
27 December 2024

Università degli studi di Udine

Original

Average Case Subquadratic Exact and Heuristic Procedures for the Traveling
Salesman 2-OPT Neighborhood

Publisher:

Published
DOI:10.1287/ijoc.2023.0169

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1294067 since 2024-11-27T09:54:07Z

Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Average case sub-quadratic exact and heuristic procedures
for the traveling salesman 2-OPT neighborhood

Giuseppe Lancia
Dipartimento di Matematica, Informatica e Fisica, University of Udine, 33100 Udine, Italy, giuseppe.lancia@uniud.it

Paolo Vidoni
Dipartimento di Scienze Economiche e Statistiche, University of Udine, 33100 Udine, Italy, paolo.vidoni@uniud.it

We describe an exact algorithm for finding the best 2-OPT move which, experimentally, was observed to
be much faster than the standard quadratic approach for a large part of a best-improvement local search
convergence starting at a random tour. To analyze its average-case complexity, we introduce a family of
heuristic procedures and discuss their complexity when applied to a random tour in graphs whose edge costs
are either uniform random numbers in [0, 1] or Euclidean distances between random points in the plane.
We prove that, for any probability p, there is a heuristic in the family which can find the best 2-OPT
move with probability at least p in average-time O(n log n) for uniform instances and O(n) for Euclidean
instances. The exact algorithm is then proved to be even faster, in the sense that on those instances on which
a heuristic finds the best move, the exact algorithm finds it in a smaller time. We give empirical evidence
that a slight variant of our algorithm finds the best move in O(n) time on both types of instances, achieving
the best possible performance for this particular problem. Computational experiments are reported to show
the effectiveness of our algorithms, both in best-improvement and in first-improvement 2-OPT local search.

Key words : Traveling Salesman; Combinatorial Optimization; 2-OPT Neighborhood; Heuristics; Applied
Probability.

History :

1. Introduction

The TSP (Traveling Salesman Problem) is probably the most well-known combinatorial

optimization problem (Lawler et al. (1991), Applegate et al. (2006), Gutin and Punnen

(2007)). Its objective is to find a shortest Hamiltonian cycle in a complete graph of n nodes

weighted on the arcs, and its importance stems from countless applications to all sorts of

areas. Due to its relevance, the problem has been extensively studied over the years, and

several programs have been designed for both its exact and heuristic solution (Lodi and

Punnen (2007)).

1

Lancia and Vidoni: Average case sub-quadratic 2-OPT
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Much in the same way as TSP is emblematic of all combinatorial optimization problems, 2-
OPT is a prominent example of the concepts of neighborhood and local search procedure for
an NP-hard problem. Local search (Aarts and Lenstra (1997), Papadimitriou and Steiglitz
(1982)) is a general paradigm for the minimization of an objective function f over a set S of
feasible solutions. The main ingredient of a local search procedure is a map which associates
to every solution x ∈ S a set N(x) ⊂ S called its neighborhood. Starting at a solution x0,
local search samples the solutions in N(x0) looking for a solution x1 better than x0, i.e.,
an improving solution. If it finds one, it iterates the same step, this time looking for x2 in
N(x1), and then it continues the same way until the current solution xi satisfies f(xi) =
min{f(x)|x ∈ N(xi)}, i.e., it is a local optimum. Replacing xi with xi+1 is called performing
a move of the search, and the total number of steps to get from x0 to a local optimum is
called the convergence length. An move from xi to an improving solution x which determines
the largest decrease in the objective function value is a best improving move, and x is a best
improving solution. Local search can be based on two main strategies, i.e., first-improvement
and best-improvement (also called steepest-descent). In first-improvement, xi+1 is the first
improving solution found in N(xi) while, in best-improvement, xi+1 is a best improving
solution in N(xi). For small-size neighborhoods, such as the one considered in this paper, it
becomes feasible to adopt the best-improvement strategy. However, when a neighborhood is
very large, best-improvement might become too expensive and first-improvement is the only
viable approach.

The 2-OPT neighborhood associates to a TSP solution (also called a tour) T each tour
T ′ that can be obtained by replacing two edges in T with two edges that are not in T . In
this paper, we describe an effective algorithm for finding a best improving move. Besides
best-improvement, our algorithm can easily be employed also for first-improvement. In this
case, it has the advantage of looking for improving moves not in a blind way, but guided by
a criterion based on their potential quality (i.e., the most promising moves are tried before
the others).

The introduction of the 2-OPT neighborhood for the TSP dates back to the late fifties
(Flood (1956), Croes (1958)), and still today local search based on this neighborhood is
probably the most popular approach for the TSP (especially on large instances), for reasons
of simplicity, low time-complexity and overall effectiveness. Indeed, there are some more
sophisticated heuristics for the TSP, such as, e.g., 3-OPT (Lin (1965)), or metaheuristics

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

like genetic algorithms (Potvin (1996), Nagata and Kobayashi (2012)), simulated annealing
(Ilhan and Gokmen (2022)) and tabu search (Basu (2012)). The most effective heuristic
procedure, i.e., the one for which the trade-off between quality of solutions found and time
spent in finding them is the best, is a 3-OPT variant known as Lin-Kernighan’s algorithm (Lin
and Kernighan (1973), Applegate et al. (2003)). However, all these sophisticated heuristics
are somewhat complex to understand and implement, especially in comparison with the
simplicity of 2-OPT. This aspect is considered very important in a large part of the industrial
world, where in-house software development and maintenance oftentimes lead to the adoption
of simple, yet effective, solutions like some basic local search. Indeed, in the case of 2-OPT,
the algorithm to find the best move is trivial, i.e., it is a nested-for cycle iterating over
all pairs of edges in the tour and taking Θ(n2) time. Since, generally speaking, quadratic
algorithms are considered very effective, not very much research went into trying to speed-
up the algorithm for finding the best move. In this work, we will describe simple ways to
speed-up, in a mathematically provable way, the standard quadratic procedure for 2-OPT.
A probabilistic analysis over random tours and random edge costs shows that our strategies
do in fact change the order of complexity from quadratic to sub-quadratic on average. In
particular, our algorithm has an average-case complexity of O(n log n) for uniform random
costs instances, and O(n) for Euclidean instances induced by random points in the unit
square. Note that O(n) is an optimal complexity for this problem, given that the tour has
n edges that must be looked at. The complexity is a combination of the work due to the
number of moves evaluated and the work spent in creating/updating the data structure (a
heap) used to decide which moves to evaluate. We then provide empirical evidence (but
without a proof) that by using a suitable array in place of a heap we can find the best
move on a random tour in average time O(n) also for the uniform instances. In this regard,
we highlight that our probabilistic results only apply to the first step of the local search,
where the initial tour is chosen independently of the edge weights. In subsequent steps this
is no longer valid and, as pointed out in the empirical section of the paper, this leads to a
deterioration of algorithm performance in the long run.

Most of the literature on 2-OPT focuses on the study of the convergence length and the
quality of the local optima that can be obtained. In particular, Chandra et al. (1999) (extend-
ing a result of Kern (1989)) have shown that the length of convergence is polynomial on
average for random Euclidean instances, while Englert et al. (2014) have shown how to build

Lancia and Vidoni: Average case sub-quadratic 2-OPT
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

very particular Euclidean instances on which the length of the convergence is exponential.
As for the local optima quality, Chandra et al. (1999) shows that they are, with high prob-
ability, within a constant factor from the global optimum for random Euclidean instances,
while worst-case factors depending on n are given in Slootbeek (2017).

With regard to the time spent in finding the best move at each local search iteration,
the nested-for algorithm is not only worst-case Θ(n2), but its average-case is Θ(n2) as well.
Building on our previous research (Lancia and Vidoni (2020, 2024)) in which we studied how
to speed-up some enumerative algorithms looking for a best solution in a polynomially-sized
search space such as the 2-OPT neighborhood, we investigate a new greedy strategy for
finding the best 2-OPT move. We give empirical and theoretical evidence that, over a long
sequence of the tours visited by best-improvement local search starting at a random tour
(roughly, for two thirds of the convergence length), our algorithm is on average better than
quadratic. If M(n) denotes the average number of moves tested in order to find the best
possible one, we show that, with our strategy, at the initial iterations of the local search
M(n) is linear for uniform-costs instances, while M(n) is bounded by a constant for random
Euclidean instances. The time complexity then takes into account the number of moves
tested and the time spent in choosing which moves to try.

To obtain a theoretical justification of the observed time complexity, we have devised a
line of proof based on relating our algorithm to a family of heuristics for finding the best
move, of which we discuss the average-case running time and the probability of success, and
describe how we can control both aspects.

In best-improvement local search on medium- to large-sized instances, our procedure can
achieve speedups of three orders of magnitude over the nested-for algorithm for most of
the convergence. However, while the search progresses and we near the local optimum, our
algorithm becomes less effective, so that at some point it might be better to switch back to
the Θ(n2) enumerative procedure since it does not have the overhead of dealing with any data
structure. Experimentally, we determined that this phenomenon happens in the final part
of the convergence, and it remains an interesting research question the design of an effective
algorithm to find the best 2-OPT move over a nearly locally optimum tour. Finally, when
used in first-improvement local search, our procedure has an interesting property. Namely,
it combines the advantages of first-improvement and best-improvement, i.e., a certain speed
in finding an improving move with a certain quality in the value of the move found. Some

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

computational experiments will prove this to be a better strategy over the usual “blind”
first-improvement.

Paper organization. The remainder of the paper is organized as follows. In Section 2 we
describe the general idea for searching the best 2-OPT move, and present the main algo-
rithm. Section 3 is devoted to the probabilistic analysis of our main algorithm and of a
family of heuristics for the problem. Section 4 describes a variant of the main algorithm
which, empirically, appears to be a (log n)-factor faster on uniform instances. In Section 5
we report on our computational experiments and the statistical results that we obtained.
Some conclusions are drawn in Section 6.

2. Our strategy for moves enumeration
Notation and terminology. We assume the set of vertices to be [n] := {1, . . . , n}. Let T be

the tour on which we seek to determine the best move. T is defined by a permutation of the
vertices which, w.l.o.g., we assume to be T = (1, . . . , n). We denote the edges of the tour by
ei := {i, i + 1}, for i = 1, . . . , n (where we consider n + 1 := 1). In this paper we focus on the
symmetric TSP, i.e., the graph is undirected, so that the distance between any two nodes is
the same in both directions. We denote by c(i, j) = c(j, i) the distance between two generic
nodes i and j. The length c(T) of a tour T is the sum of the lengths of the tour edges.

A 2-OPT move µ(i, j) is identified by ei and ej, two non-consecutive edges of the tour
called the pivots of the move. A pair of pivots is called a p-pair. The move µ(i, j) removes a
p-pair ⟨ei, ej⟩ and replaces them with {i, j} and {i + 1, j + 1}, yielding the new tour T ′ (see
the figure below).

jj + 1 ej

i + 1i ei

Given a p-pair ⟨ei, ej⟩ we define its removal cost as cout(i, j) := c(ei)+c(ej) and its insertion
cost as cin(i, j) := c(i, j) + c(i + 1, j + 1). The value of a 2-OPT move µ(i, j), is defined by

∆(µ(i, j)) := cout(i, j) − cin(i, j).

We say that the move is improving if ∆(µ(i, j)) > 0. An improving move is best improving if
∆(µ(i, j)) = maxu,v ∆(µ(u, v)). The goal is to find a best-improving move.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The general strategy. We are going to follow a strategy that allows us not to enumerate all
moves, but only those which are “good candidates” to be the best overall. The idea is simple,
and it relies on a sequence of iterative improvements in which, at each iteration, there is a
certain move (the current “champion”) which is the best we have seen so far and which we
want to beat. Assume the current champion is µ̂ := µ(̂ı, ȷ̂). Then, for any move µ(i, j) better
than µ̂ it must be

∆(µ̂) < ∆(µ(i, j)) = cout(i, j) − cin(i, j) ≤ cout(i, j).

Based on this trivial observation, we will set-up an enumeration scheme which tests only
moves identified by p-pairs for which cout(i, j) > ∆(µ̂).

Throughout the local search we are going to keep the tour edges in an array, sorted
by decreasing value of c. Hereafter, we will denote by σ the sorted permutation, i.e., the
permutation such that

c(eσ(1)) ≥ c(eσ(2)) ≥ · · · ≥ c(eσ(n))

The initial sorting of the edges has a cost O(n log n) and so it could not be done if we
are interested in achieving an O(n) complexity when considering only one iteration of local
search. However, when we look at a full local search convergence, the O(n log n) is paid only
at the first iteration, while for all successive iterations the new sorted array can be obtained
by updating the previous one in time O(n), with the removal of two elements replaced by
two new ones placed in the proper position. Given that the number of iterations is expected
to be quite larger than log n (Kern (1989)), the initial sorting is thus amortized over the
convergence, and having the sorted array costs on average linear time per iteration.

Given the sorted array of edges, we can exploit it in order to quickly enumerate all p-pairs
whose cout value is above a threshold, in decreasing order of the cout value.

Lemma 1. For any threshold δ ≥ 0, let Π(δ) be the set of those p-pairs for which cout(i, j) >

δ. There is an algorithm to enumerate the elements of Π(δ) from the largest to the smallest
in time Θ(|Π(δ)| log n).

Proof: We discuss an algorithm, whose pseudocode will be given later within the description
of our main procedure. The algorithm employs a max-heap, sorted by the cout values, and
containing at each step at most n − 1 p-pairs. Each p-pair ⟨ei, ej⟩ in the heap is stored with
c(ei) ≥ c(ej), i.e., σ−1(i) < σ−1(j). There is always at most one p-pair in the heap for each

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

possible value of the first pivot, i.e., if ⟨ei, ej⟩ and ⟨ei′ , ej′⟩ are p-pairs in the heap, then i ̸= i′,
while it could be j = j′. We maintain the invariant that if ⟨eσ(i), eσ(k)⟩ is on the heap, then
all p-pairs ⟨eσ(i), eσ(j)⟩ with i < j < k have already been enumerated. Note that their value is
larger than that of ⟨eσ(i), eσ(k)⟩. The heap is initialized in time O(min{n, |Π(δ)|}) by a loop,
going from i = 1 to max{k : (1 ≤ k ≤ n − 1) ∧ cout(σ(k), σ(k + 1)) > δ}, which inserts the
p-pair ⟨eσ(i), eσ(i+1)⟩.

At the generic step of the enumeration phase, the next p-pair to be enumerated is the heap
root (the highest valued among the p-pairs left), let it be ⟨eσ(a), eσ(b)⟩. If cout(σ(a), σ(b)) ≤ δ

then the algorithm stops. Otherwise: (i) if b < n, the heap root element is overwritten with
⟨eσ(a), eσ(b+1)⟩, and its cost is updated with cout(σ(a), σ(b + 1)) while (ii) if b = n, the cost
of the root element is updated to be −∞. Then, in time O(log n) the heap property is
restored by letting the root element slide down the heap to its correct position (i.e., when it
becomes larger than both its sons). Since the algorithm always enumerates the largest p-pair
among those left, the p-pairs are enumerated in decreasing order of cout value, and, by the
description, at cost of O(log n) each.

Note that, for the sake of simplicity in either a code or a discussion, we sometimes treat as
p-pairs also pair of pivots that do share an endpoint (for instance, in the initialization of the
above procedure, we have inserted in the heap the elements ⟨eσ(i), eσ(i+1)⟩ without making
sure that the edges are not consecutive in the tour). In general, this can be done with no
harm, since: (i) 2-OPT moves for pairs of consecutive pivots exist, but have value 0; (ii)
there are only Θ(n) pairs of consecutive pivots, while there are Θ(n2) p-pairs, and so any
extra work when we include consecutive pivots within the p-pairs is dominated by the work
for the actual p-pairs.

Based on the above lemma, we propose a greedy strategy for finding the best 2-OPT move.
The algorithm, called Ag and described in Procedure 1, follows the criterion of testing always
the p-pair of largest cout(i, j) value among those left to try. As far as the complexity analysis
is concerned, step 1. has cost O(n) since building a heap can be done in linear time with
respect to the number of its elements by using standard procedures (Cormen et al. (2009)).
Then there is a loop repeated M times, where M is the number of p-pairs read from the
heap, and each loop iteration has cost O(log n), due to the call of RestoreHeap(·) in step 10.
The procedure RestoreHeap(v) assumes to have a heap in the form of a binary tree in which

Lancia and Vidoni: Average case sub-quadratic 2-OPT
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Procedure 1 GreedyLargestP-Pair Ag

1. Build a max-heap with elements [σ(i), σ(i + 1), cout(σ(i), σ(i + 1))],
where i = 1, . . . , n − 1, sorted by the cout-field;

2. Set µ̂ := ∅ and ∆(µ̂) := −∞; /* first undefined champion */

3. while the cout-value of the heap root element is > ∆(µ̂) do

4. let [i, j, cout(i, j)] be the heap root, where i = σ(a), j = σ(b);
5. if ∆(µ(i, j)) > ∆(µ̂) then

6. µ̂ := µ(i, j); /* update the champion */

7. if b < n

8. then overwrite heap root element with [i, σ(b + 1), cout(i, σ(i + 1))]
9. else overwrite heap root element with [i, j,−∞]

10. RestoreHeap(root)
11. endwhile

12. return µ̂;

the key of each node is larger than that of its sons, with, possibly, the exception of v. If that
is the case, the heap property is restored by swapping the key of v with that of its largest
son, say w, and then calling RestoreHeap(w).

3. Probabilistic analysis
3.1. The general plan

In this section we discuss the average-case complexity of our greedy algorithm, obtaining
a theoretical justification of the empirical evidence that it is better than quadratic for a
large portion of the convergence to a local optimum. In particular, at the very first steps,
when the current solution is a random (or almost random) tour, we observed an average
time complexity of O(n log n) on uniform instances and an average complexity of O(n) on
Euclidean instances. Note that O(n) is an optimal result for this problem, since we cannot
find the best move in a shorter time than that required to look at all the edges of the tour.
When we only measured the total number of moves evaluated to find the best, we observed
an average of O(n) moves in uniform instances and O(1) moves in Euclidean instances. The
time complexity, however, takes into account also the overhead for managing the heap.

The analysis is relative to the problem of finding the best move on a random tour. In order
to explain the observed sub-quadratic complexity, we start by discussing weaker versions

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

of the algorithm and prove that they run in average sub-quadratic time. These algorithms
are heuristics, but we can make their probability of success as high as we please. We then
show that the running time of Ag is dominated by the running time of a heuristic on those
instances on which the heuristic succeeds (which, as remarked, can be almost all).

Some preliminaries. In the average-case analysis of an algorithm one considers instances
drawn at random according to a certain probability distribution. In our study, an instance is
given by

(
n
2

)
non-negative reals (representing the edge costs in a complete undirected graph

of n nodes) plus a permutation of {1, . . . , n} identifying a tour in the graph. The size of an
instance can be characterized through a parameter n which, for us, is the number of nodes in
the graph. By a random tour we denote a permutation drawn uniformly at random (u.a.r.)
in the set including all the permutations. Hereafter, we assume n ≥ 4, and, when we talk of
a generic instance and of n in the same sentence, n is the instance size. As far as the edge
costs are concerned, we consider two types of distributions:

1. Uniform instances: A random instance of this type is obtained by setting the cost of
each edge {i, j} to a value drawn u.a.r. in [0,1]. Note that the edge lengths are independent
random variables.

2. Euclidean instances: A random instance of this type is obtained by drawing u.a.r.
n points P1, . . . , Pn in the unit square and then setting the cost of each edge {i, j} to the
Euclidean distance between Pi and Pj. Note that the edge lengths are not independent
random variables since triangle inequality must hold.

In the following analysis, we focus on mn
A(I), which represents the number of moves eval-

uated by an algorithm A on an instance I of size n to find the best one. We define the
associated random variable Mn

A as the number of moves evaluated by A on a random instance
of size n. The random instance is generated according to a suitable probability distribution
corresponding to the uniform or to the Euclidean instances framework. The average-case
complexity regarding the moves evaluated by A is then defined as

M̄A(n) :=E [Mn
A] ,

interpreted as a function of the size n. In a similar way, we denote by tn
A(I) the time (i.e.,

total number of elementary steps) taken by an algorithm A on an instance I of size n, by
T n

A the time taken by an algorithm A on a random instance of size n, and by T̄A(n) the
expected time-complexity of A as a function of n.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

A family of “fixed threshold” heuristics. Let us consider a variant of Ag in which, instead of
testing the p-pairs against the value of the current champion, we test them against a fixed
threshold δn which depends on the instance size n but not on the instance itself. Essentially,
the procedure limits the search of the best move to all and only the p-pairs ⟨ei, ej⟩ in the
tour such that cout(i, j) > δn, which are enumerated sequentially. In particular, with respect
to Procedure 1, we add a line 0. in which the algorithm computes a threshold δn, and we
change line 3. by replacing ∆(µ̂) with δn. Notice that there is an algorithm of this type for
each possible function δn, and hence we can talk of a family of algorithms. Let us call a
generic member of this family H(δn).

Each algorithm H(δn) is in fact a heuristic for finding the best 2-OPT move. Indeed,
there is no guaranty that it will find the best move, but rather it will find it with a certain
probability, depending on δn and on the distribution of instances. In particular, H(δn) may
fail to find the best move because of one of two types of errors:

ERR0: when no p-pair is evaluated (all p-pairs have cout-cost ≤ δn) and hence no move
will be found;

ERR1: when some p-pairs are evaluated, but the optimal move does not remove a p-pair
of cout-cost > δn and so it won’t be found.

The probability of failure can be controlled by a proper setting of δn. Intuitively, by
lowering (increasing) δn we decrease (respectively, increase) the probability of errors. At the
same time, we increase (respectively, decrease) the average time complexity of the algorithm,
since more (respectively, less) p-pairs get evaluated. We will describe a way to balance these
two conflicting objectives, namely, having a δn large enough so as to guarantee an average
sub-quadratic algorithm, but small enough so as the probability of errors can be upper-
bounded by any given constant.

Let ∆∗(I) := ∆(µ∗) denote the value of an optimal 2-OPT move µ∗ on an instance I. The
following is a sufficient, but not necessary, condition for H(δn) to find the optimal solution:

Lemma 2. For every instance I for which δn < ∆∗(I), H(δn) finds an optimal solution.

Proof: Assume a best move is µ∗ = µ(i, j). Then, cout(i, j) ≥ cout(i, j)−cin(i, j) = ∆∗(I) > δn

and therefore the p-pair ⟨ei, ej⟩ will be evaluated by H(δn), thus yielding µ∗.
Given an instance I, let us call good move any move µ such that ∆(µ) > δn (notice that

the property of being good for a move depends on δn, but, for simplicity, we assume that

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

δn is implicit from the context). Let us also call good instance any instance for which there

exists at least one good move. Then we have the following

Corollary 1. For every good instance I, H(δn) finds an optimal solution.

Proof: Let µ be a good move in I. Then, δn < ∆(µ) ≤ ∆∗(I) and the conclusion follows

from Lemma 2.

Furthermore, under the conditions of Corollary 1, Ag evaluates a subset of the moves

evaluated by H(δn), thus running faster than H(δn).

Lemma 3. For every good instance I, it is tn
Ag

(I) ≤ tn
H(δn)(I).

Proof: Since there exist good moves, it is δn ≤ ∆∗(I). Let ⟨ei1 , ej1⟩, ⟨ei2 , ej2⟩, . . . , ⟨eik
, ejk

⟩

be the sequence of p-pairs tested by Ag. Note that cout(i1, j1) ≥ · · · ≥ cout(ik, jk). Indepen-

dently of which p-pair evaluation yielded the optimal move, since ⟨eik
, ejk

⟩ was eventually

evaluated it must be cout(ik, jk) ≥ ∆∗(I). Therefore cout(it, jt) ≥ cout(ik, jk) ≥ ∆∗(I) > δn for

all t = 1, . . . , k, which implies that all moves evaluated by Ag are also evaluated by H(δn).

Since the work paid for each move evaluated is the same for Ag and H(δn), we conclude that

tn
Ag

(I) ≤ tn
H(δn)(I).

The following lemma is useful for evaluating the average-case complexity of H(δn) for

every distribution over the instances.

Lemma 4. Let En be the edge set of the complete graph. Denote by Ce the random variable

representing the cost of any edge e ∈ En in a random instance. If δn is chosen so that, for

every a, b ∈ En which do not share an endpoint, it is Pr[Ca + Cb > δn] = O(n−r), where

r ∈ (0,2], then M̄H(δn)(n) = O(n2−r).

Proof: Let Pn be the set of pairs of edges in the complete graph that do not share an

endpoint. It is easy to see that |Pn| = Θ(n4). For each {a, b} ∈ Pn, consider the indicator

variable X{a,b} which is 1 if both edges a and b are in the tour (i.e., they are a p-pair) and

their cumulative length is greater than δn. These two events are independent. Since there are

Θ(n2) p-pairs in a tour, the probability for {a, b} to be a p-pair is Θ(n2)/Θ(n4) = Θ(n−2).

We get

E
[
X{a,b}

]
= Pr

[
X{a,b} = 1

]
= Θ(n−2)Pr [Ca + Cb > δn] = O(n−2−r).

Lancia and Vidoni: Average case sub-quadratic 2-OPT
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Recalling that Mn
H(δn) =∑

{a,b}∈Pn
X{a,b} is the random variable representing how many moves

get evaluated by H(δn), we obtain

M̄H(δn)(n) =E
[
Mn

H(δn)

]
=

∑
{a,b}∈Pn

E
[
X{a,b}

]
= Θ(n4) × O(n−2−r) = O(n2−r).

Theorem 1. Let r ∈ (0,2]. If δn is chosen so that for every p-pair ⟨a, b⟩ it is Pr[Ca +Cb >

δn] = O(n−r), then T̄H(δn)(n) = O(n2−r log n) if r ≤ 1, while T̄H(δn)(n) = O(n) if r > 1.

Proof: H(δn) pays an O(n) work to initialize the data structure. Furthermore, by Lemma

4, the average number of moves evaluated by H(δn) is O(n2−r). Since each evaluation costs

O(log n) work, we have T̄H(δn)(n) = O(n + n2−r log n) = O(max{n,n2−r log n}). The conclu-

sion follows by noticing that the first terms dominates for r > 1, and the second for r ≤ 1.

A final simple claim, useful for our probabilistic analysis, states the independence of the

random costs of two pivots in a p-pair.

Claim 1. Let a, b ∈ En be two edges which do not share an endpoint. Then Ca and Cb are

independent random variables, under both the uniform and Euclidean random distributions.

In the next two sections, we study our algorithms with respect to uniform and Euclidean

random instances. For both types of distributions, we use the following approach:

1. We set δn so that, for all p-pairs ⟨a, b⟩, it is Pr [Ca + Cb > δn] = αn−r for some constant

α > 0 and r ∈ (0,2].

2. We describe a specific type of good moves and show that, asymptotically in n, the

probability of having no good moves of our type tends to 0 for increasing α. This implies

that for every p ∈ [0,1) we can find an α to set δn so that, asymptotically, the probability

for an instance to be good is grater than p.

3. We conclude that H(δn) is a heuristic whose average-case complexity is sub-quadratic

that succeeds on at least a fraction p of instances. This implies that, by Lemma 3, for at least

a fraction p of all instances Ag is dominated by an algorithm of sub-quadratic average-case

complexity, where p can be made as close to 1 as we want.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

3.2. Uniform random costs

We start by a simple result on uniform random variables.

Lemma 5. Let X and Y be random variables drawn u.a.r. in [0,1] and let 0 ≤ τ ≤ 2. Then

Pr[X + Y > τ] =

1 − τ2

2 if 0 ≤ τ ≤ 1
(2−τ)2

2 if 1 < τ ≤ 2

Proof: Since the sum of independent uniform random variables in [0,1] follows the well-
known Irwin-Hall distribution (Irwin (1927), Hall (1927)), the conclusion is immediate.

Lemma 6. Let α > 0 be a constant and define

δn := 2 − α n−1/2.

Then, under the uniform distribution setting for random instances, the average-case com-
plexity of H(δn) satisfies T̄H(δn)(n) = O(n log n).

Proof: Since we are interested in the asymptotic growth of complexity, assume n large
enough so that δn > 1. By Lemma 5, for each pair of edges a, b of the complete graph it is

Pr[Ca + Cb > δn] = (2 − δn)2

2 = α2

2n
= O(n−1)

Then, by Theorem 1, it is T̄H(δn)(n) = O(n log n).
Let us call an edge {i, j} long if

c(i, j) >
2 + δn

4 = 1 −
(

α

4

)
n−1/2

and short if
c(i, j) <

2 − δn

4 =
(

α

4

)
n−1/2.

The specific type of good moves that we consider, called Long-Short moves (LS-moves), are
those that replace two long edges with two short ones. Indeed, for any such move µ, it is

∆(µ) > 2(2 + δn)/4 − 2(2 − δn)/4 = δn.

Theorem 2. For each α > 0 denote by P0(α,n) the probability that there is no LS-move
in a random tour of n nodes on a random uniform instance. Then

lim
n→∞

P0(α,n) ≤ 1
e(α/8)4 .

Lancia and Vidoni: Average case sub-quadratic 2-OPT
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Proof: Let pn := (α/4)n−1/2 be the probability for an edge to be long, which is the same as
the probability to be short. Let, as usual, the tour be T = (1, . . . , n,1). Then, P0(α,n) is the
probability that there is no cycle (i, i + 1, j + 1, j, i) of four edges (two in the tour and two
not in the tour) such that {i, i + 1} and {j, j + 1} are long while {i + 1, j + 1} and {i, j} are
short.

We can then think of two Bernoulli trials, in sequence, where the first trials determine long
edges along the tour and the second trials determine good moves for pairs of long edges along
the tour. To obtain independence for the second trials, we will consider moves that remove
either two odd-indexed edges or two even-indexed edges. Let us focus on the odd-indexed
edges. The first set of Bernoulli trials is repeated n/2 times, i.e., for all edges {i, i + 1} where
i is odd, and the probability of success is pn. We have a success if the edge {i, i + 1} is
long. Assume there have been k successes altogether. Then, the second Bernoulli trials are
repeated

(
k
2

)
times, one for each pair {i, i + 1}, {j, j + 1} of long edges . The probability of

success is p2
n, and there is a success if both {i + 1, j + 1} and {i, j} receive a short length.

Note that these trials are independent, since for every two pairs s and q of long tour edges,
the sets of non-tour edges that define the 2-OPT move for s and for q are disjoint.

The probability of having no LS-moves at all is upper bounded by the probability of having
no LS-moves of the above type, i.e., having zero successes in the second Bernoulli trials. By
the law of binomial distributions, this probability is

P ′
0(α,n) =

n/2∑
k=0

(
n
2
k

)
pk

n(1 − pn)n
2 −k(1 − p2

n)(
k
2).

Let Sn ∼ Binomial(n/2, pn). Then P ′
0(α,n) can be written as

P ′
0(α,n) =E

(1 − α2/(16n)
)(Sn

2)
 .

Now fix δ ∈ (0, 1
4), and define an = α

√
n/8−n1/4+δ and bn = α

√
n/8+n1/4+δ. Also, consider

the event An = {Sn ∈ [an, bn]}, and let its complement be Ac
n. By the Chebyshev’s inequality,

Pr [Ac
n] ≤ Var(Sn)

n
1
2 +2δ

≤ C

n2δ

for some absolute constant C > 0 and hence Pr [Ac
n] → 0 as n → ∞. Then by noting that

k 7→ (1 − p2)(
k
2) is decreasing in k, we get

(1 − α2/(16n))(
bn
2)Pr [An] ≤ P ′

0(α,n) ≤ (1 − α2/(16n))(
an
2)Pr [An] + Pr [Ac

n] ,

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

and it is easy to check that both the lower and upper bound converge to e−α4/211 , which is
the limit of P ′

0(α,n). Since P0(α,n) ≤ P ′
0(α,n) and e−α4/211

< e−(α/8)4 , the conclusion follows.

Corollary 2. For each p ∈ [0,1) there exist α > 0 and n0 ∈N such that, for each n ≥ n0

and uniform random instance of size n, it is Pr[The instance is good] > p.

Proof: Let α > 0 be such that e−(α/8)4
< 1 − p, i.e., α > 8 4

√
ln(1 − p)−1. Then

lim
n→∞

Pr[There is at least one LS-move] = 1 − lim
n→∞

P0(α,n)

≥ 1 − 1
e(α/8)4

> p

and therefore, from some n0 on, it is Pr[There is a least one LS-move] > p. Since LS-moves
are good moves, the conclusion follows.

Notice that we are discussing a lower bound to the probability of some specific good moves,
and these are in turn a subset of all good moves. Thus, it is possible to obtain the same
probability of no errors with an α smaller than that suggested by the corollary, as we will
see in our computational experiments.

Finally, the following theorem bounds probabilistically the time complexity of Ag on uni-
form instances via O(n log n) functions.

Theorem 3. Consider the uniform distribution setting for random instances. Then, for
each p ∈ [0,1) there exists an algorithm H(δn), with T̄H(δn)(n) = O(n log n), and an integer
n0 such that, for each n ≥ n0, it is Pr[T n

Ag
≤ T n

H(δn)] > p.

Proof: By Corollary 2 we can find ᾱ > 0 and n0 such that, for n ≥ n0, the probability of
a good instance is greater than p. Set δn := 1 − ᾱn−1/2 and consider H(δn). By Lemma 6
and Theorem 1, we have T̄H(δn)(n) = O(n log n). Since T n

A is defined as the (random) number
of steps executed by an algorithm A on a (random) instance of size n, we can usefully
distinguish between the case in which the instance is good and the case in which it is not
good, so that

Pr[T n
Ag

≤ T n
H(δn)] = Pr[instance is good] × Pr[T n

Ag
≤ T n

H(δn) | instance is good]

+ Pr[instance is not good] × Pr[T n
Ag

≤ T n
H(δn) | instance is not good].

Lancia and Vidoni: Average case sub-quadratic 2-OPT
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

By Lemma 3, Pr[T n
Ag

≤ T n
H(δn) | instance is good] = 1 and then, ∀n ≥ n0,

Pr[T n
Ag

≤ T n
H(δn)] ≥ Pr[instance is good] × Pr[T n

Ag
≤ T n

H(δn) | instance is good]

= Pr[instance is good]

> p.

3.3. Random Euclidean instances

We start with the following result on the distance between random points in the unit square.

Lemma 7. Let 1.055 < d ≤
√

2 and let D be the distance between two random points drawn
uniformly in the unit square. Then Pr [D > d] ≤ 7

16

(
1 −

√
d2 − 1

)4
.

Proof: Consider Figure 1. In order for two points to have distance greater than d, they
must not fall within a circle of ray d/2. We draw such a circle with center in (0,0) and look
at the intersections of the circle and the unit square. From Pythagoras’ theorem, we get

y = 1
2

√
d2 − 1

and then
z = 1

2 − y = 1
2
(
1 −

√
d2 − 1

)
.

For two points to have distance greater than d at least one of them should fall out of the
circle, i.e., in the corners, each of which is an area of “triangular” shape but with a curve
basis. We are going to relax this, and require that the point must fall within one of the
four triangles with two sides of length z in the corners (this way we are overestimating the
probability). Let us call T 1, . . . , T 4 these squares, starting from the top-left and proceeding
counter-clockwise.

Once a point is in T ∈ {T 1, . . . , T 4}, the other point must be at distance greater than d

from it. The distance between two points in triangles which are not opposite to each other is
at most d, as it can be checked by noticing that

√
1 + z2 ≤ d is always satisfied for d ≥ 1.055

(where
√

1 + z2 is the maximum distance between two non-opposite triangles T). Therefore
we have to look for the second point in the opposite corner.

Since in T the farthest from other points is precisely the corner vertex, say V , we draw
a circle CV of ray d and center V . Let V ′ be the opposite corner, and let l be the distance

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

Figure 1 Study of Pr [D > d].

y

z

y z

d
2

0

1
2

-1
2

1
2-1

2

d

V

V ′

between V ′ and the intersection of the circle CV with the square. By Pythagoras’ theorem
we get

l = 1 −
√

d2 − 1 = 2z.

Let L1, . . . ,L4 be the triangle with two sides of length l in the corners. From the previous
discussion, if we pick a sequence X, X ′ of two points at random, in order to have D > d

there must exist opposite corners i and j such that either X in T i and X ′ is in Lj, or X is
in Li \ T i and X ′ is in T j (notice that since we used chords instead of circle arcs in these
areas, these are necessary, but not sufficient conditions, and so we are overestimating the
probability that D > d). For fixed opposite i, j, we have

Pr
[
(X ∈ T i ∧ X ′ ∈ Lj) ∨ (X ∈ Li \ T i ∧ X ′ ∈ T j)

]
= z2

2 · 4z2

2 + 3z2

2 · z2

2 = 7
4z4.

Therefore, for the probability that the above situation is realized at one of the 4 possible
pairs of opposite corners, we obtain

Pr [D > d] ≤ 7z4 = 7
16
(
1 −

√
d2 − 1

)4
.

In our computational experiments we observed that, for Euclidean instances, the algorithm
Ag evaluates an average number of moves which does not increase with n. Thus, we calibrate
δn so that only a fraction O(n−2) of the p-pairs pass the test and get evaluated.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Lemma 8. Let α > 0 be a constant and define

δn := 2
√

2 − α n−1/4.

Then, under the Euclidean distribution setting for random instances, the average-case com-

plexity of H(δn) satisfies T̄H(δn)(n) = O(n).

Proof: Notice that, for each p-pair ⟨a, b⟩, the pivots do not share endpoints, and therefore

the lengths Ca and Cb are independent random variables. Furthermore, since it is always

Ca ≤
√

2 and Cb ≤
√

2, the event Ca + Cb > δn implies both Ca >
√

2 − αn−1/4 and Cb >
√

2 − αn−1/4. We obtain

Pr [Ca + Cb > δn] ≤ Pr
[(

Ca >
√

2 − αn−1/4
)

∧
(
Cb >

√
2 − αn−1/4

)]
= Pr

[
Ca >

√
2 − αn−1/4

]2
(by independence of Ca,Cb)

= O(n−1)2 (by Lemma 7)

= O(n−2).

By Theorem 1, the average time complexity of H(δn) is then O(n).

Instead of discussing how the setting of the constant α affects the probability of having

good moves, in the following we find it is easier to rewrite

δn = 2
√

2 − (10
√

2)λn−1/4

for a constant λ > 0 and discuss the constant λ.

We first recall a very basic property of tours on Euclidean instances.

Lemma 9. Let T = (1, . . . , n) be a tour on a Euclidean instance. Assume that edges

{i, i + 1} and {j, j + 1} cross. Then the 2-OPT move µ(i, j) has value > 0. Furthermore if

min{c(i, i + 1), c(j, j + 1)} > l > u > max{c(i, j), c(i + 1, j + 1)}, then ∆(µ(i, j)) > 2(l − u).

Proof: Consider the following figure

i + 1j

j + 1i

x

(a) high-valued move

i + 1j + 1

ji

x

(b) low-valued move

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

Denote the Euclidean distance between any two points a, b in the plane by ||ab||. Let x

be the point in which {i, i + 1} and {j, j + 1} intersect. By triangle inequality ||ix||+ ||xj|| >

||ij|| =: c(i, j) and ||(i + 1)x|| + ||x(j + 1)|| > ||(i + 1)(j + 1)|| =: c(i + 1, j + 1), so that

∆(µ(i, j)) = c(i, i + 1) + c(j, j + 1) − c(i, j) − c(i + 1, j + 1)

= ||ix|| + ||x(i + 1)|| + ||jx|| + ||x(j + 1)|| − c(i, j) − c(i + 1, j + 1)

> 0.

The second part of the claim is obvious.
Notice that a pair of crossing edges implies an improving move, but the move’s value could

be high or not so high, depending on how small or large the angle îxj is. In the previous
figure, left, the angle is small and the move has a high value, while it is less so in the figure
on the right.

Now we want to describe the specific type of good moves that we will use for the analysis.
Consider Figure 2, showing the unit square which has been divided into (n1/4/λ)×(n1/4/λ) =
√

n/λ2 squares, each of side λn−1/4. Four of these squares are special, and they are labeled
A1,A2 and B1,B2. An instance is a complete graph Kn made of n points and all line segments
between them. In the figure, we show some of the points and edges.

Figure 2 Explaining D-edges and D-crosses

λn−1/4

A1

A2

B2

B1

Call D-edge (for Diagonal-edge) an edge of Kn which is either A1 ·−·A2 or B1 ·−·B2.
Furthermore, call D-cross (for Diagonal-cross) a pair of edges, one of which is A1 ·−·A2 and
the other is B1·−·B2. Finally, call C-edge (for Corner-edge) an edge whose endpoints are both
in Ai ∪ Bi for i = 1,2. Intuitively, D-edges are “long” and C-edges are “short”.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

In a random instance, the tour T is identified by a random permutation of the nodes of Kn

which, after relabeling, we assume as usual to be (1, . . . , n). For each D-cross contained in
the tour, if the D-cross is traversed in the right order then there is a move which can replace
two D-edges with two C-edges. For instance, a right order for the D-cross in the figure would
be if the node in A1 is labeled i, that in A2 is i + 1, the node in B1 is j and that in B2 is
j + 1, for some i and j. We denote this order as (A1 → A2⇝B1 → B2). In the analysis, we
consider the specific type of good moves that replace a D-cross with two C-edges, which we
call D-uncrossing moves. Since each D-edge is long at least

√
2−3

√
2λn−1/4 and each C-edge

is long at most 2
√

2λn−1/4, by Lemma 9 these moves would have value greater than

2(
√

2 − 3
√

2λn−1/4) − 4
√

2λn−1/4 = 2
√

2 − 10
√

2λn−1/4 = δn (1)

i.e., they are in fact good moves.

Lemma 10. Consider a random tour T = (1, . . . , n) under the Euclidean distributional
setting. Then, for each i, it is Pr [(i ∈ A1) ∧ (i + 1 ∈ A2)] = λ4/n.

Proof: The probability of a point drawn at random to fall in Ak, for k = 1,2, is λ2/
√

n.
Since the points were drawn independently of each other, the conclusion follows.

Lemma 11. Consider a random tour T under the Euclidean distributional setting. Let EA

be the event “T does not traverse any A1 → A2 D-edge ”. Then

Pr [EA] ≤
(

1 − λ4

n

)n/2

.

Proof: Let T = (1, . . . , n) and for each i consider the event Di := (i ∈ A1) ∧ (i + 1 ∈ A2). By
Lemma 10, it is Pr [¬Di] = 1 − λ4/n. Furthermore, it is EA = ¬D1 ∧ ¬D2 ∧ · · · ∧ ¬Dn.

Let us look at the odd-indexed edges of the tour, i.e., edges {i, i+1} for i = 1,3,5, Since
these edges are disjoint, the events D1,D3,D5, . . . are independent. The probability that none
of them occurs is Pr [¬D1 ∧ ¬D3 ∧ · · ·] = (1 − λ4/n)n/2. Since EA =⇒ ¬D1 ∧ ¬D3 ∧ · · · , the
result follows.

Corollary 3. Consider a random tour T under the Euclidean distributional setting. Let
EAB be the event “T does not contain any D-cross (A1 → A2⇝B1 → B2)”. Then Pr [EAB] ≤

2(1 − λ4/n)n/2.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

Proof: Let EA be the event “T does not traverse any A1 → A2 D-edge” and EB be the
event “T does not traverse any B1 → B2 D-edge”. We have EAB = EA ∨ EB . Furthermore,
Pr [EA] = Pr [EB] and so Pr [EAB] = Pr [EA] + Pr [EB] − Pr [EA ∩ EB] ≤ 2Pr [EA]. Then
the conclusion follows from Lemma 11.

Theorem 4. For each p ∈ [0,1) there exist a value for λ > 0 and an integer n0 such that,
for each n ≥ n0 and Euclidean random instance of size n, it is Pr [The instance is good] > p.

Proof: Let λ be such that 2/
√

eλ4 < 1 − p, i.e.,

λ > 4

√√√√2 ln
(

2
1 − p

)
.

It is

lim
n→∞

Pr [there are D-uncrossings] ≥ 1 − lim
n→∞

2(1 − λ4/n)n/2

= 1 − 2/
√

eλ4

> p

and therefore, from some n0 on, it is Pr [there are D-uncrossings] > p. Since the D-
uncrossings are good moves, the conclusion follows.

Finally, the following theorem bounds probabilistically the complexity of Ag on Euclidean
instances via linear functions.

Theorem 5. Consider the Euclidean distributional setting for random instances. Then,
for each p ∈ [0,1) there exists an algorithm H(δn), with T̄H(δn)(n) = O(n), and an integer n0

such that, for each n ≥ n0, it is Pr[T n
Ag

≤ T n
H(δn)] > p.

Proof: The proof follows the exact same lines as the proof of Theorem 3.

4. A different greedy criterion
In this section we describe a variant of our algorithm which follows a different greedy criterion.
Namely, instead of enumerating the moves by maximizing the total cost of both pivots,
it first maximizes the cost of the largest pivot, and, once this pivot is fixed, the sum of
the costs. The advantage in this approach is that each p-pair to try can be enumerated
in time O(1) instead than O(log n) by using the sorted array of tour edges. Indeed, with

Lancia and Vidoni: Average case sub-quadratic 2-OPT
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Procedure 2 GreedyLargestPivot AL

1. Set µ̂ := ∅ and ∆(µ̂) := −∞; /* first undefined champion */

2. a := 1;
3. while (a ≤ n − 1) ∧ (c(eσ(a)) > ∆(µ̂)/2) do

4. b := a + 1;
5. while (b ≤ n) ∧ (cout(σ(a), σ(b)) > ∆(µ̂)) do

6. if ∆(µ(σ(a), σ(b)) > ∆(µ̂) then

7. µ̂ := µ(σ(a), σ(b)); /* update the champion */

8. b := b + 1
9. endwhile

10. a := a + 1
11. endwhile

12. return µ̂;

respect to the sorting σ, the moves are enumerated in lexicographic order, i.e., first all
pairs {⟨eσ(1), eσ(2)⟩, ⟨eσ(1), eσ(3)⟩, . . . , ⟨eσ(1), eσ(r1)⟩} which contain eσ(1) (the largest tour edge).
Here, r1 is the largest index such that cout(σ(1), σ(r1)) > ∆(µ̂). Then, all pairs which contain
eσ(2), i.e., {⟨eσ(2), eσ(3)⟩, ⟨eσ(2), eσ(4)⟩, . . . , ⟨eσ(2), eσ(r2)⟩}, where r2 is the largest index such that
cout(σ(2), σ(r2)) > ∆(µ̂), and so on. Note that r1 ≥ r2 ≥ · · · . The algorithm, called AL, where
L stands for lexicographic, is described in Procedure 2. In the algorithm there are two nested
loops. The outer loop picks, following the order determined by σ, the highest valued pivot,
say ei with i = σ(a), terminating when its cost is ≤ ∆(µ̂)/2. The second pivot, say ej with
j = σ(b), is taken by the inner loop over b = a + 1, a + 2, . . . up to the last value such that
cout(i, j) > ∆(µ̂). Note that the p-pairs that have the same first pivot are enumerated by
decreasing value of cout, but, overall, the full list of all p-pairs produced might not be sorted.

Our computational experiments have shown that AL displays the same behavior as Ag

with respect to the average number of moves evaluated, i.e., O(n) for uniform instances
and O(1) for Euclidean instances. Given that the time to produce each move to try next is
O(1), and that keeping the sorted array requires a cost O(n) per local search iteration (with
the exception of the O(n log n) sorting cost for the very first iteration), we experimentally
observed an average time O(n) per iteration, independently of the instance type. Therefore,
based on empirical evidence, we can conjecture that AL, unlike Ag, presents an average

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

time complexity O(n) also for uniform instances. However, to obtain formal proof of the
improvement in the average time complexity observed in the uniform case, the approach
considered in the previous section, based on a fixed-threshold version HL(δn) of AL, cannot
be used.

The point is that, although most of the lemmas and theorems on which we based our
construction still hold, the very important one (Lemma 3), which would allow us to upper
bound the running time of AL by the running time of its heuristic version HL(δn) , does not.
Indeed, it is now possible to have a good instance for which the algorithm HL(δn) explores
fewer moves to find the optimal move than AL does. For an example, assume to have a graph
and a tour such that: the cost of the largest tour edge is 100, there are two edges, {i, i + 1}

and {j, j + 1}, of cost 91, and all remaining tour edges have cost lower than 80. The cost of
all non-tour edges is large (> 100) except for edges {i, j} and {i + 1, j + 1} which have cost
1. In this instance, there is only one improving move, which has value 180, and so, for any
δn < 180, the instance is good. Take δn = 180 − ϵ. Then, while AL would enumerate all n − 1
p-pairs which contain the largest pivot, the only two p-pairs that HL(δn) would enumerate
in this block are the largest pivot with {i, i + 1} and with {j, j + 1}.

In the next session, dedicated to numerical experiments, we evaluate also this alternative
greedy algorithm, and compare it with those defined previously. An in-depth discussion of
the results of the computational experiments is presented. Although the results, for the
uniform case, seem promising, the possible theoretical justification would require, as already
mentioned, a different approach that goes beyond the objectives of the present paper.

5. Computational experiments and statistics
In this section we report on our extensive computational experiments. All tests were run on
a Intel®CoreTM i7-1065 CPU under Linux Ubuntu, equipped with 16GB RAM at 1.30GHz
clock. The programs were implemented in C and compiled under gcc 5.4.0.

5.1. Best move from a random tour

In this section we compare experimentally the greedy algorithm (Ag), the lexicographic
algorithm (AL), the heuristic H(δn) and complete enumeration (CE) by looking at how
many moves they evaluate on average over 1000 runs. In particular, we generate 100 random
instances and for each of them we generate 10 random tours on which we determine the best
2-OPT move.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 1 Average number of moves evaluated for finding the
best move on a random tour. Results for uniform instances.

n CE Ag AL H(δn) AL

Ag

2,000 1,999,000 3,080 3,813 7,230 1.23
4,000 7,998,000 6,101 7,738 14,469 1.26
6,000 17,997,000 9,284 11,741 21,614 1.26
8,000 31,996,000 12,066 15,403 28,943 1.27

10,000 49,995,000 15,489 19,709 36,187 1.27
12,000 71,994,000 18,698 23,754 43,471 1.27
14,000 97,993,000 21,306 27,324 50,625 1.28
16,000 127,992,000 25,172 32,097 57,914 1.27
18,000 161,991,000 27,432 35,331 64,754 1.28
20,000 199,990,000 31,454 39,898 71,726 1.26
22,000 241,989,000 34,993 44,170 79,325 1.26
24,000 287,988,000 36,664 47,107 86,796 1.28

Uniform instances. In Table 1 we report the average number of moves (rounded to integer)
evaluated by CE, Ag, AL and H(δn). In the experiment, we set δn := 2 − 3.8/

√
n, where

α = 3.8 was chosen, after a little tuning, since it is a value large enough to guarantee a good
probability of no errors. Indeed, out of 12,000 instances considered, the algorithm H(δn)
always found the best move.

The table shows how our approach can achieve a reduction in the number of moves evalu-
ated of three orders of magnitude over complete enumeration, for instances of size ≤ 24000.
The table also reports the ratios between the number of moves of the lexicographic and of
the greedy algorithm (column AL

Ag
). Since this ratio stays pretty much constant (around 1.27)

it appears from the table that Ag and AL both evaluate a sub-quadratic number of moves
of the same asymptotic growth but with a smaller constant for Ag. In Figure 3 we have
plotted the same values of Table 1 and we have fitted the dots with functions Θ(n), namely
1.55n for the greedy algorithm and 1.97n for the lexicographic algorithm. The interpolating
function for H(δn) corresponds to its theoretical expected complexity, which, by Lemma 6,
is (α2/(2n))(n(n − 3)/2) ≃ 3.61n.

Euclidean and TSPLIB geometric instances. We have performed a similar set of experiments
on random Euclidean instances. In Table 2 we can see that the greedy algorithm is several
orders of magnitude faster than complete enumeration when looking for the best move on
a random tour on graphs with up to 24,000 nodes. The values are averages over 1,000
experiments for each size n, exactly as before. The lexicographic algorithm exhibits a similar
time complexity, but it is roughly 1.28 times slower than Ag. The fixed threshold algorithm
has been run with δn = 2

√
2−5/ 4

√
n. We remark that the algorithm H(δn) found the optimal

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

Figure 3 Fittings of the average number of moves evaluated for finding the best move on a random tour (uniform
instances). Each dot corresponds to the average over 1000 trials of size n (100 instances, 10 tours per
instance).

0 6,000 12,000 18,000 24,000 0

20,000

40,000

60,000

80,000

100,000

instance size n

m
ov

es
ev

al
ua

te
d

H(δn)
AL

Ag

Table 2 Average number of moves evaluated for finding the
best move on a random tour. Results for Euclidean instances.

n CE Ag AL H(δn) AL

Ag

2,000 1,999,000 140.1 189.8 2,135.9 1.35
4,000 7,998,000 125.2 159.7 1,881.7 1.27
6,000 17,997,000 128.2 165.2 1,741.2 1.28
8,000 31,996,000 120.5 153.8 1,658.5 1.27

10,000 49,995,000 116.9 149.7 1,629.7 1.28
12,000 71,994,000 116.8 149,4 1,582.3 1.27
14,000 97,993,000 120.3 151.2 1,543.9 1.25
16,000 127,992,000 114.5 148.1 1,552.5 1.29
18,000 161,991,000 109.9 139.3 1,523.1 1,26
20,000 199,990,000 121.9 158.1 1,504.0 1,29
22,000 241,989,000 115.2 147.3 1,506.5 1.27
24,000 287,988,000 113.3 146.8 1,503.8 1.29

move, over all the 12,000 trials. In Figure 4 we can see the data of Table 2 plotted in a graph
so that the O(1) behavior of the algorithms can be appreciated graphically. Note that, to
obtain a nice representation of all curves within the same figure, we have used two different
windows on the y-axis: On the left, we see the y-axis values for Ag and AL, while on the
right we have the y-axis values for H(δn).

Some test-bed instances on the repository TSPLIB (Reinelt (1991)) are of geometric
nature, and we have tested our algorithms Ag and AL on those as well. In particular, there
are some Euclidean instances (but they are not random, they correspond to some networks
of world cities), and other are metric, not Euclidean, instances. We have selected the largest
such instances (with the exception of pla85900, that, with ≥ 85,900 nodes, was too big

Lancia and Vidoni: Average case sub-quadratic 2-OPT
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Figure 4 Average number of moves evaluated for finding the best move on a random tour (Euclidean instances).
Each dot corresponds to the average over 1000 trials of size n (100 instances, 10 tour per instance).

0 6,000 12,000 18,000 24,000

100

200

300

instance size n

m
ov

es
ev

al
ua

te
d

(A
g

A
L
)

AL

Ag

HL

500

1,000

1,500

2,000 m
oves

evaluated
(H

L)

for our computer setting). The results, averages over ten random tours per instance, are
reported in Table 3. It can be seen that our method achieves a speed-up of several orders of
magnitude in finding the best move on a random tour.

Table 3 Average number of moves evaluated for finding the best move
on a random tour. Results for TSPLIB instances.

name n CE Ag AL
Ag

AL

euc2d/rl5915 5,915 17,490,655 233.8 290.5 1.24
euc2d/rl5934 5,934 17,603,211 147.9 179.2 1.21
ceil2d/pla7397 7,397 27,354,106 92.1 119.7 1.29
euc2d/rl11849 11,849 70,193,476 146.3 157.0 1.07
euc2d/usa13509 13,509 91,239,786 127.4 165.2 1.29
euc2d/brd14051 14,051 98,708,275 241.6 282.5 1.17
euc2d/d15112 15,112 114,178,716 185.7 279.6 1.50
euc2d/d18512 18,512 171,337,816 282.7 367.9 1.30
ceil2d/pla33810 33,810 571,541,145 219.4 289.9 1.32

5.2. Best-improvement convergence to a local optimum

Given that finding the best move at the beginning of the local search is much faster with
our algorithm than with the standard approach, we were optimistic about the fact that the
time for the whole convergence would have been much shorter as well. Unfortunately, this
is not the case, since the effectiveness of our approach decreases along the path to the local
optimum. Indeed, at some point, our procedure can in fact become slower than complete
enumeration since it has the overhead of dealing with a data structure that is not needed by
the nested-for algorithm.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

The slow-down phenomenon can be explained as follows. While approaching the local
optimum, the value of the best move might decrease dramatically. At the beginning of the
convergence, there are many improving moves and some of them have a really big value,
setting a pretty high threshold for a p-pair to be evaluated. However, when the current tour
has already undergone many improvements, most moves are worsening and the few improving
moves have a small value. At this point, also the thresholds which determine which p-pairs
to evaluate become pretty low and hence many p-pairs get evaluated.

Figure 5 displays this phenomenon quite clearly, comparing Ag with complete enumeration
(CE). On the left we see a best-improvement local search convergence on a uniform instance
on 1,000 nodes, lasting about 1,100 steps. On the right is a best-improvement local search
convergence on a Euclidean instance on 1,000 nodes, lasting about 1,300 steps.

0 400 800 1,200

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105 CE
Ag

0 400 800 1,200

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105 CE
Ag

Figure 5 Number of moves evaluated per LS step. n = 1000. Left, UNI instance. Right EUC instance.

We can see that in both cases, for about 400 steps Ag evaluates a very small number of
moves, much smaller than CE does. During this phase, despite the heap overhead, Ag is
very much faster than CE. Starting at about move 500, however, we see that the number of
moves starts to increase significantly, and at about two thirds of the local search Ag evaluates
almost as many moves as CE does. When we take into account the overhead and look at the
running times, it then happens that Ag becomes slower than CE.

With respect to the number of moves evaluated, the behavior of Ag and AL is the same,
but when we look at the running times we expect AL to be faster since it does not require
the heap. We have therefore compared the running times of Ag, AL and CE over full local
search runs. In Figure 6 we can see the running times for the above two instances, which are
good representatives of the general case.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

0 400 800 1,200

0

0.5

1

1.5

2
Ag

AL

CE

0 400 800 1,200

0

2

4

6
Ag

AL

CE

Figure 6 Cumulative time (sec) up to LS step. n = 1000. Left, UNI instance. Right EUC instance.

We can notice that if we use Ag for the whole local search we end up being overall slower
than complete enumeration. On the other hand, if we start with Ag and switch to CE at about
halfway through the convergence, we would end up saving roughly half of the processing
time. Furthermore, we see that if we use AL for the whole search, we have a faster algorithm
than the standard enumeration even without switching. This behavior was observed in all
our experiments. Indeed, we can do even better than AL by switching from AL to CE at
some point, since when both AL and CE evaluate more or less the same number of moves,
the overhead of CE is certainly smaller than for AL. Let us denote by ÂL the hybrid version
of AL, consisting of AL up to a certain step followed by CE up to the end. In Figure 7, left,
we show LS on the TSPLIB instance pr1002. CE terminates after 7.3s while AL takes 5.8s,
i.e., a 21% reduction. On the right we see that ÂL, where the switch to CE is made around
step 600, terminates in 3.9s, i.e., a 47% reduction from CE.

After observing many LS convergences, we derived a very simple rule of thumb for switch-
ing to CE. Each convergence takes a total number of steps which is slightly larger than n,
and good results can be obtained by switching to CE after 3

4n steps. In Table 4 we report the
results over instances of size from 500 to 3000, and including some TSPLIB instances. The
“hybrid” algorithm ÂL consists of AL for the first 3

4n steps, followed by CE up to the local
optimum. For each instance we considered 10 random starting tours and report the aver-
age convergence length (column “steps”), the average number of moves per step evaluated
by each algorithm (column m̄(·)) and the average total time for the convergence (column
t̄(·)) in seconds. Other than the times, all averages are rounded to integer. The final column
(“speed-up”) reports how many times the hybrid algorithm is faster than CE. It can be seen
that by adopting this simple rule, the running time can be approximately halved.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

0 400 800 1,200

0

2

4

6

CE
AL

0 400 800 1,200

0

2

4

6

CE
AL

ÂL

Figure 7 Cumulative time (sec) up to LS step. TSPLIB instance pr1002, n = 1002. Left, AL vs CE. Right, ÂL

vs CE.

Table 4 Running times (sec) and move evaluations for best-improvement LS convergences with CE, AL and
ÂL. Averages over 10 runs per instance.

type n steps m̄(CE) t̄(CE) m̄(AL) t̄(AL) m̄(ÂL) t̄(ÂL) speed-up

UNI

500 553 124,750 0.72 36,058 0.37 48,456 0.34 2.11×
1,000 1,147 499,500 6.56 138,478 2.97 194,364 2.74 2.39×
1,500 1,767 1,124,250 23.67 295,899 10.33 449,733 10.19 2.32×
2,000 2,437 1,999,000 59.89 555,098 30.12 835,071 27.65 2.15×
2,500 3,108 3,123,750 129.53 875,875 67.07 1,335,617 60.13 2.16×
3,000 3,695 4,498,500 238.62 1,194,544 117.06 1,889,970 110.45 2.16×

EUC

500 588 124,750 0.93 58,295 0.59 61,651 0.54 1.72×
1,000 1,290 499,500 7.15 227,535 5.34 253,496 4.07 1.75×
1,500 1,972 1,124,250 26.07 495,043 20.08 565,779 14.99 1.73×
2,000 2,681 1,999,000 73.46 856,554 53.54 1,004,952 37.82 1.94×
2,500 3,399 3,123,750 141.72 1,324,269 111.10 1,576,564 77.69 1.82×
3,000 4,156 4,498,500 278.88 1,904,449 218.87 2,298,937 149.34 1.86×

TSPLIB

rat575 1,340 165,025 1.54 78,442 1.38 81,287 0.98 1.57×
pr1002 2,605 501,501 12.26 227,041 9.93 252,224 6.17 1.98×
u1432 3,427 1,024,596 33.66 436,540 28.54 472,799 18.15 1.85×
u2152 5,651 2,314,476 136.52 935,776 124.01 1,138,229 75.91 1.79×

pr2392 6,576 2,859,636 198.14 1,203,348 167.72 1,444,297 103.85 1.90×
pcb3038 8,174 4,613,203 496.96 2,007,906 417.04 2,299,242 255.49 1.94×

5.3. Experiments with first-improvement

In first-improvement local search, the time spent per step is much smaller than in best-
improvement. On the other hand, also the change in the objective function is smaller, and the
convergence to a local optimum generally requires many more steps. This trade-off between
time per move and convergence length makes it difficult to consider one type of search surely
better than the other.

Our algorithms are easily usable for first-improvement local search. Furthermore, they have
a characteristic that might be an advantage over “blind” first-improvement, i.e., we sample

Lancia and Vidoni: Average case sub-quadratic 2-OPT
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 5 First- and Best-improvement LS starting at a random tour. Averages over multiple runs per instance.

F-I CE F-I AL B-I ÂL

type n f∗ f̄ t̄ steps f∗ f̄ t̄ steps f∗ f̄ t̄ steps

U

500 6.02 6.66 0.02 2365 6.01 6.50 0.06 1252 6.13 6.28 0.26 561
1000 8.29 8.85 0.12 5670 8.32 8.72 0.63 2790 8.44 8.63 2.88 1160
1500 10.25 10.72 0.36 9242 10.03 10.43 2.18 4382 10.41 10.53 10.02 1766
2000 11.66 12.35 0.65 12753 11.84 12.04 5.85 6046 11.55 11.81 25.58 2437
2500 13.22 13.62 1.28 17317 13.06 13.40 12.82 7711 12.74 12.98 54.05 3070

E

500 18.29 18.70 0.02 3661 17.60 18.04 0.14 1690 17.85 18.33 0.59 599
1000 25.54 26.15 0.11 9208 24.69 25.08 1.07 3803 25.44 25.62 4.34 1280
1500 31.43 31.97 0.22 16057 30.19 30.57 3.51 6098 30.98 31.10 19.91 1991
2000 35.94 36.70 0.44 23348 34.63 35.06 8.33 8582 35.89 36.00 45.91 2710
2500 40.28 41.18 0.51 29583 39.24 39.54 17.27 11058 40.15 40.38 88.51 3404

T

rat575 7519 7658 0.02 4405 7334 7491 0.08 1801 7463 7573 0.73 670
d657 53142 54852 0.03 5183 51703 52866 0.40 2432 53267 53806 1.35 820

pr1002 286207 293431 0.06 9283 275177 277871 1.03 3848 281382 284240 4.38 1288
u1060 247260 253046 0.05 11052 237925 240977 1.41 4109 242578 247453 5.40 1373
rl1323 293319 309967 0.09 13169 282121 288530 1.82 5595 296168 302311 10.36 1842
u1432 172482 175573 0.11 15239 167760 169218 0.79 5355 170097 171333 12.49 1722
u2152 73788 76083 0.30 25016 71363 72857 6.72 8979 72852 73922 57.86 2840

pr2392 421939 435466 0.44 29542 406889 412659 15.19 10463 421003 423614 75.38 3275

H

Tnm511 8945401 9119258 0.01 3098 8958219 8998822 0.06 1764 8983466 9073819 0.44 714
Tnm1021 18570469 18803382 0.04 7029 18547346 18597745 0.49 3965 18613850 18714185 3.84 1542
Tnm1501 27621647 28001323 0.09 13174 27601361 27685473 1.67 6152 27654368 27761642 13.89 2312
Tnm2011 37292079 37880141 0.18 18568 37245854 37285407 5.30 8630 37335996 37699400 38.67 3208
Tnm2521 46925076 47590156 0.33 23635 46888936 46924132 10.86 10971 46956008 47259950 79.60 4016

the moves from the most promising to the least promising. Therefore, once an improving

move is found, its value is generally much better than the value of a random improving move.

In this section we compare first-improvement with our strategy versus the usual first-

improvement based on breaking from the nested-for algorithm of CE as soon as an improving

move is found. Note that when CE is used for first-improvement, it is important that at

each step of the convergence the nested-for resumes from where it ended at the last step.

Otherwise, many p-pairs would be tested again that were not improving at the previous

step and are still not improving at the current step, making the search much slower than

it should be. We have considered four types of instances, i.e., random uniform (U in the

table), random Euclidean (E), TSPLIB instances (T) and some “hard” instances (H), defined

in Hougardy and Zhong (2001), which are some instances particularly difficult to solve to

optimality. In our tests we have considered sizes which go, roughly, from n = 500 to n = 2500

with increments of 500, for all types of instances included in the experiments.

We have performed a first set of experiments, whose results are reported in Table 5.

These experiments are relative to local search starting from a random tour. In the exper-

iment we have also included the best-improvement strategy to try to assess if or when

first-improvement is to be preferred over best improvement. The types of convergence con-

sidered are first-improvement with complete enumeration (columns labeled “F-I CE”), with

AL (labeled “F-I AL”) and best-improvement with ÂL (labeled “B-I ÂL”). For each instance,

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

Table 6 First- and Best-improvement LS starting at a NN tour. Averages over multiple runs per instance.

F-I CE F-I AL B-I ÂL

type n f∗ f̄ t̄ steps f∗ f̄ t̄ steps f∗ f̄ t̄ steps

U

1000 3.70 4.01 0.04 104 3.56 3.85 0.03 97 3.57 3.69 0.15 53
2000 4.24 4.48 0.21 157 4.06 4.30 0.23 152 3.94 4.02 0.88 91
3000 4.43 4.69 0.56 198 4.30 4.51 0.73 182 3.99 4.17 2.63 108
4000 4.71 4.91 1.19 236 4.50 4.66 1.15 219 4.30 4.38 5.48 126
5000 4.83 5.01 1.80 267 4.61 4.79 2.10 247 4.41 4.46 9.45 144

E

1000 24.71 24.99 0.04 269 24.28 24.46 0.22 208 24.44 24.51 1.08 152
2000 34.76 35.07 0.16 576 33.97 34.14 2.06 458 33.93 34.09 10.11 322
3000 42.52 42.99 0.43 858 41.82 42.00 7.73 652 41.85 42.02 40.22 463
4000 48.90 49.30 0.95 1098 47.87 48.08 20.49 850 47.99 48.08 87.33 588
5000 54.85 55.20 1.39 1327 53.45 53.76 40.43 1046 53.63 53.75 188.86 732

T

u2319 245487 247069 0.16 487 243417 244955 0.22 396 240007 241229 11.61 282
pr2392 403571 411427 0.20 598 396172 400396 2.27 470 397387 399683 13.26 310

pcb3038 148651 149989 0.40 815 145590 146534 4.97 633 145541 145796 35.59 422
fl3795 30087 31003 0.63 864 29483 30009 4.95 622 29463 29854 55.36 453
rl5915 605735 613195 2.07 792 591490 595127 11.35 585 594073 597075 104.51 406

H

Tnm1021 18655658 18745272 0.01 17 18635276 18716006 0.02 21 18645515 18676812 0.08 12
Tnm2011 37365235 37462906 0.04 14 37361409 37460712 0.05 15 37368017 37429604 0.21 13
Tnm3001 56079824 56174525 0.15 19 56125606 56192125 0.17 19 56096925 56122793 0.89 14
Tnm4021 75361046 75486418 0.30 14 75387526 75473227 0.32 15 75320675 75437195 1.25 11
Tnm5011 94106391 94259213 0.54 13 94168303 94262754 0.43 9 94192902 94229562 1.34 8

we have run best-improvement 10 times. Then, we have run first-improvement for as many

iterations as possible within a time limit given by the time taken by best-improvement.

In the table, for each row (i.e., instance) and each type of convergence we report: the value

f ∗ of the best local optimum found; the average value f̄ of all local optima found, rounded

to integer for instances in blocks T and H; the average time t̄ of a convergence; the average

convergence length (column labeled “steps”), rounded to integer.

For each row, we have highlighted in boldface the best value found in columns f ∗ and f̄ .

Column f̄ , in particular, gives a good indication on which type of convergence performs better

on average. By looking at the table, it appears clear that first-improvement with AL should

be preferred over first-improvement with CE. Furthermore, it should also be preferred over

best-improvement, with the exception of uniform random instances. The table also suggests

that a first-improvement convergence with CE takes approximately twice the number of

steps than with AL, which, in turn, is approximately twice the length of a best-improvement

convergence with ÂL.

A similar set of experiments has then been performed when the starting tours are not

random, but are obtained by some tour-constructing heuristic. More specifically, each con-

vergence is started from a tour obtained by running the well known Nearest-Neighbor (NN)

heuristic. NN builds a tour by growing a partial path, initially consisting of a random node,

and incrementally extending it from an endpoint to the closest unvisited node. When all

nodes have been visited, the tour is obtained by connecting the endpoints of the path.

Lancia and Vidoni: Average case sub-quadratic 2-OPT
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The results of the experiments are reported in Table 6. Since the convergence starting
at a nearest-neighbor tour takes much fewer steps than at a random tour, we considered
larger size instances than before, namely, n goes from 1,000 to 5,000 in increments of roughly
1,000. The experiments were conducted exactly as before. From the table it appears that,
for this type of convergences, best-improvement is a better strategy than first-improvement.
Moreover, if we limit the comparison to the two types of first-improvement, we see that using
AL is better than using CE, since in 18 cases out of 20 f̄ is better with AL than with CE,
and in 17 cases out of 20 also f ∗ is better.

A peculiarity that appears from the table is that for instances in the family H, the conver-
gence length from a NN tour to a local optimum is very short, much shorter than for instances
of similar size in the other families. This phenomenon was not present when starting at a
random tour.

6. Conclusions
In this work we have described two exact strategies, Ag and AL, for finding the best 2-
OPT move in a given tour. We have also described a family of sub-quadratic average-case
heuristics for the same problem, which can be tuned in such a way that they succeed with
very high probability. Computational experiments and theoretical analysis have shown that
our strategies largely outperform the classical two-nested-for algorithm for a good part of a
best-improvement local search convergence starting from a random tour. In particular, on a
starting random uniform instance, Ag determines the best move in average time O(n log n),
while on a Euclidean instance, Ag takes average linear time, which is the best possible
complexity for this problem. Empirical evidence suggests that the number of moves evaluated
by AL has the same order as it has for Ag, but a formal proof might require a different
approach that the one we used for Ag. This empirical evidence also implies that AL is faster
than Ag, since Ag pays O(log n) for each move which it evaluates, while AL pays only O(1).

We have then discussed how to adjust our procedures to obtain an effective best-
improvement local search algorithm, given that the performance worsens while we approach
the local optima. We have therefore proposed a hybrid procedure, made by AL for the first
part followed by the standard complete enumeration algorithm for the rest of the convergence,
suggesting a possible point at which we should make the switch. This hybrid procedure allows
one to roughly halve the overall running time. In further experiments, we have compared

Lancia and Vidoni: Average case sub-quadratic 2-OPT
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

complete enumeration and AL when used in first-improvement local search, and determined
that even if this case our algorithm is to be preferred over complete enumeration.

Some directions for future research would be: (i) integrating our algorithm, which is
extremely fast in the initial iterations of best-improvement local search, with some ad-hoc
improvements for the second part, in order to further improve its overall performance; (ii)
trying to obtain a formal proof that AL has the expected complexity that the empirical evi-
dence suggests; (iii) perform further experiments (with both first- and best- improvement),
including larger instances and varying the many parameters (such as the switch point for
the best-improvement hybrid algorithm) in order to determine their best possible tuning.

As a final comment, however, we underline how the objective of this research was to focus
on 2-OPT alone, and, in particular, to obtain some theoretical results about the work needed
to determine the best move. The goal was not to beat other existing strategies to solve the
TSP, since 2-OPT alone can never be competitive with more sophisticated heuristics which
include also k-OPT moves for k > 2.

References
Aarts E, Lenstra JK, eds. (1997) Local Search in Combinatorial Optimization (New York, NY, USA: John

Wiley & Sons, Inc.), 1st edition.

Applegate D, Bixby R, Chvatál V, Cook W (2006) The Traveling Salesman Problem: A Computational Study
(Princeton University Press).

Applegate D, Cook W, Rohe A (2003) Chained lin-kernighan for large traveling salesman problems.
INFORMS Journal on Computing 15(1:82–92.

Basu S (2012) Tabu search implementation on traveling salesman problem and its variations: A literature
survey. American Journal of Operations Research 2:163–173.

Chandra B, Karloff H, Tovey C (1999) New results on the old k-OPT algorithm for the traveling salesman
problem. SIAM Journal on Computing 28(6):1998–2029.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, Third Edition (The MIT
Press), 3rd edition.

Croes G (1958) A method for solving traveling-salesman problems. Operations Research 6(6):791–812.

Englert M, Roglin H, Vocking B (2014) Worst case and probabilistic analysis of the 2-OPT algorithm for
the TSP. Algorithmica 68(1):190–264.

Flood MM (1956) The traveling-salesman problem. Operations Research 4(1):61–75.

Gutin G, Punnen A, eds. (2007) The Traveling Salesman Problem and Its Variations. Combinatorial Opti-
mization (Springer US).

Lancia and Vidoni: Average case sub-quadratic 2-OPT
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Hall P (1927) The distribution of means for samples of size n drawn from a population in which the variate

takes values between 0 and 1, all such values being equally probable. Biometrika 19:240–245.

Hougardy S, Zhong X (2001) Hard to solve instances of the euclidean traveling salesman problem. Mathe-

matical Programming Computation 13:51–74.

Ilhan I, Gokmen G (2022) A list-based simulated annealing algorithm with crossover operator for the traveling

salesman problem. Neural Computing and Applications 34:7627–7652.

Irwin J (1927) On the frequency distribution of the means of samples from a population having any law of

frequency with finite moments, with special reference to pearson’s type ii. Biometrika 19:225–239.

Kern W (1989) A probabilistic analysis of the switching algorithm for the euclidean TSP. Mathematical

Programming 44:213–219.

Lancia G, Vidoni P (2020) Finding the largest triangle in a graph in expected quadratic time. European

Journal of Operational Research 286(2):458–467.

Lancia G, Vidoni P (2024) Algorithmic strategies for finding the best TSP 2-OPT move in average sub-

quadratic time. arXiv submit/5503157:1–28.

Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB, eds. (1991) The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization (Wiley).

Lin S (1965) Computer solutions of the traveling salesman problem. The Bell System Technical Journal

44(10):2245–2269.

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper. Res.

21(2):498–516.

Lodi A, Punnen AP (2007) TSP Software, 737–749 (in The Traveling Salesman Problem and Its Variations,

Gutin G and Punnen AP eds.: Springer US).

Nagata Y, Kobayashi S (2012) A powerful genetic algorithm using edge assembly crossover for the traveling

salesman problem. INFORMS Journal on Computing 25(2):346–363.

Papadimitriou C, Steiglitz K (1982) Combinatorial Optimization: Algorithms and Complexity (Prentice Hall).

Potvin JY (1996) Genetic algorithms for the traveling salesman problem. Annals of Operations Research

63:339–370.

Reinelt G (1991) TSPLIB - a traveling salesman problem library. ORSA Journal on Computing 3:376–384.

Slootbeek JJA (2017) Average-case analysis of the 2-OPT heuristic for the TSP. Master Thesis – Applied

Mathematics, University of Twente 1–45.

