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Abstract: This paper presents the results of a three-year survey (2021–2023), conducted in an area
of approximately 356 km2 in Iraqi Kurdistan with the aim of identifying previously undetected
archaeological sites. Thanks to the development of a multi-temporal approach based on open
multispectral satellite data, greater effectiveness was achieved for the recognition of archaeological
sites when compared to the use of single archival or freely accessible satellite images, which are
typically employed in archaeological research. In particular, the Google Earth Engine services allowed
for the efficient utilization of cloud computing resources to handle hundreds of remote sensing images.
Using different datasets, namely Landsat 5, Landsat 7 and Sentinel-2, several products were obtained
by processing entire stacks of images acquired at different epochs, thus minimizing the adverse
effects on site visibility caused by vegetation, crops and cloud coverage and permitting an effective
visual inspection and site recognition. Furthermore, spectral signature analysis of every potential site
complemented the method. The developed approach was tested on areas that belong to the Land of
Nineveh Archaeological Project (LoNAP) and the Upper Greater Zab Archaeological Reconnaissance
(UGZAR) project, which had been intensively surveyed in the recent past. This represented an
additional challenge to the method, as the most visible and extensive sites (tells) had already been
detected. Three years of direct ground-truthing in the field enabled assessment of the outcomes of the
remote sensing-based analysis, discovering more than 60 previously undetected sites and confirming
the utility of the method for archaeological research in the area of Northern Mesopotamia.

Keywords: archaeology; site detection; multispectral images; Google Earth Engine; Landsat 5;
Landsat 7; Sentinel-2; spectral signatures; ground-truthing

1. Introduction

Remote sensing (RS) has been used for decades in the area of Northern Mesopotamia to
support archaeological investigations, and its application is constantly increasing with the
extensive availability of RS resources and tools. A review of the most recent literature in this
field reveals some examples: the use of Very High-Resolution (VHR) imagery by Malinverni
and colleagues [1,2] to study Assyrian archaeological features in the Navkur Plain; Altaweel
and Squitieri [3] recorded the Dinka site, in Sulaymaniyah province, via an Unmanned
Aerial Vehicle (UAV), assessing possible correlations between surface remains and buried
structures; Kalayci et al. [4] tested the spectral response of ancient communication routes
(locally called hollow ways) located in upper Mesopotamia; Soroush et al. [5] used deep
learning algorithms to automatically identify on CORONA imagery ancient hydraulic
structures (called qanat) in the Erbil area, whereas Starkova explored deserted villages in the
surroundings of Erbil via historical RS data [6,7]; Pirowski et al. [8,9] focused their research
on the identification of the Gaugamela battlefield in the Navkur Plain using Pleaides,
WorldView-2 imagery and several processing techniques (Principal Component Analysis,
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vegetation indexes, etc.); Laugier and colleagues [10,11] mapped archaeological features
and assessed the damage that has occurred to archaeological sites in the Sirwan region
using cartography, RS resources and geophysical surveys; and Titolo and colleagues [12,13]
exploited Google Earth Engine© (GEE) to monitor sites covered by the waters of the Mosul
Dam Reservoir and other dams.

Indeed, cloud computing services for RS products are already a valuable opportunity
for scientific research. GEE can process on a large scale online RS resources with a relevant
impact on any field dealing with geospatial analysis. For instance, GEE was recently used
to assess the Ethiopian archaeological heritage [14], as well as the urban sprawl around the
Amathus site in Cyprus [15], the city of Matera in Italy [16], and for the detection of looting
activities on the Apamea site in Syria [17]. A recent and up-to-date overview of other GEE
applications for archaeological purposes can be found in [18].

From an archaeological point of view, during the last two decades, a renewed in-
terest has arisen for the archaeological heritage included within the autonomous region
of Iraqi Kurdistan [19]. The Land of Nineveh Archaeological Project (LoNAP) has been
carried out by the Università di Udine since 2012, identifying some 1300 archaeological
features, within an area that approximately covers 3000 km2 eastward of the artificial lake
created by the Mosul Dam [20–27]. Within the LoNAP area, more precisely, close to its
south-eastern border, the Asingeran Excavation Project (AEP), started in 2019 and still
ongoing, is investigating the site of Tell Asingeran (see references in Section 2.1). Other
contiguous archaeological projects are the Erbil Plain Archaeological Survey (EPAS) [28],
the Upper Greater Zab Archaeological Reconnaissance (UGZAR) [29–31] and the Eastern
Habur Archaeological Survey [32]. All of the previously cited missions used RS data, a long-
standing routine for archaeologists involved in the Near East. The first groundbreaking
experiences go back to the 1930s [33] with aerial images of the main sites. Archival and
declassified CORONA images [34] gave an invaluable advantage for landscape archaeology
in Syria [35,36], southern Mesopotamia [37] and the Levant in general [38]. The declassi-
fication of U2 imagery had a similar and even greater impact, due to their better spatial
resolution [39]. Most of the recent archaeological studies in this area that relied on RS
focused on the observation of CORONA images to identify Roman road networks between
Israel and Jordan [40] and the exploitation of short-wave infrared (SWIR) imagery from
high-resolution platforms in Turkey, Syria and Iraq [41].

This work presents the results of a three-year survey (2021–2023) aimed at identifying
new and previously unknown archaeological sites within the LoNAP and UGZAR areas in
Iraqi Kurdistan, leveraging open-access RS products and the web-based cloud computing
services provided by GEE. Carefully planned ground-truthing inspections made it possible
to directly verify in the field the preliminary outcomes of the RS analyses. In this regard,
it should be stressed that not all the RS archaeological applications encompass an actual
on-site check. This is often due to logistical or economic constraints, which can limit the
overall effectiveness of the approaches proposed in the literature [11,42]. An overview of
the method and the partial results of the 2021 and 2022 on-field surveys have already been
described in [43,44]; this work is intended as a presentation of the 2023 results, as well as a
complete and exhaustive review of the collected and corrected data over three years. It also
includes a more in-depth critical discussion of the overall results.

The paper is structured as follows. Section 2 outlines the methodology employed in
the study, including a description of the surveyed areas, the datasets used and details of
the ground-truthing phase. Section 3 shows the obtained results in terms of the number of
new detected sites, their distribution and typologies, while Section 4 discusses the overall
outcomes and the reliability of the a priori assessment of possible archaeological sites based
on the spectral signature analysis. Section 5 wraps up the obtained results and frames them
within archaeological practice.
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2. Materials and Methods
2.1. Surveyed Areas

The areas under investigation are located in the Plain of Navkur and the Baadreh
Plain in Iraqi Kurdistan (Figure 1). Both regions are clearly defined along their northern
edges by the lower slopes of the Zagros Mountains, though only the Navkur Plain has
distinct mountainous boundaries to the east and south, thanks to the presence of the Jebel
Bardarash and Jebel Maqloub ranges. These plains were particularly suited to ancient
human settlements due to the fertile brown soils (especially prominent in the Navkur area)
and the presence of several watercourses. While many of these watercourses are now
seasonal, with the exception of the two main rivers, the Nahr al-Khazir and the Gomel
Su, they likely provided more permanent water sources in the past, offering a significant
supply of water [45]. Rainfall also plays a crucial role in supporting agriculture, enabling
dry farming practices. These favorable conditions attracted the formation of the first
stable farming communities as early as the Neolithic period (c. 10,000 BCE) [46]. It is also
possible that the region’s abundant water supply, especially in the Navkur Plain (whose
name in Kurdish Badînî means “mud plain”), may have negatively impacted the visibility
of archaeological sites. As observed at the site of Asingeran, flooding and consequent
redeposition of river sediments could have concealed evidence of ancient settlements [47],
especially those lacking the typical mounded morphology of the so-called Mesopotamian
Tells. In this context, the development and application of new techniques could greatly
enhance the ability to investigate and better understand the ancient landscape.

Figure 1. The Plain of Navkur and the Baadreh Plain in Iraqi Kurdistan. The black rectangles delineate
the eight areas under investigation, while the dots indicate the regions of interest (ROIs) identified by
the RS-based analysis presented in the paper. The ROIs are colored according to the results of the
ground-truthing phase, whereas the number associated is an ID given during the RS-based inspection
and is not related to the numbering of previous archaeological missions. Digits between square
brackets are the feature count.
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Within this natural environment, eight areas (shown in Figure 1) were identified,
in order to search for possible new and previously undetected archaeological sites. Area 1
(about 70 km2) is close to the site of Asingeran; Area 2 (about 19 km2) is close to the Gomel
river; Area 3 (about 7 km2) is in a plain context between Baadhrah and Ash Shaykhan; Area
4 (about 50 km2) covers the foothills south of Atrush valley; Area 5 (about 13 km2) is close
to Qasrok village; Area 6 (about 76 km2) is the hilly area near the modern village of Gorank
Kamil; Area 7 (about 30 km2) is the undulated plain extending southwest of the modern city
of Akre; and Area 8 (about 91 km2) is the eastern sector of the Plain of Navkur, between the
modern city of Rovia and the great Zab. Areas 1–3 were surveyed in 2021, Areas 4 and
5 in 2022, and Areas 6–8 in 2023. The total covered area is about 356 km2. While Areas
1–5 are situated within the broader LoNAP area, Areas 6–8 are located within the UGZAR
boundaries. The criteria used to select the eight different areas are basically grounded
on the location of previously known sites and the different type of natural environment
(lowland, piedmont, rocky hills).

2.2. Selected Datasets

This research exploited open-access RS resources, namely medium- (MR, Table 1) and
high-resolution (HR, Table 2) satellite imagery. As for the latter, only HR images provided
by the Google Earth service and accessed via Google Earth Pro were used. MR images
were employed as pre-processed datasets available on GEE . The main satellite platforms
selected for the analyses were: (i) Landsat 5—LANDSAT/LT05/C02/T1_L2 (L5), (ii) Land-
sat 7—LANDSAT/LE07/C01/T1_TOA (L7) and (iii) Sentinel-2—COPERNICUS/S2_SR
(S-2). The L5 (1984–2013) and L7 (1999–2024) platforms are part of the Landsat program that
has been delivering satellite imagery since 1972 and have similar characteristics. In more
detail, the 7 bands of the L5 data encompass a wavelength range of 0.45 µm to 2.35 µm
and have a spatial resolution of 30 m for the reflective bands and 120 m for the thermal
band [48]. The same wavelength range characterizes the 8 bands of the L7 platform, which
has a panchromatic spatial resolution of 15 m, 30 m for the reflective bands and 60 m for
the thermal band [49]. S-2 is a constellation by the European Space Agency composed of
two identical satellites (Sentinel-2A and -2B), active since 2015, that delivers 13 bands in
the range ∼0.443 µm–∼2.19 µm at a spatial resolution from 10 m to 60 m [50]. The MODIS
Combined 16-Day Normalized Difference Water Index (NDWI) and Normalized Difference
Vegetation Index (NDVI) datasets were additionally used in this work for the seasonal
analysis described in the next section.

Table 1. Medium-resolution multispectral image datasets used in this work *.

MODIS LANDSAT LANDSAT COPERNICUS
MCD43A4_006_NDWI LT05/C02/T1_L2 LE07/C01/T1_TOA S2_SR
MCD43A4_006_NDVI

Time series 2012–2021 1984–1994 2000–2010 2018–2021
Spatial resolution 463.3 m 30 m 15 m–30 m 10 m–20 m–60 m
Radiometric range – 0.45–2.35 µm 0.45–2.35 µm ∼0.443 µm–∼2.19 µm
Processed images 3652 157 176 31

Bands used NDWI/NDVI B1–B5, B7 B1–B5, B7–B8 B1–B9, B11–B12
Quality assessment band – QA_PIXEL QA_PIXEL QA60

* As of 2024, GEE introduced some changes in dataset availability: the Landsat datasets were updated to
Collection 2 and are now LANDSAT/LT05/C02/T1_L2 and LANDSAT/LE07/C02/T1_L2; S-2 dataset is currently
deprecated and superseded by COPERNICUS/S2_SR_HARMONIZED.

Although commercial satellite imagery can achieve higher spatial resolution and assist
in identifying smaller archaeological features, this study employed only open imagery to
maintain a cost-effective approach and to leverage a multi-temporal method made possible
by cloud computing.
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Table 2. Additional images (high-resolution and archival datasets) employed for visual inspection.

Google Earth HR Images CORONA U2

Acquisition period 2010–2023 mission n. 1039 mission n. 1554
22/02–11/03/1967 29/01/1960

Spatial resolution <10 m 2.75 m variable *
Spectral bands RGB panchromatic panchromatic

* Estimated in 0.4 m for the vertical frames ([39], p. 116 ).

2.3. Developed Approach

The following sections provide a comprehensive description of the multi-temporal
approach developed for the processing of the aforementioned datasets. The workflow led
to the identification of regions of interest (ROIs), which could potentially represent new
archaeological sites. These were subsequently verified during the ground-truthing phase.
An overview of the proposed approach is presented in the flowchart shown in Figure 2.

Figure 2. Flowchart of the approach presented in the paper. The datasets employed are indicated in
green, while the derived information is shown in purple. The color tan is used to represent filters
and processing operations, with the corresponding results depicted in orange. Finally, the manual
processes are presented in grey. Rectangles are employed for the input data, while smoothed
rectangles are used for the results of processing steps. The functions adopted are shown in ellipses.
The MR multispectral images are subjected to a series of processing stages to enhance the visibility of
soil anomalies and facilitate site identification. In contrast, HR and archival images are employed
to examine the ROIs and verify the possible presence of elements on the ground that could link the
anomalies to recent human activities.
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2.3.1. Preliminary Assessment and Seasonal Analysis

Archaeological sites in the Navkur Plain typically correspond to soil anomalies, which
commonly appear in RS images as rounded or oval areas with a lighter hue than the
surrounding terrain. This general aspect and morphology was already known thanks to the
years of surveys conducted by LoNAP and the other archaeological missions. Nevertheless,
a preliminary assessment of the sites that had been previously detected over the years was
carried out on multiple RS sources. The first choice was to use single S-2 imagery, accessed
through the Sentinel Hub EO Browser portal [51], with the objective of verifying both the
spectral bands and the periods of maximum visibility of the known sites. Site visibility
was favorable in the B2 (blue), B3 (green), RedEdge and SWIR bands, depending on soil
characteristics. However, the greatest overall visibility was noticed in the B4 (red) and B8
(visible and near infrared, VNIR) bands. In addition, the B2, B3, B4 and B8 bands have
the best spatial resolution among all the bands of the three selected platforms (L5, L7, S-2),
which is a further advantage for site detection.

For what concerns the seasonal visibility, the ’wet’ season appeared to be more favor-
able for site identification. Considering this aspect, the already cited MODIS Combined
16-Day NDWI dataset, which is directly accessible within GEE, was used to identify the
months in which soil moisture is at its highest on the region under investigation. The se-
lected time period for this analysis was 2012–2021 across the eight investigated areas; the
graph in Figure 3 clearly shows that the soil moisture level increases from December to
April, a trend that is observed cyclically over the years. The climate in the Zagros foothills
is classified as Mediterranean, with precipitation reaching up to 1000 mm, while moving
south, the plains experience lower rainfall, with an annual average of 643 mm recorded
at Bardarash, located along the southern border of Navkur. Temperature also varies con-
siderably, partly due to the region’s unique morphology [52]. The proximity to the Zagros
Mountains contributes to a cold winter season, with an average temperature of 6.9 °C,
whereas summers are typically very hot, with July averaging 32.8 °C [53]. These climate
variations throughout the year lead to significant landscape changes, which notably affect
satellite imagery of the area. Furthermore, while reviewing the data after the completion of
the three-year survey, a cross-check using a different index was performed. In particular,
the MODIS Combined 16-Day NDVI dataset was used, considering the same previous time
and space constraints. The joint examination of the NDWI and the NDVI confirmed what
had already been observed, with a notable correlation between the two trends as evidenced
by the monthly values in Figure 3.

Figure 3. NDWI and NDVI trends over the period 2012–2021 in the eight target areas.
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The visual inspection of the satellite data also revealed the limitations of relying on
a single image: due to seasonal crops, agricultural works and weather conditions, site
visibility can greatly change (Figure 4), and it is almost impossible to simultaneously
observe all sites within a given area.

Figure 4. Soil anomaly corresponding to site 276, framed by the red square and located in Area 5,
shown in S-2 images acquired at different epochs. The visibility of the site changes considerably
depending on the season and the presence of cultivation (a–c).

Moreover, the preliminary analysis conducted on previously detected sites high-
lighted that site visibility is also influenced by the natural environment. Sites located
in plain contexts are typically well identifiable, whereas those located in piedmont and
hilly environments are much less visible. In these latter contexts, the multispectral images
provide limited value, potentially due to the absence of anthropogenic soil on the rocky
substratum. For this reason, HR satellite images distributed via Google Earth were also
analyzed together with the MR multispectral data, especially for what concerns Areas 4
and 6. Their use in these areas is even more well founded considering that the presence of
surface remains, namely stone and cobble structures, is higher in the piedmont and hilly
contexts, where the impact of agriculture is presumably less significant. In addition, HR
images were useful in plain contexts, in those cases (probably deserted villages) where
structures are still partially preserved. While MR images from S-2 (10 m spatial resolution)
are suitable for discerning soil anomalies, they lack the requisite detail to identify structures.

The preliminary assessment presented in this section demonstrated the inherent
constraints associated with the observation of single satellite images. This prompted us to
develop the multi-temporal approach described in the following. Furthermore, the seasonal
analysis was of paramount importance in identifying the optimal period of the year for
site visibility, thereby enabling the selection of the most suitable image datasets to be
processed. Visibility, i.e., the environment variability that allows an observer to identify
any archaeological feature, is always a critical aspect in archaeological surveys that deeply
influences the methods and strategies [54,55]. Archaeological reconnaissance procedures
require revisiting of the detected sites on multiple occasions, across different seasons
and years, due to the significant fluctuations in ground visibility that occur over time.
An RS-based multi-temporal approach on open ground allows some of the most common
constraints to be reduced, increasing site visibility.

2.3.2. Image Processing

The GEE platform was chosen to efficiently work with stacks of images acquired at
different epochs and implement a multi-temporal approach for site identification. As the
areas to be investigated were progressively added each year, image processing was car-
ried out separately for each year prior to the on-field campaign. However, the selected
algorithms and parameters were kept constant throughout the 2021–2023 survey period,
in order to have consistent results to compare.
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As mentioned in Section 2.2, the used GEE datasets were the ‘USGS Landsat 5 Level 2,
Collection 2, Tier 1’, the ‘Sentinel-2 MSI: MultiSpectral Instrument, Level-2A’— both with
atmospherically corrected reflectance values—and the ‘USGS Landsat 7 Collection 1 Tier 1
TOA Reflectance’—with calibrated top-of-atmosphere values. The satellite imagery datasets
were limited to a specific date range depending on the platform launch date and period of
activity, namely 1984–1994 for L5, 2000–2010 for L7 and 2018–2021 for S-2. Each dataset
was then cropped to the eight investigated areas from a spatial point of view and to the
January–April temporal range, as this period was identified as the most favorable for site
visibility according to the NDWI assessment described in Section 2.3.1 and for the limited
presence of crops. The three filtered datasets were ultimately composed of 157 (L5), 176
(L7) and 31 (S-2) multispectral images, respectively. Cloud masking was applied before
further processing.

For each filtered dataset, the time series of images was reduced to a single multi-
band image by applying a median function separately to each spectral band, thereby
obtaining a single robust value for each pixel: the final output is therefore a multi-band
image that partially removes the seasonal disturbance effects, increasing the chance of
site identification. For what concerns the S-2 dataset, an additional image was generated
by applying a developed simple ratio (index IB4,B8 = B4/(B4 − B8)) in order to better
highlight the visibility of soil anomalies, leveraging those 10 m bands that were shown to
be suitable for this purpose (see, e.g., Figure 5f). All final images were reprojected from
EPSG:4326 to EPSG:3395 and resampled on the same grid using the bicubic interpolation
method. On the L7 dataset, a pan-sharpening with the panchromatic band (B8) was
also performed to increase the spatial resolution. Figure 5 illustrates some of the outputs
generated by the described workflow, showcasing the emergence of a previously undetected
archaeological site.

Figure 5. Site 70, framed by the red square, as it appears on different RS products used and generated
for this study (a–f).
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As a further product, Principal Component Analysis (PCA) was investigated, as it
is one of the most common methods applied in RS applications to archaeology. PCA is a
dimensionality reduction technique that, when applied to images, compresses data from a
large number of bands into a smaller number of uncorrelated bands. PCA is based on the
eigenvector decomposition of the data covariance matrix: performing band decorrelation
and keeping the first three principal components, images with brighter and contrasting col-
ors are produced, which should facilitate the easier detection of independent features [56].
The PCA was applied through GEE to the S-2 dataset restricted to a temporal range between
2018 and 2020, after computing the median of the time series. Although the four final
outputs—three single-band images, one for each of the three principal components, and a
composite image (Figure 6)—were correctly generated, the visibility of the archaeological
sites was scarcely enhanced and these outputs resulted in being much less useful than those
previously presented.

Figure 6. Transformed image of Area 1 resulting from the PCA analysis conducted on the 10 m spatial
resolution bands of the S-2 dataset. The figure shows a false-color image, where the original red,
green and blue bands have been replaced by the three principal components (i.e., uncorrelated bands)
computed by the PCA. Asingeran site is labeled.

The inspection of the obtained outputs was visually carried out using the open-source
software QGIS (https://www.qgis.org/, accessed on 25 September 2024), where the location
of known sites was superimposed onto the generated images to check their appearance.
It was evident that, although a relevant number of known sites were visible on L5 and
L7 images, the S-2 data showed a greater number of anomalies in detail, due to their
superior spatial resolution. That was the main reason why the obtained S-2 products were
selected as the principal source for the detection of new sites and the additional spectral
signature analysis described in Section 2.3.3. The visual inspection led to the identification
of soil anomalies, i.e., ROIs that could correspond to possible new sites. Finally, the use
of HR images allowed further investigation of these soil anomalies and verification of the
possible presence of elements on the ground that could link the anomalies to recent human
activities. In certain instances, HR images showed clear signs of earthworks or temporary
settlements related to seasonal farming that helped to not consider these anomalies as

https://www.qgis.org/
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potential archaeological sites. Along with contemporary HR images, archival panchromatic
CORONA and U2 images (Table 2) were also inspected: while in some instances they did
not add any valuable information, in other cases their analysis was crucial because they
recorded features that are currently less visible, such as some deserted villages that were
still inhabited in the mid-20th century, or that no longer exist. However, when considering
the whole set of ROIs, only approximately 15% were also clearly identifiable on CORONA
and 25% on U2 images. The location of the ROI retrieved from the images was recorded as
point features, for subsequent on-field verification.

2.3.3. Spectral Signature Extraction and Classification

In order to have additional information about the nature of the identified ROI prior to
the on-field surveys, the corresponding spectral signatures were extracted via GEE from
the S-2 median output, sampling an area of 50 m × 50 m centered in the middle of each
possible new site. The size of the sampling area was selected based on the dimensions of
the soil anomalies observed. The spectral signature of each ROI is therefore a vector of
12 values, one for each spectral band considered. As for the spectral signature represent-
ing already known sites, this was computed as the median of all the spectral signatures
available from the sites discovered by the LoNAP and UGZAR surveys. A representative
spectral signature of cultivated fields (i.e., non-anthropogenic soils) was calculated as well,
sampling and averaging the pixel values on areas of size 50 m × 50 m. Subsequently,
an unsupervised classification process was conducted on the spectral signatures with the
objective of differentiating between the ROIs that are most likely to correspond to new sites
and those that are, in fact, soil anomalies not attributable to the existence of authentic ar-
chaeological sites. Common clustering algorithms available in the Python scikit-learn library
(https://scikit-learn.org/stable/, accessed on 25 September 2024) were applied: (i) fuzzy
c-means [57], (ii) hierarchical clustering with the minimum-variance linkage criterion [58],
(iii) k-means [59] and (iv) self-organizing map (SOM) [60]. All the methods are well known
in the RS field for image or laser scanning data unsupervised classification (e.g., [61–65])
and require as input the desired number of clusters (in our case, two). To assign the correct
label to the obtained clusters, we leveraged the median spectral signature of the already
known LoNAP and UGZAR sites. Indeed, the cluster whose representative element most
closely resembled (in terms of Euclidean distance) this median signature was designated as
‘site’, and the corresponding ROIs were labeled accordingly. Conversely, the ROIs whose
signatures were associated with the other cluster were marked as ‘no site’. It should be
noted that the analysis was carried out separately for each year.

2.4. Ground Truthing

A dedicated on-field survey was planned on an annual basis in order to verify the
identified ROI and the results of the spectral signature classification through direct obser-
vation on the ground. Surveys were carried out by a minimum of three to a maximum of
five persons over a period of six days in 2021 and 2022, and three days in 2023. Despite
most of the ROIs being situated in the open country without close relevant reference points,
the locations were quite easily reached thanks to spatial data made available on mobile
devices with Global Navigation Satellite System (GNSS) receivers. Each ROI was directly
inspected in search of any anthropic elements (potsherds, structures), which might indi-
cate the presence of an ancient site. Surface findings, where present, were sampled and
collected to hypothesize their preliminary chronology. Moreover, the survey conducted on
the ground allowed assessment of the typology of the new detected sites (some examples
are shown in Figure 7).

https://scikit-learn.org/stable/
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Figure 7. Views from the field: (a) site 312 (high mounded); (b) site 315 (low mounded); (c) site 181
(flat); (d) site 433 (graveyard).

3. Results

Thanks to the proposed approach, an overall number of 131 ROIs were identified on
the satellite data and subsequently checked on the ground: 42 in 2021, 59 in 2022 and 30 in
2023. Their distribution within the eight investigated areas, visible in Figure 1, is variable:
39 in Area 1, 2 in Area 2, 3 in Area 3, 45 in Area 4, 12 in Area 5, 10 in Area 6, 5 in Area 7
and 15 in Area 8.

Among the potential new sites identified, 11 ROIs situated in Areas 1, 4 and 6 were not
accessible for direct surveying due to a number of factors, including the presence of crops or
other limitations. From the on-site assessment, 67 ROIs yielded various anthropic features
(surface findings, structures or graveyards) and were therefore classified as ‘sites’, while two
ROIs were labeled as ‘ceramic clusters’ due to the the lower amount of ancient potsherds
found on the field surface. Five ROIs were considered as ‘doubts’, as the evidences collected
on the field were not sufficient to determine an effective anthropic presence. Furthermore,
one ROI corresponded to an anthropic feature visible on the HR images but no longer
existent. The remaining 45 ROIs gave a negative outcome and were thus designated as ‘no
site’. The distribution of the sites among the target areas is shown in Figure 8. The highest
density of new detected sites is observed in Area 4, with a density of about 0.5 sites per
square kilometer. In comparison, the remaining areas exhibit a density of 0.3 sites per
square kilometer or lower. Additionally, Area 4 demonstrates the greatest diversity in site
types, whereas Area 3 is characterized by the presence of exclusively flat sites.

In terms of the typology of the newly identified sites, 19 can be labeled as ‘flat sites’,
i.e., sites with no relevant elevation on the ground level. These sites are usually the most
difficult archaeological evidence to be detected if compared to low- (14) or high-mounded
(6) sites (these last were only identified during the 2022 and 2023 campaigns). Graveyards
(9) constitute another relatively common typology. While they are not necessarily archaeo-
logically relevant, given that they often belong to the modern era, they were nevertheless
considered ‘sites’, as their traces were generally well visible on multispectral images. Other
anthropic features include stone villages (9), enclosures (5) (a sixth enclosure appeared to
no longer exist), settlements on rocky hills (4) and an unidentified structure (1). Although
they were not properly considered as sites, it is worth mentioning the additional anthropic
features found that include ceramic clusters (2), a possible tumulus (1), a possible stone
village (1) and an uncertain structure (1). Most of the identified sites (55) had surface
findings (potsherds and, to a lesser degree, stone or bricks fragments).
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Figure 8. The number of ROIs that were assessed as actual archaeological sites or ceramic clusters as
a result of the ground-truthing activity.

In regard to the clustering analysis, the spectral signatures of 118 out of 131 ROIs were
processed. The remaining 13 ROIs were excluded from the analysis because they fall within
the area where rocky hills take the place of the fertile plain, with a substantial change in
the nature of the soil. Being the spectral signature classification mostly based on changes
in the nature of fertile soil, those ROIs located in places where rock outcrops prevail were
excluded from the analysis. Due to these reasons, all the previously mentioned 13 ROIs
were identified on HR images, because of the presence of visible structure remains, and not
using multispectral images.

Table 3 illustrates the results of the unsupervised classification in terms of overall
accuracy, namely the percentage of correctly classified ROIs. It should also be noted that
the results were calculated solely on the 103 out of 118 ROIs that were identified in the
field as ‘site’ or ‘no site’: inaccessible ROIs and ROIs designated as ‘ceramic cluster’, ‘doubt’
and ‘no more existent’ were excluded from the accuracy assessment, as they did not yield
definitive results.

Table 3. Overall accuracy achieved by the unsupervised classification algorithms, calculated as the
percentage of ROIs correctly classified as ‘site’ or ‘no site’ out of the total number of assessed ROIs.

Fuzzy c-Means Hierarchical k-Means SOM Combined Pred.

2021 73% 59% 76% 81% 76%
2022 60% 63% 65% 60% 60%
2023 62% 54% 62% 50% 54%

Aggregated 65% 59% 68% 65% 64%

The aggregated results over the three years show that k-means provided the best
performance: 43 ROIs were correctly classified as ‘site’ (i.e., true positive) and 27 ROIs as
‘no site’ (i.e., true negative), leading to an overall accuracy of 68%, whereas 18 ROIs were
false positive (‘no site’ that the algorithm labeled as ‘site’) and 15 false negative (actual ‘site’
that the algorithm misclassified as ‘no site’). Conversely, the hierarchical clustering algorithm
gave the lowest overall accuracy (59%, with 34 true positive and 27 true negative ROIs).
Nevertheless, the k-means method was not consistently the most accurate in all cases (e.g.,
SOM provided better results in the 2021 analysis). Overall, the algorithms demonstrated
comparable behavior, making it challenging to definitively identify the most optimal one.
For this reason, we took into account the outcomes of all methods by providing a combined
prediction: this entailed classifying an ROI as ‘site’ when at least three out of the four
algorithms designated it as such. Figure 9 shows the detailed results, in terms of true
positives, true negatives, false positives and false negatives, provided by the combined
prediction method for each year. Moreover, the alluvial diagram presented in Figure 10
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visualizes and summarizes the outcomes of both the spectral signature classification and
the ground-truth assessment.

Figure 9. Cumulative results (2021–2023) of the spectral signature classification process. True positive
(TP), true negative (TN), false positive (FP) and false negative (FN) sites are reported.

Figure 10. Alluvial diagram that tracks the outcomes of the survey over the years and the differences
between the desk-based classification of spectral signatures and the ground-truthing results (digits
not in bold indicate the number of features). First column shows the surveyed ROIs per year; second
column reports the outcomes of the automatic spectral signature classification; third column shows
the validation of the results, obtained after the ground-truthing phase; fourth column presents the
sites actually identified in the field, grouped according to the evidence found.
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A combined analysis of the spectral signatures and the typology of the newly detected
sites can further enrich the results. To this end, we computed the median spectral signature
of the sites aggregated according to the type of anthropic features found. Subsequently,
the outcomes were compared to the median of the spectral signatures of the already known
sites and of the non-anthropogenic soils, taken as a reference throughout the duration of
the survey. This approach has at least two constraints: firstly, the overall limited number of
sites for which spectral signature analysis was performed; and secondly, the criteria used
to assign the typology to each site, that are largely subjective. For instance, the distinction
between a ‘high-mounded’ and a ‘low-mounded’ site is not grounded on topographic
elevation measurements, but rather on the experience of archaeologists involved in field
surveys. To the same extent, flat sites that showed clear traces of pebble structures were
labeled as ‘stone villages’, although similar traces can sometimes also be found on high-
mounded sites. Despite the mentioned constraints, the results show some clear trends.
The median spectral signatures of sites labeled as ‘high-mounded’ and ‘stone villages’
almost totally overlap (see Figure 11). The same happens for sites labeled as ‘low-mounded’
and ‘flat’; the latter also overlap with the median of the known sites.

Figure 11. Median spectral signatures computed according to site typology: similarities among site
types are evident.

4. Discussion

The three years of testing the proposed procedure and of ground-truthing the de-
tected 131 ROIs allow for more structured considerations to be made, with respect to the
preliminary results of the first year discussed in [43,44].

4.1. General Considerations on the Multi-Temporal Approach

The detection of potential new archaeological sites was based on the visual inspection
of the outcomes of the multispectral data processing and of the HR satellite imagery. This
work proved that both sources complement each other, as multispectral images were more
efficient in highlighting soil anomalies, while HR images allowed the presence of structures
to be spotted; this means that multispectral images were crucial, especially to identify
flat sites in a plain environment, while HR images proved to be much more effective in
detecting old settlements on rocky hills or stone villages. In some cases, such as for deserted
stone villages in a plain context, the combined observation of both types of images was
carried out, identifying visible surface structures on HR images and the potential presence
of anthropogenic soil on multispectral images.

The multi-temporal approach was confirmed to be the optimal methodology for
enhancing site visibility and increasing the probability of detecting new potential archaeo-
logical sites. The effectiveness of this methodology in comparison to the examination of
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individual satellite images is such that, should the accessibility of free cloud computing
services remain consistent in the future, it could effortlessly become a standard practice for
the archaeological community when dealing with remote site identification. Furthermore,
it is worth underlining that, while all outputs generated via GEE proved valuable for
identifying soil anomalies that often coincide with anthropogenic interventions, the S-2
outputs were particularly instrumental in this study. This is mainly due to the higher spa-
tial resolution of the Sentinel-2 images, which facilitates the identification of smaller sites.
These were almost invisible in the L5 and L7 outputs, despite the less built-up landscape
they recorded over the decades of their operation, a feature of these platforms that should
instead aid site identification.

After three years of testing, it appears quite clear that the outputs obtained from
the multi-temporal analysis in GEE, and especially the IB4,B8 index, greatly highlight soil
anomalies that are often not immediately visible in satellite images; this would suggest
that soil anomalies in the Navkur Plain generally have a greater spectral response in the
B4 (red) and B8 (VNIR) wavelengths. Nevertheless, the precise nature of the identified
anomalies cannot always be determined a priori based solely on the image observation,
and they do not always correspond to actual archaeological sites. This was particularly
evident in cases where the ground-truthing phase revealed that the detected soil anomalies
did not originate from the presence of a site but were instead due to modern earthworks
(such as for ROI 438).

Moreover, it can be noted that carrying out the field assessment every year helped
to refine the visual detection of sites on RS products. This appears from Figure 12, which
reports the ratio of ROIs that proved to be actual sites to those that were identified as
non-real sites. The growth of the ratio over the three-year period is, in fact, mostly due
to the tuning of the overall method. However, it is also important to acknowledge that a
reduced number of ROIs were evaluated in 2023, when priority was given to the most clear
and visible anomalies.

Figure 12. Ratio of ROIs that proved to be actual sites to those that were identified as non-real sites
after the ground-truthing phase.

Another aspect to consider when analyzing the results of this work is that all the
inspected eight areas fall within the larger survey areas of LoNAP and UGZAR missions.
This has been a known challenge since the very beginning of this research: one of the goals
was to try to test the developed methodology on already known and investigated areas,
in order to evaluate whether there was still unknown archaeological potential that had
been underestimated during the previous field campaigns. The results showed that, even
excluding those features such as historic graveyards or enclosures that could also belong to
recent times, new ancient sites with surface potsherds were found in all areas, confirming
the validity of the proposed approach not only for exploring uncharted areas but also when
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reviewing well-known territories; the quantitative aspects of this research (i.e., the total
number of ROIs and the positive and negative regions) must also be considered in this light.

4.2. Further Considerations on Spectral Signature Analysis

With regard to the spectral signature analysis, the automatic classification proved to be
a valuable additional tool for the detection of sites, making a significant contribution to the
remote exploration of a region, particularly in the planning of ground-truthing activities.
Indeed, although the outcomes of the unsupervised classification cannot be directly em-
ployed to exclude sites for verification in the field, given that the overall accuracy is below
70%, they can guide on-field surveys, for instance, by prioritizing the assessment of the
ROI that the algorithm has classified as a ‘site’. To this end, there is no doubt that the false
positives detected by the algorithm negatively influenced the planning of the archaeological
field survey. In the future, the application of more advanced classification approaches
could reduce this degree of uncertainty, thereby facilitating further optimization of on-site
surveying, an activity that needs a significant amount of time, especially when dealing
with hundreds of potential sites to be checked. In particular, supervised classification
methods could be a viable alternative. Preliminary tests of supervised classification were
conducted in 2021 on the target areas, using the GEE implementation of the Classification
and Regression Tree (CART) and Random Forest algorithms on the S-2 outputs. The results
were unclear, with a significant number of riverbeds and cultivated fields misclassified as
sites. In light of the unfavorable outcomes of the preliminary tests, no further supervised
classifications were conducted in the subsequent years. However, the data collected over
the three years of ground-truthing may now favor the adoption of such algorithms, which
require a considerable amount of training data. Future work will therefore test supervised
machine learning methods to assist future campaigns.

To support the discussion on the typology of the newly detected sites, a further
analysis was carried out, computing the Euclidean distance among the different median
spectral signatures, shown in Figure 13. This confirms the similarities described in Section 3
between ‘high-mounded’ and ‘stone villages’, and between ‘low-mounded’ and ‘flat’ sites.
A verification comes also from the distances among the median spectral signature of ceramic
clusters and the other types, whose best match is with the median of country fields: this
indicates that the regions labeled as ‘ceramic clusters’ were actually lacking differences in
soil that could suggest the presence of a permanent settlement. Furthermore, the closeness
of the curves of ‘enclosures’ and ‘settlements on rocky hills’ can be easily explained by
the location of the enclosures themselves, the majority of which are located near or on the
top of the same hills where settlements stand. The estimation of Cosine Similarity for the
median spectral signatures yielded instead a general similarity of the curve patterns. This
metric gave less significant results due to the fact that the majority of medians exhibited a
highly similar trend, with only ‘settlements on rocky hills’ and ‘enclosures’ being visually
different from the other curves but similar between them, for the aforementioned reason.

A preliminary hypothesis about the reasons behind these trends is laid on the site
morphology itself. Tells often show a large surface of anthropic soil that is normally not
used for agricultural purposes; the land on which stone villages are situated is typically
not cultivated as well, due to a widespread presence of pebbles in the area—and in certain
cases maybe for a sort of memory that is preserved. In some instances, such as site 312,
local inhabitants were aware of the nature of the sites because they could recall memories
of the presence of old villages, sometimes still inhabited during the first part of the 20th
century. However, this research did not assess whether these memories also prevented
these areas from being cultivated. In contrast, low-mounded and flat sites are usually
ploughed. Agricultural activities have presumably contributed to the scattering or partial
covering of the anthropogenic soil that is more exposed.
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Figure 13. Euclidean distances calculated between the median spectral signatures of the different
site types.

5. Conclusions

Three years of a remote sensing-based survey in northern Kurdistan using multispec-
tral images processed via GEE led to the detection of 131 ROIs checked on the field over
eight areas, for a total surface covered of about 356 km2. After excluding uncertain or
inaccessible regions and those yielding minor features, 67 ROIs were identified as certain
anthropic sites, spanning from the prehistoric to the modern era. In contrast, 45 ROIs gave
negative results or were identified as recent earthworks. The work confirmed that historical
archival imagery (e.g., CORONA imagery) is of paramount importance for reconstructing
and comprehending the past landscape, but when the main aim is the identification of new
sites and/or the archaeological assessment of an area, digitally acquired remote-sensed
multispectral data decisively enable further processing and elaborations that dramatically
enhance the potential of these resources.

The study also provided useful insights on the potentialities of cloud computing
(namely GEE) applied to geospatial data for archaeological purposes. While not avoiding
false predictions, the proposed workflow for the generation of new RS products was based
on multi-temporal images, and the subsequent classification of spectral signatures of ROIs,
which yielded an overall accuracy of approximately 65%, is nevertheless of great help
when remotely assessing the archaeological potential. These results are strengthened by a
careful ground-truthing process conducted for each ROI, which served to further validate
the research, a step that is not always carried out in RS studies applied to archaeology.
An additional comparison among spectral signatures of different site typologies opens up
a possible granular classification of sites according to their morphologies and the spectral
characteristics of archaeological deposits. This approach could prove particularly beneficial
for the remote assessment of sites in regions that have not yet been surveyed.

The presented method can be tuned according to the local terrain characteristics, adapt-
ing it to the general morphology of the region in which it is applied. It also moves towards
the widespread use of a multi-temporal approach and the processing of big geospatial data
for archaeological researches, which will hopefully be increasingly integrated in the future,
leading to a standardized methodology for RS applications in archaeology.
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AEP Asingeran Excavation Project
EPAS Erbil Plain Archaeological Survey
GEE Google Earth Engine
GNSS Global Navigation Satellite System
HR High Resolution
L5 Landsat 5
L7 Landsat 7
LoNAP Land of Nineveh Archaeological Project
MR Medium Resolution
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near Infrared
PCA Principal Component Analysis
ROI Region of Interest
RS Remote sensing
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SOM Self-Organizing Map
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UGZAR Upper Greater Zab Archaeological Reconnaissance
VHR Very High Resolution
VNIR Visible and Near Infrared
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