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Nonlinearities in the dispersion relations associated with different interactions designs, boundary
conditions, and the existence of a physical cutoff scale can alter the quantum vacuum energy of a
nonrelativistic system nontrivially. As a material realization of this, we consider a one-dimensional-
periodic rotating, interacting nonrelativistic setup. The quantum vacuum energy of such a system is
expected to comprise two contributions: a fluctuation-induced quantum contribution and a repulsive
centrifugal-like term. We analyze the problem in detail within a complex Schödinger quantum field theory
with a quartic interaction potential and perform the calculations nonperturbatively in the interaction
strength by exploiting the nonlinear structure of the associated nonlinear Schrödinger equation.
Calculations are done both in zeta-regularization as well as by introducing a cutoff scale. We find a
generic, regularization-independent behavior, where the competition between the interaction and rotation
can be balanced at some critical ring size, where the quantum vacuum energy has a maximum and the force
changes sign. The inclusion of a cutoff smoothes out the vacuum energy at small distance but leaves
unaltered the long-distance behavior. We discuss how this behavior can be tested with ultracold atoms.
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Introduction. In quantum field theory, the canonical quan-
tization scheme does not fix the order of noncommuting
operators in the Hamiltonian, leaving a residual divergent
zero-point energy contribution to the energy density (in
natural units),

E ¼ 1

2

X
n

ωn; ð1Þ

with ωn representing the frequencies of the quantum
fluctuations. Wick’s normal ordering is then used to enforce
a specific order of operators’ products, resulting in the
subtraction of this infinite shift from the vacuum expect-
ation value (vev) of the Hamiltonian that will then vanish.
This has the consequence that the quantum vacuum, so
defined, does not carry energy, linear, or angular momen-
tum. Such a procedure is usually justified by saying that a

constant shift in the energy cannot be measured, although
this view is not entirely tenable as any finite energy is, in
principle, measurable due to its gravitational effect. In
relativistic quantum field theory, a better justification
follows from the fact that the expectation value of the
Hamiltonian in the noninteracting vacuum (i.e., in the
absence of external fields or interactions) must vanish for
the Hamiltonian, a generator of the Poincaré group, to
satisfy the correct commutation rules. Then, the usual
notion of a noninteracting vacuum as a state devoid of
energy follows, justifying the use of normal ordering [1,2].
Even without calling gravity into question [3], a variety

of quantum vacuum phenomena, most notably the Casimir
effect [4], clearly demonstrates some level of inadequacy of
the above definition of an empty physical vacuum tout
court. In the original version of the Casimir effect, for
example, this was evident owing to the imposition of
boundary conditions on the quantum fluctuations of the
electromagnetic field in the presence of perfectly con-
ducting, parallel plates, resulting in an attractive force
between the plates. More general (and realistic) situations
are not different, as boundary conditions result from
quantum fields existing in interaction with other fields,
and modify the spectrum of the quantum fluctuations, thus
changing the zero-point energy.
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These arguments converge into Casimir’s definition of
the energy of the quantum vacuum Evac as the difference
between the zero-point energies in the presence, E½∂B�, and
in the absence, E½=0�, of boundaries, Evac ¼ E½∂B� − E½=0�.
Such a definition is compatible with the vanishing of the
vev of the Hamiltonian in the noninteracting vacuum (i.e.,
no boundaries) and gives a calculable recipe of the quantum
vacuum energy in response to changes in external con-
ditions [2,5,6]. This view on the complexity of the vacuum
has been vindicated during the past quarter of a century by
many successful experiments starting with [7–9] (see also
Ref. [10] for a recent additional list of examples of
applications to nanophotonics, nanomechanics, and chem-
istry as well as Ref. [11] for a recent proposal connecting
the quantum vacuum and interferometry.).
A less explored question concerns the quantum vacuum

energy in nonrelativistic systems (see, for some discus-
sions, Refs. [12–17]. The answer might seem simple, since
in a nonrelativistic context there is no issue associated with
antiparticles or the ordering of the operators, suggesting
that the zero-point energy can be safely ignored. However,
this is not the case in general. Even from the vantage point
of the original Casimir effect, the story remains subtle
because the quantum vacuum energy emerges from defor-
mations of the electromagnetic quantum fluctuations, and
no simple nonrelativistic limit can be taken; the photon is
massless and propagates at the speed of light.
However, in a nonrelativistic setup, one can imagine

emergent degrees of freedom, constrained by boundaries,
and how these could give rise to nontrivial quantum
vacuum phenomena. This has been explored in the context
of quantum liquids and Bose-Einstein condensation where
(1) contributes to the zero temperature thermodynamic
potential (on top of the classical ground state contribution);
see, for example, Refs. [18–28].
There are at least two reasons why in a nonrelativistic

setting the situation is far from obvious. The first is that any
time we are in the presence of interactions and nontrivial
boundary conditions, the frequencies ωn in (1) develop a
nontrivial dependence on the ground state of the system. This
can be seenusing the background fieldmethod (seeRef. [12],
Sec. 6.7), although computing the frequencies within this
framework becomes a hard task. Earlier calculations relying
on a perturbative expansion around small coupling exist
[29–31], andmore recently, Ref. [32] has developed away to
compute the quantum vacuum energy for a relativistic 1þ 1-
dimensional scalar field theory without relying on expan-
sions in powers of the interaction strength (see also
Refs. [33–37]). The second reason has to do with the
regularization. In the relativistic case, the quantum vacuum
energy emerges from the summation of the entire spectrumas
in (1); this summation is divergent andmust be regularized.A
subtlety with this is due to the existence of a physical cutoff
that may alter the spectral sum in (1). Within a lattice
approach, this should be possible (see Ref. [14]); however,

it is not at all obvious how to do this within an effective field
theory approach. It is certainly an interesting question to ask
whether any remnant of the quantumvacuumenergy remains
in the nonrelativistic limit.
For the case of nonlinear models, the difference in the

dispersion relation due to the presence of interactions, the
presence of external forcing (e.g., rotation), a physical
cutoff scale and boundary conditions are all factors
that together conjure to induce intricate behaviors in the
quantum vacuum energy. Here, we look at the above
questions within the paradigmatic nonlinear Schrödinger
equation. Our approach to compute the quantum vacuum
energy exploits the integrability structure of the nonlinear
Schrödinger equation associated with our problem. The
calculations are done both using zeta-regularization includ-
ing the contribution from the whole spectrum, as well as a
more physical regularization scheme where the spectral
sums are modulated by a frequency dependent window
function that suppresses the contribution of the high-
energy modes, leaving a dependence on a physical cross-
over scale. As we shall see, the two methods lead to
compatible results, with the only expected consequence of
the cutoff being that of regularizing the vacuum energy at
short distance. In conclusion, we will describe how our
predictions can, in principle, be measured experimentally
with cold-atom rings.

Nonrelativistic Schrödinger model. We shall consider a
system of nonrelativistic interacting bosons, described by a
complex Schrödinger quantum field Φ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
,

with ϕ1;ϕ2 ∈R, confined to a one-dimensional (1D) ring
of radius R, rotating with constant angular velocity Ω. We
assume that the periodicity of the ring is externally broken
by the presence of a barrier that we describe by imposing
Dirichlet boundary conditions at one point on the ring. The
Lagrangian density is

L ¼ i
2
ðΦ†Φ̇ −ΦΦ̇†Þ þ i

2
ΩðΦ†Φ0 −ΦΦ†0Þ

−
1

2mR2
Φ†0Φ0 −

λ

4
ðΦ†ΦÞ2; ð2Þ

where 0 ≤ φ ≤ 2π, x ¼ Rφ, ˙¼ d=dt, and 0 ¼ d=dφ. We
set ℏ ¼ 1. Expression (2) represents the Lagrangian density
of an observer corotating with the ring. In this reference
frame, boundary conditions for the corotating observer are
time independent [38–40]. The following nonlinear
Schrödinger equation can be derived from (2):

iΦ̇ ¼ −iΩΦ0 −
1

2mR2
Φ00 þ λ

2
jΦj2Φ: ð3Þ

The normal mode decomposition can be carried out by
looking for stationary solutions of the form Φðt;φÞ ¼
e−iωptfpðφÞ. This allows us to write Eq. (3) as

0 ¼ 1

2mR2
f00p þ iΩf0p −

�
λ

2
jfpj2 − ωp

�
fp: ð4Þ
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To solve (4), we decompose fp as fpðφÞ ¼ ρðφÞeiαðφÞ, with
ρðφÞ; αðφÞ∈R that leads to

0 ¼ ρ00

2mR2
þ
�
ωp −

α02

2mR2
−Ωα0

�
ρ −

λ

2
ρ3; ð5Þ

0 ¼ α00ρ
2mR2

þ 1

mR2
α0ρ0 þ Ωρ0: ð6Þ

The above system of equations can be solved analytically,
first obtaining α0 in terms of ρ from Eq. (6), α0 ¼ β ¼
C=ρ2 −mR2Ω (C is an integration constant), and then
substituting α0 in Eq. (5); this gives rise to a cubic nonlinear
equation in ρ that can be solved in terms of Jacobi elliptic
functions. Imposition of the boundary conditions selects
the solution as a Jacobi sn function and leads to the
following quantization conditions for the eigenfrequencies.
The procedure is straightforward but lengthy. For com-
pleteness, we give all the details in the supplemental
material [41] and refer the reader to Refs. [42–45] for
further details on elliptic equations. The solution can be
written as

Φðt;φÞ ¼ Ane−iωnte−iðmR2Ωφ−π=4Þsnðqnφ; knÞ; ð7Þ
with the normalization factor An expressed in terms of
elliptic integrals of the first and second kinds, KðzÞ and
EðzÞ, respectively,

A2
n ¼

k2n
2πRð1 − EðknÞ=KðknÞÞ

: ð8Þ

The momentum qn and the elliptic modulus kn are
quantized according to the following relations,

qn ¼
n
π
KðknÞ; n∈N; ð9Þ

λmR
π

4n2
¼ KðknÞðKðknÞ − EðknÞÞ; ð10Þ

where (9) comes from the periodicity of the solution and
(10) is derived from the first integral of the equation of
motion. Finally, the eigenfrequencies are given by

ωn ¼ ð1þ k2nÞq2n=ð2mR2Þ −mR2Ω2=2: ð11Þ
Details on how to derive Eqs. (7)–(11) are given in the
supplemental material [41].

Quantum vacuum energy and spectral asymptotics. A
nonrenormalized expression for the quantum vacuum
energy (1) can be written as follows (see Ref. [12,46]):

E rðsÞ ¼
μs

2

X
n

ω1−s
n ; ð12Þ

where s∈C is a complex-valued regularization parameter
and μ is a renormalization scale with dimension of energy.
The index r is a reminder that (12) refers to the corotating

frame. The eigenvalues ωn are given in terms of the
nonlinear, coupled algebraic equations (9)–(11). The regu-
larization of (12) is done by finding a representation that
converges in some region of the complex-s plane, followed
by analytical continuation to the physical value s → 0.
Here, we use the spectral asymptotics of the eigenvalues
and express (12) as

E rðsÞ ¼ Δþ Ẽ rðsÞ; ð13Þ
where

Ẽ rðsÞ ¼
μs

2

X
n

ðωðaÞ
n Þ1−s; ð14Þ

and

Δ ¼ 1

2

X
n

ðωn − ωðaÞ
n Þ: ð15Þ

The quantityωðaÞ
n represents the asymptotic expansion of the

eigenvaluesωn as a function of the quantum number n. If the
asymptotic expansion includes all terms up toOð1=n2Þ aswe
shall do here, then the summand inΔ scales asOð1=n2Þ, i.e.,
Eq. (15), and thus converges for s → 0 [in formula (15) we
have already set s → 0]. Such a procedure simply confines
the divergences to Ẽ rðsÞ that will need explicit regulariza-
tion. The first step of the process is to obtain the asymptotic
behavior of the eigenvalues. Since the left-hand side of
Eq. (10) converges to zero for n → ∞, while the right-hand
side, as a function of kn, goes to zero only in the limit kn → 0,
while decreasing monotonically for increasing kn > 0, the
right-hand side of (10) for small kn gives the relevant limit to
capture the large-n asymptotic behavior k2n ≈ 2λmR=ðπn2Þ.
This result used with (9) and (11) allows us to extract the
asymptotic behavior of ωn:

ωðaÞ
n ¼ n2=η2 þ ρ2 þOð1=n2Þ; ð16Þ

where η2 ¼ 8mR2 and ρ2 ¼ 3λ=ð8πRÞ −mR2Ω2=2.
Figure 1 shows a comparison between the eigenvalues
computed numerically and their asymptotic counterparts
The large-n scaling of the eigenvalues is consistent with

Weyl’s law that in the present case predicts a leading large-
n behavior of the ωn scaling as n2 and independent of
λ [47]. Inserting (16) in (14), we get

Ẽ rðsÞ ¼
ðμη2Þs
2η2

X
n

ðn2 þ η2ρ2Þ1−s ð17Þ

and the Chowla-Selberg representation [48,49], from which
the limit s → 0 can be taken to arrive at the following
regularized expression:

Ẽ r ¼ lim
s→0

Ẽ rðsÞ ¼ −
1

4

�
3λ

8πR
−
mR2Ω2

2

�
: ð18Þ

The total quantum vacuum energy in the corotating frame is
given by Er ¼ Ẽ r þ Δ. To get the energy in the laboratory
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frame Es, one can use Es − Er ¼ ΩL, where L ¼
−∂Er=∂Ω is the angular momentum [34,38,39,50]:

Es ¼ Δ − Ω
∂Δ
∂Ω

−
3λ

32πR
−
mR2Ω2

8
: ð19Þ

The resulting force Fs ¼ −∂Es=∂R is

Fs ¼ −
∂Δ
∂R

þ Ω
∂
2Δ

∂Ω∂R
−

3λ

32πR2
þmRΩ2

4
: ð20Þ

Ignoring the contributions from Δ, the above expression
comprises a contribution proportional to −λ=R that van-
ishes for λ → 0 and scales as the inverse of the ring size:
this is an attractive “Casimir-like” contribution. The other
contribution EI ¼ 1

2
IRΩ2 is proportional to the moment of

inertia of the ring IR ¼ mR2 with radius R. The vanishing
behavior for λ → 0 and Ω → 0 is consistent with the fact
that the quantum vacuum energy should vanish in the
absence of interactions and rotation. The angular velocity
appears as the square of Ω, and this is again consistent with
the fact that our model does not include parity breaking
terms; thus, the energy should be symmetric with respect to
Ω ↔ −Ω. The force vanishes at the critical radius

Rcrit ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ

8πmΩ2

3

r
; ð21Þ

with its sign changing from negative-attractive for R < Rcrit
to positive-repulsive for R > Rcrit. Interestingly, also the
way the force scales with the ring size changes with the
angular velocity: it scales linearly in the regime of fast
rotation, while it scales as the inverse square of the ring size
for slow rotation. The symbol “≈” in (21) indicates that the
contribution of Δ has been ignored. Units of ℏ are restored
in the numerics, and in what follows, l denotes a generic

length scale. Figure 2 shows the quantum vacuum energy
(panels a and c) as a function of radius R and rotation
strengthΩ, respectively, while the two lower panels (b and d)
show the corresponding force associated with each dataset
from (a) and (c). The gray shaded region shows the parameter
regime where the force is repulsive. Figure 3 shows heat
maps of Eq. (21) in the ðR;ΩÞ and ðR; λÞ parameter spaces,
(a) and (b), respectively. In panel (a), the interaction strength
is λml=ℏ2 ¼ 10, while the rotation strength is Ωml2=ℏ ¼ 5
in (b). The solid blue lines in both panels show the border
between the repulsive regime and the causality limit defined
by ΩRml=ℏ ¼ 1. The red dashed line indicates where the
force changes sign, obtained from Eq. (21). The red data
point in each panel corresponds to the point ðR∘;Ω∘Þ in (a)
and ðR∘; λ∘Þ in (b) where Eq. (21) and the causality limit
coincide, and

ðR∘;Ω∘Þ ¼
�
3

8π

λml2

ℏ2
;
8π

3

ℏ2

m2l3
1

λ

�
: ð22Þ

The point defined by Eq. (22) in Fig. 3 shows the maximum
rotation strength where repulsive solutions are obtained;
then, the model of Eq. (3) is expected to support a causal
repulsive force in the region Ωc < Ω < R−1ðml=ℏÞ and

(a)

(b)

FIG. 1. Comparison between (11) and the eigenvalues com-
puted numerically. Panel (a) shows the absolute difference
between the asymptotic and exact nonlinear eigenvalues, while
(b) shows individual datasets for fixed R. Colored data in (b) were
obtained numerically, while the gray dashed lines were calculated
from Eq. (11). Here, ΩRml=ℏ ¼ 0.5 and λ ¼ ml=ℏ2 ¼ 0.5
throughout. Throughout the paper, the quantity l represents a
generic unit scale. Corresponding vertical axis labels are dis-
played above each panel.

(a) (c)

(b) (d)

FIG. 2. Quantum vacuum energy and force. Panels (a) and
(c) show the quantum vacuum energy, Eq. (19), for the same λ
(color groups) and varying Ω (panel (a) or R (panel (c) (see text
labels). Panels (b) and (d) show the corresponding force, Eq. (20),
for each dataset. The light gray shading indicates the parameter
regions where the force changes sign from attractive to repulsive.
Corresponding vertical axis labels are displayed above each
panel.
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R > R∘. Likewise for panel (b), the causal repulsive regime is
defined between 0 < λ < λc and 0 < R < R∘. An analysis,
qualitatively similar to Fig. 3(b), can be done for the ðR;ΩÞ
parameter space with constant λ.
A subtle point has to do with how the above results will

change in the presence of a cutoff scale associated with a
minimal length scale (e.g., the interatomic separation
scale). We address this question by modifying the regu-
larization procedure to include a frequency-dependent
window function. This is implemented by defining

Ẽ r ¼
1

2

X
n

ωðaÞ
n σnðlcÞ ð23Þ

and the residual Δ as

Δ ¼ 1

2

X
n

ðωn − ωðaÞ
n ÞσnðlcÞ: ð24Þ

Here, we choose the window function as follows,

σnðlcÞ ¼ expð−lcn2=ð8mR2ÞÞ; ð25Þ
with the argument of the exponential set by the leading
large-n asymptotics of the spectrum. The cutoff scale lc
determines how high-frequency modes are suppressed. The
limit lc → 0 of (23)–(24) returns the nonregularized
expression for Ẽ r discussed earlier. While the choice of
σnðlcÞ is arbitrary, Eq. (25) allows us to write (23) as

Ẽ r ¼ −
ρ2

4
þ ρ2

4
θ3

�
lc

πη2

�
−

1

4πη2
θ03

�
lc

πη2

�
; ð26Þ

where θ3 is the following Jacobi thetanull function [51],
θ3ðxÞ ¼

P∞
n¼−∞ e−πxn

2

. This choice of regularization has
the advantage that the first term of (26) corresponds to the
fully resummed result and the effect of the cutoff is encoded

in the latter two terms of (26). Proving the consistency of
the two approaches, with and without the cutoff, requires
care since in the limit lc → 0 the theta function diverges
and requires regularization. The theta function can be
regularized by requiring that the cutoff-dependent contri-
bution in (26) vanishes in the limit of lc → 0, correspond-
ing to a subtraction of the divergent contribution. To
compute the finite lc → 0 limit of (26), we use the modular
transformation θ3ðxÞ ¼

ffiffiffiffiffiffiffiffi
1=x

p
θ3ð1=xÞ along with the

small-x expansion of the theta function [51], leading to
θ3ðxÞ ≈ 1=

ffiffiffi
x

p þOðexpð−π=xÞ= ffiffiffi
x

p Þ. Using this expres-
sion in (26) and removing the divergent part, consistently
with the regularization of the theta function, gives the
expected fully resummed result. The corrections due to the
cutoff near R ∼ Rcrit to the fully resummed result can be
estimated assuming that lc ≪ Rcrit and can be computed
including higher order corrections in the expansion of the
theta function,

θ3ðxÞ − 1=
ffiffiffi
x

p
≈ 2σ=

ffiffiffi
x

p þ 2σ4=
ffiffiffi
x

p þOðσ9= ffiffiffi
x

p Þ; ð27Þ
where σ ¼ exp ð−π=xÞ. Using (27) in (26) implies that
corrections to the fully resummed result are exponentially
small; that is, the behavior of the vacuum energy is robust
against the inclusion of a cutoff smaller than the critical
radius for large enough ring size. For small R, we expect the
cutoff to regulate the diverging 1=R behavior of the leading
term in Eq. (26). Expanding the theta functions in (26) for
lc=R2 large gives at leading order

Ẽ r ≈
ρ2 − η−2

2
e−lc=η

2

⟶
R→0

0; ð28Þ

which can be contrasted with the ρ2 ∼ R−2 behavior of the
vacuum energy as obtained by full resummation.

Conclusions. The behavior of the quantum vacuum energy
of an interacting nonrelativistic system is far from trivial.
Here, we have looked at an example of this using a
nonlinear Schrödinger quantum field theory and computed
the quantum vacuum energy and force without resorting to
any perturbative expansion in the coupling constant, simply
relying on the exact integrability of the nonlinear problem.
The novel results are summarized in the “phase diagram” of
Fig. 3, which shows how the fluctuation-induced force as a
function of rotation and interaction strength separates into a
noncausal region plus an attractive-repulsive region. This
behavior arises from the stabilization between an attractive
Casimir-like component and a repulsive centrifugal one.
An interesting potential connection seems evident

between our quantum field theoretical setup and the area
of ultracold atoms. A possibly relevant example is the
setup of Ref. [52], which consists of a 23Na Bose-Einstein
condensate confined in a ring of size R ∼ 20 μm. Within a
quasi-1D approximation, the interaction strength λ can be
expressed in terms of the scattering length as, and the
transverse length scale l can be expressed as λ ¼ g=ðπl2Þ

(a) (b)

FIG. 3. Quantum fluctuation induced-force heat maps. Panel
(a) shows Eq. (20) in the limit Δ ¼ 0 in the ðΩ; RÞ parameter
space for fixed λml=ℏ2 ¼ 10. The solid blue line indicates the
border between the repulsive and noncausal regions, while the
dashed red line indicates the point at which the force changes
sign. Panel (b) shows the magnitude of the force in the ðλ; RÞ
parameter space for fixed Ωml2=ℏ ¼ 5.
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(here, g ¼ 4πℏ2as=m defines the atomic interaction with
as ¼ 50a0 for 23Na) [53]. Taking l ∼ 2 μm to ensure that
l ≪ R and assuming a condensate of N ¼ 2 × 103 atoms
allows us to arrive at a dimensionless interaction strength
λml=ℏ2 ∼ 4asN=l, which, using the above parameter
values, gives 4asN=l ∼ 10, a value close to that used in
Fig. 3(a). The force Fs can also be estimated in a similar
manner; using Eq. (20) and the above definitions, we obtain
a dimensionless force:

Fs
ml3

ℏ2
¼ −

3

8π

asNl
R2

þm2l3

ℏ2

RΩ2

4
: ð29Þ

Using a rotation speed of Ω ∼ 2π × 25 Hz from the
experiment of Ref. [54], we obtain Fsml3=ℏ2 ∼ 0.1, modest
but potentially large enough to be observable in a future
experiment. Using these values, a ring of size R ∼ 20 μm
would fall in the causal repulsive region of Fig. 3(a), and
Ωml2=ℏ ∼ 0.2 favoring lower rotation frequencies. In this
work, Dirichlet boundary conditions have been used, which
could be simulated using a weak link as realized in the Bose-
Einstein condensation ring experiments of Refs. [55,56].

The physical system described in this work has potential
applications in atomtronics [57], facilitating an additional
opportunity to explore the fundamental physics associated
with the quantum vacuum. Extensions to systems of
fermions [58] or with multiply connected geometries
[59] offers additional avenues to explore the effects
described in this work in uncharted scenarios.
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