D),

8 Here, we refer to the problem Cond-pK instead of the one that asks to decide whether pK·(|x|,|y|)(x |
y) Æ s for a given input (x, y, 1s) and time bound · .
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K(x | y) . log 1
D(x | y) ,

and the second is the incompressibility property, which states that all y œ {0, 1}n and for
almost all x ≥ D(· | y),

K(x | y) & log 1
D(x | y) .

It follows that for almost all (x, y) ≥ D,

K(x | y) ¥ log 1
D(x | y) .

This allows us to approximate K(x | y) by estimating D(x | y), and the latter can be done
e�ciently if one-way functions do not exist.

For the other direction, the idea is that an e�cient algorithm for approximating Kolmogorov
complexity on average can be used to construct a function that distinguishes the output
distribution of a cryptographic pseudorandom generator from the uniform distribution.
Intuitively, this is because the outputs of such a generator have low Kpoly complexity while
a random string has high Kolmogorov complexity. Then such an algorithm implies the
non-existence of pseudorandom generators and hence of one-way functions [4].

Now, let us try to see if we can adapt the above proof paradigm to show Theorem 9,
which characterizes DistNP ™ HeurBPP by the tractability of approximating conditional
Kolmogorov complexity on average over independent polynomial-time samplable distributions.

One direction is in fact easy by using tools developed in [8]. In particular, it is observed in
[8] that if DistNP ™ HeurBPP, then every independent polynomial-time samplable distribution
can be simulated by some polynomial-time samplable distribution (see [20, Lemma 26]).
Consequently, if DistNP ™ HeurBPP (which also implies that one-way functions do not exist),
then we can reduce the task of approximating conditional Kolmogorov complexity over
independent polynomial-time samplable distributions to that of approximating conditional
Kolmogorov complexity over polynomial-time samplable distributions, which is tractable if
one-way functions do not exist.

However, for the other direction, it is unclear how we can get DistNP ™ HeurBPP from
the tractability of approximating conditional Kolmogorov complexity over independent
polynomial-time samplable distributions, by using ideas from the proof of the character-
ization for one-way functions. In that scenario, we use the algorithm for approximating
conditional Kolmogorov complexity as a distinguisher to break the security of a cryptographic
pseudorandom generator.

Here, we will use a di�erent approach. Specifically, we rely on a recently discovered
characterization of DistNP ™ HeurBPP by the validity of a certain property called conditional
coding for pKt. More precisely, the authors of [8] showed that DistNP ™ HeurBPP if and only
if conditional coding property for pKpoly holds on average over pairs of strings drawn from
independent polynomial-time samplable distributions, i.e., for any independent polynomial-
time samplable distribution D over {0, 1}n ◊ {0, 1}n and for almost all (x, y) ≥ D,

pKpoly(n)(x | y) . log 1
D(x | y)

(see [20, Theorem 30]).
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Now given this characterization of DistNP ™ HeurBPP using conditional coding, it
su�ces to show that conditional coding property for pKpoly over independent polynomial-time
samplable distributions follows from the tractability of approximating conditional Kolmogorov
complexity over the same class of distributions.

How can we show this? First of all, note that by the coding theorem for time-unbounded
Kolmogorov complexity, we have that for every (x, y) œ Support(D),

K(x | y) . log 1
D(x | y) .

Then to get the desired conditional coding property for pKpoly, it su�ces to show that for
almost all (x, y) ≥ D,

pKpoly(n)(x | y) Æ K(x | y) +O(logn). (1)

Now, let us describe how to show the above, assuming e�cient algorithms for approx-
imating conditional Kolmogorov complexity over independent polynomial-time samplable
distributions.

The key ingredient here is a pseudorandom generator construction with reconstruction
property. Such a generator is instantiated with a target string, it then takes as input a
random seed and outputs a string that is longer than the seed. The reconstruction property
allows us to say that if there exists a function that can distinguish the output distribution
of the generator from the uniform distribution, then it can be used to recover the target
string, using an additional advice string. This enables us to say that given a distinguisher,
the target string has poly-time-bounded Kolmogorov complexity bounded by the length of
the advice string. An algorithm for approximating Kolmogorov complexity can naturally
be used as such a distinguisher, since the outputs of the generator have low Kolmogorov
complexity while a random string has high Kolmogorov complexity. By appropriately
configuring the parameters of the generator, we can ensure that the length of the advice
string is comparable to the Kolmogorov complexity of the target string. This allows us
to upper bound the poly-time-bounded Kolmogorov complexity of the target string by its
Kolmogorov complexity.

Using this approach, the authors of [8] showed that if e�cient algorithms exist for approx-
imating conditional Kolmogorov complexity over polynomial-time samplable distributions,
then for every polynomial-time samplable distribution D over {0, 1}n ◊ {0, 1}n and almost
all (x, y) ≥ D,

rKpoly(n)(x | y) Æ K(x | y) +O(log3 n). (2)

Here, rKt is a certain randomized variant of time-bounded Kolmogorov complexity measure
[2, 18].

The O(log3 n) additive term in Equation (2) results from the use of a specific pseudor-
andom generator construction with an rKt-style reconstruction property (as they need to
upper bound rKpoly by K), and such a generator has sub-optimal “advice complexity” in its
reconstruction. In our case, we need to upper bound pKpoly by K, and we can use a di�erent
pseudorandom generator construction with a pKt-style reconstruction property that is known
to have optimal “advice complexity” (see [20, Section 2.7]). This results in only an O(logn)
additive term instead of O(log3 n) as in the previous case.

The description provided above does not address an important technical distinction
between showing Equation (1) and showing Equation (2) in [8]. In our case, we need to
show Equation (1) over independent polynomial-time samplable distributions, whereas the
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other case involves the simpler class of polynomial-time samplable samplable distributions.
In fact, in the proof of Equation (2), a crucial fact used is that the uniform mixture of two
polynomial-time samplable distributions is also polynomial-time samplable. Intuitively, the
reason why this is needed is that we need to obtain a function that can distinguish the
output distribution of a pseudorandom generator (induced by a polynomial-time samplable
distribution) and the uniform distribution (also combined with a polynomial-time samplable
distribution), so we need to apply an algorithm to approximate Kolmogorov complexity over
the mixture uniform of those two distributions.

However, in our case, we are dealing with independent polynomial-time samplable
distributions, and the uniform mixture of two independent polynomial-time samplable
distributions is not necessarily independent polynomial-time samplable. The key insight
here is that we don’t really need to be concerned with the uniform mixture of two generic
independently polynomial-time samplable distributions. Instead, the two distributions have
the property that they are identical when restricted to the second half. We then show
that the uniform mixture of such two distributions remains independently polynomial-time
samplable. (See the proofs of [20, Lemma 59] and [20, Lemma 63] for details.)

We now describe the proof of Theorem 7. Again, the direction of showing the tractability
of approximating conditional Kolmogorov complexity in the semi-worst case from NP ™ BPP
can be done in a way similar to that of Theorem 6 (as described earlier in this subsection).
This is because if NP ™ BPP, then one can estimate D(x | y) for every polynomial-time
samplable distribution D and (x, y) œ Support(D), a result due to [24] (see also [20, Lemma
27]).

For the other direction, we will employ the same approach as used to to show Theorem 9.
In this case, we will use a similar characterization of NP ™ BPP through conditional
coding. Specifically, it has been shown in [8] that NP ™ BPP if and only if worst-case
conditional coding for pKpoly holds, i.e., for every polynomial-time samplable distribution D
over {0, 1}n ◊ {0, 1}n and every (x, y) œ Support(D),

pKpoly(n)(x | y) . log 1
D(x | y) . (3)

Unfortunately, it is unclear how we can obtain the above worst-case conditional coding
property from the tractability of approximating conditional Kolmogorov complexity in the
semi-worst case by following the same approach. To overcome this, we observe that we can
modify the original proof in [8] to obtain a characterization of NP ™ BPP by semi-worst-case
conditional coding, which only requires Equation (3) to hold for almost all x ≥ D(· | y) and
for all y œ {0, 1}n (see [20, Lemma 64]).

By using this alternative characterization and addressing a similar issue that arises
when transitioning from polynomial-time samplable distributions to semi-worst-case input
distributions, as described above in the case of showing Theorem 9, we can now use e�cient
algorithms for approximating conditional Kolmogorov complexity in the semi-worst case to
obtain the desired semi-worst-case conditional coding property, which then yields NP ™ BPP.

1.3 Open Problems
Can we show NP-hardness of computing conditional pKt in the polynomial-time regime?
By Corollary 4, this would imply that Pessiland does not exist. Are there any barriers to
showing such an NP-hardness result?

Theorem 9 characterizes the error-prone average-case easiness of NP (i.e., DistNP ™
HeurBPP) by the tractability of approximating conditional Kolmogorov complexity over inde-
pendent polynomial-time samplable distributions. Can we obtain a similar characterization
for the errorless average-case easiness of NP (i.e., DistNP ™ AvgBPP)?
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Abstract
We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group
Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has
a vector cost ce œ R¸

Ø0. For a feasible solution – a path, subtree, or tour (respectively) – we find
the total vector cost of all the edges in the solution and then compute the ¸p-norm of the obtained
cost vector (we assume that p Ø 1 is an integer). Our algorithms for series-parallel graphs run in
polynomial time and those for arbitrary graphs run in quasi-polynomial time.

To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also
obtain a number of hardness results.
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1 Introduction

In this work, we study robust versions of network design problems. In the ¸p-Shortest Path
problem, we are given p Ø 1, a graph G = (V,E) with vector-valued edge costs ce œ R¸

Ø0
,

and two vertices s and t; the goal is to find a path P from s to t in G that minimizes the
following cost:

cost¸p
(P ) =

.....
ÿ

eœP

ce

.....
p

.
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This problem is a natural generalization of the classical shortest path problem, but
surprisingly has not received much attention till recently. The problem has been studied for
p = Œ under the name Robust Shortest Path. Aissi, Bazgan and Vanderpooten [1] used
dynamic programming to obtain a fully polynomial-time approximation scheme for the case
when the number of coordinates ¸ is a constant and p = Œ (this result generalizes to other
p). Kasperski and ZieliÒski [18] proved that ¸Œ-Shortest Path is hard to approximate within
log1≠Á

¸ for all Á > 0 unless NP ™ DTIME(npolylogn). More recently, the same authors [21]
gave an O(


n log ¸/ log log ¸)-approximation to the problem by rounding a flow-based linear

programming relaxation and proved that their LP has the integrality gap of �(
Ô
n). In a

recent breakthrough, Li, Xu, and Zhang [23] gave an O(logn log ¸)-approximation algorithm
for ¸Œ-Shortest Path with running time quasi-polynomial in the size of the input instance.
In particular, their algorithm is the first polylogarithmic approximation known to date. They
also show that the same approximation guarantees can be obtained in polynomial time for
graphs of bounded treewidth, and they give a polynomial time O(d log ¸) approximation
algorithm for series-parallel graphs, where d is the depth (order) of the series-parallel
decomposition of the input graph. No results were known for any other exponents p œ (1,Œ).
However, it is trivial to get an ¸

1≠1/p-approximation by solving standard shortest path with
edge costs ÎceÎ1.

Introducing vector-valued costs to the graph’s edges allows this model to capture a
number of di�erent applications. First, it allows us to describe a situation in which di�erent
parties, each corresponding to a di�erent coordinate of the cost vectors, incur di�erent cost
when an edge is added to the solution. In this interpretation, as p æ Œ, the problem will
increasingly favor paths in which every party simultaneously incurs small cost. Alternatively,
each coordinate of the cost vectors may represent the cost incurred in terms of a di�erent
resource. This model would then allow one to balance minimizing the total amount of
resources spent and ensuring that no single resource is depleted. Furthermore, one can think
of this problem as providing an avenue for modeling robustness of a solution in the presence
of uncertainty. Each coordinate would then represent the cost incurred by adding an edge in
a distinct possible scenario, and the value of the ¸p-Shortest Path problem would amount to
a trade-o� between average and worst-case cost among all scenarios. Finally, this problem
generalizes congestion minimization in directed graphs (a fact that we prove in Section 8 of
the full version of the paper [24]).

Our results for the ¸p-Shortest Path problem. In this paper, we introduce a natural
flow-based sum-of-squares (SoS) relaxation for ¸p-Shortest Path (Section 3) and present
approximation algorithms for all integer p Ø 1.

First, we give an O(pd1≠1/p)-approximation algorithm for the problem running in n
O(p)

time for series-parallel graphs of depth/order d (Section 5). We do this by considering a
natural rounding algorithm for the SoS relaxation. We prove the following theorem:

I Theorem 1. There exists an approximation algorithm for the ¸p-Shortest Path problem in

series-parallel graphs that, given a series-parallel graph G of order/depth d and parameters

p œ ZØ1 and Á œ (0, 1), finds a (1 + Á)Bd(p)1/p = O(pd1≠1/p) approximation in time

m
O(p)

/Á
O(1)

(which is polynomial time when p and Á are fixed). Here, Bd(p) is the p
th

d-dimensional Bell number.
1

1 We provide a review of Bell numbers in the preliminaries.
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For graphs of small series-parallel order/depth d Æ logú
p, the approximation factor is

B
1/p

d
Æ O(p/ log(d) p). Remarkably, in a complementary analysis given in Section 8 of the

full version of the paper, we show that the approximation factor Bd(p)1/p is tight for our
rounding scheme. In all algorithms, we assume that ¸ is at most polynomial in n (if not, the
running times will also depend on ¸).

Then, we give a O(p log1≠1/d
n)-approximation for arbitrary graphs (Section 6 of the full

version of the paper), obtaining the following theorem:

I Theorem 2. There exists an approximation algorithm for the ¸p-Shortest Path problem

in arbitrary graphs that, given a graph G and parameters p œ ZØ1 and c œ (0, 1/2), finds a

cp log1≠1/p
n approximation in time m

ce
O(1/c)

logn = m
Oc(logn)

.

Note that when p = log ¸, this result yields an O(c logn log ¸) approximation. This is very
similar to the approximation guarantee of O(logn log k) by Li, Xu, and Zhang, except that
in our algorithm c can be an arbitrarily small constant.
I Remark 3. As previously discussed, an ¸

1≠1/p-approximation is trivial to achieve in
polynomial time by solving standard shortest path with edge costs ÎceÎ1. On the other hand,
for each fixed ¸

Õ there is a polynomial-time approximation scheme (PTAS) for ¸p-Shortest
Path in ¸

Õ dimensions that runs in time n
O(¸

Õ
). We now explain how to combine these two

results. Fix ” œ (1/¸, 1/2). Divide the coordinates of the cost vectors ce œ R¸ into ¸
Õ = Á1/”Ë

groups, each of size at most k = Á”¸Ë and then add up the coordinates in each group. For
each cost vector ce œ R¸, we obtain a new vector c

Õ
e

œ R¸
Õ . Costs c

Õ
e
approximate costs ce

within a factor of k1≠1/p in the following sense: for every path P ,
...

ÿ

eœP

ce

...
p

Æ
...

ÿ

eœP

c
Õ
e

...
p

Æ k
1≠1/p

...
ÿ

eœP

ce

...
p

. (1)

Using the PTAS, we solve the problem with costs cÕ
e
and by (1) get a (1 + Á)k1≠1/p approx-

imation to the original problem. We conclude that there exists an approximation algorithm
that finds an O((”¸)1≠1/p) approximation in time n

O(1/”) (for every ” œ (1/¸, 1/2)).
In the course of analyzing our algorithms, we prove a new majorization inequality for

pseudo-expectations (see Section 4) generalizing pseudo-expectation Lyapunov’s and Hölder
inequality (for the latter see [2, arXiv version]). We believe this result to be of independent
interest.

Hardness results. We also complement the analysis above with several hardness results for
¸p-Shortest Path. First, in Section 8.1 of the full version of the paper, we give a reduction
showing that the problem of congestion minimization can be reduced to the ¸Œ-Shortest
Path problem. This simultaneously speaks to the broad applicability of ¸p-Shortest Path
and implies hardness for the ¸Œ-version of the problem, following a result of Chuzhoy and
Khanna [9].

I Theorem 4. The ¸Œ-Shortest Path problem is hard to approximate within an

�(logn/ log logn)-factor unless NP ™ ZPTIME(nlog logn).

This theorem slightly strengthens the �(log1≠Á
¸)-hardness of approximation result by Kasper-

ski and ZieliÒski [18]. Finally, in Section 8.2 of the full version of the paper, we show that
allowing the entries of the cost vectors to be negative makes the problem substantially
harder. We do this by giving a reduction from the Closest Vector problem in lattices to
this (potentially negative costs) version of the ¸p-Shortest Path problem. Below, �p hides a
constant depending on p.

ICALP 2024
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I Theorem 5. For every p œ [1,Œ], it is NP-Hard to approximate the ¸p-Shortest Path

problem allowing negative edge costs within a factor of n
�p(1/ log logn)

.

I Remark 6. The requirement that all the coordinates of cost vectors ce are non-negative
can be slightly relaxed when p = 2. For our algorithms to work, it is su�cient that all
pairwise inner products of cost vectors are non-negative. That is, instead of requiring that
the Gram matrix of cost vectors is completely positive, we can only require that it is doubly
non-negative.

From shortest path to network design. In network design problems, one is given a graph
G = (V,E) with non-negative edge costs ce Ø 0, and wishes to find a subgraph F = (VF , EF )
that minimizes the total cost

q
eœEF

ce subject to some connectivity constraints. By varying
the set of allowed subgraphs F , this paradigm encapsulates many central and well-studied
network design problems, including the Survivable Network Design, Steiner Forest, Steiner
Tree, and Minimum Spanning Tree. In this paper we explore two network design problems,
Group Steiner Tree and Asymetric Traveling Salesperson (ATSP). We first recall the Group
Steiner Tree problem.

I Problem 7 (Group Steiner Tree). Given a weighted undirected graph G = (V,E, c), as well

as k subsets R1, . . . , Rk of V , find a minimum-cost subtree T of G containing at least one

vertex from each Ri.

We then introduce an analogous group variant of ATSP:

I Problem 8 (Group ATSP). Given a weighted directed graph G = (V,E, c) and a collection

of subsets R1, . . . , Rk of V , find a minimum-cost tour that visits at least one vertex in each Ri.

As in the case of Shortest Path, it is natural to ask whether we can approximately solve
¸p versions of other network design problems e�ciently. Prior work has been done in this
area. Hamacher and Ruhe [15] studied ¸Œ-Minimum Spanning Tree, and proved that it is
NP-complete. Following that, the complexity of the problem has been nearly completely
settled: Chekuri, Vondrák, and Zenklusen [8] presented an O(log ¸/ log log ¸)-approximation
algorithm, while Kasperski and Zielinski [19] (also see [20], Table 1) proved an �(log1≠Á

¸)-
hardness of approximation for every Á > 0, unless all problems in NP can be solved in
quasi-polynomial time. Laddha, Singh and Vempala [22] studied the ¸Œ-version of a subclass
of network design problems which encompasses the Generalized Steiner Network problem,
and gave a polynomial-time ¸-approximation algorithm for it.

Our results for ¸p-Group Steiner Tree and ¸p-Group ATSP. We consider the ¸p-version of
the Group Steiner Tree and the Group ATSP problems.

In Section 7 of the full version of the paper, we refine the SoS relaxation for ¸p-Shortest
Path to obtain approximation algorithms for ¸p-Group ATSP and ¸p-Group Steiner Tree,
and thus obtain approximation algorithms for these problems as well. In particular, we prove
the following two results:

I Theorem 9. There exists an approximation algorithm for ¸p-Group ATSP that given graph

G, groups Ri, and parameters p œ ZØ0 and c œ (0, 1/2) finds a c
2
p log2≠1/p

n log k approx-

imation in time m
O(p)+ce

O(1/c)
logn = m

Oc(logn)
. We assume that k is at most polynomial

in n.

I Theorem 10. There exists an approximation algorithm for the ¸p-Group Steiner Tree

problem in undirected graphs that given a graph G, groups Ri, and parameters p œ ZØ1 and

c œ (0, 1/2) finds a c
2
p log2≠1/p

n log k approximation in time m
ce

O(1/c)
logn = m

Oc(logn)
. We

assume that k is at most polynomial in n.
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Note that for p = Álog ¸Ë, we get an approximation algorithm for the ¸Œ norm.

1.1 Related Works

Previous results on the scalar-cost group Steiner tree problem. Group Steiner Tree with
scalar costs was introduced by Reich and Widmayer [29]. Garg, Konjevod, and Ravi [14] gave
an O(log2 n log k)-approximation to the problem, the first polylogarithmic approximation.
Charikar, Chekuri, Goel, and Guha [6] gave the same O(log2 n log k)-approximation with
a deterministic algorithm. Then Charikar, Chekuri, Cheung, Dai, Goel, Guha, and Li [5]
gave an O(log3 k) approximation that works even with directed graphs; however, it required
quasipolynomial time. Finally, Chekuri and Pál [7] gave an O(log2 k) approximation for
undirected graphs also in quasipolynomial time. The approximation guarantees of [14]
and [6] are presented above with the improvement resulting from using metric embedding by
Fakcharoenphol, Rao and Talwar [12]. In terms of the approximation guarantee and running
time, out algorithm is most similar to that by Chekuri and Pál [7]: when k = �(n), the
approximation guarantees match. In terms of techniques used, our algorithm uses some ideas
from that by Garg, Konjevod, and Ravi [14].

Dijkstra-style Algorithm for ¸p-Shortest Path. The authors of [3] describe a Dijkstra-style
algorithm for the ¸p-Shortest Path problem and claim that it achieves an O(min{p, log ¸})-
approximation. However, we show that this claim is incorrect and, in fact, the approximation
factor of their algorithm is at least �(n1≠1/p). We discuss this algorithm in Appendix B of
the full version of the paper.

Multi-objective combinatorial optimization for shortest path and network design. The
work in this paper is closely related to multi-objective combinatorial optimization (MOCO).
This area studies combinatorial optimization problems in the presence of multiple competing
objective functions. Much of the literature on MOCO is concerned with finding all or some
Pareto e�cient solutions, that is, solutions that are not dominated in every objective by
any other solution, a problem which is often intractable due to the exponential number of
these points. In particular, there is prior MOCO work on both shortest path [16, 25, 4] and
network design problems [28]. We refer the reader to the paper of Ruzika and Hamacher [30]
for a survey on multi-objective spanning tree problems, and the book of Ehrgott [11] for an
overview of multi-criteria optimization area as a whole.

1.2 Technical Overview

Let us first discuss the ¸p-Shortest Path problem. The most basic variant of this problem
is when G is a series-parallel graph (see Section 2 for definitions) and p = 2. The first idea
is to write an LP flow relaxation with a convex objective: minimize Î

q
eœE

cexeÎ2 subject
to the constraint that (xe)eœE define a unit flow from s to t. However, this LP has an
integrality gap of

Ô
¸. To deal with this problem, Li, Xu, and Zhang [23] introduced a new

constraint for ¸Œ-Shortest Path: the constraint loosely speaking says that the LP cost of
every subgraph/block B in the series-parallel decomposition of G is at most OPT times the
probability (according to the LP) that the path visits B. Unfortunately, this new constraint
does not help when p = 2.
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Instead, we consider a sum-of-squares (SoS) strengthening of this LP.2 The SoS relaxation
gives valuations not only to individual edges but also to tuples of edges. Using the standard
notation of pseudo-expectations (see Section 2), the SoS relaxation for p = 2 gives ÂE[xe] for
every edge e and ÂE[xe1xe2 ] for every pair of edges e1 and e2. The former could be interpreted
as the probability that e œ P and the latter as the probability as both e1, e2 œ P according
to the relaxation. To the best of our knowledge, this is the first flow-based SoS or SDP
relaxation studied in the literature.

Our algorithm is very straightforward. We start at u0 = s, then choose one of the edges
outgoing from u1 with probability of choosing e being equal to ÂE[xe]. We get to a vertex u1

and then again sample one of the edges leaving u1 with probability of choosing e proportional
to ÂE[xe]. We repeat this step over and over until we reach t. It is clear that the algorithm
finds an s-t path P .

Now we need to upper bound the cost of P . We do that recursively using the series-parallel
decomposition of G.3 Assume that G is composed of subgraphs/blocks B1, . . . , Bt and our
algorithm achieves an – approximation for the squared ¸2-cost in each of them. For simplicity,
assume that t = 2 for now. There are two cases: G is a (i) parallel and (ii) series composition
of B1 and B2. Consider the first case. The SoS relaxation ensures that ÂE[xe1xe2 ] = 0 for all
e1 œ B1 and e2 œ B2; this means that the SoS solution is simply a convex combination of
solutions for B1 and B2 with some weights p1 and p2. Also, with probability p1, the first
edge of P will be in B1 and then the entire path will be in B1; similarly, with probability p2,
the entire path will be in B2. Thus running the algorithm reduces to randomly choosing
a block Bi with probability pi and then running the algorithm in Bi. Since the algorithm
gets an – approximation in each Bi, it also gets an – approximation in the entire graph.
Interestingly, this step would already fail if we used the basic LP relaxation; however, a
Sherali–Adams or configuration LP would work in this case.

The second case – when G is a series composition of B1 and B2 is more challenging and
requires the power of an SDP relaxation. Let Pi = P fl Bi. Write the squared objective as
follows:

...
ÿ

eœP

ce

...
2

2

=
...

ÿ

eœP1

ce

...
2

2

+
...

ÿ

eœP2

ce

...
2

2

¸ ˚˙ ˝
Æ–OPT2 (in expectation)

+2
ÿ

e1œP1
e2œP2

Èce1 , ce2Í. (2)

The first two terms are squared ¸2-costs of paths P1 and P2. As we assumed, they are at
most – times their SoS costs, and thus their sum is at most –OPT

2 (in expectation). We
now analyze the third term. It is not hard to see that our algorithm samples edges in P1

and P2 independently (because the last vertex of P1 and the first vertex of P2 are fixed).
Therefore,

E
Ë ÿ

e1œP1
e2œP2

Èce1 , ce2Í
È
=

ÿ

e1œB1
e2œB2

Èce1 , ce2Í·Pr (e1, e2 œ P ) =
ÿ

e1œB1
e2œB2

Èce1 , ce2Í·Pr (e1 œ P )·Pr (e2 œ P ) .

(3)

2 It is su�cient to use a vector-flow SDP with one vector variable per edge in order to approximate the
¸2-cost in series-parallel graphs. However, we need higher degree SoS relaxations when p > 2 and in
general graphs.

3 Interestingly, neither the relaxation nor the algorithm uses the series-parallel decomposition of G.
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It would be natural to upper bound this expression by the corresponding expression in the
SoS objective (appropriately scaled):

ÿ

e1œB1
e2œB2

Èce1 , ce2Í · ÂE[xe1xe2 ].

However, this is not possible, since it may happen that Pr (e1 œ P ) · Pr (e2 œ P ) > 0 but
ÂE[xe1xe2 ] = 0. Instead, observing that for every edge e, Pr (e œ P ) = ÂE[xe], we rewrite and
upper bound (3):

ÿ

e1œB1
e2œB2

Èce1 , ce2Í ÂE[xe1 ] ÂE[xe2 ] Æ
ÿ

e1,e2œE

Èce1 , ce2Í · ÂE[xe1 ] · ÂE[xe2 ]

=
...ÂE

Ëÿ

eœE

cexe

È...
2

2

Æ ÂE
Ë...

ÿ

eœE

cexe

...
2È

Æ OPT
2
.

Here, we first expanded the summation, then used the pseudo-expectation Lyapunov’s
inequality Î ÂE[f ]Î2

2
Æ ÂE[ÎfÎ2

2
] (see Fact 18), and finally observed that the last pseudo-

expectation is the SoS objective for G. We conclude that the expected squared cost of P is
at most (– + 2)OPT. Applying this argument recursively, we get an O(d)-approximation for
the squared cost and an O(

Ô
d)-approximation for the cost itself in series-parallel graphs of

order/depth d.
When p > 2 and blocks in the series-parallel composition of G are formed by t > 2

lower-order blocks, the proof becomes more technical. In particular, we need to use a new
majorization inequality for pseudo-expectation, which we present in Section 4.

The SoS relaxation for arbitrary graphs is the same as that for series-parallel graphs
(except that its degree is higher). However, the rounding algorithm is quite di�erent. Very
informally, the algorithm in its simplest form resembles Savitch’s algorithm for s-t connectivity
in O(log2 n) space [31] (see also [7]): (i) we sample the middle edge e = (u, v) of the path
using probabilities provided by ÂE[·], (ii) condition ÂE[·] on e being the middle edge, (iii)
then recursively find paths P1 from s to u and (independently) P2 from v to t, using the
conditional pseudo-expectation. To upper bound the cost, as in the analysis of the algorithm
for series-parallel graphs, we first use (2) , then bound the third term using a variant of (3),
and finally use the majorization inequality for pseudo-expectations.

To solve Group ATSP, we loosely speaking add SoS constraints that require that the
tour P visits every group (for technical reasons, we need to require that P visits each group
exactly once). Then we run the rounding algorithm for ¸p-Shortest Path in arbitrary graphs.
It is not guaranteed that P indeed visits every group; however, using the machinery we
developed for bounding the cost of P , we show that P visits every group with probability at
least �(1/ logn). By sampling su�ciently many tours and concatenating them, we obtain
the desired solution with high probability. The Group Steiner Tree problem easily reduces to
Group ATSP.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2 we define series-parallel graphs,
relevant combinatorial quantities and notation used in the rest of the paper, and give some
basic facts on Sum-of-Squares relaxations. In Section 3, we describe our Sum-of-Squares
relaxation for ¸p-Shortest Path in directed acyclic graphs. In Section 4 we show a majorization
inequality for pseudo-expectations used in the analysis of our algorithms. In Section 5 we
describe and analyze our rounding algorithm for ¸p-Shortest Path in series-parallel graphs. In
Section 6 we describe our approximation algorithm for ¸p-Shortest Path in arbitrary graphs.
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The remaining sections appear in the full version of the paper [24]. Section 6 of the
full version of the paper contains the proofs of the theorems that have been ommitted in
this version. In Section 7 of the full version, we present our algorithms for ¸p-Group ATSP
and ¸p-Group Steiner Tree. In Section 8 of the full version, we give our hardness results:
hardness of approximation results for ¸p-Shortest Path with potentially negative edge costs
and for ¸Œ-Shortest Path. We also show that our analysis of the ¸p-Shortest Path algorithm
in series-parallel graphs is tight. In Appendix A of the full version, we prove a recurrence
formula and upper bound on multidimensional Bell numbers, which are used in the analyses
of our algorithms for ¸p-Shortest Path.

2 Preliminaries and Notation

In this paper, all logs are base 2. In this paper, we consider Shortest Path and Group ATSP
in directed graphs and Group Steiner Tree in undirected graphs. We assume that graphs
may have parallel edges. Let G = (V,E) be a directed graph. We denote n = |V | and
m = |E|. For v œ V , denote the sets of its outgoing and incoming edges by ”

+(v) and ”
≠(v),

respectively. Similarly, define ”
+(A) and ”

≠(A) for subsets of vertices A. Finally, denote the
set of edges from A to B by ”(A,B). We denote the i-th coordinate of vector edge cost ce
by ce(i).

2.1 Series-Parallel Graphs
We start with providing a recursive definition of directed series-parallel graphs with source s

and sink t. A graph on two vertices s, t and one or more edges from s to t is a series-parallel
graph of order (depth) 0. We denote the order of G as ord(G).

Parallel Composition. Let B1,. . . , Bt be series-parallel graphs that share only vertices
s and t. Then their union G is a series-parallel graph. Define ord(G) = maxj ord(Bj).
Series Composition. Let B1,. . . , Bt be series-parallel graphs. Denote the source and
sink of Bi by si and ti (respectively). Assume that ti = si+1 for all i œ {1, . . . , t ≠ 1}
and that graphs Bi do not share any other vertices. Then the union G of graphs Bi is a
series-parallel graph. Define ord(G) = maxj ord(Bj) + 1.

In this definition, we only count series compositions when we compute the order of a series-
parallel graph. We call vertices s and t terminals. We call intermediate graphs that we
obtain while constructing G blocks. We denote the source and sink of a block B by sB and
tB , respectively.

2.2 Combinatorics
Unlabeled Partitions. We say that a tuple of integers ⁄ = (⁄1, . . . ,⁄k) is an unlabeled
partition of an integer n Ø 1 if n =

q
k

i=1
⁄i and ⁄1 Ø ⁄2 Ø · · · Ø ⁄k Ø 1. We will denote

this by ⁄ „n. We will denote the length of ⁄ = (⁄1, . . . ,⁄k) by |⁄| = k.
Given an n and some tuple of non-negative integers – with –1 + . . .+ –k = n, we use

standard notation for the multinomial coe�cient
3
n

–

4
def= n!

r
k

i=1
–i!

Multidimensional Bell Numbers. Recall that the nth Bell number Bn equals the number
of labeled partitions of a set of size n. In this paper, we will need a generalization of Bell
numbers, known as multidimensional Bell numbers (see [32, Example 5.2.4] and [10]).
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I Definition 11. We say that a collection of subsets P is a partition of a set S if all subsets

in P are disjoint and their union is S. Consider two partitions P and P
Õ
of S. We say that

P
Õ
is a refinement of P if every A œ P

Õ
is a subset of some B œ P .

A d-dimensional partition of p is a tuple (P1, . . . , Pd) where all Pi are partitions of

[p] def= {1, . . . , p} and each Pi+1 is a refinement of Pi. The d-dimensional Bell number Bd(p)
is the number of d-dimensional partitions of p. If d = 0 or p = 0, we let Bd(p)

def= 1.

Note that 1-dimensional Bell numbers are simply the standard Bell numbers: B1(i) = B(i).
We can also restate the definition of Bd(n) as follows. Bd(n) is the number of (d+ 2)-level
rooted trees with n labeled leaves: the root must be in level 0, all leaves must be in level
d + 1, and all leaves are labeled with numbers from 1 to n with each number being used
exactly once.

We will need the following recurrence formula for d-dimensional Bell numbers, which is
proved in Appendix A of the full version of the paper.

I Lemma 12. For every d Ø 1 and p Ø 1, we have

Bd(p) =
ÿ

⁄ „ p

3
p

⁄

4 |⁄|Ÿ

i=1

Bd≠1(⁄i)
M

pŸ

j=1

count(j,⁄)!

where count(j,⁄) is the number of times j appears in ⁄.

Now, we describe the exponential generating function for sequence (Bd(i))i when d is
fixed.

I Fact 13 ([32, Example 5.2.4]). Let f0(x) = exp(x) and fi+1(x) = exp(fi(x)≠ 1). Then the

exponential generating function for sequence (Bd(i))Œ
i=0

is given by:

Œÿ

i=0

Bd(i)xi

i! = fd(x). (4)

In this paper, we will present an approximation algorithm for ¸p-Shortest Path in depth-d
series-parallel graphs with approximation factor Ad(p)

def= Bd(p)1/p. From Fact 13, we obtain
the following upper bound on Ad(p), proved in Appendix A of the full version of the paper.

B Claim 14. For all p Ø 1 and d Ø 1, we have

Ad(p) = Bd(p)1/p = O(pd1≠1/p).

Let log(j) p = log · · · log¸ ˚˙ ˝
j times

p and logú
p be the largest value of j such that log(j) p Ø 1. Then,

the following upper bound on Ad(p) holds for d Æ logú
p :

Ad(p) = Bd(p)1/p Æ O

1
p

log(d) p

2
.

2.3 Sum-of-Squares Relaxations
We recall some basics about the sum-of-squares relaxations. Sum-of-squares relaxations can
be thought of in terms of moment matrices, pseudo-distributions, and pseudo-expectations.
As is common, we will use the pseudo-expectation framework in this paper. We refer the
reader to [13] for a detailed description of the sum-of-squares framework.
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Consider a set of variables xi where i belongs to some set of indices I. We denote the
entire collection of all variables (xi)iœI by x. Consider the set of multivariate polynomials
RÆd[x]

def= RÆd[{xi : i œ I}] in variables xi of degree at most d. We say that f œ RÆd[x]
is a sum of squares (SoS) if f =

q
m

i=1
f
2

i
for some polynomials f1, . . . , fm. Note that the

product of SoS polynomials is a SoS, and so is any linear combination of SoS polynomials
with positive coe�cients.

In this paper, we consider SoS relaxations for the Boolean hypercube; that is, all variables
xi take values 0 and 1 in the intended solution. Therefore, we work with the quotient ring
RÆd/Èx2

i
≠ xiÍi, where Èx2

i
≠ xiÍi is the ideal generated by polynomials x

2

i
≠ xi. In other

words, we identify monomials xa1
i1
, . . . , x

at

it
and xi1 , . . . , xit

for all i1, . . . , it and a1, . . . , at Ø 1
such that

q
t

i=1
ai Æ d. In particular, we will write f = g if f ≠ g œ Èx2

i
≠ xiÍi.

I Definition 15. A linear map ÂE : RÆd[x]/Èx2

i
≠ xiÍi æ R is a pseudo-expectation of degree

d if it satisfies the following properties.

ÂE[1] = 1,
ÂE[f2] Ø 0 for every polynomial f of degree at most d/2,

We say that a pseudo-expectation ÂE satisfies an equality constraint f = 0 if ÂE[fg] = 0
whenever deg fg Æ d.

Given an objective function f and sets of equality and inequality constraints, we can
find a pseudo-expectation ÂE that maximizes ÂE[f ] and satisfies all the constraints in time
polynomial in N

O(d), where N is the number variables, as long as it satisfies certain regularity
conditions [27]. When we prove any statements about pseudo-expectations ÂE[f ] below, we
will always implicitly assume that d Ø �(deg f) so that all the inequalities appearing in the
proofs have degree at most d.

I Definition 16. Let ÂE be a pseudo-expectation of degree d. Assume that g is a sum of

squares and ÂE[g] > 0. Then the conditional pseudo-expectation ÂE[· | g] operator is defined as

follows: ÂE[f | g] def= ÂE[fg]/ ÂE[g].

I Fact 17. A conditional pseudo-expectation ÂE[· | g] is a pseudo-expectation of degree d
Õ =

d ≠ deg g. If ÂE satisfies an equality or inequality constraint of degree at most d
Õ
, then so

does ÂE.

We will use Lyapunov’s inequality for pseudo-expectations (which is also referred to as
Jensen’s inequality in the literature).

B Claim 18. Let g be a sum of squares and f be any polynomial. Assume that deg f2
g Æ d.

Then,

ÂE[fg]2 Æ ÂE[f2
g] ÂE[g]. (5)

If ÂE[g] > 0, the inequality can be restated as

ÂE[f | g]2 Æ ÂE[f2 | g]. (6)

B Claim 19. Let f1, . . . , ft be SoS polynomials. Then, ÂE[
1q

t

i=1
fi

2p

] Ø
q

t

i=1
ÂE[fp

i
].

Proof. We expand
1q

t

i=1
fi

2p

as
q

–1,...,–tØ0

–1+···+–t=p

!
p

–

"
f

–1
1

· · · f–t

t
. All terms in the expansion

are SoS polynomials and thus have non-negative pseudo-expectations. The claim follows
from the observation that all terms fp

i
are present in the expansion. C
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3 Sum of Squares Relaxation for ¸p-Shortest Path

In this section, we first present our SoS relaxation for ¸p-Shortest Path in directed acyclic
graphs (DAGs). In Section 5, we will present a rounding algorithm for series-parallel graphs
and then, in Section 6 of the full version of the paper, for layered graphs. The latter result
will also yield an algorithm for arbitrary graphs. We will also describe a few basic properties
that feasible solutions for this relaxation satisfy.

Relaxation. We use a degree 2p SoS relaxation with variables x = (xe)eœE
for ¸p-Shortest

Path in series-parallel graphs.

min ÂE
Ë ¸ÿ

i=1

1ÿ

e

ce(i)xe

2pÈ

subject to (xe)eœE is a unit flow from s to t

The flow constraint says that
q

eœ”+(u)
xe ≠

q
eœ”≠(u)

xe = 0 for all u other than s and t

(flow conservation) and
q

eœ”+(s)
xe ≠ 1 = 0 (xe sends 1 unit of flow from s to t). It is clear

that this is a relaxation for the ¸p-Shortest Path problem: ÂE[
q

¸

i=1
(
q

e
ce(i)xe)p

È
Æ OPT

p,
where OPT is the ¸p-cost of the optimal s-t path.

Basic properties of the SoS relaxation. We say that two edges e1 and e2 are compatible if
both of them belong to some s-t path; otherwise, we say that e1 and e2 are incompatible. In
a series-parallel graph edges e1 and e2 are incompatible if and only if there exist two parallel
blocks B1 and B2 such that e1 lies in B1 and e2 lies in B2. For any set of vertices A, let
x
+

A
=

q
eœ”+(A)

xe and x
≠
A
=

q
eœ”≠(A)

xe.

B Claim 20. Assume that G is a DAG and ÂE is a feasible pseudo-expectation for the
relaxation. Let h be a multivariate polynomial. Then
1. If A ™ V contains neither of the terminals, then ÂE[(x+

A
≠ x

≠
A
)h] = 0. If A contains s but

not t, ÂE[(x+

A
≠ x

≠
A
)h] = ÂE[h].

2. If e1 and e2 are not compatible, then ÂE[xe1xe2h] = 0.
3. Assume further that G is a series-parallel graph. Let (L,R) be an sB-tB cut in a block

B. Let fLR =
q

eœ”(L,R)
xe. Then

ÂE
Ë
fLRh

È
= ÂE

Ë! ÿ

eœ”+(sB)flB

xe

"
h

È
.

In particular, ÂE[fLRh] does not depend on the cut (L,R) in B.

Proof.

1. The SoS relaxation satisfies the flow conservation constraints and the constraint that the
amount of flow being routed equals 1. Therefore, it satisfies any linear combination of
them. In particular, it satisfies degree-1 polynomial equations x+

A
≠ x

≠
A
= 0 when s, t /œ A

and x
+

A
≠ x

≠
A
= 1 when s œ A but t /œ A. The first item follows.

2. It is su�cient to prove the statement for all monomials (the claim then follows by the
linearity of ÂE). Thus, we will assume that h is a monomial. Recall that an s-t cut is
monotone if it cuts exactly one edge on every s-t path. Since e1 and e2 are incompatible,
there is a monotone s-t cut (A, Ā) that cuts both of them. We apply item 1 to polynomial
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xe1h and get ÂE[xe1h] = ÂE[xe1x
+

A
h] = ÂE[xe1(xe1 + xe2 + . . . )h]. Here, . . . is a sum of some

xe (the coe�cient of each of them is 1). Note that xeh is a monomial, thus xeh = (xeh)2
and therefore ÂE[xeh] Ø 0. We conclude that

ÂE[xe1h] Ø ÂE[xe1(xe1 + xe2)h] = ÂE[(xe1 + xe1xe2)h]

and simplifying, we get ÂE[xe1xe2h] Æ 0. Since xe1xe2h is a monomial, ÂE[xe1xe2h] Ø 0,
and thus ÂE[xe1xe2h] = 0.

3. Item 3 follows immediately from item 1. C

4 Majorization Inequalities for Pseudo-expectations

In this section, we will prove a majorization inequality for pseudo-expectations. This
inequality generalizes already known pseudo-expectation Lyapunov’s (see Claim 18) and
Hölder’s (see [2]) inequalities.

I Definition 21. Consider two integer sequences a1 Ø a2 Ø . . . Ø ak Ø 0 and b1 Ø . . . Ø
bk Ø 0. We say a majorizes b and write a ≤ b, if

q
k

i=1
ai =

q
k

i=1
bi and for all 1 Æ i Æ k

we have

a1 + . . .+ ai Ø b1 + . . .+ bi.

Sequence majorization is a powerful tool for proving inequalities; it appears in widely used
Muirhead’s [26] and Karamata’s [17] majorization inequalities. We now present a majorization
inequality for pseudo-expectations. An analogous inequality for true expectations easily
follows both from Karamata’s and from Muirhead’s majorization inequality.

I Lemma 22. Consider a degree d pseudo-expectation ÂE. Let a ≤ b and f be an SoS

polynomial of degree deg(fa1) Æ d. Then

kŸ

i=1

ÂE[fai ] Ø
kŸ

i=1

ÂE[f bi ]. (7)

Proof. First, observe that this inequality for sequences (r + 1, r ≠ 1) ≤ (r, r) follows from
Lyapunov’s inequality for pseudo-expectations (Claim 18). Indeed, let g = f

r≠1. Then,
Lyapunov’s inequality states that

ÂE[fr]2 = ÂE[fg]2 Æ ÂE[f2
g] ÂE[g] = ÂE[fr+1] ÂE[fr≠1], (8)

as required. Now we use this inequality to show the desired inequality (7) for a more general
case (p+ 1, q ≠ 1) ≤ (p, q).

B Claim 23. Let p Ø q Ø 1 be integers. Then

ÂE[fp+1] ÂE[fq≠1] Ø ÂE[fp] ÂE[fq].

Proof. We just proved the inequality when p = q. So we will assume below that p > q. Since
f is an SoS polynomial, ÂE[fr] Ø 0 for all integers 0 Æ r Æ p. Let us assume first that the
inequality is strict for all r: ÂE[fr] > 0. Then, by dividing and multiplying ÂE[fq] ÂE[fp] byr

p≠1

r=q
ÂE[fr], we obtain the following identity.

ÂE[fq] ÂE[fp] =
ÂE[fq] ÂE[fq] ÂE[fq+1] · · · ÂE[fp≠1] ÂE[fp]

ÂE[fq] ÂE[fq+1] · · · ÂE[fp≠1]
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Now we upper bound the numerator of this fraction by iteratively applying (8).
1

ÂE[fq] ÂE[fq]
2

ÂE[fq+1] · · · ÂE[fp≠1] ÂE[fp] Æ
1

ÂE[fq≠1] ÂE[fq+1]
2

ÂE[fq+1] · · · ÂE[fp≠1] ÂE[fp]

ÂE[fq≠1]
1

ÂE[fq+1] ÂE[fq+1]
2
· · · ÂE[fp≠1] ÂE[fp] Æ ÂE[fq≠1]

1
ÂE[fq] ÂE[fq+2]

2
· · · ÂE[fp≠1] ÂE[fp]

...

ÂE[fq≠1] ÂE[fq] ÂE[fq+1] · · ·
1

ÂE[fp] ÂE[fp]
2

Æ ÂE[fq≠1] ÂE[fq] ÂE[fq+1] · · ·
1

ÂE[fp≠1] ÂE[fp+1]
2

We conclude that
ÂE[fq] ÂE[fp] Æ ÂE[fq≠1] ÂE[fp+1],

as desired. If ÂE[fr] = 0 for some r, we apply the inequality to f̂ = f + Á (where Á > 0).
Now ÂE[f̄r] Ø Á

r
> 0, since f is a SoS polynomial. Therefore, ÂE[f̂q] ÂE[f̂p] Æ ÂE[f̂q≠1] ÂE[f̂p+1].

Letting Á æ 0, we obtain the desired inequality in the limit. C

Consider an integer sequence a1 Ø . . . ak Ø 0 and two indices 1 Æ i
ú
< j

ú Æ k such that
aiú ≠ ajú Ø 2. Define a transfer or T-transform as follows: we decrease aiú by 1, increase
ajú by 1, and then sort the obtained sequence in descending order. Claim 23 implies that
Lemma 22 holds for sequence a and sequence b obtained from a by a T-transform.

Finally, we use that if a ≤ b then b can be obtained by a sequence of T-transforms [26]:
a = a

(0) ‘æ a
(1) ‘æ a

(2) ‘æ · · · ‘æ a
(T ) = b. As we proved, the value of the productr

k

i=1
ÂE[fa

(t)
i ] may only decrease each time we apply a T-transform. This concludes the proof

of the lemma. J

Importantly, conditional pseudo-expectations are pseudo-expectations (see Fact 17) and
thus Lemma 22 holds for conditional pseudo-expectations as well.

5 Sum-of-Squares Relaxation Rounding

In this section, we describe and analyze a rounding algorithm for series-parallel graphs. It
gives an (1 + Á)Ad(p) = O(pd) approximation for ¸p-Shortest Path in series-parallel graphs
of order d. Later we use a di�erent algorithm with a similar analysis to solve the problem in
layered and arbitrary graphs.

5.1 Algorithm
Let us denote pe = ÂE[xe] and pu =

q
eœ”+(u)

ÂE[xe]. Note that the SoS relaxation constraints
ensure that pe is an s-t flow; pu equals the amount of flow that leaves vertex u. The total
amount of flow is 1.

Algorithm 1 Rounding algorithm for SoS.

1: Input: series-parallel graph G with source s and sink t, a pseudo-expectation ÂE
2: Output: an s-t path in G

3: Let u = s and P be an empty path.
4: while u ”= t do

5: Sample e œ ”
+(u) with probability pe

pu

= ÂE[xe]q
eœ”+(u)

ÂE[xe]

6: Append e to path P

7: end while

8: return P
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I Lemma 24. Let P be the path returned by Algorithm 1. Then Pr (e œ P ) = pe for every

edge e and Pr (u œ P ) = pu for every vertex u.

Proof. We consider all vertices in topological order and prove the desired formulas for
Pr (u œ P ) and Pr ((u, v) œ P ) by induction. For u = s, we have Pr (s œ P ) = 1 = ps. Then,
Pr ((s, v) œ P ) = p(s,v)/ps = p(s,v), as required. Now assume that we proved the formulas
for vertices uÕ proceeding u in the topological order. We have,

Pr (u œ P ) =
ÿ

e=(uÕ,u)œ”≠(u)

Pr (e œ P ) =
ÿ

e=(u,uÕ)œ”≠(u)

pe = pu.

Here, we used the induction hypothesis and the flow conservation condition at vertex u. Now
let e = (u, v).

Pr (e œ P ) = Pr (e œ P |u œ P ) Pr (u œ P ) = (pe/pu) · pu. J

Now we will prove an upper bound on the ¸p-cost of path P . The proof will be by
induction on the series-parallel decomposition of G, going from lower to higher order blocks
B. To analyze di�erent blocks B, we first introduce some relevant notation.

Let us say that a path P visits block B if it contains at least one edge from B. Let
PB = P fl B be the restriction of P to B. If P does not visit B, let PB = ?. Note that if
P visits B then it must go through the source sB and sink tB of B. However, if B has a
parallel block B

Õ, a path may go through sB and tB but visit B
Õ rather than B itself. It

follows from Lemma 24 that the probability that P visits B equals pB
def=

q
eœ”+(sB)flB

pe.
Now, we define conditional expectations and pseudo-expectations restricted to B (that is,

conditioned on the event that P visits B). Let hB =
q

eœ”+(sB)flB
xe =

q
eœ”+(sB)flB

x
2
e
be

a SoS indicator of the event that P visits B. We let

EB [·]
def= E [· |P visits B] and ÂE

B

[·] def= ÂE [· |hB ] .

In the sequel, we shall bound the costs of P coordinate-by-coordinate. Thus, we consider
a set of scalar non-negative edge weights ae Ø 0. Define fB

def=
q

eœB
ae · xe. For a path P

Õ,
let cost(P Õ) =

q
eœP Õ ae. Note that fB =

q
eœB

ae · x2
e
and thus is a sum of squares.

B Claim 25. Let BÕ be a block inside B (possibly B
Õ = B). Assume pB > 0. Then, we have

EB [cost(PBÕ)r] = E[cost(P
BÕ )r]

pB

and ÂEB [fr

BÕ ] =
ÂE[fr

BÕ ]

pB

when r œ {1, . . . , p}.

Proof. We have

E [cost(PBÕ)r] = E [cost(PBÕ)r |PB ”= ?] · Pr (PB ”= ?) + E [cost(PBÕ)r |PB = ?] · Pr (PB = ?)
= EB [cost(PBÕ)r] · pB + 0 · (1 ≠ pB) = pB · EB [cost(PBÕ)r] ,

as required. To prove the second identity, consider a monomial g in the expansion of fr

BÕ .
We now prove that ÂE[ghB ] = ÂE[g] and thus ÂEB [g]

def= ÂE[ghB ]/pB = ÂE[g]/pB . Note that only
xe with e œ B

Õ appear in g, and deg g = r Ø 1. Choose an arbitrary xe in g, say e = (u, v)
and let gÕ be such that g = g

Õ
xe. Let (L,R) be a monotone sB-tB cut in B that cuts e. By

Claim 20, item 3,

ÂE[ghB ] = ÂE
Ë
g

ÿ

eÕœ”(L,R)

xeÕ

È
= ÂE

Ë
g

Õ
ÿ

eÕœ”(L,R)

xexeÕ

È
.

Now all edges eÕ œ ”(L,R) other than e are incompatible with e; for them, ÂE[gÕ
xexeÕ ] = 0 by

Claim 20, item 2. Also, ÂE[gÕ
xexeÕ ] = ÂE[gÕ

xe] for eÕ = e. Therefore, ÂE[ghB ] = ÂE[gÕ
xe] = ÂE[g],

as required. C
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I Lemma 26. Let ÂE be a feasible solution for the SoS relaxation of ¸p-Shortest Path. Let B

be a block of order h= ord(B) with pB > 0. Then for every r Æ p, we have

EB [cost(PB)r] Æ Bh(r) ÂE
B

[fr

B
].

Here, Bh(r) is an h-dimensional Bell number (see Section 2.2 for details).

Proof. We will prove the upper bound on E [cost(PB)r] by induction on r and on the series-
parallel decomposition of B. If r = 0 or h = 0, the claim trivially holds. We consider
two cases: when a block B is a parallel composition and when it is a series composition
of lower-level blocks. We start with the former, much simpler case when B is a parallel
composition of blocks B1, . . . , Bt sharing the same source sB and sink tB . If P visits B, then
it visits exactly one of the blocks B1, . . . , Bt. Therefore,

EB [cost(PB)r] =
tÿ

i=1

EBi
[cost(PBi

)r] Pr (P visits Bi|P visits B) =
tÿ

i=1

pBi

pB
EBi

[cost(PBi
)r] . (9)

Note that fB =
q

t

i=1
fBi

. Applying Claim 19 and then Claim 25 twice, we get

ÂE
B

[fr

B
] Ø

tÿ

i=1

ÂE
B

[fr

Bi
] =

tÿ

i=1

1
pB

ÂE[fr

Bi
] =

tÿ

i=1

pBi

pB

ÂE
Bi

[fr

Bi
]. (10)

In fact the inequality above is an equality by Claim 20, part 2, but we do not need that here.
Comparing (9) and (10) term-by-term, and using the induction hypothesis, we get

EB [cost(PB)r] Æ Bh(r) ÂE
B

[fr

B
].

This concludes the analysis of this case. Now we assume that B is a series composition of
blocks B1, . . . , Bt. In this case, if P visits B then it visits all Bi; if it visits Bi, it visits B and
all other Bj . Thus, pB = pB1 = · · · = pBt

. Also, PB is the concatenation of PB1 , . . . , PBt
.

Using the multinomial theorem, we get

EB [cost(PB)r] = EB

CA
tÿ

i=1

cost(PBi
)
BrD

= EB

S

WWU
ÿ

–1,...,–tØ0

–1+···+–t=r

3
r

–

4 tŸ

i=1

cost(PBi
)–i

T

XXV (11)

=
ÿ

–1,...,–tØ0

–1+···+–t=r

3
r

–

4
EB

C
tŸ

i=1

cost(P fl Bi)–i

D
.

Observe that if P enters B, it necessarily visits sB1 , . . . , sBt
and thus paths PB1 , . . . , PBt

are
mutually independent. We then have

EB [cost(PB)r] =
ÿ

–1,...,–tØ0

–1+···+–t=r

3
r

–

4 tŸ

i=1

EB [cost(PBi
)–i ] .

By Claim 25, EB [cost(PBi
)–i ] = E [cost(PBi

)–i ] /pB = E [cost(PBi
)–i ] /pBi

=
EBi

[cost(PBi
)–i ] and ÂEB[f–i

Bi
] = ÂE[f–i

Bi
]/pB = ÂE[f–i

Bi
]/pBi

= ÂEBi
[f–i

Bi
]. Using that

ord(Bi) Æ h ≠ 1 and applying the induction hypothesis, we get

ICALP 2024
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EB [cost(PB)r] =
ÿ

–1,...,–tØ0
–1+···+–t=r

3
r
–

4 tŸ

i=1

EB [cost(PBi
)–i ] =

ÿ

–1,...,–tØ0
–1+···+–t=r

3
r
–

4 tŸ

i=1

EBi
[cost(PBi

)–i ]

Æ
ÿ

–1,...,–tØ0
–1+···+–t=r

3
r
–

4 tŸ

i=1

Bh≠1(–i) · ÂE
Bi

f–i

Bi
=

ÿ

–1,...,–tØ0
–1+···+–t=r

3
r
–

4 tŸ

i=1

Bh≠1(–i) · ÂE
B
f–i

Bi
.

Now, every – in the summation defines an unlabeled partition ⁄ of n: ⁄ is obtained by sorting
all non-zero entries –i of –. Let us denote this – æ ‡. For example, – = (4, 1, 0, 2, 4, 0, 2, 2) æ
⁄ = (4, 4, 2, 2, 2, 1). Thus, to go over all –, it is su�cient to go over all ⁄ „ r and then all –

such that – æ ⁄. To do the latter, we go over all choices of distinct indices j1, . . . , j|⁄| and
define – as follows: –ji

= ⁄i for i œ [|⁄|] and –j = 0 for all other j. However, if ⁄i = ⁄iÕ , then
indices j1, . . . , j|⁄| and those with ji and jiÕ swapped define the same –. It is easy to see that
the above procedure defines every – exactly

r
r

j=1
count(j,⁄) times. In the example above

with ⁄ = (4, 4, 2, 2, 2, 1), this procedure defines every – exactly 2! · 3! times. Finally note that!
r

–

"
=

!
r

⁄

"
. Keeping this discussion in mind, we rewrite the upper bound on EB [cost(PB)r]

as follows.

EB [cost(PB)r] Æ
ÿ

⁄ „ r, |⁄|Æt

3
r

⁄

4
q

j1,...,j|⁄|œ[t]

distinct

r|⁄|
i=1

Bh≠1(⁄i) · ÂEB [f⁄i

Bji

]
r

r

j=1
count(j,⁄)

Æ
ÿ

⁄ „ r, |⁄|Æt

3
r

⁄

4
·

r|⁄|
i=1

Bh≠1(⁄i)r
r

j=1
count(j,⁄)

ÿ

j1,...,j|⁄|œ[t]

|⁄|Ÿ

i=1

ÂE
B

[f⁄i

Bji

].

Note that we removed the requirement that all ji are distinct in the last inequality (this is
valid, since all terms are non-negative). Now we use Claim 19 and then the majorization
inequality (see Lemma 22) to upper bound each term in the inner sum.

ÿ

j1,...,j|⁄|œ[t]

|⁄|Ÿ

i=1

ÂE
B

[f⁄i

Bji

] =
|⁄|Ÿ

i=1

ÿ

jœ[t]

ÂE
B

Ë
f

⁄i

Bj

È
=

|⁄|Ÿ

i=1

ÂE
B

Ëÿ

jœ[t]

f
⁄i

Bj

È
Æ

|⁄|Ÿ

i=1

ÂE
B

[f⁄i

B
] Æ ÂE[fr

B
].

Using the recurrence relation for multidimensional Bell numbers from Lemma 12, we conclude
that

EB [cost(PB)r] Æ
ÿ

⁄ „ r

!
r

⁄

" r|⁄|
i=1

Bh≠1(⁄i)r
r

j=1
count(j,⁄)

ÂE[fr

B
] = Bh(r) ÂE[fr

B
]. J

I Theorem 27. Algorithm 1 gives an (1 + Á)Ad(p)
def= (1 + Á)Bd(p)1/p approximation for the

problem in series-parallel graphs of order d in time polynomial in n
O(p)

and 1/Á.

Proof. We apply Lemma 26 with ae = ce(i) to every coordinate i œ [¸] and add up the
obtained upper bounds on E

#!q
eœP

ce(i)
"p$

. We get that

E
C...

ÿ

eœP

ce

...
p

p

D
Æ Bh(p) ÂE

Ë ¸ÿ

i=1

1ÿ

e

ce(i)xe

2pÈ
Æ Bh(p) · OPTp

.

By Markov’s inequality,
...
q

eœP
ce

...
p

p

Æ (1+Á)Bh(p) ·OPTp with probability at least Á/(1+Á).

By running the algorithm 1/Á times, we find a solution of cost at most
...
q

eœP
ce

...
p

Æ

(1+ Á)1/pBh(p)1/p ·OPT Æ (1+ Á)Ah(p) ·OPT with constant probability. (As is standard, we
can run this procedure many times and make the failure probability exponentially small.) J



Y. Makarychev, M. Ovsiankin, and E. Tani 111:17

6 Algorithms for ¸p-Shortest Path in Arbitrary Graphs

In this section, we describe an approximation algorithm for ¸p-Shortest Path in arbitrary
graphs. We note that there is a black-box reduction from the problem in arbitrary graphs
to that in series-parallel graphs, which is implicitly used by Li, Xu, and Zhang [23] in
their algorithm for ¸Œ-Shortest Path (which they call Robust s-t Path). This reduction
outputs a series-parallel graph with O(nlogn) vertices, where n is the number of vertices
in the original graph. By using this reduction, we immediately get an O(p log1≠1/p

n)-
approximation algorithm for general graphs with running time n

O(p logn). We describe here
how to get an approximation algorithm for general graphs with an improved running time and
slightly improved approximation factor; namely we describe how to get a O(cp log1≠1/p

n)-
approximation in time m

O(ce
1/c

logn) for every c œ (0, 1/2). We assume below that ¸ is at
most polynomial in n; thus, we may assume p Æ Álog2 ¸Ë = O(logn) (since all norms Î · Îr
with r Ø log2 ¸ are equivalent within a factor of 2).

Layered graphs and reduction from general graphs to layered graphs. We say that a
directed acyclic graph (DAG) G = (V,E) is an s-t layered graph with � edge layers if V is
the disjoint union of vertex layers V0, V1, . . . , V�, E is the disjoint union of layers E1, . . . , E�,
and each edge in Ei goes from Vi≠1 to Vi. Further, we require that V0 = {s} and V� = {t}.

We transform an arbitrary graph G = (VG, EG) with terminals s and t into a layered
graph Ĝ = (V

Ĝ
, E

Ĝ
) with � = n ≠ 1 edge layers. We create vertex layers V0, V1, . . . , V�:

V0 = {s}, V� = {t}, and each of the other Vis is a disjoint copy of VG. We connect û œ Vi

with v̂ œ Vi+1 if there is an edge (u, v) œ EG between the corresponding vertices in G. The
vector cost of (û, v̂) equals that of (u, v). Additionally, we add padding edges between copies
of t in adjacent layers and assign these edges cost 0.

For every s-t path P with at most � edges in G there is a corresponding path P̂ in Ĝ

and vice versa (P might not be a simple path); if path P has k < � = n ≠ 1 edges, then P̂

contains k non-padding edges and ends with � ≠ k padding edges. Paths P and P̂ have the
same vector costs. Note that the ¸p-Shortest Path P

ú between s and t is a simple path and
thus contains at most � = n ≠ 1 edges. Therefore, there is a path P̂

ú in Ĝ corresponding to
P

ú. An –-approximation for P̂ ú in Ĝ gives an –-approximation for P ú in G. This reduction
shows that it is su�cient to consider layered graphs.

An algorithm for layered graphs. Assume that G is a layered graph with � edge layers,
source s, and sink t. We use the SoS relaxation from Section 3 for G. Let a = Áe1/cË.
We require that ÂE be a pseudo-expectation of degree 2d = 2(p + (a + 1)Áloga+1 �Ë) =
�(p+ce

1/c log�). For a set of edges A of size at most d, we define polynomial hA =
q

eœA
xa

and conditional pseudo-expectation ÂEA[·]
def= ÂE[· |hA]. Given A and a set of layer indices

I ™ [�] so that |A| + |I| Æ d, we define a sampling procedure that samples an edge from
each layer Ei with i œ I using pseudo-expectation ÂEA. We assume that the two algorithms
below have access to graph G and pseudo-expectation ÂE.

Algorithm 2 Edge sampling procedure.

1: Input: a subset of layer indices I ™ [�] and a subset A of edges.
2: Output: one edge from every layer Ei with i œ I.
3: R = ?
4: for all i œ I do

5: Sample e œ Ei with probability of choosing e equal to ÂEAfiR[xe]
6: R = R fi {e}
7: end for

8: return R
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We say that we sample edges e1, . . . , ek in layers i1, . . . , ik conditioning on set A to mean
that we run Algorithm 2 with parameters I = {i1, . . . , ik} and A.

Algorithm 3 Rounding algorithm for layered graphs.

1: Input: indices y and z of two edge layers (1 Æ y Æ z Æ �) and a subset of edges A.
2: Output: a path in Ĝ traversing layers Ey to Ez.
3: function FindPath(y, z, A)
4: if z ≠ y + 1 Æ a then

5: Sample edges e0, . . . , ez≠y in layers Ey, Ey+1, . . . , Ez conditioning on A.
6: return the path formed by e0, . . . , ez≠y.
7: end if

8: Let mi = y + Á z≠y

a+1
· iË for i œ [a].

9: Sample edges e1, . . . , ea in layers m1, . . . ,ma conditioning on A.
10: Let AÕ = A fi {ei : i œ [a]}.
11: Let m0 = z ≠ 1 and ma+1 = y + 1.
12: for i = 0 to a do

13: Pi = FindPath(mi + 1,mi+1 ≠ 1, AÕ) unless mi + 1 > mi+1 ≠ 1 then Pi = ?
14: end for

15: Let P be the path formed by P0, e1, P1, e2, . . . , ea, Pa.
16: return P

17: end function

To solve the problem, we run Algorithm 3 with y = 1, z = �, and A = ?. The analysis of
this algorithm is quite similar to that of Algorithm 1 for series-parallel graphs, with the main
di�erence that instead of the series-parallel decomposition of G, we consider the recursion
tree whose nodes correspond to invocations of FindPath. The full analysis of this algorithm
can be found in the full version of this paper [24], where the following theorems are shown.

I Theorem 28. Algorithm 1 gives an O(cp log1≠1/p �) approximation for the ¸p-Shortest

Path problem in layered graphs with � layers in time m
O(p+ce

1/c
log �)

for c œ (0, 1/2).

As a corollary, we get the following result for arbitrary graphs.

I Theorem 29. There is an O(cp log1≠1/p
n) approximation algorithm for the ¸p-Shortest

Path problem in arbitrary graphs that runs in time m
O(p+ce

1/c
logn)

for c œ (0, 1/2).
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Abstract

Given the full topology of a network, how hard is it to test if it is evolving according to a local rule
or is far from doing so? Inspired by the works of Goldreich and Ron (J. ACM, 2017) and Nakar and
Ron (ICALP, 2021), we initiate the study of property testing in dynamic environments with arbitrary
topologies. Our focus is on the simplest non-trivial rule that can be tested, which corresponds to
the 1-BP rule of bootstrap percolation and models a simple spreading behavior: Every “infected”
node stays infected forever, and each “healthy” node becomes infected if and only if it has at least
one infected neighbor. Our results are subdivided into two main groups:

If we are testing a single time step of evolution, then the query complexity is O(�/Á) or Õ(
Ô
n/Á)

(whichever is smaller), where � and n are the maximum degree of a node and the number of
vertices in the underlying graph, respectively. We also give lower bounds for both one- and
two-sided error testers that match our upper bounds up to � = o(

Ô
n) and � = O(n1/3),

respectively. If Á is constant, then the first of these also holds against adaptive testers.
When testing the environment over T time steps, we have two algorithms that need O(�T≠1

/ÁT )
and Õ(|E|/ÁT ) queries, respectively, where E is the set of edges of the underlying graph.

All of our algorithms are one-sided error, and all of them are also non-adaptive, with the single
exception of the more complex Õ(

Ô
n/Á)-query tester for the case T = 2.
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1 Introduction

Imagine we are observing the state of a network as it evolves over time. The network is static
and we have complete knowledge about the connections; it is too large for us to keep track
of the state of every single node, though nevertheless we are able to query nodes directly
and learn their states. We might hypothesize that the global behavior can be explained by a
certain local rule that is applied at every node, and we would like to verify if our hypothesis
is correct or not. In this paper, we focus on this question: How hard is it to test, given a

local rule R, if the network is following R or is far from doing so?
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Following previous works [10, 18], we refer to the series of configurations assumed by
the network over time as the environment ENV that we are observing. The network itself
is static and its connections defined by a graph G = (V,E). The local rule R is a map
(admitting a finite description) from the states that a node observes in its neighborhood
(including the node itself) to the new state it will assume in the next time step. Plausible
scenarios that could be modeled in this context include not only rumor dissemination in
social networks but also spreading of infectious diseases (where the connections between
nodes represent proximity or contact between the organisms that we are observing). As is
common in property testing [5], we assume that the bottleneck of this problem is keeping
track of the states across the entire network, and hence we consider only the number of
queries made by a testing algorithm as its measure of e�ciency (and otherwise assume that
the algorithm has access to unbounded computational resources).

1.1 Problem Setting

There exist two previous works [10, 18] that study the problem of determining whether ENV
evolves according to R in the context of property testing (and, in the case of [10], also in
the context of learning theory). In these works, the structure underlying ENV is always a
cellular automaton (in the case of [18] one-dimensional, whereas [10] also considers automata
of multiple dimensions), and thus ENV corresponds to the time-space diagram of such an
automaton. This perspective is certainly meaningful when we are interested in phenomena
that take place on a lattice or can be represented in such grid-like structures, for instance
the movement of particles on a surface or across three-dimensional space. Nevertheless there
are limits as to what can be modeled in this way. A prominent example are social networks,
in which the connections hardly fit well into a regular lattice (even with several dimensions).

In this work we cast o� these restraints and instead take the radically di�erent approach
of making no assumptions about the underlying structure or the space it is embedded in. Our
only requirement is that it corresponds to a static graph G that is known to us in advance.
This leaves a much broader avenue open when it comes to applications. In addition, the rule
that we consider is e�ectively the simplest rule possible in such a setting that is not trivial.
As we will see, despite the rule being very simple, it is rather challenging to fully determine
the complexity of the problem. Indeed, compared to the previous works mentioned above,
it might seem as if our progress is more modest; however, one should keep in mind that,
in our case, the underlying network G has a much more rich structure (whereas in cellular
automata we are dealing with a highly regular one).

The rule that we study is the 1-BP rule of bootstrap percolation [11, 20, 13, 2]. For · œ N0,
the rule · -BP is defined based on two states, black and white, as follows: If a node is black,
then it always remains black; if a node is white, then it turns black if and only if it has at
least · black neighbors. These rules were originally inspired in the behavior observed in
certain materials, and they are very naturally suited for modeling spreading phenomena.

Seen from the lenses of property testing, testing for the 1-BP rule in a sense resembles
monotonicity testing [7]. Although we cannot directly apply one strategy to the other, if we
view black as 1 and white as 0, then in both cases we have a violation whenever we see a 1
preceding a 0. The di�erence is that in 1-BP every 1 must arise from a preceding 1, whereas
in the case of monotonicity we are happy if an isolated 0 spontaneously turns into a 1.

Another way of modeling the 1-BP rule is as a constraint satisfaction problem (CSP).
CSPs have been studied in the context of property testing to some extent [4, 6]. We can
characterize 1-BP by two constraints: A black node in step t implies every one of its neighbors
is also black in step t+ 1; meanwhile, a node is white in step t+ 1 if and only if every one of
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its neighbors in step t was white. Then we can recast testing if ENV follows 1-BP as testing if
ENV is a satisfying assignment for these constraints. Nevertheless, although this seems to be
a useful rephrasing of the problem, the current methods in CSPs in the context of property
testing are not su�cient to tackle it. And, even if we could indeed test either constraint
with a sublinear number of queries, ENV being close to satisfying both constraints would not
necessarily imply that ENV is close to satisfying their intersection.

1.2 Results and Techniques

We now present our results and the methods used to obtain them. As this is a high-level
discussion, formal definitions are postponed to Section 2, which the reader is invited to
consult as needed.

The relevant parameters for the results are the number of nodes n in the graph G = (V,E),
the number of steps T during which the environment ENV evolves, the maximum degree �
of G, and the accuracy parameter Á > 0. The size of the environment is nT , which is the
baseline for linear complexity in this context (instead of n). We write ENV œ 1-BP to indicate
that ENV follows the 1-BP rule and dist(ENV, 1-BP) Ø Á when it is Á-far from doing so, that
is, one must flip at least ÁnT colors in ENV in order for 1-BP to be obeyed everywhere. (As
already mentioned, see Section 2 for the precise definitions.)

In most cases we will be interested in optimizing the dependency of the query complexity
on �. This is due to the fact that, intuitively, graphs with small � should be easier to verify
locally, that is, by looking only at each node’s neighborhood. (Indeed, this is the strategy
followed by the first algorithm we present below in Theorem 1.)

Another desirable property that we wish our algorithms to have is non-adaptiveness;
that is, the algorithm first produces a list of queries (without looking at the input), gathers
their results, and then decides whether to accept or not. This is in contrast to an adaptive

algorithm, which may perform later queries based on the answers it has seen so far. A third
property “in-between” these is time-conformability, meaning that the algorithm does not
make queries in step t if it has already queried nodes at some later step tÕ > t. It is easy
to see that the existence of a non-adaptive algorithm with query complexity q implies a
time-conforming algorithm with the same complexity: Just gather the q queries in a list, sort
them according to the time step queried, and then execute the queries in order. The converse
is not true in general, however, since a time-conforming algorithm might choose its queries
in a later time step based on what it has seen beforehand (or in the same time step, even).

Recalling our motivation of testing the evolution of huge networks, we see that non-
adaptive algorithms are the most desirable because the queries may all be performed in
parallel (at each time step). In case this cannot be achieved, an adaptive, time-conforming
algorithm is still satisfactory, even though it might require “freezing” the network at a specific
time step (so that the algorithm has time to gather the results received and decide on the next
queries to make on the same time step). Adaptive algorithms that violate time-conformability
are not particularly desirable since they require “rewinding” the state of the network back in
time. Nevertheless, depending on the nodes’ capabilities, there might still be strategies to
cope with this; for example, if T is small, it is plausible to have nodes can cache their state in
previous steps (and thus answer any of the algorithm’s queries, even about previous states).

In this paper, we study two di�erent settings: testing a single time step of evolution
(T = 2) and testing multiple steps (T > 2). In the first case we prove both upper and lower
bounds, which also match up to certain values of �. In the second we show only upper
bounds, but which su�ce to demonstrate that the problem admits non-trivial testers, at
least for moderate (non-constant) values of �.

ICALP 2024
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1.2.1 The Case T = 2
Let us first discuss our results for the case where T = 2. In this case there is a natural
graph-theoretical rephrasing of the problem: For t œ {1, 2}, let St be the set corresponding
to ENV(·, t) where we see ENV(·, t) as an indicator function (i.e,. St is exactly the set of nodes
v œ V for which ENV(v, t) = 1). Then ENV œ 1-BP if and only if S2 is dominated by S1

(in graph-theoretic terms).1 From this perspective, the distance from ENV to 1-BP is the
(relative) total number of nodes we need to add or remove from either of S1 or S2 in order
for the domination property to be satisfied.

The hardness of the problem in this case is highly dependent on the maximum degree
�. Our first result is that there is a very natural and simple algorithm that achieves query
complexity O(�/Á).

I Theorem 1. Let T = 2 and Á > 0. There is a non-adaptive, one-sided error algorithm

with query complexity O(�/Á) that decides whether ENV œ 1-BP or dist(ENV, 1-BP) Ø Á.

The algorithm simply selects nodes at random and then queries their entire neighborhoods
in both time steps. Since we are dealing with a local rule, this is su�cient to detect if
ENV contains too many violations of the rule or not. One detail that needs care here is
that, in general, our notion of distance does not match the number of violations of the rule.
Nevertheless, as we show, the cases where it does not are only playing in our favor, and so
this strategy always succeeds.

It turns out that this algorithm is optimal when we are in regimes where there is a
constant b Ø 2 such that Á = �(�b/n). We also prove lower bounds for the case where b Ø 1,
which are especially useful in regimes where � is larger than

Ô
n.

I Theorem 2. There is a constant Á0 > 0 such that the following holds: Let Á = �(�b/n) be
given where b Ø 1 is constant, and let Á Æ Á0. Then deciding if ENV œ 1-BP or is Á-far from

1-BP with a one-sided error tester requires at least q queries in general, where:

1. If b > 2, then q = �(�/Á) if the tester is non-adaptive or q = �(1/Á+�) if it is adaptive.
2. If b = 2, then q = �(�/Á log�) if the tester is non-adaptive or q = �(1/Á + �/ log�) if

it is adaptive.

3. If 1 Æ b < 2, then q = �(�b≠1/Á) if the tester is non-adaptive or q = �(1/Á + �b≠1) if it

is adaptive.

Note the lower bounds hold even for adaptive testers in general, even for those that do not
respect time-conformability.

If we are only interested in the regime where Á is constant, then setting b = log� n above
we obtain a lower bound of �(�) whenever � = O(n1/2≠c) for a constant c > 0. This is
matched by the upper bound of Theorem 1. For � = �(

Ô
n), the lower bound is �(�/ logn);

for larger � the lower bound becomes �(n/�) and thus deteriorates as � increases.
The lower bound is based on an adequate construction of expander graphs. More

specifically, the expanders we construct are bipartite, �-regular, and have distinct expansion
guarantees for sets of nodes on either side. This is needed because the expansion in one
direction guarantees Á-farness whereas the one in the other direction yields the actual lower
bound on the number of queries that a correct algorithm must make.

1 Technically the definition of domination is so that A dominates B if and only if B ™ A fi N(A). Using
this definition the equivalence is only true if the graph G contains self-loops everywhere. (Nevertheless,
adding self-loops everywhere does not impact the maximum degree, which is the relevant parameter
here.) The equivalence is certainly true if we change the definition so that A dominates B if B ™ N(A).
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The hard instances themselves are simple: We color a moderately large set B of randomly
chosen nodes black in the second time step and leave the rest colored white. The intuition
is that, since B is chosen at random, it will not match nicely with a cover C =

t
uœS N(u)

induced by some set of nodes S in the first time step; that is, the symmetric di�erence
between B and C will likely be large, giving us Á-farness. At the same time, since a one-sided
error algorithm A cannot reject good instances, it is hard for it to detect that there is
something wrong with B without having to “cover” a considerable number of nodes in either
step. Indeed, in order to ascertain that a node v œ B is incorrect, A must verify that there is
no black node in N(v) in the first step; if the existence of some black u œ N(v) is compatible
with its view, then there is no contradiction to v being black, and hence A cannot reject.
Querying all of N(v) requires �(�) queries, but it is also possible for A to determine the
colors indirectly by querying neighbors of nodes in N(v). To obtain the lower bound we
show that this other strategy also requires too many queries – although it might not be as
ine�cient when � is large (thus explaining why we get a weaker result in that case).

For two-sided error algorithms, we are able to prove similar, though slightly more modest
lower bounds. These are also based on expander graphs but require a more complex set of
instances for the argument to go through.

I Theorem 3. There are constants Á0, ’ > 0 such that, for any 0 < Á Æ Á0 with Á Ø ’�b/n
where b Ø 1 is constant, deciding if ENV œ 1-BP or is Á-far from 1-BP with a non-adaptive,
two-sided error tester requires q queries in general, where:

If b > 3, then q = �(�/Á).
If b = 3, then q = �(�/Á log�).
If 1 Æ b < 3, then q = �(�(b≠1)/2/Á).

Again focusing on the regime where Á is constant, we now obtain �(�) as the lower bound
for regimes where � = O(n1/3≠c) for a constant c > 0 or also �̃(�) when � = �(n1/3).
Hence, given the algorithm of Theorem 1, up to � = �(n1/3) there is essentially no advantage

for two-sided error algorithms compared to one-sided error ones. For larger values of �, the
lower bound is �(


n/�) and again deteriorates as � increases.

Since we are dealing with two-sided error algorithms, we apply Yao’s minimax principle,
and we now generate instances according to two di�erent distributions DY and DN where
DY follows 1-BP whereas DN generates instances that are (with high probability) far from
doing so. The point is that we can show that it is hard to distinguish between DY and DN

without making a considerable number of queries. The distributions are such that, in both
cases, we pick a set S of �(Án/�) vertices in the first time step uniformly at random. Then
we color S and N(S) black in DY (and leave the remaining nodes white) while in DN we
color only a (constant) fraction of N(v) for v œ S black. (We must also o�set the fact that
nodes in the second step in DN are colored black with less probability by using a larger S
when generating DN instances.) By the expansion guarantees, this then gives us Á-farness of
the instances in DN . Observe that in this setting it is meaningless to query nodes in the
first step since only a small fraction of them can ever be black; hence we need only deal with
a set Q of nodes that are queried in the second step. The indistinguishability of DY and
DN follows from using the expansion guarantee from nodes in the second step to those in
the first one. The argument is that, unless the set Q of queried nodes is large, almost all
neighbors of Q are in fact unique neighbors and, moreover, it is impossible to distinguish
DY from DN if the set S only intersects the unique neighbors of Q. (That is, one can only
distinguish DY and DN if one queries two distinct neighbors u, uÕ œ N(v) of some v œ S;
due to the expansion guarantees, this requires a large number of queries.)

ICALP 2024
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2-sided error, non-adaptive lower bound

Figure 1 Summary of results for the case T = 2 and constant Á, ignoring logarithmic factors.

In light of these lower bounds, looking back at the algorithm of Theorem 1 we realize
that its single weakness is that it does not perform well when � is large. Unfortunately our
lower bounds do not say as much in that case, and thus a wide gap is left between lower and
upper bounds in that regime. Nevertheless, we can narrow this gap by using a more complex
strategy – if we are prepared to let go of non-adaptiveness and time-conformability (though
we can still obtain a one-sided error algorithm). As previously discussed, this is not such a
large limitation when taking possible applications into account (as when T = 2 it is plausible
to, e.g., require nodes to cache their previous state) and indeed it is o�set by the significant
reduction in the query complexity.

I Theorem 4. Let T = 2 and let Á > 0 be given. There is an adaptive, one-sided error
algorithm for testing whether ENV œ 1-BP or is Á-far from 1-BP with query complexity

O(
Ô
n log3/2(n)/Á).

The algorithm achieving this is much more complex than that of Theorem 1. Indeed, it
must decide whether ENV œ 1-BP or not without being able to query the entire neighborhood

of any node. To achieve this, we use a “filtering” process in which we first try to infer the
color (assuming ENV œ 1-BP) of as many nodes as we can (in either step) by querying some of
their neighbors indirectly. Since we are certain of which color these nodes must have, we can
verify these separately using a small number of random queries. Making careful observations,
we then realize that we can simply ignore these nodes afterwards and thus reduce the degree
of most of the remaining nodes to Õ(

Ô
n). This allows us to essentially fall back to a strategy

as in the algorithm of Theorem 1, though a particular corner case requires special attention.
The results for T = 2 and the regime where Á is constant are summarized in Figure 1.

1.2.2 Case of General T

Let us now discuss the case T > 2. Here we obtain a couple of upper bounds that show that
the problem admits testing algorithms with sublinear query complexity, at least in a few
regimes of interest. We present two algorithms that complement each other.

A quick observation shows the problem becomes essentially trivial when T Ø 2 diam(G)/Á.
(In a nutshell, this is because otherwise ENV œ 1-BP reaches a fixed point well before T , and
thus most configurations of ENV must all be this one fixed point.) Hence for this discussion it
should be kept in mind that the problem is only interesting when diam(G) is non-trivial and
T = o(diam(G)/Á). Furthermore, recall that, since ENV has nT entries, the benchmark for a
non-trivial testing algorithm is not o(n) but o(nT ).
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The first algorithm we present is a direct generalization of the one from Theorem 1.

I Theorem 5. Let Á > 0 and T > 2. There is a non-adaptive, one-sided error algorithm

that performs O(�T≠1/ÁT ) queries and decides if ENV œ 1-BP or dist(ENV, 1-BP) Ø Á.

The algorithm is only useful in settings where, say, T = O(log� n). Nevertheless, it is
relatively simple to obtain and outperforms our more complex algorithm in certain regimes.

I Theorem 6. Let Á > 0 and T Ø 4/Á. Then there is a non-adaptive, one-sided error
algorithm with query complexity O(|E| log(n)/ÁT ) that decides whether ENV œ 1-BP or

dist(ENV, 1-BP) Ø Á. In addition, if G excludes a fixed minor H (which includes the case

where G is planar or, more generally, G has bounded genus), then O(|E|/ÁT ) queries su�ce.

To better judge what this algorithm achieves, let us suppose that the underlying graph is
�-regular, in which case |E| = n�. Then this gives a non-trivial testing algorithm whenever
T = Ê(


(�/Á) logn) (or T = Ê(


�/Á) if we also assume G is planar). Hence, together

with Theorem 5, we obtain non-trivial testing algorithms in the regime where � = o(logn)
(or even � = o(log2 n) in planar graphs) and for all values of T .

The algorithm of Theorem 6 combines some ideas from the work of Nakar and Ron [18]
with graph decompositions. A graph decomposition is a set C of edges which cuts the graph
into components pairwise disjoint components V1, . . . , Vr of small diameter. In our case
the appropriate choice of diameter will be d = O(ÁT ). The basic approach is to query the
endpoints of C after d steps have elapsed and then use this view to predict the colors of
every node in the graph in the subsequent steps. As we show, the view actually su�ces to
predict all but at most an O(Á) fraction of ENV (and hence we need only query the predicted
values using O(1/Á) independent queries to check if ENV is following 1-BP or not). We refer
to Appendix A.2 for a more in-depth description of the strategy and the ideas involved.

1.3 Open Problems

Since this work is but a first step in an unexplored direction, several questions remain open:
The case T = 2 and large �. The algorithm of Theorem 1 is essentially optimal up to
� = O(

Ô
n) (if we consider only one-sided error algorithms), but for larger values of �

the best we have is the Õ(
Ô
n)-query algorithm of Theorem 4. Can we reduce this, say,

to Õ(�b≠1/Á) for Á = �(�b/n) so as to match the lower bound of Theorem 2? Is it really
necessary to give up time-conformity in order to do better than O(�/Á) in this setting?
In addition, improving our lower bounds in the case of (both one- and two-sided error)
adaptive algorithms seems well within reach.
The case T > 2. Our results show that, in this case, we can get non-trivial algorithms for
graphs of small degree (e.g., � = o(logn)). Due to the di�culties in the case T = 2, larger
values of � pose additional challenges. In this sense a first step in this direction would be
to port the lower bounds from the T = 2 case. Nevertheless, it is not immediately clear
how to do so since Á-farness there is even harder to achieve given the cascading e�ects
that might occur over multiple time steps (see in particular Lemma 17).
Testing other rules. Finally, from a broader perspective it would also be meaningful to
consider other rules than 1-BP. Of course, by inverting the roles of 0 and 1, all of our
results also hold for AND rule (i.e., a node becomes a 1 if and only if all its neighbors are
1; otherwise it becomes a 0). Some very natural rules to consider next are, for instance,
· -BP or the majority rule. There has been extensive study of these rules in other contexts
[11, 20, 13, 16, 21, 2, 12, 8, 14], and so there is solid ground to build on there.
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1.4 Paper Overview

The rest of the paper is structured as follows: In Section 2 we introduce basic notation,
review some standard graph-theoretic results, and formally specify the model and problem
we study. For the case T = 2, in Section 3 we address the two algorithms (Theorems 1 and 4);
the two lower bounds (Theorems 2 and 3) are covered in the full version of the paper [17].
Finally in Appendix A we discuss the two algorithms for the case T > 2 (Theorems 5 and 6).

2 Preliminaries

The set of non-negative integers is denoted by N0 and that of strictly positive integers by
N+. For n œ N+, we write [n] = {i œ N+ | i Æ n} for the set of the first n positive integers.
Without ambiguity, for a statement S, we write [S] for the indicator variable of S (i.e.,
[S] = 1 if S holds; otherwise, [S] = 0).

An event is said to occur with high probability if it occurs with probability 1 ≠ o(1). For
a set X, we write UX to denote a random variable that takes on values from X following the
uniform distribution on X. We assume the reader is familiar with basic notions of discrete
probability theory (e.g., Markov’s inequality and the union bound). We will use the following
version of the Cherno� bound (see, e.g., [9, 19]):

I Theorem 7 (Cherno� bound). Let n œ N+ and Á > 0, and let X1, . . . ,Xn be independent

and identically distributed random variables taking values in the interval [0, 1]. Then, for

X = (
qn

i=1
Xi)/n and µ = E[X], Pr [|X ≠ µ| > Á] < 2e≠nÁ2/3µ

.

2.1 Graph Theory

We consider only undirected graphs. Except when explicitly written otherwise, we always
write just “graph” for a simple graph, though self-loops are allowed.

Let G = (V,E) be a graph. For S ™ V , G[S] denotes the subgraph of G induced by
S. For two nodes u, v œ V , distG(u, v) is the length of the shortest path between u and v;
we drop the subscript if G is clear from the context. The diameter diam(G) of G is the
maximum length among all shortest paths between any pair of vertices u, v œ V , that is,
diam(G) = maxu,vœV dist(u, v). This notion extends to any V Õ ™ V by considering only pairs
of vertices in V Õ, that is, diam(V Õ) = maxu,vœV Õ dist(u, v).We write ”(G) for the minimum
degree of G and �(G) for the maximum one. If G is clear from the context, we simply write
” and �, respectively. If ” = �, then G is �-regular.

For a node v œ V , N(v) = {u œ V | uv œ E} denotes the set of neighbors of v.
Generalizing this notation, for a set S ™ V we write N(S) for the union

t
vœS N(v). A

vertex u œ V is said to be a unique neighbor of S if there is a unique s œ S such that us œ E.
When S is clear from the context, we also refer to a unique neighbor of v œ S as a node
u œ V for which u œ N(vÕ) if and only if vÕ /œ S or vÕ = v.

A graph G = (V,E) is bipartite if V = L fi R for disjoint sets L and R and any edge has
exactly one endpoint in L and one in R. In this context, we refer to the nodes of L as left-
and to those of R as right-vertices. Additionally, the graph is balanced if |L| = |R|.

The following is a spin-o� of a well-known result on the size of the dominating set of a
graph (see, e.g., [1]):

I Lemma 8 (Cover from minimum degree). Let G = (V,E) be a bipartite graph where each

right-vertex has degree at least ”. Then there is a set D of n log(n)/” left-vertices such that

every right-vertex has a neighbor in D.
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Proof. We use the probabilistic method. Fix a right-vertex v œ V . If we pick a set D of
m = n log(n)/” left-vertices uniformly at random, then the probability that N(v) fl D is
empty is at most (1≠”/n)m < e≠ logn < 1/n. Hence, by the union bound, there is a non-zero
probability that D is such that N(v) fl D is non-empty for every right-vertex v. J

2.2 Model and Problem Definition

We use the standard query model of property testing [5]. The testing algorithm has unlimited
computational power and access to a source of infinitely many random bits that are fully
independent from one another. In addition, the model has full knowledge of the underlying
topology of the network, which is presented as a graph G = (V,E) with |V | = n nodes. We
assume there are no singleton nodes (i.e., every node is such that there is an edge incident
to it). The topology remains fixed during the evolution of the network, whose nodes take
on di�erent states over a set of discrete time steps. As in the previous works [18, 10], the
formal object we are testing is an environment ENV : V ◊ [T ] æ Z where T Ø 2 and Z is the
set of states that each node may assume.

The goal is to detect whether ENV is following a certain local rule fl, which is defined
as a function that maps every multiset µ over Z to fl(µ) œ Z. The environment ENV
is said to follow fl if, for every time step t Æ T and every node v œ V , we have that
ENV(v, t + 1) = fl(ENV(N(v), t)) (where ENV(N(v), t) here is seen as a multiset, that is,
counting multiplicities of the occurrence of each element of Z). Blurring the distinction
between fl and the set of environments that follow it, we write ENV œ fl if ENV follows fl.

The distance between two environments ENV, ENVÕ : V ◊ [T ] æ Z is the (normalized)
number of pairs on which ENV and ENVÕ di�er:

dist(ENV, ENVÕ) = 1
nT

ÿ

(v,t)œV ◊[T ]

[ENV(v, t) ”= ENVÕ(v, t)].

For a set of environments X (all over the same domain V ◊ [t]), we write dist(ENV, X) =
minENVÕœX dist(ENV, ENVÕ) for the minimum distance between ENV and X. Being a bit sloppy,
we write dist(ENV, fl) for the minimum distance from ENV to the set of environments ENVÕ for
which ENVÕ œ fl. For Á Ø 0, ENV is Á-far from fl if dist(ENV, fl) Ø Á; otherwise it is Á-near fl.

In this work, we focus on Z = {0, 1} and on testing the 1-BP rule of bootstrap percolation.
The rule is defined by fl(µ) = [1 œ µ] (i.e., fl(µ) = 1 if 1 œ µ and fl(µ) = 0 otherwise). Seeing
states as colors, we identify state 1 with the color black and state 0 with white.2

For t Ø 2, a pair (v, t) is a successor of (u, t ≠ 1) if there is an edge between v and u; at
the same time, (u, t ≠ 1) is a predecessor of (v, t). If the respective time steps t and t ≠ 1 are
clear from the context, we might also drop any mention of them and simply say that v (as a
node) is a successor of u. This is particularly convenient when analyzing the case T = 2.

Testing algorithms. Fix Á > 0. A testing algorithm A for 1-BP accesses ENV : V ◊ [T ] æ Z
by means of queries, which are pairs (v, t) œ V ◊ [T ]. Upon querying the pair (v, t), A
receives ENV(v, t) as answer. If the queries are performed in an order where, for every t and
tÕ with tÕ > t, A never makes a (·, t) query after it has queried (·, tÕ), then A is said to be
time-conforming. As usual in property testing, our interest lies in the query complexity of
A, that is, the maximum number of queries that A makes, regardless of its randomness.

2 Being pedantic, the 1-BP rule in the context of bootstrap percolation is such that a black node always
remains black. This behavior can be enforced in the model we describe by adding self-loops to all nodes.
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vStep t

Step t ≠ 1 N(v)

(a) Type I

vStep t

Step t ≠ 1 N(v)

(b) Type II

Figure 2 Violations can be of two di�erent types. Here we see a node v and its state in time step
t (as a color) as well as its neighbors N(v) and their respective states in step t ≠ 1.

The algorithm A is a one-sided error tester for ENV œ 1-BP if the following holds, where the
probabilities are taken over the randomness of A:

If ENV œ 1-BP, then always A(ENV) = 1.
If ENV is Á-far from 1-BP, then Pr[A(ENV) = 1] < 1/2.

In contrast, A is a two-sided error tester if it may also err on ENV œ 1-BP:
If ENV œ 1-BP, then Pr[A(ENV) = 1] Ø 2/3.
If ENV is Á-far from 1-BP, then Pr[A(ENV) = 1] < 1/3.

Violations. Observe that our notion of distance is not the same as counting the number of
failures of ENV in following 1-BP. There are two kinds of failures that may occur:

I Definition 9 (Violations). A pair (v, t) œ V ◊ [T ] is violating if t Ø 2 and one of the

following conditions hold:

(I) ENV(v, t) = 0 and ÷u œ N(v) : ENV(u, t ≠ 1) = 1
(II) ENV(v, t) = 1 and ’u œ N(v) : ENV(u, t ≠ 1) = 0

We refer to these violations as violations of type I and II, respectively. We write viol(ENV)
for the set of violating pairs in ENV.

Although a larger distance to 1-BP implies a greater number of violations, there is not an
exact correspondence between the two. For example, it might be the case that ENV exhibits
a great number of violations, but correcting them requires recoloring only a few nodes. We
will prove upper and lower bounds between the distance and the number of violations further
below (Lemmas 10 and 17).

3 Upper Bounds for the Case T = 2

In this section we present our two algorithms for the case where T = 2. The first of these
(Section 3.1) is quite simple and has query complexity O(�/Á), which turns out to be
optimal for the regimes where � = o(

Ô
n). The second one (Section 3.2) is much more

intricate and gives query complexity Õ(
Ô
n/Á), which makes it more suitable for the regimes

where � = Ê(
Ô
n). Although both are one-sided error algorithms, the first algorithm is

non-adaptive and thus time-conforming whereas the second has neither of these properties
(i.e., it is adaptive and also does not respect time-conformity).

3.1 An Upper Bound that Scales with the Maximum Degree

In this section, we prove:

I Theorem 1. Let T = 2 and Á > 0. There is a non-adaptive, one-sided error algorithm

with query complexity O(�/Á) that decides whether ENV œ 1-BP or dist(ENV, 1-BP) Ø Á.
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The claim is that Algorithm 1 satisfies the requirements of Theorem 1. As mentioned
above, the strategy followed by Algorithm 1 is quite simple: It chooses a certain subset of
nodes U uniformly at random and then queries the states of u œ U and all of N(u) in both
time steps. The algorithm then rejects if and only if a violation of either type is detected.

Algorithm 1 Algorithm for the case T = 2 with query complexity O(�/Á).

1 Pick U ™ V uniformly at random where |U | = Á2/ÁË;
2 Query ENV(v, 1) and ENV(u, 2) for every u œ U and v œ N(u) in a time-conforming

manner;
3 for u œ U do
4 if ENV(u, 2) = 0 and ÷v œ N(u) : ENV(v, 1) = 1 then reject;
5 if ENV(u, 2) = 1 and ’v œ N(u) : ENV(v, 1) = 0 then reject;
6 end
7 accept;

At the core of the correctness of Algorithm 1 is the relation between the number of
violations and the distance of ENV to 1-BP. With a bit of care, we can relate the two quantities
as shown next. (Actually for the correctness of Algorithm 1 we only need one of the two
bounds below; the other one comes as a “bonus”.)

I Lemma 10. Let T = 2. Then

|viol(ENV)|
2�n

Æ dist(ENV, 1-BP) Æ |viol(ENV)|
2n .

Proof. Every violating pair (u, t) can be corrected by flipping the value of ENV(u, t), which
does not create a new violating pair since t = T = 2. In addition, if ENV does not have any
violating pair, then ENV œ 1-BP. This implies dist(ENV, 1-BP) Æ |viol(ENV)|/2n. On the other
hand, flipping the color of a node can only correct at most � violating pairs. Hence we also
have dist(ENV, 1-BP) Ø |viol(ENV)|/2�n. J

The lemma directly implies that, if dist(ENV, 1-BP) Ø Á, then |viol(ENV)| Ø 2Án. Hence
the probability that Algorithm 1 errs in this case is

Pr[(U, 2) fl viol(ENV) = ?] Æ (1 ≠ 2Á)|U | <
1
e
<

1
2 .

Since Algorithm 1 only rejects when a violation of either type is detected, Algorithm 1 always
accepts if ENV œ 1-BP. The query complexity and other properties of Algorithm 1 are clear,
and hence Theorem 1 follows.

3.2 An Upper Bound Independent of the Maximum Degree

Next we show our second algorithm, which is much more complex than Algorithm 1. Since
Algorithm 1 is already optimal for � = O(

Ô
n), we focus on the regime where � = �(

Ô
n) and

present an algorithm with query complexity that is independent of �. The algorithm requires
adaptiveness and unfortunately is no longer time-conforming; obtaining a time-conforming
or even non-adaptive algorithm with the same query complexity for these large values of �
(or proving none exists) remains an interesting open question.

I Theorem 4. Let T = 2 and let Á > 0 be given. There is an adaptive, one-sided error
algorithm for testing whether ENV œ 1-BP or is Á-far from 1-BP with query complexity

O(
Ô
n log3/2(n)/Á).
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We claim Algorithm 2 satisfies the requirements of the theorem. Next we give a brief
description of the strategy followed by Algorithm 2.

Algorithm 2 Algorithm for the case T = 2 with query complexity Õ(
Ô
n/Á).

1 Select Q1, QÕ
1
, Q2, QÕ

2
™ V with |Qi| = |QÕ

i| = (24/Á)
Ô
n log3/2 n uniformly at random;

2 Query ENV(Q1, 1) and ENV(QÕ
2
, 1);

3 B2 Ω {v œ V | ÷u œ N(v) fl Q1 : ENV(u, 1) = 1};
4 Query ENV(QÕ

1
, 2) and ENV(Q2, 2);

5 W1 Ω {v œ V | ÷u œ N(v) fl Q2 : ENV(u, 2) = 0};
6 if ÷u œ QÕ

1
fl B2 : ENV(u, 2) = 0 or ÷u œ QÕ

2
fl W1 : ENV(u, 1) = 1 then reject;

7 F Ω {v œ V | |N(v) \W1| Æ 4
Ô
n logn};

8 Select Q3 ™ F with |Q3| = (4/Á) logn uniformly at random;
9 Query ENV(v, 2) and ENV(N(v) \W1, 1) for every v œ Q3;

10 if ÷v œ Q3 : ENV(v, 2) = 0 · ÷u œ N(v) \W1 : ENV(u, 1) = 1 or

÷v œ Q3 : ENV(v, 2) = 1 · @u œ N(v) \W1 : ENV(u, 1) = 1 then reject;
11 accept;

Approach. The operation of Algorithm 2 can be divided into two parts. The first one is
up to line 2. Here we query nodes from the first and second time steps at random (Q1 and
Q2) and try to ascertain the color of as many nodes as possible using these queries. More
specifically, if a node v has a neighbor u œ N(v) which is black in the first step, then we
know v must be black in the second step. We gather these nodes in the set B2. A similar
observation holds for the nodes in the set W1, which must be white since they have a neighbor
in the second step that is white. At the same time we query another set of nodes from the
first and second step uniformly at random (QÕ

1
and QÕ

2
) to verify that all but a very small

fraction of nodes in W1 (resp., B2) are indeed white (resp., black).
The second part of the algorithm starts after line 2. Here we will ignore nodes in W1

(since we already know they are white) and “filter” nodes that have not too large degree to
nodes not in W1. These nodes are added to the set F . Intuitively we can then test these
nodes in the same fashion as Algorithm 1: We select a few nodes v œ F uniformly at random
(Q3) and then query the entire neighborhood of these nodes in the first step, so ENV(u, 1) for
u œ N(v) \W1, as well as ENV(v, 2). If any violations are detected here, then we can safely
reject. What then remains are only nodes with high degree; as we argue in the analysis
below, any set of nodes not in F that are black (which might occur when ENV /œ 1-BP) and
which have no white predecessor can actually be covered by recoloring only a small set of
nodes (and hence ENV must be close to 1-BP).

Analysis. The query complexity of Algorithm 2 is clear, so we focus on the analysis on its
correctness. First we show that Algorithm 2 is indeed a one-sided error algorithm; that is:

B Claim 11. If ENV œ 1-BP, then Algorithm 2 always accepts.

Intuitively this is the case because we are only trying to detect violations (and accept
unconditionally if we do not manage to find any).

Proof. Since ENV œ 1-BP, we have ENV(W1, 1) = 0 and ENV(B2, 2) = 1. As a result, Algo-
rithm 2 never rejects in line 2. Consider the two possibilities for Algorithm 2 to reject in
line 2. The first is that there is a node v œ Q3 with ENV(v, 2) = 0 and some u œ N(v)
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X2 Y2 Z2

!

X1 Y1 Z1

!

W1

B2

Figure 3 Relation between the sets used in the analysis of Algorithm 2. The sets form a partition
of the nodes in the first and second time steps. The small circles indicate the color of the nodes in
each set or, in the case of X1 of Y2, that the algorithm rejects unless (almost all) nodes in the set
have the respective color (denoted with an exclamation mark).

so that ENV(u, 1) = 1, which contradicts ENV œ 1-BP. The second is that ENV(v, 2) = 1
and ENV(u, 1) = 0 for every u œ N(v) \ W1; however, since ENV(W1, 1) = 0, this means
ENV(u, 1) = 0 for every u œ N(v) fl W1 as well and then ENV(u, 1) = 0 for every u œ N(v),
thus also contradicting ENV œ 1-BP. C

Now we turn to proving that Algorithm 2 does not have false positives. More specifically
we show that Algorithm 2 can only accept with constant probability if dist(ENV, 1-BP) < Á is
the case (and so, conversely, Algorithm 2 rejects with high probability if dist(ENV, 1-BP) Ø Á).

For v œ V and t œ {1, 2}, we write bnt(v) and wnt(v) for the number of black and white
neighbors, respectively, of v in step t; formally,

bnt(v) = |{u œ N(v) | ENV(u, t) = 1}|, wnt(v) = |{u œ N(v) | ENV(u, t) = 0}|.

Let ◊ = (Á/4)

n/ logn and consider the following sets:

X1 = {v œ V | wn2(v) Ø ◊} , X2 = {v œ V | bn1(v) < ◊ · ENV(v, 2) = 0} ,
Y1 = {v œ V | wn2(v) < ◊ · ENV(v, 1) = 1} , Y2 = {v œ V | bn1(v) Ø ◊} ,
Z1 = {v œ V | wn2(v) < ◊ · ENV(v, 1) = 0} , Z2 = {v œ V | bn1(v) < ◊ · ENV(v, 2) = 1} .

The sets X1 and Y2 contain the nodes for which we can detect that they must be white and
black, respectively, by using the query sets Q1 and Q2.

B Claim 12. With high probability over the choices made by Algorithm 2, X1 ™ W1 and
Y2 ™ B2.

Proof. Fix v œ X1. By the Cherno� bound, the probability that no u œ N(v) with ENV(u, 2) =
0 lands in Q2 is at most 2e≠2 logn < 2/n2. Hence, by the union bound, the probability that
X1 \W1 is non-empty is O(1/n). The same applies to Y2 and B2. C

Next we observe that the queries from QÕ
1
and QÕ

2
significantly “reduce” the number of

black or white nodes in X1 or Y2, respectively; that is, if there is a significant number of
such nodes in these sets, then Algorithm 2 will detect them anyway and reject (and thus we
can focus the analysis on instances where this is not the case).

B Claim 13. If ENV is such that there are Á
Ô
n nodes v œ X1 with ENV(v, 1) = 1 or Á

Ô
n

nodes v œ Y2 with ENV(v, 2) = 0, then Algorithm 2 rejects ENV with high probability.
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Proof. Let S ™ V be a subset of |S| Ø Á
Ô
n vertices. Then the probability that S fl QÕ

i is
empty is at most

3
1 ≠ ÁÔ

n

4(24/Á)
Ô
n log

3/2 n

< e≠24 log
3/2 n = o

3
1
n

4
.

Using Claim 12, we haveX1 ™ W1 and Y2 ™ B2 with high probability. In this case Algorithm 2
rejects if any node v œ X1 ™ W1 with ENV(v, 1) = 1 lands in QÕ

2
or any v œ Y2 ™ B2 with

ENV(v, 2) = 0 lands in QÕ
1
. Therefore Algorithm 2 rejects with high probability if there are at

least Á
Ô
n nodes of either type. C

Hence we may now safely assume that all but at most O(Á
Ô
n) nodes in X1 are white in

the first time step and that all but at most O(Á
Ô
n) nodes in Y2 are black in the second one.

The next observation is that nodes in X2 are highly connected to X1. This justifies filtering
nodes based on their connections to W1 ´ X1.

B Claim 14. On average, a node from X2 has at most ◊n/|X2| neighbors not in X1.

Proof. Every node in Y1 or Z1 has at most ◊ white neighbors by definition, so at most this
many neighbors in X2. Hence there are at most ◊n edges in total between X2 and nodes not
in X1. C

Finally we show that, if Algorithm 2 accepts ENV with at least constant probability, then
we can correct all violations of either type with at most Án/2 modifications in total for
each type. In both cases we must be careful so that these modifications do not create new
violations of their own.

B Claim 15. If Algorithm 2 accepts ENV with at least constant probability, then there are
at most Án/2 many type I violations in ENV. These violations can be corrected (without
creating any new ones) by recoloring ENV(v, 2) black for every violation (v, 2).

Proof. Let R be the set of nodes corresponding to type I violations, that is, R = {v œ V |
ENV(v, 2) = 0·÷u œ N(v) : ENV(u, 1) = 1}. We prove the claim by proving the contrapositive;
that is, if |R| Ø Án/2, then Algorithm 2 rejects ENV with high probability.

The first observation is that we have |R \ X2| = o(Án) (with high probability) due
to Claim 13 and then, by the assumption on R, |X2| Ø (1 ≠ o(1))Án/2. Hence we focus
our analysis on R fl X2. By Claim 14, on average a node from X2 has at most 2◊/Á =
(1/2)


n/ logn many neighbors that are outside X1. By Markov’s inequality, this gives us

that there are at most O(n/ logn) many nodes v œ X2 for which |N(v) \X1| > 4
Ô
n logn.

Using Claim 12, we have X1 ™ W1 and so altogether we have |R fl F | Ø Án/4 (with high
probability). In this case the probability that RflQ3 is empty is at most (1≠ Á/4)4 log(n)/Á <
e≠ log(n) = O(1/n), and so Algorithm 2 rejects with high probability. C

B Claim 16. If Algorithm 2 accepts ENV with at least constant probability, then all type
II violations in ENV can be corrected by recoloring at most Án/2 nodes. In particular, this
recoloring is such that we color ENV(v, 1) and ENV(N(v), 2) black for a certain subset of nodes
v (and hence does create any new violations).

Proof. Similar to the proof of Claim 15, let R = {v œ V | ENV(v, 2) = 1 · ’u œ N(v) :
ENV(u, 1) = 0}. be the set of type II violations. We show that, if Algorithm 2 accepts with
at least constant probability, then we can correct R by recoloring at most Án/2 nodes black.
(Note this does not necessarily mean that |R| < Án/2 as in the proof of Claim 15. Instead
what we prove is an upper bound on the number of recolorings needed to correct R.)
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By Claim 13, |R \Z2| = o(Án) and thus |Z2| Ø (1≠ o(1))Án/2. Arguing as in the proof of
Claim 15, if |RflF | Ø Án/4, then Algorithm 2 must reject with high probability. Hence let us
focus on the nodes in RÕ = R\F . Consider the bipartite graph where the set of left-vertices is
V \W1, that of right-vertices is RÕ, and the edges are as in G. Then the minimum degree of RÕ

in this graph is 4
Ô
n logn, which means we can apply Lemma 8 and obtain a cover D ™ V \W1

of RÕ with |D| = (1/4)
Ô
n logn nodes. By Claim 12, D fl X1 = ? and hence wn2(v) < ◊ for

every v œ D (with high probability). Therefore we can correct RÕ by coloring ENV(D, 1) and
ENV(N(D), 2) all black, which means coloring at most (◊/4)

Ô
n logn Æ Án/16 nodes black.

Together with |R fl F | < Án/4, this means we must color at most (1/4 + 1/16)Án < Án/2
many nodes black in total in order to correct R. C
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A Upper Bounds for the Case T > 2

In this appendix we consider two di�erent strategies for the case where T > 2. An immediate
observation to make is that the diameter diam(G) plays a much more significant role in this
setting. For instance, the case where T Ø (1 + 2/Á) diam(G) is more or less trivial since then
after diam(G) steps every connected component must be either all-black or all-white and the
first diam(G) steps constitute at most an Á/2 fraction of ENV.

A.1 Structure-independent Upper Bound

First we give a generalization of Theorem 1, which is simple to obtain and adequate for
settings where � and T are not too large. For constant �, for instance, it still gives a
sublinear query algorithm when T = O(logn). As the algorithm of Theorem 1, it does not
use the graph structure in any way except for determining the neighborhood of each node.

I Theorem 5. Let Á > 0 and T > 2. There is a non-adaptive, one-sided error algorithm

that performs O(�T≠1/ÁT ) queries and decides if ENV œ 1-BP or dist(ENV, 1-BP) Ø Á.

We adapt Algorithm 1 to obtain Algorithm 3. The analysis does not carry over auto-
matically since we need to consider what happens if we are correcting violations in a time
step t < T . Unlike in Lemma 10, this kind of correction may now propagate to time steps
after t. In addition, we have to assume � Ø 2; however, the case � = 1 is trivial since then
diam(G) = 1 and we need only follow the strategy described at the beginning of this section.

I Lemma 17. Let � Ø 2. Then

|viol(ENV)|
(� + 1)nT Æ dist(ENV, 1-BP) Æ �T≠1 ≠ 1

(� ≠ 1)nT |viol(ENV)|.
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Algorithm 3 Structure-independent algorithm for the case of general T with query
complexity O(�T≠1

/Á).

1 Pick Q ™ V ◊ {t | 2 Æ t Æ T} uniformly at random where |Q| = Á2�T≠2/ÁT Ë;
2 Query ENV(v, t ≠ 1) and ENV(u, t) for every (u, t) œ Q and v œ N(u) in a

time-conforming manner;
3 for (u, t) œ Q do
4 if ENV(u, t) = 0 and ÷v œ N(u) : ENV(v, t ≠ 1) = 1 then reject;
5 if ENV(u, t) = 1 and ’v œ N(u) : ENV(v, t ≠ 1) = 0 then reject;
6 end
7 accept;

See the full version of the paper [17] for the proof.
Now as before with Theorem 1 we have that dist(ENV, 1-BP) Ø Á implies

viol(ENV) Ø Á(� ≠ 1)nT
�T≠1 ≠ 1 >

ÁnT

2�T≠2
.

Hence the probability that Algorithm 3 errs is

Pr[Q fl viol(ENV) = ?] Æ
3
1 ≠ ÁT

2�T≠2

4|Q|
<

1
e
<

1
2 .

As was the case with Algorithm 1, the query complexity and other properties required in
Theorem 5 are clear, and hence Theorem 5 follows.

A.2 Upper Bound Based on Graph Decompositions

The second algorithm is suited for larger values of T and not too dense graphs.

I Theorem 6. Let Á > 0 and T Ø 4/Á. Then there is a non-adaptive, one-sided error
algorithm with query complexity O(|E| log(n)/ÁT ) that decides whether ENV œ 1-BP or

dist(ENV, 1-BP) Ø Á. In addition, if G excludes a fixed minor H (which includes the case

where G is planar or, more generally, G has bounded genus), then O(|E|/ÁT ) queries su�ce.

The strategy followed by the algorithm relies on graph decompositions. These are
partitions induced by sets of edges that cut the graph into components of bounded diameter.

I Definition 18. Let d œ N+ and – > 0. A (d,–)-decomposition of a graph G = (V,E) is
a set of edges C ™ E with |C| Æ –|E| and such that there is a partition V = V1 + · · ·+ Vr

satisfying the following:

1. For u, v œ V , uv œ C if and only if there are i and j such that i ”= j, u œ Vi, and v œ Vj.

2. For every i, diam(Vi) Æ d.

The following is a renowned result in graph decompositions:

I Theorem 19 ([3]). For any d œ N+, every graph G admits a (d,O(log(n)/d))-decomposition.

This trade-o� is optimal for graphs in general. For the special case of graphs excluding a
fixed minor (which includes most notably planar graphs or also graphs of bounded genus),
we have the following small improvement:

I Theorem 20 ([15]). Let H be a fixed graph. For any d œ N+, every graph G excluding H
as a minor admits a (d,O(1/d))-decomposition.

ICALP 2024
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Algorithm 4 Algorithm for the case of general T based on network decompositions.

1 t1 Ω ÂÁT/4Ê;
2 Compute a (t1,–)-decomposition of G according to Theorem 19 or Theorem 20 and

obtain a set of edges C that cuts G into components V1, . . . , Vr as in Definition 18;
3 B Ω {v | v is incident to an edge in C};
4 Pick Q ™ {(v, t) | v œ Vi and t Ø t1} uniformly at random where |Q| = Á3/ÁË;
5 QÕ Ω {v œ V | ÷t : (v, t) œ Q};
6 Query ENV(B, t1), ENV(Q), and ENV(QÕ, t1) in a time-conforming fashion;
7 if ENV(B, t1) is not feasible then reject;
8 for i œ [r] do
9 Bi Ω B fl Vi;

10 BÕ
i Ω {u œ Bi | ENV(u, t1) = 1};

11 end
12 for v œ V do
13 for i œ [r] do
14 if BÕ

i ”= ? then
15 –i(v) Ω minuœBÕ

ifi(Vi\Bi)
dist(u, v);

16 —i(v) Ω minuœBÕ
i
dist(u, v);

17 else
18 –i(v) Ω Œ;
19 —i(v) Ω Œ;
20 end
21 end
22 –(v) Ω mini –i(v);
23 —(v) Ω mini —i(v);
24 end
25 for (v, t) œ Q do
26 Let i be such that v œ Vi;
27 if ENV(v, t1) = 1 then
28 if ENV(v, t) ”= 1 then reject;
29 else
30 if t1 Æ t < t1 + –(v) and ENV(v, t) ”= 0 then reject;
31 if t Ø t1 + —(v) and ENV(v, t) ”= 1 then reject;
32 end
33 end
34 accept;

The claim is that Algorithm 4 satisfies the requirements of Theorem 6. As mentioned
in the introduction, the strategy followed by the algorithm is loosely based on a similar
testing routine from the paper by Nakar and Ron [18]. In a nutshell, the idea is to split the
environment into more manageable components and then use the properties of the local rule
to predict how each component must behave.

Approach. Let us recall the relevant details of the strategy of Nakar and Ron [18]. In their
paper, the authors studied local rules resembling the majority rule in the restricted setting
where G is a path. Their idea involved splitting the path into intervals that intersect at
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periodic control points. The first queries yield the state of these control points at a certain
time step t1. If there is no initial configuration leading to what we observe at t1 (i.e., the
configuration is not feasible), then we can immediately reject. Otherwise we can use the
states of the nodes at the control points (plus some additional queries) to fully predict almost
the entirety of ENV after t1. Hence we only need to test a certain number of times if ENV(v, t)
matches our prediction where (v, t) œ V ◊ {t œ N+ | t Ø t1} is chosen uniformly at random.

Our approach is more or less the same, though we need to cater for a couple di�erences
between our setting and theirs. We are not in a path, and so in general we cannot split our
graph into intervals of the same size; rather we must work with a graph decomposition, which
does give us the adequate control points (the vertices incident to the edges of the cut C, which
form the set B in Algorithm 4) but only an upper bound on the diameter of each component
(which correspond to the intervals in the setting of Nakar and Ron [18]). Fortunately the 1-BP
rule is much simpler than majority or the like, and hence the prediction in each component is
easier to make. The relevant observation is that the 1-BP rule converges fast to an (all-black)
fixed point in graphs of small diameter. (Indeed, the 1-BP rule converges in at most diam(G)
steps.) More specifically, components that started in an all-zero configuration must stay zero
until they enter in contact with a black node; meanwhile a component Vi that had at least
one black node in it will converge to an all-black configuration in at most diam(Vi) Æ t1
steps.

Let us now give a more detailed overview of the steps performed by Algorithm 4. For
a set S ™ V and t œ [T ], we say that ENV(S, t) is feasible if there is ENVÕ œ 1-BP such that
ENVÕ(v, t) = ENV(v, t) for every v œ S. Theorem 6 first sets t1 appropriately and determines a
graph decomposition of G where the components V1, . . . , Vr have diameter at most t1. We
wait for t1 steps to elapse and then query the states of B, which are the nodes incident to
the edge cut C of the graph decomposition, and can immediately reject if what we see is
not feasible. At the same time we query a uniformly sampled set Q of pairs corresponding
to the states of nodes in time steps after t1, whose values we shall use later. We then set
Bi = B fl Vi and BÕ

i to the nodes that are black in Bi in time step t1. With these we can
then compute estimates –i(v) and —i(v) for each node v and each component Vi. These are
only intended to be useful if v is white in time step t1 and are determined as follows:

–i(v) is a lower bound on the number of time steps that elapse after t1 until v turns from
white to black. To compute –i(v), we consider both nodes in BÕ

i (whose state in t1 is
known to us) and nodes in the inside of Vi (whose state is unknown and which means we
must assume that they are black). If there are no nodes in BÕ

i, then we know that Vi was
all white at the beginning and we just set –i(v) = Œ.
—i(v) is an upper bound on the number of time steps after t1 until v turns black at the
latest. To compute —i(v) we take into account only nodes which we are sure that are
black in t1, that is, nodes in BÕ

i. Again, if BÕ
i is empty, then Vi must have been all white

in the first time step; in that case we set —i(v) = Œ.
See Figure 4 for an example. Based on these estimates, we can then use the values of Q
to make random tests on the state of nodes after t1 based on what we know from BÕ

i and
–(v) = mini –i(v) and —(v) = mini —i(v). More precisely, for a pair (v, t) œ Q:

If v was already black in time step t1, then it must still be black in time step t Ø t1.
Otherwise v was white in time step t1 and we can use our estimates –(v) and —(v) to
verify the predicted state of v in step t, if possible.

The algorithm accepts by default if ENV passes the tests.
The query complexity of Theorem 6 is evident. We refer for the full version of the

paper [17] for the proof of its correctness.

ICALP 2024
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Figure 4 How to predict the color of a node v based on knowledge about the states of nodes
in other components. For the sake of illustration, here we are assuming that v belongs to some
component which is all white in step t1 and that the component nearest to v on which a black node
appears is Vi. We also suppose that Bi = {u1, u3} and dist(v, u1) π dist(u1, u3) = diam(Vi). In
time step t1 the situation is as in (a). Since B

Õ
i = {u3} is not empty, we must treat Vi as potentially

having black nodes since the first time step. We see the states of u1 and u3 in t1 and determine
that –(v) = dist(v, u1) + 1 = dist(v, u2) and —(v) = dist(v, u3); however, we do not know the color
of u2 since it is inside Vi and we do not query it, so we have to treat it as a potentially black node
(denoted by a question mark). After –(v) ≠ 1 steps (b) we know that v must still be white (denoted
by an exclamation mark) since the closest node to it that is possibly black in step t1 is the node u2.
After –(v) steps (c) we are no longer certain about the color of v. After diam(V1) steps (d) we know
that u1 must be black, but we still cannot say anything about v. Finally after —(v) steps (e) we are
sure that v has turned black at the latest since u3 was black in t1.
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Abstract
We present a reconfiguration analogue of alphabet reduction à la Dinur (J. ACM, 2007) [7] and
its applications. Given a binary constraint graph G and its two satisfying assignments Âini and
Âtar, the Maxmin 2-CSP Reconfiguration problem requests to transform Âini into Âtar by repeatedly
changing the value of a single vertex so that the minimum fraction of satisfied edges is maximized.
We demonstrate a polynomial-time reduction from Maxmin 2-CSP Reconfiguration with arbitrarily
large alphabet size W œ N to itself with universal alphabet size W0 œ N such that
1. the perfect completeness is preserved, and
2. if any reconfiguration for the former violates Á-fraction of edges, then �(Á)-fraction of edges must

be unsatisfied during any reconfiguration for the latter.
The crux of its construction is the reconfigurability of Hadamard codes, which enables to reconfigure
between a pair of codewords, while avoiding getting too close to the other codewords. Combining
this alphabet reduction with gap amplification due to Ohsaka (SODA 2024) [26], we are able to
amplify the 1 vs. 1 ≠ Á gap for arbitrarily small Á œ (0, 1) up to the 1 vs. 1 ≠ Á0 for some universal
Á0 œ (0, 1) without blowing up the alphabet size. In particular, a 1 vs. 1 ≠ Á0 gap version of Maxmin

2-CSP Reconfiguration with alphabet size W0 is PSPACE-hard given a probabilistically checkable
reconfiguration proof system having any soundness error 1 ≠ Á due to Hirahara and Ohsaka (STOC
2024) [14] and Karthik C. S. and Manurangsi (2023) [17]. As an immediate corollary, we show that
there exists a universal constant Á0 œ (0, 1) such that many popular reconfiguration problems are
PSPACE-hard to approximate within a factor of 1 ≠ Á0, including those of 3-SAT, Independent
Set, Vertex Cover, Clique, Dominating Set, and Set Cover. This may not be achieved only by gap
amplification of Ohsaka [26], which makes the alphabet size gigantic depending on Á≠1.
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feasible solutions is referred to as a reconfiguration sequence. Since the establishment of
the unified framework due to Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and
Uno [16], the complexity of many reconfiguration problems has been investigated, including
those of Satisfiability, Coloring, Independent Set, Vertex Cover, and Clique. We refer the
readers to the survey by Bousquet, Mouawad, Nishimura, and Siebertz [6], Mynhardt and
Nasserasr [20], Nishimura [21], and van den Heuvel [31]. One latest trend is to study ap-

proximate reconfigurability [23, 24, 26], which a�ords to relax the feasibility of intermediate
solutions during reconfiguration. For example, in Maxmin 2-CSP Reconfiguration [23], which
is an optimization version of 2-CSP Reconfiguration, we can adopt any non-satisfying as-

signments, but are required to maximize the minimum fraction of edges satisfied during
reconfiguration. Such optimization versions would be come up with naturally to deal with
PSPACE-hardness of many reconfiguration problems. See Section 1.5 for other optimization
versions of reconfiguration problems.

One of the most important questions concerning approximate reconfigurability was
PSPACE-hardness of approximation for reconfiguration problems, posed by Ito, Demaine,
Harvey, Papadimitriou, Sideri, Uehara, and Uno [16, Section 5] as an open problem. Though
NP-hardness of approximation for reconfiguration problems (e.g., Maxmin SAT Reconfigura-

tion) was shown by [16], their proofs do not imply PSPACE-hardness because of relying
on the NP-hardness of approximating the corresponding optimization problems (e.g., Max

SAT). The significance of showing PSPACE-hardness compared to NP-hardness is that it
disproves the existence of a witness (especially a reconfiguration sequence) of polynomial
length under NP ”= PSPACE. Ohsaka [23] showed that a host of (optimization versions
of) reconfiguration problems are PSPACE-hard to approximate under the Reconfiguration

Inapproximability Hypothesis (RIH), which postulates that a gap version of Maxmin CSP

Reconfiguration is PSPACE-hard. Very recently, Hirahara and Ohsaka [14] and Karthik
C. S. and Manurangsi [17] independently announced the proof of RIH, thereby a�rmatively
resolving the open problem of Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and
Uno [16]. The proof is based on a construction of probabilistically checkable reconfiguration

proof (PCRP) systems for PSPACE. The present study delves deeper into PSPACE-
hardness of approximation for reconfiguration problems given the resolution of RIH.

The limitation of [23] along with the PCRP theorem [14, 17] is that the degree of
inapproximability is not explicitly shown: although the PCRP theorem implies that Maxmin

2-CSP Reconfiguration is PSPACE-hard to approximate within a factor of 1 ≠ Á, its gap

parameter Á œ (0, 1) is implicit and thus might be very tiny. To circumvent this limitation,
Ohsaka [26] successfully developed Dinur’s style gap amplification [7] for Maxmin 2-CSP

Reconfiguration, which amplifies the 1 vs. 1 ≠ Á gap for arbitrarily small Á œ (0, 1) up to the 1
vs. 0.9942 gap. This result can be used to show 1.0029-inapproximability for Minmax Set

Cover Reconfiguration [26]. Unfortunately, there still remains another issue: the alphabet

size becomes gigantic depending on Á≠1.1 Consider for example reducing Maxmin 2-CSP

Reconfiguration with alphabet size W to Maxmin 3-SAT Reconfiguration in a gap-preserving
manner. According to [23], if the former problem has a ”-gap, the latter problem’s gap turns
out to be ”

2�(W ) . This is undesirable if W depends on Á. Our target in this paper is thus a
reconfiguration analogue of alphabet reduction, i.e., a polynomial-time reduction from Maxmin

2-CSP Reconfiguration to itself that makes a large alphabet into a tiny one without much
deteriorating the gap value.

1 Precisely, the alphabet size becomes W dO(Á≠1)
for some W,d œ N by [26], which is doubly exponential in

Á≠1.
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Table 1 Gap-preserving reductions used in Corollary 1.2. We can reduce Gap1,1≠Á q-CSPW

Reconfiguration (i.e., the PCRP theorem) to Gap1,1≠Á0 2-CSPW0 Reconfiguration regardless of the
values of Á œ (0, 1) and q,W œ N.

gap problem ref. technique gap value alphabet size

q-CSP Reconf — — arbitrarily small Á arbitrarily large W
2-CSP Reconf [23] degree reduction depends on Á, q,W universal const.
2-CSP Reconf [26] gap amplification universal const. depends on Á, q,W
2-CSP Reconf (this paper) alphabet reduction universal const. Á0 universal const. W0

1.2 Our Results
We present alphabet reduction for Maxmin 2-CSP Reconfiguration à la Dinur [7] and its
applications. Given an instance of Maxmin 2-CSP Reconfiguration with arbitrarily large
alphabet, we are able to reduce the alphabet size to a universal constant W0 œ N preserving
the gap value by up to a constant factor:

I Theorem 1.1 (Alphabet reduction; informal; see Theorem 3.1). There exist universal

constants W0 œ N and Ÿ œ (0, 1) and a polynomial-time reduction from Maxmin 2-CSP

Reconfiguration with arbitrarily large alphabet size W œ N to itself with alphabet size W0 such

that

1. the perfect completeness is preserved, and

2. if any reconfiguration for the former violates Á-fraction of edges, then Ÿ · Á-fraction of

edges must be unsatisfied during any reconfiguration for the latter.

Our reduction is independent of Á; namely, Á does not have to be constant, e.g., Á =
(# of edges)≠1. The main ingredient of its construction is the reconfigurability of Hadamard

codes, which appears later in Section 1.3.
As a corollary of Theorem 3.1 and [23, 26], we are able to amplify the 1 vs. 1 ≠ Á gap

for arbitrarily small Á œ (0, 1) up to the 1 vs. 1 ≠ Á0 gap for some universal Á0 œ (0, 1)
without blowing up the alphabet size. Slightly more formally, for any Á œ (0, 1) and W œ N,
Gap1,1≠Á 2-CSPW Reconfiguration requests to distinguish whether, for a binary constraint
graph with alphabet size W and its two satisfying assignments Âini and Âtar, (1) there exists
a reconfiguration sequence from Âini to Âtar consisting only of satisfying assignments, or (2)
every reconfiguration sequence violates more than Á-fraction of edges.

I Corollary 1.2 (from Theorem 3.1 and [23, 26]). There exist universal constants Á0 œ (0, 1)
and W0 œ N such that for arbitrarily small Á œ (0, 1) and large q,W œ N, there exists

a gap-preserving reduction from Gap1,1≠Á q-CSPW Reconfiguration to Gap1,1≠Á0 2-CSPW0

Reconfiguration. In particular, the latter problem is PSPACE-hard.

Since both Á0 and W0 do not depend on either Á, q, or W , Corollary 1.2 makes the degree
of inapproximability and alphabet size of Maxmin 2-CSP Reconfiguration oblivious to the
soundness error, query complexity, and alphabet size of any PCRP system [14, 17]. Concretely,
we would have Á0 = Ÿ · (1 ≠ 0.9942) > 10≠18 and W0 < 2,000,000, where number 0.9942
comes from [26]. See also the proof of Theorem 3.1. This may not be achieved only by
gap amplification due to Ohsaka [26]. See also Table 1 for a sequence of gap-preserving
reductions used in Corollary 1.2.

By Corollary 1.2, we immediately obtain the following gap-preserving reducibility from
any PCRP system to many popular reconfiguration problems:
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I Theorem 1.3 (from Corollary 1.2 and [23, 26]). There exists a universal constant Á0 œ (0, 1)
such that for every Á œ (0, 1) and q,W œ N, Gap1,1≠Á q-CSPW Reconfiguration is polynomial-

time reducible to a 1 vs. 1 ≠ Á0 gap version of the following reconfiguration problems:

2-CSP Reconfiguration, 3-SAT Reconfiguration, Independent Set Reconfiguration, Vertex Cover

Reconfiguration, Clique Reconfiguration, Dominating Set Reconfiguration, Set Cover

Reconfiguration, and Nondeterministic Constraint Logic.

In particular, optimization versions of the above problems are PSPACE-hard to approximate

within a factor of 1 ≠ Á0.

Once again, Theorem 1.3 is di�erent from a consequence of gap-preserving reductions due to
Ohsaka [23] in a sense that it renders Á0 independent of the value of Á.2 Such PSPACE-
hardness results seem to be known only for (optimization versions of) 2-CSP Reconfiguration

(0.9942-factor) [26], Set Cover Reconfiguration (1.0029-factor) [26], and Clique Reconfiguration

(n≠�(1)-factor) [14] (to the best of our knowledge).
Proofs marked with ú are omitted and can be found in the full version of this paper [25].

1.3 Proof Overview
The construction of alphabet reduction for Maxmin 2-CSP Reconfiguration (Theorem 3.1) is
based on that for Max 2-CSP due to Dinur [7], which comprises two partial steps: The first
step is robustization, which replaces each constraint fie of edge e by a Boolean circuit Ce

that accepts f ¶ g if and only if f ¶ g = Had(–) ¶ Had(—) such that (–,—) satisfies fie, where
Had is the Hadamard code (see Section 2 for the definition).3 The soundness case ensures
that for “many” edges e, the restricted assignment is �(1)-far from any satisfying truth
assignment to Ce. The second step is composition, which composes each circuit Ce with
an assignment tester [7, 8] (a.k.a. PCP of proximity [4]) of constant size to break down Ce

into a system of binary constraints over small alphabet while sharing the common variables
for di�erent circuits.

The main challenge to achieving alphabet reduction for Maxmin 2-CSP Reconfiguration

is its robustization. Simply applying the above robustization procedure to Maxmin 2-CSP

Reconfiguration, we are required to reconfigure between a pair of codewords, say, Had(–1) and
Had(–2) for –1 ”= –2. Such reconfiguration must pass through a function ' 1

4
-far from the

codeword and thus from any satisfying truth assignment to the above circuit Ce, sacrificing
the perfect completeness. There is a dilemma that distinct codewords should be far from each
other, yet they need to be reconfigurable with each other. One might thus think of enforcing
Ce to accept functions that are 1

4
-close to the codeword. Unfortunately, this modification

reduces the robustness to o(1) in the soundness case, as shown in an example below (see
also Example 3.7). This explains why robustization for Maxmin 2-CSP Reconfiguration is
nontrivial.

I Example 1.4 (Failed attempt). Define a binary constraint fie := {(–1,—1), (–2,—2)} µ �◊�
and a Hadamard code Had : � æ F¸

2
. Construct a (seemingly promising) circuit ÂCe such that

ÂCe(f ¶ g) = 1 if and only if

2 We stress that Theorem 1.3 is essentially di�erent from the following statement (where Á0 can depend
on Á, q, and W ), which is immediate from [23]: “For arbitrarily small Á œ (0, 1) and large q,W œ N,
there exists Á0 œ (0, 1) such that Gap1,1≠Á q-CSPW Reconfiguration is polynomial-time reducible to a 1
vs. 1 ≠ Á0 gap version of the reconfiguration problems listed in Theorem 1.3.”

3 Though Dinur [7] used an error-correcting code enc : � æ F¸
2 having linear dimension (i.e., ¸ = O(log |�|)),

we can a�ord to use the Hadamard code for our purpose because |�| = O(1).
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1. both f and g are 1

4
-close to some Hadamard codewords;

2. if f and g are 1

4
-close to Had(–) and Had(—), respectively, then (–,—) must satisfy fie.

Then, the following issue arises: even if f is closest to Had(–) and g is closest to Had(—) such
that (–,—) /œ fi, we cannot exclude the possibility that f ¶ g is o(1)-close to some satisfying
truth assignment to ÂCe. Suppose f is 1

4
-close to both Had(–1) and Had(–2) and g is 1

4
-close

to both Had(—1) and Had(—2). Changing particular two bits of f ¶ g, we obtain fı
¶ gı that

is
!
1

4
≠

1

¸

"
-close to Had(–1) ¶ Had(—1). Since ÂC(fı

¶ gı) = 1, f ¶ g is 1

¸ -close to a satisfying
truth assignment to ÂCe. y

The crux of a reconfiguration analogue of robustization is what we call the reconfigurability

of Hadamard codes:

I Lemma 1.5 (Reconfigurability of Hadamard codes; informal; see Lemma 3.2). There exists

a universal constant ”0 œ (0, 1) such that for any n > 9 and – ”= — œ Fn
2
, there exists a

reconfiguration sequence from Had(–) to Had(—) such that every function in it is

1

4
-close to either Had(–) or Had(—), and!
1

4
+ ”0

"
-far from Had(“) for every “ ”= –,—.

Lemma 3.2 enables us to reconfigure between a pair of codewords, avoiding getting too (say,
1

4
+ ”0) close to the other codewords. The existence of such a reconfiguration sequence is

shown by a simple application of the structural property of a triple of distinct Hadamard
codewords and the probabilistic method. Lemma 3.2 is still nontrivial in that it does not
hold if n = 3 (see Observation 3.3). Using the reconfigurability of Hadamard codes, we
implement alphabet reduction of Maxmin 2-CSP Reconfiguration as follows:

Robustization (Lemma 3.6): Convert a binary constraint fie for edge e into a circuit Ce

such that Ce(f ¶ g) = 1 if and only if
1. both f and g are 1

4
-close to some Hadamard codewords;

2. if f and g are
!
1

4
+ ”0

2

"
-close to Had(–) and Had(—), respectively, then (–,—) must

satisfy fie.
(The di�erence from ÂCe of Example 1.4 is highlighted. ) Consider fie, f , and g appearing
in Example 1.4 again for the soundness case. Suppose Ce is constructed from fie. To
make f ¶ g to satisfy Ce, we must modify them so that f and g are

!
1

4
+ ”0

2

"
-far from

Had(–2) and Had(—2) (or Had(–1) and Had(—1)), respectively; namely, f ¶ g is ”0
2
-far from

any satisfying truth assignment to Ce. Even though Ce demands stricter conditions than
ÂCe of Example 1.4, the perfect completeness can be derived using Lemma 3.2.
Composition (Proposition 3.10): Just feeding each circuit Ce to an assignment tester P
of [7] breaks the perfect completeness; instead, we apply P to Ce twice to create twins of
binary constraint systems sharing the input variables to Ce. Our 4-query verifier then
picks a pair of edges from each of the twins uniformly at random, and accepts if either
of them is satisfied, which may be thought of as rectangular PCPs [5]. This kind of
redundancy is crucial for ensuring the perfect completeness of reconfiguration problems.
On the other hand, if ”-fraction of the edges are unsatisfied in both of the twins, the
verifier rejects with probability ”2 owing to its rectangularity.

In the language of probabilistic proofs, the above alphabet reduction may be thought of
as a composition of (PCRPs) due to Hirahara and Ohsaka [14], where the outer PCRP is a
2-query PCRP verifier and the inner PC(R)P is an assignment tester. To make the outer
PCRP enjoy a reconfiguration analogue of the robustness as in Lemma 3.6, we replace each
variable by a block of bits and modify the original circuit associated with each edge e (i.e.,
binary constraint fie) appropriately so as to reflect the reconfigurability of Hadamard codes.
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1.4 Towards Dinur’s Style Proof of RIH?
Given degree reduction [23], gap amplification [26], and alphabet reduction (this paper) for
Maxmin 2-CSP Reconfiguration, one might think of proving RIH imitating Dinur’s proof of the
PCP theorem [7]. Though the resolution of RIH is not the main motivation for developing
alphabet reduction and RIH has already been proven by Hirahara and Ohsaka [14] and
Karthik C. S. and Manurangsi [17], such a di�erent proof is still useful in a sense that it
would rely only on (slightly) simpler tools. Unfortunately, merely putting them together does
not work as expected because some of the reductions are only gap-preserving, which requires
that there is already a constant gap Á œ (0, 1) between completeness and soundness, and thus
weaker than those of Dinur [7]. Consider for example degree reduction of Maxmin 2-CSP

Reconfiguration. Unlike Papadimitriou–Yannakakis’s degree reduction for Max 2-CSP [28],
Ohsaka’s degree reduction [23] uses near-Ramanujan graphs [2, 19] of degree �(Á≠2). Since
we need to begin gap amplification with Á = (# of edges)≠1 = o(1), applying the degree
reduction step of [23] results in a superconstant degree, failing to reduce the degree of Maxmin

2-CSP Reconfiguration. Gap amplification of Ohsaka [26] also relies on the assumption that
the gap value is a constant, see [26, Claim 3.7]. Note that alphabet reduction in the present
study works for any subconstant gap.

1.5 Additional Related Work
In [16], NP-hardness of approximation is shown for optimization versions of Clique Recon-

figuration and SAT Reconfiguration using NP-hardness of approximating Max Clique [12]
and Max SAT [13], respectively. Other reconfiguration problems whose approximability was
investigated include Subset Sum Reconfiguration, which admits a PTAS [15] and Submodular

Reconfiguration, which admits a constant-factor approximation [27]. It is known that a naive
parallel repetition for Maxmin 2-CSP Reconfiguration fails to decrease the soundness error [24]
unlike the parallel repetition theorem due to Raz [30]; in fact, Maxmin 2-CSP Reconfiguration

is approximable within a factor of nearly 1

4
[24] while NP-hard to approximate within a

factor better than 3

4
[26]. Karthik C. S. and Manurangsi [17] demonstrate matching lower

and upper bounds, i.e., NP-hardness of
!
1

2
+ Á

"
-factor approximation and a

!
1

2
≠ Á

"
-factor

approximation algorithm for every Á œ
!
0, 1

2

"
.

The overlap gap property [10, 1, 18, 11, 32] refers to the separation phenomena of the
overlaps between near-optimal solutions on random instance, which implies approximate
reconfigurability; see also [26].

2 Preliminaries

2.1 Notations
For a nonnegative integer n œ N, let [n] := {1, 2, . . . , n}. Denote by Sn the set of all
permutations over [n]. A sequence S of a finite number of objects S(1), . . . , S(T ) is denoted
by (S(1), . . . , S(T )), and we write S(t)

œ S to indicate that S(t) appears in S . The symbol
¶ stands for a concatenation of two strings, È·, ·Í for the inner product, F2 = {0, 1} for the
finite field with two elements. We use ‡ to emphasize that the union is taken over disjoint
sets. Let � be a finite set called alphabet. For a length-n string f œ �n and index set I ™ [n],
we use f |I to denote the restriction of f to I. The relative distance between two strings
f, g œ �n, denoted �(f, g), is defined as the fraction of positions on which f and g di�er;
namely,
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�(f, g) := P
i≥[n]

Ë
fi ”= gi

È
= |{i œ [n] | fi ”= gi}|

n
. (2.1)

We say that f is Á-close to g if �(f, g) 6 Á and Á-far from g if �(f, g) > Á. For a set
of strings S ™ �n, analogous notions are used; e.g., �(f, S) := mingœS �(f, g) and f is
Á-close to S if �(f, S) 6 Á. For a string – œ Fn

2
, its Hadamard code is defined as a

function Had(–) : Fn
2

æ F2 such that Had(–)(x) = È–,xÍ for all x œ Fn
2
. We call Had(–) for

each – a codeword of the Hadamard code, and write Had(·) for the set of all codewords.
Note that the relative distance between any pair of distinct codewords of Had(·) is 1

2
; i.e.,

�(Had(–),Had(—)) = 1

2
for all – ”= — œ Fn

2
.

2.2 Constraint Satisfaction Problem and Reconfigurability
We introduce reconfiguration problems on constraint satisfaction. The notion of constraint
graphs is first introduced.

I Definition 2.1. A q-ary constraint graph is defined as a tuple G = (V,E,�,�) such that
(V,E) is a q-uniform hypergraph called the underlying graph, � is a finite set called the
alphabet, and � = (fie)eœE is a collection of q-ary constraints, where each constraint fie ™ �e

is a set of q-tuples of acceptable values that q vertices in e can take. y

For an assignment Â : V æ �, we say that Â satisfies hyperedge e = {v1, . . . , vq} œ E (or
constraint fie) if Â(e) := (Â(v1), . . . ,Â(vq)) œ fie, and Â satisfies G if it satisfies all hyperedges
of G. For two satisfying assignments Âini and Âtar for G, a reconfiguration sequence from

Âini
to Âtar over �V is any sequence (Â(1), . . .Â(T )) such that Â(1) = Âini, Â(T ) = Âtar, and

every two neighboring assignments Â(t) and Â(t+1) di�er in at most one vertex. In the q-CSP
Reconfiguration problem, for a q-ary constraint graph G and its two satisfying assignments
Âini and Âtar, we are asked to decide if there is a reconfiguration sequence of satisfying
assignments for G from Âini to Âtar. Hereafter, the su�x “W ” designates the restricted case
that the alphabet size |�| is integer W œ N.

Subsequently, we formulate an optimization version of q-CSP Reconfiguration [16, 23],
which allows going through non-satisfying assignments. For a constraint graph G =
(V,E,�,�) and an assignment Â : V æ �, its value is defined as the fraction of edges
of G satisfied by Â; namely,

valG(Â) :=
1
|E|

·

---
Ó
e œ E

--- Â satisfies e
Ô--- . (2.2)

For a reconfiguration sequence yyy = (Â(1), . . . ,Â(T )) of assignments, let valG(yyy) denote the
minimum fraction of satisfied edges over all Â(t)’s in yyy; namely,

valG(yyy) := min
Â(t)œyyy

valG(Â(t)). (2.3)

In Maxmin q-CSP Reconfiguration, we wish to maximize valG(yyy) subject to yyy = (Âini, . . . ,Âtar).
For two assignments Âini,Âtar : V æ � for G, let valG(Âini ! Âtar) denote the maximum
value of valG(yyy) over all possible reconfiguration sequences yyy from Âini to Âtar; namely,

valG(Âini ! Âtar) := max
yyy=(Âini,...,Âtar)

valG(yyy). (2.4)

The gap version of Maxmin q-CSP Reconfiguration is defined as follows.
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I Problem 2.2. For every numbers 0 6 s 6 c 6 1 and integer q œ N, Gapc,s q-CSP
Reconfiguration requests to determine for a q-ary constraint graph G and its two assignments
Âini and Âtar, whether valG(Âini ! Âtar) > c (the input is a yes instance) or valG(Âini !
Âtar) < s (the input is a no instance). Here, c and s are respectively called completeness and
soundness. y

We can assume Âini and Âtar satisfy G whenever c = 1. The Reconfiguration Inapproximability

Hypothesis (RIH) [23] postulates that Gap1,1≠Á q-CSPW Reconfiguration is PSPACE-hard for
some Á œ (0, 1) and q,W œ N, which has been recently proven by Hirahara and Ohsaka [14]
and Karthik C. S. and Manurangsi [17].

3 Alphabet Reduction for Maxmin 2-CSP Reconfiguration

In this section, we prove the main result of this paper, i.e., an explicit construction of alphabet
reduction for Maxmin 2-CSP Reconfiguration, as formally stated below.

I Theorem 3.1 (Alphabet reduction). There exist universal constants W0 œ N and Ÿ œ (0, 1),
and a polynomial-time algorithm A that takes an instance (G,Âini,Âtar) of Maxmin 2-CSPW

Reconfiguration with alphabet size W œ N and produces an instance (GÕ,ÂÕini,ÂÕtar) of Maxmin

2-CSPW0 Reconfiguration with alphabet size W0 such that the following hold:
(Perfect completeness) If valG(Âini ! Âtar) = 1, then valGÕ(ÂÕini ! ÂÕtar) = 1.
(Soundness) If valG(Âini ! Âtar) < 1 ≠ Á, then valGÕ(ÂÕini ! ÂÕtar) < 1 ≠ Ÿ · Á.

In particular, for every Á œ (0, 1) and W œ N, A is a gap-preserving reduction from Gap1,1≠Á

2-CSPW Reconfiguration to Gap1,1≠Ÿ·Á 2-CSPW0 Reconfiguration.

The remainder of this section is organized as follows: Section 3.1 introduces and proves
the reconfigurability of Hadamard codes, which will be applied to robustization of Maxmin

2-CSP Reconfiguration in Section 3.2. Subsequently, Section 3.3 composes the assignment
tester of [7, 22] into Circuit SAT Reconfiguration, concluding the proof of Theorem 3.1.

3.1 Reconfigurability of Hadamard Codes
Here, we prove the reconfigurability of Hadamard codewords. A reconfiguration sequence

from f ini
to f tar over FN

2
is a sequence (f (1), . . . , f (T )) such that f (1) = f ini, f (T ) = f tar, and

every two neighboring functions f (t) and f (t+1) di�er in at most one bit.

I Lemma 3.2 (Reconfigurability of Hadamard codes). Let n be a positive integer at least 9,
”0 := 1

400
be a universal constant, and –,— œ Fn

2
be two distinct strings. Then, there exists

a reconfiguration sequence � = (Had(–), . . . ,Had(—)) from Had(–) to Had(—) such that for

every string “ œ Fn
2
\ {–,—} and every function f : Fn

2
æ F in �,

min
Ó

�(f,Had(–)),�(f,Had(—))
Ô
6 1

4 , (3.1)

�(f,Had(“)) > 1
4 + ”0. (3.2)

Before going to its proof, we remark that Lemma 3.2 does not hold if n = 3.

I Observation 3.3 (ú). For n = 3 and – ”= — œ Fn
2
, let � be a reconfiguration sequence from

Had(–) to Had(—) such that min{�(f,Had(–)),�(f,Had(—))} 6 1

4
for every function f in

�. Then, � contains a function f¶
such that �(f¶,Had(“)) 6 1

4
for some “ œ Fn

2
\ {–,—}.
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Had(–) 0 1

Had(—) 0 1 0 1

Had(“) 0 1 0 1 0 1 0 1
P= P“ P— P– P– P— P“ P=

Figure 1 Illustration of (P–, P— , P“ , P=) for three distinct nonzero vectors –,—,“ œ Fn
2 .

To prove Lemma 3.2, we first analyze the partial sum of a random sequence consisting of
an equal number of plus ones and minus ones.

I Lemma 3.4 (ú). Let N > N0 := 100 be any positive integer, ÷0 := 1

100
, and a =

(a1, . . . , a2N ) be a random sequence made up of N plus ones and N minus ones obtained by

applying a random permutation of S2N to (+1, . . . ,+1¸ ˚˙ ˝
N times

,≠1, . . . ,≠1¸ ˚˙ ˝
N times

). Then, the minimum

k-partial sum over all k œ [2N ]; i.e.,

argmin
16k62N

ÿ

16i6k

ai = argmin
16k62N

ÿ

k+16i62N

ai, (3.3)

is at most ≠(1 ≠ ÷0)N = ≠0.99N with probability at most 0.9N .

Besides, given the Hadamard codewords of any three distinct strings, we partition their
bits into four equal-sized groups.

B Claim 3.5 (ú). For three distinct vectors –,—,“ œ Fn
2
, the following hold:

P
xœFn

2

Ë
È–,xÍ ”= È—,xÍ = È“,xÍ

È
= 1

4 , P
xœFn

2

Ë
È—,xÍ ”= È“,xÍ = È–,xÍ

È
= 1

4 ,

P
xœFn

2

Ë
È“,xÍ ”= È–,xÍ = È—,xÍ

È
= 1

4 , P
xœFn

2

Ë
È–,xÍ = È—,xÍ = È“,xÍ

È
= 1

4 .
(3.4)

Using Lemma 3.4 and Claim 3.5, we now prove Lemma 3.2.

Proof of Lemma 3.2. Fix two strings – ”= — œ Fn
2
for n > 9. Let D µ Fn

2
be a set of strings

on which Had(–) and Had(—) disagree with each other; namely,

D :=
Ó
x œ Fn

2

--- È–,xÍ ”= È—,xÍ

Ô
. (3.5)

The random subsum principle ensures |D| = 2n≠1 (cf. [3, Claim A.31]). Consider a random
reconfiguration sequence � = (Had(–), . . . ,Had(—)) obtained by the following procedure:

Random reconfiguration � from Had(–) to Had(—).

1: (x1, . . . ,x2n≠1) Ω a sequence obtained by applying a random permutation of S2n≠1

to D.
2: for i = 1 to 2n≠1 do
3: flip xi

th entry of the current function.

Observe easily that any intermediate function of � is always 1

4
-close to either Had(–) or

Had(—). Fix any string “ œ Fn
2
\ {–,—}. We would like to show that with probability at

least 1 ≠ 0.92n≠2 , every function of � is
!
1

4
+ ”0

"
-far from Had(“); i.e.,

�(Had(“),�) := min
fœ�

�(Had(“), f) > 1
4 + ”0. (3.6)
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0 8 16 24 32 40 48 56 64
t

0

1
8

1
4

3
8

1
2

5
8

¢(f
(t) ,Ha

d(Æ
)) ¢(f (t),Had(Ø))

¢(f (t),Had(∞))

Figure 2 Plot of the distance from f (t) to Had(–), Had(—), and Had(“) for a random reconfigu-
ration � from Had(–) to Had(—) described in the proof of Lemma 3.2.

By Claim 3.5, there exists a partition (P–, P— , P“ , P=) of Fn
2
such that |P–| = |P— | = |P“ | =

|P=| = 2n≠2 and

È–,xÍ ”= È—,xÍ = È“,xÍ for all x œ P–, È—,xÍ ”= È“,xÍ = È–,xÍ for all x œ P— ,

È“,xÍ ”= È–,xÍ = È—,xÍ for all x œ P“ , È–,xÍ = È—,xÍ = È“,xÍ for all x œ P=.
(3.7)

See also Figure 1. Here, we always have P– ‡P— = D (though P– and P— themselves depend
on “).

For any intermediate function f : Fn
2

æ F2 of �, if its entry on P– is flipped, its Hamming
distance to Had(“) must decrease by 1, whereas if its entry on P— is flipped, its Hamming
distance to Had(“) must increase by 1; see also Figure 2. Since |P–| = |P— | = 2n≠2 > 100 and
ÎHad(–) ≠ Had(“)Î = ÎHad(—) ≠ Had(“)Î = 2n≠1, we can apply Lemma 3.4 with N = 2n≠2

to conclude that

P
�

5
min
fœ�

ÎHad(“) ≠ �Î 6 2n≠1
≠ 0.99N

6
6 0.9N

=∆ P
�

5
�(Had(“),�) 6 1

4 + 1
400

6
6 0.92

n≠2
.

Taking a union bound over all possible strings “ œ Fn
2
\ {–,—}, we derive

P
�

5
÷“ /œ {–,—} s.t. �(Had(“),�) 6 1

4 + 1
400

6

6
ÿ

“ /œ{–,—}

P
�

5
�(Had(“),�) 6 1

4 + 1
400

6
< 2n · 0.92

n≠2
< 1 (for all n > 9).

(3.8)

Consequently, the probabilistic method guarantees the existence of a reconfiguration sequence
� = (Had(–), . . . ,Had(—)) that is entirely

!
1

4
+ ”0

"
-far from Had(“) for every “ /œ {–,—}. J

3.2 Robustization
Subsequently, we advance to robustization of Maxmin 2-CSP Reconfiguration, relying on
the reconfigurability of Hadamard codes. For a system of Boolean circuits C and its two
satisfying truth assignments ‡ini,‡tar : FN

2
æ F2, Circuit SAT Reconfiguration requires to

decide the existence of a reconfiguration sequence from ‡ini to ‡tar over FFN
2

2
consisting only

of satisfying truth assignments to C .
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I Lemma 3.6 (Robustization). There exists a polynomial-time algorithm that takes an instance

(G,Âini,Âtar) of Maxmin 2-CSPW Reconfiguration with alphabet size W œ N, where Âini
and

Âtar
satisfy G, and then produces an instance (C ,‡ini,‡tar) of Circuit SAT Reconfiguration,

where C = (Ce)eœE is a system of circuits and ‡ini
and ‡tar

satisfy C , such that the following

hold:
(Perfect completeness) If valG(Âini ! Âtar) = 1, there exists a reconfiguration sequence

from ‡ini
to ‡tar

made up of satisfying truth assignments to C .

(Soundness) If valG(Âini ! Âtar) < 1 ≠ Á, any reconfiguration sequence from ‡ini
to ‡tar

includes assignment ‡¶
such that for more than Á-fraction of edges e of G, ‡¶

|JeK is
”0
8
-far

from any satisfying truth assignment to Ce, where ”0 = 1

400
as in Lemma 3.2.

Reduction. Our polynomial-time robustization of Maxmin 2-CSPW Reconfiguration into
Circuit SAT Reconfiguration is described as follows. Let (G,Âini,Âtar) be an instance of Maxmin

2-CSPW Reconfiguration, where G = (V,E,�,�) is a binary constraint graph, and Âini and
Âtar satisfy G. Without loss of generality, we can assume that W = |�| = 2n for some integer
n > 9,4 and we can identify Fn

2
with �.

Consider replacing binary constraints of G by a system of circuits. We first specify a truth

assignment to the entire circuit system by a function ‡ : Fn
2

◊ V æ F2, which can be thought
of as a concatenation of functions ‡v : Fn

2
æ F2 associated with each vertex v œ V . For

vertex v œ V , let JvK denote the set of 2n Boolean variables associated with v, and for edge
e = (v, w) œ E, let JeK := JvK ‡ JwK.5 By this representation, we can identify Fn

2
◊ V withv

vœV JvK. In particular, for edge e = (v, w) œ E, ‡|JeK is equal to ‡|JvK ¶ ‡|JwK. For each edge
e = (v, w) of G and its constraint fie, we define a circuit Ce : (JvK æ F2) ◊ (JwK æ F2) æ F2

(or equivalently, Ce : FJvK
2

◊ FJwK
2

æ F2) that depends only on ‡|JeK = ‡|JvK ¶ ‡|JwK such that
Ce(‡|JvK ¶ ‡|JwK) = 1 if and only if

�(‡|JvK,Had(·)) 6
1
4 and �(‡|JwK,Had(·)) 6

1
4 ,

’–,— œ �,�(‡|JvK,Had(–)) 6
1
4 + ”0

2 and �(‡|JwK,Had(—)) 6
1
4 + ”0

2 =∆ (–,—) œ fie,

(3.9)

where ”0 = 1

400
as in Lemma 3.2. Note that each Ce has constant size and can be constructed

in constant time since n = O(1). Consequently, we obtain a system of circuits, denoted
C = (Ce)eœE . Given a satisfying assignment Â : V æ � for G, we can construct a satisfying
truth assignment ‡ : Fn

2
◊ V æ F2 such that ‡|JvK := Had(Â(v)) for all v œ V . Constructing

‡ini from Âini and ‡tar from Âtar according to this procedure, we obtain an instance (C ,‡ini,‡tar)
of Circuit SAT Reconfiguration. Observe that the above reduction completes in polynomial
time.

Proof of Lemma 3.6. We first prove the perfect completeness. It su�ces to consider the
case that Âini and Âtar di�er in exactly one vertex, say, vı

œ V . Using Lemma 3.2, we obtain
a reconfiguration sequence (f (1), . . . , f (T )) from Had(Âini(v)) to Had(Âtar(v)). Construct
then a reconfiguration sequence sss = (‡(1), . . . ,‡(T )) from ‡ini to ‡tar such that for all t,
‡(t)

|JwK := ‡ini
|JwK = ‡tar

|JwK for all w ”= vı, and ‡(t)
|JvıK := f (t). For each edge e = (vı, w)

of G, any intermediate function ‡(t) of sss satisfies the following:

4 Otherwise, we can augment � by padding so that |�| > 29.
5 Similar notations are used in [7].
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By Lemma 3.2, ‡(t)
|JvıK is 1

4
-close to Had(Âini(v)) or Had(Âtar(v)), but

!
1

4
+ ”0

"
-far from

Had(“) for every “ /œ {Âini(v),Âtar(v)}.
‡(t)

|JwK is equal to Had(Âini(w)) = Had(Âtar(w)); i.e., it is
!
1

2
≠ o(1)

"
-far from Had(“) for

every “ /œ {Âini(w),Âtar(w)}.
Since {Âini(vı),Âtar(vı)} ◊ {Âini(w),Âtar(w)} = {(Âini(vı),Âini(w)), (Âtar(vı),Âtar(w))} ™ fie,
it turns out that ‡(t)

|JeK satisfies Ce, and thus every ‡(t) in sss satisfies C entirely.
We then prove the soundness. Suppose valG(Âini ! Âtar) < 1 ≠ Á and we are given a

reconfiguration sequence sss = (‡(1), . . . ,‡(T )) from ‡ini to ‡tar. Construct then a reconfigura-
tion sequence yyy = (Â(1), . . . ,Â(T )) from Âini to Âtar such that Â(t)(v) is defined as a value of
� whose Hadamard codeword is closest to ‡(t)

|JvK; namely,6

Â(t)(v) := argmin
–œ�

�(‡(t)
|JvK,Had(–)). (3.10)

Since yyy is a valid reconfiguration sequence, there exists some Â(t) that violates more than
Á · |E| edges.

Hereafter, we denote Â := Â(t) and ‡ := ‡(t) for notational simplicity. Suppose Â violates
edge e = (v, w); i.e., (Â(v),Â(w)) /œ fie. We would like to show that ‡|JeK is ”0

8
-far from

any satisfying truth assignment to Ce. Let f ¶ g : JeK æ F2 be a satisfying truth assignment
to Ce. In particular, there exists a pair (–ı,—ı) œ fie such that �(f,Had(–ı)) 6 1

4
and

�(g,Had(—ı)) 6 1

4
. Observe now that “f is

!
1

4
+ ”0

2

"
-far from Had(Â(v))” or “g is

!
1

4
+ ”0

2

"
-far

from Had(Â(w))” because otherwise, Ce(f ¶ g) = 0.
Suppose first �(f,Had(Â(v))) > 1

4
+ ”0

2
, implying that –ı

”= Â(v). Putting together, we
have the following three inequalities in hand:

�(f,Had(–ı)) 6 1
4 by assumption, (3.11)

�(f,Had(Â(v))) > 1
4 + ”0

2 by assumption, (3.12)

�(‡|JvK,Had(Â(v))) 6 �(‡|JvK,Had(–ı)) by construction of ‡|JvK. (3.13)

Simple calculation using the triangle inequality derives

�(f,Had(Â(v))) 6 �(f,‡|JvK) + �(‡|JvK,Had(Â(v)))
6 �(f,‡|JvK) + �(‡|JvK,Had(–ı))
6 �(f,‡|JvK) + �(‡|JvK, f) + �(f,Had(–ı))
= 2 · �(‡|JvK, f) + �(f,Had(–ı))

(3.14)

=∆ 2 · �(‡|JvK, f) > �(f,Had(Â(v)))¸ ˚˙ ˝
> 1

4+
”0
2

≠ �(f,Had(–ı))¸ ˚˙ ˝
6 1

4

(3.15)

=∆ �(‡|JvK, f) >
”0
4 . (3.16)

Consequently, ‡|JeK should be ”0
8
-far from f ¶ g.

Suppose next �(g,Had(Â(w))) > 1

4
+ ”0

2
, implying that —ı

”= Â(w). Similarly to the
first case, we can show that �(‡|JwK, g) > ”0

4
, deriving that ‡|JeK is ”0

8
-far from f ¶ g. This

completes the proof of the soundness. J

6 Ties are broken according to any prefixed order of �.
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Example 3.7 explains why the reconfigurability of Hadamard codes is needed, by using a
slightly di�erent definition of circuits that fails robustization.

I Example 3.7. For edge e = (v, w), define a binary constraint fie := {(–1,—1), (–2,—2)} µ

Fn
2

◊Fn
2
. Construct a circuit ÂCe : (JvK æ F2)◊(JwK æ F2) æ F2 such that ÂCe(‡|JvK¶‡|JwK) = 1

if and only if

�(‡|JvK,Had(·)) 6
1
4 and �(‡|JwK,Had(·)) 6

1
4 ,

’–,— œ �,�(‡|JvK,Had(–)) 6
1
4 and �(‡|JwK,Had(—)) 6

1
4 =∆ (–,—) œ fie.

(3.17)

Note that reconfiguring from (–1,—1) to (–2,—2) over � ◊ � (not Fn
2

◊ Fn
2
) must break fie

(at some point). Analogously, we might expect that any reconfiguration sequence from
Had(–1) ¶Had(—1) to Had(–2) ¶Had(—2) over FJvK

2
◊ FJwK

2
includes a function that is �(1)-far

from any satisfying truth assignment to ÂCe. Consider now the following reconfiguration:
Reconfiguration � from Had(–1) ¶ Had(—1) to Had(–2) ¶ Had(—2).

1: f := a function 1

4
-close to both Had(–1) and Had(–2).

2: g := a function 1

4
-close to both Had(—1) and Had(—2).

3: change Had(–1) to f one by one.
4: change Had(—1) to g one by one.
5: Û obtain f ¶ g. Ù
6: change f to Had(–2) one by one.
7: change g to Had(—2) one by one.

Changing particular two bits of f ¶ g, we obtain fı
¶ gı, which is

!
1

4
≠

1

2n

"
-close to Had(–1) ¶

Had(—1), implying ÂCe(fı
¶gı) = 1. Thus, f ¶g is 1

2n
-close to some satisfying truth assignment

to ÂCe. Similarly, every intermediate function of � is 1

2n
-close to some satisfying truth

assignment to ÂCe. y

3.3 Composition of Assignment Testers
We are now ready to compose an assignment tester into Circuit SAT Reconfiguration to
accomplish alphabet reduction of Maxmin 2-CSP Reconfiguration. Here, we recapitulate
assignment testers [7, 8], a.k.a. PCPs of proximity [4], and refer to an explicit construction
due to Dinur [7] and O’Donnell [22].7

I Definition 3.8 ([8, 4]). An assignment tester over alphabet �0 ∏ F2 with rejection rate

fl œ (0, 1) is an algorithm P that takes a circuit � : FX
2

æ F2 over Boolean variables X
as input, and produces a binary constraint graph G = (V = X ‡ Y,E,�0,�) over X and
auxiliary variables Y such that the following hold for any truth assignment ‡ : X æ F2 for �:

(Perfect completeness) If ‡ satisfies �, there exists an assignment · : Y æ �0 such that
valG(‡ ¶ ·) = 1.
(Soundness) If ‡ is ”-far from any satisfying truth assignment to �, for every assignment
· : Y æ �0, valG(‡ ¶ ·) < 1 ≠ fl · ”. y

7 Note that an assignment tester of O’Donnell [22, Theorem 7.16] takes the form of verifiers, which can
be represented as a binary constraint graph by a standard reduction from probabilistically checkable
proofs to two-prover games, e.g., [9, 29].
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I Theorem 3.9 ([7, Theorem 5.1] and [22, Theorem 7.16]). There exists an explicit construction

of an assignment tester P with alphabet �0 = F3
2
and rejection rate fl := 1

10,000 .

I Proposition 3.10 (Composition). There exist universal constants ÊW0 := 8 and ÂŸ := ”2
0fl2

64
œ

(0, 1), and a polynomial-time algorithm that takes an instance (G,Âini,Âtar) of Maxmin 2-

CSPW Reconfiguration with alphabet size W œ N, where Âini
and Âtar

satisfy G, and then

produces an instance (GÕ,ÂÕini,ÂÕtar) of Maxmin 4-CSPÂW0
Reconfiguration with alphabet size

ÊW0, where ÂÕini
and ÂÕtar

satisfy GÕ
, such that the following hold:

(Perfect completeness) If valG(Âini ! Âtar) = 1, then valGÕ(ÂÕini ! ÂÕtar) = 1.
(Soundness) If valG(Âini ! Âtar) < 1 ≠ Á, then valGÕ(ÂÕini ! ÂÕtar) < 1 ≠ ÂŸ · Á.

Reduction. We now describe a polynomial-time reduction from Circuit SAT Reconfiguration

introduced in the previous subsection to Maxmin 4-CSP8 Reconfiguration. Let (C ,‡ini,‡tar)
be an instance of Circuit SAT Reconfiguration obtained by applying Lemma 3.6 to an instance
(G,Âini,Âini) of Maxmin 2-CSPW Reconfiguration. Here, C = (Ce)eœE is a system of circuits
over Boolean variables Fn

2
◊ V , associated with underlying graph (V,E), and ‡ini and ‡tar

entirely satisfy C .
Running the assignment tester P of Theorem 3.9 on each circuit Ce : FJeK

2
æ F2 for edge

e œ E produces a binary constraint graph Ge = (Ve = JeK‡Ye, Ee,�0, Â�e = (ÂfiÂe)ÂeœEe
), where

Ye is the set of auxiliary variables and |�0| = 8. Create a pair of copies of Ge “sharing” JeK,
denoted G1

e and G2
e; namely,

G1

e := (V 1

e = JeK ‡ Y 1

e , E
1

e ,�0, Â�1

e), (3.18)

G2

e := (V 2

e = JeK ‡ Y 2

e , E
2

e ,�0, Â�2

e). (3.19)

We then “superimpose” G1
e and G2

e to obtain a 4-ary constraint graph GÕ
e = (V Õ

e , E
Õ
e,�0,�Õ

e =
(fiÕ

(Âe1,Âe2))(Âe1,Âe2)œEe
), where

V Õ
e := JeK ‡ Y 1

e ‡ Y 2

e , and EÕ
e := E1

e ◊ E2

e ,

fiÕ
(Âe1,Âe2) := ÂfiÂe1 ◊ ÂfiÂe2 =

Ó
(–1,—1,–2,—2) œ �4

--- (–1,—1) œ ÂfiÂe1 ‚ (–2,—2) œ ÂfiÂe2
Ô

for all (Âe1, Âe2) œ E1

e ◊ E2

e .

(3.20)

Note that each pair of edges from E1
e and E2

e forms a hyperedge of GÕ
e, which would be

satisfied if so is either of the two edges. We can safely assume that EÕ
e has the same size for

all e œ E.
Finally, the new 4-ary constraint graph GÕ = (V Õ, EÕ,�0,�Õ) is defined as follows:

V Õ :=
€

eœE

V Õ
e =

A
›

vœV

JvK
B

‡

A
›

eœE

Y 1

e ‡ Y 2

e

B
,

EÕ :=
›

eœE

EÕ
e and �Õ :=

›

eœE

�Õ
e.

(3.21)

For any satisfying truth assignment ‡ :
v

vœV JvK æ F2 of C , consider an assignment ÂÕ : V Õ
æ

�0 such that ÂÕ
|JvK := ‡|JvK for all v œ V and ÂÕ

|Y 1
e

= ÂÕ
|Y 2

e
= ·e for all e œ E, where

·e : Ye æ �0 is an assignment to auxiliary variables Ye such that ‡|JeK ¶ ·e satisfies GÕ
e, whose

existence is guaranteed by Definition 3.8. Observe easily that ÂÕ satisfiesGÕ. Constructing ÂÕini

from ‡ini and ÂÕtar from ‡tar according to this procedure, we obtain an instance (GÕ,ÂÕini,ÂÕtar)
of Maxmin 4-CSP8 Reconfiguration, completing the reduction.
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Proof of Proposition 3.10. Recall that (G,Âini,Âtar) is an instance of Maxmin 2-CSPW

Reconfiguration, (C ,‡ini,‡tar) is an instance of Circuit SAT Reconfiguration obtained by
applying Lemma 3.6, and (GÕ,ÂÕini,ÂÕtar) is an instance of Maxmin 4-CSP8 Reconfiguration

obtained by composing the assignment tester [7] as described above.
We first prove the perfect completeness. By Lemma 3.6, it su�ces to consider the case that

‡ini and ‡tar di�er in exactly one variable, say, (x, vı) œ Fn
2

◊ V . Consider a reconfiguration
sequence yyyÕ from ÂÕini to ÂÕtar obtained by the following procedure:

Reconfiguration yyyÕ from ÂÕini to ÂÕtar.

1: for all edge e = (vı, w) œ E do
2: let · tar

e : Ye æ �0 be assignment such that ‡tar
|JeK ¶ · tar

e satisfies Ge.
3: change the entries on Y 1

e to · tar
e one by one.

4: flip xth entry of JvıK.
5: for all edge e = (vı, w) œ E do
6: change the entries on Y 2

e to · tar
e one by one.

Observe easily that for any edge e = (vı, w) œ E, either of G1
e or G2

e is entirely satisfied by
any intermediate assignment, implying that valGÕ(yyyÕ) = 1, as desired.

We then prove the soundness. Suppose we are given a reconfiguration sequence yyyÕ =
(ÂÕ(1), . . . ,ÂÕ(T )) from ÂÕini to ÂÕtar such that valGÕ(yyyÕ) = valGÕ(ÂÕini ! ÂÕtar). Consider a
reconfiguration sequence sss = (‡(1), . . . ,‡(T )) such that ‡(t) := ÂÕ(t)

|v
vœV

JvK for all t. Since sss

is a valid reconfiguration sequence from ‡ini to ‡tar, by Lemma 3.6, there exists some ‡(t) such
that for more than Á-fraction of edges e of G, ‡(t)

|JeK = ÂÕ(t)
|JeK is ”0

8
-far from any satisfying

truth assignment to Ce. Let F µ E be the set of such edges of G; note that |F | > Á|E|.
By Theorem 3.9, ÂÕ(t) violates more than ”0fl

8
-fraction of edges of each G1

e and G2
e for any

e œ F . Since ÂÕ(t) violates hyperedge (Âe1, Âe2) œ E1
e ◊ E2

e if and only if it violates Âe1 œ E1
e

with respect to Â�1
e and Âe2 œ E2

e with respect to Â�2
e simultaneously, there are more than1

”0fl
8

22

-fraction of hyperedges of GÕ
e that are violated by ÂÕ(t); i.e., 1 ≠ valGe(ÂÕ(t)) > ”2

0fl2

64
.

Consequently, we derive

1 ≠ valGÕ(yyyÕ) > 1 ≠ valGÕ(ÂÕ(t))

= 1
|E|

ÿ

eœE

1
1 ≠ valGÕ

e
(ÂÕ(t))

2
(since every Ee has the same size)

> 1
|E|

ÿ

eœF

1
1 ≠ valGÕ

e
(ÂÕ(t))

2

>
|F |

|E|

”2
0
fl2

64 > Á ·
”2
0
fl2

64¸ ˚˙ ˝
=ÂŸ

,

(3.22)

implying that valGÕ(ÂÕini ! ÂÕtar) = valGÕ(yyyÕ) < 1 ≠ ÂŸ · Á, as desired. J

Proof of Theorem 3.1. Our construction of alphabet reduction for Maxmin 2-CSP Reconfig-

uration follows from Lemma 3.6 and Proposition 3.10 and a gap-preserving reduction [26,
Lemma 5.4] (which is in fact approximation-preserving) from Gap1,1≠Á 4-CSPÂW0

Reconfigura-

tion to Gap1,1≠ Á
4
2-CSPW0 Reconfiguration, where W0 =

3
ÂW0(ÂW0+1)

2

44

= 364. The value of Ÿ

in Theorem 3.1 should be ÂŸ
4
= ”2

0fl2

256
= 1

256·4002·10,0002 = 1

8,0004 . J
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4 Conclusions

We presented Dinur’s style alphabet reduction [7] for Maxmin 2-CSP Reconfiguration, which
now makes both the degree of inapproximability and alphabet size oblivious to the soundness
error of the PCRP system [14, 17]. The main ingredient of its construction is the reconfigura-

bility of Hadamard codes, which may be of independent interest and have further applications.
We leave some open questions:

(Question 1). Can we prove RIH [23] by Dinur’s style gap amplification [7]? As
discussed in Section 1.4, an approximation-preserving version for degree reduction and
gap amplification of Maxmin 2-CSP Reconfiguration [23, 26] seems mandatory.
(Question 2). Can we derive more meaningful inapproximability factors? Alas, we ac-
knowledge that the current inapproximability factor is so small as to be almost meaningless
in practice.
(Question 3). Given the reconfigurability of Hadamard codes (Lemma 3.2), it is natural
to ask that of other error-correcting codes: One may say that an error-correcting code
enc is (”, µ)-reconfigurable if for any – ”= —, there exists a reconfiguration sequence from
enc(–) to enc(—) such that every function in it is

”-close to either enc(–) or enc(—), and
(” + µ)-far from enc(“) for every “ ”= –,—.

Is there any such reconfigurable error-correcting code? Also, is there any general compo-
sition scheme for PCRPs [14]?
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Abstract
In 1986 Robertson and Seymour proved a generalization of the seminal result of Erd�s and Pósa
on the duality of packing and covering cycles: A graph has the Erd�s-Pósa property for minors if
and only if it is planar. In particular, for every non-planar graph H they gave examples showing
that the Erd�s-Pósa property does not hold for H. Recently, Liu confirmed a conjecture of Thomas
and showed that every graph has the half-integral Erd�s-Pósa property for minors. Liu’s proof is
non-constructive and to this date, with the exception of a small number of examples, no constructive
proof is known.

In this paper, we initiate the delineation of the half-integrality of the Erd�s-Pósa property for
minors. We conjecture that for every graph H, there exists a unique (up to a suitable equivalence
relation on graph parameters) graph parameter EPH such that H has the Erd�s-Pósa property in a
minor-closed graph class G if and only if sup{EPH(G) | G œ G} is finite. We prove this conjecture
for the class H of Kuratowski-connected shallow-vortex minors by showing that, for every non-
planar H œ H, the parameter EPH(G) is precisely the maximum order of a Robertson-Seymour
counterexample to the Erd�s-Pósa property of H which can be found as a minor in G. Our results
are constructive and imply, for the first time, parameterized algorithms that find either a packing, or
a cover, or one of the Robertson-Seymour counterexamples, certifying the existence of a half-integral
packing for the graphs in H.
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1 Introduction

In 1965 Erd�s and Pósa published a paper [9] proving the following min-max duality theorem.

For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint
cycles, or there exists a set S™V (G) with |S| = O(k · log(k)) such that G≠S has no cycles.

This result has since become central in both graph theory and algorithm design [36, 4,
21, 45, 26]. A collection of pairwise vertex-disjoint cycles is called a (cycle) packing, while a
set S as above is commonly referred to as a (cycle) cover or transversal. In a more general
context, one may consider any family M of graphs and define packM(G) to be the largest
size of a packing of members of M in G, while coverM(G) is the minimum size of a set
S ™ V (G) such that G ≠ S contains1 no member of M. Clearly packM(G) Æ coverM(G).
We say that M has the Erd�s-Pósa property (EP-property) in a graph class G if there exists
a function f such that, for every G œ G, it holds that coverM(G) Æ f(packM(G)).

If we now fix some graph H and select MH to be the class of all graphs containing H

as a minor, we enter the realm of the Graph Minors Series of Robertson and Seymour. In
Graph Minors V. [36], as an implication of their min-max duality between the treewidth of a
graph and its largest grid-minor, they prove that
For every graph H, MH has the EP-property in the class of all graphs if and only if H
is planar. (1)

The tools and ideas of Erd�s-Pósa-type dualities have since found many applications and
interpretations [34, 27, 18, 3, 12, 33]. Moreover, the study of Erd�s-Pósa dualities has led to
important advances in structural graph theory. As an example, the proof for the directed
version of Erd�s and Pósa’s result [35], known as Younger’s Conjecture has paved the way
for proving the Directed Grid Theorem [24].

Half-integral Erd�s-Pósa. We call a collection C of subgraphs of G a half-integral packing
of M in G if every graph in C belongs to M and no vertex of G belongs to more than two
of them. We define 1/2-packM(G) to be the maximum size of such a half-integral packing.
Accordingly, M has the 1/2EP-property in a graph class G if there exists a function f such
that, for every G œ G, it holds that coverM(G) Æ f(1/2-packM(G)).

Attempting to generalize Robertson and Seymour’s seminal result on planar graphs,
Robin Thomas conjectured the following relaxation of the EP-property (see [22, 26]).

For every graph H, MH has the 1/2EP-property in the class of all graphs. (2)

The above conjecture was recently proven by Liu [26]. As before, it is apparent from the
definition that 1/2-packM(G) Æ 2·coverM(G). Hence, Liu’s theorem reveals a min-max duality
between half-integral packing and covering in all graphs. Moreover, it is a consequence
of the Graph Minors Theorem [37] that for every graph H and every graph parameter
p œ {packMH

, 1/2-packMH
, coverMH

} one can decide in time fH,p(k)|V (G)|3 if p(G) Ø k (or
p(G) Æ k in the case where p = coverMH

) [10] for some function fH,p.
In light of the above results, it appears that the story of the Erd�s-Pósa property in

the regime of graph minors, from both a structural and an algorithmic perspective, is quite
complete. However, we should stress the following two points.
First: The algorithm from [10] is inherently non-constructive. Indeed, while for packMH

and
coverMH

constructive algorithms are known [40, 39, 23], with the exception of some small
special cases [22], no such results exist for 1/2-packMH

, not even approximation algorithms.

1 At this point we consider containment to be defined through the subgraph relation.
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Second: Let C be a graph class and let p be a graph parameter. We say that p is bounded
in G if there exists c œ N such that, for every G œ G, it holds that p(G) Æ c. The proof of
the “if” direction of (1) was based on the fact that, for every H, MH has the EP-property
in every graph class of bounded treewidth. This leads to the following intermediate question:
For which graph parameters p it holds that MH has the EP-property in every class where p
is bounded? To be specific, if we fix some graph H, is it possible to find a graph parameter
EPH such that MH has the EP-property in some minor-closed2 graph class G if and only if
EPH is bounded in G? Indeed, we conjecture that for every graph H, such a graph parameter
exists and precisely delineates the half-integrality of the Erd�s-Pósa property of MH .

I Conjecture 1. For every graph H, there exists a minor-monotone graph parameter EPH
such that MH has the Erd�s-Pósa property in a minor-closed graph class G if and only if
EPH is bounded in G.

Notice that for any planar graph P, we can simply set EPP to be the constant zero-function
and thus, Conjecture 1 trivially holds for all planar graphs, because of (1). However, for
non-planar graphs, the existence of such a parameter does not follow from any known results.
Even if EPH would exist for some particular non-planar graph H, it would be desirable to
have some constructive, and ideally canonical, characterization of EPH . That is, we aim at a
description of EPH that allows for algorithmic applications.

There are reasons to believe that EPH exists and moreover has some canonical representa-
tion. It has recently been shown in [31], that this assertion is tied to the conjecture that
graphs are Ê

2-well quasi ordered by minors, which is a wide open question in order theory
(see the classic result of Thomas in [44] for the most advanced result on this conjecture).

The contribution of this paper is resolving Conjecture 1 for an infinite family of non-planar
graphs. Moreover, our results are constructive and provide a canonical representation of EPH
yielding parameterized approximation algorithms3 for 1/2-pack

H
for any H in our family.

1.1 The threshold of half-integrality
In Graph Minors V [36], towards proving the “only if” direction of (1), Robertson and
Seymour gave counterexamples of graphs where non-planar graphs cannot have the EP-
property. Let us investigate such an example for the graph K5. One may embed K5 in both
the projective plane and the torus, but it is impossible to have two disjoint drawings of K5

in either of them.
Consider the two graphs in the middle of Figure 1 and notice that the number of cycles

and paths can be scaled. We call the infinite sequences defined by such “scalable graphs”
parametric graphs4. These parametric graphs are the handle grid H and the cross-cap grid
C and represent the torus and the projective plane respectively. None of them contains two
disjoint copies of graphs from MK5 , both have a half-integral packing of �(k) members of
MK5 , and any minimum-size cover of all MK5 has �(k) vertices.

The seminal theorem of Reed [34] on the 1/2EP-property of odd cycles exhibits exactly this
kind of behaviour. Reed showed that odd cycles have the EP-property in every odd-minor5-
closed graph class excluding an Escher-wall, while the Escher-wall itself is a counterexample

2 A graph class is minor-closed if it contains all minors of its graphs.
3 This means that our algorithms run in time f(k) · |V (G)|O(1) for some computable function f where k

is the size of the half-integral packing we are looking for.
4 We postpone the formal definition of parametric graphs to a later point. See Section 2.
5
Odd-minors are a variant of the minor relation that preserves the parity of cycles. For example, bipartite
graphs are exactly the K3-odd-minor-free graphs. We refer the interested reader to [14] for a formal
definition.
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Annulus grid A9 Cross-cap grid C9Handle grid H9 Shallow-vortex grid V9

Figure 1 The parametric graphs representing the annulus grid Ak, the handle grid Hk, the
cross-cap grid Ck, and the shallow-vortex grid Vk.

to the EP-property of odd cycles. Here, the k-Escher-wall is obtained by taking exactly
the bipartite graphs from the parametric graph C, representing the projective plane, and
subdividing each of the “crossing” edges once. The result is a non-bipartite graph where every
odd cycle must use an odd number of these subdivided edges. In the realm of odd-minors,
this establishes a positive instance of Conjecture 1: pick EPK3 as the maximum k for which
G contains the k-Escher-wall as an odd minor.

It is tempting to suspect that Reed’s strategy can apply for the Erd�s-Pósa property
for minors. That is, for K5, the two parametric graphs H and C are essentially the only
counterexamples for the EP-property of MK5 and excluding both of them as minors always
yields a class in which MK5 exhibits the EP-property. Notice that this would imply that the
™-minimal minor-closed classes where the EP-property fails for MK5 are precisely two: the
class of graphs embeddable in the projective plane and the class of graphs embeddable in the
torus. Clearly, both these two classes have bounded Euler genus. Our next step is to observe
that this is not true in general.

Kuratowski-connectivity. We say that a graph G is Kuratowski-connected if for every
separation (A,B) of G of order at most 3, if there is a component C of G[A \ B] and a
component D of G[B \A], such that every vertex in A fl B has a neighbour in V (C) and a
neighbour in V (D), then one of G[A], G[B] can be drawn in a disc � with AflB drawn in the
boundary of �. We denote by K the set of all Kuratowski-connected graphs. This definition
was introduced by Robertson, Seymour, and Thomas as a tool for their characterization of
linklessly embeddable graphs via a finite set of minimal obstructions [38] (see also [46, 30]).

Figure 2 The two first parametric graphs serve as counterexamples for the Erd�s-Pósa property
of the graph J . The third parametric graph is a counterexample for the Erd�s-Pósa property of K8.

All three parametric graphs have unbounded Euler-genus. For the first two this is witnessed by a
large packing of K3,3 while the last one can be observed to contain K3,r as a minor.



C. Paul, E. Protopapas, D.M. Thilikos, and S. Wiederrecht 114:5

Consider the graph J obtained by identifying two adjacent vertices of K3,3 with two
vertices of K5 and observe that J is not Kuratowski-connected. Similar to K5, there cannot
be two disjoint drawings of K3,3 on the torus. So, if we take the parametric graph representing
the torus (Hk) or the projective plane (Ck) from Figure 1 and paste “many” copies of K3,3

around the “outer cycle”, we obtain a parametric graph without two disjoint J-minors but
where no small vertex-set can hit all J-minors (see the two first graphs in Figure 2).

Shallow-vortex minors. There is a second property, that poses a similar issue. In [41]
Thilikos and Wiederrecht introduced the parametric graph V of shallow-vortex grids where
Vk is obtained from the annulus grid Ak by adding k consecutive crossings in its internal
cycle (see the fourth graph in Figure 1 for an illustration of V9). The class V of shallow-vortex
minors was defined in [41] as the class containing all minors of Vk, for all k œ N. Notice that
K8 is a Kuratowski-connected graph. It was shown by Curticapean and Xia [6] that K8

is not a shallow-vortex minor. However, this is the case for K3,r, for every r œ N, which
implies that the parametric graph Vk has unbounded Euler-genus. If we now paste the
k extra crossings of Vk to the “outer cycle” of Ck, we obtain a parametric graph that is
a counterexample for the EP-property of K8 but which is of unbounded Euler-genus (see
the last graph in Figure 2). These observations indicate that, if we want to understand
the graphs for which the counterexamples of Robertson and Seymour precisely define the
boundary to the 1/2EP-property, we have to consider the graphs in K fl V.

Our contribution. The main combinatorial result (stated in Theorem 2 in its full generality)
is that Conjecture 1 holds, for every graph H that is Kuratowski-connected and a shallow
vortex minor. Moreover, for every such non-planar H, EPH(G) is equivalent to the exclusion
of the parametric graphs representing some particular set of surfaces where H embeds.
Therefore, for the non-planar graphs H œ K fl V, the boundary between the Erd�s-Pósa
property and its half-integral relaxation is drawn precisely by a set of surfaces, depending on
H. Notice, that the class K fl V encompasses, apart from planar graphs, several important
graphs such as K5,K3,3,K4,4, K6, K7, and the entire Petersen family. These last observations
imply that our results extend, both algorithmically and combinatorially, to the half-integral
packing of links and knots.

2 Notation and definitions

Let us introduce some notation in order to present our results in full generality. A minor
antichain is a family A of graphs such that no graph G1 œ A is a minor of another graph
G2 œ A \ {G1}. Since we focus on the minor relation, we refer to minor antichains simply
as antichains. Let us denote by K the collection of all antichains A where every member
of A is Kuratowski-connected. Moreover, let us denote by V the collection of all antichains
containing at least one shallow-vortex minor. Finally, let P be the collection of all antichains
containing at least one planar graph and set H := K fl V and H

≠ := H \ P.

The Erd�s-Pósa property for antichains. Let H and G be graphs. A subgraph H
Õ

™ G

is an H-host in G if H is a minor of H Õ
. An H-packing in G is a collection of pairwise

vertex-disjoint H-hosts in G. An H-cover is a set S ™ V (G) such that G≠S is H-minor-free.
A half-integral H-packing is a collection of H-hosts in G such that no vertex of G belongs to
more than two of them.

ICALP 2024
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Given an antichain Z, we say that a subgraph H
Õ
™ G is a Z-host in G if it is an H-host

for some H œ Z. A Z-packing is an H-packing of some H œ Z and a Z-cover is an H-cover
for all H œ Z, finally a half-integral Z-packing is a half-integral H-packing for some H œ Z.

We define the two graph parameters coverZ and packZ as follows.

coverZ(G) := min{k | G has an Z-cover of size k} and

packZ(G) := max{k | G has an Z-packing of size k.

We say that Z has the Erd�s-Pósa property in a graph class G if there exists some function
f : N æ N such that coverZ(G) Æ f(packZ(G)), for all G œ G.

Equivalence of graph parameters. We use Gall for the class of all graphs. Given two graph
parameters p, q : Gall æ N, we say that p and q are equivalent, and write p ≥ q, if there exists
a function f : N æ N such that, for every graph G, p(G) Æ f(q(G)) and q(G) Æ f(p(G)). We
refer to the function f as the gap of this equivalence.

Our result is the identification of a graph parameter EP such that Z has the Erd�s-Pósa
property in a minor-closed graph class G with single-exponential gap if and only if EP is
bounded in G, for every Z œ H.

Surfaces and embeddability. We consider a containment relation ∞ between surfaces where
we write � ∞ �Õ if the surface �Õ can be obtained by adding handles or cross-caps to the
surface �. The empty surface will be denoted by �? and the surface obtained by adding h

handles and c cross-caps to the sphere �(0,0) is denoted by �(h,c)
. Its Euler-genus is defined

to be 2h+ c. Notice that, by Dyck’s Theorem [8], we may assume that c Æ 2 for all surfaces.
Let S be a set of surfaces. We say that S is closed, if � œ S and �Õ

∞ � imply that �Õ
œ S

and that it is proper, if it does not contain all surfaces. If S is closed and proper we define
the “surface obstruction set” sobs(S) as the set of all ∞-minimal surfaces which do not belong
to S. It is easy to observe that sobs(S) always consists of one or two surfaces [43]. Notice
that sobs(ÿ) = {�?

}, sobs({�?
}) = {�(0,0)

}, sobs({�?
,�(0,0)

}) = {�(1,0)
,�(0,1)

}, and, for
a more complicated example, sobs({�?

,�(0,0)
,�(0,1)

,�(0,2)
}) = {�(1,0)

}.

We say that a graph G is embeddable in a surface � (or �-embeddable) if it has a drawing
in � without crossings. The Euler genus of a graph G, denoted by eg(G), is the smallest
Euler genus of a surface where G is embeddable.

Parametric graphs and Dyck-grids. A parametric graph is a sequence G = ÈGiÍiœN of
graphs indexed by non-negative integers. We say that G is minor-monotone if for every
i œ N we have that Gi is a minor of Gi+1. All parametric graphs considered in this paper are
minor-monotone. We write G

(1) . G
(2) for two minor-monotone parametric graphs G(1) and

G
(2) if there exists a function f : N æ N such that for every i œ N it holds that G(1)

i
is a minor

of G(2)

f(i)
. A minor-monotone parametric family is a finite collection of G = {G

(j)
| j œ [r]} of

minor-monotone parametric graphs such that for distinct i, j œ [r] it holds that G(i)
”. G

(j)

and G
(j)

”. G
(i)
. We define the minor-monotone parameter

pG(G) := max{k | there exists i œ [r] such that G contains G(i)

k
as a minor}. (3)
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The three parametric graphs A = ÈAkÍkœN, H = ÈHkÍkœN, and C = ÈCkÍkœN are defined
as follows: The annulus grid Ak is the (4k, k)-cylindrical grid6 depicted in the far left of
Figure 1. The handle grid Hk (resp. cross-cap grid Ck) is obtained by adding in Ak edges
as indicated in the middle left (resp. middle right) part of Figure 1. We refer to the added
edges as transactions of the handle grid Hk or of the cross-cap grid Ck.

Let now h œ N and c œ [0, 2]. We define the parametric graph D
(h,c) = ÈD

(h,c)

k
ÍkœN by tak-

ing one copy of Ak, h copies ofHk, and c œ [0, 2] copies of Ck, then “cut” them along the dotted
red line, as in Figure 1, and join them together in the cyclic order Ak,Hk, . . . ,Hk,Ck, . . . ,Ck,

as indicated in Figure 3.

exceptional cycle

simple cycle

Figure 3 The Dyck-grid D
1,2
8 . The simple and the exceptional cycles are drawn in orange.

We call the graph D
(h,c)

k
the Dyck-grid of order k with h handles and c cross-caps. Given

some surface � = �(h,c)
, we say that the graph D is the (�; d)-Dyck-grid if D = D

(h,c)

d
and

we use D
� to denote the parametric graph ÈD

�

i
ÍiœN, where D

�

i
is the (�; i)-Dyck-grid.

Let us return to our antichain Z œ H
≠
. We denote by SZ the set of surfaces where none

of the graphs in Z can be embedded. Notice that SZ is closed and proper and, for every
� œ sobs(SZ), there exists some H œ Z such that H embeds in �.

3 Our results

We associate with Z the parametric family DZ := {D
�
| � œ sobs(SZ)}. Let EPZ := pDZ

.
Our combinatorial result determines precisely when a member in H

≠ has the Erd�s-Pósa in
some minor-closed graph class.

I Theorem 2. For every Z œ H
≠
, for every minor-closed graph class G, Z has the Erd�s-Pósa

property in G if and only if EPZ is bounded in G.

Let hZ := max{|V (H)| | H œ Z} and “Z := max{eg(H) | H œ Z}. The engine that
drives the proof of Theorem 2 and which represents our first main algorithmic result is the
following.

I Theorem 3. There exists a function f3 : N4
æ N such that, for every antichain Z œ H

≠
,

there exists an algorithm such that, given k, t œ N and a graph G, outputs one of the following:
a D

�
t
-host in G, for some � œ sobs(SZ), or

an Z-packing of size at least k in G, or
an Z-cover of size at most f3(“Z , hZ , t, k) in G.

Moreover, the algorithm runs in time 22
O“Z

(poly(t))+O
hZ

(poly(k))
· |V (G)|3 ·

!
log(|V (G)|)

"2 and
f3(“Z , hZ , t, k) = 2O“Z

(poly(t))+OhZ
(poly(k))

.

By a recent result of Gavoille and Hilaire [13], it holds that there exists some constant
c such that for every Z œ H

≠ and � œ sobs(SZ), there exists some H œ Z such that H

is a minor of D�

c“
4
Z
h
2
Z

. Moreover, as observed in [43], every Dyck-grid of big enough order

6 An (n ◊ m)-cylindrical grid is a Cartesian product of a cycle on n vertices and a path on m vertices.

ICALP 2024



114:8 Delineating Half-Integrality of the Erd�s-Pósa Property

contains a large half-integral packing of itself of smaller order. Combining these two results
with Theorem 3, yields the following (constructive) parameterized approximation algorithm
for 1/2-packZ .

I Theorem 4. There exists a function f4 : N2
æ N such that, for every antichain Z œ H

≠
,

there exists an algorithm such that, given k œ N and a graph G, outputs one of the following:
1. a half-integral Z-packing of size at least k in G, or
2. an Z-cover of size at most f4(hZ , k) in G.
Moreover, the algorithm runs in time7 22

poly
hZ

(k)
· |V (G)|3 ·

!
log(|V (G)|)

"2 and f4(hZ , k) =
2polyhZ

(k)
.

We wish to stress that, given the combinatorial bounds of Theorem 3, we may directly
apply the minor-checking algorithm of [23] for the two first outcomes of Theorem 3 and the
algorithm of [29] for its third outcome. Both these algorithms are quadratic on |V (G)| and
this implies alternative quadratic algorithms to those in Theorem 3 and Theorem 4. However,
this would come with the cost of enormous parametric dependencies on k.

3.1 Some implications of our results
Half-integral Erd�s-Pósa for linked pairs and knots. As mentioned above, H = K fl V

contains several antichains of particular interest. A first example is the Petersen family,
which is exactly the (minor) obstruction set8 for the so-called linklessly embeddable graphs
(in short, link-less graphs). Indeed, the origin of the definition of Kuratowski-connectivity
comes from the paper of Robertson, Seymour, and Thomas [38], where this obstruction set
was found. All obstructions for link-less graphs as well as those for knot-less graphs are
Kuratowski-connected. Moreover, as the shallow-vortex minor K6 (resp. K7) is a member
of the obstruction set of link-less (resp. knot-less) graphs, we also have that both these
obstruction sets belong to H

≠
. This insight allows us to apply Theorem 4 to topological

objects such as links and knots.
Let G be a graph and let C = {C1, . . . , Ck} be a collection of subgraphs of G. The

intersection graph of C is the graph I(C) = (C, EC) where CC
Õ
œ EC if and only if C fl C

Õ is
not the empty graph. We say that C is a collection of double cycles (resp. cycles) if each Ci

is union of two disjoint cycles (resp. a cycle).
Given a collection C of double cycles (resp. cycles) of G, and some R

3-embedding of G,

we say that C is a 1/2-packing of links (resp. knots) if for every i œ [k], the two components
of Ci are linked (resp. the cycle Ci is knotted) in this particular embedding (see [1] for
more on links and knots). The half-integral linked pair (resp. knot) packing number of a
graph G, denoted by 1/2-lppack(G) (resp. 1/2-knpack(G)), is the maximum k such that, for
every R

3-embedding of G, there exists a 1/2-packing of links (resp. knots) in G of size k.

Both 1/2-lppack(G) and 1/2-knpack(G) are minor-monotone parameters, therefore we know
(non-constructively) that there exists an algorithm for checking whether 1/2-lppack(G) Ø k

(1/2-knpack(G) Ø k) in time f(k) · |V (G)|2. Up to now, no constructive (on k) algorithm is
known for these problems. Our results imply the following.

7 Given two functions ‰,Â : N æ N, we write ‰(n) = Ox(Â(n)) in order to denote that there exists a
computable function f : N æ N such that ‰(n) = O(f(x) · Â(n)). We also use ‰(n) = poly

x
(Â(n))

instead of ‰(n) = Ox((Â(n))c), for some c œ N.
8 The obstruction set of some minor-closed class G is the set obs(G) of the minor-minimal graphs that are

not in G.
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I Theorem 5. There exists a function f : N æ N and algorithms that, given a graph G and
a k œ N, outputs either that 1/2-lppack(G) Ø k (resp. 1/2-knpack(G) Ø k) or a vertex set A
of at most f(k) vertices such that G ≠ A has a link-less (knot-less) R

3-embedding. Moreover,
both algorithms run in time 22poly(k)

· |V (G)|3 ·
!
log(|V (G)|)

"2 and f(k) = 2poly(k).

Theorem 5 implies that both the parameter 1/2-lppack as well as the parameter 1/2-knpack
admit FPT-approximation algorithms with exponential approximation gap. Moreover, in
case the output is that 1/2-lppack(G) Ø k (resp. 1/2-knpack(G) Ø k), the algorithms output a
1/2-packing of k graphs certifying that, every R

3-embedding of G contains a 1/2-packing C of
k links (resp. knots) such that I(C) is either edgeless or a clique. We stress that the above
algorithms become constructive (on k) as we know the obstructions of link-less/knot-less
graphs or at least an upper bound to their size. For the later class not such bound is known.

Other implications of our results, related to canonical approximate characterizations of
the parameters we study, are discussed in the conclusion section (Section 4).

3.2 Outline of the proof
We begin the description of the main ideas of our proof with the definition of a tree
decomposition.

Tree decompositions. Let G be a graph. A tree decomposition of a graph G is a pair (T,—)
where T is a tree and — : V (T ) æ 2V (G) is a function, whose images are called the bags of
T , such that

t
tœV (T )

—(t) = V (G), for every e = xy œ E(G), there exists t œ V (T ) with
{x, y} ™ —(t), and for every v œ V (G), the set {t œ V (T ) | v œ —(t)} induces a subtree of T.
We refer to the vertices of T as the nodes of the tree decomposition T . The width of T is the
value maxtœV (T ) |—(t)| ≠ 1. The treewidth of G, denoted by tw(G), is the minimum width
over all tree decompositions of G.

The classic approach. In order to facilitate the presentation of our proof, let us briefly
explain the two main ideas of the proof that planar graphs enjoy the Erd�s-Pósa property in
the set of all graphs. The key ingredient is that every planar graph is a minor of a graph of
su�ciently large treewidth. The proof follows in two steps.

Step 1. Assuming that pack
H
(G) Æ k, based on the grid theorem by Robertson and

Seymour, we may assume that the treewidth of G is bounded by some function of k.

Step 2. With the tree decomposition (T,—) of G at hand, we build an H-cover A of
G by adding to it (if any exists) an adhesion Dxy = —(x) fl —(y) such that both Gx :=
G[—(V (Tx)) \Dxy] and Gy := G[—(V (Ty)) \Dxy] contain H as a minor (here Tx and Ty are
the two components of T ≠ xy) and then recursing on the corresponding tree decompositions
of Gx and Gy. If packH(G) Æ k, eventually this procedure returns an H-cover of size at most
k · (tw(G) + 1).

Throughout the present outline we describe arguments that can be paralleled to the two
steps above. Moreover, in each step we explain the challenges that are met and the way we
deal with them in our proof.

For simplicity, instead of an antichain Z, we consider a non-planar graph H that is
Kuratowski-connected and a shallow-vortex minor. We denote by SH the set of all surfaces
where H cannot be embedded and by S

Õ

H
:= sobs(SH) the corresponding surface obstruction

set. We stress that the graphs in DH = {D
�

| � œ S
Õ

H
} can be seen as “generators of
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half-integrality”. Indeed, it is possible to prove that, for every t œ N, pack
H
(D�

t
) Æ 1,

and coverH(D�
t
) = �(1/2-pack

H
(D�

t
)) = �(t). This already proves the easy direction of

Theorem 2.
Let T = (T,—) be a tree decomposition of a graph G. For each t œ V (T ), we define the

adhesions of t as the sets in {—(t) fl —(d) | d adjacent with t} and the maximum size of them
is called the adhesion of t. The adhesion of T is the maximum adhesion of a node of T . The
torso of T on a node t is the graph, denoted by Gt, obtained by adding edges between every
pair of vertices of —(t) which belongs to a common adhesion of t.

We now consider a graph G where pack
H
(G) Æ k and we assume that G excludes as a

minor the Dyck grid D
�
t
, for every � œ S

Õ

H
. Under these circumstances, our aim is to find an

H-cover whose size is bounded by some function of t and k.

Graphs excluding Dyck grids. As a first step, we need a deeper understanding of how the
graphs excluding D

�
t
look like. In general, the structure of graphs excluding a given graph

as a minor is given by the Graph Minors Structure theorem (in short GMST). However, the
formal definition of GMST involves complicated concepts which we prefer not to introduce
in this brief outline. Instead we give a more compact statement, proved in [43].

Given a graph H and a set A ™ V (G), we say that H is an A-minor of G if there is a
collection S = {Sv | v œ V (H))} of pairwise vertex-disjoint connected9 subsets of V (G), each
containing at least one vertex of A and such that, for every edge xy œ E(H), the set Sx fi Sy

is connected in G. Given an annotated graph (G,A) where G is a graph and A ™ V (G), we
define tw(G,A) as the maximum treewidth of an A-minor of G. A streamlined way to restate
the GMST is the following.

I Proposition 6 ([43]). There exists a function f : N æ N such that every graph G excluding
a graph on k vertices as a minor, has a tree decomposition (T,—) where, for every t œ V (T ),
the torso Gt contains some set At where tw(Gt, At) Æ f(k) and such that Gt ≠ At can be
embedded in a surface of Euler genus at most f(k).

To deal with the exclusion of Dyck grids (corresponding to surfaces), we need a more
refined version of Proposition 6 that works for every (closed and proper) set of surfaces S. In
this direction, Thilikos and Wiederrecht defined in [43] an extension of treewidth, namely
S-tw, where for a graph G,

S-tw(G) is the minimum k for which G has a tree decomposition (T,—) where, for every
t œ V (T ), the torso Gt contains some set At where tw(Gt, At) Æ k and Gt ≠ At is
embeddable in a surface in S.

(4)

The main result of [43] is that in order to exclude the graphs in DH = {D
�
t
| � œ cobs(S)},

we have to fix the surface of Proposition 6 to be one of the surfaces in S.

I Proposition 7. For every closed and proper set of surfaces S, there exists some function
f : N æ N such that, for every graph G, if G excludes all graphs in {D

�
t
| � œ sobs(S)} as

minors, then S-tw(G) Æ f(t).

Notice that the above proposition already gives us the grid theorem when applied for
the set Sÿ containing the empty surface �?

. It is easy to verify that tw + 1 = Sÿ-tw. As
sobs(Sÿ) = {�(0,0)

}, Proposition 7 implies that graphs excluding D
�

(0,0)
t

= At have bounded
treewidth (see Figure 1 for an example of an annulus grid).

9 A set X ™ V (G) is connected in G if the induced subgraph G[X] is a connected graph.
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From small treewidth modulators to small size modulators. Proposition 7 gives valuable
information on the structure of the graphs that exclude the “half-integrality generators” in
DH = {D

�
t
| � œ sobs(SH)}. Therefore, we can assume that S-tw(G) Æ f(k), which provides

a tree decomposition as the one in (4). In order to make progress, we need to further refine
this decomposition as small treewidth modulators are not particularly helpful in finding an
H-cover of small size. For this we exploit the assumption that H is a shallow-vortex minor.

To elaborate, we need some additional information, analogous to the exclusion of a
planar graph in Step 1. This corresponds to the assumption that H is a minor of the
shallow-vortex grid VhÕ for some hÕ depending on H. One can observe that V3(k+1)hÕ contains
a VhÕ-packing of size (k + 1). Therefore, the assumption that H-pack(G) Æ k gives us the
right to additionally assume that G also excludes the shallow-vortex minor V3(k+1)hÕ . Using
this and the fact that S-tw(G) Æ f(k), we are able to further restrict the decomposition of
(4). To quantify this, we introduce a new graph parameter S-twapex defined as follows.

S-twapex(G) is the minimum k for which G has a tree decomposition (T,—) where, for
every t œ V (T ), the torso Gt contains some set At where |At| Æ k and Gt ≠ At is
embeddable in a surface in S.

(5)

Notice that the only di�erence between (4) and (5) is the measure defined on the
“modulator” At. While in (4) it is the treewidth of the annotated graph (Gt, At), in (5)
it is the size of At. The first ingredient of our proof is that, under the absence of some
shallow-vortex minor, the two parameters S-twapex and S-tw are equivalent. This is proved by
combining the results of [43] with the results of [41] on the structure of the graphs excluding
a shallow-vortex grid.

As a consequence, we may now assume that we have a tree decomposition (T,—) as the
one in (5). This decomposition is not yet in position to play the role of the tree decomposition
in Step 2, as its torsos may have unbounded size. To circumvent this issue, we instead prove
a local structure theorem for the exclusion of DH fi {V}, that can be extended to a global
one (the desired tree decomposition), using the results of [42]. The general approach is to
consider some big enough wall Wt and locally focus on a torso Gt that contains most of the
essential part of Wt.

exceptional cycle of length 6(2h+ c) + 8k

simple cycle of length 8k(c+ h+ 1)

Figure 4 The elementary (h, c; k)-Dyck wall, where h = 1, c = 1, and k = 6.

Torsos with Dyck walls. According to Proposition 7, (5), and the equivalence of S-twapex
and S-tw, Gt comes together with a set At such that the graph G

Õ
t
:= Gt ≠At is accompanied

by some �-embedding for a surface � œ SH , where H cannot be embedded. However, we
require some additional infrastructure in Gt that will come in the form of a large wall-like
object that is controlled by our �-embedding.

Notice that every adhesion —(t) fl —(tÕ) of t defines a separation (XtÕ , YtÕ) of G ≠ At of
order at most 3 where G[XtÕ fl YtÕ ] is drawn in � as a clique. We fix the orientation (XtÕ , YtÕ)
such that V (Gt) ™ YtÕ , thereby indicating that YtÕ is the “important” part of the separation.

ICALP 2024



114:12 Delineating Half-Integrality of the Erd�s-Pósa Property

Due to the results in [43], Gt contains a (�; d)-Dyck wall10 Dt, which is highly linked to the
wall Wt above. Here d is chosen “large enough” so as to ensure the applicability of the next
steps of our proof. Also, we may assume that the “essential” part of Dt is drawn “inside” Gt

in the sense that, for each (XtÕ , YtÕ), at most one branch vertex of Dt is in YtÕ \XtÕ . The wall
Wt is chosen large enough to represent some tangle, that is an orientation of the separations
of G of some suitably bounded order. The way to algorithmically detect such a big wall Wt

is given in [43].

The role of Kuratowki-connectivity. We next make some observations on how “models” of
H can behave with respect to the �-embedding of Gt. These observations will play a key
role in understanding how to “attack” and later “kill” copies of H in our graph.

The first comes from the non-�-embeddability property of H: “minimal” H-hosts in G,

called H-inflated copies, cannot be entirely inside Gt, otherwise we would be able to embed
H in a surface where it cannot be embedded. Another important feature comes from the fact
that H is Kuratowski-connected: every H-inflated copy M in G is “well oriented” with respect
to the adhesions of t in the sense that, when M traverses some adhesion XtÕ flYtÕ = —(t)fl—(tÕ)
of G, exactly one of the two parts of M induced by XtÕ and YtÕ should not be embeddable in
the disk bounding —(t) fl —(tÕ) with the vertices of —(t) fl —(tÕ) on its boundary. This implies
that the “non-disk-embeddable” part will always lie inside the set XtÕ of the separation
(XtÕ , YtÕ) above. Given now some adhesion —(t) fl —(tÕ), we say that it is H-red if it is
intersected by the (unique, due to Kuratowski-connectivity) non-disk-embeddable part of
some H-inflated copy M in G. That way, it is convenient to visualize H-red adhesions as the
“entrances” from which the H-inflated copies of G “invade” Gt.

Updating the �-embedding. From our previous observations it follows that to eliminate
all copies of H locally in Gt it su�ces to deal with all H-inflated copies that invade Gt

through H-red adhesions. Therefore, our next objective is to update At, G
Õ
t
= Gt ≠ At, and

the �-embedding of GÕ
t
in a way that the remaining part of GÕ

t
will not contain any H-red

adhesions, i.e., in a way that no invading H-inflated copy survives.
During our proof, this updating procedure will focus on some closed disk � containing

some collection of H-red adhesions (these disks will be gathered together in what we call
H-red railed flat vortices) and detect some separation (X,Y ) of G where X \ Y contains
the vertices of the Dyck wall Dt and Y contains all H-red adhesions in �. We call such a
separation a carving separation. Each time we find such a separation, we move X fl Y to
A and also move Y \X “outside” Gt. As the set X fl Y adds up to the size of A we also
need that X fl Y has “small” order. We refer to this operation as taking a carving of our
�-embedding at the carving separation (X,Y ). When the whole procedure terminates, none
of the adhesions of the updated G

Õ
t
is H-red. This implies that (V (Gt), At) is what we call

an H-dominion of G, that is: if the non-disk-embeddable part of some H-inflated copy in G

intersects V (Gt) then it also intersects At.
To achieve the previously described objective we adopt the following strategy. Recall

that in the �-embedding of Gt, H-red adhesions are cliques of size at most three that may
be drawn all around �. Our first step is to show that H-red adhesions can be cornered
in the “interior” of less than k pairwise-disjoint territories of �, each maintaining a large
enough “bu�er” around a disk where the H-red adhesions reside. Afterwards we refine these
territories in order to bound their complexity in the sense that there is no large flow in Gt

10Here a (�; d)-Dyck wall is certifying the existence of the Dyck grid D
�
d

as a minor. See Figure 4.
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that crosses through these territories. Through this refinement step we obtain some some
additional structural information so that in the last part of the proof, these territories along
with their infrastructure will allow us to finally eliminate all H-inflated copies by removing a
bounded number of vertices from their interiors.

Redrawing H-inflated copies inside a railed flat vortex. To formalize the aforementioned
territories that will encapsulate the H-red adhesion of our embedding, we utilize the concept
of a railed nest (C,P) of G around some closed disk �int of �. Here C = ÈC1, . . . , C¸Í is a
sequence of ¸ disjoint cycles of Gt, where each Ci bounds some closed disk �i in �, where
�int

™ �1 ( · · · ( �¸, along with a set of paths P = ÈP1, . . . , P¸Í, drawn in �ext := �¸, not
traversing the interior of �int

, joining vertices of C1 with vertices of C¸, and traversing the
cycles in C orthogonally, that is Pi fl Cj is connected for every (i, j) œ [¸]2. We refer to such
a railed nest, as a railed flat vortex and we refer to the disk �int (resp. �ext) as its internal
(resp. external disk). Moreover, if all H-red adhesions drawn in �ext are also drawn inside
�int

, then we call it an H-red railed flat vortex. An important ingredient of our proof is to
show that we may use the infrastructure of the cycles and the paths in (C,P) in order to
redraw inside �ext every H-inflated copy M that invades Gt via an H-red adhesion of �ext

.

Even if the part of M that is embedded inside �ext is not necessarily a disk embedding, we
can make this redrawing possible by using disk embedability properties emerging from the
Kuratowski-connectivity of H and the “linkage combing” lemma from [17, 16, 15]. We refer
to this as the redrawing lemma.

Gathering H-adhesions in railed flat vortices. The next step of our strategy, is to corner
all H-red adhesions in the interior of less than k H-red railed flat vortices. Towards this, we
take advantage of the infrastructure provided by the (�; d)-Dyck wall Dt. A brick of Dt is
called H-red if it “contains” an H-red adhesion. More precisely, this is formalized by the
notion of the influence of a brick which roughly corresponds to a set of H-red adhesions that
are intersected or contained by a closed disk in � that bounds the “area” that is enclosed
by the corresponding brick. This assigns each H-red adhesion to the influence of at most
three neighbouring H-red bricks and defines a notion of distance between H-red adhesions
expressed by the distance of the corresponding H-red bricks in Dt. Next, we prove that
under this distance notion, no scattered enough set of H-red bricks of size k can exist.
For this, we use the fact that each H-red brick B implies the existence of an H-inflated
copy in G that, due to the aforementioned “redrawing lemma”, can be redrawn in a small
radius around B. This radius is bounded but also big enough so as to permit the redrawing.
Likewise, we prove that there are few H-red bricks away from the exceptional and the simple
cycle of Dt (see Figure 4 for a visualization of these two cycles). Next we use a greedy
procedure in order to group together this bounded number of bricks and maintain enough
railed nest infrastructure around them to cluster them into less than k railed flat vortices.
The construction is completed by creating two more railed flat vortices, one for the simple
cycle of Dt and one for the exceptional one.

Refining H-red railed flat vortices. We are now in the position where we have defined
a set of less than k many H-red railed flat vortices whose internal disks contain all H-red
adhesions and whose external disks are pairwise disjoint. The next step is to further refine
these flat vortices.

In our proof, we treat what is drawn in the external disk �ext as a vortex in the classic
sense and our goal is to bound their depth, that is to ensure that no large transaction
goes through the society defined by each railed flat vortex. Each of them consists of a

ICALP 2024



114:14 Delineating Half-Integrality of the Erd�s-Pósa Property

subgraph G�ext of G (the one that is drawn in �ext) where the vertices in the boundary
of the external disk �ext are arranged in some cyclic ordering ��ext . A segment of ��ext

is a set S ™ V (��ext) such that there do not exist s1, s2 œ S and t1, t2 œ V (��ext) \ S such
that s1, t1, s2, t2 occur in �� in the order listed. A transaction in (G�ext ,��ext) is a set of
pairwise disjoint paths, drawn in �, between two disjoint segments A,B of ��ext . The depth
of (G�ext ,��ext) is the maximum size of a transaction in (G�ext ,��ext). Our next objective
is to refine each of our H-red railed flat vortices so that, in the end, some disk �Õ

™ �ext

defines a vortex (G�Õ ,��Õ) of bounded depth and, moreover, the vertices in the boundary of
�Õ are all connected with disjoint paths to the boundary of the external disk �ext

. We do
this as follows: If there is no transaction in (G�ext ,��ext) where a big part of its paths also
traverse �int

, we make use of the “nest tightening”-lemma from [41] in order to either update
the nest to a “tighter” one (which allows us to recurse), or find the disk �Õ claimed above, or
find a small-order carving separation (X,Y ) (again defined by some closed disk) at which we
may take a carving of our �-embedding. If there is a transaction in (G�ext ,��ext) where a
big enough part of its paths also traverse �int

, then we use this transaction in order to split
the vortex into two vortices and recurse. This split is performed using the path infrastructure
o�ered by the transaction, along with the cycles of the railed nest and may result in either a
“tighter” H-red railed flat vortex around �int or in two H-red railed flat vortices. In both
cases, this allows us to recurse. As we know by the redrawing lemma, that k such H-red
railed flat vortices may give an H-packing, this procedure will end and will produce less than
k H-red railed flat vortices, each with some closed disk �Õ defining a bounded depth vortex,
as above.

Killing H-red flat vortices. In the next and final step we exploit all the additional structure
we obtained via the refinement step and “attack” each of the obtained H-red railed flat
vortices separately. For each of them we “kill” all H-red adhesions residing in its internal
disk �int

™ �Õ by identifying a bounded set of vertices drawn within �int.
Towards this, recall that the refinement step ensures that the vortex (G�Õ ,��Õ) has

bounded depth. Using a known result of [19], we construct a bounded width linear decomposi-
tion of G�Õ , that is a path decomposition ÈX1, X2, . . . ,XnÍ where every bag Xi contains some
vertex xi of the boundary of �Õ in a way that these x1, . . . , xn are the vertices of V (��Õ),
appearing in the same order as they appear in ��Õ . We next partition ÈX1, X2, . . . ,XnÍ into r

segments {ÈXpi≠1 , . . . ,Xpi≠1, Xpi
Í, i œ [r]} each “minimally capable” to host some H-red ad-

hesion from which an H-inflated copy invades Gt. Likewise, we find equally many H-inflated
copies in G where the parts drawn inside �Õ are disjoint. Then we bound the number of
these segments by proving that they may be extended to an H-packing of size r, inside �ext

.

For this, we use the full power of the redrawing lemma along with the infrastructure o�ered
by the railed nest. As long as there are less than k segments in {ÈXpi≠1 , . . . ,Xpi

Í, i œ [r]}
we define a carving separation (X,Y ) of G where Y contains the union of all Xpi≠1 fi Xpi

,

i œ [r] and X fl Y contains the union of all (Xpi≠1 flXpi
)fi (Xpi

flXpi+1), i œ [r]. As the size
of X fl Y depends on k and the width of the decomposition (that is bounded), we have that
(X,Y ) has bounded order. Therefore, we may take a carving of our �-embedding at the
carving separation (X,Y ). When this is done for all H-red flat vortices, we know that what
remains from G

Õ
t
has a �-embedding that has no H-red adhesions.

From local to global. Recall that all above steps were applied to an initial torso Gt and, in
particular, to the corresponding �-embedding of GÕ

t
= Gt ≠At. In the end, what we obtained

is a new G
Õ
t
and At and a �-embedding of GÕ

t
with no H-red adhesions. The elimination
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of H-red adhesions was done by taking successive carvings of the �-embedding of GÕ
t
at a

bounded number of carving separations (X,Y ), each of bounded order. This came at some
cost: By taking these carvings, we added all XflY ’s to At and, moreover, removed all Y \X’s
from G

Õ. As we already mentioned above, the resulting pair (V (Gt), At) is an H-dominion of
G, which means that if the non-disk-embeddable part of some H-inflated copy in G intersects
V (Gt), then it also intersects At. At this point we should forget the initial tree decomposition
and just keep in mind that we started with a wall Wt of some torso Gt and we finally
computed an H-dominion (Xt, At) of G where Xt still maintains a big part of the Dyck grid
Dt that is the “essential” part of Wt. This constitutes the proof of a “local structure theorem”
that, apart from excluding the Dyck graphs in {D

�
t
| � œ sobs(SH)}, assumes that G has no

H-packing of size k, and, given a big enough wall W, returns an H-dominion (X,A) of G
where the “essential part” of W is intact in X. What we need now is to bring this result to
the form of a global structure theorem, that is a new tree decomposition (T,—) where each
node t is accompanied by a set –(t) ™ —(t) where (—(t),–(t)) is an H-dominion of G. This
decomposition may serve as the analogue of the tree decomposition in Step 2. For this we
use an appropriate application of a recent result in [5].

From connected to disconnected. Given the decomposition (T,—) from above, we may now
delete adhesions, as it was performed in Step 2. After this, we obtain an Z-dominion (X,A)
of G such that G ≠ X is H-minor-free and |A| is bounded. With some more preprocessing,
this decomposition may be used to obtain a separation (X,Y ) of G of bounded order where
(X,X fl Y ) is an Z-dominion and G[Y \X] is H-minor-free. Notice that at this point, if
H is connected, then we are done. To deal with the case where H is not connected, we set
up a recursive algorithm which uses the connected case as the base case and each time it
is called, it is called for the union of a smaller number of connected components of H. The
final outcome is an H-cover of G whose size depends single-exponentially on the size of the
excluded Dyck grids from DH and the size of the maximum H-packing in G.

4 Conclusion and open problems

Obstructions of graph classes. The (minor)-obstruction set of a graph class G, denoted
by obs(G), consists of the minor-minimal elements of Gall \ G. Clearly obs(G) is an antichain.
Moreover, it is finite by Robertson’s & Seymour’s theorem. Obstruction sets permit the
following equivalent statement of Theorem 2.

I Theorem 8. Let Z be an antichain in H
≠ and let G be a minor-closed graph class. Z has

the Erd�s-Pósa property in G if and only if, for every surface � œ sobs(SZ), there exists an
obstruction in obs(G) which is �-embeddable.

Universal obstructions. Let p : Gall æ N be a minor-monotone graph parameter. We say
that a set H of minor-monotone parametric graphs is a (minor-)universal obstruction for p if
p ≥ pH (recall (3) for the definition of pH). Universal obstruction may serve as canonical
representations of graph parameters. (For more on the foundation of universal obstructions
of parameters, see [31, 32].) From this point of view, Theorem 2 can be restated follows:

I Theorem 9. For every Z œ H
≠
, the set of parametric graphs DZ = {D

�
| � œ sobs(SZ)}fi

{Èk ·HÍkœN | H œ Z} is a universal obstruction for both coverZ and 1/2-packZ .

Given some Z œ H, for every k œ N, we define C
Z

k
= {G | coverZ(G) Æ k}. Theorem 9

(or the equivalent Theorem 8) gives us some valuable information about the obstructions in
obs(CZ

k
), for every k.

ICALP 2024
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Certainly, the simplest antichain in H
≠ is the one consisting of the two Kuratowski

graphs K = {K5,K3,3}. The parameter coverK is the planarizer number that is the minimum
number of vertices whose removal can make a graph planar. The obstruction obs(CK

k
) is

unknown for every positive value of k and its size is expected to grow rapidly as a function
of k (see [7] for an exponential lower bound and [40] for a triply exponential upper bound).
The identification of obs(CK

k
) is a non-trivial problem even for small values of k. In particular,

it has been studied extensively for the case where k = 1 in [25, 28, 47]. In this direction,
Mattman and Pierce conjectured that obs(CK

k
) contains the Y �Y -families of Kn+5 and

K32,2n and provided evidence towards this in [11]. Recently, Jobson and Kézdy identified all
graphs in obs(CK

1
) of connectivity two in [20], where they also reported that |obs(CK

1
)| Ø 401.

It is easy to see that {(k + 1) · K5, (k + 1) · K3,3} ™ obs(CK

k
), for every k œ N. Our

results, together with the fact that sobs(SK) = {�(1,0)
,�(0,1)

}, provide the following extra
information about obs(CK

k
): for every k œ N, it contains some graph, say G

t
k
, embeddable in

the torus and some graph, say G
p
k
, embeddable in the projective plane. Most importantly,

our results indicate, that the four-member subset {(k + 1) · K5, (k + 1) · K3,3, G
t
k
, G

p
k
} of

obs(CK

k
) is su�cient to determine the approximate behaviour of the planarizer number.

Similar implications can be derived for every Z œ H
≠
. For instance, if P is the Petersen

family, we again have that sobs(SP) = {�(1,0)
,�(0,1)

}. Therefore the parameter defined as
the minimum number of vertices to remove so as to make a graph linkless, is approximately
characterized by picking only nine graphs of obs(CP

k
), for every k œ N.

Other examples of surface obstructions corresponding to graphs that are known to be
both Kuratowski-connected and shallow-vortex minors are sobs(S{K5}) = sobs(S{K6}) =
sobs(S{M2n}) = {�(1,0)

,�(0,1)
}, where M2n is the 2n-Möbius ladder,11 for n œ NØ3. Two

other examples are sobs(S{K4,4}) = {�(1,0)
,�(0,2)

} and sobs(S{K7}) = {�(1,0)
}.

Another implication of our results is the following.

I Theorem 10. For every closed and proper set of surfaces S, the set of parametric graphs
VZ = {D

�
| � œ sobs(S)} fi {ÈVkÍkœN} is a universal obstruction for S-twapex.

The theorem above is a direct consequence of the second step in our proof outline, that
is the step “From small treewidth modulators to small size modulators”, where we obtain a
local structure theorem for graphs excluding the parametric graphs in VZ , i.e., graphs where
pVZ

is bounded. The parameter S-twapex (defined in (5)) corresponds to the global version
of this theorem. In particular, the equivalence between S-twapex and pVZ

follows directly
by [42, Theorem 5.18] or, alternatively, by applying [5, Theorem 6.17]. Notice that S-twapex
can be seen as a parametric extension of graph embeddability and that the exclusion of
shallow-vortex minors is pivotal for its definition. The potential algorithmic applications of
S-twapex are open to investigate.

Notice that for both the equivalences in Theorem 9 and in Theorem 10 we have a single
exponential gap which, in turn, determines the gap of our FPT-approximations. Is it possible
to reduce this to a polynomial one? Certainly, this requires a polynomial dependency on k

and t in Theorem 3. There are two sources of exponentiality in the proof of Theorem 3. The
first is in the exclusion of the Dyck grid D

�
Õ

t
, for �Õ

œ sobs(S) that comes from [43], where
we have an exponential dependency on t. This dependency already emerges from the bounds
in [19]. On the other hand the exponential dependency on k emerges from the redrawing
lemma, where the exponential bound comes from the dependencies of the planar linkage

11The Möbius ladder M2n is formed if we consider a cycle on 2n vertices and then connect by edges the n

anti-diametrical pairs of vertices. Notice that M6 = K3,3. M8 is called the Wagner Graph.
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theorem in [2]. Avoiding these two sources of exponentiality appears to be a hard task. An
alternative approach is to try instead to “enlarge” the size of the universal obstructions to
obtain a polynomial parametric graph. This would also be desirable for the purposes of
better FPT-approximation algorithms.

Going further than K fl V. The central question proposed by this work is to chart the
threshold of half-integrality when covering and packing graphs as minors. In this paper
we resolved this question for every antichain in K fl V. The wide open question is whether
and how this can be done for more general families of antichains. For this, one needs to
prove structure theorems on the exclusion of parameterized graphs of unbounded genus, as
those in Figure 2. The challenges that have to be met for this, when going beyond K, are
di�erent from those encountered when going beyond V. We believe that the proof strategy of
our paper can serve as a starting point for both directions towards the general case. The
resolution of the general case is highly non-trivial and requires new tools and ideas.

We conclude with a conjecture. Our guess is that when we insist on universal obstructions
of bounded genus, then we cannot go much further than the horizon of K fl V. Let B be
the set of all antichains consisting of graphs where each of them can be embedded in both
the torus and the projective plane. As an example, observe that {K3,4} œ B \ K, while
{K3,5} ”œ B. We conjecture the following.

I Conjecture 11. Let Z be an antichain and let EPZ : Gall æ N be a graph parameter such
that Z has the Erd�s-Pósa property in a minor-closed graph class G if and only if EPZ is
bounded in G. Then Z œ (K fl V) fi B if and only there exists some gZ such that all universal
obstructions of EPZ consist of parametric graphs of Euler genus Æ gZ .
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Abstract
We consider the problem of query-e�cient global max-cut on a weighted undirected graph in the value
oracle model examined by [31]. Graph algorithms in this cut query model and other query models
have recently been studied for various other problems such as min-cut, connectivity, bipartiteness,
and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case
of submodular function maximization: on query S ™ V , the oracle returns the total weight of the
cut between S and V \S.

Our first main technical result is a lower bound stating that a deterministic algorithm achieving
a c-approximation for any c > 1/2 requires �(n) queries. This uses an extension of the cut
dimension to rule out approximation (prior work of [20] introducing the cut dimension only rules
out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds
a c-approximation for any c < 1. We achieve this using a query-e�cient sparsifier for undirected
weighted graphs (prior work of [31] holds only for unweighted graphs).

To complement these results, for most constants c œ (0, 1], we nail down the query complexity of
achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic
factors). Analogously to general submodular function maximization in the same model, we observe
a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut
in O(logn) queries for any c < 1/2, and show that any randomized algorithm requires �(n/ logn)
queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic
algorithm requires �(n2) queries to find an exact max-cut (enough to learn the entire graph).
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oracle that knows the graph, and aims to make as few queries as possible. Di�erent models
restrict the algorithm to make di�erent types of queries e.g. individual edge queries, linear
measurements [1, 5], matrix-vector products [32], etc.

One model that has attracted particular attention is the cut query model [21, 15, 31,
20, 30, 28, 4, 14]. In this model, the algorithm has query access to the cut function of a
graph G with vertex set [n]: it provides subsets S ™ [n] as queries and the oracle returns the
total weight of all edges of G with exactly one endpoint in S. An additional reason for the
wide interest in this model is that the graph’s cut function is in particular a submodular
function; [20] and [28] obtained new lower bounds for the query complexity of submodular
function minimization by considering the special case of graph min-cut in the cut query
model.

A range of graph problems has been studied in the cut query model and related models.
Perhaps the most fundamental is that of learning the entire graph [21, 16, 9, 15, 10]; once
the entire graph is known to the algorithm, it has all the standard graph algorithm literature
at its disposal to solve the problem of interest. A more subtle question is whether the given
problem can be solved with fewer queries than one would need to learn the graph. This was
first answered a�rmatively for the case of min-cut [31, 30, 4]: an undirected, unweighted
graph requires �(n2/ logn) queries to learn [21] but O(n) queries su�ce to find its min-cut.
Since then, novel algorithms have been developed in the cut query model and related models
for problems such as connectivity [1, 32, 5, 4, 14], testing bipartiteness [1], and triangle
detection [32].

In this work, we initiate the study of max-cut in the cut-query model. We aim to
understand how many queries are necessary and su�cient for an algorithm to find a c-
approximate global max-cut in an undirected, weighted graph.

1.1 Our Results
Our two main results are stated below. Both are concerned with the setting where c œ (1/2, 1)
i.e. one wants to do better than a straightforward greedy algorithm or guessing a random cut,
but does not want an exact max-cut. The first result is a lower bound against deterministic
algorithms, and the second result is a randomized algorithm.

I Theorem 1 (See Corollary 7 for a precise statement). For c > 1/2, any deterministic
algorithm achieving a c-approximation requires �(n) queries.

I Theorem 2 (See Corollary 29 for a precise statement). For c < 1, there exists a randomized
algorithm with query complexity Õ(n) that achieves a c-approximation.

These results naturally beg the question of how the query complexity behaves for other
ranges of c, for both deterministic and randomized algorithms. We also answer this question
in most cases. The content of all of our results is summarized in the following three theorems,
and also tabulated in Figure 1. Soon after, we provide context for these results.

I Theorem 3 (See Theorems A.1 and B.1 in the full version for precise statements). For c = 1,
the query complexity for a deterministic algorithm to achieve a c-approximation is �(n2) and
the query complexity for a randomized algorithm to do the same is between �̃(n) and O(n2).

I Theorem 4 (See Corollary 29, Corollary 7, and Theorem B.1 in the full version for precise
statements). For c œ (1/2, 1), the query complexity for a deterministic algorithm to achieve
a c-approximation is between �(n) and O(n2) and the query complexity for a randomized
algorithm to do the same is �̃(n).
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c Deterministic Randomized

1 �(n2) (�̃(n), O(n2))
(1/2, 1) (�(n), O(n2)) �̃(n)
(0, 1/2) �(logn) �(1)

Figure 1 Summary of our results. For each range of c, we state the query complexity (up
to constant and logarithmic factors) that we show for achieving a c-approximation in both the
deterministic and randomized settings. (n, n2) indicates settings where we have a lower bound of
�̃(n) and an upper bound of O(n2).

I Theorem 5 (See Corollary E.2, Theorem E.4, and Corollary C.3 in the full version for precise
statements). For c œ (0, 1/2), the query complexity for a deterministic algorithm to achieve a
c-approximation is �(logn) and the query complexity for a randomized algorithm to do the
same is �(1).

We now provide context for each of our results, beginning with Theorem 1. Observe
that there is a straightforward non-adaptive O(n2)-query deterministic algorithm to find the
max-cut exactly (observed in [31], as it applies to the min-cut as well). The algorithm can
query all singletons and sets of size 2 and from this learn wi,j = 1

2
(F ({i})+F ({j})≠F ({i, j}))

for all i, j and thus the entire graph. The algorithm can then find the max cut exactly using
brute force, since no more queries need to be made. This addresses all of the O(n2) upper
bounds stated in the theorems. Theorem 3 shows that this trivial algorithm is optimal among
deterministic algorithms: up to constant factors, any deterministic algorithm must learn the
entire graph in order to find the global max-cut with cut queries.

Next, observe that there is a phase transition at c = 1/2. Theorem 5 establishes that
a (1/2 ≠ Á)-approximation can be achieved deterministically with O(logn) queries (which
happen to also be necessary). On the other hand, even a randomized algorithm needs �̃(n)
queries to guarantee a (1/2 + Á)-approximation.

Finally, observe that we resolve the asymptotic query complexity for most cases. For
randomized algorithms, the only unresolved cases are c = 1/2 and c = 1.1 For deterministic
algorithms, the range [1/2, 1) remains unresolved.

Before continuing, we note several facts about our results. In the positive direction, we
note that all of our algorithms find a set S that is a c-approximation to the global max-cut
(for undirected, weighted graphs with arbitrarily large weights), rather than simply estimating
the value of the max-cut within a factor of c. We refer to these two settings as the cut finding
and value estimation settings respectively. On the other hand, most of our lower bounds
hold even against algorithms in the value estimation setting. The only exception is our �̃(n)
lower bound on randomized algorithms for c > 1/2, which we only prove in the cut finding
setting. Similarly, all algorithms we discuss, except for our Õ(n)-query randomized algorithm
for c œ (1/2, 1) and the well-known O(n)-query deterministic greedy algorithm for c = 1/2,
are non-adaptive. On the other hand, all of our lower bounds hold even against adaptive
algorithms.

It may appear at first glance that Theorem 1 is subsumed by the randomized lower
bound in Theorem 4. Both results are lower bounds for c > 1/2: the former states that
a deterministic algorithm in this setting requires �(n) queries, while the latter says that

1 For the c = 1/2 case, simply outputting a random cut will achieve a (1/2)-approximation in expectation
in O(1) queries. But we are concerned with the algorithm’s ability to achieve a c-approximation with
some probability p > 0. In this setting, there exists a deterministic O(n)-query algorithm (see Section
E.3 of the full version) but we do not have a matching lower bound.
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a randomized algorithm requires �̃(n) queries. However, the deterministic lower bound is
interesting on its own for two reasons. The first reason is that the randomized lower bound
is only �(n/ logn), which is weaker than the �(n) we are able to prove in the deterministic
case. Secondly, and more critically, the deterministic lower bound holds even for the value
estimation setting while the randomized lower bound is only for the cut finding setting. Our
argument for the randomized lower bound does not appear adaptable to the value estimation
setting; indeed, the hard distribution used in our proof is actually very easy in the value
estimation setting.2

In the negative direction, we note here that most of our algorithms have exponential time
complexity even though they are query-e�cient. For example, the O(n2)-query algorithm we
just described learns the graph in polynomial time, but then uses exponential brute force
search to actually find its max-cut. This illustrates that, by focusing on query complexity, we
are primarily concerned with the information theoretic question of how much the algorithm
must learn about the graph to be able to estimate its max-cut, even with unlimited computa-
tion. Note that the most query-e�cient algorithms for submodular function minimization are
exponential time as well [24], so this is not uncommon when prioritizing query complexity.

1.2 Technical Highlights
Our results follow from a wide array of techniques. Some results (e.g. our �̃(n) lower
bound on randomized algorithms for c-approximate max-cut and c > 1/2) follow from direct
constructions of hard distributions – we defer further discussion of these constructions to
the corresponding technical sections and appendices. Some of our results follow from novel
techniques that are likely of independent interest for subsequent work – we quickly highlight
these below.3

The key ingredient in our �(n2)-lower bound for exact max-cut is the cut dimension
introduced by [20] for min-cuts (which has also been studied in follow-up work [28]). The
lower bound follows immediately after establishing that the complete graph on n vertices has
max-cut dimension �(n2). More interestingly, we extend the concept of the cut-dimension to
what is roughly a notion of “c-approximate cut-dimension” using strong LP duality. We show
that this technique provides a lower bound on the number of queries needed by a deterministic
algorithm to find a c-approximate max-cut for c > 1/2, and that for the complete graph on
n vertices this gives a bound of �(n). This approach should also be of independent interest,
given recent interest in the exact cut dimension. Completing this analysis also requires a
technical lemma (Lemma 13) stating a simple geometric property of the Boolean hypercube,
which may additionally be of independent interest.

Our Õ(n)-query randomized c-approximation for c œ (1/2, 1) follows from a query-e�cient
sparsifier for global cuts in undirected, weighted graphs (once we have learned a sparsifier for
the graph, we can just exhaust to find its max-cut, which is a (1 ≠ Á)-approximation). A
query-e�cient sparsifier for unweighted graphs appears in [31], based on ideas by [7]. We
first give a natural extension of their sparsifier that accommodates graphs with weights in
[1,poly(n)]. We then go a step further and provide a novel query-e�cient sparsifier for all

2 In more detail, the hard distribution is a random complete bipartite graph with edge weights 1. For this
distribution in the value estimation setting, an algorithm could just immediately output n2

/4 without
making any queries at all.

3 Additionally, some of our results are reasonably straightforward (e.g. our O(logn) deterministic algorithm
for c-approximate max-cut when c < 1/2) – we include discussion of these results in Appendices B, C,
and E of the full version for completeness.
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weighted graphs, using other ideas from [7] relating edge strengths to maximum spanning
trees. For completeness, we show in Appendix D of the full version that in fact a slight
modification of the [31] sparsifier also su�ces for approximate max-cut for all weighted
graphs (however, this modification may not produce a sparsifier). Our stronger sparsifier is
hence not “necessary” to resolve approximate max-cut, but is of independent interest as not
all weighted graph problems can be reduced to one with weights in [1,poly(n)] (e.g. exact
min-cut). In fact, our stronger sparsifier is already used in recent work [30].4

1.3 Related Work
Learning graphs in the cut-query model. The first natural question when an algorithm has
restricted query access to a graph is how many queries it needs to learn the entire graph. For
the case of cut queries, this was first studied by [21], who show that the query complexity of
deterministically learning an unweighted graph is �(n2/ logn), and that this can be attained
non-adaptively. A later line of work [16, 9, 15, 10] answered this question for weighted graphs
while also being sensitive to the number m of edges in the graph with nonzero weight, finding
that the query complexity in this case is �(m logn/ logm).

Min-cut in the cut-query model. A very active line of work is that of understanding what
properties an algorithm can learn about a graph that it only has query access to, without
using up enough queries to learn the entire graph. The particular case of most relevance to
this work is that of min-cut in the cut-query model. The first progress on this problem was
the algorithm by [31] for unweighted graphs using Õ(n) queries. This was later improved to
O(n) queries by [4]. For weighted graphs, an algorithm using Õ(n) cut queries was presented
by [30] (as previously noted, their result leverages a query-e�cient sparsifier for weighted
graphs, which our paper is the first to provide).

On the lower bound side, [20] show using a linear algebraic argument that �(n) queries are
necessary for weighted graphs (the constant-factors have since been improved by [28]), thus
resolving the query complexity of exact min-cut in weighted graphs up to logarithmic factors.
As mentioned earlier, our deterministic lower bounds arise from adapting and extending the
concept of the cut dimension to approximation.

The cut dimension was introduced by [20], and further studied in [28]. [28] further nail
down that undirected graphs have a min-cut dimension of no more than 2n ≠ 3 (and there
exist graphs realizing this bound). They also introduce the ¸1-approximate cut dimension.
The ¸1-approximate cut dimension is motivated by a similar thought experiment as our
“c-approximate cut dimension” technique – both consider an adversary changing the original
graph in a way that respects all queries made, and both consider the magnitude of the changes
made to the max/min-cut (rather than just whether or not the cut is changed). However,
their ¸1-approximate cut dimension does not imply lower bounds on the query complexity
of finding approximately-optimal cuts. Finally, they further consider “the dimension of
approximate min-cuts”, and prove a linear upper bound on this. This concept does not
have any relation to our approximate cut dimension technique (and in particular, only our
technique implies lower bounds on the deterministic query complexity). In summary, the cut
dimension is an active concept of study in related work, but our work is the first to use this
concept to lower bound the query complexity of approximately-optimal cuts.

4 [30, Theorem 5.2] seems to credit [31] for handling weighted graphs (whereas their query-e�cient
sparsifier only accommodates unweighted graphs). They use this result as part of their Õ(n) query
algorithm for weighted min-cut.

ICALP 2024



115:6 On the Cut-Query Complexity of Approximating Max-Cut

Other graph algorithms in other query models. Many works have considered other graph
problems in other query models as well. These query models include cut queries [14],
linear measurements [1, 5], matrix-vector products [32], OR queries [5, 8], XOR queries [8],
and AND queries [8]. Some of these models e.g. linear measurements and matrix-vector
products generalize the cut query model, while the others do not appear directly related.
These works also consider a variety of graph problems, including connectivity [1, 32, 5, 4,
14], bipartiteness [1], triangle detection [32], minimum spanning tree [1], and maximum
matching [1, 8].

Graph sparsification. [31] also provide an algorithm for graph sparsification in Õ(n) queries
for unweighted graphs, based on the idea of edge strength-based sampling used by [7] to
construct sparsifiers in the classical computational model. There are also other lines of work
that adapt the ideas from [7] to construct sparsifiers in other limited-access computational
models, particularly (semi-)streaming [1, 2, 3, 25, 32]. Some of these algorithms are adaptable
to the cut-query model. However, these algorithms either only support unweighted graphs
or incur a performance cost for weighted graphs. For example, the natural extension of
the algorithm in [31] to weighted graphs requires Õ(n logW ) queries, where W is the ratio
between the largest and smallest nonzero edge weight in the graph. Our novel sparsifier
avoids this pitfall by using results from [7] connecting edge strengths to maximum spanning
trees to remove the logW factor.

While these results and ours all use randomization to construct a sparsifier, there are
also classical algorithms for constructing sparsifiers deterministically [6, 17]. Implementing
such an algorithm directly would require being able to learn the spectrum of the graph’s
Laplacian. It may indeed be possible to do this (exactly or approximately) in a query-e�cient
way, but doing so would require significantly new ideas. A deterministic query-e�cient
implementation of these algorithms would also yield a deterministic query-e�cient algorithm
for a (1 ≠ ‘)-approximation to max cut.

Max-cut in the classical computational model. Max-cut is extremely well-studied in the
computational model, but algorithms in the cut-query model di�er significantly. For ex-
ample, [19] present a randomized polynomial-time algorithm using semidefinite programming
that achieves a ¥ 0.878 approximation in expectation. However, this algorithm does not
imply anything in our model; even formulating the necessary SDP requires access to the
entire graph.

It has since been shown by [23] that it is NP-hard to beat a 16/17 ¥ 0.941 approximation.
Moreover, [27] show that it is NP-hard to beat the constant achieved by Goemans and
Williamson assuming the unique games conjecture [26]. These lower bounds do not imply
anything in our model either. In fact, many of our algorithms (and those in prior work)
involve exponential computation even if they use an e�cient number of queries. Once we have
either learned the entire graph (c = 1) or constructed a sparsifier of the graph (c œ (1/2, 1)),
we use brute force search to find the exact max cut on the graph we have learned.

Submodular function maximization. Our problem can be viewed as a special case of
symmetric submodular function maximization, by taking f(·) to be the cut function of a
graph. However, the additional structure imposed by the cut function of a graph opens
up possibilities for new algorithms and requires new lower bound arguments. For example,
when c > 1/2, [18] show that achieving a c-approximation to symmetric submodular function
maximization requires exp(�(n)) queries to the oracle. For global max-cut, the situation
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is significantly di�erent: O(n2) queries su�ce to trivially learn the entire function (and
therefore, there seems to be little hope of embedding hard SFM instances as graphs). Still,
we show that this trivial algorithm is optimal among deterministic algorithms when c = 1,
and show that �̃(n) queries are necessary for even a randomized algorithm to achieve a
c-approximation for c > 1/2.

For c Æ 1/2, randomized [12] and deterministic [11] algorithms are known that achieve
a 1/2-approximation with O(n) and O(n2) queries respectively, even when the submodular
function is not symmetric. [18] show in the symmetric case that picking a random set (O(1)
queries) achieves a 1/2-approximation in expectation. They also provide a deterministic
algorithm based on local search that achieves a c-approximation for any c < 1/2 in Õ(n3)
queries. When restricting to max-cut, [18] immediately implies a randomized algorithm for
all c Æ 1/2 with O(1) queries (which is optimal). For deterministic algorithms, however, our
bound of �(logn) is again an exponential improvement over the general case of submodular
function maximization.

In summary, global max-cut demonstrates a similar phase transition at c = 1/2 as general
submodular function maximization: the query complexity for c < 1/2 is exponentially smaller
than the query complexity for c > 1/2. However, the distinction for max-cut is between
logarithmic and polynomial queries, whereas the distinction for general submodular functions
is between polynomial and exponential.

Submodular function minimization. Just as submodular function maximization generalizes
max-cut in the cut query model, submodular function minimization generalizes min-cut.
Unlike the maximization case which requires exponentially many queries, general submodular
function minimization can be solved exactly with polynomially many queries; state-of-the-art
algorithms use Õ(n2) queries [24, 29].

However, until relatively recently, most query lower bounds for submodular function min-
imization were only �(n) [22, 20, 28]. The last two results proceed using the aforementioned
cut dimension technique. This was recently improved to �(n logn) by [13], using di�erent
ideas unrelated to graph cuts.

2 Preliminaries

G is an undirected, weighted graph with weights wi,j on the edge (i, j). G induces a cut
function F . We denote the cut function by F (·), so F (S) :=

q
iœS,j /œS

wi,j . Additionally, for
any cut S ™ [n], we define the indicator vector vS œ R(

n
2) by (vS)i,j = 1 if (i, j) crosses the

cut defined by S and 0 otherwise.
We consider algorithms that have black-box access to F (·), and aim to find

argmaxS™[n]{F (S)} (exact maximization) or a set T such that F (T ) Ø c ·maxS™[n]{F (S)}
(c-approximation). We refer to the query complexity as the number of queries to F (·) that the
algorithm makes (the algorithm has no other access to G or F , and may perform unlimited
computation).

3 Lower Bound for Deterministic (1/2 + ‘)-approximation

In this section, we extend the cut dimension technique by [20] using linear programming and
the strong duality theorem to show the deterministic hardness part of Theorem 4. (We refer
the reader to Appendix A of the full version for a discussion of this technique and its direct
application to show the deterministic lower bound in Theorem 3.) Our exact result is as
follows:

ICALP 2024
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I Theorem 6. Suppose we have c œ (1/2, 1), ‘ œ (0, 1),– > 0 such that c > 1

1+‘2 and
– < (1≠‘)

3

108(1+‘)
. Then for n su�ciently large, –n queries do not su�ce for a deterministic

algorithm to estimate the max cut value within a factor of c.

Before proving this theorem, we state a cleaner lower bound as a corollary:

I Corollary 7. For c œ (1/2, 1), a deterministic algorithm that estimates the max cut value
within a factor of c requires at least n( (

Ô
c≠

Ô
1≠c)

4

108c(2c≠1)
≠ o(1)) queries.

This implies that the query complexity for a deterministic algorithm to achieve a c-
approximation for global max-cut on a weighted undirected graph in the value estimation
setting is �(n).

Proof. See Appendix F.1 of the full version. J

The first step is conceptually similar to the cut dimension argument from Theorem A.1
in the full version. We consider an adversary that answers all queries as if the graph were
Kn (there is an edge of weight 1 between all pairs of vertices). Then we would like to find a
perturbation z to the weight vector of Kn such that w,w + z agree on all queries but have
di�ering max cut values. The di�erence here is that we would like to show that the algorithm
cannot even achieve a c-approximation, so we require the perturbation to be so large that
the max cut value of w + z is a multiplicative factor greater than the max cut of w. To
do this, we will have to go beyond linear algebraic tools and consider linear programming
instead. Our argument comprises the following steps:
1. Write the conditions we require of the perturbation z as linear constraints and thus

formulate a linear program LP1, which we would like to show has high value.
2. LP1 works with vectors in R(

n
2) that represent cuts, which are unwieldy and unnatural.

Rewrite this in terms of indicator vectors in Rn.
3. Define another linear program LP2 and show that a high value for LP2 implies that LP1

must also have high value.
4. Show that LP2 has high value by taking its dual, and showing that the dual has high value.

This comes down to showing a key technical lemma, which essentially states that the
n-dimensional hypercube cannot be covered by an ¸1 neighborhood of an –n-dimensional
subspace of Rn. We show this using an ¸1 ‘-net argument.

We now work through each step in detail. We retain all notation used in Appendix A
of the full version for the cut dimension argument, and introduce additional notation as
necessary.

3.1 Step 1: Formulating LP1
Throughout these proofs, we use 1 to denote a vector with all entries equal to 1 in either
Rn or R(

n
2). It will be clear from context which of these we are referring to at any given

time, but for now we are taking 1 œ R(
n
2) to denote the weight vector of Kn. Let q = –n

and Q1, Q2, . . . , Qq ™ [n] be the q queried cuts. As in Appendix A of the full version, they
have the corresponding 0/1 indicator vectors vQ1 , vQ2 , . . . , vQq œ R(

n
2). We are interested

in finding a perturbation z such that 1,1+ z are both weighted, undirected graphs (with
non-negative edge weights) and agree on all queries but have max cut values di�ering by a
multiplicative factor.
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First, we require 1+ z to define a valid graph i.e. its entries should all be non-negative
since these correspond to edge weights:

1+ z Ø 0 … z Ø ≠1. (1)

Next, we need 1,1+ z to agree on all queries. This guarantees that the algorithm cannot
tell the di�erence between 1 and 1+ z based only on the queries made so far.

1T vQi = (1+ z)T vQi , ’i … zT vQi = 0, ’i. (2)

Finally, we would like the graph corresponding to 1+ z to have a much larger max cut value
than the graph corresponding to 1. We capture this in the following definition and lemma:

I Definition 8. Define a near-max cut to be any cut C ™ [n] such that n/2 ≠
Ô
n logn Æ

|C| Æ n/2 +
Ô
n logn.

Note that a near-max cut is nearly a max-cut in Kn. As hinted at earlier, we will show
that we can find a near-max cut C and a perturbation z to the graph that will preserve
the value of all queries while blowing up the value of C by a factor of c. In this case, the
algorithm cannot distinguish between Kn and the perturbed graph and thus cannot achieve
a c-approximation.

I Lemma 9. To prove Theorem 6, it su�ces to show that there exists a near-max cut C such
that the following linear program has value at least ‘2n2/4. We call this linear program LP1.

Maximize zT vC

subject to zT vQj = 0 for all j œ [q], and
z Ø ≠1.

Proof. We have already explained how the constraints arise. To justify that the objective
corresponds to a bound on the approximation ratio, see Appendix F.2 of the full version. J

3.2 Step 2: Rewriting LP1

As already mentioned, the vectors vS œ R(
n
2) are unnatural and di�cult to work with.

Intuitively, the reason for this is that a cut only has n degrees of freedom (each vertex can
be included or not included in S), but we are representing it with a vector with

!
n

2

"
entries,

thereby creating unwanted dependencies between entries of these vectors.
We would thus like to find a more natural parametrization of these cuts that can still be

connected naturally to the vectors vS . To construct such a parametrization, we assign to
each cut S a ±1 indicator vector uS œ Rn. Entries are indexed by vertices in [n], and for
each i œ [n] we have (uS)i = 1 if i œ S and ≠1 otherwise.

Now we connect these new indicator vectors to vS as follows. Define the matrix MS œ
Rn◊n by MS = 11T ≠uSu

T
S

2
. (Note that from here onwards, 1 now refers to the vector in

Rn with all entries equal to 1.) MS ’s entries are indexed by ordered pairs of vertices. Now
observe that:

ICALP 2024
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(MS)i,j =
1i1j ≠ (uS)i(uS)j

2

= 1 ≠ (uS)i(uS)j
2

=
I
0, i, j œ S or i, j /œ S,

1, otherwise

=
I
(vS)i,j , i ”= j,

0, i = j.

Thus if we flatten MS into a vector, it consists of two copies of vS (each unordered vertex
pair (i, j) in vS appears twice in MS since the vertex pairs indexing MS are ordered) and n
0’s (corresponding to vertex pairs (i, i) for i œ [n]). This allows us to rewrite LP1 in terms
of the uS ’s as stated in the following lemma. For matrices A,B of the same shape, we use
ÈA,BÍ to denote the matrix inner product tr(ATB) =

q
i,j

Ai,jBi,j .

I Lemma 10. For any C, LP1 has value Ø ‘2n2/4 if and only if the following LP has value
at least ‘2n2/2. We call this the “matrix LP”. Here, Z œ Rn◊n.

Maximize ÈZ,MCÍ
subject to ÈZ,MQj Í = 0 for all j œ [q], and

Z Ø ≠1.

Proof. See Appendix F.3 of the full version. J

3.3 Step 3: Defining LP2 and Connecting LP2 to LP1
For a near-max cut C, define a new linear program which we call LP2 as follows. Here
y œ Rn.

Maximize yTuC

subject to yTuQj = 0 for all j œ [q],
yT1 = 0, and
≠ 1 Æ y Æ 1.

We claim that it su�ces to show that LP2 has value at least ‘n:

I Lemma 11. If there exists a near-max cut C such that LP2 has value at least ‘n then the
matrix LP for C has value at least ‘2n2/2, which would imply Theorem 6.

Proof Sketch. Take such a near-max cut C and y œ Rn such that y is in the feasible region of
LP2 and yTuC Ø ‘n. Then we claim that Z = ≠yyT is feasible for the matrix LP and attains
a value Ø ‘2n2/2. Intuitively, y can be thought of as a vector representing a “pseudo-cut” in
the same way that uS represents S. LP2 having high value means that y aligns non-trivially
with C, and what we are claiming is that perturbing towards the “pseudo-cut” corresponding
to y will align the graph’s weights with the cut corresponding to C. We provide details in
Appendix F.4 of the full version. J
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3.4 Step 4: Showing that LP2 has High Value
Finally, we show that we can find a near-max cut C such that LP2 has value at least ‘n,
which by Lemma 11 will complete the proof of Theorem 6. We do this by taking the dual of
LP2, which has a simple characterization captured by the following lemma:

I Lemma 12. Consider vectors w,w1, w2, . . . , wk œ Rd, and the following LP:

Maximize zTw

subject to zTwi = 0 for all i œ [k], and
≠ 1 Æ z Æ 1.

Let W = span(w1, w2, . . . , wk). Then the value of this LP is minvœW ||v ≠ w||1. (If there is
no such v then by this minimum we mean Œ.)

Proof. See Appendix F.5 of the full version. J

To use this lemma, let V = span(uQ1 , . . . , uQq ,1). Then Lemma 12 tells us that LP2 has
value equal to minuœV ||u ≠ uC ||1.

Now note that V depends only on the set of queries and not at all on C. Thus we would
like to show that there exists a near-max cut C such that minuœV ||u ≠ uC ||1 Ø ‘n. We will
show the strict version of this inequality i.e. that minuœV ||u ≠ uC ||1 > ‘n. Denote by Br

the ¸1 ball of radius r in Rn. Then what we want to show is that there exists a near-max cut
C such that uC /œ V +B‘n. This brings us to our key technical lemma, which has little to
do with graphs and may be of independent interest:

I Lemma 13. Let ‘ œ (0, 1) and d Æ –Õn for –Õ < (1≠‘)
3

108(1+‘)
. Suppose D is a d-dimensional

subspace of Rn. Denote by Br the ¸1 ball of radius r in Rn. Then there exists p œ {≠1, 1}n

such that p /œ D +B‘n and |1T p| Æ 2
Ô
n logn.

Proof. We show this by a volume argument. Specifically, we estimate the size of (D+B‘n)fl
{≠1, 1}n using an ¸1 ‘-net argument and show that this must be much less than 2n. We
provide details in Appendix F.6 of the full version. J

With this lemma, we can complete this step and thus the proof of Theorem 6:

I Corollary 14. For n su�ciently large, there exists a near-max cut C such that uC /œ V +B‘n.

Proof. See Appendix F.7 of the full version. J

4 Sparsifier-based Randomized Algorithms for (1 ≠ ‘)-approximation

Here we address the randomized upper bound part of Theorem 4, namely that a (1 ≠ ‘)-
approximation can be achieved in the cut finding setting with Õ(n) queries. Our algorithms
are adaptive. The key notion is that of a sparsifier :

I Definition 15. Given weighted graphs G,H on the same set of n vertices with non-negative
weights, we say H is an ‘-sparsifier of G if all of the following conditions hold:
1. H has Õ‘(n) edges with nonzero weight.
2. For any cut S ™ [n], we have (1 ≠ ‘)F (S;G) Æ F (S;H) Æ (1 + ‘)F (S;G).
Here F (S;G) denotes the value of the cut defined by S on the graph G, and similarly for
F (S;H).

ICALP 2024
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I Lemma 16. If an algorithm can compute an ‘-sparsifier of G in Õ(n/‘2) queries with high
probability, then it can also find a (1 ≠ 2‘)-approximate max cut with no additional queries.

Proof. Once the algorithm has a sparsifier H, it can just try all possible cuts and output
the cut U maximizing F (U ;H). Indeed, for any other cut S, we would have F (U ;G) Ø
F (U ;H)

1+‘
Ø F (S;H)

1+‘
Ø (1≠‘)F (S;G)

1+‘
Ø (1≠ 2‘)F (S;G), so U is indeed a (1≠ ‘)-approximate max

cut. J

Throughout this section, let d > 5 be constant, and let ” œ (1/2, 1) be a constant
su�ciently close to 1. Then let c0 and c1 be su�ciently large positive constants. Also, let
Wtot be the total weight of all edges in the graph, and W the ratio between the largest
and smallest nonzero edge weights. Finally, for a vertex set S ™ V (G), let G[S] denote the
vertex-induced subgraph of G on S. Note that we do not require that G be connected. We
organize the remainder of this section as follows:
1. In Section 4.1, we set up and analyze the algorithmic tools necessary to adapt [31]’s

algorithm to weighted graphs.
2. In Section 4.2, we present the direct adaptation of [31]’s algorithm to weighted graphs

and show that it constructs a sparsifier in ÂO(n logW ) queries.
3. In Section 4.3, we use ideas introduced by [7] relating edge strengths to maximum

spanning trees in order to construct a sparsifier for weighted graphs in ÂO(n) queries, thus
eliminating the dependence of the query complexity on W .

4. Additionally, in Appendix D of the full version, we show that we can achieve a (1 ≠ ‘)-
approximation for max-cut in ÂO(n) queries without needing the optimizations in Section
4.3. This is achieved by essentially stopping our adaptation of [31]’s algorithm early. This
will not construct a sparsifier, but it will construct something “close enough” to su�ce
for max-cut. Intuitively, we do this by discarding edges of weight < Wtot/poly(n) since
these will not have much e�ect on the max cut, thereby reducing the problem to one
where W = poly(n).
Given this result, our sparsifier for weighted graphs in Section 4.3 is not necessary for
max-cut specifically, but it makes for a conceptually cleaner algorithm for max-cut and
may be applicable to other problems.

4.1 Setup and Algorithmic Tools
The key idea is the notion of edge strength introduced by [7].

I Definition 17 (([7], as stated in [31]). The strong connectivity of G, denoted K(G), is the
value of G’s min cut.

I Definition 18 ([7], as stated in [31]). Given an edge e in G, the strong connectivity or edge
strength ke of e is the maximum min cut over all vertex-induced subgraphs of G containing e:

ke = max
S™V :u,vœS

K(G[S]).

The idea introduced by [7] and used by [31] is that subsampling edges of G with probabil-
ities inversely proportional to their strength will give a sparsifier. We cannot do exactly this
in the cut query model, but we can subsample in a way that is “close enough” to independent.
We need some basic primitives to support our algorithm, and we capture all of them in the
following lemma:
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I Lemma 19. There exists a data structure supporting the following operations.
1. InitializeDS(H): Initialize the structure’s state and carry out any preprocessing needed

with the starting graph H.
2. Contract(S): Contract a given supernode set S.
3. GetEdge(): Find and return an edge from H (that has not been contracted) with weight

at least 2W (H)

n2 . Here W (H) is the total weight of not-yet-contracted edges.
4. GetTotalWeight(S): Return the total weight of all edges with both endpoints in S (that

have not yet been contracted). S must once again be a set of supernodes.
5. Sample(S): Sample a random edge with both endpoints in S (that has not yet been

contracted), with probability proportional to its weight. S must be a set of supernodes here
as well.

It takes O(n) queries for each call to InitializeDS, O(1) queries for each call to Contract,
O(logn) queries for each call to GetEdge, O(1) queries for each call to GetTotalWeight, and
O(logn) queries for each call to Sample.

Proof. The pre-processing and queries when contracting are due to having to keep track of
(super)node degrees. GetEdge and Sample can be handled using recursive bisection procedures
similar to that used to prove Corollary 2.2 in [31]. We provide details in Appendix G.1 of
the full version. J

Before we go any further, we make an important comment about how we regard contraction
in our algorithms (including Lemma 19). When we contract a set of vertices, we regard that
set of vertices as one supernode as usual, but we do not merge any edges that have now
become parallel. So the set of edges will always be a subset of the edges from the original
graph.

It will be convenient to regard our algorithms as having two separate stages, although the
two stages share some ingredients. In the first stage, the algorithm iteratively subsamples
and contracts the graph to estimate the strengths of all edges within a constant factor. In
the second stage, the algorithm uses these edge strength estimates to construct the sparsifier,
following the ideas of [7]. We address these two stages in the next two subsections respectively.

We note that these algorithms are very similar to those presented by [31]; the key
di�erence is that whenever the sparsification algorithm in [31] subsamples the graph, it does
so independently for each edge. This works because [31] focuses on unweighted graphs. With
weighted graphs, we would like to sample edges proportionately to their weight, and this
cannot be done independently without knowledge of the graph. We modify their subsampling
procedures to obtain algorithms that do not sample completely independently, but still have
the concentration properties that we need.

4.1.1 Constant-Factor Edge Strength Estimates
We next describe the main tool of our edge strength estimation, which we call EstimateAnd-
Contract. It takes in the input graph G where some vertex sets Si have already been
contracted and a strength parameter Ÿ, and further contracts G while also estimating the
strength of any edges that get contracted. For any graph H, let W (H) denote the total edge
weight of H.

We state some key properties of Algorithm 4.1 and defer their proofs to Appendix G.4 of
the full version:

I Lemma 20 (Analogous to claim 3.6 from [31]). With probability 1≠O(n1≠d), for all e such
that ke Ø Ÿ and e is not contracted by any of the sets in C, it will be assigned kÕ

e
= Ÿ/2 and

contracted.
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Algorithm 4.1 EstimateAndContract(G, C,Ÿ, X).

Data: Initial graph G with vertex set V (G) ™ [n], disjoint collection C of contracted
sets, strength parameter Ÿ, partial list X of strength estimates

Result: Updated collection of contracted sets C, updated list X of strength estimates
Let GÕ be G with all sets from C contracted and ⁄ = c0 log

2
n

Ÿ
W (GÕ). (We can find

W (GÕ) using GetTotalWeight from Lemma 19.)
1. Sample ⁄ edges from GÕ, proportionally to their weights, with replacement.

If an edge e is sampled at least once, assign weight w(e)

p(e)
to it, where

p(e) = 1 ≠ (1 ≠ we
W (GÕ) )

⁄. These newly weighted edges form a new graph GÕÕ.
2. While there exists a connected component of GÕÕ with a cut of size Æ (1 ≠ ”)Ÿ,

delete all edges of that cut from GÕÕ. Let the resulting connected components of
GÕÕ be C1, C2, . . . , Cr.

3. For each i œ [r], append the tuple (Ci,Ÿ/2) to X. (Here, what we are saying is
“assign a strength estimate of Ÿ/2 to any edge with both endpoints in Ci that
has not already been contracted”, but we phrase it di�erently to account for the
fact that the algorithm may not actually know these edges.)

4. Add Ci to C (and remove any subsets of Ci to maintain disjointness) for all i œ [r].

I Lemma 21 (Analogous to claim 3.7 from [31]). Assume that any edge contracted by C has
strength Ø Ÿ/2. Then with probability 1 ≠ O(n1≠d), no edge e such that ke < Ÿ/2 is assigned
a strength estimate or contracted.

4.1.2 Sparsifier Construction
Next, we describe our algorithm that will construct a sparsifier if provided constant-factor
strength estimates for all edges in the graph, which we call ConstructSparsifier.

We capture the desired sparsification properties in the following lemma:

I Lemma 22. Fix X = [(C1,—1), (C2,—2), . . . , (Cr,—r)] as in ConstructSparsifier (X might
be random, but we condition on a particular list of values for now). Then for each i, define:

E(Ci) = {e œ G : both endpoints of e are in Ci}
ÂE(Ci) = E(Ci)\

€

j:CjµCi

E(Cj)

(Thus ÂE(Ci) is the set of edges that will be contracted at the time that Ci is contracted.)
Assume each of the following conditions:

1. Each connected component of G is contained in at least one Ci (every edge in G gets
contracted), and

2. For all i and edges e œ ÂE(Ci), we have —i œ [ke/4, ke] (edge strength estimates are correct
within a constant factor).

Then with probability 1 ≠ O(n≠d), ConstructSparsifier will output a sparsifier H that
approximates the cuts of G within a factor of 1±2‘. (Thus this probability is only considering
the randomness of ConstructSparsifier.)

Proof. This follows using similar ideas to [7], but we need to take some extra care because
the subsampling we use to construct the sparsifier is not independent. We provide details in
Appendix G.2.2 of the full version. J
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Algorithm 4.2 ConstructSparsifier(G,X).

Data: Graph G with vertex set [n], list X = [(C1,—1), (C2,—2), . . . , (Cr,—r)] of
strength estimates. We assume that {C1, . . . , Cr} is a laminar family of
vertex sets and that if Ci µ Cj then i < j. (This is because we will be
contracting C1, . . . , Cr in that order.) Note that we do not assume here that
X includes a strength estimate for every edge.

Result: Potential sparsifier H
Initialize GÕ = G and H to be empty.
InitializeDS(GÕ). (This is just to reset and ignore any previous contractions we may
have done in EstimateAndContract.)
for i Ω 1 to r do

1. Let µi = c1 log
2
n

‘2—i
W (Ci). (Here W () is with respect to GÕ, and once again can

be found using GetTotalWeight from Lemma 19.)
2. Sample µi edges from Ci proportionally to their weights, with replacement.

If an edge e is sampled at least once, add it to H with weight we
pe

, where
pe = 1 ≠ (1 ≠ we

W (Ci)
)µi is the probability that e is sampled at least once.

(Note that this sampling would be done by calling Sample(Ci) from Lemma 19.)
3. Contract Ci in GÕ.

end

4.2 Sparsification with ÊO(n logW ) Queries
Here we analyze the naive generalization of [31]’s sparsifier to weighted graphs. The procedure
is described in Algorithm 4.3.

Algorithm 4.3 NaiveWeightedSubsample(G, T ).

Data: Graph G on n vertices, positive real parameter T
Result: A potential (2‘)-sparsifier H of G.
Initialize C = ÿ and X as an empty list.
InitializeDS(G).
Find Wtot by running GetTotalWeight(G).
Initialize Ÿ to be the smallest power of 2 that is at least Wtot.
while GetTotalWeight(G) > 0 and Ÿ > Wtot/T do

EstimateAndContract(G, C,Ÿ,X)
Ÿ Ω Ÿ/2

end
H Ω ConstructSparsifier(G,X).

I Theorem 23. NaiveWeightedSubsample(G,Œ) runs in O(n log3 n(logn + logW + 1

‘2 ))
queries and outputs a (2‘)-sparsifier H with probability 1 ≠ O(n1≠d(logn+ logW )).

Proof. We outline the proof here and provide details in Appendices G.5 (correctness) and
G.8 (e�ciency) of the full version. The proof proceeds in two parts.

First, we address the calls to EstimateAndContract. Given Lemmas 4.6 and 4.7, Estim-
ateAndContract can be thought of as estimating the strengths of and then contracting edges
whose strengths are within a window that is a factor of 4 wide. The lemmas tell us that
these strength estimates are accurate within a factor of 4. Then NaiveWeightedSubsample
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essentially “slides” this window across all possible edge strengths so that all edges of G are
assigned a strength estimate. This part has query complexity O(n log3 n(logn+ logW )); the
logW term is because the outer loop could run for O(logn+ logW ) iterations. This is also
why the success probability depends on W , as this is obtained by taking a union bound over
all iterations.

Secondly, because all edges are assigned an accurate strength estimate (within a constant
factor), Lemma 22 tells us that ConstructSparsifier will output a (2‘)-sparsifier with high
probability. This part has query complexity O(n log3 n/‘2). J

4.3 Sparsification with ÊO(n) Queries
We now show how to eliminate the dependence of the query complexity and success probability
on W , thus constructing sparsifiers in ÂO(n) queries. We begin by setting up the necessary
ideas.

4.3.1 Crude Edge Strength Estimates
Recall that the key problem with Algorithm 4.3 was that our “sliding window” for edge
strength estimation could potentially repeat O(logn + logW ) times. The key idea is to
mitigate this by finding very crude (within a factor of n4) estimates for the edge strengths
for all edges in G, before refining these estimates using EstimateAndContract. We do this
using the idea of [7] to estimate edge strengths from the maximum spanning forest (MSF) of
G. Fix an MSF T of G. Then for any edge e with endpoints i, j, define de = di,j to be the
minimum weight of an edge on the MSF path between the endpoints of e. We first state a
lemma shown in [7]:

I Lemma 24 ([7]). For all edges e, we have de Æ ke Æ n2de.

This would immediately give us su�cient edge strength estimates but we do not know of
a way to find the MSF e�ciently in the cut query model. In fact, we can adapt the max cut
dimension argument from Lemma A.3 in the full version to a “max tree dimension” argument
to show that deterministically finding the MSF requires �(n2) queries; see Appendix A.1 of
the full version for details. So instead, we run what we call “approximate Kruskal” using the
primitives we have available from Lemma 19.

Algorithm 4.4 ApproximateKruskal(G).

Data: Graph G on n vertices
Result: A forest ÂT using the edges of G.
Initialize ÂT to be the empty graph on n vertices.
InitializeDS(G).
while GetTotalWeight(G) > 0 do

e = GetEdge()
Contract(e)
Add e to ÂT .

end

It follows from Lemma 19 that ApproximateKruskal can be run in O(n logn) queries.
Once we run ApproximateKruskal, we will have a spanning forest of G so we will also know
its connected components. Moreover, the following lemma tells us that even this crude
approximation to the MSF su�ces to give us edge strength estimates. We defer the proofs of
this lemma and its straightforward corollary to Appendix G.6.1 of the full version.
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I Lemma 25. For any distinct i, j, define d̃i,j as follows:
If i, j are connected in G, then let d̃i,j be the minimum weight of an edge on the path in
ÂT connecting i and j.
Otherwise, let d̃i,j = 0.

Then for any i, j that are connected in G, we have 2

n2 di,j Æ d̃i,j Æ di,j for all i, j.
Note that we only assume here that T is maximal; any assumptions we make about ÂT are

baked into GetEdge.

I Corollary 26. For all distinct i, j, we have ki,j œ [d̃i,j , n
4

2
d̃i,j ].

4.3.2 Fast Weighted Subsampling
We now describe how to use our crude edge strength estimates to construct a sparsifier
in Õ(n) queries. The idea is that by Lemma 21, any edges with strength < Ÿ/2 will be
deleted in Step 2 of Algorithm 4.1. But we can use our crude edge strength estimates
to preemptively identify some edges that will definitely be deleted, and then delete these
edges to disconnect the graph a bit before running EstimateAndContract. We describe this
procedure in Algorithm 4.5.

Algorithm 4.5 FastWeightedSubsample(G).

Data: Graph G on n vertices
Result: A potential (2‘)-sparsifier H of G.
Run ApproximateKruskal on a copy of G and calculate d̃i,j for all i, j.
Initialize L to a list of all nonzero values of d̃i,j .
Initialize C = ÿ, Ÿ = Œ, and X as an empty list.
InitializeDS(G).
while L ”= ÿ do

Let D̃ = maxL and C =
)
(i, j) : d̃i,j < D̃/(2n5)

*
.

Let S1, . . . , Sr be the connected components of Kn after we remove all edges from
C.
Let ŸÕ be the smallest power of 2 that is at least n4D̃/2.
Ÿ Ω min(Ÿ,ŸÕ)
while Ÿ Ø D̃/(2n) do

for i Ω 1 to r do
EstimateAndContract(G[Si], C,Ÿ,X)
Remove all contracted edges from L.

end
Ÿ Ω Ÿ/2

end
end
H Ω ConstructSparsifier(G,X).

We make one comment here about FastWeightedSubsample: for the algorithm as presented
to even be well-defined, we need to check that each Si at any stage of the algorithm is the union
of some collection of supernodes. If not, it does not make sense to run EstimateAndContract
on each G[Si]. This condition is also necessary to ensure the applicability of Lemma 19 to
each call to EstimateAndContract; Contract, GetTotalWeight, and Sample all require that
their input S be a union of supernodes. We defer the verification of this and the proof of our
final theorem to Appendices G.7 (correctness) and G.8 (e�ciency) of the full version:
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I Theorem 27. FastWeightedSubsample runs in O(n log3 n(logn+ 1

‘2 )) queries and outputs
a (2‘)-sparsifier H with probability 1 ≠ O(n5≠d).

I Corollary 28. For any ‘ > 0, the query complexity for a randomized algorithm to construct
an ‘-sparsifier with 1≠o(1) probability for a weighted undirected graph is ÂO(n). This algorithm
is adaptive.

By Lemma 16, this yields our desired algorithmic result for max-cut:

I Corollary 29. For any c < 1, the query complexity for a randomized algorithm to achieve
a c-approximation with 1 ≠ o(1) probability for global max-cut on a weighted undirected graph
in the cut finding setting is Õ(n). This algorithm is adaptive.

We remind the reader that Theorem 27 extends the query-e�cient sparsifier of [31] to
weighted graphs (as we saw in Section 4.2, a naive generalization of [31] requires ÂO(n logW )
queries).
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Abstract

Boolean function F (x, y) for x, y œ {0, 1}n is an XOR function if F (x, y) = f(x ü y) for some
function f on n input bits, where ü is a bit-wise XOR. XOR functions are relevant in communication
complexity, partially for allowing the Fourier analytic technique. For total XOR functions, it is
known that deterministic communication complexity of F is closely related to parity decision tree
complexity of f . Montanaro and Osbourne (2009) observed that one-way communication complexity
Dæ

cc (F ) of F is exactly equal to non-adaptive parity decision tree complexity NADTü(f) of f .
Hatami et al. (2018) showed that unrestricted communication complexity of F is polynomially
related to parity decision tree complexity of f .

We initiate the study of a similar connection for partial functions. We show that in the case
of one-way communication complexity whether these measures are equal, depends on the number
of undefined inputs of f . More precisely, if Dæ

cc (F ) = t and f is undefined on at most O

1
2n≠t

Ô
n≠t

2

inputs, then NADTü(f) = t. We also provide stronger bounds in extreme cases of small and large
complexity.

We show that the restriction on the number of undefined inputs in these results is unavoidable.
That is, for a wide range of values of Dæ

cc (F ) and NADTü(f) (from constant to n ≠ 2) we provide
partial functions (with more than �

1
2n≠t

Ô
n≠t

2
undefined inputs, where t = Dæ

cc ) for which Dæ
cc (F ) <

NADTü(f). In particular, we provide a function with an exponential gap between the two measures.
Our separation results translate to the case of two-way communication complexity as well, in
particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions.

Previous results for total functions heavily rely on the Boolean Fourier analysis and thus, the
technique does not translate to partial functions. For the proofs of our results we build a linear
algebraic framework instead. Separation results are proved through the reduction to covering codes.

2012 ACM Subject Classification Theory of computation æ Communication complexity; Theory of
computation æ Oracles and decision trees; Theory of computation æ Error-correcting codes

Keywords and phrases Partial functions, XOR functions, communication complexity, decision trees,
covering codes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.116

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/157/

Acknowledgements We would like to thank the anonymous reviewers for useful comments that
helped us improve the presentation.

1 Introduction

In communication complexity model two players, Alice and Bob, are computing some fixed
function F : {0, 1}n ◊ {0, 1}n æ {0, 1} on a given input (x, y). However, Alice knows only
x and Bob knows only y. The main object of studies in communication complexity is the
amount of communication Dcc(F ) needed between Alice and Bob to compute the function.
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Function F is a XOR-function if for all x, y œ {0, 1}n we have F (x, y) = f(xüy) for some
f : {0, 1}n æ {0, 1}, where xüy is a bit-wise XOR of Boolean vectors x and y. XOR-functions
are important in communication complexity [27, 19, 25, 26, 3, 13, 15, 1, 23, 21, 5, 2, 8, 11, 9],
on one hand, since there are important XOR-functions defined based on Hamming distance
between x and y, and on the other hand, since the structure of XOR-functions allows for the
Fourier analytic techniques. In particular, this connection suggests an approach for resolving
Log-rank Conjecture for XOR-functions [27, 13].

In recent years there was considerable progress in the characterization of communication
complexity of a XOR-function F in terms of the complexity of f in parity decision tree model.
In this model the goal is to compute a fixed function f on an unknown input x œ {0, 1}n and
in one step we are allowed to query XOR of any subset of input bits. We want to minimize
the number of queries that is enough to compute f on any input x. The complexity of f in
this model is denoted by DTü(f). It was shown by Hatami et al. [13] that for any total f
we have Dcc(F ) = poly(DTü(f)).

Even stronger connection holds for one-way communication complexity case. In this
setting only very restricted form of communication is allowed: Alice sends Bob a message
based on x and Bob has to compute the output based on this message and y. We denote
the complexity of F in this model by Dæ

cc
(F ). The relevant model of decision trees is the

model of non-adaptive parity decision trees. In this model we still want to compute some
function f on an unknown input and we still can query XORs of any subsets of input bits,
but now all queries should be provided at once (in other words, each query cannot depend
on the answers to the previous queries). The complexity of f in this model is denoted by
NADTü(f). It follows from the results of Montanaro, Osbourne [19] and Gopalan et al. [10]
that for any total XOR-function F (x, y) = f(x ü y) we have Dæ

cc
(F ) = NADTü(f).

These results on the connection between communication complexity and parity decision
trees can be viewed as lifting results. This type of results have seen substantial progress
in recent years (see [20]). The usual structure of a lifting result is that we start with a
function f that is hard in some weak computational model (for example, a decision tree
type model), compose it with some gadget function g to obtain f ¶ g (each variable of f
is substituted by a copy of g defined on fresh variables) and show that f ¶ g is hard in a
stronger computational model (for example, a communication complexity type model). The
results on XOR-functions can be viewed as lifting results for g = XOR.

The results on the connection between communication complexity of XOR-functions and
parity decision trees discussed above are proved only for total functions f for the reason that
the proofs heavily rely on the Fourier techniques. However, in communication complexity and
decision tree complexity it is often relevant to consider a more general case of partial functions,
and many lifting theorems apply to this type of functions as well, see e.g. [7, 17, 4, 22]. In
particular, there are some lifting results for partial functions for gadgets that are stronger
than XOR: Mande et al. [18] proved such a result for one-way case for inner product gadget
(inner product is XOR applied to ANDs of pairs of variables) and Lo�, Mukhopadhyay [17]
proved a result on lifting with equality gadget for general case (note that equality for inputs
of length 1 is practically XOR function). In [17] a conjecture is mentioned that for partial
XOR-functions Dcc(F ) is approximately equal to DTü(f) as well.

Our results

In this paper we initiate the studies of the connection between communication complexity for
the case of partial XOR functions and parity decision trees. It turns out that for one-way case
whether they are equal depends on the number of inputs on which the function is undefined:
if the number of undefined inputs is small, then the complexity measures are equal and if it
is too large, they are not equal.



V.V. Podolskii and D. Sluch 116:3

More specifically, we show that for t = Dæ
cc
(F ) the equality Dæ

cc
(F ) = NADTü(f) holds

if f is undefined on at most O
1

2
n≠t

Ô
n≠t

2
inputs.

On the other hand, we provide a family of partial functions for which Dæ
cc
(F ) <

NADTü(f)1. More specifically, we show that for any constant 0 < c < 1 there is a
function f with NADTü(f) = cn and Dæ

cc
(F ) Æ cÕn for some cÕ < c.

The number of undefined inputs for the function is O
1

2
dn

Ô
n

2
if c > 1/2, is equal to 2n≠1 if

c = 1/2, and is 2n ≠ O
1

2
dn

Ô
n

2
if c < 1/2, where 0 < d < 1 is some constant (depending of c).

We provide a function f for which NADTü(f) =
Ô
n logn and Dæ

cc
(F ) Æ O(logn), the

number of undefined inputs for f is 2n ≠ 2�(
Ô
n log

3/2
n). Thus, we provide an exponential

gap between the two measures.

We provide stronger bounds for small and large values of complexity. For Dæ
cc
(F ) = 1

we show that the equality Dæ
cc
(F ) = NADTü(f) is true for all partial f . For Dæ

cc
(F ) = 2

the equality is true for at most 2n≠3
≠ 1 undefined inputs. The smallest values of measures

for which we provide a separation are Dæ
cc
(F ) = 7 and NADTü(f) = 8. On the other

end of the spectrum we show that for any partial function if NADTü(f) Ø n ≠ 1, then
Dæ

cc
(F ) = NADTü(f). The largest value of NADTü for which we provide a separation is

n ≠ 2, this complements the result that starting with NADTü(f) = n ≠ 1 the measures are
equal.

All our separation results translate to the setting of two-way communication complexity
vs. parity decision trees. In particular, we provide a partial function f with exponential
gap between Dcc(F ) and DTü(f), which refutes the conjecture mentioned in [17]. It is an
interesting open problem whether the polynomial relation between these measures discovered
by Hatanami et al. for total functions holds for partial functions with some restriction on
the number of undefined points.

The techniques behind the results on the connections between communication complexity
of XOR-functions and parity decision tree complexity for total functions heavily rely on
the Fourier analysis. However, it is not clear how to translate this technique to partial
functions. To prove our results, we instead translate the Fourier-based approach of [19, 10]
into the language of linear algebra. We design a framework to capture the notion of one-way
communication complexity of partial XOR-functions and use this framework to establish
equality of Dæ

cc
(F ) and NADTü(f) for the small number of undefined points. The separation

results can be proved using our framework, but in these version of the paper we provide
self-contained proof. The separation results are proved by a reduction to the covering codes.

The rest of the paper is organized as follows. In Section 2 we provide necessary preliminary
information and introduce the notations. In Section 3 we introduce our linear-algebraic
framework. In Section 4 we prove main results on the equality of complexity measures. In
Section 5 we prove separation results. In Section 6 we provide results for extreme cases.
Some of the technical proofs are edited out of this version and can be found in the full paper
https://eccc.weizmann.ac.il/report/2023/157/.

1 Note that the gap in the other direction is impossible: it is easy to see that Dæ
cc (F ) Æ NADTü(f) for all

f (see Lemma 4 below). Similar inequality (with an extra factor of 2) holds for general communication
complexity and parity decision tree complexity.
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2 Preliminaries

2.1 Boolean cube

A Boolean cube is a graph on the set {0, 1}n of Boolean strings of length n. We connect two
vertices with an edge if they di�er in a single bit only. The set {0, 1}n can also be thought of
as the vector space Fn

2
, with the bitwise XOR as the group operation. An inner product over

this space can be defined as

Èx, yÍ =
n

i

xi · yi.

Hamming weight of x denoted |x| is defined as the number of coordinates of x equal
to 1. Hamming distance dist(x, y) between x œ {0, 1}n and y œ {0, 1}n is the number of
coordinates at which x and y di�er. The Hamming ball of radius r is a set of vertices of
Boolean cube {0, 1}n with Hamming weight not exceeding r. We denote by V (n, r) the
volume of a Hamming ball in {0, 1}n of radius r.

2.2 Isoperimetric inequalities

I Definition 1. For a set A we denote the set of neighbors of elements of A as �A. We
denote �ÕA := �A \A.

We will need the vertex isoperimetric inequality for a Boolean cube known as Harper’s
theorem. To state it we first define Hales order.

I Definition 2 (Hales order [12, Page 56]). Consider two subsets x, y ™ [m] for some natural
m. We define x ª y if |x| < |y| or |x| = |y| and the smallest element of the symmetric
di�erence of x and y belongs to x. In other words, there exists an i such that i œ x, i /œ y,
and i is the smallest element in which x and y di�er. Here is an example of Hales order for
m = 4:

?, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

We can induce Hales order on the set {0, 1}m by identifying subsets of [m] with their char-
acteristic vectors. We define Im

a
to be the set of the first a elements of {0, 1}m in Hales

order.

I Theorem 3 (Harper’s theorem [12, Theorem 4.2]). Let A ™ {0, 1}m be a subset of vertices
of m-dimensional Boolean cube and denote a = |A|. Then |�A| Ø |�Im

a
|.

2.3 Communication Complexity and Decision Trees

Throughout this paper, f denotes a partial function {0, 1}n æ {0, 1,‹}, we let Dom(f) =
f≠1({0, 1}). We define an XOR-function F : {0, 1}n ◊ {0, 1}n æ {0, 1,‹} as

F (x, y) = f(x ü y).

In communication complexity model two players, Alice and Bob, are computing some
fixed function F : {0, 1}n ◊ {0, 1}n æ {0, 1} on a given input (x, y). However, Alice knows
only x and Bob knows only y. The main subject of studies in communication complexity
is the amount of communication Dcc(F ) needed between Alice and Bob to compute the
function. Formal definition of the model can be found in [16].
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We will be mostly interested the in one-way communication model. This is a substantially
restricted setting, in which only Alice is permitted to send bits to Bob. Formally, the one-way
communication complexity Dæ

cc
(F ) is defined to be the smallest integer t, allowing for a

protocol where Alice knowing her input x sends t bits to Bob, which together with Bob’s
input y enable Bob to calculate the value of F .

The bits communicated by Alice depend only on x, that is Alice’s message to Bob is
h(x) for some fixed total function h : {0, 1}n æ {0, 1}t. Bob computes the output F (x, y)
based on h(x) and his input y. That is, Bob outputs Ï(h(x), y) for some fixed total
function Ï : {0, 1}t ◊ {0, 1}n æ {0, 1}. If (x, y) is within the domain of F , then the equality
Ï(h(x), y) = F (x, y) must be true.

The notion of parity decision tree complexity is a generalization of the well-known decision
tree complexity model. In this model, to evaluate a function f for a given input x the protocol
queries the parities of some subsets of the bits in x. The cost of the protocol on specified
input x is the number of queries the protocol makes on that input. The cost of the protocol
(sometimes referred to as the worst-case cost) is maximum over all inputs x, costs of protocol
on the input x. The complexity of problem f in the model of parity decision trees DTü(f)
is the minimal over all valid protocols, cost of a protocol for f .

We consider the non-adaptive parity decision tree complexity NADTü(f). This version
di�ers from its adaptive counterpart in that all the queries should be fixed at once. In other
words, each next query should not depend on the answers to previous queries. Next, we give
a more formal definition of NADTü(f).

The protocol of complexity p is defined by n-bit strings s1, . . . , sp and a total function
l : {0, 1}p æ {0, 1}. On input x the protocol queries the values of

Ès1, xÍ, . . . , Èsp, xÍ

and outputs

l(Ès1, xÍ, . . . , Èsp, xÍ).

The protocol computes partial function f , if for any x œ Dom(f) we have

l(Ès1, xÍ, . . . , Èsp, xÍ) = f(x).

Throughout the paper t, h,Ï, p, s1, . . . , sp, l have the same meaning as defined above.
It is easy to see that there is a simple relation between NADTü(f) and Dæ

cc
(F ).

I Lemma 4. For any f we have Dæ
cc
(F ) Æ NADTü(f).

Proof. Alice and Bob can compute F (x, y) by a simple simulation of NADTü protocol for
f . The idea is that they privately calculate the parities of their respective inputs according
to NADTü protocol, then Alice sends the computed values to Bob, who XORs them with
his own parities, and then computes the value of F .

More formally, assume that NADTü(f) = p and the corresponding protocol is given by
s1, . . . , sp œ {0, 1}n and a function l, that is

’x œ Dom(f), f(x) = l(Ès1, xÍ, . . . , Èsp, xÍ).

For i œ [p], we let

hi(x) := Èsi, xÍ.

ICALP 2024
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For the communication protocol of complexity p we let

h(x) = (h1(x), . . . , hp(x)),
Ï(a, y) := l(a1 ü Ès1, yÍ, . . . , ap ü Èsp, yÍ).

Then for any (x, y) such that x ü y œ Dom(f) we have

Ï(h(x), y) = l(h1(x) ü Ès1, yÍ, . . . , hp(x) ü Èsp, yÍ) =
l(Ès1, xÍ ü Ès1, yÍ, . . . , Èsp, xÍ ü Èsp, yÍ) =
l(Ès1, x ü yÍ, . . . , Èsp, x ü yÍ) = f(x ü y) = F (x, y).

We constructed a p-bit communication protocol for F , and thus

Dæ
cc
(F ) Æ p = NADTü(f). J

In this paper, we are mainly interested in whether the inequality in the opposite direction
is true.

2.4 Covering Codes

I Definition 5. A subset C ™ {0, 1}n is a (n,K,R) covering code if |C| Æ K and for any
x œ {0, 1}n there is c œ C such that dist(x, c) Æ R. In other words, all points in {0, 1}n are
covered by balls of radius R with centers in C.

The following general bounds on K are known for covering codes.

I Theorem 6 ([6, Theorem 12.1.2]). For any (n,K,R) covering code we have

logK Ø n ≠ log V (n,R).

For any n and any R Æ n there is a (n,K,R) covering code with

logK Æ n ≠ log V (n,R) + logn.

We will use the following well known fact.

I Theorem 7 ([6, Section 2.6]). If n = 2m ≠ 1 for some m, then Boolean cube {0, 1}n can be
splitted into disjoint balls of radius 1.

This construction is known as a Hamming error correcting code. Note that it is a
(n = 2m ≠ 1, 2

n

n+1
, 1) covering code.

I Definition 8. For two covering codes C1 and C2 their direct sum is

C1 ü C2 = {(c1, c2) | c1 œ C1, c2 œ C2}.

I Lemma 9 ([6, Theorem 12.1.2]). If C1 is a (n1,K1, R1) covering code and C2 is a (n2,K2, R2)
covering code, then C1 ü C2 has parameters (n1 + n2,K1K2, R1 +R2).

We need the following bounds on the sizes of Hamming balls (see, e.g. [14, Appendix A]).

I Lemma 10. For any n and k Æ n we have
1n

k

2k

Æ V (n, k) Æ

1en

k

2k

.
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I Lemma 11. For any constant 0 < c < 1 we have
3
n

cn

4
= O

3
1

Ô
n
2H(c)n

4
.

For any constant 0 < c < 1/2 we have

V (n, cn) = O

3
1

Ô
n
2H(c)n

4
,

where H is the binary entropy function.

I Lemma 12 ([24, Section 5.4]).

V
1
n,

n

2 ≠ �(

n logn)

2
= 2n

poly(n) .

For the binary entropy function H(x) we will use the following simple fact.

I Lemma 13. For any constant c œ (0, 1) and for any –n ≠≠≠≠æ
næŒ

0 we have

H(c+ –n) = H(c) +O(–n),

where the constant in O-notation might depend on c, but not on n.

This is true since the derivative of H is upper bounded by a constant in any small enough
neighborhood of c.

3 Linear-algebraic framework

3.1 Graph-based analysis of one-way communication protocols

Recall that in a one-way communication protocol of complexity t for F (x, y) = f(x ü y)
Alice on input x œ {0, 1}n first sends to Bob h(x) for some fixed h : {0, 1}n æ {0, 1}t.
After that Bob computes the output Ï(h(x), y), where y œ {0, 1}n is Bob’s input and
Ï : {0, 1}t ◊ {0, 1}n æ {0, 1}.

Let’s consider the partition H = {Ha | a œ {0, 1}t}, where for any a œ {0, 1}t

Ha = h≠1(a).

We refer to H as h-induced partition. A class Ha of this partition is the set of inputs for
which Alice sends Bob the same message.

Consider two arbitrary inputs x, y œ {0, 1}n. We call the vector � = x ü y the shift
between x and y. The intuition is that y is equal to the shift xü � of x by y (and vise versa).

We say that � œ {0, 1}n is a good shift if there is a pair x, y œ {0, 1}n such that xüy = �
and h(x) = h(y), or equivalently, if x and y belong to the same class of H. Note that f does
not necessarily need to be defined on inputs x and y. However, it turns out that on the
domain of f the value of f is invariant under good shifts.

I Lemma 14. Assume that � is a good shift. Consider any v, u œ Dom(f) such that
v ü u = �. Then, f(v) = f(u).

Proof. Since � is good, there are x and y such that h(x) = h(y) and x ü y = �. Then

f(v) = Ï(h(x), x ü v) = Ï(h(y), x ü v) = f(v ü x ü y) = f(v ü �) = f(u). J
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h : {0, 1}3 æ {a, b, c, d, e}

c

a

d

c

b

e

a b

Gh

Figure 1 Example of total h-induced graph.

This leads us to the following notion.

I Definition 15. For the functions f : {0, 1}n æ {0, 1}, f(x ü y) = Ï(h(x), y) let the total
h-induced graph be the graph with vertices {0, 1}n and with an edge between x œ {0, 1}n
and y œ {0, 1}n if x ü y is a good shift for h. Now remove vertices where the function f is
undefined. The resulting graph is called the partial h-induced graph.

There is an alternative way of thinking about total h-induced graph. Consider a graph with
vertices labeled {0, 1}n in which we connect two vertices if the value of h on these vertices
is the same. Clearly it is a subgraph of the total h-induced graph. Now consider a shift of
this graph, that is, a graph in which we XORed labels of all vertices with some fixed vector.
This graph is also a subset of the total h-induced graph. By considering all possible shifts
and taking the union of all graphs we will get the total h-induced graph. See Figure 1 for an
example of total h-induced graph.

By transitivity, if (h,Ï) form a valid communication protocol then f assigns identical
values to each connected component in partial h-induced graph. The converse is also true.

I Theorem 16. Consider a function f : {0, 1}n æ {0, 1}. For a function h : {0, 1}n æ {0, 1}t
there is a function Ï : {0, 1}t ◊ {0, 1}n æ {0, 1} such that (h,Ï) form a valid communication
protocol for f if and only if f assigns the same value to each connected component in the
partial h-induced graph.

Proof. As discussed above, if (h,Ï) forms a valid communication protocol, then f assigns
the same value to each connected component of the partial h-induced graph.

It remains to prove the converse statement. We assume that f assigns the same value to
each connected component and we need to show that there is Ï such that

’(x, y) œ Dom(F ), F (x, y) = Ï(h(x), y).

The proof idea is the following. Each input (x, y) œ {0, 1}n ◊ {0, 1}n to F yields an input
(a, y) œ {0, 1}t ◊ {0, 1}n to Ï where – = h(x). We define Ï on (–, y) to be equal to F on a
single corresponding F -input (xÕ, y) with xÕ

œ h≠1(–). Then we prove that Ï defined that
way gives a communication protocol computing F correctly on all inputs (x, y) œ Dom(f)

Formally, we define Ï as follows. For each – œ {0, 1}t and y œ {0, 1}n, consider xÕ
œ {0, 1}n

such that h(xÕ) = – and (xÕ, y) œ Dom(F ). If there is no such xÕ we define Ï(–, y) arbitrarily.
If there is such an xÕ, let

Ï(–, y) := F (xÕ, y).

Now we show that the resulting protocol computes F (x, y) correctly for any (x, y).
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Consider arbitrary (x, y) œ Dom(F ). Consider xÕ chosen for – = h(x) and y (it exists,
since clearly x itself satisfies all the necessary conditions).

Thus, we have

Ï(h(x), y) = F (xÕ, y).

It remains to prove that

F (xÕ, y) = F (x, y)

or equivalently,

f(xÕ
ü y) = f(x ü y).

For XOR of these two inputs of f we have

(xÕ
ü y) ü (x ü y) = xÕ

ü x.

Since h(x) = h(xÕ), we have that xÕ
ü x is a good shift. And since

(x, y), (xÕ, y) œ Dom(F ),

we have

x ü y, xÕ
ü y œ Dom(f).

We have that vertices x ü y and xÕ
ü y are connected in the partial h-induced graph and

by Lemma 14 f assigns the same value to them. Hence, the function Ï, together with h,
forms a communication protocol for F . J

3.2 Using coset structures on a Boolean cube to analyze non-adaptive

parity decision trees

We consider the vertices of the Boolean cube as a vector space Fn

2
. We show that a NADTü

protocol corresponds to a linear subspace of Fn

2
such that f is constant on each of its cosets

(the coset for a linear subspace L and a vector l is defined as the set {x + l|l œ L} and
denoted L+ l).

I Theorem 17. Let f : {0, 1}n æ {0, 1}. There is a p-bit NADTü protocol for f if and
only if there exists an n ≠ p dimensional subspace of {0, 1}n such that for each coset of that
subspace, f assigns the same value to all inputs of the coset where f is defined.

Proof. Suppose s1, . . . , sp, l form a valid NADTü protocol for f . We construct a matrix S
with rows s1, . . . , sp. If some of the rows are linearly dependent, we add rows arbitrarily
to make the rank of S equal to p. When S is multiplied on the right by some vector x, we
obtain all inner products of x with vectors s1, . . . , sp (and possibly other bits if we added
rows).

Consider the vector subspace {x|Sx = 0}. This is an n ≠ p dimensional space. For all
points in the same coset of this subspace, the tuple consisting of values of the inner products
(Ès1, xÍ, . . . , Èsp, xÍ) is the same, so is the value of l(Ès1, xÍ, . . . , Èsp, xÍ). For all points where
f is defined and lying in the same coset, the value of f must be equal to the value of l and
thus the same for all points in the coset.

ICALP 2024
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In the reverse direction, let Èe1, . . . , en≠pÍ be an n ≠ p dimensional subspace of {0, 1}n
such that for each of its cosets f is constant on all points of that coset on which it is defined.
We can represent this subspace in the form {x|Sx = 0} for some matrix S of size p ◊ n.

Vectors x and y are in the same coset of Èe1, . . . , en≠pÍ i� Sx = Sy. Thus, to compute
f(x) it is enough to compute the inner product of x with the rows of S. J

I Corollary 18. Consider a function f : {0, 1}n æ {0, 1} having valid communication
protocol f(x ü y) = Ï(h(x), y) where h : {0, 1}n æ {0, 1}t,Ï : {0, 1}t ◊ {0, 1}n æ {0, 1}.
Suppose there is an n≠ t dimensional subspace L of {0, 1}n and consider subgraphs of partial
h-induced graph each over vertices belonging to di�erent cosets of L. If all of these subgraphs
are connected then NADTü(f) Æ t.

Proof. By Theorem 16 f is constant on each coset. By Theorem 17 it follows that
NADTü(f) Æ t. J

4 Equality between Dæ
cc(F ) and NADTü(f)

In this section we will show that if Dæ
cc
(F ) = t and the number of undefined inputs is small,

then NADTü(f) = t as well. More specifically, we prove the following theorem.

I Theorem 19. If for the function f : {0, 1}n æ {0, 1} we have Dæ
cc
(F ) = t, where F (x, y) =

f(x ü y), and f is undefined on less than
!

n≠t+1

Â n≠t

2 Ê≠1

"
inputs, then NADTü(f) = t.

By Lemma 11 we have that
!

n≠t+1

Â
n≠t+1

2 Ê

"
= O( 2

n≠t

Ô
n≠t

) and since Â
n≠t

2
Ê ≠ 1 di�ers from

%
n≠t+1

2

&
by only a constant, it is easy to see that the same estimate applies to

!
n≠t+1

Â n≠t

2 Ê≠1

"
as

well. Thus, the number of undefined inputs is O( 2
n≠t

Ô
n≠t

).
The rest of the section is devoted to the proof of Theorem 19. The idea of the proof is as

follows. Consider the h-induced partition H corresponding to the communication protocol
of complexity t. We show that either the partition H corresponds to the cosets of an n ≠ t
dimensional subspace of {0, 1}n, which allows us to construct an NADTü protocol, or there
exist many good shifts. The structure of these good shifts imposes restrictions on f that
again allow us to construct an NADTü protocol.

We start with a simple case.

I Lemma 20. If there exists t-bit communication protocol, (h,Ï) for a function f : {0, 1}n æ

{0, 1}, and the h-induced partition H corresponds to cosets of an n ≠ t dimensional subspace
L of {0, 1}n, then NADTü(f) Æ t.

Proof. Since the partition H corresponds to the cosets of L, we have that for any inputs x
and y, if h(x) = h(y), then x ü y œ L and vice versa. In other words, all good shifts are in L
and any shift in L is good. Thus, connected components of the total h-induced graph are
cosets of L and are fully connected. By Corollary 18 we have that NADTü(f) Æ t. J

The structure of the proof for the other case is the following. We show that the total
h-induced graph is structured into connected components, each of which is a coset of a
k-dimensional subspace of {0, 1}n for k Ø n ≠ t. We show that there is a bijective graph
homomorphism of the k-dimensional Boolean cube onto each component. Furthermore, each
vertex in the total h-induced graph has a degree of at least 2

n

2t
≠ 1. We show that if we

remove fewer than
!

n≠t+1

Â n≠t

2 Ê≠1

"
vertices, each coset still contains one connected component. By

the way of contradiction, suppose this is not the case and some coset contains more than one
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connected component. We consider the smallest of these components, denote the set of its
nodes by S. We show that the number of neighboring vertices of S in the total h-induced
graph (excluding S itself) is not less than

!
n≠t+1

Â n≠t

2 Ê≠1

"
. This implies that after removing the

undefined inputs of f S cannot not be separated from other nodes in the coset. To show this
we treat separately cases of large and small |S|. For small |S| we use the fact that vertices
have high degree. For large |S| we use the vertex-isoperimetric inequality for the Boolean
cube.

I Lemma 21. Suppose there exists a t-bit communication protocol (h,Ï) for f : {0, 1}n æ

{0, 1} and the h-induced partition H classes do not correspond to cosets of an n≠t-dimensional
subspace of {0, 1}n. Let D be the set of good shifts for h. Then D contains a minimum of
n ≠ t+ 1 linearly independent vectors.

Proof. Suppose there are at most n≠t linearly independent good shifts e1, . . . , en≠t. Consider
a linear subspace of {0, 1}n spanned over by these shifts and add some vectors to it to make
it exactly n ≠ t dimensional if needed. Denote the resulting subspace L. As classes of H do
not correspond to the cosets of L and there are 2t of both classes and cosets there exist two
elements belonging to the same class and di�erent cosets. Their XOR is a good shift linearly
independent with e1, . . . , en≠t. We got a contradiction implying the lemma. J

I Lemma 22. Suppose there exists t-bit communication protocol (h,Ï) for f . Let D be the
set of all good shifts for h and {e1, . . . , ek} be the largest linearly independent subset of D.
Then the total h-induced graph H has the following properties.

Cosets of the subspace Èe1, . . . , ekÍ are connected components of H.
There is a bijective graph homomorphism of k-dimensional Boolean cube into each coset.

Proof. It is easy to see that all vertices in any coset are connected to each other. Let’s show
that no edges exist between vertices of di�erent cosets. Assume by contradiction that there
is an edge between vertices v and u from di�erent cosets. Note that u ü v /œ Èe1, . . . , ekÍ.
Thus, vectors e1, . . . , ek, u ü v form a linearly independent system of size k + 1, which is a
contradiction.

Now, let’s construct a homomorphism q from the Boolean cube {0, 1}k into the coset
v + Èe1, . . . , ekÍ for an arbitrary vertex v. Consider a matrix B that has vectors e1, . . . , ek as
its columns and let q(x) = v ü Bx. The image of q is within the coset v + Èe1, . . . , ekÍ, as
columns of B belong to the subspace Èe1, . . . , ekÍ. The mapping is bijective on v+Èe1, . . . , ekÍ,
as B’s columns are linearly independent. Finally, consider a pair of vertices x, y adjacent in
a Boolean cube. Since the vertices are adjacent, they only di�er in a single bit i. Thus,

q(x) ü q(y) = (v ü Bx) ü (v ü By) = B(x ü y) = ei.

Since ei œ D, an edge exists between q(x) and q(y), implying that q is a graph homomorphism.
J

I Lemma 23. Suppose there exists t-bit communication protocol (h,Ï) for f : {0, 1}n æ {0, 1}.
Then in the total h-induced graph, the degree of any vertex is not less than 2

n

2t
≠ 1.

Proof. Let’s consider the largest class in the h-induced partition H. Since the number of
classes is at most 2t, the largest class contains at least 2

n

2t
elements. Fix an element of the

class and compute its XOR with all elements in the same class H. We have 2
n

2t
XORs in

total, 2
n

2t
≠ 1 of which are non-zero. Since each XOR is computed between elements in the

same class, these XORs are good shifts. For all vertices in the h-induced graph for each good
shift we draw an edge from the vertex corresponding to this shift. Therefore, the degree of
any vertex is at least 2

n

2t
≠ 1. J
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I Lemma 24. If A is a subset of k-dimensional Boolean cube satisfying V
!
m,

%
m≠1

2

&
≠ 2

"
Æ

|A| Æ 2k≠1 for some m, then |�ÕA| Ø
!

m

Â
m≠1

2 Ê≠1

"
.

The proof of the lemma can be found in the full version of the paper. The proof heavily
relies on Theorem 3. Finally, we are ready to prove Theorem 19.

Proof of Theorem 19. We are given t-bit communication protocol (h,Ï) for F . By
Lemma 21, the h-induced partition H either corresponds to cosets of an n ≠ t dimen-
sional subspace of {0, 1}n (and then by Lemma 20 we have NADTü(f) Æ t), or the set
of good shifts D contains at least n ≠ t+ 1 linearly independent vectors. Let Èe1, . . . , ekÍ,
where k Ø n ≠ t+ 1, be the largest subset of linearly independent vectors in D. Consider
the cosets of the subspace Èe1, . . . , ekÍ. We will show that if we remove fewer than

!
n≠t+1

Â n≠t

2 Ê≠1

"

vertices from the total h-induced graph, each coset will contain no more than one connected
component. Assume by contradiction that after removing the vertices, some coset splits into
several connected components. Let A be the smallest of these components. If there are at
most V (n ≠ t+ 1, Ân≠t

2
Ê ≠ 2) ≠ 1 vertices in A, consider a vertex a in A. Given the degree of

a is at least 2n≠t
≠ 1, a has at least

2n≠t
≠ V

3
n ≠ t+ 1,

7
n ≠ t

2

8
≠ 2

4

Ø V

3
n ≠ t+ 1,

7
n ≠ t

2

84
≠ V

3
n ≠ t+ 1,

7
n ≠ t

2

8
≠ 2

4
Ø

3
n ≠ t+ 1%
n≠t

2

&
≠ 1

4

neighbors outside A.
On the other hand, suppose A has at least V (n ≠ t + 1, Ân≠t

2
Ê ≠ 2) vertices. Since A

is the smallest connected component in its coset it also follows that A has no more than
2k≠1 vertices. By Lemma 24 we have |�ÕA| Ø

!
n≠t+1

Â
n≠t

2 Ê≠1

"
, which is more than the number of

removed vertices, a contradiction. Thus, cosets cannot be split into several components and
by Corollary 18 we have NADTü(f) Æ n ≠ k Æ t ≠ 1, which is a contradiction. J

5 Separations between Dæ
cc(F ) and NADTü(f)

In this section we show that if the number of undefined inputs is large, there is a gap between
Dæ

cc
(F ) and NADTü(f). That is, we aim to come up with a function f such that Dæ

cc
(F ) is

small and NADTü(f) is large.
The key idea in our construction is that in h-induced graph for the intended communication

protocol the edges connect only vertices with small Hamming distance between them. Then,
if the function f has 0-inputs and 1-inputs far away from each other, they are not connected
and h corresponds to a valid protocol. We will ensure that at the same time f has large
NADTü complexity.

We start with the construction of the functions, then investigate their NADTü complexity
and then prove upper bounds on Dæ

cc
complexity of the corresponding XOR functions. The

latter part is through the reduction to covering codes.

I Definition 25. For a parameter k define fk : {0, 1}n æ {0, 1,‹} in the following way.

fk(x) =

Y
__]

__[

0 for |x| Æ k,

‹ for k + 1 Æ |x| Æ n ≠ 1,
1 for |x| = n.

We denote the corresponding XOR function by Fk.
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Note, that the number of undefined inputs in fk is V (n, n ≠ k ≠ 1) ≠ 1.
It turns out that fk has reasonably large NADTü and DTü complexities.

I Theorem 26. NADTü(fk) = DTü(fk) = k + 1.

Proof. Since DTü(f) Æ NADTü(f) for any f , it is enough to prove that NADTü(fk) Æ k+1
and DTü(fk) Ø k + 1.

For the upper bound, observe that it is enough to query variables x1, . . . , xk+1. If all of
them are equal to 1, we output 1, otherwise we output 0. It is easy to see that this protocol
computes fk correctly.

For the lower bound suppose, for the sake of contradiction, that an adaptive parity
decision tree exists that can compute the function f with k or fewer queries. Consider the
path corresponding to the input e = (1, . . . , 1). Let’s assume that the decision tree queried
the parities Èsi, eÍ for s1, . . . , sk. The answers to the queries are equal to Ès1, eÍ, . . . , Èsk, eÍ.
Consider a matrix B ™ Fk◊n consisting of rows s1, . . . , sk.

Denote a = Be. In particular, we have that a lies in the subspace generated by columns
of B. Since the rank of B is at most k (the matrix has k rows), there is a subset of at most
k columns generating this subspace. In particular, there is x œ {0, 1}n with |x| Æ k, such
that a = Bx. That is, Be = Bx and the protocol behaves the same way on e and x, which is
a contradiction, since fk(e) = 1 and fk(x) = 0. J

I Remark 27. Since fk has large (adaptive) parity decision tree complexity and for any
F : {0, 1}n◊{0, 1}n æ {0, 1} we have Dæ

cc
(F ) Ø Dcc(F ), all separations provided by functions

fk translate into the same separations between DTü and Dcc.
Next, we proceed to the upper bound on the Dæ

cc
(Fk).

I Theorem 28. Suppose for some n, k and t there is a (n, 2t, R) covering code C for
R =

%
n≠k≠1

2

&
. Then, Dæ

cc
(Fk) Æ t.

Proof. Split the points of {0, 1}n into balls with radius R with centers in the points of C (if
some point belongs to several balls, attribute it to one of them arbitrarily). This results in a
partition of the cube into 2t subsets with the diameter of each subset at most n ≠ k ≠ 1.

The proof can be finished through Theorem 16, but to make it more self-contained we
directly describe communication protocol.

On input x Alice sends as h(x) the index of the ball containing x. Bob computes ¬y,
componentwise negation of y, and outputs 1 if it is in the same ball. If this is not the case,
Bob outputs 0.

Clearly, the complexity of this protocol is at most t. For the correctness of the protocol,
if f(x ü y) = 1, then x = ¬y and the protocol clearly outputs 1. However, if f(x ü y) = 0,
then |xü y| Æ k and thus dist(x,¬y) Ø n≠ k. In this case x and ¬y are not in the same ball
and the protocol outputs 0. J

I Theorem 29. For any n and k we have

Dæ
cc
(Fk) Æ n ≠ log V (n,R) + logn

for R =
%
n≠k≠1

2

&
.

Proof. By Theorem 6 there exists a (n, 2t, R) covering code for

log 2t = t Æ n ≠ log V (n,R) + logn.

The theorem follows from Theorem 28. J
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From this we can get a separation for a wide range of parameters.

I Corollary 30. Suppose k = cn for some constant 0 < c < 1. Then NADTü(fk) = cn+ 1
and

Dæ
cc
(Fk) Æ

3
1 ≠ H

3
1 ≠ c

2

44
n+O(logn).

In particular, Dæ
cc
(Fk) < NADTü(fk). The number of undefined inputs for fk is 2n≠O( 2

H(c)n
Ô
n

)
if c < 1/2, is equal to (1 + o(1))2n≠1 if c = 1/2, and is O( 2

H(1≠c)n
Ô
n

) if c > 1/2.

Proof. The equality for NADTü is proved in Theorem 26.
For communication complexity bound we apply Theorem 29. We have R =

Í
(1≠c)n≠1

2

Î
=

(1≠c)n

2
+O(1) and by Lemmas 11 and 13 we have

log V (n,R) = H

3
1 ≠ c

2

4
n ≠ O(logn).

By Theorem 29 we have

Dæ
cc
(Fk) Æ n ≠ log V (n,R) + logn =

3
1 ≠ H

3
1 ≠ c

2

44
n+O(logn).

To show that Dæ
cc
(Fk) < NADTü(fk) we need to compare k = cn with the bound on

communication complexity. It is easy to see that

1 ≠ H

3
1 ≠ c

2

4
< c

for all 0 < c < 1 (the left hand-side and the right hand-side are equal for c = 0 and c = 1
and the left hand-side is concave in c).

The bounds on the number of undefined inputs follow easily from Lemma 11. J

The largest gap we can get is the following.

I Corollary 31. For k = �(
Ô
n logn) we have that NADTü(fk) = �(

Ô
n logn) and

Dæ
cc
(Fk) = O(logn). The number of undefined inputs for fk is 2n ≠ 2�(

Ô
n log

3/2
n).

Proof. For k = �(
Ô
n logn) we have R = n

2
≠ �(

Ô
n logn) in Theorem 29. By Lemma 12

we have V (n,R) = 2
n

poly(n)
and as a result Dæ

cc
(Fk) = O(logn).

For the number of undefined inputs, we apply Lemma 10:
1n

k

2k

Æ V (n, k) Æ

1en

k

2k

.

For k = �(
Ô
n logn) it is easy to see that both sides are 2�(

Ô
n log

3/2
n). From this the

estimate on the number of undefined inputs follows. J

6 Extreme Cases

In this section we discuss extreme cases. All proves can be found in the full version of the
paper.

For small values of complexity measures we have the following equality results.

I Theorem 32. Suppose F satisfies Dæ
cc
(F ) = 1. It then follows that NADTü(f) = 1.
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I Theorem 33. If function f is undefined on fewer than 2n≠3 inputs and Dæ
cc
(F ) = 2, then

NADTü(f) = 2.

On the other end of the spectrum, we show that if NADTü(f) is really large, then it is
equal for all partial functions.

I Theorem 34. For any partial function f : {0, 1}n æ {0, 1,‹}, if NADTü(f) Ø n≠ 1, then
Dæ

cc
(F ) = NADTü(f).

The largest value of NADTü for which we get separation is n ≠ 2.

I Theorem 35. Dæ
cc
(Fn≠3) Æ n ≠ �(logn), whereas NADTü(fn≠3) = n ≠ 2. The number

of undefined inputs for fn≠3 is n(n+1)

2
.

The smallest value of Dæ
cc

for which we get a separation is 7.

I Theorem 36. For any n Ø 32 we have Dæ
cc
(F7) Æ 7, whereas NADTü(f7) = 8.
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Abstract

We show that the minimum total coe�cient size of a Nullstellensatz proof of the pigeonhole principle
on n + 1 pigeons and n holes is 2�(n). We also investigate the ordering principle and construct
an explicit Nullstellensatz proof for the ordering principle on n elements with total coe�cient size
2n ≠ n.
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1 Introduction

Given a system {pi = 0 : i œ [m]} of m polynomial equations, a Nullstellensatz proof
of infeasibility is an equality of the form 1 =

q
m

i=1
piqi for some polynomials {qi = 0 :

i œ [m]}. Hilbert’s Nullstellensatz1 says that the Nullstellensatz proof system is complete
over algebraically closed fields, i.e., a system of polynomial equations has no solutions over
an algebraically closed field if and only if there is a Nullstellensatz proof of infeasibility.
However, Hilbert’s Nullstellensatz does not give any bounds on the degree or size needed for
Nullstellensatz proofs.

The degree of Nullstellensatz proofs has been extensively studied. Grete Hermann showed
a doubly exponential degree upper bound for the ideal membership problem [24] which
implies the same upper bound for Nullstellensatz proofs. Several decades later, W. Dale
Brownawell gave an exponential upper bound on the degree required for Nullstellensatz
proofs over algebraically closed fields of characterisic zero [11]. A year later, János Kollár
showed that this result holds for all algebraically closed fields [27].

For specific problems, the degree of Nullstellensatz proofs can be analyzed using designs
[14]. Using designs, Nullstellensatz degree lower bounds have been shown for many problems
including the pigeonhole principle, the induction principle, the housesitting principle, and
the mod m matching principles [6, 5, 15, 16, 12]. More recent work showed that there is
a close connection between Nullstellensatz degree and reversible pebbling games [19] and
that lower bounds on Nullstellensatz degree can be lifted to lower bounds on monotone span
programs, monotone comparator circuits, and monotone switching networks [28].

1 Technically, this is the weak form of Hilbert’s Nullstellensatz. Hilbert’s Nullstellensatz actually says that
given polynomials p1, . . . , pm and another polynomial p, if p(x) = 0 for all x such that pi(x) = 0 for
each i œ [m] then there exists a natural number r such that pr is in the ideal generated by p1, . . . , pm.
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117:2 Nullstellensatz Total Coe�cient Size Bounds for the Pigeonhole Principle

For analyzing the size of Nullstellensatz proofs (i.e., the number of monomials in the
proof), a powerful technique is the size-degree relation shown by Russell Impagliazzo, Pavel
Pudlák, and Ji�í Sgall for polynomial calculus [25], which also holds for resolution proofs [7]
and for sum of squares proofs with {0, 1} variables [3]. The size-degree relation says that if
there is a size S polynomial calculus proof then there is a polynomial calculus proof of degree
O(

Ô
n logS). Thus, if we have an �(n) degree lower bound for polynomial calculus, this

implies a 2�(n) size lower bound for polynomial calculus (which also holds for Nullstellensatz
as Nullstellensatz is a weaker proof system). However, the size-degree relation does not give
any size lower bound when the degree is O(

Ô
n), and we know of few other techniques for

analyzing the size of Nullstellensatz proofs.
In this paper, instead of investigating the degree or size of Nullstellensatz proofs, we

investigate the total coe�cient size of Nullstellensatz proofs, i.e., the sum of the magnitudes
of the coe�cients of the monomials in the proof. Total coe�cient size is a reasonably
natural measure which is relatively unexplored (though as we discuss below, there has been
considerable research on closely related measures such as unary Nullstellensatz size, unary
Sherali-Adams size, and the total bit complexity of proofs [2, 1, 9, 20, 31]). There are several
reasons why total coe�cient size bounds in particular are interesting.

First, analyzing the total coe�cient size of proofs may give insight into proof size in
settings where we currently cannot prove size lower bounds. If we can prove a large total
coe�cient size lower bound, this shows that any proof must either have large size or involve
large coe�cients. Unless there is a reason to suspect that large coe�cients are helpful for
making the proof shorter, this gives considerable evidence for a lower bound on proof size.

Second, lower bounds on total coe�cient size have some direct implications. As observed
by [20], a total coe�cient size lower bound for the stronger Sherali-Adams proof system
implies a lower bound for the reversible resolution proof system which captures the Max-SAT
resolution proof system (see [10]) for Max SAT. Similarly, [20] observes that a total coe�cient
size lower bound for Nullstellensatz implies a lower bound for the reversible resolution with
terminals proof system, which is a weaker variant of reversible resolution.

Finally, investigating the total coe�cient size of proofs gives insight into the following
question. Are there natural examples where having fractional coe�cients greatly reduces the
total coe�cient size needed for Nullstellensatz and/or Sherali-Adams proofs? We note that
this question is not addressed by [20]. For example, [20] shows that there are n-variate CNF
formulas F such that F can be refuted by constant width resolution proofs but any Sherali-
Adams proof of F requires either exponentially many monomials or requires coe�cients of
exponential size (see Theorem 1 and the last paragraph of Section 1.1 in [20]). However, this
does not rule out the existence of a proof where there are exponentially many monomials
but the coe�cient for each monomial is exponentially small so the total coe�cient size is
still small.

Proving total coe�cient size lower bounds for a problem rules out this possibility. Con-
versely, if there is a natural example where the minimum proof size is large but the total
coe�cient size is small, that would be quite interesting.

1.1 Our results

In this paper, we show that the minimum total coe�cient size of a Nullstellensatz proof of
the pigeonhole principle is 2�(n). More precisely, we show the following bounds.

I Theorem 1. For all n Ø 1, any Nullstellensatz proof of the pigeonhole principle with n+ 1
pigeons and n holes has total coe�cient size �

1
n

3
4

1
2Ô
e

2n2
.
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We note that this lower bound also holds for the functional pigeonhole principle, where
each pigeon must go to exactly one hole (instead of at least one hole).

I Theorem 2. For all n Ø 1, there is a Nullstellensatz proof of the pigeonhole principle with

n+ 1 pigeons and n holes with total coe�cient size at most 25(n+1)
.

I Remark 3. Note that Nullstellensatz size lower bounds do not imply total coe�cient size
lower bounds, because we could have a proof with many monomials but a small coe�cient
(absolute value less than 1) on each monomial. Indeed, in Appendix A, we show an example
where the minimum total coe�cient size of a Nullstellensatz proof is smaller than the
minimum size of a Nullstellensatz proof. Thus, the exponential size polynomial calculus lower
bounds for the pigeonhole principle from Razborov’s �(n) degree lower bound for polynomial
calculus [30] and the size-degree relation [25] do not imply total coe�cient size lower bounds
for the pigeonhole principle.

In addition, we investigate the total coe�cient size of Nullstellensatz proofs of the ordering
principle in Appendix C. We show the following upper bound by constructing an explicit
Nullstellensatz proof.

I Theorem 4. For all n Ø 3, there is a Nullstellensatz proof of the ordering principle on n
elements with size and total coe�cient size 2n ≠ n. This upper bound is tight for n Æ 5.

In the full version of this paper [29], we also discuss total coe�cient size for the Sherali-
Adams and sum of squares proof systems. We observe that even though resolution is a
dynamic proof system, the O(n3) size resolution proof of the ordering principle found by
Gunnar Stålmark [32] can be captured by a one line sum of squares proof with small size
and coe�cients.

1.2 Comparison with related work

Like previous resolution, polynomial calculus, and Sherali-Adams lower bounds for the
pigeonhole principle (e.g. [22, 30, 18]), our analysis is inspired by the idea that if we only
look at a small number of pigeons, we cannot detect a problem. That said, our analysis
di�ers considerably from previous analyses of the pigeonhole principle as we need to bound
the value of a linear program by constructing a dual certificate (see Proposition 12). To
construct this dual certificate, we need to assign a value to every possible assignment of the
variables, so we need to consider all n pigeons at once which requires a di�erent analysis.

In terms of the overall framework, the work which is most similar to ours is that of
De Rezende, Potechin, and Risse [31] which shows a total coe�cient size Sherali-Adams
lower bound for showing that a random graph does not contain a large clique. Like our
paper, [31] constructs a dual certificate which assigns a value to every possible assignment of
the variables. That said, [31] uses di�erent techniques to construct and analyze their dual
certificate. In particular, while the construction in [31] is inspired by the pseudo-calibration
technique used to prove SoS lower bounds for planted clique [4] and the analysis heavily uses
the fact that the graph is random, our construction and analysis is combinatorial and takes
advantage of symmetry.

Another work which is closely related to ours is that of Göös et al. [20]. [20] analyzes the
size of unary Nullstellensatz and Sherali-Adams proofs, which is equivalent to analyzing the
total coe�cient size of Nullstellensatz and Sherali-Adams proofs with the added restriction
that all coe�cients are integers. The authors show that there are deep connections between
unary Nullstellensatz, unary Sherali-Adams, resolution, and total NP search problems
(TFNP). In particular, they prove the following results (among others) which show that there
are considerable advantages to having the restriction that all coe�cients are integers.

ICALP 2024
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1. Resolution is not polynomially simulated by unary Sherali-Adams, and reversible resolution
is not polynomially simulated by Nullstellensatz. Since unary Sherali-Adams can simulate
reversible resolution, this implies that resolution is not simulated by reversible resolution.

2. Roughly speaking, unary Nullstellensatz corresponds to the TFNP class PPAD which
corresponds to the principle that every directed graph with an unbalanced node (i.e., a
node whose indegree is not equal to its outdegree) must have another unbalanced node.
Similarly, unary Sherali-Adams corresponds to the TFNP class PPADS which corresponds
to the principle that every directed graph with a postitively unbalanced node (outdegree
exceeds indegree) must have a negatively unbalanced node (indegree exceeds outdegree).

3. There is a reversible resolution refutation of a CNF F if and only if there is both a
resolution refutation of F and a unary Sherali-Adams refutation of F . Similarly, there is
a reversible resolution with terminals refutation of a CNF F if and only if there is both a
resolution refutation of F and a unary Nullstellensatz refutation of F .

In this paper, we show that there are also advantages to allowing fractional coe�cients.
Proving a total coe�cient size lower bound when fractional coe�cients are allowed removes
the possibility of having a proof with many monomials but a small total coe�cient size.
In addition, allowing fractional coe�cients gives us a linear program for minimum total
coe�cient size which can be analyzed directly. As a result, while [20] needs several steps to
show their separations, we show our bounds directly.

Finally, a natural alternative to analyzing the size or total coe�cient size of proofs is to
analyze the bit complexity of proofs. One way to prove a lower bound on the bit complexity
of a proof is to show an exponentially larger lower bound on the total coe�cient size of the
proof. Hakoniemi [23] uses this approach to give an example where there is a polynomial size
sum of squares proof of degree 2 but every sum of squares proof requires doubly exponential
total coe�cient size and thus exponential bit complexity.

While it is generally hard to lower bound the bit complexity of a proof without lower
bounding the proof size or total coe�cient size, this has been done for the binary value
principle which says that a number written in binary with no minus sign must be non-negative.
More precisely, if x1, . . . , xn œ {0, 1} then we cannot have that 1+x1+2x2+ . . .+2n≠1xn = 0.
By considering the primes p œ [1, 2n] and showing that the proof must involve a coe�cient
which is divisible by all such primes, [1] and [2] show bit complexity lower bounds for
powerful proof systems, namely polynomial calculus with extensions and the ideal proof
system (see [21]) where the latter bound is conditional on the Shub-Smale hypothesis. This
technique is powerful but is specialized to this problem and is very di�erent from our
techniques.

2 Nullstellensatz total coe�cient size

We start by defining total coe�cient size for Nullstellensatz proofs and describing a linear
program for finding the minimum total coe�cient size of a Nullstellensatz proof. In this
paper, we only consider problems on Boolean variables, so we give definitions which are
specialized for this setting.

I Definition 5. For each Boolean variable xi, we define the twin variable x̄i to be x̄i = 1≠xi.

I Definition 6. Given Boolean variables x1, . . . , xN , we define a monomial to be a product

of the form
!r

iœS
xi

" 1r
jœT

x̄j

2
for some disjoint subsets S, T of [N ].
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I Definition 7. Given a polynomial f on Boolean variables x1, . . . , xN , we define the total

coe�cient size T (f) of f to be the minimum sum of the magnitudes of coe�cients when we

decompose f into monomials. For example, if f(x1, x2) = 1≠x1 ≠x2+2x1x2, then T (f) = 2
as we can write f = x̄1x̄2 + x1x2 = (1 ≠ x1)(1 ≠ x2) + x1x2.

We will use the following terminology:

I Definition 8. Given a system {pi = 0 : i œ [m]} of polynomial equations, we call each of

the pi an axiom. We say that a polynomial W is a weakening of the axiom pi if W = rpi for
some monomial r.

We now define Nullstellensatz proofs and their total coe�cient size.

I Definition 9. Given a system {pi = 0 : i œ [m]} of polynomial equations on Boolean

variables x1, . . . , xN , a Nullstellensatz proof of infeasibility is an equality of the form

1 =
mÿ

i=1

piqi +
Nÿ

j=1

(x2

j
≠ xj)gj +

Nÿ

j=1

(xj + x̄j ≠ 1)hj

for some polynomials {qi : i œ [m]}, {gj : j œ [N ]}, and {hj : j œ [N ]}. We define the total

coe�cient size of such a Nullstellensatz proof to be
q

m

i=1
T (qi).

I Remark 10. We do not include the total coe�cient size of pi, gj , or hj in the total
coe�cient size of the proof as we want to focus on the complexity of the proof as opposed to
the complexity of the axioms and manipulating the Boolean variables. That said, in this
paper we only consider systems of polynomial equations where each pi is a monomial, so
this choice does not matter: in this setting T (pi) = 1 for all i, and it is both possible and
optimal to take gj = 0 for all j.2 In terms of weakenings, in this setting a Nullstellensatz
proof is an equality

1 =
ÿ

W

cWW,

where W ranges over all possible weakenings of axioms and cW œ R. The total coe�cient
size of a Nullstellensatz proof is

q
W

|cW |.
The minimum total coe�cient size of a Nullstellensatz proof can be found using a linear

program. To illustrate this, we now give an example.

I Example 11. Consider the following system of equations on two variables x1, x2:

1 ≠ x1 = 0
1 ≠ x2 = 0
x1x2 = 0

Given these axioms, the possible weakenings W (modulo the Boolean axioms) are 1 ≠ x1,
(1 ≠ x1)x2, (1 ≠ x1)(1 ≠ x2), 1 ≠ x2, x1(1 ≠ x2), and x1x2.

2 In other words, we can assume without loss of generality that all terms in a Nullstellensatz proof have
degree at most 1 in each variable. If an axiom contains a variable xi, there is no point in multiplying
the axiom by xi or x̄i = (1 ≠ xi), because x2

i = xi and xi(1 ≠ xi) = 0 modulo the Boolean axioms. The
reasoning is similar in the case that an axiom contains a variable x̄i = (1 ≠ xi).
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To find a Nullstellensatz proof with minimum total coe�cient size, we write a linear
program with a variable cW for each weakening W . We also have a variable bW for each
weakening W representing the absolute value of cW with the constraints bW ≠ cW Ø 0 and
bW + cW Ø 0. The objective is to minimize

q
W

bW .
To ensure that

q
W

cWW = 1, we have a constraint for each of the 4 possible assignments
of values to the variables. For example, one possible assignment is x1 = 0, x2 = 0. We ensure
that

q
W

cWW evaluates to 1 on this assignment by having the constraint

c(1≠x1) + c(1≠x2) + c(1≠x1)(1≠x2) = 1,

because the weakenings 1 ≠ x1, 1 ≠ x2, and (1 ≠ x1)(1 ≠ x2) evaluate to 1 on this assignment
while the other weakenings evaluate to 0. The analogous constraints for the other 3 possible
assignments of values to the variables are as follows:
1. c(1≠x1) + c(1≠x1)x2 = 1 for the assignment x1 = 0, x2 = 1
2. c(1≠x2) + cx1(1≠x2) = 1 for the assignment x1 = 1, x2 = 0
3. cx1x2 = 1 for the assignment x1 = 1, x2 = 1.

The set of optimal solutions to this linear program is

{cx1x2 = 1, c(1≠x1) = cx1(1≠x2) = a, c(1≠x1)x2 = c(1≠x2) = 1≠a, c(1≠x1)(1≠x2) = 0 : a œ [0, 1]}

which corresponds to the equality

1 = x1x2 + a ((1 ≠ x1) + x1(1 ≠ x2)) + (1 ≠ a) ((1 ≠ x1)x2 + (1 ≠ x2)) .

In the same way as the above example, we can find the minimum total coe�cient size
of any system of equations with a linear program. In order to show a lower bound on total
coe�cient size, we will analyze the dual of this linear program. Because the primal has a
constraint for each assignment of values to the variables x œ {0, 1}N , the dual has a variable
for each assignment x œ {0, 1}N . We will let D : {0, 1}N æ R denote the dual.

We observe that D induces a linear map ‚D from polynomials to R in a natural way, by
taking ‚D(f) =

q
xœ{0,1}N D(x)f(x). It turns out that the dual is equivalent to:

Maximize ‚D(1) subject to the constraint that for each weakening W , | ‚D(W )| Æ 1.

Weak duality, which is what we need to prove lower bounds on total coe�cient size, can
be seen directly as follows.

I Proposition 12. If ‚D is a linear map from polynomials to R such that | ‚D(W )| Æ 1 for all

weakenings W , then any Nullstellensatz proof has total coe�cient size at least ‚D(1).

Proof. Given a Nullstellensatz proof 1 =
q

m

i=1
piqi, applying ‚D to both sides gives ‚D(1) =q

m

i=1
‚D(piqi) Æ

q
m

i=1
T (qi). The inequality holds because for any qi, for any way of writing

qi in terms of monomials r as qi =
q

r
cirr, we have ‚D(piqi) =

q
r
cir ‚D(rpi) Æ

q
r
|cir|

because rpi is a weakening. J

3 Total coe�cient size lower bound for the pigeonhole principle

In this section, we prove Theorem 1, our total coe�cient size lower bound for the pigeonhole
principle. We start by formally defining the pigeonhole principle.
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I Definition 13 (pigeonhole principle (PHPn)). Intuitively, the pigeonhole principle says that

if n+ 1 pigeons are assigned to n holes, then some hole must have more than one pigeon.

Formally, for n Ø 1, we define PHPn to be the statement that the following system of axioms

is infeasible:

For each i œ [n + 1] and j œ [n], we have a variable xi,j and the Boolean axiom

x2

i,j
≠ xi,j = 0. xi,j = 1 represents pigeon i being in hole j, and xi,j = 0 represents pigeon

i not being in hole j.
For each i œ [n+ 1], we have the axiom

r
n

j=1
x̄i,j = 0 representing the constraint that

each pigeon must be in at least one hole.

For each pair of distinct pigeons i1, i2 œ [n+ 1] and each hole j œ [n], we have the axiom

xi1,jxi2,j = 0 representing the constraint that pigeons i1 and i2 cannot both be in hole j.

We prove our lower bound on total coe�cient size for PHPn by constructing and analyzing
a dual solution D : {0, 1}(n+1)n æ R. In our dual solution, the only assignments of values to
the variables x œ {0, 1}(n+1)n for which D(x) ”= 0 are those where each pigeon goes to exactly
one hole, i.e., for each pigeon i, exactly one of the xi,j is 1. As a result, Theorem 1 also
applies to the functional pigeonhole principle. Note that there are nn+1 such assignments. In
the rest of this section, when we refer to assignments or write a summation or expectation
over assignments x, we refer specifically to these nn+1 assignments.

Recall that the dual constraints are
‚D(W ) =

ÿ

xœ{0,1}N

D(x)W (x) œ [≠1, 1]

for all weakenings W . Note that since D(x) is only nonzero for assignments x where each
pigeon goes to exactly one hole, for any weakeningW of an axiom of the form

r
n

j=1
x̄i,j = 0, we

have ‚D(W ) = 0. Thus, it is su�cient to consider weakenings W of the axioms xi1,jxi2,j = 0.
For simplicity, in order to construct a dual solution, we first ignore the constraints

| ‚D(W )| Æ 1. Then, we obtain a dual solution by normalizing D, i.e., dividing D by
maxW | ‚D(W )|. Thus, we can rewrite the objective value of the dual program as ‚D(1)

maxW |‚D(W )|
.

Letting E denote the expectation over a uniform assignment where each pigeon goes to
exactly one hole, ‚D(1)

maxW |‚D(W )|
= E(D)

maxW |E(DW )| . Thus, it is su�cient to construct D and
analyze E(D) and maxW |E(DW )|.

Before constructing and analyzing D, we provide some intuition for our construction.
The idea is that if we consider a subset of n pigeons then D should behave like the indicator
function for whether those n pigeons all go to di�erent holes. More concretely, for any
polynomial p which does not depend on some pigeon i (i.e., p does not contain xi,j or x̄i,j

for any j œ [n]), we want

E(Dp) = n!
nn

E(p | all pigeons in [n+ 1] \ {i} go to di�erent holes)

Given this intuition, we now present our construction. Our dual solution D will be a
linear combination of the following functions:

I Definition 14 (functions JS). For each subset of pigeons S ( [n + 1] of size at most n,
we define the function JS that maps assignments to {0, 1} so that for each assignment x,
JS(x) = 1 if all pigeons in S are in di�erent holes according to x and JS(x) = 0 otherwise.

Note that if |S| = 0 or |S| = 1, then JS is the constant function 1. In general, the
expectation of JS over a uniform assignment is E(JS) =

1r|S|
k=1

(n+ 1 ≠ k)
2
/n|S|.
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I Definition 15 (dual solution D). Our dual solution D is:

D =
ÿ

S([n+1]

cSJS ,

where the coe�cients cS are cS = (≠1)
n≠|S|

(n≠|S|)!
nn≠|S| .

We will lower-bound the dual value E(D)/maxW |E(DW )| by computing E(D) and then
upper-bounding maxW |E(DW )|. In both calculations, we will use the following key property
of D which we introduced in our intuition for the construction:

I Lemma 16. If p is a polynomial which does not depend on pigeon i (i.e., p does not contain

any variables of the form xi,j or x̄i,j), then E(Dp) = E(J[n+1]\{i}p).

Proof. Without loss of generality, suppose p does not contain any variables of the form x1,j

or x̄1,j . Let T be any subset of pigeons that does not contain pigeon 1 and that has size at
most n ≠ 1. Observe that

E(JTfi{1}p) =
n ≠ |T |

n
E(JT p)

because when the pigeons in T go to di�erent holes, the probability that pigeon 1 goes to a
di�erent hole is n≠|T |

n
, and p does not depend on the location of pigeon 1. Since

cTfi{1} = (≠1)n≠1≠|T |(n ≠ 1 ≠ |T |)!
nn≠1≠|T |

= ≠ n

n ≠ |T | ·
(≠1)n≠|T |(n ≠ |T |)!

nn≠|T | = ≠ n

n ≠ |T |cT

we have that for all T ( {2, . . . , n+ 1}, E(cTfi{1}JTfi{1}p) + E(cTJT p) = 0. Thus, all terms
in the sum E(Dp) =

q
S([n+1]

E(cSJSp) cancel, except J{2,3,...,n+1}. Since c{2,3,...,n+1} = 1,
we have that E(Dp) = E(J{2,3,...,n+1}p), as needed. J

The value of E(D) follows immediately:

I Corollary 17.

E(D) = n!
nn

.

Proof. Let p = 1. By Lemma 16, E(D) = E(J{2,...,n+1}) = n!

nn . J

3.1 Upper bound on maxW |E(DW )|
We now upper bound maxW |E(DW )|. To do this, we introduce the following notation:

I Definition 18 (HW,i). Given a weakening W , we define a set of holes HW,i ™ [n] for each

pigeon i œ [n+ 1] so that W (x) = 1 if and only if each pigeon i œ [n+ 1] is mapped to one of

the holes in HW,i. More precisely,

If W contains terms xi,j1 and xi,j2 for distinct holes j1, j2, then HW,i = ÿ (i.e., it is

impossible that W (x) = 1 because pigeon i cannot go to both holes j1 and j2).

If W contains exactly one term of the form xi,j, then HW,i = {j}. (i.e., for all x such

that W (x) = 1, pigeon i goes to hole j).
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If W contains no terms of the form xi,j, then HW,i is the subset of holes j such that W
does not contain the term x̄i,j . (i.e., if W contains the term x̄i,j, then for all x such that

W (x) = 1, pigeon i does not go to hole j.)

The key property we will use to bound maxW |E(DW )| follows immediately from
Lemma 16:

I Lemma 19. Let W be a weakening. If there exists some pigeon i œ [n + 1] such that

HW,i = [n] (i.e., W does not contain any terms of the form xi,j or x̄i,j), then E(DW ) = 0.

Proof. Without loss of generality, suppose W is a weakening of the axiom x2,1x3,1 = 0 and
HW,1 = [n]. By Lemma 16, E(DW ) = E(J{2,...,n+1}W ). However, E(J{2,...,n+1}W ) = 0
because if W (x) = 1, then pigeons 2 and 3 must both go to hole 1. J

We now make the following definition and then state a corollary of Lemma 19.

I Definition 20 (W flip

S
). Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2

and hole j. Let S ™ [n + 1] \ {i1, i2}. We define W flip

S
, which is also a weakening of the

axiom xi1,jxi2,j = 0, as follows.

For each pigeon i3 œ S, we define W flip

S
so that H

W
flip
S ,i3

= [n] \HW,i3 .

For each pigeon i3 /œ S, we define W flip

S
so that H

W
flip
S ,i3

= HW,i3 .

Note: Technically, there are multiple possible weakenings W flip

S
which satisfy these properties

(e.g. if n = 2, W = x1,1x2,1x3,1, and S = {3}, then W flip

S
can be x1,1x2,1x̄3,1 or x1,1x2,1x3,2

or even x1,1x2,1x̄3,1x3,2, among others). We arbitrarily choose any such weakening W flip

S
.

In other words, W flip

S
is obtained from W by flipping the sets of holes that the pigeons in

S can go to in order to make the weakening evaluate to 1.

I Corollary 21. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole

j. Let S ™ [n+ 1] \ {i1, i2}. Then

E
1
DW flip

S

2
= (≠1)|S| · E(DW ).

Proof. It su�ces to show that for i3 œ [n+ 1] \ {i1, i2}, we have E
1
DW flip

{i3}

2
= ≠E(DW ).

Indeed, let W Õ be a weakening such that W Õ(x) = W (x) + W flip

{i3}(x) for all assignments
x where each pigeon goes to exactly one hole. (For example, if n = 2, W = x1,1x2,1x3,1,
and i3 = 3, then we can take W flip

{3} to be x1,1x2,1x3,2, in which case W Õ = x1,1x2,1.) Then

E(DW Õ) = 0 by Lemma 19 because HW Õ,i3 = [n], so E
1
DW flip

{i3}

2
= ≠E(DW ). J

Using Corollary 21, we can bound maxW |E(DW )| using Cauchy-Schwarz. We first show
an approach that does not give a strong enough bound. We then show how to modify the
approach to achieve a better bound.

I Definition 22. Given functions F,G on the assignments mapping each pigeon to exactly

one hole, we define ÈF,GÍ = E(FG). We define ÎFÎ =


ÈF, F Í =


E(F 2).
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3.1.1 Unsuccessful approach to upper bound maxW |E(DW )|
Consider maxW |E(DW )|. By Lemma 21, it su�ces to take the max over weakenings W such
that, if W is a weakening of the axiom xi1,jxi2,j = 0, then for all pigeons i3 œ [n+1]\{i1, i2},
we have |HW,i3 | Æ Ân/2Ê (because if |HW,i3 | > Ân/2Ê, we can flip HW,i3 without changing
|E(DW )|). For any such W , we have

ÎWÎ =

E(W 2) Æ

Û3
1
n

42 3
1
2

4n≠1

= n≠12≠(n≠1)/2.

By Cauchy-Schwarz,

|E(DW )| Æ ÎDÎÎWÎ

Æ ÎDÎn≠12≠(n≠1)/2.

Using the value of E(D) from Corollary 17, the dual value E(D)/maxW |E(DW )| is at least

n!
nn

· n2
(n≠1)/2

ÎDÎ = Â�
A3

eÔ
2

4≠n

· 1
ÎDÎ

B

by Stirling’s formula. Thus, in order to achieve an exponential lower bound on the dual value,
we would need 1/ÎDÎ Ø �(cn) for some c > e/

Ô
2. However, this requirement is too strong,

as we will show in Lemma 26 that 1/ÎDÎ = Â�
!
(
Ô
e)n

"
. Directly applying Cauchy-Schwarz

results in too loose of a bound on maxW |E(DW )|, so we now modify our approach.

3.1.2 Successful approach to upper bound maxW |E(DW )|
I Definition 23 (W {≠1,0,1}

i1,i2
). Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons

i1, i2 and hole j. We define a function W {≠1,0,1}
i1,i2

that maps assignments to {≠1, 0, 1}. For

an assignment x,

If pigeons i1 and i2 do not both go to hole j, then W {≠1,0,1}
i1,i2

(x) = 0.
Otherwise, let V (x) = |{i3 œ [n + 1] \ {i1, i2} : pigeon i3 does not go to HW,i3}|. Then

W {≠1,0,1}
i1,i2

(x) = (≠1)V (x)
.

Note that W {≠1,0,1}
i1,i2

is a linear combination of the W flip

S
:

I Lemma 24. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole

j. We have:

W {≠1,0,1}
i1,i2

=
ÿ

S™[n+1]\{i1,i2}

(≠1)|S| ·W flip

S
.

It follows that:

E
1
DW {≠1,0,1}

i1,i2

2
= 2n≠1 · E(DW ).

Proof. To prove the first equation, consider any assignment x. If pigeons i1 and i2 do not
both go to hole j, then both W {≠1,0,1}

i1,i2
and all the W flip

S
evaluate to 0 on x. Otherwise,

exactly one of the W flip

S
(x) equals 1, and for this choice of S we have W {≠1,0,1}

i1,i2
(x) = (≠1)|S|.
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The second equation follows because:

E
1
DW {≠1,0,1}

i1,i2

2
=

ÿ

S™[n+1]\{i1,i2}

(≠1)|S| · E
1
DW flip

S

2

=
ÿ

S™[n+1]\{i1,i2}

(≠1)|S|(≠1)|S| · E(DW ) (Corollary 21)

= 2n≠1 · E(DW ). J

Using Lemma 24, we now improve on the approach to upper-bound maxW |E(DW )| from
section 3.1.1:

I Lemma 25. The dual value E(D)/maxW |E(DW )| is at least
n!

nn · n2
n≠1

ÎDÎ .

Proof. If W is a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole j,

|E(DW )| = 2≠(n≠1) ·
---E

1
DW {≠1,0,1}

i1,i2

2--- (Lemma 24)

Æ 2≠(n≠1) · ÎDÎÎW {≠1,0,1}
i1,i2

Î (Cauchy-Schwarz)

= 2≠(n≠1) · ÎDÎ

Û

E
31

W {≠1,0,1}
i1,i2

22
4

= n≠12≠(n≠1) · ÎDÎ.

Using the value of E(D) from Corollary 17, the dual value E(D)/maxW |E(DW )| is at least
n!

nn · n2
n≠1

ÎDÎ . J

It only remains to compute ÎDÎ:

I Lemma 26.

ÎDÎ2 = n!
nn

· (n+ 1)! ·
nÿ

c=0

(≠1)n≠c

n+ 1 ≠ c
· 1
nn≠cc!

Proof. Recall the definition of D (Definition 15):

D =
ÿ

S([n+1]

cSJS ,

cS = (≠1)n≠|S|(n ≠ |S|)!
nn≠|S| .

We compute ÎDÎ2 = E(D2) as follows.

E(D2) =
ÿ

S([n+1]

ÿ

T([n+1]

cScTE(JSJT ).

Given S, T ( [n+ 1], we have:

E(JSJT ) = E(JS)E(JT | JS = 1)

=

Q

a

Q

a
|S|Ÿ

i=1

(n+ 1 ≠ i)

R

b /n|S|

R

b

Q

a

Q

a
|T |Ÿ

j=|SflT |+1

(n+ 1 ≠ j)

R

b /n|T\S|

R

b .
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Therefore,

cScTE(JSJT ) =

Q

acS

Q

a
|S|Ÿ

i=1

(n+ 1 ≠ i)

R

b /n|S|

R

b

Q

acT

Q

a
|T |Ÿ

j=|SflT |+1

(n+ 1 ≠ j)

R

b /n|T\S|

R

b .

Note that the product of (≠1)n≠|S| (from the cS) and (≠1)n≠|T | (from the cT ) is
(≠1)≠|S|≠|T | = (≠1)|S|≠|T |, so the above equation becomes:

cScTE(JSJT ) = (≠1)|S|≠|T |
3
n!
nn

4 3
(n ≠ |S fl T |)!

nn≠|SflT |

4
.

Now, we rearrange the sum for E(D2) in the following way:

E(D2) =
ÿ

S([n+1]

ÿ

T([n+1]

cScTE(JSJT )

= n!
nn

nÿ

c=0

(n ≠ c)!
nn≠c

ÿ

S,T([n+1],

|SflT |=c

(≠1)|S|≠|T |.

To evaluate this expression, fix c Æ n and consider the inner sum. Consider the collection
of tuples {(S, T ) | S, T ( [n+ 1], |S fl T | = c}. We can pair up most of these tuples in the
following way. For each S, let mS denote the minimum element in [n+ 1] that is not in S
(note that mS is well defined because S cannot be [n+ 1]). We pair up the tuple (S, T ) with
the tuple (S, T—{mS}), where — denotes symmetric di�erence. The only tuples (S, T ) that
cannot be paired up in this way are those where |S| = c and T = [n+ 1] \ {mS}, because T
cannot be [n+ 1]. There are

!
n+1

c

"
unpaired tuples (S, T ), and for each of these tuples, we

have (≠1)|S|≠|T | = (≠1)n≠c. On the other hand, each pair (S, T ), (S, T—{mS}) contributes
0 to the inner sum. Therefore, the inner sum equals (≠1)n≠c

!
n+1

c

"
, and we have:

E(D2) = n!
nn

nÿ

c=0

(≠1)n≠c(n ≠ c)!
nn≠c

3
n+ 1
c

4

= n!
nn

nÿ

c=0

(≠1)n≠c(n ≠ c)!
nn≠c

· (n+ 1)!
c!(n+ 1 ≠ c)!

= n!
nn

· (n+ 1)! ·
nÿ

c=0

(≠1)n≠c

n+ 1 ≠ c
· 1
nn≠cc! . J

I Corollary 27. E(D2) Æ (n+1)!

nn

Proof. Observe that the sum
q

n

c=0

(≠1)
n≠c

n+1≠c
· 1

nn≠cc!
is an alternating series where the mag-

nitudes of the terms decrease as c decreases. The two largest magnitude terms are 1

n!
and

≠ 1

2
· 1

n!
. Therefore, the sum is at most 1

n!
, and we conclude that E(D2) Æ n!

nn · (n+1)!

n!
= (n+1)!

nn ,
as needed. J

We can now complete the proof of Theorem 1.

Proof of Theorem 1. By Lemma 25, any Nullstellensatz proof for PHPn has total coe�cient
size at least n!

nn · n2
n≠1

ÎDÎ . By Corollary 27, ÎDÎ Æ
Ò

(n+1)!

nn . Combining these results, any
Nullstellensatz proof for PHPn has total coe�cient size at least
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n!
nn

· n2n≠1

Ò
(n+1)!

nn

= n2n≠1


(n+ 1)

·
Ô
n!

n
n
2

= n2n≠1

Ô
n+ 1

Ú
n!
nn

Using Stirling’s approximation that n! is approximately
Ô
2fin

!
n

e

"n,
Ò

n!

nn is approximately
4Ô2fin

1
1Ô
e

2n

, and this expression is �
1
n

3
4

1
2Ô
e

2n2
, as needed. J

4 Open problems

Our work raises a number of open problems. First, while we showed that the minimum total
coe�cient size of a Nullstellensatz proof of the pigeonhole principle on n+ 1 pigeons and n
holes is 2�(n), it is natural to ask what happens when we increase the number of pigeons.
1. If we increase the number of pigeons from n+ 1 to n+ 2 while still having n holes, our

lower bound proof no longer applies. Can we prove a total coe�cient size lower bound on
Nullstellensatz when there are m pigeons where m Ø n+ 2? More ambitiously, how does
the minimum total coe�cient size of a proof depend on m and whether or not we add the
axioms that pigeons can only go to one hole (i.e., considering the functional pigeonhole
principle rather than the pigeonhole principle)?

Second, we are still far from understanding the total coe�cient size of Nullstellensatz
proofs of the ordering principle. In Appendix C we construct an explicit Nullstellensatz proof
for the ordering principle on n elements with total coe�cient size 2n ≠ n, but we have no
non-trivial lower bounds.
2. Can we prove superpolynomial lower bounds on the total coe�cient size of Nullstellensatz

proofs of the ordering principle and/or improve the O(2n) upper bound?

In the full version of this paper [29], we also discuss total coe�cient size for the Sherali-
Adams and sum of squares proof systems. Some questions regarding these related proof
systems are:
3. Are there Sherali-Adams proofs for the ordering principle with polynomial total coe�cient

size? If so, this shows that the seemingly dynamic O(n3) size resolution proof of the
ordering principle [32] can be captured by a one line Sherali-Adams proof. If not, this
gives a natural example separating resolution proof size and the total coe�cient size of
Sherali-Adams proofs. We note that this separation has been shown by [20] for unary
Sherali-Adams using pebbling principles.

4. Are there natural examples where the minimum total coe�cient size is very di�erent
(either larger or smaller) than the minimum size for Nullstellensatz, Sherali-Adams, or
sum of squares proofs?

5. Can the minimum total coe�cient size of a strong proof system be used to lower bound
the size of another proof system? For example, can resolution proof size be lower bounded
by the minimum total coe�cient size of a sum of squares proof, or can we find an example
where there is a polynomial size resolution proof but any sum of squares proof has
superpolynomial total coe�cient size?

ICALP 2024
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A Nullstellensatz total coe�cient size can be smaller than size

The following example shows that Nullstellensatz total coe�cient size can be smaller than
Nullstellensatz proof size. (See Section 2 for the definition of total coe�cient size.)

The idea behind our example is as follows. If we have three points p1, p2, p3 and three
polynomials f1, f2, f3 such that
1. f1(p1) = 1, f1(p2) = 1, f1(p3) = 0
2. f2(p1) = 1, f2(p2) = 0, f2(p3) = 1
3. f3(p1) = 0, f3(p2) = 1, f3(p3) = 1
then given the axioms f1 = 0, f2 = 0, and f3 = 0, the equality 1

2
f1 + 1

2
f2 + 1

2
f3 = 1 is a

Nullstellensatz proof of infeasibility which has total coe�cient size 3

2
. However, if we want

to use integer coe�cients then we need coe�cient size 2 as we need two of f1, f2, and f3 in
order to cover the three points p1, p2, p3.

Our actual example is as follows. We have variables x1, x2, x3, x4, x5, x6 and we have the
following axioms:
1. For all I ™ {4, 5, 6}, x1

!r
iœI

xi

" 1r
jœ{4,5,6}\I x̄j

2
= 0

2. For all I ™ {4, 5, 6}, x2

!r
iœI

xi

" 1r
jœ{4,5,6}\I x̄j

2
= 0

3. For all I ™ {4, 5, 6}, x3

!r
iœI

xi

" 1r
jœ{4,5,6}\I x̄j

2
= 0

4. x1x2x3 = 0
5. x̄1x̄2 = 0, x̄1x̄3 = 0, x̄2x̄3 = 0

We now observe that 1 = 1

2
x̄1x̄2 + 1

2
x̄1x̄3 + 1

2
x1x̄2x̄3 + 1

2
(x1 + x2 + x3) ≠ 1

2
x1x2x3. We

can show this by checking that the right hand side is 1 for all (x1, x2, x3) œ {0, 1}3.
1. If x1 = x2 = x3 = 0 then the first two terms are 1

2
and the remaining terms are 0.

2. If x1 + x2 + x3 = 1 then the fourth term and exactly one of the first three terms are 1

2

and the remaining terms are 0.
3. If x1 + x2 + x3 = 2 then the fourth term is 1 and the remaining terms are 0.
4. If x1 = x2 = x3 = 1 then the fourth term is 3

2
, the fifth term is ≠ 1

2
, and the remaining

terms are 0.

Using this equation, we have that

1 = 1
2 x̄1x̄2 +

1
2 x̄1x̄3 +

1
2x1x̄2x̄3 ≠ 1

2x1x2x3

+ 1
2(x1 + x2 + x3)

ÿ

I™{4,5,6}

A
Ÿ

iœI

xi

B Q

a
Ÿ

jœ{4,5,6}\I

x̄j

R

b

This Nullstellensatz proof has total coe�cient size 4 ú 1

2
+ 3ú8

2
= 14. However, for each

I ™ {4, 5, 6}, two of the axioms of the form xk

!r
iœI

xi

" 1r
jœ{4,5,6}\I x̄j

2
= 0 for k œ {1, 2, 3}

are needed to prove infeasibility. We also need one of the three axioms x̄1x̄2 = 0, x̄1x̄3 = 0,
and x̄2x̄3 = 0. Thus, any Nullstellensatz proof of infeasibility must have size at least
2 ú 8 + 1 = 17.

B Total coe�cient size upper bound for the pigeonhole principle

In this section, we use a divide and conquer approach to give a unary Nullstellensatz proof of
the pigeonhole principle with size 2O(n). Before giving our proof, we discuss other potential
approaches for constructing a Nullstellensatz proof for the pigeonhole principle and why they
were insu�cient for our purposes.
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One approach is to use the observation that if we have a tree-like resolution proof with S
leaves, this gives us a Nullstellensatz proof of size S where every coe�cient is 1.

There is a simple tree-like resolution proof of size O((n+ 1)!) which works as follows. For
each pigeon i, we query the variables {xij : j œ [n]} one by one and stop when we find a j
such that xi,j = 1 or we have queried all of these variables. If we already had that xiÕ,j = 1
for some iÕ < i then this contradicts the axiom ¬xiÕ,j ‚ ¬xi,j . If none of the xi,j are 1 then
this contradicts the axiom

x
jœ[n]

xi,j . If pigeon i was placed in a new hole j then we continue
on to pigeon i+ 1.

This gives an upper bound of O((n+ 1)!). However, it has been shown [8, 17, 26] that
every tree-like resolution proof for the pigeonhole principle has size n�(log(n)) so this is
essentially the best that we can do with this approach.

Buss and Pitassi [13] showed that there is a resolution proof of size O(n32n) for the
pigeonhole principle. The idea behind this proof is as follows.

I Definition 28. Given S = {s1, . . . , sj} ™ [n+ 1], define CS,[j,n] to be the clause

CS,[j,n] =
fl

iœ[j],kœ[j,n]

xsi,k.

In other words, the clause CS,[j,n] says that at least one of the j pigeons in S must go into

one of the holes in [j, n].

At stage j, we start with the clauses {CS,[j,n] : S ™ [n+ 1], |S| = j} and derive the clauses
{CSÕ,[j+1,n] : SÕ ™ [n+ 1], |SÕ| = j + 1}. After stage n, this gives us the empty clause, which
proves that the pigeonhole axioms are infeasible. However, it is not clear how to translate
this proof into a Nullstellensatz proof without blowing up the size and total coe�cient size.

We now give a unary Nullstellensatz proof of the pigeonhole principle which has size
2O(n).

I Theorem 29. For all n œ N, there is a unary Nullstellensatz proof of size at most 25(n+1)

for the pigeonhole principle with n+ 1 pigeons and n holes.

Proof. We construct this proof recursively as follows. Given k œ N, a set S = {p1, . . . , pk+1}
of k + 1 pigeons, and a set H = {h1, . . . , hk} of k holes, we want to show the equality

k+1Ÿ

a=1

A
1 ≠

kŸ

b=1

(1 ≠ xpa,hb)
B

=
k+1Ÿ

a=1

A
1 ≠

kŸ

b=1

x̄pa,hb

B
= 0

using the hole axioms. Note that this equality coresponds to the statement that there is at
least one pigeon in S which does not go to any of the holes in H.

We do this as follows. If k = 1 then this equality is a hole axiom. If k > 2 then
1. For each a œ [k], we decompose the term

1
1 ≠

r
k

b=1
x̄pa,hb

2
as

A
1 ≠

kŸ

b=1

x̄pa,hb

B
=

Q

a1 ≠
Â k+1

2 ÊŸ

b=1

x̄pa,hb

R

b +

Q

a
Â k+1

2 ÊŸ

b=1

x̄pa,hb

R

b

Q

a1 ≠
kŸ

b=Â k+1
2 Ê+1

x̄pa,hb

R

b

This gives us the equality
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k+1Ÿ

a=1

A
1 ≠

kŸ

b=1

x̄pa,hb

B
=

ÿ

A™[k+1]

Q

a
Ÿ

aœA

Q

a1 ≠
Â k
2 ÊŸ

b=1

x̄pa,hb

R

b

R

b

Q

a
Ÿ

aœ[k+1]\A

Q

a
Â k+1

2 ÊŸ

b=1

x̄pa,hb

R

b

Q

a1 ≠
kŸ

b=Â k+1
2 Ê+1

x̄pa,hb

R

b

R

b

2. For each of the 2k+2 resulting terms, we check whether |A| Ø Âk+1

2
Ê + 1 or |A| Æ Âk+1

2
Ê.

If |A| Ø Âk+1

2
Ê + 1 then letting AÕ be the first Âk+1

2
Ê + 1 = Ák+2

2
Ë elements of A, we

recursively construct a proof that
r

aœAÕ

3
1 ≠

rÂ k+1
2 Ê

b=1
x̄pa,hb

4
= 0. If |A| Æ Âk+1

2
Ê then

|[k+1]\A| Ø Ák+1

2
Ë so letting AÕÕ be the first Ák+1

2
Ë elements of [k+1]\A, we recursively

construct a proof that
r

aœAÕÕ

1
1 ≠

r
k

b=Â k+1
2 Ê+1

x̄pa,hb

2
= 0.

To obtain our Nullstellensatz proof, we construct this proof for S = [n+ 1] and H = [n]. We
then use the following equality (recall that the pigeon axioms are {

r
n

b=1
x̄a,b = 0 : a œ [n+1]}):

1 =
n+1Ÿ

a=1

A
1 ≠

nŸ

b=1

x̄a,b

B
+

n+1ÿ

j=1

A
nŸ

b=1

x̄j,b

B A
j≠1Ÿ

a=1

A
1 ≠

nŸ

b=1

x̄a,b

BB

The size of the resulting unary Nullstellensatz proof can be upper bounded by S(n) + 2n+1

where S(n) is the solution to the recurrence relation S(n) = 22(n+1)S(Án+2

2
Ë) where S(1) = 1.

It is not hard to show by induction that S(n) Æ 25(n+1) ≠2(n+1) so this gives an upper bound
of 25(n+1). J

C Total coe�cient size upper bound for the ordering principle

In this section, we construct an explicit Nullstellensatz proof for the ordering principle on
n elements with total coe�cient size 2n ≠ n. In the full version of this paper [29], we also
present experimental results obtained by implementing the linear program for minimum total
coe�cient size. One of our experimental results is that the 2n ≠ n upper bound is tight for
n Æ 5.

We start by formally defining the ordering principle.

I Definition 30 (ordering principle (ORDn)). Intuitively, the ordering principle says that any

well-ordering on n elements must have a minimum element. Formally, for n Ø 1, we define

ORDn to be the statement that the following system of axioms is infeasible:

We have a variable xi,j for each pair i, j œ [n] with i < j, with the Boolean axiom

x2

i,j
≠xi,j = 0. xi,j = 1 represents element i being less than element j in the well-ordering,

and xi,j = 0 represents element i being more than element j in the well-ordering. We

write xj,i as shorthand for x̄i,j = 1 ≠ xi,j.

For each i œ [n], we have the axiom
r

jœ[n]\{i} xi,j = 0 which represents the constraint

that element i is not a minimum element. We call these axioms non-minimality axioms.

For each triple i, j, k œ [n] where i < j < k, we have the two axioms xi,jxj,kxk,i = 0 and

xk,jxj,ixi,k = 0 which represent the constraints that elements i, j, k satisfy transitivity.

We call these axioms transitivity axioms.

In our Nullstellensatz proof 1 =
q

W
cWW , each cW is either 0 or 1. Non-minimality

axioms have coe�cient 1, and all weakenings of transitivity axioms that have coe�cient 1
must have a special form:
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I Definition 31 (nice transitivity weakening). Let W be a weakening of the axiom xi,jxj,kxk,i

or the axiom xk,jxj,ixi,k for some i < j < k. Let G(W ) be the following directed graph.

The vertices of G(W ) are [n]. For distinct iÕ, jÕ œ [n], G(W ) has an edge from iÕ to jÕ
if W

contains the term xiÕ,jÕ . We say that W is a nice transitivity weakening if G(W ) has exactly

n edges and all vertices are reachable from vertex i.

In other words, if W is a weakening of the axiom xi,jxj,kxk,i or the axiom xk,jxj,ixi,k,
then G(W ) contains a 3-cycle on vertices {i, j, k}. W is a nice transitivity weakening if and
only if contracting this 3-cycle results in a directed spanning tree rooted at the contracted
vertex. Note that if W is a nice transitivity weakening and x is an assignment with a
minimum element, then W (x) = 0.

I Theorem 32. There is a Nullstellensatz proof for ORDn satisfying:

1. The total coe�cient size is 2n ≠ n.
2. Each cW is either 0 or 1.

3. If A is a non-minimality axiom, then cA = 1, and cW = 0 for all other weakenings W of

A.

4. If W is a transitivity weakening but not a nice transitivity weakening, then cW = 0.

Proof. We prove Theorem 32 by induction on n. When n = 3, the desired Nullstellensatz
proof sets cA = 1 for each axiom A. It can be verified that

q
W

cWW evaluates to 1 on each
assignment, and that this Nullstellensatz proof satisfies the properties of Theorem 32.

Now suppose we have a Nullstellensatz proof for ORDn satisfying Theorem 32, and let
Sn denote the set of transitivity weakenings W for which cW = 1. The idea to obtain a
Nullstellensatz proof for ORDn+1 is to use two copies of Sn, the first copy on elements
{1, . . . , n} and the second copy on elements {2, . . . , n + 1}. Specifically, we construct the
Nullstellensatz proof for ORDn+1 by setting the following cW to 1 and all other cW to 0.
1. For each non-minimality axiom A in ORDn+1, we set cA = 1.
2. For each W œ Sn, we define the transitivity weakening W Õ on n + 1 elements by

W Õ = W · x1,n+1 and set cW Õ = 1.
3. For each W œ Sn, first we define the transitivity weakening W ÕÕ on n + 1 elements by

replacing each variable xi,j that appears in W by xi+1,j+1 (e.g., if W = x1,2x2,3x3,1, then
W ÕÕ = x2,3x3,4x4,2). Then, we define W ÕÕÕ = W ÕÕxn+1,1 and set cW ÕÕÕ = 1.

4. For each i œ {2, . . . , n}, for each of the 2 transitivity axioms A for elements {1, i, n+ 1},
we set cW = 1 for the following weakening W of A:

W = A

Q

a
Ÿ

jœ{2,...,n}\{i}

xi,j

R

b .

In other words, W (x) = 1 if and only if A(x) = 1 and i is the minimum element among
{2, . . . , n}.

The desired properties 1 through 4 in Theorem 32 can be verified by induction. It remains
to show that for each assignment x, there is exactly one nonzero cW for which W (x) = 1.
If x has a minimum element i œ [n+ 1], then the only nonzero cW for which W (x) = 1 is
the non-minimality axiom for i. Now suppose that x does not have a minimum element.
Consider two cases: either x1,n+1 = 1, or xn+1,1 = 1. Suppose x1,n+1 = 1. Consider the two
subcases:

ICALP 2024
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1. Suppose that, if we ignore element n+1, then there is still no minimum element among the
elements {1, . . . , n}. Then there is exactly one weakening W in point 2 of the construction
for which W (x) = 1, by induction.

2. Otherwise, for some i œ {2, . . . , n}, we have that i is a minimum element among {1, . . . , n}
and xn+1,i = 1. Then there is exactly one weakening W in point 4 of the construction for
which W (x) = 1 (namely, the weakening W of the axiom A = xi,1x1,n+1xn+1,i).

The case xn+1,1 = 1 is handled similarly by considering whether there is a minimum
element among {2, . . . , n + 1}. Assignments that do have a minimum element among
{2, . . . , n+ 1} are handled by point 3 of the construction, and assignments that do not are
handled by point 4 of the construction. J
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Abstract
We consider the matroid intersection problem in the independence oracle model. Given two
matroids over n common elements such that the intersection has rank k, our main technique reduces
approximate matroid intersection to logarithmically many primal-dual instances over subsets of
size Õ(k). This technique is inspired by recent work by [2] and requires additional insight into
structuring and e�ciently approximating the dual LP. This combination of ideas leads to faster
approximate maximum cardinality and maximum weight matroid intersection algorithms in the
independence oracle model. We obtain the first nearly linear time/query approximation schemes for
the regime where k Æ n
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1 Introduction

Matroid intersection is a classical problem in combinatorial optimization for which faster
algorithms have been a recent topic of interest.

A matroid, M = (N , I), consists of a set of n elements N and a collection of subsets I
of N , known as the independent sets, that satisfy the following properties: (i) the empty set
is independent, (ii) every subset of an independent set is independent (hereditary property),
and (iii) if A and B are two independent sets with |A| > |B|, then there exists an element in
A \B that can be added to B to still have an independent set (exchange property). These
properties imply that every maximal set also has maximum cardinality. The maximum
cardinality of any independent set is called the rank. Examples of matroids include the family
of forests of a graph (the graphic matroid) and the family of independent sets of vectors in a
vector space (the linear matroid).

Matroid intersection. The problem of matroid intersection considers two matroids, M1 =
(N , I1) and M2 = (N , I2), defined on a common ground set N , and seeks the largest set
that is independent in both matroids. Formally, the goal is to maximize the size of a set
S ™ N such that S œ I1 fl I2. Unlike matroids, a maximal cardinality independent set in
the matroid intersection is not necessarily a maximum cardinality independent set. The
maximum cardinality, denoted OPT, is also called the rank of the matroid intersection and
denoted by k. Matroid intersection generalizes bipartite matching, and has other connections
in combinatorial optimization. For example, by Edmonds’ directionless tree packing theorem,
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matroid intersection captures the maximum number of rooted arborescences that can be
packed into a directed graph, and the directed rooted connectivity [11]. See [27, 15] for
additional background and connections.

Algorithms addressing matroid intersection in general are commonly framed in the
independence oracle model. Here the algorithm is allowed to query if a given set S is
independent in a matroid. When stating running times in this model, we let Q denote the
running time of a single independence oracle.

The first polynomial time algorithm for matroid intersection was given by [10] by reduction
to matroid union [12]. This algorithm ran in O

!
n
4
Q

"
time. More direct augmenting path

algorithms were developed by [1, 21]. The algorithm in [21] ran inO
!
nk

2
Q

"
time. Generalizing

ideas from bipartite matching [17], [9] gave a faster matroid intersection algorithm running
in O

!
nk

1.5
Q

"
time. Truncating the algorithm early implies a (1 ≠ ‘)-approximation in

O(nkQ/‘) time for ‘ œ (0, 1) [8].
Recently there has been a resurgence of interest in faster algorithms in the independence

oracle model. [7, 23] gave O(nk log(k)Q) time algorithms, leveraging the observation that
the auxiliary graph can be searched faster than it can be built out explicitly. [5] pushed
this direction further and obtained Õ

!
n
9/5

Q
"
randomized and Õ

!
n
11/6

Q
"
deterministic time

algorithms, the first o(n2) time algorithms for k = �(n).1 Finally, [4] obtained a Õ

1
n

Ô
kQ/‘

2

time deterministic algorithm for (1 ≠ ‘)-matroid intersection. This faster approximation
algorithm implied faster exact algorithms running in Õ

!
nk

3/4
Q

"
randomized time and

Õ
!
nk

5/6
Q

"
deterministic time. [4]’s algorithms represent the state of the art.

Weighted matroid intersection. In the weighted matroid intersection problem, we are also
given weights c : N æ R>0. The goal is to compute I œ I1 fl I2 of maximum weight c(I).
Edmonds [10] gave the first polynomial time algorithm. Faster algorithms were developed in
[21, 13, 6, 16, 22]. Frank’s citeFrank1981a algorithm runs in O(k(T + n log n)) time, where
T is the running time of any exact matroid intersection algorithm. The algorithm in [22]
runs in O

!
n
2 log(n)Q+ n

3 polylog(n)
"
time.

There is also recent interest in fast (1 ≠ ‘)-approximation algorithms [18, 8]. The (1 ≠ ‘)-
approximation algorithm in [8] runs in Õ

!
nkQ/‘

2
"
time.

1.1 Results
Our primary focus is on faster approximation algorithms. As alluded to above, approximation
algorithms can play a role in exact algorithms. (The fastest algorithms use augmenting paths
to extend approximate solutions to exact ones.) They are also useful in their own right when
one is willing to tolerate some error in exchange for scalability.

We introduce adaptive sparsification to matroid intersection in order to develop faster
approximation algorithms. The new sparsification technique reduces approximate matroid
intersection to O(log(n)) instances of approximate matroid intersection and the dual prob-
lem over a subset of O(k log(n)) elements. The technique holds for both weighted and
unweighted matroid intersection. We leverages these ideas to obtain improved running times
for approximating the unweighted and weighted settings.

Maximum cardinality matroid intersection. Henceforth, let M1 = (N , I1) and M2 =
(N , I2) be two matroids over a common groundset of n elements, let k be the rank of their
intersection, and let ‘ œ (0, 1). In the following, the “dual” refers to the dual of the standard

1
Õ(· · ·) hides polylogarithmic factors.
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packing LP for matroid intersection, and is introduced formally below in Section 1.2. We
first show how to reduce approximate matroid intersection over n elements to approximating
O(log n) primal-dual instances of matroid intersection over Õ(k) elements.

I Lemma 1. Suppose a (1 ≠ ‘)-maximum matroid intersection and a (1 + ‘)-approximate dual
solution in I1flI2, over a subset of m elements, can be computed with high probability in T‘(m)
time in the independence oracle model. Then a (1 ≠ ‘)-approximate matroid intersection can
be computed with high probability in O(n log(n)Q/‘ + T‘(k log(n)/‘)/‘) randomized time in
the independence oracle model, where Q represents an independence query.

To apply Lemma 1 to matroid intersection, we need a fast algorithm to compute both a
(1 ≠ ‘)-maximum matroid intersection and an (1 + ‘)-dual solution. Recall that [4] computes
a (1 ≠ ‘)-maximum matroid intersection in Õ

1
n

Ô
kQ/‘

2
time. The solution returned by [4]

has stronger properties (based on the length of augmenting paths), and we leverage these
properties to compute a (1 + ‘)-approximate dual solution without increasing the running
time.

I Lemma 2. A (1 ≠ ‘)-maximum matroid intersection I, and an (1 + ‘)-dual solution (S, T ),
can be computed in Õ

1
n

Ô
kQ/‘

2
deterministic time.

Using this as a (1± ‘)-primal dual approximation algorithm in Lemma 1, with T‘(n) =
Õ

1
n

Ô
kQ/‘

2
, we have the following improved running time for approximate matroid inter-

section.

I Theorem 3. A (1 ≠ ‘)-maximum matroid intersection and an (1 + ‘)-dual solution can be
computed with high probability in O

1
n log(n)Q/‘ + k

3/2 logO(1)(k)Q/‘
3

2
randomized time in

the independence oracle model.
Compared to previous results, the improved running time in Theorem 3 removes the

poly(k)-factor from the dominant term of n. Theorem 3 gives the first nearly linear time
approximation scheme for the regime where k Æ n

2/3.
Theorem 3 does not imply a faster algorithm for exact matroid intersection, but brings

us significantly closer. This is because there are two bottlenecks in [4]. Theorem 3 addresses
one of them. The remaining bottleneck is a subroutine augmenting an independent set
one element at a time. The current best bound for this subroutine is Õ

1
n

Ô
kQ

2
time per

augmenting path [5].

Maximum weight matroid intersection. We now consider maximum weight matroid
intersection. In addition to the inputs M1, M2, and ‘ œ (0, 1), let c : N æ RØ0 be
an input weight vector.

As in the unweighted case, we show how to reduce approximate maximum weight matroid
intersection to approximating O(log(n)) primal-dual instances over subsets of Õ(k) elements.
Here the “dual” refers to the dual LP, introduced later in Section 3. For the weighted setting,
the sparsification technique requires particularly structured dual solutions which we call
“compact” dual solutions. We elaborate more on compact dual solutions in Section 3 and for
the time being state the lemma informally.

I Lemma 4 (Informal). Suppose that a (1 ≠ ‘)-maximum weight matroid intersection and
a “compact” (1 + ‘)-minimum dual solution over a subset of m elements can be com-
puted in T‘(m) time with high probability. Then a (1 ≠ ‘)-maximum weight matroid in-
tersection and a (1 + ‘)-minimum dual solution can be computed with high probability in
O(n log(n)Q/‘ + T‘(k log(n)/‘)/‘) randomized time in the independence oracle model.

ICALP 2024
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Using this technique requires a (1± ‘)-primal-dual approximation algorithm where the
dual solution has nice “compact” properties. A fast primal algorithm is given by [8] (acceler-
ated by [4]) and we extend it to give an approximate dual solution that is also compact.

I Lemma 5 (Informal). A (1 ≠ ‘)-maximum weight matroid intersection and a “compact”
(1 + ‘)-minimum dual solution can be computed in Õ

1
n

Ô
kQ/‘

2

2
time.

Putting these two results together gives the following improved running time for approxi-
mate maximum weight matroid intersection.

I Theorem 6. A (1 ≠ ‘)-maximum weight matroid intersection and a (1 + ‘)-minimum dual
solution can be computed with high probability in O

!
n log(n)Q/‘ + k

3/2
Q/‘

4
"
randomized

time in the independence oracle model.

Compared to the previous state of the art, Theorem 6 removes the poly(k)-factor from the
dominant term n. It also reduces the poly(1/‘)-factor against n, from 1/‘

2 to 1/‘. Theorem 6
is the first approximation scheme for weighted matroid intersection running in nearly linear
time for all k Æ n

2/3.

1.2 High-level overview of the algorithms and techniques
The first technique we introduce to matroid intersection is adaptive sparsification. In graph
algorithms, sparsification is a powerful and (by now) standard technique where a dense input
graph is reduced to a sparse one, while (approximately) preserving salient properties like
the size of every cut [3] or the Laplacian [29, 28]. These algorithms are also fast. There is
previous work sparsifying matroids individually [20, 25, 26], generalizing cut sparsification.

For matroid intersection, we are aware of two instances of sparsification. [7] sparsifies
matroid intersection by first approximating a linear relaxation for matroid intersection. They
then randomly round their solution x to a solution y with support of size O

!
k log(n)/‘

2
"
.

Concentration bounds from [20] imply that the support of y contains a (1 ≠ ‘)-approximate
matroid intersection with high probability. The only catch to this approach is that it takes
Õ

!
n
2
Q/k‘

2
"
time to compute the point x. The second instance is the very recent work

of [19], which reduces the number of elements to Õ
!
k/‘

O(1)
"
while preserving the value of

the matroid intersection up to a (3/2 + ‘)-factor. However this is far from preserving the
intersection up to a (1 + ‘)-factor. (We note that the techniques of [19] have additional
motivating factors including communication complexity and the streaming model.) It seems
di�cult to accurately preserve the matroid intersection via a “one-shot” static sparsifier
without introducing another bottleneck in the running time.

This work pivots away from static sparsifiers to adaptive ones, where a large instance
of matroid intersection is reduced to a limited number of sparse instances. The sparse
instances are generated sequentially by random samples, where the distribution of each
sample adapts to the outcomes of previous iterations. We are inspired by and build upon
a recent and elegant work by Assadi [2], which used adaptive sampling to compute (1 ≠ ‘)-
approximate maximum weight matchings in the semi-streaming model. We briefly sketch the
ideas from [2]. While [2]’s techniques extend to general graphs, we restrict our discussion to
bipartite matching as it is a special case of matroid intersection. The input is a bipartite
graph G = (V,E), and we are constrained to memory of size Õ(|V |). In particular, for dense
graphs, one cannot hold the entire graph in memory. The algorithm may read the edges E
one by one in a streaming fashion; each iteration over E is called a “pass”.
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There are several known results in this model and the contribution of [2] was to give
a simpler algorithm competitive with the state of the art. [2] reduces (1 ≠ ‘)-maximum
weight matching to O(log(n)/‘) successive instances of (1 ≠ ‘)-maximum weight matching
and (1 + ‘)-minimum vertex cover over subgraphs of Õ(|V |/‘) edges. Each Õ(|V |/‘)-size
instance is obtained by a nonuniform sample of the edges that can be implemented in a
single pass over the edges.

The probabilities are based on multiplicative weights. Initially, all edges have the same
weight and are sampled uniformly. Each iteration, the algorithm obtains a (1 + ‘)-minimum
vertex cover that covers all the sampled edges, but not necessarily all the input edges. The
sampling probability of each uncovered edge is doubled. Intuitively the algorithm is trying to
sample a small set of edges that forces the dual covering solutions of the sample to cover all
the edges, at least on average. Edges that are frequently covered have exponentially smaller
weight; edges that are not covered much have exponentially larger weight.

While [2] gives a direct analysis, one can interpret their algorithm a little more generally
within a standard MWU framework applied to the dual vertex cover LP. We broaden the
argument to covering problems in general. In the following, a (1 + ‘)-approximation algorithm
refers to a point x œ P such that Èb, xÍ Æ (1 + ‘)OPT and (1 + ‘)Ax Ø 1.

I Lemma 7. Consider a covering LP of the form

mimimize Èb, xÍ over x œ P s.t. Ax Ø 1,

where P is a convex set, and A has nonnegative coe�cients and m constraints. Suppose one
has access to an oracle that, given any nonnegative set of weights w œ Rm

Ø0
, computes a point

x such that:
(a) Èb, xÍ Æ (1 + ‘)OPT
(b)

q
i:(Ax)iØ1

wi Ø (1 ≠ ‘)
q

i
wi.

Suppose the oracle also returns a list of all constraints i œ [m] covered by x (i.e., such
that (Ax)i Ø 1). Then one can compute a (1 + ‘)-approximation solution as the average of
L = O(log(m)/‘) solutions returned by the oracle for an adaptively chosen sequence of L
weight vectors.

The intuition for the oracle problem is as follows. We are given a covering LP, and
the challenge is to satisfy all the covering constraints simultaneously. The oracle problem
relaxes this uniform requirement by assigning nonnegative weights to each constraint, and
asks for a solution that satisfies most of the constraints by weight. The small di�erence
between satisfying all constraints, and satisfying almost all the constraints, is just large
enough to permit random sampling and other techniques that trade a controlled amount of
error for significantly faster running times. The surrounding framework adjusts the weights
dynamically so that on average, the oracle solutions (approximately) cover all the constraints
simultaneously.

Matroid intersection. To apply this framework to matroid intersection we must understand
the dual covering problem, which requires the notions of a rank function and a span function.
For a given matroid M = (N , I), and set S ™ N , the rank of S, denoted rank(S), is the
maximum cardinality of any independent subset of S. For S ™ N , the span of S, span(S),
is the set of elements whose inclusion does not increase the rank, including the elements in
S: span(S) = {e œ N : rank(S + e) = rank(S)}. A set S is closed if S = span(S). Let rank1
and rank2 denote the rank functions of M1 and M2, respectively. Similarly, let span1 and
span2 denote the span functions of M1 and M2, respectively.

ICALP 2024
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The standard LP relaxation for matroid intersection asks for the maximum nonnegative
modular function dominated by rank1 and rank2:

maximize x(N ) over x : N æ RØ0

s.t. x(S) Æ rank1(S) and x(S) Æ rank2(S) for all S ™ N .
(1)

Here we denote the sum x(S) def=
q

eœS
xe for S ™ N .

From a dual perspective, for all partitions (S, S̄) of the ground set (where S̄ = N \ S),
rank1(S) + rank2(S̄) is an upper bound on the size of any matroid intersection I œ I1 fl I2.
(We have |I fl S| Æ rank1(S) and |I fl S̄| Æ rank2(S̄)). It is also an upper bound on the LP
relaxation as can be seen from duality as follows.

Consider the problem of minimizing rank1(S) + rank2(S̄) over all S ™ V . The standard
LP relaxation is the dual LP of the matroid intersection LP (1):

minimize
ÿ

S™N
yS rank1(S) + zS rank2(S) over y, z : 2N æ RØ0

s.t.
ÿ

S:eœS

y(S) + z(S) Ø 1 for all e œ N .

(2)

A classical theorem by [10] states that maxIœI1flI2 |I| = minS™V rank1(S) + rank2(S̄), hence
both LPs (1) and (2) have integral optimum solutions.

Lemma 7 applies a variation of the MWU framework to the dual covering LP (2). The
MWU framework incrementally builds a fractional solution (y, z) over L = O(log(n)/‘)
iterations. Initially (y, z) = (0,0). Each iteration ¸ queries the oracle for a particular set of
weights w(¸) œ RN

Ø0
, returning (ỹ(¸), z̃(¸)) as described in Lemma 7. We increase y by ỹ

(¸)
/L

and z by z̃
(¸)

/L. The key point is how the weights are chosen. For each element e, in the ¸th
iteration, we have

w
(¸)(e) = exp(≠(# iterations k < ¸ where (ỹ(k), z̃(k)) covers e)).

The weight of an element e decays exponentially with the number of oracle solutions that
cover e.

To implement the oracle for matroid intersection, given a set of weights w : 2N æ RØ0,
we sample O(k log(n)/‘) elements N Õ ™ N in proportion to w. We then compute a (1 ≠ ‘)-
maximum matroid intersection I and a dual (1 + ‘)-minimum dual integral solution (SÕ

, T
Õ),

where S
Õ
, T

Õ
,™ N Õ, for the subproblem over N Õ. Of course S

Õ and T
Õ do not cover any

elements outside of N Õ, and would fail to satisfy Item b of Lemma 7. We enlarge these sets
by taking their spans, S = span1(SÕ) and T = span2(T Õ), which hopefully includes most
of the elements from N \ N Õ (by weight w). (S, T ) (encoded in the LP by their indicator
vectors) is the solution returned by our oracle.

Assuming each iteration implements the oracle of Lemma 7, Lemma 7 asserts that
the average of the dual solutions gives a (1 + ‘)-approximate dual solution to the matroid
intersection problem. We really want a (1 ≠ O(‘))-approximate matroid intersection. Recall
that each iteration also gives a matroid intersection I within a (1 ≠ O(‘))-factor of a dual
solution over the subproblem. Therefore the maximum cardinality of I over all iterations is
within a (1 ≠ O(‘))-factor of the average dual solution. The average dual solution is feasible
(up to scaling by (1 +O(‘))), certifying that I is a (1 ≠ O(‘))-matroid intersection.

This describes the approximation algorithm for maximum cardinality matroid intersection.
Pseudocode is given in Figure 1. The analysis requires both an MWU analysis of Lemma 7,
and a more matroid-specific analysis to implement the oracle. The former is similar to
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1. Let w(d) = 1 for all d œ N .
2. For ¸ = 1, . . . , L, where L = O(log(n)/‘):

A. Let N Õ ™ N sample O(k log(n)/‘) elements with repetition in proportion to w(e).
// Õ(n+ k/‘)

B. Compute a (1 ≠ ‘)-approximate matroid intersection I
(¸) and a

(1 + ‘)-approximate dual solution (S̃(¸)
, T̃

(¸)). // Õ
!
k
3/2

Q/‘
2
"

C. Let S(¸) = span1(S̃(¸)) and T
(¸) = span2(T̃ (¸)). // Õ(nQ)

D. For all elements d œ S
(¸) fi T

(¸), set w(d) = w(d)/e. // Õ(n)
3. Let I(¸) maximize |I(¸)| over all iterations ¸ œ [L]. Define (y, z) to be the fractional

average of the dual solutions,

y = 1
L

Lÿ

¸=1

1S(¸) and z = 1
L

Lÿ

¸=1

1T (¸) ,

where 1X denotes the indicator vector of X ™ N .
Return (I(¸), (1 +O(‘))y, (1 +O(‘))z).

Figure 1 A randomized, (1± ‘)-approximation algorithm for maximum cardinality matroid
intersection and the dual LP.

the analysis given in [2]. Implementing the oracle has two components. First we need to
show how to extend (1 ≠ ‘)-approximate matroid intersection algorithms to also produce
a (1 + ‘)-approximate dual solutions, without increasing the running time. We also need
to prove that a (1 + ‘)-approximate dual solution on the sampled subset N Õ extends to a
solution satisfying the oracle model of Lemma 7.

Consider this latter point regarding sampling and the oracle problem. For the special
case of bipartite matching, where dual solutions are vertex covers, the argument in [2] takes
a union bound over all 2|V | possible subsets of vertices; the logarithm of this bound is then
approximately the size of the sample that is needed. For matroid intersection the dual is more
abstract. There are naively 2n dual integral solutions, which is too large. To transfer [2]’s
argument to matroid intersection, we need a bound of the order of nO(k) on the number
of dual solutions. We obtain this bound by restricting our attention to closed sets, and
identifying closed sets with maximal independent subsets.

Weighted matroid intersection. One can approach weighted matroid intersection similarly.
At a high level, to implement the oracle of Lemma 7, we reduce the input size in each iteration
by random sampling, and build on previous (1 + ‘)-maximum weight matroid intersection
algorithms to extract good dual solutions. The weights inject additional technical details
to each component. Greater e�ort is needed to bound the number of dual solutions, and
this motivates the notion of “compact” dual solutions (defined in Section 3). Computing a
compact dual solution e�ciently requires a closer examination of the “approximate weight
splitting” certificate of [8]. To this end, we give a new primal-dual proof of correctness that
also e�ciently constructs a compact dual solution. After addressing these combinatorial
components, we recover the high-level theme of using adaptive sampling to reduce a problem
over n elements to smaller primal-dual instances of the problem over roughly k elements.

Pseudocode for the approximate maximum weight matroid intersection algorithm is
given in Figure 2. Several of the steps require technical elaboration and we defer a detailed
discussion to Section 3.
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1. Let w(e) = 1 for all e œ N .
2. For ¸ = 1, . . . , L, where L = O(log(n)/‘):

A. Let N Õ ™ N sample O(k log(n)/‘) elements with repetition in proportion.
// Õ(k/‘)

B. Compute a (1 ≠ ‘)-approximate matroid intersection I
(¸) and a ‘-approximate

cost-splitting certificate (c1,¸, c2,¸). // Õ
!
k
3/2

/‘
2
"

C. Extract from (I(¸), c1,¸, c2,¸) a compact, (1 + ‘)-approximate dual solution
ỹ
(¸)

, z̃
(¸) : 2N Õ æ RØ0 over N Õ. // Õ(kQ)

D. Define y
(¸)

, z
(¸) : 2N æ RØ0 by

y
(¸)(span1(SÕ)) = Áỹ(¸)(SÕ)Ë

1+‘
for all SÕ œ support(ỹ(¸)),

z
(¸)(span2(T Õ)) = Áz̃(¸)(T Õ)Ë

1+‘
for all T Õ œ support(z̃(¸)),

where ÁxË
1+‘

def= (1 + ‘)Álog1+‘ xË rounds x up to the nearest power of 1 + ‘.
// Õ(nQ)

E. For all elements e œ N , if e is covered by (y(¸), z(¸)), set w(e) = e
≠1

w(e).
// O(n log(k)Q)

3. Let I(¸) maximize c(I(¸)) over ¸ œ [L]. Return I
(¸) and 1+O(‘)

L

q
L

¸=1
(y(¸), z(¸)).

Figure 2 A randomized, (1 ≠ O(‘))-approximation algorithm for weighted matroid intersection
and the dual LP.

Conclusion. These algorithms are natural extensions of [2]’s algorithm for approximate
bipartite matching. Conceptually, they highlight two new perspectives beyond improved
running times for approximate matroid intersection. The first is exposing the versatility of
the techniques in [2], beyond matchings in graphs. While we focus on matroid intersection
abstractly in the independence oracle model, the techniques are simple and high-level enough
to be applied to the diverse family of concrete instances of matroid intersection studied
elsewhere. We also give an explicit interface to an oracle model for positive LPs that extends
beyond matroid intersection. The second is to reiterate the importance of the dual of
matroid intersection problems, at least from the perspective of fast approximation algorithms.
Improvements for the dual approximation problems were critical to sparsifying and ultimately
accelerating approximation algorithms for the primal problem.

The clear open problem is improving the running time for exact unweighted matroid
intersection. We were surprised to realize that the improved approximation algorithm did
not immediately imply a faster exact running time. We hope this work draws attention to
the remaining bottleneck mentioned above.

Organization. We divide the rest of the article into three main parts:

Section 2: The full details of the matroid intersection algorithm and analysis, completing
the description in Section 1.2, assuming and interfacing with the oracle framework of
Lemma 7.

Section 3: The weighted matroid intersection algorithm and analysis, again interfacing with
the oracle framework of Lemma 7.

Section 4: An MWU analysis of the general oracle framework described in Lemma 7.
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2 Matroid intersection

The matroid intersection algorithm was described in Section 1.2, along with an overview of
the techniques and the analysis. Pseudocode was presented in Figure 1. To briefly review,
the overall algorithm follows the MWU framework described in Lemma 7, applied to the dual
LP for matroid intersection, (2). The dual LP has a constraint for each element, so the MWU
framework maintains a weight for each element reflecting how well the constraint is being met.
The oracle problem in Lemma 7 is a relaxation of (2) where we are only required to satisfy
most, rather than all, of the dual covering constraints by weight. To solve the oracle problem
quickly, we first randomly sample O(k log(n)/‘) elements in proportion to their weights.
Then we compute a (1 ≠ ‘)-approximate matroid intersection, and a (1 + ‘)-approximate
dual solution over the sampled elements. We then extend the dual solution to an infeasible
dual solution over all the elements, that satisfies the oracle.

The MWU framework has O(log(n)/‘) iterations. Each iteration has two bottlenecks.
The first bottleneck comes from sampling and updating the weights of each element, and
takes O(nQ) time. The second bottleneck is approximating the matroid intersection and its
dual over the sampled set of elements. If we let T‘(m) denote the time of this step, then the
algorithm takes O(n log(n)/‘ + T‘(k log(n)/‘) log(n)/‘) randomized time overall.

To complete the proof of Theorem 3, there are two points to address:
Section 2.1: Given an (1± ‘)-primal dual oracle for matroid intersection running in T‘(m)

time, we implement the oracle from Lemma 7 in O(nQ+ T‘(k log(n)/‘)) randomized
time. This implies Lemma 1, which formalizes the reduction to approximate primal-dual
matroid intersection.

Section 2.2: Recall that the framework requires solutions to both matroid intersection and
its dual LP. We extend the (1 ≠ ‘)-maximum matroid intersection algorithm for [4] to
give a (1 + ‘)-dual solution without increasing the running time. This gives T‘(m) =
Õ

!
m

1.5
Q/‘

"
, hence Lemma 2, and completes the proof of Theorem 3 via Lemma 1.

2.1 Implementing the oracle
In this section, we assume access to a (1± ‘)-primal dual approximation algorithm for
matroid intersection in M1 and M2, running in T‘(m) time for any subset of m elements.
We show how to use this algorithm to implement an oracle satisfying Lemma 7 for the dual
LP of matroid intersection.

Recall that the algorithm takes as input w, samples Õ(k/‘) elementsN Õ ™ N in proportion
to w, computes (1± ‘)-primal and dual solutions over N Õ, and expands out the dual solution
by taking their spans in all of N . The key point of the analysis is understanding the random
sample N Õ. We want to ensure that any approximate dual solution (SÕ

, T
Õ) over N Õ, when

expanded out to (S, T ) where S = span1(SÕ) and T = span2(T Õ), covers most of N by weight.
The approach is based on [2] and will use an upper bound the number of distinct pairs (S, T )
with certain nice properties. The first step in this direction is to count the number of closed
sets in a given matroid.

I Lemma 8. Let M = (N , I) be a matroid with n elements and rank k. Then there are at
most nk closed sets in M.

Proof. For every closed set S, let IS be a maximum independent subset of S. We have, IS œ I,
IS ™ S, and span(IS) = span(S). We claim the mapping from S to IS is injective. Indeed, if
S and T are closed and IS = IT , then S = span(S) = span(IS) = span(IT ) = span(T ) = T,

so S = T . Thus the sets IS are distinct. Meanwhile, every I œ I has cardinality at most k.
So there are at most nk closed sets. J
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The following lemma shows that with high probability, any closed pair of sets (S, T ) (with
S closed in M1 and T closed in M2) either covers almost all of N by weight, or with high
probability, does not cover at least one element in the random sample N Õ.

I Lemma 9. Let w : N æ RØ0 be a set of nonnegative weights. Let N Õ sample O(k log(n)/‘)
elements from N with repetition. Then with high probability we have the following: for all
A,B ™ N such that A is closed in M1, B is closed in M2, rank1(A) = rank2(B) Æ O(k),
and w(A fi B) < (1 ≠ ‘)w(N ), N Õ samples at least one element outside A fi B.

Proof. Since rank1(A), rank2(B) Æ O(k), we can assume that M1 and M2 each have rank
O(k). Then, by Lemma 8, there are at most nO(k) choices of sets A,B ™ N such that A is
closed in M1 and B is closed in M2.

Now fix such a pair A,B, and suppose w(A fi B) Æ (1 ≠ ‘)w(N ). The probability that
N Õ ™ A fi B is

3
w(A fi B)
w(N )

4|N Õ|
Æ e

≠‘|N Õ| Æ n
≠Ck

for an arbitrarily large constant C. The claim now follows by taking the union bound over
A,B. J

Now we put everything together. The following lemma gives a subroutine satisfying the
requirements of the oracle in Lemma 7.

I Lemma 10. Let w : N æ RØ0 be a set of nonnegative weights.
In O(n log(n)Q+ T‘(k log(n)/‘)) randomized time, one can compute an independent set I
and sets S closed in M1 and T closed in M2 such that, with high probability:
i rank(S) + rank(T ) Æ (1 + ‘)|I|.
ii w(S fi T ) Ø (1 ≠ ‘)w(N ).

Proof. For ease of convention, we prove the claim with ‘ replaced by O(‘); the constant can
then be removed by decreasing ‘ by a constant factor. (We adopt the same convention in
subsequent proofs.)

LetN Õ sample O(k log(n)/‘) elements with repetition in proportion to w. In T‘(k log(n)/‘)
time, we compute a (1 ≠ ‘)-maximum matroid intersection I and a (1 + ‘)-dual solution
(AÕ

, B
Õ) in the restriction to N Õ. We compute A = span1(AÕ) and B = span2(BÕ) in O(nQ)

time. We claim that I, A, and B satisfy the lemma.
First, we have rank1(A)+ rank2(B) = rank1(AÕ)+ rank2(BÕ) Æ (1 +O(‘))|I|. Second, by

Lemma 9, with high probability; since N Õ ™ A
Õ fi B

Õ ™ A fi B, A is closed in M1, and B is
closed in M2; we have w(A fi B) Ø (1 ≠ ‘)w(N ), as desired. J

2.2 Fast primal-dual approximations for matroid intersection
It remains to give a fast primal-dual approximation for matroid intersection. The algorithm
in [4] gives a (1 ≠ ‘)-maximum matroid intersection but not a (1 + ‘)-dual solution. That
said, one might expect a (1 + ‘)-dual solution to be implicit in any given (1 ≠ ‘)-maximum
matroid intersection algorithm in order to certify that the solution I is (1 ≠ ‘)-maximum.
Such is the case here and we show how to extract a (1 + ‘)-dual solution e�ciently.
The (1 ≠ ‘)-maximum matroid intersection algorithm in [4], like other (1 ≠ ‘)-approximation

algorithms, outputs an independent set I œ I1 fl I2 for which the length of the minimum
“augmenting path” (defined in a moment) is at least 2/‘. This length implies that I is a
(1 ≠ ‘)-maximum matroid intersection (just as in bipartite matching). We use this bound on
the minimum length of an augmenting bound to extract a (1 + ‘)-dual solution.
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To go into further detail we must first introduce augmenting paths in the context of
matroid intersection. The notion generalizes augmenting paths in bipartite matching. In
the context of matroid intersection, for a fixed independent set I, an augmenting path is a
sequence P = (e0, e1, . . . , eh) of elements alternating between N \ I and I. Additionally, an
augmenting path must start and end with elements in N \ I, and its symmetric di�erence
with I, I—P , must be independent in both matroids.

Augmenting paths are paths in an auxiliary directed bipartite graph between N \ I and I

called the exchange graph. We have a directed edge (e, d) from N \ I to I i� I ≠ d+ e œ I2.
We have a directed edge (d, e) from I to N \ I i� I ≠ d+ e œ I1.

Let F1 = N \span1(I) be the set of free/uncovered elements in M1, and F2 = N \span2(I)
be the free elements in M2. All augmenting paths are between F1 and F2, but unlike bipartite
matching, not all paths from F1 to F2 in the exchange graph are augmenting paths. However,
all shortest paths from F1 to F2 are always augmenting paths. Thus many matroid intersection
algorithms augment along shortest (F1, F2)-paths in the exchange graph.

If the minimum length of any augmenting path for I is at least 2/‘, then the typical
argument that I is (1 ≠ ‘)-maximum is as follows. Given an optimal solution I

ú, by contracting
I fl I

ú, we may assume I
ú and I are disjoint. I—I

ú decomposes into even-length cycles
and augmenting paths in the exchange graph. I and I

ú have the same number of elements
in each even-length cycle. For an augmenting path P , if P has length at least 2/‘, then
|Iú fl P | Æ (1 + ‘)|I fl P |. It follows that |Iú| Æ (1 + ‘)|I|.

This argument does not imply an algorithm for a (1 + ‘)-dual solution. (We do not have
access to I

ú.) Still, we can use the length bound to obtain a (1 + ‘)-dual solution, giving
another proof that I is (1 ≠ ‘)-maximum. Formally we prove the following.

I Lemma 11. Let I œ I1 fl I2 be an independent point in the intersection. Suppose the
minimum length of any augmenting path is at least 2/‘. Then in O(n log(k)Q/‘) time, one
can compute sets S, T ™ N such that S fi T = N and rank1(S) + rank2(T ) Æ (1 + ‘)|I|.

Proof. The desired sets S and T will be induced by the distances layers from F1 in the
exchange graph. For each index i œ ZØ0, let Li be the set of elements at distance i from F1.
For example, L0 = F1, Li ™ N \ I for even i, and Li ™ I for odd i.

To extract a good dual solution from these layers, we first need to construct them quickly.
[7, 23] provide the following.

I Fact 12. For h = O(1/‘), the first h layers L0, L1, . . . , Lh≠1 of the exchange graph can be
computed in O(n log(k)Q/‘) time.

To refer to elements in I and N by distance layer, we introduce the following notation.
For all i, let Ni = N fl Li, and for odd i, let Ii = I fl Li. These layers partition the ground
set, with the even layers partitioning N \ I and the odd layers partitioning I.

Suppose we construct the layers (L0 = F1), . . . , Lh up to distance h from F1 for h Ø 2/‘.
Since h Ø 2/‘, there is an odd index i with 1 Æ i Æ h such that |Ii| Æ ‘|I|. Let S =
N \

1t
j<i

Ni

2
be all elements in layer i and beyond, and T =

t
jÆi

Nj be all the elements up
to layer i. (S, T ) is a discrete and feasible solution to the dual because S fi T = N . To prove
that it is a (1 + ‘)-dual solution, it su�ces to show that rank1(S) + rank2(T ) Æ (1 + ‘)|I|.

Let I+ = I \
1t

j<i
Ij

2
= I fl S. We claim that S ™ span1(I+). Clearly S fl I = I

+ ™
span1(I+). Now consider an element e œ S \ I. We have e œ span1(I) because e /œ N0. If
e /œ span1(I+), then I ≠ d+ e œ I1 for some d œ I \ I+. Then (d, e) is an exchange in the
exchange graph. We have d œ Ij for some j Æ i ≠ 2, hence d œ N¸ for some ¸ < i. But then
e /œ S, a contradiction.
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Now let I≠ =
t

jÆi
Ij = IflT . We claim that T ™ span2(I≠). We have T flI ™ span2(I≠).

Consider any element e œ T \ I. We have e œ span2(I) since e œ Lj for some j < i Æ h, and
there are no (F1, F2)-paths of length < h. If e /œ span2(I≠), then I ≠ d + e œ I2 for some
d œ I \ I≠. That is, (e, d) is an edge in the exchange graph. e œ T implies that the distance
from F1 to e is at most i ≠ 1, and the distance from F1 to d is at most i. But d /œ I

≠ implies
that the distance from F1 to d is at least i+ 2, a contradiction.

Thus S ™ span1(I+) and T ™ span2(I≠) where I
+ and I

≠ are subsets of I overlapping
on I

≠. Since I
+ fl I

≠ = Ii, we have

rank(S) + rank(T ) Æ rank(span1(I+)) + rank(span2(I≠))
= |I+|+ |I≠| = |I|+ |Ii| Æ (1 + ‘)|I|,

as desired.
To recap, given an independent set I œ I1 fl I2 for which the length of the minimum

augmenting path is at least 2/‘, we build out the first O(1/‘) layers of the exchange graph
in O(n log(k)Q/‘) time. We identify an index i such that |Ii| Æ ‘|I|. We assemble the
set S = N \ (L0 fi L1 fi · · · fi Li≠1) of all elements in the ith layer and beyond, and the
set T = L0 fi L1 · · · fi Li of all elements up to the ith layer. This takes O(n) time given
the first O(1/‘) layers. (S, T ) is the desired (1 + ‘)-dual solution, completing the proof of
Lemma 11. J

This concludes our discussion on maximum cardinality matroid intersection.

3 Weighted matroid intersection

We now consider the weighted matroid intersection problem. Similar to the unweighted
setting, the high-level approach combines adaptive sparsification with a fast (1± ‘)-primal-
dual approximation algorithm to improve the running time dependence on the input n. These
components are more technically challenging in the weighted setting.

Recall that M1 = (N , I1) and M2 = (N , I2) are two matroids over the same ground set
N , c : N æ RØ1 is a set of input costs over N , and ‘ œ (0, 1) is an input parameter.2 The
goal is to compute I œ I1 fl I2 with cost c(I) at least a (1 ≠ ‘)-fraction of the maximum cost
of any such I. We assume without loss of generality that c(e) œ [1,poly(n)] for all e.3

We start by introducing the LP relaxation of weighted matroid intersection:

maximize Èc, xÍ over x œ RE

Ø0

s.t. x(S) Æ rank1(S) and x(S) Æ rank2(S) for all S ™ N .
(3)

The dual LP is as follows.

minimize
ÿ

S

rank1(S)yS + rank2(S)zS over y, z : 2N æ RØ0

s.t.
ÿ

S:eœS

yS + zS Ø ce for all e œ N .

(4)

For e œ N , we say that (y, z) covers e if it meets the covering constraint for e in the dual
LP (4).

2
c is normally called “weights” in the weighted matroid intersection problem, but we will refer to them
as “costs” to help distinguish them from the auxiliary weights generated by the framework.

3 We assume each singleton set {e} is independent for all e by removing all violating e in a preprocessing
step. Then OPT Ø maxe c(e), and we can drop any element e with c(e) Æ (‘/k)maxf c(f) without
decreasing the optimum value by more than an ‘-fraction. Rescaling, all weights lie in the range [1, k/‘].
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Recall that the overall framework maintains auxiliary weights w : N æ RØ0. For a fixed
set of weights w : N æ RØ0, we say that y, z covers a (1 ≠ ‘)-fraction of elements by w if
the total weight of elements covered by e is at least (1 ≠ ‘)-fraction of the total weight of all
elements.

To apply Lemma 7 to the LPs (3) and (4), we need to fulfill an oracle problem defined
as follows. The oracle takes as input a set of auxiliary weights w : N æ RØ0. With high
probability, the oracle must return a dual solution y, z that covers a (1 ≠ ‘)-fraction of
elements by weight.

Our implementation of the oracle is broken down into two components: (a) a randomized
sparsification step applying a (1± ‘)-primal-dual approximation algorithm to a randomly
sampled subset of Õ(k log(n)/‘) elements; and (b) the (1± ‘)-primal-dual approximation
oracle. Formally stating the interface of these two parts requires the notion of “compact”
dual solutions and compact primal-dual algorithms. We define these now and give further
background in appropriate subsections later.

We say that (y, z) is compact if the supports of y and z are of the form

support(y) ™ {span1(e1), span1(e1, e2), . . . , span1(e1, . . . , ek)}
support(z) ™ {span2(f1), span2(f1, f2), . . . , span2(f1, . . . , fk)}

for two sequences of k elements e1, . . . , ek œ N and f1, . . . , fk œ N . We define a compact
(1± ‘)-primal-dual weighted matroid intersection algorithm that takes as input M1 = (N , I1),
M2 = (N , I2), and c : N æ RØ0, and returns (1 ≠ ‘)-maximum weight independent set and
a compact (1 + ‘)-minimum solution to the dual LP (4).

Now we can state the guarantees of part (a).

I Lemma 13. Let w : N æ RØ0, and suppose there is a compact (1± ‘)-primal-dual
weighted matroid intersection algorithm running in T‘(m) on subsets of N of size m. Then in
O(T‘(k log(n)/‘)) time, one can compute an independent set I and a compact dual solution
(y, z) such that (y, z) covers a (1 ≠ ‘)-fraction of N by w.

Now we formally state the guarantees for part (b); namely, a compact (1± ‘)-primal-dual
approximation algorithm for weighted matroid intersection. The following algorithm extends
the (1 ≠ ‘)-approximation for weighted matroid intersection to also give a compact dual
solution.

I Lemma 14. There is a compact (1± ‘)-primal dual algorithm running in T‘(m) =
Õ

1
m

Ô
kQ/‘

2

2
time.

We prove Lemma 13 in Section 3.1 and Lemma 14 in Section 3.2. Combining Lemmas 13
and 14 gives a subroutine implementing the oracle of Lemma 7 running in Õ

!
nQ/‘ + k

1.5
/‘

3
"

time. Because the dual solution (y, z) returned by the oracle is compact, we can identify all
the elements covered by (y, z) in O(n log(k)Q) time.4 Lemma 7 repeats these two steps for
O(log(n)/‘) iterations, giving a total running time of O

1
n log(n)Q/‘ + k

1.5 logO(1)(n)Q/‘
4

2
.

4 For example, suppose the support of y is generated by the elements e1, . . . , ek. Given an element
d, one can binary search for the first index i such that d œ span1(e1, . . . , ei). Then d is covered by
span1(e1, . . . , ej) for all j Ø i. With simple preprocessing, one then extracts the total amount that y
covers d in O(1) time. Similarly the amount that z covers d can be computed in O(log(k)Q) time with
simple preprocessing.
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3.1 Sparse reduction to compact (1 ± ‘)-primal-dual approximations:
proof of Lemma 13

In this section we prove Lemma 13. Let w : N æ RØ0. We need to compute an independent
set I œ I1 fl I2 and a compact y, z : 2N æ RØ0 such that:
(i) (1 +O(‘))c(I) Ø

q
S
rank1(S)yS + rank2(S)zS .

(ii) (y, z) covers a (1 ≠ ‘)-fraction of N by w.

The algorithm is as follows.
1. Let N Õ ™ N sample O(k log(n)/‘) elements, with repetition, in proportion to w.
2. Run the (1± ‘)-primal dual approximation algorithm on N Õ, producing I ™ N Õ with

I œ I1 fl I2 and a compact solution y
Õ
, z

Õ : 2N Õ æ RØ0. Without loss of generality, the
nonzero coordinates of yÕ and z

Õ are in the range [1/poly(n),poly(n)].
3. Define y, z : 2N æ RØ0 by setting y(span1(S)) = ÁyÕ(S)Ë

1+‘
for S œ support(yÕ) and sim-

ilarly set z(span2(T )) = ÁzÕ(T )Ë
1+‘

for T œ support(zÕ), where ÁxË
1+‘

def= (1 + ‘)Álog1+‘ xË

rounds x up to the nearest power of 1 + ‘.
4. Return I and (y, z).

Consider the range of (y, z) output by the algorithm. We first observe that (y, z) is
compact. Indeed, since (yÕ

, z
Õ) was compact, there is a sequence of elements e1, . . . , ek such

that all sets in the support of yÕ have the form S
Õ
i
= span1(e1, . . . , ei) fl N Õ for some prefix

e1, . . . , ei. Then the sets in the support of y have the form Si = span1(SÕ
i
) = span1(e1, . . . , ei).

Thus the support of y is generated by prefixes of e1, . . . , ek. Symmetrically the same holds
for z for a di�erent sequence of k elements depending on z

Õ. Thus (y, z) is compact.
We also observe that each nonzero value of y or z is one of the O(log(n)/‘) powers of

(1 + ‘) in the range [1/poly(n),poly(n)].
For y, there are at most nk ways to choose the sequence e1, . . . , ek that determines its

support, and (C log(n)/‘)k ways to assign their values for some constant C > 0. Likewise
for z. Altogether, there are at most nO(k) choices of (y, z) in the range of the algorithm.

Call a solution (y, z) in the range good if it covers an (1 ≠ ‘)-fraction of N by w, and bad
otherwise. We want to argue that with high probability, the solution (y, z) returned by the
algorithm is good. We know that the output (y, z) covers all the elements in N Õ. Thus it
su�ces to show that for all bad (y, z) in the range, N Õ samples at least one element that is
not covered by (y, z).

To this end, fix a bad (y, z) in the range. A random element sampled from N in proportion
to w is covered by (y, z) with probability at most 1 ≠ ‘. The probability that all of N Õ is
covered by (y, z) is bounded above by (1 ≠ ‘)|N

Õ| = n
≠O(k)

. Taking the union bound over all
bad (y, z) in the range, we conclude with high probability, N Õ samples at least one uncovered
element for every bad (y, z). In this event, since the output (y, z) covers N Õ, (y, z) must be
good.

This completes the proof of Lemma 13.

3.2 Compact (1 ± ‘)-primal-dual weighted matroid intersection: proof
of Lemma 14

In this section we prove Lemma 14. We are given two matroids M1 = (N , I1) and M2 =
(N , I2) over a common set N of size n, c : N æ RØ1, and ‘ œ (0, 1). We let k be the
rank of the intersection I1 fl I2. We will compute I œ I1 fl I2 and a compact dual solution
y, z : 2N æ RØ0 such that (1 +O(‘))c(I) Ø

q
S
rank1(S)y(S) + rank2(S)z(S).
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As mentioned previously, a fast approximation algorithm for weighted matroid intersection
is given by [8]. The stated running time is Õ

!
nkQ/‘

2
"
and breaks down as follows. There are

Õ(1/‘) outer iterations. Each iteration invokes an approximation algorithm for unweighted
matroid intersection that returns an independent set I with minimum augmenting path length
O(1/‘). [8] truncate Cunningham’s algorithm to execute an inner iteration in Õ(nkQ/‘)
time. The subroutine using Cunningham’s algorithm can be replaced by the Õ

1
n

Ô
kQ/‘

2
-

time algorithm of [4].5 This gives a (1 ≠ ‘)-approximation algorithm for weighted matroid
intersection running in Õ

1
n

Ô
kQ/‘

2

2
time.

The real challenge is to also compute a compact (1 + ‘)-approximate dual solution within
the same running time. This requires additional background on the framework of [8].

Cost-splitting. The fast approximation algorithm in [8] is based on the cost-splitting
approach to matroid intersection described in [14]. A cost-splitting of c is a decomposition
c1 + c2 where c1, c2 : N æ RØ0.6 A cost-splitting can be used to certify a maximum cost
independent set as follows.

I Fact 15 ([14]). Suppose I œ I1 fl I2 and c = c1 + c2 is a cost-splitting such that I is a
c1-maximum independent set in M1 and c2-maximum independent set in M2. Then I is a
maximum cost independent set in the intersection of M1 and M2.

The proof is immediate: given (I, c1, c2) as in fact 15, and letting I
ú denote an optimum

solution, we have c1(I) Ø c1(Iú) and c2(I) Ø c2(Iú). Since c = c1 + c2, c(I) Ø c(Iú). Note
that this proof does not involve the dual LP.

An approximate version of fact 15 is given in [8] to certify (1 ≠ ‘)-approximate solutions.
This proof also does not construct a dual solution, let alone compact one.

Before describing how to extract the desired dual solution from [8], we give additional
background on the LPs Equations (3) and (4). This background is not necessary for our
analysis, but it gives some intuition for the eventual claim.

[10] proved that LP (3) is totally dual integral. Moreover, any optimal solution (y, z) can
be uncrossed and merged so that the supports of y and z each form a chain. Expanding on
the latter point, suppose the support of y is a chain of the form S1 ( S2 ( · · · ( S¸. We can
replace each Si with span(Si) without increasing the objective or decreasing the coverage
on any element. Thus, replacing each Si with span(Si), we can assume each Si is closed.
We have 0 < rank1(S1) < rank1(S2) < · · · < rank1(S¸) Æ rank1(N ). Let I0 = ÿ, and for
i = 1, 2, . . . , ¸ in sequence, let Ii extend Ii≠1 to a maximum cardinality independent set of
Si. Then Si = span(Ii) for each i. Let e1, . . . , eh enumerate the elements of I1, then I2 \ I1,
and so forth, so that each Ii is a prefix of the form Ii = {e1, . . . , eji} for some index ji œ [h].
Since I¸ = {e1, . . . , eh} œ I1, h Æ rank1(N ).

This exercise shows that if the support of y is a chain, then it is induced by prefixes of a
sequence of h Æ rank1(N ) elements e1, . . . , eh. Symmetrically if the support of z is a chain,
then it is also generated by a sequence of rank2(N ) elements. Consequently there are at
most nrank1(N )+rank2(N ) ways for y and z to have chain supports.

5 A minor technical point to address is that the unweighted matroid intersection is not over M1 and M2,
but auxiliary “weight-induced matroids” M1,c1 and M2,c2 induced by weights c1 and c2. Fortunately
it is easy to identify edges of the exchange graph of M1,c1 and M2,c2 via independence oracles to
the input matroids M1 and M2. The algorithm in [4] can be adapted to M1,c1 and M2,c2 just as
Cunningham’s algorithm was adapted in [8].

6 [14] calls this a “weight-splitting”. We refer to this as a “cost-splitting” because we are referring to c as
costs.
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Thus a compact solution (y, z) is similar to a solution (y, z) where the support is a chain.
However, compact solutions restrict the generating sequences of elements to have length at
most k, and k Æ min{rank1(N ), rank2(N )}.

As alluded to earlier, [8] computes a (1 ≠ ‘)-approximation I along with vectors c1, c2

that approximate the (exact) cost-splitting describe in [14]. We formalize the approximation
conditions as follows: For fixed I and ‘ œ (0, 1), an ‘-approximate cost-splitting certificate is
a pair of weight vectors c1, c2 : N æ RØ0 with the following properties:
(a) (1 + ‘)(c1 + c2) Ø c elementwise.
(b) c1(I) + c2(I) Æ (1 + ‘)c(I).
(c) I is a c1-maximum independent set in M1 restricted to span1(I).
(d) I is a c2-maximum independent set in M2 restricted to span2(I).
(e) c1(e) Æ ‘ for all e œ N \ span1(I).
(f) c2(e) Æ ‘ for all e œ N \ span2(I).

[8] produces an independent set I œ I1 flI2 and an ‘-approximate cost-splitting certificate
c1, c2. We show how to extract a compact (1 + ‘)-approximate dual solution from I, c1, and
c2.

I Lemma 16. Let I œ I1 fl I2 and let c1, c2 : N æ RØ0 be an ‘-approximate cost-splitting
certificate. Then in Õ(nQ) time, one can compute y, z : 2N æ RØ0 such that
(i) (y, z) are feasible for the dual LP (4).
(ii) (y, z) are compact.
(iii)

q
S
rank1(S)yS + rank2(S)yS Æ (1 +O(‘))c(I)

The last point says that I and (y, z) mutually certify each other to be (1±O(‘))-approxi-
mations to their respective problem. Taking ‘ down to 0 gives an exact compact dual
optimum solution certifying I to be exactly optimum.

Proof of Lemma 16. For t œ RØ0, let

Yt = span1({e œ I : c1(e) Ø t}) and Zt = span2({e œ I : c2(e) Ø t}).

Let y, z : 2N æ RØ0 be defined by

y = (1 +O(‘))
⁄ Œ

0

1Yt dt and z = (1 +O(‘))
⁄ Œ

0

1Zt dt,

where 1S denotes the indicator vector for S ™ N in R2
N . Observe that y is supported by a

chain of elements listing I in decreasing order of c1, and z is supported by a chain of elements
listing I in decreasing order of c2. It remains to show that y, z is feasible for the dual LP (4),
and has objective value within a (1 +O(‘))-factor of c(I).

To show that (y, z) is feasible, fix e œ N . If c1(e) Ø ‘, then e œ span1(I). Since I is
c1-maximum in M1, e œ span(Yt) for all t Æ c1(e). Therefore,

ÿ

S:eœS

yS Ø (1 +O(‘))
⁄

c1(e)

0

1 dt = (1 +O(‘))c1(e).

Symmetrically, if c2(e) Ø ‘, then
q

S:eœS
zS Ø (1 +O(‘))c2(e).

Now we have three cases. If c1(e) Ø ‘ and c2(e) Ø ‘, then
ÿ

S:eœS

yS + zS Ø (1 +O(‘))c1(e) + (1 +O(‘))c2(e) Ø c(e).
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If c1(e) Æ ‘, then c1(e) Æ ‘c(e), and
ÿ

S:eœS

yS + zS Ø
ÿ

S:eœS

zS Ø (1 +O(‘))c2(e) Ø (1 +O(‘))((1 ≠ ‘)c(e) ≠ c1(e))

Ø (1 +O(‘))(1 ≠ 2‘)c(e) Ø c(e).

Symmetrically, if c2(e) Æ ‘, then
q

S:eœS
yS + zS Ø (1 ≠ 2‘)c(e). Thus (y, z) forms a feasible

dual solution if c1(e) Æ ‘, c2(e) Æ ‘, or neither.
Now consider the objective value. The contribution from y is
ÿ

S

rank1(S)yS = (1 +O(‘))
⁄ Œ

0

rank(Yt) dt

= (1 +O(‘))
⁄ Œ

0

|Yt fl I| dt = (1 +O(‘))c1(I).

Symmetrically, z contributes
q

S
rank2(S)zS = (1 +O(‘))c2(I). Together, we have

ÿ

S

rank1(S)yS + rank2(S)zS = (1 +O(‘))(c1(I) + c2(I)) Æ (1 +O(‘))I,

as desired. J

Now we complete the proof of Lemma 13. Using the algorithm of [8] with the (1 ≠ ‘)-
approximated unweighted matroid intersection algorithm of [4] as a subroutine, we compute
an (1 ≠ ‘)-approximate maximum cost independent set I and a ‘-approximate cost-splitting
certificate c1, c2, in Õ

1
n

Ô
kQ/‘

2

2
time. By Lemma 16, we extract a feasible compact (1 + ‘)-

dual solution (y, z) in Õ(nQ/‘) time. We return I and (y, z). The overall running time is
Õ

!
nQ/‘ + k

3/2
/‘

3
"
. This completes the proof of Lemma 13 and of the faster approximate

matroid intersection algorithm.

4 MWU analysis

In this section we prove Lemma 7, which claims that given a covering LP, solving a certain
relaxed coverage problem for Õ(1/‘) iterations leads to a (1 ≠ ‘)-approximation overall.

Like other proofs, we fix ‘, and describe and analyze an algorithm that returns a point
x œ P with objective value Èb, xÍ Æ (1 +O(‘))OPT and coverage Ax Ø (1 ≠ O(‘))1. The
claimed (1± ‘) bounds then follow by decreasing ‘ by a constant factor.

There are multiple perspectives on the MWU framework presenting essentially the same
proof in di�erent styles. Our presentation follows the conventions of the analysis from [24].

The algorithm builds a solution x incrementally over L = O(log(m)/‘) iterations. We let
x
(¸) denote the value of x after ¸ iterations. It starts with x

(0) = 0. Each iteration ¸ invoke the
oracle for a set of weights w(¸) and produces a point y(¸), and updates x(¸) = x

(¸≠1) + y
(¸)

/L.
The output, x(L) =

q
¸
y
(¸)

/L, is the average of the points returned by the oracle. The exact
steps in the ¸th iteration are as follows:
1. For each i œ [m], compute w

(¸)

i
= e

≠ load
(¸≠1)

(i)
, where

load(¸≠1)(i) = |{k œ {1, . . . , ¸ ≠ 1} : (Ay
(k))i Ø 1}|

is the number of previous iterations k where y
(k) covers wi.

2. Invoke the oracle with respect to w
(¸), returning y

(¸).
3. Set x(¸) = x

(¸≠1) + y
(¸)

/L.
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Each call to the randomized oracle succeeds with high probability, and there are L =
O(log(m)/‘) iterations. By the union bound, all oracle calls succeed with high probability.
For the remainder of the analysis we assume this is the case.

We want to show that x(L) =
q

L

¸=1
y
(¸)

/L is a (1 +O(‘)) approximation. It is easy to
see that the objective value is good: we have

Èb, x(L)Í = 1
L

Lÿ

¸=1

Èb, y(¸)Í Ø (1 + ‘)OPT

because the oracle guarantees Èb, y(¸)Í Ø (1 + ‘)OPT for all ¸. It remains to show that
Ax

(L) Ø (1 ≠ O(‘))1. The key to the analysis is understanding why the weights are selected
as they are.

For each iteration ¸, let M¸ = {i œ [m] : (Ay
(¸))i Ø 1} be the set of coordinates covered

in the ¸th iteration. The oracle guarantees that for each iteration ¸ œ [L],
ÿ

iœM¸

w
(¸≠1)

i
Ø (1 ≠ ‘)Èw(¸≠1)

,1Í.

We claim that
ÿ

iœM¸

w
(¸)

i
Ø (1 ≠ O(‘))Èw(¸)

,1Í (5)

for all ¸ œ [L]. To this end, we have
ÿ

i/œM¸

w
(¸)

i

(a)

Æ
ÿ

i/œM¸

w
(¸≠1)

i
Æ ‘Èw(¸≠1)

,1Í Æ ‘

(1 ≠ ‘)
ÿ

iœM¸

w
(¸≠1)

i

(b)= ‘e

(1 ≠ ‘)
ÿ

iœM¸

w
(¸)

i
Æ ‘e

(1 ≠ ‘) Èw(¸)
,1Í,

as desired. Here, (a) is because w
(¸) is decreasing in ¸. (b) is because for each i œ M¸, the

weight decreases by e
≠1.

To complete the analysis, define f(¸) by

f(¸) = ≠ 1
L
log

A
mÿ

i=1

e
≠ load

(¸)
(i)

B
= ≠ 1

L
log

A
mÿ

i=1

w
(¸)

i

B
.

f(¸) gives a smooth approximation of the minimum value of load(¸); we have

min
i

load(¸)(i)
L

≠ ‘ Æ f(x) Æ min
i

load(¸)(i)
L

because L Ø log(m)/‘. Since (Ax
(L))i Ø load(L)(i) for all i, it su�ces to show that

f(L) Ø 1 ≠ O(‘). We have

f(L) = f(0) +
Lÿ

¸=1

f(¸) ≠ f(¸ ≠ 1) = ≠‘ ≠ 1
L

Lÿ

¸=1

log
3 q

m

i=1
w

(¸)

iq
m

i=1
w(¸≠1)

i

4

For each iteration ¸, we have
mÿ

i=1

w
(¸)

i

(c)

Æ (1 +O(‘))
ÿ

iœM¸

w
(¸)

i

(d)= (1 +O(‘))e≠1
ÿ

iœM¸

w
(¸≠1)

i

Æ(1 +O(‘))e≠1
ÿ

i

w
(¸≠1)

i
Æ e

≠(1≠O(‘))
ÿ

i

w
(¸≠1)

i
.
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Here (c) critically uses inequality (5). (d) is because all elements i œ M¸ are covered by y
(¸),

increasing their loads by 1 and their weight by e
≠1. Thus

log
3q

m

i=1
w

(¸)

iq
i
w(¸≠1)

i

4
Æ ≠(1 ≠ O(‘)).

Plugging back in, we have f(L) Ø ≠‘ ≠ 1

L

q
L

¸=1
(≠(1 ≠ O(‘))) = 1 ≠ O(‘), as desired.
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Abstract

Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms
for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial
algorithmic primitives to fast computation of fundamental problems on random walks, such as
computing stationary distributions, hitting and commute times, and personalized PageRank vectors.
While spectral sparsification is well understood for undirected graphs and it is known that for every
graph G, (1+Á)-sparsifiers with O(nÁ

≠2) edges exist [Batson-Spielman-Srivastava, STOC ’09] (which
is optimal), the best known constructions of Eulerian sparsifiers require �(nÁ

≠2 log4 n) edges and
are based on short-cycle decompositions [Chu et al., FOCS ’18].

In this paper, we give improved constructions of Eulerian sparsifiers, specifically:
1. We show that for every directed Eulerian graph G̨, there exists an Eulerian sparsifier with

O(nÁ
≠2 log2 n log2 logn+ nÁ

≠4/3 log8/3 n) edges. This result is based on combining short-cycle
decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS ’18, SICOMP] and [Parter-Yogev,
ICALP ’19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC
’23].

2. We give an improved analysis of the constructions based on short-cycle decompositions, giving
an m

1+”-time algorithm for any constant ” > 0 for constructing Eulerian sparsifiers with
O(nÁ

≠2 log3 n) edges.
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1 Introduction

Given a graph G(V,E), a sparsifier of G is a graph H on the same set of vertices V, but
hopefully supported on a subset of the edges EÕ µ E such that H approximately preserves
certain properties of G. Several notions of graph sparsification have been well studied for
undirected graphs, e.g. spanners (approximately preserving distances), cut sparsifiers, spectral
sparsifiers, etc.
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119:2 Better Sparsifiers for Directed Eulerian Graphs

Spectral sparsification is a particularly influential notion of undirected graph sparsifica-
tion [44]. Spectral sparsifiers generalize cut-sparsifiers introduced by Benczur-Karger [10],
which guarantees that the total weight of every vertex cut is preserved up to a multiplicative
factor of (1 + Á) in the sparsifier. E�cient spectral sparsification was a core development
that led to nearly-linear time solvers for Laplacian linear systems [44]. It further inspired
the Laplacian paradigm, resulting in faster algorithms for many graph problems includ-
ing sampling/counting random spanning trees [16, 17] and approximating edge centrality
measures [31].

The first construction of spectral sparsifiers for undirected graphs by Spielman and
Teng required �(nÁ≠2poly(logn)) number of edges with a large, unspecified power of logn.
Subsequently, Spielman and Srivastava [42] constructed a spectral sparsifier withO(nÁ≠2 logn)
edges probabilistically by independently sampling each edge with probability proportional to
its leverage score. In a complete graph, sampling edges independently with probability p
requires p = �(Á≠2 logn) to achieve (1 + Á)-spectral sparsification; thus such construction
requires �(nÁ≠2 logn) edges. Batson-Spielman-Srivastava [7] further improved this to show
that there exist spectral sparsifiers for undirected graphs with O(nÁ≠2) edges and that this is
tight even for the complete graph. Thus, they essentially settled the question of the optimal
size of undirected spectral sparsifiers.

For directed graphs, sparsification has been trickier to define. It is immediate to see that
in a complete bipartite graph with all edges directed from the left vertices to the right vertices,
if one wishes to approximately preserve all directed cuts, one must preserve all the edges.
This means that there is no non-trivial cut-sparsification (or its generalization) for arbitrary
directed graphs. Such pathological cases can be avoided if one restricts to Eulerian directed
graphs, i.e. a graph where each vertex has its total weighted in-degree equal to its total
weighted out-degree, in which case cut sparsification becomes equivalent to cut sparsification
of undirected graphs. Indeed, Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu [13] defined a
meaningful generalization of spectral sparsification (and hence cut sparsification) to Eulerian
directed graphs. The standard notion of Eulerian approximation and (sparsification) requires
exact preservation of the di�erences between in and out degrees while ensuring the di�erence
in directed Eulerian Laplacians is small with respect to the Laplacian of the undirectification
of the graph. That is, for ‘ œ (0, 1),

...L
+
2
G (LH̨ ≠ LG̨)L

+
2
G

... Æ ‘.

We call these sparsifiers Eulerian sparsifiers for brevity. In a manner similar to the original
Spielman-Teng construction, [13] gives a nearly-linear time ÂO(m)-time algorithm to build an
Eulerian sparsifier with O(nÁ≠2poly(logn)) edges, with a large unspecified power of logn.

Since Eulerian sparsification generalizes undirected spectral sparsification, �(nÁ≠2) edges
are necessary for constructing Eulerian sparsifiers. There has been progress in proving the
existence of Eulerian sparsifiers with fewer edges: Chu-Gao-Peng-Sachdeva-Sawlani-Wang [11]
introduced the short-cycle decomposition, a decomposition of an unweighted graph as a
union of short edge-disjoint cycles, and a few extra edges. As a simple lemma, they showed
that every undirected graph can be represented as a union of edge-disjoint cycles of length
2 logn, with at most 2n extra edges. Using this short-cycle decomposition, [11] were able to
prove Eulerian sparsifiers with O(nÁ≠2 log4 n) edges exist. However, the following natural
question remains unanswered:

What is the best possible sparsity guarantee for constructing Eulerian sparsifiers?
In this paper, we make progress on this question. First, we present an improved analysis

of the short-cycle based Eulerian sparsification from [11].
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I Theorem 1. For every constant ” > 0, there is an algorithm that takes as input a directed
Eulerian graph G̨ and returns an Á-Eulerian sparsifier of G̨ with O(nÁ≠2 log3 n) edges in
m1+” time.

The above algorithm relies on independently toggling short cycles: with probability 1

2

all clockwise edges are deleted and counter-clockwise edges are doubled, otherwise vice-
versa. Given that the edges in each O(logn) length short-cycle are toggled in a completely
correlated manner, and the cycles are toggled independently, this approach cannot lead to a
sparsity better than O(nÁ≠2 log3 n) (see Remark 9). To go past the above result, we leverage
discrepancy theory, specifically recent progress on the matrix Spencer conjecture by Bansal,
Jiang, and Meka [6]. (See Section 1.1 for a description of the matrix Spencer conjecture.)
While the matrix Spencer conjecture is not directly useful for our application, we utilize the
underlying machinery from [6] and the short-cycle decomposition to prove the following:

I Theorem 2 (Informal). There is an algorithm that given an Eulerian graph G̨, can compute
in poly-time an Á-Eulerian sparsifier of G̨ with nÁ≠2 log2 n + nÁ≠3/4 log8/3 n edges (up to
log logn factors).

For small Á, e.g. Á≠1 = �(logn), the above theorem gives an nÁ≠2 log2 n bound, only a
log2 n factor away from the lower bound. In Section 4.1 we show that assuming the matrix
partial colouring conjecture, one can improve this result to prove the existence of Á-Eulerian
sparsifiers with nÁ≠2 log2 n edges for all Á (up to log logn factors).

1.1 Related works

Sparsification

There are four major approaches for undirected spectral sparsification: expander decomposi-
tion [45, 4, 20], spanners [21, 23, 26], importance sampling [43, 22], and potential function
based sparsification [8, 3, 28, 29]. More closely related to Eulerian sparsification is undirected
degree preserving sparsification, introduced by Chu-Gao-Peng-Sachdeva-Sawlani-Wang [11].
Degree preserving sparsification is useful for constructing spectral sketches. More importantly
for us, techniques for degree preserving sparsification can generally be extended to work for
directed Eulerian sparsification.

Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu [13] showed the first degree preserving
(implicitly) and Eulerian sparsifier using expander decomposition. The algorithm performs
random sampling of the directed edges with probability related to the degrees within each
expander. Recent work by Ahmadinejad-Peebles-Pyne-Sidford-Vadhan [2] establishes an
“equivalence”, albeit with significantly stronger requirements than spectral approximations,
between degree preserving and Eulerian sparsification under the notion of singular value
approximation. They established the first Eulerian sparsifier with both nearly-linear sparsity
and nearly-linear runtime, albeit with a large poly(logn) factor in both. However, the
expander approach bottlenecks at �(nÁ2 log3 n) due to a lowerbound on the optimal tradeo�
between the expansion factor and the number of expanders [41].

The technique of using short cycles for sparsification [11] also applies to degree preserving
and Eulerian sparsifications with sparsity O(nÁ≠2 log2 n) and O(nÁ≠2 log4 n) respectively.
Improved short cycle decompositions were subsequently designed in [32, 35] to facilitate faster
construction of sparsifiers. Our first result Theorem 1 follows closely to [11] and reduces the
gap between degree-preserving and Eulerian sparsification under this technique.

ICALP 2024



119:4 Better Sparsifiers for Directed Eulerian Graphs

Recently Jambulapati-Reis-Tian [19] constructed new degree preserving sparsifiers using
discrepancy theory. They showed operator norm discrepancy bodies are well conditioned1

for the symmetric and PSD matrices that arise from undirected sparsification and used an
approximate version of the framework from Reis-Rothvoss [39] to give a colouring of the
edges (corresponding to adding and deleting edges) under the linear constraint needed for
degree preservation. However, the underlying discrepancy bodies studied by Jambulapati-
Reis-Tian [19] do not align with Eulerian sparsification where matrices are no longer positive
semidefinite and the primary statistic one has control over is matrix variance (see Section 4).

Directed Laplacian solvers

Cohen-Kelner-Peebles-Peng-Sidford-Vladu [14] initiated the line of work that studies solving
directed Laplacian linear systems. They established a reduction from solving general directed
Laplacian systems to Eulerian Laplacian systems.Cohen-Kelner-Peebles-Peng-Rao-Sidford-
Vladu [13] gave an almost linear time algorithm for solving Eulerian Laplacians using the
squaring identities from Peng-Spielman [37]. Subsequently, Cohen-Kelner-Kyng-Peebles-Peng-
Rao-Sidford [12] gave the first nearly linear time solver using the standard approximate LU
factorization techniques that enjoyed great success in undirected Laplacian solvers [27, 24, 40].
Ahmadinejad-Jambulapati-Saberi-Sidford [1] further established a reduction from solving
systems of (asymmetric) M-matrices to Eulerian Laplacian systems, giving fast computation
of several problems closely associated with the Perron-Frobenius theorem. Peng-Song [36]
extended the approach from [12] and gave an approach for extending an algorithm for building
Eulerian sparsifiers to a fast solver for Eulerian Laplacian linear systems. Combined with
Theorem 1, they give an O(n log4 n log(nÁ )) time solver with m1+” preprocessing time for any
constant ” > 0. Kyng-Meierhans-Probst-Gutenberg [25] established the first derandomized
directed Laplacian solver in almost linear time.

Discrepancy theory

The Matrix Spencer Conjecture [47, 34] is a major open problem in discrepancy theory:

I Conjecture 3 (Matrix Spencer Conjecture). Given n◊n symmetric matrices A1, . . . ,Am œ
Rn◊n with ÎAiÎ Æ 1, there exist signs x œ {±1}m such that Î

qm
i=1

xiAiÎ Æ O(
Ô
m ·

max{1,

min{1, log( n

m )}}).

As a natural comparison, for a uniform random colouring x œ {±1}m, the matrix Cherno�
bound [46] gives the following bound which has a gap of

Ô
logn to Conjecture 3 when m Ø n:

E
C.....

ÿ

i

xiAi

.....

D
= O

1
logn

2
·

.....
ÿ

i

A
2

i

.....

1
2

Æ O(

m logn).

We refer readers to [30, 18, 15] for recent progress toward solving this conjecture.
Many natural problems in studying the spectra of matrices can be viewed as discrepancy

theory problems, e.g., graph sparsification [8, 38] and the Kadison-Singer problem [33].
Reis-Rothvoss [38] studies the geometry of operator norm balls for a collection of matrices
where, Î

q
i |Ai|Î is small. This was subsequently used in Jambulapati-Reis-Tian [19] to show

optimal degree preserving sparsification. As previously mentioned, this line of work does not
apply to Eulerian sparsification since matrices that emerge from our setting do not satisfy

1 I.e., satisfy certain Gaussian measure lowerbound
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that Î
q

i |Ai|Î is small. Bansal-Jiang-Meka [6] resolved the Matrix Spencer Conjecture for
matrices of rank n/(logO(1) n) using a recent advancement in matrix concentration bounds due
to Bandeira-Boedihardjo-van-Handel [5]. The partial colouring result for controlling operator
norm used in [6] serves as the main machinery in our existential results (see Lemma 4).
Specifically, the matrices we study naturally satisfy Î

q
i A

2

i Î is small.

1.2 Technical overview

Our approach to constructing Eulerian sparsifiers builds on the framework of Chu-Gao-
Peng-Sachdeva-Sawlani-Wang [11]. The sparsification algorithm in [11] combines importance
sampling of edges with a short cycle decomposition. At each iteration, the algorithm restricts
its attention to edges with small “importance” in the undirected graph (edges with leverage
score web

€
e L

+

Gbe at most constant times the average leverage score, O( n
m )). The algorithm

then performs a short cycle decomposition on these edges – expressing the graph as a union
of uniformly weighted edge-disjoint short cycles and a few extra edges. For each short cycle,
the algorithm independently keeps either the clockwise edges or the counter-clockwise edges
with probability 1

2
each. The number of edges reduces by a constant fraction in expectation

at each iteration. After doubling the weights of the cycle edges retained, the algorithm
guarantees that the Eulerianess of each cycle is preserved and, hence, the entire graph.
Moreover, when combined with the undirected leverage score condition above, changes in
directed short cycles also have a small variance overall. The matrix Bernstein inequality for
asymmetric matrices guarantees a small approximation error for this randomized step. We
repeat this process until the desired approximation error is met.

Our improved result of this algorithm is due to th improved variance bounds in Lemma 8
for random matrices corresponding to short cycles. Rather than bounding the variance
through complete graphs as in [11], we bound it with respect to the undirected cycle. This
improved variance also serves a critical role in our partial colouring approach in Section 4.

In the rest of our paper, we present our existential result which uses the partial colouring
lemma, Lemma 4, from [6] to choose how to sparsify the short cycles. The algorithm follows
the same high-level approach as the random sampling construction above. For each directed
short cycle, instead of independently sampling cycle edges, we will use the partial colouring
given by Lemma 4. In each iteration, Lemma 4 gives a partial colouring with su�ciently
many fully coloured entries (i.e., ±1 entries) on all cycles. It then allows us to remove a
constant fraction of the cycle edges with less error than random sampling.

I Lemma 4 ([6] Lemma 3.1). There exists constants c, cÕ > 0 such that given symmetric
matrices A1, . . . ,Am œ Rn◊n satisfying Î

qm
i=1

A
2

i Î Æ ‡2 and
qm

i=1
ÎAiÎ2F Æ mf2 and a

point y œ (≠1, 1)m, there is an algorithm PartialColour that returns in polynomial time
a point x œ [≠1, 1]m such that |{i : xi œ {±1}}| > cÕm and

.....

mÿ

i=1

(xi ≠ yi)Ai

..... Æ c(‡ + (log
3
4 n)


‡f). (1)

There are two major challenges in applying Lemma 4. Firstly, within each iteration,
we cannot a�ord to fully colour all the cycles by recursively applying Lemma 4, since we
might have to perform the partial colouring O(logn) times, resulting in an additional log
factor in the sparsity. Thus, we are always left with fractionally coloured cycles (i.e., entries
with magnitude < 1). Such cycles must still be incorporated into the sparsified graph to
guarantee the error given by Lemma 4. However, we cannot explicitly modify the graph to
include edges corresponding to these cycles, as we would lose the integral and polynomially
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119:6 Better Sparsifiers for Directed Eulerian Graphs

bounded weight conditions and the short cycle decomposition could no longer be applied to
this new graph. The second challenge also comes from incorporating fractionally coloured
cycles in the next iteration. Unlike the undirected case, the two parts of a directed cycle do
not necessarily have the same number of edges. For example, a directed cycle with all edges
in the same direction has all the edges in one part and none in the other. If we start our
colouring process from a non-zero initial partial colouring (i.e., a non-zero y to Lemma 4),
we could end up at a colouring where almost no edges are removed.

To deal with these problems, our algorithm handles the integral weighted portion G̨ of
the graph G̨Õ and the fractionally coloured cycles S separately (see Algorithm 4). For the
integral weighted portion, we perform the partial colouring to guarantee at least a constant
fraction of edges are removed. We then add the fractionally coloured cycles into the set S.
For the set of fractionally coloured cycles S, we adjust their colouring by considering the
di�erence between the partial colours and ±1 to ensure that a good portion of cycles in S
are fully coloured after the procedure to guarantee the size of S does not blow up. In both
cases, the error incurred by the partial colouring operation is controlled to guarantee our
desired final error (Theorem 2).

2 Preliminaries

We use ÂO(·) to suppress polylog factors in n,m. We say “with high probability in n” for an
event occuring with probability 1 ≠ n≠�(1). For graphs, n is assumed to be the number of
vertices and is often omitted. All logarithms in the paper are base 2.

Linear Algebra

We use boldface to denote vectors, and use 0 and 1 for the all-zeros and all-ones vectors.
We let eu denote the vector that is 1 in the uth coordinate and 0 elsewhere. We denote
buv = eu ≠ ev for any u ”= v. For vectors u,v of equal dimension, u ¶ v is the entrywise
product. For a linear subspace W of a vector space V, we denote W‹ as the orthogonal
complement of W in V.

Matrices are denoted in boldface capticals. We use ker(A), im(A) to denote the kernel
and image of A. For any u, we let (A)u denote the uth column of A. The Kronecker product
of matrices A and B is denoted A¢B. A symmetric matrix A is positive semidefinite (PSD)
(resp. positive definite (PD)) if, for any vector x of compatible dimension, x€

Ax Ø 0 (resp.
x

€
Ax > 0 ). Let A and B be two symmetric matrices of the same dimension, then we write

B 4 A or A < B if A≠B is PSD. The ordering given by 4 is called Loewner partial order.

I Lemma 5. If A < B and C is any matrix of compatible dimension, then CAC
€ < CBC

€.

Let ÎAÎ and ÎAÎF =

Tr (Aú

A) denote the operator norm and Frobenius norm of a matrix
A. The operator norm is equal to the largest singular value of A. For a matrix A œ Rn◊m,
we define the Hermitian (symmetric) lift of A by

hlift(A) =
5

A

A
€

6
œ R(n+m)◊(n+m)

The norms of Hermitian lifts satisfy Îhlift(A)Î = ÎAÎ and Îhlift(A)ÎF = 2 ÎAÎF . Given
a symmetric matrix with eigenvalue decomposition A =

q
i ⁄iviv

€
i , where {vi}i form an

orthonormal basis, the pseudoinverse is defined as A+ =
q

i:⁄i ”=0

1

⁄i

viv
€
i . The absolute value

of A on eigenvalues is defined as |A| =
q

i:⁄i ”=0
|⁄i|viv

€
i . Note that |A| is PSD. Similarly for

symmetric PSD matrix A we have A
1/2 =

q
i:⁄i ”=0

Ô
⁄iviv

€
i and A

+/2 =
q

i:⁄i ”=0

1Ô
⁄i

viv
€
i .
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Graphs and Laplacians

G̨ = (V,E,w) denotes a weighted directed graph (allowing multi-edges) with edge weights
w : E æ RØ0. G denotes the undirected graph of G̨ where directed edgex e œ E(G̨)
correspond to undirected edges between the same vertices with half the weight. G̨ is Eulerian
if the weighted in degree equals the weighted out degree for each vertex v œ V .

We define the adjacency matrix of G̨ as a non-negative matrix AG̨ with Auv = wuv if
(u, v) œ E and 0 otherwise. The weighted degree matrix of G̨ is a non-negative diagonal
matrix DG̨ corresponding to the weighted out-degrees of G̨. We define the directed Laplacian
of G̨ as LG̨ = DG̨ ≠ A

€
G̨

and it satisfies 1
€
LG̨ = 0

€, i.e. (LG̨)uu = ≠
q

v ”=u Lvu for all
u œ V . For a weighted Eulerian directed graph G̨, its graph Laplacian additionally satisfies
LG̨1 = 0. Assuming Eulerian graph G̨, the associated undirected graph Laplacian matrix of
G is LG = 1

2
(LG̨ + L

€
G̨
). LG is symmetric and PSD. For an undirected Laplacian LG, the

e�ective resistance and leverage score of an edge e œ E(G) are defined by Re�G(e) = b
€
e L

+

Gbe

and ·G(e) = we Re�G(e) where we fixed an arbitrary orientation for the undirected edge e.
We use n and m for the number of vertices and edges in G. As is standard, we study strongly
connected Eulerian graphs with positive integral and polynomially bounded edge weights
(i.e., weights bounded by nO(1)).

3 Eulerian sparsification via short cycle decomposition

We first present an improved analysis of constructing Eulerian sparsifiers using short cycle
decompositions analogous to [11]. In particular, we provide a better variance analysis of the
error terms in sparsification than what was used by [11]; by Matrix Bernstein [46] this will
allow us to use fewer edges to retain a desired error bound.

We first recall the definition of a short cycle decomposition of a graph G.

I Definition 6. An (m̂, L)-short cycle decomposition of an unweighted undirected graph G,
decomposes G into several edge-disjoint cycles, each of length at most L, and at most m̂
edges are not in the union of the cycles.

We let CycleDecomposition be an algorithm that takes as input an unweighted graph
with n vertices andm edges and returns a (m̂, L)-short cycle decomposition in time TCD(m,n).
As in [11], we assume the super-additivity of TCD,

q
i TCD(mi, n) Æ TCD (

q
i mi, n) , for

all mi Ø n. Relevant to us is a construction of short cycle decompositions which for every
constant ” > 0, gives an (O(n logn), O(logn))-short cycle decomposition in time m1+”.

I Lemma 7 ([35] Theorem 2). For any ” > 0, there is an algorithm that computes an
(O(n logn), O(2 1

” logn))-short cycle decomposition of an undirected unweighted graph in
2O(

1
”
)mn” time.

Our random sampling based sparsification algorithm is the same as [11]. We repeatedly
sparsify an Eulerian graph by keeping only the “clockwise” or “counter-clockwise” edges of
each cycle in a short cycle decomposition of the graph, see CycleSparsify in Algorithm 2
and CycleSparsifyOnce in Algorithm 3.

Stated in other words, we will sparsify a cycle by partitioning it into two sets and removing
one randomly. For a directed cycle C̨, we take F̨ , S to be the outputs of CorrectOrien-

tation(C̨). In particular, F̨ is the cycle C̨ corrected so that every vertex has an incoming
edge and an outgoing edge, and S is the undirected graph coming from the set of edges in C̨
whose direction we reversed (where the edge weight in S are the same as the original edge
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119:8 Better Sparsifiers for Directed Eulerian Graphs

Algorithm 1 CorrectOrientation(C̨).

1 Pick an arbitrary edge e1 in C̨ and let v1 be its tail vertex. Define VC̨ as the vertex
set of C̨.

2 Initialize ES̨ Ω ÿ, EF̨ æ {e1}, VF̨ = {v1}, i = 1
3 while |VC̨ \ VF̨ | > 0 do

4 i Ω i+ 1
5 Take ei+1 be the other edge incident on vi.
6 If ei+1 is outgoing from vi, take vi+1 the head of ei+1 and update

EF̨ Ω EF̨ fi {ei+1}, VF̨ Ω VF̨ fi {vi+1}.
7 Else let vi+1 be the tail of ei+1 and update ES̨ Ω ES̨ fi {ei+1},

EF̨ Ω EF̨ fi {rev(ei+1)}, VF̨ Ω VF̨ fi {vi+1}.
8 return F̨ defined by EF̨ and VF̨ , and S the undirected graph defined by ES̨ and the

incident vertices of ES̨.

Algorithm 2 CycleSparsify(G̨, Á,CycleDecomposition).

1 Decompose each edge by its binary representation.
2 Compute r a 1.5-approximate e�ective resistances in G.
3 while |E(G̨)| Ø O(m̂ logn+ Á≠2nL2 logn) do
4 G̨ Ω CycleSparsifyOnce(G̨, r,CycleDecomposition).
5 return G̨.

weights). We consider the direction of edges defined by F̨ as clockwise. Then, the edges in S
are all the counter-clockwise edges in C̨. For a cycle C and its corresponding directed cycle
C̨, the directed graph Laplacian added at line 7 in CycleSparsifyOnce is the following:

I
LC̨ + LF̨ ≠ LS w.p. 1

2

LC̨ ≠ LF̨ + LS w.p. 1

2

which means the changes incurred on the directed graph Laplacian is
I

ÂL w.p. 1

2

≠ÂL w.p. 1

2

,where ÂL = LF̨ ≠ LS . (2)

Note that this change preserves the di�erence between the in and out degrees of C̨. Either a
vertex had an incoming and outgoing edge (and so di�erence 0), in which case both edges
are either in F̨ \ S or in S and hence always added together with the same weights (so still
di�erence 0). Alternatively a vertex had two incoming or outgoing edges, in which case only
one is ever added with twice the weight, which then still preserves the di�erence between in
and out degree.

To obtain the improved approximation error guarantees, we show Lemma 8 that bounds
the e�ect of LF̨ . Compared to Lemma 5.6 in [11], our result improves the bound by a factor
of L.

I Lemma 8. If C̨ is a equal weighted directed cycle of length L contained in a graph G̨ where
each edge ę œ C̨ satisfies ·G(e) Æ fl. Then, L€

F̨
L
+

GLF̨ ∞ O(L2fl)LC .
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Algorithm 3 CycleSparsifyOnce(G̨, r,CycleDecomposition).

Input: A directed Eulerian graph G̨ where edge weights are integral powers of 2,a
2-approximate e�ective resistances r in G, a short cycle decomposition
algorithm CycleDecomposition.

Output: A directed Eulerian graph H̨ where edge weights are integral powers of 2.
1 H̨ Ω G̨ with only the edges which satisfies were >

4n
m and remove these edges from

G̨.
2 Partition G̨ into uniformly weighted graph G̨1, . . . , G̨s where G̨i has all edge weights

2i and s = O(logn).
3 for each G̨i do

4 {Ci,1, . . . , Ci,t} Ω CycleDecomposition(Gi) and let C̨i,j be the corresponding
directed graph of Ci,j in G̨i.

5 H̨ Ω H̨ + G̨i \
1tt

j=1
C̨i,j

2
.

6 for each cycle C̨i,j do

7 With probability 1

2
, add all its clockwise edges with twice their weight to H̨.

Otherwise, add the counter-clockwise edges instead.
8 return H̨.

Proof. Let �C = IC ≠ 1

L1C1
€
C be the projection matrix on the support of C except the

all one vector on C. Notice that ker‹(LC) = im(LC) = im(�C). Furthermore, we have
im(LF̨ ) µ im(�C) (as 1C œ im‹(LF̨ )) so �CLF̨ = LF̨ , and also im‹(�C) µ ker(L€

F̨
) hence

L
€
F̨

�C = L
€
F̨
. Thus, L€

F̨
L
+

GLF̨ = L
€
F̨

�CL
+

G�CLF̨ .
Let w be the weight of each edge in C̨. Then, LF̨ = w(I ≠ P) where P is a permutation

matrix on the vertices of C corresponding to the transition matrix F̨ and LC = w
2
(2I≠P≠P

€).
Now, L€

F̨
�CLF̨ = L

€
F̨
LF̨ = w2(I ≠ P

€)(I ≠ P) = w2(2I ≠ P ≠ P
€) = 2wLC . As ker(L+

G) ™
ker(�C), it su�ces to show Î�CL

+

G�CÎ = O(L
2fl
w ). We can write out each column of �C

by (�C)u = 1

L

q
vœC,v ”=u buv for u œ C and 0 otherwise. As e�ective resistance is a metric,

wb€
uvL

+

Gbuv Æ (L ≠ 1)fl for any distinct vertices u, v œ C. Note that this factor of L is an
upperbound on the combinatorial distance from u to v in C. Then,

--(�C)€
x L

+

G(�C)u
-- =

-------

Q

a 1
L

ÿ

yœC,y ”=x

L

+
2
Gbxy

R

b
€ Q

a 1
L

ÿ

vœC,v ”=u

L

+
2
Gbuv

R

b

-------

Æ
ÿ

y ”=x,yœC

ÿ

v ”=u,vœC

1
wL2

...w
1
2L

+
2
Gbxy

... ·
...w

1
2L

+
2
Gbuv

...

Æ(L ≠ 1)2 ◊ (L ≠ 1)fl
wL2

Æ Lfl

w
.

By Gershgorin circle theorem and the length of C, any eigenvalue of �CL
+

G�C cannot exceed
L2fl
w as required. J

I Remark 9. There is still a gap of factor L when comparing Lemma 8 to the undirected
case. It turns out Lemma 8 is tight. Consider the multi-graph G̨ that consists of a directed
cycle with edges of weight 1 in the same orientation F̨ and a undirected cycle C on the same
vertices of edge weight fl≠1 for fl < 1

2
. Then, each edge of the directed graph has undirected

leverage score �(fl) while L
€
F̨
L
+

GLF̨ = �( fl
L )LK where LK is the Laplacian of unit clique on

the vertices of G̨. Since LK cannot be bounded by o(L3)LF , this gives the lowerbound.
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When combined with Lemma 5.5 of [11], we obtain the following spectral bounds on
matrices which appear later in our variance analysis. We refer readers to [11] and the full
version of our paper for the proofs of all subsequent claims in this section.

I Lemma 10. Let C̨ is an equal weighted directed cycle of length L contained in a graph
G̨ where each edge ę œ C̨ satisfies ·G(e) Æ fl. Then L

+
2
G (ÂL

€
L
+

G
ÂL)L

+
2
G ∞ O(L2fl) · L

+
2
GLCL

+
2
G

and L

+
2
G (ÂLL+

G
ÂL

€
)L

+
2
G ∞ O(L2fl) · L

+
2
GLCL

+
2
G .

The matrix Bernstein’s inequality [46] then gives the sparsification and error guarantees
of running CycleSparsifyOnce in Lemma 11.

I Lemma 11. Given a directed Eulerian graph G̨ whose edge weights are integral powers of 2,
and additionally 2-approximate e�ective resistances r in G, the algorithm CycleSparsify-

Once returns in O(m) +TCD(m,n) time a directed Eulerian graph H̨ with edge weights still
being powers of 2 such that if the number of edges in G satisfy m = �(m̂ logn+ nL2 logn),
then with high probability, the number of edges in H̨ is at most 15

16
m and

...L
+
2
G (LG̨ ≠ LH̨)L

+
2
G

... Æ O

AÚ
nL2 logn

m

B
.

We now provide the guarantees of CycleSparsify, which repeatedly calls CycleSpar-

sifyOnce until a criterion on the number of edges is met.

I Theorem 12. Given as input an Eulerian graph G̨ with polynomial bounded integral
edge weights and Á œ (0, 1

2
), the algorithm CycleSparsify returns in O(m log2 n) +

TCD(O(m logn), n) time a Eulerian graph H̨ with O(m̂ logn + Á≠2nL2 logn) edges such
that with high probability,

...L
+
2
G (LG̨ ≠ LH̨)L

+
2
G

... Æ Á.

Plugging in Lemma 7, we obtain the improved results on constructing Eulerian Sparsifiers
with short cycle decompositions, summarized in Theorem 1.

I Theorem 1. For every constant ” > 0, there is an algorithm that takes as input a directed
Eulerian graph G̨ and returns an Á-Eulerian sparsifier of G̨ with O(nÁ≠2 log3 n) edges in
m1+” time.

4 Sparsification via partial colouring

In the previous algorithm CycleSparsify, the approach to sparsifying was to randomly
pick one part of each cycle (out of a partitioning of the cycle into two parts) to remove
from the graph. The analysis then followed by observing on average this leads to a good
approximation, and that furthermore the variance in this random construction is su�ciently
small. In this section, we show, however, that by using recent partial colouring results on
operator norm discrepancy bodies to pick what parts of a cycle to remove, we can obtain
better sparsifiers. The main partial colouring result we use, relevant for picking a subset of
matrices to keep with minimal error, is restated below.
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Algorithm 4 ColourSparsify(G̨, Á).

1 Decompose each edge by its binary representation.
2 Compute r a 1.5-approximate e�ective resistances in G.
3 Let S be a set of cycles initialized to empty and let x be its corresponding partial

colouring.
4 Set G̨Õ Ω G̨+ ColourWeights(S, x).
5 while mÕ Ø O(nÁ≠2 log2 n(log logn)2 + nÁ≠ 4

3 log
8
3 n) do

6 if 4m Ø mÕ
then

7 G̨, G̨Õ, S, x Ω ColourSparsifyGraph(G̨, G̨Õ, S, x, r).
8 else

9 G̨, G̨Õ, S, x Ω ColourSparsifyCycle(G̨, G̨Õ, S, x, r).
10 return G̨Õ.

Algorithm 5 ColourWeights(S, x).

1 Let H̨ be an empty directed graph.
2 for each cycle C œ S and corresponding directed cycle C̨ do

3 Add all the clockwise (resp. counter-clockwise) edges in C̨ with 1 + xC (resp.
1 ≠ xC) times their weight to H̨. Note if 1 + xC = 0 (resp. 1 ≠ xC = 0) the
corresponding edge is not added.

4 return H̨.

I Lemma 4 ([6] Lemma 3.1). There exists constants c, cÕ > 0 such that given symmetric
matrices A1, . . . ,Am œ Rn◊n satisfying Î

qm
i=1

A
2

i Î Æ ‡2 and
qm

i=1
ÎAiÎ2F Æ mf2 and a

point y œ (≠1, 1)m, there is an algorithm PartialColour that returns in polynomial time
a point x œ [≠1, 1]m such that |{i : xi œ {±1}}| > cÕm and

.....

mÿ

i=1

(xi ≠ yi)Ai

..... Æ c(‡ + (log
3
4 n)


‡f). (1)

For this section, we assume the short cycle decomposition guarantees by Lemma 7 with
m̂ = O(n logn) and L = O(logn). For each cycle C with its corresponding directed cycle
C̨, we set A(C) = hlift(L

+
2
GÕ(LF̨C

≠ LSC
)L

+
2
GÕ) where F̨C is the cycle C̨ with all edges set in

clockwise direction and SC is undirected graph with the set of edges corresponding to the
counter-clockwise edges in C̨, same as in Section 3. Note that this orientation is set initialy
by CorrectOrientation after a short cycle decomposition step and fixed through out the
execution. Given a set of cycles S, we let A[S] be the collection {A(C)}CœS .

ColourWeights is our partial colouring alternative of the random selection of edges in
a cycle in CycleSparsifyOnce. It similarly does not change the di�erence between the
in-degree and out-degree and preserves integral weights, stated in Lemma 13.

I Lemma 13. Given a set of cycles S where each cycle is uniformly weighted, and any
partial colouring x œ [≠1, 1]S, the algorithm ColourWeights returns a directed graph H̨
such that the di�erence in the in and out degrees are the same as in

q
CœS C̨. If x œ {±1}S,

H̨ also has integral edge weights with the largest edge weight at most twice the largest edge
weight in cycles in S.
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Algorithm 6 ColourSparsifyGraph(G̨, G̨
Õ
, S,x, r).

Input: A directed Eulerian graph G̨ where edge weights are integral powers of 2, a
set of cycles S where each cycle is edge disjoint from G, a partial colouring
x œ (≠1, 1)S , a graph G̨Õ = G̨+ ColourWeights(S,x), a 2-approximate
e�ective resistances r in GÕ.

Output: A directed Eulerian graph H̨ where edge weights are integral powers of
2, a set of cycles T where each cycle is edge disjoint from H, a partial
colouring z œ (≠1, 1)T , a graph H̨ Õ = H̨+ ColourWeights(T , z).

1 Let H̨ Ω G̨ with only the edges which satisfy were >
16n
mÕ and remove them from G̨.

2 Partition G̨ into uniformly weighted graph G̨1, . . . , G̨q where G̨i has all edge weights
2i and q = O(logn).

3 Let S be the set of all cycles after applying CycleDecomposition on G̨1, . . . , G̨s

and set H̨ Ω H̨ +
qs

i=1
G̨i\

1tt
j=1

C̨i,j

2
.

4 T Õ, T
Õ
,y,y Ω ColourTarget(S,0, 1

8
m).

5 If ColourWeights (T Õ,y) has more edges than ColourWeights (T Õ,≠y), we
take y Ω ≠y and y Ω ≠y.

6 H̨ Ω H̨ +ColourWeights(T Õ,y).
7 T Ω T

Õ fi S and set z Ω y+ x.
8 H̨ Õ Ω H̨+ ColourWeights(T , z).
9 return H̨, H̨ Õ, T , z.

Proof. For the degree condition, it su�ces to consider a single cycle C and show that the
reweighted directed cycle, say C̨ Õ in line 3 preserves the di�erences of the in and out degrees
of C̨. Recall the definition of F̨ and S of C, see CorrectOrientation,and the argument
in Section 3 for showing degree di�erences preservation under the special case of x œ {±1}.
Note first that the edge weights are the same. Either a vertex has an incoming and outgoing
edge (and so di�erence 0), in which case both edges are either in F̨ \ S or in S and hence
always added together with the same weights of (so still di�erence 0). Alternatively a vertex
has two incoming or outgoing edges, in which case one edge gets a new weight of 1 + x and
the other gets 1 ≠ x, which then still preserves the di�erence between in and out degree.

If x œ {±1} the edge weights of C̨ Õ is exactly twice that of C unless C̨ Õ is emtpy. Thus,
H̨ still has integral edge weights with largest weight at most doubled. J

For the rest of this section, we refer to a set of uniformly weighted cycles (two cy-
cles can have di�erent weights) as a set of cycles for simplicity. We write m(S) =q

CœS |E(C)| as the total number of edges in S. In ColourSparsify, ColourSpar-

sifyGraph and ColourSparsifyCycle, by applying Õ to a graph we mean G̨Õ = G̨+
ColourWeights(S, x). We denote mÕ as the number of edges in G̨Õ. Note that this is the
primary number of edges we consider rather than m.

Towards analyzing ColourSparsify, we first state the guarantees of theColourTarget

subroutine which guarantees a partial colouring of at least a specified size.

I Lemma 14. The outputs of ColourTarget(S, y,mt) satisfy that m(S) Æ mt and the
number of calls to PartialColour is O

1
log( |S|L

mt

)
2
. If additionally the set of cycles S

satisfies
q

CœS ÎA(C)Î Æ ‡2 and
q

CœS ÎA(C)Î2F Æ v, then the outputs also satisfy
.....

ÿ

CœS

(x+ x ≠ y)A(C)

..... Æ O

A
‡ · log

3
|S|L
mt

4
+ (log

3
4 n)‡ 1

2

3
vL

mt

4 1
4
B
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Algorithm 7 ColourSparsifyCycle(G̨, G̨
Õ
, S,x, r).

Input: A directed Eulerian graph G̨ where edge weights are integral powers of 2, a
set of cycles S where each cycle is edge disjoint from G, a partial colouring
x œ (≠1, 1)S , a graph G̨Õ = G̨+ ColourWeights(S,x), a 2-approximate
e�ective resistances r in GÕ.

Output: A directed Eulerian graph H̨ where edge weights are integral powers of
2, a set of cycles T where each cycle is edge disjoint from H, a partial
colouring z œ (≠1, 1)T , a graph H̨ Õ = H̨+ ColourWeights(T , z).

1 Set SÕ be an empty set of cycles initialy. For each C œ S, let C Õ be C with its weight
by (1 ≠ |xC |) and add C Õ to S

Õ.
2 T Õ, T

Õ
,y,y Ω ColourTarget(S

Õ
,0, 1

4
mÕ

)

3 if m({C Õ œ T Õ : |xC ≠ (1 ≠ |xC |)yCÕ | = 1}) > m({C Õ œ T Õ : |xC + (1 ≠ |xC |)yCÕ | = 1})
then

4 y Ω ≠y,y Ω ≠y.
5 Set z, z to be the parts of x+ (1 ≠ |x|) ¶ (y+ y) with magnitude 1 and < 1

respectively. Here we abused ¶ to let C and C Õ refering to the same index, Set the
partition T, T of S accordingly.

6 H̨ Ω H̨ +ColourWeights(T, z).
7 H̨ Õ Ω H̨+ ColourWeights(T ,z).
8 return H̨, H̨ Õ, T , z.

Proof. Notice that each cycle has its number of edges bounded by L. We have m(S) Æ
L|S| Æ mt by the terminating condition of the while loop in ColourTarget. Since the size
of S decreases by a factor of 1 ≠ cÕ by Lemma 4, by the ith round we have |S| Æ (1 ≠ cÕ)i|S|
and at termination this is Æ mt

L . This then gives the claimed number of iterations.
Consider the error bound. Combine the number of iterations with the first term in (1)

of Lemma 4, we get our desired first term. For the second term, recall from above that |S|

decreases geometrically. Then f =
1

v
|S|

2 1
2 increases exponentially over the iterations. Hence

the sum of the second terms in (1) is bounded by the last one with f = O
1
( vLmt

) 1
2

2
, giving

O
1
(log

3
4 n)‡ 1

2 f
1
2

2
= O

A
(log

3
4 n)‡ 1

2

3
vL

mt

4 1
4
B

as required. J

Now, parallel to Lemma 11, we state the approximation guarantees of ColourSparsify-

Graph and ColourSparsifyCycle in Lemmas 15 and 16. The proof of Lemma 15 follows
closely to that of Lemma 16 and we refer reader to the full version of our paper.

I Lemma 15. If the input graphs G̨, G̨Õ satisfy 4m Ø mÕ and the input set of cycles S and
it corresponding partial colours x satisfies that each cycle C œ S has were Æ 4n

mÕ for each
edge e œ C, the algorithm ColourSparsifyGraph returns H̨ with edge weights still being
powers of 2 and at most twice the largest weight in G̨, a set of cycles T with its corresponding
partial colours z satisfying H̨ Õ = H̨+ ColourWeights(T , z) is an Eulerian graph and each
cycle C œ T also has were Æ 4n

mÕ
H

for each edge e œ C, where mÕ
H = |E(H̨)|. and,

...L
+
2
GÕ(LG̨Õ ≠ LH̨Õ)L

+
2
GÕ

... Æ O

Q

a

Û
n log2 n

mÕ log logn+
A
n log

8
3 n

mÕ

B 3
4
R

b .
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Algorithm 8 ColourTarget(S, y,mt).

Input: A set of cycles S of size s = |S|, a partial colouring y œ (≠1, 1)S , and a
target mass of mt edges.

Output: A set of fully coloured cycles S\S with colouring x, A set of partially
coloured cycles S with colouring x satisfying x œ (≠1, 1)S .

1 Initialize x = 0 be a empty colouring over S.
2 Define S to always be the set of fractionally coloured cycles in S and let s = |S|

always. Set x be the partial colour on S always.
3 while s > mt

L do

4 x[S] Ω PartialColour(A[S], x).
5 Let x Ω x with entries of magnitude < 1 and set x Ω x ≠ x.
6 return S\S, S, x, x.

I Lemma 16. If the input set of cycles S and it corresponding partial colours x satisfies
that each cycle C œ S has were Æ 4n

mÕ for each edge e œ C, the algorithm ColourSparsi-

fyCycle returns H̨ with edge weights still being powers of 2 and at most twice the largest
weight in G̨, a set of cycles T with its corresponding partial colours y satisfying H̨ Õ = H̨+
ColourWeights(T , y) is an Eulerian graph and each cycle C œ T also has were Æ 4n

mÕ
H

for
each edge e œ C, where mÕ

H = |E(H̨)|. and,

...L
+
2
GÕ(LG̨Õ ≠ LH̨Õ)L

+
2
GÕ

... Æ O

Q

a

Û
n log2 n

mÕ log logn+
A
n log

8
3 n

mÕ

B 3
4
R

b .

Before we prove Lemma 16, we need Lemma 17 regarding scaling matrices in the set of
extra cycles S.

I Lemma 17. For directed Eulerian graph G̨, a set of cycles S where each cycle C œ S satisfies
that G̨ and C̨, the corresponding directed cycle of C, are edge-disjoint. Let x œ (≠1, 1)S
be a fractional colouring on S. Then the Eulerian graph G̨Õ = G̨+ ColourWeights(S, x)
satisfies

LG +
ÿ

CœS

(1 ≠ |xC |)LC ∞ LGÕ .

Proof. For any C œ S, let C̨ Õ = ColourWeights(C, xC) where we abused the definition
to take in a single cycle instead of a set of cycles. Note that the undirectification LGÕ =
LG +

q
CœS LCÕ . Since |xC | < 1, all edges in C must be present in C Õ and the minimum

edge weight is at least 1 ≠ |xC | times the original uniform edge weights of C. Then,
(1 ≠ |xC |)LC ∞ LCÕ . Summing over all C, we get

LG +
ÿ

CœS

(1 ≠ |xC |)LC ∞ LG +
ÿ

CœS

LCÕ = LGÕ . J

Proof of Lemma 16. The edge weights condition of H̨ is guaranteed by Lemma 13. Also by
Lemma 13, both H̨ and H̨ Õ are Eulerian. Observe that mÕ

H Æ m always, and T µ S. Then,
the output cycles still satisfy the approximate leverage score condition. Now, by line 5, the
output Eulerian graph H̨ Õ satisfies

hlift
1
L

+
2
GÕ(LH̨Õ ≠ LG̨Õ)L

+
2
GÕ

2
=

ÿ

CœS

(zC + zC ≠ xC)A(C) =
ÿ

CœS

(1 ≠ |xC |)(yC + yC)A(C)
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where all vectors are taken as the final values. By definition A(C Õ) = (1 ≠ |xC |)A(C) and
ÿ

CœS

(1 ≠ |xC |)(yC + yC)A(C) =
ÿ

CÕœS
Õ

(yC + yC)A(C Õ)

By definition of hlift, each matrix A(C)2 is block diagonal with blocks L
+
2
GÕ ÂL

€
C̨L

+

GÕ ÂLC̨L
+
2
GÕ

and L

+
2
GÕ ÂLC̨L

+

GÕ ÂL
€
C̨L

+
2
GÕ . Here ÂLC̨ = LF̨ ≠ LS with fixed orientation (recall CorrectOrien-

tation). Since every cycle C œ S satisfies ·GÕ(e) Æ fl for each e œ C, by Lemma 10, both
matrices are spectrally bounded by O(Lfl) ·L

+
2
GÕLCL

+
2
GÕ . Thus, by the disjointness of G and S,

ÿ

CÕœS
Õ

A(C Õ)2 ∞
ÿ

CœS

(1 ≠ |xC |)A(C)2 ∞ O(Lfl) · I2 ¢ L

+
2
GÕ

Q

a
ÿ

CœS

(1 ≠ |xC |)LC

R

bL

+
2
GÕ

∞ O(L2fl) · I2n,

where we used the PSD property of A(C)2 and the fact 1 ≠ |xC | Æ 1 for the first inequality
and Lemma 17 for the second inequality. The sum of Frobenius norm squared is then

ÿ

CÕœS
Õ

ÎA(C Õ)Î2F Æ
ÿ

CœS

(1 ≠ |xC |)Tr
!
A(C)2

"
= Tr

Q

a
ÿ

CœS

(1 ≠ |xC |)A(C)2
R

b = O(nL2fl).

We can now apply Lemma 14 with mt = 1

4
mÕ,‡2 = O(L2fl) and v = O(nL2fl) to get

......

ÿ

CÕœS
Õ

(yC + yC ≠ 0)A(C Õ)

......
Æ O

A

L2fl · log

3
4|S|L
mÕ

4
+ (log

3
4 n)(L2fl) 1

4

3
4nL3fl

mÕ

4 1
4
B

= O

Q

a
Ú

nL2

mÕ logL+
A
nL

5
3 logn
mÕ

B 3
4
R

b

where we used |SÕ| = |S| Æ mÕ. Finally, note that

...L
+
2
GÕ(LG̨Õ ≠ LH̨Õ)L

+
2
GÕ

... =
...hlift

1
L

+
2
GÕ(LG̨Õ ≠ LH̨Õ)L

+
2
GÕ

2... =

......

ÿ

CÕœS
Õ

(yC + yC ≠ 0)A(C)

......
.J

The sparsification induced by ColourSparsifyGraph is conditional, and we state the
condition and sparisification induced in Lemma 18. However, even when the condition is
not met, we are guaranteed each ColourSparsifyCycle will geometrically make progress
towards satisfying the condition needed for Lemma 18. This is stated in Lemma 19.

I Lemma 18. For inputs G̨, G̨Õ, S, x, r to ColourSparsifyGraph satisfying that 4m Ø
mÕ Ø �(n log2 n), the outputs satisfy that the number of edges in H̨ Õ is upperbounded by
mÕ

H Æ 63

64
mÕ.

Proof. Since r is 2-approximate e�ective resistances,
q

e were Æ 2(n ≠ 1), we have at most
1

8
mÕ Æ 1

2
m edges are removed from G̨ in line 1. Since m Ø 1

4
mÕ = �(n log2 n) and the

number of edges not in any cycle is m̂q = O(n log2 n), by picking an appropriate constant in
�(n log2 n), we can guarantee the total number of edges in all cycles satisfies m(S) Ø 1

4
m.

Lemma 14 then guarantees m(T Õ) Æ 1

8
m and that m(T Õ) Ø 1

8
m.

Now, by ColourWeights, the total number of edges in ColourWeights(T Õ,y) and
ColourWeights(T Õ,≠y) is exactly m(T Õ). Thus, line 5 means at least 1

2
m(T Õ) Ø 1

16
m Ø

1

64
mÕ edges are removed in total as required. J
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I Lemma 19. If inputs G̨, G̨Õ, S, x, r to ColourSparsifyCycle satisfies that 4m < mÕ ,
then either the number of edges in H̨ Õ decreases to mÕ

H Æ 63

64
mÕ, or the number of edges in H̨

satisfies 4mH Ø mÕ
H .

Proof. Suppose mÕ
H > 63

64
mÕ. By Lemma 14, m(T Õ) Æ 1

8
mÕ. Since y œ {±1}T Õ , we have

{C Õ œ T Õ : |xC ≠ (1≠ |xC |)yCÕ | = 1}fi {C Õ œ T Õ : |xC +(1≠ |xC |)yCÕ | = 1} = T Õ. Let the two
sets above be T Õ

1
and T Õ

2
, Then, m(T Õ

1
) +m(T Õ

2
) Ø m(T Õ) 2. This means, after re-adjusting

the colouring in line 4,

m(T ) Æ 1
2m(T Õ) +m(T Õ) Æ 1

2m
Õ + 1

8m
Õ = 5

8m
Õ Æ 40

63m
Õ
H .

Then, we get the desired inequality, mH = mÕ
H ≠ m(T ) Ø 23

63
mÕ

H Ø 1

4
mÕ

H . J

With these analyses above, we can now formally state and prove Theorem 2.

I Theorem 20 (Theorem 2 Formal). Given input a Eulerian graph G̨ with polynomial bounded
integral edge weights and Á œ (0, 1

2
), the algorithm ColourSparsify returns in polynomial

time a Eulerian graph H̨ with O(nÁ≠2 log2 n(log logn)2 + nÁ≠ 3
4 log

8
3 n) edges satisfying

...L
+
2
G (LG̨ ≠ LH̨)L

+
2
G

... Æ Á.

Proof. By Lemmas 18 and 19, in every two iterations the number of edges must decreases
by at least a constant fraction, as the condition 4m Ø mÕ must be satisfied at least once.
Note that initialy m = mÕ Ø 1

4
mÕ is satisfied. Thus, the total number of iterations is at most

O
1
log(m logn

n )
2
= O(logn) where the extra logn comes from the decomposition by weights.

By Lemmas 15 and 16, the largest edge weight doubles each iteration. Thus, the edge
weights in each G̨ are still integral and polynomially bounded over O(logn) iterations.

As the number of edges decreases geometrically every O(1) iterations, the total error is
asymptotically bounded by the error in the last round for both terms in Lemmas 15 and 16:

O

Q

a

Û
n log2 n

mÕ log logn+
A
n log

8
3 n

mÕ

B 3
4
R

b .

where mÕ is the number of edges in G̨Õ in the last round. Since the algorithm stops at
mÕ Ø �(nÁ≠2 log2 n(log logn)2) and mÕ Ø �(nÁ≠ 3

4 log
8
3 n) edges, the largest of both terms

must be bounded by 1

2
Á by picking appropriate constant for the stopping condition.

This small error also implies that our 1.5-approximate e�ective resistances r stays as
2-approximate throughout the algorithm. Then, by Lemma 15 and Lemma 16, the set of
cycles S always satisfy were Æ 4n

mÕ where mÕ is the number of edges in G̨Õ throughout as
required. Lemma 4 guarantees the polynomial running time of our algorithm. J

4.1 Conjectural improvements

In this section we consider an improvement on our existential results due to the partial
colouring conjecture, Conjecture 21. Corollary 22 then follows by changing the termination
condition of the while loop on line 5 to mÕ Ø O(nÁ≠2 log2 n(log logn)2).

2 Contrary to the proof of Lemma 18, this is an inequality since magnitude of 1 can be achieved using
both yCÕ and ≠yCÕ if xC = 0.
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I Conjecture 21 (Matrix partial colouring conjecture). There exists constants c1, c2 > 0
and c3 > 1 such that the following holds. Given symmetric matrices A1, . . . ,Am œ Rn◊n

that satisfy m Ø c3n, Î
qm

i=1
A

2

i Î Æ ‡2, and a point y œ (≠1, 1)m, there exists a point
x œ [≠1, 1]m such that |{i : xi œ {±1}}| > c2m and

.....

mÿ

i=1

(xi ≠ yi)Ai

..... Æ c1‡. (3)

I Corollary 22. Assume Conjecture 21. There is an algorithm that given a Eulerian graph
G̨, computes a Á-Eulerian sparsifier of G̨ with nÁ≠2 log2 n edges (up to log logn factors).

I Remark 23. While improvements on matrix concentration results for Gaussian random
variables [5] naturally leads to improved matrix partial colouring through the Gaussian
measure analysis of matrix discrepancy bodies, Conjecture 21 need not rely on this approach
(e.g. [9, 15]). On the other hand, even if the matrix concentration guarantees of [5] hold for
Rademacher random variables, it does not lead to an e�cient algorithm for Theorem 2. This
is due to the di�culties in controlling the matrix covariance factor in Theorem 1.2 of [5]. We
refer reader to the proof of Lemma 3.1 in [6].

References

1 AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford. Perron-

Frobenius Theory in Nearly Linear Time: Positive Eigenvectors, M-matrices, Graph Kernels,

and Other Applications, pages 1387–1404. Society for Industrial and Applied Mathematics,
2019. doi:10.1137/1.9781611975482.85.

2 AmirMahdi Ahmadinejad, John Peebles, Edward Pyne, Aaron Sidford, and Salil Vadhan.
Singular value approximation and sparsifying random walks on directed graphs. In 2023 IEEE

64th Annual Symposium on Foundations of Computer Science (FOCS), pages 846–854, 2023.
doi:10.1109/FOCS57990.2023.00054.

3 Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret
minimization beyond matrix multiplicative updates. In Proceedings of the Forty-Seventh

Annual ACM Symposium on Theory of Computing, STOC ’15, pages 237–245, New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746610.

4 Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodru�, and Qin
Zhang. On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science, ITCS ’16, pages 311–319, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2840728.2840753.

5 Afonso S Bandeira, March T Boedihardjo, and Ramon van Handel. Matrix concentration
inequalities and free probability. Inventiones mathematicae, pages 1–69, 2023.

6 Nikhil Bansal, Haotian Jiang, and Raghu Meka. Resolving matrix spencer conjecture up
to poly-logarithmic rank. In Proceedings of the 55th Annual ACM Symposium on Theory

of Computing, STOC 2023, pages 1814–1819, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3564246.3585103.

7 Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM

Journal on Computing, 41(6):1704–1721, 2012.
8 Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM

Rev., 56(2):315–334, January 2014. doi:10.1137/130949117.
9 József Beck. Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combi-

natorica, 1(4):319–325, 1981.
10 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 47–55, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/237814.237827.

ICALP 2024

https://doi.org/10.1137/1.9781611975482.85
https://doi.org/10.1109/FOCS57990.2023.00054
https://doi.org/10.1145/2746539.2746610
https://doi.org/10.1145/2840728.2840753
https://doi.org/10.1145/3564246.3585103
https://doi.org/10.1137/130949117
https://doi.org/10.1145/237814.237827


119:18 Better Sparsifiers for Directed Eulerian Graphs

11 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation, via short cycle
decompositions. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science

(FOCS), pages 361–372, 2018. doi:10.1109/FOCS.2018.00042.
12 Michael B. Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B.

Rao, and Aaron Sidford. Solving directed laplacian systems in nearly-linear time through
sparse lu factorizations. In 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS), pages 898–909, 2018. doi:10.1109/FOCS.2018.00089.
13 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron

Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains and new spectral
primitives for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, STOC 2017, pages 410–419, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3055399.3055463.

14 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,
and more. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science

(FOCS), pages 583–592, 2016. doi:10.1109/FOCS.2016.69.
15 Daniel Dadush, Haotian Jiang, and Victor Reis. A new framework for matrix discrepancy:

Partial coloring bounds via mirror descent. In Proceedings of the 54th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2022, pages 649–658, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519935.3519967.

16 David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling
random spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, pages 730–742. ACM, 2017. arXiv:

1611.07451.
17 David Durfee, John Peebles, Richard Peng, and Anup B. Rao. Determinant-preserving

sparsification of SDDM matrices with applications to counting and sampling spanning trees.
In FOCS, pages 926–937. IEEE Computer Society, 2017. arXiv:1705.00985.

18 Samuel B. Hopkins, Prasad Raghavendra, and Abhishek Shetty. Matrix discrepancy from
quantum communication. In Proceedings of the 54th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2022, pages 637–648, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519935.3519954.

19 Arun Jambulapati, Victor Reis, and Kevin Tian. Linear-Sized Sparsifiers via Near-Linear

Time Discrepancy Theory, pages 5169–5208. Society for Industrial and Applied Mathematics,
2023. doi:10.1137/1.9781611977912.186.

20 Arun Jambulapati and Aaron Sidford. E�cient Õ(n/‘) spectral sketches for the laplacian
and its pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’18, pages 2487–2503, USA, 2018. Society for Industrial and
Applied Mathematics.

21 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 393–398, New York, NY, USA, 2012. Association for Computing Machinery. doi:

10.1145/2090236.2090267.
22 Ioannis Koutis, Alex Levin, and Richard Peng. Improved Spectral Sparsification and Numerical

Algorithms for SDD Matrices. In Thomas Wilke Christoph Dürr, editor, STACS’12 (29th

Symposium on Theoretical Aspects of Computer Science), volume 14, pages 266–277, Paris,
France, February 2012. LIPIcs. URL: https://hal.science/hal-00678205.

23 Ioannis Koutis and Shen Chen Xu. Simple parallel and distributed algorithms for spectral
graph sparsification. ACM Trans. Parallel Comput., 3(2), August 2016. doi:10.1145/2948062.

24 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of the Forty-

Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 842–850, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2897518.2897640.

https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1109/FOCS.2018.00089
https://doi.org/10.1145/3055399.3055463
https://doi.org/10.1109/FOCS.2016.69
https://doi.org/10.1145/3519935.3519967
https://arxiv.org/abs/1611.07451
https://arxiv.org/abs/1611.07451
https://arxiv.org/abs/1705.00985
https://doi.org/10.1145/3519935.3519954
https://doi.org/10.1137/1.9781611977912.186
https://doi.org/10.1145/2090236.2090267
https://doi.org/10.1145/2090236.2090267
https://hal.science/hal-00678205
https://doi.org/10.1145/2948062
https://doi.org/10.1145/2897518.2897640


S. Sachdeva, A. Thudi, and Y. Zhao 119:19

25 Rasmus Kyng, Simon Meierhans, and Maximilian Probst Gutenberg. Derandomizing directed
random walks in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations

of Computer Science (FOCS), pages 407–418, 2022. doi:10.1109/FOCS54457.2022.00046.
26 Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A Framework for

Analyzing Resparsification Algorithms, pages 2032–2043. Society for Industrial and Applied
Mathematics, 2017. doi:10.1137/1.9781611974782.132.

27 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians - fast,
sparse, and simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer

Science (FOCS), pages 573–582, October 2016. doi:10.1109/FOCS.2016.68.
28 Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear

time. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science (FOCS), FOCS ’15, pages 250–269, USA, 2015. IEEE Computer Society. doi:

10.1109/FOCS.2015.24.
29 Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pages 678–687, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3055399.3055477.

30 Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Deterministic discrepancy mini-
mization via the multiplicative weight update method. In International Conference on Integer

Programming and Combinatorial Optimization, pages 380–391. Springer, 2017.
31 Huan Li and Zhongzhi Zhang. Kirchho� index as a measure of edge centrality in weighted

networks: Nearly linear time algorithms. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 2377–2396. SIAM, 2018. arXiv:1708.05959.
32 Yang P. Liu, Sushant Sachdeva, and Zejun Yu. Short cycles via low-diameter decompositions.

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’19, pages 2602–2615, USA, 2019. Society for Industrial and Applied Mathematics.

33 Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families ii: Mixed
characteristic polynomials and the kadison—singer problem. Annals of Mathematics, pages
327–350, 2015.

34 Raghu Meka. Discrepancy and beating the union bound. Windows on theory, a research blog,
2014.

35 Merav Parter and Eylon Yogev. Optimal Short Cycle Decomposition in Almost Linear
Time. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP

2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 89:1–
89:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:

10.4230/LIPIcs.ICALP.2019.89.
36 Richard Peng and Zhuoqing Song. Sparsified block elimination for directed laplacians. In

Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2022, pages 557–567, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3519935.3520053.

37 Richard Peng and Daniel A. Spielman. An e�cient parallel solver for sdd linear systems.
In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’14, pages 333–342, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2591796.2591832.

38 Victor Reis and Thomas Rothvoss. Linear size sparsifier and the geometry of the operator norm
ball. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’20, pages 2337–2348, USA, 2020. Society for Industrial and Applied Mathematics.

39 Victor Reis and Thomas Rothvoss. Vector balancing in lebesgue spaces. Random Structures

& Algorithms, 62(3):667–688, 2023.

ICALP 2024

https://doi.org/10.1109/FOCS54457.2022.00046
https://doi.org/10.1137/1.9781611974782.132
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1109/FOCS.2015.24
https://doi.org/10.1109/FOCS.2015.24
https://doi.org/10.1145/3055399.3055477
https://arxiv.org/abs/1708.05959
https://doi.org/10.4230/LIPIcs.ICALP.2019.89
https://doi.org/10.4230/LIPIcs.ICALP.2019.89
https://doi.org/10.1145/3519935.3520053
https://doi.org/10.1145/2591796.2591832
https://doi.org/10.1145/2591796.2591832


119:20 Better Sparsifiers for Directed Eulerian Graphs

40 Sushant Sachdeva and Yibin Zhao. A simple and e�cient parallel laplacian solver. In
Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’23, pages 315–325, New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3558481.3591101.

41 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’19, pages 2616–2635, USA, 2019. Society for Industrial and Applied
Mathematics.

42 D. Spielman and N. Srivastava. Graph sparsification by e�ective resistances. SIAM Journal

on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.
43 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by e�ective resistances. In

Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 563–568, New York, NY, USA, 2008. Association for Computing Machinery. doi:

10.1145/1374376.1374456.
44 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In Proceedings of the Thirty-Sixth Annual

ACM Symposium on Theory of Computing, STOC ’04, pages 81–90, New York, NY, USA,
2004. Association for Computing Machinery. doi:10.1145/1007352.1007372.

45 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, July 2011. doi:10.1137/08074489X.

46 Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of

computational mathematics, 12(4):389–434, 2012.
47 Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. In International

Colloquium on Automata, Languages, and Programming, pages 846–858. Springer, 2012.

https://doi.org/10.1145/3558481.3591101
https://doi.org/10.1137/080734029
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1137/08074489X


Caching Connections in Matchings
Yaniv Sadeh �

Tel Aviv University, Israel

Haim Kaplan �

Tel Aviv University, Israel

Abstract
Motivated by the desire to utilize a limited number of configurable optical switches by recent
advances in Software Defined Networks (SDNs), we define an online problem which we call the
Caching in Matchings problem. This problem has a natural combinatorial structure and therefore
may find additional applications in theory and practice.

In the Caching in Matchings problem our cache consists of k matchings of connections between
servers that form a bipartite graph. To cache a connection we insert it into one of the k matchings
possibly evicting at most two other connections from this matching. This problem resembles the
problem known as Connection Caching [20], where we also cache connections but our only restriction
is that they form a graph with bounded degree k. Our results show a somewhat surprising qualitative
separation between the problems: The competitive ratio of any online algorithm for caching in
matchings must depend on the size of the graph.

Specifically, we give a deterministic O(nk) competitive and randomized O(n log k) competitive
algorithms for caching in matchings, where n is the number of servers and k is the number of
matchings. We also show that the competitive ratio of any deterministic algorithm is �(max(nk , k))
and of any randomized algorithm is �(log n

k2 log k
·log k). In particular, the lower bound for randomized

algorithms is �(logn) regardless of k, and can be as high as �(log2 n) if k = n
1/3, for example. We

also show that if we allow the algorithm to use at least 2k ≠ 1 matchings compared to k used by
the optimum then we match the competitive ratios of connection catching which are independent
of n. Interestingly, we also show that even a single extra matching for the algorithm allows to get
substantially better bounds.
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1 Introduction

We define the Caching in Matchings online problem, on a fixed set of n nodes. Requests
are edges between these node. The algorithm maintains a cache of k matchings, i.e. a
k-edge-colorable graph. To serve a request for an edge (u, v) which is not in its cache (i.e. a
miss), the algorithm has to insert it into one of its matchings. To do this it may need to
evict the edges incident to u and v in this specific matching. Note that an evicted edge may
later be re-inserted into a di�erent matching. The algorithm has to choose which matching
to use for each miss in order to minimize its total number of misses.
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Figure 1 The physical topology that motivates our problem: n servers s1, . . . , sn, each is
connected to the in/out ports of k optical switches sw1 through swk. Each switch swj uses mirrors
to switch optical links, e�ectively inducing an in/out permutation, which may change over time at a
reconfiguration cost of 1 per each new pairing. Abstractly, we get a bipartite graph with n nodes on
each side (one per server), and each permutation is a matching that caches links.

One can look at this problem as a new variation of the online Connection Caching problem.
In Connection Caching [20] the setup is the same, but the cache maintained by the algorithm
must be a graph in which each node is of degree at most k. In case of a miss on an edge
(u, v) we may choose any edge incident to u and any edge incident to v to evict. We do not
have to maintain the edges partitioned into a particular set of k matchings. Thus in Caching
in Matchings we are less flexible in our eviction decisions. Once we color the new edge then
the two edges we have to evict are determined.

At a first glance, the two caching problems seem similar. In fact, the only di�erence is
the added restriction of the coloring (matchings) that a�ects how the cache is maintained.
Interestingly, it turns out that this seemingly small di�erence makes Caching in Matchings a
much harder online problem compared to Connection Caching.

A common measure to evaluate online algorithms is their competitive ratio. We say
that an online algorithm is c-competitive if its cost (in our case, miss count) on every input
sequence is at most c times the minimal possible cost for serving this sequence. One would
like to design algorithms with as small c as possible. The problem of Connection Caching is
known to be �(k) (deterministic) and �(log k) (randomized) competitive, and in contrast
we show that the dependence on n (the number of nodes) in Caching in Matchings cannot
be avoided.

The motivation to our Caching in Matchings problem comes from a data-center archi-
tecture described in [4]. In this setting we have n servers connected via a communication
network which is equipped with a set O of k optical switches. Each server is connected
to all the k optical switches and in each of them it is connected to both an input and an
output port. Each switch is configured to implement a matching between the input and the
output ports of the servers, see Figure 1. Since each server is connected to both input and
output sides, the optical switches e�ectively induce a degree k bipartite graph with 2n nodes
(two nodes per server). Each optical switch corresponds to a matching in our cache. It is
dynamic as we can insert and evict connections from the switch, but we try to minimize
these reconfigurations since they are costly (involve shifting mirrors, and down-time).

At this point we clarify that there are two “kinds” of optical switching architectures.
The one which we model, as explained, is based on o�-the-shelf commodity switches and is
sometimes referred to as Optical Circuit Switching (OCS). Each switch is a separate box,
and each box, at any time, implements a matching between its ports. We use k switches and
connect every server to every switch, so this architecture induces k matching at any time.
To add a connection between two servers we have to choose through which box we want to
do it (choose a matching to insert it to) and then reconfigure the matching implemented by
this particular box to include this edge. The other kind of switching is known as Free Space
Optics (FSO) where every transmitter can point towards any receiver. When each server is
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connected to k transmitters and k receivers we get the standard connection caching setting.
This is not the architecture that we model here. See Table-1 of [26] for several references
and their architecture types.

Several cost models considering both communication and adjustment cost were suggested
for this setting [4]. We choose to work with arguably the simplest model of paying 1 for an
insertion of a new edge (formally defined in Section 2). This simple model already captures
the qualitative properties of the problem. We note that the competitive results shown here
can be adapted (up to constant factors) to a more complicated cost model that has additional
communication costs per request. We believe that our combinatorial abstraction of this
setting is natural and will find additional applications.

Here is a detailed summary of our results.

Our contributions

1. We define a new caching problem, “Caching in Matchings” (Problem 1), on a bipartite
graph with n nodes on each side.1 In this problem, the cache is a union of k matchings.
When we insert an edge we pick the matching to insert it to and evict edges from this
matching if necessary.

2. We show that the competitive ratio of Caching in Matchings depends not only on the
cache size k as is common for caching problems, but also on the number of nodes in the
network n. One might argue that since we define the cache to be k matchings, its size is
�(nk) rather than k, so the dependency on n is not surprising. But such an argument also
applies to Connection Caching [20] and in that problem the competitive ratio does not
depend on n. In other words, Caching in Matchings is provably harder than Connection
Caching.2 Specifically we prove the following.
a. An �(max(n

k
, k)) lower bound on the competitive ratio of deterministic algorithms,

and we give a deterministic algorithm with nk competitive ratio. For k = O(1) this
gives a tight bound of �(n) on the competitive ratio.

b. In contrast, in the randomized case we have a larger gap. We describe an O(n log k)
competitive algorithm and prove a lower bound of �(log n

k2 log k
·log k) on the competitive

ratio. This bound is �(logn) for any k, and can get as worse as �(log2 n), for example if
k = n1/3. This is in contrast to other caching problems whose randomized competitive
ratio is logarithmic.3

3. We show that resource augmentation of almost-twice as many matchings, specifically
2k ≠ 1 for the algorithm versus k for the optimum, allows to get rid of the dependence on
n. Specifically, we show a deterministic O(k) competitive algorithm and a randomized
O(log k) competitive algorithm for this case. Furthermore, with 2(1+–)k matchings we get
a deterministic O(1+ 1

–
) competitive algorithm. We also show that a single extra matching

already helps by allowing us to “trade”
Ô
n for

Ô
k in the competitive ratio. Concretely

and more generally, with h Ø 1 extra matchings we get a deterministic O(n1/2(k/h)3/2)
and a randomized O(n1/2(k/h)1/2 log 2k+h

h
) competitive algorithms. Moreover, it is even

possible to reduce the dependence on n to polylogarithmic at the cost of higher polynomial
dependency on k, which is beneficial for small k. Concretely, following [19], we get a
deterministic O

1
k
6 logn

h
min(k, logn)

2
and a randomized O

1!
k log k

h

"6 log 2k+h

h
log9 n

2

competitive algorithms. The deterministic algorithm is not e�cient.

1 The problem makes sense on a general graph as well.
2 In terms of the architecture, we show that the FSO architecture has a better competitive ratio than the

the OCS architecture.
3 Throughout the paper, where it matters, our logarithms are in base 2.
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Our problem is a special case of a more general problem of convex body chasing in
L1. Bhattacharya et al. [11] gave a fractional algorithm for this body chasing problem
with packing and covering constraints. Their fractional algorithm requires a slight resource
augmentation. For a few special cases, they show how to round their fractional solution to an
integral solution that does not use additional resources. Our problem is another interesting
test-case of this general setting (for more details, see the appendix in [30]).

Our full list of results is summarized in Table 1. The rest of the paper is structured as
follows. Section 2 formally defines the model, the notations that we use, and the caching
problems. Section 3 studies in depth the Caching in Matchings problem (Problem 1). Section 4
surveys related work on caching and coloring problems, and in Section 5 we conclude and
list a few open questions. Section 6 serves as an appendix that contains deferred proofs, and
a few additional discussions. Due to a strict page limit, the complete appendix can be found
in the extended version [30].

2 Model and Definitions

In the following we formally define two caching problems of interest, the premise of each of
them is a graph with a set V of n nodes. Every turn, a new edge is requested. If it is already
cached, we have a “hit” and no cost is paid. Otherwise, we have a “miss”, and the edge must
be brought into the cache at a cost of 1, possibly at the expense of evicting other edges. In
fact, the problem that arises from [4] consists of a bipartite graph in which each server v is
associated with two nodes vin œ V in and vout œ V out, modeling its receiving and sending
ports, respectively. Each among vin and vout can be incident to one edge in each matching.4
Formally the problem is as follows.

I Problem 1 (Caching in Matchings). Requests arrive for edges (u, v) œ V in ◊ V out. The
cache M is a union of k matchings. When a requested edge is missing from all the matchings,
an algorithm must fetch it into one of the matchings (possibly evicting other edges from
this matching). In addition, the algorithm may choose to add any edge to the cache at any
time (while maintaining the cache’s restrictions), the cost of adding an edge to the cache is
1. It is not allowed to move an edge between matchings, but an edge may be evicted and
immediately re-fetched into a new matching.

I Remark 1. There are other caching models in which reorganizing the cache is free, such as
[16, 25]. In our model reorganizing the matchings incurs a cost. This is because we model a
setting where changing the cache (physical links) is slow. In other cases accessing the slow
memory is the costly operation.

We use the terminology of coloring edges when discussing Caching in Matchings (Prob-
lem 1). Recoloring an edge implies that we evict it, and then immediately fetch it back into
a di�erent matching according to the new color of the edge. Recoloring is not free, but has
the same cost of standard fetching. This models, for example, the physical setting in which
such a rearrangement requires reconfiguring the link in a di�erent optical switch.

I Problem 2 (Connection Caching [20]). Requests arrive for edges (u, v) œ V in ◊ V out. The
cache M is a set of edges such that every node is of degree at most k in the sub-graph induced
by M . When a requested edge is missing from M , an algorithm must fetch it (possibly

4 Technically, the physical switch can be configured with links of the form (vin, vout), but it makes no
sense and practically such requests do not exist. However, our algorithms can deal with all possible
requests, and our lower bounds are proven without relying on such requests, so we ignore this nuance.
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evicting other edges). In addition, the algorithm may choose to add any edge to the cache at
any time while maintaining the degrees at most k. Adding an edge to the cache costs 1.

I Remark 2. Note that in both problems that we defined, an algorithm is allowed to add
(fetch) and remove (evict) additional edges. Technically, it is not strictly necessary because a
non-lazy algorithm can always be simulated by a lazy version that fetches an edge only when
it is actually needed. This is also true for the o�ine optimum. We will describe non-lazy
algorithms for Caching in Matchings, that recolor edges, to simplify the presentation.

To emphasize the di�erence between the problems see Figure 2, which shows the di�erence
on bipartite graphs, as well as on general graphs (for the generalized problem).

Figure 2 An example of the di�erence between connection caching versus caching in matchings.
(left) With k = 2 max degree and n = 3 nodes, all the connections can be cached simultaneously, but
not in 2 matchings, red and blue. (right) Bipartite example: Caching the edge (si1, so2) (i/o for in/out)
is not possible without changing the matchings (red: {(si1, so3), (si3, so1)}; blue: {(si3, so2), (si2, so1)}),
although both s

i
1 and s

o
2 only have a single connection.

The objective of an online algorithm is to minimize the number of fetched edges. We are
interested in the competitive-ratio of our algorithms.

I Definition 3 (Cost, Competitive Ratio). Consider a specific caching problem. Let A be an
online algorithm that serves requests, and let ‡ be a sequence of requests. We denote by
A(‡) the execution of A on ‡, and cost(A(‡)) for the cost of A when processing ‡.

We denote by OPT (‡) the optimum (o�ine) algorithm to serve the sequence, or simply
OPT when ‡ is clear from the context. If there exist functions of the problem’s parameters (in
our case: k and n) c = c(n, k) and d = d(n, k) such that ’‡ : cost(A(‡)) Æ c·cost(OPT (‡))+d
then we say that A is c-competitive. Note that ‡ may be arbitrarily long, so the “asymptotic
ratio” is indeed c.

I Remark 4. Denote the optima for Caching in Matchings and Connection Caching by
OPTm and OPTc, respectively. Since OPTm implicitly maintains a connections cache as
required by Connection Caching (ignore the colors), then for any sequence of edge requests
‡, cost(OPTc(‡)) Æ cost(OPTm(‡)).

3 Caching in Matchings

In this section we study the problem of Caching in Matchings (Problem 1). We summarize
the results of this section in Table 1. We start with upper bounds (Section 3.1), then lower
bounds (Section 3.2). Then we study resource augmentation (Section 3.3). Some additional
discussion on randomization is detailed in the appendix in [30].

3.1 Upper Bounds for Bipartite Graphs
In this section we prove upper bounds on the competitive ratio of algorithms for Caching
in Matchings, focusing on the non-trivial case of 2 Æ k Æ n ≠ 1. Indeed, if k = 1 there are
no eviction-decisions to take so the only (lazy) algorithm is the optimal one. The other
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120:6 Caching Connections in Matchings

Table 1 Our bounds on the competitive ratio for Caching in Matchings (Problem 1), for 2 Æ k < n.
If k = 1 or k Ø n optimality is trivial. Results marked with ú also apply to general graphs. “RA: x”
shortens Resource-Augmentation, i.e., the algorithm has more matchings (x) than the optimum (k).

Result Deterministic Randomized Notes

Thm. 7 Æ nk O(n log k) The standard scenario

Thm. 9 ú . �(log n
k2 log k

· log k) .
Cor. 10 ú �(max(nk , k)) �(logn) Due to Theorems 8+9
Cor. 10 ú . �(‘ · logn · log k) k = O(n1/2≠‘); Due to Theorem 9

Cor. 25(1) O(n1/2(k/h)3/2) O(n1/2(k/h)1/2 log 2k+h
h ) RA: k + h for 1 Æ h Æ k

Cor. 25(2) ú O

1
k6 logn

h min(k, logn)
2

O

1!
k log k

h

"6 log 2k+h
h log9 n

2
RA: k + h for 1 Æ h Æ k

Cor. 25(3) ú Æ k O(log k) RA: 2k ≠ 1

Cor. 25(4) ú . O(–4 log k) RA: (1 +O( 1
– ))k

for k Ø �(–4 logn)�(– log –)

Thm. 27 ú O(1 + 1
– ) . RA: (2 + –)k for – > 0

extreme case of k Ø n in bipartite graphs is also easy since we can just cache the entire
graph: Number the nodes 0 to n ≠ 1 on each side, and use matching i to store edges from
node j to i+ j modulo n.

Our general technique is to reduce the problem of Caching in Matchings to Connection
Caching. Our algorithm, Am, will run a Connection Caching algorithms Ac with cache
parameter k to insert requested edges into the cache. Then, layered on top of Ac, we have
the “coloring component” of Am that chooses the color of the new edge, and also recolors
existing edges in order to produce a proper Caching in Matchings algorithm. Am can be
thought of as an edge coloring algorithm in the dynamic graph settings, and in this context
Ac is the adversary that tells Am which edges are inserted and which are removed (with a
guarantee of bounded degree k). As a consequence we would like to use algorithms that are
e�cient in terms of recoloring, to achieve the best competitive results. Unfortunately, since
edge coloring of graphs of bounded degree k may require k + 1 colors by Vizing’s theorem,
the dynamic graph coloring literature studies this coloring problem while typically allowing
more than k colors. The number of extra colors ranges from k + 1 colors [29, 10], to (1 + ‘)k
colors [21, 19, 13], to 2k ≠ 1 colors [9, 12], and sometimes even more [8, 31] (the last citations
actually study vertex coloring). Extra colors correspond to resource augmentation, which we
study later in Section 3.3.
I Remark 5. There are known algorithms that are k competitive deterministic and O(log k)
competitive randomized for Connection Caching, as studied in [20].
I Remark 6. Due to Remark 4 and Remark 5, it su�ces to analyze the cost ratio between Am

and Ac. A ratio of fl implies a fl · k deterministic and a O(fl · log k) randomized competitive
algorithms for Caching in Matchings.

I Theorem 7. There exist nk deterministic and O(n log k) randomized competitive al-
gorithms in bipartite graphs for Caching in Matchings.

Proof. By Remark 5 and Remark 6, it su�ces to show that Am pays no more than n times
compared to Ac. Whenever an edge (u, v) is requested, Am has it cached if and only if Ac

has it cached. Therefore when Am has a miss, so does Ac. To accommodate for the edge, Ac

ensures that u and v are both of degree k ≠ 1 before (u, v) is inserted. Now consider how
many edge recolorings are required from Am. Nodes u and v each have at least one free
color. If both have some common free color c, we are done. Otherwise, u has c1 free and v
has c2 ”= c1 free. Let Pu and Pv be the (c1, c2) bi-colored paths that originate in u and v
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respectively. Pu and Pv must be disjoint because the graph is bipartite and does not contain
odd cycles. Flipping the colors (c1 ¡ c2) for each edge on either Pu or Pv enables Am to
insert and color (u, v). since Pu, Pv and (u, v) form a simple path in a graph with 2n nodes,
by flipping the shorter bi-colored path, Am colors at most n edges when inserting (u, v). J

3.2 Lower Bounds
Caching in Matchings is a generalization of caching, if we restrict the requests to edges of a
single fixed node. Observe, therefore, that any c-competitive online algorithm for Caching in
Matchings with 2 Æ k < n satisfies c = �(log k). Moreover, if the algorithm is deterministic
then c Ø k. The following lower bounds depend on n as well as k. These bounds hold for the
non-trivial case of 2 Æ k < n, in bipartite graphs, and therefore also hold for general graphs.
Theorem 8 is proven later in this section, the proof of Theorem 9 is deferred to Appendix 6.1.

I Theorem 8. Any deterministic Caching in Matchings algorithm is �(n
k
) competitive.

I Theorem 9. Any Caching in Matchings algorithm is �(log n

k2 log k
· log k) competitive.

I Corollary 10. Any online algorithm for Caching in Matchings with 2 Æ k < n is �(logn)
competitive. Moreover, if k = O(n1/2≠‘) for some ‘ > 0, we get that any online algorithm
for Caching in Matchings is �(‘ · logn · log k) competitive. If the algorithm is deterministic
then the competitive ratio is �(max{n

k
, k}).

Proof. The deterministic claim follows from the initial observation and Theorem 8. In the
general case (randomized), we get �(logn) from the maximum between the observation
(when k Ø n1/3) and Theorem 9 (when k < n1/3). The �(‘ · logn · log k) bound follows
from Theorem 9: If k Æ c · n1/2≠‘ for some constant c then log n

k2 log k
> log n

2‘

c2 log(cn) =
2‘ logn ≠ 2 log c ≠ log log(cn) = �(‘ · logn). J

We prove the lower bounds in a setting that is closer to dynamic graph coloring. Spe-
cifically, we define Problem 3 below, where we control which edges must be cached both by
the algorithm and the optimum. We prove (Lemma 11 below, proven in Appendix 6.1) that
lower bounds for algorithms for Problem 3 imply lower bounds for Caching in Matchings,
and then study lower bounds for Problem 3.

I Problem 3. Given a graph with n vertices, we get a sequence of actions that define a
subset of edges at any time. Each action either adds a missing edge or deletes an existing
edge. We are guaranteed that at any point in time the graph induced by existing edges,
denote it (or the set of edges) by G, has a proper k-edge-coloring. An algorithm, online or
OPT , must maintain k matchings, denote their union by M , such that G is a subgraph of
M . For every edge that is added to a matching, the algorithm pays 1.

Note that Problem 3 is similar but not equivalent to dynamic edge coloring. On one hand
a dynamic edge coloring algorithm that recolors O(C) edges per update is not necessarily
O(C) competitive for Problem 3. The reason for this is that we allow M to contain G. By
maintaining an edge in M we can avoid paying for it when it is inserted again. For example,
in the proof of Theorem 8 an algorithm may do O(1) worst-case recolorings per step, but
its competitive ratio is �(n

k
) since OPT stores in M extra edges that this online algorithm

keeps paying for. On the other hand, an algorithm that is O(C) competitive for Problem 3
does not give a dynamic edge coloring algorithm that recolors O(C) edges per update, even
amortized, because it could be that both OPT and the algorithm pay a lot per edge update
on some sequence, and while the ratio is O(C), the absolute cost is large.
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I Lemma 11. A lower bound of C on the competitive ratio of an online algorithm for
Problem 3 implies a lower bound of C on the competitive ratio of an online algorithm for
Caching in Matchings.

We now focus on deriving lower bounds for Problem 3. We define a road gadget (Defini-
tion 13) which is a connected component with a large diameter, that is also very restricted in
the way it can be colored. A road is constructed from brick sub-gadgets (Definition 12), each
of size �(k) nodes and �(k2) edges. By connecting r Ø 2 roads together we get the r-road
gadget, whose structure enforces those roads to be colored in a distinct and di�erent way.

I Definition 12 (Brick). A colorless-brick is a union of k perfect matchings in a bipartite
graph with the following structure. Each side has w nodes where w is the unique power of
2 that satisfies w

2 < k Æ w. Number the nodes on each side 0, . . . , w ≠ 1, and number the
colors 0, . . . , k ≠ 1. The matching of color c matches node i with node i ü c where ü is the
bitwise exclusive-or. See Figure 3a for an example. Note that every color c indeed defines a
matching that is in fact a permutation of order 2, and that v ü c ”= v ü cÕ for any two colors
c ”= cÕ so the matchings are all disjoint. When we remove an edge from a colorless-brick, we
get a brick whose color is associated with the color of the non-perfect matching. The two
nodes of degree k ≠ 1 are the endpoints of the brick.

(a) Brick. (b) Road. (c) r-Road for r = 2.

Figure 3 Visualization of a brick (Definitions 12), a road and an r-road (Definition 13). (a) A
brick for k = 3 (w = 4). The number of each node is written, and the colors are as follows: blue (0),
green (1), red (2). Thus, for example, 1 ü red = 3. We removed a single edge, blue (3, 3), thus the
brick is blue. (b) A schematic way to draw a brick (top) and a road of length 4 (bottom) which is a
chain of bricks connected to each other by their endpoints. The color of a road is well-defined by
the color of its bricks. (c) An r-road for r = 2, of length 4. The node that connects to both roads is
its hub. Nodes are colored by gray and white according to their side in the bipartite graph.

I Definition 13 (Road, r-road). A road of length d Ø 1 is an edge colored graph obtained
by connecting a sequence of d bricks. Each brick is connected by an edge to the next brick
in the sequence. The edge connecting two consecutive bricks is adjacent to an endpoint of
each brick. Note that the color of two connected bricks must be the same since they must
agree on their free color which is the color of the edge which connects them. Therefore, we
define the color of a road to be the color of its bricks. A road has two ends, which are the
endpoints of its first and last bricks. We also refer to r (2 Æ r Æ k) roads of the same length
d that are all connected to a single shared node as an r-road of length d. The shared node is
its hub. The edges of the hub all have di�erent colors, therefore all the roads of an r-road
have di�erent colors. See Figure 3 for examples.

I Lemma 14. Given a brick B of color c1, and a new color c2 ”= c1, it is always possible to
recolor 3 edges to change the color of B to c2.

Note that when we recolor B, it no longer satisfies the ü-property of Definition 12, but
for convenience we still consider it as a brick. This would not a�ect our arguments below
(by more than a constant factor) since we will make sure to always return to the original
coloring (undo) before recoloring again.
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Proof. Denote by u one endpoint of the brick. By definition of the matching scheme, the
other endpoint is u ü c1, and when we restrict the graph to edges of colors c1 and c2, we
find that the path between u and u ü c1 is of length 3: u ü c1 æ u ü c1 ü c2 æ u ü c2 æ u.
Therefore, it su�ces to flip the color of these three edges from c2 to c1 and vice versa. J

In the remainder of this section we prove the deterministic lower bound, and a simpler
but weaker version of the randomized lower bound. The more involved randomized lower
bound is proven in Appendix 6.1, using the same gadgets.

Proof of Theorem 8. We prove the lower bound for Problem 3. Then the theorem follows
by Lemma 11. We present an adversarial construction against a given algorithm ALG.

We begin by setting aside one special node u to serve as a 2-road hub, and divide the
rest of the vertices into bricks. We construct from these bricks the longest possible road, of
length N = �(n

k
). We number the bricks in order, from 1 to N , and denote the edge between

bricks i and i+ 1 by (i, i+ 1). Let L = ÂN

3 Ê. Initially we insert all the edges of all the bricks,
without the edges connecting the bricks. These edges are never deleted. Our sequence has as
many steps as we like as follows, based on the state of ALG, see also Figure 4:
1. Simple step: If there exist consecutive bricks i and i+ 1 of di�erent colors, we insert the

edge (i, i + 1). This forces ALG to recolor at least one of the bricks and pay �(1) (it
could pay more if it recolors more bricks or does other actions). We then delete (i, i+ 1).

2. Split step: Otherwise, all the bricks of ALG have the same color. We insert all the edges
between bricks 1 through to L, and between N + 1 ≠ L through to N . We also insert
edges from u to bricks 1 and N + 1≠L. These insertions construct a 2-road with u as its
hub, that guarantees di�erent colors for bricks 1 to L compared to bricks N +1≠L to N .
ALG must recolor at least L = �(N) bricks. We then delete the edges that we inserted.

Figure 4 Visualization for the proof of Theorem 8, for N = 7, L = ÂN
3 Ê = 2. (1)-(3) A split

step temporarily creates a 2-road of length L out of the first and last bricks, with u as the hub,
to guarantee consecutive bricks with di�erent colors. (4)-(6) A simple step finds two consecutive
bricks with di�erent color (here: 5 and 6), and inserts temporarily the edge between them to enforce
recoloring one of them.

In simple terms, we maintain a hole in the road which is where the color of the bricks
changes (there could be multiple holes). In every step we request this hole, and once the
hole disappears, the split action re-introduces a hole back near the middle of the road.5

Now let us analyze the costs. If the sequence contains m simple steps and s split
steps, then cost(ALG) = �(m + s · N). For OPT , we define a family of strategies Bi for
L < i < N + 1 ≠ L, to bound its cost. We define Bi to store all the edges of all the bricks,
all the edges connecting them, and the edge that connects u to the first brick, except for

5 This idea is similar to the way one can prove a deterministic lower bound for k-server [15], by always
requesting a server-less location. The analogy stops here, since in our case sometimes there is no hole.

ICALP 2024



120:10 Caching Connections in Matchings

the edges that connect brick i to its neighbours, paying an initial O(N · k2) cost. Bi colors
all the bricks from 1 to i in one color, and all the bricks from i+ 1 to N in another color.
Whenever a simple step happens in (i≠ 1, i) or in (i, i+1), Bi simply recolors brick i to have
the same color of the neighbour it connects to, and also inserts the connecting edge. Simple
steps at other locations do not a�ect Bi. When a split step happens, Bi pays exactly 2: It
inserts the edge that connects u to brick N + 1 ≠ L instead of the edge (N ≠ L,N + 1 ≠ L).
When the split step ends, it undoes the change, re-inserting (N ≠ L,N + 1 ≠ L) instead of
the edge of u. Since L < i < N + 1 ≠ L, Bi does not have to recolor any other edge.

Thus, if we denote by mi the number of simple steps that insert the edge (i, i + 1),
then cost(OPT ) Æ cost(Bi) = O(mi +mi≠1 + s + N · k2). Now: N

3 · cost(OPT ) Æ (N ≠
2L) · cost(OPT ) Æ

q
N≠L

i=L+1 cost(Bi) = O(m + N · s + N2k2). Note that N2k2 = O(n2).
Thus by extending the sequence such that m + s = �(n2), we get: N

3 · cost(OPT ) =
O(m+N · s) = O(cost(ALG)). Therefore, cost(ALG)

cost(OPT ) = �(N). Recall that N = �(n
k
), and

the claim follows. J

When proving the deterministic lower bound (Theorem 8) we heavily relied on determinism
to know where to find neighbouring bricks of di�erent colors. In the randomized case, we may
not know where colors mismatch. Instead, we use a di�erent and weaker construction for the
randomized case. Relying on Yao’s principle [32] (see also [15]), we define a distribution over
sequences that is hard for any algorithm.

The following Lemma 15 is a weaker but also simpler version of Theorem 9 (proven in
Appendix 6.1). Proving this lemma demonstrates our main technique.

I Lemma 15. Any Caching in Matchings algorithm with 2 Æ k < n matchings is �(log n

k
)

competitive.

Proof. We prove the lower bound for Problem 3. Then the theorem follows by Lemma 11.
For convenience, since any action of fetching or recoloring can be lazily postponed to the
next request for adding an edge to G, we assume that the algorithm does nothing else when
an edge is removed.

Given a fixed k, we divide the nodes to r-roads of length d0. We aim to have 2h r-roads
in total, for h as large as possible. We can bound h from below by noting that a brick
requires at most 4k nodes, a road of length d0 requires at most 4k · d0 nodes (d0 bricks),
and an r-road requires at most 4k · d0 · r + 1 nodes (r roads and a hub). So we get that
h Ø Âlog n

4k·d0·r+1Ê. Simplified, we get h = �(log n

k·d0·r ). Eventually we will choose r = 2
and d0 = 1 to get h = �(log n

k
).

We construct the distribution over request sequences in phases. A phase begins with 2h
r-roads. Then, during each phase we have h rounds, numbered from i = 1 to i = h. In each
round we pair the r-roads, and merge each pair into a single twice-longer r-road. Note that
in round i there are 2h≠i pairs of r-roads whose length is di = d0 · 2i≠1. Once we get to a
final single r-road of length dh, we delete the edges that were used to connect the roads of
length d0, and insert back hub edges to re-form the initial r-roads of length d0. Then a new
phase begins.

We explain later exactly how a pair of r-roads of length di are merged, for now just assume
that OPT pays O(r) and that any algorithm pays �(r ·di) in expectation for such merge, and
let us analyze the competitive ratio. When a phase begins, OPT can choose a consistent color
for each road of the r-roads such that no further recoloring is necessary during this phase,
at a cost of O(2h · r · d0) by recoloring O(1) edges in each brick (according to Lemma 14)
and each edge that connects to a brick to the desired color. Then, throughout the rounds it
pays additional

q
h

i=1 2h≠i ·O(r) = O(2h · r). Finally, when a phase ends it pays O(2h · r)
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more to re-attach hubs when re-creating the initial r-roads of length d0, and O(2h · r · d0)
more to undo any recoloring made when the phase begun.6 Overall, OPT pays per phase
O(2h · r · d0). In contrast, ALG pays at least

q
h

i=1 2h≠i · �(r · 2i≠1 · d0) = �(h · 2h · r · d0).
Let t be the number of phases. The one-time initialization cost is c0 = �(k2 ·(2h ·r ·d0)) for

inserting �(k2) edges per brick. Therefore, the competitive ratio that we get is E[cost(ALG)]
cost(OPT ) Ø

c0+t·�(h·2h·r·d0)
c0+t·O(2h·r·d0) . For t = �(k2) we can neglect c0 and get that E[cost(ALG)]

cost(OPT ) = �(h). Recall
that h = �(log n

k·r·d0
), so we choose r = 2 and d0 = 1 to maximize the competitive ratio and

get �(log n

k
), as claimed.

It remains to explain how we merge a pair of r-roads of length d, X and Y , see Figure 5
for a visual example for r = 2 and k = 4. We have r iterations, where iteration i cuts
the ith road of Y away from the hub, and extends a uniformly random not yet extended
road of X. OPT pays at most r for the newly introduced r edges because it can refrain
from recoloring roads. As for ALG, observe that it must recolor a road if the colors of the
extended road and its extension do not match. For the first two roads that we combine (one
from each r-road), there is a probability of at most 1

r
for the colors to agree (the probability

is maximized if X and Y use the same colors for their roads, out of the k possible colors).
More generally, in the ith iteration there is a probability of at most 1

r+1≠i
for the colors to

agree, maximized if the remaining roads of Y share their colors with the not yet extended
roads of X. Thus ALG recolors in expectation at least

q
r

i=1 (1 ≠ 1
r+1≠i

) = r ≠ Hr roads
throughout the process, where Hr is the rth harmonic number. For r Ø 2, this amounts to a
cost of �(r · d) recolorings. J

(a) Initial state. (b) One road extended. (c) Merge complete.

Figure 5 Visualization of merging a pair of 2-roads of length d = 2 to a single twice longer 2-road.
In this example k Ø 4. Initially the 2-roads are disjoint. Then, we cut a road from the right 2-road
and extend another road in the left 2-road. If necessary, the algorithm recolors one or more of the
roads. Then we do the same for the remaining road. In the end, the hub of the cut-down 2-road is a
node of degree 0.

3.3 Upper Bounds with Resource Augmentation
In this section we study upper bounds with resource augmentation. That is, we assume that
the optimum still has k matchings, but our algorithm has more. Interestingly, it dramatically
improves the competitive ratios, in both deterministic and randomized settings.

Recall our general approach and notations: our caching in matchings algorithm Am

implements a component of an edge-coloring algorithm, over a component of a connection
caching algorithm which we denote by Ac. By Remark 6, we can divide our attention
between connection caching and dynamic edge-coloring. Concretely, given h Ø 1 extra
matchings, we maintain connection caching with kÕ © k + h1 connections per node, and
maintain edge-coloring of a graph of maximum degree kÕ, with kÕ + h2 colors, such that
h1 + h2 = h. We choose h2 Ø 1 because a single extra color yields a dramatic improvement.
We use either h2 = Áh

2 Ë or h2 = h, Corollary 25 summarizes our choices.

6 It is necessary to revert to the exact initial coloring before the next phase because Lemma 14 for
recoloring bricks requires a very specific coloring scheme.
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We begin by listing three important facts about caching and connection caching algorithms,
which we use as Ac. Concretely, Lemma 16 details a deterministic algorithm for Connection
Caching, and Lemma 17 together with Theorem 18 yield a randomized algorithm for
Connection Caching in Corollary 19.

I Lemma 16 (Corollary 8 of [20]). There is a deterministic Connection Caching algorithm
with cache of size r, that is 2r

r≠k+1 -competitive against the optimum with cache of size k Æ r.

I Lemma 17 (Section 2.2 of [33]). Let r be the cache size of the randomized caching algorithm
MARK [24], and let k be the cache size of the optimum. Then MARK is: O(log r)-competitive
if r = k; O(log r

r≠k
)-competitive if e≠1

e
r < k < r; and, 2-competitive if k Æ e≠1

e
r.

I Theorem 18 (Theorem 7 of [20]). Let A be a c(r, k)-competitive caching algorithm, with
additive term ”, where r and k are the cache sizes of the algorithm and the optimum,
respectively. Then there is a 2 · c(r, k)-competitive algorithm for Connection Caching, with
additive term |V | · ” where |V | is the number of nodes in the graph.

The explicit reduction and proof of Theorem 18 can be found in [30].

I Corollary 19. There exists a randomized connection caching algorithm, with cache size r
compared to k of the optimum, that is O(log r)-competitive if r = k; O(log r

r≠k
)-competitive

if e≠1
e

r < k < r; and, 4-competitive if k Æ e≠1
e

r.

Next, we list several results for dynamic edge coloring.

I Lemma 20 (Greedy, Folklore). Let G be a dynamic graph with the guarantee that its
maximum degree is at most k at any time. Then we can maintain for it a 2k≠1 edge-coloring
without needing to recolor any edge.

Proof. When (u, v) is inserted, both u and v are of degree at most k ≠ 1, thus each has at
least k free colors, and they must have at least one common free color that we can use. J

I Lemma 21. Let G be a dynamic bipartite graph with the guarantee that its maximum
degree is at most k at any time, and let h Ø 1. We can maintain a deterministic (k + h)-
edge-coloring of G in amortized O(


nk/h) recolorings per insertion.

The proof of Lemma 21 is deferred to Appendix 6.2. It is like the proof of Theorem 7 but
we only have few edges from each extra color, such that we can recolor bi-chromatic paths
quickly. Periodically, we recolor the graph using only k colors and amortize this work over
several operations.

The following results are particularly useful when k is small. The high probability in
Theorem 23 below is for bounding the running time, not for getting a proper coloring.

I Theorem 22. Let GÕ © G fi {e} be a graph with maximum degree k, such that G is
(k + 1)-edge-colored, and e is uncolored. Then there is a (k + 1)-edge-coloring of GÕ which
recolors only N edges in G where N = O(k7 logn) by [19] (Theorem 3), or N = (k+1)6 log2 n
by [10] (Corollary 6.4).

I Theorem 23 (Theorem 6 of [19]). Let G be a dynamic graph such that its maximum degree
never exceeds k. Then there exists a fully-dynamic algorithm that maintains a Á(1 + ‘)kË-
edge-coloring with O(‘≠6 log6 k log9 n) worst-case update time with high probability.

The paper [13] gives an e�cient randomized edge-coloring for su�ciently large k.
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I Theorem 24 ([13]). Let G be a dynamic graph such that its maximum degree never
exceeds k. If k Ø (100–4 logn)30– log –, there is a fully-dynamic algorithm maintaining a
(1 +O( 1

–
))k-edge-coloring with O(–4) edge recolorings in expectation per update.

Finally, we combine the various results of connection caching and edge coloring to derive
the following competitive algorithms.

I Corollary 25. Given resource augmentation of extra 1 Æ h = O(k) matchings, that is
k + h for the algorithm versus k for OPT, the following competitive algorithms for caching
in matchings exist:
1. O(n1/2(k/h)3/2) deterministic and O(n1/2(k/h)1/2 log 2k+h

h
) randomized competitive al-

gorithms in bipartite graphs.
2. O

1
k
6 logn

h
min(k, logn)

2
deterministic and O

1!
k log k

h

"6 log 2k+h

h
log9 n

2
randomized com-

petitive algorithms in general graphs. The deterministic algorithm is ine�cient.
3. If h = k ≠ 1 we can remove the dependence on n, yielding k deterministic and O(log k)

randomized competitive algorithms in general graphs.
4. O(–4 log k) randomized competitive algorithm, where – = O( k

h
) and provided that

k Ø (100–4 logn)30– log –.

Proof. We use the augmentation to have extra h2 colors for the coloring component, where
h2 = h for Part-(3), and h2 = Áh

2 Ë for the rest. Part-(1) is by Lemma 21 with Lemma 16
and Corollary 19. Part-(2) is by Theorem 22 with Lemma 16, and by Theorem 23 with
Corollary 19. The deterministic algorithm is ine�cient because Theorem 22 only proves the
existence of the stated recoloring by probabilistic arguments. Regarding the randomized
part, Theorem 23 guarantees recoloring that is cheap with high probability. We can choose
the constants such that the failure probability is Æ 1

n2 , and fully recolor the graph if the
cheap method fails. The expected number of recolorings is negligibly a�ected, and proper
edge coloring is guaranteed. Notice that we set ‘ = h

k
. Part-(3) is by Lemma 20. Part-(4) is

by Theorem 24 and Corollary 19. J

I Remark 26. Choosing h2 = Áh

2 Ë in Corollary 25 divides the augmentation into equal halves
and is good enough if we do not optimize the constants, since essentially both caching and
coloring components “benefit” from �(h) augmentation.

In Part-(4) it is simplest to think of – as a constant, in which case the requirement
k Ø f(n,–) for the function f given in the statement, requires k = �(poly(logn)). However,
– can also depend on k, as long as there are values of k that satisfy k Ø f(n,–(k)). Observe
that because (logn)logn/ log logn = n, for k Æ n it must be that – = O( logn

log logn
) or else the

inequality cannot be satisfied. Then in particular – = o(logn), and k1/�̃(–) Ø logn (for the
appropriate constants) implies k Ø f(n,–(k)). Crudely simplified for the sake of a clean
example, if k 1

– Ø logn we could choose – = log k

2 log log k
, and still have a non-empty range of

applicable k values.
Finally, we improve the competitive ratio further with a larger resource augmentation.

I Theorem 27. Given k+h matchings to the algorithm compared to only k matchings to the
optimum, for h Ø k ≠ 1, there is a deterministic algorithm that is 2(1+ k≠1

Â h+3≠k
2 Ê )-competitive

for Caching in Matchings. In particular, with h = (1 + –)k extra matchings we get a
competitive ratio of O(1 + 1

–
).

The proof is in Appendix 6.2. It follows from Lemma 20 and Lemma 16.

I Corollary 28. Consider the Caching in Matchings problem where the optimum is given k
matchings. There is a 6-competitive algorithm that uses 3k ≠ 3 matchings (h = 2k ≠ 3).
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A note on the running times. This work focuses on competitive analysis and therefore
we do not attempt to optimize polynomial running time. We note that the algorithms in
Corollary 25(1),(3) take O(n) time: maintaining connection caching takes O(k) time, and the
coloring algorithms in Lemma 20 and Lemma 21 naively take time of O(�) to find a color
and O(fl) to recolor a path of length fl. The randomized algorithms of Corollary 25(2),(4)
also run in polynomial time per update.

4 Related Work

Caching Problems. Caching problems have been studied in many variants and cost models.
Connection caching is the caching variant closest to our problem. We presented it in a
centralized setting, Cohen et al. [20] introduced it in a distributed setting. Albers [3] studies
generalized connection caching. Bienkowski et al. [14] study connection caching in a cost
model that is similar to that of caching with rejections [23]. Another related variant is
restricted caching [16, 25] where not every page can be put into every cache slot. Buchbinder et
al. [16] study the case where each page p has a subset of cache slots in which it can be cached.
In our problem we also have a restriction of similar flavour, implied by the separation into
matchings. We note that the cost model in [16, 25] only counts cache-misses, while we also
pay for rearranging the cache.

Coloring Problems. As mentioned in Section 3, an e�cient dynamic edge coloring that
uses a small number of colors can be useful for competitive analysis. Subsection 3.3 covers
results which we use for our advantage. The coloring literature studies the tradeo� between
the number of colors, amount of recoloring (sometimes called recourse), and the running
time of the algorithms. Some algorithms require a bound � on the maximum degree of
the dynamic graph, while others are adaptive with respect to the maximum degree in their
running time or recoloring. Literature on vertex coloring also exists, but reducing edge
coloring to vertex coloring by coloring the line-graph is too wasteful in the number of colors,
whether this number is parameterized by �, or by the arboricity of the graph as in [27].
Works on maintaining dynamically an implicit coloring [18, 27] cannot apply to our case
because the matchings form an explicit coloring. Azar et al. [5] study dynamic vertex coloring
in the context of competitive analysis.

El-Hayek et al. [22] are motivated by the same architecture as us. They solve a problem
of dynamically maximizing the size of a k-edge-colorable subgraph of a dynamic graph.

Linear Programming and Convex Body Chasing in L1. The aforementioned caching
problems, like many other combinatorial problems, can be formulated as a linear program [17].
This line of research led to the development of competitive algorithms for weighted and
generalized caching [1, 2, 6, 7]. A recent result of Bhattacharya et al. [11] uses linear
programming with packing and covering constraints to formulate and frame the problem as
convex body-chasing in L1. They give a fractional algorithm that requires a slight resource
augmentation, along with some rounding schemes to get randomized algorithms for specific
problems. Our problem can be thought of as another special case of the problem considered
by [11], see the appendix in the extended version [30] for this formulation and further details.
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5 Conclusions and Future Work

In this paper we studied the online Caching in Matchings problem, in which we receive
requests for edges in a graph and need to maintain a cache of the edges which is a union
of k matchings. The problem abstracts some hardware architecture in which a datacenter
is enhanced with reconfigurable optical links. Interestingly, we proved that the Caching
in Matchings problem is inherently harder than the similar-looking Connection Caching
problem and other caching problems. Specifically, its competitive ratio depends not only
on the number of matchings k (“cache size”) but also on the number of nodes in the graph.
Our randomized lower bound rules out an O(logn) competitive algorithm, and the best
competitive ratio we can hope for is O(poly(logn)). Our lower bound for deterministic
algorithms is linear in n.

We derived our algorithms by running a coloring algorithm that maintains a coloring of
the cache of a connection caching algorithm. This approach is simple to describe and analyze,
but inherently multiplies the competitive ratios of the two algorithms. It is natural to ask
whether a “direct” algorithm for Caching in Matchings exists, and if so does it improve the
competitive ratio?

Regarding resource augmentation of h Ø 1 extra matchings, we see that there are two
interesting “discontinuities”. First, immediately for h = 1 the competitive ratio drops to
poly(k, logn), in particular “breaking” the deterministic lower bound. Second, there seems
to be a point in which the competitive ratio becomes independent of n. It clearly happens for
h = k ≠ 1, and even sooner if k is large enough (revisit Corollary 25). These ”discontinuities”
beg the following two questions. First, is there an 1 Æ h < k ≠ 1 and an algorithm that uses
h extra matchings with a competitive ratio of O(poly(logn)) for any 2 Æ k < n? Di�erently
phrased, can we achieve a competitive ratio that is poly(log k, logn) instead of poly(k, logn)?
Second, is it possible to remove the dependence on n using less than h = k≠1 extra matchings
for any k, and if so how small can h be?

A natural generalization would be to study upper bounds for Caching in Matchings in
general graphs. When k = 1 optimality is still trivial, and when k = n, by Vizing’s theorem,
we are also optimal since we can edge-color the full n-clique with n colors. In fact, for
n Ø 2, k = n ≠ 1 colors are su�cient if and only if n is even. In the non-trivial regime
2 Æ k < n, there exists a naive deterministic O(n2k2) competitive algorithm (the extended
version [30] contains exlicit proofs). Resource augmentation of an extra matching (k + 1
colors) dramatically reduces the competitive ratio to O(nk) (deterministic) and O(n log k)
(randomized) by allowing us to update the coloring of the graph when a new edge is inserted
according to a single step of the Misra-Gries algorithm [29],7 or to O(poly(k, logn)) as in
Corollary 25(2). It is an interesting question whether the problem without augmentation is
indeed that much harder in general graphs. General graphs also provide additional di�culties,
such as the fact that finding minimal edge coloring for k Ø 3 is generally NP-complete [28].
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6 Appendix: Deferred Proofs and Discussions

6.1 Caching in Matchings Lower Bounds (Proofs)
I Lemma 11. A lower bound of C on the competitive ratio of an online algorithm for
Problem 3 implies a lower bound of C on the competitive ratio of an online algorithm for
Caching in Matchings.

Proof. Let A1 be a c-competitive algorithm for Caching in Matchings (Problem 1), with
some additive term d. We show how to derive from it an algorithm A3 that is c-competitive
for Problem 3, which proves the claim. We will also use corresponding subscripts OPT1 and
OPT3 for the optimum of each problem (with respect to a given sequence).

Given a sequence · , Algorithm A3 takes its decisions while processing · by simulating A1
on a sequence ‡ which is constructed as follows. We traverse · in order, and whenever an
edge is inserted, we add to ‡ a batch of requests which is a concatenation of r = nk identical
subsequences, each subsequence contains all the edges currently in G (in some arbitrary
order). When an edge is deleted, we do nothing.

We now specify A3 such that cost(A3(·))) Æ cost(A1(‡)) by having A3 maintain its state
such that it “jumps” between “check-points” in the state of A1.

A3 works as follows. When an edge is inserted by · , A3 feeds ‡ to A1 until one of two
things happens: either (1) the state of A1 provides a proper coloring of G, or (2) it reaches
the end of the batch that corresponds to the current edge inserted by · . In case (1), A3
changes its state by replaying the changes that A1 made. Then by definition of this case, it
ends up with a proper coloring of G. In case (2), we know that during the whole batch A1
did not have a proper coloring of G, which means that in each of the r rounds it paid at least
1 for a missing edge, for a total of at least r. Rather than replaying the changes and ending
up with an illegal state for A3, we have a budget of r to completely change its state. A3 uses
half of the budget to completely empty its state and fetch all of G with some proper coloring
(such coloring exists by definition of the problem). Indeed it has the budget, |G| Æ |M | Æ nk

2 .
The other half of its budget is used to copy the state from which A1 continues to process ‡,
by flushing everything, and fetching into the cache the state of A1. This ensures that the
state of A3 is once again identical to A1. We showed cost(A3(·))) Æ cost(A1(‡)). It holds in
the deterministic case, and also for the randomized case for every fixing of the random coins.

Now observe that cost(OPT1(‡)) Æ cost(OPT3(·)). Indeed, OPT1 may simulate the
behavior of OPT3 by making changes to its own state at the beginning of each batch
in ‡. In conclusion, we get that cost(A3(·))) Æ cost(A1(‡)) Æ c · cost(OPT1(‡)) + d Æ
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c·cost(OPT3(·))+d in the deterministic case, or similarly E[cost(A3(·)))] Æ E[cost(A1(‡))] Æ
c · cost(OPT1(‡)) + d Æ c · cost(OPT3(·)) + d in the randomized case (recall that c and d
were defined at the beginning of the proof). J

I Theorem 9. Any Caching in Matchings algorithm is �(log n

k2 log k
· log k) competitive.

Proof. This proof uses a similar high-level construction as the one used to prove Lemma 15,
and the only di�erence is in the way we merge pairs of r-roads. Here we set r = k. Assume
for now that when merging two k-roads of length d, OPT pays O(k log k) and any algorithm
pays �(k log k · d) in expectation.

With this in mind, revisit the competitive analysis: when a phase begins OPT pays
O(2h · k · d0) to recolor bricks to their desired color, it then pays

q
h

i=1 2h≠i ·O(k log k) =
O(2h · k log k) in the merging rounds, and finally it pays O(2h · k · d0) to restore the original
k-roads for the next phase. Overall, its cost is O(2h · k · (d0 + log k)). In comparison,
ALG pays for recoloring, in expectation, at least

q
h

i=1 2h≠i · �(k log k · 2i≠1 · d0) = �(h ·
2h · k log k · d0). Assuming a sequence with t = �(k2) phases, we get that the competitive
ratio is E[cost(ALG)]

cost(OPT ) = �( h·2h·k log k·d0
2h·k·(d0+log k) ) = �(h·log k·d0

d0+log k
). To maximize the expression we

balance and choose d0 = Álog kË, getting �(h log k). We determine h as before, except
that the complicated merging technique requires a reusable extra node, so we have that
h Ø Âlog n≠1

4k2·d0+1Ê. Simplified, and with d0 = Álog kË, we get h = �(log n

k2 log k
), therefore

the competitive ratio is �(log n

k2 log k
· log k).

(a) Initial state. (b) Step 1. (c) Step 2. (d) Final merge.

Figure 6 Visualization of merging a pair of k-roads, for k = 4, of length d = 2 to a single twice
longer k-road, by “negative information”. (a) The roads are numbered from 0 to 3, with their number
written inside their first brick. There are log k = 2 steps. (b) In the first step we temporarily connect
roads {1, 3} (least significant bit 1) of the top k-road with either roads {0, 2} or {1, 3} of the bottom
k-road, to a shared hub (the white node). In this example we connect {1, 3}, and as a results roads
2 and 3 of the bottom k-road were recolored. (c) In the second step we temporarily connect roads
{2, 3} (second bit is 1) of the top k-road with either roads {0, 1} or {2, 3} of the bottom k-road to a
shared hub. In this example we connect {0, 1}, and as a result roads 0 and 2 of the bottom k-road
were recolored. (d) Finally there is a round of “positive information” in which we simply extend
each road on the top color-consistently with a road on the bottom. The consistency depends on the
choices of the previous steps, and in this example it matches road x on the top with road x ü 1 on
the bottom. The recoloring in this example is such that in the final extension no road is recolored.

Now we explain and analyze the merging of two k-roads, denote them by X and Y . See
Figure 6 for a visual example with k = 4. For simplicity, let us start with k being an integer
power of 2, say k = 2¸. We start with ¸ steps of “negative information” in which we reveal
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roads that are of di�erent colors, and do so by connecting the free end of these roads to a
new shared hub, denote it by v. Concretely, number the roads of X from 0 to k ≠ 1 = 2¸ ≠ 1
and denote by Xi,b the roads of X whose ith bit is b. We define similarly the subsets of roads
for Y . In round i, we connect to v the roads Xi,1 and Yi,bi where bi is chosen uniformly at
random between 0 and 1. Note that |Xi,1| = |Yi,bi | = k

2 so the degree of v is k (legal). When
the round ends, we delete the edges of v. Finally, in the ¸ + 1 step we produce the longer
k-road with “positive information” by cutting the roads of Y from their hub and extending
the roads of X, according to the unique way which does not contradict the previous ¸ steps.
This way exists: road y œ Y extends the road x whose binary representation is x = y ü B
where the bits of B are bi and ü is the bitwise exclusive-or operation.

Let us analyze the costs of OPT and ALG. Since OPT knows the correct colors in
advance, it can pay at most 1 per edge that is inserted. We insert k edges per step (even
if most of them are later deleted), in a total of ¸ + 1 steps. This totals to O(k log k). We
argue that ALG recolors in expectation �(k) roads per each of the first ¸ steps. To simplify
the analysis, assume that ALG recolors after learning bi rather than being introduced online
each edge of v one by one (which can only hurt ALG). Then indeed every road in Xi,1 has
probability 1

2 to be in a conflict of color with a road of Yi,bi , so by the linearity of expectation,
we get at least k

2 = �(k) road recolorings (if ALG is “reasonable”, it recolors O(k) roads per
step, so allowing it to be semi-o�ine did not lose more than a constant factor). Observe that
our bound for round i is not a�ected by previous rounds. So we conclude that ALG pays
�(¸ · k · d) = �(k log k · d) for recoloring in expectation.

The case of k not being a power of 2 is similar. Each road is still assigned a number,
and we regard its binary representation with Álog kË bits, but only make ¸ = Âlog kÊ rounds.
Note that now Xi,1 is not necessarily of size k

2 , but rather might be smaller. The bias is
always in favor of 0 because of how counting works, and it is such that |Xi,1| Ø k≠2i

2 (i = 0
is the least significant bit). So we can still choose Yi,bi with bi uniformly random, there is
no problem to connect all the roads of Xi,1 and Yi,bi to their shared hub. Also, each road
in Xi,1 still has a color conflict with probability 1

2 . The only thing that changes is that the
expectation of road recolorings is not k

2 per round, but rather |Xi,1| in round i. This yields
at least

q
¸≠1
i=0 |Xi,1| Ø ¸ · k

2 ≠ 1
2

q
¸≠1
i=0 2i > ¸ · k

2 ≠ 2¸

2 > (¸≠1)k
2 road recolorings in expectation

for ALG, which is still �(k log k) in total. The analysis of OPT is unchanged, and its total
cost is O(k log k) in total per merging a pair of k-roads (of any length). J

I Remark 29. A few notes on the proofs of Lemma 15 and Theorem 9:
1. The random choices of the adversary can be boiled-down to the random order of extending

roads (in Lemma 15) and the bits bi (in Theorem 9). The 2-roads and k-roads themselves
are chosen once, and even the pairings of each merging round may be fixed.

2. For clarity, we presented it as if we need 2h di�erent hubs, one per r-road. In fact, we
only need h+ 1 hubs if we reuse them: h of them to maintain an r-road for each unique
length, and another one for the length in which we currently merge a pair of r-roads.
This saving is negligible compared to the number of nodes used to compose the roads.

6.2 Caching in Matchings With Resource Augmentation (Proofs)
In this section we restate and prove the claims from Section 3.1 that we did not prove there.

I Lemma 21. Let G be a dynamic bipartite graph with the guarantee that its maximum
degree is at most k at any time, and let h Ø 1. We can maintain a deterministic (k + h)-
edge-coloring of G in amortized O(


nk/h) recolorings per insertion.
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Proof. Recall the proof of Theorem 7, we will use the same idea of a color-swap on a
bi-colored path. The key di�erence is how we use the h Ø 1 extra colors.

First consider h = 1 and denote the extra color as yellow. We allow at most y yellow
edges in the graph, and if we need more, we recolor the whole graph from scratch without
using yellow. Such a recoloring is possible because the graph is bipartite and every node is
of degree at most k. When coloring a newly inserted edge (u, v), both u and v have at least
one free color. We have three cases:
1. If u and v share a free color, including yellow: Then use this color.
2. If u does not have a yellow edge and v does (the other case is symmetric): Let c be a free

color of v, and apply a color-swap of c and yellow with respect to v. This makes yellow a
free color of v. Note that u is una�ected by the color-swap, because the graph is bipartite
(a�ecting u implies that the path of the swap closes an odd cycle with the edge (u, v)).
Now color (u, v) in yellow.

3. If both u and v have a yellow edge: Let c be a free color of u. Apply a color-swap of c and
yellow with respect to u to make yellow a free color of u. Now apply the previous case.

We apply up to two color-swaps, each of length O(y) because there are at most y yellow
edges in the whole graph. Recall that we might have a global recoloring once we reach y
yellow edges. We charge these recolorings to the yellow edges. Formally, we define a potential
for the cache which equals nk

y
· i when there are i yellow edges. Thus when we accumulate

y yellow edges, the potential can pay for the global recoloring. Each insertion of an edge
causes O(y) recoloring and increases the potential by at most nk

y
, due to possibly inserting a

yellow edge (our color-swaps never increase the number of yellow edges). We conclude that
the amortized cost is O(y + nk

y
) per insertion. Balancing with y =

Ô
nk gives O(

Ô
nk).

We generalize the previous logic for h Ø 1 by allowing each extra color to have at most y
edges, and when it fills up we proceed to use the next extra color. Only when all h colors
have y edges we invoke a full recoloring. The potential in this case is nk

hy
per edge, and the

amortized cost is therefore O(y + nk

hy
). Balancing with y =


nk/h gives O(


nk/h). J

I Theorem 27. Given k+h matchings to the algorithm compared to only k matchings to the
optimum, for h Ø k ≠ 1, there is a deterministic algorithm that is 2(1+ k≠1

Â h+3≠k
2 Ê )-competitive

for Caching in Matchings. In particular, with h = (1 + –)k extra matchings we get a
competitive ratio of O(1 + 1

–
).

Proof. Let ‡ be a sequence of requests. Denote an algorithm A with cache parameter x as
Ax, and use subscripts m for Caching in Matchings and c for Connection Caching. We have
cost(A2r≠1

m
(‡)) = cost(Ar

c
(‡)) for any integer r Ø 1 by considering r≠1 matchings as resource

augmentation, such that we require no recoloring (by Lemma 20). Since this reduction halves
the cache parameter, and our algorithm initially has cache of size k+ h, we use r = Âk+h+1

2 Ê.
If k + h = 2r, we do not use one of the colors, on purpose, to ensure using exactly 2r ≠ 1
colors. Taking Ac to be the algorithm that satisfies Lemma 16, cost(Ar

c
(‡)) Æ 2r

r≠k+1 ·
cost(OPT k

c
(‡)) + d for some fixed term d. By Remark 4, cost(OPT k

c
(‡)) Æ cost(OPT k

m
(‡)).

Plugging everything together we get that cost(A2r≠1
m

(‡)) Æ 2r
r≠k+1 ·cost(OPT k

m
(‡))+d, hence

A2r≠1
m

is 2r
r≠k+1 = 2(1 + k≠1

r≠k+1 ) = 2(1 + k≠1
Â h+3≠k

2 Ê ) competitive for Caching in Matchings. J
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Abstract

Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges
sharing an endpoint receive di�erent colors. By Vizing’s celebrated theorem, any graph of maximum
degree � needs at least � and at most (� + 1) colors to be properly edge colored. In this paper, we
study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order.
The algorithm takes a single pass over the input and must output a solution using a much smaller
space than the input size. Since the output of edge coloring is as large as its input, the assigned
colors should also be reported in a streaming fashion.

The streaming edge coloring problem has been studied in a series of works over the past few
years. The main challenge is that the algorithm cannot “remember” all the color assignments
that it returns. To ensure the validity of the solution, existing algorithms use many more colors
than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with ÂO(ns) space1

requires O(�2
/s+ �) colors. Note, in particular, that for an asymptotically optimal O(�) coloring,

this algorithm requires �(n�) space which is as large as the input. Whether such a coloring can be
achieved with sublinear space has been left open.

In this paper, we answer this question in the a�rmative. We present a randomized algorithm
that returns an asymptotically optimal O(�) edge coloring using ÂO(n

Ô
�) space. More generally,

our algorithm returns a proper O(�1.5
/s + �) edge coloring with ÂO(ns) space, improving prior

algorithms for the whole range of s.
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121:2 Streaming Edge Coloring with Asymptotically Optimal Colors

Since the output of edge coloring is as large as its input, a streaming algorithm cannot return
it in memory. Instead, the goal is to also return the solution in a streaming fashion. Doing
so, the main challenge is that the algorithm cannot “remember” all the reported edge colors,
yet has to ensure that any two incident edges receive di�erent colors.

Edge coloring is a fundamental problem in graph theory and has many practical applica-
tions in areas such as scheduling, communication networks, and VLSI design. By a classic
result of Vizing, any graph of maximum degree � needs at least � and at most (�+1) colors
to be properly edge colored.2 While existing algorithms for finding a (� + 1) edge coloring
are rather complicated, a (2� ≠ 1) coloring can be found by a simple greedy algorithm that
iterates over the edges and chooses an arbitrary available color for each. Unfortunately, even
this simple greedy algorithm is hard to implement in the streaming setting. Recall that the
algorithm cannot remember all the assigned edge colors in memory, hence it is unclear how
to verify which color is available for the next edge that arrives.

Prior works. The streaming edge coloring problem was first studied by Behnezhad, Der-
akhshan, Hajiaghayi, Knittel, and Saleh [17] who gave a randomized algorithm for O(�2)
edge-coloring with ÂO(n) space, where n is the number of vertices. In a follow up work,
Charikar and Liu [22] showed that, more generally, for any parameter s Ø 1 there is a
randomized streaming algorithm that O(�2/s+ �) edge-colors the graph using ÂO(ns) space.
Later, Ansari, Saneian, and Zarrabi-Zadeh [4] obtained the same bound but using a simple
and clean deterministic algorithm. Note that for an asymptotically optimal O(�) edge
coloring, the algorithms above require O(n�) space. This, unfortunately, is not sublinear in
the input size as any graph of maximum degree � has at most O(n�) edges. Put di�erently,
for the case of O(�) coloring, no improvement over the trivial algorithm that stores the
whole graph in memory and then colors it is known. This state of a�airs leaves an important
question open:

Does there exist a streaming algorithm with sublinear space for O(�) edge coloring?

Our contribution. In this paper, we answer the question above in the a�ramtive. Our
main result is the following algorithm:

I Theorem 1.1. For any s Ø 1, there is a randomized streaming algorithm that with
high probability reports a O(�1.5/s+ �) edge-coloring under arbitrary edge arrivals using
ÂO(ns) space.

Setting s =
Ô

�, we obtain the following corollary, answering the question above:

I Corollary 1.2. There is a randomized streaming algorithm that with high probability
reports a O(�) edge-coloring under arbitrary edge arrivals using ÂO(n

Ô
�) space.

We show that the space-complexity can be further improved to ÂO(n) under arbitrary
vertex arrivals. Here instead of edges arriving in an arbitrary order, the vertices of the graph
arrive one by one and when a vertex v arrives, all of its edges to the previous vertices are
revealed.

2 To see the lower bound, note that � colors are needed just to color the edges of a vertex with degree �.
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I Theorem 1.3. There is a randomized streaming algorithm that O(�) edge colors the
graph under arbitrary vertex arrivals using ÂO(n) space.

1.1 Further Related Work

Streaming algorithms for edge coloring have also been studied under the extra assumption
that the edges arrive in a random order. Behnezhad, Derakhshan, Hajiaghayi, Knittel, and
Saleh [17] showed that there is a single pass ÂO(n) space algorithm that obtains a 5.44�
coloring. Charikar and Liu [22] later showed the number of colors can in fact be improved
to (1 + o(1))� under random arrivals while keeping the memory ÂO(n). Both of these
algorithms rely heavily on the random-arrival assumption and do not have any implications
for adversarial edge arrivals, which is the focus of this paper.

Online edge-coloring is another related problem. In this problem, the algorithm has
no space constraints, but edges arrive one by one and each edge has to be colored upon
arrival irrevocably. Note that the greedy algorithm can easily be implemented in the online
setting; therefore much of the research has been focused on whether the greedy bound can be
improved. For low-degree graphs, Bar-Noy, Motwani, and Naor [14] showed that the greedy
algorithm is optimal for online edge coloring. However, there has been several improvements
over the past few years for graphs of degree at least Ê(logn) starting from the work of
Cohen, Peng, and Wajc [25]; see [25, 41, 20, 40] and the references therein. The best current
bound for general edge arrivals is a beautiful e

e≠1
� coloring algorithm of Kulkarni, Liu, Sah,

Sawhney, and Tarnawski [40]. Whether the number of colors can be improved to (1 + o(1))�
for � = Ê(logn) under arbitrary edge arrivals remains an important open problem.

Independent work. Two other works by Ghosh and Stoeckl [32] and Chechik, Mukhtar,
and Zhan [23], which appeared concurrently with our paper, also consider the streaming edge
coloring problem. The algorithm of Ghosh and Stoeckl [32], for any 1 Æ s Æ

Ô
�, obtains a

(�2/s2)-edge-coloring using ÂO(ns) space.3 The algorithm of Chechik, Mukhtar, and Zhan
[23] obtains a ÂO(�1.5)-edge-coloring using ÂO(n) space.

Our Theorem 1.1 subsumes both of these results: for any 1 Æ s Æ
Ô

�, we achieve a
(�1.5/s)-edge-coloring using ÂO(ns) space. Letting s = 1, this gives an O(�1.5)-edge-coloring
with ÂO(n) space matching the result of Chechik, Mukhtar, and Zhan [23]. Moreover, since
�1.5/s Æ �2/s2 for the whole range of 1 Æ s Æ

Ô
�, our color/space trade-o� is never worse

than that of Ghosh and Stoeckl [32], but is strictly better when s is small. For instance,
letting s = 1, the algorithm of Ghosh and Stoeckl [32] requires O(�2) colors whereas ours
requires O(�1.5) colors.

Finally, we note that Ghosh and Stoeckl [32] also consider vertex arrival streaming
algorithms achieving the same bound as our Theorem 1.3. They also consider online
algorithms.

1.2 Preliminaries

Unless otherwise stated, we use G = (V,E) to denote the input graph. We use n := |V |
and m := |E| to respectively denote the number of vertices and edges in G. We use � to
denote the maximum degree of the graph G. For any integer k, we use [k] to denote the set
{1, . . . , k}.

3 In their paper this is equivalently stated as an O(�t) coloring using ÂO(n


�/t) space.
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The graph streaming model. In the standard graph streaming model, edges of an arbitrary
graph G arrive one by one in an arbitrary order. The algorithm has a space much smaller
than the total number of edges, can take few – preferrably just one – pass over the input,
and should return the output. In the case of edge coloring, the output size is as large as the
input, making it impossible to store the entire output and return it all at once. Therefore,
we allow the algorithm to output the solution in a streaming manner as well. This model is
also referred to as the “W-streaming” model in the literature [33, 27]. All of the algorithms
presented in this paper take only a single pass over the input. We measure the space in the
number of words, each consisting of �(logn) bits.

Our algorithms for the general edge arrival model build on algorithms that we develop
for two more restrictive arrival models of general vertex arrivals and one-sided vertex arrivals
in bipartite graphs. We present the definition of these standard models below.
I Definition 1.4 (vertex arrival model). In this model, vertices of the input graph G arrive
one by one according to some arbitrary permutation fi. Upon arrival of a vertex, all of its
edges to previous vertices in the permutation fi arrive.
I Definition 1.5 (one-sided vertex arrivals in bipartite graphs). In this model, the input graph
G is assumed to be bipartite with vertex sets U and V . The “o�ine” vertices in V are present
from the beginning, but the “online” vertices in U arrive one by one in an arbitrary order.
Every time an online vertex u arrives, all of its edges to the o�ine vertices V are revealed.

In our proofs, we use the following standard variant of the Cherno� bound.
I Proposition 1.6 (Cherno� bound). Let X1, ...,Xn be independent random variables in [0, 1].
Let X =

qn
i=1

Xi and µ = E[X]. Then for all ” Ø 0 and µÕ Ø µ, Pr[X Ø (1 + ”)µÕ] Æ
exp

1
≠ ”2

2+”µ
Õ
2
.

2 Overview of Techniques

In this section, we give an informal high-level overview of our algorithms.
As we discussed, the main challenge in solving the streaming edge-coloring problem is

that the algorithm cannot “remember” all the colors that we assign to the edges as this
takes too much space. This turns out to be a challenge particularly when the degrees evolve
unevenly. To convey the key intuitions in this section, let us first focus on the one-sided
vertex arrival model in bipartite graphs (Definition 1.5). We note that even in this restricted
arrival model, the best known algorithm from the literature remains to be those of [17, 22, 4]
which require O(�2) colors with O(n) space. Here, we describe how this can be improved
to an asymptotically optimal O(�) coloring with only ÂO(n) space. Our final algorithm of
Theorem 1.1 in the more general edge-arrival model builds on this vertex-arrival algorithm.

Since all edges of an online vertex arrive at the same time, it is not hard to ensure they
receive di�erent colors. What is challenging is to do so while ensuring that all edges of an
o�ine vertex receive di�erent colors too. Towards this, we first describe an algorithm that
uses O(� logn) colors, O(n�) “pre-processing space,” and O(n) working space. We then
show how this can be turned into an O(�) coloring algorithm that uses ÂO(n) space overall.

With regards to the second reviewer’s question, for the streaming model, we measure the
space in terms of the number of words. We point this out in the preliminaries section. In the
paragraph describing the algorithm that uses O(— logn) colors the counters keep track of a
number which is at most K = �(� logn). Thus it can be stored in O(log(K)) = O(logn)
bits of space. Since we set the size of words to be �(logn), each counter can be stored in
O(1) space. Hence, to store counters for all the O(n) vertices we need O(n) space.
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An algorithm with O(� logn) colors but large space. Let K = �(� logn) be the number
of colors we use. In the pre-processing step (i.e., before seeing any edges of the graph), for
every o�ine vertex v œ V , we store a random permutation fiv of the colors {1, . . . ,K} in
memory which overall takes ÂO(n�) pre-processing space. Now suppose that the first online
vertex u arrives. For each of its o�ine neighbors vi, we consider the first random color fivi(1)
of vi. Since the random permutations of o�ine vertices are independent, when � Ø 2 we get
the color chosen for vi is di�erent from fivj (1) for all other neighbors vj of u with probability
(1 ≠ 1

K )deg(u) Ø (1 ≠ 1

�
)� Ø 0.25. Note that (1 ≠ 1

�
)� is a monotonically increasing and for

� = 2 the value is 0.25. If this happens, we assign color fivi(1) to edge (u, vi). If the first
color of vi is not unique, we discard it and reveal the next color fivi(2) of vi. Every round
of this process successfully colors a constant fraction of the remaining uncolored edges of
u. Thus it takes O(logn) rounds to color all edges of u w.h.p. On the other hand, since we
have reserved K = �(� logn) colors for each o�ine vertex, we can a�ord to reveal up to
�(logn) colors for each of their edges, hence fully coloring the graph w.h.p. To implement
this algorithm, we only need to maintain a counter dv for every o�ine vertex v on how many
colors of its random permutation we have revealed so far, which can be done with O(n) total
working memory.

Reducing space. To get rid of the huge pre-processing space of ÂO(n�) in the previous
algorithm, we limit the amount of randomness needed. To do so, instead of choosing a fully
random permutation of {1, . . . ,K} for every o�ine vertex v, which requires �(nK) = Â�(n�)
space, we just pick a random number rv œ [K] and use the randomly shifted permutation
(rv, rv+1, . . . ,K, 1, . . . , rv≠1). The advantage of doing so is that this shifted permutation can
be stored using O(1) space, by just storing the random number rv in memory. Its downside is
that lack of independence breaks the analysis above. For example, if fivi(1) = fivj (1) then we
also have fivi(2) = fivj (2) and so cannot argue that every round colors a constant fraction of
the edges of the online vertex u. To fix this, we take t = �(logn) random numbers r1v, . . . , rtv
for each o�ine vertex v and considering the t shifted permutations

[r1v, . . . ,�, 1, . . . , r1v ≠ 1], . . . , [rtv, . . . ,�, 1, . . . , rtv ≠ 1].

Now if the first color choice of vi and vj according to the first shifted permutation are the
same, we consider the second shifted permutations, then the thirds, and so on and so forth.
This gets rid of the dependence between the colors proposed for the edges of an online vertex,
but not the edges of an o�ine vertex. Luckily, the latter is not needed for the analysis to go
through and we can implement this algorithm with ÂO(n) space overall.

Reducing colors via k-out sampling. The algorithm above is greedy in that we first reveal
a random color for each edge of the online vertex u, greedily color those whose proposed
colors are unique, then reveal the next batch of proposals. Instead of this greedy algorithm
which takes up to O(logn) rounds, inevitably stretching the number of colors to O(� logn),
we first draw 3 random colors x1

i , x
2

i , x
3

i for each edge ei = (u, vi) of the online vertex u and
consider all these 3 colors at the same time. We show that with probability 1 ≠ 1/poly(�),
it is possible to pick one of the colors x1

i , x
2

i , x
3

i for each edge ei of u such that all edges of
u receive di�erent colors. Our proof of this theorem builds on a new lemma (Lemma 3.6)
that we prove on the existence of perfect matchings in a one-sided random k-out model. This
lemma, which might be of independent interest, says that if we have a random bipartite
graph with vertex sets V and U , and every vertex in V is made adjacent to exactly k vertices
in U chosen uniformly, then G has a perfect matching provided that k Ø 3 and |U | > e|V |.
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121:6 Streaming Edge Coloring with Asymptotically Optimal Colors

While k-out sampling has been used recently in obtaining more e�cient algorithms for
distributed graph connectivity [34] and minimum cuts [31, 11], this is to our knowledge its
first application in graph coloring.

From vertex-arrivals to edge-arrivals. We now overview how we go from the vertex arrival
model to the more general edge arrival model. To convey the key intuitions, we focus only on
the simpler special case of Theorem 1.1 where s = 1. That is, an algorithm that uses O(n)
space and returns an O(�1.5) edge coloring. Our first step is to generalize the algorithm
above to work in the non-bipartite vertex arrival model (Definition 1.4). This step, in fact,
follows more or less from a known random bipartization technique of the literature that we
present in Appendix A. Our next, more challenging, step is to generalize the algorithm to a
batch arrival setting, where at each step instead of all of the edges of a vertex, we see some
�(

Ô
�) edges of it (without having any guarantee about when the next batch of this vertex

arrives). Once we achieve this more general algorithm, we run an instance A of it. To feed
our edges to this batch arrival algorithm A, we keep storing edges in a set H. Whenever the
number of edges in H reaches n, we look at the vertex v with the largest degree in H. If
degH(v) Ø

Ô
�, we feed �(

Ô
�) of these edges of vertex v as the next batch to algorithm A

and remove them from H. Otherwise, the maximum degree in H is less than
Ô

�; in this
case, we edge color all edges in H greedily using O(

Ô
�) colors and remove them all from H.

Every time that we color H greedily, we color n edges of the graph. Therefore this happens
at most m/n = O(�) times, requiring a total of O(�1.5) colors. The proof of Theorem 1.1
for larger values of s requires a more involved white-box application of the vertex-arrival
algorithm; see the edge arrival section in the full version of our paper [18] for the details of
the algorithm.

3 Streaming Edge Coloring Under Vertex Arrivals

In this section, we start by proving Theorem 1.3, restated below, for the streaming edge-
coloring under vertex arrivals. Our algorithm in the more general edge-arrival model builds
on the vertex-arrival algorithm that we describe in this section.

I Theorem 1.3 (restated). There is a randomized streaming algorithm that O(�) edge
colors the graph under arbitrary vertex arrivals using ÂO(n) space.

3.1 Basic Reductions

We start with two basic reductions that essentially reduce the edge coloring problem in
general graphs under vertex arrivals to the same problem in bipartite graphs under one-sided
vertex arrivals.

The following lemma asserts that instead of general graphs, we can focus on bipartite
graphs. The idea is to randomly partition the vertex set V into two sets A and B, edge color
the bipartite subgraph of G between A and B, and recurse on the induced subgraphs G[A]
and G[B]. Since the idea is standard and follows from known reductions, we present its proof
in Appendix B.

I Lemma 3.1. Suppose there is a streaming algorithm that edge colors any n-vertex bipartite
graph of maximum degree � with f(�) Ø � colors using s(n,�) words of space. Then there
is a streaming algorithm that edge colors any general (i.e., not necessarily bipartite) n-vertex
graph of maximum degree � using

f(�) + f(�/2) + f(�/4) + ...+ f(1)
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colors and ÂO(n + s(n,�)) space. If the algorithm for bipartite graphs works under vertex
arrivals (resp. edge arrivals), then the algorithm for general graphs also works under vertex
arrivals (resp. edge arrivals).

We emphasize that to solve general graphs under vertex arrivals, we have to ensure that
the bipartite algorithm that we feed into Lemma 3.1 works under two-sided vertex arrivals.
The next reduction shows that any one-sided vertex arrival algorithm also solves two-sided
vertex arrivals by losing a factor of 2 in the number of colors.

B Claim 3.2. Suppose there is a streaming algorithm A, that edge colors any n-vertex
bipartite graph of maximum degree � under one-sided vertex arrivals using f(�) colors.
Then this can be turned into an algorithm that 2f(�) colors the bipartite graph under
two-sided vertex arrivals using asymptotically the same space.

Proof. Let G = (V,U,E) be the bipartite graph under two-sided vertex arrivals. We partition
its edges into two subgraphs GU and GV . If a vertex in V arrives, we add its edges to
GV , and if a vertex in U arrives, we add its edges to GU . This way, GV (resp. GU ) will
be a bipartite graph under one-sided vertex arrivals with the online part being vertex set
V (resp. U). Since both GU and GV will have maximum degree upper bounded by � (as
they are subgraphs of G), we can run one instance of A on GU and one on GV in parallel
using disjoint colors. This only multiplies the number of colors by two and the space by two,
finishing the proof. C

3.2 The Algorithm

The reductions of the previous section show that instead of general graphs, we can focus
on bipartite graphs under one-sided vertex arrivals. The following lemma is our main
contribution in the rest of Section 3.

I Lemma 3.3. There is a streaming algorithm that edge colors any bipartite graph of
maximum degree �, using O(�) colors under one-sided vertex arrivals and uses O(n) space
w.h.p. (The coloring is always valid and the space-bound holds with probability 1≠1/poly(n).)

Let us first see how Lemma 3.3 proves Theorem 1.3 using the reductions of the previous
section.

Proof of Theorem 1.3. First, we feed the algorithm of Lemma 3.3 to Claim 3.2 to obtain a
streaming algorithm that for some constant C, C(�) colors a bipartite graph under two-sided
vertex arrivals with O(n) space. We then plug in this algorithm into Lemma 3.1 to obtain an
algorithm for general graphs. The algorithm uses ÂO(n) space and the number of its colors by
Lemma 3.1 is

C� + C(�/2) + C(�/4) + . . .+ C Æ 2C� = O(�). J

So it only remains to prove Lemma 3.3. In this section, we present the algorithm
formalized below as Algorithm 1. We analyze the space complexity of the algorithm in
Section 3.3 and analyze its correctness and the number of used by it in Section 3.4. Finally,
we show in Section 3.5 that the algorithm can be generalized to a batch arrival model as well.
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Algorithm 1. Streaming edge coloring for one-sided vertex arrivals in bipartite graphs.

Parameter: c := 2.72
1. For each o�ine vertex v draw 3 distinct random numbers r1v, r

2
v and r3v from [c�]

uniformly and store them in memory.a
2. Additionally, for each o�ine vertex v, we store a counter degv in memory to keep

track of its degree as the edges arrive.
3. Upon arrival of an online vertex u:

a. For each edge ei = (u, vi) consider the following three colors x1

i , x2

i , x3

i :

x1

i :=
!
(r1vi + degvi) mod c�

"
,

x2

i :=
!
(r2vi + degvi) mod c�

"
+ c�,

x3

i :=
!
(r3vi + degvi) mod c�

"
+ 2c�.

b. If there is an assignment of colors to edges of u such that each edge ei receives a
color from {x1

i , x
2

i , x
3

i } and all the edges of u receive di�erent colors, then we assign
these colors, stream them out, and remove edges of u from memory. Otherwise, we
add all edges of u to set S which we store in memory.
(In Claim 3.4 we show u’s edges are successfully colored with probability 1 ≠
O(1/�5).)

4. It only remains to color the edges in S. Note that since S is a subgraph of G, its
maximum degree is no larger than �. Thus we can edge-color it using � fresh colors
via existing o�ine edge-coloring algorithms for bipartite graphs; see e.g. [30].

a For brevity, here and in the rest of the analysis we assume that c� is an integer. If it is not, c�
must be replaced by Ác�Ë.

3.3 Space Complexity

In Algorithm 1, for every vertex, we keep its degree and three random numbers which
together can all be stored with O(n) words. The only non-trivial part of the space that we
need to bound is the size of the set S of the edges that we store in memory and color at
the end. Our main result in this section is to show that the set S has size O(n) w.h.p. We
start by bounding the expected size of S in Claim 3.4 using a connection to k-out subgraphs
(formalized in Lemma 3.6). We then prove a high probability bound on the size of S in
Claim 3.7.

B Claim 3.4. Take any online vertex u. The probability that we store the edges of u in
Step 3b of Algorithm 1 is at most O(1/�5). This, by linearity of expectation, implies that

E|S| Æ O(n/�4).

Proof. Our main idea to prove this claim is to use the maximum matching problem on an
appropriately defined “color graph” defined below. When an online vertex u arrives in the
input we construct the bipartite graph Hu in the following way.

I Definition 3.5 (the color graph). For any online vertex u, we define the color graph
Hu = (X,Y,E) as follows. The set X corresponds to the edges of u, i.e., for each edge
(u, vi), we have a vertex corresponding to vi in X. For each color in the range [c�] we have
a corresponding vertex in set Y . Each vertex in X has exactly three edges to Y which are to
the three colors:
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y1i :=
!
(r1vi + degvi) mod c�

"
,

y2i :=
!
(r2vi + degvi) mod c�

"
,

y3i :=
!
(r3vi + degvi) mod c�

"
,

where vi is any o�ine vertex adjacent to u. Note that since r1vi , r
2
vi , r

3
vi are distinct in

Algorithm 1, the three colors y1i , y
2

i , y
3

i will be distinct as well.

We first describe that a perfect matching in Hu corresponds to a valid edge-coloring of
all edges of u. Let M be a perfect matching in Hu. Suppose that the node corresponding to
edge ei is matched in M to color yji (which is distinct for all ei’s). In this case, we assign
color xj

i to ei where xi
j is as defined in Algorithm 1. To see why all edges of u receive di�erent

colors note that

yji = xj
i mod c�.

In addition, all matched yji are unique because M is a matching. Therefore, if we find a
perfect matching in the color graph Hu we can easily color edges incident to u using this
matching.

Thus, it remains to show that Hu does indeed have a perfect matching (with large enough
probability). We do so using the following Lemma 3.6 on existence of perfect matchings
in a so-called k-out model. Lemma 3.6 proves that if each vertex of one side of a bipartite
graph is made adjacent to 3 random vertices on the other side, then the graph has a perfect
matching provided that the other side is su�ciently large. We note that by a classic result of
Frieze [29] from 1986, if vertices in both sides of the bipartite graph pick k random edges,
then the graph has a perfect matching w.h.p. if and only if k Ø 2. However, this does not
hold when only one side of the graph pick random edges, which is the focus of the following
Lemma 3.6.

I Lemma 3.6. Consider a random bipartite graph G with vertex sets V and U where each
vertex v œ V is adjacent to exactly 3 distinct vertices in U picked uniformly (from all subsets
of size 3 of U) and independently from the choice of the rest of vertices in V . If |V | Æ n
and |U | = cn for fixed c > e, the graph G has a perfect matching with probability at least
1 ≠ O(1/n5).

Proof. First, we argue that we can w.l.o.g. assume that |V | = n. Since if we have |V | < n
we can add some dummy vertices to side V and draw random neighbors for them to U . Any
perfect matching in this new graph gives us a perfect matching in the original graph by
removing its dummy edges. Therefore the probability of finding a perfect matching in this
graph is no smaller than the case with |V | = n.

We let c = (1 + Á)e for some fixed Á > 0. We assume that n is larger than any needed
constant (possibly a function of Á). Note that if n is fixed, then by adjusting the constants
we can ensure 1 ≠ O(1/n5) = 0, making the probablistic statement of the lemma trivial.

By Hall’s theorem, G has a perfect matching i� for every subset S ™ V it holds that
|NG(S)| Ø |S|. This condition deterministically holds if |S| Æ 3 as every vertex in V has
degree exactly 3. Therefore it su�ces to show that it holds with high probability for all sets
of size at least 4. Let us fix 4 Æ k Æ n. The probability that all the edges of a vertex v œ V
go to a fixed subset U of size at most k ≠ 1 in U is exactly

!k≠1

3

"
/
!|U |

3

"
. Therefore, we have
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Pr[exists S ™ V : |S| = k and |N(S)| < k] Æ
3
n

k

4
·
3

|U |
k ≠ 1

4
·

A!
k≠1
3

"
!|U|

3
"

Bk

Æ
1
ne

k

2k

·
1

cne

k ≠ 1

2k≠1
·
3
(k ≠ 1)(k ≠ 2)(k ≠ 3)
cn(cn ≠ 1)(cn ≠ 2)

4k

(since
!
n
k

"
Æ

!
ne
k

"k for all n and k)

Æ
1
ne

k

2k

·
1

cne

k ≠ 1

2k≠1
·
3

k ≠ 1
cn/(1 + 0.1Á)

43k

(Here we use cn/(1 + 0.1Á) Æ cn ≠ 2 which holds for n larger than some constant.)

= (1 + 0.1Á)3ke2k≠1(k ≠ 1)2k+1

c2k+1 · kk · nk+1

Æ
3
(1 + 0.5Á)e

c

42k≠1

·
1
k

n

2k+1

(Here we use (1 + 0.1Á)2 Æ 1 + 0.5Á for small enough Á)

Æ
11 + 0.5Á

1 + Á

22k≠1 1
k

n

2k+1
. (Since c = (1 + Á)e.)

To finish the proof, note that as discussed, for k Æ 3 the Hall’s guarantee holds deter-
ministically. For k = 4, the inequality above is upper bounded by (k/n)k+1 = O(1/n5) and
thus all subsets of size k = 4 in V have at least 4 neighbors in U with probability at least
1 ≠ O(1/n5). For each choice of 5 Æ k Æ n0.1, the inequality above is upper bounded by
(k/n)k+1 Æ n≠0.9◊6 = n≠5.4; a union bound over all O(n0.1) such choices of k gives that with
probability at least 1 ≠ O(n≠5.3), any set of size 5 Æ k Æ n0.1 in V has at least k neighbors
in U as well. Finally, for the case where n0.1 < k Æ n, the inequality above is upper bounded
by

3
1 + 0.5Á

1 + Á

42k≠1 3
k

n

4k+1

Æ
3
1 + 0.5Á

1 + Á

42k≠1

= 2≠OÁ(k) = 2≠OÁ(n
0.1

) π O(1/n6).

Thus, again by a union bound over all such choices of k, we get that with probability at
least 1 ≠ O(1/n5), any set of size n0.1 < k Æ n in V has at least k neighbors in U as well.
Putting together all of these cases of k, we get that with probability at least 1 ≠ O(1/n5),
Hall’s condition holds and G has a perfect matching. J

Now observe that the color graph Hu meets the conditions of Lemma 3.6. There are at
most � edges incident to u so |X| Æ �. On the other hand |Y | Ø c�. Moreover, for each
edge ei = (u, vi) its corresponding vertex in X is made adjacent to the vertices corresponding
to colors y1i , y

2

i , y
3

i as specified in Definition 3.5. Since the rjvi ’s are distinct and uniform,
each vertex in X is made adjacent to 3 distinct uniform vertices in Y in graph Hu and so we
can apply Lemma 3.6. This implies that Hu has a perfect matching with probability at least
1 ≠ O(1/�5). This means that we store the edges of each online vertex in S with probability
at most O(1/�5), concluding the proof of Claim 3.4. C

It is worth noting that to find the maximum matching in Hu we use the algorithm of [35]
that has space complexity of O(|V |+ |E|) which is O(�) here. We can delete this part of
the memory before seeing the next online vertex.

While Claim 3.4 bounds the expected space of Algorithm 1, our next Claim 3.7 bounds
the space by O(n) w.h.p.

B Claim 3.7. Algorithm 1 uses O(n) space with probability 1 ≠ 1/poly(n).
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Proof. For an online vertex u, define Xu to be the indicator random variable where Xu = 1
i� we store edges of u in S. Additionally, define X =

q
uœU Xu. We know that

Pr[|S| > O(n)] Æ Pr[� ·X > O(n)] = Pr[X > O(n/�)].

We know that E[X] Æ n · O(1/�5) by Claim 3.4. However, since the Xu’s are not
independent we can not use Cherno� bound to provide a concentration bound on their sum.
To see why, take two online vertices u1, u2 that share the same set of o�ine neighbors and
come one after another in the input. If Xu1 = 1 then also Xu2 = 1 since the colors used for
Hu2 are exactly the same as the colors used for Hu1 except they are shifted by one.

To bound X our plan is to divide all Xu’s into groups such that in each group all
the random variables are independent and then apply the Cherno� bound on each group
separately. We know that if two online vertices u and w do not share any o�ine vertex as
their neighbor then Xu and Xw are independent. This is because the colors specified in
Step 3a of Algorithm 1 are all a function of the randomness on the set of neighbors an online
vertex has. So if these sets are disjoint then Xu and Xw are independent.

Let us define the dependency graph between these variables as follows: The vertex set of
this dependency graph is {Xu : u œ U} and there is an edge between Xu, Xw with u,w œ U
i� u and w share an o�ine neighbor. The maximum degree in this graph is at most �2 since
each vertex u œ U has at most � o�ine neighbors that each has at most � online neighbors.

Since any graph of maximum degree �Õ can be vertex colored using at most �Õ + 1 colors
via a simple sequential greedy algorithm, the dependency graph can be vertex colored via
at most �2 + 1 colors. Doing so, note that vertices in each color class become independent
random variables by definition of the dependency graph. Therefore, we can apply the Cherno�
bound on the sum in each color class. With a slight abuse of notation, let X1, ...,Xt be a
group of variables in a color class. Define µ = E[X1 +X2 + ...+Xt]. Since E[Xi] = O(1/�5)
(by Claim 3.4) by linearity of expectation we get that for some constant C,

µ = O(t/�5) Æ C · t/�5. (1)

Applying the Cherno� bound we get that for any ” > 0 and µÕ Ø µ,

Pr[X1 +X2 + ...+Xt Ø (1 + ”)µÕ] Æ exp
3

≠”2

2 + ”
µÕ

4
. (2)

Let us call this color class small if t Æ n/�3 and large otherwise. For small groups, we do not
need to prove any concentration bound, since a total of (�2 + 1)(n/�3) = O(n/�) vertices
belong to small groups and each stores � edges in S, giving a deterministic upper bound of
O(n) on the number of such edges in S. It thus remains to analyze large groups only.

To deal with large groups we consider two cases for �.

Case 1: � = O((n/ logn)1/4). Letting ” = �4 in Equation (2), we get:

Pr
C

tÿ

i=1

Xi Ø (1 + �4)µÕ

D
Æ exp

3
≠�8

2 + �4
µÕ

4
.

Let µÕ = C · t/�5. Note that µ Æ C · t/�5 = µÕ and t Ø n
�3 since we are only considering

large groups we get,

exp
3

≠�8

2 + �4
µÕ

4
Æ exp

3
≠�8

2 + �4
· Cn

�8

4
= exp

3
≠Cn

2 + �4

4
.
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Since we have � Æ O
1

n
logn

21/4
the last term can be upper bounded by n≠10. Take

t1, t2, ..., tk to be the size of the groups. We know that k Æ n; thus by a union bound over k,
the probability that there is one group that deviates from its mean with a multiplicative
factor of more than �4 is at most n≠9. Therefore, with probability at least 1 ≠ n≠9, all
groups deviate from their mean with a multiplicative factor of less than �4. In this case,
noting that

q
i ti = n, we get

X Æ �4 ·
ÿ

i

C · ti
�5

= O(n/�).

Recalling that X is the total number of online vertices that store their edges in S, we get
that the total number of edges in S is upper bounded by � ·O(n/�) = O(n) w.h.p.

Case 2: � = �((n/ logn)1/4). Notice that the probability of storing any u edges in S is
n≠5/4+o(1). By union bounding over all n online vertices, none will be stored in S with a
probability of O(n≠0.25+o(1)). C

3.4 Correctness and the Number of Colors

In this section, we discuss why any two adjacent edges receive di�erent colors in our algorithm.
We can ignore the edges colored in Step 4 of Algorithm 1 as they use a totally new set of
colors from the rest of the edges. So we focus on the rest of the edges in the remainder of
this section.

For an online vertex u, its edges by Step 3b all receive di�erent colors (and if this is not
possible, we store u’s edges in S which we discussed can be ignored earlier). So it remains to
prove that there are no conflicts for the o�ine vertices.

For an o�ine vertex v, firstly, note that for any edge ei:

x1

i œ [0, c�), x2

i œ [c�, 2c�), x3

i œ [2c�, 3c�).

Since these ranges are disjoint, for two edges to receive the same color they must be in
the same range.

Note that when the algorithm is running degv is increasing by one after we see an edge
of v. Let x1

i = x1

j for two edges of v where ei arrives before ej . Define – to be the value of
degv when the edge ei arrives and — to be the value of degv when the edge ej arrives. Then
we get that,

!
(r1v + –) mod c�

"
=

!
(r1v + —) mod c�

"
,

which is equivalent to – ≠ — mod c� = 0. Since |– ≠ —| Æ � and c > 1, this is a contradiction
and thus we cannot have x1

i ”= x1

j . Same can be applied to the second and the third ranges
of colors. Therefore, o�ine vertices also recieve distinct colors on all their edges and the
coloring our algorithm finds is a valid edge coloring.

Finally, it can be verified from Algorithm 1 that the number of colors used is 3c� + � =
O(�). This section, put together with the previous section concludes the proof of Lemma 3.3
and, as discussed, this finishes the proof of Theorem 1.3.

3.5 Generalization to Batch Arrivals

Our Algorithm 1 considers the vertex arrival model, i.e., all edges of an online vertex arrive
at the same time. Here, we consider a more general batch arrival model that interpolates
between edge arrivals and vertex arrivals. We show that our Algorithm 1 can be generalized
to this model.
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I Definition 3.8 (one-sided batch arrival model). In this model, we have a bipartite graph
G = (U, V,E) with online vertices U and o�ine vertices V . For a parameter k of the problem,
edges arrive in batches of size k where all edges in the same batch are incident to the same
online vertex u. The edges of a single online vertex v can arrive in up to �/k di�erent
batches. Importantly, there is no guarantee that di�erent batches of the same online vertex
arrive consecutively (otherwise the model would be equivalent to the vertex arrival model).
We use Bi(u) to denote the i’th batch of online vertex u.

We prove that Algorithm 1 leads to the following bound in the one-sided batch arrival
model. Note that setting k = � recovers Theorem 1.3, so this is only more general.

I Lemma 3.9. There is a streaming algorithm that in the one-sided batch arrival model with
batches of size k, uses O(n) space and w.h.p. reports a proper O(�2/k) edge coloring.

Proof. Note that the only part of Algorithm 1 where we use the assumption that all edges of
the online vertices arrive at the same is in Step 3b. There, the o�ine vertex of each edge ei
of u proposes three colors {x1

i , x
2

i , x
3

i } for ei. Committing to choose a color from {x1

i , x
2

i , x
3

i }
for each edge ei already ensures there will be no conflicts among the edges of the o�ine
vertices. On the other hand, our Lemma 3.6 guarantees that for each online vertex u, with
probability 1 ≠ O(1/�5), there is a proper coloring of all of its edges using their proposed
colors. However, to find this proper coloring, it is important to have all edges of the online
vertex at once. If, as in our case in this lemma, the edges of the online vertex arrive in
batches, then we cannot ensure that edges in two di�erent batches of the same online vertex
u receive di�erent colors. To fix this, first we only properly color the edges of each batch
of the online vertex using their proposed colors. If this assigns color c to edge e, the final
color that we report for e is (c, i) where i denotes which batch of u this edge e belongs to.
Since there are at most �/k batches for each vertex, the total number of colors needed with
this approach is O(� ·�/k) = O(�2/k). Finally, note that the space remains O(n) since the
only additional information that we need is the number of batches that have arrived for each
vertex which can be stored with O(n) counters, one for each online vertex. J

4 Edge-Arrivals: O(�) Edge-Coloring with ÊO(n
Ô

�) Space

In this section, we prove Theorem 1.1 for the special case where s =
Ô

�. That is, we obtain
an asymptotically optimal O(�) edge-coloring using ÂO(n

Ô
�) space.

To solve the edge arrival model, we present a reduction to the one-sided batch arrival
model of Definition 3.8. Throughout this section, we only consider the batch arrival model
for batches of size k := Á

Ô
�Ë.

B Claim 4.1. Suppose that there is a streaming algorithm A that edge colors a bipartite
graph of maximum degree � using O(�) colors under one-sided batch arrivals with batches of
size k = �(

Ô
�) using space ÂO(n

Ô
�). Then there is a streaming edge coloring AÕ algorithm

that O(�) edge colors any general graph of maximum degree � under edge arrivals using
ÂO(n

Ô
�) space.

Proof. Let us first assume that graph G is bipartite with vertex sets U and V but its edges
arrive in an arbitrary order. We start with a bu�er T = ÿ and add any edge that arrives
in the stream to T . Whenever there is some vertex u that has at least k edges in T , we
remove those edges of u from T and feed them into the batch-arrival algorithm A. This way,
each batch has exactly k edges all adjacent to the same vertex. However, this vertex could
belong to either of U and V . That is, this is not one-sided arrivals but rather two-sided
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arrivals. The reduction to one-sided arrivals simply follows from Claim 3.2 at the expense
of multiplying the final number of colors by two. Finally, if the stream ends and there are
any remaining edges in T , we color them all using � colors via o�ine algorithms. Note that
since each vertex in T has degree at most k at any point, the space of this reduction is only
O(nk) = O(n

Ô
�) as desired.

From the reduction above, we get that under edge arrivals, there is an algorithm AÕÕ that
edge-colors the graph using C(�) colors for some constant C and ÂO(n

Ô
�) space provided

that the graph is bipartite. We now apply Lemma 3.1. This gives an algorithm for general
graphs under edge-arrivals that uses ÂO(n

Ô
�) space and the number of colors that it uses is

at most

C� + C�/2 + C�/4 + . . .+ C Æ 2C� = O(�). J

Our goal for the rest of this section is to prove the following algorithm which plugged to
Claim 4.1 proves Theorem 1.1 for s =

Ô
�:

I Lemma 4.2. There is a streaming algorithm that edge-colors any bipartite graph of
maximum degree � under one-sided batch-arrivals (Definition 3.8) with batches of size
k = �(

Ô
�) using O(�) colors and ÂO(n

Ô
�) space.

Proof. One may wonder whether we can now directly apply the naive algorithm of Lemma 3.9
in order to prove Lemma 4.2. This is not doable because Lemma 3.9 would require O(�2/k) =
O(�1.5) colors which is much larger than our desired O(�) colors. So we need more ideas.

First, we assume that � Ø 300 log2 n. If not, the whole graph has at most O(n�) = ÂO(n)
edges, so we can store them all and run an o�ine � edge coloring algorithm.

Consider the subgraphs H1, H2, . . . ,Hk where

Hi :=
€

uœU

Bi(u),

recalling that Bi(u) is the i’th batch of online vertex u. In words, Hi is the collection of the
i’th batches of all online vertices. Observe that the arrival order of the edges of each subgraph
Hi follow the vertex arrival model. That is, for each online vertex v, all of its edges arrive at
the same time. Note also that the maximum degree on the online side of each subgraph Hi

is at most k. Now, if we also had the same upper bound of k on the degrees on the o�ine
side of each subgraph Hi, then we could run �/k = O(

Ô
�) instances of Algorithm 1, which

works under vertex arrivals, for each of the k subgraphs Hi all in parallel, using disjoint color
palettes. This way, the total number of colors used would be �

k ·O(k) = O(�) and the space
would be �

k ·O(n) = O(n
Ô

�). Unfortunately, however, the o�ine vertices in each Hi may
have degree as large as �. This is because all edges of an o�ine vertex might be in the first
batch of their corresponding online vertices, making the maximum degree in H1 equal to �
rather than k. This is the main obstacle that we overcome in the remainder the proof.

Let us for each online vertex u choose a random number bu œ [k] at the beginning of the
algorithm uniformly and independently at random. Now for the i’th batch of u define its
permuted batch number flu(i) to be

flu(i) := (i+ bu) mod k.

Doing so, we now redefine Hi for i œ [k] as

Hi :=
€

uœU

Bfl≠1
u (i)(u).
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In words, Hi is now the graph including, for each online vertex u, its edges in its j’th batch
such that flu(j) = i. Since the total number of batches of each online vertex u is at most
�/k Æ k, all of u’s batches receive di�erent batch numbers. It remains to bound the degree
of o�ine vertices in each Hi. The following lemma asserts that with high probability this is
in fact O(k).

I Lemma 4.3. All Hi’s have maximum degree at most 2k with probability 1 ≠ 1/poly(n).

Due to space constraints, we defer the proof of this lemma to the appendix.
Now that both the o�ine and online vertices of each Hi have degree at most 2k, we can

follow the approach outline before to achieve a O(�) coloring with O(n
Ô

�) space. The final
algorithm is formalized below as Algorithm 2.

Algorithm 2. A streaming edge coloring for bipartite graphs under one-sided batch
arrivals with batches of size k = �(

Ô
�). The algorithm uses O(�) colors and O(n

Ô
�)

space. This is the algorithm used for Lemma 4.2 which plugged into Claim 4.1 proves
Theorem 1.1 for s =

Ô
�.

Parameter: k :=
Ô

�, c := 300 (Lemma 4.3)
1. If � Æ c · log2 n we read all the edges from the stream and color them with � colors,

so assume for the rest of the algorithm that � > c · log2 n.
2. As the edges of G arrive, we decompose them into k subgraphs H1, . . . ,Hk and run

k instances of the vertex-arrival Algorithm 1 in parallel on these subgraphs using
disjoint colors in these instances, and an overall space of O(nk). Each graph Hi will
have maximum degree k, so overall we use O(k · k) = O(�) colors.

3. For each online vertex u choose a random number bu œ [k] uniformly and independently.
4. For each online vertex u store a counter Iu. This will keep track of the number of

batches of u seen at any point. Initially we have Iu Ω 0.
5. Upon arrival of a batch of size k for an online vertex u:

a. Iu Ω Iu + 1.
b. Add the edges of u to graph Hx where

x := (Iu + bu) mod k.

c. These will be the only edges of u in graph Hx, thus this is indeed a bipartite graph
under one-sided vertex arrivals and so we can run the instance of Algorithm 1 on
graph Hx to color the edges of u in it.

Space-complexity. Since we are running k = O(
Ô

�) instances of Algorithm 1 in Algo-
rithm 2, the space needed for keeping all these instances is also O(n

Ô
�) as each has a space

of O(n) words by Claim 3.7. Moreover, note that the size of T never exceeds nk or else there
must be a vertex of degree at least k in it. We also use at most O(n) space for the counters
and random numbers (specified in Step 3 and 4). So in total, the space that Algorithm 2
uses is O(nk) = O(n

Ô
�).

Number of colors. For the number of colors used by Algorithm 2, note that we run
k instances of Algorithm 1, and in each instance the maximum degree is w.h.p. 2k by
Lemma 4.3. Since Algorithm 1 uses linear colors in the maximum degree, the total number
of colors is thus O(k · k) = O(�) w.h.p.

This completes the proof of Lemma 4.2. J
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As discussed, plugging Lemma 4.2 into Claim 4.1 completes the proof of Theorem 1.1
for s =

Ô
�, concluding this section. For the final algorithm that does O(�1.5/s + �)

Edge-coloring with ÂO(ns) space see the full version of our paper at [18].
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et al [17] in the context of streaming edge coloring. We emphasize that we claim no novelty
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Proof of Lemma 3.1. If � Æ 10 logn, then we store the whole graph in memory using ÂO(n)
space and edge color the graph via (� + 1) colors using o�ine algorithms. So assume that
� > 10 logn.

Let V be the vertex-set of the graph. We partition V into two subsets A and B by
putting each vertex randomly in either A or B chosen uniformly and independently from the
rest of the vertices. Now consider the bipartite subgraph GÕ of G including any edge (u, v)
of G that has one endpoint in A and one endpoint in B. Note that conditioned on v œ A,
each neighbor of v in the original graph belongs to B independently with probability 1/2.
This means that the expected degree of v in GÕ is degG(v)/2. By a simple application of
the Cherno� bound and recalling that � > 10 logn, we get that GÕ has maximum degree
�/2 + O(


� logn) = (1/2 + o(1))� with probability 1 ≠ 1/n10. We can thus run the

bipartite edge coloring algorithm on GÕ. Notice, however, that this leaves the edges that go
from A to A or from B to B uncolored. We recursively apply the same algorithm. That
is, we recursively partition A and B into two subsets each. This results in a subgraph of
maximum degree �/4 +O(


� logn) w.h.p. We continue this for O(log�) steps until the

resulting subgraph has maximum degree smaller than O(logn), at which point we store the
whole subgraph in memory and color it using o�ine algorithms. Overall, the total number of
colors used by the algorithm is

log �ÿ

i=1

f

33
1
2i + o(1)

4
�

4
Æ

log �ÿ

i=1

f

3
�

2i≠1

4
.

Note that this partitioning of the vertices can be done at the beginning of the stream before
any edges arrive. It only su�ces to store, for each vertex, which of the two random subsets
it belongs to at each of the O(log�) levels. So this only requires an overhead space of
O(n log�). Additionally, if the edges of the original graph arrive under vertex arrivals, then
so do the edges of the random bipartite graphs. J

B Deferred Proofs

I Lemma 4.3 (restated). All Hi’s have maximum degree at most 2k with probability
1 ≠ 1/poly(n).

Proof. Due to symmetry, let us focus on bounding the degree of a given o�ine vertex v in
H1. Let neighbors of v be u1, u2, ..., ul where each ui is an online vertex. Define Xi to be
the indicator random variable where Xi = 1 i� the edge (v, ui) receives a batch number of 1.
The degree of v in H1 can be written as

X =
lÿ

i=1

Xi.

Since l Æ � and also E[Xi] = 1

k , by linearity of expectation, we get

E[X] =
lÿ

i=1

E[Xi] Æ �
k

Æ k.

ICALP 2024



121:20 Streaming Edge Coloring with Asymptotically Optimal Colors

Observe that all bui ’s are chosen at the beginning of the algorithm and uniformly at
random. Therefore the batch number of any given edge being 1 has a probability of 1

k . Since
all bui ’s are independent of each other, also all Xi’s will be independent. Thus, we can apply
the Cherno� bound for ” = 1 and having � Ø 300 log2 n (as assumed at the start of the
proof of Lemma 4.2) we get,

Pr[degree v in H1 Ø 2k] = Pr
C

lÿ

i=1

Xi Ø 2k
D

Æ exp
3

≠k

3

4
Æ n≠10

By a union bound over all n choices of v and over k choices of Hi, we get

Pr[exists v œ V and i œ [k] such that degree v in Hi Ø 2k] Æ n≠8. J
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Abstract

We present a new greedy rounding algorithm for the Cycle Packing Problem for uncrossable cycle
families in planar graphs. This improves the best-known upper bound for the integrality gap of the
natural packing LP to a constant slightly less than 3.5. Furthermore, the analysis works for both
edge- and vertex-disjoint packing. The previously best-known constants were 4 for edge-disjoint and
5 for vertex-disjoint cycle packing.

This result also immediately yields an improved Erd�s–Pósa ratio: for any uncrossable cycle
family in a planar graph, the minimum number of vertices (edges) needed to hit all cycles in the
family is less than 8.38 times the maximum number of vertex-disjoint (edge-disjoint, respectively)
cycles in the family.

Some uncrossable cycle families of interest to which the result can be applied are the family of
all cycles in a directed or undirected graph, in undirected graphs also the family of all odd cycles
and the family of all cycles containing exactly one edge from a specified set of demand edges. The
last example is an equivalent formulation of the fully planar Disjoint Paths Problem. Here the
Erd�s–Pósa ratio translates to a ratio between integral multi-commodity flows and minimum cuts.
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1 Introduction

Given a family C of cycles in a (directed or undirected) graph G, the Cycle Packing Problem
asks for a maximum-cardinality subset Cú ™ C of pairwise vertex- or edge-disjoint cycles. It
admits the natural packing LP

max
I

ÿ

CœC
xC :

ÿ

CœC:vœC

xC Æ 1 (v œ V ), xC Ø 0 (C œ C)
J

(1)

for vertex-disjoint cycle packing and

max
I

ÿ

CœC
xC :

ÿ

CœC:eœC

xC Æ 1 (e œ E), xC Ø 0 (C œ C)
J

(2)

for edge-disjoint cycle packing. Despite its exponentially many variables, optimum LP
solutions can be computed in polynomial time if C is given by a weight oracle [24]:
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I Definition 1 ([24]). Let C be a family of cycles in a graph G. C has a weight oracle if for
any edge weights w : E(G) æ RØ0 we can compute a weight-minimal cycle in C in polynomial
time.

For arbitrary graphs the integrality gap of the LPs (1) and (2) is unbounded even if C is
the set of all odd cycles in G [20, 18]. For planar graphs however, Schlomberg, Thiele and
Vygen [24] have recently shown constant upper bounds for the integrality gaps if the cycle
family C is uncrossable.

I Definition 2 (Goemans, Williamson [10]). A family C of cycles in a graph is called
uncrossable if the following property holds.

Let C1, C2 œ C and let P2 be a path in C2 such that P2 shares only its endpoints with
C1. Then there is a path P1 in C1 between these endpoints such that P1 + P2 œ C and
(C1 ≠ P1) + (C2 ≠ P2) contains a cycle in C (as an edge set).

In their work they give an upper bound of 5 for the vertex-disjoint cycle packing LP (1),
using a greedy rounding algorithm. For the edge-disjoint LP (2) they show an upper bound
of 4, generalizing a similar result for the edge-disjoint paths problem by Garg, Kumar and
Seb� [9]. In this work we modify their greedy rounding algorithm and analyze it using a new
structural lemma. This improves the integrality gaps of both LPs to below 3.5:

I Theorem 3. Let G be a planar graph, embedded in the sphere, and C an uncrossable family
of cycles in G. Then there exists an integral solution to the vertex- or edge-disjoint cycle
packing LP (1) or (2) with at least 6

13+3
Ô
7
> 1

3.5 the LP value. If C is given by a weight
oracle we can compute such a solution in polynomial time.

1.1 The Erd�s–Pósa ratio

The duals of the LPs (1) and (2) are relaxations of the Cycle Transversal Problem: This asks
for a minimum subset of vertices or edges, respectively, that hit each cycle in C. Berman
and Yaroslavtsev [2] have shown an upper bound of 2.4 for the integrality gaps of the edge
and vertex cycle transversal LPs, improving on a previous bound of 3 by Goemans and
Williamson [10]. Multiplying the integrality gaps of the primal and dual LPs directly yields
a maximum ratio between integral solutions to the primal and the dual:

I Corollary 4. Let G be a planar graph and C an uncrossable family of cycles in G. Let ‹v
respectively ‹e be the maximum number of vertex- and edge-disjoint cycles in C and let ·v
respectively ·e be the minimum size of vertex and edge transversals for C.
Then ·v

‹v
Æ 2.4 · 13+3

Ô
7

6
Æ 8.38 and ·e

‹e
Æ 2.4 · 13+3

Ô
7

6
Æ 8.38

The supremum of ·v
‹v

respectively ·e
‹e

is known as the Erd�s–Pósa ratio for the Cycle
Packing and Transversal Problem. The previously best-known upper bound for general
uncrossable cycle families was 12 for vertex-disjoint Cycle Packing and 9.6 for edge-disjoint
Cycle Packing [24]; both resulting from multiplying the upper bounds for the primal and
dual integrality gaps.

1.2 New Techniques

Our main algorithm that we use to find integral solutions to the Cycle Packing LP with the
claimed approximation guarantee is similar to the greedy rounding algorithm used in [24]:
Similar to [24], we start by solving the LP and applying an uncrossing procedure to obtain an
optimum LP solution where the cycles in the support form a laminar family L. Afterwards,
we iteratively pick a set Fú ™ L of pairwise disjoint cycles, add them to our solution and
remove all “neighbours”, i.e. cycles that are not disjoint to Fú, from the support.
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Schlomberg, Thiele and Vygen [24] showed that they can always find a single cycle Cú

with LP value at most 5 on its neighbourhood. In this work we prove a new Structure
Lemma, showing that after a slight modification of our LP solution, for a one-sided cycle
C (i.e. a cycle with a side that contains no other cycles in L) the average LP value on the
neighbours of C without C itself is at most 3.

In Section 3 we observe that this already improves the bound of 5 from [24] to 4. However,
by exploiting that we can also add several cycles in a single iteration to our solution, we
can improve the bound further to below 3.5 (see Section 5). To this end, we add further
candidates for our set Fú: For any 1

4
Æ – < 1

2
we can find a large set of pairwise disjoint

cycles among the one-sided cycles with LP value at least – due to the Four Colour Theorem.
Using either a single cycle or one of those candidates for Fú in each iteration of the greedy
rounding algorithm allows us to bound the integrality gap of the Cycle Packing LP by
13+3

Ô
7

6
.

Key of the new results is the Structure Lemma 13, which we prove by constructing a
set Mú of LP constraints (i.e. vertices or edges) that cover each cycle in L enough often.
Section 4 is dedicated to the construction of Mú. We proceed by an induction on the number
of cycles in L. If all cycles are one-sided, an auxiliary graph, similar to the planar dual,
directly yields a feasible set Mú. Otherwise, we pick a minimal two-sided cycle, find feasible
sets Mú for both sides of it and carefully put them together to a solution for the whole
family.

1.3 Examples for uncrossable cycle families

There are several examples for cycle families in G that are always uncrossable and many of
them have been studied individually. A list of the most interesting examples together with
proofs of their uncrossability can be found in [24].

The first example of interest is the set of all cycles in an undirected graph G. For this
problem Erd�s and Pósa [6] showed that even in general, not necessarily planar, graphs with
bounded cycle packing number the transversal number is bounded, although in general the
ratio is unbounded. This property is known as the Erd�s–Pósa property. In planar graphs
the Erd�s–Pósa ratio is 4 for edge-disjoint packing (the upper bound comes from a result by
Ma, Yu and Zang [16], tightness was shown by an example by Král’ [16]). For vertex-disjoint
packing [4] and [16] gave an upper bound of 3 on the Erd�s–Pósa ratio.

Also the set of all directed cycles in a digraph G is uncrossable. Here again the Erd�s–
Pósa property holds on arbitrary graphs [21]. For planar G the famous Lucchesi-Younger
Theorem [15] shows that the edge-disjoint version has Erd�s–Pósa ratio 1. For the vertex-
disjoint version (1) in planar graphs, Reed and Shepherd [22] gave the first constant upper
bound on the Erd�s–Pósa ratio. After three improvements by Fox and Pach as well as Cames
van Batenburg, Esperet and Müller [3] and then Schlomberg, Thiele and Vygen [24], this
work decreases it below 8.38.

The next example of an uncrossable family is the set of all odd cycles in an undirected
graph G. In this variant (in planar graphs) the edge-disjoint problem has an Erd�s–Pósa
ratio of exactly 2 [14]. For the vertex-disjoint problem Fiorini et al. [7] showed that the
Erd�s–Pósa ratio is at most 10, which was improved to 6 by Král’, Sereni and Stacho [13].

Finally, one of the most interesting and well-studied variants of the Cycle Packing Problem
is given as follows: Given a graph G and a set D of demand edges, then a D-cycle is a
cycle in G that contains exactly one demand edge. Since removing the demand edge from a
D-cycle results in a path between the endpoints of the demand edge, the D-Cycle Packing
Problem is equivalent to the Disjoint Paths Problem, and D-Cycle Packing in planar graphs
corresponds to the Disjoint Paths Problem in fully planar instances.
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For the Fully Planar Edge-Disjoint Paths Problem the first constant-factor approximations
and bounds on the integrality gap were given by Huang et al. [12] and Garg, Kumar and
Seb� [9]; the best upper bound on the integrality gap is 4 [9]. Garg and Kumar [8] showed
that also the Erd�s–Pósa ratio for this problem is at most 4. Due to a result by Middendorf
and Pfei�er [17] the Fully Planar Vertex-Disjoint Paths Problem contains the edge-disjoint
version as a special case. The first constant upper bound on the integrality gap of 5 was
found only recently by Schlomberg, Thiele and Vygen [24]. The best upper bound for the
Erd�s–Pósa ratio of 12 comes in this variant from multiplying the upper bounds for the
integrality gaps of the primal and the dual.

This work now decreases both best-known upper bounds on the integrality gaps to the
same value below 3.5. For the Fully Planar Vertex-Disjoint Paths Problem we also improve
the Erd�s–Pósa ratio to below 8.38:

I Corollary 5. Given an instance (G,D) of the Fully Planar Vertex-Disjoint Paths Problem,
we can compute in polynomial time a set P of vertex-disjoint D-cycles and T ™ V (G) such
that every D-cycle contains a vertex of T with |T | Æ 2.4 · 13+3

Ô
7

6
|P| Æ 8.38|P|.

For most of the uncrossable families discussed above a lower bound of 2 on the integrality
gaps of (1) and (2) is known, which is also the best-known lower bound for general uncrossable
families. Most of the corresponding examples can be constructed by modifying a K4.
Regarding the Erd�s–Pósa ratio, the best-known lower bound for vertex-disjoint cycle
packing (for uncrossable families) is still 2, but for edge-disjoint cycle packing and transversal
Král’ (see [16]) showed a lower bound of 4 on the Erd�s–Pósa ratio for the family of all cycles
in G. See [24] for a more detailed overview on lower bounds for the integrality gaps and
Erd�s–Pósa ratios.

There exist other examples of uncrossable cycle families that have been studied. For
example, Rautenbach and Regen [19] considered the Cycle Packing Problem with the family
of shortest cycles in G, which is also uncrossable. Furthermore, the (uncrossable) family of all
cycles that contain at least one vertex from a specified set S ™ V (G) has been considered, for
example by Goemans and Williamson [10]. This work yields the best-known upper bounds
for the integrality gaps of the corresponding Cycle Packing LPs.

For cycle families C that are not uncrossable surprisingly few is known. For example,
the set of all even cycles is not uncrossable. Here Göke et al. [11] generalized Goemans and
Williamson’s [10] technique to get a constant upper bound on the vertex transversal LP; for
the Cycle Packing Problem no constant-factor approximation algorithm is known.

2 Preliminaries

For the rest of the paper we fix a planar graph G, together with an embedding in the sphere
S2, and an uncrossable family C of cycles in G. By a result by Schlomberg, Thiele and
Vygen [24] we can compute optimum solutions to (1) and (2) with laminar support, i.e. any
two cycles in the support can only “touch” but not “cross”:

I Definition 6. Let G be a planar graph, embedded in the sphere. Deleting the embedding of
a cycle C in G from the sphere results in two connected components of the sphere, which we
call the sides of C. Given a side S of C and another cycle C Õ in G, we say that C Õ is inside
S or that S contains C Õ if S contains a side of C Õ.

We call a family L of cycles in G laminar if for any C1, C2 œ L there exist sides S1 of
C1 and S2 of C2 that are disjoint.
I Definition 7. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. By V (L) and E(L), respectively, we denote the set of all vertices, respectively edges,
in cycles of L.
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The cycles corresponding to ™-minimal sides in L are called one-sided, while the others
are called two-sided. For a one-sided cycle, the ™-minimal side is also called one-sided.

We call two cycles C1, C2 œ L homotopic if there exist sides S1 of C1 and S2 of C2 that
contain the same set of one-sided sides.

For any connected component D of E(L) we call the set of all cycles in L that are in D
a connected component of L.

A chain is a laminar family of cycles with only two one-sided sides.

It is easy to see that the sides S1 and S2 in Definition 6 are unique if C1 ”= C2. Also,
our notion of laminarity is equivalent to the definition in [24]. In particular we can use the
following Lemma from [24]:

I Lemma 8. Let G be a planar graph, embedded in the sphere, and C an uncrossable family
of cycles in G. Then there exist optimum solutions to the LPs (1) and (2) with laminar
support. If C has a weight oracle such solutions can be computed in polynomial time.

3 Bounding the integrality gap

In this section we explain our main algorithm, which is a slight generalization of the greedy
rounding algorithm used in [24]. We first only analyze the easiest variant of the algorithm.
This already yields an upper bound of 4 on the integrality gap for the cycle packing LP,
equalizing the best known upper bounds for edge-disjoint and vertex-disjoint Cycle Packing.
In Section 5 we will analyze a more refined version of the algorithm, which yields an upper
bound of below 3.5.

Here we only describe the algorithm for vertex-disjoint cycle packing. The edge-disjoint
version can be deduced similarly or sometimes even easier; also there exists a reduction
for laminar cycle families ([24]) that allows us to immediately transfer our results from
vertex-disjoint to edge-disjoint packing. For more details we refer to Section 5.2.

I Definition 9. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 be the set of one-sided cycles in L. For any C œ L let NL(C) be the set of
“neighbours” of C, i.e. cycles in L that contain a vertex of C. In particular, C œ NL(C).
Define N 1

L(C) := NL(C) fl L1 to be the set of one-sided “neighbours” of C.

Given this definition, we can outline our algorithm:

Algorithm 1 Greedy Rounding for Cycle Packing.
Input: A planar graph G and an uncrossable family C of cycles in G.
Output: A set Lú ™ C of pairwise vertex-disjoint cycles.

1: Compute an embedding of G in the sphere.
2: Compute an optimum solution x to the LP (1) with laminar support.
3: while x ”= 0 do

4: Modify x to make it structured (see Definition 11).
5: Let Lx := {C œ C : xC > 0} be the support of x.
6: Pick a non-empty subset Fú ™ Lx of pairwise vertex-disjoint cycles.
7: Add all cycles in Fú to the solution Lú.
8: Set xC := 0 for all C œ

t
CÕœFú NLx(C Õ).

9: end while

10: Output Lú.
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Throughout the algorithm we maintain a feasible solution x to the LP (1) with laminar
support Lx and a set Lú of pairwise vertex-disjoint cycles with V (Lx) fl V (Lú) = ÿ. Step 1
can be done in polynomial time [5]. For step 2 we apply Lemma 8. Then, in each iteration
we add a set Fú of cycles in the support of x to Lú and set x on all neighbours of Fú to 0.

We will make use of the following observation: If in each iteration we find a set Fú with
x

!t
CœFú NLx(C)

"
Æ –|Fú| then the algorithm will return a solution of size at least 1

– times
the LP value. Thus, in order to bound the integrality gap of the cycle packing LP we only

need to analyze the minimum values of
x
!t

CœFú NLx (C)

"

|Fú| that we can achieve with di�erent
choices of Fú.

Note that after step 2 the algorithm only operates on the (explicitly given) set of cycles
in the support of the LP solution and does not depend on C any more. Both the uncrossing
property and the weight oracle are used only in this step. In particular, our results apply to
any cycle family C where step 2 can be done, for example if C is already laminar.

We first explain in more detail what step 4 does:

I Definition 10. Let L be a laminar family of cycles in a planar graph G, embeddded in the
sphere. We call a two-sided cycle C œ L redundant if it is homotopic to a one-sided cycle in
L (cf. Figure 1).

I Definition 11. Let x œ RC be a solution to the LP (1). We call it structured if the support
of x is laminar and each connected component L of the support of x contains no redundant
cycles.

I Lemma 12. Let x œ RC be a feasible solution to the LP (1) with laminar support L.
Then we can compute a structured solution xÕ œ RL to (1) with

q
CœL xC =

q
CœL xÕ

C in
polynomial time in the size of L.

Proof. We can consider connected components of L separately, so assume w.l.o.g. that E(L)
is connected. Assume that x is not structured. Let C œ L be redundant with a side S that
contains no other redundant cycles. In particular, S contains only one cycle C Õ ”= C in L.
Since E(L) is connected, x(C) + x(C Õ) Æ 1. Thus, we can shift the LP value from C to C Õ,
i.e. set xÕ(C Õ) := x(C) + x(C Õ) and xÕ(C) := 0, removing C from the support. This does not
a�ect feasibility of the LP solution since it increases the LP value only on vertices strictly
inside S, which are contained in no other cycles than C Õ due to minimality of S. See Figure 1.

Applying this reduction at most |L| times results in a solution as desired. J

Next, we analyze the ratio
x
!t

CœFú NLx (C)

"

|Fú| that we can achieve. In this section we only
consider the case that Fú consists of a single one-sided cycle. We use the following Structure
Lemma. The proof can be found in Section 4.

I Lemma 13. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere, such that L contains no redundant cycles. Let L1 be the set of one-sided cycles in L.
Then there is a multi-subset Mú ™ V (G) with |Mú| Æ 3|L1| such that for any C œ L we have
|Mú fl V (C)| Ø |N 1

L(C) \ {C}|.

I Lemma 14. Let x be a structured solution to the vertex-disjoint cycle packing LP. Let L
be a connected component of the support of x and L1 the set of one-sided cycles in L. Then

ÿ

CœL1

x(NL(C) \ {C}) Æ 3|L1|.
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Figure 1 The left picture shows a possible laminar support of a feasible LP solution, consisting
of six cycles. Dashed cycles have LP value 1

3 , while the others have LP value 2
3 . The cycles b and e

are redundant because their interiors each contain only one other cycle; also a is redundant because
its exterior only contains the one-sided side of f .
In the proof of Lemma 12 we would pick the interiors of b and e as S in the first and second step,
increasing the LP value of d and f and removing b and e from the support. This yields a support
as in the right image. The cycle a is still redundant, however in the laminar family given by its
connected component it is one-sided and therefore not redundant. Thus, the solution is structured.

Proof. By the Structure Lemma 13, choose Mú ™ V (G) with |Mú| Æ 3|L1| such that for
any C œ L we have |Mú fl V (C)| Ø |N 1

L(C) \ {C}|. We get
ÿ

CœL1

x(NL(C) \ {C})

=
ÿ

CœL
x(C) · |N 1

L(C) \ {C}|

Æ
ÿ

CœL
x(C) · |Mú fl V (C)|

Æ
ÿ

vœMú

ÿ

CœL:vœC

x(C) Æ |Mú| Æ 3|L1|. J

Since the LP value of each single cycle itself is bounded by 1 this immediately yields an
upper bound of 4 for the integrality gap of (1):

I Theorem 15. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the vertex-disjoint cycle
packing LP with at least 1

4
the LP value. If C is given by a weight oracle we can compute

such a solution in polynomial time.

Proof. Let x be an optimum solution to the LP (1) with laminar support, as given by Lemma 8.
By applying Lemma 12 we can assume x to be structured. Let Lx := {C œ C : xC > 0} be
the (laminar) support of x. We proceed on each connected component of Lx individually, so
we may assume E(Lx) to be connected.

Let L1 ™ Lx be the set of one-sided cycles. In each step of our greedy rounding algorithm
we add a one-sided cycle Cú in Lx to our solution and set x on all cycles containing a vertex
of Cú to 0, removing them from the support of x.

Lemma 14 implies
ÿ

CœL1

x(NLx(C)) Æ 3|L1|+
ÿ

CœL1

x(C) Æ 4|L1|.

So there exists a one-sided cycle Cú where removing NLx(Cú) decreases x by at most 4.
After the first iteration we again apply Lemma 12 and split the support of x into connected

components. Iterating this procedure until x = 0 yields a solution as desired.
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Note that Lemma 8 works in polynomial time if C has a weight oracle. Thus, also the
size of L is polynomial in the size of G and Lemma 12 also works in polynomial time. In
each step we can find Cú by picking the one-sided cycle in Lx minimizing x(NLx(Cú)). J

The greedy rounding algorithm described above also allows for adding several cycles at
once to the solution. We will exploit this in Section 5 to decrease the upper bound for the
integrality gap to below 3.5.

4 Proof of the Structure Lemma

The proof of the Structure Lemma 13 is fairly technical. In this version of the paper we only
give a full proof for the case that no two-sided cycles exist and afterwards briefly discuss how
to extend this proof to the general version of the Lemma. A detailed proof of Lemma 13 can
be found in the full version of the paper.

First, let us consider the case that all cycles are one-sided. In this case we start by
constructing another planar graph GÕ on vertex set L1 = L as follows:

For any vertex v œ V (G) let Lv ™ L be the set of cycles containing v. Since all cycles are
one-sided, there is a natural cyclic order Lv = {C1 =: Ck+1, C2, . . . , Ck} on Lv. Then we add
for any i = 1, . . . , k the edge {Ci, Ci+1} with its obvious planar embedding to GÕ. Finally,
we identify homotopic edges in GÕ (i.e. parallel edges bounding an area homeomorphic to the
disk). See Figure 2.

Now from GÕ we can construct our multi-set Mú: For each e = {C1, C2} œ E(GÕ) we add
an arbitrary vertex in V (C1) fl V (C2) to Mú; furthermore, for each vertex v œ V (G) that is
contained in k > 3 cycles we add k ≠ 3 copies of v to Mú. Since in this case v lies inside a
face of GÕ with exactly k edges on its boundary we can construct another planar graph Gú

from GÕ by triangulating each such face F with k ≠ 3 edges inside F (cf. Figure 2).
This yields a planar graph Gú on vertex set L1 with |Mú| edges and no homotopic edges.

Euler’s formula implies |Mú| = |E(Gú)| Æ 3|V (Gú| ≠ 6 = 3|L1| ≠ 6.
Let now C œ L and B ™ N 1

L(C) \ {C} be the set of all neighbours of C that are not
connected to C in GÕ. By construction of GÕ this means that for any vertex v œ V (C) that is
contained in k cycles at most k ≠ 3 of them can be in B. But we added k ≠ 3 copies of v to
Mú. This proves |Mú fl V (C)| Ø |B|+ |”GÕ(C)| Ø |N 1

L(C) \ {C}|.
Next, we have to consider also two-sided cycles. However, we do not know how to extend

the relatively easy construction of GÕ and Gú to this more general case. Instead, we will use
the notion of incidences:

I Definition 16. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 ™ L be the set of one-sided cycles. A neighbour pair is a pair ({C,N}, v) of
a set of two cycles C,N œ L that are not homotopic and a vertex v œ V (C) fl V (N). We call
two neighbour pairs ({C,N}, v) and ({C,N}, vÕ) homotopic if there exist v-vÕ-paths P in C
and P Õ in N such that P + P Õ bounds an area that contains all one-sided sides in L.

It is easy to see that homotopy defines an equivalence relation on neighbour pairs. An
equivalence class of neighbour pairs for C and N is called an incidence between C and N . The
vertex set V (I) of an incidence I between C and N is the set of all v with ({C,N}, v) œ I.
We also denote I by I = ({C,N}, V (I)). For a cycle C œ L let I1

L(C) be the set of all
incidences between C and one-sided cycles in N 1

L(C).
Let now I be an incidence between C œ L and N œ NL(C). Let SC be a side of C and SN

a side of N such that SC and SN are disjoint. We call an incidence I Õ = ({C Õ, N Õ}, V (I Õ))
a sub-incidence of I if C Õ is inside SC , N Õ is inside SN and V (I Õ) ™ V (I). We call I
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v

Figure 2 Example for the case that no two-sided cycles exist: The coloured cycles are the elements
of L1. The vertices of GÕ are drawn as nodes inside the one-sided sides. The edges of GÕ are drawn
as thick dashed lines. Since five cycles meet in the vertex v we would add v twice to Mú, in addition
to the vertices in Mú corresponding to edges of GÕ. This is possible while keeping |Mú| Æ 3|L1| ≠ 6
because we can triangulate the face of GÕ that v lies in with two additional edges; as indicated by
the dotted lines.

minimal if any sub-incidence of I is equal to I. We call I crossing if V (I) = {v} for some
v œ V (G) and there exist cycles C1, C2 œ L that also contain v with sides S1 and S2 such
that SC , S1, SN , S2 are all disjoint and are ordered in this way around v. Such incidences
are also called v-incidences. If I is not crossing we call it non-crossing.

Extending the idea of including the edges of GÕ in Mú, in order to prove Lemma 13 we
will construct a set of incidences instead of a set of vertices.

I Definition 17. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 ™ L be the set of one-sided cycles. Let M be a multi-set of incidences in L.
We say that an element I œ M hits a cycle C œ L if V (I) ™ V (C). We call a cycle C œ L
M -good if at least |I1

L(C)| elements of M hit C. We call M good if all cycles in L are
M -good and |M | Æ 3|L1| ≠ 6. Furthermore, we call M structured if the following properties
hold:
1. M contains every non-crossing incidence between one-sided cycles.
2. For each C œ L1 and v œ V (C) there exist at least as many v-incidences in M as there

are v-incidences between C and N 1

L(C) in L.

This notion of structured incidence sets is inspired from the construction of Mú in the
case L = L1: The edges in GÕ correspond to non-crossing incidences between one-sided cycles,
which are included in M by property 1. Property 2 makes sure that vertices in which many
one-sided cycles meet are included in M . In particular, we get the following as a direct
consequence of the above definition:

I Lemma 18. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let M be a structured set of incidences in L. Then every one-sided cycle is M -good.

Via an induction on the number of cycles in a laminar family L we can show existence of
a good and structured set. The proof is a bit technical and can be found in the full version
of the paper.

I Lemma 19. Let L be a laminar family of at least two cycles in a planar graph G, embedded
in the sphere. Let L1 be the set of one-sided cycles in L. Then there exists a good and
structured set M of incidences in L.
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As a direct consequence of this lemma we get the Structure Lemma 13:

I Lemma 13. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere, such that L contains no redundant cycles. Let L1 be the set of one-sided cycles in L.
Then there is a multi-subset Mú ™ V (G) with |Mú| Æ 3|L1| such that for any C œ L we have
|Mú fl V (C)| Ø |N 1

L(C) \ {C}|.

Proof. W.l.o.g. |L| Ø 2. By Lemma 19 let M be a good set of incidences in L. Let Mú arise
from adding one element of V (I) for every I œ M . In particular, |Mú| = |M | Æ 3|L1| ≠ 6.

Let C œ L. Since no side of C is redundant, it is not homotopic to any cycle in L1. Thus,

|N 1

L(C) \ {C}| Æ |I1

L(C)| Æ |{I œ M : V (I) ™ V (C)}| Æ |Mú fl V (C)|. J

5 Improving the bounds below 3.5

In this section we improve the bound on the integrality gaps of the LPs (1) and (2) to
13+3

Ô
7

6
< 3.5. We first only consider the vertex-disjoint cycle packing LP (1); an extension

to the edge-disjoint case is given in Section 5.2.

5.1 The vertex-disjoint version

We still use Algorithm 1 from Section 3 for the improved approximation guarantee, but
add further possibilities for the set Fú of cycles that are added to our solution during a
single iteration. Note that the single cycle that we use in Theorem 15 already gives a good
approximation guarantee if the average LP value on one-sided cycles is small. On the other
hand, if the average LP value on one-sided cycles is large then we will find a large set of
pairwise vertex-disjoint cycles with relatively small neighbourhood which we can take as Fú.
For analyzing the case of Fú containing more than one cycle we use the following Lemma:

I Lemma 20. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 be the set of one-sided cycles in L. Let F ™ L1. Then there is a set M ™ V (F)
with |M | Æ |F|+ |L1| such that each cycle in L is either vertex-disjoint to all cycles in F or
contains a vertex from M .

Proof. W.l.o.g. |L| > 1. We can also assume that there exists a point pŒ on the sphere that
lies neither on the embedding of vertices or edges in G nor in any one-sided side of a cycle in
L1 (if this is not the case we can replace an arbitrary edge in G by two parallel edges, which
does not a�ect the lemma’s statement). For this proof, we call the side of a cycle C œ L that
does not contain pŒ the interior of C and say C contains a cycle C Õ œ L, or C Õ ™ C, if the
interior of C Õ is contained in the interior of C.

Let Bint ™ L be the set of cycles C such that there is a cycle C Õ œ F with C Õ ™ C and
V (C) fl V (C Õ) ”= ÿ. In particular, F ™ Bint. Let f : Bint æ F such that each C œ Bint

contains f(C) and shares a vertex with f(C). Then for any C œ F all cycles in f≠1(C) must
build a chain and therefore meet in some vertex vC œ V (C). Thus, Mint := {vC : C œ F}
hits all cycles in Bint.

Let now Bext ™ L \ Bint be the set of all cycles in L \ Bint that share a vertex with any
cycle in F . We show by induction on |L1| that we can hit all cycles in Bext with some
Mext ™ V (F) with |Mext| Æ |L1|: For |L1| = 1 this is trivial. Otherwise, let C1 œ Bext be
minimal w.r.t. ™ and C2 œ F with some vertex v œ V (C1) fl V (C2) (cf. Figure 3). Construct
another laminar family LÕ by deleting all cycles inside C1 and all cycles in L\F that contain
v. Since C1 contains some one-sided cycle, LÕ contains strictly less one-sided cycles and we
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can use the induction hypothesis on LÕ. Also the deletion of cycles inside C1 does (except
for C1 itself) not change Bext because C1 /œ Bint and C1 was minimal. Thus, the induction
hypothesis gives us a set M Õ

ext
™ V (F) that hits all cycles in Bext flLÕ with |M Õ

ext
| Æ |L1|≠ 1,

so Mext := M Õ
ext

fi {v} has the desired properties.
Setting M := Mint fi Mext yields a set as desired in the Lemma. J

v

C2

C1

Figure 3 The cycles in F are drawn in green, the cycles in Bext in blue. Note that the orange
cycle is not in Bext because it is in Bint. The inside of C1 contains no other cycles in Bext and C1
meets C2 œ F in v. We then add v to our set Mext and recurse on the laminar family LÕ that is
constructed by removing all cycles inside C1 and all cycles that contain v and are not in F . These
cycles are drawn dashed. This step decreases the number of one-sided cycles.

In the following, we assume C to be an uncrossable family of cycles in a graph G, embedded
in the sphere. We further assume x œ RC to be a structured solution to the LP (1) with
support Lx. As in Theorem 15 we can assume E(Lx) to be connected. Let L1 ™ Lx be
the set of one-sided cycles in Lx. For each 0 Æ – < 1 we define L>–

1
™ L1 to be the set of

one-sided cycles with LP value > – and set r– := |L>–
1 |

|L1| .
We will now give two possible choices for Fú in Algorithm 1. The first possibility is to

choose a set consisting of a single cycle in L1 as Fú, as in Theorem 15. By Lemma 14 we
directly get:

I Lemma 21. There exists a cycle Cú œ L1 with x(NLx(Cú)) Æ 3 + x(L1)
|L1| .

As a second possibility we will define a set Fú
– for each 1

4
Æ – < 1

2
. Given such an –, we

consider the set L>–
1

. We know that at most three cycles in L>–
1

can share a vertex. Let
GÕ be the conflict graph for the cycles in L>–

1
; i.e. GÕ is the graph on vertex set L>–

1
such

that two cycles in L>–
1

are connected by an edge in GÕ if and only if they share a vertex in
G. Since each vertex is contained in at most three cycles of L>–

1
, GÕ can be constructed

similarly to the graph GÕ in the proof of the Structure Lemma for L = L1 (see Section 4).
Thus, GÕ is planar. Furthermore, the cycles in L>1≠–

1
™ L>–

1
correspond to isolated vertices

in GÕ. By the Four Colour Theorem [1] we can partition V (GÕ) ≠ L>1≠–
1

into four stable
sets. The largest of those, together with L>1≠–

1
, yields a stable set in GÕ of size at least

|L>1≠–
1

|+ 1

4
(|L>–

1
| ≠ |L>1≠–

1
|). We let Fú

– be the set of cycles in L>–
1

corresponding to such
a stable set in GÕ. By the definition of GÕ this means that the cycles in Fú

– are pairwise
vertex-disjoint.

I Lemma 22. For any 1

4
Æ – < 1

2
we have

x
1t

CÕœFú
–
NLx(C Õ)

2

|Fú
–|

Æ 1 + 4(1 ≠ –)
r– + 3r1≠–

.

ICALP 2024
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Proof. Let 1

4
Æ – < 1

2
. By Lemma 20 there is a set M ™ V (Fú

–) with |M | Æ |Fú
–| + |L1|

such that each cycle in
t

CÕœFú
–
NLx(C Õ) contains a vertex of M . Now

x

Q

a
€

CÕœFú
–

NLx(C Õ)

R

b

Æ
ÿ

vœM

x({C œ Lx \ Fú
– : v œ V (C)}) + x(Fú

–)

Æ |Fú
–|+ (1 ≠ –)|L1|

holds, where the last inequality follows from the fact that there are |Fú
–| vertices in M

covering Fú
–, and for the other vertices we only have to count the LP value of cycles not in

Fú
–. Inserting the bound |Mú

–| Ø |L>1≠–
1

|+ 1

4
(|L>–

1
| ≠ |L>1≠–

1
|) yields

x
1t

CÕœFú
–
NLx(C Õ)

2

|Fú
–|

Æ 1 + (1 ≠ –)|L1|
|Fú

–|
Æ 1 + 4(1 ≠ –)

r– + 3r1≠–
. J

One of these possibilities for Fú will be su�cient to prove the desired upper bound of
13+3

Ô
7

6
for the integrality gap:

I Lemma 23. There exists a set Fú ™ L1 with x
!t

CÕœFú NLx (C
Õ
)

"

|Fú| Æ 13+3
Ô
7

6
.

Proof. Define — := 13+3
Ô
7

6
. We will either pick one of the sets Fú

– for 1

4
Æ – < 1

2
from

Lemma 22 or we will use Fú := {Cú} with the cycle Cú from Lemma 21. Assume none of
these sets Fú fulfills the above inequality. Then Lemma 22 implies

1 + 4(1 ≠ –)
r– + 3r1≠–

> —

… r– + 3r1≠– <
4(1 ≠ –)

— ≠ 1

for 1

4
Æ – < 1

2
. Furthermore, we have

x(L1) =
ÿ

CœL1

⁄
1

0

1x(C)>–d– =
⁄

1

0

ÿ

CœL1

1x(C)>–d– = |L1|
⁄

1

0

r–d–.

Thus, Lemma 21 implies

— < 3 +
⁄

1

0

r–d–

By using the fact that the r– are non-increasing, we get:

— < 3 +
⁄

1

0

r–d–

= 3 +
⁄ 1

3

0

r–d– +
⁄ 1

2

1
3

r–d– +
⁄

1

1
2

r–d–

Æ 3 +
⁄ 1

3

0

r–d– +
⁄ 1

2

1
3

r–d– + 3
⁄ 2

3

1
2

r–d–

= 3 +
⁄ 1

3

0

r–d– +
⁄ 1

2

1
3

r– + 3r1≠–d–
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Æ 3 +
⁄ 1

3

0

1d– +
⁄ 1

2

1
3

4(1 ≠ –)
— ≠ 1 d–

= 10
3 + 7

18(— ≠ 1) .

This is a contradiction for — = 13+3
Ô
7

6
, which finishes the proof. J

As an immediate consequence we get our main theorem, similar to Theorem 15:

I Theorem 24. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the vertex-disjoint cycle
packing LP with at least 6

13+3
Ô
7
times the LP value. If C is given by a weight oracle we can

compute such a solution in polynomial time.

Proof. As in Theorem 15 we apply Algorithm 1. In contrast to the procedure in Theorem 15
however we use a set Fú as guaranteed by Lemma 23 in step 6 of the algorithm instead of
a set consisting of just one one-sided cycle. Thus, in each step we increase the number of
cycles with LP value 1 by |Fú| while decreasing the LP value on Lx by at most 13+3

Ô
7

6
|Fú|.

Therefore we arrive at an integral solution to the LP with at least 6

13+3
Ô
7
times the LP

value.
Note that a set Fú as in Lemma 23 can be found in time polynomial in |Lx|: For the

cycle guaranteed by Lemma 21 we can try all one-sided cycles. For the sets Fú
– used in

Lemma 22, note that there are only linearly many di�erent sets L>–
1

to consider. From those
the sets Fú

– are constructed by applying the Four Colour Theorem, which can also be done
in polynomial time [23]. J

The upper bound on the integrality gap can still be slightly improved by also considering
the sets L>–

1
for – Ø 1

2
as candidates for Fú. Using these candidates for large values of – in

the inequality in Lemma 23 improves the bound in Lemma 23 and therefore also the bound
in Theorem 24 slightly from 13+3

Ô
7

6
¥ 3.4895 to 20+

Ô
130

9
¥ 3.4891. We omit details here

since the improvement is only marginal.

5.2 The edge-disjoint version

This section is dedicated to proving an edge-disjoint version of Theorem 24. One possibility
to do this is to give edge-disjoint versions of Algorithm 1, the Structure Lemma 19 as well
as Lemma 20 and then Lemma 23. All of this is possible analogous to the vertex-disjoint
versions; however, we can also use a simple reduction by Schlomberg, Thiele and Vygen [24].
This does not generally reduce edge-disjoint cycle packing to vertex-disjoint cycle packing,
but it does so for cycle packing in laminar cycle families.

I Lemma 25 (similar to Schlomberg, Thiele, Vygen [24]). Given a planar graph G, embedded in
the sphere, and a laminar family L of cycles in G, we can compute in polynomial time a planar
graph GÕ and a laminar family LÕ of cycles in GÕ, together with a bijection f : L æ LÕ such that
for any C1, C2 œ L we have that E(C1)flE(C2) = ÿ if and only if V (f(C1))fl V (f(C2)) = ÿ.

Proof. Define V (GÕ) := E(G). For any path P = e1e2 of length two in a cycle C œ L we
add the edge ePC := {e1, e2} to E(GÕ). For any C œ L let f(C) be the cycle consisting of all
edges ePC œ E(GÕ) for any path P of length two inside C.

Since L is laminar, GÕ can be embedded planarly such that LÕ := {f(C) : C œ L} defines a
laminar family of cycles, as shown in Figure 4. By definition, all cycles in LÕ are edge-disjoint
and two cycles C1, C2 œ L share an edge in G if and only if f(C1) and f(C2) share a vertex
in GÕ. J

ICALP 2024
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v

Figure 4 Example for the construction of GÕ and LÕ: The left picture shows four cycles in L
containing the vertex v. The six edges incident to v correspond to vertices of GÕ, as shown in the
right picture. Since L is laminar, the paths of length two in cycles of L can be embedded planarly as
edges of GÕ. Cycles in L share an edge if and only if the corresponding cycles in LÕ share a vertex.

Using this reduction, we can easily extend Theorem 24 to the edge-disjoint case:

I Theorem 26. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the edge-disjoint cycle packing
LP (2) a with at least 6

13+3
Ô
7
times the LP value. If C is given by a weight oracle we can

compute such a solution in polynomial time.

Proof. We first apply Lemma 8 to get an optimum LP solution x to (2) with laminar support
L. We then apply Lemma 25 to get a laminar set LÕ of cycles in a planar graph GÕ with a
bijection f : L æ LÕ such that edge-disjointness in L translates to vertex-disjointness in LÕ.

Note that y œ RLÕ with yf(C) = xC for all C œ L defines a feasible solution to the LP
(1) on LÕ. Similar to Theorem 24 we can find an integral solution ȳ œ RLÕ to (1) on LÕ with
ȳ(LÕ) Ø 6

13+3
Ô
7
y(LÕ). Setting x̄C := ȳf(C) for all C œ L then yields an integral solution to

(2) on L with x̄(L) = ȳ(LÕ) Ø 6

13+3
Ô
7
y(LÕ) = 6

13+3
Ô
7
x(L). J
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Limits of Sequential Local Algorithms on the

Random k-XORSAT Problem

Kingsley Yung �

The Chinese University of Hong Kong, Hong Kong, China

Abstract

The random k-XORSAT problem is a random constraint satisfaction problem of n Boolean variables
and m = rn clauses, which a random instance can be expressed as a GF(2) linear system of the form
Ax = b, where A is a random m ◊ n matrix with k ones per row, and b is a random vector. It is
known that there exist two distinct thresholds rcore(k) < rsat(k) such that as n æ Œ for r < rsat(k)
the random instance has solutions with high probability, while for rcore < r < rsat(k) the solution
space shatters into an exponential number of clusters. Sequential local algorithms are a natural
class of algorithms which assign values to variables one by one iteratively. In each iteration, the
algorithm runs some heuristics, called local rules, to decide the value assigned, based on the local
neighborhood of the selected variables under the factor graph representation of the instance.

We prove that for any r > rcore(k) the sequential local algorithms with certain local rules fail
to solve the random k-XORSAT with high probability. They include (1) the algorithm using the
Unit Clause Propagation as local rule for k Ø 9, and (2) the algorithms using any local rule that
can calculate the exact marginal probabilities of variables in instances with factor graphs that are
trees, for k Ø 13. The well-known Belief Propagation and Survey Propagation are included in (2).
Meanwhile, the best known linear-time algorithm succeeds with high probability for r < rcore(k).
Our results support the intuition that rcore(k) is the sharp threshold for the existence of a linear-time
algorithm for random k-XORSAT.

Our approach is to apply the Overlap Gap Property OGP framework to the sub-instance induced
by the core of the instance, instead of the whole instance. By doing so, the sequential local algorithms
can be ruled out at density as low as rcore(k), since the sub-instance exhibits OGP at much lower
clause density, compared with the whole instance.
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1 Introduction

1.1 Background

The k-XORSAT problem is a Boolean constraint satisfaction problem and closely related to
the well-known k-SAT problem. An instance � of the k-XORSAT problem consists of m
clauses in n Boolean variables. Each clause is a Boolean linear equation of k variables of the
form xj1 üxj2 ü · · ·üxjk = bj , where ü is the modulo-2 addition. By convention, when we say
an XORSAT instance, without the prefix “k”, we mean the same except we do not require the
clauses to have exactly k variables. An assignment ‡ to the n variables is a mapping from
the set {xi : i œ [n]} of all n variables to the set {0, 1} of the two Boolean values. By abusing
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the notation, we can write it as the Boolean vector ‡ = (‡(x1),‡(x2), · · · ,‡(xn)) œ {0, 1}n
containing the assigned values. The distance d(‡,‡Õ) between any two assignments ‡ and
‡Õ is defined to be the Hamming distance d(‡,‡Õ) =

q
n

i=1
(‡(xi) ”= ‡Õ(xi)). A clause is

satisfied by an assignment if the equation of the clause holds when the variables are replaced
by the corresponding assigned values, and an instance of the k-XORSAT problem is satisfied
by an assignment if all its clauses are satisfied by the assignment. An instance is satisfiable
if it has at least one satisfying assignment, or unsatisfiable if it does not have any satisfying
assignment. The assignment ‡ that satisfies the instance � is called a solution for the
instance. The set of all satisfying solutions for the instance � is called the solution space
of the instance, denoted by S(�). We are interested in the complexity of finding a solution.

Since each clause is just a Boolean linear equation, an instance � can be viewed as
a Boolean linear system Ax = b, where A œ {0, 1}m◊n is an m ◊ n Boolean matrix and
b œ {0, 1}n is a vector of length n. Note that each row in A contains exactly k ones, since
each clause has exactly k variables. We can see that finding solutions for a k-XORSAT
instance is equivalent to solving a Boolean linear system, and the solution space S(�) is an
a�ne space inside {0, 1}n. By abusing the notation, we can simply write � = (A, b), and the
terms “clause” and “equation” are interchangeable here.

We are particularly interested in random instances of the k-XORSAT problem. In a
random instance �, each clause is drawn over all 2

!
n

k

"
possibilities, independently. In

particular, the left-hand side of the equation is the modulo-2 sum of k variables chosen
uniformly from

!
n

k

"
possibilities, and the right-hand side is either 0 or 1 with even probabilities.

Therefore, a random instance � of the k-XORSAT problem is drawn uniformly from the
ensemble �k(n,m) of all possible instances of the k-XORSAT problem with n variables and
m clauses, each clause containing exactly k variables, and we denote this by � ≥ �k(n,m).
We focus on the regime in which the number of variables n goes to the infinity and the
number of clauses m is proportional to the number of variables n, that is, m = rn, where r
is a constant independent of n and called the clause density.

Since a k-XORSAT instance can be represented by a system of linear equations in GF(2),
given an instance, some standard linear algebra methods such as the Gaussian elimination
can determine whether the instance is satisfiable, find a solution, and even count the total
number of solutions, in polynomial time. However, beyond this particular algebraic structure,
some variants of the k-XORSAT problem is hard to solve. Achlioptas and Molloy mentioned
in their paper [6] that random instances of the k-XORSAT problem seems to be extremely
di�cult for both generic CSP solvers and SAT solvers, which do not take the algebraic
structure into account. Guidetti and Young [22] suggested that the random k-XORSAT is the
most di�cult for random walk type algorithms such as WalkSAT, among many random CSPs.
The di�culty of solving random k-XORSAT instances becomes more apparent when we
only consider linear-time algorithms as e�cient algorithms, since we do not have linear-time
algebraic method to solve a linear system in general.

Many studies suggest that the di�culties of solving random CSPs are related to the
phase transition of the solution spaces when the clause density r grows. (We will have more
detailed discussion in Section 1.3.) Pittel and Sorkin [34] obtained the sharp satisfiability

threshold rsat(k) of random k-XORSAT, for general k Ø 3: The random k-XORSAT instance
is satisfiable w.h.p. when r < rsat(k), and it is unsatisfiable w.h.p. when r > rsat(k). (We
say an event En, depending on a number n, occurs with high probability, or shortened to
w.h.p., if the probability of the event En occurring converges to 1 as n goes to the infinity,
that is, limnæŒ Pr [ En ] = 1.) Furthermore, Ibrahimi, Kanoria, Kraning and Montanari [25]
obtained the sharp clustering threshold rcore(k), which is less than rsat(k), of random k-



K. Yung 123:3

XORSAT for k Ø 3. When r < rcore(k), w.h.p. the solution space of a random k-XORSAT
instance is “well-connected”. When rcore(k) < r < rsat(k), w.h.p. the solution space of a
random k-XORSAT instance shatters into an exponential number of “well-separated clusters”.
In [25], They also provided a linear-time algorithm that can solve a random k-XORSAT
instance w.h.p. for r < rcore(k). On the other hand, no algorithm is known to be able to
find a solution for a random k-XORSAT instance with non-vanishing probability in linear
time, for rcore(k) < r < rsat(k) in which solutions exist with high probability.

In this work, we consider a natural class of algorithms, called sequential local algorithms.
A sequential algorithm selects an unassigned variable randomly and assigns a value to it,
iteratively, until every variable has an assigned value. In each iteration of the algorithm, to
decide the assigned value, the algorithm runs some heuristic called local rules which return
a value p œ [0, 1], and decide the assigned value to be either 0 or 1 randomly, according to
the Bernoulli distribution with parameter p. Ideally, if in each iteration the local rule can
calculate the exact marginal probability of the selected variable over a randomly chosen
solution for the instance conditioned on fixing all previously selected variables to their
assigned values, the algorithm should be able to find a solution. However, we restrict the
ability of the local rules by only providing local structure to the local rules. To explain
the meaning of “local”, we first construct a graphical representation for the k-XORSAT
instances: the factor graph. The factor graph G of a k-XORSAT instance � is constructed
in the following way: (1) each variable is represented by a variable node; (2) each equation
is represented by an equation node; (3) add an undirected edge (v, e) if the variable v is
involved in the equation e. Note that since there is a one-to-one correspondence between
variables (equations) and variable nodes (equation nodes), in this paper, the terms variables
(equations) and variable nodes (equation nodes) are interchangeable. The distance between
any two nodes is the number of edges in the shortest path connecting the two nodes. For any
integer R Ø 0, the local neighborhood BG(v,R) with radius R of a node v is the subgraph of
G induced by all nodes with distances less than or equal to R from the node v. By “local” in
the name of the algorithms, it means the local rules only takes the local neighborhood of the
selected variable, of radius R, as its input.

The actual implementation of a sequential local algorithm depends on the choice for the
local rules. To emphasize the choices for the local rules of the algorithms, the sequential local
algorithm with the given local rule · is called the · -decimation algorithm DEC· . The formal
definitions of the sequential local algorithms, as well as the · -decimation algorithms, will be
given in Section 1.4. Note that if the local rule · takes constant time, then the · -decimation
algorithm also takes linear time.

We introduce a notion of freeness to the sequential local algorithms. For any iteration
in which the local rule returns 1/2, we call it a free step. Intuitively, a free step means the
local rule cannot obtain useful information from the local structure and let the algorithms
make a random guess for the assigned value. We say a · -decimation algorithm is ”-free if
w.h.p. it has at least ”n free steps. Moreover, we say a · -decimation algorithm is strictly
”-free if it is ”Õ-free for some ”Õ > ”. If the · -decimation algorithm is ”-free with large ” > 0,
it means the algorithm makes a lot of random guess on the assigned values, and it is likely
that the local rule · cannot extract useful information from the local structure to guide the
algorithm. This leads to our contribution described in the next section.

1.2 Main contribution

The main contribution of this work consists of two parts. The first part is to show that
as n æ Œ if the · -decimation algorithm is strictly 2µ(k, r)-free then w.h.p. it fails to find
a solution for the random k-XORSAT instance, when the clause density r is beyond the
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clustering threshold rcore(k) but below the satisfiability threshold rsat(k). This can be
formally written as Theorem 1. The value µ(k, r) given in Theorem 1 is an upper bound of
the number of variables removed from the instance in order to obtain the sub-instance called
core instance, which is crucial in our proof. We will discuss its meaning in detail in Section 2.

I Theorem 1. For any k Ø 3 and r œ (rcore(k), rsat(k)), if the · -decimation algorithm DEC·

is strictly 2µ(k, r)-free on the random k-XORSAT instance � ≥ �k(n, rn), then w.h.p. the

output assignment DEC· (�) from the algorithm DEC· on input � is not in the solution space

S(�), that is,

lim
næŒ

Pr [ DEC· (�) œ S(�) ] = 0,

where Q is the largest solution of the fixed point equation Q = 1≠ exp(≠krQk≠1), and µ(k, r)
is the real-valued function given by µ(k, r) = exp(≠krQk≠1) + krQk≠1 exp(≠krQk≠1).

Note. This theorem can also be applied to the non-sequential local algorithms in which the
algorithms run their local rules and decide the assigned value for each variable, in parallel,
without depending on the other assigned values. We will briefly discuss the reason at the
end of Section 1.6 where we discuss the proof technique we used.

The best known linear algorithm of finding a solution for the random k-XORSAT instance
succeeds w.h.p., for k Ø 3 and r < rcore(k) [25]. That means these sequential local algorithms
do not outperform the best known linear algorithm. Note that rcore(k) is where the best
known linear algorithm succeeds up to, and where the sequential local algorithms starts
failing. These support the intuition that rcore(k) is the sharp threshold of the existence of a
linear-time algorithm for random k-XORSAT problem.

The second part of our contribution is to verify that the “freeness” condition in Theorem
1 is satisfied by the · -decimation algorithm with certain local rules · . One of them is the
simplest local rule, the Unit Clause Propagation UC, which tries to satisfy the unit clause
on the selected variable if exists, or make random guess otherwise. By using the Wormald’s
method of di�erential equations to count the number of free steps run by UC-decimation
algorithm DECUC, we can show that it is strictly 2µ(k, r)-free on the random k-XORSAT
instance � for k Ø 9, which leads to the following theorem.

I Theorem 2. For any k Ø 9, r œ (rcore(k), rsat(k)), given a random k-XORSAT instance

� ≥ �k(n, rn), we denote by DECUC(�) the output assignment from the UC-decimation

algorithm DECUC on input �. Then, we have limnæŒ Pr [ DECUC(�) œ S(�) ] = 0.

In each iteration, the role of the local rules is to calculate the marginal probability of
the selected variable in the instance conditioned on fixing all previously selected variables
to their assigned values. Belief Propagation BP and Survey Propagation SP are surprisingly
good at approximating marginal probabilities of variables over randomly chosen solutions in
many random constraint satisfaction problems empirically [29, 21, 7, 36, 27]. In particular,
it is well-known that they can calculate the exact marginal probabilities of variables when
the underlying factor graph is a tree, which is proved analytically. If Belief Propagation
BP and Survey Propagation SP are used as the local rule · , it is natural to expect that the
· -decimation algorithm can find a solution. However, we prove that even the local rule
· can give the exact marginal probabilities of variables over a randomly chosen solution
for any instance whose factor graph is a tree, the · -decimation algorithm still cannot find
a solution w.h.p. for k Ø 13. We know that w.h.p. the local neighborhood of the factor
graph of the random k-XORSAT instance is a tree. Therefore, running BP and SP on the
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local neighborhood actually gives the exact marginal probabilities of the selected variables,
with respect to the sub-instance induced by the local neighborhood. This implies that both
BP-decimation algorithm DECBP and SP-decimation algorithm DECSP fail to find a solution
w.h.p. for k Ø 13.

I Theorem 3. For any k Ø 13, r œ (rcore(k), rsat(k)), given a random k-XORSAT in-

stance � ≥ �k(n, rn), denote by DEC· (�) the output assignment from the · -decimation

algorithm DECUC on input �. Assume the local rule · outputs the exact marginal probab-

ility of a selected variable for any instance whose factor graph is a tree. Then, we have

limnæŒ Pr [ DEC· (�) œ S(�) ] = 0.

To prove Theorem 2 and Theorem 3, we only need to calculate the number of free steps in
DECUC and the number of free steps in DEC· with the assumption on · described in Theorem 3.
If the number of free steps is strictly greater than 2µ(k, r)n with high probability, we know
that they are strictly 2µ(k, r)-free, and the results follow immediately by applying Theorem 1.
Similarly, to obtain the same results for other · -decimation algorithms, all we need to do is
to calculate the number of free steps for those algorithms. If they are strictly 2µ(k, r)-free,
we can obtain the same results by applying Theorem 1. Note that, due to certain limitations
of our calculation, our results are limited to k Ø 9 in Theorem 2 and k Ø 13 in Theorem 3.
We believe that the results hold for general k Ø 3, and can be proved by improving some
subtle calculation in our argument.

Although we only show a few of implementations of the sequential local algorithms, we
believe that the results are general across many sequential local algorithms with di�erent
local rules due to Theorem 3. In the framework of sequential local algorithms, the role of
the local rules is to approximate the marginal probabilities of the selected variables over a
random solution for the instance induced by the local neighborhood centered at the selected
variables. Therefore, we believe that for any local rule that can make a good approximation
on the marginals, it shall give similar results as Theorem 3. (Note that a more general
definition of “”-free” may be useful, for example, we can say a · -decimation algorithm is
(”, ‘)-free if we have |p ≠ 1/2| < ‘, where p is the value returned by the local rule, for at least
”n iterations.)

It is worth to mention the di�erences between these implementations of the sequential
local algorithms and their well-known variants. Firstly, the UC-decimation algorithm is slightly
di�erent from the well-known Unit Clause algorithm. Under the framework of sequential
local algorithm, the variables are selected in a random order. However, in the well-studied
Unit Clause algorithm the variables in unit clauses are selected first [5]. The di�erence in the
variable order could be crucial to the e�ectiveness of the Unit Clause algorithm. Secondly,
the BP-decimation algorithm and the SP-decimation algorithm are slightly di�erent from the
Belief Propagation Guided Decimation Algorithm [12] and Survey Propagation Decimation
Algorithm [8, 7, 28]. In the framework of sequential local algorithms, we only provide the
local neighborhood to BP and SP. It is equivalent to bounding the number of messages passed
in each decimation step by the constant R Ø 0 in BP-guided Decimation Algorithm and
SP-guided Decimation Algorithm. It is in contrast to many empirical studies of BP-guided
Decimation Algorithm and SP-guided Decimation Algorithm which allow the message passing
iteration to continue until it converges.

Moreover, this work provides a new variant of the overlap gap property method, which
was originally introduced by Gamarnik and Sudan [20]. Instead of considering the overlap
gap property of the whole instance, we utilize that property of a sub-instance of the random
k-XORSAT instance. In particular, the proof of this work is inspired by [20], which uses the
overlap gap property method to rule out the class of balanced sequential local algorithms
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from being able to solve random NAE-k-SAT problem when the clause density is close to the
satisfiability threshold. Instead of directly applying the method on the whole instance, we
focus on the sub-instance induced by the 2-core of the factor graph of the instance. This
modification help us obtain tight bounds of algorithmic threshold unlike [20]. If we apply
the original overlap gap property method and use the first moment method to obtain the
property, we are able to show that the sequential local algorithms fail to solve the random
k-XORSAT problem when the clause density is lower than a certain threshold r1(k). However,
that threshold r1(k) is much higher than the rcore(k). It only tells us that the algorithms fails
when the density is very close to the satisfiability threshold rsat(k). With our modification,
we can lower that threshold to exactly rcore(k), namely, the algorithms fail in finding a
solution when the clause density is as low as the clustering threshold. This opens a new
possibility to improve other results which use the overlap gap property method on other
random constraint satisfaction problems.

1.3 Phase transition of random k-XORSAT

Many random ensembles of constraint satisfaction problems CSPs such as random k-SAT
and random NAE-k-SAT are closely related to the random k-XORSAT. For example, the
well-known random k-SAT is analogous to the random k-XORSAT, in the sense that we
can obtain a k-XORSAT instance from a k-SAT instance by replacing OR operators with
XOR operators. We are particularly interested in the existences of some sharp thresholds on
the clause density r in which the behaviors of a random instance changes sharply when the
clause density r grows and passes through those thresholds. The following three thresholds
are particularly of interest.
1. The satisfiability threshold separates the regime where w.h.p. the random instance is

satisfiable and the regime where w.h.p. it is unsatisfiable.
2. The clustering threshold separates the regime where w.h.p. the solution space can be

partitioned into well-separated subsets, each containing an exponential small fraction of
solutions, and the regime where w.h.p. the solution space cannot be partitioned in this
way.

3. The algorithmic threshold separates the regime where we have an e�cient algorithm that
can find a solution for a satisfiable random instance with non-vanishing probability, and
the regime where no such algorithm exists.

Many random constraint satisfaction problems such as random k-SAT, random NAE-k-SAT
and random graph coloring share the following phenomena related to these thresholds [3].

There is an upper bound of the (conjectured) satisfiability threshold.
There is a lower bound of the (conjectured) satisfiability threshold, from the non-
constructive proof, and the lower bound is essentially tight.
There are some polynomial time algorithms that can find a solution when the density is
relatively low, but no polynomial time algorithm is known to succeed when the density is
close to the satisfiability threshold. This leads to a conjectured algorithmic threshold,
which is asymptotically below the (conjectured) satisfiability threshold.
The clustering phenomenon takes place when the density is greater than a (conjectured)
clustering threshold, and this threshold is close to or even asymptotically equal to the
algorithmic threshold.

It is worth to mention that not every random constraint satisfaction problems share this
set of phenomena. The most notable example is symmetric binary perceptron (SBP). Its
satisfiability threshold –sat(k) > 0 was established by [33, 2]. They also showed that SBP
exhibits clustering property and almost all clusters are singletons, for clause density – > 0.
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On the other hand, [1] gave a polynomial-time algorithm that can find solutions w.h.p., for
low clause density. Therefore, there is a regime of low clause density in which SBP exhibits
clustering property, and it is solvable in polynomial time, simultaneously. Its clustering
phenomenon does not cause the hardness.

Being analogous to the random k-SAT problem, the random k-XORSAT problem shares
those phenomena with other random constraint satisfaction problems. However, the story is
slightly di�erent in the random k-XORSAT problem. Since the k-XORSAT instances are
equivalent to Boolean linear systems, their solution spaces are simply some a�ne subspaces in
the Hamming hypercube {0, 1}n. Because of their algebraic structures, we are able to obtain
the existence and the (n-independent) value of the satisfiability threshold of the random
k-XORSAT problem. Dubois and Mandler [14] proved that there exists an n-independent
satisfiability threshold rsat(k) for k = 3, and determined the exact value of the sharp threshold
by the second moment argument. Pittel and Sorkin [34] further extended it for general
k Ø 3. An independent work on cuckoo hashing from [13] also included an argument of the
k-XORSAT satisfiability threshold for general k Ø 3. Those proofs consider the 2-core of the
hypergraph associated with the random k-XORSAT instance. (In graph theory, a k-core of a
(hyper)graph is a maximal subgraph in which all vertices have degree at least k.) Based on
the 2-core, we can construct a sub-instance, called 2-core instance or simply core instance of
the original instance. One can prove that the original instance is satisfiable if and only if core
instance is satisfiable. [10, 30] studied the core instance and determined the satisfiability
threshold of the core instance, which can be converted to the satisfiability threshold of the
random k-XORSAT instance.

Mézard, Ricci-Tersenghi and Zecchina [30] started the study of the clustering phenomenon
of random k-XORSAT, and linked it to the existence of the non-empty 2-core instance.
From [35, 32, 26], we know the non-empty 2-core of random hypergraphs suddenly emerges at
a critical edge density rcore(k). After that, Ibrahimi, Kanoria, Kraning and Montanari [25],
and Achlioptas and Molloy [6] independently proved that there exists the clustering threshold
rclt(k), which is equal to rcore(k) and smaller than rsat(k), such that w.h.p. the solution space
is a connected component for density r < rcore(k), and w.h.p. the solution space shatters
into exponentially many �(n)-separated components for density r > rcore(k), provided that
we consider the solution space as a graph in which we add an edge between two solutions if
their Hamming distance is O(logn).

As we mentioned before, the random k-XORSAT instance can be written as a random
Boolean linear system, so it can be solved in polynomial time by using linear algebra method,
regardless the clause density. For example, Gaussian elimination can solve it in O(n3) time.
Since we do not have linear time algebraic method to solve linear system, we can still study the
algorithmic phase transition if we only consider linear-time algorithms as e�cient algorithms.
In the proofs in [25], they provided an algorithm that can find a solution in linear time
when r < rcore(k), which implies that rcore(k) is a lower bound of the (linear-time version
of) algorithmic threshold ralg(k) of the random k-XORSAT problem. We conjecture that
no algorithm can solve the random k-XORSAT problem in linear time with non-vanishing
probability when r > rcore(k), which implies rcore(k) is an upper bound of ralg(k) and thus
ralg(k) = rcore(k). This would lead to the intimate relation between the failure of linear time
algorithms on random k-XORSAT and the clustering phenomenon of its solution space.

1.4 Sequential local algorithms

Sequential local algorithms are a class of algorithms parametrized by a local rule · that
specifies how values should be assigned to variables based on the “neighborhoods” of the
variables. Given a local rule · , the sequential local algorithm can be written as the following
· -decimation algorithm.

ICALP 2024



123:8 Limits of Sequential Local Algorithms on the Random k-XORSAT Problem

Given a fixed even number R Ø 0, we denote by IR the set of all instances in which each
of those instances has exactly one of its variables selected as root, and all nodes in its factor
graph have distances from the root variable node at most R. A local rule is defined to be a
function · : IR æ [0, 1] œ R, mapping from IR to the interval [0, 1]. Given an instance �,
since the local neighborhood B�(xú, R) of a variable node xú represents a sub-instance of
� induced by all nodes having distance at most R from the root variable node xú, we have
B�(xú, R) œ IR and ·(B�(xú, R)) is well-defined. Then, the · -decimation algorithm can be
expressed as the followings.

Algorithm 1 · -decimation algorithm.

1: Input: an instance of the k-XORSAT problem �,
an even number R Ø 0, and
a local rule · : IR æ [0, 1].

2: Set �0 = �.
3: for t = 0, ..., n ≠ 1 do
4: Select an unassigned variable xú from �t, uniformly at random.

5: Set ‡(xú) =
I
1 with probability ·(B�t(xú, R))
0 with probability 1 ≠ ·(B�t(xú, R))

6: Obtain �t+1 from �t by:
(i) remove xú;
(ii) for any clause having xú before (i), add ‡(xú) to its right-hand-side value;
(iii) remove all clauses that no longer contain any variable.

7: end for
8: Output: the assignment ‡.

For any t œ [n], if the value ·(B�t(xú, R)) given by the local rule · in the t-th iteration
is 1/2, then we call that iteration a free step. In a free step, the · -decimation algorithm
simply assigns a uniformly random Boolean value to the selected variable. On the contrary,
if the value ·(B�t(xú, R)) given by the local rule · in the t-th iteration is either 0 or 1, then
we call that iteration a forced step. In a forced step, the · -decimation algorithm is forced
to assign a particular value to the selected variable according to the value ·(B�t(xú, R)).
To simplify our discussion, we introduce the following definitions for those · -decimation
algorithms having certain numbers of free steps.

I Definition 4. For any ” œ [0, 1], we say a · -decimation algorithm DEC· is ”-free on the

random k-XORSAT instance � ≥ �k(n, rn) if w.h.p the · -decimation algorithm DEC· on

input � has at least ”n free steps.

I Definition 5. For any ” œ [0, 1], we say a · -decimation algorithm DEC· is strictly ”-free
on the random k-XORSAT instance � ≥ �k(n, rn) if there exists ”Õ > ” such that the

· -decimation algorithm DEC· is ”Õ
-free on �.

There are many choices for the local rules · . The simplest one is the Unit Clause
Propagation UC. In each iteration, after selecting the unassigned variable xú, UC checks
whether there exists a unit clause (clause with one variable) on the variable xú. If yes, then
UC sets ·(B�t(xú, R)) to be the right-hand-side value of the unit clause, which can force
the decimation algorithm to pick the suitable value to satisfy that clause. In this case, this
iteration is a forced step. (If there are multiple unit clauses on the selected variable xú,
then only consider the one with the lowest index.) If there is no unit clause on the selected
variable xú, then UC sets ·(B�t(xú, R)) to 1/2, which let the algorithm choose the assigned
value randomly. In this case, this iteration is a free step.
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Algorithm 2 Unit Clause Propagation UC.

1: Input: the selected variable xú, and its local neighborhood B�t(xú, 2)
2: if there exists any unit clause on the variable xú then
3: Pick the unit clause c on the variable xú (with the lowest index if having multiple

such clauses).
4: Output: the right-hand-side value of the clause c.
5: else
6: Output: 1/2.
7: end if

1.5 Message passing algorithms

A new challenger to break the algorithmic threshold came out from statistical mechanics.
In experiments [29, 21, 7, 36, 27], the message passing algorithms demonstrated their high
e�ciency on finding solutions of random k-SAT problem with the densities close to the
satisfiability threshold. Those algorithms include Belief Propagation Guided Decimation

Algorithm and Survey Propagation Guided Decimation Algorithm, which are based on the
insightful but non-rigorous cavity method from statistical mechanics [7, 36]. Unfortunately,
several analyses showed that they do not outperform the best known algorithms for some
problems. Coja-Oghlan [12] showed that BP-guided Decimation fails to find solutions for
random k-SAT w.h.p. for density above fl02k/k for a universal constant fl0 > 0, and thus
does not outperform the best known algorithm from [11]. Hetterich [23] also gave the same
conclusion for SP-guided Decimation by showing that it fails w.h.p. for density above
(1 + ok(1))2k ln k/k.

For random NAE-k-SAT, Gamarnik and Sudan [20] showed that the balanced sequential
local algorithms fail to find solutions for density above (1 + ok(1))2k≠1 ln2 k/k for su�ciently
large k. This means the algorithms do not outperform the best known algorithm, Unit Clause
algorithm, which can find solutions w.h.p. for density up to fl 2k≠1/k for some universal
constant fl > 0 for su�ciently large k [5]. The framework of balanced sequential local
algorithms also covers BP-guided Decimation and SP-guided Decimation with the number of
message passing iterations is bounded by O((ln lnn)O(1)).

In our work, we obtain an analogous result. In Theorem 1, we show that w.h.p. strictly
2µ(k, r)-free sequential local algorithms fails to solve the random k-XORSAT problem when
the clause density exceeds the clustering threshold. Then, in Theorem 3, we show that any
sequential local algorithm with local rule that can compute the exact marginals are strictly
2µ(k, r)-free and thus fails to find a solution for random k-XORSAT problem. This theorem
covers the sequential local algorithms with Belief Propagation BP and Survey Propagation
SP as local rules.

1.6 Technique

The works from [3, 4] demonstrated the clustering phenomenon for several random CSPs,
and conjectured that it could be an obstruction of solving those problems. [19, 20] and
subsequent works leveraged a di�erent notion of clustering, named overlap gap property

(OGP) by [18], to link the clustering phenomenon to the hardness rigorously. Gamarnik gave
a detailed survey on it [15].

This paper focuses on the vanilla version of the OGP. Given an instance � of the constraint
satisfaction problem, we say it exhibits the overlap gap property with values 0 Æ v1 < v2
if every two solutions ‡ and ‡Õ satisfy either d(‡,‡Õ) Æ v1 or d(‡,‡Õ) Ø v2, where d is a
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metric on its solution space. (We assume d is the Hamming distance throughout this paper.)
Intuitively, it means every pair of solutions are either close to each other, or far from each
other, and thus the solution space of the instance exhibits a topological discontinuity based
on the proximity.

Now we illustrate how does the overlap gap property method. (Some details of the overlap
gap property method is slightly di�erent if we consider di�erent variants of the OGP, but the
overall idea of topological barrier stays the same.) Assume we have an algorithm A that takes
a random instance � as input and outputs an assignment ‡ for the instance. The output
‡ can be viewed as a random variable which depends on both the random instance � and
some internal random variables, represented by a random internal vector I, of the algorithm.
Let � and I be realizations of � and I respectively, and denote the output assignment as
‡0 = ‡�,I . We then re-randomize the components of the internal vector I one-by-one. After
each re-randomizing a component of I, we run the algorithm again to generate a new output
assignment. Then, we obtain a sequence of assignments ‡0,‡1, · · · ,‡T for the instance �,
where T is the number of components of the random vector I that we have re-randomized.
Next, we show that the algorithm is insensitive to its input in the sense that when one of
the components of the random internal vector I is re-randomized, the output assignment
almost remains unchanged, In particular, d(‡i,‡i+1) is smaller than v2 ≠ v1. We also show
that the algorithm has certain freeness in the sense that when all components in the random
internal are re-randomized the output assignment is expected to change a lot. In particular,
E [d(‡0,‡T )] should be larger than v2. These two properties together imply that the sequence
of assignments cannot “jump” over the overlap gap, while two ends of the sequence probably
lie in di�erent clusters. Therefore, there should be an assignment ‡T0 that falls in the gap,
namely, there exists T0 > 0 such that v1 Æ d(‡0,‡T0) Æ v2. If the probability that the
algorithm successfully finds a solution is greater than some small value sn slowly converging
to 0, then there could be a very small probability that both ‡0 and ‡T0 are solutions of
the instance �, with v1 Æ d(‡0,‡T0) Æ v2. Even though this probability is very small, it
still has the chance to violates the OGP of the instance. Then, by contradiction, we could
conclude that the probability that the algorithm succeeds in finding a solution is smaller
than sn = o(1), namely, w.h.p. the algorithm fails in finding a solution.

Instead of considering the overlap gap property of the entire instance �, we move our
focus to the overlap gap property of a sub-instance of �. Indeed, the sub-instance we consider
is the 2-core instance �c induced by the 2-core of the factor graph representation of the
random instance �. In [25, 6], they proved that the 2-core instance �c exhibits the overlap
gap property with vÕ

1
= o(n) and vÕ

2
= ‘kn for some constant ‘k > 0 for clause density

rcore(k) < r < rsat(k). We remove all variables not in the core instance from the sequence of
assignments ‡0,‡1, · · · ,‡T we obtained above, then it becomes a sequence of assignments
‡Õ
0
,‡Õ

1
, · · · ,‡Õ

T
for the core instance. We also prove that the algorithm is insensitive to its

input with respect to the core instance in the sense that d(‡Õ
i
,‡Õ

i+1
) < vÕ

2
≠vÕ

1
, and has certain

freeness so that E [d(‡Õ
0
,‡Õ

T
)] > vÕ

2
. By repeating the above argument of the overlap gap

property method, we can conclude that w.h.p. the algorithm fails in find a solution.
Our proof can also be used for the non-sequential local algorithms. Since the local rule ·

runs on the local neighborhood of each variable in parallel, the values assigned to variables
do not depend on each other. Informally speaking, there is no long-range dependency among
those assigned values. Therefore, re-randomizing one component of the internal vector I,
say Ii+1, only a�ects the value ‡(xi+1) assigned to the corresponding variable xi+1. So, we
have d(‡i,‡i+1) Æ 1 < vÕ

2
≠ vÕ

1
. Hence, we can obtain the same result as Theorem 1 for

non-sequential local algorithms with the same proof.
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1.7 Related works

The vanilla version of OGP helps us rule out some large classes of algorithms on random
CSPs for relatively high clause densities, but it is not sophisticated enough to close the
statistical-to-computational gap in some cases such as random NAE-k-SAT discussed in [20]
and random k-XORSAT discussed in this paper (more details in Section 2). There have been
some recent works trying to improve the notion of OGP by developing di�erent variants
of OGP. The most notable one is multi-OGP [37, 9, 24, 17, 16], which succeeds in closing
the statistical-to-computational gap in certain models. However, it is not clear about the
relation between the clustering property and the multi-OGP.

2 Overlap Gap Property

We say that a k-XORSAT instance � exhibits the overlap gap property (or shortened
as OGP) with the values 0 Æ v1 < v2 if for any two solutions ‡,‡Õ œ S(�) we have either
d(‡,‡Õ) Æ v1 or d(‡,‡Õ) Ø v2. Informal speaking, any two solutions of the instance are
either close to each other or far away from each other, and thus the solution space exhibits a
topological discontinuity. Given a random k-XORSAT instance, we can prove that it exhibits
the OGP when the clause density is greater than certain value, and obtain the following
lemma.

I Lemma 6. For any k Ø 3, there exists r1(k) > 0 such that for r > r1(k) and any pair

of solutions ‡,‡Õ œ S(�) of the random k-XORSAT instance � ≥ �n(k, rn), w.h.p. the

distance d(‡,‡Õ) between the two solutions is either Æ u1n or Ø u2n for some 0 Æ u1 < u2.

In particular, the value of r1(k) is given by

r1(k) = min
0Æ–Æ1

1 +H(–)
2 ≠ log(1 + (1 ≠ 2–)k) ,

where H is the binary entropy function, that is, H(x) = ≠x log2(x) ≠ (1 ≠ x) log2(1 ≠ x).

Instead of considering the random k-XORSAT instance � itself, we focus on the sub-
instance, called the core instance (defined below), of the random k-XORSAT instance �,
and show that core instance also exhibits the overlap gap property, even when the clause
density is much lower. (See Table 1.)

Table 1 Compare rcore(k) with r1(k) for di�erent k. The numeric values in the table are rounded
o� to 6 decimal places.

k 3 4 5 6 7 8 9
rcore(k) 0.818470 0.772280 0.701780 0.637081 0.581775 0.534997 0.495255
r1(k) 0.984516 0.943723 0.905812 0.874349 0.848314 0.826470 0.807862

We start from defining the peeling algorithm and the core instances. Given an
XORSAT instance �, suppose there exists a variable x of degree 1, which means it is involved
in exactly one clause e. We remove the variable x and the only clause c involving x, to obtain
a modified instance �Õ. If we have a solution ‡Õ for the modified instance �Õ, we can always
choose a suitable value for the variable x to satisfy the clause c, and extend the solution
‡Õ to a solution ‡ for the original instance �. Similarly, we can also do the same thing if
the variable x is of degree 0, since it does not involve in any equation, and we are free to
choose any value for it. By doing this, solving the original instance � is reduced to solving
the modified instance �Õ.

ICALP 2024
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We can repeat this process until there is no variable of degree at most 1. This process
is named the peeling algorithm on an instance as its input (Algorithm 3). We call the
resultant instance the 2-core instance (or simply the core instance) of the instance �,
denoted by �c. This name is borrowed from the graph theory. In graph theory, the k-core
of a graph is the maximal subgraph with minimum degree at least k. It is known that the
factor graph of the core instance �c is exactly the maximal subgraph of the factor graph G�

of the instance �, with minimum variable degree at least 2.

Algorithm 3 Peeling algorithm.

1: Input: an instance �.
2: while There exists Ø 1 variable of degree Æ 1. do
3: Select a variable x of degree Æ 1.

(Pick x with the lowest index if there are > 1 such variables.)
4: Update � by removing the variable xi and its only involved clause (if exists).
5: end while
6: Output: the resultant instance �.

Mézard and Montanari [31] gave a detailed description on the structure of the core
instance. Reader can find more details about the core instance in their book. The following
theorem is a short summary of some known facts about the core instances we needed in the
paper.

I Theorem 7. For any k Ø 3, there exists rcore(k) > 0 given by

rcore(k) © sup{r œ [0, 1] : Q > 1 ≠ e≠krQ
k≠1

’Q œ (0, 1)}

such that the factor graph Gc of the core instance �c of the random k-XORSAT instance

� ≥ �n(k, rn) have the following properties.

1. For r < rcore(k), w.h.p. the factor graph Gc of the core instance �c is an empty graph.

2. For r > rcore(k), w.h.p. the factor graph Gc of the core instance �c have V (k, r)n+ o(n)
variable nodes, where

V (k, r) = 1 ≠ exp(≠krQk≠1) ≠ krQk≠1 exp(≠krQk≠1)

and Q is the largest solution of the fixed point equation Q = 1 ≠ exp(≠krQk≠1). In

particular, the fraction of variable nodes of degree l is between ‚�l ≠ ‘ and ‚�l + ‘ with

probability greater than 1 ≠ e≠�(n)
, where ‚�0 = ‚�1 = 0 and

‚�l =
1

ekrQk≠1 ≠ 1 ≠ krQk≠1

1
l! (krQ

k≠1)l for l Ø 2.

3. Conditioning on the number of variable nodes V (k, r)n+o(n) and the degree profile ‚�, the

factor graph Gc of the core instance �c is distributed according to the ensemble containing

all possible factor graphs of k-XORSAT instances of V (k, r)n+o(n) variables and variable

degree distribution �.

Theorem 7 shows that there exists a threshold rcore(k) below the satisfiability threshold
rsat(k) of random k-XORSAT problem. When the clause density r is below the threshold
rcore(k), w.h.p. the instance � does not have a core instance. When the clause density r is
above the threshold rcore(k), w.h.p. the core instance �c emerges. In particular, the variable
degree distribution is a Poisson distribution with mean krQk≠1 conditioning on �0 = �1 = 0.
[31] also showed that the core instance exhibits the OGP.



K. Yung 123:13

I Lemma 8. For k Ø 3 and rcore(k) < r < rsat(k), there exists ‘(k, r) > 0 such that w.h.p.

the distance between any two solutions for the core instance �c of a random k-XORSAT

instance � ≥ �n(k, rn) is either o(n) or greater than ‘(k, r)n.

Now, we know that w.h.p. the core instance of a random k-XORSAT instance has the
overlap gap property with the values v1 = o(n) and v2 = ‘(k, r)n. With OGP, we can
partition the solution space of the core instance into multiple groups, each called a core
cluster, such that the distance between any pair of core solutions in the same core cluster is
at most o(n), and the distance between any pair of core solutions in di�erent core clusters is
at least ‘(k, r)n.

Suppose we have a k-XORSAT instance �. We first define a binary relation on the
solution space of a core instance �c by: for ‡c,‡Õ

c
œ S(�c), we write ‡c ƒ ‡Õ

c
if and only

if d(‡c,‡Õ
c
) = o(n). It is easy to see it is an equivalence relation. Then, we can partition

the solution space by the equivalence classes of ƒ. We can denote those equivalence classes
by Sc,1,Sc,2, ...,Sc,nc . Thus, we have Sc,1 Û Sc,2 Û ... Û Sc,nc = S(�c) where Û is the disjoint
union. Then, we have

d(‡c,‡
Õ
c
) = o(n) if ‡c,‡

Õ
c

œ Sc,i, and
d(‡c,‡

Õ
c
) Ø ‘(k, r)n if ‡c œ Sc,i, ‡Õ

c
œ Sc,j and Sc,i ”= Sc,j

Now we can partition the solution space S(�) of the original instance � into clusters
based on the partition of the solution space of core instance. We set

S(�) =
nch

i=1

Si and Si = {‡ œ S(�) : fi(‡) œ Sc,i} for i = 1, 2, ..., nc

where fi is defined to be the projection mapping assignments for the instance � to assign-
ments for the core instance �c by removing all variables not in the core instance �c. Each
Si is called a cluster in the solutions space S(�). We can then prove that these clusters are
well-separated from each other.

I Lemma 9. Let k Ø 3 and rcore(k) < r < rsat(k). Suppose � ≥ �n(k, rn) is a random

k-XORSAT instance. Then, w.h.p. there exists a partition S(�) = S1 Û S1 Û ... Û Snc for the

solutions space S(�) of the random instance � such that the following statements hold.

1. If ‡,‡Õ œ Si for some i œ [nc], then we have d(‡,‡Õ) Æ µ(k, r)n + o(n), where the real-

valued function µ(k, r) is given by µ(k, r) = exp(≠krQk≠1) + krQk≠1 exp(≠krQk≠1) and
Q is the largest solution of the fixed point equation Q = 1 ≠ exp(≠krQk≠1).

2. If ‡ œ Si,‡Õ œ Sj and Si ”= Sj for some i, j œ [nc], then we have d(‡,‡Õ) Ø ‘(k, r)n.

Proof. Assume the instance � has a non-empty core instance �c, which exists with high
probability according to Theorem 7. We also assume the core instance �c exhibits the OGP
with v1 = o(n) and v2 = ‘(k, r)n, which occurs with high probability according to Lemma 8.
Let ‡ and ‡Õ be two solutions of the random k-XORSAT instance �, and let ‡c = fi(‡) and
‡Õ
c
= fi(‡Õ) be the projection of ‡ and ‡Õ on the core solution space S(�), respectively.
To prove the first part of the lemma, we assume that ‡ and ‡Õ are in the same cluster,

that is, ‡,‡Õ œ Si for some i œ [nc]. By the definition of cluster, we have d(‡c,‡Õ
c
) =

o(n). Therefore, d(‡, ·) is upper bounded by the number of variables not in the core
instance, plus o(n). By Theorem 7, the number of variables outside the core instance
is given by (1 ≠ V (k, r))n + o(n). Hence, we have d(‡, ·) Æ (1 ≠ V (k, r))n + o(n) =!
exp(≠krQk≠1) + krQk≠1 exp(≠krQk≠1)

"
n+ o(n).

ICALP 2024



123:14 Limits of Sequential Local Algorithms on the Random k-XORSAT Problem

To prove the second part of the lemma, we assume that ‡ and · are in the di�erent
clusters, that is, ‡ œ Si, ‡Õ œ Sj and Si ”= Sj for some i, j œ [nc]. By the definition of cluster
and Lemma 8, we have d(‡c,‡Õ

c
) Ø ‘(k, r)n Therefore, we have d(‡,‡Õ) Ø d(fi(‡),fi(‡Õ)) =

d(‡c,‡Õ
c
) Ø ‘(k, r)n. J

3 Preparation of OGP method

In this section, we introduce some notions and obtain some preliminary results needed by
the overlap gap property method to prove the main results.

3.1 Sequence of output assignments

The random k-XORSAT instance � is a random variable, and the · -decimation algorithm
DEC· is a randomized algorithm. Therefore, the assignment output by the · -decimation
algorithm DEC· on input � is also a random variable. The outcomes of the output assignment
depend on the random instance �, the order of variables being chosen, and the value selection
based on the output from the local rule · . Now we introduce two random variables to
explicitly represent the order of variables and the value selection so that we can have a more
concrete language to discuss how the randomness from both the instance and the algorithm
a�ects the output assignment. We adopt the notation from [20] in the following discussion.

The order of variables can be represented by a random vector Z = (Z1,Z2, · · · ,Zn) whose
entries are n i.i.d. random variables with uniform distribution over the interval [0, 1] µ R,
independent of the random instance �. We call Z the ordering vector of the algorithm.
For all i œ [n], the variable xi in the instance � is associated with the random variable
Zi. In each iteration of the algorithm, the unassigned variable xi with the largest value
Zi, among all other unassigned variables, is selected. In the other words, we can construct
the permutation s : [n] æ [n] such that Zs(1) > Zs(2) > · · · > Zs(n), and for all t œ [n] the
variable xs(t) is selected in the t-th iteration. The value selection based the output from
the local rule · can be represented by a random vector U = (U1,U2, ...,Un) whose entries
are n i.i.d. random variables with uniform distribution over the interval [0, 1] µ R. We
call U the internal vector of the algorithm. In the t-th iteration of the algorithm, the
value ‡(xs(t)) assigned to the selected variable xs(t) is set to be 1 if Ut < ·(B�t(xs(t), R)),
and 0 otherwise. Conditioning on �, Z and U, the output assignment ‡ can be uniquely
determined. Therefore, we can view the · -decimation algorithm DEC· as a deterministic
algorithm on random input (�,Z,U), and denote by ‡�,Z,U the output of the algorithm.

With this notion of the deterministic algorithm, we can construct a sequence of output
assignments which will be used in the argument of the overlap gap property method. The
sequence of output assignments is generated by applying the · -decimation algorithm DEC·

on a random k-XORSAT instance � multiple times in the following way: First, given a
random k-XORSAT instance �, we sample an ordering vector Z and an internal vector U.
Then, we run the · -decimation algorithm DEC· on input � with the ordering vector Z and
the internal vector U to get the first output assignment ‡0. After that, we re-randomize
(i.e. sample again) the entries of the internal vector U one by one from U1 to Un. Right
after each re-randomization we run the algorithm again to get a new output assignment. By
doing this, we obtain a sequence of n+ 1 output assignments for the instance � in total. We
denote by ‡i the output assignment generated after re-randomizing the first i entries of U,
for i = 0, 1, 2, ..., n. Precisely speaking, let V = (V1,V2, ...,Vn) and W = (W1,W2, ...,Wn)
be two independent random internal vectors with the uniform distribution over [0, 1]n, and
set Ui = (W1, ...,Wi,Vi+1, ...,Vn) for i = 0, 1, 2, ..., n. Note that U0 = V and Un = W.
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Then, the sequence of output assignments {‡i}ni=0
can be written as {‡�,Z,Ui}n

i=0
, which

is equivalent to the sequence of output assignment obtained by running the · -decimation
algorithm DEC· (for n+ 1 times in total) on input (�,Z,Ui) for all i = 0, 1, ..., n.

Recall the projection fi mapping assignments for the instance � to assignments for the
core instance �c, by removing all variables not in the core instance. We can further obtain a
sequence of assignments for the core instance �c by applying the projection on the output
assignments ‡i, that is, we set {‡Õ

i
= fi(‡�,Z,Ui)}n

i=0
.

3.2 Insensitive to internal vector

In this section, we show that the · -decimation algorithm DEC· is insensitive to its internal
vector. By insensitive, it means when the value of an entry in the internal vector U is changed,
only a small portion of the assigned values in the output assignment ‡�,Z,U change accordingly.
If so, every two consecutive output assignments in the sequence {‡i = ‡�,Z,Ui}n

i=0
should

only di�er from each other in only a small portion of assigned values.
Consider the sequence of output assignment {‡i = ‡�,Z,Ui}n

i=0
from Section 3.1. Note

that the i-th output assignment ‡i in the sequence is the output of the algorithm on input
(�,Z,Ui). For any i œ [n], the only di�erence between the input (�,Z,Ui≠1) and the input
(�,Z,Ui) is the i-th entries of the internal vectors Ui≠1 and Ui. We can immediately see
that the insensitivity of the algorithm implies that every two consecutive output assignments
in the sequence are close to each other. Gamarnik and Sudan [20] proved the insensitivity of
the · -decimation algorithm in their works, using the notion of influence range. Although
their works [20] focused on the random NAE-k-SAT problem, the proof for the insensitivity
of the · -decimation algorithm is independent of the type of clauses in the random constraint
satisfaction framework. So, we can directly use the result here.

I Definition 10. Given a random instance � and a random ordering vector Z, we say that

xi influences xj if either xi = xj or in the variable-to-variable graph of the instance �
there exists a sequence of variable nodes y0, y1, ..., yt œ {x1, x2, ..., xn} such that the following

statements hold.

1. y0 = xi and yt = xj.

2. There exists a path from yl to yl+1, of length at most r, in the variable-to-variable graph

G, for l = 0, 1, ..., t ≠ 1.
3. Zyl≠1 > Zyl for l = 1, 2, ..., t. In particular, Zxi > Zxj .

We define the influence range of xi to be the set of all variables xj influenced by xi, denoted

by IRxi .

I Lemma 11. Given an instance �, a vector Z œ [0, 1]n, and two vectors U,U Õ œ [0, 1]n,
we assume there exists i œ {1, 2, ..., n} such that Ui ”= U Õ

i
and Uj = U Õ

j
for all j ”= i. Then,

‡�,Z,U (x) = ‡�,Z,U Õ(x) for all variables xj /œ IRxi .

I Lemma 12. For any › œ (0, 1) and su�ciently large n,

Pr
5
max
1ÆiÆn

|IRxi | Ø n1/6

6
Æ exp

1
≠ lnn(ln lnn)›/4

2
.

They first showed that changing the value of only one entry, say Ui, in the internal vector
U only a�ects the values assigned to the variables in the influence range of the variable xi

(Lemma 11). They further showed that w.h.p. the size of the influence range of variables is
sublinear for all variables (Lemma 12). Note that in the original statement of Lemma 12
in [20], the index 1/6 in the inequality above can be any real number between 0 and 1/5.
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Here, we pick a fixed value 1/6 for simplicity. Combining these two lemmas, we can show
that w.h.p. the di�erences between ‡�,Z,Ui≠1 and ‡�,Z,Ui is upper bounded by n1/6 for all
i œ [n].
I Lemma 13. For any › œ (0, 1) and su�ciently large n,

Pr
Ë
d(‡�,Z,Ui≠1 ,‡�,Z,Ui) Ø n1/6 for some i œ [n]

È
Æ exp

1
≠ lnn(ln lnn)›/4

2
.

Proof. Fix an arbitrary i œ [n]. We know that Ui≠1
j

= Ui
j
for all j ”= i, and Ui≠1

i
”=

Ui
i
. By Lemma 11, we have ‡�,Z,Ui≠1(xj) = ‡�,Z,Ui(xj) for all variables xj /œ IRxi . If

d(‡�,Z,Ui≠1 ,‡�,Z,Ui) Ø n1/6 for some i œ [n], we have |IRxi | Ø n1/6. Hence, by Lemma 12,
the result follows. J

3.3 Freeness

Recall the definition of free steps. An iteration of the · -decimation algorithm DEC· is called a
free step if the local rule · gives the value 1/2 in that iteration. In this case, the value chosen
by the · -decimation algorithm for the selected variable is either 0 or 1 with even probability.
Intuitively, it means that the local rule · cannot capture useful information from the local
structure to guide the · -decimation algorithm choosing value for the selected variable, and
thus the · -decimation algorithm simply make a random guess for the assigned value. We
also recall the definition of a · -decimation algorithm being ”-free. A · -decimation algorithm
DEC· is ”-free on the random k-XORSAT instance � if w.h.p. the algorithm has at least ”n
free steps, on input �. Informal speaking, the more free the · -decimation algorithm, the less
the information captured by the local rule.

By using the Wormald’s method of di�erential equations, we can calculate the degree
profile of the remaining factor graph after t steps of the · -decimation algorithm, for all
0 Æ t Æ n. With the degree profiles, we can calculate the probability of each step being free,
and thus approximate how free the · -decimation algorithm is. The probability of having
free steps depends on the choice of the local rules. Lemma 14 shows the freeness of the
UC-decimation algorithm.
I Lemma 14. For k Ø 3 and r > 0, the UC-decimation algorithm DECUC is w1(k, r)-free on

the random k-XORSAT instance � ≥ �k(n, rn), where

w1(k, r) =
(kr)

1
1≠k

k ≠ 1 “

3
1

k ≠ 1 , kr
4

and “ is the lower incomplete gamma function given by “(a, x) ©
s
x

0
ta≠1e≠tdt.

The role of the local rules is to approximate the marginal probability of the selected variable
over a randomly chosen solution for the sub-instance induced by the local neighborhood
of the selected variable. Interestingly, even we have a local rule · that is capable to give
the exact marginals when the factor graph is a tree, it still cannot provide enough useful
information to guide the · -decimation algorithm making good decision for the assigned value.
With such a local rule, the · -decimation algorithm still has a certain level of freeness.
I Lemma 15. Assume the local rule · can give the exact marginal probabilities of variables

on any factor graph that is a tree. For k Ø 3 and r > 0, the · -decimation algorithm DEC· is

we(k, r)-free on the random k-XORSAT instance � ≥ �k(n, rn), where

we(k, r) =
⁄

1

0

SR(x)dx,

S0(x) = 1 and Sl(x) = exp
!
≠kr[(1 ≠ x)(1 ≠ Sl≠1(x)) + x]k≠1

"
for any l Ø 1 and x œ R.
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4 Proof of main theorems

We denote by –n the success probability of the · -decimation algorithm DEC· , namely, –n

is the probability that the assignment output by the · -decimation algorithm DEC· on the
random k-XORSAT instance � ≥ �k(n, rn) with n variables and rn clauses is a solution for
�. Formally, we define –n by the following expression –n © Pr

#
‡�≥�k(n,rn),Z,U œ S(�)

$
,

where � ≥ �k(n, rn) is the random k-XORSAT instance, Z is the random ordering vector,
and U is the random internal vector, as mentioned in Section 3.1. Now, we consider the
sequence of output assignments {‡i = ‡�,Z,Ui}n

i=0
generated by the procedure in Section 3.1.

We first prove that if the algorithm DEC· is ”-free, then the expected distance E [d(‡0,‡n)]
between the first and the last assignments in the sequence is at least (”/2)n+ o(n).

I Lemma 16. If the · -decimation algorithm DEC· is ”-free on the random k-XORSAT

instance � ≥ �k(n, rn) for some ” > 0, then we have E [d(‡0,‡n)] Ø (”/2)n+ o(n).

Next, we will show that, if the · -decimation algorithm is “free enough”, namely, strictly
2µ(k, r)-free, then we can pick a pair of output assignments and project them to the core
instance �c so that the distance between the two corresponding core assignments falls in the
forbidden range from the overlap gap property of the core instance �c.

I Lemma 17. For any k Ø 3 and r œ (rcore(k), rsat(k)), if the · -decimation algorithm DEC·

is strictly 2µ(k, r)-free on the random k-XORSAT instance � ≥ �k(n, rn), then there exist

0 Æ i0 Æ n and 0 < ‘Õ < ‘(k, r) such that w.h.p. we have
--d(fi(‡0),fi(‡i0)) ≠ 1

2
‘Õn

-- < 1

4
‘Õn,

where ‘(k, r) is given in Lemma 8.

The following lemma shows that the probability of both the output assignments ‡�,Z,U0

and ‡�,Z,Ui0 being solutions for the instance � is lower bounded by –2
n
.

I Lemma 18. For any i œ [n], we have Pr [‡0 œ S(�) and ‡i œ S(�) ] Ø –2
n
.

Finally, we can combine all above lemmas in this section to give the proof of Theorem 1.

Proof of Theorem 1. We denote by A the event of
--d(fi(‡0),fi(‡i0)) ≠ 1

2
‘Õn

-- < 1

4
‘Õn, and we

have Pr [A ] = 1≠ o(1) by Lemma 17. On the other hand, we pick i = i0 for the inequality in
Lemma 18. We denote by B the event of ‡0 œ S(�) and ‡i0 œ S(�), and Pr [B ] Ø –2

n
. Note

that we have Pr [A fl B ] Ø 1 ≠ Pr [Not A ] ≠ Pr [Not B ] Ø 1 ≠ o(1) ≠ (1 ≠ –2
n
) = –2

n
≠ o(1).

Thus, we have –n Æ Pr [A fl B ]1/2 + o(1).
Now assume both A and B take places. Since both ‡0 and ‡i0 are solutions for the

random instance �, both fi(‡0) and fi(‡i0) are solutions for the core instance �c. Moreover,
the distance d(fi(‡0),fi(‡i0)) falls in the interval ((1/4)‘Õn, (3/4)‘Õn) ( (o(n), ‘n), which takes
place with probability at most o(1) by Lemma 8. So, we have Pr [A fl B ] Æ o(1), and thus
–n Æ o(1). J

To prove Theorem 2 and 3, all we need to do is to show that DECUC and DEC· with the
exact marginal assumption are strictly 2µ(k, r)-free. The results immediately follow by
applying Theorem 1. From Lemma 14 and 15, we know that DECUC and DEC· are w1(k, r)-
free and we(k, r)-free, respectively. So, we only need to show that w1(k, r) > 2µ(k, r) and
we(k, r) > 2µ(k, r). It can be done with the following lemmas, which give an upper bound
of µ(k, r) in Lemma 19, a lower bound of w1(k, r) in Lemma 20, and a lower bound of and
we(k, r) in Lemma 21.

I Lemma 19. For any k Ø 4 and r œ (rcore(k), rsat(k)), we have µ(k, r) < µu(k), where

µu(k) = (1 ≠ e≠1/k) ≠ (1 ≠ e≠1/k) ln(1 ≠ e≠1/k).
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I Lemma 20. For any k Ø k0 Ø 3 and r œ (rcore(k), rsat(k)), w1(k, r) Ø wú
1
(k0), where

wú
1
(k) = k

1
1≠k

k ≠ 1“

A
1

k ≠ 1 , k
3

k

k + 1

4k≠1
B

I Lemma 21. For any k Ø k0 Ø 3 and r œ (rcore(k), rsat(k)), we have we(k, r) Ø
wú

e
(k0, rsat(k0)), where wú

e
(k, r) = x≠(k, r) ≠ kr2(x≠(k, r))k and

x±(k, r) =

Q

a1±
Ò
1 ≠ 4(kr)≠2[(kr)

1
k≠1 ≠ 1]

2

R

b

1
k≠2

. (1)

Proof of Theorem 2. Let k Ø 9 and r œ (rcore(k), rsat(k)). By Lemma 19 and 20, we have
2µ(k, r) < 2µu(9) Æ 0.3420 < 0.3575 Æ wú

1
(9) Æ w1(k, r). Then, by Lemma 14, DECUC is

strictly 2µ(k, r)-free. The result follows. J

Proof of Theorem 3. Let k Ø 13 and r œ (rcore(k), rsat(k)). By Lemma 19 and 21, we have
2µ(k, r) < 2µu(13) Æ 0.2668 < 0.2725 Æ wú

e
(13) Æ we(k, r). Then, by Lemma 15, DEC· is

strictly 2µ(k, r)-free. The result follows. J
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Abstract
Our main technical contribution is a polynomial-time determinisation procedure for history-determi-
nistic Büchi automata, which settles an open question of Kuperberg and Skrzypczak, 2015. A key
conceptual contribution is the lookahead game, which is a variant of Bagnol and Kuperberg’s
token game, in which Adam is given a fixed lookahead. We prove that the lookahead game is
equivalent to the 1-token game. This allows us to show that the 1-token game characterises
history-determinism for semantically-deterministic Büchi automata, which paves the way to our
polynomial-time determinisation procedure.
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1 Introduction

History-deterministic (HD) automata are non-deterministic automata in which the non-
determinism can be resolved “on the fly”, based only on the prefix of the word read so
far [6, 15]. This concept can be formalised using the history-determinism game (HD game),
in which two players Adam and Eve make alternating moves choosing letters and transitions,
thus constructing a word and a run of the automaton on it, respectively. Eve wins if the
run is accepting or if the word is not in the language, and hence Eve’s winning strategy
will successfully resolve non-determinism by constructing an accepting run on the fly, for all
words in the language. An automaton is then defined to be history-deterministic if Eve has a
winning strategy in the game.

Henzinger and Piterman [11] introduced HD automata because of their potential to
speed up key algorithmic tasks in verification and synthesis, such as language containment
and strategy synthesis. In language containment, we ask whether all executions of an
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implementation A satisfy a specification H. If H is non-deterministic then the problem is
PSPACE-hard, but if H is HD then it is more tractable, because it amounts to checking
that H simulates A. This can be done in polynomial time if the parity index of H is fixed
[8, Theorem 3] and in quasi-polynomial time otherwise [18, Theorem 20]. Henzinger and
Piterman had originally dubbed HD automata as good-for-games automata in their work
because games whose winning conditions are represented by an HD automaton can be solved
e�ciently without automaton determinisation [11, Theorem 3.1], a well-known computational
bottleneck in synthesis.

1.1 Related work
Key questions studied for HD parity automata include recognising them, their succinctness
relative to deterministic automata, minimisation, and determinisation.

Recognising History-Deterministic Automata via Games. Kuperberg and Skrzypczak [14]
gave a polynomial time algorithm to recognise HD co-Büchi automata, and Bagnol and
Kuperberg [3] gave a polynomial time algorithm to recognise HD Büchi automata. These
algorithms have been conceptually unified by Boker, Kuperberg, Lehtinen, and Skrzypczak [5]
to be based on the 2-token game introduced by Bagnol and Kuperberg [3], leading to the
2-token conjecture.

I Conjecture 1 (The 2-token conjecture [3, 5]). A parity automaton is HD if and only if Eve

wins the 2-token game on it.

Proving the 2-token conjecture would imply that recognising HD parity automata of fixed
parity index can be done in polynomial time. In contrast, the best upper bound currently
known for the problem is EXPTIME, dating back to Henzinger and Piterman [11]. In the
general case, when the parity index is not fixed, a lower bound of NP-hardness has been
achieved only very recently [18].

Bagnol and Kuperberg [3] introduced the k-token game as a tool to characterise the
conceptually more complex HD game. Like in the HD game, in the k-token game for k Ø 1,
two players Adam and Even make alternating moves choosing letters and transitions, but in
addition, in every round, after Eve chooses a transition, Adam also chooses k transitions. As
a result, Adam constructs a word and k runs, Eve constructs a run, and Eve wins if her run
is accepting or all of Adam’s k runs are rejecting. A key insight in Bagnol and Kuperberg’s
work [3] is that the 2-token game is equivalent to the k-token game for all k Ø 2.

I Theorem 2 ([3]). Eve wins the 2-token game on a parity automaton if and only if for all

k Ø 2, Eve wins the k-token game on it.

Bagnol and Kuperberg’s proof that the 2-token game characterises history-determinism for
Büchi automata exploits this insight, by showing that if Adam wins the HD game on a Büchi
automaton then he can win the k-token game for some k that is doubly-exponential in the
size of the automaton, and hence also the 2-token game.

Boker et al. [5] have used an analogous, but more involved, argument to show that
the 2-token game also characterises history-determinism for co-Büchi automata, combining
Theorem 2 with the algorithm of Kuperberg and Skrzypczak [14] to recognise HD co-Büchi
automata e�ciently, which was based on the so-called Joker game. The Joker game is similar
to the 1-token game but, additionally, Adam has the power to (finitely many times) “play
Joker” by choosing a transition from Eve’s token instead of a transition from his token,
and Eve wins if her run is accepting, or Adam’s run is rejecting, or Adam has played Joker
infinitely many times.
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Kuperberg and Skrzypczak’s algorithm uses Joker games in their polynomial time al-
gorithm to recognise HD co-Büchi automata, but to date, it was not known if Joker games
characterise history-determinism on co-Büchi or Büchi automata, or on parity automata in
general.

Succinctness and minimisation of HD automata. Kuperberg and Skrzypczak [14] proved
that HD co-Büchi automata are exponentially more succinct than deterministic co-Büchi
automata [14], which is tight [15, Theorem 4.1]. Abu Radi and Kupferman [1] showed that
transition-based HD co-Büchi automata can be minimised in polynomial time and that they
have canonicity. In contrast, minimisation of state-based HD Büchi or HD co-Büchi automata
is NP-complete [22, Theorem 1]. Minimisation of transition-based Büchi automata is easily
seen to be in NP, but the exact complexity is open.

Determinisation of HD Büchi automata. Kuperberg and Skrzypczak [14] also proved that
every HD Büchi automaton with n states has an equivalent deterministic Büchi automaton
with at most n2 states. However, it is not known if HD Büchi automata are strictly more
succinct than deterministic Büchi automata.

The determinisation procedure of Kuperberg and Skrzypczak for an HD Büchi auto-
maton H involves carefully analysing the simulation game between H and an equivalent
deterministic Büchi automaton of exponential size. At a high level, the procedure iteratively
modifies the simulation game and the automaton H, eventually yielding an equivalent game
of quadratic size, from which a deterministic Büchi automaton of quadratic size can be
extracted, but the procedure itself runs in exponential time.

Kuperberg and Skrzypczak also gave a non-deterministic polynomial-time procedure for
determinisation of HD Büchi automata, which guesses a deterministic Büchi automaton of
quadratic size and then checks for language equivalence [14, Theorem 10]. They left the
exact complexity of determinisation for HD Büchi automata open, in particular, the question
of whether HD Büchi automata can be determinised in polynomial time.

1.2 Our Contributions
We introduce the k-lookahead game, a variant of the 1-token game, in which Adam’s
transition on his token is delayed by k steps, thus giving him a lookahead of k. We prove
that the 1-token game is equivalent to the k-lookahead game.
I Theorem A. For every parity automaton A, Eve wins the 1-lookahead game on A if

and only if she wins the k-lookahead game on A.

The 1-token game is syntactically equivalent to the 1-lookahead game. Theorem A thus
demonstrates that the 1-token game is already quite powerful, and it is analogous to
Theorem 2 of Bagnol and Kuperberg.
With Theorem A as a key tool, we show that the 1-token game characterises history-
determinism on semantically-deterministic Büchi automata. These are automata in which,
for every state, all transitions labelled by the same letter lead to language-equivalent
states [20].
I Theorem B. A semantically-deterministic Büchi automaton is history-determinsitic if

and only if Eve wins the 1-token game on it.

A consequence of Theorem B is that Joker games characterise history-determinism on
Büchi automata (Theorem 19). Since Joker games have smaller arenas than 2-token games,
this leads to a more e�cient algorithm for recognising HD Büchi automata (Lemma 20).

ICALP 2024
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We give a parity automaton with priorities 1, 2, and 3 on which Eve wins the Joker game
but that is not HD (Theorem 23). This implies that the Joker game does not characterise
history-determinism for parity automata and that Theorem B does not extend to parity
automata.
We give a polynomial time determinisation procedure for HD Büchi automata, thus
resolving an open question of Kuperberg and Skrzypczak [14].
I Theorem C. There is a polynomial-time procedure that converts every HD Büchi

automaton with n states into an equivalent deterministic Büchi automaton with n2
states.

Our determinisation procedure is inspired by that of Kuperberg and Skrzypczak [14], but
rather than working with the simulation game between the automaton and a deterministic
automaton of exponential size, thanks to Theorem B, we can work with the 1-token
game instead. This results in an algorithm that is conceptually simpler and that runs in
polynomial time.
We also give a technique to reduce game-based characterisations of history-determinism
to universal automata (automata that accept all words). Hence to prove the 1-token
game characterisation of history-determinism for semantically-deterministic (SD) Büchi
automata, it su�ces to prove it for universal SD Büchi automata (Theorem 11). Likewise,
to prove the 2-token conjecture for parity automata, it su�ces to prove it for universal
parity automata (Theorem 13).

2 Preliminaries

We let N = {0, 1, 2, · · · } to be the set of natural numbers. For two natural numbers i, j such
that i < j, we write [i, j] to denote the set of integers {i, i+ 1, . . . , j}, and [j] to denote [0, j].
An alphabet � is a finite set of letters. We use �ú and �Ê to denote the set of words of
finite and countably infinite length over �, respectively. We also let Á be the unique word
of length 0. A language L œ �Ê is a set of infinite words. For a finite word u œ �ú and a
language L, we define u≠1L to be {w | uw œ L}.

2.1 Games
Game arenas. An arena is a directed graph G = (V,E) with vertices partitioned into V’’’
and V÷÷÷ between two players Adam and Eve, respectively. Additionally, a vertex v0 œ V’’’ is
designated as the initial vertex. We say that vertices in V÷÷÷ are owned by Eve and those in
V’’’ are owned by Adam.

A play on this arena is an infinite path starting at v0 and it is formed as follows. A play
starts with a token at v0 and it proceeds for infinitely many rounds. At each round, the
player who owns the vertex on which the token is currently placed chooses an outgoing edge,
and the token is moved along this edge to the next vertex for another round of play. This
creates an infinite path in the arena, which we call a play of G.

A game G consists of an arena G = (V,E) and a winning condition given by a language
L ™ EÊ. We say that Eve wins a play fl in G if fl œ L, and Adam wins otherwise. A strategy

for Eve in such a game G is a function from the set of plays that end at an Eve’s vertex to
an outgoing edge from that vertex. Eve’s strategy is said to be winning if any play produced
while she plays according to this strategy is winning for her. We say that Eve wins the game

if she has a winning strategy. Winning strategies are defined for Adam analogously, and
we say that Adam wins the game if he has a winning strategy. In this paper we deal with
Ê-regular games, which are known to be determined [17, 10], i.e., each game has a winner.
Two games are equivalent if they have the same winner.
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Parity games. An [i, j]-parity game G is played over a finite game arena G = (V,E), with
the edges of G labelled by a priority function ‰ : E �! [i, j] for some i, j œ N with i < j,
and i = 0 or i = 1. A play fl in the arena of G is winning for Eve if and only if the highest
edge priority that occurs infinitely often is even. It is well known that parity games can
be solved in polynomial time when the interval [i, j] is fixed, and in quasi-polynomial time
otherwise [7, 13, 16].

2.2 Automata
Parity automata. An [i, j]-non-deterministic parity automaton A = (Q,�, q0,�) consists
of a finite directed graph with edges labelled by letters in � and priorities in [i, j] for
some i, j œ N with i < j. These edges are called transitions, which are elements of the set
� ™ Q ◊ � ◊ [i, j] ◊ Q, and the vertices of this graph are called states, which are elements of
the set Q. Each automaton has a designated initial state q0 œ Q. For states p, q œ Q and a
letter a œ �, we use p

a:c
��! q to denote a transition from p to q on the letter a that has the

priority c.
A run on an infinite word w in �Ê is an infinite path in the automaton, starting at the

initial state and following transitions that correspond to the letters of w in sequence. We
write that such a run is accepting if it satisfies the parity condition, i.e., the highest priority
occurring infinitely often amongst the transitions of the run is even, and a word w in �Ê

is accepting if the automaton has an accepting run on w. The language of an automaton
A, denoted by L(A), is the set of words that it accepts. We write that the automaton A
recognises a language L if L(A) = L. A language L ™ �Ê is Ê-regular if it is recognised by
some parity automaton. A parity automaton A is deterministic if for any given state in A
and any given letter in �, there is at most one outgoing transition from that state on that
letter.

We write that [i, j], with i = 0 or 1, is the parity index of A. A Büchi (resp. co-Büchi)
automaton is a [1, 2] (resp. [0, 1]) parity automaton. A safety automaton is one where all
transitions have priority 0.

We write (A, q) to denote the automaton A with q as its initial state, and L(A, q) to
denote the language it recognises. Two states p and q in A are equivalent if L(A, p) = L(A, q).

History-determinism. The (HD game) is a two player turn-based game between Adam and
Eve, who take alternating turns to select a letter and a transition in the automaton (on
that letter), respectively. After the game ends, the sequence of Adam’s choices of letters
is an infinite word, and the sequence of Eve’s choices of transitions is a run on that word.
Eve wins the game if her run is accepting or Adam’s word is rejecting, and we say that an
automaton is HD if Eve has a winning strategy in the history-determinism game.

I Definition 3 (History-determinism game). Given a parity automaton A = (Q,�, q0,�), the
history-determinism game of A is defined between the players Adam and Eve as follows, with

positions in Q. The game starts at q0 and proceeds for infinitely many rounds. For each

i œ N, round i starts at a position qi œ Q, and proceeds as follows:

1. Adam selects a letter ai œ �;

2. Eve selects a transition qi
ai:ci���! qi+1 œ �.

The new position is qi+1 from where round (i + 1) is played. Thus, the play of a history-

determinism game can be seen as Adam constructing a word letter-by-letter, and Eve con-

structing a run transition-by-transition on the same word. Eve wins such a play if the

following holds: if Adam’s word is in L(A), then Eve’s run is accepting.

If Eve wins the history-determinism game on A, then we say that A is history-deterministic.
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Semantic-determinism. Let A be a parity automaton. A transition ” from p to q on a letter
a in A is called language-preserving if L(A, q) = a≠1L(A, p). We say that a parity automaton
is semantically-deterministic, SD for short, if all transitions in it are language-preserving.
The following lemma can be shown by a simple inductive argument on the length of words.

I Lemma 4. If a parity automaton is SD then all states in the automaton that can be reached

from a fixed state q upon reading a finite word u accept the language u≠1L(A, q).

SD automata were introduced by Kuperberg and Skrzypczak as residual automata [14]. We
follow Abu Radi, Kupferman, and Leshkowitz [21] by calling them SD automata instead.

2.3 Games on Automata
Simulation and simulation-like games (such as token games [3]) are fundamental amongst
the techniques we use in this paper. We define these games below.

Simulation and stepahead simulation.

I Definition 5 (Simulation game). Given two parity automata A = (P,�, p0,�A) and

B = (Q,�, q0,�B), the simulation game between B and A is a two player game played

between Eve and Adam as follows, with positions in P ◊ Q. The game starts at (p0, q0), and
proceeds for infinitely many rounds. For each i Ø 0, round i starts at position (pi, qi) and
proceeds as follows:

1. Adam selects a letter ai œ �;

2. Adam selects a transition pi
ai:c

Õ

���! pi+1 in A;

3. Eve selects a transition qi
ai:c��! qi+1 in B.

At the end of a play of the simulation game, the letters selected by Adam in sequence

form a word, while the sequence of his selected transitions and the sequence of Eve’s selected

transitions form runs on that word in A and B, respectively. We say Eve wins the game if

her run in B is accepting or Adam’s run in A is rejecting. If Eve has a strategy to win the

simulation game, then we say that B simulates A.

The stepahead simulation game between B and A is defined similarly to the simulation
game, except the orders of move in each round are changed as follows: Adam selects a letter
first, then Eve selects a transition on B, and then Adam selects a transition on A. The
winning condition is identical, which is that Eve’s run on B is accepting if Adam’s run on A
is accepting. If Eve wins the stepahead simulation game between B and A, then we say that
B step-ahead simulates A.

Token games. k-token games are similar to stepahead simulation games, but are played on
a single automaton, and Adam constructs k runs instead of one. The winning objective of
Eve requires her to construct an accepting run if one of k Adam’s runs is accepting.

I Definition 6 (k-token game). The k-token game on a non-deterministic parity automaton

A = (Q,�, q0,�) is defined between the players Adam and Eve as follows, with positions in

Q ◊ Qk
. The game starts at (q0, (q0)k) and proceeds in Ê many rounds. For each i œ N, the

round i starts at a position (qi, (p1i , p2i , · · · , pki )) œ Q ◊ Qk
, and proceeds as follows.

1. Adam selects a letter ai œ �.

2. Eve selects a transition qi
ai:c��! qi+1 œ �.

3. Adam selects k transitions p1i
ai:c

Õ
1���! p1i+1

, p2i
ai:c

Õ
2���! p2i+1

, · · · pki
ai:c

Õ
k���! pki+1

œ �.

The new position is (qi+1, (p1i+1
, p2i+1

, · · · , pki+1
)), from where round (i+ 1) begins.
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Thus, in a play of the k-token game on A, Eve constructs a run and Adam k runs, all

on the same word. Eve wins such a play if the following holds: if one of Adam’s k runs is

accepting, then Eve’s run is accepting.

Observe that the stepahead-simulation game between A and itself is equivalent to the 1-token
game on A.

Joker games. Joker games are defined similar to 1-token games, but additionally in each
round, Adam can choose to play Joker and choose a transition from Eve’s position instead
of a transition from his position. The winning condition for Eve is the following: If Adam’s
sequence of transitions satisfies the parity conditions and Adam has played finitely many
Jokers, then Eve’s run is accepting as well.

I Definition 7 (Joker games). The Joker game on a non-deterministic parity automaton

A = (Q,�, q0,�) is defined between the players Adam and Eve as follows, with positions

in Q ◊ Q. The game starts at (q0, q0) and proceeds in Ê many rounds. For each i œ N, the
round i starts at a position (qi, pi) œ Q ◊ Q, and proceeds as follows.

1. Adam selects a letter ai œ �.

2. Eve selects a transition qi
ai:ci���! qi+1 œ �

3. Adam either selects a transitions pi
ai:c

Õ
i���! pi+1, or plays Joker and selects a transition

qi
ai:c

Õ
i���! pi+1.

The new position is (qi+1, pi+1), from where round (i+ 1) begins.
Eve wins such a play if the following holds: if Adam plays finitely many Jokers and his

sequence of transitions satisfies the parity condition, then Eve’s run is accepting.

The following observations are easy to see.

I Lemma 8. If A is an HD parity automaton, and if B is a parity automaton such that

L(B) ™ L(A), then we have:

1. Eve wins the Joker game on A and the k-token game on A, for all k Ø 1;
2. A simulates and step-ahead simulates B.

Proof. Fix a winning strategy ‡ for Eve in the HD game of A. Consider the strategy for
Eve in the above games, in which she follows ‡ based on the letters Adam chooses, ignoring
the rest of his moves. Then Eve constructs an accepting run whenever the word constructed
by Adam is accepting. In particular, if Adam constructs an accepting run in the k-token
game or the (stepahead) simulation game, then his word must be in L(A), implying Eve’s
run is accepting as well.

Similarly, in a play of the Joker game, suppose Adam plays finitely many Jokers and his
sequence of transitions satisfies the parity condition. Let i be the last round where Adam
played a Joker. Then there is an accepting run on Adam’s word, which can be obtained by
concatenating Eve’s run until round (i≠ 1) with Adam’s run from round i. This implies that
Adam’s word is in L(A), once again implying that Eve’s run is accepting. J

2.4 History-Deterministic Automata and Simulation
Let L be an Ê-regular language and let FL be the set of automata whose recognized languages
are subsets of L, that is FL = {A | L(A) ™ L}. For A,B œ FL, we define A ∞ B to hold if
B simulates A. This relation ∞ is called the simulation preorder because it is reflexive and
transitive. Lemma 8 implies that every HD automaton H that recognises L is a greatest

element in FL with respect to the simulation preorder, that is, we have A ∞ H for all A such
that L(A) ™ L(H). We show that the converse also holds.
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I Lemma 9. Let L be an Ê-regular language and let FL = {A | L(A) ™ L}. Then, an

automaton H in FL is greatest w.r.t. the simulation preorder if and only if H recognises L
and it is history-deterministic.

Proof. We only need to prove the forward implication, since the backward implication follows
from Lemma 8. Let H œ FL be such that A ∞ H for all automata A that satisfy L(A) ™ L.
Fix D to be a deterministic parity automaton that recognises L (such a D always exists, see
[9, Theorem 1.19 and 3.11]). Then, in particular, we have D ∞ H. Observe that this implies
L(H) ´ L(D) = L, and since L(H) ™ L, we get that L(H) = L.

We proceed to show that Eve wins the HD game on H. Fix ‡ to be a winning strategy
for Eve in the simulation game between H and D. We use ‡ to construct a winning strategy
in the HD game on H as follows. During the letter game on H, Eve keeps a corresponding
play of the simulation game between H and D, where Adam is playing the same letters
as the HD game and choosing the unique transitions available to him. Then Eve chooses
transitions according to ‡ in the HD game and in the simulation game in her memory. This
way, whenever Adam’s word w in the HD game is in L(H) = L, then the unique run in D on
w is accepting, and hence, Eve’s run in the HD game on H must be accepting as well. J

We make explicit a corollary of the above lemma.

I Corollary 10 ([11, Theorem 4]). If a nondeterministic parity automaton A simulates a

language-equivalent history-deterministic automaton H then A is history-deterministic.

Proof. Let L(A) = L(H) = L. From Lemma 9, we know that H is a greatest element in FL,
and H ∞ A implies that A is a greatest element in FL as well. It follows from Lemma 9 that
A is history-deterministic. J

3 Su�cient to think about Universal Automata

In the next section, we will show that 1-token games characterise history-determinism on
semantically-deterministic Büchi automata (Theorem B). In order to show this, we start by
reducing this result to the restriction where our automata are universal (Theorem 11), i.e.,
recognise all words in the language. A very similar reduction also shows that proving the
2-token conjecture for universal parity is su�cient to conclude the 2-token conjecture for
parity automata (Theorem 19).

I Theorem 11. The following statements are equivalent:

1. For any semantically-deterministic Büchi automaton A, Eve wins the 1-token game on A
if and only if A is history-deterministic.

2. For any semantically-deterministic Büchi automaton U with L(U) = �Ê
, Eve wins the

1-token game on U if and only if U is history-deterministic.

We shall use the following fact shown by Boker, Henzinger, Lehtinen, and Prakash to
prove Theorem 11 [4].

I Lemma 12 ([4]). A non-deterministic parity automaton A is history-deterministic if and

only if it simulates all deterministic safety automata S with L(S) ™ L(A).
A proof of Lemma 12 can be found in the full version [2]. We now show Theorem 11.

Proof sketch for Theorem 11. It is clear that 1 implies 2. For the other direction, suppose
2 holds. Let A be a semantically-deterministic automaton that is not HD. We will show that
Adam wins the 1-token game on A.



R. Acharya, M. JurdziÒski, and A. Prakash 124:9

From Lemma 12, we know that there is a deterministic safety automaton S such that A
does not simulate S and L(S) ™ L(A). Consider the product safety automaton P of S and
A which recognises the language L(P) = L(S). We then complete P by adding an accepting
sink state f , and transitions to f from all states q on letters a such that q did not have an
outgoing transition on a in P. We call this automaton U . It is clear that L(U , p) = �Ê for
all states p in U , and hence U is SD. We show that Adam wins the HD game on U , by using
his winning strategy in the simulation game between A and S (recall that P was constructed
by taking product of S and A). The hypothesis implies that Adam wins the 1-token game
on U . We then show that we can adapt a winning strategy for Adam on 1-token game of U
to one for the 1-token game on A, by simply “projecting” his strategy to the A component:
note that since S is deterministic, in plays of the 1-token game on U , Eve’s and Adam’s
states have the same S-component at the start of each round. J

An almost word-by-word identical proof to above also shows that the 2-token conjecture
can be reduced to the case where the automata are universal.

I Theorem 13. The following statements are equivalent:

1. For any non-deterministic parity automaton A, Eve wins the 2-token game on A if and

only if A is history-deterministic.

2. For any non-deterministic parity automaton U with L(U) = �Ê
, Eve wins the 2-token

game on U if and only if U is history-deterministic.

4 When 1-Token Game is Enough

In this section, we will show the following result.

I Theorem B. A semantically-deterministic Büchi automaton is history-determinsitic if

and only if Eve wins the 1-token game on it.

Towards this, we first introduce k-lookahead games, which are variants of 1-token games
where Adam is given a lookahead of k.

4.1 Lookahead Games
Let us briefly recall how a round of the 1-token game on a parity automaton A works. In each
round, Adam selects a letter, then Eve selects a transition on that letter on her token, and
then Adam selects a transition on that letter on his token. The winning condition for Eve is
that at the end of the play, either Eve’s run is accepting or Adam’s run is rejecting. This is
very close to the simulation game between A and itself, except that the order of the moves in
which Eve and Adam select transitions has been reversed. One can, however, see the 1-token
game as a simulation game, where Adam picks the transition for round i in round (i+ 1).
Or equivalently, we can construct an automaton Delay(A) such that any non-determinism on
A is “delayed” by one step, and then the 1-token game on A is equivalent to the simulation
game between A and Delay(A). This insight was used by Prakash and Thejaswini to give
an algorithm for deciding history-determinism of one-counter nets, by reducing the 1-token
game to a simulation game [19]. Below we give a construction Delay on parity automata that
delays the non-determinism by one-step, inspired by a similar construction for one-counter
nets [19, Lemma 11].
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I Definition 14. For any non-deterministic parity automaton A = (Q,�, q0,�), the auto-

maton Delay(A) is constructed so that it runs “one letter behind” A, by storing a letter in its

state space. More formally, Delay(A) = (QÕ,�, s,�Õ), where QÕ = Q ◊ � fi {s}, and s is the

initial state. The set of transitions �Õ
is the union of the following sets of transitions.

1. {(s a:0
��! (q0, a)) | a œ �}.

2. {((p, a) aÕ
:c

��! (q, aÕ)) | (p a:c
��! q) œ �}.

Observe that Delay(A) accepts the same language as A. The following lemma is easy to
prove, since the expanded game arenas of the 1-token game on A, and the simulation game
between A and Delay(A) are equivalent, with identical winning conditions.

I Lemma 15. For every non-deterministic parity automaton A, Eve wins the 1-token game

on A if and only if A simulates Delay(A).

Furthermore, we can also show that Eve wins the 1-token game on Delay(A) if Eve wins
the 1-token game on A, by simply “delaying” her winning strategy in the 1-token game on A.

I Lemma 16. If Eve wins the 1-token game on an automaton A, then Eve wins the 1-token
game on Delay(A).

An iterative application of Lemmas 15 and 16 gives us the following corollary.

I Corollary 17. If Eve wins the 1-token game on a parity automaton A, then A simulates

Delay
k(A) for all k œ N.

Proof. Note that simulation relation is transitive, i.e., ifA0 simulatesA1 andA1 simulatesA2,
then A0 simulates A2. Suppose Eve wins the 1-token game on A. From Lemma 16, induction
gives us that Eve wins the 1-token game on Delay

k(A) for all k œ N. From Lemma 15, we
see that Delayk(A) simulates Delayk+1(A) for all k œ N. Combining this with transitivity of
simulation, we get that A simulates Delayk(A) for all k œ N. J

Call the simulation game between A and Delay
k(A) as the k-lookahead game on A. Note

that the 1-token game of A is then equivalent to the 1-lookahead game of A. Corollary 17
can thus be restated as the following theorem.

I Theorem A. For every parity automaton A, Eve wins the 1-lookahead game on A if and

only if she wins the k-lookahead game on A.

4.2 Games to Characterise History-Determinism
We now proceed to show Theorem B. From Theorem 11, we know that it su�ces to only
consider SD Büchi automata that are universal. The following lemma shows that every
universal SD Büchi automaton is history-deterministic with su�cient lookahead.

I Lemma 18. Let U be a semantically-deterministic Büchi automata such that L(U) = �Ê
.

Then, there is a K such that Delay
K(U) is history-deterministic.

Proof sketch. We let K = 2n, where n is the number of states of A. The crucial observation
is that since L(U , q) = �Ê for any state q in U , any finite word u that has length at least
2n must have a run from q that passes through an accepting transition. Eve thus wins the
history-determinism game on Delay

K(U) by exploiting the lookahead of K to take at least
one accepting transition every K steps. The run of Eve’s token then has infinitely many
accepting transitions and hence is accepting, as desired. J
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p q

a,b:3b:2

a:1 a,b:3

a:2

b:1

Figure 1 An [1,3]-automaton A that is not HD but on which Eve wins the Joker game.

We can now prove Theorem B.

Proof of Theorem B. The forward implication is clear by Lemma 8. For the backward
direction, suppose that Eve wins the 1-token game on A. Due to Theorem 11, we may assume
that A is universal. Then, from Lemma 18, we know that there is a K such that DelayK(A)
is history-deterministic. If Eve wins the 1-token game on A, then from Lemma 15, we know
that A simulates DelayK(A). But since Delay

K(A) is language equivalent to A, we get from
Corollary 10 that A is HD as well. J

Having shown that the 1-token game on a semantically-deterministic Büchi automaton
A is equivalent to the HD game on A, we are able to show that Joker games characterise
history-determinism on Büchi automata. We also get an alternate proof of Bagnol and
Kuperberg’s result of 2-token games characterising history-determinism of Büchi automata
as a corollary.

I Theorem 19. For every Büchi automaton A, the following statements are equivalent.

1. A is history-deterministic.

2. Eve wins the Joker game on A.

3. Eve wins the 2-token game on A.

We prove Theorem 19 by reducing it to SD automata [2, Lemma 33], similar to Bagnol
and Kuperberg [3, Lemma 16].

Joker games on a Büchi automaton have smaller arenas than 2-token games. As a result,
we get a more e�cient algorithm to recognise HD Büchi automata.

I Lemma 20. Given a non-deterministic Büchi automaton A = (Q,�, q0,�), we can decide

whether it is history-deterministic in time O(|�|2|Q|3|�|).

I Remark 21. While we have proven Theorem B by reducing it to universal automata for
the sake of simplicity of arguments, one can also give a more direct proof. Such a direct
proof involves arguing that if an automaton A is not history-deterministic, then there is a K
exponential in the size of A such that A does not simulate Delay

K(A). It then follows from
Lemma 15 that Eve loses the 1-token game on A, as desired.

To argue that A does not simulate Delay
K(A), we reason based on the size of Adam’s

strategy in the history-determinism game on A. Adam, in the simulation game between A
and Delay

K(A), can pick letters according to his strategy in the history-determinism game
on A, thus ensuring Eve produces a rejecting run on her token. At the same time, Adam
can exploit the lookahead in Delay

K(A) to construct an accepting run on his token, thus
winning the simulation game between A and Delay

K(A).

We end this section by showing that unlike Büchi automata, Joker games do not charac-
terise history-determinism on parity automata.
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I Example 22. Consider the [1, 3]-automaton A shown in Figure 1. Note that A accepts all
words in {a, b}Ê, and is SD. It is easy to see that the automaton A is not history-deterministic,
since Adam can win the history-determinism game on A by choosing the letter a when Eve’s
token is at p, and b when her token is at q. This forces Eve to never see an even transition,
causing her run to be rejecting.

Eve wins the Joker game on A, however. Consider the strategy of Eve where she switches
states if her and Adam’s tokens are at di�erent states, and otherwise stays at the same state.
For Adam to win, Adam must play only finitely many Jokers, and construct an accepting
run, which requires him to eventually stay in the same state. But then, Eve’s strategy will
ensure that Eve’s and Adam’s run are eventually identical, thus ensuring Adam cannot win
the Joker game of A.

I Theorem 23. Joker games do not characterise history-determinism on (semantically-

deterministic) parity automata.

5 Determinising HD Büchi Automata in Polynomial Time

In this section, we present a polynomial time determinisation procedure for HD Büchi
automata with only a quadratic state-space blowup. Our procedure combines ideas from the
exponential-time procedure given by Kuperberg and Skrzypczak [14] with our 1-token game
characterisation of history-determinism on SD Büchi automata.

I Theorem C. There is a polynomial-time procedure that converts every HD Büchi automaton

with n states into an equivalent deterministic Büchi automaton with n2
states.

Let H be an HD Büchi automaton. Kuperberg and Skrzypczak’s procedure relies
on carefully analysing the simulation game between H and an equivalent deterministic
Büchi automaton D whose states are the subsets of H. Their procedure iteratively makes
modifications to H and D based on the structure of Eve’s winning strategies in this game or,
more precisely, the progress measures [12] or the signatures [23] of the vertices in this game,
which they call ranks [14]. The end result of their procedure is a relation between states of H
and states of D that correspond to sets containing a singleton in H. A product construction
based on this relation allows them to construct an equivalent determinsitic Büchi automaton
whose number of states is quadratic in the number of states of A.

The reason Kuperberg and Skrzypczak work with the simulation game between H and
D is that it characterises the history-determinism of H. A non-deterministic automaton is
HD if and only if it simulates an equivalent deterministic one, as shown by Hezinger and
Piterman [11, Theorem 4]. Our result on 1-token games characterising history-determinism
(Theorem B) allows us to instead work with the 1-token game on H. This results in a
conceptually simpler procedure that works in polynomial time.

We present our algorithm in two steps. First, we introduce HD Büchi automata that
have a sprint self-simulation, and we give a polynomial time determinisation procedure for
them. The procedure involves a quadratic state-space blowup. Then, we give a polynomial
time iterative procedure to transform H into an equivalent HD Büchi automaton of the same
size that has a sprint self-simulation. Overall, this gives us a polynomial time procedure to
determinise HD Büchi automata with a quadratic state-space blowup.

5.1 Determinising Automata with Sprint Self-Simulation
In this subsection, we describe what automata with sprint self-simulation are and give a
polynomial time determinisation procedure for such HD Büchi automata. The key concept
here is the sprint simulation relation between two Büchi automata, characterised by the sprint
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step-ahead simulation game. This game is similar to the step-ahead simulation game, but the
winning condition for Eve is that she must see an accepting transition before Adam does, i.e.,
she is in a sprint with Adam to see an accepting transition in the step-ahead simulation game
first. Sprint step-ahead simulation (game) would be a more accurate phrase, but for brevity,
we shorten it to just sprint simulation (game).

I Definition 24. For two non-deterministic Büchi automata A = (Q,�, q0,�A) and

B = (P,�, p0,�B), the sprint simulation game between A and B is played on the set

of positions Q ◊ P and it proceeds in rounds. In each round i = 0, 1, 2, . . . , from position

(qi, pi), the two players Adam and Eve make the following choices:

1. Adam chooses a letter ai œ �;

2. Eve chooses a transition ”i = (qi
ai:ci���! qi+1) œ �A;

3. Adam chooses a transition ”Õ
i = (pi

ai:c
Õ
i���! pi+1) œ �B.

The new position is (qi+1, pi+1). At every round i, if transition ”i is accepting then Eve

wins the game, and otherwise, if the transition ”Õ
i is accepting then Adam wins the game. If

neither ”i nor ”Õ
i are accepting transitions, then the game continues for another round. Eve

wins every infinite play.

Observe that if Eve wins the sprint simulation game then she can do so by a positional
strategy, because the objective for Eve is a disjunction of a safety and a reachability objective,
which can be seen as a [0, 1]-parity game. If Eve has a winning strategy in the above game,
we say that A sprint simulates B. The sprint simulation relation is transitive, i.e., if A
sprint simulates B and B sprint simulates C, then A sprint simulates C [2, Lemma 36].
I Remark 25. The sprint simulation relation is similar to the ‘dependency’ relation intro-
duced by Kuperberg and Skrzypczak [14, Definition 30]. While the sprint simulation relation
is between two Büchi automata, dependency relation is derived from the sprint simula-
tion game between a Büchi automaton and an equivalent exponential-sized deterministic
Büchi automaton.

We say that an HD Büchi automaton H has a sprint self-simulation if it is semantically-
deterministic and for every state p in H, there is a language-equivalent state q, such that
(H, p) sprint simulates (H, q). When H is clear from the context, we will just say that p
sprint simulates q. For the rest of this subsection, fix H = (Q,�, q0,�) to be an HD Büchi
automaton that has a sprint self-simulation. The following lemma follows from transitivity
of sprint simulation.

I Lemma 26. For every state p in H, there is a language-equivalent state q such that p
sprint simulates q and q sprint simulates itself.

Proof. Fix a state p in H. Then, there is a language-equivalent state q0 in H such that
p sprint simulates q0. If q0 does not sprint simulates itself, there is another language-
equivalent q1 such that q0 sprint simulates q1. Repeating this argument, we get a sequence
of states q0, q1, q2, . . . , such that qi sprint simulates qi+1. Since, there are finitely many
states in H, there are two natural numbers i < j such that qi = qj . Due to transitivity of
sprint simulation [2, Lemma 36], it follows that p sprint simulates qi and qi sprint simulates
itself, as desired. J

Let us call a state q sprint deterministic if the automaton H can be determinised by
deleting transitions to get a deterministic subautomaton Fq so that the following holds: for
all finite words w that have a run in H starting at q going through an accepting transition,
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the unique run on w in Fq from q also sees an accepting transition. Thus, for states q that
are sprint deterministic, there is a uniform strategy that achieves the objective of seeing an
accepting transition as soon as possible on all words. We say that the automaton Fq as
above is a witness for sprint determinism of q.

I Lemma 27. A state q in H is sprint deterministic if and only if q sprint simulates itself.

Moreover, there is a deterministic subautomaton F that can be computed in polynomial time

and is a witness for all sprint deterministic states.

Lemmas 26 and 27 above tell us that every state in H is either sprint deterministic, or it
sprint simulates a state that is sprint deterministic. Fix a subautomaton F from Lemma 27,
and a positional Eve strategy · in the step-ahead simulation game from (p, q) for all pairs of
states (p, q) such that p sprint simulates q.

The deterministic automaton D that is language-equivalent to H is then constructed to
consist of pairs of states (p, q) such that p and q are language equivalent, p sprint simulates
q, and q is sprint deterministic. Note that the pair of such states can be found in polynomial
time, since checking for language containment on HD Büchi automata [18, Corollary 17] and
deciding the winner of sprint simulation game can be done in polynomial time. Furthermore,
for each state p in H, we know from Lemmas 26 and 27 that there is a state q in H such that
(p, q) is a state in D. We let the initial state d0 be (q0, r0) for some r0 such that (q0, r0) œ D.

At a state (q, p), the transitions in D from the second component p are chosen according
to transitions from F , while transitions from q are chosen via the positional Eve strategy · .
When an accepting transition q

a:2
��! qÕ is taken on the first component, we update the second

component deterministically to be pÕ such that (qÕ, pÕ) is a state in D. Or, equivalently, qÕ

and pÕ are language equivalent, qÕ sprint simulates pÕ, and pÕ is sprint deterministic. The
priorities of transitions in D are the priorities of transitions of the first component.

We show the correctness of our construction using the definition of sprint simulation
game and the fact that H is semantically-deterministic.

I Lemma 28. The automaton D accepts the same language as H.

Proof. L(D) ™ L(H): If fl is an accepting run of a word w in D, then the projection of fl on
the first component is an accepting run in H as well.

L(H) ™ L(D): We show that for each state (p, q) in D, if w œ L(H, p) then the run
from (p, q) on w in D sees an accepting transition eventually. We can then conclude by
induction and the semantic determinism of H that runs of D on all accepting words in L(H)
contain infinitely many accepting transitions each, and hence are accepting. To see this, let
w œ L(H, p) and let flD be the run of D on w from (p, q). By construction of D, we know
that q is language-equivalent to p. Since q is sprint deterministic, the second component of
flD in D must contain an accepting transition on w eventually. But since p sprint simulates q,
the run on the first component of flD contains an accepting transition as well, as desired. J

5.2 Towards Automata with Sprint Self-Simulation
We now present a polynomial time algorithm to convert an HD Büchi automaton into
an equivalent HD Büchi automaton that has a sprint self-simulation. Throughout this
subsection, let H = (Q,�, q0,�) be an HD Büchi automaton.

We say that H is good if H is semantically-deterministic and Eve wins the Joker game
from all states in H. Every HD Büchi automaton H can be converted to an equivalent good
HD Büchi automaton in polynomial time: we fix a winning strategy · for Eve on the Joker
game on H, and consider the subautomaton HN consisting of transitions that Eve takes
according to · [2, Lemma 38]. We thus assume without loss of generality that H is good.
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To get an HD Büchi automaton equivalent to H and that has a sprint self-simulation, we
iteratively make modifications to H based on the ranks of the 1-token game on H. We first
give a description of the 1-token game on a Büchi automaton as a [0, 2]-parity game, and
briefly recall the properties of ranks that we need on such games.

I Definition 29. For a semantically-deterministic Büchi automaton B = (Q,�, q0,�), define
the [0, 2]-parity game G1(B) = (V,E) as follows:

The set of vertices V consists of the set V = V1 fi V2 fi V3, where:

1. V1 = {(p, q) | p, q are states reachable from q0 upon reading the same word w}
2. V2 = {(p, a, q) | (p, q) œ V1}
3. V3 = {(pÕ, q, a) | (p, a, q) œ V2 and p

a
�! pÕ œ �}

Eve’s vertices are V÷÷÷ = V2, while Adam’s vertices are V’’’ = V1 fi V3

The set of edges E is the union of following sets:

1. E1 = {(p, q) �! (p, a, q) | a œ �} (Adam chooses a letter)

2. E2 = {(p, a, q) �! (pÕ, q, a) | p a:c
��! pÕ œ �} (Eve chooses a transition on her token)

3. E3 = {(pÕ, q, a) �! (pÕ, qÕ) | q a:c
��! qÕ œ �} (Adam chooses a transition on his token)

The priority function � is defined as follows. All elements in E1 are assigned priority 0,

while edges (p, a, q) �! (pÕ, q, a) in E2 are assigned priority 2 if the transition ” = p
a:c
��! pÕ

in B is accepting (or equivalently, c = 2), and 0 otherwise. The edge (pÕ, q, a) �! (pÕ, qÕ)
in E3 is assigned priority 1 if the transition q

a:c
��! qÕ

is accepting, and 0 otherwise.

Observe that since H is SD, we have L(H, p) = L(H, q) if (p, q) is a vertex in G1(H).

Ranks. We now define the ranks of a [0, 2]-parity game G. For each vertex v in G, rank(v)
is the largest number of 1’s that Adam can guarantee Eve will see before seeing a 2 in the
play (or only 0’s) starting from v.

Observe that Eve wins such a parity game from every position if and only if the ranks of
all the vertices are bounded. If this is the case, then there is a positional winning strategy · ,
using which Eve can guarantee that she sees at most rank(v) many 1’s before seeing a 2 (or
seeing 0’s forever) [23, Lemma 8] in every play. We will call such a strategy optimal. For
[0, 2]-parity games with n vertices and m edges, an optimal strategy can be computed in
time O(mn) [12, Theorem 11].

The following property of ranks follows from their definition.

I Lemma 30. Let G be a [0, 2]-parity game, and let v
e
�! u be an edge in G, such that either

v belongs to Adam, or the edge e is prescribed by Eve’s optimal strategy · . Then the edge e
has priority 2 or rank(v) Ø rank(u). Furthermore, this inequality is strict if e has priority 1.

Consider the 1-token game G1(H), and the ranks of its vertices. Note that for a vertex
(q, p) in G1(H), we have rank(q, p) = 0 if and only if q sprint simulates p. Define, for each
state q œ H, its optimal rank opt(q) to be the minimum rank of a vertex of the form (q, p)
in G1(H). Note that if opt(q) = 0 for all states q œ H, then H has a sprint self-simulation.
Thus, our iterative procedure focuses on reducing the optimal ranks for all states until they
are all 0. We describe this procedure below.

Iterating towards a sprint self-simulation. Set H0 = H. For each i Ø 0, perform the
following three steps on Hi until Hi+1 = Hi.
1. For all vertices (p, q) œ G1(Hi), compute the optimal ranks opti(p) in G1(Hi).
2. Obtain HÕ

i from Hi by removing all transitions q a:1
��! qÕ with opti(q) < opti(qÕ).

3. Obtain Hi+1 from HÕ
i, by making all transitions q a:1

��! qÕ with opti(q) > opti(qÕ) accepting.
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We show that for each i, both HÕ
i and Hi+1 are good HD Büchi automata that are equivalent

to Hi [2, Lemmas 39 and 40]. By a simple induction, we get that each Hi for i Ø 0 is a good
HD Büchi automaton equivalent to H.

Note that in steps 2 and 3, we are either removing rejecting transitions or making rejecting
transitions accepting, and hence this procedure terminates after at most |�| iterations. Let
Hú be the automaton obtained after the procedure terminates. Since Hú is good, we know
that it is SD. The next lemma thus shows that Hú has a sprint self-simulation.

I Lemma 31. For all states p in Hú
, there is a language-equivalent state q in Hú

such that

p sprint simulates q.

Proof. Assume, to the contrary, that there exists a state p such that optú(p) = rankú(p, q) > 0.
Fix an optimal winning strategy · for Eve in G1(Hú). Consider a finite play fl of G1(Hú)
from (p, q) where Eve is playing according to · , Adam chooses an accepting transition in his
token at some point, while Eve is unable to. Then by monotonicity of ranks (Lemma 30), we
know that rankú strictly decreases across fl at some point. Then, there must be a rejecting
transition across which the quantity optú decreases as well. But since such transitions would
have been made accepting in step 3 of the iteration, we get a contradiction. J

From the polynomial time determinisation construction for HD Büchi automata that have
a sprint self-simulation presented in Section 5.1, we get a polynomial time determinisation
procedure for HD Büchi automata. This concludes the proof of Theorem C.

6 Discussion

Our paper has shown two key results on HD Büchi automata: a 1-token game based
characterisation of history-determinism for semantically-deterministic Büchi automata, and
a polynomial time determinisation procedure. In the process of obtaining these results, we
developed several novel techniques that we believe to be equally exciting and insightful. We
finish by remarking some implications of our results and techniques, and natural future
directions that our work points to.

Our first technique, presented in Section 3, reduces game based characterisations of
history-determinism on parity automata to parity universal automata. But the history-
determinism game on such an automaton is just a parity game, since Adam’s word is always
accepting. The 2-token conjecture thus reduces, by Theorem 13, to showing that this parity
game is equivalent to the 2-token game. This seems easy enough to show at first glance, but
it proves to be (unsurprisingly) di�cult. This result also shows that the di�culty in proving
or disproving the 2-token conjecture arises not from the language an automaton recognises,
but rather from the structure of the automaton.

We also introduced lookahead games, and showed that k-lookahead games are equivalent
to 1-token games for all k Ø 1 (Theorem A). This shows that the 1-token games are quite
powerful, in the same sense that 2-token games are powerful due to them being equivalent to
k-token games for all k Ø 2. While our 1-token game characterisation of history-determinism
on SD Büchi automata does not extend to parity automata (Theorem 23), one can combine
the two di�erent approaches to give the 2-token game more power, both in the form of
lookahead and more tokens. It would be interesting to consider such games to try extending
the 2-token conjecture beyond Büchi and co-Büchi automata.

Our algorithm to determinise HD Büchi automata involves a quadratic blowup. However,
we do not know whether this is tight. In fact, it is still open if HD Büchi automata are
strictly more succinct than determinstic Büchi automata. Nevertheless, we are hopeful that
our algorithm can o�er some insights on how to make progress on this problem.
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Let us end with a problem highlighted by Boker and Lehtinen in their recent survey [6,
Section 6.3.2]. In all the existing game-based characterisations which are used to recognise HD
automata e�ciently, including ours (Theorem B), it is not clear how we can naturally convert
a winning strategy for Eve from the 2-token game or the Joker game to a winning strategy in
the HD game. Our algorithm to determinise HD Büchi automata, however, can be seen as one:
starting with a winning strategy for Eve in the Joker game, we construct a strategy in the
HD game that requires linear memory, thus obtaining a deterministic automaton of quadratic
size. But the proof of correctness of our algorithm relies on Theorem B. Towards a more pure
strategy-transfer argument, where ideally an algorithm for strategy transfer also proves a
game-based characterisation of history-determinism, our algorithm comes tantalisingly close.
Indeed, proving that the automaton constructed in Step 2 preserves the relevant invariants [2,
Lemma 39] is the only place where we use the fact that we started with an HD automaton.
We believe that trying to get rid of this assumption, in order to give an alternative strategy-
transfer proof for the 1-token game characterisation of history-determinism on SD Büchi
automata, could lead to crucial insights towards better understanding HD (Büchi) automata
and token games.
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Abstract
We lift metrics over words to metrics over word-to-word transductions, by defining the distance
between two transductions as the supremum of the distances of their respective outputs over all
inputs. This allows to compare transducers beyond equivalence.

Two transducers are close (resp. k-close) with respect to a metric if their distance is finite (resp. at
most k). Over integer-valued metrics computing the distance between transducers is equivalent to
deciding the closeness and k-closeness problems. For common integer-valued edit distances such as,
Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness
and the k-closeness problems are decidable for functional transducers. Hence, the distance with
respect to these metrics is also computable.

Finally, we relate the notion of distance between functions to the notions of diameter of a relation
and index of a relation in another. We show that computing edit distance between functional
transducers is equivalent to computing diameter of a rational relation and both are a specific instance
of the index problem of rational relations.
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1 Introduction

For meaningfully comparing two words (or sequences, vectors, functions, etc.), it is often
necessary to have a measure that quantifies their (dis)similarity. It usually consists of
associating a nonnegative integer to two words that indicates how di�erent they are from
each other. This usually defines a distance between words, the most popular of which are
edit distances. It is the minimum number of edit operations required to transform one word
into another. These operations typically include inserting or deleting a letter, substituting
a letter with another, swapping adjacent letters (transpositions), and cyclic shifts. Edit
distances are studied in coding [29, 41], parsing [2], speech recognition [33, 1], molecular
biology [18, 24] etc. Interesting combinatorial problems on words such as the computation of
longest common subsequences can be reduced to computing edit distances [6]. For a detailed
overview of the history and applications of edit distances, see [27].
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The notion of distance between two words can be lifted naturally to distance between a
word and a set of words, or between two sets of words, and so on. There is a long line of
research of this kind: computing the edit distance between two languages – usually defined
as the smallest distance between any two pairs from the respective sets. It could be between
a word and a regular language [42, 4], two regular languages [31], a regular language and
itself [25], or a regular language and a context-free language [21]. In all these settings there
are e�cient algorithms for computing the edit distances.

In this paper we study the distance between two word-to-word functions (transductions)
given by finite state transducers, i.e., automata with output. Finite state transducers are
used in a variety of software and hardware systems such as encoders, decoders, demuxers,
spell checkers, text normalizers, schema translators, template code generators, etc.

q0 q1

a|a, b|b

a|‘, b|‘

(a) T1.

q0 q1

a|‘, b|‘

a|a, b|b

(b) T2.

q0

a|a

b|‘

(c) T3.

Figure 1 T1 outputs letters at the odd positions, T2 outputs letters at the even positions and T3
outputs only a’s.

Our aim is to develop a framework to meaningfully compare two transductions beyond
equivalence. Consider the functions given by the transducers in Figure 1. The transducers T1
and T2 output the letters at the odd and even positions respectively, while the transducer T3
erases b’s in the input. If we were to find the odd one among these three functions, arguably
T3 will be picked, with the length of the respective output on any input deviating significantly
from that of the others. Our aim is to define a measure that quantifies such distances.

If we have a metric to compare the output words, we can extend it to transductions as
follows. The distance between two transductions is the least upper bound of the distances
between their respective outputs on any input word. We assume that their domains are the
same, and we set the distance to infinity if this is not the case. We say that two transductions
are close if their distance is finite, and they are k-close if their distance is at most k. We may
simply say that two transducers are close (or k-close) instead, to mean that the transductions
defined by these transducers are close (or k-close).

We are interested in the following question: Given two finite state transducers, are

the transductions defined by them close (or simply are the transducers close)? Clearly,
deciding closeness is a boundedness problem. We show closeness as well as k-closeness
are decidable for various edit distance metrics, in particular Hamming (letter-to-letter
substitutions), transposition (swapping adjacent letters), conjugacy (only cyclic shifts) and
Levenshtein family of distances – Longest common subsequence (insertion and deletion),
Levenshtein (insertion, deletion and substitution), and Damerau-Levenshtein (insertion,
deletion, substitution and adjacent transposition). It turns out that computing distance
between transducers is equivalent to deciding closeness and k-closeness over integer-valued
metrics (see Proposition 3.6). Hence for the edit distances mentioned above, the distance
between transducers is computable.
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A related notion is that of diameter of a relation. We define it to be the supremum of
the distance of every pair in the relation. We are interested in computing the diameter of
rational relations over words, that is those given by (not necessarily functional) finite state
transducers. A rational relation is said to have bounded diameter (resp. k-bounded diameter)
if the diameter of the relation is finite (resp. at most k). It turns out that for every pair
of transductions T1 and T2 there is a rational relation R such that for every metric, the
diameter of R is same as the distance between T1 and T2. In fact, the converse is also true
by virtue of Nivat’s theorem (see Theorem 3.23).

Another related notion is that of the index of a rational relation in the composition closure

of another. Let R,S be a rational relation over words. The index of R in the composition
closure of S is defined to be the smallest integer k such that the relation R is contained in the
k-fold composition of S. If such a k exists we say that R has the finite index property in the
composition closure of S. We show that the finite index property is undecidable for arbitrary
rational relations. However, if S is a metrizable relation (see Definition 3.18) w.r.t. the edit
distances mentioned above, the index of R in the composition closure of S is computable.

Our decision procedure for k-closeness involves designing a weighted automaton that
counts the number of edit operations for transforming one output to the other. We need to
check whether there are input instances for which the weight is more than k. We extract a
finite state automaton of size exponential in k that achieves this (see Proposition 3.11). This is
a generic approach independent of the particular edit operations. However for Hamming and
transposition distances, we have a direct polynomial time procedure for deciding k-closeness
(see full version).

Recall that deciding closeness of transductions is same as deciding whether the diameter
of a rational relation R is bounded. For the latter, consider a transducer recognising R.
It turns out that if there are loops in this transducer that produce nonconjugate words
(that are not cyclic shifts of each other) then such loops can be iterated to get unbounded
diameter/distance. Thus a crucial ingredient in our decision procedure is checking for
conjugacy of loops, which is decidable [3]. For boundedness w.r.t. Levenshtein distances,
we show that this is also a su�cient condition (see Claim 4.9). For conjugacy distance, we
show that the diameter of a rational relation R is bounded if and only if every pair in R is
conjugate (see Proposition 4.6). Notice that this is not the case for arbitrary relations. In
the case of Hamming distance, which only includes substitutions, we show that it is su�cient
to check if the pairs of words generated by the loops after some shifted delay are identical
(see Claim 4.11). This also holds true for transposition distance, but additionally, we also
need to check if the words are permutations of each other (see Claim 4.12).

1.1 Related Work
The adjacent functions in [34] is an analogous definition for closeness between transduc-
tions with respect to prefix distance. Two functions f, g : Aú æ Bú are adjacent if
sup { dp(f(w), g(w)) | w œ dom(f) fl dom(g) } < Œ. Here, dp(u, v) = |u|+ |v| ≠ 2max{|z| |
u, v œ zAú} denotes the prefix distance between two words u and v. The adjacency of two
rational functions is used in deciding the sequentiality of a function. It is decidable to check
if two given rational functions are adjacent or not (Proposition 1 of [34]).

Another problem that is similar in spirit is the robustness problem. We say a transducer
T is robust w.r.t. a distance d if there is a nontrivial relation R between the distance between
two input words (say d(u, v)) and distance between their corresponding outputs on T (say
d(T (u), T (v))). For instance, R could be Lipschitz continuity – there is some k > 0 such
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that d(T (u), T (v)) Æ k · d(u, v), or locally Lipschitz continuity – there exists b, k > 0 such
that if d(u, v) < b then d(T (u), T (v)) Æ k · d(u, v), etc. Sometimes, weaker notions of
distance are considered (for instance by dropping the triangle inequality), and respective
distances are called cost or similarity functions. The work [35] solves the locally Lipschitz
continuity problem for sequential and unambiguous transducers using reversal bounded
counter automata. The problem is shown to be undecidable for Lipschitz continuity even for
deterministic transducers and the decidability is shown for the class that has a bound on the
delay between input and output words [23].

Frougny and Sakarovitch studied rational relations with bounded delay [20], which is
actually our diameter problem for rational relations when the distance over words is measured
by their length di�erence. A problem related to the diameter of a rational relation is almost

reflexivity of rational relations studied in [11]. A relation R ™ Aú ◊ Aú is k-reflexive, for
some integer k Æ Œ, if every element u of the domain is at a distance at most k from some
element of the range v, with (u, v) œ R, and vice versa. The relation R is almost reflexive
if k < Œ. It is shown undecidable to check if a deterministic rational relation is almost
reflexive, or k-reflexive, for any given integer k, with respect to the following – Hamming,
prefix, su�x, subword and Levenshtein edit distances. It is shown decidable for synchronized
rational relation w.r.t. Hamming distance.

In 1966, Brzozowski raised the question of finite power property on regular languages – it
takes a regular language L as input and asks whether there exists some positive integer n such
that (L+ ‘)n = Lú. It was solved in 1979 by Hashiguchi [22] and Simon [37], independently.
We study the finite index property of a rational relation in the iterative composition of
another relation. Notice that the finite index property is di�erent from the finite power
property in two respects. One, it is over relations and not languages, and secondly and more
importantly, the iteration is obtained by relation composition and not concatenation.

1.2 Organisation of the Paper
In § 2, we recall the definitions of finite state transducers, metrics on words and edit distances.
In § 3, we define the notion of distance between transducers, the diameter of a rational
relation, and the index of a rational relation in another. We also establish the relation
between these notions and state our results in this section. In § 4, we give the connections
with conjugacy and the proof arguments remaining from § 3. Finally, we conclude in § 5
with a short discussion on future directions. Proofs omitted are provided in the full version.

2 Preliminaries

Let Aú denote the set of all finite words over the alphabet A. We use |w| to denote the length
of the word w. Let w[i . . j] denote the factor of w from index i to j where 1 Æ i Æ j Æ |w|.
A transduction is a function from words to words.

2.1 Finite State Transducers
The simplest form of a transducer is a deterministic finite state machine whose each transition
and each final state is labelled by a possibly empty output word. Formally, a sequential

transducer T = ÈA,⁄, oÍ with input alphabet A and output alphabet B is a deterministic

finite state automaton A with two associated output functions ⁄ : � æ Bú and o : F æ Bú

where � and F are the set of transitions and the set of accepting states of A respectively.



C. Aiswarya, A. Manuel, and S. Sunny 125:5

On an input word that is accepted by the automaton, we concatenate the output words
produced by the transitions in the unique run of the machine and finally append the end-
of-input word of the final state to obtain the output of the machine. That is to say, if
fl = ”1 · · · ”n is the successful run of A on a word w œ Aú, the output of T on w, denoted by
T (w), is the word ⁄(fl) · o(q) where ⁄(fl) = ⁄(”1) · · ·⁄(”n) and q is accepting state reached
by the run. Let L(A) denote the set of words accepted by A, called the language of A or the
domain of T (denoted as dom(T )). We can see that T defines a function from dom(T ) to
Bú. Functions defined by sequential transducers are called sequential. In the literature, they
are known as subsequential functions, introduced by Schützenberger [36]. Transducers given
in Figure 1 are sequential.

If we allow the finite state automaton A to be nondeterministic, then T no longer defines
a function, but a binary relation on Aú ◊Bú. Such relations are called rational. If the relation
is a function, then the transducer is called functional, and the corresponding functions are
called rational functions. We can restrict the nondeterminism and still compute all rational
functions. A finite state automaton is unambiguous if on each input word the machine has at
most one run. It is a well-known fact in the theory of transducers that all rational functions
are computed by finite state transducers whose underlying automata are unambiguous [10].
Such transducers are called unambiguous transducers. Clearly sequential functions are a
strict subset of rational functions. For instance, the function “output the input word if the
last letter of the input is an a, otherwise the empty word” is rational but not sequential.

There exist generalisations of rational functions where the underlying automaton is
a two-way finite state automaton or equivalently a finite state automaton with registers
(corresponding functions are called regular [17, 5]), or two-way finite state automaton with
pebbles (polyregular functions [8, 9]). An overview of the classical theory of transducers is
given in [19]. In this paper, we restrict our attention to one-way functional transducers.

2.2 Metric on Words, Edit Distances
Simply put, a metric on a set is used to measure distance between any two elements of the set.
A metric on words over the alphabet A is a function d : Aú ◊ Aú æ [0,Œ] such that for any
words u, v and w in Aú, d(u, v) = 0 ≈∆ u = v (separation), d(u, v) = d(v, u) (symmetry),
and d(u, v) Æ d(u,w) + d(w, v) (triangle inequality).

A metric is integer-valued if it has range N fi {Œ}. A trivial metric on words is the
discrete metric – distance between words u and v, denoted by dŒ(u, v), is 0 if u = v and
Œ otherwise. Another straightforward distance on words is the absolute di�erence of their
lengths (denoted as dlen). This is a pseudo-metric since the distance between two distinct
words can be zero, i.e., does not satisfy the separation property of a metric.

An important class of metrics in the context of word transducers is edit distances. Loosely
speaking, edits are operations that transform words, such as inserting a letter, deleting a

letter, substitutions (letter-to-letter), adjacent transpositions (swapping adjacent letters), left
and right shifts etc. For a fixed set of edit operations C, the edit distance with respect to C
between words u and v, is the minimum number of edits in C required to transform u to v if it
is possible, and Œ otherwise. The common edit distances and their corresponding operations
are recalled in Table 1. Since many of these operations are obtained by combinations
of the others, we can relate these metrics. The notation d1 Æ d2 is an abbreviation for
d1(u, v) Æ d2(u, v) for all words u, v. We can also relate the metrics up to boundedness (See
[14] for a detailed introduction). Let – : N æ N be a correction function. Usual examples
are increments (e.g. x ‘æ x + 2), scaling (e.g. x ‘æ 2 · x) etc. We extend – to the domain
N fi {Œ} by letting –(Œ) = Œ. We write d1 . d2 to mean that there is some – such that
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Table 1 Edit Distances.

Edit Distance Denotation Allowed Operations
Hamming distance dh letter-to-letter substitutions
Transposition distance dt swapping adjacent letters
Conjugacy distance dc left and right cyclic shifts
Levenshtein edit distance dl insertions, deletions, and substitutions
Longest Common Subsequence dlcs insertions and deletions
Damerau-Levenshtein distance ddl insertions, deletions, substitutions and adjacent

transpositions

d1 Æ – ¶ d2. Clearly, if d1 Æ d2 then d1 . d2. If d1 . d2 and d2 . d1, we write d1 ¥ d2 (this
is known as the cost equivalence or the boundedness equivalence). If two functions f and g
are cost-equivalent then f and g are bounded over precisely the same family of subsets (See
Proposition 1 of [14]).

I Lemma 2.1. The metrics defined in Table 1 are related as follows:

1. dlen Æ d Æ dŒ, for each edit distance metric d œ {dl, dh, dt, dc, dlcs, ddl}
2. dl ¥ dlcs ¥ ddl
3. dl Æ dh . dt
4. dl . dc
5. dc and dt as well as dc and dh are incomparable, i.e., dh ”. dc, dc ”. dh and dt ”. dc, dt ”. dc

3 Distance between Transductions

In this section we define the notion of distance between two rational functions, diameter of
a rational relation, and index of a rational relation in another. We establish the relation
between these notions and state our results.

3.1 Comparing Transducers
We lift a metric over words to the class of word-to-word functions as follows.

I Definition 3.1 (Metric on transductions). Let d be a metric on words over the alphabet B.

Given two partial functions T ,S : Aú æ Bú
, we define

d(T ,S) =
I
sup { d(T (w),S(w)) | w œ dom(T )} if dom(T ) = dom(S)
Œ otherwise

I Proposition 3.2. d is a metric on transductions.

I Remark 3.3. We can define a notion of distance between word-to-word relations in the
above manner, however this distance will not be a metric. In particular d(R,R) will not be 0
for a relation R that is not a (partial) function.

I Example 3.4. Consider the sequential transducers T1 and T2 in Figure 1. The transducers
T1 and T2 output the letters at the odd and even positions respectively. For any input word
u, ||T1(u)| ≠ |T2(u)|| Æ 1. Hence dlen(T1, T2) = 1. For input word (ab)n where n > 1, the
outputs produced by T1 and T2 are an and bn respectively. Since n substitutions are required
to convert an to bn, dl(an, bn) = n. Therefore, dh(T1, T2) = Œ as well as dl(T1, T2) = Œ.
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Table 2 Problems about distance between two transducers w.r.t. the metric d.

Problem Input Question
Distance Problem transducers T ,S d(T ,S)?
Closeness Problem transducers T ,S Is d(T ,S) < Œ?
k-Closeness Problem integer k, transducers T ,S Is d(T ,S) Æ k?

I Example 3.5. The sequential transducer T4 in Figure 2 replaces each block of 0’s by a
single 0 and each block of 1’s by a single 1. Similarly, T5 substitutes a block of 0’s by a single
1 and a block of 1’s by a single 0. The output words produced by the transducers on any
input word is an alternate sequence of 0’s and 1’s. If T4 outputs 010, then T5 produces its
complement, i.e., 101. The Hamming distance between T4 and T5 is Œ, but the Levenshtein
distance is 2.

q0

q1

q2

0|0

1|1

1|1

0|‘

0|0

1|‘

q0

q1

q2

0|1

1|0

1|0

0|‘

0|1

1|‘

Figure 2 T4 (left) outputs 0 & 1 for each block of 0’s & 1’s resp. whereas T5 (right) outputs 1 &
0 for each block of 0’s & 1’s resp.

Let d be a distance on words. The value d(T ,S) is an upper bound on how dissimilar the
outputs of transducers T and S can be on any input. It is natural to ask the computational
and boundedness problems given in Table 2.

Closeness and k-closeness are respectively a boundedness and an upper bound problem
on distance.

I Proposition 3.6. Let d be an integer-valued metric. The distance problem w.r.t. d is

computable if and only if k-closeness and closeness problems w.r.t. d are decidable.

Proof. Clearly, if we can compute the distance w.r.t. d then we can decide k-closeness as well
as closeness. For the other direction, given two transducers, we first check if they are close
and if it is we perform an exponential search – check if they are k-close for k = 20, 21, 22, . . .
till it fails and subsequently perform a binary search on the interval [2n, 2n+1], n œ N that
contains the distance. J

We say two transducers T and S are close (resp. k-close, for k Ø 0) w.r.t. d if d(T ,S) < Œ
(resp. d(T ,S) Æ k). Closeness with respect to the discrete metric dŒ is precisely the
equivalence problem. Closeness w.r.t. the length metric dlen can be characterised in terms of
delay as follows.

I Proposition 3.7. Given two transducers T1, T2 with identical domain, dlen(T1, T2) is finite

i� there exists a k œ N such that on any input word w, the di�erence in lengths of the partial

outputs of T1, T2 on any prefix of w is bounded by k.

In the case of edit distances, closeness means that the output of T1 can be converted to the
output of T2 by doing a bounded number of edits.
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I Remark 3.8. From Definition 3.1, it is easy to verify that Lemma 2.1 holds for transducers
as well. If d1 . d2, then it is easy to see that if transducers T1 and T2 are not close w.r.t. d1,
then they are not close w.r.t. d2 either.

The problems in Table 2 for unambiguous transducers with identical domains can be reduced
to that for sequential transducers by considering the cartesian product of the unambiguous
transducers. Given two unambiguous transducers T1 and T2, we obtain the sequential
transducers T Õ

1
and T Õ

2
as follows. The input automata for T Õ

1
and T Õ

2
are the same, call

it A, which is the cartesian product of the input automata of T1 and T2. By treating the
transitions of the cartesian product as the input alphabet, we get input determinism. The
output functions of T Õ

1
and T Õ

2
are lifted from T1 and T2 respectively.

I Proposition 3.9. Let d be a distance on words. For each pair of unambiguous transducers

T1 and T2 with identical domain, there exist a DFA A and output functions ⁄Õ
1
, oÕ

1
and ⁄Õ

2
, oÕ

2

such that d(T1, T2) = d(T Õ
1
, T Õ

2
) where the sequential transducer T Õ

i = ÈA,⁄Õ
i, o

Õ
iÍ, i œ {1, 2}.

Furthermore, the size of the automaton A is polynomial in the size of T1 and T2.

Given two transductions T and S, we define a distance function that maps each word w
to the distance between their outputs on w.

I Definition 3.10 (Distance function). The distance function fd
T ,S : Aú æ N fi {Œ} of T

and S is fd
T ,S(w) = d(T (w),S(w)) if w œ dom(T ) fl dom(S); otherwise fd

T ,S(w) = Œ.

Transducers T and S are close w.r.t. a metric d if their domains are the same and their
distance function fd

T ,S is limited (i.e.,< Œ on its domain). Similarly k-closeness w.r.t. d of T
and S reduces to k-limitedness of fd

T ,S . Limitedness problems are well-studied in the context
of weighted automata [28, 12]. Therefore, when the distance function fd

T ,S is computable by
a (min,+)-automaton, the distance between T and S is computable due to Proposition 3.6.

However, there are distance functions that are not computable by weighted automata.
Let A = {a, b}. Consider the sequential transducers T1, T2 : Aú æ Aú with the domain aúbú

defining the functions apbq ‘æ ap, apbq ‘æ aq respectively (T1 outputs the a’s and erases the
b’s, T2 erases a’s and renames the b’s as a’s). It is easily checked that their distance function
w.r.t. the Levenshtein family (d œ {dl, dlcs, ddl}) is fd

T1,T2
: apbq ‘æ |p ≠ q|.

If f : Aú æ Nfi {Œ} is a function computed by weighted automata ((min,+) or (max,+)
or B-automata [13]), then LfÆk = {w œ Aú | f(w) Æ k} is regular for each k Æ N. Hence
the function fd

T1,T2
is not realised by any of them (consider the language Lfd

T1,T2
Æk). In fact,

it can be shown that the function fd
T1,T2

is not computed even upto boundedness [15].
To compute k-closeness w.r.t. any of the edit distances, it is not necessary to compute

the distance function precisely. The k-approximation of the distance function fd
T ,S is the

function Áfd
T ,SËÆk : w ‘æ fd

T ,S(w) if fd
T ,S(w) Æ k and Œ otherwise.

I Proposition 3.11. If T and S are close w.r.t. the length metric, then the approximation

Áfd
T ,SËÆk

for a metric d œ {dl, dlcs, ddl , dh, dt, dc} is computed by a distance automaton for

each k œ N.

To check if T and S are k-close, we check if they have the same domain and they are
close w.r.t. the length metric (otherwise they are neither close nor k-close). If so, we check if
the domain of T is same as the domain of Áfd

T ,SËÆk. Thus we get:

I Corollary 3.12. Let d be any metric from Table 1, and T and S be any functional

transducers. It is decidable if T and S are k-close w.r.t. d.
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Table 3 Problems about diameter of a rational relation w.r.t. the metric d.

Problem Input Question
Diameter Problem rational relation R diad(R)?
Bounded Diameter Problem rational relation R Is diad(R) < Œ?
k-Bounded Diameter Problem integer k, rational relation R Is diad(R) Æ k?

3.2 Diameter of a Rational Relation
I Definition 3.13 (Diameter of a Rational Relation w.r.t. a distance d). The diameter of a

rational relation R with respect to a distance d, denoted by diad(R), is the supremum of the

distance of the related words in R.

diad(R) = sup { d(u, v) | (u, v) œ R }

Similar to the questions asked in Table 2, we can ask the questions given in Table 3 about
diameter of a rational w.r.t. a metric d. We say a rational relation has bounded (resp. k-
bounded) diameter w.r.t. a distance d if the diameter of the relation w.r.t. d is finite (resp. Æ k).
A rational relation with bounded delay is precisely those relations with bounded diameter
w.r.t. a length metric. Relations with 0-delay are called length-preserving relations [16] where
any two related words are of equal length. It is decidable to check if a rational relation has
bounded delay or 0-delay [20].

Relations bounded w.r.t. the discrete metric are simply those with only identical pairs.
It is decidable to determine if a rational relation R is identity. First, check if R is length-
preserving. If so, we can construct a letter-to-letter transducer for R based on Eilenberg
and Schützenberger’s theorem [16] stating that a length-preserving rational relation over
Aú ◊Bú is a rational subset of (A◊B)ú, or equivalently, it can be realised by a letter-to-letter
transducer whose transitions are labelled with elements of A ◊ B. Finally, validate this
transducer for identity by examining the labels of each transition.

3.3 Index of a Rational Relation in a Composition Closure
Consider two rational relations R over Aú ◊Bú and S over Bú ◊Cú. The composition S ¶R
over Aú ◊ Cú is defined by (S ¶ R)(u) = S(R(u)) =

t
vœR(u) S(v).

I Definition 3.14 (Composition closure of a Rational Relation). Let S be a rational relation

over Aú ◊ Aú
. Let S(n)

denote the composition of S with itself n Ø 0 times (S(0)
is taken

to be the identity relation), and let SÆ(n)
denotes the composition of S with itself at most n

times, i.e., SÆ(n) = S(0) fi S(1) fi · · ·S(n)
.

The composition closure of S, denoted as S(ú)
, is defined as S(ú) =

t
iØ0

S(i)
.

Notice that we use parenthesis around the superscript to indicate that the base operation is
composition, and not concatenation.

I Definition 3.15 (Index of a Rational Relation in a Composition Closure). Let S be a rational

relation over Aú ◊ Aú
. An index of a rational relation R in the composition closure of S,

denoted as Index(R,S), is the smallest integer k such that R is contained in SÆ(k)
.

I Example 3.16. Consider a relation S over {a, b}ú ◊ {a, b}ú that deletes the first a if exists
on any input. Fix an integer k > 0 and let R be the relation that deletes the first k a’s
from the input if exists. The index of R in S(ú) is k since for any input word u œ Aú,
R(u) œ SÆ(k)(u).
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Table 4 Problems about the index of a rational relation in the composition closure of another.

Problem Input Question
Index Problem rational relation R, S Index(R,S)?
Bounded (or Finite) Index Problem rational relation R, S Is Index(R,S) < Œ?
k-Bounded Index Problem integer k, rational relation R, S Is Index(R,S) Æ k?

Consider another relation RÕ that deletes all a’s from the input. Since RÕ(ak+1) ”œ
SÆ(k)(ak+1) for any k > 0, the index of RÕ in S(ú) is Œ.

As seen in the case of the distance and diameter problem, we can ask questions in Table 4
about the index of a rational relation in the composition closure of a relation. We say a
rational relation R has bounded (resp. k-bounded) index in the composition closure of a
rational relation S if the index of R in S(ú) is finite (resp. Æ k).

Deciding the boundedness of the index problem for an arbitrary rational relation is
di�cult.

I Lemma 3.17. It is undecidable to check if a rational relation has a bounded index in the

composition closure of an arbitrary rational relation.

However, we show that the index problem is decidable w.r.t. a large class of rational
relations defined below.

I Definition 3.18 (Metrizable Relation). Let S be a rational relation over Aú ◊ Aú
. Let

dS : Aú ◊ Aú æ N fi {Œ} be the distance between two vertices in the graph of S, i.e., for any

two words u and v, dS(u, v) is the smallest i such that v œ S(i)(u), and Œ otherwise.

We say S is a d-metrizable relation for a metric d if dS ¥ d.

I Proposition 3.19. Let R be a rational relation and S be a d-metrizable relation for an

integer-valued metric d for which dlen . d. If boundedness of diameter w.r.t. d is decidable

for a rational relation, then Index(R,S) is computable.

Proof. Similar to distance problem, the index problem is computable i� bounded index and
k-bounded index problems are decidable. For a rational relation R and d-metrizable relation
S, we show that Index(R,S) < Œ i� diad(R) < Œ as follows.

diad(R) < Œ ≈∆ ÷k œ N s.t. ’(u, v) œ R, d(u, v) Æ k

≈∆ ÷kÕ œ N s.t. ’(u, v) œ R, dS(u, v) Æ kÕ (Since dS ¥ d)

≈∆ ’(u, v) œ R, v œ SÆ(kÕ
)(u) (Definition of dS)

≈∆ Index(R,S) < Œ

Therefore, if the boundedness of diameter w.r.t. d is decidable for a rational relation,
then we can decide if Index(R,S) < Œ. If so, then it su�ces to decide if Index(R,S) Æ k
for k = 0, 1, . . . and output the smallest k as the index of R in the composition closure of S.

Since diad(R) < Œ and dlen . d, the rational relation R has a bounded delay. Similarly,
S also has a bounded delay since for all (u, v) œ S, dS(u, v) = 1 ∆ ÷k œ N s.t. d(u, v) Æ k
(since dS ¥ d) ∆ ÷kÕ œ N s.t. dlen(u, v) Æ kÕ (since dlen . d). Since S has bounded delay,
for any k œ N, S(k) also has bounded delay. It is known that emptinesss and set di�erence of
two rational relations with bounded delay is decidable (Corollary 2 of [20]). For any k œ N,
deciding Index(R,S) Æ k reduces to checking if R ™ SÆ(k) (or equivalently, R \ SÆ(k) = ÿ),
and hence decidable. J

A close and (almost) dual notion is that of a metric that defines a rational relation.
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I Definition 3.20 (Rationalizable Distance). A distance d on words is rationalizable if the

relation Sd = {(u, v) | d(u, v) = 1}, called the distance relation of d, is rational.

I Example 3.21. Consider the hamming distance dh. We can construct a rational relation
Sh = {(u, v) | u and v di�er only in exactly one position}. For example, let A = {a, b} and
Sh(aba) = {bba, aaa, abb}. For this, construct a transducer that nondeterministically chooses
a position and replaces the input letter with other letters in the alphabet. Similarly, the
distance relation of the length metric Slen = {(u, v) | ||u| ≠ |v|| = 1} is also rational.

In fact, we have the following result about the rationalizability of edit distances referred in
Table 1.

I Proposition 3.22. Every edit distance d œ {dl, dh, dt, dc, dlcs, ddl} is rationalizable.

3.4 Reductions between Distance, Diameter and Index Problems
We show that the distance problem of two rational functions is mutually reducible to the
diameter problem of a rational relation, which in turn is mutually reducible to the index
problem of a rational relation in the composition closure of a metrizable relation. Thus, their
closeness and boundedness problems are also interreducible.

The correspondence between distance and diameter follows from Nivat’s theorem:

I Theorem 3.23 ([32]). Let A and B be alphabets. The following conditions are equivalent.

1. R is a rational relation over Aú ◊ Bú
.

2. There exist an alphabet C, two alphabetic morphisms „ : Cú æ Aú
and Â : Cú æ Bú

and

a regular language L µ Cú
such that R = {(„(w),Â(w)) | w œ L}

From Proposition 3.9 and (2) ∆ (1) in the above theorem, it follows that distance of two
rational functions reduces to the diameter of a rational relation. Now, given a rational relation
R, we can create two functional transducers T1 and T2 in the following way. The domain
for these transducers corresponds to the set L in Theorem 3.23. For each transition in T1
and T2 that involves an input alphabet symbol ‡, we set the outputs to be „(‡) and Â(‡) in
Theorem 3.23, respectively. Consequently, T1 and T2 consist of the sets {„(w) | w œ L} and
{Â(w) | w œ L} respectively. Since the domain of these transducers is identical, the distance
between T1 and T2 with respect to any distance d, d(T1, T2) = sup { d(„(w),Â(w)) | w œ L },
that is equivalent to the diameter of R w.r.t. the distance d.

The correspondence between diameter and index for rationalizable distances is stated in
the following proposition.

I Proposition 3.24. The diameter of a rational relation R w.r.t. a rationalizable distance

d is equal to the index of the rational relation R in the composition closure of the distance

relation of d.

Proof. Assume that the diameter of a relation R w.r.t. a distance d is Œ. We claim that
the index of R in S(ú)

d is also Œ where Sd is the distance relation of d. Suppose not, i.e., let
k < Œ be the index of R in S(ú)

d . Thus, ’(u, v) œ R, v œ SÆ(k)
d (u). Since Sd is the distance

relation of d, ’(u, v) œ R, d(u, v) Æ k. However, this contradicts the fact that diad(R) = Œ.
Hence, the index of R in S(ú)

d is infinite. Similarly, we can prove the other direction. Now,
suppose the diameter of R w.r.t. d is finite, i.e.,

diameter of R w.r.t. d is k < Œ ≈∆ ’(u, v) œ R, d(u, v) Æ k

≈∆ ’(u, v) œ R, v œ SÆ(k)
d (u)

≈∆ index of R in S(ú)
d is k. J
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3.5 Decidability Results
We study the problems stated in Tables 2, 3 and 4 and show that they are decidable for the
metrics in Table 1. The index problems stated in Table 4 are undecidable in general (see
Lemma 3.17), but is decidable for d-metrizable relations for metrics d given in Table 1.

Recall that, w.r.t. a metric d, distance problem is computable if and only if both closeness
and k-closeness are decidable (see Proposition 3.6). We have shown that the k-closeness is
decidable for all the metrics in Table 2 (Corollary 3.12). Hence to show the decidability
of all the problems in Table 2, it su�ces to show the decidability of the closeness problem.
Furthermore, thanks to the inter-reductions described above (see § 3.4), the decidability of
Table 3 follows as well as the decidability for the problems in Table 4 for the rationalizable
distance. Moreover, the index of a rational relation in the composition closure of a d-metrizable
relation for a metric d given in Table 2 is computable by Proposition 3.19.

It only remains to prove that closeness is decidable for edit distances in Table 1. This is
stated below, and proved in the following section.

I Theorem 3.25. Let d be any metric from Table 1, and T and S be any functional

transducers. It is decidable if T and S are close w.r.t. d.

4 Closeness for Edit Distances

In this section, we show that closeness is decidable for all the edit distances in Table 1. The
first step is to check if the domain of the transducers are the same. This reduces to checking
the equivalence of the underlying automata. For sequential transducers, the underlying
automaton is a DFA, while for unambiguous transducers, the underlying automaton is an
unambiguous NFA. Checking the equivalence of two unambiguous automata can be done in
polynomial time [39], while it is PSPACE in the case of ambiguous automata [40]. Therefore,
from now on, we assume that the domains of the transducers given as input to the closeness
problem are identical.

Proposition 3.9 allows us to state the distance and closeness problems more abstractly
in terms of an automaton over pairs of words. The proposition asserts that distance and
closeness problems of two given sequential or unambiguous transducers T1 and T2 can be
reduced to the corresponding problem for a DFA A with two sets of output functions
⁄1, o1 and ⁄2, o2. We can combine the output functions to output a pair of words. That
is to say, let ⁄ : � æ Bú ◊ Bú be defined as ⁄(”) = (⁄1(”),⁄2(”)), where ” œ � and �
is the set of transitions of A. Similarly let o(p) = (o1(p), o2(p)), where p œ F and F is
the set of accepting states of A. Henceforth, we can assume that we are given a DFA
A with the output functions ⁄ and o, denoted as the sequential transducer T . Since the
input words are inconsequential for computing the distance, we can convert the transducer
T to an automaton A that accepts a set of pairs of output words over Bú ◊ Bú, i.e.,
L(A) = {(u, v) œ Bú ◊ Bú | (u, v) = T (w), w œ dom(T )}. Clearly, transducers T1 and T2 are
close w.r.t. d if and only if there exist an integer k Ø 0 such that ’(u, v) œ L(A), d(u, v) Æ k.

Conjugacy of words plays an important role in closeness problems. A pair of words (u, v)
is conjugate if there exist words x and y (possibly empty) such that u = xy and v = yx or
equivalently, u and v are cyclic shifts of one another. For example, (aaab, aaba) is a conjugate
pair where x = a and y = aab. Conjugacy relation is an equivalence relation on the set of
words. A set of pairs is conjugate if each pair in the set is conjugate.

I Lemma 4.1. Let T1 and T2 be two sequential transducers that define a function from Aú

to Bú
. If T1 and T2 are close w.r.t. a metric d œ {dl, dh, dt, dc, dlcs, ddl}, then every loop in

the trim automaton over Bú ◊ Bú
, that accepts set of all pairs of output words of T1 and T2

on any input, generates only conjugate pair of words.



C. Aiswarya, A. Manuel, and S. Sunny 125:13

Proof. This proof is adaptation of a related result in [3]. Let A be a trim automaton that
realises the pair of output words of transducers T1 and T2 on any input. Since T1 and T2 are
close w.r.t. d, there exist an integer k Ø 0 such that ’(u, v) œ L(A), d(u, v) Æ k. Let (u, v)
be a pair labelled in a loop rooted at some state q. Hence (u¸, v¸) for each ¸ Ø 0 is also a
pair in a loop rooted at q. We can safely assume that |u| = |v|, otherwise the edit distance
will be unbounded as each iteration will increase the edit distance by a di�erence in length
of u and v (Item 1 of Lemma 2.1).

Since A is trimmed, there exists a path from an initial state q0 to q and from q to
a final state qf . Let (–0,—0) be a pair labelled in a path from q0 to q, and let (–1,—1)
be a pair labelled in a path from q to qf . Thus, pair (–0,—0)(u¸, v¸)(–1,—1) belongs to
L(A) where ¸ = 2k (some value much larger than k). Since ¸ is much larger than k and
d(–0u¸–1,—0v¸—1) Æ k, there exist large portions of u’s and v’s that match. Therefore, we
can infer that u is a factor of vv, and v is a factor of uu.

Since v is an infix of uu, the following holds. There exist words x, y, p and q such that
v = xy and u = px = yq. Since |u| = |v|, length of p and length of y are the same, that
implies p = y (since u = px = yq). Therefore, u = yx. Hence u and v are conjugate words.
Since the pair (u, v) was arbitrary, any pair generated by a loop in A is conjugate. J

4.1 Closeness w.r.t. Levenshtein distances and Conjugacy
In this subsection, we decide closeness w.r.t. Levenshtein family of distances – Levenshtein,
Damerau-Levenshtein, and LCS distances – and conjugacy distance. Levenshtein family of
distances are all equivalent with respect to closeness problems by Lemma 2.1 and Remark 3.8.

We have already seen that given two unambiguous transducers T1 and T2 with identical
domains, there exists an automaton A over Bú ◊ Bú that accepts a set of all pairs of output
words of T1 and T2 on any input. Thus, we can state the distance and closeness problems in
terms of rational expressions over Bú ◊ Bú.

We define pairs over the alphabet B to be the set Bú◊Bú with the pointwise concatenation
(u, v) · (uÕ, vÕ) = (u · uÕ, v · vÕ). A rational expression of pairs over the alphabet B is a rational
expression over the alphabet {(b, bÕ) | b, bÕ œ (B fi {‘})} that generates a subset of pairs over
B. From the automaton A over Bú ◊ Bú, using state elimination method ([26], Lecture
9), we can construct the rational expression of pairs E for the output pairs generated by
the transducer T1 and T2 on any input. We can lift the metric d to expressions by letting
d(E) = sup {d(u, v) | (u, v) œ L(E)}. Clearly d(E) = d(T1, T2). Thus, the distance and
closeness problems of sequential and unambiguous transducers reduce to the corresponding
problems for a rational expression of pairs. Henceforth we assume that we are given a rational
expression of pairs.

In the context of conjugacy distance, the closeness of a rational expression necessarily
implies that every pair in the expression is conjugate. Otherwise, if there exists a pair
(u, v) œ L(E) such that u is not conjugate to v, then dc(u, v) = Œ, thus dc(E) = Œ. In fact,
this is also a su�cient condition. The proof relies on the results from [3] that studies the
conjugacy of rational expression over pairs of words. It crucially uses the notion of a common

witness of a set of pairs.

I Definition 4.2 (Common Witness of a Set of Pairs). A witness of pair of conjugate words

(u, v) is a word z such that either uz = zv (called an inner witness) or zu = vz (called an

outer witness). A common witness of a set of pairs is a word z such that either z is an inner

witness of every pair in the set, or z is an outer witness of every pair in the set.

Lyndon and Schützenberger gave a characterisation of conjugacy of a pair of words, stated as
a pair of words is conjugate if and only if it has both inner and outer witness (Proposition 1.3.4
of [30]). In [3], it is generalised to a set of pairs as follows.
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I Theorem 4.3 ([3]). Let M = (–0,—0)Gú
1
(–1,—1) · · ·Gú

k(–k,—k) be a set of pairs where

G1, . . . , Gk, k > 0 are arbitrary sets of pairs of words, and (–0,—0), . . . , (–k,—k) are arbitrary

pairs of words. The set M is conjugate i� M has a common witness.

Existence of a common witness bounds the conjugacy distance of an expression as follows.

B Claim 4.4. If a rational expression over pairs E has a common witness z, then dc(E) Æ |z|.

Proof. Since E has a common witness, either ’(u, v) œ L(E), uz = zv, or ’(u, v) œ L(E),
zu = vz. WLOG, assume that ’(u, v) œ L(E), uz = zv. Now, for any pair (u, v) œ L(E):
1. If |u| > |z|, then z is a prefix of u and su�x of v and hence (u, v) = (zp, pz) for some

word p œ Aú. Therefore dc(u, v) Æ |z| since v can be obtained by |z| left cyclic shifts of u.
2. Otherwise, when |u| Æ |z|, the number of cyclic shifts required to transform u to v (note

that u and v are conjugate since they have a witness) is less than |u| Æ |z|. C
A rational expression is sumfree if it does not use sum (i.e., +). In [3], it is shown that if a
common witness exists, it is computable for a sumfree rational expression over pairs of words.
It is folklore that every rational expression is equivalent to a sum of sumfree expressions [3].
The proposition below implies that to show closeness for a sum of sumfree expressions, it
su�ces to show closeness for each of its constituent sumfree expressions.

I Proposition 4.5. Let E = E1 + · · ·+ Ek, k Ø 1 be a rational expression of pairs. Then

d(E) = max(d(E1), . . . , d(Ek)) for all word metrics d.

An expression is conjugate if every pair generated by the expression is conjugate. The
following proposition characterises closeness w.r.t. conjugacy distance.

I Proposition 4.6. A rational expression over pairs of words is close w.r.t. conjugacy distance

if and only if the expression is conjugate. Furthermore, the closeness w.r.t. conjugacy distance

is decidable.

Proof. One direction is trivial. Assume E to be an arbitrary rational expression of pairs and
is conjugate. Let E = E1+E2+ · · ·+Ek where E1, E2, . . . , Ek are sumfree expressions. Since
E is conjugate, each of its sumfree constituents Ei for 1 Æ i Æ k is also conjugate. Using
Theorem 4.3, each Ei has a common witness, say zi. From Claim 4.4, dc(Ei) Æ zi. Therefore,
dc(E) is close w.r.t. conjugacy distance by Proposition 4.5. Hence, to decide closeness of E
w.r.t. conjugacy distance, it su�ces to check if E is conjugate. This reduces to checking if a
common witness exists for each sumfree constituent. It is shown to be decidable in [3]. J

Now consider the case of Levenshtein distances. From Lemma 4.1, if an expression is
close w.r.t. Levenshtein distances, it is necessary that every pair generated by a Kleene star
in the expression needs to be conjugate. Using common witness, we show that it is also a
su�cient condition.

B Claim 4.7. If a rational expression of pairs E has a common witness z, then dl(E) Æ 2|z|.

Proof. The proof is similar to Claim 4.4. Since E has a common witness, either ’(u, v) œ L(E),
uz = zv, or ’(u, v) œ L(E), zu = vz. WLOG, assume that ’(u, v) œ L(E), uz = zv. For any
pair (u, v) œ L(E), |u| = |v| since uz = zv. There are two cases, either |u| > |z| or |u| Æ |z|.
If |u| > |z|, then z is a prefix of u and su�x of v and hence (u, v) = (zp, pz) for some word p.
Therefore, dl(E) Æ 2|z| by deleting z in the beginning and insert z at the end of u. Suppose
|u| Æ |z|, the number of edits required to transform u to v is less than |u|+ |v| Æ 2|u| Æ 2|z|.

C
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I Proposition 4.8. Closeness of a rational expression w.r.t. Levenshtein distance is decidable.

Proof. Given an arbitrary rational expression, there is an equivalent sum of sumfree expres-
sion. From Proposition 4.5, to show closeness for a sum of sumfree expressions, it su�ces to
show closeness for each of its constituent sumfree expressions. The general form of a sumfree
expression E = (–0,—0)Eú

1
(–1,—1) · · ·Eú

k(–k,—k) where k œ N, for 0 Æ j Æ k, (–j ,—j) is a
(possibly empty) pair of words, and for each 1 Æ i Æ k, Ei is a sumfree expression.

B Claim 4.9. A sumfree expression E = (–0,—0)Eú
1
(–1,—1) · · ·Eú

k(–k,—k) is close w.r.t. Leven-
shtein distance if and only if each Eú

i for 1 Æ i Æ k is conjugate.

Proof. From Lemma 4.1, if E is close w.r.t. Levenshtein edit distance then each Eú
i is

conjugate. For the other direction, if each Eú
i is conjugate, then each Eú

i has a common
witness, say zi, by Theorem 4.3. From Claim 4.7, dl(Eú

i ) Æ 2|zi|. Further, dl(E) Æq
jœ{0...k} dl(–j ,—j) +

q
iœ{1...k} dl(Eú

i ) =
q

jœ{0...k} dl(–j ,—j) + 2
q

iœ{1...k} zi, hence finite.
This implies that if each Eú

i in E is conjugate, then dl(E) is finite. C

Therefore, checking the closeness of a rational expression w.r.t. Levenshtein distances reduces
to checking the existence of a common witness of each Kleene star in its sumfree constituents,
and thus decidable. J

For a sumfree rational expression, a witness, if exists, can be computed in polynomial time [3],
and thus closeness w.r.t. Levenshtein and conjugacy distances are decidable in polynomial
time. However, converting a rational expression to a sum of sumfree rational expressions
can cause an exponential blow-up both in the number of summands and the size of each
summand [3].

4.2 Closeness w.r.t. Hamming and Transposition distances
I Theorem 4.10. Closeness w.r.t. Hamming and Transposition distance are decidable for

functional transducers.

Given two functional transducers, check if their domains are the same. If not, the distance
is Œ hence they are not close. Assume they have an identical domain. By Proposition 3.9,
it su�ces to consider two sequential transducers with a common underlying DFA. Let
T1 = ÈA,⁄1, o1Í and T2 = ÈA,⁄2, o2Í be two sequential transducers. WLOG, we make the
following assumptions.
1. (Property ı) Automaton A is trimmed, i.e., all states are accessible (reachable from the

initial state) and coaccessible (from each state there is a path to some final state).
2. (Property ‡) T1 and T2 produce output words of identical length; otherwise the Hamming

as well as transposition distance will be Œ. We can check this property: rename all the
output letters in T1 and T2 to a and check their equivalence.

3. The delay between partial outputs of T1 and T2 is at most k œ N (By Proposition 3.7).

Let Q and F ™ Q be the set of states and final states of A respectively, and let q0 œ Q
be the initial state. For states p, q œ Q, Let Mp,q be the set of pairs (u, v) such that there
is a run fl from p to q and u = ⁄1(fl) and v = ⁄2(fl). Extending this notation, for a state
qf œ F , let M Õ

q,qf be the set of pairs (u, v) such that u = uÕ · o1(qf ), v = vÕ · o2(qf ) and
(uÕ, vÕ) œ Mq,qf .

Let q be a state of the automaton. If (–,—) and (–Õ,—Õ) are two pairs in Mq0,q, then
|–|≠ |—| = |–Õ|≠ |—Õ|, or else one of the pairs in {(––ÕÕ,——ÕÕ), (–Õ–ÕÕ,—Õ—ÕÕ)} will have di�erent
lengths, where (–ÕÕ,—ÕÕ) is some pair in Mq,qf , for some qf œ F , guaranteed by Property (ı).
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Therefore with each state q, we can associate the delay of a run reaching it, called the delay

at q, denoted by ˆq, as |–| ≠ |—|. Clearly ˆq Æ k. By a symmetric argument, if (–,—) and
(–Õ,—Õ) are two pairs in Mq,qf , where qf is some final state, then |–|≠ |—| = |–Õ|≠ |—Õ| = ≠ˆq.
This also implies that for all (u, v) œ Mq,q, |u| = |v|.

For each state q, either Mq,q = {(‘, ‘)}, or Mq,q is infinite. Let q be a state for which
Mq,q is nonempty. For a delay ˆ œ Z, a pair (u, v) œ Mq,q where n = |u| > ˆ, we define the
interior of the pair (u, v) as

interiorˆ(u, v) =
I
(u[1 . . . n ≠ ˆ], v[ˆ + 1 . . . n]) if ˆ Ø 0
(u[ˆ + 1 . . . n], v[1 . . . n ≠ ˆ]) if ˆ < 0

For example, interior1(abc, def) = (ab, ef) and interior≠1(abc, def) = (bc, de). We also
define the Left-Border and Right-Border of the pair (u, v) as

lborderˆ(u, v) =
I
v[1 . . . ˆ] if ˆ Ø 0
u[1 . . . ˆ] if ˆ < 0

rborderˆ(u, v) =
I
u[n ≠ ˆ + 1 . . . n] if ˆ Ø 0
v[n ≠ ˆ + 1 . . . n] if ˆ < 0

B Claim 4.11. Hamming distance between T1 and T2 is unbounded if and only if there
exists a state q œ Q and (u, v) œ Mq,q such that |u| = |v| > ˆq, and uÕ ”= vÕ where
(uÕ, vÕ) = interiorˆq (u, v).

Proof. The Figure 3 depicts the situation described by (2).
(Ω): Assume there exists a state q œ Q and (u, v) œ Mq,q such that |u| = |v| > ˆq, and

uÕ ”= vÕ where (uÕ, vÕ) = interiorˆq (u, v). Let (–0,—0) œ Mq0,q and (–1,—1) œ Mq,qf . Consider
the pair (ui = –0ui–1, vi = —0vi—1), i Ø 1 (shown in Figure 4). Since uÕ ”= vÕ, we can deduce
that dh(ui, vi) Ø i. Hence dh(T1, T2) = Œ.

–0 u –1

—0 v —1ˆ

ˆ

Figure 3 An edit in the interior of u and v.

–0 u u u –1

—0 v v v —1ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 4 Words that require an arbitrarily large number of edits.

(æ): Assume dh(T1, T2) = Œ. Assume A has n states and the maximum length of an
output produced on any transition or at the end-of-input is ¸. Choose a run fl of A such that
the distance between the outputs produced on fl = ”1 · · · ”m, m > 0 is at least ((k+2)n+1)¸.
We can associate each edit in ⁄1(fl) with the transition ”i such that the edit happens in
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⁄1(”i). Since there are ((k + 2)n+ 1)¸ edits, there are at least (k + 2)n+ 1 transitions in fl
whose output words are edited. Associate each transition with its source state. By pigeonhole
principle, there is a state q such that fl = fl1 · fl2 · fl3 where
1. fl1 is a run from the initial state q0 to q,
2. fl2 is a run from q to itself,
3. fl3 is a run from q to a final state qf , and
4. there are at least (k + 1) edits in the factor ⁄1(fl2).

Let u = ⁄1(fl2) and v = ⁄2(fl2). Clearly |u| = |v| and |u| Ø (k + 1). Since the edits in u
are at least k + 1, there is a position on which the pair interiorˆq (u, v) di�er. C

Next we show closeness w.r.t. transposition distance. We write u © v to denote that words u
and v are permutations of each other. The alphabetic vector of a word over the alphabet A,
denoted by ų, is the sequence (|w|ai)aiœA for some fixed ordering of A. It is easy to observe
that two words are permutations of each other if their alphabetic vectors are the same.

B Claim 4.12. Transposition distance between T1 and T2 is unbounded if and only if one of
the following holds
1. There is a pair (u, v) œ M Õ

q0,qf , qf œ F such that u ”© v.
2. There exists a state q œ Q and (u, v) œ Mq,q such that |u| = |v| > ˆq, and uÕ ”= vÕ where

(uÕ, vÕ) = interiorˆq (u, v).
3. There exists a state q œ Q such that Mq,q is infinite, and for each pair (u, v) œ Mq,q

of length at least |ˆq|, interiorˆ(u, v) is identical. Further, there are pairs (u, v) œ
Mq,q and (–,—) œ Mq0,q (resp. Mq,qf ) such that: If ˆq Ø 0, then – ”© — · lborder(u, v)
(resp. rborder(u, v) · – ”© —), and if ˆq < 0, then – · lborder(u, v) ”© — (resp. – ”©
rborder(u, v) · —).

Proof. (Ω): It is obvious that if Item 1 is true, then the transposition distance between T1
and T2 is unbounded. Therefore we assume that the output pairs of the transducers are
permutations of each other. For Item 2, the proof is the same as in Claim 4.11. Next we
consider Item 3. The cases are symmetric. Assume that there exist a pair (u, v) œ Mq,q,
(–,—) œ Mq0,q, and WLOG ˆq Ø 0 such that – ”© — · lborder(u, v). Let (–Õ,—Õ) be some pair
in Mq,qf . Consider the pair (ui = –ui–Õ, vi = —vi—Õ), i Ø 1.

Let (x, x) = interiorˆq(u, v), z1 = lborder(u, v), z2 = rborder(u, v). By assumption
– ”© —z1, and hence z2–Õ ”© —Õ. Since interior of (u, v) is (x, x), we can deduce that
–z2–Õ © —z1—Õ. Therefore –̨ ≠ —̨z1 = ˛z2–Õ ≠ —̨Õ. This means that the transpositions have to
cancel out the di�erences in the vectors at each end of the word. We can prove by induction
that it requires at least |x| transpositions to mitigate a di�erence of 1, while keeping the
alphabetic vector of the middle portion the same. Hence we deduce that dt(ui, vi) Ø i.

(æ): If dt(T1, T2) œ Œ, either there is a pair of outputs (u, v) such that dt(u, v) = Œ
(This is Item 1), or all the output pairs are permutations of each other and there is an infinite
set of pairs S = {(ui, vi) | i > 0} such that dt(ui, vi) Ø i.

In the latter case, we show that either Item 2 or Item 3 holds. We say the set S is
error-bounded if there is an r > 0 such that ui and vi di�er in at most r positions. Clearly,
there are sets with bounded errors on which dt is infinite. We do case analysis.

If there is an infinite set of pairs S = {(ui, vi) | i > 0} such that dt(ui, vi) Ø i that is not
error-bounded, we proceed as in the proof of Claim 4.11 and obtain Item 2 by pigeonhole
principle.

If the set of all output pairs is error-bounded, then clearly for states q such that Mq,q is
infinite, the interior of all the su�ciently large pairs in Mq,q are identical. Moreover since
the output pairs are permutations of each other there is a state q such that |Mq,q| = Œ and
there is a partial run from q0 to q (or a partial run from q to qf ) whose output words are
not permutations of each other. C
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Claim 4.11 and Claim 4.12 can be verified for T1 and T2 in polynomial time. Thus,
closeness of sequential and unambiguous transducers w.r.t. hamming and transposition
distance is decidable in polynomial time.

5 Discussion and Conclusion

It is shown that distance between two rational functions w.r.t. common edit distances is
computable. The related notions of diameter of a rational relation, and the index of a
rational relation in the composition closure of another are also computable. We leave open
the question of finding the precise computational complexity of the problems in Tables 2, 3
and 4.

The current decision procedure for closeness w.r.t. conjugacy and Levenshtein family of
distances proceeds through the analysis of rational expressions. One could directly work on
automata, but it is not enough to check for the conjugacy of simple cycles, as there can be
complex strongly connected components. In such cases, a decidability proof for conjugacy can
be achieved by utilizing Simon’s factorization forests [38] and checking the conjugacy of the
factorization trees inductively. Sumfree expressions are doing this in essence, circumventing
the need to construct the transition monoids.

Lifting these notions to infinite words, and two-way transducers is an immediate next
step. Distance between one-way transducers could be seen as the diameter of a rational
relation obtained by the cartesian product. However, when the transducers T ,S are two-way
or polyregular, the relation {(T (w),S(w)) | w œ dom(T )} need not be rational. It remains
to develop techniques for checking the conjugacy of non-rational relations.

An interesting question is: given two functional transducers T1 and T2 with bounded
distance, does there exist a transducer T such that T2 is equivalent to a cascading composition
of T1 and T ? This is often called the repair problem and is well-studied between two regular
languages [7].
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Abstract

The Ê-regular separability problem for Büchi VASS coverability languages has recently been shown
to be decidable, but with an EXPSPACE lower and a non-primitive recursive upper bound – the exact
complexity remained open. We close this gap and show that the problem is EXPSPACE-complete. A
careful analysis of our complexity bounds additionally yields a PSPACE procedure in the case of
fixed dimension Ø 1, which matches a pre-established lower bound of PSPACE for one dimensional
Büchi VASS. Our algorithm is a non-deterministic search for a witness whose size, as we show, can
be suitably bounded. Part of the procedure is to decide the existence of runs in VASS that satisfy
certain non-linear properties. Therefore, a key technical ingredient is to analyze a class of systems
of inequalities where one variable may occur in non-linear (polynomial) expressions.

These so-called singly non-linear systems (SNLS) take the form A(x) · y Ø b(x), where A(x) and
b(x) are a matrix resp. a vector whose entries are polynomials in x, and y ranges over vectors in the
rationals. Our main contribution on SNLS is an exponential upper bound on the size of rational
solutions to singly non-linear systems. The proof consists of three steps. First, we give a tailor-made
quantifier elimination to characterize all real solutions to x. Second, using the root separation
theorem about the distance of real roots of polynomials, we show that if a rational solution exists,
then there is one with at most polynomially many bits. Third, we insert the solution for x into the
SNLS, making it linear and allowing us to invoke standard solution bounds from convex geometry.

Finally, we combine the results about SNLS with several techniques from the area of VASS to
devise an EXPSPACE decision procedure for Ê-regular separability of Büchi VASS.
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126:2 Separability in Büchi VASS and Singly Non-Linear Systems of Inequalities

1 Introduction

Vector addition systems with states (VASS) are one of the most popular and well-studied
models of concurrent systems. A d-dimensional VASS consists of finitely many control
states and d counters. Transitions between control states can increment or decrement the d
counters, but importantly, one can only take a transition if the new counter values remain
non-negative.

Separability problems. In recent years, a strong focus of the research on VASS was on
separability problems [2,5,6,8–11,15–17,31]. Here, we label the transitions of the input VASS
V1, V2 by letters, which gives rise to languages L1 and L2. Then, we ask whether there exists
a language S, from some class S of allowed separators, such that L1 ™ S and L2 fl S = ÿ.
Here, S is typically the class of regular languages.

An important motivation for studying separability problems is that separators can be
viewed as certificates for disjointness, and thus the non-existence of a run in the product of
V1 and V2. Such certificates are crucial for understanding safety verification for infinite-state
systems, where the di�cult part is to prove the non-existence of a run (the existence of
a run is usually easy to show). In particular, certificates for non-existence are often the
ingredient that is conceptually hardest to come by. For example, in the case of reachability
in VASS, the KLM decomposition [18,19,22,26] and Leroux’s Presburger-definable inductive
invariants [21] can be viewed as such certificates. Regular separators could play a similar
role in alternative approaches to reachability.

In addition to understanding certificates, the recent attention on separability has led to
other applications. For example, work on separability by bounded languages has led to a
general framework to address unboundedness problems for VASS [8]. Moreover, separability
results were used in an algorithm for deciding inclusion between unambiguous VASS [7].

With the recent contribution by Keskin and Meyer [16] (together with earlier decidability
results for subclasses and variants [2, 5, 6, 8–11]), proving regular separability decidable for
(finite-word) VASS, the decidability status of regular separability has largely been settled.
However, concerning complexity, regular separability is far from understood, with few results:
So far, the only exact complexity results are PSPACE-completeness for (succintly represented)
one-dimensional VASS [9], EXPSPACE-completeness for VASS coverability languages [10],
and Ackermann-completeness for VASS reachability languages [16].

Büchi VASS. A particularly challenging problem is (Ê-)regular separability in Büchi
VASS [2]. In a Büchi VASS V, the language L(V) consists of infinite words induced by
runs that visit some final state infinitely often. As demonstrated by Baumann, Meyer, and
Zetzsche [2], Büchi VASS behave quite di�erently in terms of regular separability from their
finite-word counterpart, coverability languages of VASS [10]. Nevertheless, Baumann, Meyer,
and Zetzsche proved decidability of regular separability for Büchi VASS [2]. However, the
complexity remained open: Their algorithm requires at least Ackermannian time (because it
constructs Karp-Miller graphs), and the only known lower bound is EXPSPACE.

Challenge: Non-linear constraints. Improving the complexity established in [2] is chal-
lenging due to the characterization of inseparability there: Inseparability is equivalent to
the existence of a constellation of runs, called an inseparability flower, that must satisfy
a non-linear constraint, meaning a constraint that is not expressible in linear arithmetic
(i.e. first-order logic of (Z; +, <, 0, 1) or (Q; +, <, 0, 1)). Essentially, such a flower is a triple
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(–,—, “) of cyclic runs such that (among other linear inequalities) the counter e�ect of the
combined run –—“ is a scalar multiple of the counter e�ect of just –. In other words, we are
looking for runs with e�ects u,v œ Zn such that

÷x œ Q : v = x · u . (1)

Detecting runs with such constraints is di�cult: There are powerful generic EXPSPACE
algorithms for detecting runs that satisfy unboundedness conditions [12], linear constraints [1],
or variants of computation tree logic (CTL) [4]. However, condition (1) falls in neither of
those categories.

In fact, we are not aware of any algorithmic approach to solving systems of linear
inequalities with constraints of type (1) (let alone inside algorithms for VASS). There is
a result by Gurari & Ibarra [13] showing that integral feasibility of systems of equalities
A · y = b(x) can be decided in NP, where b(x) is a vector containing in each component a
quotient of polynomials in x. However, these do not seem to capture (1): By moving the
denominators from b(x) to the left-hand side, one obtains equations where every variable
from y is multiplied with the same polynomial over x. However, for (1), we need to multiply
a subset of the linear variables (namely, those in u) with a polynomial (namely, x). The same
is true for the logic of almost linear arithmetic due to Weispfenning [32], whose existential
fragment is also solvable in NP. Here, the definable sets are finite unions of solution sets of
Gurari & Ibarra.

Furthermore, it is not even clear how to detect inseparability flowers by invoking reachabil-
ity in VASS (even though this would only yield an Ackermann upper bound): To some extent,
algorithms for reachability permit non-linear constraints – for example, using standard tricks,
it is decidable whether one can reach a configuration with counter values (m,n) such that
n Æ 2m. However, the condition in (1) does not even seem to be captured by such methods.

Contribution. Our main result is that regular separability in Büchi VASS is EXPSPACE-
complete, and PSPACE-complete in fixed dimension Ø 1. The key technical ingredient is a
method that we expect to be of independent interest: We develop a procedure for solving
systems of linear inequalities with a single non-linear variable, which we call singly non-

linear systems of inequalities (SNLS). We use our results about SNLS to show that if an
inseparability witness exists, then there is one where all runs have at most doubly exponential
length, yielding an EXPSPACE procedure. In fixed dimension, we obtain singly exponential
bounds, leading to a PSPACE procedure.

Step I: Singly non-linear systems of inequalities. Intuitively, a singly non-linear system
of inequalities (SNLS) is a system of inequalities that is linear in all but one variable. This
means, there is one variable x that may appear in arbitrary polynomials, but all others can
only occur linearly. More precisely, an SNLS is a system of inequalities of the form

A(x) · y Ø b(x), y Ø 0 , (2)

where A(x) œ Z[x]m◊n is an m ◊ n matrix over the ring Z[x] of integer polynomials in x,
b(x) œ Z[x]m is a vector of polynomials from Z[x], and y ranges over Qn. Notice that here
indeed, x can be freely multiplied with itself and other variables, whereas the expression on
the left-hand side must be linear in each component of y.

Our main result about SNLS is that if a system as in (2) has a solution (x,y) œ Q ◊ Qn,
then it has a solution where all numbers (numerators and denominators) are bounded
exponentially in the description size of A(x) and b(x), even if numbers in the description are
encoded in binary. This implies in particular that feasibility of SNLS is in NP.
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In the proof, we first show that the set of all x œ Q for which there is a solution (x,y)
can be described by a Boolean combination � of polynomial constraints of the form p(x) Ø 0,
for polynomials p œ Z[x]. This amounts to a quantifier elimination procedure for a class of
first-order formulas in the ordered field (Q; +, ·, <, 0, 1). This is perhaps surprising, since this
structure does not admit quantifier elimination in general [24, Theorem 2].

Let us give a geometric explanation how we arrive at the constraints �(x): For each
choice of x, the SNLS A(x) · y Ø b(x), y Ø 0 defines a polyhedron. It is a standard fact
in convex geometry that such a polyhedron has a point on a minimal face, and moreover
this point can be expressed as the inverse of a submatrix of A(x) multiplied with b(x). This
expression can then be plugged back into A(x) · y Ø b(x) to obtain a set of polynomial
constraints on x, subject to a particular determinant being non-zero. The latter non-zero
condition can as well be expressed as a polynomial constraint.

We then show that � has a small solution: In one case, a rational root of one of the
polynomials p is a solution – these can be bounded by the Rational Root Theorem. The other
case is that the solution x lies strictly between two roots r1 < r2 of participating polynomials.
But then one can observe that any rational number between those roots is a solution (if no
other root lies between r1 and r2). Using the Root Separation Theorem (specifically, Rump’s
Bound [27]), which lower-bounds the size of such intervals (r1, r2), we can then conclude that
such an interval must contain a rational number with small numerator and denominator.

Once we exhibit a small x, we can plug it into A(x) · y Ø b(x) to obtain a system of
linear inequalities. Then we use standard bounds to obtain a small (i.e. exponential) solution
y œ Qn. It should be noted that while our result about SNLS concerns rational solutions, we
apply it in the case where b(x) Ø 0, which means a rational solution can be turned into an
integral solution by multiplying a common denominator.

Step II: Racko�-like bounds. After establishing the solution bound for SNLS, we use this
result in the context of Büchi VASS to show the existence of inseparability witnesses that
are small, i.e. consist of runs that are at most doubly exponential in length. Here, we use
an adaptation of the Racko� technique [28] similar to the proofs of Habermehl [14] and
Atig & Habermehl [1]. In [1], it is shown that runs satisfying (restricted) linear inequalities
can be detected in EXPSPACE. For this, they use a Racko�-style induction to bound the
length of such runs. We devise a similar Racko�-style induction to work with SNLS instead
of ordinary linear inequalities. Di�erent compared to the earlier works is the fact that our
witnesses contain Ê-counters, which may change when invoking the induction hypothesis.
Moreover, we need to use a result of Demri on selective unboundedness [12, Theorem 4.6] (in
EXPSPACE in the general case and PSPACE in fixed dimension) to check the coverability of
our witnesses.

2 Preliminaries

Büchi VASS. A Büchi vector addition system with states (Büchi VASS) of dimension d œ N
over an alphabet � is a tuple V = (Q, q0,�, T, F ). It consists of a finite set of states
Q, an initial state q0 œ Q, a set of final states F ™ Q, and a finite set of transitions
T ™ Q◊�ú

◊Zd
◊Q. The size of the Büchi VASS is |V| := |Q|+|F |+

q
(q,w,”,qÕ)œT

!
|w|+||”||2

"
.

By ||”||2, we mean the size of the binary encoding of ”. Since we only consider Büchi VASS
in this paper, we often simply call them VASS. If d = 0, we call V a Büchi automaton.

The semantics of the Büchi VASS is defined over its configurations, which are elements of
Q ◊ Nd. The initial configuration of V is (q0,0). We lift the transitions of the Büchi VASS
to a relation over configurations æ ™ Q ◊ Nd

◊ �ú
◊ Q ◊ Nd as follows: (q,m) w

≠æ (qÕ,mÕ)
if there is (q, w, ”, qÕ) œ T such that mÕ = m+ ”. A run of the Büchi VASS is a (possibly
infinite) sequence of configurations of the form ‡ = (p0,m0)

w1
≠≠æ (p1,m1)

w2
≠≠æ · · · .
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A run ‡ is accepting if it starts from the initial configuration and visits final states
infinitely often, meaning there are infinitely many configurations (q,m) in ‡ with q œ F .
The run is said to be labeled by the word w = w0w1 · · · in �Ê. The language L(V) of the
Büchi VASS consists of all infinite words that label an accepting run.

An infinite-word language L ™ �Ê is called regular if it is accepted by a Büchi automaton.
As we only consider infinite-word languages, we just call them languages.

Arithmetic. Our approach to regular separability in Büchi VASS rests on a result about
solutions to singly non-linear systems of inequalities. This also requires some terminology.

We define the integers, rationals, polynomials, and matrices together with the operations
we need to perform on them. Let a œ Z be an integer. Its size ||a||2 = |bin(a)| is the length of
its binary encoding. We also use ||a||1 to denote the size of the unary encoding. This is the
absolute value plus an extra bit for the sign. A polynomial with integer coe�cients p œ Z[x]
is a sum

qk
i=0

aixi with a0, . . . , ak œ Z and ak ”= 0 if k > 0. We define ||p||1 =
qk

i=0
||ai||1

and similar for ||p||2. The degree of the polynomial is deg(p) = k, its maximal coe�cient

is maxc(p) = maxiœ[0,k] ||ai||1. Note that ||p||1 Æ (deg(p) + 1) · maxc(p). A real number
r œ R with p(r) = 0 is called a root of the polynomial. Let S be a set with a size function
|| ≠ || defined on it. We consider matrices A œ S

m◊n over S , and define their size ||A||

by summing up the sizes of the entries. We use row(A) = m and col(A) = n. When
S = Z[x], we also use deg(A) for the highest degree of a polynomial in A and maxc(A) for
the maximal coe�cient of a polynomial in A. Pairs (s1, s2) œ S ◊ S form a special case with
size ||(s1, s2)|| = ||s1||+ ||s2||. In particular, a rational number t œ Q is a pair t = a

b of integers
a, b œ Z with ||t||1 = ||a||1 + ||b||1, and similar for ||t||2.

We perform addition a+ b and multiplication a · b among integers, rationals, polynomials,
and matrices. These operations can be executed in time polynomial in ||a||2 + ||b||2. The same
holds for the comparison a Ø b among integers and rationals. We also add, multiply, and
compare integers and rationals with ≠Œ and Œ. The definitions are as expected.

3 Main results

A language R ™ �Ê is said to separate languages L1,L2 ™ �Ê, if L1 ™ R and R flL2 = ÿ. We
call L1 and L2 regular separable, denoted by L1 |L2, if there is a separator R that is a regular
language. The problem we address is the regular separability problem for Büchi VASS:
Given Two VASS V1 and V2 over some alphabet �.
Question Does L(V1) |L(V2) hold?
We also consider the variants of this problem where the inputs are of fixed dimension: For a
fixed number d œ N \ {0}, the d-dimensional regular separability problem for Büchi VASS is
the same problem as above, except that the input VASS V1 and V2 are restricted to be of
dimension at most d. Our first main result is the following:

I Theorem 3.1. The regular separability problem for Büchi VASS is EXPSPACE-complete.

Moreover, the d-dimensional regular separability problem is PSPACE-complete for all d Ø 1.

As mentioned above, the proof is based on a small model property for what we call
singly non-linear systems of inequalities. We expect this result to be of independent interest.
Formally, a singly non-linear system (SNLS) is a system of inequalities of the form

A(x) · y Ø b(x) · y Ø 0 .
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Here, A(x) œ Z[x]m◊n is an m◊n matrix over the set of polynomials with integer coe�cients
in variable x, and b œ Z[x]m is a vector of polynomials. We also write an SNLS as S =
(A(x), b(x)), or S(x,y) to emphasize the variables. A solution to S is a pair (t, s) œ Q ◊ Qn

that satisfies A(t) · s Ø b(t) · s Ø 0. If a solution exists, we call the system feasible.
Our second main result is a bound on the size of least solutions.

I Theorem 3.2. If the SNLS S is feasible, then it has a solution (t, s), where all components

of s have the same denominator, with ||t||1, ||s||1 œ (col(S) ·deg(S) ·maxc(S))O(deg(S)
2
·row(S)

4
)
.

Theorem 3.2 implies that a feasible system S always has a solution of size at most singly
exponential in ||S||1. This gives an upper bound on the complexity of feasibility.

I Corollary 3.3. Feasibility of SNLS is in NP.

The reader may have noted that SNLS are more general than the non-linear systems we are
confronted with when checking separability. There are at least two arguments in support
of the generalization. First, non-linearity is not well-understood, and we believe a class of
systems that admits an e�cient algorithm for checking feasibility will find its applications.
Second, the generalization only adds little complexity to the proof or, phrased di�erently,
the special case already needs most considerations.

Organization. The remainder of the paper is organized as follows. In Section 4, we prove
Theorem 3.2 and in Section 5, we show Theorem 3.1.

4 Singly Non-Linear Systems

In this section, we prove Theorem 3.2.

Some notation. By A(t) or eval(A(x), t) we mean the matrix with rational entries that
results from A(x) by evaluating all polynomials at t. Let A œ Rn◊n be a square matrix
over some ring R. In our exposition, we will consider matrices over the rings Z, Q, and
Z[x]. We write det(A) for the determinant, and recall that if R is a field (such as Q), then
A is invertible if and only if det(A) ”= 0. The adjugate (also called classical adjoint) of A
is the matrix adj(A) œ Rn◊n with adj(A)[j, i] = (≠1)i+j det(Aij), where Aij is the matrix
obtained from A by removing the i-th row and the j-th column. It is well-known that then
A · adj(A) = det(A) · I, where I is the identity matrix in dimension n. In particular, if A is
invertible, its inverse can be computed as A≠1 = adj(A)

det(A)
[20, Chapter XIII, Prop. 4.16].

In upper bound arguments, we will use the well-known Leibniz formula for determinants,
which says det(A) =

q
‡œSn

sgn(‡) ·
rn

i=1
A[i,‡(i)] [20, Chapter XIII, Prop. 4.6]. Here, Sn

is the set of all permutations of [1, n] and sgn(‡) œ {≠1, 1} is the sign of ‡ œ Sn.

Bounding solutions. For the proof of Theorem 3.2, we proceed in two steps. We first show
that if an SNLS S(x,y) is feasible, then we find a small rational t for x such that the system
S(t,y) is feasible. This system is the result of evaluating all polynomials in S at t, and thus
having only y as the variables.

I Lemma 4.1. If the SNLS S(x,y) is feasible, then there is a number t œ Q with ||t||1 œ

(col(S) · deg(S) ·maxc(S))O(deg(S)·row(S)
3
)
such that S(t,y) is feasible.
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Lemma 4.1 is non-trivial and will occupy almost this entire section. To explain our approach,
note that the feasibility of S(x,y) is equivalent to the feasibility of ÷y.S(x,y). Our first
step is to eliminate the quantifier and determine a new formula �(x) in which y no longer
occurs and that is equivalent to the previous one over the rationals, ÷y.S(x,y) |= |=

Q �(x).
The equivalence says that for every t œ Q, we have t |= ÷y.S(x,y) if and only if t |= �(x).

The second step for Lemma 4.1 is to show that if the new formula holds, then we find a
small solution for t. To this end, we will apply the Root Separation Theorem, which provides
a lower bound on the distance between distinct real roots of polynomials. After establishing
Lemma 4.1, we obtain Theorem 3.2 (at the end of this section) by taking the t provided
by Lemma 4.1, and pair it with the s œ Qn, which must exist according to the quantifier
elimination done in the first step of Lemma 4.1.

4.1 Quantifier Elimination

We show how to remove the quantifier from ÷y.S(x,y) with a tailor-made quantifier elim-
ination algorithm. The fact that quantifier elimination is possible in this setting came as
a surprise to us, given the non-linear nature and the setting of rationals. For example,
the real closed field (R; +, ·, <, 0, 1) admits quantifier elimination by a classical result of
Tarski [25, Theorem 3.3.15], but this is not true for the ordered field (Q; +, ·, <, 0, 1) of
rationals [24, Theorem 2] (see [25, p. 71–72] for a simple example). This means, there are
first-order formulas over (Q; +, ·, <, 0, 1) that have no quantifier-free equivalent. However, we
show that if we existentially quantify the linear variables in the formulas induced by SNLS,
then those quantifiers can be eliminated.

The precise formulation of the result needs some notation. A lower bound constraint has
the form p(x) Ø 0 or p(x) > 0 with p œ Z[x] a polynomial with integer coe�cients. The
formula �(x) that we want to obtain takes the form

x
iœI

w
jœJi

�i,j(x), where the formulae
�i,j(x) are lower bound constraints. We call it a DNFLB, short for disjunctive normal form

with lower bound constraints as the literals. We may also omit x and write �. We use deg(�)
and maxc(�) for the maximal degree resp. coe�cient of a polynomial in �.

I Theorem 4.2. For every SNLS S(x,y), there is a DNFLB �(x) with ÷y.S(x,y) |= |=

Q �(x),
deg(�) œ O(row(S) · deg(S)), and maxc(�) œ (col(S) · deg(S) ·maxc(S))O(row(S)

2
)
.

Since our intention is to bound the solutions t to variable x, the given estimations on the
degree and the maximal coe�cient su�ce for us. The proof actually gives an algorithm to
compute � which runs in time exponential in the dimension of S, but we do not need the
e�ectiveness here. In the proof of Theorem 4.2, we will use a standard fact about polyhedra:

I Lemma 4.3. Suppose D œ Qm◊n
and c œ Qm

. If the system D · x Ø c has a solution in

Qn
, then there is a solution s œ Qn

that also satisfies DÕ
· s = cÕ

, where (DÕ, cÕ) is a subset

of the rows of (D, c) such that rank(DÕ) = rank(D).

Proof. By well-known decomposition theorems about polyhedra, a polyhedron P = {s œ

Qn
| D ·s Ø c} is non-empty if and only if it has a non-empty minimal face [30, Theorem 8.5].

Moreover, minimal faces can be characterized as exactly the sets of the form {s œ Qn
|

DÕ
· s = cÕ

}, where (DÕ, cÕ) is a subset of the rows of (D, c) such that DÕ has the same rank
as D [30, Theorem 8.4]. J

We are ready to prove Theorem 4.2:
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Proof of Theorem 4.2. Let S(x,y) = A(x) · y Ø b(x) · y Ø 0. To fix the dimension, let
A œ Z[x]m◊n. We can equivalently write the SNLS as S Õ(x,y) = D(x) · y Ø c(x) with

D(x) =
A
A(x)
In

B
œ Z[x](m+n)◊n c(x) =

A
b(x)
0n

B
œ Z[x]m+n ,

i.e. we glue the n ◊ n identity matrix In to the bottom of A(x) and extend b(x) by n zeros.
Assume S

Õ is feasible and the solution for x is t œ Q. By Lemma 4.3 and since D(t) has
rank n, we can select a subset of n rows of D(t) and of c(t) such that the smaller system
has a solution, even with equality. More formally, for any subset R ™ [1,m+ n], denote by
DR(t) (resp. cR(t)) the matrix (resp. vector) obtained by selecting only the rows in R from
D(t) (resp. c(t)). Then Lemma 4.3 tells us that there is an s œ Qn with DR(t) · s = cR(t),
where DR(t) has rank n. In particular, DR(t) is invertible and thus det(DR(t)) ”= 0. The
fact that DR(t) is invertible allows us to write s = DR(t)≠1

· cR(t), which will be key for
our quantifier elimination. The argumentation shows that for every t œ Q, ÷y.S Õ(t,y) is
equivalent to the condition

fl

R™[1,m+n]
|R|=n

det(DR(t)) ”= 0 · D(t) ·DR(t)≠1
· cR(t) Ø c(t) . (3)

Here, of course, we only know that DR(t)≠1 exists when det(DR(t)) ”= 0. To express (3)
using polynomials, we employ the identity DR(t)≠1 = adj(DR(t))

det(DR(t)) whenever DR(t) is invertible
(equivalently, whenever det(DR(t)) ”= 0). Thus, the set of all t with ÷y : S Õ(t,y) can be
defined by the following DNFLB �:

fl

R™[1,m+n]
|R|=n

1
det(DR(x)) > 0 · D(x) · adj(DR(x)) · cR(x) Ø det(DR(x)) · c(x)

2
(4)

‚

1
det(DR(x)) < 0 · D(x) · adj(DR(x)) · cR(x) Æ det(DR(x)) · c(x)

2
,

where indeed all conditions are of the form p(x) Ø 0 or p(x) > 0 for some polynomials p. Note
that here, we distinguish the cases det(DR(x)) < 0 and det(DR(x)) > 0 because moving
a negative det(DR(x)) to the other side of the inequality changes Ø to Æ. Moreover, note
that (in contrast to (3)) in the formulation (4), all terms are well-defined, independenly of
whether the current choice of R makes DR(x) invertible or not. To be precise, we obtain the
DNFLB by subtracting the right-hand sides of the inequalities from the left-hand sides and
multiplying the result by ≠1 to invert the inequality where necessary. The above form will
su�ce to give an estimate on the maximal degree and the maximal coe�cient.

It is now clear that the coe�cients (resp. degrees) appearing in � are exponential
(resp. polynomial) in the bitsize of S. The precise bounds promised in the Theorem are
straightforward to deduce from standard bounds on determinants, see the full version for
details. J

4.2 Root Separation

To show Lemma 4.1, it remains to be shown that any feasible DNFLB �(x) has a solution
that is exponentially bounded. The key observation is that if r and rÕ are adjacent roots of a
polynomial p(x) œ Z[x] and a constraint p(x) Ø 0 or p(x) > 0 is satisfied for some t for x
with r < t < rÕ, then any number tÕ in the open interval (r, rÕ) will also satisfy the constraint:
The polynomial does not change its sign between r and rÕ. Thus, we can think of R as being
split into (i) roots of p and (ii) intervals between roots of p (and the infinite intervals below
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the smallest and above the largest root). Then whether t œ Q satisfies p(x) Ø 0 or p(x) > 0
only depends on which of those parts of R the number t belongs to. This remains true if we
refine this decomposition of R according to all polynomials occurring in �.

In order to construct rational numbers with small numerator and denominator in intervals
(r, rÕ), we will rely on a Root Separation Theorem, saying that polynomial roots are not too
close. More specifically, we use Rump’s Bound [27, Theorem 8.5.5]:

I Theorem 4.4 (Rump’s Bound [27, Theorem 8.5.5]). Suppose r, rÕ
œ R are distinct roots of

a polynomial p(x) œ Z[x] with degree d œ N. Then |r ≠ rÕ
| > (dd+1(1 + ||p(x)||1)2d)≠1

.

We will also use an elementary fact about rational roots of integral polynomials. It is
known as the Rational Root Theorem or Integral Root Test [20, Chapter IV, Prop. 3.3]:

I Lemma 4.5 (Rational Root Theorem [20, Chapter IV, Prop. 3.3]). Let p(x) = cnxn+· · ·+c0 œ

Z[x] be a polynomial. If r = a/b is a root of p with a, b co-prime, then a divides c0 and b
divides cn. In particular, |a|, |b| Æ maxc(p).

Finally, we need a standard bound on all real roots of a polynomial [27, Corollary 8.3.2].
This is known as Cauchy’s bound.

I Lemma 4.6 (Cauchy’s Bound [27, Corollary 8.3.2]). If r œ R is a root of a polynomial

p œ Z[x], then |r| Æ 1 + ||p||1.

Let r1 < · · · < rk œ R be all the real roots of polynomials occurring in �. Observe that
if t œ Q satisfies �(x) and t œ (ri, ri+1), then any rational number in (ri, ri+1) must satisfy
�(x), because none of the polynomials in � changes its sign between ri and ri+1. This allows
us to bound a rational solution, by distinguishing the following cases:
1. Suppose �(x) is satisfied by some rational root ri of p in �. Write ri = a

b with a, b
co-prime. Then the Rational Root Theorem (Lemma 4.5) implies |a|, |b| Æ maxc(p).

2. Suppose �(x) has a rational solution in some interval (ri, ri+1). Since ri and ri+1 are
the roots of some polynomials p, q in �(x), as observed above, any rational number in
(ri, ri+1) is also a solution to �(x). Note that ri, ri+1 are roots of p(x) · q(x) and thus by
Theorem 4.4, we have |ri ≠ ri+1| >

1

b for some b œ Z that is exponentially bounded. Thus,
there is an integer a œ (bri, bri+1). Note that then a

b belongs to the interval (ri, ri+1)
and thus satisfies �(x). Moreover, by the Cauchy Bound (Lemma 4.6), we also have an
exponential bound U œ R on |ri|, |ri+1| and thus on |a| Æ |b|U .

3. Suppose �(x) has a rational solution t outside of [r1, rk]. If t > rk then every rational
number in [rk,Œ) is also a solution. Moreover, by Lemma 4.6, any rational number tÕ

with t
Õ > 1 + ||p||1 for every polynomial p occurring in � can be chosen, e.g. tÕ = 2 + c,

where c = max{||p||1 | p polynomial in �}. On the other hand, if t < r1, then t
Õ = ≠(2+c)

is a solution by an analogous argument.

This proves that any feasible �(x) has a rational solution that is exponentially bounded,
which is what we will use in our application to Büchi VASS. The precise bounds of Lemma 4.1
are shown in the full version.

Proof sketch for Theorem 3.2. For showing Theorem 3.2, we can now use the fact that
if t œ Q admits a solution (t, s), then by our argument in the proof of Theorem 4.2,
sú := adj(DR(t))

det(DR(t)) · cR(t) is also a solution, for some subset R ™ [1,m+n]. This means that we
can apply the bound on t and the bounds on adj(DR(x)) and det(DR(x)) established in the
proof of Theorem 4.2 to bound the solution sú. We can ensure that all components of cR(t)
have the same denominator by increasing the bit size at most deg(S)-fold. If we compute sú

starting from such a vector, we get an sú where all components have the same denominator.
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Since the entries in DR all appear in S and it is well-known that the determinant has
polynomial bit size in the bit size of a matrix, it follows that there exists a solution (t, s)
of polynomial bit size. The precise bounds promised in Theorem 3.2 are derived in the full
version.

5 Ê-Regular Separability

We use the results from Section 4 to prove Theorem 3.1. Note that the lower bounds in
Theorem 3.1 easily follow from [2]. First, that paper already shows PSPACE-completeness of
regular separability for one-dimensional Büchi VASS, which yields the PSPACE lower bound
for fixed dimension Ø 1. In fact, their argument also yields EXPSPACE-hardness in the
general case: The full version [3, Appendix E.1] describes a simple reduction from intersection
emptiness of one-dimensional VASS that accept by final state to regular separability of Büchi
VASS, and the construction is the same in higher dimension. This yields EXPSPACE-hardness
of regular separability of Büchi VASS, since intersection emptiness of VASS of arbitrary
dimension that accept by final state is EXPSPACE-hard [23].

It remains to prove the upper bounds in Theorem 3.1. To adequately formulate our
proofs, we need to introduce additional VASS-related concepts.

More on Büchi VASS. Let V = (Q, q0,�, T, F ) be a Büchi VASS. Consider a (possibly
infinite) run ‡ = (p0,m0)

w1
≠≠æ (p1,m1)

w2
≠≠æ · · · of V. The sequence of transitions in ‡ is

called a path and has the form fl = (p0, w1, ”1, p1)(p1, w2, ”1, p2) . . .. If a path is finite and
the source state of its first transition coincides with the target state of its last transition,
then we call it a loop. Since a run is uniquely determined by the start configuration and its
sequence of transitions, we also denote a run by ‡ = (p0,m0).fl. If ‡ is finite and (p¸,m¸) is
its last configuration, then we sometimes write ‡ = (p0,m0).fl.(p¸,m¸) to emphasize this.
The e�ect ”(fl) of some finite path fl = (p0, w1, ”1, p1) . . . (p¸≠1, w¸, ”¸, p¸) is the sum of all
induced counter changes, formally ”(fl) =

q
1ÆiÆ¸ ”i.

Recall that configurations of the Büchi VASS V are elements of the set Q ◊ Nd. We call
the second component in a configuration the counter valuation and refer to the i-th entry as
the value of counter i. For a configuration cf and a set of counters I ™ [1, d] we also use cf [I]
to denote the counter valuation of cf restricted to the counters in I. A configuration (q,m)
is coverable in V if there is a run starting in the initial configuration (q0,0) and reaching a
configuration (q,mÕ) with mÕ

Ø m. Here, Ø is defined component-wise.
Moreover we also consider a set of extended configurations Q ◊ Nd

Ê, where NÊ = N fi {Ê}.
Here Ê is used to represent a counter value that has become unbounded. For an extended
configuration (q,m) we use Ê(q,m) ™ [1, d] to denote the set of counters valued Ê in m.
Comparisons and arithmetic operations between integer values and Ê behave as expected,
treating Ê as Œ. Formally, Ê Ø Ê, Ê Ø z, and Ê+z = Ê for all z œ Z. The size of an extended
configuration is |(q,m)| = log2 |Q|+||m||2+d, where the extra bit per counter encodes whether
it has value Ê or not. We also use the size of a unary encoding ||(q,m)||1 = |Q|+ ||m||1 + d.

The transition relation is also lifted to extended configurations in the expected manner.
Formally, for (q,m), (qÕ,mÕ) œ Q ◊ Nd

Ê we have (q,m) w
≠æ (qÕ,mÕ) if there is a transition

(q, w, ”, qÕ) œ T such that mÕ = m + ”, where addition between elements of Nd
Ê and Zd is

defined component-wise. Furthermore, our definitions of runs, paths, loops, etc. carry over
to extended versions over the set of extended configurations in a straightforward way. More
precisely, an extended run is a sequence of extended configurations cf 1

w1
≠≠æ cf 2

w2
≠≠æ · · · , an

extended path is the underlying sequence of transitions of an extended run, and an extended
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loop is a finite extended path starting and ending in the same state. To cover an extended
configuration, intuitively, the Ê-counters need to become unbounded, and the remaining
counters need to be covered. Formally, an extended configuration (q,m) is coverable in V

if for every k œ N there is a run starting in the initial configuration (q0,0) and reaching
a configuration (q,mk) œ Q ◊ Nd such that mk[j] Ø k for every counter j œ Ê(q,m) and
mk[i] Ø m[i] for every counter i œ [1, d] \ Ê(q,m).

Finally, we sometimes want to restrict only some counters of the VASS to stay non-
negative. In this case, we consider extended configurations in Q ◊ Zd

Ê, where ZÊ = Z fi {Ê}.
We say an extended run ‡ = cf .fl remains non-negative on counters I ™ [1, d] if cf Õ[I] ™ N|I|

for all extended configurations cf Õ on ‡.

Dyck Language. Towards the EXPSPACE upper bound of Theorem 3.1, a first step is to
reduce the separability problem to a variant where one language is fixed to the Dyck language.
The Dyck language Dn with n-letters is defined over the alphabet �n = {ai, āi | i œ [1, n]}.
It contains those words w where, for every prefix v with w = v.u, we have at least as many
letters ai as āi. Thus, the letters behave like VASS counters and, indeed, the Dyck language
is accepted by a single-state VASS Dn with n counters that increments the i-th counter
upon seeing letter ai and decrements the i-th counter upon seeing āi. If a VASS is defined
over the Dyck alphabet �n, we also call it n-visible. We will sometimes treat an n-visible
VASS of dimension d as a (d+ n)-dimensional VASS, and refer to the additional n counters
as external. Note that this amounts to forming the product with Dn. Given a path fl, we
use Ï(fl) for the e�ect on the external counters in this product construction. Moreover, we
write ”Ï(fl) to denote the combined e�ect on both internal and external counters, i.e. the
(d+ n)-dimensional vector (”(fl),Ï(fl)).

To avoid an exponential blow-up, our reduction uses a variant of VASS whose transitions
are labeled by compressed words. Essentially, the reduction takes V1 and V2 and produces
a VASS V that is a product of V1 and V2. Moreover, it acts on its counters like V1; the
input labels of V correspond to the counter updates of V2. Since the latter are binary-
encoded, the new VASS will have binary encoded input words. Let us make this precise.
A label-compressed VASS (lcVASS) V is a VASS, where the transitions are of the form
(p, am, ”, q) œ Q ◊ �ú

◊ Zd
◊ Q, where a œ � and m œ N is given in binary. Thus, for

an lcVASS V, we define its size as |V| = |Q| + |F | +
q

(q,am,”,qÕ)œT (log2(m) + ||”||2). The
reduction that fixes the Dyck language is captured by the following lemma.

I Lemma 5.1 ([2, Lemma 3.4]). Given V1 and V2 over �, we can compute in time polynomial

in |V1|+ |V2| an n-visible lcVASS V so that L(V1) |L(V2) if and only if L(V) |Dn. Here, n is

the dimension of V2.

The polynomial time bound is not mentioned in [2], but the simple construction they use
(from [11]) clearly implies this bound. The latter separability problem L(V) |L(Dn) has been
studied closely in [2] as well. They first show that V can be transformed so as to make the
language L(V) pumpable. For the resulting VASS, they show that L(V) |L(Dn) holds if and
only if the so called Karp-Miller graph of KM(V) does not contain an inseparability witness.
Unfortunately, the transformation required for pumpability involves another Karp-Miller
graph construction, and therefore does not fit into the space bound we aim for (said graph
can be of Ackermannian size in the worst case). Instead, we reformulate the witness.

I Definition 5.2. Let V be an n-visible d-dimensional VASS. An inseparability bloom for V

is a tuple = (qf , I,–,—, “) with qf a final state, loops –, —, “ starting and ending in qf ,
and a partition of the counters � ‡ I = [1, d+ n] so that
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(i) for all fl = –,—, “, we have ”Ï(fl)[I] Ø 0,
(ii) ”(–) + ”(—) + ”(“) Ø 0
(iii) Ï(–) + Ï(—) Ø 0,
(iv) there is a t œ Q with Ï(–) + Ï(—) + Ï(“) = t · Ï(–).
The size of the bloom is | | = log2 |Q|+ |I|+ |–|+ |—|+ |“|.

A stem for is an extended run cf .‡ of the product VASS V ◊ Dn with the following

properties: It ends in an extended configuration cf
Õ = (qf ,m) for some m œ Nd+n

Ê with

� ™ Ê(cf Õ), and the counters in I \ Ê(cf ) remain non-negative when executing ‡ from cf

resp. –, —, and “ from cf
Õ
.

An inseparability flower — = (cf .‡, ) consists of an inseparability bloom and a suitable

stem. The size is |— | = ||cf ||1 + |‡| + | |. The flower is coverable if the extended

configuration cf is coverable in the product VASS V ◊ Dn.

The following can be derived from the results in [2], refer to the full version for the details.

I Lemma 5.3. Let V be n-visible. We have L(V) ” |Dn if and only if some inseparability

flower is coverable.

Our main result is the following. Note: the unary counter encoding strengthens the bound.

I Theorem 5.4. If an inseparability flower is coverable in an n-visible lcVASS V of dimension

d, then there is one of size at most |— | = 2|V|
O((d+n)2)

.

Main algortihm. We now have all ingredients to formulate the algorithm that proves the
upper bounds in Theorem 3.1. We first describe the EXPSPACE upper bound. Given V1 and
V2 whose languages we wish to separate, we first compute the lcVASS V using Lemma 5.1.
This takes poly time. The task is to check L(V) |Dn, where n is the dimension of V2. Using
Lemma 5.3, we have to find an inseparability flower for V that is coverable. Theorem 5.4
bounds the size of the flowers we have to consider. We thus use non-determinism to find
a flower of bounded size followed by a somewhat involved coverability check. Savitch’s
theorem [29] turns the non-deterministic algorithm into a deterministic one.

We detect a flower of bounded size as follows. We first guess the final state qf œ F and
the partitioning of the counters I ‡ �. With this information, we can guess the stem.

Towards obtaining a suitable stem, we start by guessing an extended configuration cf ,
whose non-Ê-entries are at most doubly exponentially large. We can store such configurations
in exponential space. If � ™ Ê(cf ) fails, we abort. We now guess a path ‡ of doubly
exponential length from cf to a configuration cf

Õ. As we proceed, we store the length of the
path, which only needs exponential space. We abort, if one of the following happens while
guessing ‡: a counter from I \ Ê(cf ) becomes negative, ‡ becomes too long, or the last state
on ‡ is di�erent from qf . If we have not aborted until now, we have determined cf .‡.cf Õ that
may serve as a stem for a bloom with final state qf and partition I ‡ �.

Given the stem, we can finish the construction of the bloom by guessing the cycles
fl = –,—, “. The reason we proceed in this order is the following. The cycles are too long
to be stored in exponential space. Instead, we check the non-negativity required by a stem
on-the-fly, while constructing the cycles. To do so, we need the configuration cf

Õ, which
we can store upon finishing the guess of ‡ above. While guessing the cycles, we store their
length and the numbers ”(fl) and Ï(fl). It is readily checked that these numbers are bounded
by

2|V|
· 2|V|

O((d+n)2)
= 2|V|

O((d+n)2)
.
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This means we can store them in exponential space. We abort, if one of the following
applies: an intermediate valuation becomes negative on I \ Ê(cf ), the path becomes too
long, or the last state is di�erent from qf . We compute the operations and comparisons
required by (i) to (iv) in Definition 5.2. For (iv), we start with counter d + 1 and store
the quotient Ï(–)[d+1]+Ï(—)[d+1]+Ï(“)[d+1]

Ï(–)[d+1]
as the rational number t. As the numerator and

denominator will be at most doubly exponential, we can store the number in exponential
space. For the remaining entries, we only perform the required comparison. As noted
above, they can be executed in polynomial time. If a comparison fails, we reject. If we
have not rejected up to now, we have determined an inseparability flower while using space
|V|

O((d+n)2)
Æ 2|V|·O((d+n)2) = 2poly(|V1|+|V2|).

It remains to check whether this flower is coverable. There are two challenges. First, since
cf is extended, we have a combination of a simultaneous unboundedness and a coverability
problem. Second, the non-Ê-entries in cf may be doubly exponentially large. We reduce
the problem to simultaneous unboundedness, which is in EXPSPACE as shown by Demri [12,
Theorem 4.6(I)]. The reduction uses a simple gadget that subtracts the counter valuation
to be covered and, if succcessful, makes a new target counter j unbounded. In the end we
check simultaneous unboundedness of Ê(cf ) fi {j}. To handle the large values, we utilize
Lipton’s construction [23], which allows a VASS to simulate EXPSPACE-computations. As a
remark, simultaneous unboundedness cannot be expressed by a polynomial-sized formula in
Yen’s logic [33], a fact that was first observed in [12], which means we cannot just invoke the
bounds in [1].

For the PSPACE upper bound, we merely need to observe that in fixed dimension, all our
bounds on counter values become singly exponential. Moreover, for the gadget that subtracts
counter values, we do not need the Lipton construction, as we can subtract exponentially
bounded values directly using transitions. Finally, in fixed dimension, the simultaneous
unboundedness check is also possible in PSPACE, as shown by Demri [12, Theorem 4.6(II)].

The remainder of the paper proves Theorem 5.4. SNLS help us deal with Constraint (iv).

6 Proof of Theorem 5.4

In this section we fix an n-visible lcVASS V = (Q, q0,�n, T, F ). Note that since V is label-
compressed, the e�ect on the external counters Ï(fl) for a path fl is also compressed. This
matches the e�ect ”(fl), which is anyway encoded in binary.

The proof is Racko�-like, and we explain the analogy as we proceed. Like in Racko�’s
upper bound for coverability [28], we reason over all (extended) configurations. Unlike
Racko�, however, we do not look at short covering sequences from a given configuration, but
rather at small flowers rooted in said configuration. To bound the size while maximizing
over all configurations, we measure each flower’s size without considering the configuration it
is rooted in. We therefore define the flower bound

BV = max
cf

min{|‡|+ | | | (cf .‡, ) is an inseparability flower} .

Theorem 5.4 is an immediate consequence of the following.

I Lemma 6.1. BV Æ 2|V|
O((d+n)2)

.

Step I: From length bounds to flower size bounds. Before we prove Lemma 6.1, let us see
how it implies Theorem 5.4. Notice that Lemma 6.1 makes a statement about the lengths of
the runs ‡, –, —, “, whereas Theorem 5.4 also promises a small starting configuration cf .
Thus, it remains to construct a small starting configuration.
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Proof of Theorem 5.4. To begin, assume — = (cf .‡, ) is coverable. By Lemma 6.1,
there is another flower (cf .‡Õ, Õ) that is rooted in the same extended configuration and
satisfies |‡Õ

|+ |
Õ
| Æ BV . The extended configuration cf may not obey the desired bound.

Thus, we replace it by cf
Õ defined by Ê(cf Õ) = Ê(cf ) and cf

Õ[j] = min{cf [j],BV · 2|V|
} for all

j œ I \ Ê(cf ). Here, we keep the Ê-entries, and for each non-Ê-counter, we take the value of
cf unless it is larger than BV · 2|V|, in which case we truncate to this value. We now claim
that — Õ = (cf Õ.‡Õ, Õ) is still a coverable inseparability flower, and its size is at most doubly
exponential (satisfying the desired bound). Coverability is immediate by cf

Õ
Æ cf . We also

have ||cf
Õ
||1 Æ 22O(|V|) . To be an inseparability flower, we have to check that the counters

whose values we truncated when moving from cf to cf
Õ remain non-negative while executing

‡, and also ‡.fl with fl = –,—, “. This, however, is clear by the fact that ‡.fl has length at
most BV , and each transition can subtract at most 2|V| tokens. As we have this budget
available in cf

Õ, the run remains non-negative. J

In the remainder of the section, we prove Lemma 6.1. Similar to Racko�’s proof for
coverability, we generalize the notion of flowers to admit negative counter values. Then
we use an induction on the number of non-negative counters to establish a bound on the
length of shortest generalized flowers. Let i œ [0, d + n], = (qf , I,–,—, “) a bloom, and
� = [1, d+ n] \ I. We call an extended run cf .‡ of V ◊ Dn an i-stem for , if it ends in an
extended configuration cf

Õ with cf
Õ = (qf ,mÕ) for some mÕ, � ™ Ê(cf ), and the counters in

([1, i] fl I) \ Ê(cf ) remain non-negative when executing ‡ from cf resp. –, —, and “ from cf
Õ

in V ◊ Dn. Here, we use [1, 0] = ÿ. We call a pair (cf .‡, ) consisting of an i-stem and an
inseparability bloom an i-inseparability flower. Note that a (d+ n)-inseparability flower is
an inseparability flower as in Definition 5.2. We say the flower is b-bounded with b œ N \ {0},
if the counters in ([1, i] fl I) \ Ê(cf ) are bounded by b along cf .‡.fl for all fl = –,—, “. We
wish to establish an estimate on the following function f , note that f (d+ n) = BV :

f (i) = max
cf

min{|‡|+ | | | (cf .‡, ) is an i-inseparability flower} .

Step II: From value bounds to length bounds. Similar to Racko�’s proof, we will bound
f(i + 1) in terms of f(i), which will then yield the bound on BV = f(n + d). However,
there is a key di�erence to Racko�’s proof: When constructing runs that, in the first i+ 1
coordinates stay non-negative, Racko� argues that if such a run only uses counter values in
[0, b] on the first i+ 1 coordinates, then there is such a run of length at most |Q| · (b+ 1)i+1:
whenever a combination of values in [0, b] (and a control state) repeats, we can cut out the
infix in between. Hence, value bounds yield length bounds. Our setting requires a di�erent
argument: Simply cutting out infixes in –,—, “ might spoil the properties (ii), (iii), and (iv)
of i-inseparability flowers. Instead, we use our results on SNLS to obtain length bounds from
value bounds. The technique is similar to some other generalizations of Racko�’s result by
Yen [33, Lemma 3.5] Habermehl [14, Lemma 3.2] and Atig and Habermehl [1, Lemma 5].
However, the following proof also needs to work with non-linear constraints (which are also
not present in Demri’s extension of Racko�’s result [12]).

I Lemma 6.2. Let — = (cf .‡, ) be a b-bounded i-inseparability flower. Then there is an

i-inseparability flower —
Õ = (cf .‡Õ, Õ) with |‡Õ

|+ |
Õ
| Æ (2|V|

· |Q| · b)O((d+n)6)
.

Proof. Let — = (cf .‡, ) be a b-bounded i-inseparability flower with = (qf , I,–,—, “).
Let � be the complement of I. Let ‚cf be the extended configuration reached by cf .‡.

Let D = ([1, i] fl I) \ Ê(cf ) be the counters we wish to keep non-negative. By a D-loop,
we mean an extended run cf 1.·.cf 2 of V ◊ Dn where · is a loop, cf 1[D] = cf 2[D], and
cf 1[�] = cf 2[�]. The D-loop is called irreducible if it does not contain further D-loops. By
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the pigeonhole principle, any run that is longer than ulen = |Q| · (b + 1)|Dfi�| contains a
D-loop. This means the length of an irreducible D-loop is at most ulen. Moreover, these
loops can have at most 2 · 2|V|

· ulen distinct e�ects on each counter, where the leading 2 is
for the distinction between positive and negative values. This analysis yields an upper bound
of unum = (2|V|+1

· ulen)d+n on the number of irreducible D-loops with distinct e�ects. We
show how to construct a flower as promised in the lemma.

We begin by cutting out irreducible D-loops from ‡, yielding ‡Õ of length at most ulen.
The extended configuration cf

Õ reached by cf .‡Õ coincides with ‚cf on the Ê-entries and on
the non-Ê-entries for D.

Next, we want to shorten fl = –,—, “. To this end, we first decompose them into irreducible
D-loops. We assume all such D-loops have distinct e�ects, otherwise we pick a representative.
With the previous analysis, the result is fl0, fl1, . . . , flv with v Æ unum. Here, fl0 is the loop on
the final state into which the irreducible D-loops fl1, . . . , flv are inserted. Note that fl0 is not
necessarily a D-loop. What we know, however, is that fl0 has a non-negative e�ect on the
counters in I, due to Condition (i) in the definition of inseparability blooms. Since we want
to be able to insert all the D-loops directly into fl0, the latter should still contain the same
starting configurations for such loops as fl, at least when only considering the counters in
Dfi�. Therefore we cannot guarantee that fl0 contains no D-loops, because cutting all of them
out might reduce the number of such configurations visited by fl0. However, fl0 still has length
at most u2

len by the following argument. If we mark in fl0 the first occurrence of each element
from Q ◊ [0, b]Dfi�, then each infix leading from one such marker to the next has at most
length ulen , because longer infixes still contain a D-loop that has no marked configuration and
can therefore be removed. Since there are at most |Q ◊ [0, b]Dfi�

| = |Q| · (b + 1)|Dfi�| = ulen
markers, we obtain the stated length bound of u2

len for fl0.
A vector x œ Nv with x[0] > 0 and x[j] Ø 0 for 1 Æ j Æ v can now be turned into

a run flx by glueing together x[j]-many instances of flj . Note that also the base loop fl0

may be repeated. As the order of the transitions does not influence the e�ect of the run,
”Ï(fl) = ”Ï(fly) holds, where y = �(fl) is the so-called Parikh vector that counts the
occurrences of irreducible loops in fl. As a consequence, we can directly define the e�ect on
the vector x, namely ”Ï(x) =

qv
i=0

x[j] · ”Ï(flj) œ Zd+n.
With irreducible D-loops at hand, we can formulate the search for a small bloom as an

SNLS. We define the vectors x–,x— ,x“ , and the following constraints:

x–[0],x— [0],x“ [0] Ø 1 ”(x– + x— + x“)[1, d] Ø 0
x–,x— ,x“ Ø 0 Ï(x– + x—)[d+ 1, d+ n] Ø 0

”Ï(x–)[I], ”Ï(x—)[I], ”Ï(x“)[I] Ø 0 (Ï(x– + x— + x“) ≠ t · Ï(x–))[d+ 1, d+ n] = 0

The constraints on the left say that we repeat the base loops at least once, and the
remaining loops a non-negative number of times. The last constraint is Condition (i) in the
definition of blooms. The constraints on the right correspond to the Conditions (ii) to (iv).

It is readily checked that (�(–),�(—),�(“)) solves the SNLS. This means Theorem 3.2
applies and yields a small rational solution. To turn it into an integer solution, we observe that
our SNLS is monotonic in the sense that if (x–,x— ,x“) is a solution, so is (kx–, kx— , kx“)
for any k Ø 1. We multiply the rational solution by the common denominator to obtain the
integer solution (xÕ

–,x
Õ

— ,x
Õ
“) with the associated loops –Õ,—Õ, “Õ.

We argue that — Õ = (cf .‡Õ, Õ) with Õ = (qf , I,–Õ,—Õ, “Õ) is an i-inseparability flower.
Remember that cf Õ is the configuration reached by cf .‡Õ. As cf and I have not changed, the
only thing we have to show is the non-negativity for the counters in D. For ‡Õ, this follows
from the non-negativity of ‡, and the fact that we only cut-out D-loops. For flÕ = –Õ,—Õ, “Õ,
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which are executed from cf
Õ, we argue as follows. The base loop fl0 has the same e�ect on

the D-counters as fl, because we obtained fl0 by cutting-out D-loops from fl. The e�ect of fl
on even the entire set I is non-negative due to Condition (i) for blooms. This means if
one repetition of fl0 stays non-negative from cf

Õ, arbitrarily many repetitions will. The one
repetition stays non-negative, because fl was non-negative from ‚cf (the extended configuration
reached by cf .‡), and cf

Õ coincides with ‚cf on D. Since the D-loops that we glue into fl0

come with a valuation of the counters in D, and this valuation keeps them non-negative in fl,
the entire flÕ stays non-negative.

We analyze the complexity of our system S. It has at most row(S) œ O(d + n) many
rows, and note that the non-negativity constraints do not count towards the rows. There
are at most col(S) œ O(unum) many columns. The degree is deg(S) = 1. The maximal
coe�cient is bounded from above by the largest possible loop e�ect, maxc(S) Æ 2|V|

· u
2

len.
Then, Theorem 3.2 gives us rational solutions x–,x— ,x“ of the form xfl[i] =

a

K
, meaning K

is the common denominator of all entries, with

||xfl||1 œ (col(S) · deg(S) ·maxc(S))O(deg(S)
2
·row(S)

4
)

= (O(unum) · 2|V|
· u

2

len)O((d+n)4)

= (O((2|V|+1
· ulen)d+n) · 2|V|

· u
2

len)O((d+n)4)

= (2|V|
· ulen)O((d+n)5) = (2|V|

· |Q| · (b + 1))O((d+n)6)

= (2|V|
· |Q| · b)O((d+n)6) .

We already argued that the integer vectors Kx–, Kx— , Kx“ are also solutions with
runs –Õ,—Õ, “Õ. Since each entry of these vectors is smaller than (2|V|

· |Q| · b)O((d+n)6),
and we have at most unum = (2|V|

· |Q| · (b + 1))O((d+n)2) many loops with maximal size
u
2

len = |Q|
2
· (b + 1)2(d+n), we get

|flÕ
| Æ (2|V|

· |Q| · b)O((d+n)6)
· (2|V|

· |Q| · (b + 1))O((d+n)2)
· |Q|

2
· (b + 1)2(d+n)

= (2|V|
· |Q| · b)O((d+n)6) . J

Step III: Racko�-style induction. We now give the bound on f (i) that we need to prove
Lemma 6.1. In the base case, no counter has to remain non-negative and so we have a
1-bounded 0-inseparability flower. We employ the bound from Lemma 6.2.

I Lemma 6.3. f (0) = (2|V|
|Q|)O((d+n)6)

.

In the induction step, and as in Racko�’s result, the bound takes the form of a recurrence.

I Lemma 6.4. f (i+ 1) Æ (2|V|
· f (i))O((d+n)6)

.

Proof. Consider an (i + 1)-inseparability flower — = (cf .‡, ) with = (qf , I,–,—, “) and
� = [1, d + n] \ I. Let r(i) = 2|V|

· f (i) serve as an abbreviation. We proceed by a case
distinction. If — is r(i)-bounded, then Lemma 6.2 provides another (i + 1)-inseparability
flower (cf .‡Õ, Õ) with |‡Õ

| + |
Õ
| Æ (2|V|

· |Q| · r(i))O((d+n)6) = (2|V|
· f (i))O((d+n)6). This

satisfies the bound stated in the lemma.
If — is not r(i)-bounded, then ‡.fl with fl = –,—, “ exceeds r(i). We identify the first

moment when this happens, say after fl1 and for the (i+ 1)-th counter. The case where the
run exceeds the bound already in ‡ is simpler. The run decomposes into

cf
‡
≠æ cf 1

fl1
≠æ cf

Õ fl2
≠æ cf 2 .
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We argue that also (cf Õ.fl2, ) is an (i + 1)-flower, which means cf Õ.fl2 is an (i + 1)-stem
for . Since fl is a loop, it returns to qf . We have Ê(cf ) = Ê(cf Õ) and since � ™ Ê(cf ), we
get � ™ Ê(cf Õ). As is a bloom, fl has a non-negative e�ect on the counters in I. This
means cf 1[I] Æ cf 2[I], and so the counters in ([1, i + 1] fl I) \ Ê(cf Õ) remain non-negative
when executing –, —, “ from cf 2 as they did from cf 1. Also fl2 remains non-negative from cf

Õ,
because fl remained non-negative from cf 1.

Since (cf Õ.fl2, ) is an (i + 1)-flower, it is an i-flower. The induction hypothesis yields
another i-flower — Õ = (cf Õ.‡Õ, Õ) with |‡Õ

| + |
Õ
| Æ f (i). Let Õ = (qÕ

f , I
Õ,–Õ,—Õ, “Õ) and

let �Õ be the complement of I Õ.
We argue that — Õ is actually an (i + 1)-flower. If the counter i + 1 that exceeds the

bound r(i) does not belong to I Õ, there is nothing to show. Otherwise, even ‡Õ.–Õ.—Õ.“Õ in
succession could subtract at most f (i) · 2|V| = r(i) tokens from counter i + 1. Since this
counter carries more than r(i) tokens, this leaves us with a positive balance.

We show that also (cf .‡.fl1.‡Õ, Õ) is an (i+1)-flower, meaning cf .‡.fl1.‡Õ is an (i+1)-stem
for Õ. We have Ê(cf ) = Ê(cf Õ) and so �Õ

™ Ê(cf Õ) implies �Õ
™ Ê(cf ). It remains to show

that the counters in ([1, i + 1] fl I Õ) \ Ê(cf ) remain non-negative. Consider the prefix ‡.fl1

executed from cf . For the counters that also belong to I, non-negativity holds as — is an
(i+ 1)-flower. Assume there was a counter in ([1, i + 1] fl I Õ) \ Ê(cf ) that did not belong to I.
Then it belonged to �. But as � ™ Ê(cf ), we had a contradiction. For the su�x ‡Õ executed
from cf

Õ, and for –Õ,—Õ, “Õ, non-negativity holds as — Õ is an (i + 1)-flower.
To estimate the size of the newly constructed flower rooted in cf , we assume ‡.fl1 does

not repeat configurations on the first (i + 1)-counters. If it does, we cut out the infix and
adapt the values of the counters that are allowed to fall below zero. Then the length of ‡.fl1

is bounded by |Q| · r(i)i+1, and we have

|‡.fl1.‡
Õ
|+ |

Õ
| Æ |Q| · r(i)i+1 + f (i) Æ (2|V|

· f (i))O(i+1)
Æ (2|V|

· f (i))O((d+n)6) . J

It remains to solve the recurrence. Let a = 2|V| and b = O((d+ n)6). We have

f (d+ n) = (a . . . (a · f (0))b . . .)b Æ (ad+n
· f (0))b

d+n

.

Since f (0) = (2|V|
· |Q|)O((d+n)6), we obtain the promised BV = f (d+ n) Æ 2|V|

O((d+n)2) .
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Abstract
We present results concerning the expressiveness and decidability of a popular graph learning
formalism, graph neural networks (GNNs), exploiting connections with logic. We use a family of
recently-discovered decidable logics involving “Presburger quantifiers”. We show how to use these
logics to measure the expressiveness of classes of GNNs, in some cases getting exact correspondences
between the expressiveness of logics and GNNs. We also employ the logics, and the techniques used
to analyze them, to obtain decision procedures for verification problems over GNNs. We complement
this with undecidability results for static analysis problems involving the logics, as well as for GNN
verification problems.
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1 Introduction

Graph Neural Networks (GNNs) have become the most common model for learning functions
that work on graph data. Like traditional neural networks, GNNs consist of a layered
architecture where layer k + 1 takes as input the output of layer k. Each layer computes a
function from graph vertices to a vector of numerical values – the feature vector. Computation
of the feature vector at layer k+ 1 for a node u is based on aggregating vectors for layer k of
nodes v that are related to u in the source graph: for example aggregating vectors associated
to nodes adjacent to u in the graph. In an aggregation, the vectors of the previous vectors
may be transformed using linear functions. A layer can perform multiple aggregations –
corresponding to di�erent linear functions – and then combine them to get the feature vector
for the next layer. The use of graph structure ensures that the computation of the network
is invariant: depending only on the input graph and the node up to isomorphism. There
are many variations of GNN. One key design choice is the kind of aggregation used - one
can use “local aggregation”, over the neighbors of a node, or aggregation over all nodes in
the graph. A second design choice is the kind of numerical functions that can be applied to
vector components, in particular the kind of activation functions that can be applied at each
layer: e.g. ReLU, sigmoid, piecewise linear functions.
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An important issue in the study of graph learning is the expressiveness of a learning
model. What kinds of computations can a given type of GNN express? The first results in
this line were about the separating power of a graph learning model: what pairs of nodes
can be distinguished using GNNs within a certain class. For example, it is known that the
separating power of standard GNN models is limited by the Weisfeiler-Leman (WL) test [16].

A finer-grained classification would characterize the functions computed by GNNs within
a certain class, in terms of some formalism that is easier to analyze. Such characterizations
are referred to as uniform expressiveness results and there has been much less work in this
area. [1] provides a classification of a class of GNNs in terms of modal logic. The main
result in [1] is a characterization of the classifiers expressible in first-order logic that can be
performed with a GNN having only local aggregation and truncated ReLU activations over
undirected graphs. They also provide a lower bound on the expressiveness of GNNs having in
addition a “global aggregator”, that sums over all nodes in the graph.

In this work we continue the line of work on uniform expressiveness. Our work improves
on the state of the art in a number of directions:

From first order expressiveness to general expressiveness In contrast to [1], we provide
logical characterizations of all the functions that can be computed by certain GNN
formalisms, not just the intersection with first-order logic. To do this we utilize logics
that go beyond first order, but which are still amenable to analysis.
From expressiveness to verification While we deal with GNNs that go beyond first-order
logic, we can still obtain characterizations in a logic where the basic satisfiability problems
are decidable. This provides us with decidability of a number of natural verification
problems related to GNNs. In doing this, we show a surprising link between GNNs and
recently-devised decidable logics going beyond first-order logic, so-called Presburger logics.
From undirected graphs to directed graphs While prior work focused on undirected graphs,
we explore how the expressiveness characterizations vary with GNNs that can recognize
directionality of graph edges. The aim is to show that the logical characterizations and
decidability are often independent of the restriction to undirected graphs.
From bounded to unbounded activations We explore the impact of the activation functions.
We begin with the case of bounded activation functions, like the truncated ReLU of [1],
and establish characterizations and decidability results for GNNs using this function.
We show both some contrasts and some similarity to the case of unbounded activation
functions, including the standard ReLU. Here some, but not all, of the corresponding
decidability results fail.

Related work. Logics have been used to characterized the separating power of GNN
languages (“non-uniform expressiveness”) for a number of years: see [8] for an overview. The
recent [9] provides logical characterizations of GNNs with piecewise linear activations. The
logic is not decidable; indeed our undecidability results imply that one cannot capture such
GNNs with a decidable logic.

We employ logical characterizations to gain insight on two basic verification problems
– whether a given classification can be achieved on some nodes or on all nodes. There is
prior work on verification of GNNs, but it focuses on more complex (but arguably more
realistic) problems, adversarial robustness. The closest paper to ours is the recent [14], which
formalizes a broad set of problems related to verifying that the output is in a certain region
in Euclidean space. [14] provides both decidability and undecidability theorems, but they
are incomparable to ours both in the results and in the techniques. For example Theorem 1
of [14] shows undecidability of a satisfiability problem where we verify that certain nodes
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output a particular value, over GNNs which always distinguish a node from its neighbor.
Theorem 2 of [14] shows a decidability result with a di�erent kind of specification, where the
degree of input graphs is bounded.

Recently, logics that combine uninterpreted relations with Presburger arithmetic have
been applied to the analysis of transformers – transducers that process strings [4, 2]. Since
this is outside of the context of general graphs, the details of the logics that are employed
are a bit di�erent than those we consider, and the focus is not on the decidability border.

Organization. We formalize our GNN model and the basic logics we study in Section 2.
We present results on logical characterizations of GNNs with “bounded activation functions”
– like the truncated ReLU of [1]. We apply these characterizations to get decidability results.
Section 4 turns to the case of unbounded activation functions, which includes the traditional
ReLU function. Here we provide lower bounds for expressiveness, and then turn to the
implications for decidability. Section 5 gives conclusions and discusses several open issues
and directions for future work. For space reasons, many details of the constructions and
proofs are deferred to the full version, which is available on arxiv.

2 Preliminaries

Let N, N+, Z, and Q be the set of natural numbers, positive natural numbers, integers, and
rational numbers, respectively. For p, q œ Z and p Æ q, [p , q] is the set of integers between p
and q, including p and q. For r œ Q, ÁrË is the smallest integer greater than or equal to r.

For a function f mapping from Q to Q and a vector b œ Qm, f(b) denotes that f is
applied to each entry of b.

I Definition 1. An n-graph is a tuple
e
V,E, {Uc}1ÆcÆn

f
, where n œ N is the number of

vertex colors; V is a nonempty finite set of vertices; E ™ V ◊ V is a set of edges; each
Uc ™ V is the set of c-colored vertices.

Note that we allow self-loops in graphs, and a graph is by default a directed graph. For
a graph G, we say that G is a undirected graph if for all v, u œ V , (v, u) œ E if and only if
(u, v) œ E. For a vertex v œ V , we let Nout,G(v) := {u| (v, u) œ E} and refer to this as the set
of out-neighbors of v. The set of in-neighbors of v, denoted Nin,G(v) are defined analogously.

Graph Neural Networks. We use a standard notion of “aggregate-combine” graph neural
networks with rational coe�cients. The only distinction from the usual presentation is that
we allow GNNs to work over directed graphs, with separate aggregations over incoming and
outgoing edges, while traditional GNNs work on undirected graphs.

I Definition 2. An n-graph neural network (GNN) is a tuple
K
{d¸}0Æ¸ÆL ,

)
f ¸

*
1Æ¸ÆL

,
)
C¸

*
1Æ¸ÆL

,
)
A¸

x

*
1Æ¸ÆL

xœ{out,in}
,
)
R¸

*
1Æ¸ÆL

,
)
b¸

*
1Æ¸ÆL

L
,

where L œ N+ is the number of layers; each d¸ œ N+, called the dimension of the ¸th layer,
requiring d0 := n, the number of colors; each f ¸ : Q æ Q, the activation function of the ¸th

layer; each C¸, A¸
x, R

¸ œ Qd¸◊d¸≠1 , the coe�cient matrices of the ¸th layer; and b¸ œ Qd¸ , the
bias vector of the ¸th layer.

All the coe�cients are rational. In order to have an e�ective representation of a GNN,
we will also assume that the activation functions are computable.

ICALP 2024
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I Definition 3. For an n-GNN A and an n-graph G, the computation of A on G is a sequence
of derived feature functions

)
›¸
G : V æ Qd¸

*
0Æ¸ÆL

defined inductively: for ¸ = 0, if v œ Uc,
then the cth entry of ›0G(v) is 1; otherwise, the entry is 0. For 1 Æ ¸ Æ L,

›¸
G(v) := f ¸

Q

aC¸›¸≠1
G (v) +

ÿ

xœ{out,in}

Q

aA¸
x

ÿ

uœNx,G(v)

›¸≠1
G (u)

R

b +R¸
ÿ

uœV

›¸≠1
G (u) + b¸

R

b .

For v œ V , ›¸
G(v) is called the ¸-feature vector of v, and ›¸

G,i(v) is the ith entry of ›¸
G(v).

That is, we compute the feature values of a node v at layer ¸ + 1 by adding several
components. One component aggregates over the ¸-layer feature vector from the outgoing
neighbors of v, and applies a linear transformation. Another component does the same for
the incoming neighbors of v, a third does this for every node in the graph, while another
applies a transformation to the ¸-layer feature vector of v itself. The linear transformation
can be di�erent for each component, and in particular can be a zero matrix that just drops
that component. The final component of the sum is the bias vector.

When the graph G is clear from the context, we omit it and simply write ›¸(v) and ›¸
i (v),

and similarly when the graph G is clear from the context, write Nout(v) and Nin(v) for the
in-neighbors and out-neighbors.

Note that in most presentations of GNNs, one deals with only undirected edges. The above
definition degenerates in that setting to two aggregations per layer, with the aggregation
over all nodes often referred to in the literature as the global readout.

In some presentations of GNNs, a classification function, which associates a final Boolean
decision to a node, is included in the definition. In our case, we have separated out the
classification function as an independent component in defining the expressiveness: see the
last part of the preliminaries.

Classes of activation functions. Following prior work on analysis of GNNs, some of our
results will deal with activation functions that are bounded in value:

I Definition 4. We say that the function f : Q æ Q is eventually constant, if there exists
tleft, tright œ Q satisfying tleft < tright, called the left and right thresholds of f , such that for
every x Æ tleft, f(x) = f(tleft); for every x Ø tright, f(x) = f(tright).

A standard eventually constant function is the truncated ReLU function, which is 0 for
negative reals, 1 for x greater than 1, and x otherwise [1]. There are other eventually
constant functions that are used in practice: for example, the linear approximation of
standard bounded functions used in graph learning, like the Sigmoid activation function. We
will be interested in functions that are defined on the reals, but which preserve the rationals.
The definition of eventually constant extends to such a function in the obvious way.

For a GNN with eventually constant activation functions, we use
)
t¸left

*
1Æ¸ÆL

andÓ
t¸right

Ô

1Æ¸ÆL
to denote the left and right thresholds of the GNN’s activation functions.

We also consider unbounded activation functions, such as the standard ReLU function,
which is x for non-negative reals and 0 for negative reals.

Flavors of GNN. For a GNN A, we say that A is outgoing-only, denoted by O, if for
every 1 Æ ¸ Æ L, A¸

in is a zero matrix. A is bidirectional, denoted by B, if there is no
restriction on A¸

in. A is local, denoted by L, if for every 1 Æ ¸ Æ L, R¸ is a zero matrix.
In the usual GNN terminology, this would mean that there is no global readout. A is
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global, denoted by G, if global readout is allowed. A is eventually constant, denoted by C,
if for 1 Æ ¸ Æ L, f ¸ is an eventually constant function. Our results outside of eventually
constant will deal with either piecewise linear activations, denoted PW, truncated ReLU
activations, denoted TrReLU, or standard ReLU activations. We use the following naming,
(O|B)(L|G)(C|PW|TrReLU|ReLU)-GNN, for the set of GNNs satisfying constraints given by
the prefix. For example, OLC-GNN is the set of outgoing-only, local, and eventually constant
GNNs; BGPW-GNN is the set of GNNs allowing both incoming and outgoing, global readout,
and piecewise linear activations.

Classifiers and Boolean semantics. Our GNNs define vector-valued classification functions
on nodes. But for comparing with expressiveness and in defining verification problems, we
will often use a derived function from nodes to Booleans. We do this by thresholding at the
end – below we use .5 for convenience, but other choices do not impact the results.

I Definition 5. For a L-layer n-GNN A, an n-graph G, and a vertex v œ V , we say that A
accepts the tuple ÈG, vÍ, if ›LG,1(v) Ø 0.5.

Note that the global readout component can interact with the activation functions f ¸,
which can behave very di�erently on translated values due to non-linearity – think of a typical
f ¸ as a piecewise linear function. Global readout can also interact with the classification
threshold, pushing some values above the threshold while leaving others below.

Two-variable Modal Logic with Presburger Quantifiers. We review logic with Presburger
quantifiers. The basic idea is to combine a decidable logic on uninterpreted structures, like
two-variable logic or guarded logic, with the ability to perform some arithmetic on the
number of elements. There are several formalisms in the literature that combine Presburger
arithmetic with a decidable uninterpreted logic, some originating many years ago [11]. We
will rely on a recent logic from [3], but we will need several variations of the underlying idea
here.

I Definition 6. A Presburger quantifier is of the form:

P(x) :=
kÿ

i=1
⁄i ·#y[Ïi(x, y)] ~ ”,

where ” œ Z; each ⁄i œ Z; each Ïi(x, y) is a formula with free variables x and y; ~ is one of
=, ”=, Æ, Ø, <, or >. Note that P(x) has one free variable x.

We give the semantics of these quantifiers inductively, assuming a semantics for Ïi(x, y).
Given a graph G and a vertex v œ V , we say that P(x) holds in G, x/v, denoted by G |= P(v),
if the following (in)equality holds in Z.

kÿ

i=1
⁄i · |{u œ V | G |= Ïi(v, u)}| ~ ”

I Remark 7. Note that each Presburger quantifier can be rewritten as a Boolean combination
of expressions which only use the inequality symbol Ø as ~. For example, (#y[Ï(x, y)] = ”)
and (#y[Ï(x, y)] Ø ”) · ¬(#y[Ï(x, y)] Ø ” + 1) are semantically equivalent. Therefore it is
su�cient to consider Presburger quantifiers which only use the inequality symbol Ø.
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I Remark 8. We will make use of Presburger quantifiers that allow for rational coe�cients
of the form:

ÂP(x) := Ÿ0 +
kÿ

i=1
Ÿi ·#y[Ïi(x, y)] ~ ⁄0 +

ÿ̧

i=1
⁄i ·#y[Âi(x, y)],

where each Ÿi,⁄i œ Q. This is a shorthand for the Presburger quantifier:

P(x) :=
kÿ

i=1
(DŸi) ·#y[Ïi(x, y)] +

ÿ̧

i=1
(≠D⁄i) ·#y[Âi(x, y)] ~ D(⁄0 ≠ Ÿ0),

where D is the least common multiplier of the denominators of the coe�cients in ÂP(x).

I Definition 9. We give the syntax of two-variable modal logic with Presburger quantifiers
(MP2) over vocabulary · . Formulas will have exactly one free variable, denoted x below:

€ is an MP2 formula.
for a unary predicate U œ · , U(x) is an MP2 formula.
if Ï(x) is an MP2 formula, then so is ¬Ï(x).
if Ï1(x) and Ï2(x) are MP2 formulas, then so is Ï1(x) · Ï2(x).
if {Ïi(x)}1ÆiÆk is a set of MP2 formulas and {‘i(x, y)}1ÆiÆk is a set of guard atoms, of
form E(x, y), E(y, x), or €, then

1qk
i=1 ⁄i ·#y[‘i(x, y) · Ïi(y)] ~ ”

2
is also an MP2

formula. {‘i(x, y)}1ÆiÆk are the guards of the formula. Consistent with the restriction
we announced on the logic, we consider the result as a formula with free variable x: if all
‘i are € it returns either every node or no node.

The semantics of the Boolean connectives is as usual, while the semantics of the Presburger
quantifiers is given by Definition 6.

An MP2 formula Ï(x) is an n-formula if its vocabulary consists of n unary predicates. We use
abbreviations ‚ and æ as usual. Note that the guarded universal quantifier ’y E(x, y) æ Ï(y)
can be expressed as (1 ·#y[E(x, y) · ¬Ï(y)] = 0), and the guarded existential quantifier
÷y E(x, y) · Ï(y) can be expressed as (1 ·#y[E(x, y) · Ï(y)] Ø 1).

The logic MP2 combines Presburger arithmetic and quantification over the model. Thus
one might worry that it has an undecidable satisfiability problem. And indeed, we will show
this: see Theorem 29. An idea to gain decidability is to impose that the quantification
is guarded – again, the underlying idea is from [3]. The logic L-MP2 (or “local MP2”) is
obtained by excluding € as a guard. Analogously to what we did with GNNs, we use L to
indicate that quantification is “local”.

The logic L-MP2 is contained in the following logic, defined in [3]:

I Definition 10. The syntax of the guarded fragment of two-variable logic with Presburger
quantifiers (GP2) over colored graph vocabulary · starts with arbitrary atoms over the
vocabulary, with the usual connective closure and the following rules for quantifiers:

if Ï(x) is a GP2 formula, then so are ’x ‘(x) æ Ï(x) and ÷x ‘(x) · Ï(x), where ‘ is
either U(x) or x = x for some unary predicate U œ · .
if Ï(x, y) is a GP2 formula, then so are ’x ‘(x, y) æ Ï(x, y) and ÷x ‘(x, y) · Ï(x, y),
where ‘(x, y) is one of E(x, y) or E(y, x).
if {Ïi(x, y)}1ÆiÆk is a set of GP2 formulas and {‘i(x, y)}1ÆiÆk is a set of formulas, each
of form E(x, y) or E(y, x), then

1qk
i=1 ⁄i ·#y[‘i(x, y) · Ïi(x, y)] ~ ”

2
is also a GP2

formula.
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The main di�erence between the logic L-MP2 and the logic above is that the former is
“modal”, restricting to one-variable formulas, and allowing two variables only in the guards.
While in the logic above we can build up more interesting two variable formulas, for example
conjoining two guards.

We will make use of the following prior decidability result:
I Theorem 11 ([3], Theorem 10). The finite satisfiability problem of GP2 is decidable.

From this we easily derive the decidability of L-MP2:
I Corollary 12. The finite satisfiability problem of L-MP2 is decidable.

Notions of expressiveness for GNNs and MP2 Formulas. Recalling that we have a node-
to-Boolean semantics available for both logical formulas and GNNs (via thresholding), we
use the term n-specification for either a n-GNN or a n-MP2 formula.
I Definition 13. If S1, S2 are n-GNNs, they are said to be equivalent if they accept the same
nodes within n-graphs. If S1 is a GNN and S2 a node formula in some logic, we say S1 and
S2 are equivalent if for every n-graph G and vertex v œ V , S1 accepts ÈG, vÍ if and only if
G, v satisfies S2.

The notions of two languages of specifications being equally expressive, or equally ex-
pressive over undirected graphs, is defined in the obvious way:

Verification Problems for GNNs. We focus on two verification problems. The first is the
most obvious analog of satisfiability for GNNs, whether it accepts some node of some graph:
I Definition 14. For an n-GNN A, we say that A is satisfiable, if there exist an n-graph G
and a vertex v œ V , such that A accepts ÈG, vÍ.

We will also consider a variation of the problem which asks whether a GNN accepts every
node of some graph:
I Definition 15. For an n-GNN A, we say that A is universally satisfiable, if there exist an
n-graph G, such that for every vertex v œ V , A accepts ÈG, vÍ.

Two GNNs A and B are equivalent if they accept the same tuples. Note that, like
satisfiability and unlike universal satisfiability, this does not require a quantifier alternation.
For brevity we will not state results for equivalence, but it can easily be seen that both our
positive and negative results on satisfiability also apply to equivalence.

3 Characterization and decidability of GNNs with eventually constant
activation functions

In this section, we only consider GNNs with eventually constant activations. In Section 3.1,
we establish a key tool to analyzing these GNNs: we show that the set of possible activation
values is finite, and one can compute an overapproximation of this set. We use this for two
purposes. First we give a decidability result for GNNs with eventually constant activations
and only local aggregation, and then we show that even with global aggregation we get an
equivalence of the GNNs in expressiveness with a logic.

In Section 3.2, we show that the finite satisfiability of MP2 is undecidable. Using the
expressiveness characterization, this will imply that satisfiability problems for global GNNs
are undecidable. These results were presented for GNNs and logics on directed graphs. In
Section 3.3 we use the logical characterizations to show that they also apply to the standard
setting for GNNs of undirected graphs.
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3.1 Decidability of satisfiability problems for GNNs with eventually
constant functions, via logic

We now come to one of the crucial definitions in the paper, the spectrum of a GNN.

I Definition 16. For a BGC-GNN A and 0 Æ ¸ Æ L, the ¸-spectrum of A, denoted by S¸, is
the set

)
›¸(v)

-- for every n-graph G and vertex v œ V
*
.

That is, the ¸-spectrum is the range of the feature vectors computed at layer ¸, as we
range over all input graphs and nodes. We show that the spectrum is actually finite, and a
finite superset is computable:

I Theorem 17. For every BGC-GNN A and 0 Æ ¸ Æ L, the ¸-spectrum of A is finite. We
can compute a finite superset of the ¸-spectrum from the specification of A.

We give some intuition for the proof. Our e�ective overapproximation of the spectrum
will simulate the computation of the GNN, and will be defined inductively on the layers.
Recall that a BLC-GNN is given by dimensions {d¸}0Æ¸ÆL, activation functions

)
f ¸

*
1Æ¸ÆL

,
coe�cient matrices for transforming the prior node value

)
C¸

*
1Æ¸ÆL

, coe�cient matrices
for local aggregation

)
A¸

x

*
1Æ¸ÆL

xœ{out,in}
, coe�cient matrices for global readout

)
R¸

*
1Æ¸ÆL

, and

bias vectors
)
b¸

*
1Æ¸ÆL

.

I Definition 18. For a BLC-GNN A and 0 Æ ¸ Æ L, the set øS¸ is defined as follows:

øS0 := {0, 1}d0

øS¸
s :=

Y
]

[f ¸

Q

aC¸s+
ÿ

xœ{out,in}
A¸

x

ÿ

sÕœøS¸≠1

sÕnA,sÕ

x +R¸
ÿ

sÕœøS¸≠1

sÕnR,sÕ
+ b¸

R

b

------
nA,sÕ

x , nR,sÕ
œ N

Z
^

\

øS¸ :=
€

sœøS¸≠1

øS¸
s

We show that the set øS¸ overapproximates the ¸-spectrum:

I Lemma 19. For every n-BLC-GNN A and 0 Æ ¸ Æ L, for every n-graph G and vertex
v œ V , there exists s œ øS¸, such that ›¸(v) = s.

It is quite straightforward to see that every element of the spectrum is captured. It is an
overapproximation because di�erent integers that we sum in an inductive step may not be
realized in the same graph.

We can show by induction on the number of the layers that the set is finite – regardless
of computability of the activation functions!

I Lemma 20. For every n-BLC-GNN A and 0 Æ ¸ Æ L, øS¸ has finite size and can be
computed.

In the inductive step, we have a finite set of rationals, thus some fixed precision. We take
some integer linear combinations and we will obtain an infinite set of values, but only finitely
many between the left and right thresholds of the eventually constant activations. Thus
when we apply the activation functions to these values, we will get a finite set of rational
values – since the activation functions map rationals to rationals.
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I Remark 21. The restriction to rational coe�cients is crucial in the argument. Consider the
following 1-layer 1-BLTrReLU-GNN. The dimensions are d0 = d1 = 1; the coe�cient matrix
C1 is a zero matrix;

!
A1

out
"
1,1 =

Ô
2;

!
A1

in
"
1,1 = ≠1; the bias vector b1 is a zero vector. It is

not di�cult to see that its 1-spectrum is
)
TrReLU

!Ô
2k1 ≠ k2

"-- k1, k2 œ N
*
, whose size is

infinite since
Ô
2 is irrational.

I Remark 22. Even simple GNNs may have exponential size spectra. For example, let Ak be
a 1-layer 1-BLTrReLU-GNN defined as follows: the dimensions are d0 = d1 = 1; the coe�cient
matrices C1 and A1

in are zero matrices;
!
A1

out
"
1,1 = k≠1; the bias vector b1 is a zero vector.

By definition, its 1-spectrum is
)
ik≠1

-- i œ [0 , k]
*
, whose size is k + 1. But the description of

Ak is only linear in log k.
For GNNs with truncated ReLU and only local aggregation, there is a matching upper

bound, as discussed after Theorem 25.

We now give several applications of the spectrum result. First we can use the finiteness
of the spectrum to get a characterization of the expressiveness of BGC-GNN and logic:

I Theorem 23. For every n-BGC-GNN A, there exists an n-MP2 formula �A(x), e�ectively
computable from the description of A, such that A and �A(x) are equivalent. In the case we
start with an n-BLC-GNN, the formula we obtain is in n-L-MP2.

This expressiveness equivalence will be useful in getting further decidability results, as
well as separations in expressiveness, for GNNs. The idea of the proof of the theorem is that
we have only finitely many elements in the overapproximation set to worry about, so we can
fix each in turn and write a formula for each.

Recall that finite satisfiability of L-MP2 is decidable by Corollary 12. Combining this
with Theorem 23 we get decidability of satisfiability for BLC-GNN:

I Theorem 24. The satisfiability problem for BLC-GNNs is decidable.

A more realistic analysis of complexity requires stronger assumptions on the activation
functions. For now we note only one special case, where everything is a truncated ReLU:

I Theorem 25. For BLC-GNNs with truncated ReLU activations, the satisfiability problem
is PSPACE-complete. It is NP-complete when the number of layers is fixed.

We briefly discuss the PSPACE upper bound argument. We can show that for an arbitrary
input graph, there are only exponentially many activation values, each representable with
a polynomial number of bits. We also show, via an “unravelling construction”, a common
technique use in analysis of modal and guarded logics [12, 7], that a satisfying model can be
taken to be a tree of polynomial depth and branching. These two facts immediately give an
elementary bound, since we could guess the tree and the activation values. We can improve
to PSPACE by exploring a satisfying tree-like model on-the-fly: again, this is in line with the
PSPACE algorithm for modal logic [12].

The PSPACE lower bound is established by embedding the description logic ALC into
L-MP2. PSPACE-hardness will follow from this, since concept satisfiability problem of ALC
with one role is PSPACE-hard [15]. The NP upper bound will use the same on-the-fly
algorithm as in the PSPACE case, just observing that for fixed depth it can be implemented
in NP. A direct encoding of SAT gives the lower bound.

The following converse to Theorem 23 shows that the logic is equally expressive as the
GNN model:
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I Theorem 26. For every n-MP2 formula �(x), there exists an n-BGTrReLU-GNN A�,
such that �(x) and A� are equivalent. If we start with an n-L-MP2 formula, we obtain an
n-BLTrReLU-GNN.

The idea of the proof is induction on the formula structure. For each subformula there
will be an entry of a feature vector for the GNN which represents the subformula, in the
sense that – for the final layer – its value is 1 if the subformula holds, or 0 otherwise. We will
have an entry for each subformula at every iteration, but as we progress to later layers of the
GNN, more of these entries will be correct with respect to the corresponding subformula. In
an inductive case for a Presburger quantifier that uses some coe�cients ⁄i, the corresponding
matrix will be multiplying certain quantifies by ⁄i. Note that this translation is polynomial
time, thus the size of the corresponding GNN is polynomial in the formula.

Putting together the two translation results, we have:

I Corollary 27. The logic MP2 and BGC-GNNs are expressively equivalent, as are L-MP2

and BLC-GNNs.

The translations also tell us that the expressiveness of GNNs with truncated ReLU is the
same as that of GNNs with arbitrary eventually constant activations – provided we use the
Boolean semantics based on thresholds.

Recall from Corollary 12 that finite satisfiability for the richer logic GP2, allowing
unguarded unary quantification and containing L-MP2, is decidable. Using this and the
expressiveness characterization gives decidability of universal satisfiability for these GNNs:

I Theorem 28. The universal satisfiability problem of BLC-GNNs is decidable.

3.2 Undecidability of MP2, and of GNNs with truncated ReLU and
global readout

Note that we claimed that the spectrum is finite for GNNs with eventually constant activations,
even when they have global readout. And we could compute a finite overapproximation
of the spectrum. But in our decidability argument for BLC-GNN, we required further the
ability to decide membership in the spectrum for any fixed rational, and for this we utilized
decidability of the logic. So what happens to decidability of the GNNs – or the corresponding
logic – when global readout is allowed? We show undecidability of finite satisfiability for the
logic MP2, and of the corresponding GNN satisfiability problem. First for the logic:

I Theorem 29. The finite satisfiability problem of MP2 is undecidable.

For the proof we apply an approach based on ideas in [3], using a reduction from Hilbert’s
tenth problem.

I Definition 30. A simple equation system Á (with n variables and m equations) is a
set of m equations of one of the forms ‚i1 = 1, ‚i1 = ‚i2 + ‚i3 , or ‚i1 = ‚i2 · ‚i3 , where
1 Æ i1, i2, i3 Æ n. We say the system Á is solvable if it has a solution in N.

I Lemma 31. For every simple equation system Á with n variables and m equations, there
exists an (n+m)- MP2 formula �Á(x) such that Á has a solution in N if and only if �Á(x) is
finitely satisfiable.

Since the solvability (over N) of simple equation systems is undecidable, Theorem 29
follows. From the theorem and Corollary 27 we obtain undecidability of static analysis for
GNNs with global readout:
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I Theorem 32. The satisfiability problem of BGTrReLU-GNNs is undecidable.

We give the reduction used in Lemma 31, leaving the verification for the reader. The
vocabulary of the constructed formulas �Á(x), where ‘ is the simple equation system, consists
of unary predicates Pi and Uj , where 1 Æ i Æ m and 1 Æ j Æ n. For 1 Æ i Æ m, we define
Ïi(x) depending on the ith equation in Á.

If the equation is ‚j = 1, then Ïi(x) := (#y[Pi(y) · Uj(y)] = 1).
If the equation is ‚j1 = ‚j2 + ‚j3 , then Ïi(x) := (#y[Âi(y)] ≠ #y[€] = 0) where

Âi(y) := (Pi(y) · (Uj2(y) ‚ Uj3(y)) æ (#x[E(y, x) · Pi(x) · Uj1(x)] = 1)) ·
(Pi(y) · Uj1(y) æ (#x[E(x, y) · Pi(x) · (Uj2(x) ‚ Uj3(x))] = 1)) .

If the equation is ‚j1 = ‚j2 · ‚j3 , then Ïi(x) := (#y[Âi(y)] ≠ #y[€] = 0) where

Âi(y) := (Pi(y) · Uj2(y) æ (#x[E(y, x) · Pi(x) · Uj1(x)] ≠ #x[Pi(x) · Uj3(x)] = 0)) ·
(Pi(y) · Uj1(y) æ (#x[E(x, y) · Pi(x) · Uj2(x)] = 1)) .

We now define �Á(x):

Âdisj(x) :=
fi

1Æi1<i2Æm

(#y[Pi1(y) · Pi2(y)] = 0) ·
fi

1Æj1<j2Æn

(#y[Uj1(y) · Uj1(y)] = 0)

Âeq(x) :=
fi

1Æi1<i2Æm
1ÆjÆn

(#y[Pi1(y) · Uj(y)] ≠ #y[Pi2(y) · Uj(y)] = 0)

�Á(x) := Âdisj(x) · Âeq(x) ·
fi

1ÆiÆm

Ïi(x).

Using a similar reduction, we obtain undecidability for universal satisfiability:

I Theorem 33. The universal satisfiability problem of BGTrReLU-GNNs is undecidable.

3.3 Variations for the undirected case
Thus far we have been dealing with both logics and GNNs that work over directed graphs.
We now show that all of the prior results apply to undirected graphs, the standard setting
for GNNs.

We can enforce undirectedness within the larger decidable logic GP2 to obtain decidability:

I Corollary 34. The finite satisfiability problem of L-MP2 over undirected graphs is decidable.

By reducing to decidability in the logic L-MP2, we can show that the satisfiability problem
for GNNs on undirected graphs – that is, the standard notion of GNN – is decidable.

I Theorem 35. The satisfiability problem of BLC-GNNs over undirected graphs is decidable.

I Theorem 36. The universal satisfiability problem of BLC-GNNs over undirected graphs is
decidable.

We can also revise our undecidability results for global GNNs to the undirected case,
thus giving undecidability for the usual notion of GNN with global readout. This is done
with the same reduction from solvability of simple equation systems to the finite satisfiability
of MP2, which we can show works over undirected graphs.
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I Theorem 37. The finite satisfiability problem of MP2 over undirected graphs is undecidable.

I Theorem 38. The satisfiability problem of BGTrReLU-GNNs over undirected graphs is
undecidable.

I Theorem 39. The universal satisfiability problem of BGTrReLU-GNNs over undirected
graphs is undecidable.

4 GNNs with unbounded activation functions

In this section, we consider GNNs with unbounded activations, such as the standard ReLU.
Since we have already shown that global aggregation leads to undecidability even in the
bounded case, in this section we will only deal with GNNs having only local aggregation. In
Section 4.1 we show that the universal satisfiability problem of BLReLU-GNN is undecidable,
a contrast to the case with eventually constant activation functions. In the process, we
introduce a logic that also helps with understanding expressiveness of this class of GNNs.

In Section 4.2, we turn to the satisfiability problem, and give a partial positive result
about decidability. Here we will not use the logic directly, but rather use components from
decidability proofs for Presburger logics [3]. We will use the idea of representing the possible
values of activations which was also used in the case of decidability for eventually constant
activations. But in this case we will be representing an infinite set of values, using Presburger
formulas.

4.1 (Un)decidability of GNNs with unbounded activation functions
We prove the undecidability of the universal satisfiability problem of BLReLU-GNN. Here
we will use logic again. We will not obtain an expressiveness characterization, but merely a
logic that embeds in BLReLU-GNNs: local two-variable modal logic with two-hop Presburger
quantifiers (L-M2P2), which is the extension of MP2 where the guards are conjunctions of at
most two binary predicates.

I Definition 40. The syntax of local two-variable modal logic with two-hop Presburger
quantifiers (L-M2P2) over vocabulary · is defined inductively:

€ is a L-M2P2 formula.
for a unary predicate U œ · , U(x) is a L-M2P2 formula.
if Ï(x) is a L-M2P2 formula, then so is ¬Ï(x).
if Ï1(x) and Ï2(x) are L-M2P2 formulas, then so is Ï1(x) · Ï2(x).
if {Ïi(x)}1ÆiÆk fi {ÏÕ

i(x)}1ÆiÆkÕ is a set of L-M2P2 formulas, {‘i(x, z, y)}1ÆiÆk is a set
of guard formulas, each of form E(x, z) · E(z, y), E(x, z) · E(y, z), E(z, x) · E(z, y), or
E(z, x) · E(y, z), and {‘Õ

i(x, y)}1ÆiÆkÕ is another set of guard formulas, each of form
E(x, y) or E(y, x), then1qk

i=1 ⁄i ·#z,y[‘i(x, z, y) · Ïi(y)] +
qkÕ

i=1 ⁄Õ
i ·#y[‘Õ

i(x, y) · ÏÕ
i(y)] ~ ”

2

is also a L-M2P2 formula. The numbers ”,⁄i, ⁄Õ
i, and the comparison ~ are as in the

standard Presburger quantifier definition.

The idea is that we can still count a linear combination of cardinalities of the number of
nodes satisfying a given lower-level formula that are one-hop away from the current node
– as in L-MP2. Optionally, we can add on a linear combination of the number of two-hop
paths that lead to a node satisfying other lower-level formulas.
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The semantics of the formulas is given inductively, with the only step that is di�erent
from the usual cases being for the quantification, which is the obvious one. We call these
two-hop Presburger quantifiers. We can apply a similar proof technique as in Theorem 26 to
show that the L-M2P2 are expressible using BLReLU-GNNs.
I Theorem 41. For every n-L-M2P2 formula �(x), there exists an n-BLReLU-GNN A�,
such that �(x) and A� are equivalent.

Note that we do not claim an expressive equivalence here. Nevertheless this containment of
the logic in the GNN class is useful, since we can show undecidability of the logic by reduction
from the halting problem of two-counter machines, which is known to be undecidable [13].

I Definition 42. A two-counter machine M is a finite list d1 . . . dn of instructions having
one of the forms INC (ci), IF (ci = 0) GOTO (j), or HALT, where i œ {0, 1} and 1 Æ j Æ n.

A configuration is a tuple Èq, c0, c1Í, where 1 Æ q Æ n and c0, c1 œ N. We say ÈqÕ, cÕ
0, c

Õ
1Í

is the successor configuration of Èq, c0, c1Í if, letting dq be the qth instruction of the machine:
If dq is INC (ci), then qÕ = q + 1, cÕ

i = ci + 1, and cÕ
1≠i = c1≠i.

If dq is IF (ci = 0) GOTO (j), if ci = 0, then qÕ = j, cÕ
0 = c0, and cÕ

1 = c1; otherwise,
qÕ = q + 1, cÕ

i = ci ≠ 1, and cÕ
1≠i = c1≠i.

Note that if dq is HALT, there is no successor. This configuration is called a halting configur-
ation.

The computation of the machine is a (possibly infinite) sequence of configurations where
the first is È1, 0, 0Í, consecutive pairs are in the succcessor relationship above, the last
configuration is a halting configuration. The machine halts if its computation is a finite
sequence.

The reduction is by encoding the computation of a two-counter machine into the graph
directly. We have illustrated it in Figure 1. Each configuration is encoded as a height 1 tree,
which is denoted by a dashed box. Its line number is represented by the unary predicate Qi

realized by the root vertex, and the values of the counters are represented by the number of
“labeled leaves” – those with predicate C0 or C1 being true. There are edges connected to
the roots of each configuration, which encode the computation sequence. Then it is possible
to assert the (in)equality between the number of leaves of some root and the root of the
successor tree, which encodes the condition of a valid transition.

S Q1 Q2 Q3 Q8 · · · Q7 T

C0

C1C1

C0C0

C1C1

C0C0

C1

C0C0 C0C0

Figure 1 An example of the encoding of the computation of the two-counter machines to directed
graphs.

I Lemma 43. For every two-counter machine M with n instructions, there exists an
(n + 5)-L-M2P2 formula �M(x) such that M halts if and only if ’x �M(x) is finitely
satisfiable.

Since the halting problem of two-counter machines is undecidable, and L-M2P2 formulas
can be translted to BLReLU-GNNs, we obtain the undecidability of the universal satisfibility
problem of BLReLU-GNN, by reduction from L-M2P2.
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I Theorem 44. The universal satisfiability problem of BLReLU-GNNs is undecidable.

We will later show that this holds also for undirected graphs: see Theorem 52 below.
We can also use the logic to get an expressiveness separation for GNNs: By Theorem 41

to show that BLReLU-GNNs can do more than BLC-GNNs, it is su�cient to show that there
is a L-M2P2 formula that is not given by a BLC-GNN:

I Lemma 45. L-M2P2 is strictly more expressive than BLC-GNN.

The following results are direct consequences of the lemma above and the logical charac-
terization in the prior section:

I Corollary 46. L-M2P2 is strictly more expressive than L-MP2.

I Corollary 47. BLReLU-GNN is strictly more expressive than BLC-GNN.

We comment on the proof of Lemma 45. We claim that the property “the number of
two-hop paths from the vertex v to the green vertices is the same as the number of two-hop
paths from v to the blue vertices” gives the separation. It is easy to express in the two-hop
logic. To show that no BLC-GNN can express it, we construct a sequence of pairs of graphs,
each with a special node, such that the property holds in the special node of the first graph
and fails in the special node of the second, while for every BLC-GNN A, for any su�ciently
large pairs of graphs in this sequence, the special nodes are indistinguishable by A. The
graphs are as follows:

I Definition 48. For n1, n2 œ N, the (n1, n2)-bipolar graph ÈV,E, U1, U2Í is an undirected
2-graph defined as follows.

U1 := {v1,i| 1 Æ i Æ n1}
U2 := {v2,i| 1 Æ i Æ n2}
V := U1 fi U2 fi {v0, v1, v2}
ÂE := {(v0, v1), (v0, v2)} fi {(v1, v1,i)| 1 Æ i Æ n1} fi {(v2, v2,i)| 1 Æ i Æ n2}

E := ÂE fi
Ó
(u, v)

--- (v, u) œ ÂE
Ô

See Figure 2.

v0 v2v1

v2,1

v2,2

...

v2,n2

v1,1

v1,2

...

v1,n1

Figure 2 (n1, n2)-bipolar graph.

It is easy to see that these graphs with the distinguished nodes v0 and vÕ
0 disagree on the

property, and we can also show that eventually no BLC-GNN can distinguish them:
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I Lemma 49. For each 2-BLC-GNN A, there exist a threshold nA œ N, such that for every
n1, n2 Ø nA, the following properties hold. Let G be the (nA, nA)-bipolar graph and GÕ be the
(n1, n2)-bipolar graph. For every 0 Æ ¸ Æ L,

›¸
G(v0) = ›¸

GÕ(vÕ
0), ›¸

G(v1) = ›¸
GÕ(vÕ

1), and ›¸
G(v2) = ›¸

GÕ(vÕ
2).

for 1 Æ i Æ nA and 1 Æ j Æ n1, ›¸
G(v1,1) = ›¸

G(v1,i) = ›¸
GÕ(vÕ

1,j).
for 1 Æ i Æ nA and 1 Æ j Æ n2, ›¸

G(v2,1) = ›¸
G(v2,i) = ›¸

GÕ(vÕ
2,j).

Above ›¸
G refers to the ¸th derived feature function of the GNN A over the graph G.

Thus far the results in this section are stated for directed graphs. We explain briefly
why the undecidability and expressiveness separation results on GNNs with unbounded
activation functions apply also to undirected graphs. For the expressiveness results, note
that the graphs that we constructed in the proof of Lemma 45 are undirected. Hence the
expressiveness gap between BLReLU-GNN and BLC-GNN still exists for the undirected case.

I Theorem 50. BLReLU-GNN is strictly more expressive over undirected graphs than
BLC-GNN.

To obtain the undecidability of the universal satisfiability problem over undirected graphs
of BLReLU-GNN, we again reduce from two-counter machines, but now with a modification
to guarantee the direction of the transition.

I Lemma 51. For every two-counter machine M with n instructions, there exists an (n+8)-
L-M2P2 formula �M(x) such that M halts if and only if ’x �M(x) is finitely satisfiable
over undirected graphs.

We cannot apply the exact encoding from Figure 1 and Lemma 43 here, because in that
encoding we distinguished the predecessor and successor configurations by the direction of
edges. Here, we sketch the trick that overcomes the lack of direction in the edges. We will
utilize the predicates from the proof of Lemma 43: in particular we will have a predicate Q
and an associated notion of Q vertex as in that proof.

We introduce three fresh unary predicates I0, I1, and I2 to label the configuration’s
index modulo 3. We add an extra clause to the formula to guarantee that each element has
exactly one of these three index labels. The elements in each 1-level tree will have the same
index, in the sense of satisfying the same index predicates. Finally, for each Q vertex v with
index i, there exists at most one Q vertex vÕ with index (i+ 1 mod 3), such that v and vÕ

are connected; there exists at most one Q vertex vÕÕ with index (i ≠ 1 mod 3), such that v
and vÕ are connected. Therefore we can modify the formula which identifies the successor
and predecessor based on the index, rather than the direction of the edges, and show that
the two-counter machine halts if and only if the modified formula is finitely satisfiable over
undirected graphs.

I Theorem 52. The universal satisfiability problem of BLReLU-GNNs over undirected graphs
is undecidable.

4.2 Decidability of satisfiability for “modal” GNNs with unbounded
activation functions

Thus the situation for universal satisfiability contrasts with the eventually constant case.
What about the satisfiability problem? We do not know whether it is decidable for GNNs with
piecewise linear activations, or even with just ReLU. We can see that even simple unbounded
activation functions produce unbounded spectra, so the proof technique in the truncated
case certainly will not work. For example, consider the following 1-layer 1-BLReLU-GNN.
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S Q1 Q2 Q3 Q8 · · · Q7 T

C0

C1C1

C0C0

C1C1

C0C0

C1

C0C0 C0C0

I0 I1 I2 I0 I(i mod 3)

Figure 3 An example of the encoding of the computation of a two-counter machines in undirected
graphs.

The dimensions are d0 = d1 = 1; the coe�cient matrices C1 and A1
in are zero matrices;!

A1
out

"
1,1 = 1; the bias vector b1 is a zero vector. It is not di�cult to see that the value of

›11(v) is the number of out-neighbors of v. Hence, the 1-spectrum of this GNN is the set of
natural numbers.

We present a decidability result for the “modal version”: aggregation over nodes connected
by outgoing edges only, within a directed graph:

I Theorem 53. The satisfiability problem of OLPW-GNNs is decidable.

Analogously to what we did in the eventually constant case, we describe all the possible
values of a given activation function. Unlike in the eventually constant case, this will not
be a finite set, but it will be semi-linear : that is, describable using a formula of Presburger
arithmetic. We will first review the notion of semi-linear set that we use, where we modify
the standard notion to deal with rational numbers. We then show that the set of all possible
values output by a GNN is a semi-linear set.

For a0 œ Qk and A = {a1, a2, . . . , am} a finite subset of Qk, we define:

N-Span(a0, A) :=

Y
]

[a0 +
ÿ

1ÆiÆm

niai

------
ni œ N

Z
^

\ .

A set S ™ Qk is a linear set, if there is a0 œ Qk and a finite set A ™ Qk, such that
S is N-Span(a0, A). The pair (a0, A) is called the basis of S. A semi-linear set is a fi-
nite union of linear sets. A basis of a semi-linear set

t
1ÆiÆk N-Span

!
ak0 , A

k
"
is the set)!

a10, A
1"

,
!
a20, A

2"
, . . . ,

!
ak0 , A

k
"*

.
For semi-linear sets S1, S2, S ™ Qk, we use the following operators:

T (S) := {T (a)| a œ S} where T : Qk æ Qm is an a�ne transformation

KleeneStar(S) :=
I

ÿ

sœSÕ

s

----- For every finite multi-subset SÕ of S
J

We recall that in the context of integers, both operators are known to preserve semi-linearity
and the basis of the resulting semi-linear set can be computed. See, e.g., [5, 10, 6]. The
arguments adapt easily to our rational setting, thus we assume below that we have an
algorithm for pushing semi-linear representations through these operators.

We consider piecewise linear functions, defined by a sequence ((I1, f1), . . . , (Ip, fp)) where
I1 fi · · · fi Ip is a partition of Q into p intervals and each fi : Q æ Q is an a�ne function.
The sequence ((I1, f1), . . . , (Ip, fp)) defines a function where x is mapped to fi(x) if x is in
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the interval Ii. We apply a piecewise linear function on some fixed components of a vector,
which is captured by the following notation. For a piecewise linear function f : Q æ Q, a
rational vector a œ Qk and K ™ [1 , k], we write fK(a) to denote the vector b œ Qk where
bi = f(ai) for every i œ K and bi = ai for every i /œ K. In other words, fK(a) only applies
the function f on the components in K and the identity function on the components outside
K. Similar to a�ne transformation and Kleene star, piecewise linear functions also preserve
semi-linearity and the basis of the resulting semi-linear sets can be computed. Again, we can
easily adapt the argument in [6] to our rational setting.

To prove Theorem 53, we need two more definitions. Let A be a L-layer OLPW-GNN.
Let d0, d1, . . . , dL be the dimension of the layers. We denote by Q[d0,d1,...,d¸≠1] the Cartesian
product Qd0 ◊ Qd1 . . . ◊ Qd¸≠1 . Given an element m of this product, the ith component of
m, denoted by m[i], is the projection of m to Qdi .

For a graph G, vertex v œ V , and 0 Æ ¸ Æ L, the ¸-history of v in G (w.r.t. A), denoted
by hist¸G(v) œ Q[d0,d1,...,d¸], is the tuple that collects the first (¸ + 1) feature vectors of v.
Formally, for 0 Æ i Æ ¸,

1
hist¸G(v)

2
[i] = ›iG(v). When the graph G is clear from the context,

we omit it and simply write hist¸(v). The ¸-history-space of A is the set of all possible
histories.

We now state our representation theorem, which immediately implies Theorem 53:

I Theorem 54. For every OLPW-GNN A and 0 Æ ¸ Æ L, the ¸-history-space is semi-linear,
and its basis can be e�ectively computed.

We contrast the theorem with Theorem 17. There we could only overapproximate the
spectrum, because we could not determine which numbers from previously layers were
simultaneously realizable. By inductively maintaining the entire history at each node, we
have enough information to resolve these questions of consistency, and compute an exact
representation of the semantic object, not just an overapproximation.

The rest of this section is devoted to the proof of Theorem 54. We will first explain the
intuition behind it. Let A be a L-layer OLPW-GNN, as in Definition 2. Let G be a graph
and v be a vertex. Recall that for every 1 Æ ¸ Æ L, the ¸-feature vector of v is:

›¸(v) := f ¸

Q

aC¸›¸≠1(v) +A¸
out

ÿ

uœNout(v)

›¸≠1(u) + b¸

R

b .

We can rewrite it in terms of history:

hist¸(v)[0] = ›0(v), (1)

and for each 1 Æ i Æ ¸:

hist¸(v)[i] = f i

Q

aCi · hist¸(v)[i ≠ 1] + Ai
out ·

Q

a
ÿ

uœNout(v)

hist¸≠1(u)

R

b[i ≠ 1] + bi

R

b . (2)

Thus, the ¸-history of v can be computed by applications of sum, a�ne transformations, and
piecewise linear functions on the sum of the history of its out-neighbors.

We formalise this intuition in the following paragraphs. For each 0 Æ ¸ Æ L, we define
the set H¸:

H0 := {0, 1}d0

H¸ :=
€

eœ{0,1}d0

proj¸ ¶ T¸ ¶ T¸≠1 ¶ . . . ¶ T0,e ¶ KleeneStar
!
H¸≠1"

,

where the definition and intuition of each proj¸, T¸, . . . , T1, T0,e is as follows.
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Intuitively KleeneStar
!
H¸≠1"

captures the term
q

uœNout(v) hist
¸≠1(u) in Equation (2).

T0,e : Q[d0,...,d¸≠1] æ Q[d0,...,d¸≠1,d0] is an a�ne transformation that maps a to (a, e), i.e.,
it simply “pads” e into a.
For each 1 Æ i Æ ¸, the transformation Ti : Q[d0,...,d¸≠1,d0,...,di≠1] æ Q[d0,...,d¸≠1,d0,...,di≠1,di]

computes the vector hist¸(v)[i] defined in Equation (2) and pads it at the end.
Formally, Ti maps a to (a, c) where c = f i

!
Cia[¸ + i ≠ 1] +Ai

outa[i ≠ 1] + bi
"
.

Finally, proj¸ : Q[d0,...,d¸≠1,d0,...,d¸] æ Q[d0,...,d¸] is a projection that projects out the first ¸
components.

We can show that H¸ is a semi-linear set, and this captures the ¸-history-space, as
stated formally in Lemma 55. Note that Theorem 53 follows easily from the lemma and the
computability of the basis of H¸.

I Lemma 55. For every OLPW-GNN A and 0 Æ ¸ Æ L,
1. H¸ is a semi-linear set.
2. For every s œ Q[d0,d1,...,d¸], the following are equivalent.

h œ H¸

There exists a graph G and vertex v œ V such that hist¸(v) = h.

Proof. The first item follows immediately from the fact that H0 is semi-linear and the
operators Kleene star, a�ne transformations and piecewise linear functions all preserve
semi-linearity.

We now prove the second item by induction on ¸. The base case ¸ = 0 is trivial.
For the induction hypothesis, we assume that the lemma holds for ¸ ≠ 1. We show that

h œ H¸ if and only if there is a graph G and a vertex v such that hist¸(v) = h.
We start with the “only if” direction. Suppose h œ H¸. By definition, there is e œ {0, 1}d0

and a finite multi-subset {{h1, h2, . . . , hk}} of H¸≠1 such that:

h = proj¸ ¶ T¸ ¶ T¸≠1 ¶ . . . ¶ T0,e (h1 + h2 + · · ·+ hk)

By the induction hypothesis, there exist graphs G1,G2, . . . ,Gk and vertices v1, v2, . . . , vk such
that hist¸≠1

Gi
(vi) = hi for every 1 Æ i Æ k.

Let G be the graph obtained by taking the disjoint union of G1,G2, . . . ,Gk and adding a
fresh vertex v. Recalling that ›0G(v) can achieve an arbitrary combination of {0, 1} vectors,
based on the colors of v, we set the colors so that ›0G(v) = e. We have an outgoing edge from
v to vi for each 1 Æ i Æ k. It is routine to verify that the ¸-history of v is precisely h. Note
that because A is outgoing-only, the edge from v to vi has no e�ect on the (¸ ≠ 1)-history of
vi. Thus hist¸≠1

G (vi) = hist¸≠1
Gi

(vi)
For the “if” direction, let G be a graph and v be a vertex. Let v1, . . . , vk be the out-

neighbors of v. By definition, for each 1 Æ i Æ ¸:

hist¸G(v)[i] = f i

Q

aCi · hist¸G(v)[i ≠ 1] + Ai
out ·

Q

a
ÿ

uœNout(v)

hist¸≠1
G (u)

R

b[i ≠ 1] + bi

R

b .

It is routine to verify that:

hist¸G(v) = proj¸ ¶ T¸ ¶ T¸≠1 ¶ . . . ¶ T0,e

1
hist¸≠1

G (v1) + hist¸≠1
G (v2) + · · ·+ hist¸≠1

G (vk)
2
,

where e = ›0G(v). Therefore, hist¸G(v) œ H¸. J
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5 Discussion

This work extends the exploration of the relationship between aggregate-combine GNNs
and logic, with exact characterizations of expressiveness for GNNs with eventually constant
activation functions, and embedding a logic into the GNNs with standard ReLU activations.
We also obtain both decidability and undecidability results, some using the logical characteriz-
ations and some by porting the techniques used for decidability of the logics to apply directly
on the GNNs. Perhaps the main take-away, echoing the theme of [1], is that Presburger
logics and the techniques for analyzing them can be relevant to GNNs.

We have left open one major technical problem: the decidability of satisfiability for
standard GNNs using the ReLU activation function. Here we have proven decidability only
for the “outgoing-only” variant. We also do not know whether the undecidability results
we have proven – e.g. for standard GNNs with global readout – still hold for the variants
with outgoing-only aggregation. Thus, for all we know, the most crucial dividing line for
decidability could revolve around outgoing-only vs bidirectional aggregation, rather than
(e.g.) local vs global aggregation or truncation vs non-truncation in the activation function.

Looking at broader open issues, we focused here on some very basic verification problems
on GNNs: can a certain classification be achieved? But it is clear that our techniques apply
to many other logic-based verification problems; for example, it can be applied to determine
whether a GNN can achieve a certain classification on a graph satisfying a certain sentence –
provided that the sentence is also in one of our decidable logics.

We have not focused on complexity in this paper. Of course, for the broad class of GNNs
with eventually constant activation functions, it is di�cult to talk about complexity bounds.
For GNNs based on truncated ReLU and local aggregation, we have shown satisfiability
is PSPACE-complete, and is NP-complete for a fixed number of layers. The finer-grained
complexity analysis for other decidability results is left for future work.

Our work provides motivation for exploring the properties of Presburger logics over
relational structures and their connections with GNNs beyond the setting here, which
considers only graphs with discrete feature values from a fixed set. In our ongoing work we
are adapting our techniques to deal with GNNs whose feature values are unbounded integers,
specified by an initial semi-linear set.
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1 Introduction
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Logic (LTL) [61, 62], its full Ê-regular extension ELTL [84], and the finite-horizon variant
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128:2 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

LTLf [32]. Important members of the second category, instead, belong to the families of
Dynamic Logics [30, 35] and Computation Tree Logics, including CTL [21, 16, 24, 17, 22],
CTL* [23, 25], ECTL* [80], CTL*f [79], and ECTL*f [74]. Additionally, more expressive
but lower-level languages, like µ-Calculus [42], have been considered, which suitably extend
classic modal logic with monadic fix-point operators, contributing to the rich tapestry of
specification languages in the field of formal verification and synthesis.

The semantics of these temporal logics are typically formalised, at the meta-level, through
various flavour of predicate logic, frequently First-Order Logic (FO) or Second-Order Logic
(SO), interpreted over either linearly-ordered structures, such as finite and infinite words [60],
or branching structures, like Kripke structures [43], labelled transition systems [40], and their
tree unwindings. In tandem with this, the rich body of literature on automata-theoretic
techniques [75] for words and trees, originated from [41, 56, 57, 66], has proven invaluable to
provide e�ective technical tools for the solution of related model-checking [18, 2, 81, 47, 27],
satisfiability [81, 26, 78, 6, 47], and synthesis [15, 63, 69] decision problems. Predicate logics
and automata theory o�er, in addition, a rich and coherent arsenal of tools to evaluate
and compare the expressive power, as well as the computational properties, of temporal
languages, as witnessed by numerous characterisation theorems. These results provide a dual
perspective on the topic, which enhance our ability to navigate the intricate landscape of
language fragments and allow us to assess their pros (e.g., elementary complexity of decision
problems) and cons (e.g., limitations on the expressive power).

The initial seminal result in this context is Kamp’s theorem [39, 31, 67, 68], which estab-
lishes the equivalence of LTL and FO over infinite words. The result also extends to LTLf

and FO on finite words [19]. A direct link has been drawn between FO-definability and recog-
nition by counter-free finite-state automata, in both the finite [52] and infinite [48, 71, 72, 59]
cases, by means of the notions of star-free language, aperiodic language, and aperiodic syn-
tactic monoid (see [70], for finite words, and [58], for the infinite ones). Together these
results provide a complete characterisation of the expressive power of LTL and LTLf in
terms of predicate logics and automata. A parallel correspondence exists between ELTL
and ELTLf, the Monadic Second-Order Logic (MSO) and its weak (finite-quantification)
fragment (WMSO), and regular automata on infinite and finite words. Notably, the equival-
ence between WMSO and regular automata [8, 20, 76], followed by the equivalence between
MSO and Ê-regular automata [9, 10, 51, 14], stands among the first results connecting the
two fields of model theory and automata theory.

The landscape for branching-time temporal logics is considerably more intricate, due to the
complex topology of the models and additional factors, such as bisimulation invariance [77]
and counting quantifiers [29], and it is not as clear and complete as the linear-time counterpart.
A significant milestone in this setting is the full correspondence between µ-Calculus, the
bisimulation-invariant fragment of MSO interpreted over trees, and (Symmetric) Alternating
Parity Tree Automata [38]. This result generalises the already known connection between the
latter two formalisms [64]. Another noteworthy connection has been shown to exist between
the alternation-free fragment of µ-Calculus (AFµ-Calculus), the bisimulation-invariant
fragments of WMSO over bounded-branching trees, and (Symmetric) Alternating Weak Tree
Automata [1, 37] (see [28, 11, 12, 13], for the unbounded-branching case), which extends
previous partial results [45, 65]. The above equivalences lift also to the general case, by
incorporating counting quantifiers into the temporal logics [37, 36]. The scenario in other
cases appears significantly more fragmented. In recent developments, the equivalence between
CTL and (Symmetric) Hesitant Linear Tree Automata [7] was proved. Nonetheless, as of
today, no corresponding fragment of MSO has been identified. By contrast, several variants



M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:3

of CTL* have been linked to the path and chain fragments of MSO since the eighties,
although no automata characterisation has been provided thus far. For instance, it was
shown in [34] that, on binary trees, CTL* is equivalent to Monadic Path Logic (MPL) [33].
Similar correspondences have been established in [74] for CTL*f, ECTL*, and ECTL*f,
which equate, respectively, to FO, Monadic Chain Logic (MCL), and its weak fragment
(WMCL). The result concerning CTL* was later extended to arbitrary-branching trees,
addressing both bisimulation-invariance [54] and counting quantifiers [55]. As far as we know,
no similar results are available for the other three logics. Finally, the recently introduced
Monadic Tree Logic (MTL) [3] together with its variants have yet to find a correspondence
either with temporal logics or with automata.

The objective of this work is to provide an automata-theoretic characterisation of CTL*
and ECTL*, by identifying two specific classes of alternating tree automata that are express-
ively equivalent to those logics (the used technique extends seamlessly to the finite-horizon
variants). A first result is the proof of the equivalence of the symmetric variant of classic
ranked Hesitant Tree Automata (HTA) [47] with both ECTL* and the bisimulation-invariant
fragment of MCL. To this end, for technical convenience, we employ two intermediate form-
alisms. On the one hand, to prove the equivalence between HTA and ECTL*, we use
a syntactic variant of ECTL*, called Computation Dynamic Logic (CDL), alongside its
counting version (CCDL). In ECTL* temporal operators are specified by means of right-
linear grammars, while CDL uses finite automata on finite words for the same purpose
incorporated into the dynamic modalities. Moreover, while the path subformulae in ECTL*
are part of the alphabet of the grammar, in CDL they are specified by means of a testing
function over the set of states of the automaton. It is straightforward to move from one
formalism to the other by means of a linear-time translation. This logic essentially lifts
to the branching-time realm the Linear Dynamic Logic (LDL) proposed in [32, 83]. On
the other hand, we consider a first-order extension [82] of HTAs (HFTA) and show them
equivalent to MCL by proving a closure property under chain projections. The final result,
then, follows from the equivalence between HTAs and the bisimulation-invariant fragment
of HFTA. As a second result, we first identify the graded extension of HTAs (HGTA),
together with its counter-free restriction (HGTAcf), and then prove their equivalence with
CCDL and CCTL*, respectively. While for the definition of HGTA the standard notion of
counting modalities smoothly applies, introducing HGTAcf proves quite more intricate. We
show, indeed, that a naive application of counter-freeness in the context of tree-automata
leads to a class of languages that are not CTL* definable. To overcome this problem, we
identify the crucial mutual-exclusion property of a HGTA that constrains the automaton
branching-behaviours. This property, together with counter-freeness of the automaton linear
behaviours, provides an apt definition of HGTAcf, something that was previously only hypo-
thesised in [54, 55]. The above characterisations holds also under bisimulation-invariance
assumptions. Specifically, HTAcf is equivalent to both CTL* and the bisimulation-invariant
fragment of MPL. All these results, coupled with the algebraic characterisation of tree
languages provided in [74], brings the expressiveness landscape for branching-time temporal
logics to the same level as their linear-time counterpart, thus closing a forty-year-old open
question posed in [73, 74].

2 Preliminaries

Let N be the set of natural numbers. For i, j œ N with i Æ j, [i, j] denotes the set of natural
numbers k such that i Æ k Æ j. For a finite or infinite word fl over some alphabet, |fl| is the
length of fl (|fl| = Ê if fl is infinite) and for all 0 Æ i < |fl|, fl(i) is the (i+ 1)-th letter of fl.
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Kripke Trees and Tree Languages. Given a non-empty set of directions D, a tree T (with
set of directions in D) is a non-empty subset of Dú which is prefix closed (i.e., for each
w · d œ T with d œ D, w œ T). Elements of T are called nodes and the empty word Á is the
root of T. For w œ T, a child of w in T is a node in T of the form w · d for some d œ D. For
w œ T, the subtree of T rooted at node w is the tree consisting of the nodes of the form wÕ

such that w · wÕ œ T. A subtree of T is a tree TÕ such that for some w œ T, TÕ is a subset of
the subtree of T rooted at w. A path of T is a subtree fi of T which is totally ordered by the
child-relation (i.e., each node of fi has at most one child in fi). In the following, a path fi of
T is also seen as a word over T in accordance to the total ordering in fi induced by the child
relation. A chain of T is a subset of a path of T. A tree is non-blocking if each node has
some child. A non-blocking tree T is infinite, and maximal paths in T are infinite as well.

For an alphabet �, a �-labelled tree is a pair (T,Lab) consisting of a tree and a labelling
Lab : T ‘æ � assigning to each node in T a symbol in �. A tree-language over � is a
set of �-labeled trees. In this paper, we consider formalisms whose specifications denote
tree-languages over a given alphabet �. For the easy of presentation, we assume that the
labeled trees of a tree-language are non-blocking. All the results of this paper can be easily
adapted to the general case, where the non-blocking assumption is relaxed. For a finite set
AP of atomic propositions, a Kripke tree over AP is a non-blocking 2AP-labelled tree.

Automata over Infinite and Finite Words. We first recall the class of parity nondeterministic
automata on infinite words (parity NWA for short) which are tuples A = È�,Q, ”, qI ,�Í,
where � is a finite input alphabet, Q is a finite set of states, ” : Q◊ � ‘æ 2Q is the transition
function, qI œ Q is an initial state, and � : Q ‘æ N is a parity acceptance condition over Q
assigning to each state a natural number (color). Given a word fl over �, a path of A over fl is
a word fi over Q of length |fl|+1 (|fl|+1 is Ê if fl is infinite) such that fi(i+1) œ ”(fi(i), fl(i))
for all 0 Æ i < |fl|. A run over fl is a path over fl starting at the initial state. The NWA A is
counter-free if for all n > 0, states q œ Q and finite words fl over �, the following holds: if
there is a path from q to q over fln, then there is also a path from q to q over fl.

A run fi of A over an infinite word fl is accepting if the highest color of the states appearing
infinitely often along fi is even. The Ê-language L(A) accepted by A is the set of infinite
words fl over � such that there is an accepting run fi of A over fl.

A parity acceptance condition � : Q ‘æ N is a Büchi (resp., coBüchi) condition if there
is an even (resp., odd) color n œ N such that �(Q) ™ {n ≠ 1, n}. A Büchi (resp., coBüchi)
NWA is a parity NWA whose acceptance condition is Büchi (resp., coBüchi).

We also consider NWA over finite words (NWAf for short) which are defined as parity
NWA but the parity condition � is replaced with a set F ™ Q of accepting states. A run fi
over a finite word is accepting if its last state is accepting.

3 Branching-Time Temporal Logics

In this section, we recall syntax and semantics of Counting-CTL* (CCTL* for short) [55],
which extends the classic branching-time temporal logic CTL* [25] with counting operators.
Moreover, we introduce a novel branching-time temporal logic more expressive than CCTL*,
called Counting Computation Dynamic Logic (CCDL for short). CCDL can be viewed as a
branching-time extension of Linear Dynamic Logic (LDL) [32]. However, unlike LDL, we
consider NWAf over finite words, instead of regular expressions, as the building blocks of
formulae. This approach is similar to the one adopted in [83] for Visibly Linear Dynamic
Logic, a context-free extension of LTL.
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The Logic CCTL*. The syntax of CCTL* is given by specifying inductively the set of state
formulae Ï and the set of path formulae Â over a given finite set AP of atomic propositions:

Ï ::= € | p | ¬Ï | Ï · Ï | EÂ | DnÏ
Â ::= Ï | ¬Â | Â · Â | XÂ | Â UÂ

where p œ AP, X and U are the standard “next” and “until” temporal modalities, E is the
existential path quantifier, and Dn is the counting operator with n œ N \ {0}. The language
of CCTL* consists of the state formulae of CCTL*. Standard CTL* is the fragment of
CCTL* where the counting operators Dn with n > 1 are disallowed, and standard LTL [61]
corresponds to the set of path formulae of CTL* where the path quantifiers are disallowed.

Given a Kripke tree T = (T,Lab) (over AP), a node w of T, an infinite path fi of T, and
0 Æ i < |fi|, the satisfaction relations (T , w) |= Ï, for a state formula Ï, (meaning that Ï
holds at node w of T ), and (T ,fi, i) |= Â, for a path formula Â, (meaning that Â holds at
position i of the path fi in T ) are defined as usual:

(T , w) |= p … p œ Lab(w);
(T , w) |= EÂ … (T ,fi, 0) |= Â for some infinite path fi of T starting at node w;
(T , w) |= DnÏ … there are at least n distinct children wÕ of w in T s.t. (T , wÕ) |= Ï;
(T ,fi, i) |= Ï … (T ,fi(i)) |= Ï;
(T ,fi, i) |= XÂ … (T ,fi, i+ 1) |= Â;
(T ,fi, i) |= Â1 UÂ2 … for some j Ø i: (T ,fi, j) |= Â2 and (T ,fi, k) |= Â1 for all i Æ k < j.

Note that D1Ï corresponds to EXÏ. A Kripke tree T satisfies (or is a model of) a state
formula Ï, written T |= Ï, if T , Á |= Ï. The tree-language L(Ï) of Ï is the set of models of
Ï. For an LTL formula Â and an infinite word fl over 2AP, fl satisfies Â, written fl |= Â, if
Tfl |= EÂ, where Tfl is a trivial tree-encoding of fl. For an LTL formula Â, L(Â) denotes the
set of infinite words over 2AP satisfying Â.

The New Logic CCDL. Like CCTL*, the syntax of CCDL is composed of state formulae
Ï and path formulae Â over a given finite set AP of atomic propositions, defined as follows:

Ï ::= € | p | ¬Ï | Ï · Ï | EÂ | DnÏ
Â ::= Ï | ¬Â | Â · Â | ÈAÍÂ

where p œ AP and ÈAÍ is the existential sequencing modality applied to a testing NWAf A. We
define a testing NWAf A =

+
2AP,Q, ”, qI ,F, ·

,
as consisting of an NWAf

+
2AP,Q, ”, qI ,F

,

over finite words over 2AP and a test function · mapping states in Q to CCDL path formulae.
Intuitively, along an infinite path fi of a Kripke tree, the testing automaton accepts the
labeling of a (possibly empty) infix fi(i) . . .fi(j ≠ 1) of fi if the embedded NWAf has an
accepting run qi . . . qj over the labeling of such an infix so that, for each position k œ [i, j],
the formula ·(qk) holds at position k along fi. A test function · is trivial if it maps each
state to €. We also use the shorthand [A]Â , ¬ÈAÍ¬Â (universal sequencing modality).
The language of CCDL consists of the state formulae of CCDL. We also consider the
bisimulation-invariant fragment CDL of CCDL where the counting operators Dn with n > 1
are disallowed. Given a Kripke tree T = (T,Lab), an infinite path fi of T, and 0 Æ i < |fi|,
the semantics of modality ÈAÍ is defined as follows, where A =

+
2AP,Q, ”, qI ,F, ·

,
:

(T ,fi, i) |= ÈAÍÂ … for some j Ø i, (i, j) œ RA(T ,fi) and (T ,fi, j) |= Â
where RA(T ,fi) is the set of pairs (i, j) with j Ø i such that there is an accepting run qi . . . qj
of the NWAf embedded in A over Lab(fi(i)) . . .Lab(fi(j ≠ 1)) and, for all k œ [i, j], it holds
that (T ,fi, k) |= ·(qk). The notions of a model and tree-language of a CCDL formula are
defined as for CCTL*.
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Embedding of CCTL* into CCDL. The logic CCTL* can be easily embedded into CCDL
as follows. LetA be the testingNWAf having trivial tests and accepting all and only the words
of length 1, and for CCDL path formulae Â1,Â2, let AÂ1,Â2 =

+
2AP, {q1, q2}, ”, q1, {q2}, ·

,

be the testing NWAf where, for all a œ 2AP, ”(q1, a) = {q1, q2}, ”(q2, a) = ÿ, ·(q1) = Â1, and
·(q2) = Â2. Then, the next and until formulae XÂ1 and Â1 UÂ2 can be expressed as follows:
XÂ1 © ÈAÍÂ1 and Â1 UÂ2 © Â2 ‚ ÈAÂ1,Â2Í€.

4 Alternating Tree Automata

In this section, we recall the class of parity alternating tree automata with first-order con-
straints (FTA for short), introduced in [82] to provide an automata-theoretic characterization
of MSO interpreted on arbitrary labeled trees. Moreover, we also recall the class of graded
alternating tree automata (GTA for short), a subclass of FTA, which was introduced in [44]
and allows for expressing counting modal requirements on the child relation of an input tree.
The transition relation of both FTA and GTA is based on constraints on the set of states Q
written as formulae in a suitable language, called one-step logic. The one-step interpretations
of such formulae over Q are pairs (S, I), where S is an arbitrary (possibly infinite) non-empty
set and I is a mapping I : S ‘æ 2Q, assigning to each element of S a subset of Q. Intuitively,
the pair (S, I) describes the local behaviour of the automaton on reading a node w of the
input tree. The set S corresponds to the set of children of the current input node w and, for
each wÕ œ S, I(wÕ) is the set of states associated with the copies of the automaton which are
sent to the child wÕ of w.

One-Step Logic for GTA. The one-step relation of GTA is specified by means of formulae
◊ of one-step positive graded modal logic over Q, we call graded Q-constraints, defined as:

◊ ::= € | ‹ | ◊ ‚ ◊ | ◊ · ◊ | ⌃k– | ⇤k–
where k œ N \ {0} and – is a positive Boolean formula over Q. The atomic formulae ⌃k–
and ⇤k– are called Q-atoms. The atom ⌃1– (resp., ⇤1–) is also denoted by ⌃– (resp., ⇤–).
A formula ◊ is symmetric if the atoms occurring in ◊ are of the form ⌃– or ⇤–.

The satisfaction relation (S, I) |= ◊ for a one-step interpretation (S, I) over Q is inductively
defined as follows (we omit the clauses for positive Boolean connectives which are standard):

(S, I) |= ⌃k– if |{s œ S | I(s) |= –}| Ø k;
(S, I) |= ⇤k– if |{s œ S | I(s) ”|= –}| < k.

If (S, I) |= ◊, we say that (S, I) is a model of ◊. Intuitively, for an alternating automaton A
with set of states Q, the atom ⌃k– requires that at the current input node w, there are at
least k children of w and, for each of such nodes wÕ, (**) there is a subset QÕ ™ Q satisfying
– such that a copy of A is sent to node wÕ in state q, for each q œ QÕ. For an atom ⇤k–, the
previous condition (**) is required to hold for all but at most k ≠ 1 children wÕ of w.

One-Step Logic for FTA. The one-step language FOE+

1
(Q) of positive first-order formulae

with equality and monadic predicates over Q and first-order variables in Vr1 is given by the
sentences (formulae without free variables) generated by the following grammar:

◊ ::= € | ‹ | q(x) | x = y | x ”= y | ◊ ‚ ◊ | ◊ · ◊ | ÷x. ◊ | ’x. ◊
where q œ Q and x, y œ Vr1. An FOE+

1
(Q)-sentence ◊ is called first-order Q-constraint; ◊ is

symmetric if it does not contain equality and inequality atomic formulae. In FTA, these
constraints allow formulae that refer to the children of a node of a tree by means of explicit
first-order variables.
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Given a one-step interpretation (S, I) over Q and an assignment V : Vr1 æ S of the
first-order variables, the satisfaction relation (S, I),V |= ◊ is defined in a standard way. For
sentences ◊, this relation is independent of V, and we simply write (S, I) |= ◊. Note that
graded Q-constraints can be trivially expressed in FOE+

1
(Q), and first-order Q-constraints ◊

are monotonic, i.e., for all one-step interpretations (S, I) and (S, IÕ) such that I(s) ™ IÕ(s) for
each s œ S, it holds that (S, I) |= ◊ entails (S, IÕ) |= ◊. A minimal model of ◊ is a model (S, I)
of ◊ such that there is no model (S, IÕ) of ◊ with IÕ ”= I and IÕ(s) ™ I(s) for each s œ S .

Parity GTA and Parity FTA. A parity GTA A is a tuple A = È�,Q, ”, qI ,�Í, where �, Q,
qI , and � are defined as for parity NWA, while the transition function ” is a mapping from
Q ◊ � to the set of graded Q-constraints. The set Atoms(A) is the set of Q-atoms occurring
in the transition function of A. Parity FTA A = È�,Q, ”, qI ,�Í are defined similarly but
the transition function ” is of the form ” : Q ◊ � ‘æ FOE+

1
(Q). A GTA (resp., FTA)

A = È�,Q, ”, qI ,�Í is symmetric if for all (q, a) œ Q ◊ �, the constraint ”(q, a) is symmetric.
GTA (resp., FTA) A operate over non-blocking �-labeled trees (T,Lab). A run of A over
(T,Lab) is a (Q ◊ T)-labeled tree r = (Tr,Labr), where each node of Tr labelled by (q, w)
describes a copy of A that is in state q reading the node w of T. Moreover, we require that:

Labr(Á) = (qI , Á) (initially, the automaton is in state qI reading the root of the input T);
for each node y œ Tr with Labr(y) = (q, w) and denoted by Sw the set of children of node
w in the input T, there is a one-step interpretation (Sw, I) over Q satisfying ”(q,Lab(w))
such that the set of labels associated with the children of y in Tr consists of the pairs
(qÕ, wÕ) with wÕ œ Sw and qÕ œ I(wÕ).

The run r is accepting if, for all infinite paths fi starting from the root, the infinite sequence of
states in Labr(fi(0))Labr(fi(1)) . . . satisfies the parity acceptance condition �. The language
L(A) accepted by A is the tree-language over � consisting of the non-blocking �-labeled
trees (T,Lab) such that there is an accepting run of A over (T,Lab).

Dualization. For a graded Q-constraint ◊, the dual Â◊ of ◊ is obtained from ◊ by exchanging
‚ with ·, € with ‹, and Q-atoms ⌃k– with ⇤kÂ–, and vice versa, where Â– is obtained from –
by exchanging ‚ with ·. For example, the dual of ⌃k1(q0 ‚q1)·⇤k2q2 is ⇤k1(q0 ·q1)‚⌃k2q2.
Similarly, the dual Â◊ of a first-order Q-constraint ◊ is obtained from ◊ by exchanging ‚ with ·,
€ with ‹, x = y with x ”= y, and existential quantification ÷x with universal quantification
’x. For a parity GTA (resp., parity FTA) A = È�,Q, ”, qI ,�Í, the dual automaton of A
is the parity GTA (resp., parity FTA) ÂA =

e
�,Q, Â”, qI , Â�

f
, where for all (q, a) œ Q ◊ �,

Â�(q) = �(q) + 1 and Â”(q, a) is the dual of ”(q, a). By [82, 12], the following holds.

I Proposition 4.1 ([82, 12]). Let A be a parity GTA (resp., parity FTA). Then, the dual
automaton of A is a parity GTA (resp., parity FTA) accepting the complement of L(A).

5 Automata Characterisations of CDL and CCTL*

In this section, we provide e�ective automata-theoretic characterisations of the logics CCDL
and CCTL*. We first consider the graded version of the class of hesitant alternating tree
automata (HTA, for short), the latter being a well-known formalism introduced in [47] as an
optimal automata-theoretic framework for model checking and synthesis of CTL*. We show
that the graded version of HTA (HGTA for short) characterises the logic CCDL. In order to
capture the logic CCTL*, we consider a subclass of HGTA obtained by enforcing a counter-
freeness requirement on the linear-time behaviour of the automaton along an existential
component together with an additional condition (we call mutual-exclusion property) on the
alphabet of the linearization word automaton.
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In the following, for a GTA A and a set A ™ Atoms(A), we denote by Con(A) (resp.,
Dis(A)) the conjunction (resp., disjunction) of the atoms occurring in A. As usual, the empty
conjunction is € and the empty disjunction is ‹.

Hesitant GTA. An hesitant GTA (HGTA for short) is a tuple A = È�,Q, ”, qI ,H,H÷,�Í,
where È�,Q, ”, qI ,�Í is a parity GTA, H = ÈQ1, . . . ,QnÍ is an ordered tuple of non-empty
pairwise disjunct subsets Qi of Q (called components of A) which form a partition of Q, and
H÷ is a subset of the components in H (the so called existential components). Thus, like
HTA [47], there is an ordered partition of Q into disjoint sets Q1, . . . ,Qn. Moreover, each
component Qi is classified as transient, existential, or universal, and the following holds:

transient requirement: for each transient component Qi and (q, a) œ Qi ◊ �, ”(q, a) only
refers to states in components Qj such that j < i;
existential requirement: for each existential component Qi and (q, a) œ Qi ◊ �, ”(q, a) can
be rewritten as a disjunction of conjunctions of the form ⌃qÕ · Con(A), where qÕ œ Qi

and the atoms in A only refer to states in components Qj such that j < i;
universal requirement: for each universal component Qi and (q, a) œ Qi ◊ �, ”(q, a) can
be rewritten as a conjunction of disjunctions of the form ⇤qÕ ‚Dis(A), where qÕ œ Qi and
the atoms in A only refer to states in components Qj such that j < i;
hesitant acceptance requirement: for each existential (resp., universal) component Qi, the
restriction �Qi of � to the set Qi is a Büchi condition (resp., coBüchi condition).

The first three requirements ensure that every infinite path of a run of A gets trapped within
some existential or universal component Qi. The existential requirement establishes that
from each existential state q œ Qi, exactly one copy is sent to a child of the current input
node in component Qi (all the other copies move to states with order lower than i). The
universal requirement corresponds to the dual of the existential requirement. Finally, the
hesitant acceptance requirement ensures that for each infinite path fi of a run that gets
trapped into an existential (resp., universal) component, fi is accepting i� fi visits infinitely
many times states with even color (resp., fi visits finitely many times states with odd color).

I Example 5.1. Let AP = {p} and Ïp be the CTL* formula EX p asserting that the root of
the given Kripke tree has a child where p holds. We consider the tree-language L2 consisting
of the Kripke trees T such that there is an infinite path fi from the root so that p never
holds along fi and at the even positions 2i, Ïp holds at node fi(2i). L2 requires counting
modulo 2 and cannot be expressed in CCTL*. The language L2 is recognised by the HGTA
A = È�,Q, ”, qI , ÈQ1,Q2Í, {Q2},�Í consisting of three states having colour 0: the existential
states qI and q having the same and highest order (Q2 = {qI , q}) and the transient state
qp (Q1 = {qp}). Moreover, (i) ”(qp, {p}) = € and ”(qp, ÿ) = ‹, (ii) ”(qI , ÿ) = ⌃q · ⌃qp and
”(qI , {p}) = ‹, and (iii) ”(q, ÿ) = ⌃qI and ”(q, {p}) = ‹.

Linearization. Fix an HGTA A = È�,Q, ”, qI ,H,H÷,�Í. Given a component Qi of A and
A ™ Atoms(A), the set A is lower than Qi if the atoms in A only refer to states with order
j < i. For each existential (resp., universal) component Qi and q œ Qi, we introduce a Büchi
(resp., coBüchi) NWA AQi,q over the alphabet � ◊Atoms(A). Intuitively, AQi,q encodes the
modular behaviour of A starting at state q, which is composed of the behaviour along Qi

(which is linear-time when Qi is existential), plus additional moves that lead to states with
order lower than i: the input alphabet � ◊ Atoms(A) keeps track of these additional moves.
When Qi is universal, then AQi,q can be viewed as a universal tree automaton.
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I Definition 5.2 (Linearization word automata). For each non-transient component Qi of
A and q œ Qi, we denote by AQi,q the parity NWA AQi,q =

+
� ◊ 2Atoms(A),Qi, ”Qi , q,�Qi

,

where for all qÕ œ Qi, a œ �, and A ™ Atoms(A), ”Qi(qÕ, (a,A)) is defined as follow:
Case Qi is existential: qÕÕ œ ”Qi(qÕ, (a,A)) if there is conjunction › in the disjunctive
normal form of ”(qÕ, a) such that › = ⌃qÕÕ · Con(A) (note that A is lower than Qi).
Case Qi is universal: qÕÕ œ ”Qi(qÕ, (a,A)) if there is disjunction › in the conjunctive
normal form of ”(qÕ, a) such that › = ⇤qÕÕ ‚ Dis(A) (note that A is lower than Qi).

Let �Qi be the set of elements A ™ Atoms(A) s.t. ”Qi(qÕ, (a,A)) ”= ÿ for some (qÕ, a) œ Qi ◊�.

I Remark 5.3. Note that the transition function of AQi,q is independent of q, and AQi,q is a
Büchi (resp., coBüchi) NWA if Qi is existential (resp., universal). We can equate the parity
NWA AQi,q to the parity NWA over the alphabet � ◊ �Qi which is obtained from AQi,q

by restricting the transition function to the alphabet � ◊ �Qi . In the following, we write
AQi,q to denote this automaton. Observe that each set of atoms A œ �Qi is lower than Qi.

If we consider the HGTA A of Example 5.1, the Büchi NWA AQ2,qI associated with the
existential component Q2 is illustrated below. Note that �Q2 = {ÿ, {⌃qp}}.

qI q
(ÿ, {⌃qp})

(ÿ, ÿ)

Let us fix an HGTA A = È�,Q, ”, qI ,H,H÷,�Í with H = ÈQ1, . . . ,QnÍ. For each graded
Q-constraint ◊, we denote by A◊ the HGTA È�,Q fi {◊}, ”◊, ◊,H◊,H÷,� fi (◊ æ 0)Í where
for the states in Q, ”◊ agrees with ”, for the initial state ◊, ”◊(◊, a) = ◊ for all a œ �, and
H◊ = ÈQ1, . . . ,Qn, {◊}Í. Note that {◊} is a transient component with highest order. Thus,
from the root of the input tree, A◊ send copies of A to the children of the root according to
the constraint ◊. By construction, for each existential state q of an HGTA A, we obtain the
following characterisation of the language L(Aq), where Aq is the HGTA obtained from A
by setting q as initial state instead of qI , in terms of the linearization of A.

I Proposition 5.4. Let A be an HGTA, Qi be an existential component of A, and q œ Qi.
Then, for each input T = (T,Lab), T œ L(Aq) if and only if there is an infinite path fi
of T starting at the root and an infinite word fl œ L(AQi,q) such that fl is of the form
fl = (Lab(fi(0)),A0)(Lab(fi(1)),A1) . . . and for each i Ø 0, Tfi(i) œ L(ACon(A(i))), where Tfi(i)

is the labelled subtree of T rooted at node fi(i).

Counter-free HGTA. In order to capture CCTL*, we introduce a subclass of HGTA
obtained by enforcing additional conditions. By Proposition 5.4 and the equivalence of LTL
and Büchi counter-free NWA [19], a natural condition consists in requiring that for each
non-transient component Qi of the HGTA and state q œ Qi, the NWA AQi,q is counter-free
(counter-freeness requirement).1 However, this condition is not su�cient for characterising
the logic CCTL*. A counterexample is the HGTA A of Example 5.1 which clearly satisfies
the counter-freeness requirement but recognises a tree-language which is not expressible in
CCTL*. We introduce an additional condition (mutual-exclusion property) on the alphabets
of the linearization automata (see Definition 5.5 below). A Counter-free HGTA (HGTAcf

for short) is an HGTA satisfying both the counter-free requirement and the mutual-exclusion
condition.

1 Note that the property of an NWA to be counter-free is independent of the initial state.
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I Definition 5.5. An HGTA A satisfies the mutual-exclusion property if for each non-
transient component Qi and for all A,AÕ œ �Qi such that A ”= AÕ, it holds that there exists an
atom atom œ A and an atom atom

Õ œ AÕ such that L(Aatom) is the complement of L(AatomÕ).
Note that if �Qi is a singleton, then the previous property is fulfilled.

Evidently, if A satisfies the mutual-exclusion condition, then for each non-transient
component Qi and for all A,AÕ œ �Qi such that A ”= AÕ, it holds that L(ACon(A)) fl
L(ACon(AÕ

)) = ÿ. Intuitively, the mutual-exclusion condition requires that along a non-
transient component Qi, the distinct moves A œ �Qi (these moves lead to components
with order lower than i) are mutually exclusive. Let us consider again the HGTA A of
Example 5.1. Since �Q2 = {ÿ, {⌃qp}}, by Definition 5.5, A does not satisfy the mutual-
exclusion condition. Note that Con(ÿ) = € and Con({⌃qp}) = ⌃qp. Hence, L(A€) fl
L(ACon({⌃qp})) = L(ACon({⌃qp})) = L(EX p) ”= ÿ.

The dual ÂA of an HGTA A = È�,Q, ”, qI ,H,H÷,�Í is the tuple
e

�,Q, Â”, qI ,H, ÊH÷, Â�
f
,

where Â” and Â� are defined as for the dual of an arbitrary parity GTA and ÊH÷ consists of the
universal components of A. By construction and Proposition 4.1, the considered subclasses
of GTA are closed under Boolean language operations.

I Proposition 5.6. HGTA (resp., HGTAcf) and HGTA satisfying the mutual-exclusion
property are e�ectively closed under Boolean language operations.

Enforcing the Mutual-exclusion Property. By exploiting dualization, an HGTA A can be
converted into an equivalent HGTA As satisfying the mutual-exclusion condition. Intuitively,
As is obtained by merging in a syntactical and modular way A with a renaming of the dual
HGTA ÂA.

I Proposition 5.7. Given an HGTA A, one can construct an HGTA As such that As

satisfies the mutual-exclusion condition and L(As) = L(A).

Note that the translation in Proposition 5.7 changes the second component �Qi of the
alphabets of the linearization automata. Since counter-free NWA are not closed under
inverse projection, the construction does not preserve the counter-freeness property. For
example, for the HGTA of Example 5.1, the translation replaces the edge from q to qI with
label (ÿ, ÿ) of the NWA AQ2,qI with two edges from q to qI : one with label (ÿ, {⌃qp}) and
the other one with label (ÿ, {⇤qÕ

p}) where L(ACon({⇤qÕ
p})) = L(¬EX p). The resulting NWA is

not counter-free.

5.1 From Automata to Logics and Back
In this section, we show that the class ofHGTA and the logic CCDL are e�ectively equivalent,
and the class of HGTAcf e�ectively characterizes CCTL*. We start with the translations
from automata to logics.

I Theorem 5.8. Let A be an HGTA (resp., an HGTAcf) over 2AP. Then, one can construct
a CCDL (resp., CCTL*) formula ÏA such that L(ÏA) = L(A). Moreover, ÏA is a CDL
(resp. a CTL*) formula if A is symmetric.

Proof. We focus on the translation from HGTAcf A = È�,Q, ”, qI ,H,H÷,�Í to CCTL*. For
each q œ Q, we construct a CCTL* formula Ïq such that L(Ïq) = L(Aq) and Ïq is a CTL*
formula if A is symmetric. Thus, by setting ÏA , ÏqI , Theorem 5.8 directly follows. The
proof is by induction on the order ¸ of the component Q¸ such that q œ Q¸. We distinguish
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the cases where q is transient, existential, or universal. The transient case is easy and the
universal case follows from the existential case by a dualization argument. Now, assume
that q is existential. Let us consider the Büchi NWA AQ¸,q over 2AP ◊ �Q¸ as defined in
Definition 5.2. Recall that AQ¸,q is counter-free. Moreover, �Q¸ ™ 2Atoms(A) contains only
elements A such that states occurring in the atoms of A have order j lower than ¸. Thus, by
the induction hypothesis, for each A œ �Q¸ , one can build a CCTL* formula ÏA such that
L(ACon(A)) = L(ÏA). Hence, since A satisfies the mutual-exclusion condition, the following
holds:

Claim 1. For all A,AÕ œ �Q¸ such that A ”= AÕ, L(ÏA) fl L(ÏAÕ) = ÿ.
For each A œ �Q¸ , let pA be a fresh atomic proposition. We denote by APex the extension

of AP with these fresh propositions. Moreover, let Aex,Q¸,q be the Büchi NWA over 2APex

having the same set of states, initial state, acceptance condition as AQ¸,q and whose transition
function ”ex,Q¸ is obtained from the transition function ”Q¸ of AQ¸,q as follows: for all qÕ œ Q¸

and aex œ 2APex , if aex is of the form a fi {pA}, for some a œ 2AP and A œ �Q¸ , (i.e., aex
contains a unique proposition in APex \AP), then ”ex,Q¸(qÕ, aex) = ”Q¸(qÕ, (a,A)); otherwise,
”ex,Q¸(qÕ, aex) = ÿ. Being AQ¸,q counter-free, Aex,Q¸,q is clearly counter-free as well. Thus,
by [19], one can construct an LTL formula Â over APex such that L(Â) = L(Aex,Q¸,q). Since
L(ACon(A)) = L(ÏA) for all A œ �Q¸ , by construction and Proposition 5.4, we obtain the
following characterization of the tree-language L(Aq).

Claim 2. For each Kripke tree T = (T,Lab), T œ L(Aq) i� there is an infinite path fi of
T from the root and an infinite word fl over 2APex such that fl |= Â and, for all j Ø 0, (i)
fl(j) fl AP = Lab(fi(j)), (ii) for all pA œ fl(j), (T ,fi(j)) |= ÏA, and (iii) there is a unique
A œ �Q¸ such that pA œ fl(j).

Note that since L(Â) = L(Aex,Q¸,q), by construction, point (iii) in Claim 2 follows from
the fact that fl |= Â. By exploiting the always modality G (G › is a shorthand of ¬(€ U¬›))
and both conjunction and disjunction, w.l.o.g. we can assume that the LTL formula Â is in
negation normal form, i.e., negation is applied only to atomic propositions. Now, let f(Â) be
the CCTL* path formula over AP obtained from Â by replacing each literal of the form pA
(resp., ¬pA), where A œ �Q¸ , with the CCTL* state formula ÏA (resp.,

x
AÕœ�Q¸

\{A} ÏAÕ).
Finally, let us consider the CCTL* state formula Ïq defined as follows:

Ïq , E(f(Â) · G
x

Aœ�Q¸
ÏA).

Note that the second conjunct in the state formula Ïq ensures that, for the infinite
path fi selected by the path quantifier E and for each j Ø 0, the state formula ÏA holds at
node fi(j) for some A œ �Q¸ . We show that a Kripke tree T = (T,Lab) satisfies Ïq i� the
characterization of L(Aq) in Claim 2 holds. Hence, the result follows.

We shall now focus on the left-right implication of the equivalence (the right-left implication
is similar). Thus, assume that T |= Ïq. Hence, there exists an infinite path fi of T from
the root and an infinite sequence ‹ = A0,A1, . . . over �Q¸ such that (T ,fi, 0) |= f(Â) and
for each j Ø 0, (T ,fi(j)) |= ÏAj . Let Lab(fi) ¢ ‹ be the infinite word over 2APex defined as
follows for all j Ø 0: (Lab(fi) ¢ ‹)(j) = Lab(fi(j)) fi {pAj}. By Claim 2, it su�ces to show
that Lab(fi) ¢ ‹ |= Â. To this purpose, we show by structural induction that for each j Ø 0
and subformula ◊ of Â if (T ,fi, j) |= f(◊), then (Lab(fi) ¢ ‹, j) |= ◊. Since the formula Â is
in negation normal form, by the induction hypothesis, the unique non-trivial case is when ◊
is either of the form pA or of the form ¬pA for some A œ �Q¸ .

◊ = pA: hence, f(◊) = ÏA. Since (T ,fi, j) |= f(◊) and (T ,fi(j)) |= ÏAj , by Claim 1, it
follows that A = Aj , i.e. ◊ = pAj . Hence, (Lab(fi) ¢ ‹, j) |= ◊, and the result follows.
◊ = ¬pA: hence f(◊) =

x
AÕœ�Q¸

\{A} ÏAÕ . Since (T ,fi, j) |= f(◊) and (T ,fi(j)) |= ÏAj , by
Claim 1, A ”= Aj . Hence, (Lab(fi) ¢ ‹, j) |= ◊, and we are done. J
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From Logics to Automata. As to the translation from CCTL* to HGTAcf, in order to
ensure the mutual-exclusion property of the resulting HGTAcf, we need a restricted syntactic
form of CCTL* formulae, which is still expressively complete. A CCTL* formula is in
simple form if each occurrence of the path quantifier E is immediately preceded by the counter
modality D1 (note that D1 corresponds to the standard EX modality of CTL*). Formally,
the set of state formulae Ï of CCTL* in simple form is defined according to the following
syntax: Ï ::= € | p | ¬Ï | Ï · Ï | D1EÂ | DnÏ. One can easily show that the simple form is
indeed expressively complete.

I Theorem 5.9. Given a CCDL (resp., CCTL*) formula Ï, one can construct an equivalent
HGTA (resp., HGTAcf) AÏ such that L(AÏ) = L(Ï). Moreover, AÏ is symmetric if Ï is a
CDL (resp., a CTL*) formula.

Proof. We focus on the translation from CCTL* to HGTAcf. Fix a CCTL* formula �.
W.l.o.g., we can assume that � is in simple form. As in the case of the alternating hesitant
automata for CTL* [47], we construct the automaton by induction on the structure of �.
With each state subformula Ï of � we associate an HGTAcf AÏ over � = 2AP such that
L(AÏ) = L(Ï). The cases where Ï is an atomic proposition, or the root operator of Ï is
the counting modality Dn are straightforward. The cases where the root operator of Ï is
a Boolean connective directly follow from Proposition 5.6. Now, assume that Ï = EÂ for
some path formula Â. Let max(Â) be the set of state subformulae of Â of the form E› or Dn›
which are not preceded by the modality E or the counting modality in the syntax tree of Â.
Since Â is in simple form, max(Â) is of the form {Dn1Ï1, . . . , DnkÏk} for some k Ø 0, where
Ï1, . . . ,Ïk are CCTL* formulae in simple form. Note that if Â is a CTL* formula, then
n1 = . . . = nk = 1. By the induction hypothesis, for each i œ [1, k], one can construct an
HGTAcf Ai =

+
2AP,Qi, ”i, qI i,Hi,H÷,i,�i

,
such that L(Ai) = L(Ïi). For each i œ [1, k], let

ÂAi =
e
2AP, ÂQi, Â”i, ÂqI i, ÂHi, ÂH÷,i, Â�i

f
be a renaming of the dual automaton of Ai.

Let APex be an extension of AP obtained by adding for each state formula DniÏi a
fresh proposition pi. Then, the path formula Â can be viewed as an LTL formula Âex

over APex. By [19], one can build a Büchi counter-free NWA NÂ = È2APex ,Q, ”, qI ,�Í
s.t. L(NÂ) = L(Âex). By construction, we easily deduce the following characterization of
L(Ï) = L(EÂ):

Claim 1: for each Kripke tree T = (T,Lab), T œ L(Ï) i� there exists an infinite path fi of
T from the root and an infinite word fl over 2APex such that fl œ L(NÂ) and the following
holds for each i Ø 0: (i) fl(i) fl AP = Lab(fi(i)), (ii) for each ¸ œ [1, k] such that p¸ œ fl(i),
(T ,fi(i)) |= Dn¸Ï¸, and (iii) for each ¸ œ [1, k] such that p¸ /œ fl(i), (T ,fi(i)) |= ¬Dn¸Ï¸.

We define AÏ as follows: AÏ simulates the Büchi NWA NÂ along a guessed infin-
ite path of the input tree from the root and starts additional copies of the HGTAcf

A1, . . . ,Ak, ÂA1, . . . , ÂAk. According to Claim 1, these copies guarantee that whenever the
NWA NÂ assumes that proposition p¸ labels (resp., p¸ does not label) the current node
along the guessed path, then Dn¸Ï¸ holds (resp., Dn¸Ï¸ does not hold) at this node. The
components of A consist of the existential component Q (the set of states of the Büchi
counter-free NWA NÂ) and the components of the HGTAcf automata Ai and ÂAi for each
i œ [1, k]. Moreover, the existential component Q has highest order and the ordering of the
components of Ai (resp., ÂAi) is preserved for each i œ [1, k]. For the transition function ”Ï

of AÏ, we have that for states in Qi (resp., ÂQi), ”Ï agrees with the corresponding ”i (resp.,
Â”i). For states q œ Q and a œ 2AP, ”Ï(q, a) is defined as follows, where for each I ™ [1, k],
I(a) denotes the subset of APex given by a fi

t
¸œI

{p¸}:



M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:13

”Ï(q, a),
fl

I™[1,k]

fl

qÕœ”(q,I(a))

(⌃qÕ ·
fi

¸œI

⌃¸qI i ·
fi

¸œ[1,k]\I

⇤¸ ÂqI i)

By construction, the induction hypothesis, and Claim 1, AÏ is an HGTA satisfying the
mutual-exclusion property such that L(AÏ) = L(Ï). It remains to show that for each
q œ Q, the Büchi NWA AQ,q over the alphabet 2AP ◊ �Q (see Definition 5.2) driven by the
existential component Q of AÏ is counter-free. Let us consider the mapping g assigning to
each aex œ 2APex the pair (a,

t
¸œI

{⌃¸qI i} fi
t

¸œ[1,k]\I{⇤¸ ÂqI i}), where a = AP fl aex and I is
the set of indexes in j œ [1, k] such that pj œ aex. Clearly, g is a bijection between 2APex and
2AP ◊ �Q. Moreover, for the transition functions ”Q and ” of AQ,q and NÂ, respectively, it
holds that, for each (a,A) œ 2AP ◊ �Q and qÕ œ Q, ”Q(qÕ, (a,A)) = ”(qÕ, g≠1(a,A)), where
g≠1 is the inverse of g. Thus, since NÂ is counter free, AQ,q is counter free as well, and the
result follows. J

6 Automata Characterisation of Monadic Chain Logic (MCL)

Monadic Chain Logic (MCL) is the fragment of MSO over Kripke trees where monadic
second-order quantification is restricted to sets of nodes which forms chains, i.e. a subset
of a path. In this section, we provide an automata-theoretic characterisation of MCL in
terms of a subclass of parity FTA, called Hesitant FTA (HFTA for short), which represents
the FTA counterpart of hesitant GTA. Moreover, we show that the bisimulation-invariant
fragment of MCL and CDL are expressively equivalent.

The class of HFTA. An HFTA is a tuple A = È�,Q, ”, qI ,H,H÷,�Í, where È�,Q, ”, qI ,�Í
is an FTA and H and H÷ are defined as for HGTA. Moreover, we require that A satisfies the
transient requirement and the hesitant acceptance requirement of HGTA and the following
variants of the existential and universal requirements of HGTA:

for each existential component Qi and (q, a) œ Qi ◊ �, ”(q, a) is a disjunction of formulae
of the form ÷x. (qÕ(x) · ◊(x)) where qÕ œ Qi and ◊(x) only refers to states in lower
components Qj with j < i (first-order existential requirement);
for each universal component Qi and (q, a) œ Qi ◊ �, ”(q, a) is a conjunction of formulae
of the form ’x. (qÕ(x) ‚ ◊(x)) where qÕ œ Qi and ◊(x) only refers to states in lower
components Qj with j < i (first-order universal requirement).

HFTA can be easily translated into equivalent MCL sentences.

I Theorem 6.1. Given an HFTA A over 2AP, one can construct in polynomial time an
MCL sentence ÏA over AP such that L(ÏA) = L(A).

Chain Projection. Like HGTA, the tree-languages accepted by HFTA are closed under
Boolean operations. Thus, in the translation of MCL formulae into equivalent parity HFTA,
the only non-trivial part concerns the treatment of MCL existential quantification. For
this purpose, we define an operation on tree languages that captures the semantics of MCL
existential quantification. Let L be a tree language over 2AP and p œ AP. The chain
projection of L over p, denoted by ÷Cp.L, is the language consisting of the Kripke trees
(T,Lab) over AP \ {p} such that there is an infinite path fi of T from the root and a Kripke
tree (T,LabÕ) œ L so that: LabÕ(w) = Lab(w), for each w œ T\fi, and LabÕ(w)\{p} = Lab(w),
otherwise.

ICALP 2024



128:14 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

We show that HFTA are e�ectively closed under chain projection, i.e., for each HFTA
A over 2AP and p œ AP, one can construct an HFTA accepting ÷Cp.L(A). The proof is
divided in two steps. In the first step, we define a subclass of HFTA, called HFTA that
are nondeterministic in one path (see Definition 6.3), whose closure under chain projection
can be easily established (see Proposition 6.4). Then, in the second step, we show that an
HFTA can be converted into an equivalent HFTA that is nondeterministic in one path.

We now introduce this subclass of automata. By exploiting the known notion of basic
formula [82, 12], we first define a fragment of the one-step language FOE+

1
(Q) for a given

non-empty set Q. A Q-type is a (possibly empty) set A ™ Q. It defines the first-order
constraint t(A)(x),w

qœA
q(x). Note that t(A)(x) is € if A is empty. Let T÷ and T’ be two

sets of Q-type. The basic formula for the pair (T÷, T’), denoted ◊=(T÷, T’), is the FOE+

1
(Q)

sentence defined as follows, where T÷ = {A1, . . . ,An} for some n Ø 0 and for variables
z1, . . . , zk, diff(z1, . . . , zk),

w
i ”=j zi ”= zj :

÷x1 . . .÷xn.
1
diff(x1, . . . , xn) ·

nfi

i=1

t(Ai)(xi) · ’y. (diff(x1, . . . , xn, y) æ
fl

AœT’

t(A)(y))
2
.

Intuitively, ◊=(T÷, T’) asserts that there are n-distinct elements s1, . . . , sn of the given domain
S such that each si satisfies the Q-type Ai of the existential part T÷, and every other element
of the domain satisfies some Q-type in the universal part T’.

I Definition 6.2. Let QÕ ™ Q with QÕ ”= ÿ. A basic formula ◊=(T÷, T’) is QÕ-functional
in one direction if there exists A œ T÷ such that A is a singleton consisting of an element
in QÕ, and for each B œ (T÷ \ {A}) fi T’, B does not contain elements in QÕ. A first-order
Q-constraint is QÕ-functional in one direction if it is the disjunction of basic formulae which
are QÕ-functional in one direction.

Intuitively, when the local behaviour of an HFTA A at the current input node w is
driven by a constraint ◊ that is QÕ-functional in one direction, then there is a child wÕ of w
such that exactly one copy of A is sent to wÕ. Moreover, the state of this copy is in QÕ and
the states of the copies sent to the children of w distinct from wÕ are in Q \QÕ.

I Definition 6.3. An HFTA A = È�,Q, ”, qI ,H,H÷,�Í is nondeterministic in one path if
the initial state qI belongs to some existential component Q¸ of A and the following hold:
1. for each q œ Q¸ and a œ �, ”(q, a) is Q¸-functional in one direction;
2. for each T œ L(A) and for each infinite path fi of T from the root, there is an accepting

run r = (Tr,Labr) of A over T s.t. for each input node w œ fi, there is exactly one node
y of r reading w, i.e., such that Labr(y) = (q, w) for some state q; moreover, q œ Q¸.

Let � = 2AP, p œ AP, A = È�,Q, ”, qI ,H,H÷,�Í be an HFTA that is nondeterministic
in one path, and Q¸ be the existential component such that qI œ Q¸. We consider the HFTA
÷Cp.A =

+
2AP\{p},Q, ”Õ, qI ,H,H÷,�

,
, where the transition function ”Õ is defined as follows

for all q œ Q and a œ 2AP\{p}: ”Õ(q, a) = ”(q, a) if q /œ Q¸, and ”Õ(q, a) = ”(q, a)‚ ”(q, afi {p})
otherwise. Hence, on all the states which are not in the existential component Q¸, ÷Cp.A
behaves as A. On the states in Q¸, the projection automaton guesses whether in the simulated
run of A, proposition p marks the current input node or not, and proceeds according to the
guess and the transition function of A. By Definition 6.3, we easily obtain the following
result.

I Proposition 6.4. Let A be an HFTA over 2AP that is nondeterministic in one path and
p œ AP. Then, L(÷Cp.A) = ÷Cp.L(A).
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From HFTA to HFTA that are nondeterministic in one path. We now show that HFTA
can be e�ectively translated into equivalent HFTA that are nondeterministic in one path.
We first establish a preliminary result on the one-step logic FOE+

1
(Q) for a given non-empty

set Q.

I Definition 6.5. Let ◊ be a first-order Q-constraint and ◊s be a first-order (Qfi2Q)-constraint
which is 2Q-functional in one direction. We say that ◊s simulates ◊ if the following hold:

for each minimal model (S, I) of ◊ and for each s œ S, (S, I[s æ {I(s)}]) is a model of ◊s;
for each minimal model (S, I) of ◊s, let s œ S be the unique element in S such that I(s) is
of the form {QÕ} for some QÕ œ 2Q. Then, the pair (S, I[s æ QÕ]) is a model of ◊;

where the mappings I[s æ {I(s)}] and I[s æ QÕ] are defined in the obvious way.

Since each first-order Q-constraint is e�ectively equivalent to a disjunction of basic
formulae [12], we easily obtain the following result.

I Proposition 6.6. Let ◊ be a first-order Q-constraint. Then, one can construct a first-order
(Q fi 2Q)-constraint ◊s which is 2Q-functional in one direction and simulates ◊.

Fix an HFTA A = È�,Q, ”, qI ,H,H÷,�Í with H = ÈQ1, . . . ,QnÍ. We construct in two
stages an equivalent HFTA Sim(A) that is nondeterministic in one path. First, by a kind
of powerset construction, we construct an automaton APATH that is nondeterministic in one
path but the acceptance condition of the existential component PowA containing the initial
state is not a Büchi condition but an Ê-regular set over the infinite sequences on PowA. In
the second stage of the construction, we show how the Ê-regular condition can be converted
into a standard Büchi condition by equipping the “macro” states in PowA with additional
information. Intuitively, given an input tree (T,Lab) accepted by A, the automaton APATH

simulates the behaviour of A along an accepting run r over (T,Lab) by guessing an infinite
path fi of the input tree from the root and proceeding as follows:

in the input nodes w /œ fi, APATH simply simulates the behaviour of A along r;
in the input nodes w œ fi, APATH keeps track in its “macro” state (a state in the existential
component PowA) of the states of A associated with the copies of A that read w along r.
Thus, in the run of APATH, there is a unique infinite path ‹ from the root associated with
the guessed input path fi, and ‹ “collects” the set of parallel paths ‹r of the simulated
run of A associated with the input path fi. In order to check the acceptance condition
on the individual parallel paths ‹r, an infinite sequence of “macro” states fl must allow
to distinguish the individual infinite paths over Q grouped by fl. Thus, like in [82], a
“macro” state associated with an input node w is a set of pairs (qp, q): the pair (qp, q)
represents a copy of A in state q at node w along the simulated run r which has been
generated by a copy of A in state qp reading the parent node of w in the input tree.

Formally, we denote by PowA the subset of 2Q◊Q consisting of the sets of pairs (q, qÕ)
of A-states such that the order of qÕ is equal or lower than the order of q (order re-
quirement). A PowA-path ‹ is an infinite word ‹ = P0P1 . . . over PowA such that the
following conditions are fulfilled: (i) P0 = {(qI , qI)} (initialisation), and (ii) for all i Ø 0
and (qi, qi+1) œ Pi+1, there is an element of Pi of the form (qi≠1, qi) (consecution). An
A-path of ‹ is a maximal (possibly finite) non-empty sequence q0q1 . . . of A-states such that
(qi≠1, qi) œ Pi for all 1 Æ i < |‹|. The PowA-path ‹ is A-accepting if all infinite A-paths
of ‹ satisfy the parity condition � of A. The automaton APATH is then given by APATH =
È�,Q fi PowA, ”PATH, {(qI , qI)},HPATH,H÷ fi {PowA},�Í where HPATH = ÈQ1, . . . ,Qn, PowAÍ
(the existential component PowA has highest order) and ”PATH is defined as follows:

for all q œ Q and a œ �, ”PATH(q, a) = ”(q, a);
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for all P œ PowA and a œ �, if P is empty, then ”PATH(P, a) = ÷x.P(x); otherwise, let us
consider the first-order (Q ◊ Q)-constraint ◊ given by

w
(qp,q)œP

”q(q, a), where ”q(q, a) is
obtained from ”(q, a) by replacing each predicate qÕ(y) occurring in ”(q, a) with (q, qÕ)(y).
By Proposition 6.6, one can construct a first-order ((Q◊Q)fiPowA)-constraint ◊s which
is PowA-functional in one direction and simulates ◊. Then, ”PATH(P, a) is obtained from
◊s by replacing each predicate (q, qÕ)(y) occurring in ◊s associated with an element of
Q ◊ Q with qÕ. Note that ”PATH(P, a) satisfies the first-order existential requirement and
is PowA-functional in one direction.

Note that in the definition of APATH, no acceptance condition is defined for the macro states
in PowA (the parity condition � inherited by A is defined only on the states in Q). By
construction and Proposition 6.6, for each run r of APATH over an input (T,Lab) and every
infinite path fi of r starting at the root, either fi is associated with a PowA-path ‹ (in this
case, we say that fi is accepting if ‹ is accepting) or fi gets trapped into some non-transient
component of A (in this case, acceptance of fi is determined by the parity condition �).
We denote by L(APATH) the set of input trees (T,Lab) such that there is a run of APATH over
(T,Lab) whose infinite paths starting at the root are all accepting. By construction and
Proposition 6.6, we easily deduce the following crucial result.

I Lemma 6.7. APATH is nondeterministic in one path and L(APATH) = L(A).

Construction of the Automaton Sim(A). Let FB (resp., FcoB) be the set of states in
the existential (resp., universal) components of A having even (resp., odd) color. Fix a
PowA-path ‹. By the order requirement, each infinite A-path of ‹ gets trapped into an
existential or universal component of A. Thus, by the hesitant acceptance requirement of
HFTA, the PowA-path ‹ is A-accepting if and only if for each infinite A-path fi of ‹, the
following holds: if fi gets trapped into an existential component, then fi visits infinitely many
times some state in FB (Büchi condition); otherwise (i.e., fi gets trapped into an universal
component), fi visits finitely many times all the states in FcoB (coBüchi condition).

It is known that coBüchi alternating word automata (AWA) over infinite words can
be converted in quadratic time into equivalent Büchi AWA by means of the so called
ranking construction [46]. We adapt the ranking construction and the Miyano-Hayashi
construction [53] (for converting a Büchi AWA into an equivalent Büchi NWA) for providing
a characterisation of acceptance of PowA-paths ‹ by a classical Büchi condition on an
extension of ‹ obtained by adding to each macro-state visited by ‹ additional finite-state
information. Hence, we obtain the following result.

I Theorem 6.8. For the given HFTA A, one can construct an HFTA Sim(A) that is
nondeterministic in one path and such that L(Sim(A)) = L(A).

By Theorem 6.8 and Proposition 6.4, we obtain the following result.

I Corollary 6.9. The class of HFTA is e�ectively closed under chain projection.

An HFTA with transition function ” is in normal form if over existential (resp., universal)
components Q¸, ”(q, a) (resp., the dual of ”(q, a)) is Q¸-functional in one direction for all
q œ Q¸ and a œ �. Since the constructions for the Boolean language operations and the
construction for the closure under chain projection (Theorem 6.8 and Proposition 6.4) preserve
the normal form, we deduce the following result.

I Theorem 6.10. Given an MCL sentence Ï, one can construct an HFTA AÏ in normal
form such that L(AÏ) = L(Ï).
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We exploit the normal form for showing that CDL (or, equivalently, the class of symmetric
HGTA) provides a characterisation of the bisimulation-fragment of MCL. It is known [82, 12]
that for each FTAA, one can construct a symmetric FTAAS such that if L(A) is bisimulation-
closed, then A and AS accept the same tree-language. By adapting the construction given
in [82, 12], we can show that a similar result holds for HFTA in normal form versus symmetric
HGTA. Hence, by Theorems 5.8 and 5.9 and Theorem 6.10, we deduce the following result.

I Theorem 6.11. The bisimulation-invariant fragment of MCL, CDL, and the class of
symmetric HGTA are expressively equivalent in a constructive way.

7 Conclusion

This work provides automata-theoretic characterisations of branching-time temporal logics,
mainly focusing on CTL* and CDL, the latter being a syntactic variant of the already
known ECTL*. Specifically, we prove the equivalence between the symmetric variant of
classic ranked Hesitant Tree Automata (HTA) and both CDL and the bisimulation-invariant
fragment of Monadic Chain Logic (MCL). The full MCL, instead, is proved equivalent to a
first-order variant of HTAs. In addition, we close a longstanding gap in the expressiveness
landscape of branching-time logics, by providing an automata-theoretic characterisation of
CTL*. This is obtained via a generalisation to tree-languages of the notion of counter-
freeness, originally introduced in the context of word languages. The generalisation essentially
decomposes an HTA into a number of counter-free word automata, one for each level of
the state decomposition of the HTA. This decomposition, however, works correctly only
when the HTA satisfies the additional property of mutual-exclusion. The property requires
that di�erent sets of automaton states, active at the same time on a given node of the input
tree, must accept di�erent subtrees. Both mutual-exclusion and counter-freeness seem to
be essential to capture a meaningful notion of counter-freeness for tree automata. Together
these results bring the expressiveness landscape for branching-time temporal logics to almost
the same level as their linear-time counterparts.

There are few open questions remaining. In particular, while Theorem 6.11 establishes
the equivalence between the bisimulation invariant fragment of MCL and CDL, the precise
relationship between CCDL (hence, ECTL*) and full MCL still remains unsettled. In
addition, techniques similar to those used in this work may also be applicable to obtain
a characterisation of Monadic Tree Logic (MTL), a fragment of MSO where quantified
variables range over subtrees [3], and of Substructure Temporal Logic (STL), a temporal
logic where one can implicitly predicate over substructure/subtrees [4, 5]. The restriction
that variables range over trees, indeed, seem to be tightly connected with the notion of
counter-freeness. The di�culty in this case is that counter-free HTAs would not su�ce, since
both MTL and STL are strictly more expressive than CTL*, and a meaningful definition
of decomposition into word automata of a non-hesitant tree automaton is not immediately
obvious.
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Abstract

Models of computations over the integers are equivalent from a computability and complexity theory
point of view by the (e�ective) Church-Turing thesis. It is not possible to unify discrete-time models
over the reals. The situation is unclear but simpler for continuous-time models, as there is a unifying
mathematical model, provided by ordinary di�erential equations (ODEs). Each model corresponds
to a particular class of ODEs. For example, the General Purpose Analog Computer model of Claude
Shannon, introduced as a mathematical model of analogue machines (Di�erential Analyzers), is
known to correspond to polynomial ODEs. However, the question of a robust complexity theory for
such models and its relations to classical (discrete) computation theory is an old problem. There was
some recent significant progress: it has been proved that (classical) time complexity corresponds to
the length of the involved curves, i.e. to the length of the solutions of the corresponding polynomial
ODEs. The question of whether there is a simple and robust way to measure space complexity
remains. We argue that space complexity corresponds to precision and conversely.

Concretely, we propose and prove an algebraic characterisation of FPSPACE, using continuous
ODEs. Recent papers proposed algebraic characterisations of polynomial-time and polynomial-space
complexity classes over the reals, but with a discrete-time: those algebras rely on discrete ODE
schemes. Here, we use classical (continuous) ODEs, with the classic definition of derivation and
hence with the more natural context of continuous-time associated with ODEs. We characterise
both the case of polynomial space functions over the integers and the reals. This is done by proving
two inclusions. The first is obtained using some original polynomial space method for solving ODEs.
For the other, we prove that Turing machines, with a proper representation of real numbers, can
be simulated by continuous ODEs and not just discrete ODEs. A major consequence is that the
associated space complexity is provably related to the numerical stability of involved schemas and
the associated required precision. We obtain that a problem can be solved in polynomial space if
and only if it can be simulated by some numerically stable ODE, using a polynomial precision.
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their associated complexity classes. The fact that these models appear in complexity issues
of deep learning models (a.k.a. neural networks) partially explains it. For example, various
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problems, such as the training of fully connected neural networks, have been proved to be a
÷R-complete problem [2, 3]. Complexity classes like FIXP were introduced to discuss the
complexity of continuous functions’ fixed points in various contexts, such as game theory [32].
These classes and statements are related to discrete-time models of computation over the
reals.

For discrete-time models of computations over the reals, the most famous approaches
are computable analysis, based on the Turing machine model in [55] and [59] and algebraic
models such as the Blum Shub Smale (BSS) model of computation [9, 8]. The class ÷R
corresponds to the (constant-free, equivalently uniform) non-deterministic time of the BSS
model of computation. Numerous decision problems were proved recently to be in this class.
Both models were tailored for very di�erent applications and it is well-known we cannot unify
existing models with the equivalent of a Church-Turing thesis. For example, computable
functions in a computable analysis model need to be continuous, while the BSS model intends
to consider functions and problems over the polynomials that are not. It is also explained by
the fact that some models have not been introduced with the idea of corresponding to actual
physical machines but also to discuss abstract complexity (lower and upper bounds) for
associated problems. Notice that some characterisations of complexity classes corresponding
to PSPACE have been obtained [10, 11] in the BSS model.

Among models of computation over the reals, we can also distinguish continuous-time
models. This includes models of old, first-ever-built computers, such as the Di�erential
Analysers [57]. A famous mathematical model of such machines is the General Purpose
Analog Computer model of Claude Shannon [53]. It covers many historical machines and
today’s analogue devices [56, 58] too. It also includes various recent approaches and models
from deep learning such as Neural ODEs [26, 44] with many variants. In the context of
continuous-time, the situation is clearer than with discrete-time models, as there is a unifying
way to describe these models, provided by Ordinary Di�erential Equations (ODEs). Each
model corresponds to a particular class of ODEs. For example, the GPAC corresponds to
polynomial ODEs [37], and Neural ODEs are made by selecting the best solution among a
parameterised class of ODEs: see, e.g. [44].

Even if particular classes of ODEs can describe such models, defining a robust and well-
defined computation theory for continuous-time computations is not an easy problem: see [21]
for the most recent survey. In short, the problem with time complexity is that considering
the time variable as a measure of time is not robust: a curve can always be re-parameterised
using a change of variable. The problem with space complexity is similar: reparameterisation
corresponds to a change of time variable, but also of space-variable, introducing space and
time contractions: See e.g. [21, 17]. Furthermore, many problems for simple dynamical
systems are known to be undecidable, hence forbid PSPACE-completeness: see [38] and [39].

There was a recent breakthrough in [19, 17], where the authors relate time with the
length of the solution curve of an ODE. Polynomial ODEs and their projections are known
to cover a very wide class of functions, including all common functions or functions that
can be built from them [35]. As the length of a curve is preserved under reparameterization,
considering the length solves the issue of a possible change of variable. The authors prove
that for polynomial ODEs, this is polynomially related to the time required to solve an
ODE, hence providing a robust notion of time for ODEs. These statements and underlying
constructions, which allow the simulation of Turing machines, led to solving several open
problems: the existence of a universal ODE [20], the proof of the Turing-completeness of
chemical reactions [33], or statements about the hardness of several dynamical systems
problems [39].
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The question of whether we can give a simple equivalent defining space complexity remains.
We argue here that space complexity is polynomially related and conversely to the numerical
stability of ODEs and their associated precision. We prove that a problem can be solved in
polynomial space i� it can be simulated by some numerically stable ODE, using a polynomial
precision. We prove this holds both for classical complexity over the discrete (functions over
the integers) and also for space complexity for real functions in the model of computable
analysis.

I Remark 1. In the literature, there are two possible definitions for FPSPACE, according
to whether functions with non-polynomial size values are allowed or not. In this article,
when we talk about FPSPACE, we always assume the outputs remain of polynomial size.
Otherwise, the class is not closed by composition: the issue is about the usual convention of
not counting the input and output as part of the total space used. Given f computable in
polynomial space and g in logarithmic space, f ¶ g (and g ¶ f) is computable in polynomial
space. But, if exponential size output is allowed, this is not true: the issue is that if we
assumed only f and g to be computable in polynomial space, the first might give an output
of exponential size.

These questions of providing characterisations of classical complexity using ODEs can
also be seen from the so-called “implicit complexity” point of view. Having “simple” char-
acterisations of computability and complexity classes is useful for various fundamental and
applied science fields. We are interested here in “algebraic” characterisations of those classes:
we want to define them as the smallest set [f1, . . . , fk; o1, . . . , ol] where the fi are functions,
closed under the operators oj . For example, the set of computable functions over the integers
is well-known to be: [0, 1,fii

k; composition, minimisation, primitive recursion]. Implicit com-
plexity aims at giving similar algebras for classes of complexity theory: a reference survey
is [27, 28]. The main benefit is to avoid the use of the framework of Turing machines, which is
rather heavy and not necessarily well-known outside fundamental computer science. Several
characterisations for PTIME over the integers were proposed. The first is due to Cobham
in [29], but relies on explicit ad hoc bounds. Other approaches have then been proposed,
see surveys [27, 28]. Recently, Bournez and Durand in [13] suggested an algebra using the
so-called “linear-length” discrete ODEs. Instead of having explicit bounds, the linearity of
the involved discrete ODE guarantees polynomial time complexity.

Using a similar approach, Blanc and Bournez in [4] and in [5] extended the constructions
to a characterisation of PTIME for function over the reals. The latter extended the result
to PSPACE, defining robust ODEs. However, those models rely on discrete ODEs (a.k.a.
finite di�erences), which are discrete-time and less natural than continuous ODEs. We review
all those results in Section 3.2.

This paper can be related to [19, 17]: the authors of these articles provide a characterisation
of PTIME with continuous ODEs, establishing that time complexity corresponds to the
length of the involved curve, i.e. the motto time complexity = length. Here, we get a
motto of the form space complexity = precision.

Some of our constructions have similarities with the statements in [7]. In the later paper,
various robustness concepts are introduced and it is proven that they lead to tractability.
See the references in [7] for similar robustness statements. Robustness can also be associated
with a dual motivation: the authors of [40] introduced a concept of robust undecidability,
while here, we want a concept of robustness leading to tractability.

This is not the first time FPSPACE is characterised using continuous ODEs. However,
the existing characterisation [34, 14] is obtained with complicated conditions on ODEs, while
we have a simpler statement linking complexity to precision in a direct manner. Notice that

ICALP 2024



129:4 The Complexity of Computing in Continuous Time: Space Complexity = Precision

the latter approach dealt with polynomial ODEs, while we do not restrict to polynomial
ODEs. We obtain our statements by revisiting the approach of the latter papers but working
over a compact domain and dealing with error correction more finely.

Intuitively, this can also be read as being in PSPACE for an ODE is consistent with
having an attractor easily discretisable when there is one. We can also define the notion of
robustness, as the insensitivity to “small” perturbations.

While discussing all these issues, we propose an algebraic characterisation of PSPACE,
using continuous ODEs with the following algebra (RCD is for Robust Continuous Di�erential)
(Schema robust ODE is formally defined in Definition 9):

RCD = [0, 1,fik
i ,+,≠,◊, tanh, cos,fi, x2 ,

x

3 ; composition, robust ODE].

For a function f : Rd
æ RdÕ sending every integer n œ Nd to the vicinity of some integer

of Nd, say at distance less than 1/4, we write DP(f) for its discrete part: this is the function
from Nd

æ NdÕ mapping n œ Nd to the integer rounding of f(n). For a class C of such
functions, we write DP(C) for the class of the discrete parts of the functions of C.

I Theorem 2. DP(RCD) = FPSPACE fl NN
.

We also provide a characterisation of functions over the reals computable in polynomial
space, inspired by [5]. This is obtained by adding a limit schema ELim to RCD. If we
consider RCD = [0, 1,fik

i ,+,≠,◊, tanh, cos,fi, x
2
,
x
3
; composition, robust ODE, ELim] then:

I Theorem 3 (Generic functions over the reals). RCD fl RR = FPSPACE fl RR

More generally: RCD fl RNd◊RdÕ
= FPSPACE fl RNd◊Rd .

We organise the article as follows. In Section 2, we recall the concept of dynamical
systems and discuss some associated complexity issues. We introduce the concept of robust
ODE and prove that a robust ODE can be solved in polynomial space (Theorem 11). This is
obtained, using an original method for solving ODE, optimising space, inspired by Savitch’s
theorem. This provides one direction of all the above theorems. The other direction is
the object of the following sections, starting from Section 3. We first recall some previous
results on discrete ODEs in Section 3. Using extensions of constructions from [5], we then
prove that we can simulate a Turing machine using robust continuous ODEs in Section 4.
This is obtained by simulating some discrete ODEs using continuous ODEs, dealing with
error corrections, and using the fact that the functions are robust to a controlled error. The
main result of Section 3 is Theorem 42. It states we can simulate Turing machines robustly
with continuous ODEs when space remains polynomial. This theorem leads to the proof of
Theorem 2 in Section 4. In Section 5, we prove Theorem 3. In Section 6, we conclude and
discuss future works.

Some basic concepts

When we say that a function over the real is computable this is always in the sense of
computable analysis: see e.g. [59, 46, 23]. A reference book for issues related to complexity
theory in computable analysis is [46].

We assume some basic familiarities with dynamical systems. See [41] for a monography on
the theory of dynamical systems from a mathematical point of view. Formally, a discrete-time
dynamical system is given by a set D, called the domain and some (possibly partial) function
u from D to D. A trajectory of the system is a sequence f(t) evolving according to u: that
is f(t+ 1) = u (f(t)) for all t. A continuous-time dynamical system is given by a set D ™ Rd

and some ODE of the form
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f Õ = u(f(t)) (1)

on D. A trajectory starting from f0 is a solution of the associated Initial Value Problem
(IVP), given by (1) and initial condition f(0) = f0. A dynamical system can equivalently
be described by its flow: �(f0, t) gives the position of the dynamics at time t, for an initial
position f(0) = f0. It satisfies the flow property

�(f0, 0) = f0 �(f0, t+ t
Õ) = �(�(f0, t), tÕ). (2)

The dynamics or the flow can be parametrised by some x: u is also some function of x and
the flow function is �x(f0, t).

In the long run, dynamical systems may exhibit attractors. We refer to [48] for discussions
of many possible ways of defining this concept, and to [51] for a characterisation of the
hardness of computing attractors from a computable analysis point of view. Somehow, our
coming results state that the uncomputability discussed in [51] is intrinsically due to the
non-numerical stability of the considered dynamical systems there.

2 Dynamical systems and associated complexity issues

2.1 Some complexity results on graphs

We need to discuss the hardness of solving IVP, or equivalently of computing �(y, t). For
pedagogical reasons, we first discuss the case of a simple setting, namely the case of a
(deterministic) directed graph. Indeed, observe that a discrete-time dynamical system (D,u)
can also be seen as a particular (deterministic) directed graph G = (V,æ), where, in the
general case, V is not necessarily finite: G corresponds to V = D and æ to the graph of the
function u, i.e. xt æ xt+1 i� xt+1 = u (xt). The obtained graph is deterministic because any
vertex has an outdegree 1. Starting from some point x0, there is at most one possible path,
and consequently, for a given time T , we can talk about its position at time t, i.e. �(x0, T )
is T th element of this path: (as usual in complexity theory, the length of some integer x is
the length of its binary representation, denoted by ¸(x)).

I Proposition 4 (The case of finite graphs). Let s(n) Ø log(n) be space-constructible. Assume
the vertices of G = (V,æ) can be encoded in binary using words of length s(n). Assume the
relation æ is decidable using a space polynomial in s(n). Then,

given the encoding of u œ V and of v œ V , we can decide whether there is some path from
u to v, in a space polynomial in s(n).
given the encoding of u œ V , and integer T in binary, we can compute �(u, T ), in a space
polynomial in s(n) and the length of T .

The second item is even a characterisation of the complexity of the problem. Indeed, the
converse is true: If, given the encoding of u œ V , and integer T in binary, we can compute
�(u, T ), in a space polynomial in s(n) and the length of T , then as æ is given by �(., 1),
then æ is decidable using a space polynomial in s(n).

Proof. It is well-known that for finite graphs, given a directed graph G = (V,æ) and some
vertices u,v œ V , determine whether there is some path between u and v in G, denoted by
u ú

æ v is in NLOGSPACE: the rough idea is to guess non-deterministically the intermediate
nodes. The formal proof is detailed in [54]. The same algorithm, working over representations
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of vertices, when vertices are encoded using words of length s(n) will work in NSPACE(s(n))
(with the addition of the binary encoding of T if for the second item, if it bigger than s(n)).
We then observe that NSPACE(s(n)) = SPACE(s(n)) from Savitch’s theorem, recalled
below. J

I Theorem 5 (Savitch’s theorem, [54, Theorem 8.5]). For any space-constructible1 function
s : N æ N with s(n) Ø logn, we have NSPACE(s(n)) ™ SPACE(s2(n)).

Recall that the key argument of the proof of Theorem 5 is to express the question as a
recursive procedure (expressing reachability in less than 2t steps, called CANYIELD(x,y, t)
in [54]) guaranteeing the required space complexity: we write that relation CANYIELD(x,y, t)
is relation x æ y when t = 1, and is relation ÷z such that CANYIELD(x, z, t/2) and
CANYIELD(z,y, t/2) otherwise. If one prefers, this can also be understood as “guessing”
some intermediate node z.
I Remark 6 (Attractor point of view). We presented the above statement in terms of computing
the flow �(x, T ). This could alternatively be interpreted in terms of attractors. Indeed, when
the above hypothesis holds, then the dynamics is captured by a graph. In the long run, in
particular, if T is greater than the number of vertices, any trajectory loops (i.e. reaches an
attractor). The above statement could then also be read as the fact that such an attractor is
then polynomial space computable.

2.2 Solving e�ciently ODEs: what is known

This idea leads to an original method for solving ODEs. At least, this is original for the
numerical analysis literature, as far as we know. A recent survey about computability and
complexity issues for solving ODEs is [39]. In short: First, it is important to distinguish the
case where we want to solve the ODE on a bounded (hence a compact) domain, from the
case of the full domain R: in the latter case, we might ask questions about the evolution
of the system on the long run, which is harder. Over a compact domain, it is known that
there exists some polynomial-time computable function u : [≠1, 1] ◊ [0, 1] æ R such that
f

Õ = u(f, t) has no computable solution, even over [0, ”], for any ” > 0: see [45, 50, 1]. The
involved ODE has no unique solution. It is known over compact or non-compact domains
that if unicity holds, then its solution is computable [30, 31, 52]. However, the complexity can
be arbitrarily high [46, 47]. If we want to get to tractability, then some regularity hypotheses
must be assumed. A classical hypothesis is to assume the ODE to be Lipschitz.

Over a compact domain, it has been observed in several references (see e.g. [46])
that a careful analysis of Euler’s method proves that, if u : B(0, 1) ◊ [0, 1] æ Rn, with
B(0, 1) ™ Rn, is a polynomial time computable (right-)Lipschitz function then any solution
f : [0, 1] æ B(0, 1) of f Õ = u(f, t) must be FPSPACE: see the discussions around Theorem
3.2 in [39] with several references. Kawamura has proved in [42] that there exists a polynomial-
time computable function u : [≠1, 1] ◊ [0, 1] æ R, which satisfies a Lipschitz condition, such
that the unique solution f : [0, 1] æ R takes values in [≠1, 1] and computing it leads
to a PSPACE-complete problem. Hence, the question of solving ODEs over a compact
domain in polynomial time corresponds to the question PTIME = PSPACE [42], even for
C

Œ-functions [43].

1 As proved in [54], this hypothesis can be avoided, at the price of a slightly more complicated proof.
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However, all these results are over compact domains, and dealing with non-compact
domains, i.e. in the long run, is harder. PSPACE membership is not true, as this is possible
to simulate any Turing machine by some finite-dimensional polynomial ODE [38] over a non-
compact domain. This led to many undecidability results for analytic, and even very simple
ODEs: see e.g. [38]. A possible way to analyse e�ciency is to analyse the complexity of the
solution assuming a bound on the function’s growth (i.e. using parameterised complexity). It
was proved in [16] that one can solve a polynomial ODE in polynomial time assuming a bound
on Y(T ) = max0ÆtÆT Îf(t)Î. The result for polynomial ODEs was later improved in [49],
where it is proved that the time T and parameter Y can be replaced by a single parameter,
namely the length of the curve for polynomial ODEs. Furthermore, this parameter does not
need to be given as input to the algorithm. This is a key argument for one direction of the
motto “time complexity = length” we mentioned above. To get polynomial-time complexity
over a non-compact domain, it is also mandatory not to use most classical methods from
numerical analysis.

The same happens when discussing space complexity: a non-classical method is required
to guarantee polynomial space complexity in the long run. No such method has yet been
proposed, and this is the purpose of the coming subsection. Actually, for space complexity, in
addition to all the problems mentioned, in all the above space or time analyses, the problem
is that the complexity is (possibly implicitly) dependent on the Lipschitz constant or the
length of the solution. In a system as simple as linear dynamics, the state at time T depends
in Lipchitz way from the state at time 0, and the number of additional bits required to
guarantee some precision 2≠n growth linearly with T . But the problem is that in a space
polynomial in the input size, T has no reason to remain polynomial (consider, for example, a
system simulating a Turing machine, as we will consider soon). Hence, the required precision
is possibly exponential in the input size.

I Remark 7. The above comments can be interpreted informally as the fact that “most”
(this could be “generic” in the sense of [51], i.e. (e�ective) descriptive theory) dynamical
systems are intrinsically unstable, and an error method introduced at some step can make
the method unavoidably incorrect in the long run unless we have a means to “guess” what
will happen.

I Remark 8 (Attractor point of view). We presented the above statement in terms of computing
the flow �(f0, T ). But, this could alternatively be interpreted in terms of attractors. The
point is that computing the attractors of a given dynamical system is hard in general, as this
involves long-run behaviours. This explains all the undecidability results obtained in [51],
even for very simple dynamics. However, as we will see, this is also explained by the fact
that the latter paper discusses numerically unstable systems.

2.3 Solving e�ciently ODEs: a space e�cient method

This leads to an alternative approach to optimize space complexity: this can be seen as
either using a non-deterministic algorithm that “guesses” the correct intermediate positions
of the dynamics or, from the proof of Savitch’s theorem approach, as an original recursive
method to solve ODEs. As far as we know, we have never seen such a method discussed in
the literature for solving ODEs.

Concretely: from the flow property, a strategy to compute �(f0, T ) is either to use a
particular numerical method if T is small, says smaller than � > 0. Otherwise, we know that
�(f0, T ) = �(z, T/2), where z = �(f0, T/2). This always holds, so if we can compute both
quantities, we will solve the problem. The di�culty is that we cannot precisely compute z in
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practice, but some numerical approximation Âz. If the system is numerically stable, we may
assume this strategy works. The case when this strategy will not work is if the trajectory
starting from Âz, for the second half of the work from time T/2 to T , has a behaviour di�erent
from the one starting in z: in other words, if there is a high instability somewhere, namely
in z.

This leads to the following concept: we write a =‘ b for Îa ≠ bÎ Æ ‘ for conciseness.

I Definition 9 (Robust (continuous) ODE). A function f : Rd+1
æ RdÕ is robustly ODE

definable (from initial condition g, and dynamic u) if
1. it corresponds to the solution of the following continuous ODE:

f(0,x) = g(x) and
ˆf(t,x)

ˆt
= u(f(t,x), t,x), (3)

2. and there is some rational � > 0, and some polynomial p such that the schema (3)
is (polynomially) numerically stable on [0,�]: for all integer n, considering ÷(n) =
p(n + ¸(ÁxË)) we can compute f(t,x) at precision 2≠n by working a precision 2≠÷(n):
if you consider any solution of x̃ =2≠÷(n) x, f̃(0, x̃) =2≠÷(n) g(x) and ˆ f̃(t,x̃)

ˆt =2≠÷(n)

u(f̃(t, x̃), t, x̃) then f̃(t, x̃) =2≠n f(t,x) when 0 Æ t Æ �.
3. For t Ø �, we can compute f(t,x) at precision 2≠n by computing some approximation

^f(t/2,x) of f(t/2,x) at precision 2≠÷(n), i.e. of �(g(x), t/2), and then some approximation
of �( ^f(t/2,y), t/2), working at precision 2≠÷(n).

I Remark 10. For more clarity, and conciseness, we will assume in the proofs that d = d
Õ = 1,

as it can be easily extended to more general cases.

I Theorem 11. Consider an IVP as in the previous definition. If g and u are computable
in polynomial space, then the solution f can be computed in polynomial space.

Proof. From definitions and above arguments, all bits of �(y, t) can be computed non-
deterministically with precision n (i.e. at 2≠n) using computations with precision ÷(n), hence
is in NPSPACE = PSPACE. From the argument of the proof of Savitch’s theorem, this
can also be turned into a deterministic polynomial space recursive algorithm. J

The above theorem is the key argument to obtain one direction of our main theorems.
We now go in the reverse direction. This requires talking about discrete ODEs, and some
previous constructions.

3 Discrete ODEs: some previous results and constructions

3.1 Preliminary

We will use the concept of discrete ODE defined as follows (notice that we will write ”f
”n

for discrete derivation, by opposition of the classical ˆf
ˆn to help to distinguish discrete vs

continuous ODEs. )

I Definition 12 (Discrete derivation, notation ”). For f : N æ Rd
æ RdÕ , the discrete

derivation of f is ”f
”n (n,x) = f(n+ 1,x) ≠ f(n,x).

I Remark 13. We use the terminology “discrete ODE”, as in [12, 13]. This concept has
various names in other communities: this is also called finite di�erences, di�erence equations,
sometimes discretized ODE, and the associated theory is sometimes called discrete calculus,
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umbral calculus in other communities . Sometimes, some of the statements seem to be
rediscovered with other names, but as far as we know, the idea of computing with discrete
ODEs can be associated with [12, 13], and we follow the terminology used there: we refer
to the discussions and references in [13] for the references and some discussions about the
various names used in literature for similar concepts.

3.2 Algebraic characterisation with discrete ODEs: state of the art

In this subsection, we review some of the results already obtained using discrete ODEs.

I Remark 14. Notice that we do not need any of these statements directly, even if we will
sometimes reuse some of their constructions (and some of their ideas).

Characterising PTIME over the integers. The concept of derivation along the length was
introduced in [12]. A characterisation of FPTIME for functions over the integers has then
been obtained in [12]:

I Theorem 15 (Functions over the integers [12]). LDL fl NN = FPTIME fl NN, for LDL =
[0,1,fik

i , ¸(x),+,≠,◊, sg(x) ; composition, linear length ODE], with fi
k
i the projection func-

tion, and sg(x) is 0 for x < 0 and 1 for x > 0.

Toward the real numbers: characterising real sequences. Later, we introduced in [4]

I Definition 16 (Operation ELim). Given f̃ : Rd
◊ N æ RdÕ

œ LDL• such that for all
x œ Rd, n œ N, Îf̃(x, 2n) ≠ f(x)Î Æ 2≠n for some function f , then ELim(f̃) is the (uniquely
defined) corresponding function f : Rd

æ RdÕ .

and then we considered the class

LDL• = [0,1,fik
i , ¸(x),+,≠,◊, cond(x), x2 ; composition, linear length ODE, ELim],

with cond(x) a sigmoid valuing 0 when x <
1

4
and 1 when x >

3

4
. We proved this provides a

characterisation of functions from N to R computable in polynomial time.

I Theorem 17 (Sequences of reals [4]). LDL• = FPTIME fl RN.

Characterisation of PTIME and PSPACE for functions over the real with discrete ODEs.

We later succeeded in obtaining a characterisation of functions over the real computable in
polynomial time and even space.

I Theorem 18 (FPTIME, Generic functions over the reals [5]).

LDL¶
fl RNd◊RdÕ

= FPTIME fl RNd◊Rd , with
LDL¶ = [0,1,fik

i , ¸(x),+,≠, tanh, x
2
,
x
3
; composition, linear length ODE, ELim].

Consider the following schema:

I Definition 19 (Robust Discrete ODE [5]). A bounded function f is robustly ODE definable
if:
1. it corresponds to the solution of the following discrete ODE:

f(0,x) = g(x) and
”f(t,x)

”t
= u(f(t,x),h(t,x), t,x), (4)
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2. where the schema (4) is (polynomially) numerically stable: there exists some polynomial
p such that, for all integer n, writing ÷(n) = p(n+ ¸(y)), if you consider any solution of
ỹ =2≠÷(n) y and h̃(x, ỹ) =2≠÷(n) h(x, ỹ), and f̃(0, ỹ) =2≠÷(n) g(y) and ˆ f̃(x,ỹ)

ˆx =2≠÷(n)

u(f̃(x, ỹ), h̃(x, ỹ), x, ỹ) then f̃(x, ỹ) =2≠n f(x,y).

We recall the notion of essential linearity: The idea is to measure the degree, similarly to
the classical notion of degree in polynomial expression, but considering all subterms that are
within the scope of a tanh function contributes to 0 to the degree. Then, essential linearity
corresponds to linearity with this concept of degree.

I Definition 20 ([4]). The degree deg(x, P ) of a term P in x œ V is defined inductively as
follows:

deg(x, x) = 1 and for x
Õ
œ V fi Z such that xÕ

”= x, deg(x, xÕ) = 0;
deg(x, P +Q) = max{deg(x, P ),deg(x,Q)};
deg(x, P ◊ Q) = deg(x, P ) + deg(x,Q);
deg(x, tanh(P )) = 0.

A polynomial expression P is essentially constant in x if deg(x, P ) = 0.

A vectorial function (resp. a matrix or a vector) is said to be a polynomial expression if
all its coordinates (resp. coe�cients) are, and essentially constant if all its coe�cients are.

I Definition 21 ([4]). A polynomial expression g(f(x,y),h(x,y), x,y) is essentially linear
in f(x,y) if it is of the form: A[f(x,y),h(x,y), x,y] · f(x,y) +B[f(x,y),h(x,y), x,y] where
A and B are polynomial expressions essentially constant in f(x,y).

I Remark 22. A robust discrete ODE is said to be linear if u is essentially linear in f and h.
Consider

RLD¶ = [0,1,fik
i , ¸(x),+,≠, tanh, x

2
,
x
3
; composition, robust linear ODE,ELim].

I Theorem 23 (FPSPACE, Generic functions over the reals [5]).

RLD¶
fl RR = FPSPACE fl RR

More generally: RLD¶
fl RNd◊RdÕ

= FPSPACE fl RNd◊Rd .

Notice that previous classes mix functions with integer and real arguments. Furthermore,
they all involve some various types of discrete ODEs. We need to avoid all these issues, as
we consider only continuous ODEs.

3.3 Simulating a discrete ODE using a continuous ODE

We first prove that it is possible to simulate a discrete ODE with a continuous ODE. The
underlying idea can be attributed to [22], and has been improved in many ways by several
authors. We present here the basic ideas, reformulated in our context. A more precise
analysis will come (Proposition 39).

I Definition 24 (“Ideal iteration trick”, [22]). Consider the following initial value problem
for a discrete ODE, given by functions g and u:

Y
]

[

f(0,x) = g(x)
”f
”t

(t,x) = u(f(t,x), t,x)
(5)
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Then, let G(v, t,x) = u(v, t,x) + v, and consider the (continuous) IVP:
Y
_]

_[

y1(0,x) = y2(0,x) = g(x)
yÕ
1
= c(G(r(y2), r(t),x) ≠ y1)3◊(sin(2fit))

yÕ
2
= c(r(y1) ≠ y2)3◊(≠ sin(2fit))

(6)

where c a constant, ◊(x) = 0 if x Æ 0 and ◊(x) > 0 if x > 0. We abusively write r(y) for
the application of function r : R æ R componentwise on vector y. Here, r is a rounding
function: we mean, by construction, G preserves the integers, and r is a function that maps
a real value close to some integer to this integer: assume, say, that for z œ [n ≠

1

4
, n+ 1

2
],

r(z) = n, for any integer n œ Z.

I Remark 25. We do not need to specify what r(z) values for a z not in such an interval:
the following reasoning remains correct, whatever it is.

Then, the solution of continuous ODE (6) simulates in a continuous way the discrete
ODE (5): Indeed, y1 corresponds to the actual computation of the iterates of G (and hence
computes the successive values of f) and y2 acts as a “memory” equation. Let us detail how
it works.
I Remark 26. We describe here an “ideal” computation, as ◊(x) is exacly 0 when x Æ 0, and
r(z) is exactly some integer on suitable domains. Later in the paper, we will deal with a
not-so-ideal ◊ and r.

Initially, f(0,x) = y1(0,x) = y2(0,x) = g(x). For t œ [0, 1/2], we have ◊(≠ sin(2fit)) = 0,
and hence yÕ

2
= 0, so y2 is fixed and kept at value g(x) for t œ [0, 1

2
]. Consequently, for

t œ [0, 1/2], r(y2) is also fixed and kept at value g(x), and r(t) is also fixed and kept at value
0. Consequently, on this interval, if we write C(t) = c◊(sin(2fit)), then the dynamics of y1 is
given by

yÕ
1
= C(t)(G(g(x), 0,x) ≠ y1)3 (7)

I Lemma 27 (Analysis of ODE (7)). The solution y1(t,x) of ODE (7) is conver-
ging to G(g(x), 0,x) for any initial condition. Furthermore, for any initial condition
y1(0,x) ”= G(g(x), 0,x), we have

..y1( 12 ,x) ≠ G(g(x), 0,x)
.. Æ

Ô
2

2

Òs 1
2

0
C(z)dz

. In particu-

lar, for any m œ N, we can select constant c such that for any initial condition y1(0,x),..y1( 12 ,x) ≠ G(g(x), 0,x)
.. Æ 2≠m.

Consequently, y1(t,x) will approach G(g(x), 0,x) = f(1,x) on this interval. Thus,
y1( 12 ,x) =‘ f(1,x) and y2( 12 ,x) = g(x), for some ‘ > 0, that we can consider less than
1

4
= 2≠2, by selecting a big enough constant c (just taking m = 2 above). At t = 1

2
, y1 will

hence have simulated one step of discrete ODE (5).
Now, for t œ [ 1

2
, 1] the roles of y1 and y2 are exchanged : yÕ

1
(t,x) = 0, so y1 is kept fixed,

y2 approaches r(y1) = f(1,x), thus y1(1,x) =‘ y2(1, x) =‘ f(1,x).
By induction, from the same reasoning, we obtain that, for all n œ N, y1(n,x) =‘

y2(n,x) =‘ f(n,x), and actually, we also have y1(t + 1

2
,x) =‘ y2(t,x) =‘ f(n,x) for all

t œ [n, n+ 1

2
], for any integer n.

To implement such an ODE, we have to fix a function ◊(x) with the above property.
Taking ReLU(x) = max(0, x) would satisfy it, but it is not a derivable function, and hence
would not lead to a (classical) ODE. We could then take ◊(x) = 0 for x Æ 0, and exp(≠1/x)
for x > 0. The point is that such a function is not real analytic. The base functions we
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consider in our class RCD are all real analytic, and real analytic functions are preserved
by composition, so we cannot get such a function by compositions from our base functions.
Furthermore, it is known that a real analytic function that is constant on some interval (we
assumed it is 0 for x Æ 0) is constant. Hence, the above-considered function ◊(x) cannot be
real analytic. So, implementing this trick cannot be done directly using our base functions,
using only compositions.

In Proposition 39, we will do a similar construction, but dealing with errors and not
exact functions ◊(z) and r(x). Furthermore, here the purpose of function r was to correct
errors around integers, i.e. around Z: this will be possibly around other Z” = {n”|n œ Z} for
some ” > 0. We will then naturally assume that for z œ [n” ≠

1

4
”, n” + 1

2
”], r(z) = n, for any

integer n œ Z, in order to have a similar reasoning as the one above where ” = 1.

3.4 Encoding of Turing machines configurations

Our proofs rely on some constructions from [5]. Concretely, we need to simulate the execution
of a Turing machine (TM) by some dynamical system over the reals. This requires to encode
the configurations of a Turing machine into some real numbers. We recall some of the
definitions and constructions from [5].

Consider a Turing machine defined by M = (�, Q, I, F, ”), with � the working alphabet,
Q the set of states, I, F ™ Q respectively the sets of initial and final states, ” : Q ◊ � æ

Q ◊ � ◊ {Ω,æ} the transition function. For some practical reasons, similar to the ones in
[5], we assume that the working alphabet is made of the symbols 1 and 3, and that the blank
symbol is symbol 0.

We explicit the encoding we will use. We assume Q = {0, 1, . . . , |Q| ≠ 1}. Let

. . . l≠kl≠k+1 . . . l≠1l0r0r1 . . . rn. . . .

denote the content of the tape of the Turing machine M . In this representation, the head is
in front of symbol r0, and li, ri œ {0, 1, 3} for all i. Furthermore, we assume that there are
no non-blank symbols between two blank symbols, i.e. that blank symbols, i.e. symbol 0,
can only be eventually on the right, or eventually on the left. Such a configuration C can be
denoted by C = (q, l, r), where l, r œ �Ê are words over alphabet � = {0, 1, 3} and q œ Q

denotes the internal state of M .
Now, write “word : �Ê

æ R for the function that maps a word w = w0w1w2 . . . to the
dyadic (hence real) number “word(w) =

q
nØ0

wn4≠(n+1).
The idea is that configuration C can also be encoded by some element C = (q, l, r) œ N◊R2,

by considering r = “word(r) and l = “word(l). In other words, we encode the configuration of
a bi-infinite tape Turing machine M by real numbers using their radix 4 encoding, but using
only digits 1,3. Notice that this lives in Q ◊ [0, 1]2. Denoting the image of “word : �Ê

æ R
by I, this even lives in Q ◊ I

2.
In other words, we consider the following encodings:

“config(C) = (q, l, r)

with

l = l04≠1 + l≠14≠2 + · · ·+ l≠k4≠(k+1) + . . .

r = r04≠1 + r14≠2 + · · ·+ ln4≠(n+1) + . . .
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3.5 Revisiting some previous constructions

We denote by RCDú the algebra [0, 1,fik
i ,+,≠,◊, tanh, cos,fi, x

2
,
x
3
; composition]. This is

close to the class LDL¶ = [0,1,fik
i , ¸(x),+,≠, tanh, x

2
,
x
3
; composition, linear length ODE],

considered in [6, 5], but without the function ¸(x), and without the possiblity of defining
functions using linear length ODE (and with multiplication added).

We will reuse some of the construction from [5] (some corrections and more details can be
found in [6]) but avoid systematically any use of linear length ODE and the length function
¸(x). Furthermore, the class considered in [5] is mixing functions from the integers to the
reals, and from the reals to the reals, and we need to keep only functions over the reals.

The following was stated in [5, Lemma 19].

I Lemma 28. We denote by Y (x, 2m+2) the function 1+tanh(2
m+2x)

2
. For all integer m, for

all x œ R, |ReLU(x) ≠ xY (x, 2m+2)| Æ 2≠m, where ReLU(x) = max(0, x).

First, we observe that considering Y (x, z) = 1+tanh(4xz)
2

would yield a function in RCDú
with the same property: we avoid the computation of 2m by a substitution of a variable, and
using a multiplication. We then write ReLU-s(Y, x) for xY (x, z): we have |ReLU-s(2m, x) ≠

ReLU(x)| Æ 2≠m.
In particular, this was used to prove we can uniformly approximate the continuous sigmoid

functions (when 1/(b≠a) is in LDL¶) defined as s(a, b, x) = 0 whenever w Æ a, x≠a
b≠a whenever

a Æ x Æ b, and 1 whenever b Æ x. The above trick provides a new version of [5, Lemma 20].

I Lemma 29 (Uniform approximation of any piecewise continuous sigmoid). Assume a, b,
1

b≠a

is in RCDú. Then there is some function C-s(z, a, b, x) œ RCDú such that for all integer m,

| C-s(2m, a, b, x) ≠ s(a, b, x)| Æ 2≠m
.

Proof. Take C-s(z, a, b, x) = (x≠a)Y (x≠a,z21+c
)≠(x≠b)Y (x≠b,z21+c

)

b≠a . observing that (b ≠

a) s(a, b, x) = ReLU(x ≠ a) ≠ ReLU(x ≠ b). From triangle inequality, it will hold, choos-
ing c with 1

b≠a Æ 2c. J

The authors of [5] proved the existence of some function corresponding to a continuous
(controlled) approximation of the fractional part function: we write by {.} the fractional part
function.

I Theorem 30 ([5, Lemma 28]). There exists some function › : N2
æ R in LDL¶ such that for

all n,m œ N and x œ [≠2n, 2n], whenever x œ [ÂxÊ + 1

8
, ÂxÊ + 7

8
] ,

--›(2m, 2n, x) ≠ {x ≠
1

8
}
-- Æ

2≠m.

We say that some real function is a real extension of a function over the integers if they
coincide for integer arguments. It is not clear that we have an extension over the reals of ›

in our algebra RCDú, but if we add a real extension of such a function, from the proof of [5,
Corollary 22], we obtain the bestiary of functions considered in [5, Corollary 22]: we write
RCDú + › for the algebra where some real extension of function › is added as a base function.

I Corollary 31 (A bestiary of functions). There exist
1. ›1, ›2 : N2

◊R ‘æ R œ RCDú+› such that, for all n,m œ N, ÂxÊ œ [≠2n+1, 2n], whenever
x œ [ÂxÊ ≠

1

2
, ÂxÊ + 1

4
] , |›1(2m, 2n, x) ≠ {x}| Æ 2≠m, and whenever x œ [ÂxÊ, ÂxÊ + 3

4
] ,

|›2(2m, 2n, x) ≠ {x}| Æ 2≠m.
2. ‡1,‡2 : N2

◊R ‘æ R œ RCDú+› such that, for all n,m œ N, ÂxÊ œ [≠2n+1, 2n], whenever
x œ [ÂxÊ ≠

1

2
, ÂxÊ+ 1

4
], |‡1(2m, 2n, x)≠ ÂxÊ| Æ 2≠m, and whenever x œ I2 = [ÂxÊ, ÂxÊ+ 3

4
],

|‡2(2m, 2n, x) ≠ ÂxÊ| Æ 2≠m.
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3. ⁄ : N2
◊ R ‘æ [0, 1] œ RCDú + › such that for all m,n œ N, ÂxÊ œ [≠2n + 1, 2n], whenever

x œ [ÂxÊ + 1

4
, ÂxÊ + 1

2
], |⁄(2m, 2n, x) ≠ 0| Æ 2≠m, and whenever x œ [ÂxÊ + 3

4
, ÂxÊ + 1],

|⁄(2m, 2n, x) ≠ 1| Æ 2≠m.
4. mod 2 : N2

◊ R ‘æ [0, 1] œ RCDú + › such that for all m,n œ N, ÂxÊ œ [≠2n + 1, 2n],
whenever x œ [ÂxÊ ≠

1

4
, ÂxÊ + 1

4
], | mod 2(2m, 2n, x)-ÂxÊ mod 2| Æ 2≠m.

5. ÷2 : N2
◊R ‘æ [0, 1] œ RCDú +› such that for all m,n œ N, ÂxÊ œ [≠2n+1, 2n], whenever

x œ [ÂxÊ ≠
1

4
, ÂxÊ + 1

4
], | ÷2 (2m, 2n, x) ≠ ÂxÊ//2| Æ 2≠m, with // the integer division.

Similarly, the equivalent of [5, Lemmas 23,24 and 25] still hold in RCDú + ›:

I Lemma 32. There exists C-if œ RCDú + › such that, l œ [0, 1], if we take |d
Õ
≠ 0| Æ 1/4,

then | C-if(2m, d
Õ
, l)≠ 0| Æ 2≠m, and if we take |d

Õ
≠ 1| Æ 1/4, then | C-if(2m, d

Õ
, l)≠ l| Æ 2≠m.

I Lemma 33. Let –1,–2, . . . , –n be some integers, and V1, V2, . . . , Vn some constants. We
write send(–i ‘æ Vi)iœ{1,...,n} for the function that maps any x œ [–i ≠ 1/4,–i + 1/4] to Vi,
for all i œ {1, . . . , n}.

There is some function in RCDú + ›, that we write C-send(2m,–i ‘æ Vi)iœ{1,...,n}, that
maps any x œ [–i≠1/4,–i+1/4] to a real at distance at most 2≠m of Vi, for all i œ {1, . . . , n}.

I Lemma 34. Let N be some integer. Let –1,–2, . . . ,–n be some integers, and Vi,j for 1 Æ

i Æ n some constants, with 0 Æ j < N . We write send((–i, j) ‘æ Vi,j)iœ{1,...,n},jœ{0,...,N≠1}
for the function that maps any x œ [–i ≠ 1/4,–i + 1/4] and y œ [j ≠ 1/4, j + 1/4] to Vi,j , for
all i œ {1, . . . , n}, j œ {0, . . . , N ≠ 1}.

There is some function in RCDú + ›, that we write
C-send(2m, (–i, j) ‘æ Vi,j)iœ{1,...,n},jœ{0,...,N≠1}, that maps any x œ [–i ≠ 1/4,–i + 1/4] and
y œ [j ≠ 1/4, j + 1/4] to a real at distance at most 2≠m of Vi,j, for all i œ {1, . . . , n},
j œ {0, . . . , N ≠ 1}.

Working with one step of a Turing machine

As the proof of [5, Lemmas 30] is done using all the functions provided by these lemmas, we
obtain:

I Lemma 35. We can construct some function Next in RCDú + › that simulates one step of
M , i.e. computing the Next function sending a configuration C of Turing machine M to C

Õ,
where C

Õ is the next one: ÎNext(2m, 2S , C) ≠ C
Õ
Î Æ 2≠m. Furthermore, it is robust to errors

on its input, up to space S: considering ÎC̃ ≠ CÎ Æ 4≠(S+2), ÎNext(2m, 2S , C̃) ≠ C
Õ
Î Æ 2≠m

remains true.

Converting integers an dyadics to words and conversely

The article [5] also defined some functions for converting integers and dyadics to their
encoding as words, and conversely. Namely, the following encoding is considered: every digit
in the binary expansion of dyadic d is encoded by a pair of symbols in the radix 4 expansion
of d œ I fl [0, 1]: digit 0 (respectively: 1) is encoded by 11 (resp. 13) if before the “decimal”
point in d, and digit 0 (respectively: 1) is encoded by 31 (resp. 33) if after. For example, for
d = 101.1 in base 2, d = 0.13111333 in base 4. Conversely, given d, the article provided a
way to construct d. This corresponds to [5, Lemmas 33 and 34]:

I Lemma 36 (From N to I). We can construct some function Decode : N2
æ R in LDL¶

that maps m and n to some point at distance less than 2≠m from “word(n).



M. Blanc and O. Bournez 129:15

I Lemma 37 (From I to R, and multiplying in parallel). We can construct some function
EncodeMul : N2

◊ [0, 1] ◊ R æ R in LDL¶ that maps m, 2S, “word(d) and (bounded) ⁄ to
some real at distance at most 2≠m from ⁄d, whenever d is of length less than S.

As for ›, it is not clear that we have some real extensions of these functions in RCDú:
we write RCDú + › + Decode+ Encode for the algebra where some real extension of these
functions is added as a base function.

3.6 Constructing the missing functions

We need a way to construct some substitute of “missing functions” (›, Decode and EncodeMul).
As all of them are defined using discrete ODEs, an idea is to use a continuous ODE to
simulate the respective discrete ODEs: we hence revisit the construction of the ideal iteration
trick of Section 3.3, dealing with errors and not exact functions ◊(z) and r(x).

The key is to revisit Lemma 27, and do a more detailed analysis of possible involved errors
in dynamics of the form (7). This equation has been studied by various authors in several
articles, including [24, 25, 36, 18, 34]. We use the following statement from [34, Lemma 4.5],
[14, Lemma 5.2], obtained basically by a case analysis of error propagations in Lemma 27.

I Lemma 38 (Improved error analysis of ODE (7), [34, Lemma 4.5] [14, 5.2]). Consider a
point b œ R, some “ > 0 some reals t0 < t1, and a function „ : R æ R with the property that
„(t) Ø 0 for all t Ø t0 and

s t1
t0

„(t)dt > 0. Let fl, ” Ø 0 and let b, E : R æ R be functions
such that that |b(t) ≠ b| Æ fl and |E(t)| Æ ” for all t Ø t0. Then the IVP defined by

z
Õ = c(b(t) ≠ z)3„(t) + E(t)

with the initial condition z (t0) = z0, where “ > 0 and c Ø
1

2“2
s t1
t0

„(t)dt
satisfies

1. |z (t1) ≠ b| < fl + “ + ” (t1 ≠ t0), independently of the initial condition z0 œ R
2. min (z0, b ≠ fl) ≠ ” (t1 ≠ t0) Æ z(t) Æ max (z0, b+ fl) + ” (t1 ≠ t0) for all t œ [t0, t1].

I Proposition 39 (Simulating a discrete ODE by a continuous ODE). Assume G is almost
constant around N” and r is a rounding function around N” for some ” > 0: for z œ

[n” ≠
1

4
”, n” + 1

2
”], r(z) = n, for any integer n œ Z.

Suppose that, in (6), we replace function ◊(z) and function r(z) by some suitable ap-
proximations: we take ◊(x) = ReLU(x), ◊‘Õ(x), r‘Õ(z) such that ◊(z) =‘Õ ◊(z), and r‘Õ(x) =‘Õ ,
and take constant c big enough. Then the solution of the obtained ODE will continuously
simulate the discrete ODE (5), with the same bounds as in the analysis in Section 3.3, i.e.
with error at most ‘ if ‘

Õ is taken su�ciently small. To guarantee ‘ = 2≠n, it is su�cient to
take ‘

Õ = 2≠p(n) and ◊‘Õ(x) = ReLU-s(2p(n), x) for some polynomial p.

Proof. The key is that the involved errors additively propagate, from Lemma 38. Namely,
they are in O(‘Õ), but they are then corrected from the reasoning in Section 3.3: rounding
function corrects errors or order ‘ whenever its argument is at a distance less than 1/4” of
some n” exactly as in the reasoning in Section 3.3 (where ” = 1, even if now it introduces
some error ‘

Õ at every step; but the latter is corrected at the next step). Observe that the
involved constant c, is of order 2n.

More formally, we claim that for all n œ N, y1(n,x) =‘ y2(n,x) =‘ f(n,x), and
y1(t+ 1

2
,x) =‘ y2(t,x) =‘ f(n,x) for all t œ [n, n+ 1

2
].

For n = 0, initially f(0,x) = y1(0,x) = y2(0,x) = g(x). For t œ [n, n + 1/2], we then
have ◊(≠ sin(2fit)) =‘Õ 0, and hence yÕ

2
=‘Õ 0, so y2 is kept close to value g(x) for t œ [0, 1

2
],

with an error less than 1

2
‘

Õ.
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Consequently, for t œ [0, 1/2], r(y2) is kept close to a constant value g(x), when an error
less than ‘

Õ, if we choose ‘
Õ
<

1

4
”. Meanwhile, r(t) is also at a value close to n with an error

lesser than ‘
Õ.

Consequently, on this interval, if we write C(t) = c◊(sin(2fit)), then the dynamics of y1 is
given by a dynamic of the form of Lemma 38. This lemma states that y1(t,x) will approach
G(g(x), 0,x) = f(1,x) on this interval, with an error of order ‘

Õ + ‘
Õ + 1

2
‘

Õ.
Here the hypothesis that G is almost constant around N” means that its value is

guaranteed to be at ‘
Õ from G(g(x), 0,x) on the interval.

Thus, y1( 12 ,x) =‘/2 f(1,x), if we choose 5

2
‘

Õ
< ‘/2. At t = n + 1

2
, y1 will hence have

simulated one step of discrete ODE (5), with an error less than ‘/2, and y2 will be close to
g(x) with an error less than ‘

Õ
< ‘/2.

Now, for t œ [n + 1

2
, n + 1] the roles of y1 and y2 are exchanged: yÕ

1
(t,x) =‘Õ 0, so

y1 is kept almost fixed, with a new error less than 1

2
‘

Õ. In the same time y2 approaches
r(y1) = f(1,x) by Lemma 38, with some new error of order less than 5

2
‘

Õ
< ‘/2.

Consequently, we get the property at rank n+ 1. J

I Remark 40. Observe that, somehow, the idea is that the constructions always replace every
function with a function that does not change much locally (i.e. changes in a controlled way).
This is the key that provides a robust ODE as in Definition 9, leading to polynomial space
complexity by Theorem 11.

In other words, whenever we have some discrete ODE as in (5) defining some function
f(t,x), we can construct some continuous ODE, using only functions from RCDú, such that
one of its projection provides a function f(z, t,x), with the guarantee f(2n, t,x) is 2≠n close
to f(n,x), whenever t is close (at a distance less than 1/4) to some integer n.

This works, as we can obtain such a r‘Õ(x) from the functions from Corollary 31: Consider
r(x, 2m) = ‡2(2m, 2n, x + 1

4
) that works over ÂxÊ œ [≠2n + 1, 2n], and observe that this

is su�cient to apply the trick for the required functions, from the form of the considered
discrete ODE in [5].

Except that we have a bootstrap problem: › was defined using a discrete ODE in [5], and
as the functions from Corollary 31 are defined above using ›, we cannot apply this reasoning
to get function ›. But the point is that for the special case of ›, it is easy to construct a
function in RCD that corresponds to some real extension of ›, as we have functions such as
sin(x) = cos(fi

2
≠ x) and fi.

I Lemma 41. Function › has some real extension in RCDú.

Proof. If we succeed to obtain a function i(2m, 2n, x) that values ÂxÊ whenever x œ [ÂxÊ, ÂxÊ+
3

4
], we are done, as we can then obtain ›(2m, 2n, x) by considering ›(2m, 2n, x) = x+ 7

8
≠

i(2m, 2n, x+ 7

8
).

A possible solution is then the following: consider function Re(x) := s(x, 0, e/2), and
then te(x) = (1 ≠ Re(sin(2fix)))((1 ≠ Re(sin(4fix))). If we put aside some interval of width
e/2 around 1

2
and 7

8
where it takes values in [0, 1], it values 0 on [ÂxÊ, ÂxÊ + 7

8
], and then 1

on [ÂxÊ + 7

8
, ÂxÊ + 1]. We can then consider Ie(t) = 8

s t
0
te(x)dx (i.e. the solution of ODE

l
Õ
e = 8te), and then i(t) =e.t le(t). It is then su�cient to replace s by C-s, in the above
expressions, in order to control the error and make it smaller than 2≠m. J

Consequently, this is true that we can substitute a discrete ODE with a continuous ODE
for the required functions Decode and EncodeMul: just replace › in the involved schemas by
the above function. Notice that we can also easily get a real extension of the function that
maps n to 2n.
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3.7 Working with all steps of a Turing machines

We can then go from one step of a Turing machine, to arbitrarily many steps. We are
following the idea of [5], but replacing discrete ODEs with continuous ODEs.

I Theorem 42. Consider some Turing machine M that computes some function f : �ú
æ �ú

in some polynomial space S(¸(Ê)) on input Ê. One can construct some function f̃ : N2
◊R æ

R in RCD that does the same: we have f̃(2m, 2S(¸(Ê))
, “word(Ê)) that is at most 2≠m far

from “word(f(Ê)).

Proof. We denote by M the Turing machine computing f . Similarly to the arguments in [5],
we can state that there exists a function Exec solution of a robust linear discrete ODE (E)
that “computes” the execution of M, with Cinit the initial configuration :

(E) :

Y
]

[

Exec(2m, 0, 2S , Cinit) = Cinit

”Exec(2m, t, 2S , Cinit)
”t

= Next(2m, 2S , Exec(2m, t, 2S , Cinit)) ≠ Exec(2m, t, 2S , Cinit).

For any configuration C of M, let write F (C)) = F (2m, 2S , C) = Next(2m, 2S , C) + C,
associated to the righthand side of the above discrete ODE. Denoting by C̃ the errorless
encoding of the configuration C, from the constructions of [5] (Lemma 35), it is true that if--C ≠ C̃

-- Æ 4≠(S+2), then
--F (C) ≠ F (C̃)

-- Æ 4≠(S+2). F does not change much locally on the
space of configuration. Denoting by S the space of M, and replacing m by m+2S+4 as in [5],
we have

--Next(2m, 2S , C) ≠ C
-- Æ 4≠(S+2). So at each step of the TM, the error is fixed (and

bounded). We can then apply the above arguments (Proposition 39) to simulate continuously
(E), with some controlled error: all involved quantities have encoding polynomials in the size
of the inputs. J

4 Proof of Theorem 2

Proof. ™: In this direction, we just need to prove that RCD contains only functions over
the reals that are computable in polynomial space. Indeed, then for a function f : Rd

æ RdÕ

sending every integer n œ Nd to the vicinity of some integer of Nd, at a distance less than
1/4, by approximating its value with precision 1/4 on its input arguments, and taking the
closest integer, we will get a function from the integers to the integers, that corresponds to
DP(f), and that will be in FPSPACE fl NN.

This is indeed the case, since i) all the base functions of RCD are in FPSPACE: they
are even in FPTIME, see [46] ii) RR

flFPSPACE is stable under composition. iii) stability
under robust ODE follows from Theorem 11.
´: In the other direction, we use an argument similar to [5]: namely, as the function is
polynomial space computable, this means that there is a polynomial space computable
function g : NdÕÕ

+1
æ {1, 3}ú so that on m, 2n, it provides the encoding „(m, n) of some

dyadic „(m, n) with Î„(m, n) ≠ f(m)Î Æ 2≠n for all m. The problem is then to decode,
compute and encode the result to produce this dyadic. More precisely, from Theorem 42, we
get g̃ with

|g̃(2e, 2p(max(m,n))
,Decode(2e,m, n)) ≠ “word(g(m, n))| Æ 2≠e

for some polynomial p corresponding to the time required to compute g, and e =
max(p(max(m, n)), n). Then we need to transform the value to the correct dyadic: we
mean

f̃(m, n) = EncodeMul(2e, 2t, g̃(2e, 2t,Decode(2e,m, n)), 1),

where t = p(max(m, n)), e = max(p(max(m, n)), n) provides a solution with
Îf̃(m, 2n) ≠ f(m)Î Æ 2≠n

. J
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5 Proof of Theorem 3

Proof. ™: To prove that RCD ™ RR
fl FPSPACE, we only need to add to the previous

arguments that RR
fl FPSPACE is also stable under ELim.

´: In this direction, we have the same issue as in [5]: the strategy of decoding, working with
the Turing machine, and encoding is not guaranteed to work for all inputs. But, we can
solve it by using an adaptative barycenter technique as in [5].

We recall the principle here for a function whose domain is R, but it can be gen-
eralised to Rd. The idea is to construct some function ⁄ : N2

◊ R æ [0, 1] defin-
able in RCDú as in Corollary 31, but with a continuous ODE : Adapting the proof
from [5] and using the simulation of › in our continuous framework, we can consider
⁄(2m, N, x) = Œ(�(2m+1

, N, x ≠ 9/8)) where Œ(x) = C-s(2m+1
, 1/4, 1/2, x). In partic-

ular, by definition, ⁄ œ RCDú. Thus, by Lemma 30, if ⁄(2m, N, x) =2≠m 0, then
‡2(2m, N, x) =2≠m ÂxÊ. If ⁄(2m, N, x) =2≠m 1, then ‡1(2m, N, x) =2≠m ÂxÊ and if
⁄(2m, N, x) œ (0, 1), then ‡1(2m, N, x) =2≠m ÂxÊ+1 and furthermore ‡2(2m, N, x) =2≠m ÂxÊ.
So, ⁄(·, 2n, x)Formula1(x, u,M, n) + (1 ≠ ⁄(·, 2n, n))Formula2(x, u,M, n) and we are sure to
be close (up to some bounded error) to some 2≠m approximation of a function f . J

6 Conclusion

We characterised polynomial space using an algebraically defined class of functions, by using
a finite set of basic functions, closure under composition, and a schema for defining functions
from robust ODEs. We proposed a concept of robust ODEs solvable in polynomial space.
As far as we know, this is an original method for solving ODEs optimising space. It is based
on classical constructions such as Savitch’s theorem. We extended existing characterisations
to a characterisation of functions over the reals and not only over the integers.

The interesting message from our statements is that we provide a clear and simple concept
associated with continuous ODEs for space: space corresponds to the precision for numerically
stable systems. Hence, compiled with [17], we now know the length of solutions corresponds
to time and precision to memory.

Considering future work: We have an algebraically defined class of functions. It remains
to know whether this could be transferred at the level of polynomial ODE. We know that
the solutions of polynomial ODEs define a very robust class of functions, stable by many
operations: sum, products, division, ODE solving, etc: see [35, 15]. Hence, all the base
functions we consider in our algebraic class can be turned into polynomial ODEs, by adding
some variables. It would be interesting to understand if we could define space complexity
directly at the level of polynomial ODEs, using precision.

Recently, another characterisation of PSPACE was obtained for polynomial ODEs using
rather ad-hoc definitions in [34, 14] and working over a non-compact space. Could our
characterisation be put at this simpler class of ODEs, but working with precision? The point
is that this characterisation uses unbounded domains, so precision is harder to interpret in
their constructions, where the schemas are somehow done to control errors.

Of course, from our statements, adding any FPSPACE-computable function over the
reals among the base functions would not change the class. However, we did not intend to
minimise the number of base functions. For example, tanh(t) is the solution of the ODE
f

Õ = 1 + f
2 and cos(t) can be obtained by the two-dimensional ODE y

Õ
1
= ≠y2, yÕ

2
= y1.

Minimising the number of base functions is also left for future work. We believe that even
in this setting, proving space complexity corresponds to precision is already significant,
independently of this question of a minimal set of base functions.
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Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for
finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function
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1 Introduction

The class of orbit-finite sets is a class of sets that contains all finite sets and some infinite
sets, but still shares some properties with the class of finite sets. The idea, which dates back
to Fraenkel–Mostowski models of set theory, is to begin with an infinite set A of atoms or
urelements. We think of the atoms as being names, such as Eve or John, and atoms can only
be compared with respect to equality. Intuitively speaking, an orbit-finite set is a set that
can be constructed using the atoms, such as A2 or Aú, subject to the constraint that there
are finitely many elements up to renaming atoms. For example, A2 is orbit-finite because it
has two elements up to renaming atoms, namely (John, John) and (John, Eve), while Aú is
not orbit-finite, because the length of a sequence is invariant under renaming atoms, and
there are infinitely many possible lengths. For a survey on orbit-finite sets, see [5].

The notion of orbit-finiteness can be seen as an attempt to find an appropriate notion of
finiteness for the nominal sets of Gabbay and Pitts [20]. This attempt emerged from the
study of computational models such as monoids [6] and automata [7] over infinite alphabets.
Let us illustrate orbit-finiteness using an automaton example.
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I Example 1.1 (An orbit-finite automaton). Let L ™ Aú be the language of words in which
the letter from the first position does not appear again. This language contains John · Mark
· Mark · Eve, because John does not reappear, but it does not contain John · Mark · John.
To recognize this language, we can use a deterministic automaton, which uses its state to
remember the first letter. In this automaton, the input alphabet is � = A and the state
space is Q = 1 + 1 + A. In this state space, there are two special states, namely the initial
state and a rejecting error state, and furthermore there is one state for each atom a œ A,
which represents a situation where the first letter was a but it has not been seen again yet.
This state space is infinite; but it is orbit-finite, since each of the three components in Q
represents a single orbit. y

Orbit-finite sets have many advantages, which ensure that they are a good setting for
automata theory, and discrete mathematics in general. For example, an orbit-finite set can
be represented in a finite way [5], which ensures that it becomes meaningful to talk about
algorithms that input orbit-finite sets, such as an emptiness check for an automaton. Also,
orbit-finite sets are closed under taking disjoint unions and products, which ensures that
natural automata constructions, such as the union of two nondeterministic automata or the
product of two deterministic automata can be performed.

However, orbit-finite sets do not have all the closure properties of finite sets. Notably
missing is the powerset operation, and more generally taking function spaces. For example,
if we look at the powerset of A, then this powerset will not be orbit-finite, since already
the finite subsets give infinitely many orbits (two finite subsets of di�erent sizes will be in
di�erent orbits). The lack of powersets means that one cannot do the subset construction
from automata theory, and in particular deterministic and nondeterministic automata are
not equivalent. This non-equivalence was known from the early days of automata for infinite
alphabets [16], and in fact, some decision problems, such as equivalence, are decidable
for deterministic automata but undecidable for nondeterministic automata [17]. Another
construction that fails is converting a deterministic automaton into a monoid [6, p. 221]; this
is because function spaces on orbit-finite sets are no longer orbit-finite, as explained in the
following example.

I Example 1.2 (Failure of the monoid construction). Let us show that the automaton from
Example 1.1 cannot be converted into a monoid. The standard construction would be to
define the monoid as the subset M ™ Q æ Q of all state transformations, namely the subset
generated by individual input letters. Unfortunately, this construction does not work. This
is because in order for two input words to give the same state transformation, they need
to have the same set of letters that appear in them. In particular, the corresponding set of
set transformations is not orbit-finite, for the same reason as why the finite powerset is not
orbit-finite. Not only does the standard construction not work, but also this language is not
recognized by any orbit-finite monoid. y

An attempt to address this problem was provided in [24, 9], based on single-use functions.
The idea, which originates in linear types and linear logic, is to restrict the functions so that
they use each argument at most once. For example, consider the following two functions
that input atoms and output Booleans:

a œ A ‘æ
I
true if a = John
false otherwise

a œ A ‘æ
I
true if a = John or a =Eve
false otherwise

Intuitively, the first function is single-use, since it compares the input atom to John only,
while the second function is not single-use, since it requires two comparisons, with John and
Eve. Here is another example, which shows that the problems with the monoid construction
from Example 1.2 could be blamed on a violation of the single-use condition.
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I Example 1.3. Consider the transition function of the automaton in Example 1.1, which
inputs a state in 1 + 1 + A together with an input letter from A, and returns a new state.
This function is not single use. Indeed, if the state is in A, then the transition function
compares it for equality with the input letter; but if the comparison returns true, another
copy of the old state must be kept as the new state for future comparisons. y

If one restricts attention to functions that are single-use, much of the usual robustness of
automata theory is recovered, with deterministic automata being equivalent to monoids, and
both being equivalent to two-way deterministic automata [9].

Despite the success of the single-use restriction in solving automata problems, one would
ideally prefer a more principled approach, in which instead of defining single-use automata,
we would define a more general object, namely single-use sets and functions. Then the
definitions of automata and monoids, as well theorems speaking about them, should arise
automatically as a result of suitable closure properties of the sets and functions.

This approach was pursued in [24], in which a category of orbit-finite sets with single-use
functions was proposed. In this corresponding category, one can represent the set of all
single-use functions between two orbit-finite sets X and Y as a new set, call it X ∆ Y ,
which is also orbit-finite. However, as we will see later in this paper, this proposal is not
entirely satisfactory, since it fails to account for standard operations that one would like to
perform on function spaces, most importantly partial application (currying). In the language
of category theory, the proposal from [24] failed to be a monoidal closed category.

Contributions of this paper. The main contribution of this paper is to propose a notion of
single-use sets and functions, which extends the proposal from [24], but which is rich enough
to be closed under taking function spaces. More formally, we propose a category of single-use
functions between orbit-finite sets equipped with additional metadata, and we prove that a
suitable quotient of this category is symmetric monoidal closed (Theorem 4.2).

The main idea is to follow the tradition of linear types, and extend the type system
from [24] with a new type constructor &. This way we can distinguish between two kinds of
products namely X ¢ Y (in [24] denoted as X ◊ Y ) and X&Y . Thanks to this distinction,
the function space can be built so that the appropriate operations on functions, namely
application and currying, can be implemented in a single-use way.

Our proposed category is strongly inspired by linear types, and the proof that it admits
function spaces uses a form of game semantics – a tool that we take from programming
language theory. However, as far as we know, it is an original idea to have an infinite but
orbit-finite base type A, and to observe that all constructions in game semantics are consistent
with orbit-finiteness. We believe that the resulting category deserves further study, and that
it is an interesting and non-trivial example of a category representing “finite” objects.

Some further adjacent developments – such as an alternative solution to the problem of
function spaces, using vector spaces of orbit-finite dimension – are presented in Section 7.

2 Sets with atoms

We begin with a brief introduction to orbit-finite sets. For a more detailed treatment, see [5].
Fix for the rest of this paper a countably infinite set A, whose elements will be called

atoms. We assume that A has no other structure except for equality; we will only be interested
in notions which are equivariant, i.e. invariant under renaming atoms. For example, A has
only two equivariant subsets, namely the empty and full subsets. On the other hand, the
set A2 has four equivariant subsets (ÿ, A2, the diagonal and its complement). In order to
meaningfully speak about equivariant subsets, we must be able to have an action of atom
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renamings on the set, as formalized in the following definition. The finite support condition
is a technical condition that ensures that the action is well-behaved; it dates back to the
work of Fraenkel and Mostowski, and is explained in the survey texts [20, 5].

I Definition 2.1. A set with atoms is a set X, equipped with an action of the group of atom
renamings, subject to the following finite support condition: for every x œ X there is a finite
set of atoms, such that if an atom renaming fi fixes all atoms in the set, then it also fixes x.

The idea is that a set with atoms is any kind of object that deals with atoms, such as the
set Aú of all words over the alphabet A, or the family of finite subsets of A. Among such
objects, we will be interested in those which are “finite”. This will be formalized by saying
that there are finitely many orbits, as described below. Define the orbit of an element x in
a set with atoms to be the elements that can be obtained from x by applying some atom
renaming. For example, in the set A2, the orbit of (John, Eve) contains (Mark, John), but it
does not contain (John, John). The orbits form a partition of a set with atoms.

I Definition 2.2. A set with atoms is called orbit-finite if it has finitely many orbits.

Typical examples of orbit-finite sets are polynomial expressions such as A4 +A3 +A3 + 1.
Here, 1 represents the set of zero-length sequences; this set has a unique element which is its
own orbit. For example, A3 has five orbits, because there are five possible ways of choosing a
pattern of equalities in a sequence of three names. On the other hand, Aú has infinitely many
orbits, since sequences of di�erent lengths are necessarily in di�erent orbits. The family of
finite subsets of A is also not orbit-finite, because subsets of di�erent sizes are in di�erent
orbits. The full powerset PA is not even a legitimate object in our setting, because some of
its elements, i.e. some subsets of A, violate the finite support condition.

2.1 Finiteness of function spaces

As mentioned above, orbit-finite sets can be seen as a certain generalization of finite sets.
They allow some, but not all, operations that can usually be done on finite sets. For example,
orbit-finite sets are closed under disjoint unions X + Y and products X ◊ Y . Another good
property is that an orbit-finite set has only finitely many equivariant subsets (an equivariant
subset is one that is invariant under the action of atom permutations). This is because an
equivariant subset is a union of some of the finitely many orbits. This accounts for some of
the good computational properties of orbit-finite sets.

If X and Y are orbit-finite sets, the set of equivariant functions X æ Y is always literally
finite, because it is an equivariant subset of X ◊Y . However, as we have seen in Example 1.2,
when converting an automaton to a monoid, we want to use the partial applications ”(≠, a)
of the transition function ” : Q ◊ � æ Q; while ” is equivariant, in general, ”(≠, a) is not.
But it is finitely supported, i.e. invariant under all atom renamings that fix some finite set of
atoms that depends only on the function. The issue is that the finitely supported function
space from X to Y is not orbit-finite.

I Example 2.3. The function A æ A below is finitely supported, because it is invariant
under all atom renamings that fix Mark, John, Eve and Bill:

f(a) =
I
Mark if a œ {John, Eve, Bill}
a otherwise

If fi is the atom renaming that swaps Mark with Adam, then applying it to the function
f defined above gives the function fi(f) that has the same definition (or source code, if a
programming intuition is to be followed), except that Mark is used instead of Adam.
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In the case of A æ A, the finitely supported function space is not orbit-finite. Indeed, the
condition a œ {John, Eve, Bill} can be replaced by a œ X for any finite set X µ A \ {Mark}
of exceptional values, and two choices of X of di�erent cardinalities will give us two functions
in di�erent orbits. y

3 Single-use sets and functions

The lack of function spaces is the problem addressed in this paper. Our solution builds on
the idea from [24, Section 2.2], which is to consider only functions that are single-use. This
notion, already illustrated intuitively in the introduction, is formalized in Section 3.1, where
we show how it almost, but not quite, achieves function spaces. Then, in the rest of this
section, we show how function spaces can be recovered by using a more refined type system.

3.1 Single-use functions over polynomial orbit-finite sets

We do not define the single-use functions on all orbit-finite sets, but only a syntactically
defined fragment, namely the polynomial orbit-finite sets, which are sets that can be generated
from 1 and A using products ◊ and disjoint unions +. Therefore, we will allow orbit-finite
sets like 1 + A2, but we will not allow orbit-finite sets like the set of non-repeating pairs
{(a, b) | a ”= b œ A } or the set of unordered pairs {{a, b} | a ”= b œ A }. It is an open problem
to find a satisfactory definition of single-use functions on all orbit-finite sets. (A simple hack
is to use a quotienting construction, similar to Section 4, but what we would really like to do
is to identify some extra structure in a set, possibly an action of some yet unknown group or
semigroup, which enables us to speak about single-use functions.)

Consider two polynomial orbit-finite sets X and Y . To define which functions X æ Y
are single-use, we use an inductive definition. We begin with certain functions that are
considered single-use, such as the equality test of type A ◊ A æ 1 + 1. These functions are
called the prime functions, and their full list is given in Figure 1. Next, we combine the prime
functions into new ones using three combinators. The first, and most important, combinator
is function composition. Then, we have two combinators for the two type constructors: if
two functions f1 : X1 æ Y1 and f2 : X2 æ Y2 are single-use, then the same is true for:

f1 ◊ f2 : X1 ◊ X2 æ Y1 ◊ Y2 f1 + f2 : X1 +X2 æ Y1 + Y2

(x1,x2) ‘æ(f1(x1),f2(x2)) left(x1) ‘æleft(f1(x1)) right(x2) ‘æright(f2(x2)).

Crucially, the list of prime single-use functions does not contain the copying function
a œ A ‘æ (a, a) œ A2. Therefore, an alternative name for the single-use functions is copyless.
If we added copying, then we would get all finitely supported functions [24, Lemma 23].

I Example 3.1. Consider the function of type A3 æ A which inputs a triple (a, b, c) of
atoms and returns a if c is equal to Mark, and b otherwise. This function is a single-use
function. It is obtained by composing the six functions listed below:

Function Type after function
Append 1. A ◊ A ◊ A ◊ 1
Replace added 1 with Mark using the constant function. A ◊ A ◊ A ◊ A
Apply the equality test to the last two components. A ◊ A ◊ (1 + 1)
Distribute. A ◊ A ◊ 1 + A ◊ A ◊ 1
Project to first and second components, respectively. A+ A
Co-diagonal A
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Table 1 The prime single-use functions for polynomial orbit-finite sets X,Y and Z.

Function Type Definition

Functions about A
equality test A ◊ A æ 1 + 1 a, b ‘æ if a = b then true else false
constant a 1 æ A x ‘æ a

identity A æ A x ‘æ x

Functions about ◊
commutativity of ◊ X ◊ Y æ Y ◊ X x ◊ y ‘æ y ◊ x

first projection X ◊ Y æ X x ◊ y ‘æ x

second projection X ◊ Y æ Y x ◊ y ‘æ y

append 1 X æ X ◊ 1 x ‘æ x ◊ ()
associativity of ◊ (X ◊ Y ) ◊ Z æ X ◊ (Y ◊ Z) (x ◊ y) ◊ z ‘æ x ◊ (y ◊ z)

Functions about +
first co-projection X æ X + Y x ‘æ left(x)
second co-projection Y æ X + Y y ‘æ right(y)

co-diagonal X +X æ X

;
left(x) ‘æ x
right(x) ‘æ x

commutativity of + X + Y æ Y +X

;
left(x) ‘æ right(x)
right(y) ‘æ left(y)

associativity of + (X + Y ) + Z æ X + (Y + Z)

Y
]

[

left(left(x)) ‘æ left(x)
left(right(y)) ‘æ right(left(y))
right(z) ‘æ right(right(z))

Distributivity

+ distributes over ◊ X ◊ (Y + Z) æ (X ◊ Y ) + (X ◊ Z)
;

x ◊ (left(y)) ‘æ left(x ◊ y)
x ◊ (right(z)) ‘æ right(x ◊ z)

To justify this description, one should also show that the six functions are single-use.
Appending 1, distributivity and co-diagonal are prime functions. The other three are
obtained by combining prime functions using the combinators. For example, the equality
test is paired, using the combinator for ◊, with the identity on the remaining two atoms. y

The design goal of the single-use restriction is to have orbit-finite function spaces. The
rough idea is that a single-use function can only use a bounded number of atoms in its source
code, which guarantees orbit-finiteness of the function space.

I Example 3.2. Consider the functions of type A æ 1 + 1, which can be seen as subsets of
the atoms, with 1 + 1 representing the Booleans.

The finitely supported functions A æ 1 + 1 correspond to the finite or co-finite subsets of
A. Therefore, the set of such functions admits an equivariant bijection with a disjoint
union of two copies of the finite powerset PfinA, in particular it is not orbit-finite.
There are four possible single-use functions A æ 1 + 1: (a) always return true; (b) always
return false; (c) check for equality with some fixed atom a; (d) check for inequality (”=)
with some fixed atom a. Therefore, the set of single-use functions admits an equivariant
bijection with the orbit-finite set 1 + 1 + A+ A. y
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The above example shows that the space of single-use functions of some type X æ Y is
orbit-finite, and in fact it can be described using a polynomial orbit-finite set. This is true
for every choice of polynomial orbit-finite sets X and Y , as proved in [24, Theorem 5], and
illustrated in the following example.

I Example 3.3. Assume that the input type X is some power of the atoms Ak, and the
output type Y does not use atoms, e.g. it is Y = 1 + 1. The assumption on the input type
can be made without loss of generality using distributivity, while the assumption on the
output type is a proper restriction, but it will allow us to skip some technical details of the
general construction while retaining the important intuitions. We describe below a type that
represents all single-use functions from Ak to Y ; we shall denote it by Ak ∆ Y . Note that
∆ is not a primitive type constructor in our grammar of types; it is a notation that stands
for the inductive construction below.

This type is defined by induction on k. In the base case of k = 0 we simply need to give
a value from the output type, and therefore A0 ∆ Y is the same as Y . Consider now the
induction step of k > 0. We observe that a single-use function that inputs Ak must begin
with some equality test, and then continue with one of two single-use functions that have
fewer arguments (one for the case when the equality test returns true, and one for the other
case). This observation leads to the following definition of the type Ak ∆ Y :

·

iœ{1,...,k}

A ◊ (Ak≠1 ∆ Y ) ◊ (Ak≠1 ∆ Y )

¸ ˚˙ ˝
starts by comparing i-th

coordinate to some constant

+
·

i,jœ{1,...,k}

(Ak≠2 æ Y ) ◊ (Ak≠2 æ Y )

¸ ˚˙ ˝
starts by comparing the
i-th and j-th coordinates

.

Note that the above representation of the function space is not necessarily unique, i.e. the
same function can be represented in several di�erent ways. For example, the order in which
equality tests are performed will matter for the representation, but might not matter for the
function. This is not something that we worry about; it is dealt with in Section 4. y

Unfortunately, the proposal illustrated in Example 3.3 and described in more detail in [24]
does not give a satisfactory solution to the problem of function spaces. The problem is
that the set of representations X ∆ Y should also support operations on functions. More
specifically, we should be able to indicate single-use operations which do the following:
evaluation: a single-use function from (X ∆ Y ) ◊ X to Y which inputs a representation of

a function and applies it to an argument;
composition: a single-use function from (X ∆ Y ) ◊ (Y ∆ Z) to (X ∆ Z) which inputs the

representations of two functions and returns a representation of their composition;
currying (i.e. partial application): for each single-use function from X ◊ Y to Z, there

should be a single-use function from X to Y ∆ Z which inputs a first argument and
returns a representation of the partially applied function.

Only in the presence of all of these operations can we speak of a function space, and
the corresponding category can be called closed. (Composition can be obtained through
evaluation and currying, so the essential operations are evaluation and currying.) The
following example shows that the currying operation is not single-use, and therefore the
space of single-use functions as defined in this section is not closed.

I Example 3.4. Consider the single-use function

f : A ◊ A æ 1 + 1 (a, b) ‘æ
I
result of test a = Mark if b = Eve
result of test a = John otherwise.
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The currying of this function, is a new function which maps a first argument a œ A to the
partially applied function f(a,_). This currying is

a ‘æ

Y
__]

__[

b ‘æ b = Eve if a = Mark
b ‘æ b ”= Eve if a = John
b ‘æ false otherwise

Recall that in Example 3.2 we showed that the space of single-use functions of type A æ 1+1
can be represented as 1 + 1 + A+ A. If we use this representation, then the currying of the
function f is not single-use, because we need to compare the input atom a to two constants,
Mark and John. If we use the representation from Example 3.3, then the corresponding type
will be A ¢ (1 + 1)2, but the problems with currying will persist. y

For similar reasons, the function space we proposed above does not support function
composition either; it cannot be used to convert automata into single-use monoids since the
resulting monoid would need to use function composition as its monoid operation.1

3.2 Linear types and single-use functions on them

To solve the problems above, we introduce a more refined type system, which is based on
linear types. The main idea is to pay more attention to types in Example 3.3, where we
describe a single-use function by specifying the first equality test that it makes, and then
giving two descriptions of the functions that will be used in each of the two possible outcomes
of the equality test. The main observation is that these two outcomes are mutually exclusive,
and therefore we intend to use only one of the two descriptions. For this reason, we will use
a type constructor & that comes from linear logic. The intended meaning is that an object
of type X&Y consists of two objects, but with the ability to use only one of them. Since
linear logic uses ¢ for the product that we have so far denoted by ◊, we will also follow that
convention. Using these two products, the appropriate type for Example 3.3 becomes:

·

iœ{1,...,k}

A ¢ ((Ak≠1 ∆ Y )&(Ak≠1 ∆ Y )) +
·

i,jœ{1,...,k}

(Ak≠2 æ Y )&(Ak≠2 æ Y ).

Under this definition, the problems from Example 3.4 will be solved, at least for the particular
type considered in that example. However, by introducing a new type constructor, we will
have to redefine the single-use functions, and then we will have to give a representation of
functions that allow this new type constructor, without incurring the need to add any other
new type constructors. This is what we will do now.

I Definition 3.5 (Linear types). A linear type is any expression constructed from the atomic
types 1 and A using three2 binary type constructors +,& and ¢.

1 This problem is solved in [9] and [24] in a di�erent way, namely by showing that every orbit-finite
monoid necessarily divides a single-use monoid, using a Krohn-Rhodes construction. However, this
construction is di�cult and delicate, in particular it does not work for atoms that have more structure
than equality alone. In contrast, the proposal that we give in this paper works for other kinds of atoms,
as discussed in Section 6.

2 We set up our type system without using the multiplicative disjunction &of linear logic. This is a
common practice in linear type systems, as they are often based on intuitionistic linear logic, rather
than classical linear logic (see e.g. [1]). It is also worth mentioning that our type system is in fact
a�ne [13, §1.2.1], as we are going to allow discarding the unused values of A. However, since there is no
risk of confusion, we have decided to use the name linear types for the sake of simplicity.
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In our linear types, it is only the products that are di�erentiated, while + comes in only one
version. Here is the intuitive explanation of the di�erence between the two kinds of products,
following Girard [13, §1.1.2]. Having a pair x ¢ y is like having the ability of using both
components x and y. On the other hand, having a pair x&y is like having the ability to use
one of the two components, at our choice, but not both at once. For example, the input
type of the equality test will be A ¢ A not A&A, since the test will need to consume both
arguments. This intuition can only go so far; for example, it is not entirely clear what “our
choice” means. We revisit this intuition in Section 5, where game semantics will be used to
indicate who makes which choices.

We think of each linear type X as representing a set [[X]], as defined below:

[[1]] = 1 [[A]] = A [[X + Y ]] = [[X]] + [[Y ]] [[X ¢ Y ]] = [[X&Y ]] = [[X]] ◊ [[Y ]].

All sets that arise in this way will be polynomial orbit-finite sets. Note that the two kinds
of product represent the same set, namely the set of pairs in the usual set-theoretic sense.
However, the two type constructors will be di�erent, because di�erent functions will be
allowed to operate on them. As the expression goes, “the proof of the pudding is in the
eating”; in this case the pudding is the types and the eating is the functions.

As we did in Section 3.1, the single-use functions will be defined in terms of prime
functions and combinators. The combinators are the same, except that instead of f1 ◊ f2 we
now have two ways of pairing functions, using ¢ and &. The prime functions are inherited
from the previous system, with ◊ understood as ¢, together with a few new functions for &,
as described in Table 2. This is summarized in the following definition.

I Definition 3.6 (Single-use functions). The class of single-use functions is the least class of
functions with the following properties:
1. It contains the functions from Tables 1 and 2, with ◊ in Table 1 understood as ¢;
2. It is closed under composition, as well as under combining functions using +, ¢ and &.

Table 2 Prime single-use functions that involve &.

Function Type Definition
diagonal X æ X&X x ‘æ x&x

first projection X&Y æ X x&y ‘æ x

second projection X&Y æ Y x&y ‘æ y

& distributes over ¢ X ¢ (Y&Z) æ (X ¢ Y )&(X ¢ Z) x ¢ (y&z) ‘æ (x ¢ y)&(x ¢ z)

& distributes over + X + (Y&Z) æ (X&Y ) + (X&Z)
;

x&left(y) ‘æ left(x&y)
x&right(z) ‘æ right(x&z)

Formally speaking, a single-use function consists of an input linear type X, an output
linear type Y , and a function between the sets [[X]] and [[Y ]] that is generated using the
prime functions and combinators from the above definition. As was the case in Section 3.1,
all single-use functions are finitely supported. Therefore, one can think of the single-use
functions of type X æ Y as being a subset of the set of all finitely supported functions from
[[X]] to [[Y ]]. This subset is strict: as we will see, the space of single-use functions will be
orbit-finite, unlike the space of all finitely supported functions. We will be thinking of the
single-use functions as a category.

I Definition 3.7 (Category of single-use sets). The category of single-use sets is:
1. The objects are linear types, as per Definition 3.5.
2. The morphisms between types X and Y are single-use functions from [[X]] to [[Y ]].
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In the very definition of the above category, there is a faithful functor to the category
of orbit-finite sets with finitely supported functions. This functor maps objects X to their
underlying sets [[X]], which are orbit-finite sets, and it maps morphisms to the corresponding
functions. The functions seen to be finitely supported, and the functor is faithful by definition,
since the morphisms in Definition 3.7 are defined to be single-use functions.

The main technical result of this paper is that the category of single-use sets has function
spaces, as stated in the following theorem. The appropriate product will be ¢, and not &.
Since the Cartesian product in our category is & and not ¢, this means that the result we
are targeting is symmetric monoidal closed with respect to ¢, and not Cartesian closed. For
now, our theorem stops a bit short of saying that the category is monoidal closed, since
several di�erent elements of the function space might represent the same function; but we
will come back to this in Section 4.

I Theorem 3.8. Let V and W be objects (i.e. linear types). There exists an object, denoted
by V ∆ W , and a morphism (i.e. a single-use function) eval : (V ∆ W ) ¢ V æ W with the
following property. For every morphism f : X ¢ V æ W there is a (not necessarily unique)
morphism h : X æ (V ∆ W ) such that the following diagram commutes:

X ¢ V (V ∆ W ) ¢ V

W

h¢id

f
eval

The above theorem is the main technical contribution of this paper. The di�culty in its
proof is finding a representation of the single-use functions that is rich enough to capture all
functions, but simple enough to be described by a linear type (in particular, the corresponding
set will be orbit-finite). In Section 3.1, when the types did not have “&”, we could pull o� a
relatively simple construction, which was possible mainly due to the strong distributivity
rules that allowed converting each type into a normal like An1 + · · ·+ An¸ . In the presence
of “&”, the distributivity rules are not as strong, and the way in which a single-use program
can interact with its input is rather subtle. Our solution is presented in Section 5.

4 Quotienting by partial equivalence relations

A drawback of Theorem 3.8 is that the function space V ∆ W can contain di�erent
representations of the same function; this will mean that currying is not unique. To overcome
this issue, we use a simple quotient construction, inspired by a classical technique used in
realizability semantics of typed ⁄-calculi (see e.g. [3, Chapter 15]).

Define a partial equivalence relation to be a relation that is symmetric and transitive, but
not necessarily reflexive. This is the same as (complete) equivalence relation on some subset,
hence we may speak of the quotient of a set by a partial equivalence relation (which is an
usual quotient of a subset). We will use a partial equivalence on the function space X ∆ Y
to: (1) remove objects that do not represent any morphism; (2) identify two objects if they
represent the same morphism. After such a quotient, the function space will have unique
representations for functions.

I Definition 4.1. The quotiented single-use category is:
Objects are pairs (linear type X, equivariant partial equivalence relation on [[X]]);
The set of morphisms between objects (X,≥X) and (Y,≥Y ) is the quotient of the set of
single-use functions from X to Y by

f ≥ g :≈∆ ’x, xÕ œ [[X]], x ≥X xÕ ∆ f(x) ≥Y g(xÕ)
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We can then define the function space object from (X,≥X) to (Y,≥Y ) as (X ∆ Y,≥X∆Y )
where two elements of X ∆ Y are related by the partial equivalence relation ≥X∆Y when
the single-use functions they represent are related by the above-defined ≥. The quotiented
single-use category is also equipped with a tensor product ¢ on its objects.

I Theorem 4.2. The quotiented single-use category, equipped with the tensor product ¢, is
a monoidal closed category, i.e. it satisfies the conclusions of Theorem 3.8, but, furthermore,
the morphism h is unique.

5 Game semantics

This section is devoted to the proof of Theorem 3.8. To construct the function space X ∆ Y ,
we use game semantics to identify a certain normal form of programs that compute single-use
functions. The presentation in this section is self-contained, and does not assume any
knowledge of game semantics. We base our notation on [2].3

Let us begin with a brief motivation for why game semantics will be useful.
While it is intuitively clear which functions should be allowed as single-use for simple

types such as A æ 1 + 1 or A ¢ A æ A+A, these intuitions start to falter when considering
more complex types. How can one show that a function is not single-use? If one were to use
the definition of single-use functions alone, then one would need to rule out any possibility
of constructing the function from the primes using the combinators, including constructions
that use composition many times, and with unknown intermediate types.

This is the reason why we consider game semantics. It will allow us to give a more
principled description of the intuition that pairs of typeX¢Y can be used on both coordinates,
while pairs of type X&Y can be used on a chosen coordinate only. The idea behind game
semantics is to give the description in terms of an interaction between two players:
1. System, who represents the function (we will identify with this player); and
2. Environment, who supplies inputs and requests outputs of the function.
One of the intuitions behind the setup is that if a type X&Y appears in the input of the
function, then it is the System who can choose to use X or Y , while if the type appears in
the output, then it is the Environment who makes the choice. (In this paper, we consider
functions of first-order types of the form X æ Y , where X and Y are linear types that
do not use æ, and therefore there will be a clear distinction between input and output
values.) Before giving a formal definition of game semantics, we give simple example of the
interaction.

I Example 5.1. Consider the two types X ¢ (Y&Z) and (X ¢ Y )&(X ¢ Z). Among the
prime functions in Table 2, we find distributivity in the direction æ, but not in the direction
Ω. We explain this asymmetry using the interaction between two players System and
Environment4.

Let us first consider the interaction in the direction æ. The player Environment begins
by requesting an output. Since this output is of type (X ¢ Y )&(X ¢ Z), this means that
Environment can choose to request either of the two types X ¢ Y and X ¢ Z. Suppose that
Environment requests X ¢ Y . Now System needs to react, and produce two elements: one of
type X and one of type Y . Both can be obtained from the input; for the second one player
System can choose how to resolve the input Y&Z to get the appropriate value.

3 Another standard reference for the category of “simple games” upon which we build is [15]. For a recent
survey of modern game semantics, see [10].

4 Observe that in Table 1 the (+,¢)-distributivity is also only given in one direction. In that case the
inverse is, in fact, a single-use function, as it can be constructed from prime functions.
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Consider now the interaction in the opposite direction Ω. As we will see, System will
be unable to react to the behavior of Environment, which demonstrates that there is no
distributivity in this direction. The problem is that Environment can begin by requesting an
element of type X, since the output type is X ¢ (Y&Z), while still reserving the possibility
to request Y&Z in the future (because the tensor product ¢ means that both output values
need to be produced). To produce this element, System will need choose one of the two
coordinates in the input type (X ¢ Y )&(X ¢ Z), and any of these two choices will be
premature, since Environment can then request the opposite choice in the output type. y

As illustrated in the above example, we will use a game to describe the possible behaviours
of a function X æ Y . The game will be played in an arena, arising from the linear types X
and Y , which will tell us what moves are possible for the two players. In each arena, we will
be interested in strategies for System, telling us how System should react to Environment’s
moves. Morally, such a strategy will say how the function reacts to requests in the output
type Y and values in the input type X.

Proof scheme for Theorem 3.8. In the remainder of this section, we define the arenas and
strategies of our game semantics. Our main Theorem 3.8 will then follow from the two key
properties below, that we establish in the technical appendix of the full version.
Representation of single-use functions by strategies: To a strategy in the arena for X æ

Y , we will assign a single-use function of type X æ Y that it represents. This mapping
will be partial, i.e. some ill-behaved strategies will not represent any functions. We will
show that the set of strategies in the arena is large enough to represent all single-use
functions.

Representation of strategies by a linear type: We shall build a linear type X ∆ Y which
can represent all well-formed strategies on the arena for X æ Y . In particular, this
implies that such strategies form an orbit-finite set. Furthermore, this linear type X ∆ Y
will be equipped with single-use evaluation and currying functions, as required.

5.1 Arenas and strategies without constants and equality tests

We begin with a simpler version of the game semantics, in which the arenas and strategies
will describe functions that are not allowed to perform equality tests, nor to use constants.
These strategies will model functions such as the identity function A æ A, which directly
passes its input to its output, but they will not model the equality test A ¢ A æ 1 + 1, or
the constant functions of type 1 æ A. The general idea is to use standard game semantics
for linear logic, with an extra feature that we call register operations. The register operations
will be used to model the way in which atoms are passed from the input to output. For
example, in the identity function, Environment will write the input atom into the register,
and then System will read the output atom from that register. The following definition of an
arena is based on the definition from [2, p. 4], slightly adapted for the context of this paper:

I Definition 5.2 (Arena). An arena consists of:
1. A set of moves, with each move having an assigned owner, who is either “System” or

“Environment”, and one of three register operations, which are “none”, “read”, or “write”.
2. A set of plays, which a set of finite sequences of moves that is closed under prefixes, and

such that in every play, the owner of the first move is Environment, and then the owners
alternate between the two players.

I Remark 5.3. In all arenas that we consider, the “read” moves will be owned by System and
the “write” moves will be owned by Environment. Therefore, we could simplify the register
operations and have just one, called “read/write”, whose status is determined by its owner.
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In this paper, all the strategies that we consider shall be for player System.

I Definition 5.4. A strategy in an arena is a subset of plays in the arena, which:
1. is closed under prefixes;
2. if the strategy contains a play p that ends with a move owned by System, then it also

contains all possible plays in the arena that extend p with one move of Environment;
3. if the strategy contains a play p that ends with a move owned by Environment, then it

contains exactly one play in the arena that extends p with one move of System;
4. there is some k such that all plays in the strategy have length at most k;
5. every “read” move is directly preceded by a “write” move (in particular a play cannot

begin with “read”), and every “write” move is either the last move, or directly succeeded
by a “read” move.

Conditions 2 and 3, which are standard in game semantics (cf. [2, p. 5]), guarantee that
the strategy is deterministic and only “ends” when Environment has no moves to play. Let
us now comment on the last two conditions, which are not standard.

The fourth condition is motivated by the idea that we study “finite” types, and there will
be no need for unbounded computations5
The last condition will be called the immediate read condition. It ensures that there is
matching between “read” and “write” moves in plays that do not end with write. Since
“write” will always be owned by Environment, the immediate read condition will ensure a
matching between “write” and “read” moves.

We now show how to associate to each linear type a corresponding arena, and also how to
associate an arena to a function type X æ Y (which is not a linear type in the sense of
Definition 3.5) between linear types X and Y . The arenas that we construct so far will not
be our final proposal, since the corresponding strategies will not be able to use constants or
perform equality tests; this will be fixed in Section 5.2. Before giving a formal definition, we
begin with a simple example.

I Example 5.5. We define an arena for A æ A. It will be rather impoverished, since the only
allowed strategy in it will correspond to the identity function. However, this is consistent
with the stage that we are at, where we only consider functions that do not use constants or
perform equality tests; for such functions of type A æ A the only possibility is the identity.

The arena describes the following interaction between the two players: Environment
requests an output, then System requests an input, then Environment grants the input, and
finally System grants the output by forwarding the input that was granted. It has 4 moves:

move owner register operation
request output Environment none
request input System none
grant input Environment write
grant output System read

The plays are defined as all sequences that begin with a move of Environment, alternate
between players, use each move only once, and have the following condition: “grant output”
can only be played after “request output”, and likewise for “grant input” and “request input”.

5 This condition is only meaningful, if there are arenas that admit plays of unbounded length. Since,
in this section, all the arenas will be finite this condition will be vacuously true. It will only become
relevant in Section 5.2, once we introduce arenas with constants and equality tests.
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Figure 1 Pictures of the operations A ¢ B, A+B, A&B and A ¢ B respectively on arenas.
The picture for ¢ is less useful than the next two, since the root node of the tree is not a player,
but a node labelled by ¢. The intuition is that the game is played in parallel on both arenas, and
therefore a position in it can be visualized as a pair of positions in the two arenas.

A quick inspection of this definition reveals that there is a unique maximal play, where
the moves are played in the order from the table, and all other plays are prefixes of this
maximal play. Because of the uniqueness of responses, the set of plays is also a strategy. As
mentioned at the beginning of this example, the strategy describes the identity function. y

We hope that the above example explains some intuitions about how arenas describe types
and strategies describe functions. We now give a formal definition which is compositional:
we define arenas for the basic types 1 and A, and then we define operations on arenas that
correspond to the type constructors +, &, and ¢. We begin with the basic types.

I Definition 5.6 (Arenas for 1 and A).
1. The arena for the type 1 is empty: there are no moves, the only play is the empty sequence.
2. The arena for type A has two moves, which must be played one after the other: first

player Environment makes a move called “request” that has no register operation, and
then player System responds with a move called “grant” that has register operation “read”.

In the above definition, we only described the behaviour of A when viewed as an output
type. To get the input type, where the players are swapped and read is swapped with write,
we will use duality, which is another operation on arenas. This operation is defined below,
together with other operations that correspond to the type constructors.

I Definition 5.7. Let A and B be arenas. We define the following arenas (see also Figure 1):
Ā This is called the dual arena of A. The moves and plays are the same as in A, except the

owners are swapped, and the “read” and “write” register operations are swapped.
A + B The moves in this arena are the disjoint union of the moves of A and B, with inherited

owners and register operations, plus three extra moves: “ask” owned by Environment, and
“left”, “right” owned by System. The plays are defined as follows. Player Environment
begins with an ask move, then System responds with a left or right move, and the remaining
sequence is a play in the arena A or B, depending on whether System chose left or right.

A&B The moves in this arena are the disjoint union of the moves of A and B, with inherited
owners and register operations, plus three extra moves: “acknowledge” owned by System,
and “left”, “right” owned by Environment. The plays are defined as follows. Environment
begins by choosing left or right, then System responds with an acknowledge move, and
the remaining sequence is a play in either A or B, depending on Environment’s choice.
(This construction di�ers slightly from the one from [2, Exercise 1.10] – this is because
we want to keep it analogous to the construction for A+B.)

A ¢ B The moves in this arena are the disjoint union of the moves of A and B, with
inherited owners and register operations. A play in this arena is any shu�e of plays in
the two arenas A and B. (A shu�e of two words is any word obtained by interleaving
them, e.g. shu�es of “abc” and “123” include “a1b23c” and “12ab3c”). By Definition 5.6,
we require that the owners of the move alternate in the interleaved sequences. See [2, p.7].
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Equipped with the above definitions, we present our first attempt at assigning arenas to
types. In the second item of the following definition, we use the name library-less, because
our second and final definition of the arena for a function type, as presented in the next
section, will be equipped with an extra feature that will be called a library.

I Definition 5.8. Let X and Y be linear types.
The arena for X is defined by inductively applying the constructions from Definition 5.6
and Definition 5.7 according to the structure of the type.
The library-less arena for X æ Y is defined to be (dual of arena of X) ¢ (arena of Y ).

I Example 5.9. The library-less arena for the identity type A æ A is the same as the arena
that we explicitly defined in Example 5.5. It can be drawn as the following picture:

As discussed previously, our notion of arenas does not yet take into account some
structure on the atoms. This will be fixed in the next section, by modifying the second item
in Definition 5.8. On the other hand, the arenas from the first item, for linear types without
function types, are already in their final form.

In principle the construction from the second item in Definition 5.8 can be nested, and thus
used to assign arenas to higher-order types that can nest æ with the other type constructors.
This is how it is usually done in linear logic. However, the construction that we will describe
in the next section will be less amenable to nesting, and will use it only to describe functions
between types that do not use æ.

5.2 Arenas and strategies with constants and equality tests

In Section 5.1, we described arenas for functions that did not use the structure of the atoms,
i.e. constants and equality tests. We now show how these arenas can be extended to cover
this structure. The general idea is to equip the arenas with an extra part, which we call the
library, that describes the allowed operations on the atoms. (The library as we present it
here only contains functions for equality and constants, but in the proof of Theorem 6.2, we
will use a library that has other relations beyond equality. )

I Definition 5.10. The library arena and its parts are defined as follows (cf. Figure 2).
1. The constant choice arena is the following arena A+1 moves: first player System chooses

an atom, then player Environment plays move with register operation “write”.
2. The equality test arena is an arena which the plays are as follows:

a. first System plays a move with register operation “read”;
b. then Environment plays an move with no register operation;
c. then System plays a move with register operation “read”;
d. then Environment plays one of two moves, called = and ”=, with no register operation.

3. The library arena is obtained by applying ¢ to infinitely6 many copies of the constant
choice arena and infinitely many copies of the equality test arena.
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The constant choice arena:

The equality test arena:

Figure 2 Pictures of the library arenas. We use the convention that the register operations are
in red, and the names of the moves, which have no other role than to distinguish them, are in black.
Note that the first move in this arena is owned by System, and we assume in Definition 5.2 that the
first move is owned by Environment. This is because this arena, like all arenas in Definition 5.10, is
not intended to be a stand-alone arena, but only as part of the bigger arena from Definition 5.11
where the first move is indeed owned by Environment.

The library arena is infinite. Taking the tensor product of infinitely many copies of the
two arenas ensures that the library arena satisfies the following property, which corresponds
to the ! operation from linear logic:

library arena © (constant choice arena) ¢ (equality test arena) ¢ (library arena). (1)

In the above, © refers to isomorphism of arenas, which is defined in the natural way: this
is a bijection between the moves, which is consistent with the owners, register operations
and plays in the expected way. Another property is that the library arena is isomorphic to a
tensor product of itself:

library arena © library arena ¢ library arena. (2)

We are now ready to give the final definition of arenas for functions between linear types,
which takes into account the structure of the atoms.

I Definition 5.11 (Function arena). For linear types X and Y , the arena of X æ Y is

(library arena) ¢ (dual arena of X) ¢ (arena of Y ).

This completes the game semantics of linear types and functions between them. We do not
intend to give game semantics for higher-order types, such as functions on functions etc. As a
result, we will only be using the dual once, namely for the arena of the input type. Also, note
that the read/write operations will be used in a restricted way, as announced in Remark 5.3,

6 Observe that the shu�e operation from Definition 5.7 can also be used for infinite families of arenas.



M. BojaÒczyk, L. T.D. Nguyễn, and R. StefaÒski 130:17

namely that the “read” moves will be owned by System and the “write” moves will be owned
by Environment. This is because the library arena has this property, the arena for A has
this property, and all operations on arenas that we have defined preserve this property.

As said before, the rest of the proof of Theorem 3.8 takes place in the technical appendix.

6 Beyond equality

So far, we have studied the case when the atoms are equipped with equality only. Consider
now a more general case: let A be any relational structure, i.e. any set equipped with relations
(but not functions). For example, we could use the rational numbers with their linear order.
Another example would be Presburger arithmetic, i.e. (N,+). Since we want to have relations
only, we think of addition as a ternary relation x+ y = z. The construction from Section 3
of the single-use category can be generalized to this case; and not only is the definition of
the category generic, but the same is true for the proof that function spaces exist.

I Definition 6.1 (Single-use functions over a relational structure). Let A be a relational
structure. The single-use category over A is defined in the same way as in Definition 3.7,
except that the list of prime functions is extended with one prime function An æ 1 + 1 for
every n-ary relation in the vocabulary of A. (Here, the power An uses ¢.)

I Theorem 6.2. Consider a relational structure A, in which for every k œ {0, 1, . . .} there
are finitely many relations of arity k. Then the single-use category over A satisfies the weak
universal property stated in Theorem 3.8.

In the above statement, “weak” alludes to the non-uniqueness of currying; we could again get
a symmetric monoidal closed category by performing the quotient construction of Section 4.

The theorem is proved in the same way as Theorem 3.8. The assumption on the vocabulary
is used to ensure that in the corresponding game semantics (cf. Section 5), there are finitely
available moves in any given moment, because the vocabulary can only be queried up to the
maximal number of atoms in the input, due to the single-use restriction.

Note that this theorem can be applied to any relational structure, including undecidable
ones. Clearly, there must be some benefit from assuming that the structure has a decidable
first-order theory, which means that there is an algorithm which checks if a first-order
sentence is true in the structure. The benefit is that we can check if two morphisms are
equal, as expressed in the following theorem, whose assumption applies to structures such as
Presburger arithmetic, or the real field (R,+, ·,Æ).

I Theorem 6.3. Consider a relational structure A, in which for every k œ {0, 1, . . .} there
are finitely many relations in the vocabulary that have arity k. If this structure has a decidable
first-order theory, then there is an algorithm for the following problem:
Input: Two morphisms, described by expressions using prime functions and combinators.
Question: Are they the same morphism?

7 Further topics

Two-way automata. Theorem 6.3 gives us a reasonable category of single-use functions over
a relational structure with a decidable first-order theory. However, the latter property is not
the only one needed to ensure that the category is appropriate to automata. If we want to
model automata and their decision procedures, we will also need to execute certain fixpoint
algorithms, as explained in [5]. In order to allow it, we assume that A is an oligomorphic (see
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[5, Definition 3.9]) structure. It is a standard assumption in the theory of sets with atoms,
used to ensure that the notion of orbit-finite set is meaningful. Examples of oligomorphic
structures include the atoms with equality only, the rational numbers with their linear order,
and the Rado graph. Non-examples include Presburger arithmetic and the real field.

I Theorem 7.1. Let A be an oligomorphic structure with a decidable first-order theory. Then
the emptiness problem is decidable for single-use deterministic two-way automata over A.

In the proof of this theorem, we show that the single-use category over an oligomorphic
structure A is traced with respect to the coproduct +, and use this to model deterministic
two-way automata over A. The idea that traced monoidal categories are a natural setting
for two-way automata comes from [14].

Orbit-finite dimensional vector spaces. An alternative solution for the problem of function
spaces – our central motivation in this paper – is to use vector spaces of orbit-finite dimension.
The technical tools for this were developed already in [8]; our contribution here is mainly
one of perspective, namely framing it as a symmetric monoidal closed category.

I Theorem 7.2. The category of orbit-finitely spanned vector spaces [8, Section VI] is
symmetric monoidal closed, with respect to the tensor product.

I Remark 7.3. A similar result was observed in [22, Theorem 3.8], but using the smaller
category of vector spaces that admit an orbit-finite basis.
An advantage of the vector space category is its simplicity, and the fact that it is “bigger” in
the following sense: The two solutions for function spaces discussed in this paper, namely the
single-use solution and the vector space solution, sit on both sides of the classical category of
orbit-finite sets, as witnessed by two faithful functors, one from the single-use category to
the orbit-finite category, and one from the orbit-finite category to the vector space category.
However, there are two limitations of the orbit-finitely spanned vector spaces.

First, the existence of function spaces is dependent on the choice of atoms. Theorem 7.2
works when the atoms have equality only, and it also works when the atoms are equipped
with a total order. This is because the dual spaces are orbit-finitely spanned in these cases,
as proved in [8, Corollary VI.5]. However, this is no longer the case for other choices of
atoms, such as the Rado graph, see [8, Example 9]. This is in contrast to the single-use
category, where the existence of function spaces is independent of the choice of atoms.

A second limitation is that unlike the single-use category (cf. Theorem 7.1), the vector
space category does not support two-way automata. This is because this category generalizes
the orbit-finite category (i.e. it admits a faithful functor from it), and in the orbit-finite
category emptiness is undecidable for deterministic two-way automata [17, Theorem 5.3].
This precludes the kind of traced construction that we did in the single-use category. This
issue appears already without atoms: the category of finite-dimensional vector spaces is not
traced with respect to the sum ü of vector spaces.

Related work: categories and ⁄-calculus. There have been several works using category
theory to generalize classical operations on automata, such as the coalgebraic “generalized
powerset construction” [23]. The closest to the philosophy that this paper might be the
work of Colcombet and Petri�an [11]: it introduces a setting where automata over di�erent
categories may be studied and compared (see e.g. [4] for applications). Within this setting,
Pradic and the second author have investigated some properties of automata over symmetric
monoidal closed categories [18, Sections 1.2.3 and 4.7–4.8].
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The latter emerged as part of their research on “implicit automata” [19, 18, 21], which is
about relating the expressive power of automata and typed ⁄-calculi. In [18, Chapter 4], a
monoidal closed category of single-use assignments on string-valued registers is built and used
to relate a register-based string transducer model to a ⁄-calculus with linear types. Indeed,
symmetric monoidal closed categories are famous for providing denotational semantics for
the linear ⁄-calculus. Similarly, our results here could serve to characterize the languages of
words with atoms studied by the first and third author in [9] via some typed ⁄-calculus.

Conversely, our Theorem 3.8 might also be provable by representing single-use functions
as ⁄-terms (or programs in some richly structured syntactic formalism) instead of strategies
over games. Indeed, it is a classical fact that a simple type is inhabited by finitely many
linear ⁄-terms up to —-conversion (when there are no primitive constants), and variations on
this fact have been used in the literature to relate automata and ⁄-calculus [19, 12].
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Abstract
In this article, we investigate the structure of the trees in the pushdown hierarchy, a hierarchy of
infinite graphs having a decidable MSO-theory. We show that a binary complete tree in the pushdown
hierarchy must contain at least two di�erent subtrees which are isomorphic. We extend this property
to any tree with no leaves and with chains of unary vertices of bounded length. We provided two
applications of this result. A first application in formal language theory, gives a simple argument to
show that some languages are not deterministic higher-order indexed languages. A second application
in number theory shows that the real numbers defined by deterministic higher-order pushdown
automata are either rational or transcendental.
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1 Introduction

The pushdown hierarchy (also called the Caucal hierarchy) is a robust hierarchy of infinite
directed graphs for which monadic second-order logic (MSO) is decidable. These graphs
have a countable set of vertices but their edges and nodes are labeled and colored by finite
sets. Such infinite graphs with decidable MSO-theories play an important role in automated
program verification as they provide a framework in which the model-checking problem for
many relevant properties such as termination and safety is decidable. The robustness of the
pushdown hierarchy is witnessed by its numerous characterizations and closure properties
(we refer the reader to [21] for a survey).

A first characterization of the pushdown hierarchy is via graph transformations following
the original idea of Caucal [10]. Every graph in the pushdown hierarchy can be constructed
starting from a finite tree by combining two graph transformations that preserve the decidab-
ility of MSO-theories namely MSO-interpretations [12] and graph unfolding [13]. As shown
in Figure 1, the pushdown hierarchy consists of two intertwined hierarchies: one of classes
of trees pTreenqn•0 and one of classes of graphs pGraphnqn•0. The class Tree0 contains
all finite trees and for n • 0, Graphn contains all graphs that can be MSO-interpreted
in a tree of Treen. The trees in Treen`1 are the unfoldings of the graphs in Graphn. In
particular, Graph0 contains all finite graphs, Tree1 contains the regular trees and the graphs
in Graph1 are the prefix-recognizable graphs [9]. This hierarchy is closed under most if not
all transformations known to preserve the decidability of MSO-theories [8]. It is in particular
closed under MSO-transductions [13] and the Muchnik’s iteration [22]. More recently, the
pushdown hierarchy was shown to be closed under MSO+Ufin-interpretations in [20].
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Tree0
finite trees

Graph0
finite graphs

Tree1
regular trees

Graph1
prefix recogn.

Tree2 ...

MSO-int.

Unf

MSO-int.

Unf.

MSO-int.

Figure 1 The construction of the pushdown hierarchy using MSO-interpretations and the unfolding
operation.

The graphs and trees in the pushdown hierarchy admit several alternative characterizations.
The graphs inGraphn are (up-to isomorphism) the transition graphs of higher-order pushdown
automata of order n (see [8]). Higher-order pushdown automata [16] are a generalization of
the standard model of pushdown automata which manipulates stacks of stacks at order 2,
stacks of stacks of stacks at order 3, ... The deterministic terms in Treen`1 are the solutions
of higher-order safe recursion schemes of order-n [10, 15].

These di�erent characterizations make it easy to show that a graph belongs to the
pushdown hierarchy. It is rather more complicated to show that a graph does not belong
to the pushdown hierarchy. Still the question of characterizing the graphs in this hierarchy
has received a lot of attention. There are two main approaches. One approach is to work
with higher-order pushdown automata and to develop pumping lemmas for these automata
[5, 6, 18, 19]. A second approach is to focus on structural properties of the graphs and to
work by induction of the level in the hierarchy using graph transformations [1, 7]. The most
involded separation result, namely the separation between trees produced by safe and unsafe
recursion schemes was obtained with the first approach [19]. However this approach is much
more technically involved and arguably the technical results obtained are less likely to be
reusable. In this work, we follow the second approach.

Our starting point is a question asked to the first author by Wolfgang Thomas. He asked
whether the pushdown hierarchy contains irrational algebraic numbers such as

?
2. Meaning,

does there exists an infinite word (i.e., a unary tree) in the pushdown hierarchy that encodes
the expansion of

?
2 in some base ¸ • 2? Sadly with this precise statement, the question

seems still far out of reach1. But the recent work of [3] shows that if we choose to represent
a real number in r0, 1s not by its expansion but by a particular tree encoding this expansion,
the trees associated with irrational algebraic numbers have strong structural properties: they
are deterministic, mostly-complete and all their subtrees are non-isomorphic. The trees
representing expansions of real numbers in r0, 1s are implicit in the work of [3] and generalize
the definition of automatic real numbers [4]. Indeed they coincide with a generalization of
automatic real numbers in which deterministic finite automata are replaced by deterministic
higher-order pushdown automata [11].

1 In this sense, the pushdown hierarchy is known to contain all the rational numbers and all the morphic
numbers (and hence all the automatic numbers) in r0, 1s. Indeed morphic sequences have been shown
to belong to Tree2 in [10, Proposition 3.2]. Hence the pushdown hierarchy contains expansions of
transcendental numbers (see [2]) but is not known to contain the expansions of any irrational algebraic
number.
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In Section 4 and Section 5, we show that any tree with no leaves and with chains of unary
vertices of bounded length in the pushdown hierarchy must contain two di�erent isomorphic
subtrees. The main technical ingredient is a precise description of the MSO-interpretations
constructing a complete binary tree from a complete binary tree. In Section 6, we give two
applications of this result. First, we show how it can be used to show that certain languages
such as the language Lww “ tww | w P t0, 1u˚u cannot be accepted by any deterministic
higher-order pushdown automaton. Second, we show that a real number in r0, 1s represented
by a tree in the pushdown hierarchy is either rational or transcendental (i.e., not algebraic).
As the real numbers with a tree in Tree1 are the automatic reals numbers, the result was
proved for level 1 in [2]. It was also shown for level 2 in [3].

2 Preliminaries

Notations. Let �˚ denote the set of all words over the alphabet �. We write u Ñ v if u is
a prefix of v and u à v if u is a strict-prefix of v. If � is equipped with a total order relation,
we denote by †lex the resulting lexicographic ordering on words over �.

Infinite graphs and trees. In this article, we consider graphs with countably many vertices
with labeled edges and colored vertices. Let � be a finite set of edge labels and � be a finite
set of vertex colors, a graph G labeled by � and colored by � is a tuple pV,E,Cq where V is
a countable set of vertices, E Ñ V ˆ � ˆ V is a set of labeled edges, C Ñ � ˆ V is the set of
colors. A graph G is deterministic if for all ‡ P � and all vertices u, v and v

1, u ‡›Ñ
G

v and

u
‡›Ñ
G

v
1 then v “ v

1.
A path fi in a graph G from u to v is a sequence u0‡0u1 ¨ ¨ ¨‡n´1un P V p�V q˚ such that

u0 “ u, un “ v and pui,‡i, ui`1q P E for i P r0, n ´ 1s. This path is labeled by the word
w “ ‡0 ¨ ¨ ¨‡n´1. We write u

w›Ñ
G

v (or simply u
w›Ñ v if G is clear from the context) to

denote the existence of such a path. We extend this notation to a language L over � by
taking u

L›Ñ v if and only if u w›Ñ v for some w P L. To improve readability, we write ›Ñ

instead of �›Ñ, ›Ñ˚ instead of �
˚

›Ñ and ›Ñ` instead of �
`

›Ñ.
For two graphs G1 and G2, we write G1 „ G2 to denote the existence of an isomorphism

between G1 and G2.
A graph T is a tree if there exists a vertex r called the root of T such that there exists a

unique path from the root to any vertex. Vertices in a tree are called nodes. A node v is a
child of a node u if u �›Ñ v. In this case, we say that u is the parent of v. A node v is a
descendant of u if u ›Ñ˚

v which we also denote by u ÑT v. The subtree of a tree T rooted
at a node u, denoted by T|u, is the tree obtained by restricting T to u and its descendants.

Every node in a deterministic tree is uniquely identified by the label of the unique path
from the root to this vertex. As a result, a deterministic tree T labeled by � and colored
by � is determined up-to isomorphism by a mapping from a prefix-closed subset of �˚ to
the subsets of �. When reasoning up to isomorphism, we will not distinguish between a
deterministic tree and the associated mapping. We always assume that � comes with a fixed
arbitrary order and hence that the nodes of a deterministic tree can be compared using the
lexicographic order.

A complete binary tree is a deterministic tree labeled by t0, 1u in which every node has
two children. The 0-child is called the left-child and the 1-child is called the right-child. For
a direction “ P tÒ,Ö,Œu, we say that v is the “-successor of u, if v is the parent of u and
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“ “Ò or if v is the left-child (resp. right-child) of u and “ “Ö (resp. “ “Œ). We say that v
is in direction “ relative to u, if the “-successor of u is on the minimal path (ignoring the
orientations of the edges) from u to v.

Monadic-second order logic on graphs. We define monadic-second order logic (MSO) over
graphs with labeled edges and colored nodes as usual. We use lowercase letters x, y, z, . . . for
first order variables and uppercase letters X,Y, Z, . . . for second order variables. The atomic
formulas are x “ y, x P X, x ‡›Ñ y and ◊pxq for ‡ an edge label and ◊ a color. MSO-formulas
are obtained by applying boolean operators ( and _) and existential quantifiers (D) over
both first and second order variables. To improve readability, we will freely use any definable
notion as syntactic sugar: @, ñ, X Ñ Y , . . .

The notion of free variables is defined as usual. We write Ïpx1, . . . , xn, X1, . . . ,Xmq
when the free variables of a formula Ï are among x1, . . . , xn, X1, . . . ,Xm. A closed formula
does not have any free variables. For a graph G and a formula Ïpx1, . . . , xn, X1, . . . ,Xmq,
we write G |ù Ïru1, . . . , un, U1, . . . , Ums when the graph satisfies the formula if the free
variables x1, . . . , xn, X1, . . . ,Xm are respectively interpreted as u1, . . . , un, U1, . . . , Um where
the ui’s are vertices and Ui’s are sets of vertices. The MSO-theory of a graph G is a set
of closed formulas satisfied by G. A vertex u of a graph G is MSO-definable in G if there
exists a formula Ïpxq such that u is the only vertex such that G |ù Ïrus. The notion of an
MSO-definable set of vertices is defined similarly.

Graph transformations. An MSO-interpretation I (on graphs) is given by a tuple of MSO-
formulas p”pxq, pÏ‡px, yqq‡P�, pÏ◊pxqq◊P�q where � and � are finite sets of labels and colors
respectively. An MSO-recoloring is a special case of MSO-interpretation which does not erase
any vertices (i.e., ”pxq “ true) and preserves all edges (i.e., Ï‡px, yq “ x

‡›Ñ y for ‡ P �).
An MSO-transduction (see [12]) is the composition of a K-copying operation followed by

an MSO-interpretation. For a finite set of labels K “ tk1, . . . , knu, the K-copying operation
adds for every vertex u of the graph, fresh vertices u1, . . . , un as well as edges from u to ui

labeled by ki for each i P r1, ns.
The unfolding of a graph G from a vertex s is the tree denoted by UnfpG, sq whose

vertices consists of all paths in G starting from s and with an edge labeled by a from a path
fi to a path fi

1 if fi
1 “ fiat for some vertex t. Furthermore a path fi, ending at a vertex t of

G, is colored in UnfpG, sq with the same colors as t in G.

3 The pushdown hierarchy

The pushdown hierarchy contains the (possibly infinite) graphs which can be constructed
using MSO-interpretations combined with the unfolding operation starting from a finite tree.
The pushdown hierarchy consists of two intertwined hierarchies of classes of graphs2: one
containing trees pTreenqnPN and one containing graphs pGraphnqnPN such that:

Tree0 is the class of all finite trees;
for n • 0, Graphn is the class of all graphs G such that there exists an MSO-interpretation
I and a tree T P Treen with G „ IpT q;
for n • 1, Treen is the class of trees such that there exists a graph G P Graphn´1 and a
vertex u P G such that T „ UnfpG, uq.

2 All the graphs we consider are labeled and colored by finite sets: only the set of vertices is infinite.
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As both MSO-interpretations and the unfolding (from an MSO-definable vertex) preserve
the decidability of MSO-theories [12, 13], it follows that all graphs in the pushdown hierarchy
have a decidable MSO-theory [8]. Our main contribution only uses the following closure
properties which follow from [8]:

I Theorem 1 ([8]). The following properties hold:

1. For n • 0, for a deterministic tree T in Treen and an MSO-recoloring µ, the tree µpT q
belongs to Treen.

2. For n • 0, the class Graphn is closed under MSO-transductions and under restriction

to reachable vertices from a given vertex (not necessarily MSO-definable) and Treen is

closed under taking subtrees.

3. For n • 1, every graph G P Graphn is isomorphic to IpT q for some complete binary tree

T P Treen and some MSO-interpretation I. Furthermore, we can assume that for all

nodes s ‰ s
1
of IpT q, s and s

1
are incomparable for ÑT .

3.1 MSO-interpretations and tree-walking automata
By Property 1 of Theorem 1, every graph in Graphn can be MSO-interpreted in a complete
binary tree. In [7, 8], it is shown that MSO-interpretations applied to deterministic trees
can be described using only MSO-recolorings and tree walking automata. To simplify the
presentation, we tailor our definitions to complete binary trees (cf. Remark 4).

A tree-walking automaton on complete binary trees colored by � is a tuple A “
pQ, qA, F,�q where Q is the finite set of states, qA P Q is the initial state, F Ñ Q ˆ 2� is
the set of accepting conditions and � Ñ Q ˆ 2� ˆ tÒ,Ö,Œu ˆQ is the set of transitions.
Intuitively, a transition pp, c, “, qq expresses that if the automaton is in state p on a node u

colored by the colors of c, it can move in state q to the “-successor of u.
A run of a tree-walking automaton A on a complete binary tree T starting from a node u0

in state q is a finite sequence q0u0q1u1 ¨ ¨ ¨ qnun P pQVT q` with q0 “ q and for i P r0, n´ 1s,
there exists a transition ” “ pqi, T puiq, “, qi`1q P � with ui`1 the “-successor of ui. A run is
accepting if pqn, T punqq belongs to F . A tree-walking automaton A accepts a pair of nodes

pu, vq if there exists an accepting run of A on T from the initial state qA starting at u and
ending in v.

On complete binary trees, tree-walking automata can accept any MSO-definable binary
relation provided that the trees are recolored with a suitable MSO-recoloring.

I Proposition 2 ([7, 8]). For every binary complete tree T and every MSO-formula Ïpx, yq,
there exists an MSO-recoloring µ and a tree-walking automaton AÏ which accepts on µpT q
the pairs of nodes pu, vq such that T |ù Ïru, vs.

In this article, we need a stronger result in the case when the MSO-formula Ïpx, yq
defines a functional relation (i.e., for each node u, there exists at most one node v such that
T |ù Ïru, vs). Under this restriction, we will show that the tree-walking automaton can be
chosen to be deterministic and non-backtracking on T .

A tree-walking automaton is said to be deterministic if for all state q and set of colors
c P 2�, pq, c, “, pq P � and pq, c, “1

, p
1q P � implies that “ “ “

1 and p “ p
1. This notion of

determinism guarantees that there is at most one run starting from a given node in a given
state but it does not forbid the tree-walking automaton from visiting the same node twice.
A tree-walking automaton is said to be non-backtracking on T if none of its runs on T visits
the same node twice. In particular a non-backtracking automaton, when going from u to v,
will always follow the shortest path from u to v (ignoring the orientations of the edges).
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131:6 The Structure of Trees in the Pushdown Hierarchy

I Proposition 3. For every complete binary tree T and every MSO-formula Ïpx, yq functional
on T , there exist an MSO-recoloring µ and a deterministic and non-backtracking tree-walking

automaton AÏ which accepts on µpT q the pairs of nodes pu, vq such that T |ù Ïru, vs.

Proof Sketch. Let A be the non-deterministic tree-walking automaton and µA be the MSO-
recoloring obtained for Ïpx, yq in Proposition 2. Our aim is to define a new coloring µB

that captures the functional behavior of A on T . For this we define, for every node u and
every state p of A, targetpu, pq to be the unique node v such that all accepting runs of A on
µApT q starting in state p at u end in v. If no such node v exists, targetpu, pq is undefined.
As A accepts a functional relation, if A accepts a pair pu, vq then for the initial state qA of
A, targetpqA, uq is defined and equal to v.

To define the coloring µB, we fix an arbitrary order on the states of A. For each state
p of A, we color a node u by the tuple pp, “, qq if targetpu, pq is defined and equal to v, “

is the direction in tÒ,Ö,Œu of v relative to u and q is the smallest state of A such that
targetpu“ , qq “ v with u“ the “-successor of u. Such a state q must exists, as every run from
u to v must go through u“ . This coloring can be defined in MSO as µA is MSO-definable.

The deterministic and non-backtracking automaton B has the same states, initial state
and acceptance conditions as A. In a state p at a node u colored with a tuple pp, “, qq, the
automaton moves in the direction “ to the state q. It is easy to show that B accepts pu, vq
on µBpT q if and only if A accepts pu, vq on µApT q which concludes the proof. J

I Remark 4. To ease the presentation, we only defined tree-walking automata on binary
complete trees but they can be defined to work on general deterministic trees and the results
of both Proposition 2 and Proposition 3 generalize to this setting.

As a spin-o� result, we obtain a simple proof to an open question of [10, Question b]
which asks (when reformulated in the setting of this article) if all deterministic trees in
Treen can be obtained by replacing general MSO-interpretations by a restricted sub-class
called deterministic rational inverse mapping. A deterministic rational inverse mapping is
an MSO-interpretation in which edges are defined by deterministic tree-walking automata
working on deterministic trees (cf. Remark 4) and the colors are obtained by renaming or
erasing the existing colors. Only vertices that are source or target of an edge are kept (i.e.
”pxq :“ Dy,ö

‡P�
Ï‡px, yq _ Ï‡py, xq).

By a direct induction on the level of the pushdown hierarchy and using Proposition 3, we
obtain the following proposition.

I Proposition 5. Every deterministic tree in Treen is obtained by a n-fold application of a

deterministic inverse rational mapping followed by an unfolding starting with a finite tree.

4 Trees with no self-similarities in the pushdown hierarchy

A tree is said to have a self-similarity if it contains two di�erent subtrees which are isomorphic.
The main contribution of this article is the following theorem.

I Theorem 6. Every complete binary tree in the pushdown hierarchy has self-similarities.

Trees with no self-similarities are called pure in this article. To prove Theorem 6, we
need to show that the pushdown hierarchy does not contain any pure binary complete tree.
Assume toward a contradiction that it does. Let n0 • 0 denote the smallest level such that
either Graphn0 or Treen0 contain such a tree.
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Consider the case where Treen0 contains some pure complete binary tree Tpure. As
Tpure is infinite, we must have n0 • 1 and by definition of Treen0 , the tree Tpure is (up-to
isomorphism) the unfolding of a graph G P Graphn0´1 from some vertex rG. By Property 2
of Theorem 1, we can assume w.l.o.g. that all the vertices of G are reachable from rG. As
all subtrees of the unfolding of G from rG are non-isomorphic, every vertex of G must be
reachable by exactly one path from rG. Indeed, if a node s was reachable by two di�erent
paths fi1 ‰ fi2 from rG, then the subtrees rooted at fi1 and at fi2 in UnfpG, rGq would be
isomorphic. This implies that G is a tree. As every tree is isomorphic to its unfolding from its
root, the graph G must be isomorphic to Tpure. Hence G „ Tpure is a pure tree in Graphn0´1

which contradicts the definition of n0.

u0

c0

u1

c1

u2

c2

u5c5 u7

c7

1

1
0

a

u0

c0

u1 c1 u2

c2

u3 c3 u4

c4

u5 c5 u6 c6 u7

c7

1

1

1

0

0

0 1

Figure 2 A tree T with a distinguished set of nodes U “ tu0, u1, u2, u5, u7u (on the left) and the
induced tree TU (on the right). The chunk Cu2 is highlighted in orange.

It only remains to consider the case where Graphn0 contains a pure binary tree Tpure but
Treen0 does not contain any pure complete binary trees. By definition of Graphn0 and by
Property 3 of Theorem 1, there must exist a complete binary tree T and an MSO-interpretation
I such that Tpure is isomorphic to IpT q. We will show that if an MSO-interpretation is able
to produce a pure complete binary tree when applied to some complete binary tree T , then
the tree T must be a pure tree in disguise.

To formalize what we mean, we recall the notion of embedding in a tree which is illustrated
in Figure 2. A set of nodes U in a tree T which contains a unique minimal element induces a
tree denoted by TU . Intuitively this tree is obtained by restricting the tree T to the vertices
in U while preserving their colors and inheriting the ancestor relation from T . The label
of an edge pu, vq in TU is the label of the first edge in the unique path from u to v in T .
Remark that we present the notion in its most general form but we will mainly work with
embedding defining binary complete trees.

I Definition 7. An embedding in a tree T labeled by � is a set of nodes U which contains a

unique minimal element for the ancestor relation ÑT . This element is called the root of the

embedding. This embedding induces the tree TU whose nodes are the elements of U and such

that u
x›Ñ v P TU if and only if u

xw›Ñ v P T for some w P �˚
and there are no v

1 P U such

that u à v
1 à v. Moreover the nodes of U have the same colors in T and TU .

In Proposition 8, we show that, after applying a suitable MSO-recoloring to the tree T ,
the resulting tree embeds a pure complete binary tree. This is the main technical contribution
of this paper.

I Proposition 8. Let Tpure and T be two complete binary trees and let I be an MSO-

interpretation such that T “ IpT q. If Tpure is pure then there exists an MSO-recoloring µ

and an embedding SI MSO-definable in µpT q which induces a pure complete binary tree.
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131:8 The Structure of Trees in the Pushdown Hierarchy

We defer the proof of this proposition to Section 5, to first show how it can be used to
conclude the proof of Theorem 6. By applying Proposition 8, we obtain an MSO-recoloring
µ and an embedding SI MSO-definable in µpT q which induces a pure binary complete tree.
The tree µpT q belongs to Treen0 by Property 1 of Theorem 1. To reach a contradiction, we
will show that the tree induced by SI in µpT q belongs to Treen0 .

I Proposition 9. Let n • 0, let T be a deterministic tree in Treen and let U be an MSO-

definable embedding in T inducing a deterministic tree TU . The tree TU belongs to Treen.

Proof Sketch. For n “ 0, the result is immediate. Hence we assume that n • 1 and
furthermore using the closure properties of Theorem 1, we can assume that the root of the
embedding is the root of the tree T . Thanks to Property 1 of Theorem 1, we can color the
nodes of U in T with a fresh color $ to obtain a tree T$ also in Treen. Consider the following
MSO-interpretation I that produces TU from T$: it only keeps the vertices colored by $ and
for x P �, it defines an x-labeled edge between two such vertices u and v if and only if v can
be reached from u by a path labeled by a word in x�˚ which does not visit any vertices
colored by $ (except u or v). Furthermore, I erases the color $ and preserves all other colors.
Clearly, the tree induced by U on T is isomorphic to IpT$q. By definition of Treen, the tree
T$ is the unfolding of some graph G P Graphn´1 from some vertex r. The key ingredient is
that because IpT$q is deterministic, the MSO-interpretation I commutes with the unfolding.
It follows that TU „ IpT$q „ UnfpIpGq, rq. Hence TU is isomorphic to the unfolding of the
graph IpGq in Graphn´1 and belongs to Treen. J

By Proposition 9, the tree induced by SI in µpT q belongs to Treen0 and by Proposition 8
it is pure which brings the contradiction and conclude the proof of Theorem 6.

Clearly, Theorem 6 does not hold for all trees in the pushdown hierarchy. For instance, the
pushdown hierarchy contains infinite unary trees corresponding to non-ultimately-periodic
infinite words3 which are therefore pure. However, Theorem 6 can be extended to any tree
that does not contain arbitrary long chains of unary vertices.

I Corollary 10. Every tree in the pushdown hierarchy with no leaves and in which the length

of all chains of unary vertices is bounded has self-similarities.

Remark that if we simply ask that there is no infinite chains of unary vertices, Corollary 10
no longer holds. It is possible to construct a pure binary tree in Graph2 in which all chains
of unary vertices are finite. As illustrated in Figure 3, an example of such a tree can
be obtained by starting with a copy of the complete binary tree and replacing each node
u “ u1 ¨ ¨ ¨un P t0, 1u` by the finite chain ‚ u1›Ñ ‚ u2›Ñ ‚ ¨ ¨ ¨ un›Ñ ‚.

5 Proof of Proposition 8

This section is devoted to proving Proposition 8. For the rest of the section, we fix a complete
binary tree T and an MSO-interpretation I such that IpT q is a pure complete binary tree.
Furthermore for each label x P t0, 1u, we fix a deterministic and non-backtracking tree-walking
automaton Ax with states in Qx and an MSO-recoloring µx such that Ax accepts the pair
pu, vq on µxpT q if and only if u x›Ñ v in IpT q. We assume Q0 and Q1 are disjoint and take
Q “ Q0 ZQ1.

3 For example, the unary trees representing the morphic words belong to Tree2 (see [10, Proposition 3.2]).
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1
1
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1
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0
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Figure 3 An example of a pure non-complete binary tree in Graph2. This tree has its edges
labeled by t0, 1u. It is obtained by replacing each node u “ u1 ¨ ¨ ¨un P t0, 1u` of the complete binary
tree by a finite line of length |u| in which the i-th edge is labeled by ui. The corresponding node of
the complete binary tree is in green between brackets.

In Subsection 5.1, we define an MSO-definable embedding SI inducing in T a complete
binary tree. In Subsection 5.2, we define a MSO-recoloring µ of T . In Subsection 5.3, we
show that the binary complete tree induced by SI in µpT q is pure.

5.1 Definition of the embedding SI

Let us start by remarking that any embedding S in a tree T induces a partition of the nodes
of the tree T in regions, we call them chunks. A chunk of T is a set of nodes obtained by
removing a finite number of subtrees from a subtree of T . Hence a chunk C is described by
its boundary pu0, . . . , unq which is a sequence of nodes of T with u0 the root of the chunk
and the u1, . . . , un are descendants of u0 which are the pairwise incomparable roots of the
subtrees that are removed from T|u0 . In other terms, C “ T|u0z

î
iPr1,ns T|ui

. We call n the
degree of the chunk C.

To every node s in an embedding S, we associate the chunk Cs rooted at s defined by the
boundary ps, s1, . . . , snq where s1, . . . , sn are the children of s in the tree TS in lexicographical
order. This notion is illustrated in Figure 2. The chunks pCsqsPS form a partition of the
subtree of T rooted at rS , the root of the embedding S. For our purpose, it is more convenient
to obtain a partition of the whole tree T . Hence, we define CrS by the boundary pÁ, s1, . . . , snq
instead of prS , s1, . . . , snq.

The content of a chunk C is the set of nodes kept by the interpretation I (i.e., C X IpT q).
We can leverage the fact that IpT q is a complete binary tree to show that for any chunk
with a finite content, the size of the content is bounded by a constant that only depends on
the degree of the chunk and on the interpretation I.

I Lemma 11. Under the assumptions of this section, for all m • 0, there exists a constant

d • 0 depending only on m and on the MSO-interpretation I such that for each chunk C of

degree m, if the content of C is finite, then the size of this content is bounded by d.

Proof. Let C be a chunk of degree m • 0 with a boundary pu0, u1, . . . , umq and let d :“
2pm` 1qmaxp|Q0|, |Q1|q.

Assume toward a contradiction that C has a finite content U of size k ° d. As IpT q is a
tree, IpT q restricted to the content U of C is a forest F with k vertices and hence at most
k ´ 1 edges. As IpT q is a complete binary tree, there are at least 2k ´ pk ´ 1q “ k ` 1 edges
of IpT q starting in U and ending outside of C. By the pigeonhole principle, at least ¸ ° k`1

2

edges share the same label x P t0, 1u. Let pv1, w1q, . . . , pvl, wlq be an enumeration of these
edges. As vi belongs to C and wi does not, the accepting run of Ax on µxpT q for the pair
pvi, wiq must cross the boundary of C. By the pigeonhole principle, at least ¸

m`1
of these

runs cross the boundary of C at the same ui0 with i0 P r0, ns. As ¸
m`1

° maxp|Q0|, |Q1|q,
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there exists two di�erent runs (corresponding to two di�erent edges) reaching ui0 in the
same state. This implies that these two di�erent edges must have the same target which
contradicts the fact that IpT q is a tree. J

I Definition 12. The embedding SI is composed of all nodes u for which both their left and

right subtrees contain infinitely many nodes of IpT q.

Using Lemma 11, we can show that the content of the chunks associated with SI are
finite and hence bounded.

I Proposition 13. The set SI is an MSO-definable embedding in T defining a complete

binary tree. Moreover, for all s P SI , the content of the chunk Cs has size at most d where d

is a constant that only depends on I.

Proof Sketch. For a node u of T , we write Infpuq if there are infinitely many nodes of IpT q
below u.

We start by showing that for all node u satisfying Infpuq, there exist two incomparable
descendants v and v

1 of u such that Infpvq and Infpv1q. Assume towards a contradiction
that it is not the case for some u P T . Let v1, v2, . . . be an enumeration of the descendants
v of u for which Infpvq holds. For all i • 1, the content of the chunk Ci with boundary
pu, viq must be finite otherwise it would contain a descendant v of u satisfying Infpvq which
is incomparable with vi. By assumption, the vi’s belong to the same infinite branch and
hence T|u “ î

i•1
Ci. Therefore the size of the content of the Ci’s must be unbounded which

contradicts Lemma 11.
As the least common ancestor of v and v

1 belongs to SI , we have shown that below
every node u satisfying Infpuq there exists an element of SI . It immediately follows that SI
is non-empty and that below each of the two children of an element of SI , there exists a
unique minimal element in SI (as SI is closed under least common ancestor). This shows
that SI induces a complete binary tree. As on deterministic trees the predicate Infpuq is
MSO-definable, the embedding SI is also MSO-definable.

Using Lemma 11, it only remains to show that content of every chunk Cs for s P SI is
finite. Toward a contradiction, assume that for some s P SI which is not the root of the
embedding, the chunk Cs with boundary ps, s0, s1q has an infinite content. There must exist
some s1 in Cs satisfying Infps1q and which is incomparable with both s0 and s1. By symmetry,
we can assume that s1 is in the left subtree of s. In this case, the least common ancestor of
s
1 and s0 would belong to SI and would be strictly between s and s0 which would contradict
the definition of s0. The case of the chunk of root of the embedding is treated with similar
arguments. J

5.2 Definition of the MSO-recoloring µ of the nodes of the embedding
The MSO-recoloring µ will color each vertex s P SI with a tuple pFs,fis,Âsq where Fs is the
forest obtained by restricting IpT q to the chunk Cs and fis and Âs are two finite functions
describing how to reconnect the forest Fs to the other forests to obtain IpT q.

The forest Fs. For a node s P SI , let v1, . . . , vn with 0 § n § d, be an enumeration in
lexicographic order of the content of Cs. The nodes of the forest Fs are in r1, ns and for
x P t0, 1u, i x›Ñ j in Fs if and only if vi

x›Ñ vj in IpT q and for a color c, i is colored by c in
Fs if and only if vi is colored by c in IpT q.
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The partial function fis. The partial function fis provides information on the edges that
connect the forest Fs to the rest of IpT q. Consider a vertex i P r1, ns of Fs and a label
x P t0, 1u such that i has no outgoing x-labeled edge in Fs. Because IpT q is complete, there
is an edge vi

x›Ñ v in IpT q. The node v is outside of the chunk Cs and hence the unique run
of Ax accepting the pair pvi, vq on µxpT q must exit the chunk through one of its boundaries4
“ P troot, left, rightu in a state q“ P Qx. As Ax follows the minimal path from vi to v, it crosses
the boundary exactly once. The partial function fis : r1, ds ˆ t0, 1u Ñ troot, left, rightu ˆQ

associates pi, xq to p“, q“q if the x-labeled edge outgoing from i is missing in Fs and is
undefined otherwise.

The partial function Âs. The partial function Âs provides information on the behavior
of the automata A0 and A1 when entering the chunk Cs from one of its boundaries. Let
“ P troot, left, rightu be a boundary symbol and let s“ be the corresponding node in the
boundary of Cs. The value of Âsp“, qq will provide information on the unique accepting run
fl of Ax on µxpT q starting in state q at s“ (if it exists). If the run fl enters Cs and ends
at a vertex vi of the content of Cs, then Âsp“, qq is defined to be i. If the run fl enters Cs

and exits through a boundary “ ‰ “
1 P troot, left, rightu in some state q

1, then Âsp“, qq is
defined to be p“1

, q
1q. In all other cases, Âs is undefined. As a result Âs is a partial mapping

troot, left, rightu ˆQ Ñ r1, ds Y ptroot, left, rightu ˆQq.

I Lemma 14. The recoloring µ which colors every s P SI with the color pFs,fis,Âsq and

leave all other nodes uncolored is MSO-definable.

5.3 The tree induced by SI on µpT q is pure
We start by showing how IpT q can be reconstructed from the complete binary tree induced by
the embedding SI in µpT q. This tree, denoted E in the following, is essentially the mapping
associating to every node s P SI the tuple pFs,Âs,fisq.

Every node in IpT q corresponds to a unique node in some forest coloring of E. More
precisely, for a node u P IpT q, the address of u is the unique pair ps, iq such that u is the i-th
node in lexicographic order of the content of the chunk Cs. Let Addr “ tps, iq P SI ˆ r1, ds |
Epsq “ pFs,fis,Âsq and i P Fsu be the set of all valid addresses.

We now define a deterministic tree R whose nodes are the addresses in Addr and which
we will prove to be isomorphic to IpT q in Proposition 16.

In the tree R, an address ps, iq P Addr inherits the colors of the corresponding vertex
in Fs. Hence, we define Colorsps, iq to be t◊ P � | Epsq “ pFs,fis,Âsq and p◊, iq P Fsu. To
define the edges of the tree R, we introduce, for each label x P t0, 1u, a function Targetx
which defines the target of all the x-labeled outgoing edges in R. To define Targetx, we need
two auxiliary functions Travel and Follow. These definitions are illustrated in Figure 4.

For ps, “q P SI ˆ troot, left, rightu, we define Travelps, “q to be equal to ps1, “1q if upon
leaving Cs by the boundary “, we enter Cs1 by its boundary “

1.
For all s P SI , “ P troot, left, rightu and q P Qx, Followps, “, qq is recursively defined by

ps, jq if Âsp“, qq “ j P r1, ds and by Followps1, “2
, q

1q if Âsp“, qq “ p“1
, q

1q and Travelps, “1q “
ps1, “2q. Intuitively, Followps, “, qq gives the address of the end of the run of Ax starting in q

at the boundary “ of Cs.

4 If the boundary of Cs is ps, s0, s1q, then s correspond to root, s0 to left and s1 to right.
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r

Followpr, right, q1q
Ârpright, q1q “ pleft, pq

v Âvproot, pq “ 3

0

s

Followps, left, qq
Âspleft, qq “ proot, q1q

1

ufi1p2, 1q “ proot, qq

0
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1
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0

0 1

Target1pu, 2q

3
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1

0 1

0

Followps, left, q1q

Figure 4 An example of the computation of the function Target. The red path represents the
successive recursive calls made when computing Target1pu, 2q “ pv, 3q. As there is no edge from
2 labeled by 1 in Fu, Target1pu, 2q calls Followps, left, qq, as Travelpu, rootq “ ps, leftq following the
function fi1p2, 1q “ proot, qq. In turn, Followps, left, qq calls Followpr, right, q1q as Âspleft, qq “ proot, qq
and Travelps, rootq “ pr, rightq. It then proceeds to call Followps, left, q1q as before, which follows
Âvproot, pq “ 3 ending the run on the vertex 3 of the forest Fv.

For x P t0, 1u, Targetxps, iq is defined to be ps, jq if i x›Ñ j belongs to Fs otherwise, the
x-labeled outgoing edge from i is missing from the forest Fs and fispi, xq is defined and equal
to some p“, qq P troot, left, rightu ˆQx and Targetxps, iq is taken to be Followps1, “1

, qq where
ps1, “1q “ Travelps, “q.

I Lemma 15. For two addresses psu, iuq and psv, ivq P Addr respectively corresponding to

nodes u and v in IpT q, we have Targetxpsu, iuq “ psv, ivq if and only if u
x›Ñ v in IpT q.

Furthermore, as the tree-walking automaton Ax is non-backtracking in T , for all s P SI such

that s Ñ su and s Ñ sv, the recursive calls to Follow made when computing Targetxpsu, iuq
will all stay below s.

From this lemma, it follows that the tree R is isomorphic to IpT q.

I Proposition 16. The deterministic binary tree R with nodes in Addr and defined by Colors,
Target0 and Target1 is isomorphic to IpT q.

We use this reconstruction of IpT q in E presented above to show that any self-similarity
in E would lead to a self-similarity in IpT q which is impossible by assumption.

I Proposition 17. Under the assumptions of this section, for the MSO-recoloring µ and the

MSO-definable embedding SI defined previously, the deterministic binary tree E induced by

SI on µpT q does not have any self-similarities.

Proof. Assume toward a contradiction that E has a self-similarity and let s1 ‰ s2 be two
nodes of E such that E|s1 „ E|s2 . Recall that the nodes of E are the elements of SI and
that the ancestor relation ÑE coincide with the ancestor relation ÑT of T on SI ˆ SI . In
the following, we say that an address pt, iq P Addr is below a node s of E if t is descendant
of s in E (or equivalently in T ).

B Claim 18. There exists an address pt, jq P Addr below s1 such that all the descendants of
pt, jq in the tree R of Proposition 16 have an address below s1.
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Proof. For a label x P t0, 1u, consider the set Xx of addresses ps, iq below s1 such that
Targetxps, iq is not below s1. By definition of Targetx, there exists “ P tleft, rightu such that
for all ps, iq P Xx, Targetxps, iq must be equal to Followps1, “, qq for some q. By the pigeonhole
principle, Xx is of size at most |Qx| as otherwise we would have two addresses in Xx with
the same value of Targetx which would contradict the fact that R is a tree.

The set Y of addresses ps, iq having a descendant (in R) in the finite set X0 YX1 is itself
finite. Let k be the maximal depth of an s P E such that ps, iq P Y for some i. As s1 belongs
to SI , we have by definition of SI that there are infinitely many vertices of IpT q below s1

in T . Let Z be the corresponding set of addresses. Remark that all these addresses are
necessarily below s1 as if a node r P IpT q has an address ps, iq then s is the greatest ancestor
of r which belongs to SI . Hence as Z is infinite, it must contain an element pt, jq with t at
depth greater than k in T . By definition of the depth k, this implies that all descendants of
pt, jq in R are below s1. C

As E|s1 and E|s2 are isomorphic, there exists a (unique) bijection h that maps every node
s of E|s1 to the corresponding node hpsq in E|s2 . Let t1 “ hptq be the node corresponding
to t in E|s2 . In particular, t and t

1 have the same color in R and hence pt1, jq is an address
in Addr. We claim that T1 “ R|pt,jq is isomorphic to T2 “ R|pt1,jq which will bring the
contradiction as R „ IpT q is assumed to be pure. To see this, consider two descendants
pt1, j1q and pt2, j2q of pt, jq such that pt1, j1q x›Ñ

R
pt2, j2q and hence Targetxpt1, j1q “ pt2, j2q.

By definition of pt, jq, we have that both t1 and t2 are below s1. The recursive calls to Follow
made when computing Targetxpt1, j1q stay inside the subtree E|s1 (cf. Lemma 15). As E|s2
is isomorphic to E|s1 , we have that Targetxphpt1q, j1q “ phpt2q, j2q. This implies our claim
and conclude the proof. J

6 Applications

In this section, we leverage the well-known connection between the deterministic trees in the
pushdown hierarchy and the trees defined by deterministic higher-order pushdown automata
(presented in Subsection 6.1) to give two applications of our main results: one in formal
language theory in Subsection 6.2 and one in number theory in Subsection 6.3.

6.1 Higher-order pushdown automata
Higher-order pushdown automata are a generalization of the standard model of pushdown
automata. To simplify the presentation, we only define formally higher-order pushdown
automata of order 2. We refer the reader to [15] for a definition at all orders.

An order-2 pushdown automaton works on a stack of stacks, called an order-2 stack. We
start by defining order-1 and order-2 stacks and the operation to manipulate them. Let � be
a stack alphabet and let K R � be a distinguished bottom of stack symbol. An order-1 stack is
a sequence K“1 . . . “n P K�˚, denoted by r “1 . . . “n s1. The symbol “n is the top-most symbol
of the stack and r s1 is called the empty order-1 stack. An order-2 stack is a non-empty
sequence s1, . . . , sn of order-1 stacks denoted by r s1, . . . , sn s2. The order-1 stack sn is the
top-most order-1 stack and r r s1 s2 is the empty order-2 stack.

We now define operations on order-2 stacks. For every symbol “ P �, the operation push“

pushes the symbol “ on the top-most order-1 stack (i.e., push“pr s1, . . . , r “1, . . . , “m s1 s2q “
r s1, . . . , r “1, . . . , “m, “ s1 s2). The operation pop1 removes the top-most symbol of the top-
most order-1 stack provided that m • 1 (i.e., pop1pr s1, . . . , r “1, . . . , “m s1 s2q is undefined if
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m “ 0 and is equal to r s1, . . . , r “1, . . . , “m´1 s1 s2 if m • 1). The operation copy2 copies the
top-most order-1 stack (i.e., copy2pr s1, . . . , sn s2q “ r s1, . . . , sn, sn s2). Finally, the operation
pop2 removes the top-most order-1 stack, if the order-2 stack is not reduced to one order-1
stack (i.e., pop2pr s1, . . . , sn s2q “ r s1, . . . , sn´1 s2).

An order-2 pushdown automaton P (with Á-transitions) is defined by a tuple pQ, q0,�,�q
where Q is a finite set of states, q0 P Q is the initial state, � is a finite set of input symbols,
� is the set of transitions of the form pp, “,‡, op, qq with p, q P Q, “ P � Y tKu, ‡ P � Y tÁu
and op an operation in tpop1,push“ ,pop2, copy2u. We furthermore assume that states of P
can be partitioned into Q� ZQÁ such that states in Q� (resp. in QÁ) are only the source of
transitions labeled by � (resp. labeled by Á). The automaton is said to be deterministic if
for all q P Q, “ P � Y tKu and ‡ P � Y tÁu, there exists at most one transition in � starting
with pq, “,‡q and if there exists a transition starting with pq, “q labeled by Á then it is the
only transition starting with pq, “q.

A configuration of an order-2 pushdown automaton is a pair pq, sq with q P Q and s

an order-2 stack. For ‡ P � Y tÁu, the automaton P induces a relation ‡›Ñ
P

between the

configurations of P defined by: pp, sq ‡›Ñ
P

pq, s1q if there exists a transition pp, “,‡, op, qq with
s
1 “ oppsq and “ is the top-most symbol of the top-most order-1 stack of s. From these
relations, we can define the relation wùñ

P
for each w P �˚ in the usual way. If the automaton

P is deterministic, we define for all w P �˚, ”P pwq to be the unique configuration pq, sq (if it
exists) such that pq0, r r s1 s2q wùñ

P
pq, sq with s a stack and q P Q�.

If we fix a set F Ñ Q� of final states, the automaton P accepts the language LpP q
of words over � defined by LpP q :“ tw P �˚ | pq0, r r s1 s2q wùñ

P
pq, sq ^ q P F u. Figure 5

gives an example of a deterministic order-2 pushdown automaton accepting the language
t1n0n1n | n • 1u.

If we fix a finite set � of vertex colors and a mapping Col : Q� Ñ 2�, a deterministic
order-2 pushdown automaton P defines a deterministic tree T pP q with edges labeled by
� and with nodes colored by �. This tree is given by the partial function TP from �˚ to
2� such that for all w P �˚, TP pwq “ Colpqq if ”P pwq is defined and equal to pq, sq and is
undefined otherwise.

The trees defined in this way are the deterministic trees in the pushdown hierarchy.

I Theorem 19 ([10, 15]). The deterministic trees in Treen are the trees defined by determ-

inistic higher-order pushdown automata of order n´ 1.

6.2 Deterministic vs non-deterministic higher-order pushdown automata
Let � be a finite alphabet. For a language L Ñ �˚ and a word w P �˚, recall that the
left-quotient of L by w, denoted by w

´1
L, is the set w´1

L :“ tu P �˚ | wu P Lu. We can
leverage Theorem 19 to show that if all the left-quotients of a language are di�erent then
this language cannot be accepted by any deterministic higher-order pushdown automaton.

I Theorem 20. Let � be a finite alphabet with at least two symbols and L be a language

over �. If for all w1 ‰ w2 P �˚
, we have w

´1

1
L ‰ w

´1

2
L, the language L cannot be accepted

by a deterministic higher-order pushdown automaton of any order. In particular, this is the

case for the languages: tww | w P �˚u, tw | w a palindrome in �˚u and twfp|w|q | w P �˚u
for f : N Ñ N strictly increasing.

Proof Sketch. Let � be a finite alphabet with a least two symbols and L be a language over
�. Assume that for all w1 ‰ w2 P �˚, w´1

1
L ‰ w

´1

2
L.
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q0 q1

K, 1,pushY

X|Y, 1,pushX

qÁ

X|Y, 0, copy1
q2

X|Y, Á,pop1

X, 0,pop1

q3

Y, 0,pop2

X, 1,pop1

q4

Y, 1,pop1

Figure 5 A deterministic higher-order pushdown automaton of order-2 recognizing the lan-
guage t1n0n1n | n • 1u with q0 its initial state and q4 its final state. Note that the loop on the
state q1 labeled by X|Y, 1, pushX is actually depicting two transitions: pq1, X, 1, pushX , q1q and
pq1, Y, 1, pushX , q1q and similarly for the transitions going from q1 to qÁ and from qÁ to q2. For
example, the accepting run for the word 110011 is the following pq0, r r s1 s2q 1›Ñ pq1, r rY s1 s2q 1›Ñ
pq1, r rY X s1 s2q 0›Ñ pqÁ, r rY X s1rY X s1 s2q Á›Ñ pq2, r rY X s1rY s1 s2q 0›Ñ pq3, r rY X s1 s2q 1›Ñ
pq3, r rY s1 s2q 1›Ñ pq4, r r s1 s2q.

Consider the deterministic complete tree TL : �˚ Ñ t0, 1u labeled by � and colored
by t0, 1u defined by TLpwq “ 1 if and only if w P L. By Theorem 19, TL belongs to the
pushdown hierarchy if and only if L is accepted by a deterministic higher-order pushdown
automaton of some order. The assumption of the language L is equivalent to requiring all the
subtrees of TL to be non-isomorphic. Hence TL does not belong to the pushdown hierarchy
by Corollary 10 and our claim follows. J

We remark that the language tw | w a palindrome in �˚u is accepted by a non-determinis-
tic pushdown automaton, the language tww | w P �˚u is accepted by a non-deterministic
order-2 pushdown automaton and tw|w| | w P �˚u is accepted by a non-deterministic order-3
pushdown automaton.

6.3 Real numbers defined by deterministic higher-order pushdown
automata

We introduce a generalization of the notion of automatic sequence [4] by replacing the
deterministic finite automata used to generate automatic sequences by deterministic higher-
order pushdown automata. This generalization follows an approach initiated in [3, 11] and is
explicitely mentioned in the conclusion of [11].

Recall that an automatic sequence in base b • 2 is an infinite sequence ⁄1⁄2 ¨ ¨ ¨ P �Ê which
is defined using a deterministic finite automaton A over the alphabet �b :“ t0, 1, . . . , b´ 1u.
For all i • 1, the automaton outputs the symbol ⁄i after having read the decomposition xiyb
of i in base b. For the automaton A to output symbols in �, we simply associate a symbol in
� to every state of A using a mapping Output : Q Ñ �.

Similarly, a deterministic order-k pushdown automaton P over �b :“ t0, . . . , b ´ 1u
equipped with an output function Output : Q� Ñ � defines a sequence ⁄1⁄2 ¨ ¨ ¨�Ê if for
all i • 1, ”P pxiybq “ pq, sq with Outputpqq “ ⁄i. If such an automaton exists, the sequence
⁄1⁄2 ¨ ¨ ¨ P �Ê is said to be automatic of order k in base b.

For two bases ¸ and b • 2, a real number in r0, 1s is said to be p¸, bq-automatic of order-k
if it admits an expansion 0.–1–2 ¨ ¨ ¨ in base ¸ and the sequence –1–2 ¨ ¨ ¨ P t0, ¸ ´ 1uÊ is
automatic of order-k in base b.

For instance, consider the real number – whose binary expansion is 0.–1–2 ¨ ¨ ¨ with
–m “ 1 if m “ 23n ´ 22n ` 2n ´ 1 for some n • 1 and –m “ 0 otherwise. This number
– “ ∞

n•1
2´2

3n`2
2n´2

n`1 is p2, 2q-automatic of order-2. To see this, remark that for all n • 1,
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the binary decomposition of 23n ´ 22n ` 2n ´ 1 is 1n0n1n. Hence an order-2 deterministic
pushdown automaton describing the sequence –1–2 . . . can be obtained by making the
deterministic order-2 pushdown automaton presented in Figure 5 complete.

An alternative definition of p¸, bq-automatic numbers of order-k can be achieved by
considering what we call the p¸, bq-tree of the real number. For a real number – with
a presentation 0.–1–2 ¨ ¨ ¨ in base ¸ • 2, we can associate its p¸, bq-tree T– which is the
deterministic tree whose edges are labeled by t0, . . . , b´ 1u and whose nodes are colored by
a unique color in t0, . . . , ¸ ´ 1u. The domain of the tree T– is tÁu Y r1, ¸ ´ 1sr0, ¸ ´ 1s˚, for
all i • 1, T–pxiybq “ –i and by convention, T–pÁq is taken to be 0. Thanks to Theorem 19, a
real number – is p¸, bq-automatic of order k if and only if it admits an p¸, bq-tree in Treek`1.

The notion of p¸, bq-tree is implicit in the work of [3] where the authors use it to give a
su�cient condition for a irrational number to be transcendental.

I Theorem 21 ([3]). Let ¸ • 2, b • 2, 0 § – § 1 a real number and let T– be an p¸, bq-tree
for –. If T– has self-similarities then – is either rational or transcendental.

By Corollary 10, it immediately follows that:

I Corollary 22. For all ¸ • 2 and all b • 2, the p¸, bq-automatic real number of order k are

either rational or transcendental.

7 Conclusion

In this article, we have shown that every tree in the pushdown hierarchy with no leaves
and with chains of unary vertices of bounded length must contain self-similarities. This in
particular implies that the trees produced by safe recursion schemes have this property. It is
an ongoing work to generalize this property to general unsafe recursion schemes [17]. This
would in particular prove that collapsible pushdown automata, a generalization of higher-order
pushdown automata cannot be used to generate irrational algebraic numbers [14].
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Abstract

This paper provides an NP procedure that decides whether a linear-exponential system of constraints
has an integer solution. Linear-exponential systems extend standard integer linear programs with
exponential terms 2x and remainder terms (x mod 2y). Our result implies that the existential theory
of the structure (N, 0, 1,+, 2(·), V2(·, ·),Æ) has an NP-complete satisfiability problem, thus improving
upon a recent ExpSpace upper bound. This theory extends the existential fragment of Presburger
arithmetic with the exponentiation function x ‘æ 2x and the binary predicate V2(x, y) that is true
whenever y Ø 1 is the largest power of 2 dividing x.

Our procedure for solving linear-exponential systems uses the method of quantifier elimination.
As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic
polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).
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1 Introduction

Integer (linear) programming is the problem of deciding whether a system of linear inequalities
has a solution over the integers (Z). It is a textbook fact that this problem is NP-complete;
however, proof of membership in NP is not trivial. It is established [3, 27] by showing that,
if a given system has a solution over Z, then it also has a small solution. The latter means
that the bit size of all components can be bounded from above by a polynomial in the bit
size of the system. Integer programming is an important language that can encode many
combinatorial problems and constraints from multiple application domains; see, e.g., [20, 32].
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In this paper we consider more general systems of constraints, which may contain not
only linear inequalities (as in integer programming) but also constraints of the form y = 2x
(exponentiation base 2) and z = (x mod 2y) (remainder modulo powers of 2). Equivalently,
and embedding both new operations into a uniform syntax, we look at a conjunction of
inequalities of the form

ÿn

i=1

1
ai · xi + bi · 2xi +

ÿn

j=1
ci,j · (xi mod 2xj )

2
+ d Æ 0 , (1)

referred to as an (integer) linear-exponential system. In fact, the linear-exponential systems
that we consider can also feature equalities = and strict inequalities < .2

Observe that a linear-exponential system of the form x1 = 1 ·
w

n

i=1
(xi+1 = 2xi) states

that xn+1 is the tower of 2s of height n. This number is huge, and makes proving an
analogue of the small solution property described above a hopeless task in our setting. This
obstacle was recently shown avoidable [11], however, and an exponential-space procedure for
linear-exponential programs was found, relying on automata-theoretic methods. Our main
result is that, in fact, the problem belongs to NP.

I Theorem 1. Deciding whether a linear-exponential system over Z has a solution is in NP.

We highlight that the choice of the base 2 for the exponentials is for the convenience of
exposition: our result holds for any positive integer base given in binary as part of the input.

As an example showcasing the power of integer linear-exponential systems, consider
computation of discrete logarithm base 2: given non-negative integers m, r œ N, producing
an x œ N such that 2x ≠ r is divisible by m. As sketched in [14], this problem is reducible to
checking feasibility (existence of solutions) of at most logm linear-exponential systems in two
variables, by a binary search for a suitable exponent x. Hence, improving Theorem 1 from
NP to PTime for the case of linear-exponential systems with a fixed number of variables
would require a major breakthrough in number theory. In contrast, under this restriction,
feasibility of standard integer linear programs can be determined in PTime [19].

For the authors of this paper, the main motivation for looking at linear-exponential systems
stems from logic. Consider the first-order theory of the structure (N, 0, 1,+, 2(·), V2(·, ·),Æ),
which we refer to as the Büchi–Semenov arithmetic. In this structure, the signature (0, 1,+,Æ)
of linear arithmetic is extended with the function symbol 2(·), interpreted as the function
x ‘æ 2x, and the binary predicate symbol V2, interpreted as {(x, y) œ N ◊ N : y is the largest
power of 2 that divides x}. Importantly, the predicate V2 can be replaced in this definition
with the function x mod 2y, because the two are mutually expressible:

V2(x, y) ≈∆ ÷v
!
2 · y = 2v · 2 · (x mod 2v) = 2v

"
,

(x mod 2y) = z ≈∆ z Æ 2y ≠ 1 ·
!
x = z ‚ ÷u (V2(x ≠ z, 2u) · 2y Æ 2u)

"
.

Above, the subtraction symbol can be expressed in the theory in the obvious way (perhaps
with the help of an auxiliary existential quantifier for expressing x ≠ z).

Büchi–Semenov arithmetic subsumes logical theories known as Büchi arithmetic and
Semenov arithmetic; see Section 2. As a consequence of Theorem 1, we show:

I Theorem 2. The satisfiability problem of existential Büchi–Semenov arithmetic is in NP.

2 While equalities are considered for convenience only (they can be encoded with a pair of inequalities Æ),
the addition of < is of interest. Indeed, di�erently from standard integer programming, one cannot
define < in terms of Æ, since 2y is not an integer for y < 0. Observe that (x mod 2y) = 0 when y < 0,
because over the reals (a mod m) = a ≠ m

%
a
m

&
, where Â.Ê is the floor function.
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Theorems 1 and 2 improve upon several results in the literature. The most recent
such result is the exponential-space procedure [11] already mentioned above. In 2023, two
elementary decision procedures were developed concurrently and independently for integer
linear programs with exponentiation constraints (y = 2x), or equivalently for the existential
fragment of Semenov arithmetic: they run in non-deterministic exponential time [2] and in
triply exponential time [41], respectively. Finally, another result subsumed by Theorem 2 is
the membership in NP for the existential fragment of Büchi arithmetic [13].

Theorem 1 is established by designing a non-deterministic polynomial-time decision
procedure, which, unlike those in papers [11, 13] but similarly to [2, 41], avoids automata-
theoretic methods and instead relies on quantifier elimination. This is a powerful method
(see, e.g., [9] as well as Section 2) that can be seen as a bridge between logic and integer
programming. Presburger [30] used it to show decidability of linear integer arithmetic
(and Tarski for real arithmetic with addition and multiplication). For systems of linear
equations, quantifier elimination is essentially Gaussian elimination. As a little stepping
stone, which was in fact one of the springboards for our paper, we extend the PTime integer
Gaussian elimination procedure by Bareiss [1, 39] into an NP procedure for solving systems
of inequalities over Z (thus re-proving membership of integer linear programming in NP).

A look ahead. The following Section 2 recalls some relevant related work on logical theories
of arithmetic. At the end of the paper (Section 9) this material is complemented by a
discussion of future research directions, along with several more key references.

The NP procedure for integer programming is given as Algorithm 1 in Section 4. In this
extended abstract, we do not provide a proof of correctness or analysis of the running time,
but instead compare the algorithm with the classic Gauss–Jordan variable elimination and
with Bareiss’ method for systems of equations (that is, equalities). Necessary definitions and
background information are provided in the Preliminaries (Section 3).

Our core result is an NP procedure for solving linear-exponential systems over N. Its
pseudocode is split into Algorithms 2–4. These are presented in the same imperative
style with non-deterministic branching as Algorithm 1, and in fact Algorithm 3 relies
on Algorithm 1. Section 5 provides a high-level overview of all three algorithms together. To
this end, we introduce several new auxiliary concepts: quotient systems and quotient terms,
delayed substitution, and primitive linear-exponential systems. After this, technical details
of Algorithms 2–4 are given. Section 6 sketches key ideas behind the correctness argument,
and the text within this section is thus to be read alongside the pseudocode of Algorithms.
An overview of the analysis of the worst-case running time is presented in Section 7. The
basic definitions are again those from Preliminaries, and of particular relevance are the
subtleties of the action of term substitutions.

Building on the core procedure, in Section 8 we show how to solve in NP linear-exponential
systems not only over N but also over Z (Theorem 1) and how to decide Büchi–Semenov
arithmetic in NP (Theorem 2). The modifications to this procedure that enable proving
both results for a di�erent integer base b > 2 for the exponentials are given in Appendix A.

2 Arithmetic theories of Büchi, Semenov, and Presburger

In this section, we review results on arithmetic theories that are the most relevant to our study.
Büchi arithmetic is the first-order theory of the structure (N, 0, 1,+, V2(·, ·),Æ). By the

celebrated Büchi–Bruyère theorem [4, 5], a set S ™ Nd is definable in (N, 0, 1,+, V2(·, ·),Æ)
if and only if the representation of S as a language over the alphabet {0, 1}d is recognisable
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by a deterministic finite automaton (DFA). The theorem is e�ective, and implies that the
satisfiability problem for Büchi arithmetic is in Tower (in fact, Tower-complete) [31, 36].
The situation is di�erent for the existential fragment of this theory. The satisfiability problem
is now NP-complete [13], but existential formulae are less expressive [15]. In particular,
this fragment fails to capture the binary language {10, 01}ú. Decision procedures for Büchi
arithmetic have been successfully implemented and used to automatically prove many results
in combinatorics on words and number theory [35].

Semenov arithmetic is the first-order theory of the structure (N, 0, 1,+, 2(·),Æ). Its
decidability follows from the classical work of Semenov on sparse predicates [33, 34], and
an explicit decision procedure was given by Cherlin and Point [6, 28]. Similarly to Büchi
arithmetic, Semenov arithmetic is Tower-complete [8, 29]; however, its existential fragment
has only been known to be in NExpTime [2]. The paper [41] provides applications of this
fragment to solving systems of string constraints with string-to-integer conversion functions.

Büchi–Semenov arithmetic is a natural combination of these two theories. Di�erently from
Büchi and Semenov arithmetics, the ÷ú’ú-fragment of this logic is undecidable [6]. In view of
this, the recent result showing that the satisfiability problem of existential Büchi–Semenov
arithmetic is in ExpSpace [11] is surprising. The proof technique, moreover, establishes the
membership in ExpSpace of the extension of existential Büchi–Semenov arithmetic with
arbitrary regular predicates given on input as DFAs. Since this extension can express the
intersection non-emptiness problem for DFAs, its satisfiability problem is PSpace-hard [22].
The decision procedure of [11] was applied to give an algorithm for solving real-world instances
of word equations with length constraints.

Both first-order theories of the structures (N, 0, 1,+,Æ) and (Z, 0, 1,+,Æ) are usually
referred to as Presburger arithmetic, because the decision problems for these theories are
logspace inter-reducible, meaning that each structure can be interpreted in the other. The
procedures that we propose in this paper build upon a version of the quantifier-elimination
procedure for the first-order theory of the structure (Z, 0, 1,+,Æ). Standard procedures for
this theory [9, 26, 38] are known to be suboptimal when applied to the existential fragment:
throughout these procedures, the bit size of the numbers in the formulae grow exponentially
faster than in, e.g., geometric procedures for the theory [7]. A remedy to this well-known issue
was proposed by Weispfenning [39, Corollary 4.3]. We develop his observation in Section 4.

3 Preliminaries

We usually write a, b, c, . . . for integers, x, y, z, . . . for integer variables, and a, b, c, . . . and
x,y,z, . . . for vectors of those. By x \ y we denote the vector obtained by removing the
variable y from x. We denote linear-exponential systems and logical formulae with the letters
Ï,‰,Â, . . . , and write Ï(x) when the (free) variables of Ï are among x.

For a œ R, we write |a|, ÁaË, and log a for the absolute value, ceiling, and (if a > 0)
the binary logarithm of a. All numbers encountered by our algorithm are encoded in
binary; note that n œ N can be represented using Álog(n+ 1)Ë bits. For n,m œ Z, denote
[n,m] := {n, n+ 1, . . . ,m}. The set N of non-negative integers contains 0.

Terms. As in Equation (1), a (linear-exponential) term is an expression of the form
ÿn

i=1

!
ai · xi + bi · 2xi +

ÿn

j=1
ci,j · (xi mod 2xj )

"
+ d, (2)

where ai, bi, ci,j œ Z are the coe�cients of the term and d œ Z is its constant. If all bi and ci,j

are zero then the term is said to be linear. We denote terms by the letters fl,‡, ·, . . . , and
write ·(x) if all variables of the term · are in x. For a term · in Equation (2), its 1-norm is
Î·Î1 :=

q
n

i=1
(|ai|+ |bi|+

q
n

j=1
|ci,j |) + |d|.
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We use the words “system” and “conjunction” of constraints interchangeably. While
equalities and inequalities of a linear-exponential system are always of the form · = 0, · Æ 0,
and · < 0, for the convenience of exposition we often rearrange left- and right-hand sides and
write, e.g., ·1 Æ ·2. In our procedures, linear-exponential systems may contain equalities,
inequalities, and also divisibility constraints d | · , where · is a term as in Equation (2),
d œ Z is non-zero, and | is the divisibility predicate, {(d, n) œ Z◊Z : n = kd for some k œ Z}.
We write mod(Ï) for the (positive) least common multiple of all divisors d appearing in
divisibility constraints d | · of a system Ï. For purely syntactic reasons, it is sometimes
convenient to see a divisibility constraint d | ·1 ≠ ·2 as a congruence ·1 ©d ·2, where d Ø 1
with no loss of generality. We use the term divisibility constraint also for these congruences.

Substitutions. Our procedure uses several special kinds of substitutions. Consider a linear-
exponential system Ï, a term · , two variables x and y, and a œ Z \ {0}.

We write Ï[· / x] for the system obtained from Ï by replacing every linear occurrence of x
outside modulo operators with · . To clarify, this substitution only modifies the “ai · xi”
parts of the term in Equation (2), but not the “ci,j · (xi mod 2xj )” parts.
We write Ï[· / x mod 2y] and Ï[· / 2x] for the system obtained from Ï by replacing with
· every occurrence of (x mod 2y) and 2x, respectively.
We write Ï[[ ·

a
/ x]] for the vigorous substitution of ·

a
for x. This substitution works as

follows. 1: Multiply every equality and inequality by a, flipping the signs of inequalities
if a < 0; this step also applies to inequalities in which x does not occur. 2: Multiply
both sides of divisibility constraints in which x occurs by a, i.e., d | · becomes a · d | a · · .
3: Replace with · every linear occurrence of a · x outside modulo operators. Note that,
thanks to step 1, each coe�cient of x in the system can be factorised as a ·b for some b œ Z.

We sometimes see substitutions [· / ·
Õ] as first-class citizens: functions mapping systems to

systems. When adopting this perspective, Ï[· / ·
Õ] is seen as a function application.

4 Solving systems of linear inequalities over Z

In this section we present Algorithm 1 (GaussQE), a non-deterministic polynomial time
quantifier elimination (QE) procedure for solving systems of linear inequalities over Z, or in
other words for integer programming. A constraint (equality, inequality, or divisibility) is
linear if it only contains linear terms, as defined in Section 3.

We already mentioned in Section 1 that Integer Programming œ NP is a standard
result. Intuitively, the range of each variable is infinite, which necessitates a proof that
a suitable (and small) range su�ces; see, e.g., [3, 27, 37]. Methods developed in these
references, however, do not enjoy the flexibility of quantifier elimination: e.g., they either do
not preserve formula equivalence or are not actually removing quantifiers.

I Theorem 3. Algorithm 1 (GaussQE) runs in non-deterministic polynomial time and,
given a linear system Ï(x,z) and variables x, produces in each non-deterministic branch —

a linear system Â—(z) such that
x

—
Â— is equivalent to ÷xÏ.

GaussQE is based on an observation by Weispfenning, who drew a parallel between
a weak form of QE and Gaussian variable elimination [39]. Based on this observation
and relying on an insight by Bareiss [1] (to be discussed below), Weispfenning sketched a
non-deterministic procedure for deciding closed existential formulae of Presburger arithmetic
in polynomial time. Although the idea of weak QE [39] has since been developed further [23],
the NP observation has apparently remained not well known.
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Algorithm 1 GaussQE: Gauss–Jordan elimination for integer programming.

Input: x : sequence of variables; Ï(x,z) : system of linear constraints.
Output of each branch (—): system Â—(z) of linear constraints.
Ensuring:

x
—

Â— is equivalent to ÷xÏ.

1: replace each inequality · Æ 0 in Ï with · + y = 0, where y is a fresh slack variable
2: ¸ Ω 1; s Ω () Û s is an empty sequence of substitutions
3: foreach x in x do

4: if no equality of Ï contains x then continue

5: guess ax+ · = 0 (with a ”= 0) Ω equality in Ï that contains x
6: p Ω ¸; ¸ Ω a Û previous and current lead coe�cients
7: if · contains a slack variable y not assigned by s then

8: guess v Ω integer in [0, |a| ·mod(Ï) ≠ 1]
9: append [v / y] to s

10: Ï Ω Ï[[≠·

a
/ x]]

11: divide each constraint in Ï by p Û in divisibility constraints, both sides are a�ected
12: Ï Ω Ï · (a | ·)
13: foreach equality ÷ = 0 of Ï that contains some slack variable y not assigned by s do

14: replace ÷ = 0 with ÷[0 / y] Æ 0 if the coe�cient at y is positive else with ÷[0 / y] Ø 0
15: apply substitutions of s to Ï

16: foreach x in x that occurs in Ï do

17: guess r Ω integer in [0,mod(Ï) ≠ 1]
18: Ï Ω Ï[r / x]
19: return Ï

Due to space constraints, we omit the proof of Theorem 3, and explain instead only the
key ideas. We first consider the specification of GaussQE, in particular non-deterministic
branching. We then recall the main underlying mechanism: Gaussian variable elimination
(thus retracing and expanding Weispfenning’s observation). After that, we discuss extension
of this mechanism to tackle inequalities over Z.

Input, output, and non-determinism. The input to GaussQE is a system Ï of linear
constraints, as well as a sequence x of variables to eliminate. The algorithm makes non-
deterministic guesses in lines 5, 8, and 17. Output of each branch (of the non-deterministic
execution) is specified at the top: it is a system Â— of linear constraints, in which all variables
x in x have been eliminated. For any specific non-deterministic branch, call it —, the output
system Â— may not necessarily be equivalent to ÷xÏ, but the disjunction of all outputs
across all branches must be:

x
—

Â— has the same set of satisfying assignments as ÷xÏ.3

The number of non-deterministic branches (individual paths through the execution tree)
is usually exponential, but each of them runs in polynomial time. (This is true for all
algorithms presented in this paper.) If all variables of the input system Ï are included in x,
then each branch returns a conjunction of numerical assertions that evaluates to true or false.

3 Formally, an assignment is a map ‹ from (free) variables to Z. It satisfies a constraint if replacing each
z in the domain of ‹ with ‹(z) makes the constraint a true numerical assertion.
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Gaussian elimination and Bareiss’ method. Consider a system Ï of linear equations (i.e.,
equalities) over fields, e.g., R or Q, and let x be a vector of variables that we wish to eliminate
from Ï. We recall the Gauss–Jordan variable elimination algorithm, proceeding as follows:
01: ¸ Ω 1
02: foreach x in x do

03: if no equality of Ï contains x then continue

04: let ax+ · = 0 (with a ”= 0) Ω an arbitrary equality in Ï that contains x
05: p Ω ¸; ¸ Ω a

06: Ï Ω Ï[[≠·

a
/ x]]

07: divide each constraint in Ï by p

08: return Ï

By removing from this code all lines involving p and ¸ (lines 01, 05 and 07), we obtain a
naive version of the procedure: an equation is picked in line 04 and used to remove one of
its occurring variables in line 06. Indeed, applying a vigorous substitution [[≠·

a
/ x]] to an

equality bx+ ‡ = 0 is equivalent to first multiplying this equality by the lead coe�cient a
and then subtracting b · (ax+ ·) = 0. The result is ≠b· + a‡ = 0, and x is eliminated.

An insightful observation due to Bareiss [1] is that, after multiple iterations, coe�cients
accumulate non-trivial common factors. Lines 01, 05, and 07 take advantage of this. Indeed,
line 07 divides every equation by such a common factor. Importantly, if all numbers in the
input system Ï are integers, then the division is without remainder. To show this, Bareiss
uses a linear-algebraic argument based on an application of the Desnanot–Jacobi identity
(or, more generally, Sylvester’s identity) for determinants [1, 10, 21]. Over Q, this makes
it possible to perform Gaussian elimination (its “fraction-free one-step” version) in PTime.
(This is not the only polynomial-time method; cf. [32, Section 3.3].)

Gaussian elimination for systems of equations can be extended to solving over Z, by
introducing divisibility constraints: line 06 becomes Ï Ω Ï[[≠·

a
/ x]]· (a | ·). However, while

the running time of the procedure remains polynomial, its e�ect becomes more modest: the
procedure reduces a system of linear equations over Z to an equivalent system of equations
featuring variables not in x and multivariate linear congruences that may still contain
variables from x. To completely eliminate x, further computation is required. For our
purposes, non-deterministic guessing is a good enough solution to this problem; see the final
foreach loop in lines 16–18 of GaussQE.

From equalities to inequalities. GaussQE extends Bareiss’ method to systems of inequal-
ities over Z. As above, the method allows us to control the (otherwise exponential) growth of
the bit size of numbers. Gaussian elimination is, of course, still at the heart of the algorithm
(see lines 2–6, 10, and 11), and we now discuss two modifications:

Line 1 introduces slack variables ranging over N. These are internal to the procedure and
are removed at the end (lines 13–15).
In line 5 the equality ax+ · = 0 is selected non-deterministically.

The latter modification is required for the correctness (more precisely: completeness)
of GaussQE. Geometrically, for a satisfiable system of inequalities over Z consider the
convex polyhedron of all solutions over R first. At least one of solutions over Z must lie in
or near a facet of this polyhedron. Line 5 of Algorithm 1 attempts to guess this facet. The
amount of slack guessed in line 8 corresponds to the distance from the facet. Observe that
if ax+ · = 0 corresponds to an equality of the original system Ï, then every solution of Ï

needs to satisfy ax+ · = 0 exactly, and so there is no slack (lines 8–9 are not taken).
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The values chosen for the slack variables in line 8 have, in fact, a counterpart in the
standard decision procedures for Presburger arithmetic. When the latter pick a term fl to
substitute, the substitutions in fact introduce fl + k for k ranging in some [0, ¸], where ¸

depends on mod(Ï). The amount of slack considered in GaussQE corresponds to these
values of k. (Because of this parallel, making the range of guesses in line 8 symmetric, i.e.,
|v| Æ |a| ·mod(Ï) ≠ 1, extends our procedure to the entire existential Presburger arithmetic.)

5 Solving linear-exponential systems over N: an overview

In this section we give an overview of our non-deterministic procedure to solve linear-
exponential systems over N. The procedure is split into Algorithms 2–4. A more technical
analysis of these algorithms is given later in Section 6.

Whenever non-deterministic Algorithms 1–4 call one another, the return value is always
just the output of a single branch, rather than (say) the disjunction over all branches.

Algorithm 2 (LinExpSat). This is the main procedure. It takes as input a linear-exponential
system Ï without divisibility constraints and decides whether Ï has a solution over N. The
procedure relies on first (non-deterministically) fixing a linear ordering ◊ on the exponential
terms 2x occurring in Ï (line 2). For technical convenience, this ordering contains a term
2x0 , with x0 fresh variable, and sets 2x0 = 1. Variables are iteratively eliminated starting
from the one corresponding to the leading exponential term in ◊ (i.e., the biggest one), until
reaching x0 (lines 3–16). The elimination of each variable is performed by first rewriting
the system (in lines 8–14) into a form admissible for Algorithm 3 discussed below. This
rewriting introduces new variables, which will never occur in exponentials throughout the
entire procedure and are later eliminated when the procedure reaches x0. Overall, the
termination of the procedure is ensured by the decreasing number of exponentiated variables.
After LinExpSat rewrites Ï, it calls Algorithm 3 to eliminate the currently biggest variable.

Algorithm 3 (ElimMaxVar). This procedure takes as input an ordering ◊, a quotient system
induced by ◊ and a delayed substitution. Let us introduce these notions.

Quotient systems. Let ◊(x) be the ordering 2xn Ø 2xn≠1 Ø · · · Ø 2x0 = 1, where n Ø 1.
A quotient system induced by ◊ is a system Ï(x,xÕ

,zÕ) of equalities, inequalities, and
divisibility constraints · ≥ 0, where ≥ œ {<,Æ,=,©d: d Ø 1} and · is an quotient term
(induced by ◊), that is, a term of the form

a · 2xn + f(xÕ) · 2xn≠1 + b · xn≠1 + ·
Õ(x0, . . . , xn≠2,z

Õ) ,

where a, b œ Z, f(xÕ) is a linear term, and ·
Õ is a linear-exponential term in which the

variables from zÕ do not occur exponentiated. Furthermore, for every variable z
Õ in zÕ,

the quotient system Ï features the inequalities 0 Æ z
Õ
< 2xn≠1 . The variables in x, xÕ

and zÕ form three disjoint sets, which we call the exponentiated variables, the quotient
variables and the remainder variables of the system Ï, respectively. We also refer to the
term b · xn≠1 + ·

Õ(x0, . . . , xn≠2,zÕ) as the least significant part of the quotient term · .
Importantly, quotient terms are not linear-exponential terms.

Here is an example of a quotient system induced by 2x3 Ø 2x2 Ø 2x1 Ø 2x0 = 1, and having
quotient variables xÕ = (xÕ

1
, x

Õ
2
) and remainder variables zÕ = (zÕ

1
, z

Õ
2
)

≠2x3 + (2 · xÕ
1

≠ x
Õ
2

≠ 1) · 2x2 +
)

≠ 2 · x2 + 2x1 ≠ (zÕ
1
mod 2x1)

*
Æ 0, 0 Æ z

Õ
1
< 2x2 ,

x
Õ
1
· 2x2 +

)
x1 + z

Õ
2

≠ 5
*
= 0, 0 Æ z

Õ
2
< 2x2 .
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The curly brackets highlight the least significant parts of two terms of the system, the other
parts being ±z

Õ
1
and ±z

Õ
2
stemming from the inequalities on the right.

Delayed substitution. This is a substitution of the form [xÕ · 2xn≠1 + z
Õ
/ xn], where 2xn is

the leading exponential term of ◊. Our procedure delays the application of this substitution
until xn occurs linearly in the system Ï. One can think of this substitution as an equality
(xn = x

Õ · 2xn≠1 + z
Õ) in Ï that must not be manipulated for the time being.

Back to ElimMaxVar, given a quotient system Ï(x,xÕ
,zÕ) induced by ◊ and the delayed

substitution [xÕ · 2xn≠1 + z
Õ
/ xn], the goals of this procedure are to (i) eliminate the quotient

variables xÕ \ xÕ; (ii) eliminate all occurrences of the leading exponential term 2xn of ◊ and
apply the delayed substitution to eliminate the variable xn; (iii) finally, remove x

Õ. Upon
exit, ElimMaxVar gives back to LinExpSat a (non-quotient) linear-exponential system
where xn has been eliminated; i.e., a system with one fewer exponentiated variable.

For steps (i) and (iii), the procedure relies on the Algorithm 1 (GaussQE) for eliminating
variables in systems of inequalities, from Section 4. This is where flexibility of QE is important:
in line 22 some variables are eliminated and some are not. Step (ii) is instead implemented
by Algorithm 4.

Algorithm 4 (SolvePrimitive). The goal of this procedure is to rewrite a system of
constraints where xn occurs exponentiated with another system where all constraints
are linear. The specification of the procedure restricts the output further. At its core,
SolvePrimitive tailors Semenov’s proof of the decidability of the first-order theory of the
structure (N, 0, 1,+, 2(·),Æ) [34] to a small syntactic fragment, which we now define.

Primitive linear-exponential systems. Let u, v be two variables. A linear-exponential system
is said to be (u, v)-primitive whenever all its (in)equalities and divisibility constraints are of
the form a · 2u + b · v + c ≥ 0, with a, b, c œ Z and ≥ œ {<,Æ,=,©d: d Ø 1}.

The input to SolvePrimitive is a (u, v)-primitive linear-exponential system. This procedure
removes all occurrences of 2u in favour of linear constraints, working under the assumption
that u Ø v. This condition is ensured when ElimMaxVar invokes SolvePrimitive. The
variable u of the primitive system in the input corresponds to the term xn ≠ xn≠1, and
the variable v stands for the variable x

Õ in the delayed substitution [xÕ · 2xn≠1 + z
Õ
/ xn].

ElimMaxVar ensures that xn ≠ xn≠1 Ø x
Õ.

6 Algorithms 2, 3, 4: a walkthrough

Having outlined the interplay between Algorithms 2–4, we move to their technical description,
and present the key ideas required to establish the correctness of our procedure for solving
linear-exponential systems over N.

6.1 Algorithm 2: the main loop

Let Ï(x1, . . . , xn) be an input linear-exponential system (with no divisibility constraints). As
explained in the summary above, LinExpSat starts by guessing an ordering ◊(x0, . . . , xn)
of the form t1 Ø t2 Ø · · · Ø tn Ø 2x0 = 1, where (t1, . . . , tn) is a permutation of the terms
2x1 , . . . , 2xn , and x0 is a fresh variable used as a placeholder for 0. Note that if Ï is satisfiable
(over N), then ◊ can be guessed so that Ï · ◊ is satisfiable; and conversely no such ◊ exists if
Ï is unsatisfiable. For the sake of convenience, we assume in this section that the ordering
◊(x0, . . . , xn) guessed by the procedure is 2xn Ø 2xn≠1 Ø · · · Ø 2x1 Ø 2x0 = 1.
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Algorithm 2 LinExpSat: A procedure to decide linear-exponential systems over N.

Input: Ï(x1, . . . , xn) : linear-exponential system (without divisibility constraints).
Output: True (€) if Ï has a solution over N, and otherwise false (‹).

1: let x0 be a fresh variable Û placeholder for 0
2: guess ◊ Ω ordering of the form t1 Ø t2 Ø · · · Ø tn Ø 2x0 = 1, where (t1, . . . , tn) is a

permutation of the terms 2x1 , . . . , 2xn

3: while ◊ is not the ordering (2x0 = 1) do
4: 2x Ω leading exponential term of ◊ Û in the i-th iteration, 2x is ti

5: 2y Ω successor of 2x in ◊ Û and 2y is ti+1

6: Ï Ω Ï[w / (w mod 2x) : w is a variable]
7: z Ω all variables z in Ï such that z is x or z does not appear in ◊

8: foreach z in z do Û form a quotient system induced by ◊

9: let x
Õ and z

Õ be two fresh variables
10: Ï Ω Ï · (0 Æ z

Õ
< 2y)

11: Ï Ω Ï[zÕ
/ (z mod 2y)]

12: Ï Ω Ï[(zÕ mod 2w) / (z mod 2w) : w is such that ◊ implies 2w Æ 2y]
13: Ï Ω Ï[(xÕ · 2y + z

Õ) / z] Û replaces only the linear occurrences of z
14: if z is x then (xÕ

0
, z

Õ
0
) Ω (xÕ

, z
Õ) Û for delayed substitution, see next line

15: Ï ΩElimMaxVar(◊,Ï, [xÕ
0
· 2y + z

Õ
0
/ x])

16: remove 2x from ◊

17: return Ï(0) Û evaluates to € or ‹

The while loop starting in line 3 manipulates Ï and ◊, non-deterministically obtaining at
the end of the ith iteration a system Ïi(x,z) and an ordering ◊i(x), where x = (x0, . . . , xn≠i)
and z is a vector of i fresh variables. The non-deterministic guesses performed by LinExpSat
are such that the following properties (I1)–(I3) are loop invariants across all branches,
whereas (I4) is an invariant for at least one branch (below, i œ [0, n] and (Ï0, ◊0) := (Ï, ◊)):
I1. All variables that occur exponentiated in Ïi are among x0, . . . , xn≠i.
I2. ◊i is the ordering 2xn≠i Ø 2xn≠i≠1 Ø · · · Ø 2x1 Ø 2x0 = 1.
I3. All variables z in z are such that z < 2xn≠i is an inequality in Ïi.
I4. Ïi · ◊i is equisatisfiable with Ï · ◊ over N.
More precisely, writing

x
—

Â— for the disjunction of all the formulae Ïi · ◊i obtained across
all non-deterministic branches, we have that

x
—

Â— and Ï · ◊ are equisatisfiable. Therefore,
whenever Ï·◊ is satisfiable, (I4) holds for at least one branch. If Ï·◊ is instead unsatisfiable,
then (I4) holds instead for all branches.

The invariant above is clearly true for Ï0 and ◊0, with z being the empty set of variables.
Item (I2) implies that, after n iterations, ◊n is 2x0 = 1, which causes the while loop to exit.
Given ◊n, properties (I1) and (I3) force the values of x0 and of all variables in z to be zero,
thus making Ï · ◊ equisatisfiable with Ïn(0) in at least one branch of the algorithm, by (I4).
In summary, this will enable us to conclude that the procedure is correct.

Let us now look at the body of the while loop. Its objective is simple: manipulate
the current system, say Ïi, so that it becomes a quotient system induced by ◊i, and then
call Algorithm 3 (ElimMaxVar). For these systems, note that 2x and 2y in lines 4–5
correspond to 2xn≠i and 2xn≠i≠1 , respectively. Behind the notion of quotient system there are
two goals. One of them is to make sure that 2x and 2y are not involved in modulo operations.
(We will discuss the second goal in Section 6.2.) The while loop achieves this goal as follows:
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Since 2x is greater than every variable in Ïi, every (w mod 2x) can be replaced with w.
For 2y instead, we “divide” every variable z that might be larger than it. Observe that z
is either x or from the vector z in (I3) of the invariant. The procedure replaces every
linear occurrence of z with x

Õ · 2y + z
Õ, where x

Õ and z
Õ are fresh variables and z

Õ is a
residue modulo 2y, that is, 0 Æ z

Õ
< 2y.

The above-mentioned replacement simplifies all modulo operators where z appears: (z mod 2y)
becomes z

Õ, and every (z mod 2w) such that ◊i entails 2w Æ 2y becomes (zÕ mod 2w). We
obtain in this way a quotient system induced by ◊i, and pass it to ElimMaxVar.

Whilst the goal we just discussed is successfully achieved, we have not in fact eliminated
the variable x completely. Recall that, according to our definition of substitution, occurrences
of 2x in the system Ï are una�ected by the application of [xÕ · 2y + z

Õ
/ x] in line 13 of

LinExpSat. Because of this, the procedure keeps this substitution as a delayed substitution
for future use, to be applied (by ElimMaxVar) when x will finally occur only linearly.

6.2 Algorithm 3: elimination of leading variable and quotient variables

Let Ï(x,xÕ
,zÕ) be a quotient system induced by an ordering ◊(x), with x exponentiated,

xÕ quotient and zÕ remainder variables, and consider a delayed substitution [xÕ · 2y + z
Õ
/ x].

ElimMaxVar removes xÕ and x, obtaining a linear-exponential system Â that adheres to
the loop invariant of LinExpSat. This is done by following the three steps described in the
summary of the procedure, which we now expand.

Step (i): lines 3–22. This step aims at calling Algorithm 1 (GaussQE) to eliminate all
variables in xÕ \xÕ. There is, however, an obstacle: these variables are multiplied by 2y. Here
is where the second goal behind the notion of quotient system comes into play: making sure
that least significant parts of quotient terms can be bounded in terms of 2y. To see what
we mean by this and why it is helpful, consider below an inequality · Æ 0 from Ï, where
· = a · 2x + f(xÕ) · 2y + fl(x \ x, zÕ) and fl is the least significant part of · .

Since Ï is a quotient system induced by ◊, all variables and exponential terms 2w appearing
in fl are bounded by 2y, and thus every solution of Ï·◊ must also satisfy |fl| Æ ÎflÎ1 ·2y. More
precisely, the value of fl must lie in the interval [(r≠1)·2y+1, r ·2y] for some r œ [≠ÎflÎ1, ÎflÎ1].
The procedure guesses one such value r (line 9). The inequality · Æ 0 can be rewritten as

!
a · 2x + f(xÕ) · 2y + r · 2y Æ 0

"
·

!
(r ≠ 1) · 2y < fl Æ r · 2y

"
. (3)

Fundamentally, · Æ 0 has been split into a “left part” and a “right part”, shown with big
brackets around. The “right part” (r ≠ 1) · 2y < fl Æ r · 2y is made of two linear-exponential
inequalities featuring none of the variables we want to eliminate (xÕ and x). Following the
same principle, the procedure produces similar splits for all strict inequalities, equalities, and
divisibility constraints of Ï. In the pseudocode, the “left parts” of the system are stored in
the formula “, and the “right parts” are stored in the formula Â.

Let us focus on a “left part” a · 2x + f(xÕ) · 2y + r · 2y Æ 0 in “. Since ◊ implies 2x Ø 2y,
we can factor out 2y from this constraint, obtaining the inequality a · 2x≠y + f(xÕ) + r Æ 0.
There we have it: the variables xÕ \ xÕ occur now linearly in “ and can be eliminated thanks
to GaussQE. For performing this elimination, the presence of 2x≠y is unproblematic. In
fact, the procedure uses a placeholder variable u for 2x≠y (line 1), so that “ is in fact a linear
system with, e.g., inequalities a · u + f(xÕ) + r Æ 0. Observe that inequalities xÕ Ø 0 are
added to “ in line 22, since GaussQE works over Z instead of N. This concludes Step (i).
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Algorithm 3 ElimMaxVar: Variable elimination for quotient systems.

Input: ◊(x) : ordering of exponentiated variables;
Ï(x,xÕ

,zÕ) : quotient system induced by ◊, with x exponentiated,
xÕ quotient, and zÕ remainder variables;

[xÕ · 2y + z
Õ
/x] : delayed substitution for Ï.

Output of each branch (—): Â—(x \ x,zÕ) : linear-exponential system such that for every
z in zÕ, z does not occur in exponentials and 0 Æ z < 2y occurs in Â— .

Ensuring: (÷x ◊) ·
x

—
Â— is equivalent to ÷x÷xÕ(◊ · Ï · x = x

Õ · 2y + z
Õ) over N.

1: let u be a fresh variable Û u is an alias for 2x≠y

2: “ Ω €; Â Ω €
3: � Ω ? Û map from linear-exponential terms to Z
4: foreach (· ≥ 0) in Ï, where ≥ œ

)
=, <,Æ,©d: d Ø 1

*
do

5: let · be (a · 2x + f(xÕ) · 2y + fl), where fl is the least significant part of ·

6: if a = 0 and f(xÕ) is an integer then Â Ω Â · (· ≥ 0)
7: else if the symbol ≥ belongs to {=, <,Æ} then

8: if �(fl) is undefined then

9: guess r Ω integer in [≠ÎflÎ1, ÎflÎ1]
10: Â Ω Â · ((r ≠ 1) · 2y < fl) · (fl Æ r · 2y)
11: update � : add the key–value pair (fl, r)
12: r Ω �(fl)
13: if the symbol ≥ is < then

14: ≥ Ω Æ
15: r Ω r + 1 Û (v < w) is equivalent to (v + 1 Æ w)
16: “ Ω “ · (a · u+ f(xÕ) + r ≥ 0)
17: if the symbol ≥ is = then Â Ω Â · (r · 2y = fl)
18: else Û ≥ is ©d for some d œ N
19: guess r Ω integer in [1,mod(Ï)]
20: “ Ω “ · (a · u+ f(xÕ) ≠ r ≥ 0)
21: Â Ω Â · (r · 2y + fl ≥ 0)
22: “ Ω GaussQE (xÕ \ xÕ

, “ · xÕ Ø 0)
23: “ Ω “[2u / u] Û u now is an alias for x ≠ y

24: (‰, “) Ω SolvePrimitive(u, xÕ
, “)

25: ‰ Ω ‰[x ≠ y / u][xÕ · 2y + z
Õ
/ x] Û apply delayed substitution: x is eliminated

26: if ‰ is (≠x
Õ · 2y ≠ z

Õ + y + c = 0) for some c œ N then

27: guess b Ω integer in [0, c]
28: “ Ω “ · (xÕ = b)
29: Â Ω Â · (b · 2y = ≠z

Õ + y + c)
30: else

31: let ‰ be (≠x
Õ · 2y ≠ z

Õ + y + c Æ 0) · (d | xÕ · 2y + z
Õ ≠ y ≠ r), with d, r œ N, c Ø 3

32: guess (b, g) Ω pair of integers in [0, c] ◊ [1, d]
33: “ Ω “ · (xÕ Ø b) · (d | xÕ ≠ g)
34: Â Ω Â · ((b ≠ 1) · 2y < ≠z

Õ + y + c) · (≠z
Õ + y + c Æ b · 2y) · (d | g · 2y + z

Õ ≠ y ≠ r)
35: assert(GaussQE(xÕ

, “) is equivalent to €) Û upon failure, Algorithm 2 returns ‹
36: return Â
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Before moving on to Step (ii), we justify the use of the map � from line 3. If the procedure
were to apply Equation (3) and replace every inequality · Æ 0 with three inequalities, then
multiple calls to ElimMaxVar would produce a system with exponentially many constraints.
A solution to this problem is to guess r œ [≠ÎflÎ1, ÎflÎ1] only once, and use it in all the
“left parts” stemming from inequalities in Ï having fl as their least significant part. The
“right part” (r ≠ 1) · 2y < fl Æ r · 2y is added to Â only once. The map � implements this
memoisation, avoiding the aforementioned exponential blow-up. Indeed, the number of least
significant parts grows very slowly throughout LinExpSat, as we will see in Section 7.

Step (ii): lines 23–25. The goal of this step is to eliminate all occurrences of the term
2x≠y. For convenience, the procedure first reassigns u to now be a placeholder for x ≠ y

(line 23). Because of this reassignment, the system “ returned by GaussQE at the end of
Step (i) is a (u, xÕ)-primitive linear-exponential system.

The procedure calls Algorithm 4 (SolvePrimitive), which constructs from “ a pair of
systems (‰—(u), “—(xÕ)), which is assigned to (‰, “). Both are linear systems, and thus all
occurrences of 2x≠y (rather, 2u) have been removed. At last, all promised substitutions can
be realised (line 25): u is replaced with x ≠ y, and the delayed substitution replaces x with
x

Õ · 2y + z
Õ. This eliminates x. The only variable that is yet to be removed is xÕ (Step (iii)).

It is useful to recall at this stage that SolvePrimitive is only correct under the assump-
tion that u Ø x

Õ Ø 0. This assumption is guaranteed by the definition of ◊, the delayed
substitution, and the fact that u is a placeholder for x ≠ y (and we are working over N).
Indeed, if xÕ = 0, then the inequality 2x Ø 2y in ◊ ensures u = x ≠ y Ø 0 = x

Õ. If xÕ Ø 1,

u = x ≠ y = x
Õ · 2y + z

Õ ≠ y delayed substitution
Ø x

Õ · (y + 1) + z
Õ ≠ y 2y Ø y + 1, for every y œ N

= y · (xÕ ≠ 1) + x
Õ + z

Õ Ø x
Õ
. since x

Õ Ø 1.

Step (iii): lines 26–35. This step deals with eliminating the variable x
Õ from the formula

“(xÕ) · ‰(xÕ
, z

Õ
, y) · Â(x \ x,zÕ), where Â contains the “right parts” of Ï computed during

Step (i). The strategy to eliminate x
Õ follows closely what was done to eliminate the other

quotient variables from xÕ during Step (i): the algorithm first splits the formula ‰(xÕ
, z

Õ
, y)

into a “left part”, which is added to “ and features the variable x
Õ, and a “right part”, which

is added to Â and features the variables zÕ and y. It then eliminates xÕ by calling GaussQE
on “. To perform the split into “left part” and “right part”, observe that ‰ is a system of the
form either ≠x

Õ · 2y ≠ z
Õ + y + c = 0 or (≠x

Õ · 2y ≠ z
Õ + y + c Æ 0) · (d | xÕ · 2y + z

Õ ≠ y ≠ r)
(see the spec of SolvePrimitive). By arguments similar to the ones used for fl in Step (i),
≠z

Õ + y + c can be bounded in terms of 2y. (Notice, e.g., the similarities between the
inequalities in line 34 and the ones in line 10.) After the elimination of xÕ, if GaussQE does
not yield an unsatisfiable formula, ElimMaxVar returns the system Â to LinExpSat.

Before moving on to the description of SolvePrimitive, let us clarify the semantics of
the assert statement occurring in line 35. It is a standard semantics from programming
languages. If an assertion b evaluates to true at runtime, assert(b) does nothing. If b
evaluates to false instead, the execution aborts and the main procedure (LinExpSat) returns
‹. This semantics allows for assertions to query NP problems, as done in line 35 (and
in line 11 of SolvePrimitive), without undermining the membership in NP of LinExpSat.
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Algorithm 4 SolvePrimitive: A procedure to decompose and linearise primitive systems.

Input: u, v : two varaibles; Ï : (u, v)-primitive linear-exponential system.
Output of each branch (—): a pair of linear systems (‰—(u), “—(v)) such that ‰—(u) is

either of the form (u = a) or of the form (u Ø b)· (d | u≠ r), where a, d, r œ N and b Ø 3.
Ensuring: (u Ø v Ø 0) entails that

x
—
(‰— · “—) is equivalent to Ï.

1: let Ï be (‰ · Â), where ‰ is the conjunction of all (in)equalities from Ï containing 2u
2: (d, n) Ω pair of non-negative integers such that mod(Ï) = d · 2n and d is odd
3: C Ω max

)
n, 3+2 ·

'
log( |b|+|c|+1

|a| )
(
: (a · 2u + b · v + c ≥ 0) in ‰, where ≥ œ {=, <,Æ}

*

4: guess c Ω element of [0, C ≠ 1] fi {ı} Û ı signals u Ø C

5: if c is not ı then

6: ‰ Ω (u = c)
7: “ Ω Ï[2c / 2u]
8: else Û assuming u Ø C, (in)equalities in ‰ simplify to € or ‹
9: assert(‰ has no equality, and in all its inequalities 2u has a negative coe�cient)

10: guess r Ω integer in [0, d ≠ 1] Û remainder of 2u≠n modulo d when u Ø C Ø n

11: assert(d | 2u ≠ 2n · r is satisfiable)
12: r

Õ Ω discrete logarithm of 2n · r base 2, modulo d

13: d
Õ Ω multiplicative order of 2 modulo d

14: ‰ Ω (u Ø C) · (dÕ | u ≠ r
Õ)

15: “ Ω Â[2n · r/2u] Û 2n · r is a remainder of 2u modulo mod(Â) = d · 2n

16: return (‰, “)

6.3 Algorithm 4: from primitive systems to linear systems

Consider an input (u, v)-primitive linear-exponential system Ï, and further assume we are
searching for solutions over N where u Ø v. The goal of SolvePrimitive is to decompose Ï

(in the sense of monadic decomposition [24, 16]) into two linear systems: a system ‰ only
featuring the variable u, and a system “ only featuring v.

To decompose Ï, the key parameter to understand is the threshold C for the variable u

(line 3). This positive integer depends on two quantities, one for “linearising” the divisibility
constraints, and one for “linearising” the equalities and inequalities of Ï. Below we first
discuss the latter quantity. Throughout the discussion, we assume u Ø C, as otherwise the
procedure simply replaces u with a value in [0, C ≠ 1] (see lines 6 and 7).

Consider an inequality a · 2u + b · v + c Æ 0. Regardless of the values of u and v, as long
as |a · 2u| > |b · v + c| holds, the truth of this inequality will solely depend on the sign of the
coe�cient a. Since we are assuming u Ø v and u Ø C Ø 1, |a · 2u| > |b · v + c| is implied
by |a| · 2u > (|b|+ |c|) · u. In turn, this inequality is implied by u Ø C, because both sides of
the inequalities are monotone functions, |a| · 2u grows faster than (|b|+ |c|) · u, and, given
C

Õ := 3 + 2 ·
Ï
log( |b|+|c|+1

|a| )
Ì
(which is at most C), we have

|a| · 2C
Õ

Ø |a| · 23 ·
3
|b|+ |c|+ 1

|a|

42

>
!
|b|+ |c|

"
· 2

'
log(

|b|+|c|+1
|a| )

(
+2

>
!
|b|+ |c|

"
· C Õ

,

where to prove the last inequalities one uses the fact that 2x+1
> 2 · x+ 1 for every x Ø 0.

Hence, when u Ø C, every inequality in Ï simplifies to either € or ‹, and this is also true
for strict inequalities. The Boolean value € arises when a is negative. The Boolean ‹ arises
when a is positive, or when instead of an inequality we consider an equality.
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It remains to handle the divisibility constraints, again under the assumption u Ø C.
This is where the second part of the definition of C plays a role. Because u Ø C Ø n (see
the definition of (d, n) in line 2), we can guess r œ [0, d ≠ 1] such that mod(Ï) | 2u ≠ 2n · r
(line 10). This constraint is equivalent to d | 2u≠n ≠ r and, since 2n and d are coprime, it
is also equivalent to d | 2u ≠ 2n · r. It might be an unsatisfiable constraint: the procedure
checks for this eventuality in line 11, by solving a discrete logarithm problem (which can
be done in NP, see [18]). Suppose a solution is found, say r

Õ (as in line 12). We can then
represent the set of solutions of d | 2u ≠ 2n · r as an arithmetic progression: it su�ces to
compute the multiplicative order of 2 modulo d, i.e., the smallest positive integer dÕ such
that d | 2dÕ ≠ 1. This is again a discrete logarithm problem, but di�erently from the previous
case d

Õ always exists since d and 2 are coprime. The set of solutions of d | 2u ≠ 2n · r is given
by {rÕ +⁄ · dÕ : ⁄ œ Z}, that is, mod(Ï) | 2u ≠ 2n · r is equivalent to d

Õ | u≠ r
Õ. The procedure

then returns ‰(u) := (u Ø C · d
Õ | u ≠ r

Õ) and “(v) := Â[2n · r / 2u] (see lines 14 and 15),
where Â (defined in line 1) is the system obtained from Ï by removing all equalities and
inequalities featuring 2u.

Elaborating the arguments sketched in this section, we can prove that Algorithms 2–4
comply with their specifications.

I Proposition 4. Algorithm 2 (LinExpSat) is a correct procedure for deciding the satisfiab-
ility of linear-exponential systems over N.

7 Complexity analysis

We analyse the procedure introduced in Sections 5 and 6 and show that it runs in non-
deterministic polynomial time. This establishes Theorem 1 restricted to N.

I Proposition 5. Algorithm 2 (LinExpSat) runs in non-deterministic polynomial time.

To simplify the analysis required to establish Proposition 5, we assume
that Algorithms 2–4 store the divisibility constraints d | · of a system Ï in a way such
that the coe�cients and the constant of · are always reduced modulo mod(Ï). For example,
if mod(Ï) = 5, the divisibility 5 | (7 · x + 6 · 2x ≠ 1) is stored as 5 | (2 · x + 2x + 4). Any
divisibility can be updated in polynomial time to satisfy this requirement, so there is no
loss of generality. Observe that Algorithm 1 (GaussQE) is an exception to this rule, as
the divisibility constraints it introduces in line 12 must respect some structural properties
throughout its execution. Thus, line 23 of Algorithm 3 (ElimMaxVar) implicitly reduces
the output of GaussQE modulo m = mod(Ï) as appropriate. Since GaussQE runs in
non-deterministic polynomial time, the reduction takes polynomial time too.

As is often the case for arithmetic theories, the complexity analysis of our algorithms
requires tracking several parameters of linear-exponential systems. Below, we assume an
ordering ◊(x) = (2xn Ø · · · Ø 2x0 = 1) and let Ï be either a linear-exponential system or a
quotient system induced by ◊. Here are the parameters we track:

The least common multiple of all divisors mod(Ï), defined as in Section 3.
The number of equalities, inequalities and divisibility constraints in Ï, denoted by #Ï.
(Similarly, given a set T , we write #T for its cardinality.)
The 1-norm ÎÏÎ1 := max{Î·Î1 : · is a term appearing in an (in)equality of Ï}. For
linear-exponential terms, Î·Î1 is defined in Section 3. For quotient terms · induced by ◊,
the 1-norm Î·Î1 is defined as the sum of the absolute values of all the coe�cients and
constants appearing in · . The definition of ÎÏÎ1 excludes integers appearing in divisibility
constraints since, as explained above, those are already bounded by mod(Ï).
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The linear norm ÎÏÎL := max{Î·ÎL : · is a term appearing in an (in)equality of Ï}.
For a linear-exponential term · =

q
n

i=1

!
ai · xi + bi · 2xi +

q
n

j=1
ci,j · (xi mod 2xj )

"
+ d,

we define Î·ÎL := max{|ai| , |ci,j | : i, j œ [1, n]}, that is, the maximum of all coe�cients
of xi and (xi mod 2xj ), in absolute value. For a quotient term induced by ◊, of the
form · = a · 2xn + (c1 · xÕ

1
+ · · ·+ cm · xÕ

m
+ d) · 2xn≠1 + b · xn≠1 + fl(x0, . . . , xn≠2,zÕ), we

define Î·ÎL := max
!
|b| , ÎflÎL,max{|ci| : i œ [1,m]}

"
, thus also taking into account the

coe�cients of the quotient variables xÕ
1
, . . . , x

Õ
m
.

The set of the least significant terms lst(Ï, ◊) defined as
)
± fl : fl is the least significant

part of a term · appearing in an (in)equality · ≥ 0 of Ï, with respect to ◊
*
. We have

already defined the notion of the least significant part for a quotient term induced by ◊

in Section 5. For a (non-quotient) linear-exponential system Ï, the least significant part
of a term a · 2xn + b · xn + ·

Õ(x1, . . . , xn≠1,z) is the term b · xn + ·
Õ.

Two observations are in order. First, the bit size of a system Ï(x1, . . . , xn) (i.e., the
number of bits required to write down Ï) is in O(#Ï ·n2 · log(max(ÎÏÎ1,mod(Ï), 2))). Second,
together with the number of variables in the input, our parameters are enough to bound all
guesses in the procedure. For instance, the value of c ”= ı guessed in line 4 of Algorithm 4
(SolvePrimitive) can be bounded as O(log(max(mod(“), Î‰Î1))).

The analysis of the whole procedure is rather involved. Perhaps a good overall picture
of this analysis is given by the evolution of the parameters at each iteration of the main
while loop of LinExpSat, described in Lemma 6 below. This loop iterates at most n

times, with n being the number of variables in the input system. Below, � stands for
Euler’s totient function, arising naturally because of the computation of multiplicative orders
in SolvePrimitive.

I Lemma 6. Consider the execution of LinExpSat on an input Ï(x1, . . . , xn), with n Ø 1.
For i œ [0, n], let (Ïi, ◊i) be the pair of a system and ordering obtained after the ith iteration
of the while loop of line 3, where Ï0 = Ï and ◊0 is the ordering guessed in line 2. Then, for
every i œ [0, n ≠ 1], Ïi+1 has at most n+ 1 variables, and for every ¸, s, a, c, d Ø 1,

if

Y
_______]

_______[

#lst(Ïi, ◊i) Æ ¸

#Ïi Æ s

ÎÏiÎL Æ a

ÎÏiÎ1 Æ c

mod(Ïi) | d

then

Y
_______]

_______[

#lst(Ïi+1, ◊i+1) Æ ¸ + 2(i+ 2)
#Ïi+1 Æ s+ 6(i+ 2) + 2 · ¸

ÎÏi+1ÎL Æ 3 · a
ÎÏi+1Î1 Æ 25(i+ 3)2(c+ 2) + 4 · log(d)
mod(Ïi+1) | lcm(d,�(–i · d))

for some –i œ [1, (3 · a+ 2)(i+3)
2 ]. The (i+ 1)st iteration of the while loop of line 3 runs in

non-deterministic polynomial time in the bit size of Ïi.

We iterate the bounds in Lemma 6 to show that, for every i œ [0, n], the bit size of Ïi is
polynomial in the bit size of the initial system Ï. A challenge is to bound mod(Ïi), which
requires studying iterations of the map x ‘æ lcm(x,�(– ·x)), where – is some positive integer.
We show the following lemma:

I Lemma 7. Let – Ø 1 be in N. Consider the integer sequence b0, b1, . . . given by the
recurrence b0 := 1 and bi+1 := lcm(bi,�(– · bi)). For every i œ N, bi Æ –

2·i2 .

Given Lemma 6, one can show –j Æ (ÎÏÎL + 2)O(j
3
) for every j œ [0, n ≠ 1]. Then, since

mod(Ï0) = 1, for a given i œ [0, n ≠ 1] we apply Lemma 7 with – = lcm(–0, . . . ,–i) to
derive mod(Ïi+1) Æ (ÎÏÎL + 2)O(i

6
). Once a polynomial bound for the bit size of every Ïi is

established, Proposition 5 follows immediately from the last statement of Lemma 6.
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8 Proofs of Theorem 1 and Theorem 2

In this section, we discuss how to reduce the task of solving linear-exponential systems over Z
to the non-negative case, thus establishing Theorem 1. We also prove Theorem 2.

Solving linear-exponential systems over Z (proof of Theorem 1). Let Ï(x1, . . . , xn) be a
linear-exponential system Ï(x1, . . . , xn) (without divisibility constraints). We can non-
deterministically guess which variables will, in an integer solution u œ Zn of Ï, assume a
non-positive value. Let I ™ [1, n] be the set of indices corresponding to these variables. Given
i œ I, all occurrences of (x mod 2xi) in Ï can be replaced with 0, by definition of the modulo
operator. We can then replace each linear and exponentiated occurrence of xi with ≠xi. Let
‰(x) be the system obtained from Ï after these replacements.

The absolute value of all entries of u is a solution for ‰ over N. However, ‰ might feature
terms of the form 2≠xi for some i œ I and thus not be a linear-exponential system. We show
how to remove such terms. Consider an inequality of the form · Æ ‡, where the term ·

contains no 2≠x and ‡ :=
q

iœI
ai ·2≠xi with some ai non-zero. Since each xi is a non-negative

integer, we have
--q

iœI
ai · 2≠xi

-- Æ
q

iœI
|ai| =: B. Therefore, in order to satisfy · Æ ‡, any

solution v of ‰ must be such that ·(v) Æ B. We can then non-deterministically add to ‰

either · < ≠B or · = g, for some g œ [≠B,B].
Case · < ≠B. The inequality · Æ ‡ is entailed by · < ≠B and can thus be eliminated.
Case · = g for some g œ [≠B,B]. We replace · Æ ‡ with g Æ ‡, and multiply both sides

of this inequality by 2�iœIxi . The resulting inequality is rewritten as g · 2z Æ
q

iœI
ai · 2zi ,

where z and all zi are fresh variables (over N) that are subject to the equalities z =
q

iœI
xi

and zi =
q

jœI\{i} xj . We add these equalities to ‰.
In the above cases we have removed from ‰ the inequality · Æ ‡ in favour of inequalities and
equalities only featuring linear-exponential terms. Strict inequalities · < ‡ can be handled
analogously; and for equalities · = ‡ one can separately consider · Æ ‡ and ≠· Æ ≠‡. The
fresh variables z and zi can be introduced once and reused for all inequalities.

Repeating the process above for each equality and inequality yields (in non-deterministic
polynomial time) a linear-exponential system Â that is satisfiable over N if and only if the input
system Ï is satisfiable over Z. The satisfiability of Â is then checked by calling LinExpSat.
Hence, correctness and NP membership follow by Propositions 4 and 5, respectively. J

Deciding existential Büchi–Semenov arithmetic (proof of Theorem 2). Let Ï be a for-
mula in the existential theory of the structure (N, 0, 1,+, 2(·), V2(·, ·),Æ) (i.e., Büchi–Semenov
arithmetic). By De Morgan’s laws, we can bring Ï to negation normal form. Negated literals
can then be replaced by positive formulae: ¬V2(·,‡) becomes V2(·, z) · ¬(z = ‡) where z is
a fresh variable, ¬(· = ‡) becomes (· < ‡) ‚ (‡ < ·), and ¬(· Æ ‡) becomes ‡ < · . Next,
occurrences of V2(·, ·) and 2(·) featuring arguments other than variables can be “flattened” by
introducing extra (non-negative integer) variables: e.g., an occurrence of 2· can be replaced
with 2z, where z is fresh, subject to conjoining to the formula Ï the constraint z = · . Lastly,
recall that V2(x, y) can be rephrased in terms of the modulo operator via a linear-exponential
system 2 · y = 2v · 2 · (x mod 2v) = 2v, where v is a fresh variable.

After the above transformation, we obtain a formula Â of size polynomial with respect to
the original one. This formula is a positive Boolean combination of linear-exponential sys-
tems. A non-deterministic polynomial-time algorithm deciding Â first (non-deterministically)
rewrites each disjunction Ï1 ‚ Ï2 occurring in Â into either Ï1 or Ï2. After this step,
each non-deterministic branch contains a linear-exponential system. The algorithm then
calls LinExpSat. Correctness and NP membership then follow by Propositions 4 and 5. J
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9 Future directions

We have presented a quantifier elimination procedure that decides in non-deterministic
polynomial time whether a linear-exponential system has a solution over Z. As a by-product,
this result shows that satisfiability for existential Büchi–Semenov arithmetic belongs to NP.
We now discuss further directions that, in view of our result, may be worth pursuing.

As mentioned in Section 2, the ÷ú’ú-fragment of Büchi–Semenov arithmetic is undecidable.
Between the existential and the ÷ú’ú-fragments lies, in a certain sense, the optimisation
problem: minimising or maximising a variable subject to a formula. It would be interesting
to study whether the natural optimisation problem for linear-exponential systems lies within
an optimisation counterpart of the class NP.

With motivation from verification questions, problems involving integer exponentiation
have recently been approached with satisfiability modulo theories (SMT) solvers [12]. The
algorithms developed in our paper may be useful to further the research in this direction.

Our work considers exponentiation with a single base. In a recent paper [17], Hieronymi
and Schulz prove the first–order theory of (N, 0, 1,+, 2N, 3N,Æ) undecidable, where k

N is
the predicate for the powers of k. Therefore, the first-order theories of the structures
(N, 0, 1,+, V2, V3,Æ) and (N, 0, 1,+, 2(·), 3(·),Æ), which capture 2N and 3N, are undecidable.
Decidability for the existential fragments of all the theories in this paragraph is open.

Lastly, it is unclear whether there are interesting relaxed versions of linear-exponential
systems, i.e., over R instead of Z. Observe that, in the existential theory of the struc-
ture (R, 0, 1,+, 2(·),Æ), the formula x = 2yÕ

+z
Õ · y = 2yÕ · z = 2zÕ defines the graph of the

multiplication function x = y · z for positive reals. This “relaxation” seems then only to be
decidable subject to (a slightly weaker version of) Schanuel’s conjecture [25]. To have an
unconditional result one may consider systems where only one variable occurs exponentiated.
These are, in a sense, a relaxed version of (u, v)-primitive systems. Under this restriction,
unconditional decidability was previously proved by Weispfenning [40].
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A Theorem 1 holds for any positive integer base given in binary

Algorithm 2 and Algorithm 3 are agnostic with regard to the choice of the base k Ø 2. They
do not inspect k and see exponential terms kx as purely syntactic objects. Their logic does
not need to be updated to accommodate a di�erent base. To add support for a base k given
in input to these two algorithms, it su�ces to replace in the pseudocode every 2 with k.

Algorithm 4 is di�erent, as it uses properties of exponentiation. In that algorithm, line 2
must be updated as follows. The pair (d, n) is redefined to be such that d is the largest
integer coprime with k dividing mod(“), and k

n is the smallest power of k divisible by mod(“)
d

.
For example, in the case when k = 6 and mod(“) = 60, we obtain d = 5 and n = 2, because
36 is the smallest power of 6 divisible by 60

5
= 12. It is clear that n Æ Álog(mod(“))Ë, and

the pair (d, n) can be computed in deterministic polynomial time.
Apart from this update, it su�ces to replace every occurrence of 2n · r with mod(Ï)

d
· r, and

every remaining occurrence of 2 with k (except for the constant 2 appearing in the expression
3 + 2 ·

'
logk(

|b|+|c|+1

|a| )
(
). This means that the discrete logarithm problems of lines 11–13

must be solved with respect to k instead of 2 (but this can still be done in non-deterministic
polynomial time). No other change is necessary.
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Abstract

We consider finite-state Markov decision processes with the combined Energy-MeanPayo� objective.
The controller tries to avoid running out of energy while simultaneously attaining a strictly positive
mean payo� in a second dimension.

We show that finite memory su�ces for almost surely winning strategies for the Energy-
MeanPayo� objective. This is in contrast to the closely related Energy-Parity objective, where
almost surely winning strategies require infinite memory in general.

We show that exponential memory is su�cient (even for deterministic strategies) and necessary
(even for randomized strategies) for almost surely winning Energy-MeanPayo�. The upper bound
holds even if the strictly positive mean payo� part of the objective is generalized to multidimensional
strictly positive mean payo�.

Finally, it is decidable in pseudo-polynomial time whether an almost surely winning strategy
exists.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behaviour [28]. MDPs play a prominent role in
many domains, e.g., artificial intelligence and machine learning [32, 30], control theory [5, 1],
operations research and finance [31, 23, 9, 29], and formal verification [2, 31, 20, 14, 3, 11].

An MDP is a directed graph where states are either controlled or random. If the
current state is controlled then the controller can choose a distribution over all possible
successor states. If the current state is random then the next state is chosen according to
a fixed probability distribution. One assigns numeric rewards to transitions (and this can
be generalized to multidimensional rewards). Moreover, priorities (aka colours), encoded by
bounded non-negative numbers, are assigned to states. By fixing a strategy for the controller
and an initial state, one obtains a probability space of runs of the MDP. The goal of the
controller is to optimize the expected value of some objective function on the runs.

The strategy complexity of a given objective is the amount of memory (and randomization)
needed for an optimal (resp. Á-optimal) strategy. Common cases include memoryless strategies,
finite-memory strategies, Markov strategies (using a discrete clock, aka step counter), and
general infinite-memory strategies.
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Related work. The Parity, MeanPayo� and Energy objectives have been extensively studied
in the formal verification community. A run satisfies the (min-even) Parity objective i� the
minimal priority that appears infinitely often in the run is even. It subsumes all Ê-regular
objectives, and in particular safety, liveness, fairness, etc. The MeanPayo� objective requires
that the limit average reward per transition along a run is positive (resp. non-negative in
some settings). MeanPayo� objectives go back to a 1957 paper by Gillette [21] and have
been widely studied, due to their relevance for e�cient control. The Energy objective [10]
requires that the accumulated reward at any time in a run stays above some finite threshold
(typically 0). The intuition is that a controlled system has some finite initial energy level
that must never become depleted.

Combinations of these objectives have also been studied, where the runs need to satisfy
several of the above conditions simultaneously.

The existence of almost surely winning strategies for MeanPayo�-Parity in MDPs is
decidable in polynomial time [12]. These strategies require only finite memory for MeanPayo�
> 0 [22], but infinite memory for MeanPayo� Ø 0 [13].

The existence of almost surely winning strategies for Energy-Parity in MDPs is decidable
in NP fl coNP and in pseudo-polynomial time [25]. (The NP fl coNP upper bound holds even
for turn-based stochastic games [26].) Almost surely winning strategies in MDPs require
only finite memory in the special case of Energy-Büchi [12], but infinite memory for Energy-
co-Büchi and thus for Energy-Parity [25]. However, Á-optimal strategies for Energy-Parity
require only finite (at most doubly exponential) memory, and the value can be e�ectively
approximated in doubly exponential time (even for turn-based stochastic games) [17].

The Energy-MeanPayo� objective is similar to Energy-Parity, but replaces the Parity part
by a MeanPayo� objective for a second reward dimension. I.e., one considers an MDP with
2-dimensional transition rewards, where the Energy condition applies to the first dimension
and the MeanPayo� condition applies to the second dimension. (It can be generalized to
higher dimensions d, where the MeanPayo� condition applies to all dimensions 2, 3, . . . , d.)
This might look like a direct generalization of the Energy-Parity objective, since Parity games
are reducible to MeanPayo� games [27, 24]. However, this reduction does not work in the
context of these combined objectives when one considers stochastic systems like MDPs; see
below. Non-stochastic Energy-MeanPayo� games have been studied in [8].

A sightly di�erent objective has been studied in [16] who consider MDPs with d-
dimensional rewards, where d = d1+d2. The objective requires a strictly positive MeanPayo�
surely in the first d1 dimensions, and almost surely in the remaining d2 dimensions. This
objective is strictly stronger than Energy-MeanPayo�. E.g., a MeanPayo� of zero in the first
dimension may or may not satisfy the Energy objective, but it never satisfies the objective
in [16].

The objective studied in [6] aims to maximize the expected MeanPayo� (rather than
the probability of it being strictly positive) while satisfying the energy constraint. However,
unlike in our work, the reward function has a single dimension (i.e., both criteria apply to
the same value) and Á-optimal strategies can require infinite memory.

Our contribution. We consider the Energy-MeanPayo� objective in MDPs with d-dimensio-
nal rewards. The first dimension needs to satisfy the Energy condition (never drop below
0), while each other dimension needs to have a strictly positive MeanPayo�. We show that



M. Dantam and R. Mayr 133:3

almost surely winning strategies for Energy-MeanPayo� require only finite memory. 1 This
is in contrast to the Energy-Parity objective where almost surely winning strategies require
infinite memory in general [25, Page 4] (even for the simpler Energy-co-Büchi objectives).
This also shows that Energy-Parity is not reducible to Energy-MeanPayo� in MDPs, unlike
the reduction from Parity to MeanPayo� in [27, 24].

We show that almost surely winning strategies for Energy-MeanPayo�, if they exist, can
be chosen as deterministic strategies with an exponential number of memory modes. The
crucial property is that it su�ces to remember the stored energy only up to some exponential
upper bound. A small counterexample shows the corresponding exponential lower bound.
Even for randomized strategies, an exponential number of memory modes is required, and
this holds even for the case of small transition rewards in {≠1, 0,+1}.

Although almost surely winning strategies are “exponentially large” in this sense, their
existence is still decidable in pseudo-polynomial time; cf. Section 7.

2 Preliminaries

A probability distribution over a countable set S is a function f : S æ [0, 1] with
q

sœS f(s) = 1.
supp(f) def= {s | f(s) > 0} denotes the support of f and D(S) is the set of all probability
distributions over S. Given an alphabet �, let �Ê and �ú (�+) denote the set of infinite and
finite (non-empty) sequences over �, respectively. Elements of �Ê or �ú are called words.

MDPs and Markov chains. A Markov Decision Process (MDP) is a controlled stochastic
directed graph M

def= (S, S2, S#, E, P, r) where the set of vertices S (also called states) is
partitioned into the states S2 of the player 2 (Maximizer), and chance vertices (aka random
states) S#. Let E ™ S ◊ S be the transition relation. We write s≠æsÕ if (s, sÕ) œ E and
assume that Succ(s) def= {sÕ

| sEsÕ
} ”= ÿ for every state s. The probability function P assigns

each random state s œ S# a distribution over its successor states, i.e., P (s) œ D(Succ(s)).
We extend the domain of P to SúS# by P (fls) def= P (s) for all fls œ S+S#. A Markov chain is
an MDP with only random states, i.e., S2 = ÿ. In this paper we consider finite-state MDPs,
i.e., the set of states S is finite.

Strategies. A run is an infinite sequence s0s1 . . . œ SÊ such that si≠æsi+1 for all i Ø 0. A
path is a finite prefix of a run. Let Runs(M) def=

)
fl = (qi)iœN |qi≠æqi+1

*
denote the set of all

possible runs. A strategy of the player 2 is a function ‡ : SúS2 æ D(S) that assigns to every
path ws œ SúS2 a probability distribution over the successors of s. If these distributions
are always Dirac then the strategy is called deterministic (aka pure), otherwise it is called
randomized (aka mixed). The set of all strategies of player 2 in M is denoted by �M.
A run/path s0s1 . . . is compatible with a strategy ‡ if si+1 œ supp(‡(s0 . . . si)) whenever
si œ S2. Finite-memory strategies are a subclass of strategies using a finite set M of memory
modes. A function nxt : M ◊ S2 ‘æ D(S) chooses a (distribution over) successor states based
on the current memory mode and state and upd : M ◊ E ‘æ D(M) updates the memory
mode upon observing a transition. Let ‡[m] denote the finite-memory strategy ‡ starting in

1 Our results do not carry over to Energy-MeanPayo� objectives with non-strict inequalities where one
just requires a MeanPayo� Ø 0 almost surely. This needs infinite memory even for the case of d = 2,
i.e., one energy-dimension and one MeanPayo�-dimension. It su�ces to modify the counterexample for
Energy-co-Büchi from [25, Page 4] such that a visit to a state with unfavourable colour incurs a reward
of ≠1 in the MeanPayo�-dimension.
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memory mode m. The set of all finite-memory strategies in M is denoted by �M

f . Strategies
with memory |M| = 1 are called memoryless. Memoryless deterministic (resp. randomized)
strategies are called MD (resp. MR). By fixing some finite-memory strategy ‡ from some
initial state in a finite-state MDP M, we obtain a finite-state Markov chain, denoted by M

‡.

Measure. An MDP M with initial state s0 and strategy ‡ yields a probability space
(s0SÊ,Fs0 ,P

M
‡,s0) where Fs0 is the ‡-algebra generated by the cylinder sets s0s1 . . . snSÊ for

n Ø 0. The probability measure PM
‡,s0 is first defined on the cylinder sets. For fl = s0 . . . sn, let

P
M
‡,s0(fl)

def= 0 if fl is not compatible with ‡ and otherwise PM
‡,s0(flS

Ê) def=
rn≠1

i=0
·(s0 . . . si)(si+1)

where · is ‡ or P depending on whether si œ S2 or S#, respectively. If M is a Markov chain
then there is only a single strategy, and we simply write P

M
s0 . By Carathéodory’s extension

theorem [4], this defines a unique probability measure on the ‡-algebra. Given some reward
function v : s0SÊ

æ R, we write E (.) for the expectation w.r.t. P and v.

Objectives. General objectives are defined by real-valued measurable functions. However,
we mostly consider indicator functions of measurable sets. Hence, our objectives can be
described by measurable subsets O ™ SÊ of runs starting at a given initial state. By P

M
‡,s(O)

we denote the payo� under ‡, i.e., the probability that runs from s belong to O. The value of
a state is defined as valM

O
(s) def= sup‡œ�M P

M
‡,s(O). For Á > 0 and state s, a strategy ‡ œ �M

is Á-optimal i� P
M
‡,s(O) Ø val

M
O
(s) ≠ Á. A 0-optimal strategy is called optimal. An MD/MR

strategy is called uniformly Á-optimal (resp. uniformly optimal) if it is so from every start
state. An optimal strategy from s is called almost surely winning if valM

O
(s) = 1. By AS(O)

(resp. ASf (O)) we denote the set of states that have an almost surely winning strategy (resp.
an almost surely winning finite-memory strategy) for objective O. For ease of presentation,
we drop subscripts and superscripts wherever possible if they are clear from the context.

We use the syntax and semantics of the LTL operators [15] F (eventually), G (always)
and X (next) to specify some conditions on runs. A reachability objective is defined by a
set of target states T ™ S. A run fl = s0s1 . . . belongs to FT i� ÷i œ N si œ T . Similarly, fl
belongs to FÆnT (resp. FØnT ) i� ÷i Æ n (resp. i Ø n) such that si œ T . Dually, the safety
objective GT consists of all runs which never leave T . We have GT = ¬F¬T .

Energy/Reward/Counter-based objectives. Let r : E æ {≠R, . . . , 0, . . . , R} be a bounded
function that assigns rewards to transitions. Depending on context, the sum of these rewards
in a path can be viewed as energy, cost/profit or a counter. If s≠æsÕ and r((s, sÕ)) = c, we
write s

c
≠æ sÕ. Let fl = s0

c0
≠æ s1

c1
≠æ . . . be a run. We say that fl satisfies

1. the k-energy objective EN(k) i�
1
k +

qn≠1

i=0
ci

2
Ø 0 for all n Ø 0.

2. the l-storage condition Infix(l) if l+
qn≠1

i=m ci Ø 0 holds for every infix sm
cm

≠æ sm+1 . . . sn
of the run. Let ST(k, l) denote the set of runs that satisfy both the k-energy and the
l-storage condition. Let ST(k) def=

t
l ST(k, l). Clearly, ST(k) ™ EN(k).

3. Mean payo� MP(⇤ c) for some constant c œ R i�
1
lim infnæŒ

1

n

qn≠1

i=0
ci

2
⇤ c for ⇤ œ

{<,Æ,=,Ø, >}.
A di�erent way to consider the energy objective is to encode the energy level (the sum of the
transition weights so far) into the state space and then consider the obtained infinite-state
game with a safety objective.

An objective O is called shift-invariant i� for all finite paths fl and plays flÕ
œ SÊ, we have

flflÕ
œ O ≈∆ flÕ

œ O. Mean payo� objectives are shift-invariant, but energy and storage/infix
objectives are not.
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Multidimensional reward-based objectives. Let N,Q,R denote the set of positive integers,
rationals and reals respectively. For a d-dimensional real vector µ, let µi denote the ith

component of µ for 1 Æ i Æ d. Given two vectors µ,‹ œ Rd, ≥œ {<,Æ, >,Ø,=} we say
µ ≥ ‹ if µi ≥ ‹i for every i. In particular, µ > 0 means that every component of µ is
strictly greater than 0. For a multidimensional reward function r : E æ [≠R,R]d, we can
consider any boolean combination of reward based objectives using any components of r.
For instance, O1 = EN1(k) fl MP2(> 0) denotes the objective that contains all runs that satisfy
EN(k) in the 1st dimension and MP(> 0) in the 2nd one. We denote conjunctions of the same
objective across di�erent dimensions in vectorized form, with the dimension information
in the subscript. Therefore, EN[a,b](k) fl MP[c,d](> x) denotes the runs where the ENi(ki)
objective is satisfied for each i œ [a, b] and the MPj(> xj) objective is satisfied for each
j œ [c, d]. Given an infinite run fl = s0

c0
≠æ s1

c1
≠æ . . ., let Xn(fl)

def= sn denote the n-th state.
Let Yn be the sum of the rewards in the first n steps, i.e., Yn(fl)

def=
qn≠1

i=0
ci. These become

random variables once an initial distribution and a strategy are fixed.

Size of an instance. Given an MDP M = (S, S2, S#, E, P, r) with reward function r : E æ

[≠R,R]d, its size |M| is the number of bits used to describe it. Similarly for |P |. Transition
probabilities and rewards can thus be stored in binary. We call a size pseudo-polynomial in
|M| if it is polynomial for the case where R is “small”, i.e., if R is given in unary.

3 The Main Result

I Theorem 1. Let M = (S, S2, S#, E, P, r) be an MDP with d-dimensional rewards on the
edges r : E æ [≠R,R]d. For the multidimensional Energy-MeanPayo� objective EN1(k) fl

MP[2,d](> 0) the following properties hold.
1. The existence of an almost-surely winning strategy implies the existence of an almost-surely

winning finite-memory strategy.
2. Moreover, a deterministic strategy with an exponential number of memory modes is

su�cient.
3. An exponential (in |P |) number of memory modes is necessary in general, even for

randomized strategies, even for |S| = 5, d = 2 and R = 1.

In the following three sections we prove items 1.,2.,3. of Theorem 1, respectively.
Here we sketch the main idea for the upper bound. Except in a special corner case

where the energy fluctuates only in a bounded region, almost-surely winning strategies for
Energy-MeanPayo� can be chosen among some particular strategies that alternate between
two modes, playing two di�erent memoryless strategies. This alternation keeps the balance
between the Energy-part and the MeanPayo�-part of the objective. This is similar to
almost-surely winning strategies for the Energy-Parity objective in [25]. In one mode, one
plays a randomized memoryless strategy that almost surely yields a positive mean payo� in
all dimensions (in case of Energy-Parity, instead of mean payo� it satisfies Parity almost
surely). This is called the Gain phase. Whenever the energy level (the cumulative reward
in dimension 1) gets dangerously close to zero, one switches to the other mode and plays
a di�erent memoryless strategy that focuses exclusively on getting the energy level up
again, while temporarily neglecting the other part of the objective (Parity or Mean payo�,
respectively). This is called a Bailout. Once the energy level is su�ciently high, one switches
back to the Gain phase again. The crucial property is that, except in a null set, only
finitely many Bailouts are required, and thus the temporary neglect of the second part
of the objective does not matter in the long run. Such a strategy uses infinite memory,
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because it needs to remember the unbounded energy level. For Energy-Parity (and even
Energy-co-Büchi) this cannot be avoided and finite-memory strategies do not work [25].
However, for Energy-MeanPayo� one can relax the requirements somewhat. Suppose that
one records the stored energy only up to a certain bound b, i.e., one forgets about potential
excess energy above b. In that case, one might have to do infinitely many Bailouts with high
probability, most of which are unnecessary (but one does not know which ones). However,
for a su�ciently large bound b, these superfluous Bailouts occur so infrequently that they
do not compromise the MeanPayo�-part of the objective. The critical part of the proof is
to show this property and an upper bound on b. Once this is established, one obtains a
finite-memory strategy, because it su�ces to record the energy level only in the range [0, b]
(plus one extra bit of memory to record the current phase, Gain or Bailout).

Note that the argument above is di�erent from the one that justifies finite-memory
Á-optimal strategies for Energy-Parity in [17]. These also record the energy only in a bounded
region, but stop doing Bailouts after the upper bound has been visited. I.e., they do too
few Bailouts, and thus incur an Á-chance of losing. In contrast, our almost-surely winning
strategies for Energy-MeanPayo� rather do too many Bailouts, but su�ciently infrequently
such that they don’t compromise the objective.

4 Proof of Item 1

W.l.o.g, we assume that every state in M has an almost surely winning strategy for Energy-
MeanPayo� for some initial energy level. (Otherwise, consider a suitably restricted sub-MDP.)
For conciseness, we denote the objective by O(k) def= EN1(k) fl MP[2,d](> 0). Let

Win(s) def= {k | s œ AS(O(k))}, is
def= min(Win(s))

denote the possible initial energy levels and the minimum initial energy level such that one
can win almost surely from state s. In particular, is is well defined by our assumption on M.

Towards a contradiction, assume that not all configurations are winnable with a finite-
memory strategy. I.e., let Winf (s)

def= {k | s œ ASf (O(k))} denote the energy levels from which
one can win almost surely with a finite-memory strategy from s, and assume that there is a
state s† such that is† /œ Winf

!
s†

"
. We then construct a finite-memory winning strategy from

s† for O(is†), leading to a contradiction. Similar to is, let fs denote the minimal k such that
k œ Winf (s) and Œ if there is no such k.

I Definition 2. We construct a new MDP M
ú which abstracts away all the Winf configura-

tions. At every state s, the player gets the option to enter a winning sink state if the energy
level is su�ciently large to win with finite memory, i.e., if the current energy level is at least
fs. The states of the MDP M

ú will have two copies of each state s of M, namely s and sÕ.
Moreover, we add a new state swin. All states sÕ are controlled by 2 and every step s1≠æs
in the original MDP M is now mapped to a step s1≠æsÕ with the same reward (and the
same probability if s1 was a random state). In sÕ, the player has two choices: he can either
go to s with reward 0 or go to swin with reward (≠fs,0). The latter choice is only available
if fs < Œ. swin is a winning sink where swin≠æswin with reward 1, i.e., reward +1 in all
dimensions.

The following lemma shows that the existence of almost surely winning (finite-memory)
strategies coincides in M

ú and M.

I Lemma 3. Let s œ S and k œ N, and consider the objective O(k). There exists an
almost surely winning strategy ‡ú from s in M

ú if and only if there exists an almost surely
winning strategy ‡ from s in M. Moreover, if ‡ú is finite-memory then ‡ can be chosen as
finite-memory, and vice-versa.
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Proof. Towards the “only if” direction, let ‡ú be a strategy from s in M
ú that is almost

surely winning for O(k). We define a strategy ‡ from s in M that plays as follows. First ‡
imitates the moves of ‡ú until (if ever) ‡ú chooses a move sÕ

1
æ swin with non-zero probability

at some state sÕ
1
. This is possible, since any finite path in M

ú that does not contain swin

can be bijectively mapped to a path in M. The only di�erence is that paths in M
ú contain

extra steps via primed states, which are skipped in the paths in M. Moreover, the transition
probabilities at random states coincide in M

ú and M. If ‡ú chooses a move sÕ
1

æ swin with
non-zero probability at some state sÕ

1
then the current energy level must be Ø fs1 , because ‡ú

satisfies the energy objective almost surely (and thus even surely). Thus, in M, there exists
an almost surely winning finite-memory strategy ‡̂ for O(fs1) from s1. In this situation ‡
continues by playing ‡̂ from s1. Therefore, ‡ satisfies the energy objective surely. Moreover,
by shift invariance and the properties of ‡̂, it also satisfies the Mean payo� objective almost
surely. Thus, ‡ satisfies O(k) almost surely. Finally, if ‡ú is finite-memory then so is ‡,
because ‡̂ is also finite-memory.

Towards the “if direction, let ‡ be a strategy from s in M that is almost surely winning
for O(k). We define a strategy ‡ú from s in M

ú that imitates the moves of ‡. Moreover, at
primed states qÕ it always goes to q (and never to swin). Since the probabilities at random
states coincide in M

ú and M, also the probabilities of the induced paths coincide. The only
di�erence is that the runs in M

ú contain extra steps via primed states and these extra steps
carry reward zero. Thus, the mean payo� of a run in M

ú is 1/2 the mean payo� of the
corresponding run in M. However, this does not a�ect the property that the mean payo�
is > 0 almost surely in either MDP. Thus, ‡ú satisfies O(k) almost surely. Finally, if ‡ is
finite-memory then so is ‡ú. J

The next lemma shows that, in M
ú, it is impossible to satisfy Energy-MeanPayo� from s

with arbitrarily high probability, unless one also allows arbitrarily large fluctuations in the
energy level, or fs = is. (Recall that fs, is are defined relative to M.)

I Lemma 4. For every state s with fs > is and every ¸ œ N, there exists a ”¸ > 0 such that
val

M
ú

O(is) fl Infix1(¸)
(s) Æ 1 ≠ ”¸.

Proof. Towards a contradiction, assume that valMú

O(is) fl Infix1(¸)
(s) = 1 for some ¸.

O(is) fl Infix1(¸) = EN1(is) fl MP[2,d](> 0) fl Infix1(¸) = ST1(is, ¸) fl MP[2,d](> 0).
Therefore, we have valMú

s

!
ST1(is, ¸) fl MP[2,d](> 0)

"
= 1. Below we prove that this objective

has a finite-memory almost-surely winning strategy ‡ in M
ú. Consider a modified MDP

M
ú
1
that encodes the energy level up to is + ¸ in the states. A step exceeding the upper

energy bound is + ¸ results in a truncation to is + ¸, while a step leading to a negative
energy leads to a losing sink. There exists a memoryless randomized (MR) strategy ‡1

in M
ú
1
from state (s, is) that wins MP[2,d](> 0) almost surely, by Lemma 6. We can then

carry ‡1 back to M
ú as a finite-memory strategy ‡ with is + ¸ + 1 memory modes such

that PM
ú

‡,s

!
ST1(is, ¸) fl MP[2,d](> 0)

"
= 1. By set inclusion, PM

ú

‡,s (O(is)) = 1. By Lemma 3,
there also exists a finite-memory strategy from s in M that is almost surely winning for
O(is). This implies fs = is, a contradiction to our assumption fs > is. Hence, we obtain
”¸

def= 1 ≠ val
M

ú

O(is) fl Infix1(¸)
(s) > 0. J

The following three lemmas show that almost surely winning strategies for Energy-
MeanPayo� can be found by combining two di�erent memoryless strategies for the simpler
Bailout and Gain objectives.

First, we define the objective Bailout(k) def= EN1(k) fl MP1(> 0). Let iBailouts denote the
minimal energy value k with which one can almost surely satisfy Bailout(k) when starting
from state s (or Œ if it does not exist).
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I Lemma 5 ([6, Lemma 3]). Let M be an MDP. If s œ AS(Bailout(k)) for some k œ N then
iBailouts Æ 3 · |M| ·R. Moreover, there exists a uniform MD strategy ‡ú

Bailout
which is almost

surely winning Bailout(k) from every state s œ AS(Bailout(k)).

We define the Gain objective as MP[1,d](> 0). The following lemma shows that an almost
surely winning strategy ‡ú

Gain
for this objective can be chosen as memoryless randomized.

I Lemma 6 ([7, Proposition 5.1]). There is a uniform MR strategy ‡ú
Gain

which is almost
surely winning for Gain (or any subset of dimensions) from all states s œ AS(Gain).

A di�erence between M
ú and M is that if one can almost surely win Energy-MeanPayo�

in M
ú then one can also push the energy level arbitrarily high. This does not always hold in

M. (Consider, e.g., a single-state Markov chain with a single loop with reward 0 in the 1st
dimension and +1 in all other dimensions.) The di�erence comes from the loop at state swin

in M
ú which has a strictly positive reward in all dimensions. Thus, the following lemma

only holds for Mú.

I Lemma 7. In M
ú, there are two uniform memoryless strategies ‡ú

Bailout
and ‡ú

Gain
which,

starting from any state s œ AS(O(k)), almost surely satisfy Bailout(k) and Gain, respectively.

Proof. Let s œ AS(O(k)). We show that s œ AS(Bailout(k)) and s œ AS(Gain). The existence
of the memoryless strategies ‡ú

Bailout
and ‡ú

Gain
then follows from Lemma 5 and Lemma 6,

respectively.
We assumed that all states s in M admit an almost surely winning strategy for Energy-

MeanPayo�. By Lemma 3, this also holds for all states q in M
ú. Let ‡˘

q denote an almost
surely winning strategy from q for O(iq) in M

ú (without restrictions on memory).
Recall from Section 2 that the random variable Xt denotes the state at time t, and Yt

denotes the (d-dimensional) sum of the rewards until time t.

B Claim 8. For every state q œ M
ú there exists some number of steps nq œ N and a

probability pq > 0 such that

P
M

ú

‡˘
q,q

Q

a
nq€

j=0

((Yj)1 > iXj ≠ iq) fi ((Yj)1 Ø fXj ≠ iq)

R

b Ø pq.

Proof. Towards a contradiction, assume that for all m

P
M

ú

‡˘
q,q

Q

a
m€

j=0

((Yj)1 > iXj ≠ iq) fi ((Yj)1 Ø fXj ≠ iq)

R

b = 0.

Due to the second part of the union, this implies that never (Yj)1+iq Ø fXj . Since ‡˘
q satisfies

EN1(iq) almost surely, it can never choose the step to swin. This implies P
M

ú

‡˘
q,q

(Fswin) = 0,
i.e., Xj is always di�erent from swin. (The values fs were initially defined with respect to
states s of the original MDP M, but the definition is naturally extended to the MDP M

ú,
by giving the primed states the same value, i.e., fsÕ = fs. The state swin does not appear in
M, but only in M

ú. We can extend the definition by having fswin = 0. However, this is not
strictly required. The fXj is already defined, since Xj is always di�erent from swin.)

Since ‡˘
q satisfies EN1(iq) almost surely, all runs always satisfy (Yj)1 Ø iXj ≠iq for all j. On

the other hand, our assumption yields PM
ú

‡˘
q,q

1tm
j=0

(Yj)1 > iXj ≠ iq
2
= 0. This implies that

(Yj)1 = iXj ≠ iq for all j. Hence, in all runs the energy fluctuates by at most ¸
def= 2maxq iq.
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Thus, PM
ú

‡˘
q,q

(O(iq) fl Infix1(¸)) = 1. Then Lemma 4 implies that fq = iq. Since X0 = q we
have fX0 = fq and thus (Y0)1 Ø fX0 ≠ iq = 0. This contradicts our assumption, since the
second part of the union is surely satisfied. C

For any state q, let nq, pq denote the values from Claim 8.
Now we show that s œ AS(Bailout(k)). Define a strategy ‡Bailout which plays in phases,

separated by resets. It remembers the number of steps t Ø 0 since last reset, the (under-
approximated) sum of rewards Qt and the current state Xt. The first phase starts at state s
and ‡Bailout plays like ‡˘

s until one of the following events occur.
1. There is enough energy such that it is safe to move to swin, i.e., (Qt Ø fXt ≠ is), or
2. The current energy level is strictly greater than the minimal required energy level of the

current state, i.e., (Qt > iXt ≠ is), or
3. ns steps have elapsed, i.e., (t = ns).
If at any point Item 1 happens, then the strategy simply goes to swin. If it is the case that
Item 2 occurs before t = ns, let’s say at some time tÕ, then the phase ends at tÕ. The sum
of the rewards in the phase, between the last reset (where t = 0) and the current time is
Ø iXtÕ

≠ is + 1. If neither Item 1 nor Item 2 occurs before t = ns, then the phase ends and
we let tÕ def= t = ns. The sum of the rewards in this phase is then exactly iXtÕ

≠ is. At the
end of the phase ‡Bailout resets the number of steps (t = 0), and Qt to 0. In the following
phase it moves according to ‡˘

XtÕ
until the next reset.

‡Bailout clearly satisfies EN1(k) as it is a mix of energy safe strategies
!
‡˘
q

"
qœSú

and
since we are starting from a safe energy level. By Claim 8, there is a positive probability
(lower-bounded by minq pq > 0) that either Item 1 or Item 2 happens in each phase.

Hence, unless event Item 1 occurs, Item 2 occurs infinitely often almost surely. Moreover,
since the length of phases is upper bounded by maxq nq, it occurs frequently. We obtain
P

M
ú

‡Bailout,s

1
MP1 Ø minq

1
pq

nq

2
> 0 | ¬Fswin

2
= 1. On the other hand, if swin is reached, then

MP1 holds by shift invariance and the definition of the positive rewards in the loop at swin.
Therefore, PM

ú

‡Bailout,s(EN1(is) fl MP1(> 0)) = 1.
Now we show that s œ AS(Gain). We make use of the following strategies.
‡˘
q which satisfies EN1(k) fl MP[2,d](> 0) almost surely from q for every k Ø iq.

a uniform MD strategy ‡ú
MP1 which satisfies MP1(> 0) almost surely from every state.

It exists since AS(MP1(> 0)) = Sú (where Sú is the set of states of M
ú), because

P
M

ú

‡Bailout,s(EN1(is) fl MP1(> 0)) = 1.

From the former, we get probabilistic bounds on the achievable mean payo� in all the
dimensions, i.e., for all states s, and 0 Æ Á < 1, there is a d ≠ 1 dimensional vector ‹Á > 0
such that P

M
ú

‡˘
s,s

!
MP[2,d] Ø ‹Á

"
Ø 1 ≠

Á
2
. This follows from the fact that for any sequence

of decreasing vectors ‹n æ 0 in Rd≠1, MP[2,d](> 0) =
t

n MP[2,d](Ø ‹n) and continuity of
measures. Furthermore, denoting by Yt the sum of rewards in all dimensions until time
t, there exists a su�ciently large bound nÁ œ N such that P

M
ú

‡˘
s,s

1
(Yt)j

t Ø
(‹Á)j

2

2
Ø 1 ≠ Á in

each of the dimensions j œ [2, d] for all t Ø nÁ steps. This can be shown by observing that
MPj

1
Ø (‹Á)j

2
=

u
Œ

k=1

t
Œ

n=1

u
Œ

t=n

1
(Yt)j

t Ø (‹Á)j ·
!
1 ≠

1

2k

"2
and using continuity of measures.

Similarly, there exists a bound nú
Á œ N and value ‹ú

Á > 0 such that P‡ú

MP1 ,s

1
(Yt)1

t Ø
‹ú

Á
2

2
Ø

1 ≠ Á after t Ø nú
Á steps for every state s.

Now consider the following strategy ‡Gain, which switches between two phases.
Phase 1: If the current state is q, it moves according to ‡˘

q for some number – > nÁ of steps.
Then it switches to phase 2.
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Phase 2: It moves according to ‡ú
MP1 for some number — > nú

Á of steps, and then switches
back to phase 1.

The strategy ‡Gain is a finite-memory strategy, since the lengths of the alternating phases are
bounded by – and —, respectively. (Even if ‡˘

q is an infinite-memory strategy, it can only use
bounded memory in each phase.)

We fix ‡Gain from the start state s and obtain a finite-state Markov chain. In every BSCC
of this Markov chain, the expected mean payo� in the 1st dimension will be

Ø

≠i˘ + — · (1 ≠ Á) ·
1

‹ú

Á
2

2
≠ — · Á ·R

– + —
.

where i˘ = maxs is denotes the maximum (over all states) minimal safe energy.
Similarly, in every BSCC, the expected mean payo� in the jth dimension for j Ø 2 can

be lower-bounded by

Ø

– ·

1
(1 ≠ Á) ·

1
(‹Á)j

2

2
≠ Á ·R

2
≠ — ·R

– + —
.

By choosing Á su�ciently small, — su�ciently large to make the first term positive and
– ∫ — su�ciently large to make the second term positive, we can get positive expected mean
payo� in all dimensions. Since this holds in every BSCC of the induced finite Markov chain,
the objective Gain is satisfied almost surely. J

The following lemma shows the converse of Lemma 7. In M
ú, it is always possible to

win O(is) almost surely from s by playing a particular strategy ‡ú
alt,Zb,Zg which combines the

two uniform memoryless strategies ‡ú
Bailout

and ‡ú
Gain

. Let Zb denote the minimal universally
safe energy level for Bailout, i.e., Zb

def= maxs min{k | s œ AS(Bailout(k))}. Moreover, let
Zg > Zb be a larger energy level at which our strategy switches from ‡ú

Bailout
to ‡ú

Gain
.

Similarly to [25], we define an infinite-memory strategy ‡ú
alt,Zb,Zg that always records the

current energy level and operates by switching between two phases. It starts by playing ‡ú
Gain

(Gain-phase) if our starting energy level is su�ciently high (Ø Zb +R), and otherwise starts
by playing ‡ú

Bailout
(Bailout-phase). In the Bailout-phase, the primary goal is to pump

the energy level up until it is Ø Zg, and then it switches to the Gain-phase. It enters the
Bailout-phase again if the energy level drops below Zb + R (in which case it will still be
Ø Zb).

I Lemma 9. There exists a Zg œ N such that for every s in M
ú the strategy ‡ú

alt,Zb,Zg is
almost surely winning for O(is) from s.

Proof. The parameter Zg is chosen su�ciently large such that there is a fixed non-zero
probability that after every Bailout-phase one never needs another Bailout. (Thus, except
in a null set there are only finitely many Bailouts.) The existence of such a finite Zg is
guaranteed by the fact that limkæŒ P‡ú

Gain
,s(O(k)) = 1. ([18, Lemma 22]). Eventually, except

in a null set, ‡ú
alt,Zb,Zg plays Gain forever, thus satisfying O(is) almost surely from s. J

Some combined objectives like Energy-Parity really require infinite memory for almost
surely winning strategies [25]. However, we show that a su�ciently large finite memory is
enough to win Energy-MeanPayo� almost surely. The idea is to modify the strategy ‡ú

alt,Zb,Zg

such that it remembers the current energy only in the interval [0, b], for some su�ciently
large b > Zg, and ignores any possible excess energy above b. This modified strategy is
denoted by ‡ú

alt,Zb,Zg,b, and it has a finite set of memory modes [0, b]◊ {0, 1}. The {0, 1} part
is used to remember the current phase (Gain = 0 or Bailout = 1). Then ‡ú

alt,Zb,Zg,b[(u, x)]
denotes the strategy ‡ú

alt,Zb,Zg,b with current memory mode (u, x) œ [0, b] ◊ {0, 1}.
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The finite bound b on the remembered energy has the e�ect that ‡ú
alt,Zb,Zg,b can no longer

guarantee a fixed positive probability of not needing another Bailout after each Bailout-phase.
Thus, one might have infinitely many Bailouts with positive probability. (Most of these are
unnecessary, but one cannot be sure which ones). Unlike for Energy-Parity, where using
infinitely many Bailout phases can compromise the objective, the nature of the MP[2,d](> 0)
objective allows us to use infinitely many Bailouts with non-zero probability, provided that
they happen su�ciently infrequently.

By its construction, the strategy ‡ú
alt,Zb,Zg,b[(is, x)] is energy-safe from every state s, every

initial energy Ø is and x œ {0, 1}. It remains to show that it also satisfies MP[2,d](> 0)
almost surely. Since ‡ú

alt,Zb,Zg,b is finite-memory, it su�ces to consider the induced finite
Markov chain A and show that the expected mean payo� is strictly positive in every BSCC.
I.e., we prove that E‡ú

alt,Zb,Zg,b
,s

!
MP[2,d]

"
> 0 for a su�ciently large b. To this end, we consider

the finite Markov chains A
Gain and A

Bailout obtained by fixing the memoryless strategies
‡ú
Gain

and ‡ú
Bailout

in M
ú, respectively. The application of ‡ú

alt,Zb,Zg,b can then be seen as
alternating between these two Markov chains based on hitting certain energy levels.

Let T Gain denote the random variable that measures the length of a Gain-phase, when
starting at energy level Zg and assuming that the energy it truncated at b. Similarly, T Bailout

is the random variable that measures the length of a Bailout-phase when starting at energy
level Zb. (Here it does not matter that the energy is truncated at b, since the Bailout-phase
ends when the energy reaches Zg < b.) Since R can be > 1, the Bailout-phase might actually
start at a slightly higher energy level u œ [Zb, Zb+R≠1], and thus T Bailout over-approximates
the actual length of the Bailout-phase, which is conservative for our analysis. Similarly, the
Gain phase might start with an energy slightly higher than Zg, and T Gain under-approximates
the length of the Gain-phase, which is again conservative. The random variables (YT Gain)i
and (YT Bailout)i then measure the sum of the rewards the ith dimension obtained during the
Gain and Bailout phases, respectively.

The following lemma shows that the strategy ‡ú
alt,Zb,Zg,b can attain a strictly positive mean

payo� in all dimensions i œ [2, d], provided that the expected reward during the Gain-phase
is su�ciently large (positive) and the expected reward during the Bailout-phase (though
possibly negative) is not too small.

I Lemma 10. If there are constants v1i > 0 and v2i such that, for all i œ [2, d] and states q

E
M

ú

‡ú

alt,Zb,Zg,b
[(Zg,0)],q

((YT Gain)i) Ø v1i

E
M

ú

‡ú

alt,Zb,Zg,b
[(Zb,1)],q

((YT Bailout)i) Ø v2i

v1i + v2i > 0

then E
M

ú

‡ú

alt,Zb,Zg,b
[m],s(MPi) > 0 for all s and m œ [is, b] ◊ {0, 1}.

Proof. By fixing the finite-memory strategy ‡ú
alt,Zb,Zg,b, we obtain a finite Markov chain.

Consider any BSCC in this Markov chain. In this BSCC, except for a null set of runs, either no
Bailouts happen or infinitely many. In the former case, this BSCC behaves like playing ‡ú

Gain

forever, which attains a strictly positive mean payo� in all dimensions almost surely, and thus
a strictly positive expected mean payo� in each dimension i. In the second case, almost surely
there happen infinitely many Bailouts, each starting at an every level Ø Zb. Then, by the
finiteness of the BSCC, we obtain that E (T Gain) < Œ. Moreover, by the definition of ‡ú

Bailout
,

the expected duration of the Bailout-phase is always finite, i.e., E (T Bailout) < Œ. Thus, by
linearity of expectations, EM

ú

‡ú

alt,Zb,Zg,b
,s(MPi) Ø (v1i + v2i )/(E (T Gain) + E (T Bailout)) > 0. J
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The following technical Lemma 11 (proof in [18, Appendix B]) shows that the constants
v1i , v

2

i from Lemma 10 exist. Recall that the finite Markov chains A
Gain and A

Bailout are
obtained by fixing the memoryless strategies ‡ú

Gain
and ‡ú

Bailout
in M

ú, respectively. Let
xmin,1 and xmin,2 denote the minimal occurring non-zero probabilities in these two Markov
chains, respectively. (They come from solutions of linear programs and can be chosen as only
exponentially small, i.e., described by a polynomial number of bits; cf. [18, Appendix B]).
The proof works by applying general results about expected first passage times in truncated
Markov chains to the induced Markov chains AGain and A

Bailout. The general idea is that in
the Gain-phase one has a general up drift in all dimensions, and in particular in the first
(energy) dimension. It is thus unlikely to go down very far in the energy dimension, even
if the energy is truncated at b. Thus, for a su�ciently large truncation point b (actually
b = Zg + 1 su�ces), the expected time spent in the Gain-phase is very large relative to the
expected time spent in the Bailout phase. More exactly, the former increases exponentially
in b, while the latter is polynomial in b. For a su�ciently large b (exponential in |M

ú
|), the

condition v1i + v2i > 0 is met.

I Lemma 11. Let µi > 0 denote the lower bound on the mean payo� in dimensioni in any
BSCC in the Markov chain A

Gain with corresponding computable constants ci, gGain, hGain,
and let µ denote the lower bound on the mean payo� in the 1st dimension in any BSCC of
A

Bailout with the corresponding constants gBailout, hBailout. All the above constants, except
ci, can be chosen as at most exponential in |M

ú
| and 1/(1 ≠ ci) œ O

!
exp

!
exp

!
|M

ú
|
O(1)

"""
.

Then there are constants 0 < C1 < 1, C2 > 0, C3 > 0, C4 > 0, C5 > 0, all exponential
in |M

ú
| and dependent only on M, such that for k

def= 2·|Sú
|

x|Sú|

min,1
œ O

!
exp

!
|M

ú
|
O(1)

""
, any

” œ (0, 1) su�ciently small such that (|Sú
|+ 1) ·

!
1

” ≠ 1
"
+ Á

!
logci(” · (1 ≠ ci))

"
Ë Ø

hGain

µi
for

all 2 Æ i Æ d, one can choose
Zg

def= Zb +R+ k·R+maxi
!
R · Álogci(” · (1 ≠ ci))Ë ≠ R+ 1, hGain

"
œ O

1
e|M

ú
|
O(1)

· log(1/”)
2

and b
def= Zg + 1 so that

E
M

ú

‡ú

alt,Zb,Zg,b
[(Zg,0)],q

((YT Gain)i) Ø C1 ·
1
”

≠ C2 log2
3
1
”

4
≠ C3

def= v1i

E
M

ú

‡ú

alt,Zb,Zg,b
[(Zb,1)],q

((YT Bailout)i) Ø ≠C4 log2
3
1
”

4
≠ C5

def= v2i

In particular, in order to satisfy the condition v1i + v2i > 0, it su�ces to choose 1/” œ

O
!
max(1/C1,max2ÆjÆ5 Cj)O(1)

"
. Since the constants Cj are exponential in |M

ú
|, and by

the conditions on the other constants above, the value Zg, and hence the overall bound
b = Zg + 1, can be chosen such that b œ O

!
exp

!
|M

ú
|
O(1)

""
.

Now we can prove the first item of our main result.

Proof of Theorem 1 (Item 1). Towards a contradiction, we assume that there exists a state
s† such that there is no finite-memory almost surely winning strategy from s† for O(is†) in
the MDP M.

First we consider the MDP M
ú. The finite-memory strategy ‡ú

alt,Zb,Zg,b[(is† , 1)] from s† is
energy-safe by construction and satisfies EN1(is†) surely. Now consider the finite Markov chain
induced by fixing this finite-memory strategy in M

ú. By Lemma 10 and Lemma 11, for a
su�ciently large (exponential) b it yields a strictly positive expected mean payo� v1i + v2i > 0
in every dimension i œ [2, d] in every BSCC of this Markov chain. Since the Markov chain is
finite, this implies that the mean payo� in every dimension i œ [2, d] is strictly positive almost
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surely. Hence, PM
ú

‡ú

alt,Zb,Zg,b
[(is† ,1)],s

†

!
MP[2,d](> 0)

"
= 1 and thus PM

ú

‡ú

alt,Zb,Zg,b
[(is† ,1)],s

†(O(is†)) = 1.
So there exists an almost surely winning finite-memory strategy from s† for O(is†) in M

ú.
However, Lemma 3 then implies that there also exists an almost surely winning finite-memory
strategy from s† for O(is†) in M. Contradiction. J

I Remark 12. If ‡ú
alt,Zb,Zg,b satisfies O(is) almost surely from some state s then it also satisfies

the stronger objective O(is) fl Infix(b) almost surely. Consider a winning run induced by
‡ú
alt,Zb,Zg,b. While the true energy might sometimes be higher than b, the energy remembered

by ‡ú
alt,Zb,Zg,b is always Æ b. Even with this conservative under-approximation of the energy,

the run still satisfies the energy objective. Therefore, in any winning run induced by ‡ú
alt,Zb,Zg,b,

the energy can never decrease by more than b. Thus, also Infix(b) is satisfied almost surely.

5 Proof of Item 2

Given some state s, let ‡ = (M,m0, upd, nxt) be a finite-memory strategy that is almost
surely winning for O(is) (which exists by Item 1). We show there exists an almost surely
winning strategy ‡Õ for O(is) such that the energy fluctuations are bounded by some constant
which is exponential in |M|.

First, inside any BSCC B of M‡, we construct an almost surely winning strategy ‡B

and upper bound the minimal safe energy levels and energy fluctuation while following ‡B .
Using this, we upper bound the energy fluctuations in paths before reaching a BSCC. We
use the fact that the set of states and transitions that occur in any BSCC of a Markov chain
induced by fixing some finite-memory strategy in an MDP is an end component of this MDP
([19, Theorem 3.2]).

I Lemma 13. Let B be a BSCC of M‡ and let M(B) be the corresponding end component
in M with states SB and transitions EB. Then there is a strategy ‡B, a bound bB œ

O
!
exp

!
|M(B)|O(1)

""
such that for any state q œ SB, there is a minimal safe energy level

jq
def= iM(B)

q Æ 3 · |SB | ·R such that PM(B)

‡B ,q (O(jq) fl Infix(bB)) = 1.

Proof Sketch. (Full proof in [18, Appendix C].). The idea is that for M(B) there are two
cases. In the first case it behaves similar to M

ú from Section 4, in the sense that it is possible
to win Gain and Bailout almost surely, and thus Energy-MeanPayo� can be won almost
surely by switching between the two strategies for Gain and Bailout like in the strategy
‡ú
alt,Zb,Zg . Then one can invoke Lemma 11 and Remark 12 on M(B) to get an exponential

bound bB such that PM(B)

‡B ,q (O(jq) fl Infix(bB)) = 1.
If the first case does not hold then M(B) is very restrictive, and one can show that the

energy level fluctuations are bounded by a constant in O(|SB | ·R). J

Since the minimal safe energy levels inside these end components are not too large, one
can then bound the energy fluctuations in paths before they reach any such end component
M(B). The following lemma is shown in [18, Appendix C].

I Lemma 14. Let T denote the union of all SB of every BSCC B of M‡, as in Lemma 13.
Then one can almost surely reach any state in T with the corresponding minimal safe energy
level with energy fluctuations of at most 5 · |S| ·R.

Proof of Theorem 1 (Item 2). By Lemmas 13 and 14, for each state s, one can choose a
strategy ‡ and some constant b œ O

!
exp

!
|M|

O(1)
""

such that PM
‡,s(O(is) fl Infix(b)) = 1.

This means if one encodes the energy levels between [0, b] into the state space by discarding
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any excess energy above b and redirecting all the transitions which result in a negative energy
to a losing sink (for MP[2,d](> 0)) and constructs this larger MDP M[0, b], then there is a
strategy ‡Õ such that P

M[0,b]
‡Õ,(s,k)

!
MP[2,d](> 0)

"
= 1 for every k œ [is, b]. Then, by Lemma 6,

there also exists a memoryless (MR) strategy ‡ú in M[0, b] which is almost surely winning
MP[2,d](> 0) from (s, k).

We can carry the memoryless strategy ‡ú in M[0, b] back to M as a finite-memory
strategy ‡ú

M
with memory [0, b]. It stores the encoded under-approximated energy level

from M[0, b] in its finite memory instead. Thus, ‡ú

M
is a finite-memory strategy from s that

satisfies O(is) almost surely, and the size of its memory is bounded by b œ O
!
exp

!
|M|

O(1)
""
.

The strategy ‡ú

M
uses randomization, because ‡ú from Lemma 6 is MR. However, the

MR strategy ‡ú for the mean payo� objective could be replaced by a deterministic strategy
with an exponential number of memory modes. Hence, the overall number of memory modes
in the obtained deterministic version of ‡ú

M
is still only exponential. J

6 The Lower Bound (Proof of Item 3)

In the previous sections we have shown that finite memory su�ces for almost surely winning
strategies for the Energy-MeanPayo� objective. However, the required memory depends on
the given MDP. We show that no fixed finite amount of memory is su�cient for all MDPs. In
fact, the required memory is exponential in the transition probabilities even for an otherwise
fixed 5-state MDP with just one controlled state, R = 1 and d = 2.

I Definition 15. Let 1 > ” > 0 and M” = (S, S2, S#, E, P, r) be an MDP with 2-dimensional
rewards. It has just one controlled state s with transitions s æ sl and s æ sr. From sl
there are two transitions e1 = (sl æ s1l ) and e2 = (sl æ s2l ). Let P(e1) = (1 + ”)/2 and
P(e2) = (1 ≠ ”)/2 and r(e1) = (+1,+1) and r(e2) = (≠1,≠1). s1l and s2l are random states
which each have just one transition back to s with probability 1 and reward 0. From sr there
is only one transition e3 back to s with probability 1 and r(e3) = (+1,≠1).

The following lemma directly implies the exponential lower bound on the number of
memory modes in Theorem 1(Item 3).

I Lemma 16. Consider the Energy-MeanPayo� objective. For every finite bound m œ N
on the number of memory modes there exists a ”

def= 1/(6m) > 0 such that the finite MDP
M” = (S, S2, S#, E, P, r) from Definition 15 satisfies the following properties.
1. ÷‡Õ

P
M”
‡Õ,s(EN1(0) fl MP2(> 0)) = 1, i.e., it is possible to win almost surely from s in M”,

even with initial energy 0.
2. For every finite-memory strategy ‡ with Æ m memory modes we have P

M”
‡,s (EN1(k) fl

MP2(> 0)) = 0 for every k œ N, i.e., ‡ attains nothing in M”, regardless of the initial
energy k.

3. For M” we have |S| = 5, d = 1 and R = 1. The number of memory modes required for
an almost-surely winning strategy in M” is exponential in |P | (and in |M”|).

Proof. Towards item 1, consider a strategy ‡Õ that plays as follows. It keeps a counter that
records the current energy, which is initially 0. Whenever the current energy is 0, it plays
s æ sr, otherwise it plays s æ sl. Thus, ‡Õ satisfies EN1(0) surely from s. Since ” > 0 it
follows from the classic Gambler’s ruin problem (with strictly positive expected gain, here
in the first reward dimension) that ‡Õ plays s æ sr only finitely often, except in a null set
of the runs. Therefore, the expected mean payo� (in the second dimension) under ‡Õ is
(1 + ”)/2 ≠ (1 ≠ ”)/2 = ” > 0. Hence, PM”

‡Õ,s(MP2(> 0)) = 1. Since the energy objective is
satisfied surely, we obtain P

M”
‡Õ,s(EN1(0) fl MP2(> 0)) = 1.
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Towards item 2, let ”
def= 1/(6m) > 0 and let ‡ be a finite-memory strategy with Æ m

memory modes. Consider the finite-state Markov chain C that is induced by playing ‡
from s in M”. This Markov chain has Æ 5m states, since M has 5 states and ‡ has
Æ m memory modes. Let B be any BSCC of C that is reachable from s and the initial
memory mode of ‡. In particular, |B| Æ 5m. In B there must not exist any loop that
does not contain sr, because otherwise the energy objective cannot be satisfied almost
surely. Thus, every path in B of length Ø 5m must contain sr (and hence a reward
(+1,≠1)) at least once. Therefore, the expected mean payo� in B (in the second reward
dimension) is Æ 5m” ≠ 1 = ≠1/6 < 0. Since this holds in every reachable BSCC, we obtain
P

M”
‡,s (MP2(> 0)) = 0 and thus PM”

‡,s (EN1(k) fl MP2(> 0)) = 0.
Towards item 3, the size of M” follows from Definition 15. By items 1 and 2, the

required number of memory modes m for an almost-surely winning strategy satisfies m >
1/(6”). Since |P | = �(log(1/”)) and |M”| = �(|P |), we obtain m = �(exp(|P |)) and
m = �(exp(|M”|)). J

The exponential lower bound on the required memory does not require probabilities
encoded in binary like in Lemma 16. One can construct an equivalent example with
polynomially many states where all transition probabilities are 1/2. This is because one can
encode exponentially small probabilities 2≠k with a chain of k extra states and transition
probabilities 1/2.

7 Computational Complexity

We have shown that the existence of an almost surely winning strategy for the Energy-
MeanPayo� objective for a given state and initial energy level in an MDP implies the
existence of a deterministic such strategy with exponentially many memory modes (unlike
for Energy-Parity which requires infinite memory in general [25]).

A related problem is the decidability of the question whether a given state in an MDP and
a given initial energy level admit an almost surely winning strategy for Energy-MeanPayo�.
This problem is decidable in pseudo-polynomial time, using an algorithm very similar to
the one for Energy-Parity presented in [25]. I.e., the time is polynomial, provided that the
bound R on the rewards is given in unary. Transition probabilities in the MDP can still
be represented in binary. The crucial point is that it su�ces to witness the mere existence
of an almost surely winning strategy, regardless of its memory. Basically, it su�ces that
the algorithm proves that the infinite-memory strategy ‡ú

alt,Zb,Zg wins almost surely (plus a
small extra argument about a corner case where the energy fluctuates only in a bounded
region). The algorithm does not need to compute the bound b or to explicitly construct the
finite-memory strategy ‡ú

alt,Zb,Zg,b.

I Proposition 17. Let M = (S, S2, S#, E, P, r) be an MDP with d-dimensional rewards on
the edges r : E æ [≠R,R]d. For any state s and k œ N, the existence of an almost surely
winning strategy from s for the multidimensional Energy-MeanPayo� objective EN1(k) fl

MP[2,d](> 0) is decidable in pseudo-polynomial time (i.e., polynomial for R in unary).

Proof. The proof is similar to the one for Energy-Parity presented in [25]. We outline
the di�erences below. First, in the corner case where it is impossible to pump the energy
up arbitrarily high almost surely from some state q, the only possible way to win Energy-
MeanPayo� (resp. Energy-Parity) almost surely (if at all) is by using a non-null set of runs
where the energy only ever fluctuates in a bounded region. In that case, the size of the
energy fluctuations in these runs can safely be restricted to a region that is polynomial in
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|S| ·R, and thus pseudo-polynomial in |M| [25]. It thus su�ces to win multi-dimensional
MP[2,d](> 0) almost surely in a derived MDP M

Õ where the bounded energy is encoded
into the states. Deciding this requires time polynomial in |M

Õ
| [12, 22] and thus pseudo-

polynomial in |M|. The winning situations of the corner case can then be encoded into M,
yielding a derived MDP M

Õ of pseudo-polynomial size, where Energy-MeanPayo� can be
won almost surely if and only if it can be won almost surely by a combination of Gain and
Bailout strategies, i.e., by strategy ‡ú

alt,Zb,Zg . Therefore, it su�ces to compute the states
(and minimal initial energy levels k) where Gain and Bailout(k) can be won almost surely.
The objective Bailout(k) def= EN1(k) fl MP1(> 0) is exactly the same as the Bailout objective
analysed in [25], and winning it almost surely is decidable in pseudo-polynomial time. Our
objective Gain

def= MP[1,d](> 0) di�ers from the Gain objective considered in [25] (which was
MP1(> 0) fl Parity), but winning it almost surely is still decidable in polynomial time [12, 22]
by solving a linear program. So overall the algorithm runs in pseudo-polynomial time. J
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Abstract

We determine all functional closure properties of finite N-weighted automata, even all multivariate
ones, and in particular all multivariate polynomials. We also determine all univariate closure
properties in the promise setting, and all multivariate closure properties under certain assumptions
on the promise, in particular we determine all multivariate closure properties where the output
vector lies on a monotone algebraic graph variety.
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1 Finite N-weighted automata and functional closure properties

Let � be a finite set, for example � = {0, 1}. A finite N-weighted automaton with all
weights 1 is a nondeterministic finite automaton that on input w œ �ı outputs the number
of accepting computation paths on input w, instead of just outputting whether or not an
accepting computation path exists, see Def. 2.1 for the formal definition 1. While every
nondeterministic finite automaton determines a subset of �ı, a finite N-weighted automaton
computes a function �ı

æ N. A function f : �ı
æ N can be presented as the seriesq

wœ�ı f(w)w, and the set of series is denoted by NÈÈ�ı
ÍÍ in the automata literature, see

e.g. [9]2. The natural way of adding two functions �ı
æ N and adding two series in NÈÈ�ı

ÍÍ

coincides, but in both presentations we have a natural way of taking the product, and those
do not coincide:
1. Pointwise product of functions �ı

æ N. This is called the Hadamard product.
2. Convolution of series, called the Cauchy product.
A series f is called recognizable if there is a finite N-weighted automaton that computes f .
The set of recognizable series is denoted by Nrec

ÈÈ�ı
ÍÍ in [9], but we denote it by #FA, to

emphasise that we undertake a study similar to #P in [11, Thm 3.13], [4, Thm 6], and
recently [12], but instead of polynomial-time Turing machines we study finite automata.

1 We use the equality of the number of accepting paths of an NFA and the output of the corresponding
N-weighted automaton, see [9, Exa. 2.2].

2 A series with finite support is called a polynomial, but we will not be concerned with the support of
series in this paper. Instead, we use the term polynomial as it is used in commutative algebra, and we
mean multivariate polynomials with rational coe�cients.
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The Kleene-Schützenberger theorem states that #FA is the smallest set that contains all
support 1 series and is closed under sums, Cauchy products, and Kleene-iterations (whenever
well-defined, a Kleene-iteration is the sum of all Cauchy powers), see [9, §4], but we will not
need this insight.

In this paper we study the functional closure properties3 of #FA. A function Ï : Nm
æ N

is called a functional closure property of #FA if for all f1 œ #FA, f2 œ #FA, . . ., fm œ #FA
we have that Ï(f1, . . . , fm) œ #FA. By Ï(f1, . . . , fm) we mean the function that on input
w œ �ı outputs Ï(f1(w), . . . , fm(w)).

Classically, one of the simplest functional closure properties of #FA is Ï : N2
æ N,

Ï(f1, f2) = f1 + f2. This is a functional closure property of #FA, because given f1 œ #FA
and f2 œ #FA, we can show Ï(f1, f2) = f1 + f2 œ #FA by an easy construction: The new
NFA consists of a copy of the NFA for f1 and a copy of the NFA for f2, and makes an initial
nondeterministic choice as to which NFA to run, see Lemma 3.1 for the details.

Another classical simple functional closure property of #FA is Ï : N2
æ N, Ï(f1, f2) =

f1 · f2. This corresponds to the Hadamard product. This is a functional closure property of
#FA, because given f1 œ #FA and f2 œ #FA, we can show Ï(f1, f2) = f1 · f2 œ #FA by the
following construction: The new NFA consists of the product NFA of the NFAs for f1 and
f2, and the accepting states correspond to pairs of accepting states, see Lemma 3.2 for the
details. This product construction corresponds to the Hadamard product.

The Cauchy product is also a product on the set #FA, but we explain now that the
Cauchy product is not “functional”, and hence it is out of scope for this type of studies. If
Ï : Nm

æ N is a functional closure property of #FA, then we can study the corresponding
map ÂÏ : #FA ◊ #FA ◊ · · · ◊ #FA¸ ˚˙ ˝

m times

æ #FA. Observe that if Ï is a functional closure property

of #FA, then by definition we have that for all pairs (w,wÕ) œ �ı
◊ �ı:

if (f1(w), . . . , fm(w)) = (f1(wÕ), . . . , fm(wÕ)), then ÂÏ(f1, . . . , fm)(w) = ÂÏ(f1, . . . , fm)(wÕ).
Let ’ : #FA æ #FA denote the Cauchy square. We use the observation above to show
that ’ is not equal to ÂÏ for any Ï : N æ N. Let m = 1 and f(w) = 1 if w = 1, f(w) = 0
otherwise. Clearly, f œ #FA. Then ’(f)(11) = 1, and ’(f)(w) = 0 for all w ”= 11. In
particular ’(f)(0) ”= ’(f)(11), even though f(0) = f(11). Hence, ’ ”= ÂÏ for all Ï : N æ N.

Numerous functional closure properties of #FA exist, for example the safe decrementation
max{0, f1 ≠ 1}, and the binomial coe�cient

!f1
2

"
. But not all non-negative functions are

functional closure properties of #FA, for example (f1 ≠ f2)2 is not, which can be shown using
the Pumping Lemma. In this paper, we determine all functional closure properties of #FA,
see §1.2 for the detailed statement.

1.1 Motivation

Functional closure properties can be studied for many di�erent counting machine models
(also for example with di�erent types of oracle access) and di�erent types of input sets. The
first study of this type was done for nondeterministic polynomial-time Turing machines,
i.e., the class #P, see [11], [4], and the recent [12]. Recall that the class #P is the class of
functions f : �ú

æ N for which a nondeterministic polynomial time Turing machine M exists
such that for all w œ �ú the number of accepting paths for the computation M(w) is exactly
f(w). The papers mentioned above prove that the relativizing multivariate polynomial

3 See [11, Sec. 1] for the naming functional closure property. A di�erent reasonable name would be
pointwise closure property.
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closure properties are exactly those polynomials that have nonnegative integers in their
expansion over the binomial basis, see [12]. A functional closure property Ï : Nm

æ N of
#P is relativizing if Ï is a closure property for all #PA, where A µ �ú is some oracle. The
hope is that for simpler models of computation no oracle access is required to determine the
functional closure properties, and we show that this is true for #FA, see §1.2.

Functional closure properties can be used directly to construct combinatorial proofs of
equalities and inequalities. For example, Fermat’s little theorem states that p divides ap ≠ a.
The quantity 1

p (a
p

≠ a) has a combinatorial interpretation, which can be deduced from the
fact that 1

p ((f1)
p

≠ f1) is a univariate functional closure property of #P, see [12, Prop. 7.3.1],
which coincides with the original proof [18], see also [17, eq. (5)]). On the other hand, if a
function is not a functional closure property, then this means in a very strong sense that there
is no combinatorial interpretation for the quantity it describes. For example, the Hadamard
inequality ([10, §2.13], [3, §2.11], [12, eq. (2)]) states that

det
A

a11 ··· a1d
...

. . .
...

ad1 ··· add

B2

Æ
rd

i=1
(a2i1 + · · ·+ a2id).

One could try to prove this by finding a combinatorial interpretation of the di�erence
H Ø 0 of the right-hand side and the left-hand side, but even for d = 3 we have that

Ï(f1, . . . , f9) = (f2
1
+ f2

2
+ f3

3
) · (f2

4
+ f2

5
+ f3

6
) · (f2

7
+ f2

8
+ f3

9
) ≠ det

3
f1 f2 f3
f4 f5 f6
f7 f8 f9

4

is not a 9-variate relativizing functional closure property of#P, see [12, §7.2]. In particular,
if the function is not a closure property of #P, then there are instantiations f1, . . . , f9 œ #P
such that Ï(f1, . . . , f9) is not in #P, whereas a combinatorial interpretation of H should
yield Ï(f1, . . . , f9) œ #P. This does not rule out a more indirect combinatorial proof for
the inequality: For example, for proving combinatorially that (a ≠ 1)2 Ø 0 one could try to
interpret the quantity (a ≠ 1)2 combinatorially, but (f1 ≠ 1)2 is not a relativizing closure
property of #P. However, f1 · (f1 ≠ 1)2 = 6

!f1
3

"
+ 2

!f1
2

"
is a relativizing closure property

of #P (see [12, §2.4]). There is an obvious combinatorial interpretation of 6
!a
3

"
+ 2

!a
2

"
as

counting size 2 and 3 subsets with multiplicity 6 and 2, respectively. Hence this gives an
indirect combinatorial proof for the inequality (a ≠ 1)2 Ø 0 by providing a combinatorial
interpretation for a(a ≠ 1)2.

Some inequalities are only true if the inputs satisfy certain constraints. For example, the
Ahlswede Daykin inequality, see [1], [2], [12, §1.2(3)]: If a0b0 Ø c0d0 and a0b1 Ø c0d1 and
a1b0 Ø c0d1 and a1b1 Ø c1d1, then (c0+ c1)(d0+d1) Ø (a0+a1)(b0+ b1). If all quantities are
in #P, including the di�erences c0d0 ≠ a0b0, can we conclude that (c0 + c1)(d0 + d1) ≠ (a0 +
a1)(b0 + b1) is in #P? This is an example of a promise problem: We are given twelve #P
functions a0, a1, b0, b1, c0, c1, d0, d1, h1, h2, h3, h4 with the guarantee that a0b0 + h1 = c0d0,
a0b1 + h2 = c0d1, a1b0 + h3 = c0d1, a1b1 + h4 = c1d1. In other words, the 12-dimensional
output vector that we get for every w œ �ú lies on a codimension 4 algebraic subvariety in
Q12. Recall that an algebraic subvariety is defined as the simultaneous zero set of a set of
polynomials. Since the 4 variables h1, . . . , h4 are determined by the other 8, this variety is a so-
called graph or graph variety. Numerous questions about combinatorial proofs for inequalities
from di�erent areas of mathematics can be phrased in the language of graph varieties, see [12].
The idea is to collect the equations for a set S (the variety) into what is called the vanishing

ideal I, i.e., I = I(S) = {Ï œ Q[f1, . . . , fm] | ’(f1, . . . , fm) œ S : Ï(f1, . . . , fm) = 0}; and
define the coordinate ring Q[S] as the quotient ring Q[f1, . . . , fm]/I(S), see [7]. An element in
the quotient ring is a coset with respect to the vanishing ideal. If there exists a representative
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ÏÕ in a coset Ï + I that is a functional closure property of #P, then every function in Ï + I
is a promise closure property of #P on the variety S. It is desirable to also have the opposite
direction, but this only holds under some reasonable restrictions on S, in particular it holds
for all graph varieties. This is used in [12, Prop. 2.5.1] to show that c0d0 ≠ a0b0 is not a
relativizing promise closure property of #P on this graph variety. We prove the same strong
dichotomy for monotone graph varieties for #FA instead of #P, see Theorem 4.9.

The systematic study of combinatorial interpretations and combinatorial proofs via
definitions from computational complexity theory is a very recent research direction [15, 16, 12,
17, 13, 5, 6]. The goal is to determine whether or not certain quantities admit a combinatorial
description or not. Famous open questions of this type in algebraic combinatorics have been
listed by Stanley in [22], for example his problems 9, 10, and 12. As many combinatorialists
do, Stanley has phrased his questions in an informal way without mentioning counting classes.

The class #P is the correct class for some purposes, but for others it is too large. For
example, the determinant of a skew-symmetric matrix with entries from {≠1, 0, 1} is always
non-negative, but this quantity is trivially in #P, because the determinant can be computed
in polynomial time. This gives no satisfying insight into whether or not this quantity has a
combinatorial interpretation. Smaller counting classes are required (see also the discussion
in [15, §1]), and we provide the first study of functional closure properties for the subclass
#FA µ #P. Unlike the classification for #P, our results do not rely on oracle separations,
i.e., our classification is entirely unconditional.

1.2 Our results

Let n rem p œ {0, . . . , p ≠ 1} denote the smallest nonnegative r such that n ©p r. A function
Ï : N æ N is called ultimately PORC (Polynomial On Residue Classes4) if ÷p,N œ N
and there exist polynomials Ï0, . . . ,Ïp≠1 : N æ Q such that for every n Ø N we have
Ï(n) = Ïn rem p(n) 5.

We first classify the univariate functional closure properties of #FA:
Theorem (see Theorem 3.22). A function Ï : N æ N is a functional closure property of

#FA if and only if Ï is an ultimately PORC function.

More generally, we classify the multivariate functional closure properties of #FA:
Theorem (see Theorem 3.23). A function Ï : Nm

æ N is a functional closure property

of #FA if and only if Ï can be written as a finite sum of finite products of univariate

ultimately PORC functions.

We analyze the special case of multivariate polynomials:
Theorem (see Lemma 3.26). A multivariate polynomial Ï : Nm

æ N with rational

coe�cients is a functional closure property of #FA i� for every Â that can be formed

from Ï by replacing any subset of variables – including the empty set – by constants from

N, then all dominating terms of Â in the binomial basis have positive coe�cients.

4 PORC functions are also known as quasipolynomials or pseudopolynomials, but we want to avoid those
names for the potential confusion to quasipolynomial growth and pseudopolynomial running times.

5 Note that each Ï in this paper is defined on the natural numbers and maps to the natural numbers,
which is a subtle restriction. For example, a univariate polynomial Ï : Q æ Q maps integers to integers
if and only if its coe�cients in the binomial basis are integers, see Section 2. However, non-negativity
is not an algebraic property. Also note that for the case of Ï being just a univariate polynomial, the
corresponding linear recursive sequence can have negative entries in the matrix.



J. Dörfler and C. Ikenmeyer 134:5

We lift this result to monotone graph varieties (and to more general sets, see Theorem 4.6),
where we get exactly the desirable classification given by the vanishing ideal:

Theorem (see Theorem 4.9). Let S be a monotone graph variety and let I = I(S) be its

vanishing ideal. A multivariate polynomial Ï : S æ N is a functional promise closure

property of #FA with regard to S if and only if there exists Â œ I such that Ï + Â is a

multivariate functional closure property of #FA.

2 Notation

Let N = {0, 1, 2, . . .}. For a finite set � let �ı denote the set of all finite length sequences with
elements from �. The vector space of multivariate polynomials Q[f1, . . . , fm] in variables
f1, . . . , fm has a basis given by products of binomial coe�cients:

) rm
i=1

!fi
ci

"*
c1,...,cm

, where
each ci œ N. Here we used

!x
c

"
= 1

c!x · (x≠ 1) · . . . · (x≠ c+ 1) as a polynomial. This is called
the binomial basis. A multivariate polynomial Ï is called integer valued if Ï(Zm) ™ Z, which
is equivalent to Ï(Nm) ™ Z, and which is also equivalent to all coe�cients in the binomial
basis being integers, see for example [12, Prop. 4.2.1] for a short proof of this classical fact.

We now recall (see [9, Def. 2.1]) our main model of computation, the finite N-weighted
automaton, which we just call non-deterministic finite automaton (NFA) for brevity.

I Definition 2.1. An NFA M is a tuple (Q,�,wt, in, out) where the set of states Q and

the alphabet � are finite sets and wt : Q ◊ � ◊ Q æ N is the weighted transition function,

in : Q æ N are the weighted initial states and out : Q æ N are the weighted accepting

states
6
. A computation P for a word w = w1 . . . wn œ �ı

of length n is a sequence q0q1 . . . qn
in Qn+1

. It has multiplicity or weight7 w(P ) = in(q0) ·
rn

i=1
wt(qi≠1, wi, qi) · out(qn) and

partial weight w(P ) = in(q0) ·
rn

i=1
wt(qi≠1, wi, qi). We say that M computes f : �ı

æ N
where f(w) is the sum of the weights over all computations of M on w. The class #FA is

defined as the set of all functions f : �ı
æ N that are computed by NFAs.

If needed to distinguish these for di�erent automata, we use a corresponding subscript,
for example the weights of computations in Mf would be denoted by wf , etc.

I Definition 2.2 (Simple NFA). We say an NFA M = (Q,�,wt, in, out) is simple if

imwt, im in, im out ™ {0, 1}.

The notion of a simple NFA also motivates our use of the term NFA opposed to N-weighted
automaton: We simply count the number of accepting paths of M on a word w. This is in
line with #P counting the number of accepting paths on a polynomial time non-deterministic
Turing machine.

I Lemma 2.3 (Folklore). For every NFA M there exists a simple NFA M Õ
computing the

same function.

6 Note that in definitions by other authors one can find simpler versions of NFAs, in particular unweighted
initial and accepting states and unweighted edges while also restricting to a single initial state. We will
see soon that working with unweighted NFAs is not a restriction, but additionally restricting the model
to have a single initial state is strictly weaker, since this model could not compute any function f with
f(Á) > 1. To obtain the same expressiveness one would have to additionally allow for Á-transitions,
while disallowing cycles of Á-transitions to prevent infinite values for f .

7 We will use both of these terms interchangeably. For a weighted automaton, calling this weight is more
natural, while when looking at the underlying graph as a multigraph, multiplicity of paths and walks is
more natural.
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A proof of this simple fact can be found in the appendix of the full version, for the
sake of completeness. We denote by a ©p b that a œ N and b œ N are congruent modulo

p œ N \ {0}. The indicator function n=c : N æ N is defined as n ‘æ

I
1 if n = c

0 otherwise
and

analogously for di�erent conditions. By abuse of notation, if we have a function f : �ı
æ N

and an expression Ï : N æ N in n, we replace n by f in the expression to denote Ï ¶ f . For
example we use f=c to denote the function w ‘æ f(w)=c, similarly

!f
2

"
denotes the function

w ‘æ
!f(w)

2

"
. Furthermore we use the notation [n] to denote the set {1, . . . , n} for any n œ N.

3 Functional closure properties

3.1 Univariate functional closure properties

We say a function Ï : N æ N is a functional closure property of #FA if Ï(#FA) ™ #FA, i.e.
if for every function f œ #FA the function Ï ¶ f is also in #FA. Our goal in this section is to
classify all functional closure properties of #FA. They will be precisely the ultimately PORC
functions.

We call a function Ï : N æ N an ultimately almost PORC function if there is a
quasiperiod p, an o�set N œ N and constituents Ï0, . . . ,Ïp≠1 : N æ Q, where each Ïi

is either a polynomial with rational coe�cients or a function in 2�(n), and for every n Ø N
we have Ï(n) = Ïn rem p(n). If all the constituents are polynomials, we call Ï an ultimately

PORC function. The smallest representative of each constituent and of the finite cases before
the periodic behaviour is captured by the shifted remainder operator n sremp N , defined via

n sremp N =
I
n if n < N

min{k Ø N | k ©p n} if n Ø N

The first half of the section is dedicated to proving that every ultimately PORC function
is a functional closure property of #FA, see Lemma 3.18. In order to prove this we show
that #FA is closed under

I Lemma 3.1 (Addition). If f, g œ #FA, then f + g œ #FA.

I Lemma 3.2 (Multiplication). If f, g œ #FA, then f · g œ #FA.

I Lemma 3.9 (Subtraction of constants). If f œ #FA, then ’c œ N : max(f ≠ c, 0) œ #FA.

I Lemma 3.10 (Clamping). If f œ #FA, then min(f, c) œ #FA for any constant c œ N.

I Lemma 3.11 (Comparison with constants). If f œ #FA, then the functions f=c, fÆc,

fØc are in #FA for any constant c œ N.

I Lemma 3.13 (Division by constants). If f œ #FA, then ’c œ N \ {0} : Âf/cÊ œ #FA.

I Lemma 3.14 (Modular arithmetic). If f œ #FA, then the function f©cd is in #FA for

any constants c œ N \ {0} and d œ Zc.

I Lemma 3.15 (Binomial coe�cients). If f œ #FA, then
!f
c

"
œ #FA for any constant c œ N.

While addition and multiplication are technically bivariate functional closure properties,
we list them here already since they are abundantly used throughout the proofs of the
univariate functional closure properties. Proofs of those two classical results can be found in
[8, Ch. 4.1 and 4.2.2] and in the appendix of the full version, for the sake of completeness.
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With the exception of binomial coe�cients all the other closure properties need to be able
to “remove” some of the possible computations. For example, consider decrementation, the
special case of truncated subtraction by one, and consider some simple NFA M computing
some strictly positive function f . We now want to construct an NFA M Õ that computes f ≠1,
i.e. an NFA that has exactly one non-zero computation less than M (assuming computations
of weights zero or one). For this we want a procedure to single out one non-zero computation
of M to then change its weight to zero. For stronger models of computation – like polynomial
time non-deterministic Turing machines – this approach seems hopeless. Already deciding
the existence of one such computation is NP-hard. However for NFAs, deciding the existence
of a non-zero computation can be decided by a deterministic finite automaton, namely the
powerset automaton. Adjusting the powerset construction to filter out a single non-zero
computation, namely the lexicographically minimal one can then be used to show that
decrementation is a closure property of #FA.

Generalizing this approach to more general properties about the computations gives us
the framework of stepwise computation properties:

I Definition 3.3 (Stepwise computation property). Let M = (Q,�,wt, in, out) be an NFA.

A stepwise computation property prop is defined as prop = (S, init, step, cond) where S
is a finite set and init : Q æ S, step : Q ◊ � ◊ Q ◊ S æ S and cond : S æ {0, 1} are

functions. For w = w1 . . . wn œ �ı
and a computation P = q0 . . . qn of M on w we define

a step sequence s0 := init(q0) and si := step(qi≠1, wi, qi, si≠1) for i œ [n]. We also write

prop(w,P ) := cond(sn) to be the evaluation of the property.

These stepwise computation properties now enable us, given a simple NFA, to construct
NFAs computing both of the following:

I Lemma 3.4. Let Mf be a simple NFA computing a function f and let prop be a stepwise

computation property. Then there is an NFA M computing g(w) =
q

P wf (P ) · prop(w,P ),
where the sum is over all computations P of Mf on w.

I Lemma 3.5. Let Mf be a simple NFA computing a function f and let prop be a stepwise

computation property. Then there is an NFA M computing g(w) =
q

P prop(w,P ), where
the sum is over all computations P of Mf on w.

Proof sketch. For both of these lemmas, we construct a sort of product automaton of Mf

and prop (represented by the set S), the details can be found in the appendix of the full
version. J

In other words, stepwise computation properties allow us to either “disable” specific
computations of Mf or they allow us to directly extract information about the computations
of Mf . Note that the restriction on the finiteness of S is necessary, as the elements of S
are hard-coded into the state space of the NFA in Lemmas 3.4 and 3.5. In particular, these
lemmas do not hold for even countably infinite S, which can be seen with the example S = N
when we define the stepwise computation property in such a way that prop(w,P ) = 1 i� |w|
is prime, leading to an NFA recognizing the language of all words of prime length, a well
known contradiction.

Further note that these two constructions do not incur exponential blowups themselves,
however for most of our applications the set S will be of exponential size in the number of
states of Mf .
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Returning to our decrementation example, to use Lemma 3.4 we want to construct a
stepwise computation property prop with prop(w,P ) = 0 i� P is the lexicographically smallest
non-zero weight computation on w. For this we can set S = P(Q) to be the set of all subsets
of states Q, denoting the set of states that currently are the endpoints of lexicographically
smaller partial computations of non-zero weight than the partial computation P we are
on. We need to store all such potential states, since some current partial non-zero weight
computations might not be possible to be completed to a full non-zero weight computation.
Initially this set contains all states that are smaller than the start state of P , the step
function then checks which lexicographically smaller partial computations can be extended
and whether any new partial computations that agreed with P up to this state can be
lexicographically smaller than P . Finally the cond function then checks whether there are
any such lexicographically smaller partial computations left that can be completed to a
non-zero weight computation, i.e. that end on a state q œ Q with out(q) = 1.

We want to generalize this idea to be able to generally create stepwise computation
properties that argue about the number of non-zero computations, either in total or lexico-
graphically smaller than a given computation. However doing this in general would require
choosing the set S as the set of functions Q æ N, which is infinite. As a result we embed
the number of computations into finite semirings first to then extract the relevant infor-
mation. For this purpose we only consider semirings with both additive and multiplicative
identities. Homomorphisms h from a semiring R into another semiring R

Õ need to fulfill
h(a + b) = h(a) + h(b), h(a · b) = h(a) · h(b), h(1R) = 1RÕ , h(0R) = 0RÕ . Since every
element of N is either 0 or can be formed by repeated addition of 1, any homomorphism
from N into any other semiring is uniquely defined.

We can then use R to construct stepwise computation properties (the full proofs can be
found in the appendix of the full version). Combined with Lemmas 3.4 and 3.5 these use
similar ideas to [14].

I Lemma 3.6. Let N = (Q,�,wt, in, out) be a simple NFA and let R be a finite semiring and

let · : N æ R be the unique homomorphism from N to R. For any function fi : R æ {0, 1}
there is a stepwise computation property prop with prop(w,P ) = fi(·(

q
P Õ w(P Õ))), where

the sum is over all computations P Õ
of N on w, independent of P .

Proof sketch. Construct prop = (S, init, step, cond) via: S = Q æ R, init(q) = r ‘æ

·(in(r)), step(q,‡, qÕ, s) = r ‘æ
q

rÕœQ s(rÕ) · ·(wt(rÕ,‡, r)), and cond(s) = fi
!q

rœQ s(r) ·
·(out(r))

"
. Let s0, . . . , sn be the step sequence of any computation P of w. Since · is a

homomorphism, we can pull out · . Thus si(q) = ·(
q

P̃ w(P̃ )), where the sum is over all
computations P̃ of w1, . . . wi ending in the state q. The condition cond then completes this
to prop(w,P ) = fi(·(

q
P Õ w(P Õ))), where the sum is over all computations P Õ of N on w. J

I Lemma 3.7. Let M = (Q,�,wt, in, out) be a simple NFA with some ordering < of Q,

let R be a finite semiring and let · : N æ R be the unique homomorphism from N to

R. For any function fi : R æ {0, 1} there is a stepwise computation property prop with

prop(w,P ) = fi(·(
q

P Õ w(P Õ))) for all non-zero computations P of N on w, where the sum

is over all computations P Õ
of N on w that are lexicographically smaller than P .

Proof sketch. Construct prop = (S, init, step, cond) via: S = Q æ R, init(q) = r ‘æ

·( r<q · in(r)), step(q,‡, qÕ, s) = r ‘æ
q

rÕœQ s(rÕ) · ·(wt(rÕ,‡, r)) + ·( r<qÕ · wt(q,‡, r)),
cond(s) = fi(

q
rœQ ·(out(r)) · s(r)). Let s0, . . . , sn be the step sequence of any computation

P = q0 . . . qn of w. Inductively we can show that si(r) =
q

P Õ ·(w(P Õ)) for all i œ {0, . . . , n}
and r œ Q, where the sum is over all computations P Õ = qÕ

0
. . . qÕ

i of N on w1 . . . wi with
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qÕ
i = r that are lexicographically smaller than q0 . . . qi. Initially the only computations
P Õ = qÕ

0
that are lexicographically smaller than the computation q0 are the ones with

qÕ
0
< q0. For i > 0 for a computation P Õ = qÕ

0
. . . qÕ

i to be lexicographically smaller than
q0 . . . qi there are two possibilities. Either qÕ

0
. . . qÕ

i≠1
is already lexicographically smaller than

q0 . . . qi≠1 or qÕ
0
. . . qÕ

i≠1
= q0 . . . qi≠1 and qÕ

i < qi. In the second case the weight of P Õ is
precisely w(qi≠1, wi, qÕ

i) since P is a computation of non-zero weight and thus weight exactly
1. Combining all of this, we can finish the proof of the claim with a similar argument to
Lemma 3.6. J

Note that the previous lemma makes no statement about the value of prop(w,P ) for any
computations P of weight zero. However, this is enough for our uses, since we only combine
it with Lemma 3.4, i.e., prop(w,P ) gets weighted by w(P ).

Most commonly, as is the case for decrementation, we want to be able to exactly distinguish
the number of non-zero computations if it is less than k and otherwise be able to tell that
the number is at least k. This is achieved by using the following capped semiring:

I Definition 3.8 (Capped semiring). For k œ N we call the semiring Rk = {0, . . . , k} with

the operations a+R b := min(a+ b, k) and a ·R b := min(a · b, k) the capped semiring.

We can now show that decrementation is a functional closure property by simply using
Lemma 3.7 using the capped semiring R1 and fi(a) = a to construct our wanted stepwise
computation property computing prop(w,P ) = 0 i� P is the lexicographically smallest
non-zero weight computation on w.

Most of the remaining closure properties are now proven by using the capped semiring of
a specific size and choosing the function fi accordingly, we will show this in detail for the
example of subtraction, the remaining proofs can be found in the appendix of the full version.

I Lemma 3.9 (Subtraction of constants). If f œ #FA, then ’c œ N : max(f ≠ c, 0) œ #FA.

Proof. Let Mf = (Qf ,�,wtf , inf , outf ) be a simple NFA computing f with an arbitrary
ordering < on Qf . Lemma 3.7 on the capped semiring Rc with fi(a) = aØc for all a œ R

constructs a stepwise computation property prop with

prop(w,P ) =

Y
]

[
1 if the number of non-zero computations P Õ on w that arelex.

smaller than P is at least c
0 otherwise

for all computations P on w of non-zero weight, i.e., prop(w,P ) = 0 i� P is one of the c
lexicographically smallest computations on w with non-zero weight. It follows that the NFA
M constructed by Lemma 3.4 computes g(w) = max(f(w) ≠ c, 0). J

If instead of rejecting the c lexicographically smallest computations, we accept only those
computations, we compute the minimum of f and c.

I Lemma 3.10 (Clamping). If f œ #FA, then min(f, c) œ #FA for any constant c œ N.

By using the capped semiring Rc+1 with fi=(a) = a=c, fiÆ(a) = aÆc and fiØ(a) = aØc,
we can compute the indicator functions f=c, fÆc and fØc respectively.

I Lemma 3.11 (Comparison with constants). If f œ #FA, then the functions f=c, fÆc,

fØc are in #FA for any constant c œ N.

The previous lemma in particular also implies the following:
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I Lemma 3.12. If Ï : N æ N is a functional closure property of #FA and Â : N æ N is

an arbitrary function with Ï(n) = Â(n) for all but finitely many n œ N, then Â is also a

functional closure property of #FA.

Proof. Let f œ #FA be arbitrary. Further let N œ N be such that Ï(n) = Â(n) for all
n Ø N . Then (Â¶f)(w) =

qN≠1

i=0 f(w)=iÂ(i)+ f(w)ØNÏ(f(w)) for all w œ �ı. In particular
Â ¶ f œ #FA since the Â(i) are constants and Ï ¶ f œ #FA. J

Division and modular arithmetic however use a di�erent semiring: they use the finite
cyclic semiring Zc = {0, . . . , c ≠ 1} with fi(a) = a=c≠1 and fi(a) = a=d respectively.

I Lemma 3.13 (Division by constants). If f œ #FA, then ’c œ N \ {0} : Âf/cÊ œ #FA.

I Lemma 3.14 (Modular arithmetic). If f œ #FA, then the function f©cd is in #FA for

any constants c œ N \ {0} and d œ Zc.

The previous closure properties turn out to already be su�cient to generate all functional
closure properties, so in particular they are su�cient to generate binomial coe�cients by using
subtraction of constants, multiplication and division by constants by using the definition of
binomial coe�cients as a polynomial:

!x
c

"
= 1

c!x · (x ≠ 1) · . . . · (x ≠ c+ 1). Nonetheless, we
give an additional proof for binomial coe�cients as a di�erent interesting application of the
stepwise computation property framework.

I Lemma 3.15 (Binomial coe�cients). If f œ #FA, then
!f
c

"
œ #FA for any constant c œ N.

Proof. Let Mf = (Qf ,�,wtf , inf , outf ) be a simple NFA computing f and let c œ N. For
c < 2 the statement of this lemma is trivially true, so assume c Ø 2.

We construct the c-fold product automaton M c
f = (Qc

f ,�,wtcf , incf , outcf ) with

wtcf ((q1, . . . , qc),‡, (qÕ
1
, . . . , qÕ

c)) =
rc

i=1
wtf (qi,‡, qÕ

i)
incf ((q1, . . . , qc)) =

rc
i=1

inf (qi)
outcf ((q1, . . . , qc)) =

rc
i=1

outf (qi)

M c
f is a simple NFA and every computation on M c

f is the cartesian product of c
computations on Mf . Our aim is to now construct a stepwise computation property
prop = (S, init, step, cond) such that prop(w,P ) = 1 i� P is composed of c pairwise distinct
computations8 on Nf .

For this let S be the set of all equivalence relations on the set [c]. We define init((q0, . . . , qc))
to be the equivalence relation R0 with (a, b) œ R0 i� qa = qb. Additionally we define
cond(R) = 1 i� R is the equivalence relation where every element is only equivalent to itself,
i.e. a computation gets accepted i� all its constituent computations are pairwise distinct.
Finally we define step((q1, . . . , qc),‡, (qÕ

1
, . . . , qÕ

c), R) to be the equivalence relation RÕ defined
via (a, b) œ RÕ i� (a, b) œ R and qÕ

a = qÕ
b. With a simple induction we can prove that for

a computation P = P1 ◊ . . . ◊ Pc and the step sequence R0, . . . , Rn we have (a, b) œ Ri i�
the computations Pa and Pb are identical for the first i steps. It follows that the NFA M
constructed by Lemma 3.4 computes g(w) =

!f(w)

c

"
· c!. Now,

!f
c

"
œ #FA by Lemma 3.13. J

8 We could also require them to be sorted in lexicographical order by having S be the set of all total
preorders, but since we can divide by c! we are going with the easier exposition.
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While the combination of the previous lemmas can be used to show that any polynomial
written in the binomial basis with non-negative integer coe�cients is a functional closure
property of #FA, we can do better by considering a shifted binomial basis. For example,
consider the polynomial Ï(x) = x2

2
≠

3x
2
+ 1. This polynomial is non-negative for all x œ N.

Writing Ï in the binomial basis we get Ï(x) =
!x
2

"
≠

!x
1

"
+ 1. If however we allow the upper

indices of the binomial basis to be shifted, we can write Ï without the use of negative
coe�cients as Ï(x) =

!x≠1

2

"
. While x ≠ 1 itself is not a functional closure property of #FA

the function max(x≠ 1, 0) is a functional closure property of #FA and is di�erent from x≠ 1
for only finitely many x œ N. In the same way we see that ÏÕ(x) :=

!
max(x≠1,0)

2

"
only di�ers

from Ï for finitely many x œ N, namely x = 0. Using Lemma 3.12 to change those finitely
many values, we see that Ï is indeed a functional closure property of #FA.

Generalizing this idea we will show with the next two lemmas that this is possible for
any Ï with integer coe�cients in the binomial basis, with a small restriction: We don’t show
that Ï itself is a functional closure property of #FA, but rather that x ‘æ max(Ï(x), 0) is
one. Note that this restriction is the best we can hope for, since no computation in an NFA
can ever have negative weight.

I Lemma 3.16. Let Ï(x) =
qr

i=0
ai ·

!x
i

"
with ai œ Z and ar > 0. Then there are

b0, . . . , br œ N and c0, . . . , cr œ N with Ï(x) =
qr

i=0
bi ·

!x≠ci
i

"
.

Proof sketch. We inductively prove this claim by using the Chu-Vandermonde identity
[21] on the term of highest degree. It allows us to replace the highest degree binomial via!x≠cr

r

"
=

qr
i=0

(≠1)r≠i
!r≠i+cr≠1

r≠i

"!x
i

"
. For su�ciently large cr œ N this implies that the

leading term of Ï(x) ≠ ar ·
!x≠cr

r

"
again is positive and of smaller degree. J

A full proof of the previous lemma can be found in the appendix of the full version.

I Lemma 3.17 (Integer-valued polynomials). Let f œ #FA and let Ï : Q æ Q be an

integer-valued polynomial, then max(Ï ¶ f, 0) œ #FA.

Proof. We can assume the leading coe�cient of Ï to be positive. Otherwise max(Ï ¶ f, 0)
can be directly written as a finite sum

q
i ci · f=i which is in #FA by Lemmas 3.1, 3.2 and

3.11. Write Ï in the binomial basis as Ï(x) = a0 ·
!x
0

"
+ . . . + ar ·

!x
r

"
with ar > 0. Since

Ï is integer-valued, all of the ai are integers, see [12, Prop. 4.2.1]. Using Lemma 3.16 we
get a representation Ï(x) =

qr
i=0

bi ·
!x≠ci

i

"
with b0, . . . , br œ N and c0, . . . , cr œ N. For

x Ø max{ci | 0 Æ i Æ r} =: N we have that
!x≠ci

i

"
=

!
max(x≠ci,0)

i

"
and thus Â(x) :=qr

i=0
bi ·

!
max(x≠ci,0)

i

"
only di�ers from x ‘æ max(Ï(x), 0) on finitely many inputs and is a

functional closure property of #FA by Lemmas 3.1, 3.2, 3.9 and 3.15. Lemma 3.12 then
finishes o� the claim. J

We now have the tools available to show our claim that every ultimately PORC function
is a functional closure property of #FA.

I Lemma 3.18. Every ultimately PORC function is a functional closure property of #FA.

Proof. Let Ï : N æ N be an ultimately PORC function with period p comprised of the
polynomial constituents Ï0, . . . ,Ïp≠1 : N æ Q and N œ N, s.t. for all n Ø N we have
Ï(n) = Ïn rem p(n). Additionally let f œ #FA. We can write

Ï ¶ f =
qN≠1

i=0 f=i · Ï(i) + fØN · (
qp≠1

i=0 f©pi · Âmax(Ïi ¶ f, 0)Ê) .
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S A

1 1

1
S

1, 1

Figure 1 NFAs computing the functions 1n ‘æ n and 1n ‘æ 2n respectively. Edges with a
multiplicity of 2 are denoted by listing the edge label twice.

Combining Lemmas 3.1, 3.2, 3.11 and 3.14 this shows Ï¶f œ #FA, if we can show Âmax(Ïi¶

f, 0)Ê œ #FA for all i œ {0, . . . , p ≠ 1}. To show this let –i be the common denominator of
the coe�cients of Ïi. Then –i ·Ïi is a polynomial with integer coe�cients, so it in particular
is an integer-valued polynomial and by Lemma 3.17 we have that max(–i · Ïi ¶ f, 0) œ #FA.
Combining this with Lemma 3.13 we get that

Í
max(–i·Ïi¶f,0)

–i

Î
= Âmax(Ïi ¶ f, 0)Ê œ #FA. J

The remainder of this section is dedicated to showing that no other functional closure
properties of#FA exist. This will make use of the following well known algebraic interpretation
of NFAs:

I Lemma 3.19 (see [19]). If M = (Q,�,wt, in, out) is an NFA, then there are matrices A‡ œ

N|Q|◊|Q|
for each symbol ‡ œ � and vectors a, b œ N|Q|

, s.t. M computes aT ·

1r|w|
j=1

Awj

2
· b

for all w œ �ı
.

Proof. We index A‡, a and b using states q, qÕ
œ Q. Choose (A‡)q,qÕ = wt(q,‡, qÕ), aq = in(q)

and bq = out(q). It is now easy to see that M computes exactly aT ·

1r|w|
j=1

Awj

2
· b. J

When restricting to a unary alphabet � = {‡}, this degenerates the computed function
to aT · A|w|

‡ · b. In order to analyze the behaviour of these functions we first analyze the
behaviour of the matrix power as a function in |w| in the next two lemmas. Their proofs can
be found in the appendix of the full version.

I Lemma 3.20. Let A œ Nk◊k
. Then any diagonal entry of An

is a function f : N æ N
with one of the following properties:

1. f(n) = 0 for all n œ N \ {0} and f(0) = 1.
2. There is a p œ N \ {0}, such that for all n œ N we have f(n) = n©p0.

3. There is a p œ N \ {0} and a function g œ 2�(n)
, such that for all n œ N we have

f(n) = n©p0 · g(n).
These naturally correspond to vertices v in the multigraph defined by the adjacency

matrix A with
1. no paths from v to v.
2. exactly one path from v to v of length p.
3. multiple walks from v to v where the lengths of all the walks from v to v have gcd p.
We can then lift this result to all entries of An.

I Lemma 3.21. If A œ Nk◊k
, then each entry of An

is an ultimately almost PORC function.

I Theorem 3.22 (Classification of univariate functional closure properties of #FA). A function

Ï : N æ N is a functional closure property of #FA i� Ï is an ultimately PORC function.

This even holds when #FA is restricted to unary languages.

Proof. Lemma 3.18 already shows that every ultimately PORC function is a closure property
of #FA. It remains to show that all functional closure properties of #FA are ultimately PORC
functions. For this let Ï : N æ N be a functional closure property of #FA. The function
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f : {1}ı
æ N defined by f(1n) = n is computed by the left NFA in Figure 1 and thus in #FA.

Consequently Ï ¶ f œ #FA. Let M = (Q, {1},wt, in, out) be an NFA computing Ï ¶ f . By
Lemma 3.19 this NFA induces a transition matrix A œ N|Q|◊|Q| and vectors a, b œ N|Q|, s.t.
aTAnb = Ï(f(1n)) = Ï(n) for all n œ N. Every entry of An is an ultimately almost PORC
function by Lemma 3.21 and thus aTAnb = Ï(n) is one as well. Let p be the quasiperiod of Ï
and let Ïi be one of the constituents of Ï corresponding to some residue class i œ {0, . . . , p≠1}.
Assume for the sake of contradiction that Ïi grows in 2�(n), i.e. there is a constant “ œ R+

and N œ N, s.t. for every n Ø N we have Ïi(n) Ø 2“n. Consider the function fp,i : {1}ı
æ N

defined by fp,i(1n) = p · (2n + N) + i. We claim fp,i is in #FA. The function 1n ‘æ 2n is
computed by the right NFA in Figure 1 and thus in #FA. The remainder of the claim follows
by Lemma 3.1 and Lemma 3.2. Note that fp,i(1n) ©p i, so Ï ¶ fp,i = Ïi ¶ fp,i has to be in
#FA as well. Furthermore Ï(fp,i(1n)) = Ïi(fp,i(1n)) = Ïi(p · (2n +N) + i) Ø 2“p·(2n+N)+“i

for all n œ N which is larger than any NFA can compute, since NFAs can only compute
functions that are at most linearly exponential in the length of the input. We conclude that
none of the constituents Ïi of Ï can be exponential, so they are instead all polynomials,
making Ï an ultimately PORC function. J

3.2 Multivariate functional closure properties

I Theorem 3.23 (Classification of multivariate functional closure properties of #FA). A function

Ï : Nm
æ N is a functional closure property of #FA i� Ï can be written as a finite sum of

finite products of univariate ultimately PORC functions.

Proof. By Theorem 3.22 any univariate ultimately PORC function is a closure property of
#FA. As such any finite sum or finite product of them is also a closure property of #FA by
Lemmas 3.1 and 3.2.

It remains to show that all functional closure properties of#FA are of this form. For this let
Ï : Nm

æ N be a functional closure property of #FA. Define the alphabet � = {‡1, . . . ,‡m}

and the functions fi : �ı
æ N where fi(w) := #i(w) is defined as the number of occurences

#i(w) of the symbol ‡i in w. Applying the closure property to f1, . . . , fm gives that
Ï ¶ (f1, . . . , fm) œ #FA and thus is computed by an NFA M = (Q,�,wt, in, out). This
induces transition matrices A‡ œ N|Q|◊|Q| for each symbol ‡ œ � and vectors a, b œ N|Q|,
s.t. aT

r|w|
j=1

Awj b = Ï(f1(w), . . . , fm(w)) for all w œ �ı. Restricting to words of the form
w = ‡n1

1
‡n2
2

· · ·‡nm
m for n1, . . . , nm œ N gives aT

!rm
i=1

Ani
‡i

"
b = Ï(n1, . . . , nm). Using

Lemma 3.21 on each of the Ani
‡i

we see that every entry of Ani
‡i

is an ultimately almost PORC
function in ni. Consequently, every entry of

rm
i=1

Ani
‡i

is a finite sum of products of di�erent
ultimately almost PORC functions and the same holds for aT

!rm
i=1

Ani
‡i

"
b = Ï(n1, . . . , nm).

We now look at the individual summands of Ï and prove that we can rewrite each one as a
product of ultimately PORC functions by one-by-one rewriting the exponential constituents.
For this let Ï(1)(n1) · · ·Ï(m)(nm) be one of the summands of Ï where Ï(1), . . . ,Ï(m) are
all ultimately almost PORC functions, with periods p1, . . . , pm, o�sets N1, . . . , Nm and
constituents Ï(i)

0
, . . . ,Ï(i)

pi≠1
for each i œ [m]. If none of the constituents are exponential

we are done. Otherwise let Ï(i)
j be one of the exponential constituents, let “ œ R+ and let

N œ N, s.t. Ï(i)
j (ni) Ø 2“ni for ni Ø N . We claim we can set Ï(i)

j (ni) = 0 without changing
the product Ï(1)(n1) · · ·Ï(m)(nm) for any n1, . . . , nm œ N. Call the resulting functions
Â(i) and Â(i)

j . Assume for the sake of contradiction, that there are some c1, . . . , cm œ

N where Ï(1)(c1) · · ·Ï(m)(cm) ”= Ï(1)(c1) · · ·Ï(i≠1)(ci≠1) · Â(i)(ci) · Ï(i+1)(ci+1) · · ·Ï(m)(cm).
This implies that Ï(1)(c1) · · ·Ï(i≠1)(ci≠1) · Ï(i+1)(ci+1) · · ·Ï(m)(cm) ”= 0 and ci Ø Ni as we
didn’t change any other functions except Ï(i) for ni Ø Ni.
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Constructing constant functions f Õ
k(w) = ck for k ”= i and the function f Õ

i(w) = pi · (2|x| +
max(Ni, N)) + j which are all in #FA. We see that Ï ¶ (f Õ

1
, . . . , f Õ

m) œ #FA. Note that for
any w œ �ı we have f Õ

i(w) Ø max(Ni, N) and f Õ
i(w) ©pi j and thus Ï(i)

¶ f Õ
i = Â(i)

j ¶ f Õ
i .

Combining all of this we again reach a contradiction to the fact that NFAs can only compute
at most linearly exponential functions via

Ï(f Õ
1
(w), . . . , f Õ

m(w)) Ø Ï(1)(c1) · · ·Ï(i≠1)(ci≠1) · Ï(i)(f Õ
i(w)) · Ï(i+1)(ci+1) · · ·Ï(m)(cm)

Ø Ï(i)(f Õ
i(w)) = Ï(i)

j (f Õ
i(w)) = Ï(i)

j (pi · (2|w| +max(Ni, N)) + j)

Ø 2“pi·(2|w|
+max(Ni,N))+“j .

Note that the first inequality holds due to all summands of Ï being non-negative. J

Deciding whether a function Ï has such a representation may not always be directly
visible, however if Ï is a multivariate polynomial we can be more explicit. Every integer-
valued multivariate polynomial has integer coe�cients when represented in the binomial
basis (see [12, Prop. 4.2.1] for a proof of this fact). We say a term a ·

!x1
d1

"
· · ·

!xm

dm

"
dominates

another term aÕ
·
!x1
dÕ
1

"
· · ·

!xm

dÕ
m

"
if di Ø dÕ

i for all i œ [m]. A term is a dominating term of
Ï if it has non-zero coe�cient and it is not dominated by any other term with non-zero
coe�cient. We can use a similar approach to Lemma 3.16 to rewrite Ï as a positive integer
linear combination of products of shifted binomials (details can be found in the appendix of
the full version).

I Lemma 3.24. Let Ï(x1, . . . , xm) =
qr

i=1
ai ·

rm
j=1

! xj

di,j

"
with ai œ Z and the coe�cients

of the dominating terms being positive. Then there are aÕ
1
, . . . , aÕ

rÕ œ N and c1, . . . , crÕ œ N
with Ï(x1, . . . , xm) =

qrÕ

i=1
aÕ
i ·

rm
j=1

!xj≠ci
di,j

"
.

We can then use a generalization of Lemma 3.17 and replace subtractions xi ≠ cÕ by
max(xi ≠ cÕ, 0). However special care has to be taken for xi < cÕ, in which case xi has to be
replaced by the corresponding constants first. This adds the additional condition on Ï.

I Lemma 3.25. Let Ï : Nm
æ N be a multivariate polynomial with rational coe�cients, such

that whenever Â is formed from Ï by replacing any set of variables – including the empty

subset – by constants from N, then all dominating terms of Â have positive coe�cients. Then

Ï is a functional closure property of #FA.

I Lemma 3.26. A multivariate polynomial Ï : Nm
æ N with rational coe�cients is a

functional closure property of #FA i� for every Â that can be formed from Ï by replacing

any subset of variables – including the empty set – by constants from N, then all dominating

terms of Â have positive coe�cients.

Proof sketch. Lemma 3.25 already proves that all multivariate polynomials of this form are
functional closure properties of #FA. Now let Ï : Nm

æ N be a multivariate polynomial
with rational coe�cient and a functional closure property of #FA. By Theorem 3.23 Ï can
be written as a finite sum of finite products of ultimately PORC functions. Note that the
leading coe�cient of each constituent of these ultimately PORC functions is positive. By
multivariate polynomial interpolation we can now show that Ï is already a finite sum of finite
products of these constituents. The dominating terms of Ï are then formed by products of
the leading coe�cients of the constituents and thus are positive. J
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4 Promise closure properties

I Definition 4.1. Let S ™ Nm
and let Ï : Nm

æ N be a function. We call Ï a functional
promise closure property of #FA with regard to S if for every f1, . . . , fm œ #FA defined on

some shared alphabet � there is a function g œ #FA with g(w) = Ï(f1(w), . . . , fm(w)) for

every w œ �ı
for which (f1(w), . . . , fm(w)) œ S.

We now want to show that if S fulfils some property, namely admitting polynomial
cluster sequences (we postpone the definition to Definition 4.5), then for every functional
promise closure property with regard to S there is a functional closure property of #FA that
agrees with it on all tuples in S. In other words we can interpolate the functional promise
closure property Ï on all values of S to obtain a functional closure property ÏÕ for all of #FA.
The proof for this follows along the following ideas: First, similar to Theorem 3.23, use the
functional closure property Ï on the unary counting functions to find an equivalent function ÏÕ

that is almost a functional closure property. However after this step some of the constituents
of the ultimately almost PORC functions might still be exponential. Theorem 3.23 then
proceeded by showing that we can replace all these exponential constituents by the constant
zero function, as otherwise we were able to reach a contradiction by constructing functions
f Õ
1
, . . . , f Õ

m and an infinite sequence of inputs w(i), such that Ï(f Õ
1
(w(i)), . . . , f Õ

m(w(i))) grows
doubly exponential in the length of the inputs. However when dealing with functional
promise closure properties we have to be more careful when choosing f Õ

1
, . . . , f Õ

m and the w(i),
because we need (f Õ

1
(w(i)), . . . , f Õ

m(w(i))) œ S to reach a contradiction. Additionally we don’t
replace the exponential constituents by the constant zero-function but rather a polynomial
that behaves the same for small inputs. For this we need a special variant of univariate
polynomial interpolation that yields integer-valued polynomials that are non-negative for all
inputs from N:

I Lemma 4.2. Let c0, . . . , cN œ N. Then there is an integer-valued polynomial q : Q æ Q
with q(n) = cn for all n œ {0, . . . , N} and q(nÕ) Ø 0 for all nÕ

œ N.

To be able to hit all of S consistently we use independent binary encodings, that allow us
to hit all of Nm.

I Lemma 4.3 (Folklore). The function f : {0, 1}ı
æ N defined by being the value of

w œ {0, 1}ı
interpreted as a binary number is in #FA. Additionally it is possible to extend

the domain of f to any alphabet � ´ {0, 1} where the value of f is determined while ignoring

any symbols not in {0, 1}.

For any n œ N we denote by bin(n) the unique binary representation of n without leading
zeros. We first show the methodology in detail by proving the univariate case.

I Theorem 4.4. Let S ™ N. Then any function Ï : N æ N is a functional promise closure

property of #FA with regard to S i� there is a functional closure property Â : N æ N of #FA
with Ï|S = Â|S.

Proof. If such a Â exists, we directly see that Ï is a functional promise closure property
of #FA with respect to S. Indeed for any f œ #FA we construct g = Â ¶ f œ #FA and see
g(w) = Ï(f(w)) for every w œ �ı with f(w) œ S.

Now on the other hand let Ï be any functional promise closure property of #FA with
regard to S. Again define the alphabet � = {1} and the function f : �ı

æ N with
f(1n) := n. Applying the closure property to f gives that there is some g œ #FA with
g(1n) = Ï(f(1n)) = Ï(n) for all n œ S. Let M = (Q,�,wt, in, out) be an NFA computing g.
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This induces a transition matrix A œ N|Q|◊|Q| and vectors a, b œ N|Q|, s.t. aTAnb = g(1n)
for all n œ N by Lemma 3.19. We now define ‰(n) := aTAnb and see ‰|S = Ï|S . Using
Lemma 3.21 on An we see that every entry of An is an ultimately almost PORC function in
n and as such Â is also an ultimately almost PORC function. Let p be the quasiperiod of ‰
and let ‰0, . . . ,‰p≠1 be the constituents of ‰ and let N œ N be the o�set after which ‰ is
defined by the constituents.

We claim that we can now replace every exponential constituent by a polynomial one
without changing the value of ‰ for any n œ S. For each i œ {0, . . . , p≠ 1} we distinguish two
cases, depending on whether Si := S fl (pZ+ i) is finite or it is infinite. If Si is a finite set, we
replace ‰Õ

i with a polynomial that interpolates the same values as ‰i on Si. Lemma 4.2 ensures
that this polynomial is integer-valued and non-negative for all of N. If Si is an infinite set,
we replace ‰i by the constant zero function. Call the resulting ultimately PORC function Â
with constituents Âi. Assume for the sake of contradiction there is an c œ S, s.t. ‰(c) ”= Â(c).
Clearly such a c would have to be at least N . Now let i be, s.t. c œ Si. It must hold that
‰i(c) ”= Âi(c). Hence Si cannot be a finite set, since ‰i and Âi agree on Si. Therefore Si must
be infinite. Since ‰i is exponential there is a “ œ R+ and N Õ

œ N, s.t. ‰i(n) Ø 2“n for all
n Ø N Õ. Let f Õ

œ #FA be the function of binary evaluation from Lemma 4.3 over the alphabet
�Õ = {0, 1}. Then there is a gÕ

œ #FA with gÕ(bin(n)) = Ï(f Õ(bin(n))) = ‰(f Õ(bin(n))) for
all n œ S. Since Si is infinite, in particular Si must contain infinitely many values bigger
than max(N,N Õ). For n œ Si with n Ø max(N,N Õ) we now have

gÕ(bin(n)) = ‰(f Õ(bin(n))) = ‰(n) = ‰i(n) Ø 2“n
Ø 2“2|bin(n)|≠1

,

which is a contradiction to NFAs only being able to only compute functions that are at most
linearly exponential in the input length. In conclusion Si cannot be infinite either and thus c
itself cannot exist. J

I Definition 4.5. A set S ™ Nm
admits polynomial cluster sequences if for every

N1, . . . , Nm œ N, and p1, . . . , pm œ N the projection · : S æ {0, . . . , N1 + p1 ≠ 1} ◊ . . . ◊

{0, . . . , Nm + pm ≠ 1} defined by ·(n1, . . . nm) = (n1 sremN1 p1, . . . , nm sremNm pm) has the

following property: Any preimage T of a singleton set under · for every i œ [m] has either

bounded i-th coordinate or there is a polynomial q : N æ N and an infinite subset T Õ
™ T

with unbounded i-th coordinate
9
and with

qm
j=1

nj Æ q(ni) for all (n1, . . . , nm) œ T Õ
. We call

such an infinite subset a polynomial cluster sequence with regards to dimension i.
We call · the shifted grid projection of S with respect to o�sets N1, . . . , Nm and quasiperi-

ods p1, . . . , pm.

Intuitively this definition requires that each dimension is either bounded or can grow
reasonably quickly together with the other dimensions, even when restricted to inputs from
specific shifted residue classes. For example {(n2, n3) | n œ N} admits polynomial cluster
sequences, while {(n, 2n) | n œ N} does not.

I Theorem 4.6. Let S ™ Nm
admit polynomial cluster sequences. Then any function

Ï : Nm
æ N is a functional promise closure property of #FA with regard to S i� there is a

functional closure property Â : Nm
æ N of #FA with Ï|S = Â|S.

The technical proof of the theorem can be found in the appendix of the full version. There
are multiple natural families for the set S such that S admits polynomial cluster sequences
which we describe in the following.

9 note that this property also follows directly from the polynomial bound on the other coordinates in the
i-th coordinate, but we have it as part of the definition for clarity.
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I Lemma 4.7. Any finite set S ™ Nm
admits polynomial cluster sequences.

Proof. Independent of the o�sets and quasiperiods and i œ [m] any subset of S always is
finite and thus bounded in every dimension. J

An a�ne variety is defined as the zero set of a finite number of multivariate polynomi-
als. A special case of a�ne varieties are graph varieties (also just called graphs, see [20,
§2.4, Exe. 12]). An a�ne variety S is a graph variety if there exist a finite number of j-
variate polynomials µ1, . . . , µk such that S = {(s1, . . . , sj , µ1(s1, . . . , sj), . . . , µk(s1, . . . , sj)) |
(s1, . . . , sj) œ Qj

} ™ Qj+k. We call s1, . . . , sj the free variables, and the remaining variables
the dependent variables. We call S a monotone graph variety if µ1, . . . , µk are all monotone.

I Lemma 4.8. Let S ™ Qm = Qj+k
be a monotone graph variety. Then the set S fl Nm

admits polynomial cluster sequences.

The proof of this lemma can be found in the appendix of the full version. All in all
this combines to the following theorem which characterizes the special case of multivariate
polynomial functional promise closure properties, the technical details can be found in the
appendix of the full version.

I Theorem 4.9. Let S ™ Qm = Qj+k
be a monotone graph variety and let I = I(S) be

its vanishing ideal. A multivariate polynomial Ï : S æ N is a functional promise closure

property of #FA with regard to S if and only if there exists a Â œ I such that Ï + Â is a

multivariate functional closure property of #FA.

5 Conclusion

We characterized the functional closure properties of #FA to be precisely the ultimately
PORC functions in the univariate case and combinations of ultimately PORC functions in
the multivariate case. Additionally we characterize promise functional closure properties of
#FA with regard to some natural families of sets S. Natural further directions of research are
now whether we can characterize the promise functional closure properties of #FA for more
sets S and whether our methods can be applied to characterize functional closure properties
for more powerful models of computation.
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Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance
of an open problem by Courcelle and Engelfriet.

We use a syntax generalising series-parallel expressions, denoting graphs with a small interface.
We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation
pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing
how they can be decomposed recursively, first canonically into connected parallel components, and
then non-deterministically. The main di�culty consists in showing that all non-deterministic choices
can be related using only finitely many equational axioms.
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1 Introduction

Treewidth is a graph parameter measuring how close a graph is from a forest. It is frequently
encountered in parameterised complexity: many NP-complete problems become polynomial
or even linear once parameterised using treewidth [4]. This parameter admits many equivalent
definitions. It was discovered at least by Bertelè and Brioschi [3], Halin [11], and Robertson
and Seymour [13] via tree decompositions for their celebrated graph minor theorem. It was
subsequently characterised using k-trees [2], k-elimination graphs [17, 16, 15], and chordal
graphs [13].

One may also consider syntaxes, most often generalising series-parallel expressions [1, 8, 6].
There, the idea is to use terms to denote graphs, and an important problem is to understand
when two terms denote the same graph. To this end, Courcelle and Engelfriet gave an
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c
a

db

2

1 3

ƒ

a

2

1 3

Î b

2

1 3

Î
c

2

1 3

d

lfb Î f
!
(24)l(c Î (23)la) Î (14)ld

"
© (23)la Î lfb Î f

!
(24)lc Î (14)ld

"

Figure 1 Two parsings of a given graph.

equational axiomatisation for arbitrary graphs [7, p. 117]: a structured set of equations on
terms from which it is possible to equate all terms denoting a given graph. Unfortunately,
this axiomatisation is infinite. They note how finite fragments of the syntax make it possible
to capture precisely the graphs up to a given treewidth, while finite restrictions of their
axiomatisation seem to be incomplete.

This brings them to the following question [7, p. 118]: for a given bound k, is there a finite
equational presentation of graphs of treewidth at most k? The case of k = 1 concerns forests
and is relatively easy. The case of k = 2 has been given a solution a few years ago [5, 9].
Here we give a positive answer for k = 3: we provide a syntax of terms with an interpretation
map g from terms to graphs whose image is exactly the set of graphs of treewidth at most
three, and we give a finite list of equations whose equational theory (©) characterises graph
isomorphism (ƒ). In symbols, we prove that for all terms t, u,

g(t) ƒ g(u) if and only if t © u

Like Arnborg, Courcelle, Proskurowski and Seese [1], we work with hypergraphs with a list
of designated vertices, the sources, used as an interface to perform the following operations:

parallel composition (Î): glue the graphs together along their sources.
permutation (pG): given a permutation p, reorder the sources of G according to p.
lift (lG): add an isolated vertex to G and append it as last source.
forget (fG): remove the last source of G (keeping it as a mere vertex of the graph).

Consider the four graphs depicted in Figure 1, each with three sources denoted with numbered
squares. The neighbours of each edge are ordered, which we indicate by drawing an arrow
from the first to the second neighbour. The first graph on the left is the parallel composition
of the three other ones. The second one can be obtained from a binary edge a (with interface
its endpoints) by applying a lift to add a third isolated source and then swapping the last two
sources: (23)la. The third one can be obtained from a ternary edge b (again with interface its
endpoints), by forgetting the third source and adding a fresh one via a lift: lfb. The last one
can be constructed as f

!
(24)lc Î (14)ld

"
: reasoning top-down, we promote the inner vertex

as a fourth source, and then we put in parallel two graphs each with a single ternary edge
connecting three out of the four sources – both being obtained as appropriate permutations
of lifted edges.

We call parsings the expressions we obtain when decomposing graphs as above.
The way we parsed the graph on the right generalises to all graphs: first promote all inner

vertices as sources, and then build a large parallel composition of appropriately permuted
and lifted edges. For instance, the first graph on the left also admits the following parsing:

�
!
(23)llla Î (35)llb Î (24)llc Î (124)lld

"
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While such a parsing exists for all graphs, it goes through an intermediate graph with a large
interface. Instead, the graphs of treewidth at most k are exactly those for which we can
find a parsing where all intermediate graphs have at most k + 1 sources (Proposition 4.1, [1,
Proposition 4.1]). This syntax for denoting precisely the graphs of treewidth at most k is
the starting point for the present work.

A derived operation is of particular interest. Consider three graphs x, y, z each with
three sources, and combine them as depicted on the right to obtain a new graph ¶(x, y, z).
This operation can be defined from the previous ones using the expression below.

z x
y

2

1 3

¶(x, y, z) , f
!
(14)lx Î (24)ly Î (34)lz

"

It can be generalised into a n-ary operation on graphs with n sources, and when n = 2 we
recover the usual notion of series composition (with its arguments reversed).

Our goal is then to understand which laws are satisfied by the previous operations.
Amongst the natural ones, we have that parallel composition is associative and commutative,
that permutations commute over parallel compositions, and that applying two permutations
in a row amounts to applying the composite permutation. There are more involved ones.
For instance, we may also parse the first graph of Figure 1 by keeping edges a and c together
as long as possible, resulting in the expression written below it. We thus have two rather
di�erent parsings for the same graph, which our axiomatisation should equate.

We proceed in two steps. First we use connectivity arguments in order to decompose any
graph into a parallel composition of permuted lifts of full prime graphs: non-empty graphs
which are connected through paths not using sources except possibly at their endpoints.
Figure 1 actually provided an example of such a decomposition, which is always unique for a
given graph. Using a few natural axioms, we show that every term can be rewritten under
such a form (Proposition 5.1). This makes it possible to focus on full prime graphs in the
second step, which is where the main di�culties arise.

A key property of full prime graphs of bounded treewidth is that either they are atomic
(i.e., reduced to a permutation of an edge), or they have a forget point: at least one of their
inner vertices can be promoted into a source without increasing the treewidth, thus making
it possible to parse the graph as a forget operation. The di�culty is that forget points are
not unique, resulting in several ways of parsing non-atomic full prime graphs. Consider for
instance the following tetrahedron on the left, with only two vertices marked as sources.

b a

c

d

1 2

Each of the two inner vertices is a forget point, so that modulo appropriate permutations of
edges, we may parse this graph as f(¶(a, b, c) Î d) or as f(¶(a, b, d) Î c). In this case, the two
forget points are relatively close, and one of our axioms makes it possible to jump directly
from one parsing to the other. A similar situation arises with the graph given on the right.

The cornerstone of our completeness proof is the fact that two parsings of a non-atomic full
prime graph can always be rewritten so as to agree on their forget point. This is Lemma 5.4,
and most of the paper is devoted to proving it.

ICALP 2024
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Figure 2 Separation pairs and graphs with several separation pairs.

To do so, we first delimit a class of vertices which we call anchors. Those can be thought
of as a generalisation of cutvertices [8, Section 1.4]. When a full prime graph has an anchor,
we show that we can use it as a universal agreement point (Lemma 7.1).

Unfortunately, there are graphs without anchors. We call them hard, they can be thought
of as specific unseparable graphs [8, Section 1.4]. The rest of the proof consists in a structural
analysis of hard graphs of treewidth at most three. We show that they admit separation
pairs: every hard graph has the shape on the left of Figure 2, and every parsing can be
rewritten as a double forget on some of these separation pairs (Lemma 8.5). However, as
illustrated on the right, separation pairs are not unique. In order to finish the proof, we
analyse how separation pairs relate to each other. There are easy cases like in the second
graph of Figure 2 where the diagonal separation pair connects the two vertical ones, and
previously encountered axioms make it possible to conclude. By analysing the shape of
graphs excluding the triangle between their sources as a minor (Proposition 8.7 – note that
cycles may still appear in such graphs), we show that all other situations reduce to one of the
two graphs on the right of Figure 2. There, the two outer-vertical pairs of inner vertices are
the only separation pairs, and they are disjoint. They correspond to distinct parsings of the
same graph, and we must include the corresponding equations to complete our list of axioms.

For the sake of readability, some proofs and details are provided in the appendix of the
full version [10].

2 Graphs, treewidth

A ranked set (or signature) is a set where every element has an associated natural number
called its arity. Throughout the paper we fix a ranked set � of letters, which we call the
alphabet. Given a set V , we denote by L(V ) the ranked set of duplicate-free lists over V ,
where the arity of a list is its length.

We consider labelled and ordered hypergraphs with interfaces, defined as follows:

I Definition 2.1. A graph is a tuple ÈV,E, n, l, iÍ where V is a finite set of vertices, E is a
finite ranked set of edges, i œ L(V ) is the interface, and n : E æ L(V ) and l : E æ � are
arity-preserving functions respectively giving the neighbours and the label of each edge.

The elements of a graph are its vertices and edges. The vertices appearing in the interface
of a graph are its sources. Vertices (resp. elements) which are not sources are called inner
vertices (resp. elements). A vertex is isolated if it is not in the neighbourhood of any edge.
The size of a graph G, written |G|, is its number of elements. The arity of a graph is that of
its interface. Two graphs G,H are isomorphic, written G ƒ H, if their vertex and edge sets
are related by structure-preserving bijections (cf. [10, Appendix A]). A graph is:

empty if its only elements are its sources;
atomic if its only inner element is an edge, whose neighbours comprise all the sources.

Our choice of considering ordered hypergraphs with interfaces comes from the need to
be able to substitute graphs for edges. A substitution is an arity-preserving function from
the alphabet to graphs. Given a graph G and a substitution ‡, we write G‡ for the graph
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obtained from G by replacing all its a-labelled edges by copies of the graph ‡(a), identifying
pairwise the neighbours of the edges with the interfaces of the copies. We say that G has
shape H when G ƒ H‡ for some substitution ‡. For instance, the first graph of Figure 1 has
the following shapes (amongst other ones):

2

1 3

2

1 3

2

1 3

(Note that the edge orientation is irrelevant in a graph used as a shape, as well as the labelling
function – as long as it is injective, which will always be the case in the present paper.)

I Proposition 2.2. For all graphs G,H and all substitutions ‡, fl, if G ƒ H and ‡(a) ƒ fl(a)
for all letters a, then G‡ ƒ Hfl.

A graph in the sense of Definition 2.1 can be seen as a simple graph, its skeleton, by turning
all its edges and its interface into cliques (removing duplicate edges if necessary). This
operation makes it possible to use the standard notion of treewidth [8, Section 12.4]: the
treewidth of a graph is that of its skeleton. Equivalently, we can define it as follows.

I Definition 2.3. A tree decomposition of a graph is a tree whose nodes are labelled by sets
of vertices, called bags, such that

there is a bag containing all sources,
for each edge there is a bag containing its neighbours,
for each vertex, the bags containing it form a subtree.

The width of a tree decomposition is the size of its largest bag minus one. The treewidth of
a graph is the minimal width of its possible tree decompositions.

Observe that since the sources of a graph must be contained in a bag for all tree decompositions,
the treewidth of a graph is at least its arity minus one. Therefore, at treewidth at most three,
we only have graphs of arity up to four. The same constraint holds for the edge arities.

I Proposition 2.4. If a graph G and the graphs in the image of a substitution ‡ all have
treewidth at most k, then so does G‡.

3 Graph operations

We can now define the operations discussed in the introduction.

I Definition 3.1. Let G,H be graphs of arity k.
The parallel composition of G and H, G Î H, is the graph of arity k obtained from the
disjoint union of G and H by pairwise merging their sources.
If k Ø 1, the forget of G, fG, is the graph of arity k ≠ 1 obtained from G by removing the
last vertex from its interface (keeping it in the vertex set).
The lift of G, lG, is the graph of arity k + 1 obtained from G by adding a new isolated
vertex, and appending it to its interface.
For a permutation p of [1, k], we denote by pG the graph obtained from G by permuting
its interface according to p.
We write ÿk for the empty graph of arity k, omitting k when it is clear from the context.
For a letter a œ �, we also write a for the atomic graph whose edge is labelled a and has
its neighbours appearing in the same order as in the interface.

ICALP 2024
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These operations all arise as substitutions of well chosen small graphs. By Proposition 2.4,
this entails that they preserve treewidth (except of course for lifts, which may increase it
when reaching the maximal arity). It remains to establish a few structural properties, in
order to show that every graph of treewidth at most k can be constructed from the above
operations up to arity k + 1 (Proposition 4.1 below).

A path in a graph is a sequence of elements such that any two consecutive elements consist
of an edge and one of its neighbours. An inner path is a path made only of inner elements,
except possibly for the endpoints.

I Definition 3.2. A graph is prime if it is not empty and all its inner elements are connected
by inner paths; it is full if none of its sources are isolated.

Observe that a graph is full prime i� all its elements are connected by inner paths. Amongst
the graphs in Figure 1, the first one is full but not prime, the three other ones are prime,
and only the last one is full prime.

I Lemma 3.3. Every graph is isomorphic to a permutation of lifts of a full graph. This
decomposition is unique up to permutation and isomorphism.

I Lemma 3.4. Every graph is isomorphic to a parallel composition of prime graphs. This
decomposition is unique up to reindexing and isomorphism.

We call (prime) components of a graph the prime graphs occurring in the latter decomposition.
We call reduced components of a graph the full prime graphs obtained by removing isolated
sources from its components.

We now give two key properties of full prime graphs of bounded treewidth. First, they
are always atomic at maximal arity.

I Proposition 3.5. Full prime graphs of treewidth at most k and arity k + 1 are atomic.

In the case of treewidth at most three, this means that when we decompose a graph of arity
four into prime components, then except for a number of four-edges between the sources, we
only get non-full components: drawing the graph as a tetrahedron between its sources, the
non-atomic components are glued through the faces (or edges, or vertices, or nothing), and
the interior of the tetrahedron remains empty. This corresponds to the characterisations of
treewidth at most k graphs as partial k-trees [2] or as subgraphs of chordal graphs whose
cliques are of size at most k + 1 [13].

Second, non-atomic full prime graphs have forget points, which we define as follows.

I Definition 3.6. When x is an inner vertex of a graph G, we write (G, x) for the graph
obtained from G by appending x to its interface; if this graph has treewidth at most k then
we say that x is a k-forget point of G.

I Proposition 3.7. Non-atomic full prime graphs of treewidth at most k have k-forget points.

4 Terms and axioms

We finally provide a notion of term for denoting graphs. We use a multisorted syntax: the
family (Tk)kœN of sets of terms of a given arity is defined inductively by the following rules
(where p ranges over permutations of [1, k] and a over letters of arity k):

t, u œ Tk
t Î u œ Tk

t œ Tk
lt œ Tk+1

t œ Tk+1
ft œ Tk

t œ Tk
pt œ Tk ÿ œ Tk a œ Tk
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This syntax matches the operations in Definition 3.1. Accordingly, we obtain a recursive
arity-preserving function g from terms to graphs. We say that a term t denotes the graph G,
or that t is a parsing of G, when g(t) ƒ G. For instance, the expressions below the graphs in
Figure 1, seen as terms, are parsings of these graphs. Note that the number of inner vertices
of a graph is the number of forgets appearing in any of its parsings.

We shall sometimes mention terms and refer implicitly to their graphs; for instance
writing that a term is prime to mean that its graph is so.

The width of a term is the maximal arity of its subterms, minus one.

I Proposition 4.1. A graph has treewidth at most k i� it has a parsing of width at most k.

Proof. The backward implication is proven by induction on terms, using Proposition 2.4
and the observation that all operations arise as substitutions. For the direct implication, we
proceed by lexicographic induction on the size of the graph followed by k + 1 minus its arity
(recall that the arity is always lower or equal to the treewidth plus one).

If the graph has isolated sources, we use Lemma 3.3 to write it as a permutation of lifts
and proceed recursively. Otherwise it is full, and we decompose it into primes via Lemma 3.4:

if there are no components then the graph is empty and has a trivial parsing;
if there are at least two components then they are smaller, and we proceed recursively;
otherwise the graph is (full) prime; either it is atomic and it admits a permutation of a
letter as a parsing, or, by Proposition 3.7, it can be written as the forget of a graph of
the same size but increased arity, which we may parse recursively. J

The previous proposition holds for all bounds k on the treewidth. Some of our results
below also hold generically, and we will discuss these generalisations in Section 9. Still, from
this point on we focus on treewidth at most three.

I Convention 4.2. In the remainder, we only work with graphs of treewidth at most three.
We simply call terms the terms of width at most three, and forget points the 3-forget points.

A (term) substitution is an arity-preserving function from the alphabet to terms. Such a
function ‡ extends uniquely to a homomorphism ‡̂ from terms to terms:

‡̂(t Î u) , ‡̂(t) Î ‡̂(u) ‡̂(lt) , l‡̂(t)
‡̂(ÿ) , ÿ ‡̂(ft) , f‡̂(t)
‡̂(a) , ‡(a) ‡̂(pt) , p‡̂(t)

A context of arity i æ o is a term of arity o with a single occurrence of a designated letter h
of arity i, called the hole. Given such a context c and a term t of arity i, we write c[t] for
the term c where the hole is replaced by t. Note that c[t] = ‡̂t(c) for the substitution ‡t

mapping h to t and fixing all other letters.
An equational theory is an equivalence relation R on terms, relating only terms of the

same arity, and which is closed under contexts and substitutions:
(t, u) œ R entails (c[t], c[u]) œ R for all contexts c of appropriate arity, and
(t, u) œ R entails (‡̂(t), ‡̂(u)) œ R for all substitutions ‡.

Given two terms t, u, we write t ≥= u when g(t) ƒ g(u). Thanks to Proposition 2.2, this
relation (≥=) is an equational theory, and our goal is to provide a finite list of axioms that
generates it.

We give such a list below; most axioms can be written explicitly, but three of them relate
rather large terms, which are best presented by their graphs. This is why we rely on the
following concept of forget axiom.

ICALP 2024
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FS0 FS1 FS2 FK

Figure 3 Forget axioms for anchors (swap and kite); x, y are the inner vertices.

FX FD

Figure 4 Forget axioms for hard graphs (cross and domino); x, y are the topmost inner vertices.

A forget axiom for a graph G with two forget points x, y is an equation of the shape
ft © fu for some parsings t of (G, x) and u of (G, y).

I Definition 4.3 (Finite axiomatisation). We write © for the least equational theory containing
the following axioms, for letters a, b, c of appropriate arities:
A1. a Î (b Î c) © (a Î b) Î c, a Î b © b Î a, and a Î ÿ © a;
A2. pqa © (p¶q)a for all permutations p, q, and ida © a where id is the identity permutation;
A3. p(a Î b) © pa Î pb and pÿ © ÿ for all permutations p;
A4. l(a Î b) © la Î lb and lÿ © ÿ;
A5. pfa © f ṗa and lpa © ṗla where ṗ is the extension of a permutation p of [1, k] to [1, k+1];
A6. lfa © frla and lla © rlla for the permutation r that swaps the last two elements;
A7. fa Î b © f(a Î lb);
FS. �a © �ra for the permutation r that swaps the last two elements;
as well as three forget axioms for the graphs with forget points FK, FX and FD in Figures 3&4
(for some arbitrary choice of interface ordering, edge orientation, and injective edge labelling).

The first eight items are universally quantified over all appropriate arities. For instance,
associativity of parallel composition (in A1) is an axiom at each arity, and a, b and ÿ may
have arity up to three in A4. Since we restrict globally to arities up to four, the list of axioms
is nevertheless finite.

Also note that even though the axioms are expressed using letters, they yield laws which
hold under all term substitutions since © is defined as an equational theory.

FS comprises three axioms depending on the arity of a (2, 3, or 4), which we shall
sometimes refer to as FSi (with i = 0, 1, or 2, respectively). These are forget axioms for
the first three graphs in Figure 3, and we could have presented them as such. We cannot
express FS3 as it would require an edge of arity five; FK intuitively is a weakened version of
it, expressible at treewidth three.

We shall see at the end of Section 5 that the concrete choice of parsings for the forget
axioms FK, FX, and FD is irrelevant thanks to A1-7. The interested reader may find concrete
equations for them in [10, Appendix C].

I Proposition 4.4 (Soundness). If t © u then t ≥= u.

Proof. Since ≥= is an equational theory, it su�ces to check that the two members of each
axiom denote the same graph. This is by definition for the forget axioms, and a routine
verification for the other ones. J
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The axioms given textually in Definition 4.3 (A1-7 and FS) intuitively correspond to
those given for arbitrary graphs by Courcelle and Engelfriet [7, p.117], restricted to terms of
width at most three. (Modulo some translation since our syntaxes and sets of operations
di�er.) This finite restriction is however incomplete for graphs of treewidth at most three: in
their completeness proof, Courcelle and Engelfriet need axioms of the form FSi for arbitrary
large arity i, even when dealing with graphs of small treewidth. Somehow, we prove below
that the forget axioms FS0, FS1, FS2, FK, FX, and FD su�ce at treewidth at most three
to fulfil the role played by this infinite family of axioms. Also observe that while FK easily
generalises to deal with an arbitrary treewidth k (by replacing the source touching the three
edges by k ≠ 2 sources), this is not the case for FX and FD.

5 Outline of the completeness proof

Using the first seven axioms, we easily obtain the following proposition. Together with
Lemmas 3.3 and 3.4, it makes it possible to normalise terms and to focus on full prime ones.

I Proposition 5.1. For all terms t, letters a, and graphs G,H, we have:
1. if g(t) ƒ ÿ then t © ÿ;
2. if g(t) ƒ a then t © a;
3. if g(t) ƒ pG then there is a parsing u of G such that t © pu;
4. if g(t) ƒ lG then there is a parsing u of G such that t © lu;
5. if g(t) ƒ G Î H then there are parsings u of G and v of H such that t © u Î v.

Proof sketch. All items but the third are proven by induction on t. The first three items
only need A1-4; the fourth one needs A5-6; the last one rests on the fourth one and A7. J

An item is patently missing from the previous proposition, for the forget operation. In
fact, a statement similar to the third and fourth items does not hold for the forget operation:
when t is a parsing of fG, nothing guarantees that G has a parsing at all: its treewidth may
be four; we need to restrict to those cases where the forgotten vertex is a forget point.

Given a term t denoting a graph G with an inner vertex x, we say that t reaches x if
there is a parsing t

Õ of (G, x) such that t © ftÕ. We can easily prove the following property.

I Lemma 5.2. Every non-atomic full prime term reaches some forget point.

Proof. By induction on t, using Proposition 5.1 until we find a forget operation. J

However, this property is not enough, because it gives no control on the forget point which
is reached; instead, we would like to obtain:

I Statement 5.3 (Reaching forget points). Full prime terms reach all their forget points.

This statement holds, but we do not know how to prove it directly: we only get it a posteriori,
from the completeness. We prove a variant of it in the next section (Lemma 7.1), for anchors.

Instead, the cornerstone of our proof is the following lemma: any two parsings of a
non-atomic full prime graph may reach a common forget point.

I Lemma 5.4 (Forget point agreement). For all parsings t, u of a non-atomic full prime
graph, there is a forget point reached by both t and u.

The rest of the paper is devoted to proving this lemma, with which we conclude as follows.

I Theorem 5.5 (Completeness). For all parsings t, u of a given graph, we have t © u.

ICALP 2024



135:10 A Finite Presentation of Graphs of Treewidth at Most Three
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d d

a
ab d
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Figure 5 The series operations s(; d), s(a; d), s(a, b; d), and s(a, b, c; d).

Proof. We follow the same pattern as in the proof of the forward implication of Proposition 4.1:
we proceed by lexicographic induction on the size of the graph followed by 4 minus its arity.
If the graph has isolated sources, we use Lemma 3.3 and Proposition 5.1(3,4) to rewrite the
parsings into permuted lifts and proceed recursively. Otherwise it is full, and we decompose
it into primes via Lemma 3.4:

if there are no components then both parsings are equivalent to ÿ by Proposition 5.1(1);
if there are at least two components then we use Proposition 5.1(5) on both parsings and
we proceed recursively.
otherwise the graph must be (full) prime. Either it is atomic and we conclude by
Proposition 5.1(2,3), or Lemma 5.4 gives us two terms tÕ, uÕ such that t © f(tÕ), tÕ ≥= u

Õ,
and f(uÕ) © u, and we can conclude since t

Õ © u
Õ follows by induction hypothesis. J

We have only used Axioms A1-7 up to this point. We prove below that those axioms are
complete when there are few forget points. Say that a graph is easy if each of its non-atomic
reduced components G has only one forget point x, and in turn (G, x) is easy. (This definition
is well-founded by the same lexicographic ordering as we used in the above proof.)

I Proposition 5.6. For all parsings t, u of an easy graph, we have t © u.

Proof. By adapting the previous completeness proof. Lemma 5.2 may replace Lemma 5.4
when we attain non-atomic full prime graphs: those are reduced components of the starting
graph and since those have only one forget point, all their parsings reach that one. J

None of the graphs in Figures 3 and 4 are easy: they are all full prime, each with two forget
points x, y (plus two symmetrical ones for FX and FD). Nevertheless, adding either x or y to
their interface makes them easy (cf. [10, Lemma D.1]). This is why the precise choice of
parsings does not matter when we use them as forget axioms in Definition 4.3.

6 Series decompositions

As explained in the introduction, there is a series operation on graphs which plays an
important role. We slightly generalise it here, and we show how to use it to analyse graphs
with a forget point.

Given k graphs G1, . . . , Gk of arity k and a graph H of arity k+1, we define the following
graph of arity k + 1, where pi denotes the permutation which swaps i and k + 1.

s(G1, . . . , Gk;H) , p1lG1 Î · · · Î pklGk Î H

As is explicit from its definition, this operation on graphs is also a derived operation on
terms. We illustrate its behaviour at each arity in Figure 5. We recover the operation from
the introduction when the last argument is empty, and using a forget operation: we have
¶(u, v, w) = fs(u, v, w; ÿ).

We use this operation in order to decompose full prime graphs along a given inner vertex.
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I Proposition 6.1 (Series decomposition). For all full prime graphs G of arity k with an
inner vertex x, there are graphs G1, . . . , Gk, H such that (G, x) ƒ s(G1, . . . , Gk;H) and
1. all components of H are full, and
2. if the jth source of a component of Gi is isolated, then i < j.
Such a decomposition is unique up to isomorphism.

We call Gi the ith series argument, and H the series factor of such a decomposition (at x).

Proof. We decompose (G, x) into prime components, which we classify according to their
isolated sources. Since G is full prime, x is never isolated. Full components go into the series
factor. Components where the first source is isolated go into the first series argument (under
the permutation p1, the first source gets swapped with x). Components where the second
source is isolated but not the first one go into the second series argument. Et caetera. J

Also note that we can follow such decompositions at the term level, modulo A1-7:

I Proposition 6.2. If a term t reaches the last source of a graph of the form s(G1, . . . , Gk;H),
then there are parsings u1, . . . , uk, v of G1, . . . , Gk, H such that t © fs(u1, . . . , uk; v).

Proof. Consequence of Proposition 5.1. J

7 Anchors

In this section we define the concept of anchors – inner vertices with specific properties, and
we prove the following variant of Statement 5.3:

I Lemma 7.1 (Reaching anchors). Full prime terms reach all their anchors.

This lemma implies Lemma 5.4 when the considered graph has an anchor, by applying it to
both parsings. Therefore, once Lemma 7.1 proved, it will only remain to prove Lemma 5.4
for anchor-free graphs (Section 8).

The definition of anchor is the following; we only consider them in full prime graphs.

I Definition 7.2. An anchor in a (full prime) graph G is an inner vertex x such that either:
1. there are no full prime components in (G, x), or
2. there is an edge whose neighbours comprise at least x and all sources of G, or
3. there are two or more full prime components in (G, x).
Using series decompositions, x is an anchor whenever the series factor at x is empty, or has
only one edge, or has at least two components.

This last condition generalises the usual notion of cutvertex [8, Section 1.4]: such anchors
at arity zero when there are only binary edges are exactly cutvertices as usual. Removing
them disconnects the graph. The second branch in our definition may only arise with sources
and/or hyperedges; it is convenient to have it for the present proof, but it would probably be
more natural to disallow it in other contexts. Thanks to this alternative, all inner vertices in
the graphs in Figure 3 are anchors. In contrast, the graphs in Figure 4 have no anchors.

We prove below that all forget points are anchors at arity three. The converse holds at
all arities, but we only get it a posteriori, as a consequence of Lemma 7.1.

I Proposition 7.3. At arity three, all forget points are anchors.

Proof. If x is a forget point of a graph G of arity three, the full prime components of (G, x)
must be atomic by Proposition 3.5. Thus x is an anchor, by either the first or the second
condition in Definition 7.2. J
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We also find anchors easily at arities zero and one.

I Proposition 7.4. Non-atomic full prime graphs of arity in {0, 1, 3} have some anchor.

Proof. Every inner vertex is an anchor at arity zero, either because it is isolated (anchor
of the first kind), or because it belongs to some edge (anchor of the second kind). Every
immediate neighbour of the only source is an anchor at arity one (of the second kind). At
arity three we use Propositions 7.3 and 3.7. J

We first prove Lemma 7.1 for graphs of arity three, and then we show how to reduce the
other cases to that one (Section 7.2).

7.1 Parsing on anchors at arity three
A checkpoint between two vertices y, z of a graph G is an inner vertex x such that every
inner path from y to z goes through x. When y, z are not mentioned explicitly, they are
implicitly assumed to be sources. (This definition coincides with that from [5] at arity two.)
Analysing the components of (G, x) by the sources they touch, we see that the checkpoints
of a graph G of arity three are the inner vertices x for which G has the following shape:

x

This characterisation shows that checkpoints are anchors of the first kind in Definition 7.2.
Another important property at arity three is that if there are two anchors, then they must
be checkpoints for the same sources:

I Proposition 7.5. At arity three, every full prime graph with two distinct anchors x, y has
the following shape:

y
x

i

j

k

Proof of Lemma 7.1 at arity three. We proceed by induction on the size of the graph.
Let t be a parsing of a full prime graph G of arity three, with an anchor x. By Lemma 5.2,

t reaches some forget point y. If x = y then we are done. Otherwise, y is a second anchor by
Proposition 7.3, and G has the shape given by Proposition 7.5. Call A the graph between
i,k,y, and B the one between j, k, y. Since t reaches y we have a parsing t

Õ of (G, y) such
that t © ftÕ. By analysing the full prime decomposition of (G, y), we can put tÕ under the
form (j4)lu Î (i4)lv, where u is a parsing of A and v a parsing of B. Then we observe that
x is a checkpoint in A, and thus an anchor, so that u reaches x by induction hypothesis.
Therefore, u © fuÕ for some parsing u

Õ of (A, x). By analysing the full prime decomposition
of (A, x) as before, we deduce that t reaches x using FK. J

7.2 Parsing on anchors at lower arities
We now finish the proof of Lemma 7.1 by showing how to reduce the other cases to that of
arity three. We use for that the two following lemmas. The first one intuitively makes it
possible to zoom on a specific inner vertex by going under a forget operation. The second
one states that under some conditions, an anchor in fiG is also an anchor in G, allowing to
use the case of arity three.
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I Lemma 7.6. Let t be a term of arity up to two with an inner vertex x in a full prime
component. There is a term u such that t © fu and x is either the last source of u or an
inner vertex of a full prime component of u.

I Lemma 7.7. For i > 0 let fiG be a full prime graph of arity k and x, y two distinct inner
vertices in a full prime component C of G. If x is an anchor of fiG and is in one of the first
k series arguments of the series decomposition of C at y, then x is a checkpoint in C.

(Note that the only isolated sources of the components of the i last series arguments in the
decomposition of C as above, are the i forgotten sources in fiG.)

Before we finish the proof of Lemma 7.1, also observe that FS implies fjpu © fjqu for all
terms u of arity k and permutations p, q agreeing on the first k ≠ j elements.

Proof of Lemma 7.1, at all arities. We prove the following generalisation, by induction on
the lexicographic product of |C| and 3 ≠ k:

For all terms t of arity k Æ 3, for all i Æ k, if fit is full prime with an anchor x in a
full prime component C of t, then fit reaches x.

If k < 3 then we use Lemma 7.6 to obtain u such that fit © fi+1
u; if x is the last source of u

then we are done, otherwise we conclude by induction, since x lies in a component of C.
We now assume k = 3, and we rewrite t as tC Î t

Õ, where tC is the full prime component
containing x. By Lemma 5.2, tC reaches some forget point y. Take a series decomposition
tC © fs(t1, t2, t3;u) of tC at y. The series factor u cannot contain x since all its components
are atomic by Proposition 3.5. Thus x must be in a series argument.

If x is in one of the first 3≠ i series arguments, then by Lemma 7.7 x must be a checkpoint,
and thus an anchor of tC . Using Lemma 7.1 at arity three (Section 7.1), we obtain that tC
reaches x. So does t by A7, and finally fit by FS. Otherwise, x is in one of the last i series
arguments, say the jth one. The jth source sj is the only source that is necessarily isolated
in this argument. It is a source that is forgotten by the operations f i (see the figure below
for an illustration). Our goal is to “swap” this jth source for y in order to decrease the size
of C. Indeed the new component containing x will then be contained in t3, which is smaller
in size than C.

t2

t'

t1
t31 2

y

sj

Let S be the set of non-isolated sources in the component C Õ of s(t1, t2, t3;u) containing x.
Using FS we get a term t

ÕÕ such that fit © f |S|
t
ÕÕ and t

ÕÕ denotes g(t) with the inner vertices in
S upgraded as sources. By definition of tÕÕ, C Õ is a full prime component of it. Furthermore,
up to isolated sources, C Õ is the same component as the one of s(t1, t2, t3;u) containing x.
This gives |C Õ| < |C| and we conclude by induction on f |S|

t
ÕÕ. J

At this point, we have used axioms A1-7, FS, and FK, but not FX and FD.
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x

y

x
y

Figure 6 Separation pairs (y ù x), and partial order on vertices (y ª x).

8 Separation pairs

We call hard the non-atomic anchor-free full prime graphs. Examples of such graphs were
given in Figure 2. Hard graphs have arity two by Propositions 7.4 and 3.5, and it only
remains to prove Lemma 5.4 for these graphs.

A forget pair in a graph G is a pair (x, y) of inner vertices such that (G, x, y) has treewidth
at most three. A parsing t of a graph G reaches a pair (x, y) of inner vertices if there is some
parsing t

Õ of (G, x, y) such that t © �tÕ. By definition, a term may only reach forget pairs.
By FS, a term reaches (x, y) i� it reaches (y, x); it follows that every term reaching (x, y)
reaches both x and y.

Given two inner vertices x, y of a full prime graph of arity two, we write y ù x when the
graph has the shape on the left of Figure 6, and y ª x when the graph has the shape on the
right (equivalently, when y is a checkpoint between x and some source). In the first case, we
say that (x, y) is a separation pair. We prove a few properties about such inner vertices.

I Lemma 8.1. If y ª x or y ù x in a full prime graph G, then y is an anchor in (G, x), and
every parsing of G reaching x also reaches (x, y).

Proof. In both cases, there is no full prime component in (G, x, y), so that y is indeed an
anchor in (G, x). Now if t © ftÕ for some parsing t

Õ of (G, x), then t
Õ reaches y by Lemma 7.1:

t
Õ © ftÕÕ for some parsing t

ÕÕ of (G, x, y). Thus t reaches (x, y). J

It follows that a full prime term reaches a separation pair i� it reaches any of its constituents.
We write S(x) for the series factor of a graph at some inner vertex x. When the graph is

hard, x is not an anchor, so that S(x) must be full prime and cannot contain just one edge.

I Proposition 8.2. For all hard graphs, ª is well-founded.

Proof. Observe that if y ª x then |S(y)| < |S(x)|. J

I Proposition 8.3. For all vertices x, y, z such that y ª x and x ù z, we have y ù z.

Proof. Consider an inner path between the two sources; we have to show that it visits either
y or z. It visits either x or z since (x, z) is a separation pair. If it visits x then it also visits
y since y is a checkpoint between x and one of the two sources. J

When the graph is hard in the previous proposition, it must have the following shape:

z

y x

In such a case, we intuitively prefer the separation pair (y, z) to (x, z). This leads us to
the notion of minimal separation pair. A vertex x is minimal if there is no vertex y such
that y ª x. A pair of vertices is minimal when its two elements are so.

The proposition below makes it possible to get separation pairs out of minimal vertices.
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I Proposition 8.4. Let x be a forget point in a hard graph. For all forget points y of S(x),
we have either y ª x or y ù x.

Proof. Let us classify the components of (G, x, y) by their isolated sources. Full components
cannot exist as by Proposition 3.5 they would be edges and both x and y would be anchors
in G. So G must have the following shape:

x

y

If there is no inner path avoiding y between the sources in the bottom component, then y ù x.
If there is no inner path avoiding y from x to one of the sources, then y ª x. Otherwise there
are at least two full prime components in (G, y), making y an anchor of G, which contradicts
G being hard. J

It follows easily that every hard graph has some separation pair – even a minimal one, which
will be useful to reduce the number of cases to study. However, we need to be more precise
and to keep track of terms.

I Lemma 8.5. Every hard term reaches some minimal separation pair.

Proof. Let t be a hard term. By Lemma 5.2 t reaches some forget point x, which we can
choose minimal by Proposition 8.2 and Lemma 8.1. Accordingly, let tÕ be a parsing of (G, x)
such that t © ftÕ. As S(x) is full prime and non-atomic, it has a forget point y. Since x is
minimal, (x, y) is a separation pair by Proposition 8.4. We can choose y to be minimal by
Proposition 8.3, and t reaches (x, y) by Lemma 8.1. J

As before with forget points, separation pairs are not unique (even minimal ones), and
we need to show how to move from one separation pair to another.

When studying the possible shapes of a hard graph H with distinct separation forget
pairs, we end up with a few shapes S such as the following one:

x

In such situations, we know that (H,x) has treewidth at most three, but (S, x) has treewidth
four. Therefore, for an appropriate notion of minor, (S, x) cannot be a minor of (H,x): the
treewidth may not increase when taking minors. We use this information in order to refine
the actual shape of H.

We use sourced simple graphs in order to define such a notion of minor. Those are triples
(V,E, S) made of a set V of vertices, a set E of unordered binary edges, and a subset S ™ V

of sources. We write Kk for the clique over k sources. Tree decompositions and treewidth [8,
Section 12.4] are adapted to sourced simple graphs by requiring the subset of sources to be
contained in some bag. A sourced minor of a (sourced simple) graph is a (sourced simple)
graph obtained from it by a sequence of the following operations: remove an edge, contract
an edge, remove an isolated vertex. Those operations do not increase the treewidth.

The footprint of a graph is the sourced simple graph obtained from it by replacing each
edge by a clique over its neighbours, forgetting labels, and turning the interface into a mere
set – note that we do not add a clique on the sources. A graph and its footprint have the
same tree decompositions, and thus the same treewidth. A sourced minor of a graph is a
sourced minor of its footprint.
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Note that graphs excluding K3 as a sourced minor need not be acyclic, as cycles may
occur away from the sources. The point of using sourced minors is that they behave well
with respect to substitutions, and thus shapes:

I Proposition 8.6. Given a graph G and a substitution ‡, if Kk is a sourced minor of ‡(a)
for all letters a of arity k, then the footprint of G is a sourced minor of G‡.

Now observe that full prime graphs of arity two admit the sourced edge K2 as a sourced
minor. At arity three, we have the following property instead.

I Proposition 8.7. Every graph of arity three either has the sourced triangle K3 as a sourced
minor, or has one of the two following shapes:

Let us continue our example and come back to the previous hard graph H. Assume that the
binary edges in the given shape are instantiated by full prime graphs, and consider the three
graphs instantiating the ternary edges. If those three graphs have the triangle as a sourced
minor, then the footprint of (S, x) must be a sourced minor of (H,x), which is not possible.
Therefore, at least one of them must have one of the shapes given by Proposition 8.7. By
considering the di�erent possibilities and continuing the same kind of reasoning, we end up
proving that in this case, H must have shape FX. In the general case, we obtain the following
classification.

I Proposition 8.8. Let G be a hard graph with two minimal separation forget pairs (x, y)
and (xÕ

, y
Õ). Possibly up to swapping x and y, and/or x

Õ and y
Õ, either (x, yÕ) is a separation

pair (Case Z), or G has one of the following shapes, where in the leftmost case, z is minimal
and x

Õ
, y

Õ appear in the rightmost component:

y
z

x x

y

x'

y'

x

y

x'

y'
Case IH Case X Case D

The proof we provide in [10, Appendix F] actually establishes that in the case where (x, yÕ)
is a separation pair, then G has one of the following shapes:

y y'

x=x' x

y

x'

y'

x

y'

x'

y
Case Z1 Case Z2 Case Z3

We finally deduce that hard terms reach all their minimal separation forget pairs.

I Lemma 8.9. Let G be a hard graph with minimal separation forget pair (xÕ
, y

Õ). All
parsings t of G reaching a minimal separation pair (x, y) also reach (xÕ

, y
Õ).

Proof. We fix G, x
Õ
, y

Õ, we proceed by induction on the size of the component of (G, x, y)
containing x

Õ, and we use Proposition 8.8. If (x, yÕ) is a separation pair (Case Z), then we
use Proposition 8.1 twice: t reaches x, thus (x, yÕ), thus y

Õ in particular, thus (xÕ
, y

Õ). In
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Case IH we proceed by induction on (x, z), which is reached by t by similar reasoning, and
for which the induction measure decreases. In Case X and Case D, we conclude directly
by FX and FD, respectively. (In those latter two cases, we first need to rewrite t so that it
agrees syntactically with the shape of the axiom we use. We use Lemma 7.1 for that, which
requires showing that some of the inner vertices are anchors in appropriate subgraphs. To
do so, we exploit the fact that G is hard, so that the subgraphs corresponding to the edges
of the exhibited shape must be connected enough.) J

Together with Lemma 8.5, Lemma 5.4 follows, which concludes our completeness proof.

9 Conclusion and future work

We have provided a finite presentation of graphs of treewidth at most three. Our axioma-
tisation comprises axioms for dealing with full prime decompositions (A1-7), axioms for
reaching anchors (FS, FK), and two axioms for hard graphs (FX and FD).

An obvious question for future work is whether the approach presented here generalises
to the case of graphs of treewidth at most k.

It does so up to Section 7. The syntax we use readily characterises those graphs
(Proposition 4.1), and the seven first axioms as well as the results in Section 5 are not specific
to the case k = 3. Axioms for anchors (Figure 3) also generalise. Accordingly, our results
about series decomposition and anchors (Lemma 7.1) extend easily. In particular, non-atomic
full prime graphs of arity 0, 1 and k would always have an anchor.

This means we also have finite presentations for bounds k = 1, 2. (For k = 2 this
axiomatisation di�ers from the one previously proposed [5, 9], because the chosen syntax is
di�erent: there, graphs of arity three are not considered, and parallel composition may be
applied to graphs of distinct arities.)

However, the results from Section 8 are specific to the case k = 3, and getting finite
presentations for larger values of k seems di�cult. Following the strategy presented here, we
would need to prove the forget point agreement lemma (Lemma 5.4) for new hard graphs,
which may have arities between 2 and k ≠ 1.

Still, we would like to emphasise the utility of such a generalisation in the context of
graph theory. Robertson and Seymour proved [14] that for all integers k there must be a
finite list of excluded minors characterising the class of treewidth at most k graphs. Consider
a minimal one amongst them, say H, along with a maximal clique over vertices x1, . . . , xi.
It is not di�cult to prove that either H is Kk+2, or (H,x1, . . . , xi) is hard. Thus, studying
hard graphs of treewidth k + 1 might lead to a better understanding of excluded minors for
treewidth at most k.
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Abstract
An Fd upper bound for the reachability problem in vector addition systems with states (VASS)
in fixed dimension is given, where Fd is the d-th level of the Grzegorczyk hierarchy of complexity
classes. The new algorithm combines the idea of the linear path scheme characterization of the
reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju
and Lambert. The result improves the Fd+4 upper bound due to Leroux and Schmitz (LICS 2019).
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1 Introduction

Petri nets, or equivalently vector addition system with states (VASS), are a well studied
model of concurrency. A VASS consists of a finite state control where each state transition has
as its e�ect an integer-valued vector, and its configurations are pairs of a state and a vector
with natural number components. A transition may lead from one configuration to another by
adding its e�ect component-wise, conditioned on that the components of the resulting vector
remain non-negative. The reachability problem, which asks whether from one configuration
there is a path reaching another configuration, lies in the center of the algorithmic theory
of Petri nets and has found a wide range of applications due to its generic nature. Since
the problem was shown to be decidable by Mayr [17] in 1981, its computational complexity
had been a long-standing open problem in the field. In 2015, Leroux and Schmitz [14]
presented the first complexity upper bound, stating that the reachability problem is cubic-
Ackermannian. This was later improved to an Ackermannian upper bound in 2019, again by
Leroux and Schmitz [15]. Regarding the hardness, in 2021 seminal works by CzerwiÒski and
Orlikowski [6], and independently by Leroux [13], provided matching Ackermannian lower
bounds, settling the exact complexity of the problem.
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136:2 Improved Algorithm for Reachability in d-VASS

Concerning the parameterization by dimension, i.e. the reachability problem in d-
dimensional VASSes where d is fixed, there is still a gap in the known complexity bounds.
Currently, we only have exact complexity bounds for dimension one and two [7, 1]. For
dimension d Ø 3, the result of Leroux and Schmitz [15] shows that the problem is in Fd+4,
the (d+4)-th level of the Grzegorczyk hierarchy of complexity classes. Note that a recent
work by Yang and Fu [22] points out that the problem for dimension 3 is in F3 = TOWER.
On the other hand, the best known lower bound by CzerwiÒski, Jecker, Lasota, Leroux and
Orlikowski [5] states that reachability in (2d+3)-dimensional VASSes is Fd-hard. Motivated
by this gap, our paper focuses on the computational complexity of reachability problem in
the fixed-dimensional VASSes.

Our contribution

In this paper we show that the reachability problem in the d-dimensional VASS is in Fd

for d Ø 3, improving the previous Fd+4 upper bound by Leroux and Schmitz [15], and
generalizing the tower upper bound for the reachability problem in 3-VASS [22]. The new
upper bound is obtained with the help of two novel technical lemmas.
1. Our main technical tool (Theorem 3.4) is a generalization of the linear path scheme char-

acterization for the reachability relation in the 2-dimensional VASSes [1]. By borrowing
the key idea from the work of Yang and Fu [22], we show that as long as the “geometric
dimension” of a VASS (that is, the dimension of the vector space spanned by the e�ects
of cyclic paths) is bounded by 2, its reachability relation can be characterized by short
linear path schemes. We then apply the lemma to simplify the KLMST algorithm so that
(i) a VASS is replaced by a short linear path scheme whenever its geometric dimension is
no more than 2 and (ii) the linear path schemes will not be decomposed further. It is
then routine [15], using the tools from [21], to show that the reachability problem in the
d-dimensional VASS is in Fd+1 for all d Ø 3.

2. Our second lemma (Lemma 6.3) allows us to improve further the bound from Fd+1 to Fd.
This is done by a careful analysis of the properties of the fast-growing functions [21].

Due to space limitation the proofs of the two lemmas are placed in the appendices.

Organization

Section 2 fixes notation, defines the VASS model and its reachability problem. Section 3
generalizes the linear path scheme characterization [1] to VASSes whose geometric dimension
are bounded by 2. Section 4 recalls the characterization system of linear inequalities for
linear path schemes. Section 5 makes use of the results of Section 3 to give an improved
version of the classic KLMST decomposition algorithm. Section 6 analyzes the complexity of
our modified algorithm, proving the main result. Section 7 concludes. Proofs omitted from
the main text can be found in the appendices.

2 Preliminaries

We use N,Z,Q to denote respectively the set of non-negative integers, integers, and rational
numbers. Let n œ N be a number, we write [n] for the range {1, 2, . . . , n}. Let u,v œ X

d be d-
dimensional vectors where X can be any one of N,Z,Q. We write v(i) for the i-th component
of v where i œ [d], so v = (v(1), . . . ,v(d)). The maximum norm of v is defined to be
ÎvÎ := maxiœ[d] |v(i)|. We extend component-wise the order Æ for vectors in X

d, so u Æ v if
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and only if u(i) Æ v(i) for all i œ [d]. Addition and subtraction of vectors are also component-
wise, so (u+ v)(i) = u(i) + v(i) for all i œ [d]. Define supp(v) := {i œ [d] : v(i) ”= 0} to be
the set of indices of non-zero components of v. This notation is extended to sets of vectors
naturally, so supp(S) =

t
vœS

supp(v) for any set S ™ X
d.

For technical reasons we introduce the symbol Ê that stands for the infinite element.
Let NÊ := N fi {Ê}. We stipulate that n < Ê for all n œ N, and x+ Ê = Ê + x = Ê for all
x œ Z. Define the partial order ı over NÊ so that x ı y if and only if x = y or y = Ê for all
x, y œ NÊ. The relation ı is also extended component-wise to vectors in N

d
Ê
.

Let � be a finite alphabet and s, t œ �ú be two strings over �. We write st for the
concatenation of s and t, and sn for the concatenation of n copies of s where n œ N. If
s = a1a2 . . . a¸ where a1, . . . , a¸ œ �, we write |s| := ¸ for the length of s, and s[i . . . j] :=
aiai+1 . . . aj for the substring of s between indices i and j where 1 Æ i Æ j Æ |s|.

2.1 Vector Addition Systems with States
Let d Ø 0 be an integer. A d-dimensional vector addition system with states (d-VASS) is
a pair G = (Q,T ) where Q is a finite set of states and T ™ Q ◊ Z

d ◊ Q is a finite set of
transitions. Clearly a VASS can also be viewed as a directed graph with edges labelled by
integer vectors. Given a word fi = (p1,a1, q1)(p2,a2, q2) . . . (pn,an, qn) œ T ú over transitions,
we say that fi is a path from p1 to qn if qi = pi+1 for all i = 1, . . . , n ≠ 1. It is a cycle
if we further have p1 = qn. The e�ect of fi is defined to be �(fi) :=

q
n

i=1
ai, and the

action word of fi is the word JfiK := a1a2 . . .an over Z
d. The Parikh image of fi is the

function „ œ N
T mapping each transition to its number of occurrences in fi. Given a function

„ œ N
T we also define �(„) :=

q
t=(p,a,q)œT

„(t) · a. Note that �(„) = �(fi) if „ is the
Parikh image of fi. Let L ™ T ú be a language (i.e. subset of words), we define its e�ect as
�(L) := {�(fi) : fi œ L}.

The norm of a transition t = (p,a, q) is defined by ÎtÎ := ÎaÎ. The norm of a path
fi = t1t2 . . . tn is ÎfiÎ := maxiœ[n] ÎtiÎ. For a d-VASS G = (Q,T ) we write ÎTÎ := max{ÎtÎ :
t œ T}. The size of G is defined by

|G| := |Q|+ |T |+ d · |T | · ÎTÎ . (1)

Semantics of VASSes

Let G = (Q,T ) be a d-VASS. A configuration of G is a pair of a state p œ Q and a vector
v œ Z

d, written as p(v). Let D ™ Z
d, we define the D-semantics for G as follows. For

each transition t = (p,a, q) œ T , the one-step transition relation t≠æD relates all pairs of
configurations of the form (p(u), q(v)) where u,v œ D and v = u + a. Then for a word
fi = t1t2 . . . tn œ T ú, the relation fi≠æD is the composition fi≠æD := t1≠æD ¶ · · · ¶ tn≠æD. So
p(u) fi≠æD q(v) if and only if there are configurations p0(u0), . . . , pn(un) œ Q ◊ D such that

p(u) = p0(u0)
t1≠æD p1(u1)

t2≠æD · · · tn≠æD pn(un) = q(v). (2)

Also, when fi = ‘ is the empty word, the relation ‘≠æD is the identity relation over Q◊D. Note
that fi≠æD is non-empty only if fi is a path. When p(u) fi≠æD q(v) we also say that fi induces
(or is) a D-run from p(u) to q(v). We emphasize that all configurations on this run lie in D,
and that they are uniquely determined by p(u) and fi. For a language L ™ T ú we define L≠æD

as
t

fiœL

fi≠æD. Finally, the D-reachability relation of G is defined to be ú≠æD := T
ú

≠≠æD.
For the above definitions, we shall often omit the subscript D when D = N

d.
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136:4 Improved Algorithm for Reachability in d-VASS

We mention that in Section 5 we need to generalize the VASS semantics to configurations
in Q ◊ N

d
Ê
, allowing Ê components in vectors. The definitions of t≠æNd

Ê
, fi≠æNd

Ê
, and ú≠æNd

Ê
are

similar to the above.

Reachability problem

The reachability problem in vector addition systems with states is formulated as follows:

Reachability in d-Dimensional Vector Addition System with States
Input: A d-dimensional VASS G = (Q,T ), two configurations p(u), q(v) œ Q ◊ N

d.
Question: Does p(u) ú≠æNd q(v) hold in G?

Note that we study the reachability problem for fixed-dimensional VASSes, where the
dimension d is treated as a constant to allow more fine-grained analysis. So we shall use the
big-O notation to hide constants that may depend on d. The general problem where the
dimension can be part of the input was already shown to be Ackermann-complete [6, 13].

Cycle spaces and geometric dimensions

One of the key insights of [15] is a new termination argument for the KLMST decomposition
algorithm based on the dimensions of vector spaces spanned by cycles in VASSes, which
yielded the primitive recursive upper bound of VASS reachability problem in fixed dimensions.
The vector spaces spanned by cycles also play an important role in our work.

I Definition 2.1. Let G be a d-VASS. The cycle space of G is the vector space Cyc(G) ™ Q
d

spanned by the e�ects of all cycles in G, that is:

Cyc(G) := span{�(—) : — is a cycle in G}. (3)

The dimension of the cycle space of G is called the geometric dimension of G. We say G is
geometrically k-dimensional if dim(Cyc(G)) Æ k.

3 Flattability of Geometrically 2-dimensional VASSes

A VASS is flat if each of its states lies on at most one cycle. Flat VASSes form an important
subclass of VASSes due to its connection to Presburger arithmetic, and we refer the readers
to [12] for a survey. In dimension 2, it was proved in [1] that 2-VASSes enjoy a stronger form
of flat representation, known as the linear path schemes. A linear path scheme is a regular
expression of the form –0—ú

1
–1 . . .—ú

k
–k where –0, . . .–k are paths and —1, . . . ,—k are cycles

of the VASS, such that they form a path when joined together. The results of [1] show that
the reachability relation of every 2-VASS can be captured by short linear path schemes.

Linear path schemes are extremely useful as they can be fully characterized by linear
inequality systems so that standard tools for linear or integer programming can be applied.
In this section, we generalize the results in [1] and show that the reachability relation of any
d-VASS whose geometric dimension is bounded by 2 can also be captured by short linear
path schemes.

Our proof follows closely to the lines of [1]. Given a geometrically 2-dimensional VASS G,
we first cover Nd by the following two regions: one for the region far away from every axis:

O := {u œ N
d : u(i) Ø D for all i œ [d]} (4)



Y. Fu, Q. Yang, and Y. Zheng 136:5

p(1, 0,≠1) (0, 1, 1)

G

pÕ(1, 0) (0, 1)

GÕ

pÕÕ(1,≠1) (0, 1)

GÕÕ

Figure 1 A geometrically 2-dimensional VASS G and two possible projections of it.

where D is some properly chosen threshold; the other one for the region close to some axis:

L := {u œ N
d : u(i) Æ DÕ for some i œ [d]} (5)

where DÕ is chosen slightly above D to create an overlap with O. Let fi be a run that
we are going to capture by linear path schemes. We can extract its maximal prefix that
lies completely in either O or L, depending on where fi starts. This prefix must end at a
configuration that lies in L fl O, if we haven’t touched the end of fi. From this configuration
we then extract a maximal cycle that also ends in L fl O. Continuing this fashion, we can
break fi into segments of runs that lie completely in O or L, interleaved by cycles that start
and end in O (actually in L fl O). Note that the number of such cycles cannot exceed the
number of states of G since they are maximal. Now we only need to capture the following
three types of runs by short linear path schemes:
1. Runs that are cycles starting and ending in O.

This will be handled in Section A.4 in the appendix. Briefly speaking, since the geometric
dimension of G is 2, the e�ect of such a cycle must belong to a plane in Z

d. We will find
a clever way to project this plane to a coordinate plane, and then project the d-VASS G
onto this plane to get a 2-VASS. This is made possible by a novel technique called the
“sign-reflecting projection” developed in Section A.3. Intuitively speaking, for any vector
in a plane we are able to determine whether it belongs to a certain orthant by observing
only 2 entries of this vector. The d-VASS can then be projected onto these 2 coordinates.
(See Example 3.1 for a more concrete demonstration.) Now we apply the results of [1] to
obtain a linear path scheme that captures the projected cyclic run. Combined with a
lemma in [16], the projection guarantees that we can safely project it back to get a linear
path scheme for the run in G.

2. Runs that lie completely in O.
This is just an easy corollary of the first type, and will also be handled in Section A.4.
Just note that any run can be broken into a series of simple paths interleaved by cycles.

3. Runs that lie completely in L.
This will be handled in Section A.5, by a long and tedious case analysis. In principle, we
are going to argue that any such run essentially corresponds to a run in some (d≠1)-VASS,
so that we can use induction.

I Example 3.1. Consider the geometrically 2-dimensional 3-VASS G as shown in Figure
1. It consists of a single state p and two transitions with e�ects (1, 0,≠1) and (0, 1, 1). In
order to apply the results of [1], one would like to derive a 2-VASS from G that reflects
runs in G. A simple idea is to discard one coordinate of G. Two possibilities of this idea
are shown in Figure 1 as GÕ, which discards the third coordinate, and GÕÕ, which discards
the second coordinate. However, not all of them are satisfactory. For example, the legal run
p(0, 0) (1,0)≠≠≠æ p(1, 0) in GÕ reflects an illegal run p(0, 0, 0) (1,0,≠1)≠≠≠≠≠æ p(1, 0,≠1) in G where the
third coordinate goes negative. On the other hand, all runs in GÕÕ can be safely projected
back to a run in G. To see this, just observe that for any vector v in the linear span of
(1, 0,≠1) and (0, 1, 1), v Ø 0 if and only if v(1) Ø 0 and v(3) Ø 0. Thus we can safely discard
the second coordinate.

ICALP 2024



136:6 Improved Algorithm for Reachability in d-VASS

In general, the “sign-reflecting projection” developed in Section A.3 shows that any
geometrically 2-dimensional VASS can be projected onto two coordinates so that the signs of
these two coordinates reflects the signs of other coordinates.

In the rest of this section we just state formally our main technical results. The detailed
proofs are placed in the appendix.

3.1 Linear Path Schemes
A linear path scheme (LPS) is a pair (G,�) where G is a VASS and � is a regular expression
of the form � = –0—ú

1
–1 . . .—ú

k
–k such that –0, . . . ,–k are paths in G and —1, . . . ,—k are

cycles in G, and –0—1–1 . . .—k–k is a path in G. We say an LPS (G,�) is compatible to a
VASS GÕ if GÕ contains all states and transitions in �. Very often we shall omit the VASS
G and say that � on its own is an LPS, with G understood as any VASS to which � is
compatible. We write |�| = |–0—1–1 . . .—k–k| for the length of �, Î�Î = Î–0—1–1 . . .—k–kÎ
for its norm, and |�|ú = k for the number of cycles in �.

We also treat � as the language defined by it, and thus for two configurations p(u) and
q(v) we write p(u) �≠æD q(v) if and only if there exists e1, . . . , ek œ N such that

p(u)
–0—

e1
1 –1...—

ek

k
–k≠≠≠≠≠≠≠≠≠≠≠æD q(v). (6)

Positive linear path schemes

A positive LPS is a regular expression of the form �+ = –0—+

1
–1 . . .—

+

k
–k which is similar

to a linear path scheme except that we require each cycle to be used at least once. We write
p(u) �

+
≠≠æD q(v) if and only if there are positive integers e1, . . . , ek œ N>0 such that

p(u)
–0—

e1
1 –1...—

ek

k
–k≠≠≠≠≠≠≠≠≠≠≠æD q(v). (7)

A path fi is said to be admitted by �+ if fi = –0—e1
1

–1 . . .—
ek

k
–k for some e1, . . . , ek œ N>0.

We prefer positive LPSes as they can be easily characterized by linear inequality systems
(see Section 4 for details). In fact, positive LPSes can be easily obtained from LPSes:

I Lemma 3.2. For every linear path scheme � there exists a finite set S of positive linear
path schemes compatible to the same VASSes with �, such that �≠æ =

t
�+œS

�
+

≠≠æ and
|�+| Æ |�| for every �+ œ S.

Proof. Suppose � = –0—ú
1
–1 . . .—ú

k
–k. For each cycle component —ú

i
in � we replace it by

either —+

i
or an empty word nondeterministically. Let S be the set of all resulting positive

LPSes. It is obvious that S satisfies the desired properties. J

3.2 Main Results
The main results of this section is stated as follows.

I Theorem 3.3. Let G = (Q,T ) be a geometrically 2-dimensional d-VASS. For every pair
of configurations p(u), q(v) œ Q ◊ N

d with p(u) ú≠æ q(v) there exists a positive LPS �+

compatible to G such that p(u) �
+

≠≠æ q(v) and |�+| Æ |G|O(1).

We remark that the big-O term here and elsewhere in the paper hides constant that may
depend on the dimension d, but does not depend on G,u,v or anything else.

By Lemma 3.2 we know that positive LPSes can be obtained from LPSes. Thus theorem
3.3 follows easily from the following relaxed theorem, which will be proved in the appendix.
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I Theorem 3.4. Let G = (Q,T ) be a geometrically 2-dimensional d-VASS. For every pair
of configurations p(u), q(v) œ Q ◊ N

d with p(u) ú≠æ q(v) there exists an LPS � compatible to
G such that p(u) �≠æ q(v) and |�| Æ |G|O(1).

4 Characteristic Systems for Linear Path Schemes

The property that linear path schemes can be fully characterized by linear inequality systems
is exploited in [2] to derive the PSPACE upper bound of the reachability problem in 2-VASSes.
Here we recall this linear inequality system and its properties.

We mainly focus on positive linear path schemes. Fix � = –0—+

1
–1 . . .—

+

k
–k to be a

positive LPS from state p to q that is compatible to some d-VASS G = (Q,T ), where k = |�|ú
is the number of cycles in �.

I Definition 4.1 (cf. [2, Lem. 14]). The characteristic system ELPS(�) of the positive LPS �
is the system of linear inequalities such that a triple h = (u, e,v) œ N

d ◊ N
k ◊ N

d satisfies
ELPS(�), written h |= ELPS(�), if and only if the following conditions hold:

1. for every i = 1, . . . , k, e(i) Ø 1;
2. for every i = 0, . . . , k and every j = 1, . . . , |–i|,

u+ �(–0—e(1)
1

–1 . . .–i≠1—e(i)
i

) + �(–i[1 . . . j]) Ø 0; (8)

3. for every i = 1, . . . , k and every j = 1, . . . , |—i|,

u+ �(–0—e(1)
1

–1 . . .—
e(i≠1)

i≠1
–i≠1) + �(—i[1 . . . j]) Ø 0, (9)

u+ �(–0—e(1)
1

–1 . . .—
e(i≠1)

i≠1
–i≠1—e(i)≠1

i
) + �(—i[1 . . . j]) Ø 0; (10)

4. and finally, u+ �(–0—e(1)
1

–1 . . .—
e(k)
k

–k) = v.

The readers can easily verify that these constraints are indeed linear in terms of u, e,v.
The next lemma shows that ELPS(�) indeed captures all runs admitted by �.

I Lemma 4.2. Let G be a d-VASS and � = –0—+

1
–1 . . .—

+

k
–k be a positive LPS from state

p to q compatible to G. Then for every u,v œ N
d, p(u) �≠æ q(v) if and only if there exists

e œ N
k such that (u, e,v) |= ELPS(�). Moreover, for every u,v œ N

d and every e œ N
k such

that (u, e,v) |= ELPS(�), we have p(u)
–0—

e(1)
1 –1...—

e(k)
k

–k≠≠≠≠≠≠≠≠≠≠≠≠≠æ q(v).

We also need to introduce the homogeneous version of ELPS(�) for technical reasons.

I Definition 4.3. The homogeneous characteristic system E0

LPS
(�) of � is the system of

linear inequalities such that a triple h0 = (u0, e0,v0) œ N
d ◊ N

k ◊ N
d satisfies E0

LPS
(�),

written h0 |= E0

LPS
(�), if and only if the following conditions hold:

1. for every i = 0, . . . , k, u0 + �(—1) · e0(1) + · · ·+ �(—i) · e0(i) Ø 0;
2. u0 + �(—1) · e0(1) + · · ·+ �(—k) · e0(k) = v0.

5 The Modified KLMST Decomposition Algorithm

In this section we apply our results of Section 3 to improve the notoriously hard KLMST
decomposition algorithm for VASS reachability. Our narration will base on the work of
Leroux and Schmitz [15]. For readers familiar with [15], the major modifications are listed
below:
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The decomposition structure is now a sequence of generalized VASS reachability instances
linked by (positive) linear path schemes rather than by single transitions.
We introduce a new “cleaning” step that replaces all VASS instances which are geometri-
cally 2-dimensional by polynomial-length linear path schemes compatible to them.
We do not guarantee the exact preservation of action languages at each decomposition
step. Instead, we only preserve a subset of action languages. This is a compromise since
linear path schemes capture only the reachability relation but not every possible run.
Nonetheless, it is enough for the reachability problem.

In this section we focus on the e�ectiveness and correctness of the modified KLMST
decomposition algorithm. Its complexity will be analyzed in Section 6.

5.1 Linear KLM Sequences
The underlying decomposition structure in the KLMST algorithm was known as KLM
sequences, named after Mayr[17], Kosaraju[10], and Lambert[11].

I Definition 5.1. A KLM tuple of dimension d is a tuple Èp(x)Gq(y)Í where G = (Q,T )
is a d-VASS and p(x), q(y) œ Q ◊ N

d
Ê
are two (generalized) configurations of G. A KLM

sequence of dimension d is a sequence of KLM tuples interleaved by transitions of the form

› = Èp0(x0)G0q0(y0)Í t1 Èp1(x1)G1q1(y1)Í t2 . . . tk Èpk(xk)Gkqk(yk)Í , (11)

where each tuple Èpi(xi)Giqi(yi)Í is a KLM tuple of dimension d and each ti is a transition
of the form (qi≠1,ai, pi) from state qi≠1 to pi with e�ect ai œ Z

d.

In this paper we generalize the definition of KLM sequences to allow (positive) linear
path schemes to connect KLM tuples.

I Definition 5.2. A linear KLM sequence of dimension d is a sequence

› = Èp0(x0)G0q0(y0)Í �1 Èp1(x1)G1q1(y1)Í �2 . . .�k Èpk(xk)Gkqk(yk)Í , (12)

where each tuple Èpi(xi)Giqi(yi)Í is a KLM tuple of dimension d and each �i is a positive
linear path scheme from state qi≠1 to pi.

One immediately sees that KLM sequences are just special cases of linear KLM sequences.
Let › be a linear KLM sequence given as (12), we write ›i := Èpi(xi)Giqi(yi)Í for the ith
KLM tuple occurring in ›.

Action languages

Let › be a linear KLM sequence given as (12). We say a path fi from state p0 to qk is
admitted by ›, written › „ fi, if fi can be written as fi = fi0fl1fi1 . . . flkfik where fii is a path
from pi to qi in Gi for each i = 0, . . . , k, and fli is a path admitted by �i for each i = 1, . . . , k,
such that there exist vectors m0,n0, . . . ,mk,nk œ N

d such that

p0(m0)
fi0≠æ q0(n0)

fl1≠æ p1(m1)
fi1≠æ q1(n1)

fl2≠æ · · · flk≠æ pk(mk)
fik≠æ qk(nk) (13)

and that mi ı xi, ni ı yi for each i = 0, . . . , k.
The action language L› of › is the language over Z

d defined by L› :=
)
JfiK : › „ fi

*
,

where we recall that J·K is the word morphism mapping each transition to its e�ect.
We are more interested in the action languages because in some decomposition steps we

have to modify the set of transitions, and only the action word of admitted runs can be
preserved. Notice that action languages preserve not only the e�ects of admitted runs, but
also their lengths.
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Ranks and Sizes

Let t be a transition in a d-VASS G, we define Cyc(G/t) to be the vector space spanned
by the e�ects of all cycles in G containing t. For the VASS G, let ri be the number of
transitions t in G such that dim(Cyc(G/t)) = i for each i = 0, . . . , d. Then the rank
of G is defined as rank(G) = (rd, . . . , r3) œ N

d≠2. We also define the full rank of G as
rankfull(G) = (rd, . . . , r0) œ N

d+1.
The following lemma was proved in [15], which shows that in a strongly connected VASS

G, the space Cyc(G/t) corresponds to Cyc(G).

I Lemma 5.3 ([15, Lem. 3.2]). Let t be a transition of a strongly connected VASS G. Then
Cyc(G/t) = Cyc(G).

The following corollary is immediate.

I Corollary 5.4. Let G be a strongly connected d-VASS. Then rank(G) = 0 if and only if G
is geometrically 2-dimensional.

Let › be a linear KLM sequence given as (12). We define the rank of › as rank(›) =q
k

i=0
rank(Gi), and the full rank of › as rankfull(›) =

q
k

i=0
rankfull(Gi). We remark that

the full rank corresponds to the rank defined in [15]. Ranks are ordered lexicographically:
let r = (rd, . . . , r0) and rÕ = (rÕ

d
, . . . , rÕ

0
), we write r Ælex rÕ if r = rÕ or the maximal i with

ri ”= rÕ
i
satisfies ri < rÕ

i
.

Recall that for a VASS G we write |G| for its size as defined in (1). For a linear path
scheme �, its length |�| and norm Î�Î are defined in Section 3.1. Let ’ = Èp(x)Gq(y)Í be a
KLM tuple of dimension d, its size is defined to be |’| = |G|+ d · (ÎxÎ + ÎyÎ + 1). Let › be
a linear KLM sequence given as (12), we define its size as

|›| =
kÿ

i=0

|›i|+
kÿ

i=1

d · |�i| · (Î�iÎ + 1). (14)

Note that the sizes defined in this paper reflect the sizes of unary encoding, thus have an
exponential expansion in their binary encoding.

5.2 Characteristic Systems for Linear KLM Sequences
We define in this section the characteristic systems of linear KLM sequences, which are
systems of linear inequalities that serve as an under-specification of admitted runs. Let
G = (Q,T ) be a VASS, we first recall the Kirchho� system KG,p,q of G with respect to states
p, q œ Q, which is a system of linear equations such that a function „ œ N

T is a model of
KG,p,q, written „ |= KG,p,q, if and only if

1q ≠ 1p =
ÿ

t=(r,a,s)œT

„(t) · (1s ≠ 1r), (15)

where 1p œ {0, 1}Q is the indicator function defined by 1p(q) = 1 if q = p and 1p(q) = 0
otherwise. We also need the homogeneous version of KG,p,q, denoted by K0

G,p,q
, where a

function „ œ N
T is a model of it, written „ |= K0

G,p,q
, if and only if

0 =
ÿ

t=(r,a,s)œT

„(t) · (1s ≠ 1r). (16)
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I Definition 5.5. Let › be a linear KLM sequence given by

› = Èp0(x0)G0q0(y0)Í �1 Èp1(x1)G1q1(y1)Í �2 . . .�k Èpk(xk)Gkqk(yk)Í (17)

The characteristic system E(›) is a set of linear (in)equalities such that a sequence

h = (m0,„0,n0), e1, (m1,„1,n1), e2, . . . ,ek, (mk,„k,nk), (18)

where each (mi,„i,ni) œ N
d ◊ N

Ti ◊ N
d and each ei œ N

|�i|ú , is a model of E(›), written
h |= E(›), if and only if
1. mi ı xi, „i |= KG,p,q, ni ı yi and ni = mi + �(„i) for every i = 0, . . . , k;
2. (ni≠1, ei,mi) |= ELPS(�i) for every i = 1, . . . , k.

Similarly, the homogeneous characteristic system E0(›) is a set of linear (in)equalities
such that a sequence h of the form (18) is a model of E0(›), written h |= E0(›), if and only if
1. mi(j) = 0 whenever xi(j) ”= Ê, „i |= K0

G,p,q
, ni(j) = 0 whenever yi(j) ”= Ê, and

ni = mi + �(„i) for every i = 0, . . . , k;
2. (ni≠1, ei,mi) |= E0

LPS
(�i) for every i = 1, . . . , k.

The sequence › is said to be satisfiable if E(›) has a model, otherwise it’s unsatisfiable.

Let h be a model of E(›) (or E0(›)), we shall write mh
i
,„h

i
,nh

i
, eh

i
for the values of

mi,„i,ni, ei assigned by h, respectively. Recall that unsatisfiable linear KLM sequences
have empty action languages.

I Lemma 5.6 (cf. [15, Lem. 3.5]). For any unsatisfiable linear KLM sequence ›, L› = ÿ.

5.2.1 Bounds on Bounded Values in E(›)
We state here a lemma similar to [15, Lem. 3.7], which upper bounds the bounded values in the
characteristic system E(›). Its proof can be found in the appendix, which is a straightforward
application of tools in [3] and [18].

I Lemma 5.7. Assume that › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í is satisfiable.
Then for every 0 Æ i Æ k we have:

For every 1 Æ j Æ d, the set of values mh
i
(j) where h |= E(›) is unbounded if, and only

if, there exists a model h0 of E0(›) such that mh0
i
(j) > 0.

For every t œ Ti, the set of values „h
i
(t) where h |= E(›) is unbounded if, and only if,

there exists a model h0 of E0(›) such that „h
i
(t) > 0.

For every 1 Æ j Æ d, the set of values nh
i
(j) where h |= E(›) is unbounded if, and only if,

there exists a model h0 of E0(›) such that nh0
i
(j) > 0.

Moreover, every bounded value of E(›) is bounded by (10|›|)12|›|.

5.3 Cleaning of Linear KLM Sequences
In this section we define three conditions that require a linear KLM sequence to be strongly
connected, pure, and saturated. Together with the satisfiability condition, they make up the
so-called “clean” condition of linear KLM sequences. Note that the purity condition is new
compared to [15], which requires every geometrically 2-dimensional VASSes occur in a linear
KLM sequence to be replaced by linear path schemes.
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Strongly Connected Sequences

A linear KLM sequence › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í is strongly con-
nected if all the VASSes G0, . . . , Gk are strongly connected (as they are understood as directed
graphs). One can easily obtain strongly connected sequences by expanding the strongly
connected components of each VASS:

I Lemma 5.8 ([15, Lem. 4.2]). For any linear KLM sequence › which is not strongly
connected, one can compute in time exp(|›|) a finite set � of strongly connected linear KLM
sequences such that L› =

t
›Õœ�

L›Õ and that rank(›Õ) Ælex rank(›) and |›Õ| Æ (2d+ 1)|›| for
every ›Õ œ �.

Pure Sequences

A KLM tuple Èp(x)Gq(y)Í is called trivial if p(x) = q(y) and G contains no transition and
only a single state p. In this case we simply write Èp(x)Í for this tuple. Note that the action
language of a trivial tuple contains exactly the empty word.

A linear KLM sequence › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í is said to be
pure if › is strongly connected and for every i = 0, . . . , k, rank(Gi) = 0 implies that the
tuple Èpi(xi)Giqi(yi)Í is trivial. By Corollary 5.4, a rank-0 strongly connected VASS is
geometrically 2-dimensional, and thus can be replaced by linear path schemes in case it is
not trivial.

I Lemma 5.9. Let › be a strongly connected linear KLM sequence. Whether › is pure is in
PSPACE. If › is not pure, one can compute in space poly(|›|) a finite set � of pure linear
KLM sequences such that

t
›Õœ�

L›Õ ™ L› and
t

›Õœ�
L›Õ ”= ÿ whenever L› ”= ÿ, and such that

rank(›Õ) = rank(›) and |›Õ| Æ |›|O(1) for all ›Õ œ �.

Saturated Sequences

Let › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í be a linear KLM sequence. We say ›
is saturated if for every 0 Æ i Æ k and every j œ [d], we have

xi(j) = Ê implies the set of values mh
i
(j) where h |= E(›) is unbounded; and

yi(j) = Ê implies the set of values nh
i
(j) where h |= E(›) is unbounded.

I Lemma 5.10 ([15, Lem. 4.4]). From any pure linear KLM sequence ›, one can compute
in time exp(|›|O(|›|)) a finite set � of saturated pure linear KLM sequences such that L› =t

›Õœ�
L›Õ , and such that rank(›Õ) = rank(›) and |›Õ| Æ |›|O(|›|) for every ›Õ œ �.

Proof. By Lemma 5.7, if a variable mi(j) or ni(j) is bounded in E(›), we can replace the
corresponding Ê component in › by all possible values bounded by (10|›|)12|›| Æ |›|O(|›|). J

The Cleaning Lemma

A linear KLM sequence › is called clean if it is satisfiable, strongly connected, pure and
saturated. The lemmas 5.8 through 5.10 show how to make a linear KLM sequence clean.

I Lemma 5.11. From any linear KLM sequence ›, one can compute in time exp(g(|›|))
a finite set clean(›) of clean linear KLM sequences such that

t
›Õœclean(›)

L›Õ ™ L› andt
›Õœclean(›)

L›Õ ”= ÿ whenever L› ”= ÿ. Moreover, for every ›Õ œ clean(›) we have rank(›Õ) Ælex

rank(›) and |›Õ| Æ g(|›|) where g(x) = xx
O(1) .
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5.4 Decomposition of Linear KLM Sequences
In this section we recall three conditions that require a linear KLM sequence to be unbounded,
rigid, and pumpable. If any one of them is violated, a decomposition into a set of linear KLM
sequences with strictly smaller ranks can be performed. Essentially there is nothing new in
this section compared to [15]. The decomposition operations in [15] can be directly applied
here, since they operate on a single KLM tuple and produce KLM sequences that are just
special cases of linear KLM sequences. The proofs in [15] can also be adapted easily, and we
will omit the details here. Especially, the next lemma shows that the arguments of strict
decrease in ranks are still valid even though we discard the lower three components of ranks.

I Lemma 5.12. Let ›Õ be a pure linear KLM sequence. For any linear KLM sequence ›Õ

with rankfull(›Õ) <lex rankfull(›), we have rank(›Õ) <lex rank(›).

Unbounded Sequences

Let › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í be a linear KLM sequence. We say › is
unbounded if for all i = 0, . . . , k and every transition t œ Ti where Ti is the set of transitions
of Gi, the set of values „h

i
(t) where h |= E(›) is unbounded. Bounded transitions can be

expanded exhaustively according to the bounds given by Lemma 5.7.

I Lemma 5.13 ([15, Lem. 4.6]). Whether a linear KLM sequence › is unbounded is decidable
in NP. Moreover, if › is pure and bounded, one can compute in time exp(|›|O(|›|)) a finite
set � of linear KLM sequences such that L› =

t
›Õœ�

L›Õ and such that rank(›Õ) <lex rank(›)
and |›Õ| < |›|O(|›|) for every ›Õ œ �.

Rigid Sequences

A coordinate j œ [d] is said to be fixed by a VASS G = (Q,T ) if there exists a function
fj : Q æ N such that fj(q) = fj(p) +a(j) for every transition (p,a, q) œ T . We also say that
fj fixes G at coordinate j in this case.

A KLM tuple Èp(x)Gq(y)Í is said to be rigid if for every coordinate j fixed by G = (Q,T ),
there exists a function gj : Q æ N that fixes G at coordinate j and such that gj(p) ı x(j)
and gj(q) ı y(j).

A linear KLM sequence › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í is said to be
rigid if every tuple Èpi(xi)Giqi(yi)Í in › is rigid.

I Lemma 5.14 ([15, Lem. 4.9]). From any pure linear KLM sequence › one can decide in
polynomial time whether › is not rigid. Moreover, in that case one can compute in polynomial
time a linear KLM sequence ›Õ such that L› = L›Õ , rank(›Õ) <lex rank(›), and |›Õ| Æ |›|.

Pumpable Sequences

Given a KLM tuple Èp(x)Gq(y)Í, recall the forward and backward acceleration vectors
FaccG,p(x),BaccG,q(y) œ N

d
Ê
defined by

FaccG,p(x)(j) =
I

Ê if p(x) ú≠æ p(xÕ) for some xÕ with xÕ Ø x,xÕ(j) > x(j)
x(j) otherwise

(19)

BaccG,q(y)(j) =
I

Ê if q(yÕ) ú≠æ q(y) for some yÕ with yÕ Ø y,yÕ(j) > y(j)
y(j) otherwise

(20)
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A tuple Èp(x)Gq(y)Í is said to be pumpable if FaccG,p(x)(j) = BaccG,q(y)(j) = Ê for
every coordinate j not fixed by G.

A linear KLM sequence given by › = Èp0(x0)G0q0(y0)Í �1 · · ·�k Èpk(xk)Gkqk(yk)Í is said
to be pumpable if every tuple Èpi(xi)Giqi(yi)Í in › is pumpable.

I Lemma 5.15 ([15, Lem. 4.15]). Whether a linear KLM sequence › is pumpable is decidable
in EXPSPACE. Moreover, if › is pure and unpumpable, one can compute in time exp(|›|O(1))
a finite set � of linear KLM sequences such that L› =

t
›Õœ�

L›Õ and such that rank(›Õ) <lex
rank(›) and |›Õ| < |›|O(1) for every ›Õ œ �.

Note that the O(1) term here hides a constant depending on d, which essentially arises
from a result on the coverability problem by Racko� [19]. The O(1) term also captures the
di�erence between the sizes of linear KLM sequences defined here and that in [15].

The Decomposition Lemma

A linear KLM sequence is normal if it is clean, unbounded, rigid, and pumpable. The lemmas
5.13 through 5.15 show that when a clean linear KLM sequence is not normal, we are able to
decompose it into a finite set of linear KLM sequences of strictly smaller ranks.

I Lemma 5.16. From any clean linear KLM sequences › that is not normal, one can compute
in time exp(h(›)) a finite set dec(›) of clean linear KLM sequence such that

t
›Õœdec(›)

L›Õ ™
L› and

t
›Õœdec(›)

L›Õ ”= ÿ whenever L› ”= ÿ. Moreover, for every ›Õ œ dec(›) we have

rank(›Õ) <lex rank(›) and |›Õ| Æ h(›) where h(x) = xx
x
O(1)

.

5.5 Normal Sequences
The following lemma shows that a normal linear KLM sequence is guaranteed to have
non-empty action language, thus one can terminate the decomposition process once a normal
sequence is produced.

I Lemma 5.17. Let › be a normal linear KLM sequence, then there is a word ‡ œ L› whose
length is bounded by |‡| Æ ¸(|›|) where ¸(x) Æ xO(x).

5.6 Putting All Together: The Modified KLMST Algorithm
Here we describe the modified KLMST decomposition algorithm for VASS reachability
problem. Suppose we are given a d-VASS G = (Q,T ) and two configurations p(m), q(n) œ
Q ◊ N

d. To decide whether p(m) ú≠æ q(n) holds in G, it is enough to decide whether L› is
non-empty where › = Èp(m)Gq(n)Í. To start with, we use Lemma 5.11 to clean the sequence
›, and then choose ›0 œ clean(›) non-deterministically. If ›0 is normal then we are done
by Lemma 5.17. Otherwise, we decompose ›0 using Lemma 5.16 and choose ›1 œ dec(›0)
non-deterministically. The procedure continues to produce a series of linear KLM sequences
›0, ›1, ›2, . . . where ›i+1 œ dec(›i), until either we finally obtain a normal sequence ›n, or at
some point we have to abort because the decomposition of a linear KLM sequence is the
empty set. The procedure terminates because rank(›0) >lex rank(›1) >lex rank(›2) >lex · · ·
form a decreasing chain of the well-order (Nd≠2, <lex), which must be finite. If L› = ÿ then
we cannot get a normal sequence since the action languages L› ´ L›0 ´ L›1 ´ · · · are all
empty. On the other hand, if L› ”= ÿ then there are non-deterministic choices that always
choose the linear KLM sequences with non-empty action languages, which finally lead to a
normal sequence. This shows the correctness of the algorithm.
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6 Complexity Upper Bound

The termination of the modified KLMST decomposition algorithm is guaranteed by a ranking
function that decreases along a well-ordering. In order to analyze the length of this decreasing
chain, we recall the so-called “length function theorems” by Schmitz [20] in Section 6.1.
After that, we can locate the complexity upper bound of the algorithm in the fast-growing
complexity hierarchy [21] which we recall in Section 6.2. Readers familiar with [15] may
realize that the complexity upper bound for d-VASS can be improved to Fd+1, i.e. the
(d+1)-th level in the fast-growing hierarchy, with our ranking function. In fact, by a careful
analysis on a property of fast-growing functions, we further improve this bound to Fd.

In this section we assume some familiarity with ordinal numbers (see, e.g. [9]). We write
Ê here for the first infinite ordinal, not to be confused with the infinite element in previous
sections.

6.1 Length of Sequences of Decreasing Ranks
Let › be a linear KLM sequence of dimension d with rank(›) = (rd, . . . , r3), we define the
ordinal rank –› of › as the ordinal number given by

–› := Êd≠3 · rd + Êd≠4 · rd≠1 + · · ·+ Ê0 · r3. (21)

Note that rank(›) <lex rank(›Õ) if and only if –› < –›Õ . With this reformulation, we now
focus on the decreasing chain of ordinal ranks.

Let – < ÊÊ be an ordinal given in Cantor Normal Form as – = Ên ·cn+ · · ·+Ê0 ·c0 where
n, c0, . . . , cn œ N, we define the size of – as N– := max{n,max0ÆiÆn ci}. For the linear
KLM sequence › with rank(›) = (rd, . . . , r3), we have N–› = max{d ≠ 3,max3ÆiÆd ri} Æ |›|.

Given a number n0 œ N and a function h : N æ N that is monotone inflationary (that
is, x Æ h(x) and h(x) Æ h(y) whenever x Æ y), we say a sequence of ordinals –0,–1, . . . is
(n0, h)-controlled if N–i Æ hi(n0) for all i œ N, where hi(n0) is the ith iteration of h on n0.

Let ›0, ›1, . . . be the linear KLM sequences produced in the modified KLMST algorithm,
by Lemma 5.16 we know that the sequence of ordinal ranks

–›0 > –›1 > · · · (22)

is (|›0|, h)-controlled where h is defined in Lemma 5.16. Recall that ›0 œ clean(›) where
› = Èp(m)Gq(n)Í corresponds to the input reachability instance. Then |›0| Æ g(|›|) where g
is defined in Lemma 5.11, and (22) is indeed (g(n), h)-controlled where n := | Èp(m)Gq(n)Í |.

Length function theorem

The length of the controlled sequence of ordinals (22) can be bounded in terms of the
hierarchies of fast-growing functions of Hardy and CichoÒ [4]. First recall that given a limit
ordinal ⁄ Æ ÊÊ, the standard fundamental sequence of ⁄ is a sequence (⁄(x))x<Ê defined
inductively by

ÊÊ(x) := Êx+1, (— + Êk+1)(x) := — + Êk · (x+ 1) (23)

where —+Êk+1 is in Cantor Normal Form. Now given a function h : N æ N that is monotone
inflationary, we define the Hardy hierarchy (h–)–ÆÊÊ and the CichoÒ hierarchy (h–)–ÆÊÊ as
two families of functions h–, h– : N æ N indexed by ordinals – Æ ÊÊ given inductively by

h0(x) := x, h–+1(x) := h–(h(x)), h⁄(x) := h⁄(x)(x), (24)
h0(x) := 0, h–+1(x) := 1 + h–(h(x)), h⁄(x) := h⁄(x)(x). (25)
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Observe that CichoÒ hierarchy counts the number of iterations of h in Hardy hierarchy, that
is, hh–(x)(x) = h–(x). Also note that as h is monotone inflationary, by induction on – we
have h–(x) Æ h–(x). Now we give the length function theorem as follows.

I Theorem 6.1 (Length function theorem, [20, Thm. 3.3]). Let n0 Ø d ≠ 2, then the maximal
length of (n0, h)-controlled decreasing sequences of ordinals in Êd≠2 is hÊd≠2(n0).

Small witness property

By Theorem 6.1 we can bound the length of (22), which then yields a bound on the minimal
length of runs witnessing reachability.

I Lemma 6.2 (Small witnesses). Let G = (Q,T ) be a d-VASS where d Ø 3, let p(m), q(n) œ
Q ◊ N

d be two configurations, and let n := | Èp(m)Gq(n)Í |. If p(m) ú≠æ q(n) holds in G,
then there is a path ‡ such that p(m) ‡≠æ q(n) and |‡| Æ ¸(hÊ

d≠2(g(n))), where g, h, ¸ are
defined in lemmas 5.11, 5.16, and 5.17.

Proof. Suppose p(m) ú≠æ q(n), then there is a sequence of linear KLM sequence ›0, ›1, . . . , ›L

produced in the modified KLMST algorithm, such that ›L is normal. We have discussed
that the sequence of their ordinal ranks –›0 > –›1 > · · · > –›L is (g(n), h)-controlled, so by
Theorem 6.1 we have L Æ hÊd≠2(g(n)). From Lemma 5.16 and the fact that hh–(x) = h–(x),
the size of ›L is bounded by

|›L| Æ hL(|›0|) Æ hh
Êd≠2 (g(n))(g(n)) = hÊ

d≠2
(g(n)). (26)

Now Lemma 5.17 bounds the length of the minimal witnesses by ¸(hÊ
d≠2(g(n))). J

6.2 Fast-Growing Complexity Hierarchy
We recall the fast-growing hierarchy formally introduced by Schmitz [21] that captures the
complexity class high above elementary. Define H(x) := x + 1, we shall use the Hardy
hierarchy (H–)–<ÊÊ , where for example HÊ

2(x) = 2x+1(x + 1) and HÊ
3(x) grows faster

than the tower function. First we define the family F– :=
t

—<Ê– FDTIME(H—(n)) which
contains functions computable in deterministic time O(H—(n)). Observe that, for example,
F3 contains exactly the Kalmar elementary functions. Now we define

F– :=
€

pœF–

DTIME(HÊ
–

(p(n))) (27)

which is the class of decision problems solvable in deterministic time O(HÊ
–(p(n))). Note

that non-deterministic time Turing machines can be made deterministic with an exponential
overhead in F3, thus for – Ø 3, we have equivalently that F– =

t
pœF–

NDTIME(HÊ
–(p(n))).

Observe that F– is closed under reductions in F–.

6.2.1 Relativized Fast-Growing Functions
In order to express the complexity of the modified KLMST algorithm in terms of the hierarchy
(F–)–<Ê, one needs to locate the function hÊ

d≠2 in the Hardy hierarchy (H–)–<ÊÊ where
h œ F3 is the elementary function from Lemma 5.16. Previously we can upper bound hÊ

d≠2

by HÊ
d+1 with the help of [21, Lem. 4.2]. Here we show a slightly better result, from which

we can bound hÊ
d≠2(x) by HÊ

d(O(x)).

I Lemma 6.3 (cf. [21, Lem. A.5]). Let h : N æ N be a monotone inflationary function,
let a, b, c Ø 1 and x0 Ø 0 be natural numbers. If for all x Ø x0, h(x) Æ HÊ

b·c(x), then
hÊ

a(x) Æ HÊ
b+a((c+ 1)x) for all x Ø max{2c, x0}.

ICALP 2024
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6.3 Upper Bounds for VASS Reachability
Now we analyze the time complexity of the modified KLMST algorithm. Given as input the
d-VASS G = (Q,T ) and two configurations p(m), q(n), let › := Èp(m)Gq(n)Í and n := |›|.
The initial sequence ›0 œ clean(›) can be computed in (non-deterministic) time elementary in
n by Lemma 5.11. Then the algorithm produces ›0, ›1, . . . , ›L with L Æ hÊd≠2(g(n)), where
g, h are defined in lemmas 5.11, 5.16. Note that in each step, the sequence ›i+1 œ dec(›i) can
be computed in time elementary in |›i| by Lemma 5.16, and the sizes |›i| are all bounded by
hÊ

d≠2(g(n)) as we have discussed above in the proof of Lemma 6.2. To sum up, the entire
algorithm finishes in non-deterministic time elementary in hÊ

d≠2(g(n)).

I Lemma 6.4. On input a d-VASS G = (Q,T ) where d Ø 3 and p(m), q(n) œ Q ◊ N
d,

the modified KLMST algorithm finishes in non-deterministic time e(hÊ
d≠2(g(n))) where

n = |Èp(m)Gq(n)Í|, g, h are defined in lemmas 5.11, 5.16, and e œ F3 is some fixed function.

Since h is an elementary function, there is a number c œ N such that h is eventually
dominated by HÊ

2·c. By Lemma 6.3 we can upper bound hÊ
d≠2(x) by HÊ

d((c+1)x). Observe
that the inner part g(n) is elementary in the binary encoding size of the input G, p(m), q(n),
thus can be captured by a function p œ F3. Finally, [21, Lem. 4.6] allows us to move the
outermost function e to the innermost position. Hence we have the following upper bound.

I Theorem 6.5. Reachability in d-dimensional VASS is in Fd for all d Ø 3.

Also, by Lemma 6.2 there is a simple combinatorial algorithm for d-VASS reachability.
We fist compute the bound B := ¸(hÊ

d≠2(g(n))), which can be done in time elementary in B
by [21, Thm. 5.1]. Then we can decide reachability by just enumerate all possible paths in G
with length bounded by B.

7 Conclusion

We have shown that the reachability problem in d-dimensional vector addition system with
states is in Fd, improving the previous Fd+4 upper bound by Leroux and Schmitz [15]. By
capturing reachability in geometrically 2-dimensional VASSes with linear path schemes, we are
able to reduce significantly the number of decomposition steps in the KLMST decomposition
algorithm. Combined with a careful analysis on fast-growing functions, we finally obtained
the Fd upper bound. It should be noticed though, that our algorithm avoids computing the
“full decomposition” [14] of KLM sequences, thus cannot improve the complexity of problems
that essentially rely on the full decomposition, e.g., the VASS downward language inclusion
problem [8, 23, 15].

It has been shown that the reachability problem in (2d+3)-VASS is Fd-hard [5]. In the
case of 3-VASS, it is known that the reachability problem is PSPACE-hard. The gap between
the lower bound and the upper bound F3 = TOWER [22] is huge. It is very unlikely that the
problem is PSPACE-complete. E�ort to uplift the lower bound is called for.
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Abstract

Graph classes of bounded tree rank were introduced recently in the context of the model checking
problem for first-order logic of graphs. These graph classes are a common generalization of graph
classes of bounded degree and bounded treedepth, and they are a special case of graph classes of
bounded expansion. We introduce a notion of decomposition for these classes and show that these
decompositions can be e�ciently computed. Also, a natural extension of our decomposition leads to
a new characterization and decomposition for graph classes of bounded expansion (and an e�cient
algorithm computing this decomposition).

We then focus on interpretations of graph classes of bounded tree rank. We give a characterization
of graph classes interpretable in graph classes of tree rank 2. Importantly, our characterization leads
to an e�cient sparsification procedure: For any graph class C interpretable in a graph class of tree
rank at most 2, there is a polynomial time algorithm that to any G œ C computes a (sparse) graph H

from a fixed graph class of tree rank at most 2 such that G = I(H) for a fixed interpretation I. To
the best of our knowledge, this is the first e�cient “interpretation reversal” result that generalizes the
result of Gajarsk˝ et al. [LICS 2016], who showed an analogous result for graph classes interpretable
in classes of graphs of bounded degree.

2012 ACM Subject Classification Theory of computation æ Finite Model Theory; Theory of
computation æ Fixed parameter tractability; Mathematics of computing æ Graph theory

Keywords and phrases First-order model checking, structural graph theory, structural sparsity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.137

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2404.18904

Funding Jakub Gajarsk˝: Supported by the Polish National Science Centre SONATA-18 grant
number 2022/47/D/ST6/03421. Parts of this work were developed while this author received funding
from the European Research Council (ERC), grant agreement No 948057 – BOBR.
Rose McCarty: Supported by the National Science Foundation under Grant No. DMS-2202961.

1 Introduction

The graph classes and problems studied in this paper are motivated by considering the
first-order (FO) model checking problem for graphs. This problem asks, given a (finite)
graph G and sentence Ï as input, whether G is a model of Ï. This problem is known to
be PSPACE-hard, and so we do not expect to obtain a polynomial algorithm solving it.
This has motivated the study of the FO model checking problem from the perspective of
parameterized complexity, which has led to the discovery of many beautiful connections
between structural and algorithmic graph theory and (finite) model theory.

In the parameterized setting (where we consider the size of the formula Ï as the parameter),
we can easily obtain a brute-force algorithm with runtime nO(|Ï|), the so-called XP algorithm.
However, we are interested in the existence of algorithms with runtime f(|Ï|) · nc, where c
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is some fixed constant (FPT algorithms). We do not expect to obtain such an algorithm if
the input graphs come from the class of all graphs, since this problem is AW[ú]-complete.
However, for various structurally restricted graph classes we know that such an algorithm
exists. Identifying these graph classes is the topic of a long line of research, and recently a lot of
progress has been made towards understanding the boundaries of e�cient tractability [2, 4, 5].

For graph classes that admit a model checking algorithm with runtime f(|Ï|) · nc one
can ask what is the dependence of the runtime on the size of the formula Ï. Unfortunately,
for most graph classes this dependence is non-elementary, that is, f(k) grows like a tower
of twos whose height grows with k. By a result of Frick and Grohe [9], we know that this
cannot be avoided even when C is the class of all trees. While this result may seem very
limiting, it turns out that the landscape of graph classes that admit an elementary model
checking algorithm is surprisingly rich. Classical examples of such graph classes include
classes of graphs of bounded degree [9], bounded treedepth, and bounded shrubdepth [11].
(The last two results were obtained in the more general context of MSO model checking.)
The interest in this problem was renewed recently when Lampis [15] established elementary
model checking for graph classes of bounded pathwidth. After this, Gajarsk ,̋ Pilipczuk,
Soko≥owski, Stamoulis and ToruÒczyk [13] introduced graph classes of bounded tree rank
and proved that these classes also admit (under certain restrictions, see the fourth bullet
point below) an elementary FO model checking algorithm.

Classes of bounded tree rank, introduced in [13], can be defined as follows (in the definition,
the depth of a tree T is the number of edges on a shortest leaf-to-root path in T ).

I Definition 1. A graph class C has tree rank at most d if for every r œ N there exists a
tree T of depth d such that no G œ C contains T as an r-shallow topological minor1.

For example, one can easily see that graph classes of bounded degree have tree rank at most
1, that the class of all trees of height d has tree rank d, and that the class of all trees does
not have bounded tree rank.

We briefly summarize some of the basic properties of graph classes of bounded tree rank
established in [13]:

They generalize graph classes of bounded degree, bounded treedepth, and bounded
pathwidth.
They are strictly less general than classes of graphs of bounded expansion.
The tree rank of a graph class C is at most d if and only if Splitter has a winning strategy
in the so-called “d-round batched Splitter game” for every G œ C. This game is a natural
variant of the Splitter game, which characterizes nowhere dense graph classes and was
introduced by Grohe, Kreutzer, and Siebertz in their landmark paper [14].
If C is a class of bounded tree rank and there exists an elementary function f : N æ N
such that the size of T in Definition 1 is bounded by f(r), then there is an elementary
FO model checking algorithm for C.
If C is a monotone graph class of unbounded tree rank, then C has no FO model checking
algorithm with elementary dependence on the size of the formula unless FPT=AW[ú].

We note that the concepts considered above (bounded degree, bounded treedepth, bounded
tree rank, bounded expansion, and nowhere denseness) are all examples of classes of sparse
graphs. Given how naturally the concept of bounded tree rank fits into the general theory of

1 We note that this definition of tree rank is seemingly o� by 1 from the original definition in [13]. However,
we measure the depth of trees di�erently than in [13], and so the two definitions ultimately coincide.



J. Gajarsk˝ and R. McCarty 137:3

sparse graphs introduced by Neöet�il and Ossona de Mendez [17], we suspect that it will play
an important role in structural and algorithmic graph theory, and that further investigation
of its structural and combinatorial properties is desirable.

Since classes of sparse graphs are mostly well-understood (one exception being classes of
bounded tree rank), in recent years there has been a trend to study more general classes that
can be obtained from classes of sparse graphs by means of interpretations or transductions,
which are graph transformations based in logic. This point of view is also very relevant for
classes of bounded tree rank, but we first discuss it in the general setting of sparse graphs.
We focus on the simpler setting of interpretations. Essentially, an interpretation I is given
by a formula Â(x, y) (we will actually use a slightly more complicated setting; see Section 2).
When applied to a graph H, the result is a new graph I(H) with the same vertex set as H
and with edge set {uv : H |= Â(u, v)}. This notion generalises easily to graph classes by
setting I(C) = {I(H) : H œ C}. Finally, we say that a graph class D is interpretable in a
graph class C if there exists an interpretation I such that D ™ I(C).

As mentioned above, the recent trend is to study graph classes interpretable in sparse
(or nowhere dense) classes of graphs. In particular, the model checking problem has been
considered extensively, and was recently fully solved for such graph classes.

I Theorem 2 ([5]). Let C be a graph class interpretable in a nowhere dense graph class.
Then there exists an FPT model checking algorithm for C.

In the context of graph classes interpretable in classes of sparse graphs, it is also natural
consider the following problem, which we refer to as the “e�cient sparsification problem”
or “interpretation reversal problem”. This problem was considered in [12] in the context of
graph classes interpretable in classes of graphs of bounded degree.

I Problem 1. Let C be a graph class interpretable in a nowhere dense graph class. Show
that there exists a nowhere dense graph class D, an interpretation I, and a polynomial time
algorithm that given G œ C as input computes a graph H œ D such that G = I(H).

It is well-known (and easy to argue, see for instance [12]) that solving Problem 1 would lead
to an alternative proof of Theorem 2. Indeed, before the result of [5] was established, this was
considered the main line of attack on the model checking problem on graph class interpretable
in a nowhere dense graph class. However, Problem 1 turned out to be very challenging, and
despite considerable e�ort essentially no success has been achieved in solving it. Instead,
Theorem 2 was proved by adapting the techniques for classes of sparse graphs from [14] to
the dense setting. Despite this, Problem 1 remains of considerable interest, and solving it
would likely lead to many new insights on the structure of graph classes interpretable in
classes of sparse graphs.

Coming back to classes of bounded tree rank, it is natural to try to obtain an elementary
analogue of Theorem 2.

I Problem 2. Let C be a graph class interpretable in a graph class of bounded tree rank.
Show that there exists an elementary FPT model checking algorithm for C.

In light of the results of [13], it is possible that one needs to put some extra restriction on C –
perhaps requiring that the size of trees avoided as r-shallow topological minors is bounded
by an elementary function of r. However, it is currently unknown whether this is necessary,
even for the original theorem from [13].

In relation to interpretations of graph classes of bounded tree rank, the authors of [13]
introduced the more general graph classes of bounded rank, and conjectured that these are
precisely the interpretations of colored graph classes of bounded tree rank. In order to attack
this conjecture, or Problem 2, it is natural to consider the following variant of Problem 1.

ICALP 2024



137:4 On Classes of Bounded Tree Rank, Their Interpretations, and E�cient Sparsification

I Problem 3. Let C be a graph class interpretable in a graph class of bounded tree rank. Show
that there exists a graph class D of bounded tree rank, an interpretation I, and a polynomial
time algorithm that given G œ C as input computes a graph H œ D such that G = I(H).

Our contribution

For sparse graphs we introduce the notion of the (r,m)-rank of a vertex. Roughly speaking,
the (r,m)-rank of a vertex v œ V (G) is a positive integer that measures how complicated the
r-neighborhood of v is with respect to the parameter m. We also allow the (r,m)-rank to
be Œ if the r-neighborhood of v is too complicated. Then the (r,m)-ranking of a graph G

is the function f : V (G) æ N fi {Œ} that assigns to each vertex of G its (r,m)-rank. This
definition has the advantage of being much more localized than Definition 1 of tree rank.
Yet we prove that it can also be used to define tree rank, as follows.

I Theorem 3. For any d œ N and any graph class C, the following are equivalent:
The tree-rank of C is at most d.
For every r œ N there exists m œ N such that every vertex of every graph in C has
(r,m)-rank at most d.

Vertex rankings provide a natural notion of decomposition for graph classes of bounded
tree rank. We will show that this decomposition can be computed in elementary FPT
runtime with respect to the parameters r and m (see Theorem 14). Moreover, the notion
of (r,m)-ranking (and the FPT algorithm computing it) very naturally extends to graph
classes of bounded expansion.

I Theorem 4. The following are equivalent for any graph glass C:
The class C is of bounded expansion.
For every r œ N there exists m œ N such that every vertex of every graph in C has finite
(r,m)-rank, that is, has (r,m)-rank not equal to Œ.

We note that the (r,m)-rank of a vertex is preserved under graph automorphisms. This fact
that rankings are “canonical” is one of the key advantages of Theorem 4.

One of the main motivations for proving alternate characterizations of sparse graph classes
(like Theorems 3 and 4) is the e�cient sparsification problems discussed earlier (Problems 1
and 3). In particular, we hope that this definition of (r,m)-rank can be generalized to
accommodate for interpretations of classes of bounded expansion. While we cannot yet take
care of this more general case, we are able to use the insights obtained from (r,m)-rank to
find the following structural characterization of interpretations of classes of tree rank 2.

I Theorem 5. The following are equivalent for any graph glass C:
The class C is interpretable in a graph class of tree rank 2.
The class C is a perturbation of a locally almost near-covered graph class.

We defer the definition of locally almost near-covered graph classes to Section 5. Our
characterization leads to the following algorithmic sparsification result. For technical reasons
we restrict ourselves to classes of graphs interpretable in classes of tree rank 2 for which
the bounds in the definition of tree rank can be e�ciently computed. We call such classes
e�ciently bounded (see Section 5.1) for precise definition.

I Theorem 6. Let C be a graph class interpretable in an e�ciently bounded graph class of
tree rank 2. Then there exists a graph class D of tree rank 2, an interpretation I, and a
polynomial time algorithm that given G œ C as input computes a graph H œ D such that
G = I(H).

We remark that the degree of the polynomial in Theorem 6 depends on the class C.
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While at first sight Theorem 6 might seem like a modest improvement on the analogous
result of [12] for graph classes of bounded degree (or equivalently, classes of tree rank at
most 1), this is the first progress on the challenging Problem 1 since its introduction that
applies to graph classes of unbounded treewidth. (For graph classes of bounded treewidth
such a result is given in [18].) Moreover, our proof introduces new techniques and ideas that
may be useful for solving the sparsification problem (Problem 1) in greater generality.

In particular, as part of the proof of Theorem 5 we prove a lemma (Lemma 23) about
the behaviour of the k-near-twin relation on graphs that do not contain a half-graph as
a semi-induced subgraph. This lemma may be of independent interest in the context of
(monadically) stable graph classes, which play a prominent role in recent developments
establishing connections between (finite) model theory and algorithmic graph theory [4, 6].

Related work

In [13] it was shown that classes of tree rank at most d can be characterized using the batched
Splitter game with d rounds. Roughly speaking, in this game two players take turns, one of
them trying to simplify the graph, and the other trying to keep the graph as complicated as
possible. The result of [13] states that the player trying to simplify the graph (this player is
called Splitter) wins in at most d rounds.

While this characterization is very nice and useful, it is a characterization in terms
of a dynamic process, and as such it does not directly provide us with a useful notion of
decomposition (in the sense of giving us a concrete compact object on which one can design
algorithms). One could of course consider using as a decomposition the game tree arising
from a winning play by Splitter, but this tree has size of order n

d. It is known that this
can be circumvented by combining the Splitter game with sparse neighborhood covers as
introduced in [14], but working with the resulting object is technically demanding. Compared
to this, vertex rankings give us a static decomposition on which one can use bottom-up
inductive arguments and can design algorithms.

For graph classes of bounded expansion, vertex rankings of a graph (which certify that
it has only vertices of finite rank) are closely related to strong coloring orders [23] and
admissibility orders [7]. These are total orders on the vertex set of a graph that satisfy
certain properties, and which have proven to be very useful for showing properties of graphs
of bounded expansion. The main idea used in the definition of rankings, when one checks
whether a removal of a small set of vertices can separate a vertex v from the set of previously
processed vertices, has been used before (see Appendix A1 in [22]). This was again in the
context of defining a suitable total order on the vertex set of a graph. Compared to total
orders, our definition of rankings essentially leads to a pre-order on the vertex set of a graph,
and therefore it can capture situations when two vertices are equally complicated (have the
same rank).

Regarding the sparsification problem, in [12] it was shown that there is a polynomial
time algorithm for sparsifying graphs from graph classes that are interpretable in classes of
bounded degree. Another result related to e�cient sparsification is [8], where the authors
showed how to e�ciently interpret the class of map graphs in a nowhere dense class of graphs.
Finally, the already mentioned result [18] establishes a sparsification result for graph classes
interpretable in graph classes of bounded treewidth, extending earlier results in [19].

Outline of our approach

We now briefly outline the approach used to prove Theorems 5 and 6. This approach builds
on the ideas used in [12] to sparsify classes of graphs interpretable in graph classes of bounded
degree. The key notion behind this result was that of k-near-twin vertices. We say that
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two vertices u, v of G are k-near-twins if |NG(v)�N
G(u)| Æ k, i.e. if they have the same

neighborhoods with at most k exceptions. The idea behind the proof given in [12] is that
graphs from graph classes interpretable in classes of bounded degree have a simple structure –
for such graphs we can find a small k such that the k-near-twin relation is an equivalence on
V (G) with a bounded number of classes. This is then easily used to find a bounded number
of flips (edge complementations between two subsets of V (G)) to produce a sparse graph H

from which G can be recovered by an interpretation.
In the case of classes of graphs interpretable in graph classes of tree rank 2, the structure

of the k-near-twin relation is much more complicated. In what follows we will actually focus
on analysing this relation on graphs from graph classes interpreted in classes of tree rank 2
by an interpretation of bounded range. This is an interpretation in which the formula Â(x, y)
has the property that there is a number b such that for every G and u, v œ V (G) we have
that if distG(u, v) > b, then G ”|= Â(u, v). In other words, such interpretation will never
create edges between vertices that are far apart in G. The case of interpretations of bounded
range forms the techincal core of our approach, since the reduction from the general case to
the case of bounded range can be achieved by using existing tools (see Section 5.3). For the
rest of this overview, let us fix a graph class C interpretable in a class of graphs of tree rank
at most 2 by an interpretation of bounded range.

We now proceed with analysing the k-near-twin relation on a graph G from C. It is
useful to think of this relation in terms of the k-near-twin graph of G, denoted by NTk(G).
This graph has the same vertex set as G, and two vertices are adjacent in NTk(G) if they
are k-near-twins in G. In the case of interpretations of bounded degree, this graph was a
collection of a small number of cliques. In our case of interpretations of classes of tree rank 2,
the connected components of the graph NTk(G) are not cliques, and there can be arbitrarily
many of them. Moreover, the connected components of NTk(G) can have arbitrarily large
diameter – this is important because if we could find a bound d such that the diameter of all
connected components of NTk(G) was at most d, then all vertices in any component C would
be kd-near-twins, and this could be exploited for sparsification. In our proofs of Theorems 5
and 6 we overcome all these di�culties. The key insight (Lemma 23) is that even though the
connected components of NTk(G) can have arbitrarily large diameter, we can nevertheless
guarantee that any two vertices in the same connected component are k

Õ-near-twins, for kÕ

depending only on k and the order of largest half-graph in G. Using this, we sparsify G

as follows: For a suitably chosen k, we consider NTk(G) and create a partition F of V (G)
by putting two vertices in the same part if they are in the same connected component of
NTk(G). The aforementioned Lemma 23 then guarantees that the vertices in the same part
A of F are pairwise k

Õ-near-twins. We then create a sparse graph S(G) from G as follows: If
A and B are two large parts of F such that there are almost all edges between A and B (see
the proof of Lemma 33 for precise meaning of “large” and “almost all”), we complement the
adjacency between them, create new vertices vA and vB adjacent to all vertices of A and B,
respectively, and create and edge between vA and vB . The introduction of new vertices vA,
vB guarantees that we can recover G from S(G) by a simple interpretation. The technical
part of the proof is establishing that S(G) comes from a fixed class D of graphs of tree rank
2 which depends only on C.

Organisation of the paper

After preliminaries in the next section, we introduce vertex rankings in Section 3, and then
we relate them to graph classes of bounded tree rank and show how to compute them in FPT
runtime. In Section 4 we prove a lemma about the behaviour of the k-near-twin relation in
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graphs excluding arbitrarily large half-graphs; a crucial tool for the last section. In Section 5
we prove our main results – characterization and a sparsification algorithm for graph classes
interpretable in classes of tree rank 2.

Due to space restrictions, the proofs of some statements could not be included in the
conference version of the paper. Such statements are marked with [ú] and their proofs can
be found in the full version of the paper.

2 Preliminaries

Graph theory. We use [k] to denote the set {1, . . . , k}. We use mostly standard graph
theoretic notation. Let G be a graph. We write N

G
r
(v) for the closed r-neighborhood of a

vertex v, that is, NG
r
(v) is set of all vertices that are reachable from v by a path with at

most r edges, including v. The distance between vertices u and v, denoted by distG(u, v), is
the minimum number of edges in a path between u and v. The radius of a graph is smallest
integer r so that there exists a vertex that has distance at most r from every other vertex.
Given a graph G and a set X ™ V (G), we write G[X] for the subgraph of G induced on X,
and G ≠ X for the subgraph of G induced on V (G) \X.

By a tree we mean a connected acyclic graph with a specified root vertex. The depth
(respectively, height) of a tree T is the maximum number of edges (respectively, vertices) on
any leaf-to-root path in T .

Let G be a graph, and let A and B be subsets of V (G) with A fl B = ÿ or A = B. By
flipping the edges between A and B, we mean removing all edges uv in G with u œ A and
v œ B, and adding all new edges of the form uv where u œ A, v œ B, u ”= v, and uv ”œ E(G).
For k œ N and a graph G, a k-flip of G is any graph that can be obtained from G by
considering a partition F of V (G) with |F| Æ k, and flipping the edges between some pairs
of parts of F (that is, for each pair of parts A and B of F , we may choose whether or not to
flip the edges between A and B). We say that a graph class C is a perturbation of a graph
class D if there exists k such that every G œ C is a k-flip of some H œ D.

Let S be a set of vertices of a graph G. Let FS be the partition of V (G) such that
each v œ S is in its own part and all vertices in V (G) \ S are partitioned according to their
adjacency to S (so vertices with the same neighbors in S are in the same part). An S-flip of
G is any graph G

Õ obtained by flipping the edges between some pairs of parts of FS .

Shallow topological minors and bounded tree rank. Let H be a graph. An Ær-subdivision
of H is any graph that can be obtained from H by replacing each edge uv of H by a path with
endpoints u and v and with at most r internal vertices (so that all of the paths are internally
disjoint). We call the original vertices of H the principal vertices of the Ær-subdivision. We
say that H is an r-shallow topological minor2 of a graph G if G contains a subgraph that is
isomorphic to an Ær-subdivision of H.

I Definition 7. We define Td,m to be the tree of depth d in which every non-leaf vertex has
exactly m children.

It is easily seen that the definition of graph classes of bounded tree rank given in Definition 1
is equivalent to the following:

2 We note that this definition di�ers slightly from the standard definition, which says that H is a r-shallow
minor of G if there is a subgraph of G isomorphic to a graph obtained from H by subdividing its edges
at most 2r times.
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I Definition 8. A graph class C has tree rank at most d if for every r œ N there exists m œ N
such that no G œ C contains Td,m as an r-shallow topological minor.

Strong coloring numbers, admissibility, and bounded expansion. Let G be a graph, and
let Æ be an order on its vertex set. Fix a number r œ N. For two vertices v and w of G, we
say that w is strongly r-reachable3 from v (with respect to Æ) if w Ø v and there is a path
from v to w of length at most r in G such that all vertices on this path apart from v and
w are smaller than v in Æ. The strong r-coloring number of G, denoted by scolr(G), is the
minimum over all orderings Æ of V (G), of the maximum number of vertices that are strongly
r-reachable from a single vertex v of G.

Similarly as above, let G be a graph, and let Æ be an order on its vertex set. Fix a
number r œ N. The r-backconnectivity of a vertex v of G is the maximum number of paths of
length at most r in G that start in v, end at vertices w Ø v, and are vertex-disjoint except for
their common endpoint v. The r-admissibility of G, denoted by admr(G), is the minimum
over all orderings Æ of V (G), of the maximum r-backconnectivity of a vertex v of G.

Classes of graphs of bounded expansion were introduced by Neöet�il and Ossona de Mendez
as one of the key notions of their general theory of sparsity [17]. We do not provide the
original definition of bounded expansion; instead we use the following characterizations.

I Theorem 9 ([23]). A class C of graphs has bounded expansion if and only if there exists a
function f : N æ N such that for every G œ C and r œ N, we have scolr(G) Æ f(r).

I Theorem 10 ([7]). A class C of graphs has bounded expansion if and only if there exists
a function f : N æ N such that for every G œ C and r œ N, we have admr(G) Æ f(r).

Logic, interpretations and locality. We assume familiarity with first-order logic and basic
notions related to it, such as signatures, quantifier rank, and so on. We model graphs as a
structure with one binary irreflexive symmetric relation E. We work with colored graphs,
and we model colors as unary predicates.

Interpretations are logic-based transformations that allow us to create new structures
from old ones. A (simple) interpretation I = (Â, ”) consists of two formulas Â(x, y) and ”(x).
When applied to a graph G, an interpretation defines a new graph I(G) with V (I(G)) =
{v œ V (G) : G |= ”(v)} and E(I(G)) = {uv : u, v œ V (I(G)), u ”= v, and G |= Â(u, v)}.
(Here we assume that Â(x, y) is symmetric and irreflexive, that is, for all G and u, v œ V (G)
we have G |= Â(u, v) if and only if G |= Â(v, u), and also for each v œ V (G) we have that
G ”|= Â(v, v) so that the resulting graph is undirected and does not contain loops.)

For a less general version of interpretation that uses only one formula Â(x, y), we
sometimes use the notation Â(G) to denote the graph on the same vertex set as G and
with E(Â(G)) := {uv : u ”= v and G |= Â(u, v)}. For a graph class C, we say that C is
interpretable in a graph class D if there exists an interpretation I such that C ™ I(D).

A crucial role in this paper will be played by interpretations of bounded range. We
say that a formula Â(x, y) is of range b if for all graphs G and all u, v œ V (G) we have
that distG(u, v) > b implies G ”|= Â(u, v). This means that if the formula Â is used in an
interpretation, it will not create edges between vertices that were at distance more than b

in the original graph. We say that an interpretation I = (Â, ”) is of bounded range if there
exists b such that Â is of range b.

3 We remark that many authors use the order Æ in the opposite direction in the definition of strong
reachability, that is, they require w Æ v and that the path from v to w goes through vertices larger
than v in Æ. The definition we chose will be convenient later on.
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When working with graphs, we often mark vertices of a graph G with (new) unary
predicates and call the resulting graph ‚G. Formally, this means that we are extending the
signature of G, and that the formulas that we later evaluate on ‚G are assumed to be over
this new signature. To make the exposition more streamlined, we always do this implicitly.

Locality-based methods are commonly used in relation with first-order logic; probably
the most commonly used such result is Gaifman’s locality theorem [10]. We do not need the
full statement of Gaifman’s theorem, only the following lemma, which is its simple corollary.

I Lemma 11. For every formula Â(x, y), there exist an integer r and a formula Â
Õ with the

following property: Every graph G can be equipped with two unary predicates to obtain ‚G
such that for any u, v œ V (G) and any S ™ V (G) that contains N

G
r
(u) fi N

G
r
(v), we have

G |= Â(u, v) ≈∆ ‚G[S] |= Â
Õ(u, v).

For completeness we explain how Lemma 11 follows from Gaifman’s theorem. This theorem
tells us that for a given formula Â(x, y) there exists another formula –(x, y) and sentences
·1, . . . , ·k such that Â(x, y) can be written as a boolean combination of –(x, y), ·1, . . . , ·k.
Importantly, the formula –(x, y) has the property that there exists r such that for any G

and any u, v œ V (G) we have G |= –(u, v) if and only if G[NG
r
(u) fi N

G
r
(v)] |= –(u, v). For

any G we can evaluate all sentences ·1, . . . , ·k on G, and then the boolean combination of
–(x, y), ·1, . . . , ·k reduces to one of four possibilities on G – we have that Â(x, y) is equivalent
one of the following: –(x, y), ¬–(x, y), € or ‹. We can encode these four options with two
bits of information, and so we mark all vertices of G with two unary predicates (all vertices
in the same way) accordingly. Finally, we define formula Â

Õ(x, y) to be the formula which
first checks the unary predicates on vertex x to determine which of the four possibilities
Ï(x, y) is equivalent to on G, and based on this “outputs” the value of –(x, y), ¬–(x, y),
€ or ‹. To finish the argument, we argue that evaluating –(x, y) on ‚G[S] gives the same
answer as evaluating –(x, y) on G for any u, v, S such that NG

r
(u)fiN

G
r
(v) ™ S. This follows

from the properties of – (which hold for any graph, including ‚G[S]) which guarantee that
‚G[S] |= –(u, v) ≈∆ G[NG

r
(u) fi N

G
r
(v)] |= –(u, v) ≈∆ G |= –(u, v).

3 Vertex rankings in sparse graphs

In this section we introduce a way to assign, for given parameters r and m, to every vertex
of a graph its (r,m)-rank. Intuitively, the (r,m)-rank of a vertex measures how complicated
the r-neighborhood of v is. Our definition is algorithmic and is given in Section 3.1 together
with the proof that the (r,m)–rank can be computed in FPT runtime with respect to the
parameters r and m. Then we prove Theorems 3 and 4 relating graph classes for which
suitable rankings of vertices exist to graph classes of bounded tree rank (Section 3.2) and
bounded expansion (Section 3.3).

3.1 The ranking algorithm

We now describe the ranking algorithm that (based on the parameters r and m) for every
graph G assigns to every vertex of G either a positive integer or Œ.

Let G be a graph and r,m be positive integers. The (r,m)-ranking algorithm works as
follows. Initially, each vertex is assigned rank Œ. Then the algorithm proceeds in rounds
for i = 1, 2, 3, . . . as follows. In the i-th round, the algorithm considers all vertices of rank
Œ (these are the vertices that have not received a finite rank in rounds 1, . . . , i ≠ 1), and
for each such vertex v it checks (in parallel) the following condition: Does there exist a set
S ™ V (G) \ {v} of size at most m such that NG≠S

r
(v) \ {v} contains only vertices of finite
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rank? If yes, then v receives rank i, otherwise it keeps rank Œ. (Notice that in the first
round the algorithm assigns rank 1 to vertices of degree at most m.) The algorithm stops
when all vertices obtain a finite rank or when in some round no new vertex receives a rank.
Thus, in any case, the algorithm stops after at most |V (G)| rounds.

I Definition 12. Let G be a graph. The (r,m)-rank of a vertex v œ V (G) is the element
of N fi {Œ} assigned to v by the ranking algorithm. The (r,m)-rank of G is the maximum
(r,m)-rank of any vertex of G.

We remark that the definition of (r,m)-ranking of vertices in a graph G can be phrased
without any explicit mention of the ranking algorithm: All vertices of degree at most m are
assigned rank 1, and for every vertex v of degree more than m we define the (r,m)-rank of v
to be the minimum number k such that there exists a set S of vertices so that NG≠S

r
(v) \ {v}

contains only vertices of smaller rank; or Œ if such k does not exist. This is easily seen
to be equivalent to the algorithmic definition given above, but we prefer to stick with the
algorithmic perspective in what follows.

3.1.1 Algorithmic considerations

Notice that the straightforward implementation of the ranking algorithm runs in time
O(nm+4): we have at most n rounds, in each round we consider at most n vertices, and for
each vertex we can in time O(nm+2) try removing all sets S of size m in time O(nm) and
check whether G ≠ S satisfies the desired condition in time O(n2). Thus, we trivially get an
XP algorithm. However, we can replace the subroutine which checks whether there exists a
set S with |S| Æ m with desired properties by a simple branch-and-bound procedure with
FPT runtime.

I Lemma 13. There is an algorithm with runtime O(rm · n
2) which correctly decides the

following problem: Given G, v œ V (G), A ™ V (G) \ {v} and r,m œ N as input, decide
whether there exist a set of set S ™ V (G) \ {v} with |S| Æ m such that NG≠S

r
(v) fl A = ÿ.

Proof. The algorithm checks whether there is a path of length at most r from v to any
vertex in A. If no such path exists, the algorithm outputs YES. If such a path P exists and
m = 0, the algorithm outputs NO. If m > 0 then at least one of the vertices on the path P

has to be in the solution S, and so we can branch on all vertices u œ V (P ) \ {v} (there are
at most r of them) and call the algorithm with input G ≠ {u}, v, A \ {u}, r, m ≠ 1. Then
the algorithm returns YES if for at least one such u the recursive call returned YES, and
returns NO otherwise.

We thus get an algorithm with branching bounded by r and depth bounded by m, and
finding the path from v to A takes time O(n2), so the claimed runtime follows. J

As an immediate consequence of the lemma we get the following.

I Theorem 14. The (r,m)-ranking of any graph G can be computed in time O(rm · n
4).

3.2 Vertex rankings and bounded tree rank

In this section we prove Theorem 3. The proof is split into Lemmas 15 and 16, which
correspond to the two directions of the theorem.

I Lemma 15. Let G be a graph that contains Td,m+1 as an r-shallow topological minor.
Then G has (r,m)-rank more than d.



J. Gajarsk˝ and R. McCarty 137:11

Proof. Let T be a subgraph of G that corresponds to an Æ r-subdivision of Td,m+1. We
prove that the principal vertices of T of height i (where the height is measured in Td,m+1,
and we think of leaves as having height 0) have (r,m)-rank at least i+1 in G. For i = 0, the
leaves of T clearly have rank at least 1. For i > 1, let v be a vertex of T corresponding to a
vertex of height i in Td,m+1. Then there are m+ 1 internally disjoint paths connecting v to
the corresponding m+ 1 children that have rank at least i. Therefore we cannot disconnect
v from all of these children by deleting m vertices other than v. Thus v has (r,m)-rank at
least i+ 1, which completes the proof. J

I Lemma 16. Fix any d, r œ N. For every m there exists m
Õ = m

Õ(d, r,m) such that every
graph G with (r,mÕ)-rank more than d contains Td,m as an r-shallow topological minor.

Proof. We will prove the lemma by induction on d. Actually, we will prove a slightly stronger
statement – that for a suitably defined m

Õ we have that every vertex of (r,mÕ)-rank more
than d is the root of an Æ r-subdivision of Td,m in G.

For d = 1 we can set mÕ = m≠1. Then if there exists a vertex of (r,mÕ)-rank more than 1
in G, this vertex has at least m neighbors, and thus is the root of a T1,m subgraph in G. For
d > 1 we proceed as follows. For a given m, we wish to define a suitable mÕ. First, let Wd,m,r

denote the number of vertices of the graph obtained from Td≠1,m by subdividing each edge r

times. For convenience, set M = m ·Wd,m,r + r ·m+m. Let mÕÕ be the number obtained by
the inductive assumption applied to d ≠ 1, r, and M . Then we define m

Õ := max{mÕÕ
, r ·m}.

Let v be a vertex of (r,mÕ)-rank more than d in G. Then for every set S ™ V (G) \ {v} of
size at most mÕ, the set NG≠S

r
(v) \ {v} contains at least one vertex of (r,mÕ)-rank at least d.

We claim that there exist paths P1, P2, . . . , Pm of length at most r that are disjoint other
than at v, and so that each path Pi joins v to a vertex ui ”= v that has (r,mÕ)-rank at least
d. We find the paths greedily by adding one path at a time. Suppose that so far we have
found the paths P1, . . . , Pj for some j < m. Let S be the set of all vertices u ”= v that are in
any of the paths P1, . . . , Pj . This set S contains at most r vertices from each of the paths,
and thus S has size at most r(m ≠ 1) Æ m

Õ. Thus the set NG≠S
r

(v) \ {v} contains at least
one vertex of (r,mÕ)-rank at least d, and we can add another path Pj+1 to our collection.
This proves the claim. We note that this argument amounts to a Menger-type result about
short paths, and this type of result has previously appeared in [16].

Since m
Õ

Ø m
ÕÕ, the (r,mÕÕ)-rank of each vertex of G is at least its (r,mÕ)-rank. So

by the inductive assumption applied to d ≠ 1, r, and M , each vertex ui is the root of an
Æ r-subdivision of Td≠1,M . Let us call this Æ r-subdivision rooted at ui by Ti.

We now greedily build up the desired r-shallow topological minor of Td,m rooted at v as
follows. Suppose that for some j < m, we have found that T1, . . . , Tj contain, respectively,
subgraphs T Õ

1
, . . . , T

Õ
j
so that

for every i œ {1, . . . , j}, the subgraph T
Õ
i
of Ti is an Æ r-subdivision of Td≠1,m that is

rooted at ui,
the subgraphs T Õ

1
, . . . , T

Õ
j
are pairwise vertex-disjoint, and

for every i œ {1, . . . , j}, the vertex ui is the only vertex that is in both T
Õ
i
and in any of

the paths P1, . . . , Pm.
We begin this greedy process with j = 0. Now suppose that it holds for some j < m. We
will prove it for j + 1. This will complete the proof of Lemma 16.

So, we need to find a subgraph T
Õ
j+1

of Tj+1 so that T Õ
j+1

is an Æ r-subdivision of Td≠1,m

that is rooted at uj+1, and the only vertex in common between T
Õ
j+1

and any of T Õ
1
, . . . , T

Õ
j

or P1, . . . , Pm is uj+1. Notice that each of the trees T Õ
1
, . . . , T

Õ
j
has at most Wd,m,r vertices

by the definition of Wd,m,r. Moreover, each of the paths P1, . . . , Pm contributes at most r
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additional vertices. So, since j < m, the number of vertices in any of T Õ
1
, . . . , T

Õ
j
or P1, . . . , Pm

is at most m ·Wd,m,r+r ·m. Recall from the definition that M is this quantity plus m. So we
can just delete the branches of Tj+1 in which any of the vertices of T Õ

1
, . . . , T

Õ
j
or P1, . . . , Pm,

other than uj+1, occur. In this manner we arrive at the desired subgraph T
Õ
j+1

. J

3.3 Vertex rankings and bounded expansion

In this section we prove Theorem 4, characterizing classes of bounded expansion using vertex
rankings. The theorem follows from the two lemmas below combined with Theorems 9
and 10.

I Lemma 17. Let G be a graph with scolr(G) = m. Then G has finite (r,m ≠ 1)-rank.

We stress that in Lemma 17 we are not bounding the maximum value of (r,m≠1)-rank of
any vertex of G, but merely claiming that the (r,m≠1)-ranking algorithm will assign to each
vertex of G a finite value. This value, however, can be arbitrarily large (and in particular it
is not bounded in terms of r and m). This can be seen already on the class of trees – the
class of all trees has bounded strong coloring numbers (one can set m := r + 1), but on the
complete m-ary tree of depth d the (r,m ≠ 1)-ranking algorithm will need d rounds to finish.

Proof of Lemma 17. Assume for contradiction that there exists a vertex of G of (r,m ≠ 1)-
rank Œ. Fix an order Æ on V (G) that certifies that scolr(G) = m. Let v be the smallest
vertex of G with respect to Æ that has (r,m ≠ 1)-rank Œ. Let A be the set of all vertices
below v in Æ, and let i be the maximum (r,m ≠ 1)-rank of any vertex in A. We claim that
in round (i+ 1) of the ranking algorithm vertex v received rank (meaning it has rank i+ 1),
which is a contradiction with our assumption on v. To see this, let S be the set of all vertices
that are strongly r-reachable from v in G. Note that every path of length at most r from v

to a vertex w Ø v must contain a vertex in S. It follows that NG≠S
r

(v) \ {v} contains only
vertices of finite rank, a contradiction. J

Lemma 17 guarantees that the ranking algorithm succeeds on graphs with bounded strong
coloring numbers. The next lemma tells us that the ranking algorithm computes a good
admissibility ordering for an input graph G.

I Lemma 18. Let r,m œ N with r Ø 1. Let G be a graph with finite (r,m)-rank. Then
admr(G) Æ m.

Proof. Let Æ be an ordering of V (G) so that if v Æ w, then the (r,m)-rank of v is at most the
(r,m)-rank of w. Thus we are ordering vertices of G by their rank, breaking ties arbitrarily.
We claim that this ordering certifies that admr(G) Æ m. Let v be any vertex of G, and let i
be its (r,m)-rank. Let S be the set of vertices certifying that the (r,m)-rank of v is i. That
is, S is a subset of V (G) \ {v} of size at most m so that NG≠S

r
(v) \ {v} contains only vertices

of (r,m)-rank strictly less than i.
Since any vertex w Ø v has (r,m)-rank at least i, any path from v that ends in a vertex

larger than v with respect to the ordering must contain a vertex of S. Therefore, if we
consider a collection P1, . . . , P¸ of paths that maximizes the r-backconnectivity of v, then
each Pi has to intersect S. Since all of these paths are disjoint except for their common end
v, we get that admr(G) Æ m, as desired. J
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4 A lemma about edge-stable graphs

In this section we state and prove a lemma (Lemma 23) about the behaviour of the so-called
k-near-twin relation on graphs that do not contain large half-graphs. This lemma will be
crucial in the next sections and may be of independent interest in the theory of (monadically)
stable graphs [20, 21] (see also [4] for the latest important developments in this area).

First we need a few definitions. A crucial role will be played by the notion of k-near-twins.

I Definition 19. Let G be a graph, and let k œ N. We say that two vertices are k-near-twins
if |NG(v)�N

G(u)| Æ k.
I Definition 20. Let G be a graph, and let k œ N. The k-near-twin graph of G, denoted by
NTk(G), is the graph with vertex set V (G) in which there is an edge between two vertices u

and v if they are k-near-twins in G.
I Definition 21. A half-graph of order t is a graph with vertex set {u1, . . . , ut, w1, . . . , wt}

such that there is an edge between ui and wj if and only if i Æ j.
I Definition 22. We say that a graph G contains a half-graph of order t as a semi-induced
subgraph if there are distinct vertices u1, . . . , ut, w1, . . . , wt in G such that there is an edge
between ui and wj if and only if i Æ j.

Note that in the definition we do not say anything about edges between the vertices
within the set {w1, . . . , wt} or edges between the vertices within the set {u1, . . . , ut}; the
edges within these sets can be arbitrary.

Our main lemma in this section is the following.

I Lemma 23 (ú). There is a function h : N2
æ N so that for any k, t œ N, if G is a graph

with no half-graph of order t as a semi-induced subgraph, and u and v are vertices in the
same component of the k-near-twin graph of G, then u and v are h(k, t)-near-twins in G.

The technical proof of the lemma can be found in the full version of the paper.

5 Interpretations of graph classes of tree rank 2

In this section we prove Theorems 5 and 6. First we will establish some properties of classes
of tree rank at most 2 (Section 5.1). After this, in Section 5.2, we give a characterization
of graph classes interpretable in graph classes of tree rank at most 2 by interpretations of
bounded range. This section contains the technical core of our results – the key result is
Theorem 31, proof of which is split into Lemmas 32 and 33. The case of general interpretations
(Theorem 5) is presented in Section 5.3; it will easily follow from results in Section 5.2. Finally,
we prove our main algorithmic result, Theorem 6, in Section 5.4.

5.1 Classes of tree rank at most 2
We start with a characterization of graph classes of tree rank 2.

I Definition 24. A class of graphs C has locally almost4 bounded degree if there exist
functions f, d : N æ N such that for every r œ N, every G œ C, and every v œ V (G), the set
N

G
r
(v) contains at most f(r) vertices with degree larger than d(r) in G.

4 We remark that the adjective “almost” is sometimes used di�erently in context of structural graph
parameters. For example, for a graph class C, having almost bounded flipwidth (see [22]) means that
for every ‘ there exists c such that every G œ C has flipwidth at most cn‘. Our usage of the adjective
“almost” is di�erent – it refers to having a bounded number of exceptions.
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I Lemma 25. A class C of graphs has tree rank at most 2 if and only if has locally almost
bounded degree.

In the proof of the lemma we will use the following simple result from [13, Lemma 13].

I Lemma 26. Let r, t œ N, let H be a graph of radius at most r, and let S ™ V (H). If
|S| Ø t

r + 1, then there exists u œ V (H) such that there are t vertices in S that are distinct
from u and can be reached from u by internally vertex-disjoint paths of length at most r.

Proof of Lemma 25. By Theorem 3, it su�ces to prove that a class C is of locally almost
bounded degree if and only if for every r œ N there exists m œ N such that every graph in C

has (r,m)-rank at most 2.
First, assume that C is of locally almost bounded degree with respect to functions f and

d. Let r œ N, and set m := max{f(r), d(r)}. We claim that the (r,m)-ranking algorithm
will assign the number 1 or 2 to each v œ V (G). In the first round, all vertices of degree at
most d(r) Æ m will get rank 1. In the second round, we know that each N

G
r
(v) contains at

most f(r) vertices of degree larger than d(r). Thus we can delete a set S ™ V (G) \ {v} of
size at most f(r) so that NG≠S

r
(v) \ {v} contains only vertices of rank 1. The result follows.

For the other direction, suppose that for every r œ N there exists m œ N such that every
graph in C has (r,m)-rank at most 2. Let r œ N, and set f(r) := (m+1)r and d(r) := m. Let
v œ V (G) be arbitrary, and let S be the set of vertices with (r,m)-rank exactly 2 in N

G
r
(v)

(these are the vertices of degree more than m). Going for a contradiction, we may assume
that |S| > f(r), since otherwise we are done. Thus, by Lemma 26 applied to r, t := m+ 1
and S in the subgraph H of G induced on N

G
r
(v), there exists a vertex u œ N

G
r
(v) such that

there are m+1 vertices in S that are distinct from u and can be reached from u by internally
vertex-disjoint paths of length at most r. As all of the vertices in S have (r,m)-rank 2, this
shows that the (r,m)-rank of u is more than 2, which is a contradiction. Thus C is of locally
almost bounded degree with functions f and d, as desired. J

Algorithmic considerations. For our algorithms we will need to assume that the functions
which are used in the definitions of our graph classes are e�ciently computable. In particular,
we will need to be able to e�ciently test whether a given graph G comes from a fixed graph
class of locally almost bounded degree given by functions d and f . This can be done under
fairly relaxed conditions on functions d and f , which we now describe. The key observation
is that for any graph G we need to check the conditions imposed by functions f and d from
Definition 24 only for values of r with r Æ n (where n = |V (G)|), and that checking the
conditions is trivial whenever f(r) > n or d(r) > n.

With this in mind, we say that a function h : N æ N is nice if there exists a an algorithm
which inputs two numbers r and n represented in binary with r Æ n and in time poly(n)
either correctly answers that h(r) > n or outputs h(r) (which is upper bounded by n).

Note that a function which is very fast growing and complicated to compute (with respect
to its input which has length Álog(r)Ë) can still be nice. This is because it may be easy to
check that h(r) > n, in which case no further computation is required, and if h(r) Æ n, we
know that n is much larger than Álog(r)Ë, and then we have poly(n) time at our disposal to
compute h(r). It is easy to verify that functions such as 2r, tow¸(r) (tower of twos of height
¸ with r on top), towr(2) (tower of twos of height r) and also r

r are nice functions.
Coming back to graph classes of tree rank 2, we will use the following definition to specify

graph classes for which we can prove Theorem 6.
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I Definition 27. We say that a class C of graphs of tree rank 2 is e�ciently bounded if there
exists a nice function g : N æ N such that for every r œ N there exists m œ N such that no
G œ C contains T2,m as an r-shallow topological minor.

By inspecting the proof of Lemma 25 one easily checks that any e�ciently bounded class
C of tree rank 2 is a class of locally almost bounded degree for which the there exist functions
f and d which ceritfy this. If we moreover assume that C is maximum class of locally bounded
degree with respect to f and g (meaning it contains every G that satisfies conditions given
by f and d for all r Æ |V (G)|), then we can e�ciently test for any G whether G œ C. This
is easily achieved by testing the conditions from Definition 24 for all values r up to |V (G)|.
Since the functions f and d are nice, these values are either too large (if f(r) > n or d(r) > n

which can be e�ciently checked), or e�ciently computable. This yields the following lemma.

I Lemma 28. Let C be a class of graphs with locally almost bounded degree given by nice
functions f, d : N æ N. Assume that C is maximum such class with respect to f and d. Then
there is a polynomial time algorithm that determines whether G œ C.

In subsequent sections, it would be desirable to show at various places that some function
is nice (or at least can be upper bounded by some nice function). We will not spell out these
arguments explicitly; we just note here that one can often combine two nice functions to
obtain another nice function. In particular, one easily checks that if f and g are functions
such that for all r we have f(r) Ø r and g(r) Ø r, then also h := g ¶ f is nice with h(r) Ø r.
This because for given r, n with r Æ n we can check whether f(r) > n, and if yes then we
know that h(r) = g(f(n)) > n. On the other hand if f(r) Æ n, then the input condition for
function g is satisfied, and we can just check whether g(f(r)) > n or compute the value of
g(f(r)) e�ciently.

5.2 The case of interpretations of bounded range

We now proceed by giving a characterization of graph classes that can be obtained from
graph classes of tree rank at most 2 by an interpretation of bounded range (Theorem 31).

In what follows we will use the notions of k-near-twins and near-twin graphs introduced
in Section 4.

I Definition 29. We say that a graph G is (k,m)-near-covered if for every set S ™ V (G)
such that the elements of S are mutually not k-near-twins we have |S| Æ m.

We remark that the definition of (k,m)-near-covered graphs introduced in [12] was slightly
di�erent – there it was required that there exists a set of at most m vertices such that every
vertex v of G is a k-near-twin of some w œ S. One can easily check that the two definitions
are functionally equivalent (i.e. up to changing k and m in one definition to k

Õ and m
Õ in the

other definition). We use Definition 29 because it will be more convenient in our arguments.

I Definition 30. A graph class C is locally almost near-covered if there exist functions
k,m : N æ N such that for every r œ N, every G œ C, and every v œ V (G), the subgraph of
G induced on N

G
r
(v) is (k(r),m(r))-near-covered.

I Theorem 31. A class C is a interpretable from a class of locally almost bounded degree by
a bounded range interpretation if and only if C is locally almost near-covered.

The forward direction of Theorem 31 is handled by the following lemma, which can be
proven by combining the locality-based Lemma 11 with the characterization of graph classes
interpretable in graph classes of bounded degree in terms of near-covered graphs given in [12].
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I Lemma 32 (ú). Let I be a bounded range interpretation, and let C be a class of locally
almost bounded degree. Then I(C) is locally almost near-covered.

The rest of this section is dedicated to proving the backward direction of Theorem 31

I Lemma 33. Let C be a locally almost near-covered graph class. Then C is interpretable in
a class D of locally almost bounded degree by an interpretation I of bounded range.

Moreover, there is a polynomial algorithm that to every graph G computes a graph S(G)
so that if G œ C, then S(G) œ D and G = I(S(G)).

We will need the following simple lemma showing that locally almost near-covered graph
classes do not contain arbitrarily large half-graphs.

I Lemma 34. Let C be a locally almost near-covered graph class with respect to functions k

and m, and set t := m(2) · k(2) +m(2) + 1. Then no graph in C contains a half-graph of
order t as a semi-induced subgraph.

Proof. Assume for contradiction that such a graph G œ C exists. Let u1, . . . , ut, w1, . . . , wt

be the vertices of a half-graph of order t that G contains as a semi-induced subgraph. Then
all of these vertices u1, . . . , ut, w1, . . . , wt are in N

G
2
(u1). Also, for any i, j œ {1, 2, . . . , t} with

i ≠ j > k(2), we know that ui and uj are not k(2)-near twins, since their adjacency di�ers in
vertices wj , wj+1, . . . , wi≠1. Therefore, the vertices u1, uk(2)+2, u2k(2)+3, . . . um(2)·k(2)+m(2)+1

form a set of m(2) + 1 pairwise not k(2)-near-twins, a contradiction with C being locally
almost near-covered. J

In the proof of Lemma 33 we will also use the following lemma taken from [12, Corol-
lary 5.3]. We note that in that paper, an extra assumption was made that amounts to saying
that no vertex in A is a k-near-twin of any vertex in B. However, that assumption was not
used in the proof given in [12], and so same proof works to prove the following lemma.

I Lemma 35. Let G be a graph and let A and B be two subsets of V (G) that are either
disjoint or have A = B and such that |A| Ø 5k + 1, |B| Ø 5k + 1, all vertices in A are
pairwise k-near-twins, and all vertices in B are pairwise k-near-twins. Then either
1. every vertex of A is adjacent to at most 2k vertices of B and every vertex of B is adjacent

to at most 2k vertices of A, or
2. every vertex of A is adjacent to all but at most 2k vertices of B and every vertex of B is

adjacent to all but at most 2k vertices of A

We will also use the following immediate corollary of Lemma 35.

I Corollary 36. Let G be a graph, and let A and B be two subsets of V (G) that satisfy the
assumptions of Lemma 35. If there exists a vertex v œ A with |N

G(v) fl B| > 2k, then in the
graph G

Õ obtained from G by flipping the edges between A and B, every vertex u œ A has
|N

G
Õ(u) fl B| Æ 2k.

Finally, we will use the following Ramsey-type result, which is routine to prove.

I Lemma 37. There exists functions R,D : N3
æ N so that for all k,m, s œ N, the following

holds for every graph G with no subgraph isomorphic to the complete bipartite graph Ks,s. If
X ™ V (G) is such that |X| Ø R(k,m, s) and every vertex in X has degree at least D(k,m, s),
then there exists Y ™ X such that |Y | Ø m and every vertex y œ Y has at least k neighbors
in V (G) \ Y that are not adjacent to any other y

Õ
œ Y \ {y}.
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Proof of Lemma 33. Let C be a locally almost near-covered graph class, and let k and m

be the functions certifying this. We will describe a procedure S that to every G œ C assigns
a graph S(G) such that G = I(S(G)) for a fixed interpretation I of bounded range. This
procedure will also return some graph S(G) even when G is not in C, however in this case
we make no guarantees about the graph S(G). We will then show that the graph class
D := {S(G) : G œ C} is of locally almost bounded degree. Since by construction we will
have C ™ I(D), this will finish the proof.

Let G œ C be arbitrary. Let h := h(k(3), t), where h is the function from Lemma 23 and
t := m(2) · k(2) +m(2) + 1 is the integer from Lemma 34. Thus every pair of vertices in
the same component of the k(3)-near-twin graph of G are h-near-twins in G. We define
a partition F of V (G) by putting two vertices into the same part if they are in the same
connected component of the k(3)-near-twin graph of G (this creates a partition since being in
the same connected component is an equivalence relation). We call parts A,B œ F (possibly
with A = B) mutually heavy if |A| Ø 5h+ 1, |B| Ø 5h+ 1, and there exists a vertex v œ B

with |N
G(v) fl A| > 2h. (Note that in this case, by Lemma 35, there also exists a vertex

u œ A with |N
G(u) fl B| > 2h.) Similarly, we call a part A œ F heavy if it is mutually heavy

with any part B œ F (possibly with B = A).

Creating the sparse graph S(G) from G. We can now describe the sparse graph S(G)
associated to G. We start from G and proceed as follows:
1. For any heavy part A œ F , we introduce a new vertex vA, make it adjacent to all vertices

in A, and mark it with a unary predicate R.
2. For any mutually heavy parts A,B œ F , we flip between A and B. If A = B, then we

mark vA with a unary predicate F . If A ”= B, then we put an edge between vA and vB .
All other adjacencies that were not part of any flip remain as in G. Note that we can define
this graph S(G) even when G is not in C. Also note that by Corollary 36, for all mutually
heavy parts A,B œ F and every vertex v œ A, we have that |NS(G)(v) fl B| Æ 2h. We will
use this important property later on.

Algorithmic considerations. It is easily seen that the construction of S(G) can be done in
polynomial time from G.

Recovering G from S(G) by an interpretation. We now show that there is an interpretation
I such that G = I(S(G)). Let u and v be two vertices from V (G). In the construction of
S(G), the adjacency between two vertices only changed in the second part of the construction.
Thus, the formula Â(x, y) will complement the adjacency between distinct vertices x and y if

x and y have the same (unique) neighbor w marked with the predicate R and this w is
also marked with predicate F , or
x and y each have a di�erent neighbor marked with the predicate R and these neighbors
are adjacent.

In all other cases we have Â(x, y) = E(x, y). The conditions above are easily expressed by a
first-order formula. Note that Â(x, y) only keeps the existing edges or creates edges between
vertices at distance at most 3 and therefore Â is of range 3. To define the vertex set of G
from the graph S(G), the formula ”(x) just keeps the vertices that are not marked with R

(the original vertices of G).

Showing that the class D := {S(G) : G œ C} is of locally almost bounded degree. It
remains to argue that D is of locally almost bounded degree. Due to space restrictions this
argument is omitted from the conference version and can be found in the full version of the
paper. J
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5.3 The case of full interpretations

In this section we finish the proof of our main result, Theorem 5, which states that a class C
of graphs is interpretable in a graph class of tree rank 2 if and only if C is a perturbation of
a locally almost near-covered graph class.

For the forward direction, it is known (see for example [1, 3]) that every interpretation
can decomposed into two steps in the following sense.

I Lemma 38. For every interpretation I there exists an interpretation I
Õ of bounded range

and k œ N such that for every G we have that I(G) is a k-flip of I Õ(G).

The forward direction of Theorem 5 then follows immediately from Lemmas 32 and 38.
The backward direction follows from Lemma 33: If C is a perturbation of a locally almost
near-covered graph class, then C is a perturbation of I(D) for some graph class D of locally
almost bounded degree. Since perturbations (k-flips) can be modelled by interpretations,
add unary predicates to graphs from D and adjust I to I

Õ such that C ™ I
Õ(D).

5.4 Proof of Theorem 6

In this section we prove Theorem 6 by showing that for every graph class C interpretable
in a graph class of tree rank 2, there is a polynomial time algorithm that to every G œ C

computes H œ D such that G = I(H), where I is a fixed interpretation and D is a fixed class
of graphs of locally almost bounded degree (which is the same as tree rank 2 by Lemma 25).

We will rely on the following lemma which was proven in [1].

I Lemma 39. Let D be an NIP class of graphs, and let I be an interpretation. Then there
exist s, b, and a formula Â(x, y) of range b such that for every G œ I(D) there exist S ™ V (G)
of size at most s, an S-flip G

Õ of G, and a graph H œ D such that GÕ = Â(H).

We do not define the notion of a graph class being NIP (see for example the relevant
sections in [1]), but just note that this notion is very general and it is easily established that
classes of tree rank 2 are NIP, so the lemma can be applied in our setting.

We now proceed with the proof Theorem 6. Since C is interpretable in a graph class of
tree rank 2, there exist an interpretation I and a class D of tree rank at most 2 such that
C ™ I(D). By applying Lemma 39 to D and I, we obtain numbers s and b and a formula
Â of range b. Since Â is of bounded range, we know by Lemma 32 that the class Â(D) is
locally almost near-covered. By Lemma 33 applied to Â(D), there exists a graph class DÕ

of locally almost bounded degree, an interpretation I
Õ, and a polynomial time algorithm A

that to any G
Õ

œ Â(D) computes a graph S(GÕ) œ D
Õ such that GÕ = I

Õ(S(GÕ)). Moreover,
by inspecting the proofs of Lemma 32 and Lemma 33 one can check that the functions f
and d which certify that DÕ is a class of locally almost bounded degree are nice functions,
and so we can use Lemma 28 to check membership in D

Õ.
We now consider the algorithm that for a graph G œ C does the following:

1. Go through all subsets S of V (G) of size at most s.
2. For each such set S, go through all possible S-flips GÕ of G.
3. Apply the algorithm A from Lemma 33 to G

Õ to obtain a graph S(GÕ).
4. Check whether GÕ = I

Õ(S(GÕ)) and use Lemma 28 to check whether S(GÕ) œ D
Õ, if yes,

then output S(GÕ).

We now argue the correctness of the algorithm. By Lemma 39, at least one G
Õ will be

such that GÕ = Â(H) for some H œ D. Then, since G
Õ
œ Â(D), we have (by Lemma 33) that

the algorithm A returns a graph S(GÕ) that is in D
Õ. Since for S(GÕ) we have GÕ = I

Õ(S(GÕ))
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and since from G
Õ one can easily recover G by performing a bounded number of flips, we

can adjust the interpretation I
Õ to an interpretation I

ÕÕ such that G = I
ÕÕ(S(GÕ)), as desired.

(We add unary predicates to S(GÕ) in order to “mark” the sets that we flip between.)
The runtime of the algorithm is easily seen to be polynomial in |V (G)|: We have |V (G)|s

possible sets of size s and consequently we have |V (G)|s iterations, where the number s

depends only on the graph class C. In each iteration we invoke the polynomial time algorithm
A from Lemma 33.

6 Conclusions

We conclude with two open ended questions that may deserve further attention.
1. Is there a way of defining vertex rankings for dense graphs analogous to our rankings?

Ideally, such rankings should be computable in FPT time.
2. While the proof of Lemma 33 is technical, our construction of the graph S(G) from the

graph G is simple: First we determine which components of the k-near-twin graph of G to
flip between, and then we use this information to construct S(G). It may be interesting
to see under which conditions on G we can claim that the graph S(G) comes from a class
of sparse graphs. Also, using our construction recursively may lead to interesting results:
If S(G) is not a sparse graph, one may consider S(S(G)), and so on.
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Abstract
We present a novel normal form for (total deterministic) macro tree transducers (mtts), called “depth
proper normal form”. If an mtt is in this normal form, then it is guaranteed that each parameter
of each state appears at arbitrary depths in the output trees of that state. Intuitively, if some
parameter only appears at certain bounded depths in the output trees of a state, then this parameter
can be eliminated by in-lining the corresponding output paths at each call site of that state. We use
regular look-ahead in order to determine which of the paths should be in-lined. As a consequence of
changing the look-ahead, a parameter that was previously appearing at unbounded depths, may be
appearing at bounded depths for some new look-ahead; for this reason, our construction has to be
iterated to obtain an mtt in depth-normal form. Using the normal form, we can decide whether the
translation of an mtt has linear height increase or has linear size-to-height increase.
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1 Introduction

Tree transducers are fundamental devices in theoretical computer science. They generalize
the finite state transductions from strings to (finite, ranked) trees and were invented in the
1970s in the context of compiler theory and mathematical linguistics. The most basic such
transducers are the top-down tree transducer [24, 23] and the bottom-up tree transducer [25],
see also [6]. These transducers traverse their input tree once, but may process subtrees in
several copies. It is well known that these transducers have linear height increase (“LHI”),
see e.g. [17].

In this paper we deal with a more powerful kind of tree transducer: the macro tree
transducer [13] (“mtt”). Mtts can be seen as particularly simple functional programs on trees
restricted to primitive recursion via (input) tree pattern matching. Alternatively, mtts can
be seen as context-free tree grammars (introduced in [23] as “context-free dendrogrammars”;
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see also [15, 11, 12] and [19, Section 15]), the nonterminals of which are controlled by a
top-down tree storage (in the spirit of [7]). It is an open problem, if it is decidable for a
given mtt whether or not its translation can be realized by a top-down tree transducer (with
“origin” semantics, this is decidable [14]). As mentioned above, it is a necessary condition
for the mtt to have linear height increase (“LHI”). This raises the question, can we decide
for a given mtt, whether or not its translation has LHI? Here we give an a�rmative answer
to this question. It is also an open problem, if it is decidable for a given mtt whether or
not its translation can be realized by an attributed tree transducer [20, 21, 16] (“att”). It is
well-known that atts have linear size-to-height increase (“LSHI”), see, e.g., [17]. This raises
the question, can we decide for a given mtt, whether or not its translation is of LSHI? We
give an a�rmative answer. Note that it was conjectured in [10] that the methods of that
paper could be adapted to give such an a�rmative answer.

Let us now discuss our results in more detail. To decide both the LHI and LSHI properties,
we introduce a new normal form called “depth proper”. An mtt is depth proper if each
parameter of every (reachable) state appears at infinitely many di�erent depths (for di�erent
input trees). The idea of our construction is to eliminate parameters that only appear at
bounded depths; we use regular look-ahead to determine which bounded paths to output
at a given moment. Since in this way we may generate output “earlier” than the original
transducer, new “helper states” need to be introduced which continue the translation at
the correct input nodes. Both issues, the change of look-ahead and the introduction of new
states may cause the newly constructed transducer not to be depth proper. For this reason
our construction has to be iterated.

To understand the idea of the construction, let us examine a small example. We consider
input and output trees over a binary symbol f and the nullary symbol a and an mtt with
the following rules.

q0(f(x1, x2)) æ f(q1(x2), q2(x2, qid(x1))) q2(f(x1, x2), y1) æ f(y1, q0(x2))
q0(a) æ a q2(a, y1) æ f(y1, a)
q1(f(x1, x2)) æ qid(x1) qid(f(x1, x2)) æ f(qid(x1), qid(x2))
q1(a) æ a qid(a) æ a

The transducer realizes the following translation:

f(t1, f(t2, f(t3, f(t4, . . . ))¸ ˚˙ ˝
t

)) ∆ f(t2, f(t1, f(t4, f(t3, . . . ))))

The following shows in detail how the rules of the mtt are applied to produce as output first
the tree t2 and then the tree t1:

q0(f(t1, f(t2, t)))
∆first rule f(q1(f(t2, t)), q2(f(t2, t), qid(t1)))

∆second rule f(qid(t2), q2(f(t2, t), qid(t1)))
∆ú

last two rules
f(t2, q2(f(t2, t), qid(t1)))

∆third rule f(t2, f(qid(t1), q0(t))
∆ú

last two rules
f(t2, f(t1, q0(t)))

An mtt uses two di�erent types of variables. The first argument of each state in the left-hand
side of every rule of the mtt is always of type input tree and performs pattern matching
on the current node of the input tree. For this pattern matching, input variables of the
form x1 and x2 are used to denote the first and second subtree of the current input node,
respectively. The (possible) next arguments of a state in the left-hand side of a rule are
the (accumulating) parameters y1, y2, . . . of that state. In our example, only the state q2
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has exactly one parameter y1. Parameters are used to built up output trees in a bottom-up
fashion. In the example, consider the application of the first rule, i.e., going from line one
to line two in the previous display: here the first (and only) parameter y1 of state q2 is
instantiated by the output tree that is produced by the call qid(t1).

Observe that state q2 is not depth proper: each tree that it outputs is of the form f(y1, t)
where t does not contain the parameter y1. The idea of our construction is to replace each
occurrence of state q2 in the right-hand side of any rule by this tree “fragment”, where at
the position of t there will be the new “helper state” [q2, 2]. The path “2” indicates that this
state should produce the tree at the second child position of the output tree produced by q2.
We obtain the following (the rules of q0, q1 and input a are as before):

q0(f(x1, x2)) æ f(q1(x2), f(qid(x1), [q2, 2](x2)))
q1(f(x1, x2)) æ qid(x1)
[q2, 2](f(x1, x2)) æ q0(x2)
[q2, 2](a) æ a
qid(f(x1, x2)) æ f(qid(x1), qid(x2))
qid(a) æ a

It should be clear that the new transducer is equivalent to the original one. Moreover, the
new transducer uses no parameters whatsoever, therefore it is depth proper. Given a depth
proper mtt, we can decide the LSHI property as follows. We consider input trees which
contain exactly one special marked input leaf (it will be marked by a state p of the look-ahead
automaton, to act as a place-holder for any input tree for which the look-ahead automaton
arrives in state p). For such input trees, the mtt produces output trees which only contain
nested state calls to the special input leaf. The original transducer has LSHI if and only
if the range of this transducer is finite (which is known to be decidable [5]). In a similar
way we can decide LHI: here we consider input trees with multiple marked input leaves. To
show that if such ranges are not finite, then the translation does not have LSHI (or LHI), is
done via pumping arguments (which use depth properness); these pumping arguments are
technically rather involved, but are (somewhat) similar to the ones used in [10] to show that
it is decidable whether or not an mtt has linear size increase (LSI).

If we restrict the translations of mtts to LSI, then we obtain exactly the MSO definable
tree translations [10]. Note that this class of translation has recently been characterized by
new models of tree transducers, the streaming tree transducer [2] and even more recently the
register tree transducer [3]. The LSI property is decidable for mtts (it can even be decided
for compositions of mtts, and if so, then the translation is e�ectively MSO definable [8]).
To decide LSI, the given mtt is first transformed into “proper” normal form. Properness
guarantees that (1) each state (except possibly the initial state) produces infinitely many
output trees and that (2) each parameter of a state is instantiated with infinitely many
distinct argument trees. Note that input properness is a generalization of the proper form
of [1]. Once in proper normal form, it su�ces to check if the transducer is “finite copying”.
This means that (a) each node of each input tree is processed only a bounded number of
times and that (b) each parameter of every state is copied only a bounded number of times.

2 Preliminaries

The set {0, 1, . . . } of natural numbers is denoted by N. For k œ N we denote by [k] the set
{1, . . . , k}; thus [0] = ÿ. A ranked alphabet (set) consists of an alphabet (set) � together
with a mapping rank� : � æ N that assigns to each symbol ‡ œ � a natural number called
its “rank”. We write ‡(k) œ � to denote that ‡ œ � and rank�(‡) = k. By �(k) we denote
the symbols of � that have rank k.

ICALP 2024
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The set T� of (finite, ranked, ordered) trees over � is the smallest set of strings S such
that if ‡ œ �(k), k Ø 0, and s1, . . . , sk œ S, then also ‡(s1, . . . , sk) œ S. We write ‡ instead
of ‡(). For a tree s = ‡(s1, . . . , sk) with ‡ œ �(k), k Ø 0, and s1, . . . , sk œ T�, we define
the set V (s) ™ Nú of nodes of s as {Á} fi {iu | i œ [k], u œ V (si)}; thus, nodes are strings
over positive integers, where Á denotes the root node of s, and for a node u, ui denotes the
i-th child of u. For u œ V (s) we denote by s[u] the label of u in s and by s/u the subtree
rooted at u. Formally, let s = ‡(s1, . . . , sk) and define s[‘] = ‡, s[iu] = si[u], s/Á = s, and
s/iu = si/u for ‡ œ �(k), k Ø 0, s1, . . . , sk œ T�, i Ø 1 and u œ V (si) such that iu œ V (s).

We fix two special sets of symbols: the set X = {x1, x2, . . . } of variables and the set
Y = {y1, y2, . . . } of parameters. For k Ø 1 let Xk = {x1, . . . , xk} and Yk = {y1, . . . , yk}. Let
A be a set that is disjoint from �. Then the set T�(A) of trees over � indexed by A is defined
as T�Õ where �Õ = � fi A and rank�Õ(a) = 0 for a œ A and rank�Õ(‡) = rank� for ‡ œ �.

For a ranked alphabet � and a set A the ranked set È�, AÍ consists of all symbols È‡, aÍ
with ‡ œ � and a œ A; the rank of È‡, aÍ is defined as rank�(‡).

2.1 Tree Substitution
Let � be a ranked alphabet and let s, t œ T�. For u œ V (s) we define the tree s[u Ω t] that is
obtained from s by replacing the subtree rooted at node u by the tree t. Let ‡1, . . . ,‡n œ �(0),
n Ø 1 be pairwise distinct symbols and let t1, . . . , tn œ T�. Then t[‡i Ω ti | i œ [n]] is the
tree obtained from t by replacing each occurrence of ‡i by the tree ti. We have defined trees
as particular strings, and this is just ordinary string substitution (because we only replace
symbols of rank zero). We refer to this as “first-order tree substitution”.

In “second-order tree substitution” it is possible to replace internal nodes u (of a tree s)
by new trees. These new trees use parameters to indicate where the “dangling” subtrees s/ui
of the node u are to be placed. Let ‡1 œ �(k1), . . . ,‡n œ �(kn) be pairwise distinct symbols
with n Ø 1, k1, . . . , kn œ N, and ti œ T�(Yki) for i œ [n]. Let s œ T�. Then s[[‡i Ω ti | i œ [n]]]
denotes the tree that is inductively defined as (abbreviating [[‡i Ω ti | i œ [n]]] by [[. . . ]])
follows: for s = ‡(s1, . . . , sk), if ‡ ”œ {‡1, . . . ,‡n} then s[[. . . ]] = ‡(s1[[. . . ]], . . . , sk[[. . . ]]) and
if ‡ = ‡j for some j œ [n] then s[[. . . ]] = tj [yi Ω si[[. . . ]] | i œ [k]].

2.2 Macro Tree Transducers
A (deterministic bottom-up) tree automaton A is given by a tuple (P,�, h) where P is a finite
set of states, � is a ranked alphabet, and h is a collection of mappings h‡ : P k æ P with
‡ œ �(k) and k Ø 0. The extension of h to a mapping ĥ : T� æ P is defined recursively as
ĥ(‡(s1, . . . , sk)) = h‡(ĥ(s1), . . . , ĥ(sk)) for every ‡ œ �(k), k Ø 0, and s1, . . . , sk. For every
p œ P we define the subset Lp of trees in T� as {s œ T� | ĥ(s) = p}. We assume that Lp ”= ÿ
for every p œ P .

A (total deterministic) macro tree transducer with (regular) look-ahead (“mttr”) M is
given by a tuple (Q,P,�,�, q0, R, h), where

Q is a ranked alphabet of states,
� and � are ranked alphabet of input and output symbols,
(P,�, h) is a tree automaton (called the look-ahead automaton of M),
q0 œ Q(0) is the initial state, and
R is the set of rules, where for each q œ Q(m), m Ø 0, ‡ œ �(k), k Ø 0, and p1, . . . , pk œ P
there is exactly one rule of the form

Èq,‡(x1 : p1, . . . , xk : pk)Í(y1, . . . , ym) æ t

with t œ T�fiÈQ,XkÍ(Ym).
The right-hand side t of such a rule is denoted by rhsM (q,‡, Èp1, . . . , pkÍ)
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We use a notation that is slightly di�erent from the one used in the Introduction: instead
of, e.g., q2(x2, qid(x1)) we write Èq2, x2Í(Èqid, x1Í). Thus, we use angular brackets È. . .Í to
indicate a state call on an input subtree, and use round brackets (after the angular brackets),
to indicate the parameter arguments of the particular state call.

The semantics of an mttr M (as above) is defined as follows. We define the derivation
relation ∆M as follows. For two trees ›1, ›2 œ T�fiÈQ,T�Í(Y ), ›1 ∆M ›2 if there exists a node
u in ›1 with ›1/u = Èq, sÍ(t1, . . . , tm), q œ Q(m), m Ø 0, s = ‡(s1, . . . , sk), ‡ œ �(k), k Ø 0,
s1, . . . , sk œ T�, t1, . . . , tm œ T�fiÈQ,T�Í(Y ), and ›2 = ›1[u Ω ›] where › equals

’[[ÈqÕ, xiÍ Ω ÈqÕ, siÍ | qÕ œ Q, i œ [k]]][yj Ω tj | j œ [m]]

and ’ = rhsM (q,‡, Èĥ(s1), . . . , ĥ(sk)Í). Since M is total deterministic (i.e., for every state
q, input symbol ‡ œ �(k), k Ø 0, and look-ahead states p1, . . . , pk, M contains exactly one
corresponding rule) there is for every ›1 a unique tree ›Õ œ T�(Y ) such that ›1 ∆ú

M
›Õ. For

every q œ Q(m), m Ø 0 and s œ T� we define the q-translation of s, denoted by Mq(s), as
the unique tree t in T�(Ym) such that Èq, sÍ(y1, . . . , ym) ∆ú

M
t. We denote the translation

realized by M also by M , i.e., M = Mq0 and for every s œ T�, M(s) = Mq0(s) is the unique
tree t œ T� such that Èq0, sÍ ∆ú

M
t.

Let M be an mttr as before. We define the extension „M of M which can also process
look-ahead states at leaves of input trees. Let „M = (Q,P, �̂, �̂, q0, R fi R̂, h fi hÕ) where
�̂ = �fi{p(0) | p œ P} and �̂ = �fi{Èq, pÍ(m) | q œ Q(m), p œ P,m Ø 0}. For every q œ Q(m),
m Ø 0, and p œ P we let h(p) = p and we let the rule Èq, pÍ(y1, . . . , ym) æ Èq, pÍ(y1, . . . , ym)
be in R̂; note that the Èq, pÍ on the right-hand side of this rule is an output symbol. For the
original transducer M we say that the pair (q, p) is reachable (in M) if there is an input tree
s œ T

�̂
such that Èq, pÍ occurs in „M(s). Clearly it is decidable for a given pair (q, p), whether

or not it is reachable; this is because (1) inverse translations of mttrs e�ectively preserve
regularity [13, 22], (2) the set of all trees in T

�̂
that contain at least one occurrence of Èq, pÍ

is (e�ectively) regular, and (3) emptiness of regular tree languages is decidable [4].
We say that M is nondeleting, if for every state q œ Q(m), ‡ œ �(k), k Ø 0, p1, . . . , pk œ P ,

and j œ [m], there is at least one occurrence of yj in rhsM (q,‡, Èp1, . . . , pkÍ). The next
proposition is proved in [9, Lemma 6.7] (for mttrs that do not copy parameters, but the
proof works analogously for arbitrary mttrs).

I Proposition 1. For every mttr, an equivalent nondeleting mttr M can be constructed. For

every state q of a nondeleting mttr M of rank m and for every j œ [m]: Mq(s) contains at

least one occurrence of yj, for every s œ T�.

It is well known that the finiteness of ranges of compositions of mttrs is decidable [5]. A
(partial nondeterministic) top-down tree transducer with look-ahead (“topr” for short) is an
mttr as before, where Q = Q(0) and R may contain none or several rules for each given q
and ‡.

I Proposition 2. ([5, Theorem 4.5]) For a given composition of mttrs and (partial non-

deterministic) toprs it is decidable whether or not the range of the composition is finite. In

the case of finiteness, the range can be constructed.

3 Depth Proper Normal Form

The depth proper normal form requires that each parameter of each state q occurs at
unbounded depth in the output trees of that state (for each given look-ahead state p such
that (q, p) is reachable). Formally, let q be a state of rank m Ø 1, j œ [m], and p œ P . If
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(q, p) is reachable, then for every natural number n there must exist an input tree sn œ Lp

such that yj occurs at depth > n in the tree Mq(sn). Conversely, we say that parameter
yj is depth-bounded for q and p if there exists an n for which no such input tree sn œ Lp

exists; more generally, we say that Z ™ Ym is depth-bounded for q and p, if each y œ Z is
depth-bounded for q and p.

If Z is depth-bounded for q and p, then there are only finitely many output paths in the
trees in Mq(Lp) under which the parameters from Z occur. The Z-skeleton of an arbitrary
tree t is obtained from t by replacing each top-most node u such that t/u does not contain
any occurrence of a parameter from Z by some symbol. Clearly, Z is depth-bounded for q
and p if and only if the Z-skeleta of all trees in Mq(Lp) form a finite set.

Let � be an arbitrary ranked alphabet, m Ø 1, t œ T�(Ym), and Z ™ Ym. Let us write
ps(t) ™ Ym for the set of parameters occurring in t. Let us now be more specific as to
which symbols replace the top-most nodes u of t such that ps(t/u) fl Z = ÿ. Since in our
construction later we will want to obtain a transducer that is nondeleting, it will be helpful
to know which parameters appear in a given deleted tree. Therefore we replace such nodes u
by the set ps(t/u). We denote by ÂtÊ

Z
the Z-skeleton of t and define it inductively as follows

(where ” œ �):

ÂtÊ
Z
=

Y
__]

__[

t if t œ Z

”(Ât1Ê
Z
, . . . , ÂtnÊ

Z
) if ps(t) fl Z ”= ÿ and t = ”(t1, . . . , tn)

ps(t) if ps(t) fl Z = ÿ.

The definition of ÂtÊ
Z
is extended to sets L of trees as ÂLÊ

Z
= {ÂtÊ

Z
| t œ L}. We call

Y -nodes the nodes u in V (ÂtÊ
Z
) such that ÂtÊ

Z
/u = Z Õ ™ Ym. We denote by U(ÂtÊ

Z
) the

set of Y -nodes on ÂtÊ
Z
. The notion of parameters in a tree naturally extends to Z-skeleta

with, for a Y -node labeled Z Õ: ps(Z Õ) = Z Õ. The proof of the next lemma is straightforward
by induction on t (see full version of this paper: Lemma 3 in [18]).

I Lemma 3. Let � be a ranked alphabet, m Ø 1, Z ™ Ym, and t œ T�(Ym). (1) t =
ÂtÊ

Z
[u Ω t/u | u œ U(ÂtÊ

Z
)]. (2) ps(ÂtÊ

Z
) = ps(t).

Finally, we define depth properness for mtts with look-ahead.

I Definition 4. The mttr M = (Q,P,�,�, q0, R, h) is in depth proper normal form (or,

synonymously, M is depth proper) if for every q œ Q(m)
, m Ø 1, and p œ P it holds that if

(q, p) is reachable, then ÂMq(Lp)Ê{yj} is infinite for all j œ [m].

From now on we will want to make use of the following definitions:

Fp = {q œ Q(m) | ÷j œ [m], ÂMq(Lp)Ê{yj} is finite}
Y (q, p) = {yj | j œ [rankQ(q)] such that ÂMq(Lp)Ê{yj} is finite}

It should be clear that ÂMq(Lp)ÊY (q,p)
is finite for every q and p, as stated in the next

lemma (the proof is in the full version: Lemma 5 in [18]).

I Lemma 5. Let M be an mtt, q a state of M , and p a look-ahead state of M . Then

ÂMq(Lp)ÊY (q,p)
is finite.
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3.1 Construction of the Normal Form and Examples
Let M be an mttr as before. We assume that M is nondeleting (which is justified by
Proposition 1). The idea of the construction is as follows. First, we determine all reachable
pairs (q, p) such that Y (q, p) ”= ÿ. Let (q, p) be such a pair and let Z = Y (q, p). An occurrence
of Èq, xiÍ in a right-hand side rhsM (qÕ,‡, Èp1, . . . , pkÍ) such that pi = p is called a (q, p)-call.
Our aim is to replace each (q, p)-call by an appropriate tree from ÂMq(Lp)ÊZ . Just which
tree is the appropriate one will be determined by regular look-ahead. Moreover, such trees
should be modified not to contain leaf nodes labeled by subsets of Y : such nodes will be
replaced by calls of new “helper states”.

I Definition 6. Let M = (Q,P,�,�, q0, R, h) be a nondeleting mttr that is not depth proper.

We construct the new mttr fi(M) = (Q fi H,P Õ,�,�, q0, RÕ, hÕ). For every q œ Q(m)
and

p œ P such that Y (q, p) ”= ÿ, H contains the following set of helper states:

{[q, p, t, u](|U |) | t œ ÂMq(Lp)ÊY (q,p)
, u œ V (t), t/u = U ™ Ym}

and P Õ
contains (p,Ï) for any function Ï that assigns to each q œ Fp a tree in ÂMq(Lp)ÊY (q,p)

.

Observe that H and P Õ
are well defined, because ÂMq(Lp)ÊY (q,p)

is finite by Lemma 5. Note

that |U | Æ |Ym \ Y (q, p)|; since Y (q, p) is non-empty this implies that the rank of each helper

state is at most (r ≠ 1), where r is the maximal rank of the states in Q.

For every q œ Q(m)
, m Ø 0, ‡ œ �(k)

, k Ø 0, and (p1,Ï1), . . . , (pk,Ïk) œ P Õ
we let the

rule

Èq,‡(x1 : (p1,Ï1), . . . , xk : (pi,Ïi)Í(y1, . . . , ym) æ rhsM (q,‡, Èp1, . . . , pkÍ)[[.]]

be in RÕ
, where the second-order tree substitution [[.]] is defined as follows.

[[.]] = [[ÈqÕ, xiÍ Ω Ïi(qÕ)
#
u Ω [qÕ, pi,Ïi(qÕ), u](yj1 , . . . , yjn) |

Ïi(qÕ)/u = {yj1 , . . . , yjn}, j1 < · · · < jn
$
| qÕ œ Fpi , i œ [k]]].

We define hÕ
‡
((p1,Ï1), . . . , (pk,Ïk)) = (p,Ï) where p = h‡(p1, . . . , pk) and, using the special

second-order substitution [[. . . ]]$ from Definition 8, for every q œ Fp,

Ï(q) =
Í
rhsM (q,‡, Èp1, . . . , pkÍ)[[ÈqÕ, xiÍ Ω Ïi(qÕ) | qÕ œ Fpi , i œ [k]]]$

Î

Y (q,p)

.

The special second-order substitution [[. . . ]]$ is the same as the normal one except that the

special first-order substitution is applied for each involved first-order substitution. The special

first-order substitution is the same as the normal one except that it gives special treatment to

Y -nodes which are replaced by Y -nodes containing all parameters occurring in trees to be

substituted for the parameters in the original Y -nodes.

Note that, when Lp ”= ÿ for all p œ P , then L(p,„) ”= ÿ for all (p,„) œ P Õ
. For every

helper state [q, p, t, u] œ H(n)
, n Ø 0, ‡ œ �(k)

, k Ø 0, and (p1,Ï1), . . . , (pk,Ïk) œ P Õ
such

that h‡(p1, . . . , pk) = p we let the rule

È[q, p, t, u](‡(x1 : (p1,Ï1), . . . , xk : (pk,Ïk))Í(y1, . . . , yn) æ ›/u[yj‹ Ω y‹ | ‹ œ [n]]

be in RÕ
where t/u = {yj1 , . . . , yjn}, j1 < · · · < jn, › = rhsM (q,‡, Èp1, . . . , pkÍ)[[.]], and [[.]] is

the substitution from above.
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We now show how the depth proper normal form is achieved using an example. An
additional example (which makes more interesting use of helper states) can be found in
the full version of this paper: at page 21 in [18]. Let M = (Q, {p},�,�, q0, R, h0) with
Q = {q(0)

0
, q(1)

1
, q(2)

2
}, � = {a(1), b(1), e(0)}, and � = {f (2), g(1), e(0)} be an mttr where

(�, {p}, h0) with Lp = T� and R consists of these rules:

Èq1, a(x)Í(y1) æ Èq2, xÍ(y1, Èq1, xÍ(y1)) Èq2, a(x)Í(y1, y2) æ f(y1, Èq1, xÍ(g(y2)))
Èq1, b(x)Í(y1) æ y1 Èq2, b(x)Í(y1, y2) æ f(y2, y1)

Èq1, eÍ(y1) æ g(y1) Èq2, eÍ(y1, y2) æ f(y2, y1)

We suppose that the q0-rules are defined so that all states are reachable. Now we have
Fp = {q2}, Y (q2, p) = {y1}, and ÂMq2(Lp)Ê{y1} = {t1, t2} with t1 = f(y1, {y2}) and t2 =
f({y2}, y1). As before, we can rewrite q2-calls with the skeleta, but since there are two
possibilities t1 and t2, we need to separate the rules according to the input using the look-
ahead. In general, Fp contains several states each of which may have multiple skeleta, so each
look-ahead contains a finite map from Fp to skeleta. Let Ï1 = {q2 ‘æ t1} and Ï2 = {q2 ‘æ t2}
such that Lp,Ï1 = {a(s) | s œ T�} and Lp,Ï2 = {b(s) | s œ T�} fi {e}. The (q1, a)-rule
containing a q2-call is separated as

Èq1, a(x : (p,Ï1))Í(y1) æ f(y1, È[q2, p, t1, 2], xÍ(Èq1, xÍ(y1)))
Èq1, a(x : (p,Ï2))Í(y1) æ f(È[q2, p, t2, 1], xÍ(Èq1, xÍ(y1)), y1)

where [q2, p, t1, 2] and [q2, p, t2, 1] are helper states. Each helper state has rank 1 because the
corresponding node in the skeleton is a Y -node of length 1. The arguments of the call are
inherited from the arguments of the original q2-call that occur in the sequence. For example,
È[q2, p, t1, 2], xÍ is called with Èq1, xÍ(y1) since t1 has a Y -node {y2} and the original q2-call
has Èq1, xÍ(y1) as the second argument. The rules of these helper states are constructed from
the original q2-rule with substitution (which causes nothing since no states in Fp are called)
and extracting a subtree at the Y -node, that is,

È[q2, p, t1, 2], a(x : (p,Ï))Í(y1) æ Èq1, xÍ(g(y1))
È[q2, p, t2, 1], b(x : (p,Ï))Í(y1) æ y1
È[q2, p, t2, 1], eÍ(y1) æ y1

where Ï œ {Ï1,Ï2} and we had to rename the parameter y2 into y1 (because the helper
states only refer to y2). Note that rules for ([q2, p, t1, 2], b), ([q2, p, t1, 2], e) and ([q2, p, t2, 1], a)
do not have to be considered. These rules are not referred because the states are never called
with the input symbols due to their look-ahead. For example, the [q2, p, t1, 2]-call occurs only
in the (q1, a)-rule with x œ Lp,Ï1 in which the root symbol cannot be b.

Thereby we have been able to remove every call of states in Fp. However, new improper
states may be generated by the separation of rules because of the look-ahead introduction.
In fact, we have Fp,Ï2 = {q1, q2, [q2, p, t2, 1]} in the example above. Since every q2-call has
already been removed in the previous step, we have to apply the same technique again for the
calls of q1 and [q2, p, t2, 1]. We have Y (q1, (p,Ï2)) = {y1} and Y ([q2, p, t2, 1], (p,Ï2)) = {y1}.
Moreover

%
M Õ

q1(Lp,Ï2)
&
{y1}

= {y1, g(y1)} and
Í
M Õ

[q2,p,t2,1]
(Lp,Ï2)

Î

{y1}
= {y1}.

Look-ahead has to be introduced to determine which skeleton to output. Two maps
over Fp,Ï2 , except for q2 whose call has already been removed, are defined: Ï3 = {q1 ‘æ
y1, [q2, p, t2, 1] ‘æ y1} and Ï4 = {q1 ‘æ g(y1), [q2, p, t2, 1] ‘æ y1} such that Lp,Ï2,Ï3 = {b(s) œ
Lp,Ï2 | s œ T�} and Lp,Ï2,Ï3 = {e}. The (q1, a)- and ([q2, p, t1, 2], a)-rules with look-ahead
Ï2 which contains a q2-call are separated as follows:
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Èq1, a(x : (p,Ï2,Ï3))Í(y1) æ f(y1, y1)
È[q2, p, t1, 2], a(x : (p,Ï2,Ï3))Í(y1) æ g(y1)
Èq1, a(x : (p,Ï2,Ï4))Í(y1) æ f(g(y1), y1)
È[q2, p, t1, 2], a(x : (p,Ï2,Ï4))Í(y1) æ g(g(y1))

The resulting mttr is depth proper.

3.2 Correctness Proof and Termination of Iteration
Here we prove the correctness of transducer fi(M) that was defined in Definition 4. Lemma 7
establishes the correctness of the look-ahead, relates the states of fi(M) to those of M ,
and shows that the transducer fi(M) is nondeleting. The latter is needed, so that the
construction of fi can be carried out iteratively (recall from Definition 4 that M is required
to be nondeleting in order to construct fi(M)). To prove Point (2) we use a “special” kind
of second-order tree substitution which replaces Y -nodes by new Y-nodes consisting of
parameters in the output trees that would have been substituted for the parameters in the
original Y -node (Definition 8).

I Lemma 7. Let M be a nondeleting mttr and N = fi(M) be the mttr of Definition 6, both

with the tuples as in that definition. Let s œ T� with ĥÕ(s) = (p,Ï).
(1) p = ĥ(s),
(2) ’q œ Fp: Ï(q) = ÂMq(s)ÊY (q,p)

,

(3) ’q œ Q: Nq(s) = Mq(s),
(4) ’q œ Fp and u œ V (t) with t = Ï(q) and t/u = {yj1 , . . . , yjn} with

j1 < · · · < jn: N[q,p,t,u](s) = Mq(s)/u[yj‹ Ω y‹ | ‹ œ [n]], and
(5) the mttr N is nondeleting.

We first need a small lemma showing that the skeleton of the output of an mttr M can
be directly computed from given a input tree by modifying the rules of M . For this lemma
we first need to define how to compute second-order substitutions of skeleta, which will be
used for the modification of the right-hand sides of rules. We do so on a nondeleting mttr
M , i.e. such that states always use all their parameters.

I Definition 8. Let � be a ranked alphabet and let t1, . . . , tn œ T�(Y ). Let s œ T�(YnfiP(Yn)).
The special first-order substitution [yi Ω ti | i œ [n]]$ (for short [.]$) applied to s is inductively

defined as:

s[.]$ =

Y
__]

__[

ti if s = yi for i œ [n]
“(s1[.]$, . . . , sk[.]$) if s = “(s1, . . . , sk)t

iœU
ps(ti) if s = {yi | i œ U} ™ Yn for some U ™ [n].

Let “(k1)
1

, . . . , “(kn)
n œ �, n Ø 1 be pairwise di�erent symbols and assume now that

ti œ T�(Yki fi P(Yki)) for i œ [n] and that s œ T�(Yn). The special second-order substitution
[[“i Ω ti | i œ [n]]] (for short [[.]]$) applied to s is inductively defined as:

s[[.]]$ =

Y
__]

__[

ti[yj Ω sj [[.]]$ | j œ [ki]]$ if s = “i(s1, . . . , ski) for i œ [n]
“(s1[[.]]$, . . . , sk[[.]]$) if s = “(s1, . . . , sk) with “ ”œ {“1, . . . , “n}
s if s = yj for j œ [n].
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For all sets Z ™ Ym such that no Y -node in t[[.]]$ intersects Z, we define the Z-skeleton%
t[[.]]$

&
Z

of t[[.]]$ inductively as before, with a special case for Y -nodes: for all Y -nodes S we

have ÂSÊ
Z
= S ™ Ym \ Z.

I Lemma 9. Let M be a nondeleting mttr as before. Let q œ Q, ‡ œ �(k)
, and p1, . . . , pk œ P .

Let p = h(‡(p1, . . . , pk)) and t = rhsM (q,‡, Èp1, . . . , pkÍ). Let s1 œ Lp1 , . . . , sk œ Lpk . By

[[.]]$ we denote the substitution [[ÈqÕ, xiÍ Ω ÂMqÕ(si)ÊY (qÕ,pi)
| qÕ œ Q, i œ [k]]]$ and by [[M ]] we

denote [[ÈqÕ, xiÍ Ω MqÕ(si) | qÕ œ Q, i œ [k]]].
(1) If y œ Y (q, p) and y occurs in t in the j-th argument of a node ÈqÕ, xiÍ for qÕ œ Q and

i œ [k], then yj œ Y (qÕ, pi).
(2) No Y -node in t[[.]]$ intersects Y (q, p).
(3)

%
t[[.]]$

&
Y (q,p)

= Ât[[M ]]Ê
Y (q,p)

Proof. If some yj /œ Y (qÕ, pi) then ÂMqÕ(Lpi)Êyj
is infinite and, if y occurs in tj (j œ [m]),

then ÂMq(Lp)Êy is also infinite and y /œ Y (q, p). So (1) holds.
If y œ Y (q, p) occurs in a Y -node of t[[.]]$, then it occurs in t in the j-th argument of a

node ÈqÕ, xiÍ with yj /œ Y (qÕ, pi), which contradicts (1). So (2) holds.
The statement (3) is proved by induction on t. The cases of t = yj and t = “(t1, . . . , tn)

are easy. In the case of t = ÈqÕ, xiÍ(t1, . . . , tm), we have
Í
t[[.]]$

Î

Y (q,p)

=
Í
ÂMqÕ(si)ÊY (qÕ,pi)

[yj Ω tj [[.]]$ | j œ [m]]$
Î

Y (q,p)

=
Í
ÂMqÕ(si)ÊY (qÕ,pi)

[yj Ω tj [[M ]] | j œ [m]]$
Î

Y (q,p)

= ÂMqÕ(si)[yj Ω tj [[M ]] | j œ [m]]Ê
Y (q,p)

= Ât[[M ]]Ê
Y (q,p)

. J
We can now prove Lemma 7:

Proof. All the statements are proven by induction on the structure of s. Let s = ‡(s1, . . . , sk)
with ‡ œ �(k), k Ø 0, and s1, . . . , sk œ T�. For i œ [k] let ĥÕ(si) = (pi,Ïi). By the definition
of hÕ, p = h‡(p1, . . . , pk), which is equal to ĥ(s). Thus, Statement (1) holds. For State-
ment (2) let q œ Fp: Then Ï(q) is defined as

%
’[[Ïi]]$

&
Y (q,p)

where ’ = rhsM (q,‡, Èp1, . . . , pkÍ)
and [[Ïi]]$ denotes the special substitution [[ÈqÕ, xiÍ Ω Ïi(qÕ) | qÕ œ Fpi , i œ [k]]]$. By in-
duction,

%
’[[Ïi]]$

&
Y (q,p)

equals
Í
’[[ÈqÕ, xiÍ Ω ÂMqÕ(si)ÊY (qÕ,pi)

| qÕ œ Fpi , i œ [k]]]$
Î

Y (q,p)

. By
Lemma 9(3) the latter equals Â’[[ÈqÕ, xiÍ Ω MqÕ(si) | qÕ œ Fpi , i œ [k]]]Ê

Y (q,p)
= ÂM(s)Ê

Y (q,p)
.

We now prove Statement (3). Let q œ Q. Then Nq(s) = ’[[.]][[N ]], where ’ = rhsM (q,‡,
Èp1, . . . , pkÍ), [[.]] is the substitution as in the construction, and [[N ]] = [[Èr, xiÍ Ω Nr(si) |
r œ QÕ, i œ [k]]]. By the induction hypothesis of Statement (2), we can replace Ïi(qÕ) by
ÂMqÕ(si)ÊY (qÕ,pi)

in the substitution [[.]]. This gives

’[[ÈqÕ, xiÍ Ω ÂMqÕ(si)ÊY (qÕ,pi)
[uÕ Ω [qÕ, pi,Ïi(qÕ), uÕ](yj1 , . . . , yjn) |

Ïi(qÕ)/uÕ = {yj1 , . . . , yjn}, j1 < · · · < jn] | qÕ œ Fpi , i œ [k]]][[N ]].

This can be written as ’[[.]][[H]][[Q]], where [[H]] = [[ÈqÕ, xiÍ Ω NqÕ(si) | qÕ œ H, i œ [k]]] and
[[Q]] = [[ÈqÕ, xiÍ Ω NqÕ(si) | qÕ œ (Q \ Fpi), i œ [k]]]. By induction of Statement (4) the
substitution [[H]] replaces the subtree [qÕ, pi,Ïi(qÕ), uÕ](yj1 , . . . , yjn) by the tree MqÕ(si)/u[yj‹

Ω y‹ | ‹ œ [n]][y‹ Ω yj‹ | ‹ œ [n]] = MqÕ(si)/u. Thus we obtain:

’[[ÈqÕ, xiÍ Ω ÂMqÕ(si)ÊY (qÕ,pi)
[uÕ Ω MqÕ(si)/uÕ | uÕ œ U(ÂMqÕ(si)ÊY (qÕ,pi)

)]

| qÕ œ Fpi , i œ [k]]][[Q]]
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By Lemma 3 (for Z = Y (qÕ, pi) and t = MqÕ(si)) the tree on the right of the arrow in the
leftmost second-order substitution equals MqÕ(si). We have:

’[[ÈqÕ, xiÍ Ω MqÕ(si) | qÕ œ Fpi , i œ [k]]][[ÈqÕ, xiÍ Ω NqÕ(si) | qÕ œ Q \ Fpi , i œ [k]]].

By induction of Statement (3), NqÕ(si) = MqÕ(si) for q œ Q \ Fpi . This gives us exactly
Mq(s), by the definition of the semantics of mttrs. Thus,

Nq(s) = ’[[.]][[N ]] = Mq(s). (1)

This concludes the proof of Statement (3).
We now prove Statement (4). Let q œ Fp and u œ V (t) with t = Ï(q) and t/u ™ Y .

By the definition of the rules for the helper states, N[q,p,t,u](s) = (’[[.]])/u[[N ]][y] where
t/u = {yj1 , . . . , yjn}, j1 < · · · < jn, and [y] = [yj‹ Ω y‹ | ‹ œ [n]]. It follows from Lemma 9(1)
that if ÈqÕ, xiÍ occurs in ’ = rhsM (q,‡, Èp1, . . . , pkÍ) and q œ Fp, then qÕ ”œ Q \ Fpi . Hence,
every proper ancestor v of u is labeled by a symbol in �, i.e., (’[[.]][y])[v] œ �. This implies
that we can move the “/u” operation of taking the subtree at node u to the right (after the
application of the substitution [[N ]]) in the above displayed formula. We obtain ’[[.]][[N ]]/u[y].
By the right equation in Formula 1, this equals Mq(s)/u[y].

To prove Statement (5), let q œ Q(m), m Ø 0. Then

’ Õ = rhsN (q,‡, È(p1,Ï1), . . . , (pk,Ïk)Í) = ’[[.]],

where ’ = rhsM (q,‡, Èp1, . . . , pkÍ) and [[.]] is as before. By Statement (2), [[.]] substitutes
occurrences of ÈqÕ, xiÍ with i œ [k] and qÕ œ Fpi by the tree ÂMqÕ(si)ÊY (qÕ,pi)

in which
leaves labeled by Z ™ Ym are replaced by ÈqH , xiÍ(yj1 , . . . , yjn) with Z = {yj1 , . . . , yjn}. By
Lemma 3(2) this implies that yj occurs in ’ Õ for each j œ [m]. J

We show that the iteration of the construction fi(M) will terminate with a transducer that
is depth proper. First, let us discuss what property a single iteration of fi ensures. Let p œ P .
Note that the set Fp is defined independently of reachability, i.e., Fp may contain states q such
that (q, p) is not reachable. Let Ï such that (p,Ï) œ P Õ. Then Fp ™ F(p,Ï). This inclusion
follows from Lemma 7 as follows: let s œ L(p,Ï) and let q œ Fp be of rank m. The latter means
that there exists a j œ [m] and a number n such that every occurrence of yj in Mq(sÕ) is at
depth Æ n for every sÕ œ Lp. By Lemma 7 (1), s œ Lp and by Lemma 7 (3), Nq(s) = Mq(s).
Thus, every occurrence of yj in Nq(s) also occurs at depth Æ n. So q œ F(p,Ï).

We now consider reachability. We say that a state q is depth proper, if for all p œ P
such that (q, p) is reachable, q ”œ Fp. If q œ Fp, then for all Ï such that (p,Ï) œ P Õ it holds
that (q, (p,Ï)) is not reachable. This property follows immediately from the definition of
look-ahead and the rules of fi(M): the substitution [[.]] replaces each state call ÈqÕ, xiÍ with
q œ Fpi by a tree that does not contain states of Q. So, if (q, (p,Ï)) is reachable, then q ”œ Fp;
however, it may be that q œ F(p,Ï), which means that q is not depth proper. It means that
if F(p,Ï) = Fp for all (p,Ï) œ P Õ, then all states q œ Q are depth proper. Let Q0 = Q and
consider now the iterated application of fi. Clearly, after some iterations of fi, it will hold
that F(p,Ï) = Fp for all (p,Ï) œ P Õ. To see this, consider the chain of inclusions

Fp fl Q0 ™ F(p,Ï1) fl Q0 ™ · · · ™ F(p,Ï1,...,Ïk)
fl Q0 ™ . . .

for any maps Ïi introduced in the look-ahead of fii(M). Since Q0 is finite, the chain contains
only finitely many strict inclusions. Hence there is a minimal n such that F(p,Ï1,...,Ïn)

flQ0 =
F(p,Ï1,...,ÏnÕ ) fl Q0 for all nÕ > n.
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Consider a tree with an artificial root node which contains all such chains, i.e., for each
p œ P there is exactly one child of the root node labeled Fp, and a node labeled Fp has
children labeled F(p,Ï) for each (p,Ï) œ P Õ, etc. Moreover, a node labeled F(p,Ï1,...,Ïn)

as
in the chain above is a leaf of this tree. Since each node of this tree is finitely branching
(because P Õ is finite) and each path has finite length, we know by König’s lemma that the
tree is finite. Thus, if d is the depth of this tree, then for the mttr M Õ = fid(M), all states in
Q0 are depth proper.

Let m be the maximal rank of the states in Q0. Since all helper states are of rank < m,
we know that M Õ contains no improper states of rank Ø m. We now proceed in the same
fashion and construct a transducer M ÕÕ = fin

Õ(M Õ) which contains no improper states of rank
Ø (m ≠ 1). In a similar way we eventually obtain an mttr for which all states are depth
proper (and which is equivalent to M). Thus, even though we do not constructively derive a
precise bound, we know that after some number of applications of fi we are sure to obtain a
depth proper mttr.

Before we state the main theorem of this section, we need the following lemma (the proof
is a straightforward reduction to Proposition 2 and can be found in the full version of this
paper: Lemma 8 in [18]).

I Lemma 10. Let M = (Q,P,�,�, q0, R, h) be an mttr and let q œ Q(m)
, m œ N, j œ [m],

and p œ P . It is decidable whether or not ÂMq(Lp)Ê{yj} is finite. In case of finiteness,

ÂMq(Lp)Ê{yj} can be constructed.

Since for a pair (q, p) it is decidable whether or not it is reachable (see Section 2.2),
Lemma 10 implies that it is decidable whether or not a given mttr is depth proper.

I Theorem 11. For every mttr M , we can construct an equivalent mttr M Õ
such that M Õ

is

depth proper.

Proof. There is a nondeleting mttr M0 equivalent to M ([9] or Proposition 1). We repeatedly
construct equivalent transducers fi(M), fi(fi(M)), etc. until a proper mttr is obtained (which
is decidable by Lemma 10). The repetition terminates (first eliminating all reachable calls
of improper states of the highest rank m, then those or rank m ≠ 1, etc.) as explained
above. J

4 Linear Height and Linear Size-to-Height Increase

In this section we define the Linear Height and Linear Size-to-Height Increase properties.
We then characterize and give decision algorithms for those properties by using the depth
proper form.

Let � be a ranked alphabet and t be a tree over �. We define the size |t| of a tree t
as its number of nodes |V (t)|. The height ht(t) of t is defined as ht(t) = 0 if t œ �(0) and
ht(t) = 1 +max{ht(ti) | i œ [k]} if t = “(t1, . . . , tk) for “ œ �(k), k Ø 1, and t1, . . . , tk œ T�.

Let M be an mttr (with input ranked alphabet �). Then M has linear size-to-height

increase (for short LSHI) if there exists a number c such that for every input tree s œ T�:
ht(M(s)) Æ c · |s|. The mttr M has linear height increase (for short LHI) if there exists a
number c such that for every input tree s œ T�: ht(M(s)) Æ c · ht(s).

We now introduce two additional properties for mttrs which will allow us to decide
whether a given mttr has LSHI or LHI. Recall that „M denotes the extension of M : „M can
translate input trees which may contain leaves that are labeled by elements from P (the set
of look-ahead states of M). Whenever the state q of M , of rank m, encounters an input
node u labeled by an element p of P , the transducer „M outputs Èq, pÍ(y1, . . . , ym). We call a
tree in s œ T�(P ) a �-context if it contains exactly one occurrence u of an element of P .
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We say that the mttr M is finite nesting (for short fnest), if there exists a number c
such that for every �-context s there are at most c-many occurrences of symbols Èq, pÍ with
q œ Q on any path of the tree „M(s); in this case, we say that c is a nesting bound of M . We
say that M is finite yield nesting (for short fynest), if there exists a number c such that for
every input tree s œ T�(P ) there are at most c-many occurrences of symbols from Èq, pÍ with
q œ Q on any path of the tree „M(s); in this case, we say that c is a yield nesting bound of
M . The proof of the next lemma is straightforward (by reduction to Proposition 2).

I Lemma 12. Let M be an mttr. Then (1) it is decidable whether or not M is finite nesting

and (2) it is decidable whether or not M is finite yield nesting.

Proof. Let M = (Q,P,�,�, q0, R, h). We use the extension „M = (Q̂, P, �̂, �̂, q0, R̂, h) of
M with input trees in s œ T�(P ) which contain (1) exactly one or (2) arbitrarily many
occurrences of elements of P . We then use a nondeterministic top-down tree transducer N
which chooses any path in the tree „M(s) and outputs only the elements from ÈQ,P Í on that
path, now seen as unary symbols. The resulting output language N(„M(T�)) is finite if and
only if M is (1) fnest or (2) fynest.

Formally, N = ({q(0)
1

}, �̂,�, q1, RÕ) where � = ÈQ,P Í fi {e(0)}. For every ” œ �(k), k Ø 1,
and i œ k we let the rule Èq1, ”(x1, . . . , xk)Í æ Èq1, xiÍ be in RÕ. For every ” œ �(0) we let
the rule Èq1, ”Í æ e be in RÕ. For every Èq, pÍ œ ÈQ,P Í(m), m Ø 1, and i œ [m] we let the rule
Èq1, Èq, pÍ(x1, . . . , xm)Í æ Èq, pÍ(Èq1, xiÍ) be in RÕ. For every Èq, pÍ œ ÈQ,P Í(0) we let the rule
Èq1, Èq, pÍÍ æ Èq, pÍ be in RÕ. It is straightforward to show (by induction on the structure of
s), that N(„M(T�(P ))) is finite if and only if M is fynest. Let L be the set of trees in T�(P )
which contain exactly one occurrence of an element of P . It is straightforward to show (by
induction on the structure of s), that N(„M(L)) is finite if and only if M is fnest. J

Informally the next lemma is easy to understand, e.g., for Statement (1), if M is finite
nesting with bound c, then a single node of an input tree can only “contribute” at most
c · mhr to the height of the output tree, where mhr denotes the maximum height of the
right-hand side of any rule of the mttr.

I Lemma 13. Let M be an mttr. (1) If M is finite nesting, then it is of linear size-to-height

increase. (2) If M is finite yield nesting, then it is of linear height increase.

Proof. Informally, we can understand this lemma by looking at a given path O in an output
tree and, using origin semantics, at how many nodes along this path have their origin in
di�erent parts of the input tree.

For (1), the finite nesting property gives a bound c on the number of state calls to a
single input node, nested along path O. Intuitively, noting mhr the maximum height of the
right-hand side of a rule, c ·mhr is a bound on the number of output nodes along path O
with their origin in a single input node. This bound clearly implies that the height of the
output (maximum number of nodes on a path) is linearly bounded by the size of the input.

For (2), instead of looking at a single input node, we look at all the input nodes at a
given depth d in the input. The finite yield nesting property implies a bound c on the nesting
(along a path O) of state calls to input nodes of depth d. Each such call may produce at
most mhr nodes along path O with their origin in a node of depth d. So c.mhr is a bound
for the number of nodes along path O with their origin in a node of depth d.

Formally, we apply „M to a tree t œ T�(P ). We modify t by substituting nodes in P , and
we bound the growth of the height of „M(t) for each substitution. We will conclude by stating
that any input tree s œ T� can be built by successive substitutions, and so the height of the
output is linearly bounded by the number of substitutions (which will be the size of s for (1),
and the height of s for (2)). Let M = (Q,P,�,�, q0, R, h) and let mhr be the maximum
height of the right-hand side of any rule in R. Let s be a fixed tree in T�.
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To prove (1), consider an arbitrary set U of pairwise independent (i.e. not being des-
cendants of each other) nodes of a fixed input tree s œ T�. Let sÕ = s[u Ω h(s/u) | u œ U ],
let u œ U , and ‡ = s[u] œ �(k) with k Ø 0. Let c be a nesting bound for M , then,
along any output path in „M(sÕ), there are at most c state calls Èq, sÕ/uÍ with origin
u in sÕ. Then „M(sÕ[u Ω ‡(h(s/u1), . . . , h(s/uk))]) is obtained by replacing such state
calls with the corresponding right-hand side of rules, which implies that: ht(„M(sÕ[u Ω
‡(h(s/u1), . . . , h(s/uk))])) Æ c ·mhr+ ht(„M(sÕ)). The tree s œ T� can be obtained from the
tree h(s) œ T�(P ) by |s| such substitutions. The height of „M(h(s)) = Èq0, h(s)Í is 0. So
ht(M(s)) Æ c ·mhr · |s|, so M of linear size-to-height increase.

To prove (2), for i œ [ht(s)], let Ui be the set of nodes at depth i in s, and let si be the
tree obtained from s by replacing all nodes u œ Ui by h(s/u). Let c be a yield nesting bound
for M , then, along any output path O in „M(si), there are at most c state calls Èq, si/uÍ
with u œ Ui. Then „M(si+1) = „M(si[u Ω ‡u(h(s/u1), . . . , h(s/uk)) | u œ Ui]) is obtained
by replacing these state calls in „M(si) with the corresponding right-hand side of rules, so
ht(„M(si+1)) Æ c ·mhr+ ht(„M(si)). By applying this ht(s) + 1 times, starting from s0, we
obtain that the height of M(s) is Æ c ·mhr · (ht(s)+1). So M is of linear-height-increase. J

The next lemma is a central piece of the paper. This is where we use the depth proper

property.

I Lemma 14. Let M be an mttr that is depth proper. (1) If M is not finite nesting, then

M does not have linear size-to-height increase. (2) If M is not finite yield nesting, then M
does not have linear height increase.

Proof. Let M be given by a tuple as usual. To prove (1), assume that M is not fnest. We
will use this and the depth proper property to show that M does not have LSHI. Since M
is not fnest (and has only finitely many states) there must be some state q œ Q(m) with
m Ø 1 that occurs arbitrarily often on paths of output trees of „M . More precisely, there are
infinite sequences of contexts c0, c1, . . . and numbers n0 < n1 < · · · such that q occurs Ø n0

times on a path in „M(c0) and q occurs Ø n1 times on a path in „M(c0[u0 Ω c1]) where u0 is
the path in c0 to a node p œ P , etc. From this we can deduce (by considering su�ciently
many numbers ni), similarly to the proof of Lemma 6.5 of [10], that M is “(nested) input
pumpable”, i.e., there exist q1, q2, j, s0, s1, u0, u1, p such that
1. Èq1, pÍ occurs in „M(s0[u0 Ω p]),
2. „Mq1(s1[u1 Ω p]) has either: a subtree Èq1, pÍ(t1, . . . , tm) such that some tjÕ contains a sub-

tree Èq2, pÍ(›1, . . . , ›l) where ›j contains yjÕ for some jÕ œ [m], or a subtree Èq2, pÍ(t1, . . . , tl)
such that tj contains a subtree Èq1, pÍ(›1, . . . , ›m),

3. „Mq2(s1[u1 Ω p]) has a subtree Èq2, pÍ(t1, . . . , tl) such that tj contains yj , and
4. p = h(s1/u1) = h(s1[u1 Ω p]).

By “pumping”, i.e., considering sn = s0[u0 Ω s1[u1 Ω s1[u1 Ω . . . ]]] with n replacements
of the node u1, we obtain that „Mq1(sn) contains a path with at least n nested occurrences
of Èq2, pÍ. Note that this proof is simpler than that of Lemma 6.5 of [10] because we only
look here at the height of outputs instead of the size of outputs. This is simpler because,
in a mttr, a state call can copy a parameter containing large outputs of other state calls,
causing a size growth of the output that is di�cult to track, but these copies cannot be
copied vertically on top of each other, so the output height is easier to track.

This is where we use the depth proper property: we first assume by contradiction that
M has LSHI, i.e., there exists a c such that for every input tree s œ T�: ht(M(s)) Æ c · |s|.
Since M is depth proper, we may choose s œ Lp such that Mq2(s) contains an occurrence
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of yj at depth Ø c · c1 + 1, where c1 = |s1[u1 Ω p]| ≠ 1. We know that „Mq1(sn) contains
at least n nested occurrences of q2 (where the j-th subtree of q2 always contains further
nested occurrences of q2). Now let tn = s0[u0 Ω sn[un

1
Ω s]] and take n > c(c0 + c2),

where c0 = |s0[u0 Ω p]| ≠ 1 and c2 = |s|. Since |tn| = c0 + nc1 + c2, we obtain that
ht(M(tn)) > c · |tn| because ht(M(tn)) Ø n(cc1 + 1) > ncc1 + c(c0 + c2) = c · |tn| by the
choice of n. So nested input pumpability implies that M is not of LSHI.

We now prove that if M is not finite nesting, then it must be nested input pumpable. In
order to do so, we first introduce a few notations and characterize nested input pumpability

and the finite nesting property using these notations.
Let c be a �-context and q œ Q be a state of M . To talk about the nesting of states in

„Mq(c), we first give a notation for paths:
1. For any node u at depth n in „Mq(c), we note the path to node u as the sequence of pairs:

(¸1, i1) (¸2, i2) . . . (¸n, in) (¸n+1,‹)

where i1, . . . , in are indexes such that u = i1 i2 . . . in and, for all j Æ n+ 1, ¸j is the label
of node i1 . . . ij≠1 or, if node i1 . . . ij≠1 is labeled by a state call ÈqÕ, pÍ, then ¸j = qÕ,

2. Since we are only interested in the nesting of states, we remove from such paths all pairs
(¸j , ij) where ¸ œ �. We obtain nesting sequences of the form:

(q1, k1) (q2, k2) . . . (qn, kn) (¸n+1, kn+1)

where ¸n+1 is either a state in Q or a parameter, kn+1 œ {‹} fi N, and for all j Æ n,
kj œ [mj ] where mj is the arity of state qj .

3. For each such sequence, if ¸n+1 = qn+1 œ Q then we write:

(q,‹) æc (q1, k1) (q2, k2) . . . (qn, kn) (¸n+1, kn+1)

Otherwise ¸n+1 = yk is a parameter of q, kn+1 = ‹ and we write:

(q, k) æc (q1, k1) (q2, k2) . . . (qn, kn)

This defines a relation æc™ � ◊ �ú where � = {(q, k) | q œ Q(m), k œ [m] fi {‹}} and �ú

denotes the set of (possibly empty) sequences of elements of �. Note that if (q,‹) æc w,
then in the nesting sequence w œ �ú only the last pair may contain ‹. A nesting loop is given
by a �-context c with a leaf labeled p such that h(c) = p, and two pairs (q1, k1), (q2, k2) œ �
such that:

(q1, k1) æc w1 (q1, k1)w2 (q2, k2)w3 or (q1, k1) æc w1 (q2, k2)w2 (q1, k1)w3 ,
(q2, k2) æc w4 (q2, k2)w5 ,
(q1, p) is reachable, i.e., there exists �-context c0 with a leaf labeled p such that Èq1, pÍ
appears in „M(c0),

for some nesting sequences w1, w2, w3, w4, w5 œ �ú. This allows us to rephrase the nested

input pumpability property as the existence of a nesting loop. We want to prove that if M is
not finite nesting then it has a nesting loop.

We extend the relation æc to sequences of pairs on the left so that, for pairs (q1, k1),
(q2, k2) œ � and sequences w1, w2 œ �ú, if (q1, k1) æc w1 and (q2, k2) æc w2 then
(q1, k1) (q2, k2) æc w1w2. More generally, for all sequences w1, wÕ

1
, w2, wÕ

2
œ �ú, if w1 æc wÕ

1

and w2 æc wÕ
2
then w1 w2 æc wÕ

1
wÕ

2
. We can now show the following claim:

B Claim 15. For all �-contexts c and cÕ with leafs labeled resp. p and pÕ such that p = h(cÕ),
we can define the �-context c · cÕ = c[p Ω cÕ] and, for all sequences w,wÕÕ œ �ú, if w æc·cÕ wÕÕ

then there exists a sequence wÕ œ �ú such that w æc wÕ æcÕ wÕÕ.
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Proof. We only need to show this for w = (q0, k0) œ � because of the definition of æc

on sequences of pairs. Because (q0, k0) æc·cÕ wÕÕ, there must be a path � in „Mq0(c · cÕ)
reducing to wÕÕ (by removing pairs in � ◊ N and removing (yk0 ,‹) if k0 ”= ‹). Because
„Mq0(c · cÕ) = „Mq0(c)[Èq, pÍ Ω „Mq(cÕ)], path � can be similarly obtained from a path �Õ

in „Mq0(c) by substituting each (q, k) with a path in „Mq(cÕ). More specifically, noting
(q1, k1), . . . , (qn, kn) the pairs in path �Õ that are in � (in order of apparition in �Õ), we
substitute in �Õ:

each occurrence of a pair (qi, ki) œ � by a path �Õ
i
such that �Õ(yk0,‹) is a path in „Mqi(cÕ)

(for i Æ n),
each occurrence of a pair (qn,‹) by a path �Õ

n
in „Mqn(cÕ).

We get: � = �Õ[(qi, ki) Ω �Õ
i
] and, by removing pairs in (� ◊ N) fi (Y m ◊ {‹}):

wÕÕ = wÕ
1
wÕ

2
. . . wÕ

n

where for all i Æ n, wÕ
i
is obtained from �Õ

i
by removing pairs in (� ◊ N) fi (Y m ◊ {‹}).

Then, for all i Æ n and by definition of �Õ
i
, we have (qi, ki) æcÕ wÕ

i
. So (q1, k1) . . . (qn, kn) æcÕ

wÕ
1
wÕ

2
. . . wÕ

n
= wÕÕ.

We note wÕ the sequence obtained from �Õ by removing pairs in (� ◊ N) fi (Y m ◊ {‹}).
Then wÕ = (q1, k1) . . . (qn, kn) and so (q0, k0) æc wÕ æcÕ wÕÕ. C

We could also prove that æc·cÕ =æcÕ ¶ æc, but it is not necessary for this proof.
To prove that M has a nesting loop (i.e. M is nested input pumpable), we assume that M

is not finite nesting. Then, for all n œ N, there exists a �-context cn such that: (q0,‹) æcn w
for some w œ �ú with |w| Ø n. We can decompose any such cn into a concatenation
cn,1 · cn,2 · . . . cn,r and use the claim to obtain:

(q0,‹) æcn,1 w1 æcn,2 w2 · · · æcn,r wr

where w1, w2, . . . wr œ �ú and |wr| = |w| Ø n. By choosing a large enough n, we will show
how to find a nesting loop. To do that, we decompose cn into several contexts and use the
claim.

A �-context c is atomic if its leaf labeled in P is a child node of its root. Let c =
‡(t1, . . . , ti≠1, pi, ti+1, . . . , tk) be an atomic �-context and q œ Q a state of M . Noting
pj = h(tj) for j ”= i, there is in M a rule Èq,‡(x1 : p1, . . . , xk : pk)Í(y1, . . . , ym) æ t. Then
„Mq(c) = t[ÈqÕ, xjÍ Ω MqÕ(c/j) | j ”= i]. Because MqÕ(c/j) œ T� for all qÕ œ Q and j ”= i,
the nesting of state calls in „Mq(c) is the nesting of state calls of the form ÈqÕ, xiÍ in t. So,
for (q, k) œ �, the length of nesting sequences w such that (q, k) æc w is bounded by the
height of t. There is a finite number of rules for M , so there is a finite number of such t and
the length of sequences w œ � such that (q, k) æc w has an upper bound B that does not
depend on q, k or c. In other words, for all (q, k) œ �, w œ �ú and atomic �-context c we
have:

(q, k) æc w ∆ |w| Æ B

Moreover, for all w1, w2 œ �ú: w1 æc w2 ∆ |w2| Æ B |w1|.
We decompose the �-context cn into atomic �-contexts cn,1, cn,2, . . . , cn,r. Since (q0,‹)

æcn,1 w1 æcn,2 w2 · · · æcn,r wr, we have |wr| Æ Br and, since |wr| Ø n: n Æ Br. So, by
choosing n large enough, we can also make r as big as we want. In order to find a nesting
loop, we require more structure on the nesting sequences cn,1, . . . , cn,r. The precise structure
we need is described in the following claim:
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B Claim 16. For all for all r œ N, if there exists a �-context c, a pair ◊ œ � and a sequence
w œ �ú with ◊ æc w and |w| Ø Br, then there exists �-contexts c1, . . . , cr≠1, look-ahead
states p1, . . . , pr and pairs ◊i,j œ � for all i, j œ [r] with j Æ i such that:

for all i œ [r ≠ 1], h(ci) = pi and ci has a leaf labeled pi+1,
◊1,1 = ◊,
for all i, j œ [r ≠ 1] with j < i, there exists wi,j , wÕ

i,j
œ �ú such that: ◊i,j æci

wi,j ◊i+1,j wÕ
i,j
,

for all i œ [r ≠ 1], there exists wi, wÕ
i
, wÕÕ

i
œ �ú such that either ◊i,i æci wi ◊i+1,i

wÕ
i
◊i+1,i+1 wÕÕ

i
or ◊i,i æci wi ◊i+1,i+1 wÕ

i
◊i+1,i wÕÕ

i
.

These conditions can be summed up graphically. To simplify the picture, we replace all
sequences wi,j , wÕ

i,j
, wi, wÕ

i
, wÕÕ

i
for i, j œ [r] with the symbol s.

◊1,1

s ◊2,1 s ◊2,2 s

s ◊3,1 s s ◊3,2 s ◊3,3 s. . .

. .
.

s ◊r,1 s

. .
.

s ◊r,2 s

. . .

s ◊r,r≠2 s s ◊r,r≠1 s ◊r,r s. . . . . . . . .

cn,1

cn,2

cn,3
...
cn,r≠1

p1

p2

p3

pr

Note that, in this representation, we chose to represent ◊i,i æci wi ◊i+1,i wÕ
i
◊i+1,i+1 wÕÕ

i

instead of ◊i,i æci wi ◊i+1,i+1 wÕ
i
◊i+1,i wÕÕ

i
for all i œ [r ≠ 1]. But this distinction does not

matter to the proof of the claim. From now on we use s to denote arbitrary sequences in �ú

which we will not use to find a nesting loop.

Proof. We prove this by induction on r. Let c be a �-context, ◊ a pair in � and w a sequence
in �ú with ◊ æc w and |w| Ø Br+1. We split c into atomic �-contexts cÕ

1
, . . . , cÕ

n
, then we

have sequences w1, . . . , wn≠1 œ �ú such that ◊ æc
Õ
1
w1 · · · æc

Õ
n≠1

wn≠1 æcÕ
n
w. Let i be the

largest i such that there is a pair ◊Õ in the sequence wi with ◊Õ æc
Õ
i+1···cÕ

n
wÕ and |wÕ| Ø Br.

If we had |wÕ| Ø Br+1 then, because cÕ
i+1

is atomic, we would have a ◊ÕÕ in the sequence
cÕ
i+1

with ◊ÕÕ æc
Õ
i+2···cÕ

n
wÕÕ and |wÕÕ| Ø Br. So Br Æ |wÕ| < Br+1 Æ |w|. Therefore there is

another pair ◊2,1 in wi (other than ◊Õ) with ◊2,1 æc
Õ
i+1···cÕ

n
wÕÕ and |wÕÕ| Ø 1.

Since ◊Õ æc
Õ
i+1···cÕ

n
wÕ and |wÕ| Ø Br, we use the induction hypothesis on ◊Õ and cÕ

i+1
· · · cÕ

n
.

In order to prove the induction for r + 1, we rename the �-contexts c1, . . . cr≠1, look-ahead
states p1, . . . , pr and pairs ◊i,j (for j Æ i Æ r) into �-contexts c2, . . . cr, look-ahead states
p2, . . . , pr+1 and pairs ◊i+1,j+1 (for j Æ i Æ r). Then cÕ

i+1
· · · cÕ

n
= c2 · · · cr.

Since ◊2,1 æc2···cr wÕÕ with |wÕÕ| Ø 1, there are pairs ◊3,1, . . . , ◊n,1 such that ◊n,1 appears
in the sequence wÕÕ and, for all i œ [r] with i Ø 2, ◊i,1 æci w

Õ
i
◊i+1,1 wÕÕ

i
with wÕ

i
, wÕÕ

i
œ �ú. To

conclude, we choose c1 = cÕ
1
. . . cÕ

i
, p1 = h(c1) and ◊1,1 = ◊. C

In order to find a nesting loop, we need two indexes i and j with:

ICALP 2024



138:18 Deciding Linear Increase Properties of Macro Tree Transducers

(q0,‹)

s ◊i,1 s ◊i,2 · · · s ◊i,i s

s ◊j,1 s s ◊j,2 s s ◊j,i · · · s ◊j,j s. . .

cn,1
...
cn,i≠1

cn,i
...
cn,j≠1

p1

pi

pj

Formally, we require two indexes i, j with i < j < r which share
the same look-ahead state h(cn,i) = h(cn,j),
the same pair ◊i,i = ◊j,j œ � and
the same set of pairs {◊i,¸}0Æ¸Æi = {◊j,¸}0Æ¸Æj .

We ensure the existence of such i, j by choosing r Ø |P | |Q| (m+ 1) 2|Q|(m+1) + 1 where m is
the maximum arity of states. We now show how to build the nesting loop from indexes i, j.
We note p = h(cn,i) = h(cn,j), (q1, k1) = ◊i,i = ◊j,j and S = {◊i,¸}0Æ¸Æi = {◊j,¸}0Æ¸Æj . We
note cÕ = cn,i.cn,i+1. . . . .cn,j≠1. Note that cÕ has a leaf labeled p and h(cÕ) = p.

We need the sets {◊i,¸}0Æ¸Æi and {◊j,¸}0Æ¸Æj to be equal so that the pairs ◊i,k for
k Æ i loop on each other through the loop cÕ. Formally, noting ◊Õ

0
= ◊j,i, for all ◊Õ

k
œ S

for k œ N, there exists ◊Õ
k+1

œ S such that ◊Õ
k

æÕ
c
s ◊Õ

k+1
s. Since S ™ � is finite,

there must be n,m œ N such that ◊Õ
n
= ◊Õ

n+m
(with m Ø 1), so ◊Õ

n
æcÕm s ◊Õ

n
s. Also

(q1, k1) æcÕ s ◊Õ
0
s (q1, k1) s and ◊Õ

0
æcÕn xn, so (q1, k1) æcÕn+1 s ◊Õ

n
s (q1, k1) s and, for

all mÕ œ N: (q1, k1) æ
cÕmÕ s (q1, k1) sæcÕn+1 s ◊Õ

n
s (q1, k1) s. Finally, for c = cÕm(n+1),

we have (q1, k1) æc s ◊Õ
n
s (q1, k1) s and ◊Õ

n
æc ◊Õ

n
. So we have a nesting loop.

In conclusion, if M is not finite nesting, then it is nested input pumpable, and so it does
not have linear size-to-height increase.

The proof of Statement (2) can be given in a very similar way as for (1), here we only
outline the changes to the notations which allow to adapt the proof of (1) to (2). We replace
�-contexts with elements of the set T�(P ) containing possibly several leafs labeled in P . The
rest of the notational changes are consequences of this change. Given a s œ T�(P ), we now
consider the nesting of state calls called on distinct subtrees of s with potentially distinct
look-ahead states. We augment pairs in � so as to include the look-ahead, so � = {(q, k, p) |
q œ Q(m), k œ [m] fi {‹}, p œ P}. The notation (q, k, p) æs (q1, k1, p1) . . . (qn, kn, pn) means
that h(s) = p and calls to states q1, . . . , qn on leafs of s labeled p1, . . . , pn resp. are nested
on parameters yk1 , . . . , ykn along a path in „Mq(s). This means that, when concatenating
contexts, we write s(s1, . . . , sm) instead of s · sÕ.

For (2), similarly to nesting loops for (1), we define a yield nesting loop as given by
contexts s1, s2 œ T�(P ), look-ahead states p1, p2 œ P and triplets (q1, k1, p1), (q2, k2, p2) œ �
such that:

h(s1) = p1, h(s2) = p2, s1 has two leafs labeled p1 and p2, s2 has one leaf labeled p2,
Èq1, p1Í is reachable,
either (q1, k1, p1) æs1s (q2, k2, p2) s (q1, k1, p1) s

or (q1, k1, p1) æs1s (q1, k1, p1) s (q2, k2, p2) s,
(q2, k2, p2) æs2s (q2, k2, p2) s.

We say that M is yield nested input pumpable when it has either a yield nesting loop or a
nesting loop. Note that the existence of either of these loops contradicts the linear height
increase property. To prove (2) we prove that infinite yield nesting implies the existence
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of either a yield nesting loop or a nesting loop. That proof works similarly to (1): M
is not fynest so we can find large enough nesting sequences (but with the new definition
of æs), find a repeating triplet (q1, k1, p1), pump the loop enough times that a triplet
(q2, k2, p2) loops onto itself. Note that if the nested calls to (q1, k1, p1) and (q2, k2, p2) in
(q1, k1, p1) æs1 s (q2, k2, p2) s (q1, k1, p1) s are on the same leaf in s1 (with p1 = p2), then
we get a nesting loop (otherwise we get a yield nesting loop). J

From Theorem 11 and Lemmas 12, 13, and 14 we obtain our following main theorem.

I Theorem 17. Let M be an mttr. Then (1) it is decidable whether or not M has linear

size-to-height increase (2) it is decidable whether or not M is linear height-increase.

5 Conclusions

We have proven that for a given macro tree transducer (with look-ahead) it is decidable
whether or not it has linear height increase (LHI) and, whether or not it has linear size-
to-height increase (LSHI). Both decision procedures rely on a novel normal form that is
called “depth-proper” normal form. Roughly speaking the normal form requires that each
parameter of every state of the transducer appears at arbitrary large depths in output trees
generated by that state (and for a given look-ahead state).

One major open problem in the field is to prove a Conjecture of Joost Engelfriet (from
around the year 2000), that the translation of an mttr can be defined by an attributed tree
transducer (atts) if and only if the translation has “linear size to number of distinct output
subtrees” increase. Note that deciding such property is out of reach (it is at least as di�cult
as deciding equivalence of atts). To prove this characterization, di�erent loops need to be
considered which produce unbounded numbers of states in (partial) output trees. We believe
that the depth normal form will be instrumental in reducing the number of di�erent such
loops that must be considered and therefore will be of great help in proving the conjecture.
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Abstract
We introduce a powerful termination algorithm for structurally recursive functions that improves on
the core ideas behind lexicographic termination algorithms for functional programs. The algorithm
generates linear-lexicographic combinations of primitive measure functions measuring the recursive
structure of terms. We introduce a measure language that enables the simplification and comparison
of measures and we prove meta-theoretic properties of our measure language. Moreover, we
demonstrate our algorithm, on an untyped first-order functional language and prove its soundness
and that it runs in polynomial time. We also provide a Haskell implementation. As part of this work,
we also show how to solve the maximisation of negative vector-components as a linear program.
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1 Introduction

To guarantee the total correctness of a program, it is essential to prove that the program
terminates [10]. While the halting problem is undecidable for general recursive functions [8,
21], there has been a long line of work on creating termination algorithms that automatically
determine whether certain classes of functions terminate [14, 22, 11, 7, 2, 1].

In the context of functional programming, a termination algorithm typically takes a
recursive function f as input and attempts to find a function from terms in the language to
some well-founded order; this function is called a measure function. When the measure is
applied to the arguments of f , it strictly decreases at each recursive call site [22, 11]. Such
a measure can be as simple as a single argument to the function that always decreases at
each recursive call. Such a simple measure is su�cient for demonstrating the termination of
primitive recursive functions [18]. For example, consider the following function defining the
binomial coe�cient:

choose È0, kÍ = 1
choose Èn, 0Í = 1
choose ÈSn,S kÍ = choose Èn,S kÍ + choose Èn, kÍ

To prove that choose terminates, we observe that the first projection of the argument, labelled
n, strictly decreases at each recursive call site. Since n is a natural number and the natural
numbers are well-ordered, we can conclude that choose must eventually terminate. Thus
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a decreasing measure of choose is size ¶ fi1. The measure of the argument to the choose
function is the function size ¶ fi1, where the function fi1 projects the first argument out of
the tuple and size returns the interpretation of object language number n in the underlying
language or logic.

Of course, termination arguments are not always as simple as finding a single argument
that decreases at every recursive call. Consider the following example:

ex1 È0, 0Í = 0
ex1 ÈSx, yÍ = ex1 Èx,S yÍ

ex1 Èx,S yÍ = ex1 Èx, yÍ.

In this example, no single part of the argument decreases at every recursive call. Hence,
we cannot simply find a measure by considering each projection separately. However, this
function terminates, and the argument for its termination can be generalised to determine
the termination of a larger class of functions.

Note that the first projection of the argument never increases in any recursive call, and in
the first recursive call, it strictly decreases. Hence the first recursive call can only be applied
a finite number of times, bounded by the size of the first projection. With this fact, we may
set the first recursive call aside. Observe that, considered alone, the second recursive call can
also only be called a finite number of times, as the second projection of the argument always
decreases. Thus, there can only be a finite number of recursive calls to this function overall.
This idea is captured by the fact that the lexicographic order of the size of the first followed
by that of the second argument decreases at each recursive call.

The Isabelle/HOL theorem prover [17] has a state-of-the-art termination algorithm that
uses this idea for automatically detecting termination arguments [7, 2]. This more involved
lexicographic order algorithm is quite powerful, covering termination arguments for various
functions with non-trivial termination proofs, including the merge function on sorted lists
and the Ackermann function [3]. However, it cannot handle the following function:

ex2 È0, 0Í = 0
ex2 ÈS (Sx), yÍ = ex2 Èx,S yÍ

ex2 Èx,S (S y)Í = ex2 ÈSx, yÍ

Though there is no lexicographic combination of generated measures that decreases at every
recursive call, we know that this function must terminate because the sum of the arguments
is always decreasing. More precisely, the measure (⁄t. (size ¶ fi1) t+ (size ¶ fi2) t) decreases
at every recursive call.

A termination algorithm that considers sums of the same generated measures as those of
Isabelle/HOL would be successful in proving termination for ex2 . If we were to also consider
linear combinations with coe�cients in N, it would also prove termination for ex1 , since we
could take (⁄t. (2 · ((size ¶ fi1) t)) + (size ¶ fi2) t).

The Isabelle/HOL algorithm can also not handle the following example, which converts
from sparse lists to lists. Sparse lists provide a space-e�cient representation of lists that
contain many repeated elements. For example the list [a, a, a, h, h] would be represented
as [(a, 3), (h, 2)]. We can more formally define the data type SparseList – as inductively
generated by elements SNil and SCons (x : –) (n : N) (xs : SparseList –). The following
function converts sparse lists to regular lists; defined through the usual Nil and Cons
constructors:

toList SNil = Nil
toList (SCons x 0 xs) = toList xs
toList (SCons x (Sn) xs) = Cons x (toList (SCons x n xs)).
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ack È0, nÍ = Sn
ack ÈSm, 0Í = ack Èm,S 0Í

ack ÈSm,SnÍ = ack Èm, ack ÈSm,nÍÍ

size ¶ fi1 size ¶ fi2S

U

T

V
call 1 < ?
call 2 < ?
call 3 Æ <

Figure 1 The Ackermann function is presented on the left and its di�erence matrix on the right.

This function terminates because either the number of SCons constructors decreases or it
stays the same and the number n decreases. As this function has a lexicographic termination
argument, we might expect the Isabelle/HOL termination algorithm to be able to handle
it. The reason it cannot is that Isabelle/HOL only generates measures that consider the
di�erence in the number of SCons constructors for each recursive function call – missing
the fact that the number inside the SCons decreases.

We provide a novel algorithm, called T-Rex, that proves termination for a large class
of functions including all the examples above. It first generates a set of measures based
on structural size that is su�ciently detailed to handle examples such as toList where
the decrease in structural size occurs within another data structure. It then determines
whether there exists a lexicographic combination of these measures that decreases at every
recursive call, or such an N-linear combination, as well as complex measures combining the
two (see ex4 ). We demonstrate how to analyse the termination of functional programs by
operating directly on and measuring the recursive structure of terms, without relying on the
type structure or using higher-order logic and theories of term rewriting. This means that
T-Rex can be used to analyse the termination of functional programs without relying on
an underlying theorem prover, making it accessible to a wider community. We provide an
implementation of our language and our T-Rex algorithm in Haskell.

2 Isabelle/HOL’s Termination Algorithm

Isabelle/HOL’s lexicographic termination algorithm [7] compares the measures of each
argument to the function to that of each recursive call. For example, consider the Ackermann
function (Figure 1). The Ackermann function has three recursive calls for which we need to
show a decrease between the structural size of the initial and recursive arguments.

The size-change information for these calls is represented in a matrix, where each row
corresponds to a recursive call and each column corresponds to a measure of part of the
argument. The size-change comparison matrix for ack example (Figure 1) consists of the
two columns that represent the size-change relation on the first and the second components
of the argument tuple, respectively.

The entries record the change between the original and recursive arguments, recorded
with the symbols <, Æ, and ?. The symbol < means that there is a strict decrease in the
size of the recursive call argument compared to the initial one, the symbol Æ means that the
size decreases or remains the same, and the symbol ? means that the size either increased or
the relationship between the sizes is unknown.

From this point forward we omit the labels of the rows and columns of matrices, since
these labels clutter the notation and as we wish to orient the reader slowly to thinking
about these as matrices in the sense of linear algebra. This will ease introducing the ideas
for our extension to the termination algorithm. Isabelle/HOL’s lexicographic algorithm
works by mimicking the informal argument given in the introduction. It attempts to find
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arguments that always either decrease or stay the same size (i.e., that have < and Æ entries)
and removes these recursive calls from consideration. Phrased in terms of the matrix, the
algorithm repeatedly finds a column of the matrix with only < and Æ entries, and which
must contain a < entry, and removes every row of the matrix that has a < entry in that
column. If it eventually removes all the rows of the matrix, then the function must terminate.

To find the corresponding measure, it just keeps track of the measure associated with
each column. Let m1 be the measure associated with the first encountered column that
only contains < and Æ entries, m2 the measure associated with the second, and so on,
up to the measure associated with the last such column mn. The lexicographic measure,
[m1,m2, . . . ,mn]lex, takes the measures m1 to mn, and combines their results into a lexico-
graphically ordered tuple. Isabelle/HOL’s lexicographic procedure produces a sequence of
measures that, when combined lexicographically, decreases at every recursive call.

Returning to the Ackermann example, the sequence of row eliminations computed by the
above algorithm is

S

U
< ?
< ?
Æ <

T

V 
#
Æ <

$
 ?.

where ? stands for the empty matrix. The corresponding measure computed by this procedure,
that decreases at every recursive call is [size ¶ fi1, size ¶ fi2]lex.

Limitations of the Isabelle/HOL algorithm

As noted earlier the Isabelle/HOL algorithm, while very e�ective for many problems, fails
to prove termination for examples such as ex2 . We can see this directly by generating the
corresponding size-change matrix for ex2 :

5
< ?
? <

6
,

which cannot be reduced using the above procedure, since there is no column with only <
and Æ entries. In order to extend this algorithm to prove the termination of such functions,
we need more information in these matrices. The information we will use is the numeric
increase or decrease of the measured size, when such a value is computable.

In this example, we can compute exactly how much each measure changes at each
recursive call and we want to maintain a matrix with entries corresponding to those numeric
size-changes, namely:

5
≠2 1
1 ≠2

6
.

With this information, we can add the columns of this matrix, to produce a single column
corresponding to the sum of these size changes, which in this case is negative in every entry,
i.e. decreases at every recursive call, hence, proving termination.

This idea requires we solve three problems: how to generate such matrices, how to
find such N-linear combinations, and how to integrate this approach with the lexicographic
algorithm. We first develop a language as well as a measure language in order to demonstrate
how measure generation works. From there, the remainder of the paper is dedicated to
solving these three problems.
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Function names f : N Variables x, y, z : V
Terms t œ T ::= varx | ÈÍ | Èt, tÍ | inl t | inr t | roll {t} | app f t
Patterns p œ P ::= varx | ÈÍ | Èp, pÍ | inl p | inr p | roll {p}

Function body B = [(P ◊ T )] Program � : [(N ◊ B)] ::= (f , b)
0 = roll {inl ÈÍ} Sn = roll {inr n}

Figure 2 Language Syntax.

3 Language

As our termination algorithm targets functional languages, we introduce a core calculus
that supports common features of these languages, such as recursion, pattern matching, and
standard algebraic data types. Standard ADTs can be encoded in our core language through
the constructors that the language provides: recursive structures (roll), products, sums and
unit. Our language is untyped, but would permit the addition of the standard type system
for these constructs. Our language does not support lambda terms. The concrete syntax of
our language is similar to Haskell function definitions. We provide examples in Sections 1, 2.

The syntax of our language is presented in Figure 2. A program is a sequence of function
declarations, which are themselves a pair of a function name and function body. Each
function body is a sequence of defining equations which are pairs of a pattern p and a term t.
We will write the elements of a function body in the form f p = t, where f is the function
name.

Each pattern has a corresponding term that it destructs on. Patterns contain binding
variables varx,var y,var z, written x, y, z for short, patterns for destructing sums inl p and
inr p, a pattern for destructing tuples Èp, pÍ, the pattern for destructing units ÈÍ, and the
pattern for destructing rolls roll {p}. Terms include constructors for each of these as well as
function application app f t, written, f t for short. When defining a function, terms describe
how to build up the structure of the output using the variables bound by the input pattern.

4 Measure Language

We can prove that a function terminates by finding a measure of the size of the function’s
argument and showing that the argument’s size decreases on every recursive call. This is
called a measure function, and it is of type T æ O from the set of terms T to some well-
ordered set O. In particular, we use the set of natural numbers (N) for primitive measures
and linear combinations of primitive measures, and the set of lists of natural numbers ([N])
under the lexicographic order for our overall lexicographic-linear measures.

There are five basic measures, unroll, uninl, uninr, fi1, and fi2. These deconstruct the
basic datatypes, roll, inl , inr , and the left and right subterms of È≠,≠Í respectively. The
unroll destructor adds 1 to the return value, and uninl and uninr immediately terminate
when passed the opposite constructors inr and inl respectively. In addition, there are two
constant measures case01 and case10, that attempts to match the input term as a sum,
with case01 returning 0 for inl and 1 for inr , and case10 doing the opposite. There are two
measure operators: Ù and fix. The measure operator Ù functionally composes two measures,
and the fix measure operator repeatedly evaluates the given measure.
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Measure destructor md ::= unroll | uninl | uninr | fi1 | fi2

Recursive measure mr ::= md | mr Ù md

Primitive measure m : M

m ::= (fixmr) | case01 | case10 | m Ù md

Measure State Mst = (M ◊ T ◊ N) ‡ N

Measure Evaluation Semantics (≠)» : (M ◊ T ◊ N) æ Mst

((m Ù unroll), (roll {t}), i)» = (m, t, 1 + i)»
((m Ù uninl), (inl t), i)» = (m, t, i)»
((m Ù uninr), (inr t), i)» = (m, t, i)»
((m Ù uninr), (inl t), i)» = i
((m Ù uninl), (inr t), i)» = i
((m Ù fi1), Ès, tÍ, i)» = (m, s, i)»
((m Ù fi2), Ès, tÍ, i)» = (m, t, i)»
(case01, (inl t), i)» = i
(case01, (inr t), i)» = 1 + i
(case10, (inl t), i)» = 1 + i
(case10, (inr t), i)» = i
((fixm), t, i)» = (((fixm) Ù m), t, i)»
(m, t, i)» = (m, t, i) otherwise

Measure Functional Semantics J≠K : M æ (T Ô N)

JmK t = (m, t, 0)»
Note that this function is partial as the result of » is not always a natural number.

Figure 3 Measure language semantics.

Semantics

The big-step evaluation semantics of the measure language (≠)», defined in Figure 3, takes
as input a triple consisting of a term t in T , a measure m and a natural number. If the
measure exhaustively destructures the term through the evaluation, the semantics returns a
natural number, and if the evaluation is stuck, the semantics returns a triple of the same
type as the input triple.

Note that the evaluation semantics is stuck when it encounters a term that is a variable,
a function application, or the term and the measure have mismatched term constructors and
measure destructors. The functional semantics abstracts from this case, only being defined
for closed terms where the measure and term constructors match.

We will prove that our algorithm correctly demonstrates termination (when it succeeds
in finding a measure) by showing that, for every initial argument ai and every argument
ar to the recursive calls, m ar < m ai [11]. Note that this method requires that ar and ai
are closed, that is contain no variables or function calls. We will ensure this in our proofs
by substituting variables for closed terms and functions for functions from closed terms to
closed terms.

Bounded Di�erence

In general, we will not be able to determine the exact measure of a term statically, as measure
execution can get stuck. Thus, we will need to approximate the di�erence between the partial
evaluations of a measure. This approximation must be an upper bound on the di�erence
between the measures (when applied to any substitution which results in a natural number).
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Bounded di�erence ( ı≠) : Mst æ Mst æ Z ‡ {Ê}

(m, s, i) ı≠ (m, s, j) = i ≠ j
i ı≠ (mÕ, t, j) = i ≠ j

(m, s, i) ı≠ j = Ê
(m, s, i) ı≠ (mÕ, t, j) = Ê otherwise.

Figure 4 Bounded di�erence.

The bounded di�erence (Figure 4), written ı
≠, is a conservative estimate of the true

di�erence between the size of a measure applied to two arguments. It has four cases, which
depend on whether the measure fully executes and returns an integer, or whether the
execution gets stuck, resulting in a measure-term-integer triple. In the first case, the value is
exactly what the true subtraction would yield, as the s terms cancel. In the second case, we
take the pessimistic assumption that t evaluates to a natural number which maximises the
overall size of the di�erence; in this case, this occurs when t would evaluate to 0, so we may
safely ignore the term. The third and fourth cases, we again assume the term s maximises
the overall size. However, here s could evaluate to any natural number, and there is no finite
bound. Thus in these cases, we return the error value Ê, to denote that the subtraction is
unboundedly large. We extend the order on integers to Z ‡ {Ê} by asserting that for all
n œ Z, n Æ Ê.

I Lemma 1 (Di�erence is Bounded). For all measures m : M , terms t1, t2 : T , and substitu-
tions ◊, where JmK ◊(t1) and JmK ◊(t2) are defined,

JmK ◊(t1) ≠ JmK ◊(t2) Æ (m, t1, 0)» ı
≠ (m, t2, 0)».

5 Combining Measures

The termination of a function can be proven by finding a well-founded measure of the size of
the arguments, such that the size of the arguments always decreases between the initial and
recursive calls of the function.

Our termination algorithm builds measures from three components: primitive measures,
linear measures, and lexicographic measures. Primitive measures are functions that transform
a term into a natural number, representing a certain measure of the size of that term. We
use “primitive measure” to refer both to the syntactic construct (M) and the corresponding
mathematical functions (T æ N).

A linear combination of measures is a weighted sum of measures. Given a vector of
measures m : (– æ N)n and a vector of weights w : Nn of the same length, we define

(·) : Nn
æ (– æ N)n æ (– æ N)

w ·m = (⁄x.
qm

i=1
wi ·mi(x)).

In our termination algorithm, we will only take linear combinations of primitive measures,
specialising the above to Nn

æ (T æ N)n æ (T æ N).
Since linear programming methods need to work in an ordered field, the tools we use will

produce linear combinations of measures with positive rational coe�cients. Finding such a
linear combination is equivalent to finding a linear combination with natural coe�cients, as
the rational weights can be transformed to integers by multiplication of the least common
multiple of the divisors of the weights. Note that the Haskell implementation of our algorithm
uses fixed-point numbers, rather than exact arithmetic, which can lead to precision loss in
this step.
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6 Termination Algorithm

We want to show that our functions terminate, by showing that there is a measure of the
arguments that decreases between every recursive call. We do this by combining primitive
measures into linear combinations, and then making lexicographic combinations of these.
Our termination algorithm is composed of three main phases:
1. Generating primitive measures of structural size for the sub-terms of the argument.
2. Generating the primitive measure di�erence matrix, that captures the size change between

the initial and recursive arguments, as measured by the primitive measure functions.
3. Using the primitive measure di�erence matrix to find a lexicographic-linear combination

of the primitive measure functions that decreases over every recursive call.
Finding lexicographic-linear combinations can be further broken down into two steps
i. Using the integer-only columns of the primitive measure di�erence matrix to find a linear

combination of the primitive measure functions that decreases over the recursive calls
that correspond to these columns.

ii. Using the linear combination procedure iteratively to determine a lexicographic com-
bination of the linear measure functions that decreases over all recursive calls including
those that do not have a simple integer di�erence.

To see how this algorithm works in the case of lexicographic termination, consider ex3 .
ex3 Èx, y,S zÍ = ex3 Èx, y, zÍ

ex3 Èx,S y, 0Í = ex3 Èx, y, h yÍ

ex3 ÈSx, 0, 0Í = ex3 Èx, h x, h xÍ

Note that, in this example h is some arbitrary function, and that we assume that any function
called in a function definition (apart from the function being defined) terminates. That is,
we show termination conditional on all called functions also terminating. However, when
proving termination, we do not use any knowledge about the behaviour of called functions;
so we have no bounds on the value that h will return. The primitive measures for ex3 and
the resulting di�erence matrix are

m1 = (fix (uninr Ù unroll)) Ù fi1

m2 = (fix (uninr Ù unroll)) Ù fi2

m3 = (fix (uninr Ù unroll)) Ù fi3

S

U
0 0 ≠1
0 ≠1 Ê

≠1 Ê Ê

T

V .

The value Ê marks the worst-case value di�erence. The function h is assumed to terminate
but may return a term of arbitrary size; thus the maximum bound of the change in value
cannot be any integer. Note that Ê prevents any column containing it from being used in a
linear programming problem.

The ex3 function has a lexicographic termination argument, as m1 decreases or stays the
same everywhere, m2 decreases or stays the same when m1 stays the same, and m3 decreases
when m1 and m2 stay the same. By the lexicographic elimination algorithm,

S

U
0 0 ≠1
0 ≠1 Ê

≠1 Ê Ê

T

V 
5
0 ≠1 Ê

≠1 Ê Ê

6
 

#
0 ≠1 Ê

$
 ?.

Linear and lexicographic termination arguments can be combined together to find a linear-
lexicographic termination measure. To illustrate this, consider the function ex4 :

ex4 ÈSx, y, z, v, wÍ = ex4 Èx, h y, z, v,SwÍ

ex4 Èx,S y,S z, v, wÍ = ex4 Èhx, y, z,S v,SwÍ

ex4 Èx, y, z,SSS v, wÍ = ex4 Èx, h y,S z, v,SwÍ
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where h represents an arbitrary function. The following is the di�erence matrix for ex4 :

S

U
≠1 Ê 0 0 1
Ê ≠1 ≠1 1 1
0 Ê 1 ≠3 1

T

V .

Solving it requires both the linear and lexicographic aspects of our approach. This is again a
situation where the pure lexicographic algorithm is not applicable. Moreover, in this case,
one cannot find a positive rational linear combination of all the columns that results in a
vector that is strictly less than 0 in all its entries. Using both ideas, we want to find some
linear combination of the last three columns in the matrix, so as to eliminate some of the
Ê entries. Fortunately, it is not di�cult to see that, labelling the columns of the matrix
c1, c2, . . . , c5, one can take 2c3 + c4 + 0c5 = (0 ≠ 1 ≠ 1)T. (Where (≠)T is vector/matrix
transposition.) This yields the following matrix

S

U
≠1 Ê 0
Ê ≠1 ≠1
0 Ê ≠1

T

V .

We now use the lexicographic algorithm to remove the last column and bottom-most two
rows, resulting in the matrix

#
≠1 Ê

$
, and then to reduce this matrix to ?. Thus we have

obtained a termination proof. The corresponding measure that decreases at every recursive
call is [(2 · (size Ù fi3) + (size Ù fi4)), (size Ù fi1)]lex.

6.1 Primitive Measure Generation

Each term has several primitive measures, which are generated by observing how that term
is destructured in the definition of the recursive function. These primitive measures are made
of a composition of two parts: a function which descends through the non-recursive part of a
term to extract the recursively constructed term, and a measure of that recursive term.

For example, take the two terms Èroll {inr x}, ÈÍÍ and Èx, ÈÍÍ, and assume the former is
the input argument to a function, and the second is the recursive argument. We can clearly
see that the structural size of the left part of the tuple decreases from input to recursive
call, due to the removal of the roll. We capture this intuition with the primitive measure
function (fix (uninr Ù unroll)) Ù fi1. The purpose of this measure is to extract the recursive
part of the argument, i.e. to remove the È≠, ÈÍÍ structure, and then to count the number of
nestings of the structure roll {inr ≠}.

Primitive measure generation is composed of two parts: generating the recursive part of
the measure and generating the function that extracts the recursive subterm. The function
primMR generates the recursive parts of the primitive measures. It takes a variable name
x, a partially constructed recursive measure mr, and a term t. The measure is initialised
with id for notational convenience where m Û id = m; in our implementation we use lists of
measure destructors.
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The recursive measures are generated by the function

primMR(x,mr,var y) =
I
{fixmr} if x = y · mr ”= id
ÿ if x ”= y ‚ mr = id

primMR(x,mr, ÈÍ) = ÿ

primMR(x,mr, Èt1, t2Í) = primMR(x, (fi1 Ù mr), t1)
fi primMR(x, (fi2 Ù mr), t2)

primMR(x,mr, inl t) = primMR(x,uninl Ù mr, t)
primMR(x,mr, inr t) = primMR(x,uninr Ù mr, t)
primMR(x,mr, roll {t}) = primMR(x,unroll Ù mr, t)
primMR(x,mr,app f t) = ÿ.

Consider the example above comparing x and roll {inl x}. As expected, the generator
produces the set {fix (uninl Ù unroll)}. A more complex example is comparing x and
roll {Èx, xÍ}; the measure set generated is {fix (fi1Ùunroll),fix (fi2Ùunroll)} with a generated
measure for each occurrence of x.

We can now generate a set of measures for recursive terms. However, we still need to
generate the part of the measure that extracts the subterm where the recursion occurs. This
part of the measure is appended to the recursive measures generated by calling primMR. It
is constructed by recursion on both the initial and recursive arguments.

primM (m,varx, u) = {r Ù m | r œ primMR(x, id, u)}
primM (m, t,var y) = {r Ù m | r œ primMR(y, id, t)}
primM (m, ÈÍ, ÈÍ) = ÿ

primM (m, Èt1, t2Í, Èu1, u2Í) = primM (fi1 Ù m, t1, u1)
fi primM (fi2 Ù m, t2, u2)

primM (m, inl t, inl u) = primM (uninl Ù m, t, u)
fi {case01 Ù m, case10 Ù m}

primM (m, inr t, inr u) = primM (uninr Ù m, t, u)
fi {case01 Ù m, case10 Ù m}

primM (m, roll {t}, roll {u}) = primM (unroll Ù m, t, u)
primM (m, t, u) = ÿ otherwise

Note that sums, in addition to the measures of recursive size-change of the components, also
have measures to detect when a sum switches from left to right (or vice-versa). Due to these
measures and the fact we are finding linear combinations of primitive measures, we do not
need to generate quadratically many measures for the combinations of the left and right
submeasures, as done by others [7].

To generate the primitive measures for a function f , we first apply primM to every initial
and recursive argument pair in the equations defining f , initialising m with id. For each
measure m generated through this process, if m is of the form (fix (mÕ Ù · · · Ù mÕ)) Ù mÕÕ,
with the mÕ repeated, we simplify it to (fix mÕ) Ù mÕÕ. This step is useful in cases where,
for example, a function removes the same pattern multiple times; like ex2 , which removes
multiple S constructors. This simplification step ensures the simplified measure function
only removes one of these patterns at a time. The simplified measure returns the same size
as JmK when JmK is defined, and it is defined for more terms; this property follows from the
definition of the evaluation function.

With this method for primitive measure generation in hand, we return to the toList
example from Section 1. To demonstrate how this measure generation works, we first need
to unfold the SparseList and List constructors in toList according to Figure 5,
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Nil = roll {inl ÈÍ}
Cons x xs = roll {inr Èx, xsÍ}

SNil = roll {inl ÈÍ}
SCons x n xs = roll {inr Èx, Èn, xsÍÍ}

Figure 5 Encodings of lists and sparse lists.

toList (roll {inl ÈÍ}) = roll {inl ÈÍ}
toList (roll {inr Èx, Èroll {inl ÈÍ}, xsÍÍ}) = toList xs
toList (roll {inr Èx, Èroll {inr n}, xsÍÍ}) = roll {inr Èx, ÈtoList (roll {inr Èx, Èn, xsÍÍ})ÍÍ}.

The primitive measure generation algorithm produces measures corresponding to the recursive
uses of both n and xs. The two measures, along with their di�erence matrix, are

m0 = fix (fi2 Ù fi2 Ù uninr Ù unroll)
m1 = fix (uninr Ù unroll ) Ù (fi1 Ù fi2 Ù uninr Ù unroll)

5
≠1 Ê
0 ≠1.

6

These can then be combined into an overall decreasing measure as [m0,m1]lex.

6.2 Primitive Measure Di�erence Matrix
The fundamental data structure used in our termination-checking algorithm, T-Rex, is the
primitive measure di�erence matrix, D : (Z‡{Ê})n◊k, or di�erence matrix for short. Rows in
D represent argument-pairs and columns represent primitive measures. The elements are the
conservative size change between the initial argument and the recursive argument. Formally,
for any function definition (with n recursive calls), let the recursive call matrix of that
function be R : (T )n◊2 where Ri1 is the pattern of the i-th recursive call (lifted to a term)
and Ri2 is the recursive argument term of the i-th recursive call. We define the di�erence
matrix D of a vector of k primitive measures, m : Mk, as Dij = (mj , Ri2, 0)» ı

≠ (mj , Ri1, 0)»
where 1 Æ i Æ n and 1 Æ j Æ k. This matrix captures the size-change information of the
measures m on every recursive call in the function. Note that it uses the upper bound
di�erence, ( ı

≠), and so the estimated di�erence can be unbounded, i.e. Ê.
Returning to the function ex2 , the entries of the di�erence matrix evaluate to

mS x ı
≠ (mS x+ 2) = ≠2

(mS x+ 1) ı
≠ mS x = 1 and mS y ı

≠ (mS y + 2) = ≠2
(mS y + 1) ı

≠ mS y = 1
where mS = fix (uninr Ù unroll),

This results in the following di�erence matrix:
5
≠2 1
1 ≠2

6
.

In example ex3 , the arbitrary functions result in the measures becoming incomparable,
resulting in Ê. Consider the reduced di�erences that do not result in 0,

mS y ı
≠ (mS y + 1) = ≠1

mS (h y) ı
≠ 1 = Ê

mS (h x) ı
≠ 1 = Ê

where mS = fix (uninr Ù unroll).
When the measure of the recursive argument, on the left-hand side, is not a concrete integer
(e.g. mS (h y)), but the right hand side is, we can only pessimistically conclude that the
value could be any large natural number. Thus we return Ê, to mark that we cannot handle
this case using linear arithmetic.
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6.3 Finding Linear Measures
We wish to use our primitive measures to create better measures; that is, measures that
decrease on more recursive calls. We will first consider linear combinations of measures. As
we discussed in the last section, the di�erence matrix captures the size change information
of the arguments as they change between recursive calls. This information helps determine
weights that can be used to construct a linear combination of the primitive measures. Note
that this phase only considers D matrices that contain no Ê values. This enables applying
standard linear solvers. The Ê values are handled at a later phase.

To find suitable weights, first we will show that any vector of positive weights w : (Z+)n
that satisfies the equation Dw Æ 0 produces a non-increasing measure. Secondly, we will
determine how to pick the best such vector: that is, the one that produces a measure that
strictly decreases between the arguments of as many recursive calls as possible.

Decreasing linear combinations

The following lemma shows that any non-positive solution to Dw can be used to construct a
non-increasing measure.

I Lemma 2 (Soundness of linear measure construction). Given a vector of positive weights
w : (Z+)n, a vector of measures m : Mn, if there are no Ê values in D and (Dw)i Æ 0 for
row i, then for each initial-recursive argument pair Ri, and all substitutions ◊ where, for every
j, JmjK ◊(Ri1) and JmjK ◊(Ri2) are defined, then (w · JmK) ◊(Ri2) ≠ (w · JmK) ◊(Ri1) Æ 0.
Similarly, if (Dw)i < 0, then (w · JmK) ◊(Rk2) ≠ (w · JmK) ◊(Rk1) < 0. (Where J≠K is lifted
pointwise.)
To give an example, we return to the function ex2 , which has the di�erence matrix

5
≠2 1
1 ≠2

6
.

The weight vector w = (1 1)T produces the all-negative vector Dw = (≠1 ≠ 1)T. As such,
we can conclude that the measure (1 1)T · (m1 m2)T guarantees that ex2 terminates.

The maximal negative entries problem

This problem is concerned with finding the best weights w, that ensure that the maximum
number of recursive calls decrease. To see why not just any weight will do, consider again
the example ex4 . We showed that its matrix,

S

U
≠1 Ê 0 0 1
Ê ≠1 ≠1 1 1
0 Ê 1 ≠3 1

T

V

was solvable using our proposed algorithm. However, had we chosen instead the linear
combination (1 1 0)T, this would have resulted in the output vector (0 0 ≠ 2)T, which only
removes the final recursive call / row, resulting in the unsolvable subproblem:

5
≠1 Ê
Ê ≠1

6
.

Thus, we want to pick weights such that not only Dw Æ 0, but also that Dw has as many
negative entries as possible. We call this the maximal negative entries (MNE) problem.

I Definition 3 (The Maximal Negative Entries Problem). For a matrix A, find a vector x
such that the vector Ax has a maximal number of negative entries.
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Reducing the MNE problem to a linear program

We want to find a programmatic method to solve this problem. This problem can be reduced
to solving a linear program. This is fortunate as linear programs are well-studied and they
are solvable in polynomial time [5].

The MNE problem tells us to maximise the number of strictly negative entries of Ax,
such that x Ø 0 and Ax Æ 0. We can reframe this as finding some slack vector c Ø 0, such
that Ax+ c = 0 and c has a maximal number of positive entries (as Ax = ≠c).

Secondly, note that solutions to this problem are linear, in the sense that if (x, c) is a
solution to Ax + c = 0 and c has maximal positive entries, then, for a positive scalar k,
A(kx) + kc = k(Ax+ c) = 0, and so (kx, kc) is also a solution. The crucial thing to note
here is that we can scale up or down the size of any such solution vector by any positive
scaling factor. This means that a solution exists exactly when a solution exists that satisfies
the additional condition that c has entries that are either exactly 0 or greater than or equal
to 1. This allows us to take the final step in our transformation of this problem.

Break up c (with entries now guaranteed to be 0 or Ø1) into b+ z, where b is bounded
between 0 and 1 and 0 Æ z, The optimisation goal “maximise the sum of b” will produce a
solution (x,b, z) where b has entries that are either 0 or 1 (as b+ z is 0 or Ø 1) and z is the
slack necessary to make the sum cancel. Note that bi is 1 exactly when (Ax)i < 0, thus the
number of negative entries in Ax is equal to the sum of b. As the sum of b is maximised,
the number of negative entries in Ax is maximised.

Lastly, as z is only constrained to be Ø 0, z is a slack vector of this new program. We
may simplify the program by removing z and turning the equality constraints to inequality
constraints. Thus, the maximal negative entries problem is equivalent to solving the linear
programming problem specified in Algorithm 1. Note that the program fails to find a
satisfactory solution for our purposes when it returns the all-zero vector.

Algorithm 1 LinMNE: A linear program for the MNE problem.

maximise
qn≠1

i=0 bi

subject to
xi,bi œ Q

Ax+ b Æ 0
0 Æ xi

0 Æ bi Æ 1

Uniqueness of the maximal negative entry set

Even though the above program will find a set with a maximal number of negative entries,
we have not yet established that such a set is unique. If there are two solutions that identify
a di�erent set of rows that decrease, this may lead to a di�erent order of row elimination in
the lexicographic stage of our algorithm. Such a possibility threatens the complexity and
completeness of our algorithm. However, there is, in fact, a unique maximal set of negative
entries that solves the linear program. Note that this uniqueness is in the set of entries,
not in the solution; there can be many solutions, but all of them will show the same set of
recursive calls decrease.

I Theorem 4 (Unique Maximal Negative Entries). For every matrix A œ Qn◊m, if Èx,bÍ and
ÈxÕ,bÕ

Í are solutions of the MNE problem for A, then b = bÕ.
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6.4 Finding Lexicographic Measures of Linear Combinations
The lexicographic phase of the algorithm solves the termination problem for a matrix of
weights that may include Ê; the value that marks that a finite bound on the size change
could not be found. The algorithm finds a lexicographic combination of linear measures,
such that whenever a linear measure was approximated to Ê, there is a lexicographically
larger linear measure that returns a natural number. This lexicographic algorithm follows
the same structure as Isabelle/HOL’s [7]. Our overall T-Rex algorithm proceeds as follows:

Algorithm 2 The T-Rex Termination Algorithm.

function T-Rex(m : [M ], D : Matrix (Z ‡ Ê)) : [[N ◊ M ]] ‡ fail
(Precondition: length(m) = columnN(D).)
out := [ ]
repeat

N := Extract the purely numeric (Z) columns of D
if N = ? then return fail end if Û (if there are no purely numeric columns, fail)
(x, b) := LinMNE(N)
x := select non-zero weights inx
if x = ? then return fail end if Û (if no measures were selected, fail)
x := x · lcm(denoms(w)) Û (normalise the weights to natural numbers)
D := D without rows where b is 1
(Note: recall the linear program establishes that (Dx)i is negative when bi = 1.)
wm := weights in x paired with their corresponding measures in m
out := out ::r wm Û (::r is concatenate to end)

until M = ?
return out

end function
(Note: we elide the tracking of column indices for clarity.)

Since linear program solving is polynomial time [5] and the number of loops performed
is bounded by the number of rows in D, we can deduce that our algorithm also runs
in polynomial time. But of course, we would like to know slightly more than just the
correctness and complexity of our algorithm. Our algorithm is complete in the following
sense. If a lexicographic-linear combination of primitive measures exists, our algorithm
decides termination.

I Lemma 5. Let f be a function and let A be a matrix whose columns correspond to some
set of measures P whose elements we allow to be any N-linear combination of the columns of
the di�erence matrix of f . Then, there exists a lexicographic combination of the elements of
P which decreases at every recursive call of f if and only if we can reduce A to ÿ by removing
rows per the lexicographic algorithm.
I Theorem 6 (Decision Power of T-Rex). Given a function f with an associated set of
primitive measures P , if there exists some lexicographic order of N-linear combinations of
elements of P which decreases at every recursive call of f , then T-Rex will succeed.

7 Related Work

There is a relevant body of work in the context of analysing the termination of imperative
programs called synthesis of ranking functions. This was initially introduced by Floyd [10],
and later incorporated into Hoare logic to allow for proving the total correctness of imperative
programs. Ranking functions are directly analogous to measures. In the context of imperative
programs, ranking functions map variables that are updated in a loop body to a well-ordered
set, and to prove termination they must decrease at each iteration. Typically in this context,
the termination of a single loop with a single branch is studied, which broadly corresponds
in our context to studying functions with a single recursive call.
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A line of work on termination analysis is concerned with finding classes of programs (e.g.
programs that operate on reals) with linear loops for which termination is decidable, by
relating this problem to stability in control theory [20]. Part of the linear loops literature
is concerned with synthesising ranking functions for linear-constraint loops [6, 19]. Here,
we have a set of variables, a loop guard describing a linear constraint on these variables,
and at each iteration, we have updated our vector of variables x by an a�ne transformation
Ax+b [13]. (These a�ne transformations can always be converted to a linear transformation
AÕx by adding more variables.) The kind of ranking functions synthesised for these problems
are similar to the lexicographic combinations of linear transformations that we see in our
work [6]. One main distinction is that in our work, there is almost always more than one
recursive call, and in their work, there is almost always some non-trivial condition on the
loop guard, providing di�erent challenges and resulting in di�erent algorithms for handling
termination within di�erent programming language paradigms.

Linear and lexicographic termination techniques have also been explored in the context
of probabilistic imperative programming. Similar algorithms to the measure combination
step of the algorithm, utilising linear programming to combine size-change information, have
been independently developed in this context [4]. However, a direct comparison between
them presents a non-trivial challenge as this work operates on generalised transition systems
generated from analysis of imperative code, while our work operates on primitive measures.
Even given these similarities, our improved method of primitive measure generation handles
cases that the Isabelle/HOL algorithm does not, even with the purely lexicographic solver.

Our work is directly inspired by and most closely related to Isabelle/HOL’s lexicographic
termination algorithm [2, 7]. It constructs termination matrices based on the comparison
of arguments between the initial and recursive calls, as we do, but they do not compute
a numeric di�erence. Since this approach ignores the numerical di�erence and conflates
increase with uncertainty, it cannot be used to find linear combinations of measures. While
our matrices carry more information, our lexicographic matrix elimination algorithm is
structurally similar to Bulwahn et. al.’s lexicographic matrix elimination algorithm [7]. Note
that we do not drop columns, as this can cause unsoundness if the final column is not
wholly decreasing. Our algorithm also works without access to types or higher-order logic
simplification theories. Hence, it is extensible to various functional languages and can be
used without theorem-proving experience.

Another approach is the size-change termination method [16, 12], which is orthogonal to
our method, as it tracks the size change of data (i.e. the constructors around variables) in
function arguments, whereas we track the size change of the function arguments, disregarding
the flow of variables. Types can be used to restrict functions to use terminating recursion [1],
but this method requires user annotation, and cannot find complex linear termination
measures.

Other approaches for functional termination checking involve using an external term-
rewriting checker to show the termination of function programs [15]. This has the advantage
of bringing well-developed termination checkers for term rewriting systems to functional
termination checking, but requires that the semantics of the functional language be reflected
in a term rewriting system. Further, any witness of termination must be translated backwards
through this semantics. Our approach gives simple measure functions as witnesses.

8 Conclusion

We have developed T-Rex: a novel termination algorithm for recursive functions. It can prove
the termination of functions by lexicographically ordering linear combinations of primitive
measures that decrease at every recursive call. The primitive measures are computed directly
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by examining the structure of the recursive program. We define a language for simplifying
and comparing primitive measures that are used as part of our termination algorithm and
prove meta-theoretic properties of our measure language. We prove that T-Rex is sound,
that it runs in polynomial time and that it covers a large class of programs and demonstrate
the algorithm on an untyped first-order functional language. We provide an implementation
of the untyped language, measure language and of T-Rex in Haskell.
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A Proofs

A.1 Proofs from Section 4
To prove Lemma 1, we need the following lemmas.

I Lemma 7 (Measure Evaluation respects Substitution). For all substitutions ◊,
1. if (m, t, i)» = j then (m, ◊(t), i)» = j; and
2. if (m, t, i)» = (mÕ, tÕ, j) then (m, ◊(t), i)» = (mÕ, ◊(tÕ), j)».

Proof Sketch. By induction on (m, t, i)». We will only prove illustrative cases.
Stuck (m, t, i)» = (m, t, i): Note that t is a variable, function, or doesn’t match m. If t is a

variable or function, ◊(t) could be a new term, but in this case (m, ◊(t), i)» = (m, ◊(t), i)».
If t is a non-matching term, then ◊ cannot change it, and (m, ◊(t), i)» = (m, ◊(t), i).

Uninr/Inl (m Ù uninr, inl t, i)» = i: as ◊(inl t) = inl ◊(t), (m Ù uninr, ◊(inl t), i)» = i.
The other base cases proceed similarly.
Unroll/Roll ((m Ù unroll), (roll {t}), i)» = (m, t, 1 + i)»:

As ◊(roll {t}) = roll {◊(t)},
(m Ù unroll, ◊(roll {t}), i)» = (m Ù unroll, roll {◊(t)}, i)» = (m, ◊(t), i+ 1)»,

as required.
Fix ((fixm), t, i)» = (((fixm) Ù m), t, i)»:

((fixm), ◊(t), i)» = (((fixm) Ù m), ◊(t), i)»,
as required.

The other inductive cases proceed similarly. J

I Lemma 8 (Measure Evaluation Counter Export).
If (m, ◊(t), i+ j)» = k i� (m, ◊(t), i)» = j + k.

Proof Sketch. A simple proof by splitting the i�, then induction on (≠)». J

With these lemmas in hand, we can prove Lemma 1.

ICALP 2024

https://doi.org/10.1145/360204.360210
https://api.semanticscholar.org/CorpusID:121988998
https://api.semanticscholar.org/CorpusID:121988998


139:18 T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

Proof of Lemma 1. Recall that we are guaranteed that (m, ◊(t1), 0)» and (m, ◊(t2), 0)» are
integers. We proceed by cases on (m, t1, 0)» ı

≠ (m, t2, 0)».
Case 1: (m, t1, 0)» = (mÕ, s, i) and (m, t2, 0)» = (mÕ, s, j). Then

(m, ◊(t1), 0)» ≠ (m, ◊(t2), 0)»
= (mÕ, ◊(s), i)» ≠ (mÕ, ◊(s), j)» (Case assumptions & Lemma 7)
= ((mÕ, ◊(s), 0)» + i) ≠ ((mÕ, ◊(s), 0)» + j) (Lemma 8)
= i ≠ j

= (mÕ, s, i) ı
≠ (mÕ, s, j)

= (m, t1, 0)» ı
≠ (m, t2, 0)».

Case 2: (m, t1, 0)» = i and (m, t2, 0)» = (mÕ, s, j). Then
(m, ◊(t1), 0)» ≠ (m, ◊(t2), 0)»

= i ≠ (mÕ, ◊(s), j)» (Case assumptions & Lemma 7)
= i ≠ (mÕ, ◊(s), j)» (Lemma 8)
Æ i ≠ j

= i ı
≠ (mÕ, s, j)

= (m, t1, 0)» ı
≠ (m, t2, 0)».

Case 3+4: (m, t1, 0)» ı
≠ (m, t2, 0)» evaluates to Ê.

True as (m, ◊(t1), 0)» ≠ (m, ◊(t2), 0)» is an integer, and for all k œ Z, k Æ Ê. J

A.2 Proofs from Section 6
For the following proof, we need to enrich Ê with the properties that Ê + k = k + Ê = Ê for
all k œ Z and n · Ê = Ê for all n œ Z+.

Proof of Lemma 2. Recall the initial and recursive arguments are stored in R. Thus, for
any recursive call in D, indexed by i, we have

(Dw)i =
kÿ

j=0

wj ·Rij

=
kÿ

j=0

wj · ((mj , Ri2, 0)» ı
≠ (mj , Ri1, 0)»)

Ø

kÿ

j=0

wj · ((mj , ◊(Ri2), 0)» ≠ (mj , ◊(Ri1), 0)») (Lemma 1)

=
kÿ

j=0

wj · (JmjK ◊(Ri2)) ≠

kÿ

j=0

wj · (JmjK ◊(Ri1))

= (⁄x.
kÿ

j=0

wj · (JmjK x)) ◊(Ri2) ≠ (⁄x.
kÿ

j=0

wj · (JmjK x)) ◊(Ri1)

= (w · JmK) ◊(Ri2) ≠ (w · JmK) ◊(Ri1).
Thus (Dw)i Æ 0 implies (w · JmK) ◊(Ri2) ≠ (w · JmK) ◊(Ri1) Æ 0, and (Dw)i < 0 implies
(w · JmK) ◊(Ri2) ≠ (w · JmK) ◊(Ri1) < 0. J

Proof of Theorem 4. Assume there are two solutions with a di�erent set of negative entries
Èx,bÍ and ÈxÕ,bÕ

Í. Let xÕÕ = x + xÕ and bÕÕ
j = max(bj ,bÕ

j) for each 0 Æ j < n. Then, the
tuple ÈxÕÕ,bÕÕ

Í is a more optimal solution.
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Firstly, ÈxÕÕ,bÕÕ
Í has a greater objective. As, by assumption, there is some component

di�erent between b and bÕ, thus we have
qn≠1

i=0
bi <

qn≠1

i=0
bÕÕ
i and

qn≠1

i=0
bÕ
i <

qn≠1

i=0
bÕÕ
i .

Thus the objective is larger.
Secondly, ÈxÕÕ,bÕÕ

Í satisfies all constraints, as (i) by the fact we are taking a sum of
non-negative values, 0 Æ xÕÕ, (ii) by the fact we are taking a maximum, 0 Æ bÕÕ

Æ 1, and (iii)
AxÕÕ + bÕÕ

Æ 0 as
AxÕÕ + bÕÕ

Æ 0 ≈∆ A(x+ xÕ) + max(b,bÕ) Æ 0
≈∆ Ax+AxÕ +max(b,bÕ) Æ 0
≈= Ax+AxÕ + b+ bÕ

Æ 0
≈= Ax+ b Æ 0 · AxÕ + bÕ

Æ 0
Thus, our assumption was incorrect, and, by classical contradiction, the two solutions cannot
have a di�erent set of negative entries. J

To prove Lemma 5, we require the following auxiliary lemma establishing the soundness
of lexicographic-linear combination:

I Lemma 9 (Soundness of lexicographic-linear combination). Given a list of weighted measures
wm : [[N ◊ M ]] returned by the algorithm (Algorithm 2), then for each initial-recursive
argument pair Rk, and all substitutions ◊ where mij ◊(Rk1) and mij ◊(Rk2) are defined (for
every i and j), then

[. . . ,wi · JmiK, . . . ]lex ◊(Rk2) < [. . . ,wi · JmiK, . . . ]lex ◊(Rk1).

(Where wi and mi are the unzipping of wmi, and (·) and J≠K are lifted pointwise over lists.)

Proof. By the construction of the output list and Lemma 2, there is a first wi, mi such that
wi ·JmiK ◊(Rk2) < wi ·JmiK ◊(Rk1) and for every iÕ < i, wiÕ ·JmiÕK ◊(Rk2) = wiÕ ·JmiÕK ◊(Rk1).
This is the definition of a lexicographic decrease J

Proof of Lemma 5. Suppose there was some lexicographic combination of elements of P ,
which we will call [m1,m2, . . .mn]lex, which decreases at every recursive call of f but which
could not be found by removing rows from the associated matrix. At some point, by
assumption, this sequence of measures [m1,m2, . . .mn]lex must not be reachable by removing
rows from the matrix A, per the rule in the lexicographic algorithm. Call the first such
measure mi. Hence, by assumption once we remove all the rows corresponding to measures
m1, . . . ,mi≠1, we must not be able to proceed using the lexicographic algorithm. Hence,
there can be no column in the corresponding matrix with all entries less than or equal to 0
with at least one negative entry, namely the column associated with the measure mi cannot
have this property. But this means that there exists a recursive call on which the measure
[m1,m2, . . .mi]lex does not decrease, which is a contradiction. J

Proof of Theorem 6. Suppose this were not the case and there is a lexicographic order of
linear combinations of the primitive measures that could not be found by our algorithm. By
definition T-Rex can only fail if, at some stage of evaluation, it reaches a stage where there
is no non-trivial solution to the MNE problem using the numeric columns of the matrix. But
using Theorem 4, we know that each time we take a linear combination of numeric columns,
we get a vector whose number of negative entries is maximal and where the location of these
negative entries is unique. Hence, for any given numeric part of the matrix, there is a unique
set of rows R that is removed by the lexicographic phase of the algorithm such that any
other set of rows that could be removed by the process of taking linear combinations is a
subset of R. J
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Abstract

A linear constraint loop is specified by a system of linear inequalities that define the relation between
the values of the program variables before and after a single execution of the loop body. In this
paper we consider the problem of determining whether such a loop terminates, i.e., whether all
maximal executions are finite, regardless of how the loop is initialised and how the non-determinism
in the loop body is resolved. We focus on the variant of the termination problem in which the loop
variables range over R. Our main result is that the termination problem is decidable over the reals
in dimension 2. A more abstract formulation of our main result is that it is decidable whether a
binary relation on R2 that is given as a conjunction of linear constraints is well-founded.
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1 Introduction

The problem of deciding loop termination is of fundamental importance in software verification.
Deciding termination is already challenging for very simple classes of programs. One such
class consists of linear constraint loops. These are single-path loops in which both the loop
guard and the loop update are given by conjunctions of linear inequalities over the program
variables. Such a loop can be written as follows, where A, B are matrices of rational numbers,
a, b are vectors of rational numbers, and x,xÕ represent the respective values of the program
variables before and after the loop update:

P : while (B x Ø b) do A ( xxÕ ) Ø a,

Such loops are inherently non-deterministic, since the e�ect of the loop body is described
by a collection of constraints. Note in passing that the loop guard can be folded into the
constraints that describe the loop body and so, without loss of generality, the guard can

EA
T
C
S

© Quentin Guilmant, Engel Lefaucheux, Joël Ouaknine, and James Worrell;

licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;

Article No. 140; pp. 140:1–140:21

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin.guilmant@mpi-sws.org
https://quentin.guilmant.fr
https://orcid.org/0009-0004-7097-0595
mailto:engel.lefaucheux@inria.fr
https://elefauch.github.io
https://orcid.org/0000-0003-0875-300X
mailto:joel@mpi-sws.org
https://orcid.org/0000-0003-0031-9356
mailto:jbw@cs.ox.ac.uk
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.4230/LIPIcs.ICALP.2024.140
https://arxiv.org/abs/2405.12992
https://emmy.network
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


140:2 The 2-Dimensional Constraint Loop Problem Is Decidable

be assumed to be trivial. Linear constraint loops naturally arise as abstractions of other
programs. For example, linear constraints can be used to model size changes in program
variables, data structures, or terms in a logic program (see, e.g. [9]).

A linear constraint loop is said to terminate if there is no initial value of the loop variables
from which the loop has an infinite execution. The Termination Problem asks to decide
whether a given loop terminates. As such, the Termination Problem depends on the numerical
domain that the program variables range over: typically one considers either Z, Q, or R.

One approach to proving termination of linear constraint loops involves synthesizing
linear ranking functions [2]. However, it is well-known that there are terminating loops that
admit no linear ranking function. In the special case of deterministic linear constraint loops
(i.e., where the loop body applies an a�ne function to the program variables) decidability
of termination over R was shown by Tiwari [10], decidability of termination over Q was
shown by Braverman [5], and decidability of termination over Z was established in [7].1 All
three papers build on an analysis of the spectrum of the matrix that determines the update
function in the loop body. To the best of our knowledge, decidability of termination of linear
constraint loops over R, Q, and Z remains open. It is known however that termination for
multi-path constraint loops is undecidable (i.e., where disjunctions are allowed in the linear
constraints that define the update map). It is moreover known that termination of single-path
constraint loops is undecidable if irrational constants are allowed in the constraints [3]. One
of the few known positive results is the restricted case that all the constraints are octagonal,
in which case termination is decidable over integers [4]. (Recall that a constraint is said to
be octagonal if it is a conjunction of propositions of the form ±xi ± xj Æ a, for variables
xi, xj and constant a œ Z.)

In this paper we study the termination of linear constraint loops over the reals in dimension
at most 2. We give a su�cient and necessary condition that such a loop be non-terminating
in the form of a witness of non-termination. This is given in Definition 1. Here one should
think of K as the transition relation of a linear constraint loop, while rec(K) is the recession
cone of K, i.e., the set of vectors v such that w + ⁄v œ K for all w œ K and ⁄ Ø 0. The
witness of non-termination is essentially a finite representation of an infinite execution of the
loop in the spirit of the geometric non-termination arguments of [8] and the recurrent sets
of [1].

I Definition 1. Let E be a Euclidean space. Let K ™ E2 be a convex set. A witness W(K)
consists of a linear map M : E æ E, a closed cone C ™ E, and v, w œ E, such that
(÷u1) MC ™ C

(÷u2) ’x œ C (x,Mx) œ rec(K)
(÷u3) (v, w) œ K

(÷u4) w ≠ v œ C.

If E has dimension at most 2 and K is a polyhedron, then the existence of such a witness
can be expressed in the theory of real closed fields. (The restriction to dimension 2 entails
that every cone is generated by a most 3 vectors, whereas there is no such upper bound in
dimension 3.) Thus we obtain a polynomial-time reduction of the Termination Problem for
constraint loops to the decision problem for the theory of real closed fields with a bounded
number of quantifier, which is decidable in polynomial space.

1 These works in fact consider loop guards that feature a mix of strict and non-strict inequalities, whereas
in the present paper we consider only non-strict inequalities.
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The following is our main result, which characterises non-termination in terms of the
above notion of witness. We refer to Section 2.3 for the notion of MW-convex set, su�ce to
say here that this class includes all polyhedra and that the main property of MW-convex
sets used in the proof is that for every linear projection fi and MW-convex set K we have
fi(rec(K)) = rec(fi(K)). Further background about convex sets is contained in Section 2.2.

I Theorem 2. Let E be a Euclidean space of dimension at most 2. Let K ™ E2 be MW-
convex. There is a sequence (un)nœN œ EN such that (un, un+1) œ K for all n œ N if and
only if there exists a witness W(K).

2 Preliminaries

2.1 Notation

A superscript ú removes 0 from a set. Namely, Rú = R \ {0}, Nú = N \ {0} and so on. R+

stands for all non-negative real numbers and Rú
+

for all the positive real numbers. Also, for
n,m œ N such that n Æ m, we let Jn ; m K be the set of integers between n and m inclusive,
namely Jn ; m K = {n, n+ 1, . . . ,m}.

Landau Notations. We use the Landau notations. Let d œ Nú. Let Î·Î be any norm over
Rd (recall that all norms on Rd are equivalent). Let u : N æ Rd, w : N æ Rd and v : N æ R
be sequences. We then have the following notations:

un = o
næ+Œ

(vn) when for all Á œ Rú
+
there is some N œ N such that for all n Ø N , we

have ÎunÎ Æ Á|vn|.

un = O
næ+Œ

(vn) when there is some M œ Rú
+

and some some N œ N such that for all
n Ø N , we have ÎunÎ Æ M |vn|.

un = �
næ+Œ

(vn) when there is some M œ Rú
+

and some some N œ N such that for all
n Ø N , we have ÎunÎ Ø M |vn|.

un ≥
næ+Œ

wn if un ≠ wn = o
næ+Œ

(ÎwnÎ).

un = wn + o
næ+Œ

(vn) if un ≠ wn = o
næ+Œ

(vn).

un = wn + O
næ+Œ

(vn) if un ≠ wn = O
næ+Œ

(vn).

We keep the same notations if the sequences are undefined at a finite number of points in N.

2.2 Convex Sets

Throughout this section E is an arbitrary Euclidean space.
These results are already known but for the sake of completeness, some proofs are written

here anyway.
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I Definition 3. Let S ™ E. The a�ne hull of S, denoted A�Hull(S), the convex hull
of S, denoted ConvHull(S), and the vector space spanned by S, denoted Vect(S), are
defined by

A�Hull(S) =
I

kÿ

i=1

–ixi | –i œ R, xi œ S,
kÿ

i=1

–i = 1
J

ConvHull(S) =
I

kÿ

i=1

–ixi | –i œ [0; 1], xi œ S,
kÿ

i=1

–i = 1
J

Vect(S) =
I

kÿ

i=1

–ixi | –i œ R, xi œ S

J

I Definition 4. Let K ™ E be a convex set. The relative interior of K, denoted ri(K), is
defined by:

ri(K) = {x œ K | ÷U œ O(E), (x œ U) · (U fl A�Hull(K) ™ K)}

where O(E) stands for the set of open subsets of E.

In other words, the relative interior of a convex set C is its interior with respect to the
induced topology on the a�ne subspace spanned by C.

We have the following properties for the relative interior:

I Proposition 5. Let K ™ E be a non-empty convex set. Denoting as usual by K the
smallest closed subset of E containing K, we have:
(i) ri(K) is a non-empty convex set
(ii) ri(K) ™ K ™ K
(iii) A�Hull(ri(K)) = A�Hull(K)
(iv) ri(K) = ri(K)
(v) ri(K) = K

I Proposition 6. Let K be a non-empty convex set and x, y such that x œ ri(K) and
y œ K \ ri(K). Then for all ⁄ œ ( 0 ; 1 ] we have ⁄x+ (1 ≠ ⁄)y œ ri(K).

I Definition 7. Let K ™ E be a non-empty convex set. The recession cone of K, denoted
rec(K), is the set rec(K) = {z œ E | K + R+z ™ K}.

Note that we always have 0 œ rec(K). Also, the recession cone is indeed a cone, as it is
stable under positive scalar multiplication by definition.

I Lemma 8. Let K ™ E be a convex set. Let fi : E æ E be a linear projection. Then
fi(rec(K)) ™ rec(fi(K)).

Proof. Let x œ fi (rec(K)). There is y œ Kerfi such that x+ y œ rec(K). Let a œ fi(K) and
b œ Kerfi such that a+ b œ K. Then,

’⁄ œ R+ (a+ b) + ⁄(x+ y) œ K

Hence, ’⁄ œ R+ a+ ⁄x œ fi(K)
and x œ rec(fi(K)). J

If K is closed, we even have an alternative characterization of the recession cone which
requires a seemingly weaker property but that turns out to be equivalent.
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I Proposition 9. Let K ™ E be a non-empty closed convex set. Then

rec(K) = {z œ E | ÷x œ K x+ R+z ™ K}

Proof. We proceed by double inclusion.
(™) This direction is easy : if for all x œ K, x+ R+z ™ K, since K ”= ?, there is at least

one x such that x+ R+z ™ K.
(´) Let z œ Rd such that there is some x œ K such that x+R+z ™ K. Let y œ K. We have

to show that for any t0 œ R+, y + t0z œ K. Note that, by convexity, for all ⁄ œ [ 0 ; 1 ],
for all t œ R+ we have

(1 ≠ ⁄)y + ⁄(x+ tz) œ K

We then define the function ⁄ :
I

[ t0 ; +Œ ) æ [ 0 ; 1 ]
t ‘æ

t0
t

hence ’t Ø t0 (1 ≠ ⁄(t)) y + ⁄(t)x+ t0z œ K

We also have (1 ≠ ⁄(t)) y + ⁄(t)x+ t0z ≠æ
tæ+Œ

y + t0z

Since K is closed, we then deduce that for all y+ t0z œ K. Since this holds for any y œ K
and any t0 œ R+ we end up with z œ rec(K). J

When considering a closed convex set, we can look at its relative interior to get the same
recession cone.

I Proposition 10. Let K ™ E be a non-empty closed convex set. Then rec(K) = rec(ri(K)).

Proof. We proceed by double inclusion.
(™) Let v œ rec(K). Let x œ ri(K). In particular, x œ K. By definition, for any ⁄ œ R+,

x+ ⁄v œ K. Let S = {⁄ œ R+ | x+ ⁄v œ K \ ri(K)}. We just have to show that S = ?.
Assume S ”= ? and consider µ œ S. Let ⁄ > µ. Note that

x+ µv =
1
1 ≠

µ

⁄

2
x+ µ

⁄
(x+ ⁄v)

We have two cases:
⁄ œ S, in this case, using Proposition 6, since x œ ri(K) and x+ ⁄v œ K \ ri(K), we
have x+ µv œ riK, which is a contradiction.
⁄ /œ S, since, by Proposition 5, ri(K) is convex, x œ ri(K) and x + ⁄v œ ri(K), we
again reach x+ µv œ ri(K), a contradiction.

Both cases are impossible. Therefore, S = ?.
(´) Let v œ rec(ri(K)). By Proposition 5, there is some x œ ri(K). Therefore, for all

⁄ œ R+, x+ ⁄v œ ri(K) ™ K. By Proposition 9, we get that v œ rec(K). J

I Remark 11. Note that if K is not closed we have, thanks to Proposition 5, rec(K) =
rec(ri(K)) but we may have rec(K) ”= rec(ri(K)).

I Lemma 12. Let C be a closed convex cone in E. Let u : E æ E be linear. Then u(C) is
a closed convex cone.

Proof. By definition of a cone,

C = {0} fi R+ {x œ C | ÎxÎ = 1} .

ICALP 2024
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Since C is closed, {x œ C | ÎxÎ = 1} is bounded and closed in a vector space of finite
dimension, hence it is compact. By linearity of u,

u(C) = {0} fi R+u({x œ C | ÎxÎ = 1}).

Since u is linear over a vector space of finite dimension, it is continuous. Thus, the set
u({x œ C | ÎxÎ = 1}) is also compact, hence closed. The continuity of the norm ensures
that u(C) is closed. By linearity of u, we also get that u(C) is a convex cone. J

I Lemma 13. Let C be a non-trivial convex cone in E. Let x œ ri(C) \ {0} and u œ Vect(C).
Then there is ⁄ Ø 0 such that u+ ⁄x œ C.

Proof. If x = u then ⁄ = 0 works. We then assume x ”= u. Since u œ Vect(C), there is
µ œ ( 0 ; 1 ) µu+ (1 ≠ µ)x œ ri(C). Therefore, for any ⁄ œ R+, ⁄ (µu+ (1 ≠ µ)x) œ ri(C). In
particular, for ⁄ = 1

µ
(which exists since µ ”= 0),

u+ 1 ≠ µ

µ
x œ ri(C)

and we indeed have 1 ≠ µ

µ
Ø 0. J

2.3 Minkowski-Weyl Convex Sets

I Definition 14. A closed convex set K is said to be MW-convex if there is a compact
convex set K Õ such that K = K Õ + rec(K).

This property comes from the Minkowski-Weyl Theorem for polyhedra :

I Theorem 15 (Minkowski-Weyl). Let K ™ Rd. The following statements are equivalent:
(i) K = {x œ Rd

| Ax Æ b} for some matrix A œ Rn◊d and b œ Rn.
(ii) There are finitely many points x1, . . . xk,œ P and finitely many directions v1, . . . , vp

such that

K = ConvHull({x1, . . . , xk}) +
pÿ

i=1

R+vi.

Needing this property, we will assume that the sets K we consider are MW-convex. Note
that, among others, polyhedrons are MW-convex, and thus our results apply to a more
general class of sets.

One of the main benefits of MW-convex sets is that they behave very nicely with linear
projections. Unlike other convex sets, the projections “commute” with the operator rec,
giving a reciprocal to Lemma 8.

I Lemma 16. Let K ™ Rd be MW-convex. Let fi be a linear projection over Rd. We have
rec(fi(K)) ™ fi(rec(K)).

Proof. Let x œ rec(fi(K)). If x = 0 then we immediately have x œ fi(rec(K)). Therefore, we
may assume x ”= 0. For a œ fi(K), we have a+ R+x ™ fi(K). Thus,

’⁄ œ R+ ÷b(⁄) œ Kerfi a+ ⁄x+ b(⁄) œ K.
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Let K Õ convex compact such that K = K Õ + rec(K). Therefore, for all ⁄ œ R+ there are
aÕ(⁄) œ fi(K Õ) and xÕ(⁄) œ fi(rec(K)) such that

a+ ⁄x = aÕ(⁄) + xÕ(⁄).

Since aÕ(⁄) œ fi(K Õ) and that fi(K Õ) is compact (as the continuous image of a compact),
there is aÕ

œ fi(K Õ) and an increasing sequence (⁄n)nœN that tends to infinity such that

aÕ(⁄n) ≠æ
næ+Œ

aÕ.

Thus

⁄nx ≠ xÕ(⁄n) ≠æ
næ+Œ

aÕ
≠ a.

We then get that

xÕ(⁄n)
⁄n

= x+ a ≠ aÕ

⁄n
+ o

næ+Œ

3
1

⁄n

4
and xÕ(⁄n)

⁄n
≠æ

næ+Œ
x.

Also xÕ(⁄n)
⁄n

œ fi(rec(K)). Moreover, using Lemma 12, fi(rec(K)) is closed. Hence, we have
x œ fi(rec(K)) what concludes the proof. J

The converse inclusion is true for general convex sets (Lemma 8). Combining this to
Lemma 16, we have:

I Corollary 17. Let K ™ Rd be MW-convex. Let fi be a linear projection over Rd. We have
rec(fi(K)) = fi(rec(K)).

I Corollary 18. Let K ™ Rd be MW-convex. Let fi : Rd
æ Rd be a linear projection. Then

fi(K) is MW-convex.

Proof. We write K = K Õ + rec(K) where K Õ is a convex compact set. Hence, since fi
is continuous (linear in a finite dimensional space), fi(K Õ) is also compact. Moreover, by
linearity of fi, we get that

fi(K) = fi(K Õ) + fi(rec(K)).

By Lemma 12, fi(rec(K)) is a closed convex cone. Hence, fi(K) is closed convex as a sum of
closed convex sets. By Corollary 17, we get

fi(K) = fi(K Õ) + rec(fi(K)). J

2.4 Accumulation Expansions

We consider an arbitrary Euclidean space E of dimension d œ N. We denote È·, ·Í its scalar
product and Î·Î the associated norm.

To study the sequences of the constraint loop problem, we need to identify the asymptotic
directions these sequences are going towards, building a form of asymptotic expansion of
those sequences. We thus introduce the concept of accumulation expansion. As sequences
may point in several directions, we consider the expansion of a subsequence that has a single
main direction.

ICALP 2024
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I Definition 19. Let (un)nœN be a sequence of E. An accumulation expansion of
(un)nœN consists in an increasing function Â : N æ N, an integer p œ J 0 ; d K, some vectors
z1, . . . , zp+1 œ E and sequences (–k,n)nœN for k œ J 1 ; p K such that
(AE1) ’k œ J 1 ; p K ÎzkÎ = 1

(AE2) ’k, kÕ
œ J 1 ; p K Èzk, zkÕÍ =

;
1 if k = kÕ

0 if k ”= kÕ

(AE3) ’k œ J 1 ; p K Èzk, zp+1Í = 0
(AE4) ’k œ J 1 ; p K ’n œ N –k,n > 0
(AE5) ’k œ J 1 ; p K –k,n ≠æ

næ+Œ
+Œ

(AE6) ’m œ J 1 ; p K –m,n ≥
næ+Œ

....uÂ(n) ≠

m≠1q
k=1

–k,nzk

....
(AE7) ’k œ J 1 ; p ≠ 1 K –k+1,n = o

næ+Œ
(–k,n)

(AE8) ’n œ N ’¸ Æ m œ J 1 ; p K
=
z¸, uÂ(n) ≠

mq
k=1

–k,nzk

>
= 0

(AE9) uÂ(n) =
pq

k=1

–k,nzk + zp+1 + o
næ+Œ

(1).

Abusing notations, we will say that uÂ(n) =
pq

k=1

–k,nzk + zp+1 + o
næ+Œ

(1) is an accumu-

lation expansion of (un)nœN.

I Definition 20. Let u = (un)nœN be a sequence of E. The set Du of principal directions
of u is defined by

Du =

Y
]

[z œ E

------
uÂ(n) =

pq
k=1

–k,nzk + zp+1 + o
næ+Œ

(1) is an accumulation expansion

p Ø 1 and z = z1

Z
^

\ .

In other words, Du is the set of directions that are in the dominant position of some
accumulation expansion of u such that p Ø 1. It also corresponds to the dominant directions
of an unbounded sequence.

For x œ E \ {0} we denote Âx = x

ÎxÎ
the associated normalized vector.

I Lemma 21. Let (un)nœN be an unbounded sequence of E. There exist z œ E a unit vector,
an increasing function Ï : N æ N and a sequence (–n)nœN such that

’n œ N –n > 0
–n ≠æ

næ+Œ
+Œ

–n ≥
næ+Œ

..uÏ(n)

..

uÏ(n) = –nz + o
næ+Œ

(–n)
’n œ N uÏ(n) ≠ –nz œ z‹ where z‹ means the vector subspace of E orthogonal to
Vect({z})

Proof. Since (un)nœN is unbounded, we can assume that we have an increasing function
Ï : N æ N such that for all n œ N, uÏ(n) ”= 0 and

..uÏ(n)

.. ≠æ
næ+Œ

+Œ. Therefore the sequence
!
]uÏ(n)

"
nœN is well defined. Moreover, as it is bounded by definition, up to refining Ï, we can

assume that it converges to some z œ E. Let fi be the orthogonal projection onto Rz. We
define –n to be the unique real number such that fi(uÏ(n)) = –nz. As ]uÏ(n) ≠æ

næ+Œ
z, we

have that –n ≥
næ+Œ

..uÏ(n)

... Therefore, up to refining Ï, we can assume that –n ≠æ
næ+Œ

+Œ

and –n > 0. Moreover, we have uÏ(n) = –nz + o
næ+Œ

(–n). Finally, by definition of fi, for all
n œ N, uÏ(n) ≠ –nz œ z‹. J
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I Proposition 22. Any sequence u = (un)nœN of E admits accumulation expansions.
Moreover, if u is unbounded, then Du is not empty.

Proof. If (un)nœN is bounded, then it has an accumulation point z1. Hence, taking p = 0,
all the points are trivially true except Point (AE9). Taking any Â given by the definition of
accumulation point lead to uÂ(n) = z1 + o

næ+Œ
(1).

Assume now that (un)nœN is unbounded. We proceed by induction on d = dimE.
If d = 1, consider z1 and (–1,n)nœN and Â given by Lemma 21. By definition, Îz1Î = 1
and uÂ(n) ≠ –1,nz1 œ z‹

1
= {0}. Taking p = 1 and z2 = 0 satisfies all the required

properties. Moreover, z1 œ Du.
Assume the proposition holds for any Euclidean space of dimension d ≠ 1. Consider z1,!
–Õ
1,n

"
nœN and Ï given by Lemma 21. By definition Îz1Î = 1 and uÏ(n) ≠ –Õ

1,nz1 œ z‹
1
.

Since z1 ”= 0, dim z‹
1

= d≠1. We can thus apply the induction hypothesis on the sequence!
uÏ(n) ≠ –Õ

1,nz1
"
nœN in z‹

1
. Let ÏÕ be the function given by the induction hypothesis. Let

Â = Ï ¶ ÏÕ and –1,n = –Õ
1,ÏÕ(n).

Every point is immediately satisfied either by the induction hypothesis or the fact that
z1 is orthogonal to any point in z‹

1
, except for Point (AE7): It remains to prove that if

p Ø 2, then –2,n = o
næ+Œ

(–1,n). By induction hypothesis we know that

–2,n ≥
næ+Œ

..uÂ(n) ≠ –1,nz1
.. .

Moreover, by Lemma 21
..uÏ(n) ≠ –Õ

1,nz1
.. = o

næ+Œ

!
–Õ
1,n

"
.

Since (–1,n)nœN is a subsequence of
!
–Õ
1,n

"
nœN, we have

–2,n ≥
næ+Œ

..uÂ(n) ≠ –1,nz1
.. = o

næ+Œ
(–1,n)

as required. Moreover, z1 œ Du. J

We now state a relation between the directions within the accumulation expansion and
the set rec(K).

I Proposition 23. Let E be an Euclidean space. Let K ™ E be MW-convex. Let u = (un)nœN

be an unbounded sequence in K. Let uÏ(n) =
pq

k=1

–k,nzk+zp+1+ o
næ+Œ

(1) be an accumulation

expansion of (un)nœN. Then, there are some positive real numbers (—k,¸)1Æ¸<kÆp+1
such that

’k œ J 1 ; p K zk +
k≠1ÿ

¸=1

—k,¸z¸ œ rec(K)

and zp+1 +
pÿ

¸=1

—p+1,¸z¸ œ K.

Proof. For k œ J 1 ; p K, we consider fik : E æ E the orthogonal projection onto the vector
space Vect((z1, . . . , zk≠1)‹). Let us first show that zk œ fik(rec(K)). Let ⁄ œ R+ and define

⁄k,n = ⁄

–k,n
.
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Note that for large enough n, ⁄k,n œ [ 0 ; 1 ]. Without loss of generality, we assume ⁄k,n œ

[ 0 ; 1 ]. Then, by convexity,

⁄k,nuÏ(n) + (1 ≠ ⁄k,n)u0 œ K.

Moreover,

fik

!
⁄k,nuÏ(n) + (1 ≠ ⁄k,n)u0

"
= ⁄zk +

pÿ

¸=k+1

⁄k,n–¸,nz¸

+ ⁄k,nzp+1 + (1 ≠ ⁄k,n)fik(u0) + o
næ+Œ

(⁄k,n)

≠æ
næ+Œ

⁄zk + fik(u0).

Also, thanks to Corollary 18, we have fik(K) = fik(K). Using now Proposition 9, we then
conclude that zk œ rec(fik(K)). Finally, using Corollary 17,

zk œ fik(rec(K)).

We now prove the proposition by induction on k. For k = 1, our preliminary result gives
in particular that z1 œ rec(K).

Assume now that (—q,¸)1Æ¸<q<k have been defined for some k œ J 1 ; p K. Since zk œ

fik(rec(K)) as proven earlier, there are some real numbers (“k,¸)¸œJ 1 ; k≠1 K such that

zk +
k≠1ÿ

¸=1

“k,¸z¸ œ rec(K).

If all the “k,¸ are positive then fixing —k,¸ = “k,¸ satisfies the proposition. Let ¸ œ J 1 ; k ≠ 1 K

maximum such that “k,¸ Æ 0. Then, as by hypothesis we have that z¸ +
¸≠1q
j=1

—¸,jzj œ rec(K),

we can deduce that

zk +
k≠1ÿ

j=1

“k,jzj + (1 + |“k,¸|)

Q

az¸ +
¸≠1ÿ

j=1

—¸,jzj

R

b œ rec(K).

Considering “Õ
k,j =

Y
]

[

“k,j j > ¸
1 j = ¸

“k,j + (1 + |“k,¸|)—¸,j j < ¸
,

we end up with zk +
k≠1q
¸=1

“Õ
k,¸z¸ œ rec(K) with one less non-positive coe�cient. Repeating

this procedure until every coe�cient is positive lead to a sum of the desired shape, thus
establishing the induction hypothesis holds on k and therefore concluding the induction.

Let fip+1 : E æ E the orthogonal projection on Vect((z1, . . . , zp)‹). We have

fip+1

!
uÏ(n)

"
≠æ

næ+Œ
zp+1.

By Corollary 18,

zp+1 œ fip+1(K) = fip+1(K).

Thus, there are some real numbers (“p+1,¸)¸œJ 1 ; k K such that

zp+1 +
pÿ

¸=1

“p+1,¸z¸ œ K.
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Doing the same work as above, we can add some elements of rec(K) so that we end up with
some positive (—p+1,¸)¸œJ 1 ; k K such that

zp+1 +
pÿ

¸=1

“p+1,¸z¸ œ K. J

The two following corollaries specialise this result for some form of sequences.

I Corollary 24. Let E an Euclidean space. Let fi : E æ E be a linear projection. Let K ™ E
be MW-convex. Let u = (un)nœN be an unbounded sequence in K and x œ Dfi(u). Let

f(id≠fi)(uÏ(n))
..fi(uÏ(n))

.. =
pÿ

k=1

–k,nzk + zp+1 + o
næ+Œ

(1)

be an accumulation expansion of
3
(id≠fi) (un)

Îfi(un)Î

4

nœN
such that

^fi(uÏ(n)) ≠æ
næ+Œ

x.

Then, there are some positive real numbers (—k,¸)1Æ¸<kÆp+1
such that

’k œ J 1 ; p+ 1 K zk+
k≠1ÿ

¸=1

—k,¸z¸ œ rec(K) and x+zp+1+
pÿ

¸=1

—p+1,¸z¸ œ rec(K)

Proof. We have

(id≠fi)
!
uÏ(n)

"
=

pÿ

k=1

..fi(uÏ(n))
.. –k,nzk +

..fi(uÏ(n))
.. zp+1 + o

næ+Œ

!..fi(uÏ(n))
.."

Also, provided ]uÏ(n) ≠æ
næ+Œ

x, we have

fi
!
uÏ(n)

"
=

..fi(uÏ(n))
.. x+ o

næ+Œ

!..fi(uÏ(n))
.."

.

Therefore

uÏ(n) =
pÿ

k=1

..fi(uÏ(n))
.. –k,nzk +

..fi(uÏ(n))
.. (x+ zp+1) + o

næ+Œ

!..fi(uÏ(n))
.."

.

The result is obtained by applying Proposition 23 to this accumulation expansion of (un)nœN.
Note that in this case we in fact have a truncated accumulation expansion so the case p+ 1
is not the last element of an actual accumulation expansion. That is why we get rec(K)
instead of K even for p+ 1. J

I Corollary 25. Let E an Euclidean space. Let K ™ E2 be MW-convex. Let fi : E æ E be a
linear projection. Let u = (un)nœN be an unbounded sequence in E such that

’n œ N (un, un+1) œ K

and x œ Du. Let

uÏ(n)+1..uÏ(n)

.. =
pÿ

k=1

–k,nzk + zp+1 + o
næ+Œ

(1)
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be an accumulation expansion of
3
un+1

ÎunÎ

4

nœN
such that

]uÏ(n) ≠æ
næ+Œ

x.

Then, there are some positive real numbers (—k,¸)1Æ¸<kÆp+1
such that

’k œ J 1 ; p K
A
0, zk +

k≠1ÿ

¸=1

—k,¸z¸

B
œ rec(K) and

A
x, zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
œ rec(K)

and such that for su�ciently large n,
K

fi

A
zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
,fi

A
zp+1 +

pÿ

k=1

–k,nzk

BL
Ø 0.

Moreover, there is some i œ J 1 ; p+ 1 K such that fi(zi) /œ Ker(fi), this inequality can be
taken to be strict.
Proof. We first apply Corollary 24 to the sequence ((un, un+1))nœN and the projection on
the first component to get some positive real numbers (—k,¸)1Æ¸<kÆp+1

such that

’k œ J 1 ; p K
A
0, zk +

k≠1ÿ

¸=1

—k,¸z¸

B
œ rec(K) and

A
x, zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
œ rec(K).

Let k0 œ J 1 ; p+ 1 K minimum such that zk /œ Kerfi.
If there is no such k0, then

K
fi

A
zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
,fi

A
zp+1 +

pÿ

k=1

–k,nzk

BL
= 0

and the proof is complete.
If k0 = p+ 1, then

K
fi

A
zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
,fi

A
zp+1 +

pÿ

k=1

–k,nzk

BL
= Èfi(zp+1),fi(zp+1)Í > 0.

Otherwise, k0 œ J 1 ; p K and Îfi(zk0)Î ”= 0. Let

Sn(⁄) =
K

fi

A
zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
+ ⁄fi

A
zk0 +

k0≠1ÿ

¸=1

—k0,¸z¸

B
,fi

A
pÿ

k=1

–k,nzk + zp+1

BL
.

We have

Sn(⁄) =
K

fi(zp+1) +
pÿ

¸=k0

—p+1,¸fi(z¸) + ⁄fi (zk0) ,
pÿ

k=k0

–k,nfi(zk) + fi(zp+1)
L

=
K

fi(zp+1) +
pÿ

¸=k0

—p+1,¸fi(z¸) + ⁄fi (zk0) ,fi(zp+1)
L

+
pÿ

k=k0

–k,n

K
fi(zp+1) +

pÿ

¸=k0

—p+1,¸fi(z¸) + ⁄fi (zk0) ,fi(zk)
L

= –k0,n

K
fi(zp+1) +

pÿ

¸=k0

—p+1,¸fi(z¸) + ⁄fi (zk0) ,fi(zk0)
L

+ o
næ+Œ

(–k0,n)

= –k0,n

A
⁄ Îfi(zk0)Î

2 +
K

fi(zp+1) +
pÿ

¸=k0

—p+1,¸fi(z¸),fi(zk0)
LB

+ o
næ+Œ

(–k0,n) .
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Therefore, taking any ⁄ > 0 such that

⁄ > ≠

K
fi(zp+1) +

pq
¸=k0

—p+1,¸fi(z¸),fi(zk0)
L

Îfi(zk0)Î
2

we get Sn(⁄) ≠æ
næ+Œ

+Œ. Thus, for su�ciently large n,

K
fi

A
zp+1 +

pÿ

¸=1

—p+1,¸z¸

B
+ ⁄fi

A
zk0 +

k0≠1ÿ

¸=1

—k0,¸z¸

B
,fi

A
pÿ

k=1

–k,nzk + zp+1

BL
> 0.

Also,
A
x, zp+1 +

pÿ

¸=1

—p+1,¸z¸ + ⁄zk0 + ⁄
k0≠1ÿ

¸=1

—k0,¸z¸

B
=

A
x, zp+1 +

pÿ

¸=1

—p+1,¸z¸

B

¸ ˚˙ ˝
œrec(K)

+ ⁄¸˚˙˝
Ø0

A
0, zk0 +

k0≠1ÿ

¸=1

—k0,¸z¸

B

¸ ˚˙ ˝
œrec(K)

A
x, zp+1 +

pÿ

¸=1

—p+1,¸z¸ + ⁄zk0 + ⁄
k0≠1ÿ

¸=1

—k0,¸z¸

B
œ rec(K).

Thus, considering

—Õ
p+1,¸ =

Y
]

[

—p+1,¸ ¸ > k0
—p+1,¸ + ⁄ ¸ = k0

—p+1,¸ + ⁄—k0,¸ ¸ < k0

instead of the —k+1,¸s, we get the desired result. J

3 Deciding the Constraint Loop Problem

The goal of this section is to establish Theorem 2. This will be done by showing equivalence
between the existence of a witness of the form given by Definition 1 and the existence of
an infinite run of a constraint loop. The easy direction in this argument – constructing an
infinite execution from a witness – is the purpose of Proposition 27 in Subsection 3.2. In
fact, there is an even easier case, namely certifying the existence of bounded infinite run, is
dealt with in Section 3.1. It states that a bounded infinite run exists if an only if there is a
fixed point. This proof holds in any dimension and relies on a simpler certificate. We will
also reuse this result in the specific cases of dimension 1 and 2.

The main objective in this section is to construct a witness from an infinite execution.
We provide the proof of su�cient condition in Subsection 3.2. This will help motivate
the definition of witness. Subsection 3.3 deals with the simple 1-dimensional case, and
Subsection 3.4 handles the dimension-2 case, which is more challenging. Because of the
di�culty of this proof we only provide high level explanation here. For a complete proof, we
refer to the full-version of this article [6].
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3.1 Deciding the Existence of a Bounded Sequence

I Proposition 26. Let E be a vector space of dimension d œ N. Let K ™ E2 be closed convex.
Denoting �E = { (x, x) | x œ E} ™ E2, we have that K fl �E ”= ? if and only if there is a
bounded sequence u = (un)nœN of E such that for all n œ N, (un, un+1) œ K.

Proof.

(∆) Let (x, x) œ K fl �E . The sequence constantly equal to x satisfy the proposition.
(≈) Assume now that there exists a bounded sequence (un)nœN such that for all n œ N,

(un, un+1) œ K. Let n œ Nú and define xn = 1
n

nq
p=0

(up, up) and yn = 1
n

n≠1q
p=0

(up, up+1).

We have

Îxn ≠ ynÎ = 1
n

Î(un, u0)Î .

Since the sequence (un)nœN is bounded, there is a positive real number M such that

’n œ Nú
Îxn ≠ ynÎ Æ

M

n
.

In particular, both sequences (xn)nœNú and (yn)nœNú must have the same accumulation
points. As these sequences are bounded (and since they are in a vector space of finite
dimension), such a point exists. Let us denote it x. Notice that since K is closed and
convex, for all positive integer n, yn œ K and thus x œ K. Moreover, by definition, for
all positive integer n, xn œ �E . This set is again closed, thus x œ �E . This proves that

x œ K fl �E ”= ?. J

3.2 A Su�cient Condition for the Existence of a Sequence

I Proposition 27. Let E be an Euclidean space of dimension d. Let K ™ E2 be MW-convex.
If there exists a witness W(K), then, there is a sequence (un)nœN œ EN such that

’n œ N (un, un+1) œ K.

Proof. Assume we have a witness W(K). We then take M, v,w,C as given by the witness
and define the following sequence:

u0 = v and u1 = w

’n œ N un+2 ≠ un+1 = M (un+1 ≠ un)

Remark first that for all n œ N, un+1 ≠ un œ C. This can be proven by induction, noting
that the initialisation is given by Point (÷u4) and the induction step comes from Point (÷u1).

We now prove by induction that ’n œ N (un, un+1) œ K.
By Point (÷u3), (u0, u1) œ K.
Assume that for some n œ N, (un, un+1) œ K. As un+1 ≠ un œ C as shown before, by
Point (÷u2)

(un+1 ≠ un, un+2 ≠ un+1) œ rec(K).

Thus (un+1, un+2) = (un, un+1) + (un+1 ≠ un, un+2 ≠ un+1) œ K + rec(K) = K.
By the induction principle we conclude that for all n œ N, (un, un+1) œ K. J
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3.3 Necessary Condition for the Existence of a 1-Dimensional Sequence

We establish the main result in the one dimensional case. Note that we prove a slightly
stronger certificate here, which is not necessary in itself, but which we need for the 2
dimensional case.

I Proposition 28. Let E be an Euclidean space of dimension 1. Let K ™ E2 be MW-convex.
Let a sequence (un)nœN œ EN such that (un, un+1) œ K for all n œ N. Let “ œ cone (Du)
such that (0, “) œ rec(K) (note that at least “ = 0 works). Then, there are a œ Rú, a closed
convex cone C ™ E and x, y œ E such that
(i) aC ™ C

(ii) ’x œ C (x, ax) œ rec(K)
(iii) (x, y) œ K

(iv) y ≠ x œ C

(v) “ œ C

Proof. Without loss of generality, as E is an Euclidean space of dimension 1, we assume
E = R. If (un)nœN is bounded, then, by Proposition 26 there exists z œ R such that (z, z) œ K.
Then “ = 0 and we can select y = x = z, C = {0} and a œ Rú arbitrary (e.g. 1) to produce
the requested witness.

We now assume that (un)nœN is unbounded. By Proposition 22, it admits accumulation
expansions and Du ”= ?. The only two possible accumulation directions are 1 and ≠1. We
consider three cases:

If Du = {≠1, 1}. Take Ï1 and Ï≠1 such that ûÏ1(n) ≠æ
næ+Œ

1 and ûÏ≠1(n) ≠æ
næ+Œ

≠1. Up
to extracting a subsequence, we have the accumulation expansions

uÏ1(n)+1..uÏ1(n)

.. =
pÿ

k=1

–k,nzk + zp+1 + o
næ+Œ

(1)

and
uÏ≠1(n)+1..uÏ≠1(n)

.. =
pÕÿ

k=1

–Õ
k,nz

Õ
k + zÕ

pÕ+1
+ o

næ+Œ
(1) .

Then, by Corollary 25, there are –,— œ R such that

(1,–) œ rec(K) and (≠1,—) œ rec(K).

Let ” =
;

“ if “ ”= 0
– + — if “ = 0.

Therefore, either (0, ”) = (0, “) œ rec(K), or (0, ”) = (1,–) + (≠1,—) and (0, ”) œ rec(K)
by conic combinations.

If ” = 0 then “ = 0 and – = ≠—.
� If – = 0, then — = 0, (u1, u1) = (u0, u1)¸ ˚˙ ˝

œK

+(u1 ≠ u0, 0)¸ ˚˙ ˝
œrec(K)

œ K.

We then choose for instance a œ Rú, C = {0} and x = y = u1.
� If – ”= 0, then we just have to take a = –, C = R, x = u0, y = u1.
Note that in both these cases we trivially have “ œ C.
If ” > 0 then, for large enough n, n” + – > 0. Moreover, as rec(K) is a cone,

(1, n” + –) = n(0, ”)¸ ˚˙ ˝
œrec(K)

+ (1,–)¸ ˚˙ ˝
œrec(K)

œ rec(K).
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We then take a = n” + – > 0, C = R+, x = uk, y = uk+1, for some k such that
uk+1 ≠ uk+ > 0. This exists since 1 œ Du and hence (un)nœN is not bounded from
above. Note also that since ” > 0 then “ Ø 0. Thus “ œ C.
If ” < 0 then, for large enough n, n” + — < 0. Moreover, as rec(K) is a cone,

(≠1, n” + —) = n(0, ”)¸ ˚˙ ˝
œrec(K)

+(≠1,—)¸ ˚˙ ˝
œrec(K)

œ rec(K).

We then take a = ≠n” ≠ — > 0, C = R≠, x = uk, y = uk+1 for some k such that
uk+1 ≠ uk < 0. This exists since ≠1 œ Du and hence (un)nœN is not bounded from
below. Note also that since ” < 0 then “ Æ 0. Thus “ œ C.

If Du = {1}, then, similarly to the first case, using Corollary 25, there is some – œ R+

such that (1,–) œ rec(K). Note also that “ Ø 0 and that (1,– + “) œ rec(K). Let k such
that uk+1 ≠ uk > 0. This exists since 1 œ Du and hence (un)nœN is not bounded from
above.

If – + “ = 0, then, – = “ = 0 and

(uk+1, uk+1) = (uk, uk+1)¸ ˚˙ ˝
œK

+(uk+1 ≠ uk, 0)¸ ˚˙ ˝
œrec(K)

œ K.

We then choose for instance a œ Rú, C = {0} and x = y = uk+1.
If – + “ > 0, then we just have to take a = – + “, C = R+, x = uk and y = uk+1.

Note that in both cases, “ œ R+ = C.
The case Du = {≠1} can be made similarly to the previous point. J

We are now ready to prove the special case of Theorem 2 in which E has dimension 1
(see Section 1). Without loss of generality we just consider E = R. The necessary condition
is given by the application of Proposition 28 with “ = 0. The su�cient condition is given by
Proposition 27.

3.4 Necessary Condition for the Existence of a 2-Dimensional Sequence

We now move to 2-dimensional Euclidean spaces and prove that the existence of a witness
as given by Definition 1 is implied by the existence of an infinite sequence. This, combined
with Proposition 27 will imply Theorem 2.

For the entire section, we thus fix E to be an Euclidean space of dimension 2, K ™ E2 to
be MW-convex and thus satisfying K = K Õ + rec(K) where K Õ is a compact convex set. We
assume that there exists a sequence (un)nœN œ EN such that for all n œ N, (un, un+1) œ K.

We start by two technical lemmas to lighten the proof of the proposition.

I Lemma 29. Assume that Du is not empty and for all x œ coneDu, if (0, x) œ rec(K),
then x = 0. Denoting Cu = coneDu, we have that for all x œ Cu, there is s(x) œ Cu such that
(x, s(x)) œ rec(K).

Proof. Let x œ Cu. By definition, we can consider x1, . . . , xm œ Du and ⁄1, . . . ,⁄m œ R+

such that x =
mq
i=1

⁄ixi. By definition of Du, for i œ J 1 ; m K there is an increasing function Ïi :

N æ N such that ûÏi(n) ≠æ
næ+Œ

xi. Using Proposition 22, the sequence
!!
uÏi(n), uÏi(n)+1

""
nœN

admits an accumulation expansion

!
uÏi¶Âi(n), uÏi¶Âi(n)+1

"
=

piÿ

k=1

–i,k,n(zi,k,1, zi,k,2) + (zi,p+1,1, zi,p+1,2) + o
næ+Œ

(1) .
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In particular, for k œ J 1 ; pi K minimum such that zi,k,1 ”= 0, we have zi,k,1 œ Rú
+
xi. Since

the first component is not bounded, such a k exists. Let µi > 0 such that zi,k,1 = µixi. Now,
applying Proposition 23, (zi,1,1, zi,1,2) œ rec(K) and Î(zi,1,1, zi,1,2)Î = 1. Therefore, if k > 1,
then zi,1,1 = 0 and Îzi,1,2Î = 1. Hence zi,1,2 œ Du. This contradicts the hypothesis that for

all x œ Cu, if (0, x) œ rec(K), then x = 0. Thus, k = 1. Considering s(xi) =
1
µi

zi,1,2 satisfies

the claim for xi. Thus, defining s(x) =
mq
i=1

⁄is(xi) establishes the lemma. J

I Lemma 30. Assume that Du is not empty, that for all x œ coneDu, if (0, x) œ rec(K),
then x = 0 and for all x œ E, (x, x) ”œ K. Denoting Cu = coneDu, for all x œ Du, there are
”(x) œ E and ⁄ œ Rú

+
such that (”(x),⁄x+ ”(x)) œ K fi rec(K).

Proof. Let x œ Du and the accumulation expansion

uÏ(n) =
pÿ

k=1

–k,nzk + zp+1 + o
næ+Œ

(1)

with p > 0 and z1 = x. By convexity, we have

’n œ N 1
Ï(n)

Ï(n)≠1ÿ

k=0

(uk, uk+1) œ K.

Up to refining Ï, we can assume that we also have the accumulation expansion

1
Ï(n)

Ï(n)≠1ÿ

k=0

(uk, uk+1) =
qÿ

k=1

—k,n(wk,1, wk,2) + (wq+1,1, wq+1,2) + o
næ+Œ

(1) .

Therefore

qÿ

k=1

—k,n(wk,2 ≠ wk,1) + wq+1,2 ≠ wq+1,1 = 1
Ï(n)

Ï(n)≠1ÿ

k=0

(uk+1 ≠ uk) + o
næ+Œ

(1)

=
uÏ(n) ≠ u0

Ï(n) + o
næ+Œ

(1)

=
pÿ

k=1

–k,n

Ï(n)zk + o
næ+Œ

(1) .

If
3

–1,n

Ï(n)

4

nœN
has an accumulation point, say ⁄, up to refining Ï, we assume that it

converges to it. By definition of an accumulation expansion, we then have for all k œ J 1 ; q K,
wk,1 = wk,2 Therefore, wq+1,2 ≠ wq+1,1 = ⁄x.

By Proposition 23, there are some positive real numbers “1, . . . , “q such that

qÿ

k=1

“k(wk,1, wk,2) + (wq+1,1, wq+1,2) œ K.

The di�erence between the two coordinates of this vector is ⁄x. Since ⁄ is the limit of
a positive sequence, ⁄ Ø 0. Also, provided that there is no a œ E such that (a, a) œ K

by hypothesis, we have ⁄ ”= 0. Therefore, considering ”(x) =
qq

k=1

“kwk,1 + wq+1,1 we get

(”(x),⁄x+ ”(x)) œ K.

ICALP 2024
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Now suppose that
3

–1,n

Ï(n)

4

nœN
has no accumulation point. Since it is positive, we have

–1,n

Ï(n) ≠æ
næ+Œ

+Œ.

Thus, there is k œ J 1 ; q K minimum such that wk,1 ”= wk,2 and for this k, we have

—k,n(wk,2 ≠ wk,1) ≥
næ+Œ

–1,n

Ï(n)x.

Therefore, there is ⁄ > 0 such that wk,2 ≠ wk,1 = ⁄x. By Proposition 23, there are some
positive real numbers “1, . . . , “k≠1 such that

k≠1ÿ

¸=1

“¸(w¸,1, w¸,2) + (wk,1, wk,2) œ rec(K).

The di�erence between the two coordinates of this vector is ⁄x. Therefore, considering

”(x) =
k≠1q
¸=1

“¸w¸,1 + wk,1 we have (”(x),⁄x+ ”(x)) œ rec(K). J

I Proposition 31. There exists a witness W(K).

For the detailed proof we refer to the full version [6]. Here we just give an overview of
the proof.

Proof sketch. The proof is divided into several cases under the structure described in
Figure 1. Among all these cases, Case 6 is by far the most di�cult, followed by Cases 2 and
5, then Case 4 (quite easy) and finally the almost trivial Cases 1 and 3. In this proof we
denote Cu = cone(Du).

Case 1: There is a fixed point (x, x) in K. In this case we just need to take v = w = x,
M arbitrary and C = {0} to get a Witness. This just leads to a constant sequence.
Case 2: No fixed point but there is x œ Cu \ {0} such that (0, x) œ rec(K). In this case
we are going to try to make use of Proposition 28. Let fi : E æ E be the orthogonal
projection onto x‹ and let ‚fi : E2

æ E2 be such that

’e, f œ E, ‚fi(e, f) = (fi(e),fi(f)) .

Assume that we have found some xÕ such that (x, xÕ) œ rec(K). We then can write
xÕ = “x+ y for some y orthogonal to x and some “ œ R. Then we have ‚fi(x, xÕ) = (0, y).
Also (0, y) œ ‚fi(rec(K)) = rec(‚fi(K)). Thus if we can build xÕ such that y œ cone(Dfi(u)),
we would be allowed to apply Proposition 28. This requires some work. The idea is to
write x =

nq
i=1

aixi with xi œ Du and ai Ø 0 then apply Corollary 25 for all i œ J 1 ; n K

(see the full version [6] for details). Assume this is done. There are a œ Rú, a closed
convex cone C ™ x‹ and v, w œ x‹ such that

aC ™ C

’c œ C (c, ac) œ rec(‚fi(K))
(v, w) œ ‚fi(K)
w ≠ v œ C

y œ C
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Any fixed point (x, x) 2 K ?
Yes No

Case 1 8x 2 E, (x, x) /2 K

Any x 2 cone(Du) \ {0} such that (0, x) 2 rec(K) ?
Yes No

Case 2 For all x 2 cone(Du)
(0, x) 2 rec(K) =) x = 0

Any a 2 E, x 2 Du, µ 2 R⇤
+ such that (a, a+ µx) 2 K ?

Yes No
Case 3 Impossible to have (a, a+ µx) 2 K

Does cone(Du) has full dimension ?
Yes No

Case 4

cone(Du) = Rx for some x ?
Yes No

Case 5 Case 6

Figure 1 The case disjunction structure.

Again, since rec(‚fiK) = ‚fi(rec(K)), for all › œ C, there are b›, c› œ R such that
(b›x+ ›, c›x+ a›) œ rec(K). For all › œ C, we fix b› and c› such that (|b›|, |c›|) is
minimal for the lexicographic order and among all these possibilities, such that (b›, c›) is
maximal for the lexicographic order. We denote

“0(›) = max(1, “, b›) and “1(›) = max(|a|, ba›, c›)

and for n Ø 1,

“2n(›) = max
1
a2n, a2nb›, a

2(n≠1)ca›

2

“2n+1(›) = max(|a|2n+1, a2nba›, a
2nc›).

For n œ N, let

‰n(›) = “n(›)x+ an› and bÕ
n,› =

;
a2nb› n œ 2N
a2nba› n œ 2N+ 1.

We some algebraic manipulations and intensively using that (0, x) œ rec(K) to add
missing weight on x in the second component, we get

’n œ N
!
‰n(›),‰n+1(›) +

!
“n(›) ≠ bÕ

n,›

"
‰0 (y)

"
œ rec(K).
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Recalling that w ≠ v œ C we define C Õ = R+x+
q
nœN

(R+‰n(w ≠ v) + R+‰n(y)) This is

the cone we want to use. It is finitely generated. We can also see that it cannot contain
line. Since all such two-dimensional cones are generated by at most two vectors we can
find such generating vectors. M will just be a matrix defined thanks to its behavior on
these vectors and C Õ is defined to get stability. Finally, up to add some component on
x again we can get our starting conditions thanks to v and w (See details in the full
version [6]).
Case 3: No fixed point or x œ Cu \ {0} such that (0, x) œ rec(K). However there are
a œ E, x œ Du and µ œ Rú

+
such that (a, a+µx) œ K. This means that their is a principle

direction of u along which it is possible to take a first step. In this case, we select C = Cu.
C is a non empty closed convex cone of R2, thus, there are two vectors x1, x2 œ C \ {0}
such that either C = Rx1+R+x2 or C = R+x1+R+x2 or C = Rx1+Rx2. Let I ™ {1, 2},
I ”= ? the largest set such that (xi)iœI is a free family. Using the function s defined by
Lemma 29, we define M such that Mxi = s(xi) for all i œ I. Noting that since, for i œ I,
≠xi œ C, (0, s(xi) + s(≠xi)) œ rec(K), we have that s(≠xi) = ≠s(xi), this choice of M
satisfies Points (÷u1) and (÷u2). We now choose v = a and w = a+ µx. By assumption,
(v, w) œ K. Also, w ≠ v = µx œ Cu = C. C, v and w thus satisfy Points (÷u3) and (÷u4).
Case 4: No fixed point, x œ Cu \ {0} such that (0, x) œ rec(K) or a œ E, x œ Du,
µ œ Rú

+
such that (a, a+ µx) œ K. However Du spans the entire space E. Given that,

take (a, b) œ K. Using Lemma 13 there is ⁄ Ø 0 such that y := b ≠ a + ⁄x œ Cu. Let
v = a + ⁄”(x) and w = b + ⁄(x + ”(x)) with ” given by Lemma 30. We then have
(u, v) œ K. Let C = cone {sk(y) | k œ N} with s being the function defined in Lemma 29.
C is a closed convex cone in a 2-dimensional vector space, therefore there are vectors
’1, ’2 œ C \ {0} such that

C œ {R+’1 + R+’2,R’1 + R+’2,R+’1 + R’2,R’1 + R’2}.

Let (’i,n)nœN be a sequence in cone
)
sk(y)

-- k œ N
*
such that

’i,n ≠æ
næ+Œ

’i.

If (s (’i,n))nœN is unbounded then Proposition 23 ensures that there is some ’ Õ
i œ

D(s(’i,n))nœN
such that (0, ’ Õ

i) œ rec(K) and ’ Õ
i œ Cu. This is impossible by assump-

tion on Cu. Therefore, it is bounded and we have an accumulation point ’ Õ
i œ C. Since

rec(K) is closed, we also have (’i, ’ Õ
i) œ rec(K). Let I ™ {1, 2} maximal such that (’i)iœI

is a free family. Let M be a matrix such that

’i œ I M’i = ’ Õ
i.

Case 5: No fixed point, x œ Cu \ {0} such that (0, x) œ rec(K) or a œ E, x œ Du,
µ œ Rú

+
such that (a, a+ µx) œ K and Cu is a line Cu = Rx. This case uses the induction

hypothesis (Proposition 28) and similar techniques as in Case 2. The main change here is
that we use the function s defined by Lemma 29. Here s(x) will have to be collinear with
x. In stead of adding multiples of (0, x), we have access to some (x, “x) œ recK and are
allowed negative coe�cients which makes the case relatively easy. See details in the full
version [6].
Case 6: No fixed point, x œ Cu \ {0} such that (0, x) œ rec(K) or a œ E, x œ Du, µ œ Rú

+

such that (a, a+ µx) œ K and Cu = R+x for some x. Let y œ x‹ such that ÎyÎ = 1. The
main goal of this case is to find a, b Ø 0 and c, d œ R such that

(x, ax) œ rec(K) and (dx+ y, cx+ by) œ rec(K) and c Ø db.
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This can be achieved by a very careful look at the asymptotic behavior of the (un)nœN
and more precisely its components along x and y. Namely, the component along x must
blow up significantly faster than the one along y. This is where the di�culty of this case
lies. We refer to the full version [6] for the details. This naturally leads to choose C and
M such that:

C = R+x+ R+(dx+ y) and Mx = ax and M(dx+ y) = cx+ by

immediately satisfying (÷u1) and (÷u2). With the same technics we can show that there
is some n œ N such that

Èun+1 ≠ un, xÍ Ø d Èun+1 ≠ un, yÍ .

Then considering v = un and w = un+1.

w ≠ v = un+1 ≠ un = Èun+1 ≠ un, xÍx+ Èun+1 ≠ un, yÍ y

= (Èun+1 ≠ un, xÍ ≠ d Èun+1 ≠ un, yÍ)x+ Èun+1 ≠ un, yÍ (dx+ y) œ C.

Hence, Points (÷u3) and (÷u4) are satisfied by C, v, w. J

References

1 Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim. Multiphase-linear ranking
functions and their relation to recurrent sets. In Static Analysis - 26th International Symposium,

SAS 2019, Proceedings, volume 11822 of Lecture Notes in Computer Science, pages 459–480.
Springer, 2019.

2 Amir M. Ben-Amram and Samir Genaim. Ranking functions for linear-constraint loops.
Journal of the ACM, 61(4):1–55, 2014. doi:10.1145/2629488.

3 Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer
loops. ACM Transactions on Programming Languages and Systems, 34(4):1–24, 2012. doi:
10.1145/2400676.2400679.

4 Marius Bozga, Radu Iosif, and Filip Konecn˝. Deciding conditional termination. Log. Methods

Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:8)2014.
5 Mark Braverman. Termination of integer linear programs. In Computer Aided Verification

2006, volume 4144 of LNCS, pages 372–385. Springer Berlin Heidelberg, 2006. doi:10.1007/
11817963_34.

6 Quentin Guilmant, Engel Lefaucheux, Joël Ouaknine, and James Worrell. The 2-dimensional
constraint loop problem is decidable, 2024. arXiv:2405.12992.

7 Mehran Hosseini, Joël Ouaknine, and James Worrell. Termination of linear loops over the
integers. In ICALP 2019, volume 132 of LIPIcs, pages 118:1–118:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Wadern/Saarbruecken, Germany, 2019. doi:10.4230/LIPICS.
ICALP.2019.118.

8 Jan Leike and Matthias Heizmann. Geometric nontermination arguments. In Tools and

Algorithms for the Construction and Analysis of Systems - 24th International Conference,

TACAS 2018, volume 10806 of Lecture Notes in Computer Science, pages 266–283. Springer,
2018.

9 Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination analysis of logic programs. In
Lee Naish, editor, Logic Programming, Proceedings of the Fourteenth International Conference

on Logic Programming, 1997, pages 63–77. MIT Press, 1997.
10 Ashish Tiwari. Termination of linear programs. In Computer Aided Verification 2004,

volume 3114 of LNCS, pages 70–82. Springer Berlin Heidelberg, 2004. doi:10.1007/
978-3-540-27813-9_6.

ICALP 2024

https://doi.org/10.1145/2629488
https://doi.org/10.1145/2400676.2400679
https://doi.org/10.1145/2400676.2400679
https://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/11817963_34
https://arxiv.org/abs/2405.12992
https://doi.org/10.4230/LIPICS.ICALP.2019.118
https://doi.org/10.4230/LIPICS.ICALP.2019.118
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6




Flattability of Priority Vector Addition Systems

Roland Guttenberg �

Technical University of Munich, Germany

Abstract

Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent systems.
Many problems from many areas reduce to the reachability problem for VAS, which consists of
deciding whether a target configuration of a VAS is reachable from a given initial configuration. One
of the main approaches to solve the problem on practical instances is called flattening, intuitively
removing nested loops. This technique is known to terminate for semilinear VAS due to [22]. In this
paper, we prove that also for VAS with nested zero tests, called Priority VAS, flattening does in fact
terminate for all semilinear reachability relations. Furthermore, we prove that Priority VAS admit
semilinear inductive invariants. Both of these results are obtained by defining a well-quasi-order on
runs of Priority VAS which has good pumping properties.
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1 Introduction

Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent
systems. VAS have a very rich theory and have been intensely studied. In particular, the
reachability problem for VAS, which consists of deciding whether a target configuration of
a VAS is reachable from a given initial configuration, has been studied for over 50 years.
It was proved decidable in the 1980s [28, 16, 17], but its complexity (Ackermann-complete)
could only be determined recently [6, 7, 23].

In [19] and [22], Leroux proved two fundamental results about the reachability sets
of VAS. In [19], he showed that every configuration outside the reachability set R of a
VAS is separated from R by a semilinear inductive invariant (for basic facts on semilinear
sets see e.g. [11]). This immediately led to a very simple algorithm for the reachability
problem consisting of two semi-algorithms, one enumerating all possible paths to certify
reachability, and one enumerating all semilinear sets and checking if they are separating
inductive invariants.

In [22], he proved that if the reachability set of a VAS is semilinear, then it is flattable.
Flattability states the existence of a finite sequence fl1, . . . , flr of transition sequences such
that every reachable vector can be reached via a sequence in flú

1
. . . flú

r , i.e., by means of a
“flat” expression without nested loops. Flattability leads to an algorithm for deciding whether
a semilinear set is included in or equal to the reachability set of a given VAS, i.e. whether a
VAS has the set of desired behaviours. If it is not included, guess the violating configuration
and check it is unreachable, otherwise guess a linear path scheme and verify it.
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One major branch of ongoing research in the theory of VAS studies whether results
like the above extend to more general systems [30, 3, 4, 31, 1, 25, 27, 13, 18, 8, 26, 2]. In
particular, the reachability problem has been proved decidable for Priority VAS, an extension
of VAS in which counters can be tested for zero, albeit in restricted manner: there is a total
order on the counters such that whenever a counter is tested for 0, all smaller counters are
simultaneously tested as well. In a famous but very technical paper, Reinhardt proved that
the reachability problem remains decidable for Priority VAS [30]. In [3] and later in his
thesis [4], Bonnet presented a more accessible proof which was obtained by extending the
result of [19], separability by inductive semilinear sets.

In this paper we extend the result of [22] to arbitrary Priority VAS, and on the way obtain
another proof that [19] extends. That is, we show that 1. Priority VAS admit semilinear
inductive invariants, and 2. semilinear Priority VAS are flattable. Notice that 2. was not
known even for the special case of one testable counter. Furthermore, as remarked in [26],
while two-dimensional vector addition systems with a zero test and a reset are e�ectively
semilinear [8], they are not flattable in general. Hence, our second result establishes a
theoretical limit of flattability.

These results are obtained via two technical contributions of independent interest.

Regular expressions for Priority VAS. We give a new characterization of the reachability
relations of Priority VAS. More precisely, we show that a relation is the reachability relation
of a Priority VAS if and only if it can be represented as a regular expression over the
reachability relations of standard VAS, with the restriction that the Kleene star operation
can only be applied to monotone relations. For example in case of the Priority VASS in
Figure 1 as V, we would consider the VASS without the zero test transition as V0, and
if we are interested in the reachability relation starting at qs, ending at qs and requiring
counter x to start and end at 0, formally æú

V,qsæqs
fl{xin = xout = 0}, then we would rewrite

æú
V,qsæqs

fl{xin = xout = 0} = (æú
V0,qsæqt

fl{xin = xout = 0})ú. I.e., instead we consider
the inner normal VASS starting at qs, ending at qt and fixing x to 0 at start and end, then
taking the reflexive transitive closure of this relation. In general zero testing a coordinate
will generate an expression of the form Eú, where E fixes some coordinates to 0 at start
and end. One important aspect of this characterization is that all intersections with linear
relations (for example here with xin = xout = 0) can be pushed purely to the inner VASS
level, where they were dealt with in [22]. Hence in our arguments we only have to consider
how to deal with ¶ and ú, not with intersections or projections.

qs q1 q2 qt
z + +

x + + x ≠ ≠; y + +

x == 0

qs q1 q2 qt qÕ
s qÕ

1
qÕ
2

qÕ
t

z + +

x + + x ≠ ≠; y + +

z + +

x == 0

x == 0

Figure 1 Example of a PVASS and an equivalent (for xin = 0) flattened version.

Characterizations of complicated relations using RegEx over simpler relations have already
proven useful in other contexts [29, 12].

A well-quasi-order (wqo) on the set of runs of Priority VAS. A wqo on a set is a partial
order such that every subset has finitely many minimal elements. There exist wqos on many
kinds of objects: vectors, sequences, trees, or graphs. A wqo on the set of runs of a PVAS
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provides the following decomposition: Let src(fl) denote the source of a run fl, tgt(fl) denote
its target and ends(fl) = (src(fl), tgt(fl)) its pair of ends, i.e. source/target pair. Let �min

be the finite set of minimal runs. Then the reachability relation æú
V can be written as

æú=
t

flœ�min
{ends(flÕ) | flÕ Ø fl}, i.e. we observe that every pair of configurations c, cÕ such

that c æú cÕ is witnessed by some run, and then we split runs into one group for every
minimal run. Intuitively, this reduces the problem of proving flattability of a VAS to proving
flattability in each of the groups determined by the minimal runs. The proof that semilinear
VAS are flattable follows this scheme. More precisely, the proof, given in [22], takes the wqo
on the runs of a VAS introduced by Jancar in [15], proves that it satisfies certain pumping
properties, properties shown in [15, 20, 21] and new ones, and derives the result. We proceed
in the same way, starting from a wqo on the set of runs of a Priority VAS1.

Let us now cconsider the concrete case of pumping and flattening in the example in
Figure 1. Consider the run fl : qs æ q1 æ q2 æ qt which does not use any of the self-loops.
Intuitively, if we did not have the xin = xout = 0 restriction, both the x and y coordinates
can be pumped arbitrarily along this run. In order to pump the x coordinate simply add
one use of the self-loop on q1, and to increase the y coordinate add both self-loops once.
Observe that despite using a loop which is not non-negative in the second case, and hence
could not be arbitrarily often repeated by itself, this loop only decreases a coordinate which
was already pumped prior in the run, i.e. the sequence of loops can be pumped.

Using this basic image of pumping, we can now describe the idea of our proof. In the
example, define E :=æú

V0,qsæqt
fl{xin = xout = 0}, then the target is Eú as explained above.

One first determines by induction hypothesis a decomposition of E into groups of runs. In
this case there is one group, as the run above is the unique minimal run.

Now we proceed to describe runs of Eú as sequences of which group of E was used. I.e.
we performed one important mental step here: A run of Eú is now viewed as a sequence
C0 æE C1 æE · · · æE Cr of steps in E, i.e. every step is now one application of the outer
loop, and we abstract away the information of how precisely these steps look, in particular
how often the inner self-loops were taken. This leads to pumping a vector into a run having
two cases: Either add more outer loops/transitions, the same as for VASSs, or increase one
of the already existing loops. For example for the run qs(0, 0, 0) æE qt(0, 0, 1) described
above, with respect to Eú, we can pump both the y and z coordinates arbitrarily. Pumping
y is an instance of increasing an existing loop: Change the existing loop by taking the inner
self-loops. On the other hand, pumping z is the other type: We simply add more instances
of the outer loop. The resulting PVASS without any nested loops is depicted in the right of
Figure 1. Observe in particular that for pumping those vectors it was not necessary to add
arbitrarily many repetitions of the outer loop which take the inner loops arbitrarily often.

Structure of the paper. In Section 2 we define a few preliminaries. Section 3 introduces
VAS and Priority VAS. Our first result, the characterization of the reachability relations
of Priority VAS in terms of regular expressions, is proved in Section 4. In Section 5 we
define well-quasi-orders, and in particular our novel wqo on runs of Priority VAS. Section
5.4 introduces geometric preliminaries and previous results about VAS needed to state and
prove our results. Section 6 defines flattability, and proves our main result.

1 The wqo for VAS does not respect the zero tests and hence does not work, a new ordering is necessary.
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2 Preliminaries

We let N,Z,Q,QØ0 denote the sets of natural numbers containing 0, integers, and (non-
negative) rational numbers. We use uppercase letters for sets/relations and boldface for
vectors and sets/relations of vectors. For the i-th entry of a vector x œ Qd we write x(i).

Given sets X,Y ™ Qd, Z ™ Q, we write X + Y := {x + y | x œ X,y œ Y} for the
Minkowski sum and Z ·X := {⁄ · x | ⁄ œ Z,x œ X}. By identifying elements x œ Qd with
{x}, we define x+X := {x}+X, and similarly ⁄ ·X := {⁄} ·X for ⁄ œ Q.

A set L ™ Nd is linear if L = b+ Np1 + · · ·+ Npr with b,p1, . . . ,pr œ Nd. A relation
L ™ NdÕ ◊ NdÕÕ is linear if it is linear when viewed as a set. A set/relation S is semilinear if
it is a finite union of linear sets/relations. The semilinear sets/relations coincide with the
sets/relations definable via formulas Ï œ FO(N,+), also called Presburger Arithmetic.

Given relations R1 ™ NdÕ ◊ Ndmid and R2 ™ Ndmid ◊ NdÕÕ , we write R1 ¶ R2 = {(v,w) œ
NdÕ ◊ NdÕÕ | ÷x œ Ndmid : (v,x) œ R1, (x,w) œ R2} for composition. Given R ™ NdÕ ◊ NdÕ ,
we write Rú for the reflexive and transitive closure (w.r.t. ¶).

Let j, dÕ, dÕÕ œ N with j Æ dÕ, dÕÕ. A relation R ™ NdÕ ◊ NdÕÕ is monotone in the j-th last
coordinate if for every (x,y) œ R we also have (x+ edÕ+1≠j ,y+ edÕÕ+1≠j) œ R, where ek is
the k-th unit vector2. A relation R ™ NdÕ ◊ NdÕÕ is monotone if dÕ = dÕÕ and R is monotone
in every coordinate.

3 Vector Addition Systems and Priority Vector Addition Systems

A priority vector addition system with states (PVASS) V of dimension d œ N is a finite
directed multigraph (Q,E), whose edges e are labelled with a pair of a vector f(e) œ Zd and
a number g(e) œ {0, . . . , d}. The set of configurations of V is Q ◊ Nd. An edge e = (p, pÕ)
with label (f(e), g(e)) induces a relation æe on configurations via c = (q,x) æe cÕ = (qÕ,xÕ)
if and only if q = p, qÕ = pÕ, x(j) = 0 for all 1 Æ j Æ g(e) and xÕ = x + f(e). Intuitively,
the edge can only be used in state p to move to state pÕ and adds the vector f(e) to the
current configuration. However, two conditions have to be fulfilled: We have to again arrive
at a configuration cÕ (i.e. xÕ has to stay non-negative), and x must be 0 on the first g(e)
coordinates. We say that these coordinates are tested for 0. Observe that contrary to Minsky
machines, if a counter i is tested for 0, also all smaller counters j Æ i are tested for 0.

We write æV=
t

eœE æe and let æú
V denote its reflexive and transitive closure. A

run of V is a finite sequence fl = (c0, c1, . . . , ck) of configurations such that ci æV ci+1

for all 0 Æ i Æ k ≠ 1. The source of the run fl is the configuration src(fl) := c0, and the
target is tgt(fl) := ck. The pair of ends of fl is ends(fl) = (src(fl), tgt(fl)). A configuration
tgt is reachable from src in V if src æú

V tgt, or equivalently if there exists a run fl with
ends(fl) = (src, tgt).

A priority vector addition system (PVAS) V is a PVASS with only one state, a vector
addition system with states (VASS) is a PVASS where g(e) = 0 for every edge e, i.e. no
counter is ever tested for 0. A VAS is a PVAS which is also a VASS.

Since the class of reachability relations of PVASS is lacking some important closure
properties, and we do not want to distinguish between PVASS and PVAS all the time, we
instead consider a larger class of sets (which coincides for the two models). Intuitively, not
every run is accepting anymore, instead a run has to start in a given initial state p and end
in a given final state q, and certain counters have to start and/or end with fixed values. The
idea is to then view the relation as subset of NdÕ ◊ NdÕÕ where dÕ, dÕÕ are the number of input
and respectively output counters which are not fixed.

2 The reason for starting to count coordinates from the end will be explained in the next section.
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I Definition 1 ([5]). A relation X ™ NdÕ ◊ NdÕÕ is a (P)VASS section if there exists a
(P)VASS V of dimension d Ø dÕ, dÕÕ, states p, q and vectors bs œ Nd≠dÕ

,bt œ Nd≠dÕÕ such that
X = {(x,y) œ NdÕ ◊ NdÕÕ | (p, (bs,x)) æú

V (q, (bt,y))}.

This is the reason for defining monotonicity counting from the end: The same counter
has di�erent indices as unit vector because of fixing a di�erent number of coordinates.

We write the section defined by the PVASS V, the states p, q and the vectors bs,bt as!V,p,q
bs,bt

"
. If V is a PVAS, then we leave away the unique states and only write

! V
bs,bt

"
. The

reason for this notation is that PVASS sections should be viewed as an intersection of two
relations: The reachability relation with fixed source state and target state, and the linear
relation defined by the fixed coordinates. In the notation we like to split these parts.

We have three remarks on the definition of PVASS sections.
I Remark 2. We fix coordinates starting from the first, i.e. the most often zero tested
coordinates are fixed first. This does not restrict the class of PVAS sections.
I Remark 3. At the cost of increasing the dimension by 3, states are a special case of fixed
never-zero-tested coordinates [14], hence (P)VASS sections can equivalently be defined by
(P)VAS. Furthermore, similar to how zero tests in Minsky machines can be assumed to only
change the state, we will always require that f(e)(j) = 0 for all j Æ g(e), i.e. any counter
which is being zero tested is not updated. To obtain this assumption, simply move to an
intermediate state from which you perform the additions afterwards.
I Remark 4. When using states, we can w.l.o.g. require bs = 0d≠dÕ and bt = 0d≠dÕÕ , i.e.
fixed coordinates are fixed to 0. However, since it is sometimes preferable to not use states,
we allow general vectors bs,bt for the fixed coordinates.

4 Equivalence of PVASS and Regular Expressions over VASS

Next we define the grammar which we will then prove to be equivalent to PVASS sections.
Intuitively, one considers regular expressions where leaves/letters are VASS sections Y.
Intermediate relations might have di�erent input and output dimensions, hence non-terminals
depend on the dimensions, and composition requires matching dimensions.

I Definition 5. Consider the following grammar with non-terminals EdÕ,dÕÕ for dÕ, dÕÕ œ N:

EdÕ,dÕÕ = YdÕ,dÕÕ | EdÕ,dmid ¶ Edmid,dÕÕ | EdÕ,dÕÕ fi EdÕ,dÕÕ

EdÕ,dÕ = YdÕ,dÕ | EdÕ,dmid ¶ Edmid,dÕ | EdÕ,dÕ fi EdÕ,dÕ | Eú
dÕ,dÕ ,

where the YdÕ,dÕÕ are VASS sections ™ NdÕ ◊ NdÕÕ . An expression EdÕ,dÕÕ defines in a
natural way a relation Rel(EdÕ,dÕÕ) ™ NdÕ ◊NdÕÕ , by interpreting ¶ as composition of relations,
fi as union and ú as reflexive transitive closure. We usually write E instead of EdÕ,dÕÕ when
the dimensions in(E) = dÕ and out(E) = dÕÕ are clear.

Before we state the main theorem of this section, there are two things to note about this
definition of the semantics. 1) ú by definition adds reflexivity, however it only does so in
the non-fixed counters. This was one goal of the definition allowing di�erent dimensions of
intermediate objects. 2) The semantics for composition however are not as intuitive as it
might seem, see the following example.

I Example 6. Let V be the 1-dimensional VAS with two transitions, incrementing x and
decrementing x. Then its reachability relation is æú

V= N ◊ N. Consider Rel(
! V

‘,0

"
¶

! V
1,‘

"
) ™

N◊N. We have Rel(
! V

‘,0

"
) = N◊ {‘} and Rel(

! V
1,‘

"
) = {‘}◊N, where we write ‘ œ N0 for the
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unique empty product. Despite the fixed coordinates 0, 1 œ N not matching up, we obtain
Rel(

! V
‘,0

"
¶

! V
1,‘

"
) = N ◊ N by definition. This is due to the composition being only defined on

the remaining, i.e. non-fixed coordinates.

We can now state the main theorem of this section.

I Theorem 7. A relation X ™ NdÕ ◊ NdÕÕ is a PVASS section i� X = Rel(E) for some E.

Proof. “∆”: Let X =
! V
bs,bt

"
™ NdÕ ◊ NdÕÕ for a d-dimensional PVAS V without states,

since they produce the same class of sections as in Remark 3. We will prove by induction
on k := maxeœE g(e), i.e. the maximal zero-tested counter, that every PVAS section
Xk ™ NdÕ ◊ NdÕÕ has an equivalent expression Ek in the grammar. In the base case k = 0, V
is actually a VAS, and hence Y := Xk is an equivalent expression in the grammar.

Induction step: k ≠ 1 æ k: For j œ {k ≠ 1, k} let Ej := {e œ E | g(e) Æ j}, in particular
Zk := Ek \ Ek≠1 are the edges with g(e) = k, i.e. testing counters 1, . . . , k. Let Vj be the
PVASS with edges Ej and the same labels f(e) and g(e) as V. By induction, for Vk≠1 and
any vectors bs,bt there exists Ek≠1,bs,bt with Rel(Ek≠1,bs,bt) =

!Vk≠1
bs,bt

"
.

Importantly, the semantics æe of a single action e œ E, even if e performs a zero test,
can be defined by a VASS. In particular for Zk we define the following d-dimensional VASS
VZk with |Zk| + 2 states Q = {qin, qfin} fi Zk and 2|Zk| actions: For every e œ Zk, let
eÕ = (qin, e) with label f(eÕ) = f(e) and eÕÕ = (e, qfin) with label f(eÕÕ) = 0. Intuitively, we
non-deterministically choose an e œ Zk and execute its action, afterwards moving to qfin.
We do not perform the zero test, instead this will be done using the VASS section. Namely
we define EZk :=

!VZk
,qin,qfin

0k,0k

"
, i.e. we require the first k counters to be 0 at the start and

end. That their values will still be 0k also at the end follows by the assumption in Remark 3,
that zero tests do not change the counters they are testing. Then we define

Ek,bs,bt := Ek≠1,bs,bt fi Ek≠1,bs,0k ¶
!
Ek≠1,0k,0k fi EZk

"ú ¶ Ek≠1,0k,bt
.

Intuitively, the expression says the following: Either the zero testing actions in Zk are
never used, or we move from bs to a configuration with the first k counters fixed to 0, then
repeatedly either move to another configuration with those counters 0 without using Zk, or
we can use Zk. The computation ends using Vk≠1 and reaching the given target bt.

Well-definedness: We have to prove that in this expression Ek the operations ¶,fi, ú are
only used on matching dimensions. This follows since our specified targets and sources
coincide. For example in the union Ek≠1,0k,0k fi EZk , both parts fix 0k, 0k as required.

Correctness: It is clear that Rel(Ek,bs,bt) ™
! Vk

bs,bt

"
, since the expression describes a

special form of runs from bs to bt. For the other direction, let (c0, . . . , cr) be a run of
Vk such that c0 œ {bs} ◊ Nd≠dÕ and cr œ {bt} ◊ Nd≠dÕÕ . We have to show that (c0, cr) œ
Rel(Ek,bs,bt). Case 1: The run does not use actions in Zk. Then the run shows membership
in

!Vk≠1
bs,bt

"
™ Rel(Ek≠1,bs,bt) ™ Rel(Ek,bs,bt).

Case 2: The run does use Zk. Let fik : Nd æ Nd≠k be the projection to the last
d ≠ k coordinates, i.e. it removes the anyways fixed coordinates. Let i1, . . . , is be the
indices such that cij æ cij+1 uses an action aj œ Zk, i.e. (fik(cij ),fik(cij+1)) œ Rel(EZk).
Then the part of the run (cij+1, . . . , cij+1) does not use any Zk transitions. Hence
(fik(cij+1),fik(cij+1)) œ

!Vk≠1
0k,0k

"
™ Rel(Ek≠1,0k,0k) for all j œ {1, . . . , s}. Hence we already

obtain (fik(ci1),fik(cis+1)) œ Rel((Ek≠1,0k,0k fi EZk)ú). Now similar to fik, let fid≠dÕ ,fid≠dÕÕ

be the projections removing the first d ≠ dÕ, d ≠ dÕÕ coordinates. Since (c0, . . . , ci1) does not
use Zk and c0 œ {bs} ◊ Nd≠dÕ , we obtain (fid≠dÕ(c0),fik(ci1)) œ

!Vk≠1
bs,0k

"
™ Rel(Ek≠1,bs,0k)

and similarly (fik(cis+1),fid≠dÕÕ(cr)) œ
!Vk≠1
0k,bt

"
™ Rel(Ek≠1,0k,bt

). Altogether we obtain
(fid≠dÕ(c0),fid≠dÕÕ(cr)) œ Rel(Ek,bs,bt).
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“≈”: This follows by structural induction. The construction follows the standard
conversion RegEx to Á-NFA, while adding some obvious zero tests.

As our definition of Rel(Y) is representation independent, we choose to represent every
Rel(Y) using VASS of the same dimension d, and with bs = 0k and bt = 0l for some k, l œ N.
That every VASS section has a representation with bs = 0k and bt = 0l follows since one can
simply add a new initial and final state qin, qfin, and add bs when leaving qin respectively
subtract bt when entering qfin. To guarantee that all VASS have the same dimension d,
add unused counters. We will prove by induction that every subexpression EÕ of the given
starting expression E has an equivalent PVASS section, where the PVASS has dimension d
and bs = 0d≠in(E),bt = 0d≠out(E). In the base case E = Y we have required this above.

EfiEÕ: By induction hypothesis, we can write Rel(E) =
! V,p,q
0d

Õ ,0dÕÕ
"
and Rel(EÕ) =

!VÕ,pÕ,qÕ

0d
Õ ,0dÕÕ

"

using d dimensional PVASS V,V Õ. That both sections use the same dÕ and dÕÕ follows by the
restriction on expressions. Our new PVASS simply has a new initial and final state, and
performs a non-deterministic choice whether to move to p and simulate V or move to state
pÕ and simulate V Õ.

Formally, write V = (Q,E) and V = (QÕ, EÕ). We define the new PVASS V ÕÕ as (QfiQÕ fi
{qin, qout}, E fi EÕ fi {(qin, p), (qin, pÕ), (q, qout), (qÕ, qout)}. All copied edges keep their labels,
the four new edges get the label g(e) = 0, i.e. they do not zero test, and f(e) = 0d, i.e. they
do not change the counters. It is easy to see that Rel(E fi EÕ) =

!VÕÕ,qin,qout

0d
Õ ,0dÕÕ

"
.

E¶EÕ: By induction hypothesis, we can write E =
! V,p,q
0d≠dÕ ,0d≠dmid

"
and EÕ =

! VÕ,pÕ,qÕ

0
d≠dmid ,0d≠dÕÕ

"

using d dimensional PVASS V,V Õ. Our new PVASS first simulates V, then checks that the
first dmid counters are 0, before simulating V Õ. Checking the intermediate configuration will
be done using a zero test.

Formally, write V = (Q,E) and V Õ = (QÕ, EÕ). We define the PVASS V ÕÕ as (Q fi QÕ, E fi
EÕ fi {(q, pÕ)}, where prior edges keep their labels, and f(q, pÕ) = 0d and g(q, pÕ) = d ≠ dmid,
i.e. we zero test the first d ≠ dmid counters. It is easy to see that Rel(E ¶ EÕ) =

! VÕÕ,p,qÕ

0d≠dÕ ,0d≠dÕÕ
"
.

Eú: By induction hypothesis, we can write E =
! V,p,q
0d≠dÕ ,0d≠dÕ

"
, where both vectors have

the same number of fixed coordinates by the restriction on the grammar. We now simply
add a new initial state and an edge from q to this new initial state which performs zero tests
on the first d ≠ dÕ coordinates.

Formally, write V = (Q,E) and define V Õ = (Q fi {qin}, E fi {(qin, p), (q, qin)}), where
edges e œ E keep their labels, and f(qin, p) = f(q, qin) = 0d, i.e. counters are not changed,
and g(qin, p) = g(q, qin) = d ≠ dÕ, i.e. the first d ≠ dÕ counters are zero tested. It is easy to
see that Rel(Eú) =

! VÕ,qin,p
0d≠dÕ ,0d≠dÕ

"
. J

The “∆” direction breaks down for a Minsky machine. Namely for k = 2, one subexpres-
sion is (

! V1
02,02

"
fi EZ2)ú. The parts we take the union of do not have the same dimension, as

the first coordinate should be free in EZ2 for a Minsky machine.
In future sections we will require expressions where ú is only used on relations X which

are monotone. Surprisingly, we can without loss of generality require this. Before we prove
this, let us first provide an example of a valid expression in the grammar where this fails.

I Example 8. Let V be the PVAS of dimension 2 without any transitions. Consider
the expression (

! V
‘,01

"
¶

! V
01,‘

"
)ú. The expression below the ú says that you start with any

configuration, fix the first counter to 0 and end with any configuration. Since the PVASS V
does not have any transitions, in order for the composition to be possible, you have to have
already started with the first counter equal to 0, and also end with such a configuration.
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Hence the better expression would be (
! V
01,01

"
¶

! V
01,01

"
)ú. This expression fulfills the

property that if EÕ is a subexpression of Eú, then in(EÕ) Ø in(E) and out(EÕ) Ø out(E), i.e.
interior nodes have fewer fixed coordinates. This will su�ce for monotonicity.

I Lemma 9. Let dÕ œ N and E expression such that every subexpression EÕ fulfills in(EÕ) Ø dÕ

and out(EÕ) Ø dÕ. Then Rel(E) is monotone in the j-th last coordinate for all j Æ dÕ.

Proof. By structural induction. In the base case, Y =
!V,p,q
bs,bt

"
for a VASS V. Since VAS

reachability relations are monotone in every coordinate, when the last dÕ coordinates are
neither fixed in the input nor output then Y is monotone in these coordinates.

E fi EÕ: Relations monotone in the j-last coordinate are clearly stable under union.
E ¶ EÕ: Let j Æ dÕ, d1 = in(E), d2 = out(E), d3 = out(EÕ). Since the subexpression E

fulfills in(E) Ø dÕ and out(E) Ø dÕ by assumption, Rel(E) is by induction monotone in the
j-th last coordinate. Same for Rel(EÕ). Let (x1,x2) œ Rel(E) and (x2,x3) œ Rel(EÕ). By
monotonicity in the j-th last coordinate we obtain (x1+ed1+1≠j ,x2+ed2+1≠j) œ Rel(E) and
(x2 + ed2+1≠j ,x3 + ed3+1≠j) œ Rel(EÕ). Hence (x1 + ed1+1≠j ,x3 + ed3+1≠j) œ Rel(E ¶ EÕ).

Eú: Let j Æ dÕ. By repeatedly applying the case of ¶, we obtain for all n œ N that En is
monotone in the j-th last coordinate. Again by stability of such relations under union, the
relation Eú =

t
nœN En is monotone in the j-th last coordinate. J

I Corollary 10. For every expression E, there is another expression EÕ with Rel(E) = Rel(EÕ),
where ú is only applied on monotone relations.

Proof. Let E be an expression. Apply first ≈ and then ∆ of Theorem 7. The constructed
expression fulfills for every subexpression Eú and subsubexpression EÕ of Eú that in(EÕ) Ø
in(E) and out(EÕ) Ø out(E). Then by Lemma 9, Rel(E) is monotone in every one of the last
in(E) = out(E) coordinates, i.e. in every coordinate. Hence Rel(E) is monotone. J

5 A Well-Quasi-Order on Runs of Priority VAS

Starting from this section, we also use ú for repeated concatenation, not only transitive
closure ú of repeated composition. To distinguish them, we write úconcat for concatenation ú.

A partial order (X,Æ) is a reflexive, transitive and antisymmetric relation Æ™ X◊X. A set
U ™ X is upward-closed if for all x œ U and all xÕ Ø x we have xÕ œ U. Every subset XÕ ™ X
is contained in a unique minimal upward-closed set ÁXÕË := {xÕ œ X | ÷x œ XÕ : x Æ xÕ}. A
basis of an upward-closed set U is a subset F ™ U such that ÁFË = U.

A partial order is a well-quasi-order if every upward closed set U ™ X has a finite basis
F. Or equivalently, for every infinite sequence x1,x2, · · · ™ X there are indices i < j with
xi Æ xj , or equivalently there are indices (im)mœN such that xim Æ xik for all m Æ k.

Most well-quasi-orders, in particular the ones we will need, are constructed from the
following basic ordering by applying standard closure properties stated afterwards:

I Example 11. Let F be finite. Then the equality relation = is a well-quasi-order on F.

I Lemma 12. Let (X1,Æ1), (X2,Æ2) be wqo’s. Then ((X1 fi X2,Æ1 fi Æ2) is a wqo.

I Lemma 13 (Dickson’s Lemma). (X1,Æ1), (X2,Æ2) wqo’s ∆ (X1 ◊ X2,Æ1 ◊ Æ2) wqo.

I Lemma 14 (Higman’s Lemma). Let (�,Æ) be a well-quasi-order. Then (�úconcat ,Æúconcat)
is a well-quasi-order, where Æúconcat is the scattered subword ordering defined via w =
(x1, . . . ,xr) Æ wÕ = (y1, . . . ,ys) ≈∆ there exists an injective order preserving function
f : {1, . . . , r} æ {1, . . . , s} such that xi Æ yf(i) for all i œ {1, . . . , r}.



R. Guttenberg 141:9

5.1 Well-Quasi-Order for VAS

In order to explain the wqo for expressions, we start by defining Jancar’s wqo ordering for
runs of a VAS V. A run is no longer viewed as a sequence of configurations, but instead
as element of �(V) = Nd ◊ (Nd ◊ E)úconcat ◊ Nd, where E is the set of edges of the VAS.
The first part is src(fl), the last part is tgt(fl) and the middle parts are the steps of the run.
One can extend this to states by replacing Nd by Q ◊ Nd everywhere and requiring states to
coincide. �(V) is well-quasi-ordered by Lemma 13 and Lemma 14.

This wqo is carefully engineered to ensure that the relation {ends(flÕ) | flÕ Ø fl} =:
ends(fl) +Pfl has good properties. Pfl is called the transformer relation of the run. A vector
(v,w) is pumpable into fl if (v,w) œ Pfl. The minimal property we want Pfl to fulfill is closure
under addition, i.e. if a vector can be pumped once, then it can be pumped arbitrarily often.
To understand why exactly the above expression ensures this, consider Figure 2.

q p

(0, 1, ≠1) (0, ≠1, 2)

(1, 0, 0)

Figure 2 Typical example of a non-semilinear VAS [14]. Edges e are only labelled with their
update f(e), since this is a VASS, i.e. every edge fulfills g(e) = 0.

If we were to replace the middle part of the Jancar ordering with (Nd)ú instead, then the
run q(0, 1, 1) æ p(1, 1, 1) would be smaller than the run q(0, 1, 1) æ q(0, 2, 0) æ p(1, 2, 0) æ
p(1, 1, 2). Hence pumping properties would tell us that p(1, 1, n) should be reachable for
every n Ø 1, which is obviously wrong. One might also consider the ordering without
explicitly remembering the start and end configurations, but then some vectors with negative
components might be claimed to be pumpable, since Higman might insert the smaller run in
the middle. Pumping negative vectors is however trivially impossible.

Above we provided one way to define the transformer relation Pfl. As shown in [20, Lemma
7.5], there is an important equivalent characterization. Given a configuration c, one defines
the transformer relation Pc for this configuration via (x,y) œ Pc ≈∆ c + x æú

V c + y.
Intuitively, you utilize the existence of configuration c to transform x into y. Another
intuition is that c is a capacity which allows us to slightly enter the negative (up to c). This
relation is a generalization of “pumping possible via self-loop on a state”. The equivalent
characterization of Pfl is: Write fl = (c0, . . . , cr), then Pfl = Pc0 ¶ · · · ¶ Pcr .

Consider the example in Figure 1 in the introduction. At any configuration c1 in state q1,
we have Pc1 = {(x, y, z), (xÕ, y, z) | xÕ Ø x}, i.e. one can “transform x into a larger number”
and at a configuration c2 in state q2, we have Pc2 = {(x, y, z), (xÕ, yÕ, z) | x+ y = xÕ + yÕ, x Ø
xÕ}, i.e. one can “transform any number of x into the same number of y”. This leads any run
fl through states qs æ q1 æ q2 æ qt to be able to arbitrarily increase x and y, as mentioned
in the introduction. Beware though that if a VASS has a complicated nested loop structure,
then Pc can be non-semilinear.

5.2 Well-Quasi-Order for Expressions

We will now define for every expression E a well-quasi-ordered set of runs �(E). We want
the di�erent segments of the runs to be labelled with which subexpression of E they belong
to. Hence let Tag be a set containing unique start and end labels ⁄s(EÕ) and ⁄t(EÕ) for
every node EÕ in the syntax tree of E. The set �(E) will be modelled after the Jancar
ordering, though configurations might now have di�erent dimensions. It is important to
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understand why (Nd ◊ E)úconcat has to be used for the Jancar ordering to lead to nice
properties. The answer: It is equivalent to using (Nd ◊E ◊Nd)úconcat : When thinking of æú

V
as {æe1 fi · · ·fi æem}ú, this means every letter is supposed to be a run of the expression E
inside the ú. For a VASS, this means (src, tgt) œæe tagged with the choice of e.

I Definition 15. If Y ™ NdÕ ◊NdÕÕ is a VAS section represented by VAS V, bs,bt, let fiin,fiout

be the projections projecting away fixed coordinates of in- and output. Let �bs,bt be the set of
runs fl œ �(V), whose source and target have the correct values on fixed coordinates. We define
�(Y) = {(fiin(src(fl)),⁄s(Y)w⁄t(Y),fiout(tgt(fl))) | fl = (src(fl), w, tgt(fl)) œ �bs,bt(V)}. I.e.
we consider runs of V with source and target adhering to the fixed coordinates, add markers
in the word w, and instead of storing the full source and target, we only store the non-fixed
coordinates. For fl œ �(Y), we refer to the projected configurations as src(fl) and tgt(fl).

We define �(E1 fi E2) = �(E1) fi �(E2), i.e. we simply take unions of the sets of runs.
We define �(E1 ¶ E2) = {⁄s(E1)fl1⁄t(E1)⁄s(E2)fl2⁄t(E2) | tgt(fl1) = src(fl2)} ™ Tag ◊

�(E1) ◊ Tag2 ◊ �(E2) ◊ Tag. I.e. we concatenate the runs if possible and use markers.
We define �(Eú) = {⁄s(E)fl1⁄t(E) . . .⁄s(E)fln⁄t(E) | n œ N, fl1, . . . , fln œ �(E), tgt(fli) =

src(fli+1)} ™ Nin(Eú
) ◊ (�(E) fi Tag)úconcat ◊ Nout(Eú

). I.e. we consider all concatenations
of any length n œ N and add tags splitting the di�erent parts fli.

I Definition 16. We define a wqo Æ�(E) on �(E) recursively. For VAS sections Y we use
the Jancar ordering, observing that fixed coordinates coincide for every run, and can hence
be ignored. For the recursive definition we use Lemmas 12, 13 and 14.

Whenever we concatenate runs, we do not write the tags, because they can be inferred.
Their existence is however important, as we can see for example for E1 ¶ E2: We have
fl Æ�(E1¶E2) flÕ if and only if fl = fl1fl2, flÕ = flÕ

1
flÕ
2
with fl1, flÕ

1
œ �(E1), fl2, flÕ

2
œ �(E2) such

that fl1 Æ�(E1) flÕ
1
and fl2 Æ�(E2) flÕ

2
. This is where the tags will become important: From

the tags, we can infer how fl is supposed to be split into fl1 and fl2, and similarly for flÕ. Let
us give a di�erent example for why we need the tags for every subexpression. Imagine we
consider the expression Y fi YÕ, where Rel(Y) = N · (2, 1) and Rel(YÕ) = N · (1, 2). If we
wrote the empty run fl as (0, ‘, 0), i.e. did not label it, it would not be clear whether it can
pump N · (2, 1) or N · (1, 2), this depends on which subexpression it belongs to.

5.3 Comparison with other Well-Quasi-Orders

In prior literature, some wqos for Priority VAS [3, 4] and even for the more general model of
Grammar VAS [24] were introduced. In this subsection we compare our wqo to theirs.

In a grammar VAS paths are restricted to a given context-free grammar G, and it is
known that Priority VAS correspond to the subclass of Grammar VAS, where the grammar
is thin/finite index. In a thin grammar, every non-terminal has a rank (called index)
which can only decrease and for every production X æ Y Z, either rank(Y ) < rank(X) or
rank(Z) < rank(X), i.e. only one of the produced non-terminals can have the same rank.

The equivalence of PVASS with these grammars can in fact be seen via our RegEx
characterization: One can implement Eú via S æ XS, where X implements E. Similarly
composition E ¶ EÕ can be implemented via S æ XX Õ where X implements E, and X Õ

implements EÕ. In [24] a wqo on runs based on Kruskal’s tree ordering on syntax trees
is defined. It can be shown that their ordering for the grammar obtained from a RegEx
coincides with our ordering. In fact this is another motivation for the markers we use for
splitting runs: Syntax trees naturally distinguish between being in the left or right branch of
the RegEx. In [24] however they did not manage to show some of the pumping properties of
the well-quasi-order which we require, and will be able to prove using our RegEx.
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Another example are Bonnet’s works [3, 4]. His well-quasi-order is based on a repeated
application of Higman’s Lemma, similar to our ordering. The only di�erence is that in [4]
the finest split of any run is chosen. In our terminology, if the expression is Eú, where E
requires the first coordinate to be 0, then a run fl = fl1fl2 is always split as fl1, fl2 œ �(E)
in [4], i.e. fl œ �(E2). While in our case also fl œ �(E) is possible, this is determined by the
markers. When limitting ourselves to runs with the finest split the orderings coincide.

5.4 Geometric Preliminaries

In this section we repeat some definitions from the VASS literature, pertaining to the pumping
properties the relations Pfl fulfill. Readers familiar with the notions can skip this section.
For a visual representation of the geometric definitions see e.g. [10]. We state definitions for
sets, they apply to relations R ™ QdÕ ◊ QdÕÕ by viewing them as set R ™ QdÕ

+dÕÕ .

Cones and periodic sets. A set C ™ Qd is a cone if 0 œ C, C+C ™ C and Q>0C ™ C.
Given a set F ™ Qd, the cone generated by F is the smallest cone containing F.

A cone C is definable if it is definable in FO(Q,+,Ø).
A set P ™ Nd is a periodic set if P+P ™ P and 0 œ P. For any set F ™ Nd, the periodic

set Fú generated by F is the smallest periodic set containing F. A periodic set P is finitely
generated if P = Fú for some finite set F.

Finitely generated periodic sets provide an equivalent way to define linear sets as sets of
the form b+P, where b œ Nd and P ™ Nd is a finitely generated periodic set.

Smooth Periodic Sets. The periodic relation Pfl for a run fl of a VASS is rarely finitely
generated, but it is smooth, a class introduced by Leroux in [22]. In order to define smooth,
we first reintroduce the set of directions of a periodic set.

I Definition 17. [22, 10] Let P be a periodic set. A vector v œ Qd is a direction of P if
there exists m œ N>0 and a point x such that x+ N ·mv ™ P, i.e. some line in direction v
is fully contained in P. The set of directions of P is denoted dir(P).

We can now define smooth periodic sets.

I Definition 18. [22, 10] Let P be a periodic set.
P is asymptotically definable if dir(P) is a definable cone.
P is well-directed if every sequence (pm)mœN of vectors pm œ P has an infinite subsequence
(pmk)kœN such that pmj + N(pmk ≠ pmj ) ™ P for all k Ø j.
P is smooth if it is asymptotically definable and well-directed.

I Example 19. Examples of smooth periodic sets are P1 = {(0, 0)} fi (1, 1) + N2 and
P2 = {(x, y) œ N2 | y Æ x2}. We have dir(P2)\{(0, 0)} = {(x, y) œ QØ0 | x > 0}. I.e. except
pure north, every vector in Q2

Ø0
is a direction of P2. On the other hand dir(P1) = Q2

Ø0
.

P2 is a very typical example: One idea with dir(P) is to store the asymptotic steepness
of the upper function, and ignore whether it is exponential or quadratic if it is superlinear.

I Example 20. Examples of non-smooth sets are PÕ
1
= {(x, y) | x Ø

Ô
2y} and PÕ

2
=

({(0, 1)} fi {(2m, 1) | m œ N})ú = {(x, n) œ N2 | x has at most n bits set to 1 in binary.}.
PÕ

1
is not asymptotically definable, because defining dir(PÕ

1
) requires irrationals, while PÕ

2
is

not well-directed (see observation 2 below).
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We make a few observations:
1. The set dir(P) is a cone. It is by definition closed under non-negative scalar multiplication

(due to the m in the definition). Furthermore, if two lines in di�erent directions v and vÕ

are contained in P, then by periodicity P also contains a v,vÕ plane, and so P contains a
line in every direction between v and vÕ. For more details see [22, Lemma V.7]. dir(P)
should be viewed as a kind of “limit cone” containing P, it is however only one possible
definition for a “limit cone” of P, other cones were considered in prior papers [20, 21].

2. The definition of well-directed is stated this way to relate to wqo’s, but the most important
case of definition 18 is when the pm are all on the same infinite line x + v · N. Then
the definition equivalently states that v œ dir(P), i.e. some infinite line in direction v is
contained in P. This makes sets where points are “too scarce” non-smooth. For instance,
the set P2 of Example 19 contains infinitely many points on a horizontal line, but no full
horizontal line, which would correspond to an arithmetic progression.

Almost semilinear relations. We reintroduce almost-semilinear sets, introduced by Leroux
in [20, 21, 22]. Intuitively, they generalize semilinear sets by replacing finitely generated
periodic sets with smooth periodic sets.

I Definition 21 ([21, 22]). A set X is almost linear if X = b+P, where b œ Nd and P is a
smooth periodic set, and almost semilinear if it is a finite union of almost linear sets.

It was shown in [21, 22] that VAS reachability sets/relations are almost semilinear.
However, it is easy to find almost semilinear sets that are not reachability sets of any VAS.
One reason is that the definition of a smooth periodic set only restricts the “asymptotic
behavior” of the set, which can be “simple” even if the set itself is very “complex”.

I Example 22. Let X ™ N>0 be any set, for example X := {m œ N |
m is Gödel-number of non-halting TM}. Then P := {(0, 0)} fi ({1} ◊ X) fi N2

>1
is a smooth

periodic set. Indeed, it contains a line in every direction, and is thus well-directed and
asymptotically definable.

To eliminate these types of sets Leroux required that every intersection of the set with
a semilinear set is still almost semilinear. For instance, the intersection of the set X in
Example 22 and the linear set (1, 0) + (0, 1) · N is not almost semilinear. This leads to the
following main theorems of [22], which we want to extend to Priority VAS:

I Theorem 23 ([22, Theorem IX.1]). For every semilinear relation S and reachability relation
R of a VAS, R fl S is a finite union of relations b+P, where P is smooth periodic and for
every linear relation L ™ b+P there exists a p œ P such that p+ L is flattable.

Since projecting away fixed coordinates preserves almost semilinearity, namely the periodic
sets are anyways 0 on fixed coordinates, this theorem also holds for VAS sections.

As mentioned in the introduction, the same paper proceeded to prove the following:

I Theorem 24 ([22, Theorem XI.2]). The reachability relation of a VAS is flattable if and
only if it is semilinear.

The hard part is of course to prove that semilinear implies flattable. Let us quickly recap
how to obtain Theorem 24 from Theorem 23 as our main proof will not repeat this step, we
will stop at obtaining Theorem 23 for Priority VAS.
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Leroux in [22] defines a dimension dim(S) œ N of semilinear sets S. The important aspect
of the dimension is that for every linear set L, we have dim(L \ (p + L)) < dim(L). For
example N2 \ [(x, y) +N2] for any x, y œ N is a finite union of lines, and hence 1-dimensional.
The proof then proceeds by induction on the dimension of X := R fl S.

Base k = 0: Since 0-dimensional implies finite, such sets are flattable.
Step k æ k + 1: Let X = R fl S semilinear with dim(X) = k + 1. We have to show that

X is flattable. Since flattable relations are closed under union, we can assume that X is not
only semilinear but even linear. Using X as L in Theorem 23 (this requires combining almost
linear components correctly, and hence some fiddling) there exists a vector p such that p+X
is flattable. Since dim(X \ (p+X)) < dim(X), X \ (p+X) is flattable by induction. Since
flattable relations are closed under union, X = [X \ (p+X)] fi [p+X] is flattable.

With a similar induction on the dimension, Leroux obtained the following:

I Theorem 25 ([20, Theorem 9.2]). Let R be reflexive, transitive and such that for every
semilinear S, R fl S is almost semilinear. Then R admits semilinear inductive invariants.

As a corollary of Theorem 25 and the PVAS version of Theorem 23, namely Theorem 31
of the next section, we obtain the following.

I Corollary 26. Let V be a PVASS, and Cs,Ct two configurations such that Cs ”æú Ct.
Then there exists a semilinear inductive invariant S such that Cs œ S,Ct ”œ S.
Proof. Let R be the reachability relation of V. Clearly R is reflexive and transitive. By
Theorem 31, every intersection RflS with a semilinear S is a finite union of b+P, where P is
smooth periodic, i.e. RflS is almost semilinear. Hence R fulfills all assumptions of Theorem
25, whose conclusion is the existence of a separating inductive invariant S as claimed. J

6 Semilinear Priority VAS are Flattable

In this section we define flattability and prove that Theorem 23 holds also for PVAS. We
work on expressions E, and hence define flattability for expressions E by structural induction,
instead of defining flattability on PVAS directly.

I Definition 27. Base case: R ™ Rel(Y) is flattable w.r.t. Y if and only if R is semilinear.
For E1 fi E2, a relation R ™ Rel(E1 fi E2) is flattable w.r.t. E1 fi E2 if and only if there

exist relations Ri ™ Rel(Ei) flattable w.r.t. Ei such that R ™ R1 fi R2.
For E1 ¶ E2, a relation R ™ Rel(E1 ¶ E2) is flattable w.r.t. E1 ¶ E2 if and only if there

exist relations Ri ™ Rel(Ei) flattable w.r.t. Ei such that R ™ R1 ¶ R2.
For Eú, remember that by Corollary 10 we can assume that Rel(E) is monotone. Let

in(E) = dÕ. We first make a preliminary definition: Given a vector v = (src, tgt) œ Rel(E),
its closure under monotonicity is m(v) = {v}+N(e1, e1)+ · · ·+N(edÕ , edÕ), where ei œ NdÕ is
the i-th unit vector. We define the monotone transitive closure of v as mtc(v) = m(v)ú, i.e.
it is the relation of source and target configurations, such that the target can be reached by
repeatedly applying only v, potentially at a larger configuration. A linear path scheme S is a
relation which can be written as mtc(src1, tgt1)¶ · · ·¶mtc(srcr, tgtr) with (srci, tgti) œ Rel(E).
This has to be defined using mtc since for expressions we do not have a finite set E of “edges”
anymore. But we want to express that the same edge sequences are taken.

A relation R ™ Rel(Eú) is flattable w.r.t. Eú if and only if there exist finitely many
relations R1, . . . ,Rk ™ Rel(E) flattable w.r.t. E and linear path schemes S0, . . . ,Sk such
that R ™ S0 ¶ R1 ¶ S1 ¶ R2 ¶ · · · ¶ Rk ¶ Sk. I.e., in terms of the ideas in the introduction, we
have k loops where we are allowed to adapt the “inner” transitions, those are reflected by Ri.
In between those loops, we are allowed to use linear path schemes of the outer loop.
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Let us mention some basic properties of this definition, proved in the full version [9]. In
particular, we compare this definition with the transition word definition of flattable.

I Definition 28. Let V = (Q,E) be a PVAS. For w = (e1, . . . , ek) œ Eú define
æw:=æe1 ¶ · · · ¶ æek . Let æú

w denote the reflexive and transitive closure of æw.
A relation R is transition word flattable w.r.t. V if there exist transition sequences

w1, . . . , wr œ Eú such that R ™æú
w1 ¶ · · · ¶ æú

wr
.

I Lemma 29. Let E be an expression.
1. If flÕ Ø�(E) fl are runs, then dir(fl) + N(dir(flÕ) ≠ dir(fl)) is flattable w.r.t. E, and all the

corresponding runs are Ø�(E) fl.
2. If R,RÕ ™ Rel(E) are flattable w.r.t. E, then also R fi RÕ is.
3. Let V be a PVAS such that E is its expression in Theorem 7. If a relation R ™ Rel(E) is

flattable in our sense, then R ™æú
V is transition word flattable.

In our proofs we will need to distribute + over ¶.

I Lemma 30. Let (Ri)ri=1
™ NdÕ ◊ Ndmid and (RÕ

i)ri=1
™ Ndmid ◊ NdÕÕ be relations. Thenqr

i=1
(Ri ¶ RÕ

i) ™ (
qr

i=1
Ri) ¶ (

qr
i=1

RÕ
i).

6.1 Proof Outline for Theorem 31

In this subsection we provide a proof outline for Theorem 31. As remarked in Section 5.4,
Theorem 31 su�ces to obtain semilinear inductive invariants and flattability.

I Theorem 31. For every semilinear relation S and reachability relation R of a PVAS,
R fl S is a finite union of relations b+P, where P is smooth periodic and for every linear
relation L ™ b+P there exists a p œ P such that p+ L is flattable.

The starting point is to extend the definition of the transformer relation to expressions.
Let E be an expression, and fl œ �(E) a run. Then we define the transformer relation of
fl w.r.t. E via PE,fl := {ends(flÕ) ≠ ends(fl) | flÕ Ø fl}, exactly as in the VAS case. The
corresponding almost semilinear component is Comp(E, fl) = ends(fl) +PE,fl.

The outline now consists of two parts: First we reduce Theorem 31 to Theorem 32 and
Lemma 33. The closure property of Lemma 33 is easy to see, we give a proof in the full
version [9]. Hence afterwards the outline will focus on proving Theorem 32.

I Theorem 32. Let E be an expression, fl œ �(E). Then PE,fl is smooth, periodic and:
1. Let R1,R2 ™ Comp(E, fl) flattable. Then R1 +R2 ≠ ends(fl) is flattable.
2. Every direction of Comp(E, fl) is flattable, i.e. for every (e, f) œ dir(PE,fl) there exists

(a,b) œ PE,fl, n œ N such that ends(fl) + (a,b) + Nn(e, f) is flattable w.r.t. E.

Property 2. is rather self-explanatory, important is property 1. The statement of property
1. is that if two relations are flattable using the same minimal run fl, then not just the sum
is flattable, but even the sum ignoring the base point ends(fl) is flattable.

I Lemma 33. Let S ™ NdÕ ◊ NdÕÕ be semilinear, and X ™ NdÕ ◊ NdÕÕ a PVAS section. Then
X fl S is a PVAS section, and hence has an equivalent expression Rel(E) by Theorem 7.

Proof of Theorem 31. Use Lemma 33 to obtain an expression E with Rel(E) = R fl S. We
write Rel(E) =

t
flœ�(E)min

ends(fl) +PE,fl as mentioned in the introduction. By Theorem
32, these periodic relations are smooth, hence only the flattability claim is left. Let L ™
ends(fl)+PE,fl linear, i.e. L = b+Np1+ · · ·+Npr. By property 2. in Theorem 32, there exist
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ni œ N and (ai,bi) œ PE,fl such that Ri := ends(fl) + (ai,bi) +Nnipi is flattable for every i.
We define the finite set F := b+ {0, . . . , n1} · p1 + · · ·+ {0, . . . , nr} · pr ™ L ™ Comp(E, fl).
Since this set is finite, it is flattable. By property 1. in Theorem 32, the relationqr

i=1
Ri +F≠ r · ends(fl) = ends(fl) +

qr
i=1

[(ai,bi) +Nnipi] + (F≠ ends(fl)) is flattable.
Defining p :=

qr
i=1

(ai,bi) + (b≠ ends(fl)) œ PE,fl by periodicity, the theorem is proven. J

Next we outline how to prove Theorem 32. The first step is an equivalent characterization
of the transformer relation via “self-loop on c” relations similar to V . Let us start by defining
these relations, which is similar to VAS.

Consider an expression Eú and a configuration c œ NdÕ . We define the relation PEú,c via
(x,y) œ PEú,c ≈∆ ÷fl œ �(Eú) : ends(fl) = (x+ c,y+ c).

The equivalent characterization of PE,fl via relations PEú,c is as follows:

I Lemma 34. Let E be an expression, and fl œ �(E). Then there exist subexpressions Eú
i of

E and configurations ci occurring along fl such that PE,fl = PEú
1 ,c1 ¶ · · · ¶ PEú

r ,cr .
This leaves us with three things to prove: Firstly, Lemma 34 itself. Secondly, that PEú,c

is smooth and properties 1. and 2. of Theorem 32 hold for PEú,c (actually a slightly stronger
version 2.’ of property 2.). Thirdly, that composition preserves the properties of Theorem 32.

We dedicate one subsection to every step, with the second coming last. This is because
steps 1 and 3 are new, while step 2 is based on [22]. Also, in order to understand why
PVAS are flattable, Lemma 34 and step 3 contain the essence: Similar to VAS, pumping is a
sequence of special self-loops, a very linear object. The fact that the di�erent parts now use
di�erent expressions Eú

i is irrelevant for our composition proof.

6.2 Proving Lemma 34, Equivalent Definition of Transformer Relation

Proof by structural induction. For simplicity, we call a relation PE,fl decomposable if it has
an equivalent description as in the lemma. The base case of VAS sections is clear.

E1 fi E2: Let fl œ �(E1 fi E2). W.l.o.g. fl œ �(E1). By definition of the wqo on runs in
this case, we have PE1fiE2,fl = PE1,fl, which is decomposable by induction.

E1 ¶ E2: Let fl œ �(E1 ¶ E2). Write fl = fl1fl2 with fl1 œ �(E1), fl2 œ �(E2), which is a
unique split because of the tags on steps of the run. We claim that PE1¶E2,fl = PE1,fl1 ¶PE2,fl2 .

Proof of claim: “™”: Let flÕ Ø fl. Then flÕ = flÕ
1
flÕ
2
such that flÕ

1
œ �(E1), flÕ

2
œ �(E2), flÕ

1
ØE1

fl1, flÕ
2

ØE2 fl2. Then ends(flÕ) ≠ ends(fl) = (ends(flÕ
1
) ≠ ends(fl1)) ¶ (ends(flÕ

2
) ≠ ends(fl2)) œ

PE1,fl1 ¶ PE2,fl2 , where composition is possible since tgt(flÕ
1
) = src(flÕ

2
), tgt(fl1) = src(fl2).

The other direction “´” is clear, namely concatenate flÕ
1
and flÕ

2
.

Now simply use that both PE1,fl1 and PE2,fl2 are decomposable by induction.
This leaves the hardest case Eú: For configurations c, cÕ œ NdÕ , we write c æE cÕ if there

exists a run ÷ œ �(E) such that ends(÷) = (c, cÕ), and call ÷ a generalized transition. We
want to emphasize the important fact that generalized transitions contain path information
in �(E), and are not only an element of Rel(E). We let æú

E denote its reflexive and transitive
closure. A first decomposition in this case contains relations PE,÷i , which correspond to
“increasing existing transitions” as mentioned in the introduction. This leads to writing PEú,fl

as a composition of alternating PEú,ci and PE,÷i .

I Lemma 35. Let fl = (src(fl), ÷1 . . . ÷r, tgt(fl)) œ �(Eú). The following equality holds:
PEú,fl = PEú,src(÷1) ¶ PE,÷1 ¶ PEú,src(÷2) ¶ · · · ¶ PE,÷r ¶ PEú,tgt(fl).
Proof. “∆”: Let flÕ Ø�(Eú) fl. We have to prove ends(flÕ)≠ends(fl) œ the claimed composition.
Write flÕ = ÷Õ

1
. . . ÷Õ

s according to the tags. By definition of the wqo, there exists an order-
preserving injective function f : {1, . . . , r} æ {1, . . . , s} such that ÷i Æ�(E) ÷Õ

f(i). In particular,
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ends(÷Õ
f(i)) Ø ends(÷i). We define the sequence of vectors vi := src(÷Õ

f(i)) ≠ src(÷i) for
i œ {1, . . . , r}, and wi := tgt(÷Õ

f(i)) ≠ tgt(÷i) for i œ {1, . . . , r}. We also define w0 :=
src(flÕ) ≠ src(fl) and vr+1 := tgt(flÕ) ≠ tgt(fl). For every i œ {1, . . . , r}, the run ÷Õ

f(i) shows
that (vi,wi) œ PE,÷i . The runs fli := ÷f(i)+1 . . . ÷f(i+1)≠1 for i œ {1, . . . , r ≠ 1} (these are
possibly empty runs) prove that tgt(÷i) +wi æú

E src(÷i+1) + vi+1. Since tgt(÷i) = src(÷i+1),
we obtain (wi,vi+1) œ PEú,tgt(÷i)

. A similar argument proves (w0,v1) œ PEú,src(fl) and
(wr,vr+1) œ PEú,tgt(fl). Hence ends(flÕ)≠ ends(fl) = (w0,vr+1) is in the claimed composition.

“≈”: Let (wi)ri=0
and (vi)r+1

i=1
such that (wi,vi+1) œ PE,÷i for i œ {1, . . . , r}, (vi,wi) œ

PEú,tgt(÷i)
for i œ {1, . . . , r ≠ 1}, (w0,v1) œ PEú,src(fl) and (wr,vr+1) œ PEú,tgt(fl). Let ÷Õ

i

be generalized transitions witnessing (wi,vi+1) œ PE,÷i , let fli for i œ {1, . . . , r ≠ 1} be
runs witnessing (vi,wi) œ PEú,tgt(÷i)

, let fl0 witness (w0,v1) œ PEú,src(fl) and flr+1 witness
(wr,vr+1) œ PEú,tgt(fl). Then flÕ := fl0÷Õ

1
fl1 . . . flr≠1÷Õ

rflr fulfills flÕ œ �(Eú) because sources
and targets of the di�erent parts coincide. In fact flÕ Ø�(Eú) fl, by choosing f(i) to point at
the index at which ÷Õ

i occurs in flÕ. J

This finishes proving Lemma 34 by observing that PE,÷i are decomposable by induction.
We remark that the proof does obtain an explicit description of which PEú

i ,ci to use, but
we stated Lemma 34 this way to stress that di�erent Eú

i intertwine in the composition.

6.3 Preserving Smoothness and Flattability Under Composition

In this subsection we prove that if PE,c are smooth periodic relations fulfilling properties 1.
and 2. of Theorem 32, then also their composition fulfills these conditions. While periodic
relations are closed under composition (use e.g. Lemma 30), smooth periodic relations are
not. We already slightly changed the definition of well-directed to accomplish this goal
(compare with [22, 10]), but we still need to carefully choose the inductive statement. We
choose to replace condition 2. by 2.’ formulated as follows, which is similar to [22]:

2.’: For every well-directed periodic P ™ P there exists a definable cone R such that
dir(P ) ™ R and for every (e, f) œ R there exist (a,b) œ P, n œ N such that (a,b)+Nn(e, f) ™
P. In case of PE,fl we require ends(fl) + (a,b) + Nn(e, f) ™ Comp(E, fl) to be flattable.

The idea of property 2.’ is to remove one basic di�culty of composition: Suddenly not all
runs of P1 are useful anymore, only those which can be continued into P2. We will see in
the proof how 2’ takes care of this problem. Formally, property 2’ says that even if P ™ P
is non-smooth, we can find a definable R with dir(P ) ™ R ™ dir(P), and it only contains
flattable directions. With the choice P = P this implies property 2. Important to notice
is that the choice R = dir(P) would always be best if not for the very crucial œ P part,
which we will use in the proof. Again, œ P is easy to motivate. Imagine one is interested
in the reachability set from a fixed point, i.e. in only pumping the target. Then choose
P := {0} ◊ Nd. Property 2 would state existence of a line (a,b) + N(0,w) ™ PE,fl. We
actually want a line (0,b) + N(0,w), i.e. with (a,b) œ P as in property 2’.

I Lemma 36. Let P1,P2 be smooth periodic relations fulfilling property 2.’. Then P1 ¶P2 is
smooth periodic fulfilling property 2’. If P1 = PE1,fl1 and P2 = PE2,fl2 for fl = fl1fl2, then in
addition the flattability claims of property 1. and 2.’ hold for PE1¶E2,fl = PE1,fl1 ¶ PE2,fl2 .

Proof. Periodic: A composition of periodic relations is again periodic by Lemma 30.
Well-directed: Let (vn,wn)n ™ P1 ¶ P2 be a sequence. Then there exist intermediate

values xn such that (vn,xn) œ P1, (xn,wn) œ P2 for all n. Since P1 is well-directed, there
exists a subsequence such that (vnj ,xnj ) + N(vnk ≠ vnj ,xnk ≠ xnj ) ™ P1. Since P2 is
well-directed we obtain additionally (xnj ,wnj ) + N(xnk ≠ xnj ,wnk ≠ wnj ) ™ P2 for some
subsubsequence. Together we have (vnj ,wnj ) + N(vnk ≠ vnj ,wnk ≠ wnj ) ™ P1 ¶ P2.
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Property 2.’: Let P ™ P1 ¶P2 be well-directed periodic. Define P Õ := {(v,x,w) | (v,w) œ
P, (v,x) œ P1, (x,w) œ P2}. P Õ is well-directed by an argument as above, but this time we
even have to choose a subsubsubsequence. Consider the projections fi12 and fi23 to (v,x)
and (x,w) respectively. P1 := fi12(P Õ) ™ P1 and P2 := fi23(P Õ) ™ P2 are projections of a
well-directed periodic relation and therefore themselves well-directed periodic. Hence we can
apply property 2.’ for them to obtain definable cones R1 and R2 with dir(Pi) ™ Ri ™ dir(Pi).
We claim property 2’ holds with R = R1 ¶ R2.

First we have to show that dir(P ) ™ R1 ¶ R2. Let (v,w) œ dir(P ). By definition of the
set of directions, by potentially scaling with a positive integer, there exists (v0,w0) such that
(vn,wn) := (v0,w0) + n(v,w) œ P1 ¶ P2 for every n. Therefore there exist intermediate
values xn such that (vn,xn,wn) œ P Õ for all n. Since P Õ is well-directed, there exists a
subsequence such that (vnj ,xnj ,wnj ) + N(vnk ≠ vnj ,xnk ≠ xnj ,wnk ≠ wnj ) ™ P Õ. Hence
(vnk ≠vnj ,xnk ≠xnj ) œ dir(P1) ™ R1 and (xnk ≠xnj ,wnk ≠wnj ) œ dir(P2) ™ R2. Therefore
(vnk ≠ vnj ,wnk ≠ wnj ) = (nk ≠ nj)(v,w) œ R1 ¶ R2. This implies (v,w) œ R1 ¶ R2.

Now let (e,g) œ R. Then there exists f such that (e, f) œ R1 and (f ,g) œ R2. By
definition of Ri, by potentially scaling, there exist (a1,b1) œ P1 and (b2, c2) œ P2 such
that (a1,b1) + N(e, f) ™ P1, and (b2, c2) + N(f ,g) ™ P2. Since P1 and P2 are projections
of P Õ, there exist c1 and a2 such that (ai,bi, ci) œ P Õ for i œ {1, 2}. Hence (a2,b2) œ P1

and (b1, c1) œ P2. By periodicity of P1, we have (a1 + a2,b1 + b2) + N(e, f) ™ P1 and
similarly by periodicity of P2 we have (b1 + b2, c1 + c2) +N(f ,g) ™ P2. Altogether we have
(a1 + a2, c1 + c2) œ P and (a1 + a2, c1 + c2) + N(e,g) ™ P1 ¶ P2 as required. (a1,b1) œ P1

was crucial here such that we could obtain a fitting c1, and accordingly for (b2, c2) œ P2.
Asymptotically definable: Define P := P1 ¶ P2. By property 2’, we have dir(P1 ¶ P2) =

R1 ¶ R2, which as composition of definable cones is itself a definable cone.
Flattability claim in 2’: We proved 2’ and constructed the direction using well-directedness.

By Lemma 29(1.), relations obtained this way from the wqo. on runs are flattable.
Property 1.: Let R,RÕ ™ ends(fl) + PE1¶E2,fl be flattable w.r.t. E1 ¶ E2. We have to

prove that R+RÕ ≠ ends(fl) is flattable w.r.t. E1 ¶ E2. By definition of flattable, there exist
relations R1,RÕ

1
flattable w.r.t. E1 and R2,RÕ

2
flattable w.r.t. E2 such that R ™ R1 ¶ R2

and RÕ ™ RÕ
1

¶RÕ
2
. Hence R+RÕ ≠ ends(fl) ™ (R1 ¶R2)+ (RÕ

1
¶RÕ

2
)≠ (ends(fl1) ¶ ends(fl2)).

By Lemma 30 we obtain R +RÕ ≠ ends(fl) ™ (R1 +RÕ
1

≠ ends(fl1)) ¶ (R2 +RÕ
2

≠ ends(fl2)).
Applying property 1. for the subexpressions E1 and E2, we obtain the claim. J

6.4 Transformer Relations are Smooth with Flattable Directions

In this subsection we prove that the transformer relation PEú,c is a smooth periodic relation
fulfilling properties 1 and 2’ (see Section 6.3). We start with a reminder of the notation.

We write x æE y for (x,y) œ Rel(E) and denote its reflexive transitive closure as æú
E.

Remember that (x,y) œ PEú,c ≈∆ c+ x æú
E c+ y. We first prove that PEú,c is periodic.

I Lemma 37. Let c+x1 æú
E c+y1 and c+x2 æú

E c+y2. Then c+x1+x2 æú
E c+y1+y2.

Proof. Since ú in expressions is only used on monotone relations Rel(E), æE is monotone.
Hence also æú

E is monotone. By monotonicity, c+x1+x2 æú
E c+y1+x2 æú

E c+y1+y2. J

That PEú,c is well-directed follows from Lemma 29 (1.).
The proof of Property 1. is similar to the above proof of Lemma 37. Indeed, the lemma did

not duplicate c, so in di�erent notation r1 æú
E s1 and r2 æú

E s2 imply r1+r2≠c æú
E s1+s2≠c.

This leaves proving that PEú,c fulfills property 2.’ and hence is asymptotically definable.

ICALP 2024
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Since (0,0) œ PEú,c, monotonicity implies that PEú,c is reflexive. In [22, Section VIII]
many lemmas were proven for reflexive periodic relations, we reuse many of them. This
leads to a long sequence of restating lemmas, we prefer to end this part of the main text by
sketching the idea, for the formal proof see the full version [9].

Let P ™ PEú,c periodic. In order to not confuse �(E) and �(Eú), we write ÷ œ �(E)
and fl œ �(Eú). We call ÷ a generalized transition. Write “ = (Eú, c, P ) and denote by �“

the set of runs fl œ �(Eú) such that ends(fl) œ (c, c) + P . The idea is to split counters into
bounded and unbounded counters for �“ . The bounded counters will all be stored in the
states of a graph, and this leads to pumping corresponding to cycles in the graph. Namely
any transition sequence will correspond to a path in the graph, and since bounded counters
cannot be pumped, any pumping sequence has to restore all the bounded counters, i.e. be
a cycle in the graph. The unbounded counters on the other hand will all be unbounded
simultaneously, at which point the condition that counters have to stay non-negative will
intuitively not influence possible behaviours anymore.

We hence define the graph of bounded counters. Let Q“ ™ NdÕ be the set of configurations
occurring on some run fl œ �“ . We denote by I“ the set of indices such that {q(i) | q œ Q“}
is finite, i.e. the set of bounded counters. We consider the projection fi“ : NdÕ æ NI“ to the
bounded counters. We now define a finite directed multigraph G“ with vertices S“ := fi“(Q“).
For edges (s, t), first consider the set �s,t of generalized transitions ÷ with fi“(src(÷)) = s
and fi“(tgt(÷)) = t, which occur in some run fl œ �“ . We add an edge (s, t) for every minimal
(w.r.t. Æ�(E)) element of �s,t. We let s“ = fi“(c) denote the “initial state” for this graph.

Clearly runs correspond to paths in G“ , since the graph has projections of configurations
as states, and generalized transitions as edges. Regarding unbounded counters, the proof
that all of them are unbounded simultaneously is in the full version [9]. Finally, we then
obtain a formula for a definable cone R overapproximating dir(P ) by first considering the
finitely many minimal cycles in G“ . Every cycle ÷1 . . . ÷m provides us with a smooth periodic
relation PE,÷1 ¶ · · · ¶ PE,÷m of pumping possible along this cycle. These relations are smooth
periodic by induction and Lemmas 34 and 36. We conclude using [22, Theorem VII.1], whose
statement is essentially the following: If P1, . . . ,Pm are reflexive asymptotically definable
periodic relations, then (

tm
i=1

Pi)ú is also asymptotically definable.

7 Conclusion

We have given a new characterization of PVAS sections as RegEx over VAS sections, and
extended the abstract properties of almost semilinear sets to PVAS sections. We have
concluded that therefore if the reachability relation of a PVAS is semilinear, then it is
flattable, and moreover if a configuration is not reachable, then it is separated by a semilinear
inductive invariant. This leaves two main unknowns for PVAS which are known for VAS: 1)
The decidability of the semilinearity problem, that is, given a PVAS, decide if its reachability
relation/set is semilinear. 2) The complexity of the reachability problem.

We leave these as future work. We believe that combining our characterization of PVAS
sections and wqo on runs with ideas from [10] might allow for progress on these open
problems.

Furthermore, this research can also be viewed as progress towards the open question
whether the reachability problem for Pushdown/Grammar VASS is decidable, where Push-
down VASS have a stack in addition to the counters. Namely it is known [1] that Priority
VASS are equivalent to a subclass of Pushdown VASS.
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Abstract
All known quantifier elimination procedures for Presburger arithmetic require doubly exponential
time for eliminating a single block of existentially quantified variables. It has even been claimed
in the literature that this upper bound is tight. We observe that this claim is incorrect and
develop, as the main result of this paper, a quantifier elimination procedure eliminating a block of
existentially quantified variables in singly exponential time. As corollaries, we can establish the
precise complexity of numerous problems. Examples include deciding (i) monadic decomposability
for existential formulas, (ii) whether an existential formula defines a well-quasi ordering or, more
generally, (iii) certain formulas of Presburger arithmetic with Ramsey quantifiers. Moreover, despite
the exponential blowup, our procedure shows that under mild assumptions, even NP upper bounds
for decision problems about quantifier-free formulas can be transferred to existential formulas. The
technical basis of our results is a kind of small model property for parametric integer programming
that generalizes the seminal results by von zur Gathen and Sieveking on small integer points in
convex polytopes.
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1 Introduction

Presburger arithmetic is the first-order theory of the integers with addition and order. This
theory was shown decidable by Mojøesz Presburger in 1929 [25] by establishing a quantifier
elimination procedure in the extended structure additionally consisting of infinitely many
predicates m | · for all integers m > 0, asserting divisibility by a constant. Recall that a
logical theory T admits quantifier elimination whenever for any formula �(y1, . . . , yk) ©
÷xÏ(x, y1, . . . , yk) with Ï being quantifier free there is a computable quantifier-free formula
�(y1, . . . , yk) such that � ¡ � is a tautology in T . Presburger’s quantifier elimination
procedure has non-elementary running time. In the early 1970s, Cooper [6] developed
an improved version of Presburger’s procedure, which was later shown to run in triply
exponential time [23]. Ever since, various other quantifier elimination procedures have
been established and analyzed, especially for fragments of Presburger arithmetic with a
fixed number of quantifier alternations, see e.g. [26, 32]. Weispfenning [33] analyzed lower
bounds for quantifier-elimination procedures and showed that, assuming unary encoding of
numbers, any quantifier elimination procedure requires triply exponential time. In the same
paper, Weispfenning also claims that any algorithm eliminating a single block of existential
quantifiers inherently requires doubly exponential time [33, p. 50].

The main contribution of this paper is to develop a quantifier elimination procedure for
Presburger arithmetic that eliminates a block of existentially quantified variables in singly
exponential time. This, of course, contradicts Weispfenning’s claim, which actually turns out
to be incorrect as we point out in detail in Appendix C. The key technical insight underlying
our procedure is a kind of small model property for parametric integer programming. Given
an integer matrix A œ Z¸◊n and b œ Z¸, recall that integer programming is to decide whether
there is some x œ Zn such that Ax Æ b. It is well-known by the work of von zur Gathen and
Sieveking [31], and Borosh and Treybig [4], that if such an x exists then there is one whose
bit length is polynomially bounded in the bit lengths of A and b. In this paper, we refer
to the situation in which b is not fixed and provided as a parameter as parametric integer
programming. Our main technical result states that, in this setting, if Ax Æ b has a solution
for a given b œ Z¸ then there are D œ Qn◊¸ and d œ Qn, both of bit length polynomial in
the bit length of A, such that x = Db + d is integral and also a solution. Observe that
there is only an exponential number (in the bit length of A) of possible choices for D and
d. Eliminating a block of variables x from a system of linear inequalities thus becomes
easy: we have that Ax Æ By + c is equivalent to the disjunction of systems of the form
A(D(By + c) + d) Æ By + c for all D and d of bit length polynomial in A. Using standard
arguments, this approach can then be turned into a quantifier elimination procedure that
eliminates a block of existentially quantified variables in exponential time.

2 Preliminaries

Throughout this paper, all vectors z are treated as column vectors unless mentioned otherwise.
For a vector x œ Qn, let ÎxÎŒ be the maximal absolute value of all components of x.
Moreover, let ÎxÎfrac be the maximal absolute value of all numerators and denominators of
components in x. The latter is important for representations: Note that a vector x œ Qn

with ÎxÎfrac Æ m can be represented using O(n logm) bits. We use analogous notations
ÎAÎŒ and ÎAÎfrac for matrices A. We will sometimes refer to the Hadamard inequality [19],
which implies that for a square matrix A œ Zn◊n, we have |det(A)| Æ n

n/2 · ÎAÎnŒ. In
particular, the determinant of A is at most exponential in the maximal absolute value of
entries of A.
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Presburger arithmetic. Presburger arithmetic (PA) is the first-order theory of the structure
ÈZ; +, <, 0, 1Í. In order to enable quantifier elimination, we have to permit modulo constraints.
Thus technically, we are working with the structure ÈZ; +, <, (©m)mœZ, 0, 1Í, where a ©m b

stands for a © b mod m. In our syntax, we allow atomic formulas of the forms a1x1 + · · ·+
anxn Æ b (called linear inequalities) or a1x1 + · · · + anxn © b mod m (called modulo or
divisibility constraints), where x1, . . . , xn are variables and a1, . . . , an, b,m œ Z are constants
encoded in binary. A formula is quantifier-free if it contains no quantifiers or, equivalently, is
a Boolean combination of atomic formulas. Notice that conjunctions of linear inequalities
can be written as systems of linear inequalities Ax Æ b.

The size of a PA Formula Ï, denoted |Ï|, is the number of letters used to write it down,
where we assume all constants to be encoded in binary. (Sometimes, we say that a formula
obeys a size bound even if constants are encoded in unary; but this will be stated explicitly).

Fixed quantifier alternation fragments. The �k fragment of PA consists of formulas of the
form ÷u1’u2 . . . Qkuk : Ï(u1,u2, . . . ,uk,z) where ui is a vector of quantified variables, z is
a vector of free variables, Ï(u1,u2, . . . ,uk,z) is a quantifier free PA formula, and Qk denotes
’ or ÷ depending on whether k is even or odd respectively. Similarly, the �k fragment of PA
consists of formulas of the form ’u1÷u2 . . . Qkuk : Ï(u1,u2, . . . ,uk,z) where Qk denotes ’
or ÷ depending on whether k is odd or even respectively.

Bounded existential Presburger arithmetic. In addition to our quantifier elimination result,
we shall prove a somewhat stronger version, which states that one can compute a compact
representation of a quantifier-free formula in polynomial time. As compact representations,
we introduce a syntactic variant of existential Presburger arithmetic, which we call bounded
existential Presburger arithmetic, short ÷ÆPA. Essentially, ÷ÆPA requires all quantifiers to
be restricted to bounded intervals, but also permits polynomials over the quantified variables.
Using standard methods, one can translate every formula in ÷ÆPA in polynomial time into
an ÷PA formula. However, the converse is not obvious, and our main results states that this
is possible. Syntactically, an ÷ÆPA formula over free variables y1, . . . , ym is of the form

÷Æk1x1 · · ·÷Æknxn : Ï,

where x1, . . . , xn are variables, each ki œ N is a number given in binary, and Ï is a quantifier-
free formula where every atom is of one of the forms:

mÿ

i=1
piyi Æ q or

mÿ

i=1
piyi © r mod q, (1)

where p1, . . . , pm, q, r œ Z[x1, . . . , xn] are polynomials over the variables x1, . . . , xn. Thus,
where ÷PA allows constant integral coe�cients, ÷ÆPA allows polynomials from Z[x1, . . . , xn].
The quantifiers ÷Ækixi are interpreted as “there exists xi œ Z with |xi| Æ ki”.
I Remark 2.1. Now indeed, a ÷ÆPA formula can be converted in polynomial time into an
÷PA formula: The bounded quantification is clearly expressible in ÷PA. The terms piyi and
q in (1) (recall pi and q are polynomials are from Z[x1, . . . , xn]) are also expressible, because
multiplication with exponentially bounded variables can be expressed using polynomial-
size ÷PA formulas. This is because given a polynomial p œ Z[x1, . . . , xn] and a variable
y, we can construct a polynomial-size existential formula fi(x1, . . . , xn, y, z) expressing z =
p(x1, . . . , xn) · y · |x1| Æ k1 · · · · · |xn| Æ kn. This, in turn, follows from the fact that given
¸ in unary, we can construct an existential formula µ¸(x, y, z), of size linear in ¸, expressing
z = x · y · |x| Æ 2¸ (see [17, Sec. 3.1] or [18, p. 7]). Thus, we can construct fi in ÷PA by
introducing a variable for each subterm of p (which can clearly all be bounded exponentially).
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Making ÷ÆPA formulas quantifier-free. Moreover, a ÷ÆPA formula can easily be converted
(in exponential time) into an exponential-size quantifier-free formula: Just take an exponential
disjunction over all assignments of the existentially bounded variables x1, . . . , xn and replace
the variables by their values in all the atoms. Thus, ÷ÆPA formulas can be regarded as
compact representations of quantifier-free formulas.

3 Main results

Here, we state and discuss implications of the main result of this paper:

I Theorem 3.1. Given a formula of ÷PA, we can construct in polynomial time an equivalent
formula in ÷ÆPA.

From Theorem 3.1, we can deduce the following, since by the remark Remark 2.1 in Section 2,
one can easily convert a ÷ÆPA formula into an exponential-sized quantifier-free formula.

I Corollary 3.2. Given a formula Ï in existential Presburger arithmetic, we can compute in
exponential time an equivalent quantifier-free formula Â of size exponential in Ï. Moreover,
all constants in Â are encoded in unary.

In Section 6, we will see that an exponential blowup cannot be avoided when eliminating
a block of existential quantifiers, even if we allow constants to be encoded in binary in the
quantifier-free formula.

There are several applications of Theorem 3.1 and Corollary 3.2. The most obvious
type of applications are those, where, for every problem1 that is in NP (resp. coNP) for
quantifier-free formulas, the same problem belongs to NEXP (resp. coNEXP) for existential
formulas. Oftentimes, this yields optimal complexity. We mention some examples.

A direct consequence of Corollary 3.2 (and the NP membership of the quantifier free
fragment of PA) is the following.

I Corollary 3.3. The �2-fragment of Presburger arithmetic belongs to NEXP.

The NEXP upper bound is known and was shown by Haase [17, Thm. 1]. In fact, the
�2-fragment is known to be NEXP-complete: An NEXP lower bound was shown much earlier
by Grädel [14], already for the ÷’ú-fragment.

Ramsey quantifiers. In fact, combining Corollary 3.2 with the results from [2], we can
strengthen Corollary 3.3. The Ramsey quantifier ÷ram states the existence of infinite (directed)
cliques. More precisely, if Ï(x,y,z) is a Presburger formula where x and y are vectors
of n variables each, then ÷ram(x,y) : Ï(x,y,z) is satisfied for z if and only if there exists
an infinite sequence a1,a2, . . . œ Zn of pairwise distinct vectors with Ï(ai,aj ,z) for every
i < j. As mentioned in [2], Ramsey quantifiers can be applied to deciding liveness properties,
deciding monadic decomposability (see below), and deciding whether a formula defines a
well-quasi-ordering (see below).

In [2, Thm. 5.1], it is shown that if Ï(x,y,z) is an ÷PA formula, then one can compute
in polynomial time an ÷PA formula Ï

Õ(z) equivalent to ÷ram(x,y,z) : Ï(x,y,z).

1 To be precise: Every semantic problem, meaning one that only depends on the set defined by the input
formula.
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I Corollary 3.4. Given a �2-formula Ï(x,y,z), we can construct an exponential-size ÷PA
formula equivalent to ÷ram(x,y) : Ï(x,y,z). In particular, deciding the truth of ÷ram(x,y) : Â

for �2-formulas Â(x,y) is NEXP-complete.

Indeed, Corollary 3.2 lets us convert Ï(x,y,z) into an exponential-size existential formula
Ï

Õ, so that we can apply the above result of [2] to the formula ÷ram(x,y) : Ï
Õ(x,y,z), which

results in an equivalent exponential ÷PA formula. The NEXP lower bound in the second
statement follows from NEXP-hardness of the �2-fragment and the fact that for a given
�2-formula ‰ without free variables, the statement ÷ram(x,y) : ‰ · x < y is equivalent to ‰.

Detecting WQOs. A well-quasi-ordering (WQO) is a reflexive and transitive ordering
(X,Æ) such that for every sequence x1, x2, . . . œ X, there are i < j with xi Æ xj . Well-
quasi-orderings are of paramount importance in the widely applied theory of well-structured
transition systems [7, 1, 10]. The problem of deciding whether a given Presburger formula
Ï(x,y) defines a WQO was recently raised by Finkel and Gupta [8], with the hope of
establishing automatically that certain systems are well-structured. As observed in [9, Prop.
12], this problem reduces to evaluating Ramsey quantifiers, which is decidable by [28]. Based
on an NP algorithm for Ramsey quantifiers, it is shown in [2, Sec. 8.3] that given a quantifier-
free formula Ï(x,y), where x and y are vectors of n variables each, it is coNP-complete
whether the relation R ™ Zn ◊ Zn defined by Ï is a WQO. Our results allow us to settle the
complexity for existential formulas:

I Corollary 3.5. Given an ÷PA formula Ï, it is coNEXP-complete to decide whether Ï

defines a WQO.

The upper bound follows directly from Corollary 3.2 and the fact that it is coNP-complete
to decide whether a given quantifier-free formula defines a well-quasi-ordering [2, Sec. 8.3].
This yields a coNEXP procedure overall. It should be noted that Corollary 3.5 can also be
deduced from Corollary 3.4 (using the same idea as in [2, Sec. 8.3]). However, we find it
instructive to demonstrate how quantifier elimination permits a direct transfer of the coNP
algorithm as a black box. We show the coNEXP lower bound in Section 5.

Monadic decomposability. A Presburger formula is monadic if each of its atoms contains at
most one variable. Moreover, we say that a Presburger formula Ï is monadically decomposable
if Ï is equivalent to a monadic Presburger formula. Motivated by the role monadic formulas
play in constraint databases [15, 21], Veanes, Bjørner, and Nachmanson, and Bereg recently
raised the question of how to decide whether a given formula is monadically decomposable [30].
For Presburger arithmetic, decidability follows from [13, p. 1048] and for quantifier-free
formulas, monadic decomposability was shown coNP-complete in [20, Thm. 1] (in [2, Cor. 8.1],
the coNP upper bound is shown via Ramsey quantifiers). Corollary 3.2 allows us to settle
the case of ÷PA formulas.

I Corollary 3.6. Monadic decomposability of ÷PA formulas is coNEXP-complete.

This is because given an ÷PA formula, we can compute an exponential-sized quantifier-free
formula and apply the existing coNP procedure, yielding a coNEXP upper bound overall.
Again, the coNEXP upper bound could also be deduced from Corollary 3.4 (but this proof
shows again how to transfer algorithms using quantifier elimination). The coNEXP lower
bound follows the same idea as the coNP lower bound in [2], see Section 5.
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NP upper bounds. In addition to new NEXP and coNEXP upper bounds, Theorem 3.1 can
also be used to obtain NP upper bounds. Suppose we have a predicate p on sets of integral
vectors. That is, for each S ™ Zm for some m œ N, either p(S) is true or not. We call this
predicate admissible if for any m œ N, S1, S2 ™ Zm, we have that p(S1 fi S2) implies p(S1) or
p(S2). Let us see some examples:
(i) The predicate p with p(S) if and only if S ”= ÿ.
(ii) The predicate p with p(S) if and only if S is infinite.
(iii) The predicate p with p(S) if and only if S ™ Z and S contains a power of 2.
(iv) The predicate p with p(S) if and only if S ™ Z2k and viewed as a relation S ™ Zk ◊Zk,

S has an infinite clique.
(v) The predicate p with p(S) if and only if S ™ Z and S contains infinitely many primes.
(vi) The predicate p with p(S) if and only if S ™ Z2 and S contains a pair (x, 2x).
For each such predicate, we consider the problem p(÷PA):
Input An ÷PA formula Ï with m free variables for some m œ N.
Question Does p(S) hold, where S ™ Zm is the set defined by Ï?
Moreover, p(QF) is the restriction of the problem where the input formula Ï is quantifier-free.

For several of the examples above, it is known that p(÷PA) is in NP: For (i) and (ii),
these are standard facts, and for (iii), this follows from NP-completeness of existential Büchi
arithmetic [16, Thm. 1]. For (iv), this follows from the fact that Ramsey quantifiers can be
evaluated in NP [2, Thm 5.1]. Our results imply that for proving NP upper bounds, we may
always assume a quantifier-free input formula. This is perhaps surprising, because one might
expect that for non-linear predicates, it is di�cult to bound the quantified variables.

I Corollary 3.7. For every admissible predicate p, the problem p(÷PA) is in NP if and only
if p(QF) is in NP.

Here, the “only if” direction is trivial, and the “if” direction follows from Theorem 3.1.
This is because Theorem 3.1 allows us to assume that Ï is given as a ÷ÆPA formula
÷Æk1x1 · · ·÷Æknxn : Â(x1, . . . , xn, y1, . . . , ym). Moreover, admissibility of p implies that p is
satisfied for Ï if and only if there exists an assignment (a1, . . . , an) for the bounded variables
such that the quantifier-free formula Â(a1, . . . , an, y1, . . . , ym) satisfies p. Thus, we can guess
the assignment (which occupies polynomially many bits) and run the NP algorithm for
quantifier-free formulas.

4 Quantifier elimination

In this section, we prove Theorem 3.1. The following is our main geometric ingredient.

I Proposition 4.1. Let A œ Z¸◊n and b œ Z¸, and let � be an upper bound on all absolute
values of the subdeterminants of A. If the system Ax Æ b has an integral solution, then it
has an integral solution of the form Db+ d, where D œ Qn◊¸ and d œ Qn with ÎDÎfrac Æ �
and ÎdÎfrac Æ n�2.

Before we prove Proposition 4.1, let us see how it implies Theorem 3.1 and Corollary 3.2.

Proof of Corollary 3.2. While Corollary 3.2 follows from Theorem 3.1, it follows very directly
from Proposition 4.1 and the proof is a good warm-up for the proof of Theorem 3.1. Therefore,
we first derive Corollary 3.2 from Proposition 4.1. Suppose we are given a Presburger formula
÷x : Ï(x,y), where x = (x1, . . . , xn) and y = (y1, . . . , ym) are variables and Ï is quantifier-
free.
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It is well-known that divisibility constraints can be eliminated in favor of existentially
quantified variables, since a © b mod m if and only if ÷x : a≠ b = mx. Thus, we may assume
that Ï contains no divisibility constraints. Then, by moving all negations inwards and using
the standard equivalence ¬(r Æ t) ≈∆ t + 1 Æ r, we may assume that Ï is a positive
Boolean combination of atoms a€x Æ b€y + c, where a œ Zn, b œ Zm, and c œ Z.

By bringing Ï into DNF, we can write it as a disjunction of exponentially many systems
of inequalities of the form Ax Æ By + c, where A œ Z¸◊n, B œ Z¸◊m, and c œ Z¸. Thus,
it su�ces to construct a quantifier-free formula for ÷x : Ax Æ By + c. Let � be an upper
bound for all absolute values of subdeterminants of A. Since the transformation into DNF
does not change the appearing constants, we have that � Æ n

n/2ÎAÎnŒ is at most exponential
in the size of the input formula.

According to Proposition 4.1, a vector x with Ï(x,y) exists if and only if there exists a
matrix D œ Qn◊¸ and d œ Qn with ÎDÎfrac Æ � and ÎdÎfrac Æ n�2 such that (i) substituting
D(By+ c)+d for x satisfies Ax Æ By+ c and also (ii) the vector D(By+ c)+d is integral.
Therefore, the formula ÷x : Ax Æ By + c is equivalent to

fl

(D,d)œP

A(D(By + c) + d) Æ By + c · D(By + c) + d œ Zn

where P is the set of all pairs (D,d) with D œ Qn◊¸, d œ Qn, ÎDÎfrac Æ �, and ÎdÎfrac Æ n�2.
Clearly, P contains at most exponentially many elements. Moreover, note that the condition
D(By + c) + d œ Zn is a set of n modulo constraints. J

Proof of Theorem 3.1. The proof of Theorem 3.1 is similar to the above construction – we
just need to circumvent the exponential conversion into DNF. We proceed as follows.

As above, we are given a Presburger formula ÷x : Ï(x,y), where x = (x1, . . . , xn) and
y = (y1, . . . , ym) are variables and Ï is quantifier-free. Moreover, we may assume that Ï

contains no divisibility constraints and is a positive Boolean combination of atoms a€x Æ
b€y + c, where a œ Zn, b œ Zm, and c œ Z.

Let a€
i x Æ b€

i y + ci for i = 1, . . . , ¸ be the set of all atoms occurring in Ï and let
A œ Z¸◊n be the matrix with rows a€

i and B œ Z¸◊m be the matrix of rows b€
i , and let

c œ Z¸ be the (column) vector with entries c1, . . . , c¸. Thus, our formula Ï consists of ¸

atoms, each of which is a row in the system of linear inequalities Ax Æ By + c. Let Ï
Õ be

the formula obtained from Ï by replacing the atom a€
i x Æ b€

i y + ci by zi = 1, where zi,
i œ {1, . . . , ¸}, is a fresh variable for each of the ¸ atoms. Now let � be an upper bound on
all absolute values of the subdeterminants of A. Then � Æ n

n/2ÎAÎnŒ is at most exponential
in the size of the input formula. Consider the formula

÷z1, . . . , z¸ œ {0, 1} : ÷D œ Qn◊¸
, ÎDÎfrac Æ � :

÷d œ Qn
, ÎdÎfrac Æ n�2 : Ï

Õ · D(By + c) + d œ Zn ·
fi̧

i=1
(zi = 1 æ Âi) , (2)

where Âi is the formula a€
i (D(By + c) + d) Æ b€

i y + ci. Note that (2) is expressible in
÷ÆPA: We introduce (i) one variable for each zi, (ii) two variables for each entry of D (one
for the numerator, and one for the denominator), and (iii) two variables for each entry of d.

Each of the n divisibility constraints of D(By + c) + d œ Zn and each of the atoms
Âi can be written in the forms (1). To see this, let u1, . . . , uk be the bounded variables
used for the numerators or denominators in D and d. Observe that the vector By is a
linear combination of y with integer coe�cients. The matrix D and the vector d consist
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of quotients of bounded variables, hence rational functions in Z[u1, . . . , uk]. Thus, the
vector D(By + c) + d has in each entry an expression s+

qm
i=1 riyi, where r1, . . . , rm, s œ

Z[u1, . . . , uk]. Hence, by multiplying with the product of all denominators, we can write
each inequality a€

i (D(By + c) + d) Æ b€
i y + ci in the form of (1). Moreover, for the

requirement D(By + c) + d œ Zn, we can write each row of D(By + c) + d as a quotient
1
q (r+

qm
i=1 piyi), where q, r, p1, . . . , pm œ Z[u1, . . . , uk], so that membership in Z is equivalent

to
qm

i=1 piyi © ≠r (mod q).
Let us argue why (2) is equivalent to ÷x : Ï(x,y). Clearly, if (2) is satisfied, then

z = (z1, . . . , z¸) yields a set of atoms that, if satisfied, makes Ï true. Moreover, the vector
D(By + c) + d is an integer vector that satisfies all the atoms specified by z.

Conversely, suppose Ï(x,y) holds for some x œ Zn and y œ Zm. First, we set exactly
those zi to 1 for which the i-th atom in Ï is satisfied by x,y. Recall that each row of A (and
each row of B, and of c) corresponds to an atom in Ï. Let AÕ be the matrix obtained from A

by selecting those rows that correspond to atoms that are satisfied by our x and y. Define BÕ

similarly from B, and cÕ from c. Then we have A
Õx Æ B

Õy + cÕ. Now Proposition 4.1 yields
a matrix D

Õ and a vector d (each with n rows) with A
Õ(DÕ(BÕy + cÕ) + d) Æ B

Õy + cÕ. Now
the set of rows of BÕy + cÕ is a subset of the rows of By + c, so by inserting zero-columns
into D

Õ, we can construct a matrix D with D(By + c) = D
Õ(BÕy + cÕ). Hence, we have

A
Õ(D(By + c) + d) Æ B

Õy + cÕ. The latter means exactly that Âi is satisfied for every i with
zi = 1. Thus, this choice of z1, . . . , z¸, D, and d satisfies (2). J

4.1 Constructing solutions as a�ne transformations
4.1.1 Convex geometry
Before we start with the proof of Proposition 4.1, we recall some standard definitions from
convex geometry from Schrijver’s book [29]. Below, we let R+ = {r œ R |r Ø 0}. A polyhedron
is a set P = {x œ Rn |Ax Æ b}, where A is an ¸ ◊ n integer matrix and b œ Z¸. Let C ™ R¸,
then C is a convex cone if ⁄x+ µy œ C for all x,y œ C and ⁄, µ œ R+. Given a set X ™ R¸,

cone(X) = {⁄1x1 + · · ·+ ⁄txt | t Ø 0, x1, . . . ,xt œ X, ⁄1, . . . ,⁄t œ R+} .

The convex hull of a set X ™ R¸ is the smallest convex set containing that set, i.e.,

conv.hull(X) = {⁄1x1 + · · ·+ ⁄txt | t Ø 1, x1,x2, . . .xt œ X,

⁄1, . . . ,⁄t œ R+, ⁄1 + · · · + ⁄t = 1} .

Next, we recall some terminology concerning the structure of polyhedra. The characteristic
cone of a polyhedron P = {x | Ax Æ b} ™ Rn is the set char. cone(P ) := {y œ Rn | Ay Æ 0}.
The lineality space of polyhedron P is the set lin. space(P ) := {y œ Rn | Ay = 0}.

I Definition 4.2 (Faces). Given a polyhedron P ™ Rn, F ™ P is a face of P if and only if
F is non-empty and

F = {x œ P |AÕx = bÕ}

for some subsystem A
Õx Æ bÕ of Ax Æ b. We call F ™ P a proper face of P if F ”= ÿ and

F ”= P .

It follows that P has only finitely many faces. A minimal face of P is a face not containing
any other face. We have the following characterization of minimal faces [29, Thm 8.4],
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I Proposition 4.3. A set F is a minimal face of a polyhedron P ™ Rn if and only if
ÿ ”= F ™ P and

F = {x œ Rn |AÕx = bÕ}

for some subsystem A
Õx Æ bÕ of Ax Æ b, such that the matrix A

Õ has the same rank as A.

The following is shown in [29, Sec. 8.8]:

I Proposition 4.4. Let C be the cone {x œ Rn | Ax Æ 0}. There is a finite collection
G1, G2. . . . , Gs of subsets, which are of the form Gi = {x œ Rn | a€

i x Æ 0, A
Õx = 0}, where5

A
Õ

a€
i

6
is a subset of the rows of A, such that the following holds. If we choose for each

i = 1, . . . , s a vector yi from Gi \ lin. space(C) and choose z0, . . . ,zt in lin. space(C) such
that lin. space(C) = cone(z0, . . . ,zt), then

C = cone(y1, . . . ,ys,z0, . . . ,zt).

Here, the sets Gi are also called minimal proper faces (but Proposition 4.4 is not a character-
ization of those).

4.1.2 Proof of Proposition 4.1
We now prove Proposition 4.1. For the remainder of the section, let A œ Z¸◊n and b œ Z¸.
Moreover, let � be an upper bound on all absolute values of the sub-determinants of A. Our
first step is a simple application of standard facts about polyhedra.

I Lemma 4.5. If the system Ax Æ b has a solution in Qn, then it has one of the form 1
aEb,

where E œ Zn◊¸, a œ Z \ {0}, |a| Æ �, and ÎEÎŒ Æ �.

Proof. It is well-known that if Ax Æ b has a rational solution, then there is a solution inside
a minimal face of the polyhedron P = {x œ Rn | Ax Æ b} defined by the system of linear
inequalities Ax Æ b [29, Thm. 8.5]. Recall that a minimal face is a non-empty subset F ™ P

of the form

F = {x œ Rn | AÕx = bÕ}, (3)

where A
Õx Æ bÕ is a subset of the inequalities in Ax Æ b such that the matrix A

Õ has the
same rank as A (see Proposition 4.3 or [29, Thm. 8.4]). Suppose F is a non-empty minimal
face and satisfies (3). Here, we may assume that the rows of AÕ are linearly independent
(otherwise, we can remove redundant rows without changing F ). This means, AÕ can be
written as A

Õ = (B C) such that B is invertible. Then the vector xú := (B≠1bÕ 0)€

belongs to F . Since F ™ P , we know that Axú Æ b. By Cramer’s rule, the entry (j, i) of
B

≠1 is (≠1)i+j det(Bij)
det(B) , where Bij is the matrix obtained from B by removing the i-th row

and j-th column. Note that |det(Bij)| Æ � and |det(B)| Æ �. In particular, xú can be
written as 1

aEb, where a = det(B) and ÎEÎŒ Æ �. J

We also employ the following well-known fact, which again uses standard arguments.

I Lemma 4.6. There are integral vectors y1, . . . ,ys with each component being at most �
in absolute value, such that {x œ Rn | Ax Æ 0} = cone(y1, . . . ,ys).
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Proof. Let C = {x œ Rn | Ax Æ 0}. The lemma follows from Proposition 4.4. First, it is
a consequence of Cramer’s rule that we can choose z0, . . . ,zt as a basis of lin. space(C) =
{x œ Rn | Ax = 0} so that all z0, . . . ,zt are integral and have absolute values at most � in
all components. For example, see [29, Cor. 3.1c]. It remains to pick from each set

Gi \ lin. space(C) = {x œ Rn | a€
i x < 0, A

Õx = 0}

an integral vector with all components bounded by �. For this, we can proceed similarly to

Lemma 4.5. As a subset of rows of A, the matrix B =
5
A

Õ

a€
i

6
has rank at most n, and we may

assume ai ”= 0 (otherwise Gi \ lin. space(C) would be empty). Moreover, we may assume that
the rows of B are linearly independent, as otherwise we can remove rows from A

Õ without
changing Gi. We can thus write B = (E F ), where E is invertible. By Cramer’s rule (see,
e.g. [29, Sec. 3.2]), the j-th component of the vector y = E

≠1(0, . . . , 0,≠1) can be written
as 1

det(E) det(Ẽ), where Ẽ is obtained from E by replacing the j-th column by (0, . . . , 0,≠1).
This means, the vector |det(E)| ·y has only integer components and all of them have absolute
value at most �. Now let yú be the vector obtained from |det(E)| · y adding as many 0’s
as F has columns. Then we have Byú = E(|det(E)| · y) = (0, . . . , 0,≠|det(E)|) and thus
yú œ Gi \ lin. space(C). J

We also rely on the well-known theorem of Carathéodory [29, Cor. 7.1(i)].

I Theorem 4.7 (Carathéodory’s theorem). If X ™ Rn is some subset and x œ cone(X), then
there are linearly independent x1, . . . ,xm œ X with x œ cone(x1, . . . ,xm).

The following lemma is the key ingredient for proving Proposition 4.1. Its proof closely
follows the ideas of [29, Thm. 17.2], which Schrijver attributes to Cook, Gerards, Schrijver,
and Tardos [5]. The latter shows that for every rational x that maximizes an expression
c€x among the solutions of Ax Æ b, there is a close-by integral vector that maximizes this
expression among all integral vectors.

I Lemma 4.8. Suppose the system Ax Æ b has an integral solution, and let r œ Qn be a
rational solution. Then there is an integral solution zú œ Zn with Îzú ≠ rÎŒ Æ n�.

Proof. An illustration of the proof is given in Figure 1. Let z be an integral solution to
Ax Æ b. Split the equations Ax Æ b into A1x Æ b1 and A2x Æ b2 such that A1r Æ A1z
and A2r Ø A2z. In other words, we split A, b into two sets of rows, depending on in which
coordinates r resp. z is larger. Now consider the cone C = {x œ Rn | A1x Ø 0, A2x Æ 0}.
Then, by the choice of A1 and A2, we have z ≠ r œ C and therefore

z ≠ r = ⁄1y1 + · · ·+ ⁄tyt,

where ⁄1, . . . ,⁄t Ø 0 are real numbers and y1, . . . ,yt are some linearly independent vectors
chosen from the set of integer vectors {y1, . . . ,ys} provided by Lemma 4.6 satisfying C =
cone(y1, . . . ,ys}. The choice of linearly independent vectors is possible due to Carathéodory’s
theorem. In particular, each yi has maximal absolute value at most � and we have t Æ n.

Observe that for any µ1, . . . , µt with 0 Æ µi Æ ⁄i for i œ [1, t], the vector

r + µ1y1 + · · ·+ µtyt

is still a solution to Ax Æ b. Indeed, A1yi Ø 0 and A2yi Æ 0 implies

A1(r + µ1y1 + · · ·+ µtyt) Æ A1z Æ b1, and
A2(r + µ1y1 + · · ·+ µtyt) Æ A2r Æ b2,
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(0, 0)

y1

y2 = yt

y3

ys≠1

ys

z ≠ r

z

r

yÕ
1

yÕ
2

zúz ≠ r
= ⁄ 1y

1
+ ⁄ 2y

2

zú ≠ r={⁄1}y1+{⁄2}y2

Figure 1 The main idea behind Lemma 4.8. The region enclosed by blue lines depicts the
solution space of the given system of linear inequalities. As mentioned in the lemma, r and z are
respectively the given rational and integral solutions. Due to Lemma 4.6, we know that C (containing
z ≠ r) can be obtained as a cone of integer vectors y1, . . .ys. Moreover, by Carathéodory’s theorem,
we know that there are t linearly independent (t = 2 in this case) vectors whose cone contains
z ≠ r. Intuitively, these vectors (y1,y2) form a coordinate system for searching the required zú. For
i œ {1, 2}, yÕ

i = yi + r, {⁄i} = ⁄i ≠ Â⁄iÊ.

and thus A(r + µ1y1 + · · ·+ µtyt) Æ b. In particular, the vector

zú = r + (⁄1 ≠ Â⁄1Ê)y1 + · · ·+ (⁄t ≠ Â⁄tÊ)yt

is a solution to Ax Æ b. Moreover, zú is obtained from z by subtracting integer multiples of
the integer vectors y1, . . . ,yt, and thus zú is integral as well. Finally, we have

Îzú ≠ rÎŒ = Î(⁄1 ≠ Â⁄1Ê)y1 + · · ·+ (⁄t ≠ Â⁄tÊ)ytÎŒ Æ
tÿ

i=1
ÎyiÎŒ Æ n�. J

Proof of Proposition 4.1. According to Lemma 4.5, there is a rational solution 1
aEb to

Ax Æ b, where E œ Zn◊¸, a œ Z \ {0}, |a| Æ �, and ÎEÎŒ Æ �. We set D := 1
aE. Now

since Ax Æ b has an integral solution, Lemma 4.8 yields an integral solution zú close to
Db, meaning Îzú ≠ DbÎŒ Æ n�. We set d := zú ≠ Db. Then of course Db+ d = zú is an
integral solution to Ax Æ b. Moreover, we clearly have ÎdÎŒ Æ n�. It remains to show that
even ÎdÎfrac Æ n�2. Indeed, since zú is integral, b is integral, and D = 1

aE with integral E,
we know that in d = zú ≠ Db, every entry can be written with a as its denominator. As this
fraction has absolute value at most n� and |a| Æ �, both numerator and denominator have
absolute value at most n�2. J

5 Matching complexity lower bounds

In this section we prove the lower bounds for Corollaries 3.5 and 3.6.

Detecting WQOs. We begin with the lower bound for Corollary 3.5. That is, we show that
deciding whether an existential Presburger formula defines a WQO is coNEXP hard. The
idea is essentially the same as the coNP lower bound for detecting WQOs for quantifier-free

ICALP 2024
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formulas in [3, Sec. 8]. The proof follows from reducing the satisfiability problem for �2
sentences to WQO-definability of existential Presburger formulas. Given an instance “ of
a �2 sentence, we synthesize an existential Presburger formula Ï and show that Ï defines
a WQO i� “ is satisfiable. The coNEXP-completeness of �2 sentences follows from the
NEXP-completeness of �2 sentences [17].

Consider an instance of a �2 sentence

“ := ’y : ÷x : Â(x,y)

where Â is quantifier-free, x ranges over Zn, and y ranges over Zm. The goal is to construct
an existential PA formula Ï such that Ï defines a WQO i� “ is true. First we define the
formula

�(y) := ÷xÂ(x,y)

Now, define the existential Presburger formula Ï as follows.

Ï((x,x), (y,y)) :=(x < 0 · y < 0) ‚ (x > 0 · y > 0) ‚ (x < 0 · y = 0)
‚(x = 0 · y > 0) ‚ (x = 0 · y = 0)
‚(x < 0 · y > 0 · �(y)).

Here, both x and y range over Zm, hence Ï defines a relation in Z1+m ◊ Z1+m. Since the
existential quantifiers of � can be moved in front of Ï, Ï is an existential Presburger instance.

I Lemma 5.1. Ï defines a WQO if and only if “ is true i.e. �(w) is true ’ w œ Zm.

Proof. (∆) Let Ï define a WQO. Assume for contradiction there exists w œ Zm such that
�(w) is false. Notice that, by definition, Ï((≠1,w), (0,w)) and Ï((0,w), (1,w)) are true.
By transitivity, we must have that Ï((≠1,w), (1,w)) is true. Therefore, �(w) must be true.
This is a contradiction.
(≈) Let �(w) be true for all w œ Zm. Let A, B and C be sets of all vectors over Z1+m with
negative, zero and positive first component, respectively. It is easy to see that Ï relates all
vectors within each of A, B and C. Further, Ï(u,v) is true if

u œ A and v œ B, or
u œ B and v œ C, or
u œ A and v œ C.

This means that Ï must be a transitive, reflexive relation. Hence, Ï trivially defines a WQO:
in any infinite sequence u1,u2, . . . of vectors over Z1+m, we can always find ui,uj with
i < j such that both ui,uj belong to either A or B or C. Since Ï relates all vectors within
each of these, the lemma follows. J

Monadic decomposability. Let us now show the lower bound for Corollary 3.6, i.e., that
monadic decomposability for ÷PA formulas is coNEXP-hard. The idea is the same as the coNP-
hardness for quantifier-free formulas in [2]2. We reduce from the �2-fragment of Presburger
arithmetic, which is known to be coNEXP-complete (see the discussion around Corollary 3.3).
Suppose we are given a �2-formula Ï = ’x÷y : Â(x,y), where x contains n variables, and
y contains m variables. We claim that the existential formula Ÿ = ÷y : Â(x,y) ‚ z1 = z2
(which has free variables x, z1, z2) is monadically decomposable if and only if Ï holds (see
Section 5), which would clearly complete the reduction.

2 As Anthony W. Lin and Matthew Hague explained to us, it would also not be di�cult to adapt the
idea of the coNP lower bound in [20, Lem. 2].
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Indeed, if Ï holds, then Ÿ is satisfied for every vector in Zn+2 and is thus clearly
monadically decomposable. Conversely, if Ï does not hold, then there is some a œ Zn so that
÷y : Â(a,y) fails to hold. If Ÿ were monadically decomposable, then so would the formula
Ÿ · x = a, but this is equivalent to z1 = z2, which is clearly not monadically decomposable.
This establishes the claim and hence coNEXP-hardness.

6 An exponential lower bound for quantifier elimination

Our main results show that one can eliminate a block of existential quantifiers with only an
exponential blow-up. Using an example from [17, Thm. 2], we will now prove an exponential
lower bound, even if constants are encoded in binary.

In the presence of binary encoded constants, we cannot use Weispfenning’s lower bound
argument [33, Thm. 3.1] (even for a singly exponential lower bound), which compares norms
of vectors in finite sets defined by ÷PA vs. quantifier-free formulas. Indeed, it is a simple
consequence of Pottier’s bounds on Hilbert bases [24] that finite sets defined by ÷PA formulas
consist of at most exponentially large vectors. With binary encoded constants, one easily
constructs quantifier-free formulas defining finite sets of exponentially large vectors.

Instead, we measure the periodicity of infinite sets. Recall that every Presburger formula
with one free variable defines an ultimately periodic set S ™ Z, meaning that there are
n0, p œ N, p Ø 1, such that for every n œ Z, |n| Ø n0, we have n+ p œ S if and only if n œ S.
Such a p is called a period of S. For a formula Ï with one free variable, we denote by |Ï|p
the smallest period of the set defined by Ï. In [17, Thm. 2], Haase constructs3 a sequence
(�n(x))nØ0 of ÷PA formulas of size O(n2) such that |�n|p is at least 22�(n) . The following
will imply that the formulas �n require exponential-sized quantifier-free equivalents:

I Lemma 6.1. Let Ï be quantifier-free with one free variable. Then |Ï|p Æ 2|Ï|.

Proof. We prove this by structural induction. If Ï is an atom ax Æ b, then |Ï|p = 1. If
Ï is an atom ax © b mod c with constants a, b, c written in binary, then |Ï|p Æ |c| Æ 2|Ï|.
Moreover, |¬Ï|p = |Ï|p. Now observe that if S1, S2 ™ Z are ultimately periodic sets, then
we have |S1 fi S2|p Æ |S1|p · |S2|p and |S1 fl S2|p Æ |S1|p · |S2|p. This implies |Ï1 ‚ Ï2|p Æ
|Ï1|p · |Ï2|p Æ 2|Ï1|+|Ï2| Æ 2|Ï| and similarly |Ï1 · Ï2|p Æ |Ï1|p · |Ï2|p Æ 2|Ï1|+|Ï2| Æ 2|Ï|. J

Now indeed, if (Ïn)nØ0 is a sequence of quantifier-free equivalents of (�n)nØ0, then for some
constant c > 0 and large n, we have 2|Ïn| Ø |Ïn|p = |�n|p Ø 22cn and hence |Ïn| Ø 2cn.
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A More Details for Lemma 4.6

We recall Cramer’s rule which has been used in the proof.

I Proposition A.1 (Cramer’s rule). Let a system of n linear equations for n unknowns be
represented as

Ax = b ,

where A is an invertible (n ◊ n) matrix. This system has as unique solution given by
x = (x1, x2, . . . , xn) where,

xi =
det(Ai)
det(A)

Ai is the matrix formed by replacing the ith column of A by b.

B Sets with large periods

The formula �n constructed by Haase in [17, Thm. 2] defines the set

Sn = {a œ N | ÷b : 1 < b < 2n, b divides a}.

and Haase argues that the smallest period of Sn is 22�(n) . While the latter is true, the
argument in [17] does not quite show this. The proof of [17, Thm. 2] argues that the smallest
period of Sn is the least common multiple of the numbers {1, . . . , 2n ≠ 1}, which is lower
bounded by 22�(n) according to Nair [22]. However, as we will see, the smallest period of
Sn is in fact a slightly smaller number. It is still lower bounded 22�(n) , but this requires a
di�erent argument. We present a correction.

An easy fix for the result would be to instead define the set

S
Õ
n = {a œ N | ÷b : 1 < b < 2n, b does not divide a}
= {a œ N | ÷b, c : 1 < b < 2n, 1 Æ c < 2n, b divides a+ c},
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for which a simple modification of the formulas �n in [17] yields a polynomial-sized ÷PA
formula �Õ

n. Moreover, the smallest period of SÕ
n is indeed the least common multiple of

{1, . . . , 2n ≠ 1}, and so Nair’s bound would apply.
However, one can show that the smallest period of Sn is indeed lower bounded by 22�(n) ,

just not by the least common multiple of {1, . . . , 2n ≠ 1}. For any natural n œ N, define the
primorial of n, in symbols n#, as the product of all primes Æ n. Thus, if p1, p2, . . . is the
sequence of all primes in ascending order and fi(n) is the number of all prime numbers Æ n,
then

n# =
fi(n)Ÿ

i=1
pi.

B Claim B.1. The smallest period of Sn is 2n#.

Proof. Clearly, 2n# is a period of Sn: Sn is the set of all numbers that have a prime divisor
among {2, . . . , 2n ≠ 1}, and adding or subtracting the product of all these primes does not
change that.

It remains to show that 2n# is the smallest period of Sn. Suppose k is a period of Sn. We
will show that every prime p with 1 < p < 2n is a divisor of k, which will clearly establish the
claim. Let {p1, . . . , p¸} be the primes in {2, . . . , 2n ≠ 1}. Towards a contradiction, suppose
there is a prime pj , 1 Æ j Æ ¸, that does not divide k. By the Chinese Remainder Theorem,
the system of congruences

x © 1 (mod pi) for each i œ {1, . . . , ¸}, i ”= j,

x © ≠k (mod pj)

has infinitely many solutions a œ N. For each such a, we have a /œ Sn, because a is not
divisible by any pi, 1 Æ i Æ ¸. However, a + k is divisible by pj , and thus a + k œ Sn.
Therefore, k cannot be a period of Sn. C

Using Claim B.1, we can now obtain the 22�(n) lower bound for the smallest period of Sn.
This is because equation (3.14) of [27] implies that for every m Ø 563, we have m# Ø 2m≠1.
In particular, for n Ø 10, we have 2n# Ø 22n≠1. This proves that |�n|p is lower bounded by
22�(n) .

C Incorrect lower bounds on eliminating a block of existential
quantifiers

We elaborate on a flaw in Weispfenning’s paper [33] which is a consequence of misinterpreting
results from the literature, from which he incorrectly concludes that the elimination of a
block of existential quantifiers from a formula of Presburger arithmetic results in an inherent
doubly exponential blow-up.

The main result of Section 3 of [33] is Theorem 3.1, which states that performing
quantifier elimination on arbitrary formulas of Presburger arithmetic results in an inherent
triply exponential blow-up, assuming unary encoding of numbers. To this end, Weispfenning
invokes a result by Fischer and Rabin [11] who showed that there exists a function g : N æ N
such that for almost all n,

g(n) Ø 22
2n+1

,
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and who gave a family of formulas �n(x, y, z) of Presburger arithmetic of size linear in n

such that �n(x, y, z) holds if and only if 0 Æ x, y, z < g(n) and x · y = z. He then goes on
concluding that the smallest quantifier-free formula defining the set {z œ Z | �n(1, z, z)}
requires a formula of size at least g(n), assuming unary encoding of numbers.

Weispfenning then continues sketching how to adapt this approach in the presence of a
bounded number of quantifier alternations. To this end, he appeals to a result by Fürer [12],
which states that for some constant r > 0, one can define multiplication up to

22
(n/a)ra

(4)

using a formula of length n and a quantifier alternations. Adapting his line of reasoning from
the general case, Weispfenning applies this to a = 1 and concludes that eliminating a block
of existential quantifiers yields an inherent doubly exponential blow up. Fürer does indeed
claim the existence of such a family in the third paragraph in [12, p. 108]. However, a close
inspection of Fürer’s proof reveals that these formulas are not constructed for every a and n,
but only for infinitely many a and n. More specifically, Fürer supposes some given k,m œ N
and constructs a formula of length c(mk log k + 1) and 2m+ d quantifier alternations (see
the seventh paragraph in [12, p. 108]). Here, c and d appear to be unspecified constants. By
choosing a = 2m+ d and n = c(mk log k + 1), Fürer’s claims then yield multiplication up to
(4) for a suitable r > 0. In particular, Fürer’s construction does not yield the existence of
such formulas for every a œ N.

Of course, from the fact that existential Presburger arithmetic allows for defining ulti-
mately periodic sets with a doubly exponential period, cf. Appendix B, it is not unreasonable
to believe that this could somehow be turned into a lower bound similar to the one claimed
by Weispfenning. However, such large periods can already be produced by an exponential
intersection of divisibility constraints and thus do not imply a doubly exponential lower
bound on the formula size after eliminating a block of existentially quantified variables.

ICALP 2024





Forcing, Transition Algebras, and Calculi
Go Hashimoto �

Kyushu University, Fukuoka, Japan

Daniel G�in� �

Kyushu University, Fukuoka, Japan

Ionu� �u�u �

Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania

Abstract
We bring forward a logical system of transition algebras that enhances many-sorted first-order
logic using features from dynamic logics. The sentences we consider include compositions, unions,
and transitive closures of transition relations, which are treated similarly to the actions used in
dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of
expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both
the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted
first-order logic. We introduce syntactic entailment and study basic properties such as compactness
and completeness, showing that the latter does not hold when standard finitary proof rules are
used. Consequently, we define proof rules having both finite and countably infinite premises, and we
provide conditions under which completeness can be proved. To that end, we generalize the forcing
method introduced in model theory by Robinson from a single signature to a category of signatures,
and we apply it to obtain a completeness result for signatures that are at most countable.
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1 Introduction

Algebraic specification is one of the main approaches to formal methods that supports both
the formal specification of software and hardware systems and the formal verification of
their requirements. The underlying logic of an algebraic specification language is often
presented as an institution [16], a category-theoretic formalization of the intuitive notion of
logic that includes its syntax, semantics and the satisfaction relation between them. A lot of
theoretical computer science has been developed within institution theory [9, 31, 10] based on
the principle that formal specification should be based rigorously upon a concrete institution.
Two notable specification languages have been designed by following this principle: CafeOBJ
in Japan [11] and CASL in Europe [1]. However, there also is an exception given by the
Maude system [3], which was originally developed at SRI International in the United States.
The underlying logic of Maude, called rewriting logic [25], is not given as an institution,
which has led to a series of developments that diverged from mainstream institution-theoretic
approaches to topics such as modularization and heterogeneity [4].
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Motivation. The main goal of the present study is to apply a body of methods and principles
developed within institutional model theory for defining a denotational semantics of algebraic
specification languages that are executable by term rewriting such that:
1. it enjoys the modular properties of the logic underlying CafeOBJ such as the satisfaction

condition for signature morphisms, and therefore it can be formalized as an institution;
2. it has the rich expressivity of rewriting logic, in the sense that it can provide a semantics

for the Maude language, in general, and for its strategy language [12], in particular.
In algebraic specification languages executable by rewriting such as Maude and CafeOBJ,
systems are specified using two kinds of atomic statements: (a) equations, which define an
algebraic structure on system states, with constructors and derived operations, for example;
and (b) transition rules, which capture the behaviour of a system by telling us how the states
may change as a result of certain actions. In the present contribution, we propose a logic of
transition algebras where the models consist of many-sorted algebras equipped with binary
relations that give semantics to the transition rules. From transition rules one can construct
actions by applying composition, union, and the Kleene star (i.e., the reflexive and transitive
closure of a relation). For the sake of simplicity, we omit the subsorting relation [14].

Many-sorted logical systems. Many-sorted logics are widely acknowledged as being suitable
for applications in computer science. However, in pure mathematical logic, they tend to be
classified as “inessential variations” [28] of their unsorted forms. This might be true w.r.t.
some classical aspects such as compactness or axiomatizability. However, in general, moving
from the unsorted to the many-sorted case is a far from trivial task. Allowing for multiple
sorts, and thus for multiple carriers in models, some of which may be empty, alters the
properties of the logics and significantly increases the complexity of proofs.

An important example of logical property that does not have a straightforward many-
sorted generalization is Craig interpolation [7]. This property generally holds in unsorted
first-order logic, but fails to hold in the many-sorted variant of the logic; a counterexample
can be found, for example, in [2]. Finding the most general criteria for Craig interpolation
property was an open problem originally stated in [33]. A solution based on techniques
advanced in institutional model theory was provided in [22] after nearly two decades.

Moreover, as noticed in [13], if we admit models with potentially empty carrier sets, then
proof rules for unsorted (or single-sorted) first-order logic may be unsound for its many-sorted
counterpart. This already suggests that generalizations to other variants of many-sorted
first-order logic may pose di�culties. The completeness results proved in an institutional
setting, such as [29, 21, 18] are applicable to logical systems where models interpret sorts
as non-empty sets. In fact, we are not aware of any completeness result for many-sorted
first-order logic in which models interpret sorts as possibly empty sets.

Forcing. In the present contribution, we prove the completeness of the many-sorted logic of
transition algebras by applying forcing. This technique was originally introduced by Paul
Cohen [5, 6] in set theory to show the independence of the continuum hypothesis from the
other axioms of Zermelo-Fraenkel set theory. Robinson [30] developed an analogous theory of
forcing in model theory. In our setting, forcing is a technique used for constructing expanded
models of consistent sets of sentences. More specifically, it allows one to expand a set of
sentences while preserving satisfiability even if compactness does not hold in the underlying
logical system. Transition algebra is not compact for the same reason classical dynamic
propositional logic is not compact. Therefore, the classical Henkin method for proving
completeness, which relies on compactness, is not applicable to transition algebra. Another
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issue arises when proving completeness from the fact that we work with models with empty
carriers, because the addition of constants does not necessarily preserve the consistency of
theories. Therefore, we generalize the forcing method from a single signature to a category
of signatures using ideas from institutional model theory such that the so-called Henkin
constants can be added when needed in a way that preserves consistency.

An extended version of this work, which includes all proofs, is available on arXiv [23].

2 Transition algebra

In this section, we define the logic of many-sorted transition algebras, or transition algebra (TA),
for short. We present, in order: signatures, models, sentences, and the TA satisfaction relation.

Signatures. The signatures we consider are ordinary algebraic signatures endowed with
polymorphic transition labels and monotonic function symbols. We denote them by tuples of
the form (S, F ´ M,L), where:

(S, F ) is a many-sorted algebraic signature consisting of a set S of sorts and a family
F = {Fw,s | w œ Sú, s œ S} of sets of function symbols;
M is a family of subsets Mw,s ™ Fw,s of monotonic function symbols; and
L is a set whose elements we call transition labels.

We often write ‡ : w æ s œ F to indicate that ‡ œ Fw,s, and we refer to w œ Sú and
s œ S as the arity and sort, respectively, of the symbol ‡. Under this notation, F can also be
regarded as an ordinary set consisting of function declarations of the form ‡ : w æ s. When
w is the empty arity, we may speak of ‡ : æ s as a constant (symbol) of sort s.

Throughout the paper, we let �, �Õ, and �i range over arbitrary signatures of the form
(S, F ´ M,L), (SÕ, F Õ ´ M Õ, LÕ), and (Si, Fi ´ Mi, Li), respectively.

As usual in institution theory [9, 31], important constructions such as signature extensions
with constants as well as open formulae and quantifiers are realized in a multi-signature
setting, so moving between signatures is common. A signature morphism ‰ : � æ �Õ consists
of an ordinary algebraic signature morphism ‰ : (S, F ) æ (SÕ, F Õ) such that ‰(M) ™ M Õ

together with a function L æ LÕ, which we typically denote using the same symbol, ‰.
I Remark 1. Signature morphisms compose componentwise. Their composition has identities
and is associative, thus leading to a category Sig of signatures.

Models. Given a signature �, a �-model A is an (S, F )-algebra A that interprets every
label ⁄ œ L as a many-sorted transition relation ⁄A ™ A ◊ A (that is, ⁄A = {⁄A

s |
s œ S} and ⁄A

s ™ As ◊ As for all sorts s œ S) that respects monotonic function sym-
bols (that is, for all function symbols ‡ : s1 · · · sn æ s in M , all tuples (a1, . . . , an) œ
As1 ◊ · · · ◊ Asn , all indices k œ {1, . . . , n}, and all elements b œ Ask , if Èak, bÍ œ ⁄A

sk then
È‡A(a1 . . . , ak, . . . , an),‡A(a1 . . . , b, . . . , an)Í œ ⁄A

s ).
A homomorphism h : A æ B over a signature � is an algebraic (S, F )-homomorphism that

preserves transitions: h(⁄A) ™ ⁄B for all ⁄ œ L. It is easy to see that �-homomorphisms form
a category, which we denote by Mod(�), under their obvious componentwise composition.
I Remark 2. Every signature morphism ‰ : � æ � determines a model-reduct functor
_�‰ : Mod(�Õ) æ Mod(�) such that:

for every �Õ-model AÕ, (AÕ�‰)s = AÕ
‰(s) for each sort s œ S, ‡AÕ�‰ = ‰(‡)AÕ for each

symbol ‡ œ F , and ⁄AÕ�‰ = ‰(⁄)AÕ for each label ⁄ œ L; and
for every �Õ-homomorphism hÕ : AÕ æ BÕ, (hÕ�‰)s = hÕ

‰(s) for each s œ S.
Moreover, the mapping ‰ ‘æ _�‰ is functorial.
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For any signature morphism ‰ : � æ �Õ, any �-model A and any �Õ-model AÕ if A = AÕ�‰,
we say that A is the ‰-reduct of AÕ, and that AÕ is a ‰-expansion of A. For example, for any
many-sorted set X (say, of variables) that is disjoint from the set of constant-function symbols
in �, consider the inclusion morphism ÿX : � Òæ �[X], where �[X] = (S, F [X] ´ M,L) is
the signature obtained from � = (S, F ´ M,L) by adding the elements of X to F as new
constant-operation symbols of appropriate sort. Then an expansion of a �-model A along ÿX
can be seen as a pair ÈA, g : X æ AÍ, where g is a valuation of X in A.

As in many-sorted algebra, there is a special, initial model in Mod(�), which we denote
by T�, whose elements are ground terms built from function symbols, and whose transition
relations are all empty. The �-model T�(X) of terms with variables from X is defined as
the ÿX -reduct of T�[X]; i.e., T�(X) = T�[X]�ÿX . The following property is an immediate
consequence of the initiality of T�.
I Remark 3. Any signature morphism ‰ : � æ �Õ determines uniquely a �-homomorphism
T� æ T�Õ�‰. In order to simplify notations later on, we denote that homomorphism by
‰ : T� æ T�Õ�‰; therefore, for any �-term ‡(t1, t2, . . . , tn), we have ‰(‡(t1, t2, . . . , tn)) =
‰(‡)(‰(t1),‰(t2), . . . ,‰(tn)).

Sentences. The actions over a signature � are defined by the following grammar:

a ::= ⁄ | a ; a | a fi a | aú

where ⁄ is a transition label of �. We let A denote the set of all actions obtained from
transition labels declared in a signature �, and we extend the notational convention that
we use for the components of signatures to their corresponding sets of actions; that is, we
usually denote by AÕ the set of actions over a signature �Õ, by Ai the set of actions over a
signature �i, and so on. Moreover, through a slight abuse of notation, we also denote by
‰ : A æ AÕ the canonical map determined by a signature morphism ‰ : � æ �Õ.

To define sentences, we assume a countably infinite set of variable names {vi | i < Ê}.
A variable for a signature � is a triple Èvi, s,�Í, where vi is a variable name and s is a
sort in � – the third component is used only to ensure that variables are distinct from the
constant-operation symbols declared in �, which is essential when dealing with quantifiers.
The set Sen(�) of sentences over � is given by the following grammar:

„ ::= t1 = t2 | t1
a∆ t2 | ¬„ |

fl
� | ÷X ·„Õ

where (a) t1 and t2 are (S, F )-terms of the same sort; (b) a œ A is an action; (c) � is a finite
set of �-sentences; and (d) X is a finite set of variables for � and „Õ is a �[X]-sentence.

When � = {„1,„2, . . . ,„n}, we may write „1 ‚ „2 ‚ · · · ‚ „n instead of
x

�. Besides
the above core connectives, we also make use of the following convenient (and standard)
abbreviations:

w
� := ¬

x
{¬„ | „ œ �} for finite conjunctions; ‹ :=

x
ÿ for falsity;

€ :=
w

ÿ = ¬‹ for truth; „1 æ „2 := ¬„1 ‚ „2 for implications; and ’X ·„Õ := ¬÷X · ¬„Õ

for universally quantified sentences.
I Remark 4. Any signature morphism ‰ : � æ �Õ can be canonically extended to a sentence-
translation function ‰ : Sen(�) æ Sen(�Õ) given by:

‰(t1 = t2) = (‰(t1) = ‰(t2));
‰(t1

a∆ t2) = ‰(t1)
‰(a)=∆ ‰(t2);

‰(¬„) = ¬‰(„);
‰(

x
�) =

x
‰(�); and

‰(÷X ·„Õ) = ÷X Õ ·‰Õ(„Õ), where X Õ = {Èx,‰(s),�ÕÍ | Èx, s,�Í œ X} and ‰Õ : �[X] æ
�Õ[X Õ] is the extension of ‰ mapping each variable Èx, s,�Í œ X to Èx,‰(s),�ÕÍ œ X Õ.

Moreover, this sentence-translation mapping is functorial in ‰.
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For the sake of simplicity, we identify variables only by their name and sort, provided that
there is no danger of confusion. Using this convention, each inclusion morphism ÿ : � Òæ �Õ

determines an inclusion function ÿ : Sen(�) Òæ Sen(�Õ), which corresponds to the approach
of classical model theory. This simplifies the presentation greatly. A situation when we
cannot apply this convention arises when translating a �-sentence ÷X ·„ along the inclusion
ÿX : � Òæ �[X].

Satisfaction relation. Actions are interpreted as binary transition relations in models.
Given a model A over a signature �, and actions a, a1, a2 œ A, we have:

(a1 ; a2)A = aA1 ; aA2 (i.e., diagrammatic composition of binary relations);
(a1 fi a2)A = aA1 fi aA2 (the union of binary relations); and
(aú)A = (aA)ú (the reflexive and transitive closure of binary relations).

We define the satisfaction relation between models and sentences as follows:
A |= t1 = t2 i� tA1 = tA2 ;
A |= t1

a∆ t2 i� (tA1 , tA2 ) œ aA;
A |= ¬„ i� A ”|= „,
A |=

x
� i� A |= „ for some sentence „ œ �, and

A |= ÷X ·„Õ i� AÕ |= „Õ for some expansion AÕ of A to the signature �[X].

For the sake of simplicity, we write d1
a=∆ d2 if Èd1, d2Í œ aA.

Let „,„Õ be sets of �-sentences, A a �-model. We also use the following notations:
A |= � i� A |= „ for all sentences „ œ �;
� |= � i� A |= � implies A |= � for all �-models A.

In particular, we write � |= „ instead of � |= {„} for any set of sentences � and any single
sentence „.

I Proposition 5. For all signature morphisms ‰ : � æ �Õ, all �Õ-models A and all sentences
„ œ Sen(�) we have: A�‰ |= „ i� A |= ‰(„).

I Example 6 (CCS). To illustrate the expressivity of transition algebra, we refer to Robin
Milner’s calculus of communicating systems (CCS) [26, 27], which is emblematic of a broad
family of formal languages used for modelling and reasoning about concurrency. In a nutshell,
CCS is a process calculus that enables syntactic descriptions of concurrent systems to be
written, and subsequently manipulated and analysed, based on two kinds of atomic entities –
process identifiers and channel names – and a handful of composition operators.

To start, we assume two sets: PI of process identifiers, and CN of so-called channel
names, which capture the interaction capabilities of processes. Take, for instance, the
following famous quote by Alfréd Rényi: “A mathematician is a machine for turning co�ee
into theorems” [32]. This can be modelled in CCS as an interaction between two processes,
a mathematician and a co�ee vending machine, that trade co�ee (in exchange, perhaps, of
coins or some other form of payment) in order to jointly produce theorems. Hence, we can
consider theorems, co�ee, and coins as types of interactions between the two processes.

For each channel name c œ CN, we let c be a new symbol, distinct from all channel names,
called the co-name of c. We also let CN = {c | c œ CN} be the set of all co-names, and
L = CN fi CN be the set of labels. Intuitively, we may regard the symbols in CN as inputs
of some process, and the symbols in CN as outputs. Besides labels, we also consider an
additional silent-action symbol, denoted · , that indicates an internal, unobservable behaviour
of the system under consideration. Altogether, we refer to the symbols in A = L fi {·} as
CCS actions.1 Processes over CN and PI are defined according to the following grammar:

1 Although they share the name “action”, CCS actions are conceptually very di�erent from the actions
we have defined for transition algebra. To distinguish the two, we always prefix the former by CCS.
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P ::= 0 | fi | a . P | P + P | P ‘|’ P | P \ k

where (a) 0 denotes a special terminal, inactive process; (b) fi œ PI is a process identifier;
(c) a œ A is a CCS action, which can be used to prefix a process P in order to form a
new process, a . P , that intuitively performs a then continues as P ; (d) ‘+’ denotes the
non-deterministic choice between two processes; (e) ‘|’ denotes the parallel composition of
two processes; and (f ) k œ CN is a channel name, which can be used in expressions like
P \ k to form a new, restricted process with the same interaction capabilities as P except for
the labels k and k. To simplify the presentation, we omit the relabelling operator because it
plays no role in the examples we consider in this paper and it could be added with ease if
needed. For a comprehensive account of CCS, see for example [27].

A CCS context, or program, is a set of declarations of the form fi ::= P , where fi œ PI is
a process identifier and P is a process conforming to the grammar introduced above, such
that any two distinct declarations have distinct left-hand sides; in other words, we do not
admit multiple declarations of the same process identifier within a given context.

Using this syntax, the interaction between mathematicians and co�ee vending machines
announced in Alfréd Rényi’s quote can be formalized as a parallel composition of processes
over PI = {Mathematician, CoffeeVM} and CN = {coin, coffee, theorem}, which we write
as Mathematician | CoffeeVM, where Mathematician and CoffeeVM are process identifiers
“defined” recursively according to the following context:

Mathematician ::= coin . coffee . theorem . Mathematician,
CoffeeVM ::= coin . coffee . CoffeeVM.

Thanks to the expressivity of transition algebra, we can easily capture both the syntax
and the operational semantics of CCS. For the syntax of processes, it su�ces to consider a
many-sorted TA signature with S = {Channel, Action, Process} and with F given by the
following function symbols (which employ OBJ’s [15] and Maude’s [3] mixfix notation):

0: æ Process,
fi : æ Process for each process identifier fi œ PI,
a : æ Action for each CCS action a œ A,
. : Action Process æ Process,
+ , | : Process Process æ Process,

k : æ Channel for each channel name k œ CN ,2
\ : Process Channel æ Process.

The parallel-composition operator is the only monotonic function symbol of this example.
For convenience, we also declare the parallel-composition operator and the non-deterministic
choice as associative, commutative, and with identity 0. These properties can be presented –
as usual in algebraic specification – using plain equations. To capture and reason about the
behaviour of processes, we regard each CCS action as an atomic action (i.e., a transition
label) in transition algebra – and those are the only TA labels that we consider here.

The transitional semantics of a CCS program Pgm is given by the following collection of
axioms. The transition-algebra sentences below are all universally quantified over variables
P , P Õ, Q, QÕ of sort Process and k of sort Channel; however, we drop the quantifiers in
order to simplify the notation. We also use names for the axioms (at the beginning of each
line) that are indicative of the transition rules defined in [27].

2 To avoid subsorting, we overload channel names, which can be seen either as constants of sort Channel
or as constants of sort Action depending on the context in which they are used.



G. Hashimoto, D. G�in�, and I. �u�u 143:7

(Act) a . P
a∆ P for all a œ A,

(Sum) P
a∆ P Õ æ P +Q

a∆ P Õ for all a œ A,
(Com) P

c∆ P Õ · Q
c∆ QÕ æ P | Q ·∆ P Õ | QÕ for all c œ CN,

(Res) P
a∆ P Õ · a ”= k · a ”= k æ P \ k a∆ P Õ \ k for all a œ A,3

(Con) P
a∆ P Õ æ fi

a∆ P Õ for all fi ::= P œ Pgm.

To simplify some of the notations used later on in the paper, for any process P and any
non-empty and finite sequence K = (ki | 1 Æ i Æ n) of channel names, we also write P \K
in place of P \ k1 \ · · · \ kn and we consider the following derived form of the axiom (Res):

(Resú) P
a∆ P Õ ·

w
{a ”= ki · a ”= ki | 1 Æ i Æ n} æ P \K a∆ P Õ \K for all a œ A.

Similar encodings of CCS in languages that support transitions can be found in the
rewriting-logic literature, notably in [24, 34, 8]. But the encodings presented therein rely
on a notion of derivative of a process instead of reasoning about plain processes, which is
usually because labelled transitions cannot be used in the conditions of Horn clauses such
as Sum and Com. That is, the axiomatization is done in terms of pairs È–, P Í, where P is
a process and – is a CCS action or a sequence of CCS actions leading to P . In TA, this
additional step can be avoided because the use of labelled transitions is unrestricted, which
allows our axioms to be nearly to-the-letter transcriptions of Robin Milner’s rules for CCS.

3 Entailment relations

In this section, we define the proof-theoretic properties necessary for proving our results
such as entailment relation, soundness and completeness. Before we proceed, let us recall an
example from [13], which shows that classical rules of first-order deduction are not sound.

I Example 7. Let � = (S, F ) be an algebraic signature consisting of:
two sorts, that is, S = {Elt,Bool}, and
five function symbols F = {true :æ Bool, false :æ Bool,≥_ : Bool æ Bool,_&_ :
Bool Bool æ Bool,_+_ : Bool Bool æ Bool, foo : Elt æ Bool}.

Let � be a set of sentences over � which consists of the following sentences:
≥ true = false and ≥ false = true,
’y · y & ≥ y = false and ’y · y & y = y,
’y · y + ≥ y = true and ’y · y + y = y, and
’x · ≥ foo(x) = foo(x).

Using the ordinary rules of first-order deduction, we can show that

true = foo(x)+ ≥ foo(x)
= foo(x) + foo(x)
= foo(x)
= foo(x) & foo(x)
= foo(x) & ≥ foo(x)
= false

(1)

As a result, one would expect true = false to hold in all algebras satisfying �. But that is
not the case. To see why, suppose A is the algebra obtained from T� through a factorization
under the congruence relation ©� generated by �, that is:

3 As usual in CCS, we extend the over-line notation employed for channel co-names to a bijection · : A æ A
given by c = c for all channel names c and by · = · for the silent action.
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ABool = {true/©� , false/©�} and AElt = ÿ,
≥ is interpreted as the negation, & as the conjunction and + as the disjunction, and
fooA is the empty function.

Clearly, the algebra A satisfies the sentences in � referring to the negation, conjunction, and
disjunction of booleans. Moreover, since there is no function from {x} to AElt = ÿ, we have
A |=� ’x · ≥ foo(x) = foo(x). It follows that A |=� � but A ”|=� true = false.

This shows that moving from the unsorted to the many-sorted case is not as straightforward
as one might expect. Since a model may have some empty domains, one needs to design
proof rules that take into account changes of signatures.

I Definition 8 (Entailment relation). An entailment relation „= {„�}�œ|SigTA| is a family of
binary relations between sets of sentences indexed by signatures, that is, „�™ P(Sen(�)) ◊
P(Sen(�)) for all first-order signatures �, such that the following properties are satisfied:

(Monotonicity) � ´ �
� „� � (Transitivity) � „� � � „� �

� „� �

(Union) � „� „ for all „ œ �
� „� � (Translation) � „� �

‰(�) „�Õ ‰(�) where ‰ : � æ �Õ

For the sake of simplicity, we write � „� „ rather than � „� {„}. Also, we omit the subscript
� from the notation „� when it is clear from the context. An example of entailment relation
is |=. It is straightforward to prove that |= satisfies (Monotonicity), (Transitivity), (Union)
and (Translation).

I Definition 9 (Entailment properties). An entailment relation „ is sound (complete) if
„ ™ |= (|= ™ „). An entailment relation „ is –-compact, where – is an infinite cardinal, if

� „� „ implies �– „� „ for some subset �– ™ � of cardinality card(�–) < –,

for all signatures �, all sets of �-sentences � and all �-sentences „. If – = Ê, we say,
simply, that „ is compact.

The dynamic entailment relation is defined in two steps. Firstly, we define an entailment
relation to reason about the logical consequences of atomic sentences, given as equations or
relations. Secondly, we define the dynamic entailment relation by adding proof rules to deal
with actions, Boolean connectives and quantifiers.

3.1 Basic entailment relation
The fragment obtained from TA by restricting the sentences to atoms is studied in this
section.

I Definition 10 (Basic entailment relation). The basic entailment relation „b is the least
entailment relation closed under the following basic proof rules:

(R) � „� t = t
(S) � „� t1 = t2

� „� t2 = t1
(T ) � „� t1 = t2 � „� t2 = t3

� „� t1 = t3

(F ) � „� ti = tÕ
i for 1 Æ i Æ n

� „� ‡(t1, . . . , tn) = ‡(tÕ
1, . . . , t

Õ
n)

(P ) � „� t1 = tÕ
1 � „� t2 = tÕ

2 � „� t1
⁄=∆ t2

� „� tÕ
1

⁄=∆ tÕ
2

(M) � „� tj
⁄=∆ uj

� „� f(t1, . . . , tj , . . . , tn)
⁄=∆ f(t1, . . . , uj , . . . , tn)

where f œ M



G. Hashimoto, D. G�in�, and I. �u�u 143:9

I Lemma 11 (Basic compactness). The basic entailment relation is compact.

Any set of atomic sentences E defined over a signature � determines a congruence ©E :=
{t1 ©E t2 | E „� t1 = t2} on T�. One can construct a model AE from the initial model of
terms T� factorized by the congruence ©E interpreting each transition label ⁄ in � as the
set {(t1, t2) | t1, t2 œ T�,s and E „� t1

⁄=∆ t2}.

I Lemma 12. Let E be a set of atomic sentences defined over a signature �. For all
�-models A, we have A |= E i� there exists a unique homomorphism AE æ A.

Lemma 12 says that the satisfaction of E by a model A is equivalent with the existence of a
unique homomorphism from AE to A. In particular, AE is the initial model of E. See [9] for
a proof of Lemma 12.

I Proposition 13 (Basic completeness). For any set of atomic sentences E and any atomic
sentence Ï defined over a signature �, the following are equivalent:

(a) E |= Ï, (b) AE |= Ï, and (c) E „b Ï.

3.2 Dynamic entailment relation

The dynamic entailment relation is built on top of basic entailment relation by adding the
proof rules to reason about actions, Boolean connectives, and first-order quantifiers.

I Definition 14 (Dynamic entailment relation). The dynamic entailment relation „ is the
least entailment relation closed under the basic proof rules presented in Definition 10 and the
following proof rules:

Proof rules for actions

(CompI)
� „� t1

a1=∆ t � „� t
a2=∆ t2

� „� t1
a1;a2=∆ t2

(CompE)
� „� t1

a1;a2=∆ t2 � fi {t1
a1=∆ x, x

a2=∆ t2} „�[x] „

� „� „

(UnionI)
� „� t1

ai=∆ t2

� „� t1
a1fia2=∆ t2

(UnionE)
� „� t1

a1fia2=∆ t2 � fi {t1
ai=∆ t2} „� „ for all i œ {1, 2}

� „� „

(StarI)
� „� t1

an=∆ t2

� „� t1
aú
=∆ t2

(StarE)
� „� t1

aú
=∆ t2 � fi {t1

an=∆ t2} „� „ for all n œ Ê

� „� „

Proof rules for Boolean connectives

(NegD) � „� ¬¬„
� „� „

(False) � „� ‹
� „� „

(NegI)
� fi {„} „� ‹

� „� ¬„
(NegE)

� „� ¬„
� fi {„} „� ‹

(DisjI)
� „� „

� „� ‚� where „ œ � (DisjE)
� „� ‚� � fi {„} „� “ for all „ œ �

� „� “
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Proof rules for first-order quantifiers

(QuantI)
� fi {„} „�[X] “

� fi {÷X ·„} „� “
(QuantE)

� fi {÷X ·„} „� “

� fi {„} „�[X] “

(Subst) � „� ◊(„)
� „� ÷X ·„ where ◊ : X æ T� is a substitution

I Proposition 15 (Ê1-compactness). We have that
1. the dynamic entailment relation „ is Ê1-compact, and
2. the satisfaction relation |= is not Ê1-compact.
The first statement holds because the dynamic entailment relation is generated by proof
rules with an at most countable number of premises. For uncountable signatures �, the
satisfaction relation |=� is not Ê1-compact. It follows that the dynamic logic proposed in this
contribution, TA, is not complete. However, the restriction of TA to countable signatures,
TAc, is complete. Since TAc is not compact, the Henkin method for proving completeness is
not applicable.

I Example 16 (Analysis of CCS programs). Recall the CCS description of the interac-
tion between mathematicians and co�ee vending machines discussed in Section 2, and let
Institute be an abbreviation for the following process:

(Mathematician | CoffeeVM) \ (coin, coffee).

In this context, can we check, as an example, that the process Institute is able to
continuously output theorems? The property can be formalized in TA as a transition

Institute ·ú ; theorem ; ·ú

==========∆ Institute

whose · -components correspond to internal communications between sub-processes of the
institute – i.e., mathematicians and vending machines. Therefore, we need to check an
entailment of the form � „� „, where (a) � is the TA-signature that consists of the process
identifiers Mathematician and CoffeeVM together with the CCS process-building operators
for action prefixing, non-deterministic choice, parallel composition, etc., discussed in Section 2;
(b) � is the set of �-sentences given by the axiom schemas Act, Sum, Com, Resú, and Con
listed on page 7 together with equations pertaining to the axiomatization of CCS actions (e.g.,
theorem ”= coffee), as well as equations that capture elementary properties of processes
such as the associativity, commutativity, and identity element of the non-deterministic-choice
and parallel-composition operators; and (c) „ is the transition written above.

The proof mimics the following chain of CCS transitions:
Institute ·=∆ (coffee . theorem . Mathematician | coffee . CoffeeVM) \ (coin, coffee)

·=∆ (theorem . Mathematician | CoffeeVM) \ (coin, coffee)
theorem=====∆ (Mathematician | CofeeVM) \ (coin, coffee) = Institute

To shorten the presentation of the proof, we use the following derived proof rule:

(GMP)
� „� ’X ·

w
� æ “ � „� ◊(�)

� „� ◊(“) where ◊ : X æ T� is a substitution.

In addition, we simplify the notations by writing down only the conclusions of entailments
and by abbreviating Mathematician as M, CoffeeVM as CVM, and the sequence of channel
names (coin, coffee) as K. This leads us to the (sketch of) proof tree depicted in Figure 1.
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Institute ·ú ; theorem ; ·ú

==========∆ Institute (by CompI)

(M | CVM) \K ·ú

==∆ Institute (by StarI for n = 0)

(M | CVM) \K = Institute (by R)
Institute ·ú ; theorem=======∆ (M | CVM) \K (by CompI)

(theorem . M | CVM) \K theorem=====∆ (M | CVM) \K (by GMP)
theorem . M | CVM theorem=====∆ M | CVM (by M)

theorem . M theorem=====∆ M (by GMP)

Act (by Monotonicity)
Resú (by Monotonicity)

Institute ·ú

==∆ (theorem . M | CVM) \K (by StarI for n = 2)

Institute ·2
==∆ (theorem . M | CVM) \K (by CompI)

(coffee . theorem . M | coffee . CVM) \K ·=∆ (theorem . M | CVM) \K
(by GMP)

coffee . theorem . M | coffee . CVM ·=∆ theorem . M | CVM (by GMP)
coffee . CVM coffee====∆ CVM (by GMP)

Act (by Monotonicity)
coffee . theorem . M coffee====∆ theorem . M (by GMP)

Act (by Monotonicity)
Com (by Monotonicity)

Resú (by Monotonicity)

Institute ·=∆ (coffee . theorem . M | coffee . CVM) \K (by GMP)

coin . coffee . theorem . M | coin . coffee . CVM
·=∆ coffee . theorem . M | coffee . CVM (by GMP)

coin . coffee . CVM coin===∆ coffee . CVM (by GMP)
Act (by Monotonicity)

coin . coffee . theorem . M coin===∆ coffee . theorem . M (by GMP)

Act (by Monotonicity)
Com (by Monotonicity)

Resú (by Monotonicity)

Figure 1 Proof tree for the continuous output of theorems by the process Institute.

ICALP 2024



143:12 Forcing, Transition Algebras, and Calculi

4 Forcing

In this section, we develop a forcing technique for proving completeness which extends in a
non-straightforward way the classical forcing from one signature to a category of signatures.

I Definition 17 (Forcing property). A forcing property is a tuple P = (P,Æ,�, f), where:

(P,Æ) Set

Sig�

f

Senb

™

1. (P,Æ) is a partially ordered set with a least element 0.
The elements of P are traditionally called conditions.

2. � : (P,Æ) æ Sig is a functor, which maps each arrow (p Æ q) œ (P,Æ) to an inclusion
�p ™ �q.

3. f : (P,Æ) æ Set is a functor from the small category (P,Æ) to the category of sets Set
such that f ™ �;Senb is a natural transformation, that is: (a) f(p) ™ Senb(�p) for all
conditions p œ P , and (b) f(p) ™ f(q) for all arrows (p Æ q) œ (P,Æ).

4. If f(p) |= „ then „ œ f(q) for some q Ø p, for all atoms „ œ Senb(�p).
A classical forcing property is a particular case of forcing property such that �p = �q for all
conditions p, q œ P .

I Example 18 (Syntactic forcing). Let � be a base signature and C an S-sorted set of new
constants such that card(Cs) = Ê for all s œ S. Let P = (P,Æ,�, f) be a forcing property
defined as follows:

P is the set of presentations of the form p = (�p,�p), where (a) �p is obtained from �
by adding a finite set Cp of constants from C, and (b) �p ™ Sen(�p) is consistent, that
is, �p ”„�p ‹.
p Æ q i� �p ™ �q and �p ™ �q, for all conditions p, q œ P .
� is the forgetful functor which maps each condition p œ P to �p.
f(p) = �p fl Senb(�p), for all conditions p œ P .

The syntactic forcing described in the example above is used to prove completeness. The
constants from C are traditionally called Henkin constants and are used as witnesses for
existentially quantified sentences obtained by extending an initial theory to a maximally
consistent set of sentences.

As usual, forcing properties determine suitable relations between conditions and sentences.

I Definition 19 (Forcing relation). Let P = ÈP,Æ,�, fÍ be a forcing property. The forcing
relation � between conditions p œ P and sentences from Sen(�p) is defined by induction on
the structure of sentences, as follows:

p � Ï if Ï œ f(p), for all atomic sentences Ï œ Senb(�p).
p � t1

a1;a2=∆ t2 if p � t1
a1=∆ t and p � t

a2=∆ t2 for some t œ T�p .
p � t1

a1fia2=∆ t2 if p � t1
a1=∆ t2 or p � t1

a2=∆ t2.
p � t1

aú

=∆ t2 if p � t1
an

=∆ t2 for some natural number n œ Ê.
p � ¬„ if there is no q Ø p such that q � „.
p � ‚� if p � „ for some „ œ �.
p � ÷X ·„ if p � ◊(„) for some substitution ◊ : X æ T�p .

The relation p � „ in P, is read as p forces „. We say that p weakly forces „, in symbols,
p �w „, if p � ¬¬„.
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A few basic properties of forcing are presented below.

I Lemma 20 (Forcing properties). Let P = (P,Æ,�, f) be a forcing property. For all
conditions p œ P and all sentences „ œ Sen(�p) we have:
1. p � ¬¬„ i� for each q Ø p there is a condition r Ø q such that r � „.
2. If p Æ q and p � „ then q � „.
3. If p � „ then p � ¬¬„.
4. We can not have both p � „ and p � ¬„.
The second property stated in the above lemma shows that the forcing relation is preserved
along inclusions of conditions. The fourth property shows that the forcing relation is
consistent, that is, a condition cannot force all sentences. The remaining conditions are
about negation.

I Definition 21 (Generic set). Let P = (P,Æ,�, f) be a forcing property. A subset of
conditions G ™ P is generic if
1. G is an ideal, that is: (a) for all p œ G and all q Æ p we have q œ G, and (b) for all

p, q œ G there exists r œ G such that p Æ r and q Æ r; and
2. for all conditions p œ G and all sentences „ œ Sen(�p) there exists a condition q œ G

such that q Ø p and either q � „ or q � ¬„ holds.
We write G � „ if p � „ for some p œ G.

A generic set G describes a reachable model which satisfies all sentences forced by the
conditions in G.

I Lemma 22 (Existence). Let P = (P,Æ,�, f) be a forcing property. If any signature in
{�p}pœP is countable then every p œ P belongs to a generic set.

Proof sketch. Let pair : Ê ◊ Ê æ Ê be a bijective function defined by pair(i, j) :=
!
(i +

j)(i + j + 1) + 2j
"
/2 for all i, j œ Ê. For all conditions p œ P , let Âp : Ê æ Sen(�p) be a

bijective mapping, which gives an enumeration of Sen(�p). We define an increasing chain of
conditions p0 Æ p1 Æ . . . in P recursively. Let p = p0. For the induction step, we assume
that we have defined pn and we define pn+1. Notice that there are unique natural numbers
i, j œ Ê such that n = pair(i, j) and i, j Æ n.

If there is q Ø pn such that q � Âpi(j), then let pn+1 := q.
Otherwise, pn+1 := pn, which means that pn+1 � ¬Âpi(j).

Then G := {q œ P | q Æ pn for some n œ Ê} is generic and contains p. J

Lemma 22 is the key for a modular approach to forcing and it is the equivalent of the
Lindenbaum’s lemma from Henkin’s method for proving completeness.
I Remark 23. Since � : (G,Æ) æ Sig is a directed diagram of signature inclusions, one can
construct a co-limit µ : � ∆ �G of the functor � : (G,Æ) æ Sig such that µp : �p æ �G is
an inclusion for all p œ G.
The results which leads to completeness are developed over the signature �G. If P is the
syntactic forcing described in Example 18, then �G is obtain from the base signature � by
adding all Henkin constants from {�p}pœG. In general, �G does not contain all Henkin
constants from C, which is one of the major di�erences between the classical approach and
the present developments.

I Definition 24 (Generic model). Let P = (P,Æ,�, f) be a forcing property and G ™ P a
generic set. A model A defined over �G is a generic model for G i� for every sentence
„ œ

t
pœG Sen(�p), we have A |= „ i� G � „.
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The notion of generic model is the semantic counterpart of the definition of generic set. The
following result shows that every generic set has a generic model.

I Theorem 25 (Generic Model Theorem). Let P = (P,Æ,�, f) be a forcing property and
G ™ P a generic set. Then there is a generic model A for G which is countable and reachable.

Proof sketch. We define the set of all atomic sentences B := {„ œ Senb(�G) | G � „} forced
by the generic set G. The basic model AB given by Lemma 12 is the generic model for G. J

5 Completeness

The logical framework in which the results are developed in this section is the fragment TAc

obtained from TA by restricting the syntax to at most countable signatures. The syntactic
forcing property defined in Example 18 is the starting point for proving completeness.
Therefore, throughout this section, we let P = (P,Æ,�, f) be a syntactic forcing property in
TAc as described in Example 18. In particular, all signatures in {�}pœP are at most countable.
For the sake of simplicity, we write p „ „ i� �p „�p „, for all conditions p = (�p,�p) in P .

I Theorem 26. For all p œ P and all „ œ Sen(�p), we have p �w „ i� p „ „.

The above theorem says that a sentence is entailed by a condition if and only if it is weakly
forced by that condition. In other words, the entailment relation is the weak forcing relation.
Now, we can interpret Lemma 22 in the present context given by the syntactic forcing
property P set above. The following result is a direct consequence of Theorem 26 and
Lemma 22.

I Corollary 27 (Lindenbaum’s lemma). Assume the following:
a condition p¶ = (�p¶ ,�p¶) from P , and
a generic set G which contains p¶ (by Lemma 22).

Let �G be the vertex of the co-limit µ : � æ �G of the functor � : (G,Æ) æ Sig defined in
Remark 23. Then �G =

t
pœG �p is a maximally consistent set which includes �p¶ .

The following example shows that �G does not contain all Henkin constants defined for the
base signature.

I Example 28. Let � be the signature defined by: S := {si | i œ Ê}, F := {c :æ s0, d :æ s0},
M := ÿ, and P := {⁄}. Let � be the set of sentences over � which consists of: (a) c ⁄ú

=∆ d,
and (b) (÷xn ·€) æ ¬(c ⁄n

=∆ d) for all n œ Ê, where xn is a variable of sort sn.

The first sentence says that there is a transition from c to d in a finite number of steps. For
each natural number n, the sentence (÷xn ·€) æ ¬(c ⁄n

=∆ d) says that if the sort sn is not
empty then there is no transition from c to d in exactly n steps. Recall that C = {Csn}nœÊ

is the set of all Henkin constants, and card(Csn) = Ê for all natural numbers n. Notice
that p¶ = (�,�) is consistent, but q = (�[C],�) is not consistent. By Corollary 27, one can
extend � to a maximally consistent set of sentences �G. Unlike in classical first-order logic,
�G does not contain all Henkin constants from C.

I Theorem 29 (Downwards Löwenheim-Skolem Theorem). For any consistent set of sentences
� defined over a countable signature �, there exists a countable �-model A that satisfies �.
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Proof. Let P = (P,Æ,�, f) be the forcing property described in Definition 17. Notice that
p := (�,�) is a condition from P . Since all signatures are countable, by Lemma 22, p
belongs to a generic set G. By Theorem 25, G has a generic model B which is countable
and reachable. In particular, B |=�G �. Let A := B��, and by the satisfaction condition,
A |=� �. J

I Theorem 30 (Completeness). For all sets of sentences � and all sentences „ defined over
a countable signature �, we have: � „� „ i� � |=� „.

Proof. The forward implication holds because all proof rules are sound. For the backwards
implication assume � ”„� „. We have � fi {¬„} ”„� ‹. By Theorem 29, there is a countable
�-model A such that A |=� � fi {¬„}. Therefore, � ”|=� „. J

6 Conclusions

In this study, we have defined an extension of many-sorted first-order logic, called transition
algebra, that o�ers explicit support for state transitions; furthermore, we have investigated its
logical properties in order to apply the institutional model theory approach to new algebraic
specification languages based on this logic, and with a greater expressivity than Maude and
CafeOBJ. Transition algebra satisfies desirable properties such as truth invariance under
change of signature, and has an expressive power that goes beyond that of ordinary first-order
logic, which is important for formal-verification purposes. Our e�orts have focused on two
main aspects of transition algebra: first, on its formal-specification capabilities, i.e., to show
that it forms a proper extension of first-order equational logic; and second, on support
for formal verification, for which we have studied a number of model-theoretic properties,
syntactic entailment and, most importantly, soundness and completeness results.

Concerning its formal-specification capabilities, transition algebra blends features of
dynamic logic with features of many-sorted first-order logic. From the former, it borrows
the idea of expressing the dynamics of a system by means of actions, which are built from
atomic transitions using composition, iteration, and so on. The iteration of an action is a
key feature because it allows us to express reachability, which is not possible in ordinary
first-order logic. From the latter, our logic borrows term-building operators and quantifiers.
This allows us to capture system states as terms, and hence to reason about the structure of
states more freely and in a more complex manner than it is possible in dynamic logic.

For verification purposes, our contribution is twofold: on one hand, we have introduced a
sound proof system for transition algebra; and on the other hand, we have developed a new
general method for proving completeness based on forcing. The latter is highly important,
because it has enabled us to circumvent the lack of compactness of transition algebra, which
prevents the use of readily available methods for proving completeness. Moreover, it also
overcomes a significant limitation of existing forcing techniques, namely their reliance on
models with non-empty carriers, which is another basic property (like compactness) that
does not hold for transition algebra. We have demonstrated the use of this extended forcing
technique to show that the proof system for transition algebra is complete. We aim to further
develop and apply this technique to extensions of transition algebra that take into account,
for example, subsorting – to which we have already alluded in this paper. Furthermore, future
research includes applying forcing to prove omitting types theorem for logical systems that
interpret sorts as sets, possibly empty, thus upgrading the results from [17, 20]. Subsequently,
the application of omitting types theorem to Robinson consistency property and interpolation,
as demonstrated in [19], remains a feasible avenue for exploration.
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Abstract

We consider numbers of the form S—(u) :=
qŒ

n=0
un
—n , where u = ÈunÍŒ

n=0 is an infinite word over
a finite alphabet and — œ C satisfies |—| > 1. Our main contribution is to present a combinatorial
criterion on u, called echoing, that implies that S—(u) is transcendental whenever — is algebraic.
We show that every Sturmian word is echoing, as is the Tribonacci word, a leading example of
an Arnoux-Rauzy word. We furthermore characterise Q-linear independence of sets of the form
{1, S—(u1), . . . , S—(uk)}, where u1, . . . ,uk are Sturmian words having the same slope. Finally, we
give an application of the above linear independence criterion to the theory of dynamical systems,
showing that for a contracted rotation on the unit circle with algebraic slope, its limit set is either
finite or consists exclusively of transcendental elements other than its endpoints 0 and 1. This
confirms a conjecture of Bugeaud, Kim, Laurent, and Nogueira.
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1 Introduction

A well-known conjecture of Hartmanis and Stearns asserts that for an integer b Ø 2 and
a sequence u œ {0, . . . , b ≠ 1}Ê that is computable by linear-time Turing machine (in the
sense that given input n in unary, the machine outputs the first n elements of u in time
O(n)), the number Sb(u) :=

qŒ
n=0

un
bn

is either rational or transcendental. This conjecture
remains open and is considered to be very di�cult [4]. Among many other consequences, the
conjecture implies that integer multiplication cannot be done in linear time [7].

A weaker version of the Hartmanis-Stearns conjecture was formulated in 1968 by Cobham,
who conjectured that every irrational automatic number is transcendental [9]. In other words,
if b Ø 2 is an integer and u is an automatic word, then the number Sb(u) is either rational
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or transcendental. Note that every automatic word is morphic, and that morphic words
are precisely those that can be generated by so-called tag machines, a restricted class of
linear-time Turing machines [4]. The transcendence of irrational automatic numbers over
an integer base was proven in 2004 by Adamczewski, Bugeaud, and Luca [3]. It is noted
in [1] that extending this result from the class of automatic words to the more general
class of morphic words (specifically, for those generated by morphisms with polynomial
growth) encompasses recognised open problems in transcendence theory. In another direction,
Adamczewski and Faverjon [5] proved a generalisation of Cobham’s conjecture to algebraic
number bases. Their result entails that for an algebraic number —, with |—| > 1 and automatic
sequence u over a finite alphabet {0, 1, . . . , k ≠ 1}, the number S—(u) either lies in the field
Q(—) or is transcendental.

Closely connected with the class of morphic words, one has Sturmian words and, more
generally, Arnoux-Rauzy words [6]. A Sturmian word is an infinite word over the alphabet
{0, 1} that has n + 1 factors of length n for all n œ N. In terms of factor complexity,
Sturmian words are thereby the simplest non-periodic infinite words. Arnoux-Rauzy words
are a generalisation of Sturmian words to the alphabet {0, 1, . . . , k ≠ 1} for arbitrary k.
Among other properties, an Arnoux-Rauzy word on a k-letter alphabet has factor complexity
(k ≠ 1)n+1. We refer to [6, Definition 3.3] for the precise definition. Perhaps the best-known
example of a Sturmian word is the Fibonacci word, while the best-known example of an
Arnoux-Rauzy word that is not Sturmian is the Tribonacci word. It so happens that both
these words are morphic, although not automatic. The Fibonacci word is the fixed point of
the morphism 0 ‘æ 01, 1 ‘æ 0, while the Tribonacci word is the fixed point of the morphism
0 ‘æ 01, 1 ‘æ 02, 2 ‘æ 0. More generally, Arnoux-Rauzy words can be generated by iterating a
finite set of morphisms via so-called S-adic generation. Sturmian and Arnoux-Rauzy words
are also intimately connected with dynamical systems. In their pioneering work [20, 21],
Morse and Hedlund showed that every Sturmian word arises as the coding of a translation of
the one-dimensional torus and, following the work of Rauzy [23], a subclass of Arnoux-Rauzy
words can be realised as natural codings of toral translations in higher dimension [6].

There is an extensive literature on transcendence of Sturmian and Arnoux-Rauzy words
over an integer base b Ø 2. Danilov [10] proved the transcendence of Sb(u) for u the Fibonacci
word. This result was significantly strengthened by Ferenczi and Mauduit [11], who proved the
transcendence of Sb(u), for u either a Sturmian word or an Arnoux-Rauzy word on alphabet
{0, 1, 2}. This result was extended to Arnoux-Rauzy words over alphabet {0, 1, . . . , k ≠ 1}
for any k in [24]. Meanwhile, Bugeaud et al. [8] showed the Q-linear independence of sets of
the form {1, Sb(u1), Sb(u2)}, where u1,u2 are Sturmian words having the same slope (where
the slope of a Sturmian word is the limiting frequency of 1’s, which always exists).

Our interest in this paper is in proving transcendence results for Sturmian and Arnoux-
Rauzy words over an algebraic-number base —, with |—| > 1. Here the picture is less complete
compared to the case that — is an integer. Laurent and Nogueira [14] observe that if u is a
characteristic Sturmian word (cf. Section 3.3), then the transcendence of S—(u) follows from
a classical result of Loxton and Van der Poorten [17, Theorem 7] concerning transcendence
of Hecke-Mahler series. For u having linear subword complexity (which includes all Arnoux-
Rauzy words), it follows from [2, Theorem 1] that S—(u) is either transcendental or lies in the
field Q(—), subject to a non-trivial inequality between the height of — and a combinatorial
parameter of u called the Diophantine exponent. Most closely related to the present work,
recently [18], introduced a criterion that can be used to show transcendence of S—(u) for a
Sturmian word u and any —.
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The main contribution of the present paper is to give a new combinatorial criterion on an
infinite word u, called echoing, that implies that S—(u) :=

qŒ
n=0

un
—n is transcendental for any

algebraic number —. The echoing condition is an evolution of the above-mentioned criterion
of [18] that allows both handling certain Arnoux-Rauzy words over non-binary alphabets as
well as giving a considerably simplified treatment of Sturmian words. To illustrate the utility
of the echoing notion, we show that every Sturmian word is echoing, as is the Tribonacci
word, a leading example of an Arnoux-Rauzy word. We anticipate that the notion will find
further applications among Arnoux-Rauzy words, and note that the thesis [13] contains
further examples of such that are echoing. We also employ the echoing condition to give
su�cient and necessary conditions for the Q-linear independence of a set of Sturmian numbers
{1, S—(u1), . . . , S—(uk)}, where u1, . . . ,uk, are Sturmian words that have the same slope.

In Section 7 we give an application of our results to the theory of dynamical systems. We
consider the set C of limit points of a contracted rotation f on the unit interval, where f
is assumed to have an algebraic contraction factor. The set C is finite if f has a periodic
orbit and is otherwise a Cantor set, that is, it is homeomorphic to the Cantor ternary set
(equivalently, it is compact, nowhere dense, and has no isolated points). In the latter case
we show that all elements of C except its endpoints 0 and 1 are transcendental. Our result
confirms a conjecture of Bugeaud, Kim, Laurent, and Nogueira, who proved a special case
of this result in [8]. We remark that it is a longstanding open question whether the actual
Cantor ternary set contains any irrational algebraic elements.

2 Preliminaries

This section contains some number-theoretic preliminaries that will be used in Section 6.
For functions f and g, we use the Vinogradov notation f π g to mean f = O(g).
Let K be a number field of degree d and let M(K) be the set of places of K. We divide

M(K) into the collection of infinite places, which are determined either by an embedding of
K in R or a complex-conjugate pair of embeddings of K in C, and the set of finite places,
which are determined by prime ideals in the ring OK of integers of K.

For x œ K and v œ M(K), define the absolute value |x|v as follows: |x|v := |‡(x)|1/d in
case v corresponds to a real embedding ‡ : K æ R; |x|v := |‡(x)|2/d in case v corresponds
to a complex-conjugate pair of embeddings ‡,‡ : K æ C; finally, |x|v := N(p)≠ordp(x)/d if v
corresponds to a prime ideal p in O and ordp(x) is the order of p as a divisor of the ideal xO.
With the above definitions we have the product formula:

r
vœM(K)

|x|v = 1 for all x œ Kú.
Given a set of places S ™ M(K), the ring OS of S-integers is the subring comprising all
x œ K such |x|v Æ 1 for all finite places v œ S.

For m Ø 2 the absolute Weil height of x = (x1, . . . , xm) œ Km is defined to be

H(x) :=
Ÿ

vœM(K)

max(|x1|v, . . . , |xm|v) .

This definition is independent of the choice of field K containing x1, . . . , xm. Note the
restriction m Ø 2 in the above definition. For x œ K we define its height H(x) to be H(1, x).
For a non-zero polynomial f =

q
s

i=0
aiXi

œ K[X], where s Ø 1, we define its height H(f)
to be the height of its coe�cient vector (a0, . . . , as).

The following special case of the p-adic Subspace Theorem of Schlickewei is one of the
main ingredients of our approach.

ICALP 2024



144:4 On Transcendence of Sturmian and Arnoux-Rauzy Words

I Theorem 1. Let S ™ M(K) be a finite set of places of K that contains all infinite

places. Let v0 œ S be a distinguished place. Given m Ø 2, let L(x1, . . . , xm) be a linear form

with algebraic coe�cients and let i0 œ {1, . . . ,m}. Then for any Á > 0 the set of solutions

a = (a1, . . . , am) œ (OS)m of the inequality

|L(a)|v0 ·
A

Ÿ

(i,v)œ{1,...,m}◊S

(i,v) ”=(i0,v0)

|ai|v

B
Æ H(a)≠Á

is contained in a finite union of proper linear subspaces of Km
.

We will also need the following additional proposition about roots of univariate polyno-
mials.
I Proposition 2 ([15, Proposition 2.3]). Let f œ K[X] be a polynomial with at most k + 1
terms. Assume that f can be written as the sum of two polynomials g and h, where every

monomial of g has degree at most d0 and every monomial of h has degree at least d1. Let —
be a root of f that is not a root of unity. If d1 ≠ d0 > log(kH(f))

logH(—)
then — is a common root of

g and h.

3 Echoing Words

In this section we present the main definition of the paper, the notion of echoing word. Before
we present this, by way of motivation we present an informal analysis of the periodicity
properties of the Fibonacci and Tribonacci words.

3.1 The Fibonacci Word

Let � = {0, 1} and consider the morphism ‡ : �ú
æ �ú given by ‡(0) = 01 and ‡(1) = 0.

The Fibonacci word FŒ œ �Ê is the morphic word

FŒ := lim
næŒ

‡n(0) = 01001010010010100 . . . .

In more detail, the Fibonacci word FŒ is the limit of the sequence of finite words (Fn)Œ
n=0

given by Fn = ‡n(0) for all n (observe that Fn is a prefix of Fn+1 for all n, so the limit is
well defined). Note that the sequence (Fn)Œ

n=0
satisfies the recurrence

Fn = Fn≠1Fn≠2 (n Ø 2)

analogous to that satisfied by the sequence of Fibonacci numbers.
The Fibonacci word is not periodic and hence FŒ is not equal to any its tails tln(FŒ) for

n > 0. However, if the shift n is judiciously chosen then, intuitively speaking, the mismatches
between FŒ and tln(FŒ) are few and far between. This intuition will be formalised in the
definition of echoing word. It turns out that a particularly good choice of shifts is to take
them from the sequence È1, 2, 3, 5, 8 . . .Í of Fibonacci numbers: for example, juxtaposing FŒ
and tl5(FŒ) and writing mismatches in bold we see:

FŒ := 010010100100101001010010010100100101001 . . .
tl5(FŒ) := 010010010100101001001010010010100101001 . . .

Here, we see that each mismatch involves a factor 10 of FŒ for which the corresponding
factor in tl5(FŒ) is the reverse, 01. In fact, we see the same phenomenon for all shifts of FŒ
by an element of the Fibonacci sequence. Furthermore, it turns out that for each successive
such shift, the distance between the mismatching factors increases. This is formalised below
as the expanding gaps property. We will show that the preceding observations about the
Fibonacci word generalise to arbitrary Sturmian words.



P. Kebis, F. Luca, J. Ouaknine, A. Scoones, and J. Worrell 144:5

3.2 The Tribonacci Word

Recall that Sturmian words have factor complexity p(n) = n+ 1 and thus can be considered
as the simplest non-periodic infinite words. A natural candidate for the next simplest such
class is the set of Arnoux-Rauzy words. Over a ternary alphabet such words have factor
complexity p(n) = 2n+1. A prototypical example of an Arnoux-Rauzy word is the Tribonacci
word, which we introduce next.

Let � = {0, 1, 2} and consider the morphism ‡ : �ú
æ �ú given by ‡(0) = 01, ‡(1) = 02,

and ‡(2) = 0. The Tribonacci word WŒ œ �Ê is the morphic word

WŒ := ‡Ê(0) = 0102010010201 . . . .

In more detail, the Tribonacci word WŒ is the limit of the sequence of finite words (Wn)Œ
n=0

given by Wn = ‡n(0) for all n (again we have that Wn is a prefix of Wn+1 for all n, so the
limit is well defined). Observe that the sequence of words (Wn)Œ

n=0
satisfies recurrence

Wn = Wn≠1Wn≠2Wn≠3 (n Ø 3) .

Associated with the Tribonacci word we have the sequence ÈtnÍ
Œ
n=0

of Tribonacci numbers,
defined by the recurrence tn = tn≠1 + tn≠2 + tn≠3 and initial conditions t0 = 1, t1 = 2, t2 = 4.
Clearly the word Wn has length tn for all n œ N.

In the spirit of our analysis of the Fibonacci word, we match the Tribonacci word against
shifts of itself by elements of the Tribonacci sequence È1, 2, 4, 7, 13, . . .Í. By way of example,
below we compare WŒ and tl13(WŒ):.

TŒ :=0102010010201010201001020102010010201010201001020100102010102 . . .
tl13(TŒ) :=0102010010201020100102010102010010201001020101020100102010201 . . .

Similar to the example of the Fibonacci word, the mismatches above appear as a fixed
set of factors (either 10,20, or 102) in TŒ that get reversed in tl13(TŒ). Unlike with the
Fibonacci word, this time the factors may appear close to each other. Nevertheless, by
suitably grouping these factors, we recover a form of the expanding gaps property and we are
moreover able to show that the mismatches between TŒ and its shifts are relatively sparse.

3.3 Definition of Echoing Words

Inspired by the respective examples of the Fibonacci and Tribonacci words, we give in this
section the formal definition of echoing word.

Given two non-empty intervals I, J ™ N, write I < J if a < b for all a œ I and b œ J , and
define the distance of I and J to be d(I, J) := min{|a ≠ b| : a œ I, b œ J}.

I Definition 3. Let � ™ Q be a finite alphabet. An infinite word u = u0u1u2 . . . œ �Ê
is

said to be echoing if for all c, Á1 > 0, there exists d Ø 2 and for all n œ N there exist positive

integers rn, sn and intervals {0} < I1,n < · · · < Id,n < {sn + 1} of total length ¸n, such that:

1. the sequence ÈrnÍ
Œ
n=0

is unbounded and sn Ø crn for all n;

2. for all n it holds that {i œ {0, . . . , sn} : ui ”= ui+rn} ™
t

d

j=1
Ij,n and ¸n Æ Á1sn;

3. as n æ Œ we have d({0}, I1,n) = Ê(log(rn + ¸n)) and d(Ij,n, Ij+1,n) = Ê(log ¸n) for

1 Æ j Æ d ≠ 1;
4. for all — œ Q such that |—| > 1 and all n œ N there exist at least two j œ {1, . . . , d} such

that
q

iœIj,n
(ui ≠ ui+rn)—≠i

”= 0.
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Properties 1–4 concern the factors Èu0, . . . , usnÍ and Èurn , . . . , urn+snÍ of u. The inequality
in Property 1 allows us to take the prefix length sn to be an arbitrarily large multiple of the
shift rn. We call this the Long-Overlap Property. Informally speaking, Property 2 says that
mismatches between the above two factors can be grouped into a fixed number d of intervals
whose total length ¸n is small in proportion to sn. We call this the Short-Intervals Property.

Property 3 gives lower bounds on the length of the gaps between the above-mentioned
intervals. We call this the Expanding-Gaps Property. Property 4 will be used to show, in case
— is algebraic, that the words Èu0, . . . , usnÍ and Èurn , . . . , urn+snÍ denote di�erent numbers
base — for infinitely many n. We call this the Non-Vanishing Property.

The Fibonacci and Tribonacci words are both echoing. The formal proofs will be given
respectively in Section 4 and Section 5. As suggested by the examples above, in the case of
the Fibonacci word a suitable choice for the sequence ÈrnÍ

Œ
n=0

of shifts will be the Fibonacci
sequence, while in the case of the Tribonacci word it will be the Tribonacci sequence. In
the case of the Fibonacci word (and other Sturmian words) all of the intervals Ij,n will be
doubletons, whereas in the case of the Tribonacci word their total length ¸n grows linearly
with sn.

We conclude this section with some remarks about related work. The notion of a echoing
word is reminiscent of the transcendence conditions of [1, 8, 11] in that it concerns periodicity
in an infinite word. The ability to choose the parameter c to be arbitrarily large (the
Long-Overlap property) is key to our being able to prove transcendence results over an
arbitrary algebraic base —. In compensation, we allow for a small number of mismatches,
as detailed in the Short-Interval property. This should be contrasted with the notion of
stammering word in [1, 3, Section 4], where there is no allowance for such discrepancies and
in which the quantity corresponding to c is determined in advance by the word (cf. the notion
of the Diophantine exponent of a word in [2]).

4 Sturmian Words are Echoing

In this section we show that Sturmian words are echoing and, more generally, that a pointwise
linear combination of a collection of Sturmian words having the same slope is echoing.

We will work with a characterisation of Sturmian words in terms of dynamical systems.
Write I := [0, 1) for the unit interval and given x œ R denote the integer part of x by ÂxÊ and
the fractional part of x by {x} := x ≠ ÂxÊ œ I. Let 0 < ◊ < 1 be an irrational number and
define the rotation map R = R◊ : I æ I by R(y) = {y+ ◊}. Given x œ I, the ◊-coding of x is
the infinite word u = u1u2u3 . . . defined by un := 1 if Rn(x) œ [0, ◊) and un := 0 otherwise.
As shown by Morse and Hedlund, u is a Sturmian word and, up to changing at most two
letters, all Sturmian words over a binary alphabet arise as codings of the above type for some
choice of ◊ and x. In particular, for the purposes of establishing our transcendence results
we may work exclusively with codings as defined above. The number ◊ is equal to the slope
of the Sturmian word, as defined in Section 1. The ◊-coding of 0 is in particular called the
characteristic (or standard) Sturmian word of slope ◊.

The main result of this section is as follows:

I Theorem 4. Let ◊ œ (0, 1) be irrational. Given a positive integer k, let c0, . . . , ck œ C and

x1, . . . , xk œ I with c1, . . . , ck non-zero. Suppose that xi ≠ xj ”œ Z◊ + Z for all i ”= j. Writing

Èu(i)

n Í
Œ
n=0

for the ◊-coding of xi, for i = 1, . . . , k, define un := c0 +
q

k

i=1
ciu

(i)

n for all n œ N.
Then u = ÈunÍ

Œ
n=0

is echoing.



P. Kebis, F. Luca, J. Ouaknine, A. Scoones, and J. Worrell 144:7

Proof. We start by recalling some basic notions concerning continued fractions (see [12,
Chapter 10] for details). Let

◊ =
1

a0 +
1

a1 +
1

a2 +
. . .

be the simple continued-fraction expansion of ◊. Given n œ N, we write pn

qn
for the n-th

convergent of the above continued fraction, which is obtained by truncating it at an. Then
ÈqnÍ

Œ
n=0

is a strictly increasing sequence of positive integers such that Îqn◊Î = |qn◊ ≠ pn|,
where Î–Î denotes the distance of – œ R to the nearest integer. We moreover have that
qn◊ ≠ pn and qn+1◊ ≠ pn+1 have opposite signs for all n. Finally we have the law of best

approximation: q œ N occurs as one of the qn just in case Îq◊Î < ÎqÕ◊Î for all qÕ with
0 < qÕ < q.

To establish that u is echoing, given c > 0 we define ÈrnÍ
Œ
n=0

to be the subsequence of
ÈqnÍ

Œ
n=0

comprising all terms qn such that Îqn◊Î = qn◊ ≠pn > 0. We thereby have that either
rn = q2n for all n or rn = q2n+1 for all n, so ÈrnÍ

Œ
n=0

is an infinite sequence that diverges to
infinity. Next, define d := (k + 1)c and for all n œ N define sn to be the greatest number
such that the words u0 . . . usn and urn · · ·urn+sn have Hamming distance 2d. Since u is not
ultimately periodic, sn is well-defined.

Short-Intervals Property. Given n œ N, denote the set of positions at which u0 . . . usn and
urn . . . usn+rn di�er by

�n :=
)
m œ {0, . . . , sn} : um ”= um+rn

*
. (1)

We claim that for n su�ciently large, m œ �n if and only if there exists ¸ œ {1, . . . , k} such
that one of the following two conditions holds:
(i) Rm(x¸) œ [1 ≠ Îrn◊Î, 1),
(ii) Rm(x¸) œ [◊ ≠ Îrn◊Î, ◊).

We moreover claim that for all m there is at most one ¸ such that Condition (i) or (ii) holds.
Assuming the claim, since Rm(x¸) œ [1≠Îrn◊Î, 1) if and only if Rm+1(x¸) œ [◊≠Îrn◊Î, ◊),

it follows that the elements of �n come in consecutive pairs, i.e., we can write

�n =
d€

j=1

{ij,n, ij,n + 1} ,

where i1,n < · · · < id,n are the elements m œ �n that satisfy Condition (i) above for
some ¸, while i1,n + 1 < · · · < id,n + 1 are those that satisfy Condition (ii). Defining
Ij,n := {ij,n, ij,n + 1} for j œ {1, . . . , d}, we have that Item 2 of Defintion 3 is satisfied.
Indeed, since the intervals I1,n, . . . , Id,n have total length ¸n = 2d, for any choice of Á1 > 0
we have ¸n Æ Á1sn for n su�ciently large.

It remains to prove the claim. To this end note that for a fixed ¸ œ {1, . . . , k}, for all
m we have that u(¸)

m ”= u(¸)

m+rn
i� exactly one of Rm(x¸) and Rm+rn(x¸) lies in the interval

[0, ◊) i� one of Condition (i) or Condition (ii), above, holds. Moreover, since x¸ ≠ x¸Õ ”= ◊
(mod 1) for ¸ ”= ¸Õ, we see that for n su�ciently large there is at most one ¸ œ {1, . . . , k}
such that u(¸)

m ”= u(¸)

m+rn
. We deduce that um ”= um+rn if and only if u(¸)

m ”= u(¸)

m+rn
for some

¸ œ {1, . . . , k}. This concludes the proof of the claim.
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Long-Overlap Property. Our objective is to show that sn Ø crn for all n œ N. We have
already established that there are d = (k + 1)c distinct m œ �n that satisfy Condition (i),
above, for some ¸ œ {1, . . . , k}. Thus there exists ¸0 œ {1, . . . , k} and �Õ

n
™ �n such

that |�Õ
n
| Ø c and all m œ �Õ

n
satisfy Condition (i) for ¸ = ¸0. In this case we have

Î(m1 ≠ m2)◊Î < Îrn◊Î for all m1,m2 œ �Õ
n
. By the law of best approximation it follows

that every two distinct elements of �Õ
n
have di�erence strictly greater than rn. But this

contradicts |�Õ
n
| = c, given that �Õ

n
™ {0, 1, . . . , crn}.

Expanding-Gaps Property. By definition of i1,n, . . . , id,n, for all 1 Æ j1 < j2 Æ d there
exists ¸1, ¸2 œ {1, . . . , k} with Rij1,n(x¸1), Rij2,n(x¸2) œ [1 ≠ Îrn◊Î, 1). We deduce that

Î(ij2,n ≠ ij1,n)◊ + x¸1 ≠ x¸2Î Æ Îrn◊Î . (2)

We claim that the left-hand side of (2) is non-zero. Indeed, the claim holds if ¸1 = ¸2
because ◊ is irrational, while the claim also holds in case ¸1 ”= ¸2 since in this case we have
x¸1 ≠ x¸2 ”œ Z◊ + Z by assumption. Since moreover the right-hand side of (2) tends to zero
as n tends to infinity, we have that ij2,n ≠ ij1,n = Ê(1) as n æ Œ. Since ¸n = 2d is constant,
independent of n, we have ij2,n ≠ ij1,n = Ê(¸n). Finally, we have i1,n > rn by the requirement
that ||Rin,1(x¸n,1)|| < ||rn◊|| and the best-approximation property of rn. Clearly this entails
that i1,n = Ê(log(rn + ¸n)). This completes the verification of Item 3 of Definition 3(3).
Non-Vanishing Property. Consider m œ �n satisfying Condition (i) above, i.e., such that
Rm(x¸) œ [1 ≠ Îrn◊Î, 1) for some ¸ œ {1, . . . , k}. Then we have

u(¸)

m
= 0, u(¸)

m+1
= 1 and u(¸)

m+rn
= 1, u(¸)

m+rn+1
= 0 . (3)

Moreover for all ¸Õ
”= ¸ and n su�ciently large we have

u(¸
Õ
)

m
= u(¸

Õ
)

m+rn
and u(¸

Õ
)

m+1
= u(¸

Õ
)

m+rn+1
. (4)

From Equations (3) and (4) we deduce that um ”= um+rn , um+1 ”= um+1+rn , and um+um+1 =
um+rm + um+rn+1. But this implies that —um + um+1 ”= —um+rn + um+rn+1 for all — ”= 1.
This establishes Item 4 of Definition 3. J

5 The Tribonacci Word is Echoing

5.1 The Matching Morphism

In this section we define a morphism in order to understand how the Tribonacci word aligns
with shifts of itself. This is an instance of a construction that is used elsewhere to show that
for certain morphisms, the associated shift dynamical system has pure discrete spectrum
(see the notion of balanced pairs in [16] and [22, Definition 6.8]).

Recall that the Tribonacci word WŒ is defined over the alphabet � = {0, 1, 2} as
a fixed point of the morphism ‡(0) = 01,‡(1) = 02,‡(2) = 0. We define an alphabet
� = {a0, . . . , a10} whose elements are certain ordered pairs of words in �+ having the same
Parikh image. For intuition we represent the elements of � as tiles as follows:

a0 =
5
0 1
1 0

6
a1 =

5
1 0
0 1

6
a2 =

5
0 2
2 0

6
a3 =

5
2 0
0 2

6
a4 =

5
1 0 2
2 0 1

6
a5 =

5
2 0 1
1 0 2

6

a6 =
5
0 1 0 2
2 0 1 0

6
a7 =

5
2 0 1 0
0 1 0 2

6
a8 =

5
0
0

6
a9 =

5
1
1

6
a10 =

5
2
2

6

We partition � into a set �0 := {a0, . . . , a7} of mismatches and a set �1 := {a8, a9, a10} of
matches.



P. Kebis, F. Luca, J. Ouaknine, A. Scoones, and J. Worrell 144:9

Define morphisms top,bot : �ú
æ �ú such that top extracts the word on the top of each

tile and bottom extracts the word on the bottom, e.g.,

top
35

0 1
1 0

64
= 01 and bot

35
1 0 2
2 0 1

64
= 201 .

Below we define the matching morphism µ : �ú
æ �ú, which is characterised by the following

properties:

top ¶ µ = ‡ ¶ top and bot ¶ µ = ‡ ¶ bot . (5)

Specifically we have

µ

35
0 1
1 0

64
:=

5
0
0

6 5
1 0 2
2 0 1

6
µ

35
1 0 2
2 0 1

64
:=

5
0
0

6 5
2 0 1 0
0 1 0 2

6

µ

35
1 0
0 1

64
:=

5
0
0

6 5
2 0 1
1 0 2

6
µ

35
2 0 1
1 0 2

64
:=

5
0
0

6 5
0 1 0 2
2 0 1 0

6

µ

35
0 2
2 0

64
:=

5
0
0

6 5
1 0
0 1

6
µ

35
2 0 1 0
0 1 0 2

64
:=

5
0
0

6 5
0 1
1 0

6 5
0 2
2 0

6 5
0 1
1 0

6

µ

35
2 0
0 2

64
:=

5
0
0

6 5
0 1
1 0

6
µ

35
0 1 0 2
2 0 1 0

64
:=

5
0
0

6 5
1 0
0 1

6 5
2 0
0 2

6 5
1 0
0 1

6

and

µ

35
0
0

64
:=

5
0
0

6 5
1
1

6
µ

35
1
1

64
:=

5
0
0

6 5
2
2

6
µ

35
2
2

64
:=

5
0
0

6
.

For later use we remark that the morphism ÿ : �ú
æ �ú, defined by ÿ(0) = a0, ÿ(1) =

a2, ÿ(2) = a8 satisfies top ¶ ÿ = ‡, while bot ¶ ÿ and tl ¶ ‡ agree on �Ê. It follows that

top(ÿ(WŒ)) = WŒ and bot(ÿ(WŒ)) = tl(WŒ) . (6)

Associated with the morphism µ we have its incidence matrix M(µ) œ N11◊11, where
M(µ)i,j := |µ(ai)|j is the number of occurrences of aj in µ(ai) for all i, j œ {0, . . . , 10}. It
is straightforward that M(µ)n

i,j
= |µn(ai)|j for all n and all i, j œ {0, . . . , 10}. Matrix M(µ)

admits a block decomposition

M(µ) =
3
B1 B2

0 B3

4
,

where B1 is the restriction of M(µ) to the set of mismatch symbols �0 and B3 is the
restriction to the set of match symbols �1. By direct calculation one see that both B1 and
B3 are primitive and have respective spectral radii flÕ

¥ 1.395 and fl ¥ 1.839. 1

We hence have that for all n œ N and i œ {0, . . . , 7},
q

7

j=0
|µn(ai)|j

|µn(ai)|
=

q
7

j=0
M(µ)n

i,jq
10

j=0
M(µ)n

i,j

Æ

q
7

j=0
(Bn

1
)i,j

q
2

j=0

q
n≠1

k=0
(Bk

1
B2B

n≠k

3
)i,j

π

3
flÕ

fl

4n

. (7)

We deduce that the frequency of mismatch symbols in µn(a0) converges to 0 as n tends to
infinity. The above reasoning shows, inter alia that for all a œ � the sequence |µn(a)| = �(fln)
and hence there exists a constant Ÿ such that |µn(a)| Æ Ÿ|µn(b)| for all a, b œ � and all n
su�ciently large.

1 The inequality flÕ < fl implies that the Tribonacci morphism has pure discrete spectrum (see [22, Section
6.3] and the references therein).

ICALP 2024



144:10 On Transcendence of Sturmian and Arnoux-Rauzy Words

5.2 Matching Polynomials

Define eval : �ú
æ Z[x] by eval(u0 . . . un) :=

q
n

i=0
uixi. For all i œ {0, . . . , 7} and n œ N

define the matching polynomial Pi,n(x) œ Z[x] by

Pi,n := eval(top(µn(ai))) ≠ eval(bot(µn(ai))) . (8)

By inspection, the only common root of Pi,0(x) for i œ {0, . . . , 7} is x = 1.
Observe that for all n œ N and i œ {0, 1, 2, 3} we have

top(µn(a2i)) = bot(µn(a2i+1)) and bot(µn(a2i)) = top(µn(a2i+1)) ,

and hence P2i,n(x) = ≠P2i+1,n(x). As a consequence we can focus our attention on the even-
index polynomials P0,n, P2,n, P4,n, and P6,n. Indeed, writing P n := (P0,n, P2,n, P4,n, P6,n) œ

Z[x]4 and

Mn := (≠1) ·

Q

cca

0 0 ≠xtn 0
xtn 0 0 0
0 0 0 xtn

xtn + xtn+1 xtn+tn+1 0 0

R

ddb ,

then we have P n+1 = Mn P n for all n œ N. But now, since P 0(—) ”= 0 for all — ”= 1 and
det(Mn) = ≠xtn+1+4tn , it follows that P n(—) ”= 0 for all — œ C \ {0, 1}.

5.3 Putting Things Together

I Theorem 5. The Tribonacci word u := WŒ is echoing.

Proof. We refer to Definition 3. Let c, Á1 > 0 be given and write w := ÿ(u0u1 . . . uc≠1) œ �ú.
It follows from (6) that top(w) is a prefix of u and bot(w) is a prefix of tl(u). Given n0 œ N,
write

µn0(w) = w0ai1w1 · · ·wd≠1aidwd , (9)

where w0, . . . ,wd œ �ú
1
are sequences of match symbols and ai1 , . . . , aid œ �0 are mismatch

symbols. For n0 œ N su�ciently large it holds that µn0(w) contains at least two occurrences
of every mismatch symbol and the proportion of mismatch symbols in µn0(w) is at most
Á1/Ÿ, for Ÿ as in Section 5.1.

For all n œ N, referring to Equation (9), we have

µn+n0(w) = µn(w0)µn(ai1)¸ ˚˙ ˝
I1,n

µn(w1) · · ·µn(wd≠1)µn(aid)¸ ˚˙ ˝
Id,n

µn(wd) . (10)

The data to show the echoing property are as follows. For all n œ N define rn := |‡n(0)| =
tn+n0 , sn := |top(µn+n0(w))|, and we take d as in (9). For all j œ {1, . . . , d} we define
Ij,n ™ N to be the interval of positions in µn+n0(a0) corresponding to the shortest su�x of
µn(aij ) that contains all mismatch symbols that occur therein (see (10)).

From Equation (5) we have top(µn+n0(w)) = Èu0, . . . , usnÍ and bot(µn+n0(w)) =
Èurn , . . . , usn+rnÍ. Since top(w) contains at least c occurrences of the letter 0, we get
that sn Ø crn, establishing the Long-Overlap Property.

By construction, the intervals I1,n, . . . , Id,n contain all indices where the above two strings
di�er and they have total length at most Á1sn, establishing the Short-Intervals Property.
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By definition of the matching polynomials, it holds that Pij ,n(—≠1) is the product ofq
iœIj,n

(ui ≠ui+rn)—≠1 and a power of — for all j œ {1, . . . , d}. We have shown in Section 5.2
that the vector (P0,n(—≠1), . . . , P7,n(—≠1)) is non-zero for all n. Since all mismatch symbols
occur at least twice among ai1 , . . . , aid , we have that Pij ,n(—≠1) is non-zero for at least two
di�erent choices of j œ {1, . . . , d}. It follows that

q
iœIj,n

(ui ≠ ui+rn)—≠1 is non-zero for at
least two di�erent values of j, establishing the Non-Vanishing Property.

Finally, note that there is at least one letter between each pair of intervals Ij,n in (10).
Hence the inequality |µ(an)| Æ Ÿ|µn(b)| for a, b œ � implies that d({0}, I1,n) ∫ sn and
d(Ij,n, Ij+1,n) ∫ sn for all j œ {0, . . . , d≠1}, which implies the Expanding-Gaps Property. J

6 Transcendence Results

6.1 Transcendence for Echoing Words

I Theorem 6. Let � be a finite set of algebraic numbers and let u œ �Ê
be an echoing word.

Then for any algebraic number — such that |—| > 1, the sum – :=
qŒ

n=0

un
—n is transcendental.

Proof. Suppose for a contradiction that – is algebraic. By scaling, we can assume without
loss of generality that � consists solely of algebraic integers. Let K be the field generated
over Q by {—} fi � and write S ™ M(K) for the set comprising all infinite places of K and
those finite places of K arising from prime-ideal divisors of elements of {—} fi �. Let v0 œ S
be the place corresponding to the inclusion of K in C. Recall that |a|v0 = |a|1/[K:Q], where
|a| denotes the usual absolute value on C.

Applying the definition of echoing sequence (as given in Definition 3) for values of c
and Á1 to be specified later, we obtain d Ø 2 such that for all n œ N there are rn, sn œ N
and intervals {0} < I1,n < · · · < Id,n < {sn + 1}, of total length ¸n, satisfying Items 1–4
of Definition 3.

For n œ N, define an = (a1,n, . . . , ad+3,n) œ (OS)d+3 by

a1,n := —rn , a2,n :=
rnÿ

i=0

ui—
rn≠i, a3,n := 1, aj+3,n :=

ÿ

iœIn,j

(ui+rn ≠ ui)—≠i (j = 1, . . . , d)

The Non-Vanishing Property (Definition 3(4)) implies that for all n œ N we have aj+3,n ”= 0
for at least two elements j œ {1, . . . , d}. By passing to a subsequence we henceforth assume
without loss of generality that there exists J ™ {1, . . . , d}, of cardinality at least two, such
that for all j and n, aj+3,n ”= 0 if and only if j œ J .

B Claim 7. If F (x1, . . . , xd+3) =
q

iœ{1,2,3}fiJ
–ixi is a linear form with coe�cients in K

such that F (an) = 0 for infinitely many n, then –j = 0 for all j œ J .

The proof of the claim is as follows. For all n œ N we have F (an) = Pn(—) for the polynomial
Pn(x) := P0,n(x) +

q
jœJ

Pj,n(x), where

P0,n(x) := –1x
rn + –2

rnÿ

i=0

uix
rn≠i + –3 and Pj,n(x) := –j

ÿ

iœIj,n

(ui ≠ ui+rn)x≠i .

Polynomial Pn has at most rn + ¸n monomials. From Proposition 2 and the property
d({0}, I1,n) = Ê(log(rn + ¸n)) (see Definition 3(3)), we deduce that

q
jœJ

Pj,n(—) = 0 for
infinitely many n. Now

q
jœJ

Pj,n(x) comprises at most ¸n monomials. Thus Proposition 2
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and the assumption that d(Ij,n, Ij+1,n) = Ê(log ¸n) for all j œ {1, . . . , d ≠ 1}, entail that for
infinitely many n we have Pj,n(—) = 0 for all j œ J . But Pj,n(—) = –jaj,n and so, since
aj,n ”= 0 for all j œ J , we have –j = 0 for all j œ J . This concludes the proof of the claim.

Consider the linear form L0(x1, . . . , xd+3) := –x1 ≠ x2 ≠ –x3 ≠
q

jœJ
xj+3. Then there

exists c1 > 1 such that for all n,

0 < |L0(an)| =
---—rn– ≠

q
rn

i=0
ui—rn≠i + – +

q
jœJ

q
iœIj,n

(ui ≠ ui+rn)—i

---
=

--qŒ
i=sn+1

(ui ≠ ui+rn)—≠i
-- < c1|—|≠sn ,

(11)

where the left-hand inequality follows from an application of Claim 7 to L0. Consider a
linear form L(x1, . . . , xd+3) with the following properties: (i) L has coe�cients in K; (ii) L
has support {xi : i œ I fi J} for some I ™ {1, 2, 3}; (iii) 0 < |L(an)| < c1|—|≠sn for all
n œ N; (iv) the set I is minimal with respect to set inclusion among linear forms satisfying
(i)–(iii). We have just exhibited a form, namely L0, that satisfies Conditions (i)–(iii), so L is
well-defined.

Let c2 Ø 2 be an upper bound of the set of numbers {|“|v : “ œ {—} fi A fi A ≠ A, v œ S}.
Then for v œ S, by the assumption that sn Ø crn we have

|a2,n|v Æ

rnÿ

i=0

ci+1

2
Æ crn+2

2
Æ c(c

≠1
sn+2)

2
. (12)

We moreover have

Ÿ

jœJ

Ÿ

vœS

|aj+3,n|v Æ

Ÿ

jœJ

Ÿ

vœS

|Ij,n|ÿ

i=0

ci+1

2
Æ

Ÿ

jœJ

c
|S|(2+|Ij,n|)
2

Æ c|S|(2d+Á1sn)
2

, (13)

where we use the assumption that the intervals I1,n, . . . , Id,n have total length ¸n Æ Á1sn.
We also have

r
vœS

|a1,n|v =
r

vœS
|—rn |v = 1 by the product formula and, obviously,r

vœS
|a3,n|v = 1.

Pick i0 œ I fi J . Then, combining (12) and (13) and the bound |L(an)| < c1|—|≠sn , we
have

|L(an)|v0 ·

Ÿ

(i,v)œ(IfiJ)◊S

(i,v) ”=(i0,v0)

|ai,n|v Æ c
(sn(Á1+c

≠1
)+2d+2)|S|

2
· (c1|—|≠sn)1/[K:Q] . (14)

For c su�ciently large, Á1 su�ciently small, and all but finitely many n, the right-hand side
of (14) is less than |—|≠sn/2[K:Q]. On the other hand, there exists a constant c3 > 0 such
that the height of an satisfies the bound H(an) Æ |—|c3sn for all n. Thus there exists Á > 0
such that the right-hand side of (14) is at most H(an)≠Á for infinitely many n.

Given (14), we can apply Theorem 1 to obtain a non-zero linear form LÕ(x1, . . . , x3+d)
that has coe�cients in K and support in {xi : i œ I fi J}, such that for infinitely many n œ N
we have both 0 < |L(an)| < c1|—|≠sn and LÕ(an) = 0. By Claim 7, the support of LÕ is in fact
contained in I. Hence, by subtracting a suitable multiple of LÕ from L we obtain a linear form
LÕÕ(x1, . . . , x3+d) with strictly fewer coe�cients than L such that 0 < |LÕÕ(an)| < c1|—|≠sn

for infinitely many n œ N. But this contradicts the minimality of the support of L. J

6.2 Transcendence for Sturmian Words and the Tribonacci Word

Combining the transcendence result for echoing words (Theorem 6) with the fact that
Sturmian words and the Tribonacci word are echoing (Theorem 4 and Theorem 5), we obtain:
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1

”

” + ⁄ ≠ 1

0
1≠”

⁄
1

Figure 1 A plot of f⁄,” : I æ I.

I Theorem 8. Let — be an algebraic number with |—| > 1.
1. Let u1, . . . ,uk be Sturmian words with the same slope such that ui is not a su�x of uj

for all i ”= j. Then {1, S—(u1), . . . , S—(uk)} is linearly independent over Q.

2. Let u be the Tribonacci word. Then S—(u) is transcendental.

7 Application to Limit Sets of Contracted Rotations

Let 0 < ⁄, ” < 1 be real numbers such that ⁄ + ” > 1. We call the map f = f⁄,” : I æ I
given by f(x) := {⁄x+ ”} a contracted rotation with slope ⁄ and o�set ”. Associated with f
we have the map F = F⁄,” : R æ R, given by F (x) = ⁄{x}+ ” + ÂxÊ. We call F a lifting of
f : it is characterised by the properties that F (x+ 1) = F (x) + 1 and {F (x)} = f({x}) for
all x œ R. The rotation number ◊ = ◊⁄,” of f is defined by

◊ := lim
næŒ

Fn(x0)
n

,

where the limit exists and is independent of the initial point x0 œ R.
If the rotation number ◊ is irrational then the restriction of f to the limit set

u
nØ0

fn(I)
is topologically conjugated to the rotation map R = R◊ : I æ I with R(y) = {y + ◊}. The
closure of the limit set is a Cantor set C = C⁄,”, that is, C is compact, nowhere dense,
and has no isolated points. On the other hand, if ◊ is rational then the limit set C is the
unique periodic orbit of f . For each choice of slope 0 < ⁄ < 1 and irrational rotation number
0 < ◊ < 1, there exists a unique o�set ” such that ” + ⁄ > 1 and the map f has rotation
number ◊. It is known that such ” must be transcendental if ⁄ is algebraic [14].

The main result of this section is as follows:

I Theorem 9. Let 0 < ⁄, ◊ < 1 be such that ⁄ is algebraic and ◊ is irrational. Let ” be

the unique o�set such that the contracted rotation f⁄,” has rotation number ◊. Then every

element of the Cantor set C⁄,” other than 0 and 1 is transcendental.

A special case of Theorem 9, in which ⁄ is assumed to be the reciprocal of an integer, was
proven in [8, Theorem 1.2]. In their discussion of the latter result the authors conjecture the
truth of Theorem 9, i.e., the more general case in which ⁄ may be algebraic. As noted in [8],
while C⁄,” is homeomorphic to the Cantor ternary set, it is a longstanding open problem,
formulated by Mahler [19], whether the Cantor ternary set contains irrational algebraic
elements.
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Proof of Theorem 9. For a real number 0 < x < 1 define

›x :=
ÿ

nØ1

(Áx+ (n+ 1)◊Ë ≠ Áx+ n◊Ë)⁄n

›Õ
x

:=
ÿ

nØ1

(Âx+ (n+ 1)◊Ê ≠ Âx+ n◊Ê)⁄n .

Note that for all x the binary sequence È Áx+ (n+ 1)◊Ë ≠ Áx+ n◊Ë : n œ N Í is the coding of
≠x≠ ◊ by 1≠ ◊ (as defined in Section 4) and hence is Sturmian of slope 1≠ ◊. Similarly, the
binary sequence È Âx+ (n+ 1)◊Ê ≠ Âx+ n◊Ê : n œ N Í is the coding of x+ ◊ by ◊ and hence is
Sturmian of slope ◊. Thus for all x, both ›x and ›Õ

x
are Sturmian numbers.

It is shown in [8, Lemma 4.2]2 that for every element of y œ C⁄,” \ {0, 1}, either there
exists z œ Z and 0 < x < 1 with x ”œ Z◊ + Z such that

y = z + ›0 ≠ ›≠x

or else there exists a strictly positive integer m and “ œ Q(—) such that

y = “ + (1 ≠ —≠m) ›Õ
0
.

In either case, transcendence of y follows from Theorem 8. J
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The Threshold Problem for Hypergeometric
Sequences with Quadratic Parameters
George Kenison �

School of Computer Science and Mathematics, Liverpool John Moores University, UK

Abstract
Hypergeometric sequences are rational-valued sequences that satisfy first-order linear recurrence
relations with polynomial coe�cients; that is, ÈunÍŒ

n=0 is hypergeometric if it satisfies a first-order
linear recurrence of the form p(n)un+1 = q(n)un with polynomial coe�cients p, q œ Z[x] and u0 œ Q.

In this paper, we consider the Threshold Problem for hypergeometric sequences: given a
hypergeometric sequence ÈunÍŒ

n=0 and a threshold t œ Q, determine whether un Ø t for each n œ N0.
We establish decidability for the Threshold Problem under the assumption that the coe�cients p

and q are monic polynomials whose roots lie in an imaginary quadratic extension of Q. We also
establish conditional decidability results; for example, under the assumption that the coe�cients
p and q are monic polynomials whose roots lie in any number of quadratic extensions of Q, the
Threshold Problem is decidable subject to the truth of Schanuel’s conjecture. Finally, we show how
our approach both recovers and extends some of the recent decidability results on the Membership
Problem for hypergeometric sequences with quadratic parameters.
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1 Introduction

Background
The Threshold Problem is a fundamental open decision problem in automated verification
that asks to determine whether every term in a recursively defined sequence is bounded from
below by a given value (commonly, the threshold). The Threshold Problem appears under
many guises across the computational and mathematical sciences with applications in fields
as diverse as software verification, probabilistic model checking, combinatorics, and formal
languages (we refer the interested reader to the discussion in [26] and the references therein).

The inputs for the Threshold Problem are a recursively defined sequence ÈunÍŒ
n=0

™ Q
and a threshold t œ Q. (Hereafter, we shall use tuple notation (ÈunÍŒ

n=0
, t) as shorthand for a

given problem instance.) Threshold then asks to determine whether un Ø t for each n œ N0.
Arguably, the variant of the Threshold Problem that has received the most attention in
automated verification is the Positivity Problem for C-finite sequences (those sequences that
obey a linear recurrence relation with constant coe�cients). Therein, Positivity sets as a
threshold t = 0 and so asks whether every term in a C-finite sequence is non-negative.
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Herein we consider the hypergeometric subclass of P-finite sequences (those sequences
that satisfy a linear recurrence relation with polynomial coe�cients) [11]. Recall that a
hypergeometric sequence is a rational-valued first-order linear recurrence sequence with
polynomial coe�cients; that is to say, a sequence ÈunÍŒ

n=0
™ Q that satisfies a relation of the

form

p(n)un+1 = q(n)un (1)

where p, q œ Z[x] and p(x) has no non-negative integer zeros. By the latter assumption on
p(x), the recurrence relation (1) uniquely defines an infinite sequence of rational numbers once
the initial value u0 œ Q is specified. For a hypergeometric sequence ÈunÍŒ

n=0
satisfying (1),

we call the roots of the polynomial pq the sequence’s parameters. Hypergeometric sequences
and their associated generating functions, the hypergeometric series, are commonplace in
fields such as numerical analysis and analytic combinatorics [8, 11].

In this paper, we consider the Threshold Problem for hypergeometric sequences. Naïvely,
we might construe that decidability of the Threshold Problem in this setting is easily settled.
Consider an instance of the Threshold Problem (ÈunÍŒ

n=0
, t). Without loss of generality, we

can assume that ÈunÍŒ
n=0

either diverges to infinity or converges to a non-zero limit (further
explanation behind this assumption is given in the Preliminaries). Suppose that ÈunÍŒ

n=0

converges to a limit not equal to t. From the form of the recurrence relation in (1), we
can compute a bound B such that if n > B then un > t or un < t. Similar deductions
handle the case that ÈunÍŒ

n=0
diverges to infinity. In the case that the limit of ÈunÍŒ

n=0
is

the threshold t, we can compute a similar bound based on the fact that the convergence
to t is eventually monotonic. It follows that, in each case, the Threshold Problem reduces
to exhaustively checking whether un Ø t for each n œ {0, 1, . . . , B}. Unfortunately this
reasoning does not su�ce to decide the Threshold Problem. Indeed, we do not know how
to decide whether a generic hypergeometric sequence converges to a given rational limit.
Further, such convergence questions are intricately linked to open problems concerning
algebraic relations for the gamma function (we give further details below).

Contributions
Our primary contributions are:
(a) The Threshold Problem for hypergeometric sequences whose polynomial coe�cients are

monic and split over an imaginary quadratic field are decidable (Theorem 15).
(b) The Threshold Problem for hypergeometric sequences whose polynomial coe�cients are

monic and each irreducible factor of pq is either linear or quadratic is decidable subject
to the truth of Schanuel’s conjecture (Corollary 18).

We delay a formal statement of Schanuel’s conjecture to the Preliminaries. For our conditional
decidability results, we note that only termination is conditional on Schanuel’s conjecture
and that correctness of our procedure is unconditional (Remark 24). Corollary 18 follows
from the more general result:
(c) The Threshold Problem for hypergeometric sequences whose monic polynomial coe�cients

possess Property S is decidable subject to the truth of Schanuel’s conjecture (Theorem 17
in Subsection 4.1).

Polynomials with Property S (Subsection 4.1) lead to classes of hypergeometric sequences
with unnested radical and cyclotomic parameters.

Our secondary contribution concerns the Membership Problem for hypergeometric se-
quences. Given a hypergeometric sequence ÈunÍŒ

n=0
and target t œ Q, Membership asks to

determine whether there is an n œ N0 for which un = t.
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(d) For classes of hypergeometric sequences where we establish (un)conditional decidability
of the Threshold Problem, we also obtain (un)conditional decidability of the Membership
Problem. This contribution is a straightforward corollary of the following observation:
for hypergeometric sequences, decidability of the Membership Problem reduces to that
of the Threshold Problem (Proposition 7).

We note this secondary contribution both recovers and extends some of the recent results
in work by Kenison et al. [15]. For the avoidance of doubt, we break new ground for the
Membership Problem. For example, we have conditional decidability of the Membership
Problem for hypergeometric sequences with unnested radical and cyclotomic parameters
(both classes fall outside of the remit of the previous works). A concrete subclass is
given by those hypergeometric sequences whose polynomial coe�cients are of the form
(x2 ≠ ¸1)(x2 ≠ ¸2) · · · (x2 ≠ ¸d) where ¸1, . . . , ¸d œ Z.

Approach
As previously mentioned, an obstacle that prevents us from settling decidability of the
Threshold Problem for hypergeometric sequences is determining whether a given hypergeo-
metric sequence converges to some rational limit.

To each hypergeometric sequence ÈunÍŒ
n=0

satisfying (1), we associate the shift quotient
r(x) := q(x)/p(x) œ Q(x). It is clear that the terms of ÈunÍŒ

n=0
are given by a sequence of

partial products such that the nth term is given thus: un = u0 ·
rn

k=0
r(k). Without loss of

generality, we can a normalise a sequence with u0 ”= 0 by assuming that u0 = 1. (We note
that the Threshold Problem is trivial to decide when u0 = 0.) Thus our consideration of the
Threshold Problem reduces to analysing the sequence of partial products È

rn
k=0

r(k)ÍŒ
n=0

. In
all problem instances where the Threshold Problem is not trivial to determine, we employ a
classical theorem in analysis (Theorem 5) that permits us to write the limit of the sequence
È
rn

k=0
r(k)ÍŒ

n=0
as a quotient of two finite products involving the gamma function. Thus

the Threshold Problem for hypergeometric sequences reduces to testing an equality between
gamma products. Our novel approach leverages algebraic and transcendental properties to
settle such equality tests. For example, we frequently employ the algebraic independence
of transcendental constants fi and efi (a celebrated consequence of Nesterenko’s work on
modular functions [20]).

There is a large corpus of research connecting hypergeometric sequences and the gamma
function (often under the guise of infinite product identities [1, 5, 7]). This is particularly
relevant for our approach (as described above) and sets us apart from previous papers on the
Membership Problem in this setting [15, 22]. As a nod to the wider appeal of our approach,
let us consider two examples from the literature on numeric and symbolic computation.

I Example 1 (Numerical evaluation of the Kepler–Bouwkamp constant [5, Section 4]). This
example closely follows work by Chamberland and Straub [5]. Those authors demonstrate the
use of hypergeometric sequences to e�ciently approximate certain numerical constants given
by infinite products. One such example is the Kepler–Bouwkamp constant

rŒ
k=3

cos(fi/k).
The convergence of this infinite product is notoriously slow: the error bound between the
approximation

r
10

4

k=3
cos(fi/k) and the Kepler–Bouwkamp constant is 10≠4.

Let us consider a Padé approximation that uses hypergeometric sequences with quadratic
parameters. We recall that the [2, 2]-Padé approximant of a function f(x) is the rational
function q(x)/p(x) where p, q œ Z[x] are quadratic polynomials for which the Maclaurin series
of q(x)/p(x) agrees with that of f(x) up to order 4. For example, the [2, 2]-Padé approximant
of cos(x) is

ICALP 2024
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r2(x) :=
12 ≠ 5x2

12 + x2
= cos(x) +O(x6).

Now consider
ŒŸ

k=3

r2(fi/k) =
ŒŸ

k=3

12k2 ≠ 5fi
2

12k2 + fi2
=

�(3 ≠ i

6

Ô
3fi)�(3 + i

6

Ô
3fi)

�(3 ≠ 1

6

Ô
15fi)�(3 + 1

6

Ô
15fi)

.

Here the evaluation as a quotient of two gamma products follows from Theorem 5. We
pass this evaluation to any modern computer algebra system and determine that the error
between

rŒ
k=3

r2(fi/k) and the Kepler–Bouwkamp constant is bounded by 10≠3.
Loosely speaking, the [2, 2]-Padé approximant leverages a hypergeometric sequence with

quadratic parameters.1 Higher-order approximants will give a closer numerical estimate via
hypergeometric sequences with higher-degree parameters.

I Example 2 (Evaluation of a gamma product with cyclotomic parameters). Here we include
a simple (yet concrete) example [4, pages 4–6] of the di�culty in determining whether a
hypergeometric sequence converges to a rational limit. Consider

ŒŸ

k=2

k
5 ≠ 1

k5 + 1 =
2 · �

!
≠Ê10

"
�

!
Ê
2
10

"
�

!
≠Ê

3
10

"
�

!
Ê
4
10

"

5 · �
!
Ê10

"
�

!
≠Ê2

10

"
�

!
Ê3
10

"
�

!
≠Ê4

10

" (2)

where Ê10 = e2fii/10 and, once again, the right-hand side is derived from Theorem 5. As
noted by the authors of [4], it is not known whether the limit in (2) is even algebraic.

Whilst the state of the art cannot generally handle the evaluation of expressions given
by gamma products, many works in the literature have established identities for restricted
classes of products (a non-exhaustive list includes [5, 18, 21, 27, 34, 35]). Our connection to
such interests stems from our approach herein: our reduction-step leaves us to determine
whether the ratio of two gamma products (as above) is rational.

Related Work
Membership for Hypergeometric Sequences. Two recent works consider the Membership
Problem for hypergeometric sequences [15, 22]. In both of these works, the authors use
p-adic techniques and divisibility arguments (in stark contrast to the approach herein). It is
worth noting that such techniques seem appropriate only for the Membership Problem and
not the Threshold Problem.

The authors of [22] establish decidability of the Membership Problem for the class of
hypergeometric sequences with rational parameters. Closer to our setting, the authors
of [15] establish decidability of the Membership Problem for the class of hypergeometric
sequences whose polynomial coe�cients (as in (1)) are both monic and split over a quadratic
field. By comparison to [15], we establish decidability of not only the Membership Problem,
but also the Threshold Problem (Theorem 15) for hypergeometric sequences whose monic
polynomial coe�cients split over an imaginary quadratic field. We note our result for the
Membership Problem is weaker for sequences whose monic polynomial coe�cients split over
a real quadratic field: in this setting we are limited to conditional decidability (Proposition 7
and Corollary 18).

1 The quadratics 12k2 ≠ 5fi2 and 12k2 + fi2 do not have rational coe�cients, but in Appendix B we
demonstrate how our approach handles decidability of the Threshold Problem in this example.
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Positivity for P-finite sequences. Identities for P-finite sequences are frequent in the
literature; however, as noted by Kauers and Pillwein, “in contrast,. . . almost no algorithms
are available for inequalities” in this setting [12]. Determining whether the terms of a P-finite
sequence are non-negative has garnered much attention in recent works (see, for example,
[10, 12, 13, 28]). On the one hand, these works handle higher-order P-finite sequences than
the hypergeometric sequences we consider. On the other hand, the algorithms described
in the above studies are restricted in their applicability (placing syntactic restrictions on
the polynomial coe�cients) and termination is not guaranteed for all initial values. Indeed,
genericity of initial conditions (in the sense that, the growth rate of a recurrence sequence
is determined by a positive dominant eigenvalue) is required for the algorithms in [10, 12].
Additionally, determining whether the initial conditions of a given sequence are generic is an
open problem (even at low orders) [13].

Positivity for C-finite sequences. It is easily seen that the Threshold Problem for C-finite
sequences reduces to the Positivity Problem for C-finite sequences. Recall that Positivity
asks to determine whether all terms in a sequence lie above the threshold zero (so the variant
of the Threshold Problem where t = 0). This reduction is straightforward: to determine
whether un Ø t for each n œ N0 we can equivalently ask whether vn := un ≠ t Ø 0 for each
n œ N0. Observe that ÈvnÍŒ

n=0
is C-finite since it is given by the di�erence of two C-finite

sequences ÈunÍŒ
n=0

and ÈtÍŒ
n=0

and we are done.
Decidability of the Positivity Problem for C-finite sequences is considered a challenging

open problem. Further, Positivity and its variants have garnered much research interest in
recent works [9, 14, 23, 24, 25, 26]. Akin to our focus on restricted classes of hypergeometric
sequences herein, the authors of [14] and [23] consider restricted classes of C-finite sequences:
both of those works place restrictions on the algebraic properties of the associated recurrence
relations.

Structure and Outline
This paper is structured as follows. In the next section we gather together relevant preliminary
material. In Sections 3 and 4, we establish (un)conditional decidability of the Threshold
Problem for classes of hypergeometric sequences. In one sense, Section 3 gives an overview
of our approach in the setting of hypergeometric sequences with quadratic parameters. In
Section 4, we introduce the class of polynomials with Property S (Subsection 4.1) and then
show that the Threshold Problem for hypergeometric sequences whose monic polynomial
coe�cients possess Property S is decidable subject to the truth of Schanuel’s conjecture
(Theorem 17 in Subsection 4.2). We make suggestions for future avenues of research in
the conclusion (Section 5). Proofs omitted from the main text are given in Appendix A.
Appendix B contains a worked example related to the Kepler–Bouwkamp (Example 1) and
demonstrates an application of Schanuel’s conjecture.

2 Preliminaries

The Gamma Function. The approach herein relies on transcendence theory for the gamma
function � where

�(z) =
⁄ Œ

0

x
z≠1e≠x

dx for z œ C with Re(z) > 0.
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It is possible to analytically extend the domain of � to the whole complex plane minus the
non-positive integers where the function has simple poles. We briefly recall standard results
for the gamma function. Further details and historical accounts are given in a number of
sources (cf. [2, 37]).

The standard relations for the gamma function give the functional identities: the recurrence
(or translation) property �(z+1) = z�(z) for z /œ Z and the reflection property �(z)�(1≠z) =
fi/ sin(fiz) for z /œ Z. In the domain of the gamma function, repeated application of the
translation property leads to the following “rising factorial” identity. For n œ {1, 2, . . .}, we
have

�(z + n)
�(z) = z(z + 1) · · · (z + n ≠ 1).

Similarly, the “falling factorial” identity is given by

�(z + 1)
�(z ≠ n+ 1) = z(z ≠ 1) · · · (z ≠ n+ 1).

The next technical lemma is derived from the aforementioned properties of the gamma
function. We employ the notation 1

2
Z for the set of integers and half-integers.

I Lemma 3. Let fl œ 1

2
Z. Suppose that w œ C is an algebraic number such that both fl + w

and fl ≠ w lie in the domain of the gamma function and w ”œ 1

2
Z. Up to multiplication by an

algebraic number, we have the following equalities:

�(fl + w)�(fl ≠ w) =

Y
__]

__[

2fiiefiwi

w(1 ≠ e2fiwi) if fl is an integer, or

2fiefiwi

e2fiwi + 1 if fl is a half-integer.

Proof. Let us apply the rising and falling factorial identities (as appropriate to the sign of
fl). Then, up to multiplication by an algebraic number, we have the following equalities:

�(fl + w)�(fl ≠ w) =
I

�(w)�(≠w) if fl is an integer, or
�(1/2 + w)�(1/2 ≠ w) if fl is a half-integer.

Consider the first of the two cases above. The reflection and recurrence formulas lead to

�(w)�(≠w) = �(w)�(1 ≠ w)
≠w

= fi

≠w sin(fiw) = ≠ 2fii
w(efiwi ≠ e≠fiwi) .

For the second case, we employ the cosine variant of Euler’s reflection formula to obtain

�(1/2 + w)�(1/2 ≠ w) = fi

cos(fiw) = 2fi

efiwi + e≠fiwi
.

The equalities in the statement of the lemma quickly follow. J

Decidability and Reduction Results. Recall that a rational-valued sequence ÈunÍŒ
n=0

is
hypergeometric if it satisfies a first-order recurrence relation of the form (1) with polyno-
mial coe�cients p, q œ Z[x]. Due to space restrictions, we omit the proofs of Lemma 4,
Proposition 6, and Proposition 7 from the main text. Each proof is included in Appendix A.

The following straightforward lemma appears in previous works [13, 22].
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I Lemma 4. Consider the class of hypergeometric sequences ÈunÍn whose shift quotients r(n)
either diverge to ±Œ or converge to a limit ¸ with |¸| ”= 1. For this class, the Membership
and Threshold Problems are both decidable.

Thus to decide the Membership and Threshold Problems for hypergeometric sequences,
we need only consider the sequences whose shift quotients r(n) converge to ±1 as n æ Œ.
We say an infinite product

rŒ
k=0

r(k) converges if the sequence of partial products converges
to a finite non-zero limit (otherwise the product is said to diverge). Recall the following
classical theorem ([37, §12] and [5]).

I Theorem 5. Consider the rational function

r(k) := c(k + –1) · · · (k + –m)
(k + —1) · · · (k + —mÕ)

where we suppose that each –1, . . . ,–m,—1, . . . ,—mÕ is a complex number that is neither zero
nor a negative integer. The infinite product

rŒ
k=0

r(k) converges to a finite non-zero limit
only if c = 1, m = m

Õ, and
q

j –j =
q

j —j. Further, the value of the limit is given by

ŒŸ

k=0

r(k) =
mŸ

j=1

�(—j)
�(–j)

.

With Theorem 5 in mind, it is useful to introduce the following terminology for shift
quotients. We call a rational function r(k) (as above) harmonious if r(k) satisfies the
assumptions c = 1, m = m

Õ, and
q

j –j =
q

j —j . From Theorem 5, it is immediately
apparent that a hypergeometric sequence ÈunÍn with shift quotient r converges to a finite
non-zero limit only if r is harmonious.

Related to the assumptions in Theorem 5 (and Proposition 6 below), when considering
Membership and Threshold we can assume without loss of generality that the roots –1, . . . ,–m

of the coe�cient q (as in (1)) are neither zero nor negative integers. For otherwise, a
hypergeometric sequence eventually hits zero and is identically zero thereafter. In [22], Nosan
et al. establish Propositions 6 and 7 for rational parameters. The proof of Proposition 6
given in Appendix A is all but identical to the proof of Proposition 2 in [22].

I Proposition 6. Let ÈunÍn be a hypergeometric sequence whose shift quotient is given by
a ratio of two polynomials with real coe�cients. For such sequences, the Membership and
Threshold Problems are both Turing-reducible to the following decision problem. Given d œ N,
–1, . . . ,–d œ C \ Z<0 (the roots of some P (x) œ R[x]), and —1, . . . ,—d œ C \ Z<0 (the roots
of some Q(x) œ R[x]), determine whether

�(—1) · · ·�(—d)
�(–1) · · ·�(–d)

= t

for t œ Q \ 0.

To be absolutely clear, the fact that t œ Q is non-zero in Proposition 6 follows directly
from the infinite product in Theorem 5 converging to a non-zero limit.

Our (un)conditional decidability results for the Membership Problem follow from the
next proposition. This proposition can be deduced from the work in [22] (a straightforward
proof is given in Appendix A).

I Proposition 7. For hypergeometric sequences, decidability of the Membership Problem
Turing-reduces to that of the Threshold Problem.
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Number Fields. We recall standard results for quadratic fields below (cf. [33, Chapter 3]).
A number field K is quadratic if [K : Q] = 2. A field K is quadratic if and only if there is a
square-free integer d such that K = Q(

Ô
d). Further, a quadratic field Q(

Ô
d) is imaginary if

d < 0.

I Theorem 8. Suppose that d œ Z is square-free. Then the algebraic integers of Q(
Ô
d) are

given by Z[
Ô
d] if d ”© 1 (mod 4) or Z[1/2 +

Ô
d/2] if d © 1 (mod 4).

We include the following straightforward lemma for ease of reference.

I Lemma 9. Let L/Q be a finite Galois extension. Suppose that P œ L(X1, . . . ,Xm) is a
polynomial such that P(s1, . . . , sm) = 0 with (s1, . . . , sm) œ Cm. Then there is a polynomial
Q œ Q(X1, . . . ,Xm) such that Q(s1, . . . , sm) = 0.
Proof. Let P =

q
(t1,...,tm)

c(t1,...,tm)X
t1
1
X

t2
2
· · ·Xtm

m and for each ‡ œ G (the Galois group
of L/Q) let

‡(P) =
ÿ

(t1,...,tm)

‡(c(t1,...,tm))Xt1
1
X

t2
2
· · ·Xtm

m .

Let Q = NL/Q(P) :=
r

‡œG ‡(P). It is clear that each of the coe�cients of the polynomial
Q is rational since the coe�cients are invariant under the action of the group G. Further,

Q(s1, . . . , sm) = P(s1, . . . , sm)
Ÿ

‡œG\eG

‡(P)(s1, . . . , sm) = 0,

as desired. J

Transcendental Number Theory. The transcendence degree of a field extension is a measure
of the size of the extension. In fact, for finitely generated extensions of L/Q (such as those
that we consider), the transcendence degree indicates the largest cardinality of an algebraically
independent subset of L over Q. For a field extension L/Q, a subset {›1, . . . , ›n} µ L is
algebraically independent over Q if for each polynomial P (X1, . . . ,Xn) œ Q[X1, . . . ,Xn] we
have that P (›1, . . . , ›n) = 0 only if P is identically zero.

It is useful to recall the Gelfond–Schneider Theorem that establishes the transcendentality
of –

— for algebraic numbers – and — except for the cases where – = 0, 1 or — is rational.
Schanuel’s conjecture is a unifying prediction in transcendental number theory. If

Schanuel’s conjecture is true, then it generalises several of the principal results in transcend-
ental number theory such as: the Gelfond–Schneider Theorem, the Lindemann–Weierstrass
Theorem, and Baker’s theorem (cf. [16, 3, 36]). The conjecture makes the following predic-
tion: for ›1, . . . , ›n rationally linearly independent complex numbers, there is a subset of
{›1, . . . , ›n, e›1 , . . . , e›n} of size at least n that is algebraically independent over Q.

I Conjecture 10 (Schanuel). Suppose that ›1, . . . , ›n œ C are linearly independent over the
rationals Q. Then the transcendence degree of the field extension Q(›1, . . . , ›n, e›1 , . . . , e›n)
over Q is at least n.

3 Hypergeometric Sequences with Quadratic Parameters

As an appetiser to the proofs of Theorems 15 and 17, we introduce our approach by
first establishing decidability of the Threshold Problem for hypergeometric sequences with
Gaussian integer parameters (Proposition 11 below). We also include a worked example in
Example 12. Recall that the Gaussian integers Z[i] are those complex numbers of the form
a+ bi for which a, b œ Z.
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I Proposition 11. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients are monic and split over Q(i) are decidable.

Proof. By Theorem 5 and Proposition 6, we need only consider hypergeometric sequences
with harmonious shift quotients. Since the polynomial coe�cients p, q œ Z[x] are monic, the
roots and poles of the shift quotient are integers in Q(i); that is to say, they lie in Z[i]. It
follows from Lemma 3 that each such instance (ÈunÍn, t) of the Threshold Problem reduces
to testing an equality of the form

◊fi
¸
Ÿ

m

(ebmfi ≠ e≠bmfi)Ám = t. (3)

Here ◊ is rational and non-zero, ¸ œ Z, each pair �(am + bmi)�(am ≠ bmi) from Proposition 6
contributes a term (ebmfi ≠ e≠bmfi)Ám in the finite product, and Ám = ±1.

We break the remainder of the proof into several subcases. Without loss of generality, we
can assume that not all the roots and poles of r are rational integers, for otherwise testing
(3) reduces to the decidable task of testing equality between two rational numbers.

We continue under the assumption that not all the roots and poles of r are rational
integers. Let us now consider the product in (3). Up to multiplication by a rational, we can
write the left-hand side of (3) in the form

◊fi
¸
Ÿ

m

(ebmfi ≠ e≠bmfi)Ám = ◊fi
¸ f(efi)
g(efi)

where f, g œ Q[X] are non-trivial polynomials. Observe that efi = (efii)≠i = (≠1)≠i; thus, by
the Gelfond–Schneider theorem, efi is transcendental. We break the remainder of the proof
into two cases depending on the rationality of f(efi)/g(efi).

Suppose that f(efi)/g(efi) œ Q. There are two further subcases to consider: if ¸ = 0, then,
once again, the equality test (3) reduces to deciding whether two rationals are equal; and if
¸ ”= 0, then the equality test (3) reduces to testing whether fi

¸ is equal to a given rational
number, which cannot hold for then fi is necessarily algebraic.

All that remains is to consider the case where f(efi)/g(efi) ”œ Q, which we again split
into two subcases. If ¸ = 0, then it is trivial to see that (3) cannot hold as the right-hand
side is rational. If ¸ ”= 0 and we assume, for a contradiction, that (3) holds, then a simple
rearrangement of (3) shows that there is a non-trivial polynomial P œ Q[X,Y ] such that
P(fi, efi) = 0. This contradicts Nesterenko’s theorem [20] that fi and efi are algebraically
independent. We have dispatched each of the subcases and conclude the desired result. J

I Example 12. Suppose that ÈunÍŒ
n=0

is the hypergeometric sequence defined by

un = n
2 ≠ 4n+ 5

n2 ≠ 4n+ 13un≠1 with u0 = 1.

For the Threshold Problem, let us consider the problem instance (ÈunÍn, t) with t œ Q. First,
we evaluate the associated infinite product:

ŒŸ

k=0

k
2 ≠ 4k + 5

k2 ≠ 4k + 13 = �(≠2 ≠ 3i)�(≠2 + 3i)
�(≠2 ≠ i)�(≠2 + i) = sinh(fi)

39 sinh(3fi) = e3fi(e2fi ≠ 1)
39efi(e6fi ≠ 1) .

Second, as directed by the proof of Proposition 11, decidability of the Threshold Problem in
this instance reduces to determining whether the following equality holds:

e3fi(e2fi ≠ 1)
39efi(e6fi ≠ 1) = t.
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A simple rearrangement shows that if the above equality holds, then there is a non-trivial
polynomial p œ Q[X] such that p(efi) = 0, from which we deduce that efi is algebraic.
However, by the Gelfond–Schneider theorem, efi is transcendental. We have reached a
contradiction and deduce that the aforementioned equality cannot hold.

Finally, as described in Proposition 6, the Threshold Problem reduces to an exhaustive
search of a computable number of initial terms in the sequence ÈunÍn. As an aside, by
Proposition 7, we also obtain decidability of the Membership Problem for problem instances
(ÈunÍn, t).

I Remark 13. Subject to appropriate changes and by employing Lemma 9, we can extend
the result in Proposition 11 from instances of the Membership and Threshold Problems
(ÈunÍn, t) with u0, t œ Q to problem instances with u0, t œ L(fi, efi) where L is any finite
Galois extension of Q. This extension similarly holds for Theorem 15 (below).
I Remark 14. Analogous decision procedures to the proof of Proposition 11 also hold for
other famous rings of integers: the Eisenstein, Kummer, and Kleinian integers. Recall that
the Eisenstein integers are the elements of Z[’3] = {a + b’3 : a, b œ Z} where ’3 := e2fii/3.
Similarly, the Kummer integers are the elements of Z[

Ô
≠5] = {a+ b

Ô
≠5 : a, b œ Z}. Finally,

the Kleinian integers are the elements of Z[µ] = {a+ bµ : a, b œ Z} where µ = ≠1/2+
Ô

≠7/2.
The claims for decidability in Remark 14, follow from the next theorem. We establish

decidability of the Threshold Problem for hypergeometric sequences whose parameters are
drawn from the ring of integers of an imaginary quadratic number field.

I Theorem 15. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients are monic and split over an imaginary quadratic number field is decidable.

Proof. Mutatis mutandis, the proof of Theorem 15 follows the approach in Proposition 11.
For the sake of brevity, we shall indicate only the major changes to Proposition 11 here.
Consider the ring of integers of an imaginary quadratic field Q(

Ô
d) where ≠d œ N is square-

free. By Theorem 8, there are two cases to consider: first, when d ”© 1 (mod 4) and second,
when d © 1 (mod 4).

We concentrate on the changes to the proof of Proposition 11 when d ”© 1 (mod 4). Like
before, we can use the recurrence formula to write �(a + b

Ô
d) = ◊�(b

Ô
d) where ◊ œ N.

Thus all that remains is to evaluate products �(b
Ô
d)�(≠b

Ô
d) of conjugate elements. By the

reflection formula, we have

�(b
Ô
d)�(≠b

Ô
d) = ≠ fi

b
Ô
d sin(bfi

Ô
d)

= 2fi

b
Ô

≠d(efib
Ô

≠d ≠ e≠fib
Ô

≠d)
.

The important update is the product in (3). In our new setting, the product takes the form
Ÿ

m

(efib
Ô

≠d ≠ e≠fib
Ô

≠d)Ám .

Observe that efi
Ô

≠d is transcendental (once again by Gelfond–Schneider) and that for each
≠d œ N the numbers fi and efi

Ô
≠d are algebraically independent over Q [20, Corollary 6].

The rest of the proof in this case follows as before.
In the second case where d © 1 (mod 4) we must additionally deal with contributions of

the form �(b/2 + b
Ô
d/2)�(b/2≠ b

Ô
d/2). This setting introduces cases where 2 - b, which we

resolve by repeated application of the recurrence formula and the cosine variant of Euler’s
reflection formula. Indeed, we have

�(1/2 + b

Ô
d/2)�(1/2 ≠ b

Ô
d/2) = fi

cos(fib
Ô
d/2)

= 2fi

efib
Ô

≠d/2 + e≠fib
Ô

≠d/2
,
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and so we can construct an updated version of the product in (3). This update and analogous
arguments for the transcendental properties of efi

Ô
≠d/2 let us conclude decidability in this

case too. J

4 Conditional Decidability Subject to Schanuel’s conjecture

In this section we shall give a generalisation (Theorem 17) of the decidability results in
Section 3. The result applies to a strictly larger class of hypergeometric sequences; however,
we sacrifice unconditional decidability. Briefly, termination of the decidability procedure in
Theorem 17 is dependent on the truth of Schanuel’s conjecture (further details are given in
Remark 24). The motivation for studying reachability problems for this larger class arises
from interest in the literature for limits of hypergeometric sequences with unnested radical
and cyclotomic parameters (see Subsection 4.2).

Let us first describe the class of hypergeometric sequences for which we establish con-
ditional decidability of the Membership and Threshold Problems. This will require us to
introduce some notations and Property S below.

Consider Rf the multiset of roots of a given monic polynomial f œ Z[x] and Vf the
multiset of irrational roots of f . We define the graph Gf := (Vf , Ef ) with vertex set Vf and
edge set Ef . Here Ef is encoded using an adjacency matrix A (whose rows and columns are
indexed by Vf ) as follows. For distinct u, v œ Vf , let A(u, v) = 1 if u = fl +w and v = fl ≠ w

for some fl œ 1

2
Z and w an algebraic number not in 1

2
Z. Otherwise, let A(u, v) = 0.

I Property S. We say that f has Property S if Gf admits a perfect matching.

The motivation for introducing Property S is as follows: in combination with Lemma 3
and subject to the truth of Schanuel’s conjecture, we can circumvent certain hard problems
concerning the evaluation of gamma products if the input parameters possess certain sym-
metries. The main result of this section is a conditional decidability result for the class of
hypergeometric sequences whose polynomial coe�cients are monic and possess Property S.

I Theorem 17. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients (as in (1)) are both monic and have Property S is decidable subject to the truth
of Schanuel’s conjecture.

The remainder of this section is structured as follows. In Subsection 4.1 we list classes of
polynomials with Property S and highlight straightforward corollaries (Corollaries 18, 22,
and 23) of Theorem 17. In Subsection 4.2 we prove Theorem 17.

4.1 Polynomials with Property S
Even Polynomials. It is immediate that even polynomials with at least one irrational root
possess Property S. Suppose that f œ Z[x] is a monic even polynomial. Then f(≠x) = f(x)
and so Gf admits a perfect matching, as desired. More generally, we note that a horizontal
translation of such a polynomial, say f̃ , for which f̃(fl ≠ x) = f̃(fl + x) where fl œ 1

2
Z, also

has Property S.

Quadratic Polynomials. Every irreducible monic quadratic polynomial in Z[x] possesses
Property S. This observation is straightforward: consider an irreducible monic quadratic
polynomial x2 + bx+ c œ Z[x]. The roots of said quadratic satisfy ≠ b

2
±

Ô
b2≠4c
2

. We note
that ≠ b

2
œ 1

2
Z and b

2 ≠ 4c ”= 0.
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The following corollary is a straightforward consequence of Theorem 17: we have condi-
tional decidability of the Threshold Problem for hypergeometric sequences whose parameters
are drawn from the rings of integers of quadratic number fields.

I Corollary 18. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients are monic with irreducible factors that are either linear or quadratic is decidable
subject to the truth of Schanuel’s conjecture.

We note that the assumption in Corollary 18 permits us to draw sequence parameters from
the integers of any number of quadratic fields in order to establish conditional decidability of
both the Threshold and Membership Problems. This is in stark contrast to the work in [15]
that establishes decidability of Membership for hypergeometric sequences whose parameters
are drawn from the integers of a single quadratic field.

Algebraic Numbers with Rational Real Part. Consider the class C of monic irreducible
polynomials in Q[x] that possess a root with rational real part. Trivially, a linear polynomial
with rational coe�cients is always a member of C since the single root of the polynomial is
rational. It is straightforward to see that an irreducible quadratic polynomial x2+bx+c œ Q[x]
is in C if and only if b2≠4c < 0. Dilcher, Noble, and Smyth [6] achieve a complete classification
of the class C with the following result.

I Theorem 19 ([6, Theorem 1]). Let f be a polynomial of degree at least three. Then f œ C
if and only if f(x) = g((x ≠ fl)2) for some fl œ Q and monic irreducible g œ Q[X] that has a
negative real root. In this case, f has a root with a rational real part fl.

The following corollary is key to understanding the connection to Property S and demonstrates
the 2-fold rotational symmetry of the set of roots of a polynomial in C.

I Corollary 20 ([6, Corollary 2]). Suppose that f œ C has degree at least three. The roots of f
that have rational real part have the same real part fl. Further, we have f(fl ≠ x) = f(fl + x).

The trivial lemma below shows that if an algebraic integer has rational real part, then
said real part lies in 1

2
Z.

I Lemma 21. Let – be an algebraic integer with Re(–) œ Q. Then Re(–) œ 1

2
Z.

Proof. Since Re(–) = 1

2
(– + –), we deduce that – + – œ Q. Observe that both – and – are

algebraic integers and so – + – is too due to the closure of the ring of algebraic integers. We
deduce that – + – œ Z, from which the desired result follows. J

When we combine the result in Theorem 17 with the observations in Corollary 20
and Lemma 21 we obtain the following corollary.

I Corollary 22. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients are monic with irreducible factors in C is decidable subject to the truth of Schanuel’s
conjecture.

Unnested Radicals and Cyclotomic Polynomials. We now highlight the class of hyper-
geometric sequences with parameters determined by unnested radicals and cyclotomic
polynomials. The limits of such sequences are considered in both [29, pp. 753–757] and [7].
In the sequel we use �d to denote the dth cyclotomic polynomial. We state and prove the
following corollary of Theorem 17.
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I Corollary 23. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients have irreducible factors of the form x

d ≠ a with d œ 2Z, or �d with d œ 4Z is
decidable subject to the truth of Schanuel’s conjecture.

Proof. In light of Theorem 17, it is su�cient to prove that non-linear polynomials of the
form x

d ≠ a with d œ 2Z, or �d with d œ 4Z have Property S.
We first consider irreducible factors of the form x

d ≠ a œ Z[x]. The roots of xd ≠ a are
unnested radicals of the form m

Ô
aÊ

j
m for j œ {0, . . . ,m ≠ 1} where Êd := e2fii/d. Recall that

x
d ≠ a œ Z[x] is irreducible if a is not the Nth power of an element of Q for some N > 1 with

N | d (cf. [19]). When d is even, it follows that xd ≠ a is even and so possesses Property S.
The cyclotomic polynomial �d is irreducible and its roots are the primitive dth roots of

unity. Under the assumption that d is a multiple of four, it is straightforward to show that
�d is even. It follows that for such d, �d has Property S. J

We note with our approach we cannot lift the additional assumption that d œ 4Z for
cyclotomic factors: the set of primitive 18th roots of unity {Ê18,Ê

5
18
,Ê

7
18
,Ê

11
18
,Ê

13
18
,Ê

17
18
} show

that �18 does not have Property S.

4.2 Proof of Theorem 17
We now prove our main result. A worked example, demonstrating our approach, is given in
Appendix B.

I Theorem 17. The Threshold Problem for hypergeometric sequences whose polynomial
coe�cients (as in (1)) are both monic and have Property S is decidable subject to the truth
of Schanuel’s conjecture.

Proof. Let ÈunÍŒ
n=0

be a hypergeometric sequence whose polynomial coe�cients are both
monic and satisfy Property S. We assume without loss of generality that the associated
shift quotient r(x) := q(x)/p(x) is harmonious. As previously noted, each instance of the
Threshold Problem (ÈunÍn, t) with t œ Q reduces to checking an equality of the form

�(—1) · · ·�(—d) = t�(–1) · · ·�(–d) (4)

where {–1, . . . ,–d} =: Rp and {—1, . . . ,—d} =: Rq are the multisets of the roots of the
respective polynomial coe�cients p and q. The proof is split into two parts: a reduction to
an equality testing problem and a proof of decidability subject to the truth of Schanuel’s
conjecture.

Reduction to Equality Testing. Since pq is a monic polynomial, the rational elements of the
multisets Rp and Rq are rational integers (so we can assume their contributions are absorbed
into the rational parameter t in (4)). Further, under Property S there are perfect matchings
on both of the graphs Gp and Gq, which we denote by Mp and Mq respectively. Indeed,
we recall that in Gp the edges in Mp are of the form e(–≠,–+) such that –± = fle ± we

where fle œ 1

2
Z and we is an algebraic number not in 1

2
Z (and similarly for Gq and Mq). In

this setting, we repeatedly apply the recurrence formula and absorb the resulting algebraic
factors into a single term ◊ in order to rewrite (4) as

Ÿ

iœMq

�(wi)�(≠wi) = ◊

Ÿ

jœMp

�(wj)�(≠wj). (5)
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Consider the set of algebraic numbers {w1, . . . , wM} determined by the parameters in (5).
We denote by S

Õ := {sÕ
1
, . . . , s

Õ
m} a maximal subset of {w1, . . . , wM} for which the elements

of {fi,fii} fi fiS
Õ are Q-linearly independent (here fiS

Õ := {fis
Õ
1
, . . . ,fis

Õ
m}). Then for each

k œ {1, . . . ,M}, write wk as a Q-linear sum of elements in {sÕ
1
, . . . , s

Õ
m} so that

wk = xk1

yk1
s

Õ
1
+ · · ·+ xkm

ykm
s

Õ
m.

We define sj := s
Õ
j/ lcm(y1j , y2j , . . . , yMj) for each j œ {1, . . . ,m}. Now we can write each

wk œ {w1, . . . , wM} as a Z-linear sum of elements in the normalised set S := {s1, . . . , sm}.
We apply Lemma 3 to (5) and, by the preceding paragraph, determine that the problem

of testing the equality in (5) reduces to that of determining whether a certain non-trivial
polynomial with coe�cients in Q(◊) vanishes at a given point (this is analogous to the process
in Proposition 11 and Example 12). More specifically, we want to test whether a given
non-trivial polynomial P œ Q(◊)[X1, . . . ,X4m+4] satisfies

P
!
fi,fii,fiS,fiSi, efi

, efii
, efiS

, efiSi
"
= 0. (6)

Here fiSi := {fis1i, . . . ,fismi}, efiS := {efis1 , . . . , efism}, and likewise for efiSi. Note that we
need only consider a polynomial in 4m+ 4 variables as the parameters {w1, . . . , wM} of our
problem instance are given by Z-linear combinations of the elements of S fiSi. We claim that
the equality in (6) cannot hold if Schanuel’s conjecture is true. We prove this claim below.

Conditional Decidability Subject to Schanuel’s conjecture. Consider the set

S :=
)

fi,fii,fiS,fiSi, efi
, efii

, efiS
, efiSi

*

with cardinality 4m+ 4. We observe that the elements in the subset {fi,fii,fiS,fiSi} µ S
are Q-linearly independent. It follows that if Schanuel’s conjecture is true, then S possesses
a subset of cardinality at least 2m+ 2 whose elements are algebraically independent. By
construction, this algebraically independent subset is necessarily {fi, efi

, efiS
, efiSi} since the

2m+ 2 elements of {fi,fii,fiS,fiSi} are pairwise algebraically dependent and efii = ≠1.
We now rewrite the equality in (6) in terms of the (obvious) polynomial P̂ that absorbs

the algebraically dependent parameters of S fi Si into the coe�cients. That is to say, we
employ a polynomial P̂ œ L(X1, . . . ,X2m+2) where L is the Galois closure of the number
field Q(◊)(S, Si) and evaluate P̂ on the algebraically independent subset {fi, efi

, efiS
, efiSi} of

S. It follows that the equality in (6) holds only if

P̂ (fi, efi
, efiS

, efiSi) = 0. (7)

By Lemma 9, the equality in (7) holds only if there exists a non-trivial polynomial Q œ
Q[X1, . . . ,X2m+2] such that Q(fi, efi

, efiS
, efiSi) = 0. Recall that if Schanuel’s conjecture is

true, then the elements of the set {fi, efi
, efiS

, efiSi} are algebraically independent over Q,
from which we deduce that the preceding equality cannot hold.

Subject to the truth of Schanuel’s conjecture, we can determine equality tests of the
above form. Thus we have conditional decidability of the Threshold Problem for the desired
class of hypergeometric sequences. J

I Remark 24. We note that the equality test Q(fi, efi
, efiS

, efiSi) = 0 can be realised as
a proposition in the first-order theory of the reals with exponentiation. Macintyre and
Wilkie [17] established decidability of said theory subject to the truth of Schanuel’s conjecture.
As noted in previous works, careful inspection of Macintyre and Wilkie’s algorithm reveals
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that correctness is independent of the truth of Schanuel’s conjecture. Indeed, Schanuel’s
conjecture is only used to prove termination. Thus if we apply Macintyre and Wilkie’s
algorithm to determine whether the equality Q(fi, efi

, efiS
, efiSi) = 0 holds and find the

procedure terminates, then the output is certainly correct.
We note that Macintyre and Wilkie’s algorithm terminates unless the inputs constitute

a counterexample to Schanuel’s conjecture. Thus, the process underlying the proof of
Theorem 17 presents an interesting prospect in the sense described by Richardson in [31]
(see also [32]) “A failure of the [process] to terminate would be even more interesting than
[its] success.”

I Remark 25. Recall Remark 13 where we extended our class of problem instances to include
setups with u0, t œ L(fi, efi). Under the assumption that Schanuel’s conjecture is true we can
include a broader range of setups. Notice, for instance, that the algebraic independence of fi

and e is currently unknown; however, if Schanuel’s conjecture is true, then it follows that fi

and e are algebraically independent. Thus, subject to the truth of Schanuel’s conjecture, we
can extend our results in Proposition 11, Theorem 15, and Theorem 17 to instances where
u0, t œ L(fi, e). In fact, we can go further in this direction since the truth of Schanuel’s
conjecture implies the algebraic independence of the numbers e, efi, ee, fi, fi

fi, fi
e, 2fi, 2e,

log fi, log 2, log 3, log log 2, (log 2)log 3, 2
Ô
2, and many more (cf. [30, Conjecture S7]).

5 Conclusion

Summary. In this paper we establish (un)conditional decidability results for the Threshold
Problem for hypergeometric sequences and, as a side-e�ect, (un)conditional decidability
results for the Membership Problem for hypergeometric sequences. Previous works have
considered the Membership Problem for hypergeometric sequences [13, 22]; however, the
approach in those works cannot handle instances of the Threshold Problem. The novelty of
our approach is the combination of a classical convergence result (Theorem 5) with results
on the algebraic independence of common mathematical constants.

Obstacles. Let us illustrate an immediate obstacle to the methods herein. We cannot
handle parameters drawn from biquadratic fields because the monic polynomials that split
over such fields are not necessarily amenable to our approach. Recall that biquadratic fields
are a particularly well-behaved class of quartic fields (such as Q(

Ô
5,

Ô
13) and Q(

Ô
21,

Ô
33)).

For example the minimal polynomial x4 ≠ 5x3 ≠ 71x2 + 120x+ 1044 of (5 + 3
Ô
5 +

Ô
13 +

3
Ô
65)/4 œ Q(

Ô
5,

Ô
13) does not have Property S. Similarly, the minimal polynomial

x
4 ≠ x

3 ≠ 16x2 + 37x ≠ 17 of (1 +
Ô
21 +

Ô
33 ≠

Ô
77)/4 œ Q(

Ô
21,

Ô
33) does not have

Property S. Both of these examples are taken from [38].
We also note that the class of sequences we can handle does not permit standard operations

on the parameters such as addition. Consider, for example, that
Ô
2 and 4Ô2 are both unnested

radicals whose minimal polynomials satisfy Property S; however, the minimal polynomial
x
4 ≠ 4x2 ≠ 8x+ 2 of

Ô
2 + 4Ô2 does not possess Property S.

It is not clear how to extend our approach to hypergeometric sequences with larger classes
of parameters. For example, the parameters herein are all algebraic integers. Even in the
restricted setting of hypergeometric sequences with rational parameters (as in the work of
Nosan et al. [22]) it is beyond the state of the art to evaluate equalities between associated
gamma products. Indeed, for s œ {1/6, 1/4, 1/3, 2/3, 3/4} and n œ N, it is known that
�(n+ s) is a transcendental number and algebraically independent of fi (cf. [36]). However,
transcendence of the gamma function at other rational points is not known. It is notable that
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for rational parameters determining equality between gamma products is decidable subject
to the truth of the Rohrlich–Lang conjecture (which itself concerns multiplicative relations
for the gamma function [16, 36]).

Directions for Future Work. We give one class of hypergeometric sequences whose paramet-
ers link the related works. Consider the class of hypergeometric sequences whose parameters
lie in Q(i). For such sequences, decidability of both the Membership and Threshold Problems
is open.

The sequences in this class generalise the setting discussed here (and in work by Kenison et
al. [15]) by removing the condition that the polynomial coe�cients of the defining recurrence
relation are both monic. Further, results in this direction would extend the discussion of
the Membership Problem for hypergeometric sequences with rational parameters in work by
Nosan et al. [22] as well as those sequences whose polynomial coe�cients have irreducible
factors in C (i.e., each irreducible factor has a root with rational real part) discussed herein.
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A Appendixed Proofs

I Lemma 4. Consider the class of hypergeometric sequences ÈunÍn whose shift quotients r(n)
either diverge to ±Œ or converge to a limit ¸ with |¸| ”= 1. For this class, the Membership
and Threshold Problems are both decidable.

Proof. When r(n) © 0 decidability of both problems is trivial. So we assume that this is
not the case for the remainder of the proof. Write the shift quotient r(n) = c

q(n)
p(n) where

p, q œ Q[x] are monic polynomials and c œ Q. Without loss of generality, we can assume
that c > 0; for otherwise, sequence ÈunÍŒ

n=0
is given by the interlacing of two hypergeometric

sequences with this property. Let us assume that r(n) diverges to +Œ. In this case it is
easily seen that, for each t œ Q, there exists a computable N0 œ N such that if n Ø N0 then
|un| = |u0 ·

rn
k=0

r(k)| > |t|. Thus to determine the Threshold Problem in this instance, we
need only determine the ultimate sign of ÈunÍŒ

n=0
(which is straightforward). Moreover, we

can compute a bound N1 after which the sign of ÈunÍŒ
n=0

is constant. Thus the Threshold
Problem in such instances reduces to an exhaustive search that asks whether un Ø t for
each n œ {0, 1, . . . ,max{N0, N1}}. Mutatis mutandis, decidability is similarly established for
instances of the Threshold Problem where r(n) converges to a limit ¸ with |¸| ”= 1.

The argument for the Membership Problem is similar and given in full in [22]. J

I Proposition 6. Let ÈunÍn be a hypergeometric sequence whose shift quotient is given by
a ratio of two polynomials with real coe�cients. For such sequences, the Membership and
Threshold Problems are both Turing-reducible to the following decision problem. Given d œ N,
–1, . . . ,–d œ C \ Z<0 (the roots of some P (x) œ R[x]), and —1, . . . ,—d œ C \ Z<0 (the roots
of some Q(x) œ R[x]), determine whether

�(—1) · · ·�(—d)
�(–1) · · ·�(–d)

= t

for t œ Q \ 0.

Proof. From Lemma 4, we need only consider cases where the associated shift quotient
r(k) converges to ±1 and, by Theorem 5, we can assume without loss of generality that
r(k) is harmonious. We treat the case that the sequence of partial products È

rn
k=0

r(k)Ín is
eventually strictly increasing. The case where the sequence of partial products is eventually
strictly decreasing follows mutatis mutandis.
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Consider an instance (ÈunÍn, t) of the Threshold Problem with r(k) as above and recall
our running assumption that u0 = 1. Let · :=

rŒ
k=0

r(k). We assume that the sequence
ÈunÍn, whose terms un =

rn
k=0

r(k) are given by partial products, is eventually strictly
increasing. Then there exists a computable N œ N such that un < · for each n Ø N . There
are two subcases to consider. First, if · Æ t then it is clear that un < t for each n Ø N and
so we return the answer no to the Threshold Problem. Second, if · > t then there exists
an N1 œ N such that un > t for each n Ø N1. So decidability of Threshold in this instance
reduces to an exhaustive check that asks whether un Ø t for each n œ {0, 1, . . . , N ≠ 1}.

All that remains is to decide whether · Æ t. It is clear that, by computing · to su�cient
precision, the problem of determining whether · < t or · > t is recursively enumerable.
Thus we need only test whether the equality · = t holds. By Theorem 5, we know that
· =

rm
j=1

�(—j)/�(–j), from which we deduce the desired result.
For the sake of brevity, we omit the argument for the reduction from the Membership

Problem, which is near identical to the reasoning displayed above. J

I Proposition 7. For hypergeometric sequences, decidability of the Membership Problem
Turing-reduces to that of the Threshold Problem.

Proof. By Theorem 5 and Proposition 6, we need only consider hypergeometric sequences
with harmonious shift quotients. Thus, we continue under this assumption.

Let (ÈunÍn, t) be an instance of the Membership Problem as above and, in addition,
assume that ÈunÍn is eventually decreasing. We note there is a computable bound N0 œ N
such that un+1 Æ un for all n Ø N0. Now let · be the limit of the the sequence ÈunÍn. Either
we have that · = t or · ”= t. We note that the Membership Problem is decidable when · ”= t

and so it remains to test cases when · = t.
Suppose that an oracle for the Threshold Problem returns the answer yes to the problem
instance (ÈunÍŒ

n=N0
, ·). Since un+1 < un for all n Ø N0, we deduce that · is not

a member of the sequence ÈunÍŒ
n=N0

. Thus all that remains is to test whether · œ
{u0, u1, . . . , uN0≠1}.
Suppose that an oracle for the Threshold Problem returns the answer no to the problem
instance (ÈunÍŒ

n=N0
, ·). Then there is a computable bound N1 such that un < · for

all n Ø N1. Thus we can decide the Membership Problem by testing whether · œ
{u0, u1, . . . , uN1≠1}.

We note a similar argument to that given above holds for testing the Membership
Problem for hypergeometric sequences that are eventually increasing. Thus we deduce the
desired result: that decidability of the Membership Problem for hypergeometric sequences
Turing-reduces to that of the Threshold Problem for hypergeometric sequences. J

B Threshold for the Kepler–Bouwkamp Constant Approximation

In this section we demonstrate that we can conditionally determine the Threshold Problem
for instances (ÈvnÍŒ

n=3
, t) where sequence ÈvnÍŒ

n=3
is the recurrence sequence associated

with the approximation of the Kepler–Bouwkamp Constant (Example 1) by the [2, 2]-Padé
approximant of cos( · ).

Let us begin. Recall that the sequence ÈvnÍŒ
n=3

has terms given by vn :=
rn

k=3

12k2≠5fi2

12k2+fi2 .
By Proposition 6, decidability of problem instance (ÈvnÍŒ

n=3
, t) reduces to determining whether

ŒŸ

k=3

12k2 ≠ 5fi
2

12k2 + fi2
=

�(3 ≠ i

6

Ô
3fi)�(3 + i

6

Ô
3fi)

�(3 ≠ 1

6

Ô
15fi)�(3 + 1

6

Ô
15fi)

(8)

is equal to t. (We note that the formulation as a gamma product is given to us by Theorem 5.)
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We consider the numerator and denominator in turn. First, we use the translation and
reflection properties of the gamma function to write the numerator of (8) as

�
3
3 ≠

Ô
3fii
6

4
�

3
3 +

Ô
3fii
6

4
= �

3
≠

Ô
3fii
6

4
�

3Ô
3fii
6

4 2Ÿ

k=0

3
k
2 + fi

2

12

4

= 4
Ô
3

e
fi2
2

Ô
3 ≠ e≠ fi2

2
Ô

3

2Ÿ

k=0

3
k
2 + fi

2

12

4

= 4
Ô
3e

fi2
2

Ô
3

e
fi2
Ô

3 ≠ 1

2Ÿ

k=0

3
k
2 + fi

2

12

4
. (9)

Second, we likewise write the denominator of (8) as

�
3
3 ≠

Ô
15fi

6

4
�

3
3 +

Ô
15fi

6

4
= �

3
≠

Ô
15fi

6

4
�

3Ô
15fi

6

4 2Ÿ

k=0

3
k
2 ≠ 5fi

2

12

4

= ≠ 12i
Ô
15

1
e

Ô
15fi2i
6 ≠ e≠

Ô
15fi2i
6

2
2Ÿ

k=0

3
k
2 ≠ 5fi

2

12

4

= ≠ 12iefi2Ô
15i

6

Ô
15

1
efi2Ô

15i
3 ≠ 1

2
2Ÿ

k=0

3
k
2 ≠ 5fi

2

12

4
. (10)

Let us consider the decision problem at hand. Taken together, we are tasked to determine
whether the ratio of (9) and (10) is equal to t. For this equality to hold, a simple rearrangement
argument leads us to the following: there is a non-trivial polynomial Q œ Q[x, y, z] = 0
such that Q

!
fi
2
, e

fi2
Ô

3 , e
Ô

15fi2i
3

"
= 0 (the fact that such a polynomial with rational coe�cients

exists is guaranteed by Lemma 9). However, we claim that no such polynomial Q exists if
Schanuel’s conjecture is true.

Let us prove the above claim. Consider the set

S :=
;

fi2
Ô
3
,

Ô
15fi2

i

3
,fii, e

fi2
Ô

3 , e
Ô

15fi2i
3 , efii

<
.

We note that the elements of
)

fi2
Ô
3
,

Ô
15fi2

i

3
,fii

*
are Q-linearly independent. Thus, Schanuel’s

conjecture predicts that there is a subset ofS of size at least 3 whose elements are algebraically
independent. Since fi2

Ô
3
and

Ô
15fi2

i

3
are algebraically dependent and efii = ≠1, we deduce

that, subject to the truth of Schanuel’s conjecture, the elements of
)

fi
2
, e

fi2
Ô

3 , e
Ô

15fi2i
3

*
are

algebraically independent. From the preceding work, we deduce that there is no non-trivial
polynomial Q for which Q

!
fi
2
, e

fi2
Ô

3 , e
Ô

15fi2i
3

"
= 0. It follows that the desired equality cannot

hold. Thus we can conditionally decide the Threshold Problem for instances (ÈvnÍŒ
n=0

, t)
with t œ Q.
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1 Introduction

Constraint satisfaction problems (CSPs) form a large class of fundamental computational
problems studied in artificial intelligence, database theory, logic, graph theory, and computa-
tional complexity. Since CSPs (with infinite domains) capture, up to polynomial-time Turing
reductions, all computational problems [11], some restrictions need to be imposed on CSPs
in order to have a chance to obtain complexity classifications. One line of work, pioneered in
the database theory [36], restricts the interactions of the constraints in the instance [30, 41].

Another line of work, pioneered in [34, 26], restricts the types of relations used in the
instance; these CSPs are known as nonuniform CSPs, or as having a fixed template/constraint
language. Such CSPs with infinite domains capture graph acyclicity, systems of linear
equations over the rationals, and many other problems [10]. Already fixed-template CSPs
with finite domains form a large class of fundamental problems, including graph colourings [32],
variants of the Boolean satisfiability problem, and, more generally, systems of equations over
di�erent types of finite algebraic structures. Even then, the class of finite-domain CSPs
avoided a complete complexity classification for two decades despite a sustained e�ort.

In 2017, Bulatov [20] and, independently, Zhuk [47] classified all finite-domain CSPs
as either solvable in polynomial time or NP-hard, thus answering in the a�rmative the
Feder-Vardi dichotomy conjecture [26]. In the e�ort to answer the Feder-Vardi conjecture,
many complexity dichotomies were established in restricted fragments of CSPs. This included
conservative CSPs [19], or equations over finite algebraic structures such as semigroups,
groups, and monoids [29, 35]. In particular, while systems of equations1 over Abelian groups
are solvable in polynomial time, they are NP-hard over non-Abelian groups [29].

1 Some papers use the term a linear equation.
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One of the recent research directions in constraint satisfaction that has attracted a lot of
attention is the area of promise CSPs (PCSPs) [3, 13, 5]. The idea is that each constraint has
two versions, a strong version and a weak version. Given an instance, one is promised that a
solution satisfying all strict constraints exists and the goal is to find a solution satisfying all
weak constraints, which may be an easier task. The prototypical example is the approximate
graph colouring problem [28]: Given a 3-colourable graph, can one find a 6-colouring? The
complexity of this problem is open (but believed to be NP-hard). Despite a flurry of papers
on PCSPs, e.g., [27, 1, 4, 17, 43, 44, 6, 2, 21, 14, 15, 24, 22], the PCSP complexity landscape
is widely open and unexplored. It is not even clear whether a dichotomy should be expected.
Even the case of Boolean PCSPs remain open, the state-of-the-art being a dichotomy for
Boolean symmetric PCSPs [27]. This should be compared with Boolean (non-promise) CSPs,
which were classified by Schaefer in 1978 [45]. Schaefer’s tractable cases include the classic
and well-known examples of CSPs: equations and graph colouring. Both have been studied
on non-Boolean domains and their complexity is well understood. However, the complexity
of the promise variant of these fundamental problems is open. The first problem, graph
colouring, leads to the already mentioned approximate graph colouring problem, which is a
notorious open problem, despite recent progress [5, 38]. In this paper, we look at the second
problem, and study PCSPs capturing systems of equations.

Contributions

The precise statements of all our main results are presented in Section 3.
As our most important contribution, in Section 5 we establish a complexity dichotomy

for PCSPs capturing promise systems of equations over finite monoids, and over finite groups
as a special case. Perhaps unsurprisingly, the tractability boundary is linked to the notion of
Abelianness, just like in the non-promise setting, but the result is non-trivial and requires
some care. Our main tool is the “the algebraic approach to PCSPs” [5]. The influential
paper [5] identified minions as an important concept. Minions generalise the notion of “a
family of functions that is closed under permuting arguments, identifying arguments, and
adding dummy arguments”. A crucial example is the polymorphism minion of a PCSP
template. Polymorphisms can be seen as high-dimensional symmetries of a PCSP template
and capture the complexity of the underlying computational problem [13, 5]. Following the
algebraic approach [5], hardness of a PCSP is established by showing that the associated
polymorphism minion is, in some sense, limited. Conversely, if this minion is rich enough
then the PCSP can be shown to be solvable via some e�cient algorithm [5, 16, 22, 15].

To prove our main result, we study a class of minions that arise naturally from monoids,
which we call monoidal minions. In Section 4 we show a complexity dichotomy for PCSPs
whose polymorphism minions are homomorphically equivalent to some monoidal minion.
This is our second contribution, which may be of independent interest. In particular, the
concept of monoidal minions captures studied minions, cf. Remark 14 in Section 3.

All our tractability results use solvability via the BLP ` AIP algorithm [16]. In fact,
tractable PCSPs corresponding to promise systems of equations over monoids are finitely
tractable in the sense of [13, 1]. In the special case of promise systems of equations over groups,
the a�ne integer programming (AIP) algorithm [13, 5] su�ces, rather than BLP `AIP.
However, AIP is provably not enough to solve promise equations over general monoids.

As our final contribution, in Section 6 we show that our dichotomy for systems of equations
over monoids cannot be easily extended to semigroups, as this would imply a dichotomy for
all PCSPs. We do so by showing that every PCSP is polynomial-time equivalent to a PCSP
capturing systems of equations over semigroups, a phenomenon observed for CSPs in [35].
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Related work

PCSPs are a qualitative approximation of CSPs; the goal is still to satisfy all constraints,
but in a weaker form. A recent related line of work includes the series [7, 8, 9]. A traditional
approach to approximation is quantitative: maximising the number of satisfied constraints.
Regarding approximation of equations, Håstad showed that, for any Abelian group G and
any Á ° 0, it is NP-hard to find a solution satisfying 1{|G| ` Á constraints [31] even if 1´ Á

constraints can be satisfied. Hence, the random assignment, which satisfies 1{|G| constraints,
is optimal! Håstad’s result has been extended to non-Abelian groups in [25, 7]. Systems
of equations have been studied, e.g., over semigroups in [46], over monoids and semigroups
in [35], and over arbitrary finite algebras in [39, 37, 12, 42].
The full version of this paper [40] contains all details and proofs.

2 Preliminaries

We denote by rks the set t1, 2, . . . , ku. We write idX for the identity map on a set X. We
use the lowercase boldface font for tuples; e.g., we write b for a tuple pb1, . . . , bnq. We say
that a function f extends another function g if dompgq Ñ dompfq, and f |

dompgq “ g.

Algebraic structures

A semigroup S is a set equipped with an associative binary operation, for which we use
multiplicative notation. Two elements a, b P S commute if ab “ ba. An Abelian semigroup
is a semigroup in which every two elements commute. A semigroup homomorphism from a
semigroup S1 to a semigroup S2 is a map Ï : S1 Ñ S2 satisfying Ïps ¨S1 tq “ Ïpsq ¨S2 Ïptq.2
Given two elements s, t P S we write s Ñ t if s can be expressed as a product of elements
in S including t. Note that Ñ constitutes a preorder over any semigroup. We define the
equivalence relation „ by s „ t whenever s Ñ t and t Ñ s.

A monoid is a semigroup containing an identity element for its binary operation, denoted
by e. A monoid homomorphism from a monoid M1 to a monoid M2 is a map Ï : M1 Ñ M2

satisfying Ïpx ¨M1 yq “ Ïpxq ¨M2 Ïpyq and ÏpeM1q “ eM2 . We say that Ï is Abelian if its
image ImpÏq is an Abelian monoid. A group is a monoid in which each element has an
inverse. A group homomorphism from a group G1 to a group G2 is a map Ï : G1 Ñ G2

satisfying Ïpx ¨G1 yq “ Ïpxq ¨G2 Ïpyq (which implies that also the inverses and the identity
element are preserved).

Given a semigroup S, a subset G Ñ S is called a subgroup if G equipped with S’s binary
operation is a group, meaning that there is a distinguished element eG P G satisfying that
(1) eG ¨M g “ g ¨M eG “ g for each g P G, and (2) for each element g P G there exists h P G

satisfying g ¨M h “ h ¨M g “ eG. We say that S is a union of subgroups if every element s P S

belongs to a subgroup of S. We call an element s of S regular if s2t “ s and ts “ st for
some t in S.3 Intuitively, t acts as some type of inverse of s. It is known that s belongs to a
subgroup of S if and only if s is regular [33, Theorem 2.2.5].

We use the standard product (and also the power) of a semigroup (monoid, group), where
the operation is defined componentwise. We use the symbol ® for a substructure; e.g., if S
is a semigroup then we write T ® S to indicate that T is a subsemigroup of S (and similarly
for monoids and groups).

Unless stated explicitly otherwise, all semigroups, monoids, and groups in this paper are
finite.

2 I.e., the multiplication on the LHS is in S1, whereas the multiplication on the RHS is in S2.
3 The usual definition of a regular element in a semigroup just requires that sts “ s for some t [33].

ICALP 2024
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Relational structures

A relational signature ‡ consists of a finite set of relation symbols R, each with a finite
arity arpRq P N. A relational structure A over the signature ‡, or a ‡-structure, consists
of a finite set A and a relation R

A
Ñ A

k of arity k “ arpRq for every R P ‡. Let A and
B be two ‡-structures. A map h : A Ñ B is called a homomorphism from A to B if h
preserves all relations in A; i.e., if, for every R P ‡, hpxq P R

B whenever x P R
A, where h

is applied componentwise. We denote the existence of a homomorphism from A to B by
writing A Ñ B. A template is a pair pA,Bq of relational structures such that A Ñ B.

A k-ary polymorphism of a template pA,Bq over signature ‡ is a map p : Ak
Ñ B that

preserves all relations RA from A in the following sense: For any arpRq ˆ k matrix whose
columns belong to R

A, applying p row-wise results in a tuple that belongs to R
B . We denote

by PolpA,Bq the set of all polymorphisms of pA,Bq.4

Minions

A minion M consists of a set Mpnq for each positive number n, and a map fi
M : Mpnq Ñ

Mpmq for each map fi : n Ñ m satisfying (1) idMrns “ idMpnq for every n ° 0, and (2)
fi
M

˝ ·
M

“ pfi ˝ ·q
M for every pair of suitable maps fi, · . When the minion is clear from the

context, we write ppfiq for fi
M
ppq. Elements p P Mpnq are called n-ary, and whenever ppfiq

“ q

we say that q is a minor of p. A minion homomorphism › : M Ñ N is a map from a minion
M to another minion N that preserves arities and minor operations. I.e., ›pp

pfiq
q “ p›ppqq

pfiq

for every minor ppfiq.
Given a template pA,Bq, its set of polymorphisms PolpA,Bq can be equipped with

a minion structure in a natural way. That is, n-ary elements of PolpA,Bq are just n-
ary polymorphisms p : An

Ñ B. Additionally, given some n-ary polymorphism p, and
some map fi : rns Ñ rms, the minor p

pfiq is the polymorphism q : A
m

Ñ B given by
pa1, . . . , amq fiÑ ppb1, . . . , bnq, where bi “ afipiq for each i P rns.

Given a minion M, we define two special types of elements. An element p P Mp2k ` 1q is
called alternating if ppfiq

“ p for any permutation fi : r2m ` 1s Ñ r2m ` 1s that preserves
parity, and p

pfi1q “ p
pfi2q, where for each i “ 1, 2 the map fii is given by 1 fiÑ i, 2 fiÑ i and

j fiÑ j for all j ° 2. An element p P Mp2k ` 1q is called 2-block-symmetric if the set r2k ` 1s
can be partitioned into two blocks of size k ` 1 and k in such a way that ppfiq

“ p for any
map fi : r2m` 1s Ñ r2m` 1s that preserves each block.

Constraint satisfaction

Let pA,Bq be a template with common signature ‡. The promise constraint satisfaction

problem (PCSP) with template pA,Bq is the following computational problem, denoted by
PCSPpA,Bq. Given a ‡-structure X, output Yes if X Ñ A and output No if X �Ñ B.
This is the decision version. In the search version, one is given a ‡-structure X with the
promise that X Ñ A; the goal is to find a homomorphism from X to B (which necessarily
exists, as X Ñ A and A Ñ B, and homomorphisms compose). It is known that the decision
version polynomial-time reduces to the search version (but it is not known whether the two
variants are polynomial-time equivalent) [5]. In our results, the positive (tractability) results
are for the search version, whereas the hardness (intractability) results are for the decision
version. We denote by CSPpAq the problem PCSPpA,Aq; this is the standard (non-promise)
constraint satisfaction problem (CSP). For CSPs, the decision version and the search version
are polynomial-time equivalent [18].

4 Equivalently, p is a polymorphism of pA,Bq if p is a homomorphism from the k-th power of A to B.
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We need two existing algorithms for PCSPs, namely the AIP algorithm [5] and the
strictly more powerful BLP`AIP algorithm [16]. Their power is captured by the following
results.

I Theorem 1 ([5]). Let pA,Bq be a template. Then PCSPpA,Bq is solved by AIP if and

only if PolpA,Bq contains alternating maps of all odd arities.

I Theorem 2 ([16]). Let pA,Bq be a template. Then PCSPpA,Bq is solved by BLP`AIP
if and only if PolpA,Bq contains 2-block-symmetric maps of all odd arities.

3 Overview of Results

Promise equations over monoids and groups

Our first and main result is a dichotomy theorem for solving promise equations over finite
monoids and thus also, as a special case, over finite groups. We first define equations in the
standard, non-promise setting as it is useful for mentioning previous work and for our own
proofs.

An equation over a semigroup S is an expression of the form x1 . . . xn “ y1 . . . ym, where
each xi, yi is either a variable or some element from S, referred to as a constant. A system

of equations over S is just a set of equations. A solution to such a system is an assignment
of elements of S to the variables of the system that makes all equations hold. Equations and
systems of equations are defined similarly for monoids and groups. The only di�erence is
that for groups we allow “inverted variables” x

´1 in the equations, which are interpreted as
inverses of the elements assigned to x.

In the context of CSPs, it is common to consider only restricted “types” of equations that
can then express all other equations. The following definition captures systems of equations
where each equation is either of the form x1x2 “ x3, for three variables, or x “ c, fixing a
variable to a constant. It is well known that restricting to systems of equations of this kind
is without loss of generality [40].

I Definition 3. Let S be a semigroup and T ® S a subsemigroup. The relational structure

EqnpS, T q has universe S, and the following relations:

A ternary relation Rˆ “ tps1, s2, s3q P S
3
| s1s2 “ s3u, and

a singleton unary relation Rt “ ttu for each t P T .

This template captures systems of equations of the kind described above when we allow
only constants in a subsemigroup T of the ambient semigroup S. Similarly, we define the
templates EqnpM,Nq, EqnpG,Hq in the same way when M is a monoid and N ® M a
submonoid, and when G is a group and H ® G is a subgroup. Observe that the definition of
subgroup is more restrictive than the one of submonoid and this in turn is more restrictive than
the notion of subsemigroup. We abuse the notation and write EqnpS, T q for CSPpEqnpS, T qq.

Previous works focused on problems EqnpG,Gq and EqnpM,Mq. Given a group G, it is
known that EqnpG,Gq is solvable in polynomial time (by AIP) if G is Abelian, and NP-hard
otherwise [29]. Similarly, when M is a monoid, EqnpM,Mq is solvable in polynomial time if
M is Abelian and it is the union of its subgroups, and NP-hard otherwise [35].

We now define promise equations.

I Definition 4. Let S1, S2 be semigroups, and let Ï be a semigroup homomorphism with

dompÏq ® S1 and ImpÏq ® S2. The promise system of equations over semigroups problem
PEqnpS1, S2,Ïq is the PCSPpA,Bq, where A “ S1, B “ S2, and the relations are defined

as follows:

ICALP 2024
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A ternary relation R
A
ˆ “ tps1, s2, s3q P S

3
1
| s1s2 “ s3u, and R

B
ˆ “ tps1, s2, s3q P S

3
2
|

s1s2 “ s3u.

For each t P dompÏq, a unary relation given by R
A
t

“ ttu, and R
B
t

“ tÏptqu.

For this template to be well defined there should be a homomorphism from A to B, which is

equivalent to the existence of a semigroup homomorphism Â : S1 Ñ S2 that extends Ï.

Analogously, we also define the promise system of equations over monoids problem and
the promise system of equations over groups problem by replacing semigroup-related notions
with monoid-related notions and group-related notions respectively. Observe that the problem
EqnpS, T q described before corresponds precisely to PEqnpS, S, idT q.

We can now state our main result.

I Theorem 5 (Main). PEqnpM1,M2,Ïq is solvable in polynomial time by BLP `AIP if

there is an Abelian homomorphism Â : M1 Ñ M2 extending Ï and ImpÂq is a union of

subgroups. Otherwise, PEqnpM1,M2,Ïq is NP-hard.

For the special case of groups, we get a simpler tractability criterion and a simpler algorithm.

I Corollary 6. PEqnpG1, G2,Ïq is solvable in polynomial time via AIP if there is an Abelian

homomorphism Â : G1 Ñ G2 extending Ï. Otherwise, PEqnpG1, G2,Ïq is NP-hard.

As easy corollaries, Theorem 5 applies in the special case of non-promise setting.

I Corollary 7. Given two monoids N ® M , EqnpM,Nq is solvable in polynomial time by

BLP ` AIP if there is an Abelian endomorphism of M extending idN whose image is a

union of subgroups, and is NP-hard otherwise.

I Corollary 8. Given two groups H ® G, EqnpG,Hq is solvable in polynomial time by AIP
if there is an Abelian endomorphism of G that extends idH , and is NP-hard otherwise.

I Example 9. Let G be the dihedral group on four elements, and H be the symmetric group
on four elements. Observe that G can be seen as a subgroup of H in a natural way: H

consists of all permutations on four elements, while G contains only those that are symmetries
of the square. The group G is generated by the right 90-degree rotation r and an arbitrary
reflection f that leaves no element fixed. We consider two group homomorphisms Ï1,Ï2

with dompÏiq ® G and ImpÏiq ® H. The domain of both homomorphism is the subgroup
te, r, r

2
, r

3
u ® G. Then, Ï1 is given by r fiÑ r

2, and Ï2 is given by r fiÑ r. The following hold:
PEqnpG,H,Ï1q is tractable, and solvable via AIP. However both EqnpG, dompÏ1qq and
EqnpH, ImpÏ1qq are NP-hard.
PEqnpG,H,Ï2q is NP-hard.

To see the first item, observe that the group homomorphism Â : G Ñ H given by r fiÑ r
2 and

f fiÑ f is Abelian (its image is isomorphic to the direct product Z2 ˆ Z2) and extends Ï1.
Hardness of EqnpG,dompÏ1qq is a consequence of the fact that the commutator subgroup of G
is te, r, r2, r3u © dompÏ1q, so dompÏ1q is included in the kernel of any Abelian endomorphism
of G. Similarly, hardness of EqnpH, ImpÏ1qq follows from the fact that the commutator
subgroup of H is the alternating group on four elements, and has ImpÏ1q as a subgroup.

The second item can be proved by observing that the only normal subgroup of G that
does not intersect dompÏ2q is the trivial subgroup, so any homomorphism Â : G Ñ H that
extends Ï2 needs to be injective, and thus non-Abelian.

We say that PCSPpA,Bq is finitely tractable if there is C such that A Ñ C Ñ B and
CSPpCq is solvable in polynomial time. The tractable cases in Theorem 5 are in fact finitely
tractable; for details, cf. [40].
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The power of BLP ` AIP is necessary in Theorem 5 in the sense that AIP does not
su�ce for all monoids, even for (non-promise) CSPs, unlike in the case of groups. Indeed,
adding a fresh element to a group that serves as the monoid identity fools AIP; for details,
cf. [40].

Promise equations over semigroups

As our next result, we prove that every PCSP is polynomial-time equivalent to a problem of
the form PEqnpS1, S2,Ïq over some semigroups S1, S2. Hence, extending our classification
of promise equations beyond monoids is di�cult in the sense that understanding the compu-
tational complexity of promise equations over semigroups is as hard as classifying all PCSPs.
This result is analogous to the one known in the non-promise setting obtained in [35], whose
proof we closely follow. One di�culty in lifting the result from [35] is the lack of constants
in the promise setting. The details can be found in Section 6.

I Theorem 10. Let pA,Bq be a template. Then there are semigroups S1, S2 and a semigroup

homomorphism Ï with dompÏq ® S1 and ImpÏq ® S2 such that PCSPpA,Bq is polynomial-

time equivalent to PEqnpS1, S2,Ïq.

Monoidal minions

As our third result, we investigate minions based on monoids. For PCSPs whose polymorphism
minions are homomorphically equivalent to such minions, we establish a dichotomy. This is
a building block in the proof of our main result, but may be interesting in its own right. In
this direction, we show that for each monoidal minion M, there are PCSP templates whose
polymorphism minions are isomorphic to M. For a finite set rns, a tuple paiqiPrns P M

n is
called commutative if each pair of its elements commute.

I Definition 11. Given an element a P M the monoidal minion MM,a is the one where for

each n P N the elements b P MM,apnq are commutative tuples b P M
n
with

±
iPrns bi “ a,

and where for each m ° 0 and each fi : rns Ñ rms the minor bpfiq
is the tuple c P M

m
given

by cj “
±

iPfi´1pjq bi, and the empty product equals the identity element e.

I Theorem 12. Let M be a finite monoid and let a P M . Consider a template pA,Bq with

PolpA,Bq homomorphically equivalent to MM,a. If a is regular in M then PCSPpA,Bq is

solvable in polynomial time by BLP`AIP. Otherwise, PCSPpA,Bq is NP-complete.

Next, we show that there are templates whose polymorphism minions are of the considered
type (up to isomorphism).

I Theorem 13. Let M be a monoid, and a P M an arbitrary element. Then the tem-

plate pA,Bq described below satisfies that PolpA,Bq » MM,a.
5
The signature ‡ of A and

B contains three relation symbols: a ternary symbol R, and two unary ones C0, C1. We

define A “ t0, 1u, R
A

“ tp1, 0, 0q, p0, 1, 0q, p0, 0, 1qu, C
A
0

“ t0u and C
A
1

“ t1u. The uni-

verse B of B is MM,ap2q. We define R
B

as the set of triples in pMM,ap2qq3 of the form

ppc1, c2c3q, pc2, c1c3q, pc3, c1c2qq, where c1, c2, c3 P M commute pairwise, and c1c2c3 “ a. Fi-

nally, the unary relations C
B
0

and C
B
1

are the singleton sets containing the tuples pe, aq and

pa, eq respectively.
6

5 We use » to denote the isomorphism relation, i.e., the existence of a bijection between the minions that
preserves arities and minor operations.

6 The map f : A Ñ B given by 0 fiÑ pe, aq and 1 fiÑ pa, eq is a homomorphism from A to B. The structure
A corresponds to the “1-in-3” template, where both constants are added, and B is the so-called “free
structure” [5] of MM,a generated by A.
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Finally, we remark that monoidal minions are natural objects of study, as they include
other relevant previously studied minions.

I Remark 14. Consider the Abelian monoid M “ t0, 1, ‘u, whose multiplicative identity
is 0, and where 1 ¨ 1 “ 1 ¨ ‘ “ ‘ ¨ ‘ “ ‘. The elements of MM,1 are tuples with all zero
entries except for a single 1 entry. Hence MM,1, corresponds to the so-called trivial minion
T consisting of all projections (also known as dictators) on a two-element set. This minion
represents the hardness boundary for CSPs, in the sense that a CSP is NP-hard if and only
if its polymorphism minion maps homomorphically to T [18, 47].

Another example of a monoidal minion is the one capturing the power of arc consistency
from [24]. In fact, every linear minion (in the sense of [23]) is a union of monoidal minions.7

If we allow infinite monoids to be considered, then monoidal minions include important
minions that capture solvability via relevant algorithms. Consider the monoid M “ tpr, zq P

QˆZ | r P r0, 1s, and r “ 0 implies z “ 0u, where the binary operation is given by coordinate-
wise addition, and the identity is p0, 0q. Then MM,p1,1q is precisely the minion MBLP`AIP
described in [16], which expresses the power of BLP`AIP. Similarly, the minions described
in [5] to capture the power of BLP and AIP are monoidal minions as well.

4 Monoidal Minions: Proof of Theorem 12

Tractability. We use the characterisation of the power of BLP ` AIP from Theorem 2
for the tractability part of Theorem 12. Observe that if there is a minion homomorphism
› : MM,a Ñ PolpA,Bq and p P MM,a is a p2k ` 1q-ary 2-block-symmetric element, then
so is ›ppq. Hence, showing that MM,a has 2-block-symmetric elements of all arities proves
that PCSPpA,Bq is solvable in polynomial time via BLP`AIP. Let b P M witness that
a is regular. For each k ° 0 consider the p2k ` 1q-ary element of MM,a consisting of k ` 1
consecutive a’s followed by k consecutive b’s. To see that this this is indeed an element of
MM,a we need to check that ak`1

b
k
“ a. This follows from the assumption that b witnesses

that a is regular and using a
k`1

b
k
“ apbaq

k. This tuple is 2-block-symmetric, with the blocks
corresponding to a and b (of sizes k and k ` 1, respectively).

Intractability. We prove the intractability part of Theorem 12 (as well as other hardness
results later in this paper) using the following result.

I Theorem 15 ([5]). Let M “ PolpA,Bq, and let K,L ° 0 be any fixed integers. Suppose

that M satisfies the following condition:

M “
î

¸PrLs M¸, and for each ¸ P rLs there is a map p fiÑ I¸ppq that sends each p P M¸

to a set of its coordinates I¸ppq of size at most K. Furthermore, suppose that for each

¸ P rLs and for each minor p
pfiq

“ q where p, q P M¸ it holds that fipI¸ppqq
ì

I¸pqq ‰ H.

Then PCSPpA,Bq is NP-complete.

Given a template pA,Bq, if there is a minion homomorphism › : PolpA,Bq Ñ MM,a

and MM,a satisfies the condition in the previous theorem, so does PolpA,Bq. Indeed, if
MM,a “

î
¸PrLs M¸, then we can write PolpA,Bq “

î
¸PrLs ›

´1
pM¸q. Additionally, if the map

I¸ witnesses the condition in the theorem for M¸, then the map I 1
¸
given by p fiÑ I¸p›ppqq

witnesses the same condition for ›
´1

pM¸q. Hence, we show the hardness part of Theorem 12
by proving that MM,a satisfies the assumptions in Theorem 15 when a P M is not regular.

7 We thank Lorenzo Ciardo for this observation.
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For a monoid M , we define a refinement ÑA of the preorder Ñ introduced in Section 2.
In detail, we write a ÑA

b for a, b P M if there is a third element c P M that commutes with
b such that bc “ a. We put a „

A
b when both a ÑA

b and b ÑA
a hold, and a àA

b when
a ÑA

b holds but b ÑA
a does not. We use the following simple observation.

I Observation 16. Let M be a monoid and a, b, c P M be three elements that commute

pairwise. Suppose that abc àA
ab. Then ac àA

a.

Proof. We prove the contrapositive. Suppose that a ÑA
ac. That is, there is some d P M

that commutes with ac and satisfies acd “ a. We have dabc “ pdacqb “ pacdqb “ ab

abcd “ cpabdq “ ca “ ac, and thus dabc “ abcd “ ab, proving that abc ÖA
ab. J

Assume that a is not regular. That is, that a
2
b ‰ a for every b P M that commutes

with a. Let b P MM,apnq for some number n ° 0. A coordinate j P rns is called relevant in
b if

±
iPrmszj bi âA

±
iPrns bi. Consider the map I that assigns to each b P MM,a its set of

relevant coordinates. Claims 1 through 3 proved below establish the required assumptions
in Theorem 15 with L “ 1 and K “ |m|, thus showing NP-hardness of PCSPpA,Bq.
Claim 1: b has at most |M | relevant coordinates. Let ti1, . . . , ihu Ñ rns be the set of rel-

evant coordinates of b. Given k P rhs we define

ck “

π

jPrk´1s
bij , and dk “

π

jPrnszti1,...,iku
bj .

The following hold: (1) a “ dkckbik , (2) bik , ck and dk commute pairwise, and (3) as ik is
a relevant coordinate, it holds that dkckbik àA

dkck. Applying Observation 16, we obtain
that ckbik àA

ck. Expanding the definition of ck this means that
π

jPrks
bij àA

π

jPrk´1s
bij .

This holds for all k P rhs, so in particular the products
±

jPrks bij must be pairwise
di�erent and the number h of relevant coordinates is at most |M |, proving the claim.

Claim 2: Minors preserve relevant coordinates. Let c “ bpfiq, where fi : rns Ñ rms is a
map and let i P rns be a relevant coordinate of b. We want to show that j “ fipiq is a
relevant coordinate of c. Indeed, if that was not the case we would have that

π

kPrnszfi´1pjq
bk ÑA

a.

However, i P fi
´1

pjq, so we know that
±

kPrnsztiu bk ÑA
±

kPrnszfi´1pjq bk. Putting this
together with the previous identity shows that

π

kPrnszfi´1pjq
bk ÑA

a,

contradicting the fact that i was a relevant coordinate of b.

Claim 3: b has at least one relevant coordinate. Suppose otherwise for the sake of contra-
diction. Then for each i P rns there is an element ci P M that commutes with a such that
aci “

±
iPrnsztju bi. Let c “

±
iPrns ci. Observe that c itself commutes with a. However,

one can check that that a2c “ a, contradicting our assumption that a was not regular.
Indeed,
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a
2
c “

˜
nπ

i“1

bi

¸
pac1q

˜
nπ

i“2

ci

¸
“

˜
nπ

i“1

bi

¸¨

˝
π

iPrnszt1u
bi

˛

‚
˜

nπ

i“2

ci

¸

“

˜
nπ

i“2

bi

¸
pac2q

˜
nπ

i“3

ci

¸
“

˜
nπ

i“2

bi

¸¨

˝
π

iPrnszt2u
bi

˛

‚
˜

nπ

i“3

ci

¸

“

˜
nπ

i“3

bi

¸
pac3q

˜
nπ

i“4

ci

¸
“

˜
nπ

i“3

bi

¸¨

˝
π

iPrnszt3u
bi

˛

‚
˜

nπ

i“4

ci

¸

“ ¨ ¨ ¨ “

˜
nπ

i“n

bi

¸¨

˝
π

iPrnsztnu
bi

˛

‚“ a.

5 Equations Over Monoids and Groups: Proofs of Theorem 5 and

Corollary 6

We need a simple characterisation of the polymorphisms of promise equation templates, and
various characterisations of regularity; both are proved in [40].

I Lemma 17. Consider a template PEqnpZ1, Z2,Ïq of promise equations over semigroups/-

monoids/groups. A map p : Zn

1
Ñ Z2 is a polymorphism of PEqnpZ1, Z2,Ïq if and only if p

is a semigroup/monoid/group homomorphism and pps, s, . . . , sq “ Ïpsq for all s P dompÏq.

I Lemma 18. Let M be a monoid and s P M . Then the following are equivalent:

1. s is regular,

2. s
k
“ s for some k ° 1,

3. s belongs to a subgroup of M ,

4. s Ñ s
2
.

With these two lemmas, we can now prove our main result.

I Theorem 5 (Main). PEqnpM1,M2,Ïq is solvable in polynomial time by BLP `AIP if

there is an Abelian homomorphism Â : M1 Ñ M2 extending Ï and ImpÂq is a union of

subgroups. Otherwise, PEqnpM1,M2,Ïq is NP-hard.

Proof. We prove both implications. Suppose that such homomorphism Â exists. As ImpÂq

is a union of subgroups, by Lemma 18 there is some number k ° 1 such that sk “ s for all
s P ImpÂq. Let n ° 0 be arbitrary. Consider the map p : M2n`1

1
Ñ M2 given by

psiqiPr2n`1s fiÑ

¨

˝
π

iPrn`1s
Âpsiq

˛

‚

¨

˝
π

iPrns
Âpsi`n`1q

k´2

˛

‚,

where the convention is that the zero-th power of an element equals the identity of the
monoid. We claim that p is a 2-block-symmetric polymorphism of PEqnpM1,M2,Ïq with
the first block consisting of the first n` 1 coordinates, and the second block consisting of
the rest. The fact that p is a 2-block-symmetric map with the blocks as claimed follows from
the fact that Â is Abelian. To complete the argument, we show that p is a polymorphism of
PEqnpM1,M2,Ïq using the characterisation from Lemma 17. First, observe that the fact
that Â is Abelian implies that p is a monoid homomorphism. Indeed,
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pps1, . . . , s2n`1qppt1, . . . , t2n`1q

“

¨

˝
π

iPrn`1s
ÂpsiqÂptiq

˛

‚

¨

˝
π

iPrns
Âpsi`n`1q

k´1
Âpti`n`1q

k´1

˛

‚

“ pps1t1, . . . , s2n`1t2n`1q,

so p preserves products. Now we only need to prove that pps, . . . , sq “ Ïpsq for all s P dompÏq

in order to show that p is a polymorphism. To see that this holds, observe that

pps, . . . , sq “ Âpsq
npk´1q`1

“ Âpsq “ Ïpsq,

where the last equality uses the fact that Â extends Ï. This completes the proof of the first
implication via Theorem 2.

In the other direction, we show that PEqnpM1,M2,Ïq is NP-hard assuming there is no
Abelian homomorphism Â : M1 Ñ M2 extending Ï whose image is a union of subgroups.
Let M be the polymorphism minion of PEqnpM1,M2,Ïq. Given a polymorphism p P M, we
define N ppq as the submonoid tpps, . . . , sq | s P M1u ® M2. Observe that by assumption,
for a given polymorphism p it holds that the monoid N ppq is non-Abelian or that N ppq is
not a union of subgroups. Define � as the set of monoid homomorphisms Â : M1 Ñ M2 for
which ImpÂq is not a union of subgroups. By Lemma 18, this happens precisely when ImpÂq

contains some non-regular element a P M2. Let L “ |�| ` 1, and let K “ maxp|M2|, |tN ®
M2 | N is non-Abelian u|. We use Theorem 15 with the constants L,K to show NP-hardness.
We define the following subminions of M.

MA “ tp P M, | N ppq is not Abelianu,

and given any monoid homomorphism Â P � we set

MÂ “ tp P M, | pps, . . . , sq “ Âpsq for all s P M1u.

By the previous observation it holds that

M “ MA

§

ÂP�

MÂ.

We give selection functions I for each of these sub-minions satisfying the assumptions
of Theorem 15. Suppose that MA is not empty. Otherwise we are done defining IA. Let p
be any n-ary polymorphism in MA. Given i P rns we define N pp, iq ® M2 as the submonoid

tpps1, . . . , snq | si P M1, and sj “ e when j ‰ iu.

We give some facts about these submonoids.
Fact 1: The map „ :

±
iPrns N pp, iq Ñ M2 given by ps1, . . . snq fiÑ

±
iPrns si is a monoid

homomorphism. In particular, given 1 § i † j § n, any two elements t1 P N pp, iq,
t2 P N pp, jq commute.

Fact 2: If N pp, iq “ N pp, jq for some i ‰ j P rns then N pp, iq is Abelian.
Fact 3: The submonoid N ppq is contained in Imp„q, where „ is as defined in Fact 1. In

particular, given that N ppq is not Abelian, some N pp, iq must be non-Abelian.

Given an n-ary polymorphism p P MA, we define IAppq Ñ rns as the set of coordinates i
for which N pp, iq is non-Abelian. We claim that IA satisfies the assumptions of Theorem 15.
Indeed, given some n-ary p:
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IAppq is non empty by Fact 3.
|IAppq| § K. Otherwise it would be that N pp, iq “ N pp, jq for some di�erent i, j P IAppq,
contradicting the fact that N pp, iq is non-Abelian (by Fact 2).
Suppose that p “ q

pfiq for some m-ary q and some fi : rms Ñ rns. Let i P IAppq, then

N pp, iq Ñ

$
&

%
π

jPfi´1piq
sj | sj P N ps, jq for all j P fi

´1
piq

,
.

- .

As N pp, iq is non-Abelian, some submonoid N pq, jq with j P fi
´1

piq must be non-Abelian
as well. This means that IAppq Ñ fipIApqqq.

Now consider an arbitrary homomorphism Â P � for which MÂ is non-empty. We define
a selection function IÂ satisfying the assumptions of Theorem 15. Let t P ImpÂq be a
non-regular element, and let s P M1 be such that Âpsq “ t. Let MM2,t be the monoidal
minion defined in Definition 11. Consider the map › : MÂ Ñ MM2,a that sends any n-ary
polymorphism p P MÂ to the tuple pr1, . . . , rnq P MM2,apnq where for each i P rns

ri “ pps1, . . . , snq, where si “ s, and sj “ e for all j ‰ i .

Observe that this is a well-defined minion homomorphism from MÂ to MM2,t. Indeed, first
observe that pr1, . . . , rnq belongs to the second minion. This holds because r1r2 . . . rn “

pps, . . . , sq “ Âpsq “ t, and for each i P rns the element ri belongs to N pp, iq, so the ri’s
commute pairwise by Fact 1 above. One can also check that › preserves minors.

From the proof of Theorem 12 there is some selection function I on MM2,t satisfying
the hypotheses of Theorem 15 for some constant K 1

“ |M2| § K and L “ 1. Thus, we can
define IÂ on MÂ simply by setting IÂppq “ Ip›ppqq for each polymorphism p P MÂ.

Hence, have defined selection functions IA and IÂ for each Â P � that satisfy the
requirements of Theorem 15, showing that PEqnpM1,M2,Ïq is NP-hard. J

I Corollary 6. PEqnpG1, G2,Ïq is solvable in polynomial time via AIP if there is an Abelian

homomorphism Â : G1 Ñ G2 extending Ï. Otherwise, PEqnpG1, G2,Ïq is NP-hard.

Proof. We prove both directions. The hardness case follows from Theorem 5. Indeed,
PEqnpG1, G2,Ïq is a template of promise equations over monoids (where the monoids just
happen to be groups). Suppose that there is no Abelian group homomorphism Â : G1 Ñ G2

that extends Ï. Observe that a monoid homomorphism between two groups must also be
a group homomorphism, so there is no Abelian monoid homomorphism Â : G1 Ñ G2 that
extends Ï. Thus, by Theorem 5, PEqnpG1, G2,Ïq is NP-hard.

In the other direction, suppose that such a Â exists. We show that PEqnpG1, G2,Ïq is
solved by AIP using Theorem 1. Let n be any odd arity and let p : Gn

1
Ñ G2 be the map

given by ppg1, . . . , gnq fiÑ
±

iPrns ti, where ti “ Âpgiq for every odd i, and ti “ Âpgiq
´1 for

every even i. Then p is an alternating polymorphism of PEqnpG1, G2,Ïq. J

6 Equations over Semigroups: Proof of Theorem 10

A digraph D is a relational structure whose signature consists of a single binary relation E
D.

We follow closely the ideas from [35, Theorem 7]. That result states that every CSP is
polynomial-time equivalent to a problem of the form EqnpS, Sq for some semigroup S. Their
proof uses the fact that every CSP is polynomial-time equivalent to another CSP whose
template is a digraph D with all singleton unary relations [26]. The fact that they consider
these unary relations on D yields equations in EqnpS, Sq where all constants are allowed.
For PCSPs, however, this is our starting point.
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I Theorem 19 ([13]). For every template pA1,A2q there is a template pD1,D2q of digraphs

such that PCSPpA1,A2q is polynomial-time equivalent to PCSPpD1,D2q.

The fact that we lack singleton unary relations in the templates pD1,D2q is the main
obstacle for applying the techniques from [35]. We overcome this by extending our digraphs
with an additional edge joining two fresh distinguished vertices. The relational signature
‡
` contains one binary relation symbol E, and two unary relation symbols P,Q. Given a

digraph D, we write D` for the ‡
` structure defined by D

`
“ D Y tp, qu, where p and q

are fresh vertices, ED`
“ E

D
Y tpp, qqu, PD`

“ tpu, and Q
D`

“ tqu.

I Lemma 20. Let pD1,D2q be a template of digraphs. Then PCSPpD1,D2q is polynomial-

time equivalent to PCSPpD`
1
,D`

2
q.

Proof. We give polynomial-time Turing reductions in both directions. First, we reduce from
PCSPpD1,D2q to PCSPpD`

1
,D`

2
q. We consider two cases. Suppose that E

D2 is empty.
Then PCSPpD1,D2q amounts to deciding whether a given instance I has an edge or not,
which takes polynomial time. Otherwise, assume that ED2 is non-empty. Then our reduction
takes any instance I of PCSPpD1,D2q and considers it as an instance of PCSPpD`

1
,D`

2
q.

Clearly, if I maps homomorphically to D1 then it also maps homomorphically to D`
1

using
the same homomorphism. Otherwise, if I does not map homomorphically to D2 then it
cannot map homomorphically to D`

2
. Indeed, to see this observe that the digraph resulting

from of D`
2

(by forgetting about the P,Q relations) maps homomorphically to D2: it su�ces
to send the edge pp, qq to an arbitrary edge in E

D2 , which is non-empty by assumption.
Now we describe a polynomial-time reduction from PCSPpD`

1
,D`

2
q to PCSPpD1,D2q.

The reduction considers an instance I of PCSPpD`
1
,D`

2
q and checks in polynomial time

whether every connected component of I that intersects P I or QI maps homomorphically to
the edge structure W with W “ tp, qu, EW

“ tpp, qqu, PW
“ tpu, and Q

W
“ tqu. If this is

not the case, I is rejected. Otherwise, we remove from I the components that intersect P I

or QI . Next, we check in polynomial time whether each remaining component of I can be
mapped homomorphically to W , and removes the ones that do. If the resulting structure I 1

is empty, then our reduction accepts I. Otherwise, observe that the resulting instance I 1

is equivalent to the original I, in the sense that I maps to D`
i

if and only if I 1 does so as
well. Furthermore, observe that a homomorphism from I 1 to D`

i
cannot include p and q in

its image, as there are no components in I 1 that map homomorphically to W . This means
that I 1 maps to D`

i
if and only if it maps to Di. Hence, as the last step in our reduction we

simply use I 1 as an instance of PCSPpD1,D2q. J

A semigroup S is a right-normal band if ss “ s for all s P S and rst “ srt for all r, s, t P S.
Recall that we write s „ r if s Ñ r and r Ñ s hold. It is easy to see that the quotient
pS “ S{ „ inherits the semigroup structure from S. Moreover, pS is a semilattice, meaning
that it is an Abelian semigroup where every element is idempotent. Given an instance I
of EqnpS, Sq we denote by pI the corresponding instance over pS, where every constant s is
substituted by its „ class ŝ.

We need two lemmas from [35] and a simple observation.

I Lemma 21 ([35]). Let S be a semilattice. Then EqnpS, Sq can be solved in polynomial

time. Moreover, if an instance I has a solution, it also has a unique minimal one (with

respect to the Ñ preorder) that can be obtained in polynomial time.

I Lemma 22 ([35]). Let S be a right-normal band. Then an instance I of EqnpS, Sq is

solvable if it has a solution satisfying fpxq P ŝx, for all x P I, where the map x fiÑ ŝx is the

minimal solution of pI in EqnppS, pSq.
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I Observation 23. Let S be a right-normal band, and let s, s
1
, t P S be three arbitrary

elements with s „ s
1
. Then st “ s

1
t.

Proof. As s „ s
1 and S is right-normal, it must hold that s “ s

1
r
1 and s

1
“ sr for some

r, r
1
P S. Thus, st “ s

1
r
1
t “ srr

1
t, and s

1
t “ srt “ s

1
r
1
rt “ srr

1
rt “ srr

1
t, where the last

equality holds since S is a right-normal band. J

Let D be a digraph. We define a semigroup SD related to D in a similar fashion as [35].
The main di�erence is that we need to “plant” a special subsemigroup SW inside SD that
is used later as the set of constants in our promise equations. The semigroup S “ SD is a
right-normal band. It has the following „-classes: V L

, V
R
, V

LC
, V

LR
, V

CR
, E

C
, 0, described

as follows. Given ˝ P tL,R,LC,LR,CRu the class V
˝ is a copy of D Y tp, qu. That is,

V
˝
“ tv

˝
| v P Du Y tp

˝
, q

˝
u. The class E

C is a copy of E
D

Y tpp, qqu, meaning that
E

C
“ tpu, vq

C
| pu, vq P E

D
u Y tpp, qq

C
u. Finally, the class 0 contains a single element 0.

By Observation 23, in a right-normal band T it must hold that st “ s
1
t for all s, s1, t P T

with s „ s
1. Hence, given a „-class C Ñ T and an element t we abuse the notation and write

Ct to denote the product of an arbitrary element from C with t. The product operation in
S is given by the following rules:

V
R
v
L
“ V

L
v
R
“V

LR
v
R
“ V

LR
v
L
“ V

L
v
LR

“ V
R
v
LR

“ v
LR

V
L
v
LC

“ V
LC

v
L
“ E

C
v
L
“ E

C
v
LC

“ v
LC

V
R
v
CR

“ V
CR

v
R
“ E

C
v
R
“ E

C
v
CR

“ v
CR

,

where v is an arbitrary element in D Y tp, qu. Additionally,

V
L
pu, vq

C
“ V

LC
pu, vq

C
“ u

LC
, and V

R
pu, vq

C
“ V

CR
pu, vq

C
“ v

CR
,

where pu, vq belongs to E
D
Y tpp, qqu. Finally, all other products not described above have 0

as their result.
We define the subsemigroup SW ® SD as the one containing the elements 0, pp, qqC, p˝, q˝

for ˝ P tL,R,LC,LR,CRu. Observe that for any digraph D, the quotient xSD “ SD{ „ is
isomorphic to ySW “ SW { „.

I Lemma 24. There is a polynomial-time algorithm � that takes as an input a ‡
`
-structure

I and outputs a system of equations �pIq with constants in SW satisfying that for any digraph

D, I maps into D`
if and only if �pIq has a solution over SD.

Proof. This follows the first reduction in [35, Theorem 7] while making sure that all constants
remain in SW . We construct the system �pIq. For every vertex v P I we include variables
v
L
, v

R
, v

LR. For each ˝ P tL,R,LRu we include the constraint v˝ P V
˝, which is a shorthand

for the equations p˝v˝ “ v
˝ and v

˝
p
˝
“ p

˝. We also include the equations pLRvL “ v
LR and

p
LR

v
R

“ v
LR. If v P P

I we include all constraints v
˝
“ p

˝ for ˝ P tL,R,LRu. Similarly,
if v P Q

I , then we include the constraints of the form v
˝
“ q

˝. For each edge pu, vq P E
I

we include a variable pu, vq
C in �pIq, together with the constraint pu, vqC P E

C, which is a
shorthand for the equations pu, vqCpp, qqC “ pp, qq

C and pp, qq
C
pu, vq

C
“ pu, vq

C. Finally, we
also add the equations pLCpu, vqC “ p

LC
u
L and p

CR
pu, vq

C
“ p

CR
v
R. The resulting system

�pIq satisfies the statement of the theorem. J

I Lemma 25. There is a polynomial-time algorithm � that takes as an input a system of

equations X with constants in SW and produces one of the following outcomes:

(I) It outputs a ‡
`
-structure �pXq that maps into D`

for any digraph D if and only if

X has a solution over SD, or

(II) it rejects X and X has no solution over SD for any digraph D.
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Proof. We describe the algorithm �. This algorithm is meant to transform the system X
into a system of the form �pIq, for the algorithm � given in Lemma 24 and some ‡

`-structure
I. This time we follow the second reduction in [35, Theorem 7] while making sure that all
constants in X remain in SW throughout all the transformations.

Without loss of generality, we may assume that every equation in X is initially of the form
x1x2 “ x3, for some variables x1, x2, x3, or of the form x “ s, for some variable x and some
element s P SW . Consider the system xX with constants in ySW “ SW { „. By Lemma 21
we can find a minimal solution of xX in polynomial time. If such a solution does not exist,
then the system X is not satisfiable over SD for any digraph D, and the algorithm � just
rejects it. Otherwise, suppose that the system xX has some minimal solution. This solution
maps each variable x P X to a „-class Cx of SW . Consider an arbitrary digraph D. Using
the observation that ySW » xSD and Lemma 22, we deduce that X has a solution over SD if
and only if it has a solution where the value of each variable x P X belongs to the class Cx.
Given a class Cx, we define the constant cx P SW as

p
˝ if Cx is the class V ˝ for ˝ P tL,R,LC,LR,CRu,

pp, qq
C if Cx “ E

C, or
0 if Cx “ 0.

For each variable x P X we add the equations cxx “ x and xcx “ cx. These equations
are equivalent to the constraint that x P Cx (and we use x P Cx as a shorthand for those
equations), so the resulting system is satisfiable over a semigroup SD if and only if the original
one was. Additionally, once every variable x is constrained to take values inside Cx, we can
replace every equation of the form x1x2 “ x3 in X with the equation cx3x2 “ cx3x3 to yield
an equivalent system. Indeed, it must hold that cxixi “ xi, so the equation x1x2 “ x3 is
equivalent to cx1x1cx2x2 “ cx3x3. Not only that, but SD is a normal band and x1cx1 “ cx1 ,
so last equation is equivalent to cx1cx2x2 “ cx3x3. Finally, the classes Cx1 , Cx2 , Cx3 were
part of a solution to xX, so it must be that cx1cx2 „ cx3 , and by Observation 23 it holds that
cx1cx2x1 “ cx3x1.

Every resulting equation of the form 0x1 “ 0x2 is trivially satisfied and can be discarded.
Consider a variable x P X whose corresponding class Cx is 0. As we have removed every
equation of the form 0x1 “ 0x2, x can only appear in constraints of the form x P 0, and
x “ 0. These are trivially satisfiable by any assignment that maps x to 0, so we can remove
the variable x and all equations containing it.

We are left with a system X where each variable is bound to a class V
˝ for ˝ P

tL,R,LC,LR,CRu or EC. Consider a variable x P X bound to the class V LC. Suppose this
variable appears in some equation of the form c1x “ c1y, and consider the class C of c1. By
construction, it must be that C Ö V

LC in ySW . However, we have removed all equations
containing 0, so the only possibility left is that C “ V

LC. Suppose that we replace the
requirement x P V

LC with x P V
L and every equation of the form x “ v

LC, where v
LC

P SW

is a constant, with x “ v
L. We claim the system X remains equivalent after these changes.

Indeed, this results from the observation that V LC
v
L
“ V

LC
v
LC in any semigroup SD for

any vertex v P D
`. By the same logic we can also replace any requirement of the kind

x P V
LR or x P V

CR with x P V
CR.

Consider any equation of the form x “ pu, vq
C for a constant pu, vqC. This equation is

equivalent to the constraints pLCx “ p
LC

y, pCR
x “ p

CR
z, y “ u

L and z “ v
R, where y and

z are fresh variables.
Consider an equation of the form cx “ cy, where both x, y are constrained to be in c’s

„-class. pp, qqCx “ pp, qq
C
y, both This equation holds if and only if x “ y. Hence, we may

remove this equation and identify both variables x, y together.
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This far we have obtained a system X where each variable is bound to either V L
, V

R

or EC, and the only constants are among p
L
, p

R
, q

L, qR. Identifying variables and adding
dummy variables if necessary we can assume the following hold:

For each variable x P X constrained by x P E
C there is exactly one variable xL constrained

by xL P V
L in an equation of the form p

LC
x “ p

LC
xL, and exactly one variable xR

constrained by xR P V
R that appears in an equation of the form p

CR
x “ p

CR
xR.

There are no two variables x, y P X constrained by x, y P E
C with xL “ yL and xR “ yL.

Not considering equations that are part of the constraints x P C for some „-class C, each
equation is of the form (i) pLRx “ p

LR
y with x P V

L and y P V
R, (ii) pLCx “ p

LC
xL or

p
CR

x “ p
CR

xR for some x P E
C, or (iii) x “ p

˝ or x “ q
˝ for ˝ P tL,Ru.

One can see that such a system corresponds to �pIq for some ‡
`-structure I that

can be built in polynomial time. Then � returns I, which satisfies our requirements
by Lemma 24. J

I Corollary 26. Let pD1,D2q be a template of digraphs. Then PCSPpD1,D2q is polynomial-

time equivalent to PEqnpSD1 , SD2 ,Ïq, where Ï “ idSW .

Proof. We show that PEqnpSD1 , SD2 ,Ïq is polynomial-time equivalent to PCSPpD`
1
,D`

2
q,

which su�ces by Lemma 20. Observe that algorithm � given in Lemma 25 is a polynomial-
time Turing reduction from PCSPpD`

1
,D`

2
q to PEqnpSD1 , SD2 ,Ïq, and algorithm �, given

in Lemma 24 is a polynomial-time Turing reduction in the other direction. J

Corollary 26 and Theorem 19 establish Theorem 10.
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Abstract

We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payo�
games, that runs in polynomial time with high probability, on any input where each payo� is chosen
independently from a su�ciently random distribution and the underlying graph of the game is
ergodic.

This includes the case where an arbitrary set of payo�s has been perturbed by a Gaussian,
showing for the first time that deterministic two-player games can be solved e�ciently, in the sense
of smoothed analysis.

More generally, we devise a condition number for deterministic discounted and mean-payo�
games played on ergodic graphs, and show that our algorithm runs in time polynomial in this
condition number.

Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [18] and
later retracted [19]. It stands in contrast with a recent counter-example by Christ and Yannakakis [24],
showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on
stochastic single-player mean-payo� games.

Our approach is inspired by the analysis of random optimal assignment instances by Frieze and
Sorkin [39], and the analysis of bias-induced policies for mean-payo� games by Akian, Gaubert and
Hochart [6].
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1 Extended Abstract

1.1 A history of discounted and mean-payo� games

John von Neumann proved his minimax theorem in 1928, founding game theory by showing
the existence of optimal strategies in zero-sum matrix games. In 1953, Lloyd Shapley [75]
considered what happened if two players repeatedly played a zero-sum matrix game. The
overall game proceeds as follows. We have n states, and to each state i œ [n] corresponds
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a zero-sum matrix game Gi. At each round, the two players are in some state i œ [n] and
play the corresponding game Gi, with each player simultaneously choosing an action out of
a finite set of possible actions. The two players’ choice of actions determines not just the
payo�, but also the state at the next round. This is repeated ad-infinitum.

In these games, randomness is possible in two di�erent ways. First, the state at the next
round can be chosen stochastically, or deterministically, based on the current state and on
the players’ chosen actions. This gives us two variants: stochastic games, and deterministic

games, with the latter being a special case of the former. Second, the players’ choice of
action can itself be pure (a single action), or mixed (a distribution over the possible actions).

In an infinite game such as this there are two natural ways of determining the winning
player. In the discounted variant, payo�s received at round t are multiplied by a discount

factor of “
t (for some 0 6 “ < 1), and we wish to know the total discounted payo� in the

limit as the number of rounds goes to infinity. This is equivalent to saying that the game is
forced to stop after every round with probability 1 ≠ “, and asking for the expected payo�
at the limit. In the mean-payo� variant, we measure the liminf or limsup, as the number
of rounds goes to infinity, of the average payo� received so far (i.e. total payo� divided by
the number of rounds). Shapley [75] proved the existence of a value and optimal (mixed)
strategies for the stochastic, discounted variant.

Concurrently to Shapley’s work, Bellman [16] studied a class of problems which he termed
Markov Decision Processes (MDPs). MDPs model decision making when the result of one’s
actions can be partly random, and they can be seen as single-player variant of stochastic
games. At each round, the player finds himself in a given state out of a finite number of
states, and chooses an action. Depending on his choice he receives a payo�, and transitions
to a di�erent state. This transition can be either deterministic or stochastic. The player’s
goal is to maximize the discounted payo� or mean payo� at the limit, as the number of
rounds goes to infinity. Bellman provided a method to find an optimal pure strategy in the
discounted variant.

In both MDPs and in discounted games the optimal strategies can be made memoryless, in
that the choice of what to do only depends on the current state i, and not on the past history.
In the general case of discounted stochastic games where the players play simultaneously, the
optimal memoryless strategies must be mixed. In the case of MDPs, the optimal memoryless
strategy can further be made pure.

As for the mean-payo� variant, Gillette [42] gave an example of a mean-payo� two-player
game, where the players play simultaneously at each round, whose optimal strategies cannot
be memoryless.1 With this in mind, Gillette introduced a turn-based variant of Shapley’s
infinite game, where two players play in turns. At each round, the game is in some state i,
and one of the players (depending on i) chooses an action, which determines the next state
(stochastically or deterministically) and a resulting payo�. One player is trying to maximize
the payo� at the limit, and the other tries to minimize it. Gillette claimed that turn-based
two-player games have a value and that optimal strategies exist for both players which are
both memoryless and pure. Gillette’s proof was actually wrong, but it was later corrected
by Liggett and Lippman [60], so the statement is true. It also implies the corresponding
statement for the mean-payo� variant of MDPs, as a special case.

1 In fact, it was only in the 1980s [63] that simultanous-move mean-payo� games were proven to have
a value. For every Á > 0, optimal (not memoryless) strategies exist for each player ensuring that the
payo� is Á-close to the value.
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A pure, memoryless strategy for such games is called a policy, and it is a finite object:
one can represent it as a finite function ‡ : States æ Actions specifying the chosen action
at each state. In this paper, we will not concern ourselves with simultaneous two-player
games, and only consider single-player games and turn-based two-player games. We will use
the informal nomenclature “deterministic/stochastic single-player/two-player discounted/
mean-payo� game” to denote each of the eight variants of (non-simultaneous) games just
mentioned. Let us also use the term “discounted and mean-payo� games” to refer to these
games as whole.

1.2 Algorithms

The above results show that all eight variants have a value, and that optimal strategies
are policies, hence finite objects. It then makes sense to consider the algorithmic problem
of solving such a game: given as input a specification of the game with rational weights
(and with rational discount factor, if applicable), compute the value of the game, and
optimal policies for the players.2 The study of discounted and mean-payo� games has always
been accompanied by the development of algorithms for solving them. Most algorithms
for solving discounted and mean-payo� games can be broadly classified into three families:
value-iteration algorithms3, algorithms for MDPs that use linear programming4, and, of
particular importance to us, policy iteration algorithms.

Policy iteration algorithms have been invented for solving all variants of games described
above. These algorithms maintain a policy in memory, and proceed by repeatedly modifying
the policy, so that its quality improves monotonically according to some measure, until it
can no longer be improved, at which point the measure must guarantee that we have found
an optimal strategy for both players.

The first policy iteration algorithm was invented by Howard [52], and finds an optimal
strategy for deterministic (and some stochastic) Markov Decision Processes. This was
later extended by Denardo and Fox [30] to work on all stochastic MDPs. The method
was first extended to two-player mean-payo� games by Ho�man and Karp [50], and two-
player discounted games by Denardo [29], with later developments by many other authors
[70, 67, 25, 40, 69, 26]. A good historical overview with more technical details appears in
[3], where a policy iteration algorithm first appeared that can handle all the variants of
mean-payo� games. In the case of discounted games, an optimal strategy can be found in
time polynomial in 1

1≠“
[78, 47]. Otherwise, for mean-payo� games, or for discount factors “

exponentially close to 1, no upper-bound is known on the number of iterations, significantly
better than the number of policies, which is exponential in the number n of states. More
precisely, the best upper-bound on the number of iterations is 2Õ(

Ô
n) [46, 48].

1.3 Policy iteration versus the simplex method

When one first studies policy iteration algorithms, one gets a sense of familiarity, as if policy
iteration algorithms are analogous to the simplex method for linear programming. The
intuitive sense is that the choice of policy plays the same role as the choice of basic feasible
solution in the simplex method, with a change in policy being analogous to a pivot operation.

2 It can be shown that the value of such a game with rational weights (and discount factor) is a rational
number of comparable size.

3 The first algorithm ever invented was a value iteration algorithm [16]. For a modern value-iteration
algorithm for single-player games, see [76], which contains a historical overview in Section 2. For two
players see, e.g., [79, 54, 23, 13, 8].

4 See, e.g., Chapter 2 of [37], or various sections of [68].
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In fact, in some cases, this analogy can be formally established. It is possible to express
a MDP by a particular linear program, and in this particular case the connection is perfect:
a simplex pivoting rule gives us a policy iteration algorithms for MDPs, and any policy
iteration algorithm that switches a single node at a time gives us a pivoting rule for applying
simplex on this particular program.

As a result, many known counter-examples for the simplex method, showing that certain
pivoting rules require an exponential number of pivots, were devised by first finding examples
of MDPs for which certain policy-iteration algorithms need an exponential number of
iterations, and then translating the counter-example to work for the simplex algorithm, by
the above connection [38, 33].

More broadly, it turns out that deterministic two-player mean-payo� games are exactly
equivalent to tropical linear programming, i.e., solving systems of “linear” inequalities over
the tropical (min,+) semiring. This was first explicitly shown by Akian, Gaubert, and
Guterman [4], strengthening earlier connections between these problems that were made
in the literature on tropical algebra (such as [40, 32, 58]) and in works on scheduling
problems [64].5

Furthermore, tropical linear programs can be reduced to linear programs over the non-
Archimedean field of convergent generalized power series [31, 11].6 This characterization has
been exploited to show that, if there exists a strongly-polynomial-time pivoting rule for the
simplex algorithm, where the choice of basis element to pivot is semialgebraic in a certain
technical sense (and this is the case for many pivoting rules), then the entire algorithm can
be tropicalized, to get a polynomial-time algorithm for deterministic two-player mean-payo�
games [10].

The analogy between policy iteration and the simplex method is also seen in practice. The
aforementioned counter-examples show that policy-iteration algorithms run in exponential
time in the worst-case. And yet, various benchmarks have shown that policy-iteration
algorithms are very e�cient at solving real-world instances, both for single-player [41, 27, 59]
and two-player games [32, 21]. This di�erence between worst-case and real-life performance
is also what happens with the simplex method. And in both cases it begs the question: why?

1.4 Smoothed analysis

In the case of the simplex method, the generally accepted explanation was proposed by
Spielman and Teng [77]. They have shown that, if one takes any linear programming instance
max{c · x | A · x > b} of dimension n, and perturbs each entry of A, b and c by a Gaussian
with mean 0 and standard deviation 1

„
, then the simplex method, with a particular choice of

pivoting rule, will solve the resulting perturbed system in time poly(„ · n) [77, 28]. It is then
reasonable to expect the simplex method to work e�ciently on real-world instances, since
they incorporate real-world data which is prone to such perturbations. It was this result
of Spielman and Teng that founded the area of smoothed analysis, where one studies the
e�ciency of algorithms on such perturbed inputs.

5 Stochastic two-player mean-payo� games, on the other hand, are equivalent to tropical semidefinite
programming [14].

6 A linear program over such a field can be thought of as a parametric family of linear programs over
R. It follows from the above reduction that deterministic mean-payo� games can be encoded as linear
programs with coe�cients of exponential bit-length. Such an encoding was first derived by Schewe [73],
without reference to non-Archimedean fields.
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The question then naturally follows: are policy-iteration algorithms e�cient in the sense
of smoothed analysis?

Recent evidence seems to indicate that no, they are not. The first policy-iteration
algorithm for single-player games (MDPs), by Howard [52], determines for the current policy
‡ : States æ Actions, and for each state i of the game, if a local improvement is possible:
would a di�erent choice of action at i improve the value of the game when starting at i, if

the game were to be played according to ‡ at every other state? The algorithm then changes
the action ‡(i) at every state i where such a local improvement is possible, to the best
possible local improvement. This is sometimes called Howard’s policy iteration, or the greedy

all-switches rule.
Last year, Christ and Yannakakis [24] showed a remarkable lower bound. They showed

that 2œ(n
c
) iterations are necessary on a certain family of stochastic MDPs (single-player

games), even when the payo�s are perturbed. In fact, the lower bound holds not only
probabilistically, where each payo� is independently perturbed by a Gaussian with standard
deviation 1

poly(n)
, but even adversarily, where each payo� is perturbed by any value within

± 1

poly(n)
.

It is surprising that such a bound can be proven at all. However, their result only holds
for stochastic games, and does not necessarily apply to deterministic games, where it has
been previously conjectured that Howard’s rule is e�cient [49]. Also, this result shows that
a particular way of improving the policy, the greedy all-switches rule, does not give us an
e�cient algorithm (in the sense of smoothed analysis). This is analogous to saying that a
particular pivoting rule in the simplex algorithm is not e�cient, and does not exclude the
possibility that other ways of improving the policy might work.

Exploiting any one of these caveats could in principle allow for a smoothed analysis for
policy iteration. Our main result exploits both: we show that for deterministic two-player
games, a slightly di�erent policy-improvement method will be e�cient, in the sense of
smoothed analysis.

I Theorem 1 (our main theorem). There exists a policy-iteration algorithm for solving n-state

deterministic two-player (discounted or mean-payo�) games played on ergodic graphs, which

runs in time poly(„ ·n) with high probability, on an input where normalized payo�s in [≠1, 1]
have been independently perturbed by a Gaussian with mean 0 and standard deviation

1

„
.

It should be emphasized that the lower bound of Christ and Yannakakis holds even for the
single-player case, and our result could be contrasted with theirs, even if we only had proved
it for the single-player case. However, our policy-iteration algorithm (our upper-bound)
works even for two-player games, which are much harder. Our policy-improvement rule is
similar to the greedy all-switches rule, except that the choice of switches is allowed to depend
on an additional parameter (a discount factor) which evolves over time.

1.5 Computational complexity

Our result should also be contrasted with the case of the simplex algorithm for linear
programming. Recall that we do know polynomial-time algorithms for linear programming,
it is only the simplex algorithm which fails to run e�ciently in the worst case. However,
it should be emphasized that we do not know any polynomial-time algorithms for solving
two-player discounted or mean-payo� games.

Indeed, solving one-player discounted and mean-payo� games reduces to linear program-
ming, so we have polynomial-time algorithms. But the complexity of solving two-player

discounted and mean-payo� games is one of the great unsolved problems in computational
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Figure 1 A hierarchy of NP search problems. Det2PG and Sto2PG refer to deterministic,
respectively stochastic, two-player games. Arrows denote inclusion or containment. By inclusion of
a search problem in the classes UP fl coUP and NP fl coUP of decision problems, we mean that the
problem of deciding each bit of the unique answer can be computed in these classes.

complexity, first posed by Gurvich, Karzanov, and Khachiyan [44]. For any of the two-player
variants, the respective decision problem (what is the i-th bit of the value) is in UPflcoUP [56],
and the search problem (find an optimal strategy) is in the computational complexity class
UEOPL (Unique End-of-Potential-Line) [53, 35]. In fact it is in the promise version of this
class, which we denote pUEOPL. Even within the class pUEOPL, the problem of solving
two-player discounted and mean-payo� games seems to be only a special, simple case: the
sought optimal policies can be obtained from the unique fixed point of a simple monotone
operator. This places the search problem in the class Tarski. The two complexity classes
pUEOPL and Tarski sit at the bottom of a large hierarchy of complexity classes [34, 43]. This
hierarchy stratifies the broad class TFNP of NP search problems [55, 62, 66]. See Figure 1.

In this sense, the problem of solving two-player discounted and mean-payo� games is the
simplest known problem in NP, which is not yet known to be solvable in polynomial time
(or even in time 2no(1)). For any problem which is not known to be in P, one may ask the
question: is the problem still hard on a random instance? Many hard problems have been
conjectured to have this property, of being hard to solve even for a random instance. This is
the case for SAT [74, 36] and subset sum [72], but also for other, not necessarily NP-hard,
problems in NP, such as lattice problems [2]. There is a broad belief that natural problems
which are hard, remain hard on random inputs.7 In contrast, our main theorem generalizes
to show that solving deterministic two-player games is easy, for any su�ciently random input
distribution.

I Theorem 2 (generalization). Consider distributions on n-state deterministic two-player

discounted or mean-payo� games played on an ergodic graph, where each payo� is chosen

independently according to a (not necessarily identical) distribution with mean in [≠1, 1] and
standard deviation 6 1

„
and with probability density functions satisfying f(y) 6 „ for all

y œ R. (This includes, for example, payo�s perturbed by a Gaussian, or payo�s sampled from

a uniform interval of length > 1

„
.)

There exists a policy-iteration algorithm which runs in time poly(n,„), with high probab-

ility, on games sampled according to any such distribution.

7 The distributions which are considered hard must be chosen carefully to avoid trivial cases, e.g. CNF
formulas with too many or too few clauses, but there are often simple and natural distributions.
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1.6 A previous approach and our approach

A first, naive attempt at proving Theorem 1 could proceed along the same lines as the
Mulmuley, Vazirani and Vazirani’s isolation lemma [65]. We think of what happens to the
game when all of the payo�s of all the actions are fixed, except for one, which is sampled
independently according to some distribution as above. Let us suppose that the free payo�
is for an action of some state i. As it turns out, when every other payo� is fixed, the value
of the game at state i is a piecewise linear function of the free payo�, and one can then
hope that it has few break points. If this were indeed the case, that there were only poly(n)
break points, one could then argue similarly to the MVV isolation lemma, to show that
approximating the random payo�s using O(log(n)) bits of precision is enough to isolate the
linear piece (in the piecewise linear function). From this it would follow that optimal policies
for the truncated payo�s are also optimal for the untruncated payo�s. One could then invoke
a pseudo-polynomial-time value-iteration algorithm [79] on the truncated payo�s, and this
would run in polynomial time.

The conference version of the paper of Boros, Elbassioni, Fouz, Gurvich, Makino and
Manthey [18] outlines a similar proof strategy. Among other results, a result similar to our
Theorem 1 was claimed [18, Theorem 4.6]. Their proof works for the one-player case, and the
authors claimed, without a careful proof, that the two-player case also follows. This claim
was later retracted in the journal version [19].8 Indeed, it turns out that the two-player case
is significantly more subtle.

In the one-player case it can be shown that for every action there exist at most n break
points, and hence an isolation lemma can be proven. One can then conjecture, for the
two-player case, a poly(n) upper-bound on the number of break points. As it turns out, this
conjecture is wrong. An exponential example can be created using the construction of [17]
that was also used in [12] to prove that interior point methods for linear programming are
not strongly polynomial. This construction gives us a deterministic two-player game with n

states such that, leaving the payo�s of all but one of actions fixed, as the free payo� varies
between ≠1 and 1, the value of the game is a piecewise-linear function with 2œ(n) break
points.

So what do we do instead? One natural thing to try is to show that the number of break
points is poly(n), with very high probability, for randomly-chosen payo�s. This could well
be true, and an argument in the style of the MVV isolation lemma would then follow. But
we were unable to show it.

Instead, our results depend on a deeper analysis of deterministic two-player games. We
also prove an isolation lemma, but using an approach di�erent to MVV. Instead of attempting
to isolate an optimal policy among all possible policies, we show that su�ciently random
payo�s, with high probability, isolate a Blackwell-optimal policy. Blackwell-optimal policies
are policies that arise in discounted games with discount factor “ close to 1. Blackwell-optimal
policies are part of a family of policies which are induced by an object called a bias. Not all
optimal policies are Blackwell-optimal, or even bias-induced. Nonetheless, every two-player
discounted game has a Blackwell-optimal policy [60]. Furthermore, there exist policy-iteration
algorithms for finding a Blackwell-optimal policy [57, 51] (that are ine�cient in the worst
case).

8 In their paper, the breakpoints are chosen so that between any two breakpoints the value of the optimal
strategy and the value of the second-best strategy are su�ciently far apart. This works for the single
player-case, but the argument we just presented, where we only keep track of the number of break
points in the value function, is simpler and also works.
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We are then able to show that, if the payo�s are su�ciently random, then with high
probability it will happen that there is a unique bias-induced policy, which must then be
the Blackwell-optimal policy. Furthermore, from the proof of this theorem we devise a
condition number ∆(r), associating a number in [0,+Œ] to any given choice r of payo�s. The
uniqueness proof generalizes to show that a deterministic two-player game with su�ciently
random payo�s will have a small condition number (∆(r) 6 poly(n)) with high probability.

This is a condition number in the same sense as the known condition numbers that govern
the complexity of algorithms for solving linear equations, semidefinite feasibility, etc, and
broadly measure the inverse-distance to ill-posedness (see [20]). Although, strictly speaking,
our condition number does not measure inverse-distance to some set, it does have the property
that ∆(r) is finite if and only if the game with payo�s r has a unique bias-induced policy,
and that every payo� r̃ œ BŒ(r, ”), within a ball of size ” 6 1

poly(∆(r))
around r, will also

have a unique bias-induced policy. So, at least intuitively, we can think of ∆(r) as an
inverse-distance between r and the set of games with multiple bias-induced policies.

Finally, it can be shown that, taking a discount rate “ > 1 ≠ 1

poly(n,∆)
(i.e., su�ciently

close to 1), the only optimal policy is the Blackwell-optimal policy. We can then use the
results of [78, 47] to obtain a policy iteration algorithm for finding the Blackwell optimal
policy in time poly(n,∆). This algorithm runs in polynomial smoothed time, because, as
mentioned above, su�ciently random payo�s have small condition number. This includes
any fixed choice of payo�s that has been randomly perturbed by a Gaussian.

1.7 Related work

There is not a lot of work on the complexity of discounted and mean-payo� games with random
payo�s. Besides the papers of Boros et al. [18, 19] and Christ and Yannakakis [24], which we
mentioned above, we only know of a paper by Mathieu and Wilson [61]. They do not provide
an algorithm, but they analyze the distribution of the value of a deterministic single-player
mean-payo� game (deterministic MDP) played on a complete graph with i.i.d. exponentially
distributed payo�s. Our algorithm will also work on such a payo� distribution.

A paper of Allamigeon, Benchimol, and Gaubert [9] analyzes e�ciency in a di�erent
random model. The shadow vertex rule is known to be e�cient on average under any
distribution over linear feasibility problems, which is symmetric up to changing of the sign
in each linear inequality [1]. Allamigeon et al. tropicalize this result, to show that a certain
tropical analogue of the shadow vertex rule will solve deterministic two-player mean-payo�
games in a bipartite graph in expected polynomial time, if the distribution over the payo�
matrix is invariant under transposition (this is the tropical analogue of the above symmetry).
In particular, if the payo�s of some given fixed input obey the same symmetry, their algorithm
runs in polynomial time. Of course, in general, perturbed payo�s need not be symmetric in
this way.

It was a paper of Frieze and Sorkin [39] that gave us the first idea of how to approach the
problem. Frieze and Sorkin analyse the gap between optimal and second-optimal assignment
in the assignment problem, using a bound on the reduced costs of the associated linear
program at the optimum solution [39, Theorem 3]. In the simplex algorithm, the reduced
cost works as a gradient, telling us the improvement in the objective function obtained by
changing the current basic solution in a given direction. Frieze and Sorkin show that, at
an optimum basic solution of a random assignment problem, every reduced cost is large,
which implies that there is a large di�erence between the optimum and second-best solution.
This large di�erence implies that the optimum solution is stable under perturbations. In
the case of deterministic two-player games, biases will play the role of dual variables, which
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allows us define an analogous notion of reduced costs at the optimal solution. We then show,
analogously, that, with high probability for a random instance, every reduced cost is large at
the optimum policy, which also implies stability. Our condition number is the (normalized)
inverse of the smallest reduced cost.

Our analysis of discounted and mean-payo� games is based on the operator approach to
study these games. Using this approach, Akian, Gaubert, and Hochart [6] have previously
shown that a generic two-player mean-payo� game has a unique bias (which must then
equal the Blackwell bias). More precisely, they show that for any stochastic or deterministic
two-player mean-payo� game, the set of payo�s where the bias is not unique has measure
zero. We give a more precise version of this result, for deterministic two-player mean-payo�
games, by showing that the policies induced by the unique bias are also unique. This further
allows us the measure “how far from having multiple bias-induced policies” is a given choice
of payo�s.

The operator approach was also used by Allamigeon, Gaubert, Katz and Skomra [13],
who define a condition number for the value iteration algorithm. Computer experiments
indicate that value iteration converges quickly for random games [14], which strongly suggests
that the condition number of [13] is small for random games, but there is currently no formal
proof of this claim. Even though our condition number and the one from [13] are based on
the bias vector, it is not clear how these two conditions numbers compare to each other.
In particular, we do not know if the value iteration algorithm has polynomial smoothed
complexity and we leave this problem as an open question.

2 Technical summary

For the sake of simplicity, we restrict our attention to deterministic mean-payo� games played
on an ergodic weighted directed graph G̨ = ([n], E, r), where |E| = m and [n] is split into
vertices controlled by players Max and Min, [n] = VMax ‡VMin. The ergodicity is taken in the
sense of [45, 5, 7]: a graph is called ergodic if the value of any mean-payo� game played on
this graph is independent of the initial state of the game.9 A typical example of such a graph
is a complete bipartite graph, in which the bipartition is formed by VMax, VMin. Ergodic
graphs are representative for the di�culty of mean-payo� games, because solving games on
general graphs reduces to solving games on complete bipartite graphs [22]. We note however
that it is not clear if this reduction can be done in the smoothed analysis setting. We leave
the problem of extending our results to non-ergodic graphs as a question for future research.

The weights rij of the edges in our model are chosen randomly: we suppose that (rij)
are independent absolutely continuous variables with densities fij . We further suppose that
weights are normalized – E(rij) œ [≠1, 1] – and that there exists a number „ > 0 such that
fij(y) 6 „ for all i, j, y and Var(rij) 6 1/„

2. As an example, if the weights r are taken by
perturbing some fixed weights r̄ij œ [≠1, 1] by Gaussian noise, so that rij ≥ N (r̄ij , fl2), then
we can take „ := 1/fl.

Under the ergodicity assumption, it is known [44, 7] that the following ergodic equation

has a solution (⁄, u) œ Rn+1 for all choices of weights:
I

’i œ VMax, ⁄ + ui = max(i,j)œE{rij + uj} ,
’i œ VMin, ⁄ + ui = min(i,j)œE{rij + uj} .

9 This is a notion similar to strong connectivity, but for two-player games. Intuitively, a graph is ergodic
if no player can play in such a way as to force the game to get stuck on a sub-graph.
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Furthermore, the number ⁄ is unique and it is the value of the game (which does not
depend on the initial state because of ergodicity)10. The vector u œ Rn, called a bias, is
never unique because the set of solutions contains at least one line: we can always add a
constant to all coordinates of u. In general, the set of biases may consist of more than one
line. We say that a pair of policies ‡ : VMax æ V (of Max) and · : VMin æ V (of Min) is
bias-induced if there is a bias u such that the edges used by ‡, · achieve the maxima and
minima in the ergodic equation. Bias-induced policies are optimal [44], but not every optimal
policy is bias-induced. To study the behavior of random games, we introduce the sets

P‡,· := {r œ Rm : (‡, ·) is the only pair of bias-induced policies
in the MPG with weights r},

for any pair (‡, ·) such that the resulting graph G̨‡,· has a single directed cycle. We denote
by … the set of all such pairs of policies. We also put U := fiP‡,· . Using the techniques
from [6] we are then able to show the following proposition. This proposition strengthens [6,
Theorem 3.2] for deterministic games by showing that each maximum and minimum in the
ergodic equation is generically achieved by a single edge.

I Proposition 3 (cf. [6, Theorem 3.2]). The sets P‡,·
are open polyhedral cones. Moreover,

these cones are disjoint and Rm \U is included in a finite union of hyperplanes. In particular,

this set has Lebesgue measure zero. Furthermore, if r œ U , then the ergodic equation has a

single solution (up to adding a constant to the bias), and each maximum and minimum in

the ergodic equation is achieved by a single edge.

This motivates the introduction of the following condition number ∆, which measures the
di�erence between the edge that achieves a maximum or minimum in the ergodic equation
and the “second best” edge, relatively to the spread of the weights around the value:

I Definition 4. Given r œ U , we put

∆(r) := max{|rij ≠ ⁄| : (i, j) œ E}
min{|rij ≠ ⁄ + uj ≠ ui| : (i, j) œ E, rij ≠ ⁄ + uj ≠ ui ”= 0} .

When defined in such a way, the condition number does not change when the weights are
multiplied by a positive constant, or when the same constant is added to all the weights.

To analyze the behavior of random games, we introduce the following random variables.
If i is a vertex controlled by Min, then for any edge (i, j) œ E we put

Zij = inf{x œ R : (x, r≠ij) œ U and the MPG with weights (x, r≠ij) has a pair
of bias-induced policies (‡, ·) œ … such that ·(i) ”= j} .

Here, (x, r≠ij) is the vector obtained from r by replacing the ijth coordinate with x. We
analogously define the variables Zij for vertices controlled by Max, changing inf to sup. Since
the variable Zij does not depend on rij , we get the estimate

I Lemma 5. For any – > 0, P(÷ij, |rij ≠ Zij | 6 –) 6 2–m„.

10This is a fundamental result which appeared already in [44]: in the paper’s only theorem, p(v) is the
value and c

Õ
ij = rij + uj ≠ ui are the payo�s modified by u. In the reference [7], the existence of ⁄ and

u is line (iii) of the much more general Theorem 2.1, which applies to additive eigenvectors of additively
homogeneous monotone operators.
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Furthermore, the variables Zij are related to the ergodic equation in the following way.

I Lemma 6. Suppose that r œ P‡,·
for some (‡, ·) œ …. Then, for every (i, j) œ E that is

not used in (‡, ·) we have Zij = ⁄ + ui ≠ uj.

The two lemmas above improve the conclusion of Proposition 3: not only each maximum
and minimum in the ergodic equation is achieved by a single edge, but with high probability
the di�erence between the best edge and the second best edge is large. In particular, this
shows that bias-induced policies do not change when the random weights are truncated, and
it gives an estimate of the condition number.

I Theorem 7. Let ” := 1/(4n(2n+1)m„). Then, with probability at least 1≠ 1/n, the whole

¸Œ ball BŒ(r, ”) is included in a single polyhedron P‡,·
.

I Theorem 8. Random mean payo� games are well conditioned with high probability. More

formally, for every Á > 0 we have P
!
∆ > 8m

Á
(„ +

Ò
2m

Á
)
"
6 Á.

To propose an algorithm that exploits the condition number, we use the fact that every
mean-payo� game has a pair of Blackwell-optimal policies, i.e., policies that are optimal for
all discount factors “ close to 1. Such policies are induced by the Blackwell bias, which is
defined as uú := lim“æ1(⁄(“) ≠ ⁄)/(1 ≠ “), where ⁄

(“) is the value of the discounted game
with discount factor “. We then show that, for well-conditioned games, the Blackwell-optimal
policies can be already found when the discount factor is low.

I Theorem 9. Suppose that r œ P‡,·
and fix 1 > “ > 1≠ 1

6n2∆(r)
. Then, (‡, ·) is the unique

pair of optimal policies in the discounted game with discount factor “.

Combining Theorems 8 and 9 with the results of [78, 47] showing that policy iteration
has polynomial complexity for discount factor “ < 1 ≠ 1

poly(n)
, we get our final result.11

I Theorem 10. The greedy-all switches policy iteration rule combined with increasing

discount factor solves random instances of deterministic discounted or mean-payo� games in

polynomial smoothed complexity.

In the theorem above, “polynomial smoothed complexity” is defined as in [15, 71]: there
exists a polynomial poly(x1, x2, x3, x4) such that for all Á œ ]0, 1] the probability that the
number of iterations of our algorithm exceeds poly(n,m,„,

1

Á
) is at most Á.

3 Conclusion and future work

We gave an analysis of two-player discounted and mean-payo� games, that led to a condition
number, and a policy-iteration algorithm which is e�cient on well-conditioned inputs. We
showed that random inputs are well-conditioned with high probability. A few remarks are in
order.

1. Our techniques work for two-player games played on ergodic graphs. In non-ergodic
graphs, the value ⁄i is not necessarily the same at each vertex i. A folklore reduction,
appearing for example in [22], shows that computing the value vector of a non-ergodic

11To wit: since the pair of optimal policies is unique, we can find them using an algorithm for discount
factor “ < 1 ≠ 1

poly(n,„) , and the same policies will be optimal for any higher “ and also for the
mean-payo� game.
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game reduces to computing the value of an ergodic game. So one can ask if our algorithms
can be used on non-ergodic games. The answer is not obvious. The reduction proceeds
in rounds, where in the first round one finds, say, the largest coordinate ⁄i of the value
vector, and then discards the node i (which requires some care) and repeats. Now, if one
takes a non-ergodic game G̨ with su�ciently random payo�s, and applies this reduction,
the resulting game is su�ciently random at the first round, but it is not clear what
happens in the succeeding rounds. So, as far as we can tell, the question remains open:
Do deterministic two-player discounted and mean-payo� games have polynomial smoothed

complexity, when played on non-ergodic graphs? A possible way of answering this question
is by doing an analysis of Blackwell-optimal policies in the non-ergodic case, similar to
what we have done here for the ergodic case.

2. Allamigeon, Gaubert, Katz and Skomra [13] show that a certain value-iteration algorithm
runs e�ciently on all ergodic instances with value ⁄ bounded away from zero. They
use maxi ui≠mini ui

|⁄| as a condition number. Can we use their result to show that value
iteration has polynomial smoothed complexity? I.e., is a su�ciently-random instance well-
conditioned as per their condition number? This was the central question left unanswered
in their paper, and we tried to solve it, or provide a counter-example, but have so far
failed to do so.

3. Our policy-iteration rule is not one of the standard rules (Howard, lexicographic, Ran-
domFacet, etc). Do these standard rules also have polynomial smoothed complexity on
deterministic two-player games? How about other “combinatorial” algorithms?

4. Can we extend our results to stochastic two-player games? The counter-example of
Christ and Yannakakis shows that the Howard all-switches rule does not have polynomial
smoothed complexity on stochastic two-player games. This seems to indicate that the
stochastic setting is more delicate. On the other hand, our policy iteration rule is di�erent
to Howard’s. So one could tentatively ask: is there a smoothed counter-example to the
Howard rule also in the deterministic (say, two-player) setting? This would show that
our policy-iteration rule cannot be replaced by the Howard rule.

5. How about other problems in UEOPL? Some of these problems are combinatorial, and
do not seem to be amenable to smoothed analysis. But one can consider, for example,
the P-Matrix Linear Complementarity Problem (P-LCP, see [35, Section 4.3]), and ask:
does it have polynomial smoothed complexity? More broadly speaking, one can make
the conjecture that every problem in UEOPL becomes easy under a suitable notion of

perturbation. This conjecture is broad and imprecise, but it might be an interesting
starting point for further research.
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Abstract

We consider the problem of satisfiability of sets of constraints in a given set of finite uniform
hypergraphs. While the problem under consideration is similar in nature to the problem of
satisfiability of constraints in graphs, the classical complexity reduction to finite-domain CSPs
that was used in the proof of the complexity dichotomy for such problems cannot be used as
a black box in our case. We therefore introduce an algorithmic technique inspired by classical
notions from the theory of finite-domain CSPs, and prove its correctness based on symmetries
that depend on a linear order that is external to the structures under consideration. Our second
main result is a P/NP-complete complexity dichotomy for such problems over many sets of uniform
hypergraphs. The proof is based on the translation of the problem into the framework of constraint
satisfaction problems (CSPs) over infinite uniform hypergraphs. Our result confirms in particular
the Bodirsky-Pinsker conjecture for CSPs of first-order reducts of some homogeneous hypergraphs.
This forms a vast generalization of previous work by Bodirsky-Pinsker (STOC’11) and Bodirsky-
Martin-Pinsker-Pongrácz (ICALP’16) on graph satisfiability.
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1 Introduction

In [15], Bodirsky and the third author introduced the computational problem Graph-SAT
as a generalization of systematic restrictions of the Boolean satisfiability problem studied
by Schaefer [36]. A graph formula is a formula formed from the atomic formulas E(x, y)
and x = y using negation, conjunction and disjunction, where E is interpreted as the edge
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relation of a simple undirected graph. Given a finite set � of graph formulas, the graph

satisfiability problem Graph-SAT(�) gets as an input a finite set V of variables and a graph
formula � = „1 · · · · · „n, where every „i is obtained from a formula Â œ � by substituting
the variables of Â by variables from V ; the goal is to decide the existence of a graph satisfying
�. Any instance of a Boolean satisfiability problem can indeed easily be reduced to a problem
of this form, roughly by replacing Boolean variables by pairs of variables which are to be
assigned vertices in a graph, and by translating the potential Boolean values 0 and 1 into
the non-existence or existence of an edge between these two variables. The main result
of [15] states that this computational problem is either solvable in polynomial time or is
NP-complete. This can be put in contrast with the theorem of Ladner [28] stating that if P
”= NP, then there exist computational problems that are neither solvable in polynomial-time
nor NP-complete. Similar dichotomy theorems have been established for related problems
concerning the satisfaction of constraints by linear orders [8], partially ordered sets [26],
tournaments [30], or phylogenetic trees [6]. It is conjectured that such dichotomies defying
Ladner’s theorem are common; we refer to Section 1.2 and Conjecture 4 for a precise
statement.

In order to develop our understanding of such natural generalizations of the classical
Boolean satisfiability problem, we consider in this article the complexity of Graph-SAT
where graph formulas are replaced by ¸-hypergraph formulas for some fixed ¸ Ø 2. More
precisely, we consider formulas where E is an ¸-ary symbol denoting the edge relation of an
¸-uniform undirected hypergraph; in the following, since all our hypergraphs are uniform and
undirected, we simply write ¸-hypergraph. The problem ¸-Hypergraph-SAT is then defined
in the same way as the problem Graph-SAT above. We also study the complexity of the
natural variant of the ¸-Hypergraph-SAT problem, investigated in [12] for the special case of
graphs, where we ask for the existence of a satisfying hypergraph that belongs to a prescribed
set K of finite ¸-hypergraphs. This corresponds to imposing structural restrictions on the
possible satisfying hypergraph solutions. For example, it is natural to ask for the existence
of a solution in the class K

¸
r
of all finite ¸-hypergraphs omitting a generalized clique on r

vertices. We use the notation ¸-Hypergraph-SAT(�,K) to denote this problem.
Surprisingly, it turns out that ¸-hypergraph problems behave very di�erently from the

corresponding graph problems, requiring in particular genuinely novel algorithmic methods
to handle them. A natural attempt to solve hypergraph satisfiability in polynomial time is
to use a generic reduction to constraint satisfaction problems (CSPs) whose domain consists
of the hypergraphs with at most ¸ elements [13]. While this reduction always works in the
(graph) case of ¸ = 2 [30], it can happen for ¸ > 2 that the resulting finite-domain CSP is an
NP-complete problem, although the original hypergraph satisfiability problem is solvable in
polynomial time. Our main result, Theorem 8, is an algorithm running in polynomial time
and solving the ¸-Hypergraph-SAT(�,K) problem under some general algebraic assumptions.

The next example illustrates that in this setting our algorithm is strictly more powerful
than the reduction of [13].

I Example 1. Let ¸ = 3, let Â be a formula with 4 free variables that holds precisely for
the hypergraphs in Figure 1, and let � be the set consisting of Â. This is an example
where the reduction to the finite from [13] cannot be applied to prove the tractability of
¸-Hypergraph-SAT(�). However, the problem is solvable in polynomial time, as it can be
solved by the algorithm introduced in Section 3.

Building on Theorem 8, our second contribution is a full complexity dichotomy for the
problems ¸-Hypergraph-SAT(�,K) where K is the class K¸

all
of all finite ¸-hypergraphs, or K¸

r
.
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Figure 1 Hypergraphs on at most 4 elements satisfying Â in Example 1. The vertices are labeled
to represent each of the four free variables of Â (only shown on one of the hypergraphs for readability).
The two 3-hypergraphs on the left have 2 vertices, and the color coding denotes vertices that are
equal. The other four 3-hypergraphs have four vertices each and precisely two hyperedges.

I Theorem 2. Let ¸ Ø 3, let K be either the class K
¸

all
of all finite ¸-hypergraphs or the

class K
¸
r
for some r > ¸, and let � be a set of ¸-hypergraph formulas. Then ¸-Hypergraph-

SAT(�,K) is either in P, or it is NP-complete. Moreover, given �, one can algorithmically

decide which of the cases holds.

In fact, our polynomial-time algorithm in Theorem 8 solves the hypergraph satisfiability
problem for all classes K of hypergraphs satisfying certain assumptions that we introduce
in Section 3. Likewise, our results imply a dichotomy result as in Theorem 2 for every class
K satisfying certain structural assumptions. For more details, see the full version of the
article [29].

1.1 Connection to Constraint Satisfaction Problems

The constraint satisfaction problem with template A = (A;R1, . . . , Rn) is the computational
problem CSP(A) of deciding, given an instance with variables V and constraints „(xi1 , . . . , xir )
with „ œ {R1, . . . , Rn} and xi1 , . . . , xir œ V, whether there exists an assignment f : V æ A
that satisfies all the constraints.

Note how the problem ¸-Hypergraph-SAT(�) is similar in nature to a constraint satis-
faction problem, where the di�erence lies in the fact that we are not asking for a labelling
of variables to elements of a structure A, but rather for a consistent labelling of ¸-tuples of
variables to a finite set describing all the possible ¸-hypergraphs on at most ¸ elements. For
example, in the case of ¸ = 2, this set contains 3 elements (for the graph on a single vertex,
and the two undirected graphs on 2 vertices), while for ¸ = 3 this set contains 6 elements
(there is one labeled 3-hypergraph on a single element, three on 2 elements, and two on 3
elements).

It was already noticed in [15] that it is possible to design a structure A (which is necessarily
infinite) such that Graph-SAT(�) is equivalent to CSP(A), and this observation also carries
out to the hypergraph setting as follows.

Fix ¸ Ø 3 and a class K of finite ¸-hypergraphs. Let us assume that K is an amalgamation

class: an isomorphism-closed class that is closed under induced sub-hypergraphs and with
the property that for any two hypergraphs H1,H2 œ K having a common hypergraph H as

ICALP 2024
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intersection, there exists H
Õ

œ K and embeddings of H1,H2 into H
Õ which agree on H. A

classical result of Fraïssé [22] yields that there exists an infinite limit hypergraph HK, called
the Fraïssé limit of K, with the property that the finite induced sub-hypergraphs of HK are
precisely the hypergraphs in K. Moreover, this limit can be taken to be homogeneous, i.e.,
highly symmetric in a certain precise sense – see Section 2 for precise definitions of these
concepts. If � is a set of ¸-hypergraph formulas, then it defines in HK a set of relations that
one can view as a CSP template AK,�. It follows that the problem ¸-Hypergraph-SAT(K,�)
is precisely the same as CSP(AK,�). The assumption that K is an amalgamation class is
rather mild and is for example fulfilled by the classes of interest for Theorem 2, namely by
the class K

¸

all
of all finite ¸-hypergraphs, or for any ¸ < r by the class K

¸
r
. We refer to [1]

for a discussion of amalgamation classes of 3-hypergraphs; importantly, while in the case of
¸ = 2 all such classes are known [27], it seems very di�cult to obtain a similar classification
in general since there are uncountably-many such classes already for ¸ = 3. The latter fact
obliges us to build on and refine abstract methods rather than relying on the comfort of a
classification in our general dichotomy result, which contrasts with the approach for graphs
in [12].

Using the reformulation of ¸-hypergraph problems as constraint satisfaction problems, we
show that the border between tractability and NP-hardness in Theorem 2 can be described
algebraically by properties of the polymorphisms of the structures AK,�, i.e., by the functions
preserving all relations of AK,�. This implies, in particular, the above-mentioned decidability
of this border. Roughly speaking, the tractable case corresponds to the CSP template
enjoying some non-trivial algebraic invariants in the form of polymorphisms, whereas the
hard case is characterized precisely by the absence of such invariants.

I Theorem 3. Let ¸ Ø 3, let K be either the class K
¸

all
of all finite ¸-hypergraphs or the class

K
¸
r
for some r > ¸, and let � be a set of ¸-hypergraph formulas. Then precisely one of the

following applies.

1. The clone of polymorphisms of AK,� has no uniformly continuous minion homomorphism

to the clone of projections P, and CSP(AK,�) is in P.
2. The clone of polymorphisms of AK,� has a uniformly continuous minion homomorphism

to the clone of projections P, and CSP(AK,�) is NP-complete.

The algebraic assumptions in the second item of the theorem correspond to the clone
of polymorphisms being trivial in a certain sense (i.e., containing only polymorphisms that
imitate the behaviour of projections when restricted to a certain set). For the precise
definitions, see [5].

1.2 Related work on constraint satisfaction problems

In the framework of CSPs, it is natural to consider not only classes of finite ¸-hypergraphs
but also classes of di�erent finite structures in a fixed relational signature. If such a class
K is an amalgamation class, then there exists a countably infinite homogeneous structure
BK whose finite substructures are precisely the structures in K. However, CSP(BK) is not
guaranteed to be contained in the complexity class NP since the class K does not have to be
algorithmically enumerable (as mentioned above, there are uncountably many amalgamation
classes of 3-hypergraphs; hence there exists such a K such that CSP(BK) is undecidable). A
natural way of achieving the algorithmical enumerability of K is to require that there exists a
natural number bK such that a structure is contained in K if, and only if, all its substructures
of size at most bK are in K. In this case, we say that K (or its Fraïssé limit BK) is finitely
bounded. For every set � of formulas in the language of the structures at hand, one then
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gets as in the previous section a structure AK,� whose domain is the same as BK and whose
relations are definable in first-order logic from the relations of BK – we say that AK,� is a
first-order reduct of BK.

Thus, for every set � of formulas and every finitely bounded amalgamation class K,
the generalized satisfiability problem parameterized by � and K is the CSP of a first-order
reduct AK,� of a finitely bounded homogeneous structure. It is known that the complexity
of the CSP over any such template depends solely on the polymorphisms of AK,� [16]. This
motivates the following conjecture generalizing the dichotomy for Graph-SAT which was
formulated by Bodirsky and Pinsker in 2011 (see [17]). The modern formulation of the
conjecture based on recent progress [2, 3, 5] is the following:

I Conjecture 4. Let A be a CSP template which is a first-order reduct of a finitely bounded

homogeneous structure. Then one of the following applies.

1. The clone of polymorphisms of A has no uniformly continuous minion homomorphism to

the clone of projections P, and CSP(A) is in P.
2. The clone of polymorphisms of A has a uniformly continuous minion homomorphism to

the clone of projections P, and CSP(A) is NP-complete.

It follows that Theorem 3 is a special case of Conjecture 4. It is known that if the clone
of polymorphisms of any CSP template within the range of Conjecture 4 has a uniformly
continuous minion homomorphism to P, then the CSP of such template is NP-hard [5].
Already before Conjecture 4 was introduced, a similar conjecture was formulated by Feder and
Vardi [23] for CSPs over templates with finite domains and it was confirmed independently
by Bulatov and Zhuk [19, 39, 40] recently. Conjecture 4 itself has been confirmed for many
subclasses: for example for CSPs of all structures first-order definable in finitely bounded
homogeneous graphs [15, 12], in (Q;<) [8], in any unary structure [14], in the random
poset [26], in the random tournament [30], or in the homogeneous branching C-relation [6],
in Ê-categorical monadically stable structures [18], as well as for all CSPs in the class
MMSNP [11], and for CSPs of representations of some relational algebras [9, 10].

1.3 Novelty of the methods and significance of the results

We prove that under the algebraic assumption in item (1) of Theorem 3, AK,� admits
non-trivial symmetries that can be seen as operations acting on the set of linearly ordered

¸-hypergraphs with at most ¸ elements. We moreover know from [34] that the introduction
of a linear order “out of nowhere” is unavoidable, in the sense that the symmetries of AK,�

acting on unordered ¸-hypergraphs can be trivial even if CSP(AK,�) is solvable in polynomial
time. This is rather surprising (in model-theoretic terms, hypergraphs form a class having
the non-strict order property, and thus have no ability to encode linear orders) and is to date
the only example of such a phenomenon. As a consequence, the aforementioned “reduction
to the finite” introduced in [13], which is enough to prove the tractability part of most
of the complexity dichotomies mentioned in the previous section, cannot be used in the
hypergraph satisfiability setting. In order to prove the tractability part of Theorem 3, we
thus introduce new algorithmic techniques inspired by results in the theory of constraint
satisfaction problems with finite domains, in particular by absorption theory [4] and Zhuk’s
theory [39, 40]. More precisely, let I be an instance of CSP(AK,�). Our algorithm transforms
I into an equi-satisfiable instance I

Õ that is su�ciently locally consistent, such that the
solution set of a certain relaxation of I Õ does not imply any restrictions on the solution
set of the whole instance, and that satisfies an additional condition resembling Zhuk’s
notion of irreducibility [39, 40]. We then prove that any non-trivial instance satisfying those

ICALP 2024
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properties has an injective solution. This step is to be compared with the case of absorbing
reductions in Zhuk’s algorithm. The existence of an injective solution can then be checked
by the aforementioned reduction to the finite from [13, 14]. In this way, we resolve the
trouble with hitherto standard methods pointed out in [34]. A positive resolution of the
general Conjecture 4 will likely have to proceed in a similar spirit, albeit at a yet higher
level of sophistication. In the case of graphs, the above described algorithm is not necessary
since every instance can be immediately reduced to a finite-domain CSP by the black box
reduction.

We use the recently developed theory of smooth approximations [30] to prove the dicho-
tomy, i.e., that AK,� satisfies one of the two items of Theorem 3, for all �. The classification
of the complexity of graph-satisfiability problems from [15] used a demanding case distinction
over the possible automorphisms groups of the structures AK,� (where � is a set of graph
formulas, and K is the class of all finite simple undirected graphs) – it was known previously
that there are exactly 5 such groups [37]. Our result relies neither on such a classification of
the automorphism groups of the structures under consideration, nor on the classification of the
hypergraphs of which they are first-order reducts; as mentioned above, no such classification
is available. While Thomas [38] obtained a classification of the mentioned automorphism
groups for every fixed ¸ and for K consisting of all finite ¸-hypergraphs, this number grows
with ¸ and makes an exhaustive case distinction impossible. To overcome the absence of such
classifications, we rely on the scalability of the theory of smooth approximations, i.e., on the
fact that the main results of the theory can be used without knowing the base structures
under consideration. This was claimed to be one of the main contributions of this theory;
Theorem 3 and its generalization [29, Theorem 21] are the first complexity classification
using smooth approximations that truly exemplifies this promise.

1.4 Bonus track: local consistency

Our structural analysis of ¸-hypergraph problems allows us to obtain as an easy consequence
a description of the hypergraph satisfiability problems ¸-Hypergraph-SAT(�,K) that are
solvable by local consistency methods, assuming that � contains the atomic formula E.
Similar classifications, and general results on the amount of local consistency needed in those
cases, had previously obtained for various other problems (including Graph-SAT problems)
which can be modeled as CSPs of first-order reducts of finitely bounded homogeneous
structures [31, 30].

I Theorem 5. Let r > ¸ Ø 3, let K be either the class K
¸

all
of all finite ¸-hypergraphs or

the class K
¸
r
, and let � be a set of ¸-hypergraph formulas containing E(x1, . . . , x¸). Then

precisely one of the following applies.

1. The clone Pol(A) has no uniformly continuous minion homomorphism to the clone of

a�ne maps over a finite module, and CSP(A) has relational width (2¸,max(3¸, r)).
2. The clone Pol(A) has a uniformly continuous minion homomorphism to the clone of a�ne

maps over a finite module.

1.5 Future work

This work is concerned with the complexity of the decision version of constraint satisfaction
problems whose study is motivated by Conjecture 4. A natural variant of such problems is
the optimisation version, where one is interested in finding a solution to an instance of the
CSP that minimizes the number of unsatisfied constraints. The complexity of such problems
(called MinCSPs) has mostly been investigated for finite templates, but recently also in the
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case of infinite templates falling within the scope of Conjecture 4 from the point of view
of exact optimisation and approximation [21, 20, 24], as well as from the point of view of
parameterized complexity [33].

Our complexity classification for the decision CSP (Theorem 3) can be seen as a foundation
for a systematic structural study of optimisation problems over hypergraphs.

1.6 Organisation of the present article

After introducing a few notions needed for the formulation of the main algorithm in Section 2,
we introduce the algorithm and prove its correctness in Section 3. For lack of space, we
only present the proof of one of the main correctness arguments (Theorem 13) for the
algorithmic part of Theorem 3 and otherwise illustrate the main concepts that we introduce
using examples. In Section 4, we give an outline of the proof of Theorem 3. The rest of the
proofs can be found in the appendix.

2 Preliminaries

For any k Ø 1, we write [k] to denote the set {1, . . . , k}. A tuple is called injective if its
entries are pairwise distinct. In the entire article, we consider only relational structures in a
finite signature.

A primitive-positive (pp-)formula is a first-order formula built only from atomic formulas,
existential quantification, and conjunction. A relation R ™ An is pp-definable in a relational
structure A if there exists a pp-formula „(x1, . . . , xn) such that the tuples in R are precisely
the tuples satisfying „.

Let ¸ Ø 2. A structure H = (H;E) is an ¸-hypergraph if the relation E is of arity ¸,
contains only injective tuples (called hyperedges), and is fully symmetric, i.e., every tuple
obtained by permuting the components of a hyperedge is a hyperedge as well. Given any
¸-hypergraph H = (H;E), we write N for the set of all injective ¸-tuples in H that are not
hyperedges, and we call this set the non-hyperedge relation.

2.1 CSPs and Relational Width

A CSP instance over a set A is a pair I = (V, C), where V is a non-empty finite set of
variables, and C is a set of constraints; each constraint C œ C is a subset of AU for some
non-empty U ™ V (U is called the scope of C). For a relational structure A, we say that
I is an instance of CSP(A) if for every C œ C with scope U , there exists an enumeration
u1, . . . , uk of the elements of U and a k-ary relation R of A such that for all f : U æ A we
have f œ C … (f(u1), . . . , f(uk)) œ R. A mapping s : V æ A is a solution of the instance I

if we have s|U œ C for every C œ C with scope U . Given a constraint C ™ AU and a tuple
v œ Uk for some k Ø 1, the projection of C onto v is defined by projv(C) := {f(v) : f œ C}.
Let U ™ V. We define the restriction of I to U to be an instance I |U = (U, C |U ) where the
set of constraints C |U contains for every C œ C the constraint C|U = {g|U | g œ C}.

We denote by CSPInj(A) the restriction of CSP(A) to those instances of CSP(A) where
for every constraint C and for every pair of distinct variables u, v in its scope, proj(u,v)(C) ™

{(a, b) œ A2
| a ”= b}.

I Definition 6. Let 1 Æ m Æ n. We say that an instance I = (V, C) is (m,n)-minimal if
both of the following hold:

every non-empty subset of at most n variables in V is contained in the scope of some

constraint in I;

for every at most m-element tuple of variables v and any two constraints C1, C2 œ C

whose scopes contain all variables of v, the projections of C1 and C2 onto v coincide.

ICALP 2024
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For m Ø 1, we say that an instance is m-minimal if it is (m,m)-minimal. We say that an
instance I of the CSP is non-trivial if it does not contain any empty constraint. Otherwise,
I is trivial.

For all 1 Æ m Æ n and for every instance I of a CSP(A) for some finite-domain structure
A, an (m,n)-minimal instance with the same solution set as I can be computed from I

in polynomial time. The same holds for any Ê-categorical structure A (see Section 2.2 for
the definition of Ê-categoricity, and see e.g., Section 2.3 in [32] for a description of the
(m,n)-minimality algorithm in this setting). The resulting instance I

Õ is called the (m,n)-
minimal instance equivalent to I and the algorithm that computes this instance is called
the (m,n)-minimality algorithm. Note that the instance I

Õ is not necessarily an instance
of CSP(A). However, I Õ is an instance of CSP(AÕ) where A

Õ is the expansion of A by all
at most n-ary relations pp-definable in A. Moreover, CSP(AÕ) has the same complexity as
CSP(A).

If I is m-minimal and v is a tuple of variables of length at most m, then by definition
there exists a constraint of I whose scope contains all variables in v, and all the constraints
who do have the same projection on v. We write projv(I) for this projection, and call it the
projection of I onto v.

I Definition 7. Let 1 Æ m Æ n, and let A be a relational structure. We say that CSP(A) has
relational width (m,n) if every non-trivial (m,n)-minimal instance equivalent to an instance

of CSP(A) has a solution. CSP(A) has bounded width if it has relational width (m,n) for
some natural numbers m Æ n.

2.2 Basic model-theoretic definitions

Let B and C be relational structures in the same signature. A homomorphism from B to C is
a mapping f : B æ C with the property that for every relational symbol R from the signature
of B and for every b œ RB, it holds that f(b) œ RC. An embedding of B into C is an injective
homomorphism f : B æ C such that f≠1 is a homomorphism from the structure induced by
the image of f in C to B, and an isomorphism from B to C is a bijective embedding of B
into C. An endomorphism of B is a homomorphism from B to B, an automorphism of B is
an isomorphism from B to B. We denote the set of endomorphisms of B by End(B) and the
set of its automorphisms by Aut(B).

Let ¸ Ø 2, and let K be an isomorphism-closed class of finite ¸-hypergraphs. We say that
K is an amalgamation class if the following two conditions are satisfied: It is closed under
induced substructures, and for any ¸-hypergraphs H,H1,H2 œ K and for any embeddings fi
of H into Hi (i œ {1, 2}), there exists an ¸-hypergraph H

Õ and embeddings gi of Hi into H
Õ

(i œ {1, 2}) such that g1 ¶ f1 = g2 ¶ f2. We write ≠æ
K for the class which contains for every

¸-hypergraph H from K all ordered ¸-hypergraphs obtained by linearly ordering H.
A relational structure B is homogeneous if every isomorphism between finite induced

substructures of B extends to an automorphism of B. The class of finite substructures of a
homogeneous structure B is an amalgamation class; and conversely, for every amalgamation
class K there exists a homogeneous structure BK whose finite induced substructures are
exactly the structures in K (see e.g. [25] for this as well as the other claims in this section).
The structure BK is called the Fraïssé limit of K. The universal homogeneous ¸-hypergraph is
the Fraïssé limit of K¸

all
.

A first-order reduct of a structure B is a structure A on the same domain whose relations are
definable over B by first-order formulas without parameters. Recall that for any amalgamation
class K and for any set � of ¸-hypergraph formulas, AK,� denotes the first-order reduct of
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the Fraïssé limit HK of K whose relations are defined by the formulas in �. We remark that
if B is the Fraïssé limit of a finitely bounded class, then every first-order formula is equivalent
to one without quantifiers.

A countable relational structure is Ê-categorical if its automorphism group has finitely
many orbits in its componentwise action on n-tuples of elements for all n Ø 1. This is
equivalent to saying that there are only finitely many relations of any fixed arity n Ø 1 that
are first-order definable from A. Every first-order reduct of a finitely bounded homogeneous
structure is Ê-categorical.

2.3 Polymorphisms

A polymorphism of a relational structure A is a function from An to A for some n Ø 1
which preserves all relations of A, i.e., for every such relation R of arity m and for all tuples
(a1

1
, . . . , a1

m
), . . . , (an

1
, . . . , an

m
) œ R, it holds that (f(a1

1
, . . . , an

1
), . . . , f(a1

m
, . . . , an

m
)) œ R. We

also say that a polymorphism of A preserves a constraint C ™ AU if for all g1, . . . , gn œ C,
it holds that f ¶ (g1, . . . , gn) œ C. The set of all polymorphisms of a structure A, denoted
by Pol(A), is a function clone, i.e., a set of finitary operations on a fixed set which contains
all projections and which is closed under arbitrary compositions. Every relation that is
pp-definable in a relational structure A is preserved by all polymorphisms of A.

Let S ™ R ™ An be relations pp-definable in a structure A. We say that S is a binary

absorbing subuniverse of R in A if there exists a binary operation f œ Pol(A) such that for
every s œ S, r œ R, we have that f(s, r), f(r, s) œ S. In this case, we write S EA R, and we
say that f witnesses the binary absorption.

Let A be a relational structure, and let G = Aut(A) be the group of its automorphisms.
For n Ø 1, a k-ary operation f defined on the domain of A is n-canonical with respect
to A if for all a1, . . . ,ak œ An and all –1, . . . ,–k œ G , there exists — œ G such that
f(a1, . . . ,ak) = — ¶ f(–1(a1), . . . ,–k(ak)). A function f that is n-canonical with respect to
A for all n Ø 1 is called canonical with respect to A. In particular, f induces an operation on
the set An/G of orbits of n-tuples under G for every n Ø 1. In our setting, we are interested
in operations that are canonical with respect to a homogeneous ¸-hypergraph H or to a
homogeneous linearly ordered ¸-hypergraph (H, <). In this case, an operation canonical with
respect to H can simply be seen as an operation on labeled ¸-hypergraphs with at most n
elements, while an operation canonical with respect to (H, <) can be seen as an operation on
labeled ¸-hypergraphs with at most n elements which carry a weak linear order.

3 Polynomial-Time Algorithms From Symmetries

In this section, we fix ¸ Ø 3 and a finitely bounded class K of ¸-hypergraphs such that ≠æ
K is

an amalgamation class. We write (H, <) for the Fraïssé limit of ≠æ
K , In for the set of injective

n-tuples of elements from H for any n Ø 1, I for I¸, and bH for an integer witnessing that
K is finitely bounded. We also fix a first-order reduct A of H. We say that A admits an

injective linear symmetry if it has a ternary injective polymorphism m which is canonical
with respect to (H, <), and which has the property that for any a,b œ I, the orbits under
Aut(H) of m(a,a,b),m(a,b,a),m(b,a,a) and b agree. Note that in this case, m induces
an operation on the set {E,N} of orbits of injective ¸-tuples under Aut(H). We say that m
acts as a minority operation on {E,N} since the second condition on m can be equivalently
written as m(X,X, Y ) = m(X,Y,X) = m(Y,X,X) = Y for all X,Y œ {E,N}.

We prove the following.
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I Theorem 8. Let ¸ Ø 3, let K be a finitely bounded class of ¸-hypergraphs such that
≠æ
K is

an amalgamation class. Let A be a first-order reduct of the Fraïssé limit H of K. Suppose

that I EA H¸
, and that A admits an injective linear symmetry or is such that CSPInj(A) has

bounded width. Then CSP(A) is solvable in polynomial time.

If CSPInj(A) has bounded width, CSP(A) has bounded width as well by general principles,
and is therefore in particular solvable in polynomial time (see [29, Section 3.2]). In the rest of
this section, we will therefore focus on the case when A admits an injective linear symmetry.

Let A be a first-order reduct of H admitting an injective linear symmetry. Set p1(x, y) :=
m(x, y, y). It follows that p1 is canonical with respect to (H, <) and that it acts as the first
projection on {E,N}, i.e., it satisfies for any a,b œ I that the orbit of p1(a,b) under Aut(H)
is equal to the orbit of a. Moreover, by composing p1 with a suitable endomorphism of H,
we can assume that p1(y, x) acts lexicographically on the order, i.e., p1(x, y) < p1(xÕ, yÕ) if
y < yÕ or y = yÕ and x < xÕ (for more details, see [29, Section 5.2]).

In the remainder of this section, we present an algorithm solving CSP(A) in polynomial
time, given that A has among its polymorphisms operations p1 and m with the properties
derived above. Before giving the technical details, we give here an overview of the methods we
employ. Let I be an instance of CSP(A). Our algorithm transforms I into an equi-satisfiable
instance I

Õ that is su�ciently minimal, such that the solution set of a certain relaxation
of I Õ is subdirect on all projections to an ¸-tuple v of pairwise distinct variables (i.e., for
every tuple a in this projection, this relaxation of I Õ has a solution where the variables
from v are assigned values from a), and that additionally satisfies a condition which we call
inj-irreducibility, inspired by Zhuk’s notion of irreducibility [39, 40]. We then prove that
any non-trivial instance satisfying those properties has an injective solution. This step is to
be compared with the case of absorbing reductions in Zhuk’s algorithm, and in particular
with Theorem 5.5 in [40], in which it is proved that any su�ciently minimal and irreducible
instance that has a solution also has a solution where an arbitrary variable is constrained to
belong to an absorbing subuniverse. Since in our setting I is an absorbing subuniverse of
H¸ in A, this fully establishes a parallel between the present work and [40]. The algorithm
that we are going to introduce will work with infinite sets which are however always unions
of orbits of ¸-tuples under Aut(H). Aut(H) is oligomorphic, i.e., it has only finitely many
orbits in its action on Hk for every k Ø 1; in particular, there are only finitely many orbits
of ¸-tuples under Aut(H), whence we can represent every union of such orbits by listing all
orbits included in this union.

We now show that the structure defined by the formula from Example 1 has polymorphisms
satisfying our assumptions on p1 and on m, and hence it falls into the scope of this section.

I Example 1 (continued). Let R ™ H4 be the relation defined by Â, and let A := (H;R).
We define the canonical behaviour of a binary injection (i.e., a binary injective function) p1
with respect to (H, <) as follows. We require that p1 acts as the first projection on {E,N}, if
O is a non-injective orbit of triples under Aut(H), and P is an injective orbit, then we require
that p1(O,P ) = p1(P,O) = P . Finally, for two non-injective orbits O1, O2 of triples under
Aut(H, <) such that p1(O1, O2) needs to be injective, we require that p1(O1, O2) = E if the
minimum of any triple in O1 appears only once in this triple, and p1(O1, O2) = N otherwise.
Now, we take a ternary injection mÕ canonical with respect to (H, <) which behaves like a
minority on {E,N}, and we define m := mÕ(p1(x, p1(y, z)), p1(y, p1(z, x)), p1(z, p1(x, y))). It
is easy to see that p1 and m preserve R, hence A satisfies the assumptions from Theorem 8.

Let ≥ denote the 6-ary relation containing the tuples (a,b) where a,b are triples that
are in the same orbit under Aut(H). Note that the relation T defined by

(x1, x2, x3, x4) œ T :≈∆ R(x1, x2, x3, x4) · (x1, x3, x2) ≥ (x4, x2, x3)
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is preserved by all polymorphisms of A that are canonical with respect to H and that it
contains precisely those tuples of the form (a, a, b, b) and (a, b, a, b) for arbitrary a ”= b. It can
be seen (e.g., from [7]) that Pol(H;T ) only contains essentially unary operations, of the form
(x1, . . . , xn) ‘æ –(xi) for arbitrary permutations – of H, and therefore the polymorphisms
of A that are canonical with respect to H are also essentially unary. It follows that the
finite-domain CSP used in the reduction from [13] is NP-complete.

3.1 Finitisation of instances

Let A be a first-order reduct of H. Let I = (V, C) be an instance of CSP(A). In this section,
we always assume that the variable set V is equipped with an arbitrary linear order; this
assumption is however inessential and only used to formulate the statements and proofs in a
more concise way. We denote by [V ]¸ the set of injective increasing ¸-tuples of variables from
V . Given any instance I of CSP(A), consider the following CSP instance Ifin over the set O
of orbits of ¸-tuples under Aut(H), called the finitisation of I:

The variable set of Ifin is the set [V]¸.
For every constraint C ™ AU in I, Ifin contains the constraint C Õ containing the maps
g : [U ]¸ æ O such that there exists f œ C satisfying f(v) œ g(v) for every v œ [U ]¸.

This instance corresponds to the instance IAut(H),¸ from [32, Definition 3.1], with the dif-
ference that there the ¸-element subsets of V were used as variables, and the domain consisted
of orbits of maps. However, the translation between the two definitions is straightforward.
Note that if a mapping f : V æ A is a solution of I, then the mapping h : [V]¸ æ O, where
h(v) is the orbit of f(v) under Aut(H) for every v œ [V]¸ is a solution of Ifin.

Let J = (S, C) be an instance over the set O of orbits of ¸-tuples under Aut(H), e.g.,
J = Ifin for some I. The injectivisation of J , denoted by J

(inj), is the instance obtained by
removing from all constraints all maps taking some value outside the two injective orbits E
and N .

Let I = (V, C) be an instance of CSP(A); the injective finitisation of I is the instance
(Ifin)(inj). Let S ™ [V ]¸. The injective finitisation of I on S is the restriction of the injective
finitisation of I to S. For any constraint C œ C, the corresponding constraint in the injective
finitisation of I is called the injective finitisation of C. Note that if A admits an injective
linear symmetry, then for any instance I = (V, C) of CSP(A) and for any S ™ [V]¸, the
injective finitisation of I on S is solvable in polynomial time. This follows from Lemma 3.4
in [32] and from the dichotomy theorem for finite-domain CSPs [39, 40, 19].

Let A be a first-order reduct of H preserved by m and by p1. We can assume that A has
among its relations all unions of orbits of ¸-tuples under Aut(H) that are preserved by p1 and
by the ternary injection m. Otherwise, we expand A by these finitely many relations and we
prove that the CSP of this expanded structure is solvable in polynomial time. Note that in
particular, every orbit of ¸-tuples under Aut(H) is a relation of A. Moreover, we suppose
that A has the property that for every instance I of CSP(A), the (2¸,max(3¸, bH))-minimal
instance equivalent to I is again an instance of CSP(A). This can be achieved without loss
of generality since it is enough to expand A by finitely many pp-definable relations, which
are also preserved by m and p1. Note that if I is a (2¸,max(3¸, bH))-minimal instance of
CSP(A), then its injective finitisation Ifin is (2, 3)-minimal by [32, Lemma 3.2]; in particular,
Ifin is cycle consistent, i.e., it satisfies one of the basic consistency notions used in Zhuk’s
algorithm [39]. Moreover, if Ifin is (2, 3)-minimal, then for any solution h : [V]¸ æ O of
Ifin, any mapping f : V æ A with f(v) œ h(v) for every v œ [V]¸ is a solution of I by [32,
Lemma 3.3].
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Let I = (V, C) be an instance of CSP(A), and let C œ C. Since A is preserved by m,
there exists a set of linear equations over Z2 associated with the injective finitisation of C.
By abuse of notation, we write every linear equation as

q
vœS

Xv = P , where P œ {E,N}

and S ™ [V]¸ is a set of injective ¸-tuples of variables from the scope of C. In these linear
equations, we identify E with 1 and N with 0, so that e.g. E + E = N and N + E = E.
Using this notation, the canonical behaviour of the function m on {E,N} can be written as
m(X,Y, Z) = X + Y + Z which justifies the notion of A admitting linear symmetries.

For an instance I = (V, C) of CSP(A), we define an instance Ieq = (V, Ceq) of the
equality-CSP (i.e., CSP over structures first-order definable over (H; =)) over the same base
set H corresponding to the closure of the constraints under the full symmetric group on H.
Formally, for every constraint C œ C, the corresponding constraint Ceq œ Ceq contains all
functions –h for all h œ C and – œ Sym(H). Since A is preserved by a binary injection, the
constraints of Ieq are preserved by the same or indeed any binary injection and hence, its
CSP has relational width (2, 3) by the classification of equality CSPs [7].

Let I be an ¸-minimal instance of CSP(A), let v œ [V ]¸, and let R ™ projv(I) be an ¸-ary
relation from the signature of A. Let I

vœR be the instance obtained from I by replacing
every constraint C containing all variables from v by {g œ C | g(v) œ R}.

We call an ¸-minimal instance of CSP(A) eq-subdirect if for every v œ [V]¸ and for every
non-injective orbit O ™ projv(I) under Aut(H), the instance (IvœO)eq has a solution. Note
that by ¸-minimality and since all constraints of the instance are preserved by a binary
injection, the instance (IvœO)eq has a solution for every injective orbit O ™ projv(I) under
Aut(H). Indeed, any injective mapping from V to H is a solution of (IvœO)eq.

I Example 9. Let H be the universal homogeneous ¸-hypergraph. Let u = (u1, . . . , u¸),v =
(v1, . . . , v¸) be disjoint ¸-tuples of variables, and let V be the set of all variables contained
in these tuples. We define a CSP instance I = (V, C) over the set H as follows. Let
uÕ = (u2, . . . , u¸, u1). We set C to contain two constraints C,C Õ such that C contains all
mappings f : V æ H such that f(u) and f(v) belong to the same orbit under Aut(H), and
C Õ contains all mappings f : V æ H such that f(uÕ) and f(v) belong to the same orbit.
Note that the constraints C,C Õ are preserved by any function which is canonical with respect
to H. It is easy to see that I is non-trivial and ¸-minimal, but it is not eq-subdirect. Indeed,
for any non-injective and non-constant mapping g from the set of variables of u to H, it
holds that g(u) and g(uÕ) are contained in di�erent orbits under Aut(H).

We can obtain an eq-subdirect instance out of an ¸-minimal instance in polynomial time
by the algorithm introduced in [29, Section 3.1]. The algorithm successively shrinks for every
v œ [V ]¸ the projection projv(I) to the union of those orbits O ™ projv(I) under Aut(H) for
which the instance (IvœO)eq has a solution; it stops when no more orbits can be removed
from projv(I) for any v œ [V]¸.

Note that for any 1 Æ m Æ n and any instance I of CSP(A), we can compute an instance
that is both eq-subdirect and (m,n)-minimal and that has the same solution set as I in
polynomial time. Indeed, it is enough to repeat the above-mentioned algorithm and the
(m,n)-minimality algorithm until no orbits under Aut(H) are removed from any constraint.

3.2 Inj-irreducibility

For any a œ H¸, we write O(a) for the orbit of a under Aut(H) and O<(a) for the orbit of a
under Aut(H, <). Recall that being canonical with respect to (H, <), the function p1 acts
naturally on orbits under Aut(H, <); we can therefore abuse the notation and write p1(O,P )
for orbits O,P under Aut(H, <). We will say that a non-injective orbit O of ¸-tuples under
Aut(H) is:
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deterministic if for every a œ O, there exists – œ Aut(H) such that p1(O<(–(a)), O<(e)) =
p1(O<(–(a)), O<(n)), where e,n are arbitrary strictly increasing ¸-tuples of elements of
H with e œ E, n œ N ,
non-deterministic otherwise.

For a tuple a contained in a deterministic orbit O, we call any – œ Aut(H) with the
property that p1(O<(–(a)), E) = p1(O<(–(a)), N) for the strictly increasing ordering in the
second coordinate deterministic for a. Note that for any — œ Aut(H, <), —– œ Aut(H) is
deterministic for a as well since p1 is canonical with respect to (H, <).

Let J = (V, C) be a CSP instance over a set B. A sequence v1, C1, v2, . . . , Ck, vk+1, where
k Ø 1, vi œ V for every i œ [k + 1], Ci œ C for every i œ [k], and vi, vi+1 are contained in the
scope of Ci for every i œ [k], is called a path in J . We say that two elements a, b œ B are
connected by a path v1, C1, v2, . . . , Ck, vk+1 if there exists a tuple (c1, . . . , ck+1) œ Bk+1 such
that c1 = a, ck+1 = b, and such that (ci, ci+1) œ proj(vi,vi+1)(Ci) for every i œ [k]. Suppose
that J is 1-minimal. The linkedness congruence on projv(J ) is the equivalence relation ⁄ on
projv(J ) defined by (a, b) œ ⁄ if there exists a path v1, C1, v2, . . . , Ck, vk+1 from a to b in J

such that v1 = vk+1 = v. Note that for a finite relational structure B, for a (2, 3)-minimal
instance J = (V, C) of CSP(B), and for any v œ V, the linkedness congruence ⁄ on projv(J )
is a relation pp-definable in B. Indeed, it is easy to see that the binary relation containing
precisely the pairs (a, b) œ B2 that are connected by a particular path in I is pp-definable
in B. If we concatenate all paths that connect two elements (a, b) œ ⁄, the resulting path
connects every pair (a, b) œ ⁄ since by the (2, 3)-minimality of J , every path from v to v
connects c to c for every c œ projv(J ). It follows that ⁄ is pp-definable.

I Definition 10. Let A be a first-order reduct of H, and let I = (V, C) be a non-trivial

¸-minimal instance of CSP(A). We call I inj-irreducible if for every set S ™ [V ]¸, one of the

following holds for the instance J = Ifin |S:

J
(inj)

has a solution,

for some v œ S, projv(J ) contains the two injective orbits and the linkedness congruence

on projv(J ) does not connect them,

for some v œ S, the linkedness congruence on projv(J ) links an injective orbit to a

non-deterministic orbit.

I Example 11. We illustrate the concept of inj-irreducibility on the following instance. Let
¸ = 3, and let H be the universal homogeneous ¸-hypergraph. Let a ”= b œ H be arbitrary;
we call the orbits O(a, a, b), O(a, b, a), O(b, a, a) under Aut(H) half-injective. Let us define
an instance I = (V, C) over the set H as follows. Above, we identified E with 1 and N with
0 in the linear equations associated to injective finitisations of constraints. In this example,
we identify also all half-injective orbits under Aut(H) with 1. Hence, we can write, e.g.,
E +O(a, a, b) = 0.

Let v1,v2,v3 be increasing triples of pairwise disjoint variables, and set V to be the union
of all variables of these tuples. We define C to be a set consisting of two constraints, C0 and
C1, defined as follows. For i œ {0, 1}, we set Ci to contain all mappings f œ HV such that
both of the following hold:

either O(f(v1)) + O(f(v2)) + O(f(v3)) = i, or O(f(v1)) = O(f(v2)) = O(f(v3)) =
{(a, a, a) | a œ H},
f(x) ”= f(y) for all x, y œ V belonging to di�erent triples from {v1,v2,v3}.

We show that the constraints C0, C1 are preserved by a binary injection p1 and a ternary
injection m that are both canonical with respect to H. To this end, we define the canonical
behaviours of p1 and m on the orbits of triples under Aut(H) as follows. We set p1 to act
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as the first projection on the numbers associated to the respective orbits, and to satisfy
p1(O(a, a, a), P ) = p1(P,O(a, a, a)) = P for an arbitrary a œ H and for an arbitrary orbit P .
Note that these assumptions together with the requirement that p1 is an injection uniquely
determine the behaviour of p1 – e.g., p1(P,N) = E for an arbitrary half-injective orbit P .
We set m to act as an idempotent minority on the numbers associated to the orbits, and
to act as p1(x, p1(y, z)) on the orbits where the action is not determined by the previous
condition. It is easy to verify that the constraints C0 and C1 are preserved by both p1 and
m, and hence I is an instance of CSP(A) for some first-order reduct A of H which falls into
the scope of this section.

It immediately follows that all the half-injective orbits under Aut(H) are deterministic
since p1(O<(c), E) = p1(O<(c), N) = E for any c œ H3 contained in a half-injective orbit; the
orbit P of the constant tuples is non-deterministic since p1(P,E) = E, and p1(P,N) = N . It
is also easy to see that I is non-trivial and (6, 9)-minimal. Moreover, I is not inj-irreducible.
Indeed, setting S := {v1,v2,v3}, the linkedness congruence on projv1(Ifin |S) connects
precisely all injective and half-injective orbits, and the injective finitisation of I on S does
not have a solution.

Note that if A is the structure from Example 11, its CSP can be solved by the reduction
to the finite from [13]. For simplicity, we choose to illustrate the concepts that we have just
introduced on this example rather than on an example where the canonical behaviour of the
functions p1 and m depends on the linear order. However, Example 1 provides us with a
structure admitting linear symmetries where the canonical behaviour of any polymorphism
satisfying the assumptions on m or on p1 depends on the additional linear order.

I Lemma 12. Let C be a constraint of an instance of CSP(A) which contains an injective

mapping, and let S be a set of variables appearing together in an unsplittable linear equation

associated with the injective finitisation of C. Then for every g œ C, either g(v) is in an

injective or deterministic orbit for all v œ S, or g(v) is in a non-deterministic orbit for all

v œ S.

I Theorem 13. Let A be a first-order reduct of H that admits linear symmetries. Let I be a

(2¸,max(3¸, bH))-minimal, inj-irreducible instance of CSP(A) with variables V such that for

every distinct u, v œ V, proj(u,v)(I) fl I2 ”= ÿ. Then I has an injective solution.

Proof. Note that if I has fewer than ¸ variables, it has an injective solution by the assumption
on binary projections of I and since all constraints of I are preserved by the binary injection
p1. Let us therefore suppose that I has at least ¸ variables. Let us assume for the sake of
contradiction that I does not have an injective solution. Let J be Ifin, and let C be the set of
its constraints. By assumption, J (inj) does not have a solution. Note that J (inj) corresponds
to a system of linear equations over Z2, which is therefore unsatisfiable. In case this system
can be written as a diagonal block matrix, there exists a set S ™ [V]¸ of variables such that
the system of equations associated with the injectivisation of L := J |S = (S, CÕ) corresponds
to a minimal unsatisfiable block. By definition, this means that L(inj) is unsatisfiable. The
instance L has the property that for every non-trivial partition of S into parts S1, S2, there
exists an unsplittable equation associated with the injectivisation of a constraint C œ C

Õ

which contains variables from both S1 and S2.
Since I is inj-irreducible, there exists v œ S such that the two injective orbits are

elements of projv(L) and are not linked, or some injective orbit in projv(L) is linked to a
non-deterministic orbit in projv(L).
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In the first case, we note that for all w œ S such that projw(L) contains the two injective
orbits, the two injective orbits are not linked. Indeed, suppose that there exists w œ S such
that E,N œ projw(L) are linked, i.e., there exists a path v1 = w, C1, . . . , Ck,vk+1 = w
in L connecting E and N . Since I is (2¸,max(3¸, bH))-minimal, Lemma 3.2 in [32] yields
that J and hence also L is (2, 3)-minimal. In particular, there exists C œ C

Õ containing in
its scope both v and w. Let O1, O2 œ {E,N} be disjoint such that there exist g1, g2 œ C
with g1(v) = O1, g1(w) = E, g2(v) = O2, g2(w) = N . It follows that the path v, C,w =
v1, C1, . . . , Ck,vk+1 = w, C,v connects O1 with O2 in projv(J ), a contradiction. Let
g : S æ {E,N} be defined as follows. For a fixed v œ S, let g(v) be an arbitrary element of
projv(L(inj)). Next, for w œ S, define g(w) to be the unique injective orbit O such that there
exists a constraint C œ C

Õ containing both v and w in its scope and such that there exists
gÕ

œ C with gÕ(v) = g(v) and gÕ(w) = O. This g is a solution of L(inj), a contradiction.
Thus, it must be that a non-deterministic orbit in projv(L) is linked to an injective orbit

in projv(L). Hence, there exists a path in L from v to v and connecting an injective orbit to
a non-deterministic one. Moreover, up to composing this path with additional constraints,
one can assume that this path goes through all the variables in S. This follows by the (2, 3)-
minimality of J . Define a partition of S where w œ S1 if the first time that w appears in the
path, the element associated with w is in an injective orbit, and w œ S2 otherwise. Since the
system of unsplittable equations associated with L

(inj) cannot be decomposed as a diagonal
block matrix, some constraint C œ C

Õ gives an equation in that system containing u1 œ S1

and u2 œ S2. Thus, there exists g œ C with g(u1) injective, and g(u2) non-deterministic.
This contradicts Lemma 12. J

3.3 Establishing inj-irreducibility

We introduce a polynomial-time algorithm which produces, given an instance I of CSP(A),
an instance I

Õ of CSP(A) that is either inj-irreducible or trivial and that has a solution if,
and only if, I has a solution. It uses the fact that the injective finitisation of an instance I

of CSP(A) on S is solvable in polynomial time for any set S ™ [V]¸. This follows from the
fact that the constraints of the injective finitisation of I are preserved by a ternary minority
by Lemma 3.4 from [32].

We give a brief description of the algorithm. It gradually ensures that the instance is
(2¸,max(3¸, bH))-minimal, eq-subdirect, and so that for no distinct variables u, v œ V, it holds
that proj(u,v)(I) = {(a, a) | a œ H}. If the instance satisfies these assumptions, we consider for
every u œ [V]¸ every partition {E1

u, . . . , E
s
u} on proju(I) with pp-definable classes satisfying

that E1
u contains no non-deterministic orbit. We find a subset S ™ [V]¸ such that for every

w œ S, the set {E1
w, . . . , E

s
w} defined by Ei

w := {a œ H¸
| ÷b œ H¸ : (b,a) œ proj(u,w)(I)}

for every i œ [s] forms a partition on projw(I) with the property that E1
w contains no

non-deterministic orbit, and such that this partition cannot be extended to any other tuple
in [V]¸. For every such partition, the algorithm checks if the injective finitisation of I on S
has a solution; if not, we constrain every w œ S to not take any value from E1

w. It is a priori

unclear that adding these constraints on the one hand yields an instance of CSP(A), and on
the other hand that we do not transform a satisfiable instance into an unsatisfiable one in
this way. The following technical result is that, in fact, this does not happen.

I Theorem 14. The instance I
Õ
produced by the procedure InjIrreducibility in [29, Section

3.1] is an instance of CSP(A) and it has a solution if, and only if, the original instance has

a solution. Moreover, I
Õ
is either trivial or inj-irreducible.
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4 Final Arguments for the Complexity Dichotomy

Finally, we briefly sketch the proof of Theorem 3. If the algebraic assumptions in the second
item are met, it is known that CSP(A) is NP-complete [5]. On the other hand, if I is a binary
absorbing subuniverse of H¸ and A either admits an injective linear symmetry or is such that
CSPInj(A) has bounded width, then CSP(A) is polynomial-time solvable by Theorem 8. It
therefore remains to prove that the assumptions in the first item of Theorem 3 (i.e., the clone
of polymorphisms of A being non-trivial) imply that A falls into the scope of Theorem 8.

By [35], if some polymorphism of A acts on {E,N} in a non-trivial way, then A either
admits an injective linear symmetry or is such that CSPInj(A) has bounded width. Moreover,
by results from [30, Proposition 25], the polymorphisms of A being non-trivial imply that A
contains a binary injection witnessing that I is a binary absorbing subuniverse of H¸. On
the other hand, if the action of the polymorphisms of A on {E,N} is trivial, then we can use
the theory of smooth approximations [30] to show that the polymorphisms of A are trivial
and A thus falls into the scope of the second item of Theorem 3.
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Behavioural Distance of Regular Expressions
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Abstract

Deterministic automata have been traditionally studied through the point of view of language
equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-
word distance quantifying the of states. Intuitively, the longer the word needed to observe a
di�erence between two states, then the closer their behaviour is. In this paper, we give a sound and
complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our
axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing
to manipulate rational-indexed judgements of the form e ©Á f meaning term e is approximately
equivalent to term f within the error margin of Á. The technical core of the paper is dedicated to the
completeness argument that draws techniques from order theory and Banach spaces to simplify the
calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.
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1 Introduction

Transition systems have been widely employed to model computational phenomena. In
theoretical computer science, it is customary to model computations as transition sys-
tems and subsequently reason about their equivalence or similarity. Classical examples
include checking language equivalence of deterministic finite automata using Hopcroft and
Karp’s algorithm [18] or constructing bisimulations between labelled transition systems [25].
Throughout the years, especially in the concurrency theory community, researchers have
studied a plethora of di�erent notions of behavioural equivalences and preorders one could
impose on a transition system [41]. However, in many practical applications, especially when
dealing with probabilistic or quantitative transition systems, asking about such classical
notions of equivalence (or similarity) could be too strict, and it might be more reasonable to
ask quantitative questions about how far apart the behaviour of the two states is.

A growing line of work on behavioural distances [38, 5, 39, 40, 13] answers this problem
by equipping state-spaces of transition systems with (pseudo)metric structures quantifying
the dissimilarity of states. In such a setting, states at distance zero are not necessarily the
same, but rather equivalent with respect to some classical notion of behavioural equivalence.
In a nutshell, equipping transition systems with such a notion of distance crucially relies on
the possibility of lifting the distance between the states to the distance on the observable
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behaviour of the transition system. Behavioural distances were originally studied in the
context of probabilistic transition systems [16, 39], where observable behaviour is in the
form of probability distribution among possible transitions. In such a case, the necessary
lifting of distances between states to distances between probability distributions of possible
outcomes relies on the famous Kantorovich/Wasserstein liftings, studied traditionally in
transportation theory [42]. In general, transition systems can be viewed more abstractly
through a well-established category-theoretic framework of coalgebras for an endofunctor [27].
Recent work [5] generalised the Kantorovich/Wassertstein lifting to lifting endofunctors
(modelling one-step behaviour of transition systems) from the category of sets and functions
to the category of (pseudo)metric spaces and nonexpansive functions, thus allowing equipping
a multitude of di�erent kinds of transition systems with a sensible notion of behavioural
distance.

Traditionally, besides looking at behavioural equivalence/similarity purely from the
algorithmic point of view, one can look at those problems axiomatically, by describing
behaviours of transition systems as expressions and by providing formal systems based on
(in)equational logic for reasoning about equivalence/similarity of the transition systems
described by the expressions. Classic examples include reasoning about language equivalence
of Kleene’s regular expressions representing deterministic finite automata using inference
systems of Salomaa [30] or Kozen [19], or reasoning about bisimilarity of finite-state labelled
transition systems through Milner’s calculus of finite-state behaviours [24].

In this paper, we are interested in a similar axiomatic point of view, but in the case of
behavioural distances. Unfortunately, the classical (in)equational logic cannot be applied
here, as it has no way of talking about approximate equivalence. Instead, we rely on the
quantitative analogue of equational logic [22], which deals with the statements of the form
e ©Á f , intuitively meaning term e is within the distance of at most Á œ Q+ from the term
f . While the existing work [4, 2, 1] looked at quantitative axiomatisations of behavioural
distance for probabilistic transition systems calculated through the Kantorovich/Wasserstein
lifting, which can be thought of as a special case of the abstract coalgebraic framework relying
on lifting endofunctors to the category of pseudometric spaces, the notions of behavioural
distance for other kinds of transition systems have not been axiomatised before. It turns
out that the approach to completeness used in [2] relies on properties which are not unique
to distances obtained through the Kantorovich/Wasserstein lifting and can be employed to
give complete axiomatisations of behavioural distances for other kinds of transition systems
obtained through the coalgebraic framework [5]. In this paper, as a starting point, we look
at one of the simplest instantiations of that abstract framework in the case of deterministic
automata, yielding shortest-distinguishing-word distance. To illustrate that notion of distance,
consider the following three deterministic finite automata:

q0start

a

r0start r1 r2a a

a

s0start

a

Neither of the above automata are language equivalent. Their languages are respectively
{‘, a, aa, aaa, . . . }, {‘, a} and ÿ. However, one could argue that the behaviour of the middle
automaton is closer to the one on the left rather than the one on the right. In particular,
languages of the left and middle automaton agree on all of the words of length less than
two, while the left and right one disagree on all words. One can make this idea precise, by
providing 1-bounded metric dL : P(Aú) ◊ P(Aú) æ [0, 1] on the set of all formal languages
over some fixed alphabet A given by the following formula, where ⁄ œ]0, 1[ and L,M ™ Aú:
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dL(L,M) =
I

⁄|w| w is the shortest word that belongs to only one of L and M

0 if L = M
(1)

If we set ⁄ = 1

2
, then dL({‘, a, aa, aaa, . . . }, {‘, a}) = 1

4
and dL({‘, a, aa, aaa, . . . }, ÿ) = 1,

which allows to formally state that the behaviour of the middle automaton is a better
approximation of the left one, rather than the right one. Observe, that we excluded ⁄ = 0
and ⁄ = 1, as in both cases dL would become a pseudometric setting all languages to be at
distance zero or one. Automata in the example above correspond to the regular expressions
aú, a+ 1 and 0 respectively. In order to determine the distance between arbitrary regular
expressions e and f one would have to construct corresponding deterministic finite automata
and calculate (or approximate) the distance between their languages. Instead, as a main
contribution of this paper, we present a sound and complete quantitative inference system for
reasoning about the shortest-distinguishing-word distance of languages denoted by regular
expressions in question. Formally speaking, if J≠K : Exp æ P(Aú) is a function taking regular
expressions to their languages, then our inference system satisfies the following:

„ e ©Á f ≈∆ dL(JeK, JfK) Æ Á

Although much of our development is grounded in category theory and coalgebra, we spell
out all the definitions and results concretely, without the need for specialised language. We
organise the paper as follows:
1. In Section 2 we review basic definitions from automata theory and recall the semantics

of regular expressions through Brzozowski derivatives [10]. Then, in order to talk about
distances, we state basic definitions and properties surrounding (pseudo)metric spaces.

2. In Section 3 we instantiate the framework of coalgebraic behavioural metrics [5] to the
concrete case of deterministic automata. We recall the abstract results from [5] in simple
automata-theoretic terms.

3. In Section 4 we start by recalling the definitions surrounding the quantitative equational
theories [22] from the literature. We then present the axioms of our inference system for
the shortest-distinguishing-word distance of regular expressions, give soundness result
and provide a discussion about the axioms. The interesting insight is that when relying
on quantitative equational theories which contain an infinitary rule capturing the notion
of convergence, there is no need for any fixpoint introduction rule. We illustrate this by
axiomatically deriving Salomaa’s fixpoint rule for regular expressions [30].

4. The key result of our paper is contained in Section 5, where we prove completeness of
our inference system. The heart of the argument relies on showing that the behavioural
distance of regular expressions can be approximated from above using Kleene’s fixpoint
theorem, which can be then mimicked through the means of axiomatic reasoning. This
part of the paper makes heavy use of the order-theoretic and Banach space structures
carried by the sets of pseudometrics over a given set.

5. We conclude in Section 6, review related literature, and sketch directions for future work.
Omitted proofs appear in the full version [28].

2 Preliminaries

We start by recalling basic definitions surrounding deterministic automata, regular expressions
and (pseudo)metric spaces from the literature.
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Deterministic automata. A deterministic automaton M with inputs in a finite alphabet
A is a pair (M, ÈoM , tM Í) consisting of a set of states M and a pair of functions ÈoM , tM Í,
where oM : M æ {0, 1} is the output function which determines whether a state m is final
(oM (m) = 1) or not (oM (m) = 0), and t : M æ MA is the transition function, which, given
an input letter a determines the next state. If the set M of states is finite, then we call an
automaton M a deterministic finite automaton (DFA). We will frequently write ma to denote
tM (m)(a) and refer to ma as the derivative of m for the input a. Definition of derivatives
can be inductively extended to words w œ Aú, by setting mÁ = m and mawÕ = (ma)wÕ .
Note that our definition of deterministic automaton slightly di�ers from the most common
one in the literature, by not explicitly including the initial state. Instead of talking about
the language of the automaton, we will talk about the languages of particular states of
the automaton. Given a state m œ M , we write LM(m) ™ Aú for its language, which is
formally defined by LM(m) = {w œ Aú | o(mw) = 1}. Given two deterministic automata
(M, ÈoM , tM Í) and (N, ÈoN , tN Í), a function h : M æ N is a homomorphism if it preserves
outputs and input derivatives, that is oN (h(m)) = oM (m) and h(m)a = h(ma). The set
of all languages P(Aú) over an alphabet A can be made into a deterministic automaton
(P(Aú), ÈoL, tLÍ), where for l œ P(Aú) the output function is given by oL(l) = [‘ œ l] and for
all a œ A the input derivative is defined to be la = {w | aw œ l}. This automaton is final,
that is for any other automaton M = (M, ÈoM , tM Í) there exists a unique homomorphism
from M to P(Aú), which is precisely given by the map LM : M æ P(Aú) taking each
state m œ S to its language. Given a set of states M Õ ™ M , we write ÈM ÕÍM ™ M for the
smallest set of states reachable from M Õ through the transition function of the automaton
M. Clearly, (ÈM ÕÍM, ÈoM , tM Í) is a deterministic automaton. We will abuse the notation
and write ÈM ÕÍM for (ÈM ÕÍM, ÈoM , tM Í). The canonical inclusion map ÿ : ÈM ÕÍM Òæ M
given by ÿ(m) = m for all m œ ÈM ÕÍM is a homomorphism from ÈM ÕÍM to M. In the case
of singleton and two-element sets of states, we will simplify the notation and write ÈmÍM
and Èm,mÕÍM.

Regular expressions. We let e, f range over regular expressions over A generated by the
following grammar:

e, f œ Exp ::= 0 | 1 | a œ A | e+ f | e ; f | eú

The standard interpretation of regular expressions J≠K : Exp æ P(Aú) is inductively defined
by the following:

J0K = ÿ J1K = {‘} JaK = {a} Je+ fK = JeK fi JfK Je ; fK = JeK ù JfK JeúK = JeKú

We write ‘ for the empty word. Given L,M ™ Aú, we define L ù M = {lm | l œ L,m œ M},
where mere juxtaposition denotes concatenation of words. Lú denotes the asterate of the
language L defined as Lú =

t
iœN Li with L0 = {‘} and Ln+1 = L ù Ln.

Brzozowski derivatives. The famous Kleene’s theorem states that the formal languages
accepted by DFA are in one-to-one correspondence with formal languages definable by regular
expressions. One direction of this theorem involves constructing a DFA for an arbitrary
regular expression. The most common way is via Thompson construction, ‘-transition
removal and determinisation. Instead, we recall a direct construction due to Brzozowski [10],
in which the set Exp of regular expressions is equipped with a structure of deterministic
automaton R = (Exp, ÈoR, tRÍ) through so-called Brzozowski derivatives [10]. The output
derivative oR : Exp æ {0, 1} is defined inductively by the following for a œ A and e, f œ Exp:
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oR(0) = 0 oR(1) = 1 oR(a) = 0
oR(e+ f) = oR(e) ‚ oR(f) oR(e ; f) = oR(e) · oR(f) oR(eú) = 1

Similarly, the transition derivative tR œ Exp æ A æ Exp denoted tR(e)(a) = (e)a is defined
by the following:

(0)a = 0 (1)a = 0 (aÕ)a =
I
1 a = aÕ

0 a ”= aÕ

(e+ f)a = (e)a + (f)a (e ; f)a = (ea) ; f + oR(e) ; f (eú) = (e)a ; eú

The canonical language-assigning homomorphism from R to L, happens to coincide with the
semantics map J≠K assigning a language to each regular expression.

I Lemma 1 ([33, Theorem 3.1.4]). For all e œ Exp, JeK = LR(e)

Instead of looking at infinite-state automaton defined on the state-space of all regular
expressions, we can restrict ourselves to the subautomaton ÈeÍR of R while obtaining the
semantics of e.

I Lemma 2. For all e œ Exp, JeK = LÈeÍR(e)

Unfortunately, for an arbitrary regular expression e œ Exp, the automaton ÈeÍR is not
guaranteed to have a finite set of states. However, simplifying the transition derivatives by
removing duplicates in the expressions in the form e1 + · · ·+ en, guarantees a finite number
of reachable states from any expression. Formally speaking, let ©̇ ™ Exp ◊ Exp be the least
congruence relation closed under (e+ f) + g ©̇ e+ (f + g) (Associativity), e+ f ©̇ f + e
(Commutativity) and e ©̇ e+ e (Idempotence) for all e, f, g œ Exp. We will write Exp/©̇
for the quotient of Exp by the relation ©̇ and [≠]©̇ : Exp æ Exp/©̇ for the canonical
map taking each expression e œ Exp into its equivalence class [e]©̇ modulo ©̇. Because of
[27, Proposition 5.8], Exp/©̇ can be equipped with a structure of deterministic automaton
Q = (Exp/©̇, ÈoQ, tQÍ), where for all e œ Exp, a œ A, oQ([e]©̇) = oR(e) and ([e]©̇)a = [ea]©̇,
which makes the quotient map [≠]©̇ : Exp æ Exp/©̇ into an automaton homomorphism from
the Brzozowski automaton R into Q. This automaton enjoys the following property:

I Lemma 3 ([10, Theorem 4.3]). For any e œ Exp, the set ÈeÍQ ™ Exp/©̇ is finite.
Through an identical line of reasoning as before (Lemma 2), we can show that:

I Lemma 4. For all e œ Exp, LÈ[e]©̇ÍQ([e]©̇) = JeK

(Pseudo)metric spaces. Let € œ ]0,Œ] be a fixed maximal element. A €-bounded
pseudometric on a set X (equivalently €-pseudometric or even just a pseudometric if
€ is clear from the context) is a function d : X ◊ X æ [0,€] satisfying d(x, x) = 0
(reflexivity), d(x, y) = d(y, x) (symmetry) and d(x, z) Æ d(x, y) + d(y, z) (triangle inequality)
for all x, y, z œ X. If additionally d(x, y) = 0 implies x = y, d is called a €-metric. A
(pseudo)metric space is a pair (X, d) where X is a set and d is a (pseudo)metric on X. Given
pseudometric spaces (X, dX) and (Y, dY ), we call a map f : X æ Y nonexpansive, if for all
x, xÕ œ X, dY (f(x), f(xÕ)) Æ dX(x, xÕ) and an isometry if dY (f(x), f(xÕ)) = dX(x, xÕ). A
simple example of a pseudometric is the discrete metric which can be defined on any set X
as dX(x, x) = 0 for all x œ X and d(x, y)X = € for x, y œ X such that x ”= y. The set DX of
(pseudo)metrics over some fixed set X can be equipped with a partial order structure given
by the pointwise order, i.e. d ı dÕ ≈∆ ’x, xÕ œ X.d(x, y) Æ dÕ(x, y).
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I Lemma 5 ([5, Lemma 3.2]). (DX ,ı) is a complete lattice. The join of an arbitrary set
of pseudometrics D ™ DX is taken pointwise, ie. (supD) (x, y) = sup{d(x, y) | d œ D} for
x, y œ X. The meet of D is defined to be infD = sup{d | d œ DX ,’dÕ œ D, d ı dÕ}.

Crucially for our completeness proof, if we are dealing with descending chains, that is
sequences {di}iœN, such that di ˆ di+1 for all i œ N, then we can also calculate infima in the
pointwise way1.

I Lemma 6. Let {di}iœN be an infinite descending chain in the lattice (DX ,ı) of pseudo-
metrics over some fixed set X. Then (inf{di | i œ N})(x, y) = inf{di(x, y) | i œ N} for any
x, y œ X.

Proof. It su�ces to argue that d(x, y) = inf{di(x, y) | i œ N} is a pseudometric. For
reflexivity, observe that d(x, x) = inf{di(x, x) | i œ N} = inf{0} = 0 for all x œ X. For
symmetry, we have that d(x, y) = inf{di(x, y) | i œ N} = inf{di(y, x) | i œ N} = d(y, x) for
any x, y œ X. The only di�cult case is triangle inequality. First, let i, j œ N and define
k = max(i, j). Since dk ı di and dk ı dj , we have that dk(x, y)+dk(y, z) Æ di(x, y)+dj(y, z).
Therefore inf{dl(x, y) + dl(y, z) | l œ N} is a lower bound of di(x, y) + dj(y, z) for any
i, j œ N and hence it is below the greatest lower bound, that is inf{dl(x, y) + dl(y, z) | l œ
N} Æ inf{di(x, y) + dj(y, z) | i, j œ N}. We can use that property to show the following
d(x, y) = inf{di(z, y) | i œ N} Æ inf{di(x, y) + di(y, z) | i œ N} Æ inf{di(x, y) + dj(y, z) |
i, j œ N} = inf{di(x, y) | i œ N}+ inf{dj(y, z) | j œ N} = d(x, y) + d(y, z), which completes
the proof. J

Additionally, the set of pseudometrics can be equipped with a norm. We write R = [≠Œ,Œ]
for the set of extended reals. For any set X, the set of functions RX◊X , which is a superset
of DX , can be seen as a Banach space [26] (complete normed vector space) by means of the
sup-norm ÎdÎ = supx,yœX |d(x, y)|. This structure will implicitly underly some of the claims
used as intermediate steps in the proof of completeness.

3 Behavioural distance

We now instantiate the abstract coalgebraic framework [5] to the case of deterministic
automata relying on the lifting described in [5, Example 5.33]. We concretise the generic
results from that paper and spell them in simple automata-theoretic terms.

Lifting pseudometrics. Let M = (M, ÈoM , tM Í) be a deterministic automaton. Its one-step
observable behaviour (after applying the output and transition derivatives) can be seen as
pairs of the type {0, 1}◊MA, where the first component determines whether the given state
is accepting or not and the second one gives successor state for each letter from the input
alphabet. Let’s say we have two such observations Èo1, f1Í, Èo2, f2Í œ {0, 1} ◊ MA. If we had
had some notion of a distance defined on the state-space of our automaton, or speaking more
formally a 1-pseudometric d : M ◊ M æ [0, 1], then we can lift this notion of distance, to a
distance on observations, given by the following:

d{0,1}◊MA(Èo1, f1Í, Èo2, f2Í) = max{d2(o1, o2),⁄ ·max
aœA

d(f1(a), f2(a))} ⁄ œ ]0, 1[

1 Lemma 6 is one of the intermediate results used in the proof of [2, Lemma 5.6] that was communicated
to us by the authors of [2]. As this result was excluded in the mentioned paper, we incorporated it
along with its proof for the sake of completeness.
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The definition above involves d2, the discrete metric on the set {0, 1}. One can observe that
d{0,1}◊MA is again a 1-pseudometric, but this time defined on the set {0, 1} ◊ MA instead.
We now move on to showing how one could use this lifting in order to equip a state-space of
automaton M with a sensible notion of behavioural pseudometric.

Behavioural pseudometric. If one gave us a 1-metric d : M ◊M æ [0, 1] on the state-space
of the automaton, we could use our lifting to produce a new pseudometric �M(d) : M ◊M æ
[0, 1] on the same set, which would calculate a distance between an arbitrary pair of states by
first applying the output and transition derivatives to obtain a pair of observations and then
by calculating the distance between them using the aforementioned lifting of pseudometric
d to the pseudometric defined on the set {0, 1} ◊ MA. Formally speaking, define a map
�M : DM æ DM on the lattice of 1-pseudometrics on M given by the following:

�M(d)(m,mÕ) = max{d2(oM (m), oM (mÕ)),⁄ ·max
aœA

d(ma,m
Õ
a)} ⁄ œ ]0, 1[

The construction above only tells us how to construct new pseudometrics on the state-space
of the automaton out of existing ones, but does not give one to start with. It turns out,
that the map �M is a monotone mapping on the lattice of 1-psuedometrics on the set M [5,
Lemma 6.1]. Because of that, one can use the Knaster-Tarski fixpoint theorem [36] and
construct its least fixed point, explicitly given by dM = inf{d | d œ DM · �M(d) ı d}.
Pseudometrics, which are fixpoints of �M intuitively interact well with the automaton
structure, as they satisfy the property that the distance between two states is the same
as the distance between their observable behaviour calculated using the lifting. Taking
the least such pseudometric satisfies several desirable properties [5] and thus we will call
dM a behavioural pseudometric on the automaton M. First of all, preserving automaton
transitions also preserves behavioural distances.

I Proposition 7. Let M = (M, ÈoM , tM Í) and N = (N, ÈoN , tN Í) be deterministic automata.
If h : M æ N is a homomorphism, then it is also an isometric mapping between pseudometric
spaces (M,dM) and (N, dN ).

If we look at the final automaton on the set of all formal languages over a fixed finite
alphabet A, then one can easily verify that the behavioural distance given by the least fixpoint
construction precisely corresponds to the Equation (1) defining the shortest-distinguishing-
word distance we stated in Section 1. In general, states of an arbitrary deterministic
automaton characterised by the behavioural pseudometric to be in distance zero are language
equivalent. When we look at dL defined on the states of the final automaton, whose state-
space consists of formal languages, then the language equivalence corresponds to the equality
of states. In other words dL becomes a metric space.

I Lemma 8. Let M = (M, ÈoM , tM Í) be an arbitrary deterministic automaton and let
L = (P(Aú), ÈoL, tLÍ) be a deterministic automaton structure on the set of all languages over
an alphabet A.
1. (P(Aú), dL) is a metric space.
2. For any m,mÕ œ M , dM(m,mÕ) = 0 ≈∆ LM(m) = LM(mÕ).

4 Quantitative Axiomatisation

In order to provide a quantitative inference system for reasoning about the behavioural dis-
tance of languages denoted by regular expressions, we first recall the definition of quantitative
equational theories from the existing literature [22, 2] following the notational conventions
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from [2]. We then present our axiomatisation and demonstrate its soundness. The interesting
thing about our axiomatisation is the lack of any fixpoint introduction rule. We show that
in the case of quantitative analogue of equational logic [22] containing the infinitary rule
capturing the notion of convergence, we can use our axioms to derive Salomaa’s fixpoint rule
from his axiomatisation of language equivalence of regular expressions [30].

Quantitative equational theories. Let � be an algebraic signature (in the sense of universal
algebra [11]) consisting of operation symbols fn œ � of arity n œ N. If we write X for the
countable set of metavariables, then T(�, X) denotes a set of freely generated terms over X
built from the signature �. As a notational convention, we will use letters t, s, u, . . . œ T(�, X)
to denote terms. By a substitution we mean a function of the type ‡ : X æ T(�, X) allowing
to replace metavariables with terms. Each substitution can be inductively extended to terms
in a unique way by setting ‡(f(t1, . . . , tn)) = f(‡(t1), . . . ,‡(tn)) for each operation symbol
fn œ � from the signature. We will write S(�) for the set of all substitutions. Given two
terms t, s œ T(�, X) and a nonnegative rational number Á œ Q+ denoting the distance
between the terms, we call t ©Á s a quantitative equation (of type �). Notation-wise, we will
write E(�) to denote the set of all quantitative equations (of type �) and we will use the
capital Greek letters �,�, . . . ™ E(�) to denote the subsets of E(�). By a deducibility relation
we mean a binary relation denoted „ ™ P(E(�))◊E(�). Similarly, to the classical equational
logic, we will use the following notational shorthands � „ t ©Á s ≈∆ (�, t ©Á s) œ „ and
„ t ©Á s ≈∆ ÿ „ t ©Á s. Furthermore, following the usual notational conventions, we will
write � „ � as a shorthand for the situation when � „ t ©Á s holds for all t ©Á s œ �. To
call „ a quantitative deduction system (of type �) it needs to satisfy the following rules of
inference:

(Refl) „ t ©0 t ,

(Symm) {t ©Á s} „ s ©Á t ,

(Triang) {t ©Á u, u ©ÁÕ s} „ t ©Á+ÁÕ s ,

(Max) {t ©Á s} „ t ©Á+ÁÕ s , for all ÁÕ > 0 ,
(Cont) {t ©ÁÕ s | ÁÕ > Á} „ t ©Á s ,

(NExp) {t1 ©Á s1, . . . , tn ©Á sn} „ f(t1, . . . , tn) ©Á f(s1, . . . , sn) , for all fn œ � ,

(Subst) If � „ t ©Á s, then ‡(�) „ ‡(t) ©Á ‡(s), for all ‡ œ S(�) ,
(Cut) If � „ � and � „ t ©Á s, then � „ t ©Á s ,

(Assum) If t ©Á s œ �, then � „ t ©Á s .

where ‡(�) = {‡(t) ©Á ‡(s) | t ©Á s œ �}. Finally, by a quantitative equational theory we
mean a set U of universally quantified quantitative inferences {t1 ©Á1 s1, . . . , tn ©Án sn} „
t ©Á s , with finitely many premises, closed under „-derivability.

Quantitative algebras. Quantitative equational theories lie on the syntactic part of the
picture. On the semantic side, we have their models called quantitative algebras, defined as
follows.

I Definition 9 ([22, Definition 3.1]). A quantitative algebra is a tuple A = (A,�A, dA),
such that (A,�A) is an algebra for the signature � and (A, dA) is an Œ-pseudometric such
that for all operation symbols fn œ �, for all 1 Æ i Æ n, ai, bi œ A, dA(ai, bi) Æ Á implies
dA(fA(a1, . . . , an), fA(b1, . . . , bn)) Æ Á.
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Consider a quantitative algebra A = (A,�A, dA). Given an assignment ÿ : X æ A of meta-
variables fromX to elements of carrier A, one can inductively extend it to �-terms t œ T(�, X)
in a unique way. We will abuse the notation and just write ÿ(t) for the interpretation of the
term t in quantitative algebra A. We will say that A satisfies the quantitative inference
� „ t ©Á s, written � |=A t ©Á s, if for any assignment of the meta-variables ÿ : X æ A it is
the case that for all tÕ ©ÁÕ sÕ œ � we have that dA(ÿ(tÕ), ÿ(sÕ)) Æ ÁÕ implies dA(ÿ(t), ÿ(s)) Æ Á.
Finally, we say that a quantitative algebra A satisfies (or is a model of) the quantitative
theory U , if whenever � „ t ©Á s œ U , then � |=A t ©Á s.

Quantitative algebra of regular expressions. From now on, let’s focus on the signature
� = {00, 10,+2, ;2, (≠)ú

1
}fi{a0 | a œ A}, where A is a finite alphabet. This signature consists

of all operations of regular expressions. We can easily interpret all those operations in the
set Exp of all regular expressions, using trivial interpretation functions eg. +B(e, f) = e+ f ,
which interpret the operations by simply constructing the appropriate terms. Formally
speaking, we can do this because the set Exp is the carrier of initial algebra [11] (free algebra
over the empty set of generators) for the signature �.

To make this algebra into a quantitative algebra, we first equip the set Exp with a
Œ-pseudometric, given by dB(e, f) = dL(JeK, JfK) for all e, f œ Exp. Recall that dL used
in the definition above is a behavioural pseudometric on the final deterministic automaton
carried by the set P(Aú) of all formal languages over an alphabet A. In other words, we
define the distance between arbitrary expressions e and f to be the distance between formal
languages JeK and JfK calculated through the shortest-distinguishing-word metric. It turns
out, that in such a situation all the interpretation functions of �-algebra structure on Exp
are non-expansive with respect to to the pseudometric defined above. In other words, we
have that:

I Lemma 10. B = (Exp,�B, dB) is a quantitative algebra.

Axiomatisation. In order to talk about the quantitative algebra B of the behavioural
distance of regular expressions in an axiomatic way, we introduce the quantitative equational
theory REG (Figure 1). The first group of axioms capture properties of the nondeterministic

Nondeterministic choice
(SL1) „ e+ e ©0 e ,
(SL2) „ e+ f ©0 f + e ,
(SL3) „ (e+ f) + g ©0 e+ (f + g) ,
(SL4) „ e+ 0 ©0 e ,
(SL5) {e ©Á g, f ©ÁÕ h}

„ e+ f ©max(Á,ÁÕ) g + h ,

Loops
(Unroll) „ eú ©0 e ; eú + 1 ,
(Tight) „ (e+ 1)ú ©0 eú ,

Sequential composition
(1S) „ 1 ; e ©0 e ,
(S) „ e ; (f ; g) ©0 (e ; f) ; g ,
(S1) „ e ; 1 ©0 e ,
(0S) „ 0 ; e ©0 0 ,
(S0) „ e ; 0 ©0 0 ,
(D1) „ e ; (f + g) ©0 e ; f + e ; g ,
(D2) „ (e+ f) ; g ©0 e ; g + f ; g ,

Behavioural pseudometric
(Top) „ e ©1 f ,
(⁄-Pref) {e ©Á f} „ a ; e ©ÁÕ a ; f , for ÁÕ Ø ⁄ · Á

Figure 1 Axioms of the quantitative equational theory REG for e, f, g œ Exp and a œ A.

choice operator + (SL1-SL5). The first four axioms (SL1-SL4) are the usual laws of semilattices
with bottom element 0. (SL5) is a quantitative axiom allowing one to reason about distances
between sums of expressions in terms of distances between expressions being summed.
Moreover, (SL1-SL5) are axioms of so-called Quantitative Semilattices with zero, which
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have been shown to axiomatise the Hausdor� metric [22]. The sequencing axioms (1S),
(S1), (S) state that the set Exp of regular expressions has the structure of a monoid (with
neutral element 1) with absorbent element 0 (0S), (S0). Additionally, (D1-D2) talk about
interaction of the nondeterministic choice operator + with sequential composition. The loop
axioms (Unroll) and (Tight) are directly inherited from Salomaa’s axiomatisation of language
equivalence of regular expressions [30]. (Unroll) axiom associates loops with their intuitive
behaviour of choosing, at each step, between successful termination and executing the loop
body once. (Tight) states that the loop whose body might instantly terminate, causing
the next loop iteration to be executed immediately is provably equivalent to a di�erent
loop, whose body does not contain immediate termination. The last remaining group are
behavioural pseudometric axioms. (Top) states that any two expressions are at most in
distance one from each other. Finally, (⁄-Pref) captures the fact that prepending the same
letter to arbitrary expressions shrinks the distance between them by the factor of ⁄ œ]0, 1[
(used in the definition of dB). This axiom is adapted from the axiomatisation of discounted
probabilistic bisimilarity distance [2].

Through a simple induction on the length of derivation, one can verify that indeed B is a
model of the quantitative theory REG.
I Theorem 11. (Soundness) The quantitative algebra B = (Exp,�B, dB) is a model of the
quantitative theory REG. In other words, for any e, f œ Exp and Á œ Q+, if � „ e ©Á f œ REG,
then � |=B e ©Á f

Proof. By the structural induction on the judgement � „ e ©Á f œ REG. (Subst), (Cut)
and (Assum) deduction rules from classical logic hold immediately. The soundness of
(Refl), (Symm), (Triang), (Cont) and (Max) follows from the fact that dB is a pseudometric.
(NExp) follows from the fact that interpretations of symbols from the algebraic signature
are nonexpansive (Lemma 10). Recall that dB = dL ¶ (J≠K ◊ J≠K). The soundness of (Top)
follows from the fact that dL is a 1-pseudometric. Additionally, for all axioms in the form
„ e ©0 f it su�ces to show that JeK = JfK. (SL1), (SL2), (SL3), (SL4), (1S), (S), (S1), (0S),
(S0), (D1), (D2), (Unroll) and (Tight) are taken from Salomaa’s axiomatisation of language
equivalence of regular expressions [30] and thus both sides of those equations denote the
same formal languages [43, Theorem 5.2]. For (⁄-Pref) assume that the premise is satisfied
in the model, that is dL(JeK, JfK) Æ Á. Let ÁÕ Ø ⁄ · Á. We show the following:

dB(a ; e, a ; f) = dL(Ja ; eK, Ja ; fK) (Def. of dB)
= �L(dL)(Ja ; eK, Ja ; fK) (dL is a fixpoint of �L)
= max{d2(oL(a ; e), oL(a ; f)),⁄ ·max

aÕœA
dL(Ja ; eKaÕ , Ja ; fKaÕ)}

= ⁄ · dL(JeK, JfK) (Def. of final automaton)
Æ ⁄ · ‘ Æ ÁÕ (Assumptions)

Finally, (SL5) is derivable from other axioms2. If Á = max(Á, ÁÕ) then {e ©‘ g} „ e ©max(Á,ÁÕ) g
holds by (Assum). If ‘ < max(Á, ÁÕ), then we can derive the quantitative judgement above
using (Max). By a similar line of reasoning, we can show that {f ©‘Õ h} „ f ©max(Á,ÁÕ) h.
Finally, using (Cut) and (NExp), we can show that {e ©Á g, f ©ÁÕ h} „ e+ f ©max(Á,ÁÕ) g + h
as desired. J

2 We included (SL5) as an axiom to highlight the similarity of our inference system with axiomatisations
of language equivalence of regular expressions [30, 19] containing the axioms of semilattices with bottom.
In the previous work [22], (SL1 ≠ SL5) are precisely the axioms of Quantitative Semilattices with zero
axiomatising the Hausdor� distance.
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We now revisit the example from Section 1. Recall that states marked as initial of the
left and middle automata can be respectively represented as aú and a + 1. The shortest
word distinguishing languages representing those expressions is aa. If we fix ⁄ = 1

2
, then

dL(JaúK, Ja+ 1K) = 1

4
=

!
1

2

"|aa|. We can derive this distance through the means of axiomatic
reasoning using the quantitative equational theory REG in the following way:

I Example 12.

„ aú ©1 0 (Top)
„ a ; aú © 1

2
a ; 0 (⁄-Pref)

„ a ; aú + 1 © 1
2
a ; 0 + 1 („ 1 ©0 1 and SL5)

„ aú © 1
2
1 (Triang, Unroll, S0 and SL4)

„ a ; aú © 1
4
a ; 1 (⁄-Pref)

„ a ; aú + 1 © 1
4
a ; 1 + 1 („ 1 ©0 1 and SL5)

„ aú © 1
4
a+ 1 (Triang, Unroll and S1)

(The lack of) the fixpoint axiom. Traditionally, completeness of inference systems for
behavioural equivalence of languages of expressions featuring recursive constructs such as
Kleene star or µ-recursion [24] rely crucially on fixpoint introduction rules. Those allow
showing that an expression is provably equivalent to a looping construct if it exhibits some
form of self-similarity, typically subject to productivity constraints. As an illustration,
Salomaa’s axiomatisation of language equivalence of regular expressions incorporates the
following inference rule:

g © e ; g + f ‘ /œ JeK
g © eú ; f

(2)

The side condition on the right states that the loop body is productive, that is a deterministic
automaton corresponding to an expression e cannot immediately reach acceptance without
performing any transitions. This is simply equivalent to the language JeK not containing
the empty word. It would be reasonable for one to expect REG to contain a similar rule
to be complete, especially since it should be able to prove language equivalence of regular
expressions (by proving that they are in distance zero from each other). Furthermore, all
axioms of Salomaa except Equation (2) are contained in REG as rules for distance zero.

It turns out that in the presence of the infinitary continuity (Cont) rule of quantitative
deduction systems and the (⁄-Pref) axiom of REG, the Salomaa’s inference rule (Equation (2))
becomes a derivable fact for distance zero. First of all, one can show that (⁄-Pref) can be
generalised from prepending single letters to prepending any regular expression satisfying
the side condition from Equation (2).

I Lemma 13. Let e, f, g œ Exp, such that ‘ /œ JeK. Then, {f ©Á g} „ e ;f ©ÁÕ e ;g is derivable
using the axioms of REG for all ÁÕ Ø ⁄ · Á.

With the above lemma in hand, one can inductively show that if g ©0 e ;g+f and ‘ /œ JeK,
then g gets arbitrarily close to eú ; f . Intuitively, the more we unroll the loop in eú ; f using
(Unroll) and the more we unroll the definition of g, then the closer both expressions become.
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I Lemma 14. Let e, f, g œ Exp, such that ‘ /œ JeK and let n œ N. Then, {g ©0 e ; g + f} „
g ©Á eú ; f is derivable using the axioms of REG for all Á Ø ⁄n.

Having the result above, we can now use the infinitary (Cont) rule capturing the limiting
property of decreasing chain of overapproximations to the distance and show the derivability
of Salomaa’s inference rule.

I Lemma 15. Let e, f, g œ Exp, such that ‘ /œ JeK. Then, {g ©0 e ; g + f} „ g ©0 eú ; f is
derivable using the axioms of REG.

Proof. To deduce that „ g ©0 eú ; f using (Cont) it su�ces to show that „ g ©Á eú ; f
for all Á > 0. To do so, pick an arbitrary Á > 0 and let N = Álog⁄ ÁË. Observe that
⁄N = ⁄Álog⁄ ÁË Æ ⁄log⁄ Á = Á. Because of Lemma 14 we have that „ g ©Á eú ; f , which
completes the proof. J

5 Completeness

We now move on to the central result of this paper, which is the completeness of REG with
respect to the shortest-distinguishing-word metric on languages denoting regular expressions.
We use the strategy from the proof of completeness of quantitative axiomatisation of prob-
abilistic bisimilarity distance [2]. It turns out that the results from [2] rely on properties
that are not unique to the Kantorovich/Wassertstein lifting and can be also established for
instances of the abstract coalgebraic framework [5].

The heart of our argument relies on the fact that the distance between languages denoting
regular expressions can be calculated in a simpler way than applying the Knaster-Tarski
fixpoint theorem while looking at the infinite-state final automaton of all formal languages
over some fixed alphabet. In particular, regular expressions denote the behaviour of finite-
state deterministic automata. Since automata homomorphisms are non-expansive mappings,
the distance between languages JeK and JfK of some arbitrary regular expressions e, f œ Exp is
the same as the distance between states in some DFA whose languages corresponds to JeK and
JfK. To be precise, we will look at the finite subautomaton È[e]©̇, [f ]©̇ÍQ of the ©̇ quotient
of the Brzozowski automaton. The reason we care about deterministic finite automata is
that it turns out that one can calculate the behavioural distance between two states through
iterative approximation from above, which can be also derived axiomatically using the (Cont)
rule of quantitative deduction systems. We start by showing how this simplification works
and then we move on to establishing completeness.

Behavioural distance on finite-state automata. Consider a deterministic automaton
M = (M, ÈoM , tM Í). The least fixpoint of a monotone endomap �M : DM æ DM on the
complete lattice of 1-pseudometrics on the set M results in dM, which is a behavioural
pseudometric on the states of the automaton M. It is noteworthy that �M exhibits two
generic properties. Firstly, �M behaves well within the Banach space structure defined by
the supremum norm.

I Lemma 16. �M : DM æ DM is nonexpansive with respect to the supremum norm. In
other words, for all d, dÕ œ DM we have that Î�M(dÕ) ≠ �M(d)Î Æ ÎdÕ ≠ dÎ.

Proof. We can safely assume that d ı dÕ, as other case will be symmetric. It sufices to show
that for all m,mÕ œ M , �M(dÕ)(m,mÕ) ≠ �M(d)(m,mÕ) Æ ÎdÕ ≠ dÎ. First, let’s consider
the case when oM (m) ”= oM (mÕ) and hence d2(m,mÕ) = 1. In such a scenario, it holds
that �M(dÕ)(m,mÕ) ≠ �M(d)(m,mÕ) = 0 Æ ÎdÕ ≠ dÎ. From now on, we will assume that
oM (m) = oM (m) and hence d2(m,mÕ) = 0. We have the following
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�M(dÕ)(m,mÕ) ≠ �M(d)(m,mÕ) = ⁄ ·max
aœA

dÕ(ma,m
Õ
a) ≠ ⁄ ·max

aœA
d(ma,m

Õ
a)

= ⁄ ·
3
max
aœA

dÕ(ma,m
Õ
a) ≠ max

aœA
d(ma,m

Õ
a)

4

Æ ⁄ ·
3
max
aœA

{dÕ(ma,m
Õ
a) ≠ d(ma,m

Õ
a)}

4

Æ ⁄ · sup
n,nÕœM

{dÕ(n, nÕ) ≠ d(n, nÕ)}

= ⁄ · ÎdÕ ≠ dÎ Æ ÎdÕ ≠ dÎ J

Secondly, it turns out that �M has only one fixpoint. This means that if we want to calculate
dM it su�ces to look at any fixpoint of �M. This will enable a simpler characterisation,
than the one given by the Knaster-Tarski fixpoint theorem.

I Lemma 17. �M has a unique fixed point.

Proof. Let d, dÕ œ DM be two fixed points of �M, that is �M(d) = d and �M(dÕ) = dÕ. We
can safely assume that d ı dÕ, as the other case is symmetric. We wish to show that d = dÕ

and to do so we will use proof by contradiction.
Assume that d ”= dÕ, and hence there exist m,mÕ œ M , such that d(m,mÕ) < dÕ(m,mÕ)

and ÎdÕ ≠dÎ = dÕ(m,mÕ)≠d(m,mÕ) ”= 0. First, consider the case when oM (m) ”= oM (mÕ). In
such a case both d(m,mÕ) and d(m,mÕ) are equal to 1 and hence ÎdÕ ≠dÎ = 0, which leads to
contradiction. From now, we can safely assume that oM (m) = oM (mÕ). Through an identical
line of reasoning to the proof of Lemma 16, we can show that Î�M(dÕ)≠�M(d)Î Æ ⁄·ÎdÕ ≠dÎ.
Since both d and dÕ are fixed points, this would mean that ÎdÕ ≠ dÎ Æ ⁄ · ÎdÕ ≠ dÎ. Since
⁄ œ ]0, 1[, this would imply that ÎdÕ ≠ dÎ = 0 leading again to contradiction. J

In particular, we will rely on the characterisation given by the Kleene fixpoint theorem [31,
Theorem 2.8.5], which allows to obtain the greatest fixpoint of an endofunction on the lattice
as the infimum of the decreasing sequence of finer approximations obtained by repeatedly
applying the function to the top element of the lattice.

I Theorem 18 (Kleene fixpoint theorem). Let (X,ı) be a complete lattice with a top element
€ and f : X æ X an endofunction that is Ê-cocontinuous or in other words for any
decreasing chain {xi}iœN it holds that infiœN{f(xi)} = f (infiœN xi). Then, f possesses a
greatest fixpoint, given by gfp(f) = infiœN{f (i)(€)} where f (n) denotes n-fold self-composition
of f given inductively by f (0)(x) = x and f (n+1)(x) = f (n+1)(f(x)) for all x œ X.

The theorem above requires the endomap to be Ê-cocontinuous. Luckily, it is the case for
�M if we restrict our attention to DFA. To show that, we directly follow the line of reasoning
from [2, Lemma 5.6] generalising the similar line of reasoning for Ê-continuity from [37,
Theorem 1]. First, using Lemma 6 we show that decreasing chains of pseudometrics over a
finite set converge to their infimum. That result is a minor re-adaptation of [37, Theorem 1]
implicitly used in [2, Lemma 5.6].

I Lemma 19. Let {di}iœN be an infinite descending chain in the lattice (DX ,ı), where X
is a finite set. The sequence {di}iœN converges (in the sense of convergence in the Banach
space) to d(x, y) = infiœN di(x, y).
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Proof. Let Á > 0 and let x, y œ X. Since d(x, y) = infiœN di(x, y) there exists an index
mx,y œ N such that for all n Ø mx,y, |dn(x, y) ≠ d(x, y)| < Á. Now, let N = max{mx,y |
x, y œ X}. This is well-defined because X is finite. Therefore, for all n Ø N and x, y œ X,
|dn(x, y) ≠ d(x, y)| < Á and hence Îdn ≠ dÎ < Á. J

We can now use the above to show the desired property, by re-adapting [37, Theorem 1].

I Lemma 20. If M is a deterministic finite automaton, then �M is Ê-cocontinuous.

Proof. By Lemma 19, the chain {di}iœN converges to infiœN di. Since �M is nonexpansive
(Lemma 16) it is also continuous (in the sense of the Banach space continuity) and therefore
{�M(di)}iœN converges to �M (infiœN di). Recall that �M is monotone, which makes
{�M(di)}iœN into a chain, which by Lemma 6 and Lemma 19 converges to infiœN{�M(di)}.
Since limit points are unique, infiœN{�M(di)} = �M (infiœN di). J

We can combine the preceding results and provide a straightforward characterisation of
the distance between languages represented by arbitrary regular expressions, denoted as
e, f œ Exp. Utilising a simple argument based on Proposition 7, which asserts that automata
homomorphisms are nonexpansive, one can demonstrate that the distance between JeK and
JfK in the final automaton is equivalent to the distance between [e]©̇ and [f ]©̇ in È[e]©̇, [f ]©̇ÍQ.
This is the least subautomaton of Q that contains the derivatives (modulo ©̇) reachable from
[e]©̇ and [f ]©̇. Importantly, this automaton is finite (Lemma 3), allowing us to apply the
Kleene fixpoint theorem to calculate the distance.

Let �(0)

e,f denote the discrete metric on the set È[e]©̇, [f ]©̇ÍQ (the top element of the
lattice of pseudometrics over that set). Define �(n+1)

e,f = �È[e]©̇,[f ]©̇ÍQ(�
(n)
e,f ). Additionally,

leveraging the fact that infima of decreasing chains are calculated pointwise (Lemma 6), we
can conclude with the following:

I Lemma 21. For all e, f œ Exp, the underlying pseudometric of the quantitative algebra B
can be given by dB(e, f) = infiœN

Ó
�(i)

e,f ([e]©̇, [f ]©̇)
Ô

In simpler terms, we have demonstrated that the behavioural distance between a pair of
arbitrary regular expressions can be calculated as the infimum of decreasing approximations
of the actual distance from above. Alternatively, one could calculate the same distance as the
supremum of increasing approximations from below using the Kleene fixpoint theorem for
the least fixpoint. We chose the former approach because our proof of completeness relies on
the (Cont) rule of quantitative deduction systems. This rule essentially states that to prove
two terms are at a specific distance, we should be able to prove that for all approximations
of that distance from above. This allows us to replicate the fixpoint calculation through
axiomatic reasoning.

Completeness result. We start by recalling that regular expressions satisfy a certain
decomposition property, stating that each expression can be reconstructed from its small-step
semantics, up to ©0. This property, often referred to as the fundamental theorem of Kleene
Algebra/regular expressions (in analogy with the fundamental theorem of calculus and
following the terminology of Rutten [27] and Silva [33]) is useful in further steps of the proof
of completeness.

I Theorem 22 (Fundamental Theorem). For any e œ Exp, „ ei ©0

q
aœA a ; (ei)a + oR(ei) is

derivable using the axioms of REG.
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The theorem above makes use of the n-ary generalised sum operator, which is well defined
because of (SL1-SL4) axioms of REG. Let’s now say that we are interested in the distance
between some expressions e, f œ Exp. As mentioned before, we will rely on È[e]©̇, [f ]©̇ÍQ,
the least subautomaton of the ©̇ quotient of the Brzozowski automaton containing states
reachable from [e]©̇ and [f ]©̇. Recall that by Lemma 3 its state space is finite. It turns out
that the approximations from above (from Lemma 21) to the distance between any pair of
states in that automaton can be derived through the means of axiomatic reasoning.

I Lemma 23. Let e, f œ Exp be arbitrary regular expressions and let [g]©̇, [h]©̇ œ È[e]©̇, [f ]©̇ÍQ.
For all i œ N, and Á Ø �(i)

e,f ([g]©̇, [h]©̇), one can derive „ g ©Á h using the axioms of REG.

Proof. We proceed by induction on i. For the base case, observe that �(0)

e,f is the discrete
1-pseudometric on the set È[e]©̇, [f ]©̇ÍQ such that �(0)

e,f ([g]©̇, [h]©̇) = 0 if and only if g©̇h, or
otherwise �(0)

e,f ([g]©̇, [h]©̇) = 1. In the first case, we immediately have that g ©0 h, because
©̇ is contained in distance zero axioms of REG. In the latter case, we can just use (Top),
to show that g ©1 h. Then, in both cases, we can apply (Max) to obtain „ g ©Á h, since
Á Ø �(0)

e,f ([g]©̇, [h]©̇). For the induction step, let i = j + 1 and derive the following:

Á Ø �(j+1)

e,f ([g]©̇, [h]©̇) ≈∆ Á Ø �È[e]©̇,[f ]©̇ÍQ

1
�(j)

e,f

2
([g]©̇, [h]©̇) (Def. of �j+1

e,f )

≈∆ Á Ø max
;
d2(oQ([g]©̇), oQ([h]©̇)),⁄ ·max

aœA

Ó
�(j)

e,f ([g]©̇a, [h]©̇a)
Ô<

(Def. of �)

≈∆ Á Ø max
;
d2 (oR(g), oR(h)) ,⁄ ·max

aœA

Ó
�(j)

È[e]©̇,[f ]©̇ÍQ ([(g)a]©̇, [(h)a]©̇)
Ô<

(Def. of Q)

≈∆ Á Ø d2(oR(g), oR(h)) and for all a œ A, Á · ⁄≠1 Ø �(j)
e,f ([(g)a]©̇, [(h)a]©̇)

Firstly, since d2 is the discrete 1-pseudometric on the set {0, 1}, we can use (Refl) or (Top)
depending on whether oR(g) = oR(h) and then apply (Max) to derive „ oR(g) ©Á oR(h).

Let a œ A. We will show that „ a ; (g)a ©Á a ; (h)a. Since Á · ⁄≠1 is not guaranteed to
be rational, we cannot immediately apply the induction hypothesis. Instead, we rely on
(Cont) rule. First, pick an arbitrary rational ÁÕ strictly greater than Á and fix {rn}nœN to
be any decreasing sequence of rationals that converges to ⁄≠1. Let rN be an element of
that sequence such that ÁÕ Ø ⁄ · Á · rN . It is always possible to pick such element because
{⁄ · rn}nœN is a decreasing sequence that converges to 1 and ÁÕ > Á. Since ‘ · rN Ø ‘ · ⁄≠1

and Á · rN œ Q+, we can use the induction hypothesis and derive „ (g)a ©‘·rN (ha). Then,
by (⁄-Pref) axiom we have that „ a ; (g)a ©ÁÕ a ; (h)a. Since we have shown it for arbitrary
ÁÕ > Á, by (Cont) rule we have that „ a ; (g)a ©Á a ; (h)a. Using (SL5), we can combine all
subexpressions involving the output and transition derivatives into the following:

„
ÿ

aœA

a ; (g)a + oR(g) ©Á

ÿ

aœA

a ; (h)a + oR(h)

Since both sides are normal forms of g and h existing because of Theorem 22, we can apply
(Triang) on both sides and obtain „ g ©Á h thus completing the proof. J

At this point, we have done all the hard work, and establishing completeness involves a
straightforward argument that utilises the (Cont) rule and the lemma above.

I Theorem 24 (Completeness). For any e, f œ Exp and Á œ Q+, if |=B e ©Á f , then
„ e ©Á f œ REG
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Proof. Assume that |=B e ©Á f , which by the definition of |=B is equivalent to dB(e, f) Æ Á.
In order to use (Cont) axiom to derive „ e ©Á f , we need to be able to show „ e ©ÁÕ f
for all ÁÕ > Á. Because of iterative characterisation of dB from Lemma 21, we have that
infiœI{�(i)

e,f ([e]©̇, [f ]©̇)} < ÁÕ. Since ÁÕ is strictly above the infimum of the descending chain
of approximants, there exists a point i œ N, such that ÁÕ > �(i)

e,f ([e]©̇, [f ]©̇). We can show
this by contradiction.

Assume that for all i œ N, ÁÕ Æ �(i)
e,f ([e]©̇, [f ]©̇). This would make ÁÕ into the lower bound

of the chain
Ó

�(i)
e,f ([e]©̇, [f ]©̇)

Ô

iœN
and in such a case ÁÕ would be less than or equal to the

infimum of that chain, which by assumption is less than or equal to Á. By transitivity, we
could obtain ÁÕ Æ Á. Since ÁÕ > Á, by antisymmetry we could derive that ÁÕ = Á, which would
lead to the contradiction.

Using the fact shown above, we can use Lemma 23 to obtain „ e ©ÁÕ f œ REG for any
ÁÕ > Á, which completes the proof. J

In simpler terms, the (Cont) rule enables us to demonstrate that two terms are at a specific
distance by examining all strict overapproximations of that distance. Due to the iterative
nature outlined in Lemma 21, this implies that we only need to consider finite approximants
used in the Kleene fixpoint theorem. Each of those finite approximants can be axiomatically
derived using Lemma 23.

6 Discussion

We have presented a sound and complete axiomatisation of the shortest-distinguishing word
distance between languages representing regular expressions through a quantitative analogue
of equational logic [22]. Before our paper, only axiomatised behavioural distances of probabil-
istic/weighted transition systems existed, through (variants of) the Kantorovich/Wasserstein
lifting [21, 12, 4, 2, 1], while we looked at a behavioural distance obtained through a
more general coalgebraic framework [5]. Outside of the coalgebra community, the shortest-
distinguishing word distance and its variants also appear in the model checking [20] and in
the automata learning [14] literature.

We have followed the strategy for proving completeness from [2]. The interesting insight
about that strategy is that it relies on properties that are not exclusive to distances obtained
through the Kantorovich/Wasserstein lifting and can be established for notions of behavioural
distance for other kinds of transition systems stemming from the coalgebraic framework. In
particular, one needs to show that the monotone map on the lattice of pseudometrics used in
defining the distance of finite-state systems is nonexpansive with respect to the sup norm
(and hence Ê-cocontinuous) and has a unique fixpoint, thus allowing to characterise the
behavioural distance as the greatest fixpoint obtained through the Kleene fixpoint theorem.
This point of view allows one to reconstruct the fixpoint calculation in terms of axiomatic
manipulation involving the (Cont) rule, eventually leading to completeness.

We have additionally observed that in the presence of the infinitary (Cont) rule and the (⁄-
Pref) axiom, there is no need for a fixpoint rule, which is common place in all axiomatisations
of regular expressions but also in other work on distances. In particular, the previous work on
axiomatising a discounted probabilistic bisimilarity distance from [2] includes both (⁄-Pref)
and the fixpoint introduction rule, but its proof of completeness [2, Theorem 6.4] does not
involve the fixpoint introduction rule at any point. We are highly confident that in the case
of that axiomatisation, the fixpoint introduction rule could be derived from other axioms in
a similar fashion to the way we derived Salomaa’s rule for introducing the Kleene star [30].
Additionally, we are interested in how much this argument relates to the recent study of
fixpoints in quantitative equational theories [23].
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Moreover, the axiomatisations from [1, 2] rely on a slight modification of quantitative
equational theories, which drop the requirement of all operations from the signature to
be nonexpansive. This is dictated by the fact that the interpretation of µ-recursion in
Stark and Smolka’s probabilistic process algebra [35] can increase the behavioural distances
in the case of unguarded recursion, while in regular expressions recursive behaviour is
introduced through Kleene’s star, whose interpretation is non-expansive with respect to
the shortest-distinguishing-word distance. This allowed us to fit instantly into the original
framework of quantitative equational theories. The earlier work [4] focusing on Markov
processes [8] also relies on quantitative equational theories, but its syntax does not involve
any recursive primitives. Instead, the recursive behaviour is introduced through Cauchy
completion of a pseudometric induced by the axioms. The earliest works on axiomatising
behavioural distances of weighted [21] and probabilistic [12] transition systems, studied before
the introduction of quantitative equational theories, rely on ad-hoc inference systems that
cannot be easily generalised.

The pioneering works [13, 39, 37, 40, 38, 3] laid foundations for behavioural (pseudo)met-
rics of various flavours of probabilistic transition systems. The coalgebraic point of view [5]
allowed to generalise these ideas to a wide range of transition systems by moving from
the Kantorovich/Wasserstein lifting to the abstract setting of lifting endofunctors from the
category of sets to the category of pseudometric spaces. Building upon this theory, further
lines of work were dedicated to asymmetric distances (called hemimetrics) through the theory
of quasi-lax liftings [44], fuzzy analogues of Hennessy-Milner logic characterising behavioural
distance [17, 6], fibrational generalisations involving quantale-enriched categories [7], up-to
techniques allowing for e�cient approximation of behavioural distances [9] and quantitative
analogues of van Glabbek’s linear-time branching-time spectrum [15].

In this paper, we have focused on the simplest and most intuitive instantiation of the
coalgebraic framework in the case of deterministic automata, but the natural next step
would be to generalise our results to a wider class of transition systems. A good starting
point could be to consider coalgebras for polynomial endofunctors, in the fashion of the
framework of Kleene Coalgebra [33]. Alternatively, it would be interesting to look at recent
work on a family of process algebras parametric on an equational theory representing the
branching constructs [32] and study its generalisations to quantitative equational theories. A
related and interesting avenue for future work are equational axiomatisations of behavioural
equivalence of Guarded Kleene Algebra with Tests (GKAT) [34, 32] and its probabilistic
extension (ProbGKAT) [29], whose completeness results rely on a powerful uniqueness of
solutions axiom (UA). The soundness of UA in both cases is shown through an involved
argument relying on equipping the transition systems giving the operational semantics with a
form of behavioural distance and showing that recursive specifications describing finite-state
systems correspond to certain contractive mappings. It may be more sensible, particularly
for ProbGKAT to consider quantitative axiomatisations in the first place and give the proofs
of completeness through the pattern explored in this paper.
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Homogeneity and Homogenizability: Hard
Problems for the Logic SNP
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Abstract
The infinite-domain CSP dichotomy conjecture extends the finite-domain CSP dichotomy theorem to
reducts of finitely bounded homogeneous structures. Every countable finitely bounded homogeneous
structure is uniquely described by a universal first-order sentence up to isomorphism, and every
reduct of such a structure by a sentence of the logic SNP. By Fraïssé’s Theorem, testing the existence
of a finitely bounded homogeneous structure for a given universal first-order sentence is equivalent to
testing the amalgamation property for the class of its finite models. The present paper motivates a
complexity-theoretic view on the classification problem for finitely bounded homogeneous structures.
We show that this meta-problem is EXPSPACE-hard or PSPACE-hard, depending on whether the
input is specified by a universal sentence or a set of forbidden substructures. By relaxing the input to
SNP sentences and the question to the existence of a structure with a finitely bounded homogeneous
expansion, we obtain a di�erent meta-problem, closely related to the question of homogenizability.
We show that this second meta-problem is already undecidable, even if the input SNP sentence
comes from the Datalog fragment and uses at most binary relation symbols. As a byproduct of our
proof, we also get the undecidability of some other properties for Datalog programs, e.g., whether
they can be rewritten in the logic MMSNP, whether they solve some finite-domain CSP, or whether
they define a structure with a homogeneous Ramsey expansion in a finite relational signature.
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1 Introduction

Strict NP (SNP) is an expressive fragment of existential second-order logic and thus, by
Fagin’s Theorem, of the complexity class NP. If one only considers structures over a finite
relational signature, then SNP can be obtained from the universal fragment of first-order
logic simply by allowing existential quantification over relation symbols at the beginning
of the quantifier prefix. In particular, universal first-order formulas themselves are SNP
formulas. Despite the name, SNP already has the full power of NP, in the sense that every
problem in NP is equivalent to a problem in SNP under polynomial-time reductions [30]. In
addition, this logic class has many connections to Constraint Satisfaction Problems (CSPs),
which we use as the primary source of motivation for the present article. The CSP of a
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relational structure B, denoted by CSP(B), is (the membership problem for) the class of all
finite structures which homomorphically map to B. Every computational decision problem is
polynomial-time equivalent to a CSP [12]. Many practically relevant problems like Boolean
satisfiability or graph colorability can even be formulated as a finite-domain CSP, i.e., where
the template B can be chosen finite. The basic link from SNP to CSP is that every sentence
of the monotone fragment of this logic defines a finite disjoint union of CSPs of (possibly
infinite) relational structures [8]. There are, however, some more nuanced connections, such
as the one that led to the formulation of the Feder-Vardi conjecture, now known as the finite-
domain CSP dichotomy theorem [52]. In their seminal work [30], Feder and Vardi showed
that the Monotone Monadic fragment of SNP (MMSNP) exhibits a dichotomy between P
and NP-completeness if and only if the seemingly less complicated class of all finite-domain
CSPs exhibits such a dichotomy,1 they also conjectured the latter to be true. The logic class
MMSNP contains all finite-domain CSPs, and many other interesting combinatorial problems,
e.g., the problem of deciding whether the vertices of a given graph can be 2-coloured without
obtaining any monochromatic triangle [42]. The Feder-Vardi conjecture was confirmed in
2017 independently by Bulatov and Zhuk [23, 51].

There is a yet unconfirmed generalization of the Feder-Vardi conjecture, to CSPs of reducts
of finitely bounded homogeneous structures, formulated by Bodirsky and Pinsker in 2011 [18].
Here we refer to it as the Bodirsky-Pinsker conjecture. A structure is finitely bounded if it
has a finite relational signature and the class of all finite structures embeddable into it is
definable by a universal first-order sentence, and homogeneous if every isomorphism between
two of its finite substructures extends to an automorphism. Reducts of such structures are
obtained simply by removing some of the original relations. A prototypical example of a
structure that satisfies both finite boundedness and homogeneity is (Q;<), the set of rational
numbers equipped with the usual countable dense linear order without endpoints. It is a
folklore fact that the class of reducts of finitely bounded homogeneous structures is closed
under taking expansions of structures by first-order definable relations [8]. Roughly said, the
condition imposed on the structures within the scope of the Bodirsky-Pinsker conjecture
ensures that the CSP is in NP and that its template enjoys some of the universal-algebraic
properties that have played an essential role in the proofs of the Feder-Vardi conjecture [6].
At the same time, it covers CSP-reformulations of many natural problems in qualitative
reasoning, as well as all problems definable in MMSNP.

Every countable finitely bounded homogeneous structure is uniquely described by a
universal first-order sentence up to isomorphism, and every reduct of such a structure by
a sentence of the logic SNP. The CSPs of both kinds of structures are always definable in
the monotone fragment of SNP. By Fraïssé’s theorem, asking whether a given universal
first-order sentence describes a finitely bounded homogeneous structure is equivalent to
asking whether the class of its finite models has the Amalgamation Property (AP). This
question has been considered many times in the context of the Lachlan-Cherlin classification
programme for homogeneous structures [3, 36, 26], and is known to be decidable in the
case of binary signatures [38, 15]. It also appears as an open problem in Bodirsky’s book
on infinite-domain constraint satisfaction [8]. Whether a given SNP sentence describes a
reduct of a finitely bounded homogeneous structure is a di�erent question, closely related to
homogenizability [2, 4, 28, 35]. To the best of our knowledge, neither of the two questions
is known to be decidable in general. Hence, it is unclear which CSPs actually fall within

1 The correspondence between MMSNP and finite-domain CSP was initially only achieved up to randomized
reductions, but it was later derandomized by Kun [37].
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the scope of the Bodirsky-Pinsker conjecture. Besides CSPs, they are also relevant to other
areas of theoretical computer science such as verification of database-driven systems [21] or
description logics with concrete domains [39, 5]. Below, we state the two questions explicitly.

1. The amalgamation meta-problem. Given a universal sentence � over a finite relational
signature, does there exist a finitely bounded homogeneous structure B such that the
finite models of � are precisely the finite substructures of B up to isomorphism?

2. The homogenizability meta-problem. Given an SNP sentence � over a finite
relational signature, does there exist a reduct B of a finitely bounded homogeneous
structure such that the finite models of � are precisely the finite substructures of B up
to isomorphism?

Contributions. In the present paper, we prove the intractability of the two meta-problems.
More specifically, we show that the amalgamation meta-problem is EXPSPACE-hard (The-
orem 6) or PSPACE-hard (Theorem 7), depending on the encoding of the input, and that the
homogenizability meta-problem is undecidable (Theorem 13). Theorem 6 and Theorem 7
are proved in Section 3.1 by taking a proof-theoretic perspective on the AP for classes
defined by universal Horn sentences. We show that, for some of these classes, the failures
of the AP are in a 1:1 correspondence with the rejecting runs of certain Datalog programs
verifying instances of the rectangle tiling problem. Here, by Datalog we mean the monotone
Horn fragment of SNP. Theorem 13 is proved in Section 4, by analyzing model-theoretic
properties of a very natural encoding of context-free grammars into Datalog sentences. As a
byproduct of the proof, we also get the undecidability of some other properties for Datalog
programs, e.g., whether they can be rewritten in the logic MMSNP, whether they solve
some finite-domain CSP, or whether they define a structure with a homogeneous Ramsey
expansion in a finite relational signature.

It is known that, from every finite structure A over a finite relational signature one can
construct in polynomial time a finite structure B over a finite binary relational signature
such that CSP(A) and CSP(B) are polynomial-time equivalent [24, 30]. By our results,
such a reduction is unlikely to exist for universal sentences representing finitely bounded
homogeneous structures, unless it avoids the amalgamation meta-problem. The reason is
that, for binary relational signatures, the amalgamation meta-problem can be decided in
coNEXPTIME (Proposition 3). Our results provide evidence for the need for a fundamentally
new language-independent approach to the Bodirsky-Pinsker conjecture. First steps in
this direction were taken in the recent works of Mottet and Pinsker [44] and Bodirsky and
Bodor [9], but they do not fully address the issues stemming from the two meta-problems. We
elaborate on this claim below. To keep our results as general as possible, we formulate them
for some reasonable promise relaxations of the two meta-problems, i.e., where a subclass and
a superclass of the positive instances are being separated from each other with the promise
that the input never belongs to the complement of the subclass within the superclass.

The subtleties of the Bodirsky-Pinsker conjecture. In 2016, Bodirsky and Mottet presented
an elegant tool for lifting tractability from finite-domain constraint satisfaction to the
infinite [17], hereby establishing the first general link between the Feder-Vardi and the
Bodirsky-Pinsker conjecture. Since then, their method has been used numerous times to
prove new or reprove old complexity classification results for infinite-domain CSPs. One
prominent such example is the universal-algebraic proof of the complexity dichotomy for
MMSNP [16]. Conveniently enough, every MMSNP sentence defines a finite union of CSPs
of structures within the scope of the Bodirky-Pinsker conjecture, so the two meta-problems
were not relevant in this context. There is a prospect that the methods from [17] will also
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prove useful in proving a dichotomy for the even more general logic class Guarded Monotone
SNP (GMSNP) introduced in [7]. Also GMSNP enjoys the above mentioned property of
MMSNP [15], and hence avoids the two meta-problems.

However, outside of GMSNP there exists a regime where the methods from [17] definitely
fall short, and where the two meta-problems become relevant. Consider for instance the
dichotomy for temporal CSPs, i.e., for CSPs of structures with domain Q and whose relations
are definable by a Boolean combination of formulas of the form (x = y) or (x < y), obtained
by Bodirsky and Kára in 2010 [14]. At the present time, these problems are already very well
understood; tractable temporal CSPs can always be solved by an algorithm that repeatedly
searches for a set of potential minimal elements among the input variables, where each
instance of the search is performed using an oracle for a tractable finite-domain CSP. The
latter is generally determined by the shape of the Boolean combinations. E.g., in the case of
CSP(Q; {(x, y, z) œ Q3 | (x = y < z)‚ (y = z < x)‚ (z = x < y)}), solving the finite-domain
CSP in question amounts to solving linear equations modulo 2 [14, 19]. It is known that the
tractability results from [14] cannot be obtained using the reduction from [17].

In 2022, Mottet and Pinsker introduced the machinery of smooth approximations [44],
which vastly generalizes the methods in [17]. The last section of their paper is devoted to
temporal CSPs, and the authors manage to reprove a significant part of the dichotomy on
just a few pages. They achieve this by applying some of their general results to first-order
expansions of (Q;<) and obtaining either NP-hardness for the CSP, or one of the two types of
symmetry that played a fundamental role in the original proof from [14]. This symmetry can
then be used to prove correctness of the reduction to a finite-domain CSP described above,
but only under an explicit usage of the homogeneity of (Q;<) (see Proposition 3.1 in [19]
and the last section of [44]). In contrast to the methods in [17] which only use homogeneity
as a blackbox, this approach can be described as language-dependent.

A similar situation occurs in the case of phylogeny CSPs [13], which capture decision
problems concerning the existence of a binary tree satisfying certain constraints imposed
on its leaves. Tractable phylogeny CSPs are strikingly similar to tractable temporal CSPs;
they can always be solved by an algorithm that repeatedly searches for a subdivision of the
input variables into two parts, representing the two di�erent branches below the root of a
binary tree, where each instance of this search is performed using an oracle for a tractable
finite-domain CSP. However, for tractable phylogeny CSPs, already the homogeneity of the
infinite-domain CSP template is both su�cient and necessary for proving the correctness of
the reduction to the finite-domain CSP (Theorem 6.13 and Lemma 6.12 in [13]). We can
therefore speak of a case of extreme language-dependency. Temporal and phylogeny CSPs
are special cases of CSPs of structures obtainable from the universal homogeneous binary
tree [10] by specifying relations using first-order formulas. Achieving a complexity dichotomy
in this context will require a non-trivial combination of the methods from [14] and [13].

An optimal way of approaching the conjecture would be gaining a very good understanding
of the class of reducts of finitely bounded homogeneous structures, e.g., through some sort
of a classification. However, it is unclear how realistic this prospect is as model-theoretic
properties often tend to be undecidable [25]. We remark that homogeneity is a vital part of
the Bodirsky-Pinsker conjecture; this assumption can be weakened or strengthened but not
dropped entirely, as otherwise we get a class that provably does not have a dichotomy [30, 8].

2 Preliminaries

Relational structures. The set {1, . . . , n} is denoted by [n], and we use the bar notation
t̄ for tuples. A (relational) signature · is a set of relation symbols, each R œ · with an
associated natural number called arity. We say that · is binary if it consists of symbols of
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arity Æ 2. A (relational) · -structure A consists of a set A (the domain) together with the
relations RA ™ Ak for each R œ · with arity k. An expansion of A is a ‡-structure B with
A = B such that · ™ ‡, RB = RA for each relation symbol R œ · . Conversely, we call A a
reduct of B. The union of two · -structures A and B is the · -structure A fi B with domain
A fi B and relations of the form RAfiB := RA fi RB for every R œ · .

A homomorphism h : A æ B for · -structures A,B is a mapping h : A æ B that preserves
each relation of A, i.e., if t̄ œ RA for some k-ary relation symbol R œ · , then h(t̄) œ RB. We
write A æ B if A maps homomorphically to B. The Constraint Satisfaction Problem (CSP)
of A, denoted by CSP(A), is defined as the class of all finite structures which homomorphically
map to A. An embedding is a homomorphism h : A æ B that additionally satisfies the
following condition: for every k-ary relation symbol R œ · and t̄ œ Ak we have h(t̄) œ RB

only if t̄ œ RA. We write A Òæ B if A embeds to B. The age of A, denoted by age(A), is
the class of all finite structures which embed to A. A substructure of A is a structure B

over B ™ A such that the inclusion map i : B æ A is an embedding. An isomorphism is a
surjective embedding. Two structures A and B are isomorphic if there exists an isomorphism
from A to B. An automorphism is an isomorphism from A to A. The orbit of a tuple t̄ œ Ak

in A is the set {g(t̄) | g is an automorphism of A}. A countable structure A is Ê-categorical
if, for every k Ø 1, there are only finitely many orbits of k-tuples in A.

First-order logic. We assume that the reader is familiar with classical first-order logic as well
as with basic preservation properties of first-order formulas, e.g., that every first-order formula
„ is preserved by isomorphisms; by embeddings if „ is existential, and by homomorphisms
if „ is existential positive. For a first-order sentence �, we denote the class of all its finite
models by fm(�). We say that a first-order formula is k-ary if it has k free variables. For
a first-order formula „, we use the notation „(x̄) to indicate that the free variables of „
are among x̄. This does not mean that the truth value of „ depends on each entry in x̄.
We assume that equality = as well as the nullary predicate symbol ‹ for falsity are always
available when building first-order formulas. Thus, atomic · -formulas, or · -atoms for short,
over a relational signature · are of the form ‹, (x = y), and R(x̄) for some R œ · . We say
that a formula is equality-free if it does not contain any occurrence of the default equality
predicate. If „ is a disjunction of possibly negated · -atoms, then we define the Gaifman
graph of „ as the undirected graph whose vertex set consists of all free variables of „ and
where two distinct variables x, y form an edge if and only if they appear jointly in a negative
atom of „. Let � be a universal · -sentence in prenex normal form whose quantifier-free part
„ is in CNF. We call � Horn if every clause of „ is Horn, i.e., contains at most one positive
disjunct. We call � complete if the Gaifman graph of each clause of „ is complete. It is a
folklore fact that, if � is complete, then fm(�) is preserved by unions.

SNP and its fragments. An SNP · -sentence is a second-order sentence � of the form
÷X1, . . . ,Xn’x̄.„ where „ is a quantifier-free formula in CNF over · fi {X1, . . . ,Xn}. We
call � monadic if Xi is unary for every i œ [n]; monotone if „ does not contain any positive
· -atoms (in particular no positive equality atoms); and guarded if, for every positive atom
— there exists a negative atom – containing all variables of —. Note that all notions from
the previous paragraph easily transfer to SNP sentences viewed as universal sentences in an
extended signature. The monadic monotone and the guarded monotone fragments of SNP
are denoted by MMSNP and GMSNP, respectively. The monotone Horn fragment of SNP is
commonly known as the logic programming language Datalog. When we say that a Datalog
program � solves the CSP of a structure B, we simply mean that fm(�) = CSP(B).
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Homogeneity, homogenizability, and finite boundedness. A countable structure S is
homogeneous if every isomorphism between two finite substructures of S extends to an
automorphism of S. Clearly, every homogeneous structure in a finite relational signature is
Ê-categorical, and so are the reducts of such structures. Homogeneous structures arise as
limit objects of well-behaved classes of finite structures in the sense of Theorem 1.

Let K be a class of finite structures in a finite relational signature · closed under
isomorphisms and substructures. We say that K has the amalgamation property (AP) if, for
all B1,B2 œ K whose substructures on B1 fl B2 are identical, there exists C œ K together
with embeddings f1 : B1 Òæ C and f2 : B2 Òæ C such that f1|B1flB2 = f2|B1flB2 . We refer to
C as an amalgam of B1 and B2 in K. Note that, for a class closed under isomorphisms and
substructures, the AP is implied by the property of being closed under unions B1 fi B2, also
called free amalgams.

I Theorem 1 (Fraïssé). For a class K of finite structures in a finite relational signature · ,
the following are equivalent:

K is the age of an up to isomorphism unique countable homogeneous · -structure;
K is closed under isomorphisms, substructures, and has the AP.

As already mentioned in the introduction, the structure (Q;<) is homogeneous because
every local isomorphism can be extended to an automorphism using a piecewise a�ne
transformation. Its age is the class of all finite strict linear orders.

A countable structure S is homogenizable if it is a reduct of a homogeneous structure H

over a finite relational signature such that S and H have the same sets of automorphisms [28].
Whenever this happens, by the theorem of Ryll-Nardzewski, all relations of H are first-
order definable in S [33]. One might say that S already has all the relations necessary
for homogeneity but they perhaps do not all have names. A prototypical example of this
phenomenon is the universal “homogeneous” binary tree, which is homogenizable but not
homogeneous, see, e.g., Proposition 3.2 in [10]. We call a class K of finite structures in a
finite relational signature · homogenizable if it forms the age of a homogenizable structure.

For a class N of finite structures in a finite relational signature · , the class Forbe(N )
consists of all finite · -structures which do not embed any member of N . Following the
terminology in [40], we say that a class K of finite structures in a finite relational signature is
finitely bounded if there exists a finite N such that K = Forbe(N ). We refer to N as a set of
bounds for K, and define the size of N as the sum of the cardinalities of the domain and the
relations of all structures in N . A structure S is finitely bounded if its age is finitely bounded.
We say that a class K is finitely bounded homogenizable if it forms the age of a reduct R

of a finitely bounded homogeneous structure H such that R and H have the same sets of
automorphisms. Su�cient conditions for finitely bounded homogenizability were provided by
Hubi�ka and Neöet�il [34], generalizing previous work of Cherlin, Shelah, and Shi [27].

3 The Amalgamation Meta-Problem

By Theorem 1, every homogeneous structure is uniquely described by its age (up to isomorph-
ism). Consequently, every finitely bounded homogeneous structure is uniquely described by
a finite set of bounds. It is known that the question whether Forbe(N ) has the AP for a
given finite set of bounds N can be tested algorithmically in the case where the signature
is binary [38]. This decidability result is based on the following observation. A one-point
amalgamation diagram is an input B1,B2 to the AP where |B1 \B2| = |B2 \B1| = 1.
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I Proposition 2 ([38]). A class of finite relational · -structures that is closed under iso-
morphisms and substructures has the AP if and only if it has the AP restricted to one-point
amalgamation diagrams.

As a consequence of Proposition 2, if · is binary and Forbe(N ) does not have the AP, then
the size of a smallest counterexample to the AP is polynomial in the size of N [15]. Such a
counterexample can be non-deterministically guessed and verified using a coNP-oracle, which
places the problem at the second level of the polynomial hierarchy (Theorem 15 in [5]).

There is a second, arguably more practical, equivalent definition of finite boundedness.
Namely, a class K of finite structures in a finite relational signature is finitely bounded if
and only if there exists a universal sentence � such that K = fm(�). Using this definition,
it is easy to see that (Q;<) is finitely bounded because its age, the class of all finite strict
linear orders, admits a finite universal axiomatization (irreflexivity, transitivity, and totality).
From a complexity-theoretical perspective, the two definitions are equivalent only up to a
single-exponential blow-up in one direction. Given a finite set of bounds N , we can obtain
a universal sentence � of size polynomial in the size of N satisfying fm(�) = Forbe(N ) by
describing each structure in N up to isomorphism using a quantifier-free formula. However,
given a universal sentence �, it can be the case that a smallest N satisfying fm(�) = Forbe(N )
is of size single-exponential in the size of �. The reason is that obtaining N from � is
comparable to rewriting � in DNF. Consequently, the algorithm from [15] only gives us a
relatively weak upper bound for the case where the inputs are specified by universal sentences.

I Proposition 3. Let � be a universal sentence over a finite binary relational signature · .
If fm(�) does not have the AP, then the size of a smallest counterexample to the AP is at
most single-exponential in the size of �. Consequently, the question whether fm(�) has the
AP is decidable in coNEXPTIME.

The upper bound provided by Proposition 3 is not unreasonable since a smallest counter-
example to the AP might be of size exponential in the size of the input sentence even if the
signature is binary. This is demonstrated in Example 4.

I Example 4. Let · be the signature consisting of the unary symbols {L,R}fi {Xi | i œ [n]}
and the binary symbols {E} fi {Yi | i œ [n]} for some n œ N. Consider the universal sentence

� := ’x, y1, y2
1
L(y1) · R(y2) · E(x, y1) · E(x, y2) ·

! fi
iœ[n]

Yi(y1, y2) … Xi(x)
"

∆ ‹
2
.

Our first claim is that fm(�) does not have the AP. We define the one-point amalgamation
diagram B1,B2 œ fm(�) as follows. The domains are Bi := {bi} fi {bS | S ™ [n]}, i œ {1, 2},
and the relations are given by the following conjunction of atomic formulas:

L(b1) · R(b2) ·
fi

S™[n]
E(bS , b1) · E(bS , b2) ·

fi
iœS

Xi(bS).

We have that B1 and B2 satisfy � because RB1 = ÿ and LB2 = ÿ. Clearly, no amalgam for
B1 and B2 can be obtained by identifying b1 and b2 because LB1 = {b1} and RB2 = {b2}.
The free amalgam B1fiB2 does not satisfy � because of the assignment y1 := b1, y2 := b2, and
x := bÿ. But since we can assign x := bS for any S ™ [n], also no amalgam satisfying � can
be obtained by adding the pair (b1, b2) to any subset of the relations Y B1fiB2

1
, . . . , Y B1fiB2

n

of the free amalgam. We conclude that fm(�) does not have the AP.
Our second claim is that every one-point amalgamation diagramB1,B2 œ fm(�) satisfying

|B1 fl B2| < 2n has an amalgam in fm(�). Let b1 and b2 be the unique elements contained
in B1 \B2 and B2 \B1, respectively. If B1 fi B2 |= �, then we are done because B1 fi B2 is
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an amalgam for B1 and B2. So suppose that B1 fi B2 ”|= �. Consider any evaluation of the
quantifier-free part of � witnessing the fact that B1 fiB2 ”|= �. Since b1 and b2 do not appear
together in any relation of B1 fi B2 and B1,B2 |= �, by the shape of �, it must be the case
that x is assigned some element b œ B1 fl B2, y1 is assigned b1, and y2 is assigned b2 (or vice
versa). Since |B1 fl B2| < 2n, there must exist S ™ [n] such that, for every b œ B1 fl B2, it is
not the case that b œ XB1fiB2

i if and only if i œ S. Consequently, we can obtain an amalgam
C œ fm(�) for B1 and B2 by adding the pairs (b1, b2) and (b2, b1) to Y B1fiB2

i for every i œ S.
We conclude that a smallest counterexample to the AP for fm(�) is of size > 2n.

Very little progress has been done on signatures containing symbols of arities larger than
2. In particular, it is not even known whether the AP is decidable for finitely bounded
classes in general. The scenario where this is not the case is not unrealistic since the closely
related joint embedding property (JEP) is undecidable already for finitely bounded classes
of graphs [22]. The JEP determines whether a finitely bounded class forms the age of any
structure, without the requirement of homogeneity [33]. Note that the undecidability of
the JEP does not necessarily have any consequences for the Bodirsky-Pinsker conjecture,
similarly as it did not have any for the Feder-Vardi conjecture.

If the AP turns out to be undecidable as well (for finitely bounded classes), then the
Bodirsky-Pinsker conjecture addresses a class of structures with an undecidable membership
problem, at least under the currently best known input to the meta-problem. It seems that,
to some extent, the decidability issue can be ignored by only using homogeneity as a blackbox.
This was demonstrated in the recent work [45] on the complexity of CSPs of homogeneous
uniform hypergraphs, whose classification remains an open problem [3]. We remark that the
complexity of the amalgamation meta-problem is already open in the following case, where
we can only prove PSPACE-hardness.

I Theorem 5. Given a universal Horn sentence � over a finite relational signature that is
binary except for one ternary symbol, the question whether fm(�) has the AP is PSPACE-hard.

The next theorem states that testing the AP becomes properly harder than in the binary
case if we do not impose any restrictions on the input (unless coNEXPTIME = EXPSPACE).
The fact that this is also true for the strong version of the AP might be of independent
interest to model-theorists. The strong version of the AP is when C œ K and fi : Bi Òæ C

for i œ {1, 2} can always be chosen so that f1(B1) fl f2(B2) = f1(B1 fl B2). Note that the
theorem is formulated as a statement of the form “the question whether X or not even Y is
hard.” This is a compact way for writing that both X and Y (and every property in between)
are hard, the formulation tacitly assumes that the inputs never satisfy “Y and not X.”

I Theorem 6. Given a universal sentence � over a finite signature, the question whether
fm(�) has the strong AP or not even the AP is EXPSPACE-hard.

Theorem 7 is a variant of Theorem 6 in the setting where the input is specified by
a set of bounds instead of a universal sentence. This setting can be compared to the
situation where, in Theorem 6, the quantifier-free part of � is required to be in DNF. As a
consequence, we cannot profit from succinctness of general universal sentences, which leads
to a weaker PSPACE lower bound on the complexity. On the other hand, it turns out that
PSPACE-hardness is witnessed even by instances whose domain size remains constant.

I Theorem 7. Given a finite set N of finite structures over a finite signature, the question
whether Forbe(N ) has the strong AP or not even the AP is PSPACE-hard. The statement is
true even when the domain size for the structures in N is bounded by a constant.
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3.1 Proofs of Theorem 6 and Theorem 7
Our proofs of Theorem 6 and Theorem 7 are based on the fact that, if � is a universal Horn
sentence such that fm(�) does not have the AP, then every counterexample to the AP has
the form of a particular Horn clause which can be derived from � in a syntactical manner.
By padding each Horn clause in � with auxiliary negative atoms and hereby increasing its
“degree of completeness,” we gain some control over the form of the counterexamples to the
AP. When this is performed in a careful and systematic way, the counterexamples to the AP
can be brought into a 1:1 correspondence with the rejecting runs of certain Datalog programs.
In our case, such programs verify the validity of tilings w.r.t. given input parameters to a
bounded tiling problem. This is the main technical contribution of the present article.

I Definition 8. Let � be an equality-free universal Horn sentence over a relational signature
· . Additionally, let „(x̄) and Â(x̄, ȳ) be equality-free conjunctions of atomic · -formulas. We
write Â(x̄, ȳ) Æ� „(x̄) if, for every atomic · -formula ‰(x̄) other than equality,

� |= ’x̄, ȳ
!
Â(x̄, ȳ) ∆ ‰(x̄)

"
implies � |= ’x̄

!
„(x̄) ∆ ‰(x̄)

"
.

In the next lemma, we reformulate the (strong) AP using Definition 8.

I Lemma 9. Let � be an equality-free universal Horn sentence over a relational signature · .
Then the following are equivalent:
1. fm(�) has the strong AP.
2. fm(�) has the AP.
3. If „(x̄), „1(x̄, y1), and „2(x̄, y2) are equality-free conjunctions of atomic formulas, where

y1 and y2 are distinct variables not contained in x̄, such that, for both i œ {1, 2}, every
atom in „i(x̄, yi) contains the variable yi and „(x̄) · „i(x̄, yi) Æ� „(x̄), then

„(x̄) · „1(x̄, y1) · „2(x̄, y2) Æ� „(x̄) · „1(x̄, y1).

Let � be an equality-free universal Horn sentence and Â a Horn clause over a relational
signature · . An SLD-derivation of Â from � is a finite sequence of Horn clauses Â0, . . . ,Âs = Â
such that Â0 is a conjunct in � and, for every i œ [s], there exists a Horn clause „i which
is, up to renaming of variables, a conjunct in �, and such that Âi is obtained from Âi≠1 by
replacing a negative atom of Âi≠1 that appears positively in „i with all negative atoms of „i.
We say that Âi is a resolvent of Âi≠1 and „i. We call Â a weakening of a clause ÂÕ if ÂÕ can
be obtained from Â by removing any amount of atoms. In particular, Â is a weakening of
itself. There exists an SLD-deduction of Â from �, written as � „ Â, if Â is a tautology or a
weakening of a Horn clause ÂÕ that has an SLD-derivation from �. The following theorem
presents a fundamental property of equality-free universal Horn sentences.

I Theorem 10 (Theorem 7.10 in [46]). Let � be an equality-free universal Horn sentence and
Â an equality-free Horn clause, both in a fixed signature · . Then � |= Â if and only if � „ Â.

Our hardness proofs are by polynomial-time reductions from the complements of two
well-known bounded versions of the tiling problem. Consider the signature ‡ consisting of
the two binary symbols Ph, Pv, as well as the four unary symbols P¸, Pr, Pt, Pb. For natural
numbers m,n Ø 1, the ‡-structure Rm,n has the domain [m] ◊ [n] and the relations

P
Rm,n

h := {((i, j), (i+ 1, j)) | i œ [n ≠ 1], j œ [m]},
PRm,n
v := {((i, j), (i, j + 1)) | i œ [n], j œ [m ≠ 1]},

P
Rm,n

¸ := [m] ◊ {1}, PRm,n
r := [m] ◊ {n},

P
Rm,n

b := {1} ◊ [n], P
Rm,n

t := {m} ◊ [n].
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The rectangle tiling problem asks whether, given a natural number n and a finite ‡-structure T,
there exists a natural number m such that Rm,n æ T. Note that this is just a reformulation
of the usual statement using the language of homomorphisms.2 In contrast to the better-
known NP-complete square tiling problem, one dimension of the tiling grid is not part of
the input and is existentially quantified instead. As a result, the problem becomes PSPACE-
complete [50].3 One can further increase the complexity by allowing a succinct encoding of
the space bound. The input remains the same but now we ask for a a rectangle tiling with
2n columns. Analogously to the natural complete problems based on Turing machines, this
yields a decision problem that is complete for the complexity class EXPSPACE [48].

Inputs specified by universal sentences. Theorem 6 is proved by polynomial-time reduction
from the complement of the exponential rectangle tiling problem. From every input, we
construct a universal sentence � of polynomial size such that fm(�) has the AP if and only if
there exists no exponential rectangle tiling satisfying the given parameters. The sentence �
is almost Horn but disjunctions of non-negated atoms are used in premises of implications to
represent exponentially many Horn clauses in a universal sentence of polynomial size. In the
text that follows, we allow ourselves to still call such sentences Horn. Our encoding is very
compact; each row, i.e., an ordered sequence of 2n-many tiles, is represented using a constant
amount of variables. This is achieved by storing the information about each individual row
in binary using (n+ 1)-ary atoms whose entries always contain at most three variables. We
refer to the variables representing rows of the tiling as path nodes. In order to check the tiling
from bottom to top, i.e., parse a chain of path nodes, we require each pair of subsequent path
nodes to be verified by a set of 2n-many verifier nodes. This process ensures the vertical
consistency of the tiling as well as the presence of 2n-many tiles in every row. The precise
number of verifier nodes is achieved using combinations of n pairs of unary atoms.

To control the occurrence of amalgamation failures, we first introduce a binary symbol
E and two unary symbols L,R. Atoms with these symbols serve no other purpose than to
ensure that almost each conjunct in � is complete, i.e., defines a class of structures that is
preserved by taking unions and hence has the AP. More concretely, the premise of almost
every Horn clause in � has a subformula of the form

L(y1) · R(y2) ·
fi

iœ[k]
E(y1, xi) · E(y2, xi) ·

fi
jœ[k]

E(xi, xj)

making the Horn clause almost complete, with the exception of one potentially missing edge
in the Gaifman graph between y1 and y2. Our intention is to make this missing edge the only
place at which potential faulty one-point amalgamation diagrams can be built (see Figure 1).
The sentence � is defined as �1 · �2, where the two parts are described below.

The first part �1 does not yet explain how our reduction works, but ensures that it
does not fall apart, e.g., due to ill-behaved identifications of variables. For every – œ T ,
the signature · contains an (n + 1)-ary symbol T–. The first n arguments in a T–-atom
serve as binary counters, and the last argument carries a given path node p. Suppose that
the variables 0 and 1 represent the bits 0 and 1, respectively. Then each atomic formula
T–(c1, . . . , cn, p) with c1, . . . , cn œ {0,1} represents the situation in which a tile – is present
in the p-th row and in the

!
1 +

q
kœ[n](ck = 1) · 2n≠k

"
-th column. First, we want to ensure

the horizontal consistency of the tiling. To this end, for every pair (–,—) œ T 2 \ PT
h , we

2 For comparison, see, e.g., Section 4 in [32].
3 In [50], the rectangle tiling problem is called the corridor tiling problem.
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include in �1 a complete Horn sentence without positive atoms ensuring that two horizontally
adjacent positions in the p-th row cannot be tiled with – and —. Here, we encode the
successor relation w.r.t. binary addition using a combination of equalities: (cn+1, . . . , c2n) is
the successor of (c1, . . . , cn) if and only if there exists j œ [n] such that ci = ci+n œ {0,1}
for every i œ [j ≠ 1], cj = 0 and cn+j = 1, and ci = 1 and ci+n = 0 for every i œ [n] \ [j].
This encoding only makes sense if 0 and 1 truly represent the bits 0 and 1, so we introduce
a simple mechanism (in terms of a Horn sentence) for distinguishing between the variables 0
and 1. Next, we want to ensure that every position in the p-th row is occupied by at most
one tile. To this end, for every (–,—) œ T 2 with – ”= —, we include

’p,0,1, c1, . . . , cn
!
T–(c1, . . . , cn, p) · T—(c1, . . . , cn, p) ·

fi
iœ[n]

(ci = 0 ‚ ci = 1) ∆ ‹
"

as a conjunct in �1. Finally, we want to ensure that each verifier node v represents at most
one number from [2n]. For every i œ [n], · contains two unary symbols 0i and 1i which
will be used to encode numbers in binary. We include ’v

! x
iœ[n] 0i(v) · 1i(v) ∆ ‹

"
as the

last conjunct in �1. Now the idea is that the combinations of atomic formulas 0i(v) and
1i(v) at a verifier node v will be compared with the combinations of 0 and 1 in atomic
formulas T–(c1, . . . , cn, p). The Horn sentences in the second part of � will be formulated so
that verifying the presence of all 2n atoms of the form T–(c1, . . . , cn, p1) at a path node p1
using verifier nodes v1, . . . , v2n is the only possible way to progress to a next path node p2.
Consequently, we do not need to add an explicit requirement for rows, represented by path
nodes, to be completely tiled from left to right. For the same reason, we also do not need to
add an explicit requirement for verifier nodes to represent at least one number from [2n].

We now proceed with the sentence �2, which explains how the parsing of a tiling actually
works. The parsing of a tiling starts from a path node p representing a row whose leftmost
position contains a tile that can be present in the bottom left corner of a tiling grid. This
must be confirmed by a verifier node, in which case a 6-ary Qb-atom is derived, representing
the fact that the leftmost column of the p-th row has been checked. To this end, we include
in �2 suitable Horn sentences for every – œ PT

¸ flPT
b . These sentences form the non-complete

part of �; we intentionally leave a missing edge between y1 and y2 in the Gaifman graph to
enable the formation of potential AP-counterexamples. Moreover, the variables y1 and y2
appear in the 1st and the 2nd entry of the derived atom, respectively, and this invariant is
maintained throughout the whole construction of �2.

Using 2n-many verifier nodes and propagation of Qb-atoms, the whole bottom row is
checked for the presence of tiles. Their horizontal consistency already follows from the
conditions imposed on path nodes by �2 and needs not to be checked during this step. To
this end, we include in �2 suitable Horn sentences for every – œ PT

b . After the p-th row has
been checked by a 2n-th verifier node, we mark p with a Q-atom indicating that the parsing
can progress to a successor path node. To this end, we include in �2 suitable Horn sentences
for every – œ PT

b fl PT
r . The successor relation for path nodes is represented by the binary

symbol S, and the certificate of vertical verification for pairs (p1, p2) of successive path nodes
is represented by the 7-ary symbol Qv. For every (–,—) œ PT

v fl (PT
¸ )2, we include in �2

a Horn sentence verifying the vertical consistency of the leftmost positions in the rows p1
and p2 and deriving the first Qv-atom containing p1 and p2, but only if there is a Q-atom
containing p1. Next, for every (–,—) œ PT

v , we include in �2 a Horn sentence verifying the
vertical consistency for the intermediate positions by deriving further Qv-atoms containing
p1 and p2. And finally, for every (–,—) œ PT

v fl (PT
r )2, we include in �2 a Horn sentence

verifying the vertical consistency of the leftmost positions in the rows p1 and p2 and deriving
the first Q-atom containing p2 only. The top row is verified using a 6-ary symbol Qt similarly
as the bottom row; however, the verification of the rightmost position in the top row results
in the derivation of ‹.
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Figure 1 An illustration of an AP-counterexample representing a verification of a valid tiling of
an exponential rectangle with m rows and 2n columns.

Proof of Theorem 6. We first argue that � is equivalent to a particular Horn sentence, to
which we can apply Lemma 9. By construction, the quantifier-free part of each conjunct
in � has the form of an implication where the premise possibly also contains instances of
disjunction, which are not allowed in Horn clauses, but no instances of negation. Therefore,
it can be rewritten as a conjunction of Horn clauses by converting the premise into positive
DNF and then considering each disjunct as a separate premise. As a result, the size of
the sentence increases exponentially, but this does not matter for the purpose of the proof.
Subsequently, all equality atoms can be eliminated by replacing each variable ci with either
0 or 1. We denote the resulting Horn sentence by � and the two parts stemming from �1

and �2 by �1 and �2, respectively.
“∆” Suppose that there exists a tiling f : Rm,2n æ T. Guided by f , we define a one-point

amalgamation diagram B1,B2 œ fm(�) which has no amalgam in fm(�) (see Figure 1).
The domains are Bi := {yi, p1, . . . , pm, v1, . . . , v2n ,0,1} for i œ {1, 2}, and the relations are
given by the following conjunctions of atomic formulas. We require T–(c1, . . . , cn, pj) for
c1, . . . , cn œ {0,1} if and only if f(1 +

q
kœ[n](ck = 1) · 2n≠k, j) = i. Next, we require all

of the L, R, and E-atoms necessary for enabling the Horn clauses in B1 fi B2. Finally,
we require

w
iœ[m≠1]

S(pi, pi+1) to define a successor chain through path nodes, and 0i(vj)
or 1i(vj) if and only if j = 1 +

q
kœ[n] ⁄k · 2n≠k for ⁄1, . . . ,⁄n œ {0, 1} and ⁄i = 0 or

⁄i = 1, respectively. Clearly, the tiling atoms are placed correctly and the verifier nodes
correctly represent values in [2n]. Since RB1 = ÿ and LB2 = ÿ, we have B1,B2 |= �2. Since
f is horizontally consistent, we have B1,B2 |= �1, i.e., B1,B2 œ fm(�). But since f is
also vertically consistent and �2 is a universal Horn sentence, we have C ”|= �2 for every
· -structure C with a homomorphism from B1 fi B2. Hence, fm(�) does not have the AP.

“≈” Suppose that fm(�) does not have the AP. Then there exists a counterexample to
item (3) in Lemma 9, i.e., there exists a Horn clause Â of the form „(x̄)·„1(x̄, y1)·„2(x̄, y2) ∆
‰, where „,„1, and „2 satisfy the prerequisites of item (3) in Lemma 9 and ‰(x̄, y1) is an
atomic · -formula other than equality, such that

� |= ’x̄, y1, y2
!
„ · „1 · „2 ∆ ‰

"
, (1)

� ”|= ’x̄, y1
!
„ · „1 ∆ ‰

"
. (2)

We choose Â minimal with respect to the number of its atomic subformulas. By Theorem 10,
Â has an SLD-deduction from �. Note that, by (2), ‰(x̄, y1) cannot be a subformula of
„(x̄) · „1(x̄, y1). Also, ‰(x̄, y1) cannot be a subformula of „2(x̄, y2) because every atom in
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„2(x̄, y2) contains the variable y2 which does not appear in ‰(x̄, y1). Hence, ‰(x̄, y1) is not a
subformula of „(x̄) · „1(x̄, y1) · „2(x̄, y2), i.e., Â is not a tautology. Consequently, Â is a
weakening of a Horn clause ÂÕ which has an SLD-derivation ÂÕ

0
, . . . ,ÂÕ

s = ÂÕ from �. Recall
that every atom from ÂÕ appears in Â.

B Claim 11. �2 „ ÂÕ.

Proof. We start by showing that ÂÕ
0
is a conjunct of �2. Suppose, on the contrary, that ÂÕ

0

is a conjunct of �1. Then ÂÕ does not contain any positive atom because, by construction,
Horn sentences in �1 do not contain any positive atoms. By construction, in � there is no
Horn clause containing a positive atom that occurs negatively in a Horn clause from �1, i.e.,
it is impossible to take resolvents of ÂÕ

0
and Horn clauses from �. It follows that s = 0. Also,

every Horn clause from �1 is complete. Since there is no edge between y1 and y2 in the
Gaifman graph of Â, and, for i œ {1, 2}, each atom in „i contains the variable yi, either „1 or
„2 must be empty. Since ÂÕ does not contain any positive atom and „(x̄) · „i(x̄, yi) Æ� „(x̄)
for both i œ {1, 2}, we get a contradiction to (2). Thus, ÂÕ

0
must be a conjunct of �2. Since

no Horn clause in �1 contains a positive atom, no Horn clause from �1 can be used as a
resolvent. We conclude that ÂÕ has an SLD-derivation from �2. C

B Claim 12. ÂÕ contains no positive atoms, and no atoms with a symbol from {Qb, Qv, Qt, Q}.

Proof. By the construction of �2, for every i œ [s], if ÂÕ
i≠1

contains variables z1, z2 such that

every atomic subformula with a symbol from {Qb, Qv, Qt, Q}
contains z1 in its 1st and z2 in its 2nd argument, respectively, (3)

then this is also the case for ÂÕ
i, for the same variables z1, z2 up to renaming. Since every

possible choice of ÂÕ
0
from �2 initially satisfies (3), it follows via induction that (3) holds for

ÂÕ = ÂÕ
s for some variables z1, z2. Next, we show that {z1, z2} = {y1, y2} holds for the pair

z1, z2 satisfying (3) for ÂÕ. Suppose, on the contrary, that both z1 and z2 are among x̄, y1 or
x̄, y2. By construction, the only Horn clauses in �2 that are not complete have the property
that the incompleteness is only due to one missing edge in the Gaifman graph between two
distinguished variables satisfying (3). Therefore, for every i œ [s], ÂÕ

i is a resolvent of ÂÕ
i≠1

and a Horn clause from �2 which is almost complete except possibly for one missing edge
in the Gaifman graph between a pair of variables which must be substituted for the pair
(z1, z2) satisfying (3) for ÂÕ

i≠1
. Since the variables y1 and y2 do not appear together in any

atom in ÂÕ and {z1, z2} ”= {y1, y2}, they also do not appear together in any atom during the
SLD-derivation. Then it follows from the fact that „,„1, and „2 satisfy the prerequisites of
item (3) in Lemma 9 that we already have �2 „ ’x̄, y1

!
„ · „1 ∆ ‰

"
, a contradiction to (2).

Since {z1, z2} = {y1, y2} holds for the pair z1, z2 satisfying (3) for ÂÕ, ÂÕ cannot contain any
negative atoms with a symbol from {Qb, Qv, Qt, Q}. Suppose that the conclusion of ÂÕ

0
is not

‹. Then, by construction, ÂÕ contains a positive atom with a symbol from {Qb, Qv, Qt, Q}.
But then, since z1, z2 with {z1, z2} = {y1, y2} satisfy (3) for ÂÕ, the said positive atom in ÂÕ

contains both variables y1 and y2. This leads to a contradiction to (1) where we assume that
the positive atom in Â may may only contain variables from x̄, y1. Thus the conclusion of ÂÕ

0

is ‹, which means that ‰ equals ‹ due to the minimality assumption. C

It remains to show that the existence of such ÂÕ implies the existence of a tiling f : Rm,2n æ
T. By the first and the second claim, the conclusion of ÂÕ

0
is ‹. Since ÂÕ does not contain any

atoms with a symbol from {Qb, Qv, Qt, Q}, the last such atom must have been eliminated
from ÂÕ

s≠1
by taking a resolvent with one of the incomplete Horn clauses in �2. By the
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construction of �2, to obtain ÂÕ through an SLD-derivation ÂÕ
0
, . . . ,ÂÕ

s = ÂÕ from �2, all Horn
clauses introduced in the definition of �2 must have been used in the intended order. Recall
that we have replaced each variable ci in �2 with either 0 or 1 while rewriting �2 as an Horn
sentence. Every Horn clause from �2 has the property that every positive atomic subformula
has a symbol from {Qb, Qv, Qt, Q} and contains all variables that appear in a negative atomic
subformula, with the following two exceptions. First, verifier nodes are not carried over in
any atoms because their only contribution is the encoding of a unique number. Second, after
a pair of successive rows has been checked by deriving a Qv-atom containing a 2n-th verifier
node, the variable representing the lower row is not carried over in any atom because it is
no longer needed. Since „,„1, and „2 satisfy the prerequisites of item (3) in Lemma 9, no
ill-behaved variable identifications might have occurred during the SLD-derivation above as
otherwise, we would have �1 |= ’x̄, y1

!
„ · „1 ∆ ‰

"
, a contradiction to (2). Consequently,

the SLD-derivation must have the full intended length (2n + 1) ·m for some m Ø 1, because
every intermediate stage starts and ends with verifier nodes encoding the numbers 2n and 1,
respectively, and one can only progress in steps which decrement the encoded number by
one. Clearly, the SLD-derivation witnesses the existence of f : Rm,2n æ T. J

Inputs specified by sets of bounds. We continue with the proof of Theorem 7. This time,
we reduce from the complement of the basic rectangle tiling problem. The proof strategy is
similar. In particular, we include in · the two auxiliary unary symbols L,R and the binary
auxiliary symbol E. However, the encoding of the tiles is di�erent. We include in · a symbol
I of arity Álog2 |T | ·nË+1. The first Álog2 |T | ·nË entries serve as binary counters to represent
the pairs (i,–) œ [n] ◊ T in binary, and the last entry carries a path node representing a row
of the tiling grid. Each pair (i,–) œ [n] ◊ T is to be interpreted as the fact that the i-th
column in the row represented by a particular path node contains the tile –. The reason for
this choice of encoding is that we aim to construct a universal sentence � which is equivalent
to a set of forbidden substructures N of size polynomial in |T | · n. To achieve this, we use a
constant number of symbols whose arity is logarithmic in the size of the input.

Suppose that 0 and 1 are two variables representing the bits 0 and 1, respectively. For
each pair (i,–) œ [n]◊T , the ternary formula TILEi,–(0,1, p) is the I-atom whose last entry
contains the variable p and the first Álog2 |T | · nË entries contain the variables 0 and 1 in the
unique way that represents the number i · – in binary when read from left to right. Note
that the number of such formulas is polynomial in the size of the input to the tiling problem.
In contrast to the proof of Theorem 6, it is not necessary to introduce any verifier nodes as
the number of columns in the tiling grid is polynomial in the size of the input. The sentence
� is defined similarly as in the proof of Theorem 6, so we only provide a general overview
and highlight the main di�erences. We want each row to be horizontally consistent. For all
i œ [n ≠ 1] and (–,—) œ T 2 \ PT

h , we include the following sentence as a conjunct in �1:

’p,0,1
!
Â(0,1) · TILEi,–(0,1, p) · TILEi+1,—(0,1, p) ∆ ‹

"
,

where Â(0,1) represents a simple mechanism for distinguishing between 0 and 1. We also
want each position in a given row to be occupied by at most one tile. For all i œ [n],–,— œ T ,
we include the following sentence as a conjunct in �1:

’p,0,1
!
TILEi,–(0,1, p) · TILEi,—(0,1, p) ∆ ‹

"
.

As in the proof of Theorem 7, we do not need to include an explicit condition stating that
each row must be completely tiled from left to right. For the purpose of verifying the validity
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of a tiling, we include in · a 5-ary symbol Q, a (Álog2 |T | · nË + 4)-ary symbol Qv, and two
(Álog2 |T | · nË + 3)-ary symbols Qb, Qt. For each pair (i,–) œ [n] ◊ T , the formulas

BOTi,–(0,1, p, y1, y2), TOPi,–(0,1, p, y1, y2), and VERTi,–(0,1, p1, p2, y1, y2)

are defined analogously to TILEi,–(0,1, p) but using the Qb, Qt and Qv-atoms instead. We
use them to verify the bottom row, top row, and the vertical consistency of a given tiling. In
contrast to TILEi,–, the parameter – is not important in BOTi,–, TOPi,–, and VERTi,–.

We now explain how to convert � into a set of forbidden substructures. Let N be the
class of all · -structures with the domain [i] for some i œ [6] that do not satisfy �. Since �
only uses six variables, we have fm(�) = Forbe(N ). It remains to show that there exists
a polynomial that bounds the size of N . Since there is a constant number of domains of
structures in N and their sizes are also constant, it is enough to show that there exists a
polynomial that bounds the number of structures in N . The only non-constant parameters
in the construction are the four symbols I,Qb, Qt, and Qv whose arity grows logarithmically
with |T | · n. Thus, there exists a constant c such that the number of structures in N is
bounded by c ·

!
2Álog2 |T |·nË"4 Æ c ·(2 · |T | ·n)4. The rest is analogous to the proof of Theorem 6.

4 The Homogenizability Meta-Problem

Every reduct R of a finitely bounded homogeneous structure H is uniquely described by an
SNP sentence, which can be obtained from a universal sentence for age(H) by existentially
quantifying all the surplus predicates upfront. This is (arguably) the most natural represent-
ation for such structures. The homogenizability meta-problem asks whether a given SNP
· -sentence � is logically equivalent to an SNP · -sentence � = ÷Y1, . . . , Ym’ȳ.Â such that
fm(’ȳ.Â) has the AP in the signature · fi {Y1, . . . , Ym}. We are additionally interested in
the refinement of the question where we require the homogeneous structure from Theorem 1
associated to fm(’ȳ.Â) to have the same set of automorphisms as its reduct to the original
signature · . This amounts to asking whether fm(�) is finitely bounded homogenizable.

MMSNP was presented in [30] as a large subclass of SNP which has a dichotomy between
P and NP-completeness if and only if the class of all finite-domain CSPs has one. The latter
has been confirmed, and the dichotomy for MMSNP has received a new universal-algebraic
proof within the programme attacking the Bodirsky-Pinsker conjecture [16]. The new proof
relies on the observation that every MMSNP sentence � is equivalent to a finite disjunction
�1 ‚ · · · ‚ �n of MMSNP sentences such that, for every i œ [n], there exists a reduct Ri

of a finitely bounded homogeneous structure Hi such that fm(�i) = CSP(Ri).4 Moreover,
the structure H can be chosen so that its age has the Ramsey property, which plays an
essential role in an argument in [16] showing that the authors correctly identified all of the
tractable cases. The exact definition of this property is not essential to the present article
and is therefore omitted. GMSNP was first introduced in [41] in its seemingly weaker form
MMSNP2, as a generalization of MMSNP where “monadic” second-order variables may also
range over atomic formulas. It was later shown that relaxing the above requirement for
monotone SNP to guardedness does not result in a more expressive logic [7]. There is a
prospect that GMSNP will also have dichotomy between P and NP-completeness since it
enjoys similar model-theoretic properties as MMSNP [15].

Theorem 13 is the most general version of our undecidability result. It applies not only to
the original formulation of the homogenizability meta-problem, but also to its generalization
to Ê-categorical structures. The second item of the theorem might give the impression that

4 This observation was first made in the the proof of Theorem 7 in [11].
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one cannot e�ectively distinguish between CSPs of reducts of finitely bounded structures
and CSPs of reducts of finitely bounded homogeneous structures. Recall that the former
class does not have a dichotomy [30, 8]. However, as indicated by the formulation of the
second item, all CSPs of reducts of finitely bounded homogeneous structures in the proof
of Theorem 13 are in fact finite-domain CSPs, for which there is a dichotomy. Therefore,
Theorem 13 merely shows that SNP sentences are an exceptionally bad choice of an input to
the question, albeit one that is often used [4, 43].

I Theorem 13. For a given a Datalog sentence � using at most binary relation symbols, it
is undecidable whether:
1. � is logically equivalent to a monadic Datalog sentence,

or � is not even logically equivalent to any GMSNP sentence;
2. � simultaneously satisfies the following three conditions:

fm(�) is the CSP of a finite structure,
fm(�) is a finitely bounded homogenizable class,
fm(�) is the age of a reduct of a finitely bounded homogeneous Ramsey structure,

or fm(�) is not even the CSP or the age of any Ê-categorical structure.

The following corollary extracts the statement originally announced in the introduction.

I Corollary 14. It is undecidable whether a given SNP sentence defines the age of a reduct
of a finitely bounded homogeneous structure. The statement is true even if the SNP sentence
comes from the Datalog fragment and uses at most binary relation symbols.

4.1 A proof of Theorem 13
As usual, the Kleene plus and the Kleene star of a finite set of symbols �, denoted by �+

and �ú, are the sets of all finite words over � of lengths Ø 1 and Ø 0, respectively.
A context-free grammar (CFG) is a 4-tuple G= (N,�, P, S) where N is a finite set of

non-terminal symbols, � is a finite set of terminal symbols, P is a finite set of production
rules of the form A æ w where A œ N and w œ (N fi �)+, S œ N is the start symbol. For
u, v œ (N fi �)+ we write u æG v if there are x, y œ (N fi �)+ and (A æ w) œ P such that
u = xAy and v = xwy. The language of G is L(G) := {w œ �+ | S æú

G w}, where æú
G

denotes the transitive closure of æG. Note that with this definition the empty word ‘ can
never be an element of L(G); some authors use a modified definition that also allows rules
that derive ‘, but for our purposes the di�erence is not essential. A context-free grammar
is called (left-)regular if its production rules are always of the form A æ a or A æ Ba for
non-terminal symbols A,B and a terminal symbol a. For a finite set �, we call a set L ™ �+

regular if it is the language of a regular grammar with terminal symbols �.

I Example 15. Consider the CFG Gwith a single terminal symbol a, non-terminal symbols
S,A,B,C, and production rules S æ a, S æ aa, S æ aaa, S æ Aa, A æ Ba, B æ Ca,
C æ Ca, and C æ a. Clearly, G is not regular. However, L(G) = {a}+ is regular.

Let G= (N,�, P, S) be a CFG. The signature ·� consists of the unary symbols I, T
and the binary symbols Ra for every a œ �, and the signature ·N consists of a binary
symbol Ra for every element a œ N . For a1 . . . an œ �+, we set „a1...an(x1, . . . , xn+1) :=w

iœ[n] Rai(xi, xi+1). Let �G be the universal Horn sentence over the signature ·� fi ·N whose
quantifier-free part contains, for every (A,w) œ P , the Horn clause „w(x1, . . . , x|w|+1) ∆
RA(x1, x|w|+1), and additionally the Horn clause I(x1) · RS(x1, x2) · T (x2) ∆ ‹. Then �G

is the Datalog sentence obtained from �G by existentially quantifying all symbols from ·N
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upfront. This encoding of CFGs into Datalog programs is standard (Exercise 12.26 in [1]),
and the correspondence provided by the next lemma can be shown via a straightforward
induction. For a proof, we refer the reader to [20].

I Lemma 16. For a ·�-structure A, we have A |= �G if and only if, for every w œ L(G),

A |= ’x1, . . . , x|w|+1

!
I(x1) · „w(x1, . . . , x|w|+1) · T (x|w|+1) ∆ ‹

"
.

The following lemma is proved by establishing a connection between the well-known
Myhill-Nerode correspondence and Ê-categoricity, under the addition of several auxiliary
results from [29, 15].

I Lemma 17. Let G be a context-free grammar. Then the following are equivalent:
1. L(G) is regular.
2. �G is equivalent to a monadic Datalog sentence.
3. �G is equivalent to a GMSNP sentence.
4. fm(�G) is the CSP of a finite structure.
5. fm(�G) is the CSP of an Ê-categorical structure.
6. fm(�G) is the age of a reduct of a finitely bounded homogeneous Ramsey structure.
7. fm(�G) is the age of an Ê-categorical structure.
8. fm(�G) is finitely bounded homogenizable.

Proof of Theorem 13. It is well-known that the questions whether L(G) is regular for a
given context-free grammar G is undecidable, see, e.g., Theorem 6.6.6 in [49]. Hence, all
eight equivalent conditions in Lemma 17 are undecidable for G. J

5 Open Questions

We proved the EXPSPACE-hardness of the amalgamation meta-problem. However, our
methods rely heavily on the following three facts. First, symbols of arity > 2 allow us to
simulate a restricted form of Datalog computation within one-point amalgamation diagrams.
Second, Boolean combinations of atoms enable succinct representations of the Datalog rules.
And third, symbols of unbounded arity enable storing exponential amount of information
on a constant number of variables. We do not know how to extend our hardness result
beyond EXPSPACE. In particular, it does not seem to be possible to reduce from any of the
standard undecidable problems, which can be done for the closely related joint embedding
property [22, 20]. Intuitively, the reason is that every representation of a run of a Turing
machine in a finitely bounded class requires some sort of a successor predicate (see, e.g., [31]),
and the successor predicate is never definable in any Ê-categorical structure [8].

Open question: Is the amalgamation meta-problem decidable in EXPSPACE?
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Abstract
The constraint satisfaction problem, parameterized by a relational structure, provides a general
framework for expressing computational decision problems. Already the restriction to the class of
all finite structures forms an interesting microcosm on its own, but to express decision problems in
temporal reasoning one has to take a step beyond the finite-domain realm. An important class of
templates used in this context are temporal structures, i.e., structures over Q whose relations are
first-order definable using the usual countable dense linear order without endpoints.

In the standard setting, which allows only existential quantification over input variables, the
complexity of finite and temporal constraints has been fully classified. In the quantified setting,
i.e., when one also allows universal quantifiers, there is only a handful of partial classification
results and many concrete cases of unknown complexity. This paper presents a significant progress
towards understanding the complexity of the quantified constraint satisfaction problem for temporal
structures. We provide a complexity dichotomy for quantified constraints over the Ord-Horn fragment,
which played an important role in understanding the complexity of constraints both over temporal
structures and in Allen’s interval algebra. We show that all problems under consideration are in P
or coNP-hard. In particular, we determine the complexity of the quantified constraint satisfaction
problem for (Q;x = y ∆ x Ø z), hereby settling a question open for more than ten years.
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1 Introduction

The constraint satisfaction problem (CSP) of a structure B in a finite relational signature
· , denoted by CSP(B), is the problem of deciding whether a given primitive positive · -
sentence holds in B. The class of all finite-domain CSPs, i.e., where B can be chosen
finite, famously constitutes a large fragment of NP that admits a dichotomy between P

and NP-completeness [19]. Quantified constraint satisfaction problems (QCSPs) generalize
CSPs by allowing both existential and universal quantification over input variables. The
complexity of such problems is much less understood already for finite structures, the state
of the art being a complexity classification for QCSPs of finite structures with all unary
relations and three-element structures with all singleton unary relations [21]. For infinite
structures, the investigations essentially follow the CSP programme, which was initiated by
the study of the CSPs of structures over N (or Q) whose relations are definable by Boolean
combinations of equalities and disequalities, the so-called equality structures [6]. The full
complexity classification for quantified equality constraints was completed quite recently [22],
by resolving the long-standing question of determining the complexity of QCSP(Q; D), where

D := {(x, y, z) œ Q3 | x = y ∆ x = z}.

This question was left open in [3], where all the remaining results have been provided. The
next in line are temporal structures, which are structures with domain Q whose relations are
first-order definable over {<}, where < interprets as the usual unbounded dense linear order.
The relations of such structures are called temporal.

By definition, temporal structures form a richer class than equality structures. While
the complexity of temporal CSPs has been classified more than a decade ago [7], there
is only a handful of partial classification results regarding the complexity of temporal
QCSPs [4, 10, 11, 12, 18]. Yet, already from this limited amount of available data it is
apparent that the majority of the pathological cases is concentrated in the Ord-Horn (OH)
fragment, we elaborate on this below. The OH fragment comprises all temporal structures
whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

(x1 ”= y1 ‚ · · · ‚ xk ”= yk ‚ xk+1 Ø yk+1) (1)

for k Ø 0, where the last disjunct is optional and some variables might be identified [2].

1.1 Ord-Horn
OH was first introduced and used by Nebel and Bürckert to describe a maximally tractable
constraint language containing all basic relations on Allen’s interval algebra [16]. For a full
classification of maximally tractable subalgebras of Allen, see [15]. In the context of CSPs
over temporal structures, OH is not even a maximally tractable language as it is properly
contained in two of the nine maximally tractable fragments characterized by the eight binary
operations min, max, mx, dual mx, mi, dual mi, ¸¸, dual ¸¸, and a constant operation [7].
The dual of an operation f on Q is the operation (x1, . . . , xn) ‘æ ≠f(≠x1, . . . ,≠xn), e.g.,
max is the dual of min. The description of maximally tractable languages by operations
is typical for the so-called algebraic approach to constraint satisfaction problems. For the
sake of the reader unfamiliar with this approach, we simply refer to a maximally tractable
temporal language characterized by an operation op as the op fragment and refrain from
defining the operations. For example, we write “the min fragment” or “the max fragment.”
The question which of the nine fragments are also maximal w.r.t. tractability of the QCSP
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was investigated in [4], and answered positively in the first four cases. The answer is negative
in the last three cases [22], and the question remains open for mi and dual mi fragments. In
the intersections of ¸¸, mi and dual mi fragments lie the OH structures (Q;M+) and (Q;M≠),
respectively, where

M+ := {(x, y, z) œ Q3 | x = y ∆ x Ø z} and M≠ := {(x, y, z) œ Q3 | x = y ∆ x Æ z}.

Determining the complexity of QCSP(Q;M+) was posed as an open question in [4]; it could
have been anywhere between PTIME and PSPACE. Note that its counterpart QCSP(Q;M≠)
is essentially the same problem with the order reversed.

Apart from temporal structures preserved by a constant operation, OH captures precisely
those temporal structures whose CSP is solvable by local consistency checking [8]. This
well-known generic preprocessing algorithm can be formulated for any CSP satisfying some
reasonable structural assumptions [5], and thus OH constraints are fairly well understood
from the CSP perspective. However, the analysis of OH constraints in the quantified
setting requires a surprisingly large amount of creativity. As a simple example, already
QCSP(Q;R) for the OH relation R defined by (x1 ”= x2 ‚x3 Ø x4)·„ is in PTIME if „ equals
(x3 Ø x1) · (x1 Ø x3) · (x3 ”= x4) [12], coNP-complete if „ equals (

w
i,jœ{1,2} xi ”= xj+2) [20],

and PSPACE-complete if „ is the empty conjunction [22].
The class of Guarded Ord-Horn (GOH) formulas [12] is defined inductively. In the base

case we are allowed to take OH formulas of the form (x Æ y), (x1 ”= y1 ‚ · · · ‚ xk ”= yk), or
(x ”= x1 ‚ · · ·‚ x ”= xk)‚ (x < y)‚ (y ”= y1 ‚ · · ·‚ y ”= y¸). In the induction step we can form
formulas of the form Â1 · Â2 or (x1 Æ y1 ‚ · · · ‚ xk Æ yk) · (x1 ”= y1 ‚ · · · ‚ xk ”= yk ‚ Â),
where Â,Â1,Â2 are GOH formulas. Thus, newly added disequalities are guarded by atomic
{Æ}-formulas. A GOH structure may only contain temporal relations definable by GOH
formulas. Observe that the tractable template from the previous paragraph is GOH.

I Theorem 1 ([12]). Let B be a GOH structure. Then QCSP(B) is in PTIME.

The tractability result from [12] is conceptually simple and based on pebble games generalizing
local consistency methods. At the same time, all quantified OH constraints outside of GOH
are coNP-hard or admit a LOGSPACE reduction from QCSP(Q;M+).

I Theorem 2 ([18]). Let B be an OH structure. Then one of the following holds.
B is GOH.
QCSP(B) is coNP-hard.
B primitively positively defines M+ or M≠.

There was a prospect that QCSP(Q;M+) would be PSPACE-hard, because the PSPACE-
hardness proof from [22] for QCSP(Q; D), when adjusted appropriately, almost yields a proof
of PSPACE-hardness for this QCSP. In that case, Theorems 1 and 2 would immediately yield
a dichotomy between P and coNP-hardness for quantified OH constraints. However, it turns
out that the situation is more complicated, as we explain below.

1.2 Contributions
On the one hand, we prove tractability for QCSP(Q;M+), and thereby provide a positive
answer to an open question from [4]. This is the main technical contribution of the present
paper, and the proof stretches over the entirety of Section 3.

In a certain sense, the presented algorithm generalizes local consistency methods. We
iteratively expand a given instance � of QCSP(B) by constraints associated to relations
whose arity is bounded by the size of � and which have short primitive positive definitions

ICALP 2024
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in B, until a fixed-point is reached. The condition for the expansion by these constraints is
tested using an oracle for CSP(B, <). The algorithm is thus not very far from the well-known
framework of Datalog with existential rules [1, 9].

I Theorem 3. QCSP(Q;M+) is in PTIME.

Our tractability result naturally extends to the QCSPs of those OH structures which can
be expressed in (Q;M+, ”=) using primitive positive definitions (see Proposition 6). We show
that the set of these structures coincides with the intersection of the OH fragment with the
fifi fragment. Here by fifi 1 we refer to the “projection-projection” operation from [7], which
played an important role in identifying the maximally tractable temporal CSP languages
covered by min, mi and mx. In the present paper, we introduce the fifi fragment using the
syntactic description obtained in [4]. For a definition of the operation fifi, see [7]. The fifi
fragment consists of all temporal relations definable by a conjunction of clauses of the form

(x ”= y1 ‚ · · · ‚ x ”= yk ‚ x Ø z1 ‚ · · · ‚ x Ø z¸) (2)

for k, l Ø 0. The dual fifi fragment is obtained by replacing every instance of Ø in (2) by Æ.

I Corollary 4. QCSP(B) is in PTIME if B is an OH structure in which every relation is
definable by a conjunction of clauses of the form

(x ”= y1 ‚ · · · ‚ x ”= yk ‚ x Ø z) (3)

for k Ø 0 and where the last disjunct (x Ø z) may be omitted. The above condition is satisfied
if and only if B is contained in the intersection of the OH fragment and the fifi fragment.

On the other hand, we confirm that QCSP(Q;M+) indeed walks a very fine line between
tractability and hardness. We show that, if M+ is combined with any OH relation R that
is not contained in the fifi fragment, then the resulting QCSP becomes coNP-hard, even if
QCSP(Q;R) is tractable. Intuitively, either (Q;M+, R) already primitively positively defines
D and we use the PSPACE-hardnees proof from [22] directly, or we replace each constraint
of the form D(x, y, z) in the proof by M+(x, y, z) · M+(z, z, x). The latter, however, is not
entirely conditional, and certain issues arise due to the transitivity of Æ. These issues can be
partially (but not entirely) resolved using constraints associated to

é := {(x1, y1, x2, y2) œ Q4 | (x1 ”= y1 ‚ x2 ”= y2) · (y1 < y2)},

which is quantified primitively positively definable in (Q;M+, R), ultimately leaving us with
a proof of coNP-hardness.

By a careful combination of syntactic pruning arguments, Theorem 2, and a new coNP-
hardness proof inspired by the PSPACE-hardness proof from [22], we prove coNP-hardness in
all cases for which tractability does not follow from Theorem 1, Corollary 4 or its analogue
for dual fifi, i.e., where Ø is replaced with Æ in (3). This leads to the following dichotomy
for quantified OH constraints.

I Theorem 5. Let B be an OH structure. Then QCSP(B) is solvable in polynomial time if
B is GOH, contained in the fifi fragment, or in the dual fifi fragment. Otherwise, QCSP(B)
is coNP-hard.

1 In contrast to previous literature on temporal CSPs, we deviate from the notation pp from [7] that
clashes with the shortcut for “primitive positive” and use fifi instead.
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We believe that the methods used in this paper will also prove useful in identifying the
complexity of quantified temporal constraints outside of OH, e.g., in the case of mi or fifi.
Omitted proofs can be found in the long version of the article available on arXiv [17], where
we also provide more details on the algebraic approach and relevant operations on Q.

2 Preliminaries

2.1 First-order structures
The set {1, . . . , n} is denoted by [n]. In the present paper, we consider structures A =
(A;R1, . . . , Rk) over a finite relational signature · . For the sake of simplicity, we often use
the same symbol R for both the relation RA and the relational symbol R. An expansion of
A is a ‡-structure B with A = B such that · ™ ‡ and RB = RA for each R œ · . We write
(A, R) for the expansion of A by the relation R over A.

We assume that the reader is familiar with classical first-order logic; we allow the first-order
formulas x = y and ‹ (the nullary falsity predicate). Let T be a set of first-order · -sentences
over a common signature · and „,Â · -formulas whose free variables are among x̄. We say
that „ entails Â w.r.t. T if A |= ’x̄(„ ∆ Â) holds for all models A of T . We do not explicitly
mention T if it is clear from the context, e.g., the theory of linear orders. A first-order
· -formula „ is primitive positive (pp) if it is of the form ÷x1, . . . , xm(„1 · · · · · „n), where
each „i is atomic, i.e., of the form ‹, (xi = xj), or R(xi1 , . . . , xi¸) for some R œ · . Quantified
primitive positive (qpp) formulas generalize pp-formulas by allowing both existential and
universal quantification. If „ and Â are (q)pp-formulas, then „ · Â can be rewritten into an
equivalent (q)pp-formula, so we treat such formulas as (q)pp-formulas as well.

The (quantified) constraint satisfaction problem for a structure B, denoted by (Q)CSP(B),
is the computational problem of deciding whether a given (q)pp · -sentence holds in B. By
constraints, we refer to the conjuncts in the quantifier-free part of a given (Q)CSP instance
of (Q)CSP(B). In the QCSP framework, we usually think of an instance as a game between
two players: an existential player (EP) and a universal player (UP) who assign values to the
existentially and universally quantified variables, respectively. To every moment of the game
we associate a partial function J·K from the variables into the domain of the parametrizing
structure describing values assigned to the variables by either of the players. The instance is
true if and only if the EP has a winning strategy in this game, i.e., can respond to all moves
of the UP while keeping all constraints satisfied. Otherwise, the instance is false and the UP
has a winning strategy, i.e., can violate a constraint regardless of the moves of the EP.

If A is a · -structure and „(x1, . . . , xn) is a · -formula with free variables x1, . . . , xn, then
the relation {(a1, . . . , an) œ An | A |= „(a1 . . . , an)} is the relation defined by „ in A, and
denoted by „A. Let S be a set of · -formulas. We say that a relation R has a S-definition in
A, or that A S-defines R, if R equals „A for some „ œ S. For instance, S can be the set of
all quantifier-free or primitive positive formulas over · . We might also say that a relation R
S-defines another relation RÕ if the structure (A;R) S-defines RÕ. The next proposition is
folklore in the constraint satisfaction literature.

I Proposition 6 ([2, 3]). Let A,B be structures with the same domain. If every relation of
B is (q)pp-definable in A, then (Q)CSP(B) reduces to (Q)CSP(A) in LOGSPACE.

2.2 Temporal structures
Since (Q;<) has quantifier-elimination [13], every temporal relation is in fact quantifier-
free-definable in (Q;<). We may further assume that every quantifier-free definition is in
conjunctive normal form (CNF). We might sometimes refer to temporal relations directly
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using their CNF-definitions. Also, it will sometimes be convenient to work with formulas
over the structure (Q;Æ, ”=) instead of the structure (Q;<), e.g., in the definitions of OH or
fifi from the introduction. The following lemma is folklore.

I Lemma 7 ([2]). The OH and the (dual ) fifi fragments are closed under expansions by
pp-definable relations.

From the syntactic descriptions (1) and (2) it is apparent that the fragments OH and
fifi are incomparable. Their intersection consists of all temporal relations definable by a
conjunction of clauses of the form (3). This can be shown using the following lemma.

I Lemma 8. Let R be an OH relation defined by a quantifier-free formula „ in CNF over the
signature {Æ, ”=} containing a clause Â1 ‚ Â2, where Â1 is equivalent to (x Ø z1 ‚ · · ·‚x Ø z¸)
for some variables x and z1, . . . , z¸. Then we may replace Â1 in „ by (x Ø zi) for some
i œ [¸] so that the resulting formula still defines R.

In the present article, the intersection of OH and the (dual ) fifi fragment is the sole source
of all newly identified tractable QCSPs. It is convenient to work with a finite relational basis.
Recall the relations M+ and M≠ from the introduction. By Lemma 8 and Lemma 9 below, a
temporal relation is OH and contained in the fifi fragment if and only if it is pp-definable in
(Q;M+, ”=). An analogous statement holds for dual fifi and (Q;M≠, ”=).

I Lemma 9. The (k + 2)-ary temporal relation defined by (3) has the pp-definition

÷h1, . . . , hk+1

1
(x = h1) ·

! fi
iœ[k]

M+(hi, hi, x) · M+(hi, yi, hi+1)
"

· (hk+1 = z)
2
.

Note that the length of the above pp-definition is linear in k, this will be relevant later in
the proof of Theorem 3.

3 QCSP(Q;M+) is in PTIME

In this section, we prove that QCSP(Q;M+) can be solved in polynomial time using Al-
gorithm 1. In the formulation of the algorithm, we view instances of QCSP(Q;M+) as
sentences over {Ø, ”=} in prenex normal form whose quantifier-free part is in CNF.

We first need to fix some terminology. For the remainder of Section 3, � always denotes
an arbitrary or explicitly specified instance of QCSP(Q;M+), „ its quantifier-free part, and
V the set if its variables. Furthermore, we denote the universal variables by V’ and the
existential variables by V÷. Let ª be the linear order on all variables of � in which they
appear in the quantifier prefix of �. When we write A ª B for A,B ™ V , we mean x ª y for
all x œ A, y œ B. In particular, this condition is trivially true if one of the two sets is empty.

I Definition 10. For x, z œ V, we define
x © z if and only if x, z refer to the same variable,
x ∞ z if and only if x © z or x ª z,
x ∞’ z if and only if x © z, or x ª z and z œ V’.

For u œ V and A ™ V , we define
øu := {y œ V’ | u ∞ y},
øA :=

t
uœA øu (recall that the empty union is empty).

Note that the three binary relations in Definition 10 are transitive.

I Definition 11. For every pair x, z œ V, we define x-z-cut := {u œ V’ | V÷fl{x, z} ª u}\{z}.
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Observe that the definition of the x-z-cut depends on how x and z are quantified. The idea
is that x-z-cut represents the universal variables that the UP can always make equal to x to
trigger the condition (x Ø z) via an entailed constraint of the form

!
(
w

vœA x = v) ∆ x Ø z
"
.

Since the UP has full control over the values of these variables with respect to x and z, they
can be removed from the clauses added in the second last line in Algorithm 1.

Note that, by Lemma 9, the constraints added by Algorithm 1 correspond to relations
which have pp-definitions in (Q;M+) of length linear in their arity. This means that
satisfiability in Algorithm 1 can be tested using an oracle for CSP(Q;M+, <), because we
can simply replace each constraint by its pp-definition in CSP(Q;M+) while only changing
the size of � by a polynomial factor.

Algorithm 1 An algorithm for QCSP(Q;M+).

Input: An instance � of QCSP(Q;M+) with the quantifier-free part „
Output: true or false
while „ changes do

for x, z, u œ V do

if „ contains the clause (x Ø z) or (z Ø x), where x ª z and z œ V’ then

return false;
if „ · (

w
vœøu\{x,z} x = v) · (x < z) is unsatisfiable then

expand „ by the clause
!
(
w

vœøu\({x,z}fix-z-cut) x = v) ∆ x Ø z
"
;

return true;

I Example 12. Consider the instance � of QCSP(Q;M+) defined by

÷x1’x2÷x3’x4÷x5

!
(x1 = x2 ∆ x1 Ø x5) · (x3 = x2 ∆ x3 Ø x4)

· (x5 = x4 ∆ x5 Ø x3) · (x3 Ø x1) · (x5 Ø x1)
"
.

We claim that Algorithm 1 derives (x1 Ø x4), and thereby rejects on �. We first observe that
the formula „ · (

w
vœøu\{x1,x4} x1 = v) · (x1 < x4) is satisfiable for every u œ {x1, . . . , x5}.

Since x3, x5 œ V÷, it is enough to show that „ · (x1 = x2) · (x1 < x4) is satisfiable, which
is witnessed by any assignment satisfying (x5 = x1 = x2 < x3 < x4). On the other hand,
„·(

w
vœøx2\{x1,x3} x1 = v)·(x1 < x3) is not satisfiable. Therefore, the algorithm expands „ by

(x1 = x2 ∆ x1 Ø x3), because x4 œ x1-x3-cut. But now „·(
w

vœøx2\{x1,x4} x1 = v)·(x1 < x4)
is not satisfiable anymore. Since x2 œ x1-x4-cut, the algorithm expands „ by (x1 Ø x4).

As mentioned below Definition 11, Algorithm 1 rejects correctly because all constraints
added during the run of the algorithm are entailed by �, see Lemma 13.

I Lemma 13. Suppose that Algorithm 1 derives from � a constraint Â. Then � is true if
and only if � expanded by Â is true.

Proof. Denote by � and �Õ the sentences obtained from � by replacing „ with „ · Â and
„ · ÂÕ, respectively, where

Â :=
1 fl

vœøu\({x,z}fix-z-cut)
x ”= v

2
‚(x Ø z) and ÂÕ :=

1 fl
vœøu\{x,z}

x ”= v
2

‚(x Ø z).

Since „ · ¬ÂÕ is unsatisfiable, we have that „ entails ÂÕ. It follows that � is true i� �Õ is
true. To complete the proof, we have to show that if �Õ is true, then � is true. We prove
the contraposition and assume that the UP has a winning strategy on �. If the UP wins
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on � by falsifying any clause di�erent from Â, then the very same choices lead the UP to
falsifying the same clause in �Õ. Otherwise, the UP falsifies Â while playing on �. Then
the UP can play in the same way on �Õ when it comes to the variables that occur both in
Â and ÂÕ and set all variables in x-z-cut to the same value as x. Note that this is possible
since either x is universal or x precedes all variables in x-z-cut. It remains to show that ÂÕ

is falsified. Clearly, all {”=}-disjuncts are falsified. Since z is either universal or precedes all
variables in x-z-cut, the disjunct (x Ø z) is falsified as well, because it is falsified in Â. J

Example 14 showcases how a winning strategy of the UP, obtainable implicitly from
Lemma 13, might in fact be uniquely determined.

xkxk�1xk�2· · ·x2x1

{�1, . . . , �k�1 }

{�2, . . . , �k�1 }

{�2, . . . , �k�1 }

{�3, . . . , �k�1 }

{�k�1 }
{�k�2, �k�1 }

{�k�1 }

xk+1 xk+2

x2k�2

x2k�1

Äk

x1

x2

· · ·

xk�1

{�1, . . . , �k�1 }
1

Figure 1 The quantifier-free part of � from Example 14.

I Example 14. Consider the instance � := ÷x1’y1÷x2’y2 · · ·÷xk’yk÷xk+1 . . .÷x2k≠1 „ with
„ described by Figure 1, where an edge from x to z labeled with y stands for M+(x, y, z). An
edge from x to z labeled with some subset A of the universal variables stands for a constraint
of the form

!
(
w

vœA x = v) ∆ x Ø z
"
already derived by Algorithm 1. Using Lemma 9, these

edges can be appropriately replaced with pp-definitions, and thus � is well-defined.
We claim that the UP has the unique winning strategy on � of playing JyiK equal to an

arbitrary number > JxiK if i = k and Jx1K = · · · = JxkK, and equal to min{Jx1K, . . . , JxiK}
otherwise. We start by showing that this is a winning strategy.

Suppose, on the contrary, that there exists an assignment J·K : V æ Q of values to the
variables witnessing that the EP has a counter-strategy to the strategy of the UP from
above. First, consider the case where Jx1K, . . . , JxkK are not all equal. Suppose that JxkK =
min{Jx1K, . . . , JxkK} and let j œ [k] be the largest index such that JxjK > JxkK. Recall that
the algorithm already derived the constraint Â1 :=

!
(
w

vœ{yj+1,...,yk≠1} xk = v) ∆ xk Ø xj

"
on

�. By the strategy of the UP, we have Jyj+1K = · · · = Jyk≠1K = Jxj+1K = JxkK. But then Â1

is clearly not satisfied by J·K, a contradiction. Suppose now that JxkK > min{Jx1K, . . . , JxkK}.
Let j œ [k] be the largest index such that JxjK = min{Jx1K, . . . , JxkK}. Recall that the
algorithm already derived the constraint Â2 :=

!
(
w

vœ{yj ,...,yk≠1} xj = v) ∆ xj Ø xk

"
. By the

strategy of the UP, we have JyjK = · · · = Jyk≠1K = JxjK < JxkK. But then Â2 is clearly not
satisfied by J·K, a contradiction. We conclude that Jx1K = · · · = JxkK. In this case, the UP
played JykK > JxkK. Since J·K is a satisfying assignment, we must have JxkK = Jxk+1K = · · · =
Jx2k≠1K. But then J·K does not satisfy

!
(
w

vœ{y1,...,yk≠1} x2k≠1 = v) ∆ x2k≠1 Ø yk
"
because

JykK > JxkK = Jx2k≠1K = Jy1K = · · · = Jyk≠1K, a contradiction. We conclude that the strategy
of the UP from above is a winning strategy.

The strategy of the UP is unique in the sense that, no matter what values the EP played
for x1, . . . , xi, if the UP deviates from his strategy at yi, then the EP wins by playing
Jxi+1K = · · · = Jx2k≠1K equal to an arbitrary number > max(JxiK, JyiK) if JxiK ”= JyiK and
equal to min{Jx1K, . . . , JxiK} otherwise.
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Table 1 The inference rules of the proof system P. Here I stands for “initialize,” S for “simplify,”
T for “transitivity,” R for “reject,” A for “alternative transitivity,” and C for “constraint”.

§I P(x,x;ÿ) :≠ xœV

§S P(x,z;A\x-z-cut) :≠ P(x,z;A)

§T P(x,z;A) :≠ P(x,y;A)·P(y,z;ÿ)

§R ‹ :≠
;
1. P(x,z;ÿ)
2. xªz and zœV’, or zªx and xœV’

§A P(xi,z;AfiBfi({x1,x2}\{xi})) :≠
;
1. P(x1,y;A)·P(y,x2;ÿ)·P(y,z;B)
2. ({x1,x2}\{xi})™V’ (iœ{1,2})

§C P(xi,z;AfiBfi({x1,x2,x3,x4}\{xi})) :≠

Y
_]

_[

1. P(x1,u;A)·P(u,x2;ÿ)
2. P(x3,v;B)·P(v,x4;ÿ)
3. ({x1,x2,x3,x4}\{xi})™V’ (iœ{1,2,3,4})
4. (u=v∆uØz) or (v=u∆vØz) in „

Finally, we show that the algorithm derives false. In the first run of the main loop, we
get (xi+1 Ø xi) for all i œ {1, . . . , k ≠ 2}. Assuming previously derived constraints, we get
(xk Ø xi) for all i œ {1, . . . , k ≠ 1} (purely by transitivity). Now it is possible to derive
(xi = yi ∆ xi Ø xi+1) for all i œ {1, . . . , k ≠ 1}. In the final step, we get (x1 Ø yk), again,
simply by invoking an oracle for CSP(Q;M+, <), which makes the algorithm reject.

3.1 False instances
The goal of this subsection is to reformulate the condition for rejection by Algorithm 1
within a certain proof system P operating on �, whose rules are given in Table 1 using a
Datalog-style syntax. The proof system syntactically derives predicates of the form P(x, y;A)
with x, y œ V and A ™ V’ (on the left hand side of :≠) from other predicates of this form
derived earlier and the information encoded in � (on the right hand side of :≠).

We shall now provide some intuition behind the formulation of the proof system. The idea
is that an expression P(x, z;A) should capture a constraint

!
(
w

vœA x = v) ∆ x Ø z
"
entailed

by �, where A only consists of universal variables. Assuming the adopted semantics, §T and
§A just describe natural properties of such expressions, and §S and §R witness consequences
of the quantification over the variables. The combination of §I and §C captures precisely
the situations where the UP can indirectly enforce the identification of two (potentially
existential) variables within a constraint in „. In particular, it can be used to introduce
P(u, z; {v}) for conjuncts (u = v ∆ v Ø z) in „ with v universally quantified as follows.
The proof system first derives P(u, u; ÿ) and P(v, v; ÿ) using §I. Then it uses §C to derive
P(u, z; {v}) by identifying x1, x2 with u and x3, x4 with v.

The reader might naturally ask why we cannot obtain a polynomial-time algorithm by just
closing � under the rules of the proof system with a suitable form of fixed-point semantics.
The reason is that, already under the least fixed-point semantics, the proof system might
derive exponentially many expressions of the form P(x, z;A). Such a situation occurs, e.g., in
Example 18 and in the case of the constraint paths in „ as defined in the proof of Lemma 25.

The precise connection between the proof system and Algorithm 1 is captured by
Lemma 15. Note that Lemma 15 in particular implies that Algorithm 1 rejects whenever
the proof system derives ‹. When combined with Lemma 13 and Lemma 19 (proved later
in Section 3.2), we get that this is in fact the only situation in which Algorithm 1 rejects.
Lemma 15 can be proved by a straightforward induction on the length of the derivation
sequences within P.
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I Lemma 15. Suppose that P(x, z;A) is derived by the proof system and z /œ A. Then
Algorithm 1 expands „ by the clause

1! fi
vœøA\({x,z}fix-z-cut)

x = v
"

∆ x Ø z
2
.

In particular, it expands „ by the clause (x Ø z) for every derived P(x, z; ÿ).

In the proof of Lemma 15, we use the following simple observation.

B Claim 16. For every pair (x, z) œ V 2, and every A ™ V’, there exists u œ V such that
A ™ øu and øA \ ({x, z} fi x-z-cut) = øu \ ({x, z} fi x-z-cut).

Proof. It is easy to see that if A ”= ÿ, then we may choose u to be the variable in A that
satisfies u ∞ y for all y œ A.

If A = ÿ, then we choose u as the last variable in the quantifier-prefix of �. Indeed, if u
is existential, then we are done. Otherwise, u is universal. If u œ {x, z}, then this variable is
removed from øA and we are done. If u /œ {x, z}, then u œ x-z-cut. This completes the proof
of the observation. C

Proof sketch (Lemma 15). We assume that „ is expanded by all derived clauses from the
run of Algorithm 1, and show that

!
(
w

vœøA\({x,z}fix-z-cut) x = v) ∆ x Ø z
"
is among these

clauses.
We prove the lemma by induction on the length of the derivation of P(x, z;A). Observe

that it is enough to show that, if P(x, z;A) is derived, where z /œ A, then „ · (
w

vœA x =
v) · (x < z) is not satisfiable. Then indeed, by Claim 16, we may choose u œ V such
that A ™ øu and øA \ ({x, z} fi x-z-cut) = øu \ ({x, z} fi x-z-cut). Since z /œ A and
(x = x) is always satisfied, if „ · (

w
vœA x = v) · (x < z) is not satisfiable, then neither is

„ · (
w

vœøu\{x,z} x = v) · (x < z), and therefore the algorithm expands „ by the desired
clause. The rest of the proof consists of a straightforward verification of the base case for §I
and the induction step for the remaining rules of P. J

We conclude this subsection with two examples, the first one showcasing how the run of
Algorithm 1 can be represented within the proof system, and the second one demonstrating
that, in general, the proof system cannot be used to verify true instances in polynomial time.

I Example 17. Consider the instance � from Example 12. We show that the proof system
derives ‹. First, we can derive P(xi, xi; ÿ) for every i œ [5] using §I. With §C (and suitable
identifications of variables), we get P(x3, x1; ÿ),P(x5, x1; ÿ), P(x1, x5; {x2}), P(x3, x4; {x2}),
and P(x5, x3; {x4}). Next, a single application of §A yields P(x1, x3; {x2, x4}). We can use
§S to simplify the latter to P(x1, x3; {x2}). Using §A again, we get P(x1, x4; {x2}), and
finally, §S simplifies the latter to P(x1, x4; ÿ). Now an application of §R yields ‹.

G1

G2
· · · G=�1

G= ~n

~0
1

~1
1

~0
2

~1
2

~0
n�2

~1
n�2 ~0

n�1
~1
n�1 G1

1

Figure 2 The quantifier-free part of � from Example 18.



J. Rydval, é. Semaniöinová, and M. Wrona 151:11

I Example 18. Consider � := ÷x1’y0
1
’y1

1
÷x2’y0

2
’y1

2
· · ·÷xn≠1’y0n≠1

’y1n≠1
÷xn’yn „ with „

described by Figure 2, where an edge from x to z labeled with y stands for M+(x, y, z). Note
that the proof system derives P(x1, xn; {yi11 , . . . , yin≠1

n≠1
}) for all i1, . . . , in≠1 œ {0, 1}. Indeed,

this is because it can follow the shortest derivation sequences, of which there are exponentially
many. In contrast, Algorithm 1 derives the constraints (xn≠1 Ø x1), . . . , (x2 Ø x1), (x1 Ø yn)
in this order, which leads to rejection. Interestingly enough, constraint paths as in Figure 2
were previously used in [22] to prove PSPACE-hardness of QCSP(Q; D).

3.2 True instances
In this subsection we prove Lemma 19, which states that the refutation condition §R from
Table 1 is not only su�cient, but also necessary.

I Lemma 19. If the proof system does not derive ‹ from �, then � is true.

Proof. Suppose that the proof system cannot derive ‹ from �. Consider the following
strategy for the EP. Let x œ V÷ be such that JxK is not yet defined, but JzK is defined for
every z ª x. Then the EP selects any value for x such that, for every z ª x:

JxK Ø JzK if and only if there exists y ª x with JyK Ø JzK and P(x, y; ÿ);
JxK = JzK if and only if there exist y1, y2 ª x and y2 ª A ª x such that

P(x, y1; ÿ) · P(y2, x;A) and JzK = Jy1K = Jy2K = JAK.

We remark that some naïve simplifications of the above strategy fail already on small
instances. For example, it is not enough for the EP to set JxK Ø JzK if and only if P(x, z; ÿ).
To see this, consider � = ÷y’z÷xM+(x, x, y). If the UP sets JzK = JyK, then the EP has to
respect (x Ø z) even though P(x, z; ÿ) is not derived.

B Claim 20. The strategy of the EP is well-defined.

Proof. Suppose, on the contrary, that it is not. Let x œ V÷ be the smallest variable w.r.t. ª
for which the strategy of the EP is not well-defined. Then it must be the case that there
exist y, y1, y2 ª x and y2 ª A ª x such that

P(x, y; ÿ) · P(x, y1; ÿ) · P(y2, x;A) and JyK > Jy1K = Jy2K = JAK. (4)

In particular, y ”œ A. We choose the smallest possible y w.r.t. ª witnessing a condition of
the form (4). By §T, we have P(y2, y;A).
Case 1: y ª y2. Then, by §S, we have P(y2, y; ÿ).
Case 1.1: y2 œ V’. Then ‹ can be derived using §R, a contradiction.
Case 1.2: y2 œ V÷. Then the EP did not follow his strategy because JyK > Jy2K and we

have P(y2, y; ÿ), a contradiction.
Case 2: y2 ª y.
Case 2.1: y œ V’. Then, by §S, we have P(y2, y; ÿ). But then ‹ can be derived using §R,

a contradiction.
Case 2.2: y œ V÷. Then, by §S, we have P(y2, y;A \ y2-y-cut). Since JyK Ø Jy2K, by the

strategy of the EP, there exists a variable yÕ ª y such that JyÕK Ø Jy2K and P(y, yÕ; ÿ).
If JyÕK = Jy2K, then the EP did not follow his strategy, because he played JyK > JyÕK
while yÕ ª y, y2 ª A \ y2-y-cut ª y, P(y, yÕ; ÿ) · P(y2, y;A \ y2-y-cut), and JyÕK = Jy2K =
JA \ y2-y-cutK. a contradiction. So it must be the case that JyÕK > Jy2K. By §T, we have
P(y2, yÕ;A). But now yÕ can assume the role of y in (4), a contradiction to the minimality
of y w.r.t. ª. C
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The next claim characterizes the equality of values for pairs of variables under J·K in terms of
properties of previously quantified variables, assuming that the EP has followed the strategy
above. In particular, we show that if JxK = JzK if and only if there exists a variable y ∞ {x, z}
so that JxK = JyK and JyK = JzK are enforced by the identifications of values of universal
variables with y by the UP. Recall the comparison relations ∞ and ∞’ from Definition 10.

B Claim 21. Suppose that the EP follows the strategy above. Then, for all x, z œ V, we
have JxK = JzK if and only if there exist x1, x2, z1, z2 œ V and Ax2,x, Az2,z ™ V’ such that
1. {x1, x2} ∞ x and {z1, z2} ∞ z
2. x2 ª Ax2,x ∞ x and z2 ª Az2,z ∞ z,
3. y ∞’ {x1, x2, z1, z2} for some y œ {x2, z2},
4. P(x2, x;Ax2,x) · P(x, x1; ÿ) · P(z2, z;Az2,z) · P(z, z1; ÿ),
5. JAx2,xK = Jx1K = Jx2K = Jz1K = Jz2K = JAz2,zK.
Whenever the right-hand side of the equivalence holds, we also have JxK = Jx2K and JzK = Jz2K.

Proof sketch (Claim 21). “≈” We show that JxK = Jx2K and JzK = Jz2K. If x © x2, then
clearly JxK = Jx2K. So, w.l.o.g., x2 ª x. If x œ V’, then §S yields P(x2, x; ÿ) and hence §R
produces ‹, a contradiction. So we must have x œ V÷. Then either x1 © x or x1 ª x, and it
follows from the strategy of the EP that JxK = Jx2K. Analogously we obtain that JzK = Jz2K.
The rest follows by the transitivity of the equality.

“∆” Whenever the right-hand side of the equivalence in Claim 21 is satisfied, we call
(x, x1, x2;Ax2,x) and (z, z1, z2;Az2,z) witnessing quadruples for JxK = JzK. If x © z, then the
statement trivially follows using §I, the witnessing quadruples are (x, x, x; ÿ) and (z, z, z; ÿ).
So, w.l.o.g., z ª x. If x œ V’, then the claim follows using §I, the witnessing quadruples
are again (x, x, x; ÿ) and (z, z, z; ÿ). So suppose that x œ V÷ and that the claim holds for
all pairs of variables preceding x. Since JxK = JzK, by the strategy of the EP, there exist
x1, x2 ª x and x2 ª A ª x such that P(x, x1; ÿ) · P(x2, x;A) and JzK = Jx1K = Jx2K = JAK.

Since Jx2K = JzK and x2, z ª x, we can apply the induction hypothesis for the pair x2, z to
obtain the witnessing quadruples (x2, x21 , x22 ;Ax22 ,x2) and (z, z1, z2;Az2,z). By assumption,
there exists y œ {z2, x22} such that y ∞’ {z1, z2, x21 , x22}. Note that JyK = Jx1K. Thus, we
can apply the induction hypothesis for the pair x1, y to obtain the witnessing quadruples
(x1, x11 , x12 ;Ax12 ,x1) and (y, y1, y2;Ay2,y). By assumption, there exists yÕ œ {y2, x12} such
that yÕ ∞’ {y1, y2, x11 , x12}. The two cases y © z2 and y © x22 are illustrated in Figure 3.

zz

z1 z2
Ä

Az2 ,zAz2 ,z;;
x

x1 x2

AA;;

x11 x12

Ax12 ,x1Ax12 ,x1;;

x21 x22

Ax22 ,x2Ax22 ,x2;;

�1 �2

A�2 ,�A�2 ,�;;

1

z

z1 z2

Az2 ,zAz2 ,z;;
x

x1 x2

AA;;

x11 x12

Ax12 ,x1Ax12 ,x1;;

x21 x22
Ä

Ax22 ,x2Ax22 ,x2;;

�1 �2

A�2 ,�A�2 ,�;;

1

Figure 3 Cases y © z2 and y © x22 in the proof of Claim 21. The squiggly arrows represent
inferences of P.

Our goal is to find witnesses xÕ
1
, xÕ

2
, zÕ

1
, zÕ

2
for the main statement of the claim, i.e., the

witnessing quadruples will be of the form (x, xÕ
1
, xÕ

2
;AxÕ

2,x
) and (z, zÕ

1
, zÕ

2
;AzÕ

2,z
). The idea is

that we want to choose xÕ
1
, xÕ

2
, zÕ

1
, zÕ

2
from the variables introduced above, which all evaluate
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to the value JxK = JzK in J·K. To obtain the property in item 3, we want to choose variables
that are small enough with respect to the order ª, so that one of them can be compared to
the others with respect to ∞’, assuming the properties of y and yÕ from above.

One suitable choice of witnesses is as follows. First, we choose xÕ
1
:= x11 . As visible in

Figure 3, we can apply §T to P(x, x1; ÿ) · P(x1, x11 ; ÿ) to derive P(x, x11 ; ÿ). Second, we
choose zÕ

1
:= z1 if y ”© z1 and zÕ

1
:= y1 otherwise. Note that we have P(z, z1; ÿ) by assumption

and, if y © z1, then we can use §T to derive P(z, y1; ÿ) from P(z, z1; ÿ) · P(y, y1; ÿ). Next,
we choose xÕ

2
:= x22 if y ”© x22 , and xÕ

2
:= y2 otherwise. A short argument shows that

x22 ∞’ x21 , which allows us to apply §A to P(x22 , x2;Ax22 ,x2) · P(x2, x21 ; ÿ) · P(x2, x;A)
to obtain an expression of the form P(x22 , x;Ax22 ,x

). If y © x22 , then it is necessary to apply
§A a second time to obtain the expression of the form P(y2, x;Ay2,x). Finally, the choice for
zÕ
2
that we need will be zÕ

2
:= z2 if y ”© z2 or zÕ

2
:= y2 otherwise.

With the above witnessing quadruples, one can verify that items 1, 2, 4, and 5 will be
satisfied. Thanks to choosing “small enough candidates” with respect to ª for each of xÕ

1
,

xÕ
2
, zÕ

1
, zÕ

2
, item 3 can be verified as well. A full proof of Claim 21 with a verification of these

properties can be found in Appendix A. C

B Claim 22. The strategy of the EP is a winning strategy.

Proof. Suppose, on the contrary, that this is not the case. Then there has to be a violated
constraint of the form (x = z ∆ x Ø w), i.e., JxK = JzK < JwK. Since JxK = JzK, by Claim 21,
there exist x1, x2, z1, z2 œ V and Ax2,x, Az2,z ™ V’ such that

{x1, x2} ∞ x and {z1, z2} ∞ z

x2 ª Ax2,x ∞ x and z2 ª Az2,z ∞ z,
y ∞’ {x1, x2, z1, z2} for some y œ {x2, z2},
P(x2, x;Ax2,x) · P(x, x1; ÿ) · P(z2, z;Az2,z) · P(z, z1; ÿ),
JAx2,xK = Jx1K = Jx2K = Jz1K = Jz2K = JAz2,zK.

Moreover, we have JxK = JyK = JzK. Let A := Ax2,x fi Az2,z fi ({x1, x2, z1, z2} \ {y}). By a
single application of §C, we get P(y, w;A). Since JzK < JwK, clearly w is di�erent from all
variables which share the value with z. We choose the smallest possible w w.r.t. ª for which
P(y, w;A) can be derived and such that JzK < JwK. Since JwK ”= JzK, we have w /œ A. Now
we consider the following cases.
Case 1: w ª y. By §S, we have P(y, w; ÿ).
Case 1.1: y œ V’. In this case ‹ can be derived using §R, a contradiction.
Case 1.2: y œ V÷. Then the EP was supposed to set JyK Ø JwK, however, we have JyK < JwK.

Hence, the EP did not follow his strategy, a contradiction.
Case 2: y ª w.
Case 2.1: w œ V’. By §S, we get P(y, w; ÿ). But then ‹ can be derived using §R, a

contradiction.
Case 2.2: w œ V÷. Since JwK > JyK, by the strategy of the EP, there must exist wÕ ª w

with JwÕK Ø JyK such that P(w,wÕ; ÿ). By §S, we have P(y, w;A \ y-w-cut). If JwÕK = JyK,
then the EP did not follow his strategy because he played JwK > JwÕK while y, wÕ ª w and
y ª A \ y-w-cut ª w, JwÕK = JyK = JA \ y-w-cutK, and P(y, w;A \ y-w-cut) · P(w,wÕ; ÿ),
a contradiction. So it must be the case that JwÕK > JyK. By an application of §T to
P(y, w;A) · P(w,wÕ; ÿ), we have P(y, wÕ;A). But note that now wÕ can assume the role
of w, a contradiction to the minimality of w w.r.t. ª. C

This concludes the proof of Lemma 19. J
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3.3 Putting everything together
Proof (Theorem 3). We show that Algorithm 1 solves QCSP(Q;M+) in polynomial time.
Observe that Algorithm 1 runs in polynomial time with respect to the length of �. Indeed,
it expands � by at most V 3-many constraints, all of which have pp-definitions in (Q;M+, <)
of linear length due to Lemma 9, and CSP(Q;M+, <) is solvable in polynomial time [8].
Note that, if � contains a clause (x Ø z) or (z Ø x) such that x ª z and z œ V’, then � is
false. Therefore, by Lemma 13, � is false whenever the algorithm rejects. Suppose that the
algorithm accepts an instance �. By Lemma 15, ‹ cannot be derived from � using the proof
system and hence, by Lemma 19, � is true. This completes the proof. J

4 The Complexity Dichotomy

This section is devoted to the proof of Theorem 5. We start by explaining how coNP-hardness
is obtained in the cases that are not covered by Theorem 1, Corollary 4, or its analogue for
dual fifi. Recall Theorem 2 that can be used as a black box.

First, we use a syntactical argument to reduce the arity of the relations that need to
considered to 4.

I Lemma 23. Let B be an OH structure that is not contained in the fifi fragment. Then B
pp-defines a relation of arity at most 4 that is not contained in the fifi fragment.

Second, we perform an “educated brute-force” search through all relations of arity at
most 4 that are not contained in the fifi fragment in order to classify them. Recall the
relations D and é defined in the introduction.

I Lemma 24. Let B be an OH structure that is not contained in the fifi fragment. Then B
pp-defines D or (B;M+) qpp-defines é.

Third, we show coNP-hardness of the QCSP for said relations combined with M+.

I Lemma 25. Let B be an OH structure that is not contained in the fifi fragment and
pp-defines M+. Then QCSP(B) is coNP-hard.

The proof of Lemma 25 below relies almost entirely on constraint paths built using M+. In
Figure 4, edges relate to constraints over M+, e.g. the two leftmost arrows in the lower chain
represent M+(f, yi

1
, z)·M+(z, z, f) for i œ {1, 2} where z corresponds to an unlabelled vertex.

These constraint paths are used to generate exponentially many incomparable expressions
within the proof system P , but M+ itself has no mechanism for turning them into a working
gadget. This is why such constraint paths can be handled by Algorithm 1. The situation
changes already when we add a single constraint associated to the relation é.
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Figure 4 A gadget for the proof of Lemma 25.
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Proof (Lemma 25). In the case where B pp-defines D, we have that QCSP(B) is PSPACE-
hard by Corollary 6 in [22] and Proposition 6. So suppose that B does not pp-define D. By
Lemma 24, we have that B qpp-defines é.

We reduce from the complement of the satisfiability problem for propositional 3-CNF.
Consider an arbitrary propositional 3-CNF formula Â, i.e., a conjunction of clauses of the
form ¸i ‚ ¸Õ

i ‚ ¸ÕÕ
i for i œ [m], where ¸i, ¸Õ

i, ¸
ÕÕ
i are potentially negated propositional variables

from {x1, . . . , xn}. We set � := ÷t÷f’y0
1
’y1

1
. . .’y0n’y1n÷ . . .÷u÷v „ · é(v, f, u, t), where ÷ . . .

are additional unlabelled existentially quantified variables, and „ is defined as in Figure 4.
Here y(xi) := y1i , y(¬xi) := y0i , a directed edge from x to z labeled with y stands for
M+(x, y, z) · M+(z, z, x),2 and unlabelled dots correspond to unlabelled existential variables.

“∆” Suppose that Â is not satisfiable. We show that the EP has a winning strategy on �.
First, the EP chooses JfK < JtK. If there exists i œ [n], such that the UP chose Jy0i K ”= JfK
and Jy1i K ”= JfK, then the EP chooses the values for the remaining existential variables as
follows: equal JfK if they appear in the lower chain in Figure 4 before y0i and y1i , and equal
JtK otherwise. Since JfK < JtK, this choice satisfies „ · (v ”= f). We may therefore assume
that JfK œ {Jy0i K, Jy1i K} for every i œ [n].

We claim that there exists j œ [m] such that JtK /œ {Jy(¸j)K, Jy(¸Õ
j)K, Jy(¸ÕÕ

j )K}. Suppose,
on the contrary, that this is not the case. Let J·KÕ be any map from {x1, . . . , xn} to {0, 1}
such that, for every i œ [n], JxiKÕ = 0 if Jy0i K = t and JxiKÕ = 1 if Jy1i K = t. Recall that
JfK œ {Jy0i K, Jy1i K} for every i œ [n] and thus J·KÕ is well-defined. Observe that J·KÕ is a
satisfying assignment to Â, contradicting our assumption. Hence the claim holds.

The EP can choose the values for the remaining existential variables as follows: equal JtK
if they appear in the upper chain in Figure 4 before the j-th column, equal to an arbitrary
number q > JtK if they appear in the upper chain after the j-th column, and equal JfK
otherwise. Such assignment satisfies „ · (t ”= u).

“≈” Suppose that there exists a satisfying assignment J·KÕ to Â. We show that then the
UP has a winning strategy on �. If the EP chooses JfK Ø JtK, the UP wins on �, suppose
therefore that JfK < JtK. If JxiKÕ = 0, the UP plays Jy0i K = t and Jy1i K = f , and if JxiKÕ = 1,
the UP plays Jy0i K = f and Jy1i K = t. It follows from the lower chain in Figure 4 that the EP
loses unless JvK = JfK. Moreover, since J·KÕ is a satisfying assignment to Â, it follows from
the upper chain that the EP loses unless JuK = JtK. But then J·K violates (v ”= f ‚ u ”= t) and
the UP wins again. J

We are now ready to prove Theorem 5. As an intermediate step, we prove Corollary 4,
which extends the tractability result for M+ to the whole fifi fragment.

Proof (Corollary 4). By Lemma 9, every relation definable by a clause of the form (3) is
pp-definable in (Q;M+). For clauses of the form (3) where the last disjunct (x Ø z) is
not present, we may use the pp-definition from Lemma 9 and universally quantify over z,
which yields a qpp-definition. Hence, if B is as in Corollary 4, then every relation of B is
qpp-definable in (Q;M+). In this case, QCSP(B) reduces in LOGSPACE to QCSP(Q;M+)
due to Proposition 6 and, by Theorem 3, is in PTIME.

For the second part, note that the forward direction immediately follows from the definition
of the OH and fifi fragment, since the syntactic form in (3) is a special case of both (2) and
(1). For the backward direction, suppose that B is an OH structure contained in the fifi
fragment. Then every relation has a CNF-definition „ over {”=,Ø} where each conjunct is
of the form (2) for k, ¸ Ø 0. By Lemma 8, we can choose „ so that every conjunct is of the
form (3), possibly with the last disjunct omitted. J

2 Note the di�erence from the previous interpretation of labeled directed edges, e.g., in Examples 14
and 18. The current interpretation entails D(x, y, z).
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Proof (Theorem 5). If B is GOH, then QCSP(B) is in PTIME by Theorem 3. If B is
contained in the fifi fragment, then QCSP(B) is in PTIME by Corollary 4. If B is contained
in the dual fifi fragment, then we reach the same conclusion as in the previous case using the
dual version of Corollary 4, which can be obtained by reversing the order in each individual
statement used in its proof. Finally, suppose that B is not GOH, and also not contained in
the fifi or dual fifi fragment. Then it either follows directly from Theorem 2 that QCSP(B)
is coNP-hard, in which case we are done, or B pp-defines M+ or M≠. If B pp-defines M+,
then QCSP(B) is coNP-hard by Lemma 25, because B is not contained in the fifi fragment.
Otherwise B pp-defines M≠. Then we reach the same conclusion as in the previous case
using the dual version of Lemma 25, which can again be obtained by reversing the order. J

5 The Meta-Problem

For a classification as the one in Theorem 5, one is often interested in the complexity of the
following meta-problem: “Does a given structure satisfy the condition for tractability provided
by the classification?” In the present section, we give a nondeterministic single-exponential
upper bound on the complexity of this meta-problem for Theorem 5.

I Theorem 26. The question whether QCSP(B) is tractable for a given OH structure B is
decidable in NEXPTIME.

The most natural way to finitely represent a temporal relation R of arity k is by the set of
all weak linear orderings on k variables that are witnessed by the tuples in R. Since the
first-order theory of (Q;<) has quantifier-elimination [13], every temporal relation has such a
representation. To see this, note that the atomic formula R(x1, . . . , xk) has a quantifier-free
definition Â over {<}, then it is enough to list all weak linear orderings that are compatible
with Â. For instance, the temporal relation defined by (x1 ”= x2‚x1 < x3)·(x1 Æ x2)·(x2 Æ
x3) admits the following three weak linear orderings:

(x1 = x2 < x3), (x1 < x2 < x3), and (x1 < x2 = x3).

Proof (Theorem 26). For every relation R of B, let „R be the first-order formula over {<}
defining R that is provided as an input to the meta-problem. Let ÂR be the disjunction
of all k-ary formulas specifying a weak linear order compatible with R. We claim that ÂR

can be computed from „R in exponential time. Indeed, to test whether a k-ary formula
◊ specifying a weak linear ordering is compatible with R, we must only test whether
(Q;<) |= ’x̄

!
◊(x̄) ∆ „R(x̄)

"
. This can be done in PSPACE (Theorem 21.2 in [14]). Clearly,

ÂR defines R. Now, to test whether R is contained in the (dual ) fifi fragment, we simply
guess a conjunction „ of clauses of the form (2) that defines R. Note that „ might be of
size exponential in the size of the input. To verify whether „ defines R, we test whether
(Q;<) |= ’x̄

!
„(x̄) … ÂR(x̄))

"
. This can be done in NEXPTIME because the satisfiability

of quantifier-free formulas over (Q;<), such as ¬(„(x̄) … ÂR(x̄)), can be decided in NP.
Whether R is contained in the GOH fragment can be tested similarly. J

6 Open Questions

For quantified OH constraints, we leave the following question open:

Question 1: Do OH QCSPs exhibit a dichotomy between coNP and PSPACE-hardness?

We also ask the following questions regarding open cases outside of OH:



J. Rydval, é. Semaniöinová, and M. Wrona 151:17

Question 2: Is QCSP(B) in P whenever B is a temporal structure contained in the mi
fragment [7]? It is enough to consider QCSP(Q;x ”= y ‚ x Ø z ‚ x > w) [2].

Question 3: Is QCSP(B) in NP whenever B is a temporal structure contained in the fifi
fragment? It is enough to consider QCSP(Q;x ”= y ‚ x Ø z1 ‚ x Ø z2) [2].
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A A Full Proof of Claim 21

B Claim 21. Suppose that the EP follows the strategy above. Then, for all x, z œ V, we
have JxK = JzK if and only if there exist x1, x2, z1, z2 œ V and Ax2,x, Az2,z ™ V’ such that
1. {x1, x2} ∞ x and {z1, z2} ∞ z

2. x2 ª Ax2,x ∞ x and z2 ª Az2,z ∞ z,
3. y ∞’ {x1, x2, z1, z2} for some y œ {x2, z2},
4. P(x2, x;Ax2,x) · P(x, x1; ÿ) · P(z2, z;Az2,z) · P(z, z1; ÿ),
5. JAx2,xK = Jx1K = Jx2K = Jz1K = Jz2K = JAz2,zK.
Whenever the right-hand side of the equivalence holds, we also have JxK = Jx2K and JzK = Jz2K.

Proof. “≈” We show that JxK = Jx2K and JzK = Jz2K. If x © x2, then clearly JxK = Jx2K.
So, w.l.o.g., x2 ª x. If x œ V’, then §S yields P(x2, x; ÿ) and hence §R produces ‹, a
contradiction. So we must have x œ V÷. Then either x1 © x or x1 ª x, and it follows from
the strategy of the EP that JxK = Jx2K. Analogously we obtain that JzK = Jz2K. The rest
follows by the transitivity of the equality.

“∆” Whenever the right-hand side of the equivalence in Claim 21 is satisfied, we call
(x, x1, x2;Ax2,x) and (z, z1, z2;Az2,z) witnessing quadruples for JxK = JzK. If x © z, then the
statement trivially follows using §I, the witnessing quadruples are (x, x, x; ÿ) and (z, z, z; ÿ).
So, w.l.o.g., z ª x. If x œ V’, then the claim follows using §I, the witnessing quadruples
are again (x, x, x; ÿ) and (z, z, z; ÿ). So suppose that x œ V÷ and that the claim holds for
all pairs of variables preceding x. Since JxK = JzK, by the strategy of the EP, there exist
x1, x2 ª x and x2 ª A ª x such that P(x, x1; ÿ) · P(x2, x;A) and JzK = Jx1K = Jx2K = JAK.

Since Jx2K = JzK and x2, z ª x, we can apply the induction hypothesis for the pair x2, z to
obtain the witnessing quadruples (x2, x21 , x22 ;Ax22 ,x2) and (z, z1, z2;Az2,z). By assumption,
there exists y œ {z2, x22} such that y ∞’ {z1, z2, x21 , x22}. Note that JyK = Jx1K. Thus, we
can apply the induction hypothesis for the pair x1, y to obtain the witnessing quadruples

https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.48550/arXiv.2402.09187
https://doi.org/10.48550/arXiv.2402.09187
https://doi.org/10.1007/978-3-662-44522-8_45
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3563820
https://doi.org/10.1137/1.9781611977554.ch103
https://doi.org/10.1137/1.9781611977554.ch103


J. Rydval, é. Semaniöinová, and M. Wrona 151:19

(x1, x11 , x12 ;Ax12 ,x1) and (y, y1, y2;Ay2,y). By assumption, there exists yÕ œ {y2, x12} such
that yÕ ∞’ {y1, y2, x11 , x12}. The two cases w.r.t. the variable y that can occur are illustrated
in Figure 3, see Case 1 and Case 2 below.

Our goal is to find witnesses xÕ
1
, xÕ

2
, zÕ

1
, zÕ

2
for the main statement of the claim, i.e., the

witnessing quadruples will be of the form (x, xÕ
1
, xÕ

2
;AxÕ

2,x
) and (z, zÕ

1
, zÕ

2
;AzÕ

2,z
). For the sake

of brevity, we will not explicitly write down the precise definitions of AxÕ
2,x

and AzÕ
2,z

as they
will be clear from the context. We set xÕ

1
:= x11 , and:

zÕ
1
:=

I
y1 if y © z1,

z1 otherwise,
zÕ
2
:=

I
y2 if y © z2,

z2 otherwise,
xÕ
2
:=

I
y2 if y © x22 ,

x22 otherwise.

By the induction hypothesis and the transitivity of ª, xÕ
1
, xÕ

2
, zÕ

1
, zÕ

2
clearly satisfy item 1.

It will also be clear that our implicit choice of AxÕ
2,x

and AzÕ
2,z

leads to satisfaction of item 5.
The remaining three items are proved in the case distinction below. In both Cases 1 and 2,
we initially start proving items 2 and 4, and then proceed with item 3 in the finer subdivision
into Cases 1.1, 1.2, 2.1, and 2.2. For the sake of conciseness, when applying rules of P to
derive new expressions, we often do not state all necessary expressions for the inference, as
long as they are clear from the rule and the resulting expression.

To justify the applications of the rule §A that follow, we observe that y2 ∞’ y1. Indeed,
suppose that y1 ”© y2. By §T, we have P(y2, y1, Ay2,y). If y1 œ V÷ or y1 ª y2, then
yÕ ∞’ {y1, y2} implies y1 ª y2 and y2 œ V’. By §S, we obtain P(y2, y1, ÿ), and then using
§R we get ‹, a contradiction. By an analogous argument, we have x22 ∞’ x21 . Now it
immediately follows that, by §A, we have

P(x22 , x;A fi Ax22 ,x2 fi ({x21} \ {x22}). (5)

A subsequent double application of §T yields

P(x22 , x11 ;A fi Ax22 ,x2 fi ({x21} \ {x22})). (6)

Case 1: y © z2. Then z2 ∞’ {z1, x21 , x22}. We now establish item 4 with a suitable choice
of sets AxÕ

2,x
and AzÕ

2,z
. It is easy to verify that item 2 is satisfied as well.

If y © z1, then, by §T, we have P(z, zÕ
1
; ÿ) because zÕ

1
© y1. Otherwise z1 œ V’ and

y ª z1; we have P(z, zÕ
1
; ÿ), because zÕ

1
© z1.

Recall that y2 ∞’ y1. Thus, by §A, we have

P(zÕ
2
, z;Az2,z fi Ay2,y fi ({y1} \ {y2})), (7)

because zÕ
2

© y2.
By §T, we have P(x, xÕ

1
; ÿ), because xÕ

1
= x11 .

By assumption, we have y ∞’ x22 . Recall that we have (5). If y © x22 , then an
application of §A yields

P(xÕ
2
, x;A fi Ax22 ,x2 fi ({x21} \ {x22}) fi Ay2,y fi ({y1} \ {y2})), (8)

because xÕ
2

© y2. Otherwise y ª x22 and x22 œ V’. Then P(xÕ
2
, x;AfiAx22 ,x2 fi({x21}\

{x22})) follows directly from (5) because xÕ
2

© x22 .
In the case distinction below, we verify item 3 for xÕ

1
, xÕ

2
, zÕ

1
, zÕ

2
.

Case 1.1: yÕ © y2. By the choice of yÕ, we have y2 © yÕ ∞ {y1, y2, x11}. Recall that
y2 ∞ y ∞’ {z1, z2, x22}. Hence, if y ª z1, then y2 ∞’ z1. Similar applies to z2 and x22 . It
follows that, for all choices of xÕ

1
, xÕ

2
, zÕ

1
, zÕ

2
above, we get zÕ

2
© y2 ∞’ {zÕ

1
, xÕ

1
, xÕ

2
}.
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Case 1.2: yÕ © x12 . We show that, as above, zÕ
2

© y2 ∞’ {zÕ
1
, xÕ

1
, xÕ

2
}, starting with xÕ

2
. If

y © z2 ª x22 and x22 œ V’, then we have zÕ
2

© y2 ∞’ x22 © xÕ
2
. Otherwise x22 © z2 © y

and by our choice of xÕ
2
and zÕ

2
, we have zÕ

2
© y2 and xÕ

2
© y2. In particular, zÕ

2
∞’ xÕ

2
.

Next comes zÕ
1
. If y ª z1 and z1 œ V’, then y2 ∞’ z1 because y2 ∞ y. Consequently,

zÕ
2

© y2 ∞’ z1 © zÕ
1
. Otherwise y © z1 and zÕ

1
© y1. Recall that we always have y2 ∞’ y1

and hence zÕ
2

© y2 ∞’ y1 © zÕ
1
.

Finally xÕ
1
. Recall that we have y © z2 ∞’ x22 ∞’ x21 (the second ∞’ was derived

above equation (5)). We consider the following two cases. First, suppose that z2 ª x22

and x22 œ V’. Since x22 œ V’, it cannot be the case that x11 ª x22 , otherwise §S
applied on (6) yields P(x22 , x11 ; ÿ). Using §R, we obtain ‹, a contradiction. Hence
x22 ∞ x11 . Now it follows that y2 ∞ z2 ª x22 ∞ x11 . Since yÕ ∞’ {y2, x11}, we even have
zÕ
2

© y2 ∞’ x11 © xÕ
1
. Second, suppose that x22 © z2 © y. Recall that y2 ∞’ y1 (derived

above (5)) and P(y2, y;Ay2,y). Combining this with (6) and applying §A, we get

P(y2, x11 ;A fi Ax22 ,x2 fi ({x21} \ {x22}) fi Ay2,y fi ({y1} \ {y2})). (9)

We cannot have x11 ª y2, otherwise y2 œ V’ in which case §S yields P(y2, x11 ; ÿ) and
then §R yields ‹, a contradiction. Hence, y2 ∞ x11 . Since yÕ ∞’ {y2, x11}, we get
zÕ
2

© y2 ∞’ x11 © xÕ
1
.

Case 2: y © x22 . Then x22 ∞’ {z1, z2, x21}. We now show that item 4 holds true with a
suitable choice of sets AxÕ

2,x
and AzÕ

2,z
; it will be clear that item 2 is satisfied as well.

If y © z1, then, by §T, we get P(z, zÕ
1
; ÿ), because zÕ

1
© y1. Otherwise z1 œ V’ and

y ª z1; we have P(z, zÕ
1
; ÿ) because zÕ

1
© z1.

First, suppose that y © z2. Recall that we have y2 ∞’ y1. By §A, we have (7) because
zÕ
2

© y2. Second, suppose that y ª z2 and z2 œ V’. Then we have P(zÕ
2
, z;Az2,z)

because zÕ
2

© z2.
By §T, we have P(x, xÕ

1
; ÿ) because xÕ

1
© x11 .

Recall that we have (5) and y2 ∞’ y1. By §A, we have (8) because xÕ
2

© y2.
Finally, we verify item 3 of the claim.

Case 2.1: yÕ © y2. By the choice of yÕ, we have y2 © yÕ ∞ {y1, y2, x11}. Recall that
y2 ∞ y ∞’ {z1, z2, x22}. Hence, if y ª z1, then y2 ∞’ z1. Similar applies to z2 and x22 . It
follows that, for all choices of xÕ

1
, xÕ

2
, zÕ

1
, zÕ

2
above, we get xÕ

2
© y2 ∞’ {zÕ

1
, zÕ

2
, xÕ

1
}.

Case 2.2: yÕ © x12 . By a double application of §T on (8), we get (9). It cannot be that
x11 ª y2, as this implies y2 œ V’, in which case §S yields P(y2, x11 ; ÿ) and then §R yields
‹, a contradiction as in Case 1.2. Hence xÕ

2
© y2 ∞’ x11 © xÕ

1
. Recall that y2 ∞’ y1.

Either x22 ª z1 and z1 œ V’, in which case xÕ
2

© y2 ∞’ z1 © zÕ
1
, or x22 © z1 in which case

xÕ
2

© y2 ∞’ y1 © zÕ
1
. Also either x22 ª z2 and z2 œ V’, in which case xÕ

2
© y2 ∞’ z2 © zÕ

2
,

or x22 © z2 in which case xÕ
2

© y2 ∞’ y2 © zÕ
2
. Hence, xÕ

2
∞’ {zÕ

1
, zÕ

2
, xÕ

1
}. C
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Abstract
GCk is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It
is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has
distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded
by hyperedge variables on every quantification.

We prove that two hypergraphs G, H satisfy the same sentences in the logic GCk with guard depth
at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of
strict hypertree depth at most k. This lifts the analogous result for tree depth Æ k and sentences
of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020)
from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to
hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by
Adler, Gaven�iak and Klimoöová (2012). To justify this restriction, we show that for every H, the
strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional
evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for
hypergraphs.
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1 Introduction

The (k-dimensional) Weisfeiler-Leman algorithm describes a technique to classify the vertices
(or k-tuples) of a graph, by iteratively computing a colouring (i.e., a classification) of the
vertices (or k-tuples), which gets refined each iteration until it stabilises. While it can
be used as a way to (imperfectly) test graphs for isomorphism, it has found many other –
seemingly very di�erent – uses, e.g. reducing the cost of solving linear programs [14], as
graph kernels [29] or even as an architecture for graph neural networks [30, 22, 13, 12]. For
a more in-depth overview on the expressive power of the Weisfeiler-Leman algorithm itself,
consult [17] as a starting point. The success of the Weisfeiler-Leman algorithm can in part
be explained by its simplicity, but also by the fact that it appears to capture the structure of
a graph really well. This can be explained by its connection to first-order logic with counting
quantifiers and to homomorphism counts over graphs of bounded tree width. A classical
result due to Cai, Fürer and Immerman [5] and Immerman and Lander [16] says that two
graphs are indistinguishable by the k-dimensional Weisfeiler-Leman algorithm if, and only
if, they satisfy the same sentences of first-order logic with counting quantifiers (C) and k+1
variables (Ck+1).
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Dvo�ák [9] and Dell, Grohe, Rattan [8] related the Weisfeiler-Leman algorithm to homo-
morphism counts over graphs of bounded tree width (this was subsequently generalised to
relational structures of bounded tree width by Butti and Dalmau [3]). They showed that
two graphs are homomorphism indistinguishable over the class TWk of graphs of tree width
at most k if, and only if, they are indistinguishable by the k-dimensional Weisfeiler-Leman
algorithm. Here, two graphs G and H are homomorphism indistinguishable over a class C of
graphs, if the number of homomorphisms from F into G equals the number of homomorphisms
from F into H for all F œ C. Dvo�ák used the previously mentioned connection to C

k+1 and
an inductive characterisation of the graphs of bounded tree width to prove this result, while
Dell et al. used elaborate algebraic techniques on vectors containing homomorphism counts.

In recent years, a whole theory has emerged around homomorphism indistinguishability.
There are characterisations of homomorphism indistinguishability for classes of graphs other
than TWk (cf. [7, 10, 21, 25]), among which we would like to emphasise the following: A
classical result by Lovász [18], stating that two graphs are isomorphic if, and only if, they
are homomorphism indistinguishable over all graphs; a well-received result by Man�inska
and Roberson [20], stating that two graphs are homomorphism indistinguishable over the
class of planar graphs if, and only if, they are quantum isomorphic; and, of importance for
this paper, Grohe [11] showed that two graphs are homomorphism indistinguishable over
the graphs of tree depth at most m if, and only if, they satisfy the same sentences of C with
quantifier rank at most m (Cm). There is also work concerned with a more fundamental
analysis of homomorphism counting from restricted classes (cf. [2, 15, 23, 24, 28]).

Some real-world problems can be represented by hypergraphs in a much more natural
way than by graphs. The great track record of the Weisfeiler-Leman method poses the
question, whether a similar algorithm exists that works on hypergraphs. A direct application
of the Weisfeiler-Leman algorithm on the incidence structure of a hypergraph is sometimes
used. But Böker noted in [4], that this approach does not capture the hypergraph structure
well, since the algorithm will mix up hyperedges and vertices. Thus, a proper variant of the
Weisfeiler-Leman algorithm that works on hypergraphs is, to the best of our knowledge, still
missing. We believe that establishing results analogous to the ones mentioned so far can give
valuable insight on how the algorithm should operate on hypergraphs. A first step from this
angle is a result by Scheidt and Schweikardt [27], who lift Dvo�ák’s result to hypergraphs by
proving the following: two hypergraphs G, H are homomorphism indistinguishable over the
class GHWk of hypergraphs of generalised hypertree width at most k if, and only if, they
satisfy the same sentences of the logic GC

k. GCk is a novel logic introduced in [27]. It has
distinct variables for vertices and for hyperedges and counting quantifiers for both variable
types. The main feature of GCk is that it bounds the number of variables for hyperedges
by k, and it requires that vertex variables are “guarded by” (i.e., contained in) hyperedge
variables on every quantification.

Contributions. As the main contribution of this work, we show that two hypergraphs
satisfy the same sentences of the logic GC

k with guard depth at most k if, and only if,
they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree
depth at most k (Theorem 6.1). The guard depth is the quantifier depth of the hyperedge
variables. This theorem follows from an inductive characterisation of the class of hypergraphs
of strict hypertree depth Æ k, combined with the main technical lemmas of Scheidt and
Schweikardt [27]. We believe that this inductive characterisation is interesting on its own,
since the same technique combined with the core lemmata in Dvo�ák’s work [9] can be
used to give a concise proof of the analogous result on graphs due to Grohe [11], which was
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independently recognised and shown by Fluck et al. [10] recently. Strict hypertree depth is a
mild restriction of hypertree depth as defined by Adler, Gaven�iak and Klimoöová [1]. This
(as it turns out only slight) deviation from hypertree depth is surprising at first. Because of
the properties and relations between strict hypertree depth and hypertree depth we acquire in
this paper, we claim that strict hypertree depth can be viewed as a reasonable generalisation
of tree depth for hypergraphs too. In particular, we show that the strict hypertree depth
of a hypergraph is at most 1 larger than its hypertree depth (Theorem 2.5). Moreover, we
show that the distinguishing power of homomorphism counts from hypergraphs of hypertree
depth at most k is di�erent from the distinguishing power of homomorphism counts from
their respective incidence graphs (Theorem 2.9). Compared to other hypergraph parameters,
this is very unexpected.

Organisation. The remainder of the paper is organised as follows. Section 2 is dedicated
to the introduction of the necessary notation and definitions. In particular, we introduce
incidence graphs as representations of hypergraphs that will be used throughout the paper,
following Böker [4] and Scheidt and Schweikardt [27]. The notions of (strict) hypertree depth
are introduced in Section 2.1, followed by Section 2.2 where we handle the di�erences between
homomorphisms between hypergraphs and homomorphisms between incidence graphs. In
Section 3 we introduce k-labeled incidence graphs that were the principle tool used in [27] to
achieve their result. We utilise them in Section 4 to give an inductive characterisation of
the hypergraphs of strict hypertree depth at most k (Theorem 4.1). Section 5 is devoted to
the logic GC

k. In Section 6 we combine the results from Section 4 and Section 2.2 with the
results from [27] to obtain Theorem 6.1. Section 7 concludes the paper with a summary of
the results obtained in this paper, as well as an outlook on further research directions.

2 Preliminaries

Since we heavily rely on the work by Scheidt and Schweikardt [27], we will keep our notation
close to theirs. We denote the set of natural numbers including 0 by N, the set of positive
natural numbers by NØ1, and we write [n] to denote the set {1, 2, . . . , n}. To denote
isomorphism of two objects, we use ≥=. A tuple is denoted using a bar, e.g. a. For a given
¸-tuple a, we use ai to denote the i-th element of a, i.e., a = (a1, a2, . . . , a¸). For any set S,
let P(S) be the set of subsets of S and let Pk(S) be the subsets of cardinality exactly k. If
S is a set of sets, let

t
S =

t
sœS s.

For a finite set S of cardinality ¸ œ N, a total order < on S and any number d œ N,
we say that Èid+1, id+2 . . . , id+¸Í is the <-enumeration of S, if id+1 < id+2 < · · · < id+¸

and {id+1, . . . , id+¸} = S. If the order < is clear from the context, we simply say that
Èid+1, id+2 . . . , id+¸Í is the enumeration of S. Note that we usually let d = 0, i.e., we usually
write Èi1, . . . , i¸Í. Furthermore, the enumeration Èid+1, id+2 . . . , id+¸Í of S is empty if, and
only if, S is empty.

We denote a partial function f from A to B by f : A Ô B, and we let dom(f) := {a œ A :
f(a) is defined} and img(f) := {b œ B : ex. a œ A s.t. f(a) = b}. We say that two functions
f and g are compatible, if f(x) = g(x) for all x œ dom(f) fl dom(g). We identify a (partial)
function f with the set {(x, f(x)) : x œ dom(f)} whenever we are using set notation on
functions. For example, we write f ™ g to indicate dom(f) ™ dom(g) and f(x) = g(x) for all
x œ dom(f). In particular, by f fig we denote the function h with dom(h) = dom(f)fidom(g)
and h(x) = f(x) for all x œ dom(f) and h(x) = g(x) for all x œ dom(g) \ dom(f). Note
that f has precedence over g, but this only matters if f and g are not compatible. For a
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(partial) function f and a set S ™ dom(f) we write f(S) to denote {f(x) : x œ S}, and we
call the function g ™ f with dom(g) := S the restriction of f to S. Finally, we define partial
functions inline like this: {a æ 3, b æ 2, c æ 5}. In particular, the empty set ? denotes a
partial function with empty domain.

Graphs, Trees and Forests. An (undirected) graph is a tuple G = (V (G), E(G)), where
V (G) is a finite set and E(G) ™ P2(V (G)). For a set S ™ V (G), G[S] denotes the subgraph
induced by S, i.e., V (G[S]) := S and E(G[S]) := E(G)flP2(S). A connected component of a
graph is a maximal induced subgraph that is connected. A tree is a connected acyclic graph
and a forest is a graph were each connected component is a tree. A rooted tree T is a tree
with some distinguished node that we call its root, which we denote by ÊT . A rooted forest
F is the disjoint union of a collection of rooted trees. It therefore has a set of roots denoted
by �F . We may omit the index if it is clear from the context. Note that a rooted tree is also
a rooted forest and that every node n in a rooted forest is contained in a unique connected
component which is a tree that we call the tree for n and whose root is the root for n.

For a rooted forest F we let ÆF be the induced partial order on the nodes, i.e., the roots
are the minimal elements and s ÆF t if s is on the unique path from t to its root in �. By
P(s, t) we denote the set of nodes on the path from s to t (including s and t). In particular,
if no path from s to t exists, P(s, t) = ?. By P(s) we denote the set of nodes on the path
from s to the root for s and by ·(s, t) we denote the unique element, if it exists, where the
paths P(s), P(t) join, i.e., ·(s, t) := maxÆF (P(s) fl P(t)). Notice that ·(s, t) is undefined i�
s and t are not in the same tree, and that ·(s, t) = s, i� s ÆF t (and conversely, ·(s, t) = t

i� t ÆF s).
The subtree Tt induced by t œ V (F ) is the tree F [V ] with root t and V := {s œ V (T ) :

t ÆF s}. The level of a node s œ V (F ) is defined as the number of elements on the path
from s to its root, i.e., level(s) := |P(s)|. The height of a rooted tree T is the maximal level,
i.e., height(T ) := max{level(t) : t œ V (T )} and the height of a node t œ V (T ) is the height
of its induced subtree Tt, i.e., height(t) := height(Tt).

Hyper- and Incidence Graphs. A hypergraph is a tuple H = (V,E,—), where V and E are
disjoint finite sets and — is a total function from E to P(V ) with V =

t
eœE —(e). We call

the elements of V vertices and the elements of E hyperedges and for every e œ E, we call
—(e) its contents. We denote V by V (H), E by E(H) and — by —H, though we may omit the
index if there is no ambiguity. Notice that, in general, multiple hyperedges with the same
content and hyperedges without content are allowed. We call H simple if — is injective.

An incidence graph is a tuple I = (R,B,E) consisting of two disjoint finite sets R and
B of red and blue vertices and a relation E ™ B ◊ R. We denote R by R(I), B by B(I)
and E by E(I). For every e œ B(I), we let �(e) := {v œ R(I) : (e, v) œ E(I)}. Notice
that � is equivalent in its function to the map — for a hypergraph, hence we denote them
similarly. We only consider incidence graphs where for every v œ R(I) there is an e œ B(I)
such that (e, v) œ E(I). It is easy to see that we can assign an incidence graph to every
hypergraph and the other way around: For every hypergraph H we let IH := (V (H), E(H), E)
where E := {(e, v) : e œ E(H), v œ —(e)}. Conversely, for every incidence graph I we let
HI := (R(I),B(I),—) where —(e) := {v œ R(I) : (e, v) œ E(I)} for all e œ B(I).

For every set S ™ E(H) we define the induced subhypergraph H[S] as (V Õ
, S,—

Õ

H
) where

V
Õ :=

t
eœS —(e) and —

Õ

H
is the restriction of —H to S. We say that a hypergraph is connected

if its incidence graph is connected. An induced subhypergraph is a connected component, if
its corresponding incidence graph is a connected component.
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(d) The IG IG for G.

Figure 1 Examples for hypergraphs and their corresponding incidence graphs.

By Pn we denote the path of n hyperedges, where each hyperedge contains 2 vertices.
I.e., we let V (Pn) = [n+1], E(Pn) = {ei : i œ [n]} and —(ei) = {i, i+1} for all i œ [n]. We
may use di�erent names for the vertices if it is convenient.

I Example 2.1. The hypergraph H illustrated in Figure 1a is defined as V (H) = {u, v, w, x,

y, z, t}, E(H) = {e, f, g, h} and —H = {e æ {u, v, x}, f æ {v, w, z}, g æ {u,w, y}, h æ

{t, x, y, z}}. Its incidence graph IH, depicted in Figure 1b, is defined by R(IH) = V (H),
B(IH) = E(H) and E(IH) = {(e, u), (e, v), (e, x), (f, v), (f, w), (f, z), (g, u), (g, w), (g, y),
(h, t), (h, x), (h, y), (h, z)}.

The hypergraph G depicted in Figure 1c is defined as V (G) = {a, b, c}, E(G) = {i, j, k, ¸}

and —G := {i æ {a, b}, j æ {b, c}, k æ {a, c}, ¸ æ {a, b, c}}. Its incidence graph IG , depicted
in Figure 1d, is defined asR(IG) = V (G), B(IG) = E(G) and E(IG) = {(i, a), (i, b), (j, b), (j, c),
(k, a), (k, c), (¸, a), (¸, b), (¸, c)}.

2.1 Hypertree Depth
The following definition of elimination forest and hypertree depth is due to Adler, Gaven�iak
and Klimoöová [1], though they refer to elimination forests as “decomposition forests”. We
call them elimination forests, since this reflects their conceptual similarity to elimination
forests for graphs and avoids confusion with hypertree decompositions. Further, we define
this notion in terms of incidence graphs, because we mainly work on those. Do notice however,
that this definition easily translates to hypergraphs and that it is equivalent to the one given
by Adler, Gaven�iak and Klimoöová.

I Definition 2.2 (Hypertree Depth and Elimination Forests, [1]). Let I be an incidence graph.
An elimination forest (F,�) for I consists of a forest F and a mapping � : V (F ) æ B(I) such
that conditions 1–3 hold. We write ‚�(t) as shorthand for �(�(t)).
1. Completeness for vertices: For every red vertex v œ R(I), there is a t œ V (F ) such that

v œ ‚�(t).
2. Hyperedge-Containment: For every blue vertex e œ B(I) there are nodes s, t œ V (F ) such

that s ÆF t and �(e) ™
t ‚�(P(s, t)).

3. Shared heritage: For all s, t œ V (F ), if ‚�(s) fl ‚�(t) ”= ?, then ·(s, t) is defined and
‚�(s) fl ‚�(t) ™

t ‚�(P(·(s, t))).

The intuition behind condition 3 is that hyperedges can only share the vertices contained
in their common ancestors in the elimination forest. The height of an elimination forest (F,�)
is simply the height of F . The hypertree depth of I is defined as the minimal height over all
elimination forests for I, and we denote it by hd(I). Analogously, we let hd(H) := hd(IH) for
all hypergraphs. We write IHDk to denote the class of incidence graphs of hypertree depth
at most k and HDk to denote the corresponding class of hypergraphs. y
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{u, v, x}

{t, x, y, z}Ê:

{v, w, z} {u,w, y}

(a) A (strict) EF for H.

{a, b, c}Ê:

(b) An EF for G.

{b, c}

{a, b, c}Ê:

{a, b} {a, c}

(c) A strict EF for G.

{8, 9}
Ê:

{4, 5}

{2, 3}

{6, 7}

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{12, 13}

{10, 11}

{14, 15}

{9, 10}{11, 12}

{13, 14}{15, 16}

(d) A (strict) elimination forest for P15.

Figure 2 Elimination forests for various (hyper)graphs.

We call an elimination forest (F,�) strict if � is bijective. It is easy to see that the first
and second condition are trivially satisfied when � is bijective, thus we can redefine the
notion of strict elimination forest in a more succinct manner.

I Definition 2.3 (Strict Elimination Forest). Let I be an incidence graph. A strict elimination

forest (F,�) for I consists of a forest F and a bijective function � : V (F ) æ B(I) satisfying
condition 3 of Definition 2.2. The strict hypertree depth of I, denoted by shd(I), is defined as
the minimal height over all strict elimination forests for I. Again, we let shd(H) := shd(IH)
for every hypergraph H. We write ISHDk to denote the class of incidence graphs of strict
hypertree depth at most k and SHDk to denote the corresponding class of hypergraphs. y

I Example 2.4. Consider the hypergraphs G and H as well as their incidence graphs IG ,
IH from Example 2.1 (see Figure 1). Let (F1,�1) be defined as follows. F1 is a tree defined
by V (F1) = {t1, t2, t3, t4} and E(F2) := {{t1, t2}, {t1, t3}, {t1, t4}} with root t1. �1 is a map
defined as {t1 æ h, t2 æ e, t3 æ f, t4 æ g}. (F1,�1) is an elimination forest of height 2
for IH. It is depicted in Figure 2a, where we labeled the node ti with ‚�1(ti). Notice, that
(F1,�1) is strict.

Analogously, we depicted two elimination forests for IG of height 1 and 2 in Figures 2b
and 2c. Notice how the elimination forest depicted in Figure 2b, witnessing hd(G) = 1, is
not strict. It is easy to see that shd(G) Ø 2 since a bijective map implies that there are as
many nodes in the forest as there are edges. Thus, Figure 2c witnesses that shd(G) = 2.

Finally, Figure 2d depicts a (strict) elimination forest for P15 witnessing shd(P15) Æ 4.
Recall that P15 is defined by V (P15) = [16] and E(P15) = {{i, i+1} : i œ [15]}. y

One can show that the strict hypertree depth of a hypergraph is at most its hypertree
depth increased by one. The main idea is that we can turn every elimination forest into a
strict one, if we add a leaf for every hyperedge that is currently not being mapped to below
the path that contains it according to condition 2 in Definition 2.2. The proof can be found
in the full version.

I Theorem 2.5. For all hypergraphs H, hd(H) Æ shd(H) Æ hd(H)+1.

Finally, it is easy to see that, due to condition 3 (shared heritage), every elimination
forest of a connected incidence graph is also an elimination tree.

I Lemma 2.6. Let I be a connected incidence graph. For every elimination forest (F,�) of
I, F is a tree.



B. Scheidt 152:7

2.2 Homomorphisms
While hypergraphs and incidence graphs are conceptually close, their “natural” notions of
homomorphisms are not the same. Since our interest lies in hypergraphs, but we are mainly
working on incidence graphs in this paper, we have to relate these notions. Following Scheidt
and Schweikardt, we use the same definitions as Böker [4].

A homomorphism from a hypergraph H into another hypergraph G is a pair of func-
tions (hV : V (H) æ V (G), hE : E(H) æ E(G)) such that for every e œ E(H) the equality
hV (—(e)) = —(hE(e)) holds.

A homomorphism from an incidence graph I into another incidence graph J is a pair of
mappings (hV : R(I) æ R(J), hE : B(I) æ B(J)) such that (hE(e), hV (v)) œ E(J) holds for
every edge (e, v) œ E(I). This is equivalent to the requirement hV (�(e)) ™ �(hE(e)). Thus,
the equality that we require for a hypergraph homomorphism is relaxed to an inclusion for
incidence graphs.

Let A, B and C be two hypergraphs and a class of hypergraphs or two incidence graphs
and a class of incidence graphs. We denote the number of homomorphisms from A to B by
hom(A,B), and we let Hom(C, A) be the “vector” that has a row for every F œ C containing
hom(F,A). We say that A and B are homomorphism indistinguishable over C (A ©C B), if
Hom(C, A) = Hom(C, B), i.e., if hom(F,A) = hom(F,B) for all F œ C.

The following crucial theorem relates homomorphism indistinguishability over a class
of hypergraphs to homomorphism indistinguishability over the corresponding class CI of
incidence graphs. As noted in [27], this theorem is implicit in [4], consult Appendix A of the
full version of [27] for details.

I Theorem 2.7 ([4, 27]). Let C be a class of hypergraphs and let CI be its corresponding class

of incidence graphs. If C is closed under pumping and local merging, then Hom(C,G) =
Hom(C,H) if, and only if, Hom(CI, IG) = Hom(CI, IH) for all hypergraphs G and H.

C is closed under pumping, if H Õ
œ C for every H œ C, where H

Õ is created from H by
inserting a new vertex into one arbitrary hyperedge of H; and closed under local merging, if
H

Õ
œ C for every H œ C, where H

Õ is created from H by choosing an arbitrary hyperedge e

and then merging two vertices u, v that are both contained in e.
It is easy to see that SHDk is closed under both pumping and local merging, whereas

HDk is only closed under local merging.

I Proposition 2.8. Let k œ NØ1. The class SHDk is closed under pumping and local merging,

the class HDk is closed under local merging but not under pumping.

The following theorem shows that homomorphism indistinguishability over HDk is not
equal to homomorphism indistinguishability over SHDk. Because SHDk ™ HDk, counting
homomorphisms from HDk is more powerful in the sense that it distinguishes more hyper-
graphs. But we also show that it is unequal to homomorphism indistinguishability over IHDk,
which is unexpected. Since this prohibits us from relating HDk to any fragment of GC, it is
conceivable that this could pose a problem in other scenarios too. Thus, we argue that the
notion of strict hypertree depth can be viewed as a reasonable generalisation of tree depth,
especially when we recall that HDk≠1 ™ SHDk ™ HDk.

I Theorem 2.9. For every k œ NØ1 there exist pairs of hypergraphs (Gk,Hk) and (GÕ

k,H
Õ

k),
such that:

1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ”= Hom(HDk,Hk);
2. Hom(HDk,G

Õ

k) = Hom(HDk,H
Õ

k), but Hom(IHDk, IGÕ
k
) ”= Hom(IHDk, IHÕ

k
).
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Figure 3 (G1,H1), (GÕ

1,H
Õ

1) witness Theorem 2.9 for k = 1. Circles denote singleton hyperedges.

For k = 1 this is easy to see: A connected hypergraph has strict hypertree depth 1 i�
it consists of a single hyperedge, whereas a connected hypergraph has hypertree depth 1 if
one hyperedge contains all vertices. It is therefore not hard to see that the statement of the
theorem holds for k = 1 using the hypergraphs depicted in Figure 3. For k Ø 2 a similar idea
for the construction of (Gk,Hk) and (GÕ

k,H
Õ

k) works, but we had to defer the details to the
full version due to space constraints.

3 k-Labeled Incidence Graphs

Our goal is to give an inductive characterisation of the incidence graphs of strict hypertree
depth at most k (and thus also of hypergraphs of strict hypertree depth at most k). The
concepts presented in this section were first defined in [27], and we adopt their notation
and phrasing for the most part. Note that the k-labeled incidence graphs defined here are
inspired by the concept of k-labeled graphs as they are used in [6, 9, 10, 19] and elsewhere.
In particular, k-labeled graphs are the main tool used by Dvo�ák [9] to prove his result.
In principle, a k-labeled incidence graph is an incidence graphs that has labels attached to
some of its red and blue vertices. We have an unbounded number of red labels that can be
attached to red vertices (though the number of labels actually used must always be finite),
but we only have k labels that we can attach to blue vertices. We are allowed to attach
multiple labels to the same vertex, but we are not required to use all of them. Every red
label has an assigned “guard”, which is a blue vertex with a label on it. In practice, we will
require every red labeled vertex to be a neighbour of its guard (i.e., we want it to have a
real guard, as defined in the next paragraph), though it makes the proofs easier if we do not
enforce this in the definition itself. This idea is formalised as follows.

A k-labeled incidence graph is a tuple L = (I, r, b, g), where I is an incidence graph,
r : NØ1 Ô R(I), b : [k] Ô B(I) and g : NØ1 Ô [k] are partial mappings such that dom(r) is
finite and dom(g) = dom(r). We use IL, rL, . . . to denote the components of L. But to keep
the indices from getting overly complicated, we may write I

Õ
, r

Õ
, . . . and Ii, ri, . . . instead of

ILÕ , rLÕ and ILi , rLi , . . . , respectively. If it is clear from the context, we may omit the index
altogether and simply write I, r, b, g.

We say that L has real guards (w.r.t. g), if for every i œ dom(r) we have g(i) œ dom(b)
and (b(g(i)), r(i)) œ E(I). A k-labeled incidence graph L is label-free if rL = bL = gL = ?.
We call I the skeleton of L. Next, we define some operations on k-labeled incidence graphs.

For any set Xr ™ NØ1 of finite size ¸ and any tuple v = (v1, v2, . . . , v¸) œ R(IL)n we
write L[Xræv] to denote a copy of L where we modified r such that r(ij) = vj for all j in
the enumeration Èi1, . . . , i¸Í of Xr, i.e., we introduce, and change the placement of, some
red labels. Similarly, for any Xb = {i1, . . . , i¸} ™ [k] and any e = (e1, e2, . . . , e¸) œ B(IL)¸ we
write LÈXbæeÍ to denote a copy of L where we modified b accordingly. We write L[Xræ•]
(LÈXbæ•Í) to denote a copy of L where we removed the red (blue) labels in Xr (Xb). Note,
that we remove just the labels and not the vertices that carry them.
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(d) An example of apply-
ing a transition: L1[ f ].

Figure 4 3-labeled incidence graphs and operations on them. Labels are encoded as exponents
and the guard function is encoded using thicker edges between the red vertex and its guard.

Intuitively, the “product” (L1 · L2) or glueing of two k-labeled incidence graphs L1, L2

is the k-labeled incidence graph L that is created by first taking the disjoint union of L1

and L2, followed by repeatedly merging pairs of red (blue) vertices, that carry a shared red
(blue) label. By merging we mean that we replace these vertices by a single fresh vertex,
which inherits their neighbourhoods and labels. We apply this procedure until there are no
more such pairs. The guard function of (L1 · L2) is simply gL1 fi gL2 , i.e., in theory, gL1 has
precedence over gL2 . In practice, we will require that gL1 and gL2 are compatible, which
means the precedence of gL1 will be irrelevant. Note that the order in which we merge vertices
does not matter, and that if a vertex carries two or more labels, all vertices carrying any
one of these labels will be replaced by a single fresh vertex that carries all those labels and
inherits all neighbourhoods. Finally, for i œ [2] we define mappings succRLi

: R(ILi) æ R(IL)
and succBLi

: B(ILi) æ B(IL) such that succRLi
(v) is the red vertex of IL that corresponds to

v œ R(Ii), and succBLi
(e) is the blue vertex of IL that corresponds to e œ B(Ii).

I Example 3.1. Consider the k-labeled incidence graphs L1, L2 according to Figures 4a
and 4b. In particular, we have

i 1 2 3 5
r1(i) u w v w

r2(i) u – v w

i 1 2 3
b1(i) f g h

b2(i) f g h

and
i 1 2 3 5

g1(i) 2 1 1 1
g2(i) 2 – 1 1

.

The product (L1 · L2) is depicted in Figure 4c.

So far, we should not be allowed to remove a blue label from a vertex, if it serves as the
guard of a red label. But sometimes we want to transition from one (real) guard assignment
to another (real) guard assignment. I.e., we want to remove blue labels even if they still guard
some red labels, because we guarantee that we introduce new guards for these labels right
away. We formalise this operation as a special partial function, that assigns new guards to
existing red labels: We call f : NØ1 Ô [k] a transition for L (for g), if ? ”= dom(f) ™ dom(g)
and for all i œ dom(g) we have that if g(i) œ img(f), then i œ dom(f). This means that if f
reassigns the blue label guarding the red label i, then f provides a new guard for i. Applying a
transition, denoted by L[ f ], means modifying a copy of L as follows: we want to insert fresh
vertices with these blue labels, thus we must first remove all blue labels, that are currently
in use, i.e., we must first remove the labels in the set Xb := img(f) fl dom(bL) fl img(gL)
from b. Notice that we have to intersect with dom(bL) since we do not require L to have
real guards. After removing the labels in Xb, we insert |Xb| new blue vertices into IL, each
carrying one of the blue labels in Xb, and introduce an edge between b(f(i)) and r(i) for all
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i œ dom(f). Finally, we redefine the guard function as f fi gL. Note that this procedure can
be easily expressed as the product (Mf ·LÈXbæ•Í) for a suitably defined k-labeled incidence
graph Mf .

I Example 3.2. Consider the k-labeled incidence graph L1 from Example 3.1 and Figure 4a.
The partial function f = {1 æ 2, 3 æ 2} is a transition for L1. The result L1[ f ] of the
application of f on L1 is depicted in Figure 4d.

We define the class GLIik of k-labeled incidence graphs that can be constructed in a way
that at most i blue labels are removed “in series”.

I Definition 3.3. For k œ NØ1 and i œ N we define the set GLIik inductively as follows.
Base case. L œ GLI

0

k for all k-labeled incidence graphs L with dom(r) = R(I), dom(b) = B(I)
and real guards.
For all i œ N, if L œ GLI

i
k, then L œ GLI

i+1

k .
Glueing. Let L1 œ GLI

i1
k , L2 œ GLI

i2
k have compatible guard functions and L = (L1 · L2).

Then, L œ GLI
i
k where i := max{i1, i2}.

Transitioning. Let L œ GLI
i
k, let f be a transition for L and L

Õ = L1[ f ].
Then, L

Õ
œ GLI

iÕ

k where i
Õ := i+ | img(f) fl img(bL) fl img(gL)|.

Label-Removal. Let L œ GLI
i
k.

(a) For Xr ™ dom(r), L[Xræ•] œ GLI
i
k.

(b) For Xb ™ dom(b) \ img(g), LÈXbæ•Í œ GLI
iÕ

k where i
Õ := i+ |Xb|.

Finally, we let GLIk := GLI
k
k for every k œ N. y

4 Characterising Hypergraphs of Strict Hypertree Depth at most k

In this section we prove that the inductively defined class GLIk corresponds precisely to the
class ISHDk.

I Theorem 4.1. An incidence graph J has strict hypertree depth at most k if, and only if,

there exists a label-free L œ GLI
k
such that IL

≥= J .

In the following, we first show how to construct an incidence graph of strict hypertree
depth at most k as the skeleton of a label-free k-labeled incidence graph in GLI

k (Lemma 4.2).
Then we show that every label-free L œ GLI

k has strict hypertree depth at most k (Lemma 4.3).
Theorem 4.1 follows directly from the combination of these two Lemmata.

For the rest of this section, let J œ ISHDk and let (T,�) be a strict elimination forest
of height Æ k for J . We can w.l.o.g. assume that J is connected and that T is a tree
(Lemma 2.6). Let R(J) = {v1, v2, . . . , vm} where m Ø 1.

(T,�) will help us decide when to remove (i.e., eliminate) which label from which blue
vertex in the following sense. The core idea is to start with a trivial k-labeled incidence
graph for every path from a leaf to the root in the elimination tree. Then we walk bottom-up
along these paths and whenever several paths join in a node, we apply red and blue vertex
removals in a suitable way on their k-labeled incidence graphs, such that afterwards we
can glue them together and receive a k-labeled incidence graph that is isomorphic to the
incidence graph induced by the union of said paths.

For this we need the following notions: For a node n in a tree T , the subtree with stem

induced by n is the tree Ṫn induced on T by the set P(n) fi {t œ V (T ) : n ÆT t}. Recall
that P(n) is the set of nodes on the path from n to the root Ê (including n and Ê), and
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notice that the subtree with stem induced by the root is T , i.e., TÊ = T , and for every
leaf n it is the path from the root Ê to n. For every node n œ V (T ) we define the set
labels(n) := {i œ [m] : vi œ ‚�(n)}. To avoid an overload of notation, we will write labels(N)
to denote the set

t
nœN labels(n) and write J [Ṫn] to abbreviate J [‚�(V (Ṫn))]. With these

notions, we can prove the following lemma via induction.

I Lemma 4.2. For every n œ V (T ) of level d where Èt1, . . . , tdÍ is a ÆT -enumeration of P(n)
(i.e., in particular t1 = Ê, td = n), there exists an Ln œ GLI

k≠d
k of the form (I, r, b, g) such

that

(A) dom(b) = [d] and dom(r) = labels(P(n));
(B) g(i) := min{j œ [d] : vi œ ‚�(tj)} for every i œ dom(g);
(C) There exists an isomorphism (fiR,fiB) between I and J [Ṫn] such that

(i) fiR(r(i)) = vi for all i œ dom(r), and

(ii) fiB(b(j)) = �(tj) for all j œ dom(b).

Notice that, in particular, this lemma states J ≥= ILÊ for the root Ê of T . But LÊ

is not label-free, since dom(bLÊ) = {1} and dom(rLÊ) = labels(P(Ê)) = labels(Ê). But,
the lemma also states that LÊ œ GLI

k≠1

k , since level(Ê) = 1. Thus, J ≥= ILÕ for L
Õ =

LÊ[labels(Ê)æ•]È{1}æ•Í, and in particular, LÕ
œ GLI

k
k is label-free. Thus, this lemma shows

the forward direction of Theorem 4.1.
The following lemma can be shown by induction. On a high level, the idea of the proof is

to only modify the elimination forest, if blue labels are removed. At that point, we prepend
a chain of new nodes to the root(s) of the elimination forest. If we take the product of two
k-labeled incidence graphs, we take the union of the forests, and if we remove red labels, we
do not alter the forest at all.

I Lemma 4.3. For every L œ GLI
d
k of the form (I, r, b, g) there is a tuple (F,�), where

F is a forest of height Æ d and � is a bijective function from V (F ) to B(I) \ img(b)
satisfying condition A. We write ‚�(t) as a shorthand for �(�(t)) and Â�(t) as a shorthand

for ‚�(t) \ img(r).
(A) For all s, t œ V (F ), and all v œ Â�(s) fl Â�(t) ”= ? it holds that:

v œ �(b(j)) for a j œ dom(b) or ·(s, t) is defined and v œ
t Â�(P(·(s, t))).

Notice that, if L œ GLI
d
k is label-free, this guarantees a strict elimination forest (F,�) of

height d for IL. This shows the backward direction of Theorem 4.1.

5 The Logic GCk

This section introduces the logic GC
k as defined in [27] and its restricted fragment GCk,

consisting of all formulas of guard depth at most k. Let k be a positive natural number, that
is fixed for this section.

Variables. GC
k uses two di�erent kinds of variables: VARv := {v1, v2, v3 . . . } to address

vertices and VARe := {e1, e2, . . . , ek} to address hyperedges. Notice that the number of
variables for hyperedges is bounded by k, but unbounded for vertices. We say that a tuple
of the form v = (vi1 , . . . , vi¸) œ VAR

¸
v or e = (ei1 , . . . , ei¸) œ VAR

¸
e is a v- or e-tuple, if

i1 < i2 < · · · < i¸. We let vars(v) := {vi1 , . . . , vi¸} and vars(e) := {ei1 , . . . , ei¸} respectively.
We call {i1, . . . , i¸} the index set of v and e, respectively.
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Logical Guards. The key idea behind GC
k is that on quantification, vertex variables must

be guarded by hyperedge variables. This is formalised by a partial function g : NØ1 Ô [k] with
finite domain (similar to the guard function of a k-labeled incidence graph, cf. Section 3) and
its corresponding logical guard �g :=

w
iœdom(g) E(eg(i), vi). For the special partial function

g with empty domain, we let �g := €, which is a special formula that always evaluates to
true.

I Definition 5.1. The logic GC
k is inductively defined along with the free vertex variables,

the free hyperedge variables and the guard depth, as formalised by the functions

freev : GCk
æ P(VARv) , freee : GCk

æ P(VARe) , and gd: GCk
æ N.

Atomic Formulas. For all i, iÕ œ NØ1 and all j, jÕ
œ [k] the following formulas are in GC

k:
Ï = vi=viÕ with freev(Ï) := {vi, viÕ} and freee(Ï) := ?;
Ï = ej=ejÕ with freev(Ï) := ? and freee(Ï) := {ej , ejÕ};
Ï = E(ej , vi) with freev(Ï) := {vi} and freee(Ï) := {ej}.

In all the above cases, gd(Ï) := 0.

Inductive Rules. Let ‰,Â be formulas of GCk. The following formulas are in GC
k.

Ï = ¬‰ with freev(Ï) := freev(‰) and freee(Ï) := freee(‰),
and gd(Ï) := gd(‰);

Ï = (‰ · Â) with freev(Ï) := freev(‰)fifreev(Â) and freee(Ï) := freee(‰)fifreee(Â),
and gd(Ï) := max{ gd(‰), gd(Â) }.

Note that by the rules defined so far, gd(�g) = 0 for all logical guards �g.

We say that g : NØ1 Ô [k] is a guard function for Ï if dom(g) = {i : vi œ freev(Ï)}.
Let n œ NØ1, let g be a guard function for Â and ‰ = (�g · Â). The following
formulas are in GC

k for every v-tuple v with vars(v) ™ freev(‰) and every e-tuple e with
vars(e) ™ freee(‰):

Ï = ÷
Ønv . ‰ with freev(Ï) := freev(‰) \ vars(v) and freee(Ï) := freee(‰),

and gd(Ï) := gd(‰);
Ï = ÷

Øne . ‰ with freev(Ï) := freev(‰) and freee(Ï) := freee(‰) \ vars(e),
and gd(Ï) := gd(‰) + | vars(e)|. y

For convenience, we let free(Ï) := freev(Ï) fi freee(Ï) for all Ï œ GC
k. Formulas of

GC
k are evaluated over a hypergraph H via interpretations I = (IH, ‹v, ‹e) that consist of

H’s incidence graph IH and assignments ‹v : VARv æ R(IH) and ‹e : VARe æ B(IH). The
semantics of GCk are as expected and a definition can be found in Section 6 of the full version
of [27], thus we do not give one here. A sentence is a formula Ï œ GC

k that has neither
free vertex, nor free hyperedge variables, i.e., free(Ï) = ?. By GC

k
d we denote the fragment

{Ï œ GC
k : gd(Ï) Æ d}, and we let GCk := GC

k
k. We write G ©L H to denote that G and H

satisfy the same sentences in the fragment L ™ GC
k.

For simplicity, we omit logical guards if they are empty or equal to the formula they are
guarding. I.e., we may abbreviate subformulas of the form (€ · Ï) or (Ï · Ï) as Ï. We
may also omit parentheses in the usual way. We write ÷

=n(x) . (� · Ï) as shorthand for
÷

Øn(x) . (� ·Ï)·¬÷
Øn+1(x) . (� ·Ï). Clearly, these shorthands change neither the semantics,

nor the free variables, nor the guard depth of a formula.
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I Example 5.2. The sentence ÏG := Â1 · Â2 · Â3 describes G from Example 2.1 up to
isomorphism, where

‰n :=
w

1Æi<jÆn ¬vi=vj · ¬÷
Ø1(vn+1) .

1
E(e, vn+1) ·

w
iœ[n] ¬vn+1 = vi

2
,

Â1 := ÷
=4(e) . e=e ,

Â2 := ÷
=1(e) . ÷

Ø1(v1, v2, v3) .
1w

iœ[3]
E(e, vi) · ‰3 ·

w
iœ[3]

÷
=3(e) . E(e, vi)

2
,

Â3 := ÷
=3(e) . ÷

Ø1(v1, v2) .
1w

iœ[2]
E(e, vi) · ‰2 ·

w
iœ[3]

÷
=3(e) . E(e, vi)

2
.

It is easily verified that ÏG œ GC
1

2
. ‰n is a helper formula, describing that there are

precisely n vertices v1, . . . , vn in the hyperedge e. Â1 describes that there are precisely four
hyperedges, Â2 describes that precisely one hyperedge contains precisely three vertices, each
being contained in precisely 3 hyperedges. Finally, Â3 describes that there are exactly 3
hyperedges containing precisely 2 vertices, each being contained in precisely 3 hyperedges. It
is not hard to see that, in total, this describes G up to isomorphism.

Scheidt and Schweikardt [27] prove their result only for the following restricted variant of
GC

k, called RGC
k. They mention in the conclusion, that RGCk and GC

k are equivalent and
show in the full version of the paper (Theorem 7.2) how a formula in GC

k can be translated
into one in RGC

k. We still need RGC
k since it is used in the formulation and the proof of

the two core lemmata of [27] that we want to borrow.
I Definition 5.3 ([27]). The restriction RGC

k is inductively defined as follows:
Atomic Formulas. (�g · Ï) is in RGC

k for all atomic formulas Ï œ GC
k and all guard

functions for Ï, i.e., all g : NØ1 Ô [k] with dom(g) = {i : vi œ freev(Ï)}.
Inductive Rules.

For every formula (�g · Ï) œ RGC
k, the formula (�g · ¬Ï) is also in RGC

k.
For i œ [2] and formulas (�gi · Âi) œ RGC

k, the formula (�(g1fig2) · (Â1 · Â2)) is in
RGC

k, if g1 and g2 are compatible.
Let n œ NØ1, (�g · Ï) œ RGC

k.
For every v-tuple v with vars(v) ™ freev(Ï) and index set S, the formula (�g̃ · ‰) is
in RGC

k, where

‰ := ÷
Ønv . (�g · Ï) and g̃ is the restriction of g to dom(g) \ S.

For every e-tuple e with vars(e) ™ freee(�g · Ï) and index set S, the formula

(�g̃ · ÷
Øne . (�g · Ï))

is in RGC
k, if dom(g̃) = dom(g) and all i œ dom(g) satisfy

g̃(i) = g(i) or g̃(i) œ S or g̃(i) ”œ img(g). (1)

Intuitively, formulas in RGC
k always carry the information, which hyperedge variable currently

guards which vertex variable and the logical guards are in a certain sense “consistent” (1)
along the syntax tree. y
A simple inspection of the inductive proof for Theorem 7.2 in the full version of [27] shows
that the guard depth is una�ected by the translation, thus it gives us the following refined
result.
I Lemma 5.4. For every formula Ï œ GCk

and every guard function g for Ï, there exists a

formula (�g · Ïg) œ RGCk
such that

1. (�g · Ï) © (�g · Ïg),
2. free(Ï) = free(Ïg), and gd(Ï) = gd(Ïg).
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6 Main Result

We are now ready to plug everything together, which yields our main result.

I Theorem 6.1. Let G and H be hypergraphs and let k œ NØ1.

G ©GCk H ≈∆ Hom(ISHDk, IG) = Hom(ISHDk, IH)
≈∆ Hom(SHDk,G) = Hom(SHDk,H).

We use the fact that the proofs for the core Lemmata 8.1 and 8.2 in the work by Scheidt
and Schweikardt [27] actually give us the following refined results. This is easy to see on
inspection of the original proofs (consult Appendix E in the full version of [27]), since there
is a one-to-one correspondence between the blue label i and the hyperedge variable ei in the
proofs for both lemmas: whenever a blue label i is removed, the corresponding variable ei is
quantified and vice-versa.

For a k-labeled incidence graph L of the form (I, r, b, g), we let IL := (I, ‹v, ‹e) be defined
by ‹v(vi) := r(i) for all i œ dom(r) and ‹e(ej) := b(j) for all j œ dom(b).

I Lemma 6.2 (implicit in [27]). Let L = (I, r, b, g) œ GLI
i
k. For every m œ N there

is a formula ÏL,m with (�g · ÏL,m) œ RGCk
, freev(�g · ÏL,m) = {vi : i œ dom(r)},

freee(�g · ÏL,m) = {ej : j œ dom(b)}, and gd(ÏL,m) Æ i, such that for every k-labeled

incidence graph L
Õ
with dom(bLÕ) ´ dom(b), dom(rLÕ) ´ dom(r), and with real guards w.r.t.

g we have: ILÕ |= �g, and hom(L,LÕ) = m ≈∆ ILÕ |= ÏL,m.

I Lemma 6.3 (implicit in [27]). Let ‰ := (�g · Â) œ RGCk
with gd(‰) = ¸ and let m, d œ N

with m Ø 1. There exists a linear combination Q :=
q

iœ[q] –iLi, and sets drQ = {i : vi œ

freev(‰)} and dbQ = {i : ei œ freee(‰)}, where for all i œ [q]:

–i œ R, Li œ GLI
¸
k, gi = g, dom(bi) = dbQ, and dom(ri) = drQ;

such that for all k-labeled incidence graphs L
Õ
with |B(I Õ)| = m, max{|�(e)| : e œ B(I Õ)} Æ d

and dom(bÕ) ´ dbQ, dom(rÕ) ´ drQ, gÕ
´ g, and with real guards w.r.t. g we have: ILÕ |= �g,

and

ÿ

iœ[q]

–i · hom(Li, L
Õ) =

I
1, if ILÕ |= ‰

0, if ILÕ ”|= ‰.

The proof of Theorem 6.1 works the same way as the one for Theorem 6.1 in [27, Section
8]: the second biimplication is provided by Theorem 2.7 and Proposition 2.8. The first
biimplication is shown via contraposition, where the contraposition of the forward direction
uses Lemma 6.2 and the one for the backward direction uses Lemma 6.3.

Proof of Theorem 6.1. Let I = IG and J = IH. If |B(I)| ”= |B(J)| then hom(I Õ
, I) ”=

hom(I Õ
, J) for the incidence graph I

Õ
œ ISHD1 that consists of a single blue vertex and no

red vertices. Similarly, I and J are distinguished by a suitable GC1-sentence of the form
÷

Øne . (e=e). If |B(I)| = |B(J)|, consider their corresponding label-free k-labeled incidence
graphs LI = (I,?,?,?) and LJ = (J,?,?,?).

Assume there is an I
Õ
œ ISHDk such that hom(I Õ

, I) = m1 ”= m2 = hom(I Õ
, J). According

to Theorem 4.1, there is a label-free L œ GLI
k such that I Õ ≥= IL, which means hom(L,LI) =

m1 ”= m2 = hom(L,LJ). By Lemma 6.2 there exists a formula (€ · ÏL,m1) œ RGC
k with

gd(ÏL,m1) Æ k such that ILI |= (€ · ÏL,m1) and ILJ ”|= (€ · ÏL,m1). Hence, ILI |= ÏL,m1

and ILJ ”|= ÏL,m1 , and since ÏL,m1 œ GCk, G ”©GCk H.
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Assume there is a sentence Ï œ GC
k with gd(Ï) = k such that ILI |= Ï and ILJ ”|= Ï. By

Lemma 5.4 there exists a formula (€ · Â) œ RGC
k with gd(Â) = k such that ILI |= (€ · Â)

and ILJ ”|= (€ · Â). Let m := |B(I)| = |B(J)| be the number of hyperedges and let n œ N
such that |�(e)| Æ n for all e œ B(I) and all e œ B(J). According to Lemma 6.3 there
exists a linear combination Q =

q
iœ[q] –iLi such that

q
iœ[q] –i · hom(Li, LI) = 1 and

q
iœ[q] –i ·hom(Li, LJ ) = 0 and Li œ GLI

k
k for all i œ [q]. This means there must be an i œ [q]

such that –i · hom(Li, LI) ”= –i · hom(Li, LJ), which means hom(Li, LI) ”= hom(Li, LJ).
Since drQ = dbQ = ?, Li is label-free. According to Theorem 4.1, there exists an I

Õ
œ ISHDk

such that I Õ ≥= ILi . Thus, hom(I Õ
, I) ”= hom(I Õ

, J), i.e., Hom(ISHDk, I) ”= Hom(ISHDk, J).
This finishes the proof for the first “i�”. The second is provided by the combination of

Theorem 2.7 and Proposition 2.8. J

7 Final Remarks

This paper solves one of the open questions of Scheidt and Schweikardt [27], who lift
a result by Dvo�ák [9] from graphs to hypergraphs. Dvo�ák shows that homomorphism
indistinguishability over the graphs of tree width at most k is equivalent to indistinguishability
over first-order logic with counting quantifiers (C) and k+1 variables (Ck+1). Scheidt
and Schweikardt show that homomorphism indistinguishability over the class GHWk of
hypergraphs of generalised hypertree width at most k is equivalent to indistinguishability
over the logic GC with k guards (GCk). Grohe [11] gave a result complementing Dvo�ák’s:
C with quantifier depth at most m (Cm) matches homomorphism indistinguishability over
graphs of tree depth at most m. An obvious expectation was that the distinguishing power
of GCm would match homomorphism indistinguishability over the class HDm of hypergraphs
of hypertree depth at most m as it is defined by Adler et al. [1]. However, this expectation
did not manifest in this exact way. Instead, we proved that the distinguishing power of GCm

matches homomorphism indistinguishability over hypergraphs of strict hypertree depth at
most m, which is a (mild) restriction of hypertree depth. Combining Theorem 6.1 with the
main result of [27] yields the following combined result.

I Theorem 7.1. For all hypergraphs G and H, the following equivalences hold:

G ©GCk H ≈∆ G ©SHDk H ≈∆ IG ©ISHDk IH and

G ©GCk H ≈∆ G ©GHWk H ≈∆ IG ©IGHWk IH.

We took this unexpected mismatch between GCk and HDk as an opportunity to investigate
the relationship between HDk and SHDk. In Theorem 2.5 we showed that the strict hypertree
depth of a hypergraph is at most 1 larger than its hypertree depth.

I Theorem 2.5. For all hypergraphs H, hd(H) Æ shd(H) Æ hd(H)+1.

To show that homomorphism counts from the class SHDk are just as expressive as
homomorphism counts from the class ISHDk, which was necessary to prove Theorem 6.1,
we used an implicit result by Böker [4], who gives a su�cient set of properties for a class
C of hypergraphs, such that homomorphism indistinguishability over C is the same as
homomorphism indistinguishability over the corresponding class CI of incidence graphs. Since
HDk does not have these properties, Böker’s result cannot be applied with respect to HDk

and IHDk. In fact, we showed in Theorem 2.9 that homomorphism indistinguishability over
HDk is not the same as homomorphism indistinguishability over IHDk and furthermore, that
it is also not the same as homomorphism indistinguishability over SHDk.
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I Theorem 2.9. For every k œ NØ1 there exist pairs of hypergraphs (Gk,Hk) and (GÕ

k,H
Õ

k),
such that:

1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ”= Hom(HDk,Hk);
2. Hom(HDk,G

Õ

k) = Hom(HDk,H
Õ

k), but Hom(IHDk, IGÕ
k
) ”= Hom(IHDk, IHÕ

k
).

Further Research. It would be very interesting to see if the result by Böker (Theorem 2.7)
is tight in the sense that closure under pumping and local merging are su�cient and required

properties. I.e., whether for every class C that misses one of these properties, homomorphism
counts over C di�er from homomorphism counts over the corresponding class CI of incidence
graphs in their distinguishing power.

As mentioned in the introduction, this work can be seen as one more step in the search
of a “proper” lifting of the k-dimensional Weisfeiler-Leman algorithm to hypergraphs. Given
the relationship between Weisfeiler-Leman, C and homomorphism indistinguishability on
graphs [5, 7, 8, 9, 10, 11], we believe that the proper lifting should admit a similar relationship
to the corresponding hypergraph parameters. Hence, we believe that the distinguishing power
of such an algorithm should match homomorphism indistinguishability over the class GHWk

of hypergraphs of generalised hypertree width at most k and thus also indistinguishability
by the logic GC

k. Since we believe that GCk is the natural lifting of Ck in this setting, this
paper adds to this picture: The k-dimensional Weisfeiler-Leman algorithm restricted to
m iterations should have the same distinguishing power as the intersection of the classes
GHWk fl SHDm. Hence, the mismatch we uncovered in this work might propagate to the
Weisfeiler-Leman algorithm.
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Abstract

A recent breakthrough by Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and WÍgrzycki (ICALP
2023) bounds the running time for the coverability problem in d-dimensional vector addition systems
under unary encoding to n2O(d)

, improving on Racko�’s n2O(d lg d)
upper bound (Theor. Comput.

Sci. 1978), and provides conditional matching lower bounds.
In this paper, we revisit LaziÊ and Schmitz’ “ideal view” of the backward coverability algorithm

(Inform. Comput. 2021) in the light of this breakthrough. We show that the controlled strongly
monotone descending chains of downwards-closed sets over Nd that arise from the dual backward
coverability algorithm of LaziÊ and Schmitz on d-dimensional unary vector addition systems also
enjoy this tight n2O(d)

upper bound on their length, and that this also translates into the same
bound on the running time of the backward coverability algorithm.

Furthermore, our analysis takes place in a more general setting than that of LaziÊ and Schmitz,
which allows to show the same results and improve on the 2EXPSPACE upper bound derived by
Benedikt, Du�, Sharad, and Worrell (LICS 2017) for the coverability problem in invertible a�ne
nets.
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1 Introduction

Well-Quasi-Orders (wqo for short) are a notion from order theory [29, 41] that has proven
very e�ective in many areas of mathematics, logic, combinatorics, and computer science
in order to establish finiteness statements. For instance, in the field of formal verification,
they provide the termination arguments for the generic algorithms for well structured
transition systems [1, 23], notably the backward coverability algorithm for deciding safety
properties [3, 1, 23].

In full generality, one cannot extract complexity bounds from wqo-powered termination
proofs. Nevertheless, in an algorithmic setting, one can “instrument” wqos by considering
so-called controlled sequences [41, 39], and new tight complexity upper bounds for wqo-based
algorithms now appear on a regular basis [40, 4, 6, 5, 26, for a few recent examples].

Those complexity upper bounds are however astronomically high, and sometimes actually
way too high for the problem at hand. An emblematic illustration of this phenomenon is the
backward coverability algorithm for vector addition systems (VAS), which was shown to run
in double exponential time by Bozzelli and Ganty [13] based on an original analysis due to
Racko� [37]: the corresponding bounds over the wqo Nd are Ackermannian [20].
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Descending Chains. One way pioneered by LaziÊ and Schmitz [32] to close such complexity
gaps while retaining some of the wide applicability of wqos and well structured transition
systems is to focus on the descending chains of downwards closed sets over the wqo at
hand. Indeed, one of the equivalent characterisations of wqos is the descending chain
condition [29, 41], which guarantees that those descending chains are finite.

In themselves, descending chains are no silver bullet: e.g., the controlled descending
chains over Nd are also of Ackermannian length [32, Thm. 3.10]. Nevertheless, these chains
sometimes exhibit a form of “monotonicity,” which yields vastly improved upper bounds.
When applied to a dual version of the backward coverability algorithm in well structured
transition systems, this allows to recover the same double exponential time upper bound as
in [13, 37] for the VAS coverability problem, along with tight upper bounds for coverability
in several VAS extensions. The same framework was also the key to establishing tight bounds
for coverability in ‹-Petri nets [31]. As a further testimony to the versatility of the approach,
Benedikt, Du�, Sharad, and Worrell use it in [7] to derive original upper bounds for problems
on invertible polynomial automata and invertible a�ne nets, in a setting that is not strictly
speaking one of well structured transition systems.

Fine-grained Bounds for VAS Coverability. The coverability problem in VAS is well-known
to be EXPSPACE-complete, thanks to Racko�s’s 1978 upper bound [37] matching a 1976
lower bound by Lipton [34]. The main parameter driving this complexity is the dimension of
the system: the problem is in pseudo-polynomial time in fixed dimension d; more precisely,
Racko�’s analysis yields a n

2
O(d lg d) deterministic time upper bound for d-dimensional VAS

encoded in unary [38], by proving the same bound on the length of a covering execution of
minimal length. Here, there is a discrepancy with the n

2
�(d) lower bound on the length of

that execution in Lipton’s construction – a discrepancy that was already highlighted as an
open problem in the early 1980’s by Mayr and Meyer [35], and settled in the specific case
of reversible systems by Koppenhagen and Mayr [28]. The upper bounds of both Bozzelli
and Ganty [13] and LaziÊ and Schmitz [32] on the complexity of the backward coverability
algorithm inherit from Racko�’s n2

O(d lg d) bound and su�er from the same discrepancy.
This was the situation until Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and

WÍgrzycki [30] showed an n
2
O(d) upper bound on the length of minimal covering executions

of unary encoded d-dimensional VAS, matching Lipton’s lower bound [30, Thm. 3.3]. This
directly translates into a deterministic algorithm with the same upper bound on the running
time [30, Cor. 3.4]. Furthermore, assuming the exponential time hypothesis, Künnemann
et al. also show that there does not exist a deterministic n

o(2d) time algorithm deciding
coverability in unary encoded d-dimensional VAS [30, Thm. 4.2].

Thinness. The improved upper bound relies on the notion of a thin vector in Nd [30,
Def. 3.6] (somewhat reminiscent of the “extractors” of Leroux [33]). The proof of [30,
Thm. 3.3] works by induction on the dimension d. By splitting a covering execution of
minimal length at the first non-thin configuration, Künnemann et al. obtain a prefix made of
distinct thin configurations (which must then be of bounded length), and a su�x starting
from a configuration with some components high enough to be disregarded, hence that can
be treated as an execution in a VAS of lower dimension, on which the induction hypothesis
applies.

Contributions. In this paper, we show that the improved n
2
O(d) upper bound of Künnemann

et al. [30] also applies to the number of iterations of the backward coverability algorithm
for d-dimensional VAS encoded in unary (see Theorem 4.2). In order to do so, one could
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reuse the approach of Bozzelli and Ganty [13] to lift the improved bound from the length of
minimal covering executions to the running time of the backward coverability algorithm, but
here we aim for the generality of the framework of [32].

Our main contribution is thus to show in Section 3 that the upper bounds on the length
of strongly monotone controlled descending chains of downwards closed sets over Nd – which
include those constructed during the running of the backward coverability algorithm for VAS
– can be improved similarly (see Theorem 3.6) when focusing on a suitably generalised notion
of thinness. As a byproduct, we observe that thinness is an inherent property of such chains
(see Corollary 3.7), rather than an a priori condition that – almost magically – yields the
improved bound.

We apply our results to the coverability problem in vector addition systems in Section 4.2
– thus providing as promised an alternative to applying Bozzelli and Ganty’s approach to
Künnemann et al.’s results – and show that the backward coverability algorithm runs in
time n

2
O(d) (see Corollary 4.5) and is therefore conditionally optimal by [30, Thm. 4.2].

As a further demonstration of the versatility of our results, we show in Section 4.3 how to
apply them to invertible a�ne nets, a generalisation of vector addition systems introduced
by Benedikt et al. [7], and a good showcase for our techniques. We obtain the same bounds
for their coverability problem as in the case of vector addition systems (see Theorem 4.11
and Corollary 4.12), and thereby improve on the 2EXPSPACE upper bound of [7] by showing
that the problem is actually EXPSPACE-complete (see Corollary 4.13). Along the way, we
will see that the improved upper bounds also apply for other VAS extensions, for which
Racko�’s proof scheme had been successfully adapted (see Remarks 4.4 and 4.15), namely
strictly increasing a�ne nets [11], branching VAS [16], and alternating VAS [15].

2 Well-Quasi-Orders and Ideals

We start by introducing the necessary background on well-quasi-orders, descending chains,
and order ideals.

Well-Quasi-Orders. A quasi-order (X,Æ) comprises a set X and a transitive reflexive
relation Æ ™ X ◊X. For a subset S ™ X, its downward closure is the set of elements smaller
or equal to some element in S, i.e., ¿S def= {x œ X | ÷y œ S . x Æ y}. When S = {y} is
a singleton, we note ¿y for this set. A subset S ™ X is downwards-closed if S = ¿S. A
well-quasi-order is a quasi-order (X,Æ) such that all the descending chains

D0 ) D1 ) D2 ) · · · (1)

of downwards-closed subsets Dk ™ X are finite [29, 41].
Conversely, the upward closure of a subset S ™ X is øS def= {x œ X | ÷y œ S . y Æ x},

and S is upwards-closed if S = øS. The complement X \D of a downwards-closed set D

is upwards-closed (and conversely), hence wqos have the ascending chain condition for
chains U0 ( U1 ( · · · of upwards-closed sets: they are necessarily finite. Furthermore, any
upwards-closed set U over a wqo has a finite basis B such that U = øB [29, 41]; without loss
of generality, we can take the elements of B to be minimal and mutually incomparable in U .

A well-studied wqo is (Nd
,ı) the set of d-dimensional vectors of natural numbers along

with the component-wise (aka product) ordering [17]; see Figure 1 for an illustration of
a descending chain over N2, which happens to be produced by the backward coverability
algorithm for a vector addition system [32, Ex. 3.6].

ICALP 2024
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D0 = {(Ê, 4)} D1 = {(1, 4), (Ê, 3)} D2 = {(1, 4), (3, 3), (Ê, 2)}

D3 = {(1, 4), (3, 3), (5, 2), (Ê, 1)} D4 = {(1, 4), (3, 3), (5, 2),
(7, 1), (Ê, 0)}

D5 = {(1, 4), (3, 3), (5, 2),
(7, 1), (9, 0)}

Figure 1 A descending chain D0 ) D1 ) · · · ) D5 over N2 [32, Ex. 3.6].

Order Ideals. An order ideal of X is a downwards-closed subset I ™ X, which is directed: it
is non-empty, and if x, xÕ are two elements of I, then there exists y in I with x Æ y and x

Õ Æ y.
Alternatively, order ideals are characterised as the irreducible non-empty downwards-closed
sets of X: an order ideal is a non-empty downwards-closed set I with the property that, if
I ™ D1 fi D2 for two downwards-closed sets D1 and D2, then I ™ D1 or I ™ D2.

Over a wqo (X,Æ), any downwards-closed set D ™ X has a canonical decomposition as
a finite union of order ideals D = I1 fi · · · fi In, where the Ij ’s are mutually incomparable
for inclusion [12, 25]. We write I œ D if I is an order ideal appearing in the canonical
decomposition of D, i.e., if it is a maximal order ideal included in D. Then D ™ D

Õ if and
only if, for all I œ D, there exists I Õ œ D

Õ such that I ™ I
Õ.

E�ective Representations over Nd
. Over the wqo (Nd

,ı), the order ideals are exactly
the sets of the form ¿v fl Nd where v ranges over Nd

Ê
def= (N ‡ {Ê})d, where Ê is a new top

element [25]. From here on, we will abuse notations and identify an order ideal I of Nd with
the vector v in Nd

Ê such that I = ¿v fl Nd. See for instance the decompositions in Figure 1.
Let us introduce some notations for the sets of infinite and finite components of I, namely

Ê(I) def= {1 Æ i Æ d | I(i) = Ê} , fin(I) def= {1 Æ i Æ d | I(i) < Ê} , (2)

along with its dimension and finite dimension, respectively defined as

dim I
def= |Ê(I)| , fdim I

def= |fin(I)| . (3)

Note that fin(I) = {1, . . . , d} \ Ê(I) and fdim I = d ≠ dim I. For instance, the order ideal
I = (Ê, 4) in the decomposition of D0 in Figure 1 satisfies Ê(I) = {1} and dim I = 1.

The order ideals of Nd, when represented as vectors in Nd
Ê, are rather easy to manipu-

late [25] – and thus so are the downwards-closed subsets of Nd when represented as finite
sets of vectors in Nd

Ê. For instance,
I ™ I

Õ (as subsets of Nd) if and only if I ı I
Õ (as vectors in Nd

Ê) – which incidentally entails
Ê(I) ™ Ê(I Õ) and therefore dim I Æ dim I

Õ; also note that, if I ™ I
Õ and dim I = dim I

Õ,
then Ê(I) = Ê(I Õ);
the intersection of two order ideals is again an order ideal, represented by the vector
I · I

Õ defined by (I · I
Õ)(i) def= min(I(i), I Õ(i)) for all 1 Æ i Æ d;

the complement of an order ideal I is the upwards-closed set
t

iœfin(I) ø
!
(I(i) + 1) · ei

"
,

where ei denotes the unit vector with “1” in coordinate i and “0” everywhere else.
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Proper Ideals and Monotonicity. If D ) D
Õ, then there must be an order ideal I œ D

such that I ”œ D
Õ. Coming back to a descending chain D0 ) D1 ) · · · ) D¸, we then say

that an order ideal I is proper at step k, for 0 Æ k < ¸, if I œ Dk but I ”œ Dk+1; at each
step 0 Æ k < ¸, there must be at least one proper order ideal. In Figure 1, (Ê, 4) is proper at
step 0, and more generally (Ê, 4 ≠ k) is the only proper order ideal at step 0 Æ k < 5.

It turns out that the descending chains arising from some algorithmic procedures, including
the backward coverability algorithm for VAS, enjoy additional relationships between their
proper order ideals. Over (Nd

,ı), we say that a descending chain D0 ) D1 ) · · · is
strongly monotone [36, 7] if, whenever an ideal Ik+1 is proper at some step k + 1, then
there exists Ik proper at step k such that dim Ik+1 Æ dim Ik, and
in particular Ê-monotone [32] if, whenever an ideal Ik+1 is proper at some step k + 1,
then there exists Ik proper at step k such that Ê(Ik+1) ™ Ê(Ik).

The descending chain depicted in Figure 1 is Ê-monotone – and thus strongly monotone –
with Ê((Ê, 4 ≠ (k + 1))) ™ Ê((Ê, 4 ≠ k)) for all 4 > k Ø 0.

Controlled Sequences. While guaranteed to be finite, descending chains over a wqo can have
arbitrary length. Nevertheless, their length can be bounded under additional assumptions.
We define the size of a downwards-closed subset of Nd and of an order ideal of Nd as

ÎDÎ def= max
IœD

ÎIÎ , ÎIÎ def= max
iœfin(I)

I(i) . (4)

In Figure 1, ÎD0Î = ÎD1Î = ÎD2Î = 4, ÎD3Î = 5, ÎD4Î = 7, and ÎD5Î = 9.
Given a control function g:N æ N, which will always be monotone (i.e., ’x Æ y.g(x) Æ

g(y)) and expansive (i.e., ’x.x Æ g(x)) along with an initial size n0 œ N, we say that a
descending chain D0 ) D1 ) · · · over Nd is (g, n0)-controlled if, for all k Ø 0,

ÎDkÎ Æ g
k(n0) (5)

where g
k(n0) is the kth iterate of g applied to n0 [39]. In particular, ÎD0Î Æ n0 initially. In

Figure 1, the descending chain is (g, 4)-controlled for g(x) def= x+ 1.

3 Main Result

In this section, we establish a new bound on the length of controlled strongly monotone des-
cending sequences. This relies on a generalisation of the notion of thinness from Künnemann
et al. [30, Def. 3.6] (see Section 3.1), before we can apply thinness in the setting of strongly
monotone descending chains and prove our main result in Section 3.2.

3.1 Thinness

Fix a control function g, an initial size n0, and a dimension d Ø 0. Define inductively the
bounds on sizes (Ni)0ÆiÆd and lengths (Li)0ÆiÆd as follows

N0
def= n0 , Ni+1

def= g
Li+1(n0) , (6)

L0
def= 0 , Li+1

def= Li +
Ÿ

1ÆjÆi+1

(d ≠ j + 1)(Nj + 1) . (7)

Beware the abuse of notation, as the bounds above depend on (g, n0) and d, but those will
always be clear from the context.
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I Remark 3.1 (Monotonicity of (Ni)0ÆiÆd and (Li)0ÆiÆd). By definition, for all 0 Æ i < j Æ d,
0 Æ Li < Lj , and because g is assumed monotone expansive, n0 Æ Ni Æ Nj . y

The following definition generalises [30, Def. 3.6] to handle order ideals and an arbitrary
control function and initial size.

IDefinition 3.2 (Thin order ideal). Let (g, n0) be a control function and initial size and d > 0 a
dimension. An order ideal I of Nd is thin if there exists a bijection ‡ : fin(I) æ {1, . . . , fdim I}
such that, for all i œ fin(I), I(i) Æ N‡(i).

Observe that that, if I Õ is thin, I ™ I
Õ, and dim I = dim I

Õ, then I is thin.
I Remark 3.3 (Number of thin order ideals). There cannot be more than

!d
i

"
·i!·

r
1ÆjÆi(Nj+1) =r

1ÆjÆi(d ≠ j + 1)(Nj + 1) distinct thin order ideals of finite dimension i. As will become
apparent in the proofs, this is what motivates the definition in (7). y

3.2 Thinness Lemma

The crux of our result is the following lemma.

I Lemma 3.4 (Thinness). Consider a (g, n0)-controlled strongly monotone descending
chain D0 ) D1 ) · · · of downwards-closed subsets of Nd. If I¸ is a proper order ideal
at some step ¸, then I¸ is thin and ¸ Æ Lfdim I¸

.

The proof of Lemma 3.4 proceeds by induction over the finite dimension fdim I¸ =
d ≠ dim I¸. For the base case where I¸ has full dimension dim I¸ = d, then I¸ = (Ê, . . . ,Ê)
is thin and D¸ = Nd is the full space, which can only occur at step ¸ = 0 = L0. For the
induction step, we first establish thinness with the following claim; note that, as just argued,
an order ideal of dimension d is necessarily thin. We then follow with the bound on ¸ to
complete the proof of Lemma 3.4.

B Claim 3.5. Let 0 Æ d
Õ
< d and assume that Lemma 3.4 holds for all proper order ideals I Õ of

dimension dim I
Õ
> d

Õ. If I is any (not necessarily proper) order ideal of dimension dim I = d
Õ

appearing as a maximal ideal in the descending chain D0 ) D1 ) · · · , then I is thin.

Proof of Claim 3.5. Let k be a step where I appears in the descending chain D0 ) D1 ) · · · ,
i.e., I œ Dk, and let us write Ik

def= I. If k > 0, since Dk ™ Dk≠1, there exists an order ideal
Ik≠1 œ Dk≠1 such that Ik ™ Ik≠1. If k = 0, or by repeating this argument if k > 0, we
obtain a chain of order ideals (with decreasing indices)

Ik ™ Ik≠1 ™ · · · ™ I0 (8)

where Im œ Dm for all k Ø m Ø 0. Every order ideal in that chain must have dimension at
least dim Ik = d

Õ since they all contain Ik. Two cases arise.
1. If every order ideal in the chain (8) has dimension dim Ik, then because the descending

chain D0 ) D1 ) · · · is (g, n0)-controlled, we have ÎI0Î Æ n0 = N0 and we know by
Remark 3.1 that I0 is thin. Since Ik ™ I0 and dim Ik = dim I0, Ik is also thin.

2. Otherwise there exists a first index K along the chain (8) where the dimension increases,
i.e., such that dim Ik < dim IK and dim Im = dim Ik for all k Ø m > K. Then
IK is proper, as otherwise DK+1 would contain two distinct but comparable order
ideals in its canonical decomposition, namely IK and IK+1: indeed, IK+1 ™ IK and
dim IK+1 = dim Ik < dim IK imply IK+1 ( IK . By assumption, Lemma 3.4 can be
applied to IK of dimension dim IK > dim Ik = d

Õ, thus IK is thin and K Æ Lfdim IK .
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Let us now show that IK+1 is thin, which will also yield that Ik is thin since Ik ™ IK+1

and dim Ik = dim IK+1.
Since dim IK+1 < dim IK , we let f def= dim IK ≠dim IK+1 = fdim IK+1 ≠ fdim IK > 0. As
furthermore IK+1 ™ IK , Ê(IK+1) ( Ê(IK) and we let {i1, . . . , if} def= Ê(IK) \ Ê(IK+1) =
fin(IK+1) \ fin(IK).
Since IK is thin, there exists a bijection ‡ : fin(IK) æ {1, . . . , fdim (IK)} such that
IK(i) Æ N‡(i) for all i œ fin(IK). We extend ‡ to a bijection ‡

Õ : fin(IK) ‡ {i1, . . . , if} æ
{1, . . . , fdim IK + f}: we let ‡

Õ(i) def= ‡(i) for all i œ fin(IK), and ‡
Õ(ij) def= fdim IK + j for

all 1 Æ j Æ f . Let us check that ‡
Õ witnesses the thinness of IK+1.

Because IK+1 ™ IK , for all those i œ fin(IK), IK+1(i) Æ IK(i) Æ N‡(i) = N‡Õ(i).
Since K + 1 Æ Lfdim IK + 1 and since the descending chain D0 ) D1 ) · · · is (g, n0)-
controlled, we have a bound of gLfdim IK

+1(n0) = Nfdim IK+1 on all the finite components
of IK+1, and in particular IK+1(ij) Æ Nfdim IK+1 for all 1 Æ j Æ f . By Remark 3.1,
we conclude that IK+1(ij) Æ Nfdim IK+j = N‡Õ(ij) for all 1 Æ j Æ f . C

Proof of Lemma 3.4. We have already argued for the base case, so let us turn to the
inductive step where dim I¸ < d. If ¸ > 0 and since our descending chain is strongly
monotone, we can find an order ideal I¸≠1 proper at step ¸ ≠ 1 such that dim I¸ Æ dim I¸≠1.
Both if ¸ = 0 or by repeating this argument, we obtain a sequence of order ideals (with
decreasing indices)

I¸, I¸≠1, . . . , I0 (9)

where, for each ¸ > k Ø 0, Ik is proper at step k, and dim Ik+1 Æ dim Ik.
Let us decompose our sequence (9) by identifying the first step L where dim IL+1 < dim IL;

let L def= ≠1 if this never occurs. After this step, for all L Ø k Ø 0, dim Ik > dim I¸. Within
the initial segment, for ¸ Ø k > L, the dimension dim Ik remains constant equal to dim I¸,
and the induction hypothesis allows to apply Claim 3.5 and infer that every order ideal Ik in
this initial segment, and in particular I¸ among them, is thin.

It remains to provide a bound on ¸. The ¸ ≠L order ideals in the initial segment are thin,
and distinct since they are proper, hence by Remark 3.3,

¸ Æ L+
Ÿ

1ÆiÆfdim I¸

(d ≠ i+ 1)(Ni + 1) . (10)

If L Ø 0 we can apply the induction hypothesis to the proper order ideal IL of finite
dimension fdim IL < fdim I¸ along with Remark 3.1 to yield L Æ Lfdim IL Æ Lfdim I¸≠1

and therefore

¸ Æ Lfdim I¸≠1 +
Ÿ

1ÆiÆfdim I¸

(d ≠ i+ 1)(Ni + 1) = Lfdim I¸
. (11)

If L = ≠1 then (11) also holds since Lfdim I¸≠1 Ø 0 > L in (10). J
We deduce a general combinatorial statement on the length of controlled strongly monotone

descending chains, that generalises and refines [32, Thm. 4.4] thanks to thinness.

I Theorem 3.6 (Length function for strongly monotone descending chains). Consider a (g, n0)-
controlled strongly monotone descending chain D0 ) · · · ) D¸ of downwards-closed subsets
of Nd. Then ¸ Æ Ld + 1.

Proof. In such a descending chain, either ¸ = 0 Æ Ld + 1, or ¸ > 0 and there must be an
order ideal I proper at step ¸ ≠ 1, and I has finite dimension at most d. By Lemma 3.4
and Remark 3.1, ¸ ≠ 1 Æ Lfdim I Æ Ld in that case. J
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3.3 Thin Order Ideals and Filters

Let us conclude this section with some consequences of Lemma 3.4 and Claim 3.5. Whereas
thinness was posited a priori in the proof of Künnemann et al. [30, Thm. 3.3] and then shown
to indeed allow a suitable decomposition of minimal covering executions and to eventually
prove their result, here in the descending chain setting it is an inherent property of all the
order ideals appearing in the chain, thereby providing a “natural” explanation for thinness.

I Corollary 3.7. Consider a (g, n0)-controlled strongly monotone descending chain D0 )
D1 ) · · · of downwards-closed subsets of Nd. Then every order ideal appearing in the chain
is thin.

Corollary 3.7 also entails a form of thinness of the minimal configurations in the comple-
ment of the downwards-closed sets Dk. Recall that such a complement is the upward-closure
of a finite basis Bk

def= minı Nd \Dk. Each element v œ Bk is a vector defining a so-called
(principal) order filter øv of Nd. Let us call a vector v œ Nd nearly thin if there exists a
permutation ‡ : {1, . . . , d} æ {1, . . . , d} such that, for all 1 Æ i Æ d, v(i) Æ N‡(i) + 1. We
can relate thin order ideals with nearly thin order filters, which by Corollary 3.7 applies to
every vector v œ

t
k Bk (see the full version for a proof).

I Proposition 3.8. If every order ideal in the canonical decomposition of a downwards-closed
set D ™ Nd is thin, then each v œ minı Nd \D is nearly thin.

4 Applications

We describe two applications of Theorem 3.6 in this section. The first application in Section 4.2
is to the coverability problem in vector addition systems, and relies on the analysis of the
backward coverability algorithm done in [32]. Thus we can indeed recover the improved
upper bound of Künnemann et al. [30] for the coverability problem in the more general
setting of descending chains, and show that the backward coverability algorithm achieves
this n2

O(d) upper bound (see Corollary 4.5).
The second application in Section 4.3 focuses on the coverability problem in invertible

a�ne nets, a class introduced by Benedikt et al. [7], who analysed the complexity of the
problem through a reduction to zeroness in invertible polynomial automata. We give a direct
analysis of the complexity of the backward coverability algorithm, which follows the same
lines as in the VAS case, and allows to improve on the 2EXPSPACE upper bound shown in [7]
for the problem, by showing that it is actually EXPSPACE-complete (see Corollary 4.13).
This application additionally illustrates the usefulness of considering strongly monotone
descending chains rather than the Ê-monotone ones, as the descending chains constructed by
the backward algorithm for invertible a�ne nets are in general not Ê-monotone.

As both applications take place in the framework of well-structured transition systems [1,
23], we start with a quick refresher on this framework, the backward coverability algorithm,
and its dual view using downwards-closed sets [32] in the upcoming Section 4.1.

4.1 Coverability in Well-Structured Transition Systems

Well-structured transition systems (WSTS) form an abstract family of computational models
where the set of configurations is equipped with a well-quasi-ordering “compatible” with the
computation steps. This wqo ensures the termination of generic algorithms checking some
important behavioural properties like coverability and termination. While the idea can be
traced back to the 1980’s [21], this framework has been especially popularised through two
landmark surveys [1, 23] that emphasised its wide applicability, and new WSTS models keep
being invented in multiple areas to this day.
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4.1.1 Well-Structured Transition Systems

A well-structured transition system (WSTS) [1, 23] is a triple (X,æ,Æ) where X is a set of
configurations, æ ™ X ◊ X is a transition relation, and (X,Æ) is a wqo with the following
compatibility condition: if x Æ x

Õ and x æ y, then there exists yÕ Ø y with x
Õ æ y

Õ.
The coverability problem below corresponds to the verification of safety properties, i.e.,

to checking that no bad configuration can ever be reached from a given initial configuration
s œ X. Here we are given an error configuration t œ X, and we assume that any configuration
larger than t is also an error.

I Problem (Coverability in well-structured transition systems).
input a well-structured transition system (X,æ,Æ) and two configurations s and t in X

question does s cover t, i.e., does there exist tÕ œ X such that s æú
t
Õ Ø t?

4.1.2 The Backward Coverability Algorithm

The first published version of this algorithm seems to date back to [3], where it was used to
show the decidability of coverability in vector addition systems extended with reset capabilities,
before it was rediscovered and generalised to well-structured transition systems [1].

The Algorithm. Given an instance of the coverability problem, the backward coverability
algorithm [3, 1, 23] computes (a finite basis for) the upwards-closed set

Uú
def= {x œ X | ÷tÕ Ø t . x æú

t
Õ} (12)

of all the configurations that cover t, and then checks whether s œ Uú.
The set Uú itself is computed by letting

U0
def= øt , Uk+1

def= Uk fi Pre÷(Uk) , (13)

where, for a set S ™ X, Pre÷(S) def= {x œ X | ÷y œ S . x æ y}. Then Uk = {x œ X | ÷tÕ Ø
t . x æÆk

t
Õ} is the set of configurations that can cover t in at most k steps. Equation (13)

defines a chain U0 ™ U1 ™ · · · of upwards-closed subsets of X. Furthermore, if U¸ = U¸+1 at
some step, then we have reached stabilisation: U¸ = U¸+k = Uú for all k. Thus we focus in
this algorithm on ascending chains U0 ( U1 ( · · · , which are finite thanks to the ascending
chain condition of the wqo (X,Æ). In order to turn (13) into an actual algorithm, one needs
to make some e�ectiveness assumptions on (X,æ,Æ), typically that Æ is decidable and a
finite basis for Pre÷(øx) can be computed for all x œ X [23, Prop. 3.5].

A Dual View. LaziÊ and Schmitz [32] take a dual view of the algorithm and define from (13)
a descending chain D0 ) D1 ) · · · of the same length where

Dk
def= X \ Uk (14)

for each k; this stops with Dú = X \ Uú the set of configurations that do not cover t. The
entire computation in (13) can be recast in this dual view, by setting

D0
def= X \ øt , Dk+1

def= Dk fl Pre’(Dk) , (15)

where, for a set S ™ X, Pre’(S) def= {x œ X | ’y œ X.(x æ y =∆ y œ S)} = X\(Pre÷(X\S)).
Under some e�ectiveness assumptions, in particular for manipulating ideal representations
over X, this can be turned into an actual algorithm [32, Sec. 3.1].

ICALP 2024



153:10 On the Length of Strongly Monotone Descending Chains over Nd

4.2 Coverability in Vector Addition Systems

Vector addition systems are a well-established model for simple concurrent processes [27]
equivalent to Petri nets, with far-reaching connections to many topics in theoretical computer
science. In particular, their coverability problem, which essentially captures safety checking,
has been thoroughly investigated from both a theoretical [27, 34, 37, 13, 32, 30] and a more
practical [19, 8, 24, 10] standpoint.

4.2.1 Vector Addition Systems

A d-dimensional vector addition system (VAS) [27] is a finite set A of vectors in Zd. It
defines a well-structured transition system (Nd

,æA,ı) with Nd as set of configurations and
transitions u æA u+a for all u in Nd and a in A such that u+a is in Nd. We work with a
unary encoding, and let ÎuÎ def= max1ÆiÆd |u(i)| and ÎAÎ def= maxaœA ÎaÎ for all u œ Zd and
A ™ Zd finite.

The coverability problem in vector addition systems was first shown decidable in 1969 by
Karp and Miller [27], before being proven EXPSPACE-complete when d is part of the input by
Lipton [34] and Racko� [37]. Note that the problem parameterised by d is trivial for d = 1
(a target t is coverable if and only if s Ø t or there exists a œ A with a > 0), hence we will
assume d Ø 2.

4.2.2 Complexity Upper Bounds

The dual backward coverability algorithm of Section 4.1.2 is straightforward to instantiate in
the case of a vector addition system. Figure 1 displays the computed descending chain for
the 2-dimensional VAS A÷2

def= {(≠2, 1)} and target configuration t def= (0, 5) [32, Ex. 3.6].

I Fact 4.1 ([32, claims 3.9 and 4.3]). The descending chain D0 ) D1 ) · · · defined by
equations (13–15) for a d-dimensional VAS A and a target vector t is (g, n0)-controlled for
g(x) def= x+ ÎAÎ and n0

def= ÎtÎ, and is Ê-monotone.

The length of the descending chain defined by equations (13–15) is the main source
of complexity for the whole backward coverability algorithm, and we can apply our own
Theorem 3.6 instead of [32, Thm. 4.4] in order to prove the following bound on this length,
where the combinatorics are somewhat similar to those of [30, Lem. 3.5].

I Theorem 4.2. The backward coverability algorithm terminates after at most n2
O(d) itera-

tions on a d-dimensional VAS encoded in unary.

Proof. Let n be the size of the input to the coverability problem; we assume in the following
that n, d Ø 2. By Fact 4.1 and due to the unary encoding, the descending chain D0 ) D1 )
· · · ) D¸ = Dú is (g, n0)-controlled for g(x) def= x + n and n0

def= n, and is Ê-monotone and
thus strongly monotone. By Theorem 3.6, ¸ Æ Ld + 1. Let us bound this value.

B Claim 4.3. Let g(x) def= x+ n and n0
def= n. Then, for all i Æ d,

Ni+1 = n · (Li + 2) , Li + 4 Æ n
3
i·(lg d+1)

.

Proof of Claim 4.3. In the case of Ni+1, by the definition of Ni+1 in (6), Ni+1 = g
Li+1(n0) =

n+ (Li + 1) · n = n · (Li + 2) as desired.
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Regarding Li, we proceed by induction over i. For the base case i = 0, L0 + 4 = 4 Æ
n
3
0·(lg d+1) since we assumed n, d Ø 2. For the induction step, by the definition of Li+1 in (7)

Li+1 + 4 = Li + 4 +
Ÿ

0ÆjÆi

(d ≠ j)(Nj+1 + 1)

Æ Li + 4 +
Ÿ

0ÆjÆi

(d ≠ j) · n · (Lj + 3)

Æ 2 · (dn)i+1 ·
Ÿ

0ÆjÆi

(Lj + 3) .

Here, since n Ø 2,

2 · (dn)i+1 Æ n
(i+1)(lg d+1)+1

and by induction hypothesis for j Æ i

Ÿ

0ÆjÆi

(Lj + 3) Æ n

q
0ÆjÆi

3
j
(lg d+1)

.

Thus, it only remains to see that, since i > 0,

3i+1 · (lg d+ 1) = (1 + 2 ·
ÿ

0ÆjÆi

3j) · (lg d+ 1)

Ø (1 + 30 + 3i) · (lg d+ 1) +
ÿ

0ÆjÆi

3j · (lg d+ 1)

Ø (i+ 1) · (lg d+ 1) + 1 +
ÿ

0ÆjÆi

3j · (lg d+ 1) .
C

Thus Ld + 1 Æ n
3
d·(lg d+1) by Claim 4.3, and this is in n

2
O(d) . J

I Remark 4.4 (Branching or alternating vector addition systems). The improved upper bound
parameterised by the dimension d in Theorem 4.2 also applies to some extensions of vector
addition systems, for which LaziÊ and Schmitz [32] have shown that the backward coverability
algorithm was constructing an Ê-monotone descending chain controlled as in Fact 4.1, namely

in [32, claims 6.7 and 6.8] for bottom-up coverability in branching vector addition
systems (BVAS) – which is 2EXP-complete [16] – , and
in [32, claims 5.4 and 5.5] for top-down coverability in alternating vector addition
systems (AVAS) – which is 2EXP-complete as well [15]. y

Recall that U¸ is the set of configurations that can cover the target t in at most ¸ steps,
hence Theorem 4.2 provides an alternative proof for [30, Thm. 3.3]: if there exists a covering
execution, then there is one of length in n

2
O(d) , from which an algorithm in n

2
O(d) follows

by [30, Thm. 3.2]. Regarding the optimality of Theorem 4.2, recall that Lipton [34] shows an
n
2

�(d) lower bound on the length of a minimal covering execution, which translates into the
same lower bound on the number ¸ of iterations of the backward coverability algorithm [13,
Cor. 2]. Finally, this also yields an improved upper bound on the complexity of the (original)
backward coverability algorithm. Here, we can rely on the analysis performed by Bozzelli
and Ganty [13, Sec. 3] and simply replace Racko�’s n2

O(d lg d) bound on the length of minimal
covering executions by the bound from Theorem 4.2.

I Corollary 4.5. The backward coverability algorithm runs in time n
2
O(d) on d-dimensional

VAS encoded in unary.
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Proof. Let n be the size of the input to the coverability problem and U0 ( U1 ( · · · ( U¸ = Uú
be the ascending chain constructed by the backward coverability according to (13). By
Theorem 4.2, ¸ is in n

2
O(d) .

Let Bk
def= minı Uk be the minimal basis at each step k. The algorithm computes Bk+1

from Bk as per (13) by computing minı Pre÷(øv) for each v œ Bk, adding the elements
of Bk, and removing any non-minimal vector. Thus each step can be performed in time
polynomial in n, d, and the number of vectors in Bk. Here, Bozzelli and Ganty’s analysis
in [13, Sec. 3] shows that ÎvÕÎ Æ g(ÎvÎ) for all vÕ œ minı Pre÷(øv), yielding a bound of
|Bk| Æ (gk(n) + 1)d Æ ((¸ + 1) · n+ 1)d, which is still in n

2
O(d) .

We can do slightly better. By Corollary 3.7, all the ideals in the canonical decomposition
of Dk

def= Nd \ Uk are thin, and in turn Proposition 3.8 shows that all the vectors in Bk are
nearly thin. Accordingly, let us denote by Filthin+1(Nd) the set of order filters øv such that v
is nearly thin. Then |Bk| Æ |Filthin+1(Nd)|, and the latter is in n

2
O(d) :

|Filthin+1(Nd)| Æ d! ·
Ÿ

1ÆiÆd

(Ni + 2)

Æ d! · nd ·
Ÿ

0ÆiÆd≠1

(Li + 4) (by Claim 4.3 on Ni)

Æ n
2d+

q
0ÆiÆd≠1

3
i·(lg d+1) (because d Æ n and by Claim 4.3 on Li)

Æ n
3
d·(lg d+1)

. (16)

Therefore, the overall complexity of the backward coverability algorithm is polynomial
in ¸, max0ÆkÆ¸ |Bk|, n, and d, which is in n

2
O(d) . J

The bounds in n
2
O(d) for ÎvÎ Æ Nd + 1 for all v œ minı Uk and for |minı Uk| Æ

|Filthin+1(Nd)| in the previous proof also improve on the corresponding bounds in [44, Thm. 9]
and [13, Thm. 2]. Recall that Künnemann et al. [30, Thm. 4.2] show that, assuming the
exponential time hypothesis, there does not exist a deterministic n

o(2d) time algorithm
deciding coverability in unary encoded d-dimensional VAS, hence the backward coverability
algorithm is conditionally optimal.

4.3 Coverability in A�ne Nets

A�ne nets [22], also known as a�ne vector addition systems, are a broad generalisation of
VAS and Petri nets encompassing multiple extended VAS operations designed for greater
modelling power.

4.3.1 A�ne Nets

A d-dimensional (well-structured) a�ne net [22] is a finite set N of triples (a, A, b) œ
Nd ◊ Nd◊d ◊ Nd. It defines a well-structured transition system (Nd

,æN ,ı) with Nd as set
of configurations and transitions u æN A · (u ≠ a) + b for all u in Nd and (a, A, b) in N
such that u ≠ a is in Nd. This model encompasses notably

VAS and Petri nets when (each such) A is the identity matrix Id,
reset nets [2, 3] when A is component-wise smaller or equal to Id,
transfer nets [14] when the sum of values in every column of A is one,
post self-modifying nets [43] – also known as strongly increasing a�ne nets [22, 11] – when
A is component-wise larger or equal to Id, and
invertible a�ne nets [7] when A is invertible over the rationals, i.e., A œ GLd(Q).
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As in the case of VAS, we will work with a unary encoding, and we let ÎNÎ def= max{ÎaÎ |
(a, A, b) œ N}; note that the entries from b and A are not taken into account.

I Example 4.6. Consider the a�ne nets

N1
def=

ÓË 2
0

È
,
Ë 1 0
0 1

È
,
Ë 0
1

ÈÔ
N2

def=
ÓË 0

0

È
,
Ë 1 1
0 0

È
,
Ë 0
0

ÈÔ
N3

def=
ÓË 0

0

È
,
Ë 1 1
2 0

È
,
Ë 0
0

ÈÔ
.

Then N1 defines the same WSTS as the 2-dimensional VAS A÷2 = {(≠2, 1)}. Focusing on
the e�ects of their transition matrices, N2 performs a transfer from its second component
into its first component, while N3 sums the values of its first two components into the first
one, and puts the double of its first component into its second one. y

The coverability problem for reset VAS was first shown decidable in 1978 by Arnold and
Latteux [3] using the backward coverability algorithm, and the same algorithm applies to all
a�ne nets [18, 22]. Its complexity is considerable: their coverability problem has already an
Ackermannian complexity in the reset or transfer cases [42, 20, 40]. In the strongly increasing
case, Bonnet, Finkel, and Praveen [11, Lem. 11 and Thm. 13] show how to adapt Racko�’s
original argument to derive an upper bound in n

2
O(d lg d) on the length of minimal coverability

witnesses, with an EXPSPACE upper bound for the problem when d is part of the input, while
in the invertible case, Benedikt et al. [7, Thm. 6] show a 2EXPSPACE upper bound.

Control. Before we turn to the case of invertible a�ne nets, let us show that the descending
chains defined by the backward coverability algorithm for a�ne nets are controlled, with a
control very similar to the VAS case (c.f. Fact 4.1).

I Proposition 4.7. The descending chain D0 ) D1 ) · · · defined by equations (13–15) for a
d-dimensional a�ne net N and a target vector t is (g, n0)-controlled for g(x) def= x+ ÎNÎ
and n0

def= ÎtÎ.

Proof. Rather than handling Pre’ computations directly, we use the fact that Pre’(S) =
Nd \ (Pre÷(Nd \ S)) for all S ™ Nd and the following statement on Pre÷ computations.

B Claim 4.8. If uÕ œ minı Pre÷(øu), then ÎuÕÎ Æ ÎuÎ + ÎNÎ.

Proof of Claim 4.8. In such a situation, there exists a triple (a, A, b) œ N such that uÕ ˆ a
and A · (uÕ ≠ a) ˆ u ≠ b. Let y be defined by y(i) def= max(u(i), b(i)) ≠ b(i) for all 1 Æ i Æ d,
thus of size ÎyÎ Æ ÎuÎ. Then uÕ = x+ a where x is a ı-minimal solution of the system of
inequalities Ax ˆ y.

We are going to show that if x is an ı-minimal solution, then ÎxÎ Æ ÎyÎ. This will yield
the result, as then ÎuÕÎ Æ ÎyÎ + ÎaÎ Æ ÎuÎ + ÎNÎ. Assume by contradiction that x is a
ı-minimal solution with x(j) > ÎyÎ for some 1 Æ j Æ d. Consider xÕ defined by xÕ(j) def= ÎyÎ
and xÕ(i) def= x(i) for all i ”= j; note that xÕ à x. Let us show that xÕ is also a solution, i.e.,
that AxÕ ˆ y: for all 1 Æ i Æ d,

if A(i, j) > 0 then
q

1ÆkÆd A(i, k) · xÕ(k) Ø xÕ(j) Ø ÎyÎ Ø y(i), and
otherwise

q
1ÆkÆd A(i, k) · xÕ(k) =

q
1ÆkÆd A(i, k) · x(k) Ø y(i) since x is a solution.

Thus xÕ is a solution, contradicting the ı-minimality of x. C

Now, since D0 = Nd \ øt, ÎD0Î Æ ÎtÎ ≠ 1 by [32, Lem. 3.8]. Regarding the control
function, Dk+1 = Dk fl Pre’(Dk) is such that ÎDk+1Î Æ max(ÎDkÎ, ÎPre’(Dk)Î) also by
[32, Lem. 3.8]. In turn, regarding Pre’(Dk) = Nd \ Pre÷(Uk), the minimal elements u of
Uk = Nd \Dk have size ÎuÎ Æ ÎDkÎ+ 1 still by [32, Lem. 3.8], thus the minimal elements uÕ

of Pre÷(Uk) have size ÎuÕÎ Æ ÎDkÎ+1+ÎNÎ by Claim 4.8, hence ÎPre’(Dk)Î Æ ÎDkÎ+ÎNÎ
by a last application of [32, Lem. 3.8]. J
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4.3.2 Invertible A�ne Nets

The restriction to invertible a�ne nets [7] is somehow orthogonal to the usual restrictions
to reset/transfer/post self-modifying/. . . nets. For instance, in Example 4.6, the identity
matrix in N1 is clearly invertible, and the transfer matrix in N2 is not. More generally, reset
nets are never invertible (when they perform resets), and transfer nets are invertible exactly
when their matrices are permutation matrices. Nevertheless, some more involved a�ne nets
are invertible, like N3 in Example 4.6, whose matrix is invertible with inverse

Ë 0 1/2
1 ≠1/2

È
.

Strong Monotonicity. When dealing with a descending sequence of downwards-closed sets
produced by the dual backward coverability algorithm for WSTS, a key observation made
in [32] allows to sometimes derive monotonocity. For this, in a WSTS (X,æ,Æ), define
Post÷(S) def= {y œ X | ÷x œ S . x æ y}. Following [9], for two order ideals I and I

Õ, write
I  I

Õ if I Õ appears in the canonical decomposition of ¿Post÷(I).

I Fact 4.9 ([32, Claim 4.2]). Let D0 ) D1 ) · · · be a descending chain of downwards-closed
sets defined by equations (13–15). If Ik+1 is an order ideal proper at step k + 1, then there
exists an order ideal I and an order ideal Ik proper at step k such that Ik+1  I ™ Ik.

In the case of a�ne nets, and identifying order ideals I with vectors in Nd
Ê with Ê + n =

Ê ≠ n = Ê · n = Ê for all n in N, ¿Post÷(I) = ¿{A · (I ≠ a) + b | (a, A, b) œ N , I ˆ a}.

I Proposition 4.10. The descending chain D0 ) D1 ) · · · defined by equations (13–15) for
a d-dimensional invertible a�ne net N and a target vector t is strongly monotone.

Proof. Let Ik+1 be proper at step k + 1. By Fact 4.9, there exists an order ideal I and an
order ideal Ik proper at step k such that Ik+1  N I ™ Ik. Let us show that dim Ik+1 Æ dim I;
as dim I Æ dim Ik because I ™ Ik, this will yield the result.

Since Ik+1  N I, there exists (a, A, b) in N such that I ≠ b = A · (Ik+1 ≠ a). For this
to hold, note that for all i œ fin(I), the ith row of A must be such that A(i, j) = 0 for all j œ
Ê(Ik+1). As A is invertible, those (fdim I)-many rows must be linearly independent. As just
argued, the jth column for each of these rows is made of zeroes whenever j œ Ê(Ik+1). Thus
the remaining (fdim Ik+1)-many columns must make those fdim I rows linearly independent,
hence necessarily fdim Ik+1 Ø fdim I, i.e., dim Ik+1 Æ dim I. J

Observe that the proof of Proposition 4.10 does not work for the transfer net N2 of Ex-
ample 4.6:

Ë
Ê
Ê

È
 N2

Ë
Ê
0

È
; this is exactly the kind of non-monotone behaviour invertibility

was designed to prevent. Also observe that
Ë 2

Ê

È
 N3

Ë
Ê
4

È
in the invertible a�ne net N3,

which is not an Ê-monotone behaviour: this illustrates the usefulness of capturing strongly
monotone descending chains, as [32, Thm. 4.4 and Cor. 4.6] do not apply.

Complexity Upper Bounds. We are now equipped to analyse the complexity of the backward
coverability algorithm in invertible a�ne nets. Regarding the length ¸ of the chain constructed
by the algorithm, by Propositions 4.7 and 4.10 we are in the same situation as in Theorem 4.2
and we can simply repeat the arguments from its proof.

I Theorem 4.11. The backward coverability algorithm terminates after at most n
2
O(d)

iterations on d-dimensional invertible a�ne nets encoded in unary when d Ø 2.

We deduce two corollaries from Theorem 4.11: one pertaining to the complexity of the
backward coverability algorithm in dimension d, which mirrors Corollary 4.5, and one for the
coverability problem when d is part of the input. Let us start with the backward coverability
algorithm.
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I Corollary 4.12. The backward coverability algorithm runs in time n
2
O(d) on d-dimensional

invertible a�ne nets encoded in unary when d Ø 2.

Proof. Theorem 4.11 shows that the length ¸ of the ascending chain U0 ( U1 ( · · · ( U¸ = Uú
constructed by the backward coverability algorithm is at most Ld + 1, which is in n

2
O(d) .

Let Bk
def= minı Uk denote the minimal basis at step k. In order to compute Bk+1 as per

(13), thanks to Claim 4.8, we could essentially argue as in the proof of Corollary 4.5, with
the caveat that computing bluntly minı Pre÷(øv) for each v œ Bk is dangerously similar to
a linear integer programming question and will incur an additional cost.

Alternatively, recall from equation (16) that Filthin+1(Nd), the set of order filters øv
such that v is nearly thin, has at most n2

O(d) elements, and that |Bk| Æ |Filthin+1(Nd)| by
Corollary 3.7 and Proposition 3.8. Thus in order to compute Bk+1 one can enumerate the
nearly thin vectors vÕ œ Filthin+1(Nd) and check for each (a, A, b) œ N such that vÕ ˆ a
whether there exists v œ Bk such that A · (vÕ ≠a)+b ˆ v. Each such check can be performed
in time polynomial in ÎvÕÎ Æ Nd + 1 = n · (Ld≠1 + 2) + 1, n, d, and |Bk| Æ |Filthin+1(Nd)|.
Thus the entire computation can be carried out in n

2
O(d) . J

As VAS are a particular case of invertible a�ne nets, the upper bounds in Corollary 4.12 are
optimal assuming the exponential time hypothesis by [30, Thm. 4.2].

Our last result concerns the complexity of coverability in invertible a�ne nets when d

is part of the input. Note that the arguments leading to an algorithm working in space
O(d lg(n · ¸)) in the VAS case [30, Thm. 3.2] – which are essentially the same as those used
to derive a 2EXPSPACE upper bound for invertible a�ne nets in [7, Thm. 6] – do not work
here, as the configurations along an execution of an a�ne net can grow exponentially with ¸.

I Corollary 4.13. The coverability problem for invertible a�ne nets is EXPSPACE-complete.

Proof. The hardness for EXPSPACE follows from the hardness of the coverability problem
for VAS [34]. Regarding the upper bound, consider the execution of the classical backward
coverability algorithm as defined in equation (13) on an invertible a�ne net N with target
configuration t: this is an ascending chain U0 ( U1 ( · · · ( U¸ where U¸ = U¸+1 = Uú. The
following characterisation of coverability actually holds more generally in WSTS.

B Claim 4.14. In an a�ne net N , s covers t if and only if there exists ¸
Õ Æ ¸ and a sequence

of configurations t0, . . . , t¸Õ , called a coverability pseudo-witness, satisfying

t0
def= t , tk+1 œ min

ı
Pre÷(øtk) , t¸Õ ı s . (17)

Proof of Claim 4.14. If a coverability pseudo-witness exists, then we claim that for all ¸
Õ Ø

k Ø 0 there exists sk ˆ tk such that s = s¸Õ æN s¸Õ≠1 æN · · · æN sk, and thus in particular
s æú

N s0 Ø t0 for k = 0. We can check this by induction over k. For the base case k = ¸
Õ,

define s¸Õ
def= s. For the induction step k, since tk+1 œ Pre÷(øtk) there exists sÕ

k ˆ tk such
that tk+1 æN sÕ

k; by WSTS compatibility and since sk+1 ˆ tk+1, there exists sk ˆ sÕ
k such

that sk+1 æN sk.
Conversely, assume that s covers t in N . Then s œ U¸, and let ¸

Õ Æ ¸ be the least index
such that s œ U¸Õ . Then either ¸

Õ = 0, i.e., s ˆ t = t0 and we are done, or ¸
Õ
> 0. Because

s œ U¸Õ there must be some t¸Õ œ minı U¸Õ with s ˆ t¸Õ , and t¸Õ ”œ U¸Õ≠1 as otherwise s
would be in U¸Õ≠1, contradicting the minimality of ¸

Õ. In general, if we have found a sequence
(tj)¸ÕØjØk>0 satisfying (17) until rank k + 1 included and know that tk œ (minı Uk) \ Uk≠1,
then either k = 1 and t1 œ minı Pre÷(øt0) by definition of U0 and U1 in (13), or k > 1
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and because tk ”œ Uk≠1, there exists tk≠1 œ minı Uk≠1 such that tk œ minı Pre÷(øtk≠1),
and tk≠1 ”œ Uk≠2 as otherwise we would have tk in Uk≠1. Repeating this process yields a
coverability pseudo-witness. C

By Claim 4.14, a non-deterministic algorithm for coverability can guess and check the
existence of a coverability pseudo-witness. By Theorem 4.11, such a pseudo-witness has a
length ¸

Õ Æ ¸ in n
2
O(d) . Furthermore, by Claim 4.8 the components in each tk in such a

pseudo-witness are bounded by ÎtÎ + ÎNÎ · k Æ (¸ + 1) · n, which is still in n
2
O(d) . Thus

exponential space su�ces. Note that this also holds when we assume the invertible a�ne net
to be encoded in binary, by substituting 2n for n in the bound n

2
O(d) . J

I Remark 4.15 (Strictly increasing a�ne nets). Strictly increasing a�ne nets [43, 22, 11] are
intuitively the a�ne nets devoid of any form of reset or transfer; in Example 4.6, only N1 is
strictly increasing. All the results we have proven for invertible a�ne nets in this section –
namely in Theorem 4.11 and Corollaries 4.12 and 4.13 – also hold for strictly increasing a�ne
nets, because the descending chains of downwards-closed sets they generate when running
the backward coverability algorithm are Ê-monotone.

B Claim 4.16. The descending chain D0 ) D1 ) · · · defined by equations (13–15) for a
d-dimensional strictly increasing a�ne net N and a target vector t is Ê-monotone.

Proof of Claim 4.16. Let Ik+1 be proper at step k + 1. By Fact 4.9, there exists an order
ideal I and an order ideal Ik proper at step k such that Ik+1  N I ™ Ik. Let us show that
Ê(Ik+1) ™ Ê(I); as Ê(I) ™ Ê(Ik) because I ™ Ik, this will yield the result.

Since Ik+1  N I, there exists (a, A, b) in N such that Ik+1 ˆ a and I = A ·(Ik+1≠a)+b.
Because N is strictly increasing, A = Id + A

Õ for some matrix A
Õ œ Nd◊d, hence I =

Ik+1 ≠ a+A
Õ · (Ik+1 ≠ a) + b. Thus I ˆ (Ik+1 ≠ a) and therefore Ê(I) ´ Ê(Ik+1). C

An EXPSPACE upper bound was already shown by Bonnet et al. [11] for the coverability
problem, but the n2

O(d) bound for the problem parameterised by d is an improvement over the
n
2
O(d lg d) bounds of [11, Lem. 11 and Thm. 13], and the bounds for the backward coverability

algorithm are new. y
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Abstract

We introduce an extension of classical cellular automata (CA) to arbitrary labeled graphs, and
show that FO logic on CA orbits is equivalent to MSO logic. We deduce various results from that
equivalence, including a characterization of finitely generated groups on which FO model checking
for CA orbits is undecidable, and undecidability of satisfiability of a fixed FO property for CA over
finite graphs. We also show concrete examples of FO formulas for CA orbits whose model checking
problem is equivalent to the domino problem, or its seeded or recurring variants respectively, on any
finitely generated group. For the recurring domino problem, we use an extension of the FO signature
by a relation found in the well-known Garden of Eden theorem, but we also show a concrete FO
formula without the extension and with one quantifier alternation whose model checking problem
does not belong to the arithmetical hierarchy on group Z2.
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1 Introduction

Symbolic dynamics was historically introduced as the study of one-dimensional infinite words
representing discretized orbits of smooth dynamical systems through a finite partition of
space [35, 34]. It has since then been largely extended to higher dimensions and arbitrary
Cayley graphs of finitely generated groups, and seen rich developments going way beyond
the initial motivations. The field of symbolic dynamics would now be better described as the
study of sets of configurations (i.e. coloring of a graph) which can be defined by local uniform
constraints (subshift of finite type, sofic subshift, etc) and maps on configurations acting by
a uniform and local update rule (cellular automata, and morphisms between subshifts, which
are the continuous maps commuting with translations [26, 12]). A fascinating aspects of these
objects is that they are very simple to define, yet can produce very complex behaviors which
make them challenging to analyze. They can be considered as a reasonable modeling tool [13],
but more importantly, they constitute a natural model of computation for which undecidablity
and computational hardness can arise in the most simple and seemingly unrelated questions
in a spectacular way [28, 30, 25, 9, 29].

In symbolic dynamics, a major trend is to relate the properties of the considered objects
(cellular automata or subshifts) to the structure of the underlying graph they are defined
on (usually Cayley graphs of finitely generated groups). An emblematic example is the
domino problem: since the breakthrough undecidability result of Berger [9], a lot of works
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have focused on the characterization of Cayley graphs of groups for which the domino
problem is undecidable [4, 5, 8, 7] or other graphs with less symmetries [20, 27]. Concerning
cellular automata (CA), properties of the global map that can be expressed in first-order
(FO) logic (or, said di�erently, FO properties of their orbit graph) are already challenging.
For instance, injectivity and surjectivity problems were shown decidable on Z [1] and on
context-free graphs [36], but undecidable on Z2 [29]. Other FO properties of CA were studied
in relation to the graph structure: the Gotschalk conjecture [12, 23] asks whether the property
“injectivity implies surjectivity” is true for all CA on all group. Besides, the garden of Eden
theorem [12] characterizes amenability among finitely generated groups by the fact that
another simple FO property1 is true for all CA on this group.

It turns out that many central problems considered in symbolic dynamics can actually
be rephrased in monadic second order logic (MSO). It was for instance noticed in [36] for
injectivity and surjectivity of CA. MSO is a logical language that has received enormous
interest, probably for its balance between expressivity and decidability in many cases. More
precisely, for graph properties, algorithmic metatheorems [36, 15, 17] and reciprocals [32, 33]
relates the complexity of the MSO model checking problem to the structure of considered
graph or graph family. The key parameter at play here is treewidth [39] which is related
to the non-existence of arbitrarily large grid minors [40]: bounded treewidth provides
positive algorithmic results, while arbitrarily large grid minors often allows lower bounds or
undecidability results. For instance, on a Cayley graph of a finitely generated group, the
MSO model checking problem is decidable if and only if the group is virtually free (meaning
having a free group as finite index subgroup) [33].

Of course, positive algorithmic results for MSO apply to the particular problems studied
in symbolic dynamics, but lower bounds or undecidability results for MSO are not directly
transferable. For instance, on the graph Z2, undecidability of MSO model checking follows
from a straightforward encoding of Turing machines, while undecidability of the domino
problem [9] or of injectivity problem of CA [29] requires detailed and non-straightforward
constructions that involves ideas and tools of independent interest (aperiodic tile sets and
space filling curves for instance). Moreover, it is still open to our knowledge whether both
problems are undecidable on any Cayley graph of group which is not virtually free. More
generally, much work remains to close the gap between the global understanding of MSO
logic on arbitrary graphs and the particular MSO fragments at sake in symbolic dynamics
that are mostly understood on Cayley graphs of some group families.

Contributions of the paper. In this paper we explore properties of CA on arbitrary labeled
graphs (finite or infinite). To do this, we introduce a definition of local rules of CA that
doesn’t use any explicit reference to the local structure of the graph as it is classically done,
but instead just relies on the notion of bounded labeled walks and multiset of possible states
read at the end of these walks. In particular, we don’t require the graph to be uniform nor
to have bounded degree, but our notion exactly corresponds to the classical one on Cayley
graphs of finitely generated groups. Moreover, a fixed CA local rule provides a well-defined
CA global map on any graph with same label sets. We can thus explore the influence of the
graph separately from the local rule. For instance, we can specify a graph property by a CA
local rule f and a FO property „ of CA orbits: the set of graphs on which the local rule f
induces a global map that satisfies „. Our main result (theorems 8, 9 and 12) is then an
equivalence between this approach and MSO logic, on arbitrary labeled graphs. Precisely,
for every class C of graphs, the following two conditions are equivalent:

1 As detailed in Section 5, it uses an additional relation in the FO signature which doesn’t break the main
point of our approach, an equivalence with MSO.
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there exists an MSO formula �, such that G œ C ≈∆ G |= �,
there exists a pair („, f), where „ is a FO formula and f is a CA local rule, such that
G œ C if and only if the global map induced by f on G satisfies „.

Moreover, the pair („, f) can be e�ectively constructed from �, and conversely.
Said di�erently, (FO,CA) pairs and MSO formulas define exactly the same graph languages,

and the corresponding model checking problems are many-one equivalent on any fixed graph.
We believe that this new characterization of MSO is particularly relevant in the context of
symbolic dynamics.

First, FO properties of orbits of CA are a conjugacy invariant and were much studied as
mentioned above. We obtain a characterization of the decidability of FO model checking for
CA orbits on Cayley graphs (Corollary 14) and we show that undecidability can be obtained
with a fixed FO formula (Corollary 16) exactly on non virtually free f.g. groups, which should
be put in perspective with the Ballier-Stein conjecture [6]. We also obtain undecidability of
a satisfiability problem for CA on finite graphs for a fixed FO formula (Corollary 17).

Besides, when fixing an arbitrary FO formula and letting the CA vary, we get fragments
of MSO that make sense beyond the examples directly motivated by CA theory. In particular,
we show in Section 5 that on Cayley graphs of finitely generated groups, such fragments
do not depend on the choice of generators, and that the domino problem and its variants
(seeded and recurring) are equivalent to the model checking problem of some simple fixed
FO formula (Theorem 19). For this we use an additional relation in the case of the recurring
domino problem that remains MSO-expressible (Lemma 18). Finally we obtain a FO formula
with just one quantifier alternation whose model checking problem does not belong to the
arithmetical hierarchy when fixing the graph Z2 (Theorem 20).

Warm-up examples. To fix ideas and give some intuition on how FO logic on CA orbits
can be used to express graph properties, let us consider two well-known MSO properties and
give an informal translation into a pair made of a FO formula and a CA local rule.

I Example 1 (k-Colorable graphs). Fix k and consider an undirected graph G = (V,E).
Consider the CA local rule with state set S = {0, . . . , k ≠ 1} such that a vertex in state i
changes its state to i+ 1 mod k if it has a neighbor in state i and remains in state i otherwise.
It can be checked that the CA induced on G by this local rule has a fixed-point if and only if
G admits a proper vertex coloring with k colors (i.e. a coloring where no two neighboring
vertices have the same color).

I Example 2 (Connected graphs). Consider an undirected graph G = (V,E). Consider the
state set S = {0, 1, a0, a1, a2} and the CA local rule such that a vertex in state i œ {0, 1}
becomes 1 ≠ i, a vertex in state ai becomes 0 if it has a neighbor in {0, 1} and ai+1 mod 3

otherwise. We claim that G is connected if and only if the CA induced on G by this local
rule has no periodic orbit of minimal period 6, which is obviously an FO property of orbits.

Comparison with another characterization of MSO by automata. Several previous works
established equivalence results between logic formalism and automata theory in the context
of MSO languages of graphs. As mentioned above, [36] already noticed that some cellular
automata properties can be translated into MSO. Following this, [44] and [42] introduced
tiling and automata recognizers that are equivalent to (small) fragments of MSO. In [37],
alternating distributed graph automata are introduced that recognize exactly the languages
of graphs definable in MSO logic. These distributed automata are close to CA in the sense
that they run on configurations (coloring of the input graph by states) and use finite local
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memory and local communication between neighboring vertices. However, they are highly
non-deterministic (alternating) and their accepting mechanism uses both initialization of
the run to a particular configuration, and a global knowledge of the final configuration
reached (precisely the set of states present in this configuration). Restrictions of this model
to deterministic or non-deterministic automata (instead of alternating) gives strictly weaker
fragments.

Our goal here is not to define a single automata model equivalent to MSO. Instead our
approach motivated by symbolic dynamics uses deterministic CA on one hand and quantifier
alternations in a separated FO formula which plays also the role of the accepting condition on
the other hand. A key aspect is that we thus get natural fragments of MSO by fixing the FO
formula and letting the CA rule vary. This also makes a strong di�erence with distributed
alternating automata in the accepting mechanism since the FO formula does not o�er any
direct means of initializing some computation on a particular configuration, nor to detect
presence of some particular states in a final configuration.

2 Formal definitions

Graphs. A (�,�)-labeled graph is a graph G = (V, (E”)”œ�, L), which can be finite or
infinite, where L : V æ � is the vertex labeling and E” ™ V ◊ V are the edges labeled by
”. In such a graph, given some finite word w = w1 · · ·wk œ �ú, a path labeled by w is a
sequence of vertices v1, . . . , vk+1 such that, for any 1 Æ i Æ k, (vi, vi+1) œ Ewi . All graphs
considered in this paper are simple, meaning that there is at most one edge of a given label
between two given vertices2. Such a graph is said to be connected if it is connected as an
undirected and unlabeled graph, i.e. if G = (V,E) is connected where (v, vÕ) œ E if either
(v, vÕ) œ E” or (vÕ, v) œ E” for some ” œ �. The set of connected graphs is denoted by C.
� will in some case be a singleton and can therefore be silently omitted: we speak about
�-labeled graph in this case. An important class of graphs studied in symbolic dynamics
is that of Cayley graphs of finitely generated (f.g.) groups. Given a f.g. group (�, ·) and
a (finite) set of generators � (including their inverses), the associated Cayley graph is the
�-labeled graph where (“, “Õ) œ E” if and only if “Õ = “ · ”. An undirected graph G1 is a
minor of another undirected graph G2 if it can be obtained from G2 by deleting edges and
vertices, and by contracting edges (i.e. identifying the vertices incident to the edge without
creating multiple edges).

Cellular automata. Given a finite set of states S and a set of vertices V , a configuration
is an element of SV . It can be seen as a coloring of vertices by S. A CA is a map from
configurations to configurations, that is induced by a uniform local rule. It is generally
studied as a dynamical system through its set of orbits, which are sequences of configurations
obtained by iterating the map from an initial configuration.

CA are usually defined over a fixed Cayley graph of a (f.g.) group [12]. Following this
classical approach, the local rule defining a CA is formally a lookup table and is bound to a
particular graph as it relies on local patterns defined over bounded balls of the graph. It
also requires the graph to be uniform and of bounded degree. More general definitions were
proposed that don’t stick to a particular graph [3, 2], but they still rely on the hypothesis of
bounded degree and use a particular labeling by port numbers.

2 The hypothesis that our graphs are simple will be used in sections 4 and 5. We choose to adopt this
hypothesis across the entire paper for simplicity and clarity, however the main results from Section 3
should also hold without this hypothesis.
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We introduce in this section a simple definition of CA on arbitrary labeled graphs. The
key advantage of our formalism is that a given local rule actually defines a CA on any labeled
graph for fixed label sets. We can therefore fix a local rule and asks on which graphs the
corresponding CA has a given property (as sketched in Section 1): a pair made of a local rule
and a property of CA dynamics actually defines a property of graphs. Moreover, on Cayley
graphs of f.g. groups our formalism is equivalent to the classical one. The CA local rules
we consider can intuitively be seen as finite memory and finite distance exploring machines
working as follows in parallel from each vertex v: they walk from v following all possible
�-labeled walks up to some length r, and harvest states seen at the end of these walks and
count their occurrences up to some constant k, then they decide from this information (a
multiset) the new state at vertex v. From this point of view, the edge labeling by � acts
as local directions that give more information on the position in the graph given a labeled
walk, while vertex labeling ‡ gives some level of non-uniformity as in non-uniform cellular
automata [18].

Let us now formalize this definition. Given v œ V and a word w œ �ú, we denote by
R

w(v) the set of vertices reachable from v by a path labeled by w. If w = ‘ (empty word),
then R

w(v) = {v} by definition. If G is the Cayley graph of a f.g. group, then R
w(v) is

always a singleton, however there are generally several paths reaching the same vertex.
The k-capped multisets over set X are the multisets where no cardinality is greater than

k, and are denoted msk(X) = {0, . . . , k}X . Given a multiset m œ NX , we denote by cap
k(m)

the k-capped multiset such that capk(m)(x) = max(m(x), k). We denote by AÆr the words
of length at most r over alphabet A including the empty word ‘. Given a set of states S and
a configuration c œ SV and v œ V , the k-capped pattern of radius r at v in c is the k-capped
multiset P (c, v, r, k) œ msk

!
�Ær

◊ S
"
defined by:

P (c, v, r, k) = cap
k
!
(w, s) ‘æ #{vÕ

œ R
w(v) : cvÕ = s}

"
.

I Definition 3 (CA local rules and global maps). A CA local rule for (�,�)-labeled graphs of

state set S, radius r and using k-capped multisets (k Ø 1) is a map

f : � ◊ msk
!
�Ær

◊ S
"

æ S.

For any (�,�)-labeled graph with vertices V , the global CA map FG,f : SV
æ SV

associated

to the local map f and graph G is then defined by FG,f (c)v = f(‡(cv), P (c, v, r, k)) for any

configuration c œ SV
and any vertex v œ V .

In the sequel, when considering a local map f , it always implicitly comes with a specified
state set S and values of r and k defining its domain and image sets. We are mainly interested
in the case where � is a singleton (uniform CA), but incorporating � in our definition allows
non-uniformity in the local rule as in non-uniform CA [18].

I Remark 4. On a Cayley graph of f.g. group, P (x, v, r, k) gives all the information about
configuration x restricted to the ball in the graph centered in v and with radius r: indeed,
in this case, P (x, v, r, k)(q, w) = 1 if and only if the unique vertex vÕ

œ R
w(v) is such that

xvÕ = q, and R
w(v) describes the entire ball when w enumerates �Ær. From this observation

it follows that in the case of Cayley graphs and when � is a singleton, the global CA maps
from Definition 3 are exactly the classical global CA maps (see for instance [12]).

Definition 3 explains how a given CA local rule f induces a CA global map FG,f on a
given graph. FG,f is the main object of study in CA theory, as it represents a dynamical
system.
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I Example 5 (Two definitions of Game of Life). Consider the famous Game of Life CA
F : {0, 1}Z2

æ {0, 1}Z2 [10, 22]. In this example � is a singleton and thus ignored to simplify
notations. First, let G1 be the Cayley graph of Z2 with generators n = (0, 1), e = (1, 0) and
their inverses. Let M be the following set of words in �Æ2: n, n≠1, e, e≠1, ne, ne≠1, n≠1e,
n≠1e≠1. Now define the local rule f1 of radius 2 and using 4-capped multiset by

f1(µ) =

Y
__]

__[

1 if µ(1, ‘) = 0 and
q

wœM
µ(1, w) = 3

1 if µ(1, ‘) = 1 and 2 Æ
q

wœM
µ(1, w) Æ 3

0 otherwise.

One can check that FG1,f1 = F . Now consider the undirected and unlabeled graph G2 =
(Z2, E) with ((i, j), (iÕ, jÕ)) œ E if |i ≠ iÕ| Æ 1 and |j ≠ jÕ

| Æ 1 and (i, j) ”= (iÕ, jÕ). Here we
denote � = {u}. We then define another local rule f2 of radius 1 and using 4-capped multiset
as follows:

f2(µ) =

Y
__]

__[

1 if µ(1, ‘) = 0 and µ(1, u) = 3
1 if µ(1, ‘) = 1 and 2 Æ µ(1, u) Æ 3
0 otherwise.

One can again check that FG2,f2 = F .

Logics. To make the exposition more concise, we suppose some familiarity with standard
concepts of formal logic (variables, assignments, quantification, free variables, etc). MSO
logic uses first-order variables (usually denoted by lower-case letters) representing vertices and
second-order variables (usually denoted by upper-case letters) representing sets of vertices.
To help reading, relations in formulas will use infix notation (xR y) while relation in the
meta-language will use the set notation ((x, y) œ R).

I Definition 6 (MSO formulas and their semantics). The set MSO formulas over label sets

(�,�) is the set of atomic formulas:

xL‡ for x a first-order variable and ‡ œ � (meaning x has label ‡),

xE” xÕ
for x and xÕ

first-order variables and ” œ � (meaning that there is an edge labeled

” from x to xÕ
),

x = xÕ
for first-order variables x and xÕ

(meaning that x is equal to xÕ
),

x œ X for first-order variable x and second-order variable X (meaning that x belongs to

set X),

closed by the usual logic connectives (‚, ·, ¬) and quantifiers (’, ÷). Given an MSO

formula �, a (�,�)-labeled graph G and an assignment – of free variables of � we define

the semantics in the standard way starting from the obvious meaning of atomic formula

above (see [17] for an in-depth introduction). We write (G,–) |= � when � is true on G with

assignment –. If � has no free variable, we simply write G |= � when � is true on G.

We will sometimes use substitution of relations with formulas defining them. For instance
we can write �(X,�R(x1, x2)), where � is a formula using an additional relation symbol
R, to denote the MSO formula obtained by substituting �R for R in � (with the usual
precaution of renaming variables if necessary, see [17]).

We now define FO logic over orbits of CA: they are just formulas allowing quantifications
over configurations and using two relations, equality and application of one step of the CA
global rule.
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I Definition 7 (FO formulas and their semantics). The set of FO formulas is made of atomic

formulas:

y = yÕ
(meaning that configuration y is equal to configuration yÕ

),

y æ yÕ
(meaning that the global CA map leads to yÕ

in one step starting from y),
and closed under the usual logic connectives and quantifiers. Given a FO formula „, a CA

global map F : SV
æ SV

and an assignment — of free variables of „ to configurations from

SV
, we write (F,—) |= „ to denote that F satisfies „ with assignment — following the obvious

semantics of formulas starting from the relations above. When „ has no free variable, we

just write F |= „.

For a CA global map F : SV
æ SV and a FO formula „ with free variables (y1, . . . , yn),

we use the shortcut F |= „(c1, . . . , cn) for configurations c1, . . . , cn œ SV to express that
(F,—) |= „ where — is the assignment given by yi ‘æ ci for 1 Æ i Æ n. We will also use the
FO shortcut y0 æ

k

”= yk to represent the FO formula expressing that y0 leads to yk in k steps
and the k + 1 configurations involved in this partial orbit are pairwise di�erent:

y0 æ
k

”= yk
def= ÷y1, . . . ,÷yk :

fi

0Æi<k

yi æ yi+1
·

fi

i ”=j

yi ”= yj .

Notation convention: we will always use letter � for MSO formulas, x or X for MSO
variables, – for MSO assignments, „ for FO formulas, y for FO variables, G for graphs, f for
CA local rules, F for CA global maps and c for configurations. We use notation cv to denote
state of configuration at vertex v, that’s why we prefer the exponent notation c1, c2, . . . to
denote several configurations.

Combining graphs, CA and logics. The above definitions suggest various definitions of
sets of objects (or languages): the graph language G(�) = {G : G |= �}, the graph language
G(„, f) = {G : FG,f |= „}, the set of CA local rules CA(„, G) = {f : FG,f |= „}, where we
use the notation convention above, and where � and � are fixed so graphs are actually
(�,�)-graphs and CA local rules are rules for such graphs. Moreover, CA(„, G) can be seen
as decision problems where inputs are given as local maps of CA (model checking problem of
„ on G).

3 Translation results

3.1 From FO/CA pairs to MSO

Whatever the state set, a CA configuration can be represented as a tuple of vertex sets: we
can code the state at a vertex by the number of sets it belongs to among the tuple. This way,
FO variables can easily be translated into tuples of second-order MSO variables undergoing
the same quantification and we get an onto map from possible assignments of the tuple of
second-order MSO variables onto possible assignments of the corresponding FO variable.

Under that coding, equality of configurations translates into a simple MSO formula with
just one universal first-order quantifier. It remains to show that the other relation in the
signature of FO, relation æ which represents the application of one step of the CA global
map, can also be translated into MSO: this boils down to checking that at each vertex
the local rule is correctly applied, which itself boils down to counting up to some constant
occurrences of states that can be reached by a labeled walk of bounded length.

I Theorem 8. There is a recursive translation · from pairs („,f) made of a FO formula „
and a CA local rule f to MSO formulas such that the following equivalence holds for any

graph G: Ff,G |= „ ≈∆ G |= ·(„, f).
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3.2 From MSO to FO/CA pairs

This converse translation is less straightforward. Let us first give a simplified overview by
considering an MSO formula � in prenex normal form, and describing its translation into a
CA local rule f together with a FO formula „.

We will use binary configurations (i.e. elements of {0, 1}V ) to code either second-order
variable assignments (a set coded by its indicator function) or first-order variable assignments
(a singleton coded by its indicator function). More generally, we can code several variable
assignments in a configuration made of several binary components, i.e. configurations over
a product alphabet S = {0, 1} ◊ · · · ◊ {0, 1}. Given a configuration made of a product of
binary components coding an assignment of several variables, the truth of an atomic formula
using these variables over this assignment can be checked by a CA local rule in a distributed
manner. With slightly more work and using a particular FO property of orbits, we can
actually test any quantifier free formula in a distributed manner.

The CA local rule together with the FO formula we are going to construct will essentially
enforce an erasing process that starts from a configuration made of a product of binary
components (to code an assignment of all MSO variables at once) and then removes com-
ponents of the product one by one at successive steps until reaching a fixed point: on one
hand having all information about variables assignment at the start allows to check the
truth of the quantifier-free matrix of the MSO formula as hinted before, and, on the other
hand, having components to disappear individually in successive steps allows to make a FO
quantification over configurations following exactly the MSO quantification over variables.

For instance, taking MSO formula � = ’X1,÷x2,’X3, R(X1, x2, X3), we construct a FO
formula that is essentially of the form:

’y1,÷y2,’y3 : y3 æ y2 æ y1

and a CA local rule that will ensure that y1 ¥ a1, y2 ¥ (a1, a2) and y3 ¥ (a1, a2, a3) where
a1 is an assignment for X1, a2 is an assignment for x2 and a3 is an assignment for X3. It will
also ensure, when in configuration y3, that the assignments (a1, a2, a3) satisfy R(X1, x2, X3).
It is important to note that successive choices of assignments of variables y1, y2 and y3
corresponds, up to a simple product encoding, to successive choices of assignments for
variables X1, x2 and X3. Non-deterministic choices of successive assignments are possible in
this construction because they correspond to going backward in time in the canonical orbit
enforced by the FO formula above: there is no contradiction with the determinism of cellular
automata.

To turn this overview into a concrete construction, several technical points have to be
addressed:

the simplified behavior described above only works on some well-formed configuration; as
usual in CA constructions, we will use local error detection and special error states to
mark orbits of bad configurations and distinguish them from good ones: here we use two
error states that oscillate with period two in order to ensure that any orbit reaching a
fixed point has successfully passed all error detection mechanisms.
to code first-order variables, binary configurations need to have exactly one vertex in state
1 and the local nature of CA prevents from verifying this (it cannot a priori distinguish a
configuration with a single 1 from a configuration with two 1s arbitrarily far away, not to
mention the case of non-connected graphs). Our construction handles this through the
FO formula to be satisfied using a sibling configurations counting trick combined with a
particular behavior of the CA which uses additional layers of states.
The erasing process of the CA mentioned above will therefore take several steps for
first-order variables, and only one step for second-order variables.
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checking a quantifier-free formula given an assignment of its variables encoded in a
configuration is generally not doable in one step by a CA, especially on non-connected
graphs that prevent the CA from communicating between components (think of the
example: x œ X ‚ y œ X) ; to solve this problem our construction will once again rely on
a combination of FO logic over several steps and a particular behavior of the CA.

We first give a solution to these technical problems that works when we restrict to connected
graphs. This construction is a little simpler than the general case that we address later, and
it has the benefit to induce a better controlled dependence of the FO formula on the MSO
formula (an aspect that will turn out to be useful in Section 4).

If � is an MSO formula in prenex normal form with quantifier prefix Q1, . . . , Qn, its
prefix signature is the word describing the alternations of quantifiers taking into account
both the type of quantification and the order of quantified variables. More precisely, it is
the word over alphabet {’,÷} ◊ {1, 2} obtained as follows: first map each quantifier to the
alphabet according to the actual type and order, then remove any repetition of consecutive
identical letters.

I Theorem 9. There are two recursive transformations ·FO from MSO formulas to FO

formulas and ·CA from MSO formulas to CA local rules such that, for any MSO formula �,

the pair made of „ = ·FO(�) and f = ·CA(�) verifies:
1. for any connected graph G the following equivalence holds: G |= � ≈∆ FG,f |= „,

2. if � is prenex then „ depends only on its prefix signature.

Let � = Q1x
1
1
, . . . ,Q1x

k1
1
,Q2x

1
2
, . . . ,Q2x

k2
2
, . . . ,Qnx

1
n
, . . . ,Qnx

kn
n
, R(x1

1
, . . . , xkn

n
) be

any MSO formula in prenex normal form where Q1, . . . ,Qn are the n quantifiers types
(either ’ or ÷ and either first or second-order) forming the prefix signature, variables
x1

i
, . . . , xki

i
are bound by quantifier of type Qi and R(x1

1
, . . . , xkn

n
) is the matrix of the prenex

normal form (i.e. a quantifier free formula). We use this numbering of variables grouped
by quantifiers type to obtain a more compact FO formula that only depends on the prefix
signature of �. Let’s write R(x1

1
, . . . , xkn

n
) in disjunctive normal form:

R(x1

1
, . . . , xkn

n
) =

fl

1ÆjÆd

Cj(x1

1
, . . . , xkn

n
)

where each clause Cj is a conjunction of terms which are atomic formula or negation thereof
using variables x1

1
, . . . , xkn

n
. Let O be the set of i such that Qi is a first-order quantifier.

Structure of configurations. For each 1 Æ i Æ n, let Ê(i) =
--O fl {1, . . . , i}

-- and define
⁄(i) = i+ 2 · Ê(i). As it will become clear below, ⁄(n) denotes the length of an orbit along
which n particular configurations will be identified. Configurations along this orbit will use
distinct state sets, and ⁄(i) will also denotes the number of layers of the i-th configuration.
We first introduce sets Sl for 1 Æ l Æ ⁄(n) that will be used to hold variable assignments and
translate MSO quantification over variables of first or second-order into FO quantification
over configurations. Sl is a product of l layers each of the form {0, 1}ki (variable layer) or
{1, . . . , ki} (choice layer) for some i, or {0, 1} (control layer). Intuitively, variable layers will
hold MSO variables assignments, and choice and control layers are used only for first-order
variables as a control mechanism. Sets Sl are precisely defined as follows:

S1 = {0, 1}k1 and if 1 œ O then S2 = S1 ◊ {1, . . . , k1} and S3 = S2 ◊ {0, 1},
for 1 Æ i < n, S⁄(i)+1 = S⁄(i) ◊ {0, 1}ki+1 and if i+ 1 œ O then S⁄(i)+2 = S⁄(i)+1 ◊

{1, . . . , ki+1} and S⁄(i)+3 = S⁄(i)+2 ◊ {0, 1}.
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If j = ⁄(i) Æ l with i ”œ O or j = ⁄(i) ≠ 2 Æ l with i œ O then the j-th layer of Sl is a
variable layer, denoted as Vi(Sl), and intuitively represents an assignment for the tuple of
variables x1

i
, . . . , xki

i
. For 1 Æ j Æ ki, we denote by V j

i
(Sl) the j-th binary component of Vi(Sl)

which intuitively represents an assignment for variable xj

i
. For i œ O and j = ⁄(i) ≠ 1 Æ l,

the jth layer of Sl is a choice layer, denoted ‰i(Sl). Other layers, precisely j-th layers with
j = ⁄(i) with i œ O, are control layers and denoted Ki(Sl). Choice layer ‰i together with
control layer Ki are used to ensure that the corresponding variable layer Vi correctly encodes
a ki-tuple of assignments of first-order variables, i.e. is a ki-tuple of binary configurations
each having exactly one position in state 1.

We denote by fi the natural projection from Sl onto Sl≠1 (for any 2 Æ l Æ ⁄(n)) which
removes the last (l-th) layer of elements of Sl.

A well-formed configuration where all vertices are in a state from S⁄(n) intuitively contains
an assignment for all variables involved in formula � (provided the control mechanism for
first-order variables to be detailed below has been successful). We need to implement a
distributed check of the truth of quantifier-free formula R on such an assignment. The key is
to ensure that some clause Cj from the disjunctive normal form of R is chosen uniformly
on the entire graph and to check everywhere that each terms of Cj is locally correct given
the assignment. For 1 Æ j Æ d, let Tj = S⁄(n) ◊ {j} (recall that d is the number of clauses
in the disjunctive normal form of R(x1

1
, . . . , xkn

n
)). We again use notation fi to denote the

natural projection from Tj onto S⁄(n), which removes the last component of states. Tj sates
will be used to check clause Cj .

We can now define the state set of the CA ·CA(�) as

S = {e0, e1} fi

€

1ÆlÆ⁄(n)

Sl fi

€

1ÆjÆd

Tj

where e1 and e2 are distinct elements from the rest of S. We say that the type of an element
of S is l if it belongs to Sl, error if it is e0 or e1 and j-truth-check if it belongs to Tj . We
also naturally extend the notation Vi, ‰i and Ki for any state s œ Tj by Vi(s) = Vi(fi(s)),
‰i(s) = ‰i(fi(s)) and Ki(s) = Ki(fi(s)).

A configuration c œ SV is valid if the following conditions hold:
states of all pairs of neighboring vertices of G are of the same type, and not of error type;
choice layer ‰i of all pairs of neighboring vertices of G are equal;
at each vertex v the control layers have zeros where the corresponding variable layers
indicated by the choice layers have, precisely: Ki(cv) Æ V ‰i(cv)

i
(cv) for all i such that

Ki(cv) is defined (intuitively, a 1 in a control layer is authorized only if their is a 1 in the
’chosen’ component of the corresponding variable layer);

Note that this definition of validity is purely local. For µ a capped multiset (second argument
of the local rule of a CA), we write valid(µ) to express the local validity conditions above
on µ: the first two item are checked on each pair of states (s, sÕ) such that µ(s, ‘) Ø 1 and
µ(sÕ, ”) Ø 1 for some ” œ �; the third item is checked on state s such that µ(s, ‘) Ø 1.

CA local rule. The behavior of the CA local rule f = ·CA(�) can intuitively be described
as follows:

check the local validity of the configuration and if not generate states of error type that
alternate with period 2 (between e0 and e1),
apply projection fi on states of type l with l Ø 2 and let states of type 1 unchanged,
on states of type j-truth-check, verify that the assignment of variables x1

1
, . . . , xkn

n
coded

in variable layers V j

i
are such that Cj(x1

1
, . . . , xkn

n
) holds, and apply fi if it is the case, or

generate an error state otherwise.
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Of course, the behavior on states of type j-truth-check above has to be understood locally
since we are defining a CA. The implementation of this distributed truth check is as follows:
each term t(xb

a
, xq

p
) appearing in clause Cj (an atomic formula or its negation), where xb

a
is

a first-order variable, is checked only at any vertex having a V b
a
component at 1, otherwise

it is considered true by default. More precisely, for a pair (‡, µ) made of a vertex label
and a capped multiset (arguments of the local rule f), we write (‡, µ) |=loc Cj (clause Cj is
locally valid) if the local state (unique s such that µ(s, ‘)) is of type j-truth-check and the
neighboring states also, and if all terms of Cj are locally true according to the previous rule.
It turns out that (‡, µ) |=loc Cj can be checked by a local rule of CA of radius 1 and using
1-capped multisets (i.e. sets). Precisely, all possible terms of clause Cj are treated as follows
(denoting again s the unique state such that µ(s, ‘) Ø 1):

xb
a
L‡Õ (resp. its negation) is true if and only if V b

a
(s) = 0 or if ‡ = ‡Õ (resp. ‡ ”= ‡Õ),

xb
a
E” xq

p
(resp. its negation) is true if and only if V b

a
(s) = 0 or if 1 œ {V q

p
(qÕ) : µ(qÕ, ”) Ø 1}

(resp. 1 does not belong to this set),
xb
a
= xq

p
(resp. its negation) is true if and only if V b

a
(s) = 0 or V q

p
(s) = 1 (resp. V q

p
(s) = 0),

xb
a

œ xq
p
(resp. its negation) is true if and only if V b

a
(s) = 0 or V q

p
(s) = 1 (resp. V q

p
(s) = 0).

For t a term, we write (‡, µ) |=loc t if t is locally true according to the above definition.
Recall that xb

a
is a first order variable and the rest of the construction will ensure that, on

configurations that matter, there will always exist a node at which V b
a
(s) = 1 so these tests

will actually check that the assignments of variables encoded in the configuration do satisfy
the term as desired.

The CA local rule f is then defined as follows (denoting again s the unique state such
that µ(s, ‘) Ø 1):

f(‡, µ) =

Y
_______]

_______[

e1≠i if s = ei

e0 otherwise, and if ¬valid(µ),
e0 otherwise, and if s has type j-truth-check and (‡, µ) ”|=loc Cj ,
s otherwise, and if s is of type 1,
fi(s) otherwise.

FO formula. Most of the task of the FO formula is to check that n configurations are
well-positioned in an orbit leading to a fixed-point. However, along this orbit, we also
have to make checks to ensure that layers corresponding to first-order variables are well
formed. For i œ O, the CA behavior already ensures (by generating error states if not) that
choice layers ‰i are uniform and that control layers Ki are upper-bounded by the chosen
corresponding variable layer V j

i
. In this context, the check is done as follows (intuitively,

variable yi represents a configuration of type ⁄(i) at each vertex, for some i œ O):

goodFOVAR(yi) def= ’y,’yÕ, (yi æ
2

”= yÕ
· y æ

2

”= yÕ) ∆ #siblings(y) = 1,

where the formula #siblings(y) = 1 expresses that there is exactly 1 configuration other
than y with same image as y and can be written explicitly in FO as follows:

÷ys,÷y+, ys æ y+ · y æ y+ · ys ”= y · (’yÕ : yÕ
æ y+ ∆ (yÕ = y ‚ yÕ = ys)).

The idea is that a variable layer Vi is good if, for any choice j made in choice layer ‰i, there
are only 2 possible ways to correctly complete the control layer Ki, because there is exactly
one vertex v at which V j

i
is 1 and therefore at which Ki can be freely chosen to be 0 or 1.
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Let us now define formulas to deal with the global structure of the orbit leading to a
fixed point:

seq
1
(y) def=

I
y æ y if 1 ”œ O,

÷y0, y æ
2

”= y0 · y0 æ y0 · goodFOVAR(y) if 1 œ O,

and for any 2 Æ i Æ n

seq
i
(y, y+) def=

I
y+ æ y if i ”œ O

y+ æ
3

”= y · goodFOVAR(y+) if i œ O
.

Then, denote by good
i
(y1, . . . , yi) for each 1 Æ i Æ n the formula:

good
i
(y1, . . . , yi) def= seq

1
(y1) ·

fi

2ÆkÆi

seq
k
(yk≠1, yk).

The truth check for R has to make a non-deterministic choice of clause Cj to then use
the distributed truth check implemented in the CA, we therefore define the following formula
to be used in „: truth(y) def= ÷yÕ

æ y which make sense when y represents a configuration
everywhere of type ⁄(n).

As we show later, formula good
i
(y1, . . . , yi) paired with CA F ensures that the configur-

ation assigned to yi is a well-formed configuration of type ⁄(i) that holds an assignment for
variables (x1

i
, . . . , xki

i
) through its variable components V 1

i
, . . . , V ki

i
. We use these formulas

in „ to make restricted domain FO quantifications that exactly correspond to well-formed
configurations that hold assignments of the corresponding MSO variables.

To make the formula „ more readable, we use the following syntactic sugar to express
restricted domain quantification. If „D and „ are formulas containing y as free variable,
then:

÷y œ „D,„ stands for ÷y,„D · „,
’y œ „D,„ stands for ’y,„D ∆ „.

We can finally define FO formula „ = ·FO(�):

„
def= QÕ

1
y1 œ good

1
(y1),QÕ

2
y2 œ good

2
(y1, y2), . . . ,QÕ

n
yn œ good

n
(y1, . . . , yn), truth(yn)

where the FO quantifier QÕ
i
is ÷ if the MSO quantifier Qi is existential, and ’ if Qi is

universal.

Correctness of the construction. First, it can be checked that „ only depends on the prefix
of � and not on R. Second, the construction of f and „ are clearly computable from �.
The proof of Theorem 9 then relies on two lemmas. The first one ensures that good

i
(. . .)

predicates correctly translate assignments of FO variables quantified in „ into assignments of
MSO variables quantified in � and conversely.

I Lemma 10. Let G be a (�,�)-labeled graph which is connected. Consider configurations

c1, . . . , ci with 1 Æ i Æ n such that FG,f |= good
i
(c1, . . . , ci), then the following holds:

1. ck is of type ⁄(k) at each vertex, for 1 Æ k Æ i;

2. for 1 Æ l Æ i and 1 Æ j Æ kl, variable component V j

l
(ck) is the same for all k with

l Æ k Æ i, and it is such that exactly one vertex is in state 1 when l œ O ;
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3. if i < n, for any assignment – of variables (x1

i+1
, . . . , xki+1

i+1
) there exists ci+1

such that

FG,f |= good
i+1

(c1, . . . , ci+1)

and V j

i+1
(ci+1) = –(xj

i+1
) for all 1 Æ j Æ ki+1.

From the above lemma, if FG,f |= good
i
(c1, . . . , ci) then ci codes an assignment for all

MSO variables xj

l
for 1 Æ l Æ i and 1 Æ j Æ kl through components V j

l
of ci. Precisely, when

l œ O variable xj

l
is assigned to the unique vertex v such that V j

l
(ci

v
) = 1, and when l ”œ O

variable xj

l
is assigned to the set of vertices {v : V j

l
(ci

v
) = 1}. We denote this assignment by

–ci . Moreover, –ci is an extension of assignment –cj for any 1 Æ j < i.
Next lemma ensures that truth(. . .) predicate correctly codes truth of formula R(. . .)

(matrix of �) through the previous assignment translation.

I Lemma 11. Under the hypothesis of Lemma 10, it holds that FG,f |= truth(cn) if and

only if (G,–cn) |= R(x1
1
, . . . , xkn

n
).

The proof of Theorem 9 then consists in applying inductively the definition of truth
by assignments of variables simultaneously in � and „, use Lemma 11 as base case and
Lemma 10 for the induction step to translate assignments between MSO variables and FO
variables.

Generalizing to arbitrary graphs. In the previous construction, we use the fact that
considered graphs are connected in two places: to ensure uniformity of choice layers ‰i and
to ensure a uniform choice of j for testing clause Cj with states of type j-truth-check. When
generalized to possibly disconnected graphs, such uniformity conditions cannot be checked by
the CA alone, simply because the CA has no possibility to communicate between connected
components. We can compensate this impossibility by slightly changing the behavior of F
and adding new FO constraints in the definition of „. The price to pay is that the new
definition of „ will depend on all parts of �, not only its prefix signature.

First, the case of choice layers ‰i can be solved easily by de-grouping variables x1

i
to xki

i
,

i.e. renumbering variables in the prefix of � by letting ki = 1 and taking
q

1ÆiÆn
ki as the

new value of n. Then, choice layers become trivial (they contain just one state) and are
therefore always uniform by definition.

To solve the case of truth check, we introduce a general pre-image counting trick to ensure
that a configuration c is uniform by a FO property. First, each state s of the alphabet S
used by c is associated to a distinct prime number ps, and there is a probing mechanism that
selects a set of vertices and allows exactly ps predecessors at selected vertices which are in
state s, and only 1 at vertices which are not selected. The trick to check that c is s-uniform
then consists in counting the number of pre-images up to maxsÕœS psÕ : whatever the set of
selected vertices, it should always be a power of ps.

I Theorem 12. There are two recursive transformations ·FO from MSO formulas to FO

formulas and ·CA from MSO formulas to CA local rules such that for any MSO formula �,

and any graph G the following equivalence holds: G |= � if and only if FG,·CA(�) |= ·FO(�).

Using notations from the construction of Theorem 9, let us now describe precisely the
modifications required to generalize to arbitrary graphs. As explained above, we assume
ki = 1 for all 1 Æ i Æ n, so choice layers ‰i are always trivial and uniform. States of type
l for 1 Æ l Æ ⁄(n) are identical as in the construction of Theorem 9. However, we need
additional states to implement the truth check for the matrix R of formula �, and it will
spread over 3 time steps of the CA. The key is to ensure that some clause Cj from the
disjunctive normal form of R is chosen uniformly on the entire graph and to check everywhere

ICALP 2024



154:14 FO Logic on Cellular Automata Orbits Equals MSO Logic

that each terms of Cj is locally correct given the assignment. Let 2 = p1 < p2 < · · · < pd
be the first d prime numbers. For 1 Æ j Æ d, let T 0

j
= S⁄(n) ◊ {j} and T 1

j
= T 0

j
◊ {0, 1} and

T 2

j
= T 1

j
◊ {1, . . . , pj}. T 1

j
is used to mark vertices, while T 2

j
is used to alter the number of

pre-images depending on j and the mark. We use the notation fi to denote at the same time
the natural projection from T 0

j
onto S⁄(n), or from T 1

j
onto T 0

j
or from T 2

j
onto T 1

j
, which

removes the rightmost component of states. T 0

j
sates will be used to check clause Cj , while

states from T 1

j
and T 2

j
will be used to guarantee through a pre-image counting trick that the

same choice of j is made on the entire graph, thus ensuring correctness of the truth check of
formula R.

We can now define the state set of the CA local rule ·CA(�) as

S = {e0, e1} fi

€

1ÆlÆ⁄(n)

Sl fi

€

1ÆjÆd

T 0

j
fi T 1

j
fi T 2

j
.

We say that the type of an element of S is l if it belongs to Sl, error if it is e0 or e1 and
(j,m)-truth-check if it belongs to Tm

j
for 1 Æ j Æ d and m = 0, 1 or 2.

A configuration c œ SV is valid if the following conditions hold:
states of all pairs of neighboring vertices of G are of the same type, and not of error type;
at each vertex v the control layers have zeros where the corresponding variable layers
indicated by the choice layers have, precisely: Ki(cv) Æ V ‰i(cv)

i
(cv) for all i such that

Ki(cv) is defined (intuitively, a 1 in a control layer is authorized only if their is a 1 in the
’chosen’ component of the corresponding variable layer);
for a state (s,m,w) œ T 2

j
where s œ T 0

j
, m œ {0, 1} and w œ {1, . . . , pj}, it must be the

case that w = 1 whenever m = 0 (this condition expresses intuitively, that only marked
vertices can generate pre-images and it will allow through a pre-image counting trick in
the FO formula to ensure that the choice to check truth of clause j is coherent on the
entire graph).

We write valid(µ) when the capped multiset µ represents a locally valid neighborhood
according to the above conditions.

The modified CA local rule f is almost identical as the one from Theorem 9 and defined
as follows (denoting again s the unique state such that µ(s, ‘) Ø 1):

f(‡, µ) =

Y
_______]

_______[

e1≠i if s = ei

e0 otherwise, and if ¬valid(µ),
e0 otherwise, and if s has type (j, 0)-truth-check and (‡, µ) ”|=loc Cj ,
s otherwise, and if s is of type 1,
fi(s) otherwise.

The key aspect of this new construction is that the correctness of the distributed truth
check implemented in the CA above by states of type (j,m)-truth check rely on a modification
of the considered FO formula. Let preimg

j
(y) be a FO formula expressing that the number

of pre-images of y is either > pd or a multiple of pj . We use the following modified definition
of formula truth(y):

truth(y) def=
fl

1ÆjÆd

÷yj : yj æ y ·
!
’yÕ : yÕ

æ yj ∆ preimg
j
(yÕ)

"

which intuitively makes sense when y represents a configuration everywhere of type ⁄(n), so
yj represents of configuration of type (j, 0)-truth check everywhere. We this new definition
of truth(y), we introduce a strong dependence of the FO-formula on the matrix part of �
(by the presence of d for instance), which was not the case in Theorem 9.
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The final FO formula „ is defined exactly as in Theorem 9 but using this modified version
of truth(y):

„
def= QÕ

1
y1 œ good

1
(y1),QÕ

2
y2 œ good

2
(y1, y2), . . . ,QÕ

n
yn œ good

n
(y1, . . . , yn) : truth(yn)

where the FO quantifier QÕ
i
is ÷ if the MSO quantifier Qi is existential, and ’ if Qi is

universal.
The proof of Theorem 12 is based on two lemmas adapted from Lemma 10 and 11,

and can be copied word for word from the proof of Theorem 9, but simply removing the
connectedness hypothesis.

4 Consequences on FO model checking for CA

A set of (�,�)-labeled graphs, or graph language, is MSO-definable if it is of the form G(�)
for some MSO formula �. It is FOCA-definable if it is of the form G(„, f) for some FO
formula „ and some CA local rule f . From Theorem 12, we get the following immediate
corollary.

I Corollary 13. MSO-definable and FOCA-definable graph languages are the same.

Since the translations given in Section 3 are e�ective, we also obtain equivalence of model
checking problems. Using [33], this gives a characterization of decidability of FO model
checking for CA orbits on f.g. groups.

I Corollary 14. On any fixed graph, FO model checking for CA is many-one equivalent to

MSO model checking. In particular, FO-model checking for CA on a f.g. group � is decidable

if and only if � is virtually free.

We can get a more precise result on graphs of bounded degree, but we need an additional
lemma in order to apply Theorem 9. It is well-known that undecidability in MSO can be
obtained using the MSO-definability of grids and encoding Turing-computations on it [17].
Moreover, MSO on bounded degree graphs actually allows to code quantification on edge sets
and not only vertex sets [16], so that we can express the grid minor relation (and not only
the fact that a fixed graph is a minor). The following lemma doesn’t use any new idea, but
it ensures the fact that all this encoding process can be done within a fixed prefix signature.
It also gives a variant of the construction for �1

1
-hardness (see [41]) using infinite grids and

the recurring domino problem [25].
A n ◊ n-grid (or simply a grid when n is not specified), is the directed finite graph with

vertices {(i, j) : 1 Æ i, j Æ n} and edges the set of pairs
!
(i, j), (i+ 1, j)

"
(the east edges) for

1 Æ j Æ n and 1 Æ i < n, and pairs
!
(i, j), (i, j + 1)

"
(the north edges) for 1 Æ j < n and

1 Æ i Æ n. A Œ-grid is the infinite directed graph with vertices N ◊ N and same north/east
adjacency relation.

I Lemma 15. Fix some D. There exists a fixed quantifier prefix signature fl for MSO such

that, for any graph G of degree at most D that contains arbitrarily large grid as minors,

deciding whether a given MSO formula in prenex form with prefix signature fl is satisfied on

G is undecidable. There also exists a fixed quantifier prefix signature flÕ
for MSO such that,

for any graph G of degree at most D that contains a Œ-grid as minor, deciding whether a

given MSO formula in prenex form with prefix signature flÕ
is satisfied on G is �1

1
-hard.

This lemma together with Theorem 9 gives undecidability of model checking for a fixed
FO formula expressed in the following corollary. For the first part of the corollary, we use the
grid minor theorem [40] to translate the statement of the lemma in terms of treewidth [39],
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and for the second part, it is known that the Cayley graph of a f.g. group which is not
virtually free has a thick end (see [6]), hence it contains a Œ-grid as a minor by Halin’s grid
theorem [24]. The decidable part of the Corollary comes from [14, 36].

I Corollary 16. Fix some D. There is a fixed FO formula „ such that for any connected

graph G of degree at most D, the set CA(G,„) is computable if and only if G has finite

treewidth. Moreover, there is a FO formula „Õ
such that for any Cayley graph G of a f.g.

group with at most D generators, the set CA(G,„) is:
computable if the group is virtually free,

�1
1
-hard otherwise.

In the context of modeling, it makes sense to consider distributed dynamical systems
over arbitrary finite graphs. For instance automata networks (which are non-uniform CA on
arbitrary finite graphs) are a well-established model for its use in the study of gene regulation
networks [43, 31]. The theory of automata networks has largely grown around FO properties
of orbits (typically fixed points) and their crucial dependence on the graph [38]. However,
although many results deal with computational complexity in automata networks [11, 21],
no natural undecidability result appeared so far to our knowledge. By our translation result
from MSO, we can import Trakhtenbrot’s theorem [19] to obtain an undecidability result for
FO properties of CA orbits on finite graphs. It can intuitively be formulated as follows in the
context of modeling: it is undecidable to know whether there is some finite interaction graph
on which a given local interaction law (CA) induces a given dynamical property (FO). By
the way, this corollary doesn’t need Trakhtenbrot’s theorem since we have all the expressive
power of MSO (not only FO logic on graphs), and we can obtain it for a fixed FO formula.
For instance, it follows directly from Theorem 9 and the techniques of Lemma 15 (see also
[17, Theorem 5.6]).

I Corollary 17. There exists a FO formula „ such that the following problem is undecidable:

given some input CA local rule f , decide whether there exists a finite graph G with FG,f |= „.

5 Cayley graphs and domino problems

The case of Cayley graphs of f.g. groups is particular for our approach in two relevant ways.
First, we can express in MSO that a set of vertices is infinite.

I Lemma 18. For any D Ø 1, there is an MSO formula �(X) such that, on any Cayley graph

G of some f.g. group with D generators and any assignment –, it holds that (G,–) |= �(X)
if and only if –(X) is infinite.

From this lemma, it makes sense to extend the signature of FO logic with the addition of
new relation Œ= on configurations which is at the heart of the ’Garden of Eden’ theorem [12]:
we write c

Œ= cÕ whenever {v : cv ”= cÕ
v
} is finite. We denote by FO(Œ=) the extension of FO

signature by adding relation Œ=. By Lemma 18, this extension remains within MSO. Precisely,
in any fixed Cayley graph of a f.g. group and by a straightforward extension of Theorem 8,
we can compute from any formula in FO(Œ=) and CA local rule, an equivalent MSO formula.
We deduce that FO(Œ=) model checking for CA is decidable on some f.g. group exactly when
MSO model checking is, and exactly when FO model checking for CA is.

Besides, if � is a f.g. group and G1 and G2 two Cayley graphs of � with two di�erent
sets of generators �1 and �2, then the definable CA global maps F : S�

æ S� are the same
on G1 and G2. More precisely, there is a computable translation · on CA local maps such
that for any local map f for G1, it holds: FG1,f = FG2,·(f). This simply comes from the fact
that we can translate �1-walks into equivalent �2-walks.
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Therefore, if „ is a FO formula, we have that the sets CA(„, G1) and CA(„, G2) are
actually Turing-equivalent. Said di�erently, by Theorem 8, any FO formula (actually any
FO(Œ=) formula) defines a fragment of MSO logic whose model checking problem’s Turing
degree is independent of the choice of generators on a f.g. group �. It turns out that such
fragments naturally capture the domino problem and its classical variants.

Given some finite set S, a domino specification D is a set of pairs D” ™ S2 for each
” œ �. A configuration c œ SV is said D-valid for some graph if for any v, vÕ

œ V it holds:
(v, vÕ) œ E” implies (cv, cvÕ) œ R”. The domino problem on a fixed graph, consists in deciding
given D whether there exists a D-valid configuration. The seeded domino problem consists in
deciding given D and s0 œ S whether there exists a D-valid configuration where s0 occurs at
some vertex. Finally, the recurring domino problem consists in deciding given D and s0 œ S
whether there exists a D-valid configuration where s0 occurs infinitely often.

I Theorem 19. Fix any Cayley graph G of any f.g. group, then:

domino problem ©T ÷x, x æ x,
seeded domino problem ©T ÷x,÷y, x æ x · y æ x · x ”= y,
recurring domino problem ©T ÷x,÷y, x æ x · y æ x · ¬(x Œ= y),

where ’©T „’ means Turing-equivalent to the set CA(„, G) (model checking of „ for CAs

on G).

The recurring domino problem is �1
1
-hard on Z2 [25], as well as the model checking of

the corresponding FO(Œ=) formula from Theorem 19. It is just an existential formula, but
it crucially uses relation Œ=. We can actually also obtain �1

1
-hardness on Z2 with a pure

FO formula with just one quantifier alternation, using pre-image counting trickery to check
finiteness of a set and a reduction from the recurring domino problem.

I Theorem 20. The problem CA(„,Z2) is �1
1
-hard where „ is the following formula:

„
def= ÷y, y æ y · ’yÕ,’y1,’y2,’y3, (yÕ

”= y · yÕ
æ y ·

fi

i

yi æ yÕ) ∆

fl

i ”=j

yi = yj .

6 Perspectives

We see several interesting research directions inspired by the approach taken in this work.
First, we believe that the dependence of „ on the degree or the number of generators in

Corollary 16 is an artifact that can be removed with more work in the proof of Lemma 15.
The same proof techniques should also provide hardness result at any level of the analytical
hierarchy.

Then, this corollary should be put into perspective with the Ballier-Stein conjecture [6]
saying that the domino problem on a f.g. group is decidable if and only if the group is virtually
free. On one hand, it seems natural to ask whether the recurring domino problem (or its
equivalent FO formula from Theorem 19) can play the role of formula „Õ in Corollary 16. On
the other hand, N. Pytheas Fogg pointed us simple examples of 4-regular graphs having an
Œ-grid as subgraph on which the domino problem is decidable. So formula „ in Corollary 16
cannot be the FO formula expressing the existence of a fixed point (Turing-equivalent to the
domino problem), and we wonder how simple such formula „ can be. Actually, we can ask a
similar question for Corollary 17.

In general, we believe that the Turing degrees of FO-model checking problems for various
concrete formulas is worth being investigated. As mentioned above, the Turing degree of
all such model checking problems for a fixed FO formula is independent of the choice of
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generators on f.g. groups, and we wonder how they change when changing the group among
non virtually free groups. Injectivity of CA is a natural candidate that received little attention
to our knowledge since the seminal result on Z2 [29].

Finally, we believe that there exists a fixed CA rule f for which the FO-model checking
problem is undecidable on graph Z2 (the rule is fixed, the formula is given as input). While
we see the proof ingredient to obtain this specifically for Z2, we have no idea of whether it is
always the case that undecidability of FO model checking for CA orbits can be obtained for
a fixed CA rule on any f.g. which is not virtually free.
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Lookaheads Capture NLOG
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Abstract
Backreferences and lookaheads are vital features to make classical regular expressions (REGEX)
practical. Although these features have been widely used, understanding of the unrestricted
combination of them has been limited. Practically, most likely, no implementation fully supports
them. Theoretically, while some studies have addressed these features separately, few have dared
to combine them. Those few studies showed that the amalgamation of these features significantly
enhances the expressiveness of REGEX. However, no acceptable expressivity bound for REWBLk –
REGEX with backreferences and lookaheads – has been established. We elucidate this by establishing
that REWBLk coincides with NLOG, the class of languages accepted by log-space nondeterministic
Turing machines (NTMs). In translating REWBLk to log-space NTMs, negative lookaheads are the
most challenging part since it essentially requires complementing log-space NTMs in nondeterministic
log-space. To address this problem, we revisit Immerman–Szelepcsényi theorem. In addition, we
employ log-space nested-oracles NTMs to naturally handle nested lookaheads of REWBLk. Utilizing
such oracle machines, we also present the new result that the membership problem of REWBLk is
PSPACE-complete.
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1 Introduction

Backreferences and lookaheads are practical extensions for classical regular expressions
(REGEX). REGEX with backreferences – REWB – can represent the non context-free
language L = {w#w : w œ {a, b}ú} with the REWB expression E = ((a + b)ú)x # \x.
Roughly telling about this expression, we save a substring matched with (a+ b)ú into the
variable x, and later, we refer back to the matched string using \x; therefore, E represents
L. REWB is a classical calculus [2], and there are some results:
1. Schmid showed that REWB, the class of languages accepted by REWB, is contained in

NLOG, the class of languages accepted by log-space nondeterministic Turing machines
(NTMs) [23, Lemma 18].

2. Recently, Nogami and Terauchi showed that REWB is contained in the class of indexed
languages, IL (an extension of context-free languages [1]) [20].

3. The membership problem of REWB – for an input REWB expression E and an input
word w, deciding if E accepts w – is NP-complete [2].
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On REGEX with lookaheads, there are two kinds of lookaheads. A positive lookahead
?(E) checks if the rest of the input can be matched by E without consuming the input. A
negative lookahead !(E) checks if the rest of the input cannot be matched by E without
consuming the input. For example, the expression ?(E)F + !(E)G runs an expression F if
E goes well with the rest of the input and runs an expression G otherwise. Thus, it can
be read as if E then F else G and is helpful in writing practical applications. Although
lookaheads are useful, they do not alter the REGEX expressiveness. This fact immediately
follows from the result of alternating Turing machines that the language class of alternating
finite automata corresponds to that of usual finite automata [6].

Now, it is a natural question: How expressive are REWB with lookaheads?
The class REWB with lookaheads – REWBLk – was studied by Chida and Terauchi [7, 8].

They have shown (a) REWBLk, the class of languages accepted by REWBLk, is closed
under intersection and complement (it is immediately shown using lookaheads); (b) REWB
is a proper subclass of REWB(+) – REWB with positive lookaheads – and REWB(≠)
– REWB with negative lookaheads; (c) the language emptiness problem of REWB(≠) is
undecidable. They also developed a new class of automata called positive lookaheads memory
automata (PLMFA) and proved that REWB(+) equals PLMFA.

However, the following two key questions remain unresolved:
1. Which known language classes are related to REWBLk?
2. What is the computational complexity of the membership problem of REWBLk– a

problem deciding if E accepts w for an input expression E and an input string w?
We solve these questions by presenting the following tight results:

(I) REWBLk = NLOG. Besides, REWB already contains an NLOG-complete lan-
guage.

(II) The membership problem of REWBLk is PSPACE-complete.
Together with existing results, our results are summarized in the following table:

Language Class Membership Problem
REGEX

+ lookaheads = Regular [6] P-c [18]

REWB ™ IL [20], incomparable to CFL [4, 5],
™ NLOG [23], – NLOG-c language (I) NP-c [2]

REWBLk = NLOG (I) PSPACE-c (II)

where NLOG-c is short for NLOG-complete, and the same applies to the others.

1.1 Di�culty in Translating REWBLk to Log-space NTMs
To investigate a hard part of translation from REWBLk to log-space NTMs, let us consider
the following language, which is a well-known NLOG-complete language:

Lreach = {s#x1 æ y1# · · ·#xn æ yn# t : s, t, xi, yi œ V ú, and there is a path from s to t}

where the part #x1 æ y1# · · ·#xn æ yn# means the directed graph with direct edges
x1 æ y1, x2 æ y2, and so on. The following REWBLk expression Ereach recognizes Lreach:

Ereach = (V ú)Cur #
!
?(�ú # \Cur æ (V ú)Cur #)

"ú �ú # \Cur

where � = V fi {#,æ}. It first captures s into the variable Cur and walks on graphs while
repeatedly evaluating the part ?(· · · ). Each evaluation makes a nondeterministic one-step
move on the graph. The part �ú # \Cur checks if we reach the goal t.
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It is not di�cult to structurally translate Ereach to a log-space NTM M such that L(M) =
L(Ereach). Now, using M , let us translate the if-then-else expression ?(Ereach)F + !(Ereach)G
for some expressions F and G to a log-space NTM N . Let w be an input word s#edges#t.
For the part ?(Ereach)F , we run M in N ; if M accepts w, we proceed to simulate F .

However, for the other part !(Ereach)G, we encounter problems:
(A) We need to check if all possible walks of M starting from s do not reach t.
(B) Walking paths starting from s and aiming for t become infinitely long, and thus there

are infinitely many walks (branching) to be checked.
Therefore, we cannot run M directly in N to handle the negative lookahead !(Ereach).

Our Idea: Immerman–Szelepcsényi Theorem & Log-space Nested-Oracles NTMs

To address the above problems, we leverage Immerman–Szelepcsényi theorem [16, 27]. This
theorem states that the class NLOG is closed under complement; i.e., there exists a log-space
NTM M such that L(M) = �ú \L(M). Therefore, in our machine N , we run M for the part
!(Ereach)G: If M eventually accepts w, then we proceed to simulate G.

On the other hand, REWBLk permits nested lookaheads, such as ?(· · ·!(· · ·?(· · · ) · · · ) · · · ).
To handle them naturally, we employ log-space NTMs with nested oracles [16, 25, 19]. These
machines can easily simulate REWBLk and are translated to log-space NTMs by Immerman–
Szelepcsényi theorem; thus, REWBLk = NLOG holds. Moreover, oracle machines are
crucial to showing that the membership problem of REWBLk is PSPACE-complete. To
this end, we also give the new result that the membership problem of such machines is in
PSPACE.

Structure of Paper

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3
reviews REWBLk and demonstrates that REWB already contains an NLOG-complete
language. Section 4 illustrates the expressiveness of REWBLk: (1) NLOG ™ REWBLk;
(2) the membership problem of REWBLk is PSPACE-hard; (3) REWB(+) and REWB(≠)
represent languages ”œ IL; and (4) the emptiness problems of REWB(+) and REWB(≠)
are undecidable even if � = {a}. Section 5 reviews log-space nested-oracles NTMs and
their language class (= NLOG), and shows our new result: their membership problem is in
PSPACE. Section 6 establishes REWBLk ™ NLOG and that the membership problem of
REWBLk is in PSPACE. Section 7 concludes this paper by giving open problems.

2 Related Work

As discussed in the Introduction, Chida and Terauchi have formalized REWBLk and its
semantics [7, 8]. To our knowledge, their study is the first theoretical exploration into
the simultaneous treatment of backreferences and lookaheads. Surprisingly, there has been
no prior theoretical research on the topic despite their longstanding and widespread use.
They introduced PLMFA (positive lookahead MFA) by expanding MFA (memory finite
automata), which Schmid presented for studying REWB in [24]. One of their main results is
the equivalence of PLMFA to REWB(+), established through translations between PLMFA
and REWBLk. Nevertheless, they did not address: (i) a relationship between REWBLk
and existing known language classes; (ii) the complexity of the membership problem of
REWBLk. In contrast, we show that REWBLk captures NLOG and the membership
problem of REWBLk is PSPACE-complete.
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As highlighted in the Introduction, for REWB, Schmid showed REWB ™ NLOG [23],
and Nogami and Terauchi showed REWB ™ IL [20]. Schmid also introduced MFA and
showed that MFA corresponds to REWB [24]. About the relationship between NLOG and
IL, it is worth noting that:

NLOG ”™ IL. It is shown as follows. The language L22n = {a22
n

: n œ N} clearly belongs
to NLOG. However, L22n /œ IL by pumping lemmas for indexed languages [14, 11].
IL ”™ NLOG unless NLOG = NP. It is shown as follows. IL can represent the language
L3SAT, whose words are true 3-CNF formulas [22]. However, L3SAT /œ NLOG unless
NLOG = NP.

In the present paper, we take their result further and show that REWBLk = NLOG and
that REWB already contains an NLOG-complete language.

We also refer to modern REGEX engines that (partially) support both backreferences and
lookaheads. Several programming languages (for example, Perl, Python, PHP, Ruby, and
JavaScript) and .NET framework support these features. However, their support is limited
in both syntax and semantics. First, expressions like (\x\x)x and (\x+ \x)x are rejected by
most implementations because the variable x appears more than once in single captures. Next,
in most implementations, the expression F = (?((\xa)x))ú

\x, which represents {‘, a, a2, . . .},
does not match with a2 and a3, so on. It is due to conservative loop-detecting semantics.
Such a semantics is standardized in ECMAScript [9]. This semantics works for F as follows.
First, it unfolds the Kleene-* of (?((\xa)x))ú as (‘ + ?((\xa)x)(?((\xa)x))ú). Next, it enters
the underline part and updates the variable x without consuming any input characters.
Then, it tries to evaluate (?((\xa)x))ú again at the same input position. At this point, many
REGEX engines think that we enter an infinite loop and so stop unfolding the Kleene-*.
Consequently, F only matches with ‘ (without loop unfolding) and a (with a single loop
unfolding).

We can rephrase this situation as follows: (1) the amalgamation of lookaheads with
variables induces side e�ects without consuming any characters; (2) however, the loop-
detecting semantics overlooks such side e�ects and changes behaviors from the naive semantics.
On the other hand, such conservative semantics work well for REGEX, REGEX with
lookaheads, and REWB since they do not induce such side e�ects.

This paper presents a translation between REWBLks and log-space NTMs, enabling the
development of REGEX engines that fully support backreferences and lookaheads. Notably,
such engines run in polynomial time (for a fixed expression) since NLOG ™ P.

3 Preliminaries: REWBLk

We review the syntax and semantics of REWBLk [7, 8] step-by-step below.

3.1 Regular Expressions with Backreferences and Lookaheads
We first give the syntax of REWBLk over an alphabet � and variables V:

E ::= ‡ | ‘ | E + E | E E | Eú

| (E)v¸˚˙˝
capture

| \v¸˚˙˝
backreference

| ?(E)¸˚˙˝
positive lookahead

| !(E)¸˚˙˝
negative lookahead

where ‡ œ � and v œ V is a variable. The first line defines classical regular expressions,
REGEX. We consider the following subclasses in this paper: REWB (REGEX with captures
and backreferences), REWB(+) (REWB with positive lookaheads ?(E)), REWB(≠) (REWB
with negative lookaheads !(E)).
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Semantics of REGEX

We first give a semantics for REGEX. To accommodate variables and lookaheads, configura-
tions for REGEX are 4-tuples ÈE,w, p,�Í where

E is an expression to be executed;
w is an input string and will not change throughout computation;
p is a 0-origin position on w (0 Æ p Æ |w|). We write w[p] for the symbol on the position
p. It should be noted that p = |w| is allowed to represent that we consume all the input.
� : V æ �ú is an assignment from variables V to substrings of w.

We write C for the set of configurations. To denote all the results obtained by computing,
we use a semantic function J·K : C æ P(N ◊ (V æ �ú)) where P(X) is the power set of X.
On JÈE,w, p,�ÍK = {Èp1,�1Í, . . . , Èpn,�nÍ}, each pair Èpi,�iÍ means that, after executing E
on w from p under �, we move to the position pi and obtain an assignment �i. On the basis
of this idea, we define a semantics for each rule of the REGEX part:

JÈ‡, w, p,�ÍK =
I
{Èp+ 1,�Í} if p < |w| and w[p] = ‡,

ÿ otherwise,
JÈ‘, w, p,�ÍK = {Èp,�Í},

JÈE1 + E2, w, p,�ÍK = JÈE1, w, p,�ÍK fi JÈE2, w, p,�ÍK,

JÈE1E2, w, p,�ÍK =
€

ÈpÕ, �ÕÍœJÈE1,w,p,�ÍK
JÈE2, w, p

Õ,�ÕÍK,

JÈEú, w, p,�ÍK =
Œ€

i=0

JÈEi, w, p,�ÍK where E0 = ‘, Ei =
i˙ ˝¸ ˚

EE · · ·E.

We note that our semantic function JÈE,w, p,�ÍK is inductively defined on the lexicographic
ordering over the star height of E and the expression size of E. The start height and
expression size of REWBLk is defined in the usual way.

We also note that each JÈE,w, p,�ÍK forms a finite set because the value of each variable
x must be a substring of w, and also p is bounded as 0 Æ p Æ |w|.

Semantics of REWB

A capture expression (E)x attempts to match the input string with E. If it succeeds, the
matched substring is stored in the variable x.

JÈ (E)x, w, p,� ÍK =
)+

pÕ,�Õ#x ‘æ w[p..pÕ)
$ ,

: ÈpÕ,�ÕÍ œ JÈE,w, p,�ÍK
*

where w[p..q) is the string w[p]w[p+ 1] · · ·w[q ≠ 1].
A backreference \x refers to the substring stored previously by evaluating some (E)x.

JÈ\x,w, p,�ÍK = JÈ�(x), w, p,�ÍK.

Semantics of Lookaheads

Positive lookaheads ?(E) run E from the current input without consuming any input.
Although the change in head position is undone after running E, the modification to variables
in E is not. So, we can also call it destructive lookahead.

JÈ?(E), w, p,�ÍK =
)

Èp,�ÕÍ : ÈpÕ,�ÕÍ œ JÈE,w, p,�ÍK
*
.
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Negative lookaheads !(E) also run E without consuming any input. If E does not match
anything, we invoke a continuation. Compared with positive lookaheads ?(E), both the
previous head position and the previous values of variables are recovered.

JÈ!(E), w, p,�ÍK =
I
{Èp,�Í} if JÈE,w, p,�ÍK = ÿ,
ÿ otherwise.

Readers may wonder why positive lookaheads modify variables while negative ones do
not. This asymmetry arises because, in negative lookaheads, all computations uniformly
fail, leaving no suitable configuration for altering variables. On the other hand, using the
non-destructive property of the negative lookaheads, we can also define non-destructive
positive lookaheads by !(!(E)). This expression executes E from the current position without
any variable modifications.

Remark: Special character $. Using a negative lookahead, we define $ =!(�) to check the
end of the input. $ is one of the most important applications of negative lookaheads.

I Definition 1. The language of a REWBLk E, L(E), is defined as follows:

L(E) =
)
w œ �ú : Èp,�Í œ JÈE,w, 0, ÿÍK, p = |w|

*
where ’x œ V. ÿ(x) = ‘.

We can also consider another definition using “(x) = ‹ instead of ÿ, where “ indicates that all
variables are initially undefined. Although some real-world regular expression engines adopt
that definition, we adopt the above ÿ-definition since it is tedious to initialize all variables
x using (‘)x. The results discussed in this paper will not change regardless of which one is
used. There is another formalization that excludes labels that appear multiple times in a
single group, for instance (\x\x)x. We discuss such a restriction, which we call reference
restriction, in the immediately following section.

3.2 Reference Restriction and Normalization
Our formalization of REWBLk allows that variable references appear inside their definitions;
for example, we allow expressions like (\x\x)x. On the other hand, many studies on REWB
do not allow them; i.e., expressions like (\x\x)x are prohibited [5, 23, 10, 20].

To the best of the author’s knowledge, it remains unclear whether the restriction alters
the expressive power of REWB. However, on REWBLk, the restriction does not change
the language class of REWBLk. Here, we formalize the restriction and then present our
normalization, which converts REWBLk expressions to language-equivalent restricted forms.

We use the function Var that receives an expressions E and returns the set of all the
backreference variables inside E. For example,

Var( \x\x ) = {x}, Var( (\x\y)z ) = {x, y}, Var( a b c ?( (\w(\x)z)y ) ) = {w, x}.

It can be easily defined inductively on the expression size of E.
We also define a restriction, reference restriction. An REWBLk expression E satisfies the

reference restriction condition if, for all the capture subexpressions (F )x of E, x /œ Var(F )
holds. For example, the expression a b c ?((\w(\x)z)y) satisfies the condition. On the other
hand, the expressions (\x\x)x and a b c ?((\w(\y)z)y) do not.

I Theorem 2. For any REWBLk expression E, there is an expression EÕ that satisfies the
reference restriction condition and L(E) = L(EÕ).
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Proof. It su�ces to perform variable renaming like alpha-conversion in lambda calculus to
remove patterns (· · ·x · · · )x. Formally, we apply the following renaming function R from the
innermost of E to the outermost:

R(F ) =
I
?((F Õ)y)(\y)x where y is a fresh variable if F = (F Õ)x,
F otherwise.

The expression ?((F Õ)y)(\y)x is equivalent to (F Õ)x because it first stores the result of
running F Õ to a fresh variable y and then puts it to the original variable x. Thus, the
innermost-to-outermost applying R changes expressions to ones, which satisfy the restriction
condition, without change their languages.

For example, an expression (aa)x(\x\x)x is translated to (aa)x?((\x\x)y)(\y)x by in-
troducing a variable y. Another expression (a)x(b)y(?[(\x\x)x]aa\y)x is first translated to
(a)x(b)y(?[?((\x\x)–)(\–)x]aa\y)x by introducing –. Then, introducing —, it is translated to
(a)x(b)y?((?[?((\x\x)–)(\–)x]aa\y)—)(\—)x. J

We will use this theorem in Section 6 to translate REWBLk to nested-oracles machines.

3.3 NLOG-Complete Language Accepted by REWB
Hartmanis and Mahaney proposed a decision problem called TAGAP, which is the topological
sorted version of the reachability problem of directed acyclic graphs (DAG) [13]. Let us
consider a word w = px1 æ y1qpx2 æ y2q · · · pxn æ ynq, which represents a DAG. We call w
topologically sorted if: for all pairs of a æ b and b æ c of w, a æ b appears before b æ c in w.
The following example represents a DAG and one of its topologically sorted representation:

s a b c t

d e

, ps æ aq pa æ dq pa æ eq pd æ tq pa æ bq pd æ eq pb æ cq.

We define the language for TAGAP as follows:

LTAGAP = {s#R# t : R is a topologically sorted repr. of G, t is reachable from s in G}.

Hartmanis and Mahaney showed that this language is NLOG-complete [13, Theorem 3].
Since we only consider the topologically sorted representation, there is no longer a need
to explore the entire input many times. In the above example, we can reach t from s by
nondeterministically finding edges s æ a, a æ d, and d æ t in this order by one-way scanning.
Indeed, we can show the following theorem.

I Theorem 3. LTAGAP œ REWB.

Proof. The following expression ETAGAP clearly recognizes LTAGAP:

ETAGAP = (V ú)Cur #
!
�ú p \Cur æ (V ú)Cur q

"ú �ú # \Cur,

where V is an alphabet for vertices. J

4 Expressiveness of REWBLk

In this section, we present some theorems about the expressiveness of REWBLk.

ICALP 2024
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4.1 Unary Non-Indexed Language
We consider the single exponential numerical language L1exp = {a2k : k œ N} over the
unary alphabet � = {a}. The language L1exp is represented by the REWB(+) expression
E1exp =?(a)x (?(\x\x)x)ú

\x. The part ?(a)x initializes x = a (i.e., x = a0), and the Kleene-ú
part iteratively doubles x.

Furthermore, we can represent the doubly exponential language L2exp = {a22
k

: k œ N}
by the following REWBLk expression E2exp:

E(–,—) =
!
?[(\– a)–] ?[(\—\—)— ]

"ú
, (it adds a to – and doubles —)

E2exp = ?((a)m) E(n,m) ?((a)x) E(y, x) ?(aú ?(\m$) ?(\y$)) \x.

It searches the numbers n,m, x, y that satisfy 2n = m, 2y = x, and m = y; so, x = 22n .
While unfolding the Kleene-* of E(n,m) and E(y, x), 2n = m and 2y = x hold. The part
?(aú ?(\m$) ?(\y$)) checks if m =? y by utilizing the negative lookahead expression $ = !(a).

We emphasize the known result L2exp /œ IL, which is shown by the pumping or shrinking
lemma for indexed languages [14, 11]. Since we can carry out a similar construction of E2exp
in REWB(+) and REWB(≠), we have the following result.

I Theorem 4. REWB(+) and REWB(≠) can represent unary non-indexed languages.

Proof (Sketch). Due to the page limitation, we provide a proof sketch for the REWB(≠)
part and put the complete proof in the Appendix of the long version. Let us consider the
following REWB(≠) expression:

EÕ(–,—) =
!
(\– a)– (\—\—)—

"ú
,

EÕ
2exp = (a)m EÕ(n,m) (a)x EÕ(y, x) !(!(\m$)) !(!(\y$)) aú.

While the expression EÕ
2exp resembles E2exp, it lacks positive lookaheads. Let us explain

EÕ
2exp step-by-step:

1. The expressions (a)m and (a)x initialize m and x by a as with E2exp.
2. The subexpression EÕ(n,m) repeatedly expands variables n and m as with E2exp. So,

executing EÕ(n,m) actually consumes inputs as follows without positive lookaheads:

a1n a2
1

m a2n a2
2

m a3n a2
3

m · · · ain a2
i

m · · ·

3. The same holds for the expression EÕ(y, x).

The part !(!(\m$)) is a non-destructive positive lookahead by \m$ that is simulated by
double negative lookaheads; therefore, the part !(!(\m$)) !(!(\y$)) requires m = y. If we pass
the assertion, we consume the rest input by aú. By replacing positive lookaheads with actual
consuming, the language L(EÕ

2exp) grows faster (the notion fast growth is formalized in the
Appendix) than L2exp. This property implies that L(EÕ

2exp) is not an indexed language. J

It states that, even if restricted to unary languages, positive or negative lookaheads make
REWB expressive and incomparable to IL. We can also show the undecidability of the
emptiness problem, which is checking if L(E) = ÿ for a given expression E, of REWB(+)
and REWB(≠) over � = {a}.

I Theorem 5. The emptiness problems of REWB(+) over a unary alphabet and REWB(≠)
over a unary alphabet are undecidable.

The two undecidability results can be shown by translating the Post Correspondence Problem
to the emptiness problems. Due to the page limitation, we put the proof of Theorem 5 in
the Appendix of the long version.
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4.2 Simulating Two-Way Multihead Automata by REWBLk
We show that REWBLk can simulate two-way multihead automata, which are a classical
extension of automata and capture NLOG [12].

Simulating Two-Way One-Head Automata

We start from two-way one-head automata. Let A = (Q, qinit, qacc,�,�) be a two-way
automata where Q = {q0, q1, . . . , q|Q|≠1} is a finite set of states, qinit œ Q is the initial state,
qacc œ Q is the accepting state, � is an input alphabet, and � is a set of transition rules. Each
transition rule is of the form p

·/◊≠≠æ q where p, q œ Q, · œ (� fi {„,‰}), and ◊ œ {≠1, 0, 1}.
The component ◊ indicates a head moving direction: (1) if ◊ = ≠1 (resp. ◊ = 1), we move
the scanning head left (resp. right); (2) if ◊ = 0, we do not move the scanning head.

For an input w œ �ú, we run A on the extended string „ w ‰, which are surrounded by
the left and right end markers. A configuration of A for „ w ‰ is a tuple (q, i) where q œ Q
and 0 Æ i < 2 + |w|, and thus the current scanning symbol is („ w ‰)[i].

A transition rule ” = p
·/◊≠≠æ q œ � gives a labelled transition relation ”∆ as follows:

(p, i) ”∆ (q, i+ ◊) if („ w ‰)[i] = · and 0 Æ i+ ◊ < |w|+ 2

The word w is accepted by A if the initial configuration (qinit, 0), reading „, has a
computation path to a configuration with the accepting state qacc. We now define the
language of A as follows:

L(A) = {w : (qinit, 0)
”1∆ (q1, i1)

”2∆ · · · ”n∆ (qacc, in)}.

To simulate A by REWBLk, we use some variables L,R, S œ �ú. Intuitively, each
variable means the following:

If L = w (resp. R = w), A is located on ‰ (resp. „). Otherwise, ÷‡ œ �. w = L‡R. So,
L (resp. R) means the left (resp. right) part of w.
The length of S denotes the index i of the current state qi of A.

We formalize the above intuition as the following simulation ≥ between (q, i) and ÈL,R, SÍ:

(qj , 0) ≥ È‘, w, SÍ if |S| = j,
(qj , |w|+ 1) ≥ Èw, ‘, SÍ if |S| = j,
(qj , i) ≥ ÈL,R, SÍ if 1 Æ i Æ |w|, ÷‡. w = L‡ R, |L| = i ≠ 1, and |S| = j.

To represent all states, we need |w| Ø |Q| ≠ 1. So, we mainly consider to represent L(A) \ LÕ

where LÕ = {w œ L(A) : |w| < |Q| ≠ 1}. For instance, our simulation proceeds as follows:

(1) „q0 ab ‰ ≥ ÈL = ‘, R = ab, S = ‘Í, (if R = w, then L = ‘ and A is on „)
(2) „ aq1b ‰ ≥ ÈL = ‘, R = b, S = aÍ, (move right from (1))
(3) „ abq1 ‰ ≥ ÈL = a, R = ‘, S = aÍ, (move right from (2))
(4) „ ab ‰q1 ≥ ÈL = ab, R = ‘, S = aÍ, (if L = w, then R = ‘ and A is on ‰)
(5) „ abq2 ‰ ≥ ÈL = a, R = ‘, S = abÍ, (move left from (4) and change q1 to q2)
(6) „ aq2b ‰ ≥ ÈL = ‘, R = b, S = abÍ.

As initialization, we use the expression Einit = (‘)L ?((�ú)R $) (‘)S , which sets L = S = ‘
and R = w for the input w. To move the head right, we use the following expression:

E+1 =?((\L�)L � (�ú)R $) + ?((\L�)L (‘)R $).
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The part ?((\L�)L � (�ú)R $) first attempts to expand L toward the right and then updates
R. Similarly, we define the expression E≠1 to move the head left as follows:

E≠1 =?((�ú)L � (�\R)R $) + ?((‘)L (�\R)R $).

To check if the current scanning symbol is ‰, „, or ‡ œ �, we use the following expressions:

E‰ = ?(\L$), E„ = ?(\R$), E‡ = ?(\L‡ \R$).

To check if the current state is qi, we use the expression Eqi =?
!
�ú ?(\S)$ ?(�i)$

"
. To

change the current state qi to qj , we use the expression Ei-to-j = Eqi ?(�ú (�j)S $).
Now, each transition rule ” is simulated by the following expression E(”) defined as:

E(qi
·/0≠≠æ qj) = Ei-to-j E· , E(qi

·/◊≠≠æ qj) = Ei-to-j E· E◊ (◊ œ {≠1,+1}).

Finally, the following expression EA simulates A, and L(EA) = L(A) holds:

EA = ELÕ + ?(Eqinit (E(”1) + E(”2) + · · ·+ E(”n))ú Eqacc)�ú

where ELÕ is a regular expression for the finite language LÕ, and � = {”1, ”2, . . . , ”n}.
We summarize the our translation as follows.

I Lemma 6. For a two-way one-head automata A, there is an expression EA with 3 variables
(L, R, and S) such that L(EA) = L(A). Especially, the expression uses negative lookaheads
only in the form of $.

Simulating Two-Way Multihead Automata

We extend the above argument to two-way multihead automata M [12, 15]. Compared to
two-way one-head automata A, M has multiple-heads on input strings. We write K for the
number of heads. The di�erence between A and M are the following:

Each configuration of M is a tuple (q, i1, i2, . . . , iK) where q is the current state and ij is
the j-th head position.
Each transition rule is p (·1,...,·K)/(◊1,...,◊K)≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ q where p, q œ Q, ·j œ � fi {„,‰} is used for
inspecting the scanned symbol by j-th head, and ◊j denotes the head moving direction
for the j-th head.

We define a transition relation ∆ in the same way as for A. Let ” = p
(·1,...,·K)/(◊1,...,◊K)≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ q

be a rule and C = (p, i1, i2, . . . , iK) be a valid configuration. If ’1 Æ j Æ K. („ w ‰)[ij ] = ·j ,
then we have C

”∆ (q, i1 + ◊1, i2 + ◊2, . . . , iK + ◊K). We define the language as follows:

L(M) = {w : (qinit, 0, 0, . . . , 0)
”1∆ ”2∆ · · · ”n∆ (qacc, i1, i2, . . . , iK)}.

We can show the following lemma by simply extending our above construction for two-way
one-head automata.

I Lemma 7. For a given two-way K-head automata M, we have an expression EM with
3K variables such that L(EM) = L(M). EM uses negative lookaheads only in the form of $.

Proof. As with the two-way one-head automata, for each i-th head, we prepare variables
Li, Ri, and Si. For each i-th head, by using the variables for i, we give expressions Ei

fi

where fi œ {+1,≠1,‡,„,‰}. Employing the same Eqi and Ei-to-j , we can give E(”) for each
transition rule ” of M and so EM. J

It is well-known that the class of languages accepted by two-way multihead automata
corresponds to NLOG [12]; so, we have the following theorem.

I Theorem 8. NLOG ™ REWBLk.
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4.3 Encoding Quantified Boolean Formula Problem
We translate the PSPACE-complete problem QBF, checking if a quantified boolean formula
(QBF) is true, into the membership problem of REWBLk. We only consider QBFs in CNF
since QBF restricted to CNF remains PSPACE-complete [3]. For instance, let us consider
the following QBF Q and translate it to the equivalent one QÕ by replacing ’ with ¬÷¬:

Q : ’a.÷b.’c.’d. (a‚b‚c)·(b‚c‚d) ∆ QÕ : ¬÷a.(¬÷b.(¬÷c.(÷d.(¬((a‚b‚c)·(b‚c‚d)))))).

In order to check if Q is true, we first structurally translate QÕ into the following EQÕ :

E(v) =
!
(T )v(F )v + (T )v(F )v

"
where v is a propositional variable,

EQÕ = !(E(a) !(E(b) !(E(c) E(d) !((\a+ \b+ \c)(\b+ \c+ \d))))),

where we replace ¬ with !, ÷x with E(x), x with \x, x with \x, and ‚ with +.
We then check w = TF TF TF TF TT œ? L(EQÕ). We explain the string w using the

annotated version T1F2T3F4T5F6T7F8T9T10: (1) the first two characters T1F2 makes the two
cases where (a = T, a = F ) or (a = F, a = T ); (2) similarly, T3F4 (resp. T5F6 and T7F8)
works for b and b (resp. c, c and d, d) ; (3) by T9, we check if the expression (a ‚ b ‚ c) holds
(in the negative context); (4) by T10, we also check if (b ‚ c ‚ d) holds. Thus, Q is true i�
w œ L(EQ).

On the basis of the above translation using E(v), we can translate every CNF-QBF Q to
the corresponding expression EQ and give the membership problem TFTF . . . TF TT . . . T œ?

L(EQ) in polynomial time for the size of Q. It implies the following result.

I Theorem 9. The membership problem of REWBLk is PSPACE-hard.

5 Log-space Nested-Oracles Nondeterministic Turing Machines

As we have stated in the Introduction, we utilize log-space nested-oracles NTMs. We will
translate REWBLk to them in the next section.

We first review log-space NTMs. Here we especially consider c-bounded k-working-tapes
log-space NTM M = (k, c,Q, qinit, QF ,�,�,⇤,�). Each component of M means:

k is the number of working tapes T1, T2, . . . , Tk.
c is used to bound the size of working tapes. It will be defined precisely below.
Q is a finite set of states, qinit is the initial state, and QF ™ Q is a set of accepting states.
� is an input alphabet.
� is a working tape alphabet. ⇤ œ � is the blank symbol for working tapes.

� is a set of transition rules. Each rule is either p
· | ◊≠≠æ q or p

Ÿ ‘æ ŸÕ | ◊≠≠≠≠≠≠æ
Ti

q where
p, q œ Q, · œ � fi {‘,„,‰}, Ÿ,ŸÕ œ � fi {„,‰}, and ◊ œ {≠1,+1, 0}.

Let „ w ‰ (w œ �ú) be a string surrounded by the left and right end markers. Valid
configurations of M for „ w ‰ are tuples Èq, i, (T1, i1), . . . , (Tk, ik)Í where

q œ Q is the current state. i œ N (0 Æ i < |w|+ 2) is the current head position on „ w ‰.
Tx œ („ �C ‰) where C = c · Álog |w|Ë is the x-th working tape surrounded by the end
markers. Á·Ë is the ceiling function to integers; for example, Álog 3Ë = Á1.584 . . .Ë = 2.
Remark: The tape capacity C is determined by the parameter c and the input w.
ix is the x-th tape head position on Tx (0 Æ ix < C + 2).
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We write ValidM (w) (or, simply Valid(w)) for the set of valid configurations for the
input w. It is clear that |Valid(w)| = |Q|◊(|w|+2)◊(|�|C ◊(C+2))k where C = c ·Álog |w|Ë.

For an input string w, we write I(w) to denote the initial configuration on „ w ‰:

I(w) = Èqinit, 0, („ ⇤C ‰, 0), . . . , („ ⇤C ‰, 0)Í where C = c · Álog |w|Ë.

Let › = Èp, i, (T1, i1) . . . , (Tx, ix), . . . , (Tk, ik)Í be a valid configuration on „ w ‰. For each
transition rule ”, we define a labelled transition relation ”∆ on valid configurations as follows:

” = p
· | ◊≠≠æ q („ w ‰)[i] = · (if · ”= ‘)

›
”∆ Èq, i+ ◊, (T1, i1), . . . , (Tk, ik)Í

” = p
Ÿ ‘æ ŸÕ | ◊≠≠≠≠≠≠æ

Tx

q Ÿ = Tx[ix]

›
”∆ Èq, i, . . . (Tx[ix] := ŸÕ, ix + ◊) . . .Í

where Tx[ix] := ŸÕ is the new working tape obtained by writing ŸÕ to the position ix.
We also simply write › ∆ ›Õ if there is a transition rule ” œ � such that ›

”∆ ›Õ.
We write NLOG(c, k) for the set of c-bounded k-working-tapes log-space NTMs. If c

and k is not important, by abusing notation, we simply write NLOG. For M œ NLOG and
an input string w, we write M(w, ›) to denote the set of valid and acceptable configurations
that are reachable from a valid configuration › on „ w ‰:

M(w, ›) = {›Õ : › ∆ú ›Õ, ›Õ = Èqacc, i, T Í, qacc œ QF },

where T = (T1, i1) . . . (Tk, ik) is a sequence of pairs of a working tape and an index. Now the
language L(M) is defined as:

L(M) = {w : M(w, I(w)) ”= ÿ}.

Here we state a useful proposition, which will be used below sometimes.

I Proposition 10. Let M œ NLOG(c, k). For any input w, to represent a single valid
configuration or store |Valid(w)|, we need an extra O(c · k)-bounded working tape.

Proof. Since |Valid(w)| = |Q| ◊ (|w| + 2) ◊ (|�|C ◊ (C + 2))k where C = c · Álog |w|Ë,
log |Valid(w)| = (k · C) log |�| + · · · = O(k · c) log |w|. So, we need an O(c · k)-bounded
tape. J

On log-space NTMs, we can solve the problem-(B) in Section 1.1.

I Proposition 11. Let M œ NLOG(c, k). There exists N œ NLOG(O(c · k), k + 1) such
that L(M) = L(N) and, for any input w, all computations of N starting from w eventually
halt.

Proof. The number of reachable configurations is bounded by B = |ValidM (w)|. So, we can
safely ignore all paths P whose length > B without changing the accepting language. To
check if the current path length > B, we need an O(c ·k)-bounded tape by Proposition 10. J

We note that properties, like Proposition 11, are insu�cient to show that a language
class is closed under complement.1 Thus, the problem-(A) in Section 1.1 is essentially hard;
indeed, it is the interesting part of Immerman–Szelepcsényi theorem [16, 27]. In the following
subsection, we revisit their theorem along with introducing log-space nested-oracles NTM.

1 For example, we can translate any nondeterministic pushdown automata to real-time ones, which do
not have ‘-transitions. However, the class of context free languages is not closed under complement.
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5.1 Augmenting NTM with Nested Oracles
We extend log-space NTM with finitely nested oracles (or subroutines) to naturally handle
nested lookaheads of REWBLk. Similar to our definition of log-space NTMs, we consider
c-bounded k-tapes log-space nested oracles NTMs.

To allow nested oracle calling, we inductively define our machines. First, as the base
case, we write OLOG

0(c, k) = NLOG(c, k) to denote machines without oracles. Next, as
the induction step, we define OLOG

x+1(c, k) using OLOG
x(c, k) as follows:

Each M œ OLOG
x+1(c, k) is a tuple (k, c,Q, qinit, QF ,�,�,⇤,�).

There are new transition rules, oracle transition rules, of the form p
œN≠≠æ q and p

”œN≠≠æ q
where N œ OLOG

y(c, k) and y Æ x. Their semantics will be defined immediately later.

We write OLOG
Ê(c, k) for

tŒ
i=0

OLOG
i(c, k). If c and k are not important, we simply

write as OLOG
n and OLOG

Ê. To denote the nesting level of machines M œ OLOG
Ê(c, k),

we inductively define the function depth as follows:

depth(M) =
I
0 if M œ OLOG

0(c, k),
1 + max{depth(N) : p œN≠≠æ q, pÕ /œN≠≠æ q œ �(M)} otherwise.

Now, we define the semantics of oracle transition rules as follows:

p
œN≠≠æ q N(w, ÈqN

init
, i, T Í) – Èr, j, UÍ

Èp, i, T Í ∆ Èq, i,UÍ
p

/œN≠≠æ q N(w, ÈqN
init

, i, T Í) = ÿ
Èp, i, T Í ∆ Èq, i, T Í

where qN
init

is the initial state of N , T and U is a sequence of pairs of a working tape and an
index (T1, i1) . . . (Tk, ik), and the function

N(w, ›) = {›Õ : › ∆ú ›Õ, ›Õ = Èq, i, T Í, q œ QF (N)}

is defined inductively on the depth of machines.
The semantics of p œN≠≠æ q means that: (1) we call an oracle (subroutine) N for „ w ‰

with the current position i and the current working tapes T as its initial working tapes; and
(2) if N accepts w, then we enter a state q with the original position i and working tapes U
of N ’s accepting configuration. The semantics of p /œN≠≠æ q means that, if N does not accept
w, we enter a state q with the original position and working tapes T .2

I Example 12. Using log-space nested-oracles NTMs, we simulate the following REWBLk:

Ereach = (V ú)Cur #
!
?(�ú # \Cur æ (V ú)Cur #)

"ú �ú # \Cur.

For the sake of simplicity, we assume that V = {ı} is a unary alphabet. The subexpression
(�ú # \Cur æ (V ú)Cur #) is simulated by the following log-space NTM M œ NLOG:

qinit

�

q1
#

q2

Checking if the substring
from the current head position

equals to Cur
q3

æ q4

Store the number of
consecutive ı’s

to Cur
qacc

#

.

2 For simplicity, our oracle formalization di�ers from traditional treatments [17, 21, 26, 3] in some points:
(1) we omit the use of oracle tapes, and (2) we allow inheriting configurations from called oracles.
Despite these di�erences, our definition is adequate for Theorem 13 and for REWBLk in Section 6.
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Using M , we give the following machine N œ OLOG
1, clearly accepting L(Ereach):

qinit q0 q1
„

Store the number of
consecutive ı’s

to Cur
q2

#

œ M

q3
nop

q4
#

�

q5

Checking if the substring
from the current head position

equals to Cur
qacc

‰

where edges labelled with “nop”, nop≠æ, mean transitions that only change states and do not
depend scanning symbol. It just a syntax sugar because we can define p

nop≠æ q by p
‘ | 0≠≠æ q.

I Example 13. We can also accept the language of non-reachability problems:

Lnon-reach = {s#x1 æ y1# · · ·#xn æ yn#t : there is no path from s to t}.

To recognize this language, we use the following Mnon-reach œ OLOG
2:

qinit q0
„ q1

œ N ÕÕ
qacc

/œ N

where N ÕÕ œ NLOG recognizes the language defined by V ú #(V ú æ V ú#)ú V ú.

5.2 Collapsing OLOGÊ by Immerman–Szelepcsényi Theorem
Thanks to Proposition 11, we can give a decision procedure to check w œ? L(Mnon-reach) for
our above examples. However, it is not clear that OLOG

2 =? NLOG and more generally
OLOG

Ê =? NLOG. For example, is there a log-space NTM N that recognizes Lnon-reach ?
Fortunately, the class NLOG is closed under complement, NLOG = co-NLOG. This

result is known as Immerman–Szelepcsényi theorem [16, 27]. We employ their proof to
collapse OLOG

x for some x to log-space NTMs OLOG
0 = NLOG.

I Lemma 14. Let M œ NLOG(c, k). There is a machine M œ NLOG(O(c · k), k + ˆ)
where L(M) = �ú\L(M) and ˆ is independent of M , c, and k.

Proof. We review Immerman’s original construction in [16]. For the reader who would like to
know more detailed explanation about his construction, we recommend some literature [26].
His construction consists of the following two parts:

Let Start be a configuration of M . First, we compute the number C, the total number
of configurations reachable from Start.
Next, using C, we check if there is a path from Start to an acceptable configuration.

The first part is accomplished by the following pseudocode [16, Lemma 2].

global w; // input string

// For configurations x and xÕ
, we check if x ∆ xÕ

def one_stepM(x, xÕ
):

foreach ” œ �(M): // �(M) is the set of transition rules of M
if x

”∆ xÕ
: return True;

return False;

// calculate the total number of configurations reachable from Start
def countingM(Start):

cur Ω 1; // the number of reachable configurations within Æ dist steps
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for(dist Ω 0,next Ω 0; dist < |ValidM (w)|; dist += 1, cur Ω next, next Ω 0):
foreach x œ ValidM (w):

count Ω 0; found_x Ω false;

foreach y œ ValidM (w):
z Ω Start; // search a path from Start to y
for(i Ω 0; z ”= y & i < dist; i += 1):

zÕ Ω Nondeterministically generated configuration;

if one-step(z, zÕ
): z Ω zÕ

;

else: break;

if z = y:
count += 1;
if one-step(y, x): { next += 1; found_x Ω true; break; }

if ¬found_x & count ”= cur: Halt and reject;

return cur;

These functions require extra working tapes at least for variables of ”, cur , dist, next, x,
count, y, i, z, and zÕ. By Proposition 10, for each variable, we need an O(c ·k)-bound working
tape.

The second part is accomplished by the following pseudocode [16, Lemma 1].

// Judge whether an acceptable configuration can be reached from Start.
// If so, it returns such a configuration y by Some(y).
// Otherwise, we return the nothing by None.
def judgeM(Start):

C Ω countingM(Start);
count Ω 0;
foreach x œ ValidM (w):

y Ω Start;
for(i Ω 0; i Æ C; i += 1):

yÕ Ω Nondeterministically generated configuration;

if one-step(y, yÕ
):

y Ω yÕ
;

if y is an accepting configuration: return Some(y);
if y = x: { count += 1; break; }

else: break;

if count = C: return None;
else: Halt and reject;

This function also requires extra O(c · k)-bound working tapes.
Now we can build M œ NLOG(O(c · k), k + ˆ) as a log-space NTM that simulates the

function judge and then accepts inputs if judgeM (Start) is None. J

Repeatedly applying Immerman’s construction collapses nested oracle machines to ma-
chines without oracles [16, Corollary 2].

I Theorem 15. Let M œ OLOG
n(c, k) be a log-space n-nested-oracles NTM. There exists

a log-space NTM N œ NLOG(O(c · kn), O(k · n)) such that L(M) = L(N).

Proof. We eliminate oracle transitions from the innermost to the outermost for M as follows.
We replace p

œN≠≠æ q with N œ OLOG
0 with multiple transition rules that perform: (1) save

the head position H to an extra tape; (2) run N ; (3) if we reach an accepting configuration
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Èqf , T Í, then we continue Èq,H, T Í. Similarly, we replace p
/œN≠≠æ q with N œ OLOG

0 with
multiple transition rules using N obtained by Immerman’s construction. We emphasize that
each generation of N increases c and k in the order of the statement of Lemma 14. J

5.3 Membership Problem of OLOGÊ

We now show that the membership problem of log-space nested-oracles machines is in
PSPACE. We first formally state our membership problem.

I Definition 16 (Membership problem of OLOGÊ). The membership problem of OLOG
Ê is

a decision problem of the following form:
Inputs Binary encoded integers c and k. A machine M œ OLOG

Ê(c, k). A word w œ �ú.
Output If w œ? L(M), return Yes. Otherwise, No.

To show that the problem belongs to PSPACE, we would like to employ Theorem 15.
However, it is not feasible because the theorem gives a log-space O(c · k|M |)-bounded tapes
machine N in general; i.e., N demands O(c · k|M |) · log |w| space. Thus, we cannot simulate
N in polynomial size in c, k, |M |, and |w|. To address this problem, we adopt Immerman’s
construction for OLOG

Ê in an interpreter style.

I Theorem 17 (Membership problem of OLOGÊ belongs to PSPACE). Let w be an input
word and M œ OLOG

Ê(c, k) be an input machine where c and k are binary encoded. We
can decide if w œ? L(M) in polynomial space in c, k, |w|, and |M |.

Proof. First, we extend the function one-step for oracle transitions as follows:

def one-stepMi(x, xÕ
): // return True if x ∆ xÕ. Otherwise, False.

foreach ” œ �(Mi):
if ” is a non-oracle transition & x

”∆ xÕ
: return True;

else: // ” is an oracle transition

(p, i, T ) Ω x; // extract state, position, and tape contents from x
if ” = p

œN≠≠æ q:
match judgeN (ÈqNinit, i, T Í): // pattern matching

case Some(ÈpÕ, iÕ, UÍ) -> return (xÕ =? Èq, i, UÍ);
case None -> return False;

if ” = p
/œN≠≠æ q:

match judgeN (ÈqNinit, i, T Í):
case Some(ÈpÕ, iÕ, UÍ) -> return False;

case None -> return (xÕ =? Èq, i, T Í);
return False;

Next, we generate the codes of one-stepMi
, countingMi

, and judgeMi
for all oracle

machines Mi that appears in M . Such generation is carried out in polynomial-time for |M |.
The total size of generated code is also polynomial in |M |.

We can also provide an interpreter for the generated code in polynomial time for |M |.
While this interpreter needs a call stack for function calls, its depth is bounded by depth(M) Æ
|M |. Additionally, the size of each stack frame is bounded byO((c·k) log |w|) by Proposition 10.
From the above argument, we can check w œ? L(M) using (nondeterministic) polynomial
space with respect to c, k, |w|, and |M |. J

We will use this theorem to show that the membership problem of REWBLk belongs to
PSPACE in the following section. To this end, we put remarks about this theorem.
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Remark (Drop k from Theorem 17). We can decide w œ? L(M) in polynomial space for c,
|w|, and |M |. Compared with Theorem 17, this refined version does not depend on k. This
is because k Æ |M | holds, even when k is binary encoded.

Of course, to establish this property, we assume a natural restriction that all tapes
T1, . . . , Tk are used in some transition rules. Indeed, if M œ OLOG

Ê(c, k) has a working
tape Ti with 1 Æ i Æ k that is not engaged by M , a better parameter kÕ (where kÕ < k) should
be employed, ensuring M œ OLOG

Ê(c, kÕ). Given such constraints, |M | Ø k · log(k) Ø k
since k tapes necessitate log(k)-space for tape identification.

Remark (Cannot drop c from Theorem 17). On the other hand, we cannot drop c from
Theorem 17. Namely, we cannot decide w œ? L(M) in polynomial space for |w| and |M |
because c is not bounded by Poly(|M |) in general. (Please recall that k Æ |M |.) It can be
understood from the following argument, which establishes c = �(2|M |). Let us consider a
machine M that runs as follows:

First, M fills a tape T1 with N 1’s by using states q1, q2, . . . , qN .
Next, M interprets T1 as a binary number t1 and fills a tape T2 with t1 1’s.
Finally, M writes the contents of T2 N times to T3.
For example, if N = 3, then M makes T1 = 111 and then makes T2 = 1111111 = 123≠1

and then T3 = 3T2 = 13·(23≠1) = 1N ·(2N≠1).
The size of M satisfies |M | = O((logN)N) since it contains binary-encoded N states; thus,
the length of T3, |T3|, satisfies |T3| = �(2|M |). By appending the content of T3 onto another
tape log |w| times (where w is the input word), we establish that c = �(2|M |).

However, fortunately we can assume c = 1 when simulating REWBLk by OLOG
Ê as we

will see below. It is crucial for showing that the membership problem of REWBLk belongs
to PSPACE.

6 From REWBLk to Log-space NTM via OLOGÊ

We finally show REWBLk ™ NLOG by translating REWBLks to OLOG
Ê.

I Theorem 18. Given a REWBLk expression E, we can translate it to M œ
OLOG

Ê(1, O(|E|)) in polynomial time in the size of |E| where L(E) = L(M).

Proof. We inductively translate a REWBLk expression E to an OLOG
Ê T (E) such that

w œ L(E) if and only if T (E) successfully runs through w when started with w instead of
„ w ‰.

As we will see below, the generated T (E) has a unique source state s, which does not have
incoming edges, and a unique sink state t, which does not have outgoing edges. Please recall
that E accepts an input w if it consumes all the input, i.e., if we have Èp,�Í œ JÈE,w, 0, ÿÍK
with p = |w|. To build our M , we add two transition rules to T (E) to treat the end markers
„ and ‰ as follows:

M = T (E)s ti
„ | +1

f
‰ | 0

where i and f are initial and accepting states of M .
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Translating REGEX Part

First, we give a translation for the REGEX as follows:

‡ Z∆ s t
‡ | +1

, ‘ Z∆ s t
‘ | 0

, E1E2 Z∆ T (E1)s1 t1 T (E2)s2 t2
nop ,

(E)ú Z∆ T (E)sÕ tÕs
nop

t
nop

nop

, E1 + E2 Z∆ s t

T (E1)s1 t1

T (E2)s2 t2

nop

nop

nop

nop
,

where the edges labelled with “nop” are the same ones used in Example 12, which just change
states. This translation is identical to the McNaughton–Yamada–Thompson algorithm, which
is well-known and found in textbooks of automata theory.

Translating Backreference and Capturing Expressions

Using Theorem 2, we can assume that every variable x does not appear inside an expression
capturing x; i.e., we avoid patterns such that (· · ·x · · · )x. The following translation heavily
depends on the theorem.

We now focus on the part (E)x of REWB:

(E)x Z∆ T (E)sÕ tÕs

save the current head position
in binary form to the tape Txl

t

save the current head position
in binary form to the tape Txr .

In order to keep the start position of the variable x, we first copy the current head position to
the special working tape Txl in binary form. Then, we execute the expression E by running
from the state s to t. Finally, we record the new head position into the working tape Txr .
Now, w[xl .. xr) = w[xl]w[xl + 1] · · ·w[xr ≠ 1] is a substring matched with the expression E
where xl and xr are the numbers corresponding to the contents of Txl and Txr .

Next, we focus on the part \x of REWB:

\x Z∆ s t
check if the current head starts with the substring of w[xl .. xr) .

As we have seen above, the substring w[xl .. xr) denotes the value of the variable x. This
checking task is accomplished using an extra tape Ttmp without changing Txl and Txr .

Remark: Why do we need Theorem 2. Let us consider an expression E = (a)x (\x\x)x
and run it for an input string a. We underline a /œ L(E). By interpreting (a)x, we set the
position 0 to Txl and 1 to Txr . On the translation of (\x\x)x, we first save the current head
position 1 to the tape Txl and then proceed to the part \x\x. It should be noted that, at this
point, Txl denotes 1; so, we cannot correctly recover the captured content by (a)x. When
meeting \x, we check if the substring between Txl(= 1) and Txr (= 1) starts from the current
head position. Since the substring is the empty string ‘, we go through the part \x\x and
accepts a incorrectly.

To prevent us from this situation, we use Theorem 2. It rewrites E to (a)x ?((\x\x)y)(\y)x,
and the rewritten expression is safely interpreted thanks to the variable y.
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Translating Positive and Negative Lookaheads

For our construction, we need that lookahead are augmented with a continuation K, for
instance ?(E)K and !(E)K. If a given expression does not satisfy this property, we add the
expression ‘, which always succeeds. For example, (E1E2!(E3))úE4 Z∆ (E1E2(!(E3)‘))úE4.
Now, we can easily translate ?(E)K and !(E)K using oracle transition rules as follows:

?(E)K Z∆ T (K)sÕ tÕs
œ T (E)

, !(E)K Z∆ T (K)sÕ tÕs
/œ T (E)

.

By the semantics of our nested oracle machines, it is clear that L(E) = L(M). J

As corollaries of Theorem 18, we have the following main results.

I Corollary 19. REWBLk = NLOG.

Proof. We already have NLOG ™ REWBLk by Theorem 8. It is an immediate result
from Theorem 15 and 18 that REWBLk ™ NLOG. J

I Corollary 20. The membership problem of REWBLk is PSPACE-complete.

Proof. By Theorem 9, the membership problem of REWBLk is PSPACE-hard.
The result that the problem belongs to PSPACE is shown as follows. Let E be an

input REWBLk expression and w be an input string. By Theorem 17, we translate
M œ OLOG

Ê(1, O(|E|)) such that L(E) = L(M). This translation is carried out in
polynomial time in |E|; so, |M | = Poly(|E|). By Theorem 17 and its remarks, we can check
if w œ? L(M) in polynomial space in |w| and |M |. This also derives that we can check if
w œ? L(E) in polynomial space in |w| and |E|. J

7 Future Work and Conclusion

We have shown that the language class REWBLk – regular expressions plus backreferences
and lookaheads (without any restrictions) – captures the class NLOG. Our result closes
the expressiveness about REWBLk. Furthermore, we have shown that the membership
problem of REWBLk is PSPACE-complete. On the other hand, it remains unclear whether
REWB(+) and REWB(≠) are proper subclasses of REWBLk. For example, we conjecture
that REWB(+) cannot recognize the language Lprime = {an : n is a prime number}.3 It is
known that the language can be represented by REWB(≠). Also, we conjecture that some
NLOG-languages cannot be recognized by REWB(≠).
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Abstract

Population protocols are a well-studied model of distributed computation in which a group of
anonymous finite-state agents communicates via pairwise interactions. Together they decide whether
their initial configuration, i. e., the initial distribution of agents in the states, satisfies a property. As
an extension in order to express properties of multisets over an infinite data domain, Blondin and
Ladouceur (ICALP’23) introduced population protocols with unordered data (PPUD). In PPUD,
each agent carries a fixed data value, and the interactions between agents depend on whether their
data are equal or not. Blondin and Ladouceur also identified the interesting subclass of immediate
observation PPUD (IOPPUD), where in every transition one of the two agents remains passive and
does not move, and they characterised its expressive power.

We study the decidability and complexity of formally verifying these protocols. The main
verification problem for population protocols is well-specification, that is, checking whether the
given PPUD computes some function. We show that well-specification is undecidable in general.
By contrast, for IOPPUD, we exhibit a large yet natural class of problems, which includes well-
specification among other classic problems, and establish that these problems are in ExpSpace. We
also provide a lower complexity bound, namely coNExpTime-hardness.
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1 Introduction

Population protocols (PP) model distributed computation and have received a lot of at-
tention [1, 2, 9, 12, 14, 18] since their introduction in 2004 [3]. In a PP, a collection of
indistinguishable mobile agents with constant-size memory communicate via pairwise interac-
tions. When two agents meet, they exchange information about their states and update their
states accordingly. The agents collectively compute whether their input configuration, i. e.,
the initial distribution of agents in each state, satisfies a certain predicate. For a PP to com-
pute a predicate, the protocol must be well-specified, i. e., for every initial configuration, all
fair runs starting in this configuration must converge to the same answer. It was shown that
PP compute exactly the predicates of Presburger arithmetic [4]. Moreover, well-specification
is known to be decidable but as hard as the reachability problem for Petri nets [17]. Note
that deciding well-specification is a problem that concerns parameterised verification in the
sense of [8, 15], i. e., one must decide that something holds with respect to every value of
the parameter. Here the parameter is the number of agents that are present – the PP must
converge to one answer for every initial configuration, no matter the number of agents.

Population protocols with unordered data (PPUD) were introduced by Blondin and
Ladouceur as a means to compute predicates over arbitrarily large domains [10]. In this
setting, each agent holds a read-only datum from an infinite set D. When interacting, agents
may check (dis)equality of their data. While PP can compute properties like “there are
more than 5 agents in state q1”, PPUD can express, e. g., “there are more than 2 data with
5 agents each in state q1”. In [10], the authors construct a PPUD computing the absolute
majority predicate, i. e., whether a datum is held by more than half of the agents. They also
characterise the expressive power of immediate observation PPUD (IOPPUD), a subclass of
interest in which interactions are restricted to observations. That is, in every interaction, one
of the two agents is passive and does not change its state. The decidability and complexity of
the main verification question for PPUD, namely well-specification, is left open in Blondin’s
and Ladouceur’s article [10]. It is the subject of this paper.

Contributions. We start by showing that well-specification is undecidable for PPUD. This
follows from a reduction from 2-counter machines; in fact, the presence of data allows
us to encode zero-tests. Contrasting this, we show that deciding well-specification is in
ExpSpace for IOPPUD. To this end, we define generalised reachability expressions (GRE)
and establish that, for IOPPUD, deciding whether the set of configurations that satisfy
a given GRE is empty is in ExpSpace. This decidability result is powerful; indeed, this
emptiness problem subsumes classic verification problems like reachability and coverability,
as well as parameterised verification problems such as well-specification and correctness,
where the latter asks whether a given protocol computes a given predicate. Lastly, we exhibit
a coNExpTime lower bound for deciding emptiness of GRE for IOPPUD.

Related work. For a recent survey of the research on verification of PP (without data),
see [16]. In particular, the well-specification problem for PP is known to be decidable, but as
hard as Petri net reachability [17] and therefore Ackermann-complete [13,24,25]. In their
seminal paper on the computational power of PP, Angluin, Aspnes, Eisenstat, and Ruppert
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also introduced five subclasses of PP that model one-way communication [4]. One of these is
immediate observation population protocols (IOPP), which correspond to IOPPUD without
data. The complexity of well-specification for all five subclasses is determined in [18]. In
particular, the paper shows that well-specification for IOPP is PSpace-complete. IOPP
were modelled by immediate observation Petri nets, where classic parameterised problems
can be decided in polynomial space. The notion of generalised reachability expression was
first phrased in this setting, and one of the consequences is that the emptiness problem of
GRE for IOPP is PSpace-complete [29]. Our result shows that adding data to the model as
in [9] (and extending GRE naturally) pushes the emptiness problem between coNExpTime
and ExpSpace.

While the introduction of data in the PP model happened recently [10], a similar approach
has been studied in the related model of Petri nets, under the name of data nets. In this
setting, the classic problem of coverability (or control-state reachability) is decidable but
non-primitive recursive [23] and in fact FÊÊ -complete [27]. While PPUD can be encoded
into data nets, our results show that the problems that we study cannot be reduced to
coverability. Another related model is formed by broadcast networks of register automata
(BNRA) [20], an extension of reconfigurable broadcast networks (RBN) with data. RBN
subsume IOPP [6], and consequently BNRA subsume IOPPUD. However, the complexity
of coverability in BNRA is known to be FÊÊ -complete, hence non-primitive recursive, and
more complex problems quickly become undecidable [20]. These hardness results contrast
with the ExpSpace membership.

Organisation. In Section 2, we introduce the models of PPUD and IOPPUD, the notion of
GRE, and we state our main results. We prove undecidability of well-specification for PPUD
in Section 3. The next sections are dedicated to the study of IOPPUD. In Section 4, we
establish bounds on the number of observed agents. In Section 5, we introduce the technical
notions of boxes and containers and use the bounds from the previous section to translate
GRE into containers. We present the complexity bounds for emptiness of GRE in Section 6.

2 Population Protocols and Main Results

We use the notation [m,n] := {¸ œ N | m Æ ¸ Æ n} for m,n œ N and [m,+Œ) := {¸ œ N |

m Æ ¸} .

2.1 Population Protocols with Unordered Data

We fix an infinite data domain D, an infinite set of agents A, and a function dat : A æ D
such that dat≠1(d) is infinite for all d œ D. For d œ D, a d-agent is an agent a œ A with
dat(a) = d.

I Definition 1. A population protocol with unordered data (PPUD) is a tuple (Q,�, I, O)
where Q is a finite set of states, � ™ Q

2
◊ {=, ”=}◊Q

2
the set of transitions, I ™ Q the set

of initial states, and O : Q æ {€,‹} the output function.

The size of a PPUD P, written |P|, is its number of states. We fix a PPUD (Q,�, I, O).
A configuration is a function “ : A æ Q fi {ú} such that “(a) œ Q only holds for finitely

many agents a œ A (the agents appearing in “). We denote by � the set of all configurations,
and by �init := {“ œ � | ’a œ A, “(a) /œ Q \ I} the set of initial configurations. Given “ œ �
and d œ D, we let “

#
d
: Q æ N be the function that maps each state q to the number of

d-agents in q in “.

ICALP 2024
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Given “, “
Õ
œ �, we write “ æ “

Õ, and call it a step from “ to “
Õ, when there are states

q1, q2, q3, q4 œ Q and two distinct agents a1, a2 œ A such that ((q1, q2), ÛÙ, (q3, q4)) œ �,
“(a1) = q1, “(a2) = q2, “

Õ(a1) = q3, “
Õ(a2) = q4, “(a) = “

Õ(a) for all a œ A \ {a1, a2}, and,
additionally, if ÛÙ is an equality (resp. disequality), then dat(a1) = dat(a2) (resp. dat(a1) ”=
dat(a2)). A run fl is a (finite or infinite) sequence of consecutive steps fl : “1 æ “2 æ “3 æ

. . . . We write fl : “
ú
≠æ “

Õ to denote that fl is a finite run from “ to “
Õ, and simply “

ú
≠æ “

Õ to
denote the existence of such a run. For every “ œ �, let Postú(“) := {“

Õ
œ � | “

ú
≠æ “

Õ
} and

Pre
ú(“) := {“

Õ
œ � | “

Õ ú
≠æ “}. A run fl covers a state q œ Q if there is a configuration “ in fl

such that “(a) = q for some agent a.
In accordance with [3] and [10], we consider a run “1 æ “2 æ . . . fair if it is infinite1 and

for every configuration “ with
--{i œ N | “i

ú
≠æ “}

-- = Œ, it holds that
--{i œ N | “i = “}

-- = Œ.
That is, every infinitely often reachable configuration also occurs infinitely often along the run.
For b œ {€,‹}, a b-consensus is a configuration “ in which, for all agents a œ A appearing
in “, it holds that O(“(a)) = b. A fair run fl : “1 æ “2 æ · · · stabilises to b œ {€,‹} if there
is an n œ N such that for every i Ø n, “i is a b-consensus. A protocol is well-specified if, for
every initial configuration “0 œ �init, there is b œ {€,‹} such that all fair runs starting in “0
stabilise to b. The well-specification problem for PPUD asks, given a PPUD P, whether P
is well-specified. Given a PPUD P and a function � : �init æ {€,‹}, P computes � if, for
every “0 œ �init, every fair run of P starting in “0 stabilises to �(“0).

I Example 2. Consider the following PPUD P. Its set of states is Q = {¸0, ¸1, f0, f1, dead},
with I = {¸1}, O(¸0) = O(f0) = €, O(¸1) = O(f1) = O(dead) = ‹ and its transitions are:

’b, b
Õ
œ {0, 1}, (¸b, ¸bÕ) ‘æ (¸bübÕ , fbübÕ) ’b, b

Õ
œ {0, 1}, (¸b, fbÕ) ‘æ (¸b, fb)

’q, q
Õ
œ Q, (q, qÕ) ‘æ= (dead, dead) ’q œ Q, (q, dead) ‘æ (dead, dead)

where ‘æ= denotes that the data of the agents must be equal, ‘æ without subscript means
no condition on data (or equivalently, the transition exists both for equality and disequality),
and ü denotes the XOR operator. P is well-specified and computes the function � that is
equal to € whenever there is an even number of appearing data and they all have exactly
one corresponding agent. To see this, if there are two agents of equal datum, then all fair
runs eventually have all agents on dead and stabilise to ‹. Otherwise, there will eventually
be a single agent in {¸0, ¸1}, and it will be on ¸b if and only if the number of agents has
parity b, in which case all other agents will eventually go to fb and the run stabilises to ‹ if
b = 1 (odd number of agents) and to € if b = 0 (even number of agents).

A more interesting but also more complex example is the majority protocol described
in [10, Section 3]; it computes whether a datum has the absolute majority, i. e., strictly more
agents than all other data combined.

Well-specification is the fundamental verification problem for population protocols. How-
ever, as we will see in Section 3, this problem is undecidable for PPUD.

I Theorem 3. The well-specification problem for PPUD is undecidable.

This motivates the study of the restricted class of immediate observation PPUD.

1 One often considers that a finite run “f
ú≠æ “¸ is fair when there is no “ such that “¸ æ “. In the

following, we rule out this possibility by implicitly assuming that, for all q1, q2 œ Q and ÛÙ œ {=, ”=}, it
holds that ((q1, q2), ÛÙ, (q1, q2)) œ �, and ignoring the trivial cases of runs with at most one agent.
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2.2 Immediate Observation Protocols

Immediate observation protocols [4] are a restriction of population protocols where, when
two agents interact, one of the two agents does not change its state. The restriction of the
model with data to immediate observation was first considered in [10].

I Definition 4. An immediate observation population protocol with unordered data (or

IOPPUD) is a PPUD P = (Q,�, I, O) where every transition ” œ � is of the form (q1, q2, ÛÙ
, q1, q3), with q1, q2, q3 œ Q and ÛÙ œ {=, ”=}, i. e., the first agent does not change its state.

For IOPPUD, we denote a transition (q1, q2, ÛÙ, q1, q3) by q2
ÛÙq1
≠≠æ q3. If we have a step

“ æ “
Õ with transition q2

ÛÙq1
≠≠æ q3 that involves agents a, ao œ A where a is the agent moving

from q2 to q3 and ao is the agent in q1, we denote it by “
ÛÙao
≠≠≠æa“

Õ. We say that agent a

observes agent ao, and call ao the observed agent. Intuitively, a “observes” ao and reacts,
whereas ao may not even know it has been observed.

I Example 5. Consider the following IOPPUD P = (Q,�, I, O), with Q := {q0, q1, q2, q3},
I := {q0, q1}, O(q3) = €, O(q) = ‹ for all q ”= q3, and transitions in � as follows:

q0
=q1
≠≠æ q2 q1

=q0
≠≠æ q2 q2

”=q2
≠≠æ q3 ’q œ {q1, q2},’ ÛÙ œ {=, ”=}, q

ÛÙq3
≠≠æ q3

This protocol is well-specified: from “0 œ �init, all fair runs stabilise to € if two data have
agents on both q0 and q1, and all fair runs stabilise to ‹ otherwise. Indeed, if there is a
datum with agents on both q0 and q1, by fairness eventually an agent with this datum is sent
to q2; if there are two such data, then eventually some agent covers q3, and then all agents
are sent to q3 and the run stabilises to €. Conversely, if it is not the case, then q3 cannot be
covered and all fair runs stabilise to ‹.

Let fl : “start

ú
≠æ “end be a run. Agent ao is internally observed (resp. externally observed)

in fl if fl contains a step of the form “1
=ao
≠≠æa“2 (resp. “1

”=ao
≠≠æa“2); it is observed if one of

the two cases holds. Similarly, a datum d is observed in fl if an agent a with dat(a) = d is
observed in fl; we define similarly a datum being internally or externally observed.

While the set of functions that can be computed by PPUD remains an open question,
it is known that IOPPUD exactly compute interval predicates [10], defined as follows.
Let S be a finite set. A simple interval predicate over S is a formula Â of the form
÷̇d1, . . . , dm,

w
qœS

w
m

j=1 #(q, dj) œ [Aq,j , Bq,j ] where, for all q œ S and j œ [1,m], we have
Aq,j œ N and Bq,j œ N fi {+Œ}. The dotted quantifiers quantify over pairwise distinct data.
Formally, given a protocol P with set of states Q such that S ™ Q and given “ œ �, the
predicate Â is satisfied by “ if there exist pairwise distinct data d1, . . . , dm œ D such that for
all q œ S and j œ [1,m], it holds that “

#
dj
(q) œ [Aq,j , Bq,j ] (resp. “

#
dj
(q) œ [Aq,j , Bq,j) in the

case that Bq,j = +Œ). An interval predicate over S is a Boolean combination Ï of simple
interval predicates over S; we define that Ï is satisfied by a configuration “ if the simple
interval predicates satisfied by “ satisfy the Boolean combination.

I Theorem 6 ( [10], Theorem 18 and Corollary 29). Given a finite set I, the functions

computed by IOPPUD with set of initial states
2
I are exactly the interval predicates over I.

I Example 7. The protocol described in Example 2 and the majority protocol of [10, Section 3]
cannot be turned into immediate observation protocols, as they compute functions that cannot
be expressed as interval predicates. The immediate observation protocol from Example 5
computes the following interval predicate, which is actually a simple interval predicate:

÷̇d1, d2, (#(q0, d1) Ø 1) · (#(q1, d1) Ø 1) · (#(q0, d2) Ø 1) · (#(q1, d2) Ø 1).

2 This does not limit the number of states of said protocols, as their set of states Q may be larger than I.
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Given a simple interval predicate Â = ÷̇d1, . . . , dm,
w

qœI

w
m

j=1 #(q, dj) œ [Aq,j , Bq,j ], we
define its width as m, its height h as the maximum of all finite Aq,j and Bq,j , and its size as
|I| ·m · log(h). We also define the width (resp. height) of an interval predicate as the maximum
of the widths (resp. heights) of its simple interval predicates, and its size, measuring the
space taken by its encoding, as the sum of their sizes plus its number of Boolean operators.
I Remark 8. In [10], predicates refer to an input alphabet �, which is converted into initial
states using an input mapping. For convenience, we have not included the input alphabet in
our model, which is why we arbitrarily fix a set of initial states I in Theorem 6.

2.3 Generalised Reachability Expressions

We define a general class of specifications, called generalised reachability expressions, which
are formulas constructed using interval predicates as atoms and using union, complement,
Post

ú, and Pre
ú as operators. This concept is inspired by [29, Section 2.4], although our

choice of atoms is more general and adapted to the data setting.

I Definition 9. Let P = (Q,�, I, O) be a protocol.

Generalised Reachability Expressions (GRE) over P are produced by the grammar

E ::= Ï | E fi E | E | Post
ú(E) | Preú(E),

where Ï ranges over interval predicates over Q.

Given a GRE E, we define the set of configurations defined by E, denoted JEKP , as
the set containing all configurations of P that satisfy the formula, where the predicates are

interpreted as above and the other operators are interpreted naturally (the overline denotes

set complementation). This set is denoted JEK when P is clear from context.

The length |E| of a GRE E is its number of operators. Letting Ï1, . . . ,Ïk be the interval
predicates used as atoms in E, the norm ||E|| of E is the maximum of the heights and widths
of the Ïi. Its size is the sum of the sizes of the Ïi plus |E|. The emptiness problem for GRE

asks, given as input a protocol P and a GRE E over P, whether JEKP = ÿ. We will show in
Section 6 that, for IOPPUD, this problem is decidable.

I Theorem 10. The emptiness problem for GRE over IOPPUD is in ExpSpace.

We now argue that this decidability result is powerful, as it implies decidability of
many classic problems on IOPPUD. We start with well-specification. We use the nota-
tion ’̇d,Ï as a short form for ¬÷̇d,¬Ï. Given a PPUD P and b œ {€,‹}, let Outb :=
’̇d,

w
q/œO≠1({b}) #(q, d) = 0 be the GRE for b-consensus configurations; moreover, let

Stableb := Pre
ú(Outb) be the GRE for stable b-consensus, i. e., configurations from which all

runs lead to a b-consensus.

I Proposition 11. Let P be a PPUD, Ews := �initflPre
ú(Preú(Stable€))flPre

ú(Preú(Stable‹)).
P is well-specified if and only if JEwsKP = ÿ.

Proof. First, �init = J’̇d,
w

q/œI
#(q, d) = 0K and Ews is indeed a GRE over P. For every

“ œ �, Postú(“) is finite as all configurations reachable from “ have the same number of
agents. Therefore, a fair run fl that visits Pre

ú(S) infinitely often for S ™ � must visit S

infinitely often. Let “0 œ �init and b œ {€,‹}; it su�ces to prove that there is a fair run
from “0 that does not stabilise to b if and only if “0 œ JPreú(Preú(Stableb))K. If, from “0, one
can reach “ /œ JPreú(Stableb)K, then one can build a fair run from “0 that first goes to “, and
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then forever performs arbitrary steps in a fair way; since “ /œ JPreú(Stableb)K, it will stay
in JPreú(Outb)K, so by fairness it visits JOutbK infinitely often and does not stabilise to b.
Conversely, if there is a fair run that does not stabilise to b, then it never visits JStablebK, hence
by fairness it eventually stops visiting JPreú(Stableb)K; this proves that it visits a configuration
“ œ JPreú(Stableb)K, and “ is reachable from “0 hence “0 œ JPreú(Preú(Stableb))K. J

Many other problems can be expressed as emptiness problems for GRE; we list a few.
The correctness problem for IOPPUD asks, given an IOPPUD P = (Q, I,O,�) and an
interval predicate Ï over I, whether P computes Ï. This can be equivalently phrased as
JÏ≠1(b) fl Pre

ú(Preú(Stableb))K = ÿ for all b œ {€,‹}, where Ï
≠1(b) is the set of initial

configurations that Ï maps to b. Note that the previous expression is a GRE because, in
Definition 9, we chose as atoms interval predicates such as Ï.
The set-reachability problem (called cube-reachability in [5]) asks, given two sets of
configurations S1,S2, whether S2 is reachable from S1; this typically expresses safety
problems where S2 represents “bad configurations” that must not be reached. If S1 = JE1K
and S2 = JE2K, then this amounts to checking whether JE1 fl Pre

ú(E2)K is empty.
The home-space problem asks, given a protocol P and a set of configurations H, whether
H can be reached from every configuration reachable from an initial configuration. If H
can be expressed as a GRE E, then it su�ces to check whether JPostú(�init)K ™ JPreú(E)K.
This problem has been studied in Petri nets [22], but also in probabilistic settings, for
example in [11] for asynchronous shared-memory systems; indeed, in systems with uniform
probabilistic schedulers where Post

ú(“0) is finite for every initial configuration “0, this
problem is equivalent to asking whether the probability of reaching H is equal to 1.

Theorem 10 entails that, for IOPPUD, all these problems are decidable and in ExpSpace.

3 Undecidability of Verification of Population Protocols with

Unordered Data

In this section, we establish that the most fundamental verification problem for PPUD, i. e.,
the well-specification problem, is already undecidable.

I Theorem 3. The well-specification problem for PPUD is undecidable.

We proceed by reduction from the halting problem for 2-counter machines with zero-tests,
a famously undecidable problem [26]. Here, we give a proof sketch. The detailed reduction
can be found in [7], which is the full version of this paper.

We fix a 2-counter machine and build a protocol P which is not well-specified if and only
if the counter machine halts. A 2-counter machine performs increments, decrements and
zero-tests on two counters. The main di�culty are the zero-tests. Let us first recall how
increments and decrements are simulated in many prior undecidability results for population
protocols and Petri nets [21, 27]. The protocol has a control part QCM := {qi | i œ [1, n]}
where a single instruction agent evolves; this part has one state per instruction of the machine.
Increments and decrements are simulated as follows: The instruction agent interacts with
states of {R} fi {x, y}, where R is a reservoir state and x and y are states in which the
number of agents represents the value of the counters. For example an increment on counter
x moves one agent from the reservoir R to x and advances the instruction agent to the next
instruction. The reservoir is hence implicitly assumed to start with arbitrarily many agents.

The main di�culty is that one does not want to take the = 0 branch of a zero-test when
the value of the counter is non-zero. Actually, similar to [21, 27], we will not prevent the
existence of such runs. Instead, our protocol will have “violating” runs which take the wrong

ICALP 2024



156:8 Verification of Population Protocols with Unordered Data

q¸

q¸+1

dec(x)

x̄

x

R

(a) Gadget for performing dec(x). Agents of the
blue dashed edges must have the same datum.

q¸

qk
x=0

U

x̄

R

(b) Gadget for x=0 branch of “if x=0 then goto k”.
The same agent takes the two blue dashed edges and
the same agent takes the orange dotted edges.

Figure 1 For simplicity, we use Petri net notation: circles are states, rectangles are Petri net
transitions. To encode this into our protocols, we split each transition into pairwise interactions.

branch of a zero-test, but our well-specification check will consider only violation-free runs.
The correctness of the reduction is then established in two steps: The CM halts if and only if
some violation-free run to the halting state exists, and this is true if and only if our protocol
is not well-specified. We establish the connection between non-well-specification and the
existence of a violation-free run in our protocol.

In the first place, we guarantee that every initial configuration of our protocol has a
fair run stabilising to ‹, so that P is not well-specified if and only if there exists a fair
run which does not stabilise to ‹

3. Second, we introduce violation detection, a mechanism
which guarantees that fair runs which contain a violation stabilise to ‹, hence preserving
well-specification. To do so, we add a sink state q‹, which has output ‹ and is attracting,
i. e., all other states have a transition to q‹ available when observing that q‹ is non-empty.
Violation detection then entails adding transitions into q‹ that will be available infinitely
often if the run (or its initial configuration) contained a violation. By fairness, any run
containing a violation will then eventually put an agent into q‹, and hence, because q‹ is
attracting, the run ends in a deadlock with all agents in q‹. In particular, any fair run
containing a violation will output ‹ as claimed. There are two types of violation detection.

First, we want to only mark those runs as violation-free that start in initial configurations
where U œ Q has at most one agent of each datum. To do so, we make agents remember
whether their initial state was U or not (by encoding it into the state space), and, from
every state, we add a transition to q‹ such that this transition is enabled when an agent
who started in U observes another agent of same datum that also started in U .

Second, we want to detect violations which consist in falsely simulating a zero-test, as
discussed above. Here our technique shares some similarities with [27]. Let c œ {x, y} be a
counter; for every zero-test of the counter machine, we add two types of transitions to the
protocol. The first type simulates the c ”= 0 branch and can be taken by the instruction
agent upon interacting with some agent on state c; by contrast, the c = 0 branch can always
be taken. However, if it was taken with c ”= 0, then violation detection will eventually detect
this. For this mechanism, we introduce a counter control state c̄ œ Q. At any point in time,
c̄ contains one agent, similar to the instruction agent. The crux of our violation detection is
that only agents which share the datum with the agent in c̄ will be allowed to move in and
out of state c, as illustrated in Figure 1a.

The = 0 branch of a zero-test is depicted in Figure 1b. It replaces the agent on c̄ with an
agent with fresh datum from state U . Thus, when the c = 0 branch is taken, any remaining
agent in c is stuck in c as it will never again share datum with the agent in c̄. Violation
detection then sends an agent in c to q‹ upon observing an agent in c̄ with di�erent datum.

3 This can be done with the addition of a fresh state that is the only initial state and that has internal
transitions to all former initial states and an internal transition to a sink state that has output ‹.
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Now that we have violation detection in place, it only remains to explain the connection
to halting. The halting instruction qn in QCM is the only state with output €. Hence, any
run not outputting ‹ must contain an agent in the halting instruction at some point, and be
violation-free by the above. That is, the counter machine reached the halting state without
violations. Conversely, if the machine halts, one can build a finite run that puts an agent
into the halting state without any violation occurring. The corresponding configuration is
then a deadlock, and hence the extension to an infinite run (by staying there forever) is a fair
run not outputting ‹. This proves that well-specification is undecidable for PPUD, which
motivates restricting ourselves to immediate observation PPUD.

4 An Analysis of Immediate Observation Protocols with Data

To obtain our complexity bounds on the emptiness problem for GRE, we first show some
transformations on runs that allow us to bound the number of observed agents. All runs
that we consider in this section are finite, and we therefore write them as “1 æ · · · æ “m or
“start

ú
≠æ “end. In the rest of this section, we fix an IOPPUD P = (Q,�, I, O).

We introduce some notation for agents in runs. Let fl : “1
ú
≠æ “m and d œ D. We let Afl

be the set of agents appearing in fl, and set Ad
fl
:= {a œ Afl | dat(a) = d}. We let Ad

fl,o
be the

set of agents with datum d that are observed in fl, i. e., the ao œ Ad
fl
such that there exists

a step “
ÛÙao
≠≠≠æa“

Õ in fl. For all q1, qm œ Q, we let Ad
fl,q1,qm be the set of agents with datum

d that start in q1 and end in qm, i. e., the a œ Ad
fl
such that “1(a) = q1 and “m(a) = qm.

Moreover, we let Dfl := {d œ D | Ad
fl

”= ÿ} be the set of data appearing in fl. We may omit fl

in the subscript if the run is clear from the context.

4.1 Bounds on the Number of Observed Agents per Datum

Let fl : “1 æ · · · æ “m be a run. For i œ [1,m], we call “i æ “i+1 the i-th step in fl. Let
fl[æ i] (resp. fl[i æ]) denote the prefix of fl ending on its i-th configuration (resp. the su�x
of fl starting on its i-th configuration). Let a, b œ Afl. Agent a is active in the i-th step if
“i

ÛÙao
≠≠≠æa“i+1 for some agent ao. Otherwise, a is idle in that step. We say b copies a in fl if

after every step “i

ÛÙao
≠≠≠æa“i+1 in fl via some transition t, there is a step “i+1

ÛÙao
≠≠≠æb“i+2 via t

and, additionally, b is idle in every step not immediately following an active step of a.
The following lemma allows us to add agents to a run that copy an agent of the same

datum.

I Lemma 12 (Agents copycat). Let fl : “start

ú
≠æ “end be a run. Let a œ Afl and ã œ A \ Afl

with dat(a) = dat(ã). Then there exist configurations “̃start, “̃end and a run fl̃ : “̃start

ú
≠æ “̃end

such that:

(i) Afl̃ = Afl ‡ {ã}, and for all a
Õ
œ Afl, “̃start(aÕ) = “start(aÕ) and “̃end(aÕ) = “end(aÕ);

(ii) “̃start(ã) = “start(a) and “̃end(ã) = “end(a);
(iii) ã is not observed in fl̃.

Proof. We let “̃start be such that “̃start(ã) = “start(a) and “̃start(aÕ) = “start(aÕ) for all
a

Õ
”= ã. We construct fl̃ by going through fl step by step, making ã copy a: whenever fl takes

a step ÛÙao
≠≠≠æa, then we take this step followed by step ÛÙao

≠≠≠æã to fl̃. We can do so because
dat(ã) = dat(a) and because agent ao ”= a has not moved and thus can be observed again.
These are the only steps where ã is involved, hence it is never observed. J

The following result shows that, given a run fl, we can construct a new run with a small
subset of the agents of Afl such that, for all d œ D and all states q1 and q2, if there is a
d-agent starting in q1 and ending in q2 in fl, then this is also true in the new run. We refer
to [7] for proof details.
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Figure 2 An example of a run with six steps on a protocol with two states q1, q2. a, b, c, d, e denote
agents; a, b, c have the same datum and d, e have the same datum. Dashed lines are observations.

I Lemma 13 (Agents core). Let fl : “start

ú
≠æ “end be a run. Then there exist configurations

“
Õ
start

, “
Õ
end

and a run fl
Õ : “

Õ
start

ú
≠æ “

Õ
end

with AflÕ ™ Afl such that:

(i) for all a œ AflÕ , “
Õ
start

(a) = “start(a) and “
Õ
end

(a) = “end(a);
(ii) for all d œ D and qs, qe œ Q, if Ad

fl,qs,qe
”= ÿ, then Ad

flÕ,qs,qe
”= ÿ;

(iii) for all d œ D, we have |Ad

flÕ | Æ |Q|
3
.

Proof sketch. We adapt the bunch argument from the case of IO protocols without data [19].
Suppose there is d œ D and qs, qe œ Q such that |Ad

fl,qs,qe
| > |Q|. Let R be the set of states

visited by agents of Ad
fl,qs,qe

in fl. Notice that |R| Æ |Q|. We define a family (aq)qœR of
pairwise distinct agents such that reducing Ad

fl,qs,qe
in fl to (aq)qœR still yields a valid run.

We iterate through R as follows. Let q œ R and let f be the first moment q is reached in
fl, i. e., the minimal index such that there exists an a œ Ad

fl,qs,qe
with “f (a) = q. Let ¸ be the

last moment q is occupied in fl, i. e., the maximal index such that there exists an a œ Ad
fl,qs,qe

with “¸(a) = q. Let –q be the agent in Ad
fl,qs,qe

that reaches q first, i. e., “f (–q) = q, and let
—q be the agent in Ad

fl,qs,qe
that leaves q last, i. e., “l(—q) = q. Note that these agents do not

have to be distinct. We pick a fresh agent aq /œ Afl with dat(aq) = d and modify fl as follows.
We let aq copy –q in fl[æ f ], then aq stays idle until —q leaves q (for the last time) and then
aq copies —q in fl[¸ æ]. We do this for every q œ R.

Then, for every step in which an ao in Ad
fl,qs,qe

is observed in state q, let aq be observed
instead, i. e., replace steps ÛÙao

≠≠≠æa with ÛÙaq
≠≠≠æa. Finally, remove all the agents of Ad

fl,qs,qe

from the run, and identify (or substitute) each aq with a distinct agent in Ad
fl,qs,qe

, so that
(aq)qœR ™ Ad

fl,qs,qe
. We do this for every d œ D and qs, qe œ Q such that |Ad

fl,qs,qe
| > |Q|. J

I Example 14. Consider the run fl depicted in Figure 2. Applying Lemma 13 on fl yields a
new run fl

Õ with 4 agents instead of 5. Indeed, let d denote the datum of a, b and c; we have
|Ad

fl,q1,q1 | = |{a, b, c}| = 3 whereas |Q| = 2. In fl, agents a and b successively go from q1 to
q2 and back to q1. In fl

Õ, these two agents are replaced by a single agent (named b again)
who goes to q2 on the first step and only leaves q2 on the last step. In fl

Õ, the new agent b is
observed by d in the second step, and by e in the penultimate step.

4.2 Bounds on the Number of Observed Data

Given a run and a datum d appearing in it, we define the trace of d in fl as the function
trd

fl
: Q2

æ N such that for all q1, q2 œ Q, it holds that trd
fl
(q1, q2) = |Ad

fl,q1,q2 |. For each pair
of states q1, q2, the trace counts the number of d-agents starting in q1 and ending in q2. For
example, the trace of the run fl of Example 14, with d the datum of agents a, b and c, is such
that trd

fl
(q1, q1) = 3 and trd

fl
(q, qÕ) = 0 for all (q, qÕ) ”= (q1, q1). The trace is the information

we need to copy data: if there is a datum d with trace tr in a run, then we can add data to
the run that mimic d and have the same trace. The following lemma echoes Lemma 12.
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I Lemma 15 (Data copycat). Let fl : “start

ú
≠æ “end be a run. Let d œ Dfl and d̃ œ D \ Dfl.

Then there exist configurations “̃start, “̃end and a run fl̃ : “̃start

ú
≠æ “̃end such that:

(i) Afl̃ = Afl ‡ Ad̃
fl̃
, and for all a œ Afl, “̃init(a) = “init(a) and “̃end(a) = “end(a),

(ii) trd̃
fl̃
= trd

fl
and trdÕ

fl̃
= trdÕ

fl
for all d

Õ
”= d̃,

(iii) d̃ is not externally observed in fl̃.

Proof. For all qs, qe œ Q and all a œ Ad
qs,qe

, we add an agent ã with datum d̃ in qs at the
start. We do this in a way similar to Lemma 12: after every step ”=ao

≠≠æa in fl, we insert a
step ”=ao

≠≠æã, and after every step =ao
≠≠æa in fl, we insert a step =ão

≠≠æã. We thus maintain the
fact that each added agent ã is in the same state as its counterpart a. In particular, they are
in the same state at the end of the run. This yields a run fl̃ with trd̃

fl̃
= trd

fl
, and such that

for all dÕ
”= d̃, trdÕ

fl̃
= trdÕ

fl
. Since d̃ /œ Dfl, it is not externally observed in fl̃. J

Like we showed for the agents, we show that we can reduce the number of data in a run.
We lift the proof strategy of Lemma 13 from agents to data, exploiting the sets of data with
equal traces. We refer to [7] for proof details.

I Lemma 16 (Data core). Let fl : “start

ú
≠æ “end be a run and let K be a number such that

there are at most K agents of each datum in fl. Then there exist configurations “
Õ
start

, “
Õ
end

,

a run fl
Õ : “

Õ
start

ú
≠æ “

Õ
end

, and a subset of data DflÕ ™ Dfl such that:

(i) for all d œ DflÕ and all agents a of datum d, “start(a) = “
Õ
start

(a) and “end(a) = “
Õ
end

(a),
(ii) for all d œ Dfl, there exists d

Õ
œ DflÕ such that trdÕ

flÕ = trd
fl
,

(iii) |DflÕ | Æ (K + 1)|Q|3+|Q|2
.

Proof sketch. We define the notion of split trace. The split trace of a datum d at the i-th
configuration of a run fl maps every triple of states (q1, q2, q3) to the number of d-agents that
are in q1 at the start of fl, then in q2 in the i-th configuration, and finally in q3 at the end.
Since there are at most K agents per datum, there are at most (K + 1)|Q2| possible traces
and M = (K + 1)|Q3| possible split traces.

For every trace tr, if there are more than M data that have trace tr in fl, we apply a
similar argument to Lemma 13: we select one datum for each possible split trace, and use it
to cover all external observations of agents whose datum matches that split trace. We remove
the other data, and show that this is still a valid run. The bound on the total number of
data comes from the number of traces and split traces. J

I Corollary 17. For every run fl : “start

ú
≠æ “end, there exists a run fl̃ : “start

ú
≠æ “end such

that for all d œ D, it holds that |Ad
fl̃,o

| Æ |Q|
3
and that agents of at most (|Q|

3 + 1)|Q|3+|Q|2

di�erent data are externally observed.

Proof. We first apply Lemma 13 to fl to obtain fl
(1) : “

(1)
start

ú
≠æ “

(1)
end

over the same data
such that for all d œ D, it holds that |Ad

fl(1) | Æ |Q|
3. Then we apply Lemma 16 to obtain

fl
(2) : “

(2)
start

ú
≠æ “

(2)
end

with at most (|Q|
3+1)|Q|3+|Q|2 data. By Lemma 13-(i) and Lemma 16-(i),

the remaining agents have the same initial and final states in fl and fl
(2). It remains to put

back the agents and data we removed, without increasing the number of externally observed
data or observed agents per datum.

By Lemma 16-(ii), every trace of a datum in fl
(1) appears as the trace of a datum in fl

(2).
Thus, it is possible to re-add data of Dfl(1) to Dfl(2) using repeated applications of Lemma 15.
By Lemma 15-(iii), this does not add any external observation. So we obtain a run fl̃

(1) from
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“
(1)
start

to “
(1)
end

such that at most (|Q|
3+1)|Q|3+|Q|2 data are externally observed by Lemma 15-

(iii). Recall that there are at most |Q|
3 agents per datum in “

(1)
start

by Lemma 13-(iii); in
particular there are at most |Q|

3 observed agents per datum in fl̃
(1).

By Lemma 13-(ii), for each datum d and states qs, qe, if there is a d-agent a such that
“start(a) = qs and “end(a) = qe then there is an agent a

Õ such that “
(1)
start

(aÕ) = qs and
“
(1)
end

(aÕ) = qe in fl. Therefore, due to Lemma 13-(ii), we can apply Lemma 12 repeatedly to
add back the missing agents in fl̃

(1) and obtain a run fl̃ from “start to “end. By Lemma 12-(iii),
this does not add any observation. As a result, we obtain a run from “start to “end in which
at most (|Q|

3 + 1)|Q|3+|Q|2 data are externally observed and for all datum d, at most |Q|
3

d-agents are observed. J

5 From Expressions to Containers

In this section, we define the technical notions of boxes and containers, which are meant to
represent sets of configurations defined by counting agents and data up to some thresholds.
In Proposition 21, we will prove that the set of configurations defined by a generalised
reachability expression E can be described as a union of containers whose thresholds are
exponential in the length of E and polynomial in its norm. To do so, we will leverage the
bounds on the number of observed agents from Section 4 to bound the description of the
GRE Post

ú(F ) with respect to the one of GRE F . The key result of Proposition 21 will be
used in Section 6 to obtain the decidability of the emptiness problem for GRE.

5.1 Equivalence of Predicates and Containers

In this subsection, we fix an IOPPUD P = (Q,�, I, O).
Let n,M œ N. An n-box is a vector b : Q æ [0, n]. Given a configuration “ and a

datum d œ D, we define the n-box of d in “ as Á“, dË
n : Q æ [0, n] such that for all q œ Q,

Á“, dË
n(q) = min{n, “#

d
(q)}; in words, the n-box of d truncates the number of agents of d if

it exceeds n. We write Boxesn for the set of all n-boxes. We define the equivalence relation
© n over � ◊ D by (“1, d1) ©n (“2, d2) whenever Á“1, d1Ë

n = Á“2, d2Ë
n. An equivalence class

of © n is a set of the form {(“, d) œ � ◊ D | Á“, dË
n = b} for b œ Boxesn; we represent such

an equivalence class for © n by the associated n-box b.
To lift this concept to data, we count the number of data with the same n-box up to bound

M . The (n,M)-container of a configuration “ is the function Á“Ë
n,M : Boxesn æ [0,M ]

such that Á“Ë
n,M (b) = min

)
M,

--{d œ D | Á“, dË
n = b}

--* for all b œ Boxesn. We define
the equivalence relation © n,M over � by “1 ©n,M “2 whenever Á“1Ë

n,M = Á“2Ë
n,M . An

equivalence relation for © n,M is the preimage of some (n,M)-container by the previously
described function; we represent such an equivalence class by the associated (n,M)-container.
Figure 3 illustrates the function mapping a given configuration to its container.

In all the following, we use the terms n-boxes and (n,M)-containers to designate
both the vectors and the equivalence classes of © n and © n,M that they represent. For
instance, we write union of n-boxes for the union of the corresponding equivalence classes
of © n.

The partition of � into (n,M)-containers becomes finer as n and M grow.

I Lemma 18. Let n1, n2,M1,M2 œ N. If n1 Æ n2 and M1 Æ M2, then every (n1,M1)-
container is a union of (n2,M2)-containers.
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q0

q1

q2

q3

q4

configuration

container

M = 2

q0 • •

q1 • • • • •

q2 •

q3 • •

q4 • • • •

q0 • •

q1 • • • •

q2 •

q3 • •

q4 • • • • • •

q0 • •

q1 • • • • •

q2 •

q3 • •

q4 • • • • •

q0 • •

q1 •

q2 • • • • • •

q3 •

q4 •

q0 • • • • •

q1 •

q2 • •

q3 • • •

q4

n = 4 boxes

Figure 3 How a configuration is mapped to a (4, 2)-container. Here, the protocol has five states
q0, . . . , q4. Five distinct data appear in the configuration, and they are represented using symbols.

Algorithmically, we represent an n-box as a list of appearing states with associated
numbers from [1, n] encoded in binary. Similarly, we represent an (n,M)-container as a list
of appearing n-boxes with associated numbers from [1,M ] encoded in binary.

In fact, interval predicates exactly describe finite unions of containers.

I Proposition 19. The sets of configurations defined by interval predicates of height at most

n and width at most M are exactly the sets formed by unions of (n,M)-containers.

Proof sketch. For the translation from predicates to containers, consider a simple interval
predicate ÷̇d1, . . . , dM ,

w
qœQ

w
M

j=1 #(q, dj) œ [Aq,j , Bq,j ] of height n. This predicate cannot
distinguish data mapped to the same n-box, hence cannot distinguish configurations in the
same equivalence class for © n,M , i. e., (n,M)-containers. The same directly extends to
interval predicates.

For the other direction, we prove that a given (n,M)-container can be expressed as an
interval predicate of height at most n and width at mostM . To do so, given a box b œ Boxesn
and m Æ M , we define the simple interval predicate Ïb,Øm expressing that at least m data
are mapped to box b. Formally, Ïb,Øm := ÷̇d1, . . . , dm,

w
qœQ

w
m

j=1 #(q, dj) œ [Aq, Bq], where,
for all q œ Q, Aq := b(q), Bq := b(q) if b(q) < n and Bq := +Œ if b(q) = n. This predicate
has height at most n and width at most M . A Boolean combination of such predicates allows
us to express an (n,M)-container. We refer to [7] for a detailed proof. J

We therefore have two equivalent representations. Both are useful: interval predicates
allow us to express properties more naturally, but containers are more convenient for the
proofs in the remainder of this section. While they are equally expressive, each can be much
more succinct than the other, as stated below. We refer to [7] for details.
I Remark 20. Containers can be exponentially more succinct than interval predicates, while
interval predicates can be doubly exponentially more succinct than unions of containers.
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5.2 A Translation from Expressions to Containers

Based on the translation from interval predicates to containers from Proposition 19, we can
now show that for all generalised reachability expressions E over an IOPPUD P, the set
JEKP is a union of (n,M)-containers with n and M bounded in terms of E and P.

I Proposition 21. There is a polynomial function poly : N æ N such that for all IOPPUD P

and GRE E, the set JEKP is a union of

1
||E|| ·

!
poly(|P|)

"|E|
, ||E||

poly(|P|)·|E|2
2
-containers.

The detailed proof of Proposition 21 can be found in [7]. We show the result by structural
induction on E. The base case, when E is an interval predicate, is provided by Proposition 19.
For the induction step, handling Boolean operators is straightforward; the di�culty lies
in operators Pre

ú and Post
ú. This is handled by the following lemma, which relies on the

bounds from Section 4.
Equivalence classes for fixed values of n and M do not behave well with respect to the

reachability relation, in the sense that it can happen that “start

ú
≠æ “end and “start ©n,M ‰start,

but there is no ‰end ©n,M “end such that ‰start

ú
≠æ ‰end. However, this will hold if we

take some margin on the equivalence relation of configurations at the start; the following
two functions express this margin. For all n,M œ N, let f(n) := (n + |P|

3) · |P| and
g(n,M) :=

!
M + (|P|

3 + 1)|P|3+|P|2"
(n+ 1)|P|.

The following lemma states that, if a set of configurations C cannot distinguish ©

n,M -equivalent configurations, then Pre
ú(C) cannot distinguish © f(n),g(n,M)-equivalent

configurations. In other words, if C is a union of © n,M -equivalence classes, (i. e., of
(n,M)-containers), then Pre

ú(C) is a union of © f(n),g(n,M)-equivalence classes.

I Lemma 22. For all n,M œ N and all configurations “start, “end,‰start œ �, if there is a

run fl : “start

ú
≠æ “end and “start © f(n),g(n,M)‰start, then there is a configuration ‰end œ �

with “end © n,M‰end and a run fi : ‰start

ú
≠æ ‰end.

Proof sketch. We first apply Corollary 17 to fl, so that we can assume that fl has a limited
number of externally observed data and of observed agents per datum.

In this proof sketch, we first handle the case with only one datum. Then, we explain how
to generalise this. We refer to [7] for proof details.

Suppose that all agents in “start and ‰start share a single datum d, and suppose
(“start, d) © f(n)(‰start, d). Let A“ and A‰ be the agents in “start and ‰start, respectively.
For all q, qÕ

œ Q, we set Aqæ
“

:= {a œ A“ | “start(a) = q}, Aqæ
‰

:= {a œ A‰ | ‰start(a) = q},
Aæq

Õ

“
:= {a œ A“ | “end(a) = q

Õ
}, and Aqæq

Õ

“
:= Aqæ

“
fl Aæq

Õ

“
.

Our aim is to assign to each agent in ‰start an agent in “start to mimic. To do so, we
construct a mapping ‹ : A‰ æ A“ such that
(A) for all a œ A‰, we have ‰start(a) = “start

!
‹(a)

"
,

(B) for all aÕ
œ A“ observed in fl, we have ‹

≠1(aÕ) ”= ÿ, and
(C) for all qÕ

œ Q, we have |‹
≠1(Aæq

Õ

“,d
)| = |Aæq

Õ

“,d
|, or |‹≠1(Aæq

Õ

“,d
)| Ø n and |Aæq

Õ

“,d
| Ø n.

We build ‹ separately on each set Aqæ
‰

by defining, for each q œ Q, a mapping ‹q : Aqæ
‰

æ

Aqæ
“

. Let q œ Q. As (‰start, d) ©f(n) (“start, d), either |Aqæ
“

| = |Aqæ
‰

|, or both |Aqæ
“

| and
|Aqæ

‰
| are at least f(n). If |Aqæ

“
| = |Aqæ

‰
|, we let ‹q form a bijection between Aqæ

‰
and

Aqæ
“

. Consider now the second case, where |Aqæ
“

| and |Aqæ
‰

| are at least f(n). We aim
at selecting, for every q

Õ
œ Q, a set AqæqÕ ™ Aqæq

Õ

“
of agents that must be copied in fi. If

|Aqæq
Õ

“
| Æ n, then we let AqæqÕ := Aqæq

Õ

“
. Otherwise, we first put in AqæqÕ all agents in

Aqæq
Õ

“
that are observed in fl, at most |P|

3 in total by Corollary 17. If |AqæqÕ | < n, we add
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arbitrary agents from Aqæq
Õ

“
to AqæqÕ until |AqæqÕ | Ø n. Either way, we have selected AqæqÕ

of size at most |P|
3 + n for each q

Õ, hence at most f(n) agents in total. For every q
Õ, we have

|AqæqÕ | Æ |Aqæq
Õ

“
|, and either |AqæqÕ | = |Aqæq

Õ

“
| or the two sets have size more than n.

We now build ‹q such that its image over Aqæ
‰

is
t

qÕœQ
AqæqÕ . We build this in two

steps. First, we assign to each
t

qÕœQ
AqæqÕ one antecedent by ‹q in Aqæ

‰
. This is possible

because |
t

qÕœQ
AqæqÕ | Æ f(n) Æ |Aqæ

‰
|. We then identify some q

ÕÕ such that |AqæqÕÕ | > n

and map all remaining agents of Aqæ
‰

to an arbitrary agent in AqæqÕÕ . Such a q
ÕÕ exists

because |Aqæ
“

| Ø f(n) Ø n · |P|, so there is a q
Õ such that |Aqæq

Õ

“
| Ø n, and hence |AqæqÕ | Ø n

by construction.
This concludes the construction of ‹. It remains to prove that ‹ fulfils Items A–C. Items A

and B are immediate from the definition. We prove Item C. Let qÕ
œ Q. We distinguish two

cases:
if |Aqæq

Õ

“
| < n for all q œ Q, then for all q, we have |‹

≠1(Aqæq
Õ

“
)| = |‹

≠1(AqæqÕ)| =
|AqæqÕ | = |Aqæq

Õ

“
|, so |‹

≠1(Aæq
Õ

“
)| = |Aæq

Õ

“
|;

if |Aqæq
Õ

“
| Ø n for some q œ Q, then |AqæqÕ | Ø n, so |‹

≠1(Aqæq
Õ

“
)| Ø n, and thus both

|‹
≠1(Aæq

Õ

“
)| and |Aæq

Õ

“
| are at least n.

We construct a run fi from ‰start by copying fl as follows. For each step of fl where an
agent a performs some transition t, we make |‹

≠1(a)| steps in fi so that all agents in ‹
≠1(a)

perform transition t one by one. If a observed some agent aÕ, there is aÕÕ in fi that can be
observed because ‹

≠1(aÕ) ”= ÿ: we made sure to map an agent to each observed agent in fl.
For the general case with more data, we similarly construct two mappings µ and ‹. First

we define µ, which maps each datum d of ‰start to one of “start such that (“start, µ(d)) ©

f(n)(‰start, d). Then, for each datum d, ‹ maps each agent a with datum d of ‰start to one
with datum µ(d) of “start.

Once µ and ‹ are defined, we build a run from ‰start to a configuration ‰end in which each
agent a mimics the behaviour of ‹(a) in fl. We make sure that agents (resp. data) observed
in fl have agents (resp. data) mapped to them, so that we can take the same transitions in fl

and fi. The construction of ‹ ensures that, for all data d, we have (“end, µ(d)) © f(n)(‰end, d).
The construction of µ ensures that “end © f(n),g(n,M)‰end. J

6 Decidability and Complexity Bounds

6.1 Decidability in Exponential Space

In this section, we use the results on GRE from Section 5 to provide an ExpSpace upper
bound for the emptiness problem for GRE. In the following, we assume that the representation
of a GRE E takes |E|+ log(||E||) space.

We first prove that we can decide membership of a configuration (encoded in a naive
way) in a GRE in PSpace. A configuration is represented data-explicitly if it is represented
as a list of vectors of NQ, one vector for each datum. The size of this representation is
k · |P| · log(m) where k is the number of data and m is the number of agents appearing in “.

I Proposition 23. The following problem is decidable in PSpace: given a PPUD P, a GRE

E, and a configuration “ described data-explicitly, decide if “ œ JEKP .

We refer to the full version [7] for the proof. It uses a relatively straightforward induction
on E to show that this problem can be decided in polynomial space using a recursive algorithm
(with a polynomial whose degree does not depend on E). For the case where E = Post

ú(F ),
we rely on the fact that the numbers of agents and data remain the same throughout a run;

ICALP 2024



156:16 Verification of Population Protocols with Unordered Data

we therefore can guess the configuration “
Õ such that “

Õ
œ JF KP (which can be checked with

a recursive call) and “
ú
≠æ “

Õ (which can be checked by exploration of the graph containing
configurations with as many agents and data as “). The case E = Pre

ú(F ) is similar.
Proposition 23 allows us to check if a given configuration of a PPUD is in the set

described by a GRE4. In the case of IOPPUD, Proposition 21 allows us to search for a
witness configuration within some bounded set, yielding decidability.

I Theorem 10. The emptiness problem for GRE over IOPPUD is in ExpSpace.

Proof. Suppose JEKP is not empty. By Proposition 21, it contains an (n,M)-container
cont with n := ||E|| · poly(|P|)|E| and M := ||E||

poly(|P|)·|E|2 . We construct a configuration
“ œ cont as follows. For each n-box b, we select cont(b) many data such that over all n-boxes,
the selected data are pairwise distinct. Then, for each n-box b, each state q œ Q of P, and
each datum db selected for b, we put b(q) many agents with datum db in q. Note that the
configuration “ is in cont, and the number of agents it contains it at most n · |P|· |Boxesn| ·M .
We have |Boxesn| = (n + 1)|P| = ||E|| · poly(|P|)|E||P|. We assumed at the beginning of
Section 6 that the encoding of E uses memory |E|+ log(||E||). As a result, n, M , |P| and
|Boxesn| are all at most exponential in the size of the input. Therefore, if JEKP is not empty,
then it contains a configuration with at most exponentially many agents. We can guess the
data-explicit description of such a configuration in non-deterministic exponential space, and
then check that the guessed configuration is in JEKP in exponential space by Proposition 23
(we apply the PSpace algorithm on an exponential input). As a result, deciding emptiness
of JEKP is in NExpSpace, which is identical with ExpSpace. J

6.2 A Lower Complexity Bound

We now provide the following lower complexity bound.

I Theorem 24. The emptiness problem for GRE over IOPPUD is coNExpTime-hard.

Proof sketch. We proceed by reduction from the problem of tiling an exponentially large
grid, a NExpTime-complete problem [28], to the complement of the emptiness problem for
GRE. We refer to [7] for proof details.

A tiling instance is a tuple (2n, C, T ), with n Ø 1, C a finite set of colours with special
colour white, and T = {t1, . . . , tm} ™ C

4 a finite set of tiles. We can view a tile as a square
whose four edges are coloured. The tiling problem asks whether there is a tiling, that is, a
mapping · : [0, 2n≠1] ◊ [0, 2n≠1] æ T such that the colours of neighbouring tiles match and
the borders of the grid are white.

Given a tiling instance (2n, C, T ), we build an instance (P, E) of the emptiness problem
for GRE. In P, witness tilings can be encoded in the configurations, and we construct (P, E)
such that JEK contains exactly the configurations that correspond to a correctly encoded
witness tiling. More precisely, “ œ JEK when:
(Cond1) for all (i, j) œ [0, 2n ≠ 1]2, some datum encodes coordinates (i, j) and a tile type;
(Cond2) for all (i, j) œ [0, 2n ≠ 1]2, there is at most one datum encoding (i, j);
(Cond3) the mapping [0, 2n ≠ 1]2 æ C defined by the data is a tiling.

The GRE E will be of the form of a conjunction, i. e., a list of constraints that the
configuration must satisfy. Our first constraint is Preú(Pres(q‹)) where q‹ is a special error
state and Pres(q) is the GRE expressing that some agent is in q. This forbids, in JEK,
configurations from which q‹ can be covered.

4 This implies that the emptiness problem for GRE over PPUD, while undecidable due to Theorem 3, is
semi-decidable: one can simply enumerate all configurations and test membership for each of them.
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Figure 4 Partial depiction of the protocol constructed in Theorem 24.

(Cond1) is obtained using the tiling gadget in Figure 4. States t1, . . . , tm represent the
available tiles of T , and coordinate states allow for a binary representation of the horizontal
and vertical coordinates of a square in the grid. For a datum d, the agents of datum d in
the coordinate states encode the position of the square corresponding to d, and an agent
of datum d in state ti indicates that the square in the grid corresponding to d should be
coloured according to tile ti. Configurations in JEK are not allowed to have two agents of
same datum playing the same role; otherwise, one of them may observe the other and go to
q‹. In particular, each datum has at most 2n+ 1 agents in the tiling gadget.

To obtain (Cond2), we use a duplication gadget, partially represented in Figure 4. We
enforce that any configuration in JEK has one agent of each datum in Da, one in Db and
none in the rest of the duplication gadget. The blue part implements a test (depicted
in [7, Figure 5b]) where two agents of distinct data, one from Da and one from Db, may
test that their data encode the same coordinates; if this is the case, they may go to qdup.
If there are more than two agents in the blue part, this test is not reliable but qØ3 can be
covered. (Cond2) can therefore be achieved by enforcing that configurations in JEK are not

in Pre
ú(Pres(qdup) fl Pre

ú(Pres(qØ3))).
Finally, we explain how (Cond3) is achieved; we describe only how the horizontal (left-

right) borders are verified. We use a gadget, named horizontal verifier in Figure 4. In
this gadget, a single agent, called verifier, is in charge of verifying that colours of left-right
borders match. The verifier uses 2n auxiliary agents to encode two variables x, y œ [0, 2n ≠ 1]
in binary. Again, transitions to q‹ detect when two agents play the same role, so that
there is only one verifier and so that variables x and y can be implemented faithfully. The
initialisation x = y = 0 is enforced as a constraint in E. We now sketch how the verifier
reads the encoded tiling; to do that, it must synchronise with the datum encoding (x, y).

This is done using the synchronisation gadget of Figure 4. In JEK, all agents in the
synchronisation gadget are in S

(h). Moreover, we add a constraint in E so that “ œ JEK
requires that there is a run from “ where all agents in the synchronisation gadget end in
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F
(h) and where the verifier ends in q

(h)
f

. The synchronisation tests guarantee that, whenever
there is an agent in T

(h)
i

, this agent’s datum encodes square (i, j) where i is equal to the
current value of x and j is equal to the current value of y. The synchronisation is challenging
to design because the values of x and y may change throughout a run and only one bit can
be tested at a time. However, as proved in [7, Lemma 37], this can be achieved by having a
first synchronisation test that checks equality of bits from most to least significant, and a
second test that checks equality from least to most significant. J

6.3 Discussion on Complexity Gaps

We now discuss some complexity gaps left open by this paper. First, there remains a com-
plexity gap for the emptiness problem for GRE, which is known to be between coNExpTime
(Theorem 24) and ExpSpace (Theorem 10). Closing the gap appears challenging. On one
hand, if the problem is below ExpSpace, then this probably requires developing new tech-
niques. On the other hand, proving ExpSpace-hardness does not seem easy. In particular,
the synchronisation techniques from Theorem 24 assumes that each datum synchronises only
once with the verifier. This synchronisation technique would not suitable for, e. g., multiple
interactions between the head and the cells of a Turing machine.

Another, arguably more important open question is the exact complexity of well-
specification, which is only known to be between PSpace (model without data, [19]) and
ExpSpace (Theorem 10). On the one hand, it is unclear whether relevant configurations
can be stored in polynomial space.

B Claim 25. The number of data that need to be considered for well-specification may be
exponential.

The claim is formalised and proven in [7]. As a consequence, proving that the problem is in
PSpace cannot be achieved with a procedure that explicitly stores configurations. On the
other hand, in order to build a reduction from the tiling problem as in Theorem 24, we need
a new idea to enforce that at most one datum encodes each tile. In Theorem 24, we had
states qdup and qØ3 and duplication meant being able to cover qdup and, at the same, forbid
that qØ3 can ever be covered in the future. We do not know how to encode this constraint
when working with an instance of well-specification.

7 Conclusion

We have studied the verification of population protocols with unordered data [10], an extension
of population protocols where agents carry data from an infinite unordered set. We first
proved that the well-specification problem is undecidable (Theorem 3), which then led us to
consider the restriction to protocols with immediate observation. This subclass was defined
in [10], where the authors proved that these protocols compute exactly the interval predicates.
We defined a general class of problems on this model, which consists in deciding the existence
of a configuration satisfying a so-called generalised reachability expression; this class of
problems subsumes many classic problems, one of which is well-specification. Despite its
generality, we showed the problem to be decidable in exponential space (Theorem 10); we also
provided a coNExpTime lower bound. A remaining open question is the exact complexity
of well-specification for immediate observation population protocols with unordered data,
which is located between PSpace (model without data, [19]) and ExpSpace (Theorem 10).
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Abstract

TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element.
Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element
allows us to express the domain and codomain of a relation. This enables several applications
in program logics, such as proving under-approximate specifications or reachability properties of
imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as
having a decidable equational theory, it is incomplete with respect to relational models. In other
words, there are properties that hold true of all relational TopKATs but cannot be proved with the
axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which
relational models play a key role.

In this paper, we further investigate the completeness properties of TopKAT with respect to
relational models. We show that TopKAT is complete with respect to (co)domain comparison of
KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since
the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the
aforementioned incompleteness results have a limited impact when using TopKAT to reason about
such specifications.
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1 Introduction

Kleene algebra with tests (KAT) is an algebraic framework that extends Kleene algebra
with an embedded Boolean algebra to model control structures like if-statement and while-
loops [20]. This extension enables us to reason about several properties of imperative
programs. For example, one of the key early results in the area was that KAT can encode
Hoare logic, in the sense that any proof in the logic’s propositional fragment can be carried
out faithfully using KAT equations [27, 21].

Some applications, however, require us to look beyond KAT. For example, Zhang et
al. [41] recently proved that KAT alone cannot be used to encode incorrectness logic [31, 7] –
a close cousin of Hoare logic with applications in bug finding [25, 36]. A similar result was
proved by Struth [39], who showed that KAT cannot encode weakest liberal preconditions. If
we view a program as a relation between its input and output states, both of these limitations
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arise from KAT’s lack of power to encode the (co)domain of a relation. Indeed, Möller et
al. [30] proved that incorrectness logic could be encoded by extending KAT with a codomain
operation. Independently, Zhang et al. provided a similar encoding [41] by extending KAT
with a top element, which can be used to express inequalities between codomains. They
dubbed the resulting algebraic structure a TopKAT.

The present paper investigates the expressive power of TopKAT as a tool for (co)domain
reasoning. As noted by Zhang et al. [41], one limitation of TopKAT is that it is not expressive
enough to derive all valid equations between relations. More precisely, Zhang et al.’s encoding
of incorrectness logic interprets the top element of the algebra as the complete relation,
which relates all pairs of program states. Under this interpretation, the inequality p€p Ø p
is valid, but unprovable using the theory of TopKAT [41]. This a potential issue when using
TopKAT to reason in incorrectness logic: though Zhang et al.’s encoding covers all the rules
of propositional incorrectness logic, there could be inequalities about (co)domain that fall
outside this fragment and cannot be established solely by the theory of TopKAT.

Pous et al. [34, 35] were able to make some progress on the issue, by showing we can obtain
a complete axiomatic system for relational models TopKATs by adding in the inequality
p€p Ø p as an additional axiom. In this paper, we look at the question from a di�erent
angle, instead of working with a more complex theory, we show that the original theory
of TopKAT is complete with respect to relational models for (co)domain comparisons,
namely the inequalities of the form €t1 Ø €t2 or t1€ Ø t2€ where t1, t2 are KAT terms.
Since these inequalities su�ce to encode incorrectness logic, this completeness result lays
a solid foundation for encoding program logics in TopKAT. We have also showed that this
completeness result is tight, in the sense that it does not extend to the case where t1 and
t2 contain the top element, by explicitly constructing two TopKAT terms that witness the
incompleteness.

The result above is enabled by the homomorphic structure of the reduction [41, 33]
from TopKAT to KAT. This discovery also let us shorten the proofs of previous results [41],
and enables systematic generation of TopKAT complete interpretations from complete
interpretations of KAT. We believe that this new representation of the reduction technique
could also be of independent interest.

Structure of this paper and contributions. In Section 2, we present several previous
results on KAT and TopKAT. Inspired by universal algebra [4], we characterize fundamental
concepts, like interpretation and completeness, using homomorphisms. In Section 3, we
uncover additional structure of the reduction technique [24, 33] in the case of TopKAT: the
reduction from TopKAT to KAT is a TopKAT homomorphism. This discovery not only
allows us to simplify several previous results [41] by avoiding tedious induction proofs; but
also enables the techniques used in the later section. Section 4 presents the completeness
results of TopKAT with respect (co)domain comparison. The codomain completeness result
is proven by an equality that connects codomain operation with the language interpretation,
and the domain completeness is then proven by applying the codomain completeness result
to the opposite TopKAT.

2 Preliminaries

2.1 Extensions of Kleene algebra And Their Models

A Kleene algebra is an idempotent semiring with a star operation, written pú, that satisfies
the following unfolding, left induction, and right induction rules:

pú = 1 + ppú = 1 + púp, pr + q Æ r =∆ púq Æ r, rp+ q Æ r =∆ qpú Æ r;
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the ordering here is the conventional ordering in idempotent semirings: p Æ q , p+ q = q. It
is known that the right-hand version of unfolding and induction rule can be removed while
preserving the same equational theory [23]. Yet, we will focus on the standard definition of
KA in this paper.

I Lemma 1. Following are well-known facts in Kleene algebra
All the Kleene algebra operations preserve order.
The following equations are true for the star operation:

pú · pú = pú (pú)ú = pú.

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded Boolean algebra,
where the conjunction, disjunction, and identities in the Boolean algebra coincide with the
addition, multiplication, and the identities of Kleene algebra. We refer to elements of this
embedded Boolean algebra as tests.

Given an algebraic theory, we can construct its free model over a finite set �, called
the alphabet [4]. The free model consists of all the terms formed by � modulo provable
equivalences of the algebra. The operations of the free model are obtained by lifting the
term-level operations to equivalence classes.

The above construction can be extended to the case of KAT and TopKAT, suppose
that we are given two disjoint finite sets K (the action alphabet) and B (the test alphabet).
Elements of K and B are called primitive actions and primitive tests, respectively. KAT
terms over the alphabet K,B are defined with the following grammar:

t , b œ B | p œ K | 1 | 0 | t1 + t2 | t1 · t2 | tú | tb,

where tb does not contain primitive actions. The free KAT over K,B, written KATK,B,
consists of terms over K,B modulo provable KAT equivalences. The tests of the free KAT
are Boolean terms, i.e. terms formed by primitive tests and Boolean operations modulo
Boolean axioms. A similar construction applies to TopKAT, where an additional symbol €
was added as the largest element in the theory; we denote the free TopKAT over K,B as
TopKATK,B . We sometimes omit the alphabets K and B when they are irrelevant or can be
inferred.

In the paper, we frequently consider terms modulo provable equalities, i.e. in the context
of its corresponding free model. For example, given t1, t2 œ KAT, we will say t1 = t2 when
they are provably equal using the theory of KAT. Although the free model seems trivial, it
leads to simpler and more modular proofs of some properties of algebraic theories, as we will
see in Section 3.

Other important models that we will use in this paper are language (Top)KATs and
relational (Top)KATs, which we review here. An atom (short for “atomic test”) over a test
alphabet B = {b1, b2, . . . , bn} is a sequence of the form

b̂1 · b̂2 · · · · · b̂n where b̂i œ {bi, b̄i}.

We denote atoms as –,—, “, . . . and the set of all atoms as At.
A guarded string (or guarded word) over K,B is an alternation between atoms and

primitive actions that starts and ends in atoms:

–0p1–1 · · · pn–n where pi œ K,–i œ At;

where each action is “guarded” by an atom. A guarded string is similar to a program trace,
where each program state is denoted by an atom; and primitive actions will cause a transition
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between program states. We denote the set of all guarded strings over alphabet K,B as
GSK,B, and we will omit the alphabet K,B when it is irrelevant or can be inferred from
context. The notation –s denotes a guarded string starting with atom – with the rest of the
string s; similarly, s– denotes a guarded string that ends with atom – with rest of the string
being s.

I Definition 2 (Language/trace KAT [24]). The language KAT (also called “trace KAT”)
over an alphabet K,B is denoted as GK,B, or simply G if no confusion can arise.

The elements are sets of guarded strings (called guarded languages), and the tests are
sets of atoms. The additive identity 0 is the empty set, and the multiplicative identity 1 is the
set of all the atoms At. The addition operator is set union, and the multiplication operator
is defined as follows:

S1 ù S2 , {s1–s2 | s1– œ S1,–s2 œ S2}.

The star operation is defined non-deterministically iterating the multiplication operator:

Sú ,
€

iœN
Si where S0 = At, Sk+1 = S ù Sk.

Another useful type of KAT are relational ones, where each element is a relation R ™ X◊X
over a fixed set X. In applications, the set X typically represents the set of all possible
program states, and each relation R represents a program by relating each possible input to
the corresponding output.

I Definition 3 (Relational KAT). A relational KAT is a KAT R consists of relations over a
fixed set X (though R need not contain every relation over X), and it is closed under the
following operations. The tests are all the relations that are subsets of the identity relation.
The additive identity 0 is the empty set, and the multiplicative identity is the identity relation:

1 , {(x, x) | x œ X}.

The addition operator is set union, and the multiplication operation is relational composition:

R1;R2 = {(x, z) | ÷y œ X, (x, y) œ R1, (y, z) œ R2}.

Finally, the star operation is defined as:

Rú ,
€

iœN
Ri where R0 = 1, Rk+1 = R;Rk.

We denote the class of all relational KATs as REL.

TopKAT extends the theory of KAT with the largest element €, i.e. € Ø p for all elements
p. The language TopKAT over an alphabet K,B has the same carrier and operations as
GK€,B , where K€ is the set K joined with a new primitive action €; and the largest element
is the full language GSK€,B .

The relational TopKAT is a relational KAT that contains the complete relation:

€ , {(x, y) | x, y œ X};

we denote the set of all relational TopKATs as TopREL. It is known that there are equations
that are valid in relational TopKAT, but are not derivable by the axioms of TopKAT [41];
however, by adding the axiom p€p Ø p, the theory becomes complete over relational
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TopKATs [34, 35]. In this paper, instead of working with a more complex theory, we will
show that TopKAT without any additional axiom already su�ces for the purpose of encoding
domain comparisons. Indeed, TopKAT is complete with respect to domain comparison
inequalities, which can be used to encode both incorrectness logic and Hoare logic.

In this paper, we will use dom and cod to denote the conventional (co)domain operators
on relations, namely, for any relation R:

dom(R) , {x | ÷y, (x, y) œ R} cod(R) , {y | ÷x, (x, y œ R)}.

To demonstrate how TopKAT models (co)domain comparisons, we take any relational
TopKAT R and two relations R1, R2 œ R, and we denote the complete relation as €:

I Lemma 4 (TopKAT encodes (co)domain comparison).

R1€ ´ R2€ ≈∆ dom(R1) ´ dom(R2) €R1 ´ €R2 ≈∆ cod(R1) ´ cod(R2)

If we regard R1 and R2 as the input output relation of two programs, which is typically
encoded by KAT terms, we can see that R1€ ´ R2€ reflects that the domain of R1 is larger
than the domain of R2; and similarly for the inequality €R1 ´ €R2. Thus, given two KAT
terms t1, t2 œ KATK,B, we call inequalities like t1€ Ø t2€ domain comparison inequalities,
and €t1 Ø €t2 codomain comparison inequalities. Notice that the term €t1 is a shorthand for
€ · i(t1), where i is the inclusion function KATK,B Òæ TopKATK,B . In the rest of the paper,
we will sometimes leave this inclusion function implicit. These two forms of inequalities will
be the focus of our completeness results in Section 4.

We also know another class of TopKATs named general relational TopKATs, which is
denoted as TopGREL. The top element of general relational TopKAT is not necessarily
the complete relation, but the largest relation in the model. All equations in the general
relational TopKAT can be derived using the theory of TopKAT.

However, the completeness of TopGREL came at the cost of expressive power: every
predicate that is expressible using general relational TopKAT is already expressible using
relational KAT [41], so the extension with top, in the case of general relational TopKAT,
does not grant any extra expressive power. In Theorem 13, we show that this result is a
simple corollary of our new reduction result.

We are also interested in maps between models: A KAT homomorphism f is a map
between two KATs K and KÕ s.t. it preserves the sorts and operations: given a test b in
K then f(b) is a test in KÕ; and all the KAT operations (complement, identities, addition,
multiplication, and star) are preserved:

f : K æ KÕ

f(b̄) = f(b)
f(1) = 1
f(0) = 0

f(p+ q) = f(p) + f(q)
f(p · q) = f(p) · f(q)
f(pú) = f(p)ú.

Similarly, a TopKAT homomorphism is a KAT homomorphism that preserves the largest
element.
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2.2 Interpretation, Completeness, and Injectivity

Consider a KAT equation such as p · b · b̄ = 0. To determine its validity in a particular KAT
K, we need to assign meaning to it by interpreting each primitive as an element in K; that is,
by defining a map Î of type K +B æ K. Such a map Î : K +B æ K induces a unique KAT
homomorphism I : KATK,B æ K inductively defined on the term as follows:

I(p) , Î(p) where p œ K +B

I(tb) , I(tb) tb does not contain primitive actions
I(t1 + t2) , I(t1) + I(t2)
I(t1 · t2) , I(t1) · I(t2)

I(tú) , I(t)ú

(1)

In fact, every KAT homomorphism from a free model arises this way: there is a bijection
between functions of type K +B æ K and KAT homomorphisms of type KATK,B æ K, for
any KAT K. Because the homomorphism I and the function Î are equivalent, we will refer
to them interchangeably as KAT interpretations and denote both of them as I.

The above result enables us to define a homomorphism from the free KAT just by defining
its action on the primitives; saving us time to check the equations that a homomorphism
must satisfy. It also allows us to prove that two interpretations are equal by arguing that
they map the primitives to equal values.

Given a KAT K, and two terms t1, t2 œ KATK,B we say that K |= t1 = t2 if

’I : KATK,B æ K, I(t1) = I(t2).

In particular, for two terms in the free model t1, t2 œ KATK,B , KATK,B |= t1 = t2 is equivalent
to t1 = t2. For a collection of models K, we say that K |= t1 = t2 if for all K œ K, K |= t1 = t2.
For example, REL |= t1 = t2 means that t1 = t2 is valid in all relational KATs. All the above
notations and terminologies can be similarly extended to TopKAT.

Theories like KAT and TopKAT are designed to model practical programs, so it is
important to know if they can model all the desirable equations between programs. If the
theory of KAT can derive all the equalities for a particular interpretation I, namely:

KATK,B |= t1 = t2 ≈∆ I(t1) = I(t2),

we say that the theory of KAT is complete with respect to I. Recall that KATK,B |= t1 = t2
is equivalent to t1 = t2; thus, by definition, an interpretation I is complete if and only if it
is injective. One of such interpretation is the guarded string interpretation G : KATK,B æ
GK,B [24], defined by lifting the following action on the primitives:

G(b) = {– | b appears positively in –}, G(p) = {–p— | –,— œ At}.

In several previous works, the term “free model” refers to the range (set of reachable
elements) of a complete interpretation. Since a complete interpretation is an injective
homomorphism, such interpretation induces an isomorphism on its range, thus our definition
of free model is equivalent to these definitions.

Many previous proofs can also be explained by seeing complete interpretations as injective
homomorphisms: the proof for completeness of relational KATs constructs an injective
homomorphism h from a language KAT into a relational KAT [24]. Since both G and h



C. Zhang, A. A. de Amorim, and M. Gaboardi 157:7

are injective homomorphisms, h ¶ G is also an injective homomorphism, hence a complete
interpretation. Since h ¶ G is a relational interpretation:

KATK,B |= t1 = t2 =∆ REL |= t1 = t2 =∆ h ¶ G(t1) = h ¶ G(t2);

then the completeness of h ¶ G implies (h ¶ G)(t1) = (h ¶ G)(t2) ≈∆ KATK,B |= t1 = t2.
Hence,

KATK,B |= t1 = t2 ≈∆ REL |= t1 = t2,

i.e. the theory of KAT is complete with respect to relational KAT.
Besides using composition of injective homomorphisms, another technique commonly used

to prove injectivity is to construct a left inverse: if a (Top)KAT homomorphism f : K æ KÕ

has a left inverse homomorphism g : KÕ æ K i.e. g ¶ f = idK, then f is injective. Notice that
g does not need to be a homomorphism for f to be injective, however, in the case where f is
an interpretation, g being a homomorphism makes the equality g ¶ f = idK easier to check.
Because both g ¶ f and idK are all interpretations, they are equal if and only if they have
the same action on all the primitives.

Finally, we provide a shorthand for domain reasoning. For two terms t1, t2 œ KAT, we
write

REL |= dom(t1) Ø dom(t2),

when dom(I(t1)) ´ dom(I(t1)) for all relational KAT interpretations I; and similarly for
relational TopKAT and general relational TopKAT. Then Lemma 4 implies the following:

I Lemma 5. For two KAT terms t1, t2 œ KATK,B:

TopREL |= t1€ Ø t2€ ≈∆ REL |= dom(t1) Ø dom(t2)
TopREL |= €t1 Ø €t2 ≈∆ REL |= cod(t1) Ø cod(t2)

3 Reduction, A New Perspective

Our goal in this section is to construct a complete interpretation for TopKAT, by reducing
its theory to that of plain KAT. In other words, any equation between two TopKAT terms is
logically equivalent to another equation between a pair of corresponding KAT terms. While
this result is not new [41, 42, 34], we present a more streamlined proof that hinges on the
universal properties of free KATs and TopKATs, without relying explicitly on language
models. Similar to previous works, we obtain the decidability of the equational theory of
TopKAT as a corollary of reduction. However, because of the new notion of reduction,
our decidability result no longer depends on the completeness of the language TopKAT.
Moreover, our technique helps us to construct complete models and interpretations simply
by computation, as well as simplifying proofs of other results about TopKAT.

3.1 Reduction on free models

We first note that any free KAT over an alphabet K,B is also a TopKAT, where the largest
element is (

q
K)ú. This fact can be seen by straightforward induction.

I Lemma 6. Every free KAT over alphabet K,B forms a TopKAT.
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Proof. Since KATK,B is a KAT, we only need to show the term (
q

K)ú is the largest element
of KATK,B , i.e.

(
ÿ

K)ú Ø t,’t œ KATK,B .

The above fact can be shown by induction on t; some algebraic manipulations below use
facts in Lemma 1:

(
q

K)ú Ø 1 (by unfolding rule), thus (
q

K)ú is larger than 0, 1 and every Boolean term.
(
q

K)ú is larger than
q

K, which is larger than every primitive action.
Given two terms t1 and t2, assume (

q
K)ú is larger than both. Because (

q
K)ú =

(
q

K)ú + (
q

K)ú and addition preserves order,

(
ÿ

K)ú = (
ÿ

K)ú + (
ÿ

K)ú Ø t1 + t2

Given two terms t1 and t2, assume (
q

K)ú is larger than both. Because (
q

K)ú =
(
q

K)ú · (
q

K)ú and multiplication preserves order,

(
ÿ

K)ú = (
ÿ

K)ú · (
ÿ

K)ú Ø t1 · t2.

Given a term t, if (
q

K)ú Ø t, then (
q

K)ú Ø tú. Since (
q

K)ú = ((
q

K)ú)ú and star
preserves order:

(
ÿ

K)ú = ((
ÿ

K)ú)ú Ø tú. J

Since every free KAT is a TopKAT, every KAT interpretation I : KAT æ K induces a
sub-KAT Im(I) ™ K, and this sub-KAT happens to be a TopKAT. Specifically, the image
of (

q
K)ú in K is the largest element of Im(I), and the restricted I : KAT æ Im(I) is a

TopKAT homomorphism.
This gives us a powerful tool to construct complete TopKAT interpretations. Since we

already know that the KAT interpretations G : KAT æ G and h ¶ G : KAT æ Im(h) are
injective TopKAT homomorphisms, we can construct complete TopKAT interpretations by
composition, if we can construct an injective TopKAT interpretation r of type TopKATK,B æ
KATK€,B :

TopKATK,B
r≠æ KATK€,B

G≠æ GK€,B , TopKATK,B
r≠æ KATK€,B

G≠æ GK€,B
h≠æ Im(h).

In fact, such an injective homomorphism can be obtained by lifting the embedding map
K +B Òæ KATK€,B :

r : K +B æ KATK€,B

r(p) , p.

This homomorphism coincides with the reduction maps of the same name in previous
works [41, 35]. More concretely, we can picture r as simply replacing the symbol € in a
TopKAT term with (

q
K€)ú, the largest element in KATK€,B .

We will show that r is injective by constructing a left inverse for it. In fact, the left
inverse [≠]€ simply interprets the € primitive in KATK€,B as the largest element.

I Lemma 7. The map [≠]€ : KATK€,B æ TopKATK,B, where each term is mapped to its
corresponding equivalence class, is defined by lifting the following action on the primitives:

[p]€ , p if p œ K +B

[€]€ , €.

The map [≠]€ is a TopKAT homomorphism.
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Proof. Because this map defined by lifting on the primitives, it is automatically a KAT
homomorphism. All we need to show is that [≠]€ preserves the top element, that is
[(

q
K€)ú]€ = (

q
K€)ú is the largest element in TopKATK,B .

By construction of TopKATK,B , € is the largest element in TopKATK,B . Thus, to prove
that (

q
K€)ú is also the largest element in TopKATK,B , it su�ces to prove (

q
K€)ú Ø €:

(
ÿ

K€)ú Ø
ÿ

K€ = € +
ÿ

K Ø €. J

I Theorem 8 (Reduction). [≠]€ is the right inverse of r: [≠]€ ¶ r = idTopKATK,B
. More

explicitly for all t œ TopKATK,B:

TopKATK,B |= [r(t)]€ = t.

Proof. Since [≠]€ ¶r : TopKATK,B æ TopKATK,B is a TopKAT interpretation, the action on
the primitives uniquely determines the interpretation: because both r and [≠]€ are identity
on the primitives, therefore [≠]€ ¶ r is the identity interpretation on TopKATK,B . J

The above theorem matches one of the soundness condition of reductions in previous
works [41, 24, 33], which was typically proven by a monolithic induction on the structure
of terms. Our approach, on the other hand, relies on establishing fine-grained algebraic
properties, like Lemmas 6 and 7; then the theorem follows simply by computing the action
of [≠]€ ¶ r on primitives.

Since r has a right inverse, it is indeed the injective interpretation we desired, and it is
also a complete interpretation:

TopKATK,B |= t1 = t2 ≈∆ r(t1) = r(t2),

With the completeness of r, we can already show the complexity of TopKAT. The complexity
results echos previous proofs [41, 35], but we are able to obtain this result without completeness
of TopKAT language interpretation, which is essential in previous proofs.

I Corollary 9 (Complexity). Given two terms t1, t2 œ TopKATK,B, deciding whether these
two terms are equal is PSPACE-complete.

Proof. Deciding KAT equality is a sub-problem of deciding TopKAT equality, and KAT
equality is PSPACE-hard [6]; therefore TopKAT equality is PSPACE-hard.

To decide the equality of t1, t2, we first remove all the redundant primitives that do not
appear in t1, t2 from the alphabet K,B. Then we compute r(t1) and r(t2), each taking
polynomial space (of |t1|+ |t2|) to store; and we use the standard algorithm [6] to decide
whether r(t1) = r(t2) in KATK€,B , this will also take polynomial space. Hence, the decision
procedure for TopKAT equality in PSPACE.

Thus deciding TopKAT equality is PSPACE-complete. J

3.2 Computing the complete interpretations

Designing complete interpretations and models was not always easy. In fact, in previous
works [42], the authors made a mistake in the definition of language TopKAT, which was
fixed later [41] by suggestion of Pous et al. [34]. However, with the results in Section 3.1, we
can construct the complete interpretation just by composition, and compute the complete
model by computing the range of the complete interpretation.
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We already know that there are two complete interpretations of TopKAT defined as
follows:

TopKATK,B
r≠æ KATK€,B

G≠æ GK€,B , TopKATK,B
r≠æ KATK€,B

G≠æ GK€,B
h≠æ Im(h),

with a complete language model GK€,B , and a complete model consisting of relations Im(h).
The operations in these models can be recovered by computing these maps. For example,

the multiplication operation in the language TopKAT can be computed as follows:

G ¶ r(t1 · t2) = G(r(t1) · r(t2)) = G(r(t1)) ù G(r(t2)).

Since r does not change the multiplication operation, the multiplication in the language
TopKAT is the same as in language KAT. In fact, as r does not change any operation in
KAT, most operations in language TopKAT are the same as language KAT. Thus, we only
need to compute the top element in language TopKAT.

The top element in language TopKAT can be computed in the same fashion:

G ¶ r(€) = G((
ÿ

K€)ú) = GSK€,B ,

i.e. the top element is just the complete language.

I Corollary 10. The language TopKAT inherits all the operations in language KAT, except
the top element, which is defined as the full language. And such models are complete with
G ¶ r as a complete interpretation.

In the same way, we know that complete models consisting of relations (a.k.a. general
relational TopKAT) will have the same operations as relational KATs. However, in this case
the characterization of the computed top: h ¶ G ¶ r(€) is not as simple as the full language,
but we know it is the largest relation in the range of h ¶ G ¶ r:

I Corollary 11. The general relational TopKAT inherits all the operations in relational KAT,
except the top element is the largest relation. And such models are complete with h ¶ G ¶ r as
a complete interpretation.

Finally, to investigate whether we can use general relational TopKAT to encode incorrect-
ness logic, we will provide a short proof that general relational TopKATs are as expressive as
relational KATs [41]; that is, every property on relations that can be encoded using general
relational TopKAT, is already encodable in the relational KAT. Hence, adding a top element
does not give extra expressive power in general relational TopKAT.

The original proof [41, Lemma 2] encodes every TopKAT term using a KAT term, and
then uses two pages to prove the soundness of this encoding. Here we show the aforementioned
encoding is simply the reduction r.

I Definition 12. Given two terms t1, t2 œ TopKAT, and n primitives p1, p2, . . . , pn œ K +B,
we say that an n-ary predicate P is expressible by equation t1 = t2 for a class of TopKATs K
when for all interpretations I into TopKATs in K, the following equivalence holds:

I(t1) = I(t2) ≈∆ P (I(p1), I(p2), . . . , I(pn)).

I Theorem 13 (Expressiveness of general relational TopKAT). Given an alphabet K,B, an n-
ary predicate P on relations, the predicate P over primitives p1, p2, . . . , pn œ K is expressible
in general relational TopKAT if and only if it is expressible in relational KAT.
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Proof. A predicate expressible in relational KAT is also expressible in general relational
TopKAT using the same pair of terms, we only need to show the converse. Assume a
predicate P is expressible in general relational TopKAT, then there exists two TopKAT terms
t1, t2 œ TopKATK,B s.t. for all general relational TopKAT interpretations I€:

I€(t1) = I€(t2) ≈∆ P (I€(p1), I€(p2), . . . , I€(pn));

We take an arbitrary relational KAT interpretation I from KATK€,B . Notice Im(I), the
range of I, is a relational KAT with the largest element I((

q
K)ú), i.e. Im(I) is a general

relational TopKAT. Because I is a KAT interpretation, it preserves all the KAT operations
and the largest element. Hence, I is a TopKAT homomorphism from KATK€,B to Im(I).

Then we can construct I ¶ r : TopKATK,B æ Im(I), a general relational interpretation:

I(r(t1)) = I(r(t2)) ≈∆ I ¶ r(t1) = I ¶ r(t2)
≈∆ P (I ¶ r(p1), . . . , I ¶ r(pn)) I ¶ r is a TopGREL interpretation
≈∆ P (I(p1), . . . , I(pn)) r(pi) = pi

Thus the two KAT terms r(t1), r(t2) œ KATK€,B also can express the predicate P . J

Since the image of I is not necessarily a relational TopKAT, where the top element is
interpreted as the complete relation, the above trick does not work for relational TopKAT.
It is also known that relational TopKAT is strictly more expressive than general relational
TopKAT, since relational TopKAT can encode incorrectness logic, where general relational
TopKAT cannot [41].

4 (Co)domain Completeness

In general, TopKAT is not complete over relational models, which are crucial for applications
in program logics [41]. However, it was later showed that we can obtain a complete theory
for relational models by simply adding the axiom p€p Ø p to the theory of TopKAT [35].

In this paper, we take a di�erent approach than Pous et al. [35]: instead of extending the
TopKAT framework, we will restrict the completeness result. In particular, the encoding of
incorrectness logic and Hoare Logic in TopKAT [41] relies only on the ability of TopKAT
to compare the domain and codomain of two relations. This raises the question of whether
TopKAT su�ces for proving such properties; that is, whether the following completeness
results hold: for t1, t2 œ KATK,B (i.e. € does not appear in t1 and t2)

REL |= cod(t1) Ø cod(t2) ≈∆ TopKAT |= €t1 Ø €t2 codomain completeness
REL |= dom(t1) Ø dom(t2) ≈∆ TopKAT |= t1€ Ø t2€ domain complete

In this section, we prove that these equivalences hold, even without the additional axiom.
However, they do not hold if we allow terms that contain top. For example, let t1 , p€p,
and t2 , p. Since p€p Ø p holds in relational TopKAT, thus dom(p€p) Ø dom(p). However,
p€p€ Ø p€ is not provable in TopKAT, because the inequality is not valid with the language
interpretation. The incompleteness of codomain comparison can also be shown using the
same example.

4.1 Codomain completeness

The core insight to prove the domain completeness result is to construct a specific relational
interpretation h¶i¶G, where its codomain is equivalent to the complete TopKAT interpretation
G ¶ r:

cod(h ¶ i ¶ G(t)) = G ¶ r(€t),
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where i is the natural inclusion homomorphism i : GK,B Òæ GK€,B , that maps every language
to itself; and h is the classical embedding of language KAT into relational KAT [24], which
we will recall as follows:

h(L) = {(s, s ù sÕ) | s œ GS, sÕ œ L}.

Although i will not change the outcome of G, it will add a new primitive action € to the
alphabet, hence changing the outcome of h. Such addition will equate the codomain of
h ¶ i ¶ G(t) with the complete TopKAT interpretation G ¶ r of €t. The proof of this equality
is by simply computing both sides of the equation.

I Lemma 14. For any term t œ KATK,B,

cod(h ¶ i ¶ G(t)) = G ¶ r(€t).

Proof. We explicitly write out the domain and codomain of the functions in the relational
KAT interpretation h ¶ i ¶ G for the ease of the reader:

KATK,B
G≠æ GK,B

i≠æ GK€,B
h≠æ P(GK€,B ◊ GK€,B).

In this case, h is a KAT homomorphism from GK€,B :

h(S) = {(s, s ù s1) | s œ GSK€,B , s1 œ S}.

Since the reduction r preserves terms without €, let t œ KATK,B (i.e. t does not contain €),

G ¶ r(€) = GSK€,B G ¶ r(t) = G(t).

Therefore, for any term t œ KATK,B

cod(h ¶ i ¶ G(t)) = {s–s1 | s– œ GSK€,B ,–s1 œ G(t)}
= GSK€,B ù G(t)
= (G ¶ r(€)) ù (G ¶ r(t))
= G ¶ r(€t). J

Lemma 14 established a connection between the codomain operator and the language
interpretation of TopKAT. Then by completeness of the language interpretation, we will
obtain the completeness of codomain comparison.

I Theorem 15 (Codomain completeness). Given two terms t1, t2 œ KATK,B (i.e. terms
without €), then codomain comparison is complete:

REL |= cod(t1) Ø cod(t2) ≈∆ TopKAT |= €t1 Ø €t2.

Proof. Given the natural inclusion homomorphism: i : KATK,B æ KATK€,B , we show that
the following are equivalent:
1. REL |= cod(t1) Ø cod(t2).
2. cod(h ¶ i ¶ G(t1)) Ø cod(h ¶ i ¶ G(t2)).
3. TopKAT |= €t1 Ø €t2.

We first show that 1 =∆ 2, by definition, REL |= cod(t1) Ø cod(t2) implies cod(I(t1)) Ø
cod(I(t2)) for all relational KAT interpretations I. Because h ¶ i ¶ G is a relational KAT
interpretation, so 1 =∆ 2.
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We show 2 =∆ 3, which uses the equality discussed above, and proved in Lemma 14:

cod(h ¶ i ¶ G(t1)) Ø cod(h ¶ i ¶ G(t2))
≈∆ G ¶ r(€t1) Ø G ¶ r(€t2) Lemma 14
≈∆ TopKAT |= €t1 Ø €t2. Completeness of G ¶ r

Finally, we show 3 =∆ 1, by Lemma 5:

TopKAT |= €t1 Ø €t2 =∆ TopREL |= €t1 Ø €t2 =∆ REL |= cod(t1) Ø cod(t2). J

4.2 Domain completeness

The domain completeness result can be derived from codomain completeness by observing
properties of opposite TopKAT and the converse operator (≠)‚, both of which we will recall
below.

For every TopKAT K, we can construct the opposite TopKAT Kop by reversing the
multiplication operation, keeping the sorts and other operations unchanged:

p ·̂ q , q · p,

where ·̂ is multiplication in Kop and · is multiplication in K. By definition, (≠)op is a
involution, that is (Kop)op = K. Furthermore, (≠)op is a TopKAT functor, this means all
TopKAT homomorphisms h : K æ KÕ can be lifted to a TopKAT homomorphism on the
opposite TopKAT hop : Kop æ KÕop. The lifting hop is point-wise equal to h:

’p œ K, hop(p) , h(p).

The fact that hop is a TopKAT homomorphism can be proven by unfolding the definition,
and the functor laws are satisfied because hop is point-wise equal to h.

There are two important homomorphisms involving opposite TopKAT:

(≠)‚ : (X ◊ X)op æ (X ◊ X) op : TopKATK,B æ TopKATop

K,B

(R)‚ = {(b, a) | (a, b) œ R}, ’p œ K +B, op(p) = p.

The (≠)‚ is the relational converse operator, the rules of homomorphism can simply be
proven by unfolding of definitions. The crucial property of (≠)‚ is that it flips the domain
and codomain:

dom(R‚) = cod(R). (2)

Hence, allowing us to flip the result about codomains and apply it to domains.
op is a homomorphism from free TopKAT to its opposite TopKAT; it can be defined by

lifting the embedding function K +B Òæ TopKATK,B on primitives. Intuitively, given a term
t œ TopKAT, op(t) will flip all the multiplications in t recursively.

I Lemma 16. the left inverse of op can be obtained by lifting itself through the (≠)op functor,

opop : TopKATop æ (TopKATop)op = TopKAT.

Recall opop is pointwise equal to op, thus opop ¶ op : TopKAT æ TopKAT is the identity
interpretation because it preserves all the primitives. Thus, op has a left inverse, hence it is
injective:

t1 = t2 ≈∆ op(t1) = op(t2).
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Finally, since the elements in TopKATop are the same as TopKAT, which are TopKAT
terms modulo provable TopKAT equalities, theorems about TopKAT terms are also true for
elements in TopKATop. In particular, codomain completeness (Theorem 15) also holds in
TopKATop: for all terms t1, t2 œ TopKAT,

€ · op(t1) Ø € · op(t2) ≈∆ REL |= cod(op(t1)) = cod(op(t2)). (3)

I Theorem 17 (Domain Completeness). For all terms t1, t2 œ KAT, the following equivalence
hold:

REL |= dom(t1) = dom(t2) ≈∆ TopKAT |= t1€ Ø t2€.

Proof. ≈= direction is trivial by Lemma 5; and =∆ direction can be derived as follows:
let I be some relational interpretation, then Iop(op(≠))‚ is also a relational interpretation:

Iop(op(≠))‚ : TopKAT op≠æ TopKATop Iop
≠≠æ (X ◊ X)op (≠)

‚

≠≠≠æ (X ◊ X).

Thus, we let I range over all relational interpretations:

REL |= dom(t1) ´ dom(t2)
=∆ ’I, dom(I(t1)) ´ dom(I(t2))
=∆ ’I, dom(Iop(op(t1))‚) ´ dom(Iop(op(t2))‚) specialize I as Iop(op(≠))‚

=∆ ’I, cod(Iop(op(t1))) ´ cod(Iop(op(t1))) Equation (2)
=∆ ’I, cod(I(op(t1))) ´ cod(I(op(t1))) Iop is pointwise equal to I

=∆ € · op(t1) Ø € · op(t2) Equivalence (3)
=∆ op(€ · t1) Ø op(€ · t2) Definition of op
=∆ t1€ Ø t2€ Lemma 16 J

I Remark 18. Alternatively, Theorem 17 can also be proven by constructing the following hÕ:

hÕ : GK,B æ P(GK,B ◊ GK,B)
hÕ(S1) , {(s1–s,–s) | s1– œ S1,–s œ GSK,B}.

Then the proof would mirror that of Theorem 15, replacing h with hÕ and replacing cod with
dom. However, the proof of Theorem 17 reveals more properties of maps like (≠)‚ and op,
thus we choose to present the current proof of Theorem 17 instead of the alternative proof.

5 Related Works

Extensions of Kleene algebra and reduction. soon after the completeness of Kleene
algebra was proven [18], it was realized that adding an embedded Boolean algebra can
help reasoning about control structures, such system is referred to as Kleene algebra with
tests (KAT) [24, 6]. Later KAT was further extended to reason about failure [26], indicator
variables [13], domain [9], networks [1], and relational reasoning [3]. Kleene algebra has
also been extended to reason about concurrency, as concurrent Kleene algebra [14, 17] and
concurrent Kleene algebra with observations [16]. Many of these extensions can be seen as
Kleene algebra with extra hypotheses [5, 11]. Although many hypotheses make the theory
undecidable [19, 22, 11], many useful hypotheses can be eliminated via reduction [33]. Thus,
our new perspective on reduction could potentially lead to streamlining of various previous
proofs, and more general proofs of completeness results.
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Top element. Tarski’s relational algebra [40] contains the addition, mulitiplication, and
identity operation of KA; in addition, relational algebra also include a top element. Hence
attempts to incorporat Kleene star into relational algebra e�ectively create a super theory
of TopKAT. Unfortuantly, several attempts at these algebras turn out to be undecidable
because of the presence of intersection and converse operations [2, 32]. With the intersection
and converse operators removed, top element is proven to be individually useful in Kleene
algebra: for example, Mamouras [26] uses the top element to forget program states, and
Antonopoulos et al. [3] uses top to design forward simulation rules for relational verification,
and claim that relational incorrectness logic [29] can be encoded using BiKAT extended
with top. The completeness and decidability of TopKAT was first studied by Zhang et
al. [41], and concluded that TopKAT is not complete with relational models. Later, Pous et
al. [34, 35] showed that both TopKA and TopKAT is complete with relational model with
one additional axiom: p€p Ø p, and the theory remains PSPACE-complete, like KAT and
TopKAT. In this paper, we showed that TopKAT without the additional axiom is complete
for a specific form of inequalities, namely when top only appears in the front or the end of
the term. Although this form of inequalities seem restrictive, they are enough to encode
both Hoare and incorrectness logic [41].

Domain in KAT. The study of axiomatizing (co)domain in KAT has a long and rich history.
Domain semiring [10] and Kleene algebra with domain [9] were two popular yet di�erent
axiomatizations of (co)domain in Kleene algebra with tests. These two axiomitizations turn
out to coincide in a large class of semirings [12]. Various applications for domain in KAT have
been discovered, including modeling program correctness, predicate transformers, temporal
logics, termination analysis, and many more [8]. Many of these applications can even be
e�ciently automated [15]. However, although the free relational model of these theories has
been characterized [28], the search for general complete interpretation remains unfruitful.
The complexity of these theories was recently shown to be EXPTIME-complete [37], a worse
complexity class than PSPACE-complete for TopKAT.

6 Conclusion And Open Problems

In this paper, we exploit the homomorphic structure of reduction to simplify the proof of
various previous results [41]. We have also showed that TopKAT is complete with respect to
(co)domain comparison in the relational models, which lays a solid foundation for the use of
TopKAT in (co)domain reasoning.

However, there are still several interesting unsolved problems about TopKAT. Most of
the incorrectness logic rules are written using hypotheses, for example, the sequencing rule:

[a] p [b] [b] q [c]
[a] p · q [c]

corresponds to the implication €ap Æ €b · €bp Æ €c =∆ €apq Æ €c. Although each
individual inequality in the implication fits the desired form €t1 Ø €t2. it is unclear whether
implications of the form

€t11 Æ €t12 · €t21 Æ €t22 · · · · · €tn1 Æ €tn2 =∆ €t1 Æ €t2

are complete with relational TopKAT or decidable.
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Recently, there is an e�cient fragment of KAT proposed, named Guarded Kleene algebra
with tests [38] or GKAT. This fragment not only enjoys nearly-linear time equality checking,
but also soundly models probabilistic computations as well. It would be interesting to see
whether the completeness and decidability result of TopKAT can be extended to GKAT, and
whether the e�ciency of GKAT will persist with the addition of top.
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