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Abstract In this work we study the deformation of

clean and surfactant-laden droplets in laminar shear-

flow. The simulations are based on Direct Numerical

Simulation of the Navier–Stokes equations coupled

with a Phase Field Method to describe interface

topology and surfactant concentration. Simulations

are performed considering both 2D (circular droplet)

and 3D (spherical droplet) domains. First, we focus on

clean droplets and we characterize the droplet shape

and deformation. This enables us to define the range of

parameters in which theoretical models well predict

the results obtained from 2D and 3D simulations.

Then, surfactant-laden droplets are considered; the

main factors leading to larger droplet deformation are

carefully described and quantified. Results obtained

indicate that the average surface tension reduction and

the accumulation of surfactant at the tips of the

deformed droplet have a dominant role, while tangen-

tial stresses at the interface (Marangoni stresses) have

a limited effect on the overall droplet deformation.

Finally, the distribution of surfactant over the droplet

surface is examined in relation to surface deformation

and shear stress distribution.

Keywords Phase field method � Droplet � Surfactant

1 Introduction

The deformation of a droplet in a simple shear flow is

of fundamental relevance in a number of flowing

system of industrial and biological interest. Possible

applications include the formation and rheology of

emulsions [7], emulsifying devices [18], polymer

blending [9], oil recovery [19] and the study of red

blood cells [36].

This problem was first tackled by Taylor [33, 34],

who developed an analytic formula able to predict the

deformation of a droplet in shear flow. This formula,

developed under the hypotheses of small deformations

and negligible inertia effects, constitutes a simple tool

for the calculation of droplet deformation. Within

these hypotheses, the droplet steady-state deformation

is a function of the capillary number, Ca (dimension-

less number that expresses the ratio between viscous

and surface tension forces) and of the viscosity ratio

among the two phases. The capillary number high-

lights the two principal factors involved in droplet

deformation: the shear rate, which tries to deform the

droplet, and surface tension, which acts to restore the

spherical shape of the droplet.

The simple configuration considered and the imme-

diacy of the analytic formula made it a widely used

tool for benchmark and validation of numerical
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methods and experimental facilities. Later, the accu-

racy of Taylor’s formula was improved by Shapira and

Haber [24], who introduced a correction for confine-

ment effects. These sets of prediction tools are now a

well assessed and easy to use benchmark for numerical

methods and codes for multiphase flows

[12, 26, 31, 35, 38, 40].

Being a validation test, a fast and lightweight

simulation is often preferable; for this reason two-

dimensional (2D) simulations are usually preferred to

their three-dimensional (3D) counterparts. Clearly, 2D

and 3D cases are substantially different: the formers

are circular droplets (cylindrical when extended to

3D), while the latters are spherical droplets. Reducing

a three-dimensional case to a two-dimensional one is

indeed a drastic simplification, in which several effects

are strongly affected (suppression of capillary insta-

bilities, longer and stronger near-contact droplet

interaction) but main effects are kept (development

of high interfacial curvature regions, tip streaming)

[41]. A first comparison between 2D and 3D simula-

tions results was performed by Zhou and Pozrikidis

[41] showing that 2D and 3D droplets exhibit a

comparable behavior. Similarly, Tang et al. [32]

arrived at analogous conclusions.

In this work we use Direct Numerical Simulation

(DNS) of the Navier–Stokes equations coupled with a

two-order-parameter phase field method (PFM) to

describe the interface topology and the surfactant

concentration [15, 26, 39]. We start by comparing the

deformation of circular (2D) and spherical (3D)

droplets and we extend previous works analyses

[32, 41] to investigate the limits of Taylor’s formula.

In particular, we trace back the similar deformation

experienced by circular and spherical droplets at low

Ca to the reduced shrinkage of the droplet in the

direction normal to the velocity-velocity gradient

plane. Then, we consider the effect of a soluble

surfactant on the overall droplet deformation. The

surfactant affects the droplet deformation introducing

three additional effects: (1) surfactant reduces surface

tension, thus leading to a lower average surface

tension over the interface; (2) the external shear

stresses accumulate surfactant at the droplet tips,

further reducing the local surface tension (of the

droplet tips); (3) the non-uniform surface tension over

the interface generates stresses tangential to the

interface (Marangoni). Simulations results allow us

to quantify the relative contribution of each different

effect in the overall droplet deformation. In particular,

we found that the average surface tension reduction

produced by the surfactant has a major contribution.

As a consequence, rescaling the capillary number on

the average surface tension (and thus considering the

average surface tension decrease), droplet deforma-

tion can be well predicted by the Taylor analytic

formula. Finally, we characterize the surfactant dis-

tribution over the interface and we compare qualita-

tively the different surface tension distribution (2D

versus 3D) droplets and the generated Marangoni

stresses.

The paper is organized as follows: first, the

simulation framework employed is presented in Sect.

2, then the results obtained from clean and surfactant-

laden droplets, and the comparison with analytical

predictions are presented and discussed in Sect. 3;

conclusions are drawn in Sect. 4.

2 Methodology

The dynamics of a multiphase flow with a surfactant is

modeled coupling pseudo-spectral-based solution of

the Navier–Stokes (NS) equation with a Phase Field

Method (PFM), used in a two-order-parameter formu-

lation, to compute the interface dynamics and the

surfactant concentration [15, 26, 39]. In the following,

the governing equations of the two order parameters,

phase field / and surfactant concentration w, will be
derived and then coupled with continuity and Navier–

Stokes (NS) equations to describe the hydrodynamics

of the system.

2.1 Governing equations

We consider a ternary system composed of a soluble

surfactant and two immiscible phases. In the frame-

work of the phase field method, such a system can be

described using two order parameters. A first-order

parameter, the phase field /, is used to describe the

interface. It is uniform in the bulk of the two phases

(/ ¼ �1) and it undergoes a smooth transition across

the interface. An additional order parameter,w, is used
to describe the surfactant concentration. This second

order parameter is uniform in the bulk of the phases

and reaches a maximum at the interface, where

surfactant molecules preferentially accumulate. The

phase field and the surfactant concentration are
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governed by two Cahn–Hilliard-like (CH) equations,

which in dimensionless form are:

o/
ot

þ u � r/ ¼ 1

Pe/
r � ðM/ð/Þrl/Þ ; ð1Þ

ow
ot

þ u � rw ¼ 1

Pew
r � ðMwðwÞrlwÞ : ð2Þ

In the above equations, u ¼ ðu; v;wÞ is the velocity

vector, l/ and lw are the two chemical potentials,M/

and Mw are the two mobilities (or Onsager coeffi-

cients) and Pe/ and Pew are the two Péclet numbers.

The latter ones represent the ratio between convective

and diffusive phenomena for the two order parameters.

The expressions of the chemical potentials l/ and lw
are derived from a two-order-parameter Ginzburg–

Landau free energy functional F½/;r/;w�. The

functional is modeled as the sum of five different

contributions:

F½/;r/;w� ¼
Z
X
ðf0 þ fmix þ fw þ f1 þ fEx

ÞdX ;

ð3Þ

where X is the domain considered.

The first term, f0, is the ideal part of the free energy

and describes the tendency of the system to separate

into two pure fluids (/ ¼ �1); this phobic behaviour is

modelled with a double-well potential:

f0 ¼
1

4
ð/� 1Þ2ð/þ 1Þ2 : ð4Þ

The mixing energy term, fmix, accounts for the surface

tension energy stored at the interface and is defined as:

fmix ¼
Ch2

2
jr/j2 : ð5Þ

In the above expression the Cahn number, Ch, sets the

thickness of the thin layer thickness. These two

contributions are a function only of the phase field /
and its gradient r/; their expressions match those

adopted to describe a clean system (absence of

surfactant) [21–23]. Surfactant is modeled with three

additional contributions to the energy functional

F½/;r/;w�. The first term is an entropy term, fw,

and expresses the entropy decrease obtained when the

surfactant is uniformly distributed in all the domain.

Its expression is the following:

fw ¼ Pi w logwþ ð1� wÞ logð1� wÞ½ � : ð6Þ

This contribution bounds the value assumed by w to

the range between w ¼ 0 (no surfactant) and w ¼ 1

(saturation of surfactant); the parameter Pi sets the

surfactant diffusivity. The second term, f1, describes

the accumulation of the surfactant at the interface;

indeed surfactant molecules preferentially gather at

the interface exposing their heads towards the water

phase and their tails towards the other phase.

f1 ¼ � 1

2
wð1� /2Þ2 ð7Þ

The last contribution, fEx
, penalizes the presence of

surfactant in the bulk of the two phases and it is defined

as:

fEx
¼ 1

2Ex

/2w : ð8Þ

The term fEx
has a relevant contribution in the bulk of

the two phases (/ ¼ �1) and vanishes at the interface

(/ ’ 0). The parameter Ex controls the surfactant

solubility in the bulk of the two phases.

The expressions of the chemical potentials are

obtained by taking the variational derivative of the

free energy functional with respect to / and w:

l/ ¼ dF
d/

¼ /3 � /� Ch2r2/ ; ð9Þ

lw ¼ dF
dw

¼ Pi log
w

1� w

� �
� ð1� /2Þ2

2
þ /2

2Ex

:

ð10Þ

In the phase field chemical potential, l/, the terms

depending on the surfactant concentration have been

removed. These terms induce an unphysical behavior

of the interface [26, 39] and, thus, to restore the correct

interfacial behavior they have been neglected. Further

details on this point can be found in Yun et al. [39] and

Soligo et al. [26].

From the expressions of the chemical potentials, the

equilibrium profiles of the two order parameters can be

obtained. For the phase field /, the equilibrium profile

is determined by the competition between f0 and fmix.

At the equilibrium, l/ ¼ leq/ in the entire domain and

thus:
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/ðxÞ ¼ tanh
xffiffiffi
2

p
Ch

� �
: ð11Þ

The phase field matches the values / ¼ �1 in the bulk

of the phases (x ! �1) and undergoes a smooth

transition following a hyperbolic tangent profile across

the interfacial layer. Likewise, the surfactant equilib-

rium profile can be deduced from Eq. (10): at the

equilibrium, the surfactant chemical potential is

constant throughout the entire domain. The surfactant

equilibrium profile results in:

wðxÞ ¼ wb

wb þ wcð/Þð1� wbÞ
; ð12Þ

where the auxiliary variable wc is a function of the

phase field solely:

wcð/Þ ¼ exp � 1� /2

2Pi
1� /2 þ 1

Ex

� �� �
: ð13Þ

At the equilibrium, surfactant concentration matches

the valuewb in the bulk (/ ¼ �1) and reaches its peak,

w0 ¼ wj/¼0, at the interface. The peak value of w (at

the equilibrium) depends on the surfactant bulk

concentration, wb, and on the parameters Ex and Pi.

The mobilities are set toM/ ¼ 1 [3] and toMwðwÞ ¼
wð1� wÞ respectively. Hence, the following expres-

sions for the Cahn–Hilliard-like equations are

obtained:

o/
ot

þ u � r/ ¼ 1

Pe/
r2ð/3 � /� Ch2r2/Þ ; ð14Þ

ow
ot

þ u � rw ¼ Pi

Pew
r2w

þ 1

Pew
r � MwðwÞr � ð1� /2Þ2

2
þ /2

2Ex

 !" #
:

ð15Þ

Equations (14) and (15) describe the time evolution of

phase field and surfactant concentration and are

coupled with the Navier–Stokes (NS) equations to

describe the hydrodynamics of the multiphase flow. In

the most general case, this approach can handle non-

matched properties [8, 21]. However, in this work, we

focus on the effect of surfactant solely and we thus

consider two phases with matched density

(q ¼ q1 ¼ q2) and viscosity (g ¼ g1 ¼ g2). Therefore,

continuity and Navier–Stokes equations can be written

as follows:

r � u ¼ 0; ð16Þ

ou

ot
þ u � ru¼�rpþ 1

Re
r2uþ 3ffiffiffi

8
p Ch

We
r � ½scfrðwÞ�;

ð17Þ

where u is the velocity field, p is pressure and the last

term of the right-hand side is the interfacial term,

which represents the surface tension forces. In the

interfacial term, sc ¼ jr/j2I�r/�r/, is the

Korteweg tensor [16] and frðwÞ is the equation of

state for surface tension. The expression employed

implicitly accounts for both normal (capillary) and

tangential (Marangoni) components of the surface

tension forces. In the Navier–Stokes equations, two

dimensionless groups are present: the Reynolds num-

ber, Re, ratio between inertial and viscous forces and

the Weber number, We, ratio between inertial and

surface tension forces. In the definition of We, the

surface tension of a clean interface (referred in the

following as r0) is used as reference. The action of the
surfactant on surface tension is described using an

Equation Of State (EOS) [4, 6]; in this work we adopt a

Langmuir EOS (Szyszkowski equation). In a dimen-

sionless form this EOS reads:

frðwÞ ¼
rðwÞ
r0

¼ 1þ bs log 1� wð Þ : ð18Þ

The elasticity number, bs, quantifies the strength of the
surfactant action: for a fixed concentration, the higher

is bs, the stronger is the surface tension reduction. The
original Langmuir EOS is valid in the limit of moderate

surfactant concentrations: experimental studies [6, 30]

showed that surface tension never reduces below roughly

half of its clean value. This effect is not captured by the

Langmuir EOS, which instead predicts an always

decreasing surface tension for increasing surfactant

concentrations. Therefore, this EOS well predicts the

surface tension reduction up to a saturation concentration

(ws), which corresponds to the lowest value achievable

by surface tension, frðwÞ ¼ 0:5.

ws ¼ 1� expð�0:5=bsÞ: ð19Þ

To account for this feature, the Langmuir EOS has

been modified to limit the surface tension decrease.

The EOS adopted in this work is the following:
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frðwÞ ¼
rðwÞ
r0

¼ max 1þ bs log 1� wð Þ; 0:5½ � : ð20Þ

2.2 Numerical method

The governing Eqs. (14–17) are solved in a closed

channel geometry using a pseudo-spectral method

[5, 11, 20]. In particular, the equations are discretized

using Fourier series in the streamwise and spanwise

directions (x and y) and Chebyshev polynomials along

the wall-normal direction (z). The governing equations

are advanced in time using an IMplicit–EXplicit

(IMEX) scheme. The linear diffusive term of the

equations is integrated using an implicit scheme,

whereas the non-linear term is integrated using an

explicit scheme. An Adams–Bashforth scheme is used

for discretization of the non-linear terms of the

Navier–Stokes equation, while a Crank–Nicolson

scheme is used for the linear term. The two Cahn–

Hilliard-like equations are time-discretized using

again an Adams–Bashforth algorithm for the non-

linear terms, while the linear terms are discretized

using an implicit Euler algorithm to improve the

numerical stability [3, 37]. The Navier–Stokes equa-

tion is rewritten and solved in the so-called velocity-

vorticity formulation. Instead of three 2nd order

equations for each component of the velocity, a 4th

order equation for the wall-normal component of the

velocity and a 2nd order equation for the wall-normal

component of the vorticity are obtained [13, 27]. The

phase field and the surfactant concentration transport

equations, 4th and 2nd order respectively, are directly

solved in the formulation presented above [25].

Specifically, the phase field is split into two 2nd order

equations, while the surfactant transport equation can

be directly solved (2nd order equation). Further details

on the numerical method can be found in our recent

work [26].

2.3 Boundary and initial conditions

A closed channel setup is employed to simulate the

deformation of a single droplet in shear flow (see

Fig. 1). Periodic boundary conditions are imposed on

all variables in the x and y directions (streamwise and

spanwise directions). For the flow field, no-slip

boundary conditions are enforced at the two solid

walls (z ¼ �h). In particular, at the walls, the

streamwise velocity is set equal to the top and bottom

wall velocity, uðz ¼ �hÞ ¼ �uw ¼ �1. For both

phase field and surfactant concentration no-flux

boundary conditions are enforced at the walls:

o/
oz

����
z¼�h

¼ 0;
o3/
oz3

����
z¼�h

¼ 0;
ow
oz

����
z¼�h

¼ 0: ð21Þ

The initial flow field is a linear profile along the z

direction, uðzÞ ¼ z=h. The phase field is initialized so

to obtain a spherical (circular for 2D simulations)

droplet located at the channel center. The phase field

has a uniform value in the droplet and carrier phase

(/ ¼ �1) and undergoes a smooth transition follow-

ing its equilibrium profile across the interface,

Eq. (11). The surfactant concentration is also initial-

ized with its equilibrium profile, Eq. (12): in the bulk

of the phases (/ ¼ �1) it is equal to the surfactant

bulk concentration,wb, while at the interface it reaches

its maximum value.

2.4 Simulation setup

All simulations have been performed in a laminar

shear flow configuration, Fig. 1. A single drop, with

diameter d ¼ 0:8h, is initialized at the channel centre.

The domain has dimensions Lx � Ly � Lz ¼ 2ph�
ph� 2h for the 3D simulations. When performing 2D

simulations the domain is shrank in the y-direction and

has dimensions Lx � Lz ¼ 2ph� 2h (red rectangle of

Fig. 1). The computational domain is discretized with

Nx � Ny � Nz ¼ 512� 256� 513 grid points (3D

simulations) and with Nx � Nz ¼ 512� 513 (2D sim-

ulations). The grid spacing is uniform along x and y

directions, while for the wall-normal direction we

adopt Chebyshev collocation points. Once defined the

grid, the Cahn number, parameter that controls the

thickness of the interfacial layer can be set. In

particular, the accurate description of the steep

gradients at the interface requires a minimum of 5

grid points across the interface. To meet this require-

ment the Cahn number has been set to Ch = 0.025. The

Péclet number for the phase field, Pe/, is determined

based on the scaling Pe/ ¼ 3=Ch ¼ 120. Concerning

the surfactant parameters, the Péclet number has been

set to Pew ¼ 100, while the temperature dependent

coefficient Pi and the solubility number Ex has been

set respectively to Pi ¼ 1:689 and Ex ¼ 0:1. The

elasticity number has been chosen within the range of
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a moderate strength surfactant, bs ¼ 0:5. Finally, in

order to ensure creeping flow conditions and thus

negligible inertial effects, the Reynolds number,

Re ¼ quwh=l, is set to 0.1.

The simulations consider different capillary num-

bers, Ca ¼ luwd=ðr0hÞ (ratio between viscous and

surface tension) and surfactant bulk concentrations,wb

(parameter controlling the total amount of surfactant

present); please note that in defining the capillary

number, the surface tension of the clean system, r0, is
used as reference. We consider three different capil-

lary numbers, starting from Ca ¼ 0:062 (higher sur-

face tension) up to Ca ¼ 0:187 (lower surface

tension), and three different surfactant loadings,

starting from wb ¼ 0 (clean system) up to wb ¼ 0:02

(highest amount of surfactant in the system). A list of

the simulation parameters is reported in Table 1; for

each case, a 2D and a 3D simulation have been

performed.

In addition, to investigate the effects introduced by

the surfactant, two additional simulations (2D and 3D)

at the highest capillary and at the intermediate

surfactant loading (Ca ¼ 0:187 and wb ¼ 0:01, case

L3) were performed neglecting the Marangoni stres-

ses. These simulations are used to investigate their

effect on the deformation of the droplet. To highlight

the contribution of Marangoni stresses, the surface

force term in the NS equations can be split in the

normal (capillary) term and the tangential (Maran-

goni) term:

3ffiffiffi
8

p Ch

We
r � ½scfrðwÞ� ¼

3ffiffiffi
8

p Ch

We
r � scfr|fflfflfflffl{zfflfflfflffl}
Normal

þ scrfr|fflffl{zfflffl}
Tangential

2
64

3
75 :

ð22Þ

3 Results

In the following, results obtained from the simulations

will be presented and carefully discussed. First, we

will focus on clean-droplets (C-series): the shape and

the deformation of the droplet obtained from our 2D

and 3D simulations will be compared against previous

works [10, 14, 17, 41] and with analytic predictions

[24, 34]. Then, we will consider surfactant-laden

droplets (L- and H-series): the shape and the defor-

mation of the surfactant-laden droplets will be com-

pared against the clean cases and the analytic

predictions [24, 34]. The importance of the main

factors which lead to a larger deformation of the

droplet will be quantified and the surfactant distribu-

tion over the droplet interface will be characterized.

z y

x

u(z)

Fig. 1 Sketch of the computational domain used to analyze the

deformation of a single droplet in shear flow. The domain has

dimensions Lx � Ly � Lz ¼ 2ph� ph� 2h for the 3D simula-

tions and Lx � Lz ¼ 2ph� 2h for the 2D simulations (red

rectangle). A spherical droplet (circular for the 2D simulations)

is initialized in the centre of the channel (xc ¼ p, yc ¼ p=2,
zc ¼ 0). The twowalls located at z ¼ �1 and represented in grey

move in opposite directions with constant velocity u� 1. (Color

figure online)

Table 1 List of the parameters used for the simulations. Three

values of the capillary number have been considered

– Ca ¼ 0:062 Ca ¼ 0:125 Ca ¼ 0:187

Clean (wb ¼ 0) C1 C2 C3

wb ¼ 0:01 L1 L2 L3

wb ¼ 0:02 H1 H2 H3

For each of these a clean and two surfactant-laden systems

(wb ¼ 0:01 and wb ¼ 0:02) have been considered. Each

combination of the parameters (capillary and surfactant bulk

concentration) is simulated on a 2D and on a 3D domain
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3.1 Clean droplets

We start our discussion considering the behavior of

clean droplets under shear flow. This benchmark is

often used as a validation tool for numerical codes.

The droplet, initially spherical (circular in 2D simu-

lations), is deformed by the imposed shear flow till a

new steady-state shape is reached. The final shape is

the result of the competition between the viscous

forces, which try to deform the droplet, and the surface

tension forces, which try to restore the spherical shape.

The capillary number is the ratio between these two

contributions, and, when a clean system is considered,

is the main parameter that controls the final shape of

the droplet. This final shape can be characterized by

the length of the principal axes. Specifically, following

the sketch reported in Fig. 2, we can identify the major

axis of deformation, a, the minor axis of deformation,

b, and the third axis, c, (only for the 3D simulations).

Combining these lengths, the Taylor deformation

parameter, D (ratio between the difference and the

sum of major and minor axes) can be computed:

D ¼ a� b

aþ b
: ð23Þ

In the limit of small deformations (and thus low

capillary numbers) a steady-state deformation is

always attained as the droplet never undergoes break-

age. In these conditions, the value of the deformation

parameter D can be also predicted via the analytic

relation proposed by Taylor [34], which states that the

droplet deformation parameterD is proportional to the

capillary number (thus inversely proportional to

surface tension):

D ¼ 35

32
Ca ; ð24Þ

where the coefficient 35/32 is specific for the case of

two phases with matched viscosity (as considered in

this work). The relation can be modified to include

also the confinement effects introduced by the two

walls; following the work of Shapira and Haber [24],

the final relation reads:

D ¼ 35

32
Ca 1þ CSH

3:5

2

d

4h

� �3
" #

; ð25Þ

with CSH being a numerical coefficient, CSH ¼ 5:6996

[24].

3.1.1 Droplet deformation

For each one of the clean cases considered (C1, C2 and

C3), the time behavior of the deformation parameterD

is computed and compared with the steady-state value

predicted by the analytic relation of Taylor [24, 34].

Figure 3a shows the time behavior of the deformation

parameter D for the three capillary numbers analyzed.

Results from 2D simulations are reported with a

dashed line while those from 3D simulations are

reported with a solid line. The droplet is initially

spherical (circular in the 2D simulations) and therefore

D ¼ 0. Then, for all the cases considered here, the

deformation parameter reaches a steady-state value

after an initial transient. The time required to achieve

this final configuration depends on the capillary

number: for larger Ca (larger deformations), a longer

time is required. From the results reported we can

notice that for the range of capillary numbers here

considered, there is an excellent agreement between

the results obtained from 2D and 3D simulations. Even

though similar deformations are achieved in the limit

of low capillary numbers, 2D and 3D droplets deform

in a different way: Figure 3b reports the length of the

major and minor axes normalized by the initial droplet

diameter, d0. As the capillary number is increased, the

two axis start to differentiate between 2D and 3D

cases: in particular, a clear difference can be

a/2
b/2

y ≡ y x

x

z
z

Front

Back

Fig. 2 The final steady-state shape of the droplet can be

characterized by the length of the three principal axes: the major

axis of deformation, a, the minor axis of deformation, b, and the

third axis, c. The latter one is aligned with the y direction and is

thus not shown in this sketch. An additional reference frame

(x0; y0; z0) is defined, with the axes corresponding to the deformed

droplet principal axes. The different regions of the droplet have

been also highlighted for ease of reference: tips (green), belly

(red) and sides (blue). (Color figure online)
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appreciated for the higher capillary number,

Ca ¼ 0:187. It can be observed how 3D droplets

elongate more than their 2D counterpart (higher a=d0)

but, at the same time, they undergo a lower compres-

sion along the minor axis (higher b=d0). Thus, the

longer a axis is balanced out by a longer b axis for 3D

droplets, resulting in a similar drop deformation

between 2D and 3D cases in the limit of low capillary

numbers. As the capillary number is increased, e.g.

Ca ¼ 0:187, it can be noticed how the major axis for

3D droplets elongates more than that of their 2D

counterpart, while the minor axis is similar in both

cases. This difference results in an increased defor-

mation for 3D droplets with respect to 2D ones. This

feature can also be appreciated by comparing the cross

section of the deformed (steady-state deformation) 2D

and 3D droplets, Figure 4. At the lowest capillary

numbers (Ca ¼ 0:062 and Ca ¼ 0:125) the cross

sections fall one on top of the other, while a clear

difference can be appreciated in Fig. 4c, where the

difference between the major axes is considerably

larger than that between the minor axes. This obser-

vation agrees with the increased deformation obtained

for 3D droplets.

To test the accuracy of the method, in Fig. 5, we

compare the steady-state value ofD obtained from our

simulations with previous works. Our results are

plotted as empty red squares (2D simulations) and as

empty red diamonds (3D simulations). The analytic

relation of Taylor [34], corrected by Shapira and

Haber [24], is plotted with a black solid line. In

addition, the results obtained by Zhou and Pozrikidis

[41] (2D Boundary Integral Method), Guido and

Villone [10] (experiments), Li et al. [17] (3D simu-

lation) and Komrakova et al. [14] (3D simulation) are

also reported. Comparing the different results, we can

observe that an overall agreement among them is

found. Specifically, our results are in very good

agreement with those obtained from previous numer-

ical simulations [14, 17, 41] and with the predictions
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Fig. 3 Panel a shows the time evolution of the deformation

parameter D for the different cases. The droplet is initially

spherical (circular in 2D simulations) and thus D ¼ 0. Then, the

shear flow starts to deform the droplet until a new steady-state

shape is achieved. Increasing the capillary number, Ca, the

droplet deformation increases and a longer time is required to

reach the final configuration. Panel b shows the time evolution

of the major, a, and minor, b, axes normalized by the initial

droplet diameter, d0. In both panels the different colors identify

the various capillary numbers: Ca ¼ 0:062 (black), Ca ¼ 0:125
(blue) and Ca ¼ 0:187 (red), while different line styles

distinguish 2D (dashed lines) from 3D (solid lines) cases. Time,

t, is made dimensionless using the shear rate, uw=h. (Color
figure online)
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Fig. 4 Comparison of the steady-shape of the droplet obtained

from 2D simulations (dashed lines) and 3D simulations (solid

lines) on a x� z plane located at y ¼ Ly=2. Different colors
distinguish the various capillary numbers: Ca ¼ 0:062 (black),

Ca ¼ 0:125 (blue) and Ca ¼ 0:187 (red). The 3D cases

experience a much larger deformation with respect to their 2D

counterpart. Indeed the shrinkage of the third axes c largely

contributes to droplet deformation. This difference is more

pronounced for the larger capillary number considered,

Ca ¼ 0:187. (Color figure online)
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of the analytic formula [24, 34]. The results are also in

fair agreement with previous experimental works [10].

However, the viscosity of the droplet used in the

experiments is slightly larger and this leads to a

smaller deformation and thus to slightly different

results. Finally, we can observe that for the largest

capillary number studied (Ca ¼ 0:187), the results

obtained for 2D and 3D simulations start to deviate

and the droplet deformation obtained from 3D simu-

lation is slightly larger than that of 2D simulations.

This behavior is in agreement with previous findings

of Afkhami et al. [1], who performed an extensive

comparison of 2D and 3D droplet deformation,

showing that only at low capillary numbers a good

agreement between 2D and 3D simulations is found.

3.1.2 Evolution of the droplet principal axes

To understand the origin of the agreement between 2D

and 3D simulations at low capillary numbers and of

the subsequent divergence at larger capillary numbers,

we study the evolution of the shape of the droplet by

examining the behavior of the three principal axes. We

believe this is an important issue, as the deformation of

a droplet in shear flow is a commonly used benchmark

in the validation of numerical methods. Therefore, it is

important to assess the validity of 2D simulation with

respect to their 3D counterpart. In addition, this

analysis will allow us to obtain further insights on the

range of validity of Taylor analytical formula [34],

which was obtained under the assumption that the

shape of the deformed droplet is a prolate spheroid

with major axis a and two minor equal axes b and c.

Figure 6 shows the evolution over time of the axes

length as calculated from our simulations. The major

axis, a, is reported with solid lines, the minor axis, b,

with dashed lines and the third axis, c, with dotted

lines. The axes length is normalized by the initial

droplet diameter, d0. The different colors refer toCa ¼
0:062 (black), Ca ¼ 0:125 (blue) and Ca ¼ 0:187

(red). Starting from the beginning of the simulation,

t ¼ 0, the axis a elongates, the axis b shrinks, while the

axis c does not change during this initial part of the

simulation. When the axes a and b have almost

reached their steady-state values, the axis c starts

shrinking. Shrinkage/elongation magnitude increases

with the capillary number, as the droplet becomes

more deformable. With the assumption of a prolate

spheroid, as in Taylor [34], axes b and cmust be equal.

This assumption leads to a larger integral of surface

forces over the interface (on average the curvature is

higher) and a stronger shear rate is needed to achieve

the same deformation of an unconstrained droplet

(axes a, b and c can vary independently). Hence, at

larger capillary numbers, Taylor analytic formula
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Fig. 5 Steady-state value of the droplet parameter deformation

as a function of the capillary number, Ca. The results obtained

from our simulations are reported with empty red squares (2D

simulations) and with empty red diamonds (3D simulations).

The analytic relation is reported with a black solid-line. The

results obtained from previous studies are also reported for

comparison: Zhou and Pozrikidis [41] (2D Boundary Integral

Method), Guido and Villone [10] (experiments), Li et al. [17]

(3D simulation) and Komkarova et al. [14] (3D simulation).

(Color figure online)
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Fig. 6 Time evolution of the length of the three principal axes

of the droplet (3D simulation): major axis of deformation, a

(solid line), minor axis of deformation, b (dashed line) and third

axis, c (dotted line). The lengths are normalized by the initial

droplet diameter, d0. The results obtained from the different

capillary numbers are colored in black (Ca ¼ 0:062), blue

(Ca ¼ 0:125) and red (Ca ¼ 0:187). The axes a increases with

time, while the axes b and c decrease over time. The shrinkage of

the axes c becomes considerable at higher capillary numbers.

Time, t, is made dimensionless using the shear rate, uw=h. (Color
figure online)
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underestimates the droplet deformation. This feature is

indeed more pronounced at larger capillary numbers

where results from experiments and simulations

predict a higher droplet deformation.

The observed shrinkage of the axis c plays a crucial

role in the 2D simulations where it is constrained to be

constant; being a two-dimensional case, no out-of-

plane velocity can appear and thus no shrinkage is

present. Due to this constraint, for a fixed Ca, the 2D

circular droplet undergoes a lower deformation with

respect to its 3D counterpart. Indeed, the shrinkage of

the axis c during deformation enhances the droplet

deformation. These findings are in excellent agree-

ment with the behavior observed in the experiments by

Guido and Villone [10].

The contribution of the third axis shrinkage to the

overall deformation can be also graphically visualized.

Figure 7 shows the spanwise velocity in a y0 � z0 plane
(see Fig. 6 for further details on this reference frame)

for the case C3 (Ca ¼ 0:187) and refers to time

t ¼ 1:0. Observing the velocity map, the feeding from

the sides of the droplet towards the core region is clear.

These fluxes are a direct consequence of the shrinkage

of the axis c and favor the droplet deformation.

From our simulations of clean droplets in simple

shear flow, we confirmed that the third axis undergoes

limited shrinkage at low capillary numbers, as found

in experiments [10]. This limits the influence of this

axis on the deformation of the droplet. Hence, a good

agreement between simulations (2D and 3D),

experiments and analytic predictions can be achieved.

Increasing the capillary number (and thus the droplet

deformation) analytic predictions and results from 2D

simulations start to deviate from results obtained from

3D simulations and experiments.

3.2 Surfactant-laden droplets

We now move to the discussion of the results obtained

from the simulations of the surfactant-laden droplets

in shear flow. Compared with the clean droplet case,

the final steady-state shape of the droplet will be

influenced by three additional factors: (1) the surfac-

tant decreases the average surface tension; (2) the

surfactant accumulates on the tips of the deformed

droplet producing non-uniform capillary forces,

Fig. 8a; (3) a shear-induced inhomogeneous distribu-

tion of surfactant on the droplet interface gives rise to

tangential stresses at the interface, Fig. 8b. Each of
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Fig. 7 Instantaneous spanwise velocity in a y0–z0 plane (see also
Fig. 2 for details on the axes orientation). The map refers to the

case Ca ¼ 0:187 at time t ¼ 1:0. The shrinkage of the c axis

induces a flow motion from the sides of the droplet to the core.

This flow can be appreciated looking at the central area of the

droplet (�0:2\z0\0:2). In addition, in the carrier phase, four

distinct regions with high spanwise velocity can be appreciated.

These regions highlight the modifications in the external flow

produced by the droplet
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Fig. 8 Panel a shows the surfactant distribution over the droplet
interface. Due to the action of the external shear stress,

surfactant accumulates at the droplet front and back, while the

droplet belly is depleted of surfactant. Panel b depicts the

dimensionless surface tension, rðwÞ=r0, over the droplet

interface. The Marangoni stresses, which originate from the

surface tension gradients, are reported using black unit length

vectors. In both panels, results obtained from 2D cases are

reported on the left while those obtained from 3D cases are

reported on the right. The snapshots are taken at t ¼ 2:5 (steady-
state deformation) and refers to the case H3 (wb ¼ 0:02,
Ca ¼ 0:187)
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these effects contributes in a different way to the

overall droplet deformation. In particular, the first

(lower average surface tension) and second (more

surfactant at the droplets tips) effects favor droplet

deformation; conversely, the third effect (inhomoge-

neous distribution of surfactant and thus of surface

tension) gives rise to tangential stresses that hinder the

droplet deformation.

To investigate and quantify these effects, for each

Ca considered before (cases C1, C2 and C3), two

further cases with surfactant bulk concentrations wb ¼
0:01 (cases L1, L2 and L3) and wb ¼ 0:02 (cases H1,

H2 and H3) have been computed. In the following, we

will first focus on the overall deformation; then the

role played by the different effects will be analyzed

and the surfactant distribution characterized.

3.2.1 Droplet deformation

To highlight the main differences between the behav-

ior of clean and surfactant-laden droplets, we start

considering the droplet deformation. Figure 9 shows

the steady-state value of the deformation parameter

D for the cases L1, L2 and L3, panel (a) and H1, H2

and H3, panel (b). With respect to the clean cases,

whose results well match the analytic relation, we can

immediately notice that the surfactant increases the

deformation of the droplet. This effect becomes more

pronounced increasing the surfactant bulk concentra-

tion and thus the total amount of surfactant present,

cases H1, H2 and H3. The comparison between results

obtained from 2D and 3D simulations exhibits a good

agreement at low capillary numbers while, at larger

Ca, results start to deviate. This difference becomes
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Fig. 9 Steady-state value of the droplet parameter deformation

as a function of the capillary number, Ca. The panel a refers to

the cases L1, L2 and L3, surfactant bulk concentration wb ¼

0:01 while panel b refers to the cases H1, H2 and H3, surfactant

bulk concentration wb ¼ 0:02. The analytic relation of Taylor

[34] is plotted with a black solid line
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Fig. 10 Steady-state value of the droplet parameter deforma-

tion as a function of the effective capillary number, Cae. Panel a
refers to the cases L1, L2 and L3, surfactant bulk concentration

wb ¼ 0:01 while panel b refers to the cases H1, H2 and H3,

surfactant bulk concentration wb ¼ 0:02. When the effective

capillary number is employed in reporting the results, a better

agreement between simulations results and analytic predictions

is achieved
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more pronounced increasing the surfactant bulk con-

centration (case H1, H2 and H3): the larger is the

deformation experienced by the droplet, the larger is

the difference between 2D and 3D simulations.

With the aim of quantifying the contribution to the

droplet deformation produced by each of the three

surfactant-induced effects, we can rescale the results

by considering an effective capillary number, Cae.

This can be calculated using the actual value of the

surface tension, hri, instead of the clean system

surface tension, r0:

Cae ¼
luw
hri

d

2h
: ð26Þ

The effective value of the surface tension is computed

averaging the local value of the surface tension over

the entire droplet interface. It is important to note that

the non-uniform distribution of the surfactant over the

interface produces in turn a non-uniform distribution

of the surface tension.

Reporting the results using Cae as reference

parameter, the contribution of the average surface

tension reduction on the overall deformation can be

filtered out. In Fig. 10, the results obtained from the

cases L1, L2, L3 (surfactant bulk concentration

wb ¼ 0:01) and H1, H2, H3 (surfactant bulk concen-

tration wb ¼ 0:02) are reported using the effective

capillary number, Cae. Interestingly, we can observe

that employing Cae as reference parameter, results are

in good agreement with the analytic relation. A better

agreement is obtained between simulations results and

analytic predictions for the lowest surfactant bulk

concentration (cases L1, L2 and L3), while for the

highest surfactant bulk concentration (cases H1, H2

and H3) the agreement is slightly worse (especially

considering the 3D simulations). This difference can

be addressed to the different amount of surfactant

available, which is lower for cases L1, L2 and L3.

Therefore, the surfactant distribution (and surface

tension) is more homogeneous and the droplet defor-

mation is mainly determined by the average surface

tension reduction. All these observations seem to

confirm that for the range of parameters investigated

here, the increased deformation experienced by the

droplet is largely due to the average surface tension

reduction.

3.2.2 Surfactant distribution over the droplet

interface

To characterize the surfactant distribution over the

droplet interface, we compute the joint Probability

Density Function (PDF) of surfactant concentration at

the interface and interface mean curvature, j. The
mean curvature of the interface is the semi-sum of the

two principal curvatures, j1 and j2, and can be

directly obtained from the phase field. In particular, it

can be computed from the divergence of the normal to

the interface, n, defined as [2, 29]:

n ¼ � r/
jr/j ; ð27Þ

and the curvature results in:

j ¼ 1

2
r � � r/

jr/j

� �
: ð28Þ

In the above equations, the minus sign is needed to get

the interface outward pointing normal (/ ¼ þ1 in the

droplet and / ¼ �1 in the carrier fluid). For the 2D

simulations (circular droplet), only one principal

curvature is defined and thus the second principal

curvature is j2 ¼ 0.

Figure 11 shows the joint PDF of the cases L1, L2

and L3, which refer to the surfactant bulk concentra-

tion wb ¼ 0:01. Results refer to 2D (left column) and

3D (right column) simulations, while capillary number

increases from top (Ca ¼ 0:062) to bottom

(Ca ¼ 0:187Þ. In the panels, a red vertical dashed line
identifies the initial curvature, j0 ¼ 2=d0 (2D) and

j0 ¼ 4=d0 (3D), while a red horizontal line identifies

the initial surfactant concentration at the interface, w0.

First, we can notice the effect of the capillary number

on the droplet mean curvature. As the capillary

number is increased, the droplet undergoes a stronger

deformation, thus higher (at the tips) and lower (in the

central region) values of the mean curvature can be

found. Conversely, the surfactant range at the interface

is not particularly affected by the capillary number. In

addition, we can also observe the different range of

curvature values sampled between 2D and 3D simu-

lations: the second principal curvature for the circular

droplet is always zero (cylindric surface) so the mean

curvature for 2D cases is always about half that of their

3D counterpart. The analysis of the results highlights a

clear common trend: higher surfactant concentrations
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Fig. 11 Joint Probability Density Function (PDF) of interface

mean curvature j and surfactant concentration w at the interface

of the deformed droplet for the lower surfactant bulk concen-

tration, wb ¼ 0:01. The left column, panels a, c, e, refers to 2D

simulations while the right column, panels b, d, f refers to 3D

simulations. Each row corresponds to a different capillary

number, Ca ¼ 0:062 (panels a and b), Ca ¼ 0:125 (panels c and
d) and Ca ¼ 0:187 (panels e and f). A red vertical dashed line

identifies the initial curvature, j0 ¼ 2=d0 (2D) and

j0 ¼ 4=d0 (3D), while a red horizontal line identifies the initial

surfactant concentration at the interface, w0. (Color

figure online)
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are more likely to be found in high-curvature regions.

However, as expected, the results obtained from 2D

and 3D simulations exhibit a different behavior: for

2D simulations, a bimodal distribution is found while,

for 3D simulations, a trimodal distribution is obtained.

The bimodal distribution of 2D simulations origi-

nates from the asymmetric distribution of surfactant

with respect to the major axis, a: the imposed shear

flow sweeps surfactant towards the back and the front

of the droplet (see Fig. 2 for all the references to the

droplet regions). This leads to regions with the same

curvature that experience different surfactant concen-

trations. As the capillary number increases, panels (c)

and (e), this asymmetric distribution becomes clearer

and the two branches of the joint PDF part. This

distribution can be better appreciated from the left part

of Fig. 8a: surfactant accumulates at the droplet back

(and front, not shown), while the belly is depleted of

surfactant (dark red color). The left side of the joint

PDF (low j, low w) corresponds to the droplet belly:

low surfactant concentration in regions characterized

by a lower curvature.

For the 3D simulations, a third branch appears. The

third branch corresponds to the side area: at the sides,

surfactant concentration is low while the interfacial

curvature is relatively high, Fig. 8a. This additional

branch becomes more evident at high capillary

numbers, panels (d) and (f). Indeed, at low capillary

numbers, the axes deformation is limited, thus a

narrow range of curvature values is found and

surfactant distribution is more homogeneous.

The results obtained from the cases H1, H2 and H3,

surfactant bulk concentration wb ¼ 0:02, exhibit a

similar behavior and thus they have not been reported.

Overall, the findings confirm the tendency of the

surfactant to accumulate in high curvature regions,

which are also stagnation points [28]. However, the

resulting surfactant distribution is not straightforward

and it is affected by the flow condition found in the

different regions of the droplet.

3.2.3 Effect of Marangoni stresses

In the previous section, we were able to show the

preferential accumulation of the surfactant at the

droplet tips (high curvature regions). This phe-

nomenon, together with the average surface tension

reduction, leads to an increase of the droplet defor-

mation. The Marangoni stresses enter this picture with

a negative contribution hindering the droplet defor-

mation. Specifically, the Marangoni stresses follow

the surface tension gradient: they are tangential to the

interface and are directed from low surface tension

regions (high surfactant concentration) towards high

surface tension regions (low surfactant concentration),

thus they are directed from the droplet tips towards the

belly area, as can be appreciated from Fig. 8b, in which

black arrows shows the direction of Marangoni

stresses. To quantify their contribution to the overall

droplet deformation, the case L3 has been recomputed

neglecting the tangential stresses (see Eq. 22). The

resulting values for the droplet deformation parameter

D are reported in Table 2. The results indicate that the

influence of the Marangoni stresses is almost negligi-

ble and the deviation is below 1% for both 2D and 3D

simulations.

4 Conclusions

In this work, we studied the deformation of clean and

surfactant-laden droplets in a laminar shear flow. The

investigation is based on pseudo-spectral solution of

the Navier–Stokes equations coupled with a Phase

Field Method (PFM) to describe the interfacial

phenomena (interfacial topology and surfactant

concentration).

We first studied the behavior of clean droplets; the

simulations outcomes enable us to characterize the

shape and deformation of the droplet. This character-

ization allows us to define the range of parameters in

which 2D and 3D simulations well match analytic

predictions and experimental results. Specifically, at

low capillary numbers (small deformations), results

from 2D and 3D simulations are in excellent agree-

ment and thus lightweight 2D simulations can be used

as benchmark. By opposite, for larger capillary

Table 2 Droplet deformation parameter, D, for the simulation

L3 (Ca ¼ 0:187) with and without Marangoni stresses

– 2D simulations 3D simulations

With Marangoni term 0.235 0.244

Without Marangoni term 0.237 0.246

First column, results obtained from 2D simulations; second

column, results obtained from 3D simulations. It can be noticed

that the role played by Marangoni stresses on the overall

droplet deformation is marginal
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numbers (larger deformations), the shrinkage of the

third axis of the droplet becomes considerable and

results obtained from analytic predictions and 2D

simulations deviate from those obtained from 3D

simulations and experiments.

Then, we focused on surfactant-laden droplets and

we characterized the droplet deformation and the

surfactant distribution over the droplet interface. The

results indicate that the increased deformation of the

surfactant-laden droplets is largely produced by the

average surface tension reduction and by the accumu-

lation of surfactant at the droplet tips. Conversely, the

role played by the Marangoni stresses on the droplet

deformation is negligible. This has a direct implication

on the use of analytic predictions and interestingly,

using an effective capillary that accounts for the

average surface tension reduction, the results obtained

well match the ones predicted by the analytic relation

of Taylor [34]. In addition, a higher amount of

surfactant (higher wb) increases the strength of

surfactant-induced effects, thus the range of agree-

ment between 2D, 3D simulations and analytic

predictions slightly reduces.
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