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Abstract

Data science is composed of two distinct keywords, i.e., data and science. Hence, the
present work lies within a discipline that addresses concrete problems (data) in a sci-
entific manner, to extract new knowledge in terms of explanations and predictions.
The concrete problem at this dissertation’s heart is fingerprint-based positioning,
particularly indoors. The work starts by addressing the joint modelling of indoor
positioning and building topology. The goal is to provide a flexible framework, actu-
alized in a relational database, that goes beyond the current manner of dealing with
indoor positioning data, so as to meet the needs of both researchers and practitioners.
Semantically linking positioning and building topology fosters reproducibility, the
exploitation of shared information, and the development of new evaluation strate-
gies. Motivated by the desire to study fingerprinting comprehensively, the thesis
then focuses on the relationship between the vector space of fingerprints and the
real-world 2D/3D space. Although a substantial body of literature studied metrics
with respect to their positioning performance, almost none investigated their ability
to capture, in the space of fingerprints, the spatial relationships between the associ-
ated positions: a foundational aspect useful to better understand the precise nature
of positioning. Along the dissertation, it is shown how classical metrics used in posi-
tioning fail, to a large extent, to capture spatial information, even if some are better
than others. Motivated by such findings and relying on machine learning, a new
metric is developed, optimised to capture spatial relationships. As a by-product,
the metric improves positioning performances, highlighting a link between the two
tasks and laying the foundation for the development of a new family of fingerprint-
ing approaches. Afterwards, the work focuses on exploiting deep learning to reduce
the impact of some issues affecting fingerprinting. The cornerstone idea is to em-
ploy a ranking-based representation of the fingerprints paired with recurrent neural
networks. Beyond providing several advantages, the approach supports a concept of
interpretability that is useful to obtain new scientific and operational insights. The
last part of the work lays the first steps towards the long-term research direction of
achieving seamless indoor-outdoor positioning, concerning both data modelling and
algorithmic solutions. First, a system dealing with the spatio-temporal information
pertaining to cellular network-based outdoor crowdsourced fingerprints is proposed.
Next, the focus turns to the topic of trajectories, i.e., sequences of positions/finger-
prints, with the goal of understanding how different representations behave.





Contents

Introduction xv
I.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Background 1
1.1 Data science and machine learning . . . . . . . . . . . . . . . . . . . 1

1.1.1 Data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Positioning systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Indoor localization . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 An overview of IPS approaches . . . . . . . . . . . . . . . . . 8

1.3 A focus on WiFi-based fingerprinting . . . . . . . . . . . . . . . . . . 10
1.3.1 Definition and methodologies . . . . . . . . . . . . . . . . . . 10
1.3.2 Metrics and normalization functions . . . . . . . . . . . . . . . 12
1.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Modeling Indoor Positioning 19

2 A Framework for Indoor Positioning including Building Topology 21
2.1 Motivations and challenges . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Domain modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Pairing indoor topology and fingerprints . . . . . . . . . . . . 24
2.2.2 Overall conceptual schema . . . . . . . . . . . . . . . . . . . . 28

2.3 Relational database development . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Logical schema . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Management of ground truth information . . . . . . . . . . . . 36

2.4 Usage of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Representation of notable indoor scenarios . . . . . . . . . . . 37
2.4.2 Support for indoor positioning tasks . . . . . . . . . . . . . . 39

2.5 Related systems/frameworks . . . . . . . . . . . . . . . . . . . . . . . 43

II On the Relationships Between Fingerprints and Spa-
tial Knowledge 47

3 What You Sense Is Not Where You Are 49
3.1 Fingerprinting beyond positioning accuracy: the point so far . . . . . 50
3.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



ii Contents

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Quantitative correlation analysis . . . . . . . . . . . . . . . . 53
3.3.2 Qualitative correlation analysis . . . . . . . . . . . . . . . . . 55
3.3.3 Impact of spatial distance . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Dealing with fingerprints with disjoint access points . . . . . . 59
3.3.5 Generalizability of the achieved results . . . . . . . . . . . . . 61

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Fingerprint Meta-distance Learning with Genetic Programming 67
4.1 Genetic programming in indoor positioning . . . . . . . . . . . . . . . 68
4.2 Symbolic regression and GP . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Symbolic regression . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Evolutionary computation and genetic programming . . . . . 70

4.3 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 The evolutionary algorithm and its implementation . . . . . . 72
4.3.2 Workflow of the experiments . . . . . . . . . . . . . . . . . . . 75

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 The generated meta-distance . . . . . . . . . . . . . . . . . . . 77
4.4.2 Correlation of spatial and fingerprint distances . . . . . . . . . 77
4.4.3 Positioning performance . . . . . . . . . . . . . . . . . . . . . 83
4.4.4 On the correlation-positioning relationship . . . . . . . . . . . 84

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 A glimpse of the road ahead: deep metric learning for continuous

similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6.1 Deep metric learning in a nutshell . . . . . . . . . . . . . . . . 88
4.6.2 A preliminary proposal for continuous similarities . . . . . . . 90
4.6.3 First results, known issues, and current limitations . . . . . . 92

III Effective Ranking-based Indoor Fingerprinting 95

5 Let’s Forget About Exact Signal Strength 97
5.1 Deep learning for indoor positioning systems . . . . . . . . . . . . . . 99
5.2 Recurrent models with ranking-based fingerprinting . . . . . . . . . . 100

5.2.1 Preliminaries on RNN . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Ranking-based fingerprinting . . . . . . . . . . . . . . . . . . . 102
5.2.3 The developed models . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . 107
5.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Contents iii

6 Towards Interpretability in Fingerprint-based Indoor Positioning 119
6.1 Interpretability in fingerprinting . . . . . . . . . . . . . . . . . . . . . 120

6.1.1 An account of interpretability in machine learning . . . . . . . 120
6.1.2 Our proposal for fingerprinting . . . . . . . . . . . . . . . . . 121

6.2 Fingerprinting with deep learning and attention . . . . . . . . . . . . 122
6.2.1 A sequence-to-sequence modeling of probabilistic positioning . 123
6.2.2 The developed model . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.2 Quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.3 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.4 Positioning performance evaluation . . . . . . . . . . . . . . . 139

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4.1 Critical analysis of the results . . . . . . . . . . . . . . . . . . 146
6.4.2 RSS vs ranked fingerprinting for interpretability . . . . . . . . 147
6.4.3 Other approaches for access point selection and RSS noise

mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.5 Current limitations . . . . . . . . . . . . . . . . . . . . . . . . 151

IV Towards Indoor-Outdoor Seamless Positioning 153

7 Crowdsourced Cellular Networks Reconstruction for Outdoor Fin-
gerprinting 155
7.1 Modeling cellular networks after outdoor fingerprinting . . . . . . . . 157

7.1.1 Common issues related to networks management . . . . . . . . 157
7.1.2 An account of the overall model . . . . . . . . . . . . . . . . . 159
7.1.3 The temporal aspects . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 An overview of the system capabilities . . . . . . . . . . . . . . . . . 165
7.2.1 Continuous and periodic validation . . . . . . . . . . . . . . . 166
7.2.2 Basic, spatial and temporal analysis . . . . . . . . . . . . . . . 166

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Represent and Compare Outdoor Fingerprint-based Trajectories 173
8.1 Comparison of GNSS and non-GNSS trajectories . . . . . . . . . . . 174

8.1.1 An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.1.2 EDR, ERP, and LCSS . . . . . . . . . . . . . . . . . . . . . . 176

8.2 A proposal for fingerprint trajectories . . . . . . . . . . . . . . . . . . 178
8.2.1 EDR, ERP, and LCSS revisited . . . . . . . . . . . . . . . . . 179
8.2.2 Spatial Edit Distance for Fingerprints (SEDF) . . . . . . . . . 181

8.3 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



iv Contents

8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.3.2 Analysis methodology . . . . . . . . . . . . . . . . . . . . . . 184

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4.1 Spatial, cellular, and mixed data . . . . . . . . . . . . . . . . 185
8.4.2 Robust, fair, and sensitive . . . . . . . . . . . . . . . . . . . . 188
8.4.3 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . 190

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Conclusions 193

A Entity-Relationship diagram notation 197

B Notes on the Indoor Database usage 199
B.1 Usage of the online demo of the system . . . . . . . . . . . . . . . . . 201

Bibliography 203



List of Figures

1.1 High-level description of WiFi-based fingerprinting. . . . . . . . . . . 11

2.1 Different tessellations for an indoor scenario. Dashed lines denote
tiles; Tiles of the same colour refer to the same parent place (e.g., a
site or a floor) in the hierarchy. . . . . . . . . . . . . . . . . . . . . . 26

2.2 Proposed heterogeneous directed graph modeling a generic multi-
building, multi-floor scenario using different types of tessellation. . . . 27

2.3 The Entity-Relationship diagram. The notation is very close to the
one originally proposed by Chen [50]. . . . . . . . . . . . . . . . . . . 29

2.4 Logical schema of the indoor positioning relational database. Arrows
represent foreign key directions. The red sub-schemas make up the
public schema. The blue area depicts the evaluation support schema
(consisting of one table only). . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Inter-building connectivity modeling example (for simplicity, only one
tile per floor is depicted). . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Premises spanning over several floors (theater hall) modeling exam-
ple. Left-hand side denotes the case of logical or zone tessellations;
right-hand side reports the case for crowd or grid ones (for simplicity,
only one tile per floor is depicted). . . . . . . . . . . . . . . . . . . . 39

2.7 Two connectivity scenarios involving different tessellation strategies
across three different floors. Floors A.1 and A.3 use zone tiles, while
floor A.2 uses grid tiles. Red links denote adjacency and walkability
relationships at the tile level (some have been compacted for simplicity). 40

2.8 Outcomes of some interactions with the system. . . . . . . . . . . . . 43

3.1 Correlation performance on the dataset UJI 1 for all the combinations
of normalization functions, metrics, and granularity levels (3D case).
Each boxplot is determined by the correlation values obtained from
100 different runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Euclidean, Sørensen, Matusita, and SWED behaviours at 3 granular-
ities. Brighter color for higher density; correlation trend (solid line);
ideal case (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Correlation values at different maximum spatial distances (samples
from same building). Values for the median (3D: solid line, 2D:
dashed line), 25th and 75th percentiles (shaded area, just for the
3D case) are reported. Curves for Positive (blue) and Zero-to-One
(red) perfectly overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . 58



vi List of Figures

3.4 Changes to the distances distribution when 3D instead of 2D spa-
tial distance is considered. Observations are binned considering their
spatial 2D and 3D distances. Distances increase in the 3D case. . . . 59

3.5 Correlation values for Cosine metric for low spatial distances. Curves
for Positive (blue) and Zero-to-One (red) perfectly overlap. . . . . . . 60

3.6 Distribution of 2D distances when 3D distances ∈ [3.6, 3.8]. . . . . . . 60

3.7 Correlation results on FP pairs with at least a common AP. . . . . . 61

3.8 Metrics behaviours on FP pairs with at least a common AP. Only
Zero-to-One normalization function has been considered. . . . . . . . 62

3.9 Correlation values for FP pairs with at least a common AP at different
maximum spatial distances (same building). . . . . . . . . . . . . . . 63

3.10 Ranking mean (value in the box) and standard deviation (color of
the box) for each combination of normalization functions and metrics,
across the datasets. Results for the granularities same building and
same floor are reported. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 Ranking correlation for normalizations across datasets. Upper trian-
gular matrix: same building ; lower triangular matrix: same floor. . . 64

3.12 Ranking correlation for metrics across datasets. Upper triangular
matrix: same building ; lower triangular matrix: same floor. . . . . . . 64

3.13 Median correlation for Zero-to-One-normalized Cosine metric com-
pared against some datasets features (all but #AP in logarithmic
scale). For the sake of clarity, some jitter has been applied on the x
axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Mathematical expression (4 × a) + cos(a) represented in a tree-like
fashion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Overview of the evolutionary algorithm, where the term corr stands
for the Pearson correlation between distances in the fingerprint and
real-world space. The shaded area includes the steps performed dur-
ing a generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Hypervolume for our bi-objective maximization problem. The refer-
ence (worst) point is (−1,−1), while (1, 1) is the ideal solution. . . . 74

4.4 The computation tree generated by the evolutionary algorithm, where
ST (·) nodes represent parameterized instantiations of the ST (A) sub-
tree. The meta-distance makes use of all three considered fingerprint
distance functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures vii

4.5 Correlation performance for all the considered fingerprint distance
functions and granularity levels. Each boxplot is determined by the
correlation values obtained from 100 different test runs. Boxes extend
from the first to the third quartile values of the data, with a line at
the median. Whiskers extend to the smallest and largest observations
which are not outliers (considering 1.5 times the interquartile range).
The GP-based meta distance function consistently scores among the
best performing ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Classical fingerprint distances (y-axis) plotted against the spatial dis-
tance (x-axis) when instances are sampled from the entire dataset
(top), only from a same building (centre), and only from a same floor
(bottom). Brighter colour denotes a higher density; correlation trend
(solid line); ideal case (dashed). The considered distances exhibit
rather different behaviours. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Machine learning-based fingerprint distances (y-axis) plotted against
the spatial distance (x-axis) when instances are sampled from the
entire dataset (top), only from the same building (centre), and only
from the same floor (bottom). Brighter colour denotes a higher den-
sity; correlation trend (solid line); ideal case (dashed). While all ap-
proaches seem to provide an improvement in correlation with respect
to Figure 4.6, the best case is that of the GP-based meta distance. . . 81

4.8 Correlation values at different maximum spatial distances and granu-
larity levels. Each point x represents the correlation value looking at
spatial distances smaller than x only. Each curve reports the median
correlation value over 100 iterations (solid line), while its shaded area
refers to the interquartile range. Overall, the GP-based meta-distance
obtains higher correlations over the different scenarios and distance
thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Generalization performance of the correlation results of the considered
fingerprint distance functions. For each distance, the average rank
of its performance across all datasets is reported. Lower value and
darker color are better. The best results are provided by Cosine and
the GP-based meta distance. . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Spearman correlation between the average positioning errors and the
(negated) area under the curves. The plot must be interpreted as
those in Figure 4.5. Overall, distance functions that exhibit a higher
(negated) area lead to a lower positioning error. . . . . . . . . . . . . 86

4.11 Positioning task scenarios within the (k-)Nearest Neighbor frame-
work. Left: weighted centroid (X symbol) calculated with the 3
instances closest to the real position (star symbol). Right: best-
performing triplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.12 Graphical account of deep metric learning general workflow (adapted
from [120]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



viii List of Figures

4.13 Graphical example of some DML loss functions (adapted from [120]). 90

4.14 Preliminary results of proportional DML applied to UJI 1 dataset. . 93

5.1 Different types of RNN architecture (initial state omitted). Possible
applications: (a) similar to a feed forward neural network; (b) senti-
ment analysis; (c) sequence generation (e.g., music); (d) name entity
recognition; (e) machine translation. . . . . . . . . . . . . . . . . . . 101

5.2 Ranking-based fingerprint representation construction process. . . . . 102

5.3 Representation of the proposed multi-output bidirectional LSTM-
based model for a multi-building, multi-floor, and multi-room en-
vironment. B̂, F̂ , and R̂, stand for building, floor, and room predic-
tions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 ECDFs showing the performances of both models for UJIIndoorLoc
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 ECDFs showing error variations at different rates of perturbations σ
for the fully hierarchical model. . . . . . . . . . . . . . . . . . . . . . 114

5.6 ECDFs showing error variations at different rates of perturbations σ
for the flattened model. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Comparison of performance between our hierarchical model and the
literature solution proposed in [261] on the perturbed UJIIndoorLoc
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Probability density function 5.8a and complementary cumulative dis-
tribution function 5.8b of the number of APs visible for each fin-
gerprint of the UJIIndoorLoc training dataset. Thresholds used for
testing are depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 ECDFs showing error variations at different ranking lengths for the
fully hierarchical model. . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 ECDFs showing error variations at different ranking lengths for the
flattened model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Graphical representation of the elements composing the framework,
their integration, and how information flows throughout it (i.e., from
the radio-map and model training, to the generation of the inter-
pretability outcomes, the positioning estimate, and the combination
of such aspects for multiple tasks). . . . . . . . . . . . . . . . . . . . 123

6.2 Sequence-to-sequence LSTM model with attention for hierarchical po-
sition estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Vanilla sequence-to-sequence LSTM model for hierarchical position
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Graphical high-level summary of the experimental evaluation pipeline. 129

6.5 Graphical account of the transformation of an attention matrix A ∈
R3×nk to its vectorized representation vec(A) ∈ R3·q. . . . . . . . . . . 129



List of Figures ix

6.6 Cumulative probability of the number of visible APs in a fingerprint
(left) and RSS distribution over the rank positions (right). . . . . . . 130

6.7 Dendrograms obtained by clustering the attention vectors relying on
different compatibility functions. The height of the tree branches in-
dicates the distance between the clusters being hierarchically merged.
The horizontal axis shows the individual data points being clustered.
The black dashed line depicts the chosen cutting point, that leads to
the specific sets of clusters identified by the colors. The result pro-
vided by of dot is unsatisfactory due to poor partitioning; general and
deep produce too many groups; add and cat generate more balanced
partitions where cluster compositionality can be clearly noticed. . . . 134

6.8 KS-based cluster similarity test result. Each cell denotes the com-
parison between a pair of clusters, which can be judged to be similar
(dark colour) or not (bright colour). add and cat show the best be-
haviour, since they have a high number of clusters but only few of
them are pairwise similar. . . . . . . . . . . . . . . . . . . . . . . . . 136

6.9 KS-based AP similarity ratio test result. Each cell denotes the com-
parison between a pair of clusters, which can share a large number of
equally distributed APs (dark colour) or not (bright colour). add and
cat show the best behaviour, since, in them, the clusters that were
considered to be similar have a low number of equally distributed
APs, a fact that still justifies their existence. . . . . . . . . . . . . . . 137

6.10 Distributions of Hausdorff distances among similar and dissimilar
clusters. Each box extends from the first to the third quartile values of
the data, with a line at the median. Whiskers extend to the smallest
and largest observations which are not outliers (considering 1.5 times
the interquartile range). The optimal case is that of disjoint boxes,
with distant medians, and distance values for similar clusters lower
than those for the dissimilar ones. dot exhibits a wrong behaviour,
while add emerges as the best. . . . . . . . . . . . . . . . . . . . . . . 138

6.11 Attention matrices A of four instances (one for each row) generated by
different compatibility functions. A brighter colour denotes a higher
relevance. The predicted location is reported on the left side of each
matrix, while the ground truth is on the extreme right (for each ma-
trix, the first row label is for the building, the second for the floor,
and the third for the room hierarchical level). Access points identi-
fiers are shown on the top of the matrices (0 = dummy AP). It is
possible to observe that different types of attention focus on different
parts of the ranked fingerprints. . . . . . . . . . . . . . . . . . . . . . 139

6.12 Cluster assignments of instances on different floors for add attention
compatibility function. It is possible to observe that clusters exhibit
some spatial locality properties. . . . . . . . . . . . . . . . . . . . . . 140



x List of Figures

6.13 Distribution of the differences between the errors of attention-based
and probability-based approaches. The larger right tail shows the
superiority of the probability-based strategy, although it is possible
to observe that for a significant amount of cases the attention-based
approach behaves better. . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.14 ECDF showing the performances of probability- and attention-based
approaches in comparison with the oracle. Being able to always
choose the optimal approach between the two solutions would lead
to a consistent boost of positioning performance. . . . . . . . . . . . . 144

6.15 A typical positioning scenario. RP weights (larger bubble = higher
value/relevance) and position estimation results according to the dif-
ferent approaches are considered. The grey box on the left highlights
a situation where probability emphasizes a RP poorly considered by
the similarity attention score. As it can be seen, our simple approach
to combine probability and attention values leads to a significant im-
provement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.16 Results of add compatibility function, shuffling the attention values
within each fingerprint. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Complete cellular network schema, integrated with the positioning
system and equipped with spatio-temporal support. Letter T denotes
entities that feature transaction time, whereas letters LS denote in-
stances that feature valid time. . . . . . . . . . . . . . . . . . . . . . 160

7.2 Restructured cellular network schema. . . . . . . . . . . . . . . . . . 165

7.3 A general overview of PLMNs’ coverage. . . . . . . . . . . . . . . . . 167

7.4 Coverage of different technologies of the same PLMN. . . . . . . . . . 168

7.5 Administrative areas in the Berlin area: urban (violet and pink poly-
gons) and rural (green polygon) area. Orange polygons represent cell
coverages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.6 Evolution of the coverage of a cell as new measurements are added to
the database over time. A brighter color denotes a more recent state. 169

7.7 Temporal evolution of the UMTS coverage in Germany, measure-
ments obtained from 2015-03-17 up to 2016-03-17 (pink color) or
2017-03-17 (brown color). Only serving cells are considered. . . . . . 170

7.8 Backtracking a cell renaming operation. The two original cells are
shown in red and blue. The cell after the rename matches the blue
one since the red cell is fully contained in the other. . . . . . . . . . . 170

8.1 Experimental results: GNSS data. . . . . . . . . . . . . . . . . . . . . 186

8.2 Experimental results: cellular data. . . . . . . . . . . . . . . . . . . . 187

8.3 Experimental results: mixed data - SEDF. . . . . . . . . . . . . . . . 188

8.4 Experimental results: mixed data - log(SEDF). . . . . . . . . . . . . 188



List of Figures xi

A.1 Strong entity set notation. . . . . . . . . . . . . . . . . . . . . . . . . 197
A.2 Weak entity set notation. . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.3 Total specialization notation. . . . . . . . . . . . . . . . . . . . . . . 198
A.4 Partial specialization notation. . . . . . . . . . . . . . . . . . . . . . . 198



xii List of Figures



List of Tables

1.1 Characteristics of the considered datasets. . . . . . . . . . . . . . . . 16

2.1 Summary of the notable features and their importance and support
capabilities by the considered systems/frameworks . . . . . . . . . . . 44

4.1 Permutation test results (one-sided p-value). . . . . . . . . . . . . . . 79
4.2 Area under the curves of Figure 4.8; higher is better. . . . . . . . . . 83
4.3 Positioning performance, where the Avg Positioning Error must be

evaluated together with the Success rate. . . . . . . . . . . . . . . . . 84

5.1 Hyperparameters for the proposed LSTM approach. . . . . . . . . . 108
5.2 Test set performances of the proposed models. . . . . . . . . . . . . . 110
5.3 Performance of both models applied to UJIIndoorLoc with different

ranking lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Comparison with the other state-of-the-art methods for the three con-

sidered datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5 Results of RSS perturbations applied to the UJIIndoorLoc test set. . 113

6.1 Characteristics of the considered UJIIndoorLoc dataset splits. . . . . 130
6.2 Comparison of the positioning estimation results . . . . . . . . . . . . 142
6.3 Summary of the experiments and their results . . . . . . . . . . . . . 146

7.1 Acronyms related to the specific network technologies used through-
out the chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.1 Description of the selected areas. . . . . . . . . . . . . . . . . . . . . 184
8.2 Overview of parameters setting for perturbations. . . . . . . . . . . . 185
8.3 Outcomes of the experimentation in terms of robustness, fairness, and

sensitiveness for GNSS and PE data. . . . . . . . . . . . . . . . . . . 189
8.4 Outcomes of the experimentation in terms of robustness, fairness, and

sensitiveness for cellular and mixed data. . . . . . . . . . . . . . . . . 189
8.5 Analysis of rank correlation. . . . . . . . . . . . . . . . . . . . . . . . 191



xiv List of Tables



Introduction

Data science is a popular expression nowadays, composed of two distinct keywords,
i.e., data and science. Far from being just a buzzword, it is a discipline that addresses
concrete problems (data) in a scientific manner to extract new knowledge in terms
of explanations and predictions [143].

Such a twofold nature of data science will be the main thread of this thesis, which
is focused on the problem of positioning, i.e., identifying the location of something
or someone within a given reference system; although such a task can be carried out
both in an outdoor and an indoor setting, we mainly focus on the latter. Notably,
people spend, on average, 90% of their time indoors in a variety of contexts, such
as offices, shopping malls, airports, hospitals, and museums [70]. In all of them,
the ability to accurately determine the location of a target device can significantly
enhance the user experience, provide valuable data for businesses, and improve safety
and security in emergency situations [170, 172]. Besides, location-based information
and services are also seen as essential components in the development of the Internet
of Things (IoT) and smart cities.

Over the years, multiple approaches have been proposed to tackle the problem
of positioning, each with its pros and cons [177]. In this dissertation, we will focus
on fingerprinting. Fingerprint-based positioning relies on the collection, at different
locations, of radio-frequency signal measurements, called fingerprints, to infer the
position of a device. Compared to other solutions, its general advantages are cost-
effectiveness, wide availability, flexibility, scalability, and limited power consumption
[103, 121].

The fingerprinting community has largely been focusing on proposing algorithms
for position estimation, trying to overcome the challenges that naturally emerge
in indoor environments, such as signal attenuation, multi-path propagation and
changes in available radio emitters [262]. In this thesis, we take a different, more
holistic approach. We investigate several challenges that arise in the domain, ex-
ploring the potential of the principles and methods typical of data science, such as
data modeling, analysis, and machine learning.

In the most natural way, we begin our journey from the data, addressing the
problem of modeling indoor positioning. Here, the lack of standards, the high het-
erogeneity of collected measurements, and the inherent variety of indoor premises
are prominent challenges towards the development of viable solutions. Such difficul-
ties led, in the literature, to an extensive research effort that resulted in the proposal
of multiple algorithms, sampling strategies, benchmark datasets, and building mod-
eling approaches [81, 150, 221, 256, 285]. While, on the one hand, this contributed
towards the advancement of the field, on the other, it hindered evaluation, compa-



xvi Introduction

rability and interoperability. To cope with the aforementioned issues, we present
a comprehensive and extensible framework that relies on a relational database to
represent topological information of indoor premises, which can be seamlessly com-
bined with fingerprint positioning data. As we will see, the flexibility of the system
allows it to handle multiple indoor scenarios and support a wide range of tasks, both
in terms of its industrial deployment and its use within the research community.

We then move towards science. One of the concepts at the root of fingerprinting
is that of metric, since measuring the distances among fingerprints is at the base of
all the deterministic positioning approaches [12]. Nevertheless, while a large num-
ber of studies examined, in different settings, distance functions in terms of their
positioning performance, only a few works studied them per se, abstracting from
the positioning task [261, 262]. Thus, we focus on the latter aspect, investigating
the ability of classical metrics to preserve spatial information in the vector space of
fingerprints. In other words, we ask ourselves whether there is a relationship be-
tween the distances measured in the vector space of fingerprints and those measured
between the real-world locations that the fingerprints represent. Needless to say,
being able to reason spatially based only on fingerprints would be a key element, for
instance, in developing new families of algorithms, e.g., based on semi-supervised
learning. We address this matter focusing on WiFi fingerprints due to the perva-
siveness of such a technology, performing an extensive analysis involving multiple
datasets, normalization functions, metrics, and granularity levels. The obtained re-
sults will then lead us towards the development of a new metric relying on machine
learning.

As previously mentioned, numerous challenges affect indoor positioning based
on radio signals, such as WiFi. Indeed, signal attenuation, multi-path propagation,
changes in the environment, and the heterogeneity of the sensing equipment, are
all aspects affecting what a device will observe in a given place at a given moment
in time. A line of research pursued in the literature consists of relying on different
representations of the fingerprints [54, 284], capable of fostering properties like, for
instance, robustness to noise. However, a typical downside of such representations
is that they convey a reduced amount of information, leading to sub-optimal po-
sitioning performance. This is precisely the case with ranking-based fingerprinting
[164], where properties such as invariance to scale and bias are exploited to achieve
a higher resistance to signal perturbations at the expense of localization accuracy
[54, 136, 155, 254]. To limit the shortcomings of such a fingerprint representation,
while retaining its advantages, we employ deep learning, specifically recurrent mod-
els. In this way, thanks to the inductive bias and the autoregressive nature provided
by such types of models, we exploit the inherent features of both ranked finger-
printing and the hierarchical compositionality of indoor buildings. On top of that,
motivated by the fact that interpretability in machine learning can also be used
to extract novel scientific knowledge and operational insights about the application
domain [191], we investigate whether this also holds in our context. This is by no
means an easy task to accomplish, as interpretability has not been explicitly de-
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fined in indoor positioning, and explanations cannot be extracted relying on just
plug-and-play approaches. Rather, they require a careful and tailored investigation.

The last part of the thesis moves towards generalizing what we accomplished
for the indoor positioning realm. A unique challenge in the field of positioning is to
develop a system capable of dealing with seamless indoor-outdoor information [166].
Again, we focus on fingerprinting, as it constitutes, in the outdoor setting, a valid al-
ternative to the Global Navigation Satellite System [269]: despite its overall reduced
precision, it requires a significantly lower amount of energy, it is less expensive, it is
not strongly affected by multi-path effects or urban canyons, and it is more widely
available throughout the day of a typical user [152, 153, 162, 304]. Nevertheless,
outdoor fingerprinting often heavily relies on a comprehensive and accurate knowl-
edge of the cellular network configuration, which is not static and, above everything,
is not disclosed by network operators [266]. In this respect, we show how employ-
ing a spatio-temporal database derived from appropriate modeling of the domain
it is possible to reconstruct the configuration of the cellular network, relying exclu-
sively on crowdsourced data collected by standard users, while providing support to
cope with the evolution of the cellular network through space and time, also in case
of reconfiguration phenomena. Another topic (among many) that we identify as
fundamental to achieving the long-term research goal of a seamless indoor-outdoor
positioning system is that of trajectories, i.e., sequences of points [172]. In fact,
trajectories can play a pivotal role in managing the transition of users and devices
between indoor and outdoor environments, which is one of the most critical aspects
regarding the integration sought. Despite its importance, no prior study regarding
fingerprinting specifically dealt with this theme, characterized by non-trivial chal-
lenges related to low-sampling rates and heterogeneity. We, therefore, investigate
which is the best trajectory representation for our domain, paying particular atten-
tion to understanding which type of data, between spatial and cellular, and their
combinations, to exploit in order to have meaningful similarity evaluations.

The thesis is structured as follows. In Chapter 1, we give an overview of the
concept that we use throughout the dissertation, providing a general introduction to
data science and machine learning, and going into the details of indoor positioning,
with particular attention to WiFi-based fingerprinting. In Chapter 2, we discuss
our framework that jointly models indoor positioning and building topology. The
following part of the thesis consists of Chapter 3 and Chapter 4, where we study the
relationship between distances measured in the fingerprint vector space and those
among the location that they represent. First, we will focus on understating the
behaviour of classical metrics, and then we will investigate how to learn a better
metric tailored for fingerprinting. Chapter 5 describes our work regarding combining
deep learning with ranked fingerprinting to obtain an accurate system robust to
noise. Then, we show how to extend this latter approach to support a concept
of interpretability that is useful to get new scientific and operational insights in
Chapter 6. With the goal of seamless indoor-outdoor localisation, the last part of
the work is devoted to outdoor fingerprinting. First, in Chapter 7, we discuss a



xviii Introduction

general and flexible yet complete database schema for cellular networks, modelled
after the information available in signal fingerprints, and capable of fostering the
crowdsourced collection of data. Next, we delve into the topic of trajectories and
their similarity evaluation in Chapter 8. Finally, we provide an overall assessment
of the work done and future research directions.

I.1 Publications

We hereby provide the references to the articles on which the results of this thesis
have been published.

• The framework that jointly models indoor positioning and building topology
(Chapter 2) has been presented in [39], Andrea Brunello, Angelo Montanari,
and Nicola Saccomanno. A framework for indoor positioning includ-

ing building topology. IEEE Access, October 2022.

• Results about our line of research concerning understanding the relationship
between the vector space of fingerprints and the real world (Chapter 3), as
well as the learning of a meta-metric through genetic programming (Chap-
ter 4), have been published respectively in [224], Nicola Saccomanno, An-
drea Brunello, and Angelo Montanari. What You Sense is Not Where

You are: on the Relationships Between Fingerprints and Spatial

Knowledge in Indoor Positioning. IEEE Sensors Journal, March 2022,
and [40], Andrea Brunello, Angelo Montanari, and Nicola Saccomanno. A

genetic programming approach to wifi fingerprint meta-distance

learning. Pervasive and Mobile Computing, August 2022.

• The work about combining recurrent neural networks with ranked finger-
printing (Chapter 5) has been published in [223], Nicola Saccomanno, An-
drea Brunello, and Angelo Montanari. Let’s Forget About Exact Signal

Strength: Indoor Positioning based on Access Point Ranking and

Recurrent Neural Networks. In Proceedings of the 17th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous). ACM, December 2020, while its extension regarding
interpretability (Chapter 6) is currently under review.

• The database for outdoor fingerprinting (Chapter 7) has been presented in
[36], Andrea Brunello, Andrea Dalla Torre, Paolo Gallo, Donatella Gubiani,
Angelo Montanari, and Nicola Saccomanno. Crowdsourced reconstruc-

tion of cellular networks to serve outdoor positioning: Modeling,

validation and analysis. Sensors, January 2023. In this dissertation, we
are not going to provide a complete description of such a work. Instead, we
outline the resulting model and its capabilities, mainly for what concerns the
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temporal aspect. Such a choice stems from the fact that the publication in
[36] builds on previous work by Gubiani et al. [100] (analysis of the context
and outline of the framework), Viel, in his PhD dissertation (background,
first modeling, and preliminary analysis) [265], and Andreussi, in his master
thesis (contribution to the implementation of the revised and spatio-temporal
extended database) [9], while our main contributions pertain to the refactor-
ing of the entire model, its extension with the temporal dimension, and the
subsequent analyses.

• Finally, the work about trajectories for outdoor fingerprinting (Chapter 8) has
been published in [93], Paolo Gallo, Donatella Gubiani, Angelo Montanari,
and Nicola Saccomanno. A new similarity measure for low-sampling

cellular fingerprint trajectories. In Proceedings of the 21st IEEE Inter-
national Conference on Mobile Data Management (MDM), June 2020.

In addition to these papers, throughout the PhD journey, we also worked in other
directions related to applied artificial intelligence and data science, particularly in
the domain of medicine and biology, leading to the following publications:

• [26] Andrea Bernardini, Andrea Brunello, Gian Luigi Gigli, Angelo Montanari,
and Nicola Saccomanno. AIOSA: an approach to the automatic iden-

tification of obstructive sleep apnea events based on deep learning.
Artificial Intelligence in Medicine, July 2021.

• [35] Andrea Brunello, Marcello Civilini, Stefano De Martin, Antonella Fe-
lice, Marinella Franchi, Lucilla Iacumin, Nicola Saccomanno, and Nicola Vi-
tacolonna. Machine learning-assisted environmental surveillance of

legionella: a retrospective observational study in friuli-venezia giu-

lia region of italy in the period 2002–2019. Informatics in Medicine
Unlocked, January 2022.

• [27] Andrea Bernardini, Andrea Brunello, Gian Luigi Gigli, Angelo Montanari,
and Nicola Saccomanno. OSASUD: A dataset of stroke unit recordings

for the detection of obstructive sleep apnea syndrome. Scientific
Data, April 2022.
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1
Background

1.1 Data science and machine learning

Machine learning is a subfield of artificial intelligence (AI) that involves the develop-
ment and study of algorithms that can learn from and make predictions or decisions
based on data. These algorithms are trained on a dataset, i.e., a collection of data,
and can fulfil their task without being explicitly programmed. Machine learning is
a powerful tool for analyzing and understanding complex data, and it has a wide
range of applications in several fields such as finance, healthcare, e-commerce, and
engineering.

Data science, on the other hand, is the use of scientific and mathematical tech-
niques to extract insights and knowledge from data. It is a multidisciplinary field
that combines elements of computer science, statistics and domain expertise. Data
science is concerned with the harvesting, processing and analysis of large datasets
and the employment of these insights to inform decision-making or solve real-world
problems. Often, to achieve such goals, it involves the use of machine learning
algorithms as well as other techniques.

Thus, data science and machine learning are strongly related fields, often provid-
ing their best when used in combination. Indeed, from a certain perspective, machine
learning can be seen as a part of both data science and artificial intelligence, as data
science encompasses a range of techniques for analyzing and understanding data,
including machine learning.

In the remainder of this section, we give an overview of those topics, providing
a general context for this dissertation. As the areas of machine learning, data
science, and deep learning are nowadays quite broad, in the chapters that make
use of specific techniques (e.g., genetic algorithms, or recurrent neural networks), a
detailed account of the involved methods will be reported.

1.1.1 Data science

Data science is a relatively new field that has emerged in the last few decades, driven
by the explosion of data availability and advances in computing power. It is an
interdisciplinary area that uses scientific methods, processes, algorithms and systems
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to extract knowledge and insights from structured (highly organized, e.g., tables)
and unstructured data (no pre-defined organization e.g., text-heavy). Its origins
can be traced back to the field of statistics, which has long been used to analyze
and interpret data. However, the growth of the internet and the proliferation of
electronic devices have led to a vast increase in the amount of data being generated
and collected, making traditional statistical methods less suitable for the task at
hand. As a result, data science has evolved to incorporate a wide range of tools
and techniques from other disciplines such as computer science, machine learning,
and data engineering, to analyze and make sense of these data, identifying patterns
and trends, ultimately making predictions and recommendations. Besides finding
application in several industries, its contribution is paramount in scientific research,
where it fosters discoveries and advances in multiple domains.

Data science is a multi-centric field being, as we said, a combination of statistical
analysis, programming, and domain expertise. Indeed, to deal with large and com-
plex datasets, it is necessary to employ a variety of tools and techniques to clean,
organize, and analyze information. For instance, a key step is exploratory data
analysis, which requires exploring and visualising the data to better understand its
structure and content, leading to the creation of charts, plots, and other figures to
highlight possible underlying patterns and trends. This preliminary step is of great
importance to guide all the following processing and analyses. Another task is data
cleaning and preparation, where raw data, which is often messy and not organized,
is pre-processed in order to make it suitable for subsequent analyses. Typical sce-
narios include handling missing values, fixing errors, and transforming the data into
a usable format. Once data have been pre-processed, it is possible to analyze them.
As previously mentioned, this is done by relying on multiple techniques, such as,
for instance, hypothesis testing, building models, and running experiments. Besides
taking actions following the knowledge derived through the analyses, data can also
be used to make predictions, which requires developing appropriate inference models
for the task at hand.

1.1.2 Machine learning

Machine learning is a sub-field of artificial intelligence about the design, develop-
ment and usage of algorithms and models that can learn from data. The goal is to
be able to make predictions and take decisions based on new data, without relying
on systems explicitly programmed to fulfil such tasks. Everything revolves around
data, as indeed the cornerstone principle is that systems can learn from them, iden-
tify patterns, and take action, all with minimal human intervention. But what is
meant by learning? According to [181] “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with experience E”.

The history of modern machine learning can be traced back to the 1950s, when
researchers began exploring the use of computers to perform tasks that normally
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require human intelligence, such as learning, decision-making, and problem-solving.
One of the early pioneers in the field was Arthur Samuel, who developed a program
that could play a game of checkers and improve its performance over time by learning
from its mistakes [228]. In the following decades, researchers developed novel algo-
rithms for machine learning, such as decision trees, nearest neighbours, and artificial
neural networks. These early approaches were limited in their capabilities, but they
laid the foundation for more advanced algorithms that were later developed. In the
1980s and 1990s, the field experienced a resurgence of interest, as researchers began
to explore it for tasks such as speech recognition, natural language processing, and
image classification. In the 21st century, machine learning has become pervasive
and ubiquitous and is now used in a wide range of applications, including search
engines, self-driving cars, and conversational agents. Indeed, machine learning has
undergone significant evolution and has become an essential tool in several fields,
leading to the development of new technologies, such as deep learning, which have
further transformed the discipline and enabled even greater insights to be gained
from data.

There are several different types of machine learning paradigms, which mainly
differ one from another by the level of supervision they require.

Supervised learning requires the highest level of supervision, as the algorithm is
trained on a labelled dataset, where for each example in the training set, the correct
output (i.e., label) is provided. The goal is to make predictions on new, unseen
examples that are drawn from the same distribution as the training set. Such new
examples are often referred to as test set. The kind of label also defines the type
of task, leading to several types of supervised learning, including classification and
regression. Classification involves predicting a categorical label, such as whether
an email is spam or not. Regression concerns predicting a continuous numerical
value, such as the price of a house. Concerning the algorithms, there are many
possibilities. Linear regression is used to solve regression tasks by finding the best
coefficients for the features appearing in the linear model, fitting the input data. A
widely used technique for estimating such parameters of a linear regression model is
the least squares method. A generalization of the linear regression model for binary
outcomes, thus, a method suitable for classification tasks, is the logistic regression
[25, 62], which linearly combines the input features, fitting a logistic function. K-
nearest neighbors algorithm (k-NN) is a non-parametric method based on relying
on the k closest elements of the training set for a given input instance, considering
an appropriate metric/distance function (e.g., Euclidean distance, cosine similarity)
[82]. It can be used for both classification and regression tasks: in the first case the
outcome is determined using a (weighted) voting mechanism among the k neighbors,
assigning the most common class; in the second case, a (weighted) average of the
labels of the k neighbors is evaluated. Support Vector Machines work by finding
the hyperplane (or a set of hyperplanes) in a high-dimensional space that maximally
separates the nearest (w.r.t. to the hyperplane) training-data point of any class [61].
Decision trees are another type of model that can be used for both classification
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and regression tasks [213]. The general idea is to use nodes to represent simple
decision rules inferred from the data features. Among the most appreciable features
of decision trees is that they are simple to understand and interpret, if the size of the
three does not grow too much. Single models, often in the form of weak learners, can
also be combined into a new, more performing model by means of ensemble learning
approaches [72, 154]. For instance, this is the case of random forests [33], which we
can simplify as a combination of several decision trees by means of bagging [32], an
ensemble algorithm. Using boosting [18, 232] rather than bagging leads, for instance,
to gradient-boosted trees [86, 87] instead. It is worth highlighting that the use of
ensembles has its pros and cons. It is generally true that ensemble solutions have
greater prediction capabilities compared to the base models, but some characteristics
of the weak learner are lost. For instance, comparing decision trees against random
forest and gradient-boosted trees, it is immediately noticed that more data, as well
as careful fine-tuning, are required, and the model becomes black-box rather than
white-box: they are not inherently interpretable anymore.

The lowest level of supervision is required by unsupervised learning. Here, the
algorithm is not given any labelled training examples and must find patterns, struc-
tures, and relationships in the data in an unguided manner. Generally speaking,
it finds application in tasks such as data compression, denoising, and generative
modeling, although it is very hard to evaluate in practice: there is no clear under-
stating of how to measure the quality of the learned relationships. One common
task pertaining to unsupervised learning is clustering, where the goal is to group
similar data points together. This can be useful for applications such as anomaly
detection or customer segmentation. Clustering is an extremely complex and broad
topic. It can be achieved with various algorithms that differ significantly in their un-
derstanding of what constitutes a cluster and how to find it efficiently. For instance,
some clustering models rely on distance connectivity [281] or density of the data
space [78]. Moreover, they often require to choose some parameters, like the num-
ber of clusters that should be made, or some threshold used to determine whether
two objects should belong to the same group or not [115]. This results in the fact
that determining the optimal clustering algorithm for a specific task is very difficult,
often leading to an iterative process of knowledge discovery. Another unsupervised
task is dimensionality reduction, where the goal is to find a lower-dimensional rep-
resentation of the data that captures its essential structure, i.e., some meaningful
properties of the original data are preserved. This can be useful for tasks such as
visualization or feature selection. The most used type of dimensionality reduction
is feature projection. It consists of transforming the data from its original high-
dimensional space to one with a lower number of dimensions. Such mapping can
be done in a linear way (e.g., Principal component analysis (PCA) [109, 201]) or by
relying on nonlinear dimensionality reduction techniques (e.g., Kernel PCA [234],
t-SNE [263]).

Intermediate levels in the supervision spectrum include but are not limited to
reinforcement learning, where the machine is given only a numerical performance
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score as guidance, and semi-supervised learning, where just a small portion of the
data is tagged.

In reinforcement learning, the algorithm learns by interacting with its environ-
ment and receiving rewards or punishments for certain actions [249]. The objective
is to learn a policy that maximizes the cumulative reward over time.

In semi-supervised learning, the algorithm is given a small number of labelled
training examples and a large number of unlabeled examples. The goal is to make
use of both types to improve the accuracy of the model. The rationale behind this
family of approaches is to exploit the information content provided by the labels
while reducing the number of labelled examples that should be obtained. As a
matter of fact, dataset collection and its labelling are one of the most critical issues
affecting modern AI solutions. It is generally recognized that with a larger amount
of data it is possible to obtain more accurate predictions, but at the same time
labelling them is a complex process, which is also time and money-consuming.

Nowadays, we cannot end this introduction without talking about deep learning
[97], which is a branch of machine learning that is originally inspired by the structure
and functioning of the brain. It builds around the notion of artificial neural networks,
which are algorithms designed to recognize patterns and relationships in data. The
term deep stems from the fact that multiple layers are involved in the algorithm,
and each of them is in charge of applying a sequence of (non-linear) transformations
to the input data. Such transformations are based on a set of weights, which are
optimized according to a given loss function by means of back-propagation [222].

Compared to machine learning, the main advantage of deep learning is its ca-
pability to exploit large amounts of unstructured data, making it very suitable to
work with images, text, and signals, to perform, for instance, computer vision, natu-
ral language processing and understating, speech recognition, and signal processing
tasks. Dealing with such modalities is very complex for classical machine learning
approaches as well as for other AI methods, like symbolic ones.

The capability of deep learning to achieve good results with these modalities
is partially given by the fact that there exists specific architecture that can deal
with each of them, acting as inductive bias [20]. For instance, this is the case of
Convolutional Neural Networks (CNN) [139, 140] and Vision Transformers [71] for
computer vision; Recurrent models like RNNs and LSTMs [107], and Transformers
[68, 214, 264] for text and sequences. Of course, nothing comes for free. Deep
learning algorithms require a significant amount of data and computational resources
to train, and they can be difficult to interpret due to their complex structure.

It is worth concluding this brief overview by pointing out that having large
amounts of data and being able to use machine and deep learning approaches are
not a panacea. Especially when working in applied contexts and with real data,
the right handling of data is the key to success in all subsequent tasks. Proper
data pre-processing and the provision of appropriate mechanisms and solutions for
organised data storage are fundamental to unlocking the full informational power of
our data. Therefore, a new, almost symbiotic relationship between machine learning
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and data science emerges, namely the fact that approaches and steps typical of the
latter become functional for the former.

1.2 Positioning systems

As we already said, data science is a discipline that addresses concrete problems in
a scientific manner, to extract knowledge in terms of explanations and predictions.
The concrete problem we are going to focus on in this thesis is that of positioning.
Indeed, identifying the position of an object or a person is a task of fundamen-
tal importance in everyday life. As a matter of fact, the number of applications
and domains making use of such information are several, including transportation,
urban planning, environmental studies, business, navigation, logistics, emergency
management, contact tracing, access control, and public security [170, 172].

From a general perspective, positioning or localising someone means determining
where it is placed within a specific reference system. The simplest, oldest and
most adopted reference system is the one based on geographic coordinates: latitude,
longitude, and possibly elevation. Such a system measures locations directly on the
Earth regarded as a sphere, while other systems, such as the geocentric one, model
the Earth as an object in a three-dimensional Cartesian space, representing locations
as points characterized by three coordinates. Cartesian coordinates are employed
also by planar modeling of the Earth, where map-projection techniques are used to
minimise the distortion introduced by such approximation. Finally, a special case of
the planar one is when a small portion of the Earth, or a small specific (local) area
(e.g., a building), is considered. In such instances it is possible to rely on 2D/3D
coordinate systems, ignoring the negligible effect of the Earth’s curvature. To define
an effective coordinate system, it is also necessary to specify an origin point, and a
mapping between the system and the modelled object (e.g., the Earth, or a specific
area). With all these ingredients, it is then possible to express someone’s position
relative to a real, reference place.

The flexibility needed by the availability of multiple reference systems is immedi-
ately motivated by the fact that we are interested in performing positioning not only
in outdoor settings but also in indoor ones. Outdoor localization is generally per-
formed relying upon global navigation satellite systems (GNSSs), such as the United
States Global Positioning System (GPS), Russia’s Global Navigation Satellite Sys-
tem (GLONASS), China’s BeiDou Navigation Satellite System, and the European
Union’s Galileo [253]. Outdoor positioning systems are nowadays capable to pro-
vide very precise estimates, although some issues still affect them, such as the high
battery consumption [152, 304], the expensive price of the module, the performance
reduction in indoor areas and urban canyons [153, 162, 269].

Concerning the ability to identify people and objects’ locations within a building,
is still a challenging task. This is caused by the substantial differences characteriz-
ing indoor and outdoor spaces, such as severe multi-path effects, non-Line-of-Sight
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conditions, high signal attenuation, temporal instability due to changes in the sce-
nario, high accuracy demand, which, overall, make it impossible to rely on GNSS
for indoor localization. Thus, the research on effective alternatives applicable to
the mobile and Internet of Things domains and to perform positioning in indoor
premises without relying on satellite signals is paramount [206], especially if we
consider that people spend most of their time indoors [70].

In the remainder of this section, we are going to provide an account of indoor
positioning, which is the main topic at the center of this work. As we will see, there
exist a lot of different approaches to tackle such a problem. After a general overview
of the state-of-the-art (Section 1.2.2), we will focus on WiFi-based fingerprinting,
the technique we studied and investigated in the dissertation (Section 1.3).

1.2.1 Indoor localization

In the last twenty years, a lot of efforts have been made towards developing solu-
tions alternative to GNSS, especially considering the indoor case. However, although
several progress has been made, some common limitations still affect indoor posi-
tioning systems (IPS), such as, for instance, the lack of standards, the absence of
global solutions applicable to heterogeneous devices, the often unsatisfactory posi-
tion accuracy, and the strong dependency of a positioning system from the specific
environment [121, 211].

The design of IPS becomes then a challenging task [91], exacerbated by the many
desiderata such systems should satisfy, such as, for instance, high accuracy, cover-
age of a given environment (e.g., a single floor or an entire building), low cost, few
ad-hoc infrastructures, privacy, satisfactory update rate, low battery consumption,
robustness, availability, scalability (in terms of both new environment to cover and
higher number of users) and many others [19, 75, 170, 227, 251, 292, 299]. Although
indeed these aspects are fundamental from the user perspective, evaluation pur-
poses, and they may be useful to understand which IPS is more suitable to a given
application scenario, from a technical perspective an indoor positioning system is
typically characterized according to three different dimensions [177].

First, the most obvious characteristic is the technology underlying the system.
This crucial aspect is related to the type of data source exploited to perform the
positioning rather than to a specific device or hardware. In the last twenty years,
many different sources have been exploited in order to determine people and object
positions inside a building such as, for instance, radio signals (cellular, WiFi, Blue-
tooth), RFID, magnetic fields, light intensities, information coming from sensors
such as gyroscopes or accelerometers (inertial measurements), sound, vision, and so
on [177]. Simultaneously, several techniques based on the exploitation of a single or
a combination of the above sources have been developed.

It is then possible to look at whether the IPS requires the presence of devices
on the person or object whose position is to be estimated, or whether it relies solely
on an infrastructure, possibly even ad-hoc, installed in the environment. In the first
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scenario, we speak of device-based (or active) localisation, while in the second of
device-free (or passive). For instance, a system relying on a smartphone carried
by a user belongs to the first type. Conversely, a system that detects through a
fixed device the location of multiple objects by looking at whether the state of the
surrounding environment changes (e.g., relying on light-related data or WiFi channel
state information), is device-free.

Finally, one can categorise IPSs from the point of view of the hardware and
its deployment in an environment. Precisely, whether specific devices need to be
installed or the required knowledge about the infrastructure already in place is
considered. A system that exploits the native infrastructure without requiring to
know its details will be called infrastructure-free, alternatively infrastructure-based.
For example, an IPS that utilises the WiFi network already deployed in an indoor
scenario and does not require knowing the location of the access points will pertain to
the first category, whereas if it does require knowing their locations, it will belong to
the second type, even if no dedicated access point is installed for positioning. Again,
a system that exploits Bluetooth Low Energy (BLE) and demands deploying some
beacons will be infrastructure-based.

It can be seen from the above examples that a given IPS is typically characterised
by looking at all three dimensions, as they convey orthogonal features.

1.2.2 An overview of IPS approaches

Throughout the years, multiple different approaches have been investigated to ad-
dress indoor positioning tasks.

Light in the form of infrared or visible light communication can be exploited for
indoor positioning purposes [3, 303]. Systems based on such technology are often
capable to provide quite precise positioning estimates, in the order of centimetres.
The main limitations of the light-based approaches, which may find application as
both device-free and device-based systems, are the line of sight requirements and
the large amounts of noise introduced when other light sources are present in the
environment, daylight above all.

It is also possible to exploit visual information to perform positioning. A straight-
forward device-free approach, which requires to have dedicated hardware, is the
recording of images about the environment and the target, with the task of identify-
ing the latter position within the former. Device-based approaches are more varie-
gate, and they range from solutions based on marker recognition to visual odometry
[10].

Magnetic fields can be used to support IPS too, exploiting the idea of collecting a
database reporting the variations of the magnetic field strength in the environment
[199]. They can rely on natural magnetic fields or artificially generated ones. The
key difference is that the firsts do not require the installation of dedicated hardware,
but provides lower positioning performance than those of the second type [64].

Another information that can be exploited to perform positioning is the one
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related to inertial measurement units. Such data are often used within dead reckon-
ing solutions, that are based on the idea of exploiting the previously known position
of the device, and the movements made from it [171]. In order to improve the
performance of such approaches, it is not uncommon to pair movement data with
additional information petering the environment, such as the map representing its
layout and possible constraints. Dead reckoning IPS are inherently device-based and
offer their best when used in combination with other technologies. They are capable
to provide good positioning estimates, although their uttermost issue is the accu-
mulative errors: as they strongly rely on the previous location, if such an estimate
is not precise, it would result in having an even greater error for the subsequent
position estimate [227].

A very commonly used family of technology is those based on radio signals. IPS
based on WiFi can be partitioned into two classes [285]. The first one exploits spa-
tial and/or temporal features associated with the signal emitted by a WiFi access
point (AP) and received by a device. Approaches belonging to this group are (i)
those based on Time of Arrival (TOA), that estimate the distance of the APs on
the basis of the time of arrival at the device of their signals, (ii) those based on
the Angle of Arrival (AOA), that look at the angle between a reference direction
and the incident signal wave, and (iii) those making use of the Time Difference of
Arrival (TDOA), that extend TOA by assessing the temporal difference between
the signal arrival times of multiple APs and a reference signal chosen among them.
For all these families of spatio-temporal techniques, at least two-to-three APs need
to be visible, and their precise position must be known [121, 285]. Techniques in
the second class rely on the Received Signal Strength (RSS), that is, the power of
the signal received from a WiFi AP. One approach belonging to this group is sig-
nal propagation modeling, which consists of exploiting a large-scale path loss model
that accounts for both free-space and loss due to obstructions. This model is then
used to estimate the RSS observable at various positions, after a calibration pro-
cedure of the propagation model, which is a complex step, paramount to get good
performance, often requiring human intervention [17]. The most popular technique
based on the RSS is fingerprinting, also referred to as scene analysis. Fingerprinting
is characterised by two phases. The first one is the so-called offline phase, during
which a site survey is executed, aimed at the collection of RSS vectors at different
predefined locations. In the subsequent online phase, a user samples an RSS vec-
tor at an unknown location, comparing it with those previously collected, finally
providing an estimate of the user’s position by means of specific algorithms.

Bluetooth Low Energy requires the deployment of ad-hoc beacons, which have
the advantages of being dedicated for positioning purposes (i.e., they are not used
for other purposes, like in the case of WiFi), the relatively low cost, and the very low
battery consumption [64, 80]. However, the range of the beacons is lower than those
of WiFi access points, posing scalability issues in the case of large scenarios. Blue-
tooth shares a lot of similarities with WiFi, and, in principle, the same approaches
(e.g., TOA, fingerprinting) can be used in this setting. Nevertheless, given the need
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to place the beacons, the uttermost advantage of fingerprinting, i.e., not requiring
information on the infrastructure, is inherently lost, promoting the adoption of other
techniques [7, 31, 42, 175].

RFID (Radio Frequency IDentification) are electronic tags that store some data
which can be read by properly-equipped devices through radio frequency. Multiple
types of tags exist (passive, semi-passive, and active), differing in the way in which
they emit the data (periodically, or when a reader signal is detected). From a
positioning perspective, the role of the tag and the reader can be interchangeable,
and they depend on the application scenario. Tags are smaller than readers, thus,
having the latter fixed naturally fits the case where there a many targets for the
positioning, as, for instance, while tracking goods in a warehouse. However, the
most classical scenario is where tags are placed at pre-defined locations, and the
user reads them to retrieve its position. RFID approaches are infrastructure-based
and use quite simple algorithms, which reported accuracy may vary considerably
[34, 239].

Finally, also cellular data can be used for indoor localization, although they are
also exploited for outdoor positioning, as GNSS replacement [135, 178, 229, 286]. In
an indoor setting, where mainly fingerprinting and lateration approaches are used,
the accuracy of cellular solutions is quite low compared to the other competitors,
making it a poorly considered approach, unless combined with other technologies.
However, 5G standards and beyond aim to incorporate specific information meant
to support localization tasks, in both outdoor and indoor settings [184]. Altogether,
this might lead in the near future to having a technology applicable to both en-
vironments while providing good performance, paving the way to a resurgence of
cellular-based positioning and indoor-outdoor seamless localization.

1.3 A focus on WiFi-based fingerprinting

In this section, we first provide an overview of the methodologies used in WiFi
fingerprinting to estimate the position of a user. Then, in the second part of the
section, we introduce some fundamental concepts and materials that will be used
multiple times throughout the entire thesis. Specifically, we will discuss and explain
the motivations behind the adoption of some relevant metrics and normalization
functions in the domain of indoor fingerprinting; then, we provide an overview of
the datasets from literature exploited in the present dissertation.

1.3.1 Definition and methodologies

Fingerprinting is a widely exploited technique for positioning, which could be used
for both indoor and outdoor localization, relying on different technologies, such as
radio signals, visual clues, etc. Let’s focus on the case of WiFi fingerprinting, which
is the approach at the centre of this dissertation. Such a technique is generally
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associated with the location li is denoted as the vector fik = [fik1, fik2, ..., fikq] ∈ Rq,
where q is the total number of APs appearing in the considered scenario (sensed all
over the locations in L) and fikj, 1 ≤ j ≤ q, is the RSS value related to the AP that
is given the unique identifier j (or null if such AP is not detected).

In the literature, many surveys revise the approaches, the advancements, and the
challenges related to the research on fingerprint-based indoor positioning, e.g., [103,
121, 221, 285]. Even though there is not a general consensus on a taxonomy of WiFi-
based indoor positioning systems, the majority of existing surveys agree that at least
two classes of solutions can be identified [103, 211]. The first, simplest one includes
deterministic algorithms. A member of this class is RADAR [12], a k-Nearest-
Neighbour (k-NN) solution which selects the fingerprint in the database closest to
the measurement done at runtime. It makes use of Euclidean distance, but different
metrics and similarity measures can be exploited. In [261], a comparative analysis of
the performance of several measures applied in combination with k-NN is conducted.
Many other solutions belong to this class. Their main advantages are being easy to
implement and, often, featuring low computational complexity [103, 167]. The other
class of methods is the probabilistic one. These model the positioning problem with
an arbitrary complex formulation l̂ = arg maxl∈L P (l|s), where s is the observed

fingerprint sampled in the online stage and l̂ is the most likely location. Horus [295]
is a representative of this class.

Many approaches, especially the most recent ones, are not classified into one
of the two groups. Instead, very often the term “advanced techniques” is used to
describe methods relying on more complex concepts, such as, for instance, sensor fu-
sion, trajectories, and machine learning [5, 255]. Nevertheless, it is worth highlight-
ing that, to some extent, even these solutions can be associated with deterministic
and probabilistic definitions, or a mixture of the two. For instance, as we shall see
in Chapter 6, classification-oriented deep learning algorithms return probabilities,
fitting the probabilistic framework.

1.3.2 Metrics and normalization functions

As it is well known, a metric is a function that satisfies the following three axioms: (i)
identity of indiscernibles, (ii) symmetry, and (iii) triangle inequality (non-negativity
is also implied). Metrics, in the form of dissimilarity functions, are used to mea-
sure the distance between pairs of fingerprints in their own high-dimensional vector
space. As pointed out in various contributions [261, 262], many different metrics
can be used for indoor localization. In [261], the authors compare the performance
of 52 of them, paired with (k-)Nearest Neighbor, in solving the positioning task;
however, in a recent paper [262], it is observed that only a few of them are actually

for indoor localisation, building, floor, room, latitude and longitude (or any other 2D valid repre-
sentation). Nevertheless, it is only an assumption, and it is possible to generalize all the definitions
and outcomes to differently-arranged structures.
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exploited in real-world positioning systems. Since we aim at comparing metrics of
practical significance, our analysis will be carried out mainly on such a restricted
set of dissimilarity measures.

Let p,q ∈ Rn be two vector column fingerprints, and let pi ∈ p, for all i ≤ n, be
the RSS value in fingerprint p for the access point with identifier i (keep in mind
that RSS values are negative).

Five out of the ten considered functions are specializations of the Minkowski
distance, which, in its general formulation, can be defined as follows:

dminkowski(p,q;m) =

(

n
∑

i=1

|pi − qi|m
) 1

m

. (1.1)

The five variants are obtained by assigning a different value to the parameter m,
namely, m = 1, 2, 3, 4, and 5. It is worth noticing that when m = 1 and m = 2 we
respectively get the well-known Manhattan and Euclidean distances.

Similar to the Euclidean one, except for the application of the square root to the
single elements, is the Jeffries-Matusita distance, which is defined as follows:

dmatusita(p,q) =

√

√

√

√

n
∑

i=1

(
√
pi −
√
qi)2 . (1.2)

Another generalization of Euclidean distance is the Mahalanobis one, which is
defined as follows (in vectorial form):

dmahalanobis(p,q,S) =
√

(p− q)TS−1(p− q) , (1.3)

where S−1 is the inverse of the covariance matrix S computed over all fingerprint
pairs. Observe that, for S being invertible, the number of linearly independent
observations (fingerprint pairs) has to be larger than the number n of dimensions
(considered APs)2.

We also analyze the behaviour of Sørensen distance (aka Bray-Curtis coefficient).
It is a semi-metric, that is, the triangle inequality axiom is relaxed, which is defined
as follows:

dsorensen(p,q) =

n
∑

i=1

pi − qi

n
∑

i=1

pi +
n
∑

i=1

qi

. (1.4)

2To cope with such an issue, when used in practice in this dissertation, we first apply principal
component analysis to reduce the number of variables/dimensions while preserving 95% of the
explained variance.
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Similar in spirit to Sørensen distance is the Cosine one, which is defined as
follows:

dcosine(p,q) = 1−

n
∑

i=1

pi · qi
√

n
∑

i=1

p2i ·
√

n
∑

i=1

q2i

. (1.5)

Notice that Cosine distance gives a judgment of orientation, not a magnitude. This
violates the identity of indiscernibles axiom. It also lacks the triangle inequality.

A different approach is taken by Neyman chi-square divergence, which can be
exploited to measure the distance between pairs of fingerprints in the following way:

dneyman(p,q) =
n
∑

i=1

(pi − qi)
2

pi
. (1.6)

Note that it satisfies neither the symmetry nor the triangle inequality axiom.
Finally, we took into consideration the Signal Weighted Euclidean Distance

(SWED) [271], which is defined as follows:

dSWED(p,q) =

√

√

√

√

√

1

m

∑

i∈π

|rd0 − pi+qi
2
|

∑

j∈π

|rd0 − pj+qj
2
|
(pi − qi)2 (1.7)

where π = ⟨i ∈ {1, . . . , n} | pi ̸= null ∧ qi ̸= null⟩, with |π| = m ≤ n, is the
sequence of (the identifiers of) the APs commonly observed (i.e., not null) between
p and q, and rd0 is a reference value denoting the hypothetical RSS of an AP
measured at the predefined distance d0 = 1. In this work, just a single rd0 set to
−31.7 dbm (on the basis of [271]) is used for all the APs. It is worth pointing out
that SWED is not defined when the two fingerprints have no AP in common, i.e.,
|π| = 0. In such a case, the resulting distance will correspond to the lowest RSS
recorded in the database.

Observe that some dissimilarity functions are not available for negative values
as input. This is the case, for instance, with Matusita distance, where the square
root is applied to the vector values. Moreover, APs not detected by fingerprints
need to be dealt with as well. Thus, before computing the distance between pairs of
fingerprints, a normalization step is usually applied to their RSSs. In the following,
we consider the effects of 4 normalization functions proposed in the literature: (i)
positive values, (ii) zero-to-one normalized values, (iii) exponential values, and (iv)
powed values.

Given a fingerprint, the positive values normalization subtracts from each AP
the minimum recorded RSS, selected from all the observations, after subtracting 1
from it (such a value is called rmin). As a result, all fingerprint values fi are made
positive in the interval [1, |rmin|+ 1], and the lowest admissible value 0 is used to
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represent those AP which have not been detected in a fingerprint (i.e., fi = null).
Let p be a fingerprint and i be an AP, with RSS value pi. The value of the latter is
transformed as follows:

Positivei(p) =

{

(pi − rmin) if AP i is detected,

0 otherwise.
(1.8)

Zero-to-One normalization is a variant of the previous one, which maps all RSS
values in the range [0, 1]:

Zero-to-Onei(p) =
Positivei(p)

−rmin

. (1.9)

Both the above normalization strategies are linear. However, since RSS values are
given in dBm, they follow a logarithmic scale. Thus, it makes sense to apply a
transformation that breaks the trends in such values. Exponential and Powed nor-
malizations do exactly that. The first one is formally defined as follows:

Exponentiali(p) =
exp(Positivei(p) · 1

α
)

exp(−rmin · 1α)
, (1.10)

while the second one has the following form:

Powedi(p) =
Positivei(p)β

−rβmin

. (1.11)

Parameters α and β must be tuned according to the specific use case. Since their
optimization is out of the scope of the present work, the values α = 24 and β = e
are assumed, as suggested in the literature [261].

1.3.3 Datasets

In this dissertation, we will mainly consider 16 public datasets, which are recognized
as valuable testbeds by the indoor positioning community.3 All of them come from
complex real-world scenarios and differ from each other in various respects, including
the structural properties of the buildings, the sampling strategy, and basic features
like the number and the distribution of RPs (and fingerprints). An overview of their
distinctive characteristics can be found in Table 1.14. In the following, we give a
short account of each of them.

3Acronyms and data (except for UTS) are taken from [257]. UJI 2 has not been included,
since it represents an extension of UJI 1 with additional test set data for which information about
positions is unavailable.

4For the sake of the proposed analyses, sometimes we will distinguish between training and
test data, and other times we will consider each dataset as a whole. Thus, dataset properties are
detailed taking into account both cases.
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DSI 1 and DSI 2 [188] have been collected in the same university building at
the Department of Information Systems of the University of Minho, Portugal. The
second is obtained from the first one by removing fingerprints (FPs) sampled at the
same RP. LIB 1 and LIB 2 [176] model the Universitat Jaume I’s two-floor library

Table 1.1: Characteristics of the considered datasets.

DB Dim/Area Setting #u #d #b #f #r split #FP #RP FP x RP #AP FPρ Valid APs

DSI 1 100 m x 18 m university floor 1 1 1 1 25 train 1369 230 1 to 9 152 0.73 ± 0.27 24.8 ± 8.6
test 348 - - 125 0.70 ± 0.27 23.6 ± 7.8

whole 1717 578 1 to 9 157 0.91 ± 0.32 24.6 ± 8.5
DSI 2 100 m x 18 m university floor 1 1 1 1 25 train 576 230 1 to 5 152 0.31 ± 0.11 24.8 ± 8.6

test 348 - - 125 0.29 ± 0.12 23.6 ± 7.8
whole 924 578 1 to 5 157 0.49 ± 0.17 24.3 ± 8.4

LIB 1 15 m x 10 m two-floor library 1 1 1 2 2 train 576 48 12 or 36 77 2.42 ± 0.59 14.2 ± 4.6
test 3120 - - 174 2.41 ± 0.70 21.0 ± 6.3

whole 3696 212 12 or 36 174 7.87 ± 2.21 20.0 ± 6.5
LIB 2 15 m x 10 m two-floor library 1 1 1 2 2 train 576 48 12 or 36 119 2.42 ± 0.59 21.6 ± 7.0

test 3120 - - 165 2.41 ± 0.70 18.8 ± 5.1
whole 3696 212 12 or 36 197 7.87 ± 2.21 19.3 ± 5.5

MAN 1 50 m x 36 m office hallway 1 1 1 1 - train 14300 130 10 or 110 27 20.88 ± 4.48 10.3 ± 2.5
test 460 - - 24 20.55 ± 5.12 10.5 ± 2.5

whole 14760 176 10 or 110 28 21.47 ± 4.81 10.3 ± 2.5
MAN 2 50 m x 36 m office hallway 1 1 1 1 - train 1300 130 10 26 1.90 ± 0.41 14.1 ± 2.9

test 460 - - 25 1.87 ± 0.47 14.1 ± 2.7
whole 1760 176 10 28 2.57 ± 0.60 14.1 ± 2.8

SIM 50 m x 20 m simulated - - 1 1 - train 10710 1071 1 or 10 8 8.86 ± 1.80 8.0 ± 0.0
test 1000 - - 8 8.86 ± 1.50 8.0 ± 0.0

whole 11710 2071 1 or 10 8 9.70 ± 1.85 14.1 ± 2.8
TUT 1 124 m x 57 m university building 1 1 1 4 < 822 train 1476 1476 1 to 17 309 0.33 ± 0.13 32.9 ± 12.1

test 490 - - 183 0.41 ± 0.10 25.0 ± 7.3
whole 1966 1928 1 to 17 309 0.19 ± 0.09 31.0 ± 11.6

TUT 2 145 m x 88 m university building 1 1 1 3 NA train 584 584 1 353 0.11 ± 0.05 47.9 ± 19.0
test 176 - - 248 0.12 ± 0.05 21.9 ± 7.1

whole 760 760 1 354 0.07 ± 0.03 41.9 ± 20.2
TUT 3 130 m x 62 m crowdsourced 8 21 1 5 822 train 697 694 1 to 14 779 0.17 ± 0.07 48.0 ± 38.4

test 3951 - - 989 0.16 ± 0.08 49.7 ± 38.7
whole 4648 4511 1 to 14 992 0.41 ± 0.19 49.5 ± 38.7

TUT 4 130 m x 62 m crowdsourced 8 21 1 5 822 train 3951 3843 1 to 14 989 0.96 ± 0.50 49.7 ± 38.7
test 697 - - 779 0.91 ± 0.48 48.0 ± 38.4

whole 4648 4511 1 to 14 992 0.41 ± 0.19 49.5 ± 38.7
TUT 5 85m x 145 m university building NA NA 1 3 NA train 446 446 1 489 0.08 ± 0.03 42.5 ± 21.1

test 982 - - 296 0.07 ± 0.02 34.8 ± 13.5
whole 1428 1428 1 489 0.19 ± 0.09 37.2 ± 16.7

TUT 6 135 m x 62 m university building NA NA 1 4 < 822 train 3116 3116 1 562 0.65 ± 0.31 34.9 ± 15.9
test 7269 - - 566 0.63 ± 0.31 34.7 ± 15.9

whole 10385 10385 1 489 1.06 ± 0.53 34.7 ± 15.9
TUT 7 88 m x 137 m university building NA NA 1 3 NA train 2787 2787 1 767 0.48 ± 0.30 27.0 ± 11.4

test 6504 - - 770 0.47 ± 0.29 27.1 ± 11.1
whole 9291 9291 1 801 0.88 ± 0.51 27.1 ± 11.2

UJI 1 108703 m2 university campus 19 25 3 4 or 5 ≫ 933 train 19861 933 1 to 80 465 2.46 ± 1.84 18.1 ± 7.3
test 1111 - - 367 2.45 ± 1.62 16.5 ± 6.9

whole 20972 1995 1 to 80 520 0.73 ± 0.43 18.0 ± 7.3
UTS 44000 m2 university building 1 1 1 16 NA train 9108 1466 1 to 35 557 0.46 ± 0.29 35.1 ± 13.5

test 388 - - 500 0.51 ± 0.3 0.51 ± 0.3
whole 9496 1852 1 to 35 589 0.49 ± 0.3 35.4 ± 13.5

DB = dataset name; Dim/Area = size of the premises; Setting = collection environment; #u = number of involved users; #d
= number of employed devices; #b = number of buildings; #f = number of floors; #r = number of rooms; #FP = number of
fingerprints; #RP = number of distinct positions (x, y, z); FP x RP = fingerprints sampled per position; #AP = number of APs
seen at least one time; FPρ = average FP density within a 5 meter radius from each RP; Valid APs = average number of detected
APs per FP; - denotes meaningless information, NA denotes not available information.
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(Spain). Their main difference is the acquisition date: 2016 and 2017, respectively.
Both MAN 1 and MAN 2 [125] have been collected in the corridors of a single floor
in a building of the University of Mannheim, Germany. With respect to MAN 1,
MAN 2 applies an additional post-processing step by which FPs are averaged in 10
blocks of 10 fingerprints each. SIM is the only artificially generated dataset that
we took into consideration. It has been produced according to a simple path loss
model with additive Gaussian noise (see [262] for details). All TUT datasets have
been collected at Tampere University, Finland. TUT 1 [241], TUT 3 [155], TUT 4

[155] (which is TUT 3 with inverted training and test sets), and TUT 6 [156] all
consider the same five-floor building, and differ from one another in their collection
strategies. TUT 1 relies on cell averaging with a grid size of 1 meter, TUT 3 is based on
crowdsourcing, and TUT 6 is collected in a classical way (like, for instance, DSI 1).
As for TUT 2 [241], TUT 5 [218], and TUT 7 [156], they have been independently
collected in the same three-floor university building. TUT 5 follows an approach
similar to TUT 1, since it considers cell averaging with a 5 meter grid size, while the
way in which TUT 2 and TUT 7 have been collected is similar to that of TUT 6. UJI 1

[256] has been collected at the Universitat Jaume I, and it is usually referred to as
UJIIndoorLoc. Among the considered datasets, it is definitely the largest and most
complex, being the only one that considers a multi-building scenario. This dataset
is the most exploited in the literature for comparison purposes. Finally, UTS [245]
has been collected at the FEIT Building of the Sidney University of Technology,
Australia. It refers to a single building with a high number of floors.
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2
A Framework for Indoor Positioning

including Building Topology

The lack of standards, the high heterogeneity of collected data, and the inherent va-
riety of indoor premises are major challenges to the development of indoor position-
ing solutions. This led to an extensive research effort that resulted in the proposal
of several localization algorithms [81, 103, 121, 177, 221, 285], sampling strategies
[155, 176, 256], benchmark datasets [125, 155, 156, 176, 188, 218, 241, 245, 256, 262],
and building modeling approaches [15, 95, 119, 150, 190, 289].

On the positive side, such an effort resulted in a deeper understanding of indoor
positioning and the achievement of reasonably accurate estimations. On the neg-
ative side, the research has been faced with a number of issues, including: (i) the
difficulty in retrieving a comprehensive collection of datasets for the experiments;
(ii) the need of reconciling data representations using heterogeneous formats and
conventions; and, (iii) the problems in comparing existing contributions, that used
the same datasets in different ways, e.g., with respect to the training/test split
selection. The matter is even more serious in an industrial setting, where the de-
sign and deployment of a positioning system involve solving non trivial and time
demanding tasks such as determining the extent of information that should be mod-
eled and the best way to accommodate needs that may change over time. Last but
not least, there are cross-cutting themes which are halfway between research and
industry as the effective modeling and integration of advanced elements, like, for in-
stance, device trajectories and information about the topology of buildings. These
data can contribute significantly to the realisation of state-of-the-art positioning
systems; however, combining them in a uniform framework, taking into account all
the aforementioned aspects, is not trivial at all.

The work described in this chapter lies at the intersection of all the above dimen-
sions: we propose a comprehensive, yet general and extensible, framework that poses
as a tool easily adoptable by both the research community and industrial practi-
tioners, which allows one to jointly handle fingerprint and building information. We
first provide an abstract model of the considered domain, and then we turn it into a
concrete relational database. A relational database stores information by means of
fixed-length records, that are collected within a set of tables. Operationally, the de-
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velopment of a database begins with the definition of a conceptual schema, typically
formalized by means of the Entity-Relationship (ER) modeling language, which is
used to explicitly represent all domain requirements. The ER schema is then trans-
lated, using well-established mapping rules, into a logical schema, containing the
definition of the tables in terms of attributes and their domains, and constraints,
including primary and foreign keys. Finally, the tables are implemented into a phys-
ical RDBMS (Relational DataBase Management System) instance by making use of
suitable SQL (Structured Query Language) instructions [242]. The choice of relying
on such a DBMS is based on a number of reasons, including: (i) its ease of deploy-
ment into an industrial setting, thanks to the widespread mastery of this technology,
(ii) the availability of SQL, an easy-to-learn language that supports a user-friendly
interaction with the system, (iii) the existence of a streamlined design process, from
the conceptual design to the physical implementation of the database, and, (iv) the
possibility of natively handling domain constraints, so as to guarantee data quality
requirements.

The source code needed to deploy the proposed solution is available online [37].
In addition, we provide access to an implementation of the system [38], already pop-
ulated with data coming from well-known indoor positioning datasets, that demon-
strates the full potential of the proposed solution; the idea is that of evolving over
time the latter system into a centralised, open repository of indoor positioning data
available to the research community. Overall, we believe that the combination of
the above two elements fosters the wide adoption of the framework: a company or
a research group can first become familiar with its online implementation, at no
cost; then, the source code provides a quite straightforward manner to set up a
production-ready running local instance. In addition, as we will see, the proposed
solution does not force any strong constraint on the type of (fingerprint-based) local-
ization system to possibly employ on top of it. Thus, it poses as a general backbone
approach to support indoor positioning, capable of providing a clear, structured,
customizable, and unified interface to access and exchange information [90].

The chapter is organised as follows. Section 2.1 discusses the motivations and
challenges of the work. Section 2.2 outlines an Entity-Relationship conceptual
schema of the proposed framework. The logical schema of the database is given
in Section 2.3. Section 2.4 illustrates some notable use case scenarios. Section 2.5
briefly analyses related systems/framework, and provide a summary of the main
differences across them.

2.1 Motivations and challenges

In fingerprint-based indoor positioning, modeling is commonly recognized as a very
complex activity (see, e.g., [224]). In this section, we discuss the most pressing
issues we addressed in developing the proposed framework, that aims at supporting
all tasks involved in the offline and online phases of a localization system.



2.1. Motivations and challenges 23

The main challenge is the intrinsic dynamic nature of the domain. As an example,
in WiFi fingerprinting, access points may be added, removed, or replaced. As for
cellular data, mobile cells can be merged or relocated [266]. In addition, new wireless
technologies are continuously being developed. Even the indoor premises themselves
can be modified in their arrangement and architectural characteristics over time.
Alongside, not only the sources of information may change, but also the way in
which they are perceived and recorded by devices. This is true for both the kinds
of sensors they are equipped with and the effectiveness of their sensing capabilities.
As a consequence, information stored in radio maps undergoes constant evolution:
new fingerprints are added, and old ones are updated or even discarded. For these
reasons, the framework must be designed to grant ongoing and long-term support
to the collection and maintenance of radio map fingerprint data.

A second aspect pertains to the high heterogeneity of the domain. As shown in
the literature [150], an indoor scenario can be described at different levels of detail.
Determining the right abstraction level is not trivial, as it involves reasoning over
the possible kinds of premises and the topological relationships among them, includ-
ing reachability aspects. The heterogeneity also applies to fingerprint data under
two dimensions. First, fingerprints may consider several types of signal sources,
such as WiFi, Bluetooth, cellular information, data from inertial sensors and GNSS
receivers, as well as their combinations. A well-designed solution should offer com-
prehensive support to multiple kinds of observation, and allow for an easy extension
to new ones. Second, fingerprints may be collected according to several strategies,
e.g., following a well-planned survey plan, or relying on a crowdsourced effort. In
addition, different sampling strategies may coexist within a given premise, e.g., as
a result of repeated survey campaigns performed over the same building.

This brings to light the issue of information sharing: if the same object appears
in more than one dataset, it makes sense to store its data only once in the system,
providing pointers to the original sources so as to maintain data lineage. This may
be the case, for instance, with a room, a mobile network cell, or an access point,
that has been considered in more than one study. From a practical point of view,
this may also increase the overall amount of available information. Let us assume
that, within the same building, on two adjacent floors, two independent positioning
systems are deployed. Suppose that they sense WiFi data, and since they are close,
they might be based on the same access points (detected through the ceiling/floor).
However, as the two systems are fully disjoint, there is no way to combine the data
related to one floor and those related to the other. Organising data by means of
the proposed framework allows one to recognize that the same access points are
used by both systems, and to fruitfully exploit such a knowledge, e.g., by producing
a richer radio map. In fact, information sharing goes beyond sensors/emitters as,
for instance, it may also support the combination of data about the topology of a
building.

It is worth pointing out that the problem raised by redundant, and possibly in-
consistent, information is not only tied to the combination of several data sources.
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Such inconsistencies may, indeed, be already present within a single dataset: mod-
eling topological aspects is quite complex, and requires the knowledge of and ad-
herence to a large set of domain constraints. As an example, a floor should not
- typically - be contained into multiple buildings. Thus, the framework must also
provide a simple and uniform manner to enforce such constraints, so as to guarantee
data quality requirements.

The remaining issues pertain to the online usage of the system. In the most
general case, a user may submit a single fingerprint to a positioning system to ob-
tain a position estimate. Thus, a first question is how fingerprints can be related to
information about the structure of buildings to support localization. The problem
becomes more complex when the positioning algorithm relies on a sequence of fin-
gerprints, that is, a trajectory, arising from user navigation within the premises, as
dealing with both single points and trajectories is far from being simple. Finally, the
framework should be able of supporting the (possibly concurrent) usage of multiple
prediction algorithms, which may generate different outputs. As an example, the
exact position coordinates may be estimated, or the fingerprint can be matched to
a single logical location, like a room, as well as to multiple ones, e.g., by means of a
probability distribution.

As we will see, all the above issues have been taken into account in the design
of the proposed solution.

2.2 Domain modeling

In this section, we provide a high-level modeling of the considered domain. First,
we propose a way to represent information about indoor premises that can be easily
paired with positioning data. Then, we integrate the resulting model with all the
aspects that are relevant to a positioning system by means of an Entity-Relationship
diagram, which is the cornerstone of the relational database at the core of the
proposed framework.

2.2.1 Pairing indoor topology and fingerprints

To represent information about indoor premises, we rely on a relatively simple rep-
resentation, that allows one to describe the topology of indoor environments without
explicitly encoding elements like walls, windows, and objects in the rooms. The guid-
ing principle is that of building a system as general as possible so that researchers
and practitioners may use it regardless of the adopted fingerprinting methodology
and with only a few, possibly none, data about the premises.

To this end, we conceptually model the indoor setting as a heterogeneous (di-
rected) graph. This choice is supported by at least three arguments: (i) in the indoor
setting, there are different types of elements, like buildings, floors, and rooms, which
have different properties and, thus, are better modeled by different types of node,
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(ii) there are relationships among elements of the same type which are worth model-
ing, e.g., the relations of adjacency or walkability, that is, adjacency + traversability,
over places, and (iii) there are relationships among elements of different type which
are worth modeling as well, like, e.g., the intrinsic hierarchical organisation of indoor
environments (a building consists of multiple floors, which are in turn composed of
multiple rooms). Such a modeling is highly flexible: it makes it easy to capture
relevant topological properties that may be useful for positioning purposes, while
allowing to customize the detail at which to encode the structure of a given indoor
scenario (information about most of the relationships is optional). In the follow-
ing, we describe the characteristics of each element of the model as well as their
relationships.

Building is the top object of the hierarchy. It can be adjacent to other buildings
and contains a set of floors. We consider a building as a structurally independent
element of the modeled domain, e.g., a separate construction possibly connected to
others by indoor elements, such as bridges or underground tunnels. Each floor can be
related to other floors to model the vertical ordering among them. Since the vertical
dimension is fundamental in indoor positioning and navigation, information about
it must be as sound and complete as possible. To this end, it is worth including
in the model information about all the floors of a building, even if they are not
explicitly involved in the positioning process. This is not a mandatory requirement,
although the number of floors in a building is generally easy to obtain. A floor may
consist of various elements, such as rooms, stairs, elevators, corridors, and so on,
that we collectively name sites. A site is (a portion of) an indoor environment that
one has decided to model explicitly. The core element linking position information
(fingerprints, described next) and topology is the tile. A set of tiles in a floor is
the result of a tessellation procedure, which defines the granularity at which the
positioning task is performed. Different types of tessellation are possible:

• Grid : a fixed size regular grid is superimposed on the floor map, generating
a set of tiles. Here the notion of tile is not associated with a site, since a
grid-based partitioning does not take these pieces of information into account,
and a grid cell can cross site boundaries. Thus, a grid-generated tile is linked
directly to a floor (Figure 2.1a).

• Zone: an irregular grid is defined to partition a site or a floor. Each of the
resulting areas is a tile. Each tile can be associated with at most one site or
floor, and its coverage area can be arbitrarily large (Figure 2.1b).

• Logical : each tile can be considered as a semantic label associated with a
meaningful location of the considered site or floor (Figure 2.1c); the tile has no
geometrical shape, although it can optionally be characterised by a single pair
of coordinates identifying a specific point in space for instance, the geometrical
centre of a considered site, or a point of interest.





2.2. Domain modeling 27

Building 
1

Building 
2

Building 
3

Floor 
1

Floor 
2

Floor 
3

adjacent to 

is contained

contains

is above 

is below 

contains

is contained

Room 
1

Room 
3

Room 
2

Room 
4

Room 
5

Grid  
tile 1

Grid  
tile 2

contains

Zone  
tile 1

Zone 
tile 2

Zone  
tile 3

Logical
tile 1

Zone  
tile 4

adjacent 
to

walkable

adjacent to
adjacent to

adjacent to

walkablewalkable

contains

contains

is containedco
nt

ai
nsis contained

is contained
containsis contained

co
nt

ai
ns

is containedco
nt

ai
ns

is containedco
nt

ai
ns

co
nt

ai
ns

is contained

contains is contained

contains
is contained

Crowd 
tile 1

Floor 
4

co
nt

ai
ns

is contained

co
nt

ai
ns

is contained

co
nt

ain
s

is contained

contains

is contained
is contained

contains

contains is contained

contains
is contained

is contained

is contained

Figure 2.2: Proposed heterogeneous directed graph modeling a generic multi-
building, multi-floor scenario using different types of tessellation.

positioning system. In the first case, it may be collected either via a planned survey
conducted by experts or by users in a crowdsourced fashion. Depending on the
collection modality, position information associated with a fingerprint may take on
different forms. In the most standard setting, the position of a fingerprint is given
as a vector of coordinates in a given reference system. In addition, a fingerprint can
be logically associated with a specific element of the indoor environment, such as a
floor, a site, or a portion of it, through the notion of tile.

Here, it is worth noticing the different semantics associated with grid, zone, and
logical tiles and with crowd tiles. In the first case, each tile groups fingerprints
related to a specific, predefined area. This is the case, for instance, when multiple
fingerprints have been sampled for the same location. In the second case, a tile
contains fingerprints collected from a given floor without any specific constraint.
Note that, although crowd and logical tessellations may look similar, they play a
very different role: the only way to model a crowdsourced scenario by a logical
tessellation would be that of generating a distinct logical tile for each collected
fingerprint, which is both counterintuitive and inefficient.

Finally, we also deal with the case in which no position information at all is
associated with a fingerprint. This happens, for instance, with surveys where data
gets labeled at a later stage, or when fingerprints are collected and exploited in
an unsupervised fashion, or simply when the fingerprint has been collected during
the online phase, e.g., no position estimation algorithm has been applied yet, or its
results have not been stored in the system.

As a last remark, we observe that tessellations serve a dual purpose: on the one
hand, they define a fingerprint collection strategy; on the other, they allow one to
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model topological relationships. As an example, a given floor may rely on a crowd
tessellation for the former purpose, and on a zone tessellation for the latter one.

Overall, the proposed model is highly flexible with respect to the type and the
amount of data that a user is required to add, especially with respect to building
topology. As an example, little to none information may be inserted about the latter,
e.g., only the labels representing the building and the floor, and a crowdsourced
approach can then be followed for the radio-map construction, with a minimum
implementation effort. On the contrary, a person could be interested in modeling
the indoor topology in its full detail: in such a case, complete information about
the building components and their relationships can provided, and a fine grade
tessellation, using logical or zone tiles, can be adopted.

To conclude, we would like to observe once more that we do not provide any
means to model furniture and similar objects, as we aim at providing an account of
building topology and integrating it with positioning data.

2.2.2 Overall conceptual schema

The Entity-Relationship diagram of Figure 2.3 provides a conceptual representation
of information of interest about fingerprints, building topology, and their connection.

The schema consists of four distinct sub-schemas, each one focused on a specific
portion of the domain, namely:

• the Data source sub-schema, which is responsible for preserving the data lin-
eage, that is, it keeps track of the original sources of the data (fingerprints,
observations, places) inserted in the database;

• the Fingerprint sub-schema, that records information about the fingerprints
acquired by users/devices. Each fingerprint is collected at a given place and
holds a set of observations, that is, the actual measurements performed by the
device at the specific place. In addition, this sub-schema supports position
estimation tasks;

• the Observation sub-schema, that stores detailed information about the data
sensed by devices, which can be of various forms, like, e.g., the received WiFi
or Bluetooth signal);

• the Place sub-schema, that models topological information about indoor sce-
narios, used for fingerprint collection and positioning tasks.

As we will see, the proposed design is general and flexible enough to be used in
several contexts and scenarios.
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Data source sub-schema

This sub-schema provides data lineage capabilities, that is, it allows one to track
the original data sources of all pieces of information stored in the system. Each
Data source is uniquely identified by a name, e.g., the name of the original dataset
collecting the data (for instance, UJIIndoorLoc [256]). Optional information in-
cludes the URL of the original dataset and some free textual Notes. Several many-
to-many relationships connect the data source to other schema entities, namely,
Cell source, AP source, BT source, Device source, User source, Fingerprint source,
and Place source. In such a way, for instance, we can record information about the
relationships between a data source and several access points. Data source has an
optional participation to all such relationships (for instance, no access point may be
present in the dataset), except for Fingerprint source and Place source. In a given
data source, indeed, at least information about the fingerprints and the premises
where they were collected must be present.

Fingerprint sub-schema

This sub-schema stores information about fingerprints. Each Fingerprint has a
Code, which uniquely identifies it within its data source, that is, Fingerprint is
a weak entity with respect to Data source. In addition, it features the attribute
Timestamp, that records the date and time at which the fingerprint was collected,
the optional attribute ML purpose, that encodes the intended use of the fingerprint
in the original dataset, i.e., training, validation, or test purposes, and, possibly, some
free textual Notes. A fingerprint can be preceded or followed by another fingerprint,
as in the case of trajectories. This piece of information can be expressed by means
of the relationship Follows. Some of the fingerprints may belong to the radio map,
which is modeled through a partial specialization. For fingerprints belonging to the
radio map, we store the following data about position information: the optional
coordinates X, Y, and Z of the point of collection (Z is in its turn optional, as in
many datasets only 2D spatial coordinates are considered); and the Tile where the
fingerprint was acquired.

Each fingerprint is collected by means of a single physical Device, although infor-
mation about it may be not known. A device is uniquely identified within a dataset
by its Code. With a device we may associate further information which is stored
within Device model, including Developer and Name, that together identify a device
model, and Type, e.g., smartphone, tablet, or other. As an example, in the dataset
there may be two distinct smartphones, characterized by codes A and B, both of
the same device model Samsung S22.

Each fingerprint is collected by a User. As it happens with the device, informa-
tion about the user may be missing. A user is uniquely identified within a dataset by
its Code, and characterized by its Type, e.g., trusted, for known users that assembled
the radio map, or online, for those using the system for localization purposes. In
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addition, a user may have a Username.
To take into account the online usage of the positioning system, we introduce

the entity Estimation. A fingerprint may be related to zero or more estimations,
e.g., produced by different algorithms. In turn, an estimation is linked to a specific
fingerprint, and may be discerned from the others that are associated with the same
fingerprint thanks to its Timestamp. Each estimation may have some free textual
Notes, and at least one among the following position data: the coordinates X, Y,
and (possibly) Z of the point of prediction; and the Place(s) where the fingerprint
was predicted. Observe that we can associate more than one place with a given esti-
mation: this is the case with an algorithm that provides a probability distribution,
where the single probabilities can be encoded by means of the optional attribute
Confidence.

Observation sub-schema

This sub-schema deals with information about observations, that is, the data sensed
about the environment, that compose a fingerprint. A Fingerprint may be asso-
ciated with one or more observations, and an observation refers to one and only
one fingerprint. Each Observation has an attribute Type, that specifies the kind
of observation among those included in the specialization. Since such an attribute
is a partial identifier with respect to Fingerprint, the latter may have at most one
observation for each type. In addition, an observation may have a Validity value,
that indicates whether its data are still to be relied upon, e.g., for positioning tasks.
Observational data may indeed lose their reliability over time. This is the case, for
instance, with WiFi fingerprints, that collect information about the detected access
points, which may be turned off or relocated. Since the validity of an observation
can be computed from the related Fingerprint ’s Timestamp, it is actually a derived
attribute.

An observation may be of different kinds (total and disjoint specialization).
Think of the fact that, for instance, a typical smartphone is able to simultane-
ously collect several types of data. A Cellular observation consists of zero or more
Cells, each one detected with its own RSS (Received Signal Strength). A cell is
identified by the combination of CI (Cell Identifier), LAC (Local Area Code), MNC
(Mobile Network Code), and MCC (Mobile Country Code). Similarly, a WiFi ob-
servation consists of zero or more APs (Access Points), each one identified by an
ID and characterized by a code and, possibly, a MAC number. Finally, a Bluetooth
observation consists of zero or more detected BT devices, each one identified by an
ID and characterized by a Name. Note that each cell, access point, and Bluetooth
device may belong to one or more data sources. Again, this is quite natural, as the
same cellular antenna may be detected in several scenarios. To accommodate for
that, we introduced the surrogate key ID both for AP and Bluetooth devices. Such
an attribute also allows us to discriminate, e.g., between two different APs that have
been given the same Code in different datasets. The surrogate key is not necessary
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for Cell, since such an entity set already features a global identifier.
The modeling of GNSS and IMU data undergoes a different logic, as they do not

store information about a signal pattern received from external beacons. Specifi-
cally, a GNSS observation has an associated optional set of latitude (Lat), longitude
(Lon), and elevation (Elev) coordinates (the latter is optional, as it depends on the
number of available satellites, # Sats). As for IMU observation data, they can refer
to different kinds of device, typically hosted on a same module: Accelerometer infor-
mation, tracking the acceleration along axes X, Y, and Z ; Gyroscope information,
detecting the angular velocity with respect to axes X, Y, and Z ; and Magnetometer
information, measuring the magnetic field for axes X, Y, and Z. Note that an IMU
observation may have several sets of data associated with it. This is the case, for
instance, with a single fingerprint which contains multiple accelerometer samples
that have been sensed several times over a period of time. In this case, information
is modeled in a differential manner with respect to a previous fingerprint in a trajec-
tory. Thus, a fingerprint with an associated IMU observation should also participate
into the relationship Follows, in order to keep track of the preceding one.

To conclude, we observe that the above design choice allows us to store empty
observations related to a fingerprint. This is the case, for instance, with a cellular
scan which detected no cells (this may happen when the device is in an underground
location).

Place sub-schema

This sub-schema models topological information about indoor scenarios. As previ-
ously pointed out, the intended goal is not that of storing extremely detailed data
with which to reconstruct the exact appearance of the considered premises, but,
rather, to keep track of information that may be useful for positioning purposes.

The main entity of the sub-schema is Place, which represents a generic spatial
concept. Each instance of place is uniquely identified by a surrogate key ID (follow-
ing the same reasoning pattern as that of AP and BT device), and characterized by
a Name and, possibly, a Description. A place may belong to more than one data
source (this is the case, for instance, with several datasets collected over the same
premises at different times). A place is then partitioned (total and disjoint special-
ization) into Building, Floor, Site, and Tile. The relationship Contains allows one
to keep track of a hierarchical structure among places.

Building represents the coarsest level of the hierarchy. Each building may have
an associated Area, and can be adjacent to zero or more other buildings (relationship
Adjacent to building). A building may include one or more floors.

A Floor may have an associated Area and a Height, and is contained in a single
building. To preserve the vertical ordering of floors, we make use of the relationship
On top of. It is worth pointing out that such a modeling decision requires one to
specify all intermediate floors between any two given levels, in order to correctly
and completely maintain the vertical relationships. However, such a constraint does
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not limit the flexibility of the model as if some floors are not present in a dataset,
they can still be added as empty (dummy) levels, without any sites or tiles included
in them. A floor may contain zero or more sites, or, directly, tiles, as in the case of
grid and crowd tessellations.

A Site represents a specific spatial area in an indoor scenario, such as a room,
a corridor, a bridge between buildings, or some stairs between floors. A site may
have a Height and an Area, and may belong to one or more floors. An example of
the second case is an auditorium, that may have entrances on two or more different
floors. A floor being used for positioning purposes always contains at least one tile.

A Tile represents the most basic piece of spatial information that can be stored
within the system, and it acts as a bridge between the topological knowledge of
the premises and the fingerprints. In accordance with the discussion in Section
2.2, a tile can be of four different types: (i) Grid, characterized by the four 2D
Coordinates of its associated regular grid cell, (ii) Zone, characterized by the four
2D Coordinates of its polygon, (iii) Logical, possibly characterized by a pair of
2D Coordinates, and (iv) Crowd, with no other associated information. Information
about adjacency is captured by the relationship Adjacent to tile, which may possibly
track the walkability between tiles (attribute Walkable) and the associated traversing
cost (attribute Cost).

Each tile is included in one and only one Tessellation, which should be of the
same kind as that of the tile. The specialization of tessellation is total and disjoint,
and thus a given tessellation contains only one kind of tiles. Note that, similarly to
the case of Observation, Tessellation has an attribute Type as its partial identifier,
and the entity set is weak with respect to Floor and Data source. The overall result
is that, within a floor belonging to a given data source, we may have at most one
tessellation for each kind. Thus, a floor may have a grid and a zone tessellation
associated with it, each with its own tiles, but it cannot have two distinct grid
tessellations.

2.3 Relational database development

In this section, we focus on the development of the relational database for indoor po-
sitioning. In particular, Section 2.3.1 discusses its logical schema, which has mainly
been derived from the Entity-Relationship diagram of Section 2.2.2. Then, Section
2.3.2 deals with the problem of representing fingerprint ground truth information
that can be useful for the evaluation of indoor positioning systems, an aspect which,
as we will see, deserves specific attention. Although we do not describe here all
the details regarding the physical implementation of the database, which include
the definition of a set of data consistency constraints not directly expressible in the
logical schema, the interested reader may find the source code on GitHub [37].
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2.3.1 Logical schema

The conceptual schema illustrated in Section 2.2.2 can be translated into a rela-
tional schema by applying the standard mapping rules [242]. The resulting schema,
depicted in Figure 2.4, includes all the tables obtained via such rules, as well as
some additional tables that were required to store, for instance, type information.
It is worth observing that the relational counterparts of the four ER sub-schemas
can be easily identified: Data source, Fingerprint, Observation, and Place. In the
following, we will describe the most important choices we took during the logical
design process. In general, all composite attributes were handled by keeping their
components, and we tried to reduce the size of foreign keys as much as possible in
order to avoid complex join conditions and unnecessary usage of space.

The translation of the Data source sub-schema does not present any particular
problem.

In the Fingerprint sub-schema, the Fingerprint specialization was translated by
keeping just the parent entity and adding the Boolean attribute is radio map to it.
As for the attributes acquired at tile place id, coordinate x, coordinate y, and coordi-
nate z, they pertain just to those instances belonging to the radio map (is radio map
= True). The attribute ml purpose has a dedicated domain, just including the
strings ‘training’, ‘validation’, and ‘test’. As for the primary key, we introduced the
surrogate id, which allows us to use simpler foreign keys when referring to finger-
print instances. Then, to enforce data consistency, we placed a uniqueness constraint
over the pair of attributes code (the fingerprint identifier in the original dataset) and
data source id. Similar considerations were made for the primary key of estimation,
where we introduced the surrogate id and imposed a uniqueness constraint over the
pair of attributes timestamp and fingerprint id. In the table device, we find the usual
surrogate key id and a uniqueness constraint defined over the pair of attributes code
and data source id. Information about the device model and its type was recorded
by means of two dedicated tables, to avoid unnecessary data replication and to
allow for an easy extension of their allowed values. The same logic was followed
for the table user, with the uniqueness constraint placed over the pair code and
data source id, and the provision of a dedicated table used to store the user type.

Turning to the Observation sub-schema, we translated the Observation special-
ization by keeping just the children entities. In the table cell, we introduced the
surrogate key id to avoid to deal with foreign keys consisting of four attributes.
Multi-valued attributes belonging to the entity IMU were handled by introducing
three separate tables, each one with the pair of attributes fingerprint id and epoch
as the primary key. The latter attribute can be used to sort multiple data coming
from the same sensor within a single IMU observation. Being numeric, it can be
used both as a kind of timestamp (thus implicitly conveying information about the
sensor sampling frequency) or as a simple ordering integer. As for the domains of
the attributes, rss stores negative numerical values corresponding to the decibel-
milliwatts (dBm) of the received signals. Along each axis, acceleration in observa-
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tion imu accelerometer is measured in metre per second squared (m/s2), angular
velocity in observation imu gyroscope is encoded in radian per second (rad/s), and
magnetic field intensity in observation imu magnetometer is recorded in microtesla
(µT ).

As for the Place sub-schema, we kept all entities involved in the Place specializa-
tion, given the presence of several distinct relationships involving them. As for the
specialization of Tile and Tessellation, we instead kept just the parent entity and
relied on the attribute type. The latter has the same custom domain both when used
in the table tile and in the table tessellation, consisting of just the strings ‘grid’,
‘zone’, ‘logical’, and ‘crowd’. In the table tile, we explicitly listed all four pairs of co-
ordinates. Such a decision allows us to have fine-grained control over the consistency
of their usage. In the table tessellation, we introduced the surrogate key id, and we
placed a uniqueness constraint on the triplet of attributes type, floor place id, and
data source id. As for the attribute types, height and area are encoded in meters
and square meters, respectively.

2.3.2 Management of ground truth information

We conclude the section with a short note on the management of fingerprint ground
truth information. In contrast with our design choices, indeed, it may happen that
a non-radiomap fingerprint is associated with some partial spatial information. As
an example, this is the case with test set fingerprints in the dataset UJIIndoorLoc
[256] that, although being considered as “online” fingerprints, still possess ground
truth coordinate data, but are not associated with their tile or site of collection.
Since information of this kind may be useful for the evaluation of indoor position-
ing systems, we decided to accommodate it into a separate schema, called evalua-
tion support. Within such a schema, we defined the table ground truth info, depicted
in Figure 2.4, blue shaded area. No constraint on the absence of null values was
enforced on the table, and thus, given a fingerprint, it allows us to store any kind of
(possibly fragmentary) spatial data associated with it. Primary key attribute fin-
gerprint id is a foreign key with respect to the attribute id of the table fingerprint,
while attributes tile place id, site place id, floor place id, and building place id are
foreign keys pointing to the attribute place id of tables tile, site, floor, and building,
respectively. Such a table is particularly useful to foster reproducibility in indoor
positioning experiments, as it allows one to collect and highlight the data which
should be used for evaluation purposes.

2.4 Usage of the system

In this section, we first show how the proposed model is flexible enough to accom-
modate various indoor scenarios. Then, we discuss how the system can support non
trivial tasks in the indoor positioning domain, other than promoting the research
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on and the deployment of novel localization approaches.
The source code of our implementation, which includes the definition of some

useful SQL queries and user defined functions (UDFs), is available on the GitHub
page of the project [37]. Examples of UDFs that easily allow one to retrieve com-
plex information are MinimumShortestPath (computed for pairs of heterogeneous
elements, e.g., a tile and a floor, or a fingerprint and a room), FPDistances (mea-
suring the distance between two fingerprints or estimations with several metrics),
and CharacterizingFP (that determines the average fingerprint of a tile).

An online, freely accessible [38] implementation of the system has been developed
in PostgreSQL [98]. Users may submit custom queries through the PGAdmin (web)
interface [252] as well as relying on well-known database connectivity APIs (e.g.,
JDBC [60]). The database already stores more than 15 well-recognized datasets
for indoor positioning [155, 156, 176, 188, 218, 241, 245, 256, 262], which can be
retrieved and used as pleased. We remind all the potential users of the tool to give
proper credit also to the original collectors of the datasets.

2.4.1 Representation of notable indoor scenarios

In this section, by means of a series of use cases, we show how the flexibility of the
proposed model allows us to represent various indoor scenarios.

Logical tiles

Assume that we want to perform a simple tessellation of a given floor of a conference
building, featuring different rooms, without resorting to the definition of complex
grid or zone tiles. In such a case, we opt for a much lighter logical approach. A first
solution might be that of associating with each of the rooms its logical tile, without
any pair of coordinates. As an example, we may have a single logical tile representing
“conference room A”, acting as a purely logical link between the place (for which
the semantics is defined by the tile label) and the fingerprints associated with it.
However, if conference room A is quite large and has a stage far from the audience
space, it might be sensible to further refine our tiling approach, for instance, to
support more precise positioning tasks. We can thus specify two distinct logical
tiles, the first one representing the audience space, and characterised by a pair of
coordinates equal to the geometrical centre of such a space, and the second one tied,
for instance, to the coordinates of the main tribune on the stage.

Inter-building connectivity

Let us consider two separate buildings connected by a bridge-like structure. The
latter can be modeled as a building on its own, with a single floor, and some tiles
adjacent and walkable with respect to tiles of the other two buildings. This solution
can be easily generalized to a set of buildings connected by a network of underground
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Figure 2.5: Inter-building connectivity modeling example (for simplicity, only one
tile per floor is depicted).

tunnels, possibly structured on more than one level. A possible model of such a
scenario is depicted in Figure 2.5.

Premises spanning over several floors

A theatre hall may have entrances on different floors. Here, also the tiles representing
the hall belong to different floors. This is true for the tessellations of type zone and
logical, where the tiles are connected to the site that corresponds to the hall (which
in turn belongs to more than one floor), as well as for the tessellations of type
grid and crowd, where the tile(s) are paired directly with the floors spanned by the
hall. A possible representation of the resulting scenario for both cases is given in
Figure 2.6.

Connectivity involving different tessellation strategies

Let A.1 and A.3 be two zone-tessellated floors of a building A, interleaved by a
floor A.2 that follows a grid tessellation approach. Despite the heterogeneity of
tessellations, it is still very easy to model adjacency and walkability relationships
among tiles, so as to represent a possible path starting from a tile u on floor A.1 and
ending at a tile z on floor A.3. More precisely, the path would start from the tile
u; then, it would follow the walkability relationships among zone tiles till it reaches
a tile v which is walkable with respect to a grid tile w belonging to the floor A.2.
In the most general case, each grid tile belonging to the floor A.2 is adjacent (and
walkable) to each of its neighbouring tiles, and thus the walkway would then follow
the shortest path till a given tile x, vertically connected to a tile y of floor A.3, and
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Figure 2.6: Premises spanning over several floors (theater hall) modeling exam-
ple. Left-hand side denotes the case of logical or zone tessellations; right-hand side
reports the case for crowd or grid ones (for simplicity, only one tile per floor is de-
picted).

finally reach the tile z according to the relationships defined over the zone tiles of
floor A.3. An example of topological information for such a scenario is reported in
Figure 2.7.

Crowdsourced sampling

A crowdsourced collection of fingerprints performed on a floor can be supported by
defining a tessellation of type crowd on it, consisting of just a single tile that acts as
a general container. Then, collected fingerprints would all be connected to such a
tile, and possibly be complemented by information about their position coordinates.

2.4.2 Support for indoor positioning tasks

The proposed modeling of the indoor positioning domain makes it possible to sup-
port a large array of interactions, ranging from very simple queries to rather ad-
vanced use cases. As we did in the previous section, we introduce some notable use
case scenarios that demonstrate the potential of the system.





2.4. Usage of the system 41

Multi-sensor positioning

Following the proposed approach, it is quite easy to combine WiFi and Bluetooth
signals, which are the most useful information sources for fingerprinting. Such sen-
sors, together with other point-based ones, are efficiently managed even if they are
sampled at different rates and in the presence of IMU data and trajectories. This
one allows to seamlessly exploit a rich set of information for positioning purposes.

More robust localization

Given a fingerprint submitted by a device, it is possible to filter the radio map so
as to consider only fingerprints collected by similar devices or within a specific time
window. In principle, such an ability has the potential to improve positioning per-
formance, since devices may sense and record observation data in different manners,
due to hardware or software differences. Figure 2.8b shows, for the UJIIndoorLoc
dataset, how different devices indeed exhibit, for the same location, different average
RSS patterns. In addition, focusing on WiFi fingerprinting, signal propagation is
likely to vary in a cyclical fashion over a day or a week, due to the distribution of
people within premises, which may have a perturbation effect on the signals. Re-
stricting the attention to fingerprints recorded within specific time windows is also
likely to allow for a more sensible comparison among observation data.

Complex and more expressive metrics

Storing topology information supports the development and usage of error metrics
for indoor positioning that are more advanced than the commonly considered 2D
distance. As an example, predicting the location of a user with a 3 meter error
radius is way more serious if this brings to an uncertainty over the floor the user
belongs to, with respect to an uncertainty over the position of the user within
a single room. To account for that, reachability information stored by means of
the adjacent to tile relation could be leveraged. As an example, it is possible to
apply the UDF FPDistances to the two fingerprints with identifiers 525373 and
525373 (belonging to a version of the dataset UJIIndoorLoc enriched with adjacency
information) to calculate, in addition to the 2D and 3D Euclidean distances, the
minimum shortest path between them, that might represent the traveling effort for
a user from a wrong to a right position estimate.

SELECT * FROM FPDistances(525373, 525405); [178 msec, Fig. 2.8c]

Topology-aware positioning algorithms

Topology information also fosters the research on state-of-the-art positioning algo-
rithms, based, for instance, on Graph Neural Networks or on other machine learn-
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ing techniques, like, e.g., Hidden Markov Models, that could effectively leverage the
graph structure of indoor premises in order to provide better position estimates.

Trajectory and personalised localisation

The system allows one to store subsequent online fingerprints provided by the same
device or user over time. In such a way, it actually generates a trajectory of predic-
tions, which can be exploited by a positioning algorithm to reduce the prediction
error, discard outlier fingerprints, or reason about users’ typical patterns. For in-
stance, employing the UDF TrajectoriesInPlace, one can retrieve in an array-like
format all the trajectories, that is, sequences of fingerprints, passing through a given
place, e.g., tile, site, or floor. Below, we consider the tile with id 520815 (IPIN 2021
Competition Track 3 dataset).

SELECT * FROM TrajectoriesInPlace(520815); [130 msec, Fig. 2.8d]

Navigation

The system supports navigation tasks as well. As an example, a user may find the
shortest path (in terms of the number of traversed tiles or associated traversability
costs) to a specific location within the indoor premises, starting from his/her pre-
dicted location. This comes down to finding the shortest path between two nodes
in the graph that represents the indoor scenario.

Knowledge discovery

The richness of information stored in the system, in terms both of the data and the
relationships among them, makes it possible to develop a large number of unsuper-
vised analysis tasks. For instance, usage patterns of the system could be investigated
in order to discover regularities with respect to specific classes of users or time win-
dows. Similar analyses may bring to the discovery of issues within a radio map,
e.g., due to outlier fingerprints, that can then be corrected or removed. As a final
example, consider the case of WiFi fingerprints collected within the same premises
at different time points by different devices. By analyzing their signal patterns, it
may be possible to discover regularities and differences in the access points or in the
propagation of their signals. At this stage, a step further could be that of developing
a normalization strategy to cope with such variations, so to consider a “time-and-
device-corrected” version of fingerprints which may bring to a better online phase
usage of the radio map.
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Table 2.1: Summary of the notable features and their importance and support
capabilities by the considered systems/frameworks

System /
Framework

Compare
IPSs

Model Indoor
Positioning

Multi-sensor
Support

Building
Topology

Indoor
Mapping

Detailed
Scenarios

Enforce Data
Consistency

IndoorGML [59] * * *** *** *
IFC [41] *** ***
EvAAL [16] *** ***
LSR [215] *** *
Web tool [146] **
Web tool [186] **
our * *** *** *** ***

*** = prominent feature of the system, full/good support capabilities; ** = feature of the system but there
are better competitors, some support capabilities; * = not an aim of the system, which anyway provides
limited support capabilities; IPS = Indoor Positioning System.

Modeling indoor premises

Several proposals have been made on how to model indoor premises [2, 141, 190],
although a general consensus is still missing. Many of the most advanced formats
and standards, e.g., IFC – Industrial Foundation Classes [41] or CityGML [58],
pay a special attention to the description of scenarios with all their details [150].
IndoorGML [59, 119], instead, mainly focuses on the description of the structure of
a premise, with a focus on the arrangement of spaces and their relationships. All
these approaches (especially the latter) are quite flexible and provide some support
to positioning tasks through additional application layers.

Our contribution differs from them in several respects. First, its main goal is to
store and support (fingerprint-based) positioning, and only in accordance with that
to provide topological information about the premises. From this point of view,
the proposed solution is close in spirit to IndoorGML, which also has the latter
capability. However, our modeling goes in the direction of what should be imple-
mented within the prospective IndoorGML 2.0, allegedly designed to also work with
topological information only [69]. Another key difference with respect to existing
solutions is the possibility to easily interact via SQL (in fact, the proposed one is
the first and only relational database-centric system). For the sake of completeness,
it is worth remarking that IndoorGML is better than our approach in handling in-
door modeling/mapping and navigation tasks. However, as already remarked, it is
important to keep in mind that our motivations and goal are quite different.

Comparing positioning systems

Mainly motivated by the high diversity in metrics, datasets, and result reporting
approaches in the literature, several authors have studied how to enable a fair com-
parison of indoor positioning systems, also implementing several tools [209, 258].
The EvAAL framework [16] has been largely adopted by indoor positioning compe-
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titions [207, 208, 216, 260]. Its main goal is to enable fair, realistic, and systematic
comparison of positioning solutions, especially in the case when they rely on dif-
ferent methodologies and sensors data. It achieves that through its core principles:
natural movement of an actor, realistic environment, realistic measurement resolu-
tion, and, third quartile of point Euclidean error. Localisation Systems Repository
[215] aims at supporting continuous, reliable, and accurate positioning on smart-
phone devices, providing a large benchmark suite and a repository for localisation
systems source code. Web platforms for the evaluation and comparison of indoor
localisation algorithms have been proposed in [146] and [186], respectively focusing
on radio frequency-based and fingerprinting data. Our framework largely differs
from all previous ones, that are basically oriented towards storing tabular datasets
and comparing algorithmic performances as: (i) it supports the industrial-level de-
ployment of indoor positioning systems, (ii) it stores data in a normalised way,
highlighting their relationships and making them easier to exploit, (iii) it embeds
information on building topology, and (iv) it supports advanced concepts such as
trajectories and multi-sensor data.
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II
On the Relationships Between

Fingerprints and Spatial Knowledge





3
What You Sense Is Not Where You

Are

As we already highlighted in Section 1.3, over the years, many different algorithms
and data representations have been used in WiFi fingerprint-based indoor position-
ing (see, for instance, [12, 167, 193, 223, 261, 295]). Some of them follow traditional
paths, others are more original (for a survey, see [103]). Classical solutions include
the so-called deterministic algorithms like, e.g., (k-)Nearest Neighbor [12], as well as
probabilistic approaches, which, given a fingerprint observation, determine its most
likely location in a stochastic way [295]. Advanced solutions, based on machine and
deep learning, have also been employed [193]. All these families of algorithms have
been paired with different kinds of fingerprint representation, including ranking-
based ones [223], and with different normalization functions [261].

However, the vast majority of the work done so far focused on achieving the
best possible performance in the positioning task, without analyzing in detail the
behaviour of the chosen fingerprint representations and of the related comparison
methodologies. Indeed, also when metrics have been taken into account in a sys-
tematic way [261], the main objective has been that of understanding which was the
best performing one in position estimation tasks.

In this chapter, we do something different, abstracting by the problem of po-
sitioning, with the goal of understanding what amount of spatial information is
incorporated by and we can extract from the fingerprints. To such an extent, we
systematically study the relationship between the high dimensional vector space of
the fingerprints and the real-world geometrical space, where the user/device posi-
tion is meant to be found. Thus, our main research question is more profound and
fundamental than the actual problem of positioning, as it pertains to understanding
whether the fingerprint vector space, paired with classical metrics used in finger-
printing, encodes enough spatial information to effectively represent the real world
and if it is possible to exploit such a kind of knowledge. Even though the addressed
problem and the positioning task might appear to be very similar, we will show that
they are surprisingly different.

To find adequate answers to our questions, we characterize the behaviour of nor-
malization functions and metrics at different granularity levels, that is, with respect
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to the whole scenario, or focusing on a single building rather than a single floor.
Our main finding is that conventional normalization functions and metrics do not
allow one to establish a meaningful relationship between fingerprints and the under-
lying real-world locations, although some of them (e.g., cosine distance) are better
than others. Such discoveries might have also strong practical implications, such
as, for instance, in the choice of positioning algorithm to be used, or in explaining
why deterministic approaches employing classical metrics are effective, but recent
improvements are somewhat limited. With the aim of making our analyses as com-
prehensible and generalisable as possible, and also understanding to which extent
our problem is linked with the surrounding environment, we take into account 15
of the datasets introduced in Section 8.3.1, which largely differ from each other in
contents and size.

The chapter is organized as follows. In Section 3.1 we provide an overview of the
few works that tried to address questions similar to ours, so as to define the starting
point of our journey. In Section 3.2 the technical aspects at the core of the analysis
are illustrated. Finally, the outcomes of the experiments are thoroughly discussed
in Section 3.3.

3.1 Fingerprinting beyond positioning accuracy:

the point so far

Even though most contributions about fingerprinting focus on issues related to the
accuracy of the localization, there are some exceptions where the problem is ad-
dressed from a broader perspective. This is the case, for instance, with [117], where
the authors analyze some meaningful properties of fingerprints, like RSSs distri-
bution and APs interference, pointing out their impact on the pattern recognition
techniques exploited to solve the positioning problem. In [118], various phenomena
that influence the performance of fingerprinting systems are identified through an
extensive statistical investigation of RSS features. An analysis of the sources of
large positioning errors in (deterministic) fingerprinting has been recently made in
[262]. In [189] the authors investigate the performance of simultaneous collection of
WiFi data through multiple interfaces, leading them to observe that observations are
weakly correlated, allowing them to exploit such differences to improve positioning
accuracy. Finally, the quality and robustness of crowd-sensed WiFi fingerprints in
the context of indoor positioning have been investigated in [203], where the authors
report statistics on this kind of data and discuss the accuracy of positioning based on
them. The take-home message is that databases similar to those created by trained
personnel can be obtained by collecting a sufficiently high number of crowd-sensed
fingerprints.

No one of the above studies, however, explicitly investigates the relationships
between geometrical and fingerprint spaces. To the best of our knowledge, the only
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existing contributions are the following ones. An application of Manhattan distance
to a relatively small dataset has been described in [67]. The outcome of the experi-
mentation is that the two spaces are weakly connected and their relationship can be
modelled by a quadratic function. Such a work has been later extended to Euclidean
and infinity norms, limiting the attention to very short spatial distances [182]. The
additional experimentation confirmed the difficulty in achieving a satisfactory map-
ping between the two spaces. The infinity norm emerges as the best performing
one, according to a criterion based on standard deviation, and, in general, short
distances better preserve the relationship between the two spaces, thus allowing al-
gorithms based on the (k-)Nearest Neighbor one to be successfully applied to indoor
positioning. The same conclusion was reached in [183], where information about
the relationships between the two spaces is exploited as a training phase estimate
for the expected positioning error. Finally, an application of positioning algorithms
based on Nearest Neighbor to fingerprints belonging to either a real-world dataset
or a simulated one (using both a quantized and an optimistic signal representation)
is described in [262]. The analysis of the correlation between the distance in the
fingerprint space and the positioning error shows that it is lower in the quantized
(i.e., classical WiFi RSS values) than in the optimistic (decimal precision RSS) sce-
nario. The situation is even worse when real-world data are considered, as in that
case there is no correlation at all between the two.

Our work, described in this chapter, significantly differs from all the above ones.
Indeed, there is some evidence from the literature that there is not a linear proportion
between fingerprint and real-world distances. However, existing results make use
only of some specific metrics, such as Manhattan and Euclidean, to measure the
distance between pairs of fingerprints, and they do not analyze in detail the influence
of meaningful parameters like, for instance, the applied normalization functions, the
area where data are collected (a set of buildings, a single building, or a portion of a
building), and the considered range of distances.

In the following, we investigate the relationships between the fingerprint and the
real-world space in a comprehensive and systematic way, and, for the first time, we
study the problem per se, in order to understand whether (and how) reliable spatial
knowledge can be obtained from fingerprint data, irrespective from the positioning
task. To this end, we take into consideration a variety of metrics and normaliza-
tion functions, as well as multiple independent environments (datasets) at different
granularity levels (see Section 1.3.2, and Section 1.3.3).

3.2 Experimental setting

We first carry out and carefully analyze a series of correlation-based experiments
on the dataset UJI 1 (the most complex one); then, we generalize the findings to
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14 other datasets1. We consider a number of elements that may have an impact
on the relationships between the fingerprint and the geometrical space: (i) the
normalization function applied to the fingerprint data; (ii) the distance function
used in the fingerprint space; (iii) the distance used to compare real-world locations
(2D or 3D spatial Euclidean distance); and (iv) the granularity level at which we
analyze the scenario (we can either refer to the whole dataset or restrict our analyses
to points belonging to the same building or even to the same floor).

To determine whether one or more combinations of the above elements are good
enough to represent the real world in the fingerprint space in terms of distances
between pairs of locations, we make use of Pearson correlation. More precisely, we
asked ourselves if there exists a distance function to exploit in the fingerprint space
which is (linearly) proportional to the one used in the 2D/3D geometrical space.

Such a problem is clearly much harder than just exploiting metrics to find the
real-world location closest to a given fingerprint (the classical indoor fingerprint-
based positioning with (k-)Nearest Neighbor algorithms), but easier than recon-
structing the actual geometrical distances in the fingerprint space. As for its rele-
vance, it suffices to observe that the existence of such a proportionality would allow
one to derive spatial knowledge on the application domain from the fingerprint space,
without making use of any explicit geometrical representation of it. Such an ability
would relieve the burden of tasks like radio map construction and maintenance, and
even provide the basis for some new approaches to positioning.

Let us describe the pipeline of the experimental evaluation. First, we randomly
selected 400 samples from the dataset UJI 1, at a given granularity level, to roughly
check the ability of the fingerprint space to preserve spatial properties. Then, for
each viable pair of fingerprints2, we computed the real-world spatial 2D/3D dis-
tance, and all possible variations of fingerprint normalization functions and metrics.
Finally, we evaluated the Pearson correlation between all the resulting fingerprints
and spatial distances. For the sake of proper evaluation, for each granularity level,
the whole process was repeated 100 times, allowing us to synthesize the findings by
means of statistical summaries like centrality and dispersion measures.

The second test aimed at looking in more detail at the emerged correlations. As
a matter of fact, the goodness of a result may depend on an overall well-behaved
trend, or the high linearity of the considered relationship may be confined to some
spatial distance ranges. To avoid misinterpretations, we studied how the correlation
changes as the maximum allowed real-world spatial distance is shortened.

Third, we assessed the influence of the 2D vs. 3D spatial distances on the studied
relationships. Non-trivial changes are to be expected when different granularity
levels are considered; in addition, some normalization functions/metrics might be
better in reconstructing the 2D rather than the 3D world.

1Note that since we consider datasets as whole TUT 3 and TUT 4 are identical; thus, we keep
only the former.

2Given two fingerprints (identified by) FP1, FP2 ∈ N, we only considered the pair (FP1, FP2)
with FP1 < FP2.
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Finally, for the sake of generalizability, we repeated the first experiment on all
15 datasets considering 100 randomly-selected samples. On the one hand, since the
number of observations per granularity level available for some datasets is very low,
we reduced the sample size from 400 to 100 to adopt a common setting for all of
them; on the other hand, using 400 samples for the evaluation of the dataset UJI

1 allowed us to better assess some complex phenomena. Then, to check whether
the results are consistent across the datasets, we used Spearman, that is, ranking,
correlation.

3.3 Results

In this section, we describe and thoroughly analyze the outcomes of the experimen-
tation. We start with some remarks on the ability of the various combinations of
metrics and normalization functions to preserve the spatial distance relationships
in the fingerprint space. As we shall see, none of them has a satisfactory per-
formance; however, some interesting patterns emerge, notably when dealing with
different granularity levels. Then, we shift the focus to the analysis of the behaviour
of metrics at different spatial distances. Some non-trivial facts are uncovered, like,
for instance, the fact that metrics exhibit different representational abilities at dif-
ferent distances. Finally, we discuss the generalizability of the analysis and of its
outcomes to all the datasets: while the relationships among normalization functions
and metrics are mostly preserved, there are a couple of significant exceptions.

3.3.1 Quantitative correlation analysis

Figure 3.1 shows a boxplot of the correlation performance for each combination of
metric and normalization function, obtained from 100 runs on the dataset UJI 1 at
three different granularity levels. Each box extends from the first to the third quar-
tile values of the data, with a line at the median. Whiskers extend to the smallest
and largest observations which are not outliers (considering 1.5 times the interquar-
tile range). We report only the results for the 3D case, being almost identical to
those for the 2D one. Such a similarity brings us to our first conclusion: the task
at hand is equally challenging for both kinds of spatial distance. All metrics are far
distant from a perfect correlation, suggesting that they all fail to capture the char-
acteristics of complete and complex spaces. Nevertheless, we observe that, as the
environment becomes more and more constrained, e.g., with measurements taken
from the same floor, the correlation improves. This confirms what is typically ob-
served in indoor positioning: the best estimations are often provided by hierarchical
approaches.

As for the normalization functions, Positive and Zero-to-One, whose overall per-
formances are very close to each other, are the best ones. The Exponential normal-
ization causes a relevant downgrade of the correlation when combined with Sørensen,
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Cosine, and SWED metrics, while just a slight reduction is observable in the case of
Matusita. As for Minkowsky-based measures, Exponential behaves like Powed nor-
malization. Powed performance is somehow in between those of Exponential and
Positive.

As for the metrics, Sørensen and Cosine have the best performance, followed by
SWED, Matusita (which is the least affected by normalization functions, excluding
Mahalanobis), and Minkwosky-based ones (which all exhibit a similar behaviour);
Neyman and Mahalanobis are drastically worse. The best overall performance is
that of Cosine distance in combination with Positive and Zero-to-One normalization
functions; such an outcome contrasts with the one reported in the indoor positioning
literature for this dataset, which suggests a superiority of Sørensen with Powed
normalization.

Figure 3.1 also allows us to analyze the variability of the performance across the
runs. If the behaviour of a combination is stable, that is, weakly dependent on the
chosen fingerprints (and, thus, on the corresponding environment), the associated
boxplot should collapse around the median. While this is actually the case when we
consider the whole dataset, the situation changes when we restrict our attention to
the same building or floor, where boxplots encode information coming from different
areas/environments (the given floor or building is chosen independently at each run).
Overall, looking at the boxplots, we can conclude that almost all the metrics exhibit
an unstable behaviour (especially SWED); once more, Sørensen and Cosine appear
to be the most performing, notably when restricting to a single floor, rather than
to the same building.

3.3.2 Qualitative correlation analysis

The results of the quantitative analysis allowed us to gather general knowledge of
the performance of the considered combinations. Now, we take a closer look at the
outcomes of a representative run to check whether some patterns linked to spatial
distances emerge. As a matter of fact, a correlation result may be good thanks
to a global behaviour, or because of the considered relationship being highly linear
within some spatial distance ranges. Figure 3.2 shows the behaviours in the 3D case
when instances are sampled across the entire dataset (Figure 3.2a), only from the
same building (Figure 3.2b), and only from the same floor (Figure 3.2c). Brighter
colours denote a higher point density. For the sake of clarity, we report the results
for the most representative metrics only.

Looking at Figure 3.2, we first notice that, in general, as the granularity level
decreases, the plots show a lower dispersion. Whatever the granularity, comparing
the overall and optimal trends, it emerges a tendency to an overestimation of the
fingerprint dissimilarity approaches, especially for what concerns shorter distances.
As for the normalization functions, we observe that the Exponential one tends to
make all trends similar, across the metrics. As for the metrics themselves, the
high correlation results for Cosine and SWED seem to be largely determined by
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(a) All

(b) Same building

Figure 3.2: Euclidean, Sørensen, Matusita, and SWED behaviours at 3 granularities.
Brighter color for higher density; correlation trend (solid line); ideal case (dashed).
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(c) Same floor

Figure 3.2: Euclidean, Sørensen, Matusita, and SWED behaviours at 3 granularities
(cont’d). Brighter color for higher density; correlation trend (solid line); ideal case
(dashed).

a saturation behaviour (especially on distant observations) at all granularity levels
(the same holds for Sørensen). This counterbalances the high dispersion of points
visible from medium to low distances, and it can be attributed to the comparison of
fingerprints without common APs. If we focus on observations taken from the same
building or floor, the trend seems to change around a spatial distance of 70 meters
for all the metrics. While each metric has its own peculiarities, e.g., Euclidean,
Matusita, and SWED ones show an inversion, and Cosine one has a stepped curve,
the underlying cause is most probably the same, although difficult to state exactly.
A possible explanation can be given by measurements that are spatially distant
and characterized by overall low RSSs: in evaluating fingerprint dissimilarity, their
contribution might be similar to that of missing APs, misidentifying the differences
and leading to an underestimation.

3.3.3 Impact of spatial distance

To better understand the patterns that emerged from Figure 3.2, Figure 3.3 presents
the correlation trends when different upper bounds on the spatial distance are ap-
plied. We focus on the case of the same building, which turned out to be the
most interesting one, and we omit the results for Minkovsky 3, Minkowsky 4, and
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Figure 3.8: Metrics behaviours on FP pairs with at least a common AP. Only Zero-
to-One normalization function has been considered.

To assess the stability of the combinations of metrics and normalization func-
tions, we proceeded as follows. For each combination, we evaluated its median
correlation value in each dataset on 100 runs. Then, we ranked the combinations
from the best (rank = 1) to the worst (rank = 44, given 4 normalizations and 11
metrics) performing one, for each dataset. Next, for each combination, we com-
puted the mean and standard deviation of its ranks across the datasets, under the
assumption that if a combination has a stable behaviour, then its rank is more or
less the same in all datasets. The outcomes of the analysis are reported in Fig-
ure 3.10. Overall, results tend to be preserved across the datasets, with a slightly
higher stability in the same floor case. SWED looks problematic as, despite its ap-
parently good performance, it turns out to be highly unstable (its behaviour seems
to strongly depend on the environment). Apart SWED, the most unstable and worst
performing metric is Neyman in the same building scenario, that nevertheless does
not exceed a standard deviation of 9 (over rankings of length 44). Sørensen and
Cosine (especially the latter), combined with Positive and Zero-to-One, are, by far,
the best performing combinations and among the most stable ones.

Figure 3.11 shows the ranking correlations for normalization functions across the
datasets. They have been established as follows: first, for each normalization func-
tion, we computed its median correlation value across the metrics for each dataset;
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nor the average fingerprint density within a 5-meter radius from each RP seem to
be relevant.

3.4 Discussion

Spatial knowledge about a domain may help a lot in tasks like, e.g., radio map con-
struction and maintenance, and may provide the basis for more advanced approaches
to indoor positioning. In this chapter, we systematically studied the relationships
between the high dimensional fingerprint space and the underlying real-world one
at multiple granularity levels. To this end, we considered several fingerprint nor-
malization strategies and dissimilarity functions, and we thoroughly evaluated them
over 15 public indoor positioning datasets with respect to their capability of preserv-
ing real-world distances. On the positive side, we stated some interesting, general
properties of them; on the negative one, we showed that, at least in conventional ap-
proaches, there is not a (linear) proportionality between distances in the fingerprint
space and those between the corresponding spatial locations. This implies that it is
not possible to gain reliable spatial knowledge from fingerprint data only, by making
use of commonly adopted methods and techniques.

The work done so far can be viewed as the pars destruens of a two-phase research.
As for the pars construens, the core of the following chapter, we investigate whether
a better performance can be achieved by suitably combining existing metrics via
evolutionary algorithms, and, more generally, machine learning.



4
Fingerprint Meta-distance Learning

with Genetic Programming

In the previous chapter, we showed that the relationship between distances in the
high dimensional space of the fingerprints and those in the real-world geometrical
space, where the user/device position is meant to be found, is not captured by
classical metrics used in isolation, and that each of them exhibits a radically dif-
ferent behaviour: some are definitely better than others in preserving such spatial
information, although being far from the optimal case.

Notably, being able to preserve spatial information would be of great importance
within indoor positioning tasks. For example, it would make possible, for the posi-
tion estimation of a user, to rely on offline fingerprints that are located farther away
compared to the classical scenario, meaning that more sparse (and easily maintain-
able) radio maps can be considered. Note that, in principle, to train a model capable
of preserving such a spatial relationship, knowing the exact coordinates of the finger-
prints sampling points is not required. In fact, an estimate of their spatial distance
is enough, which may be obtained by means of other sensors (e.g., inertial mea-
surement unit). In turn, this would promote both crowdsourcing-based collection
strategies (since exact position labels are not needed) and foster the development of
semi-supervised approaches.

In light of the aforementioned aspects, two research questions naturally arise:
(i) is it possible to combine the best characteristics of different fingerprint distance
functions to improve spatial information preservation (in terms of the relationship
between distances in the fingerprint space and those in the real-world space) and/or
positioning accuracy? and, (ii) is there any connection between the ability of a
fingerprint distance function of preserving real-world spatial relationships and its
performance in positioning tasks?

In this chapter, we address both of them. First, we combine classical fingerprint
distance functions into a meta-distance. To this end, we frame the problem as a
symbolic regression one, and we exploit a genetic programming algorithm to solve
it. Such a learning paradigm allows us to avoid model biases that affect classical
regression models, as the structure of the model is learnt, too. Our approach op-
timizes the relationship between fingerprint distances and those of the underlying
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real-world locations, modeled by means of Pearson correlation, relying only on one
well-known, publicly available dataset (UJI 1). The ability of the resulting distance
of preserving real-world spatial information in the fingerprint domain is then thor-
oughly discussed: an improvement with respect to classical approaches can indeed
be achieved in that respect. Second, in order to uncover the possible connection
between spatial information preservation and localization performance, we evalu-
ate the synthesized distance within a positioning task. The outcome of the latter
analysis is that such a relation indeed exists. Moreover, the novel distance provides
a better localization accuracy with respect to classical ones, despite not being ex-
pressly designed for such a purpose. All the results are compared to those achieved
by classical machine learning regression approaches and fingerprint distance func-
tions. Moreover, also their generalizability is evaluated by testing the performance
on other datasets commonly used in the literature without any kind of model re-
training or adaptation. As a final take-home message, the difficulties we encountered
in developing an effective meta-distance suggest that classical fingerprint distance
functions, even in combination, are not able of preserving spatial information in
its entirety, paving the way for the development of more advanced metric learning
approaches.

The rest of the chapter is organized as follows. Section 4.1 gives an account
of the usage of genetic programming in indoor positioning. Section 4.2 recalls the
basics of symbolic regression, evolutionary computation, and genetic programming.
The setting of the experiments is outlined in Section 4.3. Section 4.4 presents the
outcomes of the experiments. In Section 4.5, a critical evaluation of the work done
and the collected results is conducted, and future research directions are outlined.
As a matter of fact, in Section 4.6 we provide some preliminary results regarding
one of this research directions: the usage of deep metric learning for continuous
similarity.

4.1 Genetic programming in indoor positioning

In the following, building on the framework and results provided in Chapter 3, we
investigate the possibility of improving the amount of spatial knowledge that can be
obtained from fingerprint data by combining canonical fingerprint distance functions
into a meta-distance. To this end, we rely on Genetic Programming (GP), a partic-
ular kind of evolutionary algorithm that will be illustrated in detail in Section 4.2.2.

Only a few attempts at employing GP in indoor positioning have been made
in the past. Here is a short account of them. In order to estimate the distances
at which the observable APs are placed, Gualda et al. [99] define a function that
suitably combines a set of arithmetical operators (propagation model). The resulting
pieces of information are later used to perform positioning by means of spherical
trilateration with the Gauss-Newton algorithm. The focus of the work by Lembo et
al. [145] is indoor positioning based on cellular LTE fingerprints. GP is exploited
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for both the radio map construction and representation, in the offline phase, and the
position estimation, in the online phase. In the offline phase, a symbolic regression
method is used to construct a function that, given a position, is able to determine
the received signal strengths of each observed base station. In the online phase, GP
is employed to optimize a cost function comparing the measured signal strengths
with those associated with each base station at a given position. Song et al. [246]
rely on GP to solve the task of extracting the best set of candidates from the radio
map on which to base the position calculation for a given fingerprint. GP is also
exploited by Eldeeb et al. [76], although with a quite different goal. They make use
of GP to solve the problem of placing a set of access points in a building in such
a way that the diversity among fingerprints collected at a set of test locations is
maximized (optimization problem). Finally, Le et al. [138] combine support vector
machine regression with GP to reduce the overall computational complexity of WiFi
fingerprint-based positioning.

Our contribution differs from previous ones in various respects. Its focus is
not on developing a novel positioning algorithm, but, rather, on investigating the
relationship between fingerprints and real-world spatial distances. More precisely,
we would like to understand whether or not a proportionality between fingerprint
distances and those between the corresponding real-world locations can be recovered
by suitably combining classical fingerprint distance functions into a meta-distance.
As we shall see, such a task is quite hard, and the outcomes of our analysis suggest
that no further improvement, besides those achieved in the present work, can be
obtained as long as we rely on classical approaches. As a by-product, we shed
light on the connection between the preservation of spatial distances and position
estimation, showing that the proposed meta-distance, even if trained with a different
objective, achieves better results also in the latter task.

4.2 Symbolic regression and GP

In this section, we give a short account of the basics of symbolic regression, evolu-
tionary computation, and genetic programming, that represent the building blocks
of the forthcoming investigation.

4.2.1 Symbolic regression

Symbolic regression (SR) is an optimization task where the space of mathematical
expressions is searched to find the best performing model, in terms, for instance,
of prediction capabilities, on a given dataset. The main difference between SR and
classical regression is that the latter tries to optimize the parameters of a pre-defined
model structure, such as the coefficients of a linear combination of input variables,
while in SR both the model structure and its parameters are learnt [194]. No spe-
cific model is usually provided as the starting point for an SR algorithm; rather,
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+
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Figure 4.1: Mathematical expression (4 × a) + cos(a) represented in a tree-like
fashion.

the search starts from a set of random expressions built on a combination of math-
ematical operators, constants, and variables. Each expression can be represented in
a tree-like fashion, as shown in Figure 4.1.

The main advantage of SR is that it is not affected by any kind of human bias
or partial knowledge of the considered domain. In addition, several metrics can be
exploited to guide the search in the expression space including, e.g., the predictive
performance and the simplicity of a given solution. As a downside, the search space
of an SR task is much larger than that of classical regression approaches. Thus,
advanced optimization techniques, such as those based on evolutionary computation,
are required to explore it.

4.2.2 Evolutionary computation and genetic programming

In the following, we will solve an SR task following an approach based on Evolution-
ary Algorithms (EAs), i.e., population-based metaheuristics inspired by the process
of biological evolution and genetics, that have been shown to excel in the solution of
combinatorial optimization problems [74]. Unlike blind random search, EAs exploit
historical information to direct the search into the most promising regions of the
search space, relying on methods that mimic the processes that in natural systems
lead to adaptive evolution.

In nature, a population of individuals tends to evolve in order to adapt to its
environment. In a similar way, EAs are characterized by a population, where each
individual represents a possible solution to a given optimization problem, and any
solution is evaluated with respect to its degree of “adaptation” to the problem
through a single- or multi-objective fitness function.

The EA population iteratively undergoes a series of generations. At each gener-
ation step, individuals picked by a selection strategy go through a process of repro-
duction. The selection strategy is the key factor that distinguishes one evolutionary-
based approach from another, although, typically, individuals with a high degree of
adaptation are more likely to be chosen (elitism). In this way, the elements of the
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Figure 4.2: Overview of the evolutionary algorithm, where the term corr stands for
the Pearson correlation between distances in the fingerprint and real-world space.
The shaded area includes the steps performed during a generation.

population iteratively evolve toward better solutions. The reproduction process in-
volves the application, with a certain degree of probability, of suitable crossover and
mutation operators. As a result, an offspring is generated, which is finally merged
with the previous population, and the cycle repeats until a stopping condition is
met. Such a condition can be based, for instance, on population diversity or on a
given fitness threshold.

Crossover is the EA counterpart of natural reproduction, by which the charac-
teristics of two individuals are combined by generating one of two offspring. As a
general rule, high crossover rates tend to pull the population towards a local mini-
mum or maximum. Mutation applies random changes to the encoding of the selected
solution, with the goal of maintaining genetic diversity in the individuals. It pre-
vents premature convergence of the algorithm to a local optimum, thus allowing it
to explore the search space more broadly. A schematic account of the whole process
is given in Figure 4.2.

As a matter of fact, EAs tend to produce solutions that are as good as possible
for a given training set, against which the fitness function is evaluated, without con-
sidering the performance on possible new cases. This may raise overfitting issues.
An open research question thus pertains to generalization in evolutionary computa-
tion, and several efforts are being made to solve it [63]. As an example, Gonçalves
and Salva [96] make use, through the generations, of a small and frequently changing
random subset of the training data as a way of reducing overfitting and improving
generalization. We will adopt a similar strategy.
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In the context of EA, Genetic Programming (GP) is a technique that allows one
to evolve programs starting from a population of random solutions [205]. An indi-
vidual can be represented as a computation tree, where each internal node encodes
a primitive and leaves represent input values. The output value is produced by the
primitive encoded in the root. Typical crossover/mutation operations performed
on computation trees include subtree exchange and node/leaf addition/removal/re-
placement. As we will see, GP can also be used in the context of symbolic regression
tasks.

4.3 Experimental setting

In this section, we first discuss the proposed EA implementation, detailing the set
up of the initial population, the definition of the genetic operators, and the employed
fitness function; then, a description of the experimental workflow is provided, which
involves training the EA on the dataset UJI 1, while considering the other reposi-
tories for test purposes. All experiments have been carried out on a Google Cloud
Platform virtual machine instance equipped with 32 cores and 40 GB of main mem-
ory.

4.3.1 The evolutionary algorithm and its implementation

The proposed solution relies on DEAP (Distributed Evolutionary Algorithms in
Python) framework [84], whose aim is to provide practical tools for the rapid proto-
typing of custom evolutionary algorithms. Its core consists of two simple structures:
a creator and a toolbox. The first module allows the creation of individuals and
populations that may include any data structure, facilitating the implementation of
any kind of EA. The toolbox is a container of operators that the user can exploit,
for instance, to perform genetic recombination and individual selection. Means to
perform an efficient distribution and parallelization of specific parts of user code
are provided as well. In the following, we give a detailed account of the proposed
instantiation of the framework to build an evolutionary algorithm suitable for our
purposes.

Population and initialization. Each individual belonging to the population is
a computation tree that combines the values provided by Euclidean, Matusita, and
Cosine fingerprint distances. The population is initialized following DEAP’s gen-
HalfAndHalf method, which generates random computation trees with a maximum
height of 6, as suggested by Koza in his seminal work [127]. Specifically, half of the
time a tree whose leaves have all the same depth is generated; in the other cases,
each leaf may have a different depth.

Primitives. A node of a computation tree may represent a single value, that can
be one of the considered fingerprint distance functions, a DEAP’s EphemeralCon-
stant, that is, a random value chosen in the interval [−10, 10] according to uniform
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sampling, or a constant in the set {−1, 0.5, 1, 2, 3}. A node may also encode a unary
function, applied to a value x, in the set {loge(x),

√
x, x2, |x|, −x, 1/x, sin(x),

cos(x)}. Finally, a node may compute a binary function, applied to a pair of values
x, y, in the set {x + y, x− y, x · y, x/y, xy,max(x, y),min(x, y)}. To avoid problems
with invalid calculations, like, for instance, x/0, each function is implemented in its
“protected” version, where NaN values are replaced by 0, positive infinite values are
replaced by 1, and negative infinite values are replaced by -1.

Training data. Pairs of fingerprints are extracted from the official training split of
dataset UJIIndoorLoc. For each pair, Euclidean, Matusita, and Cosine fingerprint
distance functions are computed, as well as the real-world 3D Euclidean distance
between the locations associated with them. As pointed out in Chapter 3, finger-
print distance functions tend to show specific behaviours at different granularity
levels. For this reason, we generated three datasets following a random sampling
approach: the first one (Whole) contains pairs coming from all the datasets, the
second one (Same Building) contains pairs belonging to the same building, and the
third one (Same Floor) contains pairs belonging to the same floor. To make the
implementation of counter-overfitting measures easier, taking also into account the
constraints posed by the hardware at our disposal, we partitioned each of the three
generated datasets into 4000 sub-datasets, each one consisting of all distinct pairs
that can be obtained from 100 points, that is, 4950 instances. Of course, only a
subset of all possible pairs of fingerprints is considered in this manner, which should
still be representative of the whole scenario. This is a quite natural approach, being
UJIIndoorLoc composed of 19861 training fingerprints, leading to almost 400 million
pairs (clearly intractable from a memory and computational point of view).

Fitness function. A bi-objective fitness function is employed. Each objective tries
to maximize Pearson correlation between the fingerprint distance values computed
by a given individual and the corresponding real-world Euclidean distances. The
first objective focuses on fingerprint pairs whose real-world distance is in the range
[0, 10) meters; the second deals with those whose distance is in the range [10,+∞)
meters. Such a choice takes into account the results reported in Chapter 3, where the
three considered fingerprint distance functions showed a rather different behaviour
in the chosen intervals. Since two objectives are used, no single best-performing
solution can be directly selected in a given population. Rather, a Pareto front of
optimal solutions can be identified, containing all non-dominated solutions.1

Counter-overfitting and termination criteria. Some methods to improve the
generalization capability of the generated solutions have been employed. First, each
of the previously-described 3 · 4000 sub-datasets were further partitioned into 90%
training and 10% validation data. The reason is as follows. At each EA generation,

1A set S of solutions for an n-objective problem with fitness function f = ⟨fi, . . . , fn⟩ is said to
be non-dominated if and only if for each x ∈ S, there exists no y ∈ S such that (i) fi (y) improves
fi (x) for some i, with 1 ≤ i ≤ n, and (ii) for all j, with 1 ≤ j ≤ n and j ̸= i, fj (x) does not
improve fj (y).
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Figure 4.3: Hypervolume for our bi-objective maximization problem. The reference
(worst) point is (−1,−1), while (1, 1) is the ideal solution.

the fitness of the individuals is established with respect to a new random selection
of 90 sets, uniformly sampled from Whole, Same Building, and Same Floor training
data. The idea is that good solutions should generalize across different selections,
resulting in a greater chance to survive over the generations, while unstable solu-
tions would be penalized. Then, to provide us with a fixed dataset against which
to consistently evaluate the behaviour of the individuals along the generations, a
random selection of 90 sets is also sampled from the validation data, only at the
beginning of the EA execution.

As for the termination criteria of the algorithm, even though an upper bound on
the number of generations is given, an early stopping strategy also has been defined,
based on the hypervolume measure. Intuitively, the hypervolume of a Pareto front
measures the volume of the search space, bounded by a given reference point, that is
weakly dominated by the points on the Pareto front [43]. A graphical account of the
hypervolume of a given front in the context of our bi-objective maximization problem
is provided in Figure 4.3. The assumption is that populations of heterogeneous and
well-performing solutions are characterized by a high hypervolume. Turning to the
specific early stopping criterion, at each generation, the fitness of the individuals
is evaluated not only on the training set data, but, as previously mentioned, also
against a fixed (through the generations) selection of 90 sets, uniformly sampled from
Whole, Same Building, and Same Floor validation data. This allows to assess the
generalization capability of the solutions on data which are different from those used
to guide the evolution. The training is interrupted when no sufficient improvement
over the validation hypervolume is observed for a given number of generations. At
the end of the EA execution, to foster generalization, the population with the highest
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validation hypervolume is returned.

Crossover. Given two parent solutions, that are, two computation trees, two indi-
viduals are generated by one-point crossover (DEAP’S cxOnePoint). The operator
randomly chooses a node in each individual and exchanges the subtrees rooted at
it. To avoid bloat, that is, an excessive increase in mean program size without a
corresponding improvement in fitness, we placed a static limit of 17 on the children
height (DEAP’s staticLimit), following once more a suggestion from Koza [127].
When an invalid (over the height limit) child is generated, it is simply replaced by
one of its parents, randomly selected.

Mutation. Various operators are considered, among those available in DEAP,
each one chosen with uniform probability: mutUniform, which selects a node in a
given individual, and exchanges it with a randomly generated (mathematical) ex-
pression; mutInsert, that inserts a new subtree at a random position in an individ-
ual; mutNodeReplacement, that replaces a randomly chosen node in the individual;
mutEphemeral, that changes the value of a single constant used within an individual;
mutShrink, that randomly chooses a subtree in an individual and replaces it with
one of the subtree’s arguments (also randomly chosen). As before, to control bloat
we impose a staticLimit constraint with a tree height of 17.

Selection. As for the selection criterion, in order to promote population diversity,
we rely on the elitist strategy implemented in NSGA-III [66], based on the concepts
of reference points and niche preservation.

The following hyperparameters are used by the EA: Population size = 1000,
Crossover probability = 0.7, Mutation probability = 0.3/ 2

√
num gen, Max gen-

erations = 500, Hyp window (early stopping) = 100, Min hyp increment (early
stopping) = 0.001. Optimal values for population size, crossover probability, and
mutation probability have been determined through grid search over validation set
data, respectively considering the intervals [500, 1000, 5000], [0.5, 0.6, 0.7, 0.8], and
[0.1, 0.2, 0.3] (the latter to be divided by the squared root of the EA generation in-
dex). Observe that mutation probability is rather high at the beginning to ensure
an effective exploration of the search space; it then rapidly decays with the number
of generations, to allow the exploitation of the most promising solutions that have
been found. As for the running time of the algorithm, 500 is a rather conservative
upper bound to the number of generations of the EA [205], although the evolu-
tionary process may be interrupted earlier (given the early stopping strategy) if an
increment of less than 0.001 in the validation hypervolume is observed over the last
100 generations.

4.3.2 Workflow of the experiments

We executed the proposed evolutionary algorithm with the tuned hyperparameters.
During its run, we kept track of the Pareto front at each generation, ultimately se-
lecting the one that achieved the highest hypervolume with respect to the validation



76 4. Fingerprint Meta-distance Learning with Genetic Programming

split of the dataset UJIIndoorLoc. We then filtered the front keeping just the points
exhibiting a fitness higher than a baseline provided by Cosine (with respect to both
the objectives), being it the fingerprint distance function most capable of preserving
spatial information according to Chapter 3 outcomes. Among the remaining points,
we selected the final solution according to the criterion suggested by De La Fuente
et al. [65], that is, by computing the hypervolume covered by each point in the
Pareto front and selecting the one associated with the highest hypervolume.

The extracted solution (i.e., the resulting meta-distance) was evaluated over the
official test set of UJIIndoorLoc. First, we considered its capability of preserving
spatial information, again, establishing the Pearson correlation value with respect
to real-world location distances, at the usual three different granularity levels (pairs
from all the dataset/same building/same floor). Then, the meta-distance perfor-
mance was determined within a position estimation task, assessing its accuracy
when used as the similarity metric within a (k-)Nearest Neighbor approach. Note
that parameter k, i.e., the number of neighbors which are used to determine the
final prediction, must be properly set in order to obtain optimal results. Since in
this work we are not interested in providing best-in-class positioning performance,
but rather in evaluating the relative difference among several fingerprint distance
functions, we simply set k = 3.

For the sake of comparison, we also confronted the behavior of the proposed
meta-distance and those provided by Euclidean, Matusita, and Cosine fingerprint
distance functions, both in isolation and combined through machine learning algo-
rithms. In the latter case, we modeled the problem as a regression task, with the
three distance functions as the predictors, and the real-world Euclidean distance
among the locations as the target. To avoid learning biases, the training and vali-
dation sets were the same as those generated for the evolutionary algorithm (90-10
split). The considered models were XGBoostRegressor [51] and Scikit-learn’s [202]
LinearRegression, tuned with respect to the validation set by means of Hyperopt
library [24]. The choice of relying on such approaches is motivated by: (i) the state
of the art performance still offered by XGBoost on tabular data [30]; (ii), the sim-
plicity of the linear regression model, that makes it another quite natural baseline;
and (iii), the fact that our choice allows us to compare the performance provided
by symbolic and conventional regression approaches.

To assess the generalization capability of our meta-distance function, as well as
that of the contenders, we applied them also to the test sets of the other 15 datasets,
without any kind of re-training or adaptation.

All previous experiments were instrumental for a final, important investigation,
that is, determining the relationship between the capability of a fingerprint distance
function of preserving spatial information and its performance in the positioning
task.

The source code needed to replicate the experiments is available at the website
https://github.com/dslab-uniud/genetic_indoor.
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4.4 Results

In this section, we first illustrate the meta-distance generated by the proposed EA.
Then, the ability of the synthesized meta-distance of preserving spatial relationships
as well as its accuracy in a position estimation scenario are discussed and compared
to those of the contenders. In addition, we run an analysis of the generalization
capabilities of the approaches taken into consideration for both tasks. We conclude
the section with an examination of the correlation between the two tasks, that are,
the capability of a fingerprint distance function of preserving spatial information
and its positioning performance.

4.4.1 The generated meta-distance

The raw meta-distance function generated by the proposed genetic programming
solution was originally encoded by a tree of height 17, with 88 nodes. After a
post-processing step, that removed all redundant operators, we ended up with the
computation tree shown in Figure 4.4, which has a height of 15 and consists of 60
nodes. Notice that the computation tree makes use of all three considered fingerprint
distance functions, with a large prevalence of Cosine and Matusita. Observe also
that the output of the function may be negative. This is not a problem, as it can
still be relied upon to identify the closest neighbors of a given fingerprint.

4.4.2 Correlation of spatial and fingerprint distances

To perform an objective comparison with the results reported in Chapter 3, we set
up a similar evaluation framework, determining the correlation of the considered
distances over 100 randomly-selected samples of UJIIndoorLoc’s test split, each one
consisting of 400 fingerprints. For each pair of fingerprints, we computed the real-
world spatial 3D distance, as well as the fingerprint distances computed according
to the approaches described in Section 4.3.2. Then, we evaluated the Pearson corre-
lation between the spatial distance and each fingerprint distance. The experiments
were repeated considering fingerprints taken from the entire dataset, as well as from
the same building and the same floor. It is worth pointing out that the random
sampling approach allowed us to test the average performance of each fingerprint
distance function, as well as its stability across the samples, that intuitively represent
different indoor scenarios.

Figure 4.5 shows a boxplot of the correlation performance for the different fin-
gerprint distance functions, obtained from the 100 samples at the three considered
granularity levels. Notably, the GP-based meta-distance function consistently scores
among the best performing ones. Indeed, its median correlation is only surpassed
by XGBoostRegressor at the Whole granularity level (0.624 vs 0.641), and it is al-
most matched by Cosine at the Same Floor granularity level (0.826 vs 0.817). This
is confirmed by a permutation test with a significance level of 0.05, with the null
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Figure 4.4: The computation tree generated by the evolutionary algorithm, where
ST (·) nodes represent parameterized instantiations of the ST (A) subtree. The meta-
distance makes use of all three considered fingerprint distance functions.

hypothesis that the median of our approach is not greater than that of the given
competitor. Its outcomes are shown in Table 4.1. Each cell of the table reports
the p-value of the genetic distance with respect to the other approaches. As for the
meta-distance stability, the widths of the boxplots are on par with the competitors
with respect to the Whole and Same Floor granularity levels, while it shows a higher
instability (slightly less than XGBoostRegressor) in the Same Building scenario.

The boxplots allowed us to gather a general understanding of the performance
of the fingerprint distance functions. To establish if some specific correlation pat-
terns emerge at different spatial distance intervals, let us analyze a single repre-
sentative run. Figure 4.6 and Figure 4.7 show the distance function behaviours at
different granularities, respectively considering classical and machine learning-based
approaches.

Classical fingerprint distance functions have a tendency towards overestimation,
especially for what concerns shorter distances. Euclidean and Matusita exhibit a
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(a) All

(b) Same building

(c) Same floor

Figure 4.8: Correlation values at different maximum spatial distances and granular-
ity levels. Each point x represents the correlation value looking at spatial distances
smaller than x only. Each curve reports the median correlation value over 100 iter-
ations (solid line), while its shaded area refers to the interquartile range. Overall,
the GP-based meta-distance obtains higher correlations over the different scenarios
and distance thresholds.
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Table 4.3: Positioning performance, where the Avg Positioning Error must be eval-
uated together with the Success rate.

Dataset
Success rate (higher is better) Avg Positioning Error (lower is better)

Euclidean Cosine Matusita LinReg XGBReg Genetic Euclidean Cosine Matusita LinReg XGBReg Genetic

DSI 1 - - - - - - 5.5738 5.4187 6.1188 5.9691 5.6679 5.1711
DSI 2 - - - - - - 5.1398 4.7864 5.3984 5.3557 5.1261 4.7817
LIB 1 0.9984 0.9990 0.9974 0.9984 0.9974 0.9990 2.7868 2.7940 2.9448 2.9753 2.9736 2.7330
LIB 2 0.9878 0.9997 0.9840 0.9990 0.9939 0.9997 3.7722 2.8403 3.8380 3.1351 3.1647 2.8286
MAN 1 - - - - - - 2.7508 2.7242 3.1164 4.2938 7.6868 2.5517
MAN 2 - - - - - - 2.5739 2.6138 2.8530 5.4599 10.4590 2.0456
SIM 001 - - - - - - 2.7576 2.9739 2.7622 16.1441 27.8726 2.9579
TUT 1 0.8776 0.9061 0.8122 0.8408 0.8939 0.9102 7.6248 6.4019 8.1684 7.8799 7.4410 6.2686
TUT 2 0.7330 0.8864 0.6420 0.7330 0.7727 0.9318 12.2685 11.1418 14.5394 13.2493 12.0263 9.0762
TUT 3 0.8841 0.8932 0.8659 0.8656 0.8102 0.8881 8.2669 7.8789 8.6782 8.7538 11.2988 8.3370
TUT 4 0.9527 0.9498 0.9397 0.9225 0.9067 0.9555 5.5533 5.5748 5.8400 6.3594 7.5121 5.6289
TUT 5 0.8065 0.8921 0.7424 0.7933 0.8024 0.9593 6.6869 6.3685 7.2852 7.7890 9.8523 6.4486
TUT 6 0.9994 0.9986 0.9989 0.9950 0.9833 0.9996 2.6439 2.4867 2.9754 3.5034 4.1593 2.7035
TUT 7 0.9903 0.9906 0.9860 0.9729 0.9427 0.9903 2.5399 2.5727 2.8096 3.7454 5.1171 2.6483
UJI 1 0.8884 0.9199 0.8326 0.8704 0.9163 0.9226 7.7856 7.5601 9.0035 9.2227 7.7501 6.8471
UTS 0.9261 0.9235 0.9314 0.9182 0.8865 0.9261 7.5346 7.4480 8.0462 8.1390 8.8102 7.8682

Borda∗ 49 38 66 65 67 29 43 32 73 80 79 29
∗A lower value denotes an overall better position in the rank.

More precisely, for any given instance, the building is predicted first, following a
distance-weighted voting procedure within the (3-)Nearest Neighbor model. Then,
in a similar way, the floor is determined, though considering only instances belong-
ing to the predicted building. Finally, the position coordinates are computed as a
weighted centroid, considering only those neighbors that belong to the estimated
building and floor.

Table 4.3 reports the results obtained on the official test splits of all the consid-
ered datasets, taking into account the success rate, that is, the fraction of instances
for which both building and floor were accurately predicted, and the average po-
sitioning error (in meters). Notably, in the considered setting, the latter metric
cannot be considered in isolation, as the positioning error is evaluated only for those
instances where building and floor have been correctly identified. This is a pretty
natural approach, since whenever a device is associated with the wrong floor or
building, information at a finer granularity becomes meaningless.

The main outcome is that the proposed meta-distance matches and often sur-
passes the positioning performance provided by the contenders. This is clear from
the (inverse) Borda counts [29] (ranked voting system) reported at the bottom of
Table 4.3. They have been obtained by summing the ranking position of each dis-
tance over the different datasets (rank 1 = best, rank 6 = worst), and show that
the genetic distance cumulatively has a lower (thus, better) position in the ranks.

4.4.4 On the correlation-positioning relationship

In Section 4.4.2, we discussed the ability of distance functions of preserving spatial
information, in terms of the correlation between fingerprint distances and those
of the associated real-world locations. Then, in Section 4.4.3, we illustrated their
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positioning performance. In both cases, the genetic-based meta-distance turned
out to be the overall best performing solution. In this section, we explore the
relationships between the two tasks, assessing the correlation between the area under
the curves of Figure 4.8 and the corresponding positioning accuracy. The conjecture
to be verified is that a larger area should be associated with a lower positioning
error. To assess it, we performed some experiments based on the UJIIndoorLoc
dataset test split, which have been designed as follows.

First, we determined the 95th percentile of the real-wold spatial distances of
all 3rd neighbors in the considered (k-)Nearest Neighbor models, which resulted
in 21.6 meters. Then, following the same approach as in Figure 4.8, we built a
different set of curves for each building/floor combination, considering only spatial
distances in the interval [0, 21.6]. Next, for each distance function and building/floor
combination, we established its average positioning error and the area under its
previously-generated curve. As a result, we obtained a list of positioning errors
and a corresponding list of areas under the curve, containing values that span all
distances and building/floor combinations. Finally, to establish whether there exists
a meaningful relationship between the two quantities, we computed Spearman’s
rank-order correlation between the two lists (negating the areas).

Results are shown by the boxplot in Figure 4.10. The median correlation value
is well above 0.6, indicating that, in general, distance functions that exhibit a higher
(negated) area also lead to better positioning accuracies. The rather high interquar-
tile range should not come as a surprise, as the correlation values refer to build-
ings/floors that may be very different from one another. Last but not least, note
how the lower whisker, corresponding to the first quartile of the data, extends below
-0.4. This is a striking result as it means that, in some cases, a higher overall cor-
relation actually corresponds to a higher positioning error. The reason behind this
phenomenon, that upon further analysis seems to characterize two specific build-
ing/floor combinations, is still unclear and will be investigated in further studies.
To such an extent, we plan to collect a new fingerprint dataset, designed to represent
specific indoor scenarios in a controlled fashion.

4.5 Discussion

In this section, we discuss the strengths and limitations of the proposed solution.
First of all, as shown by the pictures in Section 4.4.2, we would like to point out
that combining classical fingerprint distance functions into a meta-distance is an
approach that it is worth pursuing. The patterns exhibited by the three learning
methodologies are, indeed, clearly different from those of classical functions, as well
as from each other. This latter point suggests that the choice of the underlying
learning algorithm is of primary importance. In the present case, according to the
performed analyses, the genetic-based meta-distance behaves the best, both from a
qualitative and a quantitative point of view.
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Figure 4.11: Positioning task scenarios within the (k-)Nearest Neighbor framework.
Left: weighted centroid (X symbol) calculated with the 3 instances closest to the
real position (star symbol). Right: best-performing triplet.

not achieve a perfect correlation. A very large area is indeed not sufficient to achieve
the best performance in localization. Consider, for instance, a fingerprint distance
function which achieves a Pearson correlation value of 1.0 with respect to spatial dis-
tances, meaning that the real-world distance proportionalities are perfectly mapped
in the fingerprint space. In that case, running a (k-)Nearest Neighbor model in the
fingerprint domain would extract the same neighbors as if it was run on the corre-
sponding real-world location coordinates. Figure 4.11 (left) shows a situation where
perfectly knowing the 3 nearest neighbors does not lead to the smallest positioning
error, if a weighted centroid is considered for the prediction (as in Section 4.4.3).
The best candidates to determine the centroid would have been, instead, those re-
ported in the scenario on the right. As already pointed out, we did not look for the
best possible algorithm to employ for localization, meaning that other algorithms or
variants of the used (k-) Nearest Neighbor model could lead to further improvements
when paired with the proposed meta-distance.

To summarize, the developed meta-distance is able to combine classical finger-
print distance functions effectively, exploiting their best characteristics both to pre-
serve higher spatial information in the fingerprint space and to achieve a better
performance in the positioning task. In addition, the achieved results strengthen
the idea that the correlation between spatial and fingerprint distances must be fur-
ther investigated, in particular concerning its relationship with the positioning error
and the possibility to use the correlation as a proxy task for localization. Nonethe-
less, given the complexity and generality of the proposed approach, we believe that
no further improvement can be achieved by combining classical fingerprint distance
functions only. This paves the way for a new research direction, that is, the de-
velopment of novel, generalizable distance functions by means of metric learning
approaches.
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4.6 A glimpse of the road ahead: deep metric

learning for continuous similarities

Before deviling into our proposal to solve the goal of obtaining an optimal metric for
fingerprinting, which incorporates spatial information, we would like to discuss why
in light of the conclusions we just witnessed this line of research could be promising.

As we said, our investigation of genetic programming showed that we can learn a
metric with good positioning performance by an optimization procedure that maxi-
mizes the correlation between the distances measured in the fingerprint vector space
and the corresponding distances observed in the real world. Thus, to learn the
metric we do not need to know the location of each fingerprint, but rather just the
spatial distances among a set of pairs of fingerprints. However, the spatial distance
between two fingerprints can be derived by relying on other sensors, such as the
inertial measurement units (IMU). This suggests that if we have a system passively
collecting fingerprints and IMU data, we can obtain all the information we need to
learn a metric in crowdsourcing, without requiring the users to input any knowl-
edge, just wardriving. Of course, this is not enough to perform positioning, since
we will have a (possibly very good) metric to compare fingerprints, whose output
values are strongly aligned with the spatial domain. Nevertheless, if we have a very
good metric, we only need very few labelled fingerprints, as we can reliably esti-
mate the distances (short or long) from them. This pipeline would lead us towards
having semi-supervised indoor localization, reducing by a large margin the effort
needed to build and maintain the radio-map. Moreover, the metric could be easily
updated continuously at the online time, limiting issues arising from changes in the
environment.

Given the result we saw in this chapter, we know that learning a metric starting
from the effects of another set of metrics does not seem to be an approach capable
to solve optimally our goal. Thus, to improve in this respect, we make use of deep
metric learning (DML), which, informally, aims to learn similarity metrics in an
end-to-end fashion with deep neural networks. However, deep metric learning has
mostly [124] been defined for binary supervision and rankings [89, 278], making it
unfit for our setting. In this section, we are going to provide an overview of how
to extend it for continuous similarity, reporting some preliminary results applied to
fingerprinting.

4.6.1 Deep metric learning in a nutshell

Let’s consider a batch of multivariate training data X = {x1,x2, . . . ,xN}, such
that xi ∈ Rd, and the corresponding set of labels Y = {y1,y2, . . . ,yN}, such that
yi ∈ Rb. The objective of deep metric learning is to learn the parameters θ of
a neural network ϕ(·; θ) : Rd → Rz, according to a given loss function L which
constrains to map closer elements that are similar and more distant those that are



4.6. A glimpse of the road ahead: deep metric learning for continuous similarities89

Original feature space Deep metric learning model using a siamase network Resulting latent space embeddings

Figure 4.12: Graphical account of deep metric learning general workflow (adapted
from [120]).

dissimilar from each other, in an z-dimensional space. A graphical account of DML
is reported in Figure 4.12. Observe that the final layer of ϕ has dimension z and its
output, an embedding, is often L2-normalized with a unit norm, i.e., zi = ϕ(xi)

∥ϕ(xi)∥2
,

with Z =
⋃N

i=1 zi.

DML has been developed primarily by the computer vision community for tasks
such as face recognition, person re-identification, zero-shot and self-supervised learn-
ing. The differences among approaches are given by two fundamental elements: the
loss function and the sampling strategy.

Starting from the latter, DML is based on comparing elements. As a consequence,
we recognise different types of pairs (or, more generally, n-uplets) of examples: pos-
itive, i.e., two elements are similar; negative, i.e., two elements are dissimilar. The
embedding space is learned by comparing the distance measured between pairs,
minimizing a loss function that penalizes large distances between positive pairs and
small distances between negative ones. As a result, it is paramount to avoid useless
comparisons and construct a set of pairs composed only of meaningful elements; as
a matter of fact, if the model already maps the relationship among a set of elements
correctly it will not learn anything more from them. This a complex issue to deal
with during training, and if not treated correctly might lead to very slow learning
convergence and insufficient performance on those sets of elements that are poorly
represented.

Many loss functions have been developed for DML, starting from the contrastive
[57, 272] and triplet loss [233]. To give an idea about DML losses, let’s consider
the latter, which is based on comparing the distances between an anchor point
za, a positive point zp (which is similar to the anchor point), and a negative
point zn (which is dissimilar to the anchor point). Thus, given a set of triplets
{(za, zp, zn)i|za, zp, zn ∈ Z}Mi=0 computed over the batch, the triplet loss can be
defined as follows:

Ltriplet =
M
∑

i=0

[∥zai − zpi ∥ − ∥zai − zni ∥]+ , (4.1)
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Figure 4.13: Graphical example of some DML loss functions (adapted from [120]).

where [·]+ = max(0, ·). The concept behind this loss has been extended in the
literature in various directions (see Figure 4.13 for a graphical insight), in order to
cope with the fact that it is unproductive to just consider all the possible triplets
that we can construct from the batch and that the gradient contribution brought
by each sample is constant irrespective of the error [123, 244, 277, 279, 296].

4.6.2 A preliminary proposal for continuous similarities

Let’s suppose to have a meaningful semantic way, i.e., a function s(·, ·) : Rb×Rb → R,
to evaluate the distance between a pair of elements xi and xj by looking at their
labels yi and yj, respectively. From a general perspective, our objective is to find
an embedding mapping ϕ such that

s(yi,yj)

s(yk,yh)
∝ ∥zi − zj∥22
∥zk − zh∥22

. (4.2)

The formula in Eq. 4.2 exactly encodes the notion of proportionality we are
interested in: the ratio (proportion) between the distances of the embedded elements
in the latent space shall resemble the original one between the similarities computed
on the labels. Note that s is a domain-dependent function (e.g., the Euclidean
distance if we are dealing with labels representing spatial coordinates). Moreover,
note that rather than the normalized Euclidean distance, the (angular) distance
in the latent space could be computed using the cosine one, since ∥zi − zj∥22 =
2− 2⟨zi, zj⟩, with ⟨·, ·⟩ denoting the dot product.

To achieve the goal of having a loss function preserving the proportionality of the
distances between elements while moving between target and embedding space, two
key properties have to be satisfied. The first one is that similarities of the embedded
elements need to keep the relative ordering of the similarities evaluated across the
labels. That is, for each training element xi ∈ X , given the set of similarities
involving it Si = {s(yi,yj) | j ∈ {1, . . . , N}, i ̸= j}, and the corresponding set of

distances in the latent space Ŝi = {∥zi − zj∥22 | j ∈ {1, . . . , N}, i ̸= j}, if we sort Si
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and Ŝi then the two elements originated by the pair (i, j) must be located in the
same position in both the sorted sequences. Mathematically, what we would like
to have is similar to an order-embedding, i.e., a function f both order-preserving
(s(yi,yj) ≤ s(yi,yk)⇒ ∥f(xi)− f(xj)∥22 ≤ ∥f(xi)− f(xk)∥22) and order-reflecting
(∥f(xi)− f(xj)∥22 ≤ ∥f(xi)− f(xk)∥22 ⇒ s(yi,yj) ≤ s(yi,yk)).

This is the first main difference with respect to deep metric learning working
only with categorical labels. Although our approach may fit in the ranking-based
category of deep metric learning ([219]), in the classical setting the mapping imposes
a weaker constraint, since it needs to preserve similarity defined in a binary way,
i.e., s(yi,yj) = {0, 1}. Additionally, while in a categorical setting s(yi,yj) = 0 and
s(yi,yk) = 0 is satisfied for both yj = yk and yj ̸= yk, in the continuous case it is
not true, suggesting as inter-instances relationship must be learned, resulting in a
more complex manifold and thus in a harder optimization problem. It immediately
follows that a binary version of similarity is not suitable for the continuous case2, and
also the definition of positive or negative instances/tuples does not find application,
rather we have tuples characterized by strong or weak similarity.

It is worth pointing out that ranking is enough to have a deep metric learning
approach for continuous data. In fact, with a function preserving ordering between
distances when mapping the elements from the target to the latent space, we might
be able to determine the correct relative similarity among any arbitrary set of el-
ements in the latent space. However, much of the semantic that characterizes the
continuous labels and the distances among them is lost. Let’s suppose that, for in-
stance, the distance between a pair of elements is double compared to another, i.e.,
s(yi,yj)/s(yk,yh) = 2. This is very characterizing information of the continuous
setting that we would like to keep while measuring distances in the latent space (i.e.,
∥zi − zj∥22/∥zk − zh∥22 = 2). Reasoning only with rankings does not allow us to do
that.

From an mathematical perspective, let’s define S ∈ RN×N the matrix obtained
evaluating all the pairwise similarity across Y (i.e., all the possible combination of
s(yi,yj)), and Ŝ ∈ RN×N the pairwise normalized Euclidean distance matrix on Z.
Let’s consider the matrix version of argsort : RN×N → RN×N which in each output
row produces the indices that would sort the original input row. We can define the
proportional deep metric loss function as:

Lprop =
1

N

N
∑

i=1

N
∑

j=2

1

j − 1

j
∑

k=2

(
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,

(4.3)

2Unless thresholds are introduced. However, thresholds might completely depend on the do-
main, thus being rather arbitrary.
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where [·]+ = max(0, ·), Π = argsort(S), SΠ and ŜΠ are the matrixes S and
Ŝ sorted according to Π, respectively3. Observe that the iterative sequential scan-
ning of the ordered information given by the chain of summations ensures all the
properties we are interested in. By construction, 0 < SΠ

i,k/S
Π
i,j ≤ 1, since the nu-

merator is always smaller or equals to the denominator. ŜΠ
i,k/Ŝ

Π
i,j has a different

behaviour depending on whether latent space distances of the considered elements
are in the correct order or not. If the ordering is correct, i.e., similar elements are
closer than dissimilar ones, 0 < ŜΠ

i,k/Ŝ
Π
i,j ≤ 1 and sign([ŜΠ

i,k/Ŝ
Π
i,j − 1]+) = 0. Thus,

when ordering is satisfied, the loss optimizes the absolute error between the true and
the actual proportions of the distances, leading to 0 ≤ |(SΠ

i,k/S
Π
i,j) − (ŜΠ

i,k/Ŝ
Π
i,j)| ≤

1 − (SΠ
i,k/S

Π
i,j). On the other hand, when the ordering is incorrect, ŜΠ

i,k/Ŝ
Π
i,j ≥ 1

and sign([ŜΠ
i,k/Ŝ

Π
i,j − 1]+) = 1, leading to the loss component being 1− (SΠ

i,k/S
Π
i,j) <

2−1/(ŜΠ
i,k/Ŝ

Π
i,j)−(SΠ

i,k/S
Π
i,j) < 2. Such a formulation ensures two different properties.

First, when dealing with unordered samples the loss contribution is always strictly
greater than the ordered case, prioritizing correct ordering over the preservation of
the proportionality, as indeed the former is a prerequisite of the latter. Second, the
resulting function is continuous.

4.6.3 First results, known issues, and current limitations

In Figure 4.14, we report some very preliminary results applied to UJI 1 dataset,
following the same protocol used for the already discussed analysis.

We can see some remarkable facts. First, there is an overall improvement in the
quantitative outcomes, with an average correlation higher than the classical metrics
(Figure 4.14a). This result is also confirmed qualitatively by Figure 4.14b, where
the points lie in a line following the optimal case scenario. However, there is still a
major challenge that needs to be addressed. Looking closely at both Figure 4.14c
and Figure 4.14d, we can see that the performances for short distances, i.e., the
left-hand side of the figures, are lower than those of the contenders. Beyond making
Figure 4.14a and Figure 4.14b partially overoptimistic, this fact must be addressed
in order to have an optimal metric, as those distances are the most informative from
a point of view of positioning. We are currently working on addressing such an issue,
and we conclude by giving an idea about why it is happening. First, our problem
is affected by a strong imbalance in the data distribution. To understand why let’s
consider a random distribution of points. Given a single point, if we take into
account all the pairwise distances, we immediately see that there are a few points
very close to our anchor and a considerable amount of medium-far ones. Second,
when we focus on short distances, the discriminative capacity of the fingerprints
decreases. Thus, it becomes difficult for the neural network to discriminate between
two instances representing similar locations but with different fingerprints due to

3Note that, in practice, a small quantity ϵ = 1e−10 is added to those values that might lead to
numerical issues.
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(c) Ranking correlation values at different maximum spatial distances (same building)

(d) Correlation values at different maximum spatial distances (same building)

Figure 4.14: Preliminary results of proportional DML applied to UJI dataset
(cont’d).

mining). Given what we said, it is evident that these hard samples are exactly those
pertaining to short distances, the focus of our future work.
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Let’s Forget About Exact Signal

Strength

The popularity of indoor positioning based on WiFi fingerprints over other solu-
tions is largely due to its low cost and high precision [285]. In particular, there
is no need to deploy any special infrastructure, as WiFi APs are nowadays widely
adopted. Fingerprinting can exploit them directly [121], and knowledge of the po-
sitions of APs is not necessary [103, 285]. On the other hand, some well-know
issues affect this technique, preventing its wide adoption as the indoor counterpart
of GNSS. The most significant challenge is related to radio map construction and
maintenance. These tasks are labour intensive, time-consuming, and changes in the
environment may force their repetition [121, 177, 211]. Another major challenge
pertains to the uneven indoor propagation of WiFi signals, which negatively affects
the accuracy of position estimation. As an example, RSS fluctuations are typically
observed, caused by multipath effects resulting from obstacles, random noise, body
attenuation, changes in the WiFi network, and device heterogeneity [177, 262].

A possible workaround to deal with some of the above-described issues, only
partially explored in the literature, involves relying on specific representations of
fingerprints. For instance, the authors of [284] propose fingerprint spatial gradient,
that exploits spatial features of fingerprints from multiple adjacent locations to
reduce spatial ambiguity and temporal instability of classical fingerprinting. Another
alternative is to make use of ranking-based fingerprints, where the RSS information
is only exploited to sort the APs detected at each location in decreasing order
[54, 164]. As a result, sequences of AP identifiers, without any explicit information
on their RSSs, are considered. This allows to better deal with problems such as
device heterogeneity and signal perturbations, even though, in the past, the general
performances brought by this kind of representation were lower than full-fledged
fingerprint-based approaches [54, 136, 155, 163, 164, 223, 254].

As a matter of fact, it emerges that in order to reduce the negative impact of the
issues affecting fingerprinting, it is often necessary to trade off other characteristics,
frequently its accuracy. In the work described in this chapter, we move a step forward
in this area, by exploiting ranked-based representation of the fingerprints jointly with
deep learning. The aim is to retain the advantages of ranked fingerprinting, without



98 5. Let’s Forget About Exact Signal Strength

getting a reduction in performance. To the best of our knowledge, no previous
attempts have been done in this direction. Specifically, the motivation for such an
approach is to reduce as much as possible the influence of the above RSS issues,
that severely affect position estimation. The ranking-based representation provides
a more stable (and extremely compact) source of information for the model. In fact,
the relation encoded by the rankings has already been shown to reduce errors related
to RSS [164]. Consider, for instance, a scenario with multiple, heterogeneous devices,
which is quite common in indoor positioning. While most probably two devices have
a different view of the RSSs associated with the same APs for the same location,
e.g., due to their different hardware, the corresponding two ranking representations
are typically close to each other, e.g., thanks to the fact that rankings are invariant
to bias and scaling [155, 164].

The true novelty of our proposal is that of determining the relationship between
rankings and indoor locations by means of a Recurrent Neural Network (RNN). Such
a model is commonly used to handle sequences of data, while here it is exploited
to learn ordinal signal strength relations between APs. The input of the network
is a single ranking representing a fingerprint, where each ranking position assumes
a role equivalent to a time point. The output is the location of the user, that is
determined by training the RNN to solve a classification-like problem.

In order to thoroughly explore this novel idea, two models are developed. One
considers a flattened representation of the target location, e.g., a string consisting
of the concatenation of the identifiers of the building, the floor, and the room; the
other uses a structured/hierarchical representation. Moreover, tests evaluating both
the number of ranking positions that should be considered and the robustness of the
solution to signal noise perturbation are carried out.

The proposed approach is evaluated on three of the well-known publicly available
indoor datasets described in Section 1.3.3. As we will see, the achieved results turned
out to be comparable to those of state-of-the-art systems that rely on full-fledged
fingerprints with RSSs (and possibly far more complex models), performing better
than several solutions developed in the last years and tested on the same reference
datasets. In addition, robustness to RSSs fluctuations is strongly supported by
the results obtained by noise-added performance evaluation. Last but not least,
the proposed solution can be applied straightforwardly to any fingerprint-like data,
neglecting the complex preprocessing phases that characterise other approaches.

The rest of the chapter is organised as follows. In Section 5.1 we present an
overview of some relevant contributions in the context of deep learning and finger-
printing. Section 5.2 describes the proposed approach. It also provides the necessary
background knowledge on Recurrent Neural Networks, and ranked fingerprinting
representation. In Section 5.3, an account of the experimental evaluation pipeline is
given. Finally, in Section 5.4 a comprehensive and detailed analysis of the achieved
results is carried out.
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5.1 Deep learning for indoor positioning systems

Recently, a huge amount of work tackled the positioning problem through deep
learning [81]. Here we report some examples. In [193], a building/floor classification
deep neural network is proposed, aimed at reducing the complexity of parameter
tuning and filtering. It combines a stacked autoencoder with a two-layer classifier.
In [122], a scalable deep learning model consisting of a stacked autoencoder combined
with a feed-forward neural network is presented. The autoencoder is used to reduce
the dimension of the feature space, while the feed-forward component focuses on the
classification task for building, floor, and room prediction in a hierarchical fashion.
In [247], a comparison between a single neural network stacked autoencoder and
an ensemble of multiple different networks is carried out. The authors argue that
the ensemble, whose performance is shown to be better than that of the single
model, can reduce the effects of RSS fluctuations. In [245], a new indoor dataset is
introduced, and three deep learning models for multi-level positioning are developed.
A stacked autoencoder with a classification layer is exploited to handle building
identification, while two slightly different models, based on the combination of a
stacked autoencoder with a one-dimensional convolutional neural network, are used
to handle floor classification and position prediction. In [112], multiple convolutional
neural networks are employed to predict a position starting from RSS time series
encoded as multi-channel images. Each network deals with a specific hierarchical
level of the domain, e.g., building or floor, and the choice of which model to use
is driven by the prediction result for the preceding level of the hierarchy. Relying
on sequences of signals allows one to reduce the noise and randomness generally
affecting single point fingerprinting. In particular, the authors show that 100%
accuracy is achieved in predicting building and floor for a well-known public indoor
dataset. In [238] WiFi and magnetic field are encoded together as high-resolution
images, so as to tackle the positioning problem, which is considered as a computer-
vision one, by automatically learning the mapping between ground-truth positions
and such generated data. In the last years, several works started investigating the
usage of channel state information (CSI), that is, a particular data source related
to the WiFi channels, yet not detectable by all WiFi-enabled devices, that showed
promising and accurate results in combination with deep learning approaches [83,
280, 287]. CSI is exploited also in [149] where, although focusing on device-free
fingerprint positioning, the authors propose a deep learning approach to deal with
fingerprint inconsistency issues, formulating the problem as a domain adaptation
task (e.g., to adapt to changes that over time affected a given scenario).

Some other methods analyze fingerprints employing recurrent models, such as
Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) net-
works. This allows one to manage sequential information that might arise in posi-
tioning, for instance, when dealing with trajectories (i.e., sequences of position/fin-
gerprint) or odometry. In [105], various Recurrent Neural Networks (RNN) models,
developed to deal with the positioning problem employing trajectories of full-fledged
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fingerprints, are built and confronted. The authors claim that the proposed architec-
tures are capable of addressing problems such as spatial ambiguity, RSS instability,
and RSS short collection time per RPs. In [14], a double RNN model for fingerprint-
based trajectories is developed. The first network is in charge of providing a rough
estimation of the fingerprint trajectory; the second network, starting from the out-
put of the first one, carries out a location filtering, resulting in the final sequence
of locations for the input trajectory. To achieve such a result, the two networks are
trained together with a common loss function. In [111], two models, one for floor
classification and the other for position identification through regression, are pro-
posed. Both of them are implemented by means of RNN and LSTM, showing that
the latter has a better performance. Moreover, the authors show that no appreciable
gain in the accuracy is obtained by adding layers (i.e., stacked/deep RNN/LSTM),
a conclusion also shared by [226].

Our work differs from all the previously-described ones in various respects. We
use RNNs in combination with a single fingerprint, not trajectories. Moreover, we
do not exploit classical fingerprints with explicit RSSs, but we rely on just a ranking-
based representation of them. Finally, we manage the hierarchical structure of the
indoor scenario with a single model, instead of combining multiple ones.

5.2 Recurrent models with ranking-based finger-

printing

We start this section by providing a brief introduction to Recurrent Neural Networks.
Then, we formalize the fingerprint representation employed in the work, discussing
its main advantages and limitations. Finally, we detail the two models developed in
this work.

5.2.1 Preliminaries on RNN

Recurrent Neural Networks (RNN) are a particular class of neural networks often
employed to deal with sequential data [222]. The idea behind RNNs is to model
each time instant of a sequence with a unit. More precisely, given a sequence s
with |s| = Ts, the i-th unit will be fed with the i-th time instant of s, denoted by
s⟨i⟩. Units are linked together to make available at time t a state representation
of the elaboration at time t − 1. Different RNN architectures can be exploited for
different tasks. Given x, with |x| = Tx, an instance of the training set with target
variable y, and a prediction ŷ for y (this notation will be adopted for the rest of the
chapter), Figure 5.1 depicts different RNN architectures with examples of possible
applications.

Despite their many advantages, simple RNNs struggle to handle long-term de-
pendencies among their input elements. To overcome this limitation, two different
kinds of unit have been proposed: Gated Recurrent Unit (GRU) [56] and Long
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1 ≤ j ≤ q, is the RSS value related to the AP that is given the unique identifier
j (or null if such AP is not detected). Then, a raking-based fingerprint can now
be defined as an (ordered) vector f rik = [a1, ..., az] s.t. fikah ≥ fikah+1

, 1 ≤ h < z,
where ah is an AP identifier, and z, 1 ≤ z ≤ q (although generally z ≪ q), is
the number of detected APs (i.e., with RSS different from null) in fingerprint fik
(equivalently, f rik) at the location li.

There are many advantages related to this design. First, the ranked represen-
tation is far more compact than the full-fledged fingerprint one, possibly reducing
computational, storage and networking costs. In addition, ranked fingerprints are
more robust to signal perturbations related to the heterogeneity of the devices: while
two different devices might observe different RSSs from the same APs (e.g., due to
diversities in their hardware), the corresponding ranked fingerprints will be much
similar to each other, e.g., thanks to the fact that rankings are invariant to bias
and scaling [155, 164]. Finally, classical fingerprints are sparse. At each location
only a small subset of APs is visible with respect to the total q, which is often a
large number, possibly leading to algorithmic level issues caused by the curse of
dimensionality [4].

On the negative side, the informative content associated with ranked fingerprints
is reduced. Indeed, we shift from a rich continuous representation of the RSS values
to far simpler sequences of discrete/categorical identifiers. While in the majority of
previous work this caused a degradation of the positioning performance [54, 136, 155,
254], we hereby show that an approach based on this technique can be as accurate
as those based on classical fingerprints.

5.2.3 The developed models

As we already pointed out, the goal of the present work is to devise a model robust
to RSS issues and easily applicable to different fingerprint-based datasets, while
providing an accuracy performance at least on par with existing state-of-the-art
solutions.

To accomplish the positioning task, we developed two independent deep learning
models. The first flattened model is based on an architecture similar to the one de-
picted in Figure 5.1b. More precisely, given a ranking-based fingerprint as input, the
model tries to predict the flattened representation of the position, e.g., “building A-
floor 1-room 3C” (it can be viewed as a multi-class classification problem, where
the number of classes corresponds to the number of considered training locations).
The LSTM network thus defines a mapping between the ranking fingerprint rep-
resentation and the position, without using any information about the hierarchical
structure of the building.

Unfortunately, such a representation does not allow one to reason about build-
ings, floors, and rooms independently. As an example, there is no way to tailor the
learning algorithm so as to predict, with good performance, a specific label compo-
nent. Such a capability can be of interest in applications where, for instance, floors
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are particularly relevant. Another shortcoming of this solution is that the output
layer consists of as many neurons as the total number of RPs taken into account.
Since each RP may correspond to a different room, this number can be quite large,
and the situation may further degenerate whenever RPs are defined over a grid, that
partitions a building into a set of very small tiles.

A second hierarchical model has been developed to overcome these limitations.
It produces a dedicated output for each hierarchical level of the considered scenario.
As an example, in a multi-floor and multi-room setting, it outputs two labels, re-
spectively predicting the floor and the room. The structure of the representation
allows one to reason about the produced output (post-processing), as well as to
take into account the prediction for a given level of the hierarchy when generating
a prediction for a finer one, e.g., to exploit the building prediction when predicting
the floor.

The path usually followed in the literature builds a set of hierarchically structured
models, where each model is trained to solve a prediction task for a specific level of
the hierarchy, e.g., a model for each building, and then a model for each floor of each
building. On the contrary, the proposed LSTM approach accomplishes the goal in
a very straightforward manner. The model has a structure very similar to the one
depicted in Figure 5.1e, that is, a network with an encoder-decoder structure. The
first part of the model is in charge of encoding the representation of the ranking-
based fingerprint, which is fed to the model as in the case of the flattened approach.
The output of the encoder consists of two components: the actual output and the
state representation. Both of them are used by the decoder. The actual output
is replicated and provided as input to each unit of the decoder, while the state
representation is used as the initial state for the decoder component of the LSTM.
The decoder is organized in such a way that the number of LSTM units is the same
as the number of hierarchical levels taken into consideration. Each unit is trained to
predict only a specific level of the hierarchy. This is accomplished using a multi-loss
function defined as follows:

L(̂lci , l
c
i) =

|lci |
∑

j=1

wj · Lj (̂l
c
i , l

c
i) , (5.2)

where lci = (buildingi, f loori, roomi) ∈ B × F × R, with B, F as defined in Sec-
tion 1.3.1, is the categorical information about a location li, and wj is the weight of
the loss specified for each hierarchical level j, that is, Lj, in terms of its contribution
to the total loss.

The architecture for the case of a multi-building, multi-floor, and multi-room
environment is sketched in Figure 5.3.

The approach can be easily tailored to richer (resp., poorer) hierarchical rep-
resentations by simply adding (resp., removing) the LSTM units (and subsequent
components) that are in charge of managing the corresponding parts of the output.

It is worth noticing that the usage of LSTM provides indoor positioning with
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Figure 5.3: Representation of the proposed multi-output bidirectional LSTM-based
model for a multi-building, multi-floor, and multi-room environment. B̂, F̂ , and R̂,
stand for building, floor, and room predictions, respectively.

an additional relevant feature, namely the capability of handling sequences of APs
of different lengths. They can be dealt with by introducing a dummy reference AP
and concatenating it to the APs composing the ranking-based fingerprint (padding)
just before feeding the latter to the LSTM. Another advantage of LSTM is the pos-
sibility of managing situations where new APs are identified. This often happens
some time after the positioning system has been deployed, when new APs are added
to the network infrastructure. These new APs can be dealt with by renaming them
to a specific dummy AP introduced at training time. Obviously, such an ability is
not unlimited, as if there is a substantial variation of the APs, or their placement is
considerably modified, the performance will likely downgrade, possibly requiring a
radio-map update and a (partial) retrain of the model. Even though experimental
results on one of the considered datasets (see Section 5.3.1) seem to suggest that a
quite good performance can be achieved even in these scenarios, a systematic inves-
tigation on the ability of the proposed models to resist long-term network changes
must be carried out.

Both the described models have been implemented using bidirectional LSTM,
according to the idea that a knowledge of the context, that is, a knowledge of both
stronger and weaker APs in the ranking, may provide meaningful information for the
task at hand. Bidirectionality has also been exploited for the decoder component of
the hierarchical model. Knowing the prediction for a certain level of the hierarchy
may indeed be relevant for the prediction of all the other (previous and following)
ones.

Finally, for both models, an initial spatial dropout layer is used, and dropout and
recurrent dropout are employed in all the LSTM units. Since we work in a multi-
class classification-like setting, we used categorical cross entropy as the output loss
function.
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5.3 Experimental setting

The whole project has been developed on a virtual machine hosted on Google Cloud
Platform, equipped with 8 virtual CPUs, 30 GB of RAM, and an NVIDIA P100
GPU. We relied on TensorFlow 2.1 with Keras as the development framework.

5.3.1 Datasets description

In this section, the three datasets considered for the evaluation of the proposed
models are described. All of them are acknowledged as valid testbeds by the indoor
positioning research community, thus enabling for a fair comparison with previ-
ous state-of-the-art algorithms. Compared to their general descriptions reported in
Section 1.3.3, we applied some preprocessing in order to make the representation
homogeneous and compatible with the learning task (categorical prediction).

UJIIndoorLoc [256] is likely the most well-known and exploited dataset for
fingerprint-based indoor positioning. It describes a multi-building and multi-floor
setting spanning an area of 108703 m2, with the intent of mimicking the difficulties
that could arise in the everyday usage of indoor positioning systems. It includes
19938 training and 1111 test fingerprints. Test fingerprints have been collected four
months later than training ones, also using different devices. The temporal aspect is
crucial since it allows testing the performance of a model on a scenario affected by a
variety of dynamics, such as the introduction or removal of APs compared to train-
ing time and other environmental changes. Overall, 520 APs have been detected at
multiple locations; around 50 of them are not identified during the training phase,
becoming available only after the deployment. Thus, the dataset is a suitable can-
didate for the scenario outlined in Section 5.2.3. The median value of the number
of non-null APs seen among all fingerprints is 16. Each location is identified by
four categorical variables: building, floor, room, and relative position (the latter
two are typically combined together), as well as by latitude and longitude. Globally,
904 distinct locations (reference positions) have been considered for the fingerprint
sampling stage (training). The sampling has been done according to a room-based
fashion (i.e., logical tessellation of Section 2.2) and not by grid-partitioning the
building structure, thus the distances between the training locations, as well as the
fingerprints’ density coverages, are rather variable. Regarding the test set, room
and relative position identifiers are not provided. This is a reasonable choice since,
in the test phase, which aims to mimic the actual usage of the system, users may
be located at an arbitrary position that may not match those used for the radio-
map construction. To reduce the Out-of-Distribution (OOD) generalization problem
[240] caused by a divergence between the scenarios modelled by the training and test
sets (both in terms of collecting devices and considered locations), we built a vali-
dation set so as to replicate as much as possible such a difference. Specifically, the
latter is a subset of the training set instances collected only by the devices with id 7
and 10. This choice allowed us to obtain a (partially) different distribution, without
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removing any location from the ones observed in the training set (so as not to limit
the spatial knowledge that can be learned by the algorithm).

UTSIndoorLoc [245] is a very recent dataset that describes a single building con-
sisting of 16 floors. The total number of samples is 9494, where 9107 are considered
for the training set and the remaining 387 for the test set. Overall, 589 different APs
have been detected. The authors report that fingerprints have been collected at 1840
different locations (RPs). Unfortunately, RP information is not directly encoded in
the dataset through a categorical variable, since only floor identifiers and latitude
and longitude coordinates are available. In order to reconstruct the RPs, which can
be seen as the lowest hierarchical level in this dataset, we assigned a label to each
entry of the training set according to the results of the execution of agglomerative
clustering based on the Euclidean distance between the points. The threshold for
the clustering task has been set to 5m.

Unlike the two previous datasets, the Tampere crowdsourced one, proposed in
[155], is based on crowdsourcing. Thus, fingerprints are collected by users at random
positions, rather than at predefined RPs. The considered scenario is a single build-
ing with five floors. The number of sampled fingerprints is 4648: 697 for training
and 3951 for test purposes. 991 APs are visible all over the building. Position-
ing information is encoded as a triple consisting of latitude, longitude, and height.
Floor information is given in terms of height and, thus, it has been converted into
a categorical variable. In order to reconstruct the RPs, we applied the agglomera-
tive clustering process we exploited for the UTSIndoorLoc dataset with a threshold
set, again, to 5m. Notice that, following this approach, an RP may end up with
just one associated fingerprint, due to the randomness inherent in the crowdsourced
collection process.

For all the datasets, the ultimate position of (true or reconstructed) RPs is
determined by calculating the centroid of all the training instances labelled with
such specific RP.

5.3.2 Hyperparameter tuning

Before illustrating the approach adopted for the evaluation of the models and, in
particular, the evaluation metrics, we briefly discuss the hyperparameter tuning
phase. Due to time and resource constraints, hyperparameters have been fine-tuned
using iterative random search only for a specific model (hierarchical) and a single
dataset (UJIIndoorLoc). The rationale behind this choice is: (i) UJIIndoorLoc
is the most widely used dataset and (ii) the hierarchical model, due to its multi-
loss component, is the hardest one to fine-tune. Nevertheless, as we are going to
show in Section 5.4, the obtained hyperparameters produce good results for the
other datasets and for the model based on the flattened representation as well. The
selected hyperparameters are reported in Table 5.1. It is worth noticing that both
the number of LSTM and hidden units depend on the problem, in the sense that
they are computed on the basis of information related to each specific dataset.
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Table 5.1: Hyperparameters for the proposed LSTM approach.

Parameter Value

learning rate 0.05
# LSTM units median(#AP for entry) + std(#AP for entry)
# hidden units # unique APs in training phase
optimizer SGDR
recurrent dropout encoder 0.4
dropout encoder 0.4
recurrent dropout decoder * 0.3
dropout decoder * 0.3
spatial dropout 0.2
batch size 128

The number of LSTM units does not take into account those needed for the
hierarchical representation in the decoder component (3 of them). Parameters
marked with * are not used in the flattened model.

The decision of using Stochastic Gradient Descent with warm Restarts (SGDR)
[157] is based on the fact that it provides good performance in finding non-sharp,
and thus more stable, local minima, which is an advantage in situations where the
test set distribution may significantly differ from the training/validation ones. This
is exactly the case with indoor positioning where, at test time, many points do not
match the RPs used for training, devices are typically different, and even APs may
have changed.

5.3.3 Evaluation metrics

In the following, we illustrate the metrics we are going to use to evaluate the ex-
perimental results, and show that they allow us to make an easy and meaningful
comparison with existing solutions on the considered datasets. The accuracy of
building prediction is evaluated by looking at the number of correct predictions vs.
the number of wrong ones. We followed the approach at the base of most other
papers, e.g., [155, 261], where additional information, such as floor and position, is
considered to be meaningful if and only if the building prediction is correct. In par-
ticular, floor accuracy is evaluated in terms of success rate, that is, a value denoting
the rate of entries for which both building and floor have been correctly predicted.
The 2D positioning error is determined by looking at the Euclidean distance E(p, p̂)
between the predicted p̂ = (x̂, ŷ) and the ground truth p = (x, y) coordinates:

E(p, p̂) =
√

(x− x̂)2 + (y − ŷ)2 . (5.3)

The 2D error is computed only for those entries where building and floor are
correctly predicted.
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Given the error E(p, p̂), it is possible to compute the Root Mean Square Error
(RMSE) over the set of all estimated positions P̂ :

RMSE(P̂) =

√

√

√

√

1

|P̂|
∑

p̂∈P̂

E(p, p̂)2 . (5.4)

Since both the proposed models work in a classification fashion and return the
most likely RP, to retrieve the coordinates of a point we proceeded as follows. We can
assume the output of the model to be a list of probabilities, each one denoting the
likelihood for an entry to be associated with a specific RP. Given the way in which
fingerprinting works, the spatial coordinates for each RP are known. Therefore,
it is possible to estimate the coordinates for an entry by computing the centroid
over the coordinates of the k most likely RPs identified by the model. To make
the evaluation more precise, it is also possible to rely on the probabilities to return
a weighted estimate. We did that, setting k = 3 and using the inverse of the
probabilities as a weight function.

Besides the tests aimed at verifying the performance of the models for each con-
sidered dataset, two other experiments have been carried out based on the UJI 1

dataset. The first one consists of an injection of noise to simulate environmental
changes possibly affecting the WiFi propagation and, consequently, the position-
ing accuracy. To this aim, additive white Gaussian noise following the distribution
Z ∼ N (0, σ) has been applied. We considered intensity values of noise (σ) between
1 and 5 dBm, following the claim of [262] that this is a good enough noise repre-
sentation. The perturbed fingerprint is then obtained by adding a different random
value according to Z to each of its original RSSs. Clearly, all perturbations are ap-
plied only to the test set, while the models are still the ones trained on the original,
unperturbed data.

The last experiment aims at evaluating how the performance of the algorithm
changes varying the maximum admissible length of the sequence of APs (i.e., the
ranking) considered by the model. Note that such a choice directly influences the
number of LSTM units, since such a number depends on the length of the rankings
we consider. The value of this hyperparameter, as reported in Table 5.1, has been
defined empirically by looking for a quantity that seemed appropriate for the con-
sidered scenarios. With this test, we wanted to understand how considering only a
few, RSS-powerful APs, i.e., fewer APs than the default configuration, or, instead,
the opposite, i.e., taking into account as many APs as possible, impacted on the
accuracy of both the proposed models.

5.4 Results

Table 5.2 and Table 5.3 report the detailed results for both models applied to the
considered datasets, while Table 5.4 shows a comparison between our best solutions
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Table 5.2: Test set performances of the proposed models.

Dataset
Building (%) Success rate (%) Mean Error (m) Median Error (m) Min Error (m) Max Error (m) RMSE (m)
HM FM HM FM HM FM HM FM HM FM HM FM HM FM

UJIIndoorLoc 100 99.9 94.3 94.1 6.78 6.66 4.82 4.88 0.01 0.04 77.75 77.41 9.65 9.34
UTSIndoorLoc - - 94.3 90.5 6.54 7.16 5.73 6.18 0.07 0.38 27.05 25.26 7.82 8.56
Tampere Crowd - - 92.3 86.3 7.92 9.79 5.89 7.02 0.15 0.08 94.75 96.06 11.06 13.81

HM = Hierarchical model, FM = Flattened model.

Table 5.3: Performance of both models applied to UJIIndoorLoc with different
ranking lengths.

std mul Len
Building (%) Success rate (%) Mean Error (m) Median Error (m) Min Error (m) Max Error (m) RMSE (m)
HM FM HM FM HM FM HM FM HM FM HM FM HM FM

3 37 100 99.9 94.8 93.1 6.90 6.71 4.83 4.66 0.05 0.07 77.21 77.14 9.92 9.74
2 20 100 99.9 94.3 93.1 7.03 6.68 4.85 4.52 0.04 0.06 84.21 80.65 10.27 9.94

1 (d.) 23 100 99.9 94.3 94.1 6.78 6.66 4.82 4.88 0.01 0.04 77.75 77.41 9.65 9.34
0 16 100 99.7 94.8 94.3 6.57 6.82 4.58 5.04 0.09 0.01 77.37 77.30 9.52 9.72
-1 9 99.9 99.9 95.8 94.8 7.34 6.94 5.09 5.18 0.03 0.08 90.46 77.33 10.86 9.83
-2 2 99.4 99.6 89.6 87.8 11.21 11.72 9.43 9.86 0.09 0.27 85.30 90.13 14.33 14.78

std mul and Len represent the multiplication factor of the standard deviation in the formula median(#AP ) + x · std(#AP ) and the result
of the formula, respectively. d. indicates the default configuration. HM = Hierarchical model, FM = Flattened model.

and the ones found in the literature1. The main outcome is that the achieved per-
formance is better or comparable to other state-of-the-art approaches in this field.
For what concerns UJIIndoorLoc, results of both models outperform the baseline
[256] as well as improve over other contributions [122, 187, 193, 245, 247, 261], and
are very close to other state-of-the-art approaches [5, 94]. For the sake of objective
evaluation, it is correct to point out that our models perform visibly worse than
just one other solution, that is, [259]. Here, the performance is optimised thanks to
sector-based search: first, the sector of the user is identified, and only the finger-
prints associated with that sector are used for comparison and position estimation.
As for [112], where RSS time-series are exploited in combination with multiple con-
volutional neural networks, authors make their evaluation based on a split of the
training set rather than using the official test instances and, as reported in Table 5.4,
we achieved a comparable performance in a similar setting. Finally, we would like
to mention that, compared to [105] and [106], two contributions where trajectories
are exploited, our results may seem to be dramatically worst. However, the con-
sidered setup [105, 106] is quite different: they take into account fewer buildings
and/or a reduced amount of users. When tested on the same restricted setting, the
performance of our hierarchical model is comparable (see, again, Table 5.4).

Since all the previously mentioned contributions exploit available fingerprint data
in their full generality, and sometimes even more complex models, e.g., ensembles,
or representations, e.g., trajectories, the results that we achieved can be considered
as optimal, as they have been obtained relying only on rankings (with no explicit
RSS information), and without any kind of data preprocessing.

1Observe that some contributions used variants of the metrics we considered, or different splits
of the datasets. A note column is provided in Table 5.4 to highlight the differences, reporting the
performance of our approach in the same setting for the rows that require it and when possible.
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Table 5.4: Comparison with the other state-of-the-art methods for the three consid-
ered datasets.

Dat. Paper
Building

(%)
Success
rate (%)

Mean
Err. (m)

Note

UJI [256] - 89.92 7.9 UJIIndoorLoc baseline
UJI [261] - 94.78 6.86 WKNN-like approach finetuned (parameter k and metric)
UJI [193] - 91.1 - Only success rate is considered
UJI [187] 100 94.0 7.73 Best IPIN 2015 competition solution (RTLS@UM, algorithm 1,

variant 1). EvAAL metric with penalty on our same split (i.e.,
their validation). With the same metric, our approach showed
7.42 mean error

UJI [187] 100 91.9 7.45 Best IPIN 2015 competition solution (RTLS@UM, algorithm 1,
variant 3). EvAAL metric with penalty on our same split (i.e.,
their validation). With the same metric, our approach showed
7.42 mean error

UJI [122] 99.82 91.18 9.29 -
UJI [259] - 95 3.94 Uses a sector-based search where, first, the sector of the user is

identified, and only the FP associated to that sector are used for
the comparison

UJI [112] 100 100 2.77 Authors test on a partition of UJIIndoorLoc training set, not us-
ing the official test one. Time-series of fingerprint (i.e., sequences
of fingerprint collected at the same location) are used. Specific
and multiple models for each hierarchy are employed. Following
the authors’ partitioning of the training set, our model achieved
100% building accuracy, 99.94% success rate, and 2.88m mean
error

UJI [106] - - 5 Authors exploit trajectories and focus only on two users (13,
14), without considering floors or building. Moreover, a spatial
constraint (20m) between two consecutive points is considered.
Restricting to the same users, our model reported a mean error
of 5.4m

UJI [5] - - 6.46 Buildings are considered separately, flattened representation is
used without evaluating floor accuracy. Rooms with few finger-
prints are removed

UJI [105] - - 4.2 Authors exploit trajectories and focus only on two users (13, 14),
without considering floors or building. Data collected in building
2 are ignored Restricting to the same users and buildings, our
model achieved a mean error of 4.9m

UJI [247] 100 93 8.63 -
UJI [245] 100 96 11.78 -
UJI [94] 100 95.41 6.78 -
UJI our 100 94.8 6.57 Hierarchical model with best ranking length

UTS [245] - 94.57 7.60 -
UTS our - 94.3 6.54 Hierarchical model applied to the UTSIndoorLoc dataset. No

ranking length and hyperparameters optimisation are performed

Tamp [155] - 92.99 8.65 Best solution on Tampere dataset, employing an approach simi-
lar to [261]

Tamp [155] - 92.26 8.45 Second best solution on Tampere dataset
Tamp [155] - 86.61 9.77 Ranking-based fingerprinting approach proposed in [164] applied

to the Tampere dataset
Tamp our - 92.3 7.92 Hierarchical model applied to the Tampere dataset. No ranking

length and hyperparameters optimisation are performed
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The above claim is also supported by the results obtained on the other datasets.
As for the UTSIndoorLoc dataset, the performance of the hierarchical model is
almost identical to the one achieved by [245]. As for the Tampere crowdsourced
dataset and the findings reported in [155], the results achieved by the hierarchical
model are better than all but one of the approaches tested by the authors (three of
them are reported in Table 5.4), and very close to the performance reached by the
best one. It is also extremely encouraging that, according to the results shown in
[155], our solutions drastically outperform another well-known ranking fingerprint-
based approach [164] (see, again, Table 5.4).

Further interesting insight can be derived from Table 5.2: in all but the UJI-
IndoorLoc dataset, the hierarchical model achieves a much better performance in
building/floor detection than the flattened one. In the case of UJIIndoorLoc, we
investigated the similarity of the obtained results by comparing the empirical cu-
mulative distribution functions (ECDFs) of the two models. Three different ways
of partitioning the whole UJIIndoorLoc dataset have been taken into account. The
first one is the test set described in Section 5.3.1. The other two are subsets of
the original training data that have been used as validation sets during the training
phase: one is just a classical random split (10% of the training set), while the other
(roughly of the same size) corresponds to all the instances belonging to the training
set labelled with phoneid equal to 7 or 10. The rationale behind this second valida-
tion set is to focus on devices which are not in the training set (all of them have been
removed to build this validation set), in order to adequately mimic the distribution
and the difficulties of the real test set. From an analysis of the ECDFs depicted
in Figure 5.4, it emerges that the models have roughly the same performance when
applied to the same set.

As a consequence, the difference in performance between the two models on non-
UJIIndoorLoc datasets can be attributed to the capability of the hierarchical model
to manage scenarios that make the other two datasets structurally different from
UJIIndoorLoc, such as the way in which RPs are partitioned, the number of training
points that are collected for each RP, and the complexity of the site from a physical
point of view. The hierarchical model seems to generalise better over these features,
suggesting its appropriateness in many different real-world scenarios.

Let us now analyse the effects of RSS perturbations. As we already mentioned,
this is an important contribution of our work. The ECDFs for the hierarchical and
the flattened models, trained on the original, unperturbed data, and applied to the
RSS-perturbed test dataset, are reported in Figure 5.5 and Figure 5.6, respectively.
In the event of sensitivity of the models to RSS variations, we should have observed
an increase in the error reported by the ECDF. This is not the case, as the difference
between the depicted curves is considerably small. This is confirmed by Table 5.5
as well, which shows only a slight worsening of the considered performance metrics
as the intensity of the perturbation increases. The fact that the results are similar
for the two models suggests that pairing the ranking-based representation of the
fingerprints with RNNs is a possible way to relieve positioning from the effects of
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properly across datasets of different sizes and characteristics. It is thus reasonable
to conclude that the combination of ranking-based fingerprints and LSTM appears
to be a highly promising approach to effectively deal with the indoor positioning
task and related issues.

In light of the remarkably positive and encouraging obtained results, we asked
ourselves additional questions. Indeed here we showed that raw RSS appears to
be not required if we use deep learning models that exploit the correct inductive
bias linked with the fingerprint representation we are using. However, could we get
additional scientific and operational insights from the usage of deep learning? Can
we understand what the model is doing? And, above everything, can we use this
potential additional knowledge to support other concrete tasks related to indoor
positioning? In the next chapter, we will show how interpretability, in the context
of our RNN + ranked fingerprinting framework, can be a tool which appears to give
affirmative answers to all these questions.



118 5. Let’s Forget About Exact Signal Strength



6
Towards Interpretability in

Fingerprint-based Indoor Positioning

The work described in the previous chapter, to the best of our knowledge, is the
only attempt in the literature to combine deep learning with ranking-based finger-
printing. The aim of this chapter is to build on the encouraging results presented in
such a study by introducing and focusing on the contributions brought by the atten-
tion mechanism [11], which we believe is the enabling element for interpretability in
fingerprint-based indoor positioning: our ultimate goal. In fact, recently, the lack of
interpretability of localization approaches has been questioned [45]. This topic lacks
in-depth studies, although it is of great importance considering that indoor position-
ing is often tackled by means of machine learning [13, 104, 142, 192], where, again,
interpretability is a strong yet still largely unfulfilled requirement. Indeed, even if a
very good model to address the localization task is available, understanding why it
works, to gain scientific and operational insights that go beyond the original task, is
compelling. To mention one possible impact, it may help to predict unanticipated
failure cases of the system.

Our choice of relying on attention is motivated by domain knowledge rather
than mere empirical findings: it is inherently true that some access points are more
significant than others when it comes to determining the most probable location of a
user, however, we question whether such a role is always played by the most powerful
ones. Knowing what the most relevant access points are, irrespective of their RSS,
may help in understating the cause behind a model prediction, which adheres to a
local definition of interpretability, such as the one provided in [179]. In addition,
from a global perspective, access point relevance patterns may characterize different
areas of a building and, in turn, this could benefit a variety of tasks, ranging from
radio-map maintenance, to the identification of wrong predictions, and to the overall
improvement of localization accuracy.

In the work described in this chapter, for the first time, we propose a concept of
interpretability for the fingerprint-based indoor positioning domain that links access
point relevance with position estimation, and we discuss its practical implications
in supporting several positioning-related tasks. In particular, we show that access
point relevance patterns obtained through the attention scores of a sequence-to-
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sequence deep learning model for ranked-based fingerprints (i.e., extending the idea
of Chapter 5) have a strong spatial characterization: the explanations convey specific
information of the indoor positioning domain. In order to validate our findings,
we perform a series of qualitative and quantitative experiments, also with the aim
to quantify the extent to which different attention compatibility functions align
with our notion of interpretability, identifying a clear superiority of the additive
one. Moreover, as a by-product of interpretability, we show how, assuming an
optimal strategy to combine attention scores and deep learning model likelihoods,
it is possible to improve the overall performance in position estimation.

The rest of the chapter is organized as follows. In Section 6.1, we give an account
of interpretability in machine learning and discuss our idea of interpretability for
fingerprinting. Then, in Section 6.2 we detail the deep learning model we designed
to achieve it. In Section 6.3, the devised experiments and their results are reported.
Finally, a thorough discussion of the overall outcomes and their possible practical
applications is outlined in Section 6.4.

6.1 Interpretability in fingerprinting

In this section, first, an overview of interpretability in machine learning and its ap-
plications is provided. A description of our idea of interpretability for fingerprinting
then follows.

6.1.1 An account of interpretability in machine learning

Interpretability in machine and deep learning refers to the ability of an algorithm or
a model to provide clear and understandable explanations for its predictions. There
exist multiple approaches to achieve interpretability, tied to the type of machine
learning model and task at hand [191]. Inherently interpretable models, such as de-
cision trees, logistic regression, and linear models, are often easy to interpret since
their internal workings are transparent, and can be easily understood in terms of
their parameters and decision rules. However, they may not always capture the com-
plexity of the data, thus their performance may be insufficient in some applications.
Semi-inherently interpretable models, also referred to as example based methods, use
examples as the basis for their interpretation (e.g., K-NN). Joint training inter-
pretability techniques enhance models with interpretability features, such as atten-
tion mechanisms or attribute importance scores. The latter include gradient-based
methods, like integrated gradients and gradient-weighted class activation mapping
(Grad-CAM) [235]. Finally, post-hoc techniques focus on explaining the decisions of
models without modifying their internal workings. Notable approaches in this class
are model-agnostic methods, such as LIME (Local Interpretable Model-Agnostic
Explanations) [217] and SHAP (Shapley Additive Explanations) [160].

Examples of applications of interpretability techniques are: in the detection of
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heart diseases [275] or fraudulent bank transactions [210], where SHAP can de-
termine the features’ contributions to the final output; scenarios such as medical
imaging or object recognition, where Grad-CAM can highlight the regions of an
image that are most important in making a prediction [197]; and, natural language
processing tasks like sentiment analysis or text classification, where LIME can shed
light on the decisions of black-box models [169].

Overall, interpretability techniques are critical in ensuring the accountability and
trustworthiness of machine learning models, particularly in high-stakes domains such
as healthcare and finance. Achieving full interpretability remains a challenging task,
and a trade-off between accuracy and interpretability is often required. Therefore,
the development of transparent and interpretable machine learning models that can
provide reliable and trustworthy explanations is an active area of research.

6.1.2 Our proposal for fingerprinting

As previously mentioned, according to [179], interpretability1 is the degree to which
an observer can understand the cause of a decision. It is not about figuring out ev-
erything about a model, but it can be considered as a means to an end, which implies
that the form taken by an explanation depends on the needs of the specific applica-
tion [191]. Our goal is to enhance the positioning process by gaining novel scientific
knowledge and operational insights, without worsening the performance concerning
the position estimation. In the context of WiFi fingerprinting, we hereby define the
concept of local interpretability (i.e., an explanation related to a specific prediction)
as the relevance that each access point has to a given position estimate provided by
the model. We name this as the relevance pattern for a (ranked) fingerprint.

In the past, several works either assumed or pointed out the very prominent
role played by the most strongly (in terms of RSS) perceived AP. Indeed, this is
one of the motivations that led to the development of the ranking-based fingerprint
representation. We believe, instead, the strongest AP(s) not being necessarily the
most relevant for the positioning task. For instance, a set of very powerful APs might
be detected more or less in the same way at several different places; in that case,
the discriminative role could be played by some other less powerful APs, that are
only seen at specific locations. Therefore, determining which APs are mostly used
by the model to derive a given prediction is a natural way to interpret its behaviour,
as well as to highlight some characteristics related to the considered scenario.

In fact, other than local interpretability, it is worth asking ourselves whether a
concept of global interpretability can also be defined, i.e., a general insight into the
model behaviour based on a set of input data. Let us consider a set of predictions
(i.e., location estimates) for which the relevance of the associated access points
is known, and let us assume to group them together based on the similarity of

1Note that in the remainder we are going to use the terms explainability/interpretabilty, and
explanation/interpretation interchangeably.
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their relevance patterns. We can derive such a global insight by studying whether
the average relevance pattern associated with each different group is capable of
(uniquely) characterising a delimited spatial area. In the remainder of the work, we
are going to name such a property as spatial characterization, and we believe it would
be of actual use in several positioning-related tasks (as we will see in Section 6.4.4).

To conclude the section, we now discuss how to obtain, in practice, a measure of
relevance for the access points, which considers both the fingerprint representation
and the chosen positioning algorithm. A possible approach to obtain interpretability
is to train the model and the explanation jointly [191]. In neural networks, the
attention mechanism can be used to dynamically highlight relevant features of the
input data [92, 185]. At a high level, it works by assigning a weight to each input
element, based on its relevance to the current task. These weights are computed
using a learned function that takes into account the current state of the model and
the input data. The weighted elements are then combined to produce a context
vector that represents the most relevant information for the task at hand. Thus,
in principle, relying on a deep learning model that can be easily extended with the
attention mechanism (such as the one proposed in Chapter 5) should allow us to
reach our interpretability goal.

However, whether or not attention and its weights can be considered as a form
of model explainability is still an open debate, for instance, in the NLP community
[116, 236, 282]. It follows that blindly applying attention is not enough to ensure
interpretability. Thus, in the remainder of this work, we show how and why in our
case it provides plausible explanations related to the positioning domain. Specifi-
cally, (i) attention is indeed capable to highlight relevant access points associated
with a prediction; (ii) attention has a strong spatial characterization; (iii) different
attention types have different behaviours and capabilities (i.e., not all formulations
are equally good); and (iv), attention-based explanations can contribute to down-
stream positioning tasks.

6.2 Fingerprinting with deep learning and atten-

tion

In this section, we provide a description of the considered deep learning model. Then,
we detail the attention mechanism and how to integrate it into the model and, thus,
in indoor positioning. Compared to the informal description provided in chapter 5,
we will be more precise about the mathematical definition of the problem, in such
a way as to both show that this family of approaches fits in the probabilistic indoor
positioning category as well as the precise contribution brought by the attention
mechanism.

A graphical overview of the overall framework and how information flows through-
out it is reported in Figure 6.1.
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Figure 6.1: Graphical representation of the elements composing the framework, their
integration, and how information flows throughout it (i.e., from the radio-map and
model training, to the generation of the interpretability outcomes, the positioning
estimate, and the combination of such aspects for multiple tasks).

6.2.1 A sequence-to-sequence modeling of probabilistic po-
sitioning

Ranking-based fingerprints can be analyzed by means of deep learning approaches
that manage sequential data, such as RNN, LSTM, and Transformer architectures.
Specifically, we are interested in sequence-to-sequence (seq2seq) models, which turn
a sequence into another one. Considering them from a probabilistic perspective,
it is possible to observe that (i) they perfectly fit in the probabilistic-based indoor
positioning paradigm, and (ii) the decoder can model and leverage the hierarchical
structure of positions (e.g., buildings containing floors containing rooms) through
its autoregressive nature.

Given an (array-like) input sequence x = [x1, . . . , xn] and a (array-like) target
sequence y = [y1, . . . ym] we can define a probabilistic sequential model as follows:

P (y|x) = P (y1:m|x1:n) =
m
∏

i=1

P (yi|y1:i−1,x1:n) . (6.1)

Considering a position defined as, for instance, the triplet (building, floor, room),
and x as a (ranking-based) fingerprint, it follows from Eq. (6.1) that the model
adheres to the indoor positioning probabilistic framework:

( ̂building,f̂ loor, r̂oom) = ŷ = arg max
y

P (y|x)

= arg max
building∈B,
f loor∈F ,
room∈R

P (building, floor, room|x) , (6.2)
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Given that the considered positioning problem is framed as a multi-class classi-
fication one, and considering Li as the negative log-likelihood loss applied to each
output element, 1 ≤ i ≤ m, the overall loss function L is defined as follows:

L(ŷ,y) =
m
∑

i=1

wi · Li(ŷi, yi) , (6.7)

where wi is an optional weight of the loss related to the hierarchical level i.
As a final remark, it is worth pointing out the reasons behind the choice of

considering only recurrent models rather than the far more (nowadays) popular
Transformer [200] architectures. First, based on preliminary analysis, the perfor-
mance of LSTM models was observed to be superior in our task with respect to
Transformer, the latter perhaps being hindered by the relatively small quantity of
training data at its disposal. The second point pertains to the interpretability of the
overall approach. Indeed, Transformer makes full use of the attention mechanism,
providing different representations at each encoder and decoder layer. Nevertheless,
involving multiple layers would have made it more complex to obtain a representa-
tion both interpretable and exploitable for our purposes, even considering just the
decoder. Conversely, the LSTM model provides just a single attention vector for
each sequence.

6.2.3 Attention mechanism

In the case of sequences, like those considered in NLP and our scenario, the core
principle behind attention is that of computing a weight distribution on the sequen-
tial input, assigning a higher score to those elements that are more relevant for the
task at hand.

The attention mechanism can be defined as a weighted average of values that
operates on three elements often referred to as keys (K), queries (Q), and values
(V ). This notation has been first proposed in [264], but it is also possible to think
of these elements from a database point of view: we want to determine how much
the tuples (K) in a table are relevant (weak definition of matching) for a given input
(q ∈ Q), returning as output a value (V ).

Formally, let us define K ∈ Rdk×nk ,Q ∈ Rdk×nq , and V ∈ Rdk×nv as matrices,
each composed of a variable number of column vectors (respectively nk, nq, and nv)
having the same size (dk). For our purposes, we will consider the query to be just a
single column vector q ∈ Rdk rather than a matrix. The relevance of each column
vector ki ∈ K with respect to q is evaluated by a compatibility function f , whose
output is a vector e ∈ Rnk of energy scores:

e = f(q,K) . (6.8)

Energy scores are then transformed to a vector a ∈ Rnk of attention weights, apply-
ing a distribution function. In our case, such a function will be the softmax, leading
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to the following definition:

a = softmax(e) = softmax([e1, ..., enk
]) , (6.9)

softmax(ei) =
exp (ei)

∑nk

j=1 exp (ej)
. (6.10)

Attention weights are further combined with matrix V, to obtain a weighted repre-
sentation of V itself. Note that for each element ki ∈ K there is a corresponding
element vi ∈ V (i.e., nk = nv). The final outcome of the attention submodel is
a context vector c ∈ Rdk , that is typically employed by other components of the
model where the attention architecture is integrated; it is defined as follows:

c =
nv
∑

i=1

aivi . (6.11)

Bringing together the sequence-to-sequence model and the attention mechanism,
in order to compute the attention score vector for each output element t, 1 ≤ t ≤ m,
q must correspond to the previous hidden state of the decoder st−1, K is the column-
based matrix obtained combining all the encoder hidden states hi, 1 ≤ i ≤ n,
and V = K. Thus, considering our indoor positioning scenario, in which three
hierarchical levels (building, floor, and room) are present, t = 3. As a result, for
each ranking-based fingerprint three attention score vectors are obtained, which can
be seen as a matrix A ∈ R3×nk , where nk will be set equal to the median value
of the number of non-null APs seen among all (ranked-)fingerprints (those ranked
fingerprints with z > nk are simply truncated).

It is worth noticing that many different attention formulations have been pro-
posed in the literature. Among them, we cannot rely on today’s widely used self-
attention mechanism (where Q = K = V), since for our interpretability purposes
we are interested in (cross) attending input and output elements. Nevertheless,
many different compatibility functions can be used within the general cross-attention
framework (i.e., the one employed by our model). We take into account the follow-
ing:

dot = f(q,K) =
qTK√
dk

(6.12)

general = f(q,K) = qTWK (6.13)

cat = f(q,K) = wT tanh(W[K∥q]) (6.14)

add = f(q,K) = wT (W1K + W2q) (6.15)

deep = f(q,K) = wTE(L−1), (6.16)

with

{

E(l) = ReLU(WlE
(l−1)) if 1 < l < L

E(1) = ReLU(W1K + W0q) if l = 1
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where w is a learnable vector and W(i) are learnable matrices. The functions follow
two main approaches. Attentions dot [264] and general [161] are based on matching
and comparing K and q, with the main difference that general, thanks to the weight
matrix W, makes it possible to deal with queries and keys employing different
representations. On the other hand, cat [264], add [11], and deep [200] follow a
different strategy, and combine the keys and the query in a joint representation
that is further weighted by an importance vector w, which conveys the notion of
relevance. This makes them a good choice when keys and queries are encoded in
significantly different ways. They differ from each other in how they combine K
and q: cat concatenates them; add computes the contributions separately and then
sums them; and, deep extends add using multiple layers allowing to build richer
representations.

In specific works in the deep learning literature [92], attention has been shown
to provide for each input sequence element (i.e., xi ∈ x1:n in Eq. (6.1), that will
be the keys) a form of relevance to the prediction of each specific output sequence
component (i.e., yj ∈ y1:m in Eq. (6.1), each of which will be a query). Nevertheless,
there is still no unanimous consensus about its capability to actually fulfil such a
task in a general setting, as witnessed for example by the many open debates within
the NLP community [116, 236, 282].

Therefore, it is worth studying whether attention, when applied to the previously
described ranking-based fingerprint representation, allows one to assess the relevance
of the APs in the prediction of a given position (more precisely, of each hierarchi-
cal component describing a position), adhering to our concept of interpretability
described in Section 6.1.2. Moreover, given that multiple types of attention (com-
patibility functions) exist, an investigation about their behaviours also becomes
necessary. In the following section, thanks to a set of carefully designed qualitative
and quantitative experiments, we will shed light on such matters.

6.3 Experimental evaluation

In this section, we first give an account of the considered indoor positioning dataset
and the hyperparameter optimization process. Next, we provide a thorough descrip-
tion of the designed experiments and their results, aimed at evaluating the behaviour
of the attention mechanism when applied to the indoor positioning context.

The overall experimental workflow is depicted in Figure 6.4. We begin with an
analysis of attention, starting with a quantitative assessment carried out by means
of clustering, that will allow us to formally determine whether attention is capable
of eliciting general spatial relationships in the data. Next, a qualitative analysis
is performed, which will reveal some interesting attention patterns and will relate
them spatially with the specific real-world premises considered. Finally, results are
established regarding the prediction of the position of a given instance, leveraging the







6.3. Experimental evaluation 131

6.3.2 Quantitative analysis

In this section, we present a procedure to evaluate which, among the considered
attention compatibility functions, is the most capable of capturing spatial informa-
tion. The overall idea is that instances sharing a similar attention pattern should
also have in common some locality properties, e.g., they should be close to each
other in the real-world space where they were collected, irrespective of their specific
positions.

Experiments

To such an extent, we relied on a clustering analysis performed over training set
attention vectors. Specifically, we focused on hierarchical clustering (Scikit-learn’s
AgglomerativeClustering [202] method), as it allowed us to investigate compositional
relationships between clusters through the associated dendrogram representation.

Hierarchical clustering requires the specification of two fundamental parameters,
i.e., the metric used to compute the linkage, and the linkage criterion itself. As for
the metric, which is calculated among vectors vec(A), we relied on cosine distance,
as it is typically done in embedding-related tasks [148]. Turning to the second
parameter, we evaluated the following linkage criteria: average, complete, single,
ward. Based on a qualitative analysis of the generated dendrograms, we finally
chose to rely on methodology average, since it showed the advantage of producing
well-balanced splits among the clusters.

For each attention compatibility function, we then proceeded as follows. First,
hierarchical clustering was run over the vectors vec(A) associated with training set
instances, obtaining five dendrograms. Then, based on dendrogram analysis, and
evaluating silhouette scores at different dendrogram cut points, we determined the
most appropriate number of clusters for each function.

At this point, a question arises about whether the identified clusters are genuinely
different from each other, i.e., they group together instances sharing a very specific
attention pattern. To formally determine that, we devised a statistical procedure
based on the Kolmogorov–Smirnov (KS) test [168]. KS is a non-parametric test
of the equality of continuous distributions, that can be used to quantify a distance
between the empirical distribution functions of two samples.

The overall approach is as follows. Given two clusters, we construct the union set
of their AP identifiers according to A3. Then, for each AP, within each cluster, we
compute its empirical univariate distribution of attention values. Observe that an
AP may be detected in just one cluster; in that case, we define a zero-valued dummy
distribution for the other one. We now apply the KS test to the distribution pairs
of each AP, to determine if they differ. The final cluster similarity is obtained by

3This allows us to consider just the APs that are detected by instances belonging to the two
clusters, leading to computational savings in the following steps.
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combining the single AP results by means of the Benjamini–Hochberg procedure for
multiple comparisons [23].

Algorithm 1: Cluster similarity assessment

Input : dist list = [(X1, Y1), . . . (Xn, Yn)] list of distributions of
pairs related to cluster1 and cluster2

Input : bs size number of bootstrap samples
Output: True if clusters are different, False otherwise
Output: The ratio of statistically different distributions

1 p values← []
2 for i ∈ {1, . . . , n} do
3 X, Y ← dist list[i]
4 KS res← KolmogorovSmirnovTest(X, Y )
5 combined distribution← X∥Y
6 KS boot← []
7 for j ∈ {1, . . . , bs size} do
8 S1 ← DrawSample(combined distribution)
9 S2 ← DrawSample(combined distribution)

10 S1 ← S1 +N (0,Cov(S1, S2))
11 S2 ← S2 +N (0,Cov(S1, S2))
12 KS boot[j]← KolmogorovSmirnovTest(S1, S2)

13 end
14 KS boot[bsSize + 1]← KS res
15 p values[i]← Mean(KS boot ≥ KS res)

16 end
17 reject null hypothesis← BenjaminiHochberg(p values, 0.05)
18 diff clusts← CountTrue(reject null hypothesis) == n
19 fract diff ← CountTrue(reject null hypothesis)/n
20 return diff clusts, fract diff

The procedure is depicted in Algorithm 1. Given the input distributions pairs,
the procedure evaluates each of them independently (Lines 1–16). For a pair X, Y ,
the KS test is evaluated, obtaining the corresponding KS statistic, i.e., the dis-
tance between the empirical distribution functions of two samples (Line 4). Then,
a common continuous distribution, which will be used for null hypothesis testing, is
generated by concatenating X and Y (Line 5). Observe that, for our purposes, the
null hypothesis is that the batches of data are independent simple random samples
taken from the common continuous distribution. At this point, as it is typically done
when a measure of difference has to be estimated, we apply bootstrapping by re-
sampling from the common distribution (Lines 7–13). For each bootstrap iteration,
two random samples are independently extracted from the combined distribution,
and random noise is applied to them (Lines 8–11). The KS statistic is then evalu-
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ated (Line 12). Then, by comparing bootstrapped and reference KS statistics, the
p-value encoding the extent to which the KS distance between X and Y is statis-
tically relevant is determined (Lines 14–15). Note that the p-value corresponds to
the average of the boolean vector, interpreted as an integer one, generated by com-
paring the single KS bootstrap results with the reference one. Intuitively, if many
KS bootstrap values are smaller than the reference one, then the two distributions
are more likely to be different. At this point (Line 17), we need to combine the
p-values related to the single APs in order to determine if the two input clusters are
different. To such an extent, we rely on Benjamini–Hochberg procedure for multi-
ple comparisons, computing the adjusted p-values based on a false discovery rate
(FDR) level of 0.05, and returning true for those hypotheses that can be rejected
for the given FDR level. If all null hypotheses can be rejected (Line 18), then the
two clusters are deemed to be different. In addition (Line 19), we also compute
the fraction of hypotheses that could be rejected by the method, in order to assess,
when the clusters are considered to be alike, the ratio of non-similar APs.

Finally, it is also worth evaluating the clustering result from a spatial perspec-
tive. The idea is that clusters considered to be similar by the KS test should also be
relatively close. Instead, statistically different clusters are intrinsically well-behaved,
since they may possibly suggest different APs relevance (and, thus, strategies) fol-
lowed by the neural network to derive the predictions even within small areas. To
determine the distance between two clusters in the spatial domain, we relied on the
Hausdorff metric. Informally, two clusters are deemed to be close by such a metric
if every point of either cluster is close to some point of the other cluster. The Haus-
dorff distance is the longest distance one can be forced to travel by an adversary
who chooses a point in one of the two clusters, from where he then must travel
to the other cluster. In other words, it is the greatest of all the distances from a
point in one cluster to the closest point in the other cluster. Formally, we define the
Hausdorff distance between two spatial clusters G1,G2 ⊆ R3 as:

H(G1,G2) = max
g1∈G1

min
g2∈G2

∥g1 − g2∥2 . (6.17)

Nevertheless, considering the maximum within the Hausdorff distance computation
can lead to misleading results in the presence of spatial outliers that are likely to be
generated during the clustering process. For this reason, as witnessed in literature
(see, e.g., [114]), we calculate the 95th percentile of the minimum distances instead.

For each attention compatibility function, we evaluated the Hausdorff distance
for all pairs of clusters considered to be similar by the previous KS test, as well as
for all pairs of different ones. Intuitively, a well-performing compatibility function
should lead to Hausdorff distances among similar clusters that are small, and overall
smaller than those among dissimilar clusters (although, as already mentioned, it can
be the case that some dissimilar clusters are actually close to each other).
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Results

Figure 6.7 shows the dendrograms obtained from the hierarchical clustering tasks for
each attention compatibility function. As can be seen, despite relying on the same
clustering approach, the results are quite heterogeneous4. Specifically, dot attention
generates a very coarse clustering at the chosen cutting point; performing the cut
at a lower level would result in a very large number of small clusters, while still
not being able to break the largest (orange) group. Such a discrepancy suggests a
bad behaviour of dot with respect to the clustering task. As for general and deep
attentions, they share similar behaviour. Most of the clusters are aggregated at a
very high point on the cluster distance axis, suggesting the presence of (too) many
groups, typically quite different between them, and with no clear hierarchical struc-
ture. Finally, add and cat attentions show a more variegate situation as for cluster
distances. Here, cluster compositionality can be clearly noticed and choosing differ-
ent cutting points would always lead to balanced partitions, although of different
sizes. Thus, they exhibit the best behaviour when it comes to capturing hierarchical
relationships among clusters.

We now turn to study whether the identified clusters are genuinely different
from each other, i.e., they group together instances sharing a very specific attention
pattern. Figure 6.8 and Figure 6.9 report the result of the KS procedure applied
to the previously discussed clusterings. Figure 6.8 shows, for each pair of clusters,
whether they are judged to be similar (dark colour) or not (bright colour) by the
test. Intuitively, the ideal case is represented by an entirely bright picture, except for
the diagonal (that compares each cluster with itself). Thus, the two best attention
functions are add and cat, with a slight preference towards the latter5. To determine
the extent of similarity between clusters judged to be similar by the procedure, let
us consider Figure 6.9. Here, a darker colour corresponds to pairs of clusters whose
instances, i.e. attention patterns, highlight a larger number of access points with
the same intensity. Intuitively, the optimal case is thus represented by a scenario in
which the clusters judged to be similar are still characterized by a low fraction of
similar access points. This is precisely what happens with add and cat, confirming
their good behaviour.

Finally, to assess the spatial characterization of the clusters, let us consider
Figure 6.10, which reports the distribution of Hausdorff distances among similar
and dissimilar clusters (according to KS). Here, the ideal scenario is characterized
by distance values for similar clusters typically lower than those for dissimilar ones.

4Note that the depicted cutting points have not been cherry-picked, but automatically selected
through a silhouette-based approach: given a dendrogram, a set of possible thresholds was con-
sidered, each leading to a different clustering. For each clustering, the silhouette score [220] was
calculated, obtaining a list of values onto which an elbow criterion finally allowed us to determine
the best threshold.

5Even though dot appears to share a similar behaviour, it has poor results because of its
severely unbalanced clustering.
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be also retrieved. In addition, thanks to the attention module, each hierarchical
component has an associated attention weight vector which, intuitively, should rep-
resent the most relevant access points used by the model to derive the single level
prediction.

While the success rate can be estimated comparing ( ̂building, f̂ loor) with the
ground truth, for the 2D position estimation we proceed relying on a k-Nearest-
Neighbour-like approach. Specifically, considering different similarity approaches to
determine the neighbours, we obtain two strategies.

Probability-based. The coordinates for an entry are determined by computing
the weighted centroid over the coordinates of the K most likely rooms identified
according to the probability distribution, where the weights (π ∈ RK) correspond
to the probabilities. The parameter K can be either considered as fixed, as in Chap-
ter 5, or tuned according to the best performance exhibited on a training+validation
split of the training data.

Attention-based. As a preprocessing step, we determine the average attention
vector vec(Aµ) ∈ R3·q for every training set location, element-wise aggregating the
attention vectors obtained running the model over the training set instances collected
at the location. Such a representation is then compared to the attention vector
vec(Anew) ∈ R3·q generated by the model for a new instance, employing the cosine
similarity. The obtained similarity attention scores (α ∈ RK) are then used within
the k-NN framework following the same procedure as done for the probability-based
approach. Again, the parameter K can be fixed or tuned according to an evaluation
performed on a training+validation split of the training data. The net result is that
training set locations with an attention pattern similar to the given instance are
assigned a higher weight during the centroid computation phase.

For comparison purposes, in the next section, we evaluate the performances
provided by the two approaches against some recent relevant papers in the area
that apply their solution to UJIIndoorLoc. Bear in mind that several works did
not use the test set as it is provided, but they restrict to some specific floor or
building. This is a conceptually wrong approach that might lead to biased results,
since achieving a good positioning performance in certain sub-regions of the data
dataset is far harder than in other parts.

Results

We now turn to evaluate the positioning performance provided by the model de-
scribed in Section 6.2.

Table 6.2 shows the test set results provided by the two k-NN approaches that
employ probability- and attention-based similarities. Also, it reports the respective
K (the number of neighbours) determined by an optimization procedure based on
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Table 6.2: Comparison of the positioning estimation results

Approach
Success
rate [%]

Positioning error [m]
Mean Median 75th percentile 95th percentile RMSE

[256] 89.9 7.9 - - - -
[261] 94.8 6.86 - - - -
[245] 96.0 11.8 - - - -
[223] (Chp. 5) 94.8 6.57 4.58 - - 9.52
[137] 92.6 9.07 6.32 - - -
[276] 93.9 6.95 - - - -

prob (K = 9)
95.23

6.56 4.78 8.97 18.7 9.53
att (K = 1) 9.82 7.07 14.3 28.7 13.9

oracle
95.23

5.26 3.43 7.21 15.7 8.00
prob ⊙ att 6.40 4.58 8.82 18.2 9.23

Note: The results of our best solution and those of the oracle based approach (see
Section 6.3.4) are in bold.

the training and validation splits6. As can be seen, the achieved success rate is on
par with previous works from the literature. Note that, being such a value related
to the (categorical) output of the model, it is independent of the specific approach
we considered for position estimation. Focusing on the positioning error in meters,
probability emerges as the best variant, largely surpassing the attention-based one
as well as being on par with one of the best solutions available from the literature
[223] (although performing better than the latter from the success rate perspective).

Combining probability and attention

Position estimation can also be performed by considering weights obtained from a
suitable combination of probabilities and attention values.

Despite the much worse performance exhibited by the attention-based approach
with respect to the probability-based one, it may still be interesting to compare their
behaviours. Figure 6.13 shows the distribution of the differences between the errors
provided by the two solutions. As can be seen, the histogram is roughly centred on
zero, meaning that on a large portion of test set instances the two variants behave
similarly, while the superiority of the probability-based one is justified by the larger
right tail. Nevertheless, the left tail informs us about the presence of a significant
amount of cases in which attention provides the best performance. This suggests

6We calculated the mean positioning error on the validation set for every possible value of K
and selected the parameter that produced the lowest error as the final choice. This process was
repeated independently for both K-NN models, one using probability-based similarities and the
other using attention-based similarities.
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Table 6.3: Summary of the experiments and their results

Experiment Description Method Results

Quantitative
Are clustering results
meaningful?

Analysis of the clus-
tering dendrogram

dot is unsatisfactory due to poor par-
titioning; general and deep produce
too many groups; add and cat gener-
ate balanced partitions that exhibit a
clear compositionality

Do clusters group in-
stances sharing very
specific attention pat-
terns?

Statistical procedure
based on the Kol-
mogorov–Smirnov
test

add and cat have the best behaviour:
they provide a high number of clus-
ters but only few of them are pairwise
similar

Do different attention
types exhibit spatial
characterization?

Cluster compact-
ness and separation
based on the Haus-
dorff metric

add emerges as the best one, since
it leads to (spatial) distance values
for similar clusters that are typically
lower than those for dissimilar ones
(according to KS)

Qualitative
What do the different
types of attention high-
light?

Visual and compara-
tive inspection

general and deep focus on the
strongest access point(s); dot consid-
ers the last position in the padded
rank; add and cat exhibit rather het-
erogeneous patterns

Are attention-based
groups truly spatially
compact?

Visual inspection Yes, clusters obtained with add ex-
hibit clear spatial locality properties

Positioning
evaluation

Are plain model per-
formances comparable
with SOTA?

Success rate and po-
sitioning error

Yes, they are in par with or better
than SOTA solutions

Can we improve the re-
sults leveraging inter-
pretability insights?

Positioning error dis-
tribution

Yes, by a large margin, assuming an
optimal strategy to combine atten-
tion scores and deep learning model
likelihoods; regardless, a naive com-
bination method still brings to an im-
provement

6.4.1 Critical analysis of the results

On the account of a series of thoroughly designed quantitative and qualitative exper-
iments, that are summarized in Table 6.3, we showed that attention-derived patterns
indeed characterize well-defined spatial regions, considering a large multi-building
multi-floor well-recognized indoor positioning dataset. Nevertheless, our results also
pointed out that not all the examined compatibility functions are equally capable of
fulfilling such a role (add is clearly the best), highlighting the importance of choos-
ing a suitable one. Notably, the spatial characterization of attention was observed
even though our model exploits only categorical information about locations, ne-
glecting any kind of proximity relationships among them. During such analyses it
also emerged that deep learning models do not always exploit the strongest APs
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to perform a position estimation. This may suggest that the relevance of the APs
depends, at least in part, on the model used. Thus, caution is advised in the de-
sign of fingerprint preprocessing and filtering strategies, as their validity could be
model-dependent. In essence, attention indeed allowed us to get new scientific and
operational insights about WiFi fingerprinting and deep learning.

Although our analysis confirms some very strong interpretability desiderata for
our framework, i.e., plausible explanations aligned with the domain (by means of
a spatial characterization), one might argue: could the same results have been ob-
tained just by considering the presence of specific access points in the ranked fin-
gerprints, or do the attention values assigned to such access points indeed play a
major role? To determine that, we shuffled within each ranked fingerprint the at-
tention values assigned by add to the access points, repeating our quantitative and
qualitative experiments. The rationale is that if the original attention values were
stochastic, the outcomes should be similar to those for the shuffled case, suggesting
that our explanations are barely plausible and certainly not faithful nor meaningful.
The dendrogram (Figure 6.16a) begins with a coarse partitioning of the instances
into three groups, roughly corresponding to the three buildings. This is not surpris-
ing, as in different buildings we can expect disjoint sets of access points to be present
in the rankings. Nevertheless, at a finer granularity level, the partitioning is more
chaotic, as confirmed by the inspection of the cluster assignments on Floor 3, where
groups appear highly random (compare Figure 6.16b with Figure 6.12). Indeed, also
the KS-based similarity test shows some very different results (compare Figure 6.16c
and Figure 6.16d with Figure 6.8 and Figure 6.9 respectively): shuffling the atten-
tion values we obtain substantially darker images, meaning that very large number
of clusters are now considered to be similar by the KS procedure. Thus, although
we remark that attention provides a possible explanation and not the explanation
for the model behaviour, we provided evidence that in our case such an explana-
tion is meaningful and aligned with the domain, as the shuffling experiment led to
fundamentally different results, showing, above all, no spatial characterization.

6.4.2 RSS vs ranked fingerprinting for interpretability

In this work, for our interpretability framework, we specifically focused on ranking-
based fingerprints and attention. Although in principle interpretability techniques
can also be applied to full-fledged fingerprints, when pursuing such an approach
there are some inherent difficulties that have to be taken into account.

To begin with, recurrent neural networks cannot be applied to RSS fingerprints,
since they rely on a sequential inductive bias [20]. Thus, other kinds of deep learn-
ing architectures should be exploited, like fully connected neural networks (FCNN)
together with gradient-based attribution methods (instead of attention) [8], to high-
light the access points that are most relevant to generate a prediction. In any case,
RSS fingerprints tend to be very long, having an element for each distinct access
point present in the considered scenario (520 APs in the dataset UJIIndoorLoc).
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cal form of the prediction (building, floor, room), generated using a single model,
would be lost, together with the adherence to the probabilistic framework described
in Section 6.2.1. To recover it, two alternative directions can be followed. As a
first solution, different models could be built for each distinct premise and hierar-
chical level. In the case of dataset UJIIndoorLoc, this translates to 1 model for
the building prediction, 3 models for the floor prediction (one for each building),
and around 12–15 models for the final room prediction (one for each floor of the
different buildings). Alternatively, 3 models could be considered: 1 model for the
building prediction taking in input the RSS fingerprint, 1 model from the floor pre-
diction taking in input the RSS fingerprint and the predicted building, and 1 model
for the room prediction taking in input the RSS fingerprint and the building and
floor predictions. In both situations, the gradient-based relevance values would have
a completely different and more complex interpretation, as they would depend on
more than one model and/or rely on heterogeneous features.

6.4.3 Other approaches for access point selection and RSS
noise mitigation

Note that our proposed architecture allows us to ignore aspects that are often central
to the development of positioning systems, such as those pertaining to the selection
of APs (i.e., features), the normalization of their RSS, and the mitigation of RSS
perturbation phenomena. Of course, in the literature, other specific approaches are
available to deal with such issues.

Considering AP selection, several solutions are available to determine the subset
of APs that are more relevant for the prediction of the user location, i.e., those which
are more likely to deliver a low localization error. Here, note how the strongest access
points may not always provide the best positioning accuracy, as already shown in
this work and in [52]. Among the selection approaches, either offline and online
techniques can be found. The former selects a static subset of access points for the
considered premises based on training data; such access points are then used for
all downstream positioning tasks [1, 131, 132]. The latter, given a new fingerprint
observed at an unknown location, generates a dynamic subset of APs, based also on
the fingerprint information, before performing the actual positioning [53, 129, 306].
Our solution is clearly different with respect to the offline approaches, since attention
values are computed for every new prediction. In addition, as opposed to the other
online methods, it allows us to seamlessly and jointly perform, within a single model,
selection and prediction phases, without the risk of heuristically discarding useful
information in the workflow. Specifically, the relevance values generated by the
attention mechanism can be considered as fuzzy selectors for the access points.
The fact that attention is applied over a limited number of stronger APs does not
constitute an issue, as remarked in Section 6.3.1.

As for dealing with RSS perturbation, proposed techniques include hyperbolic
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location fingerprints [126], differential fingerprints based on signal strength difference
[108], and mean differential fingerprints [134]. Although these works are designed
to cope with RSS perturbations caused by device heterogeneity, the same holds also
for our framework. Indeed, while ranks are generated starting from RSS values,
previous literature [155, 163, 164, 223] showed that ranked fingerprints are more
stable than RSS fingerprints, as they are coarser. The downside is that ranks are
also less informative; nevertheless, deep learning appears to be an effective manner
to cope with this, as showed here and in Chapter 5. In addition, our solution has a
much broader scope than the previously mentioned techniques, as it allows us also
to develop a domain-related notion of interpretability.

6.4.4 Applications

We believe our proposed spatial characterization of interpretability to be of actual
use in several positioning-related tasks. To begin with, it could act as a guide for
radio-map maintenance tasks. In the event of a known AP being faulty or removed,
it becomes necessary to update the radio-map to reflect such changes. Instead of
re-collecting fingerprints over a large area (note that an AP could be sensed even on
multiple floors), relevance values could be exploited to limit the update operations
to just the locations in which such AP was pertained to be useful by the model,
leading to savings in terms of human time and computing resources. Of course,
the usefulness of this application depends on the frequency of such AP replacement
events.

As a second application, the access point relevance patterns could also help to
identify unreliable predictions. One big issue in indoor positioning is that the envi-
ronment is highly dynamic. Besides changes related to people crowding rooms and
the intrinsic heterogeneity of devices, a major source of problems is represented by
either the removal, the replacement, or the installation of APs. To avoid degra-
dation of the positioning performance, the radio-map and the associated predictive
models need to be updated to reflect such changes. Nevertheless, determining when
and where such updates are necessary is a difficult task, especially considering that
it may not be known which of the APs have undergone changes. A possible solution
could be that of determining what is the typical pattern associated with a specific
location or region of the premises, and then measuring to which extent a newly
given fingerprint, predicted to belong to that area, adheres to the shared pattern. If
radical changes occur to the environment, they should be reflected in a divergence
between the two relevance patterns, intuitively showing a change to the importance
being assigned to the sensed access points. In turn, such a discrepancy could inform
the positioning system regarding the possible unreliability of the prediction and,
in that case, determine the region affected by the error, consequently suggesting
possible corrective actions as suggested earlier in this section.

Finally, consider the general positioning procedure, followed by both the proba-
bilistic and the deterministic approaches; it begins with determining the most prob-
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able locations as predicted by the model, leading to the retrieval of a set of points
from the radio-map, for which latitude and longitude coordinates are known. Such
coordinates are, in turn, exploited to derive the final position estimate. Spatial
regions sharing the same access point relevance pattern could act as a constraint
to reduce the number of candidates to consider when performing the radio-map
lookup, contributing both to an improvement of the positioning performance, as
well as to the overall speed of the process. To perform such a screening phase it
may be sufficient to compare the relevance values of the given instance with the
patterns characterizing the various areas, considering only the locations belonging
to the most similar one. This may, for instance, complement or extend the simple
position estimation approach that we presented in Section 6.3.4.

6.4.5 Current limitations

The presented work still has some limitations. To begin with, the generalizability
of our results is limited by deep learning in itself, given its strong dependence on
training data and on the supervised paradigm. Despite that, the developed exper-
imental workflow and its outcomes are based on a rigorous statistical procedure,
which should allow to derive similar conclusions in other indoor scenarios, provided
that a sufficient amount of training data is available.

Also, note that our improvement in positioning performance, which is not the
aim of the work but a way to show how interpretability can contribute in practice
in indoor positioning, was based on an intuitive, although rather naive approach.
More sophisticated techniques to jointly consider model likelihoods and attention
scores should be investigated, however, preliminary analyses point out that such a
task is not straightforward. The latter aspect is highly relevant since, as suggested
by the oracle, the margin of refinement is considerably large.

Altogether, in this chapter, we confirmed the observation made in [44], namely,
that the study of the relationships between attention weights and model inter-
pretability is an active area of investigation that should be carefully considered
by the research community.
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IV
Towards Indoor-Outdoor Seamless

Positioning





7
Crowdsourced Cellular Networks

Reconstruction for Outdoor
Fingerprinting

A unique challenge in the field of positioning is to develop a system capable of
dealing with seamless indoor-outdoor information [166]. Such a goal is hard to
accomplish given the peculiarities of the two domains, and the lack of a universal
positioning solution. In this dissertation we try to move the very first steps in this
direction, focusing on the idea of having a system relying entirely on fingerprints.
Indeed, fingerprinting constitutes a valid approach to outdoor positioning due to the
GNSS limitations, such as, for instance, its performance reduction in urban canyons,
considering both the time required to obtain a position fix and the overall localization
accuracy [153, 162, 269], and its high energy consumption [152, 304]. Nevertheless,
outdoor fingerprinting often relies on a comprehensive and accurate knowledge of
the cellular network configuration, which is not static and, above everything, is not
disclosed by network operators.

First introduced in the early 1990s, the cellular radio communication network
has evolved over time through successive technological generations (such as GSM,
UMTS, LTE, etc.). Today, it is the most widely used communication network glob-
ally, providing the transmission of both voice and data signals. The term cellular
radio refers to the deployment of numerous low-powered cell towers for signal trans-
mission, each having a limited transmission range and a designated radio frequency.
Given the global coverage of the cellular network and the common usage of its re-
ceivers, cellular signals are suitable for (signal) fingerprinting [113]. In such cases, a
fingerprint consists of the collection of the signal strengths of the observed cell tow-
ers [22, 49, 195]. It follows that they have a strong spatio-temporal characterization:
the gathered fingerprint is associated with a position (ground truth, i.e., observed
using GNSS, or estimated); and, two fingerprints sensed in the same place may differ
over time due to user equipment, environment, or cellular network changes.

Collecting data related to the cellular network and its configuration is nowadays
easy and convenient, thanks to the pervasiveness and ubiquity of mobile devices
[290]. Over time, this has resulted in vast amounts of spatio-temporal data being
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gathered through crowdsourcing and stored in various datasets, some of which are
open-source. The largest community project of this nature is OpenCellID1, which
reports an average of over 1 million measurements added daily. However, the data
is not properly arranged, with the repository containing lists of different values
stored in tabular formats, such as CSV, lacking a structure that reflects the inherent
organization of the cellular network [288], a scenario resembling the one reported
for indoor fingerprinting in Chapter 2.

To overcome such a limitation, we propose a general and flexible yet complete
database schema for cellular networks, modeled after the information available in
signal fingerprints, and capable of fostering the crowdsourced collection of data.
Again, this follows the same reasoning we did for indoor fingerprinting: we start to
tackle a problem by appropriately modeling the domain and the data. The system
supports several operations, ranging from outdoor positioning to advanced spatio-
temporal analyses and validation tasks pertaining to the state of the cellular net-
work. Despite being based on standard specifications, each generation of the cellular
network presents a challenge due to operators implementing unique organizational
structures and potentially making undisclosed modifications. Therefore, obtaining
complete and precise knowledge of the cellular network requires the systematic col-
lection, processing, and analysis of new fingerprints. The task is exacerbated due to
several characteristics of such a network being time-dependent, i.e., they undergo
continuous changes. For instance, a cell may be created or removed, merged with
another, or even spatially relocated [266]. This continuous network evolution is
taken into account and effectively managed by the proposed system, which overall
demonstrates how a deep knowledge of the cellular network arrangement can be
achieved and maintained based only on crowdsourced information.

To the best of our knowledge, no other comprehensive attempt to model the con-
sidered scenario has been reported in the literature. Previous works concentrated on
limited network analyses, performed over specific technologies and with the purpose
of solving precise problems, often relying on artificial intelligence techniques [77].
For instance, this is the case with network optimization and planning tasks, such
as the one in [130], where the authors propose an approach to determine groups
of similarly behaving 3G cells, to support human experts in determining the state
of the network; and that of [85], where the collection of a large-scale dataset to
foster mobile network planning is presented. Then, a broad set of the literature fo-
cuses on anomaly detection and troubleshooting [21, 55, 88, 128, 159, 212, 248, 250].
The only work close in spirit to the one described here is our framework to model
fingerprinting and building topology, already discussed in Chapter 2.

Recall that the work at the base of this chapter has been published in [36], but, as
reported in Section I.1, in this dissertation we are not going to provide its complete
description. Instead, we outline the resulting model and its capabilities, mainly for
what concerns the temporal aspect. Such a choice stems from the fact that the

1OpenCellID website: https://opencellid.org/
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publication in [36] builds on previous work by Gubiani et al. [100] (analysis of the
context and outline of the framework), Viel, in his PhD dissertation (background,
first modeling, and preliminary analysis) [265], and Andreussi, in his master thesis
(contribution to the implementation of the revised and spatio-temporal extended
database) [9], while our main contributions pertain to the refactoring of the entire
model, its extension with the temporal dimension, and the subsequent analyses.
Thus, the chapter is organized as follows. In Section 7.1 we provide an account of
the overall model, detailing the motivation behind the choice of incorporating spatial
and temporal information, with a specific focus on the latter and its usefulness.
Then, in Section 7.2, we discuss various capabilities of the system, reporting also
some analysis.

7.1 Modeling cellular networks after outdoor fin-

gerprinting

Cellular communications currently operate based on standardized definitions and
have global coverage. Numerous cellular technologies have been proposed over time,
each possessing unique characteristics. Exhaustive technical information on wireless
and cellular networks, including the features of signals and antennas, can be obtained
from various academic texts (e.g. [110, 196, 230]).

The approach considered in this work, however, has been different: a comprehen-
sive conceptual model of cellular networks that encompasses all data relevant from a
mobile device perspective has been developed. This representation integrates field-
gathered elements that may not be present or differ from standard declarations.
A model of this type can serve multiple purposes, such as, for instance, aiding in
individual positioning requests and analyzing the behaviour of large device groups.
Additionally, it can validate the consistency of new observations with previously
acquired network information, thereby detecting data anomalies and changes to
network arrangements.

For technical terminology clarification, a list of acronyms used throughout the
chapter is provided in Table 7.1, while for a detailed account of the cellular network,
we refer the reader to the original works [36, 265].

7.1.1 Common issues related to networks management

Irrespective of the kind of network (GSM, UMTS, LTE), there are some underlying
issues that have to be kept into account for a successful modeling.

First, as previously remarked, reaching a comprehensive knowledge of the net-
work arrangement is of utmost importance to improve the localization performance
of any cellular network-based positioning system. Note how, in turn, this affects
the effectiveness of any other task that exploits information regarding the position
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Table 7.1: Acronyms related to the specific network technologies used throughout
the chapter.

Acronym Technology Description Acronym Technology Description
ARFCN GSM Absolute Radio Frequency Channel Number PCI 4G Physical Cell Identifier
BCC GSM Base station Color Code PCU GSM Packet Control Unit
BSC GSM Base Station Controller PLMN All Public Land Mobile Network
BSIC GSM Base Station Id Code PSC UMTS Primary Scrambling Code
BTS GSM Base Transceiver System RA GSM, UMTS Routing Area
CGI GSM, UMTS Cell Global Identifier RAC GSM Routing Area Code
CI GSM, UMTS Cell Identifier RAI GSM Routing Area Identifier
EARFCN LTE Evolved ARFCN RNC UMTS Radio Network Controller
ECI LTE E-UTRAN Cell Identifier RSCP UMTS Received Signal Code Power
LA GSM, UMTS Location Area RSRP LTE Reference Signal Received Power
LAC GSM, UMTS Location Area Code RXLEV GSM Receiving Level
LAI GSM, UMTS Local Area Identifier TA LTE Tracking Area
MCC All Mobile Country Code TAC LTE Tracking Area Code
MNC All Mobile Network Code TAI LTE Tracking Area Identifier
NCC GSM Network Control Code UARCFN UMTS UTRA ARFCN

of users, such as behavioural analysis, emergency response, contact tracing, logis-
tics, and so on. Nevertheless, determining the state of the network arrangement is
not trivial when relying on just crowdsourced measurements: often the information
sensed by the devices provides only a partial view of the environment, for instance,
because they just aim to quickly discriminate between local cells. It is therefore es-
sential to make full use of the existing information, enhancing it through the already
available network data, and possibly exploiting related spatial knowledge.

Another major challenge is the inherent temporal evolution of the cellular net-
work layout. Indeed, a number of reconfigurations can happen over time. For
instance, in [266], the authors considered a cellular fingerprint dataset composed of
785,000 GSM observations collected in 2 years over a wide area of 1,800,000 km2,
finding 198 instances of cells that have changed one or more of their identifiers. The
phenomenon is named cell renaming, to denote a change, even a partial one, of the
cell identifier (e.g., the LAC parameter for a group of cells). Observe that such an
alteration has a temporal connotation as it must hold that the first observation of
a new cell takes place when the old one is not visible anymore. Moreover, the base
station physically remains at the same place, spanning the same coverage, while
the parameters of a cell change. Besides cell renamings, base station relocations
may be performed, where a cell gets assigned the same logical identifiers that were
previously ascribed to a different one placed at another location. Such events are
complex to model and deal with, as they are characterized by both spatial and
temporal changes. Moreover, renaming events concerning administrative areas (i.e.,
registration or routing areas) or the physical portions of the network (e.g., network
controllers and base stations) are also to be hypothesized.

It is clear why these phenomena are a concern for localization if not properly
handled. In the case of renaming, it would be impossible to exploit the information
of the old cell, as it would not be associated with the currently visible one. This
can naturally lead to a substantial degradation of the positioning performance in
the affected area, as a considerable amount of data would suddenly no longer be
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available. The phenomenon would be accentuated in areas with a low cell density,
such as rural regions. In [266], it is shown how accounting for such network changes
allows increasing the average number of candidates available for each position esti-
mation by 12.1%. In the case of relocation, the problem would be an inconsistency
of the data, which would again result in a positioning error, potentially of high mag-
nitude being it closely related to the spatial displacement affecting the cell. Thus,
a system that is able to effectively and efficiently manage the information required
to identify these phenomena has great potential in the domain. Finally, observe
that the actual identification of the previously mentioned phenomena (which can be
delegated to appropriate algorithms) is only one side of the matter; then, the system
needs also to be capable of harmonizing and keeping track of the old and the new
data, guaranteeing the overall consistency of the information before and after the
network modification events.

7.1.2 An account of the overall model

In Figure 7.1, we report the general conceptual model of the domain using a spatio-
temporal extension of the classical Entity-Relationship notation, called ChronoGeo-
Graph (CGG) [101, 102]. As we said, we do not discuss all the choices that led to
its development, specifically the various components, which instead can be found in
[36].

Briefly, it is possible to observe various parts, each devoted to a specific network
component: the PLMN and SUBPLMN, which model information about countries
and the networks present in them; the ADMINISTRATIVE AREA, which models
the location area, the routing area, and the tracking area; the RADIO ACCESS
NETWORK, that deals with the network controller and the base station; the CELL;
and, the POSITIONING SYSTEM, which represents the module in charge of dealing
with the location of a device.

To model the properties (attributes and relationships) that are specific to each
type of network generation, the entities within each part introduce several (total
and disjoint) specializations. Notably, since we consider administrative identifiers
for the cells, the partial key in the CELL specialization can be either ci (in the case
of GSM or UMTS technologies) or eci (for LTE). In the schema, they have been
represented using the single attribute eci / ci.

The positioning component, which models fingerprinting, is the one that enables
to have spatial information throughout the entire system. Specifically, a DEVICE
(identified by its id) sends to the system several OBSERVATIONs at different time
instants. These observations can be associated with a GNSS position (GNSSfix ), or
not. In the latter case, an estimation (GNSSestimation) may be derived using suit-
able positioning algorithms for fingerprinting [269]. Observations convey information
about one or more observed CELLs and the corresponding observed signal strength.
The cell can be either the serving one, to which the device is directly connected,
or a neighbour one. Note that the observation of a cell allows us to extract all the
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is not enough to have a precise knowledge of the cellular network from the spatial
perspective, as other entities have spatial attributes, some of which represent areas.
Specifically, a fundamental part pertains to managing the coverage of the cells as
well as other elements in the hierarchy. Thanks to the overall modeling, evaluating
the coverage of a cell, and in a cascading fashion of the other elements in the
hierarchy (i.e., administrative areas and PLMNs components), can be done on the
fly aggregating the position (attribute GNSS fix ) of the OBSERVATIONs that have
perceived the cell, either as a serving or a neighbouring one (e.g., calculating the
convex hull). Such on-demand evaluation significantly improves the efficiency of the
model, enabling it to store less (redundant) data and to reduce the number of heavy
and complex spatial computations, performing them only when strictly necessary.
Other spatial features can be reconstructed from the observations. This is the case of
the derived attribute position, which is part of the NETWORK CONTROLLER and
BASE STATION (there exist ad-hoc algorithms, see for instance [265]). Indeed, from
the position of the BASE STATIONs one can infer that of the linked NETWORK
CONTROLLER.

7.1.3 The temporal aspects

A temporal database is a database that integrates support for handling the evolution
of data and knowledge throughout time. The temporal aspects of our interest are
the so called valid time and transaction time: the first represents the time interval
during which a fact is true in the real world and it is a user-defined representation
of time; the second represents the time interval during which a fact is current in
the database and it is a system-defined representation of time, namely managed
by the DBMS. A temporal database is physically implemented by augmenting the
primary key of each table one wants to temporalize. Specifically, the key is extended
with a pair of values for each temporal dimension, representing the extremes of the
respective interval. A database that implements both valid and transaction time is
referred to as a bi-temporal database.

The schema in Figure 7.1 reports the temporality associated with the entities, by
means of the letters that are located at the bottom right corner of the corresponding
boxes. Each entity of the cellular network has a transaction time interval (letter
T). This allows us to easily retrace the database evolution, showing its content as
it was at any previous moment in time. One could argue about the decision to
maintain the OBSERVATION’s time observation attribute despite the presence of
the transaction time; however, such values may be different, for example, due to a
delay in the insertion of one instance into the database with respect to its sampling
time. Moreover, if updates are carried out on such database records (e.g., to correct
errors), they might not have an impact on the time observation, while certainly
generating a new version of the record, tracked through the transaction time2. In

2In temporal databases with transaction time, each operation (insertion, deletion, update)
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addition, considering that renaming may affect cell, administrative area and radio
access network (as explained in Section 7.1.1), for each of the entities involved we
also provide a valid time interval (identified by LS), that allows us to specify the
moment of reality in which they existed. For example, this can be the case when we
want to keep track of a cell that has been renamed and therefore no longer exists
but existed in a certain past time interval.

Finally, to make the distinction between transaction and valid time clearer, as
well as to justify the presence of both of them, consider the following two scenarios.

Scenario 1. On 2022-09-01 a new observation is added to the database, which, for
the first time, reports the presence of a cell, say cellx, which has never been seen
before. Thus, a tuple that describes such a cell is inserted with both transaction
and valid time intervals starting from 2022-09-01:3

{ (cellx, T : [2022-09-01,∞], LS : [2022-09-01,∞]) } .

The day after, a delayed observation, originally recorded on 2022-08-25, gets finally
processed and inserted into the database. Such an observation also reports the
presence of cellx. As a result, the tuples that describe such an event now are:

{ (cellx, T : [2022-09-01, 2022-09-02], LS : [2022-09-01,∞]),

(cellx, T : [2022-09-02,∞], LS : [2022-08-25,∞]) } .

Note how, in this way, the cell’s history is kept by means of the logically deleted
tuple (i.e., with a closed transaction time), while the current information is encoded
by the newly added one.

Scenario 2. Valid and transaction times play a central role also in the management
of a cell renaming or relocation. To reliably identify such events, often multiple
observations witnessing the change of parameters are needed, collected over an ex-
tended time frame (in general, the fewer the measurements related to a given area,
the longer the period). Let us assume that a cell, named cellx, first detected and
inserted in the database on 2017-07-12, changes part of its global identifier on 2022-
09-01, thus being detected, from that moment on, as a new cell, say celly. The
situation is described by the following tuples:

{ (cellx, T : [2017-07-12,∞], LS : [2017-07-12,∞]),

(celly, T : [2022-09-01,∞], LS : [2022-09-01,∞]) } .

Furthermore, assume that 10 measurements of celly are needed to validate such
information, and that we receive a new measurement each day. Thus, only on 2022-
09-11 we are able to reliably detect the renaming event and merge cellx into celly.

involving a record produce a new record, with updated transaction time interval.
3Here and in the following, for the ease of reading, we adopt a simplified version of the tuples,

not referring to the actual conceptual schema.
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The situation now becomes:

{ (cellx, T : [2017-07-12, 2022-09-11], LS : [2017-07-12,∞]),

(celly, T : [2022-09-01,∞], LS : [2022-09-01,∞]),

(cellx, T : [2022-09-11,∞], LS : [2017-07-12, 2022-09-01]) } .

Note that the “old” information pertaining to cellx has been logically deleted from
the database using the transaction time on 2022-09-11 on the first tuple; and, a
new tuple reflecting the more recent knowledge about it is added on the same date.
Observe as, thanks to the valid time, the newly added tuple encodes the information
that, from 2022-09-11, we know that the cellx is not alive since 2022-09-01. Concern-
ing the other information related to the two cells (e.g., their observations), they are
dealt with in a similar way: after 2017-09-01, those of cellx become associated with
celly by means of changes to their valid and transaction times. This is particularly
relevant from the point of view of positioning: when a new measurement detects
celly, it can now leverage all the available information observations irrespective of
the renaming operation.

As a matter of fact, to deal in practice with the temporal dimensions, we cannot
directly model the entities with just their natural keys and the temporal intervals,
but we need to introduce a set of surrogate keys. The reason for such a change is
twofold. First, consider a possible renaming operation. Such procedure can affect
attributes that are part of the (natural) primary keys of a table4. Let us assume,
for instance, a renaming operation affecting a given cell cellci1 (where ci1 denotes
the value of its attribute ci), turning it into cellci2. Since changing part of the
primary key means having a new, independent entry, the aforementioned event would
result in not being able to recognize that cellci1 evolved in cellci2, as no link would
be present among the corresponding (temporal) records, both still present in the
database. Introducing a surrogate primary key id cell solves the issue, as it is going
to be immutable since the first appearance of a cell. In the considered renaming
case, only the attribute ci would change, thus it would still be possible to recognize
that the cell with id cell = 1, ci = 1, evolved in id cell = 1, ci = 2, linking the
information between older and newer versions of the same cell. Note that such a
procedure applies to any scenario where we merge multiple cells together: ci can
be used to retrieve all the records in CELL composing the actual cell (within a
given administrative area), while id cell discriminates between the single (merged)
entries. Recalling the renaming example we described above, we now have the

4Recall that, in a bi-temporal database, the primary key of a temporalized entity is augmented
with the attributes representing the transaction and valid time intervals, allowing the system to
keep a history of each instance composed of all its subsequent modifications.
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following scenario:

{ (id cell = 1, ci = 1, T : [2017-07-12,∞], LS : [2017-07-12,∞]),

(id cell = 2, ci = 2, T : [2022-09-01,∞], LS : [2022-09-01,∞]) }






y

rename ci = 1 in ci = 2 on 2022-09-11

{ (id cell = 1, ci = 1, T : [2017-07-12, 2022-09-11], LS : [2017-07-12,∞]),

(id cell = 2, ci = 2, T : [2022-09-01,∞], LS : [2022-09-01,∞]),

(id cell = 1, ci = 2, T : [2022-09-11,∞], LS : [2017-07-12, 2022-09-01]) } .

Compared to the case where ci is part of the (temporal) primary key and the
surrogate key does not exist, here it is possible to retain the fact that (id cell =
1, ci = 1) evolved in (id cell = 1, ci = 2). Note that, after the renaming, the cell
with ci = 2 is logically composed of two records, and that cell ci = 1 is not alive
by itself anymore. Of course, the procedure can be repeated indefinitely, always
preserving the entire knowledge about network’s reconfigurations:

{ (id cell = 1, ci = 1, T : [2017-07-12, 2022-09-11], LS : [2017-07-12,∞]),

(id cell = 2, ci = 2, T : [2022-09-01,∞], LS : [2022-09-01,∞]),

(id cell = 1, ci = 2, T : [2022-09-11,∞], LS : [2017-07-12, 2022-09-01]),

(id cell = 3, ci = 3, T : [2022-09-15,∞], LS : [2022-09-15,∞]) } .






y

rename ci = 2 in ci = 3 on 2022-09-20

{ (id cell = 1, ci = 1, T : [2017-07-12, 2022-09-11], LS : [2017-07-12,∞]),

(id cell = 2, ci = 2, T : [2022-09-01, 2022-09-20], LS : [2022-09-01,∞]),

(id cell = 1, ci = 2, T : [2022-09-11, 2022-09-20], LS : [2017-07-12, 2022-09-01]),

(id cell = 3, ci = 3, T : [2022-09-15,∞], LS : [2022-09-15,∞]),

(id cell = 2, ci = 3, T : [2022-09-20,∞], LS : [2022-09-01, 2022-09-15]),

(id cell = 1, ci = 3, T : [2022-09-20,∞], LS : [2017-07-12, 2022-09-01]) } .

The second reason motivating the introduction of surrogate keys pertains to the
propagation of updates in the database. For instance, let’s assume a natural key
attribute of a given registration area, say ra1, changes. Then, according to the
schema of Figure 7.1 which does not make use of surrogate keys, this would cause
a cascading update of all the foreign keys of cells connected to ra1. Such an event
happens because the hierarchy defines a chain of weak entities, starting from the
PLMN till the CELL. Again, this unnecessary computational burden is avoided with
the introduction of a (immutable) surrogate key.

As a final note, besides introducing surrogate keys to effectively support the
temporal capabilities of the system, other restructuring steps are needed in order to
have a conceptual schema that can be easily translated into a logical one. In such
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details about devices and users. Overall, the dataset, obtained by parsing raw logs,
includes 12,492,545 measurements, partitioned into GSM (11,998,811) and UMTS
(493,734), distinguishing between serving and neighbours cells . Compared to the
OpenCellID dataset, u-blox data have lower worldwide coverage, with some areas
more densely represented (e.g., South Africa and Europe). However, those datasets
do overlap in time (we recognized 63,839 cells appearing in both).

7.2.1 Continuous and periodic validation

Of course, it is not possible to populate the database with raw data directly, espe-
cially given that the main goal is to deal with heterogeneous data sources. Thus,
some “continuous validity checks”should be performed in order to determine the cor-
rectness of each new measurement. Such checks include verifying that the observed
values belong to appropriate ranges, that there are no null values in mandatory
fields, and that there are no inconsistent values (e.g., using GNSS to verify that a
measurement is actually in the state identified by the observed mcc).

Other types of controls made available by the systems are the “periodic validity
checks”, which are instead run only at regular intervals, due to their semantic nature
and computational complexity. An example of a periodic check is as follows: if a
cell has enough associated observations, it can be determined whether the (possibly
estimated) locations of its latest observations (that are, those entered after the
last launch of this periodic check) are consistent with the coverage of the cell, i.e.,
the geometric distances of the locations with respect to the previously known cell
extension are plausible (e.g., not too large). Finally, the detection of cell renaming
phenomena has also been implemented as a periodic routine: briefly, on the basis
of [266], it verifies whether several (spatio-temporal) conditions characterizing the
renaming phenomenon are satisfied. Ideally, periodic checks should complement and
be run in parallel with continuous ones.

In order to assess the effectiveness of both types of checks, the database has
been populated simulating the continual arrival of data, pertaining to both the
considered datasets, respecting their natural and real evolution over time. The
outcomes, which details may be found in [36, 265], are that such checks and the
modeling are fundamental to storing in an organized fashion data coming from
multiple, heterogeneous sources (i.e., around 7% of measurements are filtered out,
and the remaining information suitably integrates together).

7.2.2 Basic, spatial and temporal analysis

Here, we present some relevant use cases that are made possible by the developed
system. Clearly, most of the described analyses can also be performed starting from
raw data, but in that case the procedures are much more complex and computa-
tionally intensive than using the structured model.
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7.3 Discussion

In this chapter, we reported an outline of how it is possible to reconstruct and
maintain information about the infrastructure of cellular networks by making use
of crowdsourced data sensed by mobile devices, in order to support outdoor finger-
printing. The gained knowledge was formally encoded by means of a conceptual
database schema encompassing spatio-temporal information, flexible enough to deal
with several kinds of network technologies (and easily extendable to others) and
able of accommodating crowdsourced measurements. We then showed how the sys-
tem supports several network-related tasks, considering some real datasets. Most
importantly, it allows one to maintain an accurate and up-to-date representation
of the network infrastructure, through the detection of inconsistent measurements
coming from mobile devices, e.g., due to the violation of spatio-temporal constraints
on their collection, and cell renaming phenomena. In addition, a selection of exem-
plary analyses has been presented, ranging from basic ones to more complex spatial
and temporal use cases. Overall, the proposed system poses as a solid basis to foster
all kinds of tasks based on outdoor positioning and cellular network analysis.

Towards our goal of developing a system for seamless indoor-outdoor localiza-
tion, this chapter covers a fundamental step. The underlying principle follows that
of Chapter 2, where we modeled indoor positioning, and developed a system ac-
cordingly. The main difference lies in the fact that for the outdoor case, we did not
have the counterpart of the building topology yet. While from one perspective this
role can indeed be performed by the hierarchy derived from the cellular network
structure, according to the usage of the system, the granularity offered by it could
be too coarse: for instance, the area covered by a cell might be large by nature,
or small due to a partial lack of knowledge, leading to too much uncertainty. A
possible workaround, which does not require us to define ad-hoc modeling as done
for the indoor case, would be of integrating into the database information about the
road network. Such data is already openly available, also in a format aligned with
our spatio-temporal modeling. In this way, the outdoor topological model could be
composed of the road network data and, possibly, the cellular network hierarchy.
Then, such a model could be easily linked with its indoor counterpart, leading us
towards having a holistic modeling of fingerprint-based positioning. However, the
topological information would not be fully exploited till the point we introduce the
concept of trajectory, i.e., sequence of spatio-temporal points. Trajectories are not
a primitive concept, but they convey a large amount of information, which, beyond
contributing towards developing more precise algorithms, we believe may play a cru-
cial role precisely when a user/device moves from outdoor to indoor and vice versa.
As we showed in Chapter 2, introducing support for this type of information in the
model is not challenging (the indoor DB already does this). Nevertheless, to the
best of our knowledge, there is a lack of work in the area of trajectories applied to
(outdoor) fingerprinting, a topic which we, therefore, address in the next chapter.
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8
Represent and Compare Outdoor

Fingerprint-based Trajectories

A trajectory can be defined as a sequence of timestamped locations of a user or a
device. Although it is not a primitive concept, trajectories and their comparison
are fundamental in many important tasks like clustering, classification, and mining
of user behaviour, which are common operations in transportation, urban planning,
environmental studies, business, and public security [172]. Besides these applica-
tions, we believe that, concerning our goal of developing a seamless indoor-outdoor
positioning system, trajectories can play a crucial role in modeling transitions be-
tween different contexts. Indeed, these sequences of points can be characterised
by heterogeneous observation with respect to the sampling frequency, devices, and
type of observed data. Thus, it is not difficult to imagine how they can play a
pivotal role in our context, specifically supporting positioning tasks regarding peo-
ple and devices moving from an outdoor to an indoor environment and vice versa.
Nevertheless, to fulfill the role, a measure is needed to estimate how much two
distinct trajectories are similar/different (similarity measure). The similarity evalu-
ation problem has been extensively studied in the case of trajectories reconstructed
from Global Navigation Satellite System (GNSS) points, like the Global Positioning
System (GPS), under different perspectives [6, 48, 144, 151, 165, 274, 297]. Here, we
focus on fingerprinting relying on the cellular network, i.e., exploiting the unique cell
tower identifier (cell-ID) and the related Received Signal Strength Indicator (RSSI).
Among the cells observed by a device and composing a fingerprint, we recall that it
is possible to identify two different types: the serving cell, which is always present
and it is the one to which the device is connected; and, the neighbours’ cells, i.e.,
all the others. Concerning the spatial information, it will be represented by means
of latitude and longitude only. Observe that such data could be either retrieved by
GNSS-like technologies, for the few devices equipped with the proper module, or
could be estimated by position estimation (PE) fingerprinting algorithms.

The overall goal of this chapter is to understand which is the best methodology
to measure similarities in the fingerprinting realm, with a specific focus on deter-
mining the differences with respect to the GNSS case. To achieve this, we first make
a careful evaluation of the applicability of similarity measures that have been origi-



174 8. Represent and Compare Outdoor Fingerprint-based Trajectories

nally developed in the GNSS setting to cellular fingerprint trajectories, and then we
propose an original approach tailored to the considered context. Compared to the
GNSS case, cellular fingerprinting is characterised by significant differences in the
frequency of observations (heterogeneity), which reflect differences in the behaviours
of the devices/users. In many cases, such a frequency turns out to be quite low.
In the evaluation of existing similarity measures, we will indeed pay attention to
the distinctive features of low-sampling heterogeneous trajectories. Moreover, given
that in fingerprinting we can rely on both spatial and cellular information, we will
investigate which features are best suited for evaluating the similarity among this
kind of trajectories.

On the basis of such an investigation, we propose an approach that exploits
multiple sources of information, including both spatial identifiers and cell identifiers
with RSSI. A careful experimental evaluation of the various similarity measures
based on a large dataset of fingerprint trajectories from real users concludes the
work.

The rest of the chapter is organised as follows. In Section 8.1, we review some
existing measures of similarity, focusing on those that can be more easily adapted
to cellular fingerprinting, providing a precise mathematical formulation of them.
The application of suitable variants of these measures to fingerprint trajectories is
illustrated in Section 8.2, where we also introduce an approach to compare two
(signal-based) fingerprints, and a similarity measure specifically tailored to finger-
print trajectories. In Section 8.3, we outline the framework for the experimental
evaluation of the considered measures. The outcomes of the experimentation are
reported in Section 8.4.

8.1 Comparison of GNSS and non-GNSS trajec-

tories

In the first part of the section, we briefly survey similarity measures for (GNSS)
trajectories, focusing on those that can be adapted to fingerprint ones. Then, the
three standard measures EDR, ERP, and LCSS are formally defined.

8.1.1 An overview

A trajectory T can be represented as a sequence of positions ⟨p1, ..., pn⟩. Each posi-
tion pk is, in fact, a data structure encoding the coordinates of the spatial position,
the acquisition timestamp, and other available data. In the case of fingerprinting
systems, we have one or more cells with the associated signal strength.

Different (dis)similarity measures have been proposed in the literature. Two
basic approaches are the Closest-Pair Distance (CPD), which defines the distance
between two trajectories as the minimal distance between their points, and the Sum-
of-Pair Distance (SPD), which expresses (dis)similarity as the sum of the distances of
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aligned points, under the assumption that trajectories have the same length/number
of points [301]. Even if intuitive, these measures suffer from some shortcomings: the
CPD approach is too coarse, and the assumption on the length of trajectories by
SPD is hard to fulfil in real scenarios.

To overcome their limitations, more advanced solutions have been proposed.
Dynamic Time Warping (DTW) looks for similar patterns among trajectories [28].
To this end, trajectories are non-linearly warped in the temporal dimension, to
obtain a similarity measure independent of certain variations on that axis. Measures
based on Edit Distance [147], such as Edit Distance for Real sequences (EDR) [47]
and Edit Distance with real Penalty (ERP) [46], determine the minimum number
of operations (insertions, deletions, and substitutions) that have to be performed
to transform one trajectory into the other. Longest Common Subsequence (LCSS)
[270] finds the longest subsequence that a set of sequences have in common. A
trajectory similarity measure based on it is LCSSδ,ϵ [268]. The latter two groups of
measures turn out to be easily transferable to the fingerprinting setting.

To the best of our knowledge, there is not a widely adopted similarity measure
specifically developed to handle fingerprint trajectories. However, some attempts
to compare trajectories consisting of locations which are not directly expressed as
coordinates can be found in the literature. In the following, we briefly present some
related work.

In [298], a solution based on Call Detailed Records (CDR) is proposed, where
each point of a trajectory is identified by a spatial point and a cell-ID. The evalu-
ation of trajectory similarity makes use of a measure close to Edit Distance, that
takes into account both spatial and temporal dimensions. The novelty of the pro-
posal is the usage of centroid displacements resulting from the application of edit
operations as the cost metric. Its main limitation is that CDR data are, in gen-
eral, not publicly available. Another solution, that borrows its main features from
research on sequence comparison, has been proposed in [195]. It is based on the
Smith-Waterman algorithm [243] and views trajectories simply as sequences of cell-
IDs. It introduces two changes to the classic Smith-Waterman algorithm. First, the
last seen cell appearing in the trajectory must produce a matching edit operation
when compared to trajectories stored in the database; second, the costs of matches
and mismatches are respectively 1 and −0.5. In [162], a method using cell-IDs and
handoff patterns is proposed. It combines string alignment on cell-IDs with infor-
mation about cells similarity. The handoff pattern between two cells corresponds to
the number of mutual switches between them. Since these patterns can be proved
to be stable over the same route, two trajectories are similar if they have a long
connection time to similar cell towers that appear in similar orders.

A different representation of trajectories is given when semantic locations are
considered: points of trajectories are tags (strings), that encode knowledge about
the locations they represent, e.g., points of interest [173, 204]. A semantic-based
method is proposed in [293, 294]. The similarity is assessed by determining how
many parts the two trajectories have in common. To this end, the notion of Maximal
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Semantic Trajectory Pattern Similarity, which is based on LCSS, is exploited. Latent
Semantic Analysis (LSA) comes into play in the method described in [198]. It views
trajectories as documents and defines a mapping from the spatial/cellular space
to a grid one, which can be represented by a matrix. Similarity of trajectories is
then reduced to similarity of grid cells, which is determined by applying a suitable
similarity function. A more semantic evaluation of trajectory similarity can be
obtained by applying LSA to the matrices, thus generating reduced ones, and then
measuring their similarity.

8.1.2 EDR, ERP, and LCSS

Let r and s be two GNSS positions, and let R = ⟨r1, .., rm⟩ and S = ⟨s1, .., sn⟩, with
|R| = m and |S| = n, be two trajectories.

The Edit Distance for Real sequences (EDR) is based on Edit Distance, and it
allows one to compare sequences which are not simple strings of characters [47]. The
rationale followed by this measure (as well as from the others considered) is that the
overall dissimilarity score is given by the sum of the contribution brought by each
pair of points belonging to the two considered trajectories. Such contribution is de-
termined by means of a cost function, which is characteristic for each (dis)similarity
measure. The cost function dEDR(r, s) for EDR is defined as follows:

dEDR(r, s) =











0 if dpoint(r, s) ≤ ϵ ;

1 if dpoint(r, s) > ϵ ;

1 if r = gap or s = gap ,

(8.1)

where dpoint returns the (spatial) distance between two points1, ϵ is a suitable thresh-
old, whose value depends on the considered domain, and gap represents a missing
point (it can be viewed as a symbolic value to be used for distance evaluation when
an insertion or a deletion has been applied). Intuitively, dEDR assigns a cost equal
to 0 if the distance between r and s is lower than ϵ (i.e., r and s are considered
as matching points), and a cost equal to 1 if it is greater than ϵ (i.e., to cope with

1It is worth pointing out that, in the following, whenever we refer to the (spatial) distance
between two points, we assume that an appropriate measurement is performed (e.g., Haversine
distance), depending on whether points are locally projected or not.
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insertion, deletion, and substitution). EDR(R, S) is defined as follows:

EDR(R, S) =






































n if m = 0 ;

m if n = 0 ;

EDR(Rest(R), Rest(S)) if dEDR(r1, s1) = 0 ;

min











EDR(Rest(R), Rest(S)) + dEDR(r1, s1)

EDR(Rest(R), S) + dEDR(r1, gap)

EDR(R,Rest(S)) + dEDR(gap, s1)

otherwise ,

(8.2)

where Rest(T ) is the sub-trajectory extracted from T by removing its first element.

Similarly to EDR, the Edit distance with Real Penalty (ERP) is based on Edit
Distance. The main difference between ERP and EDR lies in the cost function. In
EDR, each edit operation adds a cost equal to a fixed value, while in ERP the cost is
proportional to the actual relation (i.e., distance) between the considered elements.
The cost function dERP (r, s) which characterise ERP is defined as follows:

dERP (r, s) =











dpoint(r, s) if r, s ̸= gap ;

dpoint(r,g) if s = gap ;

dpoint(g, s) if r = gap ,

(8.3)

where dpoint and gap are defined as for dEDR(r, s), and g = (0, 0) is a reference
point. Assuming that R and S have been normalised with the procedure given in
[46], ERP (R, S) is defined as follows:

ERP (R,S) =










































n
∑

i=1

dERP (gap, si) if m = 0 ;

m
∑

i=1

dERP (ri, gap) if n = 0 ;

min











ERP (Rest(R), Rest(S)) + dERP (r1, s1)

ERP (Rest(R), S) + dERP (r1, gap)

ERP (R,Rest(S)) + dERP (gap, s1)

otherwise ,

(8.4)

where Rest(·) is the same as for EDR(·, ·). The reference point g makes it possible
to extend the cost function, which is proportional to the distance between the two
considered points, to insertions and deletions, where only one point is available.

Unlike EDR and ERP, LCSSδ,ϵ is a trajectory similarity measure based on the
Longest Common SubSequence criterion [268]. In general, it takes into consideration
both the spatial and temporal dimensions. The temporal parameter δ specifies the
maximum number of mismatching points that can exist between two matching ones.
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The spatial parameter ϵ defines how far away two points can be to be considered as
matching. Such a similarity measure is used, for instance, in [225, 267].

Here we consider a simple version of LCSS, proposed in [47, 165], that makes use
of the spatial parameter ϵ only. Its cost function dLCSS(r, s) is defined as follows:

dLCSS(r, s) =

{

0 if dpoint(r, s) ≤ ϵ ;

1 if dpoint(r, s) > ϵ ,
(8.5)

where dpoint and ϵ are defined as for dEDR(r, s). LCSSsim(R, S) is defined as follows:

LCSSsim(R, S) =






















0 if m = 0 or n = 0 ;

LCSSsim(Rest(R), Rest(S)) + 1 if dLCSS(r1, s1) = 0 ;

max

{

LCSSsim(Rest(R), S)

LCSSsim(R,Rest(S)))
otherwise ,

(8.6)

where, again, Rest(·) is the same as for EDR(·, ·). The normalised dissimilarity
version of LCSS is computed as follows:

LCSS = 1− LCSSsim(R, S)

min{|R|, |S|} . (8.7)

8.2 A proposal for fingerprint trajectories

In this section, we focus on fingerprint trajectories, where the information about
location, rather than being the precise GNSS one, is often either represented im-
plicitly by means of cellular data indeed observed at a certain location or encoded
explicitly as a result of a position estimation (PE). However, all this information can
coexist within a trajectory point, enabling trajectories to be represented in multiple
ways, according to the set of data that is considered. Since in the remainder of the
work, we might need to refer to a specific representation, given a generic trajectory
point p, we will use ps and pc to refer to its spatial or cellular one respectively.
As a meta-observation, note that when PE is expressed as a spatial point within a
common reference system, e.g., latitude and longitude coordinates, as indeed we do
in this work, all the similarity measures for GNSS-based trajectories can be directly
applied, as the two representation are structurally identical. Nevertheless, whether
or not they provide the same results in terms of quality, it is a matter of discussion
for Section 8.4.

In the following, we first show how to adapt EDR, ERP, and LCSS to the case
of fingerprints concerning their cellular representation (Section 8.2.1), and then we
propose a similarity measure tailored to a hybrid scenario (Section 8.2.2).
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8.2.1 EDR, ERP, and LCSS revisited

From the cellular perspective, a trajectory point p, which is a fingerprint, can be
represented as an arbitrarily long vector of the form:

pc = [(cell-ID1,data1), ..., (cell-IDm,datam)] , (8.8)

where datai is a vector of cellular data associated with the cell tower identified by
cell-IDi. In the following, among those data, we consider RSSI only.

Given that cell-IDs are unique and basically stable, a possible representation
is that of describing a trajectory as a sequence of (timestamped) locations, each
labelled with the cell-ID of the serving cells of the corresponding fingerprint. Thus,
it is possible to revise the EDR, ERP, and LCSS similarity measures to fit the new
scenario, essentially changing their cost function.

Both EDR and LCSS come from string matching and assign a unitary cost,
equal to 0 or 1, to a mismatch. To allow cellular-based comparison, we use the
same principle in redefining their cost function: we test whether two cell-IDs are
equivalent and determine the unitary cost accordingly. Indeed, it is easy to see that
trajectories based on serving cell-IDs strongly resemble full-fledged strings.

Let rc and sc be two fingerprints, and let rccid and sccid be the corresponding
serving cell-IDs.

EDR for cellular data is obtained from Definition (8.2) by redefining the cost
function dEDR(·, ·) as follows:

dcEDR(rc, sc) =











0 if rccid = sccid ;

1 if rccid ̸= sccid ;

1 if r = gap or s = gap ,

(8.9)

where gap is defined as in the basic case.
The same rewriting applies to LCSS:

dcLCSS(rc, sc) =

{

0 if rccid = sccid ;

1 if rccid ̸= sccid .
(8.10)

The above changes cannot be applied to ERP, urging us to propose a new cost
function in order to maintain the ERP key advantage of being based on penalties
proportional to a given distance between two elements (e.g., the spatial distance in
the case of GNSS points). To such an extent, with the aim of better discriminating
among fingerprints, we use all available cellular data, not only the cell-ID of the
serving cells. Such an approach has the positive effect of mitigating the impact on
the similarity evaluation of some cellular networks issues, such as unexpected cell
reselection [231].

As a preliminary step, let us introduce some notations. First of all, let Cells(pc)
be a function that, given a fingerprint pc defined as in (8.8), returns the set of cell-
IDs observed in pc (i.e., the cell-IDs of the serving cell and those of the neighbouring



180 8. Represent and Compare Outdoor Fingerprint-based Trajectories

cells). Then, given two generic fingerprints pc and qc, let us define:

ListCellID(pc,qc) = Cells(pc) ∪ Cells(qc) ; (8.11)

Match(pc,qc) = Cells(pc) ∩ Cells(qc) ; (8.12)

Mismatch(pc,qc) = ListCellID(pc,qc) \Match(pc,qc) . (8.13)

Given a fingerprint pc, the number of cell-IDs associated with it (cardinality
of Cells(pc)) is highly correlated to its geographic area, as different regions are
characterised by different cell densities. In particular, in urban areas there are more
cells than in rural ones [100], possibly leading to comparing two instances with a
very different number of cells. In such an eventuality, the cost computed by the
similarity evaluation procedure could be largely influenced by the number of cells.
To avoid this, we introduced the Normalised Cellular Distance (NCD), a measure
that returns continuous values between 0 and 1, which is defined as follows:

NCD(pc,qc) =

√

∑

k∈Match(pc,qc)

(pc[kRSSI ]− qc[kRSSI ])2 + |Mismatch(pc,qc)| · 110

|ListCellID(pc,qc)| · 110 ,

(8.14)

where pc[kRSSI ] denotes the RSSI of the cell observed in pc and identified by the
cell-ID k.2

According to Definition (8.14), for any two fingerprints r and s, we redefine the
cost function dERP (·, ·) as follows:

dcERP (rc, sc) =



















NCD(rc, sc) if rc, sc ̸= gap ;

NCD(rc − 1, sc) if rc = gap ∧ rc − 1 ∈ R ;

NCD(rc, sc − 1) if sc = gap ∧ sc − 1 ∈ S ;

1 otherwise ,

(8.15)

where rc − 1 and sc − 1 respectively denote the points before rc and sc in the
corresponding (full) trajectories. Such a formulation is very close to that of dERP

given in Definition (8.3), but for the fact that Definition (8.15) deals with gaps in a
way similar to that of the DTW technique [28]. In classical dERP (Definition (8.3)),
when a gap is encountered a comparison is done between the point which is not a
gap and the reference point; in the cellular setting (Definition (8.15)), the available
point is compared with the point preceding the gap in the gap-affected trajectory
(as it partially happens with DTW), if available.

2The number 110, which occurs in the definition of NCD, represents what we consider to be
the minimum signal strength detectable by a device (precisely, −110dbm). Whenever the detected
RSSI is lower than that, it is a reasonable assumption to round it to −110dbm.
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8.2.2 Spatial Edit Distance for Fingerprints (SEDF)

In Section 8.2.1, we showed how to adapt GNSS point-based similarity measures
to deal with data available in fingerprinting, considering cellular data only. In this
section, we propose a new similarity measure, specifically designed for fingerprint
trajectories, that incorporates spatial information. It is inspired by the measure
proposed in [298], which is based on Edit Distance.

The key idea is to exploit the centroid of the trajectories. As in the case of
GNSS-based trajectories, the centroid is computed by averaging the coordinates of
the points of the trajectory. Thus, it acts like a balancing point for the trajectory,
minimising the square of the Euclidean distances between itself and the other points.
Notice that the removal of a point close to the centroid causes a small variation of
it, while the removal of a distant one may have a more significant impact.

The novelty of the proposed measure, called Spatial Edit Distance for Finger-
prints (SEDF), lies in the way it deals with the different types of available data. We
introduce a new coefficient, named mitigation factor, which is in charge of adjusting
the cost of the three edit operations (substitution, deletion, and insertion). In our
setting, in its base formulation, the cost is purely spatial, as it only depends on the
centroid displacement introduced by a single edit operation. On the other hand,
the mitigation factor takes into account both spatial and cellular information, and
it has the effect of reducing or increasing the cost of an edit operation.

Let R and S, with |R| = m and |S| = n, be two trajectories. SEDF (R, S, i, j)
is defined as follows:

SEDF (R, S, i, j) =






































0 if m = i ∧ n = j;

SEDF (R, S, i, j + 1) + MitigatedIns(R, S, j) if m = i ;

SEDF (R, S, i + 1, j) + MitigatedDel(R, i) if n = j ;

min











SEDF (R, S, i + 1, j + 1) + MitigatedSub(R, S, i, j)

SEDF (R, S, i + 1, j) + MitigatedDel(R, i)

SEDF (R, S, i, j + 1) + MitigatedIns(R, S, j)

otherwise ,

(8.16)
where i and j are two indices used to scan the trajectories. The mitigation factors
are defined as follows:

MitigatedSub(R, S, i, j) =

NCD(rci , s
c
j) · CostSubstitution(R, S, i, j) ; (8.17)

MitigatedDel(R, i) =

(Mitigation(R,R, i) + 0.5) · CostDelete(R, i) ; (8.18)

MitigatedIns(R, S, j) =

(Mitigation(R, S, j) + 0.5) · CostInsert(R, S, j) , (8.19)



182 8. Represent and Compare Outdoor Fingerprint-based Trajectories

where, following [298] but discarding the temporal components, the base cost func-
tions are defined as:

CostSubstitution(R, S, i, j) =

∥

∥

∥

∥

∥

∥

∥





∑

rk∈R

rsk

|R|



−







ssj +
∑

rk∈R,rk ̸=ri

rsk

|R|







∥

∥

∥

∥

∥

∥

∥

; (8.20)

CostDelete(R, i) =

∥

∥

∥

∥

∥

∥

∥





∑

rk∈R

rsk

|R|



−







∑

rk∈R,rk ̸=ri

rsk

|R| − 1







∥

∥

∥

∥

∥

∥

∥

; (8.21)

CostInsert(R, S, j) =

∥

∥

∥

∥

∥

∥





∑

rk∈R

rsk

|R|



−





ssj +
∑

rk∈R

rsk

|R|+ 1





∥

∥

∥

∥

∥

∥

. (8.22)

As it is clear from Definitions (8.17), (8.19), and (8.18), the mitigation component
is computed in different ways depending on the edit operation.

Mitigated substitution. As for substitutions, given two trajectory points ri and
sj, their cellular data (resp. rci , s

c
j), are compared by means of the NCD function

of Definition (8.14). If the two points involved in the swap produce a high centroid
displacement, the NCD value may decrease the cost by evaluating how similar those
points are from the cellular perspective. As an example, if they turn out to be
very similar, NCD returns a value close to 0, cancelling the cost introduced by the
substitution operation.

Mitigated deletion and insertion. Dealing with the other two edit operations
turns out to be more difficult, as deletions and insertions act on a single point of R
(resp., S). The idea is to suitably exploit aggregated data to compute the mitigation
factor. Let us assume that we want to remove a point ti from a trajectory T . Each
point includes both spatial (tsi ) information and cellular data (tci). First, we group all
the points by looking at the cell-ID of their serving cell, i.e., two points will belong to
the same cluster if they have the same servant. Then, for each cluster, we compute
its representing point, i.e., a centroid, by looking at the spatial component of cluster
members. In this way, for each ti, besides the PE provided by the fingerprint
algorithm, we have new spatial information, as we can associate to it the point
representing the cluster to which the serving cell of ti belongs. We refer to this
latter point as Cserv(ti).

Now, thanks to the structure of fingerprints, each trajectory point is also paired
with a set of neighbouring cells. Since these cells have a cell-ID, we can retrieve
the spatial point of the corresponding cluster (it will exist for the majority of cells),
obtaining a set of spatial points representing the set of neighbouring cells. Let us
denote the centroid of such a latter set for the neighbouring cells of ti by Cneigh(ti).
Naming C(T ) the centroid of the trajectory T calculated on the basis of the PE, the
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mitigation factor is defined as follows:

Mitigation(T ′, T ′′, i) = min

{∥C(T ′)− Cneigh(t′′i )∥
∥C(T ′)− Cserv(t′′i )∥ ·

1

2
, 1

}

. (8.23)

To compute the mitigation factor, the above function determines the spatial relation
among C(T ), Cneigh(ti), and Cserv(ti). The value that Mitigation(·, ·, ·) returns is
greater than or equal to 0 and less than or equal to 1. Basically, if Cneigh(ti) is closer
to C(T ) than to Cserv(ti), it means that, from the cellular aggregate perspective,
the fingerprint should be closer to the trajectory centroid as well. As a consequence,
a mitigation factor that causes a reduction of the cost is returned. Conversely, if
the point Cneigh(ti) is further away from C(T ) than from Cserv(ti), the mitigation
function increases the cost introduced by the edit operation.

8.3 Experimental setting

8.3.1 Dataset

In this section, we introduce the data and the methodology employed for the ex-
perimentation. In order to evaluate the behaviour of the considered measures over
different types of data, we use a dataset pertaining to a proprietary fingerprint lo-
calisation system. Data is distributed over a single day tracking devices across the
entire world.

Starting from the complete dataset, we only considered fingerprint trajectories
for which the GNSS ground truth, the position estimated by the fingerprinting
algorithm (PE), and the cellular data are all known.

Moreover, we narrowed the dataset keeping trajectories with at least 4 points
and with a sampling time (i.e., time elapsed between consecutive samples) greater
than 1 minute only. Since in a high-frequency sampling scenario collection times
typically range from 10 to 30 seconds [158], and we did not select such trajectories,
the low-frequency nature of the sampling is granted.

Given that the goal of the experimental evaluation is to compare trajectories
in order to measure their similarity, we first identified sets of trajectories, that we
call areas, whose components are reasonably comparable. To generate the set of
candidate areas, we grouped trajectories by means of the density-based clustering
algorithm DBSCAN [78] applied to the trajectory centroid. We set the minimum
distance between points to ϵ = 25km and the minimum number of points in a cluster
to 20. Such values turned out to be the most suitable ones for area partitioning,
and were identified after several tests over a range of possible values.

Among the identified areas, we selected the three reported in Table 8.1, which
are reasonably similar. As a matter of fact, the resulting areas/clusters contain more
or less the same number of trajectories and, on average, a similar number of points.
The sampling times also suggest that the selected areas are comparable. The main



184 8. Represent and Compare Outdoor Fingerprint-based Trajectories

Table 8.1: Description of the selected areas.

# points Distance between points Sampling time
# trajectories in trajectories in trajectories (m) (h:m:s)

Avg (Min / Max) Avg (Min / Max) Avg (Min / Max)

Area 1 45 9,51 28.020,72 01:35:49
(4 / 26) (1.373,62 / 193.318,87) (00:27:05 / 03:17:46)

Area 2 46 12,24 51.113,54 01:35:00
(4 / 36) (18.152,84 / 130.017,76) (00:24:08 / 03:12:26)

Area 3 49 8,16 5.776,25 01:48:23
(4 / 30) (896,40 / 42.566,44) (00:18:53 / 05:17:15)

difference lies in the distance between pairs of consecutive points, which makes it
evident that the areas refer to different contexts. More specifically, trajectories in
Area 3 refer to devices that are either moving more slowly or facing more stops than
those in Area 1 and Area 2. A possible explanation for such a phenomenon is that,
most probably, Area 3 is an urban environment.

8.3.2 Analysis methodology

The experimental methodology is close to the one proposed by Wang et al. in [274]:
we apply some transformations to the set of trajectories to measure the similarity
between the original trajectories and the transformed ones. However, compared to
[274], where the effectiveness of some similarity measures for the GNSS case is eval-
uated, our experimental analysis is different in various respects that we summarize
below.

Comparison among different descriptions of trajectories. We consider trajectories
at multiple levels: GNSS-based trajectories, PE-based trajectories, cellular-based
trajectories, and trajectories based on mixed data.

Different kinds of data. We focus on low-sampling and heterogeneous domains.
Thus, beside a variety of representations from the data perspective, the proposed
framework encompasses trajectories whose semantic features differ from those dealt
with in common scenarios from the literature.

Different measures and perturbations. The considered similarity measures have
been illustrated in Section 8.1.2 and Section 8.2. As for perturbations, we apply a set
of them to each trajectory with different intensities and, for each similarity measure,
we assess how the similarity between the original trajectory and the disrupted one
is affected. We considered two perturbations already used in [274], namely, (i)
point shift, which spatially shifts a point of a given amount, and (ii) decrease of the
sampling rate, which removes a certain amount of points from the trajectory. In
addition, we devised three new perturbations tailored to the cellular data domain.
The first one is the servant swap (perturbation (iii)) which consists in switching the
cell-ID of the serving cell associated with a point with the cell-ID of a randomly
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Table 8.2: Overview of parameters setting for perturbations.

Perturbation Parameters Affected points

Point Shift
1000m [< ϵ]
2000m [> ϵ]

Random
10% to 60% of T points

Decrease
sampling rate

- "

Servant swap Servant + Random cell "

Signal noise Random RSSI value "

Point Shift
+

Signal noise

1000m [< ϵ]

2000m [> ϵ]

Random
RSSI
value

"

Independence between
Point Shift and Signal noise

chosen neighbouring cell belonging to the fingerprint (notice that just the cell-IDs
are swapped, not the corresponding signals). The second one is the signal noise
(perturbation (iv)), which changes the RSSIs values of a certain number of cells
appearing in a fingerprint by a certain, randomly determined, magnitude. The third
one (perturbation (v)) is a combination of perturbations (i) and (iv): first, a point
shift is executed; then, a signal noise is applied to the same trajectory. The settings
of the parameters of the perturbation functions are summarised in Table 8.2. In the
following, given the distances and the lengths involved (see Table 8.1), we are going
to assume 1500m as a reasonable value for the parameter ϵ in both (spatial) EDR
and LCSS.

8.4 Results

As explained in Section 8.3.2, we tested the various measures by applying the per-
turbation functions with different intensities. In order to evaluate the behaviour of
the various measures against the perturbations, we make use of a suitable graphical
representation of the results.

8.4.1 Spatial, cellular, and mixed data

GNSS. As for the GNSS scenario, the point shift and decrease in the sampling rate
perturbations have been applied.

As shown in Figure 8.1a (EDR measure), if the point shift magnitude is less than
ϵ, there is not an increase in dissimilarity. On the contrary, if it is greater than ϵ,
the comparison causes an increase in the cost by 1. In fact, the plot shows that
dissimilarity increases as the number of points affected by the shift increases. The
same behaviour is observable for the decrease in the sampling rate perturbation.
This allows us to conclude that EDR is highly and equally sensitive to both these
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Figure 8.1: Experimental results: GNSS data.

perturbations. This result partially differs from those reported in [274], where these
two perturbations do not cause the same effect.

In the case of ERP (see Figure 8.1b), the measure is sensitive to the decrease
in the sampling rate like EDR. As for the point shift, the growth in dissimilarity
marginally depends on the number of points to which the perturbation is applied, but
it is highly dependent on the amount of displacement. This behaviour is consistent
with the cost definition for ERP, which is based on the real (spatial) distance between
the compared points: if a point is moved by δ, the dissimilarity with respect to the
original trajectory increases by δ. To get into a situation equivalent to the one
we have for EDR, where the two considered perturbations have the same effect on
dissimilarity, it would be necessary to set a much higher value for the point shift
than the one we used, that is, considerably greater than 2000 meters.

As for LCSS (Figure 8.1c), the only perturbation affecting it is the point shift
with values greater than ϵ. While such behaviour is easy to interpret, as LCSS is
based on a threshold, the absence of effects due to a decrease in the sampling rate
is less obvious. We need to keep in mind that LCSS looks for the longest common
subsequence. By definition, such a subsequence may also consist of non-contiguous
points. If the two trajectories are identical, except for some points which are missing
in one of them, it follows that the LCSS of the two trajectories is determined by the
length of the shortest one. Since this trajectory is the one with the fewest points,
by applying the normalisation, we have that the dissimilarity is always equal to 0.

Point Estimation. The experimentation showed that exploiting PE leads to the
same behaviour observed in the GNSS case (remember that PE representation is
the same as GNSS one). Since PE and GNSS graphs are identical, we do not report
them.

Cellular data. The perturbations applied to the trajectories based on cellular
data (Figure 8.2) include the decrease in the sampling rate, the servant swap, the
signal noise, and the combination of the signal noise with the point shift.

As for EDR, the only two perturbations increasing dissimilarity are the servant
swap and the lowering in the sampling rate. These perturbations produce two curves
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Figure 8.2: Experimental results: cellular data.

similar to the ones generated by the point shift (greater than ϵ) and the decrease
in the sampling rate perturbations when applied to GNSS data (Figure 8.1a). Such
a similarity suggests the existence of a semantic link between the considered GNSS
and cellular perturbations. In addition, it leads us to conclude that if the compared
trajectories are similar to one another, EDR, regardless of the type of data used,
captures that similarity. Thus, the issue becomes whether available data are enough
in order to effectively discriminate between different trajectories with respect to the
application domain.

As for ERP, we observe that there are several detectable perturbations. The
decrease in the sampling rate is responsible for the highest gain in dissimilarity.
With a far lower impact, we can identify two perturbations whose effect is very
similar. They mimic signal noise to measure input data. While one of them consists
of signal noise only, the other one is a combination of signal noise and point shift.
Clearly, point shift does not cause any effect in this case and the slight difference
between the two curves in Figure 8.2b depends barely on the random component
from the signal noise perturbation. The perturbation with the lowest effect is the
servant swap. Its influence strongly depends on the usage of NCD to compute ERP
costs. Since NCD does not discriminate between serving and neighbouring cells,
the dissimilarity gain caused by the servant swap is determined solely by the fact
that the signal strengths are now associated with different cell-IDs (NCD matches
cell-IDs and looks at their RSSI differences).

As for LCSS, we observe that the effect produced by the servant swap corresponds
to a point shift greater than ϵ in the case of GNSS-based LCSS. It follows that the
behaviour of the two LCSSs is roughly the same and, therefore, the measure is
sensitive only to the servant swap like the GNSS case is sensitive only to a point
shift that exceeds ϵ value.

Mixed data. Figures 8.3 and 8.4 report the results of the experimentation with
SEDF, the only measure exploiting all the available data (of different types). In this
case, all the proposed perturbations are meaningful and thus have been applied.
Figure 8.3 shows that the decrease in the sampling rate is the only perturbation
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Figure 8.3: Experimental results: mixed data - SEDF.
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Figure 8.4: Experimental results: mixed data - log(SEDF).

causing an increase in dissimilarity. This is because, considering both cellular and
spatial information, the measure can mitigate the perturbations acting only on a
specific data type. As an example, if point shift is applied, its contribution to
dissimilarity is attenuated by the fact that, at the level of cellular data, the two
trajectories are identical. Nevertheless, the perturbation that combines point shift
and signal noise should be identifiable in Figure 8.3. As this is not the case, the
logarithmic version of SEDF has been investigated (Figure 8.4). It allows us to
appreciate other variations in dissimilarity, even if all are lower than the one linked
to a decrease in the sampling rate. In particular, while servant swap and signal noise
are negligible, the combination of point shift and signal noise becomes visible. This
result highlights the capability of SEDF to recognize such variations and, therefore,
to detect small differences between trajectories from the considered data.

8.4.2 Robust, fair, and sensitive

In the following, we analyse the outcomes of the experimentation by establishing
how robust a similarity measure is with respect to the considered perturbations. For
each perturbation, we classify the behaviour of any similarity measure as robust, fair,
or sensitive (as a matter of fact, these categories are close to those used in [274]).
We say that a measure is robust with respect to a perturbation if the application of
the latter does not cause a sharp increase in dissimilarity. We say that it is fair if the
application of the perturbation causes an increase in dissimilarity, but lower than
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Table 8.3: Outcomes of the experimentation in terms of robustness, fairness, and
sensitiveness for GNSS and PE data.

EDRGNSS ERPGNSS LCSSGNSS EDRPE ERPPE LCSSPE

Point Shift<ϵ Robust Fair Robust Robust Fair Robust
Point Shift>ϵ Sensitive Fair Sensitive Sensitive Fair Sensitive
Decrease
sampling rate

Sensitive Sensitive Robust Sensitive Sensitive Robust

Noise Robust Sensitive Robust Robust Sensitive Robust

Table 8.4: Outcomes of the experimentation in terms of robustness, fairness, and
sensitiveness for cellular and mixed data.

EDRcell ERPcell LCSScell SEDF

PE Shift<ϵ Robust Robust Robust Robust
PE Shift>ϵ Robust Robust Robust Robust
Servant swap Sensitive Fair Sensitive Fair
Signal Noise Robust Fair Robust Fair
PE Shift + Signal Noise Robust Fair Robust Fair
Decrease sampling rate Sensitive Sensitive Robust Sensitive

the one produced by other perturbations, or if such an increase, given the nature of
the considered measure, is reasonable/acceptable. Finally, we say that a measure is
sensitive to a perturbation if the application of the latter causes a very large increase
in dissimilarity.

Results are reported in Tables 8.3 and 8.4. In Table 8.3 (GNSS and PE), we
added a row for noise. It is related to point shift, and it says whether or not a given
measure is sensitive to small variations (noise) in the spatial data.

Establishing what is good and what is evil is not immediate. Clearly, a measure
which is sensitive to all the perturbations is not suitable for any domain or usage. In
a low-sampling and heterogeneous scenario, however, we are not looking for the most
robust measure, but rather a balanced one. In [274], robustness to a perturbation is
interpreted as the ability of a measure to recognise as similar trajectories that have
been perturbed with that precise function. According to such an interpretation, the
best possible measure is the one that always recognises as similar trajectories that
have been perturbed (all-robust measure). On the contrary, we interpret robustness
as insensitivity to (certain) variations in the data. In order to assess the similarity of
trajectories, the considered measures look for these variations, and thus if a measure
is blind to any variation in the data, it may classify as similar trajectories which
basically are not.

In view of the above considerations and the experimental results, we came to
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the conclusion that in the considered framework (heterogeneous and low-sampling)
similarity is better assessed by measures whose cost is not unitary. This is because
ERP and SEDF, both exploiting penalties proportional to spatial and/or cellular
distance, are the most balanced measures in terms of robustness, fairness, and sen-
sitiveness.

Both ERP and SEDF are sensitive to the decrease in the sampling rate. This
means that the comparison of trajectories consisting of a quite different number of
points remains a difficult task. As for ERP, with GNSS and PE data, it suffers
from noise sensitivity. While in other domains this can be a critical issue (given
the typical scale of error that may affect both GNSS and PE observations), the
impact of noise sensitivity in the low-sampling domain is limited. Having said that,
when very similar trajectories are compared, sensitivity to noise may lead to an
erroneous similarity evaluation. Mixing available data can be a possible way out.
Combining spatial and cellular information, as SEDF does, may allow one to reduce
the noise without losing the ability to correctly identify trajectories dissimilarity.
The experimental outcomes seem to confirm such an expectation.

8.4.3 Correlation analysis

We performed a correlation analysis to compare the results given by the similarity
measures applied to real-world trajectories and to understand whether they behave
the same or not.

Given a trajectory, we evaluated its similarity with all the other trajectories,
considering all the similarity measures. Then, for every possible pair of similarity
measures, we estimated the rank correlation score, which assesses how much the
rank provided by a measure is similar to the rank resulting from another measure
(the same ranking leads to a score equal to 1). Finally, we repeated the process
for every single trajectory, averaging the ranking scores measure-wise. The ultimate
average correlation matrix is reported in Table 8.5.

The rank correlation matrix shows some relevant features:

• a strong correlation between the same measure applied to GNSS and PE
points. This suggests that fingerprinting position estimations are suitable
information for similarity evaluation, although the uncertainty introduced by
the algorithm has an impact, as the correlation with GNSS is not perfect;

• for all the different kinds of data taken into consideration, there is a strong
correlation between EDR and LCSS;

• as for the mixed data, SEDF is highly correlated with all ERPs; moreover,
looking at the correlation between SEDF and LCSSs, and between SEDF and
EDRs, we observe that, for GNSS and PE, those correlations are higher than
the ones with the corresponding ERPs. This, as expected, suggests that SEDF
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Table 8.5: Analysis of rank correlation.

GNSS PE Cell Mix

EDR ERP LCSS EDR ERP LCSS EDR ERP LCSS SEDF

GNSS EDR 1 .284 .815 .893 .285 .737 .664 .362 .579 .466
ERP .284 1 .124 .270 .980 .119 .198 .668 .069 .723
LCSS .815 .124 1 .747 .125 .888 .580 .215 .676 .302

PE EDR .893 .270 .747 1 .271 .809 .652 .347 .570 .449
ERP .285 .980 .125 .271 1 .118 .200 .666 .071 .723
LCSS .737 .119 .888 .809 .118 1 .570 .205 .665 .292

Cell EDR .664 .198 .580 .652 .200 .570 1 .340 .814 .262
ERP .362 .668 .215 .347 .666 .205 .340 1 .226 .653
LCSS .579 .069 .676 .570 .071 .665 .814 .226 1 .158

Mix SEDF .466 .723 .302 .449 .723 .292 .262 .653 .158 1

has a different behaviour than the other metrics, but still partly aligned and
not unreasonable;

• low or absence of a significant correlation between ERP and both EDR and
LCSS; this suggests that ERP captures variations different from those detected
by the other two measures (notice that this is completely independent of the
type of considered data);

• there is a fairly good correlation between EDR, ERP, and LCSS with cellular
data and the corresponding measures with both GNSS and PE data, confirm-
ing the overall value of cellular information.

Since the above observations have been drawn on the basis of the average rank
correlation matrix, to check whether they can be generalised and eventually observe
new phenomena, we extended the analysis to every single area. As a matter of fact,
the outcomes of the analysis of the average correlation matrix are basically the same
outcomes we obtained by restricting attention to single areas. Two new elements
emerged from the area-level analysis.

First, in the case of GNSS and PE points, the correlation of SEDF with ERPs
turns out to be lower than the one suggested by the values spotted in the average case
(Area 3). Moreover, when this happens, an analogous reduction in the correlation
with the other measures does not occur; on the contrary, correlation with EDRs and
LCSSs tends to increase. This suggests that the measure, or, more generally, the
mixed data approach, has a flexible behaviour. This observation lets us emphasise
that a preferable approach to the development of similarity measures is to make
them dynamic with respect to the context of the application, possibly considering
mixtures of data, and exploiting the best type as needed.

The second remark is about the relationships among different areas. While Area
1 and Area 2 roughly have the same magnitude of correlations among the measures,
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Area 3 significantly diverges. This is most probably related to the population density
of the involved area, suggesting, again, that such a feature should be taken into
account by a similarity measure.

8.5 Discussion

Trajectories and their similarity evaluation are important notions widely exploited
in positioning. Their management involves several tasks ranging from prediction-
making to mining user behaviour. The problem of evaluating the similarity of tra-
jectories has been largely studied for sequences of GNSS points, while few works
have been done on sequences of fingerprint observations.

In this chapter, we focused on the similarity evaluation of fingerprint-based tra-
jectories, with the main objective of determining which is the most suitable rep-
resentation to evaluate the similarity in our setting, and what pros and cons are
brought by each of them. To such an extent, we conducted an analysis on real
data, investigating GNSS, point estimation, cellular, and mixed representation of
the trajectories’ points. Starting with the classical metrics used for the pure spatial
case, i.e., EDR, ERP, and LCSS, and given the lack of measures capable to deal
with fingerprint data (cellular and mixed), we devised a similarity measure (SEDF)
and a cost/distance function (NCD), both tailored to our domain. We discovered
that similarity measures that apply a cost proportional to the estimated spatial
and/or cellular distance, such as ERP and SEDF, are more suitable for the finger-
printing context. Moreover, we also observed that PE is appropriate for similarity
evaluation, although the performance may largely depend on the accuracy of the
positioning algorithms, which is influenced by multiple, unpredictable factors. This
remark suggests how devising similarity measures based on mixed data is crucial
for fingerprinting and domains alike, as they are less affected by errors occurring on
only one of the data types they use. Indeed, SEDF is a first proof of concept in this
direction.

As a final remark, note that outdoor fingerprint trajectories are not a primitive
concept, and, as we saw, they are quite different from the GNSS case, as they often
describe a low-sampling and heterogeneous context. Even if we focused on out-
door trajectories, similar characteristics and similar problems appear in the indoor
scenario. For instance, depending on the application, WiFi data on an Android
smartphone could be collected each time every few minutes (i.e., low sampling). As
a matter of fact, we analysed trajectories for fingerprinting as they may play a cru-
cial role in developing seamless indoor-outdoor localization, especially concerning
modeling and supporting the transition of a device from an indoor to an outdoor
environment and vice versa. Given the finding of this chapter, we have now a better
view of how to approach the problem, such as, for instance, considering multiple
(spatial, cellular, WiFi) types of data jointly.
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In this dissertation, we presented several studies about fingerprint-based localization,
devoting particular attention to the indoor context.

We began our journey tackling the problem of modelling indoor positioning. To
such an extent, we presented a comprehensive, yet general and extensible frame-
work to support indoor positioning tasks, whose practical implementation has been
a relational database. Its main characteristic is the ability to represent topological
information of indoor premises, which can be seamlessly combined with fingerprint
positioning data. The flexibility of the system makes it capable of accommodating
heterogeneous indoor scenarios and supporting a large number of tasks, both con-
cerning its industrial deployment, as well as considering its usage within the research
community.

Then, we turned to investigate whether classical metrics used to measure dis-
tances among fingerprints incorporated information about the spatial domain, specif-
ically considering the distances among the locations associated with the fingerprints.
As we pointed out during the discussion, such a problem is different and more funda-
mental than indoor positioning. Notably, having a metric that allows one to reason
in spatial terms just by looking at fingerprints would significantly help in multiple
tasks, ranging from improving accuracy to reducing the effort to build and main-
tain the radio map. We carried out an extensive analysis involving several datasets,
normalization functions, metrics, and granularity levels. The outcome was that the
metrics exhibit very different behaviours and that some of them, e.g., cosine, show
better properties than others, although all are far from the optimal performance
concerning our main goal. Moved by such findings, we developed a novel finger-
print distance function based on genetic programming, maximizing its capability of
preserving real-world spatial information, and addressing the criticalities shown by
classical approaches. The overall idea has been that of relying on machine learning
to combine existing fingerprint distance functions into a meta-distance, solving a
symbolic regression task. Through an extensive evaluation, we demonstrated an im-
provement over some other popular machine learning techniques, as well as over the
single measures taken in isolation, concerning both spatial information preservation
and accuracy of the positioning task. In addition, the genetically evolved metric
clearly exhibited generalization capabilities: the improvement over the baselines has
been achieved by training only a well-known benchmark dataset and testing, with-
out retraining, on 15 other independent ones. The take-home messages from this
line of research are two. First, learning a meta-metric seems to be a promising
direction towards developing a universal metric, which can be applied to different
settings just as it is while offering better properties than classical distance functions.



194 Conclusions

Second, although the function has been learned and optimized according to a proxy
correlation metric, it also demonstrated a high positioning accuracy. This suggests
a clear link between the two tasks, which was confirmed by subsequent experiments.
Based on this latter finding, we started investigating an original usage of deep met-
ric learning for continuous similarity, with the goal of learning an effective metric
starting directly from the fingerprints. There is still a long and winding road ahead
but, as witnessed by the preliminary results, this new approach is quite promising.

Next, our work focused on exploiting deep learning to reduce the impact of
some issues affecting fingerprinting. The cornerstone idea has been employing a
ranking-based representation of the fingerprints paired with recurrent neural net-
works. Rankings have properties, such as invariance to scale and bias, associated
with a higher capability to deal with signal perturbations. However, when they
are used in positioning tasks, their performances have always proved to be worse
than full-fledged fingerprints, mainly due to their reduced information content. By
leveraging deep learning, we showed how this downside can be considerably reduced,
resulting in an approach that is robust to perturbations while being in line with, and
in some cases more accurate than, several state-of-the-art solutions. On top of that,
given the architecture of our framework, we investigated whether the latter could
be used to extract new knowledge and operational insights about indoor positioning
and related tasks. To achieve that, we relied on the attention mechanism, as a means
to obtain interpretability. After defining domain-related local and global notions of
interpretability, we showed that indeed our model produced interpretations aligned
with them and that they were conveying specific information about the indoor po-
sitioning tasks. Overall, by showing that deep learning can be employed to extract
new domain knowledge, we believe we encouraged some broader investigation, going
beyond its mere use to improve positioning accuracy.

In the last part of the dissertation, we moved the first steps towards developing
seamless indoor-outdoor positioning systems based on fingerprinting. Indeed, this
is a long-term research goal, and here we focused on just two (among many) as-
pects that we deemed to be fundamental to its achievement. As we had done for
indoor positioning, we started with modelling the outdoor scenario. Outdoor fin-
gerprinting heavily relies on a comprehensive and accurate knowledge of the cellular
network configuration, and, in this respect, we showed how positioning data as well
as the cellular network and its evolution can be modelled through a spatio-temporal
database. In doing so, the main difficulty was that the necessary network infor-
mation was not publicly available, demanding its reconstruction from crowdsourced
observations, a unique capability of our system. Finally, we turned our focus to the
topic of trajectories, specifically their similarity evaluation, studying which was the
most suitable representation for them in the fingerprinting case. Through our in-
vestigation, we showed that, despite the challenges characterizing the domain (e.g.,
low-rate and heterogeneous sampling), some peculiarities of fingerprinting, such as
the availability of mixed types of data (e.g., spatial and cellular), make it feasi-
ble to fully exploit this non-primitive concept. We believe that this result fosters
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the possibility of exploiting trajectories to model transitions between different con-
texts, notably regarding people and devices moving from an outdoor to an indoor
environment and vice versa.

Overall, in this thesis, we looked at fingerprint-based positioning from a much
broader perspective than merely proposing some new algorithms for position esti-
mation. As a matter of fact, we took on multiple heterogeneous challenges relying
on methods typical of data science, such as data modelling, analysis, and machine
learning. We know that, in doing so, we have opened and left open several doors;
but this journey, after all, has only just begun.
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B
Notes on the Indoor Database usage

In the following, for illustrative purposes, we report some simple SQL queries that
can be used to extract relevant information from the relational database for indoor
positioning, described in Chapter 2. For each query, we also report the number of
returned rows and the average running time in milliseconds when executed against
the working demo of the system [38]. The server running the demo is hosted on
a virtual machine equipped with 4 dedicated cores (Intel(R) Xeon(R) CPU X5550
running at 2.67 GHz) and 20 GB main memory.

Query 1

It extracts topological information regarding the dataset UJIIndoorLoc [256]. Specif-
ically, for each building, it retrieves its structuring into floors and sites [905 rows,
180 msec].

SELECT

bu i l d i n g p l a c e . name AS building name ,
f l o o r p l a c e . name AS f loor name ,
s i t e p l a c e . name AS s i t e name

FROM p lace AS bu i l d i n g p l a c e
JOIN p l a c e da t a s ou r c e ON

p l a c e da t a s ou r c e . p l a c e i d = bu i l d i n g p l a c e . id
JOIN data source ON

data source . id = p l a c e da t a s ou r c e . d a t a s ou r c e i d
JOIN bu i l d i ng ON bu i l d i n g p l a c e . id = bu i l d i ng . p l a c e i d
JOIN conta in s AS c t s f l o o r ON

c t s f l o o r . c o n t a i n e r p l a c e i d = bu i l d i n g p l a c e . id
JOIN conta in s AS c t s s i t e ON

c t s s i t e . c o n t a i n e r p l a c e i d = c t s f l o o r . c on t a i n ed p l a c e i d
JOIN p lace AS f l o o r p l a c e ON

f l o o r p l a c e . id = c t s f l o o r . c on t a i n ed p l a c e i d
JOIN p lace AS s i t e p l a c e ON

s i t e p l a c e . id = c t s s i t e . c on t a i n ed p l a c e i d
WHERE data source . name = 'UJI1 '

ORDERBY bu i l d i n g p l a c e . name , f l o o r p l a c e . name , s i t e p l a c e . name ;
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Query 2

It extracts the id of all the tiles that are (directly or indirectly) reachable from the
tile with id = 524465. Note that, in order to perform such an “unlimited” visit of
the graph, we need to rely on a recursive strategy [110 rows, 140 msec].

WITH RECURSIVE r eachab l e AS (
SELECT

a d j a c e n t t o t i l e . t i l e 2 p l a c e i d
FROM a d j a c e n t t o t i l e
WHERE walkable AND t i l e 1 p l a c e i d = 524465

UNION

SELECT

succ . t i l e 2 p l a c e i d
FROM r eachab l e AS prev

JOIN a d j a c e n t t o t i l e AS succ ON

succ . t i l e 1 p l a c e i d = prev . t i l e 2 p l a c e i d AND

succ . walkable
)
SELECT t i l e 2 p l a c e i d AS r e a c h a b l e t i l e i d
FROM r eachab l e ;

Query 3

It extracts the WiFi portion of the fingerprint with id = 520857. Observe that, since
in the database only information pertaining to the detected access points is stored,
in order to recover the full WiFi fingerprint (with respect to all access points in a
data source) outer join operations are necessary [544 rows, 245 msec].

SELECT

ap . id ,
COALESCE( ap de t e c t i on . r s s , −110) AS r s s

FROM f i n g e r p r i n t
JOIN ob s e r v a t i o n w i f i ON

ob s e r v a t i o n w i f i . f i n g e r p r i n t i d = f i n g e r p r i n t . id AND

f i n g e r p r i n t . id = 520857
JOIN ap de t e c t i on ON

ap de t e c t i on . o b s e r v a t i o n w i f i f i n g e r p r i n t i d =
ob s e r v a t i o n w i f i . f i n g e r p r i n t i d

RIGHT OUTER JOIN ap ON ap de t e c t i on . ap id = ap . id
RIGHT OUTER JOIN ap data source ON ap . id = ap data source . ap id
RIGHT OUTER JOIN data source ON

ap data source . d a t a s ou r c e i d = data source . id AND

data source . name = 'UJI1 '

ORDERBY ap . id ;

Query 4

Given the (WiFi) fingerprint with id = 533530, the code extracts all sites containing
fingerprints that have at least one access point in common with it, together with
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the number of such fingerprints (a zone or logical tessellation is assumed) [545 rows,
10 sec].

SELECT

conta in s . c o n t a i n e r p l a c e i d AS s i t e i d ,
COUNT(DISTINCT f p 2 . id ) AS num f inge rp r in t s

FROM f i n g e r p r i n t AS f p 1
JOIN ap de t e c t i on AS ap de t e c t i on 1 ON

ap de t e c t i on 1 . o b s e r v a t i o n w i f i f i n g e r p r i n t i d = fp 1 . id
JOIN ap de t e c t i on AS ap de t e c t i on 2 ON

ap de t e c t i on 1 . ap id = ap de t e c t i on 2 . ap id
JOIN f i n g e r p r i n t AS f p 2 ON

f p 2 . id = ap de t e c t i on 2 . o b s e r v a t i o n w i f i f i n g e r p r i n t i d
JOIN conta in s ON

conta in s . c on t a i n ed p l a c e i d = fp 2 . a c q u i r e d a t t i l e p l a c e i d
JOIN s i t e ON conta in s . c o n t a i n e r p l a c e i d = s i t e . p l a c e i d

WHERE

f p 1 . id = 533530 AND f p 2 . i s rad io map AND

f p 1 . id != fp 2 . id
GROUPBY conta in s . c o n t a i n e r p l a c e i d
ORDERBY num f inge rp r in t s DESC;

B.1 Usage of the online demo of the system

At the address http://158.110.145.70:5050/ a demo of the system can be ac-
cessed. Upon connection, users will find a pgAdmin web server interface, asking
for the login data. A read-only user, that has the privileges to perform SELECT

operations over the public and evaluation support schemas of the database named
Open Fingerprinting has been provided, with the following credentials:

username = tester@indoor.uniud.it ,

password = tSUD22$Indo0r .

The database comes already populated with information originating from several
datasets1. Moreover, some user-defined functions aimed at easing the interaction
with the system have been implemented2 as well as various examples of queries on
the database3.

1https://github.com/dslab-uniud/Database-indoor/tree/main/Datasets
2https://github.com/dslab-uniud/Database-indoor/tree/main/Database\

#implemented-user-defined-functions
3https://github.com/dslab-uniud/Database-indoor/blob/main/Database/exemplary_

SQL.sql
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[34] Ramon F. Brena, Juan Pablo Garćıa-Vázquez, Carlos E. Galván-Tejada,
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