Multi-neighborhood simulated annealing for the capacitated facility location problem with customer incompatibilities

Sara Ceschia, Andrea Schaerf *
DPIA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

ARTICLE INFO

Dataset link: https://github.com/iolab-uniud/m s-cflp-ci

Keywords:

Facility location
Local search
Simulated annealing

Abstract

We consider the Capacitated Facility Location Problem with Customer Incompatibilities, which is a recently -proposed variant of the classic facility location problem whose distinctive feature is to take into account incompatibilities between customers.

We tackle this problem using local search and we propose a combination of neighborhoods and ad hoc techniques to reduce the size of the search space, in order to effectively deal with large instances. The resulting multi-neighborhood approach is guided by a simulated annealing procedure. Our method, suitably tuned in a statistically-principled way, has been able to outperform all previous techniques on the publicly available dataset, on both short and long running times.

1. Introduction

The Facility Location Problem (FLP) is a classic optimization problem that consists in selecting the locations where new facilities have to be established (among a finite set of available candidate locations) and allocating customers to facilities such that all customer requests are served and the total cost is minimized. It is a strategic issue in logistics and systems design, since it has multitude of applications both in private and public sectors, and many variants of the problem have been proposed and investigated in the literature (Celik Turkoglu \& Erol Genevois, 2020; Drezner \& Hamacher, 2004; Laporte et al., 2015).

In the simplest version, called Uncapacitated (UFLP), it is assumed that each facility has infinite capacity; as a consequence, once the locations for the facilities have been chosen, each customer is entirely supplied by the open facility with the minimum transportation cost. Despite its simplicity, the UFLP has been proven to be NP-hard by Cornuéjols et al. (1983) and a broad literature exists on this problem: for an overview of the main contributions, see Klose and Drexl (2005), Krarup and Pruzan (1983), Revelle and Laporte (1996) and Verter (2011). The current leading method by Letchford and Miller (2014) is a branch and bound algorithm embedding sophisticated problem reduction procedures, that is able to solve to proven optimality instances with up to 18000 facilities.

From a practical point of view, the most interesting variant of the problem is the capacitated one (CFLP) in which facilities have a fixed maximum capacity that must not be exceeded when supplying customers. In this case, a customer can be supplied by a unique facility (single-source, SS) or by multiple facilities (multi-source, MS).

The literature on the CFLP is extensive, we thus refer the interested readers to the surveys of Fernández and Landete (2015) and Klose and Drexl (2005) for a comprehensive overview. To the best of our knowledge, the state-of-the-art computational results for the CFLP are those reported by Avella et al. (2021), Fischetti et al. (2016) and Görtz and Klose (2012) among exact methods, and Guastaroba and Speranza (2012, 2014) and Caserta and Voß (2020), among heuristics. Görtz and Klose (2012) present a branch-and-bound algorithm based on Lagrangian relaxation and subgradient optimization, (Fischetti et al., 2016) design a Bender decomposition approach and Avella et al. (2021) devise a new class of valid inequalities that are used in a branch-and-cut framework. Top heuristic methods also exploit mathematical programming techniques. In detail, Guastaroba and Speranza implement a Kernel search framework, while Caserta and Voß use a Corridor method. Other relevant works include Avella and Boccia (2009) and Avella et al. (2009) who introduced new datasets with instances up to 2000 facilities, now commonly used as benchmark for comparison. Recently, Weninger and Wolsey (2023) investigated the performance of different Benders based branch-and-cut algorithms for the CFLP with partial single sourcing, which occurs when a subset of customers requires a single supplier.

Approximation results for the CFLP have been obtained by Korupolu et al. (2000), who proved that a steepest descent local search heuristic yields a solution of value no more than $(8+\epsilon)$ times the optimal one; this result has been improved to an $6(1+\epsilon)$ approximation by Chudak and Williamson (2005). The neighborhood relations implemented in the

[^0]local search are: opening a new facility, closing a facility, or changing a facility. Notice that these moves modify only the set of open facilities; indeed, for the MS-CFLP, given a set of open facilities, an optimal assignment of customers to facilities can be computed in polynomial time by solving the corresponding instance of the transportation problem. Thus, for this variant of the problem, any solution is completely characterized by the set of open facilities.

Moving to metaheuristic techniques, their application to facility location problems has been surveyed by Basu et al. (2015). Examples of metaheuristic approaches applied to the SS-CFLP are provided by Ahuja et al. (2004), Cortinhal and Captivo (2003) and Chen and Ting (2008), who implemented Tabu Search, Very Large Scale Neighborhood Search and Ant Colony Optimization algorithms, respectively. The neighborhood relations used by Chen and Ting (2008) and Cortinhal and Captivo (2003) are the traditional ones, i.e. the assignment of a customer to a different facility and the swap of the facilities between two customers. Conversely, Ahuja et al. (2004) defined a more sophisticated large neighborhood that exchanges customers among facilities in a cyclic manner; these moves are detected on a facility improvement graph dynamically built through the use of a greedy scheme. In addition, Ahuja et al. also implemented the moves that open a new facility, close an existing facility, and transfer a facility to a different location. Finally, Lai et al. (2010) proposed a hybrid approach: a genetic algorithm is embedded in a Benders' decomposition framework to solve the master problem.

Among the different variants of the CFLP, recently Maia et al. (2023) introduced the Multi-Source Capacitated Facility Location Problem with Customer Incompatibilities (MS-CFLP-CI), where there are additional constraints stating that specific pairs of customers cannot be served by the same facility.

These constraints are used to model two main practical situations: (i). rival customers that prevent their suppliers serving also their competitors, assuming the competitive nature of the market; (ii). incompatibility between different types of product required by customers (for example the siting of collection centers for household hazardous waste (Rabbani et al., 2018; Revelle \& Laporte, 1996) or perishable products). In addition, consider a multi-product setting in which each facility can only store one type of product, and it must be decided which facilities to open, which product store in each facility, and which customers assign to which facilities. This problem can be modeled by introducing incompatibilities between customers who require products of different types.

Customer incompatibilities were investigated from the theoretical point of view by Marín and Pelegrín (2019) in the contest of the uncapacitated problem. In particular, they studied the facial structure of the set-packing formulation of the problem, and demonstrated that it generalizes other variants of the UFLP, such as the Fault-Tolerant Facility Location problem, (see e.g. Swamy \& Shmoys, 2008) in which each customer has to be assigned to several facilities.

Notice that for the MS-CFLP-CI a search approach that works on the level of deciding which facilities to open, and then assigns the suppliers using a dedicated subprocedure, would not be as promising as for the MS-CFLP. In fact, the presence of incompatibilities introduces disjunctive constraints that make the underlying transportation problem NP-hard, as proven by Goossens and Spieksma (2009).

For the solution of the MS-CFLP-CI Maia et al. (2023) propose a portfolio of different (meta)heuristic techniques which are compared on a new dataset composed of 30 instances, with up to 3000 facilities. All instances and source code of the solution methods are publicly available at https://github.com/MESS-2020-1. Subsequently, two other problem-specific heuristics for the solution of the MS-CFLP-CI have been proposed by Pandey et al. (2023).

The main goal of this work is to explore a new search method to solve the MS-CFLP-CI, which could improve the state-of-the-art results on the available benchmarks. To this aim, we propose a local search algorithm driven by a Simulated Annealing metaheuristic. It starts from
an initial solution generated by the greedy algorithm proposed by Maia et al. (2023), properly revised, and then implements some innovative neighborhood structures that, up to our knowledge, have never been applied to the CFLP. In particular, along with the neighborhood that changes a supplier and its supplied quantity of a customer and the neighborhood that swaps the suppliers of two distinct customers, we propose a more complex neighborhood that simultaneously closes a facility and opens a new one. In this case, firstly the facility to be closed is emptied by transferring customers in a greedy way to the cheapest open facility with enough space, then the new open facility attracts new customers, if their shipping cost is reduced. In addition, our solver makes use of some techniques of reduction of the search space that allow us to also tackle effectively large instances. In particular, it focuses on solutions with at most two suppliers for each customer, that are selected among a short list of preferred facilities. Our search method has a large number of parameters, so it turned out to be necessary to tune it using an automatic tool. In particular, we employed F-Race, which resorts to statistical tests for removing inferior parameter configurations until the best one emerges.

Besides the local search method, we implemented the mathematical models of the different variants of the problem in CPLEX, so as to obtain optimal values and lower bounds for the smaller instances to be used for comparison.

Finally, we propose a novel dataset, that we call CFLP-CI, which could possibly become an additional benchmark for the future. The CFLP-CI dataset, the results for both datasets, and the source code of our method are available online at https://github.com/iolab-uniud/ ms-cflp-ci.

The outcome is that our local search solver, properly tuned, is able to outperform on almost all instances all methods of Maia et al. (2023), with an average improvement of more than 6% with respect to the best one, which is MineReduce, a hybrid approach based on data mining and iterated local search. It is worse than MineReduce only on the two smallest instances, which are however less interesting, as they are solved to optimality by our implementation of the mathematical model in CPLEX.

The outline of the paper is as follows: in Section 2 we first informally describe the problem also using a toy example, then we provide the mathematical models, we introduce the datasets used and we discuss results obtained from the implementation of the models. Next, in Section 3 we present the basic ideas of our local search method, describing the search space, the initial solution strategies, the neighborhood relations and the Simulated Annealing algorithm. Section 4 presents the parameter tuning and computational results on benchmark instances from the literature and on the new dataset CFLP-CI. Finally, in Section 5, conclusions are drawn and future work is proposed.

2. Problem formulations, models, and dataset

In this section, we first introduce informally the problem under consideration. Secondly, we formally define it by means of mathematical models for its different versions. Finally, we discuss the features of the available dataset and the bounds obtained by the implementation of our models for this dataset, and we introduce our new dataset CFLP-CI.

2.1. Problem formulations

In the Capacitated Facility Location Problem (CFLP) there are n customers to be served, each one characterized by a demand $d_{i}(i=$ $1, \ldots, n)$ to be fully satisfied. There are m potential locations where a facility can be opened, each one with fixed cost f_{j} and maximum capacity $s_{j}(j=1, \ldots, m)$. The unitary shipping cost from facility j to customer i is denoted by $c_{i j}$.

The problem consists in selecting the facilities to be opened and quantities supplied by each open facility to each customer, such that

```
Facilities = 3;
Costumers = 6;
Capacity = [40, 70, 60];
FixedCost = [720, 1250, 830];
Demand = [17, 8, 16, 18, 9, 11];
ShippingCost = [|39, 80, 50
    |39, 24, 88
    |50, 89, 49
    |34, 78, 62
    175, 51, 57
    |8, 45, 52l];
Incompatibilities = 2;
IncompatiblePairs = [| 1, 5 | 4, 5 |];
```

Fig. 1. A toy instance.
the capacity of the facilities is not exceeded and the demands of the customers are fully satisfied.

This formulation corresponds to the multi source version of the problem (MS-CFLP). If we add the constraint that a customer must be served by only one facility, we have the single source problem (SS-CFLP).

These two basic versions of the CLP can be extended by the notion of customer incompatibilities (CI): We are given a set of pairs of customers that cannot be served by the same facility, regardless of the quantity. The resulting problems are called MS-CFLP-CI and SS-CFLP-CI, for multi-source and single-source, respectively.

A toy instance is shown in Fig. 1 in the input file format proposed by Maia et al. (2023), which is based on the language MiniZinc (Nethercote et al., 2007). The last two lines of the file describe the incompatibilities: The second to last line provides the number of pairs of incompatible customers, and the last line enumerates the pairs (starting from 1), stating that the fifth customer is incompatible with the first and the fourth customers.

The optimal solution of this instance for the MS-CFLP is shown in Fig. 2(a), where the open facilities are shown in black and the closed ones in gray. In the format proposed by Maia et al. (2023) as a set of triples (customer, facility, quantity), it is represented by the following values:

$$
\{(1,1,3),(1,3,14),(2,1,8),(3,3,16),(4,1,18),(5,3,9),(6,1,11)\}
$$

The total cost is 4676 divided into 3126 supply cost $(3 \times 39+14 \times 50+$ $8 \times 39+16 \times 49+18 \times 34+9 \times 57+11 \times 8)$ and 1550 opening cost $(720$ $+830)$.

We notice that two facilities are open (1 and 3) and that customer 1 is the only one supplied by two distinct facilities, while all other customers are single-source.

If we consider the SS-CFLP formulation, the optimal solution (see Fig. 2(b)) is:
$\{(1,3,17),(2,1,8),(3,3,16),(4,1,18),(5,3,9),(6,1,11)\}$.
It is similar to the previous one, but the full demand of customer 1 is now taken by facility 3 , with an increase of cost of $3 \times(50-39)$ thus resulting in a total cost of 4709.

We also notice that both solutions do not satisfy the incompatibility constraints as incompatible customers 1 and 5 are both supplied by facility 3.

The optimal solutions of the MS-CFLP-CI (see Fig. 2(c)) is
$\{(1,1,17),(2,1,5),(2,3,3),(3,3,16),(4,1,18),(5,3,9),(6,3,11)\}$,
with a total cost of 5153 . The optimal solutions of the SS-CFLP-CI (see Fig. 2(d)) is
$\{(1,3,17),(2,1,8),(3,3,16),(4,3,18),(5,1,9),(6,1,11)\}$
with a total cost of 5373 .
With respect to the formulations without incompatibilities, in both cases the fixed costs are not changed since the same facilities are open, however the shipping has undergone a substantial change (shown in red), which corresponds to an increase of cost from 3126 to 3603 for the multi-source, and from 3150 to 3823 for the single-source.

2.2. Mathematical models

We now introduce the mathematical models of different formulations of the Capacitated Facility Location Problem. The general problem can be formulated as follows:

$$
\begin{align*}
\text { (CFLP): } \min z= & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j} d_{i}+\sum_{j=1}^{m} f_{j} y_{j} \tag{1}\\
& \sum_{j=1}^{m} x_{i j}=1, \tag{2}\\
& \sum_{i=1}^{n} d_{i} x_{i j} \leq s_{j} y_{j}, \tag{3}\\
& y_{j} \in\{0,1\}, \tag{4}\\
& j=1, \ldots, m \tag{5}\\
x_{i j} \in \mathcal{X}, & j=1, \ldots, m
\end{align*}
$$

The objective function (Eq. (1)) minimizes both the total shipping cost of serving customers and the total fixed cost of opening facilities. Constraints (Eq. (2)) guarantee that each customer is fully served, whereas inequalities (Eq. (3)) are the capacity constraints. The decision variable y_{j} takes value 1 if a facility is opened in location j, and 0 otherwise, while the decision variable $x_{i j}$ represents the fraction of the demand of customer i supplied by facility j. The domain \mathcal{X} of $x_{i j}$ variables depends on the specific formulation of the CFLP, in particular if
$\mathcal{X}=\{0,1\}^{n \times m}$
the problem is the SS-CFLP, meaning that the entire demand of each customer must be covered by a unique facility. On the contrary, if
$\mathcal{X}=[0,1]^{n \times m}$
then the demand of a customer can be satisfied by multiple facilities, thus the problem is the MS-CFLP. For all formulations, we assume that all input values are non negative and the capacity is strictly positive: $c_{i j} \geq 0, \forall i, j ; f_{j} \geq 0, s_{j}>0 \forall j ; d_{i} \geq 0 \forall i$. We also assume that $\sum_{j=1}^{m} s_{j} \geq \sum_{i=1}^{n} d_{i}$, otherwise the instance would be infeasible.

In addition, it is customary to add the redundant constraints
$x_{i j} \leq y_{j}, \quad i=1, \ldots, n, j=1, \ldots, m$
to the model (Eqs. (1)-(5)) that strengthen the continuous relaxation of CFLP models.

We now introduce the additional constraints for customer incompatibilities proposed by Maia et al. (2023). In detail, we call \mathcal{I} the set of pairs of incompatible customers, such that for each $\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{I}, i_{1}$ and i_{2} cannot be served by the same facility.

The mathematical model for the single source (SS-CFLP-CI) can be obtained by simply adding constraints (Eq. (9)) to the SS-CFLP formulation (Eqs. (1)-(6), Eq. (8)).
$x_{i_{1} j}+x_{i_{2} j} \leq 1, \quad\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{I}, j=1, \ldots, m$
Given that $x_{i j}$ variables are binary in the single-source case, this constraint is sufficient to ensure that the two variables involved are never both different from 0 .

Fig. 2. The optimal solution of the toy instance for different problem formulations.

To add incompatibility constraints to the multi-source formulation, it is necessary to introduce the binary decision variables $w_{i j}$, so that $w_{i j}$ is equal to 1 if the customer i is supplied by facility j (even partially), 0 otherwise. These binary variables are linked with the flow variables $x_{i j}$ by inequalities (Eq. (10)):
$x_{i j} \leq w_{i j}, \quad i=1, \ldots, n, j=1, \ldots, m$.
Similarly to Eq. (9), the incompatibility constraints for the multisource can be formulated as
$w_{i_{1} j}+w_{i_{2} j} \leq 1, \quad\left\langle i_{1}, i_{2}\right\rangle \in \mathcal{I}, j=1, \ldots, m$.
In conclusion, the complete formulation for the MS-CFLP-CI consists of Eqs. (1)-(5), Eqs. (7)-(8), and Eqs. ((10)-(11)).

2.3. Datasets and bounds

The mathematical models have been implemented in CPLEX (v. 22.1) and executed with a timeout of 7200 s on an AMD Ryzen Threadripper PRO 3975WX with 32 physical cores (3.50 GHz), hyper-threaded to 64 virtual cores, with 64 GB of memory and running Ubuntu Linux 22.4.

We tested the models on the dataset of 30 artificial instances introduced by Maia et al. (2023) and available at https://github.com/MESS-

2020-1/Instances. The dataset is divided into two groups of 20 and 10 instances respectively, with the idea that the first group (wlp01-wlp20) is for training and tuning, whereas the second one (wlp21-wlp30) is meant for validation and comparison.

Table 1 shows upper and lower bounds obtained on this dataset for the MS-CFLP-CI model, along with the size of the instances in terms of facilities (m) and customers (n). Optimal solutions are underlined, non-optimal ones are followed by the lower bound (which is omitted for the optimal ones, as they coincide). For comparison, we also report the results for the multi-source formulation without incompatibilities (MS-CFLP) and single source formulation with incompatibilities (SS-CFLP-CI). The symbol - means that the execution exhausted the memory of the PC and was automatically aborted without delivering any solution. Notice that in some cases, the running time is lower than the timeout of 7200 s but the value is not optimal, because the execution was prematurely aborted; we thus reported the value of the best integer solution found so far captured from the CPLEX log.

Unsurprisingly, only relatively small instances (up to 150 facilities) were successfully solved to optimality for the MS-CFLP-CI model. For the medium-size ones (up to 450 facilities) the solver produced a feasible solution with a maximum optimality gap of 5.7%. Large instances are clearly out of reach for this model, due to memory consumption.

Table 1
Features of the training and validation instances, results of the IP solver for different problem formulations.

Instance	m	n	MS-CFLP-CI				MS-CFLP		SS-CFLP-CI	
			z	t [s]	LB	gap	z	t [s]	z	t [s]
wlp01	50	115	$\underline{28716}$	3			$\underline{27971}$	0	$\underline{29397}$	4
wlp02	100	253	$\underline{52952}$	423			$\underline{51955}$	6	54653	7200
wlp03	150	345	$\underline{64296}$	6954			$\underline{63077}$	25	66558	7200
wlp04	200	479	84633	7200	84567.8	0.08\%	$\underline{83600}$	231	87382	7200
wlp05	250	601	107323	478	103073.6	4.12\%	$\underline{102427}$	2268	109135	7200
wlp06	300	705	115295	361	110614.2	4.23\%	110291	7200	117426	4008
wlp07	400	1012	170100	129	161292.3	5.46\%	160567	3649	171209	7200
wlp08	500	1277	-				185942	3243	-	
wlp09	600	1483	-				216297	801	-	
wlp10	700	1733	-				242814	218	-	
wlp11	800	2020	-				287213	212	-	
wlp12	900	2159	-				-		-	
wlp13	1000	2305	-				313838	3621	-	
wlp14	1200	2927	-				-		-	
wlp15	1400	3445	-				-		-	
wlp16	1600	4067	-				-		-	
wlp17	1800	4373	-				-		-	
wlp18	2000	4908	-				-		-	
wlp19	2500	5882	-				-		-	
wlp20	3000	7800	-				-		-	
wlp21	75	172	38067	24			37560	2	$\underline{39413}$	54
wlp22	175	428	74473	5534	74269.4	0.27\%	73300	268	76886	7200
wlp23	275	694	124991	287	118262.9	5.69\%	117619	4098	124091	3663
wlp24	450	1128	176721	346	167591.1	5.45\%	166781	2249	-	
wlp25	650	1619	-				228342	474	-	
wlp26	850	2007	-				288183	306	-	
wlp27	1100	2847	-				-		-	
wlp28	1500	3474	-				-		-	
wlp29	1900	4522	-				-		-	
wlp30	2750	6965	-				-		-	

Looking at the results of the MS-CFLP model, we see that the incompatibility constraints play a relevant role in terms of both running time and solution quality. In fact, on the one hand the solutions without incompatibilities are obtained in shorter computational times and for larger instances, and on the other hand the quality of the solutions (for both optimal and non-optimal ones) improves up to 5.9% for the available results.

We notice that the single-source problem (SS-CFLP-CI) is more difficult than the multi-source one, due to the presence of the integrality constraints (Eq. (6)); indeed, only instances up to 75 facilities were solved to optimality. We also observe that there is an increase of the value of the objective function which, however, is quite limited. In fact, as further investigated in Section 3.1, most of the customers are served by a single facility even in the multi-source setting. Only for case wlp23 the (non-optimal) value of the single-source formulation is better than the one of the MS-CFLP-CI, but this is due to the interruption of the multi-source model by the system after only 287 s , while the single-source model was aborted after 3663 s .

Finally, we acquired the generator of Maia et al. (2023) and we tuned up some of its parameters in order to generate additional instances with different feature values. We generated a new dataset, namely CFLP-CI, composed of 50 instances, with new values for the ratio between facilities and customers, the number of incompatibilities, and the ratio between opening and supply costs. The CFLP-CI dataset is publicly available at our repository. As shown in Table 5, these instances exhibit a large number of facilities and customers, thus the optimal solution for the MS-CFLP-CI model was found only for instance cflp-ci-11 corresponding to a value of the objective function equal to 30,728 . For all other instances the solver was not able to deliver any solution within the time limit.

3. Local search

In this section, we illustrate our metaheuristic search method, which is based on local search. We proceed in stages, starting from the search
space (Section 3.1), then moving to the initial solution procedure (Section 3.2), then to the neighborhood relation (Section 3.3), and finally we discuss the metaheuristic that guides the search (Section 3.4).

3.1. Search space

Given that we want to address large instances, we have to deal with the fact that the straightforward choice for the search space based on the flow variables $x_{i j}$ of Section 2 would be extremely large. Therefore, we decided to take some actions that could reduce the size of the search space, without missing the best possible solutions.

To this aim, we inspected both the optimal solutions for the small instances obtained by the mathematical model for the MS-CFLP-CI and the solutions delivered by the methods by Maia et al. (2023). We realized that in all solutions most of the customers are supplied by one single facility, less than 20% are supplied by two facilities, and only a few are supplied by three or more facilities.

In particular, for the optimal solutions of the MS-CFLP-CI model there are on average 82.2% single source customers, 16.4% customers served by two facilities, and 1.4% served by three facilities and none served by more than three. For the best solver of Maia et al. (2023), we obtained ${ }^{1}$ the following average distribution of customers: 75.7% single source, 18.8% two sources, 4.3% three sources, 0.9% four sources, and 0.2% five or more sources. To further investigate this issue, we modified the MS-CFLP-CI model in order to have at most two suppliers for each customer by adding the following constraints
$\sum_{j=1}^{m} w_{i j} \leq 2, \quad i=1, \ldots, n$.
Optimal results for the two-source model were obtained only for small instances (up to 100 facilities), however it was interesting to

[^1]observe that in these cases the maximum gap between the optimal values of the multi-source and two-source models is only 0.008%, thus the loss due to this restriction is very small.

Based on these observations, we decided to limit the search space by considering only solutions with at most two suppliers per customer. With this choice, our search space is a vector Φ of size n of quadruples $\left\langle f_{1}^{c}, f_{2}^{c}, q_{1}^{c}, q_{2}^{c}\right\rangle$, such that f_{1}^{c} and f_{2}^{c} represent the two facilities that supply customer c and q_{1}^{c} and q_{2}^{c} represent their supplied quantities (with $q_{1}^{c}+q_{2}^{c}=d_{c}$). If a customer c is supplied entirely by one facility, then f_{2}^{c} assumes the conventional value -1 and $q_{2}^{c}=0$. Furthermore, in order to break the symmetry, the two suppliers are ordered in terms of supply cost, so that the supply cost of f_{1}^{c} is always lower than or equal to the supply cost of f_{2}^{c}.

This choice reduces the search space very significantly, dropping its size from quadratic to linear, with respect to the number of customers ad facilities. Analogously, it allows us to keep to quadratic the size of all the neighborhoods discussed in Section 3.3, which would have been problematic with the general search space.

Nonetheless, in order to search for better results, we decided to limit and refine it further. The second action we took is based on the observation that it is very unlikely that a customer is served by a facility with a high supply cost. Therefore, we define for each customer the list of its preferred facilities, which is composed of its "cheapest" suppliers. The search space is then restricted to preferred assignments (i.e., assignments to preferred facilities).

The length of the list of preferred suppliers is clearly a crucial parameter of the search, as too high a value would result in a waste of time by searching for inferior assignments, and too low a value would exclude good solutions that might need one or a few "bad" assignments to be completed.

Given that we have no evidence on which would be the best choice, we decided to make it parametric and to tune it experimentally. Intuitively, the length should depend on both the size of the instance and on the distribution of the supply costs. Therefore, the length is governed by two parameters, one related to the number of facilities m and one to the supply costs.

Regarding the number of facilities, our first idea was to define the length of the list as a fraction of m. However, preliminary experiments showed that the list was too short for small instances and too long for large ones. Therefore, we decided to resort to the square root of m. In detail, the length of the list is $\beta \cdot\lfloor\sqrt{m}\rfloor$ for all customers, where β is a parameter of the search method.

The distribution of costs comes into play separately for each customer. That is, for each customer c the list is augmented by all excluded facilities that have a difference in supply cost with respect to the cheapest potential supplier of c of at most λ, which is the second parameter related to the preferred facilities.

Note that the creation of the lists depends only on the input data (and on β and λ) and can be computed once for all in a preprocessing stage, while reading the instance from the file.

Besides the two above-described choices, we made two other more straightforward limitations of the search space. First, we exclude the possibility that a facility serves two incompatible customers. This is enforced by avoiding such assignments in the initial solution and excluding the moves that would violate this rule. In order to check this situation, we maintain in the state object an integer-valued auxiliary $n \times m$ matrix Ξ that stores for each customer c the number of customers incompatible with c served by facility f.

Finally, we exclude from the space the possibility that a facility is overloaded. Similarly to incompatibilities, we provide against this occurrence in the initial solution construction and in the selection of the moves. To this aim, we store the current load of each facility in an integer-valued vector Λ of size m that is kept updated during the search. We do not explicitly store the decision to open a facility: A facility f is considered open if and only if $\Lambda_{f}>0$.
Φ

f_{1}	f_{2}	q_{1}	q_{2}	
	1	-1	17	0
2	1	3	5	3
3	3	-1	16	0
4	1	-1	18	0
5	3	-1	9	0
6	3	-1	11	0

Ξ

	1	2	3
	0	0	1
2	0	0	0
3	0	0	0
4	0	0	1
5	2	0	0
6		0	0

Fig. 3. Representation of solution σ_{O}.

With these design choices, all visited states are feasible, so that the cost function that guides the local search coincides with the objective function (Eq. (1)) of the problem, which is composed of two components: the fixed opening costs and the variable supply costs.

Besides the already-mentioned vectors Φ, Ξ and Λ, we introduced a further data structure, which is a vector Ψ of size m, that stores for each facility the list of its customers. This is useful to accelerate the computation of the difference of cost between two neighbor states (delta costs).

Let us call σ_{O} the optimal solution of the MS-CFLP-CI previously introduced in Section 2.1 and represented by the following set of triples
$\{(1,1,17),(2,1,5),(2,3,3),(3,3,16),(4,1,18),(5,3,9),(6,3,11)\}$,
its full representation is shown in Fig. 3.

3.2. Initial solution strategies

For the initial solution, we tested two alternative strategies. The first one is random and works as follows. For each customer c, first we make a draw to select whether is should be served by one or two facilities (75% one, 25% two), and subsequently we select the corresponding one or two distinct preferred facilities uniformly, only checking that they are not overloaded and they do not serve incompatible customers.

In many problems the random strategy is suitable for quickly obtaining solutions which are unbiased and sufficiently diverse form each other; however, given the large size of some instances, a more heuristic strategy is presumably more promising in our context. For this reason, we resort to a greedy strategy, and in particular we adapted the one denoted as Multi-start greedy algorithm in the article by Maia et al. (2023) (Section 4.4). The method selects at each stage the pair $\langle c, f\rangle$ with the "best" cost, also considering the fixed opening cost in an amortized way, and computing the maximum quantity that can be supplied from f to c.

The adaptation consists in selecting for each customer at most two suppliers, and selecting them among the preferred ones. The second one is chosen among those that can fulfill the residual request completely. In addition, we run the procedure just once, and not in a multi-start loop.

For the toy instance, examples of solutions (called σ_{R} and σ_{G}) obtained by the random and greedy procedures, respectively, are

$$
\{(1,1,17),(2,1,8),(3,3,16),(4,3,18),(5,2,9),(6,2,11)\}
$$

with cost $6629(3829+2800)$ and

$$
\{(1,1,11),(1,3,6),(2,2,8),(3,3,16),(4,1,18),(5,2,9),(6,1,11)\}
$$

with cost 5664 (2864+2800).
The two strategies have been compared experimentally on available benchmarks, as discussed in Section 4.1.

Fig. 4. Examples of moves.

3.3. Neighborhoods

The neighborhood relation is indisputably the most important aspect of local search. To this regard, we considered three different atomic neighborhoods: ChangeSupplier, SwapSuppliers and ClopenFacilities.

3.3.1. ChangeSupplier neighborhood

Our first atomic neighborhood is the most straightforward one, which consists in replacing one of the suppliers of a customer. We call it ChangeSupplier(CS) and it is identified by three attributes: the customer $c \in\{1, \ldots, n\}$, the new supplier $f \in\{1, \ldots, m\}$, and the position $p \in\{1,2\}$ where it is inserted in Φ. That is, the move $C S\langle c, f, p\rangle$ replaces the first ($p=1$) or second ($p=2$) supplier of c with f. The new supplier f is selected among the preferred ones of c.

There are three cases to be taken care of depending on the current state and the attribute p of the move.

- c has one supplier and $p=1$: the amount of goods of c is entirely passed from the single supplier to the new one f.
- c has one supplier and $p=2$: the amount of goods of c is split among f_{1}^{c} and f in the way that minimizes the supply cost, respecting the capacity of f (the capacity of f_{1}^{c} is always satisfied, as it initially has all the load, and so it can only decrease); the order of the two suppliers is possibly updated.
- c has two suppliers and $p=2$: like the case above, the amount of goods of c is redistributed among f_{1}^{c} and f in order to minimize the supply cost, respecting the capacity of f and f_{1}^{c}.

The case in which c has two suppliers and $p=1$ is not listed above because we decided to forbid it, based on the idea to focus only on promising moves. This is because, given that suppliers are ordered by supply cost, it is always more effective to replace the second supplier than the first one.

As an example, starting from the random initial solution σ_{R} above, the best ChangeSupplier move is $\operatorname{CS}\langle 4,1,2\rangle$ that replaces the dummy facility as the second supplier of customer 4 with facility 1 (middle case above). Given that facility 1 has a lower supply cost then the current first supplier, it gets the maximum load (15, up to its capacity) and becomes the first supplier. The solution obtained (see Fig. 4(a), with changes highlighted in red) is
$\{(1,1,17),(2,1,8),(3,3,16),(4,1,15),(4,3,3),(5,2,9),(6,2,11)\}$
and the decrease of supply cost is 420 (equal to $(62-34) \times 15)$. The opening cost remains unchanged.

3.3.2. SwapSuppliers neighborhood

The second atomic neighborhood is called SwapSuppliers (SS) and it swaps two suppliers of two distinct customers. The SS neighborhood is particularly useful in situations in which the facilities are fully loaded, and also in presence of incompatible customers, so that the state can be changed in one move only by swapping the suppliers.

It is identified by two customers $c_{1}, c_{2} \in\{1, \ldots, n\}$, and two positions $p_{1}, p_{2} \in\{1,2\}$. The move $\mathrm{SS}\left\langle c_{1}, c_{2}, p_{1}, p_{2}\right\rangle$, swaps the first or second supplier (depending on p_{1}) of c_{1} with the first or second supplier of c_{2} (depending on p_{2}).

If c_{1} (resp. c_{2}) has only one supplier, then p_{1} (resp. p_{2}) is always equal to 1 , as the dummy supplier cannot be swapped. The current quantities are passed to the new supplier, without any rebalancing with the other supplier, as done instead for the ChangeSupplier neighborhood.

Obviously, a move is forbidden if it overloads one of the facilities (this can happen only for the facility that receives the customer with the larger quantity) or if it creates incompatibilities.

Whenever a customer is supplied by two facilities, it is more promising to swap the second one, as they are ordered by cost. On the other hand, we do not want to exclude the possibility that the first one is also selected to be swapped. To balance this trade-off, we introduce a new parameter that we call b_{SS} (SS bias) such that with probability b_{SS} the second one is selected and with probability $1-b_{\text {SS }}$ there is uniform random selection. In the case of customers served by a single facility, there is no option and the first (and only) one is always selected.

Starting again from σ_{R}, the best SwapSuppliers move is $\mathrm{SS}\langle 2,6,1,1\rangle$ that swaps the first (only) suppliers of customers 2 and 6 (which are 1 and 2, respectively). The solution obtained (see Fig. 4(b), with new flows highlighted in red and removed ones in dotted gray) is
$\{(1,1,17),(2,2,8),(3,3,16),(4,3,18),(5,2,9),(6,1,11)\}$
and the decrease of supply cost is 527 (equal to $(39-24) \times 8+(45-$ $8) \times 11$). The opening cost remains unchanged, as it is never affected by SwapSuppliers moves.

3.3.3. ClopenFacilities neighborhood

Our last neighborhood specifically addresses the issue of closing facilities and opening new ones. In fact, we observed in preliminary experiments that the search guided by the above two neighborhoods tends to prematurely fix the facilities to be open and rarely changes such decisions in the later part of the execution. This is because the closing of a facility would require a sequence of moves that iteratively remove clients, and is it unlikely that all members of such a sequence are iteratively selected.

We call this neighborhood ClopenFacilities (CF) (clopen: close + open) and it is identified by two attributes: the facility f_{c} to be closed and the facility f_{o} to be opened. The facility f_{c} is selected among
those currently open, and f_{o} among those that are currently closed. The neighborhood also includes the option of an opening alone with no closing and vice versa. In these cases, the attribute f_{c} or f_{o} gets the conventional value -1 , corresponding to the dummy facility which has no clients and no costs.

The execution of the move $\mathrm{CF}\left\langle f_{c}, f_{o}\right\rangle$ works in two steps. First, all clients of f_{c} are transferred one by one in a greedy way to the cheapest facility with enough space, so that f_{c} gets closed. In this search for the cheapest transfers from f_{c}, the facility f_{o} is assumed open, so as to encourage its use. Afterwards, all preferred clients of f_{o} (not assigned to it in the first step) are checked in turn to see if they can reduce their supply cost by being transferred from one or both their suppliers to f_{o} (up to its capacity).

It is worth mentioning that all the above-mentioned transfers (from f_{c} and to f_{o}) are not immediately executed, but rather stored in a list that complements the attributes of the move. Only when the move is accepted, all transfers are actually executed in the current state.

The execution of a ClopenFacilities move may lead to also opening other facilities besides f_{o}, in case some of the best transfers from f_{c} are towards closed facilities different from f_{o}. Similarly, it is possible that some other facility gets closed by the transfers towards f_{o}. The change of the fixed cost due to these extra openings and closings is obviously considered in the evaluation of the move.

Starting again for σ_{R}, the best ClopenFacilities move is $\mathrm{CF}\langle 1,-1\rangle$, that closes facility 1 and opens nothing. The best relocations of its customers (1 and 2) is towards facilities 3 and 2 , respectively. The fixed cost decreases by 720 and the supply cost increases by 67 , and the resulting solution (see Fig. 4(c)) is
$\{(1,3,17),(2,2,8),(3,3,16),(4,3,18),(5,2,9),(6,2,11)\}$.
This is actually the only feasible ClopenFacilities move in this state because no openings are possible given that all facilities are currently open. Furthermore, facility 2 cannot be closed because customer 5 cannot be relocated anywhere due to incompatibilities; and facility 3 cannot be closed because customer 4 cannot be relocated to facility 1 due to capacity limits and to facility 2 due to incompatibilities.

As for the SwapSuppliers neighborhood, the random selection is not uniform. In fact, the neighborhood is actually composed of three types of moves: open-only ones ($f_{c}=-1$), close-only ones ($f_{o}=$ $-1)$, and regular ones with both real facilities involved. In the last case, we select the pair of facilities $\left\langle f_{c}, f_{o}\right\rangle$ such that they have at least one preferred client in common, so that there is some synergy between the two sets of transfers. The selection between these three options is driven by internal probabilities. We introduce two additional parameters, called p_{Op} and p_{C}, such that open-only moves, close-only moves, and regular moves are selected with probability $p_{\mathrm{Op}}, p_{\mathrm{Cl}}$, and $1-p_{\mathrm{Op}}-p_{\mathrm{Cl}}$, respectively.

It is easy to understand that the ClopenFacilities neighborhood is more complex than the previous two, in the sense that the construction and the evaluation of a ClopenFacilities move is computationally much more expensive than the others. This fact must be taken into account when selecting the rate of drawing ClopenFacilities moves with respect to the other ones, in order to design the best configuration with equal running time.

3.4. Simulated annealing

The metaheuristic that guides the local search is Simulated Annealing (SA), proposed by Kirkpatrick et al. (1983). We believe that Simulated Annealing is more promising than other local search metaheuristics, such as Tabu Search and Variable Neighborhood Search, to address problems with large instances, due to its stochastic move selection. Indeed, the methods that perform a complete exploration of the neighborhood at every move might experience a performance loss for large neighborhoods.

There are many different versions of SA, we describe here the one used in this work, and we refer to the comprehensive work by Franzin and Stützle (2019) for the description of all the other variants. Similar approaches have been successfully used by Bellio et al. (2021) and Ceschia et al. (2021) in the context of examination timetabling and frequency assignment, respectively.

The SA procedure starts from the initial solution built using one of the methods described in Section 3.2. Which of the two should be used is a parameter to be selected experimentally.

At each iteration, the SA procedure selects a random move in the composite neighborhood CS $\cup S S \cup C F$. The move selection is done in two steps: the first step is to select one of the three atomic neighborhoods and the second one is to draw the specific move inside the neighborhood. The selection of the first step is biased based on given probabilities. That is, we have two real-valued parameters called $p_{S S}$ and $p_{C F}$, such that neighborhoods SS and CF are selected with probability $p_{S S}, p_{C F}$. Consequently, neighborhood CS is selected with probability $1-p_{S S}-p_{C F}$.

As customary for SA, the move is evaluated and always accepted if its cost difference Δ is negative or null (that is, the value of the objective function improves or remains the same). Conversely, if $\Delta>0$ it is accepted according to the so-called Metropolis criterion, i.e., with probability $e^{-\Delta / T}$, where T is a control factor called temperature.

The temperature is set to its initial value T_{0}, and then it is decreased according to the geometric cooling scheme ($T_{i}=\alpha \cdot T_{i-1}$), after a fixed number of samples N_{s}. In order to accelerate the early stages of the search, we add the so-called cut-off mechanism according to which the temperature also decreases if a maximum number of moves is accepted. This threshold is expressed as a fraction ρ of the number of samples N_{s} (with $0 \leq \rho \leq 1$). The iterations "saved" by the cut-off mechanism are redeployed uniformly at the following temperature levels.

In order to guarantee that all the configurations of SA have the same running time, we use the total number of iterations I as the stop criterion. To keep I fixed, we recalculate N_{s} using the formula $N_{s}=I /\left(\frac{\log \left(T_{f} / T_{0}\right)}{\log \alpha}\right)$, where T_{f} is the final temperature.

4. Experimental analysis

Our local search method has been coded in C++ and compiled with GNU g++ (v. 11.3) under Ubuntu Linux 22.4. Experiments have been run using the PC already described in Section 2.3, using one single virtual core for each experiment. The source code is available online at https://github.com/iolab-uniud/ms-cflp-ci.

4.1. Parameter tuning

The tuning procedure was carried out sampling the parameter configurations known as the Hammersley point set (Hammersley \& Handscomb, 1964) and using of the F-Race procedure (Birattari et al., 2010) for identifying the best one. F-Race is based on the statistical tests of Friedman and Wilcoxon for removing configurations as soon as they are recognized as inferior with the given confidence.

The set of parameters is quite large and heterogeneous, therefore we preferred to divide the parameter tuning into stages, assuming that the interaction of the parameters involved in the different stages is minimal and can be neglected. In each stage, the parameters belonging to a subsequent stage were fixed to values obtained from preliminary experiments. Parameters of the preceding stages were obviously fixed to the value suggested by the previous executions of the F -Race procedure.

Table 2 summarizes the parameters, distributed in the six stages of the tuning procedure, together with their initial range and the value finally selected.

As mentioned above, the stop criterion is based on the total number of iterations and the number of samples at each temperature is computed so that the search reaches exactly the final temperature T_{f}.

Table 2
Parameters' configuration.

Name	Description	Tuning stage	Initial range	Value
β	square root multiplier	I	[1.0, 2.0]	1.375
λ	cost difference	I	[5, 20]	8
IS	initial solution strategy	II	\{random, greedy\}	greedy
T_{0}	initial temperature	III	[10, 50]	16.42
T_{f}	final temperature	III	[0.05, 0.2]	0.183
α	cooling rate	III	[0.985, 0.995]	0.994
ρ	accepted moves ratio	III	[0.05, 0.15]	0.13
$p_{\text {SS }}$	probability of SS moves	IV	[0.3, 0.8]	0.580
$p_{\text {CF }}$	probability of CF moves	IV	[0.0, 0.2]	0.044
$b_{\text {SS }}$	bias of SS moves	V	[0.0, 1.0]	0.45
$p_{\text {Op }}$	probability of Open CF moves	VI	[0.0, 0.2]	0.160
$p_{\text {Cl }}$	probability of Close CF moves	VI	[0.0, 0.2]	0.019

Table 3
Computational results for a timeout equal to $10 \sqrt{m}$ seconds.

Inst.	LB	MR-MS-ILS		GRASP		PcEA		MG		SA		gap
		min	avg									
wlp01	*28716	28978	29092.3	30040	30195.4	29006	29736.8	34377	34377.0	29025	29249.7	0.54\%
wlp02	*52952	54493	54882.4	56492	56821.7	56925	57789.6	59933	60247.3	54061	54207.5	-1.23\%
wlp03	*64296	66927	67683.9	69027	69450.5	73027	74116.9	73349	73680.5	65562	65986.2	-2.51\%
wlp04	84633	89857	90207.1	92455	93042.2	98576	100104.5	98367	98615.2	85894	86391.7	-4.23\%
wlp05	107323	111627	112236.1	113694	114304.7	123293	126425.7	115846	117354.7	106079	106336	-5.26\%
wlp06	115295	118681	119549.1	120797	121942.1	133108	137503.5	126265	127688.3	113976	114255.3	-4.43\%
wlp07	170100	176631	177599.6	180191	181591.0	199563	202793.1	183670	184205.8	165647	166063.1	-6.50\%
wlp08		204862	206574.3	212179	214415.6	233202	236736.1	211878	212843.8	191822	192275.7	-6.92\%
wlp09		240299	241249.7	250934	252634.8	273294	277149.3	246270	246917.2	222979	223537.7	-7.34\%
wlp10		264252	265507.4	282518	285182.7	308317	314341.1	275649	276605.0	249762	250453.9	-5.67\%
wlp11		315760	317057.7	329788	332845.5	362415	366547.8	322269	323449.5	294315	294877	-7.00\%
wlp12		323993	326631.9	344734	347702.0	374867	379300.5	332749	333909.7	302834	303594.2	-7.05\%
wlp13		343793	345926.4	371068	372925.6	396380	401975.9	349964	351697.2	320652	321310.4	-7.12\%
wlp14		431981	432921.9	468742	470702.7	498599	502115.0	436872	438916.3	402477	403560	-6.78\%
wlp15		499596	505033.1	540567	544737.7	576254	579838.0	501671	505401.4	466848	467414.7	-7.45\%
wlp16		579364	583798.1	615768	619139.1	658583	669751.4	581757	583453.1	541385	542326.1	-7.10\%
wlp17		605310	606812.2	655090	662262.5	702080	710160.3	617832	619390.0	573244	574713	-5.29\%
wlp18		677396	680067.6	736207	740016.9	774778	783993.2	687117	688304.8	638976	640471.3	-5.82\%
wlp19		807447	815478.9	876105	880930.1	937785	946733.5	807573	809986.9	757538	758421.8	-7.00\%
wlp20		1043150	1048531.0	1140090	1142525.0	1192820	1198344.0	1050020	1053036.0	994310	995029.6	-5.10\%
wlp21	*38067	38474	38653.0	39892	40282.8	39233	40466.1	44298	44443.7	38872	39147.1	1.28\%
wlp22	74473	79378	79746.2	79348	80078.4	84301	86434.6	85732	86462.4	75860	76043.7	-4.64\%
wlp23	124991	127873	128307.5	129719	130669.6	143077	144204.9	134271	135725.6	121275	121540.2	-5.27\%
wlp24	176721	182248	182922.0	191882	193015.9	209596	212898.2	191017	192262.3	172252	172672.6	-5.60\%
wlp25		247975	251053.7	264454	267853.5	289981	292921.6	257904	258974.2	234307	235019.8	-6.39\%
wlp26		322663	324775.3	334346	336539.9	364831	369576.6	322085	323866.0	295774	296392.6	-8.74\%
wlp27		421190	422517.2	457577	460811.3	481565	488519.6	430559	431642.5	397231	397998	-5.80\%
wlp28		493849	497937.1	536825	543859.7	566881	573423.6	502019	504837.7	465282	466056	-6.40\%
wlp29		658764	665442.3	689560	697430.5	743620	754246.0	648531	650840.2	603826	605266.3	-9.04\%
wlp30		943009	949442.8	1014500	1017282.0	1072730	1076453.0	940479	942920.2	888124	888870.3	-6.38\%
Avg		349994.0	352254.6	374153.0	376706.4	399956.2	404486.7	355677.4	357068.5	329006.3	329649.4	-6.42\%

This choice guarantees that the running time is approximately the same for all settings of the parameters. The exception to this setting is Stage IV, given that the rates p_{*} of the neighborhoods have a great influence on the running times (in particular for the CF neighborhood). As a consequence, a fair comparison of configurations for Stage IV cannot be done based on the same number of iterations. Therefore, for Stage IV alone, we use a time-based stop criterion, so that cooling (i.e., multiplying by α) is applied when the time assigned to each temperature is expired, regardless of the number of iterations.

4.2. Comparison results

In this section, we position the results of our SA method in the best configuration found by the tuning procedure and reported in Table 2 within the ones in the literature. In detail, Tables 3 and 4 compare the
average and best results out of 10 runs to those obtained by Maia et al. (2023) for the two timeouts proposed by Maia et al., which depend on the size of the instance and correspond to m and $10 \sqrt{m}$ seconds, respectively.

The time-based stop criterion of SA has been used for this comparison. Given that the PC used by Maia et al. is basically equivalent to ours, we granted the same running time with no rescaling.

The column LB gives lower bound (marked with $*$ if it corresponds to the optimum) obtained by running the MS-CFLP-CI mathematical model described in Section 2.3.

The approaches developed by Maia et al. (2023) are: MineReducebased Multi-Start Iterated Local Search (MR-MS-ILS), Greedy Randomized Adaptive Search Procedure (GRASP), Permutation-Coded Evolutionary Algorithm (PcEA), and Multi-start Greedy (MG). We do not

Table 4
Computational results for a timeout equal to m seconds.

Inst.	LB	MR-MS-ILS		GRASP		PcEA		MG	SA			
		min	avg	gap								
wlp01	*28716	28913	29115.8	30041	30149.5	29455	29754	34377	34377	29002	29122.3	0.02\%
wlp02	*52952	54337	54802.9	56043	56725.3	56703	57847.9	60055	60347.9	53838	54117.5	-1.25\%
wlp03	*64296	67266	67540.8	68609	69476.1	70796	72662.8	73064	73677.8	65570	65804.1	-2.57\%
wlp04	84633	89544	90060.3	92301	92797.8	97317	99675.1	97624	98247.5	85933	86219.4	-4.26\%
wlp05	107323	111640	112175.6	112795	113542.8	120270	123091.1	116841	117319.3	105814	106185.8	-5.34\%
wlp06	115295	119049	119613.1	120892	121759.5	134270	135687.4	126802	127334.7	113499	113934.0	-4.75\%
wlp07	170100	176044	177044.3	178863	180693.6	195751	198910.9	183445	183797.8	165105	165623.4	-6.45\%
wlp08		203358	205710.1	212670	213795.5	227613	232665.3	211885	212515.1	191002	191537.5	-6.89\%
wlp09		239174	240312.5	248099	251159.7	271341	273808.6	245345	245922.1	222498	222838.3	-7.27\%
wlp10		263295	264925	281576	283672.7	301321	309782.7	274494	275508.5	249199	249629.1	-5.77\%
wlp11		313229	315728.7	327830	331875.2	355126	360683.7	321833	322804.4	293349	294125.8	-6.84\%
wlp12		324766	325507.1	341030	344437	369333	375447.1	332666	333413.6	301602	302619.9	-7.03\%
wlp13		341823	345307.9	366602	368888.9	390328	396320.3	349548	350811.3	319647	320238.1	-7.26\%
wlp14		429168	430919.1	462335	468817.1	491340	496191.2	436583	438183.4	400871	401929.2	-6.73\%
wlp15		497061	501122.4	538535	541858.4	570659	575833.8	502617	504380.3	464710	465208.8	-7.17\%
wlp16		578979	581756.9	613451	617507.9	658618	664376	580481	581807.7	539320	540173.0	-7.15\%
wlp17		603288	604889	654713	660503.1	697541	704478.4	616041	617354.1	571361	571954.6	-5.44\%
wlp18		674421	677531.8	734574	739435.7	778266	782867.4	683724	686295.7	636129	637451.0	-5.92\%
wlp19		805663	808405.2	873218	878551.5	920158	941345.1	805365	807075.4	754102	754760.4	-6.64\%
wlp20		1039400	1041971	1137770	1142545	1173020	1197136	1044990	1047811	986397	987448.3	-5.23\%
wlp21	*38067	38420	38567.3	39978	40214.7	39781	40600.8	44175	44391.6	38920	39124.3	1.44\%
wlp22	74473	78813	79336.6	79599	80138.5	83092	84975.6	85964	86273.8	75888	76088.7	-4.09\%
wlp23	124991	127076	128028.2	129527	130163.8	139348	142287.9	133931	135290.9	121250	121468.4	-5.12\%
wlp24	176721	181199	182220.6	189718	191675	207508	209439	190960	192024.5	171887	172168.9	-5.52\%
wlp25		249547	250928.1	265817	267378.8	283119	288489.6	257796	258596.2	234000	234580.6	-6.51\%
wlp26		321935	323134	331780	333906.5	358093	365582.5	322082	323315.8	294942	295352.6	-8.60\%
wlp27		418930	420459.1	451413	455969.9	477195	481836.7	428214	430329	395901	396510.9	-5.70\%
wlp28		493746	495644.8	535637	540882.2	568640	573048.9	502483	503812.5	463263	464045.4	-6.38\%
wlp29		656512	659751.1	694579	697376.3	734162	744444.2	646626	648973.2	602169	602607.9	-8.66\%
wlp30		940179	942409.2	1012550	1016481	1066990	1072834	936728	939816.9	882060	882912.5	-6.31\%
Avg		348892.5	350497.3	372751.5	375412.6	395571.8	401070.1	354891.3	356060.3	327640.9	328192.7	-6.36\%

consider the results by Pandey et al. (2023) as they regard only instances wlp01-wlp15 and they are consistently worse than the ones by Maia et al.

We see that SA (whose solutions were validated with the solution checker provided by Maia et al.) outperforms all four previous methods on all instances except for the smallest two (wlp01 and wlp21) for both timeout settings, in terms of average and best solution values.

Considering the instances whose proven optimal solution is known, the optimality gap is at most 2.2% using the linear timeout. The average improvement with respect to MR-MS-ILS, which was the leading algorithm developed in Maia et al. (2023), is respectively 6.36\% and 6.42% for linear and $10 \sqrt{m}$ timeouts, and it is more substantial for large instances.

The fact that we do not improve on the smallest instances can be explained considering the fact that our technique was specifically tailored to deal with large instances. An ad hoc setting of the parameters for small instances could have improved the results on them. However, we consider them less interesting given that they are solved to optimality by the mathematical model.

4.3. Runs with shorter timeouts

In order to further investigate the effectiveness of SA in different computational settings, we performed an analysis of its performance on three selected instances (wlp05, wlp08 and wlp13) representative of the different sizes of the dataset, with shorter running times. In detail, we considered a timeout equal to $k \sqrt{m}$ with $k \in[1,10]$ and we computed the average value of the objective function for 10 repetitions for each instance.

Fig. 5 plots the average percentage increase of the objective function with respect to the value obtained with $k=10$, for different values of the parameter k, corresponding to a growing timeout from \sqrt{m} to $10 \sqrt{m}$.

Fig. 5. Average percentage deviation as a function of k.

The outcome is that reducing the running time by a factor of ten makes the results deteriorate by at most 1%. In addition, we see that, unsurprisingly, the decrease of performances happens smoothly with the running time, demonstrating that SA obtains good quality results for short runs as well.

4.4. Results on the CFLP-CI dataset

Finally, we report the results for the new CFLP-CI dataset. Table 5 shows the number of facilities (m) and customers (n) of each instance, along with the results of our solver for both timeouts, on the configuration reported in Table 2. This dataset and these results could be used for future comparisons with new search methods.

Table 5
Computational results on the CFLP-CI dataset for different timeouts.

Instance	m		SA ($10 \sqrt{m}$ timeout)			SA (m timeout)		
		n	min	avg	avg time	min	avg	avg time
cflp-ci-00	852	2102	424519	425264.1	290.7	423418	423997.0	851.0
cflp-ci-01	1981	5709	573983	575397.2	391.9	568919	570251.9	1916.9
cflp-ci-02	2224	5970	448326	449302.0	387.2	442916	443314.1	2136.3
cflp-ci-03	2826	7701	1508473	1509804.8	369.0	1495309	1496823.6	2669.5
cflp-ci-04	2143	6143	1220618	1222512.9	391.5	1216587	1217446.0	2080.2
cflp-ci-05	1788	4829	368456	368914.3	385.1	364036	364548.5	1750.5
cflp-ci-06	633	1705	155149	155376.4	250.9	154811	155013.3	632.2
cflp-ci-07	2353	5319	452561	453707.1	414.3	447859	448501.9	2287.3
cflp-ci-08	1479	4396	702000	703657.0	357.5	699317	700112.5	1450.1
cflp-ci-09	2161	4510	334128	334818.7	432.8	331089	331702.6	2130.2
cflp-ci-10	1583	4609	612854	614279.3	370.1	610333	611297.3	1553.7
cflp-ci-11	69	156	30894	30975.9	82.8	30882	31059.8	68.6
cflp-ci-12	618	1832	461171	462177.8	247.8	460229	461474.0	617.4
cflp-ci-13	684	1558	388264	388879.6	260.8	386948	388202.4	683.5
cflp-ci-14	2128	5893	1031054	1032521.9	403.6	1027028	1028186.6	2070.6
cflp-ci-15	2226	5225	565607	566459.6	413.9	561099	562128.0	2169.4
cflp-ci-16	1485	3606	891160	892011.8	370.7	887877	889296.2	1471.2
cflp-ci-17	2721	5840	1231972	1233547.8	426.3	1225297	1226184.4	2628.8
cflp-ci-18	1773	4757	903653	905310.9	385.9	900438	902206.0	1738.6
cflp-ci-19	520	1305	152349	152740.9	227.4	151907	152255.5	519.7
cflp-ci-20	2629	6587	1280618	1283255.5	412.6	1273308	1275338.5	2524.2
cflp-ci-21	1121	2374	460143	461168.5	331.8	459288	459903.4	1118.1
cflp-ci-22	722	2138	313629	314280.3	267.6	313381	313663.0	721.2
cflp-ci-23	1471	3344	414336	415852.6	371.8	413761	414130.3	1457.9
cflp-ci-24	2142	5518	473660	474247.5	411.5	468618	469362.6	2092.0
cflp-ci-25	2757	7474	803729	805523.5	374.7	796370	797221.8	2587.1
cflp-ci-26	2442	5073	698430	700168.0	438.4	695323	696126.2	2387.2
cflp-ci-27	2866	6689	1433262	1434453.2	416.3	1420856	1423304.2	2747.6
cflp-ci-28	855	2141	469428	470734.6	291.1	469035	469843.7	854.0
cflp-ci-29	2787	6825	1381347	1383402.3	423.9	1372452	1374401.2	2681.0
cflp-ci-30	1748	4095	580934	581995.5	394.9	579263	580050.7	1724.7
cflp-ci-31	2946	7622	1216734	1218218.8	400.2	1206339	1207307.3	2804.2
cflp-ci-32	2028	4946	492232	493294.5	403.6	487236	488433.6	1982.2
cflp-ci-33	2685	5974	1082543	1083618.0	428.2	1075666	1076818.6	2605.9
cflp-ci-34	2048	5004	1156148	1158156.4	407.1	1151861	1153176.1	2004.2
cflp-ci-35	2618	6408	549152	550971.0	425.9	541626	542213.1	2537.7
cflp-ci-36	1276	3697	556058	557097.0	343.7	554259	555083.6	1262.0
cflp-ci-37	2213	5823	1290114	1291258.3	411.6	1284102	1285221.9	2156.2
cflp-ci-38	1745	5050	1058405	1059980.9	381.4	1054933	1055679.1	1710.6
cflp-ci-39	383	1131	192846	193320.9	195.3	192693	193001.8	382.5
cflp-ci-40	1731	3466	638996	639737.2	397.0	636674	637300.3	1712.4
cflp-ci-41	2704	7893	1309439	1311166.0	397.1	1297401	1298835.6	2584.7
cflp-ci-42	937	2133	422885	424160.1	304.6	422267	422889.1	935.6
cflp-ci-43	1770	4181	508871	509989.0	385.6	505548	506465.7	1736.3
cflp-ci-44	2074	5752	766352	767928.0	383.0	759920	761332.5	2005.6
cflp-ci-45	2288	4585	724761	725291.0	434.2	721010	721857.7	2240.9
cflp-ci-46	2431	5397	637155	638433.8	424.8	633722	634707.6	2358.5
cflp-ci-47	843	2090	410913	411767.5	289.2	410205	410729.5	841.7
cflp-ci-48	1223	3442	778044	779471.1	339.9	775605	777095.8	1213.1
cflp-ci-49	892	2135	305726	306143.6	297.3	304209	304719.1	890.4
Avg			697281.6	698454.9	360.9	693264.6	694204.3	1725.7

5. Conclusions and future work

We have designed a local search approach for the MS-CFLP-CI problem, recently proposed by Maia et al. (2023). Our method has been able to outperform all previous methods on almost all instances independently of the running time. Additional experiments show that our approach is also suitable for shorter runs, allowing for more interactive solution sessions. We believe that the key ingredients of the method are the reduced (two-suppliers) search space and the sharp tailoring and engineering of the neighborhoods.

In addition, we have provided a mathematical model that obtains optimal solutions for relatively small instances. In addition, our model has been helpful, through the inspection of its solutions, to guide our successful choice of using the reduced search space.

Finally, we have designed and made publicly available a new dataset that could complement the current one as benchmark for comparisons on this problem.

For the future, we plan to refine the neighborhoods so as to try to further improve our current results. For example, the dynamic rebalancing of the quantities of the two suppliers applied in the ChangeSupplier neighborhood could be profitably applied to SwapSuppliers and ClopenFacilities as well.

In addition, we plan to adapt our solution technique to different versions of the CFLP and compare our results with the corresponding state-of-the-art contributions on the available benchmarks.

Finally, we would like to design some "auto-tuning" mechanism that could control some of the parameters online based on reinforcement learning techniques, in order to reduce the computational cost of the tuning procedure.

CRediT authorship contribution statement

Sara Ceschia: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Visualization, Writing - original
draft, Writing - review \& editing. Andrea Schaerf: Conceptualization, Investigation, Methodology, Software, Supervision, Validation, Writing - original draft, Writing - review \& editing.

Data availability

All data and source code is available at https://github.com/iolab-uniud/ms-cflp-ci.

Acknowledgments

We thank the organizers of the MESS-2020+1 summer school, Mario Pavone in particular, and the participants to the MESS-2020+1 competition.

References

Ahuja, R. K., Orlin, J. B., Pallottino, S., Scaparra, M. P., \& Scutellà, M. G. (2004). A multi-exchange heuristic for the single-source capacitated facility location problem. Management Science, 50(6), 749-760.
Avella, P., \& Boccia, M. (2009). A cutting plane algorithm for the capacitated facility location problem. Computational Optimization and Applications, 43(1), 39-65.
Avella, P., Boccia, M., Mattia, S., \& Rossi, F. (2021). Weak flow cover inequalities for the capacitated facility location problem. European Journal of Operational Research, 289(2), 485-494.
Avella, P., Boccia, M., Sforza, A., \& Vasil'ev, I. (2009). An effective heuristic for large-scale capacitated facility location problems. Journal of Heuristics, 15(6), 597.
Basu, S., Sharma, M., \& Ghosh, P. S. (2015). Metaheuristic applications on discrete facility location problems: a survey. Opsearch, 52, 530-561.
Bellio, R., Ceschia, S., Di Gaspero, L., \& Schaerf, A. (2021). Two-stage multineighborhood simulated annealing for uncapacitated examination timetabling. Computers \& Operations Research, 132, 105300. http://dx.doi.org/10.1016/j.cor. 2021.105300, https://authors.elsevier.com/c/1cyGn15N8SFYRV.

Birattari, M., Yuan, Z., Balaprakash, P., \& Stützle, T. (2010). F-race and iterated F-race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311-336). Berlin: Springer.
Caserta, M., \& Voß, S. (2020). A general corridor method-based approach for capacitated facility location. International Journal of Production Research, 58(13), 3855-3880.
Celik Turkoglu, D., \& Erol Genevois, M. (2020). A comparative survey of service facility location problems. Annals of Operations Research, 292, 399-468.
Ceschia, S., Di Gaspero, L., Rosati, R. M., \& Schaerf, A. (2021). Multineighborhood simulated annealing for the minimum interference frequency assignment problem. EURO Journal on Computational Optimization, 1-32. http: //dx.doi.org/10.1016/j.ejco.2021.100024, https://www.sciencedirect.com/science/ article/pii/S2192440621001519.
Chen, C. H., \& Ting, C. J. (2008). Combining lagrangian heuristic and ant colony system to solve the single source capacitated facility location problem. Transportation Research Part E: Logistics and Transportation Review, 44(6), 1099-1122.
Chudak, F. A., \& Williamson, D. P. (2005). Improved approximation algorithms for capacitated facility location problems. Mathematical Programming, 102, 207-222.
Cornuéjols, G., Nemhauser, G., \& Wolsey, L. (1983). The uncapicitated facility location problem: Tech. rep, Cornell University Operations Research and Industrial Engineering.
Cortinhal, M. J., \& Captivo, M. E. (2003). Upper and lower bounds for the single source capacitated location problem. European Journal of Operational Research, 151(2), 333-351.

Drezner, Z., \& Hamacher, H. W. (2004). Facility location: Applications and theory. Springer Science \& Business Media.
Fernández, E., \& Landete, M. (2015). Fixed-charge facility location problems. In Location science (pp. 47-77). Springer.
Fischetti, M., Ljubić, I., \& Sinnl, M. (2016). Benders decomposition without separability: A computational study for capacitated facility location problems. European Journal of Operational Research, 253(3), 557-569.
Franzin, A., \& Stützle, T. (2019). Revisiting simulated annealing: A component-based analysis. Computers \& Operations Research, 104, 191-206.
Goossens, D., \& Spieksma, F. C. (2009). The transportation problem with exclusionary side constraints. 4OR, 7, 51-60.
Görtz, S., \& Klose, A. (2012). A simple but usually fast branch-and-bound algorithm for the capacitated facility location problem. INFORMS Journal on Computing, 24(4), 597-610.
Guastaroba, G., \& Speranza, M. G. (2012). Kernel search for the capacitated facility location problem. Journal of Heuristics, 18(6), 877-917.
Hammersley, J. M., \& Handscomb, D. C. (1964). Monte Carlo methods. London: Chapman and Hall.
Kirkpatrick, S., Gelatt, D., \& Vecchi, M. (1983). Optimization by simulated annealing. Science, 220, 671-680.
Klose, A., \& Drexl, A. (2005). Facility location models for distribution system design. European Journal of Operational Research, 162(1), 4-29.
Korupolu, M. R., Plaxton, C. G., \& Rajaraman, R. (2000). Analysis of a local search heuristic for facility location problems. Journal of Algorithms, 37(1), 146-188.
Krarup, J., \& Pruzan, P. M. (1983). The simple plant location problem: Survey and synthesis. European Journal of Operational Research, 12(36-81), 41.
Lai, M. C., suk Sohn, H., Tseng, T. L. B., \& Chiang, C. (2010). A hybrid algorithm for capacitated plant location problem. Expert Systems with Applications, 37(12), 8599-8605.
Laporte, G., Nickel, S., \& da Gama, F. S. (2015). Location science. Springer Nature.
Letchford, A. N., \& Miller, S. J. (2014). An aggressive reduction scheme for the simple plant location problem. European Journal of Operational Research, 234(3), 674-682.
Maia, M. R., Reula, M., Parreño-Torres, C., Vuppuluri, P. P., Plastino, A., Souza, U. S., Ceschia, S., Pavone, M., \& Schaerf, A. (2023). Metaheuristic techniques for the capacitated facility location problem with customer incompatibilities. Soft Computing, 27(8), 4685-4698.
Marín, A., \& Pelegrín, M. (2019). Adding incompatibilities to the Simple Plant Location Problem: Formulation, facets and computational experience. Computers \& Operations Research, 104, 174-190.
Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., \& Tack, G. (2007). MiniZinc: Towards a standard CP modelling language. In C. Bessière (Ed.), LNCS: vol. 4741, CP 2007 (pp. 529-543). Springer.
Pandey, A., Taneja, N., \& Vuppuluri, P. P. (2023). Heuristic strategies for warehouse location with store incompatibilities in supply chains. In Applied intelligence in human-computer interaction (pp. 185-201). CRC Press.
Rabbani, M., Heidari, R., Farrokhi-Asl, H., \& Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Production, 170, 227-241.
Revelle, C. S., \& Laporte, G. (1996). The plant location problem: new models and research prospects. Operations Research, 44(6), 864-874.
Swamy, C., \& Shmoys, D. B. (2008). Fault-tolerant facility location. ACM Transactions on Algorithms (TALG), 4(4), 1-27.
Verter, V. (2011). International series in operations research \& management science: vol. 155, Foundations of location analysis (pp. 25-37). Springer.
Weninger, D., \& Wolsey, L. A. (2023). Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing. European Journal of Operational Research, 310(1), 84-99.

[^0]: * Corresponding author.

 E-mail addresses: sara.ceschia@uniud.it (S. Ceschia), andrea.schaerf@uniud.it (A. Schaerf).

[^1]: ${ }^{1}$ We compiled and rerun the source code available online at https://github. com/MESS-2020-1/MR-MS-ILS-solver.

