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A B S T R A C T

Substantial advances in fatigue estimation of defective materials can be attained through the
employment of a Physics-Informed Neural Network (PINN). The fundamental strength of such a
framework is the ability to account for several defect descriptors while maintaining predictions
physically sound. The first objective of the present work is the assessment of the PINN estimated
fatigue life variability due to uncertainties carried by the inputs. Additionally, a set of sensitivity
indices are employed to explore the influence of defect descriptors in fatigue life. The work
suggested that some traditionally neglected defect descriptors may play a relevant role under
specific circumstances.

. Introduction

The full exploitation of Additive Manufacturing (AM) for producing near-net shape parts in high performance sectors is typically
ampered by several outstanding issues. Amongst these, the difficulty in predicting the mechanical behaviour is one of the key
oncerns. The lack of well established protocols to control the aspects of AM makes the fabricated material highly inhomogeneous
t both the macro and micro-scale, e.g. defects [1,2], residual stress [3–5], texture [6], and others [7,8]. Moreover, the onset of
uch inhomogeneities is considerably sensitive to the selection of the process parameters, such as laser power, scanning strategy,
ayer thickness and powder components [9]. The presence of defects, e.g. gas pores, lack-of-fusion (LOF) and key holes, is one of the
rucial factors impacting fatigue performance. In this regard, gas droplets can be trapped while melting the powder bed, resulting
n the formation of gas pores, which show a distinctive spheroidal shape. Differently, some regions may experience incomplete
elting of the powder layer resulting in LOF defects. LOF defects are generally more detrimental to the mechanical properties of
M parts, due to their highly irregular shape, elongation and relatively large extension [10]. In addition, LOF defects typically have
low aspect ratio, resulting in flattened crack-like defect. The origin of this peculiar shape is due to the presence of a preferred

rowth direction perpendicular to the build direction. Although a defect-free AM material is hardly attainable, thermo-mechanical
ost-treatments can be used to limit the presence and the influence of defects in AM parts, such as hot isostatic pressing (HIP) [10]
nd shot-peening [11,12].

The presence of these inhomogeneities is one of the leading causes of the anisotropic behaviour in fatigue performance implying
relevant influence on the build direction, and thus on the loading conditions [1]. Particularly, when AM parts are subjected

o fatigue loading, critical stress concentrations may occur in the regions surrounding defects [13,14]. Therefore, these locations
epresent potential initiation sites for fatigue crack formation and consequent propagation leading to the failure of the structural
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component [1]. Defects can influence fatigue in many ways, and their size is not the only parameter that defines its influence. In
fact, the closer is the defect to the free surface of the sample, the more its inclination to trigger fatigue crack is [15,16].

To deal with the fatigue characterisation in presence of defects in materials, Fracture Mechanics is generally employed. This
s justified by the fundamental assumption that defects can be approximated to cracks under certain circumstances. Kitagawa-
akahashi’s (KT) diagram is an useful approach to relate the applied cyclic load to a characteristic length of the crack [17], thus
llowing to understand whether a specific loading and defect conditions can lead to fatigue failure. A more convenient manner to
escribe this semi-phenomenological behaviour, can be achieved through El-Haddad (EH) formulation [18], which considers the
atigue stress intensity factor (SIF) threshold and the intrinsic stress range at a given predefined fatigue endurance limit; other models
lso exist [19]. To deal with irregularly-shaped defects, Murakami proposed its well-renowned parameter to associate defects with
heir projected area on the plane orthogonal to the loading direction, i.e.

√

area. Such parameter defines a representative defect’s
length that can be promptly exploited the restate KT or EH models [20]. Furthermore, the SIF formulated in terms of

√

area and
distance of the defect from the material free surface has been proven to accurately characterise the severity of a defect given the
applied load, as seen by Romano et al. [21]. Interestingly, this approach has been extensively used in numerous scenarios when the
defect-based assessment of fatigue performance was sought [22]. A recent study by Niu et al. used extreme value statistics combined
with the weakest link theory to derive a defect-based probabilistic framework to estimate the fatigue scatter of AM metallic materials.

Nevertheless, current models based on Fracture Mechanics may restrict the exploitation of other important geometrical and
positional characteristics of defects. Future challenges in fatigue prediction of defective materials aim at overcoming this outstanding
limitation.

Over the years, Machine Learning (ML) algorithms have been increasingly pursued to study problems related to both finite
and infinite fatigue life [23–25]. Compared to semi-empirical or analytical models, ML models have the potential to effectively
account for a wide range of physical properties without significantly increasing computational costs. Considerable progress has been
achieved aiming to improve the prediction of fatigue behaviour. For instance, Extreme Gradient Boosting proved to be an effective
algorithm for predicting the fatigue crack growth rate in Ti6Al4V alloy fabricated via Selective Laser Melting (SLM) [26]. Konda
et al. trained a Neural Network (NN) and a Random Forest algorithm to forecast the fatigue life of AlSi10Mg, SS316L and Ti6Al4V
additively manufactured via SLM [27]. Li et al. devised a Support Vector Regression (SVR) approach to establish a correlation
between the fatigue life of SLM parts with some critical defect features. In this instance, a sensitivity analysis was performed and
the correlations between defect descriptors and fatigue life were found to be consistent with both theoretical expectations and
experimental observations [28]. Another study correlating defect characteristics such as location, size and morphology with fatigue
life was carried out by Bao et al. In this study, a Support Vector Machine was trained with defect characteristics and showed
high accuracy in predicting fatigue life [29]. Furthermore, Moon et al. utilised a set of Ti6Al4V additively manufactured with
different scanning strategies and different surface conditions. In particular, the data obtained by computed tomography (CT) and
surface profilometry were processed to train a drop-out NN which showed high fatigue life prediction accuracy [30]. He et al.
compared a

√

areaeff-based Linear Elastic Fracture Mechanics (LEFM) model with a Random Forest model in order to predict the
fatigue life of a martensitic stainless steel and KSFA90 steel alloys. The ML model provided more truthful prediction of the fatigue
life than those of the reference theoretical models [31]. Peng et al. predicted the finite fatigue life of AlSi10Mg by using Extreme
Gradient Boosting. Therein, fractography and fatigue characterisation data were used to train the surrogate model. Subsequently, the
numerical predictions were validated against Murakami’s semi-empirical model and an empirical model, referred to as X-parameter
model. Further sensitivity analyses permitted

√

area to be identified as the most impacting feature on fatigue life [32].
The mere data-driven nature of the ML methods just reviewed allows for neatly recognising patterns provided adequately

arge datasets – typically not available in the context of fatigue. For this reason, Salvati et al. have recently exploited Physics-
nformed Neural Networks (PINNs) to conceive a predictive model to forecast the finite fatigue life of a small batch of AlSi10Mg AM
amples [33]. Therein, the PINN was trained on an experimental dataset containing numerous defect descriptors while constraining
he learning stage by a LEFM semi-empirical law. As a result, the PINN learned to make predictions balancing the experimental
bservation and the knowledge inherited from the LEFM model. Besides effectively handling a small-data regime, the PINN held
uperior predictive capabilities, and a natural tendency at preventing overfitting compared to the sole NN counterpart. It is
orthwhile noting that PINNs have been applied to model the finite fatigue life behaviour of AM material using mere S-N data

o accomplish the training stage [34], even within a probabilistic setting [35]. He et al. proposed a PINN-based strategy that
ncorporates a multiaxial fatigue critical plane model for predicting fatigue life [36]. The research showed that properly choosing
he theoretical model to support of an NN can enhance the accuracy of the predictions [36]. Interestingly, Ciampaglia et al. [37]
evised a PINN to account for AM parameters as well defect features to investigate their joint effect on the finite fatigue response
f AlSi10Mg SLM alloy [37]. In this instance, the PINN lead to more accurate predictions compared to the equivalent NN whose
hysical branch was suppressed. Wang et al. tested two different physics-based ML models, i.e. SVR and NN, for predicting the
atigue life of AM metallic materials. Both models were designed to take a few defect features, such as

√

area, and the applied stress
range as inputs. The case studies showed that the physics-based models outperformed the mere data-driven counterpart and the
traditional semi-empirical approaches [24].

In order to make reliable fatigue life predictions, it is important to recognise and quantify the uncertainties associated with the
model and data errors. Although diverse sources of uncertainty are typically involved in fatigue characterisation [38], this research
focuses on those arising from the measurement of the applied load and defectivity characterisation. In this regard, the present study
proposes a systematic method to model the uncertainties derived from the defectivity characterisation in terms of location, geometry
2

and morphology.
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The lack of analytical input–output relationship in ML models prevents one from applying the classical Error Propagation Theory
EPT), hence an alternative method must be employed. The present study aims to quantify the uncertainties in fatigue prediction
ue to the aleatoric errors of the input data and to attempt identifying the most influencing defect descriptors in the authors’
reviously proposed PINN framework [33]. The aleatoric errors affecting the experimental quantities, which serve as input to the
INN, were obtained using EPT based on carefully selected assumptions to avoid unphysical scenarios. Subsequently, a Monte Carlo
MC) simulation was employed to perform a large number of simulations, by individually perturbing the inputs of the considered
INN. This was carried out to explore the influence of each experimental parameter on the fatigue behaviour using three statistical
ools: Pearson correlation coefficient (PCC), Permutation Feature Importance (PFI) and Accumulated Local Effects (ALE). Eventually,
n order to assess the overall impact of inputs’ uncertainty on the fatigue prediction, in terms of number of cycles to failure, all
he inputs were simultaneously and appropriately perturbed. Finally, a 𝜒2 test was conducted on the resulting MC distributions to

evaluate statistical parameters such as mean, standard deviation and the probability density function of the predicted number of
cycles to failure.

2. Method and analysis

The present section is meant to cover the fundamental concepts of the PINN model for fatigue prediction and to provide details
on the three statistical tools employed in the sensitivity analysis of the present study.

2.1. Physics-informed neural networks

Given their data-driven nature, the predictive performance of NNs is massively conditioned by the processed training dataset.
When sufficient data is lacking, or in presence of noisy inputs, NN might learn unintended patterns, thus leading to predictions
not obeying with the physics of the observed phenomenon. The realm of ML has recently seen the advent of PINNs which allows
for tolerating small-data regime while ensuring the physical consistency of NN models [39,40]. Fundamentally, a PINN couples
a conventional NN with a phenomenological law of the underlying – hypothesised – physical phenomenon. In this instance, the
training of PINNs entails defining a bespoke loss function consisting of two terms: data loss and model loss. The former is given by
the discrepancy between the prediction and the ground truth, whereas the latter quantifies to which extent the predictions differs
from the physical model. As a result, PINNs seek a trade-off between these competing terms so that the predictions of given inputs
will do.

In order to apply the proposed sensitivity analysis framework, this study utilises the pre-trained PINN that some of the authors
of the present manuscript previously conceived [33]. Although the details of this PINN can be found elsewhere, it is worth recalling
the key stages of its implementation. Specifically, the PINN was built upon a database borrowed from the literature containing n.12
AlSi10Mg specimens manufactured through SLM [21]. The specimens were also subjected to a fatigue testing with constant stress
amplitude at load ratio of 𝑅 = −1. Making use of (CT), many defect characteristics were extracted, amongst which: the distance
etween defects and the free surface, ℎ, the external defect surface, 𝐴𝐷, the defect volume 𝑉𝐷. The external surface 𝐴𝐷 was further
rocessed to compute the projected area on the plane perpendicular to the loading direction, i.e. Murakami’s parameter

√

area.
Based on these experimental measurements, relevant descriptors of the morphology and geometry of the defects were derived. The
first is sphericity, 𝑆, expressed as:

𝑆 =
𝜋

1
3 (6𝑉𝐷)

2
3

𝐴𝐷
(1)

and the equivalent three-dimensional diameter, 𝑑:

𝑑 = 2
(

3𝑉𝐷
4𝜋

)
1
3

(2)

It is essential to report the criterion adopted to categorise defects according to their relative position to the free surface of the
corresponding sample [33]:

⎧

⎪

⎨

⎪

⎩

Surface if ℎ∕𝑟 ≤ 𝜋∕4
Sub-surface if 𝜋∕4 < ℎ∕𝑟 < 1.25
Embedded if ℎ∕𝑟 ≥ 1.25

(3)

where 𝑟 is the 2D equivalent radius of the defect:

𝑟 =
√

area
𝜋

(4)

Once identified and evaluated the key descriptors influencing the fatigue life of each tested sample, i.e. 𝛥𝜎,
√

area, ℎ, 𝐷, 𝑆, these
will serve as inputs to the considered PINN model. Additionally, it is important to highlight that only the three most critical defects
are involved in the PINN model. The ranking criterion counts the fatigue SIF range related to

√

area and normalised by the fatigue
SIF threshold obtained with Murakami and Endo’s formulation [20], called a normalised SIF range 𝛿𝐾 [33]. Accordingly, the input
vector associated with the 𝑖-th sample can be formalised as follows:

𝐱(𝑖) =
[

√ (𝑖) √ (𝑖) √ (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖) (𝑖)
]

(5)
3

area1 area2 area3 ℎ1 ℎ2 ℎ3 𝑆1 𝑆2 𝑆3 𝑑1 𝑑2 𝑑3 𝛥𝜎
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Indicating the PINN by , one can succinctly states its functional input–output relationship:

𝑁 = (𝐱) (6)

The PINN model was then architected by prescribing n.13 input neurons (n.12 related to the defect morphology and one referring to
the loading condition), n.16 and n.8 neurons over the first and second hidden layer, respectively. Whilst, the output layer is scalar
as it provides the forecast finite fatigue life. Sigmoid activation functions were globally adopted.

As far as the physical constraint of the PINN is concerned, a customised Basquin’s-like curve was adopted:

𝑁 = 𝐴𝛿𝐾𝐵 (7)

where 𝛿𝐾 is the aforementioned normalised SIF, and 𝑁 is the predicted number of cycles to failure. It should be highlighted that 𝐴
nd 𝐵 in Eq. (7) were identified through Ordinary Least Squares method upon post-mortem fractographic investigation of the defect
hat triggered fatigue failure, i.e. the ‘‘killer defects’’, where identifiable. Conversely, the PINN processes defect data obtained from
nte-mortem CT scans and the applied stress range. As quickly mentioned earlier, only the three most critical defects, sorted by 𝛿𝐾,
f each sample are used to train the PINN. These defects are deemed as ‘‘potential killer defects’’.

.2. Uncertainty quantification of the PINN prediction

.2.1. Error propagation theory
The EPT is briefly described here. Let 𝑦 depends on 𝑞𝑖 ∀ 𝑖 = 1, 2,… , 𝑘 uncertain experimental measurements:

𝑦 = 𝑓 (𝑞1,… , 𝑞𝑘) (8)

Assume that each 𝑞𝑖 is associated with a measurement error 𝛿𝑞𝑖. As common practice, one can compute the propagated uncertainty,
amely 𝛿𝑦, derived from 𝑞𝑖 ∀ 𝑖 = 1, 2,… , 𝑘 taking the square root of the total derivative of 𝑦:

𝛿𝑦 =

√

𝜕𝑦(𝑞1,… , 𝑞𝑘)
𝜕𝑞1

𝛿𝑞21 +⋯ +
𝜕𝑦(𝑞1,… , 𝑞𝑘)

𝜕𝑞𝑘
𝛿𝑞2𝑘 (9)

According to Eq (6), one wish to propagate the uncertainty associated with each entry of 𝐱 (Eq. (5)) towards 𝑁 . This procedure
s particularly insightful to ascertain the reliability of the predictions. In order to propagate the uncertainties throughout the PINN,
t is necessary to determine the errors of the experimental input data obtained via CT as well as those involved in 𝛥𝜎. With regard
o Eq (5), let 𝛿

√

area, 𝛿ℎ, 𝛿𝑆, and 𝛿𝑑 be the measurement error of the defect descriptors. It is important to highlight that same error
olds when multiple instances of the same feature are concerned. In this way, the error on the linear dimension due to the resolution
f the reconstructed defect can be extended to the error arising when estimating a three-dimensional geometrical feature. Assuming
as the length of the side of the cube-like defect, its external volume can be equivalently expressed as 𝑉𝐷 = 𝑙3. Consequently,

restating Eq. (9) as 𝑉𝐷 = 𝑓 (𝑙) leads to the volume uncertainty:

𝛿𝑉𝐷 = 3𝑉
2
3

𝐷 𝛿𝑙 (10)

In agreement with the cube-like approximation, the external area of the defects can be modelled as 𝐴𝐷 = 6 𝑙2. Thus, stating 𝐴𝐷 = 𝑓 (𝑙)
llows one to compute the area error according to Eq. (9):

𝛿𝐴𝐷 = 12
√

𝐴𝐷
6

𝛿𝑙 (11)

Following, 𝛿𝑉𝐷 and 𝛿𝐴𝐷 were utilised to calculate the sphericity error. To do so, it suffices to write 𝑆 = 𝑓 (𝐴𝐷, 𝑉𝐷) and exploit again
Eq. (9):

𝛿𝑆 =

√

√

√

√

√

√

[

12
𝐴𝐷

(

𝜋
6

)
1
3
]2

𝛿𝑙2 +

[

−
12𝜋

1
3 (6𝑉 )

2
3

√

6𝐴
3
2
𝐷

]2

𝛿𝑙2 (12)

pon plugging 𝑉𝐷 = 𝑙3 into Eq. (2) and applying Eq. (9), the error related to the equivalent diameter can be promptly retrieved:

𝛿𝑑 =
( 6
𝜋

)

1
3 𝛿𝑙 (13)

Whilst
√

area can be interpreted as the square root of a single lateral face of the cube-like defect, hence 𝑙 =
√

area. Therefore, the
corresponding error turns out to be:

𝛿
√

area = 𝛿𝑙 (14)

nd differentiating further:

𝛿area = 2
√

area 𝛿𝑙 (15)
4
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The last relationship gives the error of the projected area. Furthermore, since ℎ is obtained by a direct measurement, its error is
assumed as:

𝛿ℎ = 𝛿𝑙 (16)

One can claim certain arbitrariness when using a cubic-like defect approximation. Alternatively, it is possible to regard defect as
phere without increasing the complexity of the error estimation process. Assuming 𝑟 as the radius of the sphere-like defect, using

the approach just outlined, and properly restating Eq. (9), it is possible to formulate the expressions for the uncertainties of the
defect characteristics. In this instance, the error related to the sphericity is given by:

𝛿𝑆 =

√

√

√

√

√

√

[

4𝜋
2
3 (6𝑉 )

1
3

𝐴𝐷

]2

𝛿𝑟2 +

[

−
12𝜋

5
6 (6𝑉 )

2
3

𝐴
3
2
𝐷

]2

𝛿𝑟2 (17)

For sphere-like defects, the equivalent diameter turns out to be equal to twice the radius of the defects, thus the corresponding error
turns out to be:

𝛿𝑑 = 2𝛿𝑟 (18)

Whilst the error of
√

area can be express as follow:

𝛿
√

area =
√

𝜋𝛿𝑟 (19)

astly, to quantify the error of the load amplitude, one can compute:

𝛿𝛥𝜎 =

√

(

1
𝐴

)2
𝛿𝛥𝐹 2 +

(

−𝛥𝐹
𝐴2

)2
𝛿𝐴2 (20)

here 𝛿𝛥𝐹 is the error that affected the measurement of the applied force 𝛥𝐹 exerted by the fatigue rig, 𝐴 refers to the cross-sectional
rea of the specimen and 𝛿𝐴 is the corresponding uncertainty due to the manufacturing process. In particular, 𝛿𝐴 can be obtained
s follows:

𝛿𝐴 = 𝜋 𝛷
2
𝛿𝛷 (21)

where 𝛷 is the diameter of the specimen’s cross section and 𝛿𝛷 the corresponding dimensional tolerance.

2.2.2. Monte Carlo simulation
The appraisal of the error just presented should be propagated in terms of fatigue life to ascertain the reliability of the PINN. If

the explicit analytical expression of Eq. (6) were available, Eq. (9) could be applied in the following form:

𝛿𝑁 =

√

√

√

√

𝜕𝑁(
√

area1,… , 𝛥𝜎)

𝜕
√

area1
𝛿
√

area
2
1 +⋯ +

𝜕𝑁(
√

area1,… , 𝛥𝜎)
𝜕𝛥𝜎

𝛿𝛥𝜎2 (22)

to retrieve the uncertainty regarding the prediction 𝑁 . Unfortunately, the PINN notoriously acts as a black-box, hence pure EPT
cannot be directly applied. To circumvent this limitation, PINN is seen from an agnostic viewpoint and a MC approach was pursued.
In this regard, an adequate number of input samples is generated to satisfactorily cover the range where the descriptors are supposed
to – plausibly – vary. In any case, the distributions are centred at the nominal values of the input features, whereas the standard
deviations correspond to the measured errors. The PINN is then employed to compute the corresponding output so as to realise a
database for further statistical post-processing and investigations. It is worth emphasising that two different sampling method were
considered, namely one-parameter-at-a-time (OPT) and multiple-parameters-at-a-time (MPT). As concerns the former the inputs are
independently sampled. In regards to the latter all the input features are sampled simultaneously.

For both sampling methodologies, a convergence test is performed in order to determine the minimum number of trials required
to cancel the fluctuation that the random sampling typically generates [41]. The convergence is monitored through the following
parameter expressed as:

𝑐𝑖 = 100
| log𝑁𝑖 − log𝑁𝑖−1|

log𝑁𝑖

(23)

which practically represents the relative absolute difference in terms of expected value of fatigue lives 𝑁𝑗 between two consecutive
simulation. The convergence can be considered as reached when 𝑐𝑖 yields values below a predefined threshold – 0.5% in the present
work.

Let  be the output distribution of fatigue life 𝑁 having 𝑛 samples. In order to probe  a 𝜒2 test was performed. Under the
so-called null hypothesis 𝐻0, this test initially conjectures a certain distribution  for the output population whereby the samples of
 may have been drawn. With reference to a certain significance level 𝛼, if the observations substantiate the hypothesis, 𝐻0 cannot
be rejected. In contrast, if the observations deviate from the expectation 𝐻0 must be refused and one should be inclined to 𝐻1. This
test is commonly stated as:

{

𝐻0 ∶  ∼ 
(24)
5

𝐻1 ∶  ≁ 
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Formally, 𝐻0 cannot be rejected if the following condition holds:

𝑈 < 𝜒2
1−𝛼,𝑙 (25)

in which 𝑈 is the test statistics:

𝑈 =
𝑘
∑

𝑖=1

𝑖 − 𝑖
𝑖

(26)

where, in turn, 𝑘 is the number of bins used to partition the output distribution 𝑁 , 𝑖 and 𝑖 are the observed and theoretical
frequency of each bin, respectively. The latter is defined as:

𝑖 = 𝑀 ⋅ P[𝑁 ∈ 𝑖] (27)

where 𝑀 is the sample numerosity, and 𝑖 is the 𝑖-th bin. Referring back to Eq. , 𝜒2
1−𝛼,𝑙 is the 1 − 𝛼 quartile of a 𝜒2 distribution

having 𝑙 degrees of freedom, which are computed by the following rule:

𝑙 = 𝑘 − 1 − 𝑝 (28)

where 𝑝 is the number of parameters of  estimated from the sample. As concerns OPT sampling, three different 𝐻0 were tested
 ∼  ,  ∼ , and  ∼ , i.e.  was hypothesised as normal distribution, skew-normal distribution and log-normal distribution,
respectively. Conversely, two 𝐻0 were formulated when considering MPT, namely  ∼ , and  ∼ . In any case, 𝛼 = 0.05 was
adopted as the significance level.

An essential requirement for conducting a meaningful 𝜒2 test is the meticulous choice of a binning scheme for the output fatigue
population. Since this operation is often non-trivial, the guidelines laid out in Refs. [42,43] were followed. Accordingly, the bin is
recommended to possess at least an absolute frequency equal to 1, 80% bins are expected to have at least a frequency as high as 5,
and 𝑘 ∈ [2𝑛2∕5, 4𝑛2∕5]. Conservatively, 𝑘 = 4𝑛2∕5 is adopted in this study.

Each input feature has a specific physical meaning, so the corresponding perturbations must respect physical constraints. Each
input cannot assume negative values, and the sphericity cannot exceed one (i.e. perfect spherical shape). As a result of this
constraints, some of the input distributions resulted to be truncated. The following procedure was used to determine the statistical
parameters of the theoretical distributions.

1. MC simulations were performed without removing the non-physical values of the input distributions, only with the aim of
establishing the correct statistical parameters.

2. The statistical parameters of the theoretical distributions were determined using the Maximum Likelihood Estimation (MLE)
and then tested through the 𝜒2 test.

3. The input distributions were filtered to obtain the actual fatigue life distributions.
4. The 𝜒2 test was performed to check whether the parameters of latter distributions could be approximated by those previously

obtained.

2.3. Sensitivity analysis

2.3.1. Pearson’s correlation coefficient
Pearson’s correlation coefficient (PCC) is used to determine whether a certain feature of 𝐱 (Eq. (5)), i.e. 𝑥ℎ is correlated with

the predicted fatigue life 𝑁 . The evaluation of PCC is pursued within the OPT framework, for each 𝑖-th fatigue samples. In order
to lighten the notation, the superscript (𝑖) will be omitted compared to Eq. (5). The evaluation of PCC is separately conducted for
each features 𝑥ℎ. Accordingly, a dataset 𝐷𝑥ℎ = {𝑥ℎ,𝑗 ∶ 𝑗 = 1, 2,… , 𝑛} was prepared by drawing 𝑛 = 10 000 sorted and equally spaced
trials in [𝑚ℎ,𝑀ℎ] such that:

𝑚ℎ = min
𝑖=1,2,…,12

𝑥(𝑖)ℎ (29)

𝑀ℎ = max
𝑖=1,2,…,12

𝑥(𝑖)ℎ (30)

The last relationships seek the minimum and the maximum of the feature 𝑥ℎ among the fatigued specimens. Following, the PINN
provided the set of predictions 𝐷𝑁,𝑥ℎ = {𝑁ℎ,𝑗 ∶ 𝑁ℎ,𝑗 = (𝐱ℎ↦𝑗 ), 𝑥ℎ,𝑗 ∈ 𝐷𝑥ℎ , 𝑗 = 1, 2,… , 𝑛}. In this instance, 𝐱ℎ↦𝑗 is used to indicate
that the ℎ-th element of 𝐱 is replaced with the 𝑗-th instance 𝑥ℎ,𝑗 ∈ 𝐷𝑥ℎ , whereas the remaining features are unchanged. As concerns
the generic fatigued specimen, let 𝑥ℎ and 𝑁̂ the expected value of 𝑥ℎ and 𝑁 , respectively. Hence, PCC is defined as:

PCC =

∑𝑛
𝑗=1(𝑥ℎ,𝑗 − 𝑥ℎ)(𝑁ℎ,𝑗 − 𝑁̂)

√

∑𝑛
𝑗=1(𝑥ℎ,𝑗 − 𝑥ℎ)2

∑𝑛
𝑗 (𝑁ℎ,𝑗 − 𝑁̂)2

(31)

This coefficient can be seen as a normalised covariance taking values in (−1, 1). As concerns its extreme instances, if PCC = 1, then
there exist a positive linear correlation between 𝑥ℎ and 𝑁 . Conversely, if PCC = −1 the variables are negatively correlation holds.
6

Alongside, PCC = 0 implies that no correlation holds between the variables can be inferred.
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2.3.2. Permutation feature importance
One of the drawbacks of ML is the difficulty in assessing whether their outcomes are physically sound. Physics-Informed

pproaches can limit such a shortcoming, however the influence of not physically-informed parameters might not have a physical
ignificance. The sensitivity of each input on the predicted fatigue life was investigated by means of the Permutation Feature
mportance (PFI) [44]. In essence, this index allows one to quantify how far the predicted output depends upon a certain input
eature. From a practical perspective, the evaluation of this index is performed by shuffling the input features and measuring the
ssociated variation in terms of the output.

In regards to the present research, let 𝐗 be the matrix whose rows are the representative vectors of the specimens Eq. (5):

𝐗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

area
(1)
1

√

area
(1)
2 … 𝛥𝜎(1)

⋮ ⋮ … ⋮
√

area
(𝑟)
1

√

area
(𝑟)
2 … 𝛥𝜎(𝑟)

√

area
(𝑠)
1

√

area
(𝑠)
2 … 𝛥𝜎(𝑠)

⋮ ⋮ … ⋮
√

area
(12)
1

√

area
(12)
2 … 𝛥𝜎(12)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐱(1)
⋮
𝐱(𝑟)
𝐱(𝑠)
⋮

𝐱(12)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

hence, each element of 𝐗, i.e. 𝑋(𝑖)
𝑗 corresponds to the 𝑗-th feature of the (𝑖)-th fatigued sample. It is essential to note that 𝑋(𝑖)

𝑗 are
the measured input descriptors. The feature of interest is then selected, i.e. the 𝑖-th column, and the elements of such column are
randomly shuffled 𝑇 times, thus originating the permuted input matrix 𝐗′ whose 𝑖-th row is 𝐱(𝑖)′ . Subsequently, both 𝐗 and 𝐗′ are
processed row-wise according to Eq (8). This step provides the prediction of the finite fatigue life 𝑁𝑗 = (𝐱(𝑖)), and 𝑁 ′

𝑗 = (𝐱(𝑖)′ ).
The mean absolute percentage error (MAPE) was chosen to quantify the deviation of 𝑁 ′

𝑗 from the original prediction 𝑁𝑗 . With
eference to the 𝑖-th feature and 𝑡-th permutation, MAPE is:

MAPE𝑖,𝑡 = 100 1
𝑛

𝑛
∑

𝑗=1

|𝑁𝑗 −𝑁 ′
𝑗 |

𝑁𝑗
∀ 𝑡 = 1, 2,… , 𝑇 (33)

where 𝑛 is the number of samples – 𝑛 = 12 for the present study. Finally, the minimum, average, and maximum MAPE𝑖,𝑡 are taken
in order to facilitate the interpretation of the results:

MAPE𝑖,min = min
𝑡=1,2,…,𝑇

MAPE𝑖,𝑡 (34)

MAPE𝑖,mean = 1
𝑇

𝑇
∑

𝑡=1
MAPE𝑖,𝑡 (35)

MAPE𝑖,max = max
𝑡=1,2,…,𝑇

MAPE𝑖,𝑡 (36)

Since the full permutation analysis would have required n. 12! A stopping criterion was adopted. Specifically, the analysis was
topped when the second decimal figure of MAPE𝑖,min and MAPE𝑖,max ∀ 𝑖 = 1, 2,… , 13 stabilised.

2.3.3. Accumulated local effect
The Accumulated Local Effects (ALE) is a statistic, yet handy index to ascertain whether potential correlation might exists among

the input features and the predicted output. Differently from PFI, ALE allows one to continuously visualise the detected correlation
throughout a given spectrum of values instead of providing a single scalar value [45].

It is worth recalling how ALE is typically computed. In order not to overload the main content of the present manuscript, the
following explanation will refer to a predefined input feature 𝑥𝑗 selected amongst those in 𝐱(𝑖) (Eq. (5)). The determination of ALE
commence with gathering the values of 𝑥𝑗 for each (𝑖)-th specimen into the set 𝐴𝑥𝑗 = {𝑥(𝑖)𝑗 ∶ 𝑖 = 1, 2,… , 12}, thus defining the
nterval 𝐼𝑥𝑗 = [min 𝐴𝑥𝑗 ,max 𝐴𝑥𝑗 ]. Next, 𝐼𝑥𝑗 is evenly partitioned into 𝐾 sub-intervals 𝐼𝑗,𝑘 = (𝑥𝑗,𝑘−1, 𝑥𝑗,𝑘]:

𝐼𝑥𝑗 =
𝐾
⋃

𝑘=1
𝐼𝑗,𝑘 =

𝐾
⋃

𝑘=1
(𝑥𝑗,𝑘−1, 𝑥𝑗,𝑘]

panning 𝐼𝑗,𝑘 ∀ 𝑘 = 1, 2,… , 𝐾, if 𝑥(𝑖)𝑗 ∈ 𝐴𝑥𝑗 belongs to 𝐼𝑗,𝑘, the whole vector 𝐱(𝑖) is assumed to belong to 𝐼𝑗,𝑘. Consequently, the
rediction 𝑁𝑗 = (𝐱(𝑖)) is replaced with those in correspondence of the lower and upper bound of 𝐼𝑗,𝑘, i.e. 𝑥𝑗,𝑘−1 and 𝑥𝑗,𝑘. In
his regard, let 𝐱(𝑖)𝑗↦𝑘 be the input vector where 𝑥𝑗 is replaced by 𝑥𝑗,𝑘 – analogously for 𝑥𝑗,𝑘−1. Therefore, the related predictions
re 𝑁𝑗,𝑘−1 = (𝐱(𝑖)𝑗↦𝑘−1), and 𝑁𝑗,𝑘 = (𝐱(𝑖)𝑗↦𝑘). This operation is repeated for each 𝐱(𝑖) ∈ 𝐼𝑗,𝑘, and arithmetic average of the set
𝑁𝑗,𝑘−1 −𝑁𝑗,𝑘}𝐱(𝑖)∈𝐼𝑗,𝑘 is taken. Such an average is then accumulated up to an arbitrary threshold 𝑥𝑗,𝑘 ∀ 𝑘 = 1, 2,…𝐾:

ALE′
𝑥𝑗
(𝑥𝑗,𝑘) =

∑ 1
𝜈𝑗,𝑘

∑

𝑁𝑗,𝑘−1 −𝑁𝑗,𝑘 (37)
7

𝑥𝑗,0 ,…,𝑥𝑗,𝑘 𝐱(𝑖)∈𝐼𝑗,𝑘
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Table 1
Absolute errors of PINN inputs.

𝛿
√

area 𝛿ℎ 𝛿𝑆 𝛿𝑑 𝛿𝛥𝜎
[μm] [μm] [−] [μm] [MPa]

Cube-like defect 30 30 0.1 40 4
Sphere-like defect 50 30 0.1 60 4

Table 2
MC input distributions.  (𝜇, 𝜎) refers to the normal distribution where 𝜇 and 𝜎 are the expected
value and the standard deviation, respectively.
Input Distribution
√

area
(𝑖)
𝑗  (

√

area
(𝑖)
𝑗 , 30) μm

ℎ(𝑖)
𝑗  (ℎ(𝑖)

𝑗 , 30) μm

𝑆 (𝑖)
𝑗  (𝑆 (𝑖)

𝑗 , 0.1)

𝑑(𝑖)
𝑗  (𝑑(𝑖)

𝑗 , 40) μm
𝛥𝜎(𝑖)

𝑗  (𝛥𝜎(𝑖)
𝑗 , 4) MPa

where 𝜈𝑗,𝑘 denotes the number of 𝐱(𝑖) ∈ 𝐼𝑗,𝑘. Since ALE is typically centred at zero, i.e. mean null effect, Eq. (37) is translated
through:

ALE𝑥𝑗 (𝑥𝑗,𝑘) = ALE′
𝑥𝑗
(𝑥𝑗,𝑘) −

1
𝑛

∑

𝑥𝑗,0 ,…,𝑥𝑗,𝐾

𝜈𝑗,𝑘 ALE′
𝑥𝑗
(𝑥𝑗,𝑘) (38)

here 𝑛 is the number of samples, i.e. 𝑛 = 12.
Since 12 samples were available, it was therefore decided to divide each input domain in six parts, each containing two samples.

. Results and discussion

.1. Error propagation in experimental data

In order to evaluate the error of the experimental inputs of the PINN, it was essential to establish the length error and the error of
he applied force. The length error was assumed to be 30 μm, based on the resolution of CT and the process required to measure the
xperimental quantities involved, so, both 𝛿𝑙 and 𝛿𝑟 were considered to be equal to 30 μm. The load cell used to perform the fatigue
est was assumed to have an applied force uncertainty of 𝛿𝛥𝐹 = 5N. The value chosen for 𝛿𝛥𝐹 might appear conservative in some
nstances, as the controller of servo-hydraulic machines can allegedly introduce larger uncertainties. Nevertheless, the proposed
ramework is sufficiently versatile such that 𝛿𝑁 can readily be updated. In any case, the adopted 𝛿𝑁 is deemed to cover a vast
ariety of instances and sufficient to conduct a meaningful uncertainty quantification. All the specimens were machined before
ndergoing the fatigue test. Since the dimensional tolerance of machined parts is typically equal to 0.02 mm, then 𝛿𝛷 = 0.02mm.
s it can be seen from Eqs. (14)–(16), only the sphericity error depends on other experimentally measured quantities, i.e. 𝐴𝑙 and
. For the sake of simplicity, the sphericity error was assumed to be equal to the average of the sphericity errors calculated for all

he three considered defects of all the specimens. The absolute errors of the inputs, are reported in Table 1.
In terms of the error associated with

√

area and 𝑑, the sphere-like approximation provided more variability on the inputs, thus
resulting in a more conservative approach than the cubic-like one.

3.2. Uncertainty quantification of fatigue life predictions

In order to perform the MC simulations, a Normal distribution was prescribed over each input of the PINN. In this instance, the
Normal distribution simulates the acquisition of the experimental data affected by random noise, which is frequently encountered in
practice. Although this choice is arbitrary, the assumption is not restrictive as one can hypothesise any other distributions deemed
as relevant to the problem. The adopted distributions are shown in Table 2 which refers to the cube-like approximation for the
shape of the defects. The same analysis was repeated by setting the standard deviation of the Normal distributions equal to the
errors obtained with the spherical approximation. It should be noted that the input distributions are centred at the experimental
values, whereas the standard deviations are taken from Table 1. The peculiar choice of the normal distribution ensures that for a
sufficiently large number of trials the expected value converges to the prescribed mean, i.e. the experimental value in this case. This
holds according to the Central Limit Theorem. For the sake of illustrating the sampling strategy, the resulting distribution of 𝑑 is
given in Fig. 1. Additionally, the leftmost tail of the distribution is truncated as a result of the removal of non-physical values.

Fig. 2 shows the results of the convergence tests applied to the outcomes of the MC simulations obtained for the MPT case. This
case had the higher variability so it was also considered as a reference case for the OPT case. As it can be seen in Fig. 2, the minimum
number of trials required to achieve convergence test was 7000, referring to samples n.1, under the sphere-like approximation.
Conservatively, the number of trials was set to 10 000 both for OPT and MPT and both for the shape approximations.
8
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Fig. 1. Example of a truncated input distribution.

Fig. 2. Number of necessary trials required to attain MC test convergence for each considered tested sample and for both the shape defect approximations.

Table 3
Chi-square test results for MPT case.  and  refers to log-normal and skew-normal distribution respectively.

Defect shape Sample

1 2 3 4 5 6 7 8 9 10 11 12

Cube-like            
Sphere-like            

MC simulations allowed the output distribution of fatigue to be investigated for both OPT and MPT. Appendix B reports the
istributions under 𝐻0 which was not rejected in any examined case of OPT.

Table 3 illustrates the results of the 𝜒2 test for MPT, in particular  and  refers to the log-normal and skew-normal distributions
respectively. It should be mentioned that, differently from the OPT case, the MPT did not involved a normal distribution for 𝐻0.
A preliminary critical inspection of the resulting output distributions revealed asymmetric distributions only. As such, the normal
distribution was excluded from 𝐻0. As it can be seen from the results of the 𝜒2 test reported in Table 3, there is no significant
difference between the results obtained when the defect shape is approximated by a cube or a sphere.

Regarding MPT, the output variability is a measure of the uncertainty in the fatigue life prediction. Fig. 3 shows the box plots
of the output of the MPT analysis for both the defect shape approximation. Therein each box is representative of a unique sample
whose input features were perturbed simultaneously. Specifically, each box is used to visually and concisely display the resulting
output fatigue distribution of each sample. In particular, the box spans the interquartile range, whereas the whiskers cover the
range from 5% to 95% of the predicted output fatigue distribution. Additionally, each box plot show a red line corresponding to the
median value. The position of the median in the box plots shows that, even if the fatigue life has a skew-normal distribution, the
asymmetry is barely perceptible. Presumably, this effect can be attributed to truncating the input distributions. Additionally, one
can raise concerns about the asymmetry of the output distribution, even though symmetric (normal) distribution were used. This
9

phenomenon can be interpreted as being a result of the affine operations and non-linearities that the PINN intrinsically holds. Hence,
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Fig. 3. Box plots of fatigue life predictions obtained for MPT under (a) the cubic approximation and (b) the spherical approximation. Each box plot refers to
a different sample. The red line represents the median of the distributions, the sides of the box correspond to the interquartile range and the whiskers cover
the range from 5% to 95% of the predicted output fatigue distribution. The samples are sorted by the number of cycles to failure predicted by the PINN as per
Tables A.4 and A.5.

Fig. 4. Comparison of the PCC averaged result of each input. Note that 𝛥𝜎∗ refers to the PCC of the applied stress range upon taking the logarithm of both 𝛥𝜎
and 𝑁 prior the application of Eq. (31).

in principle, the PINN might not constitute an even function. Lastly, Fig. 3 also shows that as the median fatigue life increases, the
corresponding variability range becomes higher.

As it should be expected, the input Normal distributions based on the sphere-like approximation result in a more pronounced
variability in the fatigue life prediction than those based on the cube-like approximation.

3.3. Sensitivity analysis

3.3.1. Pearson’s correlation coefficient
The obtained results for PCC are reported in Appendix C. Fig. 4 shows the average PCC results grouped by defect characteristics.

The PCC results show that the PINN established high linear correlations between the inputs related to defect features and the
fatigue life. Only the relationship between the fatigue load amplitude and the number of cycles appears to be farther from this
scenario. The last result is consistent with the theoretical model used in the PINN: the theoretical fatigue life was predicted by
Eq. (7), which is a power law that express fatigue life depending on the fatigue load amplitude. This relationship becomes linear
when plotted on a log–log scale. In fact, the calculation of the average PCC of the applied stress range upon taking the logarithm
of 𝑁 and 𝛥𝜎 turned out to be close to 1. In this instance, the PCC is shown in Fig. 4 in correspondence of 𝛥𝜎∗.

As concerns
√

area, Fig. 4 shows that the first and the second inputs have a negative correlation and have the greatest influence
on the fatigue life. The third input shows a different trend but also has the smallest influence on the PINN result. According to
LEFM model, the higher the

√

area, the higher the SIF is, thus leading to a decrease in terms of fatigue life. Apart from
√

area3, the
obtained correlation corroborates the LEFM model. It is important to recall that,

√

area3 is very unlikely to trigger fatigue failure as
it holds the smallest normalised SIF, therefore its influence may have been inaccurately modelled by the analysed PINN framework.
Analogous considerations also applies to the analysis of the remaining input features.
10
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Fig. 5. Visual representation of PFI results.

Regarding the distance between the surface and the defect, the first two inputs are negatively correlated with fatigue life
predictions, whilst the third is positively correlated. Experimentally, surface-defects cause a greater reduction of fatigue life as
compared with those in the bulk. Therefore, one would expect a positive correlation with the fatigue life instead. Nevertheless, it is
important to note that, according to the criterion expressed in Eq. (3), the considered dataset showed that around 80% considered
defects are surface defects. This implies that the sole PINN model cannot fully capture the correlation between ℎ and the fatigue life
since the variability of this descriptor is limited and bulk defects are under represented, i.e. much fewer bulk defects are involved
in the calculations. This could reasonably explain the unexpected behaviour of the ℎ related to the first two defects individuated by
the PINN.

As far as defect’s sphericity is concerned, 𝑆, a linear positive correlation is found with the number of cycles to failure for all the
considered defects. Such a result is convincing as it is well accepted that the most dangerous defects are those showing crack-like
traits such as flatness and high geometrical irregularity (e.g. LOFs).

The last defect feature considered by the PINN model is the equivalent diameter 𝑑. This parameter is related to the size of the
efect. As 𝑑 increases, a decrease in fatigue life should be observed due to the fact that a larger defect is more detrimental than a
mall one when they are approximately at the same distance from the surface. Unexpectedly, the first and the third inputs show a
ositive correlation. Such an unexpected result may arise as a consequence of an hidden interplay between the defect sphericity,
part from the limited number of experimental data used to train the model. For instance, defects with large 𝑑 can intrinsically be
ssociated with a LOF defect or the other way around. This interesting observation provides some clues on the appropriateness of
sing such specific defect descriptors to well represent the influencing defect characteristics.

Lastly, the positive correlation of 𝛥𝜎 seem to concur well with the hypothesised phenomenon, i.e. for increasing values of 𝛥𝜎
he fatigue life progressively decreases.

.3.2. Permutation feature importance
In Appendix D are reported the results of PFI analysis in terms of MAPE, and number of permutation used for each input feature.

longside, Fig. 5, offers a succinct representation of the data in Appendix D.
Conversely,

√

area which was supposed to show the second most influencing effect, in fact, it yields to the smallest MAPE,
as well as the distance to the free-surface, ℎ. Whilst, 𝑆 and 𝑑 appear to be the most influencing factor, after the applied load
range. Again, due to the very limited dataset used for the training process, uniquely unveiling the role of each descriptor remains
utopistic. Nonetheless, some useful insights can be obtained herein. The large influence attributed to the equivalent diameter and
the sphericity is a factual data, meaning that they certainly play a relevant role, comparable with what is well-known and accepted
√

area. It should not be excluded that the use of different defect’s descriptors can lead to better insights. These results are consistent
with [28], which showed that the role of a specific defect feature can vary significantly with the variation of other parameters.
Thus, the choice of leading descriptors may vary as a function of experimental conditions and material.

3.3.3. Accumulated local effects
The ALE plot showing the influence of the fatigue load amplitude on the fatigue life predicted by the PINN model is depicted in

ig. 6. Therein, the trend of 𝛥𝜎 resembles the classic Basquin’s law widely used in fatigue. In particular, the variation of predicted
atigue life increase for decreasing values of 𝛥𝜎.

With regard to the influence of the defect characteristics, Fig. 7 shows the corresponding ALE plots. The trends depicted in Fig. 7
eflect relation shown by PCC in Table C.12, qualitatively. All features show straight vertical trends in certain areas, indicating low
ariability. Whilst, milder gradient indicate a more pronounced dependency. In particular,

√

area, ℎ, and 𝑑 result to have a significant
effect on the fatigue life only above a certain threshold. Interestingly, the sphericity seems to play a role only if below a certain
value: more flattened defects — which appears to be reasonable. This very interesting result highlight these defect’s descriptors may
play a different role depending on their magnitudes.
11
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Fig. 6. ALE plot for the amplitude fatigue load.

Fig. 7. ALE plots for defect features.
12



Engineering Fracture Mechanics 292 (2023) 109595E. Avoledo et al.

P
s
l

u
w
t

f
d
P
t

4. Conclusions

The objective of this study was twofold. On one side, it addressed the uncertainty quantification of a defect-based pre-trained
INN model used to predict the fatigue life of a small-sized batch of SLM AlSi10Mg tested samples. On the other, it involved a
ensitivity analysis to verify whether the PINN model was able to identify relationships between input quantities and the fatigue
ife prediction, despite the limited experimental data set.

The uncertainty quantification was conducted by performing a series of MC simulations upon the prescription of realistic
ncertainties in the considered inputs. This resulted in a rigorous quantification of uncertainties over the predicted fatigue life,
hich are of great interest when designing materials against fatigue failure. The sensitivity analysis involved the assessment of

hree different statistical indices leading to the following results:

• PCC showed that all the considered defect features correlated with the fatigue life through the PINN. Unexpected relations
were found regarding the distance to the free surface and the equivalent diameter.

• PFI allowed the influence of each input on the PINN prediction to be quantified. The fatigue load amplitude had the largest
influence, whilst Murakami’s

√

area and the distance from the free surface had the smallest.
• ALE plots allowed for the observation of input–output correlations, and highlighted which values of each descriptor show the

strongest influence on the fatigue life. Moreover, this analysis showed a limited role of the third-ranked defect (in terms of
𝛿𝐾)

Overall, the PINN framework appeared to be a powerful tool to evaluate fatigue and to provide insights into fatigue influencing
eatures. Indeed, the present study provided interesting clues on how the employed defect’s descriptors may play different roles
epending on their magnitude and considered fatigue regimes. In any case, it is imperative to reiterate that the prerequisite for a
INN training dataset is its coverage over a wide range of features’ magnitudes, rather than simply relying on very large datasets
hat do not enclose important regimes. For instance, the small influence of the

√

area is certainly due to the narrow range of values
employed during the PINN training process. This issue can be coped by either introducing additional physical constraints or by
adding more experimental tests at substantially different killer defects dimensions. Same applies to the distance to the free surface
to the killer defects.

In conclusion, it is necessary to remark that results of the present research may not be universally applicable to any metallic
material, similarly to what recently unveiled A. Li using a pure ML method [28]. Therefore, further extensive fundamental research
is required to gain a deep understanding of the underlying microstructural phenomena involved, both from the defect morphology
side and from the material susceptibility to complex-shaped defects, including effects of residual stress.
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Appendix A. Experimental dataset

Table A.4 reports the experimental CT dataset involved in the present study. Each row of the table corresponds to a different
input vector (Eq. (5)) and includes the geometric characteristics of the three defects with the highest 𝛿𝐾 and the load amplitude
associated with the corresponding fatigue test.

Table A.5 shows the results of the fatigue tests in terms of number of cycles and applied stress range. Alongside, the table
13
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Table A.4
Experimental CT dataset used to train the PINN in [33].
Sample

√

area1
√

area2
√

area3 ℎ1 ℎ2 ℎ3 𝑆1 𝑆2 𝑆3 𝑑1 𝑑2 𝑑3
[mm] [mm] [mm] [mm] [mm] [mm] [–] –] [–] [mm] [mm] [mm]

1 0.223 0.296 0.253 0.131 0.120 0.165 0.31 0.36 0.30 0.069 0.012 0.082
2 0.442 0.429 0.492 0.170 0.223 0.217 0.26 0.23 0.21 0.118 0.141 0.159
3 0.145 0.182 0.179 0.102 0.116 0.122 0.41 0.38 0.40 0.028 0.050 0.049
4 0.331 0.334 0.541 0.220 0.234 0.187 0.29 0.32 0.21 0.090 0.077 0.175
5 0.374 0.313 0.315 0.148 0.174 0.178 0.28 0.30 0.30 0.101 0.101 0.078
6 0.271 0.283 0.243 0.131 0.134 0.156 0.24 0.25 0.28 0.088 0.090 0.079
7 0.363 0.413 0.370 0.227 0.237 0.242 0.26 0.23 0.23 0.109 0.172 0.138
8 0.210 0.223 0.214 0.100 0.004 0.111 0.34 0.29 0.35 0.051 0.042 0.057
9 0.347 0.448 0.500 0.200 0.183 0.310 0.22 0.18 0.17 0.121 0.171 0.191
10 0.322 0.352 0.572 0.163 0.217 0.374 0.32 0.30 0.21 0.074 0.101 0.186
11 0.435 0.365 0.470 0.200 0.223 0.222 0.29 0.30 0.25 0.123 0.107 0.142
12 0.309 0.394 0.569 0.182 0.001 0.332 0.33 0.27 0.20 0.085 0.103 0.178

Table A.5
Load amplitude, and experimentally recorded fatigue life of each considered specimen. The last
column indicates whether the fractographic investigation disclosed the presence of killer defects.
In particular, I and NI stands for identifiable and non-identifiable, respectively.
Sample 𝛥𝜎 Fatigue life Killer defect

[MPa] [Cycles]

1 400.0 474 I
2 378.3 11 465 NI
3 360.0 3432 I
4 374.4 28 201 NI
5 298.5 19 806 NI
6 301.6 39 538 NI
7 295.0 46 255 I
8 220.0 2 622 640 I
9 200.0 15 242 310 I
10 180.0 11 352 768 I
11 180.0 237 485 NI
12 156.0 3 795 336 NI

Appendix B. Results of the Monte Carlo simulation for OPT sampling

Tables B.6–B.8 reports the results of the 𝜒2 test applied to the fatigue life distributions obtained for the OPT case under the
cube-like assumption for the defects’ shape. Whilst Tables B.9–B.11 reports the results of the 𝜒2 test applied to the fatigue life
distributions obtained for the OPT case under the cube-like assumption for the defects’ shape. In particular,  (𝜇, 𝜎), (𝜇, 𝜎) and
(𝜇, 𝜎, 𝑎) refers to the normal, log-normal and skew-normal distributions respectively. Additionally, 𝜇 is the expected value, 𝜎 is the

tandard deviation, and 𝑎 is the skewness parameter of the distribution. To obtain the parameters of the log-normal and skew-normal
istributions as a function of 𝜇, 𝜎 and 𝑎, the guidelines described in [46] and in [47] could be followed.

Table B.6
Results of 𝜒2 test applied to the output distributions of OPT, under the cube-like assumption for the defect shape,
for samples 1–4.
Sample 1 2 3 4
√

area1 (3231, 165,−0.57) (5040, 230)  (6944, 336)  (14315, 763)
√

area2 (3228, 182) (5045, 299) (6938, 415) (14294, 805)
√

area3 (3227, 50) (5044, 173)  (6932, 178) (14280, 211)
ℎ1 (3251, 347) (5073, 595, 0.62) (6981, 826) (14327, 1589)
ℎ2 (3229, 154) (5046, 268) (6941, 366) (14299, 671)
ℎ3 (3234, 173) (5047, 298) (6944, 404) (14307, 789)
𝑆1 (3530, 1511) (5412, 2068, 1.18) (7489, 3036) (15590, 6940)
𝑆2 (3373, 876, 1.31) (5170, 836, 2.59) (7164, 1483, 1.81) (14899, 4047, 1.09)
𝑆3 (3623, 1867, 0.99) (5527, 2270, 1.41) (7804, 3743, 1.10) (16389, 8830)
𝑑1  (4001, 2898) (6524, 5429, 1.02)  (9008, 7268) (17709, 12515)
𝑑2 (3427, 1179) (5250, 1461) (7182, 2002) (14777, 4080)
𝑑3 (3402, 1164) (5436, 2200) (7477, 2900) (15165, 5170)
𝛥𝜎  (3226, 30)  (5038, 58)  (6929, 75)  (14279, 133)
14
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Table B.7
Results of 𝜒2 test applied to the output distributions of OPT, under the cube-like assumption for the defect shape,
for samples 5–8.
Sample 5 6 7 8
√

area1  (26776, 1265) (46422, 2302)  (915817, 40864)  (89464, 4520)
√

area2 (26809, 1689) (46443, 2956) (815373, 58620) (89371, 5491)
√

area3 (26808, 1083) (46410, 1646)  (89311, 2808)  (915956, 44112)
ℎ1 (26977, 3406, 0.58) (46761, 5915) (89986, 11236) (922426, 123293)
ℎ2 (26817, 1553)  (46446, 2652)  (89426, 4924) (916066, 56388)
ℎ3 (26821, 1721) (46485, 2963) (89480, 5653) (916558, 62262)
𝑆1 (28821, 11390, 1.02) (50340, 21066) (96529, 40418) (969416, 350621)
𝑆2 (27343, 4056, 2.27) (47553, 8660, 1.48) (91659, 18059, 1.31) (922622, 97323, 1.20)
𝑆3 (29215, 11790, 1.20) (51513, 23310, 1.00) (99392, 46245, 0.51) (978161, 345049, 0.73)
𝑑1 (35980, 32692)  (62034, 55972) (118419, 100215, 0.72) (1267664, 1176561)
𝑑2 (28002, 8257) (48300, 14274) (92726, 27222) (949427, 279790)
𝑑3 (29201, 12834) (51041, 21807) (96914, 39704) (1009217, 468271)
𝛥𝜎  (26770, 338)  (46369, 559)  (89262, 1031)  (914142, 12307)

Table B.8
Results of 𝜒2 test applied to the output distributions of OPT, under the cube-like assumption for the defect shape, for samples
9–12.
Sample 9 10 11 12
√

area1 (3702963, 161903) (4846924, 214318,−0.66) (9782630, 413674,−0.68) (9153476, 383796)
√

area2 (3705568, 234172) (4846088, 305440) (9794632, 593757) (9159714, 562426)
√

area3 (3703787, 169468)  (4847296, 221004) (9155473, 408507)  (9795480, 427108)
ℎ1 (3731246, 481646) (4887827, 629448) (9235726, 1139652) (9851748, 1227947)
ℎ2  (3706137, 221190) (4849147, 287052)  (9160716, 529094) (9798370, 572566)
ℎ3 (3708983, 241700) (4858359, 319294) (9167384, 575908)  (9798994, 622628)
𝑆1 (3919340, 1413311) (5132122, 1815204,−0.67) (9618561, 3296626) (10279181, 3563896)
𝑆2 (3724144, 409040) (4873220, 527840) (9170917, 930730,−1.17) (9806713, 1007671)
𝑆3 (3933467, 1361876) (5070991, 1736128) (9651630, 3175433) (10273902, 3362221)
𝑑1  (4942568, 4396306) (6507407, 5763946) (11957044, 10105944) (12665685, 10518454)
𝑑2 (3835457, 1095108) (5026145, 1457808) (9456502, 2610832) (10153115, 2819081)
𝑑3 (4075112, 1795173) (5287743, 2345301) (10012830, 4272034) (10531701, 4418256)
𝛥𝜎  (3700198, 48050)  (4842237, 62918)  (9147580, 115601)  (9783599, 124426)

Table B.9
Results of 𝜒2 test applied to the output distributions of OPT, under the sphere-like assumption for the defect shape, for samples
1–4.
Sample 5 6 7 8
√

area1 (3243, 272) (5062, 381) (6965, 563) (14362, 1277)
√

area2 (3237, 303) (5059, 503) (6958, 695) (14329, 1347)
√

area3 (3229, 84, 1.04) (5049, 288) (6940, 298) (14291, 357)
ℎ1 (3247, 356) (5077, 606) (6981, 826) (14372, 1589)
ℎ2 (3236, 155) (5047, 268) (6941, 366) (14299, 671)
ℎ3 (3232, 172) (5049, 298) (6944, 404) (14307, 789)
𝑆1 (3505, 1483) (5398, 2014, 1.08) (7489, 3035) (15590, 6940)
𝑆2 (3369, 876, 1.44) (5178, 835, 2.53) (7164, 1483, 1.81) (14899, 4047, 1.09)
𝑆3 (3617, 1850, 1.10) (5477, 2255, 1.53) (7805, 3743, 1.10) (16389, 8830)
𝑑1 (5314, 7103, 1.20) (9549, 15932, 1.21) (12586, 19594, 1.16) (23156, 29533, 1.00)
𝑑2 (3485, 1433) (5472, 2328) (7532, 3238) (15465, 6554)
𝑑3 (3711, 2042, 1.00)  (6093, 4074) (8226, 5151, 0.89) (16344, 8840)
𝛥𝜎 (3246, 302) (5076, 581) (6963, 743) (14339, 1343)

As it can be seen, the output distributions are mainly asymmetrical. It should be mentioned, again, that this results were obtained
pon prescribing Normal distributions over the input features, see Table 2.

The standard deviations of the output distributions are also indicators of the propagation of input uncertainty to the output.
owever, varying one input at a time does not represent all possible interplay between input features.
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Table B.10
Results of 𝜒2 test applied to the output distributions of OPT, under the sphere-like assumption for the defect shape, for samples
5–8.
Sample 5 6 7 8
√

area1 (89731, 7562) (89731, 7562) (46609, 3841) (917970, 68295)
√

area2 (89634, 9190) (89634, 9190) (46579, 4903) (918305, 98149)
√

area3 (89415, 4691) (89415, 4691) (46465, 2714) (916700, 73682)
ℎ1 (89986, 11236) (89986, 11236) (46767, 5986) (922426, 123293)
ℎ2  (89426, 4924)  (89426, 4924) (46461, 2649) (916066, 56388)
ℎ3 (89480, 5653) (89480, 5653) (46485, 2972) (916558, 62261)
𝑆1 (96529, 40418) (96529, 40418) (50104, 20569) (969416, 350621)
𝑆2 (91659, 18059, 1.31) (91659, 18059, 1.31) (47620, 8715, 1.67) (922622, 97323, 1.20)
𝑆3 (99392, 46245, 0.51) (99392, 46245, 0.51) (51485, 23151, 0.89) (978160, 345049, 0.73)
𝑑1 (167507, 262375, 0.82) (167507, 262375, 0.82) (91716, 155967, 0.92) (1855235, 3048763)
𝑑2 (97509, 43933) (97509, 43933) (50805, 23163) (998035, 450412)
𝑑3  (107323, 70595)  (107323, 70595) (56744, 39517) (1137322, 835332)
𝛥𝜎 (89830, 10408) (89830, 10408) (46693, 5664) (921605, 124453)

Table B.11
Results of 𝜒2 test applied to the output distributions of OPT, under the cube-like assumption for the defect shape, for samples
9–12.
Sample 5 6 7 8
√

area1 (3714433, 269787) (4860658, 352518) (9179447, 639256) (9816999, 683230)
√

area2 (3715497, 388040) (4861882, 507368) (9182185, 931626) (9819872, 997673)
√

area3 (3708490, 279134) (4853075, 367050) (9165463, 672612) (9801079, 708177)
ℎ1 (3731636, 487294) (4882832, 635725) (9219949, 1168439) (9860314, 1250710)
ℎ2 (3707330, 220889) (4851365, 288199) (9163574, 528256) (9800531, 572701)
ℎ3 (3708988, 242475) (4853612, 316869) (9167389, 577764) (9804419, 621557)
𝑆1 (3904929, 1385828) (5102616, 3236595) (10260840, 3483936) (10260840, 3483935)
𝑆2 (3727515, 408211) (4871166, 523182) (9178867, 925965) (9819668, 999473)
𝑆3  (3931764, 1360258)  (5132880, 1759424) (9647538, 23216605,−0.95) (10318600, 3419419,−0.89)
𝑑1 (7094206, 10695985) (9197771, 13640010) (17762207, 24392188) (17762207, 24689935)
𝑑2 (4007700, 1745336) (5241768, 2276211) (10519372, 4392188) (10519372, 4392188)
𝑑3 (4513029, 3134230) (5905142, 4099392) (11718965, 7719968) (11718965, 7719967)
𝛥𝜎 (3728028, 486746) (4878313, 636347) (9850367, 1246696) (9850367, 1246696)

Appendix C. Pearson’s correlation coefficient results

Table C.12 shows the results of PCC investigation obtained for each input quantity of each sample.

Table C.12
Results of Pearson correlation coefficient. Note that extreme values (i.e., −1 and 1) are rounded to the second decimal figure.
𝛥𝜎∗ refers to the logarithm of 𝛥𝜎.
Sample

√

area1
√

area2
√

area3 ℎ1 ℎ2 ℎ3 𝑆1 𝑆2 𝑆3 𝑑1 𝑑2 𝑑3 𝛥𝜎 𝛥𝜎∗

1 −0.99 −0.99 1.00 −0.98 −1.00 1.00 0.99 0.99 0.99 0.94 −0.99 0.98 −0.76 −1.00
2 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 0.99 0.99 0.93 −0.99 0.98 −0.75 −0.99
3 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 0.99 0.94 −0.99 0.98 −0.75 −0.99
4 −0.99 −0.99 1.00 −0.98 −1.00 1.00 0.99 1.00 0.99 0.95 −0.99 0.98 −0.78 −1.00
5 −1.00 −0.99 1.00 −0.98 −0.99 0.99 0.99 1.00 0.99 0.93 −0.99 0.97 −0.75 −1.00
6 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 0.99 0.93 −0.99 0.98 −0.75 −0.99
7 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 0.99 0.93 −0.99 0.98 −0.76 −1.00
8 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 0.99 0.93 −0.99 0.97 −0.75 −0.99
9 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 1.00 0.94 −0.99 0.98 −0.76 −1.00
10 −1.00 −0.99 1.00 −0.98 −1.00 0.99 0.99 1.00 1.00 0.93 −0.99 0.98 −0.75 −0.99
11 −1.00 −0.99 1.00 −0.98 −1.00 1.00 1.00 1.00 1.00 0.94 −0.99 0.98 −0.76 −1.00
12 −1.00 −0.99 1.00 −0.98 −1.00 1.00 1.00 1.00 1.00 0.94 −0.99 0.98 −0.75 −0.99

Appendix D. Permutation feature importance results

The present appendix summarises the outcomes of the PFI analysis. Specifically, Table D.13 gathers the computed range of MAPE
Eqs. (34)–(36)) for each input descriptor.
16
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Table D.13
Range of MAPE for each input descriptor.

MAPEmin MAPEmean MAPEmax Permutations
√

area1 0.40 1.43 2.17 2500
√

area2 0.36 1.62 2.46 3000
√

area3 0.40 1.57 2.57 5000
ℎ1 0.56 1.68 2.55 2500
ℎ2 0.35 1.37 2.12 5500
ℎ3 0.44 1.58 2.38 3000
𝑆1 0.51 1.89 2.79 1500
𝑆2 0.25 0.97 1.57 3000
𝑆3 0.56 2.70 4.2 4500
𝑑1 1.59 4.96 7.35 2500
𝑑2 0.73 2.75 3.96 3500
𝑑3 1.69 5.12 8.06 1500
𝛥𝜎 7.44 25.84 40.9 2500
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