Terpyridine Diphosphine Ruthenium Complexes as Efficient Photocatalysts for the Transfer Hydrogenation of Carbonyl Compounds

Dario Alessi,¹ Christian Jandl,² Denise Lovison,¹ Walter Baratta,¹ <u>Maurizio Ballico¹</u>

¹ Department DI4A, University of Udine, Via Cotonificio 108, I-33100 Udine, Italy

² Inorganic Chemistry/Molecular Catalysis, Department of Chemistry & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany

E-mail: maurizio.ballico@uniud.it

Introduction

- Over the past decade, visible-light photoredox catalysis or photocatalysis has grown to become a commonly employed powerful tool in organic synthesis leading to new unique and valuable molecular transformations, inaccessible from thermally activated processes.^[1]
- Photocatalysis can be conducted in homogeneous conditions as well employing heterogeneous transition metal or solid semiconductors.^[2]
- The commonly employed homogeneous visible-light photocatalysts are homoleptic Ru and Ir polypyridyl complexes, like [Ru(bpy)₃]₂⁺ and $[Ir(ppy)_3]$ (bpy = 2,2'-bipyridine; ppy = 2-phenylpyridine). These compounds, when excited by visible light undergo a metal-to-ligandcharge transfer (MLCT) transitions from HOMO and LUMO orbitals of the ligand.^[3]

The 2,2':6',2"-terpyridine (tpy) is an NNN-type Pincer ligand, which can give tight chelation of various metal cations in a nearly planar geometry. The presence of the electron-deficient pyridine cycles make it a strong σ -donor and also as a very good π -receptor, moreover the presence of low energetic LUMO levels allows it to participate in the redox reactions as a non-innocent ligand.^[4]

Complexes were isolated as single stereoisomers using chiral diphosphines

ordination Chemistr

Rimini 202022

 $[RuCl((S,S)-Skewphos)(tpy)]PF_6 (3a) [RuCl((S,R)-Josiphos)(tpy)]PF_6 (4a)$

Properties of the photocatalytic TH of carbonyl compounds

Cycling between illumination and dark periods in the photocatalyzed TH of acetophenone (a) with complex 2

Comparison between the photocatalytic and thermal TH of acetophenone (a) catalyzed by complex 2

<u>Conditions:</u>

- **Light irradiation with a solar simulator (300 W Xenon Arc Lamp)** \checkmark
- Reactions conducted at 30 °C without the use of sacrificial reductants (e.g. triethanolamine) or photosensitizers
- ✓ PrOH (or PrOH/MeOH mixture (1:1)) as hydrogen donor Employment of NaO/Pr (usually 2 mol%) as base

Results of the photocatalytic TH of carbonyl compounds

Photocatalytic TH of acetophenone (a)

Complex	NaO <i>i</i> Pr [mol%]	Time ^[a] [h]	Conv. ^[b] [%]	TOF ^[c] [h ⁻¹]	Complex	x Substrate	S/C	Time ^[a] [h]	Conv. ^[b] [%]	TOF ^[c] [h ⁻¹]		Complex	Time ^[a] [h]	Conv. ^[b] [%]	TOF ^[c] [h ⁻¹]	
1	2.0	16	94	74	1	b	1000	12	98	115		2	24	89	54	
2	2.0	8	96	148	2	b	1000	6	99	264		2a	24	84	51	
2a	2.0	8	98	141	2	b	5000	22	95	256		3	24	87	54	
2 [d]	2.0	24	86	205	1	С	1000	18	91	82		3 a	27	90	56	
2	1.0	15	95	66	2	С	1000	8	98	138		4 a	24	88	39	
2	5.0	8	92	122	2	С	5000	25	97	207		5α	30	89	38	
2	10.0	15	94	92	4a	С	500	21	99	25			Conc. c	ubstrata - (
3	2.0	8	98	139	1	d	1000	21	88	46			Solvent	· PrOH/Me	OH (1:1)	
3 a	2.0	10	99	144	2		1000	18 18	99 88	75 20			> S/C = : > NaO/Pr	1000 (2 mol%)		
4 a	2.0	14	95	94	2	e.	1000	24	96	40			> T = 30	°C		
5 a	2.0	14	98	88		Conc	substr		AA]					
u(bpy) ₃](PF ₆) ₂	2.0	8	61	73		> Solve	ent: /PrC = 1000)H				* best results	are highligh	nted in orang	e	
	 Conc. subst Solvent: <i>I</i>Pr S/C = 1000 T = 30 °C 	rate = 0.1 OH	M			> NaO > T = 3	NaOiPr (2 mol%) T = 30 °C				[a] Irra determine ketone co conversio	diation hours. ed by GC analyonverted to alco n. [d] S/C = 500	[b] The ysis. [c] Tu hol per mole)0.	conversions urnover frec e of catalyst	and e.e. juency (mo per hour) c	ו cle: at

Photocatalytic TH of ketones and aldehydes

Complex	Substrate	S/C	Time ^[a] [h]	Conv. ^[b] [%]	TOF ^[c] [h ⁻¹]
1	b	1000	12	98	115
2	b	1000	6	99	264
2	Ь	5000	22	95	256
1	С	1000	18	91	82
2	С	1000	8	98	138
2	С	5000	25	97	207
4 a	С	500	21	99	25
1	d	1000	21	88	46
2	d	1000	18	99	75
2	d ^[d]	1000	18	88	49

Asymmetric photocatalytic TH of acetophenone (a)

Complex	Time ^[a] [h]	Conv. ^[b] [%]	TOF ^[c] [h ⁻¹]	<i>ee</i> ^[b] [%]
2	24	89	54	51 <i>S</i>
2a	24	84	51	51 <i>S</i>
3	24	87	54	52 R
3 a	27	90	56	52 R
4 a	24	88	39	14 <i>S</i>
5 a	30	89	38	18 <i>S</i>
			0 1 11	

	Conc. subst Solvent: /Pr S/C = 1000 T = 30 °C	0 rate = 0.1 / OH	N	/3	 S/C = 1000 NaOiPr (2 mol%) T = 30 °C [a] Irradiation hours. [b] The conversions and e.e. were determined by GC analysis. [c] Turnover frequency (moles of ketone converted to alcohol per mole of catalyst per hour) at 50% conversion. [d] S/C = 5000.
5a	2.0	14 °	98 61	88	Conc. substrate = 0.1 M Solvent: PrOH
4 a	2.0	14	95	94	2 e 1000 24 96 40
3 a	2.0	10	99	144	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	2.0	8	98	139	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
L 2	10.0	15	74	72	1 $d = 1000 21 00 16$ > Conc. substrate = 0.1 M

References

[1] a) Li, Y.; Ye, Z.; Cai, J.; Gong, L. Synthesis 2021, 53, 1570; b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.

[2] Ameta, R.; Ameta, S. C. Photocatalysis: principles and applications, CRC Press, 2017, p. 340.

[3] Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Photochemistry and Photophysics of Coordination Compounds II, Springer Berlin, Heidelberg, 2007, p. 1; 43.

[4] Wei, C.: He, Y.; Shi, X.; Song, Z. Coord. Chem. Rev. 2019, 385, 1.

[5] Ballico, M.; Alessi, D.; Jandl, C.; Lovison, D.; Baratta, W. Chem. Eur. J. 2022, DOI: 10.1002/chem.202201722.

Conclusions

- > Synthesis in high yield of new cationic achiral and chiral terpyridine diphosphine ruthenium complexes [RuCl(PP)(tpy)]X (X = Cl, PF_6).
- > The tpy complexes with NaO/Pr display high photocatalytic activity in the TH of carbonyl compounds (conversions up to 99%) using PrOH as the only hydrogen donor and visible light at 30 °C, at remarkably high S/C (up to 5000) and TOF values up to 264 h^{-1} .
- > The chiral enantiomers 2 and 3 induce the asymmetric photocatalytic TH of acetophenone, affording (S)- and (R)-1-phenylethanol with 51-52% ee, in a MeOH/iPrOH mixture.