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A B S T R A C T

We consider the Capacitated Facility Location Problem with Customer Incompatibilities, which is a recently
-proposed variant of the classic facility location problem whose distinctive feature is to take into account
incompatibilities between customers.

We tackle this problem using local search and we propose a combination of neighborhoods and ad hoc
techniques to reduce the size of the search space, in order to effectively deal with large instances. The resulting
multi-neighborhood approach is guided by a simulated annealing procedure. Our method, suitably tuned in
a statistically-principled way, has been able to outperform all previous techniques on the publicly available
dataset, on both short and long running times.
1. Introduction

The Facility Location Problem (FLP) is a classic optimization prob-
lem that consists in selecting the locations where new facilities have
to be established (among a finite set of available candidate locations)
and allocating customers to facilities such that all customer requests
are served and the total cost is minimized. It is a strategic issue in
logistics and systems design, since it has multitude of applications both
in private and public sectors, and many variants of the problem have
been proposed and investigated in the literature (Celik Turkoglu & Erol
Genevois, 2020; Drezner & Hamacher, 2004; Laporte et al., 2015).

In the simplest version, called Uncapacitated (UFLP), it is assumed
that each facility has infinite capacity; as a consequence, once the
locations for the facilities have been chosen, each customer is entirely
supplied by the open facility with the minimum transportation cost.
Despite its simplicity, the UFLP has been proven to be NP-hard by Cor-
nuéjols et al. (1983) and a broad literature exists on this problem: for an
overview of the main contributions, see Klose and Drexl (2005), Krarup
and Pruzan (1983), Revelle and Laporte (1996) and Verter (2011). The
current leading method by Letchford and Miller (2014) is a branch
and bound algorithm embedding sophisticated problem reduction pro-
cedures, that is able to solve to proven optimality instances with up to
18000 facilities.

From a practical point of view, the most interesting variant of
the problem is the capacitated one (CFLP) in which facilities have a
fixed maximum capacity that must not be exceeded when supplying
customers. In this case, a customer can be supplied by a unique facility
(single-source, SS) or by multiple facilities (multi-source, MS).

∗ Corresponding author.
E-mail addresses: sara.ceschia@uniud.it (S. Ceschia), andrea.schaerf@uniud.it (A. Schaerf).

The literature on the CFLP is extensive, we thus refer the interested
readers to the surveys of Fernández and Landete (2015) and Klose
and Drexl (2005) for a comprehensive overview. To the best of our
knowledge, the state-of-the-art computational results for the CFLP are
those reported by Avella et al. (2021), Fischetti et al. (2016) and Görtz
and Klose (2012) among exact methods, and Guastaroba and Speranza
(2012, 2014) and Caserta and Voß (2020), among heuristics. Görtz
and Klose (2012) present a branch-and-bound algorithm based on
Lagrangian relaxation and subgradient optimization, (Fischetti et al.,
2016) design a Bender decomposition approach and Avella et al. (2021)
devise a new class of valid inequalities that are used in a branch-
and-cut framework. Top heuristic methods also exploit mathematical
programming techniques. In detail, Guastaroba and Speranza imple-
ment a Kernel search framework, while Caserta and Voß use a Cor-
ridor method. Other relevant works include Avella and Boccia (2009)
and Avella et al. (2009) who introduced new datasets with instances up
to 2000 facilities, now commonly used as benchmark for comparison.
Recently, Weninger and Wolsey (2023) investigated the performance
of different Benders based branch-and-cut algorithms for the CFLP
with partial single sourcing, which occurs when a subset of customers
requires a single supplier.

Approximation results for the CFLP have been obtained by Korupolu
et al. (2000), who proved that a steepest descent local search heuristic
yields a solution of value no more than (8+𝜖) times the optimal one; this
result has been improved to an 6(1 + 𝜖) approximation by Chudak and
Williamson (2005). The neighborhood relations implemented in the
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local search are: opening a new facility, closing a facility, or changing a
facility. Notice that these moves modify only the set of open facilities;
indeed, for the MS-CFLP, given a set of open facilities, an optimal
assignment of customers to facilities can be computed in polynomial
time by solving the corresponding instance of the transportation prob-
lem. Thus, for this variant of the problem, any solution is completely
characterized by the set of open facilities.

Moving to metaheuristic techniques, their application to facility
location problems has been surveyed by Basu et al. (2015). Examples of
metaheuristic approaches applied to the SS-CFLP are provided by Ahuja
et al. (2004), Cortinhal and Captivo (2003) and Chen and Ting (2008),
who implemented Tabu Search, Very Large Scale Neighborhood Search
and Ant Colony Optimization algorithms, respectively. The neighbor-
hood relations used by Chen and Ting (2008) and Cortinhal and Captivo
(2003) are the traditional ones, i.e. the assignment of a customer to a
different facility and the swap of the facilities between two customers.
Conversely, Ahuja et al. (2004) defined a more sophisticated large
neighborhood that exchanges customers among facilities in a cyclic
manner; these moves are detected on a facility improvement graph dy-
namically built through the use of a greedy scheme. In addition, Ahuja
et al. also implemented the moves that open a new facility, close an ex-
isting facility, and transfer a facility to a different location. Finally, Lai
et al. (2010) proposed a hybrid approach: a genetic algorithm is em-
bedded in a Benders’ decomposition framework to solve the master
problem.

Among the different variants of the CFLP, recently Maia et al.
(2023) introduced the Multi-Source Capacitated Facility Location Prob-
lem with Customer Incompatibilities (MS-CFLP-CI), where there are
additional constraints stating that specific pairs of customers cannot be
served by the same facility.

These constraints are used to model two main practical situations:
(i). rival customers that prevent their suppliers serving also their com-
petitors, assuming the competitive nature of the market; (ii). incom-
patibility between different types of product required by customers
(for example the siting of collection centers for household hazardous
waste (Rabbani et al., 2018; Revelle & Laporte, 1996) or perishable
products). In addition, consider a multi-product setting in which each
facility can only store one type of product, and it must be decided
which facilities to open, which product store in each facility, and which
customers assign to which facilities. This problem can be modeled by
introducing incompatibilities between customers who require products
of different types.

Customer incompatibilities were investigated from the theoretical
point of view by Marín and Pelegrín (2019) in the contest of the
uncapacitated problem. In particular, they studied the facial structure
of the set-packing formulation of the problem, and demonstrated that
it generalizes other variants of the UFLP, such as the Fault-Tolerant
Facility Location problem, (see e.g. Swamy & Shmoys, 2008) in which
each customer has to be assigned to several facilities.

Notice that for the MS-CFLP-CI a search approach that works on
the level of deciding which facilities to open, and then assigns the
suppliers using a dedicated subprocedure, would not be as promising
as for the MS-CFLP. In fact, the presence of incompatibilities intro-
duces disjunctive constraints that make the underlying transportation
problem NP-hard, as proven by Goossens and Spieksma (2009).

For the solution of the MS-CFLP-CI Maia et al. (2023) propose a
portfolio of different (meta)heuristic techniques which are compared
on a new dataset composed of 30 instances, with up to 3000 facilities.
All instances and source code of the solution methods are publicly
available at https://github.com/MESS-2020-1. Subsequently, two other
problem-specific heuristics for the solution of the MS-CFLP-CI have
been proposed by Pandey et al. (2023).

The main goal of this work is to explore a new search method to
solve the MS-CFLP-CI, which could improve the state-of-the-art results
on the available benchmarks. To this aim, we propose a local search
2

algorithm driven by a Simulated Annealing metaheuristic. It starts from q
an initial solution generated by the greedy algorithm proposed by Maia
et al. (2023), properly revised, and then implements some innovative
neighborhood structures that, up to our knowledge, have never been
applied to the CFLP. In particular, along with the neighborhood that
changes a supplier and its supplied quantity of a customer and the
neighborhood that swaps the suppliers of two distinct customers, we
propose a more complex neighborhood that simultaneously closes a
facility and opens a new one. In this case, firstly the facility to be closed
is emptied by transferring customers in a greedy way to the cheapest
open facility with enough space, then the new open facility attracts
new customers, if their shipping cost is reduced. In addition, our solver
makes use of some techniques of reduction of the search space that allow
us to also tackle effectively large instances. In particular, it focuses on
solutions with at most two suppliers for each customer, that are selected
among a short list of preferred facilities. Our search method has a large
number of parameters, so it turned out to be necessary to tune it using
an automatic tool. In particular, we employed F-Race, which resorts to
statistical tests for removing inferior parameter configurations until the
best one emerges.

Besides the local search method, we implemented the mathematical
models of the different variants of the problem in CPLEX, so as to obtain
optimal values and lower bounds for the smaller instances to be used
for comparison.

Finally, we propose a novel dataset, that we call CFLP-CI, which
ould possibly become an additional benchmark for the future. The
FLP-CI dataset, the results for both datasets, and the source code
f our method are available online at https://github.com/iolab-uniud/
s-cflp-ci.

The outcome is that our local search solver, properly tuned, is able
o outperform on almost all instances all methods of Maia et al. (2023),
ith an average improvement of more than 6% with respect to the best
ne, which is MineReduce, a hybrid approach based on data mining
nd iterated local search. It is worse than MineReduce only on the
wo smallest instances, which are however less interesting, as they are
olved to optimality by our implementation of the mathematical model
n CPLEX.

The outline of the paper is as follows: in Section 2 we first informally
escribe the problem also using a toy example, then we provide the
athematical models, we introduce the datasets used and we dis-

uss results obtained from the implementation of the models. Next,
n Section 3 we present the basic ideas of our local search method,
escribing the search space, the initial solution strategies, the neigh-
orhood relations and the Simulated Annealing algorithm. Section 4
resents the parameter tuning and computational results on benchmark
nstances from the literature and on the new dataset CFLP-CI. Finally,
n Section 5, conclusions are drawn and future work is proposed.

. Problem formulations, models, and dataset

In this section, we first introduce informally the problem under con-
ideration. Secondly, we formally define it by means of mathematical
odels for its different versions. Finally, we discuss the features of the

vailable dataset and the bounds obtained by the implementation of our
odels for this dataset, and we introduce our new dataset CFLP-CI.

.1. Problem formulations

In the Capacitated Facility Location Problem (CFLP) there are 𝑛
ustomers to be served, each one characterized by a demand 𝑑𝑖 (𝑖 =
,… , 𝑛) to be fully satisfied. There are 𝑚 potential locations where
facility can be opened, each one with fixed cost 𝑓𝑗 and maximum

apacity 𝑠𝑗 (𝑗 = 1,… , 𝑚). The unitary shipping cost from facility 𝑗 to
customer 𝑖 is denoted by 𝑐𝑖𝑗 .

The problem consists in selecting the facilities to be opened and

uantities supplied by each open facility to each customer, such that

https://github.com/MESS-2020-1
https://github.com/iolab-uniud/ms-cflp-ci
https://github.com/iolab-uniud/ms-cflp-ci
https://github.com/iolab-uniud/ms-cflp-ci
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Fig. 1. A toy instance.

he capacity of the facilities is not exceeded and the demands of the
ustomers are fully satisfied.

This formulation corresponds to the multi source version of the
roblem (MS-CFLP). If we add the constraint that a customer must be
erved by only one facility, we have the single source problem (SS-CFLP).

These two basic versions of the CLP can be extended by the notion
f customer incompatibilities (CI): We are given a set of pairs of customers
hat cannot be served by the same facility, regardless of the quantity.
he resulting problems are called MS-CFLP-CI and SS-CFLP-CI, for
ulti-source and single-source, respectively.

A toy instance is shown in Fig. 1 in the input file format proposed
y Maia et al. (2023), which is based on the language MiniZinc (Nether-
ote et al., 2007). The last two lines of the file describe the incom-
atibilities: The second to last line provides the number of pairs of
ncompatible customers, and the last line enumerates the pairs (starting
rom 1), stating that the fifth customer is incompatible with the first
nd the fourth customers.

The optimal solution of this instance for the MS-CFLP is shown in
ig. 2(a), where the open facilities are shown in black and the closed
nes in gray. In the format proposed by Maia et al. (2023) as a set of
riples (customer, facility, quantity), it is represented by the following
alues:

(1,1,3),(1,3,14),(2,1,8),(3,3,16),(4,1,18),(5,3,9),(6,1,11)}.

he total cost is 4676 divided into 3126 supply cost (3 × 39 + 14 × 50 +
× 39 + 16 × 49 + 18 × 34 + 9 × 57 + 11 × 8) and 1550 opening cost (720
830).
We notice that two facilities are open (1 and 3) and that customer

is the only one supplied by two distinct facilities, while all other
ustomers are single-source.

If we consider the SS-CFLP formulation, the optimal solution (see
ig. 2(b)) is:

(1,3,17),(2,1,8),(3,3,16),(4,1,18),(5,3,9),(6,1,11)}.

t is similar to the previous one, but the full demand of customer 1 is
ow taken by facility 3, with an increase of cost of 3 × (50 − 39) thus

resulting in a total cost of 4709.
We also notice that both solutions do not satisfy the incompatibility

constraints as incompatible customers 1 and 5 are both supplied by
facility 3.

The optimal solutions of the MS-CFLP-CI (see Fig. 2(c)) is

{(1,1,17),(2,1,5),(2,3,3),(3,3,16),(4,1,18),(5,3,9),(6,3,11)},
3

with a total cost of 5153. The optimal solutions of the SS-CFLP-CI (see
Fig. 2(d)) is

{(1,3,17),(2,1,8),(3,3,16),(4,3,18),(5,1,9),(6,1,11)}

with a total cost of 5373.
With respect to the formulations without incompatibilities, in both

cases the fixed costs are not changed since the same facilities are open,
however the shipping has undergone a substantial change (shown in
red), which corresponds to an increase of cost from 3126 to 3603 for
the multi-source, and from 3150 to 3823 for the single-source.

2.2. Mathematical models

We now introduce the mathematical models of different formula-
tions of the Capacitated Facility Location Problem. The general problem
can be formulated as follows:

(CFLP):min 𝑧 =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑐𝑖𝑗𝑥𝑖𝑗𝑑𝑖 +

𝑚
∑

𝑗=1
𝑓𝑗𝑦𝑗 (1)

𝑚
∑

𝑗=1
𝑥𝑖𝑗 = 1, 𝑖 = 1,… , 𝑛 (2)

𝑛
∑

𝑖=1
𝑑𝑖𝑥𝑖𝑗 ≤ 𝑠𝑗𝑦𝑗 , 𝑗 = 1,… , 𝑚 (3)

𝑦𝑗 ∈ {0, 1}, 𝑗 = 1,… , 𝑚 (4)

𝑥𝑖𝑗 ∈  , 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚 (5)

The objective function (Eq. (1)) minimizes both the total shipping
cost of serving customers and the total fixed cost of opening facilities.
Constraints (Eq. (2)) guarantee that each customer is fully served,
whereas inequalities (Eq. (3)) are the capacity constraints. The decision
variable 𝑦𝑗 takes value 1 if a facility is opened in location 𝑗, and 0 oth-
erwise, while the decision variable 𝑥𝑖𝑗 represents the fraction of the de-
mand of customer 𝑖 supplied by facility 𝑗. The domain  of 𝑥𝑖𝑗 variables
depends on the specific formulation of the CFLP, in particular if

 = {0, 1}𝑛×𝑚 (6)

the problem is the SS-CFLP, meaning that the entire demand of each
customer must be covered by a unique facility. On the contrary, if

 = [0, 1]𝑛×𝑚 (7)

then the demand of a customer can be satisfied by multiple facilities,
thus the problem is the MS-CFLP. For all formulations, we assume that
all input values are non negative and the capacity is strictly positive:
𝑐𝑖𝑗 ≥ 0, ∀𝑖, 𝑗; 𝑓𝑗 ≥ 0, 𝑠𝑗 > 0 ∀𝑗; 𝑑𝑖 ≥ 0 ∀𝑖. We also assume that
∑𝑚

𝑗=1 𝑠𝑗 ≥
∑𝑛

𝑖=1 𝑑𝑖, otherwise the instance would be infeasible.
In addition, it is customary to add the redundant constraints

𝑥𝑖𝑗 ≤ 𝑦𝑗 , 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚 (8)

to the model (Eqs. (1)–(5)) that strengthen the continuous relaxation
of CFLP models.

We now introduce the additional constraints for customer incom-
patibilities proposed by Maia et al. (2023). In detail, we call  the set
of pairs of incompatible customers, such that for each ⟨𝑖1, 𝑖2⟩ ∈ , 𝑖1
and 𝑖2 cannot be served by the same facility.

The mathematical model for the single source (SS-CFLP-CI) can
be obtained by simply adding constraints (Eq. (9)) to the SS-CFLP
formulation (Eqs. (1)–(6), Eq. (8)).

𝑥𝑖1𝑗 + 𝑥𝑖2𝑗 ≤ 1, ⟨𝑖1, 𝑖2⟩ ∈ , 𝑗 = 1,… , 𝑚 (9)

Given that 𝑥𝑖𝑗 variables are binary in the single-source case, this
constraint is sufficient to ensure that the two variables involved are
never both different from 0.
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Fig. 2. The optimal solution of the toy instance for different problem formulations.
To add incompatibility constraints to the multi-source formulation,
it is necessary to introduce the binary decision variables 𝑤𝑖𝑗 , so that 𝑤𝑖𝑗
is equal to 1 if the customer 𝑖 is supplied by facility 𝑗 (even partially),
0 otherwise. These binary variables are linked with the flow variables
𝑥𝑖𝑗 by inequalities (Eq. (10)):

𝑥𝑖𝑗 ≤ 𝑤𝑖𝑗 , 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚. (10)

Similarly to Eq. (9), the incompatibility constraints for the multi-
source can be formulated as

𝑤𝑖1𝑗 +𝑤𝑖2𝑗 ≤ 1, ⟨𝑖1, 𝑖2⟩ ∈ , 𝑗 = 1,… , 𝑚. (11)

In conclusion, the complete formulation for the MS-CFLP-CI consists
of Eqs. (1)–(5), Eqs. (7)–(8), and Eqs. ((10)–(11)).

2.3. Datasets and bounds

The mathematical models have been implemented in CPLEX (v.
22.1) and executed with a timeout of 7200 s on an AMD Ryzen Thread-
ripper PRO 3975WX with 32 physical cores (3.50 GHz), hyper-threaded
to 64 virtual cores, with 64 GB of memory and running Ubuntu Linux
22.4.

We tested the models on the dataset of 30 artificial instances intro-
duced by Maia et al. (2023) and available at https://github.com/MESS-
4

2020-1/Instances. The dataset is divided into two groups of 20 and 10
instances respectively, with the idea that the first group (wlp01–wlp20)
is for training and tuning, whereas the second one (wlp21–wlp30) is
meant for validation and comparison.

Table 1 shows upper and lower bounds obtained on this dataset for
the MS-CFLP-CI model, along with the size of the instances in terms
of facilities (𝑚) and customers (𝑛). Optimal solutions are underlined,
non-optimal ones are followed by the lower bound (which is omitted
for the optimal ones, as they coincide). For comparison, we also report
the results for the multi-source formulation without incompatibilities
(MS-CFLP) and single source formulation with incompatibilities (SS-
CFLP-CI). The symbol — means that the execution exhausted the
memory of the PC and was automatically aborted without delivering
any solution. Notice that in some cases, the running time is lower
than the timeout of 7200 s but the value is not optimal, because the
execution was prematurely aborted; we thus reported the value of the
best integer solution found so far captured from the CPLEX log.

Unsurprisingly, only relatively small instances (up to 150 facilities)
were successfully solved to optimality for the MS-CFLP-CI model. For
the medium-size ones (up to 450 facilities) the solver produced a feasi-
ble solution with a maximum optimality gap of 5.7%. Large instances
are clearly out of reach for this model, due to memory consumption.

https://github.com/MESS-2020-1/Instances
https://github.com/MESS-2020-1/Instances
https://github.com/MESS-2020-1/Instances
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Table 1
Features of the training and validation instances, results of the IP solver for different problem formulations.

Instance 𝑚 𝑛 MS-CFLP-CI MS-CFLP SS-CFLP-CI

𝑧 t [s] LB gap 𝑧 t [s] 𝑧 t [s]

wlp01 50 115 28716 3 27971 0 29397 4
wlp02 100 253 52952 423 51955 6 54 653 7200
wlp03 150 345 64296 6954 63077 25 66 558 7200
wlp04 200 479 84 633 7200 84 567.8 0.08% 83600 231 87 382 7200
wlp05 250 601 107 323 478 103 073.6 4.12% 102427 2268 109 135 7200
wlp06 300 705 115 295 361 110 614.2 4.23% 110 291 7200 117 426 4008
wlp07 400 1012 170 100 129 161 292.3 5.46% 160 567 3649 171 209 7200
wlp08 500 1277 – 185 942 3243 –
wlp09 600 1483 – 216 297 801 –
wlp10 700 1733 – 242 814 218 –
wlp11 800 2020 – 287 213 212 –
wlp12 900 2159 – – –
wlp13 1000 2305 – 313 838 3621 –
wlp14 1200 2927 – – –
wlp15 1400 3445 – – –
wlp16 1600 4067 – – –
wlp17 1800 4373 – – –
wlp18 2000 4908 – – –
wlp19 2500 5882 – – –
wlp20 3000 7800 – – –

wlp21 75 172 38067 24 37560 2 39413 54
wlp22 175 428 74 473 5534 74 269.4 0.27% 73300 268 76 886 7200
wlp23 275 694 124 991 287 118 262.9 5.69% 117 619 4098 124 091 3663
wlp24 450 1128 176 721 346 167 591.1 5.45% 166 781 2249 –
wlp25 650 1619 – 228 342 474 –
wlp26 850 2007 – 288 183 306 –
wlp27 1100 2847 – – –
wlp28 1500 3474 – – –
wlp29 1900 4522 – – –
wlp30 2750 6965 – – –
Looking at the results of the MS-CFLP model, we see that the
ncompatibility constraints play a relevant role in terms of both running
ime and solution quality. In fact, on the one hand the solutions without
ncompatibilities are obtained in shorter computational times and for
arger instances, and on the other hand the quality of the solutions
for both optimal and non-optimal ones) improves up to 5.9% for the
vailable results.

We notice that the single-source problem (SS-CFLP-CI) is more dif-
icult than the multi-source one, due to the presence of the integrality
onstraints (Eq. (6)); indeed, only instances up to 75 facilities were
olved to optimality. We also observe that there is an increase of the
alue of the objective function which, however, is quite limited. In
act, as further investigated in Section 3.1, most of the customers are
erved by a single facility even in the multi-source setting. Only for case
lp23 the (non-optimal) value of the single-source formulation is better

han the one of the MS-CFLP-CI, but this is due to the interruption
f the multi-source model by the system after only 287 s, while the
ingle-source model was aborted after 3663 s.

Finally, we acquired the generator of Maia et al. (2023) and we
uned up some of its parameters in order to generate additional in-
tances with different feature values. We generated a new dataset,
amely CFLP-CI, composed of 50 instances, with new values for the
atio between facilities and customers, the number of incompatibilities,
nd the ratio between opening and supply costs. The CFLP-CI dataset

is publicly available at our repository. As shown in Table 5, these
instances exhibit a large number of facilities and customers, thus the
optimal solution for the MS-CFLP-CI model was found only for instance
cflp-ci-11 corresponding to a value of the objective function equal to
30,728. For all other instances the solver was not able to deliver any
solution within the time limit.

3. Local search

In this section, we illustrate our metaheuristic search method, which
is based on local search. We proceed in stages, starting from the search
5

c

space (Section 3.1), then moving to the initial solution procedure
(Section 3.2), then to the neighborhood relation (Section 3.3), and
finally we discuss the metaheuristic that guides the search (Section 3.4).

3.1. Search space

Given that we want to address large instances, we have to deal with
the fact that the straightforward choice for the search space based on
the flow variables 𝑥𝑖𝑗 of Section 2 would be extremely large. Therefore,
we decided to take some actions that could reduce the size of the search
space, without missing the best possible solutions.

To this aim, we inspected both the optimal solutions for the small
instances obtained by the mathematical model for the MS-CFLP-CI and
the solutions delivered by the methods by Maia et al. (2023). We
realized that in all solutions most of the customers are supplied by one
single facility, less than 20% are supplied by two facilities, and only a
few are supplied by three or more facilities.

In particular, for the optimal solutions of the MS-CFLP-CI model
there are on average 82.2% single source customers, 16.4% customers
served by two facilities, and 1.4% served by three facilities and none
served by more than three. For the best solver of Maia et al. (2023), we
obtained1 the following average distribution of customers: 75.7% single
source, 18.8% two sources, 4.3% three sources, 0.9% four sources,
and 0.2% five or more sources. To further investigate this issue, we
modified the MS-CFLP-CI model in order to have at most two suppliers
for each customer by adding the following constraints
𝑚
∑

𝑗=1
𝑤𝑖𝑗 ≤ 2, 𝑖 = 1,… , 𝑛. (12)

Optimal results for the two-source model were obtained only for
small instances (up to 100 facilities), however it was interesting to

1 We compiled and rerun the source code available online at https://github.
om/MESS-2020-1/MR-MS-ILS-solver.

https://github.com/MESS-2020-1/MR-MS-ILS-solver
https://github.com/MESS-2020-1/MR-MS-ILS-solver
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observe that in these cases the maximum gap between the optimal
values of the multi-source and two-source models is only 0.008%, thus
the loss due to this restriction is very small.

Based on these observations, we decided to limit the search space
by considering only solutions with at most two suppliers per customer.
With this choice, our search space is a vector 𝛷 of size 𝑛 of quadruples
⟨𝑓 𝑐

1 , 𝑓
𝑐
2 , 𝑞

𝑐
1 , 𝑞

𝑐
2⟩, such that 𝑓 𝑐

1 and 𝑓 𝑐
2 represent the two facilities that

supply customer 𝑐 and 𝑞𝑐1 and 𝑞𝑐2 represent their supplied quantities
(with 𝑞𝑐1 + 𝑞𝑐2 = 𝑑𝑐). If a customer 𝑐 is supplied entirely by one facility,
then 𝑓 𝑐

2 assumes the conventional value −1 and 𝑞𝑐2 = 0. Furthermore, in
order to break the symmetry, the two suppliers are ordered in terms of
supply cost, so that the supply cost of 𝑓 𝑐

1 is always lower than or equal
to the supply cost of 𝑓 𝑐

2 .
This choice reduces the search space very significantly, dropping its

size from quadratic to linear, with respect to the number of customers
ad facilities. Analogously, it allows us to keep to quadratic the size of
all the neighborhoods discussed in Section 3.3, which would have been
problematic with the general search space.

Nonetheless, in order to search for better results, we decided to
limit and refine it further. The second action we took is based on
the observation that it is very unlikely that a customer is served by a
facility with a high supply cost. Therefore, we define for each customer
the list of its preferred facilities, which is composed of its ‘‘cheapest’’
suppliers. The search space is then restricted to preferred assignments
(i.e., assignments to preferred facilities).

The length of the list of preferred suppliers is clearly a crucial
parameter of the search, as too high a value would result in a waste of
time by searching for inferior assignments, and too low a value would
exclude good solutions that might need one or a few ‘‘bad’’ assignments
to be completed.

Given that we have no evidence on which would be the best
choice, we decided to make it parametric and to tune it experimentally.
Intuitively, the length should depend on both the size of the instance
and on the distribution of the supply costs. Therefore, the length is
governed by two parameters, one related to the number of facilities
𝑚 and one to the supply costs.

Regarding the number of facilities, our first idea was to define the
length of the list as a fraction of 𝑚. However, preliminary experiments
showed that the list was too short for small instances and too long for
large ones. Therefore, we decided to resort to the square root of 𝑚. In
detail, the length of the list is 𝛽 ⋅ ⌊

√

𝑚⌋ for all customers, where 𝛽 is a
arameter of the search method.

The distribution of costs comes into play separately for each cus-
omer. That is, for each customer 𝑐 the list is augmented by all excluded
acilities that have a difference in supply cost with respect to the
heapest potential supplier of 𝑐 of at most 𝜆, which is the second
arameter related to the preferred facilities.

Note that the creation of the lists depends only on the input data
and on 𝛽 and 𝜆) and can be computed once for all in a preprocessing
tage, while reading the instance from the file.

Besides the two above-described choices, we made two other more
traightforward limitations of the search space. First, we exclude the
ossibility that a facility serves two incompatible customers. This is
nforced by avoiding such assignments in the initial solution and
xcluding the moves that would violate this rule. In order to check this
ituation, we maintain in the state object an integer-valued auxiliary
×𝑚 matrix 𝛯 that stores for each customer 𝑐 the number of customers

ncompatible with 𝑐 served by facility 𝑓 .
Finally, we exclude from the space the possibility that a facility

s overloaded. Similarly to incompatibilities, we provide against this
ccurrence in the initial solution construction and in the selection of
he moves. To this aim, we store the current load of each facility in an
nteger-valued vector 𝛬 of size 𝑚 that is kept updated during the search.

e do not explicitly store the decision to open a facility: A facility 𝑓 is
onsidered open if and only if 𝛬 > 0.
6

𝑓 b
Fig. 3. Representation of solution 𝜎𝑂 .

With these design choices, all visited states are feasible, so that
the cost function that guides the local search coincides with the ob-
jective function (Eq. (1)) of the problem, which is composed of two
components: the fixed opening costs and the variable supply costs.

Besides the already-mentioned vectors 𝛷, 𝛯 and 𝛬, we introduced
a further data structure, which is a vector 𝛹 of size 𝑚, that stores for
each facility the list of its customers. This is useful to accelerate the
computation of the difference of cost between two neighbor states (delta
costs).

Let us call 𝜎𝑂 the optimal solution of the MS-CFLP-CI previously
ntroduced in Section 2.1 and represented by the following set of triples

(1,1,17),(2,1,5),(2,3,3),(3,3,16),(4,1,18),(5,3,9),(6,3,11)},

ts full representation is shown in Fig. 3.

.2. Initial solution strategies

For the initial solution, we tested two alternative strategies. The first
ne is random and works as follows. For each customer 𝑐, first we make
draw to select whether is should be served by one or two facilities

75% one, 25% two), and subsequently we select the corresponding
ne or two distinct preferred facilities uniformly, only checking that
hey are not overloaded and they do not serve incompatible customers.

In many problems the random strategy is suitable for quickly ob-
aining solutions which are unbiased and sufficiently diverse form each
ther; however, given the large size of some instances, a more heuristic
trategy is presumably more promising in our context. For this reason,
e resort to a greedy strategy, and in particular we adapted the one
enoted as Multi-start greedy algorithm in the article by Maia et al.
2023) (Section 4.4). The method selects at each stage the pair ⟨𝑐, 𝑓⟩
ith the ‘‘best’’ cost, also considering the fixed opening cost in an
mortized way, and computing the maximum quantity that can be
upplied from 𝑓 to 𝑐.

The adaptation consists in selecting for each customer at most two
uppliers, and selecting them among the preferred ones. The second one
s chosen among those that can fulfill the residual request completely.
n addition, we run the procedure just once, and not in a multi-start
oop.

For the toy instance, examples of solutions (called 𝜎𝑅 and 𝜎𝐺)
btained by the random and greedy procedures, respectively, are

{(1,1,17),(2,1,8),(3,3,16),(4,3,18),(5,2,9),(6,2,11)}

ith cost 6629 (3829+2800) and

(1,1,11),(1,3,6),(2,2,8),(3,3,16),(4,1,18),(5,2,9),(6,1,11)}

ith cost 5664 (2864+2800).
The two strategies have been compared experimentally on available

enchmarks, as discussed in Section 4.1.
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Fig. 4. Examples of moves.
3.3. Neighborhoods

The neighborhood relation is indisputably the most important as-
pect of local search. To this regard, we considered three different
atomic neighborhoods: ChangeSupplier, SwapSuppliers and Clopen-
Facilities.

3.3.1. ChangeSupplier neighborhood
Our first atomic neighborhood is the most straightforward one,

which consists in replacing one of the suppliers of a customer. We
call it ChangeSupplier(CS) and it is identified by three attributes:
the customer 𝑐 ∈ {1,… , 𝑛}, the new supplier 𝑓 ∈ {1,… , 𝑚}, and
the position 𝑝 ∈ {1, 2} where it is inserted in 𝛷. That is, the move
𝐶𝑆⟨𝑐, 𝑓 , 𝑝⟩ replaces the first (𝑝 = 1) or second (𝑝 = 2) supplier of 𝑐
with 𝑓 . The new supplier 𝑓 is selected among the preferred ones of 𝑐.

There are three cases to be taken care of depending on the current
state and the attribute 𝑝 of the move.

• 𝑐 has one supplier and 𝑝 = 1: the amount of goods of 𝑐 is entirely
passed from the single supplier to the new one 𝑓 .

• 𝑐 has one supplier and 𝑝 = 2: the amount of goods of 𝑐 is split
among 𝑓 𝑐

1 and 𝑓 in the way that minimizes the supply cost,
respecting the capacity of 𝑓 (the capacity of 𝑓 𝑐

1 is always satisfied,
as it initially has all the load, and so it can only decrease); the
order of the two suppliers is possibly updated.

• 𝑐 has two suppliers and 𝑝 = 2: like the case above, the amount of
goods of 𝑐 is redistributed among 𝑓 𝑐

1 and 𝑓 in order to minimize
the supply cost, respecting the capacity of 𝑓 and 𝑓 𝑐

1 .

The case in which 𝑐 has two suppliers and 𝑝 = 1 is not listed above
because we decided to forbid it, based on the idea to focus only on
promising moves. This is because, given that suppliers are ordered by
supply cost, it is always more effective to replace the second supplier
than the first one.

As an example, starting from the random initial solution 𝜎𝑅 above,
the best ChangeSupplier move is CS⟨4, 1, 2⟩ that replaces the dummy
facility as the second supplier of customer 4 with facility 1 (middle case
above). Given that facility 1 has a lower supply cost then the current
first supplier, it gets the maximum load (15, up to its capacity) and
becomes the first supplier. The solution obtained (see Fig. 4(a), with
changes highlighted in red) is

{(1,1,17),(2,1,8),(3,3,16),(4,1,15),(4,3,3),(5,2,9),(6,2,11)}

and the decrease of supply cost is 420 (equal to (62 − 34) × 15). The
opening cost remains unchanged.
7

3.3.2. SwapSuppliers neighborhood
The second atomic neighborhood is called SwapSuppliers (SS) and

it swaps two suppliers of two distinct customers. The SS neighborhood
is particularly useful in situations in which the facilities are fully
loaded, and also in presence of incompatible customers, so that the state
can be changed in one move only by swapping the suppliers.

It is identified by two customers 𝑐1, 𝑐2 ∈ {1,… , 𝑛}, and two positions
𝑝1, 𝑝2 ∈ {1, 2}. The move SS⟨𝑐1, 𝑐2, 𝑝1, 𝑝2⟩, swaps the first or second
supplier (depending on 𝑝1) of 𝑐1 with the first or second supplier of
𝑐2 (depending on 𝑝2).

If 𝑐1 (resp. 𝑐2) has only one supplier, then 𝑝1 (resp. 𝑝2) is al-
ways equal to 1, as the dummy supplier cannot be swapped. The
current quantities are passed to the new supplier, without any rebal-
ancing with the other supplier, as done instead for the ChangeSupplier
neighborhood.

Obviously, a move is forbidden if it overloads one of the facilities
(this can happen only for the facility that receives the customer with
the larger quantity) or if it creates incompatibilities.

Whenever a customer is supplied by two facilities, it is more promis-
ing to swap the second one, as they are ordered by cost. On the other
hand, we do not want to exclude the possibility that the first one is
also selected to be swapped. To balance this trade-off, we introduce a
new parameter that we call 𝑏𝖲𝖲 (SS bias) such that with probability 𝑏𝖲𝖲
the second one is selected and with probability 1− 𝑏𝖲𝖲 there is uniform
random selection. In the case of customers served by a single facility,
there is no option and the first (and only) one is always selected.

Starting again from 𝜎𝑅, the best SwapSuppliers move is
SS⟨2, 6, 1, 1⟩ that swaps the first (only) suppliers of customers 2 and 6
(which are 1 and 2, respectively). The solution obtained (see Fig. 4(b),
with new flows highlighted in red and removed ones in dotted gray) is

{(1,1,17),(2,2,8),(3,3,16),(4,3,18),(5,2,9),(6,1,11)}

and the decrease of supply cost is 527 (equal to (39 − 24) × 8 + (45 −
8)×11). The opening cost remains unchanged, as it is never affected by
SwapSuppliers moves.

3.3.3. ClopenFacilities neighborhood
Our last neighborhood specifically addresses the issue of closing

facilities and opening new ones. In fact, we observed in preliminary
experiments that the search guided by the above two neighborhoods
tends to prematurely fix the facilities to be open and rarely changes
such decisions in the later part of the execution. This is because the
closing of a facility would require a sequence of moves that iteratively
remove clients, and is it unlikely that all members of such a sequence
are iteratively selected.

We call this neighborhood ClopenFacilities (CF) (clopen: close +
open) and it is identified by two attributes: the facility 𝑓𝑐 to be closed
and the facility 𝑓 to be opened. The facility 𝑓 is selected among
𝑜 𝑐
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those currently open, and 𝑓𝑜 among those that are currently closed.
he neighborhood also includes the option of an opening alone with
o closing and vice versa. In these cases, the attribute 𝑓𝑐 or 𝑓𝑜 gets the
onventional value −1, corresponding to the dummy facility which has
o clients and no costs.

The execution of the move CF⟨𝑓𝑐 , 𝑓𝑜⟩ works in two steps. First, all
clients of 𝑓𝑐 are transferred one by one in a greedy way to the cheapest
facility with enough space, so that 𝑓𝑐 gets closed. In this search for
the cheapest transfers from 𝑓𝑐 , the facility 𝑓𝑜 is assumed open, so as to
encourage its use. Afterwards, all preferred clients of 𝑓𝑜 (not assigned
to it in the first step) are checked in turn to see if they can reduce their
supply cost by being transferred from one or both their suppliers to 𝑓𝑜
(up to its capacity).

It is worth mentioning that all the above-mentioned transfers (from
𝑓𝑐 and to 𝑓𝑜) are not immediately executed, but rather stored in a list
that complements the attributes of the move. Only when the move is
accepted, all transfers are actually executed in the current state.

The execution of a ClopenFacilities move may lead to also opening
other facilities besides 𝑓𝑜, in case some of the best transfers from 𝑓𝑐 are
towards closed facilities different from 𝑓𝑜. Similarly, it is possible that
some other facility gets closed by the transfers towards 𝑓𝑜. The change
of the fixed cost due to these extra openings and closings is obviously
considered in the evaluation of the move.

Starting again for 𝜎𝑅, the best ClopenFacilities move is CF⟨1,−1⟩,
hat closes facility 1 and opens nothing. The best relocations of its
ustomers (1 and 2) is towards facilities 3 and 2, respectively. The
ixed cost decreases by 720 and the supply cost increases by 67, and
he resulting solution (see Fig. 4(c)) is

(1,3,17),(2,2,8),(3,3,16),(4,3,18),(5,2,9),(6,2,11)}.

his is actually the only feasible ClopenFacilities move in this state
ecause no openings are possible given that all facilities are currently
pen. Furthermore, facility 2 cannot be closed because customer 5
annot be relocated anywhere due to incompatibilities; and facility 3
annot be closed because customer 4 cannot be relocated to facility 1
ue to capacity limits and to facility 2 due to incompatibilities.

As for the SwapSuppliers neighborhood, the random selection is
ot uniform. In fact, the neighborhood is actually composed of three
ypes of moves: open-only ones (𝑓𝑐 = −1), close-only ones (𝑓𝑜 =
1), and regular ones with both real facilities involved. In the last
ase, we select the pair of facilities ⟨𝑓𝑐 , 𝑓𝑜⟩ such that they have at
east one preferred client in common, so that there is some synergy
etween the two sets of transfers. The selection between these three
ptions is driven by internal probabilities. We introduce two additional
arameters, called 𝑝𝖮𝗉 and 𝑝𝖢𝗅, such that open-only moves, close-only
oves, and regular moves are selected with probability 𝑝𝖮𝗉, 𝑝𝖢𝗅, and
− 𝑝𝖮𝗉 − 𝑝𝖢𝗅, respectively.

It is easy to understand that the ClopenFacilities neighborhood is
ore complex than the previous two, in the sense that the construction

nd the evaluation of a ClopenFacilities move is computationally much
ore expensive than the others. This fact must be taken into account
hen selecting the rate of drawing ClopenFacilities moves with respect

o the other ones, in order to design the best configuration with equal
unning time.

.4. Simulated annealing

The metaheuristic that guides the local search is Simulated An-
ealing (SA), proposed by Kirkpatrick et al. (1983). We believe that
imulated Annealing is more promising than other local search meta-
euristics, such as Tabu Search and Variable Neighborhood Search,
o address problems with large instances, due to its stochastic move
election. Indeed, the methods that perform a complete exploration of
he neighborhood at every move might experience a performance loss
8

or large neighborhoods.
There are many different versions of SA, we describe here the one
sed in this work, and we refer to the comprehensive work by Franzin
nd Stützle (2019) for the description of all the other variants. Similar
pproaches have been successfully used by Bellio et al. (2021) and
eschia et al. (2021) in the context of examination timetabling and

requency assignment, respectively.
The SA procedure starts from the initial solution built using one of

he methods described in Section 3.2. Which of the two should be used
s a parameter to be selected experimentally.

At each iteration, the SA procedure selects a random move in
he composite neighborhood 𝖢𝖲 ∪ 𝖲𝖲 ∪ 𝖢𝖥. The move selection is
one in two steps: the first step is to select one of the three atomic
eighborhoods and the second one is to draw the specific move inside
he neighborhood. The selection of the first step is biased based on
iven probabilities. That is, we have two real-valued parameters called
𝑆𝑆 and 𝑝𝐶𝐹 , such that neighborhoods SS and CF are selected with
robability 𝑝𝑆𝑆 , 𝑝𝐶𝐹 . Consequently, neighborhood CS is selected with
robability 1 − 𝑝𝑆𝑆 − 𝑝𝐶𝐹 .

As customary for SA, the move is evaluated and always accepted
if its cost difference 𝛥 is negative or null (that is, the value of the
objective function improves or remains the same). Conversely, if 𝛥 > 0
it is accepted according to the so-called Metropolis criterion, i.e., with
probability 𝑒−𝛥∕𝑇 , where 𝑇 is a control factor called temperature.

The temperature is set to its initial value 𝑇0, and then it is decreased
according to the geometric cooling scheme (𝑇𝑖 = 𝛼 ⋅ 𝑇𝑖−1), after a fixed
number of samples 𝑁𝑠. In order to accelerate the early stages of the
search, we add the so-called cut-off mechanism according to which the
temperature also decreases if a maximum number of moves is accepted.
This threshold is expressed as a fraction 𝜌 of the number of samples 𝑁𝑠
(with 0 ≤ 𝜌 ≤ 1). The iterations ‘‘saved’’ by the cut-off mechanism are
redeployed uniformly at the following temperature levels.

In order to guarantee that all the configurations of SA have the
same running time, we use the total number of iterations 𝐼 as the
stop criterion. To keep 𝐼 fixed, we recalculate 𝑁𝑠 using the formula
𝑁𝑠 = 𝐼

/

(

log
(

𝑇𝑓 ∕𝑇0
)

log 𝛼

)

, where 𝑇𝑓 is the final temperature.

4. Experimental analysis

Our local search method has been coded in C++ and compiled with
GNU g++ (v. 11.3) under Ubuntu Linux 22.4. Experiments have been
run using the PC already described in Section 2.3, using one single
virtual core for each experiment. The source code is available online
at https://github.com/iolab-uniud/ms-cflp-ci.

4.1. Parameter tuning

The tuning procedure was carried out sampling the parameter con-
figurations known as the Hammersley point set (Hammersley & Hand-
scomb, 1964) and using of the F-Race procedure (Birattari et al., 2010)
for identifying the best one. F-Race is based on the statistical tests of
Friedman and Wilcoxon for removing configurations as soon as they
are recognized as inferior with the given confidence.

The set of parameters is quite large and heterogeneous, therefore we
preferred to divide the parameter tuning into stages, assuming that the
interaction of the parameters involved in the different stages is minimal
and can be neglected. In each stage, the parameters belonging to a
subsequent stage were fixed to values obtained from preliminary ex-
periments. Parameters of the preceding stages were obviously fixed to
the value suggested by the previous executions of the F-Race procedure.

Table 2 summarizes the parameters, distributed in the six stages of
the tuning procedure, together with their initial range and the value
finally selected.

As mentioned above, the stop criterion is based on the total num-
ber of iterations and the number of samples at each temperature is

computed so that the search reaches exactly the final temperature 𝑇𝑓 .

https://github.com/iolab-uniud/ms-cflp-ci
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Table 2
Parameters’ configuration.
Name Description Tuning Initial Value

stage range

𝛽 square root multiplier I [1.0, 2.0] 1.375
𝜆 cost difference I [5, 20] 8

𝐼𝑆 initial solution strategy II {random, greedy} greedy

𝑇0 initial temperature III [10, 50] 16.42
𝑇𝑓 final temperature III [0.05, 0.2] 0.183
𝛼 cooling rate III [0.985, 0.995] 0.994
𝜌 accepted moves ratio III [0.05, 0.15] 0.13

𝑝𝖲𝖲 probability of SS moves IV [0.3, 0.8] 0.580
𝑝𝖢𝖥 probability of CF moves IV [0.0, 0.2] 0.044

𝑏𝖲𝖲 bias of SS moves V [0.0, 1.0] 0.45

𝑝𝖮𝗉 probability of Open CF moves VI [0.0, 0.2] 0.160
𝑝𝖢𝗅 probability of Close CF moves VI [0.0, 0.2] 0.019
Table 3
Computational results for a timeout equal to 10

√

𝑚 seconds.

MR-MS-ILS GRASP PcEA MG SA
Inst. LB min avg min avg min avg min avg min avg gap

wlp01 ∗28716 28 978 29092.3 30 040 30 195.4 29 006 29 736.8 34 377 34 377.0 29 025 29 249.7 0.54%
wlp02 ∗52952 54 493 54 882.4 56 492 56 821.7 56 925 57 789.6 59 933 60 247.3 54 061 54207.5 −1.23%
wlp03 ∗64296 66 927 67 683.9 69 027 69 450.5 73 027 74 116.9 73 349 73 680.5 65 562 65986.2 −2.51%
wlp04 84 633 89 857 90 207.1 92 455 93 042.2 98 576 100 104.5 98 367 98 615.2 85 894 86391.7 −4.23%
wlp05 107 323 111 627 112 236.1 113 694 114 304.7 123 293 126 425.7 115 846 117 354.7 106 079 106336 −5.26%
wlp06 115 295 118 681 119 549.1 120 797 121 942.1 133 108 137 503.5 126 265 127 688.3 113 976 114255.3 −4.43%
wlp07 170 100 176 631 177 599.6 180 191 181 591.0 199 563 202 793.1 183 670 184 205.8 165 647 166063.1 −6.50%
wlp08 204 862 206 574.3 212 179 214 415.6 233 202 236 736.1 211 878 212 843.8 191 822 192275.7 −6.92%
wlp09 240 299 241 249.7 250 934 252 634.8 273 294 277 149.3 246 270 246 917.2 222 979 223537.7 −7.34%
wlp10 264 252 265 507.4 282 518 285 182.7 308 317 314 341.1 275 649 276 605.0 249 762 250453.9 −5.67%
wlp11 315 760 317 057.7 329 788 332 845.5 362 415 366 547.8 322 269 323 449.5 294 315 294877 −7.00%
wlp12 323 993 326 631.9 344 734 347 702.0 374 867 379 300.5 332 749 333 909.7 302 834 303594.2 −7.05%
wlp13 343 793 345 926.4 371 068 372 925.6 396 380 401 975.9 349 964 351 697.2 320 652 321310.4 −7.12%
wlp14 431 981 432 921.9 468 742 470 702.7 498 599 502 115.0 436 872 438 916.3 402 477 403560 −6.78%
wlp15 499 596 505 033.1 540 567 544 737.7 576 254 579 838.0 501 671 505 401.4 466 848 467414.7 −7.45%
wlp16 579 364 583 798.1 615 768 619 139.1 658 583 669 751.4 581 757 583 453.1 541 385 542326.1 −7.10%
wlp17 605 310 606 812.2 655 090 662 262.5 702 080 710 160.3 617 832 619 390.0 573 244 574713 −5.29%
wlp18 677 396 680 067.6 736 207 740 016.9 774 778 783 993.2 687 117 688 304.8 638 976 640471.3 −5.82%
wlp19 807 447 815 478.9 876 105 880 930.1 937 785 946 733.5 807 573 809 986.9 757 538 758421.8 −7.00%
wlp20 1 043 150 1048531.0 1 140 090 1142525.0 1 192 820 1198344.0 1 050 020 1053036.0 994 310 995029.6 −5.10%
wlp21 ∗38067 38 474 38653.0 39 892 40 282.8 39 233 40 466.1 44 298 44 443.7 38 872 39 147.1 1.28%
wlp22 74 473 79 378 79 746.2 79 348 80 078.4 84 301 86 434.6 85 732 86 462.4 75 860 76043.7 −4.64%
wlp23 124 991 127 873 128 307.5 129 719 130 669.6 143 077 144 204.9 134 271 135 725.6 121 275 121540.2 −5.27%
wlp24 176 721 182 248 182 922.0 191 882 193 015.9 209 596 212 898.2 191 017 192 262.3 172 252 172672.6 −5.60%
wlp25 247 975 251 053.7 264 454 267 853.5 289 981 292 921.6 257 904 258 974.2 234 307 235019.8 −6.39%
wlp26 322 663 324 775.3 334 346 336 539.9 364 831 369 576.6 322 085 323 866.0 295 774 296392.6 −8.74%
wlp27 421 190 422 517.2 457 577 460 811.3 481 565 488 519.6 430 559 431 642.5 397 231 397998 −5.80%
wlp28 493 849 497 937.1 536 825 543 859.7 566 881 573 423.6 502 019 504 837.7 465 282 466056 −6.40%
wlp29 658 764 665 442.3 689 560 697 430.5 743 620 754 246.0 648 531 650 840.2 603 826 605266.3 −9.04%
wlp30 943 009 949 442.8 1 014 500 1017282.0 1 072 730 1076453.0 940 479 942 920.2 888 124 888870.3 −6.38%

Avg 349 994.0 352 254.6 374 153.0 376 706.4 399 956.2 404 486.7 355 677.4 357 068.5 329 006.3 329 649.4 −6.42%
r

i
o

t
m

b
i

This choice guarantees that the running time is approximately the
same for all settings of the parameters. The exception to this setting
is Stage IV, given that the rates 𝑝∗ of the neighborhoods have a great
nfluence on the running times (in particular for the CF neighborhood).
s a consequence, a fair comparison of configurations for Stage IV
annot be done based on the same number of iterations. Therefore,
or Stage IV alone, we use a time-based stop criterion, so that cooling
i.e., multiplying by 𝛼) is applied when the time assigned to each
emperature is expired, regardless of the number of iterations.

.2. Comparison results

In this section, we position the results of our SA method in the best
onfiguration found by the tuning procedure and reported in Table 2
ithin the ones in the literature. In detail, Tables 3 and 4 compare the
9

t

average and best results out of 10 runs to those obtained by Maia et al.
(2023) for the two timeouts proposed by Maia et al., which depend
on the size of the instance and correspond to 𝑚 and 10

√

𝑚 seconds,
espectively.

The time-based stop criterion of SA has been used for this compar-
son. Given that the PC used by Maia et al. is basically equivalent to
urs, we granted the same running time with no rescaling.

The column LB gives lower bound (marked with ∗ if it corresponds
o the optimum) obtained by running the MS-CFLP-CI mathematical
odel described in Section 2.3.

The approaches developed by Maia et al. (2023) are: MineReduce-
ased Multi-Start Iterated Local Search (MR-MS-ILS), Greedy Random-
zed Adaptive Search Procedure (GRASP), Permutation-Coded Evolu-

ionary Algorithm (PcEA), and Multi-start Greedy (MG). We do not
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Table 4
Computational results for a timeout equal to 𝑚 seconds.

MR-MS-ILS GRASP PcEA MG SA
Inst. LB min avg min avg min avg min avg min avg gap

wlp01 *28716 28 913 29115.8 30 041 30 149.5 29 455 29 754 34 377 34 377 29 002 29 122.3 0.02%
wlp02 *52952 54 337 54 802.9 56 043 56 725.3 56 703 57 847.9 60 055 60 347.9 53 838 54117.5 −1.25%
wlp03 *64296 67 266 67 540.8 68 609 69 476.1 70 796 72 662.8 73 064 73 677.8 65 570 65804.1 −2.57%
wlp04 84 633 89 544 90 060.3 92 301 92 797.8 97 317 99 675.1 97 624 98 247.5 85 933 86219.4 −4.26%
wlp05 107 323 111 640 112 175.6 112 795 113 542.8 120 270 123 091.1 116 841 117 319.3 105 814 106185.8 −5.34%
wlp06 115 295 119 049 119 613.1 120 892 121 759.5 134 270 135 687.4 126 802 127 334.7 113 499 113934.0 −4.75%
wlp07 170 100 176 044 177 044.3 178 863 180 693.6 195 751 198 910.9 183 445 183 797.8 165 105 165623.4 −6.45%
wlp08 203 358 205 710.1 212 670 213 795.5 227 613 232 665.3 211 885 212 515.1 191 002 191537.5 −6.89%
wlp09 239 174 240 312.5 248 099 251 159.7 271 341 273 808.6 245 345 245 922.1 222 498 222838.3 −7.27%
wlp10 263 295 264 925 281 576 283 672.7 301 321 309 782.7 274 494 275 508.5 249 199 249629.1 −5.77%
wlp11 313 229 315 728.7 327 830 331 875.2 355 126 360 683.7 321 833 322 804.4 293 349 294125.8 −6.84%
wlp12 324 766 325 507.1 341 030 344 437 369 333 375 447.1 332 666 333 413.6 301 602 302619.9 −7.03%
wlp13 341 823 345 307.9 366 602 368 888.9 390 328 396 320.3 349 548 350 811.3 319 647 320238.1 −7.26%
wlp14 429 168 430 919.1 462 335 468 817.1 491 340 496 191.2 436 583 438 183.4 400 871 401929.2 −6.73%
wlp15 497 061 501 122.4 538 535 541 858.4 570 659 575 833.8 502 617 504 380.3 464 710 465208.8 −7.17%
wlp16 578 979 581 756.9 613 451 617 507.9 658 618 664 376 580 481 581 807.7 539 320 540173.0 −7.15%
wlp17 603 288 604 889 654 713 660 503.1 697 541 704 478.4 616 041 617 354.1 571 361 571954.6 −5.44%
wlp18 674 421 677 531.8 734 574 739 435.7 778 266 782 867.4 683 724 686 295.7 636 129 637451.0 −5.92%
wlp19 805 663 808 405.2 873 218 878 551.5 920 158 941 345.1 805365 807 075.4 754 102 754760.4 −6.64%
wlp20 1 039 400 1 041 971 1 137 770 1 142 545 1 173 020 1 197 136 1 044 990 1 047 811 986 397 987448.3 −5.23%
wlp21 *38067 38 420 38567.3 39 978 40 214.7 39 781 40 600.8 44 175 44 391.6 38 920 39 124.3 1.44%
wlp22 74 473 78 813 79 336.6 79 599 80 138.5 83 092 84 975.6 85 964 86 273.8 75 888 76088.7 −4.09%
wlp23 124 991 127 076 128 028.2 129 527 130 163.8 139 348 142 287.9 133 931 135 290.9 121 250 121468.4 −5.12%
wlp24 176 721 181 199 182 220.6 189 718 191 675 207 508 209 439 190 960 192 024.5 171 887 172168.9 −5.52%
wlp25 249 547 250 928.1 265 817 267 378.8 283 119 288 489.6 257 796 258 596.2 234 000 234580.6 −6.51%
wlp26 321 935 323 134 331 780 333 906.5 358 093 365 582.5 322 082 323 315.8 294 942 295352.6 −8.60%
wlp27 418 930 420 459.1 451 413 455 969.9 477 195 481 836.7 428 214 430 329 395 901 396510.9 −5.70%
wlp28 493 746 495 644.8 535 637 540 882.2 568 640 573 048.9 502 483 503 812.5 463 263 464045.4 −6.38%
wlp29 656 512 659 751.1 694 579 697 376.3 734 162 744 444.2 646626 648 973.2 602 169 602607.9 −8.66%
wlp30 940 179 942 409.2 1 012 550 1 016 481 1 066 990 1 072 834 936728 939 816.9 882 060 882912.5 −6.31%

Avg 348 892.5 350 497.3 372 751.5 375 412.6 395 571.8 401 070.1 354 891.3 356 060.3 327 640.9 328 192.7 −6.36%
consider the results by Pandey et al. (2023) as they regard only in-
stances wlp01–wlp15 and they are consistently worse than the ones
by Maia et al.

We see that SA (whose solutions were validated with the solution
checker provided by Maia et al.) outperforms all four previous methods
on all instances except for the smallest two (wlp01 and wlp21) for both
timeout settings, in terms of average and best solution values.

Considering the instances whose proven optimal solution is known,
the optimality gap is at most 2.2% using the linear timeout. The av-
erage improvement with respect to MR-MS-ILS, which was the leading
algorithm developed in Maia et al. (2023), is respectively 6.36% and
6.42% for linear and 10

√

𝑚 timeouts, and it is more substantial for large
instances.

The fact that we do not improve on the smallest instances can be ex-
plained considering the fact that our technique was specifically tailored
to deal with large instances. An ad hoc setting of the parameters for
small instances could have improved the results on them. However, we
consider them less interesting given that they are solved to optimality
by the mathematical model.

4.3. Runs with shorter timeouts

In order to further investigate the effectiveness of SA in different
computational settings, we performed an analysis of its performance
on three selected instances (wlp05, wlp08 and wlp13) representative
of the different sizes of the dataset, with shorter running times. In
detail, we considered a timeout equal to 𝑘

√

𝑚 with 𝑘 ∈ [1, 10] and we
computed the average value of the objective function for 10 repetitions
for each instance.

Fig. 5 plots the average percentage increase of the objective function
with respect to the value obtained with 𝑘 = 10, for different values
of the parameter 𝑘, corresponding to a growing timeout from

√

𝑚 to
10
√

𝑚.
10
Fig. 5. Average percentage deviation as a function of 𝑘.

The outcome is that reducing the running time by a factor of ten
makes the results deteriorate by at most 1%. In addition, we see that,
unsurprisingly, the decrease of performances happens smoothly with
the running time, demonstrating that SA obtains good quality results
for short runs as well.

4.4. Results on the CFLP-CI dataset

Finally, we report the results for the new CFLP-CI dataset. Table 5
shows the number of facilities (𝑚) and customers (𝑛) of each instance,
along with the results of our solver for both timeouts, on the configu-
ration reported in Table 2. This dataset and these results could be used
for future comparisons with new search methods.
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Table 5
Computational results on the CFLP-CI dataset for different timeouts.

SA (10
√

𝑚 timeout) SA (𝑚 timeout)
Instance 𝑚 𝑛 min avg avg time min avg avg time

cflp-ci-00 852 2102 424 519 425 264.1 290.7 423 418 423 997.0 851.0
cflp-ci-01 1981 5709 573 983 575 397.2 391.9 568 919 570 251.9 1916.9
cflp-ci-02 2224 5970 448 326 449 302.0 387.2 442 916 443 314.1 2136.3
cflp-ci-03 2826 7701 1 508 473 1509804.8 369.0 1 495 309 1496823.6 2669.5
cflp-ci-04 2143 6143 1 220 618 1222512.9 391.5 1 216 587 1217446.0 2080.2
cflp-ci-05 1788 4829 368 456 368 914.3 385.1 364 036 364 548.5 1750.5
cflp-ci-06 633 1705 155 149 155 376.4 250.9 154 811 155 013.3 632.2
cflp-ci-07 2353 5319 452 561 453 707.1 414.3 447 859 448 501.9 2287.3
cflp-ci-08 1479 4396 702 000 703 657.0 357.5 699 317 700 112.5 1450.1
cflp-ci-09 2161 4510 334 128 334 818.7 432.8 331 089 331 702.6 2130.2
cflp-ci-10 1583 4609 612 854 614 279.3 370.1 610 333 611 297.3 1553.7
cflp-ci-11 69 156 30 894 30 975.9 82.8 30 882 31 059.8 68.6
cflp-ci-12 618 1832 461 171 462 177.8 247.8 460 229 461 474.0 617.4
cflp-ci-13 684 1558 388 264 388 879.6 260.8 386 948 388 202.4 683.5
cflp-ci-14 2128 5893 1 031 054 1032521.9 403.6 1 027 028 1028186.6 2070.6
cflp-ci-15 2226 5225 565 607 566 459.6 413.9 561 099 562 128.0 2169.4
cflp-ci-16 1485 3606 891 160 892 011.8 370.7 887 877 889 296.2 1471.2
cflp-ci-17 2721 5840 1 231 972 1233547.8 426.3 1 225 297 1226184.4 2628.8
cflp-ci-18 1773 4757 903 653 905 310.9 385.9 900 438 902 206.0 1738.6
cflp-ci-19 520 1305 152 349 152 740.9 227.4 151 907 152 255.5 519.7
cflp-ci-20 2629 6587 1 280 618 1283255.5 412.6 1 273 308 1275338.5 2524.2
cflp-ci-21 1121 2374 460 143 461 168.5 331.8 459 288 459 903.4 1118.1
cflp-ci-22 722 2138 313 629 314 280.3 267.6 313 381 313 663.0 721.2
cflp-ci-23 1471 3344 414 336 415 852.6 371.8 413 761 414 130.3 1457.9
cflp-ci-24 2142 5518 473 660 474 247.5 411.5 468 618 469 362.6 2092.0
cflp-ci-25 2757 7474 803 729 805 523.5 374.7 796 370 797 221.8 2587.1
cflp-ci-26 2442 5073 698 430 700 168.0 438.4 695 323 696 126.2 2387.2
cflp-ci-27 2866 6689 1 433 262 1434453.2 416.3 1 420 856 1423304.2 2747.6
cflp-ci-28 855 2141 469 428 470 734.6 291.1 469 035 469 843.7 854.0
cflp-ci-29 2787 6825 1 381 347 1383402.3 423.9 1 372 452 1374401.2 2681.0
cflp-ci-30 1748 4095 580 934 581 995.5 394.9 579 263 580 050.7 1724.7
cflp-ci-31 2946 7622 1 216 734 1218218.8 400.2 1 206 339 1207307.3 2804.2
cflp-ci-32 2028 4946 492 232 493 294.5 403.6 487 236 488 433.6 1982.2
cflp-ci-33 2685 5974 1 082 543 1083618.0 428.2 1 075 666 1076818.6 2605.9
cflp-ci-34 2048 5004 1 156 148 1158156.4 407.1 1 151 861 1153176.1 2004.2
cflp-ci-35 2618 6408 549 152 550 971.0 425.9 541 626 542 213.1 2537.7
cflp-ci-36 1276 3697 556 058 557 097.0 343.7 554 259 555 083.6 1262.0
cflp-ci-37 2213 5823 1 290 114 1291258.3 411.6 1 284 102 1285221.9 2156.2
cflp-ci-38 1745 5050 1 058 405 1059980.9 381.4 1 054 933 1055679.1 1710.6
cflp-ci-39 383 1131 192 846 193 320.9 195.3 192 693 193 001.8 382.5
cflp-ci-40 1731 3466 638 996 639 737.2 397.0 636 674 637 300.3 1712.4
cflp-ci-41 2704 7893 1 309 439 1311166.0 397.1 1 297 401 1298835.6 2584.7
cflp-ci-42 937 2133 422 885 424 160.1 304.6 422 267 422 889.1 935.6
cflp-ci-43 1770 4181 508 871 509 989.0 385.6 505 548 506 465.7 1736.3
cflp-ci-44 2074 5752 766 352 767 928.0 383.0 759 920 761 332.5 2005.6
cflp-ci-45 2288 4585 724 761 725 291.0 434.2 721 010 721 857.7 2240.9
cflp-ci-46 2431 5397 637 155 638 433.8 424.8 633 722 634 707.6 2358.5
cflp-ci-47 843 2090 410 913 411 767.5 289.2 410 205 410 729.5 841.7
cflp-ci-48 1223 3442 778 044 779 471.1 339.9 775 605 777 095.8 1213.1
cflp-ci-49 892 2135 305 726 306 143.6 297.3 304 209 304 719.1 890.4

Avg 697 281.6 698 454.9 360.9 693 264.6 694 204.3 1725.7
S

5. Conclusions and future work

We have designed a local search approach for the MS-CFLP-CI
problem, recently proposed by Maia et al. (2023). Our method has been
able to outperform all previous methods on almost all instances inde-
pendently of the running time. Additional experiments show that our
approach is also suitable for shorter runs, allowing for more interactive
solution sessions. We believe that the key ingredients of the method are
the reduced (two-suppliers) search space and the sharp tailoring and
engineering of the neighborhoods.

In addition, we have provided a mathematical model that obtains
optimal solutions for relatively small instances. In addition, our model
has been helpful, through the inspection of its solutions, to guide our
successful choice of using the reduced search space.

Finally, we have designed and made publicly available a new
dataset that could complement the current one as benchmark for
comparisons on this problem.
11
For the future, we plan to refine the neighborhoods so as to try to
further improve our current results. For example, the dynamic rebal-
ancing of the quantities of the two suppliers applied in the Change-
upplier neighborhood could be profitably applied to SwapSuppliers

and ClopenFacilities as well.
In addition, we plan to adapt our solution technique to different

versions of the CFLP and compare our results with the corresponding
state-of-the-art contributions on the available benchmarks.

Finally, we would like to design some ‘‘auto-tuning’’ mechanism that
could control some of the parameters online based on reinforcement
learning techniques, in order to reduce the computational cost of the
tuning procedure.
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