ESCRESTI JOINT MEETING 2023

OCTOBER 26-28 BERLIN, GERMANY

ONLINE ABSTRACT SYLLABUS

ESTI ABSTRACTS

Abstracts appear as submitted to the system and have not been checked for correctness and completeness.

Sea ?

8.9

A-161

Chest contrast-enhanced computed tomography assessment of ESC/ERS pulmonary hypertension clinical classification: a study of reliability.

L. Cereser¹, G. Zussino¹, C. Montanaro¹, C. Cicciò², R. Girometti¹, C. Zuiani¹

¹Institute of Radiology, Department of Medicine, University of Udine, Udine, Italy, ²Department of Diagnostic Imaging and Interventional Radiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy

Purpose/Objectives

Pulmonary hypertension (PH) is a multifaceted disease with different etiologies and clinical presentation. The European Society of Cardiology (ESC) and the European Respiratory Society (ERS) recently released a joint update on PH classification, including recommendations on the use of imaging techniques [01]. While chest contrast-enhanced computed tomography (CECT) plays a pivotal role in this setting [02] [03], there is limited information on its reliability in classifying PH. In this light, we aimed to assess the inter-reader agreement in the classification of PH on CECT.

Methods & Materials

The study retrospectively included 60 consecutive patients diagnosed with PH who underwent chest 64-row multidetector CECT between 2014-2022 at our University Hospital. In the case of multiple examinations, the one nearest to the time of PH diagnosis was selected. Two readers experienced in thoracic imaging, i.e., reader 1 (R1) and reader 2 (R2), independently reviewed all the CECT scans. Readers reported any abnormality among diffuse lung diseases (fibrosis and emphysema), heart abnormalities (including left chambers dilatation/wall thickening, coronary calcifications, and valvular abnormalities), vascular signs of chronic thromboembolism, and esophageal dilatation. Based on such findings, they were asked to classify each PH case into groups 1-5 according to the 2022 ESC/ERS guidelines [01]. Using unweighted Cohen's kappa (k) statistic with 95% confidence intervals (CI), we evaluated the agreement between R1 and R2 in detecting CECT abnormalities and defining PH groups. The k coefficients were interpreted according to Landis and Koch [04].

Results

Table 1 reports the prevalence values of CECT abnormalities with corresponding inter-reader agreement results.

Chest CECT findings	Readers			
	R1 N (%)	R2 N (%)	Inter-reader agreement k (95%Cl) ⁴	
Lung ¹	17 (28.3)	15 (25)	0.77 (0.59-0.94)	Substantial
Heart ²	22 (36.7)	22 (36.7)	0.33 (0.09-0.57)	Fair
Pulmonary vessels ³	11 (18.3)	7 (11.7)	0.69 (0.46-0.92)	Substantial
Esophageal dilatation	11 (18.3)	10 (16.7)	0.69 (0.46-0.92)	Substantial

Notes:

CECT, contrast-enhanced computed tomography; R1, reader 1; R2, reader 2; k, kappa value; CI, confidence interval

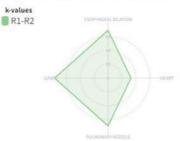
¹ Fibrosis and/or emphysema

² At least two of the following three findings: left chambers dilatation/wall thickening, coronary calcifications, and valvular abnormalities

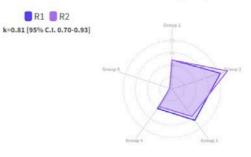
³ Vascular signs of chronic thromboembolism

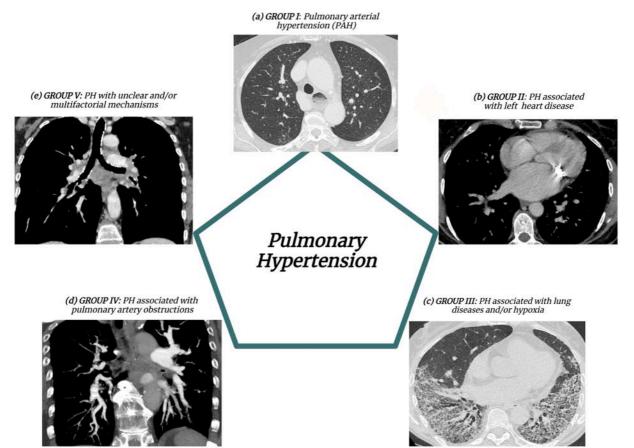
⁴ Kappa values interpretation was according to Landis and Koch (Biometrics, 1977)


Prevalence values of CECT abnormalities with corresponding inter-reader agreement results


The inter-reader agreement was substantial for most CECT findings (k ranging 0.69-0.77), except for heart abnormalities (fair agreement, k=0.33 [0.09-0.57]). The inter-reader agreement for defining PH groups was almost perfect (k=0.81 [95%CI 0.70-0.93]). Figure 1 resumes the results via radial charts.

Pulmonary Hypertension


(a) Chest CT findings' distribution according to the two readers



(c) Patients' distribution across the five PH groups according to the two readers

Radar charts illustrate: (a) the chest CT findings' distribution according to the two readers (R1 and R2), (b) the inter-reader agreement for each CT finding, and (c) the patients' distribution across the five pulmonary hypertension (PH) groups according to R1 and R2.

Figure 2 illustrates PH groups' example cases from the series.

Typical group-specific pulmonary hypertension (PH) signs: (a) esophageal dilatation with no lung abnormalities; (b) left atrium dilatation and mitral valve calcifications; (c) extensive lung fibrosis; (d) signs of chronic thromboembolic pulmonary disease; (e) multiple mediastinal enlarged lymph nodes in sarcoidosis.

Conclusion

Despite poor reliability in assessing heart abnormalities, the inter-reader agreement in classifying PH was high when experienced radiologists interpreted CECT. Our results suggest that radiology-based multidisciplinary decision making in the setting of PH can be done on a reliable basis.

References:

[01] Humbert M, Kovacs G, Hoeper MM, et al, (2022), 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension, Eur Heart J, 43:3618-3731

[02] Foley RW, Kaneria N, Ross RVM, et al, (2021), Computed tomography appearances of the lung parenchyma in pulmonary hypertension., Br J Radiol, 94(1117):20200830

[03] Remy-Jardin M, Ryerson CJ, Schiebler ML, et al, (2021), Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society, Eur Respir J, 57(1):2004455

[04] Landis JR, Koch GG, (1977), The measurement of observer agreement for categorical data, Biometrics, 33:159-174