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Abstract. We show the direct applicability of the Brouwer fixed point
theorem for the existence of equilibrium points and periodic solutions for
differential systems on general domains satisfying geometric conditions
at the boundary. We develop a general approach for arbitrary bound sets
and present applications to the case of convex and star-shaped domains.
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1. Introduction

The Brouwer fixed point theorem can be well considered as a fundamental
result in the area of topological fixed point theorems. As clearly explained
in the recent book of Dinca and Mawhin [16] and developed in the con-
tent of the book, as well as in the survey articles [41,48] and the references
therein, Brouwer theorem can be seen as a “core result” from which several
important theorems about the existence of fixed points and periodic points
can be proved. Further connections between the Brouwer fixed point theo-
rem and other results (including theorems of combinatorial nature) can be
found in [24,50] and [33,34,51]. From this perspective, an interesting line of
research, already pursued by several authors, is to establish different results
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of nonlinear analysis and its application to differential equations which can
be obtained, more or less directly, from this theorem.

In the present paper, we follow such a point of view, in the context of the
theory of positively invariant sets for differential systems in R

N . A classical
general result from dynamical systems asserts that if a positively invariant
set is homeomorphic to a closed ball of RN , then it contains an equilibrium
point (see Theorem 2.1). An analogous result can be proved for processes
(see [26, Chapter 4] for the definition and general properties of processes),
guaranteeing the existence of periodic points for periodic processes in pos-
itively invariant sets with the fixed point property. All these results, when
applied to ordinary differential systems, require the uniqueness (or at least
forward uniqueness) of the solutions for the associated initial value prob-
lems. When uniqueness is not assumed, the study becomes technically more
involved, because the associated Poincaré map is multivalued [3,17] and the
classical general Nagumo–Yorke–Bony–Brezis-type theorems, which are ex-
pressed by sub-tangential conditions at the boundary [8,9,46,60], guarantee
a weak form of positive invariance, namely, that for each point in a given
set M at least one solution remains in M for positive time. Hence, if one
considers a (multivalued) Poincaré map Φ, it occurs that Φ(u) ∩ M �= ∅, for
all u ∈ M , instead of Φ(u) ⊂ M , for all u ∈ M .

When M ⊂ R
N is a closed convex set and f : RN → R

N is a continuous
vector field, the sub-tangential condition for the weak flow invariance for the
differential system ẏ = f(y) is expressed by the relation

〈f(u), ν〉 ≤ 0, for all u ∈ ∂M and ν ∈ N(u), (1.1)

where N(u) denotes the set of all outer normals to M at the point u. Recall
that ν �= 0 is an outer normal to M at the point u ∈ ∂M if 〈x − u, ν〉 ≤ 0 for
all x ∈ M . If ∅ �= M �= R

N , for each u ∈ ∂M there is at least an outer normal.
Recently, Cid and Mawhin in [13] provided a new proof of the existence of
equilibrium points for f in a convex set M , under assumption (1.1), as a direct
application of the Brouwer theorem. Actually, the results in [13] apply also to
the existence of T -periodic solutions in M for non-autonomous vector fields.
Related results can be also found in [21] using degree theory. In [13, Section
5], the question was raised whether the Brouwer fixed point theorem can be
still applied if (1.1) is relaxed to a similar condition where the inequality
holds only for some (and not all) ν ∈ N(u), when M is a convex sets with
nonempty interior.

A first contribution of the present paper is to provide a positive an-
swer to the above question (see Theorem 2.4). This is illustrated in Sect. 2,
where we also recall some basic concepts as well as a few classical facts from
dynamical systems theory which are then used in the proofs. In our study,
we adopt an approach previously introduced in [39], in the framework of
the theory of bound sets, and further developed in [19] to obtain results of
strong flow invariance (namely, for each point in a given set, all the solutions
departing from the point remain in the set in future time). To show the ef-
fectiveness of this approach, in Sect. 3, following [19], we present our main
result (cf. Theorem 3.2), which ensures the existence of periodic solutions for
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non-autonomous systems in general bound sets, by assuming the existence
of an auxiliary vector field satisfying a suitable “condition of inwardness”
(3.7) at the boundary. Then, with the aid of such a condition, we further in-
vestigate applications to non-convex domains. In particular, we will provide
new results for star-shaped sets, using geometric hypotheses on Bony outer
normals.

Throughout the article, the following notation is used. We denote with
‖ · ‖ the Euclidean norm in R

N . The symbols B(x0, r) and B[x0, r], where
x0 ∈ R

N and r > 0, represent the open and closed balls centered at x0

with radius r, respectively, i.e., B(x0, r) = {x ∈ R
N : ‖x − x0‖ < r} and

B[x0, r] = {x ∈ R
N : ‖x − x0‖ ≤ r}. Moreover, S

N−1 := ∂B(0, 1) ⊂ R
N .

Given a subset D ⊂ R
N , we denote with int D its interior, with D its closure,

and with ∂D its boundary.

2. Equilibrium points in convex bodies: a dynamical systems
approach

In this section, we study, from a dynamical point of view, the problems of
existence of equilibrium points (zeros of vector fields) in compact convex sets
with nonempty interior. Our aim is to show how existence results can be
obtained as a direct application of the Brouwer fixed point theorem, in the
framework of the theory of positively invariant sets. The search of zeros of a
vector field f , or, equivalently, equilibria for the differential system,

ẏ = f(y), (2.1)

is a classical and well-investigated topic in the area of nonlinear analysis,
including important applications to different disciplines, like control theory
[6,7,22].

2.1. Preliminaries on dynamical systems

Let X be a metric space. A dynamical system on X is a continuous map
Π: X × R → X such that
(a0) Π(x, 0) = x, for every x ∈ X;
(a1) Π(Π(x, s), t) = Π(x, s + t), for every x ∈ X and s, t ∈ R.
Following [4], we will use the simplified notation

x · t = Π(x, t), Πt : x �→ x · t.

Moreover, when no confusion may occur, the dot “ · ” will be omitted. In this
manner, (a0) and (a1) can be written equivalently, as
(a0) x0 = x (respectively Π0 = IdX), for every x ∈ X,
(a1) (xs)t = x(s + t) (respectively Πt ◦ Πs = Πs+t), for every x ∈ X and

s, t ∈ R,
while the continuity of the dynamical system can be expressed in sequential
form as

xn →
X

x, tn →
R

t =⇒ xntn →
X

xt.
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An equilibrium point or rest point (or critical point, according to [4]) for the
dynamical system is a point z ∈ X such that zt = z for every t ∈ R. By a
periodic point, we mean a point w ∈ X such that there exists τ �= 0 such
that wτ = w. Without loss of generality, we can suppose that τ > 0. It is a
standard fact that if w is a periodic point and not an equilibrium, then there
exists a minimal period (fundamental period) T > 0 such that any period of
w is an integer multiple of T (cf. [4, Theorem 2.12]). Moreover, any point x,
belonging to the orbit γ(w) := {wt : t ∈ R} of w, is also a periodic point with
the same period and γ(w) is homeomorphic to S

1 = {(x, y) ∈ R
2 : x2 + y2 =

1} = ∂B(0, 1).
If the dynamical system is the flow associated with the autonomous

differential equation (2.1) where f : Ω → R
N is a continuous vector field

defined on a nonempty open set Ω ⊂ R
N and such that the (local) uniqueness

for the initial value problems holds, then z ∈ Ω is an equilibrium point if and
only if f(z) = 0. Technically, if the global existence of the solutions for (2.1)
is not guaranteed, we should speak of a local dynamical system associated
with (2.1) (see [37]); however, Vinograd’s Theorem [4,47] allows to enter in
the setting of dynamical systems even in the absence of global existence of
the solutions for (2.1). In any case, all the results we are going to present
in this article, even if restricted to the case of dynamical systems, apply to
local dynamical systems as well (see also [12,56] for a discussion about the
reparametrization problem). The crucial step to define a (local) dynamical
system associated with (2.1) comes from the assumption of the uniqueness
for the solutions of the Cauchy problems and, consequently, from the theorem
of continuous dependence of the solutions from initial data (cf. [27,47,54]).
From this, we can set

Πt(x) := ŷ(t, x),

where ŷ = ŷ(·, x) is the solution of (2.1) with y(0) = x ∈ Ω.
The following lemma is borrowed from [4, Lemma 2.15, p. 18].

Lemma 2.1. For a dynamical system on a metric space X, let (xn)n be a
sequence of Tn > 0 periodic points such that xn → z in X and Tn → 0+.
Then, z is an equilibrium point.

For the next results, we need to introduce two further definitions. Let
M ⊂ X be a subset of a metric space with a dynamical system Π. We say
that M is positively invariant (or flow-invariant) if for each x ∈ M, we have
xt ∈ M for all t ≥ 0. Similarly, we define a negatively invariant set, by
the same relation with t ≤ 0. Finally, M is an invariant set if it is both
positively and negatively invariant, namely xt ∈ M for all t ∈ R whenever
x ∈ M . According to [4, Chapter 2], we have the following result.

Lemma 2.2. Let X be a metric space with a dynamical system and let M ⊂ X.
If M is positively/negatively invariant, then X \ M is negatively/positively
invariant. Moreover, also M and intM are positively/negatively invariant. If
M is open or closed and ∂M is invariant, also M is invariant.
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A topological space Y has the fixed point property (FPP) if any con-
tinuous map ψ : Y → Y has (at least) a fixed point. The FPP is invariant
under homeomorphisms and is preserved under retractions on subspaces (see
[5] for more information). Hence, as a consequence of the Brouwer fixed point
theorem, we can state the following (cf. [41, Theorem 3]).

Lemma 2.3. Let X ⊂ R
N be homeomorphic to a (retract of a) closed ball of

R
N . Then, X has the FPP.

In particular, any (nonempty) closed bounded convex set in R
N has the

FPP (which is an equivalent formulation of the Brouwer fixed point theorem
for compact convex sets); if Γ ⊂ R

2 is a Jordan curve (the homeomorphic
image of S1) with Aint(Γ) and Aext(Γ) its interior and exterior open domains,
then D(Γ) := Aint(Γ) ∪ Γ = Aint(Γ) ∪ ∂Aint(Γ) is homeomorphic to B[0, 1]
(by the Jordan–Schönflies theorem [45]) and hence it has the FPP.

An application of Lemma 2.1 gives the following.

Theorem 2.1. Let M be a (nonempty) compact positively/negatively invariant
in a metric space with a dynamical system. If M has the FPP, then it contains
an equilibrium point.

Proof. Let M be positively invariant (for the negatively invariant sets a simi-
lar argument works). We take a decreasing sequence of positive real numbers
τn with τn ↘ 0 and, for each n, consider the continuous map Πn := Πτn . By
the positive invariance of M, we have that Πn : M → M and, by the FPP,
there exists at least one fixed point yn ∈ M for Πn, so that yn = ynτn. By the
compactness of M, we can find a subsequence xn := ykn

with xn → x∗ ∈ M .
Setting Tn := τkn

, we have that (xn) is a sequence of periodic points in M
with periods Tn → 0+ and Lemma 2.1 ensures that x∗ is an equilibrium
point. �

As an application of Theorem 2.1, we can obtain a classical result for
planar dynamical systems, according to which, if Γ is a closed orbit of a
dynamical system in the plane, then Aint(Γ) contains an equilibrium point.
Indeed, by the last statement in Lemma 2.2, D(Γ) is an invariant set, since
Γ = ∂Aint(Γ) is invariant (in fact it is an orbit). Moreover D(Γ) has the FPP,
as indicated before. Hence, there is an equilibrium point x∗ in D(Γ), with
x∗ /∈ Γ and the claim is proved.

2.2. Zeros of vector fields and convex bodies

From now on, we focus our attention on the (local) dynamical systems de-
fined by ordinary differential equations in R

N . An immediate consequence of
Theorem 2.1 is the following.

Corollary 2.1. Let Ω ⊂ R
N be an open set and f : Ω → R

N be a continuous
map. Let C ⊂ Ω be a compact set with the FPP. Assume that:
(Huniq) all the Cauchy problems associated with (2.1) have a unique solution;
(Hinv) the set C is positively invariant with respect to the solutions of (2.1),

namely, for each x0 ∈ C, the solution ỹ of (2.1) with ỹ(0) = x0 is
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such that ỹ(t) ∈ C for all t ≥ 0 in the right maximal interval of
existence of the solution.

Then, there exists z ∈ C with f(z) = 0.

Now, the question that arises is whether Corollary 2.1 can be improved
by removing the hypothesis of uniqueness for the initial value problems.
An interesting step in this direction has been recently achieved by Cid and
Mawhin in [13], where, as a consequence of a more general result on periodic
solutions for non-autonomous systems, the following result is proved (cf. [13,
Corollary 5.1])

Theorem 2.2. Let C ⊂ R
N be a nonempty, closed, bounded and convex set,

and f : C → R
N be a continuous function. Suppose that, for each outer nor-

mal field ν : ∂C → S
N−1, it holds that

〈f(x), ν(x)〉 ≤ 0, for all x ∈ ∂C. (2.2)

Then, the differential equation (2.1) has a constant solution in C.

Assumption (2.2) corresponds to an equivalent formulation, for the case
of convex sets, of the classical Nagumo condition [46] for the weak flow in-
variance of the set C (see also [8,9,14,31,52,53,60]). In this context, the term
weak flow invariance refers to the fact that any Cauchy problem with initial
value in C has at least one local solution which is in C for positive time.
Hence, (Hinv) is satisfied if we further assume the uniqueness of the solutions
for the initial value problems. Notice, however, that Theorem 2.2 is obtained
(from the Brouwer fixed point theorem) without assuming the uniqueness
hypothesis (Huniq).

On the other hand, in [19, Corollary 3], the weak positive invariance is
obtained under a more general geometric boundary condition, at the expense
of a stronger assumption on the convex set (which is required to have a
nonempty interior), as follows.

Theorem 2.3. Let C ⊂ R
N be a nonempty, closed, bounded and convex set

with nonempty interior, and f : C → R
N be a continuous function. Suppose

that there exists an outer normal field ν : ∂C → S
N−1, such that condition

(2.2) holds. Then, C is a weakly invariant set for (2.1).

According to this result, we have that (Hinv) is satisfied, if (Huniq) holds.
Our aim is to show that, under the same assumptions of Theorem 2.3

(and without invoking the uniqueness of the solutions for the initial value
problems), one can also conclude the existence of an equilibrium point in C.
Incidentally, we observe (as pointed out by the referee) that a proof could be
obtained by means of degree theory (one can use a homotopy between f(x)
and x − p, with p a point in the interior of C). However, our interest is to
demonstrate that this follows from a direct application of the Brouwer fixed
point theorem. Namely, the following result holds.

Theorem 2.4. Let C ⊂ R
N be a nonempty, closed, bounded and convex set

with nonempty interior, and f : C → R
N be a continuous function. Suppose

that there exists an outer normal field ν : ∂C → S
N−1, such that condition
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(2.2) holds. Then, the differential equation (2.1) has a constant solution in
C.

Proof. We follow an approximation scheme already applied in the proof of
[19, Corollary 3]. Without loss of generality, we can assume that f : RN → R

N

is continuous. Let w0 ∈ intC and r > 0 such that B[w0, r] ⊂ C. For each
x ∈ ∂C and ν(x) ∈ S

N−1, we have that w0 + rν(x) ∈ B[w0, r]; therefore,
〈w0 +rν(x)−x, ν(x)〉 ≤ 0 and so 〈w0 −x, ν(x)〉 ≤ −r‖ν(x)‖2 ≤ −r. Next, we
consider a sequence of locally Lipschitz vector fields gn : RN → R

N converging
uniformly to f on compact sets. Hence, passing if necessary to a subsequence,
we can suppose that ‖gn(x) − f(x)‖ ≤ r

n , for every x ∈ C. Finally, we define
the vector fields

fn(x) := gn(x) +
1
n

(w0 − x), x ∈ R
N ,

and observe that, for the given outer normal field ν,

〈fn(x), ν(x)〉 = 〈f(x), ν(x)〉 + 〈gn(x) − f(x), ν(x)〉 +
1
n

〈w0 − x, ν(x)〉

≤ 0 + ‖gn(x) − f(x)‖ − r

n
≤ 0, for every x ∈ ∂C.

Applying Theorem 2.3 to the differential systems ẏ = fn(y) for which we
have the uniqueness of the solutions for the initial value problems, we enter
in the setting of Corollary 2.1 and, therefore, for each n there exists at least a
zn ∈ C such that fn(zn) = 0. Finally, by the compactness of C, we have that
a subsequence zkn

converges to a point z∗ ∈ C and f(z∗) = 0, since (fn)n

converges to f uniformly in C. �

Similar results were previously obtained by Feuer and Heymann [20,
Theorem 3.3] and by Heymann and Stern in [32, Theorem 2.1] for the au-
tonomous control system ẏ = f(y, w) (with w ∈ R

m a control parameter),
using fixed point theorems for multivalued mappings by Kakutani [35] and
Browder [10], respectively. However, we point out that in [20,32], it is assumed
that f = f(y, w) is continuously differentiable in its first variable, while, in
our case, only the continuity of f = f(y) is required. Moreover, in our ap-
proach, as well as in [13], the results are obtained by a simple application
of the Brouwer fixed point theorem, without invoking more advanced fixed
point theorems on multivalued mappings. Incidentally, Theorem 2.4 is also
connected to a classical result by Gustafson and Schmitt [25, Theorem 1] (for
non-autonomous delay-differential equations), which was stated with strict
inequalities in (2.2). Recent extensions to first-order systems with nonlo-
cal boundary conditions have been obtained by Mawhin and Szymańska-
Debowska in [42]; see also [43, Theorem 1.2] and [44, Theorem 2.12]. These
results exploit the topological degree theory.

Remark 2.1. Theorem 2.2 and Theorem 2.4, although quite similar in the
assumptions, are independent. Indeed, if the interior of the convex set C
is empty, we cannot replace the condition for each outer normal field with
there exists an outer normal field, as the following elementary planar example
shows.
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Consider the system ẋ1 = 1, ẋ2 = −x2 (without equilibrium points)
and the convex set C := [1, 2] × {0} ⊂ R

2. Notice that ∂C = C. For each
x = (x1, 0) ∈ ∂C = C, we take ν(x) = (0, 1) and observe that ∂C � x �→
ν(x) ∈ S

1 is a normal outer field for the set C, because, 〈u − x, ν(x)〉 ≤ 0
(= 0) for all x ∈ ∂C and u ∈ C. Moreover, (2.2) is satisfied (the inner
product is identically zero) for this particular normal outer field and the map
f : (x1, x2) �→ (1,−x2).

Another (even simpler) example was suggested by Prof. Mawhin (private
communication): consider f : (x1, x2) �→ (1, 0), C = [−1, 1] × {0} and ν(x) =
(0, 1) at every point of C = ∂C. �

3. Positively invariant sets and geometric conditions at the
boundary

Throughout this section, we suppose that f = f(t, x) : [0, T ] × Ω → R
N is

a continuous (non-autonomous) vector field with Ω ⊂ R
N a nonempty open

set and G is an open and bounded set with G ⊂ Ω. Unless explicitly stated,
we do not assume the uniqueness of the solutions for initial value problems
associated with

ẏ = f(t, y). (3.1)

When we consider a solution of (3.1), we implicitly assume that it is non-
continuable, i.e., defined on a maximal interval of existence. Our aim is to
prove the existence of a T -periodic solution of (3.1) in G, namely a solution
satisfying the T -periodic boundary condition y(0) = y(T ), and such that
y(t) ∈ G for all t ∈ [0, T ]. When this kind of solution exists, then in the
particular case when the vector field is autonomous, we have also equilibrium
points in the set G. This is essentially Lemma 2.1 in the context of the
autonomous system (2.1) and without the assumption of uniqueness for the
Cauchy problems. Indeed, we have the following.

Lemma 3.1. Let f : Ω → R
N be a continuous vector field. Assume that there

exists a sequence of Tk-periodic solutions to (2.1) with values in G and with
Tk ↘ 0. Then, there exists z∗ ∈ G with f(z∗) = 0.

Proof. A proof based on Ascoli–Arzelà theorem can be found in [13, Sec-
tion 4]. We provide an alternative one as follows. Let ζk be a sequence of
Tk-periodic solutions of (2.1) with ζk(t) ∈ G for all t. By the compactness
of G, we can suppose, without loss of generality, that there exists a point
z∗ ∈ G such that ζk(0) → z∗. Observe also that ‖ζk(t) − ζk(0)‖ ≤ TkK for
all t ∈ [0, Tk], where K ≥ max{‖f(w)‖ : w ∈ G}. Next, we observe that, for
any fixed vector ν ∈ R

N , it holds that

0 =
1
Tk

〈ζk(Tk) − ζk(0), ν〉 =
1
Tk

∫ Tk

0

〈f(ζk(t)), ν〉dt = 〈f(ζk(t̃k)), ν〉,

where in the last equality we have applied the mean value theorem. From
‖ζk(t̃k)−z∗‖ ≤ TkK +‖ζk(0)−z∗‖ → 0 and the continuity of f , we find that
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〈f(z∗), ν〉 = 0 and, finally, we conclude that f(z∗) = 0, since the nullity of
the inner product holds for an arbitrary vector ν. �

The existence of T -periodic solutions with values in G for the non-
autonomous system (3.1) will be proved as a consequence of the Brouwer
fixed point theorem and some geometric conditions at the boundary of G
which are related (but not included) to some analogous ones considered in
the theory of positively invariant sets. In more detail, following [19] and
the theory of bound sets [23,40], we consider open and bounded sets whose
boundary is determined by a family of bounding functions (Vu)u∈∂G with
the following property: for each u ∈ ∂G, there exist a radius ru > 0 and
a C1-function Vu : B(u, ru) → R such that Vu(u) = 0 and G ∩ B(u, ru) ⊂
{x ∈ B(u, ru) : Vu(x) < 0}. This definition is a slight modification of [18,
Definition 2.1]. For simplicity of the exposition, throughout the paper we
confine ourselves to the case of smooth (i.e., C1) bounding functions. The
theory can be extended to the case of locally Lipschitz functions, too (cf.
[55,61]), but we do not consider here this case which is beyond the scope of
this article.

The next theorem summarizes some results previously obtained in [39]
(for the attractive bound sets) and in [19] (for strongly flow-invariant sets).

Theorem 3.1. Suppose that there exists a family (Vu)u∈∂G of bounding func-
tions for G such that for each u ∈ ∂G there exists ρu ∈ ]0, ru] such that

〈f(t, x),∇Vu(x)〉 ≤ 0, for all x ∈ G ∩ B(u, ρu) and t ∈ [0, T ]. (3.2)

Then,
(i) each solution of (3.1) with y(0) ∈ G is defined on [0, T ] and such that

y(t) ∈ G for all t ∈ [0, T ] (strong flow invariance for G);
(ii) for each x0 ∈ ∂G, there exists at least one solution of (3.1) defined on

[0, T ] such that y(0) = x0 and y(t) ∈ G for all t ∈ [0, T ] (weak flow
invariance for G);

(iii) if G is homeomorphic to a closed ball of RN and we assume the unique-
ness for the Cauchy problems associated with (3.1) with initial value in
G, then system (3.1) has a T -periodic solution in G.

Proof. Let y be an arbitrary solution of (3.1), with y(0) ∈ G. We claim that
the solution is defined on the whole interval [0, T ] and, moreover, y(t) ∈ G,
for all t ∈ [0, T ]. If, by contradiction, this is not true, then there exists a
time t̂ ∈ ]0, T ] such that y(t) ∈ G, for all t ∈ [0, t̂[ and y(t̂) =: u ∈ ∂G. Let
ε ∈ ]0, t̂[ be such that y(t) ∈ G∩B(u, ru), for all t ∈ [t̂−ε, t̂[, and consider the
auxiliary function η(t) := Vu(y(t)) for t ∈ [t̂ − ε, t̂]. We observe that η(t) < 0
for all t ∈ [t̂ − ε, t̂[ and η(t̂) = 0. On the other hand, for all t ∈ [t̂ − ε, t̂], it
holds that η′(t) = 〈ẏ(t),∇Vu(y(t))〉 = 〈f(t, y(t)),∇Vu(y(t))〉 ≤ 0, according
to (3.2), so that 0 = η(t̂) ≤ η(t̂ − ε) < 0 and a contradiction is obtained.

Having proved (i), we immediately obtain (ii) as follows. If u ∈ ∂G, then
there exists a sequence of points zn ∈ G, with zn → u. For each zn, let yn be
any solution of (3.1) with yn(0) = zn, with yn defined on [0, T ] and such that
yn(t) ∈ G, for all t ∈ [0, T ]. Then [30, Theorem 3.2] ensures the existence of
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a subsequence (ykn
)n of (yn)n with (ykn

)n converging (uniformly on [0, T ])
to a solution ỹ of (3.1) with ỹ defined on [0, T ]. We conclude that ỹ(0) = u
and ỹ(t) ∈ G for all t ∈ [0, T ], because ykn

(t) → ỹ(t), with ykn
(t) ∈ G.

If we further assume the uniqueness of the solutions for the Cauchy
problems associated with (3.1) with initial value in G, we have that the
Poincaré map ΦT

0 is well defined on G and maps G into itself (as a consequence
of (i) and (ii)). The Brouwer fixed point theorem guarantees the existence of
a fixed point z∗ ∈ G for ΦT

0 and hence the existence of a T -periodic solution
ŷ of (3.1) with ŷ(0) = z∗ and such that ŷ(t) ∈ G for all t ∈ [0, T ] (by (i) and
(ii)). Thus, also (iii) is proved. �

Clearly, a sufficient condition for the validity of (3.2) is to assume

〈f(t, u),∇Vu(u)〉 < 0, for all u ∈ ∂G and t ∈ [0, T ], (3.3)

(see [39, Theorem 7.4]). In this case, we just restrict each Vu to a smaller ball
B(u, r′

u) ⊂ B(u, ru) (if necessary), and (3.2) is satisfied.
In general, we cannot relax condition (3.3) to

〈f(t, u),∇Vu(u)〉 ≤ 0, for all u ∈ ∂G and t ∈ [0, T ], (3.4)

even if we require the uniqueness of the solutions for the initial value prob-
lems, as it can be seen by the following elementary example.

Example 3.1. Consider the one-dimensional system ẏ = 1 and the set G :=
{x ∈ R : V (x) < 0}, with V (x) := (x + 1)(x − 1)3. We have G = ]−1, 1[,
and V−1 = V1 = V , with (3.4) satisfied. All the conclusions in Theorem 3.1
fail. The problem here is due to the fact that ∇Vu(u) = 0 at the point
u = 1 ∈ ∂G. �

3.1. A general existence result for T -periodic solutions

In view of Example 3.1, a natural assumption to improve the hypotheses (3.2)
or (3.3) to (3.4) is to add the condition

∇Vu(u) �= 0, for all u ∈ ∂G. (3.5)

Actually, it will be convenient to suppose the following condition: there are
constants 0 < η− ≤ η+ such that

η− ≤ ‖∇Vu(u)‖ ≤ η+, for all u ∈ ∂G. (3.6)

When assumption (3.6) is required, we say that (Vu)u∈∂G is a family of non-
degenerate bounding functions. Observe that if (3.5) is satisfied, we can al-
ways enter in condition (3.6), by passing to the new family (Wu)u∈∂G with
Wu(x) := Vu(x)/‖∇Vu(u)‖. For the new bounding functions, condition (3.6)
is satisfied with η− = η+ = 1.

Our main result in this direction is the following.

Theorem 3.2. Let (Vu)u∈∂G be a family of non-degenerate bounding functions
for G such that (3.4) holds and suppose that there exists a continuous function
g : ∂G → R

N such that

sup
u∈∂G

〈g(u),∇Vu(u)〉 < 0. (3.7)
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If G is homeomorphic to a closed ball of RN , then there exists a T -periodic
solution of (3.1) with values in G.

Proof. Using Tietze extension theorem, we extend by continuity g to G. Let
ε > 0 be such that 〈g(u),∇Vu(u)〉 ≤ −ε, for every u ∈ ∂G. Then, for every
positive integer n, we consider a locally Lipschitz continuous function fn : Ω×
[0, 1] → R

N such that∥∥∥∥fn(t, x) − (f(t, x) +
1
n

g(x))
∥∥∥∥ ≤ ε

2nη+
, for every (t, x) ∈ [0, T ] × G.

We have that

‖fn(t, x) − f(t, x)‖ ≤ ε

2nη+
+

1
n

max
x∈G

‖g(x)‖, for every (t, x) ∈ [0, T ] × G,

so that fn converges uniformly to f on [0, T ] × G. Moreover, for all u ∈ ∂G
and t ∈ [0, T ], we deduce that

〈fn(t, u),∇Vu(u)〉
= 〈fn(t, u) − (f(t, u) +

1
n

g(u)),∇Vu(u)〉 + 〈f(t, u) +
1
n

g(u),∇Vu(u)〉

≤
∥∥∥∥fn(t, u) − (f(t, u) +

1
n

g(u))
∥∥∥∥ ‖∇Vu(u)‖

+ 〈f(t, u),∇Vu(u)〉 +
1
n

〈g(u),∇Vu(u)〉

≤ ε

2n
+ 0 +

−ε

n
< 0,

so that condition (3.3) is satisfied for fn. Hence, we can apply (iii) of Theo-
rem 3.1 to the differential systems

ẏ = fn(t, y) (3.8)

and obtain that, for each n, there exists a T -periodic solution ỹn to (3.8)
such that ỹn(t) ∈ G for all t ∈ [0, T ]. Using the Ascoli–Arzelà theorem and
the fact that fn converges uniformly to f on [0, T ]×G, we can conclude that
there exists a subsequence (ỹkn

)n of (ỹn)n converging uniformly on [0, T ] to
a T -periodic solution ỹ of (3.1) and such that ỹ(t) ∈ G for all t ∈ [0, T ]. �

We stress the fact that in Theorem 3.2, we do not require the unique-
ness of the solutions for the Cauchy problems. It is immediate to check
that Theorem 2.4 can be obtained as a consequence of Theorem 3.2, set-
ting Vu(x) := 〈x − u, ν(u)〉 and g(x) := w0 − x with w0 ∈ int C (and using
also Lemma 3.1).

Another application, following [2, Theorem 16.9, p. 218], can be provided
when Vu ≡ V for all u ∈ ∂G, namely, when G is a sub-level set of a Lyapunov-
like function. More precisely, let us suppose that V : Ω → R is a continuously
differentiable function and let c ∈ R be such that M := V −1(]−∞, c]) is a
compact set with nonempty interior. Suppose also that

∇V (u) �= 0, for all u ∈ ∂M. (3.9)
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In this situation, V −1(]−∞, c[) ⊂ int M and ∂M ⊂ V −1(c). Moreover, ∂M =
∂(int M). Hence, G := int M is an open and bounded set whose boundary is
determined by the family of bounding functions (Vu)u∈∂G such that Vu(x) :=
V (x) − c, with Vu restricted to an open ball B(u, ru) where ∇V (x) �= 0 (see
[18, p. 520], for a similar discussion). Having assumed that ∇V (x) �= 0 for
all x ∈ ∂G = ∂M , we have (3.6) satisfied (by the continuity of ∇V ) and,
moreover, (3.7) holds for the choice g(x) = −∇V (x). Hence, the following
corollary can be given.

Corollary 3.1. Let V : Ω → R be a C1-function and let c ∈ R be such that
the set M := V −1(]−∞, c]) is homeomorphic to a closed ball of RN . Assume
(3.9) and also

〈f(t, u),∇V (u)〉 ≤ 0, for all u ∈ ∂M and t ∈ [0, T ]. (3.10)

Then, there exists a T -periodic solution of (3.1) with values in M .

Remark 3.1. The conditions (3.9) and (3.10) are optimal. Indeed, concerning
(3.9), the same case considered in Example 3.1 shows that the result is no
more true if ∇V vanishes at some point of the boundary. On the other hand, it
is trivial to produce cases where (3.10) fails at some point of the boundary and
the conclusion of Corollary 3.1 does not hold (take, for instance, f(t, y) = f(y)
and G =] − 1, 1[ as in Example 3.1 and V (x) = x2 − 1). �

Remark 3.2. To apply Corollary 3.1, we should know the topological struc-
ture of the level sets and sub-level sets of the Lyapunov-like functions. This
is a classical problem already studied in [58] and also related to the Poincaré
conjecture. For a recent contribution, in the light of the verification of the
conjecture in all dimensions by Perelman, Freedman and Smale, we refer to
[11]. See also [38] and [30, Corollary 11.2, p. 539] for a connection to the
Markus–Yamabe conjecture. For instance, according to [11, Theorem 1.2],
we have that the sub-level set M = V −1(] − ∞, c]) is a compact set with
nonempty interior and homeomorphic to a closed ball, if V : RN → R is a
smooth and proper function with a compact set of critical points and c is
sufficiently large. We also notice that Corollary 3.1 and its consequences are
strongly related to the classical results of Krasnosel’skĭı on guiding functions
and the celebrated theorem on the degree of the gradient of coercive maps
[36, Lemma II.6.5] (see also [1,2] and [16, Section 5.1.4]). �

3.2. Applications to the non-convex case

Our aim now is to provide another application of Theorem 3.2 outside the
framework of convex sets. With this respect, we deal with a class of star-
shaped domains. According to a standard terminology, a subset U of a vector
space is said to be star shaped with respect to a point p ∈ U , if [p, x] ⊂ U ,
for each x ∈ U , where [p, x] := {p + ϑ(x − p) : 0 ≤ ϑ ≤ 1} is the segment
connecting p and x. Analogously, we define [p, x[ := {p+ϑ(x−p) : 0 ≤ ϑ < 1}.

Usually, in the context of fixed point theory in Euclidean spaces, some
further properties are required. In particular, if U = A with A ⊂ R

N an open
bounded set, we focus our study to the following case.
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Definition 3.1. Let A ⊂ R
N be a nonempty open bounded set. We say that A

is strictly star shaped with respect to a point p ∈ A if, for each point u ∈ ∂A,
we have [p, u[ ⊂ A.

Our definition corresponds to that considered by Deimling in [15, p. 33],
referring to A as a star-shaped set with a simple boundary. This is also the
case presented by Yang in [59, p. 111], where it is required that, for every
u, v ∈ ∂A with u �= v, it follows that [p, u] ∩ [p, v] = {p}. Clearly, compact
convex sets with nonempty interior are strictly star shaped (according to our
definition) with respect to any interior point. Our definition requires a little
more than the hypothesis that the open set A is star shaped. Indeed, if A is
star shaped with respect to a point p ∈ A, also A is star shaped with respect
to p. However, our condition on the boundary points might not be satisfied,
as shown in the following example.

Example 3.2. Let us consider the set

A :=
{

(x1, x2) ∈ R
2 : |x1| 1

2 + |x2| 1
2 < 1

}
\{

(x1, x2) ∈ R
2 : x1 ≤ − 1

4 , x2 ≥ 0
}

. (3.11)

We notice that A is star shaped with respect to the origin as well as its
closure

A =
{

(x1, x2) ∈ R
2 : |x1| 1

2 + |x2| 1
2 ≤ 1

}
\ {

(x1, x2) ∈ R
2 : x1 < − 1

4 , x2 > 0
}

.

Observe that the origin is the unique point p such that A is star shaped
with respect to p. On the other hand, A does non satisfy our condition.
Indeed, if u = (u1, 0) with −1 ≤ u1 < −1/4, then u ∈ ∂A, but [0, u[ �⊂ A
and the condition of simplicity of the boundary of Deimling is not satisfied.
Equivalently, if u = (u1, 0) and v = (v1, 0) with −1 ≤ u1 �= v1 < −1/4, we
find that (−1/4, 0) ∈ [0, u] ∩ [0, v] and Yang’s definition is not satisfied. See
Fig. 1 for a graphical representation of this example. �

The class of star-shaped sets with the boundary condition considered in
Definition 3.1 is relevant in fixed point theory. In particular, a continuous map
φ such that φ(∂A) ⊂ A has a fixed point [15, p. 33] (see also [62, Corollary 1]).
For other fixed point theorems in the setting of star-shaped sets, see [28,
Section 19.5] and [49]. Star-shaped sets with the stronger condition at the
boundary considered in Definition 3.1 are also studied in different contexts.
See [28, p. 1008] and the references therein where these sets are also referred
to as strongly star shaped or radiative at p. See also [29] for a comparison of
different properties concerning convex and star-shaped sets.

In the next lemma, we show that a strictly star-shaped set is homeo-
morphic to a closed unit ball (since we have not found a precise reference in
the literature, we give also the simple proof, for the reader’s convenience).

Lemma 3.2. Let A ⊂ R
N be a nonempty open bounded set with A strictly star

shaped with respect to a point p ∈ A. Then, for each unit vector v ∈ S
N−1,

there is a unique ϑv ∈ ]0,+∞[ such that p + ϑvv ∈ ∂A. Moreover, the map
S

N−1 � v �→ ϑv is continuous and A is homeomorphic to the unit ball B[0, 1]
of RN .
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Figure 1. Representation of the set D := {(x1, x2) ∈
R

2 : |x1| 1
2 + |x2| 1

2 < 1} (on the left) and of the set A defined
in (3.11) (on the right). Both D and A (and their closures)
are star shaped with respect to the origin and the origin is
the unique point such that these sets are star shaped with
respect to it. However, D is strictly star shaped with respect
to the origin, while A is not strictly star shaped with respect
to the origin (and not with respect to any other point)

Proof. Let 0 < r < R be such that B(p, r) ⊂ A ⊂ B[p,R]. Hence, for every
v ∈ S

N−1, the ray {p + tv : t ≥ 0} intersects ∂A at a point p + ϑvv which is
unique, as a consequence of Definition 3.1. Observe that r ≤ ϑv ≤ R for all
v ∈ S

N−1. We claim that the map φ : SN−1 → [r,R] defined by φ(v) := ϑv

is continuous. Since the range of φ is contained in a compact set, it will
be sufficient to prove that the graph of φ is closed (see [57, Problem 108]).
Accordingly, let vn → v∗ in S

N−1 and ϑvn
→ ϑ∗. By definition, p + ϑvn

vn →
p + ϑ∗v∗, with p + ϑvn

vn ∈ ∂A for each n. Hence, p + ϑ∗v∗ ∈ ∂A and, by
the uniqueness of the intersection of the ray {p + tv∗ : t ≥ 0} with ∂A, we
conclude that ϑ∗ = ϑv∗ . This proves that the graph of φ is closed.

Next, we introduce the map Ψ: B[0, 1] → A, defined by⎧⎨
⎩

Ψ(0) = p,

Ψ(x) = p + xφ

(
x

‖x‖
)

, for x �= 0.

We have that Ψ is continuous (by the continuity and the boundedness of
φ). Moreover, Ψ|SN−1 : SN−1 → ∂A, which maps v ∈ S

N−1 to p + ϑvv ∈
∂A, is bijective and also Ψ maps bijectively any segment [0, v] ∈ B[0, 1] to
[p, p + φ(v)v] ∈ A. Consequently, Ψ is a continuous one-to-one map from
B[0, 1] onto A and hence a homeomorphism. �

The following property will be crucial in our result for non-convex sets.

Lemma 3.3. Let G ⊂ R
N be a nonempty open bounded set with G strictly

star shaped with respect to a point p ∈ G. Moreover, suppose that there exists
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a family (Vu)u∈∂G of bounding functions for G. Then, it holds that

〈∇Vu(u), p − u〉 ≤ 0, for all u ∈ ∂G.

Proof. Let u ∈ ∂G and Vu : B(u, ru) → R be the corresponding bounding
function. By definition, Vu(u) = 0 and Vu(x) < 0 for all x ∈ G∩B(u, ru). Let
us consider the segment [p, u] ⊂ G with [p, u[ ∈ G. Taking a parametrization
for the segment, we can introduce the function γ(ϑ) := Vu(p + ϑ(u − p)),
defined for ϑ ∈ ]1 − ru/‖u − p‖, 1] and such that γ(1) = 0 and γ(ϑ) < 0 for
ϑ < 1. From this, we find that 〈∇Vu(u), u − p〉 = γ′(1) ≥ 0 and hence the
thesis. �

After these preliminary results, we are now in position to give our ap-
plication of Theorem 3.2 to star-shaped domains.

Theorem 3.3. Let (Vu)u∈∂G be a family of non-degenerate bounding functions
for a nonempty open bounded set G with G strictly star shaped with respect
to all the points in a ball B[p, δ] ⊂ G. Assume that (3.4) holds. Then, there
exists a T -periodic solution of (3.1) with values in G.

Proof. First of all, without loss of generality, we suppose (passing to Vu(x)/
‖∇Vu(u)‖, if necessary) that ‖∇Vu(u)‖ = 1, for each u ∈ ∂G. Next, we
observe that

〈∇Vu(u), p − u〉 ≤ −δ, for all u ∈ ∂G.

Indeed, it is sufficient to apply Lemma 3.3 to the point x := p + δ ∇Vu(u) ∈
B[p, δ], so that, for each u ∈ ∂G, it holds that

〈∇Vu(u), p − u〉 = 〈∇Vu(u), x − u〉 − δ〈∇Vu(u),∇Vu(u)〉 ≤ −δ.

Now, defining g : G → R
N as g(x) = p−x, we find that condition (3.7) holds

true. Moreover, by Lemma 3.2, G is homeomorphic to the unit ball B[0, 1] of
R

N . Then, we reach the thesis as an application of Theorem 3.2. �

Remark 3.3. The assumption that the set G is strictly star shaped not only
with respect to a point p, but also with respect to all the points in a neighbor-
hood of p, is a hypothesis which is rather common in the theory of star-shaped
sets and is usually referred saying that the strong kernel of G has nonempty
interior (cf. [28]). Actually, if the open set G has a kernel with nonempty
interior (according to [28, p. 1005]), that is, G is star shaped with respect
to all the points of a (small) open ball B ⊂ G then, according to [28, The-
orem 3, p. 1006], for each p ∈ B, and u ∈ ∂G, it follows that [p, u[ ⊂ G.
As a consequence, ∂G = ∂G and G is strictly star shaped with respect to p.
Therefore, G is strictly star shaped also with respect to all the points in a
neighborhood of p. �

Example 3.3. Let us consider the autonomous planar differential system

ẋ1 = 1, ẋ2 = ϕ(x2) (3.12)

with

ϕ(0) = 0 and ϕ(s) := −2
s√|s| , for s �= 0.
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Figure 2. Representation of the set G defined in (3.13) and
the flow associated with system (3.12)

Using the positions x1 := t, x2 := x, we see that the positive semi-orbits of
system (3.12) are the graphs of the solutions (t, x(t)) of ẋ = ϕ(x) satisfying
the initial condition x(t0) = x0, for t ≥ t0 in the (t, x)-plane. The function ϕ
is continuous and decreasing; hence the forward uniqueness for the solutions
of the Cauchy problems is guaranteed, according to [30, Corollary 6.3, p. 34].

We introduce now the set

G :=
{
(x1, x2) ∈ ]−1, 1[ × ]−1, 1[ : |x2| < (x1 − 1)2

}
(3.13)

(see Fig. 2 for a graphical representation). The set G is strictly star shaped
only with respect to the points belonging to the segment [−1, 0] × {0} and
thus is not strictly star shaped with respect to all the points in any ball
contained in G.

We split the boundary of G into the following sets:

Γ1 :=
{
(x1, x2) : 0 ≤ x1 ≤ 1, x2 = (x1 − 1)2

}
,

Γ2 := {(x1, x2) : − 1 ≤ x1 ≤ 0, x2 = 1} ,

Γ3 := {(x1, x2) : x1 = −1,−1 ≤ x2 ≤ 1} ,

Γ4 := {(x1, x2) : − 1 ≤ x1 ≤ 0, x2 = −1} ,

Γ5 :=
{
(x1, x2) : 0 ≤ x1 ≤ 1, x2 = −(x1 − 1)2

}
.

A family of bounding functions associated with the set G is given by (Vu)u∈∂G,
with

Vu(x1, x2) = V 1(x1, x2) := −(x1 − 1)2 + x2, if u ∈ Γ1,

Vu(x1, x2) = V 2(x1, x2) := −1 + x2, if u ∈ Γ2,

Vu(x1, x2) = V 3(x1, x2) := −1 − x1, if u ∈ Γ3,



Vol. 24 (2022) Periodic solutions in convex and non-convex domains Page 17 of 24 68

Vu(x1, x2) = V 4(x1, x2) := −1 − x2, if u ∈ Γ4,

Vu(x1, x2) = V 5(x1, x2) := −(x1 − 1)2 − x2, if u ∈ Γ5.

We warn that, consistently with our definition of bounding functions, it is
sufficient to have one function Vu at any point u ∈ ∂G. For this reason, when
u ∈ Γi ∩ Γj with i �= j, we will just choose one of the two possibilities given
by the above list. Now, it is easy to check that 〈f(u),∇Vu(u)〉 = 0 for all
u ∈ Γ1 ∪Γ5 and 〈f(u),∇Vu(u)〉 < 0 for all u ∈ Γ2 ∪Γ3 ∪Γ4. Hence, condition
(3.4) is satisfied. However, there are no periodic solutions, or equilibrium
points for system (3.12). �

Remark 3.4. Example 3.3 shows that, if we assume the weak boundary con-
dition (3.4), then the condition of strong kernel with nonempty interior of
Theorem 3.3 is optimal and cannot be removed. Example 3.3 also provides a
new case which shows that the condition of linear independence of the gra-
dients considered in a result of positively invariant sets in [31, Corollary 1,
formula (10)] cannot be removed. Indeed, in [31, Corollary 1], Hartman con-
sidered the case of a bounded domain whose boundary is described by a
finite number of bounding-type functions. Differently from our case where,
at each point u ∈ ∂G, we take one function Vu, in [31] there is a finite set
of functions V k (denoted as Lk in [31]) with the condition that the vectors
∇V k(u) are linearly independent at the points u ∈ ∂G where the V ks van-
ish. In our example, at each point of Γi ∩ Γi+1, for i = 1, . . . , 4, the vectors
∇V i(u) and ∇V i+1(u) are linearly independent, but this does not happen at
the point z = (1, 0) ∈ Γ1 ∩ Γ5 where ∇V 1(z) = (1, 0) = −∇V 5(z). Indeed,
the set G is not positively invariant with respect to the semi-flow associated
with system (3.12), because the solution (x1(t), x2(t)) = (t, 0) is in the set
for t = 0 and escapes the set G for t > 1. The example of Hartman in [31,
p. 513] considers a trivial set with empty interior, given by {(0, 0)}, where
the condition of independence of the gradients fails. �

A simple condition to verify that a sub-level set is strictly star shaped
with a strong kernel with nonempty interior is provided by the next result.

Lemma 3.4. Let V : RN → R (with N ≥ 2) be a continuously differentiable
function and let p ∈ R

N and c ∈ R be such that V (p) < c with V −1(c)
bounded and nonempty. If

〈∇V (u), p − u〉 < 0, for all u ∈ V −1(c), (3.14)

then M := V −1(]−∞, c]) is strictly star shaped with respect to all the points
in a ball B[p, δ] ⊂ G = int M = V −1(]−∞, c[).

Proof. It is sufficient to check that condition (3.14) implies that the set M is
strictly star shaped with respect to p. Indeed, by the compactness of V −1(c),
we have maxu∈V −1(c)〈∇V (u), p − u〉 < 0 and hence, for all the points z in a
neighborhood of p, it holds that 〈∇V (u), z − u〉 < 0, for all u ∈ V −1(c).

Now following (with some simplifications) an argument from [62], we
consider the auxiliary function v(s) := V (p + s(u − p)) for u ∈ M \ {p} and
s ≥ 0. By the assumptions, we deduce that v(0) < c, v(1) ≤ c, and (from
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(3.14)) v′(s) > 0 for all s such that v(s) = c. This proves that the half-line
{p + s(u − p) : s ≥ 0} intersects ∂M = ∂G = V −1(c) in at most one point.
More precisely, {p + s(u − p) : s ≥ 0} intersects ∂G exactly in u (for s = 1),
if u ∈ ∂G.

To conclude our proof, we have to show that, for every v ∈ S
N−1, the

half-line {p + sv : s ≥ 0} intersects V −1(c). Suppose, by contradiction, that
there exists v̂ ∈ S

N−1 such that V (p + sv̂) < c, for all s ≥ 0. We choose a
point û ∈ V −1(c) such that û−p

‖û−p‖ �= −v̂. Such a choice is always possible
because, if u ∈ V −1(c) �= ∅, then ∇V (u) �= 0 by (3.14) and the implicit
function theorem guarantees that V −1(c) is locally a surface around u. Let
R > 0 be such that V −1(c) ⊂ B(p,R) and let K > 1 be sufficiently large
that [p + Kv̂, p + K(û − p)] ∩ B(0, R) = ∅. On the other hand, V (p + Kv̂) <
c < V (p + K(û − p)) and therefore there exists w ∈ ]p + Kv̂, p + K(û − p)[
such that V (w) = c, a contradiction to the fact that V −1(c) ⊂ B(p,R). �

By the above lemma, we can provide a new proof, in the frame of the
Brouwer fixed point theorem, of a result previously obtained in [62, Theo-
rem 2].

Corollary 3.2. Let V : Ω → R (with N ≥ 2) be a C1-function and let p ∈ R
N

and c ∈ R be such that V (p) < c with V −1(c) bounded and nonempty. Let
also M := V −1(]−∞, c]). Assume (3.10) and (3.14). Then, there exists a
T -periodic solution of (3.1) with values in M .

Proof. We apply Lemma 3.4 together with Corollary 3.1 and Lemma 3.2, or,
alternatively, Theorem 3.3, jointly with Lemma 3.4. �

The above corollary provides an example of application of Theorem 3.3
to strictly star-shaped sets with the boundary described by a single regular
bounding function V . As a second application, we propose an application
to domains with possible non-smooth boundary, using a concept of outer
normals due to Bony [8]. Let G be an open and bounded set with M := G ⊂ Ω
and let u ∈ ∂M . A vector ν �= 0 is called an outer normal to M in u, according
to Bony, if u is a point of M at minimal distance from u+λν for some λ > 0.
Playing on the coefficient λ > 0, one can equivalently express this fact, by
assuming that B(u + ν, ‖ν‖) ∩ M = ∅, or B[u + ν, ‖ν‖] ∩ M = {u} (actually
different, but equivalent definitions have been considered by some authors
[8,52,53]). We also denote by NB(u) the set of all (Bony) outer normals
to M in u. Then the following result holds [8, Theorem 2.1] (see also [52,
Theorem 1] and [53, Theorem 1]).

Theorem 3.4. Let M := G ⊂ Ω, where G is a nonempty open bounded set. Let
f = f(t, x) be continuous and locally Lipschitz continuous in the x-variable.
Suppose that

〈f(t, u), ν〉 ≤ 0, for all t ∈ [0, T ], u ∈ ∂M, ν ∈ NB(u). (3.15)

Then, M is positively invariant with respect to the solutions of (3.1).

Clearly, under the assumptions of Theorem 3.4, if M has the FPP, then
it contains a T -periodic solution of (3.1). In [52,53] the Lipschitz condition



Vol. 24 (2022) Periodic solutions in convex and non-convex domains Page 19 of 24 68

was improved to a suitable one-sided uniqueness hypothesis. As in Theo-
rem 2.2, the above result requires the inequality (3.15) to be satisfied for
all the outer normals at the boundary points. Similarly to that in Theo-
rem 2.3, we propose now an existence result of periodic solutions where, for
the boundary condition, we assume that the inequality is satisfied only for
some outer normals. We stress the fact that only continuity of f will be re-
quired. We restrict our application to star-shaped sets, to enter in the setting
of Theorem 3.3; however, our result, in principle, could be applied to more
general domains, provided we find a suitable auxiliary vector field g as in
Theorem 3.2.

Theorem 3.5. Let G be an open bounded set with G(⊂ Ω) strictly star shaped
with respect to all the points in a ball B[p, δ] ⊂ G. Assume that for each
u ∈ ∂G, there exists ν = νu ∈ NB(u) such that

〈f(t, u), νu〉 ≤ 0, for all t ∈ [0, T ]. (3.16)

Then, there exists a T -periodic solution of (3.1) with values in G.

Proof. By the hypothesis, for each u ∈ ∂G, we have an outer normal νu such
that (3.16) is satisfied. For such νu we have that B[u + νu, ‖νu‖] ∩ G = {u}
(according to one of the equivalent definitions of Bony outer normal). Then,
we define the function

Vu(x) :=
1
2

(‖νu‖2 − ‖x − (u + νu)‖2) .

It is immediate to check that Vu(u) = 0, Vu(x) < 0 for all x ∈ G, and
∇Vu(x) = u + νu − x, so that ∇Vu(u) = νu. Hence, (3.4) follows from (3.16)
and we conclude by applying Theorem 3.3. �

Remark 3.5. Clearly, Theorem 3.5 extends Theorem 2.4. We also note that,
in the context of open and bounded star-shaped sets, the difference between
Theorem 3.4 and Theorem 3.5 is stronger than that between Theorem 2.2
and Theorem 2.4. Indeed, in the case of convex bodies, all the points at the
boundary possess outer normals. This is no more true for star-shaped bodies.
For instance, if we consider the sets

G1 :=
{
(x1, x2) ∈ R

2 : (x2
1 + x2

2) < 1, |x2| > x1

}
(3.17)

and G1 = {(x1, x2) ∈ R
2 : (x2

1 + x2
2) ≤ 1, (|x2| ≥ x1)} (see Fig. 3), we

have that G1 is strictly star shaped with respect to all the points in a ball
B[p, δ] ⊂ G1 for p = (−1/2, 0) and δ > 0 sufficiently small. Observe that
G1 is homeomorphic to a closed disc by Lemma 3.2. Hence, if we assume f
locally Lipschitz continuous in x = (x1, x2) and (3.15) satisfied for all the
outer normals at ∂G1 (whenever they exist), then, by Theorem 3.4, we have
the existence of a T -periodic solution with values in G1. In this case, we
have to check the sub-tangentiality condition (3.15) for all the outer normals
at the corner points (1/

√
2,±1/

√
2), but no condition has to be checked at

(0, 0), a point that does not possess any outer normal. On the other hand,
Theorem 3.5 cannot be applied because at (0, 0) there are no outer normals.
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Figure 3. Representation of the set G1 defined in (3.17)
(on the left) and of the set G2 defined in (3.18) (on the right)

Conversely, if we consider the sets

G2 :=
{

(x1, x2) ∈ R
2 : (x2

1 + x2
2) < 1, (x1 −

√
2)2 + x2

2 > 1
}

(3.18)

and G2 = {(x1, x2) ∈ R
2 : (x2

1 + x2
2) ≤ 1, (x1 − √

2)2 + x2
2 ≥ 1)} (see Fig. 3),

we have again that G2 is strictly star shaped with respect to all the points
in a ball B[p, δ] ⊂ G2 for p = (−1/2, 0) and δ > 0 sufficiently small. Now,
to apply Theorem 3.5 we just need f to be continuous and check the sub-
tangentiality condition at the boundary, by taking only one outer normal at
the corner points (1/

√
2,±1/

√
2). �
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