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A B S T R A C T

In this paper, we present a survey on recent trends in robotics and artificial intelligence in the furniture
industry. We first introduce the state-of-the-art applications of traditional and collaborative industrial robots
in this field, with a particular focus on finishing, painting, and assembly operations. Then, the main uses of data
management and artificial intelligence are described. Finally, we present the case of the International Furniture
and Panel Technology Campus of Friuli Venezia Giulia region (Italy), and the results of a questionnaire
submitted to ten companies of the furniture sector.
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1. Introduction

In recent years, robotics and artificial intelligence have profoundly
transformed various sectors, including that of manufacturing [1]. This
is particularly evident in the era of Industry 4.0, which is marked by
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the integration of digital technologies into traditional manufacturing
processes.

The furniture industry stands as a prime example of transformation
and innovation [2], and this holds true for robotics and artificial
https://doi.org/10.1016/j.rcim.2024.102920
Received 18 July 2024; Received in revised form 21 November 2024; Accepted 25 
736-5845/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
November 2024
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/rcim
https://www.elsevier.com/locate/rcim
mailto:lorenzo.scalera@uniud.it
https://doi.org/10.1016/j.rcim.2024.102920
https://doi.org/10.1016/j.rcim.2024.102920
http://creativecommons.org/licenses/by/4.0/


A. Brunello et al.

f

b
s

i

r

i
p
t
q

t
r
c
o
i
c

s
i
(
i
a
a
t

c

p

l
c
a
l
‘
9
b
m
o

t

Robotics and Computer-Integrated Manufacturing 93 (2025) 102920 
Table 1
Previous review papers on the implementation of Industry 4.0 technologies in the
urniture industry over the last five years.
Reference Focus of the paper

[8] Awareness, readiness, and barriers to the adoption
of Industry 4.0 in the Malaysian furniture industry

[1] Technologies enablers for the implementation of Industry 4.0
to traditional manufacturing sectors, like footwear, textiles
and clothing, furniture and toys

[2] Application of Industry 4.0 to the wood sector, from forest
to finished products

[3] Application of deep learning to wood defect detection
[4] Application of machine vision technology in furniture

manufacturing process
[9] Industry 4.0 awareness, perceptions, and actions of

employees in furniture and board businesses

intelligence (AI) technologies as well. For instance, deep learning has
een extensively applied to detect defects in wood [3], and vision
ystems have been utilized for gathering information, conducting qual-

ity control, automatically detecting and sorting parts, and performing
ntelligent monitoring [4]. Another example pertains to how data col-

lected can be leveraged to minimize waste generation [5], and to
optimize production by adapting various processes to changes in sys-
tem dynamics [6]. Recent advancements in human–robot collaboration
have also enabled new cooperative scenarios that merge the capabilities
of human operators and machines, thereby enhancing both flexibility
and productivity [7]. Despite these benefits, challenges such as a lack
of skilled workers and high implementation costs remain significant
barriers to the widespread adoption of these technologies [8,9].

Table 1 summarizes previous review papers about the implemen-
tation of Industry 4.0 technologies in the furniture industry over the
last five years. However, none of the existing reviews focuses on the
application of robotics and AI in such a domain.

This paper presents a comprehensive survey of the latest trends in
obotics and AI specifically within the furniture industry. By examining

recent developments, applications, and challenges, the survey provides
nsights into the integration of these technologies, their impact on
roduction efficiency, product quality, and overall innovation within
he furniture manufacturing sector, exploring the following research
uestions:

• What are the general needs of the furniture industry that can be
addressed through Industry 4.0?

• What are the state-of-the-art technologies currently adopted in the
furniture industry?

• What operations are performed using robotic and AI technologies
in the furniture industry?

• How can robotics and AI improve the productivity and working
conditions in the furniture industry?

• What are the prospective advancements and challenges in robotics
and AI for the furniture industry?

Furthermore, we explore the case study of the International Furni-
ure and Panel Technology Campus based in the Friuli Venezia Giulia
egion (Italy) (from now on, the FVG Cluster for brevity). Through a
omprehensive questionnaire administered to ten prominent companies
perating in this institution, we analyze the current and perceived
mpact of robotics and AI on the furniture industry, focusing on the
hallenges and impacts of these technologies.

In summary, the main contributions of the paper include: (i) a
urvey on the state of the art on robotic technologies in the furniture
ndustry, including both traditional and collaborative robotic systems;
ii) an extended review of the applications of AI and data science
n the furniture industry, which focuses on both data management
nd machine learning solutions; (iii) the outcomes, and their critical
nalysis, of a questionnaire submitted to ten prominent companies of
he FVG Cluster.
2 
The paper is organized as follows: in Section 2 the state of the art
of robotics and AI in the furniture industry is presented. Then, the
ase of the FVG Cluster is analyzed in Section 3. A short discussion of

the emerging picture, which takes into account also future trends, is
rovided in Section 4. Conclusions are drawn in Section 5.

2. Survey of the state of the art

We first give an account of the methodology followed to system-
atically retrieve the body of literature on the topics of our interest.
Then, a description of the existing contributions about traditional and
collaborative robotics follows. An analysis of the contributions in the
areas of data management and AI concludes the section.

2.1. Methodology

The research on the state of the art of robotic and AI applications
in the furniture industry was performed by consulting the Scopus
database, limiting on the works published no later than December
2023. The time horizon and the keywords used for the papers collection
are different for the three considered main topics, i.e., robotics, data
management, and AI.

For what concerns robotics, an analysis of scientific articles pub-
ished in Scopus from January 2018 was performed, and the search
riteria involved the use of the following combination of words within
rticle titles, abstracts, and keywords: (‘‘robot’’ OR ‘‘robotics’’ OR ‘‘col-
aborative robotics’’ OR ‘‘cobot’’ OR ‘‘human–robot collaboration’’ OR
‘human–robot interaction’’) AND (‘‘furniture’’ OR ‘‘wood’’). A total of
75 unique papers were identified. We chose this time window since
efore 2018 there was less interest in this topic (814 papers found), and
ost of the published contributions were not aligned with the objective

f our research. Out of the total number of publications retrieved, we
subsequently narrowed down our selection to only those pertaining to
robotics applications in the furniture industry, excluding for example
the applications in the construction of wooden structures. As a result
of this filtering process, 26 articles were selected.

Concerning data management, we first retrieved a set of publica-
tions via Scopus. The following (case insensitive) query was used in
searching within English article titles and abstracts: (‘‘furniture’’ OR
‘‘wood processing’’) AND (‘‘manufacturing’’ OR ‘‘industry’’ OR ‘‘pro-
cess’’) AND (‘‘DBMS’’ OR ‘‘*SQL*’’ OR ‘‘DSS’’ OR ‘‘DMS’’ OR ‘‘informa-
tion system’’ OR ‘‘decision support system’’ OR ‘‘information system’’
OR ‘‘IoT platform’’). The research produced 96 contributions, leading
o the selection of 16 articles that aligned with our research objective:

case studies focused on the wood furniture manufacturing context.
As for AI, we retrieved the publications via Scopus as well. The

following combination of words was used in searching within En-
glish article titles, abstracts, and keywords: (‘‘artificial Intelligence’’
OR ‘‘machine learning’’ OR ‘‘learning machine’’ OR ‘‘deep learning’’
OR ‘‘AI’’ OR ‘‘neural network’’ OR ‘‘neural networks’’ OR ‘‘CNN’’ OR
‘‘RNN’’ OR ‘‘LLM’’ OR ‘‘NLP’’ OR ‘‘digital twin’’ OR ‘‘random forest’’
OR ‘‘genetic algorithm’’ OR ‘‘linear regression’’ OR ‘‘decision tree’’ OR
‘‘Bayesian model’’) AND (‘‘wood’’ OR ‘‘wooden’’ OR ‘‘chipboard’’ OR
‘‘manufacturing’’) AND ‘‘furniture’’. We found 177 contributions, that
resulted in a selection of 59 articles according to the objective of our
research: artificial intelligence and machine learning applied to the
(wood) furniture industry. Such a selection of articles has been used as
a seed in Litmaps,1 to identify other possible relevant contents, leading
to a final pool of 67 papers.

1 https://www.litmaps.com/

https://www.litmaps.com/
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Fig. 1. Examples of pick-and-place of large and heavy components for loading a wood processing center [10] (a), and for moving wooden panels from the storage to the conveyor
(b), (c), (d).
2.2. Robotics and automation

The introduction of robotic systems in industry made it possible to
replace human operators in repetitive and non-ergonomic operations,
such as moving heavy parts (Fig. 1), or in tasks dangerous to health,
as, for instance, welding or spray painting (Fig. 2) [11]. Thanks to the
use of robotic systems, human operators can focus on physically less
demanding activities and with greater added value [12]. Furthermore,
robots can reduce production time and costs [13]. Traditional industrial
robots are usually confined in a protected and delimited environment
to avoid possible dangers for the human operators. In this context, it
is not always straightforward to reconfigure their operations in case a
flexible production is needed [14].

Nowadays, recent advances in robotics and automation as well
as in safety systems allow industrial robots and human operators to
collaborate in a shared workspace, without the need for protective
barriers [15,16]. Collaborative robotics serves as a convergence point
for the expertise of human operators and robots [17]. Collaborative
robotics applications offer opportunities for precision, repeatability,
force, and productivity (which are advantages of automation), while
incorporating problem-solving skill, creative abilities, and know-how
(human capabilities) [18]. Moreover, collaborative robots are usu-
ally more flexible in terms of programming, require less effort in the
workstation design, are generally lightweight, and more transportable.
Therefore, the framework of collaborative robotics can indeed en-
hance the flexibility of manufacturing processes, and bring the human
operator in a central role in the industrial production [14].

Both traditional and collaborative industrial robotic systems find
applications in the furniture industry, where they can enhance the
3 
performances of many production processes. In recent years, attention
has been focused on the automation of assembly, finishing, painting,
and pick-and-place tasks, as well as on the improvement of ergonomics
and operator safety. Several studies have been carried out on these
topics and various solutions have been developed, both for traditional
and collaborative robotics, as it is described in Sections 2.2.1 and 2.2.2.

2.2.1. Traditional robotics
The application of traditional robotics in the furniture industry

has made it possible to replace human operators in repetitive, non-
ergonomic, force-demanding, and dangerous tasks. It enables operators
to focus on cognitive activities that better leverage their skills, such
as quality control, product development, and process optimization.
Applications of traditional robots to the furniture industry are focused
on the automation of pick and place, finishing, painting, and assembly
tasks. These operations can be performed autonomously by the robots,
without any human intervention.

Pick and place. In the furniture industry, robotic manipulators are often
used to pick and place large and heavy materials, e.g., raw panels and
semi-finished products, as well as for loading and unloading manu-
facturing machines, e.g., panel saws, edgebanders, drilling machines,
sanders, and insertion machines. Fig. 1(a) shows a robotic arm used
for loading a wood processing center, whereas in Figs. 1(b), 1(c), and
1(d) examples of manipulators moving wooden panels from the storage
to the conveyor are reported. Automating the movement of components
has the main advantage of reducing costs, time, and human effort,
increasing the productivity, and preventing operators from performing
heavy tasks.



A. Brunello et al.

t
d
a

c

o
c
a

d

w
t
p

p

a

c
t
t

t
e
t

p
(
a
c
p

t

m
t
a
t
o
r
t

t
c

i

s

d

f

a

a

Robotics and Computer-Integrated Manufacturing 93 (2025) 102920 
Finishing. In addition to load handling, surface finishing is another
application where robotic systems are often used [19]. This opera-
ion demands precise control over applied pressure to achieve the
esired surface roughness and uniformity, as well as high precision
nd maneuverability. For this application, the main challenge is to

replicate human sensitivity and adaptability, such as compensating
for positioning and production tolerances and working on complex,
hard-to-reach surfaces [20].

The requirements mentioned above for the finishing of wooden
omponents have led to the exploration of robots equipped with appro-

priate sensors, such as force and torque sensors [19,21]. As an example,
the authors in [22] present a system that enables instructing a robot
n how to polish chair legs using a haptic device for teleoperation
ontrol, based on a master–slave logic. The positions and orientations
dopted by the end-effector during the teaching phase are continuously

recorded, allowing the robot to replay the trajectory.
The data acquired from sensors can also be used to evaluate the

finishing quality. As an example, the authors in [23] use normal force
ata from a UR5e robot equipped with a force and torque sensor

and an orbital sander. The robot maintains the desired normal force
ith a force regulator and adjusts the feed rate based on force signals

o minimize execution time. Similarly, in [24] a force control with
osition compensation is applied to a Fanuc M-20IA robot equipped

with a polishing tool for the surface polishing of wood panels. The
osition of the polishing tool is continuously corrected processing data

from the force sensor in real time. This feedback reduces the initial
contact force overshoot and improves the controller stability. Together
with the force sensors, a customized robotic system for sanding wooden
boxes that applies structured light to assess the quality of sanding
nd ensure a uniform finishing is presented in [25]. The structured

light is also exploited for acquiring the box position and dimensions,
which offers high accuracy and robustness against changing lighting
onditions. From the data collected by the cameras, the CAD model of
he box is reconstructed and sent to a planner that computes optimal
rajectories for sanding the various surfaces of the furniture component.

Spray painting. Spray painting is another operation that is often per-
formed by robots in the furniture industry, especially to remove human
operators from hazardous environments, due to the risk of inhaling
oxic spray particles [26]. Moreover, precision and maneuverability are
ssential to obtain a high-quality and reliable painting result [27]. Au-
omating spray painting enables a reduction in costs, time, and human

effort, and a more uniform coating with paint waste reduction [28].
Spray automation can, indeed, reduce the gaseous pollution and en-
hance the sustainability of the entire painting process. An example
of robotic spray painting is shown in Fig. 2, where the automated
ainting of a chair (Fig. 2(a)), a nightstand (Fig. 2(b)), and a window
Fig. 2(c)) are shown. In spray painting, it is important to guarantee
 constant tangential velocity of the paint gun to obtain an even
olor distribution [29]. This requirement can be addressed through a
roper planning of the painting path and trajectory [30–32]. A recent

challenge in automating painting furniture is the identification of both
the location and type of object to be painted, especially in scenarios
involving diverse products, as in the furniture industry [33].

Recently, the development of vision systems allows to automatically
identify both the location and the type of object to be painted, like,
for instance, different parts of a chair placed on a conveyor belt [28],
enabling the customization of operations for specific components to be
painted. By pre-planning and saving the robot painting trajectories for
each distinct component, the painting system can be adapted when it
recognizes the component to be painted and its position, easily deriving
the appropriate trajectory to execute. An example can be found in [34],
where the authors present a system for estimating the pose of a chair to
be painted using an RGB-D camera. First, several images are acquired
from different positions, and then an artificial neural network (ANN) is
used to estimate the pose of the chair with respect to the robot. Vision
 t

4 
systems can also be used for on-line trajectory planning, as in [35]. In
that work, the authors develop a system for the automating painting
of panels for cabinet doors that acquires the point cloud of the panels
thanks to a linear laser sensor and automatically plans the painting
rajectory by processing the point cloud.

Assembly. Once the individual components of a furniture have been
anufactured, finished, and painted, the final step is to assemble them

ogether to obtain the final product. In the furniture industry, the
ssembly process is often a tedious operation. First of all, it is not
rivial to understand, starting from the single parts, how and in which
rder to assemble them. Furthermore, connecting the various parts
equires manipulation skills and strength to correctly hold and align
he components to be joined together.

Developing a robot that autonomously assemblies a furniture is a
complex multidisciplinary problem that requires the following opera-
tions:

1. perceive the type and the position of the parts to be assembled;
2. understand the assembly sequence;
3. plan appropriate trajectories and physically execute the assem-

bly task.

The detection of parts is mainly performed through computer vision
(CV) systems, employing one or multiple cameras. To simplify this task,
the authors in [37,38] propose the application of a specific marker to
each assembly component to assemble tables and Integrally Attached
Timber Plate Structures (IATPS), respectively. In this way, when a
camera detects a marker, the location and type of the part can be
easily derived. Nevertheless, the primary drawback of this approach
is that each marker associated with a specific component has to be
unique. Therefore, this strategy is not efficient when dealing with nu-
merous components. Another possibility is to use CV algorithms based
on feature recognition, as proposed in [39,40]. CV systems process
he images recorded by cameras for recognizing desired features like
orners, edges, lines, circles, or arbitrary shapes. To correctly identify

their position with respect to the robot, a proper camera calibration
is needed. Implementing this method is more challenging than using
markers, but it is more suitable for large numbers of parts.

The second element of an autonomous assembly system is the
ntelligence of the system. One approach to solve this problem is to

manually provide the assembly sequence to the system, as in [37,41],
and [40], where the assembly of tables and chairs is shown. Manually
pecifying assembly sequences works well for standardized produc-

tion, such as chairs, tables, and cabinets. However, for customized
production, autonomous assembly sequence derivation is preferred.
The authors in [39,42] propose to use reinforcement learning and
imitation learning algorithms for the assembly of different types of
chairs, tables, and bookshelves. The proposed algorithms need a limited
set of training cases to provide good results in automatic defining the
correct assembly sequence. An example of this process is shown in
Fig. 3(a), where two Franka Emika arms are used for the simulated
assembly of a chair. Differently, in [38,43], the assembly sequence is
efined starting from the 3D model of the furniture. In [43], the authors

aim at finding a sequence that can successfully disassemble a polygonal
urniture (for instance, cabinets and bookshelves) with a UR5 robot,

avoiding collisions among different parts and ensuring that each piece
not removed from the assembly remains in contact with at least another
one. If a suitable sequence can be found, it is then followed in reverse
to define the strategy to assemble the components. Furthermore, the
authors in [38] develop a system for assembling IATPS structures with
n ABB IRB 6400R robot. In IATPS structures the joints needed for

coupling components are comprised into parts shape. Consequently, the
ssembly sequence is closely related to the geometry of the joints.

The last requirement of an autonomous assembly system is the tra-
jectory planning and the physical execution of the assembly. Knowing
he assembly sequence, appropriate trajectories have to be planned so



A. Brunello et al. Robotics and Computer-Integrated Manufacturing 93 (2025) 102920 
Fig. 2. Automated painting of a chair (a), a nightstand (b), and a window (c) [36].
Fig. 3. Simulation of a chair assembly process (a) [42], example of path planning for piece insertion (b) [38].
as to avoid collisions with the parts already assembled and correctly
manipulate the remaining ones. The authors in [37,40] propose to plan
trajectories relying on a task template (such as connecting, screwing,
and grasping), which offers the advantage of modularity, allowing for
reprogrammability and reusability of the system for different types of
furniture, like chairs, tables, cabinets, and nightstands. The authors
in [38,43] plan trajectories starting from the 3D model of the assem-
bly, through the same procedure by which they derived the assembly
sequence (Fig. 3(b)). Differently, a hierarchical reinforcement learning
algorithm is adopted in [41] to plan trajectories for a Sawyer robot,
which can be adapted to different furniture types, such as chairs, tables,
and shelves. Furthermore, the authors in [44] develop a system for
task allocation and motion scheduling for dual-arm robots to avoid
collisions and interference between the arms. Their experimental con-
figuration involves two KUKA LBR iiwa robots situated on a table with
extensively overlapping workspaces, utilized for gluing and inserting
bolts into a panel constituting part of a shelf.

Concerning the physical execution of the task, robotic arms with
six or seven degrees of freedom (DOFs) are mainly used, since they
provide better dexterity and manipulation capabilities with respect
to other types of robot (e.g., Cartesian or SCARA). In this context,
the most used manipulators are the Franka Emika manipulator with
seven DOFs [39,40,42], the UR5, UR5e, and UR10e robots by Universal
Robots with six DOFs [43], the KUKA robots with six DOFs like the
KUKA LBR iiwa robot [44], the ABB robots with six DOFs like the
5 
ABB IRB 6400R robot [38], the Sawyer robot and the Baxter robot by
Rethink Robotics with seven DOFs [39,41]. Custom manipulators are
also employed, as in [37], where a custom robotic arm with six DOFs
is used. Good dexterity and manipulation capabilities are important
features in the furniture assembly, where pieces and structures can be
challenging to be manipulated and a high level of dexterity is required
for completing the assembly task. Moreover, multiple robots can also
be adopted in order to increase manipulation capabilities [40,42].

In the furniture industry, and more in detail in the assembly of
furniture products, vacuum grippers equipped with suction cups are
often used as end-effector in robotic systems to grasp planar and large
components, like wooden panels and chipboard [38,43]. An example
of vacuum grippers is reported in Fig. 4. Instead, fingered grippers are
suitable for small and arbitrary-shaped parts like chair legs [37,41].
Additionally, drill modules can be introduced in the system to perform
screwing tasks [40]. Fig. 5(a) illustrates an example of an entire assem-
bly framework, composed of three Franka Emika robots for handling
the components during the assembly process, two drill modules, a RGB-
D camera for perceiving pieces position, some connector holders, and
worktables. Fig. 5(b) shows the details of the equipment used for the
robot end-effector and drill modules.

Table 2 reports an overview of the applications of traditional
robotics in the furniture industry. Regarding painting applications, the
attention is mainly focused on automatic pose estimation, geometry
acquisition, and painting trajectory planning, whereas for finishing op-
erations the robotic arms are equipped with sensors, e.g., force sensors,
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Fig. 4. Automated assembly of the structure (a), and particular of the vacuum gripper (b) [38].
Fig. 5. Assembly framework (a), robot end-effectors and drill modules (b) [40].
in order to obtain a good surface finishing quality. The assembly of
the furniture is mainly performed with robotic arms with six or seven
DOFs to ensure good manipulation capabilities. Moreover, solutions for
piece position detection, assembly sequence planning, and trajectory
planning have also been developed.

2.2.2. Collaborative robotics and ergonomics
In the context of Industry 4.0, where product customization and

process adaptability are pivotal, human–robot teams are emerging as a
solution to these demands, leveraging the complementary capabilities
of humans and robots [45]. Safety in such collaborations is paramount,
with various safety measures aligned with the ISO/TS 15066 [46] being
implemented to address this concern [47]. In the furniture industry,
human–robot collaboration is mainly applied to assembly worksta-
tions [14], where the risk of musculoskeletal problems for operators
performing manual tasks has to be minimized [48].
6 
Collaborative assembly. In order to perform a human–robot collab-
orative assembly of a furniture product, human and robot share a
workspace with the aim of completing a common task. To avoid po-
tential unwanted collisions with the human operator, the robot has to
perceive the location and actions of the human operator monitoring its
workspace by using cameras [16,49] or tracking the position of oper-
ators by means of wearable sensors [50]. Moreover, as for traditional
robotics, in such frameworks the position and the type of the pieces to
be grasped have to be recognized so as to correctly execute the desired
task [51,52].

In collaborative robotics, endowing robots with decision-making
abilities is crucial. This capability enhances flexibility, enabling robots
to adjust to changes in tasks, such as assembling different chair types.
For reliable decision-making, robots require awareness of events in
their surroundings, allowed by tracking systems. Additionally, robots
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Table 2
Overview on traditional robotics applications in the furniture industry.

Reference Application Methodology Robot

[34] Painting chairs ∙ Computer vision for detecting objects
∙ Object pose estimation

–

[35] Painting panels
for doors

∙ Geometry acquisition through laser
sensors

∙ Painting path planning

–

[28] Painting
furniture
parts

∙ Computer vision for detecting parts
∙ Painting trajectory planning

–

[22] Finishing
chair legs

∙ Teaching through teleoperation
∙ Applied force control

FANUC
M-20iA/35M

[25] Finishing
wooden
boxes

∙ Computer vision for detecting objects
∙ Trajectory planning
∙ Force control

Custom robot
with 4 DOFs

[23] Finishing
panels

∙ Applied force control
∙ Feed rate control
∙ End-effector vibration measures

UR5e

[24] Finishing
furniture
parts

∙ Applied force control
∙ Position compensation

FANUC
M-20iA/35M

[37] Assembly
tables

∙ Computer vision and markers for
detecting pieces

∙ Skill-based programming

Custom robot
with 6 DOFs

[43] Assembly
cabinets,
bookshelves,
and similar

∙ Simulation
∙ Assembly sequence planning
∙ Assembly path planning

UR5

[44] Assembly
furniture
in general

∙ Task allocation
∙ Task scheduling
∙ Learning by demonstration

KUKA LBR iiwa

[38] Assembly
IATPS
structures

∙ Computer vision and markers for
detecting pieces

∙ Assembly path planning

ABB IRB 6400R

[42] Assembly
chairs

∙ Simulation
∙ Assembly sequence planning
∙ Assembly path planning

Franka Emika

[39] Assembly
furniture
in general

∙ Simulation
∙ Data acquisition from sensors
∙ Assembly path planning

Franka Emika,
Sawyer, Baxter

[41] Assembly
chairs

∙ Simulation
∙ Assembly trajectory planning

Sawyer

[40] Assembly
chairs

∙ Computer vision for detecting parts
∙ Task template and compiler
∙ Assembly path planning

Franka Emika
a
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o
S

a

t
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p
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have to ensure operator assistance without compromising safety. The
roper action to perform can be chosen either autonomously or fol-

lowing a request from the operator. Methods for instructing the robot
and requesting it to perform a specific action include manual guidance,
teleoperation, as well as gesture and vocal commands.

In [49], a system that uses a hybrid conditional planning based
on answer set programming is introduced for assembling a table in
collaboration with a Baxter robot. The proposed framework allows
determining the actions to perform to reach a goal state from a given
initial state, in the presence of incomplete knowledge about the envi-
ronment and human actions, behavior, and intentions. In the developed
system, the robot can communicate with the operator, by making
requests or offering help. The communication task is accomplished
using Google Translate text-to-speech API, whereas Google Speech API
is used to recognize the responses of the human. An example of this
application is reported in Fig. 6, where a human operator assembling
a table in collaboration with a Baxter robot is shown. The authors
in [50] present a human–robot collaboration framework that allows
a decomposition of procedures into their constituent elements and
he logical relationships between them, deciding what to do based on
uman actions. Differently, in [53], a system based on an artificial
eural network is introduced to cooperate with a robot by guiding
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it through gestures. A camera tracks the skeleton of the hand and a
supervisory controller associates a specific gesture to its correspondent
ction, such as pick up or assembly furniture parts.

Another method for teaching the robot is manual guidance. In this
strategy, the robot holds the load, whereas the operator leverages his
cognitive abilities to guide the robot during assembly, as presented
in [51]. In that work, a KUKA robot, equipped with a humanoid hand
s end-effector, is controlled using impedance control to ensure a safe
ollaboration between human and its robotic counterpart, allowing the
perator to adjust the position of the robot hand as needed (Fig. 7).
imilarly, the authors in [52] instruct the robot through a framework

consisting of two collaborative robotic cells, a ‘‘teaching cell’’ and
n ‘‘execution cell’’ (Fig. 8(a)). The first cell is tailored to human–

robot collaboration, employing learning-by-demonstration techniques
o instruct the robot in executing articulated movements (Fig. 8(b)).
he second cell derives the sequence of operations from information
cquired from the first cell and executes the tasks. Their system com-
rises three UR10e robots equipped with an end-effector designed for
erforming screwing operations and assembling timber structures. A
ifferent example is provided in [54], where a humanoid robot is

guided by the operator through a haptic device to perform the assembly
task of chairs (Fig. 9). In this way, operations that require strength and
precision can be easily executed.
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Fig. 6. Human–robot collaboration for the assembly of a table with a Baxter robot [49].

Ergonomics. In the furniture industry, the movements of the operators
are often repetitive and uncomfortable. Therefore, ergonomics can help
in reducing the risk of injuries and musculoskeletal disorders for op-
erators in performing manual tasks, while also improving workstation
efficiency and productivity. The literature provides examples of the
application of safety and ergonomics concepts to collaborative robotics
in the furniture industry [12,55]. For instance, an approach where the
physical behavior of a KUKA robot, equipped with a Pisa/IIT Softhand
as end-effector, is adapted in real time to the human fatigue for sawing
and polishing wooden components is presented in [56]. The human
fatigue is estimated using sensors which measure the human muscle
activity (electromyography). In that system, the robot employs a hybrid
force and impedance controller, and initially follows and imitates the
human. The robot learns the task gradually executing it collaboratively
with the operator. When a predefined fatigue level is reached, the robot
uses the learned skills to perform the task by itself.

Different examples of ergonomics application can be found in [57–
59]. In those works, the authors analyze the working conditions of oper-
ators in an assembly workstation for the production of medium-density
fiberboard (MDF) frames for shelves and tabletops, and improve them
with the introduction of collaborative robots. Criteria for assessing the
risks and problems of assembly stations are proposed as well. The
main criterion is the analysis of musculoskeletal risks associated with
the manual assembly process (Fig. 10). First, these risks are evaluated
through indexes like the Rapid Upper Limb Assessment (RULA) and the
Strain Index (SI), obtained equipping operators with wearable sensors.
The RULA and SI indexes assess the postures assumed by operators
during the tasks and associate a level of musculoskeletal problems
risks with each movement. Questionnaires among workers on their
perceptions of comfort and working conditions are also conducted.

Similarly to [57–59], the authors in [60] propose a method to
design human–robot collaborative systems that combine ergonomics
with productivity requirements. This approach takes as input the er-
gonomic and production constraints and tests different combinations
of robot, end-effector, sensors, and task allocation between human
and robot. The ergonomic risks are evaluated according to standard
assessment indexes, such as RULA and Occupational Repetitive Actions
Index (OCRA), whereas the productivity is assessed in terms of cycle
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time and quality performance. The method has been tested in a collab-
orative robotic workstation for assembling drawers with the support
of a UR10e robot, demonstrating that it can greatly reduce ergonomic
risks for the operator while meeting production constraints.

In [48], a robotic system that adapts in real time to support an
operator in a quality control workstation is developed. The proposed
framework, based on an UR10e robot, integrates a vision system that
maps the workspace and recognizes the operator position and posture,
the product and the task to be carried out. Relying on a database built
in a previous training phase and based on the RULA index, the robot
controls the end-effector pose to minimize the operator ergonomic risk
(Fig. 11). Moreover, the operator hand skeleton is tracked to guide the
robot motion through gestures.

In Table 3, an overview on collaborative robotics applications is
provided. The table shows that collaborative robotics primarily assists
human operators in assembly tasks. These robots, equipped with vision
systems and decision-making capabilities, can be manually guided and
improve ergonomic conditions for human operators.

2.3. Data science and artificial intelligence

In the following, we explore the applications of data science and AI
to the furniture industry, highlighting how it is transforming traditional
practices and contributing to advancements in efficiency, sustainability,
and customization. Data science is a relatively new field that emerged
in the past few decades, fueled by a significant increase in data avail-
ability and advances in computational power. It is an interdisciplinary
area that makes use of a variety of scientific approaches, methods,
processes, and algorithms to extract knowledge and insights from struc-
tured/highly organized data, e.g., relational tables, semi-structured
data, e.g., XML documents and machinery logs, and unstructured data,
that is, data lacking a predefined organization, like, for instance, free
texts [61]. In the last years, data science has proven to be crucial across
various industry sectors, contributing to the emergence of Industry
4.0 [62]. In the furniture manufacturing, the applications of data
science can deeply transform decision-making processes, streamline
supply chain operations, and enhance manufacturing practices [63].

Although data science often uses sophisticated machine learning
(ML) algorithms to analyze data, the foundation of its success lies in
accurate data modeling, that is, accurate data cleaning, integration, and
representation (e.g., [64]) are essential to solve downstream analytical
tasks effectively. In view of that, Section 2.3.1 explores data manage-
ment systems in the furniture industry, highlighting their critical role
in the development of an enterprise-wide information system. Then,
Section 2.3.2 focuses on AI applications that feed on the previously
modeled data. The overall aim is to illustrate the transformative po-
tential of AI when backed by accurately modeled data, demonstrating
its capacity to drive innovation and efficiency in industry.

2.3.1. Data management
Technologies for data management, including databases (relational,

NoSQL, and NewSQL databases [65]), data warehousing [66], deci-
sion support systems, decision management systems, and information
systems [67], are becoming more and more crucial in enhancing oper-
ational efficiency, decision-making processes, and strategic planning in
the furniture industry. In the following, we present the most important
contributions in the area grouped by the adopted technology, starting
from the most fundamental one (databases).

Databases. The foundation of any data analysis task lies in effective
data storage and management. On the one hand, traditional relational
databases offer robust transactional integrity and structured query
capabilities, making them ideal for tasks such as managing orders and
inventory. On the other hand, NoSQL databases offer scalability and
flexibility necessary for handling unstructured data such as customer
preferences and interactions. NewSQL databases attempt to merge the
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Fig. 7. The robot learns the assembly process through manual guidance [51].
Fig. 8. Teaching cell and execution cell (a), and operator during the robot teaching phase (b) [52].
strengths of both, providing high performance for real-time analytics
and operational intelligence. The European furniture industry faces
significant challenges, notably a lack of flexibility and efficiency, which
hinders its response to rapidly changing market demands, especially
in specialized batch production. This issue is particularly relevant for
small and medium-sized enterprises (SMEs), which often suffer from
poor information flows across their operations. To address this problem,
the author in [68] proposes an integrated furniture manufacturing sys-
tem that employs advanced computer-integrated manufacturing (CIM)
concepts, previously underutilized in this sector due to the unique
properties of wood and furniture design requirements. At the core of the
system lays a distributed, multi-user, object-oriented database, which
acts as the central platform for integrating various CIM tools. Similarly,
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the benefits of database technologies for SMEs in the wood sector are
discussed in [69]. By implementing a Relational Database Management
System (RDBMS), enterprises can access detailed company information
at various levels, supporting strategic planning and standardization
of practices, and the development of e-marketing and e-commerce
applications.

Data warehousing. An effective data warehousing strategy is crucial for
aggregating and analyzing data from various sources, such as, for in-
stance, independent databases, to enhance decision-making processes.
By providing a unified view of data, data warehouses allow companies
to make informed strategic decisions. In this context, the authors
in [70] discuss a methodology for combining SQL and NoSQL databases
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Table 3
Overview on collaborative robotics applications in the furniture industry.

Reference Application Methodology Robot

[49] Assembly
tables

∙ Computer vision for parts and
human recognition

∙ Markers for simplify pieces detection
∙ Answer set programming for making
decisions
∙ Communication with the operator

Baxter

[50] Assembly
tables

∙ Computer vision for parts and
human recognition

∙ Decision-making capabilities

Baxter

[51] Assembly
urban
furniture

∙ Computer vision for parts and
human recognition

∙ Assembly trajectory planning
∙ Impedance control for manually

guiding the robot

KUKA

[52] Assembly
timber
structures

∙ Computer vision for parts and
human recognition

∙ Learning from demonstration

UR10e

[53] Assembly
drawers

∙ Computer vision for parts and
human recognition

∙ Robot guidance through
gesture commands

Kinova Gen3

[54] Assembly
chairs

∙ Learning from demonstration Humanoid robot

[56] Human
fatigue
reduction

∙ Human fatigue monitoring
∙ Hybrid force and impedance control to

allow manual guidance
∙ Learning from demonstration

KUKA lightweight
robot

[57] Improving
assembly
ergonomics

∙ Ergonomic conditions analysis
∙ Evaluation of possible application of

collaborative robotics

UR10e

[58] Improving
assembly
ergonomics

∙ Ergonomic conditions analysis
∙ Process redesign to allow human–robot

collaboration

UR10e

[59] Improving
assembly
ergonomics

∙ Ergonomic conditions analysis
∙ Tasks scheduling and allocation
between

human and robot

UR10e

[60] Improving
assembly
ergonomics

∙ Ergonomic conditions analysis
∙ Tasks allocation between human and
robot
∙ Layout optimization

UR10e

[48] Improving
quality
control
ergonomics

∙ Ergonomic conditions analysis
∙ Computer vision for parts and

human recognition
∙ Robot guidance through gesture
commands
∙ Quality control

UR10e
Fig. 9. An operator guides the robot to perform the assembly of a chair [54].
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to streamline the operations of two online furniture e-commerce plat-
forms. The integration merges product data from both systems into a
new, unified one, addressing the challenges of working with heteroge-
neous database systems in a web environment. The specific solution
employs web services for data retrieval from each database and a
synchronization system to manage data storage in the new system.

Decision support and management systems. The application of decision
support systems (DSSs) and decision management systems (DMSs) in
the furniture industry is increasingly important in order to optimize
production processes and to enhance strategic planning. These systems
are often centered around a properly designed enterprise-wide data
warehouse. Exploring various applications of these systems, a DSS is
proposed in [71], which considers wood quality feasibility parameters
across five criteria: physical properties, mechanical properties, wood
grade, age, and substance content. The alternatives that have been
evaluated include teak, trembesi, mahogany, and acacia wood. By
exploiting these parameters, the software system conducts a thorough
analysis, the outcome of which is a decision on the best wood to be
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Fig. 10. Manual assembly and skeleton tracking for evaluating the ergonomic conditions of workers [59].
Fig. 11. Ergonomic risk evaluation for a tested configuration [48].

used as material for handicraft furniture. Once the needed kinds of
wood have been identified, a proper inventory management of them
is paramount. In this context, the authors in [72] present the case of
a company that produces wood office furniture. The authors discuss
how errors in decision making in particle board supplies can affect the
production cycle and, in turn, have an impact on increasing waste and
cost, and decreasing profit. Then, they show how to reduce such errors
by using DSSs to assist the decision-making process in the particle board
inventory process in the warehouse of raw materials, helping logistics
managers in determining the right scenario in order to achieve optimal
results.

Seeking for the optimal relationship between the inventory and
the output of the production process, the work in [73] describes the
development and application, within a furniture company, of a DSS
to enhance production profits through the mapping of timber types
and product counts. The DSS uses the Analytical Hierarchy Process
(AHP) method to systematically compare and prioritize various criteria
and alternatives, e.g., quality and kind of the wood to utilize, and
number of products to make, aiming at optimizing inputs for maximal
output and profit. The system comes with an interface that manages
data entry, criteria calculation, and report generation, significantly en-
hancing operational efficiency and data-driven decision making. When
optimizing a production process, it is important to consider not just
the economic factors, but also sustainability and ethical matters. In
this perspective, the work in [74] presents a prototype of a DSS,
called EvaSus, specifically designed for the Indonesian furniture in-
dustry. From a technical standpoint, the work is characterized by
the integration of a sustainability model for production that assesses
current performance in terms of the Triple Bottom Line (economic,
environmental, and social). From a practical point of view, EvaSus
provides managers with a user interface that allows them to input and
analyze various performance parameters. This facilitates the periodic
evaluation of performance and helps decision makers to identify factors
contributing to the increase or decrease in performance. Additionally,
the system provides a sustainability index for production, offering a
comprehensive overview of the company’s sustainability.
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When fully optimizing production processes, proper attention
should be given also to the maintenance of machinery. Under this
respect, the authors in [75] design and implement a decision support
system that uses a Digital Twin (DT) architecture to schedule predictive
maintenance activities in a manufacturing context. The DSS receives a
predetermined production schedule as input and it works to minimize
productivity losses caused by pre-planned maintenance interventions.
The DT is used to provide maintenance managers with an updated
schedule that optimizes machine downtime (Fig. 12(a)). The DT con-
sists of a physical workshop connected to the digital world, a data
storage platform to record all generated data, a digital model of the
workshop relevant assets, and a service layer that provides analytical
support (Fig. 12(b)). The system is applied to a case study of a furniture
manufacturing company based in the state of Santa Catarina, Brazil.

Finally, it is important to underline that for any DSS to be functional
to the objectives of a company, it must be accepted and supported
by its users. To this end, the application of the ISO 9126 standard to
improve the evaluation of DSS in the manufacturing industry, with a
particular focus on the furniture sector is explored in [76]. The research
addresses critical user concerns about DSS, such as the speed of infor-
mation reporting, the order reception, and the accuracy of raw material
usage calculations, which are vital to enhance production decision-
making processes. The study employs a comprehensive methodology,
including interviews, observations, and questionnaires, to gather data
on user satisfaction with DSS. Key findings reveal positive evaluations
of DSS across several ISO 9126 features, such as suitability, accuracy,
interoperability, security, maturity, fault tolerance, recoverability, and
reliability compliance. This means that DSS, when evaluated and re-
fined on the basis of ISO 9126 standards, can significantly address
user concerns and improve conventional business processes within the
furniture manufacturing industry.

Information systems. An information system (IS) is an integrated set
of elements to collect, store, process, and communicate information.
It is a general infrastructure that encompasses one or more of the
previously-discussed components. The adoption of information systems
within the wood processing sector, including furniture manufacturing,
is investigated in [77] with a focus on the Croatian case. Specifically,
the study aims at assessing the level of information technology inte-
gration in business operations and its contribution to the enhancement
of business performance in this industry. Through a survey methodol-
ogy, the research predominantly collected responses from SMEs. The
findings indicate an average deployment of IS modalities among the
surveyed companies. Despite not detecting a statistically significant
relationship between the financial benefits of IS implementation and
company performance, the research notes subjective improvements in
non-financial indicators, such as, for instance, significant benefits of IS
in improving inventory and sales efficiency. Overall, the study suggests
that the application of IS, especially when tailored to specific company
needs, can address user concerns and enhance business processes within
the manufacturing industry.

Often, the adopted information systems deal with the whole produc-
tion process. This is the case of [78], which discusses the development
of a web-based IS designed to help furniture companies to monitor
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Fig. 12. An example of the use of a Digital Twin in the context of the timber industry [75].©2024, with permission from Elsevier.
Source: Reprinted from [75].
and oversee their production processes, from raw material selection to
the final quality control. This is essential for maintaining high-quality
furniture production that meets both domestic and international stan-
dards, while adhering to the intended production schedules. Another
notable example is portrayed in [79], which introduces a versatile
platform designed as an accessible, easy-to-use support tool for SMEs to
conduct what-if analyses aimed at enhancing their products design, and
that of the related production processes. The platform has a modular,
multi-layer architecture, including a Decision-Making Layer, a Data
Exchange Layer, and a User Management Layer, each one consisting
of specific modules. Tools to facilitate production simulations, finite
element analysis, and material utilization optimization are incorporated
as well. The modular design of the platform allows one to integrate
additional functionalities, such as quality control and supply chain
management, potentially broadening its utility and effectiveness. The
validity of the system is empirically demonstrated by a case study
involving a company in the furniture industry, which highlighted the
platform ability to optimize the design and production of a new book-
case, leading to increased operational efficiency, cost reductions, and
enhanced profitability.

Other, more dedicated information systems are used to support
client customization. Among them, we would like to mention the work
in [80], which focuses on the development of data collection and
management systems for mass customization in the furniture industry.
Furniture manufacturing needs to adapt digital processes to effectively
collect and process customer demands and to respond rapidly to market
needs. The resulting IS must be able to support design, production,
inventory control, quality control, and customer relationship manage-
ment. The role of MES (Manufacturing Execution Systems) as a useful
source of data is also highlighted. In [81], the integration of Enter-
prise Resources Planning (ERP) with a Computer Numerical Control
(CNC) machining center at a kitchen furniture manufacturing company
is presented. The integration aims at improving production process
flexibility and efficiency, and product customization. More precisely,
the integration of the ERP system and the CNC machinery enables the
automatic generation of the necessary components and their machining
programs on the basis of the orders of customers. The work in [81]
also takes into consideration the modules to be manufactured and the
corresponding options for model, color, material, handle, and so on.

Identifying and fulfilling customer demands is crucial to enhance
the efficiency of the production process. A closely related issue is the
cutting stock problem (CSP) in the wood industry, which is addressed
by the IS described in [82]. This system generates efficient cutting plans
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that minimize waste and utilize leftovers. It is tailored to SMEs, which
typically lack access to such technology. However, producing a certain
amount of waste is unavoidable. Aware of this, the authors in [83]
develop an Internet-based Geographic Information System (GIS) to
connect waste/wood scrap producers from the furniture industry with
potential buyers, enabling optimal recycling, and making the collection
and transportation of said scraps more sustainable and efficient. Waste
producers input information about the quantity and price of their
waste, while those involved in the collection/purchase of processing
scraps can enter information about their location. The system then
displays optimal solutions based on the minimization of delivery costs
and other criteria.

2.3.2. Artificial intelligence
Artificial intelligence (AI) and machine learning (ML) technologies

are becoming ubiquitous and pervasive in any aspect of our life. Furni-
ture industry is not an exception, with applications already beginning
to be deployed in real facilities (Fig. 13), ranging from classical topics,
like defect detection, wood classifications, and optimization of the
production process, to more recent ones, enabled by new learning
paradigms, like design support and machine monitoring to aid predic-
tive maintenance. In the following, a review of the scientific literature
on the application of AI and ML methods and techniques in these areas
is reported.

Production process optimization. One of the first AI applications for the
optimization of the production process of furniture companies is the
work in [84]. Furthermore, by exploiting Genetic Algorithms (GAs), the
authors in [85] develop a hybrid algorithm that optimizes the sequence
of lumber drying operations and inventory allocation to minimize costs
while ensuring production deadlines are met and reducing the costly
outsourcing.

Several studies focus on optimizing job sequencing and scheduling.
In [86], lead-time reduction and makespan minimization for cut and
sew operations in upholstered furniture manufacturing are investigated.
That research work employs a GA with a heuristic for multiple setups
per group, leading to significant improvements in schedule makespan.
Similarly, the works in [87,88] propose a hybrid approach combining
GAs and a Feedforward Neural Network (FNN) or Multilayer Perceptron
(MLP) [89,90], to effectively generate near-optimal schedules while
accounting for the unique characteristics of custom furniture produc-
tion. Further advancements in scheduling optimization are reported
in [91], which explores integrated production–distribution scheduling
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Fig. 13. Example of robotic system coupled with a vision device and AI capabilities
for defects identification on wood planks.

in a parallel machine environment, aiming at minimizing tardiness
and delivery costs. In that work, the authors propose a mixed-integer
linear programming model and develop improved GAs, showcasing
optimal solutions for a real-world case study. A lean hybrid furniture
production control system based on MLPs and simulation modeling
to optimize production planning and resource utilization under vari-
able demand conditions is presented in [92]. The research in [93]
extends the resource-constrained project scheduling problem by incor-
porating an operator assignment, based on human factors, wage, and
power consumption, to minimize total cost and carbon footprints. The
study proposes two GA-based memetic algorithms [94], demonstrating
their superior performance compared to well-established algorithms as
NSGA-II [95] and NSGA-III [96], in terms of both solution quality and
computational efficiency.

Optimizing material utilization is crucial as well. The authors in
[97] investigate the application of a Genetic Annealing Algorithm [98]
for the cutting stock problem in fiberboard furniture manufacturing,
focusing on efficient resource utilization and material savings by op-
timizing cutting patterns and minimizing waste. The work in [99]
further tackles the solid wood board cutting stock problem, aiming at
maximizing the utilization rate of original boards. In particular, an Ant
Colony-Immune GA [100,101] is designed to combine the strengths of
both algorithms to achieve higher precision and global search ability:
the solutions computed by the ant colony algorithm are used as the
initial population of the immune GA, which is then used to find the
optimal solution.

An accurate processing time estimation is essential for efficient pro-
duction planning and cost control. The works in [102,103] explore the
use of variable structure Takagi–Sugeno–Kang (TSK) fuzzy rules [104],
learned through genetic programming, to estimate the processing time.
The resulting system, when tested on five different machines of a
furniture industry, shows high accuracy and gives valuable insights
into the dependencies between processing time and input variables,
facilitating better production planning and decision making.

To reduce processing time, the work in [105] focuses on the op-
timization of the feed rate at CNC (Computer Numerical Control)
routing operations for wooden furniture parts, developing a multistage
optimization procedure that exploits binary search and GAs.

As for sales and cost forecasting, the authors in [106] propose an
MLP-based model using Bayesian regularization, whereas the perfor-
mance of ARIMAX [107], MLP, and ARIMAX-ANN hybridization for
sales forecasting, showcasing the effectiveness of these methods in
predicting future demand are compared in [108]. Furthermore, the
authors in [109], focusing on milling, develop a mathematical method,
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incorporating an MLP, to maximize productivity and reduce costs,
taking into account parameters like cutting velocity, feed rate, and
total volume of removed material to predict surface roughness, process
duration, and process cost. In [110], the importance of performing
an accurate cost estimation in the early stages of a custom furniture
manufacturing project is emphasized. That work points out how this
estimation involves factors like materials, labor, sales, overhead, and
more, and proposes an ML-based approach, that makes use of historical
data from previously-manufactured products to estimate the costs of
new ones. The outcomes, based on real data coming from custom furni-
ture production, shows that ML (specifically, random forests [111]) can
simplify and speed up the process of cost estimation, providing accurate
and reliable estimates, albeit requiring an adequate set of historical
data to allow the model to identify essential data characteristics. Close
in spirit is the work in [112], that focuses on forecasting market
demand trends in the context of a French furniture company. To this
end, the authors develop an MLP based on historical data, appropriately
configured to reduce the problems derived from seasonality, i.e., the
presence of variations occurring at specific regular intervals in a time
series, and the relative scarcity of available data.

Last but not least, looking to the future of furniture manufactur-
ing, the work in [113] proposes a human-centric digital twin frame-
work for Industry 5.0 [114]. This framework goes beyond the tradi-
tional digital twin by integrating workers and their digital replicas, en-
abling the monitoring, simulation, and optimization of human-machine
interactions.

Defect detection. Early researches in defect detection, such as [115,
116], showcase the potential of automatic systems in identifying defects
in hardwood lumber. The pivotal observation is that, depending on
the manufacturer, the product, and the required quality of the latter,
the nature of what constitutes a removable defect can and does vary.
These studies focus their attention on such an inherent variability,
proposing systems that may adapt themselves to different requirements
and species. The authors in [117] investigate the use of Support Vector
Machines (SVM) [118] and feature extractions from wavelet transfor-
mation for defect detection in various materials, including furniture.
The analysis of color-based texture also emerged as a promising tech-
nique for defect detection. Relying on an approach that combines GAs
and neural networks, a scanning system is outlined in [119] to analyze
and classify the texture and color of wooden tiles and identify defects,
like knots, heart wood, cracks, holes, and grades.

With the evolution of deep learning, researchers started to leverage
more the power of Convolutional Neural Networks (CNNs) [120]. The
authors in [121] use a faster, region-based CNN [122] to identify
defects on wood veneer (a thin layer of 0.5–3 mm, usually hardwood
sheet, intended for coating various surfaces of furniture, doors, or inte-
rior element), also incorporating pre-training and data augmentation
techniques (flip, rotation transformation, and resize transformation).
The specific goal was that of improving the speed of the defect iden-
tification task as the automatic visual inspection system had to run
on an actual conveyor belt and was programmed on a wood veneer
sorting conveyor line. The authors in [123] develop a new approach
to defect detection using an Extreme Learning Machine (ELM) [124]
and a pre-processing of wood images based on the nonsubsampled
shearlet transform [125] (see Fig. 14). The ultimate goal is to reduce
the inaccurate localization of defects and the lack of information about
their contours, while limiting the computational cost required for image
processing. A GA is also exploited to optimize the initial parameters of
the ELM and to stabilize the classification performance of the model,
enabling fast (187 ms/image) and accurate (96,72%) defect detection.

The application of ML to defect detection extends beyond wood
surfaces to encompass other aspects of furniture production. The work
in [126] deals with the segmentation of drilled holes in furniture panels
using a modified U-Net deep learning architecture [127]. This approach
successfully distinguishes holes from the surrounding texture and other
features, as shown in Fig. 15.



A. Brunello et al. Robotics and Computer-Integrated Manufacturing 93 (2025) 102920 
Fig. 14. An example of the use of machine vision to detect and classify wood defects [123].
Fig. 15. An example of segmentation from [126] that makes use of a modified U-Net model.
Other contributions, including [128,129], and [130], explore vari-
ous CNN architectures and data augmentation techniques to improve
the accuracy and robustness of wood defect detection. The work
in [129] exploits convolutional and generative neural networks: the
former (a modified Mask region-based CNN [131]) is used for the
identification, localization, and segmentation of defects (nodes, worms
and cracks); the latter (Cycle GAN [132]), together with data augmen-
tation techniques, is used to generate new versions of images, with
applied defects observed in others. The idea is to transfer defects to
new images of panels/boards with a different type of wood (Fig. 16),
so that a larger set of (synthetic) instances becomes available, providing
greater variability than the cases observed in nature. The expected
outcome of such an operation is an increase in performance and
robustness of the process of defect recognition at runtime. Compared
to the work in [123] (see Fig. 14), such a solution identifies not
only the position, but also the exact contour (segmentation) of the
defects, as shown in Fig. 17. The authors in [130] focus on edge-glued
wooden defect detection. These defects, including residues (visible glue
marks), bluntness (the tape is trim or has scrap on the edge), and
incorrect lengths (tape shorter/longer than the length of the panel)
and heights (tape lower/higher than the surface of the panel), are
difficult to identify, especially for human operators or conventional
cameras. To overcome these limitations, a system pairing computer
vision and deep learning, called WDD-DL, is also proposed. WDD-DLv
makes use of various techniques, classical, pre-processing, and a CNN
(Inception-ResNet-V2 [133]), that allow it to simultaneously analyze
an image through a camera and one through a laser (see Fig. 18(a) for
the entire pipeline), enabling immediate detection and correction of
defects during the manufacturing process thanks to its real-time usage
capabilities (Fig. 18(b)). The system shows promising results (accuracy,
sensitivity, and F1 equal to 0.97, 0.90, and 0.92, respectively), with its
main limitations being the (relatively) limited number of wood types
considered (21) and the availability of few defect images about long
and short edge bands.
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Finally, the work in [134] proposes a ResNet-50 model [135],
improved with a convolutional block attention module and a cross-
stage partial network [136,137], to identify defects on wood surfaces,
achieving high accuracy in detecting knots, cracks, and color-related
defects.

Last but not least, in [138], a method is proposed to combine CNNs
(fine tuned from a pre-trained Inception-ResNet-V2 model) and image
processing techniques to detect defects in wooden structures as well as
to quantify their characteristics, such as crack length, width, and angle,
proving the potential of ML to provide comprehensive information for
decision making (Fig. 19).

Design support. As for the use of AI to enhance and optimize various
aspects of the design process, ML has been exploited in anthropometric
data analysis to improve furniture ergonomics. Contributions like [139,
140] prove that neural networks and multiple linear regression can be
used to predict critical anthropometric dimensions for furniture design
in several settings. More precisely, the authors in [139] develop a
method to support the design of ergonomic chairs for students in school
settings. In common practice, five, not easy to measure, anthropometric
dimensions are taken into consideration. In contrast, the authors show
that by using four easily measurable anthropometric dimensions, it is
possible to estimate those five needed for the ergonomic design. In
addition, they show that neural networks generally perform better than
linear regression models. Similarly, the authors in [140] develop a
methodology to design ergonomic furniture, focusing on the case of
university students, again relying on the concept of anthropometric
measurements and exploiting a multi-layer perceptron.

The work in [141] explores the application of deep generative
models in a social manufacturing context. This approach leverages
Variational Autoencoders [142] to empower users with AI-driven tools
for furniture design. In order to enhance user involvement in the design
process, a cyber–physical system that leverages mixed reality and deep
learning (SliceGen, a novel generative neural architecture) to empower
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Fig. 16. The transfer of defects among woods of different types via Cycle GAN -like model [129].
Fig. 17. An example of the use of computer vision for identification, localization, and segmentation of defects (knots, worms and cracks) in wood [129].
users to directly engage with the design process is introduced in [143].
This system enables users to generate and manipulate 3D models of
furniture in real-time within a mixed reality environment, offering a
novel and immersive approach to furniture design. All in all, social
manufacturing platforms have the potential of democratizing the design
process, fostering greater creativity and personalization in furniture
production.

The authors in [144] apply sentiment analysis (a field of natu-
ral language processing concerned with building systems to identify
and extract opinions from text [145]) to customer-written reviews of
wooden furniture sold on a Chinese furniture e-commerce platform
(MeiLeLe Furniture). The goal is that of extracting meaningful informa-
tion about customers’ attitudes, emotional tendencies, and preferences
with respect to different aspects of wooden furniture. First, the authors
collect, clean, and manually label data about reviews; then, they use a
Bayesian algorithm to build a text classifier to categorize the emotional
tendency of the reviews. The study finds that customers pay more
15 
attention than usual to quality, price, and appearance when purchasing
wood furniture.

As an addition to this rich landscape, the work in [146] emphasizes
the critical role of big data analytics in the fuzzy front end of the
innovation process. Such a study presents an intelligent product design
framework that integrates big data analytics with fuzzy association
rule mining and a genetic algorithm. The framework is designed to
bridge the gap between customer attributes and design parameters,
enhancing market performance, design performance, and sustainability
in product design, enabling continuous evolution, thanks to its flexibil-
ity, a self-improvement mechanism, and the availability of a large data
volume.

Machine monitoring. Machine learning proved itself to be a valuable
tool also for predictive maintenance, in particular concerning tool
wear monitoring, enabling timely interventions to prevent production
disruptions and quality issues. The authors in [147] utilize features, like
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Fig. 18. WDD-DL system for automated quality control in the edgebanding process [130].
statistical information, and Fourier and wavelet representations, ex-
tracted from multiple sensor signals, such as feed force, cutting torque,
noise, vibration and acoustic emission, to classify drills as ‘‘useful’’ or
‘‘useless.’’ This approach, employing SVMs and tree-based ensemble
methods, successfully identifies worn-out drills in the context of lam-
inated chipboard drilling process. The work in [148] improves such
an approach by distinguishing among three-class, namely, ‘‘useless’’,
‘‘needs assessment’’, and ‘‘useful’’, and making use of Long Short-Term
Memory (LSTM) networks [149]. Shifting to vision-based methods,
the work in [150] employs Siamese neural networks [151,152] to
classify (again, referring to the above three classes) drill wear based on
images of drilled holes, using a data collection approach simpler than
that of sensor-based methods. The proposed solution demonstrate high
accuracy, especially in not misclassifying sharp and worn-out drills.

As for other woodworking tools, the works in [153,154] focus on
monitoring tool wear during milling operations. The former makes use
of features extracted from the spindle power signals and an approach
combining Particle Swarm Optimization [155] with an MLP, while the
latter employs discrete wavelet transformation and a genetic algorithm,
again combined with an MLP. Both approaches show high accuracy
in detecting tool wear under varying milling parameters. Still in the
context of milling operations, the authors in [156] introduce a novel
approach tailored to chipboard. They evaluate several pretrained CNN
(VGG16, VGG19, and RESNET34 [135,157]) clipped on learning spec-
trogram representations of time-series data to classify tool conditions
into ‘‘Green’’, ‘‘Yellow’’, and ‘‘Red’’ states on the basis of wear levels.

Quality monitoring. Traditional quality control methods often fall short
in their ability to proactively prevent defects in various stages of furni-
ture production. The authors in [158] present a data mining approach
to manage defective products in a furniture production company. By
employing MLP and decision tree [159] models, they identify the
16 
sources/causes of defects, achieving a 90.12% correct prediction rate
with the classification and regression tree algorithm. Similarly, the
authors in [160] work at an online quality process monitoring system
assisted by MLPs. Their research, tested in the context of a high quality
lacquerer company in the furniture industry, demonstrate the effec-
tiveness of the approach in predicting quality issues and maintaining
a robust and adaptable control system.

The work in [161] presents an MLP to determine optimal CNC pro-
cessing parameters to achieve the best wood surface quality. The system
proposed in that study models the surface roughness values, determin-
ing the effects and optimal values of tool diameter, spindle speed, and
feed rate parameters for different wood species. Likewise, the works
in [162,163] investigate the optimization of drilling operating factors,
namely, drill tip angle, tooth bite, and drill type of the delamination
factor at the inlet and outlet, thrust force, and drilling torque, for wood
particleboard and MDF panels. Those research works combine MLP (for
particleboard) modeling with Response Surface Methodology (for MDF
panels) to predict such factors. The authors in [164] employ a radial ba-
sis function artificial neural network [165] and a TSK fuzzy model with
subtractive clustering to assess surface roughness in the MDF milling
process. Their research demonstrated that integrating information on
cutting kinematics and vibration data from an industrial piezoelectric
sensor improves the accuracy of surface roughness prediction, also
allowing for real-time monitoring and control of surface quality during
the milling process. Furthermore, the paper in [166] explores the
use of models such as decision trees, random forests, and Gaussian
processes [167] to predict the bending strength of impregnated wood
materials, observing that all algorithms are suitable for the task at hand.

In [168], the authors develop a method for monitoring drilling
conditions based on image analysis. The method uses pictures of the
holes made in melamine-coated particleboard, a common material in
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Fig. 19. The workflow of the approach outlined in [138] to characterize defects. © 2024 with permission from Elsevier.
Source: Reprinted from [138].
the furniture industry. Multiple classifiers, including K-Nearest Neigh-
bors [169], Random Forest, SVM, Radial Basis Function, and MLP, are
trained on a number of image-derived features, such as contour and
hole perimeter deterioration, allowing one to assess that Random Forest
performed the best, approaching 100% accuracy. In practical terms,
by using the proposed method in an industrial setting with cameras
installed to constantly monitor the condition of the edge during/after
a drilling operation, both detection of low-quality panels due to in-
accurate holes and identification of the wear condition of the drill to
perform its maintenance are enabled. Focusing on the painting process
of flat parts, the work in [170] presents a model to predict the amount
of paint to be applied to a single piece, exploiting both data from paint
machine sensors and data on the weight of parts before and after paint-
ing for training. On the basis of the outcomes of several experiments,
the authors show that a model based on Random Forest achieves the
best prediction accuracy. The system may help in reducing the time
taken to set up the machine for each new order as well as the waste
associated with defective parts produced during such an adjustment
process. The authors highlight how the lack of interoperability among
different machines is a challenge, raising difficulties related to proper
data acquisition, data aggregation and labeling, and model re-training
when changes occur in the machine or in the painting process.

Wood classification. Early explorations into automated wood classifi-
cation started with [171], which proposes a multi-resolution neural
network approach to analyze wood texture at different spatial scales
(as texture appearance changes when the scale changes), effectively
extracting features at multiple granularity levels for accurate classi-
fication. On the basis of the observation that wood classification is
time consuming and highly dependent on the operator experience and
17 
fatigue, the work in [172] proposes an embedded, low-cost system
based on an MLP exploiting the emitted spectrum of wood samples
filtered through optical filters, demonstrating promising results for
the classification of wood types. Additionally, for the same task, the
work in [173] investigates the use of features extracted from fluo-
rescence spectra coupled with inductive classification systems (SVM
and quadratic Bayes normal classifier [174]), highlighting the potential
for real-time usage of the proposed solution, especially given its low
computational cost. The approach distinguished among 21 types of
wood, with an accuracy higher than 90%. [175] employs Gray Level
Co-occurrence Matrices (GLCM) [176] to extract texture features from
coconut wood images, utilizing MLP and SVM classifiers. The goal is to
determine high quality pieces, so to increase the usage of coconut wood
in Indonesia. The authors in [177] further demonstrate the versatility
of GLCM by combining it with an MLP and features extracted using
statistical methods representing color and texture, with the ultimate
goal of distinguishing among 4 type of tropical hardwood species.

Moving to deep learning, a novel architecture is presented in [178],
namely split-shuffle-residual based CNN, which is designed for real-
time classification of rubber wood boards. This architecture achieves
satisfactory performance in terms of the trade-off between speed and
accuracy, and yields to fast (26.55 ms/image) and accurate (94.86%)
classification performance. The work in [179] introduces an optimized
CNN model incorporating spatial pyramid pooling [180] and attention
mechanisms into a ResNet101, for feature extraction from sawn timber
images. SVM and XGBoost [181] classifier are then used to distinguish
among the different species. Furthermore, in [182], the application of
unsupervised learning is explored by developing a system for color
classification and texture recognition of solid wood panels (from a
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Fig. 20. The level of adoption of the considered technologies.
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single species) using K-means clustering [174] on features extracted
rom color channels.

Recently, a comparison of various machine learning models, for
classifying wood types with high similarity, but different economic
value (jeungjing, puspa, and suren wood) is presented in [183]. Fur-
hermore, the work in [184] delves into feature fusion techniques by
ombining Local Binary Pattern, GLCM, and Tamura features, which are
ased on psycho-physical studies of the characterizing elements that are

perceived in textures by humans, extracted from micro CT images, to
classify 24 rosewood species using ELM. Finally, the authors in [185]
valuate multiple CNN architectures (DenseNet [186], ResNet50, and
obileNet [187]) for wood species identification considering different
agnification levels, so to understand the impact of such a change on

he task at hand.

3. The case of the friuli venezia giulia (FVG) cluster

To assess the state of robotics and AI technologies in the furni-
ture industry in the Italian FVG region, a specific questionnaire was
eveloped and administered to 10 businesses participating in the In-
ternational Furniture and Panel Technology Campus (FVG Cluster) [188].
Located in Brugnera, at the heart of North-east Italy’s industrial hub,
this Campus was established through a collaboration between the public
sector and a significant number of Friulian and Venetian companies, all
key players in the region’s furniture and panel sectors. The primary goal
was to create a comprehensive training center focused on integrating
digital technologies into production processes.

The FVG Cluster is one of the most relevant consortia in the region,
given its substantial number of active enterprises, workforce, export
value, and contribution to the regional GDP. In 2022, the FVG region
exported wood and furniture worth 2.5 billion euros [188]. The 10
urveyed companies produce various furniture components, includ-
ng MDF and chipboard panels, doors, chairs, tables, beds, cabinets,

bookshelves, and bathroom furniture.
The questionnaire (details are given in Appendix) covered sev-

eral aspects, including the sectors where the companies operate as
well as the used technologies and their applications. The questions
lso explored the proximity of robotic operations to human operators,

strategies for energy efficiency and sustainability, and the purposes for
which technologies like AI and data analysis are used. Additionally,
companies were asked to rate the importance and future enhance-
ment of these technologies and to identify potential obstacles to their
implementation.

As for the adoption level of the considered technologies, from
Fig. 20 it can be observed that both the traditional industrial robotics
nd data collection and analysis tools, that is, those technologies that
re the well established in the market, are widely adopted, with the
xception of one company. As for emerging technologies, the adoption
f collaborative robotics and artificial intelligence is currently relatively
18 
low (30%). Furthermore, there seems to be no direct correlation with
the size of the company, except for the fact that the largest one adopts
ll technologies.

As for the use of robotics, it emerges that robotic systems are
mainly applied to handling within production lines, specifically in load-
ing/unloading machines. Additionally, albeit less frequently, robots are
used for assembly, storage, and packaging. For the few companies using
collaborative robotics, applications include quality control through
scanners, packaging, and assisting operators in assembly, sorting, and
storage operations.

The applications of automatic data collection, modeling, and anal-
sis, and of artificial intelligence are broader. Almost all companies
90%) apply data collection and analysis tools to monitor the pro-
uction process, in to particular to measure efficiency and to get an
verview of the processes. In some cases (20%), more specific pieces
f information are collected in order to suitably plan maintenance
ctivities. In addition, there are applications in automated quality
ontrol, monitoring waste, and energy efficiency.

Various initiatives have been undertaken to implement strategies
for energy efficiency and increasing sustainability (this is the case
with 80% of companies). Interventions include the use of photovoltaic
panels, co-generation plants, biomass plants, reuse of waste and recy-
cled wood (also used as fuel), inverters for electric motor operation,
low-consumption lighting, e.g., LED lamps, liquefied natural gas for
heating and cooling, waste reduction for compressed air and suction,
and overall plant modernization for consumption reduction.

The majority of companies recognize the significant role of the
technologies described in this document, as shown in Fig. 21. They
nclude both current technologies, such as traditional robotics and data

collection, and more innovative ones, like those for predictive mainte-
nance, automated quality control, and AI. However, some companies
(in between 30 and 50%) consider collaborative robotics and AI to
be less impactful. This is understandable, as many recent technologies
in these areas are still largely at research level, and there are only
artial knowledge and/or some difficulties in understanding how to

effectively use them in the considered industrial context. Nonetheless,
taking AI as an example, it is true that it can be already used within
a production context in a transparent manner, e.g., in automatic data
processing and production optimization, just as it happens in every-
day life, e.g., translation software, search engines, and conversational
agents.

Looking towards the future and analyzing how companies plan to
enhance the presence of the various technologies in their production
context, the picture emerging from Fig. 22 differs from the perceived
importance. There is a general trend towards further enhancing existing
echnologies, such as traditional robotics, data collection and analysis,

as well as energy efficiency and sustainability strategies.
Moreover, from Fig. 23 it is clear that there are some significant

obstacles in the adoption and implementation of the new technologies.
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Fig. 21. Perceived importance for the development of the various technologies taken into consideration within the companies (1 - less important, 5 - very important).
Fig. 22. Expected level of enhancement in the future adoption of various technologies (1 - minor enhancement, 5 - major enhancement).
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As for robotics, economic aspects are secondary; the main issues con-
cern the difficulty in finding specialized personnel, even in the case
of traditional robotics, the safety aspects, and the challenging integra-
ion with the current production systems, especially for collaborative
obotics and ergonomics. In the area of data science and AI (remember
hat automated quality control and predictive maintenance are, in fact,
wo applications of AI), the situation is more complex to discern, as
o predominant issue emerges. Certainly, compared to robotics, the
otentially high cost, the cost–benefit ratio, which is not entirely clear,
nd the perceived usefulness of individual technologies, which is not
mmediately apparent, are identified as critical. Interestingly, despite
hese technologies typically need a more direct access to the machines
han in the past (e.g., adding and/or monitoring sensors), there is no
erceived difficulty in their integration with the current production
ystems. There seem to be more obstacles on the information tech-
ology side, indicating a possible lack of understanding of the tools
n question. Once more, this is fully justified, as we are talking of
omputer-based tools, which are starting now to be applied outside
he context of scientific research. Last but not least, finding specialized
ersonnel remains a cross-cutting issue.
 C

19 
4. Discussion and future trends

On the basis of the systematic analysis of the state of the art that we
have presented, we can conclude that in the last years we are seeing a
rowing interest in applying robotics and AI in the furniture industry.

Robotic systems are employed not only for moving materials, but
also in more specific operations, like, for instance, painting, finishing,
nd assembly processes. Robots can be integrated with cameras for
utomatic parts detection and with automatic trajectory planning al-
orithms for spray painting, whereas adding force sensors can improve
he surface finishing quality. Robotic devices can also perform assembly
asks, both alone and in collaboration with human operators. In the
urniture industry, the attention is focused on recognition of parts, au-
omatic assembly sequence and trajectory planning, and endowing the
obot with decision-making capabilities. Furthermore, the adoption of
ollaborative robotics may enhance the conditions of workers, reducing
he fatigue and the risk of muscoloskeletal problems.

AI system have been extensively investigated, especially for what
oncerns production process optimization and the usage of computer
ision to solve several tasks. The feedback gathered through the FVG
luster ’s companies indicates that the former is widely adopted. Yet, the
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Fig. 23. Obstacles perceived by the various companies about the implementation of the considered technologies.
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latter is often hard to apply in practice given the specific needs of the
companies and due to the fact that they have to manage increasingly
large catalogues, which results in demanding a high level of general-
ization from these systems (this is one of the Achilles’ heels of many
modern AI models). In the forthcoming years, it is expected that Gen-
rative AI approaches may play a major role in this industry, especially
o ease the design process, even when a high level of personalization
s required by customers. Multimodal foundational and instruct-tuned
arge models [189,190] may make the interaction with customers
articularly natural. Still, it can be observed that there is a very
imited usage of unlabeled data. Moreover, a few approaches consider
trategies like contrastive learning or self-supervised learning [191,

192]. The same holds for non-vision modalities, like sensor-derived
ata: they have been seldom utilized in furniture industry. Given
hat computer vision has some non-trivial shortcomings, e.g., some
efects are very hard to detect on the basis of the color of the panel
r the type of processing that is performed, exploiting sensor data,
specially with self-supervised learning [193], is a possible alternative
o develop more robust and generalizable solutions, as well as to
ncrease the range of applications of AI in furniture industry, including,
or instance, interpretable anomaly and failure detection [194,195].

Emerging concerns in the development and deployment of AI systems
also include safety and adherence to ethical guidelines. Our review
revealed that in the furniture industry, most existing AI-based so-
lutions are geared toward practical tasks, currently posing minimal
risks to humans in terms of these dimensions. However, as IoT and
highly digitalized manufacturing plants are already well-established,
incorporating digital security by design to mitigate the impact of cy-
berattacks becomes increasingly critical, particularly as we transition
toward intelligent factories [196]. Additionally, the development of AI
pplications for tasks such as, for instance, monitoring compliance with
afety standards [197], automating production process optimization,

and decision-making [113] introduces new challenges. These include
nsuring accountability, transparency, and privacy, especially when
uch applications involve the broader use of AI technologies beyond
omputer vision to strictly monitoring machinery or components [198].

These issues demand further consideration and study in the evolving
domain of AI in furniture industry.

5. Conclusions

This paper surveyed the scientific literature on recent trends in
robotics and AI technologies applied in the context of Industry 4.0, with
 D

20 
a focus on the furniture industry. By examining recent developments,
applications, and challenges, this survey provides insights into the
ntegration and implementation of currently-available solutions and
echnologies, their impact on production efficiency, product quality,

and overall innovation within the furniture manufacturing sector.
The first part of the document presented an analysis of robotics and

automation. We first analyzed the application of traditional robotics
in the furniture industry, with particular focus on the automation of
ick and place, finishing, painting, and assembly tasks. Furthermore,
he application of collaborative robotics in the furniture industry is con-

sidered, discussing the topics of collaborative assembly and ergonomics
n this challenging sector.

Then, the topics of data science were examined, with a special
ttention to data management (databases, data warehousing, decision
upport and management systems, and information systems), as well as

the applications of artificial intelligence and machine learning to the
furniture industry (with focus on production process optimization, de-
fect detection, design support, machine monitoring, quality monitoring,
and wood classification techniques).

In the last part of the paper, the outcomes of a questionnaire investi-
ating the perception of robotics and AI technologies in ten companies
f the International Furniture and Panel Technology Campus of the
riuli Venezia Giulia region (Italy) have been provided. The results
f the questionnaire and the critical analysis of the outcomes showed

that the technologies that are the more consolidated in the market
(traditional industrial robotics, data collection and analysis tools) are
widely adopted, whereas collaborative robotics and AI are currently
only partially exploited. Obstacles in the adoption and implementation
of new technologies are, mainly, difficulties in finding specialized
personnel and in the integration with existing production systems, a
potential high cost, and a low perceived usefulness.
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Appendix. Questionnaire submitted to the FVG Cluster companies

In this section, we report the questions that have submitted to the
companies of the FVG Cluster, which responses have been discussed in
Section 3.

1. In which sector does your company operate?
2. Within your company, which technologies among traditional
industrial robotics, collaborative robotics, automatic data collection
and analysis, and artificial intelligence are utilized?

3. What are the applications of robotics within your company?
4. What are the applications of automatic data collection, model-

ing, and analysis, as well as artificial intelligence within your
company?

5. In your company, are robotics operations carried out in close
proximity to human operators (collaborative robotics)? If yes,
which ones?

6. In your company, are energy efficiency and sustainability strate-
gies implemented? If yes, which ones?

7. For what purposes, among energy efficiency and sustainability,
predictive maintenance, automated quality control, or others, are
tools for automatic data collection, modeling, and analysis, as
well as artificial intelligence used in your company?
21 
8. Please specify for what other purposes the above-mentioned
technologies are used in your company.

9. Please consider traditional industrial robotics, collaborative
robotics, safety and ergonomics in collaborative robotics, energy
efficiency and sustainability, predictive maintenance, automatic data
collection, modeling and analysis, automated quality control, and
artificial intelligence:

(a) How important do you think (on a scale of 1 to 5) is the
introduction of the aforementioned aspects within your
company?

(b) How much do you expect (on a scale of 1 to 5) to enhance
the presence of the aforementioned aspects within your
company in the near future?

(c) Among difficulties in finding specialized personnel, excessive
economic expenditure, unfavorable cost/benefit ratio, integra-
tion challenges with the current production systems, perceived
lack of utility, absence of a suitable information system, and
stringent safety regulations, which could be the obstacles to
the implementation of each of the aforementioned aspects
within your company?

Data availability

Data will be made available on request.
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