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Abstract

In this thesis, we study the complexity of some mathematical problems, in particular those arising
in computable analysis and algorithmic learning theory for algebraic structures. We highlight that
our study is not limited to these two areas: indeed, in both cases, the results we obtain are
tightly connected to ideas and tools coming from different areas of mathematical logic, including
for example descriptive set theory and reverse mathematics.

After giving the necessary preliminaries, the rest of the thesis is divided into two parts one
concerning computable analysis and the other algorithmic learning theory for algebraic structures.
In the first part we start studying the uniform computational strength of the Cantor-Bendixson
theorem in the Weihrauch lattice. This work falls into the program connecting reverse mathematics
and computable analysis via the framework of Weihrauch reducibility. We concentrate on problems
related to perfect subsets of Polish spaces, studying the perfect set theorem, the Cantor-Bendixson
theorem, and various problems arising from them. In the framework of reverse mathematics, these
theorems are equivalent respectively to ATR0 and Π1

1´CA0 and, as far as we know, this is the
first systematic study of problems at the level of Π1

1´CA0 in the Weihrauch lattice. We show that
the strength of some of the problems we study depends on the topological properties of the Polish
space under consideration, while others have the same strength once the space is rich enough. The
first part continues considering problems related to (induced) subgraphs. We provide results on
the (effective) Wadge complexity of sets of graphs, that are also used to determine the Weihrauch
degree of certain decision problems. The decision problems we consider are defined for a fixed
graph G, and they take as input a graph H, answering whether G is an (induced) subgraph of H:
we also consider the opposite problem (i.e. answering whether H is an induced subgraph of G).
Our study in this context is not limited to decision problems, and we also study the Weihrauch
degree of problems that, for a fixed graph G and given in input a graph H such that G is an
(induced) subgraph H, they output a copy of G in H. In both cases, we highlight differences and
analogies between the subgraph and the induced subgraph relation.

In the second part, we introduce algorithmic learning theory, and we present the framework we
use to study the learnability of families of algebraic structures: here, given a countable family of
pairwise nonisomorphic structures K, a learner receives larger and larger pieces of an arbitrary copy
of a structure in K and, at each stage, is required to output a conjecture about the isomorphism
type of such a structure. We say that K is learnable if there exists a learner which eventually
stabilizes to a correct guess. The framework was lacking a method for comparing the complexity
of nonlearnable families, and so we propose a solution to this problem using tools coming from
invariant descriptive set theory. To do so, we first prove that a family of structures is learnable if
and only if its learning domain is continuously reducible to the relation E0 of eventual agreement
on infinite binary sequences and then, replacing E0 with Borel equivalence relations of higher
complexity, we obtain a new hierarchy of learning problems. This leads to the notion of E-
learnability, where a family of structures K is E-learnable, for a Borel equivalence relation E, if
there is a continuous reduction from the isomorphism relation associated with K to E. It is then
natural to ask how the notion of E-learnability interacts with “classical” learning paradigms. We
conclude the second part (and the overall thesis) studying the number of mind changes that a
learner needs to learn a given family, both from a topological and a combinatorial point of view,
and studying how the complexity of a learner (in terms of Turing reducibility) affects the number
of mind changes for learning a given family.
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Introduction

The thesis’ title suggests that we are going to classify problems: the Ph.D. field spoils that they
are mathematical ones. Even if we heavily restricted the possible meanings of “problem”, since
mathematics tends to be rigorous (and hopefully this thesis as well), we still have to make precise
what do we mean by “classify a mathematical problem”. From now on in this introduction, since
we clarified the context, we use the word “problem” to indicate a mathematical one. As people
interested in mathematical logic, when we face a problem we want to know how complicated it
is: hence, for us, classifying a problem means understanding its complexity. Towards this goal,
researchers in this area developed several frameworks capturing different nuances of complexity.
Of course, one could have settled the arriving point of this study at “we consider the problem
in this framework easy/difficult” and be happy with this information. But one could also start
considering an endless chain of questions: is this problem easy/difficult in framework 1? And in
framework 2? . . . And in framework n? . . . Does the fact that this problem is easy/difficult in
framework n, implies that the same problem is easy/difficult in framework m? What if we restrict
the possible inputs to the problem? What if we restrict the possible outputs? What if both? Why
is this problem so easy/difficult? If this problem is easy/difficult, does this mean that this other
problem is easy/difficult as well? . . . . This is the approach chosen by mathematical logic, and the
one we consider in this thesis: the most stressful but, from our humble point of view, also the most
interesting one.

The subtitle of the thesis anticipates that the problems we classify and the frameworks we use
come from computable analysis and algorithmic learning theory, but our classification is not con-
fined just to these two areas. For example, we use different notions of complexity and frameworks
from descriptive set theory, introduced in §I.3.

One of the approaches coming from descriptive set theory is the study of the complexity of a
problem in terms of the complexity of its definition. More precisely, this area studies “definable”
sets in topological (in particular, Polish) spaces classifying them with respect to their topological
properties and the complexity of the formulas defining them. This gives rise to different hierarchies
like the boldface hierarchy (defined in §I.3.1) and its effective counterpart, the lightface hierarchy
(see §I.3.2). How these hierarchies are structured and which interesting sets inhabit their levels
are a matter of study for people working in this field.

The approach we just described provides an “absolute” complexity of a problem. If we want to
compare a “relative” complexity of problems, the notion of reducibility comes in handy. Informally,
given a notion of complexity c, we say that a problem P is c-reducible to a problem Q if P is easier
(in the sense of c) than Q. If also the converse holds, we say that the two problems are c-equivalent.
We usually call the class containing all the c-equivalent problems a c-degree. Classifying problems
under a fixed notion of reducibility induces a structure among them that can be studied locally
(i.e. which concrete problems belong to a certain degree) or globally (i.e. exploring the algebraic
properties and the degree structure). The comparison of problems via reducibilities is common
to many frameworks. For example, going on with descriptive set theory, we have the notion of
(effective) Wadge reducibility (defined in §I.3.3) that compares sets via continuous (computable)
functions: this is studied, for example, in Chapter III.

Reducibilities are also common in computability theory. This well known subject, starting with
the seminal work of Turing, succeeded in formalizing the informal notion of what is an “algorithm”
and suggested a way to compare problems algorithmically. That is, if solving the problem Q we
can solve problem P , in some sense P is algorithmically easier than Q. Classical computability
theory deals with objects that can be coded by natural numbers. In this context the coding is
unproblematic, but when we study the computability of problems involving object that cannot be
coded by natural numbers, how we code (represent) them play a crucial role. This is (one of the)
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topic(s) of computable analysis, presented in §I.2. Here, an infinite object is represented via an
infinite sequence of natural numbers, on which we can define a natural notion of computability:
this induces the notion of represented space (see Definition I.2.6).

Once we represented an infinite object, we can formalize a problem as a multi-valued function,
i.e. a function with multiple outputs (see Definition I.2.3). Multi-valued functions can be compared
via the framework of Weihrauch reducibility, the uniform counterpart of Turing reducibility. As
first noticed in [GM09], Weihrauch reducibility provides also a bridge between computable analysis
and reverse mathematics, the discipline aiming to determine which axioms are “necessary” to prove
certain theorems of “ordinary mathematics” (see §I.5 for an introduction to the subject). Many
theorems are of the form “for all x, if ϕpxq holds then ψpx, yq holds” and this formulation has
a natural translation as a computational problem: given in input x such that ϕpxq holds the
solutions are those ys such that ψpx, yq holds. We have already suggested that we can formalize
problems as multi-valued functions, and here comes the connection between computable analysis
and reverse mathematics: we can compare theorems via the framework of Weihrauch reducibility.
The interplay between these two areas is discussed at the beginning of Part 1 and Chapter II (and
partly Chapter III) fall in this area.

In the second part of the thesis, we consider different problems, namely learning problems. We
are in the area of algorithmic learning theory, the research program aiming to formally “describe”
an empirical phenomenon (see the beginning of Part 2 for an introduction to the subject). This
area provides different frameworks depending on the scenario one wants to model, but the core
idea in all of them can be informally described as follows. There is an agent (e.g. a Turing
machine) that we call a learner and a learning problem consisting of a set of possible answers to
a given empirical inquiry: step by step the learner receives hints on such an inquiry and tries to
converge to the correct solution. The paradigm we use for modeling learning of algebraic structures
(Definition 2) borrows ideas from computable structure theory (see §I.4.2 for a brief presentation of
this subject), the field of computable mathematics studying the interplay between the complexity
of a mathematical structure and its structural/algorithmic properties. One of our main results in
this part shows that we can characterize the (non) learnability of a family of structures using ideas
coming from invariant descriptive set theory and, in particular, the study of definable equivalence
relations (see §I.4). This area studies classification problems that are formalized by pairs pX,Eq,
for a set X and an equivalence relation E, satisfying certain properties, and compares them via
a notion of reducibility between equivalence relations. A particular subclass of such problems are
isomorphism problems: informally, what we show is that learnability can be described as the study
of the complexity of some particular isomorphism problems.

To summarize: in this thesis, we aim to classify the complexity of mathematical problems in
computable analysis and algorithmic learning theory (for algebraic structures) showing also the
interplay with other disciplines like (effective) descriptive set theory and reverse mathematics. The
thesis consists of five chapters:

• in Chapter I, we give (most of) the preliminaries for the rest of the thesis. In §I.1 we fix
some general notations, with particular attention to trees and graphs. In §I.2 we introduce
the notion of computability on Baire space and represented spaces while §I.3 presents the
basic concepts of (effective) descriptive set theory. In §I.4 we turn our attention to invariant
descriptive set theory and computable structure theory. Finally, §I.5 and §I.6 speak about
reverse mathematics and Weihrauch reducibility respectively. In particular, in the latter we
introduce the notion of finitary part of a problem, that is tightly connected to other concepts
studied in Weihrauch reducibility like the first-order part and the deterministic part of a
problem. This notion was introduced together with Arno Pauly while working on topics
presented in Chapter III.

After the first chapter, the thesis splits in two parts: Part 1 focuses on Weihrauch reducibility
and Part 2 focuses on algorithmic learning theory for algebraic structures. Each of the remaining
chapters has its own introduction, but we rapidly give an outline of the topics. Part 1 consists of
Chapter II and Chapter III:
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• Chapter II is based on a joint work with Alberto Marcone and Manlio Valenti. Here we study
the Cantor-Bendixson theorem in the Weihrauch lattice continuing the program connecting
Weihrauch reducibility and reverse mathematics: as far as we know, this is the first systematic
study of problems at the level of Π1

1´CA0 in the Weihrauch lattice.

• Chapter III is based on a joint work with Arno Pauly and considers problems related to
(induced) subgraphs via (effective) Wadge reducibility and Weihrauch reducibility. We high-
light analogies and differences between the subgraph and the induced subgraph relation, and
in particular we solve a couple of open questions left open in [BHW21].

Part 2 consists of Chapter IV and Chapter V: both chapters are based on joint works with Nikolay
Bazhenov and Luca San Mauro.

• In Chapter IV we introduce a method for calibrating the complexity of nonlearnable families.
To do so, we borrow ideas from invariant descriptive set theory, offering a new hierarchy to
classify the complexity of learning problems for algebraic structures. This gives us a notion
of reducibility between learning problems and gives a new characterization of learnability in
descriptive set-theoretic terms.

• In Chapter V we study the number of mind changes that a learner makes while learning
a given family. We give two different characterizations of the mind change complexity, a
topological one and a combinatorial one. Finally, we study how the complexity of a learner,
defined in terms of Turing reducibility, affects the number of mind changes required to learn
a given family: this suggests the notion of learning degree of a family of structures.
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I
Preliminaries

We warn the reader that we do not mean to give an exhaustive presentation of the topics presented
in this chapter. We assume the reader to be familiar with basic notions of computability (as
presented for example in [Rog87]), but we (at least try) to give the necessary background to make
the reading smooth and to clearly fix the notations for the next chapters.

I.1 Spaces, sequences, trees, and graphs

We use the following abbreviations for quantifiers:

D8n :“ p@n P NqpDm ě nq and @8n :“ pDn P Nqp@m ě nq.

Given a set X we denote by PpXq the power set of X. We denote the natural numbers t0, 1, 2, . . . u
with N, the integers with Z, the rationals with Q and the reals with R. Furthermore, let

• NN denote the Baire space, i.e. the space of functions from N to N, and

• 2N denote Cantor space, i.e. the space of functions from N to 2.

Both spaces come with the natural product topology where N and 2 are endowed with the discrete
one. In both cases their topology is generated by the following metric:

dpp, qq :“

#
1

mintn:ppnq‰qpnqu`1
if p ‰ q,

0 otherwise.

Let σ be a finite sequence of natural numbers (respectively, of 0’s and 1’s): the basic open sets of
NN (2N) are of the form Nσ :“ tp P NN : σ Ă pu (Nσ :“ tp P 2N : σ Ă pu). It is easy to notice that
in both cases the complement of Nσ is also closed, and hence each Nσ is clopen. We denote by id

the identity function on NN. We usually refer to an element of NN or 2N as an infinite sequence.
A function f from a space X to a space Y is denoted by f :Ď X Ñ Y : the symbol “Ď” denotes

that f is partial, and, if absent, it means that f is total.
Let Nn be the set of finite sequences of natural numbers of length n, where the length is denoted

by |¨|. If n “ 0, N0 “ txyu, where xy is the empty sequence: in general, given i0, . . . , in´1 P N,
we denote by xi0, . . . , in´1y the finite sequence in Nn having digits i0, . . . , in´1. For σ P NăN and
m ď |σ|, let σrms :“ xσp0q, . . . , σpm ´ 1qy. Given σ, τ P NăN, we use σ Ď τ to say that σ is an
initial segment of τ (equivalently, τ an extension of σ), i.e. σ “ τ rms for some m ď |τ |. We use
the symbol Ă in case σ Ď τ and |σ| ă |τ |, and in case σ Ę τ and τ Ę σ we say that σ and τ

are incomparable (in symbols, σ | τ). The concatenation of two finite sequences σ, τ is denoted by
σaτ , but often we just write στ . The same symbol is also used for the concatenation of a finite
and an infinite sequence. For n, k P N, we denote by nk the sequence made of k many n’s: in case
k “ 1 we just write n, and we use nN to denote the infinite sequence with constant value n. For
σ P NăN and p P NN we denote by σ´ and p´ the result of deleting the first digit of the sequence.
Given σ, τ P Nn, we define the join of σ and τ as σ‘ τ :“ xσp0q, τp0q, . . . , σpn´ 1q, τpn´ 1qy. The
same definition easily generalizes to infinite sequences and to countably many (finite or infinite)
sequences of the same length in a straightforward way.
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Remark I.1.1. We fix a bijection between NăN and N: to avoid too much notation we do
not introduce a specific symbol for this bijection, but we identify a sequence with the number
representing it. It should be clear from the context whether we are referring to a finite sequence
or to the number representing it. We can safely assume that such a bijection enjoys the
following natural properties: given σ, τ P NăN and i P N, the functions σ ÞÑ |σ|, pσ, τq ÞÑ σaτ ,
pσ, iq ÞÑ σpiq and the function that, given as input n outputs the code of the string containing
just n are computable. We also assume that if σ Ă τ then σ ă τ .

I.1.1 Trees

A tree T is a nonempty subset of NăN closed under initial segments; in case T is a subset of 2ăN,
we call T a binary tree. We say that f P NN is a path through T if for all n P N, f rns P T where,
as for finite sequences, f rns “ xfp0q, . . . , fpn ´ 1qy. We denote by rT s the body of T , that is the
set of paths through T . We say that a tree T is ill-founded if and only if there exists at least
one path in rT s and well-founded otherwise. Given σ P T we define the tree of extensions of σ in
T as Tσ :“ tτ : τ Ď σ _ τ Ě σu. We say that T is perfect if every element of T has (at least)
two incompatible extensions in T , that is, p@σ P T qpDτ, τ 1 P T qpσ Ă τ ^ σ Ă τ 1 ^ τ | τ 1q. It is
straightforward that the body of a nonempty perfect tree has uncountably many paths. Given a
tree T , the largest perfect subtree S of T is called the perfect kernel of T while rT s z rSs Ď NN is
called the scattered part of T . We call T pruned if every σ P T has a proper extension. Moreover,
if rT s is perfect and T is pruned then T is a perfect tree.

Remark I.1.2. It is useful to notice that, for a binary tree T , if |rT s| ą ℵ0 then there must
uncountably many paths with infinitely many ones. In other words, it can’t be the case that
all the paths in rT s are eventually zero paths, as it is straightforward to notice that they are
only countably many.

We now define and study the properties of some operations between trees that are heavily
used especially in Chapter II and also in Chapter III. Given trees T and S, we define the disjoint
union of T and S as T \ S “ txyu Y tx0yτ : τ P T u Y tx1yτ : τ P Su. Of course, this is
still a tree, and it has the property that T \ S is ill-founded if and only if at least one of T
and S is ill-founded. The construction can be easily generalized to countably many trees lettingŮ

iPN T
i :“ txyu Y txiyτ : τ P T i ^ i P Nu, and we still have that

Ů
iPN T

i is ill-founded if and
only if there exists i such that T i is ill-founded. We also define the binary disjoint union asŮ
b
iPN T

i :“ txyu Y t0ix1yτ : τ P T i ^ i P Nu.

Remark I.1.3. Notice that if all the T i’s are binary trees, also
Ů
b
iPN T

i is and, regardless
the ill-foundedness/well-foundedness of the T i’s, 0N P

“Ů
b
iPN T

i
‰
. Moreover,

ˇ̌“Ů
b
iPN T

i
‰ˇ̌
“

1`
ř
iPN

ˇ̌“
T i

‰ˇ̌
. In particular,

ˇ̌“Ů
b
iPN T

i
‰ˇ̌
ą 1 if and only if there exists an i P N such that T i is

ill-founded.

We now turn our attention to another operation on trees, namely interleaving . Given trees T
and S, the interleaving between T and S is T ‘ S :“ tσ ‘ τ : |σ| “ |τ | ^ σ P T ^ τ P Su. Clearly,
T ‘ S is a tree, and it is ill-founded if and only if both T and S are ill-founded. This construction
can be generalized to countably many trees in a straightforward way, and we use a notation such
as ‘iPNT

i.
We often use the interleaving ExplpT q :“ T ‘ 2ăN, which we call the explosion of T .
Sometimes it is useful to be able to “translate” back and forth between sequences of natural

numbers and binary sequences.

Definition I.1.4. We define:
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• ρ2N : N
ăN Ñ 2ăN by

ρ2Npσq :“ 0σp0q10σp1q1 . . . 10|σ|´11.

In particular, ρ2Npxyq :“ xy;

• ρNN : 2ăN Ñ NăN by

ρNNpτq :“

#
ρ´1

2N
pτ rnτ ` 1sq if pDiqpτpiq “ 1q where nτ :“ maxti : τpiq “ 1u;

xy if p@iqpτpiq “ 0q.

The two functions defined above have the following properties:

• ρ2N is injective;

• ρNNpρ2Npσqq “ σ;

• σ Ă σ1 if and only if ρ2Npσq Ă ρ2Npσ
1q;

• if τ Ă τ 1 then ρNNpτq Ď ρNNpτ 1q.

We are now able to “translate” back and forth between trees on N and binary trees. We use
the same symbols ρ2N and ρNN as the context explains which function we are using.

Definition I.1.5. Let T Ď 2ăN and S Ď NăN be trees. We define:

• ρNNpT q :“ tσ P NăN : ρ2Npσq P T u;

• ρ2NpSq :“ tτ P 2
ăN : ρNNpτq P Su.

Remark I.1.6. Notice that, since ρNNpσ0nq “ ρNNpσq for every n, if σ P ρNNpT q then σ0N P
rρNNpT qs. It is straightforward to check that ρNNpT q “ tρNNpτq P NăN : τ P T u. On the other
hand, for most trees, S Ď NăN, ρ2NpSq ‰ tρ2Npτq P 2

ăN : τ P Su as the latter is not even a tree.

The back-and-forth translations between sequences in NN and 2N are also denoted by the same
function symbols used for finite sequences and for trees: again the context clarifies which one we
are using.

Definition I.1.7.

• ρ2N : N
N Ñ 2N is defined by

ρ2Nppq :“
ď

nPN

ρ2Npprnsq “ 0pp0q10pp1q . . . 10ppnq1 . . . ;

• ρNN :Ď 2N Ñ NN has domain tq : pD8iqpqpiq “ 1qu and is defined by

ρNNpqq :“
ď

nPN

ρNNpqrnsq.

In both definitions, the union makes sense because the finite sequences are comparable.

Notice that all the functions ρNN and ρ2N we defined are computable. For the functions on finite
sequences, this means usual Turing computability.
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Lemma I.1.8. The following lemma summarizes the fundamental properties of ρ2N and ρNN

for infinite sequences and trees.

1. The range of ρ2N is tq P 2N : pD8iqpqpiq “ 1qu;

2. ρNNpρ2Nppqq “ p for every p P NN.

3. ρ2NpρNNpqqq “ q for every q P dompρNNq.

4. If S Ď NăN, p P rSs ðñ ρ2Nppq P rρ2NpSqs and hence rρ2NpSqs Ď tρ2Nppq : p P rSsu Y tq :
p@8iqpqpiq “ 0qu so that |rρ2NpSqs| ď ℵ0 ðñ |rSs| ď ℵ0.

5. If T Ď 2ăN and q P dompρNNq we have that q P rT s ðñ ρNNpqq P rρNNpT qs.

6. If T Ď 2ăN and p P NN then p P rρNNpT qs ðñ ρ2Nppq P rT s.

Proof. The proofs are straightforward from the definitions above.

Lemma I.1.9. If T is a binary tree such that rT s is perfect then rρNNpT qs is perfect as well.
Furthermore, if T is a perfect tree, then ρNNpT q is also a perfect tree.

Proof. Let T be a binary tree such that rT s is perfect. We show that no f P rρNNpT qs is
isolated, i.e. p@nqpDg P rρNNpT qsqpf rns Ă g ^ f ‰ gq. Fix n: by Lemma I.1.8(6) we get that
ρ2Npfq P rT s and, in particular, σ :“ ρ2Npf rnsq P T . Since rT s is perfect, by Remark I.1.2, there
exists h P rT s with infinitely many ones such that σ Ă h and ρ2Npfq ‰ h. By Lemma I.1.8(5)
ρNNphq P rρNNpT qs and letting g :“ ρNNphq we reach the conclusion.

In case T is a perfect tree, it suffices to show that ρNNpT q is pruned. Suppose there exists
σ P ρNNpT q with no extensions in ρNNpT q. Then τ :“ ρ2Npσq belongs to T and the only path in
T extending τ is of the form τ0N, contradicting the perfectness of T .

Notice that if S Ď NăN is a perfect tree it may be the case that rρ2NpSqs is not perfect, e.g. let
S “ tσ P NăN : σp0q “ 0u and notice that 0N is isolated in rρ2NpSqs.

I.1.2 Graphs

A graph G is a pair pV,Eq where V is the set of vertices and E is a binary relation on V ˆ V ; a
pair pv, wq P E is called an edge.

Remark I.1.10. In this thesis, when we say graph, we always assume that is countable, undi-
rected, and without self-loops: that is, V Ď N and E satisfies anti-reflexivity and symmetry.

Given a graph G we denote the set of vertices and the set of edges respectively with V pGq and
EpGq. Given graphs G and H, we write G – H to denote that G and H are isomorphic, and we
often say that “G is a copy of H” or vice versa. We say that a graph G is finite if V pGq is finite,
infinite otherwise. Given v P V pGq, let tw P V pGq : pv, wq P EpGqu the set of neighbors of v in G,
and define the degree of v in G as degGpvq :“ |tw : pv, wq P EpGqu|.

For a graph G and n ą 0, a ray of length n is a sequence of distinct vertices v0, . . . , vn P V pGq
such that for every i ă n, pvi, vi`1q P EpGq: we say that v0 and vn endpoints of the ray. Given
u, v, w P V pGq, we say that v and u are ray-connected in G through w, denoted by v úG

w u, if
there exists a ray of finite length n ą 0 in G, with endpoints v and u containing w: we write
v úG

 w u to denote that v and u are ray-connected but no ray of finite length with endpoints
u and v contains w. If we simply want to say that v and u are ray-connected in G, we drop the
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subscript w (or  w). Notice that vúGu by a path of length 1 if and only if pv, wq P EpGq. We
say that a graph G is connected if p@v, u P V pGqqpvúGuq.

We continue defining three particular types of graphs, namely rays, complete graphs, and cycles.
Notice that the ray we are defining now is the graph having as vertex set an initial segment of N
and defined as the ray above. Formally, for n ą 0 and m ą 2 we define Rn, Kn and Cm as the
graphs having the same vertex set ti : i ď nu and ti : i ď mu. The edge sets are respectively:
EpRnq “ tpi, i`1q : i ă nu, EpKnq “ tpi, jq : i ‰ j^i, j ă nu and EpCmq “ EpRm´1qYtpm´1, 0qu.
It is immediate that C3 “ K3. Notice that Rn and Kn generalize to the infinite case: that is, Rω

and Kω are the graphs having as vertex set N and as edge set respectively tpi, i` 1q : i P Nu and
tpi, jq : i ‰ j ^ i, j P Nu. Another infinite generalization of Rn we use is the “two-way infinite ray”
L, where V pLq “ N and EpLq “ tp0, 1qu Y tp2i, 2i` 2q : i P Nu Y tp2i` 1, 2i` 3q : i P Nu.

Given countably many graphs tGi : i P Nu we define the disconnected union
Â

iPNGi as follows:

V p
â
iPN

Giq :“
ď

iPN

txi, vy : v P V pGiqu and Ep
â
iPN

Giq :“ tpxi, vy, xi, wyq : pv, wq P EpGiqu.

In case the disconnected union involves at most three graphs G0, G1, G2, we write G0

Â
G1 and

G0

Â
G1

Â
G2 respectively. We denote by

8Â
G the disconnected union of countably many copies

of G.
Another operation on graphs we use is the connected union (denoted by

Ä
iPNGi) in which,

intuitively, for every i, Gi and Gi`1 share a unique common vertex, different from the one shared
between Gi`1 and Gi`2. Formally, given countably many graphs tGi : i P Nu (for simplicity
assume |V pGiq| ě 3 for every i), let vi :“ mintv : v P V pGiqu and, if Gi is finite, let wi :“ maxtv :
v P V pGqu, otherwise let wi :“ mintv : v P V pGiqztviuu. Then let,

V p
ä
iPN

Giq :“ V p
â
iPN

Giq z
 
txi, viy : i ą 0u Y txi,wiy : i P Nu

(ď 
xwi, vi`1y : i P N

(
,

Ep
ä
iPN

Giq :“ tpxi, vy, xi, wyq : v, w R tvi,wiu ^ pv, wq P EpGiqu
ď

 `
xwi, vi`1y, xi, uy

˘
: pwi, uq P EpGiq _ pvi`1, uq P EpGi`1q

(
.

. . . . . .

Figure I.1: On the left side, the disconnected union
Â

ią2
Ci of all cyclic graphs, shown up to C5.

On the right side, the connected union
Ä

ią2
Ci of all cyclic graphs, shown up to C5: starting from

the left one, the two red vertices denote respectively the vertices xw3, v4y and xw4, v5y.

As for the disconnected union, we write G0

Ä
G1 and G0

Ä
G1

Ä
G2 in case the connected

union is defined only on two or three graphs. Notice that L – Rω

Ä
Rω.

In §I.1.1 we have already defined what a tree is: it is easy to notice that a tree is a particular
type of graph, and hence when considering a tree, adjusting some detail, we can choose at our
convenience if we want to refer to it as a set of finite sequences or as a graph theoretic tree. A
graph-theoretic tree is a connected graph in which any two vertices are connected by exactly one
path: in other words, they are connected graphs that do not contain any cycle. The graph theoretic
tree is v-rooted if there is a distinguished vertex v P V pGq, namely the root of T . So, as anticipated,
given a tree T P Tr we can translate it as a v-rooted graph theoretic tree G where v “ xy, V pGq “ T

and EpGq “ tpσ, τq : στ P T u. Conversely, we can translate a v0-rooted graph theoretic tree G into
a tree T , identifying any v P V pGq with the sequence xv0, . . . , vny, where v0, . . . , vn are the vertices
of the unique path from v0 to vn and vn “ v. Notice that both translations are computable relative
to the (graph-theoretic) tree (in case we have to translate T into a v-rooted tree just let v “ xy).
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In case we drop the assumption that the graph-theoretic tree is connected, we obtain a forest : in
other words, a forest, is the disconnected union of countably many graph-theoretic trees.

We give the definition of subgraph and the induced subgraph relations, whose computational
properties are studied in Chapter III.

Definition I.1.11. Given two graphs G and H we say that:

• H is a subgraph of G if V pHq Ď V pGq and EpHq Ď EpGq;

• H is an induced subgraph ofG ifH is a subgraph ofG and EpHq “ EpGqXpV pHqˆV pHqq.

Given graphs G and H, we use the following abbreviations:

• G Ďs H :ðñ pDG1 Ď HqpG1 is a subgraph of Hq;

• G Ďis H :ðñ pDG1 Ď HqpG1 is an induced subgraph of Hq.

Finally, given a graph G and V Ď V pGq, we define the graph induced by V on G, denoted by GæV
as the graph having V pGæV q :“ V and EpGæV q :“ EpGq X pV ˆ V q.

I.2 Computability: from N to NN and represented spaces

In this section, we define the notion of computability on different objects proceeding in this order:

Computability on Nñ Computability on NN ñ Computability on represented spaces .

As already mentioned at the beginning of §I.1, we assume the reader to be familiar with com-
putability on N, that is the classical notion of computability for functions and subsets of N. Notice
that this notion of computability is also known as Type-1 computability : the notion of Type-2
computability generalizes computability on N to infinite objects, first to functions and subsets of
NN and finally to represented spaces. For more on these topics, we refer the reader to:

• Weihrauch’s book “Computable Analysis: An Introduction” ([Wei13]).

The classical framework in which Type-1 computability is developed is the well known Turing
machine. We think of it as consisting of an input tape and an output tape and, if the computation
requires it, an oracle tape in which the oracle is stored: its precise definition is not important as,
by the celebrated Church-Turing thesis, any reasonable computational model yields to the same
notion of computability. A function f :Ď NÑ N is Type-1 computable if there is a Turing machine
that, given in input n outputs in a finite amount of stages fpnq and stops. The “given in input”
part means that n is written in the input tape: then the Turing machine reads n and converges to
fpnq, i.e. after finitely many stages writes fpnq in the output tape and stops. The well known fact
that it is possible to code finite strings over some countable alphabet Σ to N and vice versa tells
us that computability can be extended to functions f :Ď ΣăN Ñ ΣăN: to summarize, we can say
that we have a robust notion of computability for those objects that can be coded with natural
numbers.

For infinite objects, the first step is to define a notion of computability on NN. The model of
computation is a Type-2 machine. A Type-2 machine is a Turing machine with a read-only input
tape, a write-only output tape, a working tape and, if the computation requires it, an oracle tape:
again, its formal definition, even if it requires more attention than the one given for the classical
Turing machine, is not important. Given a function f :Ď NN Ñ NN, the input for the Type-2
machine is an infinite sequence of natural numbers. This is the first important difference: while in
the context of Type-1 computability, a Turing machine in order to compute a function needs to read
the input and write the output in a finite amount of steps, in Type-2 computability, after finitely
many steps a Type-2 machine can only read a finite portion of the input. In other words, a Type-2
machine is always expected to run forever, something that was forbidden in Type-1 computability.



I.2. Computability: from N to NN and represented spaces 11

We say that f is Type-2 computable if there is a Type-2 machine that, taking as input longer and
longer prefixes of the input, outputs longer and longer approximations of the output. We now give
a more precise definition of Type-2 computability: from now on we drop the “Type-2”, and we
just write computable.

Definition I.2.1. A function F :Ď NN Ñ NN is computable if there is a computable function
f :Ď NăN Ñ NăN such that

• if σ Ď τ then fpσq Ď fpτq (monotonicity);

• F ppq “
Ť

σĂp fpσq (F -approximation).

Since a point p P NN is a function from N to N, when we say that p is computable we mean that it
is computable as a function. By [Wei13, Lemma 2.1.11] F is computable by a Type-2 machine if
and only if F is computable in the sense of Definition I.2.1: the same definition highlights that the
computation strictly depends on finite sequences, and this guarantees both that the computation
can be simulated by an ordinary computer and that computable functions are also continuous.
Notice that the converse is not true, however, the following well known theorem holds.

Theorem I.2.2 (Folklore). A function F :Ď NN Ñ NN is continuous, if and only if it is
computable relatively to an oracle X Ď NN.

We now switch our attention to multi-valued functions.

Definition I.2.3. A (possibly partial) multi-valued function f :Ď X Ñ Y is a function
f : X Ñ PpY q where dompfq :“ tx P X : fpxq ‰ Hu and rangepfq :“ Y .

To simplify the notation, whenever fpxq “ tyu we just write fpxq “ y. In case fpxq is a singleton
for every x P X, we identify f with the (partial) function mapping every x P dompfq, to the unique
y such that y P fpxq. In Definition I.2.3, we could have defined f as a relation f Ď X ˆ Y , but it
is more convenient to use this formulation so that we can think of f as a computational problem.
That is, we consider dompfq as the set of admissible instances of f and, given x P dompfq, we
consider fpxq Ď Y as the set of possible outputs on input x.

Remark I.2.4. From now on, the terms (computational) problem and multi-valued function are
synonyms, and we use them interchangeably at our convenience.

An important difference between multi-valued functions and relations is how the composition
behaves.

Definition I.2.5. Let f :Ď X Ñ Y and g :Ď Y Ñ Z be multi-valued functions. We define the
composition g ˝ f :Ď X Ñ Z with domain tx P dompfq : fpxq Ď dompgqu as

g ˝ fpxq :“ tz P Z : pDy P Y qpy P fpxq ^ z P gpyqqu.

In standard relations, the domain of the composition is not restricted as in the definition above.
On the other hand, for multi multi-valued functions, the domain restriction ensures that we can
apply g to any solution of fpxq and g ˝ f is still a multi-valued function.

We are now ready to extend the notion computability on NN to the broader context of repre-
sented spaces.
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Definition I.2.6. A represented space X is a pair pX, δXq where X is a set and δX :Ď NN Ñ X

is a (possibly partial) surjective function called representation map. We say that p P NN is a
name for x if δXppq “ x.

It is worth mentioning that δX is neither required to be injective nor total: that is, an element of
X may have multiple names, and not every p P NN is a name for an element in X. The notion of
represented space allows us to transfer the notion of computability introduced in Definition I.2.1 to
arbitrary spaces. The computational task “given as input an f -instance x, compute an f -solution
y” becomes “given in input a name for an f -instance x, compute a name for an f -solution y”.
This is made precise with the notion of realizer.

Definition I.2.7. Let X and Y be represented spaces. A partial function F :Ď NN Ñ NN is
a realizer of f :Ď XÑ Y (in symbols, F $ f) if and only if

p@p P dompf ˝ δXqqpδY pF ppqq P fpδXppqqq.

Equivalently, F $ f if, for all p P dompf ˝ δXq, the following diagram commutes.

NN NN

X Y

F

δX δY

f

We are now ready to define computability for partial multi-valued functions on represented
spaces.

Definition I.2.8. Let X and Y be represented spaces. A partial multi-valued function f :Ď
X Ñ Y is called pδX , δY q-computable (respectively, pδX , δY q-realizer-continuous) if it has a
computable (continuous) realizer. A point x P X is called δX-computable if it has a computable
name. In case the representation maps are clear from the context, we omit them, and we just
write “computable” and “realizer-continuous”.

We define the following operations between represented spaces X and Y:

• XˆY :“ pX ˆ Y, δXˆY q where δXˆY :Ď NN Ñ X ˆ Y is defined as

δXˆY pp‘ qq :“ pδXppq, δY pqqq;

• X˚ :“ pX˚, δX˚q where δX˚ :Ď NN Ñ X˚ is defined as

δX˚pxnyapp1 ‘ . . .‘ pnqq :“ pn, δXpp1q, . . . , δXppnqq;

• XN :“ pXN, δXNq where δXN :Ď NN Ñ XN is defined as

δXNpp1 ‘ p2 ‘ . . . q :“ pδXpp1q, δXpp2q, . . . q;

• X
Ů

Y :“ pX\Y, δX\Y q where, X\Y :“ pt0uˆXqYpt1uˆY q is the disjoint union of sets,
and δX\Y :Ď NN Ñ X \ Y is such that, given i P t0, 1u,

δX\Y pxiy
apq :“

#
δXppq if i “ 0

δY ppq if i “ 1.

We now introduce the jump of a represented space.
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Definition I.2.9. Let X “ pX, δXq be a represented space: we define the jump of X as
the represented space X1 :“ pX, δ1Xq where δ

1
X takes as input a sequence of elements of NN

converging to some p P dompδXq and outputs δXppq.

Some well known represented spaces

We now introduce some represented spaces that play a crucial role in this thesis. Many of them
have a natural representation: this is the case for NN, 2N and N, i.e. let δNN :“ id (where id is
the identity function on NN), δ2N :“ idæ2N (denoting id restricted to elements in 2N) and δN as
p ÞÑ pp0q.

One of the most common representations of R is the Cauchy representation. We fix a com-
putable enumeration pqiqiPN of Q, and we define the Cauchy representation δR having domain
tp P NN : p@jqp@i ą jqp|qppiq ´ qppjq| ă 2´jqu and letting δRppq :“ lim qppnq. From now on, the sym-

bols NN, 2N, N and R indicate also the represented spaces: pNN, δNNq, p2N, δ2Nq, pN, δNq and pR, δRq:
it should be clear from the context whether we are referring to the represented space or the space
itself. Notice that the classical notion of computability on N and R (as spaces) coincide with the
one defined in Definition I.2.8 on represented spaces. Now we give the definition of computable
metric space.

Definition I.2.10 ([Wei13, Definition 8.1.2]). Let X “ pX, d, αq be a separablea metric space,
where d : X ˆX Ñ R is the distance function and α : N Ñ X is a function enumerating a
dense subset of X.

• We define the Cauchy representation on X as the map δX :Ď NN Ñ X with domain

dompδXq :“ tp P N
N : p@nqp@m ą nqpdpαpppnqq ´ αpppmqqq ă 2´nqu

as δXppq :“ limnÑ8 αpppnqq.

• We say that X is a computable metric space if the set

tpi, j, n,mq P N4 : qi ă dpαpnq, αpmqq ă qju

is computably enumerable.

aa topological space pX, τq is separable if it contains a countable dense subset (i.e. a countable set that meets
every nonempty open set of the space).

From now on we always assume that computable metric spaces are represented by this representa-
tion. For convenience, we fix a computable enumeration pBiqiPN of all basic open sets of X , where
the ball Bxn,my is centered in αpnq and has radius qm.

Notice that for R, the topological notion of continuity coincides with realizer-continuity. This
nice property, which is not guaranteed for all represented spaces, intuitively tells us that the
topological structure of the space agrees with the computational one. It is often convenient to deal
with representations satisfying this requirement, namely admissible representations. Before giving
the formal definition, we introduce a way to compare different representations.

Definition I.2.11 ([Zie07, Definition 2.3.2]). Given two represented spaces X and Y with
X Ď Y we say that F :Ď NN Ñ NN translates δX to δY if and only if p@p P dompδXqqpδXppq “
δY ˝ F ppqq. We say that

• δX is computably reducible to δY (in symbols, δX ď δY ) if there exists a computable
translation from δX to δY ;
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• δX is continuously reducible to δY (in symbols δX ďt δY ) if there exists a continuous
translation from δX to δY .

If δY ď δX (respectively, δY ďt δX) as well, we say that δX and δY are computably equivalent
(continuously equivalent), in symbols δX ” δY (δX ”t δY ).

Definition I.2.12 ([Sch21, Definition 3.4]). Let pX, τq be a topological space. A represen-
tation map δX of X is admissible with respect to τ if it is continuous and for all continuous
representations 9δX of X, 9δX ďt δX .

In case there is no ambiguity on the topology we just say that a representation is admissible.
Notice that every represented space can be endowed with a topology induced by the represen-

tation map, i.e. the final topology.

Definition I.2.13. Given a represented space X the final topology, denoted with OpXq, is the
finest topology making δX continuous and is defined as

OpXq :“ tU Ď X : pDV Ď NNqpV is open and δ´1

X pUq “ V X dompδXqqu.

In §I.1 we introduced trees and graphs. We denote by Tr and Tr2 the represented spaces of
trees on N and binary trees respectively: for both the representation map is the characteristic
function. For graphs, we use two different representations, but we postpone their definitions
to §III.2. Additional results about represented spaces are given in §I.3.2, in which we study
represented spaces arising from descriptive set theory.

I.3 Descriptive set theory

Descriptive set theory is the area of mathematical logic that studies “definable” sets in topological
spaces, in particular in Polish spaces. Thanks to its different applications to different mathematical
fields, even outside mathematical logic (e.g., combinatorics, topology, analysis etc. . . ), descriptive
set theory has become one of the main areas of research of set theory and mathematical logic
in general. Roughly speaking, we can divide descriptive set theory into three main areas tightly
connected to each other:

piq the study of regularity properties that, informally, are properties that “well behaved” sets
should have. Using the Axiom of Choice it is possible to define pathological subsets of R that
do not have such properties, hence, researchers started a systematic study of classes of sets
in which these pathologies can be avoided. The study of the interconnections between the
topological properties of sets and the complexity of their definitions gives rise to the boldface
hierarchy that consists of the Borel hierarchy and the projective hierarchy.

piiq The study of reducibilities between sets, in which sets are compared with respect to some
notion of reducibility: informally, a set is reducible to another if it is “simpler” (with respect
to the corresponding reduction). This comparison gives rise to an order (i.e. a hierarchy)
between sets and, in this context, the most studied reduction is Wadge reducibility.

piiiq Invariant descriptive set theory and in particular the area that studies definable equivalence
relations to classify the complexity of mathematical problems. Indeed, many mathematical
problems can be naturally represented via some equivalence relation on a set (we call them
classification problems), and we can compare them via some suitable notion of reducibility:
the most studied is Borel reducibility, but in this thesis, we are more interested in continuous
reducibility.
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Notice that all the areas described above have their effective analogs: this chapter, for piq and piiq,
considers them as well.

We postpone the results on piiiq to §I.4, and now we give the necessary preliminaries about piq,
piiq and their effective analogs. For these topics, we refer the reader to two standard textbooks,
namely,

1. Kechris’ book “Classical Descriptive Set Theory” ([Kec12]),

2. Moschovakis’ book “Effective Descriptive Set Theory” ([Mos82]),

and to some unpublished notes by Louveau ([Lou17]).
As already mentioned, descriptive set theory is mostly developed in Polish spaces. We say that

pX, τq is completely metrizable if there exists a metric d on X such that pX, dq is complete, i.e.
every Cauchy sequence of elements of X converges in X.

Definition I.3.1 ([Kec12, Definition 3.1]). A Polish space is a separable completely metrizable
space.

Sometimes we also refer to computable Polish spaces, where a computable Polish space is a com-
putable metric space X “ pX, d, αq (see Definition I.2.10) such that the metric d is complete.

Two of the most fundamental Polish spaces in descriptive set theory have already been intro-
duced in §I.1, and they are the Baire space (NN) and the Cantor space (2N). The following is a
well known and useful characterization of their closed subsets.

Theorem I.3.2 ([Kec12, Proposition 2.4]). A set F Ď NN (respectively, 2N) is closed if and
only if there is a tree T Ď NăN (2ăN) such that F “ rT s.

The next theorem, called “transfer theorem” in [Mos82] suggests a useful property of NN: in a
sense made precise below, we can transfer every Polish space in NN.

Theorem I.3.3 ([Kec12, Theorem 7.9], [Mos82, Theorem 1G.2]). For every Polish space X
there is a closed set A Ď NN and a continuous bijection s : A Ñ X. If X is nonempty then s

extends to a continuous surjection from NN to X.

We say that a subset of a topological space X is Gδ if it is the countable intersection of open
sets of X.

Theorem I.3.4 ([Kec12, Exercise 3.12]). The Baire space is homeomorphic to a Gδ subspace
of 2N.

In general, if P is a subset of a topological space X , a point x P P is a limit point of P if for
every open set U with x P U there is a distinct point y P P X U : otherwise, we call x isolated
in P . A subset of a topological space is perfect if it is closed and has no isolated points. Notice
that every nonempty perfect subset of a Polish space has the cardinality of the continuum. The
following theorem informally says that the Cantor space witnesses if a nonempty Polish space is
perfect or not.

Theorem I.3.5 ([Kec12, Theorem 6.2]). For every nonempty perfect Polish space X there is
an embedding of 2N into X.

Combining Theorem I.3.5 and Theorem I.3.4 we obtain that every uncountable Polish space
contains a Gδ subspace homeomorphic to NN. We cannot replace “Gδ” with “closed” as NN is
not compact (a subset of a topological space X is compact if every open cover of X has a finite
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subcover), however, we have the following useful fact due to Hurewicz1. We say that a set A in a
topological space X is Kσ if A “

Ť
nPNKn where Kn is a compact subset of X ([Kec12, Definition

5.2]).

Theorem I.3.6 ([Kec12, Theorem 7.10]). Let X be a Polish space. Then X contains a closed
subspace homeomorphic to NN if and only if X is not Kσ.

We conclude this section, with the well known Cantor-Bendixson theorem. This theorem,
beyond being a celebrated and important result in descriptive set theory, is also the main topic of
Chapter II.

Theorem I.3.7 ([Kec12, Theorem 6.4]). Every closed subset C of a Polish space X can be
uniquely written as the disjoint union of a perfect set P and a countable set S. We call P the
perfect kernel of C and S the scattered part of C.

When X “ 2N or X “ NN, by Theorem I.3.2, we can rephrase the Cantor-Bendixson theorem
saying that all but countably many paths through a tree T Ď NăN (respectively, T Ď 2ăN) belong
to a perfect subtree S of T . Again, S (which is unique) is called the perfect kernel of T , and the
set of missing paths is the scattered part of T .

Theorem I.3.7 can be restated also in another form, and to do so, we first need to define the
Cantor-Bendixson derivative for a topological space X.

Definition I.3.8 ([Kec12, Definition 6.10]). For any topological space X, let X 1 :“ tx P X :
x is a limit point of Xu be the Cantor-Bendixson derivative of X. Using transfinite recursion
we define the iterated Cantor-Bendixson derivatives Xα where α is an ordinal as follows:

• X0 :“ X,

• Xα`1 :“ pXαq1,

• Xλ :“
Ş

αăλX
α, if λ is limit.

Definition I.3.8 gives us also another formulation of being perfect: namely a subset P Ď X is
perfect if and only if P “ P 1. We now restate Theorem I.3.7.

Theorem I.3.9 ([Kec12, Theorem 6.11]). Let X be a Polish space. For some ordinal α0 ă ω1,
Xα “ Xα0 for all α ě α0 and Xα0 is the perfect kernel of X and XzXα0 is the scattered part
of X.

For a Polish space X, we call the α0 in Theorem I.3.9 the Cantor-Bendixson rank of X. Notice
that X is countable if and only if Xα0 “ H. These notions play an important role in Chapter V,
in which we define an operation strictly related to the Cantor-Bendixson derivative.

I.3.1 Boldface hierarchy

The σ-algebra on a set X is a nonempty collection of subsets of X that is closed under complement,
countable unions, and countable intersection. For a topological space pX, τq, we denote with
BorpXq the Borel subsets of X, and we define them as the smallest σ-algebra containing the open
sets.

Borel subsets of topological spaces can be stratified accordingly to their topological complexity:
this gives rise to the Borel hierarchy. Usually, the classical definition of boldface hierarchy (see for

1Notice that this is a special case of a more general statement, see [Kec12, Theorem 21.18].
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example [Kec12, §11.B]) is given for Polish spaces: the definition we use here extends to topological
spaces in general. This is achieved by slightly modifying the classical definition of Σ0

ξpXq sets so
that we handle the case of non-Hausdorff spaces, where an open set is not always the union of
closed sets2. Notice that, in case the topological space is Hausdorff, the definition we use here and
the classical one coincide [CH20, §2.1.1].

Let ω1 be the first uncountable ordinal: for any 1 ď ξ ă ω1, we define by transfinite recursion
the Borel hierarchy on X as follows. We define Σ0

1pXq :“ tA : A is openu and, for ξ ą 1,

• Σ0

ξpXq :“
 Ť

nPNAnzBn : n P N^An, Bn P Σ
0

ξn
pXq ^ ξn ă ξ

(
,

• Π0

ξpXq :“ tXzA : A P Σ0

ξpXqu.

In case X is Polish and ξ “ n for some natural number n ą 1, the first item, as in [Mos82, §1B],
can be rewritten as

Σ0

npXq :“ tA Ď X : pDQ Ď Π0

npX ˆ NqqpA “ tx P X : pDnqppx, nq P Qququ.

Finally, for ξ ą 0, we define the ambiguous classes of X as ∆0

ξpXq :“ Π0

ξpXq XΣ0

ξpXq.

By the definitions, it is easy to observe that Π0
1pXq is the class of closed sets of X, ∆0

1pXq
are the clopen ones. Notice also that the class Σ0

2pXq (countable unions of closed subsets of X)
is also denoted with FσpXq, while Π0

2pXq (countable intersection of open subsets of X) is what
before Theorem I.3.4 we denoted with GδpXq. From now on, in case the result does not depend
on the space, we just write Σ0

n, and we refer to it as a boldface class (or simply class) letting
Σ0

n :“ tA : A P Σ0
npXq for some space Xu (similarly for Π0

n and ∆0
n).

The next theorem states that every Borel set of a space X can be obtained, starting from open
sets, iterating the operations of complement, countable union, and countable intersection for less
than ω1 steps i.e. is in one of the classes defined above.

Theorem I.3.10 ([Kec12, §11.B, Theorem 22.4]). Given a space X and ξ ą 0,

BorpXq “
ď

ξăω1

Σ0

ξ “
ď

ξăω1

Π0

ξ “
ď

ξăω1

∆0

ξ .

If X is Polish and uncountable, the hierarchy does not collapse at any level ξ ă ω1.

Borel classes have nice closure properties and some of them are summarized in the next theorem.

Theorem I.3.11. For ξ ă ω1, the classes Σ
0

ξ, Π
0

ξ and ∆0

ξ are closed under finite unions, finite

intersections, and continuous preimages. Furthermore, Σ0

ξ is closed under countable unions,

Π0

ξ is closed under countable intersections and ∆0

ξ is closed under complement.

We continue defining the projective hierarchy. The Borel hierarchy was defined for topological
spaces in general: here we restrict our attention to Polish spaces. The first levels of the projective
hierarchy play a major role in this thesis and in descriptive set theory in general: they are the
analytic sets (denoted by Σ1

1) and the co-analytic sets (denoted by Π1
1).

Definition I.3.12. Given a Polish space X, a set A Ď X is called analytic (denoted by
A P Σ1

1pXq) if there is a Polish space Y and a continuous function f : Y Ñ X such that
rangepfq “ A. The complement of an analytic set is called co-analytic and the family of
co-analytic sets of X is denoted by Π1

1pXq.

The following proposition collects some useful characterizations of analytic subsets of a Polish
space X that are used extensively in the next chapters.

2Recall that a space is Hausdorff if every two different points of X have disjoint open neighborhoods.
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Proposition I.3.13 ([Kec12, Exercise 14.3]). Let X be Polish and let A Ď X nonempty.
Then, A is analytic if and only if there is a Polish space Y and some Q P BorpX ˆ Y q such
that A “ tx P X : pDy P Y qppx, yq P Qqu;

By Theorems I.3.3 and I.3.4, in the proposition above, we can replace Y with NN and assume
Q P Π0

1pX ˆ Y q, or we can replace Y with 2N and assume Q P Π0
2pX ˆ Y q.

In Theorem I.3.2 we gave a characterization of closed subsets of Baire space in terms of trees:
now we give a tree characterization of (co-)analytic subsets of Baire space3.

Theorem I.3.14 ([Kec12, §25.2], [Mos82, essentially Theorem 4A.1]). Given A Ď NN,

A is analytic ðñ pDT Ď NăN ˆ NăNqpA “ tx : pDyqppx, yq P rT squq,

A is co-analytic ðñ pDT Ď NăN ˆ NăNqpA “ tx : p@yqppx, yq R rT squq.

Given a Polish space X and n ą 0, we now define the projective hierarchy on X as follows:

• Σ1
n`1pXq :“ tA Ď X : pDQ Ď Π1

npX ˆ NNqqpA “ tx P X : pDy P NNqppx, yq P Qququ;

• Π1
n`1pXq :“ tXzA : A P Σ1

npXqu.

As for the Borel hierarchy, we define the ambiguous projective classes ∆1
npXq :“ Σ1

npXq XΠ1
npXq

and, in case the result we mention is independent of the space, we drop the X. The following is
an analog of Theorem I.3.10.

Proposition I.3.15. The classes Σ1
n, Π

1
n, and ∆1

n are closed under countable intersections,
countable unions, and continuous preimages. Furthermore, Σ1

n is closed under continuous
images (in particular, projections, i.e., existential quantification over Polish spaces), Π1

n is
closed under co-projections (i.e., universal quantification over Polish spaces) and ∆1

n is closed
under complements.

The following well known theorem is due to Suslin.

Theorem I.3.16 ([Lou17, Theorem 14.11 and Corollary 26.2]). For every uncountable Polish
space X,

BorpXq “∆1

1pXq Ă Σ1

1pXq.

We now state the uniformization problem. Given two setsX,Y and P Ď XˆY , a uniformization
of P is a subset P˚ Ď P such that for all x P X, pDyqpP px, yqq ðñ pD!yqpP˚px, yqq. In other words,
P˚ is the graph of a function f with domain tx : pDyqpP px, yqqu such that fpxq P ty : P px, yqu for
every x P A. Using the axiom of choice we can uniformize any P by some P˚; on the other hand,
it frequently occurs that, given a definable set P , obtaining a definable set P˚ is a difficult task.
We say that a boldface class Γ has the uniformization property if every P Ď ΓpX ˆ Y q can be
uniformized by some P˚ in Γ. The following theorem is also known as the Novikov-Kondo-Addison
uniformization theorem and is very useful in proving Proposition I.6.28.

Theorem I.3.17 ([Mos82, Theorem 4E.4]). The class Π1
1 has the uniformization property.

3While Theorem I.3.2 characterizes also closed subsets of 2N, Theorem I.3.14 does not characterize analytic
subsets of 2N: the reason resides in the complexity of ill-foundedness for binary trees, but we discuss this later (see
Theorem I.3.39).
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I.3.2 Effective Descriptive Set Theory

In this section, we introduce the effective counterpart of descriptive set theory. Here sets are
not classified with respect to their topological properties, but with respect to their computability-
theoretic properties, and this classification yields the lightface hierarchy, also known as Kleene’s hi-
erarchy. We introduce it starting from the Kleene arithmetical hierarchy (the effective counterpart
of the finite levels of the Borel hierarchy), and we skip the definition of the Kleene hyperaritmetical
hierarchy (the effective counterpart of the transfinite levels of the Borel hierarchy). This choice
is justified by the fact that its definition is a bit technical and in this thesis we do not deal with
the Kleene hyperarithmetical hierarchy: the interested reader is referred to [Lou17, Section 5.2]
where such a hierarchy is defined via Borel codes. We define the Kleene arithmetical hierarchy for
effective second-countable spaces : its definition is from [Lou17, §2.3.1] but notice that the author
refers to such spaces as basic spaces.

Definition I.3.18. An effective second-countable space is a pair pX, pBX
n qnPNq where

• X is a second-countable space (i.e. it admits a countable base),

• pBX
n qnPN is the effective basis, i.e. an enumeration of a countable basis of the topology of

X such that there is a computably enumerable relation R P N3 satisfying

x P BX
n XB

X
m ðñ pDiqpx P BX

i ^Rpm,n, iqq.

Given an effective second-countable space pX, pBX
n qnPNq if Y Ă X comes with the induced topology,

for every n, given BY
n :“ BX

n XY , we have that pY, pBY
n qnPNq is an effective second-countable space

as well (see [Lou17, §2.3.1]). Furthermore, given a countable sequence of effective second-countable
spaces we can define an effective basis for their product (see [Lou17, Proposition 2.3.1]).

It is easy to verify that any computable metric space pX, d, αq (see Definition I.2.10) is also
effectively second-countable: furthermore, we also have a canonical choice for an effective basis,
letting Bxn,my :“ Bpαpnq, qmq (recall that qm is the m-th element of the computable enumeration
of Q). The following remark is essentially from [VM21, §1.2.1].

Remark I.3.19. Notice that usually effective descriptive set theory is developed in the context
of recursively presented metric spaces (see for example [Lou17, 2.2.1] and [Mos82, §3B]). Given
a separable metric space X “ pX, d, αq, where d is a distance function and α : N Ñ X is a
dense sequence in X, we say that α is a recursive presentation of X if the following relations
are computable:

P d,Xpi, j, kq :ðñ dpαpiq, αpjqq ď qk and Qd,Xpi, j, kq :ðñ dpαpiq, αpjqq ă qk.

Being a recursively presented metric space is a strictly stronger condition than being a com-
putable metric space (see [GKP17, Observation 2.4 and Exercise 2.5]). Despite this, given a
computable metric space, X “ pX, d, αq there is a computable real β ď 1 such that the com-
putable metric space X 1 :“ pX, βd, αq is a recursively presented metric space, and there is a
computable bijection X ÞÑ X 1 with computable inverse (see [GKP17, Theorem 2.10]).

For an effective second countable space pX, pBnqnPNq, we define the Kleene arithmetical hier-
archy as follows. Starting from Σ0

1pXq :“ tA Ď X : A “
Ť

iPNBϕpiq for some computable ϕ : NÑ
Nu, for n ą 0, and given an effective indexing pAxn,iyqiPN of the Σ0

npXq classes,

• Σ0
n`1pXq :“ tA Ď X :

Ť
kPNAxn,ϕp2k`1qyzAxn,ϕp2kqy for some computable ϕ : NÑ Nu;

• Π0
n`1pXq :“ tXzA : A P Σ0

n`1pXqu.

Notice that if X is a computable metric space, the class Σ0
npXq can be also defined as follows:

Σ0

npXq :“ tA Ď X : pDQ P Π0

npX ˆ NqqpA “ tx P X : pDnqppx, nq P Qququ.
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We usually refer to Σ0
1pXq and Π0

1pXq as effectively open and effectively closed, and we define the
ambiguous classes as ∆0

npXq :“ Σ0
npXq XΠ0

npXq.

Remark I.3.20. The choice of the terms “effectively open” and “effectively closed” is just to
highlight the connection to the boldface classes Σ0

1pXq and Π0
1pXq. Indeed, Σ0

1pXq is not
always a topology: in other words, the lightface classes are not topological properties, in the
sense that they heavily depend on the space X and on the specific basis we have chosen.

We continue defining the effective projective hierarchy, (also known as Kleene’s analytical hier-
archy) for computable metric spaces. The first levels are:

• Σ1
1pXq :“ tA Ď X : pDQ P Π0

1pX ˆ NNqqpA “ tx P X : pDy P NNqpx, yq P Ququ;

• Π1
1pXq :“ tXzA : A P Σ1

1pXqu.

In general:

• Σ1
npXq :“ tA Ď X : pDQ P Π0

npX ˆ NNqqpA “ tx P X : pDy P NNqpx, yq P Ququ;

• Π1
npXq :“ tXzA : A P Σ1

npXqu;

and the ambiguous classes are defined as ∆1
npXq :“ Σ1

npXq X Π1
npXq. In analogy to the boldface

hierarchy, the Σ1
1pXq sets are defined as lightface analytic and Π1

1pXq as lightface co-analytic and,
in case the results we mention are independent of the space, we just write Σi

n for i ă 2, and we
refer to it as a lightface class, similarly for Πi

n and ∆i
n.

Theorem I.3.21 ([Mos82, Corrolary 3E.2, Theorem 3G.2]). The lightface (projective) classes
are closed under finite union, intersection, and computable preimages. Furthermore,

• Σ0

ξ is closed under computable unions and Π0

ξ is closed under computable intersection;

• Σ1
n is closed under projections on NN and Π1

n is closed under co-projections on NN.

• ∆0

ξ and ∆1
n are closed under complements.

Notice that the definitions of uniformization of a set and of uniformization property for boldface
classes given in §I.3 hold also here. This is the effective analog of the Kondo-Addison-Novikov
uniformization theorem given in the previous section.

Theorem I.3.22 ([Mos82, Theorem 3E.4]). The class Π1
1 has the uniformization property.

We introduce the following notation. Let X and Y be effective second-countable spaces and Γ
be a lightface class. Given y P Y we define the relativization of Γ to y, denoted with Γy, so that
A P ΓypXq if there exists some B Ď Y ˆX such that x P X ðñ py, xq P Y ˆX.

The following is the effective perfect set theorem by Harrison: we can also interpret it as the
fact that countable Σ1

1 sets are actually simpler.

Theorem I.3.23 ([Mos82, 4F.1]). Let X be a computable metric space and let P P Σ1
1pXq.

Then either P has only ∆1
1 points, or P has nonempty perfect subset. In particular, if P P

Σ1
1pXq and |P | ď ℵ0, then P Ď ∆1

1pXq. The same holds in the relativized version.

Normal forms

We now provide useful normal forms for lightface and boldface classes.
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Theorem I.3.24 ([Mos82, §3E.3]). Let Y be a Polish space and n ě 1: a subset P Ď Y is
Σ0

npY q if and only if there is some S P ΓpY ˆ
Ś

iăn Nq such that

x P P ðñ pDt1qp@t2qpDt3qp@t4q . . . p@tn´1qppx, t1, . . . , tn´1q P Sq, (1)

where Γ “ Σ0
1 if n is odd and Γ “ Π0

1 otherwise.
If Y “

Ś
iănXi where either Xi “ N or NN, then P Ď Y is Σ0

npY q if and only if there is
a computable set R Ď Y ˆ

Ś
iďn N such that

x P P ðñ pDt1qp@t2qpDt3qp@t4q . . . pQtnqppx, t1, . . . , tnq P Rq. (2)

where Q “ D if n is odd and Q “ @ otherwise.
Similar normal forms hold for Π0

npY q classes: here, the alternations of the quantifiers start
with @ and in (1) Γ “ Π0

1 if n is odd and Γ “ Σ0
1 otherwise; in (2) Q “ @ if n is odd and Q “ D

otherwise.

The following generalizes Theorem I.3.24 to the lightface projective classes.

Theorem I.3.25 ([Mos82, §3E.3]). Let X be a Polish space and n ě 1: a subset P Ď X is
Σ1

npXq if and only if there is some S P Σ0
1pX ˆˆiănN

Nq such that

x P P ðñ pDy1qp@y2qpDy3qp@y4q . . . pQynqppx, y1, . . . , ynq P Sq,

where Q “ D if n is odd and Q “ @ otherwise. We can assume S to be computable if X “
ˆiănXi where either Xi “ N or NN. Similar normal forms hold for Π0

npXq classes: here, the
alternations of the quantifiers start with @ and in (2) Q “ @ if n is odd and Q “ D otherwise.

The following theorem connects the lightface and boldface classes.

Theorem I.3.26 (essentially [Mos82, 3E.4]). Given a second-countable space X, A P ΓpXq if
and only if there exists p P NN such that A P Γp.

In particular, Theorems I.3.24 and I.3.25 hold also in the relativized form, and so we can easily
derive a normal form also for the boldface classes (see also [Mos82, Exercise 1B.6] in which the
normal forms are given directly for the boldface classes).

Represented spaces and descriptive set theory

Given a separable metric space X “ pX, d, αq and k ą 0, using the inductive definition of Borel
sets, we can define the represented spaces Σ0

kpX q, Π
0

kpX q and ∆0

kpX q: this shows that the Borel
classes can be naturally considered as represented spaces. Recall that in §I.2 after Definition I.2.10
we have fixed a sequence pBiqiPN of all basic open sets of X .

Definition I.3.27 ([Bra04, Definition 3.1]). For any separable metric space X “ pX, d, αq and
for any k ą 0, the represented spaces pΣ0

kpX q, δΣ0

k
pX qq, pΠ

0

kpX q, δΠ0

k
pX qq and p∆

0

kpX q, δ∆0

k
pX qq

are defined inductively as follows:

• δΣ0

1
pX qppq :“

Ť
iPNBppiq;

• δΠ0

k
pX q :“ XzδΣ0

k
pX qppq;

• δΣ0

k`1
pX qpp0 ‘ p1 ‘ . . . q :“

Ť
iPN δΠ0

k
pX qppiq.
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It is worth noticing that a name for a closed set is in fact a name for its complement: that is a
name for a closed set is a list of open balls whose union is its complement. This representation of
Π0

1pX q is also known as negative representation of closed sets of X and, as usual in the literature,
we denote this represented space by A´pX q. We can represent the class Σ1

1pX q of analytic subsets
of X by defining a name for A P Σ1

1pX q as a name for a closed set C Ď X ˆ NN such that
A :“ tx : pDyqppx, yq P Cqu. Then, a name for a coanalytic set B P Π1

1pX q is just a name for
its complement. Recall from §I.2 that Tr and Tr2 denote respectively the represented spaces of
trees on N and binary trees where the representation map is, in both cases, the characteristic
function. In case X “ NN, by Theorem I.3.2, there exists a surjective function r¨s : TrÑ A´pN

Nq
defined by T ÞÑ rT s that is computable with multi-valued computable inverse: the same holds
if X “ 2N considering Tr2 instead of Tr. This means that the negative representation of a
closed subset C of NN (respectively 2N) is equivalent (in the sense of Definition I.2.11) to the
one given by the characteristic function of a (binary) tree T such that rT s “ C. We refer to the
latter representation as the tree representation. By Theorem I.3.14 we obtain a similar result for
Σ1

1pN
Nq: namely we can define a name for A P Σ1

1pX q as a name for a tree T Ď NăN ˆ NăN such
that A “ tx : pDyqppx, yq P rT squ (similarly for Π1

1pN
Nq).

Collecting results that can be found in [Bra04, §3], we obtain the following proposition.

Proposition I.3.28. Let X “ pX, d, αq be a separable metric space. For every A Ď X,

A P Σ0

kpY q ðñ A P Σ0

kpY q and A has a computable δΣ0

k
pY q-name.

We take the chance to introduce another (represented) space, namely the Sierpiński space
S :“ t0S, 1Su endowed with the topology tH, t1Su, 0Su. Usually, 0S and 1S are denoted respectively
with 0 (or K) and 1 (or J), but we prefer to use this notation to avoid any confusion in the next
chapters. The representation map we associate to S is the following:

δSppq :“

#
1S if pDiqpppiq ‰ 0q,

0S if p “ 0N.

The reason why we introduce now such a space is that we could have defined the sets in Defini-
tion I.3.27 using it. Indeed, given a represented space X and given the final topology OpXq on
X induced by δX (see Definition I.2.13), we have that U P OpXq if and only if the characteristic
function χU : X Ñ S is realizer-continuous (see Definition I.2.8 and [Pau16, §4]). Hence, we can
represent U P OpXq by χU : then using the jumps of the Sierpiński space we can define all the
sets in Definition I.3.27 as promised (the details of this are omitted, but we refer the reader to
[Bra04, Pau16]). Similar ideas apply also to the lightface case: namely, for a represented space X
we have that U P Σ0

1pXq if and only if the characteristic function χU : X Ñ S is computable. As
for the boldface case, the jumps of the Sierpiński space allow us to obtain the lightface classes as
defined in Proposition I.3.28.

I.3.3 (Effective) Wadge reducibility

We now introduce a notion of complexity between sets of topological spaces, namely Wadge re-
ducibility and its effective counterpart.

Definition I.3.29 ([Kec12, Definition 21.13]). Let X,Y be topological spaces and let A Ď X,
B Ď Y . We say that A is Wadge reducible to B (in symbols, A ďW B) if there is a continuous
function f : X Ñ Y such that x P A ðñ fpxq P B.

Informally, if A ďW B it means that A is “simpler” than B. Notice that ďW is reflexive and
transitive (hence, a quasi-order) and the corresponding equivalence classes are called the Wadge
degrees.
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Definition I.3.30 ([Kec12, Definition 22.9]). Let Γ be a boldface class and X and Y be Polish
spaces with X being zero-dimensional.a We say that B Ď Y Γ-hard if, for any A P ΓpXq,
A ďW B: if in addition B P ΓpY q, we say that B is Γ-complete.

aA topological space X is zero-dimensional if it Hausdorff and has a basis consisting of clopen sets.

For any class of sets Γ let Γ̌ :“ tXzA : A P ΓpXqu. Notice that while Definition I.3.29 is
given for arbitrarily Polish spaces, Definition I.3.30 is restricted to Polish spaces where the space
of the underlying set on the left-hand-side of the Wadge reduction is zero-dimensional. Note that
if Γ is not an ambiguous class in a zero-dimensional Polish space and it is closed under continuous
preimages, no Γ-hard set is in Γ̌.

Remark I.3.31. If B is Γ-hard, then the complement of B is Γ̌-hard. Furthermore, if B is
Γ-hard and B ďW A, then A is Γ-hard as well. All these considerations still hold if we replace
hardness with completeness. This gives us a useful technique to show that a set A is Γ-hard
(respectively, Γ-complete): “take an already known Γ-hard (Γ-complete) set B and show that
B ďW A”.

Proposition I.3.32 ([Kec12, Exercise 22.11 and Exercise 24.20]). Let X be a Polish space.
For every ξ ě 1 and every A Ď X,

A P Σ0

ξzΠ
0

ξ ðñ A is Σ0

ξ-complete.

The same statement holds interchanging Σ0

ξ and Π0

ξ.

We mention that the previous proposition cannot be extended to Σ1
1-complete and Π1

1-complete
sets, and the corresponding statement is equivalent to the principle of Σ1

1-determinacy (see [Kec12,
Theorem 26.4]).

We now define the effective counterpart of Wadge reducibility: the following definition can be
found for example in [CH20, §3].

Definition I.3.33. Let X and Y be two effective second-countable spaces. Given A Ď X and
B Ď Y we say that A is effectively Wadge reducible to B (in symbols, A ďEW B) if there is
a computable f : X Ñ Y such that x P A ðñ fpxq P B. For a lightface class Γ, and an
effective Polish space Y we say that B Ď Y is Γ-hard if, for every A P ΓpNNq, A ďEW B. In
case B is Γ-hard and B P ΓpY q, then we say that B is Γ-complete.

We now give some examples of complete sets that are useful in the next chapters.

Remark I.3.34. All the results in the remaining part of this section are stated for lightface
classes and with respect to effective Wadge reducibility: on the other hand, all the results still
hold replacing “lightface” with “boldface” and “effective Wadge” with “Wadge”. These results
can be found, sometimes with different terminology, for example in [Mos82, Kec12].

Lemma I.3.35. The following classification results hold:

(i) The set P1 :“ tp P 2N : pDiqpppiq “ 1qu is Σ0
1 complete;

(ii) The set P2 :“ tp P 2N : p@8iqpppiq “ 1qu is Σ0
2 complete;
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Proof. The fact that tp P 2N : pDiqpppiq “ 1qu is Σ0
1-complete is straightforward, while the proof

that tp P 2N : p@8iqpppiq “ 1qu is Σ0
2-complete can be found in [Kec12, Exercise 23.1] (the

statement is given for the boldface case, but the same proof also shows the lightface case).

We aim to generalize Lemma I.3.35, defining complete sets of (products of) 2N for all levels of
the Kleene arithmetical hierarchy.

Theorem I.3.36. Let k ą 0. Then,

P2k`1 :“ tp P 2N
k`1

: pDn0qpD
8n1q . . . pD

8nkqpppn0, . . . , nkq “ 1qu is Σ0

2k`1-complete

P2k`2 :“ tp P 2N
k`1

: pD8n0qpD
8n1q . . . pD

8nkqpppn0, . . . , nkq “ 1qu is Π0

2k`2-complete.

The proof of the theorem above is a direct consequence of Lemmas I.3.35 and I.3.38. Before
proving the first lemma we need the following result: notice that the proofs of both Lemmas I.3.37
and I.3.38 exploit ideas by Solecki (see [Kec12, §Notes and Hints 23.5(i)]).

Lemma I.3.37. Let X be a computable metric space:

(i) every A P Π0
n`2pX q can be rewritten as

Ş
kPNB

1
k with B1k P Σ

0
n`1pX q and B

1
k Ě B1k`1

(ii) if n ą 2, every A P Σ0
n`1pX q can be rewritten as

Ť
nPNB

1
k with B1k P Π

0
npX q and for every

i ‰ j, B1i XB
1
k “ H.

Proof. For piq, by definition, B “
Ş

kPNBk where Bk P Σ0
n`1pX q. Letting B10 :“ B0 and for

k ą 0, B1k :“
Ť

jďk Bk, it is straightforward to check that B “
Ş

kPNB
1
k where B1k P Σ0

n`1pX q
and B1k Ě B1k`1

.
For piiq, let A P Σ0

n`1pX q: by definition, A :“
Ť

nPNBk with Bk P Π0
npX q. For every k, let

Dk :“
Ť

iăk Bi and notice that Dk P Π0
npX q. By piq, Dk “

Ş
mPN C

k
m where Ck

m P Σ0
n´1pX q

and Ck
m Ě Ck

m`1. Without loss of generality, we can also assume Ck
0 “ X. It is easy to check

that A :“
Ť

kPNBkzDk and that all Bnz
Ť

iănBi are pairwise disjoint. Since Ck
0 “ X and

Ck
m Ě Ck

m`1, we obtain that BkzDk “
Ť

mPNpBk

Ş
pCk

mzC
k
m`1qq. Notice that for every k,m, the

pBk

Ş
pCk

mzC
k
m`1qq’s are pairwise disjoint, and it is easy to check that they are in Π0

npX q. To
conclude the proof, notice that A “

Ť
k,mPNBkzpC

k
mzC

k
m`1q i.e., B

1
k “ Bk

Ş
pCk

mzC
k
m`1q.

Lemma I.3.38. Let n ą 1 and let X be a metrizable space and let A be a Π0
n-complete set of

X. Then,

• A0
8 :“ tpxiqiPN P X

N : pDiqpxi P Aqu is Σ0
n`1-complete

• A1
8 :“ tpxiqiPN P X

N : pD8iqpxi P Aqu is Π0
n`2-complete.

Proof. The fact that A0
8 and A1

8 are respectively Σ0
n`1 and Π0

n`2 is immediate. We now show
that for any computable metric space Y ,

piq for any B0 P Σ0
n`1pY q, B ďEW A0

8 and,

piiq for any B0 P Π0
n`2pY q, B ďEW A1

8,

concluding that A0
8 and A1

8 are respectively Σ0
n`1-complete and Π0

n`2-complete For piq, notice
that by Lemma I.3.37piq B0 “

Ť
jPNB

0
j where the B0

j P Π0
npY q are pairwise disjoint. By

hypothesis A is a Π0
n-complete set: let fj be the reduction witnessing B0

j ďEW A. We claim

that g : Y Ñ XN, y ÞÑ fjpyq witnesses B
0 ďEW A0

8. This is straightforward as:
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• y P B0 ðñ pDjqpy P B0
j q ðñ pDjqpfjpyq P Aq ðñ gpyq P A0

8;

• y R B0 ðñ p@jqpy P B0
j q ðñ p@jqpfjpyq R Aq ðñ gpyq R A0

8;

For piiq, notice that, by Lemma I.3.37, B1 “
Ş

kPNB
1

k with B1

k P Σ0
n`1pY q. Furthermore,

for every k, B1

k can be rewritten as
Ş

jPN Ck,j where the Ck,j P Π
0
npY q are pairwise disjoint.

Recall that, by hypothesis, A is a Π0
n-complete set and let fk,j be the reduction witnessing

Ck,j ďEW A. We claim that g : Y Ñ XN, y ÞÑ pfk,jpyqqk,jPN witnesses B1 ďEW A1
8. To prove

this notice that:

• y P B1 ðñ p@kqpDjqpy P Ck,jq ðñ pD8xk, jyqpfk,jpyq P Aq ðñ gpyq P A0
8 and

• y R B1 ðñ pDkqpy R B1

kq. By hypothesis, p@kqpB0

k Ě B1

k`1
q, hence we obtain that

p@k1 ě kqpy R B1

kq and so pDkqp@k1 ě kqp@jqpy R Ck1,jq, i.e. pDkqp@k
1 ě kqp@jqpfk,jpyq R Aq.

Since, by hypothesis, there are only finitely many j’s such that y P
Ş

iăk

Ť
jPN fi,jpyq P A,

we conclude that gpyq R A0
8.

This concludes the proof.

We now move to the complexity of subsets of trees.

Theorem I.3.39. The following classification results hold:

piq The set IF :“ tT P Tr : T is ill-foundedu is Σ1
1-complete, while WF :“ tT P Tr :

T is well-foundedu is Π1
1-complete. In contrast, IF2 :“ IF X Tr2 is Π0

1-complete and
WF2 :“WF XTr2 is Σ0

1-complete.

piiq The set T ąℵ0 :“ tT P Tr : |rT s| ą ℵ0u is Σ1
1-complete, while T ďℵ0 :“ tT P Tr :

|rT s| ď ℵ0u is Π1
1-complete. In this case, T ąℵ0

2
:“ T ąℵ0 X Tr2 is Σ1

1-complete as well
and T ďℵ0

2
:“ T ďℵ0 XTr2 is also Π1

1-complete.

piiiq The set UB :“ tT P Tr : |rT s| “ 1u is Π1
1-complete. In contrast, UB2 :“ UB X Tr2 is

Π0
2-complete.

Proof. To show that IF is Σ1
1-complete see [Kec12, Theorem 27.1]: the theorem states the

boldface case, but its proof works also in the lightface one. If T Ď 2ăN, notice that, by König’s
lemma, T P IF2 if and only if p@nqpDτ P 2nqpτ P T q; hence IF2 is Π0

1 and completeness is
straightforward. It follows immediately that WF is Π1

1-complete and WF2 is Σ0
1-complete.

To prove that T ąℵ0 is Σ1
1-complete notice that, by the Cantor-Bendixson theorem for trees

T P T ąℵ0 if and only if pDS Ď T qpS is nonempty and perfectq: the latter is a Σ1
1 formula, hence

it remains to show that T ąℵ0 is complete for Σ1
1 sets. This is immediate as T P IF ðñ

ExplpT q P T ąℵ0 . The proof for T ąℵ0

2
is similar, and it follows immediately that T ďℵ0 and T ďℵ0

2

are Π1
1-complete.

To prove that UB is Π1
1-complete notice that, by the effective perfect set theorem (see [Mos82,

Theorem 4F.1]), T P UB if and only if

pDp P HYPpNNqqpp P rT sq ^ p@τ, τ 1qpτ | τ 1 ùñ Tτ PWF _ Tτ 1 PWFq,

where HYPpNNq is the set of hyperarithmetical elements in NN. Notice that the formula is
Π1

1: indeed, the second conjunct is clearly Π1
1 and by Kleene’s quantification theorem (see

[Mos82, Theorem 4D.3]), the first conjunct is Π1
1 as well. It remains to show that UB is

complete for Π1
1 sets. To do so, it suffices to notice that T P WF if and only if S P UB, where

S :“ t0n : n P Nu \ T (indeed, rSs “ t0Nu Y t1p : p P rT su). If T Ď 2ăN, notice that T P UB2 if
and only if

T P IF2 ^ p@τ, τ
1qpτ | τ 1 ùñ Tτ PWF2 _ Tτ 1 PWF2q.
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The formula is clearly Π0
2 and proving completeness is straightforward.

I.4 Classification problems and complexity of structures

I.4.1 Invariant descriptive set theory

In this section, we briefly discuss the last of the three areas of descriptive set theory mentioned in
§I.3, namely invariant descriptive set theory, the discipline studying definable equivalence relations.
For more on this topic, the reader is referred to a classical textbook in this area, i.e.

• Gao’s book “Invariant descriptive set theory” ([Gao09]).

This area of descriptive set theory, as the ones mentioned in the previous sections, confirms the
interdisciplinary nature of this subject. Indeed, many equivalence relations, before being studied
in invariant descriptive set theory, had already been considered by other areas of mathematics.
Furthermore, many mathematical problems can be expressed as classification problems. Formally,
a classification problem is a pair pX,Eq, where X is a nonempty set and E an equivalence relation
on X; a solution for pX,Eq is a pair pI, ϕq where I is a set and ϕ : X Ñ I is a map assigning to each
object in X an element of I, i.e. p@x, y P XqpxEy ðñ ϕpxq “ ϕpyqq. In some sense, invariant
descriptive set theory is the “complexity theory” of equivalence relations where the complexity is
measured by means of reductions. Given an equivalence relation E on a set X and x P X, let
rxsE :“ tx1 P X : xEx1u be the E-equivalence class of x P X.

Definition I.4.1 ([Gao09, Definition 5.1.1]). Given two sets X and Y , let E be an equivalence
relation on X and F be an equivalence relation on Y . We say that E is reducible to F if there
is a reduction from E to F , i.e. there exists a map f : X Ñ Y such that xEy ðñ fpxqFfpyq

Intuitively, if E is reducible to F then E is at most as complex as F . Considering classification
problems and reductions without any constraint is not of great interest: indeed, any classification
problem has a solution letting I :“ X{E and ϕpxq :“ rxsE and, using the Axiom of Choice, for
showing that E is reducible to F , it is enough showing that there are as many E-equivalence
classes as F -equivalence classes. In other words, the reducibility order on equivalence relations is
the order on the cardinalities of the quotient space. It becomes much more interesting if we add
definability/algorithmic requirements both on the classification problems and the reductions.

In the context of invariant descriptive set theory, an equivalence relation is defined over standard
Borel spaces and the reduction is usually Borel. Recall from I.3.1 that, given a topological space
X, BorpXq is the smallest σ-algebra containing the open sets. Then, a Borel space is a pair
pX,BorpXqq where X is a set and BorpXq is the σ-algebra on X and pX,BorpXqq is called
standard if it is isomorphic to pY,BorpY qq for some Polish space Y ([Gao09, Definition 1.4.2]).
Standard Borel spaces enjoy nice closure properties: indeed, if pX,BorpXqq is a standard Borel
space and B Ď X is Borel, then the subspace B with the inherited Borel structure is standard
Borel as well ([Gao09, Theorem 1.4.4]).

We introduce the following notations: given two standard Borel spaces X and Y , E an equiv-
alence relation on X, and F an equivalence relation on Y . We say that E is Borel reducible to
F , in symbols E ďB F if there is a Borel reduction from E to F . Similarly, we say that E is
continuously reducible to F , in symbols E ďc F , if there is a continuous reduction from E to F .

We continue introducing some well known benchmark equivalence relations that play a major
role in invariant descriptive set theory and, in particular, in Part 2. All the equivalence relations
we consider are Borel, i.e. given an equivalence relation E on a standard Borel space X we have
that E is a Borel subset of XˆX. Notice that the equivalence relations we consider are all defined
on (products of) 2N. We start from the identity on 2N and the eventual agreement on 2N. Given
p, q P 2N,

p Id q ðñ p@nqpppnq “ qpnqq and p E0 q ðñ pDmqp@n ě mqpppnq “ qpnqq.
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We mention that E0 plays a pivotal role in this subject: for example, it is the main character of
the celebrated Glimm-Effros dichotomy . An equivalence relation E on a standard Borel space X
is smooth if E ďB Id.

Theorem I.4.2. [HKL90] Let E be a Borel equivalence relation. Then either E is smooth, or
else E0 ďB E.

Notice also that E0 is an hyperfinite equivalence relation. Let E be an equivalence relation on
a standard Borel space X. We say that E is finite if every E-equivalence class is finite, and
we say that E is hyperfinite if there are finite Borel equivalence relations pEnqnPN such that
E :“

Ť
nPNEn ([Gao09, Definition 7.2.1]). It is easy to notice that E0 “

Ť
nPNEn, where, given

p, q P 2N, En is defined as p En q ðñ p@m ě nqpppmq “ qpmqq. We mention that E0 is the
“canonical” hyperfinite equivalence relation: indeed the Dougherty-Jackson-Kechris theorem (see
[Gao09, Theorem 7.2.3]) implies that an equivalence relation is hyperfinite if and only if E ďB E0.
In other words, combining this result with Theorem I.4.2, we have that, up to Borel reducibility,
E0 is the only hyperfinite and not smooth equivalence relation.

The next equivalence relation is defined on elements of 2NˆN. Given p, q P 2NˆN,

p E1 q ðñ p@8n P Nqp@iqpppn, iq “ qpn, iqq.

As E0 is the “canonical” hyperfinite equivalence relation, E1 is the “canonical” hypersmooth
equivalence relation, where an equivalence relation E on a standard Borel space X is hypersmooth
if E “

Ť
nPNEn, and, for every n, En is smooth and En Ď En`1. Indeed, by [Gao09, Proposition

8.1.4], E is hypersmooth if and only if E ďB E1.

Let p, q P 2N:

p E2 q ðñ
8ÿ

k“0

pp△qqpkq

k ` 1
ă 8 and p Z0 q ðñ lim

kÑ8

cardpti ď k : p△qpiq “ 1uq

k ` 1
“ 0,

where p∆q is the symmetric difference of p and q defined as p∆qpiq “ 1 :ðñ ppiq ‰ qpiq.

Before defining the last two equivalence relations we consider in this thesis, we introduce two
well known operators, namely the Friedman-Stanley jump and the power operator.

Definition I.4.3 ([Gao09, Definition 8.3.1]). Let E be a Borel equivalence relation on a
standard Borel space X. The Friedman–Stanley jump of E, denoted by E`, is the equivalence
relation on XN defined by

pxnqnPN E
` pynqnPN :ðñ trxnsE : n P Nu “ trynsE : n P Nu.

It is easy to notice that if E is a Borel equivalence relation, E` is a Borel equivalence relation as
well. Indeed,

pxnqnPNE
`pynqnPN ðñ p@nqpDmqpxn E ymq ^ p@mqpDnqpxn E ymq.

In general, if E is a Σ0
γ equivalence relation for some ordinal γ ă ω1, E

` is a Π0
γ`2 one and notice

that E ăB E` ([Gao09, Theorem 8.3.6]).

Definition I.4.4 ([Gao09, Definition 8.5.1]). Let E be a Borel equivalence relation on a
standard Borel space X. The power of E, denoted by Eω, is the equivalence relation on XN

defined by
pxnqnPN E

ω pynqnPN ðñ p@nqpxn E ynq.
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Notice that, in contrast to the Friedman-Stanley jump, this is not a jump operator as Eω ”B

pEωqω. Notice that if E is a Π0
γ equivalence relation for some ordinal γ ă ω1, then E

ω is a Π0
γ

equivalence relation as well. In Chapter IV we consider Eω
0 and “`: sometimes in the literature

these equivalence relations are denoted respectively with E3 and Eset.

Id

E0

E1 Eω
0E2

“`Z0

Figure I.2: Arrows represent continuous (and in particular, Borel) reductions. All the reductions
are strict.

In invariant descriptive set theory and, in particular, in this thesis, an important subclass
of classification problems is given by isomorphism problems. Descriptive set theorists have put
serious effort into ranking the complexity of isomorphism problems for various familiar classes of
countable structures such as groups, graphs, trees, linear orderings, and Boolean algebras (see
[FS89, Mek81, CG01]).

Before giving some results on isomorphism problems, we give some basic definitions to fix the
notations. Recall that a language L is a set of constants, operation symbols, and relation symbols
of finite arity.

Definition I.4.5. An L-structure A consists of a nonempty set A called the domain of A
together with an interpretation of the symbols of L, i.e. a function mapping

piq every constant c P L into an element cA of A,

and for any positive integer n,

piiq every n-ary function symbol f of L into an n-ary function FA of A

piiiq every n-ary relation symbol R of L into an n-ary relation RA of A,

Definition I.4.6. Let A and B two structures in a language L. A homomorphism of A into
B is a function f from A into B such that

piq for every constant c P L, fpcAq “ cB;

piiq for every positive integer n, for every n-ary function symbol F in L and for every sequence
pa1, . . . , anq P A

n, fpFApa1, . . . , anqq “ FBpfpa1, . . . , anqq;

piiiq for every positive integer n, for every n-ary relation symbol R in L and for every sequence
pa1, . . . , anq P A

n, if pa1, . . . , anq P R
A then fpa1, . . . , anq P R

B.

In case f is injective and in piiiq, for every pa1, . . . , anq P An, fpa1, . . . , anq P RB implies
pa1, . . . , anq P R

A, then f is also an embedding from A into B (in symbols, A ãÑ B). If f is a
surjective embedding then we say that A and B are isomorphic (in symbols, A – B).
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The isomorphism relation between structures is an equivalence relation and its equivalence classes
(among structures) are called isomorphism types.

We fix a countable language L that, for simplicity, we assume to be relational, i.e. let L :“
pRiqiPI where I Ď N, Ri is an ni-ary relation symbol and let ModpLq be the space of L-structures
on N. Every element in ModpLq can be viewed as an element of the space of countably infinite
structures defined as

XL :“
ź

iPI

2N
ni
.

Indeed, we have a bijection that associates any x :“ pxiqiPN P XL to Ax P ModpLq, i.e. the
(countable) model coded by x. Notice that, for every i P I and σ P Nni , RAx

i pσq ðñ xipσq “
1. This correspondence allows us to use at our convenience equivalently either ModpLq or XL.
Furthermore, notice that, if L ‰ H, XL (and hence ModpLq) is homeomorphic to 2N and hence is
a compact Polish space. We define the logic action of S8 (i.e. the group of permutations on N) on
ModpLq as follows. Given A,B P ModpLq, for every i P I and pk1, . . . , kni

q P Nni , let g ¨A “ B if
and only if

RB
i pk1, . . . , kni

q ðñ RA
i pg

´1pk1q, . . . , g
´1pkni

qq.

In other words, g ¨ A “ B if and only if g is an isomorphism between A and B. Clearly, g is a
continuous action, and the associated equivalence relation (i.e. called orbit equivalence relation) is
just the isomorphism relation on ModpLq, i.e. pDg P S8qpg ¨A “ Bq ðñ A – B. We mention the
following theorem by Scott, which can be obtained as a corollary from a result by Miller ([Kec12,
Theorem 15.14]).

Theorem I.4.7 ([Kec12, Theorem 16.6]). Given a nonempty countable language L, for any
A PModpLq, tB : A – Bu is Borel.

We now introduce the basics of infinitary logic. Given a language L, we denote by Lω1ω the
infinitary language over L defined as the finitary language except for the fact that we can take
conjunctions and disjunctions of any size less than ω1, the number of free variables has cardinality
less than ω and formulas with @’s or D’s are of any length less than ω.

Definition I.4.8. Given a language L, Lω1ω is the smallest class such that:

• all finitary quantifier free L-formulas are in Lω1ω;

• if ϕ is in Lω1ω, then so are p@xqϕ and pDxqϕ.

• Let x̄ be a finite tuple of variables and S Ď Lω1ω a countable set of formulas with
free variables in x̄. Then, both the infinitary disjunction of formulas in S (denoted byŽŽ

ϕPS ϕ) and the infinitary conjunction of formulas in S (denoted by
ŹŹ
ϕPS

ϕ) are in Lω1ω.

We now make an example of a class of structures that is not axiomatizable in finite order logic.
For instance, Take the language of graphs L :“ tEu where E is the edge relation: applying the
compactness theorem of first order logic, it is possible to show that the class of connected graphs is
not axiomatizable by finitary first order logic. On the other hand, the following infinitary sentence
does the job, i.e. a graph G is connected if and only if

p@v, w P V pGqq
ľľ

nPN

pDu1, . . . , un P V pGqqppv, u1q P EpGq ^ pu1, u2q P EpGq ^ . . . pun, wq P EpGqq.

The following results have applications also in invariant descriptive set theory, highlighting the
pivotal role of infinitary logic. For an equivalence relation E on a set X, we say that A Ď X

is E-invariant if x P A and xEy imply y P A. The following is the well known Lopez-Escobar
theorem.
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Theorem I.4.9 ([Kec12, Theorem 16.8]). The –-invariant subsets of XL are exactly those of
the form tx : Ax |ù ϕu, where ϕ is a formula without free variables of Lω1ω.

The following is the Scott isomorphism theorem, telling us that countable structures are uniquely
identified by formulas of Lω1ω called Scott sentences.

Theorem I.4.10 ([Kec12, Corollary 16.10]). For every countable structure A of L, there is a
corresponding formula ϕA without free variables of Lω1ω (i.e. the corresponding Scott sentence)
such that for any countable structure B of L, B – A ðñ B |ù ϕA.

Since it is not the purpose of this thesis, we do not make explicit here the construction of a Scott
sentence, but we just mention that it is obtained via a transfinite process in which, at each stage,
the formulas are, in some sense, approximations of the final product.

In first order logic, the complexity of a formula is measured by counting the alternation of
quantifiers. For infinitary formulas the approach is similar but, when counting alternation, infini-
tary disjunctions are treated as existential ones, while infinitary conjunctions are as universal ones.
We give the formal definition.

Definition I.4.11. Let α be an ordinal. A formula is Σinf
α if it is of the form

ŹŹ
iPN

Dx̄iϕipx̄i, ȳq

where the formulas ϕi are Πinf

β for some β ă α. Similarly, a formula is Πinf
α if it is of the formŽŽ

iPN

@x̄iϕipx̄i, ȳq where the formulas ϕi are Σinf

β for some β ă α. We denote by Σinf
0 and Πinf

0 the

finitary quantifier-free formulas.

Hence, the connectedness of graphs is axiomatizable via infinitary Πinf
2 formulas.

We conclude this section mentioning that Lω1ω infinitary logic is very useful in characterizing
the syntactic properties of countable structures: on the other hand, if we want to study the
computational properties of structures, as first noticed by Ash in [Ash86], the appropriate language
is computably infinitary language that we discuss in the next section.

I.4.2 Computable structure theory

Computable structure theory is the field of computable mathematics studying the interplay be-
tween the complexity of a mathematical structure (i.e. how hard is to describe it and compute it)
and its structural/algorithmic properties. The mathematical structures considered have (usually
countable) domains consisting of relations, functions, and constants (e.g. graphs, linear orderings,
rings etc. . . ) and among the tools that are used to measure the complexity of mathematical struc-
tures, we can find for example Turing reducibility and the (hyper)arithmetic hierarchy. For this
subject, we refer the reader to:

1. Ash and Knight’s book “Computable Structures and the Hyperarithmetical Hierarchy”
([CJAJFK00]) and,

2. Montálban’ books “Computable structure theory: Within the arithmetic” [Mon21] and
“Computable structure theory: Beyond the arithmetic ” ([Mon]).

We start introducing the notion of atomic diagram. Given an L-structure for some countable
and relational language L, using some standard bijection from NăN to N, we can identify any
atomic sentence about any L-structure with a natural number. We define the atomic diagram
DpAq of a structure A, as the set of n P N such that n is the code of an atomic L-sentence true in
A or the negation of an atomic L-sentence that is false in A. Now, we can identify any structure A
via some p P 2N where ppiq “ 1 if and only if the i-th atomic L-sentence is true in A. Representing
a structure via an element in 2N gives us a natural way to compare the complexity of L-structures.
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We can assign to every structure some Turing degree d: a structure A is d-computable if DpAq
is a d-computable subset of N. Given a structure A we denote by Aæn the finite substructure
that is the restriction of A to the domain t0, . . . , nu. Notice that any computable structure A in
a relational language is such that A “

Ť
nPN Aæn where Aæn Ď Aæn`1.

As noticed at the end of the previous subsection, in order to study the computational properties
of structures we need a computably infinitary language. The computable infinitary formulas are
the computable counterparts of Σinf

α and Πinf
α formulas, and we denote them by Σc

n and Πc
n. These

consist of Lω1ω formulas that are defined as in Definition I.4.8, but requiring infinite conjunctions
and disjunctions to range over some c.e. set I of (computable) formulas. Notice that computable
infinitary formulas can be relativized to an arbitrary oracle X: the class of X-computable infinitary
Σinf

n formulas (respectively, Πinf
n formulas) are denoted by Σc,X

n (Πc,X
n ): the definition is the same

of computable infinitary ones with the only exception that conjunctions and disjunctions range
over an X-c.e. set I.

Notice that the definition of X-computable infinitary formulas we have just given, despite being
the natural generalization of Definition I.4.11, it is not mathematically precise when α ě 2. Indeed,
elements of a c.e. set are (objects that can be coded by) natural numbers: this is unproblematic
when α P t0, 1u but for α ě 2, a computable infinitary Σinf

α and Πinf
α formulas are obtained by c.e.

sets of infinitary formulas and hence we need to code such formulas via natural numbers. This
can be done by assigning codes to infinitary formulas in normal form, but, since this process is not
important for the next topics, we prefer to stick with the informal but intuitive definition given
above, referring the reader to [AK00, Chapter 7].

We move on to defining a Turing computable embedding, showing its interactions with com-
putable infinitary formulas: recalling that all of our structures have domain N,

Definition I.4.12 ([CCKM04, Definition 2]). A Turing computable embedding of K into K
1

is a computable functional Φ such that

• for every A P K, there exists B P K1 such that ΦDpAq “ χDpBq;

• if A,B P K, we have that A – B ðñ ΦpAq – ΦpBq;

If such an embedding exists we denote it by K ďtc K
1

In some sense, Turing computable embedding is the analog of a Borel reduction where the reduction
map is computable instead of Borel and the equivalence relations are restricted to isomorphism
relations.

Definition I.4.13 ([KMB07, Pullback Theorem §2]). Suppose that K0 ďtc K1 via a Turing
operator Φ. Then for any computable infinitary sentence Ψ in the language of K1, one can
effectively find a computable infinitary sentence Ψ˚ in the language of K0 such that for all
A P K0 we have A |ù Ψ˚ if and only if ΦpAq |ù Ψ. Moreover, for a nonzero α ă ωCK

1 , if Ψ is a
Σc

α formula (Πc
α) then so is Ψ˚.

In [BFSM20, §3.1] the authors showed that Definition I.4.13 admits a full relativization.

Theorem I.4.14 (Relativized Pullback Theorem). Suppose that X Ď ω and K0 ďtc K1 via a
Turing X-operator Φ. Then, for any X-computable infinitary sentence ψ in the language of
K1, one can find, effectively with respect to X, an X-computable sentence ψ‹ in the language
of K0 such that, for all A P K0, we have A ( ψ‹ ô ΦpAq ( ψ.
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I.5 Reverse mathematics

Reverse mathematics is the field of mathematical logic and, in particular, of the foundations of
mathematics, that aims to find which set existence axioms are required for proving a theorem
of “ordinary mathematics”. In the first chapter of ([Sim09]), Simpson refers to ordinary (or not
set theoretic) mathematics as “that body of mathematics which is prior to or independent of the
introduction of abstract set theoretic concepts”. This includes theorems coming from different
areas of mathematics like analysis, number theory, and some topology. The results contained in
this section are mainly from

1. Simpson’s book “Subsystem of Second Order Arithmetic” ([Sim09]) and

2. Dzhafarov and Mummert’s book “Reverse Mathematics: Problems, Reductions, and Proofs”
([DM22]),

and we refer the reader to these books for more on this topic.
The field starts in [Fri75] where Friedman asks which formal systems isolate the “essential”

axioms needed to prove them. The fascinating intuition is that “when the theorem is proved from
the right axioms, the axioms can be proved from the theorem”. More precisely, working in a
“weak” axiom system B, given a theorem T we want to answer two questions:

1. which is the weakest axiom system R that we need to add to B in order to prove T?

2. Using B and T , can we recover all the axioms in R?

If the answer to both questions above is positive, we say that T and R are equivalent over B: this,
in some sense, tells us that R contains the “essential” axioms needed to prove T . When proving
such an equivalence, the direction answering the second question is usually called the “reversal”,
suggesting the process of retrieving back the axioms which we used to prove the theorem from the
theorem itself: this also justifies the name “reverse mathematics”.

Reverse mathematics usually is developed in the context of second order arithmetic. Indeed,
second order arithmetic is powerful enough to formalize most theorems of ordinary mathematics
but not so powerful to forbid the identification of the essential axioms needed to prove a theorem
as set theory does.

The language of second order arithmetic L2 is a two-sorted language which means that it has
two different kinds of variables: first order variables (or number variables) ranging over N, and
second order variables ranging over subsets of N. The signature of L2 consists of:

• constant first order symbols 0 and 1;

• binary function symbols ` and ¨ on first order variables;

• binary relation symbols ă and “ for first order variables;

• a set membership relation P taking a first order term and a second order term.

The first order terms (intended to denote N) are the first order variables, 0, 1 and, if t1 and t2
are first order terms, then so are t1 ` t2 and t1 ¨ t2. Given t1 and t2 first order terms and X a
second order variable, the atomic formulas are t1 “ t2, t2 ă t2 and t1 P X. Their meanings are
the classical one, i.e. addition and multiplication on N, equality on N, the “less than” relation on
N, and the membership of a natural number to a set. Formulas are built from atomic ones using
propositional connectives and the quantifiers “@” and “D” ranging on N and subsets of N.

Definition I.5.1 ([Sim09, Definition I.2.2]). A model for L2 is a 7-tuple

p|M | ,SM ,`M , ¨M , 0M , 1M ,ăM q,

where |M | is the range of the number variables, SM is a set of subsets of |M | serving as the range
of the set variables, `M and ¨M are binary operations on |M |, 0M and 1M are distinguished
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elements of |M |, and ăM is a binary relation on |M |. We always assume that the sets |M | and
SM are disjoint and nonempty. Formulas of L2 are interpreted in M in the obvious way.

We are now ready to define full second order arithmetic and its subsystems. Before doing so we
give the following definition.

Definition I.5.2 ([DM22, Definition 5.3.5 and 5.3.6]). Let ϕ be a formula of L2:

• the induction axiom for ϕ is the universal closure of

pϕp0q ^ p@xqpϕpxq ùñ ϕpx` 1qqq ùñ p@xqpϕpxqq,

• the comprehension axiom for ϕ is the universal closure of

pDXqp@xqpx P X ðñ ϕpxqs

where X is a set variable not mentioned in ϕ and the formula ϕ which may have free set
variables, which serve as parameters relative to which X is defined.

Then, given a collection Γ of formulas of L2,

• IΓ is the axiom scheme consisting of the induction axiom for every ϕ P Γ and

• Γ-CA is the axiom scheme consisting of the comprehension axiom for every ϕ P Γ.

We define the theory of second order arithmetic as the theory consisting of the basic axioms
of Peano arithmetic (capturing the basic properties of N as a discrete ordered semiring), the
induction axiom scheme for all formulas in L2 and the comprehension axiom scheme for all
formulas in L2

Since second order arithmetic is a strong theory, in the sense that numerous theorems that can
be formalized in L2 are provable in it, to grasp the strength of theorems we restrict to fragments
of second order arithmetic obtained by weakening the collection of comprehension and induction
axioms that may be used. These are subsystems of second order arithmetic

A well known empirical fact in this field is the so called big five phenomenon. Namely, many
theorems of ordinary mathematics happen to be equivalent to one of the five subsystems of second
order arithmetic that we describe below.

RCA0 (Recursive Comprehension Axiom)

This is the weakest subsystem of the big five and, roughly speaking, corresponds to a formalization
of computable mathematics. Usually, it is assumed to be the base theory B we mentioned above. It
consists of the basic axioms of Peano arithmetic plus ∆0

1-comprehension scheme and Σ0
1-induction

scheme.

WKL0 (Weak König Lemma)

This is the subsystem consisting of RCA0 plus Weak König Lemma, the statement asserting “every
infinite binary tree has an in infinite path”.

ACA0 (Arithmetic Comprehension Axiom)

It consists of WKL0 plus the arithmetic comprehension scheme: in other words, it consists of all
the axioms asserting the existence of any set which is arithmetically definable from given sets.
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ATR0 (Arithmetical Transfinite Recursion)

It consists of ACA0 plus the statement saying that every arithmetic formula (or equivalently, the
Turing jump operator) can be iterated along any countable well-order starting at any set.

Π1
1´CA0 (Π1

1-comprehension axiom)

It consists of ATR0 plus the Π1
1-comprehension scheme.

In particular, ATR0 and Π1
1´CA0, turn out to be equivalent to theorems arising in classical

descriptive set theory related to perfect subsets of Polish spaces that will be the main characters
of Chapter II.

We highlight that not all the theorems of ordinary mathematics are equivalent to one of the
big five axiom systems described above. The most famous example of a theorem falling outside
the big-five is Ramsey’s theorem for pairs: from the proof of this fact, a variety of “natural”
mathematical principles have been shown to be equivalent to none of the big-five, yielding the so
called “reverse mathematics zoo”.

I.6 Weihrauch reducibility

Weihrauch reducibility is a way to compare the uniform computational strength of partial multi-
valued functions between represented spaces, i.e. problems. That is if a problem f is Weihrauch
reducible to g it means that f can be computed by exactly one application of g, modulo some
computable modification that is needed to “adjust” the input for g and the output for f . For more
on Weihrauch reducibility, we refer the reader to Weihrauch’s book [Wei13] (already mentioned in
§I.2) and to

• Brattka, Gherardi and Pauly’s chapter “Weihrauch complexity in computable analysis” in
“Handbook of computability and complexity in analysis” ([BGP21]).

We start by giving the formal definition of Weihrauch reducibility.

Definition I.6.1. Let X, Y, Z and W be represented spaces and f :Ď X Ñ Y, g :Ď Z Ñ W
be partial multi-valued functions. We say that f is Weihrauch reducible to g, (in symbols
f ďW ga) if there exists computable Φ,Ψ :Ď NN Ñ NN such that

p@G $ gqpΨpidp¨q ‘GpΦp¨qqq $ fq.

We say that f is strongly Weihrauch reducible to g (in symbols,f ďsW g), if there exists
computable Φ,Ψ :Ď NN Ñ NN such that p@G $ gqpΨpGpΦp¨qqqq $ f .

aUnfortunately, Wadge reducibility and Weihrauch reducibility are denoted with the same letter. On the
other hand, we use a different style: Wadge reducibility is denoted by ďW and Weihrauch reducibility by ďW.

Usually, the maps Φ and Ψ are called forward and backward functional respectively, and they
play the roles of “pre-processing” and “post-processing” phases of the computation. The partial
multi-valued function g plays the role of the oracle: in other words, the definition above can be
restated as follows.

Definition I.6.2 (Definition I.6.1, restated). Let X, Y, Z, W be represented spaces and
f :Ď X Ñ Y, g :Ď Z Ñ W be partial multi-valued functions. Then f is Weihrauch reducible
(respectively, strongly Weihrauch reducible) to a problem g, if there are computable maps
Φ,Ψ :Ď NN Ñ NN such that

• for every name px for some x P dompfq, Φppxq “ pz, where pz is a name for some
z P dompgq and,
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• for every name pw for some w P gpzq, Ψppx ‘ pwq “ py (or just Ψppwq “ py in case is a
strong Weihrauch reduction) where py is a name for y P fpxq.

p Φ g
pz

Ψ
pw

py
px pz

py pw

Φp¨q

f g

Ψppx‘¨q

Figure I.3: Two diagrams graphically representing the Weihrauch reduction f ďW g. In particular,
the right-hand-side diagram justifies the terms “forward” and “backward” functionals used for Φ
and Ψ.

The difference between Weihrauch and strong Weihrauch reducibility is in the fact that, in the
latter, the map Ψ does not have access to the name p of the input of f . Clearly strong Weihrauch
reducibility implies Weihrauch reducibility, but the converse is not true in general.

Weihrauch reducibility and strong Weihrauch reducibility are reflexive and transitive hence
they induce the equivalence relations ”W and ”sW: that is f ”W g if and only if f ďW g and
g ďW f (similarly for ďsW). The ”W-equivalence classes are called Weihrauch degrees (similarly
the ”sW-equivalence classes are called strong Weihrauch degrees). Both the Weihrauch degrees
and the strong Weihrauch degrees form lattices (see [BGP21, Thm. 3.9 and Thm. 3.10]).

There are several natural operations on problems which also lift to the ”W-degrees and the
”sW-degrees: we mention below the ones we need. Let f :Ď X Ñ Y and g :Ď Z Ñ W. Then we
define

• the parallel product f ˆ g :Ď Xˆ Z Ñ Y ˆW where

dompf ˆ gq :“ dompfq ˆ dompgq and pf ˆ gqpx, zq :“ fpxq ˆ gpzq;

• the finite parallelization f˚ :Ď X˚ Ñ Y˚ where

dompf˚q :“
ď

nPN

ptnu ˆ dompfqnq and f˚pn, pxiqiănq :“ tpyiqiăn : p@i ă nqpyi P fpxiqqu;

• the infinite parallelization f :Ď XN Ñ YN where

domp pfq :“ dompfqN and pfppxiqiPNq :“ tpyiqiPN : p@iqpyi P fpxiqqu.

• the co-product f \ g :Ď Xˆ Z Ñ Y ˆW where given i P t0, 1u

dompf \ gq :“ dompfq \ dompgq and pf \ gqpi, xq :“

#
t0u ˆ fpxq if i “ 0

t1u ˆ gpxq if i “ 1

• generalizing the co-product, given a family of problems tfi : i P Nu with fi :Ď Xi Ñ Yi, the
countable co-product

Ů
iPN fi :Ď

Ť
iPNtiu ˆXi Ñ

Ť
iPNtiu ˆ Yi where

domp
ğ

iPN

fiq :“
ď

iPN

tiu ˆ dompfiq and
`ğ

iPN

fi
˘
pi, xq :“ tiu ˆ fipxq.

Informally, the first three operators defined above, capture respectively the idea of using f and
g in parallel, using f a finite (but given in the input) number of times in parallel and using f
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countably many times in parallel. The last two capture respectively the idea of computing exactly
one between f and g and computing exactly one fi.

We now define the finite unbounded parallelization: the definition we use, with a slightly dif-
ferent notation, was recently given by Soldà and Valenti. This operator generalizes the finite
parallelization operator, defined above, relaxing the requirement that the number of instances is
part of the input for the problem.

Definition I.6.3 ([SV22]). For every f :Ď X Ñ Y, define the fu˚ :Ď Nˆ NN ˆX Ñ pNNqăN

as follows:

• instances are triples pe, w, pxnqnPNq such that pxnqnPN P domp pfq and for each sequence
pqnqnPN with δY pqnq P fpxnq, there is a k P N such that Φepw, q0 ‘ . . . ‘ qk´1qp0q Ó in k
steps;

• a solution for pe, w, pxnqnPNq is a finite sequence pqnqnăk such that for every n ă k,
δY pqnq P fpxnq and Φepw, q0 ‘ . . .‘ qk´1qp0q Ó in k steps.

Informally, fu˚ takes as input a Turing functional with a parameter plus an input for pf and outputs
“sufficiently many” names for solutions where “sufficiently many” is determined by the convergence
of the Turing functional in input. This operator is particularly useful in Theorem I.6.10 where we
characterize the first-order part (see Definition I.6.8) of problems that are Weihrauch equivalent
to the parallelization of functions with codomain N.

We proceed to give the definition of cylinder. Intuitively, a cylinder f is a problem that from
the outputs recovers the input, i.e. for every x P dompfq, given fpxq we can compute x.

Definition I.6.4 ([BG09, Definition 3.4]). We say that a multi-valued function f is a cylinder
if idˆ f ďsW f .

Notice that, in general, we only have that f ďsW id ˆ f : as a counterexample to the converse
reduction, take any total constant f : NÑ N. Another useful observation is that, since id is clearly
a cylinder, for any problem f , id ˆ f is a cylinder and hence, since id ˆ f ”W f is trivial, we
get that every Weihrauch degree has a representative which is a cylinder. The notion of cylinder
gives a simple but very useful connection between Weihrauch and strong Weihrauch reducibility,
as stated in the next theorem.

Theorem I.6.5 ([BG09, Cor. 3.6]). If f is a cylinder, then g ďW f if and only if g ďsW f .

This theorem is useful for establishing nonreductions because, if f is a cylinder, then it suffices to
diagonalize against all strong Weihrauch reductions from g to f in order to show that g ďW f .
Cylinders are also useful when working with compositional products.

The compositional product was introduced in [BGM12] and proved to be well-defined in [BP16,
Corollary 3.7], and it captures the idea of applying g and then applying f . One could observe that
in Definition I.2.5 we have already defined the composition f ˝g, which, at a first sight, could seem
that it works for our purposes. Unfortunately, its definition does not match the above intuitive
idea of applying first g and then f : indeed, f ˝ g is well-defined if and only if rangepgq Ď dompfq
and this does not happen in many cases.

Definition I.6.6 ([BGM12, Definition 4.1]). Let f and g be multi-valued functions. The
compositional product f ˚ g is defined as

f ˚ g ”W max
ďW

tf0 ˝ g0 : f0 ďW f ^ g0 ďW gu.
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Differently from the operations defined above and in Definition I.6.3, this operator does not map
f and g to a unique multi-valued function, but it maps f and g to a Weihrauch degree. For
readability, we always use this abuse of notation: namely, when we write h ďW f ˚ g we mean h is
Weihrauch reducible to any problem in the Weihrauch degree defined by f˚g. In proving statements
involving compositional products, one direction is usually harder than the other. Namely, to prove
that h ďW f ˚ g, it suffices to prove that h ďW f ˝ Φe ˝ g, for some computable functional Φe.
Proving the opposite direction, i.e. f ˚ g ďW h, is the difficult task: the following proposition, also
known as cylindrical decomposition, is a helpful tool to solve this problem.

Proposition I.6.7. Given f, g problems and F,G cylinders such that F ”W f and G ”W g,
there exists a computable Φe such that f ˚ g ”W F ˝ Φe ˝G.

We have already observed that for every function f , f ”W idˆ f where idˆ f is clearly a cylinder:
hence f ˚ g ”W pidˆ fq ˝ Φe ˝ pidˆ gq. Therefore, we can assume f ˚ g is a cylinder.

For each problem f , we denote by f rns the n-fold iteration of the compositional product of f
with itself, i.e., f r1s “ f , f r2s “ f ˚ f , and so on.

Many (non) reductions in Chapter II and Chapter III, follow from the characterization of the
first-order part 1f (introduced in [DSY23] and extensively studied in [SV22]) and the deterministic
part Detpfq of a problem f (defined in [GPV21]). We start discussing the first-order part of
a problem, Its definition is one of the outcomes coming from the investigation of the interplay
between reverse mathematics and computable analysis (see the introduction to Chapter II for a
discussion on this research program). Indeed, the first-order part of a problem takes inspiration
from the first-order part of a theorem, a notion studied in reverse mathematics that captures the
strongest “number-theoretic result” that one can derive from a particular theorem. In similar
fashion, the first-order part of a problem represent the strongest problem with codomain N that is
Weihrauch reducible to that problem.

Definition I.6.8. [SV22, Definition 2.2] We say that a computational problem f :Ď X Ñ Y is
first-order if there is a computable injection Y Ñ N with computable inverse. For every problem
f :Ď X Ñ Y, the first-order part of f is the multi-valued function 1f :Ď Nˆ NN ˆX Ñ N

defined as follows:

•• instances are triples pe, w, xq such that x P dompfq and for every y P fpxq and every
name py for y, Φepw ‘ pyqp0q Ó;

• a solution for pe, w, xq is any n such that there is a name py for a solution y P fpxq with
Φepw ‘ pyqp0q Ó“ n.

The following theorem provides a convenient characterization of the first-order part of a problem
that is used extensively in the next chapters.

Theorem I.6.9 ([SV22]). For every problem f ,

1f ”W max
ďW

tg : g is first-order and g ďW fu.

The following theorem relates the first-order part with the unbounded finite parallelization.

Theorem I.6.10 ([SV22, Theorem 5.7]). For every first-order f , 1p pfq ”W fu˚.

In the same spirit of the first-order part definition, one can define other “parts” of a problem
which capture the strongest problem with a restricted codomain which Weihrauch reduces to the
problem: this is the case for the deterministic part of a problem, i.e. the strongest single-valued
function which Weihrauch reduces to the problem.
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Definition I.6.11. [GPV21, Definition 3.1] Let X be a represented space and f :Ď Y Ñ Z
be a multi-valued function. We define DetXpfq :Ď Nˆ NN ˆY Ñ X by

DetXpfqpe, w, yq “ x :ðñ p@z P δ´1

Z pfpyqqqpδXpΦepp‘ zq “ yqq.

The domain of DetXpfq is maximal for this to be well-defined. We just write Detpfq for
DetNNpfq.

As we did for the first-order part, also for the deterministic part we mostly use the characteri-
zation given by the next theorem, instead of dealing with the definition above.

Theorem I.6.12 ([GPV21, Theorem 3.2]). For every problem f ,

Detpfq ”W max
ďW

tg : g :Ď X Ñ NN ^ g ďW fu.

The (k-)finitary part of a problem

These notions were introduced jointly with Arno Pauly, and, so far, they do not have explicitly
appeared in the literature.

For k ą 0, we denote with k the space consisting of t0, . . . , k´1u with the discrete topology: the
k-finitary part and the finitary part of a problem f captures respectively the most complex problem
with codomain t0, . . . , k ´ 1u and the most complex problem with finite codomain. We start from
the k-finitary part of a problem, whose definition follows the same pattern of Definition I.6.8.

Definition I.6.13. For every problem f :Ď X Ñ Y, the k-finitary part of f is the multi-valued
function Fink :Ď Nˆ NN ˆX Ñ k defined as follows:

• instances are pairs pe, w, xq such that x P dompfq and for every y P fpxq and every name
py for y, Φepw ‘ pyqp0q Óă k;

• a solution for pe, w, xq is any n ă k such that there is a name py for a solution y P fpxq
with Φwppyqp0q Ó“ n.

Proposition I.6.14. For every problem f , Fink ”W maxďW
tg :Ď NN Ñ k | g ďW fu.

Proof. The proof is analogous to [GPV21, Theorem 3.2] (see also the comment in [SV22] after
Proposition 3.2).

We now define the finitary part of a problem f .

Definition I.6.15. For every problem f , we define the finitary part of f as

Finpfq :“
ğ

kě1

Finkpfq.

We highlight that, despite its intuitive meaning is reminiscent of the first-order/deterministic/k-
finitary part of a problem, the definition of the finitary part of a problem is very different. Indeed,
we do not have a similar characterization to the ones given in Theorems I.6.9 and I.6.12 and
Proposition I.6.14: in particular, the codomain of the finitary part is not even finite.

The following proposition is immediate.
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Proposition I.6.16. For every problem f , Finpfq ďW
1f .

We want to show that, for some f ’s, the reduction in Proposition I.6.16 can be strict (Proposi-
tion I.6.19). Before doing so we define when a problem is join-irreducible and the cardinality of a
problem.

Definition I.6.17 ([BDP12, Definition 5.4]). A problem f is called join-irreducible, if

f ”W

ğ

iPN

fi ùñ pDn0qpf ”W fn0
q.

Definition I.6.18 ([BGH15, Definition 3.5]). For every problem f :Ď X Ñ Y we denote by
#f the maximal cardinality (if it exists) of a set M Ď dompfq such that tfpxq : x P Mu
contains pairwise disjoint sets.

It is easy to see that for every problem f and g, f ďsW g ùñ #f ď #g [BGH15, Proposition
3.6].

Proposition I.6.19. FinpCNq ăW CN ”W
1CN.

Proof. The reduction and the equivalence are immediate.
For strictness, suppose CN ďW

Ů
kě1

FinkpCNq. Since CN is join-irreducible ([BDP12, Corol-
lary 5.6]), we obtain that if CN ďW

Ů
kPN FinkpCNq, then there must exist some k P N with

CN ďW FinkpCNq. Since #FinkpCNq ă #CN, by [BGH15, Proposition 3.6] this cannot be the
case.

Other useful operations on problems do not lift to Weihrauch degrees (i.e. applying the operation
to equivalent problems does not always produce equivalent problems).

The first such operation is the jump of a problem: recall the definition of jump of a represented
space from Definition I.2.9.

Definition I.6.20. Given a problem f :Ď X Ñ Y its jump f 1 :Ď X1 Ñ Y is defined as
f 1pxq :“ fpxq.

In other words, f 1 is the following task: given a sequence that converges to a name for an instance
of f , produces a solution for that instance. Unfortunately, the jump on the Weihrauch degrees
does not have the properties that we usually require for a jump operator: on the other hand, it
behaves better in the strong Weihrauch degrees.

Proposition I.6.21. For all problems f and g, f ďsW f 1 and f ďsW g ùñ f 1 ďsW g1.

The proposition above tells us, in particular, that the jump is monotone (and hence degree-
theoretic) with respect to strong Weihrauch reducibility. On the other hand, it is easy to show
examples of problems f such that f ”sW f 1, e.g. take as f any constant map. As we said the
situation is even worse for Weihrauch degrees: the jump does not lift to Weihrauch degrees and,
for example, it is possible that f ďW g but g1 ăW f 1. We use f pnq to denote the n-th iterate of
the jump applied to f .

In [BHK17, Theorem 11], the authors proved the following theorem that is a sort of an inverse
of Proposition I.6.21. Notice that “relative to the halting problem” in the next theorem and in
similar statements means that the forward and backward functionals of the Weihrauch reduction
f ďW g have access to the halting problem: a similar definition holds replacing “halting problem”
with any oracle.
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Theorem I.6.22 (Jump inversion theorem). f 1 ďW g1 ùñ f ďW g relative to the halting
problem.

The theorem above is particularly useful in Chapter III.
We now introduce the totalization of a problem and the completion of a problem. These two

operators are different ways of making a partial multi-valued function total; neither of them lifts
to Weihrauch degrees.

Definition I.6.23. Given a partial multi-valued function f :Ď X Ñ Y the totalization of f is
the total multi-valued function Tf defined as

Tfpxq :“

#
fpxq if x P dompfq,

Y otherwise.

For more details on the totalization we refer the reader to [BG21].
To define the completion of a problem f we need to first introduce the completion of a repre-

sented space. We adopt the following notation: given p P NN we define p̂n to be xy if ppnq “ 0,
xppnq ´ 1y otherwise; then p´ 1 is the concatenation of all the p̂n’s.

Definition I.6.24. For a represented space X “ pX, δXq we define its completion as X “
pX, δXq where X “ X Y tKu with K R X and δX : NN Ñ X is the total function defined by

δXppq :“

#
δXpp´ 1q if p´ 1 P dompδXq

K otherwise.

Let f :Ď X Ñ Y be a multi-valued function. We define the completion of f as the total
multi-valued function f : X Ñ Y such that

fpxq “

#
fpxq if x P dompfq,

Y otherwise.

Well known problems in the Weihrauch lattice

We now introduce some problems in the Weihrauch lattice highlighting some results on them. Let
limX :Ď pXqN Ñ X, ppnqnPN ÞÑ lim pn be the single-valued function whose domain consists of all
converging sequences in X. In case X “ NN, we just write lim instead of limNN . The following
proposition connects f and its jump via lim.

Proposition I.6.25 ([BGM12, Corollary 5.16 and 5.17]). For every problem f , f 1 ďW f ˚ lim
and, if f is a cylinder, f 1 ”W f ˚ lim.

Notice that f ˚ lim ďW f does not hold in general. The function lim has also another convenient
characterization used both in Chapter II and Chapter III, namely the Turing jump operator J :
NN Ñ NN, p ÞÑ p1. By [BDP12, Lemma 8.9], lim ”sW J.

We continue with decision problems, i.e. problems having codomain t0, 1u. We begin presenting
those solving Γ-complete or Γ̌-complete decision problem.

Definition I.6.26 (Limited principle of omniscience). The problem LPO : 2N Ñ t0, 1u is
defined as LPOppq :“ 1 if and only if pDnqpppnq “ 1q.
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It is immediate from the definition that we can think of LPO as the problem of answering yes or
no to a Σ0,p

1
or Π0,p

1
question.

Similarly, for every n ą 0 the function LPOpnq : NN Ñ t0, 1u answers yes or no to a Σ0,p
n`1

or

Π0,p
n`1

question. Usually, in case n “ 1 or n “ 2 we write LPO1 and LPO2.
Notice that LPO and lim are closely related as the next theorem shows.

Theorem I.6.27 ([BGP21, Theorem 6.7 and Proposition 6.10]). For every n, limpnq ”sW

{
LPOpnq.

To conclude the definitions of Γ-complete or Γ̌-complete decision problems, we introduce WF :
TrÑ t0, 1u as WFpT q “ 1 if and only if T PWF . Analogously to LPO, we can think of WF as the
problem answering yes or no to questions which are Π1

1 or Σ1
1 in the input. In the literature, WF

was introduced under different names: the same notation appears in [Hir19, SV22], while [BG21]
uses WFT and [KMP20, MV21] use χΠ1

1
.

We anticipate that yWF is the natural candidate to represent Π1
1´CA0 in the Weihrauch lattice,

but we postpone the discussion on the program connecting reverse mathematics and computable
analysis to Part 1 and in particular Chapter II. We just mention a convenient characterization of
yWF in terms of hyperjump of a set. The hyperjump of A Ď N can be defined, following [Rog87,
Definition 4.12], as

HJpAq :“ tz : ϕA
z is the characteristic function of a well-founded treeu.

The well known fact that HJpAq is a Π1,A
1

-complete subset of the natural numbers implies that
yWF ”sW HJ. We continue the discussion on problems in the Weihrauch lattice corresponding to
statements that, in reverse mathematics, are equivalent to Π1

1´CA0 in Chapter II, and we move
to other well-studied problems.

We now move our attention to choice problems, which have emerged as very significant mile-
stones in the Weihrauch lattice. For a computable metric space X and a class Γ as the ones in
Definition I.3.27, let Γ-CX :Ď ΓpX q Ñ X be the problem that given as input a nonempty set
A P ΓpX q outputs a member of A. When Γ “ Π0

1 we just write CX , and we denote by Ck the
choice problem on k :“ t0, . . . , k ´ 1u. The same problem with domain restricted to singletons is
denoted by Γ-UCX . It is well known that for every n ą 0, pΠ0

n-CNq
1 ”W Π0

n`1-CN.
Using the tree representation of closed sets, CNN can be formulated as the problem of computing

a path through some T P IF ; UCNN is the same problem with domain restricted to UB. Notice
that both problems are closed under compositional product by [BDP12, Theorem 7.3]: furthermore
CNN ”W Σ1

1-CNN , UCNN ”W Σ1
1-UCNN (see [KMP20]) and, similarly, CNN ”W Σ1

1-CNN . As noticed
in [KMP20] and mentioned in the introduction, CNN and UCNN are among the problems that
correspond to ATR0. We need the following proposition.

Proposition I.6.28. {Π1
1
-UCN ”W

{Π1
1
-CN ”W UCNN ăW

{Σ1
1
-CN ăW CNN .

Proof. The reduction Π1
1-UCN ďW Π1

1-CN is trivial; by the effective version of the Novikov-
Kondo-Addison uniformization theorem [Mos82, Theorem 4E.4], we obtain Π1

1-CN ďW Π1
1-UCN.

Hence, {Π1
1
-CN ”W

{Π1
1
-UCN.

By [KMP20, Theorem 3.11] UCNN ”W
{Π1
1
-UC2 (in [KMP20] {Π1

1
-UC2 is denoted by ∆1

1-CA).

Since {Π1
1
-UC2 ďW

{Π1
1
-UCN is trivial, we obtain UCNN ďW

{Π1
1
-UCN. To complete the proof of

the equivalence between the first three problems, it suffices to show that Π1
1-UCN ďW

{Π1
1
-UC2

and then notice that {Π1
1
-UC2 is parallelizable. We can think of an input for Π1

1-UCN as a
sequence pT iqiPN P TrN such that exactly one T i belongs to WF . For every i, we compute
the pair of trees pSi, Riq where Si :“ ‘

jďi
T j and Ri :“ ‘

jąi
T j : notice that exactly one of Si
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and Ri P WF . We can view the sequence pSi, RiqiPN as an instance of {Π1
1
-UC2. Finally, let

n :“ min
 
m : {Π1

1
-UC2ppS

i, RiqiPNqqpmq “ 0
(
. Clearly Tn PWF .

The last two (strict) reductions are [KMP20, Theorem 4.3] and [ADK21, Theorem 3.34].

For further reference, we collect here some facts which are implicit in the literature.

Proposition I.6.29. If Γ P tΣ,Π,∆u and Λ P tΠ,∆u then

1UCNN ”W Γ1

1-UCN ”W pΓ1

1-UCNq
u˚ ”W Λ1

1-CN ”W pΛ1

1-CNq
u˚ ăW

1CNN ”W Σ1

1-CN.

Proof. The equivalence 1CNN ”W Σ1
1-CN is proved in [GPV21, Proposition 2.4]; essentially the

same proof shows that 1UCNN ”W Σ1
1-UCN.

If A Ď N is a singleton then n P A if and only if p@m ‰ nqpm R Aq. This implies that A is Σ1
1 if

and only if A is Π1
1 if and only if A is ∆1

1 and this shows that Σ1
1-UCN ”W Π1

1-UCN ”W ∆1
1-UCN.

These equivalences, together with Proposition I.6.28 and Theorem I.6.10 allow us to derive all
the stated equivalent characterizations of 1UCNN .

Since UCNN is parallelizable and UCNN ăW
{Σ1
1
-CN (Proposition I.6.28), we obtain that

Σ1
1-CN ďW UCNN and hence 1UCNN ăW

1CNN .

Proposition I.6.30. For every n,

(i) 1plimpnqq ”W Π0
n`1-CN ”W pLPOpnqqu˚ ăW

1plimpn`1qq;

(ii) Π0
n`1-CN ďW LPOpn`1q;

(iii) 1plimpnqq ăW Π1
1-CN ”W

1UCNN .

Proof. The equivalences in piq are from [SV22, Theorem 7.2]. It follows from [SV22, Theo-

rem 5.10(5)] that
{

LPOpnq
u˚

”W

{
LPOpnq ”W limpnq; since limpnq ăsW limpn`1q this implies the

nonreductions in piq and piiq.
The equivalence in piiiq is from Proposition I.6.29, while the strictness follows from piq.
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Comparing problems via Weihrauch

reducibility





The Weihrauch lattice, with a focus
on Π1

1
´CA0

In §I.2 and I.6 we have introduced computable analysis and Weihrauch reducibility, while in §I.5 we
presented the program of reverse mathematics. The next chapter (and partly Chapter III) explore
the interconnections between these two areas. The program aiming to provide a bridge between
computable analysis and reverse mathematics via the framework of Weihrauch reducibility was
initiated by Gherardi and Marcone in [GM09]. The starting point is noticing that many theorems
from “ordinary mathematics” have the following Π1

2 form

p@x P Xqpϕpxq ùñ pDy P Y qpψpx, yqqq.

This formulation has a natural translation as a computational problem: given an instance x P X
satisfying ϕpxq, the task is to find a solution y P Y such that ψpx, yq. A computational problem
can be naturally rephrased as a multi-valued function f :Ď X Ñ Y (see Definition I.2.3) where,
for every x P X such that ϕpxq, fpxq :“ ty P Y : ψpx, yqu. The interpretation of theorems
as multi-valued functions/problems, allows us to compare their uniform computational content
using the framework of Weihrauch reducibility and this shows a close connection between reverse
mathematics and computable analysis. One of the main topics of this part is the prosecution of
this program at the “higher levels” of reverse mathematics. Indeed, a main theme in this area is
the identification of some “analogs” of the big-five axiom systems of reverse mathematics in the
Weihrauch lattice. Most of the work has been done for the first three, and we can summarize the
results obtained in this area (informally) as follows:

• RCA0 “corresponds” to id;

• WKL0 “corresponds” to WKL (that is Weihrauch equivalent to C2N);

• ACA0 “corresponds” to iterations of the jump of lim.

Less work has been done in finding the Weihrauch “analog” of ATR0 and Π1
1´CA0. In [BKMP16],

Marcone raised the question “What do the Weihrauch hierarchies look like once we go to very high
levels of reverse mathematics strength?”: we start discussing the picture for ATR0. The situation
here is more “messy” than the one for RCA0, WKL0 and ACA0, in the sense that ATR0 has more
“natural” analogs of different computational strength in the Weihrauch lattice. One of the reasons
is that the translation of a mathematical theorem to a computational problem is not unique. As
observed by [KMP20, §6], at the level of ATR0 many theorems have a disjunctive form ϕ _ ψ,
and when formulating them as computational problems, we can interpret them in two different
ways, namely either  ϕ ùñ ψ or  ψ ùñ ϕ. For example, the perfect tree theorem, which in
reverse mathematics is equivalent to ATR0 (see [Sim09, Theorem V.4.3]), states that a tree with
uncountably many paths has a perfect subtree. This leads to two different problems:

• given a tree with uncountably many paths output a nonempty perfect subtree of it;

• given a tree with countably many paths output a witness of the countability, i.e. enumerate
the paths in it.

In [KMP20, Proposition 6.3, Theorem 6.4], the authors show that the first problem is Weihrauch
equivalent to CNN , while (variations of) the second one to UCNN and hence, by Proposition I.6.28
they belong to different Weihrauch degrees. In §II.1 and §II.3 we study similar problems related
to perfect subsets of arbitrary metric spaces studying how these relate to the problems considered
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in [KMP20]. Notice that also other theorems at the level of ATR0 have a different computational
strength depending on how they are formulated: this is the case for open determinacy (see [Sim09,
Definition V.8.1] for its definition and [KMP20, §6.2] for results on the Weihrauch degree of the
corresponding problems) and for the existence of jump hierarchies along well-orders. The problems
related to the latter have been introduced and studied in [KMP20] and [Goh19, LG19]. Other ex-
amples can be found again in [KMP20] where the authors also considered principles related to the
(strong) comparability of well-orders, in [Goh19, LG19, Goh20] where Goh studied the weak com-
parability of well-orders and the König duality theorem. Anglès D’Auriac and Kihara in [ADK21]
studied variants of Σ1

1-CN while Marcone and Valenti in [MV21] studied infinite dimensional gen-
eralizations of Ramsey’s theorem like the open and clopen Ramsey theorem. To summarize the
results we have discussed so far around ATR0 (and some that we have not mentioned, but that can
be found in the papers cited above) we can say that:

• the analogues of ATR0 are around UCNN , CNN and TCNN .

The situation for Π1
1´CA0 seems to be clearer: [Sim09, Theorem VI.1.1] tells us that the

subsystem of second order arithmetic Π1
1´CA0 is equivalent, over RCA0 to the statement “If

tTi P: i P Nu is a sequence of trees, then there is a set Z such that, for all n P N, n P Z if and
only if rTns “ H”. We have already anticipated in §I.6, that such a statement has a natural
correspondent in the Weihrauch lattice, that has been studied in some of the papers mentioned

above, namely yWF. Despite this natural correspondence, we show that, even in this case, we
have some differences with respect to the results in reverse mathematics. Other problems at this
level, related to trees and graphs, have been studied for example in [Hir19] and [BHW21] but,
to the best of our knowledge, Chapter II beyond studying also problems at the level of ATR0, is
the first systematic study of problems at the level of Π1

1´CA0 in the Weihrauch lattice. Chapter
III is focused on the study of graph related problems in general, and some of these, in reverse
mathematics, are equivalent to Π1

1´CA0, see [HL96, BHW21].



II
The Cantor-Bendixson theorem

All the results in this chapter are a joint work with Alberto Marcone and Manlio Valenti and can
be found in [CMV22].

Here we study the uniform computational strength of theorems arising in classical descriptive
set theory related to perfect subsets of Polish spaces. The paper is organized as follows. In §II.1
we study multi-valued functions related to the perfect set and perfect tree theorem in Baire and
Cantor space, while in §II.2 we consider problems related to the Cantor-Bendixson theorem in the
same setting. In §II.3 we study the problems considered in §II.1 and §II.2 for arbitrary computable
metric spaces, while §II.4 lists some open problems that remain to be solved. Figures II.1 and II.2
summarize some of our results. The precise definitions of the various functions are given in due
time.

UCNNScList2N

PST2N ”W PSTNN

CNN ”W PTTNN ”W PTT2N

PKNN ”W wScListNN ”W wCBNN ”W CB2N

ScListNN

CBNN

yWF ”W PK ”W wCB ”W CB

Figure II.1: Some multi-valued functions studied in this chapter. Black arrows represent Weihrauch
reducibility in the direction of the arrow. Red arrows mean that the existence of a reduction is
still open. If a function cannot be reached from another one following a path of arrows we know
that there is no reduction between the two functions.
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List2N,ăω wList2N ”W wList2N,ďω

List2N wScList2N

UCNN ”W wListNN ”W ListNN ScList2N

CNN wScListNN ”W PKNN

ScListNN

Figure II.2: Multi-valued functions related to listing problems in the Weihrauch lattice. The arrows
have the same meaning as in Figure II.1.

II.1 The perfect set theorem in NN and 2N

II.1.1 Perfect sets

The following multi-valued function was introduced and studied in [KMP20].

Definition II.1.1. The multi-valued function PTT1 :Ď Tr Ñ Tr has domain tT P Tr : T P
T ąℵ0u and is defined by

PTT1pT q :“ tS P Tr : S Ď T ^ S is perfectu.

We also study PTT1æTr2, the restriction of PTT1 to Tr2. We now define the same problem for
closed sets.

Definition II.1.2. Let X be a computable Polish space. The multi-valued function PSTX :Ď
A´pX q Ñ A´pX q has domain tA P A´pX q : |A| ą ℵ0u and is defined as

PSTX pAq :“ tP P A´pX q : P Ď A^ P is perfectu.

Using the tree representation of closed sets in NN, we can think of a name for an input of PSTNN

as T P T ąℵ0 and a name for a solution of PSTNNprT sq as S P Tr such that rSs Ď rT s and rSs is
perfect. Notice that PSTNNprT sq contains PTT1pT q, but includes also every tree with perfect body
contained in rT s.

Theorem II.1.3. PTT1æTr2 ”sW PTT1 and PST2N ”sW PSTNN .
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Proof. The reduction PTT1æTr2 ďsW PTT1 is trivial.
We now prove that PST2N ďsW PSTNN . Let T P Tr2 and let the forward functional be

the identity. Let P be a name for PSTNNprT sq: even if P P Tr, notice that rP s is perfect and
rP s Ď 2N. Let ΨpP q “ tσ P P : σ P 2ăNu and notice that ΨpP q is a name for an element
PST2NprT sq.

For the other direction, PTT1 ďsW PTT1æTr2 is witnessed by the maps ρ2N (forward) and
ρNN (backward) from Definition I.1.5. Let T P T ąℵ0 and let P P PTT1æTr2pρ2NpT qq. By
Lemma I.1.9, ρNNpP q is a perfect tree. To show that ρNNpP q Ď T , it suffices to prove that
rρNNpP qs Ď rT s. Let f P rρNNpP qs: by Lemma I.1.8(6) we have that ρ2Npfq P rP s Ď rρ2NpT qs
and by Lemma I.1.8(4) we conclude that f P rT s.

The proof that PSTNN ďsW PST2N is similar.

Lemma II.1.4. UCNN ăsW PSTNN and PSTNN ďW UCNN .

Proof. Since PSTNN ”sW PST2N (Theorem II.1.3), we prove the lemma with PST2N in place of
PSTNN .

To show UCNN ďsW PST2N , fix T P UB and let p0 be the unique element of rT s. Let
S :“ ρ2NpExplpT qq and notice that, by definition of Explp¨q and by Lemma I.1.8(4), all paths in
rSs are either eventually zero or are of the form ρ2Npp0 ‘ qq for some q P 2N.

Fix a name P for an element of PST2NprSsq. We claim that all the paths in rP s are of the
form ρ2Npp0 ‘ qq for some q P 2N. To prove this, we need to rule out that some eventually zero
path belongs to rP s. Let r P 2N be of the form σ0N, where σ “ xy or σp|σ| ´ 1q “ 1. Notice that
ρ2NpρNNpσqq “ σ. Let

k :“

#
p0p|ρNNpσq|{2q if |ρNNpσq| is even,

1 otherwise,

and set m “ |σ| ` k ` 1. It suffices to prove that

p@q P 2Nqprrms Ć ρ2Npp0 ‘ qqq,

so that all paths in rSs which extend rrms are eventually zero and Srrms P T
ďℵ0 , which implies

r R rP s. Fix q P 2N:

• if σ Ć ρ2Npp0 ‘ qq then rrms Ć ρ2Npp0 ‘ qq;

• if σ Ă ρ2Npp0 ‘ qq then either σ0k1 or σ0k´11 (in case |ρNNpσq| is odd and qpp|ρNNpσq| ´
1q{2q “ 0) is a prefix of ρ2Npp0 ‘ qq which is incomparable with rrms “ σ0k`1; hence
rrms Ć ρ2Npp0 ‘ qq also in this case.

This concludes the proof of the claim.
We show how to computably retrieve p0 from P . To find p0p0q we search for n such that

p@τ P 2n`1qpPτ P IF2 ùñ τ “ 0n1q.

Indeed, the previous claim implies that the unique n satisfying this condition is p0p0q. Since
IF2 is a Π0

1 set (Theorem I.3.39piq), the above condition is Σ0
1 and at some finite stage we find

p0p0q.
Suppose now that we computed the first i coordinates of p0, i.e. p0ris. We generalize the

previous strategy to compute p0piq. Let

Ai :“ t0
p0p0q1ξ00

p0p1q1ξ1 . . . ξi´20
p0pi´1q1ξi´1 P P : p@j ă iqpξj P t1, 01uqu
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(recall that ρ2Np0q “ 1 and ρ2Np1q “ 01). Informally, the ξj ’s come from the interleaving of
sequences in T with sequences in 2ăN. Notice that Ai is finite and nonempty; moreover, there
exists σ P Ai which is the prefix of some path in rP s. We search for n satisfying the Σ0

1 property

p@σ P Aiqp@τ P 2
n`1qpPστ P IF2 ùñ τ “ 0n1q

As before the claim implies that the unique n satisfying this condition is p0piq. The main
difference with the case i “ 0 is that it may be the case that different sequences in Ai are
prefixes of paths in rP s that come from the interleaving of p0 with different elements of 2N.
However, any such σ provides the correct n “ p0piq. This concludes the proof of the reduction.

To show that PST2N ăW UCNN , recall from §I.6 that lim˚UCNN ”W UCNN , so it suffices to show
that CNN ďW lim ˚ PST2N . From [KMP20, Proposition 6.3] and Theorem II.1.3, it follows that
CNN ”W PTT1 ”W PTT1æTr2 and hence it is enough to show that PTT1æTr2 ďW lim ˚ PST2N .
From [NP19], we know that lim is equivalent to the function that prunes elements in Tr2. So
let T P T ąℵ0

2
be the input of PTT1æTr2 and let P be a name for an element of PST2NprT sq:

pruning P with lim is enough to obtain a perfect subtree of T .

Recall that trees are represented via their characteristic functions and notice that s P 2ăN

is a prefix of a (name for a) tree if and only if tτ : spτq “ 1u is a tree, which is a computable
property.

Lemma II.1.5. 1PSTNN ”W Π1
1-CN.

Proof. The fact that Π1
1-CN ďW

1PSTNN follows from the fact that 1UCNN ”W Π1
1-CN by

Proposition I.6.29 and UCNN ăsW PSTNN by Lemma II.1.4.
For the opposite direction, suppose that f is a first-order problem such that f ďW PSTNN

as witnessed by the computable maps Φ and Ψ. Let p be a name for an input x of f . Then
Φppq “ T where T P T ąℵ0 . Consider the set

Prefixes :“ ts : s is a prefix of a tree ^Ψppr|s|s, sqp0qÓ ^ p@τqpspτq “ 0 ùñ Tτ P T
ďℵ0qu.

Since T ďℵ0 is a Π1
1 set (see Theorem I.3.39piiq), Prefixes is a Π1,T

1
subset of N.

We prove that Prefixes is nonempty. Let q be a name for the perfect kernel of rT s, which
belongs to PSTNNprT sq. Let t be the least stage such that Ψpprts, qrtsqp0q Ó. Then, if qpτq “ 0
then Tτ P T

ďℵ0 (otherwise Tτ contains some perfect subset of T contradicting that q is a name
for the perfect kernel of rT s). This proves that qrts P Prefixes.

Thus, Prefixes is a valid input for Π1
1-CN. The argument above shows that every s P

Prefixes is a prefix of a name for the perfect kernel of rT s, which belongs to PSTNNprT sq. Since
f is first-order, for any such s, Ψppr|s|s, sqp0q P fpxq. This shows that f ďW Π1

1-CN.

Our results about PST2N and PSTNN are summarized in the following theorem.

Theorem II.1.6. UCNN ăsW PST2N ”sW PSTNN ăsW CNN

Proof. The first strict reduction and the first equivalence were proven in Lemma II.1.4 and
Theorem II.1.3 respectively. The last reduction follows from the fact PTT1 ”W CNN ([KMP20,
Proposition 6.3]) and a solution for PTT1 is also a solution for PSTNN . Strictness follows by
Lemma II.1.5 as, by Proposition I.6.29, Π1

1-CN ăW
1CNN .

II.1.2 Listing problems

We now move our attention to the functions that, given in input a countable closed set of a
computable metric space, output a list of all its elements. There are different possible meanings
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of the word ‘list’, and these correspond to different functions. For Baire and Cantor space, some
of these functions were already introduced and studied in [KMP20]. For trees and closed sets, we
made a distinction between the perfect tree and the perfect set theorem; on the other hand, if
T P Tr and A P A´pN

Nq are such that A “ rT s then listing the elements in rT s and listing the
elements in A are the same problem.

We generalize [KMP20, Definition 6.1] from NN to an arbitrary computable metric space.

Definition II.1.7. Let X be a computable metric space. The two multi-valued function
wListX :Ď A´pX q Ñ p2ˆ X qN and ListX :Ď A´pX q Ñ Nˆ p2ˆ X qN with the same domain
tA P A´pX q : |A| ď ℵ0u are defined by

wListX pAq :“ tpbi, xiqiPN : A “ txi : bi “ 1uu,

ListX pAq :“ tpn, pbi, xiqiPNq : A “ txi : bi “ 1u^ ppn “ 0^ |A| “ ℵ0q _ pn ą 0^ |A| “ n´ 1qqu.

In the remaining part of this chapter, we sometimes need to consider finite prefixes σ P NăN

of some infinite sequence f P NN defined as the join of countably many infinite sequences, i.e.
f :“ ‘iPNgi where gi P N

N: furthermore given σ, we want to retrieve the prefix of some specific gi.
For these purposes, we give the following definition, related to the notation σ :“ dvtpτ0, . . . , τmq
that can be found in [MV21, Theorem 4.11].

Definition II.1.8. Given σ P NăN, we define ℓσ :“ minti : xi, 0y ě |σ|u. Then, for every
i ă ℓσ, we define πipσq :“ xσpxi, jyq : xi, jy ă |σ|y where |πipσq| “ maxtj : xi, jy ă |σ|u.

Informally, thinking of σ as the prefix of some f :“ ‘iPNgi, we obtain that ℓσ is the least i such
that σ contains a prefix of gi and πipσq is the prefix of gi contained in σ.

Remark II.1.9. Notice that there is a slight difference between List (there was no subscript
there because only NN was considered) in [KMP20, Definition 6.1] and our definition of ListNN .
Indeed, List :Ď A´pN

Nq Ñ pNNqN is defined by stipulating that pn, ppiqiPNq P ListpAq if and
only if either n “ 0, A “ tpi : i P Nu and pi ‰ pj for every i ‰ j, or else n ą 0, |A| “ n ´ 1
and A “ tpi : i ă n´ 1u.

In particular, the output of List is always injective: this version is apparently stronger than
ListNN because the latter allows repeating elements of the form p1, piq for pi P A. We briefly
discuss why List ”sW ListNN .

We claim that given pn, pbi, piqiPNq P ListNNpAq we can compute some I such that pn, Iq P
ListpAq. Let L :“ pbipiqiPN and recall that pbipiq

´ “ pi. At any finite stage s we inspect the
finite prefix Lrss of L where πipLrssq

´ Ă pi. We start listing πipLrssq
´ in I when we see that

πipLrssqp0q “ 1 and πipLrssq
´ Ę πjpLrssq

´ for every j ă i such that πjpLrssqp0q “ 1.
If n ą 0 (i.e. A is finite) after we listed n´ 1 elements we can add to I any element in NN

having as first digit 0. If n “ 0 (i.e. A is infinite) then we always find new elements to list in
I, and we continue forever. Since we are listing each pi only if pi ‰ pj for every j ă i with
bj “ 1, we have that I lists injectively all the elements of A.

We now focus on listing problems in Cantor space, comparing wList2N and List2N with the
analogous problems in Baire space and with the functions List2N,ăω and wList2N,ďω considered in
[KMP20, §6.1].

Definition II.1.10. The multi-valued functions

List2N,ăω :Ď A´p2
Nq Ñ p2NqăN and wList2N,ďω :Ď A´p2

Nq Ñ p2NqN

have domains tA P A´p2
Nq : |A| ă ℵ0u and tA P A´p2

Nq : |A| ď ℵ0^A ‰ Hu respectively and
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are defined by

List2N,ăωpAq :“ tppiqiăn : A “ tpi : i ă nuu;

wList2N,ďωpAq :“ tppiqiPN : A “ tpi : i P Nuu.

The following theorem establishes the relations between the listing problems defined so far: the
results stated in this theorem are collected with other ones in Figure II.2.

Theorem II.1.11.

• List2N,ăω |W wList2N,ďω ”W wList2N and

• wList2N,ďω, List2N,ăω ăW List2N ăW UCNN ”W wListNN ”W ListNN .

Since all the problems involved are cylinders all the reductions mentioned above are strong.

Proof. The fact that List2N,ăω |W wList2N,ďω is [KMP20, Corollary 6.15].
To prove that wList2N,ďω ďW wList2N , let A P A´p2

Nq be countable and nonempty and let
pbi, piqiPN P wList2NpAq. Then, tpi : bi “ 1u can be easily rearranged, and possibly duplicated,
to produce an element of wList2N,ďωpAq.

For the opposite direction, let A P A´p2
Nq be countable and possibly empty. Define A1 :“

t0Nu Y t1x : x P Au: A1 is still countable but nonempty, i.e. a suitable input for wList2N,ďω. Let
ppiqiPN P wList2N,ďωpA

1q: then ppip0q, p
´
i qiPN P wList2NpAq.

The reductions wList2N ďW List2N and List2N,ăω ďW List2N are immediate. Strictness follows
from incomparability of wList2N and List2N,ăω.

By Remark II.1.9 and [KMP20, Theorem 6.4] we obtain that UCNN ”W wListNN ”W ListNN .
The reduction List2N ďW ListNN is obvious. To prove that ListNN ďW List2N we recall that

by Proposition I.6.30piq and piiiq Π0
3-CN ăW Π1

1-CN ”W
1UCNN . It thus suffices to show that

1List2N ďW Π0
3-CN.

Let f be a first-order function and suppose that f ďW List2N as witnessed by the maps Φ
and Ψ. Let p be a name for an input of f . Then Φppq “ T where T P T ďℵ0

2
. Let ϕpn, T q be

the formula pDσ0, . . . , σn´1qp@i ‰ j ă nqpσi | σj ^ Tσi
P IF2q. Notice that IF2 is a Π0

1 set (see
Theorem I.3.39piq) and hence ϕ is Σ0

2.
Let Prefixes be the set of all pn, pτ, σqq P Nˆ 2ăN ˆ 2ăN such that

• |τ | “ ℓσ;

• Ψ
`
prσs, xτpiq, πipσqyiăℓσ

˘
p0qÓ;

• p@i ă ℓσqpτpiq “ 1 ùñ Tπipσq P IF2q;

• pn “ 0^ p@kqpϕpk, T qqq _ pn ą 0^ ϕpn´ 1, T q ^  ϕpn, T qq.

Elements in Nˆ 2ăN ˆ 2ăN can be coded as natural numbers, hence Prefixes is a Π0,T
3

subset
of N.

We claim that Prefixes ‰ H, so that Prefixes is a valid input for Π0
3-CN. Let pn, Lq be

an element of List2NprT sq and let s be the least stage such that Ψ
`
prss, xn, Lrssy

˘
p0q Ó. Then

n “ 0 implies that |rT s| “ ℵ0, while if n ą 0 then |rT s| “ n ´ 1. Furthermore, Lrss is of
the form pτpiq, πipσqqiăℓσ for some pτ, σq P 2ăN ˆ 2ăN such that |τ | “ ℓσ. It is immediate
that if τpiq “ 1 then πipσq is the initial segment of a path in T . We obtain that pn, pτ, σqq P
Prefixes, and this concludes the proof of the claim. The same argument shows that every
pn, pτ, σqq P Prefixes computes a prefix for an element of List2NprT sq. Since f is first-order,
Ψ
`
prσs, xn, pτpiq, πipσqqyiăℓσ

˘
p0q P fpxq. This shows that f ďW Π0

3-CN.
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Lemma II.1.12. wList2N is parallelizable.

Proof. It suffices to show that {wList2N ďW wList2N . Given pTnqnPN, an input for {wList2N , i.e. a
sequence of binary trees with countable body, compute T :“

Ů
b
nPN T

n and notice that T P Tr2
(see Remark I.1.3). Given pbi, piq P wList2NpT q, it is straightforward to check that tpbi, piq :
bi “ 1^ 0n1 Ă piu P wList2NpT

nq.

We conclude this section by characterizing the first-order part of wList2N .

Lemma II.1.13. 1wList2N ”W CN.

Proof. We first show that 1wList2N ďW CN. Let f be a first-order function such that f ďW

wList2N as witnessed by the maps Φ and Ψ. Let p be a name for an input of f . Then Φppq “ T

where T P T ďℵ0

2
. Let Prefixes be the set of all pτ, σq P 2ăN ˆ 2ăN such that

• |τ | “ ℓσ;

• Ψ
`
prσs, xτpiq, πipσqyiăℓσ

˘
p0qÓ in |σ| steps;

• p@i ă ℓσqpτpiq “ 1 ùñ Tπipσq P IF2q.

Elements in 2ăN ˆ 2ăN can be coded as natural numbers and since IF2 is a Π0
1 set (Theo-

rem I.3.39piq), Prefixes is a Π0,T
1

subset of N.
We claim that Prefixes ‰ H, so that Prefixes is a valid input for CN. Let S be an element

of wList2NprT sq and let n be the least stage such that Ψpprns, Srnsqp0q Ó. Then Srns is of the
form xτpiq, πipσqyiăℓσ for some pτ, σq P 2ăN ˆ 2ăN such that |τ | “ ℓσ. It is immediate that if
τpiq “ 1 then πipσq is the initial segment of a path in T . We obtain that pτ, σq P Prefixes, and
this concludes the proof of the claim.

The same argument shows that every pτ, σq P Prefixes computes a prefix of a name for
wList2NprT sq. Since f is first-order, Ψ

`
prσs, xτpiq, πipσqyiăℓσ

˘
p0q P fpxq. This shows that f ďW

CN.
We now show that CN ďW wList2N . Let A P A´pNq be nonempty, and let Acrss denote the

enumeration of the complement of A up to stage s. We compute the tree

T :“ txyu Y t0n10s : n R Acrssu.

Notice that for every n, n P A if and only if 0n10N P rT s. Given pbi, piqiPN P wList2NprT sq, we
computably search for some i such that bi “ 1 and 0n1 Ă pi for some n P N (such an i exists
because A is nonempty). By construction, n P CNpAq.

II.2 Functions arising from the Cantor-Bendixson Theorem

II.2.1 Perfect kernels

We now move to the study of functions related to the perfect kernel.

Definition II.2.1. Let PK : TrÑ Tr be the total single-valued function defined as PKpT q :“
S where S is the perfect kernel of T . We denote by PKæTr2 the restriction of PK to Tr2.

Similarly, for a computable Polish space X , let PKX : A´pX q Ñ A´pX q be the total
single-valued function defined as PKX pAq :“ P where P is the perfect kernel of A.

Notice that in [Hir19], Hirst already introduced PK, proving the following theorem.
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Theorem II.2.2. yWF ”sW PK.

The following proposition summarizes some well known facts about the relationship between
CNN and (the parallelization of) WF.

Proposition II.2.3. WF ďW CNN and CNN ăsW
yWF.

Proof. The fact that WF ďW CNN was already noticed in [KMP20, page 1033].

To show that CNN ďW
yWF it suffices to notice that PTT1 ”W CNN ([KMP20, Proposition

6.3]) and PK clearly computes PTT1. The strictness of the reduction is immediate by the first
part of this proposition and the fact that CNN is parallelizable.

Recall from I.6 that J and HJ are respectively the Turing jump operator and the hyperjump

operator, and that lim ”sW J and yWF ”sW HJ.

Proposition II.2.4. lim˚yWF ďW
yWF and hence yWF is not closed under compositional product.

Proof. Towards a contradiction, suppose that lim ˚yWF ďW
yWF. By the definition of composi-

tional product (Definition I.6.6) and the facts that lim ”sW J and J ˝yWF is defined, let Φ and

Ψ witness J ˝yWF ďW
yWF.

Let pT iqiPN be a computable list of all computable elements Tr and notice that

yWFppT iqiPNq ”T HJpHq.

Then, ΦppT iqiPNq is a computable list of trees and yWFpΦppT iqiPNqq is Turing reducible to

HJpHq ”T HJpΦppT iqiPNqq. Therefore, Ψ
`
pT iqiPN,yWFpΦppT iqiPNqq

˘
ďT HJpHq as well. On

the other hand, pJ ˝yWFqppT iqiPNq computes the Turing jump of HJpHq, which is not Turing
reducible HJpHq.

As we did when dealing with PSTNN and PST2N , to study PKNN and PK2N we use the tree
representation of A´pN

Nq and A´p2
Nq. The following is the analog of Theorem II.1.3.

Proposition II.2.5. PKæTr2 ”sW PK and PK2N ”sW PKNN .

Proof. We follow the pattern of the proof of Theorem II.1.3.
PKæTr2 ďsW PK is trivial and PK2N ďsW PKNN is witnessed by the same functionals of the

proof of PST2N ďsW PSTNN in Theorem II.1.3. Given T P Tr2, and a name P for PKNNprT sq
we get rΨpP qs “ rP s. Hence, ΨpP q is a name for PK2NpT q.

For the opposite directions, we only deal with PK ďsW PKæTr2, as the proof of PKNN ďsW

PK2N follows the same pattern. Again, the reduction is witnessed by the same functionals of
the analogous proof in Theorem II.1.3. Fix T P Tr and let P :“ PKpρ2NprT sqq. As before, set
ΨpP q :“ ρNNpP q. To prove the reduction, it suffices to show that |rT s z rρNNpP qs| ď ℵ0. We claim
that rT s z rρNNpP qs Ď tρNNpqq : q P rρ2NpT qs z rP s ^ pD

8iqpqpiq “ 1qu, which completes the proof
as the set on the right-hand side is countable. If p P rT s z rρNNpP qs, then by Lemma I.1.8(4)
and (6) we have that ρ2Nppq P rρ2NpT qs z rP s. Moreover, q :“ ρ2Nppq has infinitely many ones
and, by Lemma I.1.8(2), p “ ρNNpqq.
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Proposition II.2.6. PK2N and PKNN are (strongly) parallelizable.

Proof. To prove the statement, by Proposition II.2.5, it is enough to show that zPKNN ďsW PKNN .

Given pT iqiPN an input for zPKNN , let P be a name for PKNNp
“Ů

iPN T
i
‰
q. By the definitions of

perfect kernel and disjoint union of trees, we have that for every i, tσ : iaσ P P u is a name for
PKNNp

“
T i

‰
q.

Definition II.2.7. We define the multi-valued function WFS : TrÑ S as

WFSpT q :“

#
1S if T PWF ,

0S if T P IF .

The next proposition shows that the main functions we consider in this section are cylinders,
which implies that most reductions we obtain in this section are strong.

Proposition II.2.8. zWFS, yWF, PK, PKæTr2, PK2N and PKNN are cylinders.

Proof. All six functions are parallelizable (this is either obvious or is a consequence of Propo-
sition II.2.6 and Theorem II.2.2) and hence it is enough to show that id strongly Weihrauch

reduces to each of them. As zWFS ďsW
yWF ”sW PK ”sW PKæTr2 (Proposition II.2.5 and

Theorem II.2.2) and PK2N ”sW PKNN (Proposition II.2.5), it suffices to show that id ďsW
zWFS

and id ďsW PK2N .
For the first reduction let p be an input for id. For any i, j P N let

T xi,jy :“

#
H if ppiq “ j,

2ăN if ppiq ‰ j.

Let zWFSppT
xi,jyqi,jPNq “ paxi,jyqi,jPN. To compute ppiq we search for the unique j such that

axi,jy “ 1S (recall that the set of names for 1S is Σ0
1).

For the second reduction, recall that by Lemma II.1.4, UCNN ďsW PST2N , clearly PST2N ďsW

PK2N and id ďsW UCNN .

We now give a useful characterization of PKNN .

Theorem II.2.9. PKNN ”W
zWFS.

Proof. Recall that by Proposition II.2.5, PKNN ”W PK2N so that it suffices to show that

PK2N ”W
zWFS.

Let T P Tr2 be a name for an input of PK2N . Notice that tσ : Tσ P T ďℵ0

2
u is Π1,T

1
(see

Theorem I.3.39piiq) and hence, using Theorem I.3.39piq, we can compute from T a sequence
pSpσqqσP2ăN P TrN such that Spσq P WF if and only if Tσ P T ďℵ0

2
. Let A :“ tp P 2N :

p@nqpWFSpSpprnsqq “ 0Squ: since the set of names for 0S is Π0
1, A P A´p2

Nq and we can
compute U P Tr2 with rU s “ A. Notice that for any τ P U , τ is a prefix of a path through rU s
if and only if Tτ P T

ąℵ0 . Therefore, U is a name for PK2NprT sq.

To show that zWFS ďW PK2N , as PK2N is parallelizable it suffices to prove thatWFS ďW PK2N .
Let T P Tr be an input for WFS and notice that T P WF if and only if ExplpT q P WF if and
only if ρ2NpExplpT qq P T ďℵ0 . Hence, if S is a name for PK2Nprρ2NpExplpT qqsq, T P WF if and
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only if S P WF2. Since WF2 is a Σ0
1 set (see Theorem I.3.39piq), given S we can uniformly

compute a name for WFSpT q.

Proposition II.2.10. 1PKNN ”W Π1
1-CN ăW

1CNN ”W Σ1
1-CN ăW

1yWF ”W WFu˚.

Proof. Since clearly PSTNN ďW PKNN , by Lemma II.1.5 we obtain Π1
1-CN ”W

1PSTNN ďW

1PKNN . For the opposite direction, notice that the proof of 1PSTNN ďW Π1
1-CN in Lemma II.1.5

actually shows that 1PKNN ďW Π1
1-CN. In fact, the definition of Prefixes works also if T P

T ďℵ0 , and we already considered only prefixes of names for the perfect kernel of T .
Proposition I.6.29 tells us that Π1

1-CN ăW
1CNN ”W Σ1

1-CN. Moreover, Σ1
1-CN ăW WFu˚ as

{Σ1
1
-CN ďW CNN ăW

yWF by Propositions I.6.29 and II.2.3 and the fact that CNN is parallelizable.

On the other hand, 1yWF ”W WFu˚ is an instance of Theorem I.6.10.

Theorem II.2.11. PKNN ăW
yWF ”W PK ďW lim ˚ PKNN .

Proof. Given T P Tr, PKpT q is a name for PKNNprT sq: therefore PKNN ďW PK; strictness follows

from Proposition II.2.10. By Theorem II.2.2, yWF ”W PK.

To prove the last reduction, notice that PKæTr2 ”W
yWF (Proposition II.2.5) and PKNN ”W

PK2N (Theorem II.2.2), hence, to finish the proof, it suffices to show that PKæTr2 ďW lim˚PK2N .
From [NP19], we know that lim is equivalent to the function that prunes a binary tree. So
let T P Tr2 and let P be a name for PK2NprT sq: pruning P with lim is enough to obtain
PKæTr2pT q.

We do not know whether PK ”W lim ˚ PKNN (see Question II.4.1).

Proposition II.2.12. PSTNN ăW PKNN |W CNN .

Proof. The fact that PSTNN ďW PKNN is trivial. By Theorem II.2.11, yWF ďW lim˚PKNN while,
by the closure of CNN under compositional product, we get lim ˚ CNN ”W CNN : hence by Propo-
sition II.2.3 PKNN ďW CNN and a fortiori PKNN ďW PSTNN . For the opposite nonreduction, just
notice that by Proposition II.2.10 we have that 1CNN ďW

1PKNN .

Proposition II.2.13. PKNN ăW
zTCNN and hence the reduction WFS ďW TCNN in [BG21,

Proposition 11.4(1)] is actually strict.

Proof. From WFS ďW TCNN using Theorem II.2.9, we obtain PKNN ďW
zTCNN . Strictness

follows from Proposition II.2.12 as CNN ďW PKNN but clearly CNN ďW TCNN .

We end the subsection by characterizing the deterministic part of PKNN .

Proposition II.2.14. DetpPKNNq ”W UCNN .
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Proof. For the right-to-left direction, notice that UCNN is single-valued and, by Lemma II.1.4
and Proposition II.2.12 we have that UCNN ăW PKNN . For the converse, observe that 1PKNN ”W

Π1
1-CN (Proposition II.2.10) and {Π1

1
-CN ”W UCNN (Proposition I.6.28). This, together with

DetpPKNNq ďW
{1PKNN ([GPV21, Corollary 3.7]), concludes the proof.

II.2.2 Scattered lists

We now introduce the problems of listing the scattered part of a closed subset of a computable
Polish space. Their definition is similar to Definition II.1.7: the crucial difference is that the
domain includes all closed sets A of the computable Polish space X (not only the countable ones
as in Definition II.1.7) and we ask for the list of the elements of the scattered part of A.

Definition II.2.15. Let X be a computable Polish space. We define three multi-valued
functions wScListX : A´pX q Ñ 2ˆ XN, ScCountX : A´pX q Ñ N and ScListX : A´pX q Ñ

Nˆ p2ˆ X qN by

wScListX pAq :“ tpbi, xiqiPN : AzPKX pAq “ txi : bi “ 1uu,

ScCountX pAq :“

#
0 if AzPKX pAq is infinite,

|AzPKX | ` 1 if AzPKX pAq is finite.

ScListX pAq :“ wScListX pAq ˆ ScCountX pAq.

Remark II.2.16. Notice that if a closed set A of some T1 topological space has a finite set F
of isolated points, then AzF is perfect, and hence the scattered part of A is F . Equivalently,
if the scattered part of A is infinite then it contains infinitely many isolated points. Moreover,
the set of isolated points is always dense in the scattered part.

With a similar proof to that Proposition II.2.6, we obtain the following.

Proposition II.2.17. wScListNN and wScList2N are parallelizable.

One of the main results of this subsection is that wScListNN ”W PKNN . We first prove the easier
direction.

Lemma II.2.18. PKNN ďW wScListNN .

Proof. By Theorem II.2.9 we get PKNN ”W
zWFS and, by Proposition II.2.17, wScListNN is

parallelizable. So it suffices to show that WFS ďW wScListNN .
Given an input T P Tr for WFS, let S :“

Ů
b
iPN ExplpT q P Tr. If T PWF then ExplpT q PWF ,

so that by Remark I.1.3, rSs “ t0Nu. If instead T P IF , rExplpT qs is perfect and therefore
0N P PKNNprSsq and rSs is perfect, so that the scattered part of rSs is empty.

Hence, for every pbi, xiqiPN P wScListNNprSsq we obtain WFSpT q “ 1S if and only if pDiqpbi “
1q. Hence, a name for WFSpT q can be uniformly computed from pbi, xiqiPN.

We split the proof of wScListNN ďW PKNN in several lemmas. Before stating them we discuss
some results in [KMP20, §6.1] and correct an error there.

Remark II.2.19. Theorem 6.4 of [KMP20] states (in our notation) that UCNN ”W wListNN ”W

ListNN . The main ingredient of the proof of wListNN ďW UCNN is a variant of the Cantor-
Bendixson derivative that allows to carry out the process in a Borel way for countable closed
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sets. A single step of this process is called one-step mCB-certificate ([KMP20, Definition 6.5])
and all steps are then “collected” in a global mCB-certificate ([KMP20, Definition 6.6]).

Definition II.2.20 ([KMP20, Definition 6.5]). Let A P A´pN
Nq. A one-step mCB-certificate

for A is some c “ ppσc
i qiPN, pb

c
i qiPN, pp

c
i qiPNq P pN

ăN, 2,NNqN where

• for all i ‰ j, σc
i Ć σc

j and if i ă j then σc
i ă σc

j ;

• there exists i such that bci “ 1,

• Let HYPpAq be the set of hyperarithmetical elements of A. For all i:

– if bci “ 1, then pci P A and σc
i Ă pci ,

– if bci “ 0, then p@p P HYPpAqqpσc
i Ć pq and pci “ 0N,

– p@p, q P HYPpAqqpp, q P A^ σc
i Ă p, q ùñ p “ qq,

• for every σ P NăN, if p@i P Nqpσc
i Ę σq then pDp, q P Aqpp ‰ q ^ σ Ă p, qq.

For a one-step mCB-certificate c for A, the residue of c is tp P A : p@i P Nqpσc
i Ę pqu.

By [KMP20, Lemma 6.8], every nonempty countable A P A´pN
Nq has a one-step mCB-

certificate c: moreover the residue of c is the Cantor-Bendixson derivative of A. Furthermore,
if |A| ď ℵ0 then the one-step mCB-certificate of A is unique.

Definition II.2.21 ([KMP20, Definition 6.6], corrected). A global mCB-certificate for A P
A´pN

Nq is indexed by some initial I Ď N and consists of a sequence pcnqnPI and a strict linear
ordering ⊳ on I with minimum n0 (if nonempty) such that, denoting with Ai the residue of ci:

• cn0
is a one-step mCB-certificate for A;

• for every n P Iztn0u, cn is a one-step mCB-certificate for
Ş

i⊳nAi;

• for all p P HYPpAq, if p P A then pDi P Iqpp P Aiq;

• for every n,m P I, if n ă m then σcn
hpnq ă σcm

hpmq where hpnq :“ minti : bcni “ 1u.

Observe that Definition II.2.21 differs from [KMP20, Definition 6.6] by the addition of the
last requirement, which ensures that [KMP20, Corollary 6.9] holds: if |A| ď ℵ0, then A has a
unique global mCB-certificate. Indeed, the last condition forces a specific ordering (determined
by the code of the first finite sequence that is the prefix of an isolated path) on the sequence of
the one-step mCB-certificates, avoiding the different codings of the sequence allowed in [KMP20,
Definition 6.6] because it was possible to permute the ordering.

Notice that, assuming |A| ď ℵ0, the global mCB-certificate of A computes a list of the paths in

A. Since the global mCB-certificate of a countable closed set A is a Σ1,A
1

singleton, we obtain, as
in [KMP20, Theorem 6.4], that wListNN ďW UCNN .

The following lemmas involve the completion of a problem (Definition I.6.24).

Lemma II.2.22. The function F : Nˆ pNN Y NăNq Ñ NN such that for all e P N and p P
NN Y NăN

F pe, pq “

#
Φeppq if p P NN and p P dompΦeq,

K otherwise,
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is computable.

Proof. A computable realizer Φ1 for F can be defined recursively as follows. Suppose we have
defined Φ1pe, pqrss and let ts “ |tt ă s : Φeppqptq ą 0u|. Then set

Φ1pe, pqpsq “

#
Φeppqptsq ` 1 if Φeppqptsq Ó in less than s steps,

0 otherwise.

It is easy to check that this works.

Lemma II.2.23. wListNN ďW PKNN .

Proof. Since PKNN ”W PK2N is parallelizable (Propositions II.2.5 and II.2.6), it suffices to show

that wListNN ďW
zPK2N .

By [BG21, Lemma 5.1] A´pN
Nq is multi-retraceable, i.e. there is a computable multi-valued

function r : A´pNNq Ñ A´pN
Nq such that its restriction to A´pN

Nq is the identity. Given

A P A´pNNq, let G be the set of global mCB-certificates of rpAq P A´pN
Nq. By [KMP20,

Lemma 6.7], G is a Σ1,A
1

subset of NN and, in case |rpAq| ď ℵ0, by [KMP20, Corollary 6.9], G
is a singleton.

Let T be a name for G as described in §I.6, i.e. T P Tr is such that G “ tx : pDyqp@nqpxrns‘
yrns P T qu. Then, for every m, compute the tree

T‘m :“ NmYtσ : xσpmq, . . . , σp|m| ´ 1qy P T ^p@i ă mqpm`2i ă |σ| ùñ σpiq “ σpm`2iqqu.

Notice that rT‘ms “ txpp0q, pp2q, . . . , pp2m ´ 2qyp : p P rT su; therefore, every path in rT‘ms
begins with the first m coordinates of some element of the analytic set G. In particular, if G “
tp0u then every path in rT‘ms extends p0rms. Let Um be a name for PK2Npρ2NpExplpT

‘mqqq.
If G “ tp0u then every path in rUms extends ρ2Npp0rms ‘ σq for some σ P 2m. We now describe
how to compute an element x P NN Y NăN from the sequence pUmqmPN such that x “ p0 when
G “ tp0u.

The procedure is similar to the one used in the proof of Lemma II.1.4. Looking first at U1,
we search for n0 such that

p@τ P 2n0`1qpU1

τ P IF2 ùñ τ “ 0n01q.

Since IF2 is Σ0
1 (Theorem I.3.39piq), the above condition is Π0

1. If we find such an n0, we set
xp0q “ n0 and we move to the next step. Notice that, in case G “ tp0u, the unique n0 satisfying
the above condition is p0p0q.

Suppose we have computed xrm´ 1s :“ n0n1 . . . nm´1. We generalize the previous strategy
to compute nm. Let

Am “ t0
n01ξ00

n11ξ1 . . . ξm´20
nm´11ξm´1 P U

m : p@j ă mqpξj P t1, 01uqu.

We search for nm satisfying the Σ0
1 property

p@σ P Amqp@τ P 2
nm`1qpUm

στ P IF2 ùñ τ “ 0nm1q

As before, if we find such an nm we let xpmq :“ nm and move to the next step. Again, if
G “ tp0u, the unique nm satisfying the above condition is p0pmq.

The proof of [KMP20, Theorem 6.4] gives us a computable function Φe such that, in
case |rpAq| ď ℵ0, Φepxq is a name for a member of wListNNprpAqq. If F is the function of
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Lemma II.2.22 then, identifying the completion of the codomain of wListNN with NN, we obtain
F pe, xq P wListNNprpAqq.

Summing up, if A P A´pN
Nq is countable then F pe, xq is a name in NN for an element of

wListNNpAq. If instead A P A´pNNq does not belong to dompwListNNq, then F pe, xq is anyway a

name for some member of NN.

Lemma II.2.24. wScListNN ďW
zWFS ˆ

{
wListNN .

Proof. Let T P Tr be a name for an element of A´pN
Nq and recall that, by Theorem I.3.39piiq,

tσ : Tσ P T ďℵ0u is Π1,T
1

. Hence, using Theorem I.3.39piq, we can compute pSpσqqσPNăN P TrN

such that Spσq PWF if and only if Tσ P T
ďℵ0 . For any σ P T , let Spσq and rTσs be the inputs

for the σ-th instance of WFS and wListNN respectively. Let Lσ P wListNNprTσsq.
For any σ, when we see that WFSpSpσqq “ 1S then we know that Spσq P WF and hence

Tσ P T ďℵ0 : we need to include a list of rTσs in wScListNNprT sq. We compute a name for
L P wScListNNprT sq combining all Lσ such that WFSpSpσqq “ 1S.

Theorem II.2.25. wScListNN ”W PKNN .

Proof. The right-to-left direction is Lemma II.2.18. For the opposite direction, notice that, by
Theorem II.2.9 and Lemma II.2.23, we have that WFS,wListNN ďW PKNN , By Lemma II.2.24
and the fact that PKNN is parallelizable (Proposition II.2.6), we conclude that wScListNN ďW

PKNN .

We now study ScListNN and show that it lies strictly between PKNN and yWF.

Lemma II.2.26. WF˚ ďW ScCountNN .

Proof. Let pTmqmďn P Trn be an input for WF˚. For every Tm compute the tree Sm :“
tjnτ : j ă 2m ^ n P N ^ τ P ExplpTmqu. Notice that if Tm P WF then ExplpTmq P WF ,
and, in this case, |rSms| “ 2m. On the other hand, if Tm P IF then rSms is perfect. Now let
k :“ ScCountNN

`“Ů
mďn S

m
‰˘
. Notice that k ą 0 (as the scattered part of

“Ů
mďn S

m
‰
is always

finite) and

k ´ 1 “
ÿ

TmPWF

2m.

Hence, the binary expansion of k ´ 1 contains the information about which Tm’s are well-
founded.

We do not know more about the Weihrauch degree of ScCountNN (see Question II.4.2).

Theorem II.2.27. PKNN ăW ScListNN .

Proof. Since wScListNN ďW ScListNN is trivial, Theorem II.2.25 immediately implies the reduc-
tion.

For strictness, first notice that WF ďW
1PKNN : indeed, by Proposition II.2.3 and the fact

that WF is first-order, we obtain that WF ďW
1CNN and by Proposition II.2.10, we get that

1PKNN ďW
1CNN . Hence,WF ďW PKNN . On the other hand, clearly ScCountNN ďW ScListNN and

WF˚ ďW ScCountNN by Lemma II.2.26, so that WF ďW ScListNN .
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Combining this with the fact that PKNN |W CNN (Proposition II.2.12), we immediately obtain
that ScListNN ďW CNN . On the other hand, we do not know if CNN ăW ScListNN or CNN |W ScListNN

(see Question II.4.4).

Remark II.2.28. By Theorem I.3.39piiiq, given a tree T , tσ : |rTσs| “ 1u is Π1,T
1

if T P Tr

and Π0,T
2

if T P Tr2. Let ϕpn, T q :“ pDσ0, . . . , σn´1qp@i ‰ j ă nqpσi | σj ^ |rTσi
s| “ 1q: this

formula, asserting that T has at least n isolated points, is Π1
1 if T P Tr, and Σ0

3 if T P Tr2.
Notice that, by Remark II.2.16, the scattered part of rT s has at least n elements if and only
if ϕpn, T q holds. Therefore, the scattered part of rT s is infinite if and only if p@nqpϕpn, T qq,
which is Π1

1 if T P Tr and Π0
2 if T P Tr2.

Theorem II.2.29. ScListNN ăW
yWF.

Proof. To prove the reduction notice that ScListNN ďW ScCountNN ˆ wScListNN . By Theo-

rem II.2.25 and Theorem II.2.11, wScListNN ”W PKNN ăW
yWF. As yWF is clearly parallelizable,

it suffices to prove that ScCountNN ďW
yWF. Let T P Tr be a name for an input of ScCountNN : by

Remark II.2.28 we can compute pSnqnPN P Tr
N such that S0 PWF if and only if the scattered

part of rT s has infinitely many elements and, for n ą 0, Sn P WF if and only if the scattered
part of rT s has at least n elements. Then,

ScCountNNprT sq “

#
0 if WFpS0q “ 1,

mintn ą 0 : WFpSnq “ 0u if WFpS0q “ 0.

For strictness, notice that ScListNN ďW wScListNN ˚ ScCountNN . By Theorem 3.9 of [GPV21],
Detpf ˚ gq ďW Detpfq ˚ g and so

DetpwScListNN ˚ ScCountNNq ďW DetpwScListNNq ˚ ScCountNN ”W UCNN ˚ ScCountNN ,

where the equivalence follows from Theorem II.2.25 and Proposition II.2.14. Since the output
of ScCountNN is a natural number and the solution of UCNN is always hyperarithmetical relative to

the input ([KMP20, Corollary 3.4]), while yWF has instances with no hyperarithmetical solutions

in the input, we conclude that UCNN ˚ ScCountNN ăW DetpyWFq ”W
yWF (the equivalence is

immediate as yWF is single-valued). Therefore, yWF ďW wScListNN ˚ ScCountNN and, a fortiori,
yWF ďW ScListNN .

We now move our attention to listing problems of the scattered part of closed subsets of Cantor
space. From Theorem II.2.11 and Theorem II.2.25 notice that WF ďW LPO ˚ wScListNN . As
the next lemma shows, to compute WF it suffices to compose wScList2N with a function slightly
stronger than LPO.

Lemma II.2.30. WF ďW LPO1 ˚ wScList2N

Proof. Given an input T P Tr for WF, we can compute S :“
Ů
b
nPN pρ2NpExplpT qqq. Let

pbi, piqiPN P wScList2NpSq. Then

T PWF ðñ ExplpT q PWF

ðñ ρ2NpExplpT qq P T
ďℵ0

2

ðñ pDiqpbi “ 1^ pi “ 0Nq.
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The last condition is Σ0
2 and so LPO1 suffices to establish from pbi, piqiPN whether T PWF .

Lemma II.2.31. Π0
2-CN ”W

1wScList2N .

Proof. For the left-to-right direction, since wScList2N is parallelizable (Proposition II.2.17), it

suffices to show that Π0
2-CN ďW

{wScList2N . An input for Π0
2-CN is a nonempty set A P Π0

2pNq.
By Lemma I.3.35, we can uniformly find a sequence ppnqnPN of elements of 2N such that n P
A ðñ pD8iqppnpiq “ 0q.

For every n, let

Tn :“ tσ P 2ăN : p@i ă |σ|qppnpiq “ 0 ùñ p@j ă iqpσpjq “ 0qqu.

Notice that if pD8iqppnpiq “ 0q then rTns “ t0Nu, while rTns is perfect otherwise.

Given ppbi,n, pi,nqiPNqnPN P {wScList2NppT
nqnPNq notice that, for every n, n P A if and only if

there exists i such that bi,n “ 1. Hence, we can find n P A simply by searching for a pair i, n
such that bi,n “ 1.

For the other direction, let f be a first-order function and suppose that f ďW wScList2N is
witnessed by the maps Φ and Ψ. Let p be a name for an input of f and let Φppq “ T P Tr2.
Recall that Definition II.1.8 introduced ℓσ and πipσq for σ P 2ăN. Let Prefixes be the set of
all pσ, τq P 2ăN ˆ 2ăN such that

|τ | “ ℓσ ^Ψ
`
pr|σ|s, xτpiq, πipσqyiăℓσ

˘
p0qÓ ^ p@i ă ℓσqpτpiq “ 1 ùñ Tπipσq P UB2q.

Elements in 2ăN ˆ 2ăN can be coded as natural numbers. Since UB2 is a Π0
2 set (Theo-

rem I.3.39piiiq), Prefixes is a Π0,T
2

subset of N. It is immediate that every pτ, σq P Prefixes
is a prefix of a name for wScList2NprT sq, and hence f ďW Π0

2-CN follows immediately if
Prefixes ‰ H.

To show this, let L P wScList2NprT sq and n be such that Ψpprns, Lrnsqp0q Ó. Then Lrns “
xτpiq, πipσqyiăℓσ for some pτ, σq P 2ăN ˆ 2ăN. If τpiq “ 1 then πipσq is a prefix of a member of
the scattered part of rT s and, by Remark II.2.16, there exists ξi Ě πipσq such that Tξi P UB2.
Let pτ 1, σ1q be such that τ 1 Ě τ , σ1 Ě σ, p@i ă ℓσqpτpiq “ 1 ùñ πipσ

1q Ě ξiq and p@i ă ℓσ1qpi ě
ℓσ ùñ τ 1piq “ 0q. Then pτ 1, σ1q P Prefixes.

We collect in the next theorem our results about the problems of listing the scattered part of
a closed set; these results are also summarized in Figure II.2.

Theorem II.2.32. The following relations hold:

(i) List2N,ăω,wList2N ăW wScList2N , while List2N and UCNN are both Weihrauch incomparable
with wScList2N ;

(ii) List2N ,wScList2N ăW ScList2N and UCNN |W ScList2N ;

(iii) UCNN , ScList2N ăW wScListNN ăW ScListNN while CNN |W wScListNN and ScListNN ďW CNN .

Proof. (i) By [KMP20, Proposition 6.11] and Lemma II.2.31, List2N,ăω ”W Π0
2-CN ”W

1wScList2N . The reduction wList2N ďW wScList2N is obvious. From Theorem II.1.11
we know that List2N,ăω |W wList2N and hence wScList2N ďW List2N,ăω and wScList2N ďW

wList2N .

For the incomparabilities, recall that, by Theorem II.1.11, List2N ďW UCNN : therefore it
suffices to show that wScList2N ďW UCNN and List2N ďW wScList2N .

By Lemma II.2.30, WF ďW LPO1 ˚ wScList2N while, since WF ďW UCNN (Proposi-
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tion II.2.3) and UCNN is closed under compositional product, we obtain that WF ďW

LPO1 ˚ UCNN . Hence, wScList2N ďW UCNN .

To show that List2N ďW wScList2N we prove that 1List2N ďW
1wScList2N . Since, by

Lemma II.2.31 and Proposition I.6.30piiq, 1wScList2N ”W Π0
2-CN ďW LPO2, it suffices to

show LPO2 ďW List2N . By Theorem I.3.36, we can view an input for LPO2 as q P 2NˆN

LPO2pqq “ 1 ðñ pD8nqp@iqpqpn, iq “ 0q.

Given q, we compute pTnqnPN P TrN defined as Tn :“ t0s : p@i ă sqpqpn, iq “ 0qu. Notice
that Tn P IF2 ðñ p@iqpqpn, iq “ 0q and given T 1 :“

Ů
b
nPN T

n it is easy to check that
|rT 1s| “ ℵ0 ðñ LPO2pqq “ 1. Since the information about the cardinality of rT 1s is
included in List2NprT

1sq, this concludes the reduction LPO2 ďW List2N .

(ii) The reductions List2N ,wScList2N ďW ScList2N are immediate and, since we just showed
that List2N |W wScList2N , they are strict.

Combining the facts that wScList2N ăW ScList2N and wScList2N ďW UCNN , we conclude
that ScList2N ďW UCNN .

To show that UCNN ďW ScList2N , we first prove that ScCount2N ďW Π0
4-CN. Given T P Tr2,

let

A :“ tn : pn ą 0 ùñ ϕpn´ 1, T q ^  ϕpn, T qq ^ pn “ 0 ùñ p@kqpϕpk, T qqqu

where ϕpn, T q :“ pDσ0, . . . , σn´1qp@i ‰ j ă nqpσi | σj^Tσi
P UB2q. Using Remark II.2.28,

it is easy to check that ϕpn, T q is Σ0
3 and hence A is a Π0,T

4
subset of N. Notice that A is

a singleton and, by Remark II.2.16, the unique n P A is the correct answer for ScCount2N .

As ScList2N ďW wScList2N ˆ ScCount2N ďW wScList2N ˚ ScCount2N we have that

1ScList2N ďW
1pwScList2N ˚ ScCount2Nq ďW

1wScList2N ˚ ScCount2N ,

where the second reduction follows from [SV22, Proposition 4.1(4)] which states that
1pf ˚ gq ďW

1f ˚ g for any f and g. By Lemma II.2.31 and the fact that ScCount2N ďW

Π0
4-CN we get that 1ScList2N ďW Π0

2-CN ˚Π
0
4-CN ”W Π0

4-CN (the last equivalence follows
from [SV22, Theorem 7.2]). By Proposition I.6.30piq and piiiq and Proposition I.6.29, we
know that Π0

4-CN ăW Π1
1-CN ”W

1UCNN , hence UCNN ďW ScList2N .

(iii) By Proposition II.2.12 and Theorem II.2.25, we have that UCNN ăW PKNN ”W wScListNN .
Moreover, in the proof of piiq, we showed ScCount2N ďW Π0

4-CN, which by Proposi-
tion II.2.10 implies ScCount2N ďW wScListNN . Since ScList2N ďW ScCount2N ˆ wScList2N

and wScList2N ďW wScListNN is immediate, we obtain ScList2N ďW wScListNN ˆ wScListNN .
Recalling that by Proposition II.2.17 wScListNN is parallelizable, we have that ScList2N ďW

wScListNN . Since UCNN |W ScList2N by the previous item, we also deduce that the reduction
is strict.

By the fact that wScListNN ”W PKNN (Theorem II.2.25), we have that Theorem II.2.27
and Proposition II.2.12 imply respectively wScListNN ăW ScListNN and CNN |W wScListNN .
These two relationships imply that ScListNN ďW CNN .

II.2.3 The full Cantor-Bendixson theorem

The following functions formulate the Cantor-Bendixson theorem as a problem.

Definition II.2.33. Let X be a computable Polish space. We define two multi-valued functions
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wCBX : A´pX q Ñ A´pX q ˆ p2ˆ X qN and CBX : A´pX q Ñ A´pX q ˆ pNˆ p2ˆ X qNq by

wCBX pAq :“ PKX pAq ˆ wScListX pAq and CBX pAq :“ PKX pAq ˆ ScListX pAq.

The multi-valued functions wCB : Tr Ñ Trˆ p2ˆ NNqN and CB : Tr Ñ Trˆ pNˆ p2ˆ NNqNq
are defined similarly, substituting PKX with PK and pwqListX with pwqListNN in the definitions
above.

Proposition II.2.34. wCB ”W CB ”W
yWF.

Proof. Clearly PK ďW wCB ďW CB and since, by Theorem II.2.2, yWF ”W PK we have

that yWF ďW wCB ďW CB. For the opposite directions notice that wCB ďW PK ˆ wScListNN

and CB ďW PK ˆ ScListNN . By Theorems II.2.25 and II.2.29, we have that wScListNN ăW

ScListNN ăW
yWF. As yWF is clearly parallelizable this concludes the proof.

Theorem II.2.35. wCB2N ”W CB2N ”W PK2N ”W wScListNN ”W wCBNN ”W PKNN ăW

ScListNN ďW CBNN ăW CB.

Proof. By Theorem II.2.25 and Proposition II.2.5, wScListNN ”W PKNN ”W PK2N . By Theo-
rem II.2.32, wScList2N ăW ScList2N ăW wScListNN . Since, by Proposition II.2.6, PKNN is paral-
lelizable, we obtain all the equivalences. Also, ScListNN ďW CBNN is immediate, and PKNN ăW

ScListNN was already proven in Theorem II.2.27. To prove CBNN ăW CB, notice that the reduc-
tion is straightforward and CBNN ďW wCBNN˚ScCountNN ”W wScListNN˚ScCountNN . To conclude

the proof, observe that yWF ”W CB (Proposition II.2.34) and that yWF ďW wScListNN˚ScCountNN

(see the proof of Theorem II.2.29), hence CB ďW CBNN .

The situation here is similar to the one discussed above for ScListNN : we do not know if CNN ăW

CBNN or CNN |W CBNN . It is also open whether ScListNN ”W CBNN (see Questions II.4.4 and II.4.3).
In the next theorem, we explore what can be added to PKNN in order to compute CBNN .

Theorem II.2.36. CBNN ďW WFu˚ ˆ PKNN ďW CN ˚ PKNN .

Proof. For the first reduction, by Theorem II.2.35, PKNN ”W wCBNN and clearly CBNN ďW

ScCountNN ˆ wCBNN : by Theorems II.2.29 and I.6.10, we obtain that ScCountNN ďW WFu˚.
For the second reduction, notice that Cu˚

N ”W CN ([SV22, Theorem 7.2]). Furthermore,

since PKNN ”W wCBNN , PKNN is parallelizable (Proposition II.2.6) and PKNN ”W
zWFS (Theo-

rem II.2.9), it suffices to show that WFu˚ ďW Cu˚
N ˚zWFS. The input for WFu˚ is a sequence

pT iqiPN P Tr
N. Let ppiqiPN be a name for a solution of zWFSppT

iqiPNq (recall that the only name
for 0S is 0N). For every i P N, the input for the i-th instance of CN

Ai :“ tn : pn “ 0^ pi “ 0Nq _ pn ą 0^ pDm ă nqppipmq “ 1qqu.

To conclude the proof it suffices to notice that for any i and ni P CNpAiq, T
i PWF if and only

if ni ‰ 0.

II.3 What happens in arbitrary computable metric spaces

In this section, we study the functions connected to the perfect set and Cantor-Bendixson theorems
in arbitrary computable metric spaces. We start by collecting some facts about maps between
spaces of closed sets.
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Proposition II.3.1 ([BDP12, proof of Proposition 3.7]). Let X and Y be computable metric
spaces and s :Ď X Ñ Y be a computable function with dompsq P Π0

1pX q: then the function
S : A´pYq Ñ A´pX q, M ÞÑ s´1pMq is computable as well.

Definition II.3.2 ([BG08]). Given two represented spaces X and Y, we say that ι : X Ñ Y is
a computable embedding if ι is injective and ι as well as its partial inverse ι´1 are computable.
If X is a computable metric space we say that X is rich if there exists a computable embedding
of 2N into X .

As observed in [BG08], any computable embedding ι : 2N Ñ X is such that rangepιq P Π0
1pX q.

Moreover, by [BG08, Theorem 6.2], any perfect computable metric space X is rich.

Theorem II.3.3 ([BG08, Theorem 3.7]). Let X and Y be computable metric spaces and ι :
X Ñ Y be a computable embedding with rangepιq P Π0

1pYq. Then the map J : A´pX q Ñ
A´pYq, A ÞÑ ιpAq is computable and admits a partial computable right inverse.

The following is an analog of [BDP12, Corollaries 4.3 and 4.4].

Lemma II.3.4. Let X and Y be computable Polish spaces and ι : X Ñ Y be a computable
embedding with rangepιq P Π0

1pYq. Let f be any of the following: PST, pwqList, PK, pwqScList,
pwqCB. Then fX ďW fY . In particular, f2N ďW fY for every rich computable metric space Y.

Proof. By Theorem II.3.3, the map J : A´pX q Ñ A´pYq and its partial inverse are computable.
Given A P dompfX q, we have that JpAq P dompfYq, as cardinality is preserved by J . Moreover,
JpAq is homeomorphic to A. Depending on f , we use combinations of copies of J´1 and ι´1 to
compute from a solution for fYpJpAqq a solution for fX pAq. For example, considering the case
f “ CB, we have that if pB, pn, pbi, yiqiPNqq P CBYpJpAqq then pJ

´1pBq, pn, pbi, ι
´1pyiqqiPNqq P

CBX pAq.

The following lemma is immediate using Lemma II.3.4 and either Theorem II.1.3 or Proposi-
tion II.2.5 or Theorem II.2.35.

Lemma II.3.5. Let f be any of the following: PST, PK, wCB. For every rich computable
Polish space X , fNN ďW fX . If moreover there exists a computable embedding ι : X Ñ NN with
rangepιq P Π0

1pN
Nq, fX ”W fNN .

II.3.1 Perfect sets

Lemma II.3.5 implies that PSTX ”W PSTNN whenever X is 0-dimensional. We can however obtain
this result also for the unit interval.

Theorem II.3.6. PSTr0,1s ”W PSTNN .

Proof. The right-to-left direction follows from Lemma II.3.5.
For the opposite direction, since PSTNN ”W PST2N by Theorem II.1.3, we show instead that

PSTr0,1s ďW PST2N .

Let sb : 2N Ñ r0, 1s be the computable function that computes a real from its binary
expansion:

sbppq “
ÿ

iPN

ppiq

2i`1
.
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Notice that sb is not injective (and hence not an embedding) as sbpσ01
Nq “ sbpσ10

Nq for any
σ P 2ăN; however these are the only counterexamples to injectivity. In particular, for every
x P r0, 1s,

ˇ̌
s´1

b
pxq

ˇ̌
ď 2. For σ P 2ăN we let Iσ :“ tx P r0, 1s : p@p P 2Nqpsbppq “ x ùñ σ Ă pqu.

Notice that if σ is not constant then Iσ “ psbpσ0
Nq, sbpσ1

Nqq, while I0
n

“ r0, sbp0
n1Nqq and

I1
n

“ psbp1
n0Nq, 1s: all these intervals are open subsets of r0, 1s.

By Proposition II.3.1 given A P A´pr0, 1sq we can compute s´1

b
pAq.

Although Theorem II.3.3 does not apply, we claim that J : A´p2
Nq Ñ A´pr0, 1sq, C ÞÑ

sbpCq, is computable (notice that, as 2N is compact and sb is continuous, the image of a closed
set is closed). To prove that J is computable, we proceed as follows: let S P Tr2 be a name for
C P A´p2

Nq, i.e. a tree such that rSs “ C. Recall that, by Theorem I.3.39piq, WF2 is a Σ0
1 set.

We compute B P A´pr0, 1sq as follows:

(i) whenever we witness that Sσ PWF2, we list Iσ in the complement of B;

(ii) whenever we witness that Sσ01i and Sσ10i are in WF2 for some i P N, we list in the

complement of B the open interval psbpσ01
i0Nq, sbpσ10

i1Nqq which coincides with Iσ01
i

Y

Iσ10
i

Y tsbpσ01
Nqu.

This proves that J is computable: now, we need to check that B “ JpCq, i.e. for every x P r0, 1s,
x R B if and only if s´1

b
pxq X C “ H.

If x R B because x P Iσ for some σ with Sσ P WF2, then σ is a prefix of every element of
s´1

b
pxq and hence s´1

b
pxq X C “ H. If x R B because x P psbpσ01

i0Nq, sbpσ10
i1Nqq for some σ

and i, then either x P Iσ01
i

Y Iσ10
i

, in which case we can apply the previous argument to one
of σ01i and σ10i, or x “ sbpσ01

Nq “ sbpσ10
Nq; in this case we know that both σ01N and σ10N

do not belong to C.
For the converse, consider first the case where s´1

b
pxq “ tqu and x R t0, 1u: then q is not

eventually constant. Since q R C, there exists σ Ă q such that σ R S and hence Iσ is listed
in the complement of B. As q R tσ0N, σ1Nu, we obtain that x P Iσ and hence x R B. The
case in which x P t0, 1u is analogous. If s´1

b
pxq “ tq0, q1u then, as noticed above, there exists τ

such that q0 “ τ01N and q1 “ τ10N. Since q0, q1 R C we have τ01i, τ10i R S for some i. Then
x P psbpτ01

i0Nq, sbpτ10
i1Nqq, and this interval is listed in the complement of B by condition

piiq. Therefore, x R B.
We now describe the reduction. Given an uncountable A P A´pr0, 1sq, we can compute

s´1

b
pAq P A´p2

Nq which is uncountable as well. Let P P PST2Nps
´1

b
pAqq and B “ JpP q. It

suffices to show that B Ď A and that B is perfect.
If x P B then there exists q P s´1

b
pxq X P . Since P Ď s´1

b
pAq we get that sbpqq “ x P A.

This shows that B Ď A.
It remains to show that B is perfect. Suppose not: then there exists x P B and some open

interval I Ď r0, 1s such that I X B “ txu. By continuity of sb, s
´1

b
pI X Bq is an open set in P

which has at most two members; these points are isolated in P , contradicting the perfectness
of P .

Remark II.3.7. Following the ideas of the previous proof and using some extra care it is possible
to prove that PSTNN ”W PSTR: replace sb with s1

b
: Nˆ 2N Ñ R defined by

s1bpn, pq “ p´1q
n ¨

Qn
2

U
` sbppq.

We do not know whether there exist rich computable Polish spaces X such that PSTNN ăW

PSTX (see Question II.4.5).

II.3.2 (Weak) lists

The following classical fact helps in the next proofs.
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Theorem II.3.8 ([Mos82, Theorem 3E.6]). For every computable metric space X there is
a computable surjection s : NN Ñ X and A P Π0

1pN
Nq such that s is one-to-one on A and

spAq “ X .

Lemma II.3.9. Let X be a computable metric space. Then pwqListX ďW pwqListNN .

Proof. We prove only ListX ďW ListNN as the other reduction is similar. Let s and A be as
in Theorem II.3.8 and sA be the restriction of s to A. By Proposition II.3.1, the function
SA : A´pX q Ñ A´pN

Nq such that SApMq “ s´1

A pMq is computable: hence given C P A´pX q
and pn, pbi, piqiPNq P ListNNpSApCqq we have that pn, pbi, sppiqqiPNq P ListX pCq.

Lemma II.3.10. Let X ,Y be computable metric spaces and ι : X Ñ Y be a computable
embedding with rangepιq P Π0

1pYq. Then pwqListX ďW pwqListY . In particular, pwqList2N ďW

pwqListY for every rich computable metric space Y.

Proof. We only prove that ListX ďW ListY , the other reduction is similar. By Theorem II.3.3
the map J : A´pX q Ñ A´pYq is computable. Given A P dompListX q we have that JpAq P
dompListYq: moreover, given pn, pbi, piqqiPN P ListYpJpAqq we have that pn, pbi, ι

´1ppiqqqiPN P
ListX pAq.

Lemma II.3.11. wListR ”W wListr0,1s ”W wList2N .

Proof. The fact that wListr0,1s ďW wListR is immediate and wList2N ďW wListr0,1s follows from
Lemma II.3.10.

Recall that wList2N is parallelizable (Lemma II.1.12) and notice that it is straightforward

to check that wListR ďW
{wListr0,1s. Hence, it suffices to show that wListr0,1s ďW wList2N . The

function sb of the proof of Theorem II.3.6 is useful also here. Consider an input A P A´pr0, 1sq
and let pbi, piqiPN P wList2Nps

´1

b
pAqq: it is straightforward to check that pbi, sbppiqqiPN is a

solution of wListr0,1spAq.

Notice that the argument above shows that wListX ďW wList2N for every computable metric
space X such that there exists an admissible representation δ :Ď 2N Ñ X with dompδq P Π0

1p2
Nq

and such that
ˇ̌
δ´1pxq

ˇ̌
ď ℵ0 for every x P X . In particular wListr0,1sd ”W wList2N for any d P N.

Notice that the situation for ListX is less clear: for example, we do not know if, in contrast to
what happens for wListX , List2N ăW ListR (see Question II.4.6).

We now consider listing problems on countable spaces. Let us start from finite spaces: recall
from §I.6, for n ą 0, we denote by n the space consisting of t0, . . . , n´1u with the discrete topology,
which is obviously a computable metric space.

Proposition II.3.12. For every n ą 0, wListn ”W Listn ”W LPOn and therefore Listn ăW

Listn`1.

Proof. The fact that wListn ďW Listn is trivial. For the converse let A P A´pnq and let
pbi,miqiPN P wListnpAq. Notice that for every m ă n exactly one of m R A and pDiqpbi “
1 ^ mi “ mq holds: since both conditions are Σ0

1 we can compute whether m P A or not.
This allows us to compute |A| and, together with pbi,miqiPN we obtain a name for Listn (see
Remark II.1.9).

To show that wListn ďW LPOn, let A P A´pnq and fix a computable formula ϕ such that
i P A if and only if p@kqϕpi, k, Aq. The input pi P 2N for the i-th instance of LPO is defined by
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pipkq “ 1 if and only if  ϕpi, k, Aq, so that LPOppiq “ 1 ðñ i P A. For all i P N define

bi :“

#
1 if i ă n and LPOppiq “ 1;

0 otherwise.
xi :“

#
i if i ă n;

0 otherwise.

Then, pbi, xiqiPN P wListnpAq.
For the opposite direction, we show that LPOn ďW wListn. Let ppjqjăn be an input for

LPOn. Consider A :“ tj ă n : pj “ 0Nu P A´pnq and let pbi,miqiPN P ListnpAq. Notice that, for
every j ă n, pj “ 0N if and only if pDiqpbi “ 1 ^mi “ jq. We thus can compute LPOppjq by
searching for i such that either pjpiq “ i or bi “ 1 and mi “ j.

The fact that Listn ăW Listn`1 follows from LPOn ăW LPOn`1 ([BG09, Corollary 6.7]).

We say that a computable metric space is effectively countable if there exists a computable
surjection f : NÑ X .

Lemma II.3.13. For any computable metric space X which is effectively countable, wListX ďW

lim.

Proof. Fix a computable surjection f : N Ñ X . Recalling that lim ”W
zLPO, the proof is a

straightforward generalization of the proof of wListn ďW LPOn in Proposition II.3.12.

We say that a computable metric space X is effectively infinite if there exists a computable
sequence pUiqiPN of open sets in X such that p@iqpUi Ę

Ť
j‰i Ujq.

Lemma II.3.14. For every countable computable metric space X which is effectively infinite,
lim ďW wListX .

Proof. Fix a sequence pUiqiPN witnessing that X is effectively infinite. Recall that lim ”W
zLPO

so that it suffices to show zLPO ďW wListX .
Given an input ppiqiPN for zLPO, let A :“ tx P X : p@iqpx P Ui ùñ pi “ 0Nqu P A´pX q and

notice that |A| ď ℵ0 because X is countable. Notice that pi “ 0N if and only if A X Ui ‰ H
(for the forward direction use the existence of yi P Ui such that yi R

Ť
j‰i Uj by definition of

effectively infinite).
Fix pbi, xiqiPN P wListX pAq. By the above observation, for every i P N we get

pi “ 0N ðñ pDkqpbk “ 1^ xk P Uiq.

Since we showed the equivalence of the Π0
1 condition pi “ 0N with a Σ0

1 condition, we can
compute LPOppiq for every i P N.

Many natural countable computable metric spaces, not necessarily Polish, are easily seen to be
both effectively countable and effectively infinite. We thus can combine Lemmas II.3.13 and II.3.14
to obtain wListX ”W lim for several countable spaces, both compact and not compact:

Corollary II.3.15. wListN ”W wListK ”W wListQ ”W lim, where K “ t0u Y t2´n : n P Nu.

Proposition II.3.16. wListN ăW ListN.
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Proof. The fact that wListN ďW ListN is trivial. For strictness, we show that LPO1 ďW ListN:
since LPO1 |W lim and wListN ”W lim by Corollary II.3.15 this suffices to conclude the proof.

We can think of LPO1 as the function that, given in input p P 2N, is such that LPO1ppq “
1 ðñ pD8iqpppiq “ 0q. For any p P 2N, let A :“ ti : ppiq “ 0u: given pn, pbi, piqiPNq P ListNpAq
it is clear that LPO1ppq “ 1 if and only if n “ 0.

II.3.3 The Cantor-Bendixson theorem

Notice that it makes sense to study PKX only when X is an uncountable computable Polish space:
indeed, if X is countable, PKX is the function with constant value H.

Lemma II.3.17. For any computable Polish space X the set tC P A´pX q : |C| ď ℵ0u is Π1
1.

Proof. Let s and A be as in Theorem II.3.8 and denote by sA be the restriction of s to A.
By Proposition II.3.1, the function S : A´pX q Ñ A´pN

Nq defined by SpCq “ s´1

A pCq is
computable. Since sA is a bijection, we obtain that |C| “ |SpCq|. Recall from §I.6 that we
can represent SpCq via some T P Tr such that SpCq “ rT s. To conclude the proof notice that
|SpCq| ď ℵ0 if and only if T P T ďℵ0 and, by Theorem I.3.39piiq, T ďℵ0 is a Π1

1 set.

Recall that in §I.2 we fixed an enumeration pBiqiPN of all basic open sets of X , where the ball
Bxn,my is centered in αpnq and has radius qm.

Theorem II.3.18. For every rich computable Polish space X , PKX ”W PKNN .

Proof. The right-to-left direction is Lemma II.3.5. For the converse reduction, by Theo-

rem II.2.9 we have that PKNN ”W
zWFS, hence it suffices to show that PKX ďW

zWFS. Let
C P A´pX q be an input for PKX .

Notice that
ˇ̌
Bxn,my X C

ˇ̌
ď ℵ0 if and only if p@ǫ ą 0qp|tx P X : dpx, αpnqq ď qm ´ ǫu X C| ď

ℵ0q: as tx P X : dpx, αpnqq ď qm ´ ǫu X C is a closed set that can be uniformly computed from
C, n and m, by Lemma II.3.17 we get that

ˇ̌
Bxn,my X C

ˇ̌
ď ℵ0 is Π1

1.

We can therefore compute a sequence pT xn,myqn,mPN of trees such that T xn,my P WF if

and only if
ˇ̌
Bxn,my X C

ˇ̌
ď ℵ0. Hence, searching the output of zWFSppT

xn,myqn,mPNq for the

xn,my’s such that WFSpT
xn,myq “ 1, we eventually enumerate all the Bxn,my such that Bxn,myX

PKX pCq “ H, thus obtaining a name for PKX pCq P A´pX q.

To prove the next Lemma we use ideas from the proof of Lemma II.2.24 and Lemma II.3.9.

Lemma II.3.19. For every computable Polish space X , wScListX ďW wScListNN .

Proof. We show that wScListX ďW
zWFS ˆ

{
wListX ďW wScListNN .

The first reduction is obtained by generalizing the proof of Lemma II.2.24 (which is the
case X “ NN): given C P A´pX q it suffices to use as input for the xn,my-th instances of
WFS and wListX respectively a tree T xn,my such that T xn,my P WF if and only if p@ǫ ą
0qp|tx P X : dpx, αpnqq ď qm ´ ǫu X C| ď ℵ0q (see the proof Theorem II.3.18) and tx P X :
dpx, αpnqq ď qm ´ ǫu X C.

For the second reduction, notice that wListX ďW wListNN by essentially the same proof

of Lemma II.3.9. By wListNN ďW wScListNN ”W
zWFS (Theorems II.2.9 and II.2.25 and

Lemma II.2.23) and the fact that wScListNN is parallelizable (Proposition II.2.17), we obtain
the reduction.

The same proof of Lemma II.3.10 yields the following Lemma.
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Lemma II.3.20. Let X and Y be computable metric spaces and ι : X Ñ Y be a com-
putable embedding with rangepιq P Π0

1pYq. Then pwqScListX ďW pwqScListY . In particular,
pwqScList2N ďW pwqScListY for every rich computable metric space Y.

Recall that the problems PKX , where X is a rich computable Polish space, are all Weihrauch
equivalent (Theorem II.3.18). Combining Lemmas II.3.20 and II.3.19, we obtain wScList2N ďW

wScListX ďW wScListNN , but we do not know whether for some rich computable Polish space X

both reductions are strict (see Question II.4.8).

Theorem II.3.21. For any rich computable Polish space X , wCBX ”W PKNN .

Proof. For the left-to-right reduction notice that wCBX ďW PKX ˆ wScListX . By Theo-
rem II.3.18 and Lemma II.3.19 we know that PKX ”W PKNN and wScListX ďW wScListNN .
Since wScListNN ”W PKNN (Theorem II.2.25) and PKNN is parallelizable (Proposition II.2.6),
this concludes the reduction. The other direction follows from the combination of Theo-
rem II.3.18 and the fact that PKX ďW wCBX .

In the literature, there are many equivalent definitions of computably compact represented
spaces. The following is the most convenient for our purposes.

Definition II.3.22 ([Pau16, §5]). A subsetK of a represented space X is computably compact
if tA P A´pX q : AXK “ Hu is Σ0

1.

Definition II.3.23. A computable metric space X is computably Kσ if there exists a com-
putable sequence pKiqiPN of nonempty computably compact sets with X “

Ť
iPNKi.

The following remark extends Remark II.2.28 to computably Kσ spaces.

Remark II.3.24. Let X be a computably Kσ space and let pKiqiPN witness this property.
Notice that for C P A´pX q, C “ H if and only if p@iqpKi X C “ Hq, i.e. a Π0

2 condition.
Moreover, C X Bxn,my “ H if and only if p@kqptx P X : dpx, αpnqq ď qm ´ 2´ku X C “ Hq, so
that this condition is Π0

2 as well.
Now, |C| “ 1 if and only if both C ‰ H and

p@n, n1,m,m1q
`
dpαpnq, αpn1qq ě qm ` qm1 ùñ Bxn,my X C “ H_Bxn1,m1y X C “ H

˘
(1)

where (1) is a Π0
2 condition. Now

ˇ̌
C XBxn,my

ˇ̌
“ 1 is the conjunction of a Σ0

2 and a Π0
2 formula

because it is equivalent to C XBxn,my ‰ H and

p@n1, n2,m1,m2q
`
dpαpnq, αpn1qq ď qm ´ qm1 ^ dpαpnq, αpn2qq ď qm ´ qm2^

^ dpαpn1q, αpn2qq ě qm1 ` qm2 ùñ Bxn1,m1y X C “ H_Bxn2,m2y X C “ H
˘
.

Lemma II.3.25. For every rich computable Polish computably Kσ space X , CBX ”W PKNN .

Proof. The right-to-left direction follows from the facts that PKX ďW CBX and that, by Theo-
rem II.3.18, PKX ”W PKNN .

For the opposite direction, notice that CBX ďW wCBX ˆ ScCountX . Since PKNN is paral-
lelizable (Proposition II.2.6) and PKNN ”W wCBX (Theorem II.3.21), it suffices to show that
ScCountX ďW PKNN . To do so, we now adapt the proof of Theorem II.2.32piiq to show that
ScCountX ďW Π0

4-CN: this concludes the proof as Π0
4-CN ďW Π1

1-CN ”W
1PKNN (Proposi-
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tion II.2.10). Given in input C P A´pX q, let

A :“ tk : pk ą 0 ùñ ϕpk ´ 1, Cq ^  ϕpk, Cqq ^ pk “ 0 ùñ p@mqpϕpm,Cqqqu,

where ϕpk, Cq says that there exists a finite string σ “ pxn0, q0y, . . . , xnk´1, qk´1yq P Nk such
that for every i ‰ j ă k,

dpαpniq, αpnjqq ě qi ` qj ^
ˇ̌
C XBxni,qiy

ˇ̌
“ 1.

By Remark II.3.24, it is easy to check that each ϕ is Σ0
3 and hence A is Π0

4. By Re-
mark II.2.16 the unique k P A is the correct answer for ScCountX pCq.

The final part of this section is devoted to spaces that are not Kσ.
Recall the following consequence of Hurewicz’s theorem from classical descriptive set theory.

Theorem II.3.26 ([Kec12, Theorem 7.10]). Let X be a Polish space. Then there is an em-
bedding ι : NN Ñ X such that rangepιq is closed if and only if X is not Kσ.

Definition II.3.27. We say that a computable Polish space is computably non-Kσ if there
exists a computable embedding ι : NN Ñ X such that rangepιq P Π0

1pX q.

The following theorem is a corollary of Lemma II.3.4.

Theorem II.3.28. For any rich computable Polish space X which is computably non-Kσ,
CBNN ďW CBX .

We leave open the question of whether there is a rich computable Polish space X such that
CBNN ăW CBX (see Question II.4.7).

II.4 Conclusions and open questions

In this chapter, we studied problems related to the Cantor-Bendixson theorem. In contrast with
reverse mathematics, we showed that many such problems lie in different Weihrauch degrees; some
of these problems still lack a complete classification.

In Theorem II.2.11, we showed that PKNN ăW PK ďW lim ˚ PKNN . Upon hearing about this
result, Linda Westrick asked the following question.

Question II.4.1. Is it true that PK ”W lim ˚ PKNN?

By Theorems II.2.27, II.2.29, and I.6.10, and the fact that ScCountNN is a first-order problem,

we obtain WF˚ ďW ScCountNN ďW
1yWF ”W WFu˚. By [SV22, Corollary 7.8], WF˚ ăW WFu˚ and

therefore at least one of the inequalities is strict.

Question II.4.2. Characterize the Weihrauch degree of ScCountNN .

In particular, if ScCountNN ”W
1yWF we would obtain a nice characterization of the first-order

part of yWF.
A related question is the following.

Question II.4.3. Is it true that CBNN ďW ScListNN (and hence CBNN ”W ScListNN)?

In Theorems II.2.35 and II.2.32piiiq we proved that ScList2N ăW CB2N and ScListNN ăW CB.
A negative answer to Question II.4.3 would confirm this pattern. However, we have PKNN ăW

ScListNN , while ScList2N ăW PK2N ”W CB2N and ScListNN ăW PK ”W CB (Theorem II.2.35,
Proposition II.2.34, and Theorem II.2.32piiiq): therefore the situation in NN differs from those
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in 2N and Tr and a positive answer is possible. In this case, we would obtain an unexpected
result: namely, that the gap between PKNN and CBNN is due entirely to the scattered part and its
cardinality, rather than to the perfect kernel. If this is the case, the cardinality of the scattered part
(i.e. ScCountNN) would be of crucial importance because the scattered part on its own is not enough
as witnessed by the fact that wScListNN ”W PKNN ăW CBNN (Theorems II.2.25 and II.2.35).

The following questions are strictly related and concern the relationship of two of our problems
with CNN , which plays a major role in the Weihrauch lattice. Choice principles have a convenient
definition and hence, it is quite natural to compare any problem with them. In particular, CNN

plays a pivotal role among the problems that, from the point of view of reverse mathematics, are
equivalent to ATR0.

Question II.4.4. Is it true that CNN ďW CBNN? Even more, does CNN ďW ScListNN hold?

By Propositions II.2.12 and II.2.34 and Theorem II.2.36 we obtain CNN ďW PKNN ăW

CBNN ďW CN˚PKNN . Since ScListNN ďW CBNN this implies that to answer negatively both questions
it suffices to show that CNN ďW CN ˚ PKNN . By [BDP12, Theorem 7.11] we know that f ďW CN if
and only if f is computable with finitely many mind changes. In other words, CNN ďW CN ˚ PKNN

if and only if CNN can be reduced to PKNN employing a backward functional which is computable
with finitely many mind changes: intuitively, this seems unlikely to hold.

The last section left open some interesting questions. First of all, by Lemma II.3.5 we have that
PSTNN is a lower bound for PSTX whenever X is a rich computable Polish space. In Theorem II.3.6
we showed that equivalence holds when X “ r0, 1s or X “ R.

Question II.4.5. Is there a rich computable Polish space X such that PSTNN ăW PSTX ?

Concerning the listing problems for countable closed sets, the situation for the so-called weak
lists is quite clear, while we do not have a satisfactory result for problems requiring also the
cardinality of the set. An open question is the following:

Question II.4.6. Does List2N ăW ListR?

By Theorems II.3.18 and II.3.21 all problems of the form PKX and wCBX belong to the same
Weihrauch degree as long as X is a rich computable Polish space. In contrast, we do not know if
the same happens with CBX .

Question II.4.7. Is there a rich computable Polish space X such that CBNN ăW CBX ? By
Lemma II.3.25 if such X exists must be computably non-Kσ. This problem is strictly related
to the existence of a rich computable Polish space X such that ScListNN ăW ScListX .

The last problem concerns the weak form of listing the scattered part of a set.

Question II.4.8. Is there a rich computable Polish space X such that wScList2N ăW wScListX ăW

wScListNN?



III
The (induced) subgraph problem

III.1 Introduction to the problem

All the results in this chapter are a joint work with Arno Pauly and are collected in [CP23, CP22].
We also thank Alberto Marcone for the many suggestions.

We study the subgraph problem and the induced subgraph problem by means of (effective) Wadge
reducibility and Weihrauch reducibility. The corresponding decision problems for finite graphs, i.e.
the one taking as input graphs G and H and answering whether G is an (induced) subgraph of
H, are well studied in the context of finite complexity theory. The same problems for infinite
graphs have been less studied, but still in the literature there are many interesting results, usually
involving computable graphs, i.e. graphs having a vertex set which is computably isomorphic to
N and computable edge relation. An intriguing research direction in this field is to understand
why some NP -complete problems on finite graphs become relatively “easy” in the infinite case,
and others more complex. For example, in [BG89], the authors exhibit problems that for finite
graphs are NP -complete complete (e.g. 3-colorability), for infinite graphs are at the low levels of
the arithmetical hierarchy. On the other hand, in [Har91] it was shown that the decision problem
asking whether a computable graph has a Hamiltonian path (i.e. a path visiting every vertex of
the graph), which is NP -complete in the finite case, is Σ1

1-complete, where completeness here is
defined with respect to effective Wadge reducibility. See also [MR72, Bea76, AMS92] for other
related works.

In the same spirit, Hirst and Lempp in [HL96] studied the interplay between finite complexity
theory and reverse mathematics starting from the following analogy: deciding whether a finite
graph has a Hamiltonian path is NP complete, but the same problem for Eulerian paths (i.e. paths
visiting every edge in the graph) is in P . In reverse mathematics, the problem that, given as input
an infinite sequence of infinite graphs, decides which ones have Hamiltonian paths is equivalent
to Π1

1´CA0, while the corresponding problem for Eulerian graphs is equivalent to the weaker
subsystem ACA0. Unfortunately, in the same paper, the authors show that this parallelism does
not hold in general: for example, in the third section of the same paper, they show that different
formulations of the induced subgraph problem for infinite graphs are equivalent to Π1

1´CA0 while
the same problems for finite graphs have a very different strength in finite complexity theory.

In [BHW21, §2] BeMent, Hirst and Wallace continued in this direction studying decision prob-
lems related to the ones discussed above in the Weihrauch lattice: for example, the ones that fixed
some computable graph G and given in input a graph H decide whether G is an induced subgraph
of H. Starting from these problems, we obtain several results about the complexity of (induced)
subgraph related problems, not only in terms of Weihrauch reducibility, but also via (effective)
Wadge reducibility: in particular, the results obtained in the latter solve questions related to the
former.

The present chapter is organized as follows: in §III.2 we discuss different representations of
graphs and, in §III.3, we give results on the Γ-completeness, with Γ being a lightface class, of sets
of (names of) graphs of the form

tH P pEqGr : G Ďpiqs Hu :“ tp P dompδpEqGrq : G Ďpiqs δpEqGrppqu. (1)
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where G is a fixed graph.

In §III.3.1 we turn our attention to Weihrauch reducibility and decision problems: in particular,
we solve a question left open in [BHW21, §2]. We also seize the opportunity to discuss again the
interplay between Weihrauch reducibility and reverse mathematics mentioned at the beginning of
Part 1, exhibiting graph-theoretic representatives of Π1

1´CA0 in the Weihrauch lattice. Table III.1
and Figure III.1 summarize the results in §III.3 and §III.3.1: the precise definitions and notations
involved are given in due time (same for the next tables and figures).

G finite tH P pEqGr : G Ďs Hu Σ0
1-complete

G finite tH P Gr : G Ďis Hu Σ0
1-complete

Kn tH P EGr : G Ďis Hu Σ0
1-complete

G finite and G fl Kn tH P EGr : G Ďis Hu Σ0
2-complete

G c.e. and Kω Ďis G tH P pEqGr : G Ďis Hu Σ1
1-complete

G c.e. and Rω Ďs G tH P pEqGr : G Ďpiqs Hu Σ1
1-complete

T2k`1 pF2k`2q tH P pEqGr : T2k`1pF2k`2q Ďs Hu Σ0

2k`1
-complete (Π0

2k`2
-complete)

Table III.1: A summary of the results in §III.3.

LPO ”sW ISF ”sW eISKn
”sW peqSF ”sW peqST1

LPO1 ”sW eISF ”sW peqSF2
where F fl Kn

. . .

LPOpnq ”sW peqSG

. . .

WF ”sW peqISG ”sW peqSR

Figure III.1: Some of the multi-valued functions studied in this chapter. Black arrows represent
Weihrauch reducibility in the direction of the arrow. Here F represent a finite graph, G an infinite
c.e. graph, R a c.e. graph such that Rω Ďs R and G P tT2k`1,F2k`2u.

The results in §III.3.2 are still preliminary ones, and they concern the (effective) Wadge com-
plexity of sets of (names of) graphs and the Weihrauch complexity of decision problems, that are
in some sense “opposite” to the ones considered in §III.3 and §III.3.1: in particular, we partially
solve another question left open in [BHW21, §2]. Table III.2 summarizes the results in §III.3.2.
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G finite tH P pEqGr : H Ďs Gu Π0
1-complete

G finite tH P Gr : H Ďis Gu Π0
1-complete

8Â
G with G finite tH P pEqGr : H Ďs

8Â
Gu Π0

1-complete
8Â
G with G finite tH P Gr : H Ďis

8Â
Gu Π0

1-complete
Kω tH P pEqGr : H Ďs Kωu computable
Kω tH P Gr : H Ďis Kωu Π0

1-complete
Kω tH P EGr : H Ďis Kωu Π0

2-completeÂ
iě1

Ri tH P pEqGr : H Ďpiqs
Â

iě1
Riu Π0

3-completeÂ
iě1

Ki tH P pEqGr : H Ďpiqs
Â

iě1
Kiu Π0

3-complete

S tH P pEqGr : H Ďpiqs Su Π0
5-hard

Table III.2: A summary of the results in §III.3.2.

Notice that the results in Table III.1 and III.2 allow us to determine the complexity (with
respect to Wadge reducibility) of the corresponding sets of graphs in the boldface hierarchy.

In §III.4 we introduce “search problems” that, fixed a graph G and given in input a graph
H such that G Ďpiqs H output an (induced) subgraph of H that is isomorphic to G. In par-
ticular, we show that the situation for the induced subgraph relation is more “tidy” (i.e. the
problems we consider are all Weihrauch equivalent to CNN , sometimes relatively to some oracle,
see Theorem III.4.5), while the situation for the subgraph relation is more intricate. Indeed,
we have different infinite graphs such that the corresponding problems for the subgraph relation
are Weihrauch equivalent to CNN (see Proposition III.4.6 and Theorem III.4.40), others that are
computable (see Theorem III.4.39) and others that are Weihrauch equivalent to (jumps of) lim

(see Theorem III.4.44).

Of particular interest is the case when G is Rω: we show that, restricting the domain of
the corresponding problem to connected graph, we obtain examples of natural problems having
computable finitary part (see Definition I.6.15) but noncomputable first-order part (see Defini-
tion I.6.8). Furthermore, even without the domain restriction such problems have the peculiar
property of being hard to compute, but weak when they have to compute a problem on their own
(see Figure III.2). The final section discusses the results and some open questions.

lim

lim1

lim2

. . .

UCNN

CNN ”W lim2 ˚ S-CopyRω

S-CopyRω

Figure III.2: A summary of the Weihrauch reductions between problems considered in §III.4.3.
Black arrows represent Weihrauch reducibility in the direction of the arrow. Red arrows, (differently
from Figure II.1 and II.2) represent the absence of a Weihrauch reduction in the direction of the
arrow.
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III.2 The represented spaces of graphs

We represent graphs in two ways: via their characteristic function or via an enumeration of the
vertices and the edges.

• We denote by Gr the represented space of graphs represented via characteristic functions,
where the representation map δGr has domain

tp P 2N : p@i, j P Nqpppxi, jyq “ 1 ùñ ppxj, iyq “ ppxi, iyq “ ppxj, jyq “ 1qu.

Any graph G has a unique δGr-name p P 2N such that i P V pGq ðñ ppxi, iyq “ 1 and for
i ‰ j, pi, jq P EpGq ðñ ppxi, jyq “ 1.

• We denote by EGr the represented space of graphs represented via enumerations, where the
representation map δEGr has domain

tp P NN : p@i ‰ j P NqpDk P Nqpppkq “ xi, jy ùñ pDℓ0, ℓ1 ă kqpppℓ0q “ xi, iy^ppℓ1q “ xj, jyqqu.

A graph G instead has multiple δEGr-names namely tp P dompδEGrq : pi P V pGq ðñ
pDkqpppkq “ iqq ^ ppi, jq P EpGq ðñ pDℓqpppℓq “ xi, jyqqu.

Regarding the space EGr, the extra requirement of enumerating edges only after the involved
vertices are enumerated is just to simplify some proofs in this chapter.

It is trivial that given a δGr-name for a graph G we can compute a δEGr-name for G: the
converse is false, but the next lemma tells us that from a δEGr-name for G we can compute a
δGr-name for a graph H “close” to G, i.e. a graph H containing a copy of G plus vertices of finite
degree.

Lemma III.2.1. There exists a computable F :Ď EGr Ñ Gr such that

p@G P EGrqp@H P FpGqqpDV Ď V pHqqp@v P V pHqzV qpG1æV – G^ degHpvq ă ℵ0q.

Proof. Let q be a name for G P EGr. The function F computes from q a name p for a graph
H P Gr in stages. We write ppxi, jyq Òs to denote that, at stage s, we do not have decided yet
if pi, jq P EpHq or, in case i “ j, if i P V pHq. For any s P N, we define the auxiliary maps
ιs : NÑ N and ι : NÑ N with the following properties:

piq for every s, dompιsq :“ tv : pDi ă sqpqpiq “ xv, vyqu and dompιsq Ď dompιs`1q;

piiq for every v P V pGq, ιpvq :“ limsÑ8 ιspvq exists.

Construction.
We now describe how to compute p, but before doing so we introduce the following notation:
we say that we “erase p up to stage s” if for all i, j ď s, if ppxi, jyq Òs, we set ppxi, jyq “ 0.
We perform this procedure whenever we need to decide if ppiq “ 1 or ppiq “ 0 for some i P N,
but we do not have received the information we wanted. This procedure does not affect our
construction as, when the information arrives, if it tells us that the vertex/edge coded by i is
not in H we have already settled ppiq correctly, otherwise we can choose another vertex/edge
coded by some t ą s that will play the role of vertex/edge coded by i. This informal description
will be clearer during the construction.

At stage 0, do nothing. At stage s ` 1, suppose qpsq “ xu, vy. First notice that, since an
edge pu, vq is enumerated only after u and v have already been enumerated, in this construction
it is never the case that u ‰ v ^ pu R dompιsq _ v R dompιsqq. We have the following cases

• Case 1: u, v R dompιsq and u “ v. Let m :“ mintk R rangepιsq : k ą su. Choosing m as
such, we ensure that ppxm,myq Òs and hence we can set ppxm,myq “ 1 and ιs`1puq “ m.
Then, erase p up to stage s.
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• Case 2: u, v P dompιsq and u “ v. By Case 1 ppxιspuq, ιspuqyq “ 1. Then, erase p up to
stage s.

• Case 3: u, v P dompιsq and u ‰ v,

(a) if ppxιspuq, ιspvqyq “ ppxιspvq, ιspuqyq “ 1, then erase p up to stage s;

(b) if ppxιspuq, ιspvqyq Òs and ppxιspvq, ιspuqyq Òs, let

ppxιspuq, ιspvqyq “ ppxιspvq, ιspuqyq “ 1.

Then, erase p up to stage s;

(c) if ppxιspuq, ιspvqyq “ 1 and ppxιspvq, ιspuqyq “Òs, let ppxιspvq, ιspuqyq “ 1. Then, erase
p up to stage s.;

(d) if ppxιspuq, ιspvqyq _ ppxιspvq, ιspuqyq “ 0, let ku :“ mintk : qpkq “ xu, uyu and
kv :“ mintk : qpkq “ xv, vyu: if ku ă kv declare v injured, u otherwise. Suppose v is
injured (the case for u is the same). Then let m :“ mintk R rangepιsq : k ą su, let
ppxm,myq “ 1, ιs`1pvq “ m and for every i ď s, if qpiq “ xv, wy _ qpiq “ xw, vy let
ppxm, ιspwqyq “ ppxιspwq,myq “ 1. Then, erase p up to stage s.;

Verification.
We first verify that ι and, for all s, ιs have the desired properties. To verify the desired properties
of ι, notice that piq is straightforward: to prove piiq, notice that

p@v P V pGqqp|ts : v is injured at stage su| ď |tw : pv, wq P EpGq ^ w ă vu|q.

Let sv :“ maxtt : v is injured at stage tu: then, since the only case in which ιspvq ‰ ιs`1pvq is
in Case 3(d), we have that for all p@s ě svqpιsv pvq “ ιspvqq and hence ιpvq exists.

We now prove that p@G P EGrqp@H P FpGqqpDV Ď V pHqqpHæV – Gq. Given a name
p for H P Gr, let V :“ tιpvq : v P V pGqu. We have to prove that for any v, u P V pGq,
pv, uq P EpGq ðñ ppxιpvq, ιpuqyq “ 1. For the left-to-right direction, suppose pv, uq P EpGq and
notice that, by piiq, ιpvq and ιpuq exists. Let s0 :“ maxtt : u or v has been injured at stage tu.
By piiq we get that ιs0pvq “ ιpvq and ιs0puq “ ιpuq and by construction, ppxιpuq, ιpvqyq “ 1. For
the opposite direction, notice that ppxιpvq, ιpuqyq “ 1 holds only if pu, vq is enumerated in EpGq.
To conclude the proof, we need to show that p@v P V pHqzV qpdegHpvq ă ℵ0q. Notice that v P
V pHqzV if and only if pDs, wqpv “ ιspwq ‰ ιpwqq and, by construction, p@t ě sqpppxv, tyq “ 0q,
i.e. degHpvq ă ℵ0.

III.3 Effective Wadge complexity of sets of graphs

In this chapter we heavily use the operations on graphs and trees defined in Chapter I. We just
recap here their names: the symbols

Â
and

Ä
denote respectively the disconnected and connected

union of graphs. For a graph G,
8Â
G denotes the graph having infinitely many disconnected copies

of G and,
Ů

denotes the disjoint union of trees.

In this section, we provide examples of Γ-complete sets of (names of) graphs where Γ is a
lightface class. For a fixed graph G, we consider sets of the form

tH P pEqGr : G Ďpiqs Hu :“ tp P dompδpEqGrq : G Ďpiqs δpEqGrppqu. (2)

The next proposition, whose easy proof is omitted, is a direct consequence of Gr and EGr
definitions.

Proposition III.3.1. For any graph G, tH P Gr : G Ďpiqs Hu ďEW tH P EGr : G Ďpiqs Hu.
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The following two operations on graphs and trees are fundamental in many constructions of
this chapter. Given a tree T and a graph G where V pGq “ tvi : i P Nu, let A

ĎpT,Gq and A | pT,Gq
be such that V pAĎpT,Gqq “ V pA | pT,Gqq :“ T (i.e. any node in T is a vertex of the resulting
graph) and

• EpAĎpT,Gqq :“ tpσ, τq : pv|σ|, v|τ |q P EpGq ^ pσ Ă τ _ τ Ă σqu.

• EpA | pT,Gqq :“ tpσ, τq : pv|σ|, v|τ |q P EpGq _ pσ | τqu.

Notice that both AĎpT,Gq and A | pT,Gq are computable relative to T and G.

Proposition III.3.2. Let T P IF and let G be an infinite graph. Then G Ďis A
ĎpT,Gq and

G Ďis A
| pT,Gq.

Proof. In both cases, suppose that V pGq “ tvi : i P Nu, let p P rT s and consider V :“ tprns : n P
Nu. By definitions of EpAĎpT,Gqq and EpA | pT,Gqq, it is easy to check that AĎpT,GqæV – G

and A | pT,GqæV – G as well, and this concludes the proof.

Remark III.3.3. In this chapter, most of the results are stated for graphs having a com-
putable/c.e./hyperarithmetical copy. In §III.1, we said that a graph is computable if its vertex
set is computably isomorphic to N and it has a computable edge relation: similar definitions
hold for c.e. and hyperarithmetical graphs. From now on, for notational simplicity, we mod-
ify these definitions and we say that a graph is computable if it has a copy with vertex set
computably isomorphic to N and computable edge relation: in all proofs, when we consider a
computable graph, we always consider a computable copy of it (similarly for c.e. and hyper-
arithmetical graphs). For the computable case, this is equivalent to say that a computable
graph has a computable δGr-name and, for the c.e. case, that a c.e. graph has a computable
δEGr-name.

In this section, we show that if we restrict to a computable or c.e. graph G, except when
G is finite but not isomorphic to any Kn, we obtain that both tH P Gr : G Ďpiqs Hu and
tH P EGr : G Ďpiqs Hu are Γ-complete for some lightface class Γ, and hence, in these cases, the
conclusion of Proposition III.3.1 becomes an equivalence. To prove results of this kind, we usually
perform the following steps:

• show that tH P EGr : G Ďpiqs Hu is in Γ;

• prove that for any Γ-complete set A, A ďEW tH P Gr : G Ďpiqs Hu;

• apply Proposition III.3.1 to obtain that both tH P Gr : G Ďpiqs Hu and tH P EGr : G Ďpiqs
Hu are Γ-complete (and hence effectively Wadge equivalent).

The following is a technical lemma about the complexity of some graph related formulas.

Lemma III.3.4. Let G P pEqGr, let v, w P V pGq and d P N. Then vúGw is a Σ0
1 formula

and degGpvq ď d is a Π0
1 formula.

Proof. Given a name p for G P Gr we have vúGw if and only if

pDn ą 0qpDσ P Nnqpppxσpiq, σpi` 1qyq “ 1^ σp0q “ v ^ σp|σ| ´ 1q “ w^

pn ą 1 ùñ p@i ‰ j ă |σ| ´ 1qpσpiq ‰ σpjqqqq,

and degGpvq ď d if and only if

p@v0, . . . , vd P V pGqqp@i ď dqpppxv, viyq “ 1 ùñ pDi, j ď dqpi “ jqq.
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Given a name q for G P EGr we have vúGw if and only if

pDn ą 0qpDσ P Nnqp@m ă |σ|qpDkmqpqpkmq “ xσpiq, σpi` 1qy ^ σp0q “ v ^ σp|σ| ´ 1q “ w^

pn ą 1 ùñ p@i ‰ j ă |σ| ´ 1qpσpiq ‰ σpjqqqq,

and degGpvq ď d if and only if

p@pk0, v0q, . . . , pkd, vdq P Nˆ V pGqqp@i ď nqpqpkiq “ xv, viy ùñ pDi, j ď nqpi “ jqq.

We start our investigation on the (effective) Wadge complexity of sets of graphs line in (2).

Proposition III.3.5. For any hyperarithmetical graph G, the following sets are Σ1
1:

(i) tH P EGr : G Ďs Hu, (ii) tH P Gr : G Ďs Hu,

(iii) tH P Gr : G Ďis Hu (iv) tH P EGr : G Ďis Hu.

If G is finite, the first three sets are Σ0
1-complete. For any n P N, tH P EGr : Kn Ďis Hu is

Σ0
1-complete, otherwise, if G fl Kn, the set tH P EGr : G Ďis Hu is Σ0

2-complete.

Proof. We start showing that all sets in piq ´ pivq are Σ1
1.

piq Let p be a name for H P EGr. Then G Ďs H if and only if

pDfqp@i, j P V pGqqppi “ j _ pi, jq P EpGqq ùñ pDkqpppkq “ xfpiq, fpjqyqq.

piiq Let p be a name for H P Gr. Then G Ďs H if and only if

pDfqp@i, j P V pGqqpppi “ j _ pi, jq P EpGqq ùñ ppxfpiq, fpjqyq “ 1qq.

piiiq Let p be a name for H P Gr. Then G Ďis H if and only if

pDfqp@i, j P V pGqqpppi “ j _ pi, jq P EpGqq ðñ ppxfpiq, fpjqyq “ 1qq.

pivq Let p be a name for H P EGr. Then G Ďis H if and only if

pDfqp@i, j P V pGqqppi “ j _ pi, jq P EpGqq ðñ pDkqpppkq “ xfpiq, fpjqyqq.

All the formulas are Σ1
1 and this concludes the first part of the proof.

In case G is finite, the first existential quantification ranges over N while the quantification
over V pGq ranges over a finite set. This shows that the sets piq, piiq, and piiiq are Σ0

1 sets, and
pivq is Σ0

2. On the other hand, for any n P N, given a name p for H P EGr, Kn Ďis H if and
only if

pDσ P N|EpKnq|`|V pKnq|qp@i, j P V pKnqqpDkqpppkq “ xσpiq, σpjqyq,

and hence the formula defining the set in pivq is Σ0
1.

We now show that, for finite graphs, the sets above are complete in the corresponding
lightface classes. We prove that the set in piiiq is Σ0

1-complete and the set in pivq is Σ0
2-complete,

and we skip the proofs for the sets in piq and piiq as the proof follows the same pattern. To do so,
we prove that tp P 2N : pDiqpppiq “ 1qu ďEW tH P Gr : G Ďs Hu (recall that, by Lemma I.3.35,
the left-hand-side set is Σ0

1-complete). Given p P 2N we define a computable f : 2N Ñ Gr such
that
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• if ppsq “ 0, then let fpprssq be the empty graph;

• if ppsq “ 1, then let fppq – G, i.e. add a fresh copy of G to the graph we are computing
and stop the construction.

To show that f is an effective Wadge reduction it suffices to notice that, if pDiqpppiq “ 1q then
clearly G Ďis fppq – G while if p@iqpppiq “ 1q then fppq is the empty graph and no nonempty
graph is an induced subgraph of the empty graph.

To conclude the proof, it remains to prove that tH P EGr : G Ďis Hu for G fl Kn for some
n P N is Σ0

2-complete and to do so we show that tp : p@8iqpppiq “ 0qu ďEW tH P EGr : G Ďis Hu
(recall that, by Lemma I.3.35, the left-hand-side set is Σ0

2-complete). Given p P 2N, we define
a computable f : 2N Ñ EGr such that

• if ppsq “ 0, then let fpprssq :“ fpprs´ 1sq
Â

G1, where G1 is a fresh copy of G;

• if ppsq “ 1, then let fpprssq – Kns
where ns :“ |ti : i P V pfpprs´ 1sqqu|, i.e. enumerate

enough edges in the graph we are computing to make it isomorphic to a complete finite
graph.

Finally, if p@8iqpppiq “ 0q then fppq – Kn

Â 8Â
G for some n P N, and clearly G Ďis fppq.

Otherwise, if pD8iqpppiq “ 1q then fppq – Kω. Combining the fact that fppq is an induced
subgraph of Kω if and only if fppq – Kn for some n P N or fppq – Kω and the fact that
G fl Kω and G fl Kn for any n P N, we conclude that G Ďis fppq.

Before moving to the case when G is infinite, we give the following lemma, which is a particular
case of the chain antichain principle (CAC). This principle asserts that each partial order on N

contains an infinite chain or an infinite antichain (notice that a tree, in particular, is a partial
order, where the order is given by the prefix order of the tree). This principle is well-studied in
reverse mathematics and its proof is an easy application of Ramsey theorem for pairs.

Lemma III.3.6. Let T be a well-founded tree and S an infinite subset of T . Then S contains
an infinite anti-chain, i.e. a set of nodes that are pairwise incomparable with respect to the
prefix order of T .

In the next three proofs, the function F is the one defined in Lemma III.2.1: recall by Re-
mark III.3.3, that for a graph G, being c.e. and having a computable δEGr-name are equiva-
lent.

Theorem III.3.7. Let G be a c.e. graph such that Kω Ďis G. Then tH P pEqGr : G Ďis Hu
are Σ1

1-complete.

Proof. By Proposition III.3.5 both sets are Σ1
1 and by Proposition III.3.1, it suffices to prove

that tH P Gr : G Ďis Hu is Σ
1
1-complete. To do so, we show that IF ďEW tH P Gr : G Ďis Hu

(recall that, by Theorem I.3.39, IF is Σ1
1-complete). Let T P Tr, consider G1 P FpGq and,

given V pG1q “ tvi : i P Nu, compute A | pT,Gq. Notice that

• if T P IF , by Proposition III.3.2, G1 Ďis A
| pT,G1q and hence, since G Ďis G

1, we obtain
that G Ďis A

| pT,G1q;

• if T PWF , we claim that G Ďis A
| pT,G1q. If T is finite (i.e. T has finitely many nodes),

since G is infinite, the claim follows trivially. If T is infinite, by Lemma III.3.6, for any
infinite H that is an induced subgraph of A | pT,G1q there exists H 1 that is an induced
subgraph of H such that V pH 1q is an anti-chain in T . By definition of EpA | pT,G1qq, all
incomparable nodes in T are connected by an edge, and hence H 1 – Kω is a subgraph of
H. Since Kω Ďs G this concludes the proof of the claim.
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Hence, T is ill-founded if and only if G Ďis A
| pT,G1q, and this concludes the proof.

While the theorem above holds only for the induced subgraph relation, the following holds also
for the subgraph one.

Theorem III.3.8. Let G be a c.e. graph such that Rω Ďs G. Then the sets tH P pEqGr :
G Ďpiqs Hu are Σ1

1-complete.

Proof. By Proposition III.3.5 all four sets are Σ1
1 and by Proposition III.3.1, it suffices to

show that the sets tH P Gr : G Ďpiqs Hu are Σ1
1-complete. We only show it for the subgraph

relation, as the same proof works also for the induced one. As in Theorem III.3.7, we show
that IF ďEW tH P repspacegraphs : G Ďs Hu. Let T P Tr, consider G1 P FpGq and, given
V pG1q “ tvi : i P Nu, compute AĎpT,Gq. Notice that:

• if T P IF , by Proposition III.3.2, G1 Ďis AĎpT,G1q and hence, since G Ďis G
1, G Ďis

AĎpT,G1q;

• if T P WF , we claim that G Ďs AĎpT,G1q. Since, Rω Ďs G by hypothesis, it suffices to
show that Rω Ďs A

ĎpT,G1q. We show the contrapositive: suppose that Rω Ďs A
ĎpT,G1q

and let tσi : i P Nu such that for every i, pσi, σi`1q P EpA
ĎpT,G1qq be the vertices of the

copy of Rω in AĎpT,G1q. By definition of EpAĎpT,G1qq, pσ, τq P EpAĎpT,G1qq ùñ σ Ă

τ _ τ Ă σ. Hence, T contains infinitely many nodes comparable to each other, i.e. T P IF
and this proves the claim.

To conclude the proof, notice that T P IF if and only if G Ďis A
ĎpT,G1q.

The next proposition gives us a lower bound to the complexity of sets of the form tH P pEqGr :
G Ďs Hu where G is c.e. and infinite.

Proposition III.3.9. For any infinite c.e. graph G, the sets tH P pEqGr : G Ďs Hu are
Π0

2-hard.

Proof. Recall that tp P 2N : pD8nqpppnq “ 1qu is Π0
2-complete (Lemma I.3.35) and, by Propo-

sition III.3.1, it suffices to show that tp P 2N : pD8nqpppnq “ 1qu ďEW tH P Gr : G Ďs Hu.
Let p P 2N and consider G1 P FpGq. We compute H letting V pHq :“ tn : ppnq “ 1u and
pn,mq P EpHq ðñ ppnq “ ppmq “ 1. Notice that:

• if pD8iqpppiq “ 1q then Kω Ďs H, and since any graph is a subgraph of Kω we obtain that
G Ďis G

1 Ďs H;

• if p@8iqpppiq “ 0q then H is finite and since G is infinite, we obtain that G Ďs H.

Hence, pD8iqpppiq “ 1q if and only if G Ďs H and this concludes the proof.

So far, the sets of graphs of the form tH P pEqGr : G Ďpiqs Hu for a fixed graph G we considered
are Γ-complete for Γ P tΣ0

1,Σ
0
2,Σ

1
1u: by the end of this section, we define sets of the same form

that are Γ-complete with Γ varying along the lightface arithmetical hierarchy. To do so, for k P N,
consider the graphs T2k`1 and F2k`2 where:

V pT2k`1q :“ tσ P N
ăN : |σ| ď ku, V pF2k`2q :“ tσ P N

ăN : 0 ă |σ| ď k ` 1u and,

for G P tT2k`1,F2k`2u,

EpGq :“ tpσ, τq P EpGq : σ, τ P V pGq ^ pσ “ τ r|τ | ´ 1s _ τ “ σr|σ| ´ 1squ.
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To have an intuitive idea of the graphs’ definition above, notice that T and F stand respectively
for “tree” and “forest” where a forest is the disconnected union of countably many trees. Starting
from T1 – ptxyu,Hq (the graph/tree having a unique vertex), the following relations hold:

F2k`2 –
8â

T2k`1 and T2k`3 –
ğ

iPN

Ti where Ti is a connected component of F2k`2.

Notice that all Ti’s for i P N are well-founded, and for a well-founded tree T we can define its
height as maxt|σ| : σ P T u: notice that the k in T2k`1 (respectively F2k`2) corresponds to the
height of T2k`1 (the connected components of F2k`2). For example, T1 “ txyu is a tree of height
0, F2 is the forest having infinitely many trees of height 0, T3 is a tree of height 1 with infinitely
many children, F4 is the forest made by infinitely many copies of T3 and so on.

Theorem III.3.10.

• The sets tH P pEqGr : T2k`1 Ďs Hu are Σ0

2k`1
-complete;

• The sets tH P pEqGr : F2k`2 Ďs Hu are Π0

2k`2
-complete.

The proof of this theorem is obtained by combining Lemmas III.3.12 and III.3.13: the first
proves that the sets involved are respectively Σ0

2k`1
and Π0

2k`2
. The second one shows that

(subspaces of) pEqGr are hard (and hence by Lemma III.3.12 complete) for the corresponding
lightface classes.

Remark III.3.11. Lemma III.3.13 shows that the complexity of such sets remains the same
even if we restrict the graphs H to trees/forests of length at most k: this comes in handy in
§III.4.4.

Lemma III.3.12. Given a graph H,

• T2k`1 Ďs H if and only if pDv0 P V pHqqpD8v1 P V pHqq . . . pD8vk P V pHqqp@j ă
kqppvj , vj`1q P EpHqq.

• F2k`2 Ďs H if and only if pD8v0 P V pHqqpD8v1 P V pHqq . . . pD8vk P V pHqqp@j ă
kqppvj , vj`1q P EpHqq.

Hence, tH P pEqGr : T2k`1 Ďs Hu and tH P pEqGr : F2k`2 Ďs Hu are respectively Σ0

2k`1
and

Π0

2k`2
.

Proof. In both cases, the left-to-right direction is trivial. For the opposite direction, we just
prove the second item, as the proof of the first one is similar. Given a graph H, fix k P N and,
for every j ă k, let pvmj qmPN be an enumeration of the vj ’s in V pHq: notice that, for i ‰ l ď j

vertices that appear in pvmi qmPN may appear also in pvml qmPN. We define a function ι from
V pF2k`2q Ď NăN to V pHq letting ιpσq :“ vk|σ| if and only if

p@τ ă σqpιpτq ‰ vk|σ|q and pDlqpιpσr|σ| ´ 2sq “ vl|σ|´1
^ pvk|σ|, v

l
|σ|´1

q P EpHqq

Notice that, by definition of H, for any σ, vk|σ| as above always exists. Indeed, for σ “ xy this

is immediate. For σ ‰ xy, it suffices to notice that at any stage we have defined only finitely
many vertices in the range of ι while, by hypothesis, degHpιpσr|σ| ´ 2sqq “ ℵ0 (and hence we
can always find vkj satisfying the conditions above).

Let ιpV pF2k`2qq :“ tιpσq : σ P V pF2k`2qu and consider the graph HæV : clearly, HæV – F2k`2



III.3. Effective Wadge complexity of sets of graphs 83

and this concludes the proof of the lemma.

Given a subspace G Ď pEqGr, we define
Â

G :“ t
Â

nPNGn : p@nqpGn P Gqu. We denote by
Trďk the represented spaces of trees of height at most k: that is,

Trďk :“ tT P Tr : p@σ P T qp|σ| ď kqu.

Clearly Trďk is a subspace of Gr, and in the next lemma we consider the space
Â

Trďk
.

Lemma III.3.13. For k P N:

• Trees2k`1 :“ tG P
Â

Trďk
: T2k`1 Ďs Gu is Σ0

2k`1
-hard;

• Forests2k`2 :“ tG P
Â

Trďk
: F2k`2 Ďs Gu is Π0

2k`2
-hard.

Proof. By Lemma III.3.12, Trees2k`1 and Forests2k`2 are respectively Σ0

2k`1
and Π0

2k`2
sets.

To show that the sets above are complete for the corresponding lightface classes, we first
prove by induction on k that Forests2k`2 is Π0

2k`2
-complete. For the base case, since tp P 2N :

p@8iqpppiq “ 0qu is Π0
2-complete (Lemma I.3.35), it suffices to show that tp P 2N : p@8iqpppiq “

0qu ďEW Forests2. Given p P 2N, compute T :“ txyu Y txny : ppnq “ 0u and notice that

p P tp P 2N : pD8iqpppiq “ 0qu ðñ degT pxyq “ ℵ0 ðñ F2 Ďs T.

Assuming that Forests2k`2 is Π0

2k`2
-complete we aim to show that Forests2pk`1q`2 is Π0

2k`4
-

complete. By Lemma I.3.38,

Forests02k`2 :“ tpGnqnPN P p
â

Trďk
qN : pD8nqpGn P Forests2k`2qu is Π

0

2k`4-complete.

Notice that, given pGnqnPN P Forests
0

2k`2 for every n, Gn “
Â

iPN pT
n,iqiPN where Tn,i P Trďk :

given pGnqnPN P p
Â

Trďk
qN, compute F :“

Â
nPN

`Ů
iPN T

n,i
˘
. Informally, Fn is obtained first

connecting, for every n P N, to a new root the roots of the tTn,i : i P Nu and then considering
the disconnected union of the resulting trees: notice that by hypothesis all Tn,i are in Trďk

and, by construction all connected components of F are in Trďk`1, and hence F P
Â

Trďk`1.
It is easy to check that pGnqnPN P Forests

0

2k`2 ðñ F P Forests2k`4, and hence Forests2k`4

is Π0

2k`4
-complete.

To conclude the proof, it suffices to prove for any k P N, Trees2k`1 is Σ0

2k`1
-complete. For

k “ 0 we can prove the statement showing that P1 ďEW Trees1: the proof is an easy adaptation
of the one given to prove P2 ďEW Forests2. For k ą 0, the proof is almost the same of the one
showing that Forests2k`2 is Π0

2k`2
-complete. Indeed, by Lemma I.3.38

Trees02k`2 :“ tpGnqnPN P p
â

Trďk
qN : pDnqpGn P Forests2k`2qu is Σ

0

2k`3-complete,

and we compute F as above. It is easy to check that F P Forests12k`2 ðñ F P Tree2k`3, and
hence Tree2k`3 is Σ0

2k`3
-complete and this concludes the proof.

Due to the fact that we can always think an element of (products) of Trďk as an element of
Gr, the previous lemma, together with Lemma III.3.12, proves Theorem III.3.10.

We leave open whether there exists a computable/c.e. graph G such that tH P pEqGr : G Ďs

Hu P Γ for Γ R tΣ0

2k`1
,Π0

2k`2
,Σ1

1u for k P N.

Remark III.3.14. Notice that from the results presented in this section (and from the ones
we are presenting in §III.3.2) we also obtain the complexity of the same sets of graphs in the
boldface hierarchy: in this context, graphs are given via their characteristic functions, i.e. as
an element of Gr, and the completeness is defined with respect to Wadge reducibility. The
Wadge reductions we use are the effective ones we use to prove the statements for the lightface
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case. We do not restate all the results for the boldface case, except for the next one that gives
a sort of dichotomy for tH P Gr : G Ďis Hu: this kind of result can be found for different
structures for example in [Cam05].

Theorem III.3.15. For any finite graph G, tH P Gr : G Ďis Hu is Σ0
1-complete, otherwise

it is Σ1
1-complete.

Proof. For finite G’s the proof is the same as the one in Proposition III.3.5piiiq.
For infinite G’s, the proof that tH P Gr : G Ďis Hu is Σ

1
1 is the same of Proposition III.3.5.

For completeness, we show that IF ďW tH P Gr : G Ďis Hu. To do so, we combine the
effective Wadge reductions used in the proofs of Theorems III.3.7 and III.3.8, noticing that
if Kω Ďis G then Rω Ďs G. Then it is easy to check that the following function is the desired
Wadge reduction

fGpT q :“

#
AĎpT,Gq if Kω Ďis G,

A | pT,Gq if Kω Ďis G,

i.e., T P IF ðñ G Ďis fGpT q.

III.3.1 Deciding (induced) subgraphs problems in the Weihrauch lattice

In this section, we consider problems of the following form:

Definition III.3.16. For a computable graph G, we define the functions ISG : Gr Ñ 2 and
SG : GrÑ 2 by

ISGpHq “ 1 ðñ G Ďis H and SGpHq “ 1 ðñ G Ďs H.

The same functions having domain EGr are denoted respectively with eISG and eSG.

Notice that in [BHW21], the authors considered only SG and ISG, and they denote these problems
respectively with SEG and SG.

All the results in this section, are immediate consequences of §III.3: indeed, in the follow-
ing proofs, the forward and backward functionals witnessing the Weihrauch reduction are re-
spectively the effective Wadge reduction coming from the corresponding result in §III.3 and the
identity.

Proposition III.3.17. For any hyperarithmetical graph G,

ISG ďsW eISG ďsW WF and SG ďsW eSG ďsW WF.

Proof. It follows by Propositions III.3.1 and III.3.5 and the fact that WF answers any Σ1
1-

complete question relative to the input (see §I.6)

The following theorem discusses the problems ISG and eISG for finite nonempty graphs.

Theorem III.3.18. For any finite nonempty graph G, LPO ”sW peqSG ”sW ISG. If G – Kn

for some n ą 0, then LPO ”sW eISG, otherwise LPO1 ”sW eISG.
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Proof. The fact that LPO ”sW ISG is from [BHW21, Theorem 27]. Essentially the same proof
also gives us that LPO ”sW SG. Anyway, all results are direct consequences of Proposi-
tion III.3.5 and the fact that LPO and LPO1 answer respectively any Σ0

1.complete and Σ0
2-

complete questions relative to the input.

In [BHW21, Theorem 24] the authors showed that WF ”sW piqSRω
”sW piqSRω

Ä
Cn

for some n ą 2
and left open the following question:

is there a computable graph G such that LPO ăW ISG ăW WF? (3)

By Theorem III.3.18 we know that if such a G exists, it must be infinite.

Lemma III.3.19. Let G be a c.e. graph such that Rω Ďs G. Then, WF ”sW peqSG ”sW peqISG.

Proof. It follows immediately from Theorem III.3.8 and Proposition III.3.17.

Lemma III.3.20. Let G be a c.e. graph such that Kω Ďis G. Then WF ”sW peqISG.

Proof. It follows immediately from Theorem III.3.7 and Proposition III.3.17.

We finally obtain a negative answer to question (3) showing that the conjecture does not hold for
even a larger class of graphs and problems.

Theorem III.3.21. There is no c.e. graph G such that LPO ăW peqISG ăW WF.

Proof. If G is finite then ISG ”sW LPO (Theorem III.3.18). If G is an infinite graph then either
Kω Ďis G or Kω Ďis G (and hence Rω Ďs G): by Proposition III.3.17, in both cases we obtain
ISG ”sW WF.

As mentioned in the introduction of Part 1, a main theme of this part is to identify represen-
tatives of Π1

1´CA0 in the Weihrauch lattice: the next corollary gives us some “graph-theoretic”
ones.

Corollary III.3.22. Let G and H be infinite c.e. graphs such that Rω Ďs G and Kω Ďis H.

Then yWF ”sW
{peqSG ”sW

{peqISG ”sW
{peqISH .

The following theorem shows that the situation for SG is quite different.

Theorem III.3.23. For every k P N, peqST2k`1
”sW LPOp2kq and peqSF2k`2

”sW LPOp2k`1q

Proof. It follows from Theorem III.3.10 and the fact that LPOpnq answers a binary Σ0
n`1-

complete or Π0
n`1-complete question (see §I.6).

We do not know whether there exists a graph G such that LPOpnq ăW SG ăW LPOpn`1q:
this question is essentially the same question left open at the end of §III.3 in terms of Weihrauch
reducibility.
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III.3.2 The “opposite” problem

In §III.3 we considered the (effective) Wadge complexity of sets of the form tH P pEqGr : G Ďpiqs
Hu. Now we consider sets having a sort of “opposite” definition, namely,

tH P pEqGr : H Ďpiqs Gu :“ tp P dompδpEqGrq : δpEqGrppq Ďpiqs Gu.

We show that while in §III.3 we have many natural examples of graphs G such that the sets
tH P pEqGr : G Ďpiqs Hu are Σ

1
1-complete, the “opposite” sets, for the same G, have a considerably

lower complexity: the best we achieve is showing that there exists a graph G such that the sets
tH P pEqGr : H Ďis Gu are Π0

5-hard, and we leave open whether there exists a graph G such that
the sets tH P pEqGr : H Ďis Gu are Γ-hard (or Γ-complete) for more complex Γ.

As in §III.3, we start from finite graphs. Notice that the analogue of Proposition III.3.1 holds
also for this kind of sets: namely tH P Gr : H Ďpiqs Gu ďEW tH P EGr : H Ďpiqs Gu.

Proposition III.3.24. For any finite graph G, the sets tH P pEqGr : H Ďs Gu and tH P
Gr : H Ďis Gu are Π0

1-complete

Proof. To show that the first two sets are Π0
1, by the analogue of Proposition III.3.1, it suffices to

show that, given a name q for H P Gr, since G is finite, H Ďs G ðñ p@sqpδGrpqrss0
Nq Ďs Gq.

To show that the third set is Π0
1 it suffices to notice that given a name q for H P Gr,

H Ďis G ðñ p@sqpHrss Ďis Gq, where Hrss is the graph having ti ă s : qpxi, iyq “ 1u as
vertex set and ti, j ă s : qpxi, jyq “ 1u.

We only give the proof that the third set is complete for the class Π0
1, as the same proof

shows also the completeness for the first two sets. By the analogue of Proposition III.3.1 and
Theorem I.3.36, it suffices to show that tp : p@iqpppiq “ 0qu ďEW tH P Gr : H Ďis Gu. Let
G
Ä

v be the graph consisting of G and a disconnected vertex. Then, given p P 2N, let H be
such that

H –

#
G
Ä

v if pDiqpppiq “ 1q,

H otherwise.

The graph H it is easy to compute: just add in H a copy of G
Ä

v if a 1 appears in p, otherwise
keep computing a name for the empty graph. Since H Ďis G while G

Ä
v Ďs G, it is clear

that H Ďis G ðñ p@iqpppiq “ 0q. The same proof works also if we consider the subgraph
relation.

The proof of the proposition above can be easily adapted to prove the following result.

Proposition III.3.25. For any finite graph G, the sets tH P pEqGr : H Ďs

8Â
Gu and

tH P Gr : H Ďis

8Â
Gu are Π0

1-complete

We leave open whether tH P EGr : H Ďis Gu and tH P EGr : H Ďis

8Â
Gu are complete for

some class Γ, but we conjecture that they are complete for some class in the lightface difference
hierarchy (not introduced in this thesis, see e.g. [Sac17, §I.2.3] for its definition).

The following proposition shows a big difference with sets of the form tH P pEqGr : G Ďpiqs Hu.
Indeed, for any c.e. graph G such that Rω Ďs G, the sets tH P pEqGr : G Ďpiqs Hu are Σ1

1-
complete (Theorem III.3.8). Clearly Rω Ďs Kω, but the following proposition shows that the sets
tH P pEqGr : H Ďpiqs Kωu have a significantly lower complexity.

Proposition III.3.26. The sets tH P pEqGr : H Ďs Kωu are computable, tH P Gr : H Ďis

Kωu is Π0
1-complete and tH P EGr : H Ďis Kωu is Π0

2-complete.
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Proof. The fact that the sets tH P pEqGr : H Ďs Kωu are computable follows from the fact
that any graph is a subgraph of Kω.

To show that tH P Gr : H Ďis Kωu is Π0
1 notice that given a name p for H P Gr,

H Ďis Kω ðñ p@v ‰ wqpppxv, vyq “ ppxw,wyq “ 1 ùñ ppxv, wyq “ 1q. To prove
completeness, we show tp : p@iqpppiq “ 0qu ďEW tH P Gr : H Ďis Kωu (the left-hand-side is
Π0

1-complete by Theorem I.3.36). To do so, given p P 2N, and v ‰ w it is immediate that we
can compute H as

H –

#
ptv, wu,Hq if pDiqpppiq “ 1q,

H otherwise.

Clearly, H Ďis Kω ðñ p@iqpppiq “ 0q and this proves the reduction.
To show that tH P EGr : H Ďis Kωu is Π0

2, notice that given a name p for H P EGr,
H Ďis Kω ðñ p@v ‰ wqpDk0, k1, k2qpk2 ą k0, k1^ppk0q “ xv, vy^ppk1q “ xw,wy ùñ ppk2q “
xv, wyq. To prove completeness, we show that tp : pD8iqpppiq “ 1qu ďEW tH P EGr : H Ďis Kωu
(the left-hand-side is Π0

2-complete by Theorem I.3.36). To do so, we compute a δEGr-name q
as follows. At stage 0 do nothing and at stage s` 1.

• if pps` 1q “ 0, then enumerate in q an isolated vertex to the graph computed up to stage
s;

• if pps` 1q “ 1, then enumerate in q enough edges in the graph computed up to stage s to
make it isomorphic to a complete finite graph.

It is clear that if pD8iqpppiq “ 1q, then δEGrpqq – Kω (and clearly Kω is an induced subgraph
of itself). Otherwise, δEGrpqq contains cofinitely many isolated vertices and hence δEGrpqq Ďis

Kω.

Theorem III.3.27. The sets tH P pEqGr : H Ďpiqs
Â

iě1
Riu and tH P pEqGr : H ĎpiqsÂ

iě1
Kiu are Π0

3-complete.

Proof. We first prove the sets above are Π0
3. It is easy to check that H Ďs

Â
iě1

Ri ðñ H ĎisÂ
iě1

Ri. Then H Ďis

Â
iě1

Ri if and only if the following hold:

• p@v P V pHqqpdegHpvq ď 2^ v✘✘✘úHvq, i.e. every node in H has degree at most two and H
contains no cyclic graph, and

• p@v P V pHqqpDkqp@w P V pHqqpvúH w ùñ w ă kq, i.e. every connected component of
H is finite.

First notice that, by Lemma III.3.4, regardless of whether H P EGr or H P Gr, the first
formula is Π0

1, while the second one is Π0
3.

The left-to-right direction of the “if and only if” is trivial. For the opposite direction,
suppose that H satisfies the right-hand-side formulas, and notice that H “

Â
nPNDn where

either Dn – Rm for some m or Dn is an isolated vertex. Then, the map f : N Ñ N such that
fp0q :“ minti : D0 Ďis Riu and, for n ą 0, fpnq :“ minti ą fpn ´ 1q : Dn Ďis Riu witnesses
that H Ďis

Â
iě1

Ri.
For the other case, we have that H Ďs

Â
iě1

Ki if and only if every connected component
of H is finite, while H Ďis

Â
iě1

Ki if and only if H Ďs

Â
iě1

Ki and

• p@v, w P V pHqqpvúH w ùñ pv, wq P EpHqq.

We have already discussed that for H P pEqGr the formula “every connected component of H
is finite” is Π0

3; then, if H P EGr, by Lemma III.3.4, the formula in the item above is Π0
2,
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otherwise, if H P Gr, it is Π0
1. We skip the proofs of the equivalences as, once one notices that

any finite graph is a subgraph of Kn for some n P N and that Kn Ďis Kn`1, they are similar to
the one given for

Â
iě1

Ri.

For completeness, by Theorem I.3.36 we know that tp P 2NˆN : p@nqp@8iqpppm, iq “ 1qu
is Π0

3-complete, and hence we show that tp P 2NˆN : p@nqp@8iqpppn, iq “ 1qu ďEW tH P Gr :
H Ďis

Â
iě1

Riu. For every n we compute a name qn for a graph Hn as follows. At stage 0, let
qnpxxn, 0y, xn, 0yyq “ 1. At stage s` 1, let k0 :“ maxti ď s : qnpxxn, iy, xn, iyyq “ 1u:

• if ppn, s` 1q “ 0, let qnpxxn, s` 1y, xn, s` 1yyq “ 1, and qnpxxn, k0y, xn, s` 1yyq “ 1;

• if ppn, s` 1q “ 1 let qnpxxn, s` 1y, xn, s` 1yyq “ 0, and qnpxxn, k0y, xn, s` 1yyq “ 0.

Informally, at any stage, Hn – Rm for some m ą 0: in the first item we are extending such
a ray, while in the second one we are leaving it as it is. Let H :“

Â
nPNHn and observe

that if pDnqpD8iqpppn, iq “ 0q, then Hn – Rω, and hence H Ďis

Â
iě1

Ri. Otherwise, if
p@nqp@8iqpppn, iq “ 1q, then for every n, Hn – Rm for some m ą 0 and hence H Ďis

Â
iě1

Ri

and hence the sets tH P pEqGr : H Ďpiqs
Â

iě1
Riu are Π0

3-complete.
The same reduction described above also shows that the sets tH P pEqGr : H Ďs

Â
iě1

Kiu
are Π0

3-complete. To show that tH P pEqGr : H Ďis

Â
iě1

Kiu are Π0
3-complete it suffices

to slightly modify the construction, so that the Hn’s are not rays but complete graphs. This
concludes the proof.

We conclude the results about the effective Wadge complexity of subsets of (names of) graphs
discussing tH P pEqGr : H Ďpiqs Su, where S is defined as follows. For any i P N, let Si :“ tjn :

n P N^ j ă i` 1u Y tmn : m ě i` 1^ n ă m´ iu, i.e. a tree where
ˇ̌“
Si
‰ˇ̌
“ i` 1 and such that,

for every m, it has a finite path of length m; the only common initial segment of paths in Si, of
finite or infinite length, is xy. Finally, let S :“

Â
iPN S

i.

Proposition III.3.28. Let S as above: then the sets tH P pEqGr : H Ďpiqs Su are Π0
5-hard.

Proof. We prove the proposition only for tH P Gr : H Ďis Su, but the same proof works for
the rest of the cases.

Consider the set tpp P 2NˆNˆNq : p@iqp@8jqp@8nqpppi, j, nq “ 0qu and notice that by Theo-
rem I.3.36 such a set is Π0

5-complete. For any i P N, we define T i as

txyuYtxjyaσ : j P N^σ P NăN^p@m ă |σ|qpppi, j, σpmqq “ 1q^p@k ă |σ|´1qpσpkq ă σpk`1qqu,

and let T :“
Â

iPN T
i. Notice that for every i, the only common segment of (in)finite sequences

in T i is xy. It is easy to check that
ˇ̌“
T i

‰ˇ̌
“ |tj : pD8nqpppi, j, nq “ 1qu|.

• if pDiqpD8jqpD8nqpppi, j, nq “ 1q. Notice that
ˇ̌“
T i

‰ˇ̌
“ ℵ0: since there exists no i such thatˇ̌“

Si
‰ˇ̌
“ ℵ0 this immediately implies that T Ďis S.

• Otherwise, p@iqp@8jqp@8nqpppi, j, nq “ 0q. It is immediate that, for every i,
ˇ̌“
T i

‰ˇ̌
“

|tj : pD8nqpppi, j, nq “ 1qu| “ k for some k P N. Notice that T i Ďis S
k. Indeed, the only

common initial segment of (in)finite sequences in T i is xy and
ˇ̌“
T i

‰ˇ̌
“
ˇ̌“
Sk

‰ˇ̌
. Furthermore,

since for every m P N there exists some n P N such that mn P Sk, every σ P T i such that
p@tqpσat R T iq can be mapped to some mn where n ą |σ|. We now define a function
f : N Ñ N witnessing that T Ďis S. Let fp0q “ k0 where k0 “

ˇ̌“
T 0

‰ˇ̌
and at stage s ` 1

let fps`1q “ ks`1 where ks`1 :“ mintk ě ks :
ˇ̌“
T s`1

‰ˇ̌
ď ku. Clearly, for any s, ks exists

as at stage s we have only defined fp0q, . . . fps´ 1q and p@k ą
ˇ̌“
T i

‰ˇ̌
qpT i Ďis S

kq. Finally,

p@iqpT i Ďis S
fpiqq and hence T Ďis S. This concludes the proof.

Now we move to Weihrauch reducibility and consider the decision problems that are “opposite”
to the ones defined in Definition III.3.16
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Definition III.3.29. For a computable graph G, we define the functions ISG : Gr Ñ 2 and
SG : GrÑ 2 by

ISGpHq “ 1 ðñ H Ďis G and SGpHq “ 1 ðñ H Ďs G.

The same functions having domain EGr are denoted respectively with eISG and eSG.

In the next proofs, recall from I.6 that LPOpnq answers a Σ0
n`1 or Π0

n`1 question relative to the
input.

Proposition III.3.30. For any finite graph G, peqSG ”sW peqS
8Â
G ”sW LPO.

Proof. All the results follow from Propositions III.3.24 and III.3.25.

Proposition III.3.31. The problems peqSKω are the constant functions taking value 1 and
hence are computable. Instead, ISKω ”sW LPO and eISKω ”sW LPO1.

Proof. The fact that ISKω ”sW LPO was already mentioned in [BHW21], but all the results
follow from Proposition III.3.26.

Notice that in [BHW21], the authors left open whether there is a graph G such that LPO ăW

ISG. The following proposition gives a positive answer to this question.

Proposition III.3.32. peqS
Â

iě1
Ri ”sW peqIS

Â
iě1

Ri ”sW peqS
Â

iě1
Ki ”sW peqIS

Â
iě1

Ki ”sW

LPO2.

Proof. All the results follow from Theorem III.3.27.

It is open whether there exists a graph G such that ISG ”sW WF: indeed, ISS is the strongest
problem of this form we have found. Again the answer to this question is strictly related to the
effective Wadge complexity of sets of (names) of graphs considered in this section.

Proposition III.3.33. LPOp4q ďsW peqSS , peqISS .

Proof. It follows immediately from Proposition III.3.28.

III.4 Searching the (induced) subgraph

In this section, we focus entirely on Weihrauch reducibility: notice that some results are still
consequences of §III.3, but most of them require new proof techniques.

Definition III.4.1. Given a graph G, we define four multi-valued functions:

IS-CopyχχG :Ď Gr Ñ Gr, IS-CopyχeG :Ď Gr Ñ EGr,

IS-CopyeeG :Ď EGr Ñ EGr, IS-CopyeχG :Ď EGr Ñ Gr,

with domains tH : G Ďis Hu and ranges tG1 : G1 – G^G1 is an induced subgraph of Hu. The



90 III. The (induced) subgraph problem

corresponding functions for the subgraph case are denoted replacing IS-Copy with S-Copy and
have domains tH : G Ďs Hu and ranges tG1 : G1 – G^G1 is a subgraph of Hu.

Informally, in the definition above, the χ (respectively e) at the first (second) position indi-
cates that the domain (range) of the corresponding function is a subset of Gr (EGr). We adopt
the following convention: whenever we write IS-CopyG we are referring to all four functions in
Definition III.4.1, similarly for S-CopyG.

The following relations hold, also replacing IS-Copy with S-Copy.

IS-CopyχeG

IS-CopyeeG IS-CopyχχG

IS-CopyeχG

Figure III.3: Dashed arrows represent Weihrauch reducibility in the direction of the arrow, leaving
open whether the reduction is strict.

The next proposition shows that the main functions we consider in this section are cylinders,
which implies that most reductions we obtain in this section are actually strong ones.

Proposition III.4.2. For any infinite graph G, S-CopyG and IS-CopyG are cylinders

Proof. We only prove the statement for IS-CopyG as the same proof shows that S-CopyG are
cylinders as well. Let p P NN and let H P dompS-CopyGq: we compute the graph H 1 such
that V pH 1q :“ txv, prvsy : v P V pHqu and EpH 1q :“ tpxv, prvsy, xw, prwsyq : pv, wq P EpHqu.
Clearly, H 1 – H and the isomorphism between the two graphs is computable. From G1 P
IS-CopyGpH

1q compute the graph S where V pSq “ tv : xv, prvsy P V pG1qu and EpSq “ tpv, wq :
pxv, prvsy, xw, prwsyq P EpG1qu. Clearly S P IS-CopyGpHq, and from tprvs : xv, prvsy P V pSqu
(that by hypothesis is infinite) we can recover longer and longer prefixes of p. This concludes
the proof

The following proposition, together with Figure III.3, shows that CNN is an upper bound for all
of them (notice that CNN is a cylinder as well).

Proposition III.4.3. For any infinite hyperarithmetical graph G, IS-CopyG, S-CopyG ďW CNN .

Proof. By Figure III.3, it suffices to show that IS-CopyeχG , S-CopyeχG ďW CNN . We only show
that IS-CopyeχG ďW CNN as the same proof works also for showing that S-CopyχeG ďW CNN .
Since Σ1

1-CNN ”W CNN (see §I.6) we show that IS-CopyeχG ďW Σ1
1-CNN . Given in input H, by

Proposition III.3.5, notice that tG1 P EGr : G1 – G ^ G1 is an induced subgraph of Hu is a

nonempty Σ1,H
1

subset of NN and hence a suitable input for Σ1
1-CNN : clearly any G P Σ1

1-CNNpHq
is such that G P IS-CopyeχG pHq.

We first consider the case of G being finite, and notice that the case distinction, in some sense,
is close to the one in Proposition III.3.5.
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Theorem III.4.4. For any finite graph G the following holds:

piq the problems S-CopyG are computable;

piiq IS-CopyχeG and IS-CopyχχG are computable;

piiiq IS-CopyeeKn
and IS-CopyeχKn

are computable;

pivq if G fl Kn, IS-Copy
ee
G ”sW IS-CopyeχG ”sW CN.

Proof. To prove piq, by Figure III.3 it suffices to show that S-CopyeχG is computable. Given a
δEGr-name h for an input of S-CopyeχG we compute a δGr-name p for a solution of S-CopyeχG as
follows. At any stage s, we check whether there exists a subgraph isomorphic to G in the finite
graph determined by hrss. Formally, for every s, we check whether there exists an injective
f : V pGq Ñ V pδEGrphrss0

Nqq such that

• i P V pGq ùñ pDki ă sqphpkiq “ xfpiq, fpiqyq and

• pi, jq P EpGq ùñ pDℓi ă sqphpℓiq “ xfpiq, fpjqyq.

This can be done computably as both δEGrphrss0
Nq and G are finite and hence, at any stage,

there are only finitely many f ’s to check. If G Ďs δEGrphrss0
Nq do nothing. Otherwise, let

fs : V pGq Ñ V pδEGrphrss0
Nqq be a function witnessing G Ďs δEGrphrss0

Nq and let p be such
that

ppxi, jyq :“

#
1 if pi “ j ^ f´1

s piq P V pGqq _ ppf´1
s piq, f´1pjqq P EpGqq,

0 otherwise.

It is straightforward to check that p is a δGr-name for a solution of S-CopyeχG .
For piiq, by Figure III.3, it suffices to prove that IS-CopyχχG is computable. The proof is the

same of piq, except for the fact that the injective f is such that i P V pGq implies hpxfpiq, fpiqyq “
1 and pi, jq P EpGq if and only if hpxfpiq, fpjqyq “ 1.

The claim in piiiq follows from piq as, for any graph H, Kn Ďs H if and only if Kn Ďis H.
To prove pivq, by Figure III.3, it suffices to show that IS-CopyeχG ďsW CN and CN ďsW

IS-CopyeeG . For the first reduction, given a name p for an input H of IS-CopyeχG , let A be the set
of pσ, τq P pNˆ NqV pGq such that p@i, j P V pGqqp@z P Nq

• ppxτpiq, τpiqyq “ xσpiq, σpiqy;

• pi, jq P EpGq ùñ ppxτpiq, τpjqyq “ xσpiq, σpjqy and

• pi, jq R EpGq ùñ ppzq ‰ xσpiq, σpjqy.

Clearly, A is nonempty, and since any pσ, τq can be coded as a natural number, A is a suitable
input for CN. Let n P CNpAq be the code of some pσ, τq. We compute a name q for a copy of
G1 P IS-CopyeχG pHq letting qpxn,myq “ 1 if and only if pDi, j ă |σ|qpn “ σpiq ^m “ σpjqq.

To prove that CN ďsW IS-CopyeeG , let A P ApNq be an input of CN. We denote by Acrss the
enumeration of the complement of A up to stage s and notice that, since by hypothesis, G fl Kn,
we have that V pGq2zEpGq ‰ H. We compute an input H for IS-CopyeeG as follows. At stage 0,
for every v P V pGq and for every pv, wq P EpGq, enumerate xv, 0y in V pHq and pxv, 0y, xw, 0yq
in EpHq and let n0 :“ 0. At stage s ` 1, let ns`1 :“ mintn : n R Acrs ` 1su. If ns`1 “ ns, do
nothing, otherwise, for every v, w P V pHq at stage s`1, enumerate pv, wq in EpHq, i.e. modifyH
so that is isomorphic to a complete graph. Then for every v P V pGq and for every pv, wq P EpGq,
enumerate xv, ns`1y in V pHq and pxv, ns`1y, xw, ns`1yq in EpHq. In the limit, we obtain that
either H is such that V pHq “ txv, 0y : v P V pGqu and EpHq “ tpxv, 0y, xw, 0yq : pv, wq P EpGqu
(in case 0 P A), or H – Km

Â
G1 for some m P N and V pG1q “ txv, nsy : v P V pGqu and

EpG1q “ tpxv, nsy, xw, nsyq : pv, wq P EpGqu where ns “ mintn : n P Au. Since G fl Kn, we
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know that any H 1 P IS-CopyeeG pHq is not contained in the copy of Km in H and hence, given
xv, nsy P V pH

1q, it is easy to check that ns P A and this concludes the proof.

III.4.1 The induced subgraph problem for infinite graphs

We now move our attention to the case when G is infinite. The results are summarized in the next
two theorems: the first concerns the problems IS-CopyG, while the second the problems S-CopyG.
The first theorem analyzes IS-CopyG for all infinite G’s, while the second one does not include
certain graphs some of which are discussed in §III.4.2. We highlight that some results are stated
for c.e. graphs, others just for computable graphs.

Theorem III.4.5. For any infinite graph G, IS-CopyG ”W CNN relative to some oracle. In
particular, we have the following cases:

piq if |tv P V pGq : degGpvq ă ℵ0u| ă ℵ0 we have two cases:

(a) if G is computable then CNN ”W IS-CopyG;

(b) if G is c.e., then CNN ”W IS-CopyeeG ”W IS-CopyeχG .

piiq If G is c.e. and |tv P V pGq : degGpvq “ ℵ0u| ă ℵ0, then CNN ”W IS-CopyG.

piiiq Let λ : N Ñ N be such that λpnq :“ mintk : |v P V pGq : degGpvq ď ku| ě k. If
tv P V pGq : degGpvq ă ℵ0u “ ℵ0 and tv P V pGq : degGpvq “ ℵ0u “ ℵ0 we have two cases:

(a) if G is computable then CNN ”W IS-CopyG relative to λ;

(b) if G is c.e., then CNN ”W IS-CopyeeG ”W IS-CopyeχG relative to λ.

Proposition III.4.6. Let G be an infinite graph such that |tv P V pGq : degGpvq ă ℵ0u| ă ℵ0.
If G is computable then CNN ”W S-CopyG while if G is c.e., then CNN ”W S-CopyeeG ”W

S-CopyeχG .

The next part of this subsection is devoted to prove Theorem III.4.5 and Proposition III.4.6:
Proposition III.4.3 implies all the reductions from IS-CopyG to CNN : Figure III.3 and the remaining
lemmas of this subsection prove the converse directions.

The following lemma proves Theorem III.4.5piq and Proposition III.4.6.

Lemma III.4.7. Let G be an infinite graph such that |tv P V pGq : degGpvq ă ℵ0u| ă ℵ0. If G
is computable then CNN ďW S-CopyG, IS-CopyG. If G is c.e. then CNN ďW IS-CopyeeG , S-Copy

ee
G .

Proof. For the first part, by Figure III.3, it suffices to show that CNN ďW S-CopyχeG , IS-CopyχeG .
We only prove the statement for S-CopyχeG as the proof for IS-CopyχeG is the same. Let T P
Tr be an input for CNN , let V pGq “ tvi : i P Nu and compute AĎpT,Gq (see §III.3 for its
definition). Notice that, since G is computable, AĎpT,Gq is computable with respect to T and
by Proposition III.3.2, G Ďs AĎpT,Gq: hence AĎpT,Gq is a suitable input for S-CopyχeG . Let
G1 P S-CopyχeG pA

ĎpT,Gqq. We claim that

p@σ P V pG1qqpdegG
1

pσq “ ℵ0 ùñ pDτ P V pG1qqpdegG
1

pτq “ ℵ0 ^ σ Ă τqq.

To prove the claim notice that, by hypothesis, p@8σ P V pG1qqpdegG
1

pσq “ ℵ0q. Hence, given σ

such that degG
1

pσq “ ℵ0, there exists another vertex τ P V pG1q such that pσ, τq P EpG1q and

degG
1

pτq “ ℵ0: the definition of EpAĎpT,Gqq implies that σ Ă τ . This concludes the proof of
the claim.
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Let N :“ maxtdegGpvq : v P Au. We compute a sequence tσs : s P Nu Ď V pG1q such thatŤ
s σs P rT s. At stage 0, let σ0 be the first vertex enumerated by the name of G1 satisfying

degG
1

pσ0q “ ℵ0 (which exists by the previous claim): this is a computable process as it suffices

to verify degG
1

pσ0q ą N . Suppose we have computed the sequence up to σs. At stage s` 1, let

σs`1 be the first vertex enumerated by the name of G1, satisfying σs Ă σs`1^degG
1

pσs`1q ą N

(the existence of σs`1 is guaranteed by the previous claim). This proves when G is computable.
To show that if G is c.e. then CNN ďW IS-CopyeeG , S-Copy

ee
G notice that the proof is exactly

the same. In this case, AĎpT,Gq is c.e. with respect to T , but this is fine as the input for
IS-CopyeeG and IS-CopyeχG is in EGr.

The following lemma proves Theorem III.4.5piiq.

Lemma III.4.8. Let G be an infinite graph such that tv P V pGq : degGpvq “ ℵ0u| ă ℵ0. If G
is c.e., then CNN ďW IS-CopyG.

Proof. By Figure III.3, it suffices to show that CNN ďW IS-CopyχeG . Let T P Tr be an input
for CNN , and compute G1 P FpGq where F is the function of Lemma III.2.1. Let A | pT,G1q
(see §III.3 for its definition): since G1 P Gr, T P IF and G Ďis G1 (Lemma III.2.1), by
Proposition III.3.2, G Ďis A | pT,G1q (i.e. A | pT,G1q is a suitable input for IS-CopyχeG ). Let
H P IS-CopyχeG pA

| pT,G1qq.
Notice that p@8σ, τ P V pHqqpσ Ă τ _ τ Ă σq. If not then there exists tσi : i P Nu Ď V pHq

such that p@i ‰ jqpσi | σjq. By definition of A | pT,G1q and the fact that H is an induced

subgraph of A | pT,G1q, we obtain that p@i ‰ jqppσi, σjq P EpHqq, and hence p@iqpdegHpσiq “

ℵ0q. Since H – G, this contradicts the hypothesis that |tv P V pGq : degGpvq “ ℵ0u| ă ℵ0. In
other words, we have just showed that pDf P rT sqp@8σ P V pHqqpσ Ă fq. We now show that:

p@σ P V pHqqpdegHpσq ă ℵ0 ùñ σ Ă fq. (4)

Otherwise, pDτ P V pHqqpdegHpτq ă ℵ0^τ Ć fq but we have just shown that p@8σ P V pHqqpσ Ă

fq and hence p@8σ P V pHqqpσ | τq. By definition of AĎpT,G1q and the fact that H is an induced
subgraph of AĎpT,G1q we obtain that degHpτq “ ℵ0, getting the desired contradiction.

Now we compute a sequence of vertices tσi : i P Nu Ď V pHq such that
Ť

i σi “ f . Let

N :“ |tσ P V pGq : degGpσq “ ℵ0u|. For every s, let σs P V pHq be such that pDτ0, . . . , τN P
V pHqqp@i ď Nqpσs Ă τiq and pD!τ

1
0, . . . , τ

1
s´1 P V pHqqp@i ă sqpτ 1i Ă σsq (the second condition

ensures that |σs| ě s). For any s the existence of σs is guaranteed by (4): just let σs P tσ P
V pHq : degHpσq ă ℵ0 ^ |σ| ě su. It remains to show that for every s, σs Ă f . To do so,
notice that any σs has (at least) N ` 1 many extensions τ0, . . . , τN in T . By hypothesis there
are only N many vertices of infinite degree in V pHq, hence there exists an i ă N such that
degHpτiq ă ℵ0, i.e. σs Ă τi Ă f , and this concludes the proof.

Notice that Lemma III.4.7 and Lemma III.4.8 do not exhaust all the possible cases: it may
be the case that G is such that tv P V pGq : degGpvq ă ℵ0u “ ℵ0 (as in Lemma III.4.8) but
tv P V pGq : degGpvq “ ℵ0u “ ℵ0 too. The following lemma shows Theorem III.4.5(iii) and
concludes the proof of Theorem III.4.5. The proof of the next lemma is similar to the one of
Lemma III.4.8: the main difference is that here |tσ P V pGq : degGpσq “ ℵ0u| R N and hence the
reduction is given relative to an oracle.

Lemma III.4.9. Let λ : N Ñ N be such that λpnq :“ mintk : |v P V pGq : degGpvq ď k|u ě k

and let G be an infinite graph such that

tv P V pGq : degGpvq ă ℵ0u “ ℵ0 and tv P V pGq : degGpvq “ ℵ0u “ ℵ0.
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If G is computable then CNN ďW S-CopyG, IS-CopyG relative to λ. If G is c.e. then CNN ďW

IS-CopyeeG , S-Copy
ee
G relative to λ.

Proof. By Figure III.3, it suffices to show that CNN ďW IS-CopyχeG . Let T P Tr be an input for
CNN , assume V pGq “ tσi : i P Nu and compute A | pT,Gq. Let G1 P IS-CopyχeG pA

| pT,Gqq and
notice that the same proof of Lemma III.4.8 gives us that cofinitely vertices in G1 belong to
the same path f P rT s and

p@σ P V pG1qqpdegG
1

pσq ă ℵ0 ùñ σ Ă fq. (5)

Now we compute a sequence of vertices tσs : s P Nu Ď V pG1q such that
Ť

s σs “ f . For any
s, let σs P V pG

1q be such that:

piq pDτ0, . . . , τλps`1q P V pG
1qqp@i ď λps` 1qqpσs Ă τiq;

piiq if s ą 0, pD!τ 10, . . . , τ
1
s´1 P V pG

1qqp@i ă s´ 1qpτ 1i Ă τ 1i`1
Ă σsq.

Condition piiq ensures that |σs| ě s and for any s the existence of σs is guaranteed by (5): just let

σs P tσ P V pG
1q : degG

1

pσq ă ℵ0 ^ |σ| ě su. It remains to show that for every s, σs Ă f . To do
so, notice that by hypothesis pDv0, . . . , vs P V pGqqpdeg

Gpvsq ď λps`1qq. Any isomorphism from
G to G1, for any i ď s, must map vi to some τ P V pG1q such that τ Ď σs_σs Ď τ . Suppose it is
not the case: if τ | σs then, since p@i ă λps` 1qqpσs Ă τiq, we have that p@i ă λps` 1qqpτ | τiq

and so degG
1

pτq ě λps ` 1q ` 1. Hence, any isomorphism from G to G1 maps one between
v0, . . . , vs in some τ P V pG1q such that τ Ď σs (this is guaranteed by piiq): indeed, there are
only s many vertices in G1 that are prefixes of σs, hence σs Ă f and this concludes the proof.

To show that if G is c.e. then CNN ďW IS-CopyeeG , S-Copy
ee
G notice that the proof is exactly

the same. In this case, A | pT,Gq is c.e. with respect to T , but this is fine as the input for
IS-CopyeeG and IS-CopyeχG is in EGr.

Notice that for some graphs, the λ defined in the previous theorem is computable. For example,
this is the case for highly recursive graphs, i.e. graphs in which for every v P V pGq, we can compute
degGpvq. These particular graphs have been considered, for different problems, for example in
[MR72]. We also mention that Lemma III.4.9 holds even if we replace λ with any γ bounding λ.

We leave open whether it is possible to “get rid of” the oracle in Lemma III.4.9, obtaining a
Weihrauch reduction like in Lemmas III.4.7 and III.4.8 that would give us the result that for any
computable/c.e. graph G, IS-CopyG ”W CNN .

III.4.2 The subgraph problem: when Rω Ďs G

Proposition III.4.6 shows that S-CopyG ”W CNN where G is an infinite c.e. graph such that
|tv P V pGq : degGpvq ă ℵ0u| ă ℵ0. To study the Weihrauch degree of S-CopyG for c.e. graphs not
satisfying such a condition, and in particular to understand which of them satisfy S-CopyG ”W

CNN , we start from those graphs that, intuitively, are “ill-founded”, i.e. those graphs G such that
Rω Ďs G. A piece of evidence supporting the claim that S-CopyG ”W CNN for any G such that
Rω Ďs G is Lemma III.3.19: in that case, the fact that Rω Ďs G implied that peqSG ”W WF.
In this section we show this intuition is not entirely true: before doing so, we define the following
multi-valued functions.

Definition III.4.10. Let G be a graph such that Rω Ďs G. The multi-valued functions
Rω-EmbG :Ď Gr Ñ NN and eRω-EmbG :Ď EGr Ñ NN with domains respectively tH P Gr :
G – Hu and tH P EGr : G – Hu are defined as

peqRω-EmbGpHq :“ tp : p@iqppppiq, ppi` 1qq P EpHqqu.
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The next proposition shows that Rω-EmbG and eRω-EmbG are cylinders, which implies that
most reductions we obtain in this section are actually strong ones: the proof is similar to the one
proving Proposition III.4.2.

Proposition III.4.11. For any graph G, Rω-EmbG and eRω-EmbG are cylinders.

Lemma III.4.12. Given a hyperarithmetical graph G such that Rω Ďs G, Rω-EmbG ďW

eRω-EmbG ďW CNN .

Proof. The first reduction directly follows from the fact that from the characteristic function
of a graph we can compute an enumeration of it, while for the second one it suffices to notice
that if H P dompeRω-EmbGq then A :“ tp : p@iqppppiq, ppi ` 1qq P EpHqqu P dompCNNq and so
any p P CNNpAq is a solution for eRω-EmbGpHq.

The following proposition tells us that S-CopyG composed with peqRω-EmbG computes CNN .

Proposition III.4.13. Given a c.e. graph G such that Rω Ďs G,

eRω-EmbG ˚ S-Copy
ee
Rω
”W Rω-EmbG ˚ S-Copy

eχ
G ”W CNN .

Given a computable graph G such that Rω Ďs G,

eRω-EmbG ˚ S-Copy
χe
Rω
”W Rω-EmbG ˚ S-Copy

χχ
Rω
”W CNN .

Proof. We only prove that eRω-EmbG ˚ S-Copy
χe
Rω
”W CNN as the same proof works also for the

other equivalences. Proposition III.4.3 and Lemma III.4.12 and the fact that CNN is closed
under compositional product imply that eRω-EmbG ˚ IS-Copy

χe
G ďW CNN .

For the opposite direction, given an input T for CNN , compute AĎpT,Gq and notice that since
T P IF , AĎpT,Gq P dompIS-CopyχeG q (Proposition III.3.2). Let G

1 P IS-CopyχeG pA
ĎpT,Gqq and

let p P eRω-EmbGpG
1q. Notice that i0 :“ minti : p@j ě iqpprjs Ă prj ` 1squ exists and it is

computable: clearly
Ť

iąi0
pris P rT s.

By Proposition III.4.13, in order to show that a graph G is such that S-CopyG ”W CNN , it
suffices to show that peqRω-EmbG is computable. The next proposition gives some examples
of graphs satisfying this condition. In the next proposition, 2ăN denotes the full binary tree
tσ : σ P 2ăNu.

Proposition III.4.14. Let n ą 2 and m ą 0: if G P tL, Cn

Ä
Rω,Km

Ä
Rω, 2

ăNu then
S-CopyG ”W CNN .

Proof. By Lemma III.4.12 and Proposition III.4.13, it suffices to show that eRω-EmbG is
computable. LetH be an in input for eRω-EmbL, and notice that for any v P V pHq, degHpvq “ 2.
To compute p P eRω-EmbLpLq let pp0q be such that pp0q P V pHq and for every i ą 0 choose
ppiq such pppiq, ppi` 1qq P EpHq since, at each stage, ppiq exists and is unique, this shows that
eRω-EmbL is computable.

Let H be an in input for eRω-EmbpCn

Ä
Rωq. We compute p P eRω-EmbpCn

Ä
Rωq as follows.

Wait for some finite stage witnessing that Cn

Ä
R1 Ďs H and denote byH 1 the copy of Cn

Ä
R1

inH. Then let pp0q be the unique v P V pH 1q such that degH
1

pvq “ 1: clearly, all vertices inHzH 1

“continue” as a copy of Rω, hence for s ą 0 just let ppsq be such that ppps´1q, ppsqq P EpHzH 1q.
A similar proof holds for Km

Ä
Rω.

Let H be an input for eRω-Emb2ăN . We compute p P eRω-Emb2ăNpHq as follows. Let pp0q
be any node in V pHq and for any s let pps ` 1q :“ σ where |σ| “ s and σ Ą prs ´ 1s: by
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definition of 2ăN, we can always find σ as such and this concludes the proof.

III.4.3 A particular case: S-CopyRω

It is natural to ask whether Proposition III.4.14 holds for Rω: the following proposition shows
that peqRω-EmbRω

is not computable, and hence we cannot apply the same strategy used in the
proof of Proposition III.4.14.

Proposition III.4.15. lim2 ”W Rω-EmbRω
”W eRω-EmbRω

.

Proof. Lemma III.4.12 implies that Rω-EmbRω
ďW eRω-EmbRω

.
We now show that eRω-EmbRω

ďW lim2. Let G – Rω be an input for eRω-EmbRω
: we

compute an input q P 2N for lim2 in stages as follows. At stage 0, let v, w P V pGq be such that
pv, wq P EpGq and let qp0q :“ 0. At stage s` 1, take some fresh us`1 P V pGq (i.e. one that has
not been considered yet) and let

qps` 1q :“

#
0 if vúG

w us`1,

1 if vúG
 w us`1.

Informally, we are computing q considering a copy R of Rω starting from v and checking whether
R continues in the direction of w (in which case limpqq “ 0) or not (in which case limpqq “ 1).
If lim2pqq “ 0, we compute p P eRω-EmbRω

pGq letting pp0q :“ v and, for i ą 0, ppiq :“ ui
where ui is the unique vertex connected to v, by a ray of length i passing via w: the fact that
lim2pqq “ 0 implies that pD8sqpvúG

w usq, and hence we can always find ui. The case in which
limpqq “ 1 is held similarly letting pp0q :“ v and, for i ą 0, ppiq :“ ui where ui is the unique
vertex connected to v, by a ray of length i not passing via w.

To conclude the proof it suffices to show that lim2 ďW Rω-EmbRω
. Let q P 2N be an input

for lim2. We compute an input for Rω-EmbRω
in stages: if at stage s qpsq “ 0, we extend

the ray computed so far to the left, otherwise to the right. More formally, we compute a
name g for an input of Rω-EmbRω

as follows: at stage 0 let gpx0, 0yq “ 1 and if qp0q “ 0 let
gpx2, 2yq “ gpx0, 2yq “ 1, otherwise let gpx1, 1yq “ gpx0, 1yq “ 1. At stage s`1, if qps`1q “ 0 let
gpx2s`2, 2s`2yq “ 1 and gpx2s`2, xyq “ 1 where x :“ maxtn “ 2t`2 : t ă s^gpxn, nyq “ 1u.
Similarly, if qps ` 1q “ 1 let gpx2s ` 1, 2s ` 1yq “ 1 and gpx2s ` 1, xyq “ 1 P EpGq where
x :“ maxtn “ 2t ` 1 : t ă s ^ gpxn, nyq “ 1u. Since q converges either to 0 or 1, δGrpgq – Rω

and so it is a suitable input for Rω-EmbRω
. Let p P Rω-EmbRω

pδGrpgqq:

lim2ppq “

#
0 if ppp0q ă pp1q ^ pp1q is evenq _ ppp0q ą pp1q ^ ppp1q is odd_ pp1q “ 0q,

1 if ppp0q ă pp1q ^ pp1q is oddq _ ppp0q ą pp1q ^ pp1q is evenq,

and this concludes the proof.

Combining the proposition above with Propositions III.4.13 and III.4.15 we get the following
corollary.

Corollary III.4.16. CNN ”W lim2 ˚ S-CopyRω
.

It is natural to ask whether we really need lim2, i.e. does CNN ”W S-CopyRω
? The next

proposition tells us that the first-order parts of the two problems coincide.

Proposition III.4.17. 1S-CopyRω
”W

1CNN ”W Σ1
1-CN.



III.4. Searching the (induced) subgraph 97

Proof. Propositions III.4.3 and I.6.29 imply that 1S-CopyRω
ďW

1CNN ”W Σ1
1-CN. To conclude

the proof, by Figure III.3, it suffices to show that Σ1
1-CN ďW S-CopyχeRω

. We can think of an

input for Σ1
1-CN as a sequence pT iqiPN P Tr

N such that pDiqpT i P IFq. Let T :“
Â

iPN T
i (notice

that b is the disconnected union of trees): since at least one T i P IF , S P dompS-CopyχeRω
q.

Given G P S-CopyχeRω
pSq, we have that G is a subgraph of T i where T i P IF and since any

vertex in V pGq is of the form xi, σy, we can easily compute i.

The following theorem surprisingly shows that the problems S-CopyRω
are significantly weaker

than CNN .

Theorem III.4.18. S-CopyRω
ăW CNN . In particular,

piq S-CopyχeRω
, S-CopyeeRω

|W lim, piiq S-CopyχχRω
|W lim1 and piiiq S-CopyeχRω

|W lim2.

The proof of the theorem above is given throughout the remaining part of this subsection: no-
tice that the right-to-left nonreductions are almost immediate. Indeed, it suffices to notice that
S-CopyRω

”W lim2 ˚ CNN (Corollary III.4.16), while, since for every n, limpnq is closed under com-

positional product and lim2 ăW limpnq we have that limpnq ˚ lim2 ”W limpnq ăW CNN . Hence, the
remaining part of this subsection is devoted to prove the left-to-right nonreductions.

Step 1 of Theorem III.4.18’ proof: restricting to connected graphs

To prove the theorem above, it is convenient to consider Con-S-CopyRω
, which is the same problem

as S-CopyRω
with the domain restricted to connected graphs. The reductions in Figure III.4.1,

Corollary III.4.16 and Proposition III.4.2 hold also for this restricted version as summarized in
the next proposition.

Proposition III.4.19.

• For any graph G, Con-S-CopyχeG ďW Con-S-CopyχχG ,Con-S-CopyeeG ďW Con-S-CopyeχG ;

• CNN ”W lim2 ˚Con-S-CopyχeRω
;

• for any infinite graph G, Con-S-CopyG are cylinders.

Regarding the connectedness of graphs, we define the multi-valued function D introduced in
[GHM15, §6].

Definition III.4.20. We define the multi-valued function D : Gr Ñ NN defined as DpGq :“ f

where f : V pGq Ñ N is such that p@v1 ‰ v2 P V pGqqpfpv1q “ fpv2q ðñ v1 úG v2q.

Lemma III.4.21 ([GHM15, Theorem 6.4]). D ”W lim.

We first need the following technical lemma.

Lemma III.4.22. If lim ďW f ˚ g where g : X Ñ N, then LPO ďW f relative to some oracle.

Proof. Since lim ”W J, where J is the Turing jump operator (see §I.6), suppose that J ďW f ˚g.
Let Bn Ď X be the set of inputs to g where n P N is a valid output. Let Φ : 2N Ñ X be
the forward functional witnessing the reduction J ďW f ˚ g and let An :“ H´1pBnq: notice
that 2N “

Ť
nPNAn. If we restrict J to An (denoted by J|An

), we can safely replace g with the
constant function n. As a consequence, we conclude that J |An

ďW f for all n P N.
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Let C Ď N be the set of all n P N such that J|An
(that, J with domain restricted to An) is

continuous. If J|An
is continuous, it is computable relative to some oracle, say pn. Now consider

q :“ ‘nPCpn. If q P An for some n P C were true, then Jpqq ďT q would follow, a contradiction.
Thus, there exists some d P NzC, i.e. some J|Ad

is discontinuous.
As J|Ad

:Ď 2N Ñ 2N is a discontinuous function between admissible represented space, it
follows that LPO ďW J|Ad

relative to some oracle. We already established J|Ad
ďW f , so

LPO ďW f relative to some oracle follows.

Lemma III.4.23.

piq S-CopyeeRω
ďW Con-S-CopyeeRω

˚Σ1
1-CN;

piiq S-CopyχχRω
ďW pCon-S-CopyχχRω

˚Σ1
1-CNq

1.

Proof. Let q be a name for an input H P EGr of S-CopyeeRω
and let A :“ tv : pDG0 –

GqpG0 is a subgraph of H ^ v P V pG0qqu. This is a valid input for Σ1
1-CN and, given v P

Σ1
1-CNpAq, we can compute a name for the graph H0 :“ HætwPV pHq:vúHwu P EGr (no-

tice that H0 is connected and, by Lemma III.3.4, v úH w is a Σ0
1 property). To do so,

we enumerate a vertex w in V pH0q only when pDsqpv úδEGrpqrss0
Nq wq. Then we enumer-

ate all the vertices/edges in the path from v to w. By definition of v, Rω Ďs H0 and any
R P Con-S-CopyeeRω

pH0q is a valid solution for S-CopyeeRω
.

To prove the second item, by the fact that for any multi-valued function f , f ˚lim ”W f 1 (see
§I.6) and Lemma III.4.21, the right-hand-side of the reduction is equivalent to Con-S-CopyχχRω

˚

Σ1
1-CN ˚ D and hence it suffices to show that S-CopyχχRω

ďW Con-S-CopyχχRω
˚Σ1

1-CN ˚ D. Let q
be a name for an input H P Gr of S-CopyχχG , and let f P DpHq. Then, given A as above, let v P
Σ1

1-CNpAq. Now consider the graph Hætw:fpwq“fpvqu: this is a suitable input for Con-S-CopyχχRω

any R P Con-S-CopyχχRω
pHætw:fpwq“fpvquq is a valid solution for S-CopyχχRω

pHq.

Step 2 of Theorem III.4.18’ proof: proving the theorem for S-CopyχeRω
and S-CopyeeRω

The finitary part of a problem was defined in §I.6.

Theorem III.4.24. For every k P N, FinkpCon-S-CopyeeRω
q is computable, and hence we

obtain that FinpCon-S-CopyeeRω
q is computable as well.

Proof. Let f :Ď NN Ñ k for some k P N and suppose that f ďW Con-S-CopyeeRω
as witnessed

by the computable maps Φ and Ψ.
Let r be a name for x P dompfq and notice that Rω is a subgraph of Φprq. The proof strategy

is the following:

piq proving that Φprq contains k ` 1-many distinct rays of finite length Rℓ0 , . . . , Rℓk with
names pℓi such that the following hold

•
Ä

iďk Rℓi – RN where N :“
ř

iďk Rℓi ,

•
Ä

iďk Rℓi is a subgraph of Φprq and

• for every i ď k, Ψprr|pℓi |s, pℓiq Ó“ j for j ă k.

piiq Once we have proven piq, the fact that there are only k-many solutions for fpxq implies
that

pDmqpDi ‰ jqpΨppr|qℓi |s, qℓiq Ó“ Ψprr
ˇ̌
qℓj

ˇ̌
s, qℓj q Ó“ mq.

To conclude the proof, we show that findingm is a computable process, and thatm P fpxq.
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To prove piq, let p0 be a name for S0 P Con-S-CopyeeRω
pr,Φprqq and, for readability, assume

V pS0q “ tvi : i P Nu and EpS0q “ tpvi, vi`1q : i P Nu. Let s0 :“ mintt ą 0 : Ψprrts, p0rtsq Óu
and let ℓ0 :“ maxti : pDj ď s0qpvi “ p0pxj, jyqqu. Without loss of generality, we can assume
that δEGrpp0rs0s0

Nq – Rℓ0 . Indeed, if δEGrpp0rs0s0
Nq fl Rℓ0 , since Ψprrs0s, p0rs0sq Ó and

S0 – Rω we can extend p0rs0s to p0rs0s
aσ where σ is the (finite string) having digits xvi, viy

for i ă ℓ0 and pvj , vj ` 1q for j ă ℓ0 ´ 1. Then, we obtain that δEGrpp0rs0s
aσ0Nq – Rℓ0

and Ψprrs0 ` |σ|s, p0rs0s
aσq Ó. For 0 ă m ď k, let pm be a name for Sm where V pSmq “

V pS0qztvi : i ă ℓm´1u and EpSmq “ EpS0qztpvi, vi`1q : i ă ℓm´1 ´ 1u. Notice that Sm – Rω,
hence Sm P Con-S-CopyχeRω

pp,Φprqq. Then, given sm :“ mintt ą 0 : Ψpprts, pmrtsq Óu, let
ℓm :“ maxti : pDj ď skqpvi “ pmpxj, jyqqu. Again, without loss of generality, we can assume
that δEGrppmrsms0

Nq – Rℓm . Since for every i ă k, maxtv : v P V pδEGrppℓirsℓis0
Nqqu “ mintv :

v P V pδEGrppℓi´1
rsℓi´1

s0Nqqu, we obtain that
Ä

iďk Rℓi –
Ä

iďk δEGrppℓirsℓis0
Nq and the proof

of piq.
To prove piiq, it suffices to show that

pDS P Con-S-CopyeeRω
pΦprqqqpRℓi is a subgraph of S _Rℓj is a subgraph of Sq. (6)

Indeed, suppose Rℓi is a subgraph of S (the case for Rℓj is analogous): then there is a name for
S that begins with qℓi , i.e. an enumeration of Rℓi . Since Ψprr|qℓi |s, qℓiq Ó“ m by hypothesis, we
are done. So let S1 P Con-S-CopyeeRω

pΦprqqq. We have the following cases:

• if (6) holds there is nothing to prove;

• if V pS1q X pV pRℓiq Y V pRℓj qq “ H, notice that by hypothesis Φprq is connected, hence

pDv P V pRℓiqqpDw P V pSqqpvúΦprqwq. If degRℓi pvq “ 1, let S be the infinite ray starting
with Rℓi , passing through w and continuing as S1. Otherwise, let S be the infinite ray
starting with Rℓj , passing through v and w and continuing as S1.

• if V pS1q X V pRℓiq Ě tvu let S be any infinite ray containing Rℓj , passing through v and
continuing as S1; the case V pSq X V pRℓj q Ě tvu is analogous.

Since the procedure to search
Ä

iďk Rℓi is computable we have shown that f is computable and
this proves the theorem.

The following corollary is immediate combining the previous theorem and Proposition III.4.19.

Corollary III.4.25. LPO ďW Con-S-CopyχeRω
, Con-S-CopyeeRω

(the same holds relative to any
oracle).

The next proposition proves Theorem III.4.18piq for S-CopyeχRω
and S-CopyeeRω

.

Proposition III.4.26. lim ďW S-CopyχeRω
, S-CopyeeRω

.

Proof. For the sake of contradiction, suppose that lim ďW S-CopyeeRω
: by Lemma III.4.23piq

we obtain that lim ďW Con-S-CopyeeRω
˚ Σ1

1-CN. Lemma III.4.22 implies that LPO ďW

Con-S-CopyeeRω
relative to some oracle, contradicting Corollary III.4.25.

Before moving our attention to Con-S-CopyχχRω
and Con-S-CopyeχRω

, we prove that the fact that
FinpCon-S-CopyeeRω

q is computable (Theorem III.4.24) cannot be extended to first-order functions.
Let ACCN be the restriction of CN to sets of the form N or Nztnu for some n P N: notice that this
problem is not computable.
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Proposition III.4.27. ACCN ăW
1Con-S-CopyeeRω

.

Proof. Let A be an input for ACCN, and let Acrss denote the enumeration of the complement
of A up to stage s. We compute a graph G as follows. At stage 0, let 1 P V pGq (we deliberately
leave 0 outside V pGq for the moment). At stage s` 1,

• if Acrs` 1s “ H, let s` 2 P V pGq and ps` 1, s` 2q P EpGq.

• if Acrs` 1s “ tnu

– if n ď s ` 1, let 0 P V pGq, pn, 0q P EpGq and add a copy of Rω starting from 0 and
end the construction.

– if n ą s ` 1, add a ray from s ` 1 to n having vertices ti : s ` 1 ď i ď nu and let
pn, 0q P EpGq. Then add a copy of Rω starting from 0 and end the construction.

Let R1 P Con-S-CopyeeRω
pGq. Exactly one of the following holds:

• pn, n` 1q, pn` 1, n` 2q P EpR1q, for n ą 0. In this case, n P ACCNpAq;

• pn, 0q P EpR1q for n ą 0. Then any m ‰ n is in ACCNpAq.

Strictness follows from Proposition III.4.19.

Combining Theorem III.4.24 and Propositions III.4.27 and I.6.16 and Figure III.4.1 we obtain
the following corollary.

Corollary III.4.28. FinpCon-S-CopyeeRω
q ăW

1Con-S-CopyeeRω
.

In the light of the above corollary, it is natural to characterize 1Con-S-CopyeeRω
in terms of some

well-known problem in the Weihrauch lattice.

Step 3: proving Theorem III.4.18 for S-CopyχχRω
and S-CopyeχRω

The next proposition, together with the next corollary, shows that FinpCon-S-CopyχeRω
q is not

computable, and hence the same proof technique used to prove Theorem III.4.18piq does not work
here.

Proposition III.4.29. C2N ăW Con-S-CopyχχRω
.

Proof. Let T P Tr2 be an input for C2N and let G P Con-S-CopyχχRω
pT q. Notice that, the fact

that T P Tr2 implies that for every n |tσ P V pT q : |σ| “ nu| ď 2n, and this combined with the
fact that G P Gr implies that we can compute |tσ P V pGq : |σ| “ nu|. Finally, it is easy to verify
that

Ť
nPNtσ : |tσ P V pGq : |σ| “ nu| “ 1u P rT s and this proves the reduction.

Strictness follows from Proposition III.4.19 and the fact that CNN ďW lim2 ˚ C2N .

Notice that C˚
2
”W

1C2N ([SV22, Corollary 7.6]).

Corollary III.4.30. C˚
2
”W

1C2N ăW Con-S-CopyχχRω
.

Proposition III.4.29 says that FinpS-CopyχχRω
q is not computable: despite this, we can prove

that LPO ďW Con-S-CopyχχRω
. To do so, we introduce the notion of promptly connected graph.

Recall that, for a graph G and V Ď V pGq the graph induced by V on G, denoted by GæV is such
that V pGæV q :“ V and EpGæV q :“ EpGq X pV ˆ V q.
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Definition III.4.31. A graph G is promptly connected if for every n, the graph GæVXt0,...,nu
is connected.

Proposition III.4.32. Let G be a promptly connected graph and let v0 :“ mintv : v P V pGqu.
Then, for every v P V pGqztv0u, m and v are “increasingly connected”, i.e.,

pDσqp@i ă |σ| ´ 1qpσp0q “ v0 ^ σp|σ| ´ 1q “ v ^ pσpiq, σpi` 1qq P EpGq ^ σpiq ă σpi` 1qq.

Proof. Let tvi : i P N ^ p@iqpvi ă vi`1qu be an increasing enumeration of V pGq. The proof
goes by an easy induction on the vi’s. The case for v1 holds trivially: indeed, v0 ă v1 and,
by definition of promptly connected graph, pv0, v1q P EpGq. Suppose that v0 and vs for s ą 1
are increasingly connected: we show that v0, . . . , vs`1 are increasingly connected as well. By
definition of promptly connected graph, GæVXt0,...,vs`1u is a connected graph, and hence pDi ă
s`1qppvi, vs`1q P EpGqq. By inductive hypothesis, v0 and vi are increasingly connected by some
path σ and hence, since vi ă vs`1, the path σ

avs`1 witnesses that v0 and vs`1 are increasingly
connected.

Lemma III.4.33. There exists a computable function PC :Ď Gr Ñ Gr that, given in input
a connected graph G P Gr, is such that PCpGq – G, PCpGq is promptly connected and
0 P V pPCpGqq.

Proof. Given a name p for G P Gr, the function PC computes a name for a graph in Gr
as follows. We define an auxiliary map ι : V pGq Ñ N that arranges the vertices of G so
that PCpGq satisfies the properties of the lemma. Let pviqiPN be an enumeration of V pGq.
At stage 0, let ι0pv0q “ 0. At stage s ` 1, let ns`1 :“ maxtn : n P rangepιq at stage su
and, if pDi ă s ` 1qppvi, vs`1q P EpGqq, let ιpvs`1q “ ns`1 ` 1. Otherwise, wait for a stage
ts`1 :“ mintt : v0 úG vs`1 at stage tu and let σs`1 be the path connecting v0 and vs`1 in G
at stage ts`1. For every i ă |σ|, if σpiq R dompιq at stage s let ιpσpiqq :“ ns`1 ` i. This ends
the construction.

Let PCpGq be the graph having tιpviq : vi P V pGqu and tpιpviq, ιpvjqq : pvi, vjq P EpGqu as
vertex set and edge set respectively. It is straightforward to verify that PCpGq satisfies the
properties of the lemma.

The following lemma gives us a useful property of promptly connected graphs. First, given a
connected graph G we define the distance between v, w P V pGq as

dGpv, wq :“ mintn : pDσ P Nnqp@i ă |σ| ´ 1qpσp0q “ v ^ σp|σ| ´ 1q “ w^ pσpiq, σpi` 1qq P EpGqqu.

Lemma III.4.34. Suppose G is a promptly connected graph such that p@v P V pGqqpdegGpvq ă
ℵ0q and Rω Ďs G. then,

pDR – RωqpR Ď G^ p@v, w P V pRqqpdGp0, vq ă dGp0, wq ùñ v ă wqq,

Proof. Consider the tree:

T :“ tσ : σp0q “ mintv : v P V pGqu ^ p@i ă |σ| ´ 1qppσpiq, σpi` 1qq P EpGq ^ σpiq ă σpi` 1qqu.

To prove the lemma, it suffices to show that rT s ‰ H. Indeed, suppose p P rT s: then the graph
having tppiq : i P Nu and tpppiq, ppi ` 1qq : i P Nu as vertex set and edge set respectively is the
copy R – Rω contained in G we were looking for.

To show that rT s ‰ H, first notice that, by hypothesis, p@v P V pGqqpdegGpvq ă ℵ0q and
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in particular p@σ P T qp@i ă |σ|qp|tv : pσpiq, vq P EpGqu| ă ℵ0q, implying that T is finitely
branching. Hence, by König lemma (i.e. every infinite finitely branching tree has an infinite
path), it suffices to show that T is infinite. By Proposition III.4.32, for every v P V pGqzmintv :
v P V pGqu, mintv : v P V pGqu and v are increasingly connected, and hence, for any v P V pGq,
there exists σ P T such that σp|σ| ´ 1q “ v and since G is infinite, T is infinite as well, and this
concludes the proof.

We are now ready to show that LPO ďW Con-S-CopyχχRω
.

Proposition III.4.35. LPO ďW Con-S-CopyχχRω
relative to any oracle µ.

Proof. Let Φ,Ψ be the computable (relative to µ) forward and backward functionals witnessing
that LPO ďW Con-S-CopyχχRω

. Without loss of generality, we can restrict the domain of LPO

to A :“ t0Nu Y t0i10N : i P Nu: doing so, we ensure that Φ produces only countably many
graphs. Let PC be the function defined in Lemma III.4.33, and compute the graphs G8 :“
PCpΦp0Nqq and, for every i P N, Gi :“ PCpΦp0i10Nqq. Notice that, by Proposition III.4.32
and Lemma III.4.34, for every x P N Y t8u, 0 P V pGxq and, for any v P V pGxq, 0 and v are
increasingly connected. The rest of the proof shows that there is a λ : NÑ N such that for every
x P NY t8u there exists R – Rω in Gx (with V pRq “ tvi : i P Nu, EpRq :“ tpvi, vi`1q : i P Nu
and v0 “ 0) with the property that, for every n P N, vn ď λpvn`1q. The existence of such a λ
would witness that LPO ďW C2N relative to µ‘ λ, giving rise to a contradiction. Indeed, given
an input p P A for (the restricted version of) LPO, via the PC defined in Lemma III.4.33 we can
compute PCpΦppqq being promptly connected. Then, consider the graph G such that V pGq :“
V pPCpΦppqqq and EpGq :“ tpv, wq : v, w P V pPCpΦppqqq^maxtv, wu ă λpmintv, wuqu. Clearly,
G satisfies the conditions of Lemma III.4.34. Hence, compute the tree T of the proof of
Lemma III.4.34 (a valid input for C2N) and, given f P C2NprT sq (as we have done in the same
proof) we compute a δGr-name q for some R – Rω in G. Then, Ψpp,Rq is a correct answer for
LPO, showing that LPO ďW C2N relative to the oracle λ‘µ, obtaining the desired contradiction.

We define λ as follows. Let p8 be the name for G8 P Gr and, for every i P N let pi be
the name for Gi P Gr. Let R P Con-S-CopyχχRω

pG8q with name r, and let v be such that

degRpvq “ 1. Since R is a solution for Con-S-CopyχχRω
pG8q, there exists a stage ℓ such that

v ă ℓ and Ψp0ℓ, δGrprrℓs0
Nqq Ó“ 1. Without loss of generality, since Φ is computable and in

particular continuous, we can assume that for every k ě ℓ, δGrppkrℓs0
Nq – δGrpp8rℓs0

Nq. Notice
that, for the reduction to work correctly, it must be the case that,

p@k ě ℓqp@S – RωqpS is a subgraph of Gk ùñ Ψp0N, Rq Ó‰ Ψp0k10N, Sq Óq. (7)

We claim that (7) implies

p@k ě ℓqp@S – RωqpDu ‰ v ă ℓqppS is a subgraph of Gk ^ degSpvq “ 1q ùñ u P V pSqq.

Suppose not: then, for k ě ℓ, let s1 be a name for S1 P Con-S-CopyχχRω
pGkq be such that

degSpvq “ 1 and suppose that for every u ‰ v ă ℓ, u R V pRq, i.e. vertices after v in V pS1q are
greater than ℓ. Notice that Rrℓs

Ä
S1 P Con-S-CopyχχRω

pGkq (where the connection involves the

vertex v) and let s2 be a δGr-name for such a solution. Clearly, δGrps
2rℓs0Nq – δGrprrℓs0

Nq and
so, by hypothesis, Ψp0ℓ, s2rlsq Ó“ 1, a contradiction. This concludes the proof of the claim.

Furthermore, since Gk is promptly connected, by Proposition III.4.32 0 and v are increas-
ingly connected. Then, given

ak :“ mintw : p@i ă kqpDR – RωqpR Ď Gi ^ 0, v, w P V pRq ^ dRp0, vq ă dRp0, wqqu.

let λpvq :“ maxtℓ, aku: the definition of λpvq ensures that in every Gx, for x P N Y t8u, we
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can find a copy R of Rω such that degRp0q “ 1, passes through v and “continues” with some
w ď λpvq. This concludes the proof.

So far we have shown that LPO ďW Con-S-CopyaRω
for a P tχe, ee, χχu. The next proposition

shows that instead, LPO ăW Con-S-CopyeχRω
.

Proposition III.4.36. LPO ăW Con-S-CopyeχRω
.

Proof. For the reduction, let p P 2N be an input for LPO: we compute a tree T P Tr2 as follows.
At stage s, if ppsq “ 0, let 0s P T . If ppsq “ 1, we stop inspecting p at later stages and for every
t, let 1t P T . It is clear that if p “ 0N then rT s “ t0Nu, while if pDiqpppiq “ 1q, rT s “ t1Nu. The
fact that T P IF2 implies that T P dompS-CopyeχRω

q. Let R P S-CopyeχRω
pT q, and notice that by

definition of T there exists an s such that for all t ą s, either 0t P V pRq and 1t R V pRq or vice
versa. Hence, it suffices to search for such an s, and in the first case LPOppq “ 1 while in the
second one LPOppq “ 0.

The fact that Con-S-CopyeχRω
ďW LPO is straightforward and this concludes the proof.

Combining Theorem III.4.24 and Propositions III.4.35 and III.4.36 we obtain the following
corollary.

Corollary III.4.37. Con-S-CopyχχRω
, Con-S-CopyeeRω

ăW Con-S-CopyeχRω
.

Despite Proposition III.4.36 we are still able to prove that CNN ďW S-CopyeχRω
: indeed, the next

theorem concludes the proof of Theorem III.4.18.

Proposition III.4.38. lim1 ďW S-CopyχχRω
and lim2 ďW S-CopyeχRω

.

Proof. For the first nonreduction, assume for the sake of contradiction, that lim1 ďW S-CopyχχRω
.

By Lemma III.4.23piiq, S-CopyχχG ďW pCon-S-CopyχχG ˚ Σ1
1-CNq

1. By Theorem I.6.22, if
lim1 ďW pCon-S-CopyχχG ˚ Σ1

1-CNq
1 then lim ďW Con-S-CopyχχG ˚ Σ1

1-CN relative to H1. If
so, Lemma III.4.22 implies that LPO ďW Con-S-CopyχχG , contradicting Proposition III.4.35.

For the second nonreduction, assume again for the sake of contradiction, that lim2 ďW

S-CopyeχRω
. By [BG09, Lemma 6.3], we get that computing the characteristic function of a set

from its enumeration is Weihrauch equivalent to lim. Hence, S-CopyeχRω
ďW S-CopyχχRω

1
and from

this we obtain that lim2 ďW S-CopyχχRω

1
. Theorem I.6.22 implies that lim1 ďW S-CopyχχRω

relative

toH1 and combined with the fact that S-CopyχχRω
ďW pCon-S-CopyχχG ˚Σ1

1-CNq
1 we would obtain

lim1 ďW pCon-S-CopyχχG ˚ Σ1
1-CNq

1. Applying again Theorem I.6.22 we would finally get that
lim ďW Con-S-CopyχχG ˚Σ1

1-CN relative to H2, contradicting Proposition III.4.35.

Notice that the strongest result we have for non first-order problems is C2N ăW S-CopyχχRω
. It

is not clear to us what S-CopyRω
compute.

The subgraph problem: when G has only finite components

Now we deal with the problems S-CopyG where G :“
Â

iPN Fi, with Fi a finite graph. For these
problems, it seems to be harder to reach the equivalence with CNN : indeed, we have already
discussed that CNN can be stated as the task of finding a path through an ill-founded tree, and
graphs of this kind are far from being intuitively “ill-founded”, i.e. from having Rω as a subgraph.
This intuition is actually wrong: even if for many graphs G the problems S-CopyG are computable,
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for others we have that S-CopyG ”W CNN . The important distinction is the following. Given
G :“

Â
iPN Fi we distinguish whether

p@8iqpD8jqpFi Ďs Fjq. (8)

Theorem III.4.39. Let G be an infinite computable graph such that G “
Â

iPN Fi, where Fi

is a finite graph and p@8iqpD8jqpFi Ďs Fjq. Then the problems S-CopyG are computable.

Proof. By Figure III.3, it suffices to show that S-CopyeχG is computable. By definition there exists
k P N such that there are k-many graphs Fn0

, . . . , Fnk´1
that are subgraphs of just finitely many

Fi’s. Let A :“ tFi : pDl ă kqpFnl
Ďs Fiqu and notice that |A| ă ℵ0. Given H P dompIS-CopyeχG q

in input, we compute G1 being a subgraph of H such that G1 – G with the two following
procedures that can be performed in parallel.

• The first procedure waits for a finite stage witnessing that p@F P AqpF Ďs Hq and adds
to G1 the corresponding copy of F in H. Since all F ’s are finite and A is finite as well,
such an s exists, and we can computably find it.

• The second procedure takes care of all the Fs P tFi : i P NuzA. For every s ą k, it adds to
G1 the first copy of Fs in H that it finds. We claim that this procedure eventually adds
to G1 a copy for every Fs. Recall that, by hypothesis, p@s ą kqpD8jqpFi Ďs Fjq. Suppose
that at stage s there exists an m ą k such that Fm has not been added to G1 yet. Since
pD8jqpFm Ďs Fjq, and we have seen only a finite portion of H, we can wait for a finite
stage greater than s such that F 1m is a subgraph of H, F 1m – Fm and F 1m has not been
added to G1 yet: hence we can add F 1m to G1. This concludes the proof of the claim.

This completes the proof.

The graph
Â

iě3
Ci does not satisfy (8): the next theorem shows that IS-CopyχeÂ

iě3
Ci
”W CNN .

Theorem III.4.40. IS-CopyÂ
iě3

Ci
”W CNN .

Proof. The left-to-right direction is Proposition III.4.3. For the opposite direction, by Figure
III.3, it suffices to show that CNN ďW S-CopyeχG . We begin partitioning the Ci’s in three infinite
disjoint sets: i.e., tCi : i ě 3u “ tPn : n P Nu Y tFn : n P Nu Y tGn : n P Nu. Let T P Tr be
an input for CNN : we compute a graph H P dompIS-CopyχeÂ

iě3
Ci
q in stages as follows. First, for

every n P N, we add to H

• infinitely many copies of Pn, that we denote by tP i
n : i P N^ P i

n – Pnu,

• two copies of Gn denoted by G0
n, G

1
n, and

• a copy of Fn.

For every i, n P N, we associate to P i
n a box containing the graphs

P i
n dG

1

xn,i,0y and, in a disjoint fashion,
â
kPN

`
G0

xn,i,ky dG
1

xn,i,k`1y

˘
.

Informally, P i
n’s box contains infinitely many disjoint graphs, each of which is obtained by the

connected union of two cyclic graphs.
Notice that for any k ą 0, G0

xn,i,ky has a designed docking vertex (different from the ones

involved in G1

xn,i,ky

Ä
G0

xn,i,k`1y) to which, in later stages, we may attach a graph from tFn :
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n P Nu, i.e. G1

xn,i,ky

Ä
G0

xn,i,k`1y may become G1

xn,i,ky

Ä
G0

xn,i,k`1y

Ä
Fn. We say that G0

xn,i,ky
is free if no Fn is attached to the designed docking vertex.

Without loss of generality, we assume that |tσ : σ R T u| “ ℵ0 is infinite: indeed, if such a
set is finite, instead of considering T , we consider the tree T 1 :“ xy Y t1τ : τ P T u: clearly,
tσ : σ R T 1u is infinite and from T 1 we can easily compute T . Let pσsqsPN be a computable (with
respect to T ) enumeration of tσ : σ R T u. At stage σs, let k :“ mintj : G0

xn,i,jy is freeu: for

every n ă |σs| attach Fs to G0

xn,i,ky if and only if σspnq “ i (recall that G0

xn,i,jy is only in P i
n’s

box). This ends the construction.
We first claim that G Ďs H. Let q P rT s, and consider the following copy of G in H. For

every n P N, consider the graph G1 containing,

• P
qpnq
n and,

– if P i
n P G

1 then, for every k P N, we add to G1 the graphs G0

xn,i,ky,

– if P i
n R G

1 then, for every k P N, we add to G1 the graphs G1

xn,i,ky (this choice allow

us to put in G1, if needed, a copy of Fm contained in P i
n’box).

• the copy of Fn belonging to P
σnp|σn|´1q
|σn|´1

box: since σn R T , P
σnp|σn|´1q
|σn|

R G1, hence by the

previous point we can choose the copy of Fn in this box.

Hence, for every n, we added in G1 a copy of Pn, Gn, and Fn and this concludes the proof of
the claim.

To conclude the proof we need to show that from any G1 P IS-CopyχeG pHq we can compute
some q P rT s. First, notice the following useful fact. Suppose that P i

n P G
1 and recall that, for

every x, Gx has only two copies in H, namely G0
x and G1

x. Since P
i
n P G

1 and P i
n shares a vertex

with G1

xn,i,0y we are forced to add in G1 the copy G0

xn,i,0y. Similarly, for any m P N, G0

xn,i,my

shares a vertex with G1

xn,i,m`1y: the fact that G0

xn,i,0y in G
1 forces us, for every m P N, to add

G0

xn,i,my in G
1. Another important consequence of this observation is that if P i

n P G
1 we cannot

put in G1 any copy of Fs from P i
n’s box, as Fs shares a vertex with G0

xn,i,ty for some t P N, and

we have just argued that G0

xn,i,ty is in G. So let pP i
nqi,nPN be the copies of Pn in G1: we claim

that there exists a q P rT s such that for every n, i P N, qpnq “ i. Suppose not. This means that

pDτ P NăNqp@m ă |τ |qpτ r|τ | ´ 2s P T ^ τ R T ^ P τpmq
m P G1q.

In other words, τ “ σs for some s (where pσsqsPN is the computable enumeration of tσ : σ R T u).

By construction, the only copies of Fs are in P
τpmq
m ’s box for m ă |τ |: since P

τpmq
m are all

in G1, from the observation above, we cannot put any copy of Fs in G1, contradicting that
G1 P IS-CopyχeG pHq, and this concludes the proof.

Notice that this construction heavily relies on the fact that the connected union of at most three
connected and finite components of G is not isomorphic to any connected component of G. This
means that the theorem above holds for any graph having this property.

III.4.4 Other subgraph problems

We have shown examples of graphs G such that S-CopyG ”W CNN , graphs G such that the prob-
lems S-CopyG are computable and others that are difficult to compute but weak when they have to
compute other problems. In this section, we show that there are also graphs G such that S-CopyG
occupy well known areas of the Weihrauch lattice. Before doing so, we give a convenient charac-
terization of limpnq for every n P N. Recall that for a represented space X, that OpXq is the final
topology on X induced by δX (see Definition I.2.13)
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Definition III.4.41. Let EnumInfΠn
:Ď Π0

npNq Ñ OpNq be defined by U P EnumInfpAq if
and only if U Ď A^ |U | “ ℵ0.

Lemma III.4.42. For n ą 0, EnumInfΠn
”W limpn´1q.

Proof. Notice that
{

limpn´1q ”W pid : Π0
npNq Ñ 2Nq, i.e. the function computing the character-

istic function of a Π0
n set. Hence, we show EnumInfΠn

”W pid : Π0
npNq Ñ 2Nq.

The left-to-right direction is trivial and if n “ 0, both sides are trivially computable.
For the opposite direction, we need to show that from a Π0

n-name of a set A Ď N we can
compute a Π0

n-name of an infinite set B Ď N, such that any enumeration of an infinite subset
of B allows us to recover the characteristic function of A.

The given Π0
n-name A brings with it a sequence pCiqiPN of Π0

n´1-sets with NzA “
Ť

iPN Ci.
For n P N, we let λApnq “ 0 if n P A, and λApnq “ minti | n P Ciu ` 1 if n R A. Let p0, p1, . . .
be the increasing enumeration of the prime numbers. We now define:

B “ t
ź

iďk

p
λApiq
i | k P Nu

The set B has the desired properties: we can obtain its Π0
n-name from the name of A; the

set B is infinite, and an enumeration of any infinite subset of B allows us to recover B, and
then subsequently A.

The graphs we promised at the beginning of this section are T2k`1 and F2k`2, defined in §III.3.
Before stating the main theorem of this section, we give a preparatory result.

Lemma III.4.43. The problems S-CopyT1
and S-CopyF2

are computable and S-CopyT3
”W

Π0
2-CN.

Proof. The fact that S-CopyT1
and S-CopyF2

are computable is straightforward, regardless of
whether graphs are given as input/output as elements of Gr or EGr: in the first case, given
H P dompS-CopyT1

q, it suffices to wait for a vertex v to appear in V pHq: it is clear that
ptvu, tHuq P S-CopyT1

pHq. Similarly, given H P dompS-CopyF2
q, we obtain that pV pHq, tHuq P

S-CopyF2
pHq.

To show that S-CopyT3
ďW Π0

2-CN, by Figure III.3, it suffices to show that S-Copyeχ
T3
ďW

Π0
2-CN. Given in input H P dompS-Copyeχ

T3
q, let A :“ tv P V pHq : degHpvq “ ℵ0u. It is clear

that A P Π0
2pNq and A is nonempty. Then, given v0 P Π0

2-CN we compute the graph G1 such
that V pG1q “ tv0u Y tv : pv0, vq P EpHqu and EpG

1q :“ tpv0, vq : pv0, vq P EpHqu.
For the converse, by Figure III.3, it suffices to show that Π0

2-CN ďW S-Copyχe
T3
. An input

for Π0
2-CN is a nonempty set A P Π0

2pNq. By Lemma I.3.35, we can associate to every n P N

an infinite sequence pn P 2N such that n P N ðñ pD8iqppnpiq “ 1q. Let H be the graph such
that V pHq :“ N and EpHq :“ tpxn, 0y, xn, i` 1yq : pnpiq “ 1u. Since A ‰ H by hypothesis, we
have that pDmqpD8iqppmpiq “ 1q and hence degHpxm, 0yq “ ℵ0, i.e. T3 Ďs H: this show that H
is a suitable input for S-Copyχe

T3
. It is also clear that given G1 P S-CopyχeH1 we can compute n P A

(just look at the projection on the first coordinate of a vertex in V pG1q).

We conclude this section with Theorem III.4.44.
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Theorem III.4.44. For k ą 0,

piq S-CopyT2k`1
ďW Π0

2k-CN ˆ
{

LPOp2k´3q and piiq S-CopyF2k`2
”W

{
LPOp2k´1q.

Proof. We only prove piiq as the proof of piq is similar to the left-to-right direction of piiq.
For the left-to-right direction, by Figure III.3, it suffices to show that S-Copyeχ

F2k`2
ďW

{
LPOp2k´1q. Since, for any n,

{
LPOpnq is clearly closed under parallelization, it suffices to show

that

S-Copyeχ
F2k`2

ďW

ą

0ăiď2k´1

{
LPOpiq.

For every i such that 0 ă i ď 2k ´ 1, and for every v P V pHq we can uniformly compute a

sequence ppvqvPV pHq such that LPOpiqppvq “ 1 if and only if

pD8v0 P V pHqq . . . pD
8vj P V pHqqp@j ă iqppv, v0q P EpHq ^ pvj , vj`1q P EpHqq.

Now for every i such that 0 ă i ď 2k ´ 1, let pvmi qmPN be an enumeration of tv P V pHq :

LPOpiqppvq “ 1u. Following the same ideas of Lemma III.3.12’ proof we can compute a δGr-
name for a copy of F2k`2 in H.

For the converse direction, notice that, by Lemma III.4.42,
{

LPOp2k´1q ”W limp2k´1q ”W

EnumInfΠ2k
: hence, by Figure III.3, it suffices to show that EnumInfΠ2k

ďW S-Copyχe
F2k`2

. Re-

call from §III.3 that given a subspace G Ď pEqGr, we define
Â

Trďk :“ t
Â

nPNGn : p@nqpGn P
Trďkqu, where Trďk is the space of trees with height at most k. Lemma III.3.13 tells us that
Forests2k :“ tG P

Â
Trďk : F2k Ďs Gu is Π0

2k-complete: this allows us to think of an input
A for EnumInfΠ2k

as a sequence pFnqnPN such that n P A ðñ Fn P Forests2k. Since by
Definition III.4.41 A is infinite,

Â
nPN Fn is a suitable input for S-CopyF2k`2

and from any

G P S-CopyχeÂ
nPN

Fn
, checking the projection on the first coordinate of the nodes in G we can

compute an infinite subset of A.

We conjecture that the reduction in Theorem III.4.44piiq is actually an equivalence, but the
details of the proof still need to be adjusted. We leave open whether there exist a graph G such

that S-CopyG ”W f for some f R tCNN , id,Π0

2k-CN ˆ
{
LPOpkq,

{
LPOpkqu for k P N.

III.5 Conclusions and open problems

In this chapter, we investigated the subgraph problem and the induced subgraph problem using
tools from (effective) Wadge reducibility and Weihrauch reducibility. We studied the (effective)
Wadge complexity of certain subsets of graphs, and we located decision problems and “search”
problems in the Weihrauch hierarchy. Regarding Weihrauch reducibility, we solved some questions
left open in [BHW21], but the exact (effective) Wadge complexity of some subsets of graphs we
studied and the Weihrauch degree of certain problems remains open.

For the induced subgraph relation, in §III.3 we showed that, at least when G is computable,
for any graph G, tH P pEqGr : G Ďis Hu P Γ for Γ P tΣ0

1,Σ
1
1u. Theorem III.3.10 witnesses

that, for the subgraph case, there exists a graph Gk such that tH P pEqGr : Gk Ďs Hu P Γ for
Γ P tΣ0

2k`1
,Π0

2k`2
,Σ1

1u for k P N.

Question III.5.1. Is there a computable/c.e. graph G and some k P N such that tH P pEqGr :
G Ďs Hu P Γ for Γ R tΣ0

2k`1
,Π0

2k`2
,Σ1

1u?

In terms of Weihrauch reducibility essentially the same question can be rephrased as follows.

Question III.5.2. Is there a computable/c.e. graph G and some k ą 0 such that LPOpkq ăW SG ăW

LPOpk`1q?
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In §III.3.2 we considered the (effective) Wadge complexity of sets of the form tH P pEqGr :
H Ďpiqs Gu. Propositions III.3.24 and III.3.25 show that, when G is a finite graph, the sets
tH P pEqGr : H Ďs Gu and tH P pEqGr : H Ďis Gu are Π0

1-complete, and the same holds

replacing G with
8Â
G.

Question III.5.3. Understand whether tH P EGr : H Ďis Gu and tH P EGr : H Ďis

8Â
Gu are

complete for some class Γ.

For the question above, we conjecture that they are complete for some class Γ in the lightface
difference hierarchy, and this Γ depends on the particular graph G.

So far, tH P pEqGr : H Ďis Su are the most complex (in terms of effective Wadge reducibility)
sets of graphs of this form we have found.

Question III.5.4. Is there a computable/c.e. graph G such that the sets tH P pEqGr : H Ďpiqs
Gu are Γ-hard (or Γ-complete) where Γ is more complex than Π0

5?. Or, in terms of Weihrauch

reducibility, is there a computable/c.e. graph G such that LPOp4q ăW ISG?

Regarding “search” problems, Theorem III.4.5 shows that IS-CopyG ”W CNN but, in case G is
such that

tv P V pGq : degGpvq ă ℵ0u “ ℵ0 and tv P V pGq : degGpvq “ ℵ0u “ ℵ0,

the right-to-left reduction of the equivalence holds relative to an oracle.

Question III.5.5. Is it the case that for any computable/c.e. graph G, IS-CopyG ”W CNN (with no
oracle involved)?

We have already mentioned in this chapter’s introduction that the problems S-CopyRω
have

the unusual property of being hard to compute, but weak when they have to compute a problem
on their own. Theorem III.4.18, in particular, shows what S-CopyRω

cannot compute but, re-
garding what S-CopyRω

compute, the only satisfactory result we have is that 1S-CopyRω
”W

1CNN

(Proposition III.4.17). For non first-order problems, the best we were able to show is implied by
Proposition III.4.29 and it shows that C2N ăW S-CopyχχRω

.

Question III.5.6. What can S-CopyRω
compute?

Corollary III.4.28 shows that FinpCon-S-CopyeeRω
q ăW

1Con-S-CopyeeRω
: it is natural to ask

the following.

Question III.5.7. Does 1Con-S-CopyeeRω
”W f for some well-known f in the Weihrauch lattice?

We conclude this section (and this chapter) with two open questions arising from §III.4.4.
For the first one (asking whether the reduction in Theorem III.4.44piiq is an equivalence), we
conjecture a positive answer, but the details of the proof still need to be adjusted.

Question III.5.8. Does S-CopyT2k`1
”W Π0

2k-CN ˆ
{

LPOp2k´3q?

Question III.5.9. Is there a computable/c.e. a graph G such that S-CopyG ”W f for some f R

tCNN , id,Π0

2k-CN ˆ
{
LPOpkq,

{
LPOpkqu for some k P N?



2
Algorithmic learning theory of

algebraic structures





The purpose, the paradigm, and the
learning criteria

Algorithmic learning theory, independently discovered by E.M. Gold and Hilary Putnam, is a re-
search program modeling an empirical phenomenon in which a learner, given an increasing amount
of data about some empirical inquiry, tries to converge to the correct conclusions about it. This
subject has implications for the philosophy of science and for the empirical methodology in general
but has also many interactions with various mathematical areas from computability and complexity
theory, statistics, and combinatorics to more practical fields like machine learning. For a general
treatment of algorithmic learning theory, we refer the reader to:

• Jain, Osherson, Royer and Sharma’s book “Systems that learn: An introduction to learning
theory” for classical results on algorithmic learning theory ([JORS99]), and to

• Harizanov, Goethe and Friend’s Chapter “Introduction to the Philosophy and Mathematics of
Algorithmic Learning Theory” in “Induction, Algorithmic Learning Theory, and Philosophy”
for more topics on algorithmic learning theory, including algorithmic learning of algebraic
structures.

We give an informal description of how algorithmic learning theory models the process of
searching for an answer to a given empirical inquiry. In this setting, a learner (we can think of it as
a Turing machine) is given a learning problem which consists of a set of possible “realities”. Step
by step the learner sees a presentation of a reality and tries to converge to the correct solution:
depending on the particular case, there may be some restriction applied to the learner. The learner
solves (i.e. learns) the learning problem if it converges to the correct answer whatever the input
is. This scenario is often described, as in [JORS99] as a dialogue between Nature, that produces a
presentation of a reality, and the learner that tries to guess the correct reality outputting at each
stage some conjecture.

The framework we just introduced is quite general, and some aspects need to be discussed more
in detail. In particular, we focus on:

piq the way in which the set of possible realities is presented to the learner;

piiq the restrictions applied to the learner. Some of them regard the computational strength of
the learner while others forbid the learner some “patterns” (in a sense made more precise
below) during the learning process;

piiiq the exact definition of convergence for a learner.

Algorithmic learning theory can model very different scenarios, but here we are interested in
studying the learning process of algebraic structures. On the other hand, we briefly discuss two
of the paradigms that have been studied the most by algorithmic learning theorists: learning of
computable functions and learning of languages. With the informal presentation of these two
paradigms, we also seize the chance to discuss items piq-piiiq. For computable functions, the
learning problem is a collection of total computable functions C. We can formalize a learner
as a function M : NăN Ñ N that takes as input a computable sequence of natural numbers
fp0q, fp1q, . . . (the range of some f P C) and outputs e P N, i.e. the code of ϕe, the e-th total
computable function. Regarding item piiiq, we discuss two different definitions of convergence for
a learner, namely explanatory learning, denoted by Ex, and behaviorally correct learning, denoted
by Bc. In the first one, a learner M succeeds in learning C, if, in the limit, it stabilizes to some e
such that ϕe “ f . In the second one, M succeeds in learning C if, for all but finitely many stages,
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it produces indices for correct programs (not necessarily the same index). The fact that, in this
context, Ex-learnability implies Bc-learnability was shown in [CS83].

In learning of languages, a language is represented as a computable set of numbers coding
finite strings of words, and the learner tries to output the grammar of the corresponding language.
Regarding item piq, we introduce two different ways in which data are presented to the learner,
namely from text (denoted by Txt) or from informant (denoted by Inf). In the presentation from
text, the learner receives as input only positive information, i.e. a stream that only enumerates
(codes of) the strings that are in the language to be learned. In the presentation from informant,
the learner receives as input both positive and negative information, i.e. a list of all (codes of)
strings, together with a label indicating whether the string belongs to the language.

We now turn our attention to learning of algebraic structures, firstly considered by Glymour
([Gly85]). More recently, other works highlighted the interplay between different types of learn-
ability of computable or c.e. structures and their algebraic properties. For example, in [HS07],
Harizanov and Stephan considered learning of algorithmically generated subspaces of computable
vector spaces, in [MS04] Merkle and Stephan studied the learnability of isolated branches on uni-
formly computable sequences of trees, and in [SV01] Stephan and Ventsov explored learning prop-
erties of various algebraic structures. The framework we use in the next sections was introduced
by Fokina, Kötzing, and San Mauro in [FKSM19] for learning families of equivalence structures.
In [BFSM20] Bazhenov, Fokina, and San Mauro expanded the framework to algebraic structures
in general, while in [BFSM20] Bazhenov and San Mauro provide the definition of the framework
that is, essentially, the one we are using here and that we redefine below.

We have not discussed yet item piiq in the list above: imposing restrictions on the learnability
process allows us (again) to confirm the main theme of this thesis, that is the comparison of
different learning problems with respect to that restriction. For example, if a family K is learnable
with respect to some restriction R and K

1 is not, we derive that K is easier to learn (in the sense of
R) than K

1. Learning problems can be compared in different ways: for example, imposing a limited
amount of wrong conjectures that a learner can output, or considering its efficiency, measuring the
time the learner needs before converging to the correct answers. Another natural restriction one
may apply is to the number of mind changes that a learner is allowed to do before converging to
the correct answer: this is actually the main topic of Chapter V.

The paradigm and the learning criteria

We are now ready to define our paradigm. We ignore how a given family is enumerated, and we
just assume that any structure A gives rise to a corresponding conjecture xAy, to be understood
as conveying the piece of information “this is A”.

Definition. Let K be a countable family of nonisomorphic structures. The components of our
framework are the following:

• The learning domain (LDpKq) is the collection of all copies of the structures from K.
That is,

LDpKq :“
ď

APK

tS : S – Au.

As we identify each countable structure with an element of Cantor space, we obtain that
LDpKq Ď 2N.

• The hypothesis space (HS) contains, for each A P K, a formal symbol xAy and a question
mark symbol. That is,

HSpKq :“ txAy : A P Ku Y t?u.

• Recall that a countable structure can be identified via its atomic diagram that can be
coded as an element of 2N (see §I.4.2). A learner M sees, by stages, finite sequences of
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increasing length of the atomic diagram of the given structure in the learning domain,
and is required to output conjectures. This is formalized by saying that M is a function

from 2ăN to HSpKq.

We say that the learning is successful if, for each structure S P LDpKq, the learner eventually
stabilizes to a correct conjecture about its isomorphism type. That is,

lim
nÑ8

MpSænq “ xAy ðñ S – A.

We say that K is learnable, if some learner M successfully learns K.

From the previous definition, notice that we are only interested in the case of learning from infor-
mant: indeed, the learner has access to increasing fragments of the atomic diagram of a structure,
and the atomic diagram of a structure contains both positive and negative information. We also
point out that, since we make no assumption on the computational complexity of the learner,
in this paradigm both Ex-learning and Bc-learning coincide. To see this, first notice that the
notion of learnability defined above, in the paradigm we described, is the natural representa-
tion of Ex-learnability. Let’s see what happens if we adapt our learning paradigm to mimic
Bc-learnability. To do so, we ask that every structure A P K is associated to countably many con-
jectures txxAy, iy : i P Nu. Then, one says that a learner M is Bc-successful if for any S P LDpKq,

pDiqp lim
nÑ8

MpSænq “ xxAy, iyq ðñ S – A.

We say that K is Bc-learnable, if some learner M Bc-successfully learns K. The following easy
proposition shows that the two notions of learnability for structure defined so far coincide.

Proposition. Let K be a family of structures. Then K is Bc-learnable if and only if K is
learnable.

Proof. Clearly, if K is learnable then it is also Bc-learnable
For the converse, suppose that there exists a learner M which Bc-learns K. For any A P K,

choose a conjecture xxAy, iy for some i P N and name it xAy: now every, A has a unique code
xAy. Since there is no restriction on the computational complexity of learners, we can define a
learner M1 that learns K as follows. Given S P LDpKq:

M1pSæsq :“

#
xAy if pDiqpMpSæsq “ xxAy, iyq,

? otherwise.

The fact that both positive and negative information about any structure is provided to the learner,
together with the proposition above, justifies the notational simplification of just writing that a
family is “learnable” instead of “InfEx-learnable” or “InfBc-learnable”.

Remark. From now on, when we use the word “learnable” without any prefix, we mean learnable
in the sense of the previous definition.

The following definition allows us to restrict the behavior of the learner by counting the number
of mind changes and it is needed in Chapter V. We say that M changes its mind at σ if

Mpσq ‰Mpσr|σ| ´ 2sq and Mpσr|σ| ´ 2sq ‰ ?.
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Definition. Let M be a learner, K be a countable family of computable structures, and let
c : 2ăN Ñ Ordinals. We say that c is a mind change counter for M and K if

• cpσq ď cpσ´q for all σ ‰ xy, and

• cpσq ă cpσ´q if and only if M changes its mind at some σ P 2ăN.

Then, we say that K is α-learnable if and only if there is a learner M that learns K and there
is a mind change counter c for M and K such that cpxyq “ α. We say that K is properly
α-learnable if K is α-learnable but not β-learnable for all β ă α.

Notice that 0-learnability corresponds to what in classical algorithmic learning theory is called
InfFin-learnability.

Remark. Notice that, in the first point of the definition, one could define a counter c with the
property that, for σ P 2ăN, cpσq ă cpσr|σ| ´ 2sq even if M does not change its mind at σ.
In this case, M would have different counters that are in a certain sense not “optimal” with
respect to M’s mind changes. Our choice allows us to associate a single counter c to a learner
M, so that, given M and once we have set cpxyq we can easily recompute c at any stage: this
makes our proofs smoother.

We conclude this subsection by giving a useful model-theoretic characterization of learnability
in terms of infinitary formulas.

Theorem ([BFSM20, Theorem 3.1]). Let K :“ tAi : i P Nu be a countable family of pair-
wise nonisomorphic structures. Then, K is learnable if and only if there are Σinf

2 formulas
φ0, . . . , φn, . . . such that

Ai ( φj ô i “ j.

Such a characterization comes in handy in Theorem IV.2.12 where we provide a syntactic char-
acterization of another learning criterion. In [BFSM20, Remark 3.2] the authors mention that
the statement of this result, is similar to the one given in [MO98, Corollary (52)] by Martin and
Osherson, but the proof is significantly different and uses Turing computable embeddings, (see
§I.4.2 for the definition).



IV
Learning families of algebraic

structures with the help of Borel
equivalence relations

All the results in this chapter are a joint work with Nikolay Bazhenov and Luca San Mauro and
are collected in [BCS23].

In Part 2’s introduction we have presented algorithmic learning theory in general, and we
have introduced the framework we intend to work with for learning of algebraic structures: it is
now time to notice that the framework has a “defect”. Indeed, at the current state, a family of
structures is either learnable or not and there is no way of calibrating the complexity of nonlearnable
families. To address this issue, we borrowed various ideas from descriptive set theory: this choice
is justified by the fact that a primary theme of modern descriptive set theory is the study of
classification problems (in particular of isomorphism problems) via different notions of reducibility
between definable equivalence relations (see §I.4.1). Indeed, in the paradigm defined in Part 2’s
introduction, we immediately notice that isomorphism plays a central role: for every structure in a
given family, the learner is required to guess its isomorphism type, implying that the nonlearnability
of the family is, in some sense, rooted in the complexity of the associated isomorphism relation.
Yet, two aspects shall be stressed:

1. The isomorphism relations customarily studied in descriptive set theory refer to large col-
lections of countable structures (e.g., all graphs, Abelian groups, or metric spaces). On the
contrary, here we focus on learning small families (i.e., countable families, and in fact often
finite ones as in [BSM21]);

2. At any finite stage, the learner sees only a finite fragment of (the presentation of) a structure
in the family to be learned, and each conjecture is formulated without knowing how exactly
the observed structure will be extended. In topological terms, this coincides with asking that
the learning must be a continuous process.

We mention that, for our purposes, the equivalence relations under consideration do not need to
be Borel ones: on the other hand, these are considered important benchmarks both in invariant
descriptive set theory, and also in other works regarding, for example, computable reducibility (see
e.g. [Mil21]).

The starting point is Theorem IV.1.1, in which we show that a family of structures K is learnable
if and only if the isomorphism relation associated with K is continuously reducible to the relation
E0. Since E0 is a fundamental benchmark in the theory of Borel equivalence relations (e.g., recall
the Glimm-Effros dichotomy, stated in Theorem I.4.2), such a new characterization of learnability
for structures may serve as a piece of evidence that our paradigm is a natural one. Once we have this
descriptive set theoretic characterization of learnability, it is natural to wonder what happens if we
replace E0 with other Borel equivalence relations, and this led us to the definition of E-learnability.
That is, a family of structures K is E-learnable, for a Borel equivalence relation E, if there is a
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continuous reduction from the isomorphism relation associated with K to E. In a rough and
more descriptive set-theoretic sense, E-learnability is the study of the complexity of isomorphism
problems restricted to a countable setting, and in which the reduction is a continuous one. But
if, on one hand, we are restricting the possible isomorphism problems and the complexity of the
“more classical” Borel reduction, on the other, we are broadening our study to a finer classification
of a smaller class of problems. We mention that the notion of E-learnability witnesses a connection
between algorithmic learning of algebraic structures and invariant descriptive set theory, and this
connection has a twofold interest that we discuss in the next two items.

• Replacing E0 with Borel equivalence relations of lower/higher complexity, one immediately
unlocks the promised hierarchy of learning problems. That is, given Borel equivalence re-
lations E and F , we say that E is countable-learning reducible (respectively, finite-learning
reducible) to F , if every countable (finite) E-learnable family is also F -learnable. In learn-
ing theoretic terms, this corresponds in weakening/strengthening the notion of learnability.
More precisely, once Theorem IV.1.1 settles the correspondence between the latter and E0-
learnability, replacing E0 with weaker (respectively, stronger), in the sense of continuous re-
ducibility, equivalence relations we are restricting (relaxing) the convergence condition of the
learner. We investigate the learning power of several benchmark Borel equivalence relations,
offering both examples of relations that do not enlarge the scope of E0-learnability (Theo-
rems IV.2.6 and IV.2.4) and equivalence relations which do so (Theorems IV.2.8 and IV.3.3).
Interestingly, we also show that the learning power of some equivalence relations is affected
by whether we restrict the attention to families containing only finitely many isomorphism
types, or we rather allow countably infinite families.

• It may seem odd that the definition of E-learnability, except for its name, does not mention
any learnability-related notion. On the other hand, we already said that, by Theorem IV.1.1,
E0-learnability coincides with learnability. One could ask whether similar phenomena hold
between different learnability notions (coming from classical algorithmic learning theory)
different from the one considered here, and other E-learnabilities for E different from E0.
In Chapter V we show that the notion of α-learnability (defined in Part 2’s introduction) is
tightly connected to the one of Id-learnability. In another work, not mentioned in this thesis,
we are exploring the relationships with other “classical” learning paradigms in the learning
hierarchy mentioned in the previous item, such as partial learnability.

Id

E0

E1 Eω
0E2

“`Z0

Id

E0, E1, E2, E
ω
0 , Z0

“`

Id

E0, E1, E2

Eω
0

“`

Figure IV.1: On the left side, we reported Figure I.2: the arrows represent continuous reducibility.
At the center, we have a diagram summarizing the reductions up to countable-learning reducibility,
and on the right side the diagram summarizing reductions up to finite-learning reducibility.

Figure IV.1, also justifies the introduction of the learning hierarchies: indeed, in both cases,
these differ from the hierarchy given by continuous reducibility.
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IV.1 InfEx-learnability and E0

We start showing the promised descriptive set-theoretic interpretation of our learning framework.
Remember that E0 denotes the relation of eventual agreement on element of 2N, i.e., given p, q P 2N,

p E0 q ðñ pDmqp@n ě mqpppnq “ qpnqq.

Theorem IV.1.1. A family of structures K is learnable if and only if there is a continuous
function Γ : 2N Ñ 2N such that, for all A,B P LDpKq,

A – B ðñ ΓpAq E0 ΓpBq.

Proof. For the sake of exposition, we assume that K is infinite (the other case being easier) and
that K “ tAi : i P Nu: we denote ΓpAiq by qi.

For the left-to-right direction, let Γ be a function that induces a continuous reduction from
LDpKq to E0. We need to show that K is learnable. Certainly, pqi ✚✚E0 qjq, for all i ‰ j. Since
Γ is continuous (see Theorem I.2.2) there exists an oracle X P 2N and a Turing operator Φ so
that

Γppq “ ΦX‘p, for every p P 2N.

Let p P 2N and consider Y :“ X ‘
À

iPN qi. We define a Y -computable auxiliary function
fsimpp; i, sq. Informally speaking, fsimpp; i, sq is a measure of similarity (at the stage s) between
Γppq and qi. Let

ℓs :“ maxtn : p@x ď nqpΦpX‘pqæspxqrss is definedqu.

If there is no such ℓs, then set fsimpp; i, sq :“ ´1 for all i P N. Otherwise, for i P N, let

fsimpp; i, sq :“

$
’&
’%

maxtk : ℓs ´ k ě i^ p@j ď kq

pΦpX‘pqæspℓs ´ jq “ qipℓs ´ jqqu if ΦpX‘pqæspℓsq “ qipℓsq and ℓs ě i;

´1, otherwise.

Without loss of generality, we assume that ℓs`1 P tℓs, ℓs ` 1u. It is not hard to show that
the function fsim satisfies the following properties. Suppose that p P 2N encodes a copy of the
structure Ai0 , for some i0 P N.

• Note that there is m0 P N such that for all x ě m0, we have Γppqpxq “ qi0pxq. This
implies that there exists a stage s0 such that every s ě s0 satisfies fsimpp; i0, s ` 1q ě
fsimpp; i0, sq ą ´1. In addition,

lim
s
fsimpp; i0, sq “ 8.

• Let i ‰ i0. Since pΓppq✚✚E0 qiq and ℓs`1 ď ℓs ` 1 for all s, there are infinitely many stages
s such that ΦpX‘pqæspℓsq ‰ qipℓsq and fsimpp; i, sq “ ´1. Therefore,

lim inf
s

fsimpp; i, sq “ ´1.

Construction.
We define our desired learner M. First let, Bs :“ tj ď s : fsimpp; j, sq ą ´1u and

j˚ :“ min
 
j P Bs : fsimpp; j, sq “ maxtfsimpp;m, sq : m P Bsu

(
.
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Given p P 2N, for any s, let

Mpp æ sq :“

$
’&
’%

? if p æ s “ xy

Mpp æ s´ 1q if Bs “ H^ s ą 0

xAj˚ y otherwise.

Verification.
We show that M learns our family K. Suppose that p P 2N encodes a copy S of some Ai0 . Let
s0 be a stage such that fsimpp; i0, sq ‰ ´1 for all s ě s0. Set ℓ

˚ :“ ℓs0 . Observe the following:

• By the definition of the function fsim, we have ℓ˚ ě i0. In addition, at each stage s ě s0,
the value Mpp æ sq is defined according to j˚.

• Suppose that j ą ℓ˚ and s ą s0. If j ą ℓs, then fsimpp; j, sq “ ´1. If j ď ℓs, then

fsimpp; j, sq ď ℓs ´ j ă ℓs ´ ℓ
˚ ď pℓs ´ ℓ

˚q ` fsimpp; i0, s0q “ fsimpp; i0, sq

Hence, the definition of j˚ implies that Mpp æ sq ‰ xAjy.

We deduce that for all s ą s0, we have Mpp æ sq P txAiy : 0 ď i ď ℓ˚u. Choose a stage s1 ą s0
such that for each j P t0, 1, . . . , ℓ˚uzti0u, there is another stage tj satisfying maxps0, ℓ

˚q ă tj ă
s1 and fsimpp; j, tjq “ ´1. For every j P t0, 1, . . . , ℓ

˚uzti0u and s ą s1, observe the following: if
tj ď ℓs, then we have

fsimpp; j, sq ď ℓs ´ tj ă ℓs ´ ℓ
˚ ď fsimpp; i0, sq.

Choose s2 ą s1 such that ℓs2 ě maxttj :P t0, 1, . . . , ℓ
˚uzti0uu. Then the definition of j˚ implies

that Mpp æ sq “ xAi0y for all s ą s2. Therefore, in the limit, M says that “S is a copy of Ai0”,
and the family K is learnable by M.

For the right-to-left direction, let M be a learner of K and let Γ : 2N Ñ 2N be a continuous
function which induces a reduction from LDpKq to E0. To this end, it suffices to fix a countably
infinite transversal ppiqiPN of E0 (i.e., a set intersecting countably many equivalence classes of
E0 in exactly one point) and define Γ as Γpqqpsq :“ pMpqrssqpsq. Here we use the following
convention:

if Mpqrssq “ xAiy, then pMpqrssq “ pi and if Mpqrssq “ ?, then pMpqrssq “ 0N.

To verify that Γ induces a reduction from LDpKq to E0, it is enough to observe the following:
if q P 2N encodes a copy of some Ai from LDpKq, then pDs0qp@s ě s0qpMpqrssq “ xAiyq, and
thus Γpqq E0 pi. So, since the pi’s form a transversal for E0, we deduce that, if q0 and q1
encode copies of Ai and Aj respectively, then Γpq0q E0 Γpq1q ðñ i “ j and this concludes
the proof.

IV.2 A novel approach: E-learnability

Replacing E0 with any equivalence relation E, we define the notion of E-learnability.

Definition IV.2.1. A family of structures K is E-learnable if there is a function Γ : 2N Ñ 2N

which continuously reduce LDpKq to E.

As already mentioned in the introduction, the definition of E-learnability, contrarily to the
definition of learnability, seems to be independent of a “classical” approach to learnability. On
the other hand, Theorem IV.1.1 shows that the latter coincides with what now we can call E0-
learnability. Informally, this means that we can consider the Γ in the definition of E0-learnability
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as a “learner” which converges if it reduces LDpKq to E0: with this interpretation in mind, it is not
surprising that, the notion of learnability in Definition 2, which is defined in the limit, corresponds
to E0-learnability where an E0-equivalence class is given by all the infinite sequences that are
equivalent in the limit. Once we have this correspondence, we have a tool for comparing the (non)
learnability of a family of structures K. Indeed, replacing E0 with other equivalence relations of
increasing complexity, we are relaxing the condition of convergence of the “learner” Γ obtaining
stronger notions of learnability, and we can naturally compare them, as described in the following
definition.

Definition IV.2.2. Let E and F be Borel equivalence relations. We say that E is countable-
learning reducible to F (in symbols, E ďN

Learn
F ), if every countable E-learnable family is also

F -learnable. We say that E is finite-learning reducible to F (in symbols, E ďăN
Learn

F ), if every
finite E-learnable family is also F -learnable.

As justified in this chapter’s introduction, we are going to study the learning power of some
benchmark Borel equivalence relations: before doing so, we give the following straightforward
proposition.

Proposition IV.2.3. If E is continuously reducible to F then E ďN
Learn

F . Furthermore, if
E ďN

Learn
F then E ďăN

Learn
F : the converse may fail.

IV.2.1 When oracle equivalence relations don’t help: E1 and E2

In this section, we analyze the learning power of E1 and E2. These equivalence relations are
incomparable and strictly above E0 with respect to continuous reductions; in fact, the same is true
if one requires computable reductions. But, as it is proven in Theorem IV.2.4 and Theorem IV.2.6,
E1 and E2 coincide and collapse to E0 with respect to their learning power.

Recall that given p, q P 2NˆN,

p E1 q ðñ p@8n P Nqp@iqpppm, iq “ qpm, iqq.

Theorem IV.2.4. A family K is E1-learnable if and only if K is E0-learnable. That is,
E1 ”

N
Learn

E0.

Proof. For the right-to-left direction, since E0 is continuously reducible to E1 (see Figure I.2)
it suffices to apply Proposition IV.2.3.

For the opposite direction, let K :“ tAi : i P Nu be an E1-learnable family and let Γ : 2N Ñ
2NˆN induce a continuous reduction from LDpKq to E1. For each i P N, we choose qi P 2NˆN

such that,
p@S P LDpKqqpS – Ai ùñ ΓpAiq “ qiq,

i.e., Γ maps all copies of Ai into the class rqisE1
. Fix a computable bijection ξ from the set

tpi, jq P N2 : i ‰ ju ˆ N onto N. We build a set X :“ txcs, rsy : s P Nu as follows. Put
xcs, rsy :“ x0, 0y. At stage s “ ξpi, j, tq, let

cs`1 :“ mintc ą ms : p@kqpqipc, kqqjpc, kqqu ^ rs`1 :“ mintr : qipcs`1, rq ‰ qjpcs`1, rqu.

Notice that xcs`1, rs`1y exists as pqi ✚✚E1 qjq, and it is straightforward to check that for every
c P N, there is at most one r such that xc, ry P X.

We define the X-computable (and hence continuous) operator Ψ : 2NˆN Ñ 2N as follows: for
every p P 2NˆN and s P N, let Ψppqpsq :“ ppcs, rsq.
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We show that the operator Φ :“ Ψ˝Γ provides a continuous reduction from LDpKq to E0. Let
p P 2N encode a copy of some Ai0 : since Γppq E1 qi0 , we obtain that p@8sqpppcs, rsq “ qi0pcs, rsqq
and thus Φppq E0 Ψpqi0q. Instead, if i ‰ i0. Then,

p@8tq
`
ppcξpi,i0,tq, rξpi,i0,tqq “ qi0pcξpi,i0,tq, rξpi,i0,tqq ‰ qipcξpi,i0,tq, rξpi,i0,tqq

˘
.

This implies that pΦppq✚✚E0 Ψpqiqq. Therefore, we deduce that our family K is E0-learnable. The
theorem is proved.

Remark IV.2.5. The previous theorem can also be restated in purely descriptive set theoretic
terms as follows. Let pqiqiPN P p2

NˆNqN and qiE1qj if and only if i “ j. Then, there is a
continuous function Γ such that for every p P

Ť
iPNrqisE1

we have that pE1qj if and only if
Γppq E0 Γpqjq, i.e. E1, with domain restricted to pqiqiPN, continuously reduces to E0 via Γ.
Theorem IV.2.6, Proposition IV.2.7, and Theorem IV.3.2 admit similar characterizations, but
we will not make them explicit.

Given p, q P 2N,

p E2 q ðñ
8ÿ

k“0

pp△qqpkq

k ` 1
ă 8.

Theorem IV.2.6. A countable family K is E2-learnable if and only if K is E0-learnable, i.e.
E2 ”

N
Learn

E0.

Proof. For the right-to-left direction, since E0 is continuously reducible to E2 (see Figure I.2)
it suffices to apply Proposition IV.2.3.

For the opposite direction, let K :“ tAi : i P Nu be an E2-learnable family and let Γ be an
operator, which induces a continuous reduction from LDpKq to E2. For i P N, we fix qi P 2N

such that Γ maps all copies of Ai into rqisE2
.

By Theorem I.2.2, there exist an oracle X and a Turing operator Φ such that Γppq “ ΦX‘p

for all p P 2N.
Construction.
We define a pX ‘

À
iPN qiq-computable operator Ψ : 2N Ñ 2N that, given in input p P 2N acts

as follows. For s P N, let ℓs :“ maxtℓ : p@x ď ℓqpΦpX‘pqæspxqrss is definedqu. Without loss of
generality, one may assume that ℓs is defined for every s. For i, s P N, we consider the partial
sum

ppi, sq :“
ℓsÿ

k“0

pqi△ΦX‘pqpkq

k ` 1
.

At a stage s, we define auxiliary values is, bs P N and cs P t0, 1u. Similarly to the proof of
Theorem IV.1.1, these parameters control the flow of the construction. Moreover, at each stage
s, we set Ψppqpsq :“ qispsq. Our construction ensures that is ď bs for every s. At stage 0, set
i0 :“ 0, b0 :“ 1, and c0 :“ 0. At stage s ` 1, we assume that the parameters bs, cs, and is are
already defined.

• Case 1: if ppis, s` 1q ď bs, then do not change anything.

• Case 2: if ppis, s` 1q ą bs and cs “ 0, then put is`1 :“ 0 and cs :“ 1.

• Case 3: suppose that ppis, s` 1q ą bs, cs “ 1, and is ă bs. Define is`1 :“ is ` 1.

• Case 4: suppose that ppis, s` 1q ą bs, cs “ 1, and is “ bs. Let

i0 :“ minti ď bs ` 1 : ppi, s` 1q “ mintppj, s` 1q : j ď bs ` 1uu
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and set is`1 :“ i0, cs`1 :“ 0 and bs`1 :“ maxtx : x P tbs ` 1, the integer part of ppi0, s`
1q ` 1uu.

This concludes the description of the construction. It is clear that the operator Ψ is Y -
computable.
Verification.

Suppose that p P 2N encodes a copy of the structure Ai0 , and define N0 :“
ř8

k“0

pqi0△Γppqqpkq

k`1
.

We claim that there exists a finite limit b˚ “ lims bs and, in addition, b˚ ě i0. To do so,
we distinguish two cases. First, assume that bs ă i0 for all s. Then we have that for every
s, is ă i0. Furthermore, since the sequence bs is nondecreasing, there exists b˚ “ lims bs with
b˚ ă i0. Since pΓppq✚✚E2 qjq for all j ‰ i0, there exists a stage s0 such that ppj, s0q ą i0 for all
j ă i0, and bs “ b˚ for all s ě s0. Then, our construction ensures that after the stage s0, there
is a stage s1 satisfying Case 4. This implies that bs1 ě b˚`1, which gives a contradiction. Thus,
we deduce that there must exist a stage s10 such that bs1

0
ě i0. Second, assume that lims bs “ 8.

This implies that there are infinitely many stages s ą s10 satisfying Case 4. Choose a stage
s1 ą s10 such that s1 satisfies Case 4 and bs1 ě N0 ` 1. Consider the value i˚ :“ is1 .

• If i˚ “ i0, then for every s, we have ppi˚, sq ă bs1 . This implies that every stage s ą s1
satisfies Case 1, which gives a contradiction.

• If i˚ ‰ i0, then the stage s2 :“ tmin s ą s1 : ppi˚, s2q ą bs1u satisfies Case 2, and we have
cs2 “ 1. Therefore, Case 3 of the construction ensures that there is a sequence of stages

s2 “ s20 ă s21 ă ¨ ¨ ¨ ă s2i0

such that is2
k
“ k for every k ď i0. Again, every stage s ą s2i0 satisfies Case 1, which

provides a contradiction.

Therefore, we proved that there is a finite limit b˚ “ lims bs, and b˚ ě i0 and this ends the
proof of the claim.

Now choose a stage s˚ such that bs˚ “ b˚. There exists a stage s1 ě s˚ such that every
i ď b˚ satisfies the following: if i ‰ i0, then ppi, s1q ą b˚. Since after the stage s˚, there are
no stages satisfying Case 4, it is not hard to deduce that for every s ě s1 ` b˚ ` 2, we must
have is “ i0. This implies that Ψppq E0 qi0 . For all i ‰ j, we have pqi ✚✚E2 qjq and clearly this
implies pqi ✚✚E0 qjq. Hence, we conclude that our operator Ψ provides a continuous reduction
from LDpKq to E0. In other words, the family K is E0-learnable, as desired.

IV.2.2 Characterizing the learning power of Eω
0

All equivalence relations considered so far (i.e., E0, E1, and E2) are inseparable with respect to
their learning power. In fact, by Theorem IV.1.1, they don’t expand the boundaries of our original
framework. The case of Eω

0 , to be discussed in this section, is different. Namely, Eω
0 has strictly

more learning power than E0—but this fact is only witnessed by infinite families. Recall that given
ppnqnPN, pqnqnPN P p2

NqN,

pppnqnPN E
ω
0 pqnqnPNq ðñ p@m P Nqppm E0 qmq.

Proposition IV.2.7. A finite family K is Eω
0 -learnable if and only if K is E0-learnable. That

is, Eω
0 ”

ăN
Learn

E0.

Proof. For the right-to-left direction, since E0 is continuously reducible to Eω
0 (see Figure I.2)

it suffices to apply Proposition IV.2.3.
For the other direction, let K :“ tAi : i ď nu be a finite Eω

0 -learnable family and let Γ
induce a continuous reduction from LDpKq to Eω

0 . For i ď n, choose pqinqnPN such that Γ maps
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all copies of Ai into rpqinqnPNsEω
0
. For every xi, jy such that i ‰ j, let dpi, jq be such that

qirdpi,jqs ✚✚E0 q
j

rdpi,jqs.

Then, we define a Turing operator Ψ : p2NqN Ñ 2N as follows.

ΨpppnqnPNq :“
à

i‰jďn

prdpi,jqs.

The operator Φ :“ Ψ ˝ Γ provides a continuous reduction from LDpKq to E0. Indeed, let p P 2
N

encode a copy of Ai0 . Then Γppq Eω
0 pq

i0qnPN and Φppq E0 Ψppqi0qnPNq. If i ‰ i0, then we have

pp E0 q
i0
rdpi,i0qs ✚

✚E0 q
i
rdpi,i0qs

q and pΦppq✚✚E0 ΨppqinqnPNqq.

Therefore, the family K is E0-learnable.

We continue separating Eω
0 -learnability by E0-learnability.

Theorem IV.2.8. Eω
0 ă

N
Learn

E0.

To prove the theorem above, we provide examples of two families that are Eω
0 learnable but

not E0-learnable. Of course a single example would suffice, but we prefer to provide both families,
as they have interesting properties. Indeed, to prove the statement for the first family we need
to exploit the model-theoretic characterization of E0-learnability given at the end of Part 2’s
introduction (i.e., [BFSM20, Theorem 3]), while the second one provides an example of a more
“natural” family separating E0 from Eω

0 . Hence, the proof of the theorem above is obtained
combining Lemmas IV.2.9 and IV.2.10 or equivalently, by Lemma IV.2.11.

We define the first family that is a family of directed graphs Kgr. For the sake of exposition,
first, we define a family Kb :“ tAi : i P Nu where the signature of the class Kb is allowed to be
infinite. After that, we provide comments on how to pass from Kb to the desired K

gr. Thus,
consider the signature L “ tRj : j P Nu Y tďu, where Rj are unary predicates. Given p P 2N, we
define an L-structure Dppq as follows:

• Inside Dppq, the relations Rj , j P N, are pairwise disjoint. We say that the set R
Dppq
j is the

Rj-box of Dppq.

• The Rj-box of Dppq contains a linear order Lj such that

Lj –

#
ω, if ppjq “ 0,

ω˚, if ppjq “ 1.

where ω and ω˚ are respectively the order types of the positive and negative integers. For a finite
string σ P 2ăN, let Aσ be the structure Dpσp10Nq. Our family Kb consists of all Aσ, σ P 2ăN.
Notice that the relation ď in L provides an order between elements in Lj and does not provide
any order between elements in different Rj-boxes.

In order to obtain the family of directed graphs Kgr, which has the same properties as the
family Kb, one can proceed as follows. Instead of distinguishing an Rj-box via the predicate Rj ,
one attaches to every element a of Lj of the corresponding Rj-box the graph Cj`3. Indeed, for
each a P Lj use fresh elements ca,1, ca,2 . . . , ca,j`3 and put the edges pa, ca,1q, pca,j`3, ca,1q and, for
i ď j ` 2, pca,i, ca,i`1q.

Lemma IV.2.9. The family Kgr is Eω
0 -learnable.
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Proof. By the comments above, it suffices to prove the statement for Kb. Recall that the family
tω, ω˚u is learnable, as they are distinguishable by Σinf

2 formulas [BFSM20, Theorem 3]. By
employing this fact, we can easily define a Turing operator Φ that, given in input p P 2N, it
treats p as a code for the atomic diagram of a countable partial order L. Then:

• If L is a copy of ω, then the output ΦppqE00
N.

• If L – ω˚, then we have pΦppq E0 1Nq.

For every j P N, we define a Turing operator Ψj that, given in input p P 2N, it treats p
as a code of a countable L-structure A. The output Ψjppq encodes the partial order, which is
contained inside the Rj-box of A.

Finally, we define an operator Θ. For p P 2N and for j, k P N, we set

Θppqpxj, kyq :“ pΦ ˝Ψjppqqpkq.

Observe the following. Given p, q P 2N, if p encodes a copy of the structure Dpqq, then for every
j P N, we have:

• if qpjq “ 0, then the j-th column pΘppqqrjsE00
N;

• if qpjq “ 1, then pΘppqqrjs E0 1N.

This observation implies that the operator Θ witnesses the Eω
0 -learnability of our family K.

Lemma IV.2.10. The family Kgr is not E0-learnable.

Proof. As we have done for Lemma IV.2.9, by the comments above, it suffices to prove the
statement for Kb. Towards a contradiction, assume that the family Kb is E0-learnable. By
Theorem IV.1.1, Kb is learnable, and by [BFSM20, Theorem 3.1], one can choose an infinitary
Σc

2 sentence θ such that A0 ( θ and for every σ ‰ 0, we have Aσ * θ. Without loss of generality,
one may assume that

θ “ Dx̄
ľľ

iPI

@ȳiψipx̄, ȳiq,

where every ψi is a quantifier-free formula. Fix a tuple c̄ from the structure A0 such that

A0 (
ľľ

iPI

@ȳiψipc̄, ȳiq.

Choose a natural number N such that for every j ě N , the Rj-box of A0 does not contain
elements from c̄.

Consider a string τ :“ 010N and the corresponding structure Aτ “ Dpτp10Nq. It is clear that
for every j ă N , the (contents of the) Rj-boxes inside A0 and Aτ are isomorphic. Therefore,
one can choose a tuple d̄ inside Aτ as isomorphic copies of c̄ (with respect to the isomorphism
of the Rj-boxes, j ă N).

We claim that the structures pA0, c̄q and pAτ , d̄q satisfy the same D-sentences. To do so, it
suffices to verify that every quantifier-free formula ψpx̄, ȳq satisfies

A0 ( Dȳψpc̄, ȳq ñ Aτ ( Dȳψpd̄, ȳq.

The other direction (ð) can be obtained via a similar argument. Choose a tuple b̄ from A0 such
that A0 ( ψpc̄, b̄q. Suppose that b̄ “ b0, b1, . . . , bm. We define a new tuple b̄1 “ b10, b

1
1, . . . , b

1
m

from Aτ as follows:
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• If bk lies in an Rj-box, which contains elements from c̄, then b1k is defined as the copy of
bk with respect to the natural isomorphism of Rj-boxes, j ă N .

• Suppose that bk belongs to an Rj-box, which does not contain elements from c̄. Then b1k
can be chosen as any element from the Rj-box of Aτ , while preserving the ordering ď.
More formally, one needs to ensure the following: if bk ‰ bℓ both belong to this Rj-box,
then we have:

A0 ( bk ď bℓ ðñ Aτ ( b1k ď b1ℓ.

It is clear that the tuples c̄, b̄, and d̄, b̄1 satisfy the same atomic formulas. Therefore, we deduce
that the structure Aτ satisfies ψpd̄, b̄1q, and Aτ ( Dȳψpd̄, ȳq. This ends the proof of the claim.

The claim we have just proven implies that

Aτ (
ľľ

iPI

@ȳiψipd̄, ȳiq,

and hence, Aτ ( θ, which contradicts the choice of θ. We deduce that the family Kb is not
E0-learnable.

Recall from §I.1 that
n
bC3 denotes the disconnected union of n-many copies of C3, while

8
bC3

is the disconnected union of infinitely many copies of C3.

Lemma IV.2.11. The family K :“ t
n
bC3 : n ą 0u Y t

8
bC3u is Eω

0 -learnable, but not E0-
learnable.

Proof. By Theorem IV.1.1 E0-learnability and learnability coincide. We can use a similar argu-
ment to the one given in [FKSM19, Example 5] to show that K is not learnable (in [FKSM19],
the authors write “InfEx-learnable” instead of “learnable”). Informally, given S P LDpKq such

that S –
8
bC3 no learner M is able to learn

n
bC3 for some n ą 0 as, for any s, Sæs may be

extended either to a copy of
8
bC3 or to a copy of

m
bC3 for m ě n.

We now show that K is Eω
0 learnable. To do so, we define a Turing operator Ψ : 2N Ñ p2NqN

acting as follows. For any p P 2N let Ψppq :“ ppnqnPN where pn is such that for any s P N, let

pnpsq :“

#
1 if Sæs ãÑ

n`1

b C3

0 otherwise.

It is easy to verify that:

• if S –
n
bC3 for n ą 0, then, p@i ă nqppi Id 1Nq while for any p@j ě nqppj E0 1Nq;

• if S –
8
bC3 then for all p@iqppi E0 0Nq.

This concludes the proof.

IV.2.3 A syntactic characterization of Eω
0 -learnability

As aforementioned, in [BFSM20] Bazhenov, Fokina, and San Mauro obtained a full syntactic char-
acterization of which families of structures are learnable, by means of computable Σinf

2 formulas (see
[BFSM20, Theorem 3.1], at the end of §2). The next theorem offers an analogous characterization
for Eω

0 -learning.

Theorem IV.2.12. Let K :“ tAi : i P Nu be a countable family. The family K is Eω
0 -learnable

if and only if there exists a countable family of computable Σinf
2 sentences Θ with the following
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properties:

(a) if θ is a formula from Θ, then there is a formula ψ P Θ such that for every A P K,

A ( θ ðñ A (  ψ;

(b) if A fl B are structures from K, then there is a sentence θ P Θ such that

A ( θ and B (  θ.

The proof of the theorem is inspired by ideas from [BFSM20]. In particular, we adopt the tech-
nology of tc-embeddings and the Relativized Pullback Theorem reminded in the preliminaries.
Before proving the theorem above, we recall the definition of the class Kst from [BFSM20]: in the
same paper, the authors show that Kst is an archetypical E0-learnable family, in the sense that a
countable family C is learnable if and only if there is a continuous embedding from the class C into
Kst. Thus, consider a signature Lst :“ tďu Y tPi : i P Nu, where Pi are unary predicates. Given
i P N, an L-structure Si satisfies the following properties:

• Inside Si, the relations Pj are pairwise disjoint. In addition, if x P Pj and y P Pk for some
j ‰ k, then x and y are ď-incomparable. Let η be the order type of the rational numbers.

• The predicate Pi contains an isomorphic copy of 1` η.

• Every Pj , for j ‰ i, contains a copy of η.

For dealing with Eω
0 -learnability, we have to introduce a new, and more complicated, class

Cst. But the informal idea behind Cst is pretty simple: roughly speaking, this class contains all
countable disjoint sums of the structures from Kst.

Consider a new signature L1 “ Lst Y tQk : k P Nu, where Qk are unary predicates. The class
Cst contains all L-structures M, which satisfy the following properties:

• Their relations Qk, k P N, are pairwise disjoint. We say that the Lst-substructure with
domain M æ Qk is the Qk-box of M.

• Every Qk-box of M is isomorphic to a structure from the class Kst.

Note that our class Cst is uncountable.

Lemma IV.2.13. The class Cst has a computable family of Σinf
2 sentences Θ, which satisfies

properties (a) and (b) from the formulation of Theorem IV.2.12.

Proof. The desired family Θ contains the following Σinf
2 sentences:

1. For each i and j, we add a finitary Σ0
2 sentence θi,j , which states the following: “the

Pj-predicate inside the Qi-box has a ď-least element”.

2. For each i and j, we add a Σinf
2 sentence ψi,j , which is equivalent to the following formula:

łł

k‰j

θi,k.

In other words, there is some k ‰ j such that the Pk-predicate inside the Qi-box has a
least element.

Let M be an arbitrary structure from Cst. Since the Qi-box of M is a structure from Kst,
it is not hard to show that

M ( θi,j ðñ M (  ψi,j .

Hence, we deduce that the class Cst satisfies property (a) of Theorem IV.2.12.
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Suppose that M fl N are structures from Cst. Then there exist indices i and j such that
for the structures M and N , their Pj-predicates inside Qi-boxes are not isomorphic. Without
loss of generality, one may assume that in this Pj-place, M has order-type 1 ` η, and N has
order-type η. Then, it is clear that

pM ( θi,j ^M (  ψi,jq and pN (  θi,j ^N ( ψi,jq.

Therefore, Cst satisfies property (b) of the theorem.

Proof of Theorem IV.2.12. We first show the left-to-right direction: to do so, we build a con-
tinuous embedding from the given class K to Cst. This embedding allows us to apply the
Relativized Pullback Theorem (Theorem I.4.14) for finishing our argument.

Consider ~γ :“ pγiqiPN P p2
NqN. We define an auxiliary continuous operator Ψ~γ : 2N Ñ 2N,

mapping any p to δp, where δp encodes the atomic diagram of an L-structure Sppq.
We always assume that inside Sppq, all predicates Pi are disjoint, every predicate Pi contains

at least one element and Sppq has domain N.
Construction.
The construction of Sppq proceeds in stages. At a stage s, for each i P N, we define the following
auxiliary value:

vpi, sq “

#
mintt ď s : p@xqrt ď x ď s ùñ ppxq “ qipxqsu, if ppsq “ qipsq,

8, otherwise.

We also define two parameters ppsq and bpsq. Roughly speaking, at a stage s, our current
“guess” is that the input p P 2N is such that p E0 qppsq, where ppsq ď bpsq ď s. At stage 0 let
pp0q “ 0 and bpsq “ 0. At stage s` 1, consider the following cases.

• Case 1: suppose that there is i ď s` 1 such that pps` 1q “ qips` 1q.

If vpppsq, s` 1q ‰ 8, then set i0 :“ ppsq. Otherwise, i0 is defined as follows.

– If ppsq ă bpsq, then pps` 1q :“ ppsq ` 1 and i0 :“ ppsq ` 1;

– If ppsq “ bpsq, then let

i0 :“ minti ď s` 1 : vpi, s` 1q “ mintvpj, s` 1q : j ď s` 1uu.

We set bps` 1q :“ s` 1 and pps` 1q :“ i0.

Suppose that the relation Pi0 (at this particular moment) contains the following linear
order: a0 ă a1 ă ¨ ¨ ¨ ă ak. We choose fresh elements b0, b1, . . . , bk, add them into Pi0 ,
and set:

a0 ă b0 ă a1 ă b1 ă ¨ ¨ ¨ ă ak ă bk.

Consider a j ‰ i0, and suppose that the relation Pj contains the ordering c0 ă c1 ă ¨ ¨ ¨ ă
cℓ. Choose fresh elements d´1, d0, d1, . . . , dℓ, put them into Pj , and define:

d´1 ă c0 ă d0 ă c1 ă d1 ă ¨ ¨ ¨ ă cℓ ă dℓ.

• Case 2: if ppsq ‰ qipsq for all i ď s ` 1, then for every j P N, the relation Pj is arranged
in the same way as described in Case 1.

This concludes the description of the operator Ψ~γ .

Verification.
Similarly to the previous proofs, it is not hard to verify the following properties of Ψ~γ :
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1. The operator Ψ~γ is
`À

iPN γi
˘
-computable.

2. If pp E0 γiq for some i P N, then the structure Sppq is isomorphic to Si.

Now, let Γ be a continuous operator which induces a reduction from LDpKq to Eω
0 . For

a structure Ai from K, fix pqinqnPN P p2
NqN such that Γ maps all copies of Ai into the class

rpqinqnPNsEω
0
.

We define a continuous operator Ξ as follows. Let p P 2N.

1. First, we compute Γppq :“ ppnqnPN P p2
NqN.

2. Second, for each j P N, we consider the sequence ~qj :“ pqijqiPN, and we compute δp,j :“

Ψ~qj ppjq P 2
N.

3. Finally, by using pδp,jqjPN, we compute δ P 2N encoding the atomic diagram of an L1-
structure M defined as follows. For each j, the Qj-box of M is an isomorphic copy of the
Lst-structure encoded by δp,j , and this copy has domain txj, ky : k P Nu. We set Ξppq :“ δ.

It is straightforward to establish the following: the operator Ξ is a continuous embedding
from the class K into a countable subclass of Cst. So, by applying the relativized pullback
theorem (Theorem I.4.14) to the continuous embedding Ξ, we recover a countable family of
formulas with the desired properties. Indeed, the following holds:

• by Lemma IV.2.13, Cst has a family of Σinf
2 sentences Θ, which satisfies properties (a)

and (b) of Theorem IV.2.12;

• by Theorem I.2.2, Φ is equivalent to a Turing X-operator, for a suitable oracle X.

Hence, we can apply Theorem I.4.14, and deduce that K has a family Θ‹ of Σinf
2 sentences Θ,

which satisfies (a) and (b) of Theorem IV.2.12, as desired. This concludes the proof of the
left-to-right direction of the Theorem.

The right-to-left direction essentially follows from previous results. Assume that K :“ tAi :
i P Nu has a family Θ of Σinf

2 formulas which satisfy the properties (a) and (b) of the theorem.
Then it’s easy to check that the formulas of Θ can be arranged to satisfy the existence of a
collection of pairs of formulas pρi0 , ρi1qiPN so that, for all structures A and B from K,

piq
Ť

iPNtρi0 , ρi1u “ Θ;

piiq for all i P N, A satisfies exactly one formula between ρi0 and ρi1 ;

piiiq if A fl B, then pDj P NqpA ( ρj0 ðñ B ( ρj1q.

We claim that, for all i, there is a continuous operator Γi : 2
N Ñ 2N such that,

p@S P LDpKqqppS ( ρi0 ùñ ΓipSq E0 0Nq ^ pS ( ρi1 ùñ ΓipSq E0 1Nqq.

To prove the claim we combine (a limited case of) [BFSM20, Theorem 3.1] (see at the end of
§2) with Theorem IV.1.1. Notice that the proof is similar to that of the direction p2q ùñ p1q
of [BFSM20, Theorem 3]. Let i P N. For k P t0, 1u, without loss of generality assume that

ρik :“ pDx̄q
ľľ

jPJik

@ȳφik,jpx̄, ȳq.

For a finite structure F , say that φik is F-compatible via tuple ā if within the domain of F
there is no pair pj, b̄q with j P Jik such that F (  φik,jpā, b̄q.
Construction.
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Let p P 2N and denote by Fprss the finite structure (in the signature of K) encoded by the initial
segment prss of p. The continuous operator Γi is defined by stages. At stage 0, let Γippqp0q :“ 0
and Γippqp1q :“ 1. At stage s ` 1 we define Γippqp2sq and Γippqp2s ` 1q. To this end, we
distinguish three cases:

• Case 1: there is a tuple c̄ so that φi0 is Fprss-compatible via c̄, and φi1 is not Fprss-
compatible for all tuples ă c̄. If so, let Γippqp2sq “ Γippqp2s` 1q :“ 0;

• Case 2: there is a tuple c̄ so that φi1 is Fprss-compatible via c̄, and φi0 is not Fprss-
compatible for all tuples ď c̄. If so, let Γippqp2sq “ Γippqp2s` 1q :“ 1;

• Case 3: if neither of the above cases holds, then let Γippqp2sq :“ 0 and Γippqp2s` 1q :“ 1.

Verification
The continuity of Γi immediately follows from the construction. Next, suppose that q P 2N

encodes a copy of a structure S P K. By piiq, S satisfies exactly one formula between φi0 and
φi1 ; without loss of generality, assume that S ( φi1 . This means that there is a tuple c̄ and a
stage t0 so that φi1 is Fqrts-compatible via c̄, for all t ě t0. On the other hand, since S * φi0 , it
must be the case that for all tuples d̄ (and, in particular, all tuples ď c̄), there must be a stage
t1 so that, for all t ě t1, φi0 is not Fqrts-compatible. So, for all sufficiently large x, Γipqqpxq is

defined by performing action p2q above. Thus, Γipqq E0 1N, as desired. This ends the proof of
the claim.

We can now compute a continuous reduction Γ from LDpKq to Eω
0 as follows. Given p P 2N

coding some A P K, let Γppq :“ ppnqnPN be such that pn :“ Γnppq.
It is an easy consequence of the claim above that, if q0 and q1 code the same structure S P K,

then Γpq0q Eω
0 Γpq1q. To deduce that Γ is the desired reduction, suppose that q0 codes A P K

and q1 codes B P K for A fl B. By piiiq, there are j P N and k P t0, 1u so that A ( φik and
B ( φi1´k

. But then, by the claim above, it follows that Γpq0q :“ pq0nqnPN and Γpq1q :“ pq1nqnPN
differ on the j-th column, that is,

q0j E0 k
N but q1j E0 p1´ kq

N.

Thus, Γpq0q✚✚E
ω
0 Γpq1q and this concludes the proof of Theorem IV.2.12.

IV.3 Learning with the help of Z0 and “
`

We conclude our examination of the learning power of combinatorial Borel equivalence relations by
briefly focusing on two further examples: Z0 and “`. Here, the main goal is to finally individuate
a Borel equivalence relation which is able to learn a finite family beyond the reach of our original
framework.

IV.3.1 Z0-learning

Before proceeding to a new result, we give a simple useful fact. Let p, q P 2N and s P N. We use
the following notation:

dnpp, q; sq “
|ti ď s : p△qpiq “ 1u|

s` 1
.

Recall that the equivalence relation Z0 is given by

pp Z0 qq ðñ lim
kÑ8

dnpp, q; kq “ 0
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Lemma IV.3.1. Suppose that pp Z0 qq. Then, for every x P 2N,

lim sups dnpp, x; sq “ lim sups dnpq, x; sq.

Proof. Let a :“ lim sups dnpq, x; sq. It is sufficient to show that for any ε such that 0 ă ε ă a,
we have

lim sups dnpp, x; sq ě a´ ε.

Let N P Nzt0u and fix a number s0 such that dnpp, q; sq ă a´ǫ
N

for all s ě s0. There exists a
sequence psjqjPN, where s0 ă s1 ă s2 ă . . . such that, for every j P N dnpq, x; sjq ą r´ ǫ for all
j. Note that every s satisfies the following:

|ti ď s : p△xpiq “ 1u| ě |ti ď s : q△xpiq “ 1u| ´ |ti ď s : q△ppiq “ 1u| .

Hence, we have:

dnpp, x; sjq ě dnpq, x; sjq ´ dnpp, q; sjq ą r ´ ǫ´
r ´ ǫ

N
“ pr ´ ǫq ¨

N ´ 1

N
.

Since N was chosen as an arbitrary natural number, we deduce that for any δ ą 0, we have
lim sups dnpp, x; sq ą r´ ǫ´ δ. This implies lim sups dnpp, x; sq ě r´ ǫ and concludes the proof
of the lemma.

We show that learnability by finite families cannot distinguish between E0 and Z0:

Theorem IV.3.2. A finite family K is Z0-learnable if and only if K is E0-learnable. That is,
Z0 and E0 are LearnăN-equivalent.

Proof. Since E0 is continuously reducible to Z0 (see Figure I.2), every E0-learnable family is
also Z0-learnable.

Suppose that K :“ tAi : i P Nu is a Z0-learnable family. Let Γ be an operator which induces
a continuous reduction from LDpKq to Z0. For i ď n, we fix qi such that Γ maps all copies of
Ai into rqisZ0

. Notice that the qi’s are pairwise not E0-equivalent.
We fix a positive rational a0 such that

a0 ă mintlim sups dnpqi, qj ; sq : i ă j ď nu.

There exists an oracle X and a Turing operator Φ such that Γppq “ ΦX‘p for all p P 2N. We
define an pX ‘

À
iďn qiq-computable operator Ψ. Let p P 2N and, for s P N, let

ℓrss :“ maxtn : p@x ď n :qpΦpX‘pqæspxqrss is definedqu.

At a stage s, for each i ď n, we compute the value

mirss :“
ˇ̌
tt ď ℓrss : dnpΦX‘p, qi; tq ą a0u

ˇ̌
,

we defined
j1 :“ mintj ď n : mjrss “ mintmirss : i ď nuu,

and we set Ψppqpsq :“ qj1psq. This concludes the description of the operator Ψ.
Suppose that p P 2N encodes a copy of a structure Ai0 for some i0 ď n. Then by

Lemma IV.3.1, we have:

p@i ‰ i0qplims dnpΓppq, qi0 ; sq “ 0^ lim sups dnpΓppq, qi; sq ą a0q.
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Choose a number t0 such that p@t ě t0qpdnpΦ
X‘p, qi0 ; tq ď a0q and fix a stage s0 with t0 ď ℓrs0s.

Then for all s ě s0, we have mi0rss “ mi0rs0s. On the other hand, it is not hard to show that
for every p@i ‰ i0qplimsmirss “ 8q. This implies that Ψppq E0 qi0 and hence Ψ provides a
continuous reduction from LDpKq to E0. Theorem IV.3.2 is proved.

It is known that Eω
0 is continuously reducible to Z0 (see Figure I.2). So, Eω

0 is LearnN reducible
to Z0. The next question, which is left open, asks if the converse hold.

We leave open whether there exists a countable Z0-learnable family, which is not “`-learnable.

IV.3.2 “
`-learning

A distinctive feature of our learning framework is that there are finite families of structures that
are not learnable. This is the case, most notably, of the pair of linear orders tω, ζu, where ζ is
the order type of the integers. Such a feature is in sharp contrast with classical paradigms, since,
e.g., any finite collection of recursive functions is InfEx-learnable. Yet, we have observed that all
Borel equivalence relations so far considered are LearnăN-equivalent to E0. So, a question comes
naturally: how high in the Borel hierarchy one needs to climb to reach an equivalence relation E
which is able to learn a nonlearnable finite family? The next proposition shows that “` suffices.
Recall that, given ppnqnPN, pqnqnPN P p2

NqN

ppnqnPN “` pqnqnPN :ðñ tpn : n P Nu “ tqn : n P Nu.

Given a family of structures K, we can consider the Γ witnessing the reduction from LDpKq
to “` as a learner that has the freedom to “shuffle” and repeat finitely many times the infinitely
many sequences in 2N that it outputs. This seems to be a rather relaxed notion of “convergence”
for the learner, as confirmed by the next theorem.

Theorem IV.3.3. The family tω, ζu is “`-learnable, implying that E0 ă
ăN
Learn

“` (and there-
fore, E0 ď

N
Learn

“`).

Proof. Given p P 2N encoding a linear order with infinite domain A Ď N, we have an effective
and uniform (with respect to p) procedure to recover a list paiqiPN, enumerating A without
repetitions.

We define a Turing operator Ψ : 2N Ñ p2NqN. For p P 2N and i, s P N, let Bs be the
finite linear order, which is encoded by the finite string p æ s (note that Bs can be empty) and
consider the element ai (from the list discussed above). We define Ψppq :“ ppnqnPN such that

p2ipsq :“

#
0, if s ă i,

1, otherwise ,
p2i`1psq :“

#
0, if ai R Bs _ ai “ minta : p@b P Bsqpa ďBs

bqu,

1, otherwise .

Suppose that p P 2N encodes a copy of A P tω, ζu:

• If A – ζ, then it is clear that tpn : n P Nu “ t0i1N : i P Nu.

• If A – ω, then there is an element ai0 , which is ďA-least. This implies that tpn : n P
Nu “ t0i1N : i P Nu Y t0Nu.

Therefore, we deduce that the family tω, ζu is “`-learnable.

Since some of the results in this chapter are strictly related to the ones in Chapter V, we
postpone the conclusions and the open questions about this chapter to 138 V.4.



V
Calculating the Mind Change

Complexity of Learning Algebraic
Structures

All the results in this chapter are a joint work with Nikolay Bazhenov and Luca San Mauro and
can be found in [BCSM22].

Here we study the number of mind changes made by a learner while learning a given family.
This was already done for formal languages (e.g., in [[FS93, AJS97]]), where the authors study
which families are learnable when the number of mind changes allowed is bounded by some ordinal
α. In this chapter, we put the same constraints on the problem of learning algebraic structures.
We give two different characterizations of the mind change complexity of a family of structures:
a topological and a combinatorial one. We explore the first in §V.1, using the notion of Id-
learnability (see Definition IV.2.1), we characterize families that are learnable with α many mind
changes, where α is a countable ordinal in topological terms. In §V.2 we focus on the second one,
restricting our attention to particular types of families, that we call limit-free, and considering how
the height of the partial order (poset) given by some suitable embedding relation on the family K

and the mind change complexity of K relate. Finally, in §V.3 we address how the complexity of
a learner, defined in terms of Turing reducibility, affects the number of mind changes required to
learn a given family. This leaves further directions open, starting from the definition, suggested
here, of the learning degree of a family of structures. Notice that questions regarding how the
(non) computability of a learner affects the learnability of a problem were considered by Bazhenov
and San Mauro in [BSM21]: here the authors showed that finite families are always learnable by
an oracle computing the halting problem, while there exists a family of two structures that is not
learnable by any computable learner.

V.1 A topological characterization of the mind change com-
plexity

In this section, we study the relations between Id-learnability and α-learnability, where α is a
countable ordinal. The next proposition highlights the relation between Id-learnability and 0-
learnability.

Proposition V.1.1. If a family K of structures is 0-learnable, then it is also Id-learnable.
The converse is not true, i.e., there exists a family that is Id-learnable but not 0-learnable.

Proof. We first prove the implication. Let M be a learner that 0-learns K. Let p P 2N encode
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the atomic diagram of a structure S isomorphic to some A in K. By definition of 0-learnability,

pDs0, iqp@s ě s0qp@t ă s0qpMpSæsq “ xAiy^MpSætq “ ?q.

Then, we define our continuous operator Γ as Γppq “ iNc , where ic is the binary translation
of i. Trivially given two structures pi, pj identifying respectively Ai and Aj we have that
Γppiq Id Γppjq ðñ i “ j.

We now define a family G that is Id-learnable but not 0-learnable. Recall from §I.1 that
Rω is the one-way infinite line and, for i ą 2, Ci is the cycle graph of length i. Let G :“
tRωu Y tCi : i ą 2u: we first prove that G is Id-learnable. A continuous reduction from LDpKq
to Id is induced by a Turing operator Ψ. Let p P 2N encode the atomic diagram of a structure
S such that S – Ai for some i. Let Ψppqp0q :“ 0 and let

Ψppqps` 1q :“

$
’&
’%

1 if Sæs`1 – Ci for some i,

0 if Sæs`1 fl Ci ^ |EpSæs`1q| ą |EpSæsq| ,

xy otherwise.

This concludes the description of Ψ. It is clear that for every i ě 1, we have:

S – Rω ðñ Ψppq “ 0N and S – Ci ðñ Ψppq “ 0i1N.

Therefore, the family G is Id-learnable.
We now show that G is not 0-learnable. Let S P LDpKq be such that S – Rω and suppose

that G is 0-learnable by M. Let s :“ mintt : MpSætq ‰?u. If MpSæsq ‰ xRωy, then M fails to
learn G, hence MpSæsq “ xRωy. On the other hand, it is straightforward to build a copy S 1 such
that Sæs – S 1æs and S fl Rω. Indeed, Sæs is isomorphic to finitely many rays of finite length
plus possibly finitely many isolated vertices, hence it suffices to let S 1 – Cn for some n large
enough to include Sæs. To conclude the proof it suffices to notice that M is forced to make one
mind change to learn S 1.

Corollary V.1.2. The family G defined in the proof of Proposition V.1.1 is proper 1-learnable.

Proof. We define a learner M that 1-learns G: since in Proposition V.1.1 we showed that G is
not 0-learnable we also obtain that G is proper 1-learnable. Given S P LDpKq let,

MpSæsq :“

#
xCiy if Sæs – Ci for some i

xRωy otherwise.

Notice that if S – Rω then M makes 0 mind changes. Otherwise, if S – Ci for some i, M
changes its mind from xRωy to xCiy: on the other hand, since Ci Ďis A for any A P GztCiu, M
does not need to change its mind anymore and this concludes the proof.

Using non limit-free families similar to the one used in the previous proof it is not hard to show
that we can define families that are Id-learnable but not n-learnable for some n P N. On the other
hand, even for n “ 1, it is possible to define families that are 1-learnable but not Id-learnable. We
could give proof of this fact even now, but we prefer to wait until the end of this section, where we
characterize α-learnability for some countable ordinal α for those families that are Id-learnable.
To do so, we give a “learning-theoretic” characterization of the Cantor-Benxison derivative (see
Definition I.3.8). The following definitions and results are inspired by [LS06, §3.1 and §3.2]: here
Lemma V.1.3 and Theorem V.1.4 are respectively the analogs of [LS06, Lemma 3.1(1) and Theorem
3.1(1)].

Let K “ tAi : i P Nu, and let Γ be an operator that induces a continuous reduction from LDpKq
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to Id. Given σ P 2ăN, we define the cone above σ (with respect to Γ) as

NΓ

σ “ tAi : Γpσq Ă S – Aiu

Similarly to Nσ defined in §I.1, notice that the collection of NΓ
σ is a base for LDpKq, i.e.,Ť

σP2ăN NΓ
σ Ě LDpKq. Then for Ai P N

Γ
σ , let

CBΓpAi, σq “ maxtα : ΓpAiq P rangepΓq
α ^ Γpσq Ă ΓpAiqu

and
CBΓpσq “ suptCBΓpAi, σq : Ai P N

Γ

σ u.

We say that Ai P N
Γ
σ identifies NΓ

σ if CBΓpAi, σq “ CBΓpσq. If for all j ‰ i, Aj does not
identify NΓ

σ we say that Ai uniquely identifies (u.i.) NΓ
σ . We say that rangepΓq is scattered, if there

exists a countable ordinal α such that rangepΓqα “ H (see Theorem I.3.9). Trivially, if σ Ą τ , then
CBΓpσq ď CBΓpτq. It is easy to notice that if K is an Id-learnable family via some continuous
operator Γ, then rangepΓq is scattered.

Lemma V.1.3. Let K be a Id-learnable family via some continuous operator Γ. Then for any
Ai P K and for every S P LDpKq with S – Ai there exists a stage s such that Ai u.i. N

Γ

Sæs
.

Proof. Suppose there exists Ai P K and S P LDpKq with S – Ai such that for every s P N, there
is a structure Aj P N

Γ

Sæs
, where j ‰ i and CBΓpAj ,Sæsq ě CBΓpAi,Sæsq “ α. Then Ai is not

isolated in rangepΓqα that, by definition, contains all structures Aj such that CBΓpAj ,Sæsq ě α.
Hence, we have CBΓpAi, Sæsq ě α` 1, contradiction.

Theorem V.1.4. Let K be a Id-learnable family via some continuous operator Γ. K is α-
learnable if and only if rangepΓq1`α “ H.

Proof. Suppose K is α-learnable by a learner M, i.e., set the mind change counter cpxyq “ α. As
rangepΓq is scattered, this implies that it is also nonempty (recall that the empty set is perfect
by definition). This means that rangepΓqα “ H if and only if α ą 0. By transfinite induction
we prove that if CBΓpxyq ą 1`α, then M does not α-learn K (i.e., c is not a valid mind change
counter).

Suppose that for all β ă 1 ` α the claim holds and consider the case for 1 ` α. By con-
tradiction, suppose that rangepΓq1`α ‰ H: this means that there exists S P LDpKq and an
s such that CBΓpSæsq ą 1 ` α or, equivalently, that there is some Ai P NΓ

Sæs
such that

CBΓpAi,Sæsq ě 1` α` 1. We have two cases: either MpSæsq “ xAiy or MpSæsq ‰ xAiy.

• Suppose MpSæsq “ xAiy. Then since ΓpAiq is not isolated in rangepΓq1`α, there is ΓpAjq P
rangepΓq1`α with j ‰ i such that CBΓpAj ,Sæsq ě 1` α. Suppose that S – Aj . Since
M learns K by hypothesis, there is a stage s1 such that MpSæs1q “ xAjy and MpSæs1q ‰
MpSæsq. Since this is a mind change, we have that cpSæs1q ă cpSæsq and cpSæs1q “ β ă
1` α. On the other hand, CBΓpAj ,Sæs1q ě 1` α and so CBΓpSæs1q ą β. By induction
hypothesis for β, this is not a valid mind change counter for M.

• Suppose MpSæsq ‰ xAiy and S – Ai. Since M learns K by hypothesis, there is a stage s1

such thatMpSæs1q “ xAiy. Similarly to the first case, we get that cpSæs1q ă cpSæsq ď 1`α,
but CBΓpSæs1q ą 1` α, and so c is not a mind change counter for M.

For the other direction, suppose rangepΓq1`α “ H. Let M be a learner with mind change
counter c such that cpxyq “ α. Recall that if Mpσq ‰Mpσ´q and Mpσ´q “ ?, this is not a mind
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change. Let S P LDpKq and s P N. M is defined as follows:

MpSæs`1q :“

$
’&
’%

? if Sæs`1 “ xy or CBΓpSæs`1q ă CBΓpSæsq

xAiy if CBΓpSæs`1q “ CBΓpSæsq and Ai u.i. rSæssΓ

MpSæsq if CBΓpSæs`1q “ CBΓpSæsq and p@iqpAi does not u.i. N
Γ

Sæs
q

Informally, the second disjunct in the first case of M’s definition deals with the scenario in
which M realizes that its conjecture is wrong and changes its mind to ?.

We immediately get that M learns K. Indeed, for any Ai P K and for any S P LDpKq such
that S – Ai, by Lemma V.1.3 there is a stage s such that for all s1 ě s, Ai u.i. rSæs1sΓ. So, for
any s1 ą s the second case of M’s definition applies and M correctly learns Ai. It remains to
show that c is a mind change counter for M and K.

To do so we first show that if M rejects a hypothesis at a stage r, it will not output it in
the future. More formally, we show the following.

piq Let S P LDpKq and r P N. Suppose Ai R rSærsΓ. If MpSærq ‰ xAiy, then for all t ą r,
MpSætq ‰ xAiy.

To prove piq, let t ě r be such that MpSætq “ xAiy. Then there is s such that r ă s ď t such
that MpSæs´1q ‰ xAiy but MpSæsq “ xAiy. Then (as MpSærq ‰ xAiy) by the second case of
M’s definition, we have that Ai u.i. N

Γ

Sæs
. On the other hand, Ai R rSærsΓ and consequently,

by continuity of Γ, Ai R N
Γ

Sæs
, contradiction. This concludes the proof of piq.

We now show what happens if the second case of M’s definition applies.

piiq Let S P LDpKq and s P N. If the second case of M’s definition applies at Sæs`1, then
there is no mind change: that is, either MpSæs`1q “MpSæsq or MpSæsq “ ?

To prove piiq, suppose that MpSæsq “ xAjy where j ‰ i, Ai u.i. rSæs`1sΓ and CBΓpSæs`1q “
CBΓpSæsq. Let r ă s` 1 be the least stage such that MpSærq “ xAjy. The second case of M’s
definition implies that Aj u.i. rSærsΓ. But since Ai u.i. rSæs`1sΓ and i ‰ j, we immediately
get that CBΓpSæs`1q ă CBΓpSærq, and so r ă s as CBΓpSæs`1q “ CBΓpSæsq by the second
case of M’s definition. So CBΓpSæsq ă CBΓpSærq. By the first case of M’s definition, there is
a stage m with r ă m ă s such that MpSæmq “ ? and Aj R rSæmsΓ. By piq, we obtain that
MpSæsq ‰ xAjy, a contradiction. This concludes the proof of piiq.

We derive that M changes its mind only if the first clause of M’s definition applies (i.e.,
the third clause clearly does not imply a mind change, and the second one was excluded by
piiq). As in the first part of the proof, recall that rangepΓqα “ H if and only if α ą 0: this
implies that for all S P LDpKq and for all s P N. CBΓpSæsq ą 0. So, whenever the first case of
M’s definition applies, we have that 0 ă cpSæs`1q “ CBΓpSæs`1q ă CBΓpSæsq “ cpSæsq, and
so c is a mind change counter for M and K, i.e., M α-learns K. This concludes the proof of
Theorem V.1.4.

Combining Proposition V.1.1 and Theorem V.1.4 we derive the following corollary that charac-
terizes 0-learnability in terms of Id-learnability.

Corollary V.1.5. K is 0-learnable if and only if K is Id-learnable via some continuous operator
Γ such that rangepΓq1 “ H, i.e., all points in rangepΓq are isolated.

The last corollary shows that Id-learnability “contains” all 0-learnable families. It suffices to
move to 1-lernability to show that this is not true anymore. As an example, let K “ tA,Bu, where

A –
8Â
C3, while B – A

Â
C4: it is fairly easy to show that K is proper 1-learnable (and actually

we can prove it using Theorem V.2.3 stated in the next section). On the other hand, suppose
that K is Id-learnable via some continuous operator Γ. Then, as K contains only two structures,
the points in rangepΓq are two, and they are clearly isolated: Theorem V.1.4 implies that K is
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0-learnable, getting the desired contradiction.

V.2 Learnability and posets

In this section, we discuss some results about the relation between the number of mind changes
made while learning a family K and the structural properties of K. The first remark is that it is
not always possible to define an upper bound to the number of mind changes. This may happen
for two reasons. Either the family is not learnable at all, or the family is learnable but at any
finite stage, it is always possible to extend the copy built so far to a structure different from the
one the learner is conjecturing. To study when it is possible to define such a bound, we provide
the following definition. Recall that ãÑ denotes the embedding relation between structures.

Definition V.2.1. Let A and B be two structures. A finitely embeds in B (notationA ãÑfin B)
if for all s, Aæs ãÑ B.

In general, ãÑfin is a preorder on K. In some nice cases, for example, if every structure in
K is finite, such relations are partial orders (posets). On the other hand, anti-symmetry is not
guaranteed in the infinite case, as we may have two infinite structures A,B P K such that A ãÑfin B

and vice versa but A fl B. In this section, we consider only families on which ãÑfin is a partial
order, and we denote it by pK, ãÑfinq (whenever we use this notation, we assume that ãÑfin is
a partial order on K). We say that A P K has height n, denoted by heightpAq “ n, if in the
corresponding poset there exists a chain (i.e., a totally ordered set) of length n having A as a
maximal element but no chain of greater length has A as a maximal element. In case the structure
of the greatest height in the poset has height n, we say that pK, ãÑfinq has height n, and we denote
this by heightppK, ãÑfinqq “ n.

Definition V.2.2. Let K be a family of structures such that heightppK, ãÑfinqq “ n. Let
K“n :“ tA P K : heightpAq “ nu. We say that K is limit-free if

p@nqp@A P K“mqp@S – AqpDsqptB P K : Sæs ãÑ Bu X K“n “ tAuq.

In this case we say that A is n-minimal on Sæs.

Intuitively, a limit-free K allows a learner M not to change its mind between two structures
having the same height. Indeed, given S P LDpKq, if Sæt ãÑ A where heightpAq “ n, M can wait
for a stage s such that Sæs ãÑ A, and A is the unique structure in K“m for some m ď n where
n “ heightppK, ãÑfinqq. A trivial observation is that all finite families are clearly limit-free. For
clarity, notice that the family G :“ tRωuYtCi : i ą 2u in Proposition V.1.1 is non limit-free and this
is witnessed by Rω. Indeed, given S P LDpKq such that S – Rω, for all s, tB P K : Sæs ãÑ BuXK“1

contains infinitely many structures, i.e., Rω and for i ą 2 all the Ci’s such that Sæs ãÑ Ci, which
are cofinitely many. The next result gives a characterization of n-learnability for limit-free families.

Theorem V.2.3. Let K be a limit-free family of structures. Then K is n-learnable if and only
if heightppK, ãÑfinqq ď n` 1.
Consequently, K is proper n-learnable if and only if heightppK, ãÑfinqq “ n` 1.

Proof. Before starting, recall that the definition of limit-free already implies that ãÑfin is a
partial order on K and that heightppK, ãÑfinqq is bounded.

For left-to-right direction, by contradiction, suppose that K is n-learnable by a learner M
and heightppK, ãÑfinqq “ n ` 2. This means that there exists a chain of the form A0 ãÑfin

. . . ãÑfin An`1. Towards a contradiction, we shall now construct S P LDpKq so that M does
not n-learn S. The construction of S is by stages:
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• Stage 0. No number is injured, and we start building S as a copy of A0.

• Stage s ` 1. We are currently building S as a copy of Ai, where i is the least number
that is not injured. If i ą n, we do nothing. Otherwise, we distinguish two cases. If
MpSæsq “ xAiy, we declare i injured, and we start building S as a copy of Ai`1 (note that
switching from copy Ai to copy Ai`1 is always allowed, as Ai ãÑfin Ai`1). Otherwise,
we continue building S as a copy of Ai.

It follows immediately from the construction that, if there is i ď n which is never injured, then
S is eventually a copy of Ai which is not learned by M, a contradiction. On the other hand,
if all i ď n are injured, then S is eventually be a copy of An`1 which forces M to have more
than n mind changes, which is again a contradiction.

Let S P LDpKq and let s be such that Sæs ãÑ A0. If MpSæsq ‰ xA0y, then M may fail to
learn K (i.e., S may be a copy of A0), so MpSæsq “ xA0y and cpSæsq “ n´ 1. Suppose at stage
s1 ą s, Sæs1 ãÑ A0 but Sæs1 ãÑ A1. For a similar reason, in order to learn K, M is forced to
change its mind to A1. Proceeding in this fashion for all Ai with i ď n ` 1, we may get at a
stage in which MpSæsnq “ An and cpSæsnq “ 0. On the other hand, S may be a copy of An`1,
contradicting that K is n-learnable.

For the right-to-left direction, suppose the most general case when heightppK, ãÑfinqq “ n`1,
and let S P LDpKq. We define a learner M that n-learns the family. Set c “ n: at stage s:

MpSæsq “

#
xAy if A is m-minimal on Sæs for some m ě 1

? otherwise

To see that M learns K, notice that A P K is m-minimal for some m, and since K is limit-free
there is a stage s where A is the only structure in K“m such that Sæs ãÑ A. As m ă n ` 2,
M eventually stabilizes to the correct conjecture in a finite amount of steps. To check that c
is a mind change counter for M it is sufficient to notice that M changes its mind only in the
first case of the definition. As the height of the poset is at most n` 1, and M makes no mind
change to identify the 1-minimal structure, the number of mind changes is at most n.

V.3 Learner’s complexity and number of mind changes

In this section, we show that for certain families, the complexity of the learner plays a role in the
number of mind changes during the learning process.

Theorem V.3.1. For any c.e. noncomputable set X, there exists a countable family of graphs
K such that:

• K is 0-learnable by an A-computable learner if and only if X ďT A;

• K is 1-learnable by a computable learner.

Proof. Let X be a noncomputable c.e. set. We dynamically build K “ tGe : e P Nu as follows.
In the construction below, when we write “add Ci to Ge” we mean that we append to some
isolated vertex of Ge a copy of Ci

• Stage 0. for any e P N, let G2e – D
Â

C4e. Similarly, G2e`1 – D
Â

C4e`1. Note that G2e

and G2e`1 are not isomorphic and are incomparable with respect to ãÑfin.

• Stage s` 1. if e P Xs`1zXs, then

– add C4e to G2e`1 and C4e`1 to G2e;

– add C4e`2 to G2e and C4e`3 to G2e`1.
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Informally, if e P Xs`1zXs we first modify G2e and G2e`1 so that they are isomorphic,
and then we make them again nonisomorphic and incomparable with respect to ãÑfin.

We first prove the first point of the theorem, starting from the right-to-left direction. Let A be
such that X ďT A. We show that K is 0-learnable by an A-computable learner. Let S P LDpKq
and let s ą 1. Then the following A-computable learner clearly 0-learns K.

MApSæsq “

$
’’’&
’’’%

? if p@nqpCn ãÑ Sæsq _ pe P X ^ C4e`i ãÑ Sæs where

i P t0, 1u ^ C4e`j ãÑ Sæs where j P t2, 3uq

xG2ey if pC4e`2 ãÑ Sæsq _ pe R X ^ C4e ãÑ Sæsq

xG2e`1y if pC4e`3 ãÑ Sæsq _ pe R X ^ C4e`1 ãÑ Sæsq

Informally, MApSæsq “ ? if either Sæs contains no cycle, or the cycle(s) in Sæs allow MA only to
distinguish that either S – G2e or S – G2e`1. In the first case MA waits for a stage t ą s such
that Sæt contains some cycle (the existence of such a stage is guaranteed by K’s construction).
In the second case, as e P X and by K’s construction, MA knows that only one between C4e`2

and C4e`3 is in S and this allows it to output the correct conjecture, i.e., depending on the
length of the cycle, the first disjunct of the second or third case of MA’s definition applies.
Trivially, if Sæs contains C4e`2 or C4e`3 then MA immediately outputs the correct conjecture,
same if Sæs contains C4e or C4e`1 and e R X.

For the left-to-right direction, assume that there exists an A-computable learner MA that
0-learns K but X ęT A. We show that if it is the case, A can enumerate NzX, contradicting
the fact that X ęT A. For any e P N, let Be,n be a structure isomorphic to C4e and n many
disjoint vertices. It is clear that for any n, Be,n ãÑ G2e, independently of the presence/absence
of e in X. In other words, there exists S P LDpKq such that S – G2e and for any n P N,
Be,n ãÑ S. This means that there exists an n P N such that MApBe,nq “ xG2ey and for
all n1 ą n MApBe,n1q “ xG2ey. Let f be the following function computing the characteristic
function of X:

fpeq “

#
1 if e P X

0 if pDnqpMApBe,nq “ xG2ey^ n “ minm MApBe,mq ‰ ?q

To show that the second case of f ’s definition is correct, suppose that there is n such that
MApBe,nq “ xG2ey^ n “ minm MApBe,mq ‰ ? but e P X. Then, there is some S 1 P LDpKq such
that Be,n ãÑ S 1 (i.e., by K’s construction, C4e, C4e`3 ãÑ S 1). This means that if MApBe,nq Ó
“ xG2ey, MA needs to change its mind to xG2e`1y contradicting that MA 0-learns the fam-
ily. We derive that f is clearly A-computable and witness that X ďT A getting the desired
contradiction.

It remains to show that a computable learner M can 1-learn the family. Let S P LDpKq and
s ą 1:

MpSæsq “

$
’&
’%

? if p@nqpCn ãÑ Sæsq

xG2ey if pDnqpCn ãÑ Sæs ^ pn “ 4e_ n “ 4e` 2qq

xG2e`1y if pDnqpCn ãÑ Sæs ^ pn “ 4e` 1_ n “ 4e` 3qq

M can change its mind only in the second and the third case and this may happen at most
a single time, i.e., in case C4e ãÑ Sæs and there exists s1 ą s such that C4e`3 ãÑ Sæs1 (similarly,
for C4e`1 instead of C4e and C4e`2 instead of C4e`3). This shows that K is 1-learnable by
M.
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V.4 Conclusions and open questions (Chapter IV and Chap-
ter V)

The investigation conducted in Chapter IV has been fueled by the discovery of a connection between
algorithmic learning theory and descriptive set theory. Namely, we proved that the task of learning
a given family of algebraic structures (up to isomorphism) is equivalent to the task of defining a
suitable continuous reduction to E0. Then, we carefully analyzed the learning power of a number
of well known benchmark Borel equivalence relations via the novel notion of countable-learning
reducibility and finite-learning reducibility. This provided a solution to the lack of a method for cal-
ibrating the complexity of nonlearnable families and showed a correspondence between “classical”
learning paradigms and E-learnability.

In Chapter V we studied different characterizations of mind change complexity.
There are numerous open questions in the novel area of algorithmic learning theory for algebraic

structures, but we conclude this section (and actually, this thesis) mentioning some of them that
originate from the above results.

In Chapter IV’s introduction, we argued that it is natural to discuss the learning power of other
Borel equivalence relations. There is a wide choice, even if one restricts to a small fragment of the
Borel hierarchy.

Question V.4.1. For example, what happens if we restrict toΠ0
3 equivalence relations (see [Gao09])?

The syntactic characterization of learnability notions, such as [BFSM20, Theorem 3.1] (see at
the end of Part 2) and Theorem IV.2.12 is often very useful in proving the (non)learnability of
families of structures.

Question V.4.2. Provide a syntactic characterization for “`-learnability and Z0-learnability.

Observe that our original framework was inherently limited to the countable case since the
learner had to provide a conjecture (i.e., a finite object) for each isomorphism type of the observed
family.

Question V.4.3. Study E-learnability for uncountable families.

The following direction was also suggested by one of the reviewers of [BCS23], and it is one of
the main outcomes given by the interplay between algorithmic learning theory and descriptive set
theory.

Question V.4.4. Locate analogs of classic learning criteria (such as partial learning or non-U-shape
learning) in the learning hierarchy. (For now, in addition to learnability, we have addressed this
issue in the present chapter for α-learnability).

The characterization given in §V.2 in terms of the height of the poset is restricted to limit-free
families.

Question V.4.5. Extend (possibly a modification of) such a characterization to non limit-free
families.

The proof of Theorem V.3.1 suggests the definition of 0-learning spectrum: this is in analogy
with several established notions from computable structure theory (see, e.g., [FKM10, BFRSM21]).
Indeed, for any noncomputable c.e. set X we defined a family K such that the oracles A for which
there exists an A-computable learner that 0-learns K coincide with the Turing cone above X,

Spec0-learnpKq “ tA : pDMqpMA 0-learns Kqu “ tA : X ďT Au.

In the same spirit, it is natural to define Specn-learnpKq as the collection of all oracles that allow
learning K with n many mind changes.

Question V.4.6. Analyze the structural properties of such spectra.
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