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Abstract: The frequency domain techniques (also known as “spectral methods”) prove significantly
more efficient than the time domain fatigue life calculations, especially when they are used in
conjunction with finite element analysis. Frequency domain methods are now well established, and
suitable commercial software is commonly available. Among the existing techniques, the methods by
Dirlik and by Tovo–Benasciutti (TB) have become the most used. This study presents the historical
background and the motivation behind the development of these two spectral methods, by also
emphasizing their application and possible limitations. It further presents a brief review of the other
spectral methods available for cycle counting directly from the power spectral density of the random
loading. Finally, some ideas for future work are suggested.

Keywords: random loading; fatigue damage; power spectral density (PSD); spectral methods

1. Introduction

The estimation of fatigue life under variable amplitude or random loadings has been
an active research topic in the last fifty years, and the activity has further increased in the
last two decades. Cumulative damage calculations, in particular, occupy a dominant sector
in the structural integrity assessment of metallic components and structures subjected to
random fatigue loadings. In order to achieve a high level of structural reliability, fatigue
life calculations must be made at several stages of the design and development process.
An important aspect of the development of fatigue-resistant components and structures is
the ability to estimate component fatigue life and, thus, prevent unexpected failures.

The traditional approach to fatigue analysis—often referred to as “time domain
approach”—uses a technique called rainflow cycle counting to decompose a variable
amplitude time signal of stress into fatigue cycles [1,2]. The damage from each cycle is
then computed using an S/N curve, which characterizes the material strength for con-
stant amplitude loadings. The damage over the entire time signal is finally calculated by
summing the damage from all the individual cycles, using, for example, the celebrated
Palmgren–Miner linear damage rule. This simple rule, which sums the damage of cycles,
regardless of their order in the loading, also postulates that fatigue failure occurs when the
damage exceeds a critical level equal to unity [3].

The time domain approach does not present any particular theoretical complexity and,
nowadays, it is easy to implement by considering, for example, that the rainflow algorithm
is available in some numerical packages [4,5]. The approach may, however, require a long
computation time when it has to analyze a lot of digitalized signals of long duration, such
as those computed in hundreds of thousands of nodes in a finite element model. This
unfortunate circumstance could render the fatigue damage computation the bottleneck of
the whole design process.

In addition, the procedure by which stress signals are obtained plays an important
role. In fact, the computation time may increase if the random stress signals are obtained
by a transient simulation in time domain, which is orders of magnitude slower than an
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analysis in frequency domain, able to compute harmonic transfer functions and stress
power spectral densities with much less computational effort.

For linear systems, fatigue life calculations conducted entirely in the frequency domain
can shorten the computation time considerably. This corresponds to the so-called “fre-
quency domain approach” in vibration fatigue. Fatigue life calculation methods based on
frequency domain information of a random loading are now well established, and suitable
commercial software is commonly available (e.g., nCode DesignLife, Simulia Fe-safe, CAE-
fatigue, Ansys Random Vibration Fatigue). Among frequency domain methods, one should
also number those approaches in which spectral methods are combined with crack growth
models with the aim to estimate fatigue life under random loadings [6–10]. Crack growth
models, though relevant for the fatigue durability field, are not included in the following
discussion, which is concerned with S/N based approaches in frequency domain.

Since the early works of Miles [11] and Bendat [12], and in particular in the past thirty
years, tens of spectral methods have been developed and their number continues to rise
even today (a short list is found in [13,14]).

However, among all the existing methods, two of them have gained an increased
popularity and large use in the scientific and technical community: they are the Dirlik
method [15] and the Tovo–Benasciutti (or TB) method [16,17]. One reason for their popular-
ity is their accuracy, often superior to other methods, as highlighted by several comparative
studies that are commented on in the following sections.

Among the multitude of spectral methods, the Dirlik and TB methods are specifically
considered hereafter as they were invented by the two authors of this paper, who thus have
a vantage point in explaining the motivation behind the development of both methods,
meanwhile emphasizing some of their theoretical peculiarities. The purpose of this paper
is also to comment on their progresses and possible shortcomings, as well as to discuss
their relationship with a few other spectral methods, providing some insights into future
work. To this regard, this paper is not meant to be, in the strict sense, either a critical review
or a comparison of lots of spectral methods; rather, its aim is to focus on the Dirlik and TB
methods while also casting a glance on how they interrelate with other existing methods.

2. Random Processes in Frequency Domain: Spectral Properties and Fatigue Damage
2.1. Spectral Properties

Fatigue life assessment is critical in the design of components and structures exposed
to random loads, such as a car on a rough road or a wind turbine. These loads can be
viewed as the realization of a stationary random process s(t), which can be described in
the frequency domain by a power spectral density (PSD) function G(ω), where ω is the
circular frequency (in rad/s). The PSD is related to the Fourier transform of s(t) [18]. It
provides a picture of the energy content of s(t) over frequencies. The power spectrum
is often used to describe signals for qualification tests [19]. Note that two definitions of
PSD exist, namely single-sided versus double-sided. Each one can be function of circular
frequency ω (rad/s) or frequency f = ω/2π (Hertz). G(ω) is a single-sided PSD function
of ω.

It is customary to classify a random signal s(t) based on its frequency content, that
is, on the shape of its PSD. The signal is said to be “narrow band” if G(ω) has a peak
around a single frequency, generally the resonant frequency of a vibrating system. In all
other cases in which the PSD covers a wider range of frequencies, the random signal is not
narrow band, and it is named as “wide band” (or “broad band”). Sometimes, more specific
definitions (“bimodal”, “trimodal”, “multimodal”, etc.) are adopted to specify that a PSD
has two, three, or more well-defined peaks.

Figure 1 compares three time history samples belonging to three types of random
processes. The figure emphasizes quite well the differences among the various time
histories based on their corresponding PSD, although it considers power spectra with
rectangular blocks that are only idealizations of the smoother spectra normally encountered
in practical applications.
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Figure 1. (a) Time history samples and (b) their PSD (narrow band, wide band, bimodal).

The definitions of narrow band or wide band process introduced so far are merely
qualitative. A more quantitative definition is provided by means of several types of
spectral parameters, which are indeed introduced with the purpose of establishing to
which degree a random signal is narrow band or wide band. The first parameters are the
spectral moments [18]:

mn =
∫ ∞

0
ωnG(ω) dω, n = 0, 1, 2 . . . (1)

The theory shows [18] that, for a random loading with zero mean value, the spectral
moment of order zero coincides with the variance of the random signal, m0 = Var(s(t));
the root mean square (rms) value is σx =

√
m0.

Other spectral moments of higher order—or, better, their combinations—are also
used to characterize some statistical properties of the random signal that are of interest
in fatigue analysis. For example, for a Gaussian process, λ+

0 =
√

m2/m0 (rad/s) is the
expected number of mean value upcrossings per unit time, while µ =

√
m4/m2 (rad/s) is

the expected number of peaks per unit time [18]. For what follows, it is useful to introduce
the “mean frequency” ω1 = m1/m0 (rad/s) of the spectral density; it may be interpreted as
the distance of the centroid of the spectral mass from the frequency original [20].

Besides the previous parameters, other quantities, known as bandwidth parameters,
are used extensively. They are combinations of spectral moments. Various equivalent
definitions exist, but those most used are [18]:

α1 =
m1√
m0m2

, α2 =
m2√
m0m4

, α0.75 =
m0.75√
m0m1.5

(2)

They belong to a more general class, αk = mk√
m0m2k

. Note the relationship with the

Vanmarcke’s spectral parameter q =
√

1− α2
2 [20]. Both α1 and α2 approach unity for

a narrow band process, whilst they approach zero when the spectral width increases.
Parameter α1 is related to the definition and properties of the envelope of the random
process, and it is often called “groupness parameter” in ocean engineering. Parameter
α2 is often called the “irregularity factor”, which is a useful parameter characterizing the
behavior of the process. In time domain, the irregularity factor is defined as the ratio of
the number of mean value upcrossings n+

0 to the expected number of peaks np, that is
IF = n+

0 /np; for a Gaussian process it takes the form γ = λ+
0 /µ, which coincides with α2.

This parameter lies between zero and unity. It approaches unity for a narrow band process
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in which peaks and troughs are placed symmetrically above and below the mean value of
the process. It approaches zero when the process has many peaks between two successive
crossings of its mean value.

2.2. Fatigue Damage

The fatigue damage of a random time history s(t) of time length T is computed in two
stages. In the first, a counting method (e.g., rainflow) is applied to s(t), with the purpose
of identifying the set of fatigue cycles [2]. Counted cycles have, in general, different
amplitudes and mean values, and thus they contribute with a different damage. Therefore,
in the second stage, the damage of every counted cycle is summed up to determine the
damage of s(t) as a whole. This step calls for a damage accumulation rule, as the Palmgren–
Miner linear law [3]:

D =
N(T)

∑
i

ni
Ni

(3)

This summation extends over the total number of cycles N(T) counted in s(t); ni
numbers the cycles with amplitude si, which would cause a failure after Ni repetitions in a
constant amplitude test.

Often, the relationship between stress amplitude si and cycles to failure Ni is expressed
by a straight line in a log–log diagram, through the S/N curve Nsb = K. This equation is
fitted to experimental data by regression analysis. In some cases, a two-slope equation is
preferred when it fits experiments better.

In Palmgren–Miner rule, fatigue failure is predicted to occur when damage D reaches
a critical value equal to unity, even though lower values are recommended in some design
codes (e.g., [21]) to account for experimental evidence.

The summation in Equation (3) assumes that the cycles counted in s(t) are grouped
into bins of ni cycles, all having the same amplitude si. The actual values of ni and si
obviously depend on the actual course of s(t). If the instantaneous values of s(t) vary
randomly—that is, s(t) is modeled as a random process—it follows that ni and si are both
random variables. In this case, the summation in Equation (3) needs to be reformulated in
a probabilistic way:

D = nr f c

∫ +∞

0

1
N(s)

p(s)ds (4)

Here, p(s) is the probability distribution of the amplitudes of rainflow cycles, nr f c is
the number of rainflow cycles counted in T, and N(s) is the number of cycles to failure at
constant amplitude s. Notice that the previous expression is very general, as N(s) is not
restricted to a straight-line equation.

Although, at first glance, the previous formula may appear complicated, it is
nothing more than the Palmgren–Miner rule in Equation (3) extended to continuously
distributed amplitudes.

Equation (4) can be solved in closed form if one knows the analytical expressions
of p(s). This circumstance occurs, for example, when s(t) is a narrow band process. In
this case, peaks and valleys are placed symmetrically around the mean value of s(t), and
each cycle is formed by pairing each peak to the adjacent valley (this corresponds to the
peak counting method)—the range is the peak–valley distance. Consequently, each cycle
has zero mean and amplitude coincident with the peak value, which in a narrow band
process follows a Rayleigh distribution [18]. In a narrow band process, the number of
cycles counted is also known, it being equal to the number of crossings of the mean value,
nrfc = λ+

0 T. When inserted into Equation (4), the previous mathematical conditions yield
the expression of the “narrow band” damage in time interval T [18]:

DNB =
λ+

0 T
K

(√
2m0

)b
Γ
(

1 +
b
2

)
(5)
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in which Γ(−) is the gamma function. This expression is usually credited to Miles [11] or
Bendat [12]. It is restricted to a straight S/N line. In case the S/N relationship is not straight,
it is possible to solve Equation (4) numerically, by taking p(s) as a Rayleigh distribution.

When the random process is no longer narrow band, the previous formula becomes
too conservative. Indeed, in a wide band process, fatigue cycles cannot simply be obtained
by joining a peak with a symmetric valley, as is done in the peak counting [2]; actually,
this counting procedure would yield cycles with amplitudes larger than those identified
by the rainflow counting. On the other hand, the algorithm of the rainflow counting is
so intricate that it seems not possible to determine, in closed form, the expression of the
probability distribution of amplitudes and mean values of rainflow cycles, and to relate it
to the bandwidth parameters of the wide band process.

For this reason, historically, the approach followed initially—easy but oversimplified—was
to introduce a correction factor less than unity, by which to reduce the narrow band damage
in Equation (5). The correction factor must become smaller and smaller when the spectral
bandwidth of the random process becomes wider and wider. Since this inverse relationship
is not known, and it cannot be determined in closed form because of the same reasons
mentioned above for the rainflow counting, the only feasible way was to calibrate the
damage correction factor based on simulation results. The difficult task was to select which
bandwidth parameters must enter the correction factor. Assumptions were made based on
the trends observed in simulations.

Among the spectral methods that followed this approach, the first, and probably
the most famous, one is that of Wirsching and Light, proposed in 1980 [22], in which the
correction factor is made to depend solely on the spectral parameter α2. In subsequent
years, other methods following the same idea were proposed. In those methods, the
expression of the correction factors was refined by introducing the dependency on other
bandwidth parameters. For example, an approach named the “empirical α0.75-method”
proposed a correction factor in the form α2

0.75 [17].
It should come as no surprise that the use of a correction factor for estimating the

damage of a wide band process, no matter how simple, has the drawback of not providing
the amplitude probability distribution p(s) of the cycles causing that damage. Knowing
p(s) indeed has several advantages. First, it makes it possible to compute the fatigue
damage not only for a straight S/N line, but also for any smooth curve with continuous
change of slope, with or without endurance limit. Second, the amplitude distribution
allows one to determine the cumulative (or loading) spectra of rainflow cycles, and to
extrapolate it towards cycles with large amplitudes (rare events).

Both Dirlik and TB methods illustrated below belong to the category of approaches
that provide an estimate of the amplitude probability distribution of rainflow cycles. For a
more comprehensive survey on spectral methods, the reader may refer to [13,14].

3. Dirlik Method (1985)

This method can, for sure, be numbered as a milestone among spectral methods. This
is testified by the number of citations, to date more than 600 in Google Scholar [23].

As already said, a power spectral density function specifies how the characteristics of
a random signal are distributed over a given frequency range. This information is needed
in many engineering sectors; techniques to calculate the PSD from a time record are readily
available in the form of fast Fourier transform (FFT).

Early in the development of the Dirlik method, because of the complexity of the
rainflow counting algorithm, it was decided that it would be such a difficult task to derive
in closed form the distribution of rainflow cycles from the PSD function G(ω). A Monte
Carlo approach was thus employed to generate a sample stress history s(t) from G(ω)
using FFT methods [24,25]. Then, the rainflow algorithm was used on s(t) to extract the
cycles and the probability density function of rainflow counted ranges, which in turn
allowed calculating the fatigue damage for any given material constants in an S/N curve.
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The idea of the Monte Carlo approach is based on the “weak law of large numbers”,
which states that the sample average converges in probability towards the expected value
if the sample size increases [26]. It is then important that, in numerical simulations, the
sample stress histories are sufficiently long to contain a large number of turning points
(peaks and troughs); in fact, the longer the time history, the more chance of catching
rare events.

The exact procedure of the approach linking PSDs to rainflow range probability
densities is explained fully in [15,27], and it is briefly summarized here.

A total of 70 PSDs of various shapes were considered, some rectangular and some
smoothly varying, as shown in Figure 2. To make the comparison easier, power spectra
were normalized so that all had the same rms value σx and the same expected rate of peaks
µ (that is, the same number of rainflow cycles counted in a time interval). With these two
parameters kept fixed, the irregularity factor γ was made to vary (from 0.16 to 0.99) by
adjusting the parameters defining the power spectrum shape—which in turn corresponds
to varying the spectral moments of order zero, two, and four (m0, m2, m4).

Metals 2021, 11, x FOR PEER REVIEW 6 of 21 
 

 

Early in the development of the Dirlik method, because of the complexity of the rain-
flow counting algorithm, it was decided that it would be such a difficult task to derive in 
closed form the distribution of rainflow cycles from the PSD function ܩ(߱). A Monte 
Carlo approach was thus employed to generate a sample stress history (ݐ)ݏ from ܩ(߱) 
using FFT methods [24,25]. Then, the rainflow algorithm was used on (ݐ)ݏ to extract the 
cycles and the probability density function of rainflow counted ranges, which in turn al-
lowed calculating the fatigue damage for any given material constants in an S/N curve. 

The idea of the Monte Carlo approach is based on the “weak law of large numbers”, 
which states that the sample average converges in probability towards the expected value 
if the sample size increases [26]. It is then important that, in numerical simulations, the 
sample stress histories are sufficiently long to contain a large number of turning points 
(peaks and troughs); in fact, the longer the time history, the more chance of catching rare 
events. 

The exact procedure of the approach linking PSDs to rainflow range probability den-
sities is explained fully in [15,27], and it is briefly summarized here. 

A total of 70 PSDs of various shapes were considered, some rectangular and some 
smoothly varying, as shown in Figure 2. To make the comparison easier, power spectra 
were normalized so that all had the same rms value ߪ௫ and the same expected rate of 
peaks ߤ (that is, the same number of rainflow cycles counted in a time interval). With 
these two parameters kept fixed, the irregularity factor ߛ was made to vary (from 0.16 to 
0.99) by adjusting the parameters defining the power spectrum shape—which in turn cor-
responds to varying the spectral moments of order zero, two, and four (݉, ݉ଶ, ݉ସ). 

The rectangular bimodal spectrum (see Figure 2a) was used extensively because of 
its simplicity to assume a wide range of values of the irregularity factor ߛ, having the 
same rms value ߪ௫ and the same expected rate of peaks ߤ, by adjusting the amplitudes 
and the frequency boundaries of the power spectrum. 

  
(a) (b) 

Figure 2. Types of PSD used in numerical simulations used to develop the Dirlik method: (a) rec-
tangular bimodal spectrum; (b) smooth spectrum. Figures are from [15]. 

In preliminary simulation trials, it was, however, observed that the mean frequency 
߱ଵ of the spectrum (that is, its first order moment ݉ଵ) also has a role in changing the 
fatigue damage of a simulated time history. To investigate this relationship more closely, 
42 out of 70 power spectra were shaped so as to have the same ߪ௫, ߛ ,ߤ, but different ݉ଵ. 
Because the expected rate of peaks ߤ is identical for all spectra, a “normalized mean fre-
quency” ݔ = ߱ଵ ⁄ߤ  was introduced: 

ݔ =
݉ଵ

݉
ඨ

݉ଶ

݉ସ
 (6)
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The rectangular bimodal spectrum (see Figure 2a) was used extensively because of its
simplicity to assume a wide range of values of the irregularity factor γ, having the same
rms value σx and the same expected rate of peaks µ, by adjusting the amplitudes and the
frequency boundaries of the power spectrum.

In preliminary simulation trials, it was, however, observed that the mean frequency
ω1 of the spectrum (that is, its first order moment m1) also has a role in changing the fatigue
damage of a simulated time history. To investigate this relationship more closely, 42 out of
70 power spectra were shaped so as to have the same σx, µ, γ, but different m1. Because
the expected rate of peaks µ is identical for all spectra, a “normalized mean frequency”
xm = ω1/µ was introduced:

xm =
m1

m0

√
m2

m4
(6)

For a given power spectral density, sample stress time histories s(t) were generated
using the inverse FFT (IFFT). A single generated stress time history had 1024 points. The
simulation procedure was repeated 20 times in order to obtain a sufficiently long record of
stress time history. This long record (called one block) consisted of 1024 × 20 = 20,480 time
points [15]. The number of 1024 FFT points was not a choice, but it was dictated by the
maximum size of the memory and disk capacity of computers available at that time. The
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use of 20 replicated stress time histories had the very purpose of increasing the entire
length of the simulated block. Processed in time domain, the block was converted into
a sequence of peaks and troughs, from which fatigue cycles were extracted by means of
the rainflow counting and the simple-range counting (which pairs a peak with the next
valley [2]). From the set of counted cycles, the probability distributions of simple ranges
and rainflow ranges were finally calculated. An example is displayed in Figure 3.
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Thanks to the simulation results, it was argued that the probability density function
(PDF) of rainflow ranges is to be a mixture of three distributions: an exponential function,
a Rayleigh function with variable parameter, and a standard Rayleigh function. The full
expression in terms of a normalized variable Z = r

2
√

m0
is [15]:

pDK(Z) =
1

2
√

m0

[
D1

Q
e−

Z
Q +

D2Z
R2 e−

Z2

2R2 + D3Ze−
Z2
2

]
(7)

where r is the rainflow range. The coefficients D1, D2, D3 and R are defined as

D1 =
2(xm−α2

2)
1+α2

2
D2 =

1−α2−D1+D2
1

1−R D3 = 1− D1 − D2,

R =
α2−xm−D2

1
1−α2−D1+D2

1
Q = 1.25 (α2−D3−D2R)

D1

(8)

where xm is the normalized mean frequency in Equation (6).
Note that the symbols in Equations (7) and (8) conform to the notation used nowadays,

which differs from that originally used in [15]. The quantities D1, D2, D3, and R are “best
fit” parameters that turned out after minimizing the difference between the observed
probability distribution and the analytical one.

The probability distribution in Equation (7) represents the link between the rainflow
counted ranges and the power spectral density. The importance of this equation lies in the
fact that, once it is used to determine the PDF of rainflow ranges, the life estimation can
be made with any form of S/N data by using Equation (4). The use of this method is not
restricted to a straight line representation of S/N data on a log–log scale only, which instead
could be a smooth curve with continuous change of slope with or without endurance limit.
In the case of single slope S/N line, Nsb = K, the substitution of pDK(Z) into Equation (4)
returns a closed-form expression for the damage in time interval T [17,28]:

DDK =
νpT
K

(
√

m0)
b
[

D1QbΓ(1 + b) +
(√

2
)b

Γ
(

1 +
b
2

)(
D2|R|b + D3

)]
(9)
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That described so far is the original version Dirlik method commonly used. A
temperature-modified version was also proposed in [29–31] to estimate the high-cycle
fatigue damage for uniaxial loadings caused by random vibrations directly from a power
spectral analysis. The model combines the frequency-based method and the temperature
effect, and it is verified by comparison with experimental test results for a high-pressure
die-cast aluminum alloy. Actually, the approach in [29] incorporates the temperature effect
into the Dirlik method by considering a temperature-dependent inverse slope and fatigue
strength b(T) and K(T), and by also taking the temperature time history into consideration
by using a weighted sum of the damage at each temperature. In this way, the temperature-
dependent spectral approach, though developed in [29] only for the Dirlik method, is in
fact applicable to any other spectral method, provided that temperature-dependent S/N
parameters are used.

4. Tovo–Benasciutti (TB) Method (2002, 2005)

The theory of this method was first laid out in [32]. It postulates that the amplitude–
mean joint probability distribution of rainflow cycles lies between two limit distributions,
and can be estimated as their linear combination:

pTB(s, m) = w pLCC(s, m) + (1− w) pRC(s, m) (10)

Here, w is a weight factor that needs to be determined. Unlike Dirlik method, the TB
method provides the joint distribution of amplitudes and mean values of rainflow cycles.
The two functions pLCC(s, m) and pRC(s, m) represent the amplitude–mean distributions
of the level-crossing counting (LCC) and of the simple-range counting (RC)—actually, the
latter is only approximated. Their analytical expressions, not reported here, can be found
in [16,32]. The two distributions are shown in Figure 4. Note that pLCC(s, m) involves two
Dirac delta functions.
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Figure 4. Amplitude–mean probability distributions in TB method: (a) level crossing counting; (b) approximate range
counting. Representation of pLCC(s, m) is only qualitative, as it includes a Dirac delta function for s = 0 and m = 0.
Reproduced from [32] with permission from Elsevier.

Equation (10) shows that the LCC and RC distributions represent two bounds be-
tween which the rainflow cycle distribution is enclosed. In other words, Equation (10)
postulates that the rainflow cycle distribution of any random process lies between two
limit distributions, and its actual shape depends on the value of w.
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Likewise in Equation (10), the same weighted sum holds also for the marginal proba-
bility distributions pTB(s), pLCC(s), pRC(s), and, most importantly, for the damage values:

DTB = w DLCC + (1− w) DRC ∼=
[
w + (1− w)αb−1

2

]
DNB (11)

The latter inequality takes advantage of the fact that DLCC = DNB and that the simple-
range counting damage is approximated as DRC ∼= αb−1

2 DNB [16,17]. Though, from a

practical point of view, the quantity
[
w + (1− w)αb−1

2

]
can be interpreted as a correction

factor of the narrow band damage, the above arguments clearly demonstrate that the origin
of this factor is in fact quite different, and the TB method has a sound theoretical basis.

Turning back now to the weighted sum that links probability distributions and damage
values through w, the next step to complete the definition of the TB method was to find a
proper expression for w. At least theoretically, parameter w is a function of the whole set of
spectral and bandwidth parameters of the PSD of the random process.

Nevertheless, it was—as it seems even today—rather hard, if not impossible, to
demonstrate theoretically which spectral parameters contribute to the definition of w.
Some trends can be argued. In the narrow band case, for example, the rainflow distribution
must converge to the Rayleigh one (i.e., LCC function), which in turn requires that w ∼= 1
for a narrow band process in which α1 and α2 both approach unity. Other trends emerged
from numerical simulations. The approach was to generate stress time histories, as in the
procedure described for the Dirlik method.

Using simulation results with power spectra densities of various shapes, a first expres-
sion was proposed in [32]:

w1 = min
(

α1 − α2

1− α1
, 1
)

(12)

This formula is yet not continuous. Moreover, its accuracy tends to diminish if α1 and
α2 differ significantly [13], as in the special case of a lightly damped linear oscillator driven
by white noise, whose response has α1

∼= 1 but α2 = 0 (irregular process) [18].
From a broader perspective, conflicting views seem to emerge in the literature re-

garding the accuracy of parameter w1. While the agreement with simulation results was
judged as “excellent” in [32], a less flattering opinion—moreover consistent with the results
of [33]—is given in [34], where the use of this formulation of w1 is indeed discouraged.

Apart from this, long before the above studies, it was soon discovered that Equa-
tion (12) could be ameliorated by seeking better solutions. Although a first attempt was
made in [35] to find a continuous but equally accurate expression to replace Equation (12),
it was only in [36], and later in [16], that the expression of w used today has finally
been developed:

w2 =
(α1 − α2)

[
1.112(1 + α1α2 − (α1 + α2)) e2.11α2 + (α1 − α2)

]
(1− α2)

2 (13)

This expression is a result of a best fitting on simulation results from power spectral
densities of various shapes (see Figure 5). Similar to the Dirlik method, this formula
assumes that the rainflow probability distribution is linked to four spectral moments, m0,
m1, m2, and m4. The soundness of this correlation, first foreseen by Dirlik, was confirmed
after comparing frequency domain estimations with time domain simulation results. It
was shown in [16] that the use of Equation (13) along with Equation (11) guarantees an
excellent accuracy.
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After that, this accuracy was further confirmed by other studies (e.g., [33,37]), and the
TB method rapidly became popular and widely used, similar to the Dirlik method—though
the latter seems to remain the method preferred by most scholars.

Soon after [16] was published, a further attempt was made in [17] to correlate w
to fractional order spectral moments m0.75 and m1.5 (in bandwidth parameter α0.75) by
the formula

w3 =
α2

0.75 − α2
2

1− α2
2

(14)

This choice was suggested after having observed that fractional spectral moments
were considered also by other spectral methods (Zhao-Baker [38], “single-moment” [39,40],
“empirical α0.75-method” [17]). Against all odds, the comparison made in [17] even revealed
that the accuracy of Equation (14) is slightly better than Equation (13); however, despite
this outcome, quite surprisingly, Equation (14) has been ignored by scholars in favor of
Equation (13).

5. Area of Application of Spectral Methods

Since their early development, but especially from the appearance of Dirlik approach
in 1985, spectral methods have found ever more application in many engineering fields,
even those much different from each other. Over the years, many examples and case
studies have been developed in engineering sectors such as automotive, wind, offshore,
and marine, not to mention the field of aerospace and advanced composite materials.

Obviously, as already pointed out for spectral methods, here it is also not possible (as
well not very useful) to enumerate all the examples or case studies cited in the literature,
by also considering that probably a great many of them were not published as scientific
articles. Nor is the aim of this section to present a summary list of articles. Rather, the lines
that follow have the only purpose of casting a glance at a few representative applications
of spectral methods, with special interest on examples that analyze real structures, often
with the aid of finite element simulation.

It has indeed to be pointed out that one of the main advantages of spectral methods
(which may in fact explain their widespread use) is the possibility to use them in conjunction
with computer-aided analysis. Typically, once a finite element model is built and subjected
to a known random acceleration/load expressed by a power spectral density, the stress
power spectra in each node are calculated and then input directly in a spectral method,
which then provides a damage value in each node of the model. If the nodal stress is
multiaxial (i.e., a PSD matrix is defined), a multiaxial criterion must be used [41].

Among those existing, multiaxial spectral methods that transform a multiaxial stress
into an equivalent uniaxial stress permit the “traditional” spectral methods (like as Dirlik,
TB method or others) to be used [42]. This synergistic combination of multiaxial criteria
and frequency domain methods has allowed the field of application of spectral methods to
be expanded considerably.

In the automotive field, application of spectral methods generally relies on results of
multibody and/or finite element simulation at various levels of modeling detail (chassis,
engine, tires, etc.) [43–47]. Sometimes the focus is on a specific component—structural
or not—that has to endure random vibrations due to road roughness. Interesting is, for
example, the study in [48], which applies spectral methods for estimating the road-induced
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fatigue damage in a carbon steel coil spring based on acceleration signals acquired in
a car driving on various road types [48]. A similar goal is pursued in [49], where field
measurements and finite element modeling are used for analyzing a structural component
of an automotive headlight. The capabilities of spectral methods as design tool are further
demonstrated in [50] by an experimental/numerical analysis of a wheel of an industrial
vehicle. When computation time becomes essential, it is possible to integrate spectral meth-
ods in an algorithm for monitoring fatigue damage in real time using onboard equipment,
as demonstrated by the example in [51] with a heavy-duty truck frame.

In the field of maritime engineering, where there are different types of structures
subjected to random waves (e.g., ships, mooring systems, offshore wind turbines, and fixed
offshore structures), the use of spectral methods is particularly effective. An advantage
is that the power spectra for certain sea states (e.g., JONSWAP, Pierson–Moskowitz) are
known in closed form and can be input directly in a finite element analysis aimed at
determining the structural dynamic behavior and stress response. Frequency-based fatigue
analysis methods are also mentioned in design guidelines [52].

An example of frequency domain fatigue analysis of a semi-submersible platform is
described in [53]. The study applies spectral methods with multiaxial fatigue criteria to the
output of a three-dimensional finite element model. The case study also serves as a basis to
compare the accuracy of various spectral methods.

When data storage and computational cost in recording and processing stress time
histories are important, spectral methods prove to be particularly advantageous. For
example, [54] proposed a structural monitoring system for a ship hull in which a damage
detection algorithm using spectral methods is embedded into a wireless sensor.

For offshore wind turbines, the combined effect of wave and wind loadings acting
simultaneously is investigated in [55]; the contribution of different sea and/or wind
states can also be taken into account. Spectral methods are also used for estimating
the structural integrity of welded joints, which constitute a typical structural detail in
offshore structures [55,56].

Examples specific to the field of wind engineering show how spectral methods can be
used to predict the fatigue damage of wind-excited structures [57,58]; corrections factors
are introduced to account for non-Gaussian effects in the output stress caused by nonlinear
aerodynamic damping. A spectral based fatigue analysis, integrated with finite element
simulation, is the basis for a structural integrity assessment of two welded joints in a
wind turbine tubular tower subjected to different wind speed and direction conditions [59].
When a best balance is required between accuracy and overall computation cost, the study
suggests the use of the frequency domain approach over the time-domain one—and among
spectral methods, TB and Dirlik methods are recommended [59].

The literature also offers examples of use of spectral methods in engineering sectors
such as aerospace and electronics, or with composite materials. In the former cases, for
example, spectral methods combined with finite element analysis are employed for the
virtual qualification of electronic assemblies subjected to aerospace vibratory environ-
ment [60]. Other examples with electronic devices [61,62] are discussed in the following
section. Concerning composite materials, spectral based approaches attempt to reformulate
strength criteria for composite materials (e.g., Tsai–Hill [63], residual strength, or stiffness
model [64,65]) to extend their validity to the frequency domain for the case of random
vibrations [66]. Even for metal/composite assemblies undergoing random vibrations,
an example demonstrates how to combine finite element analysis with spectral methods
successfully [67]. Another application is described in [68] for carbon fiber-reinforced silicon
carbide ceramic matrix composite, which are considered as excellent materials for thermal
protection structures of launch vehicles and spacecraft structures and, for this reason,
exposed to thermo-acoustic vibration loading in service.

Besides the examples above, other, more specific, applications of spectral methods deal
with welded [56] or riveted joints [69], to nonferrous materials [70] or even to nonmetallic
materials such as concrete [71].
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6. Comparison of Spectral Methods

Although the discussion so far has focused on Dirlik and TB approaches, it should not
be forgotten that, in the literature, a great many other spectral methods exist for wide band
random processes. They are nevertheless too numerous to list them all here. The following
list, certainly not exhaustive, mentions in chronological order those spectral methods that
seem to be among the most cited in the literature:

• Wirsching and Light (1980) [22].
• Ortiz and Chen (1987) [72].
• “Single-moment” (1990) [39,40].
• Zhao and Baker (1992) [38].
• Steinberg three-band method (2000) [73].
• Fu–Cebon (2000) [74] and Modified Fu–Cebon (2007) [75].
• Empirical α0.75 method (2006) [17].
• Gao and Moan (2008) [37].
• Lalanne (2009) [76].

All these frequency domain methods are usually derived for stationary Gaussian
processes, but extensions to stationary non-Gaussian processes or to specific subclasses
of nonstationary processes (e.g., switching case) have also been proposed. Except for the
narrow band case, all these methods are approximate; they differ in what they estimate.
While some methods estimate only the expected fatigue damage, others also attempt to
also estimate the probability distribution of rainflow amplitudes [17]. Some methods in the
previous list (e.g., “single-moment”, Fu–Cebon method and its modified version, Gao and
Moan) were developed for bimodal or trimodal processes, and they are now considered as
a safe technique to assess the vibration fatigue life of real engineering structures.

With the increase in the number of spectral methods, the need has come to establish
which of them is “the best” method. A lot of articles published over the last decades have
proposed systematic comparisons among spectral methods, and therefore this work does
not repeat such a similar analysis. Rather, it summarizes the main findings from other
articles. Readers are advised to draw their own conclusions as to which method is “the best”
for their own application after investigating each method’s assumptions, limitations, and
application areas. When interpreting the outcomes of comparison studies, an important
aspect to consider is the length of simulated time histories, which should be the longest
possible so as to increases the chance of observing large amplitude cycles that appear only
occasionally, and thus to make the comparison more reliable.

6.1. Comparison between Dirlik and TB Method

Before comparing these two methods with others, it is useful to give them a closer
inspection. To this end, this section compares the Dirlik and TB methods for some selected
power spectral densities. The comparison considers not only the amplitude probability
distribution, but also the “damage distribution” (to be defined below) and the estimated
damage. The purpose is to show that, even though the methods yield, in general, very
close predictions, some differences may sometimes occur in their amplitude distributions.

The following discussion deals with the power spectral density in Figure 2a, which
is defined by the area ratio rA = A2/A1 and by frequencies p1, f1, p2, f2. The frequency
ratios p1/ f1 and p2/ f2 can be chosen so as to have different [15] or equal [39,40] values.
The condition c = p1/ f1 = p2/ f2 ensures the same spectral bandwidth for both blocks. In
this case, the power spectrum is only defined by ratio of areas rA = A2/A1 and frequencies
r f = f2/ f1 = p2/p1. This type of power spectrum is particularly advantageous, as it
allows not only bimodal cases, but also narrow band and band-limited power spectra to
be obtained by a suitable choice of geometric parameters. When rA = 0 (whatever r f )
the spectrum becomes unimodal—whether narrow band or wide band depends on c. A
small value (e.g., c = 1.1/0.9) assures that each rectangle is narrow band. As c increases,
the spectrum width widens. Additionally, for this power spectrum, it is easy to obtain
closed-form expressions that express α1, α2, λ in terms of c, rB, r f (see [13]). With such
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formulae, parameters rA and r f can be varied so as to obtained prescribed values of α1
and α2.

A short list of PSD geometrical and spectral parameters is summarized in Table 1. For
every spectrum, the lowest frequency f1 is adjusted so that all power spectra have the same
number of peaks per second µ = 20. The three columns on the right provide the damage
ratio DTB/DDK for three values of S/N slope.

Table 1. Parameters of some types of narrow band, band-limited, and bimodal power spectral densities for which Dirlik
and TB methods are compared ( f1 in Hz, µ peaks per second, λ+

0 crossing per second, n.a. = not applicable).

PSD c rf rA f1 α1 α2 µ λ+
0 DTB/DDK

b = 3 b = 5 b = 7

Narrow band 1.05 n.a. 0 19.50 0.9999 0.9996 20 19.99 0.9999 0.9997 0.9996
1.10 n.a. 0 19.01 0.9996 0.9985 20 19.97 0.999 0.999 0.998

Band limited 1.50 n.a. 0 15.50 0.993 0.975 20 19.50 0.991 0.981 0.969
5 n.a. 0 5.14 0.933 0.827 20 16.54 0.980 0.920 0.867
20 n.a. 0 1.29 0.886 0.765 20 15.29 0.998 0.932 0.875
∞ n.a. 0 0.0 0.866 0.745 20 14.91 1.00 0.943 0.885

Bimodal 1.1/0.9 2.981 0.098 8.258 0.900 0.600 20 12.00 0.983 0.963 0.954
1.1/0.9 7.408 0.006 4.677 0.900 0.300 20 6.00 0.929 0.966 0.964
1.1/0.9 3.233 0.240 6.409 0.850 0.600 20 12.00 0.996 0.944 0.922
1.1/0.9 7.176 0.050 2.920 0.700 0.300 20 6.00 1.000 0.989 0.992
1.1/0.9 11.855 0.025 1.705 0.600 0.200 20 4.00 1.035 1.025 1.026
1.1/0.9 11.715 0.051 1.628 0.550 0.250 20 5.00 1.060 1.029 1.027
1.1/0.9 19.442 0.014 1.001 0.503 0.139 20 2.78 1.062 1.052 1.052

Among the examples of Table 1, two specific cases are investigated in more detail
in Figures 6 and 7. They refer to combinations: r f = 7.408, rA = 0.006 (with α1 = 0.900,
α2 = 0.300) and r f = 3.233, rA = 0.240 (with α1 = 0.850, α2 = 0.600). In Figures 6 and 7,
the graphs on the left show the amplitude probability distributions pDK(s) and pTB(s),
whereas the graphs on the right show each distribution multiplied by µ sb/K. In all figures,
the Rayleigh distribution, also multiplied by

(
λ+

0 sb
)

/K on the right graph, is shown for
comparison. Values b = 5 and K = 1 of the S/N curve are chosen.

The graphs on the right, so suitably devised, have the purpose of highlighting the
distribution of the damage contributed by each amplitude. In fact, apart from constant
K, the quantity µ sb p(s) is the damage caused by the cycle with amplitude s. Looking
at this kind of “probability distribution weighted with damage” or simply “damage dis-
tribution”, it is possible to explain why, in spite of having different rainflow amplitude
distributions, Dirlik and TB methods estimate almost identical damage values. For the
example in Figure 6, the damage ratio is DTB/DDK = 0.966, while it slightly grows to
DTB/DDK = 0.944 for the example in Figure 7. The comparison also demonstrates, at least
for the two cases considered in the figures, that a difference in amplitude distributions in
the region of small amplitudes is not of concern, since small amplitudes contribute very
little to the total damage, especially for high b. Furthermore, the graph also makes apparent
how the Rayleigh probability distribution always leads to a larger damage.
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Figure 6. Comparison of (a) rainflow probability distributions, (b) weighted by the damage per amplitude. The figures refer
to parameters r f = 7.408, rA = 0.006 (with α1 = 0.900, α2 = 0.300).
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Figure 7. Comparison of (a) rainflow probability distributions, (b) weighted by the damage per amplitude. The figures refer
to parameters r f = 3.233, rA = 0.240 (with α1 = 0.850, α2 = 0.600).

6.2. Comparison among Spectral Methods (Numerical Simulations)

To our knowledge, one of the earliest comparisons of spectral methods is that per-
formed in [28]—obviously, it does not include the TB method that appeared only about ten
years later. The comparison in [28] indicated the Dirlik method as superior to other spectral
methods (as, for example, Wirsching-Light and “single-moment”) for a wide combination
of power spectral densities and S/N slopes, where its superiority was attributed to the use
of four spectral moments. This outcome then highlighted the role of spectral moment m1,
in addition to m0, m2, and m4, in describing the shape of the rainflow range probability
distribution. To this regard, the article concluded that the rainflow distribution is a mixed
distribution and, “in this sense Dirlik took the right approach” [28].
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A later study [74], though actually not aiming to compare different methods, also
confirmed the good performance of the Dirlik solution, even when applied to the subclass
of bimodal random processes, for which specific solutions usually perform better.

The first comparison also including the TB method was presented in [17]. Using an
error index to measure the estimation accuracy, the study confirmed that “the TB method
has been shown to be as accurate as the DK approach ”—although the latter has an error
index slightly smaller. Actually, the lowest error is for TB method using w3 in Equation (14),
but surprisingly, this version has not become of common use. The results in [17] emphasize
once more the need to include spectral moment m1 to obtain improved damage estimates,
although they have not yet excluded that a more complex relationship with other fractional
moments, such as m0.75 and m1.5, could exist.

Of particular interest are the findings of [37], since this article compares spectral
methods over a variety of power spectral density shapes that also include those already
used in [15] and in [16,17] (see Figure 8). The results in this figure, quite similar to
other figures in the article, show the ratio of the damage from spectral methods to the
damage from time-domain simulations. In the figure, while the narrow band solution
greatly overestimates the fatigue damage, Dirlik and TB methods both yield extremely
accurate predictions, as in general occur also for other power spectra. Despite, as the
article states, the fatigue damage predicted by the Dirlik and TB method “might be slightly
underestimated in most of the cases” (the article here refers to some trimodal spectra), “it
is demonstrated that the two formulae give quite accurate fatigue damage estimates for all
of the spectral shapes and bandwidth parameters considered herein” [37].
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The results in [33], too, corroborate the fact that both Dirlik and TB methods gener-
ally perform better than other approaches. The peculiarity of [33], however, is to have
considered real power spectra as typical of structural dynamics and automotive industry.
Unlike previous comparative studies, the findings of [33] seem to indicate a slightly bet-
ter performance of TB method over Dirlik, although the difference remains within a few
percentage points.

Common to previous studies is to observe for the tendency of prediction error to
increase as the S/N curve becomes less steep (as b increases).

More recently, other simulation studies [77,78] have been carried out to benchmark
the various spectral methods against different power spectral density shapes. Again, the
comparison in [77] confirms that, for any spectral method, the estimation error is magnified
with an increasing slope b, especially at values close to or above 8–10, which are typical of
smooth/unnotched components. Contrasting trends characterize the accuracy of the Dirlik
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and TB methods, sometimes the former being better for some b values while the latter for
other values.

In opposite trend with previous studies, the comparison of [78] claims different
conclusions. Although for some power spectra the Dirlik and TB methods are “highlighted
as the best-performing methods”, in general their accuracy is judged not so satisfactory
and, for steel and aluminum, it seems comparable to that of other methods—among them,
is (surprisingly) also included the Wirsching-Light method, despite its accuracy with wide
band spectra known to be not excellent.

6.3. Comparison with Experiments

Unlike simulation-based comparisons, there are far fewer studies that compare spec-
tral methods against experiments. Only few of them are mentioned here.

An example is the experimental study in [79] focusing on bending-torsion random
loading tests. Other than showing an agreement between estimations and experiments,
this study also represents an example that explains how to apply spectral methods (Dirlik,
specifically) in combination with multiaxial criteria based on an equivalent stress.

An interesting comprehensive experimental study is presented in [80], where estima-
tions of several spectral methods were compared with experiments from bending and/or
torsion random loadings with wide band power spectra of various shape. The multiaxial
spectral criterion of [79] was first used to transform the local multiaxial stress into an equiv-
alent uniaxial stress to which spectral methods (Dirlik, TB method, and others) are next
applied to estimate the fatigue life by means of Smith-Watson-Topper (SWT) parameter [80].
The main conclusion of the experimental study is that the Dirlik and TB methods “proved
to be substantially better than the Rayleigh method, and resulted in very small deviations
when compared with the experimental data”, as demonstrated by Figure 9.
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Reproduced from [80] with permission from Elsevier.

Interestingly, the study also pointed out how the two spectral methods “give a very
similar fatigue life” [80], despite showing essential differences in their rainflow probability
distributions. This apparent inconsistency is explained by the fact that both methods have
in common that part of the rainflow probability distribution that contributes most to the
fatigue damage—this aspect has already been discussed in Section 6.1.

A comparison with experimental data is provided in [61,62] for electronic devices
subjected to random loadings, with particular attention on the structural integrity of solder
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joints in two architectures called package-on-package (PoP) and ball grid array (BGA). The
comparison is displayed in Figure 10a. Although the number of test results is not so high
to permit general conclusions to be drawn on a statistical basis, some trends emerge clearly.
For example, in both the vibration tests the TB method yields estimations within 10% from
experiments—note that the Dirlik method was not included in the study [61]. Similar
trends were confirmed when other spectral methods were included in the comparison [62].
Again, the few experimental tests point out that, among all spectral methods, “both the
Dirlik and Tovo–Benasciutti methods exhibit less than 10% absolute error, which are more
accurate than others” [62]. For sure, these two methods are seen to perform much better
than the Steinberg three-band method [73] that traditionally is preferred in the field of
electronics applications.
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(b) temperature effect on random loading (DTMDK = temperature modified Dirlik method). Reproduced from [30,62] with
permission from Elsevier.

As already mentioned in Section 3, the temperature-modified Dirlik method is checked
against experimental data obtained in [30,31] by testing a die-casting aluminum alloy at
various temperatures. Apart from some scatter in experimental data, the comparison shows
that fatigue life can be estimated successfully by the Dirlik method [30,31] (see Figure 10b).

A nice correlation with experimental data, which confirms the capability of spectral meth-
ods in predicting fatigue life, is also highlighted in [81] for the Dirlik method—presumably
the TB method, though not shown, is close to experimental data as well.

It finally has to be mentioned how the good accuracy of the Dirlik method encompasses
not only metallic materials, but also advanced materials as composites [66].

7. Conclusions

Spectral methods are finding more and more application in various engineering areas
and with various material types: from testing handheld devices to rocket launchers, from
testing common metallic materials to ceramic matrix composites and even to concrete
asphalt mortars.

Whether or not a spectral method is accurate enough in a certain application depends,
first, on if its hypotheses are satisfied by that application. Methods restricted to narrow
band processes will overestimate the damage if applied to a wide band process. Similarly,
methods developed for stationary Gaussian processes will be wrong if applied to non-
Gaussian or nonstationary processes. For any given application, the decision on which
method is more appropriate is left to each one’s engineering judgement.
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On the other hand, a certain degree of approximation must be accepted when using
spectral methods, since the actual measured random time histories of stress (for example,
obtained by measurements) can hardly be exactly stationary and Gaussian, as instead
prescribed by the models. The degree of approximation depends on how much the model
hypotheses are violated. Sometimes, dividing a nonstationary signal into stationary, or
almost-stationary, segments may be a simple and feasible solution. In other cases, especially
with irregular time histories, the solution is not so obvious, or may even not exist.

Once it has been verified that a given application matches the model hypotheses, the
choice of “the best” model sometimes becomes less obvious, especially for “newcomers”
to vibration fatigue. The multitude of spectral methods in the literature may let one feel
somehow disoriented, indeed. Help may come from results of comparative studies. As
this article pointed out, for wide band stationary Gaussian processes, the literature seems
to have found by now a consensus in identifying the methods by Dirlik and by Tovo–
Benasciutti (TB) as “the best” spectral methods, with very little—if not even negligible—
differences between them. Which one to use then becomes a matter of personal preference.

For what concerns possible areas of development of spectral methods, besides addi-
tional studies to evaluate the potential of spectral methods in different industrial sectors
using different materials, some research topics could deserve attention in the future: multi-
axial fatigue with nonstationary random loadings, crack propagation models, and, finally,
the uncertainty in damage estimates due to sampling variability of power spectrum.

For multiaxial fatigue, it is known that the great majority of spectral criteria developed
thus far—mostly as reformulations of multiaxial criteria originally in time domain [82,83]—are
limited to stationary loadings. A great deal of research is required to extend those criteria
to nonstationary multiaxial random loadings, by also considering that the nonstationary
case has not yet been solved completely even for uniaxial loadings. At the same time, the
development of new multiaxial spectral criteria, either in stationary or nonstationary case,
should go hand in hand with experimental testing, aimed at gathering a database for cali-
brating and validating new multiaxial spectral methods—for example, by testing additively
manufactured materials that have recently attracted so much attention by research.

For fatigue crack growth, it seems that the current literature on spectral-based crack
propagation models is not so vast [6–10], so this topic may represent quite a promising
research field; a starting point may be, for example, the development of spectral methods
to include the effect of overloads.

Finally, a topic that, so far, has received very little or almost no attention is the
effect on spectral fatigue damage of the sampling variability of a power spectral density
computed from short time history records. When this sampling variability is included
in the analysis, the fatigue damage estimated by spectral methods becomes a random
value with a statistical variability evaluated through confidence intervals. Although some
achievements have been obtained recently [84], this topic certainly deserves more attention
by research in the years to come.
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