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Abstract: With the progressive reduction in virgin material availability and the growing global
concern for sustainability, civil engineering researchers worldwide are shifting their attention toward
exploring alternative and mechanically sound technological solutions. The feasibility of preparing
both cold and hot asphalt mixtures (AMs) for road pavement binder layers with construction and
demolition wastes (C&DWs) and reclaimed asphalt pavement (RAP) partially replacing virgin
materials like limestone aggregates and filler has already been proven. The technical suitability
and compliance with technical specifications for road paving materials involved the evaluation of
mechanical and volumetric aspects by means of indirect tensile strength tests and saturated surface
dry voids, respectively. Thus, the main goal of the present study is to train, validate, and test selected
machine learning algorithms based on data obtained from the previous experimental campaign with
the aim of predicting the volumetric properties and the mechanical performance of the investigated
mixtures. A comparison between the predictions made by ridge and lasso regression techniques and
both shallow (SNN) and deep neural network (DNN) models showed that the latter achieved better
predictive capabilities, highlighted by fully satisfactory performance metrics. DNN performance can
be summarized by R2 values equal to 0.8990 in terms of saturated surface dry void predictions, as
well as 0.9954 in terms of indirect tensile strength predictions. Predicted observations can be thus
implemented within the traditional mix design software. This would reduce the need to carry out
additional expensive and time-consuming experimental campaigns.

Keywords: asphalt mixtures; binder layer; reclaimed asphalt pavement; construction and demolition
waste; machine learning; ridge regression; lasso regression; artificial neural network

1. Introduction

In recent years, machine learning (ML) has emerged, radically changing several en-
gineering areas and showing significant potential in process optimization and predictive
analysis [1–5]. This has led to the growing interest of both the academic and industrial com-
munities in the application of machine learning approaches for modeling both the physical
and mechanical characteristics of construction materials [6–8]. Within the framework of
asphalt mixtures for road pavement construction, several research studies have shown that
these soft-computing techniques can effectively improve prediction accuracy and simulta-
neously decrease the costs associated with experimentations [9–16]. ML approaches can
be integrated within conventional mix design, improving standard procedures by making
them more efficient and less dependent on natural resources [17,18]. The best parameters
for mechanical characterization of mixture behavior are experimentally determined, but
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changing even one variable requires costly new tests to be carried out. Therefore, a reliable
predictive model could accelerate mixtures’ volumetric and mechanical characterizations,
reducing the need for additional experiments and minimizing resource consumption and
waste generation [19]. This is a particularly relevant aspect in an era when reducing envi-
ronmental impact has become a global priority [20–24]. Within the context just outlined,
the implementation of secondary raw materials represents an additional challenge, given
their variability in terms of mechanical behavior [25–32]. However, machine learning
supported by the latest advanced techniques can provide an innovative approach to ad-
dress such variability, reducing the need for expensive and time-consuming experimental
campaigns [33–36]. By way of example, Pattanaik et al. [37] developed a linear regres-
sion model known as ridge regressor (RR) to predict the abrasion loss of open-graded
friction course mixtures prepared with EAF steel slag aggregates. Another predictive
soft-computing technique based on linear regression is the lasso regressor (LR), an enhance-
ment of the ridge regressor that implements a slight adjustment to the cost function to be
minimized [38]. In the past few years, ML modeling based on artificial neural networks
(ANNs) has also gained growing recognition among the scientific community. Many ap-
plications in the road engineering field can be found within the relevant literature due to
their layered architecture and their ability to identify even highly nonlinear relationships
between variables [39–43]. However, their complex structure requires sensitivity analyses
to be performed after modeling in order to better understand the influence each variable
had in achieving the final predictions. The primary objectives of the current research can be
placed within the outlined framework, as they include the design of performance predictive
models implementing several cutting-edge soft-computing techniques.

To this end, different linear regression techniques (LR and RR) and both shallow (SNN)
and deep neural network (DNN) models were fine-tuned to process data obtained from
the experimental campaign described in Rondinella et al. [44], thus allowing an ML-based
procedure to be developed for predictive purposes. Both the volumetric and mechanical
performance of the investigated mixtures were predicted by ML models trained on input
information. These included gyratory revolutions, mixing technology, and the percentage
contents of C&DWs, RAP, water, cement, emulsion, and total bitumen.

The structure of this paper can be outlined as follows: the Section 2 provides a brief
summary of the experimental campaign and the mathematical framework for the machine
learning algorithms analyzed; the Section 3 describes the results obtained from the predic-
tive modeling procedures, providing accuracy and sensitivity information; the Section 4
outlines the most important conclusions, highlighting the applicability constraints of the
developed predictive models and pointing out the possibilities for future developments.

2. Materials and Methods
2.1. Raw Materials

The asphalt mixtures investigated here are blends of coarse aggregates (either lime-
stone virgin aggregates, aggregates from construction and demolition waste, or RAP), fillers
(either virgin limestone filler or recycled filler from construction and demolition waste),
and binders (either neat bitumen or modified bitumen for hot AM, bitumen emulsion and
cement for cold AM). The virgin limestone aggregates and limestone filler were supplied
by a crushing and sieving plant located in the Campania region (Italy). The main technical
properties of the aggregates are shown in Table 1, along with their test standards. The
RAP was derived from the milling of the wearing course and binder layers of an existing
distressed asphalt pavement located in the Campania region (Italy); the size designation
according to UNI EN 13108-8 [45] and the main classification parameters are shown in
Table 2.
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Table 1. Main properties of the inert fractions used to blend asphalt mixtures.

Property Standard Unit Limestone
10–20 mm

Limestone
6–12 mm

Limestone
Sand

Limestone
Filler

CD&W1
2/16 mm

CD&W2
Filler

Bulk specific gravity EN 1097-6 [46] g/cm3 2.685 2.686 2.689 2.737 2.925 2.934
Los Angeles value EN 1097-2 [47] % 20.6 20.1 36

Flakiness index EN 933-3 [48] - 8 11 13
Rigden voids EN 1097-4 [49] % 41.44 53.82

Sand equivalent EN 933-8 [50] % 95.3 92.0 81.1

Table 2. Main properties of the reclaimed asphalt.

Property Standard Unit RAP

Designation EN 13108-8 [45] - 16 RA 0/10
Binder content EN 12697-1 [51] % 4

Bulk specific gravity of the aggregates EN 1097-6 [46] g/cm3 2.52
Flakiness index EN 933-3 [48] - 10

The recycled coarse aggregates and filler from C&DW were supplied from a recycling
plant; it separates the inert fractions from metals and other foreign matter, then crushes
and sieves the remaining inert fractions to obtain new secondary construction materials.
In detail, the coarse aggregates from C&DW (C&DW1) were designated as 2/16 mm size,
while the filler from C&DW (C&DW2) was entirely passing through a sieve size equal
to 1 mm. All the relevant technical properties of the secondary aggregates are shown in
Table 1.

As concerns the binders, the main properties of the neat bitumen with a penetration
class 50/70 and the 5% SBS-modified bitumen used to blend hot AM are shown in Table 3a;
Table 3b and 3c summarize, respectively, the main properties of the bitumen emulsion and
Portland cement used to blend cold AM.

Table 3. Main properties of the binders: (a) neat and modified bitumen, (b) bitumen emulsion, and
(c) pozzolanic cement.

(a)

Property Standard Unit Neat
Bitumen

Modified
Bitumen

Penetration at 25 ◦C EN 1426 [52] dmm 68 52
Softening point EN 1427 [53] ◦C 46 87

Dynamic viscosity at 135 ◦C EN 13702 [54] Pa s 0.25 0.77

(b)

Property Standard Unit Bitumen
Emulsion

Water content EN 1428 [55] % 40
pH value EN 12850 [56] - 4.2

Settling tendency at 7 days EN 12847 [57] % 5.8
Softening point after water evaporation EN 1427 [53] ◦C 49.5

(c)

Property Standard Unit Pozzolanic
Cement

Initial setting time EN 196-3 [58] min 112
Compressive strength at 2 days EN 196-1 [59] MPa 27.8

Compressive strength at 28 days EN 196-1 [59] MPa 61.2
Volume constancy EN 196-3 [58] min 0.52
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2.2. Asphalt Mixtures

An experimental campaign was carried out to identify the optimum binder content
of 7 alternative AMs for the binder layer of a road pavement. Each mixture underwent
gyratory compaction at the desired number of gyrations [60] using a variable binder content
until the optimum mix composition was identified. An exhaustive description of both the
carried-out experimental campaign and the prepared hot and cold AMs can be found in
Rondinella et al. [44]. However, the abbreviations used to identify the individual mixtures
are provided in Table 4 since they will represent the categorical variables of the subsequent
predictive models.

Table 4. Summary of the abbreviations used to identify the produced mixtures.

Mixture Description

HMAmod hot AM made up of 100% limestone aggregates and variable SBS polymer-modified bitumen content in the
range [4.5%–5.5%]

HMAC&DW1 hot AM made up of 40% construction and demolition waste aggregates (C&DW1), 60% limestone
aggregates, and a neat bitumen 50/70 content in the range [7.0%–7.5%]

HMAmodC&DW1 hot AM made up of 40% construction and demolition waste aggregates (C&DW1), 60% limestone
aggregates, and an SBS polymer-modified bitumen content in the range [6.0%–7.0%]

CMA conventional cold AM made up of 76% RAP and 24% limestone aggregates with 4% water, 0.5% cement,
and variable bitumen emulsion content, in the range [3%–5%]

CMAC&DW1 cold AM with 30% RAP, 30% construction and demolition waste aggregates (C&DW1), and 40% limestone
aggregates with 7% water, 5% cement, and variable bitumen emulsion content, in the range [3%–5%]

CMAC&DW2_1
cold AM with 76% RAP, 20% limestone aggregates, and 4% filler from construction and demolition waste
aggregates (C&DW2) with 6% water, 2.5% cement, and variable bitumen emulsion content, in the range

[3%–5%]

CMAC&DW2_2
cold AM with 30% RAP, 64% limestone aggregates, and 6% filler from construction and demolition waste

aggregates (C&DW2) with 15% water, cement content in the range [6.5%–7.5%], and variable bitumen
emulsion content, in the range [3%–5%]

All the mix compositions underwent the experimental characterization of two main
technical control parameters, complying with the main Italian technical specifications for
road asphalt materials: the air void content (EN 12697-8 [61]), determined according to the
saturated surface dry (SSD) bulk density (EN 12697-6 [62]) and the mathematical maximum
density (EN 12697-5 [63]), and the indirect tensile strength (ITS) at 10 ◦C (EN 12697-23 [64]).

2.3. Database Statistics

The analyzed dataset consisted of 70 observations for each evaluated variable, namely
percentage content of water (WC), cement (CC), emulsion bitumen (EBC), total bitumen
(TBC, expressed as the cumulative amount of fresh, emulsified, and rejuvenated bitumen
contained in RAP), construction and demolition wastes (C&DW1, C&DW2), and reclaimed
asphalt pavement (RAP), along with gyratory revolutions (GRs), the SSD void content
(SSDV), and the indirect tensile strength (ITS) at 10 ◦C. Finally, as previously explained,
a categorical variable was used to identify the mixing technology adopted to prepare the
corresponding mixtures.

To provide a brief summary of the processed variables, descriptive statistics referring
to the analyzed dataset are shown in Table 5. Details about the 25th, 50th, and 75th
percentiles, as well as minimum, maximum, average, and standard deviation values, are
provided. The following machine learning operations will have as their main objective
the development of a model that can reliably predict both SSDV and ITS at 10 ◦C values
on the basis of the remaining investigated variables. This approach could allow for a
comprehensive characterization of the investigated mixtures from both volumetric and
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mechanical perspectives, simplifying the integration of predicted values into traditional
practices for road pavement mix design.

Table 5. Descriptive statistics referring to the analyzed dataset.

Variable Description Average Std Min 25% 50% 75% Max

GR [–] Gyratory Compaction Revolutions 165.14 8.80 160.00 160.00 160.00 175.00 180.00
C&DW1 [%] Aggregates from Construction and Demolition Waste 12.43 17.56 0.00 0.00 0.00 30.00 40.00
C&DW2 [%] Filler from Construction and Demolition Waste 2.11 2.68 0.00 0.00 0.00 5.50 6.00

RAP [%] Reclaimed Asphalt Pavement Content 32.20 29.85 0.00 0.00 30.00 76.00 76.00
WC [%] Water Content 6.13 5.85 0.00 0.00 6.00 13.00 15.00
CC [%] Cement Content 2.86 2.95 0.00 0.00 2.50 6.12 7.50

EBC [%] Emulsion Bitumen Content 2.63 2.02 0.00 0.00 3.00 4.00 5.00
TBC [%] Total Bitumen Content 6.57 0.78 4.50 6.21 6.81 7.31 7.50

SSDV [%] Saturated Surface Dry Voids 6.48 3.42 2.06 3.94 5.52 9.39 13.35
ITS at 10 ◦C [kPa] Indirect Tensile Strength at 10 ◦C 1237.25 1036.81 202.08 407.80 738.77 2260.18 3529.01

Categorical [–] Hot and Cold Mixing Technologies – – – – – – –

2.4. Ridge and Lasso Regression

Denoting by y the target variable involved in model prediction and by {x1, . . . , xn} the
set of independent variables, a linear regression is aimed at finding {β0, . . . , βn} parameters
so that β0 + ∑n

i=1 βixi results as a reliable approximation of y. Since a dataset is composed
of m observations for each xi, denoted by xi,j, βi parameters are selected in order to identify
the minimum of the residual sum of squares (RSS), expressed as (Equation (1)):

RSS = ∑m
j=1

(
β0 + ∑n

i=1 βixi,j − yi

)2
(1)

Hastie et al. [65] formally introduced the so-called forward stepwise selection
method [66]. It consists of assuming β0 is equal to the average of y, while βi are all
set equal to 0. Subsequently, i and the corresponding βi are iteratively selected in order to
produce a model capable of reducing RSS to the lowest value. Once chosen, the value of βi
remains unchanged for the remainder of the process. Consequently, each following model
is differentiated from the previous one only by a single β parameter. Finally, n + 1 different
models are produced, each resulting in an iteratively lower RSS.

Ridge regression (RR) represents a particular linear regression model since, even before
tuning β parameters, a pre-processing normalization procedure is applied to predictor
variables [67]. This procedure consists of evaluating the mean and the standard deviation
of each predictor and then, for each of them, subtracting the estimated mean from its
respective values and dividing by the estimated standard deviation. This is performed to
ensure that the same scale is representative of all values and that the standard deviation
is always equal to 1. Furthermore, a penalty to be applied to βi is introduced by RR
models, making those with lower values of regression coefficients preferable. This penalty
is aimed at lowering the values of the least important predictors while keeping the higher βi
associated with the most important ones. The cost function (CFRR) to be minimized during
an RR is slightly modified by virtue of the introduced penalty, as follows (Equation (2)):

CFRR = RSS + α∑m
j=1 β j

2 (2)

with α representing the positive penalty parameter that determines the trade-off between
both minimizing error and the size of regression coefficients. Different values of α result in
the design of different models.

The only difference between RR and lasso regression (LR) [38] is represented by the
slightly revised cost function (CFLR), expressed as follows (Equation (3)):

CFLR = RSS + α∑m
j=1

∣∣β j
∣∣ (3)
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The advantage of this adjustment is the LR capability to nullify some regression
coefficients when the value of α is high, thus yielding smaller models. Therefore, it can be
concluded that α represents a hyperparameter of both RR and LR models, so it will require
to be optimized by means of suitable optimization procedures.

2.5. Artificial Neural Network Modeling

Artificial Neural Networks (ANNs) represent mathematical models whose architec-
ture is similar to a biological nervous system. In this sense, it is composed of several
interconnected artificial neurons, typically stratified and arranged in a sequence of distinct
layers, known as the input layer, one or more hidden layers, and the output layer [68]. Each
neuron is linked to every neuron of the other layers, but it is independent of the neurons
of the same layer. These inter-neuronal connections are associated with certain weights,
either positive or negative, that can be adjusted during the training procedure according
to a specified learning algorithm and a predetermined loss function [69]. Each neuron of
the input layer is associated with a single input variable, known as a predictor. Neurons
belonging to the hidden layer process the information coming from the input one, and their
number is a typical hyperparameter that needs to be optimized. The number of hidden
layers determines whether the architecture should be called shallow (SNN, composed of a
single hidden layer) or deep (DNN, composed of more than one hidden layer) and can be
optimized as a different hyperparameter. Finally, the output layer is associated with the
predicted target variables. Both SNNs and DNNs are capable of dealing with non-linear
relationships since hidden layers can be equipped with a non-linear activation function.
Conversely, output layers usually employ linear activation functions.

Typically, during the iterations of the training procedure, the neural model’s output is
predicted according to Equation (4):

f (X) = W2[ fA(W1X)] (4)

where X, fA, W1, and W2 represent the predictors vector, the hidden-layer activation
function, the weights matrix of input-hidden connections, and the weights matrix of
hidden-output connections, respectively.

Weights matrices progressively evolve according to the implemented learning algo-
rithm, and the most scientifically sound are described within the relevant literature [70–72].
During the past few years, ML models that are neural network-based have demonstrated
their capabilities of reliably approximating strongly nonlinear relationships, leading to
remarkable performance in several engineering-related fields, especially in road pavement
design and construction [73,74].

2.6. Hyperparameter Optimization

To determine the portion of the dataset to be used to train the models and that to be
used to test them, observations were randomly shuffled and then divided into training and
testing subsets containing 55 and 15 observations out of 70, respectively. Therefore, roughly
80% of the available observations were used to properly train the models, whereas roughly
20% of them were used to evaluate their performance. The pre-processing normalization
described in Section 2.3 was implemented in each model, both to enhance the predictive
accuracy and to reduce the time needed to reach convergence. A k-fold cross-validation
method was also implemented in each model to fairly evaluate the training and validation
performance of each developed model, to fine-tune their hyperparameters, and also to avoid
the occurrence of inconvenient overfitting phenomena. k-fold cross-validation consists of
partitioning the training set into k distinct partitions. Among these, k − 1 serves as training
set, while the remainder makes up the so-called validation set. These steps are iteratively
performed k-times, thus generating k-validation scores. Averaging the k-scores obtained
during this sort of pre-test practice will provide a more accurate estimation of the models’
actual predictive capabilities. k-value was chosen equal to 5, in accordance with the most
scientific sound literature references [75]. Finally, the best-performing hyperparameters
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were identified by means of an exhaustive grid search performed for each soft-computing
technique. Both with respect to RR and LR, the only parameter that could be optimized
was the penalty α, and it was searched in a range from 10–4 to 105 on a log scale. Regarding
the ANN model, 5 different hyperparameters were optimized. They were represented
by the number of hidden layers, the number of neurons composing each hidden layer,
the activation function implemented within hidden layers, the solver algorithm, and the
maximum number of training iterations searched within the ranges described in Table 6, in
accordance with literature references [38,69].

Table 6. Summary of the grid search performed to find the best ML hyperparameters.

ML Model Hyperparameter Search
Range Selected Value

RR Penalty parameter [10−4–105] * 10−3 for SSDV
10−2 for ITS at 10 ◦C

LR Penalty parameter [10−4–105] * 10−4 for SSDV
10−4 for ITS at 10 ◦C

ANN

Hidden Layers [1, 2, 3] 3
Neurons for each hidden layer [1–30] 24

Hidden layer
activation function [Identity, Logistic, TanH, ReLU] ReLU

Solver [SGD [70], Adam [76]] Adam
Maximum number of iterations [1000, 5000] 5000

* Hyperparameters searched on a log scale.

An overfitting detection procedure was introduced to further minimize the possibility
of overfitting occurring during the training of the neural model. It consisted of observing
each subsequent validation score and stopping the training process as a negligible improve-
ment (set as 10−4) after a predetermined number of consecutive iterations was shown. This
stopping criterion was implemented by setting the number of consecutive iterations equal
to 20, according to well-established practices [77].

The whole methodology described in this section was fully developed by means of
Python 3.9.12 software.

3. Results and Discussion
Machine Learning Modeling Results

Histogram plots displayed in Figure 1 are crucially important to establish the most
effective soft-computing technique for achieving predictive modeling goals. One-to-one
comparisons between test observations and their corresponding predictions can be ob-
served with respect to both SSDV and ITS values, shown at the top and bottom of the
figure, respectively. The IDs of the individual observations that make up the test vector are
represented on the x-axis, whereas the corresponding predictions are represented on the
y-axis by histograms filled with different colors. Specifically, dark blue, light blue, orange,
and dark yellow histograms represent the target values and the predictions produced by
DNN, RR, and LR models, respectively. It is worth noting that, based on both SSDV and
ITS comparisons, there is an observable consistency between ML models’ predictions and
target values. Although the DNN model exhibited a comparatively higher accuracy both in
terms of SSDV and ITS predictions, the designed ML models allowed both volumetric and
mechanical parameters to be accurately predicted. In this way, a comprehensive character-
ization of mixture performance could be reliably obtained, thus achieving an important
outcome from the engineering perspective. Further considerations about the accuracy
of the developed predictive models can be made by considering the results obtained in
terms of the six performance metrics implemented (Table 7). Specifically, four error metrics
and two correlation metrics were analyzed, namely mean absolute error (MAE), mean
absolute percentage error (MAPE), mean squared error (MSE), root mean squared error
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(RMSE), Pearson correlation coefficient (R), and the coefficient of determination (R2). Their
mathematical formulations, along with their meaning, were fully described in Rondinella
et al. [78].
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Table 7. Description of the evaluated goodness-of-fitness metrics.

ML Model
Performance Metric for SSDV

MAE [%] MAPE [%] MSE [%2] RMSE [%] R R2

RR 0.97 24.94 1.53 1.24 0.9540 0.8464
LR 0.98 25.11 1.53 1.24 0.9527 0.8470

DNN 0.75 19.17 1.01 1.00 0.9645 0.8991

Performance Metric for ITS at 10 ◦C

MAE [kPa] MAPE [%] MSE [kPa2] RMSE [kPa] R R2

RR 237.48 15.13 118,900.53 344.82 0.9520 0.9063
LR 237.85 15.19 119,220.83 345.28 0.9519 0.9060

DNN 52.22 4.98 5779.01 76.02 0.9988 0.9954

Remarkable performance was achieved by all developed ML models, both in terms of
SSDV and ITS at 10 ◦C. With respect to the former, MAE ranged from a minimum value of
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0.75% (achieved by the best-performing DNN) to a maximum value of 0.98% (achieved by
LR). Similarly, the best results in terms of the coefficient of determination R2 were achieved
by DNN, with a value roughly equal to 0.90, significantly higher than the RR-R2, which
was roughly equal to 0.85.

The differences in the developed models’ accuracies became even more pronounced
in terms of the latter. With respect to ITS at 10 ◦C, DNN outperformed both LR and RR,
returning an order of magnitude lower MAE (roughly equal to 52 kPa). DNN performance
was significantly better also in terms of R2, with a value of 0.99, which is notably higher
than the 0.91 achieved by both lasso and ridge regression. It is worth noting that the DNN
model allowed simultaneous predictions of both SSDV and ITS to be made. This option
was not provided by both linear regressors, thus requiring training, validating, and testing
a single model for each predictive variable involved.

Regression plots were also diagrammed in order to provide additional evidence of
the developed models’ capabilities (Figure 2). The one on the left refers to SSDV values,
while the one on the right refers to ITS ones. Test vector observations are represented along
the x-axis, while along the y-axis, DNN, RR, and LR predictions are shown. Finally, a dark
blue solid line serves as the benchmark of perfect accuracy, representing an ideal scenario
where target observations and predictions perfectly match. Predictions were represented
by diamond markers, and their colors were chosen in alignment with the histogram plot of
Figure 1. Therefore, light blue crosses identify values predicted by the DNN model, while
orange and dark yellow crosses identify RR and LR predictions, respectively. The proximity
of the cross markers to the dark blue solid line serves as an indicator of the higher accuracy
of the corresponding predictive algorithm. In accordance with the results described in
Table 7, the findings showed that the DNN model was characterized by the best consistency
in terms of predictive performance. Light blue crosses were mostly close to the perfect
accuracy line, thus supporting the remarkable results achieved in terms of low error metrics
and high correlation metrics. Considering the results obtained by the previous predictive
modeling carried out by Rondinella et al. [44], it can be found that the present DNN model
performed better than the formerly developed CatBoost model. DNN predictions were
characterized by slightly higher Pearson and determination coefficients, both in terms of
SSDV and ITS at 10 ◦C, highlighting the neural model’s improved reliability. With respect to
MSE and RMSE metrics, the neural model developed in this paper showed improvements
of about 18% and 10% in terms of SSDV predictions and about 8% and 4% in terms of ITS
predictions, compared with the same metrics obtained from the previous CatBoost model.
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Since DNN outperformed all its competitors, a SHapley Additive explanation (SHAP)
analysis [79] was carried out to make the neural model predictions more interpretable. Such
a technique was introduced in 2016, and its goal was the estimation of the contribution of
each player in a collaborative game outcome [80]. In this sense, the basic concept behind
SHAP analysis is the allocation of a score to each input feature in order to quantify the
contribution of that specific feature to the single model prediction. These scores are known
as Shapley values (ϕi), and they can be evaluated according to Equation (5):

ϕi( f , x′) = ∑
w′⊆{x′1,...,x′n}\{x′i}

|w′|!(N − |w′| − 1)!
N!

[
f
(

w′ ⋃ x′i
)
− f

(
w′)] (5)

with w′, x′, N, and f (w′) representing the model’s input features, the feature that needs to be
explained, the feature number, and the model prediction values for features w′, respectively.
In this study, two different SHAP analyses were carried out to extract explanations about
the developed DNN model, and two summary plots were diagrammed to summarize
the obtained information (Figure 3). After assigning the output, features were ranked
in a descending importance order from top to bottom, determining the so-called feature
importance. It can be observed that in terms of SSDV predictions, RAP, TBC, and GR were
the three most impactful input variables. On the other hand, in terms of ITS predictions,
C&DW2, EBC, and GR showed the greatest importance. Also, the feature effect was
determined in addition to the feature importance. Proceeding from left to right, a gradual
shift in colors from blue to red suggests a relationship of direct proportionality between the
target variable and the selected feature. Conversely, an inverse transition from red to blue
stands for a relationship of inverse proportionality between the couple of variables under
consideration. The former could be observed for pairs (SSDV–RAP) and (ITS–GR), while
the latter could be observed for (SSDV–TBC), (SSDV–GR), (ITS–C&DW2), and (ITS–EBC).

Coatings 2024, 14, 922 11 of 15 
 

 

 

Figure 3. Results of the performed SHAP analysis in terms of SSDV (left) and ITS (right) predictions. 

4. Conclusions 

In evaluating the feasibility of preparing sustainable AMs using recycled or waste 

materials, it is crucial to ensure that these innovative mixtures align with the thresholds 

prescribed by standards requirements, especially in terms of volumetric and mechanical 

performance. To this end, the present study first evaluated the saturated surface dry voids 

(SSDVs) and the indirect tensile strength (ITS) at 10 °C of different technological solutions 

prepared for road pavement binder layers, both with hot and cold mixing methodologies. 

These mixtures partially replaced virgin aggregate and filler materials like limestone with 

different sizes of construction and demolition waste (C&DW) as well as reclaimed asphalt 

pavement (RAP) to match the ninth sustainable development goal by reducing natural 

resource consumption. Then, several cutting-edge soft-computing techniques, namely 

ridge and lasso regressions (RRs and LRs, respectively), as well as shallow (SNNs) and 

deep neural networks (DNNs), were investigated in order to design a reliable machine 

learning (ML) methodology for predicting both the SSDV and ITS of the investigated sus-

tainable AMs. The accuracy and reliability of the developed ML models were fully char-

acterized through the evaluation of six different performance metrics. On the basis of 

modeling results, the below considerations were concluded: 

• Considerable improvements in ML algorithm predictive capabilities were achieved 

by means of a comprehensive grid search that allowed optimal hyperparameters to 

be effectively identified. 

• All the soft-computing techniques were trained, validated, and tested using the same 

data so that the achieved performance could be fairly compared. All the models al-

lowed predictions to be made in terms of SSDV and ITS on the basis of compositional 

variables, gyratory revolutions, and a categorical variable that distinguished the tech-

nology used to mix AMs. In terms of SSDV, the DNN outperformed linear regression 

models, showing MAE and R2 values equal to 0.75% and 0.8991, respectively. These 

results were comparatively higher with respect to the performance achieved by the 

simpler regressors, whose best results in terms of MAE and R2 were equal to 0.97% 

(achieved by RR) and 0.8470 (achieved by LR), respectively. 

• The DNN also showed outstanding performance with respect to indirect tensile 

strength predictions. The MAE value (52.22 kPa) was an order of magnitude lower 

with respect to the results achieved by linear regression models (roughly 237 kPa). 

Also, the R2 value (0.9954) achieved by the DNN was significantly better than the 

determination coefficients achieved by both LR and RR, whose best value reached a 

maximum of 0.9063. 

• The outlined DNN model also performed slightly better than the former CatBoost 

model, previously developed by Rondinella et al. [44] based on the same experi-

mental campaign. Comparing the results obtained by the best current predictive 

Figure 3. Results of the performed SHAP analysis in terms of SSDV (left) and ITS (right) predictions.

4. Conclusions

In evaluating the feasibility of preparing sustainable AMs using recycled or waste
materials, it is crucial to ensure that these innovative mixtures align with the thresholds
prescribed by standards requirements, especially in terms of volumetric and mechanical
performance. To this end, the present study first evaluated the saturated surface dry voids
(SSDVs) and the indirect tensile strength (ITS) at 10 ◦C of different technological solutions
prepared for road pavement binder layers, both with hot and cold mixing methodologies.
These mixtures partially replaced virgin aggregate and filler materials like limestone with
different sizes of construction and demolition waste (C&DW) as well as reclaimed asphalt
pavement (RAP) to match the ninth sustainable development goal by reducing natural
resource consumption. Then, several cutting-edge soft-computing techniques, namely
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ridge and lasso regressions (RRs and LRs, respectively), as well as shallow (SNNs) and
deep neural networks (DNNs), were investigated in order to design a reliable machine
learning (ML) methodology for predicting both the SSDV and ITS of the investigated
sustainable AMs. The accuracy and reliability of the developed ML models were fully
characterized through the evaluation of six different performance metrics. On the basis of
modeling results, the below considerations were concluded:

• Considerable improvements in ML algorithm predictive capabilities were achieved by
means of a comprehensive grid search that allowed optimal hyperparameters to be
effectively identified.

• All the soft-computing techniques were trained, validated, and tested using the same
data so that the achieved performance could be fairly compared. All the models al-
lowed predictions to be made in terms of SSDV and ITS on the basis of compositional
variables, gyratory revolutions, and a categorical variable that distinguished the tech-
nology used to mix AMs. In terms of SSDV, the DNN outperformed linear regression
models, showing MAE and R2 values equal to 0.75% and 0.8991, respectively. These
results were comparatively higher with respect to the performance achieved by the
simpler regressors, whose best results in terms of MAE and R2 were equal to 0.97%
(achieved by RR) and 0.8470 (achieved by LR), respectively.

• The DNN also showed outstanding performance with respect to indirect tensile
strength predictions. The MAE value (52.22 kPa) was an order of magnitude lower
with respect to the results achieved by linear regression models (roughly 237 kPa).
Also, the R2 value (0.9954) achieved by the DNN was significantly better than the
determination coefficients achieved by both LR and RR, whose best value reached a
maximum of 0.9063.

• The outlined DNN model also performed slightly better than the former CatBoost
model, previously developed by Rondinella et al. [44] based on the same experimental
campaign. Comparing the results obtained by the best current predictive model and
the best previous one, the MSE and RMSE metrics of the DNN model developed in
this manuscript showed improvements roughly equal to 18% and 10% in terms of
SSDV predictions and roughly equal to 8% and 4% in terms of ITS predictions with
respect to the same metrics achieved by the former CatBoost model.

• Focusing on the predictions made by the DNN model and splitting the sensitivity
analysis for each predicted variable, the results obtained from the SHAP analysis
showed that in terms of SSDV, the most impactful variables were the percentage
contents of RAP and total bitumen as well as the gyratory revolutions, the former
demonstrating a direct proportionality with the target variable, while the latter and the
third an inverse one. On the other hand, in terms of ITS, the most impactful variables
were the percentage contents of C&DW2 and emulsion bitumen, as well as the gyratory
revolutions; the first two variables also demonstrated an inverse proportionality with
the target variable, while the third demonstrated a direct one.

Machine learning modeling results proved to be encouraging. Some aspects were not
considered since they were out of the scope of the present research. However, these will
certainly be the target of future developments and will cover: (i) a deeper analysis of AMs
containing increased proportions of secondary raw materials like C&DW and RAP in order
to further align with the sustainable development goals and circular economy standards;
(ii) the mechanical characterization of AMs by investigating different parameters such as
fatigue or permanent deformation resistance; and (iii) the design of advanced ML method-
ologies implementing innovative and potentially more robust soft-computing techniques.

Author Contributions: Conceptualization, F.A. and N.B.; methodology, F.R., C.O., F.A. and N.B.; soft-
ware, F.R.; validation, F.R., C.O., F.A. and N.B.; formal analysis, F.R. and C.O.; investigation, C.O. and
F.A.; resources, F.A. and N.B.; data curation, F.R., C.O. and F.A.; writing—original draft preparation,
F.R., C.O., F.A. and N.B.; writing—review and editing, F.R., C.O., F.A. and N.B.; visualization, F.R.,



Coatings 2024, 14, 922 12 of 15

C.O., F.A. and N.B.; supervision, N.B.; project administration, F.A. and N.B.; funding acquisition, F.A.
and N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, G.; Tang, W.; Chen, S.; Wang, S.; Cui, H. Prediction of Self-Healing of Engineered Cementitious Composite Using Machine

Learning Approaches. Appl. Sci. 2022, 12, 3605. [CrossRef]
2. Bhadeshia, H.K.D.H. Neural Networks and Information in Materials Science. Stat. Anal. Data Min. 2009, 1, 296–305. [CrossRef]
3. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature

2018, 559, 547–555. [CrossRef]
4. Gao, C.; Min, X.; Fang, M.; Tao, T.; Zheng, X.; Liu, Y.; Wu, X.; Huang, Z. Innovative Materials Science via Machine Learning. Adv.

Funct. Mater. 2022, 32, 2108044. [CrossRef]
5. Cao, Y.; Taghvaie Nakhjiri, A.; Ghadiri, M. Different applications of machine learning approaches in materials science and

engineering: Comprehensive review. Eng. Appl. Artif. Intell. 2024, 135, 108783. [CrossRef]
6. Kadhim, Z.S.; Abdullah, H.S.; Ghathwan, K.I. Artificial Neural Network Hyperparameters Optimization: A Survey. Int. J. Online

Biomed. Eng. 2022, 18, 59–87. [CrossRef]
7. Daoutidis, P.; Lee, J.H.; Rangarajan, S.; Chiang, L.; Gopaluni, B.; Schweidtmann, A.M.; Harjunkoski, I.; Mercangöz, M.; Mesbah,

A.; Boukouvala, F.; et al. Machine learning in process systems engineering: Challenges and opportunities. Comput. Chem. Eng.
2024, 181, 108523. [CrossRef]

8. Dahesh, A.; Tavakkoli-Moghaddam, R.; Wassan, N.; Tajally, A.; Daneshi, Z.; Erfani-Jazi, A. A hybrid machine learning model
based on ensemble methods for devices fault prediction in the wood industry. Expert Syst. Appl. 2024, 249, 123820. [CrossRef]

9. Atakan, M.; Yıldız, K. Prediction of Marshall design parameters of asphalt mixtures via machine learning algorithms based on
literature data. Road Mater. Pavement Des. 2023, 25, 454–473. [CrossRef]

10. Xu, W.; Huang, X.; Yang, Z.; Zhou, M.; Huang, J. Developing Hybrid Machine Learning Models to Determine the Dynamic
Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study. Materials 2022, 15, 1791.
[CrossRef]

11. Gul, M.A.; Islam, M.K.; Awan, H.H.; Sohail, M.; Al Fuhaid, A.F.; Arifuzzaman, M.; Qureshi, H.J. Prediction of Marshall Stability
and Marshall Flow of Asphalt Pavements Using Supervised Machine Learning Algorithms. Symmetry 2022, 14, 2324. [CrossRef]

12. Saleh, A.; Gáspár, L. Optimizing asphalt foaming using neural network. Pollack Period. 2024, 19, 130–136. [CrossRef]
13. Coletti, K.; Romeo, R.C.; Davis, R.B. Bayesian backcalculation of pavement properties using parallel transitional Markov chain

Monte Carlo. Comput.-Aided Civ. Infrastruct. Eng. 2023, 39, 1911–1927. [CrossRef]
14. Talebi, H.; Bahrami, B.; Ahmadian, H.; Nejati, M.; Ayatollahi, M.R. An investigation of machine learning algorithms for estimating

fracture toughness of asphalt mixtures. Constr. Build. Mater. 2024, 435, 136783. [CrossRef]
15. Uwanuakwa, I.D.; Amir, I.Y.; Umba, L.N. Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial

hummingbird algorithm-optimised boosted trees. J. Road Eng. 2024, 4, 224–233. [CrossRef]
16. Jalota, S.; Suthar, M. Prediction of Marshall stability of asphalt concrete reinforced with polypropylene fibre using different soft

computing techniques. Soft Comput. 2024, 28, 1425–1444. [CrossRef]
17. Phung, B.N.; Le, T.H.; Nguyen, T.A.; Ly, H.B. Advancing basalt fiber asphalt concrete design: A novel approach using gradient

boosting and metaheuristic algorithms. Case Stud. Constr. Mater. 2023, 19, e02528. [CrossRef]
18. Bartkowiak, M.; Słowik, M. Development and Analysis of High-Modulus Asphalt Concrete Predictive Model. Materials 2023, 16,

4509. [CrossRef] [PubMed]
19. Miani, M.; Dunnhofer, M.; Rondinella, F.; Manthos, E.; Valentin, J.; Micheloni, C.; Baldo, N. Bituminous Mixtures Experimental

Data Modeling Using a Hyperparameters-Optimized Machine Learning Approach. Appl. Sci. 2021, 11, 11710. [CrossRef]
20. Gkyrtis, K.; Plati, C.; Loizos, A. Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable

Pavement. Sustainability 2023, 15, 3622. [CrossRef]
21. Ubolsook, P.; Podong, C.; Sedpho, S.; Jansanthea, P. Assessing the environmental impact of construction waste management in

northern Thailand: An approach to estimate greenhouse gas emissions and cumulative energy demand. J. Clean. Prod. 2024, 467,
142961. [CrossRef]

22. Chaudhary, A.; Akhtar, A. A novel approach for environmental impact assessment of road construction projects in India. Environ.
Impact Assess. Rev. 2024, 106, 107477. [CrossRef]

https://doi.org/10.3390/app12073605
https://doi.org/10.1002/sam.10018
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1002/adfm.202108044
https://doi.org/10.1016/j.engappai.2024.108783
https://doi.org/10.3991/ijoe.v18i15.34399
https://doi.org/10.1016/j.compchemeng.2023.108523
https://doi.org/10.1016/j.eswa.2024.123820
https://doi.org/10.1080/14680629.2023.2213774
https://doi.org/10.3390/ma15051791
https://doi.org/10.3390/sym14112324
https://doi.org/10.1556/606.2023.00896
https://doi.org/10.1111/mice.13123
https://doi.org/10.1016/j.conbuildmat.2024.136783
https://doi.org/10.1016/j.jreng.2024.05.001
https://doi.org/10.1007/s00500-023-08339-x
https://doi.org/10.1016/j.cscm.2023.e02528
https://doi.org/10.3390/ma16134509
https://www.ncbi.nlm.nih.gov/pubmed/37444823
https://doi.org/10.3390/app112411710
https://doi.org/10.3390/su15043622
https://doi.org/10.1016/j.jclepro.2024.142961
https://doi.org/10.1016/j.eiar.2024.107477


Coatings 2024, 14, 922 13 of 15

23. Assunção, J.; Chadha, K.; Vasey, L.; Brumaud, C.; Escamilla, E.Z.; Gramazio, F.; Kohler, M.; Habert, G. Contribution of production
processes in environmental impact of low carbon materials made by additive manufacturing. Autom. Constr. 2024, 165, 105545.
[CrossRef]

24. Bansal, D.; Ramana, G.V.; Datta, M. Sustainable utilization of incineration bottom ash in pavement construction: Environmental
impacts and life cycle assessment. Sci. Total Environ. 2024, 931, 172890. [CrossRef]

25. Pasetto, M.; Baldo, N. Comparative performance analysis of bituminous mixtures with EAF steel slags: A laboratory evaluation.
In Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, REWAS 2008, Cancun,
Mexico, 12–15 October 2008; pp. 565–570.

26. Pasetto, M.; Baldo, N. Computational analysis of the creep behaviour of bituminous mixtures. Constr. Build. Mater. 2015, 94,
784–790. [CrossRef]

27. Zhao, H.; Gao, W.; Cui, S.; Li, Z.; Zhang, P.; Wang, L.; Zhang, W.; Su, C.; Ma, S. Modeling the Dynamic Properties of the
Polyurethane Mixture with Dense Gradation Using the 2S2P1D Model. Coatings 2023, 13, 2060. [CrossRef]
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