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In this paper, we prove Pspace-completeness of the finite satisfiability and model checking 
problems for the fragment of Halpern and Shoham interval logic with modality 〈E〉, for 
the “suffix” relation on pairs of intervals, and modality 〈D〉, for the “sub-interval” relation, 
under the homogeneity assumption. The result significantly improves the Expspace upper 
bound recently established for the same fragment, and proves the rather surprising fact 
that the complexity of the considered problems does not change when we add either the 
modality for suffixes (〈E〉) or, symmetrically, the modality for prefixes (〈B〉) to the logic of 
sub-intervals (featuring only 〈D〉).
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

For a long time, in computer science, interval temporal logics (ITLs) have been considered an attractive, but impracti-
cal, alternative to standard point-based ones. On the one hand, they are a natural choice as a specification/representation 
language in a number of domains; on the other hand, the high undecidability of the satisfiability problem for the most well-
known ITLs [1–5], such as Halpern’s and Shoham’s modal logic of time intervals (HS for short) [2] and Venema’s CDT [5], 
discouraged their extensive use (but some restricted variants of them have been applied in formal verification and AI over 
the years [6–8]).

The present work finds its place in the framework of the logic HS, which features one modality for each of the 13 
Allen’s relations [9], apart from equality. In Table 1, we depict 6 Allen’s relations for ordered pairs of intervals, together with 
the corresponding HS (existential) modalities; the other 7 relations are their inverses and the equality relation. The recent 
discovery of a significant number of expressive and computationally well-behaved fragments of HS changed the landscape 
of ITL research [10,11]. Meaningful examples are the logic AA of the temporal neighborhood [12] (the HS fragment with 
modalities for the meets relation and its inverse) and the logic D of (temporal) sub-intervals [13] (the HS fragment with 
modality 〈D〉 for the contains relation only) over dense orderings.

Model checking (MC) of (finite) Kripke structures against HS and its fragments has been investigated in a series of 
papers [14,15,6,16–19] and shown to be decidable. In this setting, each finite path of a Kripke structure is interpreted as 
an interval whose labeling satisfies the homogeneity assumption [20]: a proposition letter holds over an interval if and only 
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Table 1
Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

meets 〈A〉 [x, y]RA [v, z] ⇐⇒ y = v
x y

v z
v z

v z
v z
v z

v z

before 〈L〉 [x, y]RL [v, z] ⇐⇒ y < v
started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v
contains 〈D〉 [x, y]RD [v, z] ⇐⇒ [v, z] ⊂ [x, y]
overlaps 〈O 〉 [x, y]RO [v, z] ⇐⇒ x < v < y < z

if it holds over all its constituent points (states). MC against full HS is at least Expspace-hard [15] and the only known 
upper bound is non-elementary [18,21].1 The known complexity bounds of MC for full HS coincide with those of MC 
for the linear-time fragment BE of HS which features modalities 〈B〉 and 〈E〉 for prefixes and suffixes. These complexity 
bounds easily transfer to finite satisfiability, that is, satisfiability over finite linear orders, of BE under the homogeneity 
assumption. Whether or not these problems can be solved elementarily is a difficult open question. On the other hand, 
MC and finite satisfiability under the homogeneity assumption for all the fragments of BE are known to be elementarily 
decidable [25,14,26]. In particular, for the fragment D of BE (note that the contains relation RD can be expressed as RB ∪
RE ∪ RB · RE ), these problems are known to be Pspace-complete [25].

In a recent contribution [26], we investigated finite satisfiability under the homogeneity assumption for the maximal 
fragment BD of BE that features modalities 〈B〉 and 〈D〉 (the other maximal fragment DE of BE with modalities 〈D〉 and 〈E〉
is completely symmetric, and thus all results for BD immediately transfer to it, and vice versa). The addition of modality 
〈B〉 makes satisfiability checking for BD more complex than the one for D, as the two relations/modalities may interact in 
a non-trivial way. In [26] the Expspace membership of the problem has been proved by means of a purely model-theoretic 
argument, leaving open the issue of its exact complexity.

In this paper, we answer the question proving that, surprisingly, Pspace-completeness of D is not affected by the addition 
of either 〈B〉 or 〈E〉, and the MC problem for DE (and symmetrically BD) is Pspace-complete as well. In Fig. 1, we add these 
new MC results to the picture of known MC complexities, showing that they enrich the set of HS “tractable” fragments 
by two meaningful members. We propose an automata-theoretic approach for solving MC and finite satisfiability under 
the homogeneity assumption of DE and BD which non-trivially generalizes the one for D [25] and the well-known one for 
standard LTL [27]. In particular, some important aspects that were not well understood in [25] are generalized by an elegant 
algebraic framework, which allows us to solve in an asymptotically optimal way the considered problems for DE and BD. In 
addition, we prove that, over finite linear orders and under the homogeneity assumption, D is less expressive than BD and 
DE, which in turn are less expressive than BE (in [24], we show that, under the homogeneity assumption, BE and LTL over 
finite words have the same expressive power).

We conclude the introduction by recalling an interesting connection between the finite satisfiability problem for BE and 
its fragments, under the homogeneity assumption, and the non-emptiness problem for generalized ∗-free regular expres-
sions [26]. The latter problem has been shown to be non-elementarily decidable by Stockmeyer in [28], and it can be easily 
proved to be equivalent to finite satisfiability for the interval temporal logic C of the chop modality [29,7,5] under the 
homogeneity assumption (the chop modality allows one to split the current interval in two parts and to state what is true 
over the first part and what over the second one). It can be shown that over finite linear orders and under the homogeneity 
assumption, BE (resp., its proper fragments BD and DE) is equivalent to the weakening of generalized ∗-free regular expres-
sions where the concatenation operator is replaced by the weaker prefix and suffix ones (resp., prefix and infix, and infix and 
suffix) [26]. Note that the infix operator can be expressed in terms of the combination of the prefix and suffix operators. An 
immediate by-product of the results given in this paper is that the non-emptiness problem for ∗-free generalized regular 
expressions turns out to be elementarily decidable and, precisely, Pspace-complete if one makes use of the suffix (resp., 
prefix) operator and the infix operator instead of the concatenation operator in the expressions. As for the fragment with 
both the prefix and the suffix operators, we only know that its non-emptiness problem is (non-elementarily decidable and)
Expspace-hard [15].

Structure of the paper In Section 2, we introduce some basic definitions which will be extensively used in the paper. More-
over, we recall the syntax and semantics of the logic BE and its fragments BD and DE in the setting of finite linear 
orders under the homogeneity assumption. In such a restricted setting, we address in Section 3 expressiveness issues 
and the encoding of the considered logics in fragments of generalized ∗-free regular expressions. In Section 4, we illus-
trate an asymptotically optimal automata-theoretic approach for solving satisfiability and model checking for DE-formulas 
and BD-formulas over finite linear orders under the homogeneity assumption. Finally, Section 5 outlines future research 
directions.

1 An expressive comparison of MC for HS and standard point-based temporal logics LTL [22], CTL, and CTL* [23] can be found in [24].
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Fig. 1. Complexity of the MC problem for HS and its fragments.

2. Preliminaries

We fix the following notation. For a finite word (or sequence) w over some finite alphabet �, we denote by |w| the 
length of w . Moreover, for all 0 ≤ i < |w|, w[i] is the (i + 1)th letter of w . Given two non-empty finite words w, w ′ over 
�, we write w · w ′ for the concatenation of w and w ′ . Moreover, if the last letter of w coincides with the first letter of w ′ , 
we denote by w � w ′ the word w · w ′[1] . . . w ′[n − 1], where n = |w ′| (i.e. the word obtained by concatenating w with the 
word obtained from w ′ by erasing the first letter). In particular, when |w ′| = 1, then w � w ′ = w .

Finite automata over finite words A nondeterministic finite automaton (NFA) is a tuple N = 〈�, Q , Q 0, δ, F 〉, where � is a 
finite alphabet, Q is a finite set of states, Q 0 ⊆ Q is the set of initial states, δ : Q × � → 2Q is the transition function, and 
F ⊆ Q is the set of accepting states. Given a finite word w over �, with |w| = n, a run of N over w is a finite sequence of 
states q0, . . . , qn such that q0 ∈ Q 0, and for all 0 ≤ i < n, qi+1 ∈ δ(qi, w[i]). The language L(N ) accepted by N consists of 
the finite words w over � such that there is a run over w ending in some accepting state. A deterministic finite automaton 
(DFA) is an NFA D = 〈�, Q , {q0}, δ, F 〉 such that for all (q, σ) ∈ Q × �, δ(q, σ) is a singleton.

Finite Kripke structures We fix a finite set AP of proposition letters which represent predicates over the states of the given 
system. A finite Kripke structure over AP is a tuple K = 〈W , s0, E, μ〉, where W is a finite set of states, s0 ∈ W is the initial 
state, E ⊆ W × W is a relation between states, and μ : W → 2AP is a labeling function assigning to each state the set of 
propositions that hold at it.

A path of K is a non-empty finite sequence of states π = s1 · · · sn such that (i) the first state s1 coincides with the initial 
state s0 of K, and (ii) (si, si+1) ∈ E for all 1 ≤ i < n. We extend the labeling μ to paths of K in the usual way: for a path 
π = s1 . . . sn , μ(π) denotes the word over 2AP of length n given by μ(s1) . . .μ(sn). A trace of K is a non-empty finite word 
over 2AP of the form μ(π) for some path π of K.

Example 2.1. In Fig. 2, we depict a finite Kripke structure KSched that models the behavior of a scheduler serving three 
processes which are continuously requesting the use of a common resource. In the initial state v0 no process is served. In 
the states vi , with i ∈ {1, 2, 3}, the i-th process is served (the proposition pi holds in those states). The loop on vi represents 
the use of the resource. A transition from the state vi to ui represents the unlock of the granted resource (the proposition 
pi holds in that state). The scheduler cannot serve the same process twice in two successive rounds, and then vi is not 
directly reachable from ui . A transition from ui to v j with j �= i, represents the fact that the j-th process has issued a 
request for the resource and is served.
3
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v0,∅

v2, p2v1, p1 v3, p3

u1, p1 u2, p2 u3, p3

Fig. 2. The Kripke structure KSched .

2.1. The logics DE and BD under the homogeneity assumption

In this section, we recall the logic BE of prefix and suffixes corresponding to the linear-time fragment of HS, and 
we focus our attention on the fragments DE and BD of BE interpreted over finite linear orders under the homogeneity 
assumption.

Let S = 〈S, <〉 be a linear order over the nonempty set S �= ∅, and ≤ be the reflexive closure of <. Given x, y ∈ S such 
that x ≤ y, we denote by [x, y] the (closed) interval over S given by the set of elements z ∈ S such that x ≤ z and z ≤ y. We 
denote the set of all intervals over S by I(S). We focus our attention on three Allen’s relations over intervals:

1. the proper prefix (or started-by) relation RB defined as follows: [x, y]RB [x′, y′] if x = x′ and y′ < y,
2. the proper sub-interval (or contains) relation RD defined as follows: [x, y]RD [x′, y′] if x′ ≥ x, y′ ≤ y, and [x, y] �= [x′, y′]

(the proper subset relation over intervals), and
3. the proper suffix (or finished-by) relation RE defined as: [x, y]RE [x′, y′] if x < x′ and y′ = y.

The temporal logic BE consists of a finite set AP of proposition letters, the logical connectives ¬ and ∨, and the ex-
istential temporal modalities for Allen’s relations RB , RD , and RE . Formally, BE formulas ϕ are defined by the following 
abstract syntax:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈B〉ϕ | 〈D〉ϕ | 〈E〉ϕ
where � is for ‘true’, p ∈ AP , and 〈B〉 (resp, 〈D〉, resp., 〈E〉) is the existential temporal modality for the Allen’s relation RB

(resp., RD , resp., RE ). We also exploit the conjunction connective ∧ and the implication connective → as abbreviations, and 
for any temporal modality 〈X〉, with X ∈ {B, D, E}, the dual universal modality [X] defined as: [X]ψ := ¬ 〈X〉¬ψ . The size 
|ϕ| of a formula ϕ is the number of distinct sub-formulas of ϕ . We focus our attention on the fragments DE (logic of sub-
intervals and suffixes) and BD (logic of sub-intervals and prefixes) of BE obtained by disallowing the temporal modalities 
for the Allen’s relations RB and RE , respectively. We also consider the fragments B, D, and E defined in the obvious way.

The semantics of the logic BE is given in terms of interval models. An interval model M is a pair 〈I(S), V〉, where 
V : AP �→ 2I(S) is a valuation function that assigns to every proposition letter p the set of intervals V(p) over which p holds. 
Given an interval model M = 〈I(S), V〉, an interval [x, y] ∈ I(S), and a formula ϕ , the satisfaction relation M, [x, y] |= ϕ , 
meaning that ϕ holds over the interval [x, y] of M, is inductively defined as follows:

• M, [x, y] |= �;
• for every proposition letter p ∈ AP , M, [x, y] |= p if [x, y] ∈ V(p);
• M, [x, y] |= ¬ϕ if M, [x, y] �|= ϕ;
• M, [x, y] |= ϕ1 ∨ ϕ2 if M, [x, y] |= ϕ1 or M, [x, y] |= ϕ2;
• M, [x, y] |= 〈X〉ϕ for X ∈ {B, D, E} if there is an interval [x′, y′] ∈ I(S) such that [x, y]RX [x′, y′] and M, [x′, y′] |= ϕ .

A BE-formula is satisfiable if it holds over some interval of an interval model. In this paper, we restrict our attention 
to the finite satisfiability problems, that is, satisfiability over the class of finite linear orders, for the fragments BD and DE. 
The problems are known to be undecidable [4] in the general case, but decidability can be recovered by restricting to the 
class of homogeneous interval models [18]. Formally, an interval model M = 〈I(S), V〉 is homogeneous if for every interval 
4
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[x, y] ∈ I(S) and every p ∈ AP , it holds that [x, y] ∈ V(p) if and only if [x′, x′] ∈ V(p) for every x′ ∈ [x, y]. Intuitively, this 
means that p holds at an interval [x, y] iff p holds at each singleton sub-interval of [x, y]. Hence, the valuation function V
is uniquely determined by its restriction to singleton intervals. Note that one could give a different notion of homogeneity 
(dual with respect to the previous one) where a proposition p holds at an interval [x, y] iff p holds at some singleton 
interval of [x, y] (hence, a proposition p does not hold at an interval [x, y] iff p does not hold at each singleton interval of 
[x, y]). In this paper, we adopt the standard notion of homogeneity for interval models [18].

We observe that homogeneous interval models over finite linear orders correspond to non-empty finite words over 2AP . 
In particular, each non-empty finite word w over 2AP induces the homogeneous interval model M(w) = 〈I(S), V〉 over the 
finite linear order induced by w defined as follows:

• S = 〈{0, . . . , |w| − 1}, <〉, and
• for every interval [i, j] of S (note that 0 ≤ i ≤ j < |w|) and p ∈ AP , [i, j] ∈ V(p) if and only if p ∈ w[h] for all h ∈ [i, j].

Any fragment F of BE interpreted over homogeneous models is denoted by FHom . A non-empty finite word w over 2AP

satisfies an FHom formula ϕ , denoted by w |= ϕ , if M(w), [0, |w| − 1] |= ϕ . A finite Kripke structure K over AP is a model 
of ϕ , written K |= ϕ , if each trace w of K satisfies ϕ . We also consider the model checking problem against DEHom (resp., 
BEHom) that is the problem of deciding for a given finite Kripke structure K and a DEHom (resp., BDHom) formula ϕ , 
whether K |= ϕ .

Example 2.2. We now give an example of properties expressible both in BEHom and BDHom to be checked over the Kripke 
structure KSched of Example 2.1. We start by defining a formula Activityi with i ∈ {1, 2, 3} which precisely characterizes a 
subpath of KSched corresponding with the use and unlock of the shared resource by the i-th process. Activityi is a formula 
in BDHom defined as follows: Activityi := ¬pi ∧ [B]pi . The formula ensures that the path underlying the interval has the 
form v+

i · ui (all the proper prefixes satisfy pi but the whole interval does not). KSched satisfies the property that any two 
activities of a process are interleaved with at least an activity of a different process. Such a property can be expressed in 
BEHom as follows:

∧

i∈{1,2,3}
[D]((〈B〉 Activityi ∧ 〈E〉 Activityi) → 〈D〉

∨

j∈{1,2,3}, j �=i

Activity j
)

Any subpath of a path starting and ending with an activity of the i-th process has an internal activity of another process. 
The property expressed by the BEHom formula above can be expressed also in the fragment BDHom with a small adjustment 
as follows:

∧

i∈{1,2,3}
[D]((〈B〉 Activityi ∧ 〈D〉(〈B〉

∨

j∈{1,2,3}
p j ∧ 〈D〉 Activityi)) →

〈D〉
∨

j∈{1,2,3}, j �=i

Activity j
)

Notice that the formula 〈B〉 Activityi ∧〈D〉(〈B〉∨
j∈{1,2,3} p j ∧〈D〉 Activityi) ensures that there are two instances of Activityi , 

the second one occurring after a singleton interval where 
∨

j∈{1,2,3} p j holds.

Example 2.3. In order to illustrate the succinctness of the logics DHom , BDHom , and DEHom , we consider a combinatorial 
requirement. For each n ≥ 1, let AP n = {p1, . . . , pn, q1, . . . , qn}. The property that “there is a proper infix such for each 
i ∈ [1, n], exclusively either pi holds at some position of the infix, or qi holds at some position of the infix” can be expressed 
by the following DHom formula ψn .2

ψn := 〈D〉
n∧

i=1

((〈D〉 pi ∧ [D]¬qi) ∨ (〈D〉qi ∧ [D]¬pi))

Evidently, the previous requirement can be expressed in standard LTL over finite words. However, we conjecture that there 
is no LTL formula equivalent to ψn of size polynomial in n.

3. Expressiveness of BEHom and its fragments over finite linear orders

In this section, we compare the expressiveness of the logics DEHom , BDHom , and BEHom over finite linear orders (see 
Subsection 3.1), and we show that these logics can be characterized by fragments of generalized ∗-free regular expressions 
(see Subsection 3.2).

2 A proper infix ν of a word w is a non-empty word such that w = w ′ · ν · w ′′ for some words w ′ and w ′′ such that w ′ · w ′′ is non-empty.
5
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Let F1 and F2 be two formalisms interpreted over non-empty finite words over 2AP . Hence, a specification ψ of F1
(resp., F2) denotes a language L(ψ) of non-empty finite words over 2AP . Given ψ1 ∈ F1 and ψ2 ∈ F2, ψ1 and ψ2 are 
equivalent if L(ψ1) = L(ψ2). We say that F1 is subsumed by F2, denoted F1 � f F2, if for each F1 specification there is an 
equivalent F2 specification. F1 and F2 have the same expressiveness (resp., are expressively incomparable) if F1 � f F2 and 
F2 � f F1 (resp., F1 � f F2 and F2 � f F1). Finally, F1 is less expressive than F2, denoted by F1 ≺ f F2, if F1 � f F2 and 
F2 � f F1.

3.1. Expressiveness comparison between BEHom fragments

We compare the expressiveness of the various syntactical fragments of BEHom (BEHom included) interpreted over finite 
linear orders. It is known [24] that BEHom has the same expressiveness as standard LTL over finite words. Here, we show 
that over finite words, the fragment DHom is less expressive than the fragments BDHom and DEHom which in turn are less 
expressive than BEHom or, equivalently, LTL. In particular, we establish the following result.

Theorem 3.1. Over finite linear orders, the following holds:

1. there exists an EHom formula which cannot be expressed in BDHom;
2. there exists a BHom formula which cannot be expressed in DEHom.

Hence, DHom ≺ f BDHom ≺ f BEHom, DHom ≺ f DEHom ≺ f BEHom, and BDHom and DEHom are expressively incomparable.

In the following, we provide a proof of Theorem 3.1. Let AP = {p}. For the proof of Theorem 3.1(1), we consider the 
EHom formula ϕE over AP defined as follows:

ϕE := 〈E〉 p

which asserts the existence of a proper suffix where p holds. Symmetrically, for the proof of Theorem 3.1(2), we consider 
the BHom formula ϕB over AP given by:

ϕB := 〈B〉 p

which requires the existence of a proper prefix where p holds. We prove that over finite linear orders (i) no BDHom formula 
is equivalent to ϕE , and (ii) no DEHom formula is equivalent to ϕB . Hence, Theorem 3.1 follows. Here, we focus on the result 
for ϕE (the result for ϕB being similar).

In order to prove that the EHom-formula ϕE is not expressible in BDHom over finite linear orders, a standard approach 
would be to exhibit two non-empty finite words w and w ′ over 2{p} that ϕE can distinguish (i.e., one word satisfies ϕE and 
the other one not), and prove that no BDHom formula can distinguish the two words w and w ′ (note that in this case w
and w ′ need to have the same length since for each n ≥ 1, one can easily define a BDHom formula characterizing the finite 
words of length n).

However, we do not know whether the previous approach is applicable to the formula ϕE . Thus, we use a different 
technique. We define two families (wn)n≥1 and (w ′

n)n≥1 of non-empty finite words over 2{p} such that:

• ϕE distinguishes between wn and w ′
n for each n ≥ 1, and

• for every BDHom formula ψ , there is n ≥ 1 such that ψ does not distinguish between wn and w ′
n .

Before defining the words wn and w ′
n for each n ≥ 1, we first give some preliminary definitions.

For a BDHom formula ψ over AP = {p}, the joint nesting depth d(ψ) of ψ is the nesting depth of all the temporal 
modalities in ψ . Formally, (i) d(p) = 0, (ii) d(¬ψ) := d(ψ), (iii) d(ψ1 ∨ψ2) = max(d(ψ1), d(ψ2)), and (iv) d(〈X〉ψ) = d(ψ) +1
for each X ∈ {B, D}.

For each h ≥ 0, we introduce an equivalence relation ≡h on the non-empty finite words on 2{p} . Intuitively, if w ≡h w ′
(we also say that w and w ′ are h-equivalent), then no BDHom formula having joint nesting depth at most h can distinguish 
w and w ′ . The equivalence relation ≡h is defined by induction on h ≥ 0 as follows:
Case h = 0. w ≡0 w ′ if w |= p ⇔ w ′ |= p.
Case h > 0. w ≡h w ′ if w ≡0 w ′ and the following two properties hold:

• Forward h-rule: for each proper prefix (resp.: proper infix) ν of w , there is a proper prefix (resp.: proper infix) ν ′ of w ′
such that ν ≡h−1 ν ′ .

• Backward h-rule: for each proper prefix (resp.: proper infix) ν ′ of w ′ , there is a proper prefix (resp.: proper infix) ν of 
w such that ν ≡h−1 ν ′ .

By the semantics of BDHom and by using a straightforward induction on h, we deduce the following.
6
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Proposition 3.1. Let h ≥ 0 and w ≡h w ′ . Then, for each BDHom formula ψ such that d(ψ) ≤ h, it holds that w |= ψ if and only if 
w ′ |= ψ .

For each n ≥ 1, let wn and w ′
n be the non-empty finite words over 2{p} defined as follows:

wn = (∅{p})n+2 and w ′
n = wn · ∅.

Note that for each n ≥ 1, the property of having a suffix where p holds is satisfied by wn but not by w ′
n . Hence, the EHom

formula ϕE distinguishes wn and w ′
n for each n ≥ 1.

Lemma 3.1. For each n ≥ 1, wn |= ϕE and w ′
n �|= ϕE .

The intuition in the definition of wn and w ′
n is that they preserve the following invariants for each n ≥ 1.

Lemma 3.2 (Invariants for wn and w ′
n). Let n ≥ 1. Then, the words wn and w ′

n satisfy the following two properties:

• Forward invariant: for each proper prefix (resp.: proper infix) ν of wn, ν is a proper prefix (resp.: proper infix) of w ′
n too.

• Backward invariant: for each proper prefix (resp.: proper infix) ν of w ′
n:

– either ν is a proper prefix (resp.: proper infix) of wn,
– or ν is of the form ν1 · (ν2)

n+1 · ν3 with ν2 being non-empty and ν1 · (ν2)
n · ν3 is a proper prefix (resp.: proper infix) of wn.

Proof. Let n ≥ 1. Recall that wn = (∅{p})n+2 and w ′
n = wn · ∅. Thus, since wn is a proper prefix of w ′

n , the forward invariant 
property directly follows.
Next, we show that the backward invariant property holds. Let ν be a proper prefix (resp.: proper infix) of w ′

n . First, assume 
that ν is a proper prefix of w ′

n . If ν is not a proper prefix of wn , then ν = wn . Thus, since wn = (∅{p})n+2 and (∅{p})n+1 is 
a proper prefix of wn , by setting ν1 = ν2 = ∅{p} and ν3 = ε (ε is the empty word), we obtain that ν = ν1 · (ν2)

n+1 · ν3 and 
ν1 · (ν2)

n · ν3 is a proper prefix of wn , and the result follows.
Now, assume that ν is a proper infix of w ′

n . By construction, ν is of the form ν1 · (∅{p})k · ν3, where 0 ≤ k ≤ n + 1, ν1 is 
a (possibly empty) suffix of ∅{p}, and either ν3 = ∅ or ν3 = ε. If k < n + 1, then ν1 · (∅{p})k · ν3 is also a proper infix of 
wn . Otherwise, k = n + 1 and by construction, ν1 · (∅{p})n · ν3 is a proper infix of wn . Thus, by setting ν2 = ∅{p}, the result 
follows. �

We now show that for all n ≥ 1, the words wn and w ′
n are n-equivalent. Since wn and w ′

n are clearly 0-equivalent, the 
result directly follows from Lemma 3.2 and the following Lemma 3.3.

Lemma 3.3. Let ν1 , ν2 , and ν3 be finite words over 2{p} such that ν2 is not empty. Then, for all n ≥ 1, ν1 · (ν2)
n ·ν3 ≡n−1 ν1 · (ν2)

n+1 ·
ν3 .

Proof. Let ν1, ν2, and ν3, and n ≥ 1 as in the statement of the lemma. The proof is by induction on n ≥ 1. For the base case 
(n = 1), the result is trivial. For the induction step (n > 1), we have to prove that the forward and backward (n − 1)-rules 
are satisfied. We focus on the backward (n − 1)-rule (the treatment of the forward (n − 1)-rule is similar). Let ν be a proper 
prefix (resp.: a proper infix) of ν1 · (ν2)

n+1 · ν3. We need to show that there is a proper prefix (resp.: a proper infix) ν ′ of 
ν1 · (ν2)

n · ν3 such that ν and ν ′ are (n − 2)-equivalent. By construction, one of the following three cases occurs:

• ν is a proper prefix (resp.: a proper infix) of ν1 · (ν2)
n · ν3 too. Hence, in this case, the result trivially follows.

• ν is of the form ν ′
1 · (ν2)

n · ν ′
3 and ν ′

1 · (ν2)
n−1 · ν ′

3 is a proper prefix (resp.: proper infix) of ν1 · (ν2)
n · ν3. Hence, by the 

induction hypothesis on n, the result directly follows.
• ν is of the form ν ′

1 · (ν2)
n+1 · ν ′

3 with |ν ′
1 · ν ′

3| < |ν1 · ν3| and ν ′
1 · (ν2)

n · ν ′
3 is a proper prefix (resp.: proper infix) of 

ν1 · (ν2)
n · ν3. By a straightforward double induction on |ν1 · ν3|, it follows that ν ′

1 · (ν2)
n+1 · ν ′

3 and ν ′
1 · (ν2)

n · ν ′
3 are 

(n − 1)-equivalent, hence, (n − 2)-equivalent as well, and the result follows. �
Proof of Theorem 3.1(1). By Lemmata 3.2 and 3.3, for each n ≥ 1, the words wn and w ′

n are n-equivalent. By Proposition 3.1, 
it follows that for each BDHom-formula ψ , ψ cannot distinguish the words wn and w ′

n for all n ≥ d(ψ). Thus, by Lemma 3.1, 
the EHom-formula ϕE cannot be expressed in BDHom . Hence, Theorem 3.1(1) directly follows.

3.2. Fragments of generalized ∗-free regular expressions induced by DEHom and BDHom over finite linear orders

In this section, we give characterizations of the logic BEHom and its less expressive fragments DHom , DEHom and BDHom
over finite linear orders in terms of subclasses of generalized ∗-free regular expressions [28]. These subclasses are obtained 
by replacing the concatenation operator with weaker versions which represent the operator counterparts of the Allen’s 
7
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relations RB , RD , and RE . For each of the considered logics F , we show that there are linear-time translations from F -
formulas into equivalent expressions of the corresponding subclass of generalized ∗-free regular expressions (F -expressions 
for short), and vice versa. In Section 4, we will show that finite satisfiability of both DEHom and BDHom are Pspace-complete. 
As a consequence, we obtain that non-emptiness of DEHom-expressions and BDHom-expressions are both Pspace-complete. 
We think that this result is of independent interest since it is well-known that non-emptiness of generalized ∗-free regular 
expressions is already non-elementary hard [28].

We recall that LTL over finite words characterizes the class of languages defined by generalized ∗-free regular expres-
sions [30]. Moreover, it has been proved that LTL over finite words has the same expressiveness as BEHom [24]. Hence, we 
also deduce that BEHom-expressions are expressively complete for generalized ∗-free regular expressions.

For the given finite set AP of proposition letters, let � be the finite alphabet given by 2AP . Generalized ∗-free regular 
expressions (hereafter, simply called general expressions) e over the alphabet � = 2AP are inductively defined as follows:

e ::= ∅ | a | [p] | ¬e | e + e | e · e

where a ∈ � and p ∈ AP . We exclude the empty word ε from the syntax as it makes the correspondence between restricted 
expressions and BEHom fragments more direct (such a simplification is quite common in the literature). Moreover, the 
non-standard atomic expression [p] with p ∈ AP captures the non-empty finite words over 2AP such that p holds at each 
position. The term [p] does not add expressive power (it can be removed by a singly exponential blowup in the cardinality 
of AP ) but it is useful for ensuring a linear-time translation from formulas of a BEHom fragment into equivalent expressions 
of the corresponding subclass of general expressions. Note that under the assumption that AP is fixed, then the terms [p]
can be removed with a constant blowup.

A general expression e defines the language L(e) ⊆ �+ , which is inductively defined as follows:

• L(∅) = ∅;
• L(a) = {a}, for every a ∈ �;
• L([p]) = {w ∈ �+ | p ∈ w[i] for all 0 ≤ i < |w|}, for every p ∈ AP ;
• L(¬e) = �+ \L(e);
• L(e1 + e2) =L(e1) ∪L(e2);
• L(e1 · e2) = {w1 w2 | w1 ∈L(e1), w2 ∈L(e2)}.

In [28], Stockmeyer proves that the problem of deciding non-emptiness of L(e), for a given general expression e, is 
non-elementary hard.
The fragment of general expressions we are considering, called prefix/suffix expressions or BEHom-expressions, replaces the 
concatenation operator · by the three unary operators Pre (prefix), Inf (infix), and Suf (suffix), representing the operator 
counterparts of the Allen’s relations RB , RD , and RE , respectively. The subclass of BEHom-expressions e is defined by the 
following syntax:

e ::= ∅ | a | [p] | ¬e | e + e | Pre(e) | Suf(e) | Inf(e)

where a ∈ �, p ∈ AP , Pre(e) and Suf(e) are, respectively, a shorthand for e · (¬∅) and (¬∅) · e, while Inf(e) is a shorthand 
for Pre(e) + Suf(e) + Pre(Suf(e)).

An infix/suffix expression or DEHom-expression restricts a prefix/suffix expression by disallowing the prefix operator Pre. 
Similarly, an infix/prefix expression or BDHom-expression is a BEHom-expression which does not use the suffix operator Suf, 
and an infix expression or DHom-expression is a BEHom-expression where both the suffix and prefix operators Suf and Pre
are disallowed.

For each of the considered logics F , there are natural linear-time translations from F -formulas into equivalent F -
expressions, and vice versa.

Proposition 3.2. Let F ∈ {DHom, BDHom, DEHom, BEHom}. Then:

• for each F -formula ψ , one can construct in linear time an equivalent F -expression eψ ;
• for each F -expression e, one can construct in linear time an equivalent F -formula ψe.

Proof. The equivalence proof is based on a standard approach. We assume that F is BEHom . The proofs for the other 
logics are similar. For the translation from BEHom formulas to BEHom expressions, let ψ be a BEHom formula over AP . 
The formula ψ can be mapped in linear time into an equivalent BEHom-expression eψ over � = 2AP by applying the usual 
constructions for negation and disjunction. For proposition letters and the temporal operators, we have the following three 
rules:

• ep := [p] for each p ∈ A P ;
• e〈B〉ψ := Pre(eψ);
8
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• e〈E〉ψ := Suf(eψ).

For the converse translation, let e be a BEHom-expression over � = 2AP . We construct in linear time an equivalent 
BEHom-formula ψe over AP by applying the usual constructions for empty language, negation, and union, plus the following 
five rules:

• ψa :=
∧

p∈a

p ∧
∧

p∈AP\a

¬p ∧ ¬ 〈D〉� for each a ∈ �;

• ψ[p] := p for each p ∈ AP ;
• ψPre(e) := 〈B〉ψe;
• ψSuf(e) := 〈E〉ψe;
• ψInf(e) := 〈D〉ψe . �

In Section 4, we will show that finite satisfiability of both DEHom and BDHom are Pspace-complete (see Theorem 4.2). In 
particular, given a DEHom (resp.: BDHom) formula on can construct in singly exponential time a DFA (resp., NFA) accepting 
the non-empty finite words which are models of the formula. Thus since finite satisfiability for the logic DHom is known to 
be Pspace-complete [25], by Proposition 3.2, we deduce the following corollary.

Corollary 3.1. For each F ∈ {DHom, BDHom, DEHom}, non-emptiness of F -expressions is Pspace-complete.

It is worth noting that there is a simple and compositional automata-theoretic approach for the logics BEHom and 
its fragments which exploits as an intermediate step the considered subclasses of generalized ∗-free regular expressions. 
Indeed, the class of languages accepted by NFA is closed under Boolean operations, prefix, infix, and suffix operations. 
The inconvenience of this approach is that each complementation step in the compositional translation introduces a singly 
exponential blowup. Hence, the resulting automaton equivalent to the given formula has a non-elementary size. In Section 4, 
we will show that for the fragments DEHom and BDHom of BEHom , this non-elementary blowup can be avoided by using a 
sophisticated automata construction.

It is well known that LTL over finite words characterizes the class of languages defined by generalized ∗-free regular 
expressions [30]. Since over finite words, LTL and BEHom have the same expressiveness [24], prefix/suffix expressions and 
generalized ∗-free regular expressions have the same expressiveness as well. Thus, by Theorem 3.1, we obtain the following 
expressiveness results.

Corollary 3.2. BEHom-expressions are expressively complete for the class of generalized ∗-free regular expressions. Moreover, DHom-
expressions are less expressive than both DEHom-expressions and BDHom-expressions, which in turn are less expressive than general-
ized ∗-free regular expressions.

4. Satisfiability and model checking of DEHom and BDHom over finite linear orders

In this section, we provide an automata-theoretic approach for solving satisfiability and model checking for DEHom-
formulas and BDHom-formulas over finite linear orders. We focus on the logic DEHom . In Subsection 4.3, we will extend the 
results for DEHom in order to take into account the logic BDHom as well.

The proposed approach for DEHom generalizes in a non-trivial way the classical automata construction [27] for standard 
LTL over finite words based on the notion of Hintikka sequences. Given a DEHom-formula ϕ and a non-empty finite word 
w over 2AP , we associate to each interval [i, j] of w a maximal propositionally consistent set of formulas (ϕ-atom) in the 
syntactical closure CL(ϕ) of ϕ which, intuitively, represents the set of formulas in CL(ϕ) which hold at the interval [i, j]. 
According to this intuition, the word w satisfies ϕ iff ϕ is contained in the ϕ-atom associated with the interval [0, |w| − 1].

The syntactical definition of ϕ-atom locally captures the semantics of the Boolean connectives. In order to capture the 
semantics of the temporal modalities and the homogeneity assumption, we define syntactical ‘semi-local’ rules which allow 
one to:

(i) specify in a functional way the atom associated to a non-singleton interval I in terms of the atoms associated to the 
two proper maximal sub-intervals of I (i.e., the maximal proper prefix of I and the maximal proper suffix of I);

(ii) enforce ‘termination’ conditions on the atoms associated with singleton intervals of w by requiring that these atoms do 
not contain temporal requirements 〈X〉ψ ∈ CL(ϕ).

Note that a naïve approach in the construction of an automaton for the formula ϕ , would be to keep track in the state of 
the automaton of the ϕ-atom associated with the interval [0, i] of positions of the given word w read so far. However, this 
approach does not work since, as observed before, the ϕ-atom of the ‘next’ interval [0, i + 1] depends on both the ϕ-atom 
of [0, i] (the maximal proper prefix of [0, i +1]) and the ϕ-atom of [1, i +1] (the maximal proper suffix of [0, i +1]). Thus, a 
more sophisticated approach is required. In particular, for each position 0 ≤ i < |w| of the given word w , let wi be the prefix 
9
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of w corresponding to the interval [0, i]. For such a prefix wi , we consider the sequence of ϕ-atoms, called row, associated 
with the suffixes of wi (corresponding to the intervals of the form [ j, i] for 0 ≤ j ≤ i) ordered for increasing values of the 
length (note that in the automata-theoretic approach for LTL, the notion of row collapses to the atom associated with the 
current position i of the given finite word).

The previous syntactical rules (i) and (ii) guarantee monotonicity properties on the atoms of a row and the existence of 
a functional relation that given the row of a proper prefix wi of w associated with position 0 ≤ i < |w| − 1, and the uniquely 
determined atom of the singleton interval [i + 1, i + 1] of w , provides the row for the prefix of w leading to position i + 1
(see Subsection 4.1).

As a main technical step (see Subsection 4.2), by exploiting the monotonicity of rows, we deduce for the given DEHom-
formula ϕ , the existence of an equivalence relation on the set of rows of exponential-size index satisfying three fundamental 
properties:

(i) the equivalence relation preserves the set of atoms visited by a row and their relative ordering along the row;
(ii) each equivalence class has a minimal representative whose length is polynomial in the size of the given formula;
(iii) the functional relation crucially preserves the equivalence between rows: this means that given two equivalent rows ρ

and ρ ′ and a ϕ-atom A, the application of the functional relation to the two pairs (ρ, A) and (ρ ′, A) produces two 
rows which are equivalent as well.

The previous three properties lead to the construction in singly exponential time of a DFA whose states are the set of 
minimal rows and accepting the non-empty finite words over 2AP which satisfy the given formula (see Subsection 4.3). More 
in detail, at the current position i of the given word w , the DFA keeps track in its state of the minimal representative ρ in 
the equivalence class of the row associated with the prefix [0, i]. On reading the next input position i + 1, starting from ρ
and the uniquely determined atom of the singleton interval [i + 1, i + 1] of w , the automaton can compute (thanks to the 
properties of the functional relation) the minimal representative ρ ′ in the equivalence class of the row associated with the 
prefix [0, i + 1]. The row ρ ′ represents the next state in the run of the automaton. The run is accepting if the last atom of 
the last state contains the formula ϕ .

We now proceed with the technical details.
We first introduce some basic definitions and notation which will be extensively used in the following. Given a DEHom-

formula ϕ , we define the closure of ϕ , denoted by CL(ϕ), as the set of all sub-formulas ψ of ϕ and of their negations ¬ψ

(we identify ¬¬ψ with ψ ). A ϕ-atom A is a subset of CL(ϕ) satisfying the following requirements:

• for every ψ ∈ CL(ϕ), ψ ∈ A if and only if ¬ψ /∈ A, and
• for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A or ψ2 ∈ A.

We denote by Aϕ the set of all ϕ-atoms. Its cardinality is clearly bounded by 2|ϕ| . We now consider non-empty finite 
words over 2AP equipped with a mapping assigning to each interval a ϕ-atom.

Definition 4.1 (ϕ-word structures and fulfilling ϕ-word structures). Let ϕ be a DEHom-formula. A ϕ-word structure W is a pair 
W = (w, L) consisting of a non-empty finite word over 2AP and a mapping L assigning to each interval of w (i.e., an 
interval in the homogeneous interval model M(w)) a ϕ-atom such that for each position 0 ≤ i < |w|, L([i, i]) ∩ AP = w[i]. 
The ϕ-word structure W = (w, L) is fulfilling if for each interval I of w (we also say that I is an interval of W) and for 
each ψ ∈ CL(ϕ), it holds that ψ ∈L(I) if and only if M(w), I |= ψ .

Evidently, for each non-empty finite word w over 2AP , there exists a unique fulfilling ϕ-word structure associated with w . 
Let W = (w, L) be a ϕ-word structure. For each interval [i, j] of W , we write L(i, j) to mean L([i, j]). For each 0 ≤ i < |w|, 
the i-row of W is the sequence ρi of ϕ-atoms given by

ρi := L(i, i) ·L(i − 1, i) · · ·L(0, i)

Hence, the i-row ρi is the sequence of atoms labeling the suffixes of the prefix of w until position i ordered for increasing 
values of their length (see Fig. 3 for a graphical hint).

4.1. Characterization of fulfilling ϕ-word structures

In this section, given a DEHom-formula ϕ , we provide a characterization of fulfilling ϕ-word structures W in terms of a 
‘syntactical’ functional relation between adjacent W-rows.

For a ϕ-atom A and X ∈ {D, E}, we consider the following sets:

• ReqX (A) := {ψ ∈ CL(ϕ) : 〈X〉ψ ∈ A} (temporal requests of A);
• ObsX (A) := {ψ ∈ A : 〈X〉ψ ∈ CL(ϕ)} (observables of A).
10
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w =
0 h i

[h, i]

[0, i]
ρi := L([i, i]) ·L([i − 1, i]) · · ·L([0, i])

current position

Fig. 3. The i-row ρi of a ϕ-word structure (w,L).

As previously mentioned, a ϕ-atom A associated with an interval I represents the set of formulas in CL(ϕ) which hold at 
I . A temporal request associated with the ϕ-atom is a formula ψ in the closure of ϕ which must hold in a suitable sub-
interval of I: a suffix of I if 〈E〉ψ ∈ A or an infix of I if 〈E〉ψ ∈ A. Dually, if ψ ∈ A and 〈E〉ψ ∈ CL(ϕ) (resp., 〈D〉ψ ∈ CL(ϕ)) 
meaning that ψ is an observable of A, then the formula 〈E〉ψ holds in every superinterval I ′ of I such that I is a suffix 
(resp., an infix) of I ′ .

Example 4.1. With reference to the Kripke structure KSched of Example 2.1, let us consider the interval I having u2 v1 v1 v1u1
as underlying path. Let ActivityE

i be the DEHom-formula defined as 〈E〉 pi ∧ ¬ 〈D〉(¬ 〈E〉 pi ∧ ¬pi) characterizing a subpath 
of KSched corresponding with the use and unlock of the shared resource by the i-th process (i.e. the counterpart of the 
BDHom-formula Activityi defined in Example 2.2). If we consider the DEHom-formula ϕ := 〈D〉 ActivityE

1 we have:

1. The ϕ-atom AI associated with interval I is the set {ϕ, ¬ActivityE
1 , ¬p1, ¬p1, 〈E〉 p1, 〈D〉(¬ 〈E〉 p1 ∧ ¬p1)};

2. ReqD(AI ) = {ActivityE
1 , ¬ 〈E〉 p1 ∧ ¬p1} and ReqE (AI ) = {p1};

3. ObsD(AI ) = ObsE(AI ) = ∅.

Considering the maximal suffix I E of I with underlying path v1 v1 v1u1 we have:

1. The ϕ-atom AI E associated with interval I E is the set {ϕ, ActivityE
1 , ¬p1, ¬p1, 〈E〉 p1, ¬ 〈D〉(¬ 〈E〉 p1 ∧ ¬p1)};

2. ReqD(AI E ) = {ActivityE
1 } and ReqE(AI E ) = {p1};

3. ObsD(AI E ) = {ActivityE
1 } and ObsE (AI E ) = ∅.

Considering the maximal prefix I B of I with underlying path u2 v1 v1 v1 we have:

1. The ϕ-atom AI B associated with interval I B is the set {¬ϕ, ¬ActivityE
1 , ¬p1, ¬p1, ¬ 〈E〉 p1, 〈D〉(¬ 〈E〉 p1 ∧ ¬p1)};

2. ReqD(AI B ) = {¬ 〈E〉 p1 ∧ ¬p1} and ReqE(AI B ) = ∅;
3. ObsD(AI B ) = {¬ 〈E〉 p1 ∧ ¬p1} and ObsE (AI B ) = ∅.

The following proposition states that, once the proposition letters of a ϕ-atom A and its temporal requests have been 
fixed, A gets unambiguously determined.

Proposition 4.1. Let ϕ be a DE-formula. Given a set R D ⊆ {ψ | 〈D〉ψ ∈ CL(ϕ)}, a set R E ⊆ {ψ | 〈E〉ψ ∈ CL(ϕ)}, and a set P ⊆
CL(ϕ) ∩ AP , there exists a unique ϕ-atom A that satisfies ReqD(A) = R D , ReqE(A) = R E , and A ∩ AP = P .

Proof. First, notice that the notion of ϕ-atom imposes requirements only on the Boolean connectives. Hence, the existence 
of a ϕ-atom A that satisfies ReqD(A) = R D , ReqE(A) = R E , and A ∩ AP = P is ensured. Now, let A and A′ be two ϕ-atoms 
such that ReqD(A) = ReqD(A′), ReqE(A) = ReqE(A′), and A ∩ AP = A′ ∩ AP . It remains to show that A = A′ , i.e., for each 
ψ ∈ CL(ϕ), ψ ∈ A iff ψ ∈ A′ . The proof is by induction on the structure of ψ ∈ CL(ϕ). If ψ is an atomic proposition or a 
formula of the form 〈X〉ψ ′ for some X ∈ {D, E}, the result directly follows from the hypothesis. Otherwise, ψ is either of 
the form ψ1 ∨ ψ2 or of the form ¬ψ ′ . For these cases, the result directly follows from the induction hypothesis and the 
definition of ϕ-atom. �

Now, we show how the ϕ-atom associated with a non-singleton interval I can be functionally derived from the ϕ-atoms 
associated with the maximal proper prefix I B and the maximal proper suffix I E of I .

Definition 4.2. Let AB and AE be two ϕ-atoms. We denote by succϕ(AB , AE ) the unique ϕ-atom A whose propositions, 
D-temporal requests and E-temporal requests satisfy:

(i) A ∩ AP = AB ∩ AE ∩ AP ,
(ii) ReqD(A) = ReqD(AB) ∪ ObsD(AB) ∪ ReqD(AE ) ∪ ObsD(AE ), and
11
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(iii) ReqE(A) = ReqE(AE ) ∪ ObsE(AE ).

Notice that the first point of Definition 4.2 is an immediate consequence of the homogeneity assumption: a proposition 
p holds at a non-singleton interval I iff it holds at the maximal proper sub-intervals of I (i.e., the maximal proper prefix 
and the maximal proper suffix of I). Since all the possible proper infixes of a non-singleton interval I are the union of the 
infixes of the maximal proper prefix I B of I and the infixes of the maximal proper suffix I E of I , the D-temporal requests 
in the ϕ-atom A of I (second point of Definition 4.2) are obtained from the D-temporal requests and the D-observables of 
the ϕ-atoms AB and AE of I B and I E , respectively. As for the third point, the E-temporal requests in the ϕ-atom A of I
correspond to the E-temporal requests and the E-observables of the ϕ-atom AE of I E . With reference to Example 4.1, notice 
that AI = succϕ(AI B , AI E ).

Definition 4.2 can be exploited to label a fulfilling ϕ-word structure W , namely, to determine the ϕ-atoms labeling 
all the intervals [i, j] of W , starting from the singleton ones. The idea is the following: if two ϕ-atoms AB and AE label 
respectively the greatest proper prefix [i, j − 1] and the greatest proper suffix [i + 1, j] of the same non-singleton interval 
[i, j], then the atom A labeling interval [i, j] is unique, and it is precisely the one given by succϕ(AB , AE).

Lemma 4.1. Let W = (w, L) be a ϕ-word structure. Then, W is fulfilling if and only if for each interval [i, j] of W , it holds that:

• if i < j, then L(i, j) = succϕ(L(i, j − 1), L(i + 1, j));
• if i = j, then ReqD(L(i, j)) = ∅ and ReqE(L(i, j)) = ∅.

Proof. (⇒) Assume that W is fulfilling. Hence, for each interval [i, j] of W , L(i, j) is the set of formulas ψ ∈ CL(ϕ)

such that M(w), [i, j] |= ψ (recall that M(w) is the homogeneous interval model associated with the word w). Thus, 
if i = j, then ReqD(L(i, j)) = ∅ and ReqE(L(i, j)) = ∅. Otherwise, i < j and being M(w) homogeneous, we have that 
L(i, j) ∩ AP =L(i, j − 1) ∩L(i + 1, j) ∩ AP . Moreover, by the semantics of DE, the following holds:

• for each 〈D〉ψ ∈ CL(ϕ), 〈D〉ψ ∈ L(i, j) if and only if 〈D〉ψ ∈ L(i, j − 1), or ψ ∈ L(i, j − 1), or 〈D〉ψ ∈ L(i + 1, j), or 
ψ ∈L(i + 1, j);

• for each 〈E〉ψ ∈ CL(ϕ), 〈E〉ψ ∈L(i, j) if and only if 〈E〉ψ ∈L(i + 1, j) or ψ ∈L(i + 1, j).

This means that L(i, j) = succϕ(L(i, j − 1), L(i + 1, j)), and the result follows.
(⇐) Assume that for every interval [i, j] of W , we have:

• if i < j, then L(i, j) = succϕ(L(i, j − 1), L(i + 1, j));
• if i = j, then ReqD(L(i, j)) = ∅ and ReqE(L(i, j)) = ∅.

We need to prove that W is fulfilling. Let [i, j] be an interval of W and ψ ∈ CL(ϕ). We prove by induction on the 
structure of ψ that ψ ∈L(i, j) if and only if M(w), [i, j] |= ψ . Hence, the result follows.

• ψ ∈ AP : we have to show that L(i, j) ∩ AP =
⋂

h∈[i, j]
L(h, h) ∩ AP . The proof is by a double induction on j − i ≥ 0. If i = j, 

the property trivially holds. Let us assume now that j − i > 0. Since L(i, j) = succϕ(L(i, j − 1), L(i + 1, j)), by Condi-

tion (i) of Definition 4.2 and the induction hypothesis, we obtain that L(i, j) ∩ AP =
⋂

h∈[i+1, j]
L(h, h) ∩

⋂

h∈[i, j−1]
L(h, h) ∩

AP . Hence, the result directly follows.
• ψ = ¬ψ1 or ψ = ψ1 ∨ ψ2: for these cases, the result directly follows from the induction hypothesis and the definition 

of ϕ-atom (recall that L(i, j) is a ϕ-atom).
• ψ = 〈D〉ψ1 or ψ = 〈E〉ψ1: the proof is by a double induction on j − i ≥ 0. If i = j, then M(w), [i, j] �|= ψ , 

ReqD(L(i, j)) = ∅, and ReqE(L(i, j)) = ∅. Hence, the result follows. Now, assume that j − i > 0. First, let us consider 
the case where ψ = 〈D〉ψ1. Since L(i, j) = succϕ(L(i, j − 1), L(i + 1, j)), by Condition (ii) of Definition 4.2 and the 
induction hypothesis, we have that

〈D〉ψ1 ∈ L(i, j) ⇔
either M(w), [i, j − 1] |= ψ1 ∨ 〈D〉ψ1 or
M(w), [i + 1, j] |= ψ1 ∨ 〈D〉ψ1 ⇔
M(w), [i, j] |= 〈D〉ψ1.

Now, let us consider the case where ψ = 〈E〉ψ1. By Condition (iii) of Definition 4.2 and the induction hypothesis, we 
have that
12
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〈E〉ψ1 ∈ L(i, j) ⇔
either M(w), [i + 1, j] |= 〈E〉ψ1 or
M(w), [i + 1, j] |= ψ1 ⇔
M(w), [i, j] |= 〈E〉ψ1,

and the result follows. �
We now introduce the abstract notion of ϕ-rows, finite sequences of ϕ-atoms satisfying ‘syntactical’ adjacency require-

ments which capture the behavior of W-rows in fulfilling ϕ-word structures W . Intuitively, a ϕ-row is a sequence of 
ϕ-atoms for an increasing sequence of suffixes of an interval.

Definition 4.3 (ϕ-row). A non-empty finite sequence ρ of ϕ-atoms is a ϕ-row if, for all 0 ≤ i < |ρ| − 1, the following holds:

• (ρ[i] ∩ AP ) ⊇ (ρ[i + 1] ∩ AP ),
• ReqD(ρ[i + 1]) ⊇ ReqD(ρ[i]) ∪ ObsD(ρ[i]) and
• ReqE(ρ[i + 1]) = ReqE(ρ[i]) ∪ ObsE(ρ[i]).

The ϕ-row ρ is initialized if ReqD(ρ[0]) = ∅ and ReqE(ρ[0]) = ∅.

Intuitively, if ρ[i] and ρ[i + 1] are the ϕ-atoms associated with two adjacent suffixes J i and J i+1, respectively, of an 
interval I such that J i is contained in J i+1 (hence, J i is also the maximal proper suffix of J i+1), then the first point in 
Definition 4.3 asserts that each proposition holding at J i+1 holds at J i too. Moreover, being J i a proper infix of J i+1, the 
D-temporal requests in the ϕ-atom ρ[i + 1] of J i+1 include the D-temporal requests and the D-observables of the ϕ-atom 
ρ[i] of J i (second point in Definition 4.3). Furthermore, since J i is the maximal proper suffix of J i+1, the E-temporal 
requests in ρ[i + 1] correspond to the E-temporal requests and the E-observables of ρ[i] (third point in Definition 4.3). 
Finally, notice that the initialization requirement in Definition 4.3 ensures that the first atom in the ϕ-row ρ is associated 
with a singleton interval.

We denote by Rowsϕ the set of all possible ϕ-rows. We observe that the sequence of atoms along a ϕ-row A0 · · · An

has a monotonic behavior and the number of distinct occurring atoms is linearly bounded by the size of ϕ . Indeed, by 
Definition 4.3, a ϕ-row ρ presents three monotonic sequences:

(i) the decreasing sequence of atomic propositions (A0 ∩ AP ) ⊇ (A1 ∩ AP ) ⊇ . . . ⊇ (An ∩ AP );
(ii) the two increasing sequences of temporal requests ReqD(A0) ⊆ ReqD(A1) ⊆ . . . ⊆ ReqD(An) and ReqE(A0) ⊆

ReqE(A1) ⊆ . . . ⊆ ReqE(An).

The number of distinct elements in each sequence is bounded by |ϕ| (w.l.o.g., we assume that |AP | ≤ |ϕ|, i.e. we can 
consider only the propositional letters actually occurring in ϕ). Since a set of temporal requests and a set of proposition 
letters uniquely determine a ϕ-atom (Proposition 4.1), any ϕ-row may feature at most 3|ϕ| distinct atoms, i.e., n ≤ 3|ϕ|. 
Since in a fulfilling ϕ-word structure there are no temporal requests in the atoms labeling the singleton intervals, by 
Definition 4.2 and Lemma 4.1, we obtain the following result.

Lemma 4.2. The following statements hold:

1. The number of distinct atoms in a ϕ-row ρ = A0 · · · An is at most 3|ϕ|. Moreover, for all 0 ≤ i < j < |ρ|, if Ai = A j , then Ak = Ai
for all k ∈ [i, j].

2. Each W-row of a fulfilling ϕ-word structure W is an initialized ϕ-row.

We now generalize the successor function succϕ to ϕ-rows. Given a ϕ-row ρ and a ϕ-atom A, succϕ(ρ, A) returns the 
ϕ-row of length |ρ| + 1 whose first atom is A and the other atoms are obtained by a component-wise application of succϕ

starting from A and the first atom of ρ .

Definition 4.4. Given a ϕ-atom A and a ϕ-row ρ with |ρ| = n, the A-successor of ρ , denoted by succϕ(ρ, A), is the sequence 
B0 · · · Bn of ϕ-atoms inductively defined as follows:

• B0 = A and
• Bi+1 = succϕ(ρ[i], Bi) for all 0 ≤ i < n.

Intuitively, if ρ is the i-row

ρ = L(i, i) ·L(i − 1, i) · · ·L(0, i)
13
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w =
0 i i + 1

[i − 1, i]

[0, i]

[i, i + 1], B1 = succϕ(L(i, i), B0)

[i − 1, i + 1], B2 = succϕ(L(i − 1, i), B1)

[0, i + 1], Bi+1 = succϕ(L(0, i), Bi)

ρ = L(i, i) ·L(i − 1, i) · · ·L(0, i) (i-row)

B0 = L(i + 1, i + 1)

succϕ(ρ, B0) = B0 · B1 · · · Bi+1 (i + 1-row)

Fig. 4. Functional relation between adjacent rows in fulfilling ϕ-word structures.

of a fulfilling ϕ-word structure W = (w, L) for some 0 ≤ i < |w| − 1, and A is the ϕ-atom associated with the singleton 
interval [i + 1, i + 1] (i.e., A =L(i + 1, i + 1)), then the A-successor succϕ(ρ, A) of ρ represents the (i + 1)-row of W , i.e.

succϕ(ρ, A) = L(i + 1, i + 1) ·L(i, i + 1) · · ·L(0, i + 1).

Indeed, by Lemma 4.1, the ϕ-atom associated with a non-singleton interval I is given by succϕ(AB , AE), where AB and 
AE are the ϕ-atoms associated with the maximal proper prefix of I and the maximal proper suffix of I , respectively. In 
particular, for all j ∈ [0, i], L( j, i +1) = succϕ(L( j, i), L( j +1, i +1)) (see Fig. 4 for a graphical intuition). From Definitions 4.2
and 4.4, we can easily derive the following lemma.

Lemma 4.3. Let ρ be a ϕ-row and A be a ϕ-atom. Then, succϕ(ρ, A) is a ϕ-row. Moreover, if ρ is of the form ρ = ρ1 · ρ2 , then 
succϕ(ρ, A) = succϕ(ρ1, A) � succϕ(ρ2, A1), where A1 is the last ϕ-atom of succϕ(ρ1, A).

By Lemma 4.1, consecutive rows in fulfilling ϕ-word structures respect the successor function. In particular, by Lem-
mata 4.1 and 4.2, we obtain the following characterization result.

Corollary 4.1 (Characterization of fulfilling ϕ-word structures). Let W = (w, L) be a ϕ-word structure such that for all 0 ≤ i < |w|, 
ReqD(L(i, i)) = ∅ and ReqE(L(i, i)) = ∅. Then, W is fulfilling if and only if, for each 0 ≤ j < |w| − 1, ρ j+1 = succϕ(ρ j, ρ j+1[0]), 
where ρi is the i-row of W for all 0 ≤ i < |w|.

4.2. Finite abstractions of rows

We describe now the core of the automata-theoretic approach we exploit to solve the satisfiability and model checking 
problems for DEHom .

Given a DEHom formula ϕ , we introduce an equivalence relation ∼ϕ of finite index over the infinite set Rowsϕ of ϕ-
rows whose number of equivalence classes is singly exponential in the size of ϕ and such that each equivalence class has a 
representative whose length is polynomial in the size of ϕ . The equivalence relation preserves (i) the set of atoms visited by 
a ϕ-row and their relative ordering along the row, and (ii) the property of a ϕ-row to be initialized. Moreover, as a crucial 
result we show that the successor function preserves the equivalence between ϕ-rows.

In the following, we denote by ND,ϕ the number of D-temporal requests in CL(ϕ) plus one, i.e., |{ψ | 〈D〉ψ ∈ CL(ϕ)}| + 1, 
and by NE,ϕ the number of E-temporal requests in CL(ϕ) plus one, i.e., |{ψ | 〈E〉ψ ∈ CL(ϕ)}| + 1. Note that 1 ≤ ND,ϕ ≤ |ϕ|
and 1 ≤ NE,ϕ ≤ |ϕ|.

The equivalence relation ∼ϕ is based on the monotonicity properties of ϕ-rows: along a ϕ-row, the sets of atomic 
propositions form a decreasing sequence, while the sets of D-temporal requests and the sets of E-temporal requests form 
two increasing sequences. Thus, a ϕ-row can be factorized into a concatenation of segments such that the number of 
segments is linearly bounded in the size of ϕ , and along a segment (called uniform ϕ-row), the ϕ-atoms have the same 
propositional letters and the same D-temporal requests (uniform factorization). Note that in a ϕ-row, the E-temporal requests 
of a non-first atom are completely specified by the previous atom along the row. Thus, two uniform ϕ-rows which have the 
same first atom and the same length coincide. Two uniform ϕ-rows ρ and ρ ′ are then defined to be equivalent when they 
have the same first atom A and their lengths either (i) coincide or (ii) are both greater than a parameter depending on the 
number of D-temporal requests in A and the overall number NE,ϕ of E-temporal requests in CL(ϕ) (such a parameter is 
called A-rank). In the second case, we show that the two uniform ϕ-rows ρ and ρ ′ are similar being of the form ρ ′′ · Bk

and ρ ′′ · Bh , respectively, for some ϕ-atom B , where h, k ≥ 1 and |ρ ′′| = NE,ϕ . Two arbitrary ϕ-rows are then defined to be 
14
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equivalent when their factorizations are similar: i.e., they have the same number of segments and corresponding segments 
are equivalent uniform ϕ-rows.

We now formally define the equivalence relation ∼ϕ over Rowsϕ .

Definition 4.5 (Uniform ϕ-rows). A ϕ-row ρ is uniform if for all 0 ≤ i < |ρ| − 1, (ρ[i] ∩ AP ) = (ρ[i + 1] ∩ AP ) and ReqD(ρ[i +
1]) = ReqD(ρ[i]).

Thus, in a uniform ϕ-row ρ , all the atoms occurring in ρ have the same propositional letters and the same D-temporal 
requests. We represent an arbitrary ϕ-row ρ in the form ρ = ρ1 · · ·ρk (uniform factorization of ρ) where ρ1, . . . , ρk are 
uniform ϕ-rows and ρi · ρi+1[0] is not uniform for all 1 ≤ i < k. Intuitively, the uniform factorization of a ϕ-row ρ is the 
unique factorization of ρ consisting of maximal uniform sub-rows of ρ . By the monotonicity properties of a ϕ-row ρ (see 
Definition 4.3 and Lemma 4.2(1)), the number k of uniform segments in the uniform factorization of ρ is linearly bounded 
in the size of ϕ .

Lemma 4.4. The following statements hold:

1. Let ρ be a ϕ-row with uniform factorization ρ1 · · ·ρk. Then, k is at most 3|ϕ|.
2. Let ρ be a uniform ϕ-row such that |ρ| > NE,ϕ . Then, ρ is of the form ρ = ρ ′ · Bm where |ρ ′| = NE,ϕ , m ≥ 1, and B is the last 

atom of ρ ′ .
3. Given a ϕ-atom A and an integer n ≥ 1, there is at most one uniform ϕ-row ρ such that ρ[0] = A and |ρ| = n.

Proof. By Lemma 4.2(1), the number k of segments in the uniform factorization of the ϕ-row ρ is at most the number of 
distinct atoms in ρ . Hence, k is at most 3|ϕ|, and Property (1) directly follows.

As for Property (2), let ρ be a uniform ϕ-row such that |ρ| > NE,ϕ . By definitions of ϕ-row and uniform ϕ-row, for 
all 0 ≤ i < |ρ| − 1, either ReqE(ρ[i]) ⊂ ReqE(ρ[i + 1]) or ρ[ j] = ρ[i] for all i ≤ j < |ρ|. Thus, since for a ϕ-atom A, 0 ≤
|ReqE(A)| < NE,ϕ , we obtain that ρ is of the form ρ = ρ ′ · Bm where |ρ ′| = NE,ϕ , m ≥ 1, and B is the last atom of ρ ′ .

As for Property (3), it suffices to observe that in a uniform ϕ-row all the atoms have the same propositional letters and 
the same D-temporal requests. Thus, since the E-temporal requests of a non-first atom in a ϕ-row are completely specified 
by the previous atom along the row (third point in Definition 4.3), the result follows. �

We now introduce the notion of rank of a ϕ-atom. We first define the D-rank of a ϕ-atom A, written rankD(A), as ND,ϕ −
|ReqD(A)|. Clearly, 1 ≤ rankD(A) ≤ |ϕ|. The rank of a ϕ-atom A, written rank(A), is defined as rankD(A) · NE,ϕ (i.e. the product 
of the D-rank of A with the increment of the overall number of suffix temporal requests in ϕ). Clearly, rank(A) ≥ NE,ϕ and 
1 ≤ rank(A) ≤ |ϕ|2. In particular, by Definition 4.3, for every ϕ-row ρ = A0 · · · An , we have rankD(A0) ≥ . . . ≥ rankD(An) and 
rank(A0) ≥ . . . ≥ rank(An). Moreover, in a uniform ϕ-row ρ , all the atoms occurring in ρ have the same rank, and we write 
rank(ρ) for such a rank. Similarly, the notation rankD (ρ) for a uniform ϕ-row ρ refers to the common D-rank of the atoms 
occurring in ρ .

Definition 4.6 (Equivalence relation ∼ϕ ). Given two uniform ϕ-rows ρ and ρ ′ , we say that ρ and ρ ′ are equivalent, written 
ρ ∼ϕ ρ ′ , if the following conditions hold:

• ρ[0] = ρ ′[0] (hence rank(ρ) = rank(ρ ′)), and
• either |ρ| = |ρ ′| or both |ρ| and |ρ ′| are strictly greater than rank(ρ).

Two arbitrary ϕ-rows ρ and ρ ′ with uniform factorizations ρ1 · · ·ρk and ρ ′
1 · · ·ρ ′

k′ , respectively, are equivalent, written 
ρ ∼ϕ ρ ′ , if k = k′ and ρi ∼ϕ ρ ′

i for all i ∈ [1, k]. A minimal ϕ-row is a ϕ-row whose uniform factorization ρ1 · · ·ρk is such 
that |ρi | ∈ [1, rank(ρi) + 1], for each 1 ≤ i ≤ k.

The factors NE,ϕ and rankD(A) in the definition of the rank rank(A) = rankD(A) · NE,ϕ of a ϕ-atom A are used to handle 
the E-temporal requests and the D-temporal requests, respectively. In particular, in moving from a uniform ϕ-row ρ to 
a successor ϕ-row ρ ′ = succϕ(ρ, A), we will show that the length of each non-last segment in the uniform factorization 
of ρ ′ is at most |NE,ϕ |. Moreover, since the D-rank decreases along a ϕ-row and rankD (ρ ′[0]) ≤ rankD(ρ), we will show 
that if |ρ| > rank(ρ), than the last segment ρs in the uniform factorization of ρ ′ satisfies |ρs| > rank(ρs). This result (see 
Lemma 4.8(1)) is crucial for ensuring that the successor function succϕ preserves the equivalence between ϕ-rows. It is 
worth noting that the E-temporal requests of the ϕ-row ρ ′ are not related to the ϕ-row ρ . Thus, we use the unique integer 
NE,ϕ , which is independent of the specific ϕ-atom, in order to take into account the E-temporal requests.

Since for a ϕ-atom A, rank(A) ≥ NE,ϕ , by Lemma 4.4, we easily deduce the following result.
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Proposition 4.2 (Equivalent uniform ϕ-rows). Let ρ and ρ ′ be two uniform ϕ-rows. If ρ and ρ ′ are equivalent, then either ρ = ρ ′ , or 
ρ and ρ ′ are of the form ρ ′′ · Bm and ρ ′′ · Bk, respectively, where |ρ ′′| = NE,ϕ , m, k ≥ 1, and B is the last atom of ρ ′′. Moreover, there 
exists a unique minimal ϕ-row which is equivalent to ρ .

Proof. We focus on the second part of Proposition 4.2 (the proof of the first part being similar). Let ρ be a uniform ϕ-row. 
We distinguish two cases:

• |ρ| ≤ rank(ρ). Hence, ρ is minimal. By Lemma 4.4(3), two equivalent uniform ϕ-rows which have the same length 
coincide. Hence, by Definition 4.6 and since |ρ| ≤ rank(ρ), the equivalence class of ρ is a singleton and the result 
follows.

• |ρ| > rank(ρ). By Definition 4.6, the prefix ρmin of ρ of length rank(ρ) +1 is a minimal ϕ-row equivalent to ρ . Moreover, 
by Lemma 4.4(3), it easily follows that ρmin is the unique minimal ϕ-row equivalent to ρ , and the result follows. �

By Definition 4.6, Lemma 4.4 and Proposition 4.2, the number of minimal ϕ-rows is finite and each equivalence class 
of ∼ϕ contains a unique minimal ϕ-row. Thus, the equivalence relation ∼ϕ has finite index coinciding with the number 
of minimal ϕ-rows. This number is roughly bounded by the number of all the possible uniform factorizations of the form 
ρ1 · · ·ρk where k ≤ 3|ϕ| and for all i ∈ [1, k], |ρi| ranges from 1 to |ϕ|2 and ρi is the unique uniform ϕ-row of length |ρi|
having as first atom ρi[0]. Since the number of possible ϕ-atoms is 2|ϕ| , the number of distinct equivalence classes of ∼ϕ

is bounded by (2|ϕ| · |ϕ|2)3|ϕ| ≤ 29|ϕ|2 , which is exponential in the length of the input formula ϕ . Moreover, each minimal 
ϕ-row has length at most 3|ϕ|3 (this is because, as explained before, the number of segments in a uniform factorization 
is at most 3|ϕ|, and the length of a segment in the uniform factorization of a minimal ϕ-row is at most |ϕ|2). Hence, we 
obtain the following result.

Lemma 4.5. Each equivalence class of ∼ϕ contains a unique minimal ϕ-row. The length of a minimal ϕ-row is at most 3|ϕ|3, and the 
number of minimal ϕ-rows is at most 29|ϕ|2 .

We observe that if we replace a segment (sub-row) of a ϕ-row by an equivalent one, we obtain a ϕ-row which is 
equivalent to the original one.

Lemma 4.6. Let ρ1, ρ ′
1, ρ2, ρ ′

2 be ϕ-rows such that ρ1 ∼ϕ ρ ′
1 and ρ2 ∼ϕ ρ ′

2 . If ρ1 �ρ2 and ρ ′
1 �ρ ′

2 are defined, then ρ1 �ρ2 ∼ϕ ρ ′
1 �ρ ′

2 .

Proof. We consider the case where ρ1 and ρ2 are uniform, hence, ρ ′
1 and ρ ′

2 are uniform as well. The general case easily 
follows from the considered case. By hypothesis ρ1 � ρ2 and ρ ′

1 � ρ ′
2 are defined. This entails that ρ1 � ρ2 and ρ ′

1 � ρ ′
2 are 

uniform as well. Thus since ρ1 ∼ϕ ρ ′
1 and ρ2 ∼ϕ ρ ′

2, by Definition 4.6, we obtain that ρ1 �ρ2 and ρ ′
1 �ρ ′

2 have the same first 
atom A and indicated by m (resp.: m′) the length of ρ1 �ρ2 (resp.: ρ ′

1 �ρ ′
2), it holds that either m = m′ , or both m > rank(A)

and m′ > rank(A). Hence, the result follows. �
We now show that the successor function succϕ on ϕ-rows preserves the equivalence of ϕ-rows: this means that given 

two equivalent ϕ-rows ρ and ρ ′ and a ϕ-atom A, the application of the functional succϕ to the two pairs (ρ, A) and (ρ ′, A)

produces two ϕ-rows which are equivalent as well. We first show (Lemma 4.8) that the result holds for uniform ϕ-rows, 
and then we generalize Lemma 4.8 to arbitrary ϕ-rows (Lemma 4.9). In order to prove Lemma 4.8, we need a preliminary 
technical result that considers uniform ϕ-rows of the form Bm for some ϕ-atom B .

Lemma 4.7. Let A and B be two ϕ-atoms such that rankD(succϕ(B, A)) = rankD(B) − h for some h ≥ 0 (note that h < rankD(B)). 
Given m > (rankD(B) − h) · NE,ϕ , if Bm is a ϕ-row, then the ϕ-row succϕ(Bm, A) is of the form A ·ρ1 · · ·ρk for some k ≥ 1 such that

• ρ1, . . . , ρk are uniform ϕ-rows,
• rankD(ρi) > rankD(ρi+1) for each 1 ≤ i < k, and
• |ρk| > rank(ρk).

Proof. Let rankD(succϕ(B, A)) = rankD(B) − h for some 0 ≤ h < rankD(B), m > (rankD(B) − h) · NE,ϕ , and ρ be the ϕ-row 
of length m + 1 given by succϕ(Bm, A). Since ρ[0] = A and ρ[i + 1] = succϕ(B, ρ[i]) for all i ∈ [0, m − 1], by Definition 4.2, 
for all i ∈ [1, m], the following holds:

• ρ[i] ∩ AP = B ∩ A ∩ AP ;
• rankD(ρ[i − 1]) ≥ rankD(ρ[i]) and ReqE(ρ[i − 1]) ⊆ ReqE(ρ[i]);
• if i < m and ρ[i] = ρ[i + 1], then ρ[ j] = ρ[i] for all j ≥ i.
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Since by hypothesis rankD (ρ[1]) = rankD(B) − h, we easily deduce that ρ = succϕ(Bm, A) is of the form

A · ρ1 · · ·ρk

for some k ≥ 1 such that ρ1, . . . , ρk are uniform ϕ-rows and

• rankD(ρ1) = rankD(B) − h,
• rankD(ρi) > rankD(ρi+1) for each 1 ≤ i < k, and
• |ρi | ≤ NE,ϕ for each 1 ≤ i < k.

It remains to show that |ρk| > rank(ρk). By the previous points, we have that rankD(B) −h = rankD(ρ1) > . . . > rankD(ρk). 
Hence, rankD(B) − h ≥ rankD(ρk) + k − 1. Since m > (rankD(B) − h) · NE,ϕ and |ρi | ≤ NE,ϕ for each 1 ≤ i < k, we obtain 
|ρk| = m − ∑i=k−1

i=1 |ρi | ≥ m − ∑i=k−1
i=1 NE,ϕ > (rankD(B) − h) · NE,ϕ − (k − 1)NE,ϕ ≥ rankD(ρk) · NE,ϕ = rank(ρk). �

By exploiting Lemma 4.7, we can prove the following result.

Lemma 4.8. Let A be a ϕ-atom. Then, the following statements hold:

1. Let ρ be a uniform ϕ-row such that |ρ| > rank(ρ). Then, the ϕ-row succϕ(ρ, A) is of the form A · ρ1 · · ·ρk for some k ≥ 1 such 
that ρ1, . . . , ρk are uniform ϕ-rows and |ρk| > rank(ρk).

2. Let ρ and ρ ′ be two uniform ϕ-rows such that ρ ∼ϕ ρ ′ . Then, succϕ(ρ, A) ∼ϕ succϕ(ρ ′, A).

Proof. Property (1). Let A be a ϕ-atom and ρ be a uniform ϕ-row such that |ρ| > rank(ρ). We need to show that the length 
|ρL | of the last segment ρL in the uniform factorization of succϕ(ρ, A) satisfies |ρL | > rank(ρL). Since |ρ| > rank(ρ) and 
rank(ρ) ≥ NE,ϕ , by Lemma 4.4(2), ρ is of the form ρ = ρ1 · Bm where m ≥ 1, |ρ1| = NE,ϕ and B is the last atom of ρ1. Let 
ρ ′ be the ϕ-row given by succϕ(ρ, A). Then ρ ′ can be written in the form

ρ ′ = (A · ρ ′
1) � succϕ(Bm, B ′)

where A ·ρ ′
1 = succϕ(ρ1, A) and B ′ is the last atom of ρ ′

1. In particular, |ρ ′
1| = NE,ϕ . Let B ′′ = succϕ(B, B ′). By Definition 4.2, 

we have that rankD(B ′′) ≤ rankD(ρ ′
1[0]) ≤ rankD(ρ). We distinguish two cases:

• rankD(B ′′) = rankD(ρ). In this case, we have that all the atoms in ρ ′
1 · B ′′ have the same D-temporal requests. Moreover, 

since ρ is uniform, by Definition 4.2, all the atoms in ρ ′
1 · B ′′ have the same propositional letters. Hence, ρ ′

1 · B ′′ is a 
uniform ϕ-row. Since |ρ ′

1| = NE,ϕ , by Lemma 4.4(2), B ′′ coincides with the last atom B ′ of ρ ′
1. Thus, B ′ = succϕ(B, B ′)

and ρ ′ = A ·ρ ′
1 · (B ′)m where ρ ′

1 · (B ′)m is a uniform ϕ-row having the same length and the same rank as ρ . Thus, since 
|ρ| > rank(ρ), the result in this case holds.

• rankD(B ′′) < rankD(ρ) = rankD(B). We have that m = |ρ| − NE,ϕ > rank(ρ) − NE,ϕ = (rankD(B) − 1) · NE,ϕ ≥ rank(B ′′). 
Since B ′′ = succϕ(B, B ′), by Lemma 4.7, the length |ρL | of the last segment ρL in the uniform factorization of 
succϕ(Bm, B ′) satisfies |ρL | > rank(ρL), and the result follows.

Property (2). Let A be a ϕ-atom and ρ and ρ ′ be two uniform ϕ-rows such that ρ ∼ϕ ρ ′ . We need to show that 
succϕ(ρ, A) ∼ϕ succϕ(ρ ′, A). By hypothesis and Definition 4.6, there are two cases:

• ρ[0] = ρ ′[0] and |ρ| = |ρ ′|. Since ρ and ρ ′ are uniform, by Lemma 4.4(3), ρ = ρ ′ , and the result obviously follows.
• ρ[0] = ρ ′[0], |ρ| �= |ρ ′|, |ρ| > rank(ρ) and |ρ ′| > rank(ρ ′). Assume that |ρ| < |ρ ′| (the case where |ρ ′| < |ρ| being 

similar). Since ρ and ρ ′ are uniform and ρ[0] = ρ ′[0], it holds that rank(ρ) = rank(ρ ′). Moreover, |ρ| > rank(ρ) ≥ NE,ϕ . 
Applying Lemma 4.4(2) and Lemma 4.4(3), we deduce that ρ is of the form ρ = ρ1 · B2 and ρ ′ = ρ1 · Bk+2 where B
is a ϕ-atom and k = |ρ ′| − |ρ|. By Property (1) of Lemma 4.8 the last uniform segment ρL of succϕ(ρ, A) satisfies 
|ρL | > rank(ρL) ≥ NE,ϕ . Thus, by Lemma 4.4(2), succϕ(ρ, A) is of the form ρ ′ · (B ′)2 for a ϕ-atom B ′ such that B ′ =
succϕ(B, B ′). Since succϕ(ρ ′, A) = (ρ ′ · (B ′)2) � succϕ(Bk, B ′), we obtain that succϕ(ρ ′, A) = ρ ′ · (B ′)2+k . Thus, since 
the last uniform segment ρL in ρ ′ · (B ′)2 satisfies |ρL | > rank(ρL), we deduce that succϕ(ρ, A) and succϕ(ρ ′, A) are 
equivalent. �

Finally, by applying Lemma 4.6, we generalize Lemma 4.8 to arbitrary ϕ-rows.

Lemma 4.9. Let A be a ϕ-atom and ρ and ρ ′ be two ϕ-rows such that ρ ∼ϕ ρ ′ . Then, for the ϕ-rows succϕ(ρ, A) and succϕ(ρ ′, A), 
it holds that succϕ(ρ, A) ∼ϕ succϕ(ρ ′, A).

Proof. The proof is by induction on the number N(ρ) of distinct uniform segments in the uniform factorization of ρ . Since 
ρ and ρ ′ are equivalent, we have that N(ρ ′) = N(ρ).
17
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Base step N(ρ) = N(ρ ′) = 1, i.e. ρ and ρ ′ are uniform. In this case, the result directly follows from Lemma 4.8.

Inductive step N(ρ) = N(ρ ′) > 1. Hence, since ρ ∼ϕ ρ ′ , ρ (resp.: ρ ′) can be written in the form ρ = ρ1 ·ρ2 (resp.: ρ ′ = ρ ′
1 ·

ρ ′
2) such that ρ1 ∼ϕ ρ ′

1, ρ2 ∼ϕ ρ ′
2, N(ρ1) = N(ρ ′

1) < N(ρ) = N(ρ ′), and N(ρ2) = N(ρ ′
2) < N(ρ) = N(ρ ′). Let A1 (resp.: A′

1) be 
the last atom in succϕ(ρ1, A) (resp.: succϕ(ρ ′

1, A)). By the inductive hypothesis, succϕ(ρ1, A) ∼ϕ succϕ(ρ ′
1, A), A1 = A′

1, and 
succϕ(ρ2, A1) ∼ϕ succϕ(ρ ′

2, A
′
1) (note that by Lemma 4.4, two equivalent ϕ-rows have the same last atom). By Lemma 4.3, 

it follows that succϕ(ρ, A) = succϕ(ρ1, A) � succϕ(ρ2, A1) and succϕ(ρ ′, A) = succϕ(ρ ′
1, A) � succϕ(ρ ′

2, A
′
1). Thus, by applying 

Lemma 4.6, we obtain that succϕ(ρ, A) ∼ϕ succϕ(ρ ′, A), and the assertion is proved. �
4.3. Optimal upper bounds for DEHom satisfiability and model-checking

In this subsection, by exploiting Corollary 4.1 and Lemma 4.9, we devise an asymptotical optimal automaton-theoretic 
approach for satisfiability and model checking of DEHom over finite linear orders. Given a DEHom-formula ϕ , we show that 
it is possible to construct a deterministic finite automaton (DFA) Dϕ over the alphabet 2AP , whose set of states is the set of 
initialized minimal ϕ-rows and which accepts the non-empty finite words over 2AP which satisfy formula ϕ . At the end of 
this subsection, we show how the proposed automata-theoretic approach for the logic DEHom over finite linear orders can 
be adapted in order to handle the logic BDHom as well.

Definition 4.7. Let ρ be a minimal ϕ-row and A be an atom. We denote by succmin
ϕ (ρ, A) the unique minimal ϕ-row in the 

equivalence class of ∼ϕ containing succϕ(ρ, A). Moreover, for a set P ⊆ AP of proposition letters, we denote by A(P ) the 
unique ϕ-atom such that A(P ) ∩ AP = P , ReqD(A(P )) = ∅, and ReqE(A(P )) = ∅.

We consider the DFA Dϕ = 〈2AP , Rowsmin
ϕ ∪ {q0}, {q0}, δ, F 〉, associated with the formula ϕ , which is defined as follows:

• Rowsmin
ϕ is the set of initialized minimal ϕ-rows;

• δ(q0, P ) = A(P ) for all P ∈ 2AP ;
• δ(ρ, P ) = succmin

ϕ (ρ, A(P )) for all P ∈ 2AP and ρ ∈Rowsmin
ϕ ;

• F is the set of ϕ-rows ρ ∈Rowsmin
ϕ such that ϕ ∈ ρ[n − 1], with n = |ρ|.

We can now state the main technical result of this paper.

Theorem 4.1. Given a DEHom-formula ϕ , the DFA Dϕ accepts all and only the non-empty finite words over 2AP which satisfy ϕ .

Proof. Let w be a non-empty finite word over 2AP and n = |w| − 1. We show that for the homogeneous interval model 
M(w), M(w), [0, n] |= ϕ if and only if w ∈ L(Dϕ).

(⇒) Assume that M(w), [0, n] |= ϕ . Let W = (w, L) be the unique fulfilling ϕ-word structure associated with the word 
w and for all i ∈ [0, n], let ρi be the initialized ϕ-row corresponding to the i-row of W . By hypothesis ϕ ∈ ρn[n], and 
by construction |ρ0| = 1 and ρi[0] = A(w[i]) for all i ∈ [0, n]. Moreover, by Corollary 4.1, ρi+1 = succϕ(ρi, ρi+1[0]) for all 
i ∈ [0, n − 1]. For each i ∈ [0, n], let ρmin

i be the unique minimal ϕ-row in the equivalence class [ρi ]∼ϕ . Note that ρmin
0 = ρ0, 

the last atom of ρmin
n contains ϕ , ρmin

i is initialized and ρmin
i [0] = ρi[0] = A(w[i]) for all i ∈ [0, n]. By applying Lemma 4.9, 

succϕ(ρmin
i , ρi+1[0]) is equivalent to ρi+1 = succϕ(ρi, ρi+1[0]) for all i ∈ [0, n − 1]. Hence, by the definition of succmin

ϕ , we 
obtain that ρmin

i+1 = succmin
ϕ (ρmin

i , A(w[i + 1])) for all i ∈ [0, n − 1]. By Definition 4.7, it follows that there is an accepting run 
of Dϕ over w , i.e. w ∈L(Dϕ).

(⇐) Let us assume that w is accepted by Dϕ . By Definition 4.7, there exist n + 1 initialized minimal ϕ-rows 
ρmin

0 , . . . , ρmin
n such that ρmin

0 = A(w[0]), ϕ belongs to the last atom of ρmin
n , ρmin

i [0] = A(w[i]) for all i ∈ [0, n], and 
ρmin

i+1 = succmin
ϕ (ρmin

i , ρmin
i+1[0]) for all i ∈ [0, n − 1]. Let ρ0, . . . , ρn be the sequence of ϕ-rows defined as follows: ρ0 = ρmin

0

and ρi+1 = succϕ(ρi, ρmin
i+1[0]) for all i ∈ [0, n − 1]. By Lemma 4.9, we have ρi ∼ϕ ρmin

i for all i ∈ [0, n]. Hence, ρi is ini-
tialized for all i ∈ [0, n], and ϕ ∈ ρn[n]. Let us define the ϕ-word structure W = (w, L) where L(i, j) = ρ j[ j − i] for every 
0 ≤ i ≤ j ≤ n. By Corollary 4.1, W is fulfilling. Thus, since ϕ ∈ L(0, n), we obtain that M(w), [0, n] |= ϕ and the result 
follows. �

By Theorem 4.1, satisfiability of a DEHom-formula ϕ reduces to checking non-emptiness of the DFA Dϕ in Definition 4.7
whose number of states is singly exponential in the size of ϕ (Lemma 4.5).

Let us consider now the model-checking problem. Given a finite Kripke structure K, we check that K is a model of 
ϕ by applying the standard model-checking approach which considers the synchronous product K × D¬ϕ of K with the 
automaton associated with the negation of the formula ϕ . The NFA K × D¬ϕ accepts all and only the traces of K which 
violate the property expressed by the DEHom-formula ϕ . Hence, K �|= ϕ if and only if the language accepted by K × D¬ϕ

is not empty. Note that the number of states in K ×D¬ϕ is linear in the number of K-states and singly exponential in the 
size of ϕ . Moreover, the automata Dϕ and K ×D¬ϕ can be constructed ‘on the fly’. This is because, given a ϕ-row ρ , one 
can compute in polynomial time the minimal ϕ-row in the equivalence class of ρ . Moreover, given a minimal row ρ and an 
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atom A, one can compute in polynomial time the row succϕ(ρ, A). Hence, given a state ρ of D¬ϕ (i.e., an initialized minimal 
ϕ-row) and P ⊆ AP , one can compute in polynomial time the next state δ(ρ, P ) (where δ is the transition function of D¬ϕ ). 
Thus, since non-emptiness of NFA is in NLogspace, the complexity classes NPspace =Pspace and NLogspace are closed under 
complement, and finite satisfiability and model checking against the fragment DHom are known to be Pspace-complete [25], 
we obtain the following result.

Theorem 4.2. Finite satisfiability and model checking for DEHom-formulas are both Pspace-complete. Moreover, for DEHom-formulas 
of fixed size, model checking is in NLogspace.

Note that the proposed automata-based algorithms for model checking and satisfiability of DEHom would also work for 
nondeterministic automata, which are in general exponentially more succinct than deterministic automata. However, the
Pspace-hardness of the considered problems (Theorem 4.2) imply that there is probably no nondeterministic automaton of 
polynomial size recognizing the models of a given DEHom formula. This is in contrast to standard LTL over finite words, 
where nondeterministic automata can be exponentially smaller than deterministic automata for the same formula. In par-
ticular, the translation of LTL formulas over finite words into equivalent deterministic automata requires in general a double 
exponential blowup (a double exponential lower bound for this translation is given in [31]).

As for the logic BDHom over finite linear orders, we can state results similar to those provided in Theorem 4.2. Let DE(ϕ)

be the DEHom formula obtained from a BDHom formula ϕ by replacing each occurrence of modality 〈B〉 with 〈E〉. For each 
non-empty finite word w over 2AP , w |= ϕ iff w R |= DE(ϕ) (w R is the reverse of w). Hence, the automaton Nϕ accepting 
the models w of ϕ corresponds to the ‘reverse’ of the DFA DDE(ϕ) of Definition 4.7 associated with DE(ϕ).

Note that the automaton Nϕ has the same states as DDE(ϕ) but it is not deterministic. On the other hand, Nϕ is 
deterministic in the backward-direction. Thus, for the DEHom formulas, the associated automata are deterministic in the 
forward-direction but non-deterministic in the backward-direction. Dually, for the BDHom formulas, the associated automata 
are deterministic in the backward-direction but non-deterministic in the forward-direction.

Corollary 4.2. Finite satisfiability and model checking for BDHom-formulas are both Pspace-complete. Moreover, for BDHom-formulas 
of fixed size, model checking is in NLogspace.

5. Concluding remarks

In this paper, we have proved that even though the addition of either 〈B〉 or 〈E〉 modality to the interval logic D increases 
the expressiveness of the resulting interval logic, surprisingly, such an addition does not affect the complexity of satisfiability 
and Model Checking problems which are proved to be Pspace-complete.

Pspace-completeness of the satisfiability and Model Checking problems for DEHom and BDHom are particularly interesting 
when compared with known results for BEHom , where the latter includes DEHom and BDHom as proper fragments and, 
apparently, is quite close to DEHom and BDHom . The complexity of Model Checking for BEHom is still unknown: the problem 
is at least Expspace-hard [15], while the only known upper bound is nonelementary [18]. Whether or not this problem can 
be solved elementarily is a difficult open question. The exact complexity of finite satisfiability for BEHom is also an open 
issue: the same upper/lower bounds can be shown to hold by linear-time reductions to/from the Model Checking problem. 
Since DEHom and BDHom are the most significant fragments of BEHom , the results proved in this paper provide a better 
insight into such open questions. Note that like the fragment DEHom , for a BEHom formula ϕ , we can give similar definitions 
for the notions of ϕ-atom, ϕ-row and functional succϕ with the difference that D-temporal requests are replaced with B-
temporal requests. However, the main difficulty in generalizing the considered approach for DEHom to BEHom is that for 
BEHom formulas ϕ , ϕ-rows have very weak monotonicity properties: in particular, B-temporal requests have no monotonic 
behavior along a ϕ-row. It is an intriguing open question whether it is possible to define a finite abstraction on the set of 
ϕ-rows for a BEHom formula ϕ such that the functional succϕ preserves such an abstraction.

Another issue left open is the extension of the considered framework in order to take into account infinite intervals too 
(or, equivalently, infinite paths in a Kripke structure). A generalization of the proposed approach to the infinite word setting 
for getting an elementary upper bound (in particular, a Pspace upper bound) does not seem trivial. In particular, note that in 
this context, the symmetry between prefixes and suffixes is broken. While prefixes are always finite, suffixes can be either 
finite or infinite depending on whether the given interval is finite or infinite.
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