

Contents lists available at ScienceDirect

Landscape and Urban Planning

journal homepage: www.elsevier.com/locate/landurbplan

Research Paper Urban Sprawl and Routing: A Comparative Study on 156 European Cities

DPIA, University of Udine, via delle Scienze 206, 33100, Udine, Italy

Research Institute for Supply Chain Management, WU Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

HIGHLIGHTS

Roberto Maria Rosati

• We propose a novel methodology that integrates operations research into urban studies.

- We find a significant correlation between urban sprawl and routing times.
- Addressing urban sprawl can reduce transportation's economic, social, and environmental costs.
- Shannon's entropy emerges as the best predictor of the route length.
- We gain insights about the geographical distribution of sprawl in Europe.

ARTICLE INFO

Keywords: Urban sprawl Routing Impacts of urban sprawl Geography of urban sprawl City logistics Traveling salesman problem

ABSTRACT

To address the growing challenges urban sprawl poses, it is essential to understand its influence on urban transportation, a primary source of economic, social, and environmental impact. This study fills this gap by quantifying the consequences of sprawl on transportation efficiency, proposing an interdisciplinary methodology that integrates knowledge from operations research.

Specifically, adopting a broad European perspective, we investigate how urban sprawl correlates with travel distances and optimal routes in 156 spatially heterogeneous cities across 28 European countries.

We discover a significant correlation between five sprawl indicators (Land usage, Gini coefficient, Shannon entropy, Moran I index, and Bribiesca index) and both travel distances and routes by car and bicycle: transportation is inherently less efficient in cities with higher levels of sprawl. Among the considered indicators, Shannon entropy emerges as the best predictor of route efficiency.

We offer insights into the geography of sprawl in Europe, finding that many Spanish cities stand out for their compactness and route efficiency, while hotspots of sprawl are present in many Western and Central European countries.

Our results underline the underestimated importance of addressing urban sprawl to reduce transportation's economic, social, and environmental costs and encourage policymakers and urban planners to prioritize compact city development to foster sustainable urban growth.

1. Introduction

Urban sprawl consists of the expansion of urban settlements into lowdensity residential areas, either in a deregulated or regulated fashion. Sprawled cities are affected by weak public transportation, a lack of walkable and bicycle-friendly routes, long distances from services and workplaces, and dependency on private vehicles. Many studies have identified it as a significant issue of modern urban development, and urban planners increasingly view it negatively. Nevertheless, sprawl is on the rise (Behnisch, Krüger, & Jaeger, 2022). This paper investigates how urban sprawl influences transportation efficiency. The mobility of people and goods is integral to daily routines in every urban context. It is a source of economic and social cost, contributing negatively to the energy and CO₂ balance. Companies are working to optimize urban transportation and city logistics, developing algorithms for routing (Crainic, Ricciardi, & Storchi, 2009; Cattaruzza, Absi, Feillet, & González-Feliu, 2017) with the goals of reducing both costs and environmental impacts (Turan, Hemmelmayr, Larsen, & Puchinger, 2024). However, the concrete risk is that uninterrupted urban sprawl undermines these optimization efforts by making distances

* Address: DPIA, University of Udine, via delle Scienze 206, 33100, Udine, Italy. *E-mail addresses:* robertomaria.rosati@uniud.it, robertomaria.rosati@uu.ac.at.

https://doi.org/10.1016/j.landurbplan.2024.105205

Received 30 December 2023; Received in revised form 4 September 2024; Accepted 5 September 2024 Available online 15 October 2024 0169-2046/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). inherently longer.

Hence, we aim to answer the following research questions:

- 1. Under what methodological framework can we measure the correlation between sprawl and the efficiency/length of vehicle routes?
- 2. What is the nature and statistical significance of such a correlation, and what does it imply?
- 3. Which indicator of sprawl emerges as the best predictor of route efficiency in a city?
- 4. What specific considerations and geographical insights can we derive for the context of Europe?

In this study, we adopt a broad European perspective comparing sprawl and routes increasingly 156 urban areas¹ located across the majority of European countries. For every city, we compute five distinct sprawl indicators: Land Usage (*L*), Gini coefficient (*G*), Adapted Shannon Entropy (η), Moran I index (*I*), and Bribiesca index (*B*). Routing time is estimated on road graphs based on real population density and distances. On them, we solve the Asymmetric Traveling Salesman Problem (ATSP) and use the average value of the optimal solutions as a benchmark for route efficiency. We do this for different graph sizes (10 and 50) and different transportation means (*car* and *bicycle*). A Pearson correlation test measures the correlation between sprawl and routes.

The results indicate that sprawl and routes correlate positively with statistical significance. Our study also highlights the spatial differences across European countries. A rich set of graphics, tables, and a discussion complete our analysis. The main implication for policymakers is that the contrast to urban sprawl is a lever to improve transportation efficiency, reducing times, costs, and externalities.

The remainder of this paper is organized as follows. Section 2 presents a literature review. Section 3 describes the methodology. Computational results are described in Section 4 and discussed in Section 5. The conclusions are drawn in Section 6. The paper is completed by Appendix A, which contains the data for all the cities in the sample.

2. Related work

The acknowledgment of an urban sprawl phenomenon dates back to the 1950s, with the work of Burckhardt, Frisch, and Kutter (1955) and Whyte (1958). Nowadays, there is a large consensus that urban sprawl causes more damage than benefits (Hamidi, Ewing, Preuss, & Dodds, 2015).

Urban sprawl has traditionally been studied within the North American context, where extensive evidence has been gathered on its detrimental effects. For instance, Pendall (2000) and Power (2001) identified a connection between urban sprawl in the United States (US) and issues such as social exclusion and racial segregation. Additionally, Putnam (2000) shed light on the link between sprawl and marginalization in suburban areas.

Many scholars have associated urban sprawl with increased travel distances and longer commuting times. Nilles (1991), for example, observed that while residential development in the US has expanded outward, employment opportunities have remained concentrated in city centers, resulting in extended commuting times. Consequently, urban sprawl leads to increased time spent sitting in transportation (Zolnik, 2011) and is associated with higher obesity rates in US cities (Ewing, Schmid, Killingsworth, Zlot, & Raudenbush, 2003; Zhao & Kaestner, 2010). The forced car ownership imposed by the limited accessibility of sprawling areas places a significant financial burden on low-income households (Tiznado-Aitken, Lucas, Munoz, & Hurtubia, 2022). Lee (2020) examined the connection between urban form and travel behavior in the US, showing that urban form significantly influences

modal split, particularly in large metropolitan statistical areas. Furthermore, Lee (2020) found that urban form factors have a statistically significant association with commuting trips and emissions from road traffic, with higher sprawl leading to higher emissions. The reliance on private vehicles in sprawled urban areas has also been linked to increased pollution and CO₂ emissions in the US (Schweitzer & Zhou, 2010), with similar findings reported in Japan (Makido, Dhakal, & Yamagata, 2012). Moreover, urban sprawl in the US is correlated with higher rates of road and pedestrian fatalities (Frumkin, 2002; Ewing & Hamidi, 2015; Ewing, Hamidi, & Grace, 2016), and, as reported by Trowbridge, Gurka, and O'connor (2009), sprawled cities face the additional challenge of longer ambulance response times.

The existence of an urban sprawl phenomenon in Europe was highlighted in the 2000s. The European Environment Agency raised concern about the lack of awareness by policymakers and defined it as "the ignored challenge" (European Environment Agency, 2006; European Environment Agency, 2016). Analogously, scholars raised concerns regarding the applicability to Europe of findings from the United States (see, e.g. Schwanen, 2002; Patacchini, Zenou, Henderson, & Epple, 2009; Hennig et al., 2015) and pushed for context-specific research. However, most studies examining the relationship between travel distance, commuting, and urban sprawl in Europe are limited to the national scale. For example, Travisi, Camagni, and Nijkamp (2010) highlighted that empirical data from Italy support the expectation that intensive travel movements are associated with urban sprawl. Similarly, Marique, Dujardin, Teller, and Reiter (2013) reported similar findings for Belgium, where De Vos and Witlox (2013) also observed a decrease in cycling and walking in highly sprawled urban areas. In Spain, Hortas-Rico and Solé-Ollé (2010) highlighted the increased cost of public services. Moreover, in Germany, Van Ommeren and Gutiérrez-i Puigarnau (2011) found that reducing commuting time to a negligible level could decrease absenteeism at work. Despite growing evidence, housing policies in Europe, which are determined at the national level, remain generally lax concerning urban sprawl, as shown in studies on France, Germany, and the Netherlands (Bas Waterhout & Sykes, 2013), Italy (Salvati, 2015), Greece (Colantoni, Grigoriadis, Sateriano, Venanzoni, & Salvati, 2016), and the United Kingdom (Ferm, Clifford, Canelas, & Livingstone, 2021).

Some scholars have begun to investigate urban sprawl from a European perspective, producing studies based on data from various cities across the continent (Oueslati, Alvanides, & Garrod, 2015; Pourtaherian & Jaeger, 2022). Moreover, Hennig et al. (2015) have proposed a European *de-sprawling* strategy. However, to the best of our knowledge, no research has yet focused on the impact of urban sprawl on routing efficiency in Europe.

3. Methodology

We answer the first research question by proposing a novel methodological framework that integrates knowledge from operations research into urban studies, which building blocks are: (i) a sample of cities, (ii) one or more measures of sprawl, (iii) routing times, and (iv) a measure of correlation.

To address (i), we use a sample of 156 European cities and data from the JRC-GEOSTAT population grid². The most recent validated version contains the population data updated to 2018, with a resolution of 1 km^2 , covering the whole European Union plus a few neighboring countries. This dataset is produced by the European Commission Joint Research Center in collaboration with Eurostat. The JRC-GEOSTAT 2018 was created by integrating data from national institutes of statistics regarding the population figures for 2018 with the population

¹ Throughout this paper, we use interchangeably the words "urban area" and "city".

² Available as a shapefile with coordinate system EPSG:3035 at: https://ec. europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat

density per 1 km² cells in 2011 (contained in the GEOSTAT 2011) and with data on the density of built-up areas in 2012 and 2018 obtained from Copernicus earth observation data. Data quality is discussed in the Appendix A, and further details about the construction of the dataset are available in the technical report by Batista e Silva, Dijkstra, and Poelman (2021). Section 3.1 addresses the details behind data selection. For the complete list of cities, their details, and their density heatmaps, we redirect the reader to Appendix A.

Knowing the population distribution of a city, we can compute a measure of urban sprawl to address (ii). However, the literature has not agreed on a single best indicator of sprawl. For this reason, we study five different indicators of sprawl: Land Usage (*L*), Gini coefficient (*G*), Adapted Shannon Entropy (η'), Moran I index (*I*), and Bribiesca index (*B*). The first three measures rely solely on population data, while the last two consider population, distances, and geometry. The indicators are discussed in Section 3.2.

The routes are the third component (iii). By exploiting the available data on the population distribution, we generate realistic road graphs such that the nodes are more concentrated in denser areas of the city. The underlying hypothesis is that the demand for products and services (like good/food delivery, waste collection, home healthcare...) is more likely to arise where the population is denser. On them, we compute the optimal route that passes through all points, a solution to the Asymmetric Traveling Salesman Problem (ATSP). Given that no solution to the ATSP is better than the optimal one, we use the cost of the optimal route to measure routing efficiency. A similar generation procedure has been recently employed by Rosati and Schaerf (2024) and Ceschia, Di Gaspero, Rosati, and Schaerf (2024) to generate realistic graphs for the Capacitated Dispersion Problem and for the Home Healthcare Routing and Scheduling Problem. Section 3.1 focuses on graph generation, while Section 3.3 explains the mathematical background.

Finally, we use the Pearson correlation (iv) between the five indicators and the average optimal routes, and we fit a linear regression model for route prediction. These points are discussed in Section 3.4.

This section introduces several concepts and uses many terms taken from the information theory and operations research literature. Table 1 summarizes the notation.

3.1. City selection and road graph generation

We define a city as a subset of 1 km²-cells with coordinates (x_i, y_i) of the GEOSTAT dataset such that $(x_i - x)^2 + (y_i - y)^2 \leq r^2$, where (x, y) are the center's coordinate and r is the desired radius. The resulting shape is

Table 1 Notation used.

Symbol/ Term	Definition
cell	The smallest unit of the grid, with squared shape, side 1 km and size
city	1 km ² . For every cell, its coordinates and its population are known. The subset of cells from the GEOSTAT dataset centered in the coordinates (x, y) that lies within a distance <i>r</i> .
urban area	Used as a synonym of city.
$(\boldsymbol{x}, \boldsymbol{y})$	Coordinates of a cell in the GEOSTAT dataset
n	Number of cells in the city
p_i	Population of the <i>i</i> -th cell
$l(p_i)$	1 if $p_i > 0, 0$ otherwise
n_+	Number of cells with positive population
w _{ij}	1 if cells <i>i</i> and <i>j</i> are neighbors, 0 otherwise
η	Shannon entropy
Т	Number of sides of the cells
P_C	Contact perimeter
Р	Perimeter of the shape of the city
(V, E)	A (road) graph
V	Set of vertices of the graph
Ε	Set of edges of the graph
d_{ij}	Distance between nodes v_i and v_j

a circle centered in (x, y) and with radius *r*. We suitably set the *r* to a value of 30 km. All urban areas, therefore, include 2809 cells and cover a surface of 2809 km². However, if a city lies on the sea, cells classified as water are excluded, and the radius is suitably enlarged to include 2809 land cells. Therefore, all cities are identical in size but not shape, which is a not circle in coastal cities. Furthermore, we enforce geographical disjointness by ensuring no cell appears in two areas to avoid biases and overfitting. Fig. 1 shows four cities, all having the same surface but different shapes due to the presence of the sea.

Graphs composed of geolocated nodes are generated through Algorithm 1. The procedure takes as input the urban area A, the transportation mean T (car or bicycle), the number of nodes c, and returns a graph (V, E). First, we initialize the empty graph (line 1) and we assign every cell with a probability of $p^*[i] = p_i / \sum_{j=1}^n p_j$, where p_i is the population of the *i*-th cell (line 2). Based on the probabilities, we sample, through a biased random selection with replacement, c cells from the urban area (lines 3—9). For each sampled cell a_k , we determine a point at random by drawing uniformly random coordinates (x'_k, y'_k) in the cell boundaries $[x_{min}, x_{max}]$ and $[y_{min}, y_{max}]$. The actual coordinates of the nodes $(x_k, y_k) \in V$ are obtained by matching them to the nearest point with road access. Finally, we populate *E* computing the distance matrix (lines 10–15) as the shortest paths between pairs of nodes in the road network. We employ the Open Source Routing Machine, an open-source C++ routing engine. In this work, we use it through the R package osrmr. The matrix is asymmetric due to one-way streets, traffic lights, steepness, and other real-world constraints.

For every city, we generate 10 graphs by each transportation mode $T \in \{car, bicycle\}$ and each size $c \in \{10, 50\}$, obtaining a total of 6420 graphs.

Algorithm 1. Realistic road graph generator

input: Area A (with n cells), tran	input: Area <i>A</i> (with <i>n</i> cells), transportation mean <i>T</i> , number of nodes <i>c</i>											
output: (V, E) directed graph with $ V = c$ nodes												
1: $V \leftarrow \emptyset, E \leftarrow \emptyset$												
2: $p^* \leftarrow \left[\frac{p_i}{\sum_{j=1}^n p_j} \text{ for } i \leftarrow 1,, n\right]$	//Compute the probabilities											
3: for $k \leftarrow 1,, c$ do												
4: $a_k \in A \leftarrow Random(A, p^*)$	//Random coordinates within the urban area											
5: $(x'_k, y'_k) \leftarrow Random(a_k, \cdot)$	//Random coordinates within the cell											
6: $(x_k, y_k) \leftarrow \text{Nearest}(x'_k, y'_k)$	//Nearest street address											
7: $v_k \leftarrow (x_k, y_k)$												
8: $V \leftarrow V \cup \{v_k\}$												
9: end for												
10: for $i \leftarrow 1,, c$ do												
11: for <i>j</i> ←1,, <i>c</i> do												
12: $d_{ij} \leftarrow \text{Distance}(v_i, v_j, T)$	//Real road distance											
13: $E \leftarrow E \cup \{d_{ij}\}$												
14: end for												
15: end for												
16: return (<i>V</i> , <i>E</i>)												

3.2. Measures of urban sprawl

Many definitions and measures of sprawl have been proposed. Some of these are adapted from information theory, spatial statistics, and econometrics, such as the Shannon Entropy, the Gini coefficient, the Moran I Index, and the Bribiesca contact perimeter (Yeh & Li, 2001; Tsai, 2005; Steurer & Bayr, 2020). Several articles have treated and compared indicators (Davis & Schaub, 2005; Frenkel & Ashkenazi, 2008; Kasanko et al., 2006; Schneider & Woodcock, 2008; Torrens, 2008). However, most of these measures are subject to limitations and none of them has been universally accepted as a measure of sprawl (Wolman et al., 2005; Nazarnia, Harding, & Jaeger, 2019).

Jaeger, Bertiller, Schwick, and Kienast (2010b) undertook a significant effort to address the lack of a unified definition and reliable

Fig. 1. Examples of selection of cities. Satellite map images courtesy of Esri.

measures by proposing a classification of existing urban sprawl measures based on 13 suitability criteria. Subsequently, Jaeger, Bertiller, Schwick, Cavens, and Kienast (2010a) proposed four new metrics that try to capture the multiple dimensions of the phenomenon: degree of urban dispersion (DIS), total sprawl (TS), degree of urban permeation of the landscape (UP) and sprawl per capita (SPC). In subsequent work, Jaeger and Schwick (2014) summarized the four metrics into a new measure called weighted urban proliferation (WUP).

Hereby we adopt five indicators compatible with the GEOSTAT dataset, resumed in Table 2. All indicators take values between 0 and 1. For all indicators but the Gini coefficient, a higher value indicates higher sprawl.

3.2.1. Land usage

Land usage is the most elementary measure among the ones considered. We first define a function $l(p_i)$ equal to 1 if the *i*-th cell counts at least one inhabitant and 0 otherwise. In other terms, we differentiate between inhabited and uninhabited cells without considering the actual population of the cell.

Table 2

The five indicators of sprawl, and the measured sprawl dimensions.

Indicator	Name	Measured dimension
L	Land usage	Estimation of residential land use
G	Gini coefficient	Inequality of the population
		distribution
η'	Adapted Shannon	Uncertainty in the population
	entropy	distribution
Ι	Moran I index	Degree of spatial clustering
В	Bribiesca Index	Compactness of the city shape

$$l(p_i) = \begin{cases} 1, & \text{if } p_i > 0\\ 0, & \text{otherwise} \end{cases}$$
(1)

We use a variable n_+ to count the number of cells with positive population.

$$n_{+} = \sum_{i=1}^{n} l\left(p_{i}\right) \tag{2}$$

Finally, we denote by the letter *L* the land usage:

$$L = \frac{n_+}{n} \tag{3}$$

For example, consider an urban area of 100 km^2 , divided into 100 cells of 1 km^2 each. If half of the cells are inhabited, L = 50/100 = 0.5. If the same city only occupies 20 cells, L = 20/100 = 0.2. Therefore, a higher value of *L* indicates a higher level of sprawl because the population spreads over a greater percentage of land. While this measure can be quite imprecise as it does not take into account the actual population of a lived cell, cells with no inhabitants are often encountered in the case of compact cities surrounded by unused or arid land, as it is often the case in Spain, Greece, Scandinavia or in cities that lie in Alpine valleys.

3.2.2. Gini coefficient

The Gini coefficient is a notorious index defined by the Italian statistician Corrado Gini in Gini (1912), which is often used in socioeconomic science to capture the inequality in the distribution of income or wealth. It has been employed to measure urban sprawl (see, e.g., Tsai, 2005), as it captures the inequality in the distribution of the population over the urban area. A higher level of inequality in the population distribution indicates a lower level of sprawl because the population within the urban area is concentrated in a few cells. The Gini coefficient is computed as:

$$G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |p_i - p_j|}{2\sum_{i=1}^{n} \sum_{j=1}^{n} p_j} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |p_i - p_j|}{2n^2 \overline{p}}$$
(4)

In this formula, $|p_i - p_j|$ represents the absolute difference between the population of two cells, *i* and *j*, $\sum_{i=1}^{n} \sum_{j=1}^{n} |p_i - p_j|$ represents the sum of the absolute differences between the population of all pairs of cells, $\sum_{j=1}^{n} p_j$ represents the sum of all populations in the cells, that is, the total population of the city, and \overline{p} is the average cell population. The resulting measure *G* is comprised in the interval [0,1), where 0 indicates a perfect equality in the distribution of the population, that is, all cells have the same population, while values near to 1 indicate a perfect inequality, that is, all the population is concentrated in a single cell.

3.2.3. Adapted Shannon entropy

In a broad sense, entropy is a physical measure associated with the *disorder* of a system. Shannon entropy or information entropy (Shannon, 1948), used in information theory to measure the uncertainty of a random variable, has also been employed as a measure of urban sprawl (Yeh & Li, 2001; Tsai, 2005; Steurer & Bayr, 2020). When applied to the spatial distribution of the population in a city, a higher value of entropy indicates higher sprawl. One drawback, as noted by Yeh and Li (2001), is that entropy is affected by the size of the area being measured. Additionally, Nazarnia et al. (2019) are particularly critical of using entropy as a measure of urban sprawl, noting that it is strongly influenced by the choice of zones with regard to their center, shape, and location. However, in this context, the cities have the same number of cells, making entropy suitable as a measure of sprawl.

To compute Shannon entropy, we first divide the population of the cells by the maximum cell population so that all values are normalized in the interval [0, 1]:

$$\mathbf{p}_i^{-} = \frac{p_i}{\max_{j=1}^n p_j} \tag{5}$$

Then, to compute the urban sprawl, we consider the following relation.

$$\eta := -\sum_{i=1}^{n} p'_i \mathrm{log} p'_i = \mathbb{E}\left[-\log p'_i\right]$$
(6)

Finally, we divide η by the maximum entropy that can be theoretically obtained, that is, the entropy obtained when all cells have the same population ($p'_i = 1/n$ for all *i*).

$$\eta' := \frac{-\sum_{i=1}^{n} p'_i \log p'_i}{-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}} = \frac{-\sum_{i=1}^{n} p'_i \log p'_i}{\log n} = \frac{\eta}{\log n}$$
(7)

The numerator $-\sum_{i=1}^{n} p'_i \log p'_i$ calculates the entropy of the probability distribution p'_i . The denominator $-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}$ calculates the maximum possible entropy for a distribution with *n* events. It assumes an equal population for all cells (1/n). The numerator is divided by the denominator to normalize the entropy.

The resulting measure η' is in the interval [0, 1]. We call it *adapted Shannon entropy*. A higher value of η' indicates a higher level of sprawl, as it is related to the uncertainty of the distribution of the population.

3.2.4. Moran I index

Moran I index (Moran, 1950) measures spatial autocorrelation, a quantification of cell similarity. It was first associated with urban sprawl

by Tsai (2005), who stated that the Moran I index can distinguish compactness from sprawl in the metropolitan form. More recently, however, Steurer and Bayr (2020) criticized its hard interpretability. The index requires a weighting function that takes higher values for cells that are closer in space. Analogously to Tsai (2005) and Steurer and Bayr (2020), we define a function w_{ij} that takes value 1 if two cells are neighbors, 0 otherwise.

$$w_{ij} = \begin{cases} 1, & \text{cells } i \text{ and } j \text{ are neighbors} \\ 0, & \text{otherwise} \end{cases}$$
(8)

The Moran I index is defined as:

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(p_i - \overline{p} \right) \left(p_j - \overline{p} \right)}{\sum_{i=1}^{n} \left(p_i - \overline{p} \right)^2}$$
(9)

where *n* is the number of cells, \overline{p} is the mean population of the cells in the city, and p_i is the population of the *i*-th cell. A value of *I* close to 1 indicates a high level of sprawl, as it is related to clusters of cells with high or low populations.

3.2.5. Bribiesca index

The Bribiesca index was proposed by Bribiesca (1997) to distinguish the compactness of discrete shapes composed of identical cells (or *pixels*) by quantitatively analyzing their perimeters. It is often used in the domain of image processing. Steurer and Bayr (2020) recently proposed it as a sprawl indicator. In the following, we adopt their procedure and their terminology. The Bribiesca index is based on the concept of contact perimeter, which is the sum of the lengths of the cell sides that are in contact with other cells. The intuition is that compact cities have a higher ratio of contact perimeter to total perimeter, while sprawled cities have a larger external perimeter. In general, the most compact shapes are squares and circles, while a shape with completely disconnected cells that do not border each other will have a contact perimeter equal to zero. We consider only cells with $p_i > 0$. If n_+ is the number of cells such that $p_i > 0$, and T is the number of sides of the cells, it holds the relation:

$$2P_C + P = Tn_+ \tag{10}$$

where P_C is the contact perimeter and P is the perimeter. Given that the minimum contact perimeter for a continue shape is $P_{Cmin} = n_+ - 1$ and the maximum contact perimeter as $P_{Cmax} = \frac{Tn_+ - 4\sqrt{n_+}}{2}$, the normalized Bribiesca index is defined as follows:

$$B = \frac{P_C - P_{Cmin}}{P_{Cmax} - P_{Cmin}} \tag{11}$$

However, the formula mentioned above applies to connected figures. In our case, we have to consider the possibility that cells are not connected, thus we set $P_{Cmin} = 0$, and the modified normalized Bribiesca index becomes:

$$B = \frac{P_C}{P_{Cmax}} \tag{12}$$

3.3. Route length estimation

While many real-world routing problems exist, to compare route efficiency in cities, we use as a benchmark the most fundamental one, the Traveling Salesman Problem (TSP), which deals with finding the shortest Hamiltonian cycle that covers all nodes in a graph. A Hamiltonian cycle (also known as Hamiltonian circuit) is a path that visits every vertex exactly once, starting and ending on the same node. Therefore, the optimal solution to the TSP, a solution of minimum cost, is the Hamiltonian cycle of minimum length on a graph. The TSP was proven to be NP-hard by Karp (1972). Given that road graphs are asymmetric, we refer to the asymmetric version of the problem, the Asymmetric Traveling Salesman Problem (ATSP). We describe the integer linear programming (ILP) formulation proposed by Dantzig, Fulkerson, and Johnson (1954). Given a directed graph (V, E),

where *V* is the set of nodes and $E \subseteq V \times V$ is the set of edges, we define a binary variable x_{uv} that takes value 1 if the directed edge (u, v) belongs to the solution, 0 otherwise.

(a) Venice-Padua-Treviso, Italy, η' = 0.900, C(G_{ATc}) = 33172 s

(b) Vienna, Austria, $\eta' = 0.748$, $\tilde{C}(\mathcal{G}_{ATc}) = 26820 \ s$

(c) Thessaloniki, Greece, $\eta' = 0.654$, $\tilde{C}(\mathcal{G}_{ATc}) = 19679 \ s$

(d) Zaragoza, Spain, $\eta' = 0.528$, $\bar{C}(\mathcal{G}_{ATc}) = 15648 \ s$

Fig. 2. Optimal routes in four cities. From top to bottom: Venice-Padua-Treviso, Vienna, Thessaloniki, and Zaragoza. From left to right: density heatmap, red cells are denser, grey cells hare not inhabited; a random graph with |V| = 50, the yellow dots indicate the position of the nodes; optimal solution to the ATSP (for sake of simplicity, the points are connected linearly). Satellite image is courtesy of Esri.

$$\min \sum_{u \in V} \sum_{\nu \in V, \nu \neq u} d_{u\nu} x_{u\nu}$$
(13a)

$$\sum_{u \in V, u \neq v} x_{uv} = 1 \qquad v \in V; \tag{13b}$$

$$\sum_{v \in V, v \neq u} x_{uv} = 1 \qquad u \in V; \tag{13c}$$

$$\sum_{u \in Q} \sum_{v \neq u, v \in Q} x_{uv} \leq |Q| - 1 \qquad \forall Q \subsetneq V, |Q| \geq 2$$
(13d)

The ILP model for the ATSP is shown in Eq. (13). Constraints 13b and 13c impose that the route should go in and go out every node, and Constraints 13d are the sub-tour elimination constraints, where Q is any possible proper subset of V with cardinality at least 2. The Objective 13a imposes the minimization of the length of the route.

Finally, given that we have a family of graphs $\mathscr{G}_{ATc} = \{(V, E)_{ATc_1}, ..., (V, E)_{ATc_{10}}\}$ for every combination of urban area *A*, transportation mode *T* and size *c*, we call $\overline{C}(\mathscr{G}_{ATc})$ the average cost of the optimal ATSP routes on the graphs in \mathscr{G}_{ATc} , and we define it as:

$$\overline{C}\left(\mathscr{G}_{ATc}\right) := \frac{1}{\left|\mathscr{G}_{ATc}\right|} \sum_{(V,E) \in \mathscr{G}_{ATc}} \left(\min \sum_{u \in V} \sum_{v \in V, v \neq u} d_{uv} x_{uv} \right)$$
(14)

3.4. Inference analysis

We adopt Pearson correlation to correlate the five measures of sprawl with $\overline{C}(\mathscr{G}_{ATc})$. It takes values between -1 and 1, with values near -1 and 1 indicating a strong negative and positive correlation, respectively, and values near 0 indicating no correlation. We also evaluate the correlation between the indicators and the average distance between nodes, denoted as \overline{d} . Finally, we perform linear regression for the prediction of \overline{d} and $\overline{C}(\mathscr{G}_{ATc})$. The resulting linear models allow an estimation of the route efficiency in a generic city without solving the corresponding mathematical model.

3.5. Visual example

We discuss a visual example of the described methodology on four cities from the sample with very different levels of sprawl. The most sprawled area is a part of the Veneto region in Italy, which comprises the cities of Venice, Padua, and Treviso. It is characterized by a net of smalland medium-sized cities and towns and the absence of a predominant city core. The other cities are Vienna, in Austria, Thessaloniki, in Greece, and Zaragoza, in Spain. The latter is a very compact city that lies in the Ebro Valley, with a very dense urban core and a sharp transition between the urban core and the surrounding land, with a limited presence of suburbs.

Fig. 2 shows the four urban areas. For each city, from left to right, the first graphic is the density heatmap, where the color spans from white to red, being darker for denser cells and grey if a cell is not inhabited. The second graphic shows a random graph, with |V| = 50, generated according to the methodology described in Section 3. Finally, the third graphic is the optimal solution to the ATSP on the graph. With a simplification, the picture's points are connected linearly. For every city, we report in the caption η' and $\overline{C}(\mathscr{G}_{ATc})$. The four urban areas are ordered from higher to lower sprawl. In Venice-Padua-Treviso, we observe that practically all cells are inhabited, without a predominant city core. The sampled points are very sparse, and routes are inevitably long. The other extreme, Zaragoza, is a very compact city. Therefore, the points are very close, and the routes are short. Vienna and Thessaloniki are in an intermediate situation.

4. Computational results

Our code is written in R and runs on Ubuntu 22.04. To handle the geographical database, we use the sf package, while to solve the ATSP, we use the solver CONCORDE (Applegate, Bixby, Chvatal, & Cook, 2006), written in C, which guarantees the optimality of the solution³. The handling and elaboration of the extensive data was possible thanks to a machine equipped with over 116 GB of RAM.

All the generated graphs (in TSPLIB format) and the tables with the computational results are publicly available at https://github.com/robertomrosati/urban-sprawl-public.

4.1. General results on sprawl and routes

The values of the sprawl indicators L, G, η' , I, and B, the average distances \overline{d} and the mean ATSP routes $\overline{C}(\mathscr{G}_{ATc})$ for all the 156 cities are shown in Tables A.9 to A.11 in Appendix A.

Sprawl and routes are compared in Fig. 3. The adapted Shannon entropy expresses the sprawl, and the route duration is converted into hours for better readability. We show the plot for all cities in the sample (Fig. 3a) and and for a subset of cities taken from Germany, Italy, and Spain, the three most represented countries (Fig. 3b).

Fig. 4 displays the geographical location of the 156 urban areas. The color indicates the average routing time $\overline{C}(\mathscr{G}_{ATc})$, with green associated with shorter routes and red associated with longer ones. The diameter of the point is proportional to the population of the urban area. The colors in the figure help us identify geographical differences in the distribution of sprawl.

Additionally, Fig. 5 shows the distribution of the route lengths if c = 50 and T = car for countries with at least five cities in the sample (at least 50 graphs).

We observe sharp differences between cities in Europe. In order to visit the same number of customers, a company in a sprawled city needs twice or more the time needed in a compact city. Interestingly, we observe that routing times by bicycle in the most compact cities are comparable to those obtained by car in sprawled cities. We discuss further insights in Section 5.

4.2. Correlation between sprawl and routes

The results of the correlation test between the indicators and $\overline{C}(\mathscr{G}_{ATc})$ for the graphs with c = 50 are shown in Table 3. The Table also reports the p-values and the boundaries of the 95%-confidence intervals. We mark in bold the highest correlation, given by Shannon entropy, and all p-values below the significance threshold of 5%. They are always very near to zero, highlighting the statistical significance of the correlation, being slightly higher only for the Moran I index (but still well below the significance threshold). All indicators yield a significant correlation: higher sprawl bears longer routes, which answers the second research question.

In Table 4, we repeat the correlation test using only specific subgroups of cities. The first subset, labeled *no sea*, includes 107 cities with a radius of exactly 30.0 km. What we observe is a slight increase in the correlation. We also show the correlation test results for c = 10, which shows a lower correlation than c = 50 for all indicators but *I*. The pvalues in this test are near zero, confirming the statistical significance of the correlation test.

4.3. Correlation between sprawl and distances

In Table 5, we present the results of the Pearson correlation test

 $^{^3}$ Concorde is available online at http://www.math.uwaterloo.ca/tsp/concorde.html

(b) Cities in the three most represented countries (Germany, Italy and Spain).

Fig. 3. Relationship between the adapted Shannon entropy η' on the *x*-axis and the average routing time $\overline{C}(\mathscr{G}_{ATc})$ is on the *y*-axis for the cities in the sample. Legend for country codes is available in Table 8.

between the sprawl indices and the average shortest paths between pairs of points in the city. We observe that, while all indicators but *I* have a higher correlation with $\overline{C}(\mathscr{G}_{ATc}), I$ is more correlated with \overline{d} . The p-values are well below the significance threshold for all the indicators, highlighting that the correlation between sprawl and distances is statistically significant.

4.4. Linear regression

The resume of the linear models obtained fitting \overline{d} on the sprawl indicators are presented in Table 6. The table shows the parameter R^2 and the adjusted R^2 values, the *F*-statistic, and the coefficients β_0 and β_1 of the linear model $\overline{d} = \beta_0 + \beta_1 \cdot \sigma$, where σ is either L, G, η', I or *B*. The table also shows the following information about the residuals: the minimum, the first quartile, the median, the third quartile, and the maximum. The model's predictive accuracy is higher for the Shannon entropy.

We repeat the procedure for optimal ATSP routes $\overline{C}(\mathscr{G}_{ATc})$, in the case of c = 50, for both the car and the bicycle. The results are shown in Table 7, which has the same columns as Table 6. The (adjusted) R^2 are generally higher than for \overline{d} , indicating higher accuracy. Among the models compared in Table 7, R^2 is higher for Shannon entropy. In response to the third research question, Shannon entropy is the best predictor of routing efficiency.

Considering, in particular, Shannon entropy, the linear model tells

that for every increase of 0.1 in the value of η' , the predicted distance between any pair of points by car increases by 232 seconds, which is almost four additional minutes more that are needed to reach any other point. Regarding routes, we obtain that for every increase of 0.1 in the value of η' , the route length increases by 3518 seconds, almost one hour.

Fig. 6 plots the distribution of the values of, respectively, \overline{d} (Fig. 6a) and and $\overline{C}(\mathscr{G}_{ATc})$ (Fig. 6b) against Shannon entropy η' . In both cases, T = car and c = 50. The red line is the prediction made by the linear model. The diagnostic plots for the model (the residuals vs. the fitted values, the normal Q-Q plot, the scale-location plot, and the residuals vs. the leverage) are on the right.

5. Discussion

The main discovery of this study is that the population distribution in a city plays a crucial role in routing efficiency: compact cities are efficient in transportation. Corporations and citizens operating and living in cities affected by higher sprawl are paying a *sprawl toll*, of which they are probably unaware.

A major implication for policymakers is that reducing urban sprawl can significantly enhance transportation efficiency and mitigate its externalities. Conversely, urban sprawl presents substantial challenges to the effectiveness of transportation optimization, as solutions are conditioned by the geography introduced by sprawling urban landscapes. Addressing urban sprawl is also crucial within the broader global

Fig. 4. All the 156 cities used in the analysis. The color represents the average routing time, while the diameter of the circle is proportional to the population.

Fig. 5. Distribution of route length in countries represented by at least five cities. Country codes are explained in Table 8.

strategy to limit the rise in global temperatures to 1.5°C above preindustrial levels, a critical threshold identified by scientists to prevent severe consequences of climate change (Intergovernmental Panel on Climate Change, 2022). Proactive measures to curb sprawl today could avert future environmental and logistical challenges in cities.

In what follows, we discuss the implications of the results and the geographical insights we can derive, answering the fourth research question.

5.1. Geographical insights

Europe is not a monolithic block, but it is made up of diverse socioeconomic situations and urban structures (the list of countries used in this study can be visualized in Table 8). Therefore, for the heterogeneity of the urban forms, choosing a dataset that covers most of Europe strengthens our results. At the same time, the fact that data comes from a unique and trustworthy source ensures that the differences in routing times are not due to discrepancies in data.

From Tables A.9 to A.11 and Figs. 4,5, we observe that many Spanish cities score better than other European cities in all the sprawl indicators and route lengths. We also see that sprawl increases from Southern and Eastern Europe to Central and North-Western Europe. Portugal, Belgium, the Netherlands, and Germany are particularly affected by sprawl. We observe a North-South divide in Italy, with some Southern cities being relatively compact and many Northern Italian cities being among the most sprawled in Europe. Romania, Greece, and Spain have the fastest routes among the countries represented by at least five cities.

Table	3
-------	---

F

earson correlation	ı between sprawl	indices and	$\overline{C}(\mathscr{G}_{ATc}),$	graphs wi	th c = 50
--------------------	------------------	-------------	------------------------------------	-----------	-----------

		bicy	rcle			car					
М.	corr	p.value	int.min	int.max	corr	p.value	int.min	int.max			
L	0.514	< 0.001	0.389	0.621	0.710	< 0.001	0.622	0.780			
G	-0.607	< 0.001	-0.698	-0.497	-0.749	< 0.001	-0.811	-0.671			
η΄	0.689	< 0.001	0.597	0.764	0.823	< 0.001	0.764	0.868			
Ι	0.336	< 0.001	0.189	0.468	0.233	0.003	0.078	0.376			
В	0.483	< 0.001	0.352	0.595	0.655	< 0.001	0.555	0.736			

Table 4

Pearson correlation between sprawl indices and the average optimal ATSP route duration, for subsets of cities

				bicy		car					
	cities	М.	corr	p.value	int.min	int.max	corr	p.value	int.min	int.max	
		L	0.577	< 0.001	0.435	0.691	0.772	< 0.001	0.682	0.839	
		G	-0.662	< 0.001	-0.757	-0.540	-0.793	< 0.001	-0.854	-0.710	
50	no sea	η΄	0.754	< 0.001	0.658	0.825	0.872	< 0.001	0.817	0.911	
		Ι	0.433	< 0.001	0.265	0.575	0.294	0.002	0.110	0.458	
		В	0.558	< 0.001	0.412	0.677	0.743	< 0.001	0.644	0.818	
		L	0.404	< 0.001	0.263	0.527	0.533	< 0.001	0.410	0.637	
		G	-0.504	< 0.001	-0.613	-0.377	-0.560	< 0.001	-0.659	-0.442	
10	all	η΄	0.562	< 0.001	0.445	0.661	0.647	< 0.001	0.545	0.730	
		Ι	0.469	< 0.001	0.336	0.583	0.421	< 0.001	0.283	0.542	
		В	0.366	< 0.001	0.222	0.495	0.526	< 0.001	0.402	0.631	

Table 5

Pearson correlation between sprawl indices and \overline{d} .

		bicy	rcle			ca		
М.	corr	p.value	int.min	int.max	corr	p.value	int.min	int.max
L	0.405	< 0.001	0.265	0.529	0.525	< 0.001	0.401	0.630
G	-0.519	< 0.001	-0.625	-0.394	-0.576	< 0.001	-0.672	-0.460
η΄	0.579	< 0.001	0.464	0.675	0.636	< 0.001	0.533	0.721
Ι	0.538	< 0.001	0.416	0.641	0.491	< 0.001	0.361	0.601
В	0.395	< 0.001	0.253	0.520	0.492	< 0.001	0.363	0.602

Table 6

Results obtained by the linear models that predict \overline{d} .

								Residuals						
	M.	R^2	adj-R ²	F	β_0	$\beta 1$	min	Q1	median	Q3	max			
	L	0.276	0.271	58.63	1105	802	-570	-206	-36	167	1142			
	G	0.331	0.327	76.3	3924	-2678	-629	-205	-45	151	1102			
car	ή	0.405	0.401	104.88	-117	2323	-433	-210	-51	141	1188			
	Ι	0.241	0.236	48.8	892	3422	-964	-175	23	221	735			
	В	0.242	0.237	49.13	635	1238	-645	-225	-34	188	1118			
	L	0.164	0.159	30.26	4241	2473	-2786	-993	54	893	3252			
	G	0.270	0.265	56.85	14137	-9647	-2804	-903	-73	878	3139			
bicycle	η	0.335	0.331	77.7	-473	8438	-2330	-913	-99	847	3211			
	Ι	0.289	0.285	62.75	2661	14989	-4022	-634	169	685	3540			
	В	0.156	0.150	28.45	2670	3969	-2653	-1064	30	917	2851			

Out of the ten cities with the fastest routes, eight are in Spain, the remaining in Greece and Romania, and out of the ten cities with the lowest Shannon entropy, nine are in Spain and one in Southern Italy. Many Spanish cities, especially those in the country's interior, remain exceptionally compact compared to their European peers. Their compactness is evident in the density heatmaps (Figs. A.10 to A.14) in Appendix A (look, for instance, at Albacete, Burgos, Zaragoza, Vitoria-Gasteiz). Jaeger et al. (2010b), define urban sprawl as "a phenomenon that can be visually perceived in the landscape", and indeed, the attentive beholder venturing at the heart of the Iberian peninsula, will notice at sight a compactness of cities and enjoy large open spaces without traces of human settlements as it is barely possible elsewhere in Western Europe. Fig. 3b clarifies the compactness of Spanish cities, the sprawl of German ones, and the North-South divide in Italy. Among the whole sample, the ten cities with the longest routes are in Germany (3), Italy (3), Portugal (2), Austria (1) and Belgium (1), while the cities with the highest Shannon entropy are in Belgium (3), Germany (2), Italy (2), France (1), United Kingdom (1) and Portugal (1).

The reasons for these differences in Europe are a mix of historical, geographical, cultural, and socioeconomic factors. From a historical point of view, Mediterranean Europe has a prolonged urban tradition that traces back to the Greek and Roman settlements. Geographically speaking, Southern Europe is more mountainous than Northern and Central Europe. Barriers like the sea and the mountains and the lack of extensive fertile plains forced Mediterranean cities to develop more compactly. This contrast is evident in Italy, where the Northern Po Valley, the country's largest and most fertile plain, is also among the most sprawled areas in Europe. Recent socioeconomic reasons might be even more prominent, considering that most European cities experienced sustained population and surface growth in the last two centuries. Dissimilar economic prosperity and cultural perspectives led to diverging car ownership rates, access to detached housing, infrastructure development, and investments in public transportation across European countries. Additionally, Eastern Europe experienced state-led urban planning, while the development in Western Europe was mainly guided by private initiative, with a few exceptions (e.g., Vienna).

As a result of these factors, we observe varying degrees of housing compactness. We use data from Eurostat about the percentage of inhabitants living in buildings with more than ten dwellings, which we

Table 7Results obtained by the linear models that predict $\overline{C}(\mathcal{G}_{ATc})$.

										Residuals		
с	Т.	М.	R^2	adj-R ²	F	β_0	$\beta 1$	min	Q1	median	Q3	max
		L	0.503	0.500	156.13	19717	12709	-7638	-1859	162	2053	9968
		G	0.561	0.558	196.84	63007	-40847	-7247	-1733	66	1874	9307
	car	η΄	0.677	0.675	322.31	1550	35182	-6283	-1642	-16	1444	8399
		Ι	0.054	0.048	8.8	23647	19013	-12153	-2085	907	3002	6761
50		В	0.429	0.425	115.57	12492	19319	-8364	-2119	48	2056	9828
		L	0.265	0.260	55.41	64600	23934	-26554	-5779	38	5602	23818
		G	0.369	0.364	89.88	153992	-85998	-27599	-5676	-398	5164	23028
	bicycle	η΄	0.475	0.472	139.34	22750	76572	-18241	-4376	-888	4060	23930
		Ι	0.113	0.107	19.6	64615	71375	-38134	-4398	1900	7463	24261
		В	0.233	0.228	46.78	50515	36994	-21532	-6363	-429	5487	23635
		L	0.284	0.279	61.1	7831	4741	-4503	-880	-70	982	6011
		G	0.313	0.309	70.29	23915	-15163	-4931	-1053	-136	1143	5761
	car	η	0.418	0.415	110.81	598	13741	-3124	-1052	-109	853	5445
		Ι	0.177	0.172	33.18	7220	17099	-6812	-1122	301	1331	3406
10		В	0.276	0.272	58.81	4748	7703	-4157	-1091	57	940	6024
		L	0.163	0.157	29.96	28112	12424	-15994	-4020	141	4241	17214
		G	0.254	0.249	52.44	76763	-47236	-16230	-3568	-180	3690	19199
	bicycle	η΄	0.316	0.312	71.27	5205	41345	-12539	-3464	-302	3239	18494
		Ι	0.220	0.215	43.35	22134	65868	-22158	-3176	810	4058	20616
		В	0.134	0.128	23.81	21305	18557	-15239	-4231	528	3938	16879

(b) $\overline{C}(\mathcal{G})$.

Fig. 6. Linear model for the prediction of \overline{d} and $\overline{C}(\mathscr{G}_{ATc})$ based on the Shannon Entropy η' .

Table 8

Countries in the sample, from left to right: country code, name, number of cities in the sample, average population of the cities in the sample, route lengths: min, median and max among all the generated road graphs, the percentage of inhabitants living in buildings with more than ten dwellings (% compact housing).

	Country		Cities		Route (h)		% Compact
Code	Name	#	Avg Pop.	Min	Median	Max	housing
AT	Austria	5	886551	5.66	8.54	10.47	27.4
BE	Belgium	4	872799	7.09	8.59	9.96	7.3
BG	Bulgaria	3	832931	5.03	7.48	9.42	39.4
CH	Switzerland	2	1565620	7.56	8.80	10.42	25.0
CY	Cyprus	1	468500	6.53	6.75	7.61	8.4
CZ	Czech Republic	3	992805	6.68	8.22	9.44	38.1
DE	Germany	18	1570627	6.25	8.38	10.53	16.7
DK	Denmark	4	776939	5.99	7.17	8.87	26.3
EE	Estonia	1	573041	5.27	6.20	7.96	53.6
EL	Greece	5	1095925	3.56	6.61	9.56	23.2
ES	Spain	22	1162152	3.20	6.19	9.18	44.8
FI	Finland	3	654918	5.74	7.26	8.30	32.7
FR	France	13	910385	5.40	8.03	11.00	23.6
HR	Croatia	2	736749	5.69	7.92	10.88	15.7
HU	Hungary	2	1465965	6.58	8.19	8.95	23.0
IE	Ireland	3	739778	6.31	7.68	9.39	4.2
IT	Italy	18	1363203	5.38	8.13	13.02	25.5
LT	Lithuania	2	540661	4.65	6.50	8.12	51.7
LU	Luxembourg	1	737146	6.86	7.98	8.68	13.5
LV	Latvia	1	855892	6.87	7.81	8.69	58.7
NL	Netherlands	5	1794434	6.99	8.47	10.45	14.2
PL	Poland	7	989698	6.37	8.34	10.27	34.7
PT	Portugal	7	899932	5.76	8.66	11.30	19.6
RO	Romania	9	703521	3.88	6.67	9.23	29.9
SE	Sweden	3	1100291	6.32	7.77	10.55	35.2
SI	Slovenia	1	481233	6.76	8.29	9.45	19.5
SK	Slovakia	1	653203	7.48	9.09	10.30	40.8
UK	United Kingdom	10	1381130	5.58	7.97	9.81	6.3

define as *compact housing*⁴. Table 8 shows the share of inhabitants living in compact housing, together with a summary of the results for the countries in the sample. We see that high rates of compact housing (> 30%) are registered in the Baltic republics (Estonia, Latvia, Lithuania), Spain, Finland, Sweden, and Eastern Europe. Many cities from these countries registered low routing times. Exiguous rates of compact housing are recorded in the UK, Ireland, and Belgium. In order to visualize these data on the map, we extend Fig. 4 into Fig. 7 by assigning a gradient color to the countries according to their level of compact housing. Fig. 8 shows examples of compact housing.

5.2. Winners and losers of sprawl

The correlation between total population and routing times is 0.265. While this fact does not affect the results, which are based on relative density, it does allow us to derive some considerations.

In Fig. 9, we show the distribution of the cities in the sample according to their average optimal route length $\overline{C}(\mathscr{G}_{ATc})$ and their population. The population is on a logarithmic scale and we have normalized the variables in the interval [0, 1]. Looking at Fig. 9a, we identify four quadrants. Clockwise, starting from the bottom left, we have (i) cities with low population and low sprawl, (ii) cities with low population and high sprawl, (iii) cities with high population and high sprawl, and (iv) cities with high population and low sprawl.

Cities in quadrants (i) and (iii) are where we expect them to be: the city sprawls as the population grows. Cities in quadrant (iv) are the *winners* of this sample. They remained route-efficient despite their high population. The list comprises, among others, Madrid, Athens, Bucharest, Vienna, Palermo, Valencia, Zaragoza, Barcelona and Seville. On the other hand, quadrant (ii) includes cities with high sprawl despite their low population, which are the *losers* in the sprawl challenge: inhabitants face longer distances and longer routes than in much larger cities,

without enjoying the benefits that a higher population brings in terms of mobility. Here, we find cities like Coimbra, Klagenfurt, Graz, Udine, Piacenza, Perugia, and Jena. The names of some of these cities are shown in Fig. 9b.

5.3. Other variables of interest

Other control variables, such as infrastructure development and topology, might affect sprawl and routing. However, the choice of 156 cities across Europe mitigates their influence.

In contrast with many studies comparing cities based on their administrative borders, we have chosen to compare urban areas of the same size. Using administrative borders produces unfair comparisons and can lead to entirely distorted conclusions. On the contrary, if the size is the same, the deviation in the route lengths is attributable solely to the sprawl of the population. It would be possible, in principle, to compare cities with different sizes and to normalize the distances in the [0, 1] range at the price of losing the information of the actual expected routing time in the real city. Therefore, we decided to use a single size for all identical cities.

Our model does not consider parking times, which may negatively affect the performance of cars. Conversely, a possible reason for bicycle efficiency in compact cities is that routes rarely include points distant from the city center.

6. Conclusions and future work

This study highlights the underestimated importance of addressing urban sprawl to reduce transportation's economic, social, and environmental costs. Compact cities facilitate efficient transportation. Conversely, if cities continue sprawling, no matter how good we become at solving complex optimization routing problems, their spatial distribution will prevent them from achieving sustainable and efficient urban transportation.

These conclusions are rooted in a novel methodology that integrates

⁴ EUROSTAT, dataset ILC_LVHO01, year 2018.

Fig. 7. The same information of Fig. 4, enriched with the indication of the percentage of inhabitants living in dense housing (defined as buildings with more than ten dwellings).

Fig. 8. Compact urban development in cities from the sample: Vienna, Austria (top left), Naples, Italy (top right), Zaragoza, Spain (bottom left), and Bilbao, Spain (bottom right). Photos by the author.

knowledge from operations research into urban studies, applied to 6240 realistic graphs from 156 European cities, which offer great spatial heterogeneity. We found a significant correlation between all indicators of sprawl (land usage, Gini coefficient, Shannon entropy, Moran I index, and Bribiesca index) and travel distances and routing times for both cars and bicycles. Shannon entropy is the best predictor of route efficiency. Therefore, it is a suitable indicator when the cities have the same size.

compactness, many Spanish cities are the least sprawled in the sample and the most efficient when it comes to routing. Mediterranean and Eastern Europe host the majority of compact cities, while many Western and Central European countries are on the high end of sprawl.

In future work, we will extend the sample by including cities from other continents to validate our results on a global scale. We also plan to include more specific indicators, such as Weighted Urban Proliferation, proposed by Jaeger and Schwick (2014). The challenge is the

(a) Population vs Routes

(b) Population vs Routes (Selected Cities)

Fig. 9. Distribution of cities by population and routes.

availability and reliability of data across several countries.

Regarding the routing model, we plan to consider parking to enhance realism. We will also consider public transportation and the possibility of choosing between multiple modes en route. Additionally, we intend to investigate the relationship between population distribution and the effectiveness and efficiency of railway networks.

Finally, as an ambitious long-term plan, we aim to establish a new stream of research that combines operations research and urban studies, providing a comprehensive framework to guide optimal decisions in urban planning.

Declaration of Competing Interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author acknowledges the CINECA IA4EVRP HP10CE285L and MATHLSCP HP10CDK4DW awards under the ISCRA initiative, for the availability of high-performance computing resources and support.

Furthermore, the author acknowledges the European Commission (Eurostat, Joint Research Centre and DG Regional Policy - REGIO-GIS) for providing the GEOSTAT 1 km² population grid.

The constructive and detailed feedback by three anonymous reviewers is gratefully acknowledged.

Finally, the author thanks Hải Yến Lưu and Eugenio Macor for the fruitful discussions.

Appendix A. City data

We included 156 areas of size 2809 km² in the study, listed in Tables A.9 to A.11. Each area takes the name of a city (or the cities) that lie at the center of the circle or is most representative of the area, but other important settlements might lie within the 30 km. Besides the countries and the name of the city, we report the population, the density, the lived density, which is the density that is computed only on lived cells, and the maximum density, the five indicators of sprawl, the average distances by bicycle and car, and the optimal routes by bicycle and car for 10 and 50 points. The density heatmaps for all cities are also shown in Figs. A.10 to A.14. For all cities the density goes from white (minimum) to red (maximum in the city), and unpopulated cells are in gray. All figures have a radius of 30 km and are directed with the north up.

All EU countries are represented except Malta (which surface is smaller than 2809 km^2), plus Switzerland and the United Kingdom, for a total of 28 countries. The total area involved in the study is 438204 km^2 .

The density of the area in the study is $398inh./km^2$, higher than the density of the EU. The densest cell reported in this study lies in Barcelona, with a density of 52767. Very dense cells (over 40000) are also found in Madrid (44006), Zaragoza (42833), Bilbao (41389), and Oviedo-Gijón (40083). Despite their high total population, the densest cells in Duisburg-Essen-Dortmund and Manchester are just 15030 and 13313, respectively. The area Libramont-Chevigny has the lowest maximum density, $2357inh./km^2$.

The most populated urban area is Madrid, with a population of 5940359, while the least populated one is Covilhã-Fundã, with 112731 inhabitants. We point out that we did not intentionally include the extensive urban areas of London and Paris, as they are of a different order of magnitude in terms of population and extension.

The areas with the highest percentage of cells with human presence (*L*) are Florence (IT, 91.5%), Milan (IT, 92.3%), Nantes (FR, 92.5%), Hengelo (NL, 93.2%), Venice-Padua-Treviso (IT, 93.3%), Duisburg-Essen-Dortmund (DE, 94.7%), Linz (AT, 95.1%), Lille (FR, 96.2%), Ghent (BE, 96.5%) and Toulouse (FR, 96.7%). Cities with the least human human cell occupation are Albacete (ES, 3.5%), Zaragoza (ES, 12.2%), Córdoba (ES, 13.6%), Valladolid (ES, 14.6%), Burgos (ES, 15.2%), Galați-Brăila (RO, 18.3%), Salamanca (ES, 18.4%), Vitoria-Gasteiz (ES, 19.4%), Granada (ES, 20.5%) and Cádiz-Jerez (ES, 20.7%)

If we look at Shannon entropy, the lowest sprawl is registered in Albacete, Burgos, Vitoria-Gasteiz, Córdoba, Salamanca, Zaragoza (ES), Foggia (IT), Pamplona, Valladolid, León (ES), with values spanning from 0.367 (Albacete) to 0.549 (León). In contrast, the highest sprawl, in decreasing order, is recorded in Duisburg-Essen-Dortmund (DE), Venice-Padua-Treviso (IT), Beringen (BE), Porto (PT), Ghent (BE), Manchester (UK), Milan (IT),

Cologne-Bonn (DE), Lille (FR), Charleroi (BE), with values spanning from 0.909 (Duisburg-Essen-Dortmund) to 0.866 (Charleroi).

According to $\overline{C}(\mathscr{G}_{ATc})$ for the case c = 50 and T = car, the ten areas with the fastest routes are, in order, Albacete, Zaragoza, Burgos, Valladolid, Córdoba, Pamplona, Salamanca, Vitoria-Gasteiz (ES), Thessaloniki (EL) and Galați-Brăila (RO), with values spanning from 15563*s* for Albacete to 19973*s* for Galați-Brăila. Conversely, the cities with the longest routes are, in decreasing order, Covilhã-Fundão, Viseu (PT), Cologne-Bonn (DE), Klagenfurt (AT), Naples (IT), Hamburg (DE), Rome (IT), Duisburg-Essen-Dortmund (DE), Venice-Padua-Treviso (IT) and Ghent (BE), with values spanning from 34857*s* (Covilhã-Fundão) to 33027*s* (Ghent).

Data comes from the GEOSTAT-JRC database. EUROSTAT also provides information on data quality, which varies by country or by region. Belgium, Switzerland, Finland, Lithuania, Norway, and Slovenia are classified as "very high", meaning data has a sub-kilometer resolution. Ireland, Denmark, Sweden, Estonia, Latvia, and the Netherlands are classified as "high", meaning data has a resolution of one kilometer. The quality of data for Spain is classified from "medium" to "very high" (Andalucia and Canary Islands). Most remaining countries are classified as "medium", meaning data was available at a lower resolution than 1 km². Finally, very few countries are classified as "low". Most of them are extra-EU and outside our study. In the case of regions with "high" or "very high" quality, data collection methodology is unlikely to have influenced our results. In the case of regions with "medium" and "low" quality, data is interpolated, which might have introduced an approximation.

Table A.9: List of cities included in the study, part I

	Area			Density			Sprawl Indicators				$\overline{d}(s)$		$\overline{C}(\mathscr{G}_{ATc})$ (s)			
Country	City	Pop.	Density	Lived	Max	L	G	ή	Ι	В	bic.	car	b10	b50	c10	c50
AT	Graz	629669	224	246	12074	91.0	0.780	0.808	0.123	0.949	5049	1638	35343	79893	10480	31682
AT	Innsbruck	351261	125	486	11968	25.7	0.947	0.656	0.220	0.738	4999	1376	30484	67269	11490	26438
AT	Klagenfurt	298412	106	146	6641	72.6	0.829	0.787	0.207	0.866	6516	2006	40373	91194	12255	33508
AT	Linz	729382	260	273	9835	95.1	0.782	0.820	0.208	0.961	6340	1750	36645	86060	12083	31175
AT	Vienna	2424033	863	1409	31813	61.2	0.892	0.748	0.116	0.771	3938	1374	24176	69262	8925	26820
BE	Beringen	991314	353	393	5480	89.8	0.661	0.899	0.291	0.942	7593	1980	41548	90418	12672	31394
BE	Charleroi	1066356	380	430	6079	88.2	0.738	0.866	0.220	0.903	6597	1700	36228	83352	11090	30028
BE	Ghent	1298194	462	479	10947	96.5	0.680	0.886	0.197	0.972	6920	1891	42821	87782	12264	33027
BE	Libramont-	135335	48	98	2357	48.9	0.847	0.793	0.360	0.655	8044	2005	43387	90652	12294	29039
	Chevigny															
BG	Plovdiv	574258	204	585	19471	34.9	0.945	0.657	0.187	0.664	4310	1313	31217	66940	9638	26375
BG	Sofia	1476407	526	1208	16432	43.5	0.924	0.712	0.148	0.732	3596	1240	22790	59029	8846	25558
BG	Varna	448130	160	442	13677	36.1	0.955	0.635	0.183	0.622	5868	1454	38167	71578	10026	26715
CH	Bern	1028000	366	408	10861	89.7	0.789	0.831	0.239	0.942	7538	2070	45834	86490	12337	31230
CH	Zürich	2103241	749	833	14962	89.9	0.758	0.858	0.243	0.920	6837	1924	42311	89730	12189	32068
CY	Larnaca	468500	167	462	6175	36.1	0.923	0.715	0.139	0.791	7080	1729	37563	71868	11500	24764
CZ	Brno	752231	268	468	11248	57.2	0.875	0.763	0.231	0.676	5392	1597	35728	84282	11815	30198
CZ	Pilsen	379535	135	243	12797	55.7	0.901	0.718	0.279	0.648	5247	1438	35116	78866	10344	26938
CZ	Prague	1846651	657	833	25868	78.9	0.837	0.797	0.213	0.839	5201	1557	37451	81581	10734	30755
DE	Bamberg	435726	155	276	6736	56.2	0.846	0.793	0.258	0.665	6825	1611	40582	90998	10474	26493
DE	Berlin	4442380	1581	2153	26155	73.4	0.793	0.839	0.137	0.850	5392	1744	34177	81955	11847	30107
DE	Bremen	1052268	375	474	13548	79.0	0.847	0.795	0.194	0.866	5600	1596	31558	75232	10471	28416
DE	Chemnitz	766866	273	357	10064	76.5	0.793	0.828	0.241	0.813	6872	1861	40149	90174	13295	31596
DE	Duisburg-	4488029	1598	1688	15030	94.7	0.635	0.909	0.250	0.966	7656	1812	45255	93743	11882	33242
	Essen-															
	Dortmund															
DE	Frankfurt am	2734674	974	1409	21317	69.1	0.775	0.848	0.250	0.815	6701	1626	43297	92466	11731	31111
	Mein															
DE	Göttingen	434706	155	337	6995	45.9	0.877	0.765	0.257	0.608	7083	1935	45034	91135	12270	29743
DE	Hamburg	2708264	964	1180	21384	81.7	0.789	0.840	0.159	0.878	5818	1884	37046	86215	11649	33432
DE	Hof-Plauen	410031	146	217	7880	67.2	0.843	0.791	0.271	0.763	8111	2029	45136	92564	13424	30962
DE	Ingolstadt	485841	173	300	11020	57.7	0.854	0.786	0.258	0.695	6355	1704	40151	84117	10303	27934
DE	Jena	439404	156	283	7174	55.3	0.868	0.761	0.260	0.654	7436	2069	45771	91231	11804	31364
DE	Kiel	638130	227	311	12589	73.1	0.873	0.763	0.242	0.808	6570	1728	42740	85010	12000	29423
DE	Cologne-Bonn	2980915	1061	1273	17790	83.3	0.735	0.869	0.220	0.889	6910	1727	40690	91492	11016	33762
DE	Ludwigshafen-	1935680	689	986	14313	69.9	0.799	0.835	0.289	0.813	7308	1706	40992	93021	11125	31952
	Heidelberg															
DE	Magdeburg	484425	172	423	10745	40.8	0.909	0.726	0.225	0.585	5387	1353	35688	77312	11017	25332
DE	Munich	2471285	880	1205	23853	73.0	0.837	0.807	0.158	0.816	5008	1476	31079	78207	10441	28742
DE	Osnabrück	689838	246	269	8897	91.4	0.780	0.837	0.244	0.939	6389	1712	36352	83300	12341	30364
DE	Ulm	672830	240	432	9033	55.4	0.850	0.794	0.277	0.683	6815	1742	42223	88553	11362	29240
DK	Aalborg	298232	106	134	10876	79.2	0.890	0.730	0.206	0.889	5506	1430	35051	75898	10887	26052
DK	Aarhus	531476	189	225	15015	84.0	0.873	0.758	0.192	0.929	5172	1372	35512	76722	8725	24441
DK	Copenhagen	1907112	679	909	23136	74.7	0.831	0.808	0.180	0.921	8898	1975	54606	101723	12202	30643
DK	Odense	370936	132	158	6707	83.6	0.845	0.776	0.168	0.949	5083	1448	35668	73618	10234	25099
EE	Tallin	573041	204	281	16861	72.6	0.938	0.662	0.211	0.868	3638	1205	24062	61093	7655	22436
EL	Athens	3719119	1324	2060	28622	64.3	0.885	0.764	0.078	0.873	4144	1224	24253	67264	8109	23494
EL	Kalamata-	132094	47	163	12457	28.9	0.951	0.606	0.249	0.587	7852	2479	43018	81110	13690	29217
	Sparta															
EL	Larissa	228574	81	207	12599	39.4	0.958	0.596	0.163	0.647	3672	1103	29004	66911	8791	22329
EL	Patras	320131	114	267	12522	42.8	0.940	0.650	0.173	0.673	6616	1377	40163	92788	9963	26100
EL	Thessaloniki	1079711	384	643	28771	59.8	0.939	0.654	0.132	0.805	3566	1045	23750	61366	8461	19679
ES	Albacete	199564	71	2057	38176	3.5	0.995	0.367	0.214	0.356	2428	708	16674	49230	5328	15563
ES	Alicante-Elche	1138319	405	1097	39240	37.0	0.944	0.659	0.258	0.663	7147	1574	35849	75997	10650	23628
ES	Barcelona	4868660	1733	3113	52767	55.7	0.895	0.749	0.155	0.754	5653	1530	36399	75148	9977	28134
														(con	inued on n	ext page)

(continued)

	Area		Density			Sprawl Indicators					d	(s)	$\overline{C}(\mathscr{G}_{ATc})$ (s)			
Country	City	Pop.	Density	Lived	Max	L	G	ή	Ι	В	bic.	car	b10	b50	c10	c50
ES	Bilbao	1160264	413	1006	41389	41.0	0.953	0.638	0.224	0.687	4743	1284	28820	75236	9279	26288
ES	Burgos	206626	74	485	21257	15.2	0.985	0.461	0.213	0.318	1831	657	14006	41684	4049	17189
ES	Cádiz-Jerez	803008	286	1380	25519	20.7	0.961	0.625	0.262	0.632	8005	1709	46356	80675	10589	24143

Table A.10: List of cities included in the study, part II

	Area		Density			Sprawl Indicators					d	(s)	$\overline{C}(\mathscr{G}_{ATc})$ (s)			
Country	City	Pop.	Density	Lived	Max	L	G	η'	Ι	В	b50	c50	b10	b50	c10	c50
ES	Córdoba	385415	137	1006	23951	13.6	0.984	0.509	0.168	0.592	3800	843	27054	64720	6890	17832
ES	Granada	594751	212	1033	24975	20.5	0.961	0.622	0.228	0.605	3660	1064	24936	62553	8090	22077
ES	León	234543	84	365	18801	22.9	0.967	0.549	0.188	0.474	2961	935	30495	57113	6185	20641
ES	Madrid	5940359	2115	5391	44006	39.2	0.881	0.770	0.177	0.707	5710	1372	36988	86544	8847	26062
ES	Malaga	1191134	424	808	39457	52.5	0.943	0.668	0.213	0.754	6478	1461	37298	81352	11489	25878
ES	Mallorca	727258	259	887	30393	29.2	0.954	0.635	0.186	0.579	5010	1309	31653	71997	8399	25024
ES	Murcia	787783	280	1084	22777	25.9	0.942	0.671	0.236	0.606	5159	1211	36326	72310	8971	22030
ES	Oviedo-Gijón	872589	311	743	40083	41.8	0.945	0.638	0.233	0.635	6684	1506	36797	79740	9034	24652
ES	Pamplona	390882	139	623	22937	22.3	0.978	0.532	0.203	0.407	2426	764	21142	53569	4784	18066
ES	Salamanca	231019	82	446	25603	18.4	0.978	0.514	0.236	0.408	2604	900	18955	51028	5744	18438
ES	Seville	1490259	531	2169	28221	24.5	0.943	0.677	0.197	0.707	4689	1270	29993	71456	8975	22765
ES	Valencia	2022195	720	2053	37447	35.1	0.937	0.686	0.200	0.628	4586	1267	30567	72001	9294	23934
ES	Valladolid	439393	156	1074	30431	14.6	0.978	0.543	0.171	0.481	3024	861	21934	57684	5874	17573
ES	Vigo-	766424	273	572	25755	47.7	0.886	0.723	0.229	0.736	6506	1666	34828	77377	12356	26460
	Pontevedra															
ES	Vitoria-Gasteiz	344328	123	631	31788	19.4	0.982	0.496	0.169	0.353	4671	1130	32923	59809	8417	19616
ES	Zaragoza	772591	275	2246	42833	12.2	0.982	0.528	0.144	0.562	2248	686	18295	50398	4920	15648
FI	Helsinki-Espoo	1339937	477	681	15219	70.1	0.866	0.783	0.188	0.913	5134	1490	27471	70645	9910	27430
FI	Oulu	242293	86	217	8515	39.8	0.927	0.700	0.197	0.774	4688	1238	31953	67952	9185	24782
FI	Tampere	382525	136	206	10762	66.0	0.914	0.712	0.241	0.797	4119	1273	24986	62960	8649	26232
FR	Avignon	654892	233	284	7848	82.1	0.812	0.816	0.248	0.904	6520	1859	41586	82512	12649	30591
FR	Bordeaux	1117407	398	517	13679	76.9	0.832	0.801	0.112	0.894	4792	1431	29665	72245	10051	27230
FR	Dijon	383338	136	321	10709	42.5	0.927	0.683	0.141	0.602	3938	1137	24905	67996	8368	22616
FR	Fontenay-Niort	239872	85	108	5366	78.7	0.811	0.808	0.201	0.826	6526	1926	37701	83426	12817	31742
FR	Grenoble	670014	239	420	17071	56.8	0.896	0.728	0.138	0.803	4938	1413	32266	78132	11484	28316
FR	Lille	2207594	786	817	14881	96.2	0.730	0.869	0.151	0.966	6315	1794	39752	83232	11124	31505
FR	Lvon	1957863	697	768	24904	90.7	0.827	0.799	0.118	0.933	4992	1626	33464	76399	10706	29547
FR	Marseille	1640833	584	926	26682	63.0	0.870	0.771	0.115	0.855	6059	1529	33601	81560	10773	26163
FR	Montelimar	272736	97	124	4794	78.5	0.826	0.799	0.272	0.860	7843	2232	49561	92693	15008	31842
FR	Nantes	923746	329	356	12906	92.5	0.809	0.805	0.119	0.959	4734	1485	34896	78360	10372	28627
FR	Pau-Tarbes	401021	143	179	9618	79.9	0.830	0.784	0.152	0.901	6659	1836	35334	77500	12146	27510
FR	Toulouse	1194391	425	440	16059	96.7	0.815	0.810	0.116	0.971	4546	1368	32166	74201	10178	26906
FR	Vichy	171298	61	72	5628	84.3	0.810	0.790	0.223	0.864	5870	1800	34748	80689	10957	27678
HR	Split	367441	131	320	18979	40.8	0.945	0.634	0.196	0.667	5397	1785	31020	81628	13921	30662
HR	Zagreb	1106057	394	558	18069	70.6	0.861	0.763	0.155	0.839	4687	1362	28988	75797	8270	26679
HU	Budapest	2599452	925	1552	32186	59.6	0.822	0.814	0.163	0.803	4770	1578	34696	74943	11160	29378
HU	Nyíregyháza	332478	118	310	10485	38.1	0.893	0.742	0.246	0.630	6789	1876	40997	86590	12288	28605
IE	Cork	397437	141	156	7254	90.6	0.837	0.764	0.172	0.949	5371	1468	39525	80838	11849	28119
IE	Dublin	1604562	571	720	13082	79.4	0.855	0.791	0.125	0.934	5298	1507	28422	79343	9950	25924
IE	Limerick	217337	77	93	5228	83.2	0.809	0.770	0.177	0.907	5282	1509	34979	84406	11459	28654
IT	Bari	1167192	416	863	28559	48.2	0.943	0.674	0.309	0.752	7130	1958	41056	77752	12627	26155
IT	Cagliari	526055	187	398	12563	47.0	0.950	0.654	0.225	0.761	4906	1444	28354	69698	9778	23738
IT	Catania	1075165	383	737	17117	51.9	0.921	0.716	0.208	0.826	5969	1687	32792	81750	11356	26496
IT	Forlì-Cesena-	657477	234	289	8484	81.0	0.829	0.805	0.207	0.887	7156	1935	40451	81705	12661	30582
	Rimini															
IT	Cuneo-Fossano	455033	162	183	8924	88.7	0.782	0.827	0.312	0.906	7790	2333	43453	86855	14364	31788
IT	Florence	1270537	452	495	16742	91.5	0.854	0.784	0.183	0.952	5723	1737	36881	85107	12807	31216
IT	Foggia	319019	114	291	19921	39.1	0.979	0.531	0.231	0.625	5785	1693	37135	61151	10490	21666
IT	Genoa	902277	321	536	25504	59.9	0.925	0.691	0.213	0.759	6555	1758	52269	90840	13427	30800
IT	Lecce	710333	253	460	10813	55.0	0.912	0.729	0.311	0.775	7037	2087	39275	75570	12109	26568
IT	Milan	4611600	1642	1778	25608	92.3	0.721	0.874	0.172	0.942	5919	1720	35092	88433	10565	30528
IT	Nanlee	4138032	1473	1876	31458	78 5	0.789	0.840	0.190	0.910	6206	1897	38816	83690	12782	33449
IT	Palermo	1148158	409	894	23289	45.7	0.936	0.688	0.157	0.765	5150	1455	34743	71173	9653	26741
IT	Dernoia	404417	144	190	7655	75.8	0.860	0.777	0.286	0.833	6493	1764	42583	89187	12335	32265
	i ci ugia	114404	174	170	/000	/5.0	0.000	5.777	0.200	0.000	0775	1704	72303	3710/	12000	52205

Table A.11: List of cities included in the study, part III

	Area	Density				Spi	awl Indic	ators		\overline{d}	(s)	$\overline{C}(\mathscr{G}_{ATc})$ (s)				
Country	City	Pop.	Density	Lived	Max	L	G	η΄	Ι	В	b50	c50	b10	b50	c10	c50
IT	Piacenza	539535	192	223	13012	86.3	0.858	0.769	0.255	0.902	7199	2036	43720	83514	12068	30490
IT	Rome	3716610	1323	1457	37192	90.8	0.813	0.824	0.175	0.956	5277	1711	36006	84728	12088	33298
IT	Suzzara	611173	218	247	8193	88.3	0.814	0.812	0.314	0.909	8210	2374	43295	91257	13771	31592
IT	Udine	504090	179	244	6357	73.4	0.804	0.823	0.226	0.842	6301	1903	40425	84028	11454	29481
IT	Venice-Padua- Treviso	1780952	634	679	12197	93.3	0.645	0.900	0.237	0.979	7788	2199	43514	92136	13542	33172
LT	Kaunas	412127	147	241	12307	61.0	0.931	0.673	0.174	0.785	3761	1178	28928	73144	7381	23733
LT	Vilnius	669195	238	332	16796	71.7	0.921	0.683	0.203	0.825	3443	1145	21375	65921	8585	23622
LU	Luxembourg	737146	262	332	9813	79.1	0.813	0.819	0.252	0.836	6508	1665	40068	85685	10871	28468
LV	Riga	855892	305	460	15995	66.2	0.922	0.707	0.205	0.830	4878	1488	33431	86012	10564	28393
NL	Amsterdam	2739883	975	1354	23302	72.0	0.833	0.811	0.178	0.914	6982	1715	41928	87657	11094	30368
NL	Hengelo	912586	325	348	7462	93.2	0.836	0.799	0.232	0.953	6540	1909	39477	84429	11718	29764
NL	Leeuwarden	543669	194	266	7456	72.7	0.866	0.775	0.235	0.879	7497	1924	37456	86648	11603	30956
NL	Nijmegen	1493816	532	635	11979	83.8	0.812	0.826	0.254	0.919	7647	2113	46066	89341	13862	32968
NL	Rotterdam-The Hague	3282220	1168	1622	21567	72.0	0.814	0.825	0.185	0.912	6493	1733	39994	82812	12428	30584
PL	Łódź	1098305	391	444	18546	88.0	0.875	0.742	0.175	0.906	4569	1437	27847	68517	9036	26171
PL	Lublin	654363	233	275	12272	84.7	0.834	0.756	0.187	0.897	4964	1554	33479	77055	10800	29208
PL	Nowe Miasto	202686	72	105	7804	68.7	0.848	0.750	0.303	0.797	7831	2420	43248	84376	14036	31295
PL	Poznań	975515	347	499	13682	69.6	0.872	0.760	0.190	0.774	4811	1571	32133	80328	10927	31579
PL	Tarnobrzeg	333755	119	174	15373	68.2	0.805	0.775	0.298	0.831	7453	2271	40244	85663	15372	31951
PL	Warsaw	2678997	954	1101	21372	86.7	0.819	0.812	0.190	0.915	4978	1481	29884	81654	11243	28881
PL	Wrocław	984267	350	555	21205	63.2	0.885	0.739	0.190	0.727	4755	1554	30355	75220	10680	28663
PT	Coimbra	342907	122	170	5888	71.7	0.778	0.829	0.230	0.790	6585	1836	39916	89561	12202	32252
PT	Covilha- Fundão	112/31	40	99	3452	40.7	0.917	0.708	0.301	0.649	7651	2274	47447	98159	15772	34857
PT	Faro	279741	100	178	13085	56.1	0.894	0.716	0.316	0.775	6515	1613	37500	67298	11138	22758
PT	Leiria	394621	140	177	6993	79.6	0.738	0.849	0.272	0.865	7810	2173	41277	87218	14218	32467
PT	Lisbon	2785065	991	1483	22306	66.9	0.844	0.803	0.191	0.908	5999	1514	37483	81970	9856	27078
PT	Porto	2143826	763	869	12117	87.8	0.663	0.894	0.160	0.951	7087	1712	43532	90999	11687	29703
PT	Viseu	240639	86	128	6119	67.0	0.783	0.829	0.240	0.772	6668	1898	44681	91814	11380	33817
RO	Botoşani- Suceava	438875	156	318	22716	49.2	0.890	0.697	0.284	0.718	7965	2278	44920	100051	13542	30052
RO	Braşov	506999	180	609	22197	29.7	0.955	0.627	0.244	0.689	5757	1466	33381	81081	9351	23858
RO	Bucharest	2396642	853	1615	39551	52.8	0.913	0.718	0.156	0.788	3255	1194	23589	64839	7613	23076
RO	Cluj-Napoca	502940	179	449	26263	39.8	0.952	0.621	0.213	0.632	5286	1307	34036	92987	9840	21615
RO	Constanța	525667	187	782	22778	23.9	0.959	0.622	0.227	0.634	6057	1421	36867	84703	10313	21798
RO	Craiova	424526	151	431	23668	35.1	0.939	0.633	0.183	0.625	4774	1413	36838	88636	8736	27607
RO	Galați-Brăila	506746	180	988	25447	18.3	0.975	0.555	0.250	0.645	4681	1333	27473	72733	8243	19973
RO	Iaşi	561494	200	432	26459	46.3	0.909	0.678	0.185	0.690	6202	1748	37034	92386	12553	27805
RO	Timişoara	467804	167	681	14729	24.5	0.956	0.629	0.164	0.598	3980	1068	30750	72005	8189	20851
SE	Gothenburg	903761	322	437	17778	73.6	0.876	0.767	0.181	0.889	4780	1450	30316	77470	11806	28911
SE	Stockholm	2106507	750	958	27054	78.2	0.840	0.803	0.188	0.872	5342	1639	38565	82729	11662	32610
SE	Uppsala	290607	103	130	10867	/6.1	0.919	0.666	0.183	0.847	43/6	1420	33092	69540	9600	25997
SK	KOSICE	481233	1/1	530	19059	32.0	0.933	0.673	0.323	0.588	6218	1698	41258	835/8	11378	29704
51	Ljubijalia	220241	233	309	0721	/5.2	0.847	0.778	0.225	0.854	3497 4025	1505	20022	82090	12380 960E	32130 3214E
UK	Bourpemouth	200041 765025	130	∠34 ⊿59	9721	50.5	0.92/	0.067	0.101	0.720	4933 6006	1840	35628	25207	11027	22143
UK	Brighton	1368623	487	400	16024	78.0	0.850	0.793	0.109	0.743	7796	2008	46416	82264	11960	28571
UK	Bristol-Bath	1400438	499	639	11827	78.0	0.852	0.795	0.151	0.852	6574	1849	42241	93915	11418	30940
UK	Exeter	488461	174	225	9540	77.4	0.884	0.744	0.220	0.834	6565	1799	37434	77593	11156	28607
UK	Glasgow	1802024	642	1047	13837	61.3	0.827	0.815	0.156	0.802	4907	1449	30796	73918	10643	26998
UK	Leeds	2543888	906	1070	15731	84.6	0.753	0.861	0.186	0.882	6393	1802	40389	90920	11758	29412
UK	Manchester	3424004	1219	1511	13313	80.7	0.721	0.875	0.172	0.927	6272	1694	39874	86356	11615	32461
UK	Northampton	1084779	386	571	10578	67.7	0.865	0.785	0.220	0.713	8298	1813	47516	93963	11939	27022
UK	Norwich	553212	197	244	9097	80.8	0.852	0.781	0.184	0.840	6012	1388	35812	85808	10020	22744

Fig. A.10: Density heatmaps, part I

Fig. A.11: Density heatmaps, part II

Fig. A.12: Density heatmaps, part III

Fig. A.13: Density heatmaps, part IV

Zürich (CH) 0.858, 32068 s

Fig. A.14: Density heatmaps, part V

References

- Applegate, D., Bixby, R., Chvatal, V., Cook, W. (2006). Concorde TSP solver.
- Bas Waterhout, F. O., & Sykes, O. (2013). Neo-liberalization processes and spatial planning in France, Germany, and the Netherlands: an exploration. *Planning Practice & Research, 28*, 141–159.
- Behnisch, M., Krüger, T., & Jaeger, J. A. (2022). Rapid rise in urban sprawl: Global hotspots and trends since 1990. PLOS Sustainability and Transformation, 1, e0000034.
- Bribiesca, E. (1997). Measuring 2-D shape compactness using the contact perimeter. Computers & Mathematics with Applications, 33, 1–9.
- Burckhardt, L., Frisch, M., & Kutter, M. (1955). Achtung: die Schweiz. Ein Gespräch über unsere Lage und ein Vorschlag zur Tat (volume 2). Basel Verlag F. Handschin.
- Cattaruzza, D., Absi, N., Feillet, D., & González-Feliu, J. (2017). Vehicle routing problems for city logistics. EURO Journal on Transportation and Logistics, 6, 51–79.
- Ceschia, S., Di Gaspero, L., Rosati, R. M., Schaerf, A. (2024). Multi-neighborhood simulated annealing for the home healthcare routing and scheduling problem. PREPRINT available at Research Square.
- Colantoni, A., Grigoriadis, E., Sateriano, A., Venanzoni, G., & Salvati, L. (2016). Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment. *Science of the Total Environment*, 545, 329–339.
- Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics systems. *Transportation science*, 43, 432–454.
- Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale travelingsalesman problem. Journal of the operations research society of America, 2, 393–410.
- Davis, C., & Schaub, T. (2005). A transboundary study of urban sprawl in the Pacific Coast region of North America: The benefits of multiple measurement methods. *International Journal of Applied Earth Observation and Geoinformation*, 7, 268–283.
- De Vos, J., & Witlox, F. (2013). Transportation policy as spatial planning tool; reducing urban sprawl by increasing travel costs and clustering infrastructure and public transportation. *Journal of Transport Geography*, 33, 117–125.
- European Environment Agency, 2006. Urban sprawl in Europe: the ignored challenge. Publications Office.

European Environment Agency, 2016. Urban sprawl in europe. Joint EEA-FOEN report.

- Ewing, R., & Hamidi, S. (2015). Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatalities: Update and refinement. *Transportation research record*, 2513, 40–47.
- Ewing, R., Hamidi, S., & Grace, J. B. (2016). Urban sprawl as a risk factor in motor vehicle crashes. Urban Studies, 53, 247–266.
- Ewing, R., Schmid, T., Killingsworth, R., Zlot, A., & Raudenbush, S. (2003). Relationship between urban sprawl and physical activity, obesity, and morbidity. *American journal of health promotion*, 18, 47–57.
- Ferm, J., Clifford, B., Canelas, P., & Livingstone, N. (2021). Emerging problematics of deregulating the urban: the case of permitted development in England. *Urban Studies*, 58, 2040–2058.
- Frenkel, A., & Ashkenazi, M. (2008). Measuring urban sprawl: how can we deal with it? Environment and Planning B: Planning and Design, 35, 56–79.

Frumkin, H. (2002). Urban sprawl and public health. Public Health Reports, 117, 201–217.

- Gini, C., 1912. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.
- Hamidi, S., Ewing, R., Preuss, I., & Dodds, A. (2015). Measuring sprawl and its impacts: An update. *Journal of Planning Education and Research*, 35, 35–50.
- Hennig, E. I., Schwick, C., Soukup, T., Orlitová, E., Kienast, F., & Jaeger, J. A. (2015). Multi-scale analysis of urban sprawl in Europe: towards a European de-sprawling strategy. *Land use policy*, 49, 483–498.
- Hortas-Rico, M., & Solé-Ollé, A. (2010). Does urban sprawl increase the costs of providing local public services? Evidence from Spanish municipalities. *Urban studies*, 47, 1513–1540.
- Intergovernmental Panel on Climate Change, 2022. Global Warming of 1.5C: IPCC Special Report on Impacts of Global Warming of 1.5C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press.
- Jaeger, J. A., Bertiller, R., Schwick, C., Cavens, D., & Kienast, F. (2010a). Urban permeation of landscapes and sprawl per capita: New measures of urban sprawl. *Ecological Indicators*, 10, 427–441.
- Jaeger, J. A., Bertiller, R., Schwick, C., & Kienast, F. (2010b). Suitability criteria for measures of urban sprawl. *Ecological indicators*, 10, 397–406.

Jaeger, J. A., & Schwick, C. (2014). Improving the measurement of urban sprawl: Weighted urban proliferation (WUP) and its application to Switzerland. *Ecological indicators*, 38, 294–308.

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of computer computations. Springer, 85–103.

- Kasanko, M., Barredo, J. I., Lavalle, C., McCormick, N., Demicheli, L., Sagris, V., & Brezger, A. (2006). Are European cities becoming dispersed?: a comparative analysis of 15 European urban areas. *Landscape and urban planning*, 77, 111–130.
- Lee, C. (2020). Impacts of two-scale urban form and their combined effects on commute modes in us metropolitan areas. *Journal of Transport Geography*, 88, 102821.
- Lee, C. (2020). Metropolitan sprawl measurement and its impacts on commuting trips and road emissions. *Transportation Research Part D: Transport and Environment*, 82, 102329.
- Makido, Y., Dhakal, S., & Yamagata, Y. (2012). Relationship between urban form and co2 emissions: Evidence from fifty Japanese cities. Urban Climate, 2, 55–67.

Marique, A. F., Dujardin, S., Teller, J., & Reiter, S. (2013). School commuting: the relationship between energy consumption and urban form. *Journal of transport Geography*, 26, 1–11.

- Moran, P. A. (1950). Notes on continuous stochastic phenomena. *Biometrika*, *37*, 17–23. Nazarnia, N., Harding, C., & Jaeger, J. A. (2019). How suitable is entropy as a measure of
- urban sprawl? *Landscape and Urban Planning*, 184, 32–43. Nilles, J. M. (1991). Telecommuting and urban sprawl: Mitigator or inciter?

Transportation, 18, 411–432. Oueslati, W., Alvanides, S., & Garrod, G. (2015). Determinants of urban sprawl in european cities. Urban studies, 52, 1594–1614.

- Bracchini, E., Zenou, Y., Henderson, J. V., & Epple, D. (2009). Urban sprawl in europe. Brookings-Wharton papers on urban affairs, 125–149.
- Pendall, R. (2000). Local land use regulation and the chain of exclusion. Journal of the American Planning Association, 66, 125–142.
- Pourtaherian, P., & Jaeger, J. A. (2022). How effective are greenbelts at mitigating urban sprawl? a comparative study of 60 European cities. *Landscape and Urban Planning*, 227, 104532.
- Power, A. (2001). Social exclusion and urban sprawl: Is the rescue of cities possible? *Regional Studies*, 35, 731–742.
- Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon and schuster.
- Rosati, R. M., & Schaerf, A. (2024). Multi-neighborhood simulated annealing for the capacitated dispersion problem. *Expert Systems with Applications*, 255, 124484.

Salvati, L. (2015). Lost in complexity, found in dispersion: 'Peripheral' development and deregulated urban growth in Rome. Cities, 47, 73-80.

- Schneider, A., & Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive? a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. *Urban Studies*, 45, 659–692.
- Schwanen, T. (2002). Urban form and commuting behaviour: a cross-european perspective. *Tijdschrift voor economische en sociale geografie, 93*, 336–343.
- Schweitzer, L., & Zhou, J. (2010). Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. *Journal of the American Planning Association*, 76, 363–371.
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27, 379–423.
- Batista e Silva, F., Dijkstra, L., Poelman, H., 2021. The JRC-GEOSTAT 2018 population grid. Technical Report. JRC Technical Report (forthcoming).

Steurer, M., & Bayr, C. (2020). Measuring urban sprawl using land use data. Land Use Policy, 97, 104799.

- Tiznado-Aitken, I., Lucas, K., Munoz, J. C., & Hurtubia, R. (2022). Freedom of choice? Social and spatial disparities on combined housing and transport affordability. *Transport Policy*, 122, 39–53.
- Torrens, P. M. (2008). A toolkit for measuring sprawl. Applied Spatial Analysis and Policy, 1, 5–36.
- Travisi, C. M., Camagni, R., & Nijkamp, P. (2010). Impacts of urban sprawl and
- commuting: a modelling study for italy. Journal of Transport Geography, 18, 382–392. Trowbridge, M. J., Gurka, M. J., & O'connor, R. E. (2009). Urban sprawl and delayed
- ambulance arrival in the US. American Journal of Preventive Medicine, 37, 428–432. Tsai, Y. H. (2005). Quantifying urban form: Compactness versus 'sprawl'. Urban studies,
- 42, 141–161.
 Turan, B., Hemmelmayr, V., Larsen, A., & Puchinger, J. (2024). Transition towards sustainable mobility: the role of transport optimization. *Central European Journal of Operations Research*, 32, 435–456.
- Van Ommeren, J. N., & Gutiérrez-i Puigarnau, E. (2011). Are workers with a long commute less productive? An empirical analysis of absenteeism. *Regional Science and Urban Economics*, 41, 1–8.

Whyte, W. (1958). The Exploding Metropolis. Doubleday: Doubleday anchor books.

- Wolman, H., Galster, G., Hanson, R., Ratcliffe, M., Furdell, K., & Sarzynski, A. (2005). The fundamental challenge in measuring sprawl: Which land should be considered? *The Professional Geographer*, 57, 94–105.
- Yeh, A. G. O., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing.
- Zhao, Z., & Kaestner, R. (2010). Effects of urban sprawl on obesity. Journal of Health Economics, 29, 779–787.
- Zolnik, E. J. (2011). The effects of sprawl on private-vehicle commuting distances and times. *Environment and Planning B: Planning and Design, 38*, 1071–1084.