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Abstract: Disruptive failures threaten the reliability of electric supply in power branches, often
indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid
method for fault prediction based on the time series of the leakage current of contaminated insulators.
In a controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical power
distribution network were exposed to increasing contamination in a salt chamber. The leakage current
was recorded over 28 h of effective exposure, culminating in a flashover in all considered insulators.
This flashover event served as the prediction mark that this paper proposes to evaluate. The proposed
method applies the Christiano–Fitzgerald random walk (CFRW) filter for trend decomposition and
the group data-handling (GMDH) method for time series prediction. The CFRW filter, with its
versatility, proved to be more effective than the seasonal decomposition using moving averages in
reducing non-linearities. The CFRW-GMDH method, with a root-mean-squared error of 3.44× 10−12,
outperformed both the standard GMDH and long short-term memory models in fault prediction. This
superior performance suggested that the CFRW-GMDH method is a promising tool for predicting
faults in power grid insulators based on leakage current data. This approach can provide power
utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing
the reliability of the power supply.

Keywords: Christiano–Fitzgerald random walk filter; electrical power grids; group method of data
handling; leakage current; time series forecasting

1. Introduction

Power grid insulators are responsible for the mechanical support and electrical in-
sulation of the conductors in low-/medium-/high-voltage overhead networks [1]. Since
they are exposed to the environment and eventually adverse weather conditions, insulators
must withstand the mechanical and electrical stresses and the environmental ones [2].
The external factors present in each application need to be considered when choosing the
type of insulation to be applied depending on the environment, as these interactions can
compromise the network’s proper performance and the insulator’s life [3].

The contamination of the insulator surface, associated with bad environmental con-
ditions, can lead to a more-conductive surface, beginning by increasing the chance of
partial discharges and rising leakage currents occurring, which can result in flashover [4].
Contamination is a present problem in places close to industries, agricultural farming,
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mining, seaside areas, or unpaved roads, where the incidence of rainfall is not enough to
clean the surface of the insulator [5]. Therefore, in more critical locations, such as coastal
regions, preventive cleaning of the insulators is necessary to reduce insulation faults in the
electrical power systems [6].

For this matter, the significance of this study lied in its focus on leakage current, a
key indicator of insulator contamination [7]. By monitoring this effect, we can predict
failures in the electrical power network [8]. This paper proposes a novel approach to this
issue: a hybrid model that combines the group method of data handling (GMDH) with the
Christiano–Fitzgerald random walk (CFRW) filter for predicting the increase in leakage
current. This method was compared to the long short-term memory (LSTM) model, and the
CFRW was evaluated against the seasonal decomposition using moving averages (SDMA).

The main contributions of this research are:

• The application of the Christiano–Fitzgerald random walk filter for noise mitigation
in the context of power grid insulator contamination.

• The group method of data handling has shown less time needed for training and
superior performance to the LSTM.

• The development of a hybrid method for time-series-based failure prediction, focusing
on evaluating the increasing trend of leakage current.

The remainder of this paper is structured as follows: Section 2 presents related works
regarding time series forecasting. Section 3 covers the description of the problem and
the performed laboratory analysis. In Section 4, the proposed method is presented, and
the results are evaluated in Section 5. Section 6 draws a conclusion and discusses future
research directions.

2. Related Works

Given the need to keep the electric power system running, techniques for the mainte-
nance and prediction of insulator failure are employed by electric power utilities [9]. One
of the most-common techniques is visual inspection, which can be further improved using
thermographic cameras [10], ultraviolet light detectors [11], ultrasound signals [12], radio
interference, acoustic techniques [13], unmanned aerial vehicles [14], and leakage current
techniques [15]. The maintenance is carried out by field technicians, which, when detecting
possible defective insulators, perform the cleaning or the replacement of the insulator [16].

According to Yang et al. [17], image processing, especially based on deep architecture,
is becoming popular. Additionally, image preprocessing is a way to improve the classifier
models [18]. The use of artificial-intelligence (AI)-based methods is a promising alternative
for power system monitoring and can even be applied to assess the level of contamination
of the power grids.

Salem et al. [19] presented a work where the flashover voltage of a porcelain insulator
was investigated concerning the density of the salt deposit. Besides AI applications, the
performance of insulators has been explored by using advanced methods such as the finite
element method, as presented by Ahmed et al. [20] for the evaluation of polluted environ-
ments for polymeric insulators and by Stefenon et al. [21] for the design of insulators.

In the paper of Salem et al. [22], the support vector machine was employed to forecast
the deterioration of the room-temperature vulcanized coatings on contaminated glass
insulators. Time series forecasting has been applied in several fields, for issues related
to financial [23], security [24], energy price [25], traffic flow [26], and epidemiology [27],
among others. Considering that leakage current is a strong indication that flashovers may
occur, evaluating its evolution concerning time series analysis is a promising alternative
and will be the focus of this paper.

Choosing the appropriate model to perform the prediction is a difficult task, where
deep-learning-based models may have a superior ability to handle non-linear data and
shallow models typically have lower computational effort and can have acceptable predic-
tion results [28]. Combined structures such as the adaptive neuro-fuzzy inference system
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(ANFIS) have the smoothness of fuzzy systems and the adaptive characteristic of neural
nets [29]; therefore, these are also an alternative in this context.

For time series forecasting, LSTM has been increasingly applied. LSTMs overcome the
vanishing gradient problem by incorporating a memory cell and several gating mechanisms.
The memory cell allows the network to retain information over long sequences, and the
gating mechanisms control the information flow in and out of the cell [30]. Due to this
characteristic, this model is promising for predicting failures, being applied in benchmarks
along with ensemble learning models, ANFIS, and the GMDH [31].

According to Branco et al. [32], using filters for denoising is necessary when the con-
sidered signal has high non-linearities. In their work, the wavelet transform was combined
with LSTM for fault forecasting considering the number of alarms of the distribution power
branches of an electric utility company. The results showed that, without the wavelet, the
model could not predict the variation of the faults over time with an acceptable error.

The ensemble learning models have been explored due to their high efficiency; several
architectures based on this approach have been used for time series forecasting, such as
the cooperative [33], stacking [34], heterogeneous [35], bagging [36], boosting [37], random
subspace [38], and random forest [39] ensemble learning models. The advantage of this
approach is the combination of simpler models to build a stronger model [40], which has a
high predictive ability and can be more efficient than models based on deep learning.

The GMDH is a promising approach for time series fault forecasting; due to its
adaptive features, it can use an optimized structure defining the neurons during the
training, excluding the neurons when the worst predictions are achieved. Combining the
GMDH with noise-reducing methods such as the wavelet transform may improve the
network, outperforming well-established models such as LSTM and ANFIS [41]. Due to
the advantages of applying filters for noise reduction in time series, several authors have
explored hybrid methods that combine filters with prediction models.

A Hodrick–Prescott (HP) filter-based modeling, which identified repeated high and
low structural characteristics around a given carbon price, was proposed by Qin et al. [42],
overcoming the parallel series hybridization obstacle with respect to identifying linear
and non-linear models. The work presented by Klarl [43] using a continuous regression
method found that the elasticity of emissions to the gross domestic product (GDP) was
not constant over time, regardless of the filtering technique employed, such as the HP, the
Christiano–Fitzgerald, the Baxter–King, or the Butterworth filters. Environmental policy
instruments that do not prove to be suboptimal must consider this asymmetric emissions
response due to variations in the GDP.

For the long-term seasonal component (LTSC), the models based on wavelet are
suitable to extract the LTSC of a series of values and are more accurate for predicting
values up to one year ahead, but are highly complex models. To improve the forecasting
technique, the HP filter was proposed in the paper of Weron and Zator [44], to identify
the LTSC in the price of electricity. Extended multi-reservoir echo state network models
were proposed with the HP filter for time series forecasting by Li, Liu, and Tanaka [45].
The HP filter was applied recursively to decompose the time series data into several trend
and cycle components.

Dutra, Dias, and Teixeira [46] identified the most-suitable way to detect financial
cycles, such as the gross domestic product (GDP) by analyzing four financial variables:
credit, real estate prices, stock prices, and interest rates. The Christiano–Fitzgerald filter is
applied to estimate the cycles from the time series. Some recommendation systems have
attempted to capture the complexity of interactions between user and item resources to
obtain reliable recommendations. Lee and Kim [47] proposed a recommendation system
using the external feature product matrix and cross-convolutional filters, alleviating the
overfitting problem.

Apaydin et al. [48] investigated the application of seasonal trend decomposition based
on loess (STL) and attribute selection preprocessing methods in forecasting monthly river
flows. The hybrid models recorded higher accuracy than other independent models even
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without preprocessing. Tebong et al. [49] used deep learning models to create ensembles.
STL decomposition decomposed reservoir inflows and precipitation into random, seasonal,
and trend components. The ensemble models were evaluated using decomposed data of
daily inflows and precipitation from a reservoir, with the multivariate STL-dense model
being the best.

In the study of Qin, Li, and Li [50], two hybrid approaches that combine STL with
the echo state network enhanced by the grasshopper optimization method and adaptive
reinforcement model were proposed to predict the flow of passengers in China per month.
The results showed that, by using STL, higher accuracy was obtained compared to other
prediction methods. According to the authors mentioned so far, filters for pre-processing
are a promising approach in time series analysis, and it was explored in this paper.

Everything considered, in the context of power grid insulators, leakage current, a
strong indicator of potential flashovers, is a promising focus for time series analysis. How-
ever, choosing the appropriate prediction model is challenging, with deep-learning-based
and shallow models each having advantages [28].

This paper proposes a novel approach to this issue, combining the GMDH with
the CFRW filter for predicting the increase in leakage current. This hybrid method is a
promising alternative for time-series-based failure prediction, focusing on evaluating the
increasing trend of leakage current, which is the issue to be analyzed.

3. Problem Description and Laboratory Analysis

When dry, the contamination layer deposited on the insulators is usually not highly
conductive, although with moisture (rain, fog), its conductivity might increase [51]. In-
creasing the conductivity, partial discharges occur more often and have greater intensity,
evolving to the formation of a leakage current [52], which could evolve until a complete
breakdown, known as flashover [53]. Failure reduces reliability in the power grid, and it is
challenging to identify insulators that have lost their insulating properties [54].

This contamination process and increased leakage current can take years to cause insu-
lator failure [55]. This work accelerated this process to evaluate the insulator’s endurance
to contamination. This section presents how the laboratory experiments, which originated
the database that was used for training and testing the proposed model, were obtained, to
allow the reproduction of the experiment for future comparisons.

To compose the database that were used in the present paper, tests were performed in
the salt fog chamber (see Figure 1), in the high-voltage laboratory at the Regional University
of Blumenau, Brazil. The salt fog chamber test consists of simulating the behavior of com-
mercial insulators under controlled conditions. The insulators were exposed to the rated
design voltage and salt fog in this test. The amount of salt in the water that was sprayed to
generate the fog was controlled. During the test, there was a gradual increase in the amount
of salt deposited on the surface of the insulator, until the dielectric breakdown occurred.

The salt fog chamber had dimensions of 2 m × 2 m × 2 m, with a variable voltage
transformer and a power transformer of 15 kVA to perform the experiments. The chamber
had four foggers, one in each upper corner, and a 1m-diameter metal ring connected to
the transformer through a bushing, to apply voltage to the insulators to be tested. The
insulators were connected to the central ring through a mooring system like those used for
insulators in distribution lines. The step-up transformer, controlled by a variable-voltage
transformer, raised the voltage, which was connected to the bushing in the chamber.

The complete experiment was conducted over 6 days, with intermittent exposure,
totaling 28 h of effective exposure. The test started with a low concentration of salt, then
gradually increased until it reached a very high concentration to contaminate the insulators
to the point of causing a flashover. When the flashover occurred, the current tended to
reach extremely high values, limited to 200 mA by a fuse, and the measurement was ended
at the insulator to which the discharge occurred.
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Figure 1. Salt fog chamber (high-voltage laboratory).

In this research, among six insulators of 15 kV, two had no dielectric breakdown; these
could not be used, because the disruptive failure did not occur. Considering the samples
with a flashover, the insulator that had the longest dielectric breakdown was used. From
the total time of the effective exposure, the considered sample had the flashover after
18.62 h (67,040 s), and the variation of the leakage current measurement from this insulator
is presented in Figure 2. Contamination accumulated on the surface of the insulator in a
random and distributed manner, as occurs in the field; for this reason, there was a difference
between the dielectric breakdown point of different insulators.
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Figure 2. Original signal: Measurement of the leakage current over time. At the end, the insulator
had more than 200 mA and the flashover occurred.

4. Methodology

This paper proposes a hybrid method based on combining the GMDH with the CFRW
filter. The time series prediction was performed through the GMDH, and the CFRW filter
was applied to reduce noise and unrepresentative variations. The proposed method, named
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CFRW-GMDH, will be explained in this section, as well as the methods that were compared
to validate the proposed model.

4.1. Group Method of Data Handling

The GMDH is an inductive self-organizing iterative algorithm that utilizes polynomial
models [56]. Its fundamental principle is to generate many models, assess each according to
a specific criterion, and select the optimal model [57]. This operation involves incrementally
adding layers of nodes, where each node represents a two-input function that is fit using a
polynomial of a given degree, as depicted in Figure 3.

Only a layer’s top-performing results (depicted as white neurons in Figure 3) are
passed on to the next. Neurons that yield less-accurate predictions (illustrated as green
neurons in Figure 3) are eliminated in the process, thereby optimizing the structure. The
optimization of the structure requires the specification of the maximum number of neurons
and layers; these network hyperparameters will be evaluated in this paper.

Figure 3. Illustration of the GMDH architecture.

Given a time series, the GMDH learns the relationships between the time lags and
then automatically determines the optimal path. The GMDH’s mapping of the input and
output variables constitutes a non-linear function, given by:

ŷ(x1, . . . , xn) = a0 +
n

∑
i=1

aixi +
n

∑
i=1

n

∑
j=1

aijxixj + . . . +
n

∑
i=1

n

∑
j=1

n

∑
k=1

aijkxixjxk (1)

where xi and xj denote the input variables and n is the number of considered samples.
The coefficients are estimated using a regression approach for the pair of input vari-

ables (xi, xj) as follows:

G
(
xi, xj

)
= a0 + a1xi + a2xj + a3x2

i + a4x2
j + axixj. (2)

in which y signifies the observed value, ŷ the predicted value, and w the result of the
external criterion, which is given by:

w =
∑P

n=1 (ŷn − yn)
2

∑P
n=1 (yn)

2 . (3)

where P denotes the number of test sets. If w does not decrease with an earlier layer, it
suggests that the model’s prediction error is not declining, thus terminating the model
expansion and generating the results [58].
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The coefficients in the polynomial function were computed via the least-squares error
(LSE) method. This mathematical technique aims to minimize the sum of the squares of
the residuals, thus reducing the difference between y and ŷ. The procedure of this fitting
method is described as follows:

LSE =


ŷ(x1, . . . , xn) = G

(
xi, xj

)
e = ∑N

n=1 (y− ŷ)2

de
dak

= 0, k = 1, 2, 3, 4, 5.
(4)

To streamline the analysis, the results are presented in matrix form:

a = (XTX)
−1

XTy (5)

where,

X =



1 xi1 xj1 xi1xj1 x2
i1 x2

j1
1 xi2 xj2 xi2xj2 x2

i2 x2
j2

1 xi3 xj3 xi1xj2 x2
i3 x2

j3
...

...
...

...
...

...
1 xin xjn xinxjn x2

in x2
jn


. (6)

Following this, the Christiano–Fitzgerald random walk and the seasonal decomposi-
tion using moving averages filters are explained.

4.2. Christiano–Fitzgerald Random Walk Filter

The CFRW filter is an econometric technique that offers a more-adaptable strategy for
analyzing time series data, particularly in cases where variables exhibit stochastic trends
or nonstationary behavior [59]. The method aims to approximate the trend constituent of
a time series, especially when there is a need for more information regarding the actual
characteristics of the underlying process [60].

The CFRW filter is applicable to any univariate time series, yt, that can be represented
as a random walk. The random walk model assumes that the change in yt from one period
to the next, yt− yt−1, is a random variable with a mean of zero [61]. A random walk process
can be represented as:

yt = yt−1 + εt (7)

where εt is a stochastic error term considered independent and identically distributed with
zero mean and constant variance. Given a sample yt

T
t=1, the goal is to obtain an estimate

(ŷt) of the unobserved component of the time series (trend) [56].
This procedure involves projecting yt onto the space of d-step-ahead and d-step-behind

linear predictions, where d is a bandwidth parameter that should be selected in advance [62].
The CFRW filter is a linear projection:

ŷt =
d

∑
j=−d

ωjyt+j (8)

in which ωj are weights determined by the minimization problem and depend on d and
the autocorrelation structure of yt. If yt is a random walk, then the weights ωj converge to
those of an ideal low-pass filter as d→ ∞ [43].

4.3. CFRW-GMDH Hybrid Method

Algorithm 1 presents the steps involved in the proposed CFRW-GMDH method, a
hybrid approach combining the CFRW filter and the GMDH.
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Algorithm 1: CFRW-GMDH Hybrid Method
Result: Optimized model and filtered time series data.
initialize d (bandwidth parameter);
for each time period t do

calculate ŷt = ∑d
j=−d ωjyt+j;

end
while prediction error decreases do

generate models for each pair of input variables;
calculate prediction for each model using Equation (2) ;

evaluate each model using w = ∑P
n=1 (ŷn−yn)

2

∑P
n=1 (yn)

2 ;

select model with lowest prediction error;
end

For comparative purposes, the SDMA filter was compared in this paper to the CFRW
filter, and the SDMA method is explained in the following subsection.

4.4. Seasonal Decomposition using Moving Averages

The SDMA is a statistical technique for decomposing time series data into their trend,
seasonal, and residual components, as well as seasonal trend decomposition based on
locally estimated scatterplot smoothing (STL) [63], which aims to identify patterns and
seasonality in the data and separate them from underlying trends or aleatory variations [64].
The trend component (tt) is given by applying a weighted moving average to the original
signal, according to:

tt =
∑m

i=1 wiyt−m+i

∑m
i=1 wi

(9)

where w1, w2, . . . , wm are the weights defining the smoothing function and m is the length
of the moving average window. The residual component (rt) is achieved by subtracting the
trend from the original data, given by:

rt = yt − tt. (10)

The filter eliminates the high frequency, and the smoothed signal is subtracted from the
original to have the residual component, corresponding to any high-frequency fluctuations
left out of the moving average [65]. The seasonal component (st) is calculated by averaging
the residuals across a defined window, corresponding to the length of the seasonal cycle, as
the following:

st =
∑t

i=t−P+1 ri

P
(11)

where P is the length of the seasonal cycle. Then, the decomposition is reconstructed by
adding its components accordingly:

yt = tt + st + rt. (12)

In this paper, regarding the use of the filter, the prediction of the signal was performed
with respect to the trend. Therefore, st and rt were not considered. Here, LSTM was used
for the benchmarking, and a brief explanation of this model is given in the subsequent
subsection.
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4.5. Long Short-Term Memory

LSTM is a recurrent neural network (RNN) that captures long-term dependencies
in sequential data [66]. One of the main advantages of LSTM over traditional RNNs is
its ability to maintain and control the information flow through a memory cell [67]. The
memory cell allows LSTM to selectively remember or forget information in long sequences,
which helps overcome the vanishing gradient problem commonly encountered in training
RNNs [68].

LSTMs achieve this memory control through the use of specialized units called gates.
These gates, which include the input gate (it), forget gate ( ft), and output gate (ot), regulate
the flow of information into, out of, and within the memory cell [69]. ft determines what
information should be discarded from the cell; it controls the addition of new informa-
tion to the cell; ot decides which information should be exposed to the next layer of the
network [70]. LSTM can be given by:

it = σg(Wixt + Riht−1 + bi),
ft = σg(W f xt + R f ht−1 + b f ),
ot = σg(Woxt + Roht−1 + bo).

(13)

where R and W are earnings matrices and b is the polarization matrix.
The architecture of an LSTM cell consists of these gates, a memory cell, and various

activation functions (σg) [71]. The cell operates sequentially, taking an input at each time
step, updating its memory content, and generating an output [72]. This makes LSTMs
well-suited for processing and modeling sequential data such as time series [73], which
was the focus of this paper.

4.6. Experiment Setup

The experiments were implemented in MATLAB and computed using an i5-7300HQ
with 20 GB of random access memory and a graphics processing unit NVIDIA GeForce GTX
1050 Ti. The root-mean-squared error (RMSE), mean-squared error (MSE), mean absolute
percentage error (MAPE), mean absolute error (MAE), and coefficient of determination (R2)
were evaluated, given by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

MAPE% =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (16)

MAE =
1
n

n

∑
i=1

(yi − ŷi) (17)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)

2 (18)

where n, y, and ŷ were previously defined. The ȳ is the average of the observed value.

5. Experiments and Discussion

The variation in the training data percentage can influence the model’s performance.
Therefore, an initial evaluation is presented in Table 1 to assess the impact of this variation.
Initially, a maximum of 50 neurons in up to three layers were considered, and then, each
hyperparameter was evaluated. In this section, the best results are highlighted in bold.
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Table 1. Results of the variation in the percentage of data for training and testing the model.

Train_Test (%) RMSE MSE MAPE% MAE R2 Time (s)

50_50 6.33 × 10−3 4.01 × 10−5 5.94 × 10−2 9.24 × 10−5 0.4174 5.53
60_40 1.10 × 10−3 1.22 × 10−6 7.17 × 10−3 1.45 × 10−5 0.9828 7.56
70_30 6.65 × 10−4 4.42 × 10−7 4.63 × 10−3 8.29 × 10−6 0.9945 9.03
80_20 7.91 × 10−4 6.26 × 10−7 1.40 × 10−2 2.05 × 10−5 0.9936 10.10
90_10 1.01 × 10−3 1.02 × 10−6 2.85 × 10−2 4.47 × 10−5 0.9901 12.75

Using a lower data value for training generally resulted in lower performance results
regarding the error, making the model faster to be trained. The best ratio between the data
to train and test the model was using 70% of data for training and 30% of data for testing
the model. Therefore, this ratio was considered for all analyses presented in this paper. In
Table 2, the impact of using a higher maximum value of layers on the configuration of the
structure is evaluated.

Table 2. Results of the variation in the number of layers.

Layers RMSE MSE MAPE% MAE R2 Time (s)

2 6.21 × 10−4 3.86 × 10−7 1.82 × 10−2 2.75 × 10−5 0.9952 0.89
3 6.50 × 10−4 4.22 × 10−7 9.43 × 10−3 1.43 × 10−5 0.9947 9.30
4 9.96 × 10−2 9.92 × 10−3 4.48 × 10−1 7.46 × 10−4 - 18.18
5 1.67 × 10−3 2.80 × 10−6 2.33 × 10−2 4.10 × 10−5 0.9651 27.64
6 1.90 × 10−2 3.60 × 10−4 4.46 × 10−1 7.71 × 10−4 - 37.80

Increasing the number of layers led to a shorter time required to compute the model;
however, it did not reflect progressive improvements in the results, considering the input
data used here. The best results regarding lower error were obtained using two (RMSE
and MSE) and three layers (MAPE and MAE). The processing time was not a value to
be optimized in this evaluation. Considering that using two layers may result in limited
flexibility for the model to adapt in the GMDH, three layers were used as the standard
architecture. A detailed analysis of the definition of the maximum number of neurons is
presented in Table 3.

Using three layers, the network became stable with a maximum of 50 neurons, and
thus, the processing time was similar even when using a considerably higher maximum
number of neurons. When more layers were used, the model tended to increase the
computational effort considerably in preliminary evaluations, reflecting the time required
to compute the analysis. Despite a small improvement in the RMSE and MSE using more
neurons, the model stabilized between 45 and 50 neurons during the simulation, sufficient
to achieve acceptable error results.

Table 3. Results of the variation in the number of neurons.

Neurons RMSE MSE MAPE% MAE R2 Time (s)

5 7.02 × 10−4 4.92 × 10−7 1.89 × 10−2 2.77 × 10−5 0.9939 0.77
10 6.51 × 10−4 4.23 × 10−7 1.18 × 10−2 1.85 × 10−5 0.9947 1.22
50 6.47 × 10−4 4.18 × 10−7 1.08 × 10−2 1.54 × 10−5 0.9948 9.22

100 6.24 × 10−4 3.89 × 10−7 1.33 × 10−2 1.91 × 10−5 0.9952 10.14
500 6.19 × 10−4 3.84 × 10−7 1.20 × 10−2 1.74 × 10−5 0.9952 9.73

1000 6.14 × 10−4 3.76 × 10−7 8.55 × 10−3 1.36 × 10−5 0.9953 9.22
5000 6.61 × 10−4 4.37 × 10−7 1.36 × 10−2 1.97 × 10−5 0.9946 9.05

Based on the initial evaluation of the maximum values of the hyperparameters, the
GMDH proved to be efficient, since it reached acceptable prediction values, converging in
a short period. The result of this prediction concerning the original signal is presented in
Figure 4. The next section presents the evaluation and discussion of the filter application.
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Figure 4. Original versus predicted signals (non-filtered).

5.1. Filter Evaluation

Reducing unrepresentative high-frequency noise is the first step in the time series anal-
ysis evaluated in this paper. Considering the use of the CFRW filter, three hyperparameters
can be adjusted to adapt this filter to the filtering needs of the signal. These hyperparame-
ters were the minimum period of oscillations, the maximum period of oscillations, and the
drift (whether or not to remove a trend from the data).

The removal of the trend resulted in a signal that lost the characteristics that were
considered in this paper since the trend was the main indicator of increased leakage current;
for this reason, this hyperparameter was considered equal to false. When it was not
necessary to evaluate the trend of the signal, only its variation, the drift hyperparameter,
may be considered, being applied to evaluate abrupt variations of the signal.

The increase in the oscillation period’s minimum value did not improve the filtered
signal; therefore, this hyperparameter was considered equal to two because this was the
minimum value for the filter to be applied. Signals with other properties may have a greater
influence on the variation of the minimum period of oscillations. In this case, the increase
in this hyperparameter resulted in a greater filter signal disparity than the original signal.

The hyperparameter that had a major influence on the filtering was the definition of a
maximum period of oscillations (h), where values under 50 were not enough to filter the
signal and values higher than 1000 resulted in a filtered signal that lost its properties of
variation; the influence of this hyperparameter value is presented in Figure 5.

The SDMA filter is an alternative to decomposing the signal and has its trend with
less noise. The problem with this filter is that there is no flexibility in adjusting the method
to suit the needs of the signal. If the signal has a high incidence of high-frequency noise
with relevant information, this filter became even less suitable based on the experiments’
results. The possibilities of varying the SDMA configuration can be realized using the type
of seasonal component, which can be either “additive” or “multiplicative”. In this work,
both had equivalent results. Moreover, the other variation possibilities did not result in
more flexibility in this architecture; therefore, the CFRW filter was more suitable in this
initial analysis.

A value of h equal to 1000 was set for comparative purposes since, by using larger
values, significant variants were lost, which may be relevant in this analysis. Based on this
configuration, the GMDH was evaluated from the signal filtering. Besides the trend of the
signal used for the prediction, the CFRW filter gave the residual of the signal presented in
Figure 6, indicating where the leakage current had more variation. In this case, the major
variation of the residual of the signal happened just before the flashover.
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Figure 5. Trend of the Christiano–Fitzgerald random walk filter vs. original signal.
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Figure 6. Residual of the signal of the CFRW filter (h = 1000).

Table 4 presents the statistical evaluation of the use of the CFRW filter in relation to the
original GMDH. Using the CFRW, the GMDH became considerably higher, with a low error
in all metrics evaluated compared to the original GMDH; this evaluation was performed
by initializing the network with random persons in 50 runs, to validate the robustness of
the proposed method with respect to the variability of several simulations.

Table 4. Statistical evaluation of the use of the CFRW filter on the GMDH.

Method Measure Mean Median Std Deviation Variance

Standard
GMDH

RMSE 1.59 × 10−3 6.94 × 10−4 2.59 × 10−3 6.72 × 10−6

MSE 9.11 × 10−6 4.82 × 10−7 3.32 × 10−5 1.11 × 10−9

MAPE% 2.13 × 10−2 1.33 × 10−2 2.58 × 10−2 6.67 × 10−4

MAE 3.29 × 10−5 2.00 × 10−5 4.21 × 10−5 1.77 × 10−9

CFRW-
GMDH

RMSE 3.42 × 10−12 3.44 × 10−12 1.39 × 10−13 1.93 × 10−26

MSE 1.17 × 10−23 1.18 × 10−23 9.46 × 10−25 8.96 × 10−49

MAPE% 7.35 × 10−10 7.35 × 10−10 3.18 × 10−11 1.01 × 10−21

MAE 9.21 × 10−13 9.22 × 10−13 4.20 × 10−14 1.76 × 10−27

Since promising results were obtained using the CFRW filter combined with the
GMDH, and benchmarking was performed to compare the proposed method (CFRW-
GMDH) with the original LSTM and against LSTM using the CFRW filter.
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5.2. Benchmarking Evaluation

The comparative analysis presented in Table 5 showed that the proposed method,
besides being superior in having a lower prediction error, had lower computational effort
than the LSTM. Using the CFRW filter improved the performance of LSTM, proving that
the hybrid approach excelled over the standard models. However, both LSTM and the
CFRW-LSTM were inferior to the proposed model.

Table 5. Benchmarking evaluation.

Model RMSE MSE MAPE% MAE R2 Time (s)

Standard
LSTM

3.24 × 10−3 1.05 × 10−5 1.61 1.90 × 10−3 0.8696 305.57

CFRW-
LSTM

3.02 × 10−3 9.15 × 10−6 1.20 1.47 × 10−3 0.8819 304.86

Standard
GMDH

7.93 × 10−4 6.29 × 10−7 1.41 × 10−2 1.80 × 10−5 0.9922 8.83

Proposed
method

3.44 × 10−12 1.18 × 10−23 7.42 × 10−10 9.31 × 10−13 1.0000 9.17

The original signal, the filtered signal, and the one-step-ahead prediction of the filtered
signal are shown in Figure 7. The proposed method proved effective enough to have a
visual overlap between the predicted and observed signals, which in this case was the
signal after using the CFRW filter.
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Figure 7. Original, filtered (observed), and predicted signals.

6. Conclusions

Since they are essential parts of electrical systems, insulators are exposed to various
external environmental factors that could reduce their effectiveness. The selection of
insulators and their maintenance are crucial elements to consider due to the complexity of
these factors. Cleaning in key spots has effectively prevented difficulties such as pollution,
which can degrade the conductivity of the surface of the insulators and can cause electrical
discharges and flashovers.

This study presented a hybrid method that combines the Christiano–Fitzgerald ran-
dom walk filter and the GMDH to forecast the rise in leakage current, a crucial sign of
insulator contamination. The filter is instrumental in mitigating noise and adapting to
the specific requirements of an application. Additionally, it was shown that the GMDH
outperformed the LSTM model in terms of efficiency, requiring less training time.

Experimental investigation into the GMDH model presented several key insights. The
model’s performance appeared to be directly influenced by the percentage of data used
for training. Lower data percentages for training generally resulted in decreased error
performance, but made the model faster to train. The most-optimal balance between the
data used for training and testing was found at a 70–30% ratio. This configuration was
adopted for the entirety of the analyses.
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Analyzing the impact of varying the maximum number of layers, it was observed that
increasing the number of layers shortened the computation times, but did not necessarily
translate into progressive performance improvements. The most-minimal errors were
achieved with two (RMSE and MSE) and three layers (MAPE and MAE). To preserve model
adaptability, a three-layer architecture was decided as the standard.

When exploring the optimal number of neurons, the network was found to stabilize
with a maximum of 50 neurons. The processing time remained consistent even when a
higher maximum number of neurons was applied. Despite minor improvements in the
RMSE and MSE using more neurons, the model reached a stabilization point between 45
and 50 neurons, ensuring acceptable error results.

The experiments also highlighted the efficiency of the GMDH model. It converged
quickly while achieving satisfactory prediction values. In terms of the filter application, it
was possible to conclude that the Christiano–Fitzgerald random walk (CFRW) filter was
the most-effective in reducing unrepresentative high-frequency noise. Its hyperparameters
allowed for adaptations according to the filtering needs of the signal. The CFRW filter also
helped improve the GMDH model substantially, resulting in significantly lower errors in
all metrics evaluated compared to the original GMDH.

The proposed hybrid approach is a viable alternative for forecasting time-series-
based failure. It pays close attention to the growing leakage current trend, a crucial area
that needs to be examined. Therefore, this method can be applied to manage power
systems in a predictive maintenance and effective decision-making manner. To apply the
proposed method in the field, it needs a specialized team to employ it considering that the
measurement is connected to the grid.

The potential of the suggested method can be further investigated in various environ-
mental scenarios and settings in the future, improving its adaptability and generalizability.
In addition, comparable approaches can be used for various predictive indicators within the
power system, even though this work concentrated on leakage current prediction. Another
exciting area for future research is the scalability of the suggested technique in terms of
larger datasets and various insulator kinds.
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