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In this paper, we propose a novel approach for analyzing the effects of water regime on grapevine canopy status 
using robotics as an aid for monitoring and mapping. Data from an unmanned aerial vehicle (UAV) and a ground 
mobile robot are used to obtain multispectral images and multiple vegetation indexes, and the 3D reconstruction 
of the canopy, respectively. Unlike previous works, sixty vegetation indexes are computed precisely by using the 
projected area of the vineyard point cloud as a mask. Extensive experimental tests on repeated plots of Pinot gris 
vines show that the GDVI, PVI, and TGI vegetation indexes are positively correlated with the water potential: 
GDVI (𝑅2 = 0.90 and 0.57 for the stem and pre-dawn water potential, respectively), PVI (𝑅2 = 0.90 and 0.57), TGI 
(𝑅2 = 0.87 and 0.77). Furthermore, the canopy volume and the canopy area projected on the ground are impacted 
by the water status, as well as stem and pre-dawn water potential measurements. The results obtained in this 
work demonstrate the feasibility of the proposed approach and the potential of robotic technologies, supporting 
precision viticulture.
Nomenclature

Symbols

𝛼∗ Critical radius of the Alpha Shape algorithm [m]
Ψpd Pre-dawn water potential [MPa]
Ψstem Stem water potential [MPa]
𝐼 Vineyard raster image
𝑉 Vineyard plot pixels set

Abbreviations

2GRBi 2 Green Red Blue index
B Blue band
CSF Cloth Simulation Filter
DAFB Days After Full Bloom
DVI Difference Vegetation Index
EVI2 Enhanced Vegetation Index 2
G Green band
GDVI Green Difference Vegetation Index
GNSS Global Navigation Satellite System

* Corresponding author.

IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
MCARI1 Modified Chlorophyll Absorption in Reflectance Index 1
MRVI Modified Ratio Vegetation Index
MS Medium Stress
MTVI1 Modified Triangular Vegetation Index 1
NDRE Normalized Difference Red Edge
NDVI Normalized Difference Vegetation Index
NIR Near Infra-Red
PCA Principal Component Analysis
PVI Perpendicular Vegetation Index
R Red band
RGB Red Green Blue
ROS Robot Operating System
RTKV Real-Time Kinematics
SfM Structure from Motion
SLAM Simultaneous Localization and Mapping
SOR Statistical Outlier Removal
SS Severe Stress
TGI Triangular Greenness Index
UAV Unmanned Aerial Vehicle
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VI Vegetation Index
WW Well Watered

1. Introduction

Recently, due to global warming, drought has become a growing 
concern in the agricultural sector, threatening plant survival and world 
food supply [25]. Over the next few years, extreme drought events are 
projected to become more frequent, as it is testified by the Intergovern-
mental Panel on Climate Change of the United Nations [2]. Moreover, 
climate change-related rising temperatures will directly affect the evap-
otranspirative demand of plants and soil, increasing the risk of water 
stress for many crops [55]. At the same time, food demand is predicted 
to increase as the world’s population grows, and the low water avail-
ability will negatively impact the food supply [24].

Plants have developed different strategies to cope with water 
stress [3]. Plants typically reduce their growth and close their stomata 
to mitigate water loss caused by transpiration with negative conse-
quences on the photosynthesis rate [8]. The reduction in aerial growth 
caused by water stress depends on the reduced number and size of 
leaves resulting in a decrease in leaf area and plant canopy volume [53]. 
In some cases, inducing moderate water stress in plants can be useful 
to enhance drought tolerance, yield production, and physiological re-
sponses [49]. However, in case of severe water stress, the viability of 
plants may be threatened by the reduction of reserve substances and 
hydraulic failure [33].

The plant water status can be assessed using a variety of measure-
ments, with water potential being considered the most reliable among 
the traditional methods. Unfortunately, the water potential is a destruc-
tive measurement, requires numerous samples per plot, and narrow 
working windows (usually between 12 noon and 3 p.m., or before 
dawn) [40]. Different measures of water potential are used for different 
purposes. For instance, the stem water potential is often used to detect 
water stress [16], whereas the pre-dawn water potential is used as a 
proxy for soil potential [31].

Other measurements, such as stomatal conductance, are even more 
complex due to the instrumentation and calibration required [40]. 
Moreover, conventional methods of monitoring water stress do not take 
into account plants and soil heterogeneity, and their real evapotranspi-
ration rates in the field have not been automated yet [20]. As a result, 
there is a growing interest in finding new affordable ways to estimate 
the specific plant status over space and time [17,64], e.g., by using mul-
tispectral images [32,50], as well as geometrical data, such as surface 
and volume of the canopy [59].

Unmanned aerial vehicles (UAVs) equipped with spectral cameras 
are capable of providing geo-referenced spectral information at high 
spatial resolution and at a reasonable cost [50,63]. However, the out-
comes obtainable from UAV multispectral sensors can be influenced 
by external factors such as ground brightness, atmospheric conditions, 
soil humidity, and the specific characteristics of the sensor, with an ef-
fect on the spectral response in the field [19,63]. Over the years, more 
than 100 vegetation indexes (VIs) have been calculated from commonly 
measured multispectral bands in order to minimize the environmental 
effects [4].

Moreover, to assess the canopy status, size parameters (e.g., height, 
volume) can be obtained by processing 3D point clouds [67]. Experi-
mental comparisons report higher accuracy of the geometric measure-
ments retrieved by means of ground mapping systems with respect to 
those obtained by UAVs [35]. In this context, mobile robotics, com-
bined with remote sensing techniques, can provide an important aid for 
monitoring and mapping [52]. In comparison to UAVs, ground robots 
can hold a higher payload, provide a closer field of view, and point 
clouds with higher density [29]. Furthermore, ground mobile robots 
have greater usability, flexibility, can perform analysis and manipula-
tion on the ground, and are less weather dependent than aerial plat-
2
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Several examples of mobile robots mounting onboard Light Detec-
tion and Ranging (LiDAR) sensors to extract three-dimensional maps of 
plants and crops are described in the literature [42], thanks to their 
long range detection, high update rate, and independence from illu-
mination. To broaden their use in reconstructing 3D point clouds, 2D 
LiDAR sensors are commonly arranged in such a way that the laser 
plane is perpendicular to the robot path [6,57]. For instance, a cus-
tom robot equipped with a 2D LiDAR sensor, mounted on a mast of 
adjustable height, is applied to map a vineyard in [47]. Similarly, the 
scan of an olive orchard is obtained with a 2D LiDAR sensor mounted on 
an all-terrain vehicle in [14]. A better option for point cloud reconstruc-
tion is 3D LiDAR technology. These sensors have indeed a larger field 
of view compared to 2D LiDAR devices and directly provide a dense 
point cloud of the surroundings, although they may have lower resolu-
tion and accuracy than 2D LiDAR sensors [10,52]. However, the main 
drawback of LiDAR solutions in horticulture occurs when performing 
the survey in rainy conditions, as the laser beams could be reflected by 
raindrops, producing noisy and inaccurate point clouds [61].

Nowadays, the reconstruction of the 3D point cloud of a surround-
ing environment is commonly performed by means of Simultaneous 
Localization and Mapping (SLAM) methods, which make it possible to 
build a 3D point cloud using subsequent scans only. However, the mod-
els obtained through SLAM approaches are mainly used for navigation 
purposes. Alternatively to SLAM, a 3D reconstruction of the surround-
ing environment can be created using a structure-from-motion (SfM) 
approach, integrating a sequence of images taken from different way 
points [21], or a multi-camera system composed of many sensors ex-
ternally calibrated [58]. Nevertheless, a reconstruction based on SfM 
can be affected by small plant movements during data collection, for 
example by wind moving the leaves.

Environments with repetitive features can be problematic for LiDAR-
based SLAM algorithms. For this reason, state-of-the-art SLAM algo-
rithms often rely on sensor fusion techniques to additionally account for 
data from direct georeferencing systems [51]. For instance, a SLAM ap-
proach fusing LiDAR and inertial measurement unit (IMU) data is tested 
in a vineyard in [59]. Furthermore, LiDAR and GNSS data are fused to-
gether by means of SLAM to improve the robustness of the localization 
in [11].

Subsequently to the creation of a 3D point cloud, geometrical fea-
tures can be extracted from the point cloud, e.g., by splitting the map 
with regular grids and summing the volumes of the filled voxels [47]. 
Another option is to generate a mesh encapsulating the whole points 
with triangulation algorithms like the Convex Hull [10] and the Alpha 
Shape [59].

The literature reports examples of geometric maps (built by us-
ing mobile robots) with additional spectral data (acquired by means 
of a spectral camera), e.g., the Normalized Difference Vegetation In-
dex (NDVI) and the Normalized Difference Red Edge (NDRE). In [12], 
a NDVI map of a horticultural field is generated by a mobile robot 
equipped with RGB, multispectral, and hyperspectral cameras directed 
toward the plants. Similarly, NDVI mosaics of red cabbage rows are 
built in [54]. The lateral layout of spectral sensing devices is suitable 
for assessing the vegetation state of plants organized in rows [15,45]. 
For instance, examples of mobile robots, equipped with 2D LiDAR and 
Optrx Crop sensors to get both a precise volume reconstruction and 
NDVI mapping can be found in [5,41].

3D multispectral point clouds can also be obtained through pho-
togrammetry, as in [30,56,62]. Furthermore, thermal point cloud can 
be generated using RGB and thermal images [26,60], as well as by ap-
plying thermal images and LiDAR data fusion for crop monitoring [34].

Data from ground robots, with targeted survey capabilities, and 
aerial vehicles can also be combined taking advantage of acquisi-
tions from different points of view and different spatial scales, e.g., 
in [10,27–29,37]. There are very few studies in the literature provid-
ing understanding on how good is combining these two platforms. For 

instance, a comparison between the 3D point cloud obtained using the 
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agricultural robot Thorvald and the 3D orthomosaics acquired by a UAV 
can be found in [48]. In [38] the approximate reconstruction of broad 
regions from a UAV are refined using the local information collected 
by a mobile robot. Furthermore, in [65] the authors combine UAV and 
ground based RGB image data, showing advantages and flexibility in 
intra-tree inspection by checking its sub-volumes and avoiding occlu-
sions, especially when the canopy density changes from the top to the 
bottom.

As far as the water status is concerned, an example where 3D im-
ages are used to extract drought information can be found in [7]. 
Furthermore, the authors in [60] adopted thermal infrared images and 
a binocular stereovision system to extract 3D point cloud and analyze 
the water stress in potato plants. Moreover, an algorithm for automated 
phenotyping through plant 3D modeling for the early detection of wa-
ter stress can be found in [43]. However, to the best of the authors’ 
knowledge, no examples of analysis of the effects of water regime on 
grapevine canopy status can be found in the present literature using 
data acquired by means of a UAV and a mobile robot.

In this work, we propose a novel approach for evaluating the ef-
fects of different water regimes on water potential, vegetation indexes, 
and geometrical data of the grapevine canopy, by combining geomet-
ric measurements acquired by a mobile robot with spectral data from 
a UAV, as well as traditional measurements, such as the stem and pre-
dawn water potential. The main scientific contribution of this work is 
the analysis of the effects of water regimes on grapevine status using 
data from a UAV and a mobile robot that are coupled together to extract 
spectral information only in correspondence to the plants, avoiding sur-
faces not belonging to the canopy.

2. Materials and methods

2.1. Vineyard site and experimental design

The experiments were conducted in 2022 in a vineyard of the 
University of Udine (North Eastern Italy, Lat. 46°01’53.0”N, Long. 
13°13’29.0”E, 113 m above sea level). The vineyard, consisting of Pinot 
gris clone R6 plants grafted on SO4 rootstock, was planted in 2013 with 
a plant density of 4000 plants/ha (1.0 m between vines × 2.5 m between 
rows) and a sub-irrigation system (Fig. 1). Vines were pruned using a 
single guyot training system and were planted in a gravely loam soil 
characterized by a good organic matter content.

Three adjacent rows of the vineyard were used for the experiments 
for a total experimental area of approximately of 117 × 10 m2 (Fig. 2). 
For each distinct row, 3 plots composed of 12 homogeneous plants 
were selected, as shown in Fig. 1. From budburst to flowering the vines 
of all treatments were fully irrigated. Subsequently, a specific water 
regime was imposed for each experimental row in order to keep the av-
erage values of pre-dawn water potential (Ψpd) within predetermined 
boundaries. The Ψpd is often used as soil water potential indicator, this 
allowed a comparison of three water treatments (from flowering to har-
vest):

• well watered (WW), Ψpd = −0.2 MPa;
• moderate stress (MS), Ψpd = −0.35 MPa;
• severe stress (SS), Ψpd = −0.55 MPa.

The extensive experiments presented in this work involved the use of 
three distinct tools: a Scholander chamber for water potential measure-
ments, a UAV for the acquisition of multispectral images, and a mobile 
robot for the 3D reconstruction of the plants. The collected data were 
analyzed to retrieve water potential, vegetation indexes, and geometri-
cal measurements, as it is shown in Fig. 3. Data from the mobile robot 
and the UAV are tightly coupled in order to extract spectral informa-
tion from specific regions of interest and analyze the spatial variability 
of plants. The multispectral images obtained by the UAV are indeed 
3

segmented using the point clouds reconstructed by means of the mobile 
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Fig. 1. Vineyard site: (a) the location of plants, header, and internal poles in a 
top view of the vineyard (true ortofoto RAFVG 2017-2020, provided by IRDAT 
under IODL 2.0 license, was used as background layer); (b) entrance of the 
vineyard rows showing the irrigation control unit and part of the sub-irrigation 
system.

robot in order to compute the vegetation indexes only in correspon-
dence to the real area of the plants, avoiding non-canopy surfaces. 
Furthermore, differently from other works [30,56], a mobile robot is 
used for 3D canopy reconstruction to avoid possible occlusions and er-
roneous volume estimations due to the canopy density changes from 
the top to the bottom.

2.2. Physiological measurements

The water status of the plants was monitored by measuring the stem 
water potential (Ψstem) and the pre-dawn water potential (Ψpd). All wa-
ter potential measurements were carried out on 28/07/2022, 62 days 
after full bloom (DAFB), using a Scholander chamber (Soil Moisture 
Corp., USA), following the indications described by [46]. The measure-
ments of Ψstem and Ψpd were respectively performed on nine samples 
for each water regime (𝑛 = 27), i.e., three individual leaves collected 
from different plants belonging to each of the three plots.

2.3. Acquisition of multispectral indexes using a UAV

The acquisition campaign of the aerial data was conducted on a sin-
gle flight at midday on 28/07/2022 (62 DAFB) under optimal weather 
conditions, using a DJI P4 multispectral UAV (SZ DJI Technology Co., 
Ltd., Beijing, China) equipped with a RTK-GNSS module of the same 
manufacturer (Fig. 4). This compact UAV is provided with six cameras, 
one of which captures RGB images and the other five distinct spectral 
bands: blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red (650 nm ±
16 nm), red-edge (730 nm ± 16 nm), near-infrared (840 nm ± 26 nm). 

The flight was conducted at an above-ground level of 20 m, covering an 
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Fig. 2. Inspected vineyard rows: (a) well watered row; (b) medium stressed row; (c) severe stressed row.

Fig. 3. Description of the data acquisition and analysis.
Fig. 4. (a) The DJI P4 multispectral UAV; (b) the multispectral and RGB cam-
eras.

area of about 0.48 ha. 2220 pictures were sampled with the UAV dur-
ing the flight and processed using the PIX4Dmapper software (version 
4.8.0; PiX4D, Switzerland), obtaining multispectral and RGB georefer-
enced rasters. The subsequent data management and processing were 
performed in the EPSG 6708 reference system (RDN2008 / UTM zone 
33N (N-E)).

To relate the physiological measurements with the multispectral 
data, the five spectral bands were used to calculate the sixty vegetation 
indexes (feasible with the bands of the light spectrum acquired by the 
UAV camera) described in [18]. An overabundant set of VIs, compared 
to the few spectral indexes commonly used to monitor stress factors, 
were considered. All VIs have been calculated as raster operations us-
ing the packages terra and raster of the R Statistical language (version 
4.2.2; R CoreTeam, Austria).

A correlation analysis is performed between the mean plot values 
of the stem water potential and the vegetation indexes. The highest 
squared value 𝑅2, and the lowest 𝑝-value are used to select nine repre-
sentative indexes among the sixty computed. The nine aforementioned 
4

VIs can be related to four of the five categories of potential use of in-
dexes reported in [18]. These categories differ in the combinations of 
spectral bands used. Table 1 reports the selected VIs, the bands, the 
equations used for their computation, and the usage category. The cat-
egory related to biomass and vegetation density, mainly characterized 
by the combination of NIR and red bands, is prevalent.

2.4. Acquisition of the canopy status using a mobile robot

The mobile robotic platform Scout 2.0 (AgileX Robotics, Shenzen, 
China) shown in Fig. 5 was used to collect the point clouds of the vine-
yard on 26/07/2022 (60 DAFB). The mobile robot is provided with 
four electric motors and equipped with a Jetson Xavier (NVIDIA, Santa 
Clara, USA) onboard computer (Octal-core NVIDIA Carmel ARMv8.2 
CPU @ 2.26GHz; 512-core Volta GPU @ with 64 Tensor Cores; 32GB 
256-bit LPDDR4x @ 2133MHz), a RealSense D435 (Intel, Santa Clara, 
USA) camera, and a VLP-16 (Velodyne, Santa Clara, USA) LiDAR sensor 
featuring 16 channels. The VLP-16 has a range up to 100 m, an accu-
racy of ±3 cm, a 360° horizontal field of view, and a 30◦ vertical field 
of view (±15◦). The coordinate system of the LiDAR sensor is shown in 
Fig. 5b.

During the data acquisition campaign, the robot was teleoperated 
moving along four corridors of the vineyard, long approximately 117 m, 
returning to the starting point. In this way, the plants of the three con-
sidered vineyard rows were scanned from each side.

The data from the LiDAR sensor was acquired in ROS Melodic us-
ing Ubuntu 18.04 in the ROS Bags file format. To reconstruct the 3D 
environment using SLAM, the ROS Bags files were reproduced at the 
rate they were recorded on a workstation (Intel Core i5-10600K CPU 
@ 4.1GHz × 12; 32 GB RAM; 64-bit OS) running Ubuntu 18.04 and 
ROS Melodic. The 3D reconstruction of the vineyard was obtained with 
the graph-based SLAM algorithm Real-Time Appearance-Based Map-

ping (RTAB-Map) [22], which performs the scan matching by using the 
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Table 1

Description of the nine selected VIs: equations and usage category [18].

Water potential VI Equation Usage category

Ψpd/Ψstem GDVI NIR−G Biophysical parameters

Ψpd/Ψstem PVI
√
(0.335NIR− 0.149R)2 + (0.335R− 0.149NIR)2 Biomass/vegetation density

Ψpd/Ψstem TGI G− 0.39R− 0.61B Pigments
Ψstem 2GRBi 2G− (R+ B) Pigments
Ψstem DVI NIR−R Biomass/vegetation density
Ψstem EVI2 2.5(NIR−R)∕(NIR+ 2.4R+ 1) Biomass/vegetation density
Ψstem MCARI1 1.2(2.5(NIR− R) − 1.3(NIR−G)) Chlorophyll
Ψstem MRVI (R− 1)∕(NIR− 1) Biomass/vegetation density
Ψstem MTVI1 1.2(1.2(NIR−G) − 2.5(R−G)) Biophysical parameters
Fig. 5. (a) The Scout 2.0 mobile robot; (b) close view of the robot electronics 
and LiDAR sensor.

Fig. 6. Overview on the point cloud processing.

Iterative Closest Point (ICP) algorithm with a point-to-plane registration 
and a loop closure optimization.

The 3D point cloud obtained with the SLAM algorithm was then 
processed with the open-source CloudCompare software, and each con-
sidered row was extracted from the whole point cloud. An overview 
on the point cloud processing is shown in Fig. 6. The Statistical Out-
lier Removal (SOR) filter [44] was applied to remove outliers and noise 
points caused by the motion of the LiDAR sensor during each scan. 20 
neighboring points and a standard deviation multiplier equal to 1.00 
were selected for the SOR filter. Moreover, the Cloth Simulation Filter 
(CSF) [66] was applied to separate ground points from those belonging 
to plants, using a cloth resolution (the grid size of cloth used to cover 
the terrain) of 0.5 m, a maximum number of iterations of 1000, and a 
5

classification threshold equal to 0.5. The SOR filter was applied before 
the CSF since the point cloud provided by RTAB-Map is noisy, mostly on 
the ground, and reducing the noise improves the outcome of the CSF.

Two binary masks (images with 0 in regions without vegetation and 
1 in regions with plants) were applied in the QGIS software (version 
3.22.11-Białowieża; QGIS.ORG, Switzerland) by projecting the filtered 
point cloud on the ground, i.e., along the vertical axis. Considering the 
image 𝐼 , the set of pixels {𝑝(𝑖, 𝑗)} of the vineyard plots can be repre-
sented as a subset 𝑉 ⊂ 𝐼 , where (𝑖, 𝑗) ∈ 𝑉 if and only if the pixel 𝑝(𝑖, 𝑗)
belongs to the plots. The binary mask is thus obtained with the follow-
ing:

𝑝(𝑖, 𝑗) =

{
1, if (𝑖, 𝑗) ∈ 𝑉

0, otherwise
(1)

The first binary mask was obtained with points at the height of plant 
trunks, whereas the second one by using the whole point cloud. The first 
binary mask was used for georeferencing the second one in the EPSG 
6708 reference system exploiting the raster georeferencer tool available 
in the QGIS software. The header poles (shown in Fig. 1) clearly visible 
in the trunks mask were used as landmarks. Subsequently, a segmen-
tation of the vineyard plots was performed through the second binary 
mask.

Three plots for each row were extracted from the sections of the 
point cloud by measuring the distances from the vineyard header pole. 
The point density was computed in CloudCompare for each point by 
considering the neighboring points over a radius of 0.1 m. To retrieve 
the estimates of the volume and surface of the plants, the Alpha Shape 
algorithm [13] implemented in Matlab® (version R2022b; The Math-
Works Inc.®, Natick, MA, USA) was used. For each point cloud, the 
critical radius 𝛼∗, i.e., the smallest radius that builds a bounding area 
or volume through the triangulation (mesh) enclosing all points, was au-
tomatically selected in Matlab® to create the bounding mesh. The mesh 
triangles adjacent to the vineyard plot section planes were not consid-
ered in the computation of the surface since they do not represent the 
actual geometry of the plot.

To further investigate the canopy size in the considered rows of the 
vineyard, the area of the plants projected on the ground plane was com-
puted. For this purpose, the axis along which to project the point cloud 
was retrieved by means of the Principal Component Analysis (PCA) 
technique. After the definition of the three principal directions, a 2D set 
of points was obtained by projecting the points along the vertical axis. 
The projected area was then calculated by applying the Alpha Shape al-
gorithm to each of the 2D set of points. A description of the algorithm 
implemented in Matlab® to retrieve the size measurements is shown in 
Algorithm 1.

2.5. Statistical analysis

A statistical analysis has been provided for the evaluation of the out-
comes. The eventual correlation between numerical variables, i.e., phys-
iological measurements, multispectral indexes, and geometrical values, 
was studied by means of the one-way ANOVA test. When the test was 
significant, the averages are separated using the posthoc Tukey test 

(𝑝-value < 0.05). The Shapiro-Wilk and Levene’s tests were performed 
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Fig. 7. 3D reconstruction of an example portion of a vineyard row (side view). The colors represent different values of points density.
Algorithm 1 Analysis of the point cloud.
1: Input: Point cloud data
2: Output: Bounding mesh volume, surface, and projected area

3: Import point cloud
4: Perform PCA analysis to define the principal axis
5: Compute 𝛼∗ for the 3D bounding mesh
6: Compute the 3D bounding mesh using the Alpha Shape algorithm
7: Compute volume and surface of the 3D bounding mesh
8: Project the point cloud along the vertical axis
9: Compute 𝛼∗ for the 2D bounding mesh

10: Compute the 2D bounding mesh using the Alpha Shape algorithm
11: Compute the projected area of the 2D bounding mesh

Table 2

Results of the one-way ANOVA analysis performed on physiological and ge-
ometrical parameters. In case of significant results of the ANOVA test, mean 
values are separated using the posthoc Tukey test. n.s.: not significative; ∗: 
𝑝-value < 0.05; ∗∗: 𝑝-value < 0.01.

Parameter Unit
Water regime

Result
WW MS SS

Ψstem MPa −0.57 ± 0.10 −0.75 ± 0.10 −0.98 ± 0.09 ∗∗
Ψpd MPa −0.12 ± 0.01 −0.16 ± 0.01 −0.18 ± 0.02 ∗∗
Canopy volume m3 6.37 ± 0.92 5.60 ± 0.18 4.80 ± 0.89 n.s.
Surface m2 50.07 ± 0.30 48.85 ± 6.84 50.95 ± 3.26 n.s.
Projected area m2 8.70 ± 0.33 7.83 ± 0.52 6.99 ± 0.42 ∗
Points density pts/m3 20616 ± 1352 20674 ± 536 21539 ± 889 n.s.

to check for the normality of residuals and homogeneity of variance, re-
spectively. Moreover, Spearman linear correlations are tested between 
the studied variables.

3. Experimental results

Fig. 7 illustrates a 3D reconstruction of an example portion of a 
vineyard row, where colors represent different values of point density. 
As it can be seen from the figure, points density changes from the top to 
the bottom of the canopy. An example of the reconstruction of the 3D 
bounding mesh of a vineyard experimental plot, and of the 2D bounding 
mesh of the projected area, starting from the 3D point cloud acquired 
by the mobile robot, is reported in Fig. 8. In the figure, the black dashed 
axis represent the principal axis of the 3D point cloud. Furthermore, the 
outcomes of the segmentation are shown in Fig. 9, where a top view of 
the plot masks used in the experiments is reported using the NIR band 
as background, together with a magnifications of the plots.

The outcomes of the one-way ANOVA analysis performed on phys-
iological and geometrical parameters are shown in Table 2, in which 
mean values and standard deviations are reported together with the re-
sult of the post-hoc Tukey test. The last column of Table 2 indicates the 
significance of the results. The normality of residuals and homogeneity 
of variances are confirmed by the statistical tests (data not reported).

The results of the measurements carried out with the Scholan-
der chamber are first evaluated. Statistical differences are assessed 
by means of box plots (Fig. 10), which refer to a specific water 
regime (WW, MS, and SS) applied to a specific vineyard row. As ex-
pected, the WW and SS treatments are statistically different, with MS 
6

confirmed as an intermediate regime (Ψstem: 𝑝-value = 0.00775, Ψpd: 
𝑝-value = 0.00697), both for Ψstem (Fig. 10a) and Ψpd (Fig. 10b). A pos-
itive trend is found between the water potential values and the applied 
water regimes: as the water supply increases, the water potential val-
ues improve. Considering the similar trends between Ψpd and Ψstem, 
it is possible to discern a distinct difference between the three water 
regimes applied to the three tested rows.

Fig. 11 shows the results of the correlation analysis between the stem 
water potential and the nine selected VIs. The obtained regression lines 
together with grey areas indicating the confidence interval (95%) are re-
ported. The 𝑝-values of the VIs indicate significant differences between 
the group of analyzed samples. The nine VIs show strong positive corre-
lations with stem water potential (GDVI: 𝑅2 = 0.90, PVI: 𝑅2 = 0.90, TGI: 
𝑅2 = 0.87, 2GRBi: 𝑅2 = 0.84, DVI: 2 = 0.78, EVI2: 𝑅2 = 0.78, MCARI1: 
𝑅2 = 0.78, MRVI: 𝑅2 = 0.78, MTVI1: 𝑅2 = 0.78).

Correlations between pre-dawn water potentials and VIs are estab-
lished by means of the same procedure used for the stem water poten-
tial. The obtained regression lines together with grey areas indicating 
the confidence interval (95%) are depicted for Ψpd in Fig. 12. Only 
three VIs with a 𝑅2 greater than 0.5 are reported: the TGI: 𝑅2 = 0.77; 
the GDVI: 𝑅2 = 0.57; the PVI: 𝑅2 = 0.57. The VIs exhibit positive correla-
tions with the pre-dawn water potential. These VIs, as well as the Ψpd, 
are mostly related to soil water content, thus they confirm the three 
different water regimes applied in the field.

The box plots in Fig. 13 report the geometrical measurements with 
respect to the water regime applied. The estimated canopy volume, sur-
face, and projected area, depicted in Fig. 13a, Fig. 13b, and Fig. 13c 
respectively, show a positive trend with the water regime applied. Fur-
thermore, the values of projected area relative to the WW water regime 
are statistically different with respect to the SS, as reported Table 2. 
No statistical differences are found between the three considered wa-
ter regimes with respect to the volume of the canopy, density of the 
point clouds, and the surface. However, there is a trend between the 
average volume values belonging to each water treatment. Specifically, 
compared to the average values of the MS, there is an increase in the 
volume of 13.75% for the WW regime and a reduction of 14.29% for 
the SS regime, whereas the WW is increased by the 32.71% with respect 
to the SS.

A regression analysis is performed to correlate the geometrical mea-
surement with those of the Scholander chamber. A highly effective 
correlation is obtained between the stem water potential and the canopy 
volume as well as between the stem water potential and the projected 
area. Fig. 14 reports the results of the regression with lines, whereas 
the grey areas indicate the confidence interval (95%). Positive corre-
lations are obtained between these two geometrical measurements and 
the stem water potential values. Both regressions present significant 𝑝-
values, whereas the obtained 𝑅2 values are 0.72 and 0.67 for the canopy 
volume and the projected area, respectively.

4. Discussion

The combined utilization of UAV and a mobile robot proved advan-
tageous in acquiring the spatial variability of grapevine canopy identi-
fied through the masks. The masks facilitated the extraction of spectral 
data from the UAV exclusively pertaining to the canopy, thereby mit-

igating potential interference from extraneous factors such as soil and 
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Fig. 8. Example of the reconstruction of the 3D bounding mesh of a vineyard experimental plot (left), and of the 2D bounding mesh of the projected area (right), 
starting from the 3D point cloud acquired by the mobile robot. Black dashed axis represent the principal axis of the 3D point cloud.
inter-row weeds. The robustness of the relationship between the ex-
tracted indexes and the physiological measurements is also evidenced 
by the high values of 𝑅2 observed in the correlations. Furthermore, the 
results of this study indicate that incorporating a broader range of veg-
etation indexes can enhance our understanding of the actual condition 
of plants. The results are positive for both measures of plant water po-
tential, providing insights for future uses of VIs both for the assessment 
of plant water stress (stem water potential) and to obtain indications on 
soil water content (pre-dawn water potential).

The values of canopy volume and projected area acquired by means 
of the mobile robot further confirm the effect of the three different wa-
ter regimes on the growth of the plants. To this regards, it should be 
emphasized that the use of a ground robot in combination with a UAV 
for 3D grapevine canopy reconstruction shows advantages and flexi-
bility in intra-tree inspection by checking sub-volumes and avoiding 
occlusions, especially when canopy density changes from the top to the 
bottom.

The outcomes in terms of volume and projected area are consistent 
with our expectations from an agronomic standpoint: the reduced aerial 
growth of water-stressed plants [1,53] results in different volume and 
projected area with higher values in well-watered plants. It is impor-
tant to note that the differences found are not directly related to the 
water content. Among the VIs designed for inspecting the water status 
of the vineyard, those belonging to the water content category are char-
acterized by the combination of NIR and SWIR bands [18]. The DJI P4 
UAV and other drones currently used for agricultural research are not 
equipped to acquire the SWIR band, thus the computation of that kind 
of indexes is not possible. However, the resulting indexes obtained in 
this work are more geometric-related (as reported in the last column of 
Table 1), with a high correlation to indexes often used for the assess-
7

ment of biomass and vegetation density.
In this experiment, the water status of plants was controlled since 
bloom, and plants had the time to differentiate their growth. The dif-
ference in canopy volume and surface depends on the amount of wa-
ter applied, as we can appreciate in Fig. 13. Different results may be 
achieved in the case of an apriori non-controlled water regime or in the 
case of the application of temporary water stress, in which geometrical 
measurements could not be used as a proxy of the plant water status. 
Moreover, in the aforementioned situations, associating VIs related to 
biomass and vegetation density with VIs related to plant physiological 
activity can be useful in the analysis of the plant canopy status. In that 
case, VIs used for chlorophyll, pigments, and biophysical parameters 
can be included (Table 1). Finally, from the results of the experiment, 
it is possible to observe that the VIs that performed best in our survey 
are different from those usually employed by the classical studies that 
use mobile robots, such as the NDVI or the NDRE [5,35].

The proposed approach is suitable for studying the effect of a con-
trolled water regime that impacts plant development and thus canopy 
size (Fig. 13 and 14). However, our approach could not be eligible to de-
tect temporary water stress. In that case, alternative approaches should 
be adopted, as for instance thermal remote sensing [23].

In future field applications, the proposed approach will be used to 
acquire measurements across a season, as in [36], in order to extrap-
olate the relationships between water regime, vegetation indexes, and 
geometrical data over an extended period of time. Furthermore, we will 
extend the approach to analyze plants under temporary water stress, 
by mounting a multispectral camera on the mobile robot. In future 
developments, both the navigation of the robot and data processing 
will be fully automated, thereby minimizing the requirement for hu-
man intervention. Finally, deep learning approaches [9,39] will also be 
considered to detect vineyard plants stress in situ from images captured 

by drones and ground robots.
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Fig. 9. (a) Top view of the plot masks used in the experiments (the NIR band is used as background); (b) and (c) magnifications of the plots.

Fig. 10. Results of water potential measured with the Scholander chamber: (a) 
stem water potential; (b) pre-dawn water potential. In case of significant re-
sults of the one-way ANOVA test, mean values are separated using the post-hoc 
Tukey test. Different letters indicate statistically significant difference. Variables 

5. Conclusion

In this paper, a novel approach for analyzing the effects of water 
regime on grapevine canopy status using robotics as an aid for moni-
toring and mapping has been proposed. Data from an unmanned aerial 
vehicle (UAV) and a ground mobile robot have been used to obtain 
multispectral images and multiple vegetation indexes, and the 3D re-
construction of the canopy, respectively. Unlike previous works, sixty 
vegetation indexes have been computed precisely by using the projected 
area of the vineyard point cloud as a mask. Extensive experimental tests 
on repeated plots of Pinot gris vines have shown that the GDVI, PVI, 
and TGI vegetation indexes are positively correlated with the water 
potential: GDVI (𝑅2 = 0.90 and 0.57 for the stem and pre-dawn water 
potential, respectively), PVI (𝑅2 = 0.90 and 0.57), TGI (𝑅2 = 0.87 and 
0.77). Furthermore, the canopy volume and the canopy area projected 
on the ground are impacted by the water status, as well as stem and pre-
dawn water potential measurements. The results obtained in this work 
with no common letters are significantly different. demonstrated the feasibility of the proposed approach and the potential 
8

of robotic technologies, supporting precision viticulture.
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Fig. 11. Results of the correlation analysis between the stem water potential and the vegetation indexes. Points indicate the mean values of the plot stem water 
potential correlated with the mean values of the VIs of the plot. The black line represents the regression line, and the grey area indicates the confidence interval 
(95%). The regression line equation, 𝑅2 , and the Spearman correlation coefficient are reported for each plot on the top-left side.

Fig. 12. Results of the correlation analysis between the pre-dawn water potential and the vegetation indexes. Points indicate the mean values of the plot pre-dawn 
water potential correlated with the mean values of the VIs of the plot. The black line represents the regression line, and the grey area indicates the confidence 
interval (95%). The regression line equation, 𝑅2 , and the Spearman correlation coefficient are reported for each plot on the top-left side.
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Fig. 13. Results of the 3D reconstruction of the canopy: (a) volume; (b) bound-
ing surface; (c) projected area; (d) points density. In case of significant results of 
the one-way ANOVA test, mean values are separated using the post-hoc Tukey 
test. Different letters indicate statistically significant difference. Variables with 
no common letters are significantly different.

Fig. 14. Results of the correlation analysis between the stem water potential and 
the geometrical measurements: (a) canopy volume; (b) projected area. Points 
indicate the mean values of the plot stem water potential correlated with the 
mean values of canopy volume and projected area of the plot. The black line 
represents the regression line, and the grey area indicates the confidence in-
terval (95%). The regression line equation, 𝑅2 , and the Spearman correlation 
coefficient are reported for each plot on the top-left side.
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