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Abstract
Several semantic approaches have been proposed over time for Epistemic Logic Programs (ELPs), which
is an extension to Answer Set Programming (ASP) with epistemic operators. ELP semantics has been
defined, in various ways, in terms of world views, which are sets whose elements are sets of atoms. Several
semantic approaches are Reduct-based, i.e., extend to ELPs what done for ASP, in the sense that in order
to find the world views of a given program they propose to: start with a candidate world view; build the
reduct of the program with respect to this candidate world view, according to some specific definition of
such reduct; compute the set of stable models of the reduct; check whether the candidate world view is
indeed a world view, which is the case if it coincides with the set of stable models of the reduct. Solvers
have been developed for some of these approaches, but new semantics/variations have been introduced,
and are likely to be introduced in the future, as there is no consensus yet on the “right” semantics. We
propose a fast-prototyping approach to obtain a solver for any reduct-based semantics, with the advantage
to be able to experiment the approach on small/medium programs, and not only on very small programs as
done so far, prior to undertaking the costly process of developing a dedicated solver.
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1. Introduction

The first definition of Epistemic Logic Programs (ELPs, in the following just ‘programs’ if not
explicitly stated differently) was presented many years ago in [1, 2]. ELPs were meant to extend
in a straightforward way Answer Set Programs (ASP programs), defined under the Answer Set
Semantics [3], with epistemic operators so as to allow for forms of epistemic reasoning in a
practical though principled way, as an extension of ASP solvers to ELPs was envisioned since
then. ELPs’ semantics resulted however more tricky than expected, because the new epistemic
operators are able to introspectively “look inside” a program’s own semantics, defined in terms of
its “answer sets”. In fact K𝐴, K standing for knowledge, is true if the (ground) atom 𝐴 is true in
every answer set of the very program Π where K𝐴 occurs. The derived operator of possibility
M𝐴 means that 𝐴 is true in some of the answer sets of Π. The epistemic negation operator not 𝐴
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expresses that 𝐴 is not provably true, meaning that 𝐴 is false in at least one answer set of Π, i.e.,
𝑛𝑜𝑡K𝑛𝑜𝑡𝐴 holds, where 𝑛𝑜𝑡 is standard ASP default negation.

Semantics of ELPs is provided in terms of some kind of mechanism to characterize world
views, which are sets of answer sets (instead of a unique set of answer sets like in Answer Set
Programming), where each world view consistently satisfies (according to a given semantic
approach) the epistemic expressions that appear in a given program. Several semantic approaches
for ELPs have been introduced beyond the seminal ones, among which [4, 5, 6, 7, 8, 9, 10].

As seen below, many of these approaches are Reduct-based, i.e., they extend to ELPs what
done for ASP, in the sense that to find world views of a given program they propose to: start with
a candidate world view, which is a set whose elements are sets of atoms; build the reduct of the
program with respect to this candidate world view, according to some specific definition of such
reduct; compute the set of stable models of the reduct; check whether the candidate world view is
indeed a world view, which is the case if it coincides with the set of stable models of the reduct.
Solvers have been developed for some of these approaches, but new semantics/variations have
been introduced, and are likely to be introduced in the future, as there is no consensus yet on the
“right” semantics.

We propose a fast-prototyping approach to obtain a solver for any reduct-based semantics, with
the advantage to be able to experiment the approach on small/medium programs, and not only on
very small programs as done so far. We have devised the method for our new semantics that we
present below, but it turned out to be of general applicability for a class of reduct-based semantics.
So, the demanding process of implementing a performant dedicated solver can be undertaken
only when and if really deemed worthwhile.

The paper is organized as follows. In Section 2 we recall Answer Set Programming. In
Section 3 we briefly recall ELPs and their (envisaged) semantic properties. In Section 4 we report
the formal definition of the main existing semantics for ELPs, including our own. In Section 5 we
introduce and discuss our proposal to the construction of a solver given a reduct-based semantics
with no regard to efficiency, but rather to fast prototyping. Finally, in Section 6 we conclude. In the
Appendix, for the sake of completeness, in we report tables with the results that well-established
semantics return on some tiny programs, and a list of available ELP solvers.

2. Answer Set Programming and Answer Set Semantics

In ASP one can see a program as a set of statements that specify a problem, where each answer
set represents a solution compatible with this specification. Whenever an ASP program has no
answer sets, it is said to be inconsistent, otherwise it is said to be consistent. Syntactically, an
ASP program Π is a collection of rules of the form

𝐴1 ∨ . . . ∨𝐴𝑔 ← 𝐿1, . . . , 𝐿𝑛.

where each 𝐴𝑖, 0 ≤ 𝑖 ≤ 𝑔, is an atom, ∨ indicates disjunction and the 𝐿𝑖s, 0 ≤ 𝑖 ≤ 𝑛, are literals
(i.e., atoms or negated atoms of the form 𝑛𝑜𝑡𝐴). The left-hand side and the right-hand side of
the rule are called head and body, resp. A rule with empty body is called a fact. Disjunction can
occur in rule heads only, so, in facts. A rule with empty head (or, equivalently, with head ⊥), of
the form ‘← 𝐿1, ..., 𝐿𝑛.’ or ‘⊥ ← 𝐿1, ..., 𝐿𝑛.’, is a constraint, stating that 𝐿1, . . . , 𝐿𝑛 are not
allowed to be simultaneously true in an answer set. The impossibility to fulfill such requirement



is one of the reasons that make a program inconsistent. All extensions of ASP not explicitly
mentioned above are not considered in this paper. We implicitly refer to the “ground” version of
Π, which is obtained by replacing in all possible ways the variables occurring in Π with constants
occurring in Π, and is thus composed of ground atoms, i.e., atoms which contain no variables.

The answer set (or “stable model”) semantics, first introduced in [3, 11], can be defined in
several ways [12, 13]. However, answer sets of a program Π, if any exists, are the supported
minimal classical models of the program interpreted as a first-order theory in the obvious way.
The original definition from [3], introduced for programs where rule heads were limited to be
single atoms, was in terms of the ‘GL-Operator’. Given set of atoms 𝐼 and program Π, 𝐺𝐿Π(𝐼) is
defined as the least Herbrand model of the program Π𝐼 , namely, the (so-called) Gelfond-Lifschitz
reduct of Π w.r.t. 𝐼 . Π𝐼 is obtained from Π by: 1. removing all rules which contain a negative
literal 𝑛𝑜𝑡𝐴 for 𝐴 ∈ 𝐼; and 2. removing all negative literals from the remaining rules. The fact
that Π𝐼 is a positive program ensures that a least Herbrand model exists and can be computed
via the standard immediate consequence operator [14]. Then, 𝐼 is an answer set whenever
𝐺𝐿Π(𝐼) = 𝐼 .

3. Epistemic Logic Programs

Epistemic Logic Programs allow one to express within ASP programs so-called subjective literals
(in addition to objective literals, that are those that can occur in plain ASP programs, plus
the truth constants ⊤ and ⊥). Such new literals are constructed via the epistemic operator K
(disregarding, without loss of generality, the other epistemic operators). A positive subjective
literal can be of the form K𝐴 or K𝑛𝑜𝑡𝐴 where 𝑛𝑜𝑡 is usual ASP default negation, and their
negative counterpart can be of the form 𝑛𝑜𝑡K𝐴 or 𝑛𝑜𝑡K𝑛𝑜𝑡𝐴. For the sake of simplicity, we do
not consider double negation either inside or outside a subjective literal. Nesting of epistemic
operators is not considered here. The literal K𝐿 means that the (ground) literal 𝐿 is true in every
answer set of a given program Π (i.e., 𝐿 is a cautious consequence of Π).

The syntax of rules of ELP programs is analogous to ASP, save that literals in the body can
now be either objective or subjective. An ELP program is called objective if no subjective literals
occur therein, i.e., it is an ASP program. A constraint involving (also) subjective literals is called
a subjective constraint, where one involving objective literals only is an objective constraint. Let
𝐴𝑡 be the set of atoms occurring (within either objective or subjective literals) in a given program
Π, and Atoms(𝑟) be the set of atoms occurring in rule 𝑟. Let Head(𝑟) be the head of rule 𝑟 and
Bodyobj (𝑟) (resp., Bodysubj (𝑟)) be the (possibly empty) set of objective (resp., subjective) literals
occurring in the body of 𝑟. We often write Head(𝑟) and Bodyobj (𝑟) in place of Atoms(Head(𝑟))
and Atoms(Bodyobj (𝑟)), respectively, when the intended meaning is clear from the context. We
call subjective rules those rules whose body is made of subjective literals only.

The various semantics proposals for ELPs are based on the notion of world views: namely,
sets of sets of atoms. A world view provides possible truth values for all literals in a program.
Different proposals characterize in a different way how to define world views and how to find
them. There are cases where different semantics however agree.

For instance, the program

{𝑎←𝑛𝑜𝑡 𝑏, 𝑏←𝑛𝑜𝑡 𝑎, 𝑒←𝑛𝑜𝑡K𝑓, 𝑓←𝑛𝑜𝑡K𝑒}



has, under every semantics, two world views: [{𝑎, 𝑒}, {𝑏, 𝑒}], where K𝑒 is true and K𝑓 is false,
and [{𝑎, 𝑓}, {𝑏, 𝑓}] where K𝑓 is true and K𝑒 is false. Note that, according to a widely-used
convention, each world view, which is a set of sets, is denoted by using brackets [ ]. The presence
of two answer sets in each world view of the above program is due to the cycle on objective atoms,
whereas the presence of two world views is due to the cycle on subjective atoms (in general, the
existence and number of world views is related to such cycles, cf., [15] for a detailed discussion).

Let a semantics 𝒮 be a function mapping each program into sets of ‘belief views’, i.e., sets
of sets of atoms, where 𝒮 has the property that, if Π is an objective program, then the unique
member of 𝒮(Π) is the set of stable models of Π. Given a program Π, each member of 𝒮(Π)
is called an 𝒮-world view of Π (we will often write “world view” in place of “𝒮-world view”
whenever mentioning the specific semantics is irrelevant). The main existing semantic approaches
for ELPs are introduced in Section 4.

As usual, for any world view 𝑊 and any subjective literal K𝐿, we write 𝑊 |= K𝐿 iff for
all 𝐼 ∈ 𝑊 the literal 𝐿 is satisfied by 𝐼 (i.e., if 𝐿 ∈ 𝐼 for 𝐿 atom, or 𝐴 ̸∈ 𝐼 if 𝐿 is 𝑛𝑜𝑡𝐴).
𝑊 satisfies a rule 𝑟 if each 𝐼 ∈𝑊 satisfies 𝑟.

An interesting attempt to establish useful properties that ELP’s semantics should obey can be
found in [16, 17, 18]. The authors state that properties analogous to the ones which have been
defined over time for ASP might prove useful for ELPs as well. In ASP, in fact, the answer sets
of a given program can be computed incrementally, starting from the answer sets of the so-called
bottom part of the program, which are used to simplify the so-called top part, where the process
can be iterated by further splitting the top and/or the bottom [19]. Hence, authors of [16, 17, 18]
extend to ELPs this idea by proposing a notion of Epistemic Splitting, where top and bottom are
defined w.r.t. the occurrence of epistemic operators. They also consider Subjective Constraint
Monotonicity and Foundedness. The property of Subjective Constraint Monotonicity states that,
for any ELP program Π and any subjective constraint 𝑟, 𝑊 is a world view of Π ∪ {𝑟} iff both
𝑊 is a world view of Π and 𝑊 satisfies 𝑟. Thus, if this property is fulfilled by a semantic 𝒮, a
constraint can rule out world views but it cannot rule out some answer set from within a world
view. Notice that Epistemic Splitting implies Subjective Constraint Monotonicity. Foundedness
implies that atoms occurring in sets within a world view cannot have been derived through cyclic
positive dependencies, where, to define such dependencies, K𝐴 is seen as the same as 𝐴. Finally,
they define the class of Epistemically Stratified Programs that admit a unique world view (these
programs are those where, intuitively, the use of epistemic operators is stratified).

4. Proposals for ELP Semantics

We report below some of the most relevant semantic definitions for ELPs. To compare the
behavior of the various semantics on practical tiny examples, the reader may refer to Tables 1 and
2 in the Appendix. At present, there is no consensus about which is the ‘right’ semantic approach,
and which results a semantics should return on controversial examples (e.g., on those reported in
Table 2). A debate is quite alive about what should be the ‘intuitive’ outcome on these examples.
This constitutes a strong motivation for our approach, i.e., providing a way of quickly and easily
constructing a solver so as to be able to make experiments with new semantic approaches or with
variations of existing ones.



We start with the seminal definition of the first ELP semantics, introduced in [2], that we call
for short G94. Let Π be an ELP program, and 𝑟 a rule occurring therein.

Definition 4.1 (G94-world views). The G94-reduct of Π with respect to a non-empty set of
interpretations 𝑊 is obtained by: (i) replacing by ⊤ every subjective literal 𝐿 ∈ Bodysubj (𝑟)
such that 𝐿 is of the form K𝐺 and 𝑊 |= 𝐺, and (ii) replacing all other occurrences of subjective
literals of the form K𝐺 by ⊥. A non-empty set of interpretations 𝑊 is a G94-world view of Π iff
𝑊 coincides with the set of all stable models of the G94-reduct of Π with respect to 𝑊 .

This definition was then extended to a new one in [4], that we call for short G11:

Definition 4.2 (G11-world views). The G11-reduct of Π w.r.t. a non-empty set of interpretations
𝑊 is obtained by: (i) replacing by ⊥ every subjective literal 𝐿 ∈ Bodysubj (𝑟) such that 𝑊 ̸|= 𝐿,
(ii) removing all other occurrences of subjective literals of the form 𝑛𝑜𝑡K𝐿. (iii) replacing all
other occurrences of subjective literals of the form K𝐿 by 𝐿. The set 𝑊 is a G11-world view of
Π iff 𝑊 coincides with the set of all stable models of the G11-reduct of Π w.r.t. 𝑊 .

In [16], it is noticed that the semantics K15 introduced in [20] and recalled by the following
definition, slightly generalizes the semantics proposed in [4]:

Definition 4.3 (K15-world views). The K15-reduct of Π w.r.t. a non-empty set of interpretations
𝑊 is obtained by: (i) replacing by ⊥ every subjective literal 𝐿 ∈ Bodysubj (𝑟) such that 𝑊 ̸|= 𝐿,
and (ii) replacing all other occurrences of subjective literals of the form K𝐿 by 𝐿. The set 𝑊 is a
K15-world view of Π iff 𝑊 coincides the set of all stable models of the K15-reduct of Π w.r.t. 𝑊 .

Semantics G11 and K15, that are refinements of the original G94 semantics, have been
proposed over time to cope with new examples that were discovered, on which existing semantic
approaches produce unwanted or not intuitive world views. K15 can be seen as a basis for the
semantics proposed in [7] (called S16 for short). In particular, S16 treats K15 world views as
candidate solutions, to be pruned in a second step, where some world views are removed, by
applying the principle of keeping those which maximize what is not known. World views in
[7] are obtained in particular as follows, where note however that the authors of [7] consider
the operator not, that can be rephrased as 𝑛𝑜𝑡K𝐴 where 𝑛𝑜𝑡 is ASP standard ‘default negation’
(meaning that 𝐴 must be false in some answer set of a given world view).

Let 𝐸𝑃 (Π) be the set of literals of the form not 𝐹 occurring in given program Π.

Definition 4.4 (S16-world views). Given Φ ⊆ 𝐸𝑃 (Π), the Epistemic reduct ΠΦ of Π w.r.t. Φ
is obtained by: (i) replacing every not 𝐹 ∈ Φ with ⊤, and (ii) replacing every not 𝐹 ̸∈ Φ with
𝑛𝑜𝑡 𝐹 . Then, the set 𝒜 of the answer sets of ΠΦ is a candidate world view if every not 𝐹 ∈ Φ is
true w.r.t. 𝒜 (i.e., 𝐹 is false in some answer set 𝐽 ∈ 𝒜) and every not 𝐹 ̸∈ Φ is false (i.e., 𝐹 is
true in every answer set 𝐽 ∈ 𝒜).

We say that 𝒜 is obtained from Φ (or it is corresponding to Φ, or that it is a candidate world
view w.r.t. Φ), where Φ is called a candidate valid guess. Then, 𝒜 is an S16 world view if it is
maximal, i.e., if there exists no other candidate world view obtained from guess Φ′ where Φ ⊂ Φ′

(so, Φ is called a valid guess).



All the above semantics, in order to check whether a belief view 𝒜 is indeed a world view,
do the following: define some kind of reduct, reminiscent of the one introduced to define to
the stable model semantics, and 𝒜 is a world view if it is stable w.r.t. this reduct, typically if it
coincides with the stable models of the reduct. Variations are possible, like, e.g., the minimality
criterium adopted by S16. Therefore, we say that all previously introduced approaches, as well
as any other similar one, is reduct-based. This in contrast with other approaches that have been
proposed, where no notion of reduct is involved.

The F15 semantics [6, 21] for instance, is based on very different principles, namely, it is
based on a combination of Equilibrium Logic [22, 23] with the modal logic S5. There, an EHT
interpretation associates, via a function ℎ, a belief view 𝒜 with another belief view 𝒜′ composed,
for every set 𝐴 ∈ 𝒜, of sets 𝐴′ ⊆ 𝐴. The purpose is to state that an implication is entailed, in any
“belief point”, i.e., in any interpretation 𝐴 ∈ 𝒜, by the couple ⟨𝒜,𝒜′⟩ if it is entailed either by 𝒜
or by 𝒜′. An EHT interpretation satisfies a theory in the usual way, and is total on a subset 𝒳 of
𝒜 if ℎ gives back sets in 𝒳 unchanged. A total EHT model can be an equilibrium EHT model,
and is defined to be an F15 world view, if it is minimal according to two particular minimality
conditions (not reported here).

Differently from F15, FAAEL [18] is based on the modal logic KD45. To define FAAEL,
a belief view is transformed from a set of interpretations to a set of HT-interpretations, i.e.,
interpretations in terms of the logic of Here-and-There (HT) [24] which are couples ⟨𝐻,𝑇 ⟩
of ‘plain’ interpretations. A belief view is total if 𝐻 = 𝑇 for all composing interpretations,
thus reducing to the previous notion of belief view. A total version of any belief view can be
formed, taking all the 𝑇 ’s as components. A belief interpretation is now a belief view plus an HT
interpretation, say 𝐻̂ , possibly not belonging to the belief view. The peculiarity of the entailment
relation (defined in terms of HT logic) is in the implication, that must hold (in the usual way) in
the belief interpretation, but also in the total version of the belief view therein. For total belief
interpretations, the new relation collapses to the modal logic KD45. An epistemic interpretation
(i.e., a non-empty set of interpretations) is defined to be a belief model if all its composing HT
interpretation as well as 𝐻̂ entail all formulas of a given theory. It is an epistemic model, if
𝐻̂ is among the composing interpretations, and it is an equilibrium belief model if it satisfies
certain minimality conditions. A belief view is a FAAEL world view if it is “extracted” from an
equilibrium belief model ℰ by taking all the 𝑇 components of each ⟨𝐻,𝑇 ⟩ which is found in ℰ .
For formal definitions of F15 and FAAEL, that for lack of space we cannot report here, we refer
the reader to the aforementioned references. Also, we apologize with the readers and with the
authors, because for lack of space, we do not consider other recent semantics, such as [9, 25].

FAAEL satisfies [17] Epistemic Splitting, Subjective Constraint Monotonicity, and Founded-
ness. G94 satisfies Epistemic Splitting, Subjective Constraint Monotonicity, but not Foundedness.
In [18], it is proved that FAAEL world views coincide with founded G94 world views, where
(roughly) founded world views are those where in every composing interpretation, objective atom
𝐺 is never derived, directly or indirectly, from K𝐺; c.f. [26] for a discussion on foundedness,
very partially reported below. All the other above-mentioned semantic approaches satisfy none of
these properties.

Respecting all the three properties implies that ELP programs behave very much like ASP
programs; in this way, on the one hand many theoretical results developed for ASP can be
extended to ELP, but on the other hand the introspective capabilities of epistemic reasoning that



inspired their introduction are, in our opinion, neglected. Basically in fact, the difference that
remains w.r.t. ASP and ELP under. e.g., FAAEL, is that a negative cycle on epistemic literals
like the one in the already-seen example leads to two world views, or, better, two for each such
cycle; this analogously to how cycles on default negation in ASP that lead to two answer sets.
When the two kinds of cycles can co-exist, a world view is composed of several answer sets. This
phenomenon is widely discussed in [15], where the number of resulting world views for a given
program is also evaluated.

Thus, a discussion about which properties are “really” required to be necessarily respected is
in order. Respecting one or more of them could even be a design choice: according to a specific
application context of ELPs, one might choose a semantics rather than another one from a ‘toolkit’
of existing ones.

Foundedness appears to be a reasonable property to fulfill. The problem of unfounded world
views was discovered a long time ago with G94. In fact, in the example:

𝑎← K𝑎.
one has that [{𝑎}] is a G94 world view, in that it entails K𝐴, thus allowing 𝐴 to be derived. This
is due to the fact that, in many approaches, what is known is dictated by the world view, and there
is no way to impose that it should be consistently derived from the program as well. Reduct-based
semantic approaches subsequent to G94, although devised to try to overcome this problem, still
do not satisfy foundedness.

Subjective Constraint Monotonicity is more controversial. According to the definition of this
property, adding a constraint might rule out world views, but could not possibly modify existing
ones. To see why this point of view may not be fully convincing, consider the following answer
set program, which is after all a particular case of an epistemic logic program, where no epistemic
literals occur:

𝑎 ∨ 𝑏.
← 𝑛𝑜𝑡 𝑎.

If it consisted of the first rule only (that constitutes, notice, the program without the constraint),
its unique world view would coincide with the set of its answer sets, i.e., [{𝑎}, {𝑏}]. Adding the
constraint to the program rules out the answer set {𝑏}, so to every extent it modifies the world
view of the program to be [{𝑎}]. Thus, apparently, the ASP semantics does not fulfill Subjective
Constraint Monotonicity, according to which the constraint should “validate” the world view if
fulfilled, or cancel it if violated.

Consider now the very similar epistemic logic program:
𝑎 ∨ 𝑏.
← 𝑛𝑜𝑡K𝑎.

Under many semantics what happens is absolutely analogous (as in our opinion should be),
leading to the unique world view [{𝑎}, {𝑏}] of the rule being modified into [{𝑎}] to fulfill the
constraint. This is in fact the result returned by K15 and S16, and also by CF22F, seen below. In
these semantics therefore, the property of Subjective Constraint Monotonicity is not satisfied.

The CF22F reduct-based semantics has been proposed in a preliminary form and subsequently
refined by the authors of the present paper [27, 26], and is reported below for the sake of
completeness. In this approach, we consider subjective literals K𝐺 and Knot𝐺 as new atoms,
called knowledge atoms. Negation 𝑛𝑜𝑡 in front of knowledge atoms is assumed to be the standard
default negation. So, instead of ELPs proper, we here equivalently consider ASP programs (called



below just ‘programs’) possibly involving knowledge atoms. Let SM (Π) be the set of answer
sets of such a program Π.

First of all we introduce the concept of internal consistency of a set of atoms.

Definition 4.5. A set 𝐴 of atoms, composed of objective atoms and knowledge atoms, is said to
be knowledge-consistent iff the following conditions both hold:

(i) if K𝐺 ∈ 𝐴 then 𝐺 ∈ 𝐴;
(ii) if Knot𝐺 ∈ 𝐴 then 𝐺 ̸∈ 𝐴.

Notice that a set of objective atoms is knowledge-consistent: as no knowledge atom appears
therein, both conditions stated in the definition are trivially satisfied.

Definition 4.6. Given ASP program Π possibly involving knowledge atoms, let SMC (Π) be the
set of those answer sets of the program which are knowledge-consistent.

Property 4.1. The set SMC (Π) coincides with the set of the stable models of the program Π′

obtained from Π by adding, for each knowledge atom K𝐺 or Knot𝐺 occurring in Π, constraints:

← K𝐺,𝑛𝑜𝑡𝐺
← Knot𝐺,𝐺.

An epistemic interpretation𝒲 is in our case a possibly empty set of sets of atoms, each such
set composed of objective atoms occurring in the head of some (possibly unit) rule in Π. We
make a difference with previous approaches where we allow𝒲 to be empty. We make a slight
improvement with the subsequent condition, that holds anyway for world views obtained via any
semantics.

Definition 4.7. [CF22F-adaptation] The CF22F-adaptation Π-𝒲 of a program Π with respect
to an epistemic interpretation𝒲 is a new program, now obtained by modifying Π as follows:

(i) whenever𝒲 |= 𝐺, in all rules with head 𝐺 substitute head 𝐺 with K𝐺, and add new rule
𝐺← K𝐺 and

(ii) whenever𝒲 |= 𝑛𝑜𝑡𝐺, add new fact Knot𝐺.

Let 𝐹Π-𝒲 be the set of the newly added rule heads of the form K𝐺.

The CF22F adaptation is none other than our definition of a reduct, though extended with
respect to previously-known ones.

Definition 4.8. Given an epistemic interpretation𝒲 for program Π, we call SM ′(Π) the set of
sets obtained from SMC (Π) by canceling knowledge atoms.

Definition 4.9 (CF22F world view). An epistemic interpretation𝒲 is called a CF22F world
view of a program Π if𝒲 = SM ′(Π-𝒲).



To provide a demonstration of the new semantics, consider the epistemic logic program:

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎.

Consider the epistemic interpretation𝒲 = [∅]. According to Definition 4.7, to obtain Π-𝒲 the
only added fact is: K𝑛𝑜𝑡 𝑎. We have that SMC (Π-𝒲) = [{K𝑛𝑜𝑡 𝑎}], thus SM ′(Π-𝒲) = [∅], so
𝒲 is a CF22F world view.

Consider the epistemic interpretation𝒲 = [{𝑎}]. According to Definition 4.7, the program
becomes:

K𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎.
𝑎← K𝑎.

We have that SM (Π-𝒲) = SMC (Π-𝒲) = [{K𝑎, 𝑎}] (as fact K𝑛𝑜𝑡 𝑎 is not present, its
negation is true), thus SM ′(Π-𝒲) = [{𝑎}], so𝒲 is a CF22F world view.

On this example, we notice an agreement among CF22F and G94, G11, FAAEL. Notice that
the minimization criterion does not apply here, as the sets of facts and/or rules added according
to Definition 4.7 for the two possible epistemic interpretations are not one a subset of the other.

It is easy to prove (proof not reported here) that CF22F enjoys foundedness, yet not Subjective
Constraint Monotonicity. Let us consider again program:

𝑎← K 𝑎.
the CF22F-adaptation transforms the program into:

𝑎← K 𝑎.
K 𝑎← K 𝑎.

This program has no answer sets, thus [{𝑎}] is not a CF22F world view.
We may notice that, the S16 semantics is remarkable in the sense that it maximizes what is not

known, which is equivalent to minimizing what is known. The proposers of S16 consider each
potential world view (that in their approach is associated to a guess about what is not known) as a
candidate world view, and discard those for which there exists another one with a larger guess on
what is not known (equivalently, a smaller guess on what is known), in terms of set inclusion.
Rephrasing their criterion (referred to as S16C) in terms of our approach, we have:

Definition 4.10 (S16 Criterion - CF22F+S16C). Each world view 𝒲 as defined in Defini-
tion 4.9 is considered to be a candidate world view. A candidate world view𝒲 is indeed a world
view under CF22F+S16C if no other candidate world view𝒲’ exists, where 𝐹Π-𝒲 ′⊂𝐹Π-𝒲 .

5. Fast Prototyping of a Solver for Reduct-based Semantic
Approaches

As reported in [28], evaluating ELPs is a computationally hard task. The central decision
problem, checking whether an ELP has a world view, is Σ3

𝑃 -complete [7, 29], and problems
even higher on the polynomial hierarchy exist. As reported in Table 3 in the Appendix, solvers
for various semantic approaches have been developed (cf. [30, 31, 20, 32] for discussion and
useful references). In order to perform experiments on CF22F, we devised and illustrate below a
method which allows one to obtain very quickly a solver for any reduct-based semantics, without
implementation effort. Thus, researchers proposing new semantic approaches (as it often happens)



or extending/modifying an existing one can exploit the method in order to make experiments.
It must be noticed however that the method provides correctness of the solver w.r.t. a given
semantics, but does not cope with efficiency issues. Thus, given the high complexity of evaluating
ELPs, the prototypical solver obtained via our method can be only used to experiment with
program of small-medium size, which is however better than just considering the tiny ones shown
in the Appendix.

Notice that, for checking whether an epistemic interpretation𝒲 is a world view for program Π
according to a semantics 𝒮 based upon a definitionℛ of a reduct, one has to applyℛ to𝒲 , then
find the set𝒲intermediate of answer sets of the reduced program Πℛ, then possibly perform some
post-processing 𝒫 , thus obtaining𝒲final . 𝒲 is a world view of Π according to 𝒮 iff𝒲 =𝒲final .
In the case of CF22F for instance, the post-processing cancels from 𝒲intermediate those sets
which are not knowledge consistent, and then cancels knowledge atoms.

In order to find all the world views of Π, one has to devise all the epistemic interpretations.
Given the set 𝐴𝑡Π of the atoms occurring in Π (after the grounding), one has to find all the subsets
of such set, and all the sets of such subsets. The sets so found should then be filtered, to select
those including atoms occurring as the head of some rule in Π. Clearly, this process as whole has
a high complexity, basically it ‘absorbs’ most of the complexity of the entire method. Then, all
the epistemic interpretations must be checked, and if applying the minimality criterion as defined
in S16 and adopted in CF22F+S16C, the resulting ‘candidate’ world views must be filtered, and
this, as discussed in [7], adds further complexity.

The method can be automated as illustrated below, resorting to a single call to an answer set
solver (although on a large instance).

Definition 5.1. Let 𝐴𝑡𝑖Π, for an integer positive number 𝑖, be the standardized apart 𝑖-th version
of 𝐴𝑡Π obtained by substituting each atom 𝐴 therein by a fresh atom 𝐴𝑖. The standardized apart
𝑖-th version Π𝑖 of program Π is obtained by substituting each atom in Π with its standardized
apart counterpart.

Definition 5.2. Given an ELP program Π and a semantic 𝒮 with associated reduct definitionℛ
and (possibly) post-processing definition 𝒫 , let us assume to have implemented:

1. A module 𝑀𝒲 that will return the epistemic interpretations𝒲1, . . . ,𝒲𝑘 of Π.
2. A module 𝑀sa that, given𝒲1, . . . ,𝒲𝑘, will generate a new program Πsa obtained as the

union of the standardized apart 𝑖-th versions of Π, 𝑖 ≤ 𝑘.
3. A module 𝑀red that applies the reductℛ to Πsa , thus obtaining Π𝑠𝑎𝑅

4. A module 𝑀int extracting𝒲 𝑖
intermediate , 𝑖 ≤ 𝑘, by selecting from the answer sets of Π𝑠𝑎𝑅

(obtained via any answer set solver) all the answer sets composed of the 𝑖-th standardized
apart atoms, collecting them into 𝒲 𝑖

intermediate , and finally de-standardizing-apart the
atoms, i.e., substituting each atom 𝐴𝑖 with 𝐴.

5. A module 𝑀Post applying post-processing 𝒫 to𝒲 𝑖
intermediate , 𝑖 ≤ 𝑘, thus obtaining𝒲 𝑖

final ,
𝑖 ≤ 𝑘.

6. A module 𝑀compare that selects from the𝒲 𝑖
final , 𝑖 ≤ 𝑘, those which are world views, as

they coincide with𝒲𝑖, and returns the actual set of world views.
7. A module 𝑀filter that, if a minimality criterion has to be applied, selects among the world

views, here intended as ‘candidate’, those fulfilling the criterion.



Definition 5.3. The ‘quick solver’ for a semantic 𝒮 for ELPs with associated reduct definitionℛ
and (possibly) post-processing definition 𝒫 , which returns all world views of given program Π
according to 𝒮 , is obtained by running on Π the pipeline of the modules listed in Definition 5.2.

Correctness of the ‘quick solver’ w.r.t. a semantic 𝒮 depends upon the correct implementation
of the various modules, that however should not be difficult to ensure. In fact, each module copes
with a single aspect and will thus show enough transparency and a reasonable size.

6. Conclusions

We have revised semantic approach for ELPs, including our new approach called CF22F, not yet
presented elsewhere. The experiments of CF22F on several examples taken from the relevant
literature, for which the outcome of the other most relevant semantic approaches was well-known
(experiments not reported here for lack of space), gave surprising results. In fact, CF22F does
not agree uniformly with any of the other semantics, and in some cases it agrees with none of
them. CF22F agrees most frequently with S16, often without even applying the S16C Criterion.
More investigation and more experiments are required to understand the reasons. In order to
make experiments, we devised a method for fast prototyping of solvers for reduct-based semantic
approaches. The method can be used for CF22F, but also for any other extension/new proposal.
The issue of efficiency is not coped with, yet the method allows one to experiment a semantic on
much larger examples than those frequently used in the literature, and listed in Tables 1 and 2 in
the Appendix. Thus, we believe that it can be useful to researchers in the area.
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Table 1
On the left, examples where G94, G11, K15, F15, S16, and FAEEL agree. On the right, examples
where G94/G11/FAEEL differ from K15/F15/S16. (Taken from [18].)

Program World views

𝑎 ∨ 𝑏 [{𝑎}, {𝑏}]

𝑎 ∨ 𝑏
𝑎← K𝑏

[{𝑎}, {𝑏}]

𝑎 ∨ 𝑏
𝑎← 𝑛𝑜𝑡K𝑏

[{𝑎}]

𝑎 ∨ 𝑏
𝑐← 𝑛𝑜𝑡K𝑏

[{𝑎, 𝑐}, {𝑏, 𝑐}]

𝑎← 𝑛𝑜𝑡K𝑏
𝑏← 𝑛𝑜𝑡K𝑎

[{𝑎}], [{𝑏}]

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎
𝑎← 𝑛𝑜𝑡K𝑎

[{𝑎}]

Program G94/G11/FAEEL K15/F15/S16

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 [∅], [{𝑎}] [{𝑎}]

𝑎 ∨ 𝑏
𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏

none [{𝑎}]

𝑎 ∨ 𝑏
𝑎← K𝑛𝑜𝑡 𝑏

[{𝑎}], [{𝑎}, {𝑏}] [{𝑎}, {𝑏}]

𝑎← 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎

[∅], [{𝑎, 𝑏}] [{𝑎, 𝑏}]

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎

[∅], [{𝑎}, {𝑏}] [{𝑎}, {𝑏}]
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A. Semantic Results for Interesting ELP Programs
In Tables 1 and 2 a summary is reported, taken from [18], of how the previously-existing semantics
presented in this paper behave on some examples which are considered to be significant of situations that
can be found in practical programming.

B. Available ELP Solvers
Table 3 shows, to the best of our knowledge, a list of available solvers for the semantics reported in
previous sections.
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Table 2
Examples showing differences among several semantics. (Taken from [18].)

Program G94 G11/FAEEL K15 F15/S16

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏 ∧ 𝑛𝑜𝑡 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 ∧ 𝑛𝑜𝑡 𝑎

[∅], [{𝑎}, {𝑏}] [{𝑎}, {𝑏}]

𝑎← K𝑎 [∅], [{𝑎}] [∅]

𝑎← K𝑎
𝑎← 𝑛𝑜𝑡K𝑎

[{𝑎}] none

Table 3
List of solvers available for the semantics summarized in Section 4

Solver Year Semantics Underlying
ASP-solver

Impl. language Available form

ELMO 1994 G94 dlv Prolog n/a

sismodels 1994 G94 claspD C++ n/a

Wviews 2007 G94 clingo C++ Windows binary

Esmodels 2013 G11 clingo (unknown) Windows binary

ELPS 2014 K15 clingo Java source+binary

GISolver 2015 K15 clingo (unknown) Windows binary

ELPsolve 2016 K15/S16 clingo C++ binary only

Wviews2 2017 G94 clingo Python Windows binary

EP-ASP 2017 K15/S16 clingo Python+ASP Windows binary

PelpSolver 2017 S16 clingo Java Windows binary

ELPsolve2 2017 S16 clingo C++ currently not public release

EHEX 2018 S16 clingo Python source

selp 2018 S16 clingo Python source

eclingo 2020 G94 clingo Python source
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