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1 Introduction

The program of local holography is grounded in the fundamental role played by symmetries.
It aims to provide a new description of quantum geometry in terms of the representation
theory of the gravitational symmetries associated to the codimension-2 surface bounding
a general finite region in spacetime, the corner [1–10]. Since the seminal work of Emmy
Noether [11], the notion of symmetry has represented a very helpful and effective tool to
unravel the correct description of the fundamental forces of Nature, both at the classical
and, in the case of the Standard Model and Condensed Matter, in the quantum regime.
We believe that this invaluable tool will ultimately prove itself crucial also to guide us
through the ultimate and most impervious stretch of this discovery journey, leading to the
quantization of gravity.

From this perspective, it is fundamental to understand the pivotal role of symmetries in
describing the properties of a gravitational system in a finite bounded region of spacetime.
The full power of the Noether theorem for local symmetries implies that the symmetry
charges are supported by codimension two surfaces lying at the corner of the spacetime
region under consideration [1]. This symmetry group lying at the corner can naturally be
split into ‘kinematical’ symmetries that carries no symplectic flux and are readily quan-
tizable and ‘dynamical’ symmetries that include supertranslations along the null normals
and which carry fluxes.1 The study of the kinematical gravitational symmetries of a finite
bounded region of spacetime has been performed originally in [1] for the Einstein-Hilbert
formulation of gravity and then further extended to other first order formulations in [7, 8].

These analyses have led to the notion of corner symmetry group, which is the kinemati-
cal subgroup generated by internal gauge transformations and the residual diffeomorphisms
which vanish at the corner. In the Einstein-Hilbert formulation, the corner symmetry al-
gebra gS has been shown [1] to have the semi-direct sum structure

gS = diff(S) i sl(2,R)S , (1.1)

where diff(S) corresponds to the Lie algebra generated by diffeomorphisms tangent to
the corner S and sl(2,R)S the Lie algebra generated by the surface boosts that linearly
transform the normal plane of S in a position-dependent way.

The inclusion of normal supertranslations that move the corner has led to the notion
of extended corner symmetry group in [14, 15] and given by

gext
S =

(
diff(S) i sl(2,R)S

)
i (R2)S , (1.2)

where the second semi-direct sum involves the two normal time translations.
At the same time, it has been shown in [16] that a similar semi-direct sum struc-

ture (1.2) captures the symmetries of a general non-stationary null surface at finite dis-
tance equipped with a thermal structure. This group was dubbed Weyl BMS, or BMSW

1Recent developments appeared shortly after the first version of this manuscript have allowed us to also
include supertranslation as canonical transformation into the gravitational phase space by extending this
with a dressing field [12, 13].
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for short, in [17] and shown two satisfy two key properties. On the one hand, it is a sub-
group of the extended corner symmetry group: the subgroup that preserves, up to scale,
the canonical null generator of the null surface. On the other hand, it is also the symmetry
group of null infinity.

More precisely, the Lie algebra of BMSW possesses a semi-direct sum structure

bmsw :=
(
diff(S) i RSW

)
i RST , (1.3)

where RSW denotes the Weyl transformations labeled by functions W on the sphere, while
RST denotes the super-translations labelled by weight 1/2 densities T on the sphere. This
algebra contains all the known extensions of the BMS algebra [18–20] that have been
recently introduced as candidates for the gravitational symmetries of null infinity in [21–25].
Besides super-translation transformations, it includes arbitrary sphere diffeomorphisms
and local Weyl rescalings of the 2D sphere metric at I. Importantly, it has been shown
in [15] that the extended corner symmetry algebra (1.2) reduces to the bmsw Lie algebra
in the limit r → ∞, with the Weyl rescaling corresponding to the sl(2,R)S generator
preserving the null generator of I, while the RST contribution corresponds to the normal
super-translation along I. This result provides clear evidence that the local holography
program can be equally well applied to null infinity and this is what we concentrate on in
this manuscript.

From this perspective, it is fundamental to understand the full power of symmetries
in describing the properties of a gravitational system, and investigate the role of the kine-
matical subgroup of BMSW as well as the role of supertranslations. Therefore, our goal
is to understand how far the symmetry principle can take us in the description of a grav-
itational system and its asymptotic dynamics, and from there to the quantum realm of
gravity. We aim to establish that the dominant asymptotic Einstein’s equations can be
recovered purely from a symmetry argument. A first indication that this is indeed possible,
in the context of null infinity, comes from the analysis of [17], where a new charge bracket
generalizing a previous proposal of Barnich and Troessaert [22], and derived from first prin-
ciples in [15], was introduced to represent the bmsw Lie algebra in terms of the Noether
charges associated to it. It was shown that the demand that the BMSW Lie algebra being
represented at all times along I without any 2-cocycle extension is equivalent to imposing
the asymptotic Einstein’s equations at null infinity. On a similar vein, evidence that the
asymptotic symmetry group is strong enough to reconstruct the MHV sector of S-matrix
amplitudes has been given by Banerjee et al. [26–29]. Providing evidence that symmetry
can be strong enough to significantly constraint S-matrix amplitudes is one of the corner-
stones of the program of local holography [30–32]. Our work can be viewed as a classical
and group-theoretical analog of this quest. It provides new evidence that symmetry might
be strong enough to determine the dynamics. Let us point out that an approach similar in
spirit has been applied in [33] to relate the study of dynamics in Carrollian geometries to
the analysis of symmetries at null infinity; in this case though the group of interest is the
boundary group of Carrollian diffeormorphism, not the corner symmetry group.

Here, we exploit the BMSW group structure in order to derive the asymptotic Ein-
stein’s equations at null infinity in a more direct way, making the symmetry argument even
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more explicit. More precisely, in section 3, after deriving the symmetry transformations
of the asymptotic metric components, we first identify a set of semi-covariant observables
(NAB,J A,M,M̃,PA, TAB). They are defined as Bondi metric functionals that do not
possess quadratic anomalies, under the BMSW transformations. They also transform ho-
mogeneously (i.e. tensorially) under the non-extended BMSW group, namely when time
super-translations are not included. In section 3.5 we show that these are in direct relation
with the five asymptotic Weyl scalars [34–36] at null infinity. We then look for com-
binations containing time derivatives of the semi-covariant observables, which transform
homogeneously, that is with no anomalies at all, under the BMSW group. This singles out
five relations which express the asymptotic Einstein’s evolution equations at leading order
in the large-r expansion around null infinity in an elegant and simple form. As derived in
section 4, these read

J̇ A = 1
2DBNAB , (1.4a)

Ṁ = 1
2DAJ A + 1

8CABN
AB , (1.4b)

˙̃M = 1
2DAJ̃ A + 1

8CABÑ
AB , (1.4c)

ṖA = DAM+ D̃AM̃+ CABJ B , (1.4d)

ṪAB = D〈APB〉 + 3
2
(
CABM+ C̃ABM̃

)
. (1.4e)

In the expressions above NAB = ṄAB is the time derivative of the news tensor; the tilde
denotes a notion of duality in the gravitational phase space at null infinity that we introduce
in section 3 and it encompasses the notion of dual gravitational charges introduced in [37–
39] and further studied in [40–44]. The Einstein’s evolution equations recast as in (1.4)
exhibit a manifest invariance under this duality transformation. Moreover, we show how
the symmetry argument can be applied in the presence of matter as well, allowing us to
derive the correct combination of stress-energy tensor components (and their derivatives)
that source the Einstein’s evolution equations.

While our derivation of the asymptotic Einstein’s evolution equations is totally inde-
pendent from the Newman-Penrose formalism, the final form of the equations agree with
their central results [34–36]. This can be seen by exploiting the explicit relation between
the semi-covariant observables and the asymptotic Weyl scalars, summarized in section 3.5,
and showing that (1.4) agrees with the Newman-Penrose derivation of the time evolution
of the asymptotic Weyl scalars. The advantage and novelty of our approach is the explicit
derivation of the symmetry transformations for these observables from the Bondi gauge
variables (see also [17, 45]) and the emphasis that invariance under the BMSW asymptotic
symmetry group is enough to ensure the derivation of the equations of motion. This repre-
sents the first main result of the paper. It gives a posteriori a justification for the success
of the Penrose-Newman formalism, by showing that it is naturally adapted to the concept
of asymptotic symmetries. This sets the stage for the rest of our analysis and it opens the
way towards a quantum analysis.
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More precisely, in section 5 we focus our attention on the non-radiative phase space.
The no radiation condition is defined by the vanishing of the time derivative of the news
tensor, that is ṄAB = 0, which provides a more relaxed definition of non-radiative phase
space than the usual condition NAB = 0, and corresponds to the case where no outgoing
radiation is registered at I. We can, under the no radiation condition, integrate the
evolution equations and we construct a new set of conserved charges (jA,m, m̃, pA, tAB)
defined in terms of the covariant ones. These charges parametrize the non-radiative corner
phase space on I and their transformation properties are obtained to be

δ(T,W,Y )j
A = [LY + 4W ] jA , (1.5a)

δ(T,W,Y )m = [LY + 3W ]m+ jA∂AT + T

2DAj
A , (1.5b)

δ(T,W,Y )m̃ = [LY + 3W ]m̃+ j̃A∂AT + T

2DAj̃
A , (1.5c)

δ(T,W,Y )pA = [LY + 2W ] pA + 3
2(m∂AT + m̃∂̃AT ) + T

2
(
∂Am+ ∂̃Am̃+ cABj

B
)
, (1.5d)

δ(T,W,Y )tAB = [LY +W ] tAB + 8
3p〈A∂B〉T + T

(2
3D〈ApB〉 + 1

2cABm+ 1
2 c̃ABm̃

)
, (1.5e)

where T,W, Y are transformation parameters which are functions of the coordinates on
the celestial sphere and label respectively supertranslations, Weyl rescalings and tangent
diffeomorphisms. This set of transformations represents the second main result of the
paper as it generalizes2 to the BMSW group the one identified by Barnich et al. [46–48]
in the Penrose-Newman formalism for the extended BMS group [21, 22]. Our derivation
provides a more direct and independent derivation of these transformation laws from the
Bondi formalism. These transformations constitute the starting point for the construction
in [49] of the moment map between the non-radiative corner phase space of null infinity and
the dual Lie algebra of its full symmetry group. Indeed the charge conservation and the
closure of symmetry transformations are two indicators that the charges can be understood
as moment maps representing the action of an extended symmetry group on the asymptotic
gravity phase space. Even if the explicit action of the new spin-2 charge tAB on the gravity
phase space has now been revealed in [50, 51],3 establishing that these conserved charges,
including the dual mass and the spin two charge aspect, define a moment map for a
generalization of the BMS group still needs to be carried out.

In order to understand the relationship between the charge aspects we revealed and
the radiation, we investigate in section 6 how an initial vacuum state of the non-radiative
phase space is changed by an impulsive gravitational wave localized at u = 0, transitioning
into a new vacuum. To do so, we find the non-linear impulsive solutions that describe
this transition by integrating the evolution equations (1.4) in the case where the Weyl
tensor component NAB is proportional to a delta function δ(u) through an impulse news

2In [46–48] the metric is restricted to be conformally spherical and the diffeomorphisms are restricted
to be local Killing vector fields. Our derivation relax this restriction and includes the full group of sphere
diffeomorphism.

3These two references have also appeared on the arXiv shortly after the first version of this manuscript.
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function on the 2-sphere. By demanding continuity of the induced metric, we are able
to integrate all the evolution equations without encountering distributional singularities.
Quite surprisingly, we find that all the Weyl scalars are activated by the gravitational
impulse. This is in contrast with the usual solution for an impulsive gravitational wave
where only one Weyl scalar is non-vanishing [52–60] — although other Weyl scalars can
be activated from collisions —. More precisely, the remaining covariant charges are of
the form

JA(u) = J NR
A + J R1

A , (1.6a)
M(u) =MNR +MR1 , (1.6b)
M̃(u) = M̃NR + M̃R1 , (1.6c)
PA(u) = PNR

A + PR1
A + PR2

A , (1.6d)
TAB(u) = T NR

AB + T R1
AB + T R2

AB , (1.6e)

where the label NR denotes the non-radiative expressions given in (5.9), R1 a distributional
radiative component linear in the impulse news and R2 a secular radiative component
quadratic in the impulse news. The explicit expressions for the impulsive wave transition
represent the third main result of the paper and they are given in section 6.1.

We present our conclusions in section 7 and many technical derivations of various
relations used in the main text in a series of appendices A, B, C, D.

Notation. We use units in which 8πG = 1 and c = 1. Greek letters are used for spacetime
indices and uppercase Latin letters {A,B,C, . . . } for coordinates over the 2D sphere. The
symbol I= is used when the right-hand side is evaluated at future null infinity I. We denote
the symmetric, trace-free part of a tensor TAB with the brackets 〈·〉, namely

T〈AB〉 = 1
2
(
TAB + TBA − qABqCDTCD

)
, (1.7)

where qAB is the asymptotic metric on the two-sphere.

2 Future null infinity

Let us introduce Bondi coordinates xµ = (u, r, σA), where u labels null outgoing geodesic
congruences which intersect infinity along 2d spheres, r is a parameter along these geodesics
measuring the sphere’s radius (r is the luminosity distance) and σA denotes coordinates
on the celestial sphere. In these coordinates, the metric is given by [18, 19, 61]

ds2 = −2e2βdu (dr + Φdu) + r2γAB

(
dσA − ΥA

r2 du
)(

dσB − ΥB

r2 du
)
. (2.1)

This metric satisfy the Bondi gauge conditions given by

grr = 0, grA = 0, ∂r
√
γ = 0. (2.2)
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In addition to the gauge condition we impose extended4 Bondi asymptotic boundary con-
ditions [21, 47, 62], which are given by

gur
I= −1, 1

r
guu

I= 0, 1
r
guA

I= 0, ∂uqAB
I= 0. (2.3)

In this work we assume the usual Bondi like asymptotic boundary conditions which imply
that the metric components (Φ, β, γAB,ΥA) have the following fall-off behavior5

Φ = F (u, σA)−M(u, σA)
r

+ o(r−1) , (2.4a)

β = b(u, σA)
r2 + o(r−2) , (2.4b)

ΥA = UA(u, σA)− 2qAB
3r (PB +CBCU

C + ∂Bb)(u, σA) + o(r−1) , (2.4c)

γAB = qAB(u, σA) + CAB(u, σA)
r

+ 1
r2

(
DAB + 1

4qABCCDC
CD

)
(u, σA) + EAB(u, σA)

r3 + o(r−3) .

(2.4d)

The expansions of the different coefficients are needed to obtain the expansion of the metric
gµνdxµdxν to order6 O(r−1). Here M is the Bondi mass aspect, UA is the asymptotic
velocity, CAB is twice the asymptotic shear. If one restricts qAB to be the round sphere
metric q̊AB with R(q̊) = 2, one recovers the restricted Bondi boundary conditions. We will
avoid doing that in the following and keep the asymptotic conditions just stated. Because
of the Bondi determinant gauge condition the symmetric tensors CAB, DAB, EAB are all
traceless when contracted with the inverse asymptotic metric qAB. The O(r−2) factor in the
metric expansion is uniquely determined by the Bondi gauge condition; the demand that
logarithmic anomalies vanish requires DAB = 0 [63] and we assume this in the following.
When evaluating the asymptotic, we use the metric qAB to lower and raise the indices
{A,B, . . . } on the 2-sphere.

The leading asymptotic Einstein’s equations (EEs) give a first relation

∂uqAB = 0 , (2.5)

which can be understood as a boundary condition, implying the u-independence of the
leading order of the metric component gAB. While we derive from symmetry all the other
EEs, this one is assumed and taken as a boundary condition from now on. There is then

4Note that we do not require R(q) = 2 which is why we call our boundary conditions extended.
5This is a restrcition of our analysis: one could be more general by allowing b to be order 1 and by

allowing Φ to admit a term growing linearly in r. We follow here the original treatment [18–20] and all the
subsequent extensions [21–25] of asymptotic symmetries of null infinity, we have chosen fall-off conditions
that do not include these terms from the beginning in order to simplify the rest of the analysis. We come
back to this point at the beginning of section 4.

6Since dr is of order O(r), gur needs to be expanded to order O(r−2), since gAB = r2γAB , γAB needs
to be expanded to order O(r−3) and since guA = γABΥA, ΥA needs to be expanded to order O(r−1), to
achieved O(r−1) for the expansion of the metric gµνdxµdxν .
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a second set of asymptotic vacuum Einstein’s equations given by the relations7

EF := F − R(q)
4 = 0 , (2.6)

EAU := UA + 1
2DBC

AB = 0 , (2.7)

Eb := b+ 1
32CABC

AB = 0 , (2.8)

where DA is the covariant derivative associated with qAB. These can be understood as
constraints between phase space data and we will show below how they can be obtained
simply from the BMSW transformation properties and the requirement of covariance under
it. The next two asymptotic equations are

EM := Ṁ − 1
4DADBN

AB − 1
8∆R+ 1

8NABN
AB = 0 , (2.9)

EPA := ṖA −DAM −
1
8DA

(
CBCNCB

)
− 1

4CAB∂
BR

− 1
4DC

(
DADBC

BC −DCDBCAB
)

− 1
4DB

(
NBCCAC − CBCNAC

)
+ 1

4N
BCDACBC = 0 , (2.10)

and they correspond to evolution equations for the energy aspect M and the momentum
aspect PA. At the order we are working in, the last asymptotic equation is an evolution
equation for the spin-2 tensor EAB. It was written explicitly in the gauge we are adopting
here by Nichols in [64]

EEAB := ĖAB −
1
2MCAB −

1
3D〈APB〉 −

1
96D〈ADB〉(CCDCCD)

− 1
4CABNCDC

CD + 1
8εA

CCCBεD
EDEDCC

CD . (2.11)

These three evolution equations are derived as well using our symmetry argument.

2.1 BMSW vector fields

The infinitesimal BMSW diffeomorphisms introduced in [17] are spacetime diffeomorphisms
preserving the boundary conditions above. These are labelled by a vector field Y A on S

representing asymptotic diffeomorphisms of the celestial sphere, a super-translation pa-
rameter T and a Weyl transformation parameter W , which are all independent of u and r.
The BMSW vector fields can be conveniently written, as ξ(τ,Y ), in terms of the parameter
τ = τ(T,W ) given by

τ := T + uW , τ̇ = W , τ̈ = 0. (2.12)

7The boundary condition (2.5) together with the Einstein’s equation (2.6) clearly imply that the leading
order of guu is time independent, namely ∂uF = 0.
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The BMSW vector fields ξ(τ,Y ) are characterized as the bulk vector fields preserving the
Bondi gauge and asymptotic conditions (2.2), (2.3) which evaluate on I to ξ(τ,Y )

I= ξ̄(τ,Y ),
where the asymptotic BMSW vector fields are

ξ̄(τ,Y ) := τ∂u + Y A∂A − τ̇ r∂r,
= T∂u +W (u∂u − r∂r) + Y A∂A. (2.13)

We see that with the first parametrization τ labels time translations, while τ̇ labels con-
formal rescaling. In the second parametrization T labels time translations, while W labels
asymptotic boosts.

To write down explicitly the bulk extension ξ(τ,Y ), it is convenient to define

IAB :=
(∫ ∞

r

dr′
r′2

e2βγAB
)
, (2.14)

which is such that IAB I= 0 and r∂rIAB = −1
r e

2βγAB. The corresponding vector fields are
of the form8

ξu(τ,Y ) = τ , (2.15a)

ξA(τ,Y ) = Y A − IAB∂Bτ , (2.15b)

ξr(τ,Y ) = r

(1
2DA(IAB∂Bτ) + 1

2r2 ΥA∂Aτ − τ̇
)
. (2.15c)

We can check that W (σA) induces a Weyl rescaling of the celestial sphere, as

Lξ
√
q = (DAY

A − 2W )√q , (2.16)

where q := det(qAB). The generalized BMS group proposed in [23, 25] is recovered by
setting W = 1

2DAY
A, so that the condition δ√q = 0 is preserved by the symmetry trans-

formations.

2.2 BMSW symmetry transformations

The boundary BMSW symmetry group is asymptotically generated by the vector fields
ξ(τ,Y ). Its Lie algebra is isomorphic to the double semi-direct sum [17]

bmsw :=
(
diff(S) i RSW

)
i RST . (2.17)

The first factor RSW denotes the Weyl transformations labeled by functions W on the
sphere, while the second factor RST denotes the super-translations labelled by functions T
on the sphere of density weight 1/2. The commutators are given by

[ξ̄(τ1,Y1), ξ̄(τ2,Y2)] = ξ̄(τ12,Y12). (2.18)
8We have used that, thanks to the Bondi gauge, we have Dγ

AZ
A = 1√

γ
∂A(√γZA) = 1√

q
∂A(√qZA) =

DAZ
A, for a generic vector Z on the sphere, with Dγ

A the covariant derivative associated to γAB .
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Here we parametrized the (RSW i RST ) by functions on the sphere τ = T + uW which are
linear in time and we have denoted

τ12 = τ1τ̇2 − τ2τ̇1 + Y1[τ2]− Y2[τ1] , Y A
12 = [Y1, Y2]ALie , (2.19)

where Y [τ ] := Y A∂Aτ .
The quantities of physical interests such as (qAB, CAB, F,M, b, UA, PA) are functionals

Φi(gµν) of the metric. The transformations of these functionals are given by the chain rule
δ(τ,Y )Φi =

∫ δΦi
δgµν
Lξ(τ,Y )gµν . In practice, to evaluate the variations δ(τ,Y )Φi we use that gµν

is determined by Φi and we evaluate the condition

Lξ(τ,Y )gµν [Φi] = ∂

∂ε
gµν [Φi + εδ(τ,Y )Φi]

∣∣∣∣
ε=0

. (2.20)

The explicit derivations are given in appendix A.
By focusing on the metric component gAB, one can easily derive the transformations

δ(τ,Y )qAB = [LY − 2τ̇ ] qAB , (2.21a)

δ(τ,Y )CAB = [τ∂u + LY − τ̇ ]CAB − 2D〈ADB〉τ . (2.21b)

Taking the trace of q implies that

δ(τ,Y )
√
q =

[
DAY

A − 2τ̇
]√

q . (2.21c)

Taking the time derivative NAB = ĊAB and the divergence of the shear (D·C)B := DAC
AB

implies that

δ(τ,Y )NAB = [τ∂u + LY ]NAB − 2D〈A∂B〉τ̇ , (2.21d)

δ(τ,Y )(D ·C)B = [τ∂u + LY + 3τ̇ ](D ·C)B + (NBA∂Aτ − CBA∂Aτ̇)− (R(q)∂Bτ + ∂B∆τ) .
(2.21e)

The second equality is established in appendix B. Next, focusing on the guu component,
one can derive the two transformations

δ(τ,Y )F = [LY + 2τ̇ ]F + 1
2∆τ̇ , (2.21f)

δ(τ,Y )M = [τ∂u + LY + 3τ̇ ]M +
(1

2DBN
AB + ∂AF

)
∂Aτ

+ 1
4N

ABDA∂Bτ + 1
4C

ABDA∂B τ̇ + 1
2(EAU∂Aτ̇ − ĖAU∂Aτ) , (2.21g)

where EAU is the asymptotic Einstein’s equation (2.7). The gur component gives the trans-
formation

δ(τ,Y )b = [τ∂u + LY + 2τ̇ ] b+ 1
8C

ABDA∂Bτ + 1
4EAU∂Aτ . (2.21h)
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From the Lie derivative of the guA component we can read off the transformation of the
two functionals

δ(τ,Y )UA = [τ∂u + LY + τ̇ ]UA + 1
2(4F∂Aτ + ∂A∆τ) + 1

2(CAB∂B τ̇ −NA
B∂Bτ) , (2.21i)

δ(τ,Y )PA =̂ [τ∂u + LY + 2τ̇ ]PA + 3M∂Aτ −
1
8CBCN

BC∂Aτ + 1
2CABN

BC∂Cτ

+ 3
4(DADCCB

C −DBDCCA
C)∂Bτ + 1

4∂A(CBCDBDCτ)

+ 1
2D〈ADB〉τDCC

BC + CAB

(
F∂Bτ + 1

4∂
B∆τ

)
− 2Ėb∂Aτ . (2.21j)

The hatted equality refers to the fact that we have used the asymptotic equations EAU =̂ 0
to simplify the r.h.s. of expression (2.21j).

Finally the most extensive calculation concerns the variation of the traceless component
EAB. One finds in appendix A.4.1 that

δ(τ,Y )EAB =̂ [τ∂u + LY + τ̇ ]EAB

+ 4
3

(
P〈A + 1

4DDC
DCCC〈A − 8∂〈Ab

)
∂B〉τ

+ 1
2
(
CCDDCCAB − CABDCC

CD
)
∂Dτ −D〈ACB〉CCCD∂Dτ

+ 4bD〈A∂B〉τ −
1
4CABC

CDDC∂Dτ −
16
3 EbD〈A∂B〉τ + 32

3 ∂〈AEb∂B〉τ . (2.22)

2.3 Relation to the extended corner symmetry group

As shown in [1], the corner symmetry group is the gravitational symmetry associated to a
generic codimension-2 surface called corner. This surface can be thought of as bordering
a bounded region of space. The corner symmetry algebra is simply the subalgebra of
diffeomorphisms that do not change the position of the corner surface. It is given by the
semi-direct sum of the surface diffeomorphism and surface boosts. Explicitly, we have

gS = diff(S) i sl(2,R)S . (2.23)

Its extension to include time translations normal to the surface yields the notion of the
extended corner symmetry algebra, as revealed in [14, 15], which includes also two copies
of R corresponding to the surface translations along the two normal directions. Its explicit
structure is given by

gext
S =

(
diff(S) i sl(2,R)S

)
i (R2)S . (2.24)

As shown in [15], the bmsw Lie algebra (2.17) corresponds to a subalgebra of the extended
corner symmetry algebra gext

S in the bulk, where the RSW contribution is given by one of
the sl(2,R) generators (namely, the one preserving the null generator of I), while the RST
contribution corresponds to one of the two normal super-translations (namely, the one
along I). We can thus understand the BMSW group as the r → ∞ limit (a contraction)
of the extended corner symmetry group.
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3 Anomalies

The anomaly operator ∆τ associated with a functional O of conformal dimension s is
given by

∆τO := δ(τ,Y )O − (τ∂u + LY + sτ̇)O. (3.1)

This anomaly measures the difference between the natural action of the BMSW group
on O and its field space action. By construction the anomaly only depends on τ . The
transformation rules reported in the previous section have the general structure

δ(τ,Y )O = [τ∂u + LY + sτ̇ ]O + LAO∂Aτ + L̄AO∂Aτ̇ +QABO DA∂Bτ + Q̄ABO DA∂B τ̇ . (3.2)

The first term is the homogeneous transformation that involves the scale weight9 s of
the functional O. All scale weights of the different functionals can be found by assigning
scale weight s(ds2) = 0, while s(r) = s(dr) = +1 and s(u) = s(du) = −1 in the metric
expansion, hence the scale weight of ∂u is +1. Functionals that transform homogeneously
are sections of the scale bundle P .10 The inhomogeneous terms are of two types: (LAO, L̄AO)
which we call linear anomalies and terms (QABO , Q̄ABO ) which are the quadratic anomalies.
An example of anomaly is

∆τCAB = −2D〈A∂B〉τ . (3.3)

The functional O is said to be tensorial when both linear and quadratic anomalies vanish.
The first examples of tensorial combinations are the quantities qAB, ṄAB which satisfy

∆τqAB = 0, ∆τ ṄAB = 0 . (3.4)

They are operators of scale weight (−2,+1) respectively. The main theme of our paper is
that we can recover the equations of motion by identifying the tensorial combinations. For
instance, we can easily see from the previous expressions that the asymptotic equations of
motion (2.5), (2.7), (2.8) all transform tensorially: EF := R− 1

4F as a section of weight 2,
Eb as a section of weight 2, EAU as a vector of weight 3.

Another class of operators which will be of interest to us is the pseudo-tensors of
weight s. These are characterized by the fact that the quadratic anomaly and the anomaly
L̄AO linear in τ̇ vanish while the linear anomaly LAO does not. The pseudo-tensors can
be understood as tensorial for the subgroup of symmetry that does not include super-
translations.

The next example we want to study involves the Liouville stress tensor [25]. Given a
metric qAB we can define its Liouville stress tensor11 to be the symmetric traceless tensor
TAB(q) such that

DAT
AB + 1

2∇
BR = 0. (3.5)

9s can also be understood as a boost weight.
10We call scale bundle a line bundle P → I over I whose automorphism group includes the asymptotic

BMSW vector fields (2.13).
11The conserved energy momentum tensor of Liouville is τAB := TAB + 1

2qABR(q). Its trace is qABτAB =
R(q). The tensor TAB(q) is also called the Geroch tensor when q = eϕq̊ [65].
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The fact that this tensor can be uniquely determined follows first from the fact that the
equation D̊AT

AB = 0 implies, when S is a sphere, that TAB(q̊) = 0. Second, from the
following covariance properties under Weyl transformation with parameter W and diffeo-
morphism ϕ : S → S

TAB(e2W q) = TAB(q)− 2(D〈AWDB〉W +D〈ADB〉W ), ϕ∗(TAB(q)) = TAB(ϕ∗(q)).
(3.6)

Indeed, by the uniformization theorem, any metric on the sphere can be written as q =
eWϕ∗(q̊). So the transformation properties (3.6) allow one to determine TAB(q). This
means that the combination

N̄AB := NAB − TAB(q) (3.7)

possesses no anomaly ∆τ N̄AB = 0. It is a tensor operator of scale weight 0. From this we
can construct a covariant current

J A := 1
2DBN̄

BA = 1
2DBN

AB + 1
4∂

AR , (3.8)

where the second equality follows from (3.5). The covariant current yields the Weyl scalar
Ψ3, it possesses no quadratic anomaly and it is a pseudo-tensor of dimension 4

δ(τ,Y )J A = [τ∂u + LY + 4τ̇ ]J A + 1
2Ṅ

AB∂Bτ . (3.9)

This can be seen by taking the time derivative of (2.21e) (an alternative derivation is
given in appendix B). The explicit relation between all the covariant observables and the
Weyl scalars is shown in section 3.5. Since ṄAB is a tensor and J A is a pseudo-tensors
whose anomaly vanish when ṄAB = 0, we can define the non-radiative vacua to be such
that J A = 0 = ṄAB. The non-radiative vacua are transformed into each other by the
symmetry transformations.

3.1 Covariant mass

We are interested in combinations of the physical quantities parametrizing the Bondi met-
ric (2.1) that transform as pseudo-tensors, with no quadratic anomaly and no Weyl linear
anomaly. To this aim, we introduce the notion of covariant mass

M := M + 1
8CABN

AB . (3.10)

The justification for this name comes from the fact that, by means of (2.21g), (2.21b),
(2.21d), the quantity above transforms12 as

δ(τ,Y )M =̂ [τ∂u + LY + 3τ̇ ]M+ J A∂Aτ . (3.11)

We thus see that only a linear anomaly term appears in the transformation of M and
moreover that the linear anomaly depends only on τ , not τ̇ . A nontrivial consistency

12We recall that the hatted equality refers to the fact that we use the asymptotic equations EAU = 0.
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check for this formula comes from the fact that the variation of J A does not contain any
quadratic anomaly terms, as shown by (3.9).

This indicates also that if the non-radiative structure J A = 0 = ṄAB is satisfied,
then the covariant mass aspect M transforms homogeneously. Moreover, flat vacua can
be defined by the conditionsM = 0 = J A = ṄAB. These were parametrized and studied
in [25, 66].

3.2 Duality and covariant mass

In this section we show that it is possible to construct from CAB, NAB and their derivative
another scalar of dimension 3 that possesses no quadratic anomaly: the dual covariant
mass. To describe its construction, let us introduce the volume form on S denoted εAB
and given by 1

2εABdσA ∧ dσB = √qd2σ. Raising one of its indices with the metric, one
gets the complex structure

εA
B := εACq

CB, εA
BεB

C = −δCA . (3.12)

The complex structure is a tensor of weight 0

δ(τ,Y )εA
B = (τ∂u + LY )εAB. (3.13)

We can use this complex structure to define a duality transform for the traceless tensors
C,N and the derivatives. We introduce the notation

C̃AB := εA
CCCB = εB

CCAC , ÑAB := εA
CNCB = εB

CNAC , ṼA := εA
BVB .

(3.14)

Note that the equality εACCCB = εB
CCAC is only valid for symmetric traceless tensors.

The tilde operation is a duality ˜̃NAB = −NAB, and we have the properties

ṼAW
A = −VAW̃A, ÑABV

B = −NABṼ
B, (3.15)

where we denoted Ṽ A = qABṼB. In particular, this means that

(̃D ·N)A = εA
BDCNCB = (D ·Ñ)A = −(D̃ ·N)A . (3.16)

The tensor εAB can be used to convert 2-forms on the sphere into (pseudo)-scalars. In
particular, given JAB = J[AB] a 2-form on S this can be written as

JAB = 1
2 J̃εAB, J̃ = εABJAB. (3.17)

An identity that we will repeatedly use in the following derivations is the condition that

D[ANB]
C∂Cτ = DCN[A

C∂B]τ, (3.18)

which follows from the Fierz identity D[ANB
C∂C]τ = 0 and the fact that N is traceless. It

will also be useful to simplify some tensors using the identity

εABε
CD = δCAδ

D
B − δDA δCB . (3.19)
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Given these preliminaries we can now present the construction of the dual covariant mass.
From the transformation (2.21e) of (D ·C)B we conclude in appendix B that

δ(τ,Y )(DA(D·C̃)A) = [τ∂u +LY + 3τ̇ ](DA(D·C̃)A) + 4J̃ A∂Aτ + (ÑBCDB∂Cτ +CBCD̃B∂C τ̇).
(3.20)

This means that the following combination

M̃ := 1
4(DA(D ·C̃)A) + 1

8CABÑ
AB , (3.21)

called the covariant dual mass, possesses no quadratic anomalies. The explicit transforma-
tion follows from the transformations (3.20) and (2.21b), (2.21d) and it is given by

δ(τ,Y )M̃ = [τ∂u + LY + 3τ̇ ]M̃+ J̃ A∂Aτ . (3.22)

This is in absolute parallel with the mass transformation formula (2.21g). Note that the
role of the mass aspect M is played here by the “vorticity” of the fluid with velocity UA:

M̃ := −1
2ε

ABDAUB = 1
4(DA(D ·C̃)A). (3.23)

The covariant massM and the dual covariant mass M̃ determine respectively the real and
the imaginary part of the Weyl scalar Ψ2 at I.

3.3 Covariant momentum

We now focus on the construction of the covariant momentum. The transformation of the
momentum13 is given in (2.21j). In order to analyze and simplify this equation, one can
follow the same strategy as the one that led to the definition of the covariant mass and
look for counter-terms that cancel all the quadratic anomaly terms proportional to DA∂Bτ

and ∆τ . To do so one first establishes, using (2.21e) again, that

δ(τ,Y )(DCC
CBCBA) = [τ∂u + LY + 2τ̇ ](DCC

CBCBA) + CAB(NBC∂Cτ − CBC∂C τ̇)
− CAB(R∂Bτ + ∂B∆τ)− 2D〈ADB〉τDCC

CB . (3.24)

We also use that

δ(τ,Y )∂A

(
− 1

32CBCC
BC
)

=̂ [τ∂u + LY + 2τ̇ ]∂A
(
− 1

32CBCC
BC
)

+ 1
8∂A(CBCDB∂Cτ)

− 1
32∂u

(
CBCC

BC
)
∂Aτ −

1
16CBCC

BC∂Aτ̇ . (3.25)

This means that the last three terms in the variation (2.21j) of PA can therefore be cancelled
by the modification

PA := PA + 1
4(DCC

CB)CBA + 1
16∂A(CBCCBC) , (3.26)

13To compare these transformations with the one of [22, 25] one needs to use that NA = PA + ∂Ab.
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which defines the covariant momentum and yields the Weyl scalar Ψ1. To compute explic-
itly the variation of this covariant momentum one uses that

CABC
BC = 1

2(CBDCBD)δCA , CABN
BC = 1

2(CBDNBD)δCA + 1
2(CBDÑBD)εAC .

(3.27)

This means that the variation of the covariant momentum drastically simplifies into

δ(τ,Y )PA ˆ̂= [τ∂u + LY + 2τ̇ ]PA + 3MAB∂
Bτ , (3.28)

where the tensorMAB is given by

MAB :=MqAB + M̃εAB , (3.29)

and the double hatted equality refers to the fact that we have used both asymptotic equa-
tions EAU ˆ̂= 0 ˆ̂= Eb.

The momentum transformation involves the mass and dual mass on a symmetric level.
It is a clear improvement from the cumbersome transformation (2.21j) and it exhibits, as
anticipated, a self-dual symmetry of the transformation rules. This expression also provides
a powerful and nontrivial consistency check of (2.21j). Indeed, since PA does not contain
quadratic anomaly, its variation should also be expressed only in terms of semi-covariant
tensors that do not contain quadratic anomalies. This is indeed the case since bothM and
M̃ are semi-covariant. To summarize, the transformation property (3.28) of the covariant
momentum is self-dual and given by

δ(τ,Y )PA ˆ̂= [τ∂u + LY + 2τ̇ ]PA + 3
(
M∂Aτ + M̃∂̃Aτ

)
. (3.30)

3.4 Covariant stress

We finally focus on the construction of the covariant spin-2 observable. It is easy to see
that the first two terms in the last line of (2.22) are cancelled in the following combination

TAB := 3
(
EAB −

1
16CABCCDC

CD
)
, (3.31)

which defines the covariant stress and yields the Weyl scalar Ψ0. Using the definition of
the covariant momentum, we can write its transformation as (see appendix A.4.1)

δ(τ,Y )TAB =̂ [τ∂u +LY + τ̇ ]TAB + 4P〈A∂B〉τ

+ 3
2
(
CCDDCCAB −CABDCC

CD
)
∂Dτ − 3D〈ACB〉CCCD∂Dτ + 3

4∂〈A(CCDCCD)∂B〉τ

− 4EbD〈A∂B〉τ . (3.32)

We can simplify this expression considerably using the identity
1
2
(
CD

CDCCAB − CABDCC
C
D

)
= D〈ACB〉CC

C
D −

1
4∂〈A(CCECCE)qB〉D , (3.33)

that can be proven using complex coordinates. Finally, this means that we simply have

δ(τ,Y )TAB ˆ̂= [τ∂u + LY + τ̇ ] TAB + 4P〈A∂B〉τ. (3.34)

Again a drastic simplification from the original transformation (2.22).
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3.5 Covariant tensors and Weyl scalars

In order to elucidate the relation between the covariant observables introduced above and
the Weyl scalars in the Newman-Penrose formalism [34, 35] at null infinity, let us introduce
a doubly-null tetrad (`, t,m, m̄) adapted to the 2 + 2 foliation defined by two null vectors
`, t transverse to the sphere and a complex dyad m, m̄ tangent to the sphere, with qAB =
2m(Am̄B). Explicitly, in the Bondi coordinates (u, r) on I these vectors are given by

` = ∂r , t = ∂u m = mA∂A . (3.35)

By contracting the Weyl tensor Wµνρσ with the tetrad field above, we obtain the 5 Weyl
scalars (Ψ4,Ψ3,Ψ2,Ψ1,Ψ0). The asymptotic values of the Weyl scalars, which are deter-
mined by the peeling theorem, are respectively given by (1

2Ṅ
AB,J A,M− iM̃,PA, TAB)

(see appendix D of [17])

Ψ4 := −Wtm̄tm̄ = 1
2r Ṅ

ABm̄Am̄B + o(r−1) , (3.36a)

Ψ3 := −Wt`tm̄ = 1
r2 J

Am̄A + o(r−2) , (3.36b)

Ψ2 := −1
2 (W`t`t +W`tmm̄) = 1

r3 (M+ iM̃) + o(r−3), (3.36c)

Ψ1 := −W`t`m = 1
r4 PAm

A + o(r−4) , (3.36d)

Ψ0 := −W`m`m = 1
r5 TABm

AmB + o(r−5) . (3.36e)

This means that the covariant observables are simply, and up to normalisation, the asymp-
totic Weyl scalars.

4 EOM from symmetry

In the previous section we have constructed the tensor ṄAB and the pseudo-tensors
(J A,M,M̃,PA, TAB). By design these are covariant under the kinematical part of the
bmsw algebra and they represent the metric data up to order 1/r in the metric expansion.
We now want to explore their covariance properties under supertranslations and derive
from it the asymptotic evolution equations, that appear as restrictions on the free data.

The strategy that defines our symmetry argument is as follows. For a given scale weight
s and a given spin, we first identify the combinations of free data that transform with that
weight and are covariant under the action of the BMSW infinitesimal transformations. The
associated asymptotic EEs are then obtained by setting those combinations to zero. To be
more precise the first step of the argument requires identifying quantities denoted E which
are now tensorial under the full symmetry group including supertranslaions. One can then
argue that in the absence of sources, that is for pure gravity, the only possible consistent
equation is E = 0. The reason we put the r.h.s. of the equation equal to zero instead of
1 say is that E can be understood as transforming in the coadjoint representation of the
BMSW group. It would be inconsistent to fixed E = 1 as the transformed value gEg−1,
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for g an element of the BMSW group, would now be different from 1. The only option
is to have an equality of the form E = O where O is an object that transforms under the
coadjoint representation of BMSW. In the absence of matter no such object exists and the
only admissible coadjoint orbit that can source the equation is O = 0. Later in the section
we identify, in the presence of matter, which combination of the energy-momentum tensor
transforms in the same orbit as E . This leads to a proposal for the asymptotic equations
of motion in the presence of matter.

Let us emphasize that the derivation of Einstein’s equation from symmetry is only
valid for the asymptotic equations of motion that arises in a 1/r expansion of the metric.
The rest of the equations that allow to reconstruct the bulk metric, through the radial
evolution, are not derived in that way but they are assumed to hold. This is consistent
with the holographic perspective where the boundary is assumed to have a unique bulk
reconstruction. Let us also emphasize that going from the identification of a tensor E to
the imposition E = 0 as an equation of motion is not new. It is the same strategy that
Einstein used to derive the equation Gµν = 0 from a gauge symmetry argument [67].

Before focusing on the derivation of the set of Einstein’s equations, we need to dis-
tinguish the equations that are derived from a symmetry argument form the ones that
are imposed as boundary conditions. The only equations that we impose as boundary
conditions are listed in (2.3), which in particular contain the equation (2.5). It is possi-
ble to relax these boundary conditions and perform a more full fledge analysis where the
equation (2.5) is also derived from symmetry, but we do not do this here.

We now look systematically at the metric components that transform homogeneously
under the full BMSW group. One starts by the scalar data of weight s = 1. At this weight
there is only one datum of weight s = 1 that transforms homogeneously under BMSW
transformations. It is the scalar given by b1 which labels the term of order b1/r in the
expansion of β, which transforms as δ(τ,Y )b1 = [τ∂u + Y A∂A + τ̇ ]b1. Since this is the only
datum of s = 1 that transforms homogeneously, the covariant relation b1 = 0 falls in the set
of covariant relations to impose in the absence of external sources and it is thus included
in the set of asymptotic EEs derived using exclusively BMSW transformation properties.

For the next steps we analyze the two scalar invariants of weight s = 2 and the spin one
invariant of weight s = 3, representing evolution equations for covariant observables. This
allows us to apply our symmetry argument for an immediate derivation of the Einstein’s
equations (2.6), (2.7), (2.8). More precisely, from the transformations of the 2d Ricci
scalar under the metric rescaling qAB → e−2τ̇qAB and (2.21f) it is immediate to see that
the combination

EF = F − R(q)
4 (4.1)

transforms homogeneously as a scalar of weight s = 2, namely

δ(τ,Y )EF = [LY + 2τ̇ ] EF . (4.2)

Hence the EE (2.6) is recovered as the covariant expression EF = 0. From the transforma-
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tions (2.21e), (2.21i), it is straightforward to show that the combination

EAU := UA + 1
2DBC

AB (4.3)

transforms homogeneously as a vector of weight s = 3, namely

δ(τ,Y )EAU = [τ∂u + LY + 3τ̇ ]EAU . (4.4)

This shows that the EE (2.7) is also recovered as the covariant expression EAU = 0.
Similarly to the case for EAU , from the transformations (2.21b), (2.21h) we see right

away that the scalar combination

Eb := b+ 1
32CABC

AB (4.5)

transforms as

δ(τ,Y )Eb = [τ∂u + LY + 2τ̇ ] Eb + 1
4E

A
U ∂Aτ . (4.6)

Therefore, on-shell of the previously just derived EE EAU = 0, we recover (2.8) as well from
the requirement of covariance under the BMSW group action.

Now that we have shown that our symmetry argument can be applied to derive both
Einstein’s equations (2.7), (2.8), in the following we will at times go on-shell of these two
equations in order to simplify some of the expressions. We recall that imposition of (2.7)
alone is denoted by a single hat while impositions of (2.8) as well by a double hat. In
particular, we point out already that, when including matter sources in our analysis, we
will refrain from imposing (2.8) as the combination b+ 1

32CABC
AB picks up a stress-energy

tensor contribution in the Einstein’s equations and this needs to be taken properly into
account when studying covariance properties of matter terms as well. This means that
some of the transformations derived in sections 4.1, 4.2, 4.3 will need to be generalized to
include terms proportional to Eb; this is done in appendix A.

4.1 Mass evolution from symmetry

The goal of this section is to show that, quite remarkably, the symmetry transformation
ofM completely determines its equation of motion. To see this, one evaluates the trans-
formation of the covariant mass time derivative and the current divergence

δ(τ,Y )Ṁ =̂ [τ∂u + LY + 4τ̇ ]Ṁ+ ∂u(J A∂Aτ) ,

δ(τ,Y )DAJ A = [τ∂u + LY + 4τ̇ ]DAJ A + 2∂u(J ADAτ) + 1
2Ṅ

ABDA∂Bτ , (4.7)

where we used that 1
2DAṄ

AB = J̇ B. This means that the quantity

E := Ṁ − 1
2DAJ A −

1
8Ṅ

ABCAB (4.8)
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transforms homogeneously under the symmetry transformation. Therefore, the covariant
conservation equation is E = 0 or

Ṁ − 1
2DAJ A = −1

8NABN
AB , (4.9)

when written in terms of the original variables.
This is one of the Einstein’s equation which is derived purely from symmetry principle.

If one uses a fluid analogy whereM plays the role of the energy density, we see that −J A
is the energy transport current while 1

8NABN
AB plays the role of the entropy production.

The expression (4.8) in terms of the covariant quantities shows that when no radiation is
present, which corresponds to the condition ṄAB = 0, then the covariant mass is conserved

Ṁ − 1
2DAJ A = 0. (4.10)

The same can be followed for the dual mass, using that

δ(τ,Y )
˙̃M = [τ∂u + LY + 4τ̇ ]M̃+ ∂u(J̃ A∂Aτ),

δ(τ,Y )DAJ̃ A = [τ∂u + LY + 4τ̇ ]DAJ̃ A + 2∂u(J̃ ADAτ) + 1
2

˙̃NABDA∂Bτ , (4.11)

from which we deduce that the quantity

Ẽ := ˙̃M− 1
2DAJ̃ A −

1
8

˙̃NABCAB (4.12)

transforms homogeneously under the symmetry transformation. Therefore, the covariant
conservation equation for the dual mass is Ẽ = 0.

4.2 Momentum evolution from symmetry

We can establish in a similar manner that the asymptotic evolution equation for the mo-
mentum can be written as EA = 0, with (see also details in appendix C)

EA := ṖA − ∂AM− ∂̃AM̃ − CABJ B , (4.13)

a vector that transforms homogeneously under the BMSW group. The goal is show that
the anomaly of EA vanishes when E and Ẽ vanish, namely

∆τEA ˆ̂= 0 . (4.14)

We rely on the duality between the covariant mass and dual mass to simplify the proof.
Let us first focus on the quadratic anomalies, which we denote ∆(2)

τ . From the trans-
formation properties derived in appendix B, we can write

∆(2)
τ ∂AM =̂ J BDA∂Bτ = J BD〈A∂B〉τ + 1

2JA∆τ ,

∆(2)
τ ∂̃AM̃ = J̃ BD̃A∂Bτ = −J BD̃〈A∂̃B〉τ + 1

2 J̃
BεAB∆τ

= J BD〈A∂B〉τ −
1
2JA∆τ ,

∆(2)
τ CABJ B = −2J BD〈A∂B〉τ , (4.15)
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from which it is straightforward to see that

∆(2)
τ EA ˆ̂= 0 , (4.16)

since ∆(2)
τ ṖA ˆ̂= 0 as immediate from (3.30).

Let us now look at the linear anomaly ∆(1)
τ . Using again the results of appendix B, we

can write

∆(1)
τ ṖA ˆ̂= 3Ṁ∂Aτ + 3M∂Aτ̇ + 3 ˙̃M∂̃Aτ + 3M̃∂̃Aτ̇ , (4.17)

∆(1)
τ ∂AM =̂ ∂AτṀ+ 3∂Aτ̇M+DAJ B∂Bτ, (4.18)

∆(1)
τ ∂̃AM̃ = ∂̃Aτ

˙̃M+ 3∂̃Aτ̇M̃+ D̃AJ̃ B∂Bτ

∆(1)
τ CABJ B = 1

2CABṄ
BC∂Cτ = 1

4(CBCṄBC)∂Aτ + 1
4(CBC ˙̃NBC)∂̃Aτ . (4.19)

Moreover, given the identity

DAJB + D̃AJ̃B = qAB(DCJ C) + εAB(D̃CJ̃ C) , (4.20)

we have

∆(1)
τ EA ˆ̂=

[
2Ṁ − (DCJ C)− 1

4(CBCṄBC)
]
∂Aτ +

[
2 ˙̃M− (DCJ̃ C)− 1

4(CBC ˙̃NBC)
]
∂̃Aτ

= 2E∂Aτ + 2Ẽ ∂̃Aτ = 0 , (4.21)

on-shell of E = 0 = Ẽ . We thus see that also the equation of motion for the momentum,
EA = 0, can be derived from purely symmetry principles.

4.3 Stress tensor evolution from symmetry

Let us show that the same strategy applies to the spin-2 equation of motion as well. For
the spin-2 sphere metric component we have seen in (3.34) that the combination TAB =
3
(
EAB − 1

16CABCCDC
CD
)

has no quadratic anomaly. The goal is two show that the
combination

EAB := ṪAB −D〈APB〉 −
3
2
(
CABM+ C̃ABM̃

)
(4.22)

is also free of anomaly on-shell of the momentum evolution equation EA = 0 and therefore it
determines the tensorial equation of motion. Since the quadratic anomaly of ṪAB vanishes,
one only needs to evaluate the following quadratic anomalies

∆(2)
τ

(
D〈APB〉 + 3

2
(
CABM+ C̃ABM̃

))
ˆ̂= 3
(
M̃D〈A∂̃B〉τ +MD〈A∂B〉τ

−MD〈A∂B〉τ − M̃D̃〈A∂B〉τ
)

= 0 , (4.23)

where we used the result in appendix B for the anomaly of the quantity DAPB, as well
as (2.21b).
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We are thus left to show that the linear anomaly vanishes too. For the same quantities
as in (4.23), we have

∆(1)
τ

(
D〈APB〉

)
ˆ̂= 4P〈A∂B〉τ̇ + Ṗ〈A∂B〉τ + 3D〈AM̃∂̃B〉τ + 3D〈AM∂B〉τ , (4.24)

∆(1)
τ

(3
2CABM

)
=̂ 3

2CABJ
C∂Cτ , (4.25)

∆(1)
τ

(3
2 C̃ABM̃

)
= 3

2 C̃ABJ̃
C∂Cτ . (4.26)

Therefore, combining these together we have

∆(1)
τ

(
D〈APB〉 + 3

2
(
CABM+ C̃ABM̃

))
ˆ̂= 4P〈A∂B〉τ̇ + Ṗ〈A∂B〉τ + 3D〈AM̃∂̃B〉τ + 3D〈AM∂B〉τ + 3

2CABJ
C∂Cτ + 3

2 C̃ABJ̃
C∂Cτ

= 4∂u(P〈A∂B〉τ)− 3
(
Ṗ〈A − D̃〈AM̃+D〈AM

)
∂B〉τ + 3

2CABJ
C∂Cτ + 3

2 C̃ABJ̃
C∂Cτ

= 4∂u(P〈A∂B〉τ)− 3E〈A∂B〉τ. (4.27)

This was simplified by using the identity

CAB∂Cτ − C̃AB ∂̃Cτ = CC〈A∂B〉τ − C̃C〈A∂̃B〉τ = 2CC〈A∂B〉τ. (4.28)

We also used the definition of the momentum equation of motion (4.13). From this, taking
the time derivative of (3.34), we conclude that ∆(1)

τ EAB ˆ̂= 0 as well once we use EA = 0.

4.4 Matter sources

The previous results show that the multiplet (E , Ẽ , EA, EAB) of evolution equations trans-
forms homogeneously under the BMSW symmetry group. More precisely, we have

δ(τ,Y )E =̂ [τ∂u + LY + 4τ̇ ]E , (4.29)
δ(τ,Y )Ẽ = [τ∂u + LY + 4τ̇ ]Ẽ , (4.30)
δ(τ,Y )EA ˆ̂= [τ∂u + LY + 3τ̇ ]EA + 2E∂Aτ + 2Ẽ ∂̃Aτ , (4.31)
δ(τ,Y )EAB ˆ̂= [τ∂u + LY + 2τ̇ ]EAB + 3E〈A∂B〉τ . (4.32)

We have seen as well that the asymptotic Einstein’s equations constraining the metric
functions F,U, b transform as

δ(τ,Y )EF = [LY + 2τ̇ ] EF ,

δ(τ,Y )EAU = [τ∂u + LY + 3τ̇ ]EAU ,

δ(τ,Y )Eb = [τ∂u + LY + 2τ̇ ]Eb + 1
4E

A
U ∂Aτ . (4.33)

This is the first main result of this paper, namely the derivation of asymptotic Ein-
stein’s equations at null infinity from the unique demand of constructing tensorial operators
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starting from the time derivative of the pseudo-tensors (M,M̃,PA, TAB). We now want
to extend our symmetry argument also to the case where matter sources are present and
use it to derive the asymptotic EEs coupled to matter.

Let us start by showing that a transformation structure similar to (4.29) for the asymp-
totic vacuum Einstein’s equations is reproduced by the conservation equations of matter.
We consider matter sources with stress-energy tensor (SET) Tµν . We restrict our analy-
sis to stress-energy tensor components that preserve the following asymptotic Einstein’s
equations

EF =̂ 0 =̂ EAU . (4.34)

These conditions mean (see [17], section 8, for more general conditions) that the stress-
energy tensor components have the following expansions [24]

TAB = 1
r
T̂ qAB + 1

r2 T̂AB + o(r−2) , (4.35a)

Tuu = 1
r2 T̂uu + o(r−2) , TuA = 1

r2 T̂uA + o(r−2) , (4.35b)

TrA = 1
r3 T̂rA + o(r−3) , Tru = o(r−3) , (4.35c)

Trr = 1
r4 T̂rr + o(r−3) . (4.35d)

As shown in appendix D.1, the asymptotic components of the stress-energy tensor
transform as

δ(τ,Y )T̂uu = [τ∂u + LY + 4τ̇ ]T̂uu , (4.36a)
δ(τ,Y )T̂ = [τ∂u + LY + 3τ̇ ]T̂ , (4.36b)
δ(τ,Y )T̂rr = [τ∂u + LY + 2τ̇ ]T̂rr , (4.36c)
δ(τ,Y )T̂uA = [τ∂u + LY + 3τ̇ ]T̂uA − T̂ ∂Aτ̇ + T̂uu∂Aτ , (4.36d)
δ(τ,Y )T̂rA = [τ∂u + LY + 2τ̇ ]T̂rA − T̂rr∂Aτ̇ + T̂ ∂Aτ , (4.36e)

δ(τ,Y )T̂〈AB〉 = [τ∂u + LY + 2τ̇ ]T̂〈AB〉
+ 2T̂u〈A∂B〉τ − 2T̂r〈A∂B〉τ̇ − 2T̂D〈A∂B〉τ , (4.36f)

where the r−2 component of TAB is given by T̂AB := T̂2qAB + T̂〈AB〉. From these transfor-
mations we can identify the conservation equations as the combinations that transform as
pseudo-tensors.14 These are (see appendix D.2 for their derivation)

C := ∂uT̂rr + 2T̂ , C1
A := ∂uT̂rA − ∂AT̂ , C2

A := ∂AT̂rr + 2T̂rA , (4.37)

which transform as

δ(τ,Y )C = [τ∂u + LY + 3τ̇ ]C,
δ(τ,Y )C1

A = [τ∂u + LY + 3τ̇ ]C1
A − C∂Aτ̇ ,

δ(τ,Y )C2
A = [τ∂u + LY + 3τ̇ ]C2

A + C∂Aτ. (4.38)
14Strictly speaking its is the combination C1

A + Ċ2
A which transforms as a pseudo tensor.
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The proof follows from

δ(τ,Y )∂uT̂rA = [τ∂u + LY + 3τ̇ ]∂uT̂rA − (∂uT̂rr − T̂ )∂Aτ̇ + ∂uT̂ ∂Aτ ,

δ(τ,Y )∂AT̂ = [τ∂u + LY + 3τ̇ ]∂AT̂ + 3T̂ ∂Aτ̇ + ∂uT̂ ∂Aτ ,

δ(τ,Y )∂AT̂rr = [τ∂u + LY + 2τ̇ ]∂AT̂rr + ˙̂
Trr∂Aτ + 2T̂rr∂Aτ̇ . (4.39)

Applying our symmetry argument, one then recovers the result that the conservation
equations are given by C = 0, C1

A = 0, C2
A = 0. Using that the leading order of the Einstein

equation component Grr = Trr (see, e.g., [17]) implies

Trr = −8Eb , (4.40)

we see that the conservation equations mean

T̂ = 4Ėb, T̂rA = 4∂AEb . (4.41)

The asymptotic EEs coupled to matter read15

Ẽ = 0 , E + S = 0 , EA + SA = 0 , EAB + SAB = 0 , (4.42)

where the sources are given by

S := 1
2 T̂uu, SA := T̂uA + 1

2∂AT̂ , SAB := 3
2 T̂〈AB〉 −

1
4D〈A∂B〉T̂rr −

3
2 T̂CAB .

(4.43)

The sources S,SA above agree with the ones written in [24], once we recall that the mo-
mentum NA used by Flanagan and Nichols relates to our through NA = PA + ∂Ab; they
also agree with the expansion of the Einstein tensor components near null infinity in terms
of the asymptotic EEs written in [17]. The source SAB matches the one written in [64],
again after proper translation of the momentum definition.16

This form of the sources is derived in appendix D.3, again applying our symmetry
argument. More precisely, the expressions (4.43) are obtained by demanding that EEs
coupled to matter transform homogeneously under the BMSW symmetry group as

δ(τ,Y )(E + S) =̂ [τ∂u + LY + 4τ̇ ](E + S) , (4.44)
δ(τ,Y )(EA + SA) =̂ [τ∂u + LY + 3τ̇ ](EA + SA) + 2(E + S)∂Aτ + 2Ẽ ∂̃Aτ , (4.45)

δ(τ,Y )(EAB + SAB) =̂ [τ∂u + LY + 2τ̇ ](EAB + SAB) + 3(E〈A + S〈A)∂B〉τ . (4.46)

Notice that we have removed the double hat symbol over the equal signs as the Eb asymp-
totic equation is sourced by the SET component Trr (4.40) and it thus contributes to the
definition of the covariant tensors encoding the EEs in the presence of matter.

15Given the topological nature of the dual mass charge, the corresponding EE does not acquire a
source term.

16The expansion of the 〈AB〉-component of the Einstein tensor containing ĖAB was not completed in [17],
thus we cannot compare the expression of the SAB source with that reference.
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5 Properties of the covariant observables

Let us now summarize the covariance properties that we have revealed so far and the nested
structure that organizes them. The covariant observables are the radiative observable

NAB := ṄAB , (5.1)

corresponding to the truly free data at I+ encoding the two polarizations of the outgoing
gravitational radiation, and the corner observables (J A,M,M̃,PA, TAB) defined as

J A := 1
2DBN

AB + 1
4∂

AR(q) , (5.2a)

M := M + 1
8N

ABCAB , (5.2b)

M̃ := 1
4DB(D ·C̃)B + 1

8Ñ
ABCAB , (5.2c)

PA := PA + 1
16DA(CBCCBC) + 1

4CAB(D ·C)B , (5.2d)

TAB := 3
(
EAB −

1
16CAB(CCDCCD)

)
, (5.2e)

and corresponding to initial data. They transform as follows

δ(τ,Y )NAB = [τ∂u + LY + 5τ̇ ]NAB, (5.3a)

δ(τ,Y )J A = [τ∂u + LY + 4τ̇ ]J A + 1
2N

AB∂Bτ, (5.3b)

δ(τ,Y )M =̂ [τ∂u + LY + 3τ̇ ]M+ J A∂Aτ, (5.3c)

δ(τ,Y )M̃ = [τ∂u + LY + 3τ̇ ]M̃+ J̃ A∂Aτ, (5.3d)

δ(τ,Y )PA ˆ̂= [τ∂u + LY + 2τ̇ ]PA + 3
(
MqAB + M̃εAB

)
∂Bτ, (5.3e)

δ(τ,Y )TAB ˆ̂= [τ∂u + LY + τ̇ ] TAB + 4P〈A∂B〉τ . (5.3f)

These transformation properties show a clear pattern where the linear anomaly of each
covariant quantity of conformal dimension s is uniquely determined by the ones of conformal
dimension s− 1.

The requirement of covariance under the full BMSW group gives the equations of
motion

J̇ A = 1
2DBNAB , (5.4a)

Ṁ = 1
2DAJ A + 1

8CABN
AB , (5.4b)

˙̃M = 1
2DAJ̃ A + 1

8CABÑ
AB , (5.4c)

ṖA = DAM+ D̃AM̃+ CABJ B , (5.4d)

ṪAB = D〈APB〉 + 3
2
(
CABM+ C̃ABM̃

)
. (5.4e)
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We can now combine the action on the soft observable with the equations of motion to
write down the action of the symmetry group on the corner phase space variables. That
is, the phase space obtained after imposition of the constraint equations. This gives us the
on-shell actions

δ(τ,Y )J A = [LY + 4τ̇ ]J A + 1
2N

AB∂Bτ + τ

2DBNAB, (5.5a)

δ(τ,Y )M =̂ [LY + 3τ̇ ]M+ J A∂Aτ + τ

2

(
DAJ A + 1

4CABN
AB
)
, (5.5b)

δ(τ,Y )M̃ = [LY + 3τ̇ ]M̃+ J̃ A∂Aτ + τ

2

(
DAJ̃ A + 1

4CABÑ
AB
)
, (5.5c)

δ(τ,Y )PA ˆ̂= [LY + 2τ̇ ]PA + 3(M∂Aτ + M̃∂̃Aτ) + τ
(
∂AM+ ∂̃AM̃+ CABJ B

)
, (5.5d)

δ(τ,Y )TAB ˆ̂= [LY + τ̇ ] TAB+4P〈A∂B〉τ + τ

(
D〈APB〉 + 3

2CABM+ 3
2 C̃ABM̃

)
. (5.5e)

This information is enough to recover the equations of motion which are given by

J̇ A = δ(1,0)J A , Ṁ = δ(1,0)M , ṖA = δ(1,0)PA , ṪAB = δ(1,0)TAB , (5.6)

where τ = 1 denotes the constant function on the sphere.

5.1 Non-radiative phase space

The non-radiative phase space is obtained after imposing the no-radiation condition17

NAB = 0 . (5.7)

This means that we have

CAB = unAB + cAB , (5.8)

where nAB and cAB are time independent. Once the no-radiation condition is imposed, we
can solve the evolution equations (5.4) explicitly as follows (we use the label NR to denote

17The fact that this is a correct quantity to set to zero in the absence of radiation follows from the fact
the it transforms covariantly under the BMSW transformations (as well as under the standard BMS group).
Our choice of no-radiation condition is motivated by the demand that the corner charges be conserved in
time, as shown below, and it corresponds to a Weyl tensor of Petrov type I. However, one can argue that
this choice is conventional. Another accepted choice is to call radiation ImΨ2,Ψ3,Ψ4 since they depends
explicitely on the shear and its time derivative only and to include in the charges ReΨ2,Ψ1,Ψ0, which
represent independent data. This is the choice adopted in [25], where it was demanded the vanishing of
the shifted news tensor (3.7), also transforming with no anomaly, and of the dual mass. In this second
perspective the conventional notion of no radiation would be to impose that ImΨ2,Ψ3,Ψ4 vanish, with a
Weyl tensor of type II. Ultimately understanding what is the right notion of no-radiation should be related
to whether the charges not included in the radiation are not only conserved but also form a coadjoint orbit.
So far it only has been proven that the even stronger non-radiative condition ImΨ2 = Ψ3 = Ψ4 = Ψ0 = 0,
which is of Petrov type D, forms a coadjoint orbit (see e.g. [49]). Understanding whether the no-radiation
condition we work with here qualifies under this criterion still needs to be investigated.
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the non-radiative solutions)

J NR
A =jA , (5.9a)

MNR=m+ u

2DAj
A , (5.9b)

M̃NR=m̃+ u

2DAj̃
A , (5.9c)

PNR
A =2pA+u(DAm+D̃Am̃+cABjB)+ u2

2 (D〈ADB〉+nAB)jB , (5.9d)

T NR
AB =3tAB+u

(
2D〈ApB〉+

3
2(mcAB+m̃c̃AB)

)
+ 3u2

2

([
1
3D〈ADB〉+

1
2nAB

]
m+

[
1
3D〈AD̃B〉+

1
2 ñAB

]
m̃+ 1

3D〈AcB〉Cj
C+ 5

6cC〈ADB〉j
C

)
+u3

(
1
6D〈ADBDC〉j

C+ 1
6D〈AnB〉Cj

C+ 2
3nC〈ADB〉j

C

)
, (5.9e)

where (jA,m, m̃, pA, tAB) are constant tensors on the sphere. In fact, given the evolution
equations (5.4a), (5.4b), (5.4c), it is immediate to see that j̇A = ṁ = ˙̃m = 0. For pA
and tAB the proof goes as follows. From the evolution equation (5.4d) and the expan-
sions (5.9b), (5.9c), we get

ṖA = DAm+ D̃Am̃+ cABJ B + u

2 (DADBj
B − D̃AD̃Bj

B + 2nABJ B)

= (DAm+ D̃Am̃+ cABJ B) + u(D〈ADB〉 + nAB)jB , (5.10)

where we used the identity

DADB − D̃AD̃B = 2D〈ADB〉 . (5.11)

Next, from the evolution equation (5.4e) and also the expansion (5.9d), we get

ṪAB = 2D〈ApB〉 + u(D〈ADB〉m+D〈AD̃B〉m̃+D〈A[cB〉CjC ])

+ u2

2 (D〈ADBDC〉j
C +D〈A[nB〉CjC ])

+ 3
2mcAB + 3

2m̃c̃AB + 3u
2

(1
2cABDCj

C + 1
2 c̃ABDC j̃

C +mnAB + m̃ñAB

)

+ 3u2

4 (nABDCj
C + ñABDC j̃

C) , (5.12)

and we use that
1
4cABDCj

C + 1
4 c̃ABDC j̃

C = 1
2cC〈ADB〉j

C (5.13)

to arrive at

ṪAB = 2D〈ApB〉 + 3
2(mcAB + m̃c̃AB)

+ u

([
D〈ADB〉 + 3

2nAB
]
m+

[
D〈AD̃B〉 + 3

2 ñAB
]
m̃+D〈AcB〉Cj

C + 5
2cC〈ADB〉j

C
)

+ u2
(1

2D〈ADBDC〉j
C + 1

2D〈AnB〉Cj
C + 2nC〈ADB〉j

C
)
. (5.14)
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The conserved quantities (jA,m, m̃, pA, tAB) represent the charges parametrizing the
non-radiative corner phase space. They encode on I the physical content of the spacetime.
We come back to this important point in a moment.

Let us first remark that, in the asymptotic analysis of symmetry, it is often customary
to define a stronger version of the no radiation condition to be specified by

NAB = 0 , J A = 0 , (5.15)

and the spacetime is said to be strongly non-radiative. The second condition means that
nAB + 1

2RqAB is the Liouville energy-momentum tensor. In this case, the conservation
equations look simpler, withMNR = m and M̃NR = m̃ independent of time and

PNR
A = 2pA + u(DAm+ D̃Am̃) , (5.16)

T NR
AB = 3tAB + u

(
2D〈ApB〉 + 3

2(mcAB + m̃c̃AB)
)

+ u2

2

([
D〈ADB〉 + 3

2nAB
]
m+

[
D〈AD̃B〉 + 3

2 ñAB
]
m̃

)
. (5.17)

5.2 Symmetry transformations

Under a symmetry transformation the shear components transform as

δ(T,W,Y )cAB = [LY −W ] cAB −
[
2D〈ADB〉 − nAB

]
T , (5.18)

δ(T,W,Y )nAB = LY nAB − 2D〈ADB〉W , (5.19)

while the symmetry transformations of the conserved charge aspects are given by

δ(T,W,Y )j
A = [LY + 4W ] jA , (5.20a)

δ(T,W,Y )m =̂ [LY + 3W ]m+ jA∂AT + T

2DAj
A , (5.20b)

δ(T,W,Y )m̃ = [LY + 3W ]m̃+ j̃A∂AT + T

2DAj̃
A , (5.20c)

δ(T,W,Y )pA ˆ̂= [LY + 2W ] pA + 3
2(m∂AT + m̃∂̃AT ) + T

2
(
∂Am+ ∂̃Am̃+ cABj

B
)
, (5.20d)

δ(T,W,Y )tAB ˆ̂= [LY +W ] tAB + 8
3p〈A∂B〉T + T

(2
3D〈ApB〉 + 1

2cABm+ 1
2 c̃ABm̃

)
. (5.20e)

These transformation properties represent the second main result of the paper. There are
two important aspects related to them we now highlight.

First, we see that the conserved charge aspects parametrizing the corner phase space
transform homogeneously for the asymptotic corner symmetry group (see section 2.3) where
T = 0. Second, and most importantly, the transformations (5.20) are conjectured to define
a moment map between the corner phase space at I and the dual Lie algebra of the
extended corner symmetry group of null infinity. This fundamental conjecture, that will
be investigated in [68], gives a precise meaning to our claim above that the conserved
charges (jA,m, m̃, pA, tAB) parametrize the corner phase space at I.
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6 An impulsive wave solution

Now that we have found the non-radiative solutions NAB = 0 we investigate the nature of
the non-linear impulsive solutions that describe the fundamental transitions among vacua.
An impulsive gravitational wave or gravitational impulse is an exact solution of the vac-
uum Einstein’s equations of motion. Their study goes back to the work of Aichelburg and
Sexl [52] and of Szekeres, Khan and Penrose [53, 54]. Their mathematical study through a
cut and paste approach started with the work of Penrose [55]. The study of spherical impul-
sive waves has continued and followed many formal mathematical developments since then,
see [56–60], supplemented by the study of their collisions [60, 69, 70] and the relationship
with the memory effects [71, 72]. It is important to appreciate that impulsive waves that
are asymptotically flat have to be spherical; this excludes the extensively studied pp-waves,
which are planar.

A gravitational impulse is analogous to the gravitational shock wave studied thoroughly
by Dray and ’t Hooft [73–75], in the sense that they are, by definition, solutions of the Ein-
stein’s equations that produce radiation localized on a null hypersurface, the hypersurface
u = cste. Gravitational impulses18 are fundamentally different in nature from shock waves
though, in the sense that a shock wave needs a non-vanishing energy-momentum source
while a gravitational impulse does not need any energy-momentum source. Gravitational
impulses are made of pure geometry. It is interesting to realize that the gravitational
impulse solution we are constructing here is a solution of full non-linear gravity. Its lin-
earization is related to the so called gravitational soft mode introduced by Strominger et al.
in [76, 77] and studied more thoroughly in [78–83]. Let us also point out that plane-fronted
gravitational impulses were considered in [84] as solutions to the gluing conditions between
interfaces of bounded finite regions in a discrete gravitational context.

6.1 Impulsive wave phase space

A shock wave localized at u = 0 describes the transition between an initial vacuum labelled
by O− = (c−AB, n

−
AB,J A−,M−,M̃−,P

−
A , T

−
AB) to the corresponding out vacuum labelled

by O+. By definition a non-expanding gravitational impulse solution satisfies19

CAB = (c+
AB + un+

AB)θ(u) + (c−AB + un−AB)θ(−u),
= cAB + unAB + (̊cAB + un̊AB)ε(u) , (6.1)

where we denote c̊AB := (c+
AB−c

−
AB) the jump across the impulse and cAB := 1

2(c+
AB+c−AB)

the average value (similarly for n̊AB and nAB). In the last line above, we have introduced
the step function

ε(u) := 1
2[θ(u)− θ(−u)], ε̇(u) = δ(u) , (6.2)

where δ̇(u) := ∂uδ(u) is the derived delta function.
18Here we defer from the accepted nomenclature of Penrose [55] who calls an impulsive gravitational

wave a gravitational wave whose metric is continuous but not C1 on some (null) hypersurface, while shock
waves refer, for him, to metrics which are C1. The curvature tensor of an impulsive gravitational wave
is proportional to a delta function while the curvature tensor of a shock wave is proportional to a step
function.

19We used that θ(u) + θ(−u) = 1.
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An impulsive wave corresponds to the choice where the induced metric is continuous.
This means that we impose c̊AB = 0. This condition is necessary in order to ensure that
the energy flux is finite.20 This continuity condition means that

NAB = nAB + n̊ABε(u) , (6.3)
NAB = n̊ABδ(u) , (6.4)

and we see that the Weyl tensor component NAB is proportional to a delta function.
We can now easily integrate out the evolution equations and express the evolution

of the covariant quantities (J A,M,M̃,PA, TAB) in terms of the conserved quantities
(jA,m, m̃, pA, tAB), which have the property that they are constant in time in the non-
radiative zone u < 0 and u > 0 before and after the gravitational impulse, and the impulse
strength n̊AB.

Let us start with the current J A. It is immediate to see that the solution to (5.4a)
can be written as

J A(u) = J NR
A + J R1

A

= 1
4D

AR(q) + 1
2DBn

AB + 1
2ε(u)DBn̊

AB , (6.5)

where we made explicit its structure as a sum of the non-radiative solution (5.9a) and a
distributional radiative component linear in n̊AB.

To get the mass evaluation one integrates the evolution equation (5.4b)

Ṁ = 1
2DAJ A + 1

8CABN
AB. (6.6)

The first term can be easily integrated if one uses that

∂u[uε(u)] = ε(u) + uδ(u) = ε(u). (6.7)

The product CABNAB contains product of distribution which are evaluated using

uδ(u) = 0, ε(u)δ(u) = 0, uε(u)δ̇(u) = 0, ε(u)δ(u) = 0. (6.8)

Explicitly, we get21

CABNAB = [cAB + unAB + uε(u)̊nAB ]̊nABδ(u) = cABn̊
ABδ(u) = ∂u[cABn̊ABε(u)]. (6.9)

This means that we obtain the solution

M(u) =MNR +MR1

= m+ u

2DAj
A + 1

8ε(u) cABn̊AB + 1
4uε(u)DADBn̊

AB. (6.10)

20When c̊AB 6= 0, we have that NABNAB = c̊AB c̊
ABδ(u)2 + · · · which is ill defined.

21We use the following regularization

δ(u)θ(u) = 1
2δ(u), δ(u)θ(−u) = 1

2δ(−u).
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We see that the covariant mass is the sum of a non-distributional componentMNR, which
agrees with the non-radiative expression (5.9b), and a distributional radiative component
MR1, which is linear in the impulse radiative news n̊AB. A similar analysis gives the
expression for the dual mass in the presence of an impulse

M̃(u) = M̃NR + M̃R1

= m̃+ u

2 DAj̃
A + 1

8ε(u) cAB˚̃nAB + 1
4uε(u)DADB˚̃nAB. (6.11)

The expression for the covariant momentum can be obtained by integrating out (5.4d)

ṖA = DAM+ D̃AM̃+ CABJ B . (6.12)

To perform the integration one uses the expansion

CABJ B = [cAB +unAB]jB + 1
2ε(u)cABDC n̊

CB +uε(u)
[1

2nABDC n̊
CB + n̊ABj

B
]

+ 1
2un̊ABDC n̊

CB ,

(6.13)
where we used that ε2(u) = 1 as a distribution. The final expression is given by

PA = PNR
A + PR1

A + PR2
A

= 2pA + u(DAm+ D̃Am̃+ cABj
B) + u2

2 (D〈ADB〉 + nAB)jB

+ 1
8uε(u)

[
DA(cBC n̊BC) +DA(cBC˚̃nBC) + 4cABDC n̊

CB
]

+ 1
8u

2ε(u)
[
DADBDC n̊

BC +DADBDC˚̃nBC + 2nABDC n̊
CB + 4n̊ABjB

]
+ u2

4 n̊ABDC n̊
CB . (6.14)

We see that the covariant momentum is the sum of the non-radiative expression PNR
A given

in (5.9d), a distributional expression PR1
A proportional to the impulse news n̊AB and a

secular component PR2
A quadratic in the impulse news.

Finally, the expression for the stress tensor can be obtained by integrating out (5.4e)

ṪAB = D〈APB〉 + 3
2
(
CABM+ C̃ABM̃

)
. (6.15)

A similar analysis shows that the solution can be written as

TAB = T NR
AB + T R1

AB + T R2
AB , (6.16)

showing that the stress tensor can be decomposed into a non-radiative component T NR
AB , a

distributional radiative component T R1
AB linear in n̊AB and a secular radiative component

T R2
AB quadratic in n̊AB. The non-radiative component is already given in (5.9e). The
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distributional radiative component reads

T R1
AB= 3

16uε(u)
[
cABcCDn̊

CD+c̃ABcCD˚̃nCD
]

+ 1
16u

2ε(u)
[
D〈A

(
DB〉(cCDn̊CD)+DB〉(cCD˚̃nCD)+4cB〉CDDn̊

DC
)

+3(cABDCDDn̊
CD+c̃ABDCDD˚̃nCD)+ 3

2(nABcCDn̊CD+ñABcCD˚̃nCD)+12(mn̊AB+m̃˚̃nAB)
]

+ 1
24u

3ε(u)
[
D〈A

(
DB〉DCDDn̊

CD+DB〉DCDD˚̃nCD+2nB〉CDDn̊
CD+4n̊B〉CjC

)
+3(nABDCDDn̊

CD+ñABDCDD˚̃nCD)+6(DCj
C n̊AB+DC j̃

C˚̃nAB)
]
, (6.17)

while the secular radiative components is

T R2
AB = 3u2

32
[̊
nABcCDn̊

CD + ˚̃nABcCD˚̃nCD
]

+ u3

8

[̊
nABDCDDn̊

CD + ˚̃nABDCDD˚̃nCD + 2
3D〈A(̊nB〉CDDn̊

DC)
]
. (6.18)

6.2 Recovering Penrose’s solution

The solution first described by Penrose in [55], and obtained by a holomorphic gluing along
a null-cone of two portions of flat space, is a particular example of the construction we have
just given. Penrose’s solution can be revealed by imposing that

cAB = 0, DBn̊
AB = 0. (6.19)

Under these conditions, we see that the radiative components of the current, mass, mo-
mentum and stress tensor all vanish

J R
A = 0 , MR = 0 = M̃R , PR

A = 0 , T R
AB = 0 . (6.20)

The Penrose’s solution is characterized by demanding that the non-radiative component is
also flat. This means that the only non-vanishing component is the radiative one NAB =
n̊ABδ(u). This solution is integrable in the bulk exactly. It is obtained by patching up two
flat space solutions

ds2 = −2dudr + du2 + 4r2

(1 + |z|2)2 dzdz̄, (6.21)

along the sphere at u = 0. The key element is to recognize that the asymptotic news can
be written as a Schwarzian derivative

n̊zz = {h, z} = h′′′

h′
− 3

2

(
h′′

h′

)2
, n̊z̄z̄ = {h̄, z̄} , (6.22)

where h is holomorphic. The full solution can then be obtained by the following matching
condition at u = 0

(r, z, z̄)+ =
(
r

|h′|
1 + |z|2
1 + |h|2 , h(z), h̄(z̄)

)
−
. (6.23)
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7 Conclusions

Exploiting the BMSW extension [17] of the residual diffeomorphism symmetry of null
infinity, we have constructed in section 3 charges associated to all the Weyl scalars and that
transform semi-covariantly, i.e. with only linear anomaly appearing, under the action of the
BMSW group. The characterization of the full phase space of I led us to the introduction
of a duality transform and in particular to the definition of the dual covariant mass (3.21).
We have shown in section 4 how the sole demand of anomaly freedom is enough to recover
the asymptotic Einstein’s equations coupled to matter, written as evolution equations for
the covariant charges, by identifying the quantities that transform homogeneously under
the symmetry transformations.

This derivation of the gravitational dynamics from purely a symmetry principle high-
lights the central role of the extended corner symmetry algebra, revealed in [14, 15], in pro-
viding a local holographic description of gravity. In particular, borrowing the terminology
from representation theory, we have seen how the evolution equations can be understood as
intertwiners for the BMSW group, as they imply that a given combination is left invariant
by the action of the this group, whose Lie algebra represents a subalgebra of the extended
corner symmetry one [15].

More precisely, our derivation of the asymptotic evolution Einstein’s equations as the
functionals of the gravitational phase space variables left invariant by the asymptotic sym-
metry group opens a new way to think about the quantization of gravitational dynamics
in terms of representation theory structures associated to the quantization of this group.
Among these, the intertwiner space represents the subspace of invariant tensors in the ten-
sor product of a given set of irreducible representations of the quantum symmetry algebra.
One can then envisage a regularization procedure where a notion of intertwiner can be used
to fuse tensor products of irreducible representations associated to corners at consecutive
instants of time at I, so that a quantum version of constraint equations is holographically
implemented. In order for this strategy to correctly capture the gravitational dynamics at
the quantum level it is crucial to identify a basis where the propagating degrees of free-
dom of the radiation for general spacetimes can be represented explicitly and possibly in a
non-perturbative manner.

Within this program of describing the gravitational dynamics starting from the repre-
sentation of the corner symmetry group, we have taken here a further step in this direction
in section 5 by identifying the conserved charges that define the non-radiative corner phase
space. We have shown that they transform under a representation of the extended corner
symmetry group. This statement is supported by the transformation properties (5.20).
We have then studied a fundamental vacua transition process by solving the evolution
equations in the presence of an impulsive gravitational wave, representing an exact solu-
tion of the vacuum Einstein’s equations. Interestingly, we found that all the Weyl scalars
in the asymptotic corner phase space are non-vanishing. The solutions consist of a vac-
uum component, given by the conserved charges describing the non-radiative phase space,
and a radiative component. The latter contains a distributional contribution linear in
the gravitational impulse news and a secular contribution quadratic in it. This opens the
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way towards a description of an arbitrary signal as a succession of gravitational impulses.
The next step in the program is to ensure that the representation that we have identified
for the conserved charges can be understood as a coadjoint representation. Imposition
of asymptotic dynamics at the quantum level can then be phrased in terms of a notion
of intertwiners between the irreducible representations of the asymptotic symmetry group
and the quantum numbers associated to radiation in an impulsive wave basis.

Let us conclude by pointing out an interesting implication of our strategy in recovering
the asymptotic dynamics of gravity. A natural question is whether our symmetry argument
can implement any constraint on modifications of gravitational dynamics beyond Einstein’s
theory. An answer to this question can be provided by relying on the relatively recent
discovery of the equivalence between soft graviton theorems and asymptotic symmetries
(see [30–32] for reviews). In particular, the leading, subleading and sub-subleading tree-
level soft theorems have been shown to be equivalent to respectively the covariant mass
and dual mass EOM (5.2b), (5.2c), the covariant momentum EOM (5.2d), and the spin-2
charge EOM (5.2e) [50]. Moreover, it was shown in [85, 86] that tree-level soft graviton
theorems at leading and subleading orders do not receive higher derivative corrections,
while the sub-subleading soft graviton theorem corrections vanish for pure gravity. One
exception where we expect corrections to the sub-subleading soft theorem, which is beyond
the scope of our analysis here, is when gravity is coupled to a dilaton field. We can thus
conclude that our strategy to derive asymptotic evolution equations at leading order in
the large-r expansion around null infinity uniquley determined by symmetry is unaffected
by higher derivative corrections to vacuum general relativity at leading, subleading and
sub-subleading orders.
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A Action of the symmetry

We want to find δ(τ,Y )Φi such that

Lξ(τ,Y )gµν [Φi] = ∂εgµν [Φi + εδ(τ,Y )Φi]
∣∣∣
ε=0

. (A.1)

In this section we concentrate on the case where Φi = {b, F,M,UA, PA, qAB, CAB, EAB}.
It will prove convenient to express the BMSW vector fields ξ(τ,Y ) (2.15) in the form

ξ(τ,Y ) = ξ̄(τ,Y ) + 1
r
ξ1 + 1

r2 ξ2 + 1
r3 ξ3 , (A.2)
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where ξ̄(τ,Y ) := τ∂u+Y A∂A− τ̇ r∂r is the asymptotic component given in (2.13). The lower
order vector fields ξi = yAi ∂A + ρir∂r only have tangential and radial components. Their
expression is derived from (2.15b), (2.15c) and the expansion of

IAB =
∫ ∞
r

dr′
r′2

e2βγAB

= 1
r
qAB − 1

2r2C
AB + qAB

r3

(2
3b+ 1

12C
CDCCD

)
+ o(r−4) . (A.3)

The expansion of the tangential vector is

yA1 = −∂Aτ, yA2 = 1
2C

AB∂Bτ, yA3 =
(

2b− 8
3Eb

)
∂Aτ , (A.4)

while the radial components are given by

ρ1 = 1
2∆τ , (A.5)

ρ2 = −1
2

(
DAC

AB∂Bτ + 1
2C

ABDA∂Bτ−EAU∂Aτ
)
, (A.6)

ρ3 = −
(4

3∂Ab∂
Aτ − 4

3∂AEb∂Aτ +
(
b− 4

3Eb
)

∆τ + 1
3P

A∂Aτ + 1
3C

ACUC∂Aτ

)
. (A.7)

The metric components read as

guu = −2Φe2β + 1
r2 γABΥAΥB

= −2F + 2M
r

+ 1
r2

(
qABU

AUB − 4Fb
)

+ o(r−2) , (A.8)

gur = −e2β = −1− 2
r2 b+ o(r−2) , (A.9)

grr = 0 , (A.10)

gAu = −γABΥB = −UA + 2
3r

(
PA −

1
2CABU

B + ∂Ab

)
+ o(r−1) , (A.11)

gAr = 0 , (A.12)

gAB = r2γAB = r2qAB + rCAB + 1
4qABCCDC

CD + 1
r
EAB + o(r−1) . (A.13)

In order to compute their symmetry transformations, we use the field expansion (A.2)
and write a general field transformation as

δ(τ,Y ) = δξ̄ + ∆τ , (A.14)

where

δξ̄ := τ∂u + LY + sτ̇ , (A.15)

with s the conformal weight of the given quantity and ∆τ its anomaly.
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A.1 gur

We start with

Lξgur = ξν∂νgur + guu∂rξ
u + gur∂rξ

r + guA∂rξ
A + gru∂uξ

u . (A.16)

The dominant contribution is obtained by replacing ξ → ξ̄ and we find that gur transforms
as a scalar of weight [−r∂r], since

δξ̄gur = τ ġur + LY gur − τ̇ r∂rgur . (A.17)

Given the notation yA = ∑
i y
A
i /r

i, ρ = ∑
i ρi/r

i, the anomaly is given by

∆τgur = yA∂Agur + ρr∂rgur + gur∂r(rρ) + guA∂ry
A

= −∂r
(1
r
ρ2

)
− UA∂r

(1
r
yA1

)
+ o(r−2)

= − 1
r2

[1
2

(
DAC

AB∂Bτ + 1
2C

ABDA∂Bτ−EAU∂Aτ
)

+ UA∂Aτ

]
+ o(r−2)

= − 2
r2

[1
8C

ABDA∂Bτ + 1
4E

A
U ∂Aτ

]
+ o(r−2) . (A.18)

Now, since gur = −2(1 + b/r2) + o(r−2), this means that we have

δ(τ,Y )b = [τ∂u + Y A∂A + 2τ̇ ]b+ 1
8C

ABDA∂Bτ + 1
4EAU∂Aτ , (A.19)

where we used that

EAU := UA + 1
2DBC

AB =̂ 0 . (A.20)

A.2 guu

Next, we look at

Lξguu = ξu∂uguu + ξA∂Aguu + ξr∂rguu + 2guu∂uξu + 2guA∂uξA + 2gur∂uξr. (A.21)

This means that guu transforms as a scalar of weight [2− r∂r], since

δξ̄guu = τ ġuu + LY guu + τ̇(2− r∂r)guu. (A.22)

The anomaly is given by

∆τguu = yA∂Aguu + ρ r∂rguu + 2guA∂uyA + 2rgurρ̇

= −2
r

(
y1[F ] +UAẏ

A
1

)
− 2

(
ρ̇1 + 1

r
ρ̇2

)
+ o(r−1)

= −∆τ̇ + 2
r

(
∂Aτ∂AF + 1

2DAN
AB∂Bτ + 1

4∂u
(
CABDA∂Bτ

)
+ 1

2(EAU∂Aτ̇ − ĖAU∂Aτ)
)

+ o(r−1) .

(A.23)
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We can thus read off the field variations

δ(τ,Y )F = [τ∂u + LY + 2τ̇ ]F + 1
2∆τ̇ , (A.24)

δ(τ,Y )M = [τ∂u + LY + 3τ̇ ]M +
(1

2DBN
AB + ∂AF

)
∂Aτ

+ 1
4N

ABDA∂Bτ + 1
4C

ABDA∂B τ̇ + 1
2(EAU∂Aτ̇ − ĖAU∂Aτ) . (A.25)

A.3 guA

Next, we rewrite

gAu = −UA + 1
r
VA + o(r−1) , (A.26)

where, following (2.4c) and (2.4d), we have

VA := 2
3

(
PA −

1
2CABU

B + ∂Ab

)
, (A.27)

and compute

LξgAu = ξν∂νgAu + gAB∂uξ
B + gAu∂uξ

u + guu∂Aξ
u + guB∂Aξ

B + gur∂Aξ
r . (A.28)

This means that gAu transforms as a vector of weight [1− r∂r], since

δξ̄gAu = τ ġAu + LY gAu + τ̇(1− r∂r)gAu. (A.29)

The anomaly is given by

∆τgAu=ρr∂rgAu+yBDBgAu+gAB∂uyB+guu∂Aτ+guB∂AyB−gur∂A(rτ̇)+rgur∂Aρ

=−1
r
yB1 DBUA+

(
r2qAB+rCAB+ 1

4qABCCDC
CD

)(
1
r
ẏB1 + 1

r2 ẏ
B
2 + 1

r3 ẏ
B
3

)
+
(
−2F+ 2M

r

)
∂Aτ−

1
r

(
−UB+ 1

r
VB

)
DA∂

Bτ−
(

1+ 2
r2 b

)
∂A

(
−rτ̇+ρ1+ 1

r
ρ2

)
+o(r−1),

=ẏ2A+CAB ẏB1 −2F∂Aτ−∂Aρ1

+ 1
r

[
2M∂Aτ+2b∂Aτ̇−∂Aρ2−yB1 DBUA+UBDA∂Bτ+ẏ3A+CAB ẏB2 + 1

4CCDC
CDẏ1A

]
= 1

2N
AB∂Bτ−

1
2C

AB∂B τ̇−2F∂Aτ−
1
2∂A∆τ

+ 1
r

[
DBUA∂

Bτ+UBDA∂Bτ+2ḃ∂Aτ+2b∂Aτ̇−
8
3 Ėb∂Aτ−

8
3Eb∂Aτ̇

+ 1
2CABN

BC∂Cτ+ 1
2CABC

BC∂C τ̇−
1
4CCDC

CD∂Aτ̇︸ ︷︷ ︸
=0

+ 1
2∂A

(
DCC

CB∂Bτ+ 1
2C

CBDC∂Bτ−EBU∂Bτ
)

+2M∂Aτ+2b∂Aτ̇
]
, (A.30)
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from which we can read off the transformations

δ(τ,Y )UA = [τ∂u + LY + τ̇ ]UA + 1
2(4F∂Aτ + ∂A∆τ) + 1

2
(
CA

B∂B τ̇ −NA
B∂Bτ

)
, (A.31)

δ(τ,Y )VA = [τ∂u + LY + 2τ̇ ]VA + 1
2CABN

BC∂Cτ + 2M∂Aτ + 2ḃ∂Aτ + 4b∂Aτ̇

+ 1
2
(
DAD

CCCB −DBD
CCCA

)
∂Bτ + 1

4∂A
(
CCBDC∂Bτ

)
+ 1

2EBUDA∂Bτ +
(
DBEUA −

1
2DAEUB

)
∂Bτ − 8

3 Ėb∂Aτ −
8
3Eb∂Aτ̇ . (A.32)

We can now use

δ(τ,Y )(∂Ab) = [τ∂u + LY + 2τ̇ ](∂Ab) + 1
8∂A(CBCDB∂Cτ) + ḃ∂Aτ + 2b∂Aτ̇ , (A.33)

δ(τ,Y )(CABUB) = [τ∂u + LY + 2τ̇ ](CABUB) + 1
4CBCC

BC∂Aτ̇ −
1
2CABN

BC∂Cτ

+ 1
2CAB(4F∂Bτ + ∂B∆τ) +D〈ADB〉τDCC

CB

− 2D〈ADB〉τEBU , (A.34)

to finally compute, on-shell of EAU =̂ 0, the momentum transformation

δ(τ,Y )PA = 3
2δ(τ,Y )VA + 1

2δ(τ,Y )(CABUB)− δ(τ,Y )(∂Ab)

=̂ [τ∂u + LY + 2τ̇ ]PA + 3M∂Aτ −
1
8CBCN

BC∂Aτ + 1
2CABN

BC∂Cτ

+ FCAB∂
Bτ + 1

4CAB∂
B∆τ

+ 3
4
(
DAD

CCCB −DBD
CCAC

)
∂Bτ + 1

4∂A
(
CCBDC∂Bτ

)
+ 1

2D〈ADB〉τDCC
CB − 2Ėb∂Aτ . (A.35)

We see that the momentum transformation does not contain any anomaly term proportional
to ∂Aτ̇ .

A.4 Sphere metric

We compute here the anomaly of the sphere metric component EAB in the expansion (2.4d).
The Lie derivative of the metric component gAB yields

LξgAB = ξu∂ugAB + ξC∂CgAB + ξr∂rgAB + 2g(Au∂B)ξ
u + 2gC(A∂B)ξ

C . (A.36)

This means that gAB transforms as a tensor of weight −[r∂r], since

δξ̄gAB = τ ġAB + LY gAB − τ̇ r∂rgAB. (A.37)
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The anomaly is given by

∆τgAB=(Ly+ρr∂r)(r2γAB)+2gu(A∂B)τ

= 1
r

(Ly1 +ρ1r∂r)(r2qAB)+2gu(A∂B)τ

+ 1
r

(Ly1 +ρ1r∂r)(rCAB)+ 1
r2 (Ly2 +ρ2r∂r)(r2qAB)

+ 1
r3 (Ly3 +ρ3r∂r)(r2qAB)+ 1

r2 (Ly2 +ρ2r∂r)(rCAB)+ 1
r

(Ly1 +ρ1r∂r)
(

1
4qABCCDC

CD

)
=r(Ly1qAB+2ρ1qAB)+

[
(Ly2qAB+2ρ2qAB+Ly1CAB+ρ1CAB)−2U(A∂B)τ

]
+ 1
r

(
Ly3qAB+2ρ3qAB+Ly2CAB+ρ2CAB+Ly1

(
1
4qABCCDC

CD

))
+ 4

3r

(
P(A−

1
2CC(AU

C+∂(Ab

)
∂B)τ+o(r−1) . (A.38)

Therefore, we can write

∆τqAB = 0 , (A.39a)

∆τCAB = Ly1qAB + 2ρ1qAB = −2D〈A∂B〉τ , (A.39b)

∆τ

(1
4qABCCDC

CD
)

= Ly2qAB + 2ρ2qAB + Ly1CAB + ρ1CAB − 2U(A∂B)τ , (A.39c)

∆τEAB = Ly3qAB + 2ρ3qAB + Ly2CAB + ρ2CAB + Ly1

(1
4qABCCDC

CD
)

+ 4
3

(
P(A −

1
2CC(AU

C + ∂(Ab

)
∂B)τ . (A.39d)

The first two anomaly relations in (A.39) yield (2.21a), (2.21b). The third one can be
evaluated to be

∆τ

(1
4qABCCDC

CD
)

=̂ −1
2qABC

CDDC∂Dτ − CC(ADB)∂
Cτ + 1

2CAB∆τ

= −qABCCDDC∂Dτ , (A.40)

where we have used22

CC〈ADB〉∂
Cτ = 1

2CABDC∂
Cτ , (A.41)

and it is thus consistent with (A.39a), (A.39b), as ∆τ

(
1
4qABCCDC

CD
)

= 1
2qABC

CD∆τCCD.

22The relation (A.41) is an application of the general property that, for any pair of 2× 2 symmetric and
traceless matrices A,B, the identity

A〈A
CBB〉C = 0

holds. Then (A.41) follows from AAB = CAB and BAB = D〈A∂B〉τ .
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A.4.1 Stress tensor anomaly

We can now compute our quantity of interest, namely

∆τEAB = 4
(
b− 4

3Eb
)
D(A∂B)τ + 4∂(A

(
b− 4

3Eb
)
∂B)τ

− 2
(

4
3∂Cb∂

Cτ − 4
3∂CEb∂Cτ +

(
b− 4

3Eb
)

∆τ + 1
3P

C∂Cτ + 1
3C

CDUC∂Dτ

)
qAB

+ 1
2C

CD∂CτDDCAB +CC(ADB)(CCD∂Dτ)− 1
2CAB

(
DCC

CD∂Dτ + 1
2C

CDDC∂Dτ

)
− 1

2CCDC
CDD(A∂B)τ −

1
4qAB∂

Cτ∂C(CDECDE)︸ ︷︷ ︸
=−8qAB∂CEb∂Cτ+8qAB∂Cb∂Cτ

+ 4
3

(
P(A−

1
2CC(AU

C + ∂(Ab

)
∂B)τ

= 4bD(A∂B)τ − 2qABb∆τ −
1
4CABC

CDDC∂Dτ

+ 4
3

(
P(A−

1
2CC(AU

C − 8∂(Ab

)
∂B)τ −

2
3qAB

(
PD − 1

2C
CDUC − 8∂Db

)
∂Dτ

+ 1
2
(
CCDDCCAB +CCADBC

CD +CCBDAC
CD −CABDCC

CD
)
∂Dτ

+ 16∂(Ab∂B)τ − qABCCDUC∂Dτ

− 16
3 EbD〈A∂B〉τ −

16
3 ∂〈AEb∂B〉τ . (A.42)

On-shell of the asymptotic Einstein’s equation EAU =̂ 0, we thus have

∆τEAB =̂ 4bD〈A∂B〉τ −
1
4CABC

CDDC∂Dτ

+ 4
3

(
P〈A −

1
2U

CCC〈A − 8∂〈Ab
)
∂B〉τ

+ 1
2
(
CCDDCCAB − CABDCC

CD
)
∂Dτ

+ CC〈ADB〉C
CD∂Dτ + 16∂〈Ab∂B〉τ

− 16
3 EbD〈A∂B〉τ −

16
3 ∂〈AEb∂B〉τ . (A.43)

The last line can be simplified since

CC〈ADB〉C
CD∂Dτ + 16∂〈Ab∂B〉τ = D〈A(CB〉CCCD)∂Dτ −D〈ACB〉CCCD∂Dτ + 16∂〈Ab∂B〉τ

= 16∂〈AEb∂B〉τ −D〈ACB〉CCCD∂Dτ . (A.44)

This means that the spin 2 anomaly is given, on-shell of EAU =̂ 0, by

∆τEAB =̂ 4
3

(
P〈A −

1
2U

CCC〈A − 8∂〈Ab
)
∂B〉τ

+ 1
2
(
CCDDCCAB − CABDCC

CD
)
∂Dτ −D〈ACB〉CCCD∂Dτ
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+ 4bD〈A∂B〉τ −
1
4CABC

CDDC∂Dτ

− 16
3 EbD〈A∂B〉τ + 32

3 ∂〈AEb∂B〉τ . (A.45)

We could use the definition of the covariant momentum PA=PA− 1
2CCAU

C+ 1
16∂A(CBCCBC)

to rewrite

∆τEAB =̂ 4
3P〈A∂B〉τ

+ 1
2
(
CCDDCCAB − CABDCC

CD
)
∂Dτ

+ 1
4∂〈A(CCDCCD)∂B〉τ −D〈ACB〉CCCD∂Dτ

− 1
8CCDC

CDD〈A∂B〉τ −
1
4CABC

CDDC∂Dτ

− 4
3EbD〈A∂B〉τ . (A.46)

B Variations

In this section we compute the behavior under symmetry transformation of different quan-
tities.

• Connection.
One establishes that

δ(τ,Y )ΓCAB = 1
2q

CD
(
DAδ(τ,Y )qBD +DBδ(τ,Y )qAD −DDδ(τ,Y )qAB

)
= 1

2q
CD (DADBYD +DBDAYD + [DA, DD]YB + [DB, DD]YA)

−qCD (DAτ̇ qBD +DB τ̇ qAD −DD τ̇ qAB)

= D(ADB)Y
C + 1

2
(
RBDA

C +RADB
C
)
Y D − 2D〈Aτ̇ δCB〉 , (B.1)

where we used that [DA, DB]VC = RABC
DVD and [DA, DB]V C = RCDABV

D. This
means that the contribution to the anomaly due to τ is due to the presence of Weyl
rescaling and given by

∆τΓCAB = −DAτ̇ δ
C
B −DB τ̇ δ

C
A +DC τ̇ qAB , (B.2)

∆τΓAAB = −2DB τ̇ . (B.3)

Given a vectorial section V A of scale s it can be checked that the anomaly only
depends on τ

δ(τ,Y )DAV
C = DAδ(τ,Y )V

C + δ(τ,Y )ΓCABV B

= [τ∂u + LY + sτ̇ ] (DAV
C) + ∆τ (DAV

C) . (B.4)
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To evaluate the anomaly one establishes that

δτDAV
C = DAδτV

C + (δτΓCAB)V B

= DA[τ V̇ C + sτ̇V C ]−
(
DAτ̇ δ

C
B +DB τ̇ δ

C
A −DC τ̇ qAB

)
V B

= [τDAV̇
C + sτ̇DAV

C ]
+DAτ V̇

C + s(DAτ̇)V C −
(
DAτ̇V

C + δCAV
BDB τ̇ −DC τ̇VA

)
,

(B.5)

which means that even if V A is a section of weight s its spatial derivative contains
an anomaly given by

∆τ (DAV
C) = DAτ V̇

C + s(DAτ̇)V C + ∆τΓCABV B

= DAτ V̇
C + s(DAτ̇)V C −

(
DAτ̇V

C + δCAV
BDB τ̇ −DC τ̇VA

)
.

(B.6)

Similarly, the anomaly for the derivative of a form of weight s is

∆τ (DAVB) = DAτ V̇B + s(DAτ̇)VB +
(
DAτ̇VB + VADB τ̇ − V CDC τ̇ qAB

)
. (B.7)

• D · C vector.
One evaluates

∆τ (DBC
CB) = NAB∂Bτ + 3CCB∂B τ̇ +DB∆τC

CB + ∆τΓCBACAB + ∆τΓBBACAC

= NAB∂Bτ + 3CCB∂B τ̇ − 2DBD
〈B∂C〉τ − 4CAC∂Aτ̇ .

= NCB∂Bτ − CCB∂B τ̇ − 2∆DCτ +DC∆τ
= NCB∂Bτ − CCB∂B τ̇ −R(q)DCτ −DC∆τ , (B.8)

where we used that

[∆, DC ]τ = [DB, DC ]DBτ = RBDBCD
Dτ = 1

2R(q)DCτ. (B.9)

• JA vector.
Given the definition (3.8) of the vector J A, and by means of (2.21e) and

δ(τ,Y )(∂AF ) = qACδ(τ,Y )(∂CF ) + ∂CFδ(τ,Y )q
AC

= qACδ(τ,Y )(∂CF )− (DAY C +DCY A)∂CF + 2τ̇ ∂AF

= ∂A(δ(τ,Y )F )− (DAY C +DCY A)∂CF + 2τ̇ ∂AF

= [τ∂u + LY + 4τ̇ ] (∂AF ) + 2F∂Aτ̇ + 1
2∂

A∆τ̇ , (B.10)

we compute

δ(τ,Y )J A = [τ∂u + LY + 4τ̇ ]J A + 1
2Ṅ

AB∂Bτ . (B.11)

– 42 –



J
H
E
P
0
4
(
2
0
2
2
)
1
2
5

A similar calculation shows that

δ(τ,Y )J̃ A = [τ∂u + LY + 4τ̇ ] J̃ A + 1
2

˙̃NAB∂Bτ . (B.12)

Next, we can write

δ(τ,Y )(DAJ A) = DA(δ(τ,Y )J A) + (δ(τ,Y )ΓAAB)J B , (B.13)

from which, by means of (B.3), we get

δ(τ,Y )(DAJ A) = [τ∂u + LY + 4τ̇ ]DAJ A + 2∂u(J ADAτ) + 1
2Ṅ

ABDA∂Bτ ,

(B.14)

where we have used
1
2DAṄ

AB = J̇ B (B.15)

and

DA(LY J A) + J BDBDAY
A = LY (DAJ A) . (B.16)

We also have

δ(τ,Y )(CABJ B) = δ(τ,Y )CABJ B + CABδ(τ,Y )J B

= [τ∂u + LY + 3τ̇ ]CABJ B

− 2J BD〈ADB〉τ + 1
2CABṄ

BC∂Cτ

= [τ∂u + LY + 3τ̇ ]CABJ B

−DCN
BCD〈ADB〉τ − 2∂BFD〈ADB〉τ + 1

2CABṄ
BC∂Cτ

= [τ∂u + LY + 3τ̇ ]CABJ B

+ 1
2CABṄ

BC∂Cτ −
(
DCN

BC + 2∂BF
)
D〈A∂B〉τ . (B.17)

• Covariant massM.
Given the covariant mass transformation (3.11), we have

δ(τ,Y )(∂AM) = ∂A(δ(τ,Y )M)
=̂ [τ∂u + LY + 3τ̇ ] ∂AM

+ ∂AτṀ+ 3∂Aτ̇M
+DAJ B∂Bτ + J BDA∂Bτ . (B.18)

• Derivative D[A(D ·C)B].
From (2.21e) we see that (D ·C)B is a generalized tensor of dimension 1 and hence
its anomaly is

∆τ (D[A(D ·C)B])) = D[Aτ(DCNB]C) + (D[Aτ̇)(DCCB]C) +D[A(∆τD ·C)B]

= D[Aτ(DCNB]C) + (D[Aτ̇)(DCCB]C)
+D[A(NB]

C∂Cτ − CB]
C∂C τ̇ −R(q)DB]τ −DB]∆τ)
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= D[Aτ(2DCNB]C +DB]R)− (N[A
CDB]∂Cτ + C[B

CDA]∂C τ̇)
= 4D[AτJB] − (N[A

CDB]∂Cτ + C[B
CDA]∂C τ̇) . (B.19)

Contracting this identity with εAB gives the identity

∆τ (DA(D ·C̃)A) = 4J̃ A∂Aτ − (NABD̃A∂Bτ + C̃ABDA∂B τ̇) . (B.20)

• Dual covariant mass M̃.
From the definition (3.21) and the relation (B.20), we can derive

∆τM̃ = 1
4∆τ (DA(D ·C̃)A) + 1

8
(
∆τCABÑ

AB + CAB∆τ Ñ
AB
)

= J̃ A∂Aτ −
1
4(NABD̃A∂Bτ + C̃ABDA∂B τ̇

− 1
4D〈A∂B〉τÑ

AB − 1
4CABD̃〈A∂B〉τ̇

= J̃ A∂Aτ . (B.21)

From this anomaly and the definition (3.8), we can further compute

δτ,Y (∂̃AM̃) = ∂̃A(δτ,Y M̃)
= [τ∂u + LY + 3τ̇ ] ∂̃AM̃

+ ∂̃Aτ
˙̃M+ 3∂̃Aτ̇M̃

+ D̃AJ̃ B∂Bτ + J̃ BD̃A∂Bτ . (B.22)

• Covariant momentum PA.
Given the covariant momentum transformation (3.30), we want to compute the
anomaly of the quantity DAPB. From the relation

∆τ (DAPB) = DA(∆τPB)− (∆τΓDAB)PD , (B.23)

and the anomaly (B.2), we see that the last term in (B.23) yields the following
contribution to the anomaly

(δDB∂Aτ̇ + δDA ∂B τ̇ − qBA∂D τ̇)PD = 2P(A∂B)τ̇ − qBAPD∂D τ̇
= 2P〈A∂B〉τ̇ . (B.24)

Therefore, we have

∆τ (DAPB) ˆ̂= ∂Aτ ṖB + 2∂Aτ̇PB + 2P〈A∂B〉τ̇
+ 3DAM̃∂̃Bτ + 3DAM∂Bτ + 3M̃DA∂̃Bτ + 3MDA∂Bτ . (B.25)

• Möbius derivative.
We now want to analyse the transformations of “Möbius derivative operator” [D〈ADB〉
+ s

2nAB]φ for a section of conformal weight s, and the transformation of [D〈ADB〉 +
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s
2nAB]jB for a vector of weight s + 1. One starts with the computation of the con-
formal anomaly

δWD〈ADB〉φ = −δWΓCABDCφ+D〈AδWDB〉φ

= 2D〈AWDB〉φ+ sD〈ADB〉(Wφ)
= 2(s+ 1)D〈AWDB〉φ+ sWD〈ADB〉φ+ sφD〈ADB〉W. (B.26)

Combining this with the fact that δWnAB = −2D〈ADB〉W , we find that

δW

[
D〈ADB〉 + s

2nAB
]
φ = sW

[
D〈ADB〉 + s

2nAB
]
φ+ 2(s+ 1)D〈AWDB〉φ ,

(B.27)

which shows that the Möbius combination
[
D〈ADB〉 + s

2nAB
]
possesses no quadratic

anomaly and that it is tensorial for sections of conformal weight s = −1.
Similarly, one evaluates

δWD〈ADB〉V
B = δWΓCABDCV

B +D〈A(δWΓBB〉CV C) +D〈ADB〉δWV
B

= −2D〈AWDB〉V
B − 2D〈A(DB〉WV B)) + sD〈ADB〉(WV B)

= 2(s− 2)D〈AWDB〉V
B + sWD〈ADB〉φ+ (s− 2)φD〈ADB〉W.

(B.28)

Combining this with the fact that δWnAB = −2D〈ADB〉W , we find that

δW

[
D〈ADB〉+

(s− 2)
2 nAB

]
V B = sW

[
D〈ADB〉+

(s− 2)
2 nAB

]
V B + 2(s− 2)D〈AWDB〉V

B ,

(B.29)
which shows that the Möbius combination

[
D〈ADB〉 + (s−2)

2 nAB
]
V B possesses no

quadratic anomaly and that it is tensorial for vectorial sections of conformal weight
s = 2.

C Derivation of the momentum evolution equation

Given the metric parametrization (2.4), the asymptotic Einstein’s equation for the momen-
tum PA is given by [17, 22, 25]

ṖA = DAM + 1
8DA(CBCNBC)

+ CABD
BF

− 1
4N

CBDACCB

− 1
4
(
DBD

BDCCAC −DBDADCC
BC
)

− 1
4DB(NACC

CB) + 1
4DB(NCBCAC) . (C.1)
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Recalling the definition (3.26) of the covariant momentum, we can write

ṖA = DAM + 1
8DA(CBCNBC) + CABD

BF

− 1
4N

CBDACCB + 1
4NAB(D ·C)B + 1

4CAB(D ·N)B + 1
8∂A(CCBNCB)

− 1
4D

B (DB(D ·C)A −DA(D ·C)B)

− 1
4D

B(NA
CCCB −NB

CCCA) (C.2)

= DA

(
M + 1

8C
BCNBC

)
+ CAB

(1
2DBNA

B +DBF

)
+DBJ[AB]

− 1
4N

CBDACCB + 1
4NAB(D ·C)B − 1

4CAB(D ·N)B + 1
8∂A(CCBNCB)

− 1
8D

B(NA
CCCB −NB

CCCA) (C.3)

= DAM+ D̃AM̃+ CABJ B

− 1
4N

CBDACCB + 1
4NAB(D ·C)B − 1

4CAB(D ·N)B + 1
8∂A(CCBNCB)

− 1
8D

B(NA
CCCB −NB

CCCA) , (C.4)

where we have used the definitions (3.8), (3.29), (3.21). The terms in the second and third
lines of (C.4) can be expanded and simplified as

−1
4N

CBDACCB + 1
4NAB(D ·C)B − 1

4CAB(D ·N)B + 1
8∂A(CCBNCB)

−1
8(DBNACC

CB −NBCDBCCA)− 1
8(NAB(D ·C)B − (D ·N)BCBA)

+1
8(NCBDBCCA − CCBDBNAC)

= 1
8NAB(D ·C)B − 1

8CAB(D ·N)B + 1
4(CCBD[ANB]C −NCBD[ACB]C). (C.5)

Now we use that

εABε
CD = δCAδ

D
B − δDA δCB (C.6)

to massage terms like

CCBD[ANB]C = 1
2εABC

BC(D ·Ñ)C = 1
2 C̃AB(D ·Ñ)B , (C.7)

where ÑBC = εB
ANAC . This means that the contributions in the second and third lines

of (C.4) can be written as

1
8(NAB(D ·C)B − ÑAB(D ·C̃)B]− 1

8[CAB(D ·N)B − C̃AB(D ·Ñ)B] . (C.8)
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Finally, since N is symmetric and traceless, we can derive the relation

NAB(D ·C)B = ÑAB(D ·C̃)B , (C.9)

and similarly

CAB(D ·N)B = C̃AB(D ·Ñ)B . (C.10)

We thus arrive at the sought after expression

ṖA = DAM+ D̃AM̃+ CABJ B . (C.11)

Note that, since CABJ B = C̃ABJ̃ B, we can write the momentum evolution equation in a
completely self-dual manner as

ṖA = DAM+ D̃AM̃+ 1
2
(
CABJ B + C̃ABJ̃ B

)
. (C.12)

D Stress-energy tensor

D.1 SET anomaly proof

We give here the explicit derivation of the transformation properties of all the SET compo-
nents (4.36). From the analysis of appendix A, we can see immediately that the component
T̂uu transforms as a scalar of weight 4, since

δξ̄Tuu = τ Ṫuu + LY Tuu + τ̇(2− r∂r)Tuu. (D.1)

The anomaly is given by

∆τTuu = yA∂ATuu + ρ r∂rTuu + 2TuA∂uyA + 2rTurρ̇ = o(r−2) , (D.2)

which implies

∆τ T̂uu = 0 . (D.3)

The component T̂uA transforms as a vector of weight 3 since from

LξTAu = ξν∂νTAu + TAu∂uξ
u + TAr∂uξ

r + TAB∂uξ
B + Tuu∂Aξ

u + Tur∂Aξ
r + TuB∂Aξ

B

(D.4)

we have that

δξ̄TAu = τ ṪAu + LY TAu + τ̇(1− r∂r)TAu . (D.5)

The anomaly is given by

∆τTAu = yBDBTAu + ρ r∂rTAu + TAr∂uξ
r + TAB∂uy

B + Tuu∂Aτ + Tur∂Aξ
r + TuB∂Ay

B

= − 1
r2 T̂ ∂Aτ̇ + 1

r2 T̂uu∂Aτ + o(r−2) , (D.6)
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from which

∆τ T̂Au = −T̂ ∂Aτ̇ + T̂uu∂Aτ . (D.7)

From the Lie derivative of the TAB component

LξTAB = ξu∂uTAB + ξC∂CTAB + ξr∂rTAB + 2Tu(A∂B)ξ
u + 2Tr(A∂B)ξ

r + 2TC(A∂B)ξ
C ,

(D.8)

it is immediate to see that T̂ transforms as a scalar of weight 3, since

δξ̄TAB = τ ṪAB + LY TAB − τ̇ r∂rTAB , (D.9)

and qAB has conformal dimension −2, while T̂AB transforms as a tensor of weight 2. It
is also easy to see that T̂ has no anomaly, since both the leading terms in TAB and qAB
have no anomaly. At the same time, the anomaly of the r−2 component of TAB given by
T̂AB := T̂2qAB + T̂〈AB〉 can be read off of

∆τTAB = yC∂CTAB + rρ∂rTAB + 2Tu(A∂B)τ − 2Tr(A∂B)(τ̇ r) + 2TC(A∂B)y
C (D.10)

and it is given by

∆τ T̂AB = −qAB∂Cτ∂C T̂ −
1
2qABT̂∆τ + 2T̂u(A∂B)τ − 2T̂r(A∂B)τ̇ − 2T̂D(A∂B)τ

= −qAB∂Cτ∂C T̂ −
3
2qABT̂∆τ + qABT̂uC∂

Cτ − qABT̂rC∂C τ̇

+ 2T̂u〈A∂B〉τ − 2T̂r〈A∂B〉τ̇ − 2T̂D〈A∂B〉τ . (D.11)

This means that

∆τ T̂2 = ∂C T̂ ∂
Cτ − 3

2 T̂∆τ + T̂uC∂
Cτ − T̂rC∂C τ̇ (D.12)

and

∆τ T̂〈AB〉 = 2T̂u〈A∂B〉τ − 2T̂r〈A∂B〉τ̇ − 2T̂D〈A∂B〉τ . (D.13)

The component T̂rr transforms as a vector of weight 2 since from

LξTrr = ξν∂νTrr + 2Tru∂rξu + 2Trr∂rξr + 2TrA∂rξA (D.14)

we have that

Lξ̄Trr = τ Ṫrr + LY Trr − τ̇(2 + r∂r)Trr . (D.15)

The anomaly is given by

∆τTrr = yADATrr + ρ r∂rTrr + 2Trr∂r(rρ) + 2TrA∂ryA , (D.16)
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from which

∆τ T̂rr = 0 . (D.17)

The component TrA transforms as a vector of weight 2 since from

LξTrA = ξν∂νTrA + Tru∂Aξ
u + Trr∂Aξ

r + TrB∂Aξ
B + TAr∂rξ

r + TAB∂rξ
B (D.18)

we have that

Lξ̄TrA = τ ṪrA + LY TrA − τ̇(1 + r∂r)TrA . (D.19)

The anomaly is given by

∆τTrA = yADATrA + ρ r∂rTrA + Tru∂Aτ + Trr∂Aξ
r + TrB∂Ay

B + TAr∂r(rρ) + TAB∂ry
B ,

(D.20)

from which

∆τ T̂rA = −T̂rr∂Aτ̇ + T̂ ∂Aτ . (D.21)

Notice that this anomaly is consistent with the conservation equations C, C2
A in (4.37) as

∆τ∂AT̂rr = ∂uT̂rr∂Aτ + 2T̂rr∂Aτ̇ = −2T̂ ∂Aτ + 2T̂rr∂Aτ̇ . (D.22)

It also follows that the vector ˙̂
TrA transforms with weight 3 and anomaly

∆τ
˙̂
TrA = − ˙̂

Trr∂Aτ̇ + ˙̂
T∂Aτ + T̂ ∂Aτ̇

= ˙̂
T∂Aτ + 3T̂ ∂Aτ̇ , (D.23)

consistently with the conservation equation C1
A in (4.37) as

∆τ∂AT̂ = ∂uT̂ ∂Aτ + 3T̂ ∂Aτ̇ . (D.24)

D.2 Conservation equations proof

Here we derive the SET conservation equations (4.37). These follow from

∇µTµν = gµρ
(
∂ρTµν − ΓσµρTσν − ΓσνρTσµ

)
= 0 , (D.25)

and the inverse metric components given by

guu = 0 , (D.26a)

gur = −e−2β , (D.26b)

grr = 2Φe−2β = 2F − 2M
r

+ o(r−1) (D.26c)

gAu = 0 , (D.26d)

gAr = −e−2βΥA

r2 = −U
A

r2 + o(r−2) , (D.26e)

gAB = 1
r2 γ

AB = 1
r2 q

AB − 1
r3C

AB + o(r) . (D.26f)
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Let us consider first the component ν = r. We have

0 = guρ
(
∂ρTur − ΓσuρTσr − ΓσrρTσu

)
+ grρ

(
∂ρTrr − ΓσrρTσr − ΓσrρTσr

)
+ gAρ

(
∂ρTAr − ΓσAρTσr − ΓσrρTσA

)
= 1
r4

[
−∂uT̂rr − qABT̂ qAB

]
+ o(r−4) , (D.27)

where only the spin connection component ΓCrB = 1
r δ
C
B contributes at the leading order.

We thus obtain the conservation equation

C := ∂uT̂rr + 2T̂ = 0 . (D.28)

Next, we consider the component ν = u and we obtain

0 = guρ
(
∂ρTuu − ΓσuρTσu − ΓσuρTσu

)
+ grρ

(
∂ρTru − ΓσrρTσu − ΓσuρTσr

)
+ gAρ

(
∂ρTAu − ΓσAρTσu − ΓσuρTσA

)
= 1
r3

[
2T̂uu − 2T̂uu

]
+ o(r−3) , (D.29)

where only the spin connection component ΓuAB = rqAB contributes at the leading order.
We thus see that this component yields a trivial relation.

Finally, the component ν = A yields

0 = guρ
(
∂ρTuA − ΓσuρTσA − ΓσAρTσu

)
+ grρ

(
∂ρTrA − ΓσrρTσA − ΓσAρTσr

)
+ gBρ

(
∂ρTBA − ΓσBρTσA − ΓσAρTσB

)
= 1
r3

[
2T̂uA − ∂uT̂rA + qBCDC T̂AB − 2T̂uA

]
+ o(r−3) , (D.30)

where again only the spin connection component ΓuAB = rqAB contributes at the leading
order. We thus obtain the conservation equation

C1
A := ∂uT̂rA − ∂AT̂ = 0 . (D.31)

Combining the two conservation equations (D.28), (D.31) one gets the third conserva-
tion equation

C2
A := ∂AT̂rr + 2T̂rA = 0 . (D.32)
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D.3 Sources

Let us derive the explicit expressions (4.43) for the matter sources by applying our symme-
try argument. We start with the covariant mass and momentum equations. By inspection
of the conformal weights under the BMSW group action, we can consider the general ansatz

S := 1
2
(
T̂uu + β

˙̂
T
)
, SA := T̂uA + α∂AT̂ , (D.33)

with α, β two free numerical coefficients to be determined. It follows that

δ(τ,Y )SA = [τ∂u + LY + 3τ̇ ]SA + T̂uu∂Aτ + α
˙̂
T∂Aτ + (3α− 1)T̂ ∂Aτ̇ . (D.34)

Next, given the definition (3.26) of the covariant momentum and the transforma-
tion (2.21j), one gets that

δ(τ,Y )PA =̂ [τ∂u + LY + 2τ̇ ]PA + 3
(
M∂Aτ + M̃∂̃Aτ

)
− 2Ėb∂Aτ . (D.35)

Using that in the presence of matter we have 4Ėb = T , this means

∆τEA =̂ −1
2

˙̂
T∂Aτ −

1
2 T̂ ∂Aτ̇ , (D.36)

and

δ(τ,Y ) (EA + SA) = [τ∂u + LY + 3τ̇ ] (EA + SA) + 2Ẽ ∂̃Aτ

+ 2
(
E + 1

2

(
T̂uu +

(
α− 1

2

)
˙̂
T

))
∂Aτ + T̂

(
3α− 3

2

)
∂Aτ̇ . (D.37)

We thus see that we need α = 1/2 to remove the anomaly and then the sources read

S := 1
2 T̂uu , SA := T̂uA + 1

2∂AT̂ , (D.38)

so that

δ(τ,Y ) (EA + SA) = [τ∂u + LY + 3τ̇ ] (EA + SA) + 2 (E + S) ∂Aτ + 2Ẽ ∂̃Aτ . (D.39)

For the spin-2 asymptotic EE, compatibility of the conformal weights suggests that we
start with the ansatz

SAB := γT̂〈AB〉 + βD〈A∂B〉T̂rr + ζT̂CAB . (D.40)

By means of the transformations (D.13) and

δ(τ,Y )D〈A∂B〉T̂rr = [τ∂u + LY + 2τ̇ ]D〈A∂B〉T̂rr + 2∂uD〈ATrr∂B〉τ + 6D〈AT̂rr∂B〉τ̇
+ ∂uTrrD〈A∂B〉τ + 2T̂rrD〈A∂B〉τ̇ , (D.41)
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where note that the coefficient 6 above involves using (4.39) and a contribution from
−δ(τ,Y )ΓC〈AB〉∂C T̂rr, we have

δ(τ,Y )SAB = [τ∂u + LY + 2τ̇ ]SAB
+
[
2γT̂u〈A − 4βD〈AT̂

]
∂B〉τ

+
[
−2γT̂r〈A + 6βD〈AT̂rr

]
∂B〉τ̇

− 2 [γ + β + ζ] T̂D〈A∂B〉τ
+ 2βT̂rrD〈A∂B〉τ̇ . (D.42)

Next, we can use the definition (4.22) to compute the off-shell of the Eb equation of
motion anomaly

∆τEAB =̂ −2ĖbD〈A∂B〉τ − 4EbD〈A∂B〉τ̇ + 2∂〈AĖb∂B〉τ , (D.43)

which follows from (D.35) and the covariant spin-2 pseudo-tensor transformation (see (A.46))

δ(τ,Y )TAB =̂ [τ∂u + LY + τ̇ ] TAB + 4P〈A∂B〉τ − 4EbD〈A∂B〉τ . (D.44)

By demanding

δ(τ,Y )(EAB + SAB) = [τ∂u + LY + 2τ̇ ](EAB + SAB) + 3
(
E〈A + S〈A

)
∂B〉τ , (D.45)

we can fix the coefficients β, γ, ζ from the conditions

2β + 1
2 = 0 , (D.46)

−2(γ + β + ζ)− 1
2 = 0 , (D.47)

−2γT̂rA + 6βDAT̂rr = 0 → −2γ = 12β , (D.48)

2γT̂uA +
(1

2 − 4β
)
∂AT̂ = 3

(
T̂uA + 1

2∂AT̂
)
. (D.49)

It is immediate to see that the system of equations is solved by

β = −1
4 , γ = 3

2 , ζ = −3
2 , (D.50)

from which

SAB := 3
2 T̂〈AB〉 −

1
4D〈A∂B〉T̂rr −

3
2 T̂CAB . (D.51)

Open Access. This article is distributed under the terms of the Creative Commons
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