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Abstract
Fixed-effects modeling has become the method of choice in several panel data settings, including models for stochastic
frontier analysis. A notable instance of stochastic frontier panel data models is the true fixed-effects model, which allows
disentangling unit heterogeneity from efficiency evaluations. While such a model is theoretically appealing, its estimation is
hampered by incidental parameters. This note proposes a simple and rather general estimation approach where the unit-
specific intercepts are integrated out of the likelihood function. We apply the theory of composite group families to the
model of interest and demonstrate that the resulting integrated likelihood is a marginal likelihood with desirable inferential
properties. The derivation of the result is provided in full, along with some connections with the existing literature and
computational details. The method is illustrated for three notable models, given by the normal-half normal model, the
heteroscedastic exponential model, and the normal-gamma model. The results of simulation experiments highlight the
properties of the methodology.
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1 Introduction

Fixed-effects models are prominent in modern panel data
econometrics since they adjust for unit heterogeneity,
potentially correlated with the covariates. The robustness of
fixed-effects models is rather important in stochastic frontier
analysis, which explains the popularity of the true fixed-
effects stochastic frontier model (Greene 2005a, b). For a
production frontier model, the specification of the true
fixed-effects model is given by

yit ¼ αi þ x>it β� uit þ vit; ð1Þ

where i is the index for the unit of the panel (i= 1,…, n)
and t is the index for time (t= 1,…, T), with T assumed to
be the same across units without loss of generality. Here yit
is the output and xit is a vector of exogenous inputs, both
possibly in log form, β is a vector of coefficients and αi the

unit fixed effect. In the following, we will also employ yi
and Xi to denote the vector of outputs and the matrix of
inputs for the i-th panel member, respectively. Furthermore,
uit is the one-sided inefficiency term, and vit is the
symmetric idiosyncratic error, independent of uit. A simple
change in the sign of uit is required for a cost frontier model
specification. We assume conditional independence (given
αi and xi1,…, xiT) of observations within the same panel
member and independence across units. Finally, we denote
by θ the set of structural model parameters, given by β plus
all the parameters entering the distribution of the error term
εit= vit− uit.

The introduction of the unit-specific intercepts αi is the
key to disentangle heterogeneity from efficiency, but at the
same time, when the intercepts are estimated jointly with
the other model parameters, the incidental parameters
issue arises; see, for example, Bartolucci et al. (2016). In
short, αi is consistently estimated only for T→∞. For
finite T, the resulting bias accumulates across panel
members, and it propagates to θ, thus affecting the effi-
ciency evaluation for settings with short panels. Therefore,
some caution is required when estimating the structural
parameters.
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There are some proposals in the econometric literature
that overcome the incidental parameters problem for some
notable true fixed-effects model specifications, but they all
rely on specific distributional properties. This note aims to
present a simple and

ffiffiffi
n

p
-consistent estimation method that

could be effectively applied to a broad array of distributions
for εit. Moreover, it provides an efficient estimator which is
at least as efficient as existing consistent estimators.

The outline of this note is as follows. Section 2 reviews
the econometric literature on consistent estimation of true
fixed-effects models. The proposal is presented in Section 3,
where mathematical support is provided. Some numerical
studies are reported in Section 4, including an application to
the challenging normal-gamma model. Section 5 provides a
brief discussion.

2 Background

A marginal maximum likelihood estimation for model (1) is
developed in Chen et al. (2014) paralleling the usual deri-
vation of the within estimator for linear models. In parti-
cular, the authors consider the deviation of each term of the
model from the unit mean and then maximize the within
likelihood defined on the (T− 1) deviations of the error
term for the i-th unit. The method is specific to the normal-
half normal model where the components of εit are half
normally distributed uit � Nþð0; σ2uÞ, and normally dis-
tributed vit � Nð0; σ2vÞ, respectively. Using the results from
the multivariate closed skew normal distribution (see
González-Farías et al. 2004, and the references therein),
they show that neglecting a constant additive term, the
within log-likelihood function is

‘WðθÞ ¼ Pn
i¼ 1

logϕT�1 ~y�i � ~X
�
i β; 0T�1; σ2 IT�1 � ET�1

T

� �� �
þPn

i¼1
logΦT � λ

σ
~yi � ~Xiβ
� �

; 0T ; IT þ λ2

T
ET

� �
;

ð2Þ
where ϕm(⋅) and Φm(⋅) denote the density function and the
CDF of the m-dimensional normal distribution,
σ2 ¼ σ2u þ σ2v , and λ= σu/σv. Further, the notation ~X denotes
the within transformation of the m-dimensional vector x,
namely the deviation of the m values of x from its the
sample mean, whereas the notation ~X

�
denotes that only the

first m− 1 such values are retained. Finally, 0m is a vector
of m zeros, Im is the identity matrix of size m, and Em is a
m ×m matrix of ones. The expression (2) is free of αi, and
its maximizer defines the maximum marginal likelihood
estimator (MMLE), which is consistent for increasing n
regardless of the value of the panel length T. Wang and Ho
(2010) define a similar estimator, but for a different model

where uit= ui hit, with hit being a non-random function of
some covariates, and assuming ui half normally distributed.
See also Kutlu et al. (2020).

Another contribution is Wikström (2015), who defines a
method-of-moments estimator and provides a simulation
study for the same model considered by Chen et al. (2014).
The proposal has some interesting properties, such as its
logical simplicity. On the other hand, it is likely to be less
efficient than the MMLE since the latter is based on a
marginal likelihood (see Pace and Salvan 1997, Chap. 4),
and the method of moments is at times prone to numerical
instabilities, as testified by the “problematic replications”
reported in Wikström (2015).

Belotti and Ilardi (2018) provide some notable estimation
strategies. Among other things, they note that the proposal
in Chen et al. (2014), exploiting the closure property of the
skew normal distribution, could be applied to some exten-
sions of the normal-half normal model, including the trun-
cated normal distribution for the inefficiency term,
heteroscedasticity, and autocorrelation between different
inefficiencies. They also note that while the T-dimensional
normal CDF involved in the log-likelihood (2) can be
reduced to a one-dimensional integral, the within log-
likelihood for such extensions would involve an irreducible
T-dimensional normal CDF, whose computation for large
panel lengths may become cumbersome. Hence, they pro-
pose another estimator, the pairwise difference estimator
(PDE).

The PDE is the maximizer of an objective function
involving the distribution of all the differences between
pairs of observations belonging to the same panel member,
much in the spirit of composite likelihood estimation (Varin
et al. 2011). The results reported by Belotti and Ilardi
(2018) illustrate the

ffiffiffi
n

p
-consistency of the proposal, which

is, however, feasible only for truncated normal or expo-
nential inefficiency terms.

Finally, we note that Belotti and Ilardi (2018) propose
another estimator, the marginal maximum simulated like-
lihood estimator (MMSLE), which approximates the
MMLE by simulation, also covering some heteroscedastic
extensions not considered by Chen et al. (2014). The
simulations in Belotti and Ilardi (2018) show that the
MMSLE is a good approximation to the MMLE for the
normal-half normal model. At any rate, while theoretically
interesting, its Monte Carlo nature makes it less appealing
than the original MMLE.

3 Estimation via marginal likelihood

A general solution for consistent estimation of the structural
parameters θ proceeds by noting that given the sample for
the i-th unit, αi acts as a location parameter.
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We start by considering the order statistics for the i-th
panel member ðyið1Þ; ¼ ; yiðTÞÞ, from which we define the
following data vector

si ¼ siðyi1; ¼ ; yiTÞ ¼ ðyið2Þ � yið1Þ; ¼ ; yiðTÞ � yið1ÞÞ: ð3Þ

It is straightforward to verify that the distribution of si is
free of the unit-specific intercept αi, which is eliminated by
pivoting on the smallest observation. This suggests the
following marginal likelihood for θ

LMðθÞ ¼
Yn
i¼1

f Sðsi; θÞ;

where fS(si; θ) is the density of si. The remaining task is to
obtain an analytic expression for fS(si; θ). To this end, we
rely on the theory of composite group families. In particular,
we follow the same steps as Pace and Salvan (1997,
Theorem 7.5)1 to express the marginal likelihood (aside
from a constant factor) as

LMðθÞ ¼
Yn
i¼1

f Sðsi; θÞ ¼
Yn
i¼1

Z 1

�1

YT
t¼1

f Yðyit; αi; θÞ dαi; ð4Þ

where fY(yit; αi, θ) is the density function of yit, from which we
readily define the marginal log-likelihood ‘MðθÞ ¼ log LMðθÞ.
The expression (4) greatly facilitates the task of obtaining the
marginal likelihood based on (3), which would be otherwise
rather involved to obtain directly. The only issue is the
approximation of the one-dimensional integrals in (4), for
which we provide some guidelines in what follows. Moreover,
note that the expression (4) requires the density fY(yit; αi, θ) of
the response variable yit, that in most cases is not difficult to
obtain; at any rate, the example in section 4.3 illustrates how
to proceed when this is not the case.

Since ℓM(θ) is a marginal log-likelihood based on n
independent data vectors, it can be treated as a bona fide log-
likelihood function for θ. Hence its maximizer is

ffiffiffi
n

p
-con-

sistent and the inverse of its negative Hessian evaluated at the
maximizer is a valid estimate of the sampling variance. Note
that for an incidental parameter of a different nature than a
location parameter, the elimination through integration as in
(4) may not provide any improvement on the incidental
parameter bias; see Schumann et al. (2021) and the references
therein. We note in passing that the marginal likelihood (4) is
an instance of a class of integrated likelihood functions stu-
died in Arellano and Bonhomme (2009). A connection
between the results presented here and the theory of the latter
paper is illustrated in Appendix B.

The marginal likelihood in (4) provides a rather general
and relatively simple estimation approach without needing

specific distributional properties. As a general fact in the
frontier specification, the integrals in (4) do not have a
closed-form solution, and they must be approximated by
numerical methods. For panel data settings, however, the n
integrals must be approximated with high accuracy; other-
wise, the error in the approximation accumulates across
panel groups. For this reason, we endorse the use of
adaptive Gaussian quadrature (Liu and Pierce 1994) with Q
quadrature points, which gives the following approximation
to ℓM(θ) (neglecting a constant additive term)

b‘MðθÞ ¼ Xn
i¼1

log seiðθÞ þ
XQ
q¼1

wq exp z2q þ
XT
t¼1

log f Yðyit; z�q; θÞ
( )" #

;

ð5Þ

where zq and wq are the Gauss-Hermite quadrature nodes and
weights. Furthermore, z�q are the adjusted nodes
z�q ¼

ffiffiffi
2

p
seiðθÞ zq þ bαiðθÞ, where bαiðθÞ is the mode ofPT

t¼1 log f Yðyit; αi; θÞ in αi, and sei(θ) is the reciprocal of
the squared root of the second derivative of
�PT

t¼1 log f Yðyit; αi; θÞ with respect to αi, evaluated at bαiðθÞ.
The important advantage of the approximation (5) is that,

by tuning Q, we can keep the approximation error under
strict control. Indeed, having a

ffiffiffi
n

p
-consistent estimator as a

target, it seems reasonable to aim for an approximation error
smaller than the inferential error n−1/2. Following Stringer
and Bilodeau (2022), we should choose Q at least equal to
dð3=2ÞlogTðnÞ � 2e, where ⌈⋅⌉ is the ceiling function. For
instance, for T= 5, which is the smallest panel length
considered in the aforementioned stochastic frontier litera-
ture, the latter formula implies that around 10 quadrature
points are sufficient for n as large as 100,000. All the results
of the next section were obtained with Q= 25, well above
the required number, and indeed, we cross-checked the high
accuracy of the approximation by comparison with the more
computationally expensive Gauss-Kronrod quadrature.

4 Some notable models

In this section, we apply the Integrated Likelihood Esti-
mator (ILE) defined by the maximizer of (4) to some
models of interest.

4.1 The normal-half normal model

A fundamental model is the normal-half normal model,
studied by both Chen et al. (2014) and Belotti and Ilardi
(2018). For the case where uit � Nþð0; σ2uÞ and
vit � Nð0; σ2vÞ, we followed these authors and considered
the same single-input simulation scenario. Since we found
that the ILE matches the MMLE for all the model para-
meters with high numerical accuracy, we do not report any1 Reported in Appendix A
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results here. The equivalence between ILE and MMLE is
encouraging since the latter is a benchmark estimator for the
normal-half normal TFE model. Notice that the same
equivalence occurs in the case of panel data models with
fixed effects and normal errors (Schumann et al. 2021).

We end this example by noting that for the extension to
truncated normal inefficiency coupled with hetero-
scedasticity, the computation of MMLE would require the
evaluation of the T-dimensional normal CDF, with a com-
putational burden increasing with the group size. On the
contrary, the marginal likelihood (4) would retain the same
order of complexity.

4.2 The heteroscedastic exponential model

This is another example considered in Belotti and Ilardi
(2018), for which the PDE provides good estimation per-
formance. Here we assume uit � EðσiuÞ and vit � Nð0; σ2vÞ,
where σiu ¼ expðγ0 þ zi γ1Þ. With such a specification, and
after setting rit ¼ yit � αi � x>it β, the density of each
observation of the i-th panel member becomes

f Yðyit; αi; θÞ ¼
1
σiu

exp
rit
σiu

þ logΦ � rit
σv

� σv
σiu

� �
þ σ2v
2 σ2iu

	 

:

We focus here on some of the simulation experiments
reported in Belotti and Ilardi (2018) and compared our
implementation of the ILE with the PDE; the latter was
computed using the Stata code made available by Belotti
et al. (2013).

Plots in Fig. 1 display the results based on 1000 simu-
lated datasets for the same simulation scenario of section
6.1 in Belotti and Ilardi (2018), with the setting corre-
sponding to their Table 1, namely n= 100, T= 5, and
“signal to noise ratio” set to 1; this setting was chosen since
it is the most challenging, but the results for the other set-
tings are rather similar and are reported in the Supplemen-
tary Material. The two estimators may differ on a sample-
by-sample basis, yet they exhibit very little bias (if any).
The ILE slightly outperforms the PDE in terms of MSE

Fig. 1 Heteroscedastic exponential model. Scatterplots of PDE vs ILE results and boxplots of the two sets of estimates for the setting reported in
Table 1 in Belotti and Ilardi (2018), with bisector line added (scatterplots) and horizontal line corresponding to the true parameter value (boxplots)

Table 1 Estimated power of the test of exponentiality

Setting Power

n= 100, T= 5 0.22

n= 250, T= 5 0.57

n= 500, T= 5 0.83

n= 250, T= 10 0.99

n= 500, T= 10 1.00
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since it is based on a marginal likelihood rather than a
pairwise likelihood, yet the difference in efficiency is small.

4.3 The normal-gamma model

As mentioned at the outset, the important property of the
proposal (4) is its broad generality, and to illustrate this
point, we consider here the normal-gamma model. First
introduced by Greene (1990), this model has been some-
what underused in applications since it involves computa-
tions that are notoriously challenging; see Ritter and Simar
(1997), Tsionas (2000), Greene (2003) and the references
therein. To the best of our knowledge, the normal-gamma
model has never been adopted for the true fixed-effects
stochastic frontier model. While the results of Ritter and
Simar (1997) illustrate the difficulties that may arise in
estimating the efficiency parameters, they also suggest that
estimation issues are much less severe with large sample
sizes. Since, in the setting of interest, we can glean infor-
mation about the efficiency parameter from n panel units,
the total number of observations may be large enough for
meaningful estimation. A similar positive note comes from
the Bayesian inferential approach in Tsionas (2000), where
it is reported that for a normal-gamma model with a total
sample size of 1000, “results are satisfactory”.

The model assumes uit � Gðγ; λÞ and vit � Nð0; σ2vÞ. The
model density requires the numerical approximation of an
integral; letting again rit ¼ yit � αi � x>it β, the density of
each observation of the i-th panel member is

f Yðyit; αi; θÞ ¼
Z 1

0

1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p exp �ðrit þ zÞ
2 σ2v

� z

λ

	 

zγ�1

λγ ΓðγÞ dz:

ð6Þ

For the ILE, this implies that a double integral is
required, and a meticulous numerical implementation is
called for. Our strategy entails coding the normal-gamma
convolution integral (6) in C++ using adaptive Gauss-
Kronrod quadrature with a large number of nodes, plus
other steps required for successful implementation of the
approximation (5); further details are provided in the Sup-
plementary Material. A fact worth mentioning is that the
numerical optimization of the log-likelihood (5) is best
achieved with the re-parameterization in which γ and σv are
replaced by the mean and the standard deviation of the
gamma term, namely

μG ¼ γ λ; σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2v þ γ λ2

q
:

The fact that very high accuracy is required for both the
inner and outer integrals involved in the log-likelihood
function makes its optimization rather expensive; while
other models are estimated in a matter of seconds, the

estimation of the normal-gamma model may take several
minutes.

Figure 2 summarizes the estimation results for 1000 data
sets at each of four different settings, with the true efficiency
parameter values set at γ= 2, λ= 1 and σv= 0.25. This
choice of parameters avoids the “relatively difficult” case
where γ < 1 (Tsionas 2000), for which, in our settings, the
optimization becomes far too slow for a Monte Carlo study.
Note that the minimum total sample size considered is
1250: compared to the previous example, the results for the
setting n= 100 and T= 5 are not reported, since the esti-
mation turned out to be unreliable.

Despite the challenging estimation, the results are
reasonably satisfactory since the distribution of each of
the estimators has a median matching the true parameter
value in all cases, and it becomes more concentrated
around it when the total sample size increases. Though the
two settings n= 500, T= 5 and n= 250, T= 10 have the
same total sample size, the latter shows slightly better
results.

Another useful point concerns the possibility of distin-
guishing the gamma model from simpler ones. A natural
competitor is the normal-exponential, which is obtained as a
special case of the model of section 4.2. Table 1 reports the
estimated power for a fixed level α= 0.05 of the log-
likelihood ratio test for the hypothesis γ= 1, i.e., the test of
exponentiality

W ¼ 2 b‘MðbθÞ � b‘Mðbθ0Þn o
;

where bθ is the estimator from the normal-gamma model andbθ0 the estimator from the normal-exponential model. This is
a power computation since the data were generated under
the normal-gamma model with γ= 2.

The results suggest that while the setting n= 100 and
T= 5 is very far from being suitable to distinguish the
gamma model from the exponential one, things get pro-
gressively better for the four settings reported in Fig. 2.

5 Discussion

The estimator based on the marginal likelihood obtained by
integrating out the panel-specific intercepts in the true fixed-
effects stochastic frontier model represents a simple and
efficient methodology. The proposal recovers the existing
consistent estimators whenever available and can provide a
useful solution in other cases. It seems worth noting that the
same strategy where group-specific intercepts are integrated
out may be relevant to other fixed-effects panel data models
with continuous response as an alternative to differencing,
providing a

ffiffiffi
n

p
-consistent estimator and avoiding any issue

related to the size of T.
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The ILE may also be useful in connection with four-
component panel stochastic frontier models; see Kumbhakar
and Lai (2022) for a recent review. Such models include two
random group-specific effects in place of αi in (1), namely
αi= τi− ηi, where τi is a group effect and ηi is the persistent
inefficiency components. Such an approach allows for more
informative efficiency evaluations than the true fixed-effects
setting, at the expense of stronger distributional specifications.
For those researchers willing to adopt the four-component
specification, a recommended approach may be to supplement
the analysis with the estimates of several alternative models
along the lines of what was done by Kumbhakar et al. (2014).
We endorse the inclusion of the true fixed-effects model
among the array of considered specifications since its robust
nature will provide some coverage against input endogeneity
issues. A simple comparison of the estimates of structural
parameters and estimated inefficiencies across several models
could then provide some valuable information. To this end,
the availability of resources for true-fixed effects analysis,
including software, may represent a useful addition.

In closing, among possible directions for extension of the
current paper, we mention the adoption of other distributions
for the inefficiency term or the inclusion of semiparametric
effects for the production or cost function, along the lines of
the proposal in Bellio and Grassetti (2011). The imple-
mentation of the latter, however, would require special care.

6 Software

A public repository with R code for fitting the models
presented in this note is available at github.com/lucagra
ssetti/ilsfa.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11123-024-00725-3.
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Fig. 2 Normal-gamma model. Boxplots of ILE results in four different settings, with horizontal lines corresponding to the true parameter value
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7 Appendix A: Inference based on the
integrated likelihood

We need to show that marginal likelihood based on si in
expression (3) of the main paper equals the integrated
likelihood

f Sðsi; θÞ ¼
Z 1

�1

YT
t¼1

f Yðyit; αi; θÞ dαi; ðA:1Þ

To this end, we follow the same steps of the proof of
Theorem 7.5 of Pace and Salvan (1997), which covers an
even more complex setting for location and scale
transformations.

Before proceeding, note that since αi is a location para-
meter and x>it β acts on the location as well, we can define
f0(⋅) such that

f Yðyit; αi; θÞ ¼ f 0ðyit � αi � x>it β;ψÞ; ðA:2Þ

where ψ denotes the set of structural parameters without β,
i.e., θ= (β, ψ).

First, we perform a sufficiency reduction to the order
statistic for the i-th unit in the panel yið1Þ; ¼ ; yiðTÞ

� �
,

having density

f Yord
ðyið1Þ; ¼ ; yiðTÞ; αi; θÞ ¼ T!

YT
t¼1

f 0ðyiðtÞ � αi � x>iðtÞβ;ψÞ:

ðA:3Þ
Since the distribution of si does not depend on αi, without
losing generality we may assume αi= 0, and the distribu-
tion (A.3) becomes

f Yord
ðyið1Þ; ¼ ; yiðTÞ; 0; θÞ ¼ T !

YT

t¼1
f 0ðyiðtÞ � x>iðtÞβ;ψÞ:

The next step is to consider the one-to-one transformation

zi ¼ yið1Þ
si2 ¼ yið2Þ � yið1Þ

..

.

siT ¼ yiðTÞ � yið1Þ

8>>>>><>>>>>:
having inverse

yið1Þ ¼ zi
yið2Þ ¼ si2 þ zi

..

.

yiðTÞ ¼ siT þ zi

8>>>>><>>>>>:
;

and unitary Jacobian. It follows that

f Z;Sðzi; si1; ¼ ; siT ; θÞ ¼ T !f 0ðzi � x>ið1Þβ;ψÞ
YT
t¼2

f 0ðsit þ zi � x>iðtÞβ;ψÞ;

from which we can integrate out zi to obtain the marginal
distribution of si

f Sðsi; θÞ ¼ T !

Z 1

�1
f 0ðzi � x>ið1Þβ;ψÞ

YT
t¼2

f 0ðsit þ zi � x>iðtÞβ;ψÞ dzi:

Furthermore, note that the constant T! can be omitted in
the likelihood definition, and then we proceed with another
change of variable ui= zi− yi(1), for i= 1,…, n, having
again unitary Jacobian. With some simple algebra, we
obtain

f Sðsi; θÞ ¼
Z 1

�1

YT
t¼1

f 0ðyiðtÞ þ ui � x>iðtÞβ;ψÞ dui:

A further change of variable αi=− ui finally gives the
result (A.1), using again the identity (A.2), so that

f Sðsi; θÞ ¼
Z 1

�1

YT
t¼1

f 0ðyiðtÞ � αi � x>iðtÞβ;ψÞ dαi ¼
Z 1

�1

YT
t¼1

f Yðyit; αi; θÞ dαi:

8 Appendix B: Relation to the results in
Arellano and Bonhomme (2009)

The integrated likelihood (4) corresponds to the choice of
the uniform prior according to Arellano and Bonhomme
(2009). The fact that it corresponds to the marginal like-
lihood obtained from the distribution of (3) implies that the
uniform prior resolves the incidental parameter issue, and
this, in turn, must imply that condition (11) in the cited
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article holds. In what follows, we illustrate that this is the
case.

As reminded by the authors, to prove this fact, it suffices
that ρi(θ, αi) does not depend on αi, where ρi(θ, αi) is the
following vector

ρiðθ; αiÞ ¼ � iθαiðθ; αiÞ
iαiαiðθ; αiÞ

;

with iθαiðθ; αiÞ and iαiαiðθ; αiÞ denoting the θαi-block and the
αiαi-block of the expected Fisher information matrix,
respectively.

The fact that the expected Fisher information does not
depend on αi is straightforward to verify. To this aim, let us
consider the log-likelihood function for the i-th unit corre-
sponding to the TFE model (1), using again the identity
(A.2)

‘iðαi; θÞ ¼
XT
t¼1

log f Yðyit; αi; θÞ ¼
XT
t¼1

log f 0ðyit � αi � x>it β;ψÞ:

From this, we obtain the score function for αi

∂‘iðαi; θÞ
∂αi

¼
XT
t¼1

� f 00ðyit � αi � x>it β;ψÞ
f 0ðyit � αi � x>it β;ψÞ

;

where f 00ðz;ψÞ ¼ ∂f 0ðz;ψÞ=∂z, and then the αiαi-block of
the observed information matrix

where again f
00
0ðz;ψÞ ¼ ∂2f 0ðz;ψÞ=∂z2. Note that we can

write

� ∂2‘iðαi; θÞ
∂α2i

¼
XT
t¼1

qðyit � αi � x>it β;ψÞ;

for a suitable q(⋅; ψ) function. Then

iαiαiðθ; αiÞ ¼
XT
t¼1

Z 1

�1
qðyit � αi � x>it β;ψÞ f 0ðyit � αi � x>it β;ψÞ dyit;

from which we make a change of variable
rit ¼ yit � αi � x>it β, obtaining

iαiαiðθ; αiÞ ¼
XT
t¼1

Z 1

�1
qðrit;ψÞ f 0ðrit;ψÞ drit;

which shows that iαiαiðθ; αiÞ is a function of ψ only.
Similarly, we obtain that the iθαiðθ; αiÞ depends on ψ only,
and so does ρi(θ, αi).
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