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Abstract: The limiting distributions of statistics used to test hypotheses about parameters on the boundary
of their domains may provide very poor approximations to the finite-sample behaviour of these statistics,
even for very large samples. We review theoretical work on this problem, describe hard and soft boundaries
and iceberg estimators, and give examples highlighting how the limiting results greatly underestimate the
probability that the parameter lies on its boundary even in very large samples. We propose and evaluate
some simple remedies for this difficulty based on normal approximation for the profile score function, and
then outline how higher order approximations yield excellent results in a range of hard and soft boundary
examples. We use the approach to develop an accurate test for the need for a spline component in a linear
mixed model.
Résumé: Les statistiques utilisées pour tester des hypothèses concernant des paramètres situés sur la frontière
de leur domaine présentent souvent des distributions limites non standard, qui peuvent être de mauvaises
approximations d’échantillon fini même lorsque la taille de l’échantillon est très grande. Nous passons en
revue les travaux théoriques relatifs à ce problème, décrivons les problèmes de limites dures et molles
et les estimateurs “iceberg”, et donnons des exemples montrant que les résultats limites sous-estiment
fortement la probabilité que le paramètre se trouve sur sa frontière, même lorsque l’échantillon est d’une
taille importante. Nous proposons et évaluons quelques remèdes simples basés sur l’approximation normale
de la fonction score profilée; puis nous démontrons que les approximations d’ordre supérieur donnent
d’excellents résultats dans une série d’exemples de frontières dures et molles. Nous utilisons l’approche
pour développer des tests pour une composante spline dans un modèle linéaire mixte.

Dedication
Nancy Reid has played a leading role in developments in statistical theory and in advancing the discipline
of statistics by stimulating and supporting research in Canada and more widely. She has also been a wise
and wonderful mentor and friend, to whom we offer this small birthday present as a token of our gratitude,
respect, and admiration.

* Corresponding author: Soumaya.Elkantassi@unil.ch
© 2023 The Authors. The Canadian Journal of Statistics/La revue canadienne de statistique
published by Wiley Periodicals LLC on behalf of Statistical Society of Canada / Société statistique du Canada.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited, the use is
non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-8537-6191
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcjs.11791&domain=pdf&date_stamp=2023-08-04


2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 781

1. INTRODUCTION

Inference procedures based on likelihood theory form the backbone of many statistical methods,
owing to the appeal of likelihood as a measure of plausibility, the generality of the likelihood
paradigm, the flexibility with which new problems can be addressed, and close links to the
Bayesian approach. The original notion now encompasses a wide range of related ideas, including
conditional and marginal likelihoods, partial likelihoods, empirical likelihoods, quasi- and
pseudo-likelihoods, and composite likelihoods; see, for example, Pawitan (2001). An appealing
aspect is that the standard theory, which was initiated by Fisher (1922, 1925, 1934), leads to a few
well-understood, simple, and widely applicable approximations for inference. These typically
rely on normal and chi-squared distributions and have been easily applied from well before
the computer age. Over the past few decades, this classical theory has undergone substantial
further development in which Nancy Reid has played a central role, and in its modern form it
can yield highly accurate inferences based on parametric models even for very small samples
(Barndorff-Nielsen & Cox, 1994; Fraser & Reid, 1995; Severini, 2000; Brazzale, Davison &
Reid, 2007; Fraser, 2017).

Much less attention has been paid to so-called nonregular cases, under which the standard
conditions for validity of these classical approximations do not hold. These conditions, which are
typically of the Cramér type (Cramér, 1946, §33.3), include differentiability of the underlying
joint probability or density function up to a suitable order and finiteness of the Fisher information
matrix, but fail for models that are commonly used in genetics, econometrics, and many other
fields. One class of examples consists of the so-called endpoint problems, in which the support
of the observations must be estimated; in this case, the shape of the density function at the limits
of its support determines the accuracy with which the endpoint, and possibly other parameters,
can be estimated (Smith, 1985). Nonregularity can arise in many other ways; see Smith (1989),
Cheng & Traylor (1995), Barndorff-Nielsen & Cox (1994, §3.8), Davison (2003, §4.6), and
Cox (2006, Chapter 7).

Brazzale & Mameli (2023) group nonregular problems into three broad classes. One class
consists of change-point problems, and a related class is situations in which one or more
components of the parameter vanish when another component is set to a particular value. In
both cases, approximate distributions for likelihood-based statistics can be complex and their
usefulness may be limited in practice. A third class of nonregular problems comprises the
so-called boundary cases, where it is desired to test the hypothesis that some interest parameter
𝜓 equals a null value 𝜓0 against the alternative that 𝜓 > 𝜓0, and 𝜓0 lies on the boundary of its
domain. Informally, the resulting difficulties occur because the maximum likelihood estimator
can fall only on one side of 𝜓0. If the maximum occurs on the boundary 𝜓0, the score function
need not be zero there, and the distributions of the related likelihood statistics will not converge to
the typical normal or chi-squared limits. Because of the difficulties in deriving and then in using
the appropriate limiting distributions, practitioners tend to ignore the boundary problem and to
apply the usual asymptotic results. This naïve approach can lead to very inaccurate inferences,
especially for complex models.

In this article, we study finite-sample approximations for certain boundary problems and show
how they may be greatly improved using higher order likelihood procedures. The only precursor
paper of which we are aware is by Castillo & López-Ratera (2006), who demonstrate the validity
of an improved signed likelihood ratio statistic when testing a boundary hypothesis on a scalar
parameter in an exponential family. A large literature on higher order likelihood inference for
regular models, in both classical and Bayesian frameworks, summarized in Brazzale, Davison &
Reid (2007), Severini (2000), or Barndorff-Nielsen & Cox (1994), shows how highly accurate
approximations to the distributions of test statistics and pivots may be obtained for a variety of
parametric statistical models.
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We distinguish between soft and hard boundaries. An example of the first, testing in simple
mixed effects models, includes as a special case comparison of parametric regression models
with semiparametric alternatives, under the now-standard formulation of spline regression as
a linear mixed model (Laird & Ware, 1982; McCulloch & Searle, 2001; Ruppert, Wand &
Carroll, 2003; Wood, 2017). This is a soft boundary because, although the parameter to be tested
makes statistical sense only when it is nonnegative, the likelihood is mathematically well defined
in an open neighbourhood around the null value, so standard higher order approximations can be
applied on the boundary. An example of a hard boundary arises in testing for infinite mixtures,
such as the Student-𝑡 distribution with continuous degrees of freedom 𝜈 = 𝜓

−1 or the negative
binomial distribution with 𝑘 = 𝜓

−1 successes, which reduce to the normal and Poisson models,
respectively, when 𝜓 = 0. This is a hard boundary because 𝜓 cannot be negative.

The asymptotic distribution of the likelihood ratio statistic in both settings is typically 𝜒
2, a

finite mixture of chi-squared variables with known probabilities and degrees of freedom (Self &
Liang, 1987), although other limiting distributions can also arise (Sinha, Kopylev & Fox, 2012).
In the simplest case, the limiting distribution of the likelihood ratio statistic puts mass 1∕2 at
𝜓 = 0, with the remaining probability spread as a 𝜒

2
1 distribution, although we shall see that this

approximation provides unreliable inferences even in large samples.
The rest of the article is organized as follows: Section 2 briefly reviews the literature on

boundary problems and motivates our work. Section 3 describes some simple remedies that use
corrections to the profile score to better estimate the mass on the boundary, and explores their
adequacy. Section 4 reviews higher order likelihood theory and illustrates how well it can be
used to improve the entire distribution of likelihood-based test statistics in both soft and hard
boundary problems. Section 5 describes and illustrates an application of the ideas to the linear
mixed model. Our conclusions are given in Section 6. Full details of the calculations and further
numerical results may be found in Chapter 3 of Elkantassi (2023).

2. BOUNDARY PROBLEMS

2.1. Background
Let 𝓁(𝜓, 𝜆) denote the log-likelihood function for a parametric statistical model for data
with sample size 𝑛, with scalar parameter of interest 𝜓 and nuisance parameter 𝜆, where
𝜓 ∈ Ψ = [𝜓 ′

,∞) for some known real number 𝜓
′ and the value of 𝜆 that generated the data is

interior to an open set Λ. Suppose we wish to test the null hypothesis 𝐻0 ∶ 𝜓 = 𝜓0 for some
fixed known 𝜓0. If 𝜓0 > 𝜓

′, then under mild regularity conditions and in large samples, the
signed likelihood ratio statistic

𝑟(𝜓0) = sign(𝜓̂ − 𝜓0)[2{𝓁(𝜓̂ , 𝜆̂) − 𝓁(𝜓0, 𝜆̂0)}]1∕2
, (1)

also known as the likelihood root, has a standard normal distribution, and the likelihood ratio
statistic w(𝜓0) = 𝑟(𝜓0)2 follows a 𝜒

2
1 distribution. In Equation (1), (𝜓̂ , 𝜆̂) denotes the overall

maximum likelihood estimators of the parameters, and 𝜆̂0 denotes the maximum likelihood
estimator of 𝜆 when 𝜓 = 𝜓0. If 𝜓0 = 𝜓

′, then a boundary problem occurs.
Research on boundary problems was initiated by Chernoff (1954), who derived the asymptotic

null distribution of the likelihood ratio statistic for testing where 𝜓 lies relative to a smooth
(𝑝 − 1)-dimensional surface in a 𝑝-dimensional space when the true parameter value lies on
the surface. Geometrical arguments establish that this distribution is equivalent to that of the
likelihood ratio statistic for testing restrictions on the mean of a multivariate normal distribution
with a known covariance matrix. An important further step is by Self & Liang (1987), who
allow 𝜓0 to lie on the boundary of the parameter space and suppose that the latter could be
approximated by a tangent cone with vertex at 𝜓0; Geyer (1994) discusses these limiting results

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11791
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 783

further. Kopylev & Sinha (2011) and Sinha, Kopylev & Fox (2012) derive the null distribution of
the likelihood ratio statistic through algebraic arguments. The difficulty of deriving closed-form
expressions for such distributions increases when more nuisance parameters lie on the boundary
of the parameter space. All these contributions are summarized by Kopylev (2012), who also
describes applications in genetics and biology. In general terms, the asymptotic cumulative
distribution is chi-bar squared (Kudo, 1963):

Pr(𝜒2
≤ 𝑥) =

𝑁∑

𝜈=0

𝜔
𝜈P𝑟(𝜒2

𝜈
≤ 𝑥) for 𝑥 ∈ ℝ, (2)

i.e., a mixture of chi-squared distributions with degrees of freedom 𝜈 and nonnegative weights
𝜔

𝜈
summing to unity that depend on the number and type of parameters and on the geometry of

the tangent cone; the 𝜒
2
0 distribution places a point mass on 𝑥 = 0. In the following, we compare

the finite-sample probability that the maximum likelihood estimator is positive to the asymptotic
weight 𝜔1 = 1∕2 in the simplest situation, i.e., 𝑁 = 1.

2.2. Smoking Guns
The asymptotic approximation given by Equation (2) can perform very poorly. Consider the
one-way random effects model

𝑌
𝑖𝑗
= 𝜇 + 𝑏

𝑖
+ 𝜀

𝑖𝑗
for 𝑖 = 1,… , 𝑘 and 𝑗 = 1,… , 𝑚, (3)

where 𝜇 is the overall mean, and 𝑏
𝑖

and 𝜀
𝑖𝑗

are mutually independent normal random variates
having zero means and respective variances 𝜎

2
𝑏

and 𝜎
2. This corresponds to a sample of

independent observations divided into 𝑘 groups, each of size 𝑚, so 𝑛 = 𝑚𝑘. Let 𝜓 = 𝜎
2
𝑏
∕𝜎2

and set 𝜆 = (𝜇, 𝜎2), so that a test of the boundary hypothesis 𝐻0 ∶ 𝜓 = 𝜓0 = 0 corresponds
to testing 𝑏1 = · · · = 𝑏

𝑘
= 0. In this case, an exact 𝐹 test is available, but it is instructive to

apply the large-sample approximation. The large-sample distribution of the likelihood root is
(Chernoff, 1956)

𝑝𝑟0{𝑟(𝜓0) ≤ 𝑥} = 𝐼(𝑥 ≥ 0)Φ(𝑥) for 𝑥 ∈ ℝ, (4)

where 𝑝𝑟0 denotes the probability under 𝐻0, 𝐼(⋅) is an indicator function, and Φ(⋅) denotes the
cumulative distribution function of a standard normal random variable. The 𝑃 -value for a test of
𝐻0 is thus 𝑝obs = 𝑝𝑟0{𝑟(𝜓0) ≥ 𝑟obs}, where 𝑟obs is the observed value of 𝑟(𝜓0), and 𝑝𝑟0(⋅) denotes
a probability computed under 𝐻0. If 𝜓̂ = 𝜓0, i.e., the maximum likelihood estimate of 𝜓 lies on
the boundary, then 𝑟obs = 0 and Equation (4) yields 𝑝obs = 1, whereas if 𝑟obs > 0, i.e., 𝜓̂ > 𝜓0,
then Equation (4) yields 𝑝obs = Φ(−𝑟obs).

Apart from additive constants, the log-likelihood function may be written as

𝓁(𝜇, 𝜎2
, 𝜓) = −1

2

{
𝑚𝑘 log 𝜎

2 +
𝐶2

𝜎2
+

𝐶1

𝜎2(1 + 𝑚𝜓)

+ 𝑘 log(1 + 𝑚𝜓) +
𝑘𝑚(𝑦⋅⋅ − 𝜇)2

𝜎2(1 + 𝑚𝜓)

}
, (5)

where the grand mean 𝑦⋅⋅ and the sums of squares 𝐶1 and 𝐶2 between groups and within groups
are mutually independent and satisfy
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784 ELKANTASSI, BELLIO, BRAZZALE, AND DAVISON Vol. 51, No. 3

TABLE 1: Probability (%) of positive maximum-likelihood estimator of the variance ratio in model (3).

𝑚 = 5 𝑚 = 10 𝑚 = 20 𝑚 = 30

𝑘 Usual REML Usual REML Usual REML Usual REML

5 32.2 43.0 30.3 41.7 29.5 41.1 29.2 40.9

10 37.7 45.5 36.3 44.6 35.6 44.1 35.4 44.0

20 41.4 47.0 40.4 46.3 39.9 45.9 39.7 45.8

30 43.0 47.6 42.1 47.0 41.7 46.7 41.6 46.6

50 44.6 48.1 43.9 47.7 43.6 47.5 43.5 47.4

100 46.2 48.7 45.7 48.4 45.5 48.2 45.4 48.2

Abbreviation: REML, restricted maximum likelihood.

𝐶1 = 𝑚

𝑘∑

𝑖=1

(
𝑦
𝑖⋅ − 𝑦⋅⋅

)2 ∼ 𝜎
2(1 + 𝑚𝜓)𝜒2

𝑘−1,

𝐶2 =
𝑘∑

𝑖=1

𝑚∑

𝑗=1

(
𝑦
𝑖𝑗
− 𝑦

𝑖⋅

)2 ∼ 𝜎
2
𝜒

2
𝑘(𝑚−1)

with 𝑦⋅⋅ and 𝑦
𝑖⋅, respectively, representing the overall average and that for the 𝑖th group. It is

easily checked that the profile log-likelihood function for 𝜓 may be written

𝓁p(𝜓) ≡ −
𝑘

2

{
𝑚 log

(
𝐶2 +

𝐶1

1 + 𝑚𝜓

)
+ log(1 + 𝑚𝜓)

}
for 𝜓 ≥ 0, (6)

and using the likelihood root given in Equation (1), we have 𝑝𝑟0
{
𝑟(𝜓0) > 0

}
= 𝑝𝑟(𝐵 > 𝑚

−1),
where the random variable 𝐵 has the beta distribution with parameters (𝑘 − 1)∕2 and 𝑘(𝑚 − 1)∕2.
Table 1 shows that this probability is markedly smaller than 0.5 for any values of 𝑘 and 𝑚 likely
to arise in practice; the limiting value appears as 𝑘 →∞, and the asymptotic approximation
degrades slightly as 𝑚 increases for fixed 𝑘.

Likelihood-based variance estimation is downwardly biased, which suggests using the
restricted log-likelihood function (Harville, 1977). This amounts to dropping the last term in
Equation (5) and replacing the coefficients 𝑚𝑘 and 𝑘 for the logarithmic terms by 𝑚𝑘 − 1 and
𝑘 − 1, respectively. The resulting probability of a positive gradient, 𝑝𝑟{𝐵 > (𝑘 − 1)∕(𝑘𝑚 − 1)},
is also given in Table 1. The approximation is better, but remains too poor for reliable use in
applications.

The results for the previous example might be ascribed to the estimation of a variance.
To see that similar problems can arise in other settings, consider a random sample of size
𝑛 from a mixture of 𝑝-dimensional normal variables, 1

2


𝑝
(𝜆 − 𝜓1

𝑝
, 𝐼

𝑝
) + 1

2


𝑝
(𝜆 + 𝜓1

𝑝
, 𝐼

𝑝
),

where 𝜆 ∈ ℝ𝑝 is a vector of nuisance parameters, 𝜓 ≥ 0 is a scalar interest parameter, and 1
𝑝

and 𝐼
𝑝

are, respectively, a 𝑝 × 1 vector of 1 and the 𝑝 × 𝑝 identity matrix. The parameters 𝜆 and
𝜓 can be estimated using the EM algorithm, and when 𝑝 = 2 and 𝑛 = 30, 50, 100, 200, and 500,
the probabilities (%) that 𝜓̂ > 0 are, respectively, 41.2, 44.3, 45.2, 46.8, and 48.9. Increasing 𝑝

up to 20 does not much affect the results. Although 𝜓 is a location parameter and the variances
are known, the probability of a boundary case, 𝜓̂ = 0, is appreciably larger than the asymptotic
results suggest.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11791
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 785

In these and other examples, we have considered the empirical probability of boundary cases
in finite samples typically exceeding its asymptotic value, often by some margin. In the next
section we describe some simple fixes for this problem.

3. SIMPLE SOLUTIONS

3.1. Icebergs
Feng & McCulloch (1992) suggest that in some cases one can avoid difficulties with boundaries
and improve on the naïve approach by extending the domain of the log-likelihood function to all
parameter values for which the density function is mathematically well defined, even if certain
values make no sense statistically, while introducing a rule to impose the usual large-sample
distributions for likelihood-based statistics. Their method is illustrated on a three-component
mixture of normals with one or two mixing proportions on their boundary, in which setting
the true coverage probabilities of confidence regions constructed by their “intersection method”
are acceptable; however, this approach works only when the null hypothesis is uniquely
identified. A counterexample is given by Dietz & Böhning (1995) in their discussion of Cheng
& Traylor (1995).

This idea suggests that one might visualize a maximum likelihood estimator 𝜓̃ , which
equals 𝜓̂ when the latter is positive but can take also values outside the parameter space.
In the simplest case, 𝜓̃

⋅∼  (𝛿, 𝜏2) and 𝜓̂ = max(𝜓̃ , 0). We call this an iceberg because the
part of its distribution outside the parameter space is invisible, and it is typically larger than
the visible part. In analogy to Equation (1), we can equally envisage an iceberg likelihood
root, 𝑟(𝜓0)

.
= (𝛿∕𝜏, 1). When 𝛿 < 0, then 𝑝𝑟(𝜓̂ > 0) = 𝑝𝑟(𝜓̃ > 0)

.
= Φ(𝛿∕𝜏) < 1∕2, and the

corresponding 𝑃 -value Φ(−𝑟obs) computed using Equation (4) will be too large, leading to a
loss of power when testing the boundary hypothesis using the large-sample results. For a crude
remedy, we then write 𝑝𝑟{𝑟(𝜓0) > 0}

.
= 𝑝+, giving 𝛿∕𝜏

.
= Φ−1(𝑝+) and the improved 𝑃 -value

𝑝𝑟0{𝑟(𝜓0) > 𝑟obs} = 𝑝𝑟0{𝑟(𝜓0) > 𝑟obs}
.
= 1 − Φ(𝑟obs − 𝛿∕𝜏)
.
= Φ

{
Φ−1(𝑝+) − 𝑟obs

}
for 𝑟obs > 0. (7)

Here and elsewhere, Φ−1(⋅) denotes the inverse of the function Φ(⋅). This argument presupposes
that 𝜓̃ has an approximate normal distribution and can only be applied when 𝑝+ can be computed
or adequately approximated. We now discuss one approach to doing so, by obtaining analytical
estimates of 𝑝+.

3.2. Profile Score Modification
Under mild conditions, the log-likelihood function will have a local maximum on the boundary
if the profile log-likelihood function for 𝜓

𝓁p(𝜓) = 𝓁(𝜓, 𝜆̂
𝜓
) = max

𝜆

𝓁(𝜓, 𝜆),

has a negative gradient there, i.e., 𝜓̂ > 𝜓0 if 𝜕𝓁p(𝜓)∕𝜕𝜓 > 0 at𝜓 = 𝜓0. This suggests considering

𝑝+ = 𝑝𝑟0(𝜓̂ > 𝜓0)
.
= 𝑝𝑟0

{
𝜕𝓁p(𝜓)
𝜕𝜓

|||||𝜓=𝜓0

> 0

}
, (8)

where 𝑝𝑟0 denotes the probability computed under the model with 𝜓 = 𝜓0, and the approximation
arises because the global maximum of the likelihood might lie away from the boundary even

DOI: 10.1002/cjs.11791 The Canadian Journal of Statistics / La revue canadienne de statistique
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786 ELKANTASSI, BELLIO, BRAZZALE, AND DAVISON Vol. 51, No. 3

if the profile score has a negative derivative there. Unlike the distribution of the maximum
likelihood estimator, that of the profile score statistic is continuous, without a point mass at the
origin. In an investigation of its finite-sample properties for a random sample of 𝑛 observations,
McCullagh & Tibshirani (1990) show that

E
{

𝜕𝓁p(𝜓)
𝜕𝜓

}
= −1

2

{
(𝜅

𝜓,𝑟,𝑠
− 𝜅

𝜓,𝑡
𝜅
𝑡,𝑢
𝜅
𝑢,𝑟,𝑠
)𝜅𝑟,𝑠

+ (𝜅
𝜓,𝑟𝑠

− 𝜅
𝜓,𝑡

𝜅
𝑡,𝑢
𝜅
𝑢,𝑟𝑠
)𝜅𝑟,𝑠

}
+ 𝑂(𝑛−1∕2), (9)

where summation is implied over repeated indices. The indices 𝑟, 𝑠, 𝑡, 𝑢 refer to components
of the nuisance parameter 𝜆; 𝜅

𝑟,𝑠
is the (𝑟, 𝑠) component of the Fisher information matrix for

𝜆; 𝜅𝑟,𝑠 is a component of the corresponding inverse matrix; 𝜅
𝜓,𝑟

is a component of the Fisher
information corresponding to 𝜓 and 𝜆

𝑟
; and

𝜅
𝜓,𝑟,𝑠

= E
{

𝜕𝓁
𝜕𝜓

𝜕𝓁
𝜕𝜆

𝑟

𝜕𝓁
𝜕𝜆

𝑠

}
, 𝜅

𝜓,𝑟𝑠
= E

{
𝜕𝓁
𝜕𝜓

𝜕
2𝓁

𝜕𝜆
𝑟
𝜕𝜆

𝑠

}
.

The terms 𝜅
𝑟,𝑠

, 𝜅
𝜓,𝑟,𝑠

, and so on, are 𝑂(𝑛), and 𝜅
𝑟,𝑠 is 𝑂(𝑛−1), so the leading term on the right-hand

side of Equation (9) is 𝑂(1). A similar computation gives the familiar formula

var
{

𝜕𝓁p(𝜓)
𝜕𝜓

}
= 𝜅

𝜓,𝜓
− 𝜅

𝜓,𝑟
𝜅
𝑠,𝜓

𝜅
𝑟,𝑠 + 𝑂(𝑛1∕2), (10)

whose leading term is 𝑂(𝑛). If we call the leading terms on the right-hand sides of Equations (9)
and (10) 𝑚

𝑝
and 𝑠

2
𝑝
, respectively, then a normal approximation gives

𝑝+
.
= Φ(𝑚

𝑝
∕𝑠

𝑝
) = 𝑝

𝑎

+.

If it is feared that such an approximation is inadequate, then refinement might be sought using
the first term of an Edgeworth expansion, which requires the skewness 𝑘

𝑝
of the profile score.

Painful computations sketched in Elkantassi (2023) lead to an approximation to 𝑘
𝑝
, enabling a

more refined version of 𝑝𝑎+, which we label 𝑝𝑒+. We shall see later that this does not help much,
so we omit the details.

3.3. Numerical Examples
We assess the value of the preceding computations by comparing the generalized Pareto,
Student-𝑡, and negative binomial distributions with baseline exponential, normal, and Poisson
distributions, respectively. The first three can be generated as infinite mixtures of the last three, but
the first has the peculiarity that although the mixture results in overdispersion relative to the corre-
sponding baseline, the generalized Pareto can also be less dispersed than its baseline, giving a soft
boundary, whereas the other two examples have hard boundaries. We now give some more details.

A generalized Pareto variable with positive shape parameter 1∕𝜈 can be expressed as 𝑋∕𝑍,
where 𝑋 is standard exponential and 𝑍 is gamma with mean 1∕𝜎 and variance 1∕(𝜈𝜎2), and 𝑋

and 𝑍 are independent. The exponential distribution appears as 𝜈 →∞, so testing 𝜓 = 1∕𝜈 = 0
against 𝜓 > 0 corresponds to testing that the infinite mixture of exponential distributions
generated by averaging over 𝑍 is degenerate, because 𝑍 = 1∕𝜎 with probability 1 when 𝜓 = 0.
Taking 𝜓 < 0 also yields a valid distribution, so the boundary 𝜓 = 0 is soft. The moments of the
profile score for 𝜓 at 𝜓 = 0 are 𝑚

𝑝
= −1, 𝑠2

𝑝
= 𝑛, and 𝑘

𝑝
= 13𝑛.
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 787

TABLE 2: Estimated probabilities (%) of positive maximum likelihood estimators when testing 𝜓 = 0 in
generalized Pareto, Student-𝑡, and negative binomial models for various sample sizes 𝑛.

𝑛

10 20 50 100 200

Generalized Pareto 𝑝+ 39.2a 32.9 37.2 40.5 43.1

𝑝
𝑎

+ 37.6 41.1 44.4 46.0 47.2

𝑝
𝑒

+ 36.9 41.0 44.3 46.0 47.2

Student-𝑡 𝑝+ 21.1 26.3 33.5 36.3 39.7

𝑝
𝑎

+ 34.9 39.2 43.1 45.1 46.5

𝑝
𝑒

+ 33.6 38.8 43.0 45.1 46.5

Negative binomial 𝑝+ 33.5 37.1 41.5 44.3 45.9

𝑝
𝑎

+ 41.1 43.7 46.0 47.2 48.0

𝑝
𝑒

+ 40.9 43.6 46.0 47.2 48.0

Note: The probabilities 𝑝+, 𝑝
𝑎

+, and 𝑝
𝑒

+ are, respectively, obtained using 104 simulated samples and profile score
adjustment, without and with Edgeworth expansion.
aThis figure is unreliable owing to maximization problems in very small samples.

A Student-𝑡 variable centred at 𝜇 and with dispersion parameter 𝜎
2 and degrees of freedom

𝜈 can be expressed as 𝜇 + 𝜎𝑍∕
√

𝑉 ∕𝜈, where 𝑍 is standard normal, 𝑉 has the chi-squared
distribution with 𝜈 degrees of freedom, and 𝑍 and 𝑉 are independent. Thus, setting 𝜓 = 1∕𝜈
and testing for 𝜓 = 0 amounts to testing for normality against the infinite mixture arising
when 𝜓 > 0. In this case, the moments of the profile score are 𝑚

𝑝
= −3∕2, 𝑠

2
𝑝
= 3𝑛∕2, and

𝑘
𝑝
= 369𝑛∕8.
A negative binomial variable can be constructed by taking a Poisson variable with mean

𝜆𝑋, where 𝑋 is gamma with unit mean and shape parameter 𝜈. Setting 𝜓 = 1∕𝜈 and testing for
𝜓 = 0 against 𝜓 > 0 corresponds to testing the baseline Poisson distribution. Here, 𝑚

𝑝
= −𝜆∕2,

𝑠
2
𝑝
= 𝑛𝜆

2∕2, and 𝑘
𝑝
= 𝑛𝜆

2(𝜆 + 2)∕4.
Table 2 compares the empirical probabilities 𝑝+ that 𝜓̂ > 0 in each of these examples with

estimates 𝑝
𝑎

+ and 𝑝
𝑒

+ obtained using the moments of the profile score. The values of 𝑝+ can be
much less than 0.5 even when 𝑛 = 200. Those of 𝑝

𝑎

+ lie roughly half-way between 𝑝+ and 0.5,
so although they offer improvements, they fail to track 𝑝+ closely. The values of 𝑝

𝑒

+ improve
slightly on those of 𝑝𝑎+ but not by enough to justify computing the third cumulant.

Although not detailed here, calculations for the variance components model specified in
Equation (3) lead to similar conclusions: corrections to the profile score such as these do not
provide reliable inferences. In the next section, we study a different approach applicable for
soft boundaries, whereby we aim to improve the limiting normal distributions of boundary test
statistics.

4. HIGHER ORDER APPROXIMATION

4.1. Modified Likelihood Root
Classical large-sample likelihood approximations of the type described in the previous sections
have long been known to have drawbacks, especially in the presence of high-dimensional nuisance
parameters, and intensive work over the past four decades has led to major developments in which
Nancy Reid and Don Fraser have played a crucial role. Although there are numerous closely
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788 ELKANTASSI, BELLIO, BRAZZALE, AND DAVISON Vol. 51, No. 3

related approaches, a relatively simple modification to the first-order methods in regular settings
is the replacement of the likelihood root defined in Equation (1) by the modified likelihood root
(Barndorff-Nielsen, 1986):

𝑟
∗(𝜓0) = 𝑟(𝜓0) +

1
𝑟(𝜓0)

log
{

𝑞(𝜓0)
𝑟(𝜓0)

}
. (11)

This expression combines the likelihood root 𝑟(𝜓) with a correction 𝑞(𝜓) that incorporates
both an adjustment for the elimination of the nuisance parameters and for any departure from
normality of 𝑟(𝜓). Detailed discussions of higher order approximation and expressions for the
correction term 𝑞 in Equation (11) may be found in Fraser, Reid & Wu (1999), Reid (2003), and
Brazzale et al. (2007, Chapter 8).

The distribution of the likelihood root 𝑟(𝜓) based on continuous responses is standard normal
up to first order, i.e., the true and nominal coverages of one-sided confidence intervals differ
asymptotically by (𝑛−1∕2), whereas 𝑟

∗(𝜓0) is standard normal up to third order, implying that
this difference reduces to(𝑛−3∕2); it is(𝑛−1) for discrete responses. Perhaps more important in
applications, the resulting error is relative in large deviation regions, implying that the accuracy
is retained far into the distributional tail.

The new ingredient required to apply Equation (11) is the correction 𝑞(𝜓), a fairly general form
of which can be based on a local exponential family approximation to the data density, known as a
tangent exponential model (Fraser & Reid, 1993, 1995). When the sample consists of independent
continuous observations that are informative about a vector parameter 𝜃 = (𝜓, 𝜆) of dimension
𝑑, the local canonical parameter of this approximate exponential family can be written as

𝜑
⊤(𝜃) =

𝑛∑

𝑗=1

𝑉
𝑗

𝜕𝓁(𝜃; 𝑦)
𝜕𝑦

𝑗

||||||𝑦𝑗=𝑦o
𝑗

, (12)

where 𝑦
o = (𝑦o

1, ..., 𝑦
o
𝑛
) denotes the realized value of the observation vector 𝑦 = (𝑦1,… , 𝑦

𝑛
). The

right-hand side of Equation (12) is the derivative of 𝓁(𝜃) in the directions of the 𝑑 columns
of the 𝑛 × 𝑑 matrix 𝑉 . In the continuous setting and with independent data, this matrix can be
constructed using a vector of pivotal quantities 𝑧 = (𝑧1(𝑦1, 𝜃),… , 𝑧

𝑛
(𝑦

𝑛
, 𝜃)), as

𝑉 = −

{(
𝜕𝑧

⊤

𝜕𝑦

)−1 (
𝜕𝑧

𝜕𝜃⊤

)}||||||(𝑦𝑜,𝜃̂𝑜)
, (13)

where 𝜃̂
o

is the maximum likelihood estimate corresponding to 𝑦
o. An expository account of this

construction, including further details and a brief history of its development, is given by Davison
& Reid (2023).

The correction term appearing in Equation (11) can be written in terms of the local canonical
parameter of the tangent exponential model as

𝑞(𝜓) =
|||𝜑(𝜃̂) − 𝜑(𝜃

𝜓
) 𝜑

𝜆
(𝜃

𝜓
)|||

|||𝜑𝜃
(𝜃̂)|||

×
⎧
⎪
⎨
⎪⎩

|𝚥(𝜃̂)|
|||𝚥𝜆𝜆(𝜃̂𝜓

)|||

⎫
⎪
⎬
⎪⎭

1∕2

,

where 𝜑
𝜃
(𝜃) and 𝜑

𝜆
(𝜃) denote the 𝑑 × 𝑑 and 𝑑 × (𝑑 − 1) matrices of partial derivatives 𝜕𝜑∕𝜕𝜃⊤

and 𝜕𝜑∕𝜕𝜆⊤, and the difference 𝜑(𝜃̂) − 𝜑(𝜃
𝜓
) appearing in the first numerator determinant is a

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11791
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 789

TABLE 3: Empirical probability (%) of the positive maximum likelihood estimator of the variance ratio
in (3) based on 104 simulated datasets using the likelihood root 𝑟 and modified likelihood root 𝑟∗ for the

standard and restricted likelihoods, for a subset of the cases in Table 1.

𝑚 = 5 𝑚 = 10 𝑚 = 20 𝑚 = 30

𝑘 pivot Usual REML Usual REML Usual REML Usual REML

5 𝑟 32.8 43.5 29.8 41.1 30.2 41.2 29.6 41.3

𝑟
∗ 48.7 50.3 47.6 49.0 48.5 49.7 49.2 50.5

10 𝑟 37.1 44.9 36.2 44.5 36.7 45.0 35.6 44.0

𝑟
∗ 49.3 49.7 49.5 49.8 50.3 50.6 49.5 49.9

20 𝑟 40.6 46.1 39.9 45.8 39.9 46.1 40.2 46.5

𝑟
∗ 49.0 49.1 49.3 49.5 49.7 49.9 50.5 50.6

Note: Bold figures are within simulation error of 50%

TABLE 4: Empirical probability (%) of positive maximum likelihood estimator of 𝜓 = 1∕𝜈 for generalized
Pareto samples, based on 104 simulated datasets of size 𝑛.

𝑛 40 60 80 100 200 400

𝑟 36.0 38.3 40.5 40.5 43.1 46.0

𝑟
∗ 50.0 50.2 50.8 50.4 49.7 50.8

Note: Bold figures are within simulation error of 50%

𝑑 × 1 vector. The second term on the right-hand side involves the 𝑑 × 𝑑 observed information
matrix at the overall maximum likelihood estimate, 𝚥(𝜃̂), and its (𝑑 − 1) × (𝑑 − 1) submatrix
𝚥
𝜆𝜆
(𝜃̂

𝜓
) corresponding to 𝜆 evaluated at 𝜃̂

𝜓
= (𝜓, 𝜆̂

𝜓
). These expressions may appear complex,

but the only additional quantities needed beyond the values of the log-likelihood function and
its second derivative evaluated at the overall and constrained maximum likelihood estimates 𝜃̂

o

and 𝜃̂
o
𝜓

, which are needed for first-order inference, are 𝜑(𝜃) and its derivatives, and these are
typically straightforward to compute.

4.2. Numerical Examples
The ideas sketched above require classical regularity conditions for likelihood inference, but can
also be applied in certain soft boundary problems. The profile log-likelihood function specified
in Equation (6) for the variance ratio 𝜓 = 𝜎

2
𝑏
∕𝜎2 from the model given in Equation (3) is

mathematically well defined when 𝜓 > −1∕𝑚, so the higher order approach can be used to test
the boundary hypothesis 𝐻0 ∶ 𝜓 = 0. Table 3, which illustrates how this approach performs for
a subset of Table 1, shows that 𝑟

∗ provides essentially correct inferences in almost all cases,
with a slight improvement if it is applied to the residual likelihood. Quantile–quantile plots for
simulated data show that the distribution of 𝑟∗ is almost exactly standard normal, so that tests of
𝐻0 are essentially perfectly calibrated. Similar results are obtained in a two-way layout.

As mentioned in Section 3.3, the boundary hypothesis 𝜓 = 0 for testing an exponential
distribution against a more dispersed generalized Pareto alternative is also soft. Table 4 and
quantile–quantile plots show that higher order methods work essentially perfectly in this case
also.

DOI: 10.1002/cjs.11791 The Canadian Journal of Statistics / La revue canadienne de statistique
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790 ELKANTASSI, BELLIO, BRAZZALE, AND DAVISON Vol. 51, No. 3

TABLE 5: Empirical coverages (%) for upper confidence limits 𝛼 based on 104 simulations from the
Student-𝑡 distribution with reciprocal degrees of freedom 𝜓 = 𝑛

−(1+𝜀)∕2, for sample sizes 𝑛 = 20, 50, and
100 and 𝜖 = 0.2, 0.4, and 1.

𝑛 = 20 𝑛 = 50 𝑛 = 100

𝛼 (%) 𝑟 𝑟
∗

𝑟 𝑟
∗

𝑟 𝑟
∗

0.5 0.2 0.4 0.3 0.5 0.2 0.4

5 3.1 5.0 3.3 5.0 3.2 4.9

𝜖 = 0.2 10 6.4 10.3 6.7 10.1 6.7 9.9

20 12.9 20.2 14.0 20.4 14.7 20.0

30 19.4 29.9 21.2 29.8 22.2 30.3

40 26.2 30.4 28.8 33.8 30.6 35.2

0.5 0.3 0.6 0.2 0.5 0.3 0.7

5 3.2 5.1 2.9 4.8 3.3 5.1

𝜖 = 0.4 10 6.0 10.0 6.1 10.1 6.8 10.2

20 12.1 20.8 12.7 19.5 14.2 21.3

30 18.2 28.6 19.6 30.3 21.9 31.3

40 25.1 28.6 27.4 32.3 29.8 33.9

0.5 0.3 0.5 0.3 0.6 0.4 0.9

5 2.5 4.9 2.6 5.3 3.0 5.4

𝜖 = 1 10 5.0 10.5 5.6 10.4 6.0 11.3

20 11.0 22.1 12.0 22.0 13.3 22.5

30 16.9 26.0 19.2 28.8 20.1 32.0

40 22.6 26.2 26.0 29.9 28.3 32.9

Note: Figures in bold are within simulation error of the nominal values.

Hard boundaries are more difficult to deal with, because obtaining the derivatives required
for the higher order approximations may be tricky near the boundary, and singular observed
information matrices and other headaches may arise. This is not the case for the negative
binomial example of Section 3.3, for which simulations show good properties for the higher
order methods, except near the origin, for reasons discussed in relation to the next example.
Similar comments apply to the Gaussian mixture.

The numerical difficulties mentioned above arise with the Student-𝑡 example. One approach to
dealing with them is to adapt the null hypothesis without affecting the limiting approximations.
In conventional settings, the limiting power for testing 𝜓 = 𝜓0 against 𝜓1 = 𝜓0 + 𝑛

−1∕2
𝛿

depends on 𝛿 only, so we may argue heuristically that tests of 𝜓0 or of 𝜓
′
0 = 𝜓0 + 𝑏𝑛

−(1+𝜖)∕2

for some positive 𝜖 and 𝑏 chosen so that 𝜓
′
0 is interior to the parameter space should be

indistinguishable in large samples. Table 5 shows coverages for right-tailed confidence intervals
for testing 𝜓 = 1∕𝜈 = 𝑛

−(1+𝜖)∕2 in the Student-𝑡 example, for 𝜖 = 0.2, 0.4, and 1. The boundary is
approached more rapidly for larger 𝜖, but, on the other hand, the error introduced in the asymptotic
approximation will be smaller, so one might expect a trade-off between the resulting properties.
Taking 𝜖 = 0.2 and using 𝑟

∗ gives surprisingly good coverages, at least in the distribution tail,
but larger values of 𝜖 lead to deterioration of the approximation for larger significance levels

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11791
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FIGURE 1: Gaussian Q–Q plots of the positive values of the likelihood root (black) and modified likelihood
root (blue) based on 104 simulated random samples of sizes 𝑛 = 20 (left) and 𝑛 = 100 (right) of Student-𝑡

data with 𝜓 = 𝑛
−(1+𝜖)∕2 reciprocal degrees of freedom for 𝜖 = 0.2.

𝛼. Figure 1 explains this phenomenon: the higher order approximation works very well when
𝜓̂ > 0, but if the probability of this event is smaller than 0.5, then the quantile–quantile plot
has an awkward kink near the origin. In practical terms, this is unimportant, since we hope for
reliable inferences when the test statistic lies in the upper tail of its distribution, i.e., 𝛼 is small,
corresponding to the upper right of the plots. Inferences based on 𝑟 are conservative, because its
distribution is shifted left relative to the standard normal.

Our overall conclusion from these examples is that higher order methods can produce better
tail approximations in such settings, with the caveat that it may be necessary to adjust the
null hypothesis to avoid numerical issues on a hard boundary and that large 𝑝-values may be
unreliable. Fortunately, one is typically concerned about inference from smaller 𝑝-values in
applications.

5. LINEAR MIXED MODELS

5.1. Model Setup
The variance components example of Section 2.2 can be written as a linear mixed model

𝑦|𝑏 ∼
𝑛
(𝑋𝛽 +𝑍𝑏, 𝜎

2
𝐼
𝑛
)𝑏 ∼

𝑞
(0, 𝜎2

𝑏
Δ), (14)

where 
𝑚
(𝑎, 𝐵) denotes the 𝑚-dimensional normal distribution with mean vector 𝑎 and

covariance matrix 𝐵; 𝑋 and 𝑍 are known 𝑛 × 𝑝 and 𝑛 × 𝑞 matrices of explanatory variables;
𝛽 is a 𝑝 × 1 vector of parameters; 𝑏 is a 𝑞 × 1 vector of “random effects” whose correlations
are determined by the known 𝑞 × 𝑞 symmetric positive definite matrix Δ; and 𝜎

2 and 𝜎
2
𝑏

are nonnegative variance parameters. This formulation encompasses models such as the one
identified in Equation (3), in which the columns of 𝑍 consist of indicators for membership of the
different groups and Δ = 𝐼

𝑞
, but also contains models in which smooth curves are fitted using

basis functions such as smoothing splines; in this case, the columns of 𝑍 correspond to basis
functions, and smoothness constraints are imposed via Δ.
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If we write 𝜓 = 𝜎
2
𝑏
∕𝜎2 and Ω−1(𝜓) = 𝐼

𝑛
+ 𝜓𝑍Δ𝑍⊤, then apart from additive constants, the

log-likelihood function 𝓁(𝜓, 𝛽, 𝜎
2) based on the marginal

𝑛
{𝑋𝛽, 𝜎

2Ω−1(𝜓)} distribution of 𝑦
is

− 1
2

{
𝑛 log 𝜎

2 − log |Ω(𝜓)| + 1
𝜎2
(𝑦 −𝑋𝛽)⊤Ω(𝜓)(𝑦 −𝑋𝛽)

}
(15)

for 𝜓 ≥ 0, so the maximum likelihood estimates of 𝜎2 and 𝛽 for fixed 𝜓 are

𝜎̂
2
𝜓
= 1

𝑛

(
𝑦 −𝑋𝛽

𝜓

)⊤Ω(𝜓)
(
𝑦 −𝑋𝛽

𝜓

)
, (16)

𝛽
𝜓
=

{
𝑋

⊤Ω(𝜓)𝑋
}−1

𝑋
⊤Ω(𝜓)𝑦, (17)

and the profile log-likelihood function for 𝜓 is

𝓁p(𝜓) ≡ −
1
2
{
𝑛 log 𝜎̂

2
𝜓
− log |Ω(𝜓)|

}
for 𝜓 ≥ 0. (18)

Likewise, the log restricted likelihood (Harville, 1977) is

𝓁R(𝜓, 𝜎
2) ≡ 𝓁(𝜓, 𝛽

𝜓
, 𝜎

2) + 1
2
{
𝑝 log 𝜎

2 − log |𝑋⊤Ω(𝜓)𝑋|
}
, (19)

where 𝛽
𝜓

is defined in Equation (17), and the corresponding estimator of 𝜎
2 is 𝜎̂

2
𝜓,R =

(𝑦 −𝑋𝛽
𝜓
)⊤Ω(𝜓)(𝑦 −𝑋𝛽

𝜓
)∕(𝑛 − 𝑝).

The crude approach to inference on 𝜓 based on Equation (8) and under the assumption that
𝜓 = 0 requires

𝑝+ = 𝑝𝑟0(𝜓̂ > 0) = 𝑝𝑟0

{
𝜕𝓁

𝑝
(𝜓)

𝜕𝜓

|||||𝜓=0

> 0

}

= 𝑝𝑟0

{
𝑦
⊤(𝐼 −𝐻)𝑍𝑍

⊤(𝐼 −𝐻)𝑦
𝑦⊤(𝐼 −𝐻)𝑦

>

tr
(
𝑍𝑍

⊤
)

𝑛

}

= 𝑝𝑟0
(
𝜀
⊤
𝑄𝜀 > 0

)
, (20)

where 𝐻 = 𝑋(𝑋⊤
𝑋)−1

𝑋
⊤, tr(⋅) denotes the trace of a matrix, 𝜀 ∼

𝑛
(0, 𝐼

𝑛
), and

𝑄 = (𝐼 −𝐻)
{
𝑛𝑍𝑍

⊤ − tr
(
𝑍

⊤
𝑍

)
𝐼
𝑛

}
(𝐼 −𝐻).

Hence, 𝑝+ = 𝑝𝑟

(∑𝑛

𝑗=1𝑞𝑗𝜀
2
𝑗
> 0

)
, where 𝑞1 ≥ · · · ≥ 𝑞

𝑛
are the eigenvalues of 𝑄. Kuonen (1999)

proposed a saddlepoint approximation to this probability that is as fast as exact methods, almost
as accurate, and much easier to program. The corresponding probability based on the restricted
likelihood can be written in the same form, with a different matrix 𝑄. Numerical experiments
show that the saddlepoint approximation for the cases in Table 1 differs by at most 0.002 from
the exact probabilities and that it improves on the 𝜒

2 approximations of Pearson (1959) and
Imhof (1961), though the latter is also quite accurate. Hence, using Equation (7) is reasonable
when the likelihood roots based on Equation (15) or, better, Equation (19), are approximately
normal.
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 793

Although such approximations may be worthwhile in some cases, the boundary 𝜓 = 0 is
soft, as the log-likelihood specified in Equation (15) is mathematically well defined provided
Ω−1(𝜓) is positive definite, which is the case provided 𝜓 > −1∕𝑑

𝑛
, where 𝑑

𝑛
> 0 is the largest

eigenvalue of 𝑍Δ𝑍⊤. Similar comments apply to the restricted log-likelihood function identified
in Equation (19). Hence, when 𝜓 = 0 lies in the interior of the “mathematical” parameter space,
no difficulties with the existence of derivatives arise on the statistical boundary, and higher order
methods can be applied. Skovgaard (1996) proposed a higher order approximation that differs
from the tangent exponential model and verified its high accuracy when applied to the mean in
a one-way random effects model. Lyons & Peters (2000) investigated this approximation more
broadly in linear mixed-effects models and found it highly accurate, including for tests of zero
variance parameters. When revising this article, we became aware of Iglesias-Gonzalez (2007), a
University of Toronto PhD thesis by Sigfrido Iglesias-Gonzalez completed under the supervision
of Nancy Reid, which investigated higher order methods for the linear mixed model in detail,
including parallel derivations of elements for the tangent exponential model. None of these
earlier works considered applications to smooth regression models.

The Appendix outlines the elements needed to apply the tangent exponential approximation
described in Section 4.1 to the linear mixed model.

5.2. Penalized Spline Models
We now construct highly accurate tests of the hypothesis that it is not necessary to include
semiparametric terms in a regression model. A common situation is when the model is of the
form identified by Equation (14), the matrix 𝑋 has columns corresponding to linear regression
on an explanatory variable 𝑥, and the columns of 𝑍 correspond to basis functions such as natural
cubic splines, B-splines, or similar. Testing for adequacy of the linear model therefore amounts
to testing the soft boundary hypothesis that 𝜓 = 𝜎

2
𝑏
∕𝜎2 equals zero.

Such models are widely used, with the choice of basis functions and penalty usually
determined by the complexity of the problem at hand and of the underlying data (de Boor, 1978;
Hastie & Tibshirani, 1990; Wahba, 1990; Green & Silverman, 1994; Wood, 2017). For example,
Ruppert, Wand & Carroll (2003) discuss the use of truncated power bases of order 𝑝, in which
the mean for a response at a scalar 𝑥 equals

𝜇(𝑥) = 𝛽0 + 𝛽1𝑥 + · · · + 𝛽
𝑝
𝑥
𝑝 +

𝐾∑

𝑘=1

𝑏
𝑘
(𝑥 − 𝜅

𝑘
)𝑝+, (21)

where 𝑎+ = max(𝑎, 0), and 𝜅1,… , 𝜅
𝐾

are the knots of the spline. Some care is needed in the
choice of the covariance matrix for 𝑏1,… , 𝑏

𝐾
however, as a symmetric matrix will imply that

the variance of the spline part increases with 𝑥, which may not be plausible. Crainiceanu,
Ruppert & Vogelsang (2002) investigated testing for this variance to equal zero when 𝑝 = 0,
corresponding to a constant mean, and 𝑝 = 1, corresponding to a linear polynomial, and found
that 𝑝+ was smaller than 0.1 for any choice of knots. We prefer natural cubic splines, which
lead to mean functions 𝜇(𝑥) whose variance is roughly constant. Table 6 shows values of 𝑝+
obtained using the Imhof and saddlepoint approximations, and the likelihood root and modified
likelihood root, for a setting with 𝑛 equally spaced knots in the unit interval. The values of 𝑝+ are
noticeably smaller than 0.5 for all of the approximations except the modified likelihood root 𝑟∗,
and quantile–quantile plots confirm that the distribution of 𝑟∗ is remarkably close to the standard
normal.

5.3. Illustration
Figure 2 shows the 10 highest sea levels recorded in the city of Venice over the period 1887–2017;
for 1935 only the six highest values are available. To illustrate the approximations described
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794 ELKANTASSI, BELLIO, BRAZZALE, AND DAVISON Vol. 51, No. 3

TABLE 6: Probability 𝑝+ (%) of positive estimates using Imhof and saddlepoint approximations, and 104

samples of the pivots 𝑟 and 𝑟
∗.

Imhof Saddlepoint Imhof Saddlepoint 𝑟 𝑟
∗

𝑛 (Usual) (Usual) (REML) (REML) (Usual) (Usual)

20 36.5 33.6 36.9 33.3 38.2 50.6

50 33.8 32.7 34.0 32.3 34.9 50.6

100 33.0 32.4 33.1 32.0 34.7 50.7

200 32.6 32.3 32.7 31.8 33.7 49.9

Note: Bold figures are within simulation error of 50%.

50

100

150

200

1920 1960 2000
Year

Se
a 

le
ve

l (
cm

)

FIGURE 2: Annual average (pink) of 10 highest sea levels (cm) in Venice annually from 1887 to 2017
(grey) (only the 6 highest values are available in 1935), with linear fit (black dashed line) and cubic spline

fit (light blue) and its 95% pointwise confidence interval (dot-dashed light blue).
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2023 IMPROVED INFERENCE FOR A BOUNDARY PARAMETER 795

above, we check whether a simple linear model is an adequate description of the annual averages
of these observations. After a natural cubic spline fit with the degrees of freedom chosen by
maximum likelihood, the values of 𝑟 and 𝑟

∗, respectively, 1.067 and 1.471 lead to 𝑃 -values of
0.14 and 0.07 based on the limiting standard normal distributions of these statistics. As expected,
the inference based on 𝑟

∗ is more stringent, though it does not change the conclusion in this case.

6. CONCLUSIONS

Large-sample approximations for testing a boundary hypothesis can be very poor because the
weights appearing in the limiting distribution given in Equation (2) can be wildly inappropriate
in practice. Even in quite large samples, the probability that the maximum likelihood estimator
of a single boundary parameter equals zero can be much larger than the limiting probability. The
corresponding “iceberg estimator” seems to have a downward bias in numerous examples, and
it would be helpful to understand why.

Approaches to improved inference in this simplest possible case are not equally useful.
Direct correction of the probability of a positive maximum likelihood estimator of the boundary
parameter can be based on the profile score at both hard and soft boundaries, but the analytical
computations are unpleasant and such corrections are only moderately useful.

Higher order approximation appears to work essentially perfectly for soft boundaries in the
cases we have considered, and our experiments with moving the null hypothesis to lie at an
asymptotically negligible distance away from a hard boundary suggest that this remedy can also
be applied in other settings. More work is needed to understand how this trick affects the power
of the test and to suggest appropriate choices of its parameters.

In more complex settings, bootstrap simulation under the null hypothesis seems attractive,
and this would often be sensible in one-off analyses in which the programming and computational
overhead are manageable. For routine use, however, it would be valuable to have analytical
results to supplement standard computer output for fits of splines in additive models and their
generalizations.

It would be worthwhile to investigate how higher order methods could be applied in situations
with several boundary parameters.
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APPENDIX

This appendix contains the detailed computations for the tangent exponential approximation
to the variance components and linear mixed-effects models.
Variance Components
For the one-way classification model and the restricted likelihood function, the parameter vector
and data are 𝜃 = (𝜓, 𝜎

2) and 𝑦 = (𝑦1, 𝑦2) = (𝐶1, 𝐶2) in the notation of Section 2.2. Using the
pivots

𝑧1(𝜃, 𝑦) =
𝐶1

𝜎2(1 + 𝑚𝜓)
, 𝑧2(𝜃, 𝑦) =

𝐶2

𝜎2

to define the sufficient directions gives

v
𝜓
=

{
𝑚

𝑚 − 1
𝑘 − 1
𝑘

𝐶2, 𝑘(𝑚 − 1)
𝐶1

𝐶2

}
, v

𝜎2 = {0, 𝑘(𝑚 − 1)}.

The likelihood derivatives with respect to the data are

𝜕𝓁R

𝜕𝑦1
= − 1

2𝜎2(1 + 𝑚𝜓)
,

𝜕𝓁R

𝜕𝑦2
= − 1

2𝜎2
,

which are weighted by the columns of 𝑉 in order to produce the canonical parameter 𝜑(𝜃) =
(𝜑1(𝜃), 𝜑2(𝜃))⊤, where

𝜑1(𝜃) = −
1

2𝜎2
𝑚

𝑚 − 1
𝑘 − 1
𝑘

𝐶2

1 + 𝑚𝜓
,

𝜑2(𝜃) = −
1

2𝜎2
𝑘(𝑚 − 1)

(
1 + 1

1 + 𝑚𝜓

𝐶1

𝐶2

)
.
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The observed information matrix evaluated at the restricted maximum likelihood (REML)
estimator is

𝑗(𝜃̂) = 1
2

⎡
⎢
⎢⎣

𝑚
2

(𝑚−1)2
(𝑘−1)3

𝑘2

(
𝐶2
𝐶1

)2
𝑚(𝑘−1)2

𝐶1
𝑚(𝑘−1)2

𝐶1

𝑘
2(𝑚−1)2(𝑘𝑚−1)

𝐶
2
2

⎤
⎥
⎥⎦
.

The other quantity needed to compute 𝑞(𝜓) is the matrix

𝜑
𝜃
(𝜃) = 1

2𝜎2

⎡
⎢
⎢⎣

𝑚
2

𝑚−1
𝑘−1
𝑘

𝐶2
(1+𝑚𝜓)2

1
𝜎2

𝑚

𝑚−1
𝑘−1
𝑘

𝐶2
(1+𝑚𝜓)

𝑚𝑘(𝑚−1)
(1+𝑚𝜓)2

𝐶1
𝐶2

𝑘(𝑚−1)
𝜎2

(
1 + 𝐶1

𝐶2(1+𝑚𝜓)

)
⎤
⎥
⎥⎦
,

the second column of which contains 𝜑
𝜆
(𝜃); this should be evaluated at 𝜎̂2

𝜓
= (𝑘𝑚 − 1)−1{𝐶2 +

𝐶1∕(1 + 𝑚𝜓)}. Combining the above computations yields

𝑟(𝜓) = sign(𝜓̂ − 𝜓)
[
(𝑘𝑚 − 1) log

{
𝐶1 + 𝐶2(1 + 𝑚𝜓)

}

− 𝑘(𝑚 − 1) log(1 + 𝑚𝜓)]1∕2
,

𝑞(𝜓) =
𝑘(𝑚 − 1)𝐶1 − (𝑘 − 1)(1 + 𝑚𝜓)𝐶2

𝐶1 + 𝐶2(1 + 𝑚𝜓)

{
1
2

(𝑘𝑚 − 1)
𝑘(𝑘 − 1)(𝑚 − 1)

}1∕2

.

If instead we consider the ordinary likelihood function, we use the further pivot 𝑧3(𝜃, 𝑦) =
𝑘𝑚(𝑦⋅⋅ − 𝜇)2∕{𝜎2(1 + 𝑚𝜓)}. Similar computations then allow us to express 𝑟(𝜓) as

sign(𝜓̂ − 𝜓)
[
𝑚𝑘 log

{
𝐶1 + 𝐶2(1 + 𝑚𝜓)

}
− 𝑘(𝑚 − 1) log(1 + 𝑚𝜓)

] 1∕2

and 𝑞(𝜓) as

𝑚

{
(𝑚 − 1)𝐶1 − 𝐶2(1 + 𝑚𝜓)

}
[

𝑘𝐶1

2(𝑚 − 1)
{
𝐶1 + 𝐶2(1 + 𝑚𝜓)

}3

]1∕2

.

Linear Mixed Models
In a more general context, as in the model defined in Equation (14), for 𝜃 = (𝜓, 𝛽, 𝜎

2), we
take the pivots to be the elements of the 𝑛 × 1 vector of scaled martingale differences 𝑧(𝑦; 𝜃) =
Δ(𝜓)1∕2(𝑦 −𝑋𝛽)∕𝜎, which have independent standard normal distributions. The derivatives of
the pivotal quantities are

v
𝛽
= 𝑋, v

𝜎2 =
(𝑦 −𝑋𝛽)

2𝜎2

||||(𝑦o,𝜃̂
o)
.

To obtain the column vector associated with 𝜓 , we consider the eigenvalue decomposition of
Δ(𝜓)−1 = 𝑃Λ(𝜓)𝑃⊤, where 𝑃 is independent of 𝜓 , and Λ(𝜓) is an 𝑛 × 𝑛 diagonal matrix with
elements 1 + 𝜓𝜆

𝑗
, leading to

𝜕𝑧

𝜕𝜓
= 𝑃 Λ̃(𝜓)𝑃⊤

, Λ̃(𝜓) = diag
[

𝜆1

2(1 + 𝜓𝜆1)3∕2
,… ,

𝜆
𝑛

2(1 + 𝜓𝜆
𝑛
)3∕2

]
.

Hence
v
𝜓
= 𝑃Λ(𝜓)1∕2Λ̃(𝜓)𝑃 (𝑦 −𝑋𝛽)|||(𝑦o,𝜃̂

o)
.
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The partial derivative of the ordinary log-likelihood function with respect to the data,

𝜕𝓁(𝜃)
𝜕𝑦

||||𝑦=𝑦o
= − 1

2𝜎2
(𝑦o −𝑋𝛽)⊤Δ(𝜓),

is the final component needed to compute the local parameterization 𝜑(𝜃).
For the corresponding restricted likelihood function, we take the pivotal quantities to be

𝜎
−1Σ(𝜓)−1∕2

𝑒 ∼
𝑛
(0, 𝐼

𝑛
),

where 𝑒 is the residual vector 𝑒 = 𝑦 −𝑋𝐵̂ = 𝐻(𝜓)𝑦, with

𝐻(𝜓) = 𝐼
𝑛
−𝑋{𝑋⊤Δ(𝜓)𝑋}−1

𝑋
⊤Δ(𝜓),

and Σ(𝜓) = 𝐻(𝜓)Δ(𝜓)−1
𝐻(𝜓)⊤, and then proceed as for the ordinary likelihood function.
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